Objective: To review studies that evaluate the correspondence between the estimate height via segmental measures and the actual height of children with cerebral palsy.

Data sources: Systematic literature review between 1995–2018, guided by the PRISMA criteria (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), in PubMed, BVS, MEDLINE and Lilacs databases. The descriptors, connected by the AND Boolean Operators, were: anthropometry, cerebral palsy, child and body height. The research comprised papers in Portuguese, English and Spanish, with Qualis-CAPES equal or superior to B3 that addressed the question: “Is there any correlation between estimate height by equations and direct height measures in children with cerebral palsy?” 152 studies were recovered and seven were selected. Their methodological quality was assessed by the scale of the Agency for Healthcare Research and Quality (AHRQ).

Data synthesis: Most studies showed no correspondence between estimated and real height. Studies that showed coincidence of the measures contain limitations that could jeopardize the results (sample losses, small samples and exclusion of patients with severe contractures, scoliosis and severe cerebral palsy). Japanese researchers developed an equation which harmoniously aligns the statures; the study comprised only Japanese patients, though.

Conclusions: Given the importance of accuracy in height measures to evaluate infant health, it is crucial to carry out more researches in order to safely establish an association between both estimate and real statures. The development of anthropometric protocols, emerged from such researches, would benefit the follow-up of children with severe psychomotor disabilities.

Keywords: Anthropometry; Cerebral palsy; Child; Body height.
INTRODUÇÃO

A nutrição, o estado de saúde, as condições socioeconômicas e os aspectos psicossociais interferem no crescimento, que é um bom indicador global de bem-estar, desde o feto até a adolescência.¹ A avaliação antropométrica permite, então, o monitoramento da saúde, por meio da vigilância do crescimento.

O Ministério da Saúde incorporou as curvas de crescimento da Organização Mundial de Saúde (OMS) de 2006 e 2007 à Caderneta da Criança, fornecendo aos profissionais de saúde valiosa ferramenta para o acompanhamento do crescimento de crianças e adolescentes.²³ No entanto, os gráficos de evolução para peso, comprimento, altura e índice de massa corporal (IMC), de acordo com sexo e idade, foram criados com base em indivíduos saudáveis.⁴⁵ Nesse caso, não contemplam as medidas estimadas através de métodos como esse traduzem, de fato, a altura real.

Sendo assim, este artigo traz uma revisão sistemática da literatura, com a finalidade de verificar se há evidências, nos trabalhos já publicados sobre o tema, de correspondência entre a estatura aferida por meio de medidas segmentares e a altura real de crianças com PC.

MÉTODO

Para o desenvolvimento deste estudo de revisão sistemática, foram realizadas buscas na literatura científica nas bases de dados US National Library of Medicine — National Institutes of Health (PubMed), Biblioteca Virtual em Saúde (BVS), Medical Literature Analysis and Retrieval System Online (MEDLINE) e Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS). Os descritores e as expressões utilizados nas buscas foram: “anthropometry”, “cerebral palsy”, “child” e “body height”. Esses integram a lista de Descritores em Ciências da Saúde (DeCs) e da Medical Subject Headings (MeSH) e foram combinados por meio do operador booleano AND.

Foram incluídos nesta revisão sistemática artigos originais, em língua portuguesa, inglesa ou espanhola, indexados nas bases de dados supracitadas, com delimitação temporal entre janeiro de 1995 e abril de 2018, que respeitavam a combinação de descritores: “anthropometry” AND “cerebral palsy” AND “child” AND “body height” e que se enquadravam como estudo observacional. Foram excluídos os artigos que estavam repetidos nas bases de dados consultadas, estudos publicados em revisões avaliadas com Qualis-CAPES inferior a B3 e trabalhos que não responderam à questão guia que norteia a temática desta revisão (existe correlação entre a altura estimada por meio de equações em crianças com PC e as medidas diretas de altura?). A busca das referências bibliográficas foi realizada de acordo com as seguintes etapas:

• Primeira etapa: identificaram-se 159 trabalhos nas bases de dados pesquisadas.
• Segunda etapa: excluíram-se dois artigos no idioma alemão (apenas os resumos estavam em inglês e, além disso, não apresentavam compatibilidade com o objetivo deste estudo), após a utilização do filtro de idiomas.
• Terceira etapa: selecionou-se o período de interesse: entre janeiro de 1995 e abril de 2018. O limite inferior desse intervalo foi escolhido em função do ano de publicação da equação proposta por Stevenson, que é utilizada frequentemente na prática clínica para a estimativa da altura em crianças com PC.⁷ A aplicação desse filtro acarretou a exclusão de 41 trabalhos.
• Quarta etapa: das 116 referências restantes, foram excluídas 29 por estarem repetidas nas bases de dados pesquisadas, restando 87 referências. A partir desse ponto, os artigos foram selecionados com base em sua compatibilidade de conteúdo, considerando a pergunta norteadora, elaborada conforme descrito nas etapas seguintes.
• Quinta etapa: seguiram-se os critérios de elegibilidade do PICO (acrônimo para participantes, intervenção, comparação e resultados — outcomes), conforme proposto pelos Principais Itens para Relatar Revisões Sistemáticas e Meta-análises (Preferred Reporting Items for Systematic Reviews and Meta-Analyses — PRISMA, 2015) para elaborar uma pergunta que possibilitasse o direcionamento da busca conforme os objetivos do trabalho.⁸⁹ A utilização dos critérios PICO permite a elaboração de uma questão de pesquisa que torne mais eficaz a busca nas bases de dados, uma vez que foca o objetivo do estudo, evitando anályses desnecessárias. Sendo assim, ao considerar a pergunta “Existe correlação entre a altura estimada por meio de equações em crianças com PC e as medidas diretas de altura?”, os critérios PICO foram: participantes — crianças com paralisia cerebral; intervenção — estimativa de altura por meio de
equações; controle — não intervenção; e resultados (outcomes) — correspondência entre as medidas diretas de altura e aquelas estimadas por meio de equações. A análise guiada pela pergunta norteadora foi realizada a partir da leitura dos resumos dos 87 trabalhos que restaram após a exclusão das 29 referências repetidas nas bases de dados.

- Sexta etapa: nesta etapa explicou-se o motivo da exclusão de cada trabalho analisado à luz da questão guia. Foram encontrados artigos em diversos eixos temáticos que diferiam da finalidade desta pesquisa: 21 artigos tratavam especificamente sobre análise do IMC, composição corporal e gráficos de crescimento em indivíduos com distúrbios motores. Outros 21 artigos abordavam nutrição, disfagia alimentar, consequências da gastrotomia, dificuldades alimentares e/ou estado nutricional de pacientes com comprometimento motor. Oito artigos abordavam PC, mas com relação ao comprometimento ósseo, densidade óssea e presença de escoliose nos pacientes. Outros oito artigos tratavam de comprometimentos neurais em pacientes prematuros ou recém-nascidos de baixo ou muito baixo peso. Sete artigos referiam-se a alterações motoras, classificação da função motora e desempenho funcional em pacientes com comprometimento neural. Seis artigos versavam sobre atividade física, sedentarismo e gasto energético em pacientes com PC. Um trabalho discorria sobre a temática de PC em formato de capítulo de livro, não se encaixando, portanto, na seleção de artigos proposta pela pergunta norteadora. Os nove trabalhos restantes que foram excluídos tratavam de temáticas bastante específicas, tais como: hipopituitarismo, deficiência de vitamina D, efeitos da equoterapia na marcha de crianças com PC, análise de crescimento de crianças pós-gastrotomia dorsal, análise de anticorpos em crianças com PC, tratamento com hormônio do crescimento, níveis de prostaglandina e baixa estatura em casos de hidrocefalia. Além disso, para serem incluídos nesta revisão, os artigos selecionados deveriam ser publicados em revistas com Qualis-CAPES igual ou superior a B3.

- Sétima etapa: finalmente, após a exclusão das 80 referências que não responderam à questão guia, foram selecionados sete artigos que atenderam aos critérios estabelecidos. Esses, por sua vez, foram lidos na íntegra e as informações mais relevantes de cada um deles foram extraídas para subsidiar a construção de quadros, a fim de facilitar a visualização e interpretação dos resultados.

- Oitava etapa: foram produzidos dois quadros (Quadros 1 e 2), que possibilitaram a síntese das informações mais relevantes de cada artigo. Para tanto, foram

Quadro 1 Características dos estudos antropométricos envolvendo medidas segmentares.

