SMOOTH GLOBAL LAGRANGIAN FLOW FOR THE 2D EULER AND SECOND-GRADE FLUID EQUATIONS

STEVE SHKOLLER

Abstract. We present a very simple proof of the global existence of a \(C^\infty \) Lagrangian flow map for the 2D Euler and second-grade fluid equations (on a compact Riemannian manifold with boundary) which has \(C^\infty \) dependence on initial data \(u_0 \) in the class of \(H^s \) divergence-free vector fields for \(s > 2 \).

1. INCOMPRESSIBLE EULER EQUATIONS

Let \((M,g)\) be a \(C^\infty \) compact oriented Riemannian 2-manifold with smooth boundary \(\partial M \), let \(\nabla \) denote the Levi-Civita covariant derivative, and let \(\mu \) denote the Riemannian volume form. The incompressible Euler equations are given by

\[
\begin{align*}
\partial_t u + \nabla u \cdot u &= \text{grad} \, p, \\
\text{div} \, u &= 0, \quad u(0) = u_0, \quad g(u, n) = 0 \quad \text{on} \quad \partial M,
\end{align*}
\]

where \(p(t, x) \) is the pressure function, determined (modulo constants) by solving the Neumann problem \(-\triangle p = \text{div} \, \nabla u \) with boundary condition \(g(\text{grad} \, p, n) = S_n(u) \), \(S_n \) denoting the second-fundamental form of \(\partial M \).

The now standard global existence result for two-dimensional classical solutions states that for initial data \(u_0 \in \chi^s \equiv \{ v \in H^s(TM) \mid \text{div} \, v = 0, \, g(v, n) = 0 \} \), \(s > 2 \), the solution \(u \) is in \(C^0([0, \infty), \chi^s) \) and has \(C^0 \) dependence on \(u_0 \) (see, for example, Taylor’s book \[8\]). Equation (1.1) gives the Eulerian or spatial representation of the dynamics of the fluid. The Lagrangian representation which is in terms of the volume-preserving fluid particle motion or flow map \(\eta(t, x) \) is obtained by solving

\[
\begin{align*}
\partial_t \eta(t, x) &= u(t, \eta(t, x)), \\
\eta(0, x) &= x.
\end{align*}
\]

This is an ordinary differential equation on the infinite dimensional volume-preserving diffeomorphism group \(D^s_\mu \), the set of \(H^s \) class bijective maps of \(M \) into itself with \(H^s \) inverses which leave \(\partial M \) invariant. Ebin & Marsden \[3\] proved that \(D^s_\mu \) is a \(C^\infty \) manifold whenever \(s > 2 \). They also showed that for an interval \(I \), whenever \(u \in C^0(I, \chi^s) \) and \(s > 3 \), there exists a unique solution \(\eta \in C^1(I, D^s_\mu) \) to (1.2). Thus, for \(s > 3 \) the existence of a global \(C^1 \) flow map immediately follows from the fact that \(u \) remains bounded in \(H^s \) for all time. It is often essential, however, for the Euler flow to depend smoothly on the initial data; in the case of vortex methods, for example, Hald in Assumption 3 of \[5\] requires this as a necessary condition to establish convergence.

Theorem 1.1. For \(u_0 \in \chi^s \), \(s > 2 \), there exists a unique global solution to (1.1) which is in \(C^\infty(\mathbb{R}, TD^s_\mu) \) and has \(C^\infty \) dependence on \(u_0 \).
Proof. The smoothness of the flow map follows by considering the Lagrangian version of (1.1) given by

\[\frac{D}{dt} \partial_t \eta(t, x) = - \text{grad} p(t, \eta(t, x)), \quad \text{det} T \eta(t, x) = 1, \]

\[\partial_t \eta(0, x) = u_0(x), \quad \eta(0, x) = x, \]

where \(T \eta(t, x) \) denotes the tangent map of \(\eta \) (which in local coordinates is given by the 2x2 matrix of partial derivatives \(\partial \eta / \partial x^j \)), and where \(D/dt \) is the covariant derivative along the curve \(t \mapsto \eta(t, x) \) (which in Euclidean space is the usual partial time derivative). Since

\[\text{grad} \circ \eta = \text{grad} \Delta^{-1} [\text{Tr}(\nabla u \cdot \nabla u) + \text{Ric}(u, u)] \circ \eta, \]

where \(\text{Ric} \) is the Ricci curvature of \(M \), and since \(S_n \) is \(C^\infty \) and \(H^{s-1}(TM) \) forms a multiplicative algebra whenever \(s > 2 \), we see that the linear operator \(u \mapsto \text{grad} \Delta^{-1} [\text{Tr}(\nabla u \cdot \nabla u) + \text{Ric}(u, u)] \) maps \(H^s \) back into \(H^s \). Denote by \(f : TD^s_\mu \to TTD^s_\mu \) the vector field

\[(\eta, \partial_t \eta) \mapsto \text{grad} \Delta^{-1} [\text{Tr}(\nabla u \cdot \nabla u) + \text{Ric}(u, u)] \circ \eta. \]

