Designed hybrids facilitate efficient generation of high-resolution linkage maps

Kazutoshi Yoshitake¹, Yoji Igarashi¹, Misaki Mizukoshi¹, Shigeharu Kinoshita¹,
Susumu Mitsuyama¹, Yutaka Suzuki², Kazuyoshi Saito³, Shugo Watabe⁴, Shuichi
Asakawa¹

¹Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo
113-8657, Japan. ²Department of Medical Genome Sciences, Graduate School of
Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-
8561, Japan. ³Akita Prefectural Institute of Fisheries, Oga, Akita 010-0531, Japan.
⁴School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373,
Japan

Correspondence should be addressed to S.A. (asakawa@mail.ecc.u-tokyo.ac.jp)

The running title: Efficient generation of linkage maps using hybrids
Keywords: linkage map, scaffold extender, hybrid organisms, whole genome SNP typing, *Takifugu rubripes, Takifugu stictonotus*

In sequencing eukaryotic genomes, linkage maps are indispensable for building scaffolds with which to assemble and/or to validate chromosomes. However, current approaches to construct linkage maps are limited by marker density and cost-effectiveness, especially for wild organisms. We have now devised a new strategy based on artificially generated hybrid organisms to acquire ultra high-density genomic markers at lower cost and build highly accurate linkage maps. Using this method, linkage maps and draft sequences for two species of pufferfish were obtained simultaneously. We anticipate that the method will accelerate genomic analysis of sexually reproducing organisms.

New-generation technologies now enable whole-genome sequencing of any organism, although assembling long, high-quality genomes from short reads generated by these
technologies remains challenging. Accordingly, methods such as Irys genome mapping
(BioNano Genomics Inc.), Hi-C, Chicago library (Dovetail) and linked reads (10×
Genomics) have been developed to generate longer scaffolds and improve
assembly (Burton et al. 2013; Putnam et al. 2016; Bickhart et al. 2017; Weisenfeld et al.
2017). Nevertheless, genetic linkage analysis would likely remain essential to
reconstruct most eukaryotic genomes, even if sequencing methods continue to advance.
Indeed, linkage maps are used not only to assemble contigs/scaffolds, but also to
compare and evaluate the assembled sequences.
Construction of conventional linkage maps based on microsatellite markers
generally is costly and time-consuming, and the maps are of low resolution and
genomic coverage due to the limited number of markers, usually several hundreds to
several thousands (Kai et al. 2011). Several new methods to construct linkage maps and
assemble contigs/scaffolds have also been developed, including SNP array (Bodenes et
al. 2016), RAD-seq (Arora et al. 2017), and genotyping-by-sequencing (Nunes et al.
2017). However, SNP arrays require SNP data and hundreds of arrays prepared in
advance, and therefore may not be suitable for de novo genome analysis. In contrast tens
of thousands of SNP markers are easily obtained by RAD-seq or genotyping-by-
sequencing, although the distribution of such markers strongly depends on the
restriction enzymes used. In addition, markers obtained from these methods are usually
present at one per tens of kb; thus, they lie outside the length of most contigs and small
scaffolds, and cannot be located on the genome.

Determining the two haplotypes in each individual is the main challenge in linkage
analysis (Fig. 1A). Indeed, typing of polymorphic sites by genome sequencing generally
requires coverage higher than 10 fold, on average, to distinguish between hetero- and
homozygosity. As several hundred individuals are usually genotyped, a large volume of
tasks would be required to achieve the required coverage for each individual. Such large
tasks may thus prevent the use of whole-genome sequencing for this purpose, even if
throughput from sequencing technologies significantly expands.

However, a single read of each polymorphic site is sufficient to determine the
haplotype in haploid individuals, such as those generated by gynogenesis or
androgenesis in some organisms (Fig. 1B), and each individual can thus be haplotyped
with substantially fewer reads. The haplotype inherited from the diploid parent can then
be inferred. By extension, haplotyping is also very simple if each read can be clearly attributed to the mother or father (Fig. 2A). For example, when we find a read inherited from the mother, we need only determine either of the two maternal haplotypes, for which the required coverage is only one (Fig. 1C). By this strategy, independent linkage maps can be generated for both the mother and father (Fig. 1C, Fig. 2C). However, maternal and paternal genomes are typically almost the same and are usually indistinguishable in the offspring.

