ORIGINAL ARTICLE

A de novo missense mutation of GABRB2 causes early myoclonic encephalopathy

Atsushi Ishii, Jing-Qiong Kang, Cara C Schornak, Ciria C Hernandez, Wangzhen Shen, Joseph C Watkins, Robert L Macdonald, Shinichi Hirose

ABSTRACT

Background Early myoclonic encephalopathy (ME), a disease with a devastating prognosis, is characterised by neonatal onset of seizures and massive myoclonus accompanied by a continuous suppression-burst EEG pattern. Three genes are associated with EMEs that have metabolic features. Here, we report a pathogenic mutation of an ion channel as a cause of EME for the first time.

Methods Sequencing was performed for 214 patients with epileptic seizures using a gene panel with 109 genes that are known or suspected to cause epileptic seizures. Functional assessments were demonstrated by using electrophysiological experiments and immunostaining for mutant γ-aminobutyric acid-A (GABA_A) receptor subunits in HEK293T cells.

Results We discovered a de novo heterozygous missense mutation (c.859A>C [p.Thr287Pro]) in the GABRB2-encoded β2 subunit of the GABA_A receptor in an infant with EME. No GABRB2 mutations were found in three other EME cases or in 166 patients with infantile spasms. GABA_A receptors bearing the mutant β2 subunit were poorly trafficked to the cell membrane and prevented y subunits from trafficking to the cell surface. The peak amplitudes of currents from GABA_A receptors containing only mutant β2 subunits were smaller than that of those from receptors containing only wild-type β2 subunits. The decrease in peak current amplitude (96.4% reduction) associated with the mutant GABA_A receptor was greater than expected, based on the degree to which cell surface expression was reduced (66% reduction).

Conclusion This mutation has complex functional effects on GABA_A receptors, including reduction of cell surface expression and attenuation of channel function, which would significantly perturb GABAergic inhibition in the brain.

INTRODUCTION

Early myoclonic encephalopathy (EME) is an epileptic encephalopathy (EE) that, owing to its unique seizure phenotypes and EEG traces, is distinct from other early infantile EEs or Ohtahara syndrome (OS). EME is characterised by the onset of fragmentary erratic myoclonic seizures that are seen within the first 10 days of life and a suppression-burst (SB) pattern in EEGs during all sleep and wakefulness states that is precipitated by deep sleep. Over 50% of children with EME die within the first or second year of life. EME phenotypes are also seen mostly in metabolic disorders (eg, non-ketotic hyperglycaemia, amino and organic acidopathies, urea cycle disorders, mitochondrial disorders and pyridoxine or pyridoxal-5-phosphate disorders); thus, most EMEs are syndromic. In contrast, a minority of patients are non-syndromic, as they present with sporadic EME in the absence of metabolic disorders. The genetic aetiologies of non-syndromic EME are largely unknown.

To date, three genes (ERBB4 [MIM: 600543], SIK1 [MIM: 605703] and SLC25A22 [MIM: 609302]) have been associated with EME. ERBB4 and SIK1 are documented oncogenes, while SLC25A22 encodes a mitochondrial solute carrier. None of three genes, therefore, has obvious direct associations with neuronal excitability or inhibition. This is in contrast with findings that most EE-causing mutations are in proteins that are closely associated with excitatory or inhibitory synaptic functions, such as ion channels including the γ-aminobutyric acid (GABA)-A (GABA_A) receptors.

GABA_A receptors are ligand-gated chloride ion (Cl^-) channels and function as pentamers. Though there are multiple subtypes of each subunit (ie, α1–6, β1–3, γ1–3, δ, ε, π, θ and p1–3), a combination of α1, β2 and γ2 subunits is the predominant form of GABA_A receptor in the mammalian central nervous system. GABA_A receptors play a cardinal role in controlling neural excitability in the central nervous system. Accordingly, mutations in genes encoding α1, β1, β3 and γ2 subunits (GABRA1, GABRB1, GABRB3 and GABRG2, respectively) have been found in EEs. However, no mutations of the β2 subunit have yet been reported in EEs.