Autor	Local	Tamanho da amostra	Faixa etária (anos)	Segmento medido	Instrumentos de medidas
García Iñiguez et al. 13	México	108 com PC	2 a 16	CT, CJ e CB	- fita métrica para CT - segmômetro para CJ e CB
Haapala et al. 16	Estados Unidos	137 com PC	2 a 25	Altura, comprimento segmentar medido em decúbito, CJ, CT e CU	- estadiômetro vertical para altura - fita métrica flexível de aço para CT, CJ e comprimento segmentar - segmômetro para CJ
Amezquita et al. 17	Chile	60 com PC	3 a 15	CT e CJ	- segmômetro para CJ - fita métrica inextensível para CT
Kihara et al. 15	Japão	50 com PC e 38 saudáveis	3 a 12	CT e comprimento corporal dividido em segmentos	- fita métrica
Teixeira e Gomes 19	Brasil	14 com PC	0 a 3	Comprimento e CJ	- antropômetro horizontal para comprimento - fita métrica inextensível para CJ
Bell e Davies 14	Austrália	17 com PC e 20 saudáveis	5 a 12	CJ	- estadiômetro vertical para altura - segmômetro para CJ
Hogan 18	Canadá	34 com PC	6 a 30	Comprimento em decúbito e CJ	- segmômetro para CJ - estadiômetro horizontal para comprimento em decúbito

PC: paralisia cerebral; CT: comprimento tibial; CJ: comprimento ou altura do calcâncaro ao joelho; CB: comprimento superior do braço; CU: comprimento ulnar.
criadas colunas com os seguintes títulos: autor e local do estudo, tamanho da amostra, faixa etária, segmento medido, instrumentos de medida, cálculo da altura estimada, conclusões sobre as medidas antropométricas e limitações do estudo.

- Nona etapa: foi elaborado um fluxograma, de acordo com o modelo de recomendação PRISMA, composto por quatro etapas (identificação, seleção, elegibilidade e inclusão), para sintetizar a técnica da revisão sistematizada realizada (Figura 1).

- Décima etapa: após a seleção dos artigos, foi feita busca secundária nas referências bibliográficas de cada um dos artigos selecionados. No entanto, os artigos que responderam à questão guia foram os mesmos encontrados na busca primária. Sendo assim, a discussão dos resultados se limitou aos sete artigos localizados no rastreamento inicial.

A determinação da qualidade metodológica dos artigos incluídos nesta revisão sistemática foi realizada por dois

Quadro 2 Análise dos resultados dos estudos selecionados.

Autor	Cálculo da altura estimada	Conclusões sobre as medidas antropométricas	Limitações
García Iñiguez et al.	Equação de Stevenson*	Altura estimada pelo CT e CJ foram similares. Ambas diferiram daquela estimada pelo CB.	Análises do IMC (gráfico padrão ouro da OMS), por meio da altura estimada, são falhas.
Haapala et al.	Equação de Stevenson se ≤12 anos. Equações de Chumlea et al.** se ≥6 anos. Equação de Gauld et al.*** se ≥7 anos.	Existe uma concordância falha entre a altura real e a estimada pelas equações avaliadas. Estimativa da altura usando comprimento segmentar parece ser o método mais confiável nos casos de PC grave, escoliose ou contraturas.	Crescimento dos membros inferiores é hipoplásico em relação ao dos membros superiores, resultando em viés na tentativa de prever altura. Essa diferença aumenta com a gravidade da PC.
Amezquita et al.	Equação de Stevenson*	Comprimento estimado concorda com a altura real em amostra de crianças chilenas com PC.	Em 40% da amostra não foi possível realizar as medidas diretas de estatura.
Kihara et al.	Proposta de equações para estimar a estatura, com base no CT. Desenvolvimento típico: Estatura=CT×3,25+34,45 [cm] Crianças com PC: Estatura=CT×3,42+31,82 [cm]	O cálculo por essas equações independe da presença de escoliose ou contratura articular. O CJ não é apropriado para estimar a altura em casos de contratura severa da articulação do tornozelo.	Estudo realizado apenas com japoneses.
Teixeira e Gomes	Equação de Stevenson*	Correspondência de comprimento real e estimado por CJ.	Pequena amostra (n=14). Faixa etária de 0 a 3 anos.
Bell e Davies	Equações de Chumlea et al.** e Stevenson*	Equações apresentam erros na análise individual: Equação de Stevenson: variação entre -12,7 cm (10%) e +11,8 cm (9%) para crianças com PC Equação de Chumlea: variação entre -11,3 cm (9%) e +13,3 cm (11%) para crianças saudáveis	Pequena amostra (17 com PC e 20 saudáveis). Desconsiderou-se: Crianças com contraturas severas/escoliose/PC grave.
Hogan	Equações de Chumlea et al.**	Independente da idade, gênero ou tipo da PC, CJ foi considerado bom preditor do comprimento em decúbito.	Pequena amostra (n=34). Medida de comprimento em decúbito nas crianças com PC está sujeita a erros (contraturas, movimentos espásticos, defesa tátil).

