INFINITE TRANSITIVITY FOR CALOGERO-MOSER SPACES

KARINE KUYUMZHIYAN

Abstract. We prove the conjecture of Berest-Eshmatov-Eshmatov by showing that the group of automorphisms of a product of Calogero-Moser spaces C_{n_i}, where the n_i are pairwise distinct, acts m-transitively for each m.

1. Introduction

For affine algebraic varieties, their automorphism groups are usually small. However, if they are rich, such varieties and their automorphism groups become objects of intensive study. If an automorphism group is infinite dimensional, it may satisfy the property called infinite transitivity: for any $m \in \mathbb{N}$ the group can send any m-tuple of points of the variety to any other m-tuple of points. We study Calogero-Moser spaces and their products and show that their automorphism groups are infinitely transitive.

Definition 1. The Calogero-Moser space C_n is

$C_n := \{(X, Y) \in \text{Mat}_n(\mathbb{C}) \times \text{Mat}_n(\mathbb{C}) : \text{rk}([X, Y] + I_n) = 1\}/PGL_n(\mathbb{C})$,

where $PGL_n(\mathbb{C})$ acts via $g.(X, Y) = (gXg^{-1}, gYg^{-1})$.

Calogero-Moser spaces play an important role in Representation Theory. It is known that C_n is a smooth irreducible affine algebraic variety of dimension $2n$, see Wilson [14]. It is proved by Popov [11] that it is unirational. It carries a symplectic structure, see [7]. It is a particular case of a Nakajima quiver variety. It appears as a partial compactification of the Calogero-Moser integrable system.

Definition 2. We denote by G the group generated by two kinds of transformations.

(1) $(X, Y) \mapsto (X + p(Y), Y)$, p is a polynomial in one variable,

(2) $(X, Y) \mapsto (X, Y + q(X))$, q is a polynomial in one variable.

It is isomorphic to the group of automorphisms of the first Weyl algebra [6] [10].

Formulae (1) and (2) can be used to define the G-action on $\text{Mat}_n(\mathbb{C}) \times \text{Mat}_n(\mathbb{C})$. This action descends to C_n. To verify this, check two things. First, formulae (1) and (2) agree with the $PGL_n(\mathbb{C})$-action. Second, the obtained points remain inside C_n. Indeed, $[X + p(Y), Y] = [X, Y] = [X, Y + q(X)]$, hence,

$\text{rk}([X + p(Y), Y] + I_n) = \text{rk}([X, Y + q(X)] + I_n) = \text{rk}([X, Y] + I_n) = 1$.

Theorem 1. ([5, Theorem 1]) For each $n \geq 1$, the action of G on C_n is doubly transitive.

The conjecture in [5] says, in particular, that C_n has an infinitely transitive action of its automorphism group. It is proved below in Theorem 3.

There is a more general class of varieties: for any pairwise distinct integers n_1, n_2, \ldots, n_k one can consider the product of the corresponding Calogero-Moser spaces

(3) $C_{n_1} \times C_{n_2} \times \ldots \times C_{n_k}$.

The study has been funded by the Russian Academic Excellence Project “5-100”.

1
The group G acts diagonally on this product. It also acts on

$$(4) \quad C_{n_1} \sqcup C_{n_2} \sqcup \ldots \sqcup C_{n_k}.$$

Moving a finite number of points on the product (3) can be seen as moving a finite number of points on $C_{n_1} \sqcup C_{n_2} \sqcup \ldots \sqcup C_{n_k}$. For these actions, we consider the property of collective infinite transitivity.

Definition 3. We say that the G-action on (3) or on (4) is **collectively infinite transitive** if for any integers m_1, m_2, \ldots, m_k and for any two tuples of m_1 points on the first variety C_{n_1}, m_2 points on the second variety C_{n_2}, etc., m_k points on the kth variety C_{n_k} there exists an element of G which simultaneously sends the first tuple to the second tuple.

