Oncogenic roles of SMARCB1/INI1 and its deficient tumors

Kenichi Kohashi and Yoshinao Oda

Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Key words
Atypical teratoid/rhabdoid tumor, chromatin remodeling, Malignant rhabdoid tumor, SMARCB1/INI1, SWI/SNF

Correspondence
Yoshinao Oda, Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
Tel: +81-92-642-6061; Fax: +81-92-642-5968; E-mail: oda@surgpath.med.kyushu-u.ac.jp

Funding Information
Japan Society for the Promotion of Science (25293088; 26460435).

Accepted January 7, 2017

Cancer Sci 108 (2017) 547–552
doi: 10.1111/cas.13173

SMARCB1/INI1 is one of the core subunit proteins of the ATP-dependent SWI/SNF chromatin remodeling complex, and is identified as a potent and bona fide tumor suppressor. Interactions have been demonstrated between SMARCB1/INI1 and key proteins in various pathways related to tumor proliferation and progression: the p16-RB pathway, WNT signaling pathway, sonic hedgehog signaling pathway and Polycrom pathway. Initially, no detectable SMARCB1/INI1 protein expression was found in malignant rhabdoid tumor cells, whereas all other kinds of tumor cells and non-tumorous tissue showed SMARCB1/INI1 protein expression. Therefore, immunohistochemical testing for the SMARCB1/INI1 antibody has been considered useful in confirming the histologic diagnosis of malignant rhabdoid tumors. However, recently, aberrant expression of SMARCB1/INI1 has been found in various tumors such as epithelioid sarcomas, schwannomatosis, synovial sarcomas, and so on. Although the various pathways related to mechanisms of tumorigenesis and tumor proliferation are complexly intertwined, the clarification of these mechanisms may contribute to therapeutic strategies in SMARCB1/INI1-deficient tumors. In terms of pathological classifications, SMARCB1/INI1-deficient tumors may be re-classified by genetic backgrounds.

SMARCB1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1), which is also named INI1 (integrase interactor 1), is one of the core subunit proteins in the SWI/SNF (SWItch/Sucrose Non-Fermentable) ATP-dependent chromatin remodeling complex encoded at chromosomal position 22q11.2. (1) SMARCB1 was first identified as a gene essential for glucose-repressible genes in Saccharomyces cerevisiae. (2) Characterization of the SMARCB1/INI1 gene revealed that it encodes glutamine- and proline-rich domains characteristic of activation domains. (3) As for the protein, a yeast 2-hybrid screen designed to identify host proteins that could interact with HIV-1 integrase first, identified the human homologue of SNF5, which was then named SMARCB1, (4) and a human polypeptide corresponding in sequence to yeast SNF5 was isolated using a yeast 2-hybrid screen in WI38 human fibroblasts. (5)

SMARCB1/INI1 is ubiquitously expressed in the nuclei of all normal cells. (6) Disruption of SMARCB1/INI1 expression in mice results in early embryonic lethality: SMARCB1/INI1-null embryos die between 3.5 and 5.5 days post-coitum. (7) SMARCB1/INI1 heterozygous-deficient mice and those with conditional ablation of SMARCB1/INI1 develop aggressive cancer including rhabdoid-like tumors and T-cell lymphomas at a median onset of only 11 weeks. (8–10)

This embryonic lethality is rapid compared with other tumor suppressors. For example, p53 inactivation leads to cancer at 20 weeks, p19Arf loss at 38 weeks, and p16Ink4a loss at 60 weeks. Thus, the rapid onset and complete penetrance of cancer following inactivation of SMARCB1/INI1 establishes this gene as a potent and bona fide tumor suppressor. (11,12)

Function of SMARCB1/INI1

Role of SMARCB1/INI1 in the p16-RB pathway. The p16 tumor suppressor protein functions as an inhibitor of CDK4 and CDK6, the D-type cyclin-dependent kinases that initiate phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and activate the E2F transcription factor. (13) Rb represses gene transcription, required for the transition from G0/G1 to S phase, by directly binding to the transactivation domain of E2F. (14) Thus, p16 has the capacity to arrest cells in the G1-phase of the cell cycle. (13)

