Cross-resistance of the chloroquine-derivative AQ-13 with amodiaquine in Cambodian *Plasmodium falciparum* isolates

Flore Nardella¹, Mélissa Mairet-Khedim², Camille Roesch², Steven P. Maher³, Sophiekavatey Ke², Rithea Leang⁴, Didier Leroy⁵ and Benoit Witkowski²*

¹Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL9195, INSERM Unit U1201, 25–28 Rue du Dr Roux, Paris, 75015, France; ²Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia; ³Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr., Athens, GA 30602, USA; ⁴National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; ⁵Medicine for Malaria Venture, Geneva, Switzerland

*Corresponding author. E-mail: bwitkowski@pasteur-kh.org

Received 25 February 2021; accepted 3 June 2021

Background: Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by *Plasmodium falciparum*.

Objectives: Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed.

Methods: A [³H]hypoxanthine uptake assay and a 384-well high content imaging assay were used to assess efficacy of AQ-13 and desethyl-amodiaquine against 38 *P. falciparum* isolates.

Results: We observed a strong cross-resistance between the chloroquine derivative amodiaquine and AQ-13 in Cambodian *P. falciparum* isolates (Pearson correlation coefficient of 0.8621, *P* < 0.0001).

Conclusions: In light of the poor efficacy of amodiaquine that we described recently in Cambodia, and its cross resistance with AQ-13, there is a significant risk that similar clinical efficacy of AQ-13-based combinations should be anticipated in areas of amodiaquine resistance.

Introduction

Chloroquine is an easily-synthesized, affordable 4-aminoquinoline antimalarial that was highly efficacious until the emergence of resistance in the late 1950s.¹ Worldwide spread of resistance has restricted its use to areas of low resistance in Central America for the treatment of uncomplicated *Plasmodium falciparum* malaria.² Resistance to chloroquine is mediated by point mutations in pfCRT (notably K76T), a transporter that induces an efflux of chloroquine outside of the digestive vacuole, where it exerts its action.³ To overcome and prevent the spread of resistance to single antimalarials, the current recommendation for the treatment of uncomplicated malaria is the use of artemisinin-based combination therapies (ACTs) that combine a fast-acting artemisinin derivative with a long-lasting partner drug. Six combinations are marketed, two of which are in combination with a chloroquine derivative: dihydroartemisinin/piperaquine (DHA-PIP) and artesunate/amodiaquine (AS-AQ). However, resistance to ACTs is occurring as several mutations in pfCRT participate in the resistance to DHA-PIP³⁻⁵ while a mutation in pfmdr1 seems to be associated with AS-AQ treatment failures.⁶ Drug-failure to ACTs in the Greater Mekong Subregion (GMS), notably with DHA-PIP, urges the development of new combinations to control and eradicate malaria. AQ-13 is a short chain chloroquine derivative that has been developed to circumvent chloroquine resistance. AQ-13 properties have recently been reviewed by Mengue et al.⁷ It showed non-inferiority to artesunate/lumefantrine (AL) in a Phase II clinical trial in Mali, and successfully cured 100% of patients regardless of the status of chloroquine resistance.⁸ However, we have recently shown that the clinical efficacy of AS-AQ precludes its implementation in Cambodia.⁹

In order to evaluate the activity of this 4-aminoquinoline in development in a context of high drug resistance, we tested the activity of AQ-13 against Cambodian multidrug-resistant isolates that were adapted to culture. We show here for the first time that...
AQ-13 is cross-resistant with desethyl-amodiaquine (dAQ), the major metabolite of amodiaquine, in South-East Asian strains.

Materials and methods

P. falciparum clinical isolates

Isolates were collected from Cambodian patients with uncomplicated *P. falciparum* malaria enrolled in WHO therapeutic efficacy studies (2011–16). Venous blood was collected into acid-citrate-dextrose tubes (Becton-Dickinson, Franklin Lakes, NJ, USA). Parasites were adapted to in vitro culture at 2% haematocrit (O+ human blood, Centre de Transfusion Sanguine, Phnom Penh, Cambodia) in RPMI-1640 medium supplemented with 0.5% (w/v) albumax II, 2.5% (v/v) decomplemented human plasma (mixed serogroups) under an atmosphere of 5% CO2 and 5% O2 and kept at 37°C.