Here, we report the discovery of a de novo heterozygous missense mutation in the GABRB2 gene that encodes the β2 subunit of the GABA_A receptor. Our in vitro studies indicate that this mutation causes EME via disruption of GABAergic inhibition in the brain.

MATERIALS AND METHODS

Genetic analysis

Gene panel sequencing was performed in 214 patients with epileptic disorders using a customised HaloPlex Target Enrichment System (Agilent, Santa Clara, California, USA) for 109 genes that are known or suspected to cause epileptic seizures. The target coverage was 98.78% (see online supplementary table S1). Samples were sequenced on a MiSeq instrument (Illumina, San Diego, California, USA). SureCall software (Agilent) was used for mapping the hg19 and for trimming and aligning of fragments. The frequency of each variant was estimated in several publicly available
databases, including 1000 Genomes, Exome Aggregation Consortium (ExAC) browser, human genetic variation database, ESP6500 and database SNP142. Pathogenicity of each variant was predicted using SIFT, PolyPhen2 hvar, Mutation Taster, CADD and PhyloP100way vertebrate using the ANNOVAR software. Variants with a frequency >0.005 were classified as polymorphic. Inheritance was confirmed by PCR-Sanger sequencing of genomic DNA from the parents. Follow-up sequencing was performed for all exons and the intron-exon boundaries of GABRB2 (RefSeq accession number NM_021911) in three patients with EME and 166 patients with infantile spasms (ISs) by PCR-Sanger sequencing.

GABAA receptor subunit cDNA constructs

The cDNAs encoding human α1, β2 and γ2S GABAA receptor subunit subtypes were subcloned into the expression vector pcDNA3.1 (+). The GABRB2 (c.859A>C) subunit mutation was generated using the QuickChange Site-directed Mutagenesis kit (Stratagene, La Jolla, California, USA) and confirmed by DNA sequencing. γ2S, a short isoform of the γ2 subunit of GABAA receptor, was used in this study.

Measurement of surface β2 subunit expression using flow cytometry

Measurement of surface expression of GABAA receptor β2 subunits using flow cytometry has been described previously. Briefly, HEK293T cells were transfected using polyethylamineamine reagent (40 kD, Polysciences) at a DNA:transfection reagent ratio of 1:1.5 and harvested 48 hours after transfection. To express wild-type (α1β2γ2s) and mutant (α1β2(T287P)γ2s) receptors, a total of 3 μg of subunit cDNAs were transfected at a ratio of 1:1:1 into 6 cm dishes for most experiments except for whole-cell recording. For mock or single subunit expression, empty pcDNA3.1 vector was added to make a final cDNA transfection amount to 3 μg. The transfected HEK293T cells were removed from the dishes by trypsinisation and then re-suspended in fluorescence-activated cell sorting (FACS) buffer (phosphate-buffered saline supplemented with 2% fetal bovine serum and 0.05% sodium azide). Following washes with FACS buffer and permeabilisation with Cytofix/cytoperm (BD Biosciences, California, USA) for 15 min, cells were incubated with mouse monoclonal anti-β2/3 antibody (1:200) for 2 hours and then incubated with fluorophore Alexa-647-conjugated goat anti-mouse secondary antibody (1:2000) for 1 hour at 4°C. Cells were then washed with FACS buffer and fixed with 2% paraformaldehyde. The acquired data were analysed using FlowJo 7.1 (Tree Star, Oregon, USA).

Immunocytochemistry

HEK293T cells expressing the wild-type α1β2γ2s or the mutant α1β2(T287P)γ2s receptors were fixed with 4% paraformaldehyde and immunostained with mouse monoclonal anti-β2/3 subunit antibody alone or co-stained with monoclonal anti-β2/3 subunit antibody and rabbit polyclonal anti-γ2 subunits. Rhodamine-conjugated mouse IgG alone or in combination with Alexa-488-conjugated rabbit IgG was used to visualise the wild-type or mutant subunits. The images were acquired using a LSM 510 invert confocal microscope with 63× objective.

