He's frequency formula to fractal undamped Duffing equation

Guang-Qing Feng

Abstract
Nonlinear oscillation is an increasingly important and extremely interesting topic in engineering. This article completely reviews a simple method proposed by Ji-Huan He and successfully establishes a fractal undamped Duffing equation through the two-scale fractal derivative in a fractal space. Its variational principle is established, and the two-scale transform method and the fractal frequency formula are adopted to find the approximate frequency of the fractal oscillator. The numerical result shows that He's frequency formula is a unique tool for the fractal equations.

Keywords
Undamped Duffing equation, two-scale transform method, fractal frequency formula, numerical simulation

Introduction
Nonlinear oscillation is a very common phenomenon in nature, such as water waving and bridge vibration. Many oscillation problems can be modeled by differential equations, which, however, become invalid for the fractal space, and fractal models have to be employed. Generally, a fractal model with fractal derivatives is difficult to be solved, and even if an accurate solution exists, the solution is too complicated to be used for practical applications. Due to the shortness of finding exact solutions, these nonlinear equations are extremely imperative to be solved by employing analytical and numerical methods, for example, the variational iteration method, the homotopy perturbation method, the Hamiltonian approach, and the Taylor series method. Fractal calculus especially provides a powerful tool for characterizing the mechanical behavior of a nonlinear oscillator in a fractal space, which cannot be revealed by the classical differential models. For examples, some interesting properties of the fractal Toda oscillator was first revealed, Fangzhu’s passive water harvesting was explored using a fractal oscillation model, the fractal MEMS oscillator can eliminate the pull-in instability, which is an intrinsic property of the traditional MEMS oscillator. The fractional Schrodinger equation, the fractional Camassa–Holm equation, and the fractional Kundu–Mukherjee–Naskar equation also showed plenty of solution properties.

Recently, Chinese mathematician, Dr Ji-Huan He suggested a simple method for a conservation nonlinear oscillator, which has attracted much attention to solve various fractal oscillators. The most important feature of a nonlinear oscillator is the relationship between frequency and amplitude, and He’s frequency formula is a simple method to estimate this relationship, which was initially inspired by an ancient Chinese algorithm.

Duffing oscillator was first proposed by Duffing in 1918 to investigate the vibration of the electromagnetic vibrating beam, it can be written in the form

$$\ddot{\varphi}(t) + \mu \dot{\varphi}(t) - k^2 \varphi(t) + Q \varphi^3(t) = 0$$

(1)
with a damping coefficient \(\mu\) and a nonlinear coefficient \(Q\). Here \(k\) is the wave number of the traveling wave. This equation seems simple but has complex dynamic behaviors. The traditional methods are not useful for equation (1). The application of the fractal derivative has used to overcome the difficulty in the damping and undamped equation. In this article, a fractal nonlinear oscillator is established and the approximate frequency of the fractal oscillator is found by He’s frequency formula.

Duffing equation

Consider the following undamped simple for

\[
\phi''(t) - k^2 \phi(t) + Q\phi^3(t) = 0, \quad \phi(0) = A, \quad \phi'(0) = 0
\]

which, however, cannot describe the damping effort, and a fractal modification has to be considered, which is

\[
\frac{hD}{Dt^a} \left(\frac{hD\phi}{Dt^a} \right) - k^2\phi + Q\phi^3 = 0, \quad \phi(0) = A, \quad \frac{hD\phi(0)}{Dt^a} = 0
\]

where \(\frac{hD\phi}{Dt^a}\) is He’s fractal derivative and defined as follows

\[
\frac{hD\phi}{Dt^a}(t_0) = \Gamma(1 + a) \lim_{\Delta t \to 0} \frac{\phi(t) - \phi(t_0)}{(t - t_0)^a}
\]

Equation (3) can model the vibration property in a fractal space. Now the two-scale fractal calculus can be applied to various discontinuous problems, for examples, the wool fiber’s biomechanism and the electrospinning process. The variational principle for equation (3) can be obtained according to the semi-inverse method, which reads

\[
J(\phi) = \int \left(\frac{1}{2} \left(\frac{hD\phi}{Dt^a} \right)^2 + \frac{1}{2} k^2 \phi^2 - \frac{1}{4} Q\phi^4 \right) hD\phi
\]

The fractal two-scale transform method and fractal frequency formula are adopted to find the approximate analytical solution of equation (3) in the fractal space.

