Carcass Proximate Composition and Amino acid Profiles of Hybrid Catfish fed Supplementary Cockroach Meal

Kabir Mohammed Adamu*, Diana Bmazazhin David¹, Hafsat Muhammad¹, Namla Djadjiti², Hafsat Mohammad²

¹ Department of Biological Sciences, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria.
²Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria

Received on 23/6/2020 and Accepted for Publication on 23/5/2021.

ABSTRACT

The high demand for fish as a protein source in fishmeal with the increasing production pressure on aquaculture has led to the research on the use of insects as an alternative source of protein for fish production. Studies have been reported on nutritional potentials of some insect’s protein on growth indices with little attention on the fish carcass's proximate composition and amino acid analyses; thus, this study was conducted to investigate the carcass proximate and amino acid analyses of hybrid catfish fed supplemented cockroach meal. Four experimental diets were formulated with varying inclusion levels of the insect (Diet A (100% fishmeal), Diet B (100% cockroach meal), Diet C (50% fishmeal and 50% cockroach meal), and Diet D (Commercial diet)). The hybrid catfish were fed twice daily with formulated/commercial diets for 12 weeks. After, the 12-week periods, pool samples of whole fish, were sacrificed for proximate analyses and amino acid analyses. The test fish carcass revealed the highest moisture content (9.22±0.01%) and crude protein (66.23±0.02%) values in Diet A and B respectively. Similarly, the highest crude fiber, ash, and carbohydrate content of 0.73±0.03%, 13.96±0.10%, and 12.55±0.13% were recorded in fish-fed diet B. The amino acid profiles of fish carcass fed diet B recorded the highest values of lysine, phenylalanine, methionine, proline, arginine, cysteine, alanine, and glutamic acid; glycine, threonine, and serine. Whilst other amino acids monitored in fish fed Diet B were moderate amongst others. The fish fed Diet C, also recorded positive (p<0.05) proximate compositions and amino acid profiles compared to the control carcass. The observed carcass proximate compositions and amino acid profiles in fish-fed Diets B and C may be attributed to the presence of cockroach meal in the diets. Hence, the inclusion of cockroaches in the diets of hybrid catfish could be employed as a potential source of protein for catfish fingerlings as revealed by the hybrid catfish carcass proximate composition and amino acid analyses. this makes a potential source of protein for human consumption.

Keywords: Experimental diet; Fish nutrition; Flesh; Insect Prot.

INTRODUCTION

The formulation of fish feed to meet the nutritional requirement of fish culture in an intensive aquaculture system is very important for optimum utilization (Omitoyin,2007); thus, quality fishmeal protein is required for the sustenance of fish production. Fishmeal
is often the principal source of protein in a fish diet because of its high percentage of proteins and its amino acids composition in meeting the fish requirement (FAO, 2003).

The uncertainty in the availability of fishmeal due to competitive demand has led to the need to identify alternative protein sources for the fish diet. According to Nyina-Wamwiza et al. (2007), the use of plant product sources as protein supplements in fish diets had yielded little success in providing fish with the necessary required amino acids.

Thus, the choice of researchers to source for an available nonexpensive, less competitive demand animal protein source to substitute fishmeal in fish diet. Positive potentials have been revealed in the use of insect protein to successfully replace fishmeal with high nutritional qualities such as crude protein, vitamins, and amino acids (Finke, 2007; Bukkens, 2009). Some insects have been reportedly used as a protein supplement in fishmeal; these include black soldier fly larvae (Makkar et al., 2014; Tran et al., 2015); desert locust (Alegbeleye et al., 2012; Abanikannda, 2012; Emehinaiye, 2012); housefly maggot (Adewolu et al., 2010) and mealworm (Veldkamp et al., 2012) amongst others.

One of the neglected insects with nuisance characteristics around man’s environment and less competing interest as food is the cockroach. Cockroaches (Periplaneta americana) are widely distributed due to global commerce as they live in close association with people and maybe a potential candidate for fishmeal (Charlton et al., 2015); as they are known to consume any organic food source available to them such as sweets, meats, starches, sewage, hair, books, fresh vegetables, and decaying matter.

In order, to validate the efficiency and effectiveness of an alternate protein source in the diet of fishmeal, the need to evaluate the carcass proximate composition and amino acid analyses cannot be overemphasized thus, studies on the carcass composition of fishes fed experimental diets have been conducted and reported in Catfish (Anyanwu et al., 2015; Ibhadon et al., 2015; Elaigwu, 2019); Oreochromis niloticus (Opiyo et al., 2013; Hamandishe et al., 2018) amongst other fishes. Fish carcass proximate composition is reported as a good indicator for the physiological condition of the fish (Ali et al., 2005).

