Retinopathies in human and animal models have shown to occur through loss of pericytes resulting in edema formation, excessive immature retinal angiogenesis, and neuronal apoptosis eventually leading to blindness. In recent years, the concept of regenerating terminally differentiated organs with a cell-based therapy has evolved. The cells used in these approaches are diverse and include tissue-specific endogenous stem cells, endothelial progenitor (EPC), embryonic stem cells, induced pluripotent stem cells (iPSC) and mesenchymal stem cells (MSC). Recently, MSC derived from the stromal fraction of adipose tissue have been shown to possess pluripotent differentiation potential in vitro. These adipose stromal cells (ASC) have been differentiated in a number of laboratories to osteogenic, myogenic, vascular, and adipocytic cell phenotypes. In vivo, ASC have been shown to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. Furthermore, these cells either in paracrine mode or physical proximity with endothelial cells, promoted angiogenesis, improved ischemia–reperfusion, protected from myocardial infarction, and were neuroprotective. Owing to the easy isolation procedure and abundant supply, fat-derived ASC are a more preferred source of autologous mesenchymal cells compared to bone marrow MSC. In this review, we present evidence that these readily available ASC from minimally invasive liposuction will facilitate translation of ASC research into patients with retinal diseases in the near future.

Keywords: adult stem cells, pericyte, ASC, EPC, clinical trial, neurodegeneration, ERG

INTRODUCTION

Diabetic retinopathy (DR) is the most common vascular complication in patients with long-standing diabetes, and is the leading cause of blindness in working-age adults. The estimated prevalence in USA is 5.4% (~7 million) (1). Future projections suggest that DR will increase as a public health problem, with increase in aged population and increasing prevalence of diabetes over time. In the early stages of DR, one notices clinically significant macular edema (ME). This presumably develops concomitant with pericyte loss, basement membrane thickening, and endothelial dysfunction involving loss of its barrier integrity. Subsequent closure of retinal capillaries results in retinal ischemia and aberrant growth factor secretion, neovascular formation, characteristic of proliferative DR (PDR). Current strategies for the therapeutic management of DR include laser photocoagulation, intravitreal triamcinolone (IVT), and intravitreal injection of VEGF neutralizing agents (e.g., Avastin). Patients undergoing laser treatment continue to remain at risk for new bleeding episode requiring multiple laser treatments. Triamcinolone, which is relatively more successful in suppressing ME, requires intravitreal administration. However, this procedure is fraught not only with side effects but also adverse reactions such as sub-capsular cataract, onset of steroid-induced glaucoma, and potential for endophthalmitis. Use of intravitreAl Avastin against ME or PDR has not been successful with the effect lasting for only a short period.

ROLE FOR PERICYTES IN DR

Diabetic retinopathy develops as sustained metabolic dysregulation and inflicts progressive damage to the retinal microvasculature, increasing vascular permeability, and, in advance stages, leads to the aberrant proliferation of vascular endothelial cells (2). As the global level of diabetes is increasing at a rapid rate, there is necessity to understand the molecular mechanisms responsible for diabetes-induced complications, specifically retinal pathology. One of the well-accepted theories of potential development of DR is due to loss of pericytes (3). Pericytes are specialized perivascular cells, derived from the vascular smooth muscle lineage, that reside in close contact with endothelial cells within a common basement membrane. Although pericytes share many markers with smooth muscle cells (SMC), they can be distinguished from SMC by decreased SMC-alpha-actin and increased platelet-derived growth factor (PDGF)-receptor (PDGFR) expression (3). They are believed to provide a nourishing, anti-inflammatory and anti-angiogenic environment for endothelial cells. The formation
of the blood–retinal barrier (BRB) is dependent on the interaction of the vascular endothelial cells with both glial cells and pericytes. Endothelial cells recruit pericytes through expression of PDGF, and pericyte activation, in turn, modulates blood vessel homeostasis and endothelial cell growth. The importance of PDGF signaling has been demonstrated with a loss of function experiments of PDGF signaling, resulting in lower retinal pericytes and subsequent vascular degeneration and increased vascular angiogenesis (4). More recently, a new protein kinase C-δ (PKC-δ)-dependent signaling pathway in pericytes via SHP-1 protein has been shown as a mechanism of pericyte apoptosis by downregulating PDGF signaling (5). Angiopoietin-1 (Ang-1) is one pericyte produced factor believed to be essential for these stabilizing functions (6). Ang-1 has been demonstrated to increase survival, anti-inflammatory properties, and barrier function of endothelial cells and absence of Ang-1 leads to increased expression of Ang-2 (7). Ang-2 is an antagonist of Ang-1, which can interfere with tie-2 receptor activation and signaling, leading to decreased endothelial and pericyte cell survival but also to increased endothelial cell activation (8, 9). Recently, the anti-inflammatory activity of Ang-1 has been explained by decreasing the responsiveness of endothelial cell to TNFα (10). Furthermore, inflammatory cytokines such as TNF has been linked to pericyte apoptosis and inhibition of TNF reduced pericyte ghost formation with decreased acellular capillary formation caused by type 1 and type 2 diabetes (11). Accumulating evidence points to the fact that exposure of retinal pericytes to high glucose results in increased pro-apoptotic Bim expression and oxidative stress leading to reduced migration with a significant impact on their rate of apoptosis (12). These findings implicate pericytes as potential mediators of DR and outline potential strategies for targeted therapies based on their regulation.