Reintroduction of SMARCB1/INI1 into malignant rhabdoid tumor cell lines having SMARCB1/INI1 deficiency induced the accumulation of cells in G0/G1, and, in some cases, cell senescence or apoptosis. (15,16) These findings resulted from G0/G1 cell cycle arrest associated with transcriptional repression of Cyclin D1, induction of P16, and hypophosphorylation of RB. (16,17) This repression of Cyclin D1 transcription was associated with direct recruitment of HDAC activity to the Cyclin D1 promoter. (16–18)
Previous studies have suggested that SMARCB1/INI1 suppresses tumor progression by signaling through the p16INK4a and retinoblastoma tumor suppressors to negatively regulate cell cycle progression from G0/G1 to the S-phase. It was recently reported that SMARCB1/INI1 signals via the p16INK4a-Rb-E2F pathway regulate chromosomal stability, suggesting a new function in tumor suppression for this chromatin-remodeling protein.

Role of SMARCB1/INI1 in the canonical WNT pathway. Traditionally, WNT signaling pathways have been characterized by two large categories: the canonical WNT (or β-catenin-dependent) and non-canonical WNT (or β-catenin-independent) pathways. Biologically, the canonical WNT signaling pathway usually plays important roles in regulating cell fate, proliferation, and survival, and its aberrant activation is found in several types of human cancer, whereas non-canonical WNT signaling is more associated with differentiation, cell polarity and migration.

SMARCB1/INI1 deficiency in the developing limb mesenchyme leads to aberrant activation of the canonical WNT pathway and to phenotypic defects consistent with WNT/β-catenin overexpression. In SMARCB1/INI1-deficient tumors, WNT targets are elevated compared with those in the normal cerebellum, and aberrant activation of β-catenin-target genes occurs randomly of canonical WNT pathway activation. Thus, SMARCB1/INI1 deficiency causes aberrant activation of the WNT signaling pathway and results in phenotypic defects consistent with WNT/β-catenin overexpression.

Role of SMARCB1/INI1 in the sonic hedgehog signaling pathway. The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity.

Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Hedgehog signal transduction is initiated by the binding of Hh proteins to the Patched 1 protein (Ptc1). Ptc1 inhibits the activity of a smoothened (SMO) protein that activates factors downstream of the Hh signaling pathway when those ligands are not bound to Ptc1. SMO stimulates a signaling cascade that results in the activation of the glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors (GLI1, GLI2, and GLI3), when those ligands are bound to Ptc1.

SMARCB1/INI1 was found to localize to the upstream regions of the transcription start sites of GLI1 and Ptc1. Sh-RNA-mediated knockdown of SMARCB1/INI1 leads to upregulation of the GLI1 and Ptc1 expressions, and to activation of the Shh signaling pathway. Conversely, re-expression of SMARCB1/INI1 in malignant rhabdoid tumor cell lines represses GLI1 expression. Clinical cases of primary SMARCB1/INI1-deficient tumors (malignant rhabdoid tumor and atypical teratoid/rhabdoid tumor) showed enrichment of gene expression associated with Shh signaling pathway activation and GLI1 overexpression signatures which often possess activating mutations in the Shh signaling pathway. Therefore, SMARCB1/INI1 is identified as one of the top regulators of GLI1, and is a key mediator of Shh signaling pathway.

Role of SMARCB1/INI1 in the Polycomb pathway. Activations of Polycomb proteins contribute to epigenetically based gene silencing during the developmental processes of proliferation, and it has been suggested that these proteins may serve important roles during oncogenic transformation. Polycomb proteins form two distinct multiprotein repressive complexes, PRC1 and PRC2. EZH2, which is the functional enzymatic component of PRC2, is highly expressed in various cancers, and is often correlated with tumor progression and poor prognosis, although the mechanisms underlying the upregulation of EZH2 are poorly understood. EZH2 plays an important role as the catalytic subunit in PRC2 and mediates gene silencing by catalyzing the trimethylation of histone 3 lysine 27 (H3K27me3) at the promoter regions of target genes.