To test this approach, we generated hybrid offspring from two infertile species (Fig. 1C), one of which is torafugu, or tiger pufferfish (*Takifugu rubripes*), and the other is gomafugu (*Takifugu stictonotus*). *T. rubripes* is suitable as a reference, as a draft genome and linkage map are already available. In contrast, only the mitochondrial genome is known for *T. stictonotus*. As the analysis is based on whole genomes, almost all SNPs are suitable as polymorphic markers, the density of which are typically higher in comparison to all others. Accordingly, the resolution of the resulting linkage map would be limited in theory not by the number of markers, but by the number of crossover sites.
The linkage maps thus obtained simultaneously for both species were high-resolution and high-coverage, especially in comparison to the latest draft sequence for *T. rubripes* (FUGU5). We also constructed the first linkage map and draft genome sequence for *T. stictonotus*, consisting of 22 chromosomes. We believe this is the first instance in which a draft sequence of the correct number of chromosomes was obtained in a single analysis. Our strategy should be applicable to most sexually reproducing organisms, and thus should facilitate genome analysis of not only oviparous organisms, but also viviparous animals and plants.

RESULTS

Sequencing of samples

We sequenced 192 hybrid fry, and obtained suitable data from 188. Sequence data were also obtained from the father, as well as from a mother-equivalent following loss of the mother. Sequence statistics are listed in Table 1. Assuming a genome size of 391 Mb for both species, coverage was 60.7 and 83.5 fold for *T. rubripes* and *T. stictonotus*, respectively.
respectively. Because the size of the genome is doubled (782 Mb) in hybrids, coverage for each was 1.8 fold on average.

Reference genome assemblies

The N50 for the *de novo* *T. rubripes* genome that we obtained (de-novo-contigs-Tr) was 13.0 kb (Table 2A), which is 66 times shorter than that of the previous version of the *T. rubripes* genome (FUGU4), for which the N50 was 858 kb. Therefore, FUGU4 was used as a reference in further analysis. For *T. stictonotus*, the genome that we obtained (de-novo-contigs-Ts), with N50 of 15.9 kb, was used as a reference because no other genome sequence is available.

Extraction of SNP markers from very low-coverage data

We developed Scaffold Extender with Low Depth Linkage Analysis (SELDLA), an analysis pipeline (Fig. 2) with which we attempted to extend FUGU4 scaffolds using new low-coverage sequence data from hybrid fry. We then assembled the extended FUGU4 contigs/scaffolds according to the new SELDLA-derived linkage map, and
compared the assembly with FUGU5, the current version of the *T. rubripes* genome, which was constructed by ordering FUGU4 contigs/scaffolds according to a linkage map of 1,222 microsatellites. We regarded the FUGU4 plus de-novo-contigs-Ts as a haploid reference sequence for a hybrid individual. FUGU4 and the de-novo-contigs-Ts genome were 98.1% homologous over aligned sequences throughout the genome. We then mapped each read of the hybrid individual to the FUGU4 plus de-novo-contigs-Ts genome using BWA mem (Li and Durbin 2010), and extracted those in which a continuous stretch of 90 bp or more (out of 100 bp) was mapped exclusively and uniquely. The average mapping rate after this process was 82.8%. Subsequently, SNPs were called in GATK UnifiedGenotyper (McKenna et al. 2010). We note that SNPs were called even if present in only one read, which is generally discarded as a sequence error in conventional analysis.

