hydrocephalus. TAE was performed under local anesthesia in all cases, using a coil alone in two cases and liquid or particle embolization material in five cases. The day before direct surgery, TAE was performed in four cases, one of which involved a preoperative embolization to decompress ischemic or hemispheric infarction. The incidence of complications. The Modified Rankin Scale at discharge was 0 in 2 cases, 1 in 3 cases, 3 in 1 case, and 4 in 1 case.

DISCUSSION/CONCLUSION: Preoperative TAE for hemangioblastoma reduced the blood loss for direct surgery. Same-day TAE avoided neurological deficit due to cerebral infarction and cerebellar edema. To prevent severe infarction, guiding the microcatheter to the vicinity of the tumor bed is important.

STMO-03
SURGICAL RESECTION FOR PRECENTRAL GYRUS GLIOMA
Noriyuki Kijima1, Manabu Kinoshita1,2, Ryuichi Hirayama1, Naoki Kagawa1, Haruhiko Kishima1; 1Department of Neurosurgery, Osaka University Graduate School of Medicine

Primary motor cortex glioma is usually considered unresectable because of its high risk for motor deficit. However, recent reports suggest that surgical resection for primary motor cortex brain tumor is feasible for selected patients who have undergone resection of extracranial gliomas. In this study, we analyzed the neurological outcomes for 27 patients, with an average follow-up of 3 years. We reviewed the perioperative factors that have influenced the surgical resection for primary motor cortex gliomas. The standard treatment for glioblastoma is surgical resection of the primary tumor. However, the presence of residual tumor was confirmed by fluorescence diagnosis of intraventricular tumors and evaluated its usefulness. Intraventricular tumors were included in the study. There were 3 glioblastoma, 2 metastatic brain tumors, 2 pilocytic astrocytomas, and 1 malignant lymphoma. Subependymoma and medulloblastoma did not show fluorescence. Among the patients, confirmed fluorescence, the fluorescent sites were targeted for biopsies for glioblastoma cohort from Chiba University who met the two criteria, i) total removal of the tumor, and ii) preoperative evaluation with methionine positron emission tomography in pre- and postoperative MRI. Postoperative language deficits were reduced in 14 cases, and in 4 cases, partial resection was performed. However, no patient exhibited permanent neurological deficit. Surgical resections for primary motor cortex glioma were feasible in selected patients without severe neurological complication. Careful intraoperative airway mapping is desirable to achieve maximum resections.

STMO-07
ADVERSE EVENTS RELATED TO THE GliOBLASTOMA SURGERY AND THEIR PERIOPERATIVE MANAGEMENT IN OUR HOSPITAL
Hideki Kashiwagi1, Shinji Kawahata1, Seigo Kimura1, Ryokichi Yagi1, Naoki Ikeda1, Naousuke Nonoguchi1, Motomasa Furuse1, Masahiko Watanuchi1; 1Department of Neurosurgery, Osaka Medical College, Osaka, Japan

BACKGROUND: The standard treatment for glioblastoma is surgical resection following chemoradiation therapy. The rate of removal of the amount of residual tumor has some impact on the prognosis of patients with glioblastoma, but the highly invasive nature of this tumor makes complete removal limited to the contrast-enhanced lesions difficult due to its localization. Furthermore, when postoperative seizures and venous thrombosis are included in surgery-related complications, these perioperative adverse events can cause delays in the initiation of chemoradiation therapy and delay the return to work and home, such as prolonged hospitalization and rehabilitation time.

METHODS: We retrospectively reviewed the perioperative status of the recent 50 consecutive cases with histologically confirmed as glioblastoma at our hospital, the patient background, tumor localization, and perioperative treatment, and so on.

RESULTS: The major perioperative complications were ischemic or hemorrhagic complications, epileptic seizures, venous thrombosis, and pneumonia; CTCAE grade 2 or higher, grade 3 or higher, and grade 4 occurred in about 40%, 20%, and 10%, respectively, with some patients having multiple complications.

DISCUSSION: Although there was a tendency for ischemic changes around the cavity of the resection as the resection rate increased, most cases were asymptomatic and it seemed to be acceptable if residual brain function could be preserved. Residual tumors tended to show hemorrhagic changes and epileptic seizures because this is thought to be that the tumor was deliberately left in place to preserve function, based on the localization of the tumor. Postoperative FDP levels were useful in predicting the development of delayed venous thrombosis and pulmonary artery thromboembolism.

CONCLUSION: Because glioblastoma has short survival time and patient PS before and after surgery varies greatly depending on tumor localization, it is important to consider risk-benefit strategies for each case and to establish a scheme for a seamless transition from perioperative management to the introduction of postoperative therapy and maintenance therapy.

