THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview

Stephen PH Alexander, Eamonn Kelly, Neil V Marrion, John A Peters, Elena Faccenda, Simon D Harding, Adam J Pawson, Joanna L Sharman, Christopher Southan, O Peter Buneman, John A Cidlowski, Arthur Christopoulos, Anthony P Davenport, Doriano Fabbro, Michael Spedding, Jörg Striessnig, Jamie A Davies and CGTP Collaborators

Abstract

The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified ‘Other protein targets’ which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Table of contents

S1 Overview
S6 Other Protein Targets
S6 Adiponectin receptors
S7 Blood coagulation components
S8 Non-enzymatic BRD containing proteins
S8 Carrier proteins
S9 CD molecules
S10 Methyllysine reader proteins
S11 Fatty acid-binding proteins
S13 Notch receptors
S13 Regulators of G protein Signaling (RGS) proteins
S14 Sigma receptors
S15 Tubulins
S17 G protein-coupled receptors
S19 Orphan and other 7 TM receptors
S19 Class A Orphans
S28 Class C Orphans
S28 Taste 1 receptors
S29 Taste 2 receptors
S30 Other 7TM proteins
S31 5-Hydroxytryptamine receptors
S34 Acetylcholine receptors (muscarinic)
S36 Adenosine receptors
S37 Adhesion Class GPCRs
S39 Adrenergic receptors
S43 Angiotensin receptors
S44 Apelin receptor
S45 Bile acid receptor
S46 Bombesin receptors
S47 Bradykinin receptors
S48 Calcitonin receptors
S50 Calcium-sensing receptor

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full
S110 Succinate receptor
S111 Tachykinin receptors
S112 Thyrotropin-releasing hormone receptors
S113 Trace amine receptor
S114 Urotensin receptor
S115 Vasopressin and oxytocin receptors
S116 VIP and PACAP receptors

S130 Ligand-gated ion channels
S131 5-HT3 receptors
S132 Acid-sensing (proton-gated) ion channels (ASICs)
S133 Epithelial sodium channels (ENaC)
S134 GABA_A receptors
S135 Glycine receptors
S136 Ionotropic glutamate receptors

S160 Voltage-gated ion channels
S161 CatSper and Two-Pore channels
S162 Cyclic nucleotide-regulated channels
S163 Potassium channels
S164 Sodium channels
S165 Calcium- and sodium-activated potassium channels
S166 Inwardly rectifying potassium channels
S167 Two P domain potassium channels
S168 Voltage-gated potassium channels
S169 Ryanodine receptor
S170 Transient Receptor Potential channels
S171 Voltage-gated calcium channels
S172 Voltage-gated proton channel
S173 Voltage-gated sodium channels

S195 Other ion channels
S196 Aquaporins
S197 Chloride channels
S198 CIC family
S199 CFTR
S200 Calcium activated chloride channel
S201 Maxi chloride channel
S202 Volume regulated chloride channels
S203 Connexins and Pannexins
S204 Sodium leak channel, non-selective

S208 Nuclear hormone receptors
S209 1A. Thyroid hormone receptors
S210 1B. Retinoid acid receptors
S211 1C. Peroxisome proliferator-activated receptors
S212 1D. Rev-Erb receptors
S213 1E. Retinoid acid-related orphans
S214 2A. Hepatocyte nuclear factor-4 receptors
S215 2B. Retinoid X receptors
S216 2C. Testicular receptors
S217 2E. Tailless-like receptors
S218 2F. COUP-TF-like receptors
S219 3A. Fushi tarazu FI-like receptors
S220 3B. Germ cell nuclear factor receptors
S221 3C. 3-Ketosteroid receptors

S225 Catalytic receptors
S226 Cytokine receptor family
S227 IL-2 receptor family
S228 IL-3 receptor family
S229 IL-6 receptor family
S230 IL-7 receptor family
S231 IL-12 receptor family
S232 Interferon receptor family
S233 IL-10 receptor family
S234 IL-17 receptor family
S235 Immunoglobulin-like family of IL-1 receptors
S236 IL-17 receptor family
S237 GDNF receptor family
S238 Integrins
S239 Natriuretic peptide receptor family
S240 Pattern recognition receptors
S241 Toll-like receptor family
S242 NOD-like receptor family
S243 Receptor tyrosine kinases (RTKs)
S244 Type I RTKs: ErbB (epidermal growth factor) receptor family
S245 Type II RTKs: Insulin receptor family
S246 Type III RTKs: PDGFR, CSF1, Kit, FLT3 receptor family
S247 Type IV RTKs: VEGF (vascular endothelial growth factor) receptor family
S248 Type V RTKs: FGF (fibroblast growth factor) receptor family
S249 Type VI RTKs: PTK7/CCK4
S250 Type VII RTKs: Neurotrophin receptor/Trk family
S251 Type VIII RTKs: DAX-like receptors
S252 0B. DAX-like receptors
S253 1A. Thyroid hormone receptors
S254 1B. Retinoid acid receptors
S255 1C. Peroxisome proliferator-activated receptors
S256 1D. Rev-Erb receptors
S257 1E. Retinoid acid-related orphans
S258 2A. Hepatocyte nuclear factor-4 receptors
S259 2B. Retinoid X receptors
S260 2C. Testicular receptors
S261 2E. Tailless-like receptors
S262 2F. COUP-TF-like receptors
S263 3A. Fushi tarazu FI-like receptors
S264 3B. Germ cell nuclear factor receptors
S265 3C. 3-Ketosteroid receptors