Electrophysiology

Whole-cell recordings were obtained from HEK293T cells (HEK293T/17, ATCC RL-11268) that were cultured as monolayers in 35 mm dishes (Corning). For the wild-type (α1β2γ2s) and mutant (α1β2(T287P)γ2s) receptors, 0.3 μg cDNA of each α1, β (β2 or β2(T287P)) and γ2S subunit and 0.05 μg cDNA of enhanced green fluorescent protein (to identify transfected cells) were transfected using X-tremeGENE9 DNA Transfection Reagent (Roche Diagnostics, 1.5 μL/μg cDNA). Whole-cell recordings from lifted HEK293T cells were obtained at room temperature and the external solution was composed of 142 mM NaCl, 8 mM KCl, 10 mM D(+)-glucose, 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 6 mM MgCl2.6 H2O and 1 mM CaCl2 (pH 7.4, ~326 mOsm). The internal solution consisted of 153 mM KCl, 10 mM HEPES, 5 mM EGTA (ethyleneglycol-bis(β-aminoethylether)-N,N,N’,N’-tetraacetic acid) 2 mM Mg-ATP and 1 mM MgCl2.6H2O (pH 7.3, ~300 mOsm). The Cl− reversal potential was near 0 mV and cells were voltage-clamped at −20 mV. GABA (1 mM) was applied for 4 s using a four-barrel square glass connected to a SF-77B Perfusion Fast-Step system (Warner Instruments, Connecticut, USA). Whole-cell currents were amplified and low-pass filtered at 2 kHz using an Axopatch 200B amplifier, digitised at 10 kHz using Digitap 1550 and saved using pCLAMP 10.4 (Axon Instruments). Data were analysed offline using Clampfit 10.4 (Axon Instruments).

Structural modelling

Pentameric GABAA receptor homology models were generated by combining human α1, β2 and γ2 structural models with the subunit arrangement β-α-β-α-γ2 implemented in the programme suite incorporated in SWISS-MODEL (http://swissmodel.expasy.org/SWISS-MODEL.html). Three-dimensional models of human GABAA receptor subunits were generated using the crystal structure of the Caenorhabditis elegans glutamate-gated chloride channel10 as a template (PDB: 3hrw) as previously described.11 We prepared the figures using Chimera 1.7.