STEM CELLS AND OCCULAR ANGIOPENESIS

Loss of pericytes and endothelial cells was central to the pathogenesis of DR (2). If cell loss is solely responsible for disease, a definitive treatment would involve cell replacement. Stem cells offer the promise of regenerating tissue in organs such as the eye, brain, and heart, damaged by trauma or disease. Over the past decade, literature has emerged that strongly supports the potential for exploiting stem/progenitor cells to maintain, and support abnormal tissue in several diseases, which perhaps can also be extrapolated to retinal diseases. About four basic populations of cells are known as of today (13) that contain progenitor cells which, under appropriate circumstances, may have therapeutic application in the treatment of retinal disease: (1) retinal stem cells that can give rise to photoreceptors and other retinal neurons; (2) Mueller/glial stem cells that can differentiate into retinal glia and/or neurons; (3) retinal pigment epithelial (RPE) stem cells that can not only serve to replace diseased RPE but perhaps can also be stimulated to differentiate into photoreceptors; and (4) endothelial, myeloid progenitor cells, adult stem cells, induced pluripotent stem cells (iPSC) that can contribute to the retinal vasculature and exert vasculo- and neurotrophic rescue effects (Table 1). Research aimed at re-engineering stem cells to develop into vasculature is of great benefit to the DR patients. One of the early publications from Friedlander’s laboratory reported that Lin- hematopoietic stem cells (HSCs) from bone marrow injected directly into the mouse eye targeted activated astrocytes, and participate in normal developmental angiogenesis in neonatal mice or injury-induced neovascularization in the adult (14, 15). Interestingly, these HSCs, transfected with a plasmid encoding a secreted anti-angiogenic peptide, T2-tryptophanyl-tRNA synthetase, profoundly inhibited retinal angiogenesis suggesting that engineered to produce a secreted peptide that can inhibit further proliferation of new vessels and perhaps to stabilize (mature) vessels, provides the hope that cell-based therapy may be useful in the inhibition of proliferative retinopathies (14). Lineage identification in these HSC suggested that CD44^{hi} cells via a HIF1α-mediated mechanism suggested to play a role in oxygen-induced retinopathy model (OIR) (15). It is noteworthy to mention that in this study, no labeling was present with antibodies against CD31 or NG2 indicating that these cells are unlikely to be differentiating into endothelial cells or pericytes but rather gave neurotrophic support to form mesenchymal progenitor cells or pericytes and astrocytes thereby increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons in the OIR model. Among cell-based approaches intended to address DR, in addition to myeloid progenitor cells, intravitreal injection of CD34+ endothelial cells (18) have been very successful to prevent vascular resorption and protect neurons in genetic mouse models of retinal degeneration. However, to date,

Source	Stem/progenitor markers	Reference
Hematopoietic stem cells (HSC)	CD44hi/CD11a+/CD11b+/ Ly6C+/F4/80+/CD14, cKit+	(15)
Endothelial progenitor (EPC)	CD34+	(18)
Embryonic stem cells	CD31+/CD1146+	(70, 71)
Induced pluripotent stem cells (iPSC)	CD31+/CD146+	(70, 72)
Umbilical cord blood (UCB)-derived myeloid progenitor cells	CD14+	(73)
Mesenchymal stem cells (MSC)	CD31−/CD34−/CD44+/ CD45−/CD73+/CD90+/ CD105+/CD140b+	(43, 45)

A limited compilation of stem cells that are implicated in retinal diseases with specific emphasis on retinopathy where applicable.

