\(\beta\)-Amyloid (A\(\beta\)) Oligomers Impair Brain-derived Neurotrophic Factor Retrograde Trafficking by Down-regulating Ubiquitin C-terminal Hydrolase, UCH-L1*

Received for publication, February 21, 2013, and in revised form, April 9, 2013. Published, JBC Papers in Press, April 18, 2013, DOI 10.1074/jbc.M113.463711

Wayne W. Poon1,2, Anthony J. Carlos1, Brittany L. Aguilar1, Nicole C. Berchtold1, Crystal K. Kawano1, Vahe Zograbyan1, Tim Yaopruke1, Michael Shelanski2, and Carl W. Cotman3

From the 1Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697 and the 2Department of Pathology and the Taub Institute, Columbia University, New York, New York 10032

**Background:** Axonal transport deficits are part of Alzheimer disease (AD) pathobiology.

**Results:** \(\beta\)-Amyloid (A\(\beta\)) impairs BDNF-dependent retrograde signaling, which is rescued by increasing cellular UCH-L1 levels.

**Conclusion:** In AD, A\(\beta\) impairs neurotrophin-mediated retrograde signaling by disrupting ubiquitin homeostasis.

**Significance:** Elucidating the mechanism by which A\(\beta\) causes transport deficits that compromise synaptic plasticity and neuronal survival is crucial for discovering novel therapeutics to reverse cognitive deficits in AD.

We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that A\(\beta\) oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. A\(\beta\)-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, A\(\beta\) may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.

Alzheimer disease (AD)3 is defined pathologically by the accumulation of extracellular A\(\beta\) plaques and intracellular neurofibrillary tangles, accompanying synaptic and neuronal loss in the AD brain. Although A\(\beta\) plaque accumulation is a clear risk factor associated with AD, cognitive decline precedes plaque pathology (1). Studies now suggest that soluble and/or oligomeric A\(\beta\) that accumulates early in the disease causes synaptic deficits and correlates more closely with cognitive dysfunction than A\(\beta\) plaque load (2–4). Consistent with these data, cerebral infusion of soluble A\(\beta\) oligomers impairs hippocampal long term potentiation, a form of synaptic plasticity associated with memory formation, and disrupts hippocampal-dependent learning (5, 6). Also, AD transgenic mice that accumulate soluble oligomers exhibit impaired hippocampal long term potentiation and hippocampal-dependent learning along with synaptic loss, prior to frank plaque deposition (7–10).

BDNF/TrkB signaling plays a major role in synaptic plasticity, learning, and memory (11). Similar to the deficits induced by oligomeric A\(\beta\), reduced BDNF signaling also causes AD-like synaptic plasticity deficits (12–19). The parallels have given rise to the hypothesis that a potential mechanism underlying A\(\beta\)-mediated synaptic dysfunction involves disrupted BDNF signaling (20–22). Indeed, down-regulation of BDNF signaling may be an early and possibly primary event in AD, based on the finding that in early stages of AD (i.e., mild cognitive impairment), BDNF levels are decreased and correlate with cognitive decline (23).

Consistent with the hypothesis that A\(\beta\)-mediated synaptic dysfunction involves disrupted BDNF signaling, we have found that soluble A\(\beta\) impairs retrograde axonal trafficking of the BDNF receptor, TrkB (22). Retrograde axonal transport of the BDNF-TrkB complex to the soma drives downstream signaling events important for neuronal health, survival, and plasticity, including CREB-dependent gene transcription (24). Retrograde axonal trafficking of the TrkB receptor involves multiple steps, including 1) TrkB internalization from the cell surface, 2) sorting/processing of TrkB to late endosomes/multivesicular bodies (MVBs), and 3) transport from the axon to the soma, mediated by dynein motors (24–29).

An important sorting signal that marks tyrosine kinase receptors for entry into the MVB pathway is ligand-induced
Ubiquitin Homeostasis in BDNF-mediated Retrograde Transport

ubiquitination, particularly monoubiquitination (30–33). Although the contribution of ubiquitin in TrkB retrograde trafficking has not been elucidated in detail, TrkB is monomono-ubiquitinated in response to BDNF (34), suggesting that ubiquitin may be important for TrkB signaling. Taken together, with the recent finding that Aβ accumulation in neurons impairs the MVB sorting pathway in part by inhibiting the activities of deubiquitinating enzymes (35), one mechanism by which Aβ impairs TrkB retrograde trafficking may be via interfering with ubiquitin homeostasis.

Here we build on our previous finding that oligomeric Aβ results in a net decrease in TrkB retrograde transport and have identified a potential mechanism underlying this deficit. Oligomeric Aβ does not affect TrkB receptor internalization but impairs endosomal retrograde trafficking/signaling. Also, we demonstrate that oligomeric Aβ interferes with BDNF/TrkB signaling by impairing ubiquitin homeostasis. Specifically, Aβ-mediated trafficking/signaling deficits are mimicked by an inhibitor of the deubiquitinating enzyme ubiquitin C-terminal hydrolase L1 (UCH-L1). Furthermore, Aβ-mediated impairments are rescued by elevating intracellular UCH-L1 levels. UCH-L1 functions to maintain cellular ubiquitin homeostasis, and by manipulating this pathway, we show that the ubiquitin recycling pathway plays a role in neurotrophin-mediated retrograde signaling. These results suggest that in AD, soluble and/or oligomeric forms of β-amyloid disrupt BDNF-mediated retrograde signaling by altering ubiquitin homeostasis. This leads to deficits in neurotrophin-dependent gene expression that compromise synaptic plasticity and neuronal survival.

