Palladium-coated thiourea core-shell nanocomposite as a new, efficient, and magnetic responsive nanocatalyst for the Suzuki-Miyaura coupling reactions

Reza Eivazzadeh-Kelhan, Negar Bahrami, Fateme Radinekiyan, Ali Maleki and Mohammad Mahdavi

1 Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
2 Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

E-mail: maleki@iust.ac.ir

Keywords: Suzuki-Miyaura coupling reaction, Functionalized Fe3O4 magnetic nanoparticles, thiourea, palladium, magnetic responsive catalyst

Abstract

In this research, according to the important aspects of palladium components in conducting Suzuki-Miyaura coupling reactions and formation of biphenyl compounds, magnetic responsive palladium/thiourea nanocomposite as a new magnetic nanocatalyst was designed, synthesized, and characterized using FT-IR, EDX, FE-SEM, and VSM analyses. The catalytic performance of this new nanocomposite with magnetic susceptibility was evaluated in the Suzuki-Miyaura coupling reaction. Based on the functionalized surface of Fe3O4 magnetic cores with SiO2, CPTMS, thiourea shells, and especially Palladium ions shell, the formation of biphenyl derivatives in a green and eco-friendly reaction condition was highlighted.

1. Introduction

Thiocarbamide as an organo-sulfur compound with structural similarity to urea, is the alternate name of thiourea. Four elements including nitrogen (36.81%), sulfur (42.11%), carbon (15.77%) and hydrogen (5.31%) are formed the structure of thiourea. The properties of thiourea are substantially distinguished and different from urea due to the oxygen replacement by sulfur atom (Wahid et al. 2017). In comparison to urea, thiourea molecules possess unique features. Their high basicity and considerable polarizability have been converted these molecules to potent nucleophiles in different chemical conditions. Given the quantitative studies on the nucleophilicity of thiourea, it has been indicated that the thione group of thiourea can easily react with wide range of substances such as alkyl halides, aromatic compounds and acylation agents (Mitchell and Steventon 1994). Besides, the chemical efficiency of thiourea has been approved in different fields such as pharmacology and medicinal chemistry, agriculture, industry, and other scientific fields (Sun et al. 2003, Shakeel et al. 2016, An et al. 2018). For instance, thiourea and its derivatives can be utilized as an antioxidant and radioprotective agents owning to its thione-thiol nature (Mitchell and Steventon 1994, Sudzhaev et al. 2011, Sudhamani et al. 2015). Also, thiourea itself can be applied as a plant growth stimulator (Mitchell and Steventon 1994). Apart from these biological applications, various functionalized-thiourea compounds as biosorbent have been reported for removing heavy and toxic metal ions such as Hg(II) (Zhu et al. 2015, Zhou et al. 2017, An et al. 2018), Cr(II) (Liu et al. 2016), Cd(II) (Liu et al. 2016, Yang et al. 2018), Cu(II) (Yang et al. 2018), and Pb(II) (Zhu et al. 2015, Liu et al. 2016, An et al. 2018, Yang et al. 2018). Recently, the focus on thiourea-based organocatalysts has been increased due to their high catalytic capacity and accelerating stereoselective (Andrés et al. 2018) and enantioselective chemical reactions such as Michael addition (Adam et al. 2018, Yao et al. 2018, Yuan et al. 2018), intramolecular Rauhut-Currier reaction (Li et al. 2018a), addition of acetone to nitroalkene (Huang and Jacobsen 2006) and other chemical reactions including asymmetric aldol reactions.
(Takemoto 2010, Heravi et al 2017) and transfer hydrogenation (Qiao et al 2014). Furthermore, thiourea and its derivatives are capable to play the role of systematic ligand in conducting the organometallic reactions (Li et al 2014). Currently, according to the importance of various biological molecules (Esmati et al 2015) and organic compounds (Aghabozorg et al 2011, Foroughian et al 2011, Foroughian et al 2012) in different scientific fields such as pharmacology and biomedicine, transition-metal-catalyzed organic reactions have been created a new research gate for scientists. In these reactions, the most important role of catalytic cycle is conducted by the related transition metal. Also, in order to extend new methodologies, the systematic ligand modulation is required essentially (Li et al 2014). In this regard, one of the most applicable organometallic reactions in the formation of C-C bonds is Suzuki-Miyaura coupling reaction. So far, various catalysts such as [Pd(C₅H₅)₂Cl]₂, Tedicyp (Kondolff et al 2004), Pd[N,N-dimethyl β-alaninate]₂ (Cui et al 2007), [PdBr₂{2,6-[(Ph₂P=O)₂]C₅H₄}] (Kumaravel et al 2014), guanidine/Pd(OAc)₂ (Li et al 2007), β-diketiminatophosphane Pd complex (Lee and Jin 2010), gold nanoparticles (Han et al 2009) or even palladium (Mandal and Chand 2013), complexes of palladium (II), and functionalized palladium nanoparticles (Hajipour et al 2014) have been applied in the synthesis of substituted biphenyl derivatives. However, their catalytic efficiency application can be restricted due to their difficult separation from the reaction media and their recycling process (Maleki et al 2017). In this context, as a solution, the design and fabrication of new heterogeneous magnetic responsive nanocatalysts with substantial features such as ease of surface functionalization, an efficient selectivity, having a large surface to volume ratio, having easy separation and recycling processes by owning magnetic properties can generate a better catalytic condition in the organic reactions (Hajizadeh et al 2019, Ashgharnasl et al 2020, Eivazzadeh-Keihan et al 2020b), especially in Suzuki coupling reaction (Ghorbani-Vaghei et al 2016, Sun et al 2017). Apart from the catalytic activity, wide range of magnetic responsive nanocomposites based on Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) as core of structure have been reported in different biomedical fields. For instance, various optical and electrochemical biosensors based on Fe₃O₄ MNPs have been synthesized to characterize cancer biomarkers (Eivazzadeh-Keihan et al 2018b, Mohammadinejad et al 2020), neurotoxic proteins, (Eivazzadeh-Keihan et al 2018a), pathogenic viruses (Eivazzadeh-Keihan et al 2019b), and harmful mycotoxins (Eivazzadeh-Keihan et al 2017). Besides, the efficient bio performance of Fe₃O₄-based nanocomposites have been studied in tissue engineering (Eivazzadeh-Keihan et al 2019a), and in-vitro hyperthermia treatment (Bani et al 2019). According to the synthesis importance of substituted biphenyl compounds and fundamental role of palladium in Suzuki-Miyaura coupling reaction, the synthesis process of magnetic responsive palladium/thiourea nanocomposite is introduced in four steps. As can be seen in scheme 1, after surface functionalization of Fe₃O₄ MNPs with inorganic and organic layers such as tetraethyl orthosilicate (TEOS), (3-chloropropyl)-trimethoxysilane (CPTMS) and thiourea, the coordinate interaction of palladium ions coating on the surface of functionalized Fe₃O₄ MNPs is conducted by thiourea molecules which play the role of capping agents. Therefore, at the same time, this synthesized magnetic responsive nanocomposite can demonstrate the magnetic features of Fe₃O₄ MNPs and fundamental catalytic efficiency of palladium ions as coupling agents. Based on the recent progressions in novel methodologies and their accordance with green chemistry principles, the application of magnetic responsive Palladium/thiourea nanocomposite as eco-friendly magnetic nanocatalyst is evaluated in the synthesis of substituted biphenyl derivatives (3a-i) by applying the different substituted aryl halides (1) and substituted boric acids (2) in the presence of potassium carbonate and a combination of two green and nontoxic solvents (water/ethanol) at room temperature condition (scheme 1).