Frontiers in Endocrinology | Diabetes
April 2014 | Volume 5 | Article 59 | 2
Adipose stromal cells are multipotential mesenchymal progenitor cells, making these cells an attractive option to treat diabetic retinopathy (DR) from the perspective of vascular stabilization and the restitution of pericyte dropout (Figure 1).

An elegant study by Yates group employed intravitreal injection of differentiated pericytes from human ASC via TGF-β1 treatment, could integrate into the retinal vasculature in two non-diabetic models, OIR and Akimba model on the abluminal locations around retinal capillaries, which is a defining characteristic of pericytes (43). Because the neovascular changes observed in the Akimba mouse are not due to long-term hyperglycemia, as in human DR (44), we developed a streptozotocin (STZ)-induced chronic hyperglycemia DR model and for the first time demonstrated that intravitreal injection of ASC in a chronic diabetes model pair with host vasculature in a perivascular location, possibly suggesting pericyte replacement (45). Interestingly, ASC requires a minimum of 3–6 weeks to pair with host vasculature to wrap around blood capillaries to stabilize vasculature in vivo as is also true with hind-limb ischemia models (46). Although more studies are warranted, the ability to provide such perivascular cells in the early stages of disease would represent a significant advancement in our understanding of the role of ASC cell therapy in DR.

Adipose stromal cells have a remarkable property to self-assemble into vascular structures in contact co-cultures with a number of endothelial cell types including retinal endothelial cells (45, 47). This property is not unique to ASC but also bone marrow

THE PLASTICITY OF PERICYTES IN ADIPOSE TISSUE

Adipose stromal cells are multipotential mesenchymal progenitor cells that are readily induced to undergo adipogenic differentiation, and have been recently demonstrated to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues (37, 38). Pericytes and ASC are both of mesenchymal origin and ASC can be differentiated into skeletal muscle cells, osteoblasts, chondrocytes, and adipocytes (39–42). Recent evidence suggests that human ASC and pericytes express identical surface markers including NG2, PDGFR α and β, and N-cadherin (37). Human adipose tissue sections revealed that ASC markers including both CD34 and CD140b were restricted to perivascular cells and formed robust functional vascular networks in vivo by cooperation of ASC with endothelial cells (37). The fact that ASC share functional properties as well as phenotypic markers with perivascular pericytes, makes these cells an attractive option to treat DR from the perspective of vascular stabilization and the restitution of pericyte dropout (Figure 1).

Rajashekhar MSC in retinopathy therapy

![Figure 1](image_url)

FIGURE 1 | Hypothetical model of regenerative cell therapy with adipose stromal cells (ASC) in retinopathy. Under normoglycemic/non-pathological conditions (NG), intact retinal endothelium protected by pericytes is relatively impermeable; but becomes leaky under hyperglycemic stress (HG), in conjunction with downregulation of several proteins including Angiopoietin-1 (Ang-1), a characteristic feature observed in retinopathy. Because ASC and pericytes share phenotypic characteristics, it is hypothesized that cell therapy involving intravitreal injection of autologous ASC will ameliorate such loss of pericytes and consequent vascular permeability. Because ASC produce cytoprotective factors, it is anticipated that they will also promote vascular and neurodegeneration repair in retinopathy.
MSC have been shown to form networks with HUVEC (48). It is quite interesting to note that MSC take up perivascular position while the endothelial cells form angiogenic tube-like structures in this 2D coculture. These studies shed new light on the vasculogenic potential of ASC depends on interaction with endothelial cells involving contact and likely bi-directional interaction, resulting in modulated secretion of cytokines and matrix proteins that are essential for stabilized vessels. In support of this, recently ASC were shown to secrete Ang-1 in a time-dependent manner, especially when cultured in medium containing growth factors for vascular endothelial cells and promoted reendothelialization (49). Early data from our laboratory suggest that these vessel stabilizing properties of ASC are unaltered in hyperglycemic environment taking one step forward to suggest that ASC are pre-programmed to sustain the hostile diabetic environment. More studies are warranted if ASC produced Ang-1 or other proteins play a vital role in the vascular stabilization and rescue from retinal injury.

