Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis and diabetes.

Andrea P. Martin¹, Sara Rankin², Simon Pitchford², Israel F. Charo³,⁴, Glaucia C. Furtado¹ and Sergio A. Lira¹

¹Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029.
²Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College, South Kensington Campus, London, SW72AZ.
³Gladstone Institute of Cardiovascular Disease, ⁴Cardiovascular Research Institute, Department of Medicine, UCSF, San Francisco, CA 94158.

Keywords: chemokines, macrophages/monocytes, diabetes, CCL2

Address correspondence to:
Dr. Sergio A. Lira or Dr. Glaucia Furtado
Immunology Institute, Mount Sinai School of Medicine
1425 Madison Ave, Box 1630
New York, NY 10029-6574
e-mail:sergio.lira@mssm.edu, Glaucia.Furtado@mssm.edu

Nonstandard abbreviations:
BM: Bone Marrow.
DCs: dendritic cells.
TNF: tumor necrosis factor.
STZ: streptozotocin.
MLDS: multiple low doses of streptozotocin.
FACS: Flow cytometry.
WT: wild type.
DOX: doxycycline.
SERCA: Sarcoendoplasmatic reticulum Ca/ATPase type2.
GADD153/CHOP: C/EBP [CCAAT/enhancer binding protein.
XBP-1: X-box binding protein-1.
ATF4: activating transcription factor-4.
BIP: immunoglobulin heavy-chain binding protein.
TRAF2: tumor necrosis factor receptor-associated.

Submitted 8 May 2008 and accepted 1 July 2008.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org
CCL2-induced monocyte recruitment into the islets.

ABSTRACT

Objective: To define the mechanisms underlying the accumulation of monocytes/macrophages in the islets of Langerhans.

Research Design and Methods: We tested the hypothesis that macrophage accumulation into the islets is caused by overexpression of the chemokine CCL2. To test this hypothesis we generated transgenic mice and evaluated the cellular composition of the islets by immunohistochemistry and flow cytometry. We determined serum levels of CCL2 by ELISA, determined numbers of circulating monocytes, and tested whether CCL2 could mobilize monocytes from the BM directly. We examined development of diabetes overtime and tested whether CCL2 effects could be eliminated by deletion of its receptor, CCR2.

Results: Expression of CCL2 by β-cells was associated with increased numbers of monocytes in circulation and accumulation of macrophages in the islets of transgenic mice. These changes were promoted by combined actions of CCL2 at the level of the BM and the islets and were not seen in animals in which the CCL2 receptor (CCR2) was inactivated. Mice expressing higher levels of CCL2 in the islets developed diabetes spontaneously. The development of diabetes was correlated with the accumulation of large numbers of monocytes in the islets, and did not depend on T and B cells. Diabetes could be induced in normoglycemic mice expressing low levels of CCL2 by increasing the number of circulating myeloid cells.

Conclusions: These results indicate that CCL2 promotes monocyte recruitment by acting both locally and remotely and that expression of CCL2 by insulin-producing cells can lead to insulitis and islet destruction.
CCL2-induced monocyte recruitment into the islets.

Type 1 diabetes is a chronic inflammatory disorder characterized by infiltration of the islets of Langerhans by mononuclear cells and autoimmune destruction of insulin-producing β-cells (1; 2). Several lines of evidence suggest that macrophages play a role in the development of diabetes. Macrophages are the first cells that appear within the islets of NOD mice (3) and are also implicated in late phases of disease development (4). Administration of clodronate-loaded liposomes, which leads to disappearance of macrophages, dendritic cells (DCs), and lymphocytes from the endocrine pancreas and periphery of NOD mice, delays the onset of diabetes (5). Moreover, macrophage depletion inhibits the development of β-cell-cytotoxic T cells and prevents autoimmune diabetes (6). The presentation of self-antigens to autoreactive T cells by DCs and macrophages recruited and activated by transgenic tumor necrosis factor (TNF)-α expression has been suggested to account for the observed acceleration of diabetes (7). Indeed, macrophages and DCs are found infiltrating islets from recent-onset type 1 diabetes patients (8).

Tissue macrophages originate from monocytes produced in the bone marrow (BM). Current studies suggest that BM-derived monocytes give rise to two subsets of peripheral blood monocytes (9). One subset (GR-1−, CX3CR1high, CCR2− and CCL62L− monocytes) gives origin to tissue macrophages (splenic macrophages, Kupffer cells, alveolar macrophages, microglia and osteoclasts). The second subset (GR-1+, CX3CR1low, CCR2+, CD62L+ monocytes) is preferentially recruited to inflamed tissues and gives rise to macrophages and DCs. This inflammatory subset also expresses CD115 (GM-CSF receptor) and Ly6C (10; 11).

Several studies implicate the chemokine CCL2 in monocyte recruitment in vivo (12). CCL2 promotes recruitment of monocytes, macrophages, DCs, and activated T cells via its receptor, CCR2 (13). Numerous cell types including fibroblasts, endothelial cells, epithelial cells, mononuclear cells, and smooth muscle cells express CCL2 in the presence of serum or specific stimuli (14; 15). In addition to chemotaxis, CCL2 contributes to activation of monocytes and macrophages, since CCL2 induces production of TNF-α and IL1-β in murine peritoneal macrophages (16). Macrophage recruitment caused by CCL2 expression has been strongly linked to several inflammatory conditions such as atherosclerosis (17), development of intimal hyperplasia after arterial injury (18), obesity, and insulin resistance (19).

CCL2 expression has also been related to diabetes. Primary cultures of murine and human pancreatic islets express and secrete CCL2 (20). CCL2 expression has also been detected in islets of NOD mice during cyclophosphamide treatment (21) and CCL2 expression parallels disease progression in NOD mice (22; 23). Low level secretion of CCL2 by islets prior to transplantation is associated with a higher rate of insulin independence, suggesting an important role for CCL2 in the clinical outcome of islet transplantation in patients with type 1 diabetes (24).

