The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines

Yonghui Yao and Baiping Zhang*
State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

ABSTRACT: The immense and towering Tibetan Plateau (TP) acts as a heating source and shapes the climate of not only the Eurasian continent but also the entire world. The mass elevation effect of the TP was first observed in the 1950s; however, due to the scarcity of meteorological observation stations and limited climatic data, little information on the mass elevation effect of the plateau and its implications for the position of Alpine treelines in the southeastern part of the TP is quantitatively known. This paper compares monthly mean air temperature differences at elevations of 4000, 4500, 5000, 5500 and 6000 m between the main plateau, the Qilian Mts. in the northeastern corner of the plateau and the Sichuan Basin to the east of the plateau to quantify the mass elevation effect of the plateau. The TP air temperature data are retrieved from Terra moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (LST), and the free-air temperatures over the westernmost Sichuan Basin are estimated using the measured lapse rate from Mt. Emei, which is located in the western portion of the Sichuan Basin. The results demonstrate the following important characteristics. (1) Owing to the mass elevation effect, air temperatures gradually increase from the eastern edge to the interior main TP. The monthly mean air temperature in the interior main plateau is approximately 2–7 °C higher than in the surrounding mountains and adjacent lowland areas. At an elevation of 4500 m (corresponding to the mean altitude of the TP), the monthly mean temperature differences between the plateau and the Sichuan Basin range from 3.58 °C (April) to 6.63 °C (June); the monthly temperature differences between the plateau and the Qilian Mts. range from 1.6 °C (July) to 7.7 °C (March). (2) The mass elevation effect of the plateau pushes the 10 °C isotherm upward in the warmest month and is indicative of a warmth index of 15 °C month up to elevations of 4600–4700 m, which enables the treeline altitude in the interior TP 500–1000 m higher than along the eastern edge. Therefore, mass elevation effect contributes to the occurrence of the highest treeline in the Northern Hemisphere, which is present on the southeastern TP.

Received 17 July 2013; Revised 8 July 2014; Accepted 8 July 2014

1. Introduction

One of the most important properties of the immense and towering Tibetan Plateau (TP) is that it thermodynamically shapes the climate of not only the Eurasian continent but also the entire world. The TP has even evolved unique geographical and ecological patterns. In the southeast region, the Alpine tree line climbs upward to approximately 4600–4700 m (Troll 1973; Zheng and Li, 1990) and even higher (4900 m) on a few sunny slopes (Miche et al., 2007), which represents the highest treeline in the Northern Hemisphere, extending approximately 1000 m higher than the treeline in the surrounding areas. This results from the so-called mass elevation effect of the TP (Holtmeier, 2003; Han et al., 2012) or Massenerhebungseffekt (De Quervain, 1904), which accounts for the observed tendencies in temperature-related parameters, such as treeline and snowline, to occur at higher elevations in the Central Alps compared to their outer regions (De Quervain, 1904; Schroeter, 1908). This phenomenon has also been discovered and reported in other places around the world (Leuschner, 1996; Holtmeier, 2003; Flenley, 2007; Barry, 2008).

Many studies have attempted to explain this phenomenon from different perspectives. Grubb (1971) stated that the high frequency of fog in tropical mountainous regions reduced the nutritive materials in soil and restrained the growth of vegetation on mountains in the tropics. Therefore, there is a tendency for physiognomically and sometimes floristically similar vegetation types to appear at lower altitudes on tropical mountains. Tollner (1949) argued that large mountain massifs have a positive effect on the altitudinal position of the timberline because they serve as a heating surface that absorbs solar radiation and transforms the radiation into longwave energy. Consequently, the air temperatures of these large mountain massifs are typically higher compared to the surrounding free atmosphere at same elevations (Holtmeier, 2003; Han et al., 2012). Flohn (1953, 1968) proposed that elevated plateau surfaces, such as the TP and the Altiplanos in
South America, are warmer than the adjacent free air in summer due to the increase in incident solar radiation with altitude and the substantial longwave radiation at higher elevations. This hypothesis was confirmed by later studies (Yeh, 1982; Chen et al., 1985). Moreover, Barry (2008) and Holtmeier (2003) noted that the longer and warmer growing season at all elevations make the treeline in the Central Alps approximately 400 m higher than in the outer ranges. The mass elevation effect has been widely applied in ecological studies; normally it was called as the heating effect in meteorological studies (Holtmeier, 2003; Barry, 2008).

In fact, the heating effects on Eurasian weather and climate and on the atmospheric general circulation have been studied in climatology for many years (Yeh, 1982; Yeh and Wu, 1998; Yanai and Wu, 2006; Yeh and Chang, 1974; Chen et al., 1985; Wu et al., 1997). It was initially discovered that the TP is a summertime atmospheric heat source in the 1950s (Flohn, 1957; Yeh et al., 1957), subsequently many studies were focused on the sensible and latent heat fluxes on the TP. Yeh (1982) indicated that the total energy flux from the plateau to the atmosphere was 231 W m$^{-2}$ in June. Various estimates have suggested that the heating rate is approximately 2°C day$^{-1}$ over the eastern half of the plateau (Chen et al., 1985). Such substantial heating must have large effects not only the climate of the TP but also the ecological patterns on the plateau, especially the spatial pattern of the mountain altitude belts (Zheng and Li, 1990; Liu et al., 2003). For example, the highest treeline and snowline in the Northern Hemisphere occur on the TP. However, due to the scarcity of meteorological observation stations and limited climatic data, previous studies on the heating effect have focused on the heat exchange between the plateau and surrounding areas; and little is quantitatively known about the detailed implications of the heating effect (mass elevation effect) for the TP ecological patterns. Moreover, the extent of the mass elevation effect of the TP and the extent of warming on the main plateau relative to the surrounding areas remain unknown. Thus, this paper attempts to quantify the mass elevation effect by comparing the air temperature difference between the main plateau and the surrounding mountains/adjacent lowlands at specified elevations and to discuss the implications of the mass elevation effect on the occurrence of the highest treeline in the Northern Hemisphere, which occurs in the southeastern region of the TP.

2. Study area

The study area is located between latitudes 25–40°N and longitudes 75–105°E (Figure 1), including the entire TP and adjacent areas. The plateau covers an area of nearly 2.5 million km2, most of which is between 4000 and 6000 m above sea level (asl). The Himalayan, Hengduan and Kunlun Mountains are situated on the southern, eastern and northern borders of the plateau, respectively. The Gangdisè and Tanggula Mountains lie in the internal main plateau and divide the main plateau into three parts (i.e. the southern, central and northern main plateau). The Qaidam Basin, located in the northeast region of the TP, is approximately only 3000 m asl and separates the Qilian Mts. from the main plateau. We selected the Qilian Mts. and the Sichuan Basin (<1000 m asl) to the east of the plateau for air temperature comparisons.

3. Data and data sources

3.1. Air temperature data

The air temperatures are estimated based on the MODIS land surface temperature (LST) data, meteorological data for 2001–2007 from 137 stations and the ASTER GDEM data (Yao and Zhang, 2013). The MODIS LST data from 2001 to 2007 were obtained from the Terra Monthly Land
Surface Temperature/Emissivity (MOD11C3) product at 0.05° geographic Climate Modeling Grid (CMG) spatial resolution and downloaded from the Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/lpdaac/products/modis_products_table). The air temperatures were estimated using ArcGIS with geographical weighted regression (GWR) methods; the root mean square error (RMSE) for every month was relatively small, ranging from 1.13 °C for August to 1.53 °C for March. These estimate data are spatially continuous and contain more detailed air temperature information than the observed data, which are scattered. The spatial resolution of the estimated air temperature data is 0.05° geographic CMG.