2. Experimental

2.1. General
All the chemical compounds including ingredients and solvents without further purification were purchased from Merck, Fluka and Sigma-Aldrich, the international and chemical companies. FT-IR spectrum of each synthesis step of magnetic responsive nanocomposite was recorded on Shimadzu IR-470 spectrometer (Japan) by the method of KBr pellets. 1H NMR spectra of isolated products were taken with a Bruker DRX-500 Avance spectrometer (Germany) at 500 MHz. The morphology and structure of designed magnetic responsive nanocatalyst was determined by Field-emission scanning microscope (ZEISS-Sigma VP model, Germany) (FE-SEM). Energy-dispersive x-ray (EDX) analysis was taken by using a Numerix DXP-X10P (France) and as well as, the vibrating–sample magnetometer (VSM) analysis was carried out by LBKFB model-magnetic Kavir (Iran). By comparing the spectroscopic and analytical data of authentic samples, isolated products were identified.

2.2. Fabrication procedure of Fe₃O₄ MNPs
Synthesis process of Fe₃O₄ MNPs was carried out by co-precipitation method and doing the following steps (Eivazzadeh-Keihan et al 2019c, Eivazzadeh-Keihan et al 2020a). First, 1.33 g of FeCl₂.4H₂O and 2.91 g of
FeCl₃.6H₂O salt powders (with molar ratio of 2:1) were dissolved in 40 ml of distilled water. Then, the mixture solution was kept under the N₂ atmosphere and mechanical stirring condition by continuous heating up to 70 °C. Afterwards, by considering 30 min, 10 ml of 25% aqueous ammonia solution was added drop wisely to the mixture solution in a stable temperature condition (70 °C). Mechanically, the mixture was stirred for 2 h in a constant temperature condition (70 °C). Finally, after the mentioned time, the black precipitates of synthesized Fe₃O₄ MNPs were separated from the reaction media using an external magnet. Then, to remove unreacted components and reaching to the neural pH (pH = 7), the black precipitates were eluted with distilled water for several times and dried in an oven (70 °C) for an overnight.

2.3. Preparation of Fe₃O₄ MNPs coated by silica layer (Fe₃O₄/SiO₂)
According to the previous studies with some modifications (Stöber et al 1968, Pedroza et al 2005, Pereira et al 2006, Sartoratto et al 2007, De Almeida et al 2010, Eivazzadeh-Keihan et al 2020a), the preparation of Fe₃O₄/SiO₂ nanostructures was conducted by these following steps. First, 0.22 g of Fe₃O₄ MNPs were dispersed into the 50 ml of deionized water by ultrasonic irradiations for 20 min. Then, 7.5 ml of 25% ammonia solution was added drop wisely to the mixture solution under the mechanical stirring condition. After addition of ammonia solution, 80 ml of ethanol was poured into the mixture. In the next step, 4 ml of TEOS solution was drop wisely added to the suspension. The suspension solution was kept stirred mechanically for 24 h at room temperature. Finally, the functionalized nanoparticles were collected by an external magnet and washed with ethanol and deionized water and dried in an oven (70 °C) for an overnight.
2.4. Preparation of SiO$_2$ layered Fe$_3$O$_4$ MNPs coated by CPTMS (Fe$_3$O$_4$/SiO$_2$-Cl)

The placement of second layer, CPTMS molecules, on the surface of functionalized Fe$_3$O$_4$ MNPs were carried out by these following steps. First, 100 ml of dry toluene was added to the 0.69 g of SiO$_2$/Fe$_3$O$_4$ powder at 60 °C under the stirring condition. After few minutes, 1 ml of CPTMS was drop wisely added to the mixture solution. Then, the mixture solution was kept at mentioned temperature and condition for 18 h. Eventually, the elution process of chloropropyl functionalized solid was conducted by dry toluene. The obtained magnetic responsive solid was separated and dried in the vacuum oven for 12 h.

