ABSTRACT: Eu$^{3+}$ (1 mol %)-doped Ca$_2$LnSbO$_6$ (replacing Ln$^{3+}$; Ln = Lu, Y, Gd, and La) and Ca$_2$EuSbO$_6$ were synthesized and structurally characterized by means of X-ray powder diffraction. The Eu$^{3+}$ luminescence spectroscopy of the doped samples and of Ca$_2$EuSbO$_6$ has been carefully investigated upon collection of the excitation/emission spectra and luminescence decay curves of the main excited states. Surprisingly, apart from the dominant red emission from 5D$_0$, all the doped samples show an uncommon blue and green emission contribution from 5D$_J$ ($J = 1, 2,$ and 3). This is made possible thanks to both multiphonon and cross-relaxation mechanisms. However, the emission from 5D$_3$ is more efficient and the decay kinetics of the 5D$_J$ ($J = 0, 1,$ and 2) levels is slower in the case of Y- and Lu-based doped samples. This evidence can find a possible explanation in the crystal chemistry of this family of double perovskites: our structural investigation suggests an uneven distribution of the Eu$^{3+}$ dopant ions in Ca$_2$YSbO$_6$ and Ca$_2$LuSbO$_6$ hosts of the general A$_2$BB'$^\prime$O$_6$ formula. The luminescent center is mainly located in the A crystal site, and on average, the Eu–Eu distances are longer than in the case of the Gd- and La-based matrix. These longer distances can further reduce the efficiency of the cross-relaxation mechanism and, consequently, the radiative transitions are more efficient. The slower depopulation of Eu$^{3+}$ 5D$_J$ ($J = 1, 2,$ and 3) is possible and the 5D$_0$ decay kinetics is faster than for the doped samples.

1. INTRODUCTION
Rare earth double perovskite materials with the general formula A$_2$BB'$^\prime$O$_6$ are characterized by interesting magnetic and dielectric properties.$^{1−3}$ The main structural motif of these compounds consists of a network of alternating BO$_6$ and B'$^\prime$O$_6$ octahedra, with A-atoms occupying the 12-coordinated interstitial spaces between octahedra. Depending on the nature and size of the other elements, the rare earth ions can occupy the A-site or B-site. In the Ca$_2$LnRuO$_6$ (Ln = La−Lu) system,4 which crystallizes in the monoclinic $P2_1/n$ space group, the Ca$^{2+}$ and Ln$^{3+}$ cations are partially disordered in the A-site and B-site positions of the A$_2$BB'$^\prime$O$_6$ double perovskite, and the Ru(V) cations are located at the B'−site; therefore, the general formula of these compounds is (Ca$_2$–Ln$_{(1-x)}$)(Ln$_{(1-x)}$–Ca$_x$)RuO$_6$. The abundance of Ln$^{3+}$ located at the B-site varies with its cationic radius: the larger Ln cations tend to occupy the A-site, whereas the smaller Ln cations tend to enter the B-site. Similar crystal chemistry is expected for antimonates with double perovskite materials and Ca$_2$LnSbO$_6$ formula. Although a systematic study on their crystal chemistry is still missing in the literature, two components of this family (Ca$_2$LaSbO$_6$ and Ca$_2$YSbO$_6$) have been effectively employed as hosts of luminescent trivalent lanthanide ions. In particular, Ca$_2$LaSbO$_6$, which can be obtained with Eu$^{3+}$ up to 80% substituting La$^{3+}$, has been considered a useful red phosphor.5,6 Another efficient red phosphor can be obtained by doping Ca$_2$YSbO$_6$ with Eu$^{3+}$ ion. The codoping with Bi$^{3+}$ has been reported to enhance the intensity of the red emission.7 Considering the crystal chemistry of the host, Y$^{3+}$ ions are supposed to occupy only the centrosymmetric B site. Nevertheless, Eu$^{3+}$ should be located in a noncentrosymmetric crystal site, since the 5D$_0$ $→$ 7F$_2$ band dominates the luminescence spectrum.8 Since Ca$^{2+}$ is located in the A-site (C$_1$ point symmetry), the authors reasonably assumed a Ca$^{2+}$/Eu$^{3+}$ substitution and the presence of a charge compensation...
mechanism. Finally, Ca$_2$YSbO$_6$ is also an effective host for other luminescent ions, such as trivalent Sm, Dy, Ho, and Er.7

Due to the lack of a comprehensive study on the crystal chemistry of the Ca$_2$LnSbO$_6$ family, we have found it interesting to undertake a structural study on Ca$_2$LaSbO$_6$, Ca$_2$GdSbO$_6$, Ca$_2$LuSbO$_6$, and Ca$_2$YSbO$_6$ doped with 1 mol % Eu$^{3+}$, and neat Ca$_2$EuSbO$_6$ by means of X-ray diffraction. The effects of the different nature of the hosts on Eu$^{3+}$ luminescence spectroscopy have been also discussed and some structural details have been revisited. This study, focusing on the structural/spectroscopic relationship, reveals the presence of unusual spectroscopic features of Eu$^{3+}$ when introduced as an impurity in these antimonate hosts.