Extraction of SNP markers form *T. rubripes*

Linkage analysis was performed separately for *T. rubripes* and *T. stictonotus*. In the former, 5,140,280 SNPs were initially extracted. However, a site was regarded as highly
similar between the two species and thus excluded from linkage analysis, if even a
single *T. stictonotus* read was mapped to *T. rubripes* (Fig. 2A). As a result, only
1,293,394 SNPs remained for further processing. To minimize potential errors, reads
mapped with a depth more than 4 times the average depth were then removed.
Furthermore, we extracted SNPs confirmed to be heterozygous in the paternal genome,
as every SNP found in paternal sequences in hybrid fry should also be found in the
diploid genome of the father. After these steps, 606,110 markers were available for
analysis. SNPs found in less than 10% of samples were excluded, along with those for
which minor alleles were found in less than 30% of samples (major alleles found in
more than 70% of samples). SNPs heterozygous in more than 20% of individuals were
suspected to be multi-copy genes, and were also filtered out. Finally, SNPs that
appeared to be a crossover breakpoint in a scaffold/contig of more than 10% of
individuals were regarded as noise and were excluded. Ultimately, 442,723 markers
were used in linkage analysis, for an average density of one per 903 bp.

Elongation of FUGU4 scaffolds by SELDLA
Because algorithms to order and orient scaffolds are known to be NP-hard (Pop et al. 2004; Tang et al. 2015), a normal heuristic approach was applied. Briefly, each hybrid fry was phased from the beginning of a scaffold, and phase changes in the middle of the scaffold were listed as break points. After end-to-end phase patterns were collected from 188 individuals, scaffolds were sorted in descending order of length. Scaffolds with the most similar phase patterns to FUGU4 were then connected to FUGU4 scaffolds at both ends. This process was repeated for the resulting connected scaffolds, until no test scaffold was found for which the similarity to a target scaffold was above the threshold value. If the phases at both ends of the newly connected scaffold were the same, the orientation of the scaffold could not be determined, and was either filled with Ns (any of A, C, G, T bases) along the length of the unoriented scaffold, or was used without determining the orientation. Both approaches were used in this study.

Using 442,723 SNP markers, we phased all 188 *T. rubripes* genomes, as well as 4,513 of 7,213 scaffolds in FUGU4, such that phase was obtained for 95.7 % of all nucleotides in the genome. Orientation was determined for 834 scaffolds representing 74.8 % of nucleotides in the genome.
Comparison of FUGU5 and SELDLA-extended FUGU4

As listed in Table 2B, extension by SELDLA increased the N50 in FUGU4 by 17 fold, such that it was now longer than that of FUGU5, which was generated by extending FUGU4 using conventional linkage analysis. A Circos plot (Fig. 3) confirmed that the genomic organization in SELDLA-extended FUGU4 is consistent with that of FUGU5 over 22 chromosomes, except at one site. Dot plots comparing all scaffolds between FUGU5 and SELDLA-extended FUGU4 are shown in Fig. 4 and Supplementary Fig. 1, and indicate that alignment was mostly successful throughout the entire genome. In addition, we found that many small scaffolds/contigs unmapped in the former were aligned at both ends to chromosomes in the latter (Fig. 4 and Supplementary Figs. 1), as clearly shown in a zoomed-in view of chromosome 1, a representative example. Indeed, several small scaffolds/contigs were incorporated and ordered into chromosome 1 in SELDLA-extended FUGU4, but not in FUGU5. This result implies that microsatellite markers near telomeric regions were inadequate in FUGU5, and highlights the large difference in marker density between microsatellites in FUGU5 and non-selected SNPs.
Several genomic inversions and translocations were also observed, suggesting structural polymorphisms between *T. rubripes* individuals. We note that these may cause erroneous ordering in SELDLA-extended FUGU4, FUGU5, or both.

Finally, comparison of physical and linkage distance (Supplementary Fig. 2) indicated that linkage distance was tend to be longer around telomeres, confirming that our result was consistent with previous study (Kai et al. 2011).