EXPERIMENTAL PROCEDURES

Synthesis of Aβ Oligomers—Oligomers were prepared as described previously (36). Briefly, Aβ that was lyophilized as a hexafluorosorosopanol film (EMD Millipore) was dissolved in neat, sterile Me2SO (5 mM) and diluted in PBS, pH 7.4, to 100 μM and aged overnight (4 °C). Aβ oligomer preparations were centrifuged (14,000 × g, 10 min, 4 °C); the supernatants were transferred to fresh Eppendorf tubes and stored at 4 °C until use. Confirmation of Aβ oligomers was carried out by Western analysis as described previously (22).

Purification of BDNF-GFP—Endotoxin-free BDNF-GFP plasmid (generous gift from Dr. Masami Kojima) was introduced by nucleofection (Lonza) into HEK cells followed by selection in DMEM containing 10% FBS and G418 (1 mg/ml; plasmid contains a neomycin cassette). BDNF-GFP was isolated from stably transfected pre-pro-BDNF-GFP HEK293 cells as follows. After cells reached confluency, secreted pro-BDNF-GFP from the medium was removed and concentrated with Amicon YM-30 centrifugal filters (5000 × g, 2 h) (30,000 molecular weight cutoff, Millipore). Pro-BDNF was converted to mature BDNF-GFP by treatment with plasmin (Sigma) as described previously (37). Mature BDNF-GFP was further purified by size exclusion chromatography (Amicon YM-50) where the flow-through contained the protein of interest. BDNF-GFP is indistinguishable from BDNF both biochemically and biologically (38, 39), and we previously confirmed that our purified BDNF-GFP was biologically active (22). The BDNF-GFP concentration was determined by BDNF ELISA (Promega).

Assembly of Microfluidic Culture Chambers—The chamber was fabricated in PDMS using rapid prototyping and soft lithography similar to previously published procedures (40). Briefly, glass coverslips (24 × 40 mm, No. 1, Corning Inc.) sonicated in 95% EtOH (30 min) and dried in a sterile hood were immersed in sterile aqueous solution (0.5 mg/ml poly-L-lysine (Sigma)) in PBS (24 h, 5% CO2, 37 °C incubator), rinsed, and allowed to air dry in a sterile hood. The chambers are noncovalently assembled by conformal contact. The chambers consist of two parallel microfluidic compartments, connected by inlet and outlet wells. The two compartments are separated by a solid barrier region with microgrooves embedded in the bottom of the connecting barrier. A slight volume difference between the two compartments (40 μl) is used to generate a fluidic resistance within the microgrooves, facilitating the isolation of BDNF to axons.

Primary Neuronal Cell Cultures—All of the procedures were performed under an Institutional Animal Care and Use Committee-approved protocol. Primary hippocampal or cortical neuron cultures were derived from rat embryo (embryonic day 18) as described previously (41). Briefly, dissected tissue was dissociated with trypsin, triturated, and either plated on poly-L-lysine-coated 6-well plates or plated in microfluidic chambers fitted with poly-L-lysine-coated glass coverslips in serum-free Neurobasal supplemented with B27 (Invitrogen). The cells were plated at a density of 5 × 10⁶ cells/ml (for microfluidic chambers) and 5 × 10⁵ cells/ml (for 6-well plates). Neuronal purity was assessed by immunostaining with a mouse monoclonal β-III-tubulin (1:1000; EMD Millipore) and rabbit polyclonal glial fibrillary acidic protein (1:4000, DAKO). Glial contamination was <5% (n = 6). Aβ oligomer treatments (1 μM) and the transduction with TAT-HA-UCH-L1 (transduction domain of HIV-transactivator protein and hemagglutinin fused to UCH-L1) (20 nm) were carried out at 7 DIV. The expression and purification of TAT-UCH-L1 were carried out as described previously (42). LDN was added for 24 h at a final concentration of 5 μM.

Cell Surface Biotinylation Assays—To assess TrkB internalization, (7 DIV) primary neurons were either treated with or without BDNF (50 ng/ml, 30 min) and then placed on ice to prevent further TrkB internalization. The remaining cell surface TrkB receptors were biotinylated with Sulfo-NHS-LC-Biotin (100 mg/ml, 30 min; Thermo Scientific) and then washed with 0.1 M Tris-HCl (pH 7.5), three times. The cells were lysed with radioimmunoprecipitation assay buffer containing a protease inhibitor mixture (Roche Applied Science), and biotinylated TrkB was immunoprecipitated with streptavidin-agarose beads that had been pre-equilibrated in radioimmunoprecipitation assay buffer. Immunoprecipitated proteins were incubated in sample buffer and processed for Western blot analysis using rabbit polyclonal TrkB (EMD Millipore).

Measuring the Velocity of BDNF-containing Endosomes—Time lapse microscopy was utilized to measure the rates of BDNF-GFP-containing endosomes within the microfluidic devices. Rat primary neurons (7 DIV) were imaged using an inverted Bio-Rad Radiance 2100 confocal microscope and a 60× oil emersion objective. Regions of interest from five axon segments from each chamber were randomly selected for time...
lapse imaging. The images were acquired every 5 s for a total of 60 images (5 min). To determine velocity of BDNF-GFP particles within axons, kymographs were generated from the image stack of each time lapse experiment. The velocities of BDNF-GFP containing endosomes were determined in each kymograph, and statistical comparisons were performed using a Student’s paired t test.