*equações para prever altura a partir de CJ, CB e CT de 172 crianças com PC; **equações baseadas em indivíduos saudáveis desenvolvidas para uso em pessoas com mobilidade reduzida (amostra de 13.800 crianças saudáveis); ***equação baseada na estimativa da altura a partir CU em 2.343 indivíduos saudáveis, com especificação de gênero; CT: comprimento tibial; CJ: comprimento ou altura do calcanhar ao joelho; CB: comprimento superior do braço; IMC: índice de massa corpórea; OMS: Organização Mundial da Saúde; CU: comprimento ulnar; PC: paralisia cerebral.
avaliadores, de forma independente, por meio da escala modificada de avaliação de critérios de qualidade para estudos observacionais da Agência de Pesquisa e Qualidade em Saúde (Agency for Health Care Research and Quality — AHRQ).10 Esse instrumento avalia os estudos de acordo com nove critérios (pergunta do estudo, população do estudo, comparabilidade dos indivíduos, exposição ou intervenção, medidas de resultados, análise estatística, resultados, discussão e financiamento), gerando uma pontuação final de zero a cem. Os estudos com pontuação abaixo de 50 são considerados de baixa qualidade, os que obtêm pontuação entre 50 e 66, de qualidade moderada e aqueles com pontuação acima de 66 são classificados como de alta qualidade metodológica. Eventuais divergências entre os avaliadores, com relação às pontuações atribuídas aos artigos analisados, foram resolvidas por consenso.

O escopo do trabalho foi guiado pelo checklist de itens a serem incluídos no relato de revisão sistemática, proposto no PRISMA.9

RESULTADOS

As etapas seguidas para a seleção dos sete artigos analisados neste estudo estão descritas na forma de fluxograma na Figura 1. Os resultados obtidos nesta revisão sistemática foram resumidos nos Quadros 1 e 2. Os resultados da análise da qualidade metodológica dos sete artigos incluídos nesta revisão sistemática encontram-se dispostos no Quadro 3. De acordo com a avaliação realizada, três artigos (43\%) obtiveram pontuação entre 50 e 66, sendo classificados como de qualidade moderada. E quatro artigos (57\%) obtiveram pontuação superior a 66, sendo, portanto, considerados de alta qualidade metodológica.

Figura 1 Fluxograma de pesquisa elaborado conforme Preferred Reporting Items for Systematic Reviews and Meta-Analyses (2009): identificação, triagem, elegibilidade e inclusão de artigos científicos na revisão sistemática.
DISCUSSÃO

Fatores limitantes — como a presença de escoliose, atrofia muscular, incapacidade de se manter em posição ortostática, espasticidade e contratação muscular de articulações — presentes em pacientes com PC impedem a aplicação da técnica e o uso dos instrumentos habituais para aferir a estatura. Essas dificuldades são referidas em grande parte dos artigos avaliados nesta revisão sistemática. A alternativa mais utilizada para superar esses problemas é o uso das equações propostas por pesquisadores para estimar a altura com base na medida de segmentos corporais. Porém, conforme apontam os trabalhos analisados, esse é um padrão de referência sujeito a muitas variações.14-16

Bell e Davies, por exemplo, em 2006, compararam crianças com PC e outras saudáveis, utilizando as equações descritas por Chumlea et al. em 1994 e Stevenson em 1995. Houve variações da ordem de 9 a 10% entre a altura estimada e aquela obtida por medida direta. Nesse estudo, a equação de Stevenson mostrou-se adequada apenas para crianças com quadro leve de PC, nas quais não ocorrem contraturas corporais pronunciadas.14