Scaffold elongation of the *T. stictonotus* genome by SELDLA

In addition, we also attempted to extend *T. stictonotus* contigs by SELDLA. These contigs were obtained from a *T. stictonotus* female in a single round of paired-end sequencing on Illumina HiSeq2000, followed by assembly in CLC genomics workbench. The N50 for this genome was 15 kb. Although it is generally very difficult to perform linkage analysis using very short and numerous scaffolds/contigs, such analysis was possible for *T. stictonotus* due to the very high density of SNP markers.

By extracting markers according to the same process used for *T. rubripes*, 144,596 SNPs were obtained. Nevertheless, these markers were only 33% of the amount
obtained from *T. rubripes*, perhaps reflecting closer kinship in *T. stictonotus*. Of the 78,881 scaffolds in the draft genome, phases were determined for 10,309, encompassing 22.9% of all nucleotides. These phased scaffolds were clustered in 22 linkage groups, corresponding to the number of chromosomes/linkage groups in *T. rubripes*. Orientation was also determined for 1,097 scaffolds, covering 7.7% of all nucleotides. The remaining 9,212 scaffolds/contigs were mapped to linkage groups, but in unknown orientations, mainly because there were no crossover points in the genome corresponding to short scaffolds/contigs from any of 188 individuals. In some cases, this effect might be due to lack of real SNPs. Surprisingly, the maximum scaffold length in the SELDLA-extended genome was 15.9 Mbp, which is 68% of the maximum scaffold length in FUGU5.

As *T. rubripes* and *T. stictonotus* belong to the same genus, the genome organization of both was expected to be similar. Indeed, a Circos plot of SELDLA-extended *T. stictonotus* and FUGU5 showed not only synteny, but also highly conserved sequence organization (Fig. 5). In addition, whole-genome dot plots (Fig. 6 and Supplementary Fig. 3) showed contiguous alignment over the entire chromosomes, although only
208 22.9% of nucleotides were phased. Physical and genetic distances in each SELDLA-
209 extended *T. stictonotus* and FUGU5 are plotted in Supplementary Fig. 4.

210

211 Discussion

212 We initially speculated that whole-genome sequencing would be suitable to type SNPs
213 in double haploid and/or haploid organisms because a single read would be sufficient.
214 We note that SNPs are generally useful as polymorphic markers not only because they
215 are easy to type, but also because they are very common. In addition, we can
216 compensate for missing data at a site in one individual because the phase is successive
217 except around crossover points, of which there were, on average, 1.3 per chromosome 1
218 in *T. rubripes* and 3.6 per chromosome 1 in *T. stictonotus*. In contrast, double haploid
219 and/or haploid organisms are unsuitable for typing microsatellite polymorphic markers
220 by conventional methods because they contain only half of the information compared
221 with diploids. Moreover, we speculated that if we can trace the origin of each read in an
222 organism to either of its parents, linkage analysis for the father and mother can be
223 performed independently. This process is essentially equivalent to simultaneous
construction of linkage maps for two lines of double haploid/haploid organisms.

Therefore, it should also be possible to generate linkage maps even from low-coverage sequencing data. In support of this strategy, we also developed a new analytical pipeline, SELDLA, to generate high-resolution linkage maps, and, in parallel, to extend scaffolds/contigs based on thin, incomplete SNP data obtained from low-coverage genome data.

Following this approach, we mated two interfertile species, *T. rubripes* and *T. stictonotus*, to generate hybrid individuals with genes easily traceable to the parents. We succeeded in generating a new linkage map for *T. rubripes* from 442,723 SNPs in 188 hybrid individuals. These markers are significantly more than the number of crossover points in the sperm of the father, which was estimated to be several thousands.

Therefore, the resolution of the linkage map was limited not by the number of markers, but by the number of crossover sites. Indeed, the number of SNP markers used in this analysis is the highest among any other combination of markers and typing methods. We also succeeded in generating a draft genome of higher quality than the current draft (FUGU5). For example, we mapped 95.7% of scaffolds to the genome, of which 80%
were oriented, including those that were not previously located. In addition, we
generated a linkage map for *T. stictonotus* for the first time, even with a very short N50
of 15 kb. In this case, we mapped 22.9% of sequences to the genome.

