EXCLUDING LONG PATHS

BIN JIA

Department of Mathematics and Statistics
The University of Melbourne
Victoria 3010, Australia.
Email: jiabinqq@gmail.com Mobile: +61 404639816

Abstract. Ding (1992) proved that for each integer $m \geq 0$, and every infinite sequence of finite simple graphs G_1, G_2, \ldots, if none of these graphs contains a path of length m as a subgraph, then there are indices $i < j$ such that G_i is isomorphic to an induced subgraph of G_j. We generalise this result to infinite graphs, possibly with parallel edges and loops.

Keywords. tree-decomposition, tree-width, tree-diameter, well-quasi-ordering, better-quasi-ordering.

1. Introduction and main results

All graphs in this paper are undirected. Unless stated otherwise, a graph may be finite or infinite, and may contain parallel edges and loops. Let $m \geq 0$ be an integer. We use P_m to denote a path with m edges (and $m + 1$ vertices).

Robertson and Seymour [11] proved that the finite graphs are well-quasi-ordered by the minor relation. Thomas [12] found an example showing that the infinite graphs are not well-quasi-ordered by the minor relation. Later, Thomas [13] proved that the finite or infinite graphs without a given finite planar graph as a minor are well-quasi-ordered (furthermore, better-quasi-ordered) by the minor relation.

A Robertson chain of length m is the graph obtained by duplicating each edge of P_m. Robertson conjectured in 1980’s that the finite graphs without a Robertson chain of length m as a topological minor are well-quasi-ordered by the topological minor relation. This conjecture was proved by Liu [6].

By considering the type of a finite simple graph, Ding [1] proved that, for each integer $m \geq 0$, the finite simple graphs without P_m as a subgraph are well-quasi-ordered by the induced subgraph relation. Another proof, based on the tree-depth, was given by Nešetřil and Ossona de Mendez [9]. We generalise Ding’s theorem to infinite graphs, possibly with parallel edges and loops.

bin Jia gratefully acknowledges scholarships provided by The University of Melbourne.
Theorem 1.1. Given a finite graph H, the graphs (respectively, of bounded multiplicity) without H as a subgraph are better-quasi-ordered by the (respectively, induced) subgraph relation if and only if H is a disjoint union of paths.

Let $t \geq 1$ be an integer. A t-dipole is a graph with two vertices and t edges between them. Clearly, a t-dipole does not contain P_2 as a subgraph. Further, the set of t-dipoles, for $t = 1, 2, \ldots$, is well-quasi-ordered by the subgraph relation, but not by the induced subgraph relation.

Our method in dealing with the graphs without P_m as a subgraph is different from the methods of Ding [1] and Nešetřil and Ossona de Mendez [9]. Instead of studying the type or the tree-depth of a graph G, we prove Theorem 1.1 by investigating the tree-decompositions of G. A key step is to show that, if G does not contain P_m as a subgraph, then G admits a tree-decomposition which attains the minimum width such that the diameter of the tree for the tree-decomposition is bounded by a function of m. Then we prove Theorem 1.1 by induction on the diameter.

2. Terminology

This section presents some necessary definitions and basic results about tree-decompositions and quasi-orderings of graphs.

A binary relation on a set is a quasi-ordering if it is reflexive and transitive. A quasi-ordering \leq on a set Q is a well-quasi-ordering if for every infinite sequence q_1, q_2, \ldots of Q, there are indices $i < j$ such that $q_i \leq q_j$. And if this is the case, then q_i and q_j are called a good pair, and Q is well-quasi-ordered by \leq.

Let G be a hypergraph, T be a tree, and $V := \{V_v \mid v \in V(T)\}$ be a set cover of $V(G)$ indexed by $v \in V(T)$. The pair (T, V) is called a tree-decomposition of G if the following two conditions are satisfied:

- for each hyperedge e of G, there exists some $V \in V$ containing all the vertices of G incident to e;
- for every path $[v_0, \ldots, v_i, \ldots, v_m]$ of T, we have $V_{v_0} \cap V_{v_m} \subseteq V_{v_i}$.