Our lab and others have shown that CCL2 expression by insulin producing cells induces the accumulation of macrophages in the islets of transgenic mice (25; 26). We have also found that
transgenic expression of CCL2 induces migration of DCs to the islets and that the number of inflammatory cells recruited is dependent on the levels of CCL2 produced by the β-cells (26). The mechanisms controlling accumulation of monocytes in non-lymphoid tissues in response to increased levels of CCL2 have not been examined. It is unclear if the accumulation of monocytes in inflamed tissues in response to CCL2 reflects increased recruitment of circulating monocytes or monocyte precursors, changes in the number of circulating monocytes, or both. Finally, it is unclear if changes in local levels of CCL2 may promote development of diabetes.

Here we show that transgenic expression of CCL2 by insulin producing cells is associated with changes in the number of monocytes in circulation. The monocytes are mobilized from the BM in a CCR2-dependent mechanism. We also found spontaneous development of diabetes in 2 of the 4 transgenic lines expressing the highest levels of CCL2 in the pancreas. The development of diabetes required the accumulation of a large number of monocytes in the islets and did not depend on T or B cells. Animals expressing low levels of CCL2 in the islets did not spontaneously develop diabetes, but became diabetic if the number of circulating monocytes was increased. These results indicate that CCL2 promotes monocyte recruitment by acting both locally and remotely and that dysregulated expression of CCL2 by insulin-producing cells can lead to insulitis and islet destruction.

Research Design and Methods

Mice. RIPCCL2 mice were generated as described in Martin et al (26) in B6D2 (C57BL/6 x DBA) background. CCR2/- mice were described by Boring et al (13). Rag-1/- mice were obtained from The Jackson Laboratory (Bar Harbor, ME). In all experiments, transgenic mice were compared to their corresponding littermates. All mice were housed under specific-pathogen-free conditions in individually ventilated cages at the Mount Sinai School of Medicine Animal Facility. All experiments were performed following institutional guidelines.

Diabetes. The blood glucose was monitored weekly using a one-touch blood Ascensia Countour glucometer (Bayer, Elkhart, IN). Animals were considered diabetic when their blood glucose levels were >250 mg/dl in two consecutive daily measurements.

Histology. Tissues for light microscopic examination were fixed by immersion in 10% phosphate-buffered formalin and then processed for paraffin sections. Routinely, 5 µm sections were cut and stained with haematoxylin and eosin (H&E). For immunohistochemical staining, fresh frozen sections were first fixed with ice-cold acetone for 20 min, dried and stored at -20°C. Slides were incubated for 1 hr at room temperature with purified primary antibodies followed by incubation with the appropriate labeled secondary antibodies for 30 min. Primary antibodies used were anti-CD45 (#550539), CD3 (#550275), CD11c (#550283), B220 (#550286), CD11b (#553308) from BD Biosciences Pharmigen (San Diego, CA); F4/80 (#MCAP497) from Serotec (Oxford, UK); and guinea pig polyclonal anti-insulin (#A0564) from DAKO (Carpinteria CA). Secondary antibodies used were Alexa Fluor 488 and 594 goat anti-rat IgG (#A-11006, and #A-11007) from Molecular Probes (Eugene, OR); and Cy3 goat anti-Armenian hamster (#127-165-160), FITC Anti Guinea Pig IgG (#706-095-148), and
CCL2-induced monocyte recruitment into the islets.

Cy5 goat anti-rat (#112-175-167) from Jackson ImmunoResearch (West Grove, PA).

To determine the degree of islet infiltration in RIPCCL2 mice, groups of mice (n=5) were analyzed at 4 weeks of age. The total number of islets was counted in each section (assessing 40–100 islets per animal) and semi-quantitative analysis was performed on insulin/CD45-stained sections. Insulitis was scored as follows: 0, no lesions; 1, peri-insular leukocytic aggregates; 2, moderate insulitis with mononuclear cells infiltrating <50% of the islet architecture; and 3, severe insulitis with >50% of the islet tissue infiltrated by mononuclear cells. An insulitis score for each mouse was obtained by dividing the total score for each pancreas by the number of islets examined. Data are presented as mean insulitis score ± SEM for the indicated experimental group.

In situ perfusion of mouse hind limb. Female BALB/c mice were anaesthetized with urethane (25% 0.2ml i.p.) and the femoral artery and vein exposed. The hind limb was isolated by occlusion of the external iliac artery, superficial epigastric and muscular branch with 5/0 braided silk suture. Polyethylene cannulae (0.61 mm OD, Portex, London, UK) were immediately inserted into the femoral artery and vein and tied in place with 5/0 braided silk suture. Perfusion buffer (modified Krebs-Ringer bicarbonate buffer) at 37°C was infused (0.15 ml/min) via the arterial cannula and removed from the venous cannula using a Minipuls peristaltic pump (Anachem, Luton, UK). The hind limb was perfused for an initial 10 minutes to remove remaining blood from the vasculature and then perfused for a further 60 min with vehicle alone or CCL2, (80nM, 250-10 Peprotech, London UK) infused over the first 20 minutes using an infusion/withdrawal pump (Harvard Instruments, U.K.). Resulting perfusate was kept on ice.

Intraperitoneal glucose tolerance test (ipGTT)

After a 16 h fast, glucose [1.5 g/kg body weight in saline (0.9% NaCl)] was administered i.p. The blood glucose was monitored at 0, 30, 60, 120, and 240 min using a one-touch blood Ascensia Contour glucometer (Bayer, Elkhart, IN). The ipGTT was performed on 8-wk-old control and normoglycemic RIPCCL2 mice.

Isolation of pancreatic islets of Langerhans

Islets of Langerhans were isolated as previously described (27). Briefly, the common bile duct was clamped distal to the pancreatic duct junction at its hepatic insertion. The proximal common bile duct was then cannulated using a 27-gauge needle, and the pancreas was infused by retrograde injection of 2 ml of ice-cold collagenase solution (1.0 mg/ml; Sigma, St. Louis, MO) in Hanks’ Balanced Salt Solution (HBSS, Invitrogen, Carlsbad, CA). Pancreatic tissue was recovered and subjected to a 12 min digestion at 37°C. Subsequently, ice cold HBSS was added and the suspension was vortexed at full speed for 10 s. Islets were purified on a discontinuous Ficoll gradient (Sigma) and hand-picked under a dissection microscope. Islets were used immediately after isolation to obtain RNA.