3.2. ASTER GDEM data
ASTER Global Digital Elevation Model (GDEM) data with a spatial resolution of 30 m were downloaded from http://www.gdem.aster.ersdac.or.jp/download.jsp. The dataset contained a few missing values; these points were replaced with the mean of the adjacent 3×3 pixels.

3.3. Treeline data
We collected a total of 166 treeline data points that encompass the entire TP from the available literatures (Appendix). For each data site, the geographic coordinates (latitude and longitude) were extracted from the corresponding study or a map; the air temperatures at the treeline sites were subsequently acquired from the estimated temperature data.

4. Methods
First, air temperature data had been estimated by the GWR method based on time series of MODIS LST data, together with meteorological data of 137 stations for 2001–2007 and ASTER GDEM data (Yao and Zhang, 2013):

$$T_i(u) = \beta_0(u) + \beta_1(u)T_S(u) + \beta_2(u)h_i(u)$$

(1)

where T is air temperature, T_S is MODIS LST, u is a certain spatial location for air temperature estimation, and i is the number of spatial locations; h is the altitude acquired from ASTER GDEM. Using GWR, T at every location in the study area can be estimated from MODIS LST and altitude at that location (Equation (1)). Coefficient surfaces of MODIS LST, altitude and constant are generated separately, and then the estimation model for air temperature on the whole TP can be developed.

Then, to determine the relative extent of the mass elevation effect of the main plateau, monthly mean air temperatures at similar elevations and latitudes over the TP and over the neighbouring areas were compared. Air temperatures were calculated at altitudes of 4000, 4500, 5000, 5500 and 6000 m for both the main plateau and the Qilian Mts. The altitudes were determined from the ASTER GDEM dataset. The temperatures at elevations of 4000–6000 m in the Hengduan Mts. and in the southern and the central main plateau can be found in supporting Tables S1–S3. For the Sichuan Basin, the monthly mean air temperatures were adjusted to higher altitudes using the following equation:

$$T_{\text{adjusted}} = T + (h - H) \times \partial$$

(2)

where ∂ is the lapse rate, T is the air temperature at a height h and T_{adjusted} is the adjusted air temperature at an elevation H. Few lapse rates have been reported in the Sichuan Basin, especially in the western portion of the basin. Liu (1992) measured the air temperatures on the top and piedmont of Mt. Emei and reported that the monthly lapse rates varied from 0.49 °C 100 m$^{-1}$ in December to 0.60 °C 100 m$^{-1}$ in May (Table 1). Mt. Emei is located on the southwestern edge of the Sichuan Basin and on the southeastern edge of the Hengduan Mountains. Wu (1996) measured the air temperature on Mt. Qingcheng and reported a lapse rate of 0.56 °C 100 m$^{-1}$ in June. Zheng et al. (1986) reported that the lapse rates in the Wolong Nature Reserve (Mt. Balang) ranged from 0.42 °C 100 m$^{-1}$ in January to 0.50 °C 100 m$^{-1}$ in August. Mt. Qingcheng and Mt. Balang are located in the transition region of the basin and the easternmost region of the plateau; however, the Wolong Nature Reserve is closer to the main plateau than to the Sichuan Basin. These previous studies suggest that the lapse rates in the western Sichuan Basin are small in winter (0.42–0.53 °C 100 m$^{-1}$) and large in summer (0.55–0.60 °C 100 m$^{-1}$). Li and Xie (2006) analyzed the spatial distribution of lapse rates on the TP using an interpolation method and reported that the lapse rates decreased from 0.7 °C 100 m$^{-1}$ in the northwest to 0.45–0.50 °C 100 m$^{-1}$ in the southeast. According to these previous studies, the lapse rates in the western Sichuan Basin should be between 0.42 and 0.60 °C 100 m$^{-1}$. However, the interpolated results may contain some uncertainty. Therefore, we believe that the lapse rates measured on Mt. Emei are more creditable; these lapse rates were selected for the air temperature adjustment calculations.

Table 1. Reported lapse rates west of the Sichuan Basin (units: °C 100 m$^{-1}$).

Mountains	January	February	March	April	May	June	July	August	September	October	November	December
Mt. Emei	0.51	0.53	0.56	0.57	0.60	0.60	0.55	0.56	0.54	0.53	0.55	0.49
Mt. Qingcheng	0.56											
Mt. Balang	0.42											0.50

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd

Int. J. Climatol. 35: 1833–1846 (2015) on behalf of the Royal Meteorological Society.
To reveal air temperature variation from the periphery to the interior of the plateau, we carried out air temperature comparison between the main plateau and the transition region and the adjacent lowland areas at the same latitude. Mt. Emei and Mt. Qingcheng were chosen as mountains in the transition region; four locations on the main plateau at the same latitude were chosen for comparison. The air temperatures on Mt. Emei and Mt. Qingcheng were adjusted to the altitudes of the four locations on the main plateau using Equation (2); the measured lapse rates that were used for adjustments are listed in Table 1. The four locations on the main plateau are shown in Figure 1; their corresponding altitudes are listed in Tables 3 and 4.

We subsequently calculated the altitude of the warmest month 10°C isotherm and the warmth index at 4500m (which corresponds to the mean elevation of the main plateau) based on the estimated monthly mean air temperatures and the ASTER GDEM data. Previous studies have shown that altitudes corresponding to the warmest month 10°C isotherm and the warmth index of 15°C month (the summation is performed for months in which the monthly mean air temperature is greater than 5°C) exhibit the best overall occurrence of forest limits (Troll, 1973; Ohsawa, 1990). Therefore, the potential altitude of Alpine treelines can be estimated using the 10°C isotherm in the warmest month and a warmth index of 15°C month. The 10°C isotherms were extracted from the estimated air temperature data; the corresponding altitudes were obtained from the ASTER GDEM data using ArcGIS. The warmth index (WI) at the mean elevation of the main plateau (4500 m asl) is calculated as follows:

$$ WI = \sum (t - 5) $$

Here, t is the monthly mean air temperature at 4500 m asl and WI is the sum of $t - 5$ for months in which t exceeds 5°C (Kira, 1948; Ohsawa, 1990).

Lastly, to further evaluate the implications of the mass elevation effect on Alpine treelines, the correlation between the mass elevation effect and the treeline position is analyzed.

5. Results

5.1. The air temperature on the main plateau is higher than over the surrounding mountains and neighbouring lowland at the specified elevations

The air temperature at a specific elevation is higher on the main plateau than in the Sichuan Basin not only in summer but also throughout the entire year (Figure 2 and Table 2). At 4500 m asl, the temperature difference between the southern plateau and the Sichuan Basin is 5.25°C for the coldest month (January) and 4.86°C for the warmest month (July); the minimum and maximum differences are 3.58°C (April) and 6.63°C (June), respectively (Figure 3(a)). The temperature differences increase with altitude in all months. From 4000 to 6000 m, the temperature difference between the southern plateau and the Sichuan Basin increases from 4.17 to 6.41°C in January and from 3.21 to 8.32°C in July; between the Hengduan Mts. and the Sichuan Basin, the temperature difference increases from 5.2 to 8.16°C in January and from 3.33 to 9.08°C in July (Figure 3(b)). This result demonstrates that the air temperature on the main plateau is higher than over the adjacent lowland area and that the difference increases with increasing elevation.