S258 Nuclear hormone receptors
S259 1A. Thyroid hormone receptors
S260 1B. Retinoid acid receptors
S261 1C. Peroxisome proliferator-activated receptors
S262 1D. Rev-Erb receptors
S263 1E. Retinoid acid-related orphans
S264 2A. Hepatocyte nuclear factor-4 receptors
S265 2B. Retinoid X receptors
S266 2C. Testicular receptors
S267 2E. Tailless-like receptors
S268 2F. COUP-TF-like receptors
S269 3A. Fushi tarazu FI-like receptors
S270 3B. Germ cell nuclear factor receptors
S271 3C. 3-Ketosteroid receptors

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full
ID	Description
S254	Type IX RTKs: MuSK
S255	Type X RTKs: HGF (hepatocyte growth factor) receptor family
S256	Type XI RTKs: TAM (TYRO3-, AXL- and MER-TK) receptor family
S257	Type II RTKs: Tie family of angiopoietin receptors
S258	Type XIII RTKs: Ephrin receptor family
S259	Type XIV RTKs: RET
S260	Type XV RTKs: RYK
S261	Type XVI RTKs: DDR (collagen receptor) family
S262	Type XVII RTKs: ROS receptors
S263	Type XVIII RTKs: LMR family
S264	Type XIX RTKs: Leukocyte tyrosine kinase (LTK) receptor family
S265	Type XX RTKs: STYK1
S266	Receptor serine/threonine kinase (RSTK) family
S267	RSTK functional heteromers
S268	Type I receptor serine/threonine kinases
S269	Type II receptor serine/threonine kinases
S270	Type III receptor serine/threonine kinases
S271	Type I RTKs: HGF (hepatocyte growth factor) receptors
S272	Type II RTKs: FLT
S273	Type III RTKs: EPH
S274	Type IV RTKs: EGFR
S275	Type V RTKs: FGF
S276	Type VI RTKs: FGFR
S277	Type VII RTKs: LDL receptor
S278	Type VIII RTKs: LPL
S279	Type IX RTKs: Lck
S280	Type X RTKs: PDGF
S281	Type XI RTKs: TGF
S282	Type XII RTKs: ILK
S283	Type XIII RTKs: IL-2
S284	Type XIV RTKs: MET
S285	Type XV RTKs: ERBB
S286	Type XVI RTKs: PDGFR
S287	Type XVII RTKs: FLT
S288	Type XVIII RTKs: TIE
S289	Type XIX RTKs: PDGFR
S290	Type XX RTKs: PDGFR

S254 - S260: Examples of RTK families.

S261 - S265: Members of the RSTK family.

S266 - S270: Examples of RTK subfamilies.

S271 - S275: Examples of RTK superfamily.

S276 - S280: Examples of RTK families.

S281 - S285: Examples of RTK subfamilies.

S286 - S290: Examples of RTK superfamily.

S291 - S312: Examples of enzymes.

S313 - S340: Examples of enzyme subfamilies.

S341 - S368: Examples of enzyme families.

S369 - S387: Examples of enzyme superfamilies.

S388 - S407: Examples of enzyme sub superfamilies.

S308 - S357: Examples of protein kinases.

S358 - S397: Examples of protein kinase families.

S398 - S447: Examples of protein kinase superfamilies.

S448 - S487: Examples of protein kinase sub superfamilies.

S488 - S527: Examples of protein kinase families.

S528 - S567: Examples of protein kinase subfamilies.

S568 - S607: Examples of transporters.

S608 - S647: Examples of transporter families.

S648 - S687: Examples of transporter subfamilies.

S688 - S727: Examples of transporter superfamilies.

S728 - S767: Examples of other categories.

S768 - S807: Examples of other categories families.

S808 - S847: Examples of other categories subfamilies.