The fish candidate of interest in this study was the hybrid catfish. Hybrid catfish is a product from the cross between Heterobranchus bidorsalis × Clarias gariepinus. The fish is amongst fishes that have attracted great attention for culturing in Nigeria (Adamu and Nwadukwe, 2013); that grows fast and has high fecundity, better taste, and nutritional qualities, as well as tolerance to unfavorable environmental conditions (Madu and Ufodike, 2005). As in most fishes, hybrid catfish need nitrogen and certain amino acids for growth. These amino acids play an important function as building blocks of proteins and are mainly obtained from diet thus; the quality of dietary protein is assessed from essential to non-essential amino acid ratio (Mohanty et al., 2014; Suvitha et al., 2015). Therefore, this study was conducted to evaluate carcass proximate composition and amino acid analyses of hybrid catfish fed supplemented cockroach meal.

Materials and Methods

The field study was conducted at the Fisheries section of the Department of Biological Sciences Garden, Ibrahim Badamasi Babangida University, Lapai, Niger State; whilst laboratory analyses were conducted in the Department laboratory. The fish fingerlings were purchased from Alhassan's Fish farm and transported to the study field at the early hours of the day in aerated containers. The experimental diets were Diet A (100% fishmeal), Diet B (100% cockroach meal), Diet C (50% fishmeal and 50% cockroach meal), and Diet D (Commercial diet (Blue Crown feed (Crown Flour Mill Ltd))). The diets were formulated with the Pearson square method as adopted from Adamu and Nwadukwe, (2013).
The raw materials of the experimental feed were fishmeal/and cockroach meal, maize flour, cassava flour, brown seaweed, baobab leaf powder, and vitality premix(R).

Seventy fingerlings were randomly stocked in each concrete pond in a replicated setup. Each of the setups was fed with the appropriate diet for 12 weeks. The experimental fish were fed to satiation twice (morning and evening) daily for 12 weeks. After, 12 weeks, proximate composition and amino acid analyses were determined from pool samples (twenty fish per pool) of fish in replicate.

Proximate composition (moisture, ash, fat determination (ether-extract), crude fiber, and crude protein) were conducted with the flesh of the experimental fish according to AOAC (2006). Whilst, Benitex (1989), the method was adopted for amino acid analyses. For the amino acid analyses, fish samples were dried to constant weight, defatted (using chloroform/methanol mixture (2:1)), extracted for 15 hours (AOAC, 2006), hydrolyzed, and evaporated in a rotary evaporator then loaded into the Applied Biosystem PTH Amino Acid Analyzer. Whilst, Kjadhal distillation method was used for the nitrogen determination.

All data obtained were presented as mean ± standard error. Mean was compared for significant differences using students’ multiple t-tests at a 5% probability level.

Results

The proximate composition (Table 1) revealed a significant difference (p<0.05) in ash and moisture contents of the experimental diets compared to the commercial diet (diet D). No significant difference (p>0.05) was recorded in carcass crude fiber content of fish fed the experimental diets and commercial diet. However, moisture content, ether extract, and ash contents were significantly (p<0.05) different in all the experimental diets compared to the commercial diet. The crude protein content was recorded to be only significantly (p<0.05) different in fish-fed diets B and C.

Diets	Proximate composition (%)	Crude Protein	Crude Fibre	Moisture	Ether Extract	Ash
Diet A*		49.74±0.52a	0.68±0.02a	10.35±0.27b	12.87±0.14b	13.04±1.73b
Diet B**		66.23±0.20b	0.63±0.03a	7.61±0.41b	12.55±0.13b	13.96±0.10b
Diet C***		65.89±0.59b	0.63±0.04a	10.49±0.23b	12.73±0.18b	13.01±0.01b
Diet D****		50.96±0.71a	0.67±0.06a	7.26±0.02a	11.57±0.11a	10.37±0.15a

* -100% Fishmeal; **-100% Cockroach meal; ***-50% Fishmeal and 50% Cockroach meal; ****- commercial diet (Blue Crown feed (Crown Flour Mill Ltd)); the same superscript on the same column: p>0.05; different superscript on the same column: p<0.05

The essential amino acid monitored in the carcass of the test fish fed the experimental diets (Table 2) revealed a significant difference (p<0.05) in all profiles except histidine in fish-fed diets B and C compared to the commercial feed. Eight (cysteine, proline, glycine, glutamic acid, serine, alanine, tyrosine, and aspartic acid) non-essential amino acid determined (Table 3) revealed significant (p<0.05) differences in all carcass when compared with Diet D.
Table 2: Mean ± Standard Error of essential amino acid analyses of hybrid catfish carcass fed Supplemented cockroach meal.