We use the two-scale fractal transform method to convert equation (3) into its differential partner. Assume \(T = t^a\), equation (3) can be written into the form

\[
\frac{hD}{DT} \left(\frac{hD\phi}{DT} \right) - k^2\phi + Q\phi^3 = 0, \quad \phi(0) = A, \quad \frac{hD\phi(0)}{DT} = 0
\]

Equation (4) has the following form

\[
\frac{hD}{DT} \left(\frac{hD\phi}{DT} \right) + W(\phi) = 0
\]

where \(W(\phi) = -k^2\phi + Q\phi^3\)

The square of frequency is given by

\[
\omega^2 = \left. \frac{hD W(\phi)}{hD\phi} \right|_{\phi=\tilde{\phi}}
\]

where \(\tilde{\phi}\) is always chosen as \(\tilde{\phi} = \frac{4}{2}\).
Equation (6) is called as He’s frequency formulation, and it has been widely used in various nonlinear oscillators, for example, the nonlinear vibration of nanoparticles in the electrospinning process, the attachment vibration of geckos, and Fangzhu’s oscillator.

So, we have

$$\omega = \sqrt{\frac{3}{4} Q A^2 - k^2}$$

(7)
Assume $A = 1$, $Q = 1$, and $k^2 = 0$, we have $\omega = 0.866$ according to equation (7). The exact frequency of equation (3) is given by He, $\omega_{\text{exact}} = 0.8472$. The relative error is 2.2%.

We can obtain the approximate analytical solution of equation (3) as follows

$$\varphi = A \cos \omega t$$

We compare the numerical solution with the analytical solution according to equation (8) in Figure 1 for $x = 1$. We can find if the ratio of Q to k^2 is larger (Figure 1(a) to (c)), a better fitting is seen for given values of A. The larger the value of A, the more accurate approximate periodic solution obtained (Figure 1(d) to (f)) for given values of Q and k^2.

In Figure 2, we show the different x values for equation (8) when $A = 3$, $Q = 1$, and $k^2 = 1$. We find that $x = 0.5$ is the critical point. When $x < 0.5$, the amplitude decreases deeply at initial stage, otherwise it keeps almost unchanged. For a reduced value of x, the undamped Duffing frequency becomes slower and has a longer period, which is the basic property of a damped oscillator in the classic vibration theory.

Conclusion

In this paper, the undamped Duffing equation is described by the two-scale fractal derivative in a fractal space. Its variational principle is established, and the two-scale transform method and the fractal frequency formula are adopted to find the approximate frequency of the fractal equation. The example shows He’s frequency formulation is a simple and accuracy tool to fractal oscillators.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Guang-Qing Feng https://orcid.org/0000-0001-7851-1458
References

