Lethal concentration (LC_{50}) (120h) of neutral household detergent Limpol in guppy *Poecilia reticulata*.

Lopes J.V.S.R.¹; Azevedo C.S.¹*

Received: July 2018 Accepted: January 2019

Abstract
Aquatic environments have been destroyed because of increase of pollutants dumped into waters. In some poor countries or in developing ones, like Brazil, detergents are one of the main responsible to impact these environments. Guppy (*Poecilia reticulata*) is a common fish in Central and South America, being very used in vitro experiments, since it is an easy specimen to keep in laboratories. This work aimed to determine the LC_{50} (120h) of neutral household detergent for guppy. We tested seven different concentrations (0, 10, 20, 30, 40, 70 and 100 mg/L), and Probit analysis showed that approximately 33.4 mg/L was the lethal dose that killed 50% of guppies in 120h, with doses below 30 mg/L did not killing any fish, while doses above 30 mg/L killed all individuals in few hours. We concluded that even small doses of detergent can be lethal to aquatic organisms, especially if the exposition time is prolonged.

Keywords: Aquatic pollution, Detergent, LC_{50}, Guppy

¹-Departamento de Evolução, Biodiversidade e Meio Ambiente, Instituto de Ciências Exatas e Biomédicas, Universidade Federal de Ouro Preto, Minas Gerais, Brasil. Campus Morro do Cruzeiro, s/n, Bauxita. Cep: 35400-000. Ouro Preto, Minas Gerais, Brasil.
*Corresponding author's Email: cristianoroxette@yahoo.com
Introduction

Water is the main resource for survival of most part of organisms (including human beings) (Spirita *et al.*, 2015). Water pollution has intensified in recent decades, causing damage often irreversible to aquatic environments (Tiburtius *et al.*, 2004, Tavares, 2014). This type of pollution can be caused by various agents, such as heavy metals (Fiori *et al.*, 2013), aromatic hydrocarbons (Heleno *et al.*, 2010), pesticides (Nogueira *et al.*, 2012) and detergents (Barbieri, 2008).

The use of synthetic detergents has caused several impacts to the environment (ex: accumulation in organisms tissues, foam in water bodies, reduced oxygen for aquatic animals) and also to public health (ex: it can cause asthma in children, skin irritation, liver damages, etc.) (Barbieri *et al.*, 2000, Morgado *et al.*, 2000, McWilliams and Payne, 2002, Chandanshive, 2013, Yuan *et al.*, 2014). They are rich in polyphosphates, which when emitted into lake ecosystems by domestic sewage, cause artificial eutrophication (Esteves, 2011). Between the other organisms, organic synthetics can be taken in a food chain, thus contaminating many aquatic species (vertebrates and invertebrates) and also human being, and also can alter the pH and salinity, affecting oxygen consumption by aquatic organisms (as fishes) (Ezemonye *et al.*, 2009, Chandanshive, 2014).

Although some developed countries have an efficient sewage treatment (Scott and Jones, 2000), in some poor countries or in developing like Brazil (Penteado *et al.*, 2006), Nigeria (Ogundiran *et al.*, 2010, Osula *et al.*, 2017), Turkey (Minareci *et al.*, 2009) and India (Mathew *et al.*, 2013), the sewage treatment is not efficient and cause several damages to aquatic environments. In Brazil, the basic sanitation is poorer in countryside and peripheral regions, where most part of population is poor; and the problems are aggravated with the misuse of financial resources and bad management (Junior and Paganini, 2009).

Currently the main surfactant present in the detergent formula is LAS (linear alkylbenzene sulfonate), which replaces ABS (alkylbenzene sulfonate) by being biodegradable and staying less time in nature (Barbieri, 2005, Penteado *et al.*, 2006). Detergents that contain LAS is widely used around the world, and once a time thrown in aquatic environments, it causes several damages to many organisms that compound these ecosystems (Hansen *et al.*, 1997).

Detergents can cause physiological (like the growth reduction in blue mussels) (Hansen *et al.*, 1997) and behaviours changes (like becoming *Macrobrachium olfersii* shrimps more aggressive and affecting the swimming behaviour in zebra fish, red carp and Japanese medakas) (Martins, 2007, Zhang *et al.*, 2015). One of the ways to measure the effects of pollutants on exposed organisms is through the lethal concentration test (LC$_{50}$). This test is used to measure the lethal dose that
kills 50% of organisms exposed to a certain pollutant (Chandanshive, 2013).