**Quantification of Overall Retrograde Trafficking (BDNF-GFP) or Signaling (pERK5 and CRE-GFP) within Microfluidic Chambers**—Cell culture medium (40 μl) was removed from each axonal well prior to the addition of BDNF-GFP. The resultant volume difference restricts BDNF-GFP to only the axonal compartment. After 2 h, somal compartments were analyzed for either net BDNF-GFP transport or p-ERK5 activation by immunocytochemical analysis as described previously (43). In brief, the microfluidic devices were removed, and the coverslips were rinsed with PBS, paraformaldehyde-fixed (4%), permeabilized in 0.25% Triton X-100 in PBS, (pH 7.4), and blocked with 5% goat serum. The cells were incubated in appropriate primary antibody overnight at 4 °C. GFP was stained with rabbit anti-GFP (Invitrogen) followed by anti-rabbit Alexa 488 secondary antibodies. p-ERK5 was stained with anti-p-ERK5 (1:1000; Cell Signaling) followed by anti-mouse Alexa 568. The cells were washed and then immunolabeled with TOTO-3 (Invitrogen) to identify nuclei. CREB-mediated gene expression was assessed in neurons that had been transfected with CRE-GFP (Stratagene) using Amaza nucleofection (according to their protocol) prior to plating in the microfluidic devices. BDNF (50 ng/ml) was added to the axonal compartment following a similar protocol to the one for BDNF-GFP above.

Images were captured on a Bio-Rad Radiance 2100 confocal system using lambda strobing mode to avoid nonspecific cross-excitation or cross-detection of fluorophores. For each chamber device, three regions of interest were taken using the same settings, for each region of interest, five random areas were chosen and quantitated using ImageJ software (National Institutes of Health). The mean pixel intensity for each area was determined and normalized to TOTO-3.

p-ERK5 translocation was also assessed by Western blot analysis. The lysates were prepared from each treatment group by aspirating the media from each well, and then removing the chamber from the coverslips. Next radioimmunoprecipitation assay buffer (100 μl) was added to the area of the coverslips, which contained neurons from the somal side, and then collected. Protein levels were determined by BCA, and equal protein amounts were separated by SDS-PAGE (10%) and processed for Western analysis with either p-ERK5 or total ERK5 antibodies (1:1000; Cell Signaling). Following secondary antibodies, the blots were developed with SuperSignal West Femto chemiluminescent substrate (ThermoFisher).

**Microarray Methods**—UCHL-1 gene expression changes in AD brain were assessed using a microarray database consisting of brain tissue from AD cases (n = 26; range, 74–95 years; mean age, 85.7 ± 6.5 years) and age-matched controls (n = 33; range, 69–99 years; mean age, 84.2 ± 8.9 years). The criteria for the selection of cases was described previously (44). RNA expression profiles were obtained from 40 hippocampal samples (AD, n = 17; controls, n = 23) and 43 superior frontal gyrus samples (AD, n = 20; controls, n = 23), using 83 Affymetrix HgU133 plus 2.0 arrays, based on the method described previously (44). Two probe sets were identified on the HgU133 plus 2.0 array corresponding to UCHL-1 (Unigene Hs.518731), both of which had Present flags in all microarrays, indicating high expression reliability of the probes. Expression values were averaged across the probe sets to obtain an overall value for each case, followed by t test comparisons for each region and significance set at p < 0.05.

**Preparation of Protein Samples from Brain Tissue**—Transgenic mouse brain specimens were obtained from the University of California, Irvine Alzheimer Disease Research Center Tissue Repository. Wild-type and Tg2576 (an AD transgenic mouse line) mouse hippocampus or cortex (aged 15 months) was mechanically homogenized with a 1-ml syringe fitted with a 28 1/2-gauge needle (BD Biosciences) by repeated uptake in 200 μl of radioimmunoprecipitation assay buffer containing protease inhibitors (Roche Applied Science). The lysates were centrifuged (80,000 × g for 1 h), the protein concentration of the supernatant was determined by BCA, and samples were stored at −20 °C until analyzed.

**RESULTS**

**Aβ Oligomers Directly Disrupt BDNF/TrkB Axonal Retrograde Trafficking by Impairing Vesicle Velocities**—Recent evidence suggests that an aspect of neurodegenerative pathology is impaired neurotrophin-dependent retrograde transport (45, 46). In the case of AD, TrkB retrograde trafficking deficits are likely Aβ-mediated (22, 47). To define the mechanism underlying the net decrease in BDNF/TrkB retrograde trafficking in the presence of Aβ oligomers (22), we investigated whether soluble Aβ interferes with 1) TrkB internalization at the membrane surface and/or 2) translocation/transport of the BDNF/TrkB-containing endosome from the axon to the soma.

Cell surface biotinylation assays were employed to determine whether Aβ affected TrkB internalization. We found that Aβ did not impair TrkB receptor internalization in cultured rat primary neurons (7 DIV) (Fig. 1). In the absence of Aβ, BDNF treatment drove internalization of 38.3 ± 3.40% (**, p < 0.001) of cell surface TrkB. Similarly, in the presence of Aβ oligomers, BDNF treatment led to the internalization of 41.5 ± 9.8% (*, p < 0.05) of cell surface TrkB relative to Aβ-only treatment. No significant reduction in cell surface TrkB was observed with Aβ preincubation alone, in the absence of BDNF. The TrkB antibody detects both full-length TrkB and a truncated form of TrkB (48), enabling us to determine that soluble Aβ does not affect internalization of either full-length or truncated TrkB (Fig. 1). In addition, TrkB internalization was BDNF-specific because neural cell adhesion molecule was not internalized by BDNF treatment. Although previous studies have demonstrated that Aβ can alter cell surface receptor internalization (for example, of AMPA and NMDA receptors) (49, 50), our data demonstrate that Aβ does not affect the internalization of TrkB and suggest that Aβ-mediated trafficking deficits are downstream of TrkB internalization.