A comparison of air temperatures between the central main plateau and the Qilian Mts. also suggests that temperatures on the main plateau are higher than over the surrounding mountains (Figure 4 and Table 2). At an elevation of 4500 m, the temperature difference between the central main plateau and the Qilian Mts. is 6.61°C in the coldest month (January) and 1.62°C in the warmest month (July); the minimum and maximum differences are 1.62°C (July) and 7.7°C (March), respectively. Moreover, between the northern main plateau and the Qilian Mts., the minimum monthly air temperature difference is 0.5°C (July) and the maximum difference is 4.9°C (December). The temperature differences between the central main plateau and the Qilian Mts. are small (<3°C) in warm months (May through September) and large (3–9°C) in cold months (October to April) (Figure 5). However, between the southern main plateau and the Sichuan Basin,
Table 2. Monthly temperatures and temperature differences (ΔT) between the main plateau and the surrounding/adjacent lowland areas at an altitude of 4500 m (units: °C).

	January	February	March	April	May	June	July	August	September	October	November	December
Main plateau	−10.19	−8.16	−4.73	−0.1	3.77	7.83	9.94	9.59	6.9	0.13	−6.3	−9.14
Hengduan Ms.	−7.07	−5.28	−2.27	0.83	5.21	8.2	10.08	9.93	7.2	2.12	−3.84	−6.52
Southern main TP	−7.55	−6.08	−2.85	0.83	4.42	8.5	10.22	9.89	7.5	2	−3.6	−6.4
Central main TP	−10.8	−8.26	−4.41	0.21	4.02	8.45	10.56	10.11	7.39	0.49	−6.22	−9.56
Northern main TP	−13.48	−11.17	−7.58	−1.37	3.01	6.95	9.44	9.00	6.16	−2.41	−9.55	−12.31
Qilian Ms.	−17.41	−15.58	−12.08	−4.19	2.11	6.13	8.94	7.93	4.4	−5.44	−13.08	−17.16
Sichuan Basin	−12.8	−10.29	−7.16	−2.75	−0.41	1.87	5.36	4.15	1.54	−2.23	−7.63	−10.94
ΔT Hengduan-Sichuan	5.73	5.01	4.89	3.58	5.62	6.33	4.72	5.78	5.66	4.35	3.79	4.42
ΔT Southern main-Sichuan	5.25	4.21	4.31	3.58	4.83	6.63	4.86	5.74	5.96	4.23	4.03	4.54
ΔT Central main-Qilian	6.61	7.32	7.67	4.4	1.91	2.32	1.62	2.18	2.99	5.93	6.86	7.60
ΔT Northern main-Qilian	3.93	4.41	4.5	2.82	0.9	0.82	0.5	1.07	1.76	3.03	3.53	4.85

Figure 3. (a) Monthly temperature differences at an elevation of 4500 m and (b) temperature differences as a function of altitude between the southern main plateau/the Hengduan Ms. and the Sichuan Basin.

the air temperature differences are largest in the warm months (>4 °C) (Figures 3 and 5). Furthermore, the air temperature differences increase with altitude from 4000 to 5000 m and then decrease with altitude from 5000 to 5500 m (Figure 5(b)).

5.2. Air temperatures gradual increase from the easternmost to the interior plateau

To further reveal the mass elevation effect of the TP, air temperatures in Mt. Emei and Mt. Qingcheng, are compared with those over the main plateau at the same latitudes and altitudes (Table 3). In July, the air temperature on Mt. Emei is 24.90 °C at 1105 m; the adjusted air temperatures are 7.20 °C at 4301 m (the altitude of Location 1) and 6.41 °C at 4443 m (the altitude of Location 2), which are 4.85 and 4.41 °C lower than the temperatures at Location 1 (12.04 °C) and Location 2 (10.82 °C) in the interior plateau, respectively. Similarly, in June, the air temperature on Mt. Qingcheng is 20.63 °C at 1267 m; the adjusted temperatures are 0.79 °C at 4811 m (the altitude of Location 3) and 1.19 °C at 4740 m (the altitude of Location 4), which are 6.38 and 7.22 °C lower than the temperature over the interior plateau (Table 4). Moreover, the results demonstrate that the air temperature at given elevations gradually increases from the eastern edge to the interior plateau.

This analysis verifies that the main plateau is warmer than its surroundings and adjacent lowland areas and provides a general magnitude of the mass elevation effect of the plateau. Flohn (1953) first explained the mass elevation effect of the TP as a result of the altitudinal increase in solar radiation and the substantial longwave radiation at higher elevation; therefore, the TP is often called a heat source. Barry (2008) noted that sensible heat transferred from the surface and the latent heat of condensation due to precipitation from orographically induced cumulus cloud development contributes to the heating effect in the mountain atmosphere. Over the drier western part of the TP, the sensible heat flux is important; the total daily energy transfer from the plateau to the atmosphere reaches 220 W m⁻² in June (Yeh, 1982). East of 85°E, the latent and sensible heat fluxes are nearly identical (90 and 100 W m⁻², respectively). Moreover, over the southeastern plateau, convective activity provides a large heat input due to the latent heat of condensation (Yeh, 1982), which explains why the main plateau is a heat source and its air temperature is higher than over the surrounding and adjacent lowland areas.
1838 YH. YAO AND BP. ZHANG

Figure 4. Air temperatures over the central/northern main plateau and the Qilian Mts. in (a) January and (b) July.

Figure 5. (a) Monthly temperature differences at an elevation of 4500 m and (b) temperature differences as a function of altitude between the central/northern main plateau and the Qilian Mts.

Table 3. Temperature and temperature differences (ΔT) between Mt. Emei and two locations on the main plateau (units: °C).

Longitude	Latitude	Elevation (m)	January	February	March	April	May	June	July	August	September	October	November	December	
$T_{\text{Mt. Emei}}$	103.29	29.36	1105	4.16	6.35	10.12	15.04	19.31	22.67	24.90	24.21	20.16	14.78	9.79	5.10
$T_{\text{Location 1}}$	100.50	29.36	4443	-3.35	-1.87	0.94	3.38	6.15	9.30	10.82	10.65	8.07	4.46	-0.92	-3.56
$T_{\text{Location 2}}$	90.00	29.36	4301	-4.32	-2.89	0.37	3.19	7.01	10.73	12.04	11.55	9.27	4.49	-1.06	-3.75
$T_{\text{Emei adjusted}}$	4301	-12.14	-10.62	-7.72	-3.02	0.01	3.62	7.20	6.25	2.80	-2.13	-7.69	-10.40		
$\Delta T_{\text{Emei adjusted}}$	4443	-12.87	-11.37	-8.51	-3.82	-0.85	2.78	6.41	5.45	2.03	-2.88	-8.47	-11.08		
$\Delta T_{\text{Location 1} - \text{Emei}}$	4443	9.52	9.51	9.44	7.20	7.00	6.52	4.41	5.20	6.04	7.34	7.55	7.52		
$\Delta T_{\text{Location 2} - \text{Emei}}$	4301	7.85	7.73	8.09	8.09	7.01	7.30	4.85	5.30	6.47	6.61	6.63	6.64		

5.3. The spatiotemporal pattern of air temperatures over the main plateau

The above analysis demonstrates that the air temperatures at high altitudes over the main plateau are higher than in the free air over the surrounding areas due to the mass elevation effect of the plateau. To further deduce the spatiotemporal pattern of the mean temperatures over the main plateau, we sketch the distributions of the 10°C isotherm in the warm months (Figure 6). In May, it is at 3700–3800 m on the southern main plateau, at 3200–3300 m in the Hengduan Mts., at 4000–4100 m on the central main plateau and at 3300–3400 m on the northeast main plateau. In July, it reaches its highest locations, i.e. at 4600–4700 m on the southern main plateau, at 4300–4400 m in the Hengduan Mts., at 4800–4900 m on the central main plateau and at 4300–4400 m on the northeast main plateau. It is clear that the warmest month 10°C isotherm is higher on the central plateau than in the...
Table 4. Temperature and temperature differences (ΔT) between Mt. Qingcheng and two locations on the main plateau.