Amino acid profiles	Experimental diets			
	Diet A*	Diet B**	Diet C***	Diet D****
Leucine	6.45±0.01^b	6.89±0.01^b	6.95±0.01^b	6.06±0.01^a
Lysine	6.05±0.01^a	6.84±0.02^b	6.84±0.01^b	6.03±0.01^a
Isoleucine	3.14±0.01^a	3.73±0.01^b	3.86±0.01^b	3.15±0.01^a
Phenyalalanine	3.55±0.01^a	3.90±0.01^b	3.90±0.01^b	3.55±0.00^a
Tryptophan	0.80±0.02^b	0.79±0.01^b	0.84±0.01^b	0.78±0.01^a
Valine	3.39±0.01^a	3.51±0.02b	3.68±0.02^c	3.39±0.01^a
Methionine	2.30±0.01^a	2.35±0.01^a	2.48±0.04^b	2.32±0.02^a
Histidine	2.24±0.01^a	2.24±0.01^a	2.24±0.01^a	2.26±0.01^a
Arginine	5.33±0.01^a	5.68±0.01^b	5.68±0.01^b	5.33±0.02^a
Threonine	3.54±0.02^a	4.22±0.02^a	4.22±0.01^b	3.56±0.01^a

* -100% Fishmeal; **-100% Cockroach meal; ***-50% Fishmeal and 50% Cockroach meal; ****- commercial diet (Blue Crown feed (Crown Flour Mill Ltd)); the same superscript on the same row: P>0.05; different superscript on the same row: P<0.05

Table 3: Mean ± Standard Error of non-essential amino acid analyses of hybrid catfish carcass fed Supplemented cockroach meal.

Amino acid profiles	Experimental diets			
	Diet A*	Diet B**	Diet C***	Diet D****
Proline	3.44±0.02^a	3.65±0.01^b	3.65±0.01^b	3.47±0.05^a
Glycine	5.61±0.01^a	6.32±0.01^b	6.22±0.01^b	5.65±0.02^a
Tyrosine	2.75±0.01^a	2.92±0.01^b	3.34±0.23^b	2.75±0.01^a
Cysteine	0.73±0.01^a	0.85±0.01^b	0.85±0.01^b	0.75±0.01^a
Alanine	5.00±0.01^a	5.61±0.01^b	5.54±0.01^b	5.08±0.05^a
Glutamic acid	12.27±0.01^a	13.17±0.01^b	13.02±0.01^b	12.26±0.01^a
Serine	3.03±0.01^a	3.51±0.01^b	3.46±0.01^b	3.03±0.00^a
Aspartic acid	8.06±0.01^a	8.68±0.01^b	8.81±0.01^b	8.06±0.00^a

* -100% Fishmeal; **-100% Cockroach meal; ***-50% Fishmeal and 50% Cockroach meal; ****- commercial diet (Blue Crown feed (Crown Flour Mill Ltd)); the same superscript on the same row: p>0.05; different superscript on the same row: p<0.05

Discussion

In this study, the ash content in the experimental groups was higher than that of the control group representing a good proportion of minerals in the tissue of the hybrid catfish. As Obeg et al., (2015) reported that ash content is a measure of the total amount of mineral elements such as calcium and phosphorous in the tissue of the fish. However, lower ash content had been reported in both wild and farm-raised catfish (Osibona et al. 2009; Ibadon et al., 2015; Elaigwu, 2019). This thereof revealed that the experimental fishes have a higher content of minerals compared to the earlier reported studies; implying that the protein source organism (cockroach) has promoted the level of the ash contents in the fish tissue.

The high crude fat recorded in this study may be an indication that supplemented cockroach meal may play
role in enhancing energy production and the hence better growth rate recorded as supported by Audu et al. (2008). The lower fiber content recorded in the test fish fed supplemented cockroach meal has been shown to support the high crude fat recorded an indication of improved growth rate which is within the range reported by Elaigwu, (2019) in Clarias angular from the wild.