SMARCB1/INI1-deficient tumor samples also express higher levels of EZH2. EZH2 transcription is directly repressed by SMARCB1/INI1 in mouse embryonic fibroblasts. SMARCB1/INI1 deficiency leads to broad repression of lineage-specific Polycomb-regulated genes, and this repression is dependent on the presence of EZH2. SMARCB1/INI1 deficiency causes elevated levels of H3K27me3 at lineage-specific Polycomb targets. Thus, SMARCB1/INI1 deficiency mechanistically leads to elevated expression and recruitment of EZH2 to Polycomb targets, the trimethylation of histone 3 lysine 27, and the ultimate repression of Polycomb genes in SMARCB1/INI1-deficient fibroblasts and cancer cells.

Other targets of SMARCB1/INI1. It has been reported that the other targets of SMARCB1/INI1 are c-MYC and Aurora A. c-MYC, which is a regulator gene that codes for a transcription factor, plays a role in cell cycle progression, apoptosis and cell transformation. C-MYC is known to be significantly upregulated in SMARCB1/INI1-deficient malignant rhabdoid tumors. Recruitment of the SWI/SNF complex, mediated by the interaction of INI1 with c-MYC, facilitates the transcription of a discrete subset of c-MYC target genes, especially those involved in apoptosis, which might explain the tumor-suppressor activity of SMARCB1/INI1.

Aurora A, which is a member of a family of mitotic serine/threonine kinases, is implicated with important processes during mitosis and meiosis, the proper functioning of which are critical for healthy cell proliferation. Aurora A is a direct downstream target of SMARCB1/INI1-mediated repression in malignant rhabdoid tumor cells, and the loss of SMARCB1/INI1, which is required for their survival, leads to aberrant overexpression of Aurora A in these tumors.

SMARCB1/INI1-deficient tumors

In 1990, monosomy 22 as the only cytogenetic abnormality was found in three cases of atypical teratoid/rhabdoid tumors. In 1998, positional cloning and sequence analysis of malignant rhabdoid tumors eventually identified mutations, deletions and other somatic alterations in the SMARCB1/INI1 gene. After that, aberrant expression of the SMARCB1/INI1 protein has been reported to occur in various tumors. At present, three patterns of aberrant SMARCB1/INI1 expression-complete loss, mosaic expression and reduced expression-have been identified (Table 1).

Complete loss groups

Malignant rhabdoid tumor. Malignant rhabdoid tumors are classified as tumors of uncertain differentiation. Most such tumors present at birth or develop in infancy, and occur in the central nervous system, kidney and soft tissue. Almost all malignant rhabdoid tumors show complete loss of SMARCB1/INI1 expression (Fig. 1a,b). In a small minority of cases, SMARCB1/INI1 expression is...
60 cases reported previously in the medical literature. Agaimy composed of rhabdoid cells is very rare with only approximately bated carcinoma of the pancreas that are predominantly (>50%) expressed between 19% and 100% in proximal-type cases. However, about 20% cases with loss of SMARCB1/INI1 protein expression also showed no alteration at either the DNA or RNA level, and the mechanism of the inactivation of the SMARCB1/INI1 gene product was not clarified.

Epithelioid sarcoma. Epithelioid sarcoma is a rare soft tissue tumor displaying an uncertain line of differentiation. Two clinico-pathologic subtypes are recognized: the conventional-type, characterized by its proclivity for distal extremities and a pseudo-granulomatous growth pattern; and proximal-type, which arises mainly in the proximal extremities or truncal regions, and consists of nests and sheets of large epithelioid cells. Complete loss of SMARCB1/INI1 expression is found in 76–100% cases of proximal-type and 81–93% cases of conventional-type epithelioid sarcoma. The ratio of gene alteration at either the DNA or RNA level causing SMARCB1/INI1 protein inactivation varies widely between 0% and 58% in conventional-type or between 19% and 100% in proximal-type cases. In addition, it is suggested that microRNAs such as miR193a-5p, miR-206, miR-371 and miR-671-5p may have the potential to inhibit SMARCB1 mRNA in epithelioid sarcoma.

Pancreatic undifferentiated rhabdoid carcinoma. Undifferentiated carcinoma of the pancreas that are predominantly (>50%) composed of rhabdoid cells is very rare with only approximately 60 cases reported previously in the medical literature. Agaimy et al. reported that 4 of 14 this carcinoma shows the complete loss of SMARCB1/INI1 immunoreactivity, and these all four cases are monomorphic anaplastic histology, whereas the remaining 10 cases are pleomorphic giant cell histology. In SMARCB1/INI1 deficient cases, three of the four cases lacked KRAS alterations (mutations and/or amplifications).