Kihara et al. realizaram, no Japão, estudo comparativo entre pacientes com PC (com contraturas graves e/ou esco- liose) e indivíduos saudáveis, estimando a altura a partir de CT. A altura real aferida pôde ser considerada bastante precisa, uma vez que os pesquisadores efetuaram as medidas por meio da divisão do comprimento corporal em segmentos contíguos lineares que, quando somados, representavam a estatura real. Dessa forma, esses autores elaboraram equações de regressão para o cálculo da altura estimada (a partir de CT), as quais mostraram-se adequadas tanto para crianças saudáveis como para aquelas com comprometimento neural.15 Esse estudo japonês também apontou o fato de que crianças com PC apresentam menores estaturas do que crianças com desenvolvimento típico e observaram diferenças expressivas entre a altura estimada pela técnica de Stevenson para cada segmento medido (CT, CJ e CB). Uma hipótese para justificar a variabilidade dessas medidas é destacada por Haapala et al. Segundo esses autores, existem diferenças no crescimento de segmentos corporais, de acordo com a gravidade da paralisia, podendo causar erros na estimativa da altura por meio de medidas segmentares.16

Amezquita e Bunster, por outro lado, relataram a concordância entre a medida direta da estatura e os valores de altura estimados pelos segmentos CJ e CT, utilizando as equações de Stevenson.17 No entanto, em 40% da amostra houve dificuldade para realizar medidas diretas de estatura na posição ortostática. Esse fato representa uma limitação importante desse estudo, uma vez que esses 40% coincidem justamente com indivíduos que apresentam paralisias moderada a severas. Sendo assim, a análise da correspondência das equações somente contemplou pacientes com paralisias leves.

Haapala et al. também investigaram a validade das equações de Stevenson, além de outras, propostas por Chumlea em 1994 e Gauld em 2004. Esse trabalho demonstrou a validade das equações para estimativa de altura. Todavia, para indivíduos com alto grau de comprometimento musculoesquelético e ortopédico houve pobre concordância entre as medidas reais e os cálculos de estatura, levando os autores a recomendarem cautela na aplicação dessas equações para esses indivíduos.16 Corroborando esses achados, García Iñiguez et al. observaram que a altura estimada por meio de equações era significativamente maior em indivíduos com paralisia espástica, se comparados a indivíduos com outros tipos de PC.13

Quadro 3 Avaliação da qualidade metodológica dos artigos da revisão sistemática, baseada nos domínios e elementos da Agency for Healthcare Research and Quality para estudos observacionais.

Critério avaliado	Pontuação máxima	García Iñiguez et al.13	Haapala et al.16	Amezquita et al.17	Kihara et al.15	Teixeira e Gomes19	Bell e Davies14	Hogan18
Questão do estudo	2	2	2	2	2	2	2	2
População do estudo	8	8	5	5	5	8	5	8
Comparabilidade dos indivíduos	22	14	14	11	22	11	16	9
Exposição ou intervenção	11	11	11	11	11	8	11	11
Medidas de resultado	20	15	15	15	15	15	15	15
Análise estatística	19	8	15	10	15	5	8	10
Resultados	8	8	8	8	8	3	3	8
Discussão	5	3	5	3	5	5	3	3
Financiamento e patrocínio	5	0	0	0	0	0	5	0
Total	100	69	75	65	83	57	68	66
É importante ressaltar, também, a ausência de estratificação de faixas etárias em alguns trabalhos. A separação das medidas para cada idade é importante, uma vez que para cada fase do desenvolvimento infantil existem diferenças nas proporções dos tamanhos dos membros. Por esse motivo, a incorporação de adultos e de crianças na mesma amostra, como no estudo de Hogan e Haapala et al., pode gerar viés.