MESENCHYMAL CELLS AND NEUROPROTECTION IN DR

Apart from their role as perivascular cells, ASC are also known to produce a variety of angiogenic and anti-apoptotic factors (50), which in turn may promote dual beneficial effects addressing both capillary and neurodegeneration (Figure 1). We and others have shown that ASC act both in a paracrine manner as well as by direct physical interaction with endothelial cells to modulate angiogenesis (51), reduce skeletal muscle ischemia, and tissue loss (50), limit myocardial infarction (52), promote skin repair (53), and provide neuroprotective function against serum and potassium deprivation-induced cerebellar granule neuronal apoptosis (54, 55). These seminal studies have led to the concept that the adipose tissue may provide a novel autologous source of putative stem cells with significant potential for tissue repair and rescue from diabetic injury. The latter study establishes a mechanistic basis supporting the therapeutic application of ASC for neurological disorders, specifically through paracrine support provided by trophic factor secretion, which may be of paramount importance in regeneration of photoreceptors/astrocytes in retinal injury. To this end, intravenous injection of ASC in the STZ-induced DR rat model demonstrated an improvement in blood glucose levels as well as BRB integrity, with few donor cells differentiated into photoreceptor or astrocytes-like cells (56). Based on the fact that the diabetes itself is largely ameliorated with the intravenous injection of ASC via improved glucose tolerance, preserved beta cell mass, and increased beta cell proliferation in STZ-treated NOD-SCID mice (57), it is not clear if the improvement of BRB integrity is a direct result of ASC replacement of cells in the retina or due to the general decrease in blood glucose. Although the mechanisms are unclear, based on our studies performed with trophic factors in both STZ-induced DR and retinal ischemia–reperfusion (I/R) injury models, local intravital injection of trophic factors from ASC support the speculation that the paracrine trophic factors released by ASC play key roles by both stabilizing vasculature, and in protecting retinal cells from diabetic damage. In favor of this hypothesis, recently ASC have been shown to secrete physiologically relevant levels of several anti-apoptotic, anti-inflammatory, and chemotactic proteins (such as tumor necrosis factor-inducible gene 6, TSG6; stanniocalcin-1, STC-1; Rantes, CCL5; stem cell factor, SCF (37), tissue inhibitor of metalloproteinase1, TIMP-1 (57), which have been shown to mediate some of the beneficial effects of MSC (57–59). Future studies with detailed molecular approaches are needed to specifically identify the use of these specific proteins in DR.

CLINICAL TRIALS IN DR

At the time of this review, there are over 200 open clinical trials using MSC with diseases ranging from Crohn’s disease to cardiomyopathy to rheumatoid arthritis. There are only two clinical trials that directly address DR using bone marrow-derived MSC (NCT01518842) and bone marrow-derived CD34+ cells (a pilot clinical trial of the feasibility and safety of intravitreal autologous adult bone marrow stem cells in treating eyes with vision loss from retinopathy; NCT01736059). While MSC are not a preferred choice as of today, early 2012, FDA approved a first of its kind clinical trial (A phase I, open-label, multi-center, prospective study to determine the safety and tolerability of sub-retinal transplantation of human embryonic stem cell-derived retinal pigmented epithelial (MA09-hRPE) cells in patients with advanced dry AMD; NCT01344993) for the use of embryonic stem cells (ES) for the treatment of AMD, an age-related retinal disease with loss of central vision. It was reported that two patients who received stem cells showed improvement in their vision and it is encouraging that during the observation period of 4 months neither patient lost vision (60). However, ES cells are controversial and their use is tainted by ethical issues. Similarly, iPSC cells are being tested in Japan in a clinical study (61) and one can hope it will show enough efficacy to encourage formal clinical trials, however, as with ES, iPSC cells are also under scrutiny and the use of four genes to make a stem cell and their long-term efficacy is controversial. Obviously, safety and efficacy is one of the main key point for FDA approval, there are studies aiming at the very safety and efficacy of MSC in newly diagnosed Type 1 diabetic patients is ongoing, which will inform us on how these cells behave in vivo in long-term (Safety and efficacy of mesenchymal stem cells in newly diagnosed type 1 diabetic patients; NCT01322789). In particular, ASC are currently being investigated in clinical trials in several fields (chronic inflammation, ischemic diseases, etc.) and the emerging results of these trials will provide a great deal of data concerning the safety of ASC use (62). Unlike other stem cells such as iPSC, which needs extensive manipulation of cell armamentarium, ASC need few, if any, such manipulations making its use more advantageous over other cell types. Unfortunately, in countries like Mexico and Europe ASC are already being used in clinical treatment of DR, compromising the safety of patients as well as hindering our ability to perform rigorous clinical studies in US. We as a scientific community must perform rigorous scientific studies to ensure their safety without compromising the efficacy before offering clinical trials in the United States.

