Arrays of ferromagnetic nanoparticles are becoming one of the mainstreams of current mesoscopic physics. Not only ferromagnetic granules promise to serve as logical units and memory storage elements meeting elevated needs of emerging technologies, but also offer an exemplary model system for investigation of disordered magnets. At the same time the model of weakly coupled nanoscale ferromagnetic grains proved to be useful for understanding the transport properties of doped manganite systems that have intrinsic inhomogeneities. Recent studies showed that above the Curie temperature these materials possess a nanoscale ferromagnetic cluster structure which to a large extent controls transport in these systems. This defines an urgent quest for understanding and quantitative description of electronic transport in ferromagnetic nanodomain materials based on the model of nanogranular ferromagnets.

In this paper we investigate electronic transport properties of arrays of ferromagnetic grains near the ferromagnetic-paramagnetic transition, see Fig. 1. At low temperatures, $T < T^s_c$, the sample is in a so called superferromagnetic (SFM) state, see Fig. 1 set up by dipole-dipole interactions. Near the macroscopic Curie temperature, T^s_c, thermal fluctuations destroy the macroscopic ferromagnetic order. At intermediate temperatures $T^s_c < T < T^g_c$, where T^g_c is the Curie temperature of a single grain, the system is in a superparamagnetic (SPM) state where each grain has its own magnetic moment while the global ferromagnetic order is absent. At even higher temperatures, $T > T^g_c$, the ferromagnetic state within each grain is destroyed and the complete sample is in a paramagnetic state. We consider the model of weakly interacting grains in which the sample Curie temperature is much smaller than the Curie temperature of a single grain, $T^s_c \ll T^g_c$.

We first focus on the SPM state, and discuss a d-dimensional array ($d = 3, 2$) of ferromagnetic grains taking into account Coulomb interactions between electrons. Granularity introduces additional energy parameters apart from the two Curie temperatures, T^s_c and T^g_c: each nanoscale cluster is characterized by (i) the charging energy $E_e = e^2/(\kappa a)$, where e is the electron charge, κ the sample dielectric constant, and a the granule size, and (ii) the mean energy level spacing δ. The charging energy associated with nanoscale ferromagnetic grains can be as large as several hundred Kelvins and we require that $E_e/\delta \gg 1$. The typical sample Curie temperature, T^s_c, of the arrays we consider (and also of doped manganites) is in the range (100 - 200) K; thus the temperature interval $T^s_c < T < E_e$ is experimentally accessible. To satisfy the last inequality, the size of a single ferromagnetic grain, a, should be less than the critical size $a_c = c^2/(T^s_c \kappa)$. The condition $E_e/\delta \gg 1$ defines the
lower limit for the grain size: $a_t = (\kappa/e^2\nu)^{1/(D-1)}$, where $\nu = \nu_r + \nu_i$ is the total density of states at the Fermi surface (DOS) with $\nu_r(\nu_i)$ being the DOS for electrons with spin up (down) and D the grain dimensionality [14].

The internal conductance of a metallic grain is taken much larger than the inter-grain tunneling conductance, which is a standard condition of granularity. The tunneling conductance is the main parameter that controls macroscopic transport properties of the sample [13]. In consideration of applications to experiments [13, 14] we restrict ourselves to the case where the tunneling conductance is smaller than the quantum conductance [13]. In the SFM state the charge degrees are coupled with the spin degrees of freedom; to reflect this connection, the tunneling conductance can be written in a form $g_{\alpha}(\theta) = g_{\alpha}^0(1 + \Pi^2 \cos \theta)$, [13], where g_{α}^0 is the tunneling conductance in the paramagnetic state [13]: $\Pi = (\nu_i - \nu_r)/\nu_i$ is the polarization factor of a ferromagnetic grain where $\theta \in [0, \pi]$ is the angle between two superspins, see Fig. 1. The tunneling conductance, $g_{\alpha}(\theta)$, achieves its maximum value for parallel spins, $\theta = 0$ (corresponding to the SFM state). In general, the distribution of angles θ is determined by some function $f(\theta)$ which depends on temperature (and on external magnetic field): for $T < T^*_c$, in the SFM state $f(\theta)$ is the δ-distribution and for high temperatures, $T \gg T^*_c$, it is constant [an explicit expression for $f(\theta)$ is discussed below Eq. (3)]. We denote averages over angles by $\langle \ldots \rangle_\theta \equiv \int_0^\pi d\theta \ldots f(\theta)$ with $(1)_{\theta} = 1$. Using this distribution we introduce the averaged tunneling conductance:

$$g_{\alpha}(m^2) \equiv \langle g_{\alpha}(\theta) \rangle_\theta = g_{\alpha}^0(1 + \Pi^2 m^2),$$

with the normalized “magnetization” $m^2 = \langle \cos \theta \rangle_\theta$. For $m^2 \rightarrow 1$ in the SFM state and $m^2 \rightarrow 0$ for high temperatures, $T \gg T^*_c$. Note, that in general m^2 is not the normalized (absolute value of the) magnetization of the sample since it only takes into account the angle between two neighboring superspins in the plane spanned by them (Fig. 1). However, close to T^*_c, we can expect $m^2 \approx |\mathbf{M}(T)/M_s|^2$, where M_s is the saturation value of the magnetization of the sample. Below we first discuss the Ohmic transport near T^*_c and then summarize the main results for the resistivity behavior in the non-Ohmic regime.

Ohmic transport.—To calculate the conductivity for weakly coupled grains in the presence of quenched disorder, we start with determining the total probability for an electron to tunnel through N grains

$$P(\theta_1, \ldots, \theta_N) = \prod_{i=1}^N P_i(\theta_i),$$

where $P_i(\theta_i)$ denotes the probability for an electron to tunnel through a single grain i with an angle difference θ_i of the magnetic moment to the previous grain [13, 20]. The probability $P(\theta_1, \ldots, \theta_N)$ has to be averaged over all angles in order to obtain the total tunneling probability $P_{\text{total}} \equiv \langle P(\theta_1, \ldots, \theta_N) \rangle_{\theta_1, \ldots, \theta_N} = \prod_{i=1}^N P_i(m^2)$. The latter equality follows from the fact that P_{total} factorizes into the individually averaged probabilities $P_i(m^2) = \langle P_i(\theta_i) \rangle_{\theta_i}$. The mechanism for electron propagation through an array of grains at low temperatures is elastic and/or inelastic co-tunneling. The corresponding probabilities in the limit of weak coupling between the grains [17] are given by $P_i^{\text{el}}(m^2) \simeq [g_i(m^2)\delta/E_c$ and $P_i^{\text{in}}(m^2) \simeq [g_i(m^2)T^2]/E_c$, respectively, [21]. Assuming that all probabilities $P_i(m^2)$ are approximately the same [11] for each grain, $P_i(m^2) = P(m^2)$ for all i, and expressing them in terms of the localization length $\xi(m^2)$, defined by $P(m^2) = \exp[-\alpha/\xi^2(m^2)]$, we obtain

$$\xi^2 \simeq a/\ln[E_c/g_0(m^2)\delta], \xi^{\text{in}} \simeq a/\ln[E_c^2/T^2g_0(m^2)].$$

Since the characteristic temperature we consider is of the order of the Curie temperature, $T \sim T^*_c$, the dominant mechanism for electron propagation is the inelastic co-tunneling [22]. Following Mott-Efros-Shklovskii's theory [23, 24], the conductivity can be written as $\sigma(T, m^2) \sim g_i(m^2)\exp[-r/\xi(m^2) - e^2/(krT)]$, where the tunneling conductance $g_i(m^2)$ is given by Eq. (3) and r is the hopping distance. The first term in the exponent accounts for electron tunneling and the second term describes thermal activation necessary to overcome the Coulomb correlation energy. Optimizing $\sigma(T, m^2)$ with respect to the hopping length, $r = N \cdot a$, we obtain:

$$\sigma(T, m^2) \sim g_i^0(1 + \Pi^2 m^2) \exp(-\sqrt{T/T^*_0}),$$

with $T_0(m^2) = T_0[1 - (\xi_0/a)\ln(1 + \Pi^2 m^2)]$ being the characteristic temperature scale. Here $T_0 \equiv T_0^0(m^2 = 0) = e^2/(\kappa\xi_0)$, where ξ_0 is the inelastic localization length given in Eq. (2) with the tunneling conductance corresponding to the paramagnetic state, $g_i(m^2 = 0) = g_i^0$. The minimal value of the resistivity in the SFM state is determined by the minimal value of the energy scale $T_0^{\text{min}} = T_0(1 - \ln 2)$.