The width $tw(T, V)$ of (T, V) is $\sup\{|V| - 1 \mid V \in V\}$. The tree-width $tw(G)$ of G is the minimum width of a tree-decomposition of G. The tree-diameter $tdi(G)$ of G is the minimum diameter of T over the tree-decompositions (T, V) of G such that $tw(T, V) = tw(G)$.

Let $[v_0, e_1, v_1, \ldots, e_{m-1}, e_m, v_m]$ be a path of T. Denote by $V_T(v_0, v_m)$ the set of minimal sets, up to the subset relation, among V_{v_i} and $V_{e_j} := V_{v_{j-1}} \cap V_{v_j}$ for $i \in \{0, 1, \ldots, m\}$ and $j \in [m] := \{1, 2, \ldots, m\}$. We identify repeated sets in $V_T(v_0, v_m)$.

A tree-decomposition (T, V) of G is said to be linked if

- for every pair of nodes u and v of T, and subsets U of V_u and V of V_v such that $|U| = |V| := k$, either G contains k disjoint paths from U to V, or there exists some $W \in V_T(u, v)$ such that $|W| < k$.
Kruskal’s theorem [4] states that finite trees are well-quasi-ordered by the topological minor relation. Nash-Williams [7] generalised this theorem and proved that infinite trees are better-quasi-ordered by the same relation. Let \(A \) be the set of all finite ascending sequences of nonnegative integers. For \(A, B \in A \), write \(A <_A B \) if \(A \) is a strict initial subsequence of some \(C \in A \), and by deleting the first term of \(C \), we obtain \(B \). Let \(B \) be an infinite subset of \(A \), and \(\bigcup B \) be the set of nonnegative integers appearing in some sequence of \(B \). \(B \) is called a block if it contains an initial subsequence of every infinite increasing sequence of \(\bigcup B \). For \(A, B \in A \), write \(A < A B \) if \(A \) is a strict initial subsequence of some \(C \in A \), and by deleting the first term of \(C \), we obtain \(B \). Let \(B \) be an infinite subset of \(A \), and \(\bigcup B \) be the set of nonnegative integers appearing in some sequence of \(B \). Let \(Q \) be a set with a quasi-ordering \(\leq_Q \). A \(Q \)-pattern is a function from a block \(B \) into \(Q \). A \(Q \)-pattern \(\varphi \) is good if there exist \(A, B \in B \subseteq A \) such that \(A <_A B \) and \(\varphi(A) \leq_Q \varphi(B) \). \(Q \) is said to be better-quasi-ordered by \(\leq_Q \) if every \(Q \)-pattern is good. For example, the set of nonnegative integers is better-quasi-ordered by the natural ordering. It follows from the definitions that a better-quasi-ordering is a well-quasi-ordering. And \(Q \) is better-quasi-ordered if and only if each subset of \(Q \) is better-quasi-ordered.

For an integer \(j \geq 1 \), define a quasi-ordering on \(Q^j \) as follows: \((q_1, \ldots, q_j) \leq_{Q^j} (q'_1, \ldots, q'_j) \) if \(q_i \leq_Q q'_i \) for every \(i \in [j] \). The following lemma follows from the Galvin-Prikry theorem [2] (see also [14, (3.11)] and [5, Lemma 3]).

Lemma 2.1. Let \(k \geq 1 \) be an integer, and \(Q = \bigcup_{i=1}^k Q_i \) be a quasi-ordered set. Then the following statements are equivalent:

1. \(Q \) is better-quasi-ordered.
2. \(Q_i \) is better-quasi-ordered for every \(i \in [k] \).
3. \(Q^j \) is better-quasi-ordered for every integer \(j \geq 1 \).

Define a quasi-ordering \(\leq \) on the powerset of \(Q \) as follows. For \(S_1, S_2 \subseteq Q \), write \(S_1 \leq S_2 \) if there is an injection \(\varphi \) from \(S_1 \) to \(S_2 \) such that \(q \leq_Q \varphi(q) \) for every \(q \in S_1 \).