STMO-08
VALIDATION OF THE ENDOSCOPIC 5-ALA FLUORESCENCE DIAGNOSIS FOR INTRAVENTRICULAR TUMORS
Masahiro Nonaka1, Junichi Takeda1, Tetsuo Hashiba1, Akio Asai1; 1Department of Neurosurgery, Kansai Medical University

Intraoperative 5-ALA fluorescence diagnosis (PDD) has been shown to improve tumor resection rates in surgery for malignant glioma. Recently, the usefulness of PDD has been reported in tumors other than malignant glioma. However, the fluorescence of intraventricular tumors is not easy to observe under the microscope, because excitation light could not reach enough to the deepest part of the brain. Therefore, we performed endoscopic 5-ALA fluorescence diagnosis of intraventricular tumors and evaluated its usefulness. Ten cases of intraventricular tumors were included in the study. There were 3 glioblastoma, 2 metastatic brain tumors, 2 pilocytic astrocytomas, and 1 malignant lymphoma. Subependymoma and medulloblastoma did not show fluorescence. Among the cases with confirmed fluorescence, the fluorescent sites were targeted for biopsies for glioblastoma cohort from Chiba University who met the two criteria, i) total removal of the tumor, and ii) preoperative evaluation with methionine positron emission tomography in pre- and postoperative MRI. Postoperative language deficits were reduced in 14 cases, and in 4 cases, partial resection was performed. However, no patient exhibited permanent neurological deficit. Surgical resections for primary motor cortex glioma were feasible in selected patients without severe neurological complication. Careful intraoperative airway mapping is desirable to achieve maximum resections.

STMO-09
RECOVERY FROM SPEECH DEFICIT AFTER INJURY TO FRONTAL ASLANT TRACT IN GLIOMA SURGERY
Hoshizaki Sato1, Kenichi Kobayashi1, Danueke Shimagi1, Shohri Iijima1, Nobuyoshi Sasaki1, Yuta Sasaki1, Yoshiaki Shiozawa1, Motoo Nagane1; 1Department of Neurosurgery, Kyorin University Faculty of Medicine

BACKGROUND: The frontal aslant tract (FAT) is a white matter fiber connecting the superior frontal gyrus to the lateral inferior frontal gyrus. Damage to FAT in dominant hemisphere can lead to speech deficits which, in most cases, resolve within weeks to months. However, little is known about mechanisms of recovery and factors for predicting permanent language deficits. METHODS: Eighteen patients with glioma (age ranged 24 to 78, 10 glioblastomas and 8 lower grade gliomas) located in the medial frontal lobe in the dominant hemisphere involving the supplementary motor area (SMA) and FAT were included. FAT was visualized using diffusion tensor imaging tractography in pre- and postoperative MRI. Postoperative language deficits, resected area of FAT and surrounding brain regions including the cingulate gyrus and corpus callosum (CC) were retrospectively reviewed. RESULTS: In 17 of 18 cases, postoperative language deficits were observed. Speech deficits resolved within a month in 12 cases, while recovery was incomplete in five cases. In two patients without complete recovery, CC located below SMA was removed because of tumor infiltration. Other two patients had substantial injury of middle third portion of FAT. The last case had preceding infarction in the contralateral frontal white matter including FAT. In cases with complete language recovery, transcallosal fibers connecting the contralateral SMA to the ipsilateral frontal gyrus were detected by postoperative DTI-tractography. These fibers were damaged anywhere along its length in patients without complete language recovery, indicating that they may play an important role in recovery after FAT injury. CONCLUSION: Injury to CC or middle third portion of FAT can cause permanent language disorder. Transcallosal fibers from contralateral SMA seems to be involved in the recovery from language deficit after injury to FAT. In glioma surgery involving dominant SMA or FAT, these fibers should be preserved to avoid permanent speech deficit.

STMO-11
SUPRATOTAL RESECTION OF GliOBLASTOMA WITH METHIONINE PET
Ozaki Ko1, Seichiro Hiroono1, Tomomo Matsutani1, Yasuo Iwadate1; 1Department of Neurosurgical Surgery, Chiba University School of Medicine, Chiba, Japan

OBJECTIVE: To assess the resection of both of contrast-enhanced (CE) and methionine-uptake (MU) and the oncological outcome in newly diagnosed glioblastoma. METHODS: This retrospective study included a glioblastoma cohort from Chiba University who met the two criteria, i) total resection of CE tumor, ii) preoperative evaluation with methionine positron emission tomography