2. EXPERIMENTAL SECTION

2.1. Materials and Synthesis. Crystalline samples of 1 mol % Eu$^{3+}$-doped Ca$_2$LnSbO$_6$ (replacing Ln$^{3+}$; Ln = Lu, Y, Gd, and La) and Ca$_2$EuSbO$_6$ were prepared by solid-state reaction in and air atmosphere. CaCO$_3$ (>99%), Sb$_2$O$_3$ (99.995%), Ln$_2$O$_3$ (Ln = Y and La, 99.99%; Ln = Lu and Gd, 99.9%), and Eu$_2$O$_3$ (99.99%) were thoroughly mixed and pressed into pellets under a pressure of 10 tons. The samples underwent two heat treatments: the first one at 600 °C for 6 h to eliminate carbonates and the second one at 1400 °C for 24 h with a slow cool down of 3 °C/min. Intermediate grindings were performed to improve the homogeneity of the materials.

2.2. Structural Investigation. X-ray diffraction (XRD) patterns were measured with a Thermo ARL XTRA powder diffractometer, operating in the Bragg–Brentano geometry and equipped with a Cu-anode X-ray source ($K_{\alpha}, \lambda = 1.5418 \ \text{"A} $), using a Peltier Si(Li)-cooled solid-state detector. The patterns were collected with a scan rate of 0.002°/s in the 18°–120° 2θ range. Polycrystalline antimonate samples were ground in a mortar and then put in a side-loading sample holder for data collection.

The General Structure Analysis System (GSAS) program was employed for the Rietveld refinement calculations.10 The instrumental X-ray peak profile functions and the sample displacement (SHIFT variable) were determined by Rietveld refinement of the diffraction pattern of the LaB$_6$ powder standard reference material (NIST 660C). The reference structural model exploited in the Rietveld calculation was the one pertaining to the isostructural perovskite-like Ca$_2$TeO$_6$ determined in a study by Hottentot and Loopstra11 in which Sb has been located in the place of Te and Ca, and Ln ions shared the two crystallographic positions of Ca. The following structural refinement strategy has been performed: (i) refinement of the background functions (shifted Chebyschev), scale factor, and cell parameters; (ii) refinement of the occupation factors (OFs) of Ca and Ln in the two available crystal sites; (iii) refinement of the fractional atomic coordinates for Ca/Ln in the 4e crystal site (site A); (iv) refinement of the fractional atomic coordinates for the oxygen atoms; (v) refinement of the isotropic thermal parameter (U_{iso}) for Ca, Ln, and Sb ions; (vi) refinement of the isotropic thermal parameter (U_{iso}) for oxygen atoms (we do not observe significant improvement of the refinement employing anisotropic thermal parameters); (vii) global refinement of all structural variables mentioned above. In each step of the Rietveld calculation, also the GU, GV, GW, LX, LY, and asym profile terms of the pseudo-Voigt profile function no. 2, included in the GSAS program, were refined. Due to its very low concentration (1 mol %), the presence or absence of Eu$^{3+}$ within the structural model is expected to not change, in a significant way, the result of the Rietveld refinements. For this reason, for the sake of simplicity, the presence of Eu$^{3+}$ is not considered during the structural calculation. Crystal data such as atomic fractional coordinates, OFs, and U_{iso} for 1% Eu$^{3+}$-doped Ca$_2$LaSbO$_6$, Ca$_2$EuSbO$_6$, and Ca$_2$YSbO$_6$ are reported in the Supporting Information (Tables S1–S6), along with other relevant powder diffraction data (see the Powder Diffraction Data section).

2.3. Spectroscopic Investigation. Room-temperature luminescence spectra and decay curves were measured with a Fluorolog 3 (Horiba-Jobin Yvon) spectrophotometer, equipped with a Xe lamp, a double excitation monochromator, a single emission monochromator (mod. HR320), and a photomultiplier in photon counting mode for the detection of the emitted signal. All the spectra were corrected for the spectral response of the setup.

3. RESULTS AND DISCUSSION

3.1. Structural Determination of 1% Eu$^{3+}$-Doped Ca$_2$LnSbO$_6$ (Ln = Lu, Y, Gd, and La) and Ca$_2$EuSbO$_6$. In Figure 1, the picture of the crystal structure of the investigated double perovskite is shown.

The observed and fitted XRD patterns of doped Ca$_2$LnSbO$_6$ (Ln = Lu, Gd, and La chosen as representative samples) are shown in Figure 2.