Let \(Q \) be a set with a quasi-ordering \(\leq_Q \). Let \(S \) be a set of sequences whose elements are from \(Q \). For \(S_1 := (q_1, q_2, \ldots) \in S \) and \(S_2 \in S \), we say \(S_1 \leq_S S_2 \) if there is a subsequence \(S_3 := (p_1, p_2, \ldots) \) of \(S_2 \) such that \(S_1 \) and \(S_3 \) have the same length, and that \(q_i \leq_Q p_i \) for every index \(i \) used in \(S_1 \). The following results are due to Nash-Williams [8].

Lemma 2.2 ([8]). Every finite quasi-ordered set is better-quasi-ordered. And each better-quasi-ordering is a well-quasi-ordering. Moreover, a quasi-ordered set \(Q \) is better-quasi-ordered if and only if the powerset of \(Q \) is better-quasi-ordered if and only if every set of sequences whose elements are from \(Q \) is better-quasi-ordered.

3. Graphs without \(P_m \) as a subgraph

In this section, we show that a graph without a given finite path as a subgraph has bounded tree-diameter. We achieve this by modifying a given tree-decomposition \((T, \mathcal{V})\) of \(G \) such that \(\text{diam}(T) \) is reduced but \(\text{tw}(T, \mathcal{V}) \) remain unchanged.
Lemma 3.1. Let \(m \geq 3 \) be an integer, and \((T, \mathcal{V})\) be a tree-decomposition of a graph \(G \), and \([v_0, \ldots, v_m]\) be a path of \(T \). Let \(U \subseteq V(G) \). Then \(U = V_{v_0} \cap V_{v_1} = V_{v_{m-1}} \cap V_{v_m} \) if and only if \(U = V_{v_i} \cap V_{v_0} = V_{v_i} \cap V_{v_m} \) for all \(i \in [m-1] \).

Proof. \((\Leftarrow)\) Let \(i = 1 \), we have \(U = V_{v_0} \cap V_{v_1} \). Let \(i = m - 1 \), we have \(U = V_{v_{m-1}} \cap V_{v_m} \).

\((\Rightarrow)\) Since \(U = V_{v_0} \cap V_{v_1} = V_{v_0} \cap V_{v_m} \), we have \(U = V_{v_0} \cap V_{v_t} \cap V_{v_{m-1}} \cap V_{v_m} \subseteq V_{v_0} \cap V_{v_m} \). Since \(1 \leq i \leq m - 1 \), by the definition of a tree-decomposition, \(V_{v_0} \cap V_{v_i} \subseteq V_{v_i} \), and \(V_{v_0} \cap V_{v_{m-1}} \subseteq V_{v_{m-1}} \). So \(V_{v_0} \cap V_{v_m} \subseteq V_{v_0} \cap V_{v_i} \subseteq V_{v_0} \cap V_{v_{m-1}} \cap V_{v_m} \). Thus \(U = V_{v_0} \cap V_{v_i} = V_{v_0} \cap V_{v_{m-1}} \cap V_{v_m} \). Symmetrically, \(U = V_{v_t} \cap V_{v_m} \), and hence \(U = V_{v_0} \cap V_{v_i} = V_{v_t} \cap V_{v_m} \).

We list the operation that can be used to reduce \(\text{diam}(T) \) for \((T, \mathcal{V})\).

Operation 3.2. Let \((T, \mathcal{V})\) be a tree-decomposition of a finite graph \(G \) such that \(T \) is a finite tree. Let \(U \subseteq V(G) \) such that \(E_U := \{ e \in E(T) \mid \ V_e = U \} \) is not empty. Let \(T_U \) be the minimal subtree of \(T \) containing \(E_U \), and \(u \) be a center of \(T_U \). For each \(e \in E_U \) with end vertices \(v, w \in V(T) \setminus \{ u \} \) such that \(u \) is closer to \(v \) than to \(w \), delete \(e \) and add an extra edge between \(w \) and \(u \).

Let \(T' \) be obtained from \(T \) by applying Operation 3.2 to a subset \(U \) of \(V(G) \). Let \(E' := E(T') \setminus E(T) \). In Figure 1 \(\text{diam}(T) = 6 \), and the bold edges represent the edges of \(E' \). During the operation, the bold edge incident to \(u \) does not change. Other bold edges are deleted. The curve edges in \(T' \) represent the edges in \(E_U \). Note that \(\text{diam}(T') = 4 \), less than the diameter of \(T \).
Figure 1. Reducing the diameter of the tree for a tree-decomposition

Our next lemma is useful in proving that \((T', \mathcal{V})\) is a tree-decomposition of \(G\).