Furthermore, we show in Fig. 4 that the genome we obtained can be extended,
particularly at chromosome ends, which are problematic in FUGU5. Previously, the
genetic length of chromosome 1 was reported as 99.7 cM and 179.9 cM for male and
female *T. rubripes*, respectively (Kai et al. 2011), but because we mapped many more
scaffolds near telomeres, we have extended the genetic length of chromosome 1 to
124.3 cM (Supplementary Fig. 2) and 353.4 cM (Supplementary Fig. 4), respectively.

Of note, the reference sequence for SNP mapping was generated *de novo* by only one
round of paired sequencing. However, combining a series of mate-pair and/or paired-
end sequence data will generate a much longer N50, and enable precise and easy
location of most longer scaffolds/contigs, as was achieved in *T. rubripes*.
PacBio and Oxford Nanopore sequencing have been recently demonstrated to
generate much longer contiguous sequences. Several new techniques to locate
sequences in the genome, including 10x Genomics and Irys, have also been established.
These techniques also generate high-quality *de novo* genome sequences, and we anticipate that our strategy will be proved very useful when combined with these new methods. More importantly, our method is based on genetic mapping, whereas others are based on physical mapping. We note that regardless of advances in physical methods, a genetic map would still be required to compare with and evaluate physical maps, as well as for various types of genetic analysis.

To save cost and labor, several genotyping methods based on a small number of polymorphic sites have been developed, including RAD-seq and genotyping-by-sequencing. If an inbred line is obtained by subrearing, the inbred individuals are essentially clones of the same haplotype, which can then be easily determined. However, this approach is limited to model organisms such as mice and zebrafish that can be inbred. In addition, there seems to be no actual example of this approach, because it is time-consuming. Similarly, generating double haploids/haploids is often difficult, and may also limit applicability. On the contrary, our method is based on mating interfertile species, and therefore should be more widely applicable. In our experience, torafugu embryos before hatching already provide sufficient DNA for
genotyping, suggesting that hatching is not even necessary, which would further
broaden the mating possibilities.

Thus, our method is one of the most effective and promising approaches for
obtaining genomes from organisms that produce many eggs or seeds in one generation,
such as fish, mollusks, amphibians, insects, and plants. In addition, we may even be
able to apply our method to viviparous organisms via in vitro fertilization and/or
differentiation of induced pluripotent cells into germ cells. Accordingly, we are now
applying or planning to apply our method to obtain genomes from various organisms.

METHODS

Fish and artificial insemination.

Eggs from a female T. stictonotus caught on the day of the experiment were artificially
inseminated with stored sperm obtained from a T. rubripes male in 2014. Hybrid fry
were collected individually 10 days after fertilization (4–6 days after hatching). Because
we lost the actual source of eggs, we caught another T. stictonotus female for genome
sequencing.
Library preparation and sequencing.

Genomic DNA was individually extracted from 192 fry using DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany). Libraries were prepared using Nextera DNA Sample Prep Kit (Illumina, San Diego, CA, USA) and Nextera Index Kit (Illumina). Libraries from 96 hybrid fry were then mixed at equal concentrations to obtain two pools (192 samples in total), which were processed and sequenced on a HiSeq 2500 Sequencer (Illumina). Four samples with few reads were excluded. After SNP calling, we excluded another two samples with many heterozygous SNPs because contamination was suspected.

Genome assembly.

T. rubripes and *T. stictonotus* adults were also sequenced to generate reference sequences with which to identify the source of each raw read in hybrid fry, and to call and map SNPs. Raw data were obtained from one round of sequencing on HiSeq 2500.

For *T. rubripes*, the stored sperm was used as source of paternal genomic DNA. For *T.
stictonotus, a second individual as described above was used as the source of a mother-
equivalent genome. Reads were assembled in CLC Assembly Cell 5.0.3 (QIAGEN),
with an insert size of 100-800 bp and default values for all other parameters.

SELDLA.