Inspection of this figure shows that there is good agreement between the observed and refined powder patterns. The refined lattice parameters and OFs are given in Tables 1 and 2, respectively, and some selected bond distances are listed in Table 3.

As expected, according to Vegard’s law, the cell size increases as the ionic radius of the trivalent lanthanide ions increases (Table 1). Ca$^{2+}$ and Ln$^{3+}$ cations are partially disordered in the A-site (C$_1$ point symmetry) and B-site (C$_1$ point symmetry) positions of the A$_2$BB′O$_6$ double perovskite and the Ca/Ln distribution over these two available crystal sites is strongly dependent on the nature of the Ln ion. When small Lu and Y are considered, the trivalent ion shows a strong preference for the site with coordination number (CN) 6 (Table 2, site B). In the cases of Gd and Eu, the Ca/Ln distribution is almost homogeneous over the two crystal sites.
Finally, the La\(^{3+}\) ion prefers to occupy the crystal site with CN = 8, while site B (CN = 6) is almost fully occupied by Ca\(^{2+}\) (Table 2). Obviously, the degree of Ca/Ln disorder is mainly dependent on the difference between their ionic radii. The bigger the difference is, the smaller the disorder is. As discussed before, this is particularly true for Ln ions smaller than Ca\(^{2+}\), e.g., the Lu ion is mainly located in the crystal site B.

Moreover, it is interesting to note that on average, the Sb–O distances (around 2 Å) are not significantly affected by the nature of the trivalent ion and the Ca/Ln–O distances deviate from 2.55 Å only for Ln = La (Table 3). On the other hand, in the case of the crystal site B (CN = 6), the average Ca/Ln–O distance is around 2.33 Å for Ln = Gd, Eu, and La, while it is shorter for Y (2.28 Å) and, in particular, for Lu (2.18 Å) (Table 3 and Figure S2). This behavior is quite similar to the one observed for the Ca\(_2\)LnRuO\(_6\) (Ln = La–Lu) double perovskite family, already discussed above.\(^5\)

We also point out some discrepancy with the crystal data present in the current literature. In the case of the Ca\(_2\)LaSbO\(_6\) host, while the La ion has been calculated to exclusively occupy site A, by Yin et al.,\(^6\) we found the presence of a small percentage of La\(^{3+}\) (2%) in the crystal site B. The most important discrepancy concerns the Ca\(_2\)YSbO\(_6\) host. In the literature, Y\(^{3+}\) ions are supposed to occupy only the centrosymmetric octahedral B site,\(^7\) while we detect the presence of this ion also in site A (OF = 0.130, Table 2).

Taking into account the substitution of Ca\(^{2+}\)/Ln\(^{3+}\) ions in the crystal lattice by the luminescent Eu\(^{3+}\) (see the discussion below), this finding should have a significant impact. In fact, according to our conclusions, we can assume that Eu\(^{3+}\) could occupy both crystal sites A and B without the necessity of involving charge compensation mechanisms.

3.2. Luminescence of Ca\(_2\)EuSbO\(_6\) and 1% Eu\(^{3+}\)-Doped Ca\(_2\)LuSbO\(_6\), Ca\(_2\)YSbO\(_6\), Ca\(_2\)GdSbO\(_6\), and Ca\(_2\)LaSbO\(_6\).

The normalized RT excitation spectra of 1% Eu\(^{3+}\)-doped Ca\(_2\)LnSbO\(_6\) (Ln = Lu, Y, Gd, and La) and Ca\(_2\)EuSbO\(_6\) are shown in Figure 3. The spectra have been normalized to the \(I_{\text{max}}\) of the \(7F_{0} \rightarrow 5L_{6}\) transition. All compounds show various intense Eu\(^{3+}\) excitation peaks \(\text{around} \ 7F_{0} \rightarrow 5D_{4}\) transition; 394 nm \(7F_{0} \rightarrow 5L_{6}\) transition; 415 nm \(7F_{0} \rightarrow 5D_{3}\) transition; 464 nm \(7F_{0} \rightarrow 5D_{2}\) transition; 526 nm \(7F_{0} \rightarrow 5D_{1}\) transition; 534 nm \(F_{1} \rightarrow 5D_{1}\) transition\). Also, an O → Eu charge transfer (CT) band below 300 nm is detected (not shown).

Upon excitation at 394 nm, we have obtained the luminescence emission spectra shown in Figure 4 (the Lu-, Eu-, and La-based compounds are chosen as representative samples). All the emission spectra (Figures 4–7) have been normalized to the \(I_{\text{max}}\) of the \(5D_{0} \rightarrow 7F_{2}\) transition.