SMARCB1/INI1-deficient carcinoma of the sinonasal or gastrointestinal tract

SMARCB1/INI1-deficiency has been also been reported in extremely small numbers of carcinoma of the sinonasal or gastrointestinal tract. Agaimy et al. reported three cases of sinonasal SMARCB1/INI1-deficient basal cell carcinoma and five cases of SMARCB1/INI1-negative rhabdoid carcinoma of the gastrointestinal tract.

Table 1. SMARCB1/INI1-deficient tumors

Complete loss group
Malignant rhabdoid tumor (atypical teratoid/rhabdoid tumor)
Epithelioid sarcoma
Renal medullary carcinoma
Epithelioid malignant peripheral nerve sheath tumor
Myoepithelial tumor
Extraskeletal myxoid chondrosarcoma
Pediatric chordoma
Pancreas undifferentiated rhabdoid carcinoma
Sinonasal basoidal carcinoma
Rhabdoid carcinoma of the gastrointestinal tract

Mosaic expression group
Schwannomatosis
Gastrointestinal stromal tumor
Ossifying fibromyxoid tumor

Reduced expression group
Synovial sarcoma

Although SMARCB1/INI1 expression is preserved, SMARCA4/BRG1 is completely lost. SMARCB1/INI1 is inactivated homozygously in the majority cases of this kind of tumor by deletions and/or mutations. However, about 20% cases with loss of SMARCB1/INI1 protein expression also showed no alteration at either the DNA or RNA level, and the mechanism of the inactivation of the SMARCB1/INI1 gene product was not clarified.

Age/sex of these sinonasal basal cell carcinomas were as follows: 35 years old (years)/female; 52 years/male; 28 years/female. Histological features showed a few scattered rhabdoid cells, basoloid “blue” appearance, papilloma-like exophytic component, extensive pagetoid surface growth with prominent denuding features, and replacement of underlying mucous glands mimicking an inverted papilloma. High-risk human papillomavirus infection was negative in all cases.

Age/sex PRIMARY site of these rhabdoid carcinomas of gastrointestinal tract were as follows: 32 years old (years)/male/large intestine; 54 years/male/esophago-gastric junction; 58 years/male/antrum; 79 years/male/cæcum; 66 years/male/stomach body. Recently, pediatric chordoma with SMARCB1/INI1-deficiency cases have also been reported. These tumors are known to have rhabdoid cells, which are characterized by the existence of a large eosinophilic inclusion within the cytoplasm, eccentric nuclei and prominent nucleoli.

Mosaic groups

Schwannomatosis. Schwannoma is benign peripheral nerve sheath neoplasms composed exclusively of Schwann cells. Schwannomatosis, which is a familial or sporadic syndrome, is classified into two major categories according to the absence of vestibular schwannomas and neurofibromatosis type 2 (NF2) pathology. Most cases of familial schwannomatosis (14/15; 93%) and NF2-associated schwannomas (10/12; 83%), and some cases of sporadic schwannomatosis (10/18; 55%) show mosaic patterns of SMARCB1/INI1 protein expression (Fig. 1c.d). Genetically, most schwannomatosis patients show missense or splice-site mutations of SMARCB1/INI1 genes at germline. These mutations cause the replacement of an important amino-acid residue or the in-frame deletion or insertion of amino-acid residues, resulting in the synthesis of a SMARCB1/INI1 protein with altered activity.

Gastrointestinal stromal tumor. Gastrointestinal stromal tumor (GIST), which is the specific KIT-positive mesenchymal tumor of the gastrointestinal tract, demonstrates a gain-of-function mutation of the KIT gene or the PDGFRA gene. About half of GIST cases (17/27; 63%) show mosaic patterns of SMARCB1/INI1 protein expression. Genetically, among the 27 informative cases, 19 (70%) showed LOH of at least one of the microsatellite markers on 22q11.23 including the SMARCB1/INI1 gene. In another study, four of the seven metastatic GIST cases harbored a heterozygous deletion of part or the entire arm of chromosome 22, on which SMARCB1 is located.