S848 - S887: Examples of other categories superfamilies.
ABCC subfamily
ABCD subfamily of peroxisomal ABC transporters
ABCG subfamily
F-type and V-type ATPases
F-type ATPase
V-type ATPase
P-type ATPases
Na+/K+-ATPases
Ca2+-ATPases
Cu2+-ATPases
Phospholipid-transporting ATPases
Major facilitator superfamily (MFS) of transporters
SLC superfamily of solute carriers
SLC1 family of amino acid transporters
Glutamate transporter subfamily
Alanine/serine/cysteine transporter subfamily
SLC2 family of hexose and sugar alcohol
Class I transporters
Class II transporters
Proton-coupled inositol transporter
SLC3 and SLC7 families of hetermeric amino acid transporters (HATs)
Urate transporter
SLC7 family
SLC4 family of bicarbonate transporters
Anion exchangers
Sodium-dependent HCO3- transporters
SLC5 family of sodium-dependent glucose transporters
Hexose transporter family
Choline transporter
Sodium iodide symporter, sodium-dependent multivitamin transporter and sodium-coupled monooxyglate transporters
Sodium myo-inositol cotransporter transporters
SLC6 neurotransmitter transporter family
Monoamine transporter subfamily
GABA transporter subfamily
Glycine transporter subfamily
Neutral amino acid transporter subfamily
SLC8 family of sodium/calcium exchangers
SLC9 family of sodium/hydrogen exchangers
SLC10 family of sodium-bile acid co-transporters
SLC11 family of proton-coupled metal ion transporters
SLC12 family of cation-coupled chloride transporters
SLC13 family of sodium-dependent sulphate/carbonate transporters
SLC14 family of facilitative urea transporters
SLC15 family of peptide transporters
SLC16 family of monocarboxylate transporters
SLC17 family of sodium-phosphate co-transporters
SLC18 family of vesicular amine transporters
SLC19 family of vitamin transporters
SLC20 family of sodium-dependent phosphate transporters
SLC22 family of organic cation and anion transporters
Organic cation transporters (OCT)
Organic anion transporters (OATs)
Urate transporter
SLC23 family of ascorbic acid transporters
SLC24 family of sodium/potassium/calcium exchangers
SLC25 family of mitochondrial transporters
Mitochondrial di- and tri-carboxylic acid transporter subfamily
Mitochondrial amino acid transporter subfamily
Mitochondrial nucleotide transporter subfamily
Mitochondrial uncoupling proteins
Miscellaneous SLC25 mitochondrial transporters
SLC26 family of anion exchangers
Selective sulphate transporters
Chloride/bicarbonate exchangers
GABA transporter subunits
Other SLC26 anion exchangers
SLC27 family of fatty acid transporters
SLC28 and SLC29 families of nucleoside transporters
SLC28 family
SLC29 family
SLC30 zinc transporter family
SLC31 family of copper transporters
SLC32 vesicular inhibitory amino acid transporter
SLC33 acetylCoA transporter
SLC34 family of sodium-phosphate co-transporters
SLC35 family of nucleotide sugar transporters
SLC36 family of proton-coupled amino acid transporters
SLC37 family of phosphosugar/phosphate exchangers
SLC38 family of sodium-dependent neutral amino acid transporters
System A-like transporters
System N-like transporters
Orphan SLC38 transporters
SLC39 family of metal ion transporters
SLC40 iron transporter
SLC41 family of divalent cation transporters
SLC42 family of Rhesus glycoprotein ammonium transporters
SLC43 family of large neutral amino acid transporters
SLC44 choline transporter-like family
SLC45 family of putative sugar transporters
SLC46 family of folate transporters
SLC47 family of multidrug and toxin extrusion transporters
SLC48 heme transporter
SLC49 family of FLVCR-related heme transporters
SLC50 sugar transporter
SLC51 family of steroid-derived molecule transporters
SLC52 family of riboflavin transporters
SLC53 family of organic anion transporting polypeptides
Patched family
Introduction

In order to allow clarity and consistency in pharmacology, there is a need for a comprehensive organisation and presentation of the targets of drugs. This is the philosophy of the IUPHAR/BPS Guide to PHARMACOLOGY presented on the online free access database (http://www.guidetopharmacology.org/). This database is supported by the British Pharmacological Society (BPS), the International Union of Basic and Clinical Pharmacology (IUPHAR), the University of Edinburgh and previously the Wellcome Trust. Data included in the Guide to PHARMACOLOGY are derived in large part from interactions with the subcommittees of the Nomenclature Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR). A major influence on the development of the database was Tony Harmar (1951-2014), who worked with a passion to establish the curators as a team of highly informed and informative individuals, with a focus on high-quality data input, ensuring a suitably validated dataset. The Editors of the Concise Guide have compiled the individual records, in concert with the team of Curators, drawing on the expert knowledge of these latter subcommittees. The tables allow an indication of the status of the nomenclature for the group of targets listed, usually previously published in Pharmacological Reviews. In the absence of an established subcommittee, advice from several prominent, independent experts has generally been obtained to produce an authoritative consensus on nomenclature, which attempts to fit in within the general guidelines from NC-IUPHAR. This current edition, the Concise Guide to PHARMACOLOGY 2017/18, is the latest snapshot of the database in print form, following on from the Concise Guide to PHARMACOLOGY 2015/16. It contains data drawn from the online database as a rapid overview of the major pharmacological targets. Thus, there are many fewer targets presented in the Concise Guide compared to the online database. The priority for inclusion in the Concise Guide is the presence of quantitative pharmacological data. This means that often orphan family members are not presented in the Concise Guide, although structural information is available on the online database. The organisation of the data is tabular (where appropriate) with a standardised format, where possible on a single page, intended to aid understanding of, and comparison within, a particular target group. The Concise Guide is intended as an initial resource, with links to additional reviews and resources for greater depth and information. Pharmacological and structural data focus primarily on human gene products, wherever possible, with links to HGNC gene nomenclature and UniProt IDs. In a few cases, where data from human proteins are limited, data from other species are indicated. Pharmacological tools listed are prioritised on the basis of selectivity and availability. That is, agents (agonists, antagonists, inhibitors, activators, etc.) are included where they are both available (by donation or from commercial sources, now or in the near future) AND the most selective. The Concise Guide is divided into nine sections, which comprise pharmacological targets of similar structure/function. These are G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, nuclear hormone receptors, enzymes, transporters and other protein targets. We hope that the Concise Guide will provide for researchers, teachers and students a state-of-the-art source of accurate, curated information on the background to their work that they will use in the Introduction to their Research Papers or Reviews, or in supporting their teaching and studies. We recommend that any citations to information in the Concise Guide are presented in the following format:

Alexander SPH et al. (2017). The Concise Guide to PHARMACOLOGY 2017/18: Overview. Br J Pharmacol 174: S1–S16.

In this overview are listed protein targets of pharmacological interest, which are not G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors, transporters or enzymes.

Acknowledgements

We are extremely grateful to the British Pharmacological Society and the International Union of Basic and Clinical Pharmacology, for financial support of the website and for advice from the NC-IUPHAR subcommittees. We thank the University of Edinburgh, who host the www.guidetopharmacology.org website. Previously, the International Union of Basic and Clinical Pharmacology and the Wellcome Trust (099156/Z/12/Z) also supported the initiation and expansion of the database. We are also tremendously grateful to the long list of collaborators from NC-IUPHAR subcommittees and beyond, who have assisted in the construction of the Concise Guide to PHARMACOLOGY 2017/18 and the online database www.GuideToPHARMACOLOGY.org. Further, we wish to thank Toni Wigglesworth for her assistance in the co-ordination of correspondence with these collaborators.