2.5. Functionalization process of modified Fe$_3$O$_4$ MNPs by thiourea (Fe$_3$O$_4$/SiO$_2$-thiourea)

To conduct the third surface functionalization process and placement of thiourea molecules on the surface of modified Fe$_3$O$_4$ MNPs (Fe$_3$O$_4$/SiO$_2$-Cl), first, 0.134 g of functionalized Fe$_3$O$_4$ MNPs were dispersed in 30 ml ethanol. Subsequently, 0.08 g of thiourea powder was added to the intended solution. The mixture solution was kept under the reflux condition for 24 h. After the mentioned time, the obtained product was separated and washed with ethanol for several times. Following that, the functionalized magnetic product was dried in the oven at 70 °C for 12 h.

2.6. Palladium coating procedure on the surface of functionalized Fe$_3$O$_4$ MNPs (Fe$_3$O$_4$/SiO$_2$-thiourea)

The coating process of palladium layer on the surface of functionalized Fe$_3$O$_4$ MNPs (Fe$_3$O$_4$/SiO$_2$-thiourea) was carried out by these following steps. First, in a typical route, 0.11 g of functionalized Fe$_3$O$_4$ MNPs was dispersed in 30 ml of ethanol. Then, 0.025 g of palladium (II) acetate was added to the solution and the mixture was stirred under the reflux condition for 24 h. After the mentioned time, in order to remove the unreacted substances, the elution process was conducted for several times using ethanol. Finally, the obtained magnetic responsive product was dried in the oven (70 °C) for 12 h.

2.7. General process for the synthesis of biphenyl derivatives (3a-i) using Suzuki-Miyaura coupling reaction

Taking into account the room temperature condition, the Suzuki-Miyaura coupling reaction was accomplished in two green solvents (ethanol and water) with miscibility property, applying different kinds of substituted aryl halide (0.5 mmol), substituted phenylboronic acid (0.5 mmol), potassium carbonate (1.5 mmol) and using palladium/thiourea nanocomposite (0.004 g) as synthetic magnetic responsive nanocatalyst. In order to monitor the Suzuki-Miyaura coupling reaction, the progression and completion of reaction was accomplished by TLC (ethyl acetate/n-hexane (1:5)) in appropriate times. Taking into account the reaction accomplishment, the synthesized magnetic responsive catalytic was separated from the reaction media using external magnet. As well as, the substituted biphenyl derivatives were attained by column chromatography process.

3. Results and discussion

In this research study, magnetic responsive palladium/thiourea nanocomposite as new magnetic nanocatalyst was designed, synthesized, and evaluated in Suzuki-Miyaura coupling reaction. To synthesize the magnetic responsive palladium/thiourea nanocomposite, first, the synthesis process of Fe$_3$O$_4$ MNPs as core of this new magnetic responsive nanocomposite is needed. As illustrated in scheme 1, surface functionalization processes were carried out on the surface of Fe$_3$O$_4$ MNPs using inorganic and organic linkers in four synthesis steps. By applying different spectroscopic and analytical techniques including FT-IR spectra for characterizing the functional groups, using EDX analysis to detect structural elements, determining the morphology and size of nanostructures by surface imaging (FE-SEM images) and analyzing the saturation magnetization value (Ms) by VSM analysis, the characterization of magnetic responsive palladium/thiourea nanocomposite is discussed respectively.

3.1. Magnetic responsive Palladium/thiourea nanocomposite characterization

3.1.1. FT-IR analysis

Taking into account the surface functionalization processes of Fe$_3$O$_4$ MNPs and formation of magnetic responsive palladium/thiourea nanocomposite, the FT-IR spectrum was taken from each surface functionalization process (figures 1 (a)–(d)). As could be seen in figure 1 (a), the magnetic phase of unmodified Fe$_3$O$_4$ MNPs is characterized by observing an absorption band at 570 cm$^{-1}$ which is related to the Fe-O stretching vibration mode (Ulu et al 2018). The hydroxyl groups on the surface of magnetic cores are assigned by a broad band at region of 3400 cm$^{-1}$ (Villa et al 2016). In figure 1(b), new absorption bands are observed in the fingerprint region due to the surface functionalization of Fe$_3$O$_4$ MNPs using first coating layer, TEOS. As illustrated in figure 1 (b), The symmetric and asymmetric stretching vibration modes of Si-O-Si bond are ascertained to two absorption bands around 1100 cm$^{-1}$ and 800 cm$^{-1}$. As well as, a small absorption band near
479 cm\(^{-1}\) is attributed to the bending vibration mode of Si-O-Si bond (Safaiee et al. 2015, Villa et al. 2016, Farahi et al. 2017). The O-H stretching vibration mode is characterized by the presence of a broad band at the range of 3100 to 3600 cm\(^{-1}\) (Safaiee et al. 2015). Besides, the O-H stretching vibration of Si-OH bond and the twisting vibration mode of the absorbed H-O-H bond from silica shell are determined by a small absorption band around 1637 cm\(^{-1}\) (Safaiee et al. 2015, Villa et al. 2016, Farahi et al. 2017). The FT-IR spectrum of second surface functionalization process using CPTMS molecules are indicated in figure 1(c). In a close and precise investigation, it can be mentioned that the interaction between CPTMS molecules and SiO\(_2\) shell is well conducted due to characterizing two absorption bands around 1410 cm\(^{-1}\) and 2855 cm\(^{-1}\); which are related to the stretching vibration modes of Si-CH\(_2\) and CH\(_2\) bonds (Vieira et al. 2013). The thiourea functionalized process on the surface of functionalized Fe\(_3\)O\(_4\) MNPs is confirmed by the presence of new functional group (figure 1(d)). As indicated in figure 1(d), the stretching vibration mode of C-N bond and the bending vibration mode of N-C-S bond are characterized by observing two absorption bands around 1465 cm\(^{-1}\) and 622 cm\(^{-1}\). Also, a small absorption peak at 1413 cm\(^{-1}\) is ascribed to the C=S asymmetric stretching vibration mode (Trivedi et al. 2015). Apart from these mentioned results, the symmetric stretching vibration mode of C-N bond is observed at 1086 cm\(^{-1}\) which it has overlapped with the symmetric vibration mode of Si-O-Si bond (Trivedi et al. 2015).