Evaluation of cellular stress. To evaluate if the islets of transgenic mice showed signs of distress we determined the levels of expression of several “stress genes” by Q-PCR. Primers used
CCL2-induced monocyte recruitment into the islets.

were: SERCA2 forward: GGCAAGATCCGGGATGAAAT and reverse: TCCAGACTGCAATGCAAATGA; GADD153/CHOP forward: TCTCATCCCCAGGAAACGAA and reverse: ATCTGGAGAGCGAGGGCTTT; XBP-1 forward: GCTTCATCCAGCCATTGTCTGA and reverse: GCCCTCATATCCACAGTCACTGT; ATF4 forward: CGAGTTAAGCACATTCCTGGA and reverse: TTCGCTGTTCAGGAAGCTCAT; BIP forward: ACCCCGAGAACACGGTCTT and reverse: GCTGCACCGAAGGGTCATT; TRAF2 forward: AAGATGGAGGCCAAGAATTCC and reverse: AGTCCTGTTAGGTCCACAATAGCTTT.

As positive controls, we used islets from WT mice (8 wk of age) that were treated with a single i.p. of STZ (250 mg/kg body weight). Eight hours later islets were isolated as described above.

Quantitative real-time PCR (Q-PCR). Total RNA was extracted from pooled islets using the RNeasy maxi kit (Qiagen) according to the manufacturer's instructions. Reverse transcription was performed for 3 µg of RNA. Q-PCR was conducted in duplicate from 25 ng of cDNA and with each primer at 0.4 µM in a 30-µl final reaction volumes of 1x SYBR Green PCR Master Mix (Applied Biosystems). PCR cycling conditions were 50°C for 2 min, 95°C for 15 min, and 40 cycles of 95°C for 15 s and 60°C for 1 min. Relative expression levels were calculated as 2Ct ubiquitin – Ct gene (where Ct is cycle threshold; for details see ABI PRISM 7700 User Bulletin no. 2; Applied Biosystems) using ubiquitin RNA as endogenous control.

Protein analysis

CCL2 was measured in serum by ELISA (R&D Systems, Inc. Minneapolis, MN). ELISA assays were done according to manufacturer's instructions.

FACS analysis. Peripheral blood was stained 45 min with the antibody mixture, red blood cells were lysed and cells were fixed with FACS lysis solution (Becton Dickinson, San Jose, CA). BM cells were obtained from the tibia and femur bones. Contaminating red blood cells were lysed with ACK lysis buffer and samples were stained with antibody mixture for 45 min at 4°C. Antibodies used in the experiments described here were: Anti-CD115 (AFS98), CD11b (M1/70), CD11c (N418), and F4/80 (BM8) from e-Bioscience (San Diego CA); anti-mouse Ly6C (AL-21) from BD Pharmingen (San Diego CA). Samples were analyzed in a FACS Canto instrument (Becton Dickinson, San Jose, CA). Up to 100,000 events were acquired.

Flow cytometry analysis of the BM perfusate was performed as following: The perfusate was centrifuged (200g for 5 min, 4°C). Erythrocytes were lysed using hypotonic shock and the cell pellets were re-suspended in FACS buffer. An aliquot of cells were taken to establish the total number of leukocytes mobilised over the 60 min period by staining with 2% methylene blue in 1% acetic acid. Cells were enumerated using an improved Neubauer Haemocytometer. The remaining leukocytes were stained with the followings mAbs: anti-mouse CD115, Gr1, CD3e and B220. Appropriately conjugated isotype control antibodies were used to calculate background fluorescence. The samples were then analysed by flow cytometry (BD FACS Calibur) and the relative number of cells expressing CD115/Gr1 intermediate (monocytes), Gr1high (neutrophils), CD3 (T-lymphocytes), and B220 (B-lymphocytes) calculated.
CCL2-induced monocyte recruitment into the islets.

Statistical analysis. Data are expressed as means ± SEM. One-way ANOVA and unpaired t-Test was used to determine statistical significance. Differences were considered significant when p < 0.05.

RESULTS

Levels of CCL2 and frequency of mononuclear infiltrates in the islets correlate with development of diabetes. We have previously described the generation of five transgenic lines expressing different levels of CCL2 in the islets (26). We have observed that the number of inflammatory cells recruited to the islets is dependent on the levels of CCL2 produced by the β-cells (26). To investigate the frequency of mononuclear infiltration, semi-quantitative analysis of infiltrated islets was performed in pancreata from 4 weeks old mice (n=8/group). No infiltrates were found in islets of wild type (WT) mice regardless of age. In marked contrast, 60%, 80%, 95% and 100% of the islets in RIPCCL2 pancreata from lines 251, 10, 254 and 1 respectively, were infiltrated by leukocytes (largely monocytes and dendritic cells) (Fig. 1A) and (26). The infiltrates were observed predominantly in the periphery of the islets in lines 251 and 10. Pancreata from mice of lines 254 and 1 showed a severe insulitis, with leukocytes present in the periphery and within the islets (data not shown and (26)). The frequency and the size of these infiltrates did not change with age. To examine whether increased number of infiltrated islets led to development of diabetes, we monitored RIPCCL2 mice and their control littermates weekly for hyperglycemia. No hyperglycemia was observed in control mice or in transgenic mice of lines 10 and 251 during the first 20 weeks of life. In contrast, animals from lines 254 and 1 (which had higher levels of CCL2 and increased number of infiltrated islets) became hyperglycemic at 4-5 weeks of age. By 16 weeks of age, 80% of RIPCCL2 mice from line 1 and 60% of RIPCCL2 mice from line 254 were diabetic (Fig. 1B).