Ossifying fibromyxoid tumor. Ossifying fibromyxoid tumors, characterized by a lobular proliferation of small bland round cells with a peripheral shell of woven bone, are classified as tumors of uncertain differentiation. Immunohistochemically, the mosaic pattern of SMARCB1/INI1 was noted in 14 of 19 (74%) cases. Genetically, although epigenetic events such as posttranslational modifications or small deletions or mutations are not detectable by FISH, five of seven cases showed an aberrant signal in the SMARCB1/INI1 gene by FISH. Five cases showed a hemizygous deletion of both
SMARCBI/INI1 and PANX2 (the control probe) in >50% of cells, and three of those five had a second population of cells showing two signals for SMARCBI/INI1 and one signal for the control, suggesting loss of one copy of the 22q telomeric region. No cases with homozygous deletion of the SMARCBI/INI1 gene were found.

Reduced group

Synovial sarcoma. Synovial sarcoma, which is classified as a tumor of uncertain differentiation, has three major histological subtypes: the monophasic type, biphasic type and poorly differentiated type. Genetically, a fusion of the SS18 gene to
an SSX family member as the result of a chromosomal translocation, t(X;18), is recognized. Kadoch et al. first identified reduced SMARCB1/INI1 immunostaining in the majority of cases of synovial sarcoma (Fig. 1e,f). Kadoch identified reduced SMARCB1/INI1 immuno-expression in the plex, and wild-type SS18 and SMARCB1 are displaced from the complex; then SMARCB1 is proteosomally degraded.

Conclusion

SMARCB1/INI1 plays an important role in various interwoven factors in several pathways (Fig. 2), and different cancers show different aberrant expression patterns of its protein. Although the several pathways related to mechanisms of tumorigenesis and tumor proliferation are intertwined in complex ways, the clarification of these mechanisms may contribute to therapeutic strategies in SMARCB1/INI1-deficient tumors. In terms of pathological classification, SMARCB1/INI1-deficient tumors may be reclassified by their genetic backgrounds.

Acknowledgments

This study was supported by JSPS KAKENHI Grant Numbers 25293088 and 26460435. The English used in this article was revised by KN International (http://www.kninter.com/).

Disclosure Statement

The authors have no conflict of interest to declare.