The peaks above 570 nm are mainly assigned to emission bands originating from Eu\(^{3+}\) \(5D_{0}\) excited state. A close inspection of the peak around 580 nm (17,241 cm\(^{-1}\), \(5D_{0} \rightarrow 7F_{0}\) transition) shows significant differences between the different compounds (Figure 5 and Table 4). The 0-0 peak energies decrease along the lanthanide series (La → Lu). On the other hand, the full width half maximum (FWHM) is slightly larger for Ca\(_2\)GdSbO\(_6\), Ca\(_2\)EuSbO\(_6\), and Ca\(_2\)LaSbO\(_6\) (close to 40 cm\(^{-1}\)) than for Ca\(_2\)YSbO\(_6\) and Ca\(_2\)LuSbO\(_6\) hosts (36 and 31 cm\(^{-1}\), respectively). The Eu\(^{3+}\) ion, which is supposed to substitute for the Ln\(^{3+}\) one, can be located in the two available crystal sites (sites A and B, Table 2). In principle, due to the presence of only one Stark level both for \(5D_{0}\) and \(5F_{0}\), there should be a one-to-one correspondence between the number of the 0-0 emission bands and the number of emitting crystal sites. Seemingly, even though only one 0-0 component is detected for all materials, the broader peak could possibly be due to the presence of two overlapping 0-0 bands corresponding to two emitting Eu\(^{3+}\) crystal sites. This seems to be more evident in the case of Gd-, Eu-, and La-based compounds, where the 0-0
feature is broader. This statement is confirmed by the crystal chemistry for the following reasons: (i) the Eu\(^{3+}\) ion can occupy both available crystal sites in Ca\(_2\)EuSbO\(_6\) (Table 2); (ii) in the case of Ca\(_2\)LnSbO\(_6\) hosts (with Ln = Gd, Eu, and La), the similarity of the Ca(Ln)—O bond distances for each site suggests the presence of Eu in both available positions (Table 3). On the other hand, in light of its short Ca(Ln)—O distances (2.28 Å for Y and 2.18 Å for Lu, Table 3 and Figure S2), the crystal site B appears too small to accommodate Eu\(^{3+}\) in the case of Ca\(_2\)YSbO\(_6\) and Ca\(_2\)LuSbO\(_6\) matrices. In fact, the sum of the ionic radii of Eu and O (2.35 Å; CN = 6) is significantly higher than the aforementioned Ca(Ln)—O distances. In these hosts, the probable predominant occupation of site A by the Eu\(^{3+}\) ion is supported by the smaller FWHM of the 0-0 peak (Table 4).

As far as the 0-0 peak position (transition energy) is concerned, it is well known that it can provide information about the covalency of the donor atom—Eu\(^{3+}\) bonds. This feature, which is strictly related to the nephelauxetic effect, would predict a decrease in the 0-0 transition energy upon an increase in the donor atom—Eu\(^{3+}\) bond covalency.\(^{13,14}\) Nevertheless, since the factors affecting the \(^{5}D_0\) energy of Eu\(^{3+}\) are many and still a subject of debate in the literature,\(^{15}\) we prefer, in the present contribution, to not discuss further this aspect. At this stage, it is useful to point out that the electric dipole transitions in the emission spectrum of Eu\(^{3+}\) located in the centrosymmetric crystal site B are highly forbidden and only the magnetic dipole-allowed \(^{5}D_0 \rightarrow ^{7}F_1\) transitions (Table 4) are observed.
transition should be detectable. Nevertheless, in related antimonate materials, we demonstrated that the presence of cationic disorder (Ca and Ln, in the present case) induces the removal of the local inversion symmetry in the case of ions formally occupying centrosymmetric sites, from a crystallographic point of view. Therefore, also the Eu\(^{3+}\) emission from the cationic site B in Ca\(_2\)LnSbO\(_6\) can occur through a forced electric dipole mechanism and, therefore, also the \(5\text{D}_0 \rightarrow 7\text{F}_J\) (\(J = 0, 2, 3,\) and 4) transition can be detected. The different luminescence emission features of Eu\(^{3+}\) [i.e., \(5\text{D}_0 \rightarrow 7\text{F}_J\) (\(J = 1\) and 2); Figure 6] are likely to be related to a different occupation of the crystal sites by Eu\(^{3+}\) along the Ca\(_2\)LnSbO\(_6\) family.