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

© 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Other Protein Targets

Family structure

- **S6** Adiponectin receptors
- **S7** B-cell lymphoma 2 (Bcl-2) protein family
- **S7** Bromodomain-containing proteins
- **S7** Non-enzymatic BRD containing proteins
- **S8** Carrier proteins
- **S9** CD molecules
- **S9** Chromatin-interacting transcriptional repressors
- **S10** Circadian clock proteins
- **S10** Claudins
- **S11** EF-hand domain containing
- **S11** G-alpha family G(q) subfamily
- **S12** Heat shock proteins
- **S12** Immunoglobulins
- **S12** Inhibitors of apoptosis (IAP) protein family
- **S12** Kelch-like proteins
- **S12** Kinesins
- **S12** Leucine-rich repeat proteins
- **S12** Lymphocyte antigens
- **S12** Mitochondrial-associated proteins
- **S12** Myosin binding proteins
- **S12** Non-catalytic pattern recognition receptors
- **S12** Other pattern recognition receptors
- **S13** Absent in melanoma (AIM)-like receptors (ALRs)
- **S13** C-type lectin-like receptors (CLRs)
- **S13** Circadian clock proteins
- **S13** Cytoskeleton-containing proteins
- **S13** Mitochondrial-associated proteins
- **S13** Non-catalytic pattern recognition receptors
- **S14** Circadian clock proteins
- **S14** Cytoskeleton-containing proteins
- **S14** Mitochondrial-associated proteins
- **S14** Non-catalytic pattern recognition receptors
- **S15** Regulators of G protein Signaling (RGS) proteins
- **S15** Rig proteins
- **S15** Tubulins
- **S15** Tumour-associated proteins
- **S15** WD repeat-containing proteins
- **S13** Pentaxins
- **S13** Serum pentaxins
- **S13** Reticulons and associated proteins
- **S13** Repulsive guidance molecules
- **S13** Ribosomal factors
- **S14** Sigma receptors
- **S15** Tubulins
- **S15** Tumour-associated proteins
- **S15** WD repeat-containing proteins
- **S14** Sigma receptors
- **S15** Tubulins
- **S15** Tumour-associated proteins
- **S15** WD repeat-containing proteins

Adiponectin receptors

Other protein targets → Adiponectin receptors

Overview: Adiponectin receptors (provisional nomenclature, ENSFM00500000270960) respond to the 30 kDa complement-related protein hormone adiponectin (also known as **ADIPOQ**; adipocyte, C1q and collagen domain-containing protein; ACRP30, adipose most abundant gene transcript 1; apM-1; gelatin-binding protein; Q15848) originally cloned from adipocytes [49]. Although sequence data suggest 7TM domains, immunological evidence indicates that, contrary to typical 7TM topology, the carboxyl terminus is extracellular, while the amino terminus is intracellular [90]. Signalling through these receptors appears to avoid G proteins; modelling based on the crystal structures of the adiponectin receptors suggested ceramidase acitvity, which would make these the first in a new family of catalytic receptors [93].

Nomenclature	Adipo1 receptor	Adipo2 receptor
HGNC, UniProt	ADIPO1, Q96AS4	ADIPO2, Q86V24
Rank order of potency	globular adiponectin (**ADIPOQ**, Q15848) > adiponectin (**ADIPOQ**, Q15848)	globular adiponectin (**ADIPOQ**, Q15848) = adiponectin (**ADIPOQ**, Q15848)

Comments: T-Cadherin (**CDH13**, P55290) has also been suggested to be a receptor for (hexameric) adiponectin [33].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full
Further reading on Adiponectin receptors

Fisman EZ et al. (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease. Cardiovasc Diabetol 13: 103 [PMID:24957699]
Matsuda M et al. (2014) Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord 15: 1-10 [PMID:24026768]
Ruan H et al. (2016) Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol 8: 101-9 [PMID:26993044]

Blood coagulation components

Other protein targets → Blood coagulation components

Overview: Coagulation as a process is interpreted as a mechanism for reducing excessive blood loss through the generation of a gel-like clot local to the site of injury. The process involves the activation, adhesion (see Integrins), degranulation and aggregation of platelets, as well as proteins circulating in the plasma. The coagulation cascade involves multiple proteins being converted to more active forms from less active precursors, typically through proteolysis (see Proteases). Listed here are the components of the coagulation cascade targeted by agents in current clinical usage.

Nomenclature	coagulation factor V	coagulation factor VIII	serpin family C member 1
HGNC, UniProt	F5, P12259	F8, P00451	SERPINC1, P01008
Selective activators	–	–	heparin (pKd 7.8) [26], fondaparinux (pKd 7.5) [62], dalteparin [32], danaparoid [16, 56], enoxaparin [19], tinzaparin [20]
Selective inhibitors	drotrecogin alfa [36, 37]	drotrecogin alfa [36, 37]	–

Further reading on Blood coagulation components

Astermark J. (2015) FVIII inhibitors: pathogenesis and avoidance. Blood 125: 2045-51 [PMID:25712994]
Girolami A et al. (2017) New clotting disorders that cast new light on blood coagulation and may play a role in clinical practice. J Thromb Thrombolysis 44: 71-75 [PMID:28251495]
Rana K et al. (2016) Blood flow and mass transfer regulation of coagulation. Blood Rev 30: 357-68 [PMID:27133256]
Non-enzymatic BRD containing proteins

Overview: Bromodomains bind proteins with acetylated lysine residues, such as histones, to regulate gene transcription. Listed herein are examples of bromodomain-containing proteins for which sufficient pharmacology exists.