3.1.2. EDX analysis
The EDX spectrum and elemental mapping images of magnetic responsive palladium/thiourea nanocomposite is indicated in figures 2–3. As illustrated in figure 2, the existence of two iron peaks is related to the presence of Fe\(_2\)O\(_3\) MNPs. The presence of Silicon, oxygen and carbon peaks are implied to the placement of SiO\(_2\) and CPTMS layers on the surface of Fe\(_2\)O\(_3\) MNPs. Nitrogen and sulfur peaks confirm conducting the reaction between thiourea and second layer, CPTMS. As well as, the carbon peak can be attributed to the presence of third layer, thiourea, on the surface of modified Fe\(_2\)O\(_3\) MNPs. The fourth layer, palladium coating on the surface of functionalized Fe\(_2\)O\(_3\) MNPs is confirmed by presence of two palladium peak in the EDX spectrum. Apart from EDX spectrum, the uniform distribution and as well, the presence of structural elements is well confirmed by elemental mapping images (figure 3).

3.1.3. FE-SEM imaging
As illustrated, the FE-SEM images of magnetic responsive palladium/thiourea nanocomposite is indicated in figure 4. According to the obtained results, the uniform and unique sphere morphology was observed for magnetic responsive palladium/thiourea nanocomposite. On the other side, according to the important aspects of histogram distribution chart of nanoparticles and its complementary data (Aragón et al. 2015), average size of
functionalized Fe$_3$O$_4$ MNPs was estimated between 230 nm to 240 nm. Therefore, it can be concluded that this size increment can be related to the different surface functionalization processes and placement of thiourea and inorganic shells on the surface of Fe$_3$O$_4$ MNPs.

Figure 2. EDX spectrum of magnetic responsive palladium/thiourea nanocomposite.

Figure 3. Elemental mapping images of magnetic responsive palladium/thiourea nanocomposite.
3.1.4. VSM analysis

Generally, the saturation magnetization value (M_s) of magnetic nanostructures can be determined by Vibrating-sample magnetometer. Magnetic properties of functionalized and unfunctionalized magnetic nanostructures can be changed due to the influence of different parameters, such as iron-group crystalline structure, core size, shell thickness, and their interparticle and intraparticle interactions (Wei et al, 2011). The hysteresis loop curves of unmodified Fe$_3$O$_4$ MNPs and magnetic responsive palladium/thiourea nanocomposite is delineated in figure 5. As could be seen, compared to unmodified Fe$_3$O$_4$ MNPs (figure 5(a)) with high saturation magnetization value (76.20 emu g$^{-1}$), the saturation magnetization value of magnetic responsive palladium/thiourea nanocomposite (21.36 emu g$^{-1}$) has decreased (figure 5(b)). According to this considerable reduction in saturation magnetization value, it can be mentioned that the surface functionalization processes including SiO$_2$, CPTMS, thiourea, and palladium coatings have well conducted on the surface of Fe$_3$O$_4$ MNPs. Therefore, subsequently, these coating shells have reduced the magnetic saturation value of Fe$_3$O$_4$ cores.
In order to obtain the best and optimum condition for synthesis of substituted biphenyl products, the coupling reaction of bromobenzene was considered for comparison. In a close and precise investigation reported catalytic studies, the coupling model reaction including bromobenzene, phenylboronic acid, and thiourea nanocatalyst, the coupling reaction was easily carried out at room temperature condition in a mixture of two green and non-toxic solvents, water, and ethanol (entries 1–10). According to the high catalytic activity of magnetic responsive palladium/thiourea nanocatalyst, the coupling reaction was easily carried out at room temperature condition (table 1, entries 1–10). Due to the reported results, it was determined that the best reaction condition could be provided in a mixture of two green and non-toxic solvents, water, and ethanol (table 1, entries 5, 8). As well as, the highest yield efficiency was reported by using 0.004 g of palladium/thiourea magnetic responsive nanocatalyst (table 1, entry 5). Apart from the optimization of catalyst amount, solvent type, and reaction condition with the highest yield efficiency, in a close and precise investigation, different types of bases were examined in order to find the appropriate base with good functionality in the Suzuki-Miyaura coupling reaction (table 1, entries 5, 8–10). As a result, it was indicated that the potassium carbonate could play an impressive role in increasing the yield percentage of substituted biphenyl products (table 1, entry 5).

Taking into account the best and optimized condition for Suzuki-Miyaura coupling reaction, the desired catalytic performance of magnetic responsive palladium/thiourea nanocatalyst was evaluated by wide range of substituted aryl halides and different substituted boric acids. The synthesis of substituted biphenyl compounds (3a–i) was conducted using 0.004 g of magnetic responsive palladium/thiourea nanocatalyst at room temperature, and considering an average reaction time between 5 to 35 min (table 2, entries 1–9).

Table 1. Optimization of different parameters for model reaction

Entry	Catalyst (g)	Solvent	Base	Temperature (°C)	Time (min)	Yield (%)a
1	0.004	acetonitrile	K₂CO₃	R.T.	25	20
2	0.004	acetone	K₂CO₃	R.T.	25	68
3	0.004	dichloromethane	K₂CO₃	R.T.	25	70
4	0.003	water/ethanol	K₂CO₃	R.T.	25	80
5	0.004	water/ethanol	K₂CO₃	R.T.	25	85
6	0.005	water/ethanol	K₂CO₃	R.T.	25	85
7	0.006	water/ethanol	K₂CO₃	R.T.	25	82
8	0.004	water/ethanol	KOH	R.T.	25	80
9	0.004	water/ethanol	NaOH	R.T.	25	79
10	0.004	water/ethanol	triethylamine	R.T.	25	N.R.

a Bromobenzene (0.5 mmol), phenylboronic acid (0.5 mmol), K₂CO₃ (1.5 mmol), magnetic responsive nanocatalyst (0.004 g), ethanol/water (2 ml/2 ml), room temperature.