The guppy *Poecilia reticulata* (Peters, 1859) is a species native to northern South America and Central America, being one of the most widespread ornamental fish species in the world (Magurran and Seghers, 1994, Alves *et al.*, 2000, Andrade *et al.*, 2005). Guppy is a widely used for laboratory model, since it is easy to handle, has low cost and does not require large spaces for maintenance and reproduction (Maya and Marañón, 1998). Fish are widely used in toxicological experiments because they are important in the ecosystems in which they live, and also as an important resource in human nutrition (Barbieri *et al.*, 2000), and this work aimed to determine the LC$_{50}$ (120h) of neutral household detergent for guppy.

Materials and methods

Ethical Note

This work was approved by the Animal Ethics Committee of the Federal University of Ouro Preto (protocol number 2016/18).

Detergent utilized

We utilized neutral household detergent of brand Limpol. The main tensioactive presented on its composition is sodium dodecylbenzenesulfonate (C$_{18}$H$_{29}$NaO$_3$S).

LC$_{50}$ (120h) of the neutral household detergent test

Forty two adult guppies (21 ♀ and 21 ♂) with lengths between 3 and 4 cm were used during the LC$_{50}$ (120h) test. These guppies were transported in plastic sachets with oxygen to the site of the experiment; the sachets were placed in the water used for the acclimation experiment for 5 minutes. The pH value was between 7 and 8 during the experiment. A control group (without detergent) was used and, with the aid of a syringe, six dilutions of the neutral household detergent (10, 20, 30, 40, 70 and 100 mg/L) were added in plastic containers aerated with Super Air-Pump Kare's air compressors model Kar-3 (Beijing, China); guppies were fed once a day, with 0.5 gram of Nutriflakes flaked ration (Araçoiaba da Serra Municipality, São Paulo, Brazil). Each container had 2 litters of water and housed a couple of guppies, and three replicates were made for each concentration (Dogan *et al.*, 2012). The animals were not fed on the eve of the experiment, and were observed for a period of 120 hours, with the dead being immediately removed (Roy, 1988, Dogan *et al.*, 2012).

Statistical analysis

To determine the LC$_{50}$ (120h), we used the Probit statistical model and the Chi-Square test with 5% of significance.

Results

No death was recorded in control group and at concentrations of 10 and 20
mg/L in the experimental group, but half guppies died at concentration of 30 mg/L after 120h ($\chi^2 = 40.15$, $DF = 1$, $p<0.001$). The 40, 70 and 100 mg/L concentrations were shown to be too high, with all animals dying at concentrations of 70 and 100 mg/L, and four deaths at the concentration of 40 mg/L approximately 2 hours after the detergent insertion. The Probit analysis showed that approximately 33.4 mg/L is the LC$_{50}$ (120h) of neutral household detergent for guppy (Table 1 and Fig. 1).

Table 1: Detergent concentrations and guppies mortality rate. Value found for the LC$_{50}$ (120h) is in bold font.

Percent	Dose	Lower 95.0%	Upper 95.0%
0.1	6.49839	-69.7372	18.2009
0.5	11.0654	-51.6764	21.0146
1.0	13.2803	-42.952	22.414
2.0	15.7004	-33.459	23.9827
3.0	17.2359	-27.4658	25.0078
4.0	18.391	-22.9778	25.7993
5.0	19.3306	-19.3434	26.4594
6.0	20.1303	-16.2638	27.0351
7.0	20.8315	-13.576	27.5524
8.0	21.4593	-11.181	28.0271
9.0	22.0303	-9.0137	28.4697
10.0	22.5559	-7.02936	28.8777
15.0	24.7321	1.04403	30.7609
20.0	26.4616	7.21548	32.4947
25.0	27.9454	12.2269	34.2652
30.0	29.2779	16.391	36.1916
35.0	30.5127	19.859	38.3673
40.0	31.6843	22.7256	40.856
45.0	32.8179	25.0807	43.6823
50.0	33.9335	27.0248	46.8371
55.0	35.049	28.6604	50.3004
60.0	36.1826	30.0791	54.063
65.0	37.3543	31.3557	58.1418
70.0	38.589	32.5511	62.5901
75.0	39.9215	33.719	67.5126
80.0	41.4053	34.915	73.0986
85.0	43.1348	36.2131	79.7058
90.0	45.311	37.748	88.1174
91.0	45.8366	38.1067	90.1611
92.0	46.4076	38.4921	92.3856
93.0	47.0354	38.9113	94.8362
94.0	47.7366	39.3743	97.5782
95.0	48.5364	39.8964	100.711
96.0	49.4759	40.5029	104.399
97.0	50.631	41.2397	108.942
98.0	52.1665	42.2064	114.994
99.0	54.5866	43.7069	124.555
99.5	56.8015	45.061	133.325
99.9	61.3685	47.8127	151.447
Discussion
The LC$_{50}$ (120h) of neutral household detergent found for guppy was 33.4 mg/L. Lower doses such as 10 and 20 mg/L did not kill any of the guppies at the end of the 120 hours of exposure, 30 mg/L killed half of guppies while doses above 40 mg/L were extremely lethal in just a few hours.