Lemma 3.3. Let \((T, \mathcal{V})\) be a tree-decomposition of a finite graph \(G\) such that \(T\) is a finite tree. Then \(T'\) is a finite tree. And for every pair of \(x, y \in V(T) = V(T')\), we have \(\mathcal{V}_T(x, y) = \mathcal{V}_{T'}(x, y)\).

Proof. If \(E_U = \emptyset\) or \(\text{diam}(T_U) \leq 2\), then \(T' = T\), and the lemma follows trivially. Now assume that \(\text{diam}(T_U) \geq 3\). By Operation \([3.2]\) we have that \(T'\) is connected, \(V(T') = V(T)\) and \(|E(T')| = |E(T)|\). So \(T'\) is a finite tree.

Let \(P\) and \(Q\) be paths from \(x\) to \(y\) in \(T\) and \(T'\) respectively. By Operation \([3.2]\) we have that \(E(P) \cap E_U = \emptyset\) if and only if \(E(Q) \cap E_{T'} = \emptyset\). And if this is the case, then \(P = Q\) and there is nothing to show. Now suppose that \(E(P) \cap E_U \neq \emptyset\).

For each \(f \in E(P) \cup E(Q)\), there are three cases: First, \(f \in E_U \cup E_{T'}\) and \(V_f = U\). Second, \(V_f \neq U\), and there are two edges \(e, e' \in E_U\) such that \(f\) is on the path of \(T\) between \(e\) and \(e'\). In this case, since \((\mathcal{V}, T)\) is a tree-decomposition of \(G\), we have that \(U = V_e \cap V_{e'} \subset V_f\).

Last, \(f \notin E_U \cup E_{T'}\) and \(f\) is not between two edges of \(E_U\) in \(T\). In this situation, assume for a contradiction that \(f\) is in a cycle of \(T \cup T'\). By Operation \([3.2]\) \(f\) is between \(u\) and an edge \(e \in E_U\) in \(T\). Note that \(u\) is a center of \(T_U\). So there is another edge \(e' \in E_U\) such that \(u\) is on the path of \(T\) from \(e\) to \(e'\), a contradiction. Thus \(f\) is a bridge of \(T \cup T'\). So \(f \in E(P) \cap E(Q)\).

By the analysis above, both \(\mathcal{V}_T(x, y)\) and \(\mathcal{V}_{T'}(x, y)\) are

\[
\min\{U, V_f \mid f \in E(P) \cap E(Q)\}.
\]

A tree-decomposition \((T, \mathcal{V})\) is **short** if for every pair of different \(e, f \in E(T)\), if \(V_e = V_f\), then \(e\) and \(f\) are incident in \(T\). Let \(T^*\) be obtained from \(T\) by applying Operation \([3.2]\) to each \(U \subseteq V(G)\). In the following, we verify that \((T^*, \mathcal{V})\) is a short tree-decomposition.
Lemma 3.4. Let \((T, \mathcal{V})\) be a tree-decomposition of a finite graph \(G\) such that \(T\) is a finite tree. Then all the following statements hold:

1. \(T^*\) is a finite tree such that \(\text{diam}(T^*) \leq \text{diam}(T)\).
2. \((T^*, \mathcal{V})\) is a tree-decomposition of \(G\) such that \(\text{tw}(T^*, \mathcal{V}) = \text{tw}(T, \mathcal{V})\).
3. \((T^*, \mathcal{V})\) is linked if and only if \((T, \mathcal{V})\) is linked.
4. For \(e, f \in E(T^*)\), if \(V_e = V_f\), then \(e\) and \(f\) are incident in \(T^*\).

Proof. (1) follows from Operation 3.2 and Lemma 3.3.