Theorem 2. ([5] Theorem 2) For any pairwise distinct natural numbers $(n_1, n_2, \ldots, n_k) \in \mathbb{N}^k$, the diagonal action of G on $C_{n_1} \times C_{n_2} \times \ldots \times C_{n_k}$ is transitive.

If $n_i = n_j$, then $C_{n_i} \times C_{n_j}$ has a diagonal subvariety which remains invariant under the diagonal G-action.

The Conjecture in [5] states that the G-action on $C_{n_1} \times C_{n_2} \times \ldots \times C_{n_k}$ is collectively infinitely transitive. We prove this conjecture in Theorem (5). The key ingredient of the proof is that, whenever X-components of the given points have pairwise coprime minimal polynomials, the given points can be moved independently via automorphisms of form (2).

The author is grateful to Michail Zaidenberg for pointing out this problem and for many useful remarks, to Ivan Arzhantsev for valuable comments, to Michail Bershtein, Alexander Perepechko, and Misha Verbitsky for encouraging. The author thanks Institut Fourier, Grenoble, for its hospitality.

2. **Geometry of Calogero-Moser spaces and their automorphisms**

We recall here some facts on the geometry of C_n from [14, Sec. 1] and then strengthen them to apply to the products of Calogero-Moser spaces of form (3) and (4). We also use results of Berest and Wilson [4].

Lemma 1. ([14] Prop. 1.10) If $(X, Y) \in C_n$ and if X is diagonal, then the eigenvalues of X are distinct. The non-diagonal entries of Y have the form

$$y_{ij} = 1/(x_i - x_j).$$

Proof. The proof is straightforward. \hfill \Box

If X is diagonalizable but not diagonal, the point (X, Y) of C_n has another representative (AXA^{-1}, AYA^{-1}) where the new X is diagonal and we can express all the non-diagonal entries of Y in entries of X.

Lemma 2. ([14] Lemma 10.2) If $(X, Y) \in C_n$ and $(X, Y') \in C_n$ with X diagonal, then there exist a polynomial p in one variable such that $(X, Y) \mapsto (X, Y + p(X)) = (X, Y')$.

Proof. By Lemma \[1\] matrices Y and Y' may differ only in diagonal entries, denote them by y_{11}, \ldots, y_{nn} and y'_{11}, \ldots, y'_{nn}. Let $X = \text{Diag}(x_1, \ldots, x_n)$. Since all the x_i are different, there exists an interpolation polynomial $p(x)$ such that $p(x_i) = y'_{ii} - y_{ii}$. But $f(X) = \text{Diag}(f(x_1), \ldots, f(x_n))$ and hence $Y + p(X) = Y'$. \hfill \Box

Remark 1. Let $(X_0, Y_0) \in C_n$. If a polynomial in one variable $q(x)$ is divisible by the minimal polynomial of Y_0, then the automorphisms $(X, Y) \mapsto (X + p(Y), Y)$ and $(X, Y) \mapsto (X + p(Y) + q(Y), Y)$ send (X_0, Y_0) to the same point.
Lemma 3. Suppose that square matrices X_1, X_2, X_m (possibly of different sizes) have pairwise coprime minimal polynomials. Take $(X_1, Y_1), (X_2, Y_2), \ldots, (X_m, Y_m)$, where each Y_i is a square matrix of the same size as X_i, and polynomials $p_1, p_2, \ldots, p_m \in k[x]$. Then there exists a polynomial $p \in k[x]$ such that for each i we have

$$Y_i + p_i(X_i) = Y_i + p(X_i).$$

Proof. By Remark 1, each p_i is defined modulo the minimal polynomial χ_i of X_i. Since $\chi_1, \chi_2, \ldots, \chi_m$ are pairwise coprime, by the Chinese remainder theorem there exists a polynomial p such that for each $i = 1, 2, \ldots, m$ the polynomial $p - p_i$ is divisible by χ_i. \[\square\]