3.2. Catalytic evaluation of magnetic responsive palladium/thiourea nanocomposite

3.2.1. Optimization of different parameters in Suzuki-Miyaura coupling reaction

In order to obtain the best and optimum condition for synthesis of substituted biphenyl products, the coupling reaction of bromobenzene (0.5 mmol) and phenylboronic acid (0.5 mmol) was evaluated by different parameters (table 1, entries 1–10). According to the high catalytic activity of magnetic responsive palladium/thiourea nanocatalyst, the coupling reaction was easily carried out at room temperature condition (table 1, entries 1–10). As well as, the highest yield efficiency was reported by using 0.004 g of palladium/thiourea magnetic responsive nanocatalyst (table 1, entry 5).

3.2.2. Catalytic evaluation of magnetic responsive palladium/thiourea nanocomposite compared to other reported catalysts in Suzuki-Miyaura coupling reaction

In order to compare the catalytic activity of magnetic responsive palladium/thiourea nanocomposite with other reported catalytic studies, the coupling model reaction including bromobenzene, phenylboronic acid, and potassium carbonate was conducted using 0.004 g of magnetic responsive palladium/thiourea magnetic responsive nanocatalyst at room temperature, and considering an average reaction time between 5 to 35 min (table 2, entries 1–9).

3.2.3. Catalytic performance of magnetic responsive palladium/thiourea nanocatalyst in mechanism study of Suzuki-Miyaura coupling reaction

Taking into account the schematic outline of Suzuki-Miyaura coupling reaction in reported literatures (Veisi et al 2014, Zhang and Wang 2015), and due to the high catalytic activity of magnetic responsive palladium/thiourea nanocomposite, the mechanism of Suzuki-Miyaura coupling reaction is proposed. As could be seen in the scheme 2, the process of coupling reaction is initiated with dissolving the chemical ingredient, reduction of Pd²⁺ to Pd⁰ using ethanol cosolvent (Li et al 2007), and forming the intermediate (I). In the oxidative addition process as second step, the organopalladium intermediate (II) is fabricated on the surface of magnetic responsive nanocatalyst due to the aryl halide entrance to the process of coupling reaction. Then, the third step as transmetalation process is carried out in the presence of phenylboronic acid and the organopalladium intermediate (III) is formed. In the last step, the substituted biphenyl derivatives are fabricated and released by reductive
elimination process of Pd$^{2+}$ to Pd0. After the reaction completion, the magnetic responsive nanocatalyst is separated from the reaction media using the external magnet. This magnetic catalyst can be utilized for several runs due to its high catalytic capacity.

Table 2. Synthesis of 1,1'-biphenyl derivatives using magnetic responsive palladium/thiourea nanocatalyst.

Entry	Product	Time (min)	Yield$^{(\%)}$
1	![Product](image1)	25	85
2	![Product](image2)	20	87
3	![Product](image3)	30	80
4	![Product](image4)	35	79
5	![Product](image5)	35	84
6	![Product](image6)	35	75
7	![Product](image7)	5	93
8	![Product](image8)	5	95
9	![Product](image9)	5	90

$^{(a)}$ Isolated yield.
Entry	Catalyst Description	Amount of Catalyst	Base	Solvent	Temp. (°C)	Time (min)	Yield (%)	References
1	Biothiol-tempelated Pd NPs	0.03 (mol%)	KOH	EtOH/H₂O	60	60	54.28	(Li et al. 2018b)
2	Pd/Fe₃O₄/ZnO	0.003 (g)	K₂CO₃	H₂O	100	180	70	(Hosseini-Sarvari et al. 2016)
3	Ni/Pd core/shell NPs	0.01 (g)	K₂CO₃	DMF/H₂O	110	30	78	(Metin et al. 2013)
4	Palladium complex	0.1 (mol%)	K₂CO₃	DMF	120	720	80	(Trivedi et al. 2016)
5	GO-2N-Pd(II)	0.5 (mol%)	K₂CO₃	EtOH	80	240	82	(Bai et al. 2014)
6	Palladium/thiourea nanocomposite	0.004 (g)	K₂CO₃	EtOH/H₂O	R.T.	25	85	Present study

* Isolated yield.
3.2.4. Catalytic reusability of magnetic responsive palladium/thiourea nanocomposite for several runs

Having high catalytic capacity and reusability are two crucial factors in designing high potent and stable catalysts. Taking into account these features, the recovery process of wide ranges of magnetic responsive nanocomposite is conducted in order to estimate their catalytic capacity. For this purpose, the magnetic responsive palladium thiourea nanocatalyst was separated from the reaction media using an external magnet.
 Afterwards, the elution process of this synthesized magnetic responsive nanocatalyst was carried out by ethanol, the green and non-toxic solvent. After dilution process, it was kept in the oven at 70 °C for an overnight. The catalytic capacity and recycle-ability of magnetic responsive palladium/thiourea nanocatalyst were evaluated by its reusing in coupling model reaction. Based on the obtained results, no substantial reduction was observed in its catalytic efficiency after 5 runs (scheme 2). Therefore, it can be mentioned that this new magnetic responsive nanocatalyst has its high catalytic capacity and recycle-ability (Supplementary information, figures S2–S3 (available online at stacks.iop.org/MRX/8/026102/mmedia)).