Nomenclature	Selective inhibitors
bromodomain adjacent to zinc finger domain 2A	GSK2801 (pKd 6.6) [73]
bromodomain adjacent to zinc finger domain 2B	GSK2801 (pKd 6.9) [73]
CREB binding protein	I-CBP112 (pKd 6.8) [72]
polybromo 1	PFI-3 (pKd 7.3) [79]
SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4	PFI-3 (pKd 7.1) [79]

Further reading on Non-enzymatic BRD containing proteins

Brand M et al. (2015) Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem. Biol. 10: 22-39 [PMID:25549280]
Fujisawa T et al. (2017) Functions of bromodomain-containing proteins and their roles in homeostasis and cancer Nat Rev Mol Cell Biol 18: 246-262 [PMID:28053347]
Nicholas DA et al. (2017) BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol Life Sci 74: 231-243 [PMID:27491296]
Theodoulou NH et al. (2016) Clinical progress and pharmacology of small molecule bromodomain inhibitors. Cur Opin Chem Biol 33: 58-66 [PMID:27295577]
Theodoulou NH et al. (2016) Progress in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 11: 477-87 [PMID:26749027]

Carrier proteins

Overview: Transthyretin (TTR) is a homo-tetrameric protein which transports thyroxine in the plasma and cerebrospinal fluid and retinol (vitamin A) in the plasma. Many disease causing mutations in the protein have been reported, many of which cause complex dissociation and protein mis-assembly and deposition of toxic aggregates amyloid fibril formation [63]. These amyloidogenic mutants are linked to the development of pathological amyloidoses, including familial amyloid polyneuropathy (FAP) [4, 14], familial amyloid cardiomyopathy (FAC) [34], amyloidotic vitreous opacities, carpal tunnel syndrome [54] and others. In old age, non-mutated TTR can also form pathological amyloid fibrils [88]. Pharmacological intervention to reduce or prevent TTR dissociation is being pursued as a therapeutic strategy. To date one small molecule kinetic stabilising molecule (tafamidis) has been approved for FAP, and is being evaluated in clinical trials for other TTR amyloidoses.

Nomenclature	TTR
HGNC, UniProt	TTR, P02766
Common abbreviation	TTR
Further reading on Carrier proteins

Alshehri B et al. (2015) The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 27: 303-23 [PMID:25737004]

Delliere S et al. (2017) Is transthyretin a good marker of nutritional status? Clin Nutr 36: 364-370 [PMID:27381508]

Galant NJ et al. (2017) Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clin Sci (Lond) 131: 395-409 [PMID:28213611]

CD molecules

Other protein targets → CD molecules

Overview: Cluster of differentiation refers to an attempt to catalogue systematically a series of over 300 cell-surface proteins associated with immunotyping. Many members of the group have identified functions as enzymes (for example, see CD73 ecto-5'-nucleotidase) or receptors (for example, see CD41 integrin, alpha 2b subunit). Many CDs are targetted for therapeutic gain using antibodies for the treatment of proliferative disorders. A full listing of all the Clusters of Differentiation is not possible in the Guide to PHARMACOLOGY; listed herein are selected members of the family targetted for therapeutic gain.

Nomenclature	CD2	CD3e	CD20 (membrane-spanning 4-domains, subfamily A, member 1)	CD33	CD52
HGNC, UniProt	CD2, P06729	CD3E, P07766	MS4A1, P11836	CD33, P20138	CD52, P31358
Common abbreviation	-	-	-	-	-
Selective inhibitors	alefacept (Inhibition) [17, 53]	-	-	-	-
Antibodies	-	catumaxomab (Binding) [43], muromonab-CD3 (Binding) [25], otezolizumab (Binding) [9]	ofatumumab (Binding) (pKd 9.9) [47], rituximab (Binding) (pKd 8.5) [75], ibritumomab tiuxetan (Binding), obinutuzumab (Binding) [3, 66], tositumomab (Binding)	lintuzumab (Binding) (pKd ~10) [10], gemtuzumab ozogamicin (Binding) [7]	alemtuzumab (Binding) [24, 79]

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full
Comment: The endogenous ligands for human PD-1 are programmed cell death 1 ligand 1 (PD-L1 aka CD274 ([CD274](http://www.guidetopharmacology.org/index.jsp#cd274), Q9NZQ7)) and programmed cell death 1 ligand 2 (PD-L2; [PDCD1LG2](http://www.guidetopharmacology.org/index.jsp#pdcd1lg2)). These ligands are cell surface peptides, normally involved in immune system regulation. Expression of PD-1 by cancer cells induces immune tolerance and evasion of immune system attack. Anti-PD-1 monoclonal antibodies are used to induce immune checkpoint blockade as a therapeutic intervention in cancer, effectively re-establishing immune vigilance. pembrolizumab was the first anti-PD-1 antibody to be approved by the US FDA.

Further reading on CD molecules

Gabius HJ et al. (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. *Trends Biochem Sci* **40**: 360-76 [PMID:25981696]

Methyllysine reader proteins

Other protein targets → Chromatin-interacting transcriptional repressors → Methyllysine reader proteins

Overview: Methyllysine reader proteins bind to methylated proteins, such as histones, allowing regulation of gene expression.