For (2), let \(x, y \in V(T^*) = V(T)\). Since \((T, \mathcal{V})\) is a tree-decomposition, \(V_x \cap V_y\) is a subset of every set in \(\mathcal{V}_T(x, y)\). By Lemma 3.3, \(V_x \cap V_y\) is a subset of every set in \(\mathcal{V}_{T^*}(x, y)\). Let \(z \in V(T)\) be on the path of \(T\) from \(x\) to \(y\). By the definition of \(\mathcal{V}_{T^*}(x, y)\), there exists some \(V \in \mathcal{V}_{T^*}(x, y)\) such that \(V \subseteq V_z\). So \(V_x \cap V_y \subseteq V_z\) and hence \((T^*, \mathcal{V})\) is a tree-decomposition of \(G\). Operation 3.2 does not change a set in \(\mathcal{V}\), so \(\text{tw}(T^*, \mathcal{V}) = \text{tw}(T, \mathcal{V})\).

By Lemma 3.3, for every pair of \(x, y \in V(T)\), we have \(\mathcal{V}_T(x, y) = \mathcal{V}_{T^*}(x, y)\). So (3) follows from the definition of a linked tree-decomposition.

(4) follows from Operation 3.2.

Introduced by Kríž and Thomas [3], an \(M\)-closure of a simple graph \(G\) is a triple \((T, \mathcal{V}, X)\), where \(X\) is a chordal graph without a complete subgraph of order \(\text{tw}(G) + 2\), \(V(G) = V(X)\), \(E(G) \subseteq E(X)\), and \((T, \mathcal{V})\) is a linked tree-decomposition of \(X\) such that each part induces a maximal complete subgraph of \(X\). An \(M\)-closure is short if the tree-decomposition is short.

Lemma 3.5. Every graph \(G\) of finite tree-width, with or without loops, admits a short linked tree-decomposition of width \(\text{tw}(G)\).

Proof. It is enough to consider the case that \(G\) is a simple graph. By Kríž and Thomas [3, (2.3)], every finite simple graph has an \(M\)-closure \((T, \mathcal{V}, X)\). By Lemma 3.4, \((T^*, \mathcal{V})\) is a short \(M\)-closure. In [3, (2.4)], replacing ‘an \(M\)-closure’ with ‘a short \(M\)-closure’ causes no conflict. So \(G\) has a short \(M\)-closure. The rest of the lemma follows from a discussion similar with [3, (2.2)].

Let \(s \geq 0\) be an integer. For \(i = 1, 2, \ldots\), let \(T_i\) be a tree with a center \(v_i\) and of diameter at most \(s\). Let \(T\) be obtained from these trees by adding an edge from \(v_1\) to each of \(v_2, v_3, \ldots\). Then \(\text{diam}(T) \leq 2\lfloor \frac{s}{2} \rfloor + 2 \leq s + 3\). Thus we have the following observation.

Observation 3.6. Let \(G\) be a graph, and \(s\) be the maximum tree-diameter of a connected component of \(G\). Then \(\text{tdi}(G) \leq s + 3\).

We now show that graphs without a given path as a subgraph have bounded tree-diameter.

Lemma 3.7. Let \(G\) be a graph without \(P_m\) as a subgraph. Then \(G\) admits a linked tree-decomposition \((T, \mathcal{V})\) such that \(\text{tw}(T, \mathcal{V}) = \text{tw}(G) \leq m - 1\), and \(\text{diam}(T) \leq 2(m^2 - m + 2)^m + 1\). And if \(G\) is connected, then \(\text{diam}(T) \leq 2(m^2 - m + 2)^m - 2\).
Proof. Let \(X \) be a finite subgraph of \(G \). Suppose for a contradiction that \(\text{tw}(X) \geq m \). Then by Robertson and Seymour [10], \(X \) contains a path of length \(m \), a contradiction. So \(\text{tw}(X) \leq m - 1 \). By a compactness theorem for the notion of tree-width [13, 15], we have that \(\text{tw}(G) \leq m - 1 \).

For the tree-diameter, by Observation [3.6] we only need to consider the case that \(G \) is nonnull and connected. By Lemma [3.3] \(G \) admits a short linked tree-decomposition \((T, \mathcal{V})\) of width \(\text{tw}(G) \). Let \(p := \text{tw}(G) + 1 \in [m] \).