Concentrations less than 30 mg/L did not kill any fish during the LC$_{50}$ (120h), but a study tested two different types of detergent (Surf excel and Nirma) in individuals of Mystus montanus, and the LC$_{50}$ values founded by him were 20 mg/L (Surf excel) and 23.5 mg/L (Nirma) during 96h of exhibition (Chandanshive, 2013). The values found can suggest that these detergents are more toxic than the neutral household detergent used in this work, because the species tested were larger (length between 12.3 and 14.5 cm) than the guppies used in our experiment (length between 3 and 4 cm) and 50% of the fishes died before 120h.

In an experiment with individuals of Clarias gariepinus exposed to commercial detergent effluent with LAS (the main compound presented in detergents currently) during 56 days (Ogundiran et al., 2010), authors founded that LC$_{50}$ for 1344h was 0.0166 mg/L of detergent effluent. The long-time exposed to the pollutant can suggest why a low quantity of detergent was lethal to 50% of those individuals, and surely it will be less than 33.4 mg/L for guppies if we had prolonged the time of exposition to detergent.

In an experiment analyzing the effects of alkylbenzene sulphonate (one of the compounds of detergents) in individuals of Zebra fish (Danio rerio), researchers observed that LC$_{50}$ (12h) value (the shortest observation time) was 36.427 mg/L, while LC$_{50}$ (96h) value (the longest observation time) was 27.310 mg/L1 (Spirita et al., 2015). One more time, we could suggest that the detergent used in the present study was less toxic than the mentioned earlier, since none of our guppies died...
in quantities less than 30 mg/L (during 120h).

Almost 50% of guppies (46.66%) died after 24h exposed of 0.00000004 mg/L of an herbal detergent present in a shampoo (Najan and Bhowate, 2010). This result suggests that also detergents presented in shampoo can be much more toxic than the neutral household detergent used, since the LC$_{50}$ (24h) value was too short. LC$_{50}$ values for guppies after 96h exposed of two different laundry detergents were 0.773 mg/L (in a middle contained detergent of brand Persil) and 28.841 mg/L (in a middle contained detergent of brand Klin) (Osuala et al., 2017). The found values showed that both of detergents are very toxic, killing 50% in 96h, comparing with our highest value that killed 50%: 33.4 mg/L in 120h.

Our results showed that even a simpler and biodegradable detergent frequently used by populations around the globe can have dramatic effects on fish’s life, being lethal in low concentrations. The prolonged effects of detergent in the fish’s physiology and behaviour still have to be investigated.

Acknowledgment
The authors acknowledge Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) for the scholarship that proportionated this work.

References
Alves, D.R., Luque, J.L., Paraguassú, A.R. and Marques, F.A., 2000. Ocorrência de *Camallanus cotti* (Nematoda: Camallanidae) parasitando o guppy, *Poecilia reticulata* (Osteichthyes: Poeciliidae) no Brasil. Revista Universidade Rural: Série Ciências da Vida. 22, 77-79.

Andrade, R.L.B., Andrade, L.S., Boscolo, W.R. and Soares, C.M., 2005. Comportamento, sobrevivência e desenvolvimento de lebistes, *Poecilia reticulata*, submetidos a agentes utilizados na profilaxia de doenças. Acta Scientiarum. Animal Sciences, 27, 523-528. DOI: 10.4025/actascianimsci.v27i4.1183.