Nomenclature	CD80	CD86	cytotoxic T-lymphocyte-associated protein 4 (CD152)	programmed cell death 1 (CD279)	CD300a
HGNC, UniProt	CD80, P33681	CD86, P42081	CTLA4, P16410	PDCD1, Q15116	CD300A, Q9UGN4
Common abbreviation	–	–	CTLa-4	PD-1	–
Antibodies	–	–	ipilimumab (pKd > 9) [28], pembrolizumab (pKd ~10) [11], nivolumab (pKd 9.1) [28, 38, 40]	–	–

Further reading on Methyllysine reader proteins

Liu K et al. (2015) Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. *Pharmacol. Ther.* **151**: 121-40 [PMID:25857453]

Milosevich N et al. (2016) Chemical Inhibitors of Epigenetic Methyllysine Reader Proteins. *Biochemistry* **55**: 1570-83 [PMID:26650180]

Sadakierska-Chudy A et al. (2015) A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. *Neurotox Res* **27**: 84-97 [PMID:25365560]

Teske KA et al. (2017) Methyllysine binding domains: Structural insight and small molecule probe development. *Eur J Med Chem* **136**: 14-35 [PMID:28478342]

Zahnow CA et al. (2016) Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. *Adv Cancer Res* **130**: 55-111 [PMID:27037751]
Fatty acid-binding proteins

Overview: Fatty acid-binding proteins are low molecular weight (100-130 aa) chaperones for long chain fatty acids, fatty acyl CoA esters, eicosanoids, retinols, retinoic acids and related metabolites and are usually regarded as being responsible for allowing the otherwise hydrophobic ligands to be mobile in aqueous media. These binding proteins may perform functions extracellularly (e.g., in plasma) or transport these agents to the nucleus to interact with nuclear receptors (principally PPARs and retinoic acid receptors [70]) or for interaction with metabolic enzymes. Although sequence homology is limited, crystallographic studies suggest conserved 3D structures across the group of binding proteins.

Nomenclature	fatty acid binding protein 1	fatty acid binding protein 2	fatty acid binding protein 3	fatty acid binding protein 4
HGNC, UniProt	FABP1, P07148	FABP2, P12104	FABP3, P05413	FABP4, P15090
Rank order of potency	stearic acid, oleic acid >	stearic acid >	stearic acid, oleic acid >	oleic acid, palmitic acid,
	palmitic acid, linoleic acid >	palmitic acid, oleic acid >	palmitic acid, oleic acid >	stearic acid, linoleic acid >
	arachidonic acid, α-linolenic acid	arachidonic acid, α-linolenic acid	arachidonic acid, α-linolenic acid	arachidonic acid, α-linolenic acid, arachidonic acid

Inhibitors	fenofibrate (pKᵢ 7.6) [12] – Rat, fenofibrin acid (pKᵢ 6.5) [12] – Rat, HTS01037 (pKᵢ 5.1) [30] – Mouse	–	–	–
Selective inhibitors	–	–	–	HM50316 (pKᵢ > 9) [46]
Comments	A broader substrate specificity than other FABPs, binding two fatty acids per protein [82].	Crystal structure of the rat FABP2 [69].	Crystal structure of the human FABP3 [91].	–
Nomenclature | retinol binding protein 1 | retinol binding protein 2 | retinol binding protein 3 | retinol binding protein 4 | retinol binding protein 5 | retinol binding protein 7
---|---|---|---|---|---|---
HGNC, UniProt | RBP1, P09455 | RBP2, P50120 | RBP3, P10745 | RBP4, P02753 | RBP5, P82980 | RBP7, Q96R05
Rank order of potency | – | – | – | – | – | –

Inhibitors | – | – | A1120 (pIC₅₀ 7.8) [86] | – | – | –

Comments: Although not tested at all FABPs, BMS309403 exhibits high affinity for FABP4 (pIC₅₀ 8.8) compared to FABP3 or FABP5 (pIC₅₀ < 6.6) [21, 81]. HTS01037 is reported to interfere with FABP4 action [30]. Ibuprofen displays some selectivity for FABP4 (pIC₅₀ 5.5) relative to FABP3 (pIC₅₀ 3.5) and FABP5 (pIC₅₀ 3.8) [48]. Fenofibric acid displays some selectivity for FABP5 (pIC₅₀ 5.5) relative to FABP3 (pIC₅₀ 4.5) and FABP4 (pIC₅₀ 4.6) [48]. Multiple pseudogenes for the FABPs have been identified in the human genome.

Further reading on Fatty acid-binding proteins

Gajda AM et al. (2015) Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine. *Prostaglandins Leukot. Essent. Fatty Acids* **93**: 9-16 [PMID:25458898]

Glatz JF. (2015) Lipids and lipid binding proteins: a perfect match. *Prostaglandins Leukot. Essent. Fatty Acids* **93**: 45-9 [PMID:25154384]

Hotamisligil GS et al. (2015) Metabolic functions of FABPs-mechanisms and therapeutic implications. *Nat Rev Endocrinol* **11**: 592-605 [PMID:26260145]

Matsumata M et al. (2016) Fatty acid binding proteins and the nervous system: Their impact on mental conditions. *Neurosci. Res.* **102**: 47-55 [PMID:25205626]

Osumi T et al. (2016) Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. *Exp Cell Res* **340**: 198-204 [PMID:26524506]
Notch receptors

Other protein targets → Notch receptors

Overview: The canonical Notch signalling pathway has four type I transmembrane Notch receptors (Notch1-4) and five ligands (DLL1, 2 and 3, and Jagged 1-2). Each member of this highly conserved receptor family plays a unique role in cell-fate determination during embryogenesis, differentiation, tissue patterning, proliferation and cell death [2]. As the Notch ligands are also membrane bound, cells have to be in close proximity for receptor-ligand interactions to occur. Cleavage of the intracellular domain (ICD) of activated Notch receptors by γ-secretase is required for downstream signalling and Notch-induced transcriptional modulation [18, 57, 71, 89]. This is why γ-secretase inhibitors can be used to downregulate Notch signalling and explains their anti-cancer action. One such small molecule is RO4929097 [47], although development of this compound has been terminated following an unsuccessful Phase II single agent clinical trial in metastatic colorectal cancer [78].