RESULTS

Patient with EME

The proband is a boy aged 1 year and 10 months. He was born at term to non-consanguineous parents as the result of a natural pregnancy. He had an appropriate body size for his gestational age and had no physical malformations. There was no history of epilepsy, developmental disorders or other neurological disorders in his parents, an elder sister, or other relatives. Immediately after birth, the boy presented with poor feeding, lethargy and weak crying. Subtle eyelid and limb myoclonus was also noted. He had generalised tonic-clonic convulsions (GTCCs) lasting 5–10 min at the age of 2 months and was admitted to the children medical centre of Fukuoka University. Neurological examinations on admission identified drowsy consciousness, poor response to stimulation and hypotonicity. Laboratory results of blood and urine examinations, including evaluation of amino acids, organic acids or lipid metabolism, were all normal and a brain MRI was normal. However, an interictal EEG recording showed a SB pattern during wakefulness (figure 1A). Sleep EEG also displayed the SB pattern, of which the suppression components consisted of slow waves with approximately 150 μV amplitude continuing for 4–12 s with an average of 6.5; the burst components indicated multiple focal lesions. During recording of sleep video EEG, we observed myoclonus in the eyelids, which corresponded to the bursts. During the EEG recording, intravenous injection of pyridoxine did not affect the clinical or EEG findings. Myoclonus in the eyelid and limbs was seen frequently every day thereafter and GTCC with apneic spells was seen approximately once a day. These clinical findings suggested a diagnosis of early onset EE, specifically EME. As possible causes of EME, we first considered...
endocrine disorders, such as hyperthyroidism, and metabolic disorders, such as non-ketotic hyperglycinemia, amino and organic acidopathies, urea cycle disorders, mitochondrial disorders, pyridoxine and pyridoxal-5-phosphate disorders, molybdenum cofactor deficiency, sulfite oxidase deficiency, Menkes syndrome, Zellweger syndrome and other disorders, because of the appearance of a normal brain structure in MRI analysis. General serum biochemistry tests, including ammonia, lactic acid, pyruvic acid and copper levels, were normal. Urine tests, including the qualitative reaction of sulfurous acid, were normal. Urine tests, including the qualitative reaction of sulfurous acid, were normal. Serum free T3, T4 and thyroid-stimulating hormone levels were in the normal range. Mass spectrometry and amino acid analyses for serum, urine and cerebrospinal fluid (CSF) showed normal concentrations of glycine in the serum and urine, low CSF:serum ratios and normal levels of taurine, cystatin, citrulline, ornithine, arginine and other amino acids. Acylcarnitine analysis by tandem mass spectrometry also did not identify any abnormalities. Examination of the ocular fundus, abdominal ultrasonography and cardiac ultrasound did not identify any abnormalities. Examination of the ocular fundus, abdominal ultrasonography and cardiac ultrasound did not identify any abnormalities. Although we also screened for methamphetamine, benzodiazepine, cocaine, phencyclidine, opioids, cannabis, barbiturates and tricyclic antidepressants by simple urine examination, all of these tests were negative. These results excluded hyperthyroidism and metabolic disorders. Chromosome G banding analysis showed a normal 46, XY karyotype.

Although phenobarbital and levetiracetam treatments were initiated for seizure control, there were no remarkable improvements. Epileptic spasms forming a series without hypersarrhythmia emerged at the age of 3 months as the frequency of GTCC decreased. Frequent myoclonus in the boy’s eyelids and limbs continued and the SB pattern on EEG remained at the age of 1 year and 11 months (figure 1B). Together with the fact that the seizures were not triggered by fever, a diagnosis of EME was made. His psychomotor delay was severe and at the time of this study the patient was bedridden and was being fed via a tube.

Mutation analysis

Gene panel sequencing was performed for the baby boy suffering from EME (coverage: 93.57%). This identified a heterozygous missense variant in exon 9 of GABRB2 (RefSeq accession number NM_021911: c.859A>C [p.Thr287Pro]), which fulfilled the condition of ‘moderate’ with regard to pathogenicity according to the American College of Medical Genetics and Genomics guidelines. This variant was absent in controls in population databases including the Exome sequencing project, 1000 Genomes project, ExAC and SNP142. Predictive algorithms of SIFT, Polyphen-2 and MutationTaster estimated the variant as deleterious and CADD and phyloP returned very high scores (24.3 and 7.911, respectively). PCR-Sanger sequencing also confirmed the c.859A>C variant in the patient (figure 2B). We investigated co-segregation of the variant with phenotypes among family members, namely his asymptomatic parents and an elder sister. None of them harboured the variant and hence this heterozygous missense variant was considered de novo (figure 2A, B). Since it was classified as a very strong pathogenic
Additional, the Epi4K consortium (2013) described de novo mutations in over 200 genes in 149 and 115 individuals with IS and Lennox-Gastaut syndrome (LGS), respectively. Remarkably, four de novo mutations of GABRB3, which encodes the β3 subunit of GABA₂ receptors, were identified in a patient with IS and in three patients with LGS (two of these LGS cases evolved after an initial diagnosis of IS). To elucidate whether mutations in GABRB2 were shared between EME and IS, we also looked for changes at this locus in 166 individuals with IS. However, no mutations were found. In addition, the Epi4K consortium, which conducted massive exome sequencing, did not find GABRB2 mutations in 149 cases of IS. Overall, no mutations in GABRB2 were found in 315 cases of IS.