We developed SELDLA, a novel data processing pipeline to construct a linkage map
from genomic hybrids. SELDLA is available at http://www.suikou.fs.a.u-
tokyo.ac.jp/software/SELDLA/, and is illustrated in Fig. 2. Briefly, we first combined
the T. rubripes genome (FUGU4) and the de novo T. stictonotus genome assembled in
this study. Reads from both adult fish and from 192 hybrid fry were then mapped onto
the combined genome in BWA mem ver. 0.7.15, using "- t 4 - M" as the input
parameter(Li and Durbin 2010). Uniquely mapped reads were extracted, sorted in
samtools ver. 1.4(Li et al. 2009), and mined for SNPs in UnifiedGenotyper in GATK
ver. 3.2-2(McKenna et al. 2010). SNPs were called with "- stand_emit_conf 0 - glm
SNP", even from just one read.

We excluded regions in the combined genome to which reads from both T. stictonotus
and *T. rubripes* were mapped. We also excluded regions to which reads were mapped with more than four times the average depth. Each contig/scaffold was then phased, and linkage was measured by concordance rate of phases from all samples. In particular, the phase at two contigs/scaffolds was considered concordant when such contigs/scaffolds were completely linked, i.e., without crossover points, in 188 hybrids. In contrast, the concordance rate was close to 50% for two contigs/scaffolds that were not linked. We note that satisfactory scaffold elongation was achieved by setting the concordance rate threshold to 90% for male fish and to 70% for female fish, as recombination rates are lower in male pufferfish than in female pufferfish (Kai et al. 2011).

Comparative genome analysis.

To generate Circos and dot plots, LAST ver. 861 (Kielbasa et al. 2011) was used for homology search. LAST results were converted to tab-delimited text using suitable scripts, and regions with continuous alignment of at least 1,000 bp were obtained. Circos plots were drawn in Circos ver. 0.69-5 (Krzywinski et al. 2009) to compare the selected fragments against the 22 chromosomes in *T. rubripes* (FUGU5). All scaffolds
were also compared in awk scripts, and dot plots were drawn in R based on LAST results.

Linkage mapping.

Physical distance was calculated directly by adding scaffold lengths. Linkage distance was calculated using phase information at both ends of the scaffold, with 1 cM representing recombination in 1 of 100 individuals. To exclude false recombination due to noise, we eliminated phases that did not match continuously for three or more scaffolds in each individual.

Code availability.

Code for SELDLA pipeline can be found at http://www.suikou.fs.a.u-tokyo.ac.jp/software/SELDLA/.

Accession codes.
WGS data are available from the DNA Data Bank of Japan (Accession number: DRA006412).

Data availability.

SELDLA-extended genomes can be found at http://www.suikou.fs.a.u-tokyo.ac.jp/software/SELDLA/data/.

ACKNOWLEDGMENTS

Some computations were performed on the NIG supercomputer at the ROIS National Institute of Genetics.

AUTHOR CONTRIBUTIONS

S.A. conceive and designed the entire studies. K.Y. conceived and designed the data processing strategy and developed concept of SELDLA. S.A. and K.Y. wrote the manuscript. S.W. supervised generation of hybrid Takifugu. M.M., S.K., K.S., and S.A.
generated the hybrid individuals. Y.I., Y.S., S.M. and S.A. contributed sequencing and
SNP typing. All authors agreed on the final version of the submitted paper.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

REFERENCES

Arora S, Mahato AK, Singh S, Mandal P, Bhutani S, Dutta S, Kumawat G, Singh BP, Chaudhary AK, Yadav R et al. 2017. A high-density
intraspecific SNP linkage map of pigeonpea (Cajanas cajan L.
Millsp.). PLoS One 12(6).

Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J,
Lam ET, Liachko I, Sullivan ST et al. 2017. Single-molecule
sequencing and chromatin conformation capture enable de novo
reference assembly of the domestic goat genome. Nature Genetics
49: 643-650.