Aberrant Notch signalling is implicated in a number of human cancers [41, 59, 74, 85]. Pharmaceutical inhibitors of Notch signalling such as demcizumab and tarextumab are being actively investigated as novel anti-cancer agents [64].

Nomenclature	notch 1	notch 2	notch 3	notch 4
HGNC, UniProt	NOTCH1, P46531	NOTCH2, Q04721	NOTCH3, Q9UM47	NOTCH4, Q99466
Comments	Various types of activating and inactivating NOTCH1 mutations have been reported to be associated with human diseases, for example: aortic valve disease [23, 52], Adams-Oliver syndrome 5 [76], T-cell acute lymphoblastic leukemia (T-ALL) [87], chronic lymphocytic leukemia (CLL) [65] and head and neck squamous cell carcinoma [1, 77].			

Further reading on Notch receptors

Borggrefe T et al. (2016) The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. *Biochim Biophys Acta* 1863: 303-313 [PMID:26592459]

Cheng YL et al. (2015) Emerging roles of the gamma-secretase-notch axis in inflammation. *Pharmaco Ther* 147: 80-90 [PMID:25448038]

Palmer WH et al. (2015) Ligand-Independent Mechanisms of Notch Activity. *Trends Cell Biol* 25: 697-707 [PMID:26437585]

Previs RA et al. (2015) Molecular pathways: translational and therapeutic implications of the Notch signalling pathway in cancer. *Clin Cancer Res* 21: 955-61 [PMID:25388163]

Takebe N et al. (2015) Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. *Nat Rev Clin Oncol* 12: 445-464 [PMID:25850553]

Regulators of G protein Signaling (RGS) proteins

Other protein targets → Regulators of G protein Signaling (RGS) proteins

Overview: Regulators of G protein signalling (RGS) proteins increase the deactivation rates of G protein signalling pathways through enhancing the GTPase activity of the G protein alpha subunit. Interactions through protein:protein interactions of many RGS proteins have been identified for targets other than heteromeric G proteins. The 20 RGS proteins are commonly divided into four families (R4, R7, R12 and RZ) based on sequence and domain homology. Described here is RGS4 for which a number of pharmacological inhibitors have been described.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full
Sigma receptors

Overview: Although termed ‘receptors’, the evidence for coupling through conventional signalling pathways is lacking. Initially described as a subtype of opioid receptors, there is only a modest pharmacological overlap and no structural convergence with the G protein-coupled receptors; the crystal structure of the sigma1 receptor [94] suggests a trimeric structure of a single short transmembrane domain traversing the endoplasmic reticulum membrane, with the bulk of the protein facing the cytosol. A wide range of compounds, ranging from psychoactive agents to antihistamines, have been observed to bind to these sites.

Further reading on Sigma receptors

Chu UB et al. (2016) Biochemical Pharmacology of the Sigma-1 Receptor. Mol Pharmacol 89: 142-53 [PMID:26560551]
Gris G et al. (2015) Sigma-1 receptor and inflammatory pain. Inflamm Res 64: 377-81 [PMID:25902777]
Rousseaux CG et al. (2015) Sigma receptors [sigmaRs]: biology in normal and diseased states. J Recept Signal Transduct Res 1-62 [PMID:26056947]
Su TP et al. (2016) The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 37: 262-78 [PMID:26869505]
van Waarde A et al. (2015) Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim Biophys Acta 1848: 2703-14 [PMID:25173780]
Tubulins
Other protein targets → Tubulins

Overview: Tubulins are a family of intracellular proteins most commonly associated with microtubules, part of the cytoskeleton. They are exploited for therapeutic gain in cancer chemotherapy as targets for agents derived from a variety of natural products: taxanes, colchicine and vinca alkaloids. These are thought to act primarily through β-tubulin, thereby interfering with the normal processes of tubulin polymer formation and disassembly.

Nomenclature	tubulin alpha 1a	tubulin alpha 4a	tubulin beta class I	tubulin beta 3 class III	tubulin beta 4B class IVb	tubulin beta 8 class VIII
HGNC, UniProt	TUBA1A, Q71U36	TUBA4A, P68366	TUBB, P07437	TUBB3, Q13509	TU8848, P68371	TU888, Q3ZCM7
Inhibitors	-	-	-	vinblastine (pIC_{50} 9), vincristine, eribulin (pIC_{50} 8.2) [58], paclitaxel (pEC_{50} 8.1) [61], colchicine (pIC_{50} 8) [13], cabazitaxel, docetaxel, ixabepilone	-	-

Inhibitors – – vinblastine (pIC_{50} 9), vincristine, eribulin (pIC_{50} 8.2) [58], paclitaxel (pEC_{50} 8.1) [61], colchicine (pIC_{50} 8) [13], cabazitaxel, docetaxel, ixabepilone –