Fishes fed diets A and C recorded higher moisture content, however, the study had revealed that they were within an acceptable range (Ibhadon et al., 2015) for healthy fish, similarly, the study conducted by Elaigwu, (2019) on Clarias anguillaris from the wild recorded higher values than that reported in diets A and D. This study recorded high crude protein content compared to those reported by Osibona et al. (2009); Ibhadon et al., (2015) and Elaigwu, (2019) in both wild and farm-raised catfish. An indication that the presence of cockroach meal in the diet of hybrid catfish improved the proximate composition especially the crude protein content as recorded in diets B and C.

According to Elagba et al. (2010), the knowledge of amino acid content in commercial fishes should be one of the major elements used by a consumer for choosing the type of fish to be consumed. Thus, Ozden (2005) and Peng et al. (2013) reported the most vital amino acids required by fish as alanine, arginine, and glutamic acid, glycine, histidine, isoleucine, phenylalanine, and serine to support the growth and tissue healing in fish. Thus, this study examined these amino acids in addition to others. The determined amino acids profiles recorded in this study were slightly higher than those reported in both wild and farm-raised catfish (Ibhadon et al., 2015; Elaigwu, 2019)

The ten pre-requisite (indispensable) amino acids (methionine, arginine, threonine, tryptophan, histidine, isoleucine, lysine, leucine, valine, and phenylalanine) revealed higher values in fish fed supplemented cockroach meal. Thus, the catfish fed diet B and C had significantly higher (p<0.05) essential amino acid values.

It has been earlier reported that leucine is necessary for hemoglobin formation, stabilizes, and regulates blood sugar and energy (Osibona et al., 2009). The higher crude protein level recorded in the fish may be responsible for the higher pre-requisite amino acids level revealed in this study. Thus, by implication, the high level observed in Diet B could be useful in influencing higher growth performance, survival, and high quality of the fingerlings. In addition, leucine has been reported to retard the degradation of muscle tissues by increasing the synthesis of muscle proteins (Mohanty et al., 2014).

The high glutamic acid recorded in this study, especially in fish-fed diet B were within the range reported in catfish sampled from the wild (Osibona et al. 2009; Ibhadon et al., 2015). The low values of histidine and cysteine reported in this study are supported by the findings of Ibhadon et al. (2015) that the former can lead to chemical sensitivity and even cause food allergy whilst the latter can aggravate rheumatoid, arthritis, anemia, and imbalance of intestinal bacterial flora.

Conclusion

This research revealed that proximate composition and amino acid profiles of hybrid catfish carcass fed inclusion of cockroach in the diets of hybrid catfish could be employed as a potential source of protein for catfish fingerlings without obstructing the nutrient utilization and digestibility. Therefore, the high content of crude protein and ash content as well as the concentration of some of the essential amino acids in the fish tissue could be a result of cockroach meal in the diet. Thus, cockroach meal is a good source of proximate composition and amino acid profile of hybrid catfish.

Acknowledgments

We wish to acknowledge, Ibrahim Badamasi Babangida University for granting access to use its facilities and the opportunity to access Institutional Based Research Grant from TetFund.
REFERENCES

Abanikannda, MF (2012). Nutrient digestibility and hematolgy of Nile tilapia (Oreochromis niloticus) fed with varying levels of locust (Locusta migratoria) meal. Bachelor of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun State.

Adamu, KM; Nwadukwe, FO (2013). Growth and Physiological profiles of hybrid catfish fed a practical diet in different water regimes. Wayamba Journal of Animal Science; 5: 743-752

Adewolu, MA; Ikenweiwe, NB; Mulero, SM (2010). Evaluation of an animal protein mixture as a replacement for fishmeal in practical diets for fingerlings of Clarias gariepinus (Burchell, 1822). Israeli Journal of Aquaculture, 62:237-244.

Alegbeleye, WO; Obasa, SO; Olude, OO; Otubu, K; Jimoh, W (2012). Preliminary evaluation of the nutritive value of the variegated grasshopper (Zonocerus variegatus L.) for African catfish Clariasgariepinus (Burchell, 1822) fingerlings. Aquaculture Res. 43, 412–420.