No tocante à qualidade metodológica, os artigos incluídos nesta revisão sistemática foram examinados segundo os critérios da escala da AHRQ, modificada por West et al., e obtiveram pontuações que os classificaram como de moderada (43%) a alta (57%) qualidade.10 No entanto, todos eles apresentaram algum grau de limitação com relação aos domínios avaliados. Certos quesitos contribuíram para a perda de pontos em grande parte dos artigos, tais como: ausência de informações com relação ao tratamento de fatores de confusão,13,14,16-19 falta de cálculo amostral ou de justificativa adequada para o tamanho da amostra14-17 e carência de considerações quanto às limitações do estudo na discussão dos resultados.13,14,17-18 Além disso, a insuficiência de análises estatísticas também cooperou para a redução da pontuação dos trabalhos examinados. O cálculo do poder estatístico, por exemplo, foi mencionado em apenas um dos artigos.17 A maior parte dos trabalhos não utilizou modelagem ou técnicas multivariadas13,14,17,19 e não avaliou variáveis de confusão.13,14,16-19 Com relação aos critérios relacionados à apresentação dos resultados, apenas dois dos artigos avaliados deixaram de apresentar medidas de efeito ou medidas de precisão adequadas.14,19 Nenhum dos estudos apresentou cegamento para a quantificação dos resultados da intervenção. No que se refere ao uso de controles concorrentes, apenas dois trabalhos apresentaram esse modelo de investigação.14-15 No tocante às técnicas de mensuração empregadas, apenas um dos estudos não utilizou instrumento adequado (a medida de CJ foi realizada com fita métrica, mais sujeita a erros do que o segmômetro).19 É importante também ressaltar que, nos artigos averiguados, em função da especificidade de seus objetivos, não foram avaliados efeitos dose-resposta. Além disso, por se tratarem, todos, de estudos com delineamento transversal, não houve seguimento das populações estudadas. Apenas um estudo recebeu financiamento ou patrocínio.14

Por fim, como limitação desta revisão sistemática, destaca-se o escasso número de trabalhos sobre o tema aqui abordado. Além disso, as amostras avaliadas nesses estudos foram, em sua maioria, pequenas. Outro fator de restrição que merece ser mencionado é o intervalo temporal utilizado na seleção dos artigos (1995 a 2018), o qual pode ter contribuído para esse número reduzido de estudos selecionados, uma vez que alguns deles mencionam trabalhos semelhantes, publicados anteriormente a 1995. Ademais, a inclusão de outros idiomas e de buscas em outras bases de dados poderiam ampliar o número de estudos selecionados, fornecendo novas informações.

Pode-se concluir, portanto, que a antropometria fornece informações importantes para o acompanhamento de crianças saudáveis e com PC, contribuindo para a monitorização do seu desenvolvimento. Sabendo-se que podem existir diferenças entre a estatura real e aquela calculada por equações, é possível, portanto, que sobreviham discrepâncias significativas no cálculo do IMC, uma vez que ele é baseado na razão entre a massa e o quadrado da altura do indivíduo. Sendo assim, pequenas variações na estimativa da estatura podem gerar erros exponenciais no cálculo do IMC, ocasionando diagnósticos e abordagens equivocadas sobre a situação nutricional dos pacientes.

Esta revisão sistemática trouxe a proposta de verificar, na literatura, estudos que demonstrassem correspondência entre a altura estimada por medidas segmentares e a estatura real de crianças com PC. Conforme aponta a maioria dos estudos analisados, as equações utilizadas na prática clínica para estimativa da estatura de crianças com PC, tais como as de Stevenson (propostas em 1995), apresentam maior correspondência com a altura real quando aplicadas em indivíduos com paralisias leves. Para crianças com quadros graves de paralisia (com presença de contraturas, espasticidade muscular e escoliose), cuja medida da altura na posição ortostática é de difícil aferição, seria mais indicada a utilização de métodos como o proposto por Kihara et al. em 2014, o qual utiliza equações baseadas nas medidas diretas de altura (obtidas por meio da divisão do comprimento corporal em segmentos contíguos lineares).

Sendo assim, dada a importância da precisão das medidas de estatura para avaliar a saúde infantil, tornam-se necessárias mais pesquisas visando estabelecer, de maneira mais segura, a associação entre a estatura estimada e a real. O desenvolvimento de protocolos antropométricos, resultantes dessas pesquisas, beneficiaria o acompanhamento de crianças com sequelas psicomotoras graves.

AGRADECIMENTOS

Os autores agradecem ao grupo de pesquisa Qualidade de Vida e Epidemiologia, da Universidade Federal de São João del-Rei, pelas discussões e apoio na escrita deste artigo.

Financiamento

Este estudo não recebeu financiamento.