In the case of Eu\(^{3+}\)-doped Ca\(_2\)LuSbO\(_6\) and Ca\(_2\)YSbO\(_6\), the components of the emission manifolds are sharper and located at different values of wavelengths compared to the ones of the samples having Ca\(_2\)GdSbO\(_6\) and Ca\(_2\)LaSbO\(_6\) as hosts. Furthermore, the more complex emission pattern and the broader emission peaks are compatible with a multisite emission in the case of Ca\(_2\)GdSbO\(_6\), Ca\(_2\)EuSbO\(_6\), and Ca\(_2\)LaSbO\(_6\). In particular, the emission profile of the \(5\text{D}_0 \rightarrow 7\text{F}_2\) transition is reasonably similar in all the materials under investigation (Figure 6b); this agrees with the fact that for the 0-2 hypersensitive transition, only the noncentrosymmetric sites significantly contribute to the emission intensity. On the other hand, the behavior of the emission profile is much more complex in the case of the \(5\text{D}_0 \rightarrow 7\text{F}_1\) magnetic dipole-allowed transition; as shown in Figure 6a, the 0-1 band has very different shapes for Ca\(_2\)LaSbO\(_6\) and Ca\(_2\)LuSbO\(_6\). This is due to the fact that in the former host (representative of a large Ln ion), Eu\(^{3+}\) is also located in centrosymmetric sites that give their contribution to the emission intensity, together with the noncentrosymmetric ones, but with different crystal field splitting, giving rise to broader features.

In the case of Eu\(^{3+}\)-doped samples, and not of neat Ca\(_2\)LuSbO\(_6\) luminescence from the high-energy levels \(5\text{D}_3\), \(5\text{D}_2\), and \(5\text{D}_1\) has been also detected (Figure 7) upon excitation at 394 nm. \(i.e.,\) in the \(5\text{L}_6\) level.\(^{18}\) This is made possible by the relatively low energy vibrational modes of the antimonate double perovskite host (\(\nu \leq 800\) cm\(^{-1}\))\(^{18}\) that makes multiphonon relaxation among the \(5\text{D}\) levels not fully efficient, given the values of the energy gaps between these levels (2549–2592 cm\(^{-1}\) for \(5\text{D}_1\)–\(5\text{D}_3\), 2511–2515 cm\(^{-1}\) for \(5\text{D}_2\)–\(5\text{D}_1\), and 1724–1750 cm\(^{-1}\) for \(5\text{D}_1\)–\(5\text{D}_0\)). The situation is similar to the one reported many years ago for YVO\(_4\):Eu\(^{3+}\) (zircon phase),\(^{19}\) where the maximum phonon energy is around 900 cm\(^{-1}\),\(^{20}\) while in the case of the fluoride \(\beta\)-NaYF\(_4\) host, having dominant energy vibrational modes located between 300 and 400 cm\(^{-1}\),\(^{21}\) emission can be observed also from the \(5\text{L}_6\) level and even higher-energy ones.\(^{22}\) This is not possible in oxide-based hosts. We also note that the \(5\text{D}_1\)–\(5\text{D}_0\) energy gap (~1700 cm\(^{-1}\)) cannot be efficiently bridged by multiphonon relaxation due to a selection rule that occurs if the two involved levels have \(J = 0\) and \(J = 1,\)\(^{23,24}\)

The observed behavior can be explained on the basis of cross-relaxation processes, leading to the depopulation of the

![Figure 6](image_url)

Figure 6. Emission upon 394 nm excitation: (a) \(5\text{D}_0 \rightarrow 7\text{F}_1\) transition for 1% Eu\(^{3+}\)-doped Ca\(_2\)LaSbO\(_6\) and Ca\(_2\)LuSbO\(_6\); (b) \(5\text{D}_0 \rightarrow 7\text{F}_2\) emission band for 1% Eu\(^{3+}\)-doped Ca\(_2\)LnSbO\(_6\).

![Figure 7](image_url)

Figure 7. Details of the spectra of the 1% Eu\(^{3+}\)-doped Ca\(_2\)LnSbO\(_6\) and Ca\(_2\)EuSbO\(_6\) phosphors upon excitation at 394 nm. (a) 400–500 nm range, bands originating in the \(5\text{D}_3,\) \(5\text{D}_2,\) and \(5\text{D}_1\) levels; (b) 500–570 nm range, bands originating in the \(5\text{D}_2\) and \(5\text{D}_1\) levels.

host cation	peak position (nm)	peak position (cm\(^{-1}\))	FWHM (cm\(^{-1}\))
Lu	579.6	17,253	31.4
Y	579.3	17,262	36.2
Gd	578.9	17,275	42.4
Eu	578.8	17,276	39.5
La	578.6	17,281	38.9

| Table 4. Peak Position and Full Width Half Maximum (FWHM) of the \(5\text{D}_0 \rightarrow 7\text{F}_0\) Transition in the Investigated Samples |

https://doi.org/10.1021/acs.inorgchem.1c00932

Inorg. Chem. 2021, 60, 8259–8266
high-energy 5D_j ($J = 1, 2, \text{ and } 3$) levels at high Eu$^{3+}$ concentrations. These processes are identified as energy transfer mechanisms involving the 7F_j ground level or the thermally populated first excited level (7F_1 and 7F_2 above 7F_0). The almost resonant transitions are:

- For 5D_3: $^1D_3 + ^7F_0 \rightarrow ^3D_2 + ^7F_4$
- For 5D_2: $^5D_2 + ^7F_1 \rightarrow ^3D_1 + ^7F_4$
- For 5D_1: $^1D_1 + ^7F_0 \rightarrow ^3D_0 + ^7F_3$

The mismatches are relatively small so that the cross-relaxation processes are presumably almost resonant. It is well known that the energy transfer probabilities significantly decrease as the intracenter distances increase; this agrees with a fast cascade depopulation of 5D_3, 5D_2, and 5D_1 to 5D_0 in fully concentrated Ca$_2$EuSbO$_6$. For this reason, only 5D_0 is emissive in the neat material, where the shortest Eu$^{3+}–$Eu$^{3+}$ distance is equal to only 3.27(2) Å and energy transfer can be efficient.

The decay curves of the 5D_3 level were found to be too fast to be measured with present equipment. On the other hand, the temporal evolution of the emission intensity after pulsed excitation at 394 nm was measured for the 5D_0 level for all the temporal evolution of the emission intensity after pulsed excitation at 394 nm was measured for the 5D_0 level for all samples and for 5D_2 and 5D_1 for 1% Eu$^{3+}$-doped Ca$_2$LnSbO$_6$ (Ln = Lu, Y, Gd, and La) (see Figures 8–10).

In the case of the 5D_2 level, upon excitation at 394 nm, a clear rise is observed for the doped materials due to feeding from the upper levels. This rise is approximately in the region of 0.10–0.30 ms, being longer for Ln = Lu and Y than for Gd and La. The decay is nearly exponential, with 5D_0 lifetimes of about 1.02 ms for Ln = Lu and Y and 0.83 ms for Gd and La, although longer components seem to be present in the long time tail of the decay curve (Figure 9). As for Ca$_2$EuSbO$_6$, an exponential decay is observed, with a decay constant of 0.19 ms (Figure 10).

The short and exponential 5D_0 decay in the neat Eu compound is clearly due to the presence of migration in this level in the Eu$^{3+}$ subset of ions, until a killer center is reached and nonradiative relaxation occurs. This behavior has been reported many times in the literature for neat crystals containing Eu$^{3+}$ (for instance, see Kellendonk and Blasse’s study[26]). As noted above, the absence of a buildup time clearly indicates that the population of 5D_0 from the higher lying level is fast, as expected for cross-relaxation in the neat material.

On the other hand, the observed rise times of 5D_0 and 5D_1 appear to be close to the decay times of the level lying immediately above. This is compatible with their sequential population from the level above through cross-relaxation, in agreement with the rate equation model proposed by Berdowski and Blasse and for Eu$^{3+}$ in NaGdTiO$_4$.[27]

In general, the results obtained upon pulsed excitation appear to be different for the doped samples with Ln = Lu and Y with respect to the ones with Ln = Gd and La. In parallel, the emission intensity from the 5D_3 level is significantly lower for Gd- and La-based hosts (Figure 7a). This peculiar behavior can find a tentative explanation if we consider a more efficient energy transfer mechanism by cross-relaxation between Eu$^{3+}$ ions, where the Eu–Eu distances are, on average, shorter. In this context, the 5D_2 level is more efficiently depopulated and the lifetimes of 5D_0, 5D_1, and 5D_2 levels are shorter. This is the
case of Ca$_2$LaSbO$_6$ and Ca$_2$GdSbO$_6$ hosts, in which both available A and B crystal sites are supposed to be occupied by Eu$^{3+}$ and the shortest Eu–Eu distance is around 3.29 Å (in Ca$_2$GdSbO$_6$), corresponding to the smallest distance between sites A and B. Otherwise, in Ca$_2$LuSbO$_6$, where the luminescent ion is supposed to selectively occupy site A, the shortest possible Eu–Eu distance is larger than 3.29 Å [3.90(1) Å (the distance between two adjacent sites A)]. Nevertheless, in view of the complex crystal structure of the hosts and the structural disorder possibly inducing the breaking of the local inversion symmetry of B sites, other factors can contribute to determine the observed spectroscopic features.