Then,

\[f(\eta, \partial_t \eta) = \text{grad}_\eta \Delta^{-1}_\eta [\text{Tr}(\nabla_\eta \partial_t \eta \cdot \nabla_\eta \partial_t \eta) + \text{Ric}_\eta(\partial_t \eta, \partial_t \eta)], \]

where \(\text{grad}_\eta g = [\text{grad}(g \circ \eta^{-1})] \circ \eta \) for all \(g \in H^s(M) \), \(\text{div}_\eta X_\eta = [\text{div}(X_\eta \circ \eta^{-1})] \circ \eta \) and \(\nabla_\eta(X_\eta) = [\nabla(X_\eta \circ \eta^{-1})] \circ \eta \) for all \(X_\eta \in T_\eta D^s_\mu \), \(\Delta_\eta = \text{div}_\eta \circ \text{grad}_\eta \), and \(\text{Ric}_\eta = \text{Ric} \circ \eta \). It follows from Lemmas 4, 5, and 6 in [1] and Appendix A in [2] that \(f \) is a \(C^\infty \) vector field. Thus (1.1) is an ordinary differential equation on tangent bundles \(TD^s_\mu \) governed by a \(C^\infty \) vector field on \(TD^s_\mu \); it immediately follows from the fundamental theorem of ordinary differential equations on Hilbert manifolds, that (1.3) has a unique \(C^\infty \) solution on finite time intervals which depends smoothly on the initial velocity field \(u_0 \), i.e., there exists a unique solution \(\partial_t \eta \in C^\infty((-T, T), TD^s_\mu) \) with \(C^\infty \) dependence on initial data \(u_0 \), where \(T \) depends only on \(\|u_0\|_{H^s} \).

When \(s > 3 \), this interval can be extended globally to \(\mathbb{R} \) by virtue of \(\eta \) remaining in \(D^s_\mu \). Unfortunately, the global existence and uniqueness of a \(C^\infty \) flow map \(\eta(t, x) \) does not follow for initial data \(u_0 \in \chi^s \) for \(s \in (2, 3] \), so we provide a simple argument to fill this gap. We must show that \(\eta \) can be continued in \(D^s_\mu \). It suffices to prove that \(T \eta \) and \(T \eta^{-1} \) are both bounded in \(H^{s-1} \). This is easily achieved using energy estimates. We have that

\[\frac{D}{dt} T \eta = \nabla \partial_t \eta = \nabla u \cdot T \eta \]

and

\[\frac{D}{dt} T \eta^{-1} = - T \eta^{-1} \cdot \nabla \partial_t \eta \cdot T \eta^{-1} = - T \eta^{-1} \cdot \nabla u. \]

Computing the \(H^{s-1} \) norm of \(T \eta \) and \(T \eta^{-1} \), respectively, we obtain

\[\frac{1}{2} \frac{d}{dt} \| T \eta \|_{H^{s-1}} = \langle D^{s-1}(\nabla u \cdot T \eta), D^{s-1} T \eta \rangle_{L^2}, \]

and

\[\frac{1}{2} \frac{d}{dt} \| T \eta^{-1} \|_{H^{s-1}} = \langle D^{s-1}(T \eta^{-1} \cdot \nabla u), D^{s-1} T \eta^{-1} \rangle_{L^2}. \]
It is easy to estimate
\[\langle D^{s-1}(\nabla u \cdot T\eta), D^{s-1}T\eta \rangle_{L^2} \leq C(\|\nabla u\|_{L^\infty} \|T\eta\|_{H^{s-1}}^2 + \|\nabla u\|_{H^{s-1}} \|T\eta\|_{L^\infty} \|T\eta\|_{H^{s-1}}) \leq C(\|\nabla u\|_{L^\infty} \|T\eta\|_{H^{s-1}}^2 + \|u\|_{H^{s-1}} \|T\eta\|_{H^{s-1}}^2) \]
where the first inequality is due to Cauchy-Schwartz and Moser’s inequalities and the second is the Sobolev embedding theorem. Similarly,
\[\langle D^{s-1}(-T\eta^{-1} \cdot \nabla u), D^{s-1}T\eta^{-1} \rangle_{L^2} \leq C(\|\nabla u\|_{L^\infty} \|T\eta^{-1}\|_{H^{s-1}}^2 + \|u\|_{H^{s-1}} \|T\eta^{-1}\|_{H^{s-1}}^2) \]
Since the solution \(u \) to (1.3) is in \(\mathcal{X}^s \) for all \(t \), we have that \(\|u\|_{H^s} \) is bounded for all \(t \). Because the vorticity \(\omega = \text{curl } u \) is in \(L^\infty \), we have by Lemma 2.4 in Chapter 17 of [3] that \(\|\nabla u\|_{L^\infty} \leq C(1 + \log \|u\|_{H^s}) \); hence \(\|\nabla u\|_{L^\infty} \) is bounded for \(t \). It then follows that \(\eta \) and \(\eta^{-1} \) are in \(D^s_\mu \) for all time. \(\square \)