Lemma 4 (Refinement of Lemma [2]). Take two m-tuples of points of $C_{n_1} \sqcup C_{n_2} \sqcup \ldots \sqcup C_{n_k}$

$$(X_1, Y_1), (X_2, Y_2), \ldots, (X_m, Y_m)$$

and

$$(X_1, Y_1'), (X_2, Y_2'), \ldots, (X_m, Y_m')$$

(so, each C_{n_i} contains an even number of chosen points). Suppose that X_1, \ldots, X_m are diagonalizable and have pairwise coprime minimal polynomials (equivalently, diagonalizable and with disjoint spectra). Then there exists a polynomial $p(x) \in k[x]$ such that for each i we have

$$Y_i + p_i(X_i) = Y_i'.$$

Proof. First, by Lemma 2 we choose a polynomial $p_i(x) \in k[x]$ such that $Y_i' = Y_i + p(X_i)$ for each $i = 1, 2, \ldots, m$. Then by Lemma 3 we find a polynomial $p(x)$ which works for all i. \[\square\]

The following lemma is a refined Lemma 10.3 from [4]. Its proof is explained in [14, Lemma 5.6] and also in [13, 12 Prop. 8.6].

Lemma 5. Let $(X, Y) \in C_n$. Then there exists a polynomial p such that the matrix $X + p(Y)$ is diagonalizable.

By almost all we mean a cofinite subset of the set of complex numbers, i.e., all complex numbers but finitely many. The following fact can be deduced from Lemma 5.

Lemma 6. a) Let $(X, Y) \in C_n$. Then there exists a polynomial p such that the matrix $X + t \cdot p(Y)$ is diagonalizable for almost all t.

b) Let us fix $m, m \in \mathbb{N}$, and take an m-tuple of points of C_n. Then one can make all the $2m$ matrices diagonalizable via $2m$ automorphisms of form (1) and (2).

c) Let us take m_1 points on the first variety C_{n_1}, m_2 points on the second variety C_{n_2}, etc., m_k points on the kth variety C_{n_k}. Then all the matrices (i.e., X- and Y-components of our points) can be made diagonalizable via $2(m_1 + m_2 + \ldots + m_k)$ automorphisms of form (1) and (2).

Proof. a) Take a polynomial p as in Lemma 5. For this polynomial consider $X + t \cdot p(Y)$. For $t = 1$ it is diagonalizable, hence, it is diagonalizable for almost all t.

b) Using Lemma 5, make X_1 diagonalizable. Then, acting as in a), find a polynomial p_2 such that $X_2 + p_2(Y_2)$ is diagonalizable. Consider an automorphism $(X, Y) \mapsto (X + t \cdot p_2(Y))$. For $t = 0$ the matrix X_1 maps to a diagonalizable matrix, hence, it also maps to a diagonalizable matrix for almost all t. For $t = 1$ the matrix X_2 maps to a diagonalizable matrix, hence, it also maps to a diagonalizable matrix for almost all t. Now X_1 and X_2 are diagonalizable. In this way we can make all the X_i diagonalizable. Then in the same way we make all the Y_i diagonalizable, while the X_i remain unchanged and hence diagonalizable.

The proof is exactly the same as in b). \[\square\]
There is a map $\Upsilon: \mathcal{C}_n \to (\mathbb{C}^n/S_n) \times (\mathbb{C}^n/S_n)$ which sends X and Y to their spectra, where S_n stands for the symmetric group on an n-element set. By Υ_1 and Υ_2 we mean projections to the first and to the second components, respectively. One of the key statements is

Lemma 7 (Prop. 4.15 and Theorem 11.16 in [8]). The map Υ is surjective.

Lemma 8. Take an $n \times n$ matrix Y with a simple spectrum $(\mu_1, \mu_2, \ldots, \mu_n)$. Fix pairwise distinct $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$. Then there exists $(X, Y) \in \mathcal{C}_n$ such that X has eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Proof. Since Υ is surjective, there is a point (X', Y') such that

$$\Upsilon((X', Y')) = ((\lambda_1, \lambda_2, \ldots, \lambda_n), (\mu_1, \mu_2, \ldots, \mu_n)).$$

Since m_i are pairwise distinct, Y' is conjugate to Y, that is, there exists a matrix A such that $Y = AY'A^{-1}$. Take $X = AX'A^{-1}$. Clearly, (X, Y) is the same point of \mathcal{C}_n as (X', Y') and X has the prescribed spectrum. \hfill \Box

Remark 2. In [5], the fibers of Υ_1 over nilpotent Jordan blocks are used. The advantage is that $X^n = 0$. We use the fibers over diagonalizable X (hence having simple spectra) since they can be easily described.

3. Main results

We are ready to prove our main result.

Theorem 3.

1. The group of automorphisms of a Calogero-Moser space \mathcal{C}_n acts infinitely transitively.
2. The group of automorphisms of a product of Calogero-Moser spaces $\mathcal{C}_{n_1} \times \mathcal{C}_{n_2} \times \ldots \times \mathcal{C}_{n_k}$, where n_1, n_2, \ldots, n_k are pairwise distinct, acts collectively infinitely transitively.

We prove these statements together since their proofs are almost identical.

Proof. We use the two-transitivity of the G-action on \mathcal{C}_n and on $\mathcal{C}_{n_1} \times \mathcal{C}_{n_2} \times \ldots \times \mathcal{C}_{n_k}$ which is established in [5]. In the second case, the two-transitivity can mean two different things. First, when two points are in the same \mathcal{C}_{n_i}, then the two-transitivity on the product follows from the two-transitivity on \mathcal{C}_{n_i} proved in [5] Theorem 1. Second, when two points belong to different \mathcal{C}_{n_i} and \mathcal{C}_{n_j}, then it follows from [5] Theorem 2.

By Lemma 8, there exists an automorphism making all the matrices diagonalizable. In Step 1 we show that the spectra of all the matrices can be assumed disjoint via several extra automorphisms.

Step 1 for Theorem 3(a). Let us draw a graph on n vertices. An edge ij is drawn if and only if $(X_i$ and X_j have no common eigenvalue) and $(Y_i$ and Y_j have no common eigenvalue). Using the two-transitivity, we obtain at least one edge: we fix two pairs (X_1^0, Y_1^0) and $(X_2^0, Y_2^0) \in \mathcal{C}_n$ with disjoint spectra and send (X_1, Y_1) and (X_2, Y_2) there. Now let us create new edges. If i and j are not joined because X_i and X_j have a common eigenvalue, then find a simple spectrum for X_i disjoint from the spectra of all the other X_k. By Lemma 8 there is a pair $(X'_i, Y'_i) \in \mathcal{C}_n$ with the prescribed spectrum for X'_i. Using 2-transitivity, find an automorphism mapping (X_i, Y_i) to (X'_i, Y'_i) and (X_j, Y_j) to (X'_j, Y'_j). Include it into a one-parameter family. For t close to 1 the X-image of jth point will have spectrum disjoint from all the images of the other X_i. We do not want to break edges, so if for $t = 1$ an inequation breaks, we choose another t close to 1. Then we perform the same to disconnect spectra of Y_i and Y_j. We further assume that all the spectra of X_i are disjoint and all the spectra of Y_j are disjoint.
Step 1 for Theorem 3b) is proved similarly. When we need 2-transitivity for points in one component, we rely on [5, Theorem 1], and when we need it for two points from different components, we use [5, Theorem 2].

Step 2. Now we need the interpolation polynomial. Let us choose representatives with all the \(X_i \) diagonal. We know how a triangular automorphism \((X, Y) \mapsto (X, Y + p(X))\) looks like: the non-diagonal elements of all the \(Y_i \) do not change, and the \(k \)th diagonal element of the corresponding \(Y_i \) increases by \(p(\lambda_{ki}) \), where \(\lambda_{ki} \) is the \(k \)th diagonal element of the matrix \(X_i \).

To obtain the \(m \)-transitivity, let us take two \(m \)-tuples of points and perform with this \(2m \)-tuple both Steps 1 and 2. Using Lemma [8], find \(m \) intermediate points of \(C_n \)

\[
(X_1, Y_1''), \quad \text{where } Y_1'' \text{ has the same spectrum as } Y_1';
\]

\[
\ldots;
\]

\[
(X_m, Y_m''), \quad \text{where } Y_m'' \text{ has the same spectrum as } Y_m'.
\]

By Lemma [2] there is an automorphism \(Y \mapsto Y + p(X) \) which sends each \(Y_i \) to the chosen matrix \(Y_i'' \).

Now for each point find a representative with \(Y \) diagonal and make the same interpolation with \(X \) and \(Y \) reversed. \(\square \)

Final remarks. For a variety \(X \), one can generate a group by all the one-parameter unipotent subgroups of \(\text{Aut}(X) \). This subgroup denoted by \(\text{SAut}(X) \) is treated in [9, 3, 1, 2]. It is shown in [1] that infinite transitivity of \(\text{SAut}(X) \) on the smooth locus \(\text{reg}(X) \) for \(\dim X \geq 2 \) is equivalent to simple transitivity and is equivalent to flexibility property which means that the tangent space \(T_xX \) in every smooth point \(x \in X \) is generated by tangent vectors to the orbits of one-parameter unipotent subgroups. We fix attention that this fact is not easily applicable to \(C_n \) since natural automorphisms \((X, Y) \mapsto (X + p(Y), Y) \) and \((X, Y) \mapsto (X, Y + q(X)) \) do not come with all their (one-parameter unipotent) rescalings.

On the other hand, it is not known whether the group \(G \) coincides with \(\text{SAut}(C_n) \).

REFERENCES

[1] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch and M. Zaidenberg, Flexible varieties and automorphism groups. Duke Math. J. 162 (2013), 767–823.
[2] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch and M. Zaidenberg, Infinite transitivity on affine varieties. In: Birational Geometry, Rational Curves, and Arithmetic. F. Bogomolov, B. Hassett and Yu. Tschinkel (eds.), 1–14. Springer-Verlag, New York e.a. 2013.
[3] I. Arzhantsev, K. Kuyumzhiyan and M. Zaidenberg, Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity. Sb. Math. 203 (2012), 3–30.
[4] Y. Berest and G. Wilson, Automorphisms and ideals of the Weyl algebra. Math. Ann. 318 (2000), no. 1, 127–147.
[5] Yu. Berest, A. Eshmatov and F. Eshmatov, Multitransitivity of Calogero-Moser spaces. Transform. Groups 21 (2016), 35–50.
[6] J. Dixmier, Sur les algèbres de Weyl. (French) Bull. Soc. Math. France 96 (1968), 209–242.
[7] P. Etingof, Lectures on Calogero-Moser systems, arXiv:0606233, 75 pp.
[8] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147(2) (2002), 243–348.
[9] S. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), 53–95.
[10] L. Makar-Limanov, On automorphisms of the Weyl algebra, Bull. Soc. Math. France, 112 (1984), 359–363.
[11] V. L. Popov, On infinite dimensional algebraic transformation groups, Transform. Groups 19 (2014), 549–568, [arXiv:1401.0278v4, 20 pp.]
[12] G. Segal and G. Wilson, *Loop groups and equations of KdV type*, Surveys in differential geometry: integral systems, 403–466, Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998.

[13] T. Shiota, *Calogero-Moser hierarchy and KP hierarchy*, J. Math. Phys. 35 (1994), no. 11, 5844–5849.

[14] G. Wilson, *Collisions of Calogero-Moser particles and an adelic Grassmannian (with an Appendix by I. G. Macdonald)*. Invent. Math. 133 (1998), 1–41.

National Research University Higher School of Economics, Usacheva 6, Moscow, Russia

E-mail address: karina@mccme.ru