The Mu2e Experiment — Searching for Charged Lepton Flavor Violation

Michael Hedges
Purdue University
on behalf of the Mu2e collaboration
02/22/2022
Charged leptons are only fermions without observation of flavor violation

- Quarks mix (CKM)
- Neutrinos oscillate

CLFV is allowed in νSM, but ludicrously suppressed

- $Br(\mu \to e \gamma) \propto (\frac{\Delta m_{\nu}^2}{M_W^2})^2 < 10^{-52}$

Any experimental observation would unambiguously indicate New Physics
CLFV: $\mu \to e$ conversion

- Monoenergetic ~ 105 MeV/c conversion-electron (CE)
- Sensitive to energy scales $\mathcal{O}(1000)$ TeV
Discovery potential of $R_{\mu e} = \frac{\Gamma(\mu^- + N(Z,A) \rightarrow e^- + N(Z,A))}{\Gamma(\mu^- + N(Z,A) \rightarrow \nu_{\mu} + N(Z-1,A))} > 2 \times 10^{-16} (5\sigma)$

- $R_{\mu e} < 8 \times 10^{-17}$ (90% CL)
- $\mathcal{O}(10^4)$ improvement of previous result (SINDRUM-II)
Backgrounds

Intrinsic
- μ Decay-in-orbit (DIO)
- Cosmic rays
- Mitigate with detector design

Beam-induced
- Beam electrons (decays-in-flight)
- Radiative pion capture (pions in μ-target)
- Mitigate with accelerator design and μ-target choice
Tracker

Annular disks of straw tubes

- Inner hole (38 cm) reduces flux of high-intensity, low-momentum particles
- 20k mylar straws (15 µm)
- 1 atm 80:20 Ar:CO₂ at 1450 V
- \(~ 100 \text{ keV/c} \) momentum resolution to separate signal from DIO tail
2 annular disks of 674 undoped CsI crystals

- Provides E/p (along with tracker)
- $\sigma_E/E = \mathcal{O}(10\%)$
- $\sigma_t < 500$ ps
- $\sigma_{x,y} \leq 1$ cm
- $\tau < 40$ ns
Stopping target monitor

- Need to measure denominator of $R_{\mu e}$
 - Measure rate of muonic atoms to $\mathcal{O}(10\%)$
- System of HPGe and LaBr detectors downstream of Mu2e detect γ spectrum
Beam backgrounds: pulsed beam and aluminum target

- ~200 ns pulses of ~10^7 protons at 8 GeV/c, spaced at ~1700 ns
- Muonic aluminum lifetime of 864 ns
- Strategy: Extract muon beam onto Al target, wait for prompt backgrounds to decay, search for CLFV signal
How do we know the signal window is free of residual beam?

- Measure beam extinction as ratio of out-of-time beam to in-time beam
- Must achieve extinction level of 10^{-10} or better
Extinction Monitor

- Track target-scattered protons using ATLAS silicon pixel sensors and FE-I4b readout chips
- 8 pixel planes and a permanent dipole magnet
 - Detect ~ 4 GeV/c protons and deflect low-energy secondary particles
Cosmic ray background
Cosmic Ray Veto

- Expect base rate of \(\sim 1 \) CE-like event / day from cosmic rays
- Need 99.99% veto efficiency
- Solution: 4 layers of extruded polystyrene scintillators surrounding entire detector area
 - Veto events with triple coincidence
Simulating first physics run (mid-2020s)

Recently completed MC campaign to estimate Run 1 sensitivity
- Draft publication under internal review

Discovery potential at
\[R_{\mu e} > 1 \times 10^{-15} \ (5\sigma) \]
- \[R_{\mu e} < 6 \times 10^{-16} \ (90\% \ CL) \]
- 10^3 improvement over SINDRUM-II
Searches for CLFV provide excellent opportunity to probe New Physics

Mu2e will search for CLFV in $\mu \rightarrow e$ conversion and improve previous results by $O(10^4)$ by the end of the decade

Mu2e is currently under construction and performing system integration tests

Commissioning and Run 1 expected during the middle of this decade

- Stay tuned!
Backup
Physics reach and μ-lifetime vs Z