CHALLENGES AND FUTURE DIRECTIONS OF CELL THERAPIES IN DR

There are multiple challenges for cell therapies with MSC in DR.

1. **Pericytes are mesenchymal in origin and express multiple cell surface markers (CD140b, CD146, NG2, SMA, Desmin)**
depending upon the tissue or the subpopulation derived from the tissues. This brings enormous heterogeneity in MSC, which may contribute to different outcomes in DR.

(2) The heterogeneity in MSC may mandate us to purify and enrich a subpopulation to define differentiation with specificity to pericyte. Emerging data from pericyte progenitors from MSC engraft preferentially at perivascular location (63, 64). Furthermore, precisely characterized pericytes are less likely to generate unwanted cell type making it an ideal candidate for FDA approval.

(3) Route of injection may be of concern. In line with other cell therapies approved for DR, we chose to do intravitreal injections of ASC as it benefits from direct delivery of these cells into the eye close to the damaged retinal vasculature. Furthermore, unlike for endothelial progenitor cells, pericytes from abruminal side may yield quick results. However, we would need to evaluate the relative merit of intravenous, intraocular, or sub-retinal injection of MSC in future studies as these routes are routinely used in clinical ophthalmology.

(4) Well-characterized vasoregenerative cells that are ready for clinical application for human use is necessary. This may include a combination of MSC and CD34+ cells or other endothelial progenitor cells as one cell type alone may not help develop patent vessels. To this end, we have recently shown that ASC markedly enhanced retinal endothelial cell survival under hyperglycemic conditions; and in contact co-cultures, ASC formed robust vascular networks with retinal endothelial cells, much as with cord blood endothelial cells (45, 47). Emerging data indicate that direct cell–cell contact between MSC and endothelial cells may induce pericyte phenotype in MSC with marked expression of SMA as well as other pericyte markers such as CD146 (47, 65).

(5) One of the challenges for MSC transplantation therapy for DR is the secretion of angiogenic growth factors produced by ASC, such as VEGF and HGF (50), which may adversely affect retina for proliferative changes. Although MSC have been shown to produce paracrine trophic factors that may modulate between a pro-angiogenic to anti-angiogenic state depending upon the microenvironment (66–69), a careful regulation of ASC differentiation may be necessary.

(6) Another general challenge of stem cell-based treatments is the relative rudimentary characterization of derived cells. Most studies rely on a rather limited survey of extracellular markers rather than functional evaluation of the derived cells.

CONCLUSION

Mesenchymal cells in particular ASC are preferred choices of cell therapy in ischemic and diabetic diseases. The ready availability of large numbers of autologous cells with the capabilities of facilitating repair of vascular and neurogenic tissues would be highly significant clinically for patients with retinal diseases such as AMD, DR, and retinitis pigmentosa. The resulting therapies would involve a minimally invasive procedure such as liposuction to harvest adipose tissue, followed by any processing required to obtain an appropriately defined and functionally consistent population of cells with the desired characteristics.

ACKNOWLEDGMENTS

This study was supported by grants from the National Eye Institute (EY023427), an ICVBM/Signature Vascular and Cardiac Center for Adult Stem Cell Therapy grant, gifts from the Knights Templar of Wisconsin Inc., Cryptic Masons Medical Research Foundation, and support from the Indiana Center for Vascular Biology and Medicine to GangaRaju Rajashekhar.