Let \(P := [v_0, e_1, \ldots, e_s, v_s] \) be a path of length \(s \geq 1 \) in \(T \). We say \(P \) is \(t \)-rotund, where \(t \in [s] \), if there exists some \(k \in [p] \) and a sequence \(1 \leq i_1 < \ldots < i_t \leq s \) such that \(V_{e_{i_1}}, \ldots, V_{e_{i_t}} \) are pairwise distinct, \(|V_{e_{i_j}}| = k \) for all \(j \in [t] \), and \(|V_{e_j}| \geq k \) for all \(j \) such that \(i_1 \leq j \leq i_t \). Let \(s^* \in [s] \) be the maximum number of edges of \(P \) corresponding to pairwise different subsets of \(V(G) \).

Claim. \(s \leq 2s^* \). If \(s \geq 2s^* + 1 \), then there are \(1 \leq j_1 < j_2 < j_3 \leq s \) such that \(V_{e_{j_1}} = V_{e_{j_2}} = V_{e_{j_3}} \), contradicting the shortness of \((T, \mathcal{V})\).

Claim. If \(P \) is not \(t \)-rotund, then \(s^* \leq tp - 1 \). To see this, let \(s_k \) be the maximum number of edges of \(P \) corresponding to pairwise different subsets with \(k \) vertices of \(V(G) \). Since \(P \) is not \(t \)-rotund, we have that \(s_1 \leq t - 1 \). More generally, for \(k \geq 2 \), we have \(s_k \leq (s_1 + \ldots + s_{k-1} + 1)(t-1) \). By induction on \(k \) we have that \(s_k \leq tk^{-1}(t-1) \) for each \(k \in [p] \). So \(s^* = s_1 + \ldots + s_p \leq tp - 1 \).

Claim. If \(P \) is \(t \)-rotund, then \(t \leq p(m - 1) + 1 \). To prove this, recall that \((T, \mathcal{V})\) is a linked tree-decomposition. So there are \(k \) disjoint paths in \(G \) with at least \(|\bigcup_{j=1}^j V_{e_{i_j}}| \geq k + t - 1 \) vertices. Since \(G \) does not contain \(P_m \) as a subgraph, each of these \(k \) paths contains at most \(m \) vertices. So \(k + t - 1 \leq km \). As a consequence, \(t \leq k(m - 1) + 1 \leq p(m - 1) + 1 \).

Now let \(t \) be the maximum integer such that \(P \) is \(t \)-rotund. By the third claim, \(t \leq p(m - 1) + 1 \). Since \(P \) is not \((t+1)\)-rotund, by the second claim, \(s^* \leq (t+1)p-1 \). Thus \(s \leq 2s^* \leq 2[(t+1)p - 1] \leq 2[p(m - 1) + 2]p - 2 \leq 2(m^2 - m + 2)m - 2 \).

4. Better-quasi-ordering

This section shows some better-quasi-ordering results for graphs without a given path as a subgraph.

A rooted hypergraph is a hypergraph \(G \) with a special designated subset \(r(G) \) of \(V(G) \). Note that \(r(G) \) can be empty. Let \(Q \) be a set with a quasi-ordering \(\leq Q \). A \(Q \)-labeled rooted hypergraph is a rooted hypergraph \(G \) with a mapping \(\sigma : E(G) \mapsto Q \). The lemma below says that graphs with finitely many vertices (respectively, of bounded multiplicity) are better-quasi-ordered by the (respectively, induced) subgraph relation.

Lemma 4.1. Let \(Q \) be a better-quasi-ordered set, and \(\mathcal{G} \) be a sequence of \(Q \)-labeled rooted hypergraphs (respectively, of bounded multiplicity) whose vertex sets are the subsets of \([p]\), where \(p \geq 1 \) is an integer. For \(X, Y \in \mathcal{G} \), denote by \(X \subseteq Y \) (respectively, \(X \leq Y \)) that \(r(X) = r(Y) \), and there is an isomorphism \(\varphi \) from
X to a (respectively, an induced) subgraph of Y such that for all \(i \in V(X) \) and \(e \in E(X) \), we have that \(\varphi(i) = i \) and \(\sigma(e) \leq Q \sigma(\varphi(e)) \). Then \(G \) is better-quasi-ordered by \(\subseteq \) (respectively, \(\leq \)).