	Longitude	Latitude	Elevation (m)	June (°C)
$T_{\text{Qingcheng}}$	103.53	31.02	1267	20.63
$T_{\text{Location 3}}$	100.00	31.02	4811	7.17
$T_{\text{Location 4}}$	90.00	31.02	4740	8.41
$T_{\text{adjusted Qingcheng}}$				4811
$T_{\text{adjusted Qingcheng}}$				4740
$\Delta T_{\text{Location 3 - Qingcheng}}$				6.38
$\Delta T_{\text{Location 4 - Qingcheng}}$				7.22

other regions, confirming the existence of the mass elevation effect of the plateau.

5.4. The importance of the TP mass elevation effect for the highest treeline in the Northern Hemisphere

On both global and continental scales, previous work has suggested that temperature is the final factor for determining treeline altitude (Holtmeier and Broll, 2005) and that the warmest month 10°C isotherm and the warmth index of 15°C month are thought to coincide with Alpine treelines (Troll, 1973; Ohsawa, 1990). According to our analysis, the warmest month 10°C isotherm lies at 4600–4700 m on the southern main plateau and at 4300–4400 m in the Hengduan Mts. The warmth index at 4500 m asl for these two areas are 15.41 and 16.11 °C month, respectively (as calculated using Equation (3)). The warmth index at 4600–4700 m asl may reach 15°C month. These two areas also have sufficient annual precipitation (>500 mm) (Liao, 1990) for tree growth. Those temperature and precipitation conditions can explain why the highest treeline in the Northern Hemisphere occurs in the southeastern TP. Although the warmest month 10°C isotherm lies at 4800–4900 m on the central main plateau and 4300–4400 m on the northern main plateau, rainfall in these areas is insufficient (<400 mm) (Liao, 1990) for the growth of trees.

To further evaluate the implications of the mass elevation effect for Alpine treelines, we collected treeline data from the literatures (Figure 1). First, as stated above, air temperatures gradually increase from the easternmost to the interior main plateau, and the altitude of treelines follows a similar trend (Figure 1). The treelines along the eastern edge of the TP (on Qilian Mts. and in the transition region between the eastern TP and the Sichuan Basin) is typically below 3700 m. From the eastern edge to the inner TP, the treeline ascends to 4000 m east of the Maqin-Daofu-Jiulong line. Moreover, the treeline increases to 4600–4700 m westward in Zuogong and Lhasa; it even reaches 4900 m on some sunny slopes. Second, the air temperatures during the entire year in the interior main TP at 4500 m asl are approximately 3.58–6.63 °C higher than in the Sichuan Basin (Table 2). Similarly, the treelines in the interior TP are approximately 500–1000 m higher than in the eastern edge of the TP (Table 5). According to profiles 1 through 3 in Table 5, air temperatures at the treeline sites in the interior TP are primarily 9–11 °C, which are not lower than the air temperatures along the eastern/western edges of TP, even though treelines in the interior TP are approximately 500–1000 m higher than along the eastern/western edges. Therefore, the mass elevation effect raises the Alpine treeline in the interior TP because favourable temperatures for tree growth are present at higher altitudes on the TP.

6. Discussion

6.1. The differences between the mass elevation effect of the TP and the heat source in summer/heat sink in winter

The results presented herein demonstrate that the mass elevation effect of the TP occurs throughout the entire year,
Table 5. Treeline profiles along 29.7°, 30° and 31°N, and the July temperatures at the treeline sites.

Profile	Treeline site	Longitude	Latitude	Treeline altitude (m)	Air temperature in July (°C)	
Profile 1	Near 29.7°N	East of Nyemo River	91.02	29.71	4750	10.19
		Porong Ka Monastery	91.16	29.77	4600	9.54
		Milin-Linzhi	94.27	29.84	4300	8.05
		Nyingchi	94.77	29.58	4300	10.19
		Namjagbarwa Feng N	95.19	29.63	4200	7.48
		Dongdala, Zuogong	97.94	29.70	4300	10.77
		Shaluli Shan S	99.74	29.75	4200	10.35
		Gongga Shan N	102.10	29.76	3700	11.58
Profile 2	Near 30°N	Nanda Devi massif	79.81	30.18	3700	10.20
		Dozam Khola	82.04	30.07	4200	10.96
		SW of Damxung	91.00	30.01	4280	11.36
		Kyi Chu catchment	91.52	30.30	4850	10.42
		Reting Monastery	91.55	30.30	4750	11.58
		Kyi Chu catchment	92.13	30.10	4600	10.89
		NE of Batang	99.56	30.10	4500	9.02
		Haizi Shan, Yidon, Sichuan	99.57	30.29	4200	9.36
		Jiajin Shan-Daxiangling	103.29	30.30	3700	9.06
Profile 3	Near 31°N	Yumnotri	78.47	31.07	3750	7.72
		Gangotri Mountain	78.77	31.00	4100	12.87
		Bhagirathi V.	78.98	31.08	4250	12.02
		Damala, Changdu	97.27	31.15	4700	13.71
		Chaudo Shan, Kangding Sichuan	101.94	31.09	4000	11.76
		Siguniang Shan	103.13	31.20	3800	13.55
		Guangguang Shan	103.40	31.12	3400	17.27

even in cold months. Yeh (1979) and Gao (2005) also found that the TP supplied heat to the lower atmosphere during the entire year. However, it was suspected whether the effect exists in winter, because the TP is a heat sink in winter (Yeh and Chang, 1974; Yeh, 1979; Chen et al., 1985; Yeh and Wu, 1998; Gao, 2005). Although both the mass elevation effect and the heat source/sink arise from both sensible and latent heat fluxes (which is called the heating effect in the field of meteorology), these concepts are virtually different. The former corresponds to the elevated plateau surface which causes heating in the lower atmosphere via sensible and latent heat fluxes and subsequently lifts the mountain altitudinal belts. The latter corresponds to atmospheric heat exchange between the TP and adjacent areas. Owing to the release of sensible and latent heat throughout the entire year, the mass elevation effect occurs throughout the entire year. However, this conclusion does not mean that the TP acts as a heat source all year because air mass motions are important for heat exchange between the atmosphere of the TP and the surrounding areas. Previous studies have found that the prevailing westerlies split to the west of the plateau and converge on the eastern side in winter. However, a cyclonic circulation in the lower atmosphere that becomes anticyclonic at high levels characterizes the wind field in summer. In winter, most of the plateau are dominated by descending air except in the southeastern plateau, whereas ascending motion prevails in summer (Yeh et al., 1957). Therefore, the TP is a thermal source in summer and a thermal sink in winter except in the southeastern region of the plateau.

6.2. Why does the highest treeline in the Northern Hemisphere occur over the southeastern TP and not in other places on the TP?

