Main result
The following well-known result is my starting point.

Theorem 1 (Bogomolov–Sommese vanishing, see [1]). Let X be a complex projective manifold and $D \subset X$ a divisor with simple normal crossings. For any invertible subsheaf $\mathcal{L} \subset \Omega^p_X(\log D)$, we have $\kappa(\mathcal{L}) \leq p$, where $\kappa(\mathcal{L})$ denotes the Kodaira–Litaka dimension of \mathcal{L}.

Building on the Extension Theorem of Greb–Kebekus–Kovács–Peternell [2], I generalized this to the setting of reflexive differential forms on log canonical pairs as follows.

Theorem 2 (Bogomolov–Sommese vanishing on lc C-pairs). Let (X, D') be a complex projective log canonical pair, and let $D \subset D'$ be a divisor such that (X, D) is a C-pair. If $\mathcal{A} \subset \text{Sym}^k \Omega^p_X(\log D)$ is a Weil divisorial subsheaf, then $\kappa(\mathcal{A}) \leq p$.

A C-pair is a pair (X, D) where all the coefficients of D are of the form $1 - 1/n$ for $n \in \mathbb{N} \cup \{\infty\}$. This notion was introduced by Campana under the name orbifolds géométriques. The C-Kodaira dimension κ_C of a Weil divisorial sheaf of differential forms on (X, D) is a natural generalization of the Kodaira dimension of a line bundle, which takes into account the fractional part of D.

Adjunction on dlt C-pairs
In the course of the proof, I showed that on dlt C-pairs, there is a version of the adjunction formula as well as a residue map for symmetric differential forms, and that these two are compatible with each other in the following sense.

Theorem 3 (Residues of symmetric differentials). Let (X, D) be a dlt C-pair and $D_0 \subset [D]$ a component of the reduced boundary. Set $D_0 := \text{Diff}_{D_0}(D - D_0)$, such that $(K_X + D)|_{D_0} = K_{D_0} + D_0$. Then the pair (D_0, D_0) is also a dlt C-pair, and for any integer $p \geq 1$, there is a map
\[\text{res}^p_{D_0} : \text{Sym}^p \Omega^p_X(\log D) \to \text{Sym}^p \Omega^p_{D_0}(\log D_0) \]
which on the snc locus of $(X, [D])$ coincides with the k-th symmetric power of the usual residue map for snc pairs.

Corollary: A Kodaira–Akizuki–Nakano-type vanishing result

Corollary 4 (KAN-type vanishing). Let (X, D) be a complex projective log canonical pair of dimension n, \mathcal{A} a Weil divisorial sheaf on X. Then
\[H^n(X, \Omega^p_X(\log D) \otimes \mathcal{A}^*) = 0 \quad \text{and} \quad H^n(X, \Omega^p_X(\log D) \otimes \mathcal{A}) = 0 \]
for $p \geq n - \kappa(\mathcal{A}) + 1$.

Idea of proof of Theorem 2
The basic idea is to pull back the sheaf \mathcal{A} to a log resolution (\tilde{X}, \tilde{D}) of (X, D) and apply Theorem 1. By the Extension Theorem of [2], this should be possible. However, since pulling back is not functorial for Weil divisorial sheaves, the Kodaira dimension of \mathcal{A} might drop in this process. Therefore we enlarge the pulled back sheaf by taking its saturation \mathcal{B} in $\Omega^p_{\tilde{X}}(\log \tilde{D})$. We prove that sections of $\mathcal{A}^{[k]}$ extend to sections of $\mathcal{B}^{[k]}$.

A major issue is that we cannot really work on a log resolution, because it extracts too many divisors. Therefore we pass to a minimal dlt model (Z, D_Z) of (X, D). This is possible by the minimal model program as proved by BCHM. However, (Z, D_Z) is not an snc pair, which makes the proof rather involved. In particular, we have to use Theorem 3.

Sharpness of Theorem 2
Theorem 2 fails if one replaces log canonical by Du Bois singularities. A counterexample can be obtained as follows. Catanese constructed smooth projective surfaces S such that K_S is ample, but the Hodge numbers $h^{0,1}(S)$ and $h^{0,2}(S)$ are zero. Let X be the cone over such an S with respect to a sufficiently high pluricanonical embedding. Then X even has rational singularities, but the pullback of ω_S to X is a \mathbb{Q}-ample subsheaf of Ω^2_X.

References
[1] Fedor A. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija 13 (1979), 499–555.
[2] Daniel Greb, Stefan Kebekus, Sándor J. Kovács, and Thomas Peternell, Differential forms on log canonical spaces, Publications Mathématiques de L’IHÉS 114 (2011), 1–83.