Bodenes C, Chancerel E, Ehrenmann F, Kremer A, Plomion C. 2016. High-
density linkage mapping and distribution of segregation
distortion regions in the oak genome. DNA Research 23: 115-124.

Burton JN, Adey A, Patwardhan RF, Qiu RL, Kitzman JO, Shendure J.
2013. Chromosome-scale scaffolding of de novo genome assemblies
based on chromatin interactions. Nature Biotechnology 31: 1119-
1125.

Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S,
Suetake H, Naruse K, Brenner S et al. 2011. Integration of the
genetic map and genome assembly of fugu facilitates insights
into distinct features of genome evolution in teleosts and mammals. *Genome Biology and Evolution* **3**: 424-442.

Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. 2011. Adaptive seeds tame genomic sequence comparison. *Genome Research* **21**: 487-493.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: An information aesthetic for comparative genomics. *Genome Research* **19**: 1639-1645.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**: 589-595.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078-2079.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research* **20**: 1297-1303.

Nunes JDD, Liu SK, Pertille F, Perazza CA, Villela FMS, de Almeida-Val VMF, Hilsdorf AWS, Liu ZJ, Coutinho LL. 2017. Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing. *Scientific Reports* **7**: 46112.

Pop M, Kosack DS, Salzberg SL. 2004. Hierarchical scaffolding with Bambus. *Genome Research* **14**: 149-159.

Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW et al. 2016. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. *Genome Research* **26**: 342-350.

Tang HB, Zhang XT, Miao CY, Zhang JS, Ming R, Schnable JC, Schnable PS, Lyons E, Lu JG. 2015. ALLMAPS: robust scaffold ordering based on multiple maps. *Genome Biology* **16**: 3.

Weisenfeld NI, Kumar V, Shah F, Church DM, Jaffe DB. 2017. Direct determination of diploid genome sequences. *Genome Research* **27**:
FIGURE LEGENDS

Figure 1 Comparison of linkage analysis methods. The types of individuals necessary for linkage analysis to extend genomic sequences are shown for each method. (A) Crosses and chromosomes for linkage analysis in normal wild populations. (B) Chromosomes of double haploid individuals. (C) Chromosomes of hybrid individuals.

Figure 2 SELDLA. (A) Sequence data are mapped to a reference sequence obtained by combining parental genomes, and SNPs in specific regions are extracted. (B) To analyze the genome of a parent, we focus only on the reference sequence of that parent, determine which of its two chromosomes was passed to the hybrid, and phase. This is repeated from the beginning of the scaffold. (C) We arrange scaffolds with similar phase patterns on the chromosome. If phase patterns are different at the beginning and end of the scaffold, it is also possible to determine the orientation on the chromosome.
Figure 3 Circos comparison of 22 *T. rubripes* chromosomes between SELDLA-extended FUGU4 and FUGU5. Regions that could be aligned over 1 kb or more are connected by lines. LS: Linkage-group-extended (SELDLA-extended) Scaffold, chr: chromosome of FUGU5.

Figure 4 Dot plot homology comparison of chromosome 1 between SELDLA-extended FUGU4 and FUGU 5. Regions that could be aligned over 1 kb or more are plotted, with FUGU5 on the x-axis and SELDLA-extended FUGU4 on the y-axis. Red lines indicate alignment in the forward direction, whereas the blue line indicates alignment in the reverse direction. The plot shows that it was possible to arrange small FUGU5 scaffolds near telomeres according to the SELDLA-extended chromosome.

Figure 5 Comparison of FUGU5 and SELDLA-extended *T. stictonotus* genome. Regions that could be aligned over 1 kb or more in each of 22 chromosomes are connected by lines.
Figure 6 Dot plot homology comparison of chromosome 1 between FUGU 5 and SELDLA-extended *T. stictonotus* genome. Regions that could be aligned over 1 kb or more are plotted, with FUGU5 on the x-axis and SELDLA-extended *T. stictonotus* genome on the y-axis. Red lines indicate alignment in the forward direction, whereas blue lines indicate alignment in the reverse direction. LS: Linkage-group-extended (SELDLA-extended) Scaffold, chr: chromosome of FUGU5.