On the other hand, the ExAC browser indicates 297 missense variants at 95 distinct sites in the GABRB2 locus (accessed 28 March 2016). These findings suggested two possibilities: (1) GABRB2 mutations may not directly cause IS but may cause other phenotypes and (2) such mutations are extremely rare and may result in more severe, lethal or rare phenotypes. To understand the extent to which the missense mutation p.Thr287Pro is deleterious, we examined the distribution of 297 missense benign variants from the ExAC browser. These fell within the coding sequence (1539 bp) of GABRB2, which encodes 10 regions of signal peptides, four transmembrane domains (TM1 to TM4), the N/C-termini and three loops (see online supplementary table S2 and figure S3). Benign missense variants were not distributed evenly throughout the nucleotide sequence (Fisher’s exact test, p value=0.0004998) (see online supplementary table S2). We then tested the distribution of benign variants in the amino acid sequence of each region. Two loop regions, between TM1–TM2 and TM3–TM4, appeared to accumulate benign variants more frequently (see online supplementary figure S3). The mutation rate was statistically significant at the loop between TM1 and TM2 (Fisher’s exact test, p value=0.0468 and two-sample proportion test, p value=0, respectively). We then compared the fraction of benign variants in each of the above four regions with the fraction of 296 benign variants along the remaining 433 amino acids length. This revealed a statistically significant reduced accumulation of benign variants (Fisher’s exact test, p value=0, respectively) in four regions (TM1, TM2 (where p.Thr287Pro is located), TM3 and the loop TM2–TM3). This result suggests that amino acid substitutions in TM2 are not tolerated and cause severe phenotypes such as EME.

Figure 2 Pedigree and GABRB2 mutations are shown. (A) Pedigree and their genotypes. Arrow with ‘P’ indicates the proband of this family. Square, circle and black symbols indicate male, female and affected individual(s). Mutation (RefSeq accession number NM_021911: c.859A>C) was found only in the proband. (B) Chromatogram showing PCR-Sanger sequencing. Arrow indicates a C-to-A substitution. A c.859A>C) was found only in the proband. (B) Chromatogram showing PCR-Sanger sequencing. Arrow indicates a C-to-A substitution. A

Reduced total and surface protein expression of the Thr287Pro-mutant β2 subunit

The β2 subunit of GABA₂ receptor consists of four transmembrane domains (TM1 to TM4) connected by extracellular N and C termini (figure 3A). TM2, where the mutation resides, forms Cl⁻ ion pore of GABA₂ receptors (figure 3B, C). The GABA₂ receptors in the central nervous system are pentamers consisting of two each of the α1 and β2 subunits and one γ2 subunit, which are encoded by GABRA1, GABRB2 and GABRG2, respectively (figure 3B). We asked whether the p.Thr287Pro mutation might impair Cl⁻ ion channel function of the GABA₂ receptors, which might in turn hamper GABAergic neuronal inhibition. Furthermore, since we have demonstrated that trafficking deficiency is a major defect caused by GABRG2 mutations, we also examined trafficking of the mutant β2 (Thr287Pro) subunits. HKE293T cells were co-transfected with α1 and γ2 subunits and either wild-type β2 only, mixed wild-type β2 and the mutant β2 (Thr287Pro) subunits or the mutant β2 (Thr287Pro) subunits only (mut). Total