Next, we investigated whether Aβ oligomers impair retrograde trafficking by directly affecting the velocities of BDNF-containing endosomes. Vesicle velocities were measured using
a novel microfluidics device developed in our laboratory that was described previously (51). This device allows axons to grow along a patterned surface and forces the separation of axons and soma within compartments, enabling the isolated manipulation of axons, soma, or both. Thus, the device can be used to assess events occurring in the soma following axonal treatment and is ideal to study axonal retrograde transport and downstream events.

BDNF-GFP was added to the axonal compartment to allow for the visualization of axonal retrograde trafficking within neurons. We found that Aβ oligomers reduce BDNF-GFP-containing vesicle velocities within axons by 38.4 ± 13.4% (*, p < 0.01) relative to vehicle-treated neurons (Fig. 2A). The average vesicle velocity was 2.81 ± 0.253 μm/s in vehicle-treated axons, whereas the average vesicle velocity in Aβ-treated axons was 1.73 ± 0.378 μm/s. This is in agreement with our previous study that demonstrated that the velocities of BDNF-containing endosomes were markedly reduced in Tg2576 neurons when compared with wild-type neurons (22).

Examination of the vesicle velocity distribution revealed that the presence of Aβ oligomers significantly decreased the percentage of endosomes with velocities >2 μm/s, with the majority of the endosome velocities being <1 μm/s (Fig. 2B). Additionally, representative time lapse images reveal that in the presence of Aβ, the BDNF-GFP signal that can be visualized within trafficking vesicles is greatly reduced (Fig. 2C). These results suggest that Aβ oligomers can disrupt retrograde trafficking by affecting both the vesicle velocities of BDNF-containing endosomes and the amount of TrkB that is contained within the transported endosomes.

**β-Amyloid Impairs BDNF-dependent Retrograde Signaling**—

The signaling endosome hypothesis implies that if the retrograde trafficking of BDNF-GFP-positive endosomes is impaired, then the propagation of BDNF retrograde signaling will also be impaired. To test this hypothesis, BDNF-GFP was added to the axonal compartment of the microfluidic chambers, followed by assessment of ERK activation. ERK activation was determined by measuring the phosphorylation of ERK5 (p-ERK5) in the soma of neurons. ERK5 is the main ERK that is activated in response to axonally derived BDNF (28).

Representative images (Fig. 3) revealed that BDNF-GFP led to robust p-ERK5 activation within neuronal cell bodies located in the somal compartment. This is indicated by increased p-ERK5 labeling following BDNF-GFP, when compared with vehicle-only neurons (Fig. 3, A and B). However, p-ERK5 activation in response to BDNF-GFP is not readily apparent in neurons preincubated with Aβ (Fig. 3, C and D, respectively). Quantification of p-ERK5 immunoreactivity revealed that BDNF treatment increased p-ERK5 by 68.1 ± 8.4% (*, p < 0.05) when compared with vehicle only, whereas p-ERK5 levels were not significantly increased by BDNF treatment in neurons preincubated with Aβ oligomers, relative to Aβ-only treatment (Fig. 3F). These results are consistent with a retrograde signaling deficit caused by impaired BDNF/TrkB retrograde transport.

At higher magnification, p-ERK5 (Fig. 3F) appeared to co-localize with the nuclear marker TOTO-3 (Fig. 3G) in a repre-
sentative neuron, which suggests that p-ERK5 is translocated to the nucleus and is consistent with the literature (28). Additionally, BDNF-GFP immunoreactivity decorated the outer surface of the nucleus, indicating that axonally applied BDNF-GFP trafficked back to the soma (Fig. 3E). This observation supports the “signaling endosome” hypothesis for neurotrophin signal-
Ubiquitin Homeostasis in BDNF-mediated Retrograde Transport

FIGURE 4. Aβ oligomers lead to decreased CREB-dependent gene expression. Microfluidic devices were used to assess CREB-mediated gene expression. Rat primary neurons (embryonic day 18) were transfected with a CRE-GFP reporter construct to assess CREB-mediated gene activation. At 7 DIV, the axonal compartment was treated with BDNF (50 ng/ml, 2 h), and the chambers were processed for immunocytochemical analysis as described under “Experimental Procedures” using polyclonal anti-GFP (Invitrogen) to measure CRE-GFP levels and were normalized to the neuronal marker, BIII-tubulin (red). A, representative image of CRE-GFP levels (green) within the somal compartment and co-imaged with the neuronal marker, BIII-tubulin (red) in vehicle-treated neurons, and in neurons treated with BDNF. B and C, in the presence of Aβ oligomers, base-line levels of CRE-GFP are not significantly reduced when compared with vehicle. D, in the presence of Aβ oligomers, the increase in the amount of CRE-GFP is greatly reduced. E, CRE-GFP levels were quantified, and the means ± S.E. represent n = 4 and demonstrate that BDNF treatment to the axonal compartment led to a 35.9 ± 4.73 (⁎, p < 0.01) increase in somal CRE-GFP immunoreactivity when compared with vehicle (white bar). However, in the presence of Aβ oligomers, BDNF-CRE-GFP was only increased by 14.6 ± 5.23%, when compared with Aβ oligomer only cells, but this was not significant (p = 0.076). Therefore, in the presence of Aβ, axonal BDNF leads to reduced CRE-GFP immunoreactivity (hatched bar) when compared with vehicle treated neurons (black bar) (⁎, p < 0.01). Scale bar, 200 μm. Veh, vehicle.