The development of diabetes in several transgenic lines has been linked to toxicity induced by transgene expression (28). To investigate this hypothesis, we isolated islets from 6 to 8-wk-old WT and normoglycemic RIPCCL2 mice and evaluated the expression of genes induced during cellular stress by Q-PCR. As a positive control we used islets isolated from WT mice treated with streptozotocin (STZ). As shown in Supplemental Figure 1A, islets isolated from STZ-treated mice, but not those isolated from RIPCCL2 mice, had increased expression of stress genes. To exclude the possibility that transgene expression of CCL2 by β-cells led to impaired glucose tolerance, we performed a glucose tolerance test on 8-wk-old control and normoglycemic RIPCCL2 mice. The glucose levels after intraperitoneal injection of glucose were comparable between WT and RIPCCL2 mice (Supplemental Fig. 1B), suggesting that overexpression of CCL2 in the islets did not affect their ability to respond to a glucose challenge. Together the results indicate that expression of CCL2 per se did not lead to cellular stress, nor did it affect the function of the β-cells. We suggest that the development of diabetes was dependent on the recruitment of myeloid cells by CCL2.

Levels of CCL2 in the islets and blood correlate with the number of monocytes in circulation. The increased number of monocytes in the islets could be due to increased
CCL2-induced monocyte recruitment into the islets.

efficiency in recruitment of a fixed number of circulating cells, or to an increased number of monocytes in circulation. To determine if RIPCCL2 mice had more circulating monocytes we performed FACS analysis of peripheral blood (Fig. 1C). Blood monocytes were defined as a leukocyte population with low side scatter that expressed the markers CD115, Ly6C, F4/80, and CD11b. Using these parameters we found that RIPCCL2 mice had higher numbers of monocytes in circulation than control mice (10-30% and 5-6%, respectively) (Fig. 1C). We hypothesized that the increased number of cells in circulation was promoted by CCL2 produced by the islets of the RIPCCL2 mice. Serum from RIPCCL2 animals from different lines (n=20 in each line, non diabetic) had 3- to 35-fold more CCL2 than their non-transgenic littermates (n=20) (Fig. 1D). The levels of CCL2 in serum correlated directly with the amount of CCL2 produced in the transgenic islets (26). These results confirm a correlation between increased levels of CCL2 in the tissue and blood and the number of monocytes in circulation.

CCL2 induces release of monocytes from the bone marrow

To determine whether CCL2 could exert a direct effect on the release of monocytes from the BM, we used an in situ perfusion system of the mouse femoral BM (29). The femoral artery and vein were cannulated in situ such that the femoral BM can be perfused and the leukocytes released from the BM collected as they exit via the femoral vein. Vehicle alone (PBS, control mice) or CCL2 was infused for 20 min directly into the mouse femoral artery using a Minipuls peristaltic pump and the leukocytes mobilized from the femoral BM were collected over a subsequent 60 min perfusion period. The numbers of monocytes, neutrophils, T cells, and B cells released into the perfusate were determined by flow cytometry. As shown in Figure 2, CCL2 induced an increased release of monocytes from the BM over the 60 min perfusion period compared to controls. The relative number of monocytes changed from 6% in PBS-infused mice to 13% in CCL2-infused mice (Fig. 2B). Moreover, CCL2 induced BM release of 7 x10^5 monocytes/ml perfusate whereas PBS controls had 2.5 x10^5 monocytes/ml perfusate. However, CCL2 infusion did not result in significant changes in the relative numbers of neutrophils (CD115-/GR-1+), T cells (CD3+), or B cells (B220+) (data not shown). These results support the hypothesis that an increased concentration of CCL2 in circulation can induce monocyte release from the BM.

CCL2 promotes monocyte release from the bone marrow via CCR2.

CCL2 is the ligand for the chemokine receptor CCR2. To demonstrate a tight link between the monocytosis in the RIPPCCL2 mice and the production of CCL2 in the periphery we crossed RIPCCL2 mice (line 254) with CCR2 deficient animals to generate RIPCCL2/CCR2-/- mice. Deletion of CCR2 led to a significant decrease in the circulating numbers of CD115+/Ly6C+ monocytes (Fig. 3A), consistent with previous results (30). Genetic deletion of CCR2 in RIPCCL2 mice completely abrogated the monocytosis observed in these mice. FACS analysis of BM showed that the number of monocytes in the BM of WT mice varies between 5-9%. Similar numbers of monocytes were obtained in the BM of RIPCCL2 mice. On the other hand, RIPCCL2/CCR2-/- mice had a larger number of CD115+/Ly6c+ monocytes than RIPCCL2/CCR2+/- mice.
CCL2-induced monocyte recruitment into the islets.

(Fig. 3B). Analysis of islets infiltrates by immunostaining with anti-CD45 and anti-insulin showed that deletion of CCR2 significantly reduced the number of CD45+ cells in islets of RIPCCL2/CCR2-/- mice relative to RIPCCL2/CCR2+/- mice (Fig. 3C). Despite the marked reduction in the number of CD45+ cells, RIPCCL2/CCR2-/- mice still showed higher numbers of leukocytes in the pancreatic islets than WT mice, suggesting that leukocytes could still migrate to CCL2-expressing tissue in the absence of CCR2 as suggested by others (30; 31). None of the RIPCCL2/CCR2-/- mice analyzed developed diabetes by 16 weeks of age (n=30). These results indicate that CCR2 is required for effective mobilization of monocytes from the BM in response to systemically elevated levels of CCL2.

Modulation of the number of circulating monocytes promotes diabetes in mice expressing low levels of CCL2 in the islets. One of the predictions of the previous studies was that an increased number of circulating monocytes could lead to diabetes development if CCL2 was expressed in the islets. To test this hypothesis, we crossed RIPCCL2 mice from lines 251 and 10 with animals that express conditionally the myeloid growth factor Flt3L upon administration of doxycycline (DOX) (32) (Fig. 4A). Flt3L is a known growth factor for pluripotent hemopoietic stem cells and progenitor cells (33). Flt3L is also reported to increase numbers of lymphocytes, granulocytes and monocytes in peripheral blood (34; 35). Animals with the CCL2 and Flt3L transgenes are referred to as RIPCCL2/Flt3L mice. First, we analyzed the peripheral blood from untreated and treated RIPCCL2/Flt3L mice from lines 251 and 10. As shown in Figure 4B, the relative number of CD115+ monocytes changed from 10% in untreated mice to 28% in DOX-treated mice in mice from line 251 (Unpaired t-test p<0.0001). Evaluation of CD115+ monocytes in blood also showed an increase in the relative number of those cells from 16% to 35% when RIPCCL2/Flt3L mice from line 10 were treated for 2 weeks (Fig. 4C; Unpaired t-test p<0.0001).