It is interesting to note that due to the different contributions of the emission stemming from 5D_0, 5D_2, 5D_1 (in the blue and green spectral regions), and 5D_0 (mainly in the red), the final emission color can be tuned. The point 4 in the CIE diagram (Figure 11) (corresponding to an almost pure red color in Ca$_2$EuSbO$_6$) can be moved toward the green and blue spectral regions when 99% of Eu is replaced by La (or Gd) and Lu (or Y), respectively. This is made possible thanks to the inefficient multiphonon relaxation process among 5D_j levels in the doped samples. In this way, we observe emission in the 460–570 nm region (from 5D_1 and 5D_2) in all the Eu$^{3+}$-doped samples and emission in the 400–450 nm region (from the 5D_3 level) mainly in the Eu$^{3+}$-doped Ca$_2$LuSbO$_6$ and Ca$_2$YbSbO$_6$ materials. In general, the emission from the 5D_j ($j = 0–3$) levels of Eu$^{3+}$ is more efficient in the Y- and Lu-based hosts and a possible explanation for this behavior can be found in the crystal structure of these materials. The structural investigation on the host matrix suggests a different occupation of the cationic sites by the Eu$^{3+}$ dopant, which should be preferentially located in the A site when Ln = Y or Lu, while they can occupy both available crystal sites (A and B) in the case of Ca$_2$LaSbO$_6$ and Ca$_2$GdSbO$_6$ hosts.

Although the cross-relaxation mechanism involving Eu$^{3+}$ ions (a nonradiative energy transfer pathway) is weakly active in all the doped samples, it is expected to be more efficient when the Eu–Eu distances are shorter. This is the case of the La- and Gd-based compounds, where the shortest possible Eu–Eu distance is around 3.29 Å vs 3.90 Å in the case of Ca$_2$LuSbO$_6$. As a consequence, the emission intensity from the 5D_1 level is significantly lower and the decay of the 5D_0, 5D_1, and 5D_2 levels is faster for Gd- and La-based hosts. Finally, as a consequence of the drastic increase in Eu$^{3+}$ concentration, in the case of Ca$_2$EuSbO$_6$ an efficient cross-relaxation mechanism involving 5D_j levels takes place and no emission from 5D_j levels ($j = 1, 2$, and 3) is possible. In addition, a fast migration of the energy toward killer centers is responsible for a drastic decrease in 5D_0 excited state lifetime.

This contribution clearly shows how important is the detailed knowledge of the host crystal chemistry and of the nonradiative mechanisms taking place to control the luminescence features of an optical material.

ASSOCIATED CONTENT

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00932.

Lists of crystal data and luminescence emission spectra for the materials under investigation (PDF)

AUTHOR INFORMATION

Corresponding Authors

Fabio Piccinelli – Luminescent Materials Laboratory, Department of Biotechnology, Università di Verona and INSTM, UdR Verona, Verona 37134, Italy; orcid.org/0000-0003-0349-1960; Email: fabio.piccinelli@univr.it

Marco Bettinelli – Luminescent Materials Laboratory, Department of Biotechnology, Università di Verona and INSTM, UdR Verona, Verona 37134, Italy; orcid.org/0000-0002-1271-4241; Email: marco.bettinelli@univr.it

Authors

Irene Carrasco – Département Microélectronique & Microcapteurs, Université de Rennes, CNRS, ISCR–UMR 6226, ScanMAT–UMS 2001, IETR–UMR 6164, Rennes F-35000, France

Chong-Geng Ma – CQUT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.1c00932
ACKNOWLEDGMENTS

The authors gratefully thank Erica Viviani (University of Verona) for expert technical assistance. The authors gratefully thank also the Facility “Centro Piattaforme Tecnologiche” of the University of Verona for the access to a Thermo ARL XTRA powder diffractometer and Fluorolog 3 (Horiba-Jobin Yvon) spectrofluorimeter. Funding from the University of Verona is gratefully acknowledged. C.-G.M. would like to acknowledge the financial supports from the China-Poland Intergovernmental Science and Technology Cooperation Program (grant no. 202015/10) and Innovation and Entrepreneurship Program for Returned Overseas Chinese Scholars offered by Chongqing Bureau of Human Resources and Social Security (grant no. CX2019055).