Impaired Deubiquitination Mimics the Effects of Amyloid on BDNF Retrograde Signaling—Previous studies suggested that Aβ impairs proteasome function and deubiquitinating enzyme activity, which in turn can impair receptor sorting to MVBs and neurotrophin receptor trafficking (35, 52). Because MVBs represent the endosomal compartment that mediates sustained neurotrophin signaling from axon terminals to the soma (25, 53), it suggests that the BDNF/TrkB trafficking deficits may be caused by Aβ impairing deubiquitinating activity. To test this hypothesis, we assessed whether inhibiting deubiquitinating activity could mimic the effect of Aβ oligomers on retrograde transport. Deubiquitinating activity was inhibited with LDN (LDN-57444, EMD), a cell-permeable UCH-L1-specific inhibitor. As predicted, inhibiting deubiquitination with LDN impaired BDNF retrograde signaling as assessed by measuring p-ERK5 activation (Fig. 5, A and B). BDNF treatment led to a 45.7 ± 10.3% (⁎, p < 0.05) increase in nuclear p-ERK5 levels (Fig. 5B). However, in neurons pretreated with LDN, the addi-
tion of BDNF did not lead to an increase in p-ERK5 levels. Interestingly, basal p-ERK5 levels were lower when UCH-L1 was inhibited. We attribute this decrease to the importance of ubiquitin turnover to synaptic function. Nonetheless, these results support the hypothesis that Aβ oligomers may affect TrkB retrograde signaling by impairing UCH-L1 activity.

Similarly, LDN pretreatment impaired the translocation of p-ERK5 to the soma following BDNF as assessed by Western blot analysis (Fig. 3, I and K). Following BDNF treatment p-ERK5 translocation, the soma was not observed. These results were similar to Aβ-treated neurons and support the hypothesis that Aβ affects BDNF/TrkB signaling by impairing deubiquitinating activity.

Additionally, like Aβ, LDN did not impair TrkB endocytosis. Using cell surface biotinylation assays, we show that the addition of BDNF led to a 45.7 ± 10.2% (*, p < 0.05) decrease in cell surface TrkB levels when compared with vehicle (Fig. 5, C and D). In neurons preincubated with LDN, we observed a similar decrease in TrkB (44.3 ± 8.56%; *, p < 0.05). Taken together, these results indicate that LDN mimics Aβ oligomers not by inhibiting TrkB internalization, but by impairing downstream BDNF retrograde signaling.

UCH-L1 Rescues TrkB Retrograde Trafficking Deficits Caused by Aβ—Next, we investigated whether BDNF-mediated transport deficits induced by Aβ could be rescued by increasing UCH-L1 levels using a TAT-HA-UCH-L1 construct as described previously (42). UCH-L1 treatment rescued BDNF-GFP retrograde trafficking deficits caused by Aβ (Fig. 6). In the presence of Aβ oligomers, BDNF-GFP levels in the soma were 60.3 ± 7.1% (*, p = 0.003), lower than vehicle-treated
neurons. However, in the presence of UCH-L1 alone, BDNF-GFP levels were 92.6 ± 12.0% of vehicle only. UCH-L1 rescued the Aβ-induced deficit in BDNF-GFP levels in the soma to 86.3 ± 14.1% of the vehicle-treated neurons (*, p = 0.04).

Thus, we demonstrate that Aβ-mediated deficits in retrograde transport can be rescued by UCH-L1. Taken together with our LDN data (Fig. 5), these results demonstrate that modulating ubiquitin homeostasis via UCH-L1 impacts BDNF-mediated retrograde trafficking.

UCH-L1 Is Decreased in the Hippocampus in APP-Tg2576 Mice and in AD—Next, we determined whether UCH-L1 levels are also affected in an AD transgenic mouse model. We measured UCH-L1 protein levels in the hippocampus or cortex of 15-month-old wild-type or Tg2576 mice. We found that hippocampal but not cortical UCH-L1 levels were significantly decreased in Tg2576 mice relative to age-matched wild-type mice (Fig. 7, A and B) (*, p = 0.03).

Lastly, we investigated whether the decrease in UCH-L1 translates to the in vivo condition in humans. We compared UCH-L1 gene expression levels in the hippocampus and superior frontal cortex (BA9/46) in AD brain versus age-matched cognitively intact controls. UCHL-1 gene expression data were obtained from a microarray database as described previously (44) and revealed that UCH-L1 gene expression was significantly decreased in AD versus control brain (Fig. 7, C and D) (*, p < 0.03).
that Aβ can alter cell surface receptor internalization (for example, of AMPA and NMDA receptors) (49, 50), our data demonstrate that Aβ does not affect the internalization of TrkB and suggested that Aβ-mediated trafficking deficits were downstream of receptor internalization.

Using a novel microfluidic chamber that facilitates the study of axonal transport, we found that Aβ oligomers cause a decrease in the amount of BDNF-GFP that is found within endosomes that undergo retrograde axonal transport. In addition, we found that the average velocity of BDNF-GFP-containing endosomes was decreased in the presence of Aβ, with the distribution of the vesicle velocities shifted to ones with lower velocities. These data suggest that soluble Aβ impairs the sorting of BDNF/TrkB to MVBs, the endosomal compartment that mediates TrkB retrograde axonal trafficking, and also reduces the velocity of trafficking MVBs. Together, these deficits contribute to impaired BDNF/TrkB retrograde transport. It is of note that early in the progression of AD and prior to Aβ deposition, when Aβ oligomers are likely present, enlarged endosomal structures can be detected in neurons (54). It is tempting to speculate that the decrease in vesicle velocity is attributed to enlarged MVBs. Because proteins sorted to MVBs are also degraded in a lysosome-dependent process (33), our data are also consistent with the finding that Aβ impairs lysosome-mediated degradation of TrkB (35).