Since the circulating monocyte population increased, we then determined if islets from DOX treated mice would show increased mononuclear cell infiltration. We examined histological sections of pancreata from untreated (-DOX) and treated (+DOX) double transgenic mice from both lines. Immunostaining with antibodies against CD45 and insulin showed infiltrates of varying sizes in islets of untreated (-DOX) RIPCCL2/Flt3L mice from line 251 (Fig. 4D) and line 10 (Fig. 4E), similar to what was observed in pancreata from RIPCCL2 animals of each line. In striking contrast, DOX treatment of RIPCCL2/Flt3L mice led to an increased number of leukocytes infiltrating the islets of double transgenic mice from line 251 and 10 (Fig. 4F and 4G, respectively). Subsequently, DOX untreated and treated RIPCCL2/Flt3L mice were monitored weekly for onset of hyperglycemia. As expected, none of the untreated RIPCCL2/Flt3L mice from line 251 developed diabetes after 10 weeks (Fig. 4H). However, five weeks after DOX treatment RIPCCL2/Flt3L mice from line 251 started to show diabetes (70% of the animals in this group were diabetic after 10 weeks of treatment). No disease was observed in DOX-treated Flt3L littermates during this period (Fig. 4H). Strikingly, 100% of DOX-treated RIPCCL2/Flt3L mice from line 10 developed diabetes 14
days after DOX treatment (Fig. 4I). None of the untreated RIPCCL2/Flt3L mice or treated Flt3L mice developed diabetes during this time (Fig. 4I). Together, these results suggest that development of diabetes in RIPCCL2 mice depended both on the levels of expression of CCL2 in the islets and on the number of circulating cells. **Development of diabetes in RIPCCL2 mice does not depend on T and B cells.** Since type 1 diabetes is a Th1-mediated autoimmune process induced by activated diabetogenic T cells, the increase in the myeloid cells in the tissue could favor priming of T cells, or could itself lead to β-cell destruction. To investigate whether T and B cells were required to induce diabetes in RIPCCL2 mice we crossed RIPCCL2 mice from line 1 (a line that develops diabetes with high incidence) with Rag-1−/− mice, which lack mature T and B cells, to generate RIPCCL2/Rag−/− mice. RIPCCL2/Rag−/− mice and their control littermates (RIPCCL2/Rag+/−) were monitored weekly for hyperglycemia. As expected, RIPCCL2/Rag+/− mice started to develop diabetes by 6 weeks of age reaching 60% of incidence by 30 weeks of age (Fig. 5). Although RIPCCL2/Rag−/− mice developed diabetes with a similar course, the incidence of diabetes was significantly increased compared to RIPCCL2/Rag+/− mice. This result suggests that mature T and B cells are not necessary for diabetes in this model, which is dependent primarily on myeloid cells to induce disease.

DISCUSSION

Type 1 diabetes is an autoimmune disease characterized by a local inflammatory reaction in and around islets followed by selective destruction of insulin-secreting β-cells (36). Here, we show that accumulation of monocytes in islets of Langerhans is sufficient for induction of type 1 diabetes. In the model we have developed, monocytes accumulate in the islet due to expression in the β-cells of the chemokine CCL2, which acts both locally and remotely to promote monocyte influx.

While local chemotactic activity has been demonstrated previously, only recently have chemokines been shown to modulate release of cells from the BM (29; 37). For instance, the chemokines CCL11 and CXCL1 have been shown to selectively mobilize eosinophils and neutrophils from the BM, respectively (29; 37). Mobilization of monocytes from the BM is controlled mainly by CCR2 (30; 31). During inflammation it has been suggested that CCL2 may be involved in this process (30), but the absence of a reductionist model has precluded firm conclusions. Here we have directly tested the hypothesis that CCL2 can mobilize cells from the marrow in a transgenic model in which this chemokine is overexpressed in a single site (islets of Langerhans). We show a direct correlation between circulating numbers of monocytes and levels of CCL2 in tissue and in the blood. Furthermore, we show that infusion of CCL2 into the hind limb of control mice leads to monocyte mobilization from the BM into the blood stream, strongly suggesting that the main mechanism accounting for the monocytosis is the direct release of monocytes from the BM. The fact that deletion of CCL2 receptor CCR2 in RIPCCL2 mice abrogated monocytosis, further supports an important role for CCR2 in monocyte release from the BM (30). There are several inflammatory conditions in which CCL2 serum levels correlate with pathogenesis and/or disease activity including ischemic...
stroke and myocardial infarction (38), rheumatoid arthritis (39), chronic autoimmune thyroiditis (40) and HIV (41). Although many of these studies suggest that CCL2 serum levels could serve as a parameter to monitor the stage and severity of the disease, correlations between CCL2 serum levels, the number of monocytes in circulation, and the extent of mononuclear cell infiltration in the tissues in these patients have not been analyzed. However, a positive correlation between plasma levels of CCL2 and number of circulating CD11b+ cells has been observed in obese mice (42). In humans, the number of monocytes increases by about 10% in obese and overweight subjects (43). Furthermore, systemic administration of CCL2 in mice causes accumulation of MOMA-2+ monocytes in collateral arteries and increases neointimal formation (44). These observations strongly suggest that changes in plasma levels of CCL2 may lead to changes in the number of monocytes in circulation and that both of these parameters are indexes of disease severity.