4. Conclusions

As a summary, in this research study, new magnetic responsive palladium/thiourea nanocomposite with excellent catalytic activity and magnetic susceptibility was designed and synthesized. FT-IR, EDX, FE-SEM, and VSM analyses were used to characterized its structural features such as formation of new functional groups, its structural elements, unique sphere morphology, and excellent magnetic property. The surface of Fe3O4 MNPs as a core of this new magnetic nanocatalyst are functionalized with different inorganic and organic shells in four synthesis steps. Apart from SiO2, CPTMS, and thiourea shells, in fact, the coordination interaction of palladium ions and thiourea molecules can facilitate the Suzuki-Miyaura coupling reaction and formation of biphenyl products. Following the catalytic activity, its substantial stability and recycle ability was evaluated five times. In spite of five catalytic runs and recycling process, the catalytic capacity of magnetic responsive palladium/thiourea nanocomposite was considerable and no particular reduction was observed in the isolated yield percentage of obtained products.

Acknowledgments

The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Data availability statement

Competing interest statement

The authors whose names are listed in this article have no conflict of interests in this paper.

Authors’ contributions

A M has designed the study, managed the project, analysis and characterization, and participated in discussing of the results. R E and N B has carried out the literature study, performed the analyses, conducted the optimization, purification of the compounds and prepared the draft of the manuscript. F R has edited and revised the manuscript. All authors read and approved the final manuscript.

ORCID iDs

Ali Maleki https://orcid.org/0000-0001-5490-3350

References

Adam L, Schefzig L, Pecchioli T, Zimmer R and Reissig H U 2018 New bifunctional carbohydrate-like thiourea derivatives–design and first application in organocatalysis Synth. Commun. 48 1945–56
Aghabozorg H, Foroughian M, Foroumadi A, Bruno G and Amiri Rudbari H 2011 N1,N1-Dimethylpropane–1,2-diaminium bis(6-carboxypyrindine–2-carboxylate) monohydrate Acta Crystallographica Section E Crystallographic Communications 67 o932–3
An F Q, Wang Y, Xue X Y, Hu T P, Gao J F and Gao B J 2018 Design and application of thiourea modified D301 resin for the effective removal of toxic heavy metal ions Chem. Eng. Res. Des. 130 78–86
Andrés J M, Maestro A, Valle MA and Pedrosa R 2018 Chiral bifunctional thioureas and Squaramides and their copolymers as recoverable organocatalysts: stereoselective synthesis of 2-substituted 4-amino-3-nitrobenzopyrans and 3-functionalized 3,4-diamino-4H-chromenes The Journal of Organic Chemistry 83 5546–57
Aragón F H, Coaquira J A H, Villegas-Lelovsky L, Da Silva S W, Cesar D F, Nagamine L C C M, Cohen R, Menéndez-Prupin E and Morais P C 2015 Evolution of the doping regimes in the Al-doped SnO2 nanomaterials prepared by a polymer precursor method J. Phys. Condens. Matter 27 095301

Asgharnia S, Eivazzadeh-Keihan R, Radinekian F and Maleki A 2020 Preparation of a novel magnetic bionanocomposite based on functionalitytized chitosan by creating and its application in the synthesis of polyhydroquinolines, 1,4-dihydropyridine and 1,8-dioxo-decahydrosindine derivatives Int. J. Biol. Macromol. 144 29–46

Bai C, Zhao Q, Li Y, Zhang G, Zhang F and Fan X 2014 Palladium complex immobilized on graphene oxide as an efficient and recyclable catalyst for Suzuki coupling reaction Catal. Lett. 144 1617–23

Bani M S, Hatamie S, Haghiplateh M, Bahrinezhad H, Alaviyeh M H S, Eivazzadeh-Keihan R and Wei Z H 2019 Casein-coated iron oxide nanoparticles for in vitro hyperthermia for cancer therapy Spinn 9 1940003

Cui X, Qin T, Wang J R, Liu L and Guo Q X 2007 Pd(N,N-Dimethyl-β-alanine), as a high-turnover-number, phosphine-free catalyst for the synthesis of Suzuki reaction Synthesis 2007 393–9

de Almeida M P S, Caiado K L, Sartortto P P C, Cintra e Silva D O, Pereira A R and Morais P C 2010 Preparation and size-modulation of silica-coated maghemite nanomaterials J. Alloys Compd. 500 149–52

Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani M S, Chenab K K, Pashazadeh-Panahi P, Baradaran B, Mohktarzadeh A and Hamblin M R 2019a Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review J. Adv. Res. 18 185–201

Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, de la Guardia M, Hejazi M, Sohrabi H, Mohktarzadeh A and Maleki A 2018a Recent progress in optical and electrochemical biosensors for sensing of Clostridium butulinum neurotoxin TRAC, Trends Anal. Chem. 103 184–97

Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Maleki A, Hejazi M, Mohktarzadeh A and de la Guardia M 2018b Recent advances on nanomaterial-based electrochemical and optical aptasensors for detection of cancer biomarkers TRAC, Trends Anal. Chem. 100 103–15

Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, Chenab K K, Baradaran B, Hashemzaei M, Radinekian F, Mohktarzadeh A and Maleki A 2019b Dengue virus: a review on advances in detection and trends—from conventional methods to novel biosensors Microchim. Acta 186 129

Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Hejazi M, de la Guardia M and Mohktarzadeh A 2017 Recent advances in nanomaterial-mediated bio and immune sensors for detection of aflatoxin in food products TRAC, Trends Anal. Chem. 87 112–28

Eivazzadeh-Keihan R, Radinekian F, Maleki A, Bani M S and Azizi M 2020a A new generation of star polymer: magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy J. Mater. Sci. 55 319–36

Eivazzadeh-Keihan R, Radinekian F, Maleki A, Bani M S and Hajizadeh Z 2019c A novel biocompatible core–shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy Int. J. Biol. Macromol. 140 407–14

