Sensitivity of core+n potential on configuration mixing in ground state of neutron-rich exotic nuclei

Jagjit Singh1,2, W. Horiuchi3

1Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
2Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
3Department of Physics, Hokkaido University, Sapporo, 060-0810 Japan

E-mail: jsingh@rcnp.osaka-u.ac.jp

Abstract. We study the configuration mixing in the ground state of the neutron-rich exotic nuclei. The results for weakly-bound two-neutron halo nuclei ^{11}Li and ^{22}C, and the two-neutron unbound nucleus ^{26}O are reported. For the present study, we use a three-body (core + $n + n$) structure model developed for describing the two-neutron halo system by explicit coupling of unbound continuum states of the subsystem (core + n). We use a density-dependent contact-delta interaction to describe the neutron-neutron interaction and its strength is varied to fix the binding energy. We report the two-neutron correlations in the ground state of these systems.

1. Introduction

Since the discovery of neutron halos [1], astounding advancements have been made in technology of radioactive ion beam (RIB) facilities. These upgrades in RIB facilities has provided the access to the neutron-rich sea of the nuclear chart. Due to this, the neutron-rich side of the nuclear chart has gained extensive attention of the nuclear physics community, particularly the two-neutron (2n) halo nuclei sitting right on the top of neutron driplines and decays of 2n-unbound systems beyond the neutron dripline, consisting of a core and two valence neutrons. The structure of these systems is very much different from well known stable systems lying in the stability valley, due to which these systems demand a genuine three-body (3b) description with proper treatment of continuum. The stability of such 3b-system (core+$n+n$) is linked to the continuum spectrum of the two-body (core+n) subsystem. In this context, to explore the sensitivity of choice of a core+n potential with the configuration mixing in the ground state of 3b-systems (core+$n+n$), we will discuss the results of the 2n-halos ^{11}Li, ^{22}C and 2n-unbound system ^{26}O.

Recently all these systems have been experimentally investigated at TRIUMF and RIKEN, the major experimental facilities of Canada and Japan, respectively. Although ^{11}Li is the first observed two-neutron halo four decades ago [1]. Since then a lot of experimental and theoretical studies have been reported on the structure of the ^{11}Li. Recently the role of ^{10}Li resonances is investigated in the halo structure of ^{11}Li via $^{11}\text{Li}(p, d)^{10}\text{Li}$ transfer reaction at TRIUMF [3] and at the same facility the first conclusive evidence of a dipole resonance in ^{11}Li having an isoscalar character has been reported [5, 6]. Also for ^{22}C a high precision measurement of the interaction cross-section was made on a carbon target at 235 MeV/nucleon [7] and ^{26}O has been investigated, using the invariant-mass spectroscopy [8] at RIKEN. The structural spectroscopy
of the two-body subsystem plays a vital role in the understanding of the 3b-system. These high precision measurements and the sensitivity of the structural spectroscopy of subsystem with the structure of 3b-system (core+n+n), are the motivation for selecting these nuclei for the present study.

Very recently, we have studied in detail the pairing collectivity in the ground state of the 2n-halo 22C [9, 10] and in the the 2n-unbound system 26O [10]. Here we will discuss the results for these two systems along with our new results on 11Li. For this study we have used our recently implemented 3b-structure model (core+n+n) for the ground and continuum states of the 2n-halo nuclei [9, 11, 12]. We have reported the configuration mixing in the ground-state of these systems with a particular choice of core+n potential depending upon available experimental information.

2. Model Formulation

In our approach we consider a 3b-system consisting of an inert core nucleus and two valence neutrons, which is specified by the Hamiltonian

$$H = -\frac{\hbar^2}{2\mu} \sum_{i=1}^{2} \nabla_i^2 + \sum_{i=1}^{2} V_{\text{core}+n}(\vec{r}_i) + V_{12}(\vec{r}_1, \vec{r}_2)$$

(1)

where $\mu = \frac{A_c m_N}{A_c + 1}$ is the reduced mass, and m_N and A_c are the nucleon mass and mass number of the core nucleus, respectively. The recoil term is neglected in the present study. $V_{\text{core}+n}$ is the core-n potential and V_{12} is n-n potential. The neutron single-particle unbound s-, p-, d- and f-wave continuum states of the subsystem 10Li, 21C and 25O are calculated in a simple shell model picture for the converged model parameter, bin width ($\Delta E = 0.1$), by using the Dirac delta normalization and are checked with a more refined phase-shift analysis. These core+n continuum wave functions are used to construct the two-particle states of the core+n+n system by proper angular momentum couplings. We use a density-dependent (DD) contact-delta pairing interaction [19], given by

$$V_{12} = \delta(\vec{r}_1 - \vec{r}_2) \left(v_0 + \frac{v_\rho}{1 + \exp[(r_1 - R_\rho)/a_\rho]} \right).$$

(2)

The first term in Eq. (2) with v_0 simulates the free n-n interaction, which is characterized by its strength and the second term in Eq. (2) represents density-dependent part of the interaction. The strengths v_0 and v_ρ are scaled with the ΔE by following relation from Ref. [9]. The v_ρ is the parameter which will be fixed to reproduce the ground-state energy. For a detailed formulation one can refer to [9, 11, 12].