2. Second-grade fluid equations

In this section, we establish the global existence of a \(C^\infty \) Lagrangian flow map for the second-grade fluids equations, also known as the isotropic averaged Euler or Euler-\(\alpha \) equations, which has \(C^\infty \) dependence on initial data. These equations are given on \((M, g) \) by
\[
\begin{align*}
\partial_t (1 - \alpha \Delta_\ell) u - \nu \Delta_\ell u + \nabla_\ell (1 - \alpha \Delta_\ell) u - \alpha (\nabla_\ell u)^t \cdot \Delta_\ell u &= -\text{grad } p, \\
\text{div } u &= 0, \quad u(0) = u_0, \quad u = 0 \text{ on } \partial M
\end{align*}
\]
(2.1)
(see [4]), and were first derived in 1955 by Rivlin & Ericksen [5] in Euclidean space \((\text{Ric}= 0)\) as a first-order correction to the Navier-Stokes equations. In Euclidean space the operator \(\Delta_\ell \) is just the component-wise Laplacian, and the equation may be written as
\[
\partial_t (1 - \alpha \Delta) u - \nu \Delta u + \text{curl} (1 - \alpha \Delta) u \times u = -\text{grad } p.
\]
For convenience, we set \(\alpha = 1 \). We define the unbounded, self-adjoint operator \((1 - \ell)(1 - 2\text{Def}^\ast \text{Def})\) on \(L^2(TM) \) with domain \(H^2(TM) \cap H^0_\partial(TM) \). The operator \(\text{Def}^\ast \) is the formal adjoint of \(\text{Def} \) with respect to \(L^2; \) \(2\text{Def}^\ast \text{Def} u = -(\Delta + \text{grad div } + 2\text{Ric})u \) so that \(2\text{Def}^\ast \text{Def} u = -(\Delta + 2\text{Ric})u \) if \(\text{div } u = 0 \). We let \(D^s_\mu, D^s_\mu, D^s_\mu \) denote the subgroup of \(D^s_\mu \) whose elements restrict to the identity on the boundary \(\partial M \). \(D^s_\mu, D^s_\mu, D^s_\mu \) is a \(C^\infty \) manifold (see [3] and [5]). Let \(\chi_D^s = \{ u \in \chi^s | u = 0 \text{ on } \partial M \} \).

The following is Proposition 5 in [3].

Proposition 2.1. For \(s > 2 \), let \(\eta(t) \) be a curve in \(D^s_\mu, D^s_\mu, D^s_\mu \), and set \(u(t) = \partial_t \eta \circ \eta(t)^{-1} \). Then \(u \) is a solution of the initial-boundary value problem (2.1) with Dirichlet boundary conditions \(u = 0 \) on \(\partial M \) if and only if
\[
\begin{align*}
\overline{\nabla} \circ \left[\frac{\nabla u}{\nabla^2} + [-\nu(1 - \ell)^{-1} \Delta_\ell u + \mathcal{U}(u) + \mathcal{R}(u)] \circ \eta \right] &= 0, \quad \text{Det } T\eta(t, x) = 1, \\
\partial_t \eta(0, x) &= u_0(x), \\
\eta(0, x) &= x
\end{align*}
\]
(2.2)
where
\[
\begin{align*}
\mathcal{U}(u) &= (1 - \ell)^{-1} \{ \text{div } [\nabla u \cdot \nabla^t u + \nabla u \cdot \nabla u - \nabla u^t \cdot \nabla u] + \text{grad } \text{Tr}(\nabla u \cdot \nabla u) \} \\
\mathcal{R}(u) &= (1 - \ell)^{-1} \{ \text{Tr } [\nabla (R(u, \cdot) u) + R(u, \cdot) \nabla u + R(\nabla u, \cdot) u] \\
&\quad + \text{grad } \text{Ric}(u, u) - (\nabla u \text{Ric}) \cdot u + \nabla u^t \cdot \text{Ric}(u) \},
\end{align*}
\]
and $\overline{\mathcal{P}}_\eta : T_\eta D^*_D \rightarrow T_\eta D^*_\mu,D$ is the Stokes projector defined by

$$\overline{\mathcal{P}}_\eta : T_\eta D^*_\mu,D \rightarrow T_\eta D^*_\mu,D,$$

$$\overline{\mathcal{P}}_\eta(X_\eta) = [\mathcal{P}_e(X_\eta \circ \eta^{-1})] \circ \eta,$$

and where $\mathcal{P}_e(F) = v$, v being the unique solution of the Stokes problem

$$(1 - \mathcal{L})v + \text{grad} \, p = (1 - \mathcal{L})F;$$
$$\text{div} \, v = 0,$$
$$v = 0 \text{ on } \partial M.$$

Equation (2.2) is an ordinary differential equation for the Lagrangian flow. Notice again that $H^{s-1}, s > 2$, forms a multiplicative algebra, so that both \mathcal{U} and \mathcal{R} map H^s into H^s.