Supplementary Figure 1 Dot plot homology comparison of all chromosomes between SELDLA-extended FUGU4 and FUGU 5. Regions that could be aligned over 1 kb or more are plotted, with FUGU5 on the x-axis and SELDLA-extended FUGU4 on the y-axis. Red lines indicate alignment in the forward direction, whereas blue lines indicate alignment in the reverse direction.

Supplementary Figure 2 Physical (Mb) and genetic (cM) distances in each SELDLA-extended *T. rubripes* chromosome. LS: Linkage-group-extended Scaffold corresponding to the same chromosome number of FUGU5.
Supplementary Figure 3 Dot plot homology comparison of all chromosomes between FUGU 5 and SELDLA-extended T. stictonotus genome. Regions that could be aligned over 1 kb or more are plotted, with FUGU5 on the x-axis and SELDLA-extended T. stictonotus genome on the y-axis. Red lines indicate alignment in the forward direction, whereas blue lines indicate alignment in the reverse direction.

Supplementary Figure 4 Physical (Mb) and genetic (cM) distances in each SELDLA-extended T. stictonotus chromosome. LS: Linkage-group-extended Scaffold corresponding to the same chromosome number of FUGU5.

TABLES

Table 1 Sequencing statistics for the male parent (T. rubripes), a female T. stictonotus, and hybrid fry. To calculate depth, a genome size of 391 Mb was used for T. rubripes and T. stictonotus, as previously reported. The genome size was doubled to 782 Mb for hybrid fry.
Table 2 Assembly and scaffolding. (A) Assembly statistics for de novo T. rubripes and T. stictonotus genomes, as well as for FUGU4 and FUGU5, which are published T. rubripes genomes. N50, the shortest sequence length at 50% of the genome; sum, total scaffold length; max, maximum scaffold length; n, number of scaffolds. (B) Assembly statistics for SELDLA-extended FUGU4 and SELDLA-extended T. stictonotus genome.
Table 1 Outline of sequence data

	Reads	Bases (Gbp)	Fold	
Takifugu rubripes (male)	118,907,833	23.8	60.7	
Takifugu stictonotus (female)	163,351,727	32.7	83.5	
Crossbreed (n=188)				
Average	7,003,042	1.4	1.8	
Min	2,678,368	0.5	0.7	
Max	134,959,206	27	34.5	
Total	1,598,831,379	319.8		
	N50	Sum	Max	N
------------------------	--------	------------------	---------	------
Takifugu rubripes	13,002	326,596,034	158,829	72,571
(T. rubripes scaffolds/contigs)				
Takifugu stictonotus	15,925	336,757,840	164,291	78,881
(T. stictonotus scaffolds/contigs)				
FUGU4	858,115	393,296,343	7,245,445	7,213
SELDLA-extended				
FUGU4	15,004,475	420,596,343	27,254,446	4,483
SELDLA-extended T. stictonotus scaffolds/contigs	33,840	413,277,840	11,477,030	71,229

Table 2 The result of assemble and scaffolding
Fig. 1 Comparison of Linkage Analysis Methods

A. Normal linkage analysis
B. Double haploid
C. Crossbreed
A. Mapping, SNP extracting

Excluded region
Fig. 2 Overview of SELDLA analysis flow

B. Phasing

C. Extending

Male linkage scaffold 1
Male linkage scaffold 2

Female linkage scaffold 1
Female linkage scaffold 2

Fig. 4 Comparison of chromosome 1 between SELDLA-extended FUGU4 and FUGU5
Fig. 5 Comparison of SELDLA-extended *T. stictonotus* and FUGU5
SELDLA linkage scaffold 1 + other small scaffolds

NC_018890.1 (chromosome 1) + other small scaffolds

Extended only in FUGU5

Fig. 6 Comparison of chromosome 1 between SELDLA-extended *T. stictonotus* and FUGU5