Our results demonstrate that the warmest month 10°C isotherm is located at 4600–4700 m on the southern main plateau and at 4800–4900 m on the central main plateau. However, the highest treeline in the Northern Hemisphere does not occur in the central main plateau but on the southeastern plateau. This is because tree growth requires another condition, at least 500 mm of annual precipitation (Hou, 1982a, 1982b). In the central and northwestern plateau, the annual precipitation amounts to about 50–300 mm (Liao, 1990; Zheng and Li, 1990; Zhang et al., 2002; Wang et al., 2011) which is not sufficient for tree growth. Therefore, the highest treeline in the Northern Hemisphere occurs in the southeastern region of the TP.

6.3. Implication of the mass elevation effect for global treeline patterns

As De Quervain (1904) first proposed and used the concept of mass elevation effect to account for the observed tendency in temperature-related parameters, such as treeline and snowline, to occur at higher elevations in the Central Alps than in their outer margins, many studies have verified that mass elevation effect raises treelines by approximately 400 m higher in the Central Alps compared to the outer ranges (Tollner, 1949; Holtmeier, 2003; Barry, 2008). A similar phenomenon has been observed in other large massif mountains/plateaus, including the TP and South American Andes (Holtmeier, 2003; Han et al., 2012).
Moreover, the highest treelines in the Northern and Southern Hemispheres occur on the TP and in the Andes, respectively (Miehe et al., 2007; Hoch and Körner, 2005; Körner, 2012). Although the effect of the heat source on the general circulation and local climate in these two locations has been the focus of many studies for several decades (Flohn, 1953; Yeh, 1952; Yao and Erdogan, 1989; Vuille et al., 1999; Garreaud et al., 2009), the correlation between mass elevation effect and the treeline distribution has been neglected. Using the concept of mass elevation effect is very effective to explain extremely higher treelines and could greatly deepen our understanding of ecological patterns and mechanism of global treelines.

In addition to the 10°C isotherm in the warmest month and a warmth index of 15°C month that were used in this study, the coldness index (Ohsawa, 1990) and many other seasonal climatic factors, such as the growing season mean temperature of 6.7 ± 0.8°C (Körner, 1998; Körner and Paulsen, 2004) and the shortest growing season length of 100 days (Ellenberg, 1963), were also found to be closely related to treeline locations in some areas. However, the relationship between these factors and the treeline distribution has been shown to exhibit large differences at different locations. Therefore, selecting several climate factors would be better for a comparative study on global treelines in the future.

6.4. Temperature lapse rate on the TP

When studying mountain climates, the temperature lapse rate is typically a necessary parameter (Rolland, 2003). In this study, the lapse rates measured on Mt. Emei and Mt. Qingcheng were used for temperature adjustment calculations in the Sichuan Basin according to the reported references (Table 1). However, the lapse rate varies from approximately 0.98°C 100 m−1 in dry air (the dry-air adiabatic lapse rate) to approximately 0.48°C 100 m−1 in moist air (the saturated adiabatic lapse rate (Dodson and Marks, 1997). The dry adiabatic lapse rate is different than the wet lapse rate; the lapse rate also changes with locations. More precise lapse rates for temperature adjustment must be acquired in the future. Similarly, the humidity varies both spatially and seasonally on the TP (Liao, 1990; Zhang et al., 2002). Therefore, the lapse rate exhibits large spatial and temporal variability on the plateau. Moreover, lapse rates on the TP may be smaller than the global average temperature lapse rate due to the mass elevation effect of the TP because temperature lapse rates are steeper on isolated mountains near the sea than within extensive mountain ranges that provide their own heating (Hastenrath, 1968; Flenery, 1995). The mean annual lapse rate in the European Alps ranges from 5.4 to 5.8°C km−1. Previous work revealed a clear and consistent seasonal variation with higher lapse rates from April to September for the minimum, mean and maximum temperatures (Rolland, 2003). However, there are few reports regarding the seasonal variation in lapse rates for the TP. It has also been noted that lapse rates exhibit considerable variability in relation to the climatic zone, season (Hastenrath, 1968), air mass type (Yoshino, 1966) and local topography (Flenery, 2007; Barry, 2008). Monthly mean lapse rates on the TP and their spatiotemporal variation deserve a closer examination in the future.

7. Conclusions

Owing to mass elevation effect, air temperatures gradually increase from the eastern edge to the interior main TP. The monthly mean air temperature in the interior main plateau is approximately 2–7°C higher than in the surrounding mountains and adjacent lowland areas at given altitudes of 4000–6000 m. At elevation of 4500 m (the average elevation of the plateau), monthly air temperature difference is from 3.58°C (April) to 6.63°C (June) and 1.6°C (July) to 7.7°C (March) relative to the Sichuan Basin and Qilian Mts., respectively. This causes that the treelines are 500–1000 m higher in the interior TP than in the eastern border areas. Therefore, mass elevation effect contributes greatly to the occurrence of the highest treeline (4700–4900 m) of the Northern Hemisphere, which is present on the southeastern TP.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 41030528 and No. 41001278). The authors thank Zhao Fang, PhD for compiling the treeline data and the anonymous reviewers and editors for their constructive comments and suggestions.

Appendix

Table A1. List of 166 treeline sites in the Tibetan Plateau used in this study.

Site name	Longitude (°)	Latitude (°)	Elevation (m)	References
Baima Xueshan E	99.1	28.4	4100	Investigating group for South-to-North Water Transfer Project (1978)
Baxoi county	96.7	29.8	4900	Miehe et al. (2007)
Biluo Xueshan	98.9	27.5	3530	Investigating group for South-to-North Water Transfer Project (1978)
Chola Shan (Sichuan)	99.1	32.0	4200	Jiang et al. (2004)
Dabanzhao	103.0	31.7	3750	Hu and Song, 1961; pers. comm.
Dafeng Ding, Meigu County, Sichuan	103.3	28.6	3500	Zheng (1997)