We also demonstrated that BDNF/TrkB axonal trafficking deficits induced by Aβ were accompanied by impaired downstream BDNF/TrkB signaling, notably impaired nuclear translocation of p-ERK5, and down-regulated CREB-mediated signaling events. These results reveal that the presence of soluble Aβ impairs retrograde trafficking, resulting in diminished signaling between axons and cell bodies, supporting the signaling endosome hypothesis that describes how cellular signals that are initiated at axon terminals undergo retrograde transport and are propagated back to the soma (55). Furthermore, the disruption by Aβ may be due to a generalized impairment in trafficking because the trafficking of other organelles/cargos is also impaired by Aβ (47, 56–59).

Our data reveal that a mechanism underlying the retrograde trafficking deficits in the presence of Aβ involves altered ubiquitin homeostasis. Ubiquitin is central for proteasome-dependent protein turnover as well as for intracellular trafficking of cargoes including many receptors (i.e., glutamate and neurotrophins) that are fundamental for synaptic remodeling and plasticity (60). Although ubiquitin can be synthesized de novo, the bulk of the cellular ubiquitin pool is derived from ubiquitin that is recovered from deubiquitinating enzymes (61). Thus, ubiquitin levels can be regulated by modulating deubiquitinating enzyme levels or activity of deubiquitinating enzymes such as UCH-L1 (42, 62). Remarkably, UCH-L1 represents 1–2% of the total protein within the brain and thus is an important regulator of brain ubiquitin levels (62–64).

Ubiquitination regulates many important processes including the targeting and delivery of receptors to MVBs, including trophic factor receptors (65–67). For example, ubiquitination mediates the delivery of the well studied EGF receptor to MVBs for its degradation within lysosomes (33). In the case of Trk
Ubiquitin Homeostasis in BDNF-mediated Retrograde Transport

receptors, ubiquitination may regulate its endocytic trafficking to MVBs for sustained retrograde signaling (34, 53, 68). Therefore, we tested whether disrupting the ubiquitin recycling pathway, which regulates cellular ubiquitin levels, can lead to BDNF-dependent retrograde transport deficits. Indeed, we found that BDNF/TrkB retrograde trafficking and signaling could be affected by manipulating deubiquitinating activity by either inhibiting or increasing UCH-L1. Specifically, inhibiting UCH-L1 with LDN resulted in retrograde trafficking deficits parallel to those found induced by soluble Aβ, and retrograde trafficking deficits caused by Aβ could be rescued by increasing cellular UCH-L1 levels.

Although ubiquitination mediates the internalization of numerous receptors, we found that neither Aβ nor impairing ubiquitin recycling with LDN affected TrkB internalization. Our data support the finding that TrkB ubiquitination is not a prerequisite for its internalization (34) and may only regulate its endocytic fate (69, 70). Taken together, these results suggest that Aβ impairs the retrograde trafficking of TrkB by affecting ubiquitin homeostasis via UCH-L1 at a step that is downstream from receptor internalization.

Further, our data suggest that ubiquitin homeostasis may be impaired in the hippocampus in AD, in both Tg2576 mouse model of AD and in the human brain. We demonstrate that in Tg2576 mice, hippocampal but not cortical UCH-L1 protein levels are reduced compared with wild-type littermates, similar to the findings in the brain of APP/presenilin 1 mice at 4–6 months of age, suggesting that the decrease in UCH-L1 follows the development of pathology (42). In parallel, we demonstrate that hippocampal but not cortical UCH-L1 gene expression is decreased in the AD brain relative to age-matched cognitively intact cases. The reduced availability of UCH-L1 in the AD brain likely impairs neurotrophin signaling in vivo, based on our in vitro data, which found that inhibiting UCH-L1 caused deficits in TrkB/BDNF retrograde trafficking and signaling. In support of our hypothesis that Aβ itself directly affects UCH-L1 levels, a decrease in monomeric ubiquitin levels caused by Aβ is reversed by increasing UCH-L1 levels in hippocampal slices (42).

These data add to the growing evidence that disrupted ubiquitin homeostasis is an important aspect of AD pathobiology, with previous studies demonstrating that impaired deubiquitination alters synaptic protein distribution and spine morphology and causes neurodegeneration (62, 71), which are salient features in AD. Altered ubiquitin homeostasis may contribute to generalized axonal transport deficits observed in AD. Inducing lysosome dysfunction impairs axonal retrograde transport of late endosomes and lysosomes and leads to AD-like axonal pathology (72). Because the sorting of proteins to lysosomes is ubiquitin-dependent (73), it suggests that by altering ubiquitin homeostasis, Aβ can trigger lysosome dysfunction and the observed transport deficits. Furthermore, we and others have found that Aβ directly affects mitochondrial transport and may be due to defective fission/fusion (58, 75), which is regulated by ubiquitination (76). Thus, it suggests that ubiquitination/deubiquitination plays a vital role in regulating axonal transport. Lastly, balancing ubiquitination/deubiquitination may also affect Aβ production because APP ubiquitination inhibits APP endocytosis and promotes the nonamyloidogenic processing (77).