Barbieri, E., Phan, V.N. and Gomes, V., 2000. Efeito do LAS-C12, dodecil benzeno sulfonato de sódio linear, na taxa metabólica e na capacidade de natação de *Cyprinus carpio*. Ecotoxicology and Environment al Restoration 3.

Barbieri, E., 2005. Efeito do LAS-C12 (dodecil benzeno sulfonato de sódio) sobre alguns parâmetros do comportamento da tainha (*Mugil platanus*). Atlântica, Rio Grande, 27, 49-57.

Barbieri, E., 2008. Efeito dos surfactantes DSS e LAS-C12 sobre o camarão-rosa (*Farfantepenaeus paulensis*, Pérez-Farfante, 1967). *Journal of the Brazilian Society of Ecotoxicology*, 3. DOI: 10.5132/jbse.2008.01.005.

Chandanshive, N.E., 2013. Studies on toxicity of detergents to *Mystus montanus* and change in behavior of...
fish. *Research Journal of Animal, Veterinary and Fishery Science*, 1, 14-19.

Chandanshive, N.E., 2014. Effects of different concentrations of detergents on dissolved oxygen consumption in fresh water fish *Mystus montanus*. *International Research Journal of Environment Sciences*, 3, 1-5.

Dogan, N., Yazici, Z., Sisman, T. and Askin, H., 2012. Acute toxic effects of fenpyroximate acaricide on Guppy (*Poecilia reticulata* Peters, 1859). *Toxicology and Industrial Health*, 29. 716-721. DOI: 10.1177/0748233712442736.

Esteves, F.A., 2011. Fundamentos de Limnologia (3ª ed.) Editora Interciência, Rio de Janeiro, Brazil.

Ezemonye, L.I.N., Ogeleka, D.F. and Okieimen, F.E., 2009. Lethal toxicity of industrial detergent on bottom dwelling sentinels. *International Journal of Sediment Research*, 24. 479-483. https://doi.org/10.1016/S1001-6279(10)60019-4.

Fiori, C.S., Rodrigues, A.P.C., Santelli, R.E., Cordeiro, R.C., Cavalheira, R.G., Araújo, P.C., Castilhos, Z.C. and Bidone, E.D., 2013. Ecological risk index for aquatic pollution control: a case of study of coastal water bodies from the Rio de Janeiro State, southeastern Brazil. *Geochimica Brasiliensis*, 27. 24-36. DOI: 10.5327/z0102-9800201300010003.

Hansen, B., Fotel, F.L., Jensen, N.J. and Wittrup, L., 1997. Physiological effects of the detergent linear alkylbenzene sulphonate on blue mussel larvae (*Mytilus edulis*) in laboratory and mesocosm experiments. *Marine Biology*, 128, 627-637.

Heleno, F.F., Lima, A.C., Afonso, R.J.C.F. and Coutrim, M.X., 2010. Otimização e validação de métodos analíticos para determinação de BTEX em água utilizando extração por *headspace* e microextração em fase sólida. *Química Nova*, 33, 329-336. http://dx.doi.org/10.1590/S0100-40422010000200019.

Junior, A.C.G. and Paganini, W.S., 2009. Aspectos conceituais da regulação dos serviços de água e esgoto no Brasil. *Revista Engenharia Sanitária e Ambiental*, 14, 79-88.

Magurran, A.E. and Seghers, B.H., 1994. Sexual conflict as a consequence of ecology: evidence from guppy, *Poecilia reticulata*, populations in Trinidad. *Proceedings. Biological Sciences*, 255. 31-36. DOI: 10.1098/rspb.1994.0005.

Martins, L.C., 2007. Efeito do detergente de uso doméstico sobre os comportamentos agonístico e exploratório do camarão de água-doce *Macrobrachium olfersi* (Wiegman, 1836) (Crustacea, Decapoda). MSc dissertation, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.

Mathew, E., Sunitha, P.T. and Thomas, P.L., 2013. Effect of
different concentrations of detergent on dissolved oxygen consumption in Anabas testudineus. Journal of Environmental Science, Toxicology and Food Technology, 5, 1-3.