Ali, M; Igbal, F; Salam, A; Iran, A.M (2005). Comparative study of carcass composition of different fish species from brackish water pond. International Journal of Environment Science and Technology, 2(3): 229-232

Anyanwu, DC; Offor, JI; Anyanwu, HO; Mbachu, M (2015). Carcass Composition and Organoleptic Assessment of Clarias gariepinus Fingerlings Fed Varied Levels of Telferia occidentalis. International Journal of Research in Pharmacy and Biosciences, 2(4): 26-29

AOAC (Association of Official Analytical Chemists), (2006). Official Method of Analysis of the AOAC (W. Horwitz Editor) Eighteenth Edition. Washington D.C, AOAC.

Audu, BS; Adamu, KM; Binga, SA (2008). The effect of substituting fishmeal diets with varying quantities of ensiled parboiled Benised (Sesamum Indicum) and raw African locust bean (Parkia biglobosa) on the growth response and food utilization of Nile tilapia (Oreochromis niloticus). International Journal of Zoological Research, 4(1): 42-47

Benitez, LV (1989). Amino Acid and fatty acid profiles in aquaculture nutrition studies, p. 23- 35. in S.S. De Silva (ed.) Fish Nutrition Research in Asia. Proceedings of the Third Asian Fish Nutrition Network Meeting. Asian fish. Society Special Publication. 4, 166 p.

Bukkens, SGF. (2009). The nutritional value of edible insects. J. Ecology of Food and Nutrition, (36): 287–319.

Charlton, AJ; Dickinson, M; Wakefield, ME; Fitches, E; Kenis, M, Itan, R; Zhu, F; Kone, N; Grant, M; Devic, E; Bruggeman, G; Prior, R; Smith, R (2015). Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insect as Food and Feed; 1:7-16

Emechinaie, PA (2012). Growth performance of Oreochromis niloticus fingerlings fed with varying levels of migratory locust (Locusta migratoria) meal. Bachelor of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta.

Elaigwu, AM (2019). The proximate composition, amino acid profile, and chemical indices in five freshwater fishes from Tiga dam reservoir, Nigeria. Croatian Journal of Fisheries, 77: 87-92

FAO (2003). Aquaculture production, Yearbook of Fishery Statistics - Vol.96/2. Food and Agriculture Organization of the United Nations, Rome, Italy.

Finke, MD (2007) Estimate of chitin in raw whole insects. Zoo Biol. 26:105-115.

Hamandishe, VR; Saidi, PT; Imbayarwo-Chikosi, VE; Nhiwatiwa, T (2018). A Comparative Evaluation of Carcass Quality, Nutritional Value, and Consumer Preference of Oreochromis niloticus from two Impoundments with Different Pollution Levels in Zimbabwe; International Journal of Food Science;
Article ID 7862971, 10 pages.
Ibhadon, S; Abdulsalami, MS; Emere, M.C; Yilwa, V (2015). Comparative study of proximate, fatty, and amino acids composition of wild and farm-raised African catfish Clarias gariepinus in Kaduna, Nigeria, Pakistan Journal of Nutrition; 14(1): 5-61
Madu, CT; Ufodike, EBC (2005). Growth and survival of catfish (Clarias anguillaris) juveniles fed live tilapia and maggot as unconventional diets. Journal of Aquatic Sciences 18:47-51.
Makkar, HP; Tran, G; Heuzé, V; Ankers, P (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33.
Mohanty, B; Mahanty, A; Ganguly, S; Sankar, TV; Chakraborty, K; Anandan, R; Paul, B; Sarma, D; Mathew, S; Asha, KK; Behera, B; Aftabuddin, M; Debnath, D; Vijayagopal, P; Sridhar, N; Akhtar, MS; Sahi, N; Mitra, T; Banerjee, S; Paria, P; Das, D; Das, P; Vijayan, KK; Laxmanan, PT; Sharma, AP (2014). Amino acid compositions of 27 food fish and their importance in clinical nutrition. Journal of Amino Acids, 1-7.
Nyina-Wamwiza L; Wathelet B; Kestemont, A (2007). Potential of local agricultural by-product for the rearing of African catfish Clarias gariepinus in Rwanda: Effects on growth feed utilization and body composition. Aquaculture Research, 38: 206-214.
Obeng, AK; Atuna, RA; Aihoon, S (2015). Proximate composition of housefly (Musca domestica) maggots cultured on different substrates as potential feed for Tilapia (Oreochromis niloticus). International Journal of Multidisciplinary Research and Development 2(5):102-103.
Omitoyin, BO (2007). Plasma biochemical changes in Clariasgariepinus(Burchell, 1822) fed poultry litter. Asian Journal of Animal Sciences; 1(1): 48-52
Opiyo, MA; Githukia, CM; Munguti, JM; Charo-Karisa, H (2014). Growth performance, carcass composition, and profitability of Nile tilapia (Oreochromis niloticus L.) fed commercial and on-farm made fish feed in earthen ponds. International Journal of Fisheries and Aquatic Studies, 1(5): 12-17
Osibona, AO; Kusemiju, K; Akande, GR (2009). Fatty acid composition and amino acid profiles of two freshwater species, African catfish (Clarias gariepinus) and Tilapia (Tilapia zillii). African Journal of Food Agriculture Nutrition and Development; 1: 608-621
Ozden, O (2005). Changes in amino acid and fatty acid composition during shelf-life of marinated fish. Journal of the Science of Food and Agriculture 85(12):2015-2020.
Peng, S; Chen, C; Shi, Z; Wang, L (2013). Amino acid composition of the muscle tissue of Yellowfin Tuna (Thunnus obesus). Journal of food and Nutrition Research, 1(4):42-45.
Suvitha, S; Eswar, A; Anbarasu, R; Ramamoorthy, K; Sankar, G (2015). Proximate, Amino acid and Fatty acid profile of selected two Marine fish from Parangipettai Coast. Asian J. Biomed. Pharm. Sci. 04, 38–42.
Tran, G; Heuze, V; Makkar, HPS (2015). Insects in fish diets. Animal Frontiers, 5(2): 37-44.
Veldkamp, T; Van Duinkerrke, G; Van Huis, A; Lakemond, CMM; Ottervanger, E; Boekel, MAJS (2012). Insects as a sustainable feed ingredient in pig and poultry diets – a feasibility study. Report 638, Wageningen, UR Livestock Production Wageningen the Netherlands pp 1-48
التركيب التجريبي واكثر الأحماض الأمينية الموجودة في اسماك السنور الميت المتغذى على وجبة تكملة من الصراصير