The mechanisms accounting for monocyte accumulation in chronically inflamed tissues are not completely understood. We propose that one of the factors contributing to this process is CCL2. In this study we show that CCL2 can induce recruitment of monocytes to the islets and that the number of infiltrated islets depends on CCL2 concentration and monocyte availability. These findings may have relevance in the context of diabetes because they suggest a direct role for these cells in the process of islet destruction. Indirect evidence suggests such a role. For example, inhibition of macrophage infiltration by silica treatment abolishes lymphocytic insulitis and diabetes development in the multiple low doses of streptozotocin (MLDS) model (45). Diabetes in the MLDS model can also be induced in NOD scid/scid mice lacking functional lymphocytes (46), arguing for the importance of monocytes.

While the preponderance of the evidence points to a critical dependence of T cells in the pathogenesis of type 1 diabetes, we show here that damage to the islets can be directly caused by monocytes and DCs. Interestingly, the incidence of diabetes in the RIPCCL2/Rag-/- mice was actually higher than that in RIPCCL2/Rag+/- mice. The reasons for the higher incidence of diabetes in the in the RIPCCL2/Rag-/- group are not clear but may reflect an intrinsic augmented activity of monocytes or other innate immune cells in the Rag-/- background. In type 1 diabetes, an initial attack by monocytes and DCs may put in motion a cascade of events leading to expansion of an autoreactive T cell pool and complete destruction of the islets. In humans, circulating monocytes from Type 1 as well as Type 2 diabetic patients show an aberrant cytokine profile when stimulated (47), suggesting that they may contribute to the initiation or continuation of an immune attack against the pancreatic β-cells. We suggest that T cells and macrophages may synergize to mediate islet pathology. Indeed, in acute transfer model of diabetes, the macrophages have been shown to play an important role in β-cell destruction (48). Although our results suggest a key role for monocytes in the development of diabetes, an alternative explanation for our findings might be that the transgenic expression of CCL2 was itself toxic to the islets. Arguing against this hypothesis is the finding that expression of several transcription
CCL2-induced monocyte recruitment into the islets.

factors associated with β-cell apoptosis (reviewed in (49)) did not differ in transgenic or control islets, suggesting that CCL2 expression did not induce stress in the islets. Furthermore, transgenic expression of CCL2 did not impair glucose homeostasis. Before development of disease, transgenic mice responded to a glucose tolerance test similarly to control mice. Finally, RIPCCL2 mice lacking CCR2 did not develop diabetes overtime, which rules out a direct toxic effect of CCL2 as the cause of diabetes in the RIPCCL2 mice.

We propose that the local concentration of CCL2 and number of circulating monocytes play an important role in the onset of autoimmune diseases. Our group has shown that expression of CCL2 in the central nervous system drives monocyte/macrophage accumulation in the CNS without any symptom of neurological disease (50). However, those mice develop a severe demyelinating encephalomyelitis if the numbers of monocytes/macrophages and DCs are altered in the periphery (34). Here we show that elevating the number of monocytes by transgenic expression of Flt3L in RIPCCL2 lines with lower expression of CCL2 (RIPCCL2/Flt3L mice) results in increased monocyte infiltration of the islets, and diabetes.

In summary we find that the ability of CCL2 to promote tissue-specific influx of monocytes is due to two factors: its capacity to trigger mobilization of monocytes from BM into circulation and its ability to mediate influx of monocytes into tissues. These properties are key for the infiltration and subsequent destruction of the islets of Langerhans in transgenic mice. The relevance of these mechanisms for autoimmune disease in NOD mice and humans is currently under investigation.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Institutes of Health (DK067381 to SAL) and from The British Heart Foundation (PG/05/-92 to SP). We thank Peter Heeger, Bernd Schroppel, Miriam Merad and Jay Unkeless for comments and suggestions to the manuscript.

DISCLOSURES

The authors have no financial conflict of interest.
CCL2-induced monocyte recruitment into the islets.