Eivazzadeh-Keihan R, Norouzi E B, Radinekian F, Maleki A, Bani M S, Maleki A, Shaabani B and Haghiplateh M 2020b Sythesis of core-shell magnetic supramolecular nanocatalysts based on amino-functionalized calix[4]arenes for the synthesis of 4H-chromenes by ultrasonic waves. ChemistryOpen 9 735–42

Esmati N, Foroughian M, Saeedi M, Mahdavi M, Koshneviszadeh M, Fazilzi O, Tanideh N, Miro R, Evidan M and Shafeie A 2013 Synthesis and cytotoxic activity of some novel dihyrobenzotri[3,2-f,h]pyrazin-3,2-cichrome derivatives J. Heterocycl. Chem. 52 97–104

Farah M, Karami B, Keshavarz R and Khosravi F 2017 Nano-Fe3O4@SiO2-supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins RSC Adv. 7 46644–50

Foroughian M, Foroumadi A, Notash B, Bruno G, Amiri Rudbari H and Aghabozorg H 2011 2,3-Diaminopyridinium 6-carboxypyridine-2-carboxylate Cryst.allographica Section E Crystallographic Communications 67 03325–3325

Foroughian M, Notash B, Shafiee S, Aghabozh Ar H and Foroumadi A 2012 Bist(dicyclohexylaminium)-2-carboxymethyl-2-hydroxysuccinate ethanol monosolvate Acta Crystallographica Section E Crystallographic communications 68 o2792–3

Ghorbani-Vaghieh R, Hemmati S and Hekmati M 2016 Pd immobilized on modified magnetic Fe3O4 nanoparticles: magnetically recoverable and reusable Pd nanocatalyst for Suzuki–Miyaura coupling reactions and Ullmann-type N-arylation of indoles J. Chem. Sci. 128 1157–62

Hajipour A R, Shirdastzade Z and Azizi G 2014 Silica-ac-ac-supported palladium nanoparticles as an efficient and reusable heterogeneous catalyst in the Suzuki–Miyaura cross-coupling reaction in water J. Chem. Sci. 126 85–93

Hajizadeh Z, Maleki A, Rahimi J and Eivazzadeh-Keihan R 2019 Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetrical hantsch reaction Silicon 12 1247–56

Han J, Liu L and Guo R 2009 Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki – Miyaura cross-coupling reaction in water JACS 131 2060–1

Heravi M M, Zadarih Y, Dehghani M and Hosseinzadeh N 2017 Current applications of organocatalysts in asymmetric aldol reactions: an update Tetrahedron: Asymmetry 28 587–707

Hossein-Sarvari M, Khanvar A and Moemi F 2016 Palladium immobilized on Fe3O4/ZnO nanoparticles: a novel magnetically recyclable catalyst for Suzuki–Miyaura and Heck reactions under ligand-free conditions J. Iran. Chem. Soc. 13 45–53

Huang H and Jacobsen E N 2006 Highly enantioselective direct conjugate addition of ketones to nitroalkens promoted by a chiral primary amine – thiourea catalyst JACS 128 1247–56

Kondolf I, Doucat H and Santelli M 2004 770-photophosphate/palladium catalysed Suzuki cross-coupling reactions of aryl halides with alkylboronic acids Tetrahedron 60 3813–8

Kumaravel M, Kumar P and Balakrishna M S 2014 Application of bisphosphomide–palladium(II) pincer complex in Suzuki–Miyaura cross-coupling reaction under microwave irradiation J. Chem. Sci. 126 711–6

Lee D H and Jin M J 2010 An extremely active and general catalyst for Suzuki coupling reaction of unreactive aryl chlorides Org. Lett. 13 2522–5

Li J, Shi L L, Chen J, Gong J and Yang Z 2014 Thioureas as ligands in organometallic reactions Synthesis 46 2007–23

Li K, Jin Z, Chan W L and Lu Y 2018a Enantioselective construction of bicyclic pyran and hydridane scaffolds via intramolecular Rauhut–Carrièr reactions catalyzed by thiourea-phosphines ACS Catal. 8 8810–5

Li S, Lin Y, Cao J and Zhang S 2007 Guanidine/PdOAc2-catalyzed room temperature Suzuki cross-coupling reaction in aqueous media under aerobic conditions The Journal of Organic Chemistry 72 4067–72