In vitro susceptibility determination

In vitro susceptibility of the parasites to AQ-13 and dAQ was determined using the [3H]hypoxanthine uptake inhibition assay against 38 *P. falciparum* isolates. AQ-13 ([Ro 47-0543: N-(7-chloroquinolin-4-yl)-N,N'-diethylpropane-1,3-diamine] was obtained from Medicine for Malaria Venture, monodesethylamodiaquine (dAQ) and DMSO (used as vehicle) were obtained from WWARN & Sigma Aldrich, Singapore, respectively. Parasites were synchronized at ring stage using two 5%D-sorbitol treatments (0–6 h post-invasion) and exposed to a concentration range of AQ-13 or dAQ (0.7 to 500 nM) for 48 h in presence of 0.5 µCi of [3H]hypoxanthine (Perkin-Elmer, Waltham, USA). Tritium incorporation was measured with a β-counter (Trilux microbeta; Perkin-Elmer Waltham, USA). Inhibitory concentrations values (IC50) were determined using IVART online software (https://www.wwarn.org/ivart).10 Four *P. falciparum* laboratory reference strains were used as controls: 3D7, 7G8, W2 and Dd2. We chose an IC50 value >60 nM to define resistance to amodiaquine, according to previous studies.11

Parasite survival using high content imaging

We used two different strains: the laboratory AQ-susceptible strain 3D7 and a Cambodian AQ-resistant patient isolate collected in 2016 (Cambodia) having a dAQ IC50 of 239 nM. Parasites synchronized at ring stage (0–3 h post-invasion) were diluted to 3% parasitaemia and 0.01% haematocrit and exposed to a concentration range of AQ-13 and dAQ (0.7 to 500 nM) for 72 h, in a 384 well-plate. After 72 h incubation, cells were then fixed for 15 min with 0.44% glutaraldehyde, and red blood cells were permeabilized with 3% Triton for 10 min. Parasite DNA was then stained with 80 nM YOYOTM-1 Iodide for 45 min at room temperature in the dark. Pictures were taken using the Lionheart™ FX Automated Microscope (BioTek), covering the surface of each well containing YOYOTM-1 Iodide–stained parasites.

Ethics

All isolates were collected during therapeutic efficacy studies (TES) upon protocol acceptance from the Cambodian National Ethical Committee (NECH #071, 073, 079, 0.136, 0168 and 0273).

Statistical analysis

All statistical analyses were performed using Graphpad Prism 8.0 software. The correlation between AQ-13 and dAQ IC50s was assessed using a Pearson's test (Figure 1a) and a Mann-Whitney test was used for comparing the difference in IC50 between AQ-susceptible (AQ-S) and resistant (AQ-R) groups (Figure 1b). Comparison of survival between AQ-S and AQ-R strains in Figure 1(c) was done using a two-way ANOVA with Bonferroni's multiple comparison test. A P value <0.05 was considered significant.

Results

AQ-13 IC50 values ranged from 18 to 133 nM while those of dAQ ranged from 20 to 190 nM. We observed a clear correlation between the IC50s obtained for AQ-13 and dAQ (Pearson coefficient of 0.8621, P < 0.0001; Figure 1a). Also, IC50s of AQ-13 were statistically different when we compared AQ-S and AQ-R isolates using the [3H]hypoxanthine uptake inhibition assay [Mann–Whitney statistical test, median of 46.7 nM (n = 14) and 64.9 nM (n = 24) respectively, P < 0.0001; Figure 1b]. IC50 obtained for AQ-13 with the reference strains AQ-S 3D7 and AQ-R 7G8 had the same trend: 20.9 nM and 44.3 nM, respectively. In general, AQ-13 IC50s measured in Cambodian isolates exceeded by far the values obtained in laboratory strains (represented as coloured triangles in Figure 1a). This difference was confirmed by high content imaging using YOYO™-1 DNA staining (Figure 1c and d). At a concentration of 167 nM, up to 54% of AQ-R parasites survived to 72 h during AQ-13 treatment and up to 95% survived dAQ treatment while only 5% survived both drugs in the 3D7 AQ-S strain (Figure 1c).