REFERENCES
1. Kolb H, Kolb-Bachofen V, Roep BO: Autoimmune versus inflammatory type I diabetes: a controversy? *Immunol Today* 16:170-172, 1995
2. Atkinson MA, Eisenbarth GS: Type 1 diabetes: new perspectives on disease pathogenesis and treatment. *Lancet* 358:221-229, 2001
3. Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA: Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. *Diabetes* 43:667-675, 1994
4. Rosmalen JG, Martin T, Dobbs C, Voerman JS, Drexhage HA, Haskins K, Leenen PJ: Subsets of macrophages and dendritic cells in nonobese diabetic mouse pancreatic inflammatory infiltrates: correlation with the development of diabetes. *Lab Invest* 80:23-30, 2000
5. Nikolic T, Geutskens SB, van Rooijen N, Drexhage HA, Leenen PJ: Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. *Lab Invest* 85:487-501, 2005
6. Jun HS, Santamaria P, Lim HW, Zhang ML, Yoon JW: Absolute requirement of macrophages for the development and activation of beta-cell cytotoxic CD8+ T-cells in T-cell receptor transgenic NOD mice. *Diabetes* 48:34-42, 1999
7. Green EA, Eynon EE, Flavell RA: Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. *Immunity* 9:733-743, 1998
8. Uno S, Imagawa A, Okita K, Sayama K, Moriwaki M, Iwahashi H, Yamagata K, Tamura S, Matsuzawa Y, Hanafusa T, Miyagawa J, Shimomura I: Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. *Diabetologia* 50:596-601, 2007
9. Geissmann F, Jung S, Littman DR: Blood monocytes consist of two principal subsets with distinct migratory properties. *Immunity* 19:71-82, 2003
10. Qu C, Edwards EW, Tacke F, Angeli V, Llodra J, Sanchez-Schmitz G, Garin A, Haque NS, Peters W, van Rooijen N, Sanchez-Torres C, Bromberg J, Charo IF, Jung S, Lira SA, Randolph GJ: Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. *J Exp Med* 200:1231-1241, 2004
11. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ: Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. *J Immunol* 172:4410-4417, 2004
12. Daly C, Rollins BJ: Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. *Microcirculation* 10:247-257, 2003
13. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Jr., Broxmeyer HE, Charo IF: Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. *J Clin Invest* 100:2552-2561, 1997
14. Walch L, Massade L, Dufilho M, Brunet A, Rendu F: Pro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and
monocyte chemoattractant protein-1 expression. *Atherosclerosis* 187:285-291, 2006
15. Charo IF, Taubman MB: Chemokines in the pathogenesis of vascular disease. *Circ Res* 95:858-866, 2004
16. Biswas SK, Sodhi A: In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. *J Interferon Cytokine Res* 22:527-538, 2002
17. Coll B, Alonso-Villaverde C, Joven J: Monocyte chemoattractant protein-1 and atherosclerosis: is there room for an additional biomarker? *Clin Chim Acta* 383:21-29, 2007
18. Kim WJ, Chereshnev I, Gazdoiu M, Fallon JT, Rollins BJ, Taubman MB: MCP-1 deficiency is associated with reduced intimal hyperplasia after arterial injury. *Biochem Biophys Res Commun* 310:936-942, 2003
19. Sartipy P, Loskutoff DJ: Monocyte chemoattractant protein 1 in obesity and insulin resistance. *Proc Natl Acad Sci U S A* 100:7265-7270, 2003
20. Chen MC, Proost P, Gyselens C, Mathieu C, Eizirik DL: Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 beta-exposed human and rat islet cells. *Diabetologia* 44:325-332, 2001
21. Reddy S, Bai Y, Robinson E, Ross J: Immunolocalization of monocyte chemoattractant protein-1 in islets of NOD mice during cyclophosphamide administration. *Ann N Y Acad Sci* 1079:103-108, 2006
22. Cameron MJ, Arreaza GA, Grattan M, Meagher C, Sharif S, Burdick MD, Strieter RM, Cook DN, Delovitch TL: Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. *J Immunol* 165:1102-1110, 2000
23. Chen SC, Mehrad B, Deng JC, Vassileva G, Manfra DJ, Cook DN, Wiekowski MT, Zlotnik A, Standiford TJ, Lira SA: Impaired pulmonary host defense in mice lacking expression of the CXC chemokine lungkine. *J Immunol* 166:3362-3368., 2001
24. Piemonti L, Leone BE, Nano R, Saccani A, Monti P, Maffi P, Bianchi G, Sica A, Peri G, Melzi R, Aldrighetti L, Secchi A, Di Carlo V, Allavena P, Bertuzzi F: Human pancreatic islets produce and secrete MCP-1/CCL2: relevance in human islet transplantation. *Diabetes* 51:55-65, 2002
25. Grewal IS, Rutledge BJ, Fiorillo JA, Gu L, Gladue RP, Flavell RA, Rollins BJ: Transgenic monocyte chemoattractant protein-1 (MCP-1) in pancreatic islets produces monocyte-rich insulitis without diabetes: abrogation by a second transgene expressing systemic MCP-1. *J Immunol* 159:401-408, 1997
26. Martin AP, Canasto-Chibuque C, Shang L, Rollins BJ, Lira SA: The Chemokine Decoy Receptor M3 Blocks CC Chemokine Ligand 2 and CXC Chemokine Ligand 13 Function In Vivo. *J Immunol* 177:7296-7302, 2006
27. Gotoh M, Maki T, Kiyozumi T, Satomi S, Monaco AP: An improved method for isolation of mouse pancreatic islets. *Transplantation* 40:437-438, 1985
28. Lee JY, Ristow M, Lin X, White MF, Magnuson MA, Hennighausen L: RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. *J Biol Chem* 281:2649-2653, 2006
CCL2-induced monocyte recruitment into the islets.

29. Palframan RT, Collins PD, Williams TJ, Rankin SM: Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91:2240-2248, 1998
30. Serbina NV, Pamer EG: Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311-317, 2006
31. Tsou CL, Peters W, Si Y, Slaymaker S, AsLANian AM, Weisberg SP, Mack M, Charo IF: Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902-909, 2007
32. Manfra DJ, Chen SC, Jensen KK, Fine JS, Wiekowski MT, Lira SA: Conditional expression of murine Flt3 ligand leads to expansion of multiple dendritic cell subsets in peripheral blood and tissues of transgenic mice. J Immunol 170:2843-2852, 2003
33. Maraskovsky E, Pulendran B, Brasel K, Teepe M, Roux ER, Shortman K, Lyman SD, McKenna HJ: Dramatic numerical increase of functionally mature dendritic cells in FLT3 ligand-treated mice. Adv Exp Med Biol 417:33-40, 1997
34. Furtado GC, Pina B, Tacke F, Gaupp S, van Rooijen N, Moran TM, Randolph GJ, Ransohoff RM, Chensue SW, Raine CS, Lira SA: A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. J Immunol 177:6871-6879, 2006
35. Brasel K, McKenna HJ, Morrissey PJ, Cherrier K, Morris AE, Lee CC, Williams DE, Lyman SD: Hematologic effects of flt3 ligand in vivo in mice. Blood 88:2004-2012, 1996
36. Foulis AK: C. L. Oakley lecture (1987). The pathogenesis of beta cell destruction in type I (insulin-dependent) diabetes mellitus. J Pathol 152:141-148, 1987
37. Wentgrner AM, Pitchford SC, Furze RC, Rankin SM: The coordinated action of G-CSF and ELR + CXC chemokines in neutrophil mobilization during acute inflammation. Blood 111:42-49, 2008
38. Arakelyan A, Petrkova J, Hermanova Z, Boyajyan A, Luk J, Petrek M: Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardial infarction. Mediators Inflamm 2005:175-179, 2005
39. Klimiuk PA, Sierakowski S, Latosiewicz R, Skowronski J, Cylwik JP, Cylwik B, Chwiecek J: Histological patterns of synovitis and serum chemokines in patients with rheumatoid arthritis. J Rheumatol 32:1666-1672, 2005
40. Kokkotou E, Marafelis P, Mantzos EI, Tritos NA: Serum monocyte chemoattractant protein-1 is increased in chronic autoimmune thyroiditis. Metabolism 51:1489-1493, 2002
41. Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidia S, Kulkarni H, BAMShad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Donal MJ, Ahuja SK: HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99:13795-13800, 2002
42. Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H: Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 278:46654-46660, 2003
43. Kullo II, Hensrud DD, Allison TG: Comparison of numbers of circulating blood monocytes in men grouped by body mass index (<25, 25 to <30, > or =30). Am J Cardiol 89:1441-1443, 2002
CCL2-induced monocyte recruitment into the islets.