3. Two-body unbound subsystems (core+n)

The investigation of the two-body (core+n) subsystem is crucial in understanding the three-body system (core+n+n). The interaction of the core with the valence neutron (n) plays a vital role in the binding mechanism of the core+n+n system. The elementary concern over the choice of a core+n potential is the scarce experimental information about the core-neutron systems. We employ the following core+n potential

$$V_{\text{core}+n} = \left(V_0^l + V_{ls}^l \cdot \frac{1}{r} \frac{d}{dr} \right) \left(\frac{1}{1 + \exp \left(\frac{r-R_c}{a} \right)} \right),$$

(3)

where $R_c = r_0 A_c^{\frac{1}{3}}$ with r_0 and a are the radius and diffuseness parameter of the Woods-Saxon potential.
Table 1. Parameter sets of the core-\(n\) potential for different \(j\) states of \(^{10}\text{Li}+n\), \(^{20}\text{C}+n\) and \(^{24}\text{O}+n\). The possible resonances with resonance energy \(E_R\) and decay width \(\Gamma\) in MeV are also tabulated.

System	\(l_j\)	\(r_0\) (fm)	\(a_0\) (fm)	\(V_0\) (MeV)	\(V_{ls}\) (MeV)	\(E_R\) (MeV)	\(\Gamma\) (MeV)	
\(^{10}\text{Li}\)	\(s_{1/2}\)	1.27	0.67	-47.50	40.00	21.02	0.46	0.36
\(^{10}\text{Li}\)	\(p_{1/2}\)	1.27	0.67	-47.50	40.00	21.02	2.98	1.39
\(^{21}\text{C}\)	\(s_{1/2}\)	1.25	0.65	-47.50	35.00	0.92	0.09	
\(^{21}\text{C}\)	\(d_{3/2}\)	1.25	0.65	-42.00	35.00	6.69	2.93	
\(^{25}\text{O}\)	\(d_{3/2}\)	1.25	0.72	-44.10	22.84	0.74	0.09	
\(^{25}\text{O}\)	\(p_{3/2}\)	1.25	0.72	-48.67	22.84	0.57	1.38	
\(^{25}\text{O}\)	\(f_{7/2}\)	1.25	0.72	-44.10	22.84	2.44	0.21	

3.1. \(^{10}\text{Li}\)
For \(^{10}\text{Li}\) (\(N = 7\) and \(Z = 3\)), we use a potential set consistent with the \(\text{P}4\) model of Ref. [13] and this potential reproduces the observed \(p_{1/2}\) resonance at 0.45 MeV [3, 4] and \(d_{5/2}\) resonance, which lies at higher energy around 2.98 MeV, this position is consistent with high-lying structure of \(^{10}\text{Li}\) reported in [4]. For present calculations we have ignored the spin of the core \(^{3}\text{Li}\). The neutron number 6 is assumed for the core configuration given by \((0s_{1/2})^2(0p_{3/2})^2\). The four valence neutron continuum orbits, i.e., \(p_{1/2}, d_{3/2}, s_{1/2}\) and \(d_{3/2}\) are considered in the present calculations for \(^{10}\text{Li}\). The parameter set used in the present study is tabulated in Table 1.

3.2. \(^{21}\text{C}\)
For \(^{21}\text{C}\) (\(N = 15\) and \(Z = 6\)), not much information is known beyond that it is unbound. The only available experimental study using the single-proton removal reaction reported the limit to the scattering length \(|a_0| < 2.8\) fm and due to the low statistics of this experimental data at low energies, the possibility of low-lying resonance states can not be ruled out [14]. In the view of exploring the sensitivity of the core-\(n\) potential to the possible resonances and configuration mixing in the ground state of \(^{22}\text{C}\), very recently we examined in detail the four different potential sets (for details see text and Table 1 of Ref. [9]). In the present manuscript the results corresponding to potential set tabulated in Table 1 will be discussed. The subshell closure of the neutron number 14 is assumed for the core configuration given by \((0s_{1/2})^2(0p_{3/2})^2(0p_{1/2})^2(0d_{5/2})^2\). The seven valence neutron continuum orbits, i.e., \(s_{1/2}, d_{3/2}, f_{7/2}, p_{3/2}, f_{5/2}, p_{1/2}\) and \(d_{5/2}\) are considered in the present calculations for \(^{21}\text{C}\).