Discussion

The pipeline of long-lasting antimalarials potentially suitable for developing new ACT is limited and these drug candidates are essential in the current context of drug resistance. Among those in Phase II, AQ-13 remains a promising option with both excellent tolerability and clinical efficacy.7 Previous investigation conducted by Ridley et al.12 showed a strong correlation of the susceptibility to both CQ and AQ-13 of isolates from Thailand and Tanzania, as well as reference strains. However, the IC50 of AQ-13 remained lower than 100 nM whereas chloroquine’s reached up to 500 nM in the most-resistant isolates. While these data indicate a potential efficacy of AQ-13 in CQ-R strains, they also clearly show a shared tolerance (or resistance) mechanism and raise the question of AQ-13 cross resistance with other 4-aminoquinolines. Circulation of AQ-R parasites has been recently described in Cambodia.6 In this context we have measured the susceptibility of Cambodian *P. falciparum* isolates to both AQ and AQ-13. Interestingly, we found a strong cross-resistance between AQ and AQ-13 and the IC50 values obtained with AQ-13 in some isolates were mainly above 100 nM. Confirming the conclusions of Ridley and colleagues,12 our findings suggest a shared resistance mechanism to both AQ and AQ-13. Therefore, and despite AQ-13 never having been deployed at large scale, strains harbouring a relatively high resistance to this molecule are already circulating. This study was not designed to explain the mechanism of cross-resistance between AQ and AQ-13, but the structural relatedness between AQ-13 and AQ could be one explanation. Previous data suggests an association of pfmdr1 polymorphism with AQ resistance observed in vitro, while pfcrf polymorphism is not implicated.6 Unfortunately, pfmdr1 and pfcrf genotypes are not available here to evaluate this association with AQ-13 resistance.

In summary, we report in vitro cross-resistance between dAQ (and hence AQ) and AQ-13. Further development of this molecule should consider this finding and carefully address the use of AQ-13 in the areas where AQ-R has been detected.
Acknowledgements
We would like to thank the patients who agreed to participate in TES studies and the Cambodian Health Centres staff for their contribution.

Funding
This study was supported by Medicine for Malaria Venture. Flore Nardella was supported by a fellowship from the Fondation Pierre Ledoux Jeunesse Internationale and the Pasteur Institute International Network. Melissa Mairet-Khedim was supported by Initiative 5% Grant (MIVS-ACT Grant #15SANIN211).

Transparency declarations
None to declare.

References
1 Payne D. Spread of chloroquine resistance in Plasmodium falciparum. Parasitol Today 1998; 3:241–6.
2 Torres REM, Banegas EI, Mendoza M et al. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum Malaria in Honduras. Am J Trop Med Hyg 2013; 88:850–4.
3 Kim J, Tan YZ, Wicht KJ et al. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 2019; 576: 315–20.
4 Ross LS, Dhiragra SK, Mok S et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 2018; 9: 3314.
5 Dhiragra SK, Small-Saunders JL, Ménard D et al. Plasmodium falciparum resistance to piperaquine driven by PfCRT. Lancet Infect Dis 2019; 19: 1168–9.
6 Mairet-Khedim M, Leang R, Marmai C et al. Clinical and in vitro resistance of Plasmodium falciparum to artesunate-amodiaquine in Cambodia. Clin Infect Dis 2020; doi:10.1093/cid/ciaa628.
7 Mengue JB, Held J, Kreidenweiss A. AQ-13 - an investigational antimalarial drug. Expert Opin Investig Drugs 2019; 28: 217–22.
8 Koita OA, Sangare L, Miller HD et al. AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, phase 2, non-inferiority clinical trial. Lancet Infect Dis 2017; 17: 1266–75.
9 Desjardins RE, Confield CJ, Haynes JD et al. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 1979; 16: 710–8.
10 Woodrow CJ, Dahlström S, Cooksey R et al. High-throughput analysis of antimalarial susceptibility data by the WorldWide Antimalarial Resistance Network (WWARN) in vitro analysis and reporting tool. Antimicrob Agents Chemother 2013; 57: 3121–30.
11 Folarin OA, Bustamante C, Gbotosho GO et al. In vitro Amodiaquine Resistance and its Association with Mutations in pfcr and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria. Acta Trop 2011; 120: 224–30.
12 Ridley RG, Hofheinz W, Matile H et al. 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother 1996; 40: 1846–54.