Maya, E. and Marañón, S., 1998. Efecto del pH sobre la proporción de sexos, el crecimiento y la sobrevivencia del guppy Poecilia reticulata Peters (1859). Hidrobiológica, 8, 125-132.

McWilliams, P. and Payne, G., 2002. Bioaccumulation potential of surfactants: a review. Special Publications of the Royal Society of Chemistry, 280, 44-55.

Minareci, O., Öztürk, M., Egemen, O. and Minareci, E., 2009. Detergent and phosphate pollution in Gediz River, Turkey. African Journal of Biotechnology, 8, 3568-3575. DOI: 10.5897/AJB09.167.

Morgado, M.V., Pires, A. and Pinto, J.R., 2000. Auto-eficácia na criança asmática. Psicologia, Saúde e Doenças, 1, 121-128.

Najam, K.A.A. and Bhowate, W.D.D.C.S., 2010. Effect of herbal detergent based Dabur Vatika shampoo on guppy Poecilia reticulata (Peters). The Bioscan, 5, 321-322.

Nogueira, E.N., Dores, E.F.G.C., Pinto, A.A., Amorim, R.S.S., Ribeiro, M.L. and Lourencetti, C., 2012. Currently used pesticides in water matrices in Central-Western Brazil. Journal Brazilian Chemical Society, 23, 1476-1487.

http://dx.doi.org/10.1590/ S0103-50532012005000008.

Ogundiran, M.A., Fawole, O.O., Adewoye, S.O. and Ayandiran, T.A., 2010. Toxicological impact of detergent effluent on juvenile of African catfish (Clarias gariepinus) (Buchell 1822). Agriculture and Biology Journal of North America, 1, 330-342.

Osuala, F.I., Samuel, O.B., Abiodun, O.A., Igwo-Ezipke, M.N., Kemabonta, K.A. and Otitoloju, A.A., 2017. Single and joint action toxicity evaluation of insecticide and laundry detergent against Poecilia reticula. Ethiopian Journal of Environmental Studies and Management, 10: 530-542.DOI: https://dx.doi.org/10.4314/ejesm.v10i4.10.

Penteado, J.C.P., Seoud, O.A.E. and Carvalho, L.R.F., 2006. Alquibenzeno sulfonato linear: uma abordagem ambiental e analítica. Química Nova, 29, 1038-1046. http://dx.doi.org/10.1590/ S0100-40422006000500025.

Roy, D., 1988. Toxicity of an anionic detergent, dodecylbenzene sodium sulfonate, to a freshwater fish, Rita rita: determination of LC50 values by different methods. Ecotoxicology and Environmental Safety, 15: 186-194. https://doi.org/10.1016/ 0147-6513(88) 90071-1.

Scott, M.J. and Jones, M.N., 2000. The biodegradation of surfactants in
the environment. *Biochimica et Biophysica Acta*, 1508, 235-251.

Spirita, S.V., Kanagapan, M., Sam, M.D.S. and Avila, V.R., 2015. Studies on the toxicity of Alkylbenzene sulphonate to Zebra fish *Danio rerio* Hamilton. *Journal of Entomology and Zoology Studies*, 3, 204-207.

Tavares, R.D., 2014. Avaliação físico-química e ecotoxicológica de efluentes provenientes de estações de tratamento de esgoto. *Revista Ibero-Americana de Ciências Ambientais*, 5, 303-318. DOI: 10.6008/SPC2179-6858.2014.001.0022.

Tiburtius, E.R.L., Zamora, P.P. and Leal, E.S., 2004. Contaminação de águas por BTXS e processos utilizados na remediação de sítios contaminados. *Química Nova*, 27, 441-446.

http://dx.doi.org/10.1590/S0100-40422004000300014.

Yuan, C.L., Xu, Z.Z., Fan, M.X., Liu, H.Y., Xie, Y.H. and Zhu, T., 2014. Study on characteristics and harm of surfactants. *Journal of Chemical and Pharmaceutical Research*, 6, 2233-2237.

Zhang, Y., Ma, J., Zhoua, S. and Ma, F., 2015. Concentration-dependent toxicity effect of SDBS on swimming behaviour of freshwater fishes. *Environmental Toxicology and Pharmacology*, 40, 77-85. DOI: 10.1016/j.etap.2015.05.005.