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
Site name	Longitude (°)	Latitude (°)	Elevation (m)	References
Duglama Shan, Qamdo	97.3	31.2	4600	Zhang et al. (1988)
Dajin Chuan and Xiaojin Chuan	102.0	31.5	3900	Zheng (1997)
Duming-Zhongdian (N)	99.7	26.6	4130	Investigating group for South-to-North Water Transfer Project (1978)
Duming-Zhongdian (S)	99.7	26.6	4150	Investigating group for South-to-North Water Transfer Project (1978)
Gaershi Shan N, Yajiang County, sichuan	100.9	30.0	4000	Hou (1982a, 1982b)
Gaoligong Shan	98.8	27.0	3800	Hou (1963)
Gaoligongshan pianma pass	98.5	28.0	3500	Investigating group for South-to-North Water Transfer Project (1978)
Gongga Shan E	102.1	29.6	3500	Zhong and Zheng (1983)
Gongga Shan N	102.1	29.8	3700	Zhong and Zheng (1983)
Gongga Shan S	102.1	29.6	3800	Zhong and Zheng (1983)
Gongga Shan W	102.1	29.6	4000	Zhong and Zheng (1983)
Gong-jun-dah	98.5	31.0	3900	Zhang et al. (1988)
Haizi Shan, Yidun, sichuan	99.5	30.3	4200	Jiang et al. (2004)
Jinyang County, Xinjiang	103.3	27.9	3700	Zheng (1997)
Kanggar, Daocheng County, Sichuan	100.2	28.6	4300	Jiang et al. (2004)
Kya’gyu Shan SE	102.5	30.3	3700	Han (2011)
Lancang Jiang N, Chuka	98.1	30.0	4250	Hou (1982a, 1982b)
Lancang Jiang S, Chuka	98.1	30.0	4400	Hou (1982a, 1982b)
Lancang River, Ngom Chu (Shangka)	96.8	31.4	4400	Liu and Lu (1990)
Lancang River, Qamdo	97.1	31.5	4300	Liu and Lu (1990)
Lancang River, Za Qu (Wongdagang)	97.2	31.6	4400	Liu and Lu (1990)
Lhong-ong-Dengqen	95.7	30.9	4300	Zhang et al. (1988)
Mainkung-Dongba	98.3	28.4	4150	Zhang et al. (1988)
Medog County, Tibet	95.2	29.6	4000	Zhang et al. (1988)
Moirigkawagarbo E I	98.7	28.2	4450	Investigating group for South-to-North Water Transfer Project (1978)
Moirigkawagarbo E II	98.6	28.5	3700	Schickhoff (2005)
Moirigkawagarbo W	98.7	28.5	4220	Investigating group for South-to-North Water Transfer Project (1978)
Namjagbarwa Feng N	95.2	29.6	4200	Li (1984)
Namjagbarwa Feng S	95.1	29.5	3900	Peng et al. (1997), Zheng (1997)
Ningjing Shan	99.0	29.8	4200	Zhang et al. (1988)
North of Lepa	97.1	29.0	3900	Schickhoff (2005)
NW of Litang	100.0	30.5	4650	Schickhoff (2005)
Nyingser La	98.8	27.9	4250	Schickhoff (2005)
Parlung Zangbo catchment	96.8	29.5	3900	Schickhoff (2005)
Parlung Zangbo V, Bomi	95.7	29.8	4100	Jiang et al. (2004)
Qamdo-Zha’g’yab	97.4	30.8	4300	Zhang et al. (1988)
Sang Qu	97.4	29.2	4150	Schickhoff (2005)
SE of Zoggen	99.1	31.8	4350	Schickhoff (2005)
Shaluli Shan S	99.7	29.8	4200	Liu (1981)
Siguniang Shan	103.1	31.2	3800	Liu (1981)
South section of Taiyangshan E, sichuan	101.3	28.2	3600	Zheng and Gao (1984)
South section of Taiyangshan W, sichuan	101.0	27.9	3900	Zheng and Gao (1984)
Xuebaoding	103.7	32.7	3800	Zhang et al. (2006)
Yading Nature Reserve	100.5	28.5	4440	Shi et al. (2008)
Yanjing-Chuka	98.7	29.1	4250	Zhang et al. (1988)
Yulong Xueshan	100.1	27.4	3900	Li et al. (1983)
Yunling-Deqen N	98.9	28.5	4050	Li et al. (1983)
Yunling-Deqen S	98.9	28.5	4200	Li et al. (1983)
Zayü	96.4	29.5	4050	Schickhoff (2005)
Zayü County	97.5	28.6	4200	Zhang et al. (1988)
Zayü Qu (east branch)	97.5	28.6	4000	Zheng (1997)
Zhe Gu Shan, sichuan	102.7	31.9	3750	Körner and Paulsen (2004)
Zheduo Shan (Kangding, sichuan)	101.9	31.1	4000	Liu and Qu (1980)
Zoggen	98.8	32.1	4700	Schickhoff (2005)
Table A1. Continued.

Site name	Longitude (°)	Latitude (°)	Elevation (m)	References
Barbung Khola	83.3	28.8	4400	Schickhoff (2005)
Barun Khola N	87.1	27.8	4500	Schickhoff (2005)
Beas River	77.4	32.0	3550	Schickhoff (2005)
Bhagirathi V.	79.0	31.1	4250	Schickhoff (2005)
Biafo Glacier	75.8	35.6	4100	Schickhoff (2005)
Black Mountains N	90.7	27.4	4250	Schickhoff (2005)
Boqu Valley N, Qomolangma	86.0	28.1	3900	Zheng et al. (1975)
Boqu Valley S, Qomolangma	86.1	28.0	3800	Zheng et al. (1975)
Burzil	75.0	34.9	3550	Schickhoff (2005)
Cha Lungpa V.	83.6	28.9	4150	Schickhoff (2005)
Chamba	77.0	32.6	4200	Schickhoff (2005)
Chentang, Tibet	87.4	27.8	4000	Jiang et al. (2004)
Chilime V.	85.2	28.4	4500	Schickhoff (2005)
Chulungche	86.8	27.9	4400	Schickhoff (2005)
Chumbi V.	89.0	27.7	3800	Schickhoff (2005)
Chyochyo Danda S	85.7	28.0	3700	Schickhoff (2005)
Cona County, Tibet	92.3	27.6	4000	Li (1984)
Dachchigam woodland	75.0	34.2	3550	Schickhoff (2005)
Dagan V.	75.0	34.3	3550	Schickhoff (2005)
Dhaola Dhar Range	76.9	32.3	3550	Schickhoff (2005)
Diamir	74.4	35.0	4150	Schickhoff (2005)
Dozam Khola N	82.0	30.1	4150	Schickhoff (2005)
Dozam Khola S	82.0	30.0	4200	Schickhoff (2005)
Dupku N	85.6	28.1	4020	Schickhoff (2005)
Dupku S	85.6	28.1	4200	Schickhoff (2005)
Flowers National Park	79.6	30.7	3750	Schickhoff (2005)
Gannazangbu Valley, Qomolangma	87.7	27.7	3800	Zheng et al. (1975)
Ghasa	83.6	28.6	4050	Schickhoff (2005)
Gyalap Peri	94.9	29.9	3900	Schickhoff (2005)
Gyirong V., Tibet	85.3	28.4	4000	Jiang et al. (2004)
Hispar V	75.1	36.2	4350	Schickhoff (2005)
Hushe V.	76.4	35.5	4050	Schickhoff (2005)
Jargeng Khola	83.9	28.7	4200	Schickhoff (2005)
Jelep La W	88.9	27.3	4000	Schickhoff (2005)
Kaghan	73.6	34.9	3775	Schickhoff (2005)
Kalong Chu	91.0	27.9	3900	Schickhoff (2005)
Kamri Pass	74.9	34.7	3650	Schickhoff (2005)
Kone Khola	84.0	28.7	4300	Schickhoff (2005)
Kulu V.	77.1	32.2	3700	Schickhoff (2005)
Kyi Chu catchment	91.6	30.3	4850	Miehe et al. (2007)
Ladakh	77.7	34.4	4250	Schickhoff (2005)
Lhonak V.	88.3	27.8	4500	Schickhoff (2005)
Liddar V.	75.3	34.2	3550	Schickhoff (2005)
Lupghar V. and upper Chupursan V.	74.7	36.7	3950	Schickhoff (2005)
Maimling County, Tibet	94.2	29.2	4000	Jiang et al. (2004)
Mainling N	93.9	29.1	4300	Schickhoff (2005)
Marol	76.2	34.8	3900	Schickhoff (2005)
Marpha	83.7	28.8	4050	Schickhoff (2005)
Morkhun V.	74.9	36.6	3950	Schickhoff (2005)
Mugu Karnali V	82.7	29.7	4050	Schickhoff (2005)
Muktiniath	83.8	28.9	4150	Schickhoff (2005)
Nanda Devi massif	79.8	30.2	3700	Schickhoff (2005)
Narimthang	91.2	27.9	3900	Schickhoff (2005)
Nilgiri	83.7	28.7	4400	Schickhoff (2005)
Nyalam	86.0	28.2	4050	Fang (1995)
Nyemo River E	90.0	29.3	4800	Schickhoff (2005)
Nyengchi S	94.2	29.3	4500	Shi et al. (2008)
Orka La	92.0	27.4	3950	Schickhoff (2005)
Pamtschü	92.0	29.3	4600	Schickhoff (2005)
Pangoche N	86.8	27.9	4250	Schickhoff (2005)
Porong Ka Monastery	91.2	29.8	4600	Schickhoff (2005)
Rongxarq Valley N, Qomolangma	86.4	28.1	4100	Zheng et al. (1975)
Rupal V.	74.7	35.2	4150	Schickhoff (2005)
Sankosh Valley	90.1	27.7	4200	Schickhoff (2005)
Table A1. Continued.