REFERENCES

(1) Henmi, K.; Hinatsu, Y.; Masaki, N. Crystal Structures and Magnetic Properties of Ordered Perovskites Ba2LnNbO6 (Ln = Lanthanide Elements). J. Solid State Chem. 1999, 148, 353–360.
(2) Babu, T. G. N.; Koshy, J. Ba2RETaO6 (RE = Pr, Nd, Eu, and Dy), A Group of Chemically Stable Substrates for YBa2Cu3O7−δ Films. J. Solid State Chem. 1996, 126, 202–207.
(3) Jose, R.; Konopka, J.; Yang, X.; Konopka, A.; Ishikawa, M.; Koshy, J. Crystal structure and dielectric properties of a new complex perovskite oxide Ba4LaSbO9. Appl. Phys. A: Mater. Sci. Process. 2004, 79, 2041–2047.
(4) Sakai, C.; Doi, Y.; Hinatsu, Y. Crystal structures and magnetic properties of double perovskite compounds Ca3LnRuO6 (Ln=Y, La−Lu). J. Alloys Compd. 2006, 408–412, 608–612.
(5) Zhong, J. S.; Gao, H. B.; Yuan, Y. J.; Chen, L. F.; Chen, D. Q.; Ji, Z. G. Eu3+ doped double perovskite-based phosphor-in-glass color converter for high-power warm w-LEDs. J. Alloys Compd. 2018, 735, 2303–2310.
(6) Yin, X.; Wang, Y.; Huang, F.; Xia, Y.; Fan, D.; Yao, J. Excellent red phosphors of double perovskite Ca4LaMO6Eu (M=Sm, Nb, Ta) with distorted coordination environment. J. Solid State Chem. 2011, 184, 3324–3328.
(7) Sun, Z.; Wang, M.; Yang, Z.; Jiang, Z.; Liu, K.; Ye, Z. Enhanced red emission from Eu3+−Bi3+ co-doped Ca3Yb2O9 phosphors for white light-emitting diode. J. Alloys Compd. 2016, 658, 453–458.
(8) Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45.
(9) Zhang, H.; Su, Q. Synthesis, composition, structure and luminescence properties of M2Yb2O7−xR3x (M=Ba, Ca; R=Sm, Dy, Ho, Er, Tb). J. Lumin. 1988, 40–41, 887–888.
(10) Larson, A. C.; Von Dreele, R. B. General structure analysis system (GSAS). Los Alamos Natl. Lab. Rep. LAUR 2004, 86–748.
(11) Hottentot, D.; Loopstra, B. O. The structure of calcium orthoellulrate. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37, 220–222.
(12) Shannon, R. D.; Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1969, 25, 925–946.
(13) Albin, M.; Whittle, R. R.; Horrocks, D. W.; Jr. Laser spectroscopic and X-ray structural investigation of europium(III)-oxydiacetate complexes in solution and in the solid state. Inorg. Chem. 1985, 24, 4591–4594.
(14) Caro, P.; Beaury, O.; Antic, E. L’effet néphélauxétique pour les configurations 4f6 en phase solide. J. Phys. 1976, 37, 671–676.
(15) Tanner, P. A.; Yeung, Y. Y.; Ning, L. What factors affect the D2 energy of Eu3+? An investigation of nephelauxetic effects. J. Phys. Chem. A 2013, 117, 2771–2781.
(16) Piccinelli, F.; Carrasco, I.; Ma, C.-G.; Srivastava, A. M.; Bettinelli, M. Disorder-Induced Breaking of the Local Inversion Symmetry in Rhombohedral Pyrochlores M2La,Sb3O14 (M = Mg or Ca): A Structural and Spectroscopic Investigation. Inorg. Chem. 2018, 57, 9241–9250.
(17) Carrell, W. T.; Crosswhite, H.; Crosswhite, H. M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3; Report ANL-78-XX-95, Argonne National Lab. (ANL): Argonne, IL United States, 1978.
(18) Mukherjee, R.; Saha, S.; Dutta, A.; Sinha, T. P. Dielectric and Raman spectroscopic studies of A2Er2O6 (A = Ba, Sr and Ca). J. Alloys Compd. 2015, 611, 222–229.
(19) Brecher, C.; Samelson, H.; Lempicki, A. The energy level structure of Eu3+ in YVO4, in: Optical Properties of Ions in Crystals; Crosswhite, H. M., Moos, H. W. Eds.; Interscience Publishers Inc.; New York, 1967; 73–83.
(20) Manjón, F. J.; Rodríguez-Hernández, P.; Muñoz, A.; Romero, A. H.; Errandonea, D.; Syassen, K. Lattice dynamics of YVO4 at high pressures. Phys. Rev. B 2010, 81, No. 075202.
(21) Suyver, J. F.; Grimm, J.; van Veen, M. K.; Biner, D.; Krämer, K. W.; Güdel, H. U. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 2006, 117, 1–12.
(22) Wang, L.; Liu, Z.; Chen, Z.; Zhao, D.; Qin, G.; Qin, W. Upconversion emissions from high-energy states of Eu3+ sensitized by Yb3+ and Ho3+ in β-NaYF4 microcrystals under 980 nm excitation. Opt. Express 2011, 19, 25471.
(23) Weber, M. J. Relaxation processes for excited states of Eu3+ in LaF3, in: Optical Properties of Ions in Crystals; Crosswhite, H. M., Moos, H. W. Eds.; Interscience Publishers Inc.; New York, 1967; 467–484.
(24) Reed, E. D., Jr.; Warren Moos, H. Multiphonon Relaxation of Excited States of Rare-Earth Ions in YVO4, YAsO4, and YPO4, Phys. Rev. B 1973, 8, 980–987.
(25) Weber, M. J. Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3, Phys. Rev. 1968, 171, 283–291.
(26) Kellendonk, F.; Blasse, G. Luminescence and energy transfer in Eu4+−D1 level in Na2Ga2Ti4O10. Chem. Phys. Lett. 1984, 107, 351–354.