3.3. \(^{25}\text{O}\)
In the recent measurement conducted at RIKEN [8], along with high accuracy measurement of the ground state of \(^{26}\text{O}\), they have also reported the \(d_{3/2}\) resonance state at 749(10) keV with width of 88(6) keV for \(^{25}\text{O}\). This information will serve as input for fixing the core-\(n\) potential parameters. For \(^{25}\text{O}\) (\(N = 17\) and \(Z = 8\)), we adopt the potential set from our recent study reported in Ref. [10]. For the Wood-Saxon depth parameter \((V_0)\) and the strength of spin-orbit potential \((V_{ls})\) parameter tabulated in Table 1, we use the information for the energy of unbound \(d_{3/2}\) state. Our parameter set is consistent with the one reported in Ref. [19]. The neutron number 16 is assumed for the core configuration given by \((0s_{1/2})^2(0p_{3/2})^2(0p_{1/2})^2(0d_{5/2})^2(1s_{1/2})^2\). The three valence neutron continuum orbits, i.e., \(d_{3/2}, p_{3/2}\) and \(f_{7/2}\) are considered in the present calculations for \(^{25}\text{O}\).
4. Results and Discussions

The 3b-model with two non-interacting particles in the above single-particle levels of 10Li, 21C and 25O produces different parity states, when two neutrons are placed in different unbound orbits. The four configurations $(s_1/2)^2$, $(p_1/2)^2, (d_3/2)^2, (d_5/2)^2$ couple to $J^p = 0^+$ for 11Li, seven configurations $(s_1/2)^2, (p_1/2)^2, (p_3/2)^2, (d_3/2)^2, (d_5/2)^2, (f_5/2)^2$ and $(f_7/2)^2$ couple to $J^p = 0^+$ for 22C and three configurations $(d_1/2)^2, (p_3/2)^2$ and $(f_7/2)^2$ couple to $J^p = 0^+$ for 26O.

In the 3b-calculations, along with the core+n potential the other important ingredient is the n-n interaction. We use the DD contact-delta pairing interaction, with the only adjustable parameter being v_ρ. In the DD contact-delta pairing interaction (defined by Eq. (2)), the strength of the DI part is given as $v_\rho = 2\pi^2 \hbar^2 \frac{2a_{nn}}{m_N \pi - 2k_c a_{nn}}$, where a_{nn} is the scattering length for the free neutron-neutron scattering and k_c is related to the cutoff energy, e_c, as $k_c = \sqrt{\frac{m_N e_c}{\hbar^2}}$. We use $a_{nn} = 15$ fm and $e_c = 30$ MeV [19], which leads to $v_\rho = 857.2$ MeV fm3. For the parameters of the DD part, we determine them so as to fix the ground-state energy of 11Li, 22C and 26O, $E = -0.370$ MeV [15], $E = -0.140$ MeV [16] and 0.018 MeV [8] respectively. The values of the parameters that we employ are $R_\rho = 1.25 \times A_c^{1/6}$ ($A_c = 9, 20, 24$) and $v_\rho = 861.75, 591.55$ and 1058.70 MeV fm3 for 11Li, 22C and 26O respectively.

We report the percentage configuration mixing in the ground state of these three systems in Table 2. We found for this particular choice of core+n potential, 11Li is p-neutron halo, 22C is s-neutron halo and where as for 26O case our results report mixed configuration mixing without any particular angular momentum dominance. These results of configuration mixing are consistent with the results of Ref. [13] for 11Li, of Ref. [17, 18] for 22C and of Ref. [19] for 26O. The detailed results of configuration mixing with different choices of pairing interaction for 22C and 26O are reported in Ref. [9, 10]. The detailed investigation of configuration mixing for different choices of pairing interactions and core+n potential for 11Li are in progress, very soon will be reported elsewhere.

The two particle density of 11Li, 22C and 26O as a function of two radial coordinates, r_1 and r_2, for valence neutrons, and the angle between them, θ_{12} in the LS-coupling scheme is calculated by following Refs. [12, 19]. The distribution at smaller and larger θ_{12} are referred to as “di-neutron” and “cigar-like” configurations, respectively. One can see in Fig. 1 that the two-particle density is well concentrated around $\theta_{12} \leq 90^0$, which is the clear indication of the di-neutron correlation and the di-neutron component has a relatively higher density in comparison to the small cigar-like component for all three cases i.e. 11Li, 22C and 26O. The reflection of dominance of p-component and s-component in ground state of 11Li and 22C can be seen in of Fig. 1(a) and Fig. 1(b) showing extended di-neutron component in comparison to 26O (in panel (c) of Fig. 1), which has shrunk di-neutron component due to the mixing of $l > 0$ components in its ground-state.