REFERENCES

1. Diabetic Retinopathy Prevalence Rates in the United States. Prevent Blindness America (2013). Available from: http://www.visionproblemsus.org/diabetic-retinopathy/diabetic-retinopathy-map.html

2. Garziano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature (2005) 438:960–6. doi:10.1038/nature04842

3. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res (2005) 97:512–23. doi:10.1161/01.RES.0000182903.16652.d7

4. Enge M, Bjarnegård M, Gerhardt H, Gustafsson E, Kalén M, Asker N, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J (2002) 21:4307–16. doi:10.1093/emboj/cdf418

5. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, Clermont A, Leitges M, Marette A, et al. Activation of PKC-delta and SHP-1 by hyperglycemia in vascular cell apoptosis and diabetic retinopathy. Nat Med (2009) 15:1298–306. doi:10.1038/nm.2052

6. von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res (2006) 312:623–9. doi:10.1016/j.yexcr.2005.10.019

7. Davis S, Papadopoulos N, Aldrich TH, Masionpierre PC, Huang T, Kovac L, et al. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol (2003) 10:38–44. doi:10.1038/nsb880

8. Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME. The angiopoietin-Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci (2008) 49:2163–71. doi:10.1167/iovs.07-1206

9. Lemireux C, Maliba R, Favier J, Théorêt JF, Merhi Y, Sirois MG. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood (2005) 105:1523–30. doi:10.1182/blood-2004-09-3531

10. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med (2006) 12:235–9. doi:10.1038/nm1351

11. Behl V, Krothapalli P, Desta T, DiPiazza A, Roy S, Graves DT. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol (2008) 172:1411–8. doi:10.2353/apjpath.2008.071070

12. Shin ES, Huang Q, Gurel Z, Palenski TL, Zaitoun I, Sorenson CM, et al. STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions. Cell Death Dis (2014) 5:e986. doi:10.1038/cddis.2013.517

13. Friedlander M, Dorrell MJ, Ritter MB, Marchetti V, Moreno SK, El-Kalay M, et al. Progenitor cells and retinal angiogenesis. Angiogenesis (2007) 10:89–101. doi:10.1007/s10456-007-9070-4
Morgan J, Muntoni F. Cellular damage in a new picture of muscle stem cells. Nat Cell Biol (2007) 9:249–51. doi:10.1038/ncl0707-249

Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE. Chondrogenic and adipogetic potential of microvascular pericytes. Circulation (2010) 114:2226–32. doi:10.1161/01.CIR.0000144457.55518.E5

Mendel TA, Clabough EB, Kao DS, Demidova-Rice TN, Durham JT, Zetter BC, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One (2013) 8:e56591. doi:10.1371/journal.pone.0056591

Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech (2012) 5:444–56. doi:10.1242/dmm.009597

Rajashekhar G, Ramadnan A, Abburi C, Callaghan B, Traktuev DO, Evans-Molina G, et al. Regenerative therapeutic potential of adipose stem cells in early stage diabetic retinopathy. PLoS One (2014) 9:e84671. doi:10.1371/journal.pone.0084671

Cai L, Johnstone BH, Cook TG, Tan J, Fishein MC, Chen PS, et al. iATFs collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells (2009) 27:230–7. doi:10.1634/stemcells.2008-0273

Merfeld-Claus S, Gollahalli N, March KL, Traktuev DO. Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A (2010) 16:2953–66. doi:10.1089/ten.TEA.2009.0635

Sorrell JM, Barber MA, Caplan AI. Influence of adult mesenchymal stem cells in vitro vascular formation. Tissue Eng Part A (2009) 15:1751–61. doi:10.1089/ten.tea.2008.0254

Takahashi M, Suzuki E, Kumano S, Oba S, Sato T, Nishimatsu H, et al. Angiopoietin-1 mediates adipose tissue-derived stem cell-induced inhibition of neonatal formation in rat femoral artery. Circ J (2013) 77:1574–84. doi:10.1253/circj.CJ-12-0930

Rehman J, Traktuev D, Li J, Merfeld-Claus S, Tennm-Groove CJ, Bovenkirk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stem cells. Circulation (2004) 109:1292–8. doi:10.1161/01.CIR.0000121425.42966.F1

Rajashekhar G, Traktuev DO, Roell WC, Johnstone BH, Merfeld-Claus S, Van Natta R, et al. iATFs collection: adipose stem cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells (2008) 26:2674–81. doi:10.1634/stemcells.2008-0277

Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, et al. Suppression of hepatic growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells (2007) 25:3234–43. doi:10.1634/stemcells.2007-0388

Dhong ES, Hwang NH, Kim DW, Rajashekhar G, Johnstone BH, March KL. Morphologic changes in photodamaged organotypic human skin culture after treatment of autologous adipose-derived stem cells. J Craniofac Surg (2012) 23:805–11. doi:10.1097/SCS.0b013e31824be878

Rajashekhar MSC in retinopathy therapy

Frontiers in Endocrinology | Diabetes

April 2014 | Volume 5 | Article 59 | 6
54. Wei X, Du Z, Zhao L, Feng D, Wei G, He Y, et al. IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. *Stem Cells* (2009) 27:478–88. doi:10.1634/stemcells.2008-0333

55. Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH, et al. Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. *Neurosci Lett* (2009) 462:76–9. doi:10.1016/j.neulet.2009.06.054

56. Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. *Graefe's Arch Clin Exp Ophthalmol* (2010) 248:1415–22. doi:10.1007/s00417-010-1384-z

57. Kono TM, Sims EK, Moss DR, Yamamoto W, Ahn G, Diamond J, et al. Human adipose derived stromal/stem cells (hASCs) protect against STZ-induced hyperglycemia; analysis of hASC-derived paracrine effectors. *Stem Cells* (2014). doi:10.1002/stem.1676

58. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein and secretion of stanniocalcin-1. *Stem Cells* (2010) 28:1415–22. doi:10.1002/stem.1413

59. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. *Lancet* (2012) 379:713–20. doi:10.1016/S0140-6736(12)60628-2

60. Cyranoski D. Stem cells cruise to clinic: Japanese study of induced pluripotent stem cells aims to demonstrate safety in humans. *Nature* (2013) 494:413. doi:10.1038/494413a

61. Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells-secreted neuroprotective media against neuronal apoptosis. *Stem Cells* (2011) 29:43–53. doi:10.2210/wscs.2011-0244

62. Bouabdallah M, Bouabdallah A, Benhadj HS, et al. Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. *PLoS One* (2012) 7:e48648. doi:10.1371/journal.pone.0048648

63. Chen CW, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, et al. Human pericytes for ischemic heart repair. *Stem Cells* (2013) 31:305–16. doi:10.1002/stem.1285

64. Lohb M, Binder A, Herrmann M, Duttenhoefer F, Richards RG, Netlich M, et al. Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. *Biomed Res Int* (2014) 2014:395781. doi:10.1155/2014/395781

65. Kannaid T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, et al. Marrow-derived stromal stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. *Circ Res* (2004) 94:678–85. doi:10.1161/01.RES.0000118601.37857.AC

66. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. *J Cell Biochem* (2006) 98:1076–84. doi:10.1002/jcb.20886

67. Caplan AI, Dennis JE. Mesenchymal stem cells engineered for cancer therapy. *Adv Drug Deliv Rev* (2012) 64:739–48. doi:10.1016/j.addr.2011.06.010

68. Park TS, Bhuatto I, Zimmerlin L, Huo JS, Nagarap M, Miller D, et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. *Circulation* (2014) 129:359–72. doi:10.1161/CIRCULATIONAHA.113.003000

69. Schraermeyer U, Thurnann M, Luther T, Kociok N, Armbold S, Kruttwig K, et al. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. *Cell Transplant* (2001) 10:673–80.

70. Tzankov A, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. *PLoS One* (2011) 6:e18992. doi:10.1371/journal.pone.0018992

71. Marchetti V, Yanes O, Aguilar E, Wang M, Friedlander D, Moreno S, et al. Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. *Sci Rep* (2011) 1:76. doi:10.1038/srep00076

Conflict of Interest Statement: The Guest Associate Editor Ashay Dilip Bhatwadekar declares that, despite being affiliated to the same institution as author Gangaraju Rajashekhar, the review process was handled objectively and no conflict of interest exists. The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 February 2014; **accepted:** 10 April 2014; published online: 24 April 2014. **Citation:** Rajashekhar G (2014) Mesenchymal stem cells: new players in retinopathy therapy. *Front. Endocrinol.* 5:59. doi:10.3389/fendo.2014.00059

This article was submitted to Diabetes, a section of the journal *Frontiers in Endocrinology*. Copyright © 2014 Rajashekhar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.