References

1 Roberts CW, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumors. Cancer Biol Ther 2009; 8: 412–6.
2 Abrams E, Negev-Lior E, Carlson M. Molecular analysis of SNF2 and SNF5 genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 1986; 6: 3643–51.
3 Laurent BC, Treitel MA, Carlson M. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol Cell Biol 1990; 10: 5616–25.
4 Kalpana GV, Marmon S, Wang W et al. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 1994; 266: 2002–6.
5 Muchardt C, Sarlet C, Bourachot B et al. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res 1995; 23: 1127–32.
6 Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 2011; 35: e47–63.
7 Guichet CI, Sands AT. Molecular genetic evidence for the loss of In1l1 in mice. Mol Cell Biol 2001; 21: 3590–639.
8 Roberts CW, Orkin SH. The SWI/SNF complex–chromatin and cancer. Nat Rev Cancer 2004; 4: 133–42.
9 Roberts CW, Galusha SA, McMenamin ME et al. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 2000; 97: 13796–800.
10 Roberts CW, Leroux MM, Fleming MD et al. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002; 2: 415–25.
11 Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009; 28: 1653–68.
12 Kim KH, Roberts CW. Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genet 2014; 207: 365–72.
13 Ohtani N, Yamakoshi K, Takahashi A et al. The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J Med Invest 2004; 51: 146–53.
14 Giacinti C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
15 Kadoch C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
16 Kadoch C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
17 Kadoch C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
18 Kadoch C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
19 Kadoch C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
20 Kadoch C, Giordano A. RB and cell cycle progression. J Med Invest 2004; 51: 123–31.
21 Yang K, Wang X, Zhang H et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest 2016; 96: 116–36.
22 Mora-Blanco EL, Mishina Y, Tillman EJ et al. Activation of β-catenin/TCF targets following loss of the tumor suppressor Snf5. Oncogene 2014; 33: 933–8.
23 Rimkus TK, Carpenter RL, Qasem S et al. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 2016; 8: pii: E22.
24 Hooper JE, Scott MP. Communicating with Hedgehogs. Nat Rev Mol Cell Biol 2005; 6: 306–17.
25 Hayes-Fenty M, Boucher D, Petit E et al. The negative regulator of Gli, suppressor of fused (Sufu), interacts with SAP18, Galexin3 and other nuclear proteins. Biochem J 2004; 378: 553–62.
26 Jaganzi Z, Mora-Blanco EL, Sansam GG et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 2010; 16: 1429–33.
27 Wilson BG, Wang X, Shen X et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 2010; 18: 316–28.
28 Pasini D, DiCroce L. Emerging roles for Polycomb proteins in cancer. Curr Opin Genet Dev 2016; 30: 58–60.
29 Knutson SK, Wardholic NM, Wijle TJ et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci USA 2013; 110: 7922–7.
30 Gadd S, Sredni ST, Huang CC et al. Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets. Lab Invest 2010; 90: 724–38.
31 Stojanova A, Penn LZ. The role of INI1/hSNF5 in gene regulation and cancer. Biochem Cell Biol 2009; 87: 163–27.
32 Chuang SW, Davies KP, Yung E et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet 1999; 22: 102–5.
33 Lee S, Cimica V, Ramachandra N et al. Aurora A is a repressed effector target of the chromatin remodeling protein INI1/hSNF5 required for rhabdoid tumor cell survival. Cancer Res 2011; 71: 3225–35.
34 Biegel JA, Rorke LB, Packer RJ et al. Monosomy 22 in rhabdoid or atypical tumors of the brain. Cancer Res 2001; 61: 358–70.
35 Biegel JA, Rorke LB, Packer RJ et al. Monosomy 22 in rhabdoid or atypical tumors of the brain. Cancer Res 2001; 61: 358–70.
36 Biegel JA, Rorke LB, Packer RJ et al. Monosomy 22 in rhabdoid or atypical tumors of the brain. Cancer Res 2001; 61: 358–70.
37 Biegel JA, Rorke LB, Packer RJ et al. Monosomy 22 in rhabdoid or atypical tumors of the brain. Cancer Res 2001; 61: 358–70.
42 Kohashi K, Tanaka Y, Kishimoto H et al. Reclassification of rhabdoid tumor and pediatric undifferentiated/unclassified sarcoma with complete loss of SMARCB1/INI1 protein expression: three subtypes of rhabdoid tumor according to their histological features. Mod Pathol 2016; 29: 1232–42.

43 Hoot AC, Russo P, Judkins AR et al. Immunohistochemical analysis of ISNS5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol 2004; 28: 1485–91.

44 Sgauke E, Rakheja D, Maddox DL et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol 2006; 19: 717–25.

45 Hasselblatt M, Ouy F et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rdiohd tumour showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 2011; 35: 933–5.

46 Biegel JA, Tan L, Zhang F et al. Alterations of the ISNS5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res 2002; 8: 3461–7.

47 Oda Y, Dal Cin P, Laskin WB. Epithelioid sarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2013: 216–8.

48 Modena P, Lualdi E, Facchinetti F et al. SMARCB1/INI1 expression in epithelioid sarcoma is regulated by miR-206, miR-381, and miR-671-5p on Both mRNA and protein levels. Mod Pathol 2010; 23: 832–43.

49 Papp G, Changchien YC, Péteria B et al. SMARCB1 protein and mRNA loss is not caused by promoter and histone hypermethylation in epithelioid sarcoma. Mod Pathol 2013; 26: 393–403.

50 Kohashi K, Yamamoto H, Kumagai R et al. Invasive sinonasal basaloid carcinoma: a novel member of the expanding family of SMARCB1-deficient neoplasms. Am J Surg Pathol 2014; 38: 823–9.

51 Jamshidi F, Bashashati A, Shumansky K et al. The genomic landscape of epithelioid sarcoma cell lines and tumors. J Pathol 2016; 238: 63–73.