1. He JH and Ain QT. New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle. *Therm Sci* 2020; 24: 659–681.
2. Ain QT and He JH. On two-scale dimension and its applications. *Therm Sci* 2019; 23: 1707–1712.
3. He JH. Fractal calculus and its geometrical explanation. *Results Phys* 2018; 10: 272–276.
4. He JH. Seeing with a single scale is always unbelieving: from magic to two-scale fractal. *Therm Sci* 2021; 25.
5. He JH and Ji FY. Two-scale mathematics and fractional calculus for thermodynamics. *Therm Sci* 2019; 23: 2131–2133.
6. Zuo YT and Liu HJ. A fractal rheological model for sic paste using a fractal derivative. *J Appl Comput Mech* 2021; 7: 13–18.
7. Zuo YT. Effect of sic particles on viscosity of 3D print paste: a fractal rheological model and experimental verification. *Therm Sci* 2021; 25.
8. Zuo YT and Liu HJ. Fractal approach to the mechanical and electronic properties of SiC/graphene composites. *FU Mech Eng*. Epub ahead of print 2021. DOI: 10.22190/FUME123456001A.
9. Ain QT, He J-H, Anjum N, et al. The fractional complex transform: a novel approach to the time-fractional Schrodinger equation. *Fractals* 2020. Epub ahead of print. DOI: 10.1142/S0218348X20501418.
10. Anjum N and Ain QT. Application of He's fractional derivative and fractal complex transform for time fractional Camassa–Holm equation. *Therm Sci* 2020; 24: 3023–3030.
11. He JH. Variational iteration method – a kind of non-linear analytical technique: some examples. *Int J Non Linear Mech* 1999; 34: 699–708.
12. He JH. Variational iteration method – some recent results and new interpretations. *J Comput Appl Math* 2007; 207: 3–17.
13. He JH and Latifizadeh H. A general numerical algorithm for nonlinear differential equations by the variational iteration method. *Int J Numer Methods Heat Fluid Flow* 2020; 30: 4797–4810.
14. He JH and El-DibYO. The reducing rank method to solve third-order Dufing equation with the homotopy perturbation. *Numer Methods Partial Differ Equations*. Epub ahead of print 2020. DOI: 10.1002/nme.22609.
15. He JH. Hamiltonian approach to nonlinear oscillators. *Phys Lett A* 2010; 374: 2312–2314.
16. Hou W-F, Qie N, He JH, et al. Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. *FU Mech Eng*. Epub ahead of print 2021. DOI: 10.22190/FUME201205002H.
17. He JH. A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. *Int J Numer Methods Heat Fluid Flow* 2020; 30: 4933–4943.
18. He JH. Taylor series solution for a third order boundary value problem arising in architectural engineering. *Ain Shams Eng J* 2020; 11: 1411–1414.
19. He JH and Jin X. A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube. *Math Meth Appl Sci*. Epub ahead of print 2020. DOI: 10.1002/mma.6321.
20. Elias-Zuniga A, Palacios-Pineda LM, Jimenez-Cedeno IH, et al. Equivalent power-form representation of the fractal Toda oscillator. *Fractals*. Epub ahead of print 2020. DOI: 10.1142/S0218348X21500341.
21. He CH, Liu C, et al. Passive Atmospheric water harvesting utilizing an ancient Chinese ink slab and its possible applications in modern architecture. *FU Mech Eng*. Epub ahead of print 2020. DOI: 10.22190/FUME201203001H.
22. He CH, He JH and Sedighi HM. Fangzhu (方诸): an ancient Chinese nanotechnology for water collection from air: history, mathematical insight, promises, and challenges. *Math Methods Appl Sci*. Epub ahead of print 2020. DOI: 10.1002/mma.6384.
23. Wang KL. Effect of Fangzhu's nano-scale surface morphology on water collection. *Math Methods Appl Sci*. Epub ahead of print 2020. DOI: 10.1002/mma.6569.
24. He JH and El-Dib YO. Homotopy perturbation method for Fangzhu oscillator. *J Math Chem* 2020; 58: 2245–2253.
25. He CH, Liu C, He J-H, et al. Passive atmospheric water harvesting utilizing an ancient Chinese ink slab and its possible applications in modern architecture. *FU Mech Eng*. Epub ahead of print 2021. DOI: 10.22190/FUME201203001H.
26. Tian D, Ain QT and Anjum N. Fractal N/MEMS: from pull-in instability to pull-in stability. *Fractals*. Epub ahead of print 2020. DOI: 10.1142/S0218348X21500304.
27. He JH and El-Dib YO. Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation. *Results Phys*. Epub ahead of print 2020. DOI: 10.1016/j.rinp.2020.
28. He JH. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546.
29. Qie N, Hou WF and He JH. The fastest insight into the large amplitude vibration of a string. *Rep Mech Eng* 2020; 2: 1–5.
30. He CH. A simple analytical approach to a nonlinear equation arising in porous catalyst. *Int J Numer Methods Heat Fluid Flow* 2017; 27: 861–866.
31. He CH. An introduction to an ancient Chinese algorithm and its modification. *Int J Numer Methods Heat Fluid Flow* 2016; 26: 2486–2491.
32. He JH. Some asymptotic methods for strongly nonlinear equations. *Int J Mod Phys B* 2006; 20: 1141–1199.
33. Duffing G. *Erzwungene Schwingungen bei Veranderlicher Eigenfrequenz und ihre Technische Bedeutung*. Braunschweig, Germany: Friedr. Vieweg u. Sohn, 1918.
34. He JH. A tutorial review on fractal space and fractional calculus. *Int J Theor Phys* 2014; 53: 3698–3718.
35. Fan J, Yang X and Liu Y. Fractal calculus for analysis of wool fiber: mathematical insight of its biomechanism. *J Eng Fibers Fabr* 2019; 14. DOI: 10.1177/1558925019872200.

36. He CH, Shen Y, et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. *Fractals* 2020; 28. DOI: 10.1142/S0218348X20500115.

37. Yao X and He JH. On fabrication of nanoscale non-smooth fibers with high geometric potential and nanoparticle’s nonlinear vibration. *Therm Sci* 2020; 24: 2491–2497.

38. Li XX, Li YY, et al. Gecko-like adhesion in the electrospinning process. *Results Phys* 2020; 16: 102899.

39. Li XX and He JH. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: the formation mechanism of nanofiber membrane in the electrospinning. *Results Phys* 2019; 12: 1405–1410.

40. Wang KL and He CH. A remark on Wang’s fractal variational principle. *Fractals* 2019; 27. DOI: 10.1142/S0218348X19501342.

41. He JH. Generalized variational principles for buckling analysis of circular cylinders. *Acta Mech* 2019; 231: 899–906.

42. He JH. A fractal variational theory for one-dimensional compressible flow in a microgravity space. *Fractals* 2019; 28. DOI: 10.1142/S0218348X20500243.

43. He JH, Anjum N and Skrzypacz PS. A variational principle for a nonlinear oscillator arising in the microelectromechanical system. *J Appl Comput Mech* 2021; 7: 78–83.

44. He JH. Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. *Results Phys* 2020; 17: 103031.

45. He JH. On the fractal variational principle for the Telegraph equation. *Fractals*. Epub ahead of print 2020. DOI: 10.1142/S0218348X21500225.

46. He JH. Variational approach for nonlinear oscillators. *Chaos, Solitons Fractals* 2007; 34: 1430–1439.