Site name	Longitude (°)	Latitude (°)	Elevation (m)	References
Sarat	74.8	36.4	4100	Schickhoff (2005)
Satpara/Deosai	75.6	35.1	4200	Schickhoff (2005)
Se La	92.1	27.6	3950	Schickhoff (2005)
Shey Gompa	82.9	29.3	4200	Schickhoff (2005)
Shingo La	76.9	32.9	3900	Schickhoff (2005)
Singalila National Park	88.1	27.4	3650	Schickhoff (2005)
Solu Khola	86.5	27.6	4000	Schickhoff (2005)
Sygera Mts., Nyingchi	94.2	30.0	4300	Jiang et al. (2004)
Tanggu	88.5	27.9	4100	Schickhoff (2005)
Tikeapsa	85.6	28.2	4540	Schickhoff (2005)
Tons V.	78.3	31.2	4050	Schickhoff (2005)
Tremo La	89.3	27.7	4000	Schickhoff (2005)
Trisuli catchment	85.2	28.6	4300	Schickhoff (2005)
Tsamtshu	90.5	29.0	4650	Schickhoff (2005)
Tungnath	79.3	30.5	3600	Schickhoff (2005)
upper Bhutna V.	76.3	33.5	3800	Schickhoff (2005)
Wardwan/Chenab V.	75.8	33.8	3550	Schickhoff (2005)
Xiabaxia-Kuer	92.4	27.6	4100	Zhang et al. (1988)
Yadong County, Tibet	88.9	27.5	4000	Zhang et al. (1988)
Yangri Danda	85.7	28.0	3700	Schickhoff (2005)
Yumnotri	78.5	31.1	3750	Schickhoff (2005)
Zemu V.	88.2	27.5	4100	Schickhoff (2005)
Zoji La	75.4	35.3	3550	Schickhoff (2005)
Kongur-Oytagh	74.4	39.0	3500	Schickhoff (2005)
Wuytak	75.3	38.9	3400	Schickhoff (2005)
Baihui Jiang National Natural Reserve	104.4	32.8	3450	Sun and Feng (1998)
Hexi mountain-oasis-desert area	100.7	38.4	3200	Wang et al. (2001)
Hutou Shan N	103.3	34.2	3800	Feng and Sun (1990)
Laji Shan	101.6	36.0	3350	Fang (1995)
Lenglong Ling N	102.2	37.7	3250	Chen et al. (1994)
Lianhuashan Nature Reserve, Gansu	103.8	34.9	3400	Li and Zhang (2000)
Niuxin Shan N	100.3	38.1	3450	Chen et al. (1994)
Qilian mountains N	102.0	37.4	3330	Wang et al. (2001)
Qilian mountains NE	102.6	37.0	3200	Jiang et al. (2004)
Qingshiling N	102.2	37.1	3200	Chen et al. (1994)
Qingshiling S	102.2	37.1	3500	Chen et al. (1994)
Suyiyahei Mountain	103.9	33.8	3700	Feng and Sun (1990)
Xinglong Shan	104.0	35.8	2750	Liu (1981)
Xiqing Shan, Qinghai	101.7	34.7	3800	Jiang et al. (2004)
Yeniuh Shan N	100.4	38.2	3150	Chen et al. (1994)
Zhangye Nanshan	98.6	39.4	3200	Zhang (1997)

Supporting Information

The following supporting information is available as part of the online article:

Table S1. Temperatures at elevations 4000–6000 m in the Hengduan Mts. (unit: °C).

Table S2. Temperatures at elevations 4000–6000 m in the southern main plateau (unit: °C).

Table S3. Temperatures at altitudes 4000–6000 m in the central main plateau (unit: °C).

References

Barry RG. 2008. *Mountain Weather and Climate*. Cambridge University Press: Boulder, CO.

Chen LX, Reiter ER, Feng QZ. 1985. The atmospheric heat-source over the Tibetan Plateau in May-August 1979. *Mon. Weather Res.* 113(10): 1771–1790.

Chen G, Peng M, Huang R, Lu X. 1994. Vegetation characteristic and its distribution of Qilian Mountain region (in Chinese). *Acta Bot. Sin.* 36(1): 63–72.

De Quervain A. 1904. Die Hebung der atmosphärischen Isothermen in der Schweizer Alpen und ihre Beziehung zu deren Höhengrenzen. *Gerlands Beitr. Geophys.* 6: 481–533.

Dodson R, Marks D. 1997. Daily air temperature interpolated at high spatial resolution over a large mountainous region. *Clim. Res.* 8: 1–20.

Ellenberg H. 1963. *Vegetation Mitteleuropas mit den Alpen in kausaler, dynamischer und historischer Sicht*. Ulmer: Stuttgart, Germany.

Fang JY. 1995. *Three dimension distribution of forest zones in East Asia (in Chinese).* Acta Geogr. Sin. 50(2): 160–167.

Feng Z, Sun X. 1990. Studies on the special characteristics of forest vegetation in Diebu County(1) (in Chinese). *J. Gansu Agric. Univ.* 25(3): 317–324.

Flenley JR. 1995. Cloud forest, the Massenerhebung effect, and ultraviolet insolation. *Ecol. Stud.* 110: 150–155.

Flenley JR. 2007. Ultraviolet insolation and the tropical rainforest: altitudinal variations, Quaternary and recent change, extinctions, and biodiversity. In *Tropical Rainforest Responses to Climatic Change*, Buch MB, Flenley JR (eds). Praxis Publishing: Chichester, UK, 219–235.

Floh H. 1953. Hochgebirge und allgemeine Zirkulation. II. Die Gebirge als Wärmequellen. *Arch. Met. Geophys. Biokl. series A* 5(3): 265–279.

Floh H. 1957. Large-scale aspects of the “summer monsoon” in South and East Asia. *J. Meteorol. Soc. Jpn.* 35: 1833–1846 (2015)
THE MASS ELEVATION EFFECT OF TIBETAN PLATEAU

Flöhn H. 1968. Contributions to a Meteorology of the Tibetan Highlands. Atmos. Sci. Paper No. 130, Colorado State University, Fort Collins, CO.

Gao DY. 2005. The Mountain Environmental Meteorology of China. Henan Science and Technology Press: Zhengzhou, China.

Garreau R, Vuille M, Compagnucci R, Marenjo J. 2009. Present-day Southern Hemisphere monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281: 180–195.

Grubb PJ. 1971. Interpretation of Massenerhebung effect on tropical mountains. Nature 229(5279): 44–45.

Han F. 2011. A Study of the Forcing of Mass Elevation Effect on the Pattern of Mountain Altitudinal Belts. Graduate University of Chinese Academy of Sciences: Beijing.