**variant, we labelled this as a mutant genotype. The Thr287 residue is highly conserved among species (figure 2C and online supplementary figure S1). We sought pathogenic variants in GABRB2 of three additional patients with EME, including the GM13078 line purchased from Coriell Institute (Camden, New Jersey, USA); all cases were negative. Similar mutations in the same gene may exhibit different types of EEs. For example, missense mutations of KCNT1 are found in autosomal-dominant nocturnal frontal lobe epilepsy¹³ and in migrating partial seizures in infancy¹⁴ or IS,⁶ whereas missense mutations of STXBP1 are found in OS, IS or Dravet syndrome.^{15 16}
and surface protein expression of the wild-type and mutant β2 subunits were then compared. We used sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblot to determine total β2 subunits (figure 4A). Compared with the total β2 subunits in the ‘wild type receptor only’ condition, both the mixed and the mutant β2 subunits (0.61±0.02 for mixed, 0.35±0.04 for mutant β2 (Thr287Pro) subunits vs 1 for wild type, n=4) were reduced when co-expressed with α1 and γ2 subunits (figure 4B). Reduced total β2 subunit expression could result in the reduced expression of surface β2 subunit. We next determined surface protein expression of the mutant β2 (Thr287Pro) subunit. We used the high-throughput flow cytometry to quantify the amount of surface wild-type or mutant β2 subunit when co-expressed with the α1 and γ2 subunits; this is because pre-assembled pentameric receptors are trafficked to the cell surface (figure 4C). Similar to the total protein expression levels, surface β2 subunits for both the mixed and mutant receptors were reduced (0.54±0.045 for mixed, 0.34±0.042 for mutant β2 (Thr287Pro) subunits vs 1 for wild type, n=4) (figure 4D).

A1β2γ2 receptors containing mutant β2(Thr287Pro) subunits were retained inside cells

We previously demonstrated that the misfolded mutant GABA_A receptor subunits were retained inside the endoplasmic reticulum (ER) and subsequently degraded without trafficking to the cell surface,18 thus resulting in reduced total and surface expression of the mutant subunits. To investigate if the mutant β2 (T287P) subunits were also subject to ER retention and premature degradation, we determined the subcellular localisation of the mutant subunits. We first immunostained for either the wild-type or mutant β2(T287P) subunits in HEK293T cells co-expressing α1 and γ2 subunits. The wild-type β2 subunits were mainly present on the edges of cells, whereas the β2 (T287P) subunits were mainly found close to the nuclei

Figure 3 p.Thr287Pro mutation in the β2 subunit and γ-aminobutyric acid-A (GABA_A) receptor is shown. (A) Cartoon representation of the location of the p.Thr287Pro mutation of β2 subunit of the GABA_A receptor. (B) Three-dimensional structural model of the GABA_A receptor that is composed predominantly of two α1 (blue ribbons), two β2 (red ribbons) and one γ2 (grey ribbon) subunits in the mammalian central nervous system. β2 subunits have four transmembrane domains (TM1 to TM4). The GABRB2 de novo p.Thr287Pro mutation is mapped onto the β2 subunit in black at the second transmembrane domain (TM2). (C) Extracellular view of the transmembrane domain in a structural model of pentameric αβγ₂ GABA_A receptor (The N-terminal domain was removed for clarity) displaying the GABRB2 mutations (in black) on β (red ribbons) subunits. TM2 domains of five subunits form the Cl⁻ ion pore (dashed black circle) and the p. Thr287Pro mutations are within the pore region.
Because the β2 subunit is required for α1 and γ2 subunits and wild-type β2 (wt, 1:1:1 cDNA ratio of α1: β2: γ2), mixed wt β2 and the mut subunits (mixed, 1:0.5:0.5:1 cDNA ratio of α1: β2(Thr287Pro):γ2) or the mut (1:1:1 cDNA ratio of α1: β2(Thr287Pro): γ2) subunits. (A) Total lysates were analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot. The membranes were blotted with rabbit anti-β2 subunit antibody. (B) The total β2 subunit protein integrated density values (IDVs) were normalised to the wt β2 subunit in wt receptors. (C) The flow cytometry histograms depict surface expression levels of β2 subunits from HEK293T cells expressing wt, mixed or the mut α1β2γ2 receptors. Cell surface wt and mut subunits were stained with monoclonal anti-β2/β3 (BD17) antibody that was fluorescently conjugated with Alexa Fluor-647). (D) The relative fluorescence intensity of β2 subunit signals of the mut subunits were normalised to those obtained with wt β2 subunits in the wt receptors (in (B) and (D), **p<0.05, ***p<0.01, ****p<0.001 vs wt). p Values were obtained by unpaired t-test.