Li X, Zheng S, Zhou T, Zhang J, Li W and Fu Y 2018b Highly active Pd nanocatalysts regulated by biothiols for Suzuki coupling reaction Catal. Lett. 148 3325–34
Villa S, Riani P, Locardi F and Canepa F 2016 Functionalization of Fe₃O₄ NPs by silanization: use of amine
Sun Y, Zhu X, Guo D, Chen X and Dai J 2017 Effic
e Sun A W, Shi Y L, Guo A M and Zhang D S 2003 Research and application of thiourea in agriculture
Metin Ö, Ho S F, Alp C, Can H, Mankin M N, Gültekin M S, Chi M and Sun M 2013 Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki–Miyaura cross-coupling reaction. Nano Res. 6 10–8
Mitchell S and Steventon G 1994 Thiourea and its biological interactions Sulfur Reports 16 117–37
Mohammadimajed A, Oskuee R K, Eivazzadeh-Keihan R, Rezayi M, Baradaran B, Maleki A, Hashemzaei M, Mokhtarzadeh A and de la Guardia M 2020 Development of biosensors for detection of alpha-fetoprotein: as a major biomarker for hepatocellular carcinoma TrAC, Trends Anal. Chem. 130 115961
Pedroza R C, Cintra e Silva D O, Soler M A G, Sartoratto P P C, Rezende D R and Morais P C 2005 Raman study of nanoparticle-template interaction in a CoFe₂O₄/SiO₂-based nanocomposite prepared by sol–gel method J. Magn. Magn. Mater. 289 139–41
Pereira A R, Miranda K L C, Sartoratto P P C, Morais P C and Bakuzis A F 2006 Ferromagnetic resonance investigation of maghemite–silica nanocomposites. American Institute of Physics J. Appl. Phys. 100 086110
Qiao X, Zhang Z, Bao Z, Su B, Xing H, Yang Q and Ren Q 2014 Thiourea as an efficient organocatalyst for the transfer hydrogenation of 2-substituted quinoline derivatives RSC Adv. 4 42566–8
Safaei M, Zolfigol M A, Afsarhamedi F and Baghery S 2015 Synthesis of a novel dendrimer core of oxo-vanadium phthalocyanine magnetic nanoparticles: as an efficient catalyst for the synthesis of 3,4-dihydropyran(o)c(hromene) derivatives under green condition RSC Adv. 5 102340–9
Sartoratto P P C, Caiado K L, Pedroza R C, da Silva S W and Morais W 2007 The thermal stability of maghemite–silica nanocomposites: an investigation using x-ray diffraction and Raman spectroscopy J. Alloys Comp. 434 650–8
Shakeel A, Altaf A A, Qureshi A M and Badshah A 2016 Thiourea derivatives in drug design and medicinal chemistry: a short review Journal of Drug Design Medicinal Chemistry 2 10–20
Stöber W, Fink A and Bohr E 1968 Controlled growth of monodisperse silica spheres in the microrange size J. Colloid Interface Sci. 26 62–9
Sudhamani H, Basha S T, Venkateswarlu N, Vijaya T and Raju C N 2015 Synthesis and characterization of new thiourea and urea derivatives of 6-fluoro-3-(piperidin-4-yl)benzo[d][1,3]oxazole: in vitro antimicrobial and antioxidant activity J. Chem. Sci. 127 1739–46
Sudhaxea H, Razaee I, Nadzhafroa R, Safarov Y S and Allahkhverdi M A 2011 Antioxidant properties of some thiourea derivatives Russ. J. Appl. Chem. 84 1594–7
Sun A W, Shi Y L, Guo A M and Zhang D S 2003 Research and application of thiourea in agriculture Chinese Journal of Soil Science 4
Sun Y, Zhuo G, Du D, Chen X and Dai J 2017 Efficient synthesis of PtPd/Fe₃O₄ nanoparticles and its magnetic recyclability for the Heck and Suzuki reactions Mater. Res. Express 4 026102
Takemoto Y 2010 Development of chiral thiourea catalysts and its application to asymmetric catalytic reactions Chem. Pharm. Bull. 58 593–601
Trivedi M, Patel S, Shettigar H, Singh R and Jana S 2015 An impact of biofield treatment on spectroscopic characterization of pharmaceutical compounds Modern Chemistry & Applications 31–6
Trivedi M, Singh G, Kumar A and Rath N P 2016 Silver(I) and palladium(II) complexes of new pentamethylene-functionalized bisimidazolium dication ligands and its application in Heck and Suzuki–Miyaura coupling reaction Inorg. Chem. Acts 449 1–8
Ulu A, Occan I, Koytepe S and Ates B 2018 Design of epoxy-functionalized Fe₃O₄@MCM-41 core–shell nanoparticles for enzyme immobilization Int. J. Biol. Macromol. 115 1122–30
Veisi H, Hamelien M and Hemmati S 2014 Palladium anchored to SBA-15 functionalized with melamine-pyridine groups as a novel and efficient heterogeneous nanocatalyst for Suzuki–Miyaura coupling reactions J. Mol. Catal. A: Chem. 395 25–33
Vieira E G, Soares I V, Da Silva N C, Perujo S D, Do Carmo D R and Dias Filho N L 2013 Synthesis and characterization of 3-[(thiourea)-propyl]-functionalized silica gel and its application in adsorption and catalysis New J. Chem. 37 1933–43
Villa S, Riani P, Locardi F and Canepa F 2016 Functionalization of Fe₃O₄ NPs by silanization: use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization Materials 9 826
Wahid A, Bara S and Farooq M 2017 Thiourea: a molecule with immense biological significance for plants International Journal of Agriculture & Biology 19 911–20
Wei S, Wang Q, Zhu J, Sun L, Lin H and Guo Z 2011 Multifunctional composite core–shell nanoparticles Nanoscale 3 4474–502
Yang Z, Huang X, Yao X and Ji H 2018 Thiourea modified hyper-crosslinked polystyrene resin for heavy metal ions removal from aqueous solutions J. Appl. Polym. Sci. 135 45568
Yao W, Zhu J, Zhou X, Jiang R, Wang P and Chen W 2018 Ferrocenophane-based bifunctional organocatalyst for highly enantioselective Michael reactions Tetrahedron 74 4205–10
Yuan J N, Liu H X, Tian Q Q, Ji W, Shen K and He W 2018 Highly enantioselective Michael addition of dithiomalonates to nitroolefins catalyzed by new bifunctional chiral thiourea Synthesis 50 2577–86
Zhang D and Wang Q 2015 Palladium catalyzed asymmetric Suzuki–Miyaura coupling reactions to axially chiral biaryl compounds: chiral ligands and recent advances Coord. Chem. Rev. 286 1–16
Zhou J, Liu Y, Zhou X, Ren J and Zhong C 2017 Removal of mercury ions from aqueous solution by thiourea-functionalized magnetic biosorbent: preparation and mechanism study J. Colloid Interface Sci. 507 107–18
Zhu Y, Zheng Y, Wang W and Wang A 2015 Highly efficient adsorption of Hg(II) and Pb(II) onto chitosan-based granular adsorbent containing thiourea groups Journal of Water Process Engineering 7 218–26