5. Summary

In the present study we report the emergence of bound 2n-halo ground state of 11Li and 22C from the coupling of four unbound spd-waves and seven unbound spdf-waves in the continuum of 10Li and 21C respectively due to the presence of pairing interaction. Also the emergence of 2n-unbound ground state of 26O from the coupling of three unbound pdf-waves in the continuum of 25O due to the presence of the pairing interaction is reported. The configuration mixing in the ground state of these neutron-rich nuclei has been reported for a particular choice of core+n potential fixed in the view of the available recent experimental data. Also two-neutron correlation for these systems showing dominance of di-neutron component is discussed. Investigation with different choices of pairing interactions and core+n potential for 11Li are in progress and will be reported elsewhere.
Table 2. Components of the ground state (0\(^+\)) of \(^{11}\)Li, \(^{22}\)C and \(^{26}\)O, with the model parameter energy cut \(E_{\text{cut}}\). For \(^{11}\)Li, \(^{22}\)C and \(^{26}\)O the core+n potential tabulated in Table 1 are used. In the last column of the table, the comparison has been made with Ref. [13] for \(^{11}\)Li, Ref. [17] for \(^{22}\)C and Ref. [19] for \(^{26}\)O.

System	\(E_{\text{cut}}\) (MeV)	\(l_j\)	Present work	Reference	
\(^{11}\)Li	5	(s\(_{1/2}\))^2	0.245	0.270	
		(p\(_{1/2}\))^2	0.596	0.670	
		(d\(_{5/2}\))^2	0.091	0.030	
		(d\(_{3/2}\))^2	0.012	–	
\(^{22}\)C	5	(s\(_{1/2}\))^2	0.819	0.823	
		(p\(_{1/2}\))^2	0.006	–	
		(p\(_{3/2}\))^2	0.035	0.010	
		(d\(_{3/2}\))^2	0.084	0.158	
		(d\(_{5/2}\))^2	0.003	–	
		(f\(_{5/2}\))^2	0.0001	–	
		(f\(_{7/2}\))^2	0.0049	0.007	
\(^{26}\)O	10	(d\(_{3/2}\))^2	0.643	0.661	
		(p\(_{3/2}\))^2	0.088	0.105	
		(f\(_{7/2}\))^2	0.268	0.183	

Figure 1. Two-particle densities for the ground state of \(^{11}\)Li, \(^{22}\)C and \(^{26}\)O as a function \(r_1 = r_2 = r\) and the opening angle between the valence neutrons \(\theta_{12}\) for settings mentioned in caption of Table 2.

Acknowledgements
J. Singh gratefully acknowledged the financial support from research budget of Prof. K. Ogata and RCNP theory group. This work was in part supported by JSPS KAKENHI Grant Numbers 18K03635,
18H04569 and 19H05140, and the collaborative research program 2019, information initiative center, Hokkaido University.

References
[1] Tanihata I, et al. 1985 Phys. Rev. Lett. 55 2676.
[2] Ershov S N and Danilin B V 2008 Phys. Part. Nucl. 39 835.
[3] Sanetullaev A et al. 2016 Phys. Lett. B 755 481.
[4] Cavallaro M et al. 2017 Phys. Rev. Lett. 118 012701.
[5] Kanungo R et al. 2015 Phys. Rev. Lett. 114 192502.
[6] Tanaka J et al. 2017 Phys. Lett. B 774 268.
[7] Togano Y et al. 2016 Phys. Lett. B 761 412.
[8] Kondo Y et al. 2016 Phys. Rev. Lett. 116 102503.
[9] Singh Jagjit, Horuchi W, Fortunato L and Vitturi V 2019 Few-Body Syst 60:50.
[10] Singh Jagjit, Horuchi W, Fortunato L and Vitturi V 2020 JPS Conf. Proc. 32 010029.
[11] Fortunato L, Chatterjee R, Singh Jagjit and Vitturi A 2014 Phys. Rev. C 90 064301.
[12] Singh Jagjit, Fortunato L, Vitturi A and Chatterjee R 2016 Eur. Phys. J. A 52 209.
[13] Casal J et al. 2017 Phys. Lett. B 767 307.
[14] Mosby S et al. 2013 Nucl. Phys. A 909 69.
[15] Smith M et al. 2008 Phys. Rev. Lett. 101 202501.
[16] Gaudefroy L et al. 2012 Phys. Rev. Lett. 109 202503.
[17] Pinilla E C and Descouvemont P 2016 Phys. Rev. C 94 24620.
[18] Horuchi W and Suzuki Y 2006 Phys. Rev. C 74, 034311.
[19] Hagino K and Sagawa H 2016 Phys. Rev. C 93 034330.