Proof. There are \(\sum_{i=0}^{p} (\binom{p}{i}) 2^i = 3^p \) choices for vertex sets and roots. So by Lemma 2.1 it is safe to assume that all \(G \in \mathcal{G} \) have the same vertex set, say \([p] \), and the same root.

Then each \(G \) can be seen as a sequence of length \(2^p - 1 \), indexed by the nonempty subsets of \([p] \). And for each nonempty \(V \subseteq [p] \), the term of the sequence indexed by \(V \) is the collection of elements of \(Q \) that are used to label the hyperedges \(e \) of \(G \) such that the set of end vertices of \(e \) is \(V \). By Lemmas 2.1 and 2.2 \(G \) is better-quasi-ordered by \(\subseteq \).

Now let \(\mu \) be an upper bound of the multiplicities. There are \((\mu + 1)^{2^p - 1} \) unequal hypergraphs of vertex set \([p] \). By Lemma 2.1 we can assume that all these rooted hypergraphs are equal. In this situation, each \(G \in \mathcal{G} \) is a sequence of length \(2^p - 1 \), indexed by the nonempty subsets of \([p] \). And for each nonempty \(V \subseteq [p] \), the term of the sequence indexed by \(V \) is the collection of elements of \(Q \) that are used to label the hyperedges \(e \) of \(G \) such that the set of end vertices of \(e \) is \(V \). Moreover, the length of the collection is bounded by \(\mu \) and is determined by \(V \). By Lemmas 2.1 and 2.2 \(G \) is better-quasi-ordered by \(\leq \). \(\blacksquare \)

In the following, we show that, for a better-quasi-ordered set \(Q \), the \(Q \)-labeled hypergraphs of bounded (respectively, multiplicity) tree-width and tree-diameter are better-quasi-ordered by the (respectively, induced) subgraph relation.

Lemma 4.2. Let \(p, s \geq 0 \) be integers, \(Q \) be a better-quasi-ordered set, \(\mathcal{G} \) be the set of quintuples \(\mathbf{G} := (G, T, V, r, V_G) \), where \(G \) is a \(Q \)-labeled hypergraph (respectively, of bounded multiplicity) with a tree-decomposition \((T, \mathcal{V}) \) of width at most \(p - 1 \), \(T \) is a rooted tree of root \(r \) and height at most \(s \), and \(V_G \subseteq V_r \). Let \(\lambda : V(G) \mapsto [p] \) be a colouring such that for each \(v \in V(T) \), every pair of different vertices of \(V_r \) are assigned different colours. For \(X, Y \in \mathcal{G} \), denote by \(X \subseteq Y \) (respectively, \(X \leq Y \)) that there exists an isomorphism \(\varphi \) from \(X \) to a subgraph (respectively, an induced subgraph) of \(Y \) such that \(\varphi(V_X) = V_Y \), and that for each \(x \in V(X) \) and \(e \in E(X) \), \(\lambda(x) = \lambda(\varphi(x)) \) and \(\sigma(e) \leq Q \sigma(\varphi(e)) \). Then \(\mathcal{G} \) is better-quasi-ordered by \(\subseteq \) (respectively, \(\leq \)).

Proof. Let \(\mathcal{G}_s \) be the set of \(\mathbf{G} \in \mathcal{G} \) of which the height of \(T \) is exactly \(s \). By Lemma 2.1 it is enough to prove the lemma for \(\mathcal{G}_s \). The case of \(s = 0 \) is ensured by Lemma 4.1. Inductively assume it holds for some \(s - 1 \geq 0 \). By Lemma 2.2 the powerset \(\mathcal{M}_{s-1} \) of \(\mathcal{G}_{s-1} \) is better-quasi-ordered.