44. van Royen N, Hoefer I, Bottinger M, Hua J, Grundmann S, Voskuil M, Bode C, Schaper W, Buschmann I, Piek JJ: Local monocyte chemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic monocytic CD11b expression, neointimal formation, and plaque progression. *Circ Res* 92:218-225, 2003

45. Papaccio G, Frascatore S, Esposito V, Pisanti FA: Early macrophage infiltration in mice treated with low-dose streptozocin decreases islet superoxide dismutase levels: prevention by silica pretreatment. *Acta Anat (Basel)* 142:141-146, 1991

46. Gerling IC, Friedman H, Greiner DL, Shultz LD, Leiter EH: Multiple low-dose streptozocin-induced diabetes in NOD-scid/scid mice in the absence of functional lymphocytes. *Diabetes* 43:433-440, 1994

47. Giulietti A, Stoffels K, Decallonne B, Overbergh L, Mathieu C: Monocytic expression behavior of cytokines in diabetic patients upon inflammatory stimulation. *Ann N Y Acad Sci* 1037:74-78, 2004

48. Calderon B, Suri A, Unanue ER: In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: studies from an acute model. *Am J Pathol* 169:2137-2147, 2006

49. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL: Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. *Diabetes* 54 Suppl 2:S97-107, 2005

50. Fuentes ME, Durham SK, Swerdel MR, Lewin AC, Barton DS, Megill JR, Bravo R, Lira SA: Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. *J Immunol* 155:5769-5776., 1995
CCL2-induced monocyte recruitment into the islets.

FIGURE LEGENDS

Figure 1: Augmented levels of CCL2 in islets of Langerhans lead to increased number of monocytes in blood, infiltrated islets and spontaneous diabetes. A) Semiquantitative analysis of islet infiltrates in the pancreata from control and RIPCCL2 transgenic mice, 4 weeks of age (n = 8/group). B) Cumulative incidence of diabetes in RIPCL2 mice from lines 251 (n=60), 10 (n=40), 254 (n=95) and 1 (n=31), and nontransgenic littermates (n=20). C) Relative numbers of CD115+ cells in blood from WT and RIPCCL2 mice (n=20 mice in each line; t test **, p<0.005;***, p<0.0001). D) CCL2 levels in the serum of RIPCCL2 mice of lines 251, 10, 254 and 1 and WT littermates was analyzed by ELISA (n=20/line; t test **, p<0.005;***, p<0.0001).
Figure 2: CCL2 induces release of monocytes from the bone marrow. The perfusion of mouse hind limb was performed as described in Material and methods. A) Representative dot plot of monocyte release from bone marrow induced by CCL2 perfusion. B-C) Relative (B) and absolute (C) number of monocytes (CD115+/Gr-1_{intermediate} cells) after PBS (control) or CCL2 perfusion (n=5 mice in each treatment; t test *, p<0.05; **, p<0.005).
Figure 3: Deletion of CCR2 abrogates peripheral monocytosis in RIPCCL2 mice. A-B) Relative number of CD115+Ly6C+ monocytes in the blood (A) and bone marrow (B) of WT, CCR2−/−, RIPCCL2/CCR2+/− and RIPCCL2/CCR2−/− mice. Data is representative of one mouse in each group (n = 10/group). C) Immunostaining for CD45 (red) and insulin (green) in the pancreata of WT, RIPCCL2/CCR2+/− and RIPCCL2/CCR2−/− mice at 8 weeks of age. Scale bars= 100 μm.
Figure 4: Increased availability of circulating monocytes promotes spontaneous diabetes in RIPCCL2 mice with lower production of CCL2. A) Outline of the RIPCCL2 transgene and of the activator and responder transgenes in the Flt3L mice. In Flt3L mice, the activator transgene (top) the hCMV enhancer (hCMVe) was juxtaposed to the chicken β-actin promoter to control the expression of rtTA. The responder transgene encodes β-galactosidase and mFlt3L in opposite orientation. Transcription of the β-galactosidase and mFlt3L genes is strongly induced when DOX and rtTA are present. TRE, Tetracycline-responsive element; CMV, minimal CMV promoter; rglob, rabbit β-globin. RIPCCL2 mice from lines 251 and 10 were crossed with Flt3L mice to generate the RIPCCL2/Flt3L mice. B) Relative numbers of CD115+ cells in blood from untreated RIPCCL2/Flt3L mice (RIPCCL2/Flt3L – DOX, n=13) and DOX-treated RIPCCL2/Flt3L (n=21) mice from line 251 (t test). C) Relative numbers of CD115+ cells in blood from untreated RIPCCL2/Flt3L mice (RIPCCL2/Flt3L –DOX, n=15) and DOX-treated RIPCCL2/Flt3L (n=11) mice from line 10 (t test). D-G) Immunostaining for CD45 (red) and insulin (green) in the pancreata of untreated (–DOX, D-E) or treated (+DOX, F-G) RIPCCL2/Flt3L mice from line 251 (D, F) or line 10 (E, G). H) Cumulative incidence of diabetes in untreated RIPCCL2/Flt3L mice (RIPCCL2/Flt3L –DOX, n=13) and DOX-treated Flt3L (n=10) and, RIPCCL2/Flt3L (n=21) mice from line 251. Note that DOX-treated RIPCCL2/Flt3L mice developed diabetes after weeks of treatment. I) Cumulative incidence of diabetes in untreated RIPCCL2/Flt3L mice (RIPCCL2/Flt3L –DOX, n=15) and DOX-treated Flt3L (n=10) and, RIPCCL2/Flt3L (n=29) mice from line 10. Note that DOX-treated RIPCCL2/Flt3L mice developed diabetes after days of treatment. Scale bars= 100μm.
Figure 5: Diabetes in RIPCCL2 mice does not depend on T and B cells. Cumulative incidence of diabetes in RIPCL2/Rag^{+/−} (n=12) and RIPCL2/Rag^{−/−} (n=28) littermates from line 1 (p=0.007).