Our data plus a growing body of evidence suggest that in AD there may be a general defect in intracellular trafficking. Our results describe a novel mechanism by which Aβ can impair ubiquitin homeostasis that leads to endosomal axonal retrograde transport deficits, impairs neurotrophin signaling, and contributes to impaired synaptic plasticity. As Aβ accumulates, one of the consequences may be impaired intracellular trafficking of cellular components that depend on ubiquitin conjugation for signal transduction and protein sorting and degradation. Defective trafficking in the etiology of AD is supported by the recent identification of GWAS-AD-linked polymorphisms that encode proteins linked to endosome function, e.g. PICALM and BIN1 (74). Therefore, therapeutics aimed at modulating ubiquitin homeostasis may rescue intracellular trafficking deficits found in AD and improve cognition.

Acknowledgment—We thank Meredith Chabrier for critical reading of the manuscript.

REFERENCES

1. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., and Trojanowski, J. Q. (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128
2. Nåslund, J., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., Greengard, P., and Buxbaum, J. D. (2000) Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283, 1571–1577
3. Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., and Rogers, J. (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155, 853–862
4. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. L., and Masters, C. L. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866
5. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539
6. Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., and Ashe, K. H. (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84
7. Hsiao, K., Chapman, P., Nilson, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102
8. Hsia, A. Y., Masliah, E., McConlogue, L., Yu, G. Q., Tatsuno, G., Hu, K., Kholodenko, D., Malena, R. C., Nicoll, R. A., and Macke, L. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. U.S.A. 96, 3228–3233
9. Macke, L., Masliah, E., Yu, G. Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000) High-level neuronal expression of Aβ 1–42 in wild-type human amyloid protein precursor transgenic mice. Synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058
10. Lesně, S., Koh, M. T., Kotilíněk, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., and Ashe, K. H. (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357
11. Tyler, W. J., Alonso, M., Bramham, C. R., and Pozzo-Miller, L. D. (2002) From acquisition to consolidation. On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn.
Ubiquitin Homeostasis in BDNF-mediated Retrograde Transport

Haglund, K., Di Fiore, P. P., and Dikic, I. (2003) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603

Thien, C. B., and Langdon, W. Y. (2001) Cbl. Many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2, 294–307

Miyake, S., Lupher, M. L., Jr., Druker, B., and Band, H. (1998) The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc. Natl. Acad. Sci. U.S.A. 95, 7927–7932

Levkowitz, G., Waterman, H., Zamir, E., Kam, Z., Oved, S., Langdon, W. Y., Beguinot, L., Geiger, B., and Yarden, Y. (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674

Árvalo, J. C., Waite, J., Rajagopal, R., Beyna, M., Chen, Z. Y., Lee, F. S., and Chao, M. V. (2006) Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50, 549–559

Almeida, C. G., Takahashi, R. H., and Gouras, G. K. (2006) β-Amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J. Neurosci. 26, 4277–4288

De Felice, F. G., Wu, D., Lambert, M. P., Fernandez, S. J., Velasco, P. T., Lacor, P. N., Bigio, E. H., Jerecic, J., Acton, P. J., Shughrue, P. J., Chen-Dodson, E., Kinney, G. G., and Klein, W. L. (2008) Alzheimer’s disease-type neuronal Tau hyperphosphorylation induced by Aβ oligomers. Neurobiol. Aging 29, 1334–1347

Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., Teng, K. K., Yung, W. H., Hempstead, B. L., and Lu, B. (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491

Kohara, K., Kitamura, A., Morishima, M., and Tsumoto, T. (2001) Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423

Hartmann, M., Heumann, R., and Lessmann, V. (2001) Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897

Taylor, A. M., Rhee, S. W., Tu, C. H., Crubbs, D. H., Cotman, C. W., and Jeon, N. L. (2003) Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556

Crubbs, D. H., Kregel, V. M., Anderson, A. J., and Cotman, C. W. (1996) Cross-linking of connexin 36 A receptors on cortical neurons induces programmed cell death. Neuroscience 75, 173–185

Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M., and Arancio, O. (2006) Ubiquitin hydrolase UCH-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126, 775–788

Blurot-Jones, M., Kuan, P. N., and Tuszynski, M. H. (2004) Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression. J. Comp. Neurol. 468, 347–360

Berchtold, N. C., Crubbs, D. H., Coleman, P. D., Rogers, J., Head, E., Kim, R., Beach, T., Miller, C., Troncoso, J., Trojanowski, J. Q., Zeliek, H. R., and Cotman, C. W. (2008) Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc. Natl. Acad. Sci. U.S.A. 105, 15605–15610

Salehi, A., Delcroix, J. D., Belichenko, P. V., Zhan, K., Wu, C., Valletta, J. S., Takimoto-Kimura, R., Kleschevnikov, A. M., Sambamurti, K., Chung, P. P., Xia, W., Villar, A., Campbell, W. A., Kulnane, L. S., Nixon, R. A., Lamb, B. T., Epstein, C. J., Stokin, G. B., Goldstein, L. S., and Mobley, W. C. (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGRF transport and causes cholinergic neuron degeneration. Neurobiol. Aging 29, 42–42

Her, L. S., and Goldstein, L. S. (2008) Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J. Neurosci. 28, 13662–13672

Vossel, K. A., Zhang, K., Brodbbeck, J., Daub, A. C., Sharma, P., Finkbeiner, S., Cui, B., and Mucke, L. (2010) Tau reduction prevents Aβ-induced defects in axonal transport. Science 330, 198

Escandón, E., Soppe, D., Rosenthal, A., Mendoza-Ramírez, J. L., Szönyi, E., Burton, L. E., Henderson, C. E., Parada, L. F., and Nikolics, K. (1994) Regulation of neurotrophin receptor expression during embryonic and postnatal development. J. Neurosci. 14, 2054–2068
Ubiquitin Homeostasis in BDNF-mediated Retrograde Transport

49. Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. W., Lombroso, P. J., Gouras, G. K., and Greengard, P. (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 8, 1051–1058

50. Hsieh, B., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., and Malinow, R. (2006) AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843

51. Taylor, A. M., Blorton-Jones, M., Rhee, S. W., Criibs, D. H., Cotman, C. W., and Jeon, N. L. (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2, 599–605

52. Moises, T., Wüller, S., Saxena, S., Senderek, J., Weis, J., and Krüttgen, A. (2009) Proteasomal inhibition alters the trafficking of the neurotrophin receptor TrkA. Biochem. Biophys. Res. Commun. 387, 360–364

53. Philippidou, P., Valdez, G., Akmentin, W., Bowers, W. J., Federoff, H. J., and Hageoula, S. (2011) Trk retrograde signaling requires persistent, Pincher-directed endosomes. Proc. Natl. Acad. Sci. U.S.A. 108, 852–857

54. Cataldo, A. M., Petanceska, S., Terio, N. B., Peterhoff, C. M., Durham, R., Mercken, M., Mehta, P. D., Buxbaum, J., Haroutunian, V., and Nixon, R. A. (2004) Aβ localization in abnormal endosomes. Association with earliest Aβ elevations in AD and Down syndrome. Neurobiol. Aging 25, 1263–1272

55. Howe, C. L., and Mobley, W. C. (2004) Signaling endosome hypothesis. A cellular mechanism for long distance communication. J. Neurobiol. 58, 207–216

56. Decker, H., Lo, K. Y., Unger, S. M., Ferreira, S. T., and Silverman, M. A. (2010) Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glyceron synthase kinase 3β in primary cultured hippocampal neurons. J. Neurosci. 30, 9166–9171

57. Hiruma, H., Kakatashi, T., Takahashi, T., Ichikawa, T., and Kawakami, T. (2003) Glutamate and amyloid β-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J. Neurosci. 23, 8967–8977

58. Kim, H. J., Park, J. W., Byun, J. H., Poon, W. W., Cotman, C. W., Fowlkes, C. C., and Jeon, N. L. (2012) Quantitative analysis of axonal transport by using compartmentalized and surface micropatterned culture of neurons. ACS Chem. Neurosci. 3, 433–438

59. Rui, Y., Tiwari, P., Xie, Z., and Zheng, J. Q. (2006) Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J. Neurosci. 26, 10480–10487

60. Yi, J. J., and Ehlers, M. D. (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol. Rev. 59, 14–39

61. Wilkinson, K. D. (2000) Ubiquitination and deubiquitination. Targeting of proteins for degradation by the proteasome. Semin Cell Dev. Biol. 11, 141–148

62. Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E., and Patrick, G. N. (2009) Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. J. Neurosci. 29, 7857–7868

63. Wilkinson, K. D., Lee, K. M., Deshpande, S., Duersken-Hughes, P., Boss, J. M., and Pohl, J. (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673

64. Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., Li, H., Sato, Y., Nishikawa, K., Sun, Y. J., Sakurai, M., Harada, T., Hara, Y., Kimura, I., Chiba, S., Namikawa, K., Kiyama, H., Noda, M., Aoki, S., and Wada, K. (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 12, 1945–1958

65. Alwan, H. A., van Zoelen, E. J., and van Leeuwen, J. E. (2003) Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J. Biol. Chem. 278, 35781–35790

66. Devon, R. S., Orban, P. C., Gerrow, K., Barbieri, M. A., Schwab, C., Cao, L. P., Helm, J. R., Bissada, N., Cruz-Aguado, R., Davidson, T. L., Wittmer, J., Metzler, M., Lam, C. K., Tetzlaff, W., Simpson, E. M., McCaffery, J. M., El-Husseini, A. E., Leavitt, B. R., and Hayden, M. R. (2006) Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc. Natl. Acad. Sci. U.S.A. 103, 9595–9600

67. Longva, K. E., Blystad, F. D., Stang, E., Larsen, A. M., Johanssen, L. E., and Madhusu, I. H. (2002) Ubiquitination and proteasomal activity is required for transport of the EGFR receptor to inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854

68. Lauwers, E., Jacob, C., and André, B. (2009) K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J. Cell Biol. 185, 493–502

69. Georgieva, M. V., de Pablo, Y., Sanchis, D., Cormella, J. X., and Llovera, M. (2011) Ubiquitination of Trkα by Nedd4–2 regulates receptor lysosomal targeting and mediates receptor signaling. J. Neurochem. 117, 479–493

70. Geetha, T., and Wooten, M. W. (2008) TrkA receptor endolysosomal degradation is both ubiquitin and proteasome dependent. Traffic 9, 1146–1156

71. Ryu, K. Y., Garza, J. C., Lu, X. Y., Barsh, G. S., and Kopito, R. R. (2008) Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene. Proc. Natl. Acad. Sci. U.S.A. 105, 4016–4021

72. Lee, S., Sato, Y., and Nixon, R. A. (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci. 31, 7817–7830

73. Piper, R. C., and Lehner, P. J. (2011) Endosomal transport via ubiquitination. Trends Cell Biol. 21, 647–655

74. Guerreiro, R. J., and Hardy, J. (2011) Amyloid- β-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener. Dis. 7, 56–59

75. Park, Y. Y., Lee, S., Karbowski, M., Neutzen, A., Youle, R. J., and Cho, H. (2010) Loss of MARC5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 123, 619–626

76. Watanabe, T., Hikichi, Y., Willuweit, A., Shintani, Y., and Horiguchi, T. (2012) FB12 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J. Neurosci. 32, 3352–3365