Theorem 2.1. For $u_0 \in \chi^s_D, s > 2,$ and $\nu \geq 0$, there exists a unique global solution to (2.2) which is in $C^\infty(\mathbb{R}, T^s_D)$ and has C^∞ dependence on u_0.

We note that one cannot prove the statement of this theorem from an analysis of (2.1) alone (see [2] and [4], and references therein).

Proof. The ordinary differential equation (2.2) can be written as $\partial_t u = S(\eta, \partial_t \eta)$ (see page 23 in [6]). Remarkably, $S : T^s_D \rightarrow T^s_D$ is a C^∞ vector field, and Theorem 2 provides the existence of a unique short-time solution to (2.2) in $C^\infty((-T, T), T^s_D)$ which depends smoothly on u_0, and where T only depends on $\|u_0\|_{H^s}$.

Thus, it suffices to prove that the solution curve η does not leave D^*_μ,D. Following the proof of Theorem 1.1, and using the fact that the solution $u(t, x)$ to (2.1) remains in H^s for all time ([2, 4]), it suffices to prove that ∇u is bounded in L^∞.

Letting $q = \text{curl}(1 - \alpha \triangle_r)u$ denote the potential vorticity, and computing the curl of (2.1), we obtain the 2D vorticity form as

$$\partial_t q + g(\text{grad} \, q, u) = \nu \text{curl} \, u.$$

It follows that for all $\nu \geq 0$, $q(t, x)$ is bounded in L^2 (conserved when $\nu = 0$) and therefore by standard elliptic estimates $\nabla u(t, x)$ is bounded in H^2, and hence in L^∞.

As a consequence of Theorem 2.1 being independent of viscosity, we immediately obtain the following:

Corollary 2.1. Let $\eta^\nu(t, x)$ denote the Lagrangian flow solving (2.3) for $\nu > 0$, so that $u^\nu = \partial_t \eta^\nu \circ \eta^{\nu-1}$ solves (2.4). Then for $u_0 \in \chi^s_D, s > 2$, the viscous solution $\eta^\nu \in C^\infty(\mathbb{R}, T^s_D)$ converges regularly (in H^s) to the inviscid solution $\eta^0 \in C^\infty(\mathbb{R}, T^s_D)$. Consequently $u^\nu \rightarrow u^0$ in H^s on infinite-time intervals.

This gives an improvement of Busuioc’s result in [1] in two ways: 1) we are able to prove the regular limit of zero viscosity on manifolds with boundary, and 2) in the Lagrangian framework, we are able to get C^∞ in time solutions.

Acknowledgments

Research was partially supported by the NSF-KDI grant ATM-98-73133 and the Alfred P. Sloan Foundation Research Fellowship.
References

[1] V. Busuioc, *On second grade fluids with vanishing viscosity* C. R. Acad. Sci. Paris Sr. I Math., 328, (1999), no. 12, 1241–1246.

[2] D. Cioranescu and V. Girault, *Weak and classical solutions of a family of second-grade fluids*, Inter. J. Non-Linear Mech., 32, (1997), 317–335.

[3] D. Ebin and J. Marsden, *Groups of diffeomorphisms and the motion of an incompressible fluid*, Ann. of Math., 92, (1970), 102–163.

[4] G.P. Galdi, M. Grobbelaar-Van Dalsen, and N. Sauer, *Existence and uniqueness of classical-solutions of the equations of motion for 2nd-grade fluids*, Arch. Rat. Mech. Anal., 124, (1993), 221–237.

[5] O. Hald [1987], *Convergence of vortex methods for Euler’s equations: III*, SIAM J. Numer. Anal., 24, (1987), 538–582.

[6] S. Shkoller, *On averaged incompressible Lagrangian hydrodynamics;* E-print, http://xyz.lanl.gov/abs/math.AP/9908109/.

[7] R.S. Rivlin and J.L. Ericksen, *Stress-deformation relations for isotropic materials*, J. Rat. Mech. Anal. 4, (1955), 323–425.

[8] M.E. Taylor, *Partial Differential Equations III*, Springer-Verlag, 1996.

(Steve Shkoller) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CA 95616

E-mail address: shkoller@math.ucdavis.edu