A Framework and Tool for Collaborative Extraction of Reliable Information

Graham Neubig1, Shinsuke Mori2,
Masahiro Mizukami1

1Nara Institute of Science and Technology
2Kyoto University
Background
What is Information Extraction?

- Find useful information from large amounts of noise
Information Extraction in Times of Crisis

- Noise is particularly prevalent in times of crisis

Information Source (e.g. Internet)

- Provision of Safety Info. (ANPI_NLP Project [Neubig+ 11])
- Requests for Safety Info (99japan Project [Aida+ 13])
- Evacuation Shelters/Rescue Supplies
Necessities for Crisis-time Information Extraction

- **Speed**
 - Necessary to provide information ASAP to those in need

- **Absolute Reliability**
 - Provision of mistaken information could be deadly
 - In general, info will likely require confirmation before consumption

- **Difficult to Predict Needs**
 - Wildfire \rightarrow Wind, Earthquake \rightarrow Diapers, Radiation

- **Many volunteers!** [Starbird+10, Neubig+11]

- **Challenge:** How do we let volunteers work efficiently as possible to provide reliable information quickly?
This Work

- We propose a method for efficient extraction of reliable information:
 - Use machine learning (relevance feedback) to decide which examples to show to annotators
 - Web-based collaborative interface to allow multiple annotators to work on a single task
- Evaluation on data from Twitter
- Toolkit freely available open source

webigator: http://www.phontron.com/webigator
Information Extraction Framework
Information Extraction Task

They really need to open more evacuation areas in Sendai!	They are distributing water at Ishinomaki High School today.
I was able to fill up my car at the gas station at XXX.	Got to the evacuation center, but I'm almost out of battery!

- **Information filtering:** Remove documents with no actionable information
- **Information extraction:** Identify which terms fill slots (e.g. status, location)
- For Twitter, documents are small but numerous, so filtering is a challenge
Information Filtering as Classification

- **Binary classification** of “useful or not?”
 - Define features, use machine learning to learn weights
 - Notable for **large proportion of negative examples**

![Diagram](image)
Constructing a Classifier Requires Lots of Data

Little Data

Lots of Data

Bold = Lots of Data
Active Learning

- Way to create a good classifier efficiently
- Choose examples to annotate based on predictions

- Positive
- Negative
Active Learning

- Way to create a good classifier efficiently
- Choose examples to annotate based on predictions
Active Learning

- Way to create a good classifier efficiently
- Choose examples to annotate based on predictions
Active Learning

- Way to create a good classifier efficiently
- Choose examples to annotate based on predictions
Active Learning

- Way to create a good classifier efficiently
- Choose examples to annotate based on predictions
Problems with Unbalanced Data

- In information extraction, almost everything is negative
Problems with Unbalanced Data

- In information extraction, almost everything is negative
Problems with Unbalanced Data

- In information extraction, almost everything is negative
Problems with Unbalanced Data

- In information extraction, almost everything is negative
Problems with Unbalanced Data

- In information extraction, almost everything is negative
Our Simple Fix

- Small change to example selection criterion

 Standard: Select *low confidence* examples

 Proposed: Select examples with *high probability of being positive*

- Effective when *final human check is necessary*

 • Labeling a positive example = finding a highly reliable piece of information
Our Simple Fix

- Finds many positive examples quickly

- Using these positive examples, learn characteristics that help pick out more
Scaling Up
Too Much Data!

- e.g. Twitter after the Great East Japan Earthquake = peak of 1237 tweets/second

- Problems with:
 - Viewing even the high scoring tweets with one person
 - Rescoring every tweet after each round of learning
Collaborative Web-based Interface

- Allow multiple annotators to cooperate
A Framework and Tool for Collaborative Extraction of Reliable Information

Web Interface

Find Information

Current Keywords

Keywords

Label Buttons

If the presented information was useful, press "+". If not press "-".

If you cannot decide, you do not need to press either. After the current batch is submitted new ones will be displayed.

Label	Text	Tweet ID
RT @	原発の近くにある菅野町などから276人避難。食事の不安はなく生活の燃料不足マツハ侯	46986480933019648
	町飯坂小学校: 避難指示が出ている双葉町から650人避難 電気使えず 食事はおぎり	
	ゴシラヤ ...	
RT @	すみません、ちょっとキツイことを言います、避難所に避難されている	4719570519322560
	みなさんが「お客さん」ではありません。幸いには皆同じです。避難所を運営している	
	方も対応などなく、すべてボランティアです。食べ物や 充電、対応が不備の時にでも、暴 ...	
RT @	水戸市役所後ろ、水戸市水道部となり中央	4614866125320193
	公園にて飲料水を確保しております。家庭用リットルお渡しています。避難場所ではあり	
	ませんのでご注意ください。水戸市役所付近の避難場所は千波小学校です。# ...	
RT @	みなさんが、よく聞いて、このあと、日没が来て、日没がくると逃げられる。真っ暗になると津波が見えない。停電をしていて避難が難しい。夜の避難は犠牲を増やす。それはいろいろな災害での教訓だ。さあ、いますぐ避難だ。日没までがポイント ...	4613368097980416

Submit Labels

Submit Button
1) **Simple keyword search filter**

Type	Keywords
Evacuation/Supplies	evacuation area, water supplies, food supplies
Safety Info Request	contact, cannot, waiting
Safety Info Provision	contact, safe

2) **Rescoring policy**

- Maintain a sorted list of highly scored examples
- When retrieving next example:
 - Choose the example highest in the cache, rescore
 - After rescoring, still better than second best, return
 - Otherwise, return to beginning
Experiments
Evaluation

• Compared Methods:
 • Keyword search
 • Proposed learning-based method

• Target:
 • 179M tweets week after Great East Japan Earthquake
 • Three types of info: evacuation/rescue supplies, safety info request, safety info provision

• Evaluation measure:
 • Amount of reliable information extracted in 30 mins.
 • Use shared Google Doc as repository for information
Effect of Learning

- Experiments with one annotator for three tasks
- **Observable increase** in amount of information extracted and accuracy
- Some tasks easier than others

![Graphs showing the effect of learning on information extraction and filtering accuracy for different tasks.](image-url)
Effect of Collaboration

- Experiments with 1-3 users using same interface

- As expected, increasing users = increasing efficiency
Conclusion

- A method for information filtering that focuses on positive examples
- More effective than simple keyword search
- Remaining challenges:
 - Identification/clustering of duplicates
 - Application to identification of slots as well

webigator:
http://www.phontron.com/webigator