The behavior of the resistivity $\rho(T, m^2)$, inverse of the conductivity $\sigma(T, m^2)$ in Eq. (3), and the magnetization $m^2(T)$ are shown in Fig. 2 for the following set of parameters: $\xi_0/a = 1$, $T_0/T^*_c = 10$, and $\Pi^2 = 0.3$. In order to describe typical experimental data [12], the normalized distribution function $f(\theta)$ was chosen to ensure a sharp drop in the magnetization at T^*_c, $f(\alpha) = [\alpha/\arctan(1/\alpha)](x^2 + \alpha^2)^{-1}$, with $x = \theta/\pi$ and $\alpha(T) = 10(T/T^*_c - 1)$ for $T > T^*_c$ and $\alpha(T < T^*_c) = 0$ otherwise. The numerical constant in $\alpha(T)$ was taken to produce a drop of m^2 in a temperature region ΔT^*_c with $\Delta T^*_c/T^*_c \sim 0.1$. Note, that the jump in the resistivity does not depend on the precise functional expression of $f(\theta)$; but it is sufficient that m^2 decays rapidly in the interval $\Delta T^*_c \ll T^*_c$.

For small polarization factors, $\Pi^2 m^2 \ll 1$, the expression for the energy scale $T_0(m^2)$, can be written as $T_0(m^2) = T_0[1 - (\xi_0/a)^2 \Pi^2 m^2]$. As a result, we obtain for the conductivity of an array of superspins $\sigma(T, m^2) \sim [1 + \gamma_T \Pi^2 m^2] \exp(-\sqrt{T_0/T})$, where γ_T is
we obtain the following result:

\(T \) quickly above the order of \(T \)

\(\Delta \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(\xi_0 \)

\(T \)

\(a \)

\(\Delta \)

\(c \)

\(a \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)

\(\xi \)

\(c \)

\(T \)

\(m \)

\(\rho/\rho \)
hibits variable range hopping behavior and therefore is more sensitive to temperature than the resistance of manganite systems.

Recently the nanoscale granularity in manganese oxides was directly observed experimentally in La$_{2-2x}$Sr$_x$Mn$_2$O$_7$. The cluster structure in these perovskite materials is introduced by dopants, creating the individual weakly coupled nanodomains. To describe the MR in these materials one has to take into account electron localization within each cluster. This means that besides the tunneling conductance, g_t, a finite grain conductance g_0 has to be considered as well. In this case the total conductance can be written in the form $g(T, m^2) = g_0(T)g_t(m^2)/[g_0(T) + g_t(m^2)]$. Below the Curie temperature T_c^*, the tunneling conductance is small, $g_t(1) \ll g_0(T < T_c^*)$, such that $g(T < T_c^*, 1) = g_0(1)$, whereas above T_c^*, the grain conductance $g_0(T)$ becomes small due to localization effects (e.g. Jahn-Teller effect [30]), leading to the formation of an insulation state, see e.g. [12]. In our paper we were assuming that $g_0 \gg g_t$ therefore the localization effects within each grain are small. This situation is realized in e.g. La$_{1-x}$A$_x$MnO$_3$ ($A =$ Sr, Ca). [31].

The above considerations were carried out at zero external magnetic field B. A finite field in ferromagnetic domain materials affects the SFM-SPM transition and leads to a reduction of the peak in the MR accompanied by a shift to higher temperatures with increasing B, which is parallel to the magnetization of the SFM at low T [Fig. 1 (bottom); Refs. [3, 12]]. This means that the distribution function $f(\theta)$ favors small angles near T_c^*, i.e. the drop in m^2 is smeared out.

To summarize, we have investigated transport properties of ferromagnetic nanoparticle arrays and nanodomain materials in the limit of weak coupling between grains in the SPM and SFM states in both Ohmic and non-Ohmic regimes. We have described the electron transport near the Curie temperature T_c^* in the artificially self-assembled superspin arrays and discussed possible applications of our results to a certain class of doped manganites, where localization effects within the clusters can be neglected. We derived the magnitude of the jump in the resistivity at the transition between the SPM and SFM states. We also discussed the influence of the magnetic field on the jump amplitude and the relation of our results to available experimental data.

Acknowledgements.— We thank Ken Gray, John Mitchell, Philippe Guyot-Sionnest, Heinrich Jaeger, Wai Kwok, and Xiao-Min Lin for useful discussions. This work was supported by the U.S. Department of Energy Office of Science through contract No. DE-AC02-06CH11357. A. G. acknowledges support by the DFG through a research grant. I. B. was supported by the UC-ANL Consortium for Nanoscience research.

[1] S. Sun et al., Science 287, 1989 (2000).