52 Papp G, Krausa T, Stricker TP et al. SMARCB1 expression in epithelioid sarcoma is regulated by miR-206, miR-381, and miR-671-5p on Both mRNA and protein levels. Genes Chromosom Cancer 2014; 53: 168–76.

53 Agaimy A, Hallek F, Hohrmaier J et al. Pancreatic undifferentiated rhabdoid carcinoma: KRAS alterations and SMARCB1 expression status define two subtypes. Mod Pathol 2015; 28: 248–60.

54 Agaimy A, Koch M, Lell M et al. SMARCB1(1IN1)-deficient sinonasal basoid carcinoma: a novel member of the expanding family of SMARCB1-deficient neoplasms. Am J Surg Pathol 2014; 38: 1274–81.

55 Agaimy A, Rau TT, Hartmann A et al. SMARCB1 (IN1)-negative rhabdoid carcinomas of the gastrointestinal tract: clinicopathologic and molecular study of a highly aggressive variant with literature review. Am J Surg Pathol 2014; 38: 910–20.

56 Agaimy A, Daum O, Mark B et al. SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol 2016; 40: 544–53.

57 Cheng JX, Tretiatkova M, Gong C et al. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol 2008; 21: 647–52.

58 Kohashi K, Oda Y, Yamamoto H et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol 2008; 32: 1168–74.

59 Agaimy A, Koch M, Lell M et al. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2013: 170–2.

60 Antonescu CR, Perry A, Woodrum JM. Schwannomas (including variants). In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2013: 170–2.

61 Carter JM, O’Hara C, Dudas G et al. Epithelioid malignant peripheral nerve sheath tumor arising in a schwannoma, in a patient with “neuroblastoma-like” schwannomatosis and a novel germline SMARCB1 mutation. Am J Surg Pathol 2012; 36: 154–60.

62 Patil S, Perry A, MacCollin M et al. Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol 2008; 18: 517–9.

63 Hulsebos TJ, Kenter S, Siebers-Renelt U et al. SMARCB1 involvement in the development of leiomyoma in a patient with schwannomatosis. Am J Surg Pathol 2014; 38: 421–5.

64 Boyd C, Smith MJ, Kliewe L et al. Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial schwannomatosis. Clin Genet 2008; 74: 358–66.

65 Miettinen MM, Corless CL, Debiec-Rychter M et al. Gastrointestinal stromal tumours. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2013: 164–7.

66 Miettinen M, Lasota J, Sobin LH. Gastrointestinal stromal tumors of the stomach in children and young adults: a clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases with long-term follow-up and review of the literature. Am J Surg Pathol 2005; 29: 1373–81.

67 Yamamoto H, Kohashi K, Tsuneyoshi M et al. Heterozygosity loss at 22q and lack of INI1 gene mutation in gastrointestinal stromal tumor. Pathobiology 2011; 78: 132–9.

68 Saponara M, Urbini M, Astolfi A et al. Molecular characterization of meta- static exon 11 mutant gastrointestinal stromal tumours (GIST) beyond KIT/ PDGF receptor gene evaluated by next generation sequencing (NGS). Oncotarget 2015; 6: 42243–57.

69 Miettinen MM, Kawashima H, Weiss SW. Ossifying fibromyxoid tumour. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2013: 391–6.

70 Endo M, Kohashi K, Yamamoto H et al. Ossifying fibromyxoid tumour presenting E4FP0-PIFH fusion gene. Hum Pathol 2013; 44: 2603–8.

71 Graham RP, Dry S, Li X et al. Ossifying fibromyxoid tumor of soft parts: a clinicopathologic, proteomic, and genomic study. Am J Surg Pathol 2011; 35: 1615–25.

72 Suurmeijer AJH, de Brujin D, van Geurts Kessel A et al. Synovial sarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press, 2013: 213–5.

73 Endo O, Asano N, Kawai A et al. The diagnostic utility of reduced immunohistochemical expression of SMARCB1 in synovial sarcomas: a validation study. Hum Pathol 2016; 47: 32–7.

74 Kohashi K, Oda Y, Yamamoto H et al. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol 2010; 23: 981–90.

75 Kodoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complex by the SS18-SXX oncogenic fusion in synovial sarcoma. Cell 2013; 153: 71–85.