α1β2γ2 receptors containing mutant β2(Thr287Pro) subunits have reduced peak current amplitude

Lower surface β2 subunit content may reduce receptor channel current amplitude, because this subunit is required for α1β2 or α1β2γ2 receptor assembly. We then measured the current amplitudes of α1β2γ2 receptors or α1β2(Thr287Pro)γ2 using patch-clamp whole-cell recording. We recorded currents evoked by 4-s applications of GABA from HEK293T cells co-transfected with α1 and γ2 subunits and either wild-type or mutant β2 subunits (figure 6A). The peak amplitude of the α1β2(Thr287Pro)γ2S receptor currents (0.26±0.10 nA, n=10) were smaller than that of wild-type α1β2γ2S receptor currents (7.3±0.51 nA, n=10) (figure 6B). This is consistent with the reduced surface expression of mutant β2 (Thr287Pro). Furthermore, the decreased peak amplitude associated with the α1β2(Thr287Pro)γ2S receptor (96.4% reduction) was much more pronounced than would have been expected based on the degree to which surface expression was reduced (66% reduction), indicating that the mutation engenders Cl– channel dysfunction in addition to its deleterious effects on trafficking by reducing surface subunit expression (figure 4D).
in the clinic. We believe that this is also the first report that a pathogenic mutation in a neuronal ion channel can cause EME.

We excluded the possibility of metabolic disorders and made a diagnosis of non-syndromic EME, although this case showed some overlap with OS both in EEG findings and in the seizure type, that is, generalised tonic-clonic seizure. However, in this case, video EEG revealed myoclonus during the burst stage of the SB pattern, hyposthenia in the suppression stage during sleep and movement of limbs in the suppression stage during wakefulness. At the age of 1 year and 11 months, the predominant seizure type was myoclonus and the SB pattern was still present on EEG. Video EEG findings and continuous myoclonus, regardless of age, were distinctly different from OS.

In addition to GABRB2, three other genes (ERBB4, SLC25A22 and SIK1) are associated with non-metabolic EME. A genetic abnormality of ERBB4 was found in a patient with EME because of a de novo reciprocal translocation t(2;6)(q34;p25.3). This was not a single nucleotide variation (SNV) or indel and the patient had some dysmorphic features. A homoygous mutation of SLC25A22 was found in two siblings born to their consanguineous parents. Currently, SIK1 is the only gene of which heterozygous SNVs (including missense and nonsense mutations) have been identified as the cause of sporadic EME cases; several similar SIK1 mutations have also been found in IS and OS. All three genes have been implicated in cell metabolism and growth. To ask whether there were any relationships between GABRB2 and these three genes, we examined protein-protein interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins (accessed 11 March 2016) (see online supplementary figure S2). However, we did not find any direct relationships between GABRB2 and ERBB4, SLC25A22 or SIK1, suggesting that there is significant heterogeneity for the aetiology of EME.

Another de novo heterozygous missense mutation (c.236T>C; p.Met79Thr) of GABRB2 was found in a sporadic case with mild intellectual disability and epilepsy. The patient was a 12-year-old girl who had her first seizure evoked by fever at the age of 9 months; this was followed by non-febrile GTCC in subsequent years. Her seizures responded to clobazam. Although her development slowed over the years, she was still able to attend regular school. Thus, the clinical symptoms of this patient harbouring the p.Met79Thr mutation were much milder and quite different from those of individuals with EME. The actual functional consequence of the p.Met79Thr mutation has not been evaluated. It is located in the N terminus of the β2 subunit, which is one of the regions prone to accumulation of aberrant properties.

As follow-up study, we screened three patients with EME. This is too small a population to analyse the relationships between mutations and phenotypes. However, no GABRB2 mutations were found in any of the 315 cases with IS (this number includes cases in the Epilepsy study), suggesting that the GABRB2 mutations may be more likely to be involved in the aetiology of EME than IS. According to the distribution of mutations we have analysed, the chances of benign