Conflito de interesses

Os autores declaram não haver conflito de interesses.
1. Sociedade Brasileira de Pediatria [homepage on the Internet]. Documento Científico do Departamento de Neonatologia. Monitoramento do crescimento de RN pré-termos. [cited 2017 Feb 29]. Available from: http://www.sbp.com.br/fileadmin/user_upload/2017/03/Neonatologia-Monitoramento-do-cresc-do-RN-pref-termos.pdf

2. Brazil - Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Ciência e Tecnologia. Síntese de evidências para políticas públicas. Promovendo o desenvolvimento na primeira infância. Brasília: Ministério da Saúde; 2016.

3. Brazil - Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Coordenação Geral da Política de Alimentação e Nutrição. Incorporação das curvas de crescimento da Organização Mundial de Saúde de 2006 e 2007 no SISVAN. Brasília: Ministério da Saúde; 2007.

4. Leone C, Bertoli CJ, Schoeps DO. Novas curvas de crescimento da Organização Mundial de Saúde: comparação com valores de crescimento de crianças pré-escolares das cidades de Taubaté e Santo André, São Paulo. Rev Paul Pediatr. 2009;27:40-7. http://dx.doi.org/10.1590/S0103-05822009000100007

5. Garza C. New growth standards for the 21st century: a prescriptive approach. Nutr Rev. 2006;64:S55-9. https://doi.org/10.1301/nr.2006.may.s000-s000

6. Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660-7. https://doi.org/10.2471/blt.07.043497

7. Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149:658-62. https://doi.org/10.1001/archpedi.1995.02170190068012

8. Santos CM, Pimenta CA, Nobre MR. The pico strategy for the research question construction and evidence search. Rev Latino-Am Enfermagem. 2007;15:508-11. http://dx.doi.org/10.1590/S0101-archpep.1995.02170190068012

9. Galvão TF, Pansani TS, Harrad D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Epidemiol Serv Saude. 2015;24:335-42. http://dx.doi.org/10.5123/S1679-49742015000200017

10. West S, King V, Carey TS, Lohr KN, McKay N, Sutton SF, et al. Systems to rate the strength of scientific evidence. Evid Rep Technol Assess (Summ). 2002;(47):1-11.

11. Chumlea WM, Guo SS, Steinbaugh ML. Prediction of stature from knee height for black and white adults and children with application to mobility-impaired or handicapped persons. J Am Diet Assoc. 1994;94:1385-8.

12. Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol. 2004;46:475-80. https://doi.org/10.1017/s0012162204000787

13. García Iñiguez JA, Vásquez-Garibay EM, García-Contreras A, Romero-Velarde E, Troyo Sanromán R. Assessment of anthropometric indicators in children with cerebral palsy according to the type of motor dysfunction and reference standard. Nutr Hosp. 2017;34:315-22. https://doi.org/10.20960/nh.353

14. Bell KL, Davies PS. Prediction of height from knee height in children with cerebral palsy and non-disabled children. Ann Hum Biol. 2006;33:493-9. https://doi.org/10.1080/03014460600814028

15. Kihara K, Kawasaki Y, Yagi M, Takada S. Relationship between stature and tibial length for children with moderate-to-severe cerebral palsy. Brain Dev. 2015;37:853-7. https://doi.org/10.1016/j.braincl.2015.01.007

16. Haapala H, Peterson MD, Daunter A, Hurvitz EA. Agreement between actual height and estimated height using segmental limb lengths for individuals with cerebral palsy. Am J Phys Med Rehabil. 2015;94:539-46. https://doi.org/10.1097/PHM.0000000000000205

17. Amezquita GM, Bunster MI. Alternatives to estimate stature during nutritional assessment of children with cerebral palsy. Rev Chil Pediatr. 2014;85:22-30. http://dx.doi.org/10.4067/S0340-46162014000100003

18. Hogan SE. Knee height as a predictor of recumbent length for individuals with mobility-impaired cerebral palsy. J Am Coll Nutr. 1999;18:201-5.

19. Teixeira JS, Gomes MM. Anthropometric evaluation of pediatric patients with nonprogressive chronic encephalopathy according to different methods of classification. Rev Paul Pediatr. 2014;32:194-9. http://dx.doi.org/10.1590/0103-0582201432308