Denote by \(N_T(r) \) the neighborhood of \(r \) in \(T \). For each \(u \in N_T(r) \), let \(T_u \) be the connected component of \(T - r \) containing \(u \), and \(G_{T_u} \) be the subgraph of \(G \) induced by the vertex set \(\bigcup_{w \in V(T_u)} V_w \). Let \(\mathcal{V}_{T_u} := \{ V_w | w \in V(T_u) \} \), and \(G_{T_u} := (G_{T_u}, T_u, \mathcal{V}_{T_u}, u, V_r \cap V_u) \). Then \(G_{T_u} \in \mathcal{G}_{s-1} \). Let \(G_r \) be the subgraph of \(G \) induced by \(V_r \). Then \(G_r := (G_r, r, V_r, r, V_G) \in \mathcal{G}_0 \). Clearly, \(G \mapsto G_r \times \{ G_{T_u} | u \in N_T(r) \} \).
$N_T(r)$ is an order-preserving bijection from \mathcal{G}_s to $\mathcal{G}_0 \times \mathcal{M}_{s-1}$. By Lemma 2.1, \mathcal{G}_s is better-quasi-ordered since \mathcal{G}_0 and \mathcal{M}_{s-1} are better-quasi-ordered.

We end this paper by proving that graphs (respectively, of bounded multiplicity) without a given path as a subgraph are better-quasi-ordered by the (respectively, induced) subgraph relation.

Proof of Theorem 1.1. (\Leftarrow) follows from Lemmas 3.7 and 4.2.

(\Rightarrow) Let \mathcal{G} be the set of graphs without H as a subgraph, quasi-ordered by the subgraph or induced subgraph relation. Suppose for a contradiction that H is not a union of paths. Then H contains either a cycle or a vertex of degree at least 3. For $i \geq 1$, let C_i be the cycle of $|V(H)| + i$ vertices. Then C_1, C_2, \ldots is a sequence without a good pair with respect to the subgraph or induced subgraph relation. So \mathcal{G} is not well-quasi-ordered, not say better-quasi-ordered, a contradiction. Thus H is a union of paths.

References

[1] Guoli Ding. Subgraphs and well-quasi-ordering. *J. Graph Theory*, 16(5):489–502, 1992.
[2] Fred Galvin and Karel Prikry. Borel sets and Ramsey’s theorem. *J. Symbolic Logic*, 38:193–198, 1973.
[3] Igor Kříž and Robin Thomas. The Menger-like property of the tree-width of infinite graphs. *J. Combin. Theory Ser. B*, 52(1):86–91, 1991.
[4] Joseph B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. *Trans. Amer. Math. Soc.*, 95:210–225, 1960.
[5] Daniela Kühn. On well-quasi-ordering infinite trees—Nash-Williams’s theorem revisited. *Math. Proc. Cambridge Philos. Soc.*, 130(3):401–408, 2001.
[6] Chun-Hung Liu. *Graph structures and well-quasi-ordering*. PhD thesis, Georgia Institute of Technology.
[7] Crispin St. John Alvah Nash-Williams. On well-quasi-ordering infinite trees. *Proc. Cambridge Philos. Soc.*, 61:697–720, 1965.
[8] Crispin St. John Alvah Nash-Williams. On better-quasi-ordering transfinite sequences. *Proc. Cambridge Philos. Soc.*, 64:273–290, 1968.
[9] Jaroslav Nešetril and Patrice Ossona de Mendez. *Sparsity. Graphs, structures, and algorithms*, volume 28 of *Algorithms and Combinatorics*. Springer, 2012.
[10] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a forest. *J. Combin. Theory Ser. B*, 35(1):39–61, 1983.
[11] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. *J. Combin. Theory Ser. B*, 92(2):325–357, 2004.
[12] Robin Thomas. A counterexample to “Wagner’s conjecture” for infinite graphs. *Math. Proc. Cambridge Philos. Soc.*, 103(1):55–57, 1988.
[13] Robin Thomas. The tree-width compactness theorem for hypergraphs. 1988.
[14] Robin Thomas. Well-quasi-ordering infinite graphs with forbidden finite planar minor. *Trans. Amer. Math. Soc.*, 312(1):279–313, 1989.
[15] Carsten Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic number. In *Combinatorial Mathematics: Proceedings of the Third International Conference (New York, 1985)*, volume 555 of *Ann. New York Acad. Sci.*, pages 402–412. New York Acad. Sci., New York, 1989.