Kabir Mohammed Adamu1, Diana Bmazazhin David1, Hafsat Muhammad1, Namla Djadjiti2, Hafsat Mohammad2

1 Department of Biological Sciences, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria.
2 Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria

Received on 23/6/2020 and Accepted for Publication on 23/5/2021.

المنخص

أدى ارتفاع الطلب على الأسماك لمصدر البروتين مع ازدياد ضغط الانتاج على تربة الأحياء المائية إلى البحث عن استخدام الحشرات كمصدر بديل للبروتين لانتاج الأسماك. وبدأت تقارير عن دراسات حول الأمكانات الغذائية لبعض بروتينات الحشرات على مؤثرات النمو مع القليل من الاهتمام بالتركيب التجريبي وتحليل الأحماض الأمينية في أفاسم الأسماك. إذا، فلأن هذه الدراسة تحقق من التركيب التجريبي وتحليل الأملاح الأمينية في أسماك السلوار المهينة التي تغذت على وجبة تكملة من الصراصير. تم تجهيز نماذج في مختبرة تضمن مستويات مختلفة من الحشرة: غذاء A (100% وجبة صراصير)، غذاء B (100% وجبة سمك)، وجبة C (50% وجبة سماك و 50% وجبة صراصير). تم تغذية أسماك السلوار المهينة مرتين يوميًا على الاملاح المحضرة والغذاء التجاري لفترة 12 أسبوعًا. وعندما تم قتل عينات الأسماك الكاملة للتحليل البصري، وجدنا أن الاملاح الميتة أعلى قيم محتمل في الرطوبة (9.22±0.01%) والبروتين الخام (66.23±0.02%) في غذاء B. والبروتينات وفيلا، والكربوهيدرات (33.7% ±0.03% 13.96±0.10% والبروتينات في غذاء B. وسجلت أعلى قيم محتمل من الأحماض الأمينية النبضة، الفينيل لابن، الميثيونين، البروتينين، الأرجنتين، والبروتينين والسيتين، بينما الأحماض الأمينية الأخرى كانت أقلها متواضعة لمجموعة B. وسجلت مجموعة C أيضاً (P<0.05) مع مجموعات المختلفة. وقد تكون قيم المحتمل للتركيز التجريبي والأحماض الأمينية في أغذية B مع وجود وجهة صراصير في ضمان غذاء أسماك السلوار المهينة إلى أن تكون هذه الأسماك مصدر بروتين محتمل لانتهاء السعر.

الكلمات الدالة: النظام الغذائي التجيري،طعم الأسماك،برامج التحصيل الحشرات.