Further reading on Tubulins

Gadadhar S et al. (2017) The tubulin code at a glance. J Cell Sci 130: 1347-1353 [PMID:28325758]
Penna LS et al. (2017) Anti-mitotic agents: Are they emerging molecules for cancer treatment? Pharmacol Ther 173: 67-82 [PMID:28174095]
References

1. Agrawal N et al. (2011) [21798897]
2. Al-Hussaini H et al. (2011) [20971825]
3. Aduauij W et al. (2011) [21378274]
4. ANDRADE C. (1952) [12978172]
5. Balendiranan G et al. (2000) [10854433]
6. Berardi F et al. (1996) [8568804]
7. Bernstein ID. (2000) [10720144]
8. Blazer LL et al. (2011) [21329361]
9. Bolt S et al. (1993) [8436176]
10. Caron PC et al. (1992) [1458463]
11. Carven GJ et al. (2010) Patent number: US20100266617.
12. Chuang S et al. (2008) [18533710]
13. Cifuentes M et al. (2006) [16504507]
14. Coelho T. (1996) [8894411]
15. Crabb JW et al. (1998) [9544107]
16. Cziraky MJ et al. (1993) [8137606]
17. da Silva AJ et al. (2002) [11970990]
18. De Strooper B et al. (1999) [10206645]
19. Eriksson BI et al. (1995) [7667822]
20. Friedel HA et al. (1994) [7528134]
21. Furushashi M et al. (2007) [17554340]
22. Gangjee A et al. (2013) [23895532]
23. Garg V et al. (2005) [16025100]
24. Ginaldi L et al. (1998) [9593473]
25. Goldstein G. (1987) [3105134]
26. Gotti R et al. (2013) [23598032]
27. Halk EL et al. (2001) Patent number: WO2001014424.
28. Hall RD et al. (2013) [23302904]
29. Hanson DC et al. (2004) Patent number: US6682736 B1.
30. Hertzel AV et al. (2009) [19754198]
31. Hofoh C et al. (1999) [10493790]
32. Holmer E et al. (1986) [3744129]
33. Hug C et al. (2004) [11521927]
34. Jacobsson DR et al. (1997) [9017939]
35. James Li et al. (2013) [23292653]
36. Kanji S et al. (2001) [11714212]
37. Kapur S et al. (2001) [11463021]
38. Kline J et al. (2010) [21154117]
39. Korman AJ et al. (2006) Patent number: WO2006121168.
40. Latek R et al. (2009) [19300198]
41. Lefort K et al. (2007) [17344417]
42. Lehmann BD et al. (2015) [25993190]
43. Linke R et al. (2010) [20190561]
44. Linsley PS et al. (1991) [1714933]
45. Liu Q. (2013) Patent number: WO2013007052.
46. Liu X et al. (2011) [21481589]
47. Luistro L et al. (1988) [19773430]
48. Machhub B et al. (1988) [24248795]
49. Maeda K et al. (1996) [8619847]
50. Majava V et al. (2010) [20421974]
51. Matsumoto RR et al. (1995) [85666098]
52. McBride KL et al. (2008) [18593716]
53. Mitchell P. (2002) [12089534]
54. Murakami K et al. (1999) [10403814]
55. Naganatsu I et al. (2014) [24403446]
56. Nakase J et al. (2009) [19398784]
57. Nam Y et al. (2006) [16530044]
58. Narayan S et al. (2011) [21324687]
59. Ntzachristos P et al. (2014) [24651013]
60. Okuyama S et al. (1993) [7901723]
61. Ouyang X et al. (2006) [16377187]
62. Paolucci F et al. (2002) [12383040]
63. Penchala SC et al. (2013) [23716704]
64. Prezzavento O et al. (2007) [17328523]
65. Reslan L et al. (2013) [23537283]
66. Richieri GV et al. (1994) [7929039]
67. Richieri GV et al. (2000) [10852718]
68. Sacchettini JC et al. (1989) [2671390]
69. Schroeter F et al. (2008) [17882463]
70. Schroeter EH et al. (1998) [9620803]
71. 1-CBP12 - a CREBBP/EP300-selective chemical probe. Accessed on 03/03/2015. thesgc.org.
72. GS2801: A Selective Chemical Probe for BAZ2B/A bromodomains. Accessed on 03/03/2015. thesgc.org.
73. Shitara K et al. (2011) Patent number: US7923538 B2.
74. Sjölund J et al. (2008) [18079963]
75. Stein R et al. (2004) [15102696]
76. Stitttrich AB et al. (2014) [25132448]
77. Stransky N et al. (2011) [21798893]
78. Strosberg JR et al. (2012) [22445247]
79. PFI-3: Selective chemical probe for SMARCA bromodomains. Accessed on 10/11/2014. http://www.thesgc.org.
80. Su TP et al. (1991) [1658302]
81. Sulsy R et al. (2007) [17502136]
82. Thompson J et al. (1997) [9054409]
83. Turner EM et al. (2012) [22368763]
84. Vicente Rabaneda EF et al. (2013) [23899231]
85. Vilimas T et al. (2007) [17173050]
86. Wang Y et al. (2014) [24835984]
87. Weng AP et al. (2004) [15472075]
88. Westmark P et al. (1981) [7016817]
89. Wilson JJ et al. (2006) [16530045]
90. Yamachli T et al. (2003) [12802337]
91. Young AC et al. (1994) [7922029]
92. Alon A et al. (2017) [25859337]
93. Tanabe H et al. (2015) [25855295]
94. Schmid HR et al. (2016) [27042935]
95. Zwicker BL et al. (2013) [23603607]