Han F, Yao YH, Dai SB, Wang C, Sun RH, Xu J, Zhang BP. 2012. Mass elevation effect and its forcing on timberline altitude. J. Geog. Sci. 22(4): 609–616.

Hastenrath S. 1968. Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of Central America and southern Mexico. Colloq. Geog. 9: 122–130.

Holtmeier FK. 2003. Growth, demography and carbon relations of Picea trees at the world’s highest treeline. Funct. Ecol. 19: 941–951.

Holtmeier FK. 2005. Sensitivity and response of Northern Hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 14(5): 395–410.

Hou XY. 1963. The characteristic of altitudinal belt spectra in vegetation regions of China (in Chinese). In Collection of Abstracts of Papers for the Thirtieth Annual Meeting of China Flora Association, China Flora Association (ed). Science Press: Beijing. 254–258.

Hou XY. 1982a. China Vegetation Geography and Dominant Plant Communities. Science Press: Beijing.

Hou XY. 1982b. Vegetational Geography and Chemical Components of Dominant Plants in China (in Chinese). Science Press: Beijing.

Investigating Group for South-to-North Water Transfer Project. 1978. Survey Report of Vegetation in Hengduan Mountains in the Northwest of Yunnan Province. Yunnan University: Kunming, China.

Jiang F, Wu X, Wang S, Fu J, Wang Y. 2004. Features of space distribution of the forest line and relations between the forest line and climatic limit of permafrost and climatic snowline in China (in Chinese). J. Geomech. 30(4): 289–299.

Kira T. 1948. On the altitudinal arrangement of climatic zones in Japan. Kanti-Nougaku 2: 143–173.

Körner C. 1998. A re-assessment of high elevation tree line positions and their explanation. Oecologia 115: 445–459.

Körner C. 2012. Alpine Treelines. Springer: Basel, Switzerland; Heidelberg, Germany; New York, NY; Dordrecht, The Netherlands; London, MA.

Körner C, Paulsen J. 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31: 713–732.

Leuschner C. 1996. Timberline and alpine vegetation on the tropical and southern Mexico. J. Geomech. 30(1): 7–21.

Li W, Len Y, Hu R. 1983. The distribution of forest vegetation in Hengduan Mountains in relation to the Hydro-thermal conditions (in Chinese). In Collection of Abstracts of Papers for the Second Annual Meeting of Chinese Geographical Society, 10(4): 289–299.

Liu Y, Lu C. 1990. Characters of regional differentiation in Qamdo region of Yunnan (in Chinese). In Collection of Abstracts of Papers for the Thirtieth Annual Meeting of China Flora Association, China Flora Association (ed). Science Press: Beijing. 254–258.

Miche G, Miche S, Vogel J, Co S, Duol L. 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27(2): 169–173.

Ohsawa M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. J. Ecol. 78: 326–339.

Peng BZ, Pu LJ, Bao HS, Higgitt DL. 1997. Vertical zonation of landscape characteristics in the Namjagbarwa massif of Tibet, China. Mt. Res. Dev. 17(1): 43–48.

Rao GV, Ergodan S. 1989. The atmospheric heat source over the Boli- vian plateau for a mean January. Bound. Layer Meteorol. 46(1): 141–153.

Rolland C. 2003. Spatial and seasonal variations of air temperature lapse rates in alpine regions. J. Clim. 16: 1032–1046.

Schickhoff U. 2005. The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In Mountain Ecosystems, Broll G, Keplin B (eds). Springer Verlag: Berlin and Heidelberg, Germany. New York, NY. 275–354.

Schroeter C. 1908. Das Pflanzenleben der Alpen: Eine Schilderung der Hochgebirgsflora. Verlag von Albert Raustein: Zurich, Switzerland.

Shi P, Körner C, Hoch G. 2008. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct. Ecol. 22: 215–220.

Sun G, Feng H. 1998. The analysis of flora characteristics Baishuijiang natural sanctuary in Gansu (in Chinese). J. Lanzhou Univ. (Nat. Sci.) 24(2): 92–97.

Tolmèr H. 1949. Der Einfluß großer Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den innersten Ostalpen. Theor. Appl. Climatol. 1(3): 347–372.

Troll C. 1973. The upper timberlines in different climatic zones. Arct. Alp. Res. 5(3): 176–183.

Vuille M. 1999. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol. 19: 1579–1600.

Wu G, Ren J, Zhang Z. 2002. A study on the population diversity of plant community in Hexi mountain-oasis-desert area: general features (in Chinese). Acta Protocool. Sin. 10(1): 1–12.

Wu C, Zhou S, Tang X, Wu P. 2011. Temporal and spatial distribution of heavy precipitation over Tibetan Plateau in recent 48 years. Sci. Geog. Sin. 31(4): 470–477.

Wu ZW. 1996. Local climate measurement of Qingcheng Shan. J. Southwest For. Sci. Technol. 17(1): 74–76.

Wu GX, Li WP, Guo H, Liu H. 1997. Sensible heat-driving air pump of the TP and the Asian summer monsoon. In Memorial Volume of Prof. Zhao Jizhong, Yeh DZ (ed). Chinese Science Press: Beijing. 116–126.

Yanai M, Wu GX. 2006. Effects of Tibetan Plateau. In The Asian monsoon, Wang B (ed). Springer: Berlin and Heidelberg, Germany. 513–549.

Yao YH, Zhang BP. 2013. MOODS-based estimation of air temperature of the Tibetan Plateau. J. Geog. Sci. 23(4): 627–640.

Yeh DZ. 1952. The role of the heat source of the Tibetan Plateau on general circulation over Eastern Asia in summer. Sci. Sin. 17(3): 397–420.

Yeh DZ, Wu GX. 1998. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys. 67: 181–197.

Yeh DZ, Lo SW, Chu PC. 1957. On the heat balance and circulation structure in the troposphere over the Tibetan Plateau and this vicinity. Acta Meteorol. Sin. 28: 108–121.

Zhang X, Wu J, Wang Y, He X, Qi Y. 2006. Vertical geomorphologic zonation of the northwest Sichuan plateau and freezing planation surface (in Chinese). J. Mt. Sci. 24(5): 607–611.

Zhang Y. 1997. A study of vertical belts in Qingshui-Xizang (Tibet) Plateau (in Chinese). Yunnan Geogr. Environ. Res. 9(2): 43–52.

Zhang Y, Gao S. 1984. Trial discussion on the vertical natural zone of the mountains in west Sichuan (in Chinese). Mt. Res. 2(4): 237–244.
Zheng D, Li BY. 1990. Evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau. Geogr. Res. 9(2): 1–10.

Zheng D, Hu C, Zhang R. 1975. Natural belt in the Everest Area (in Chinese). In Scientific Expedition Report of the Everest Area (1966–1968): Physical Geography. C. A. o. S. Team of Comprehensive Scientific Expedition to the Tibetan Plateau (ed). Science Press: Beijing. 147–202.

Zheng YC, Gao SH, Chai ZX. 1986. A preliminary study on the vertical natural zones in the Hengduan Mountainous region. Mt. Res. 4(1): 75–83.

Zhong X, Zheng Y. 1983. A preliminary study on the vertical natural zonation of Gongga mountainous region (in Chinese). In Geographic Expedition in the Gongga Mountain. Chengdu Institute of Geography, Chinese Academy of Sciences (ed). Chongqing Branch of Scientific and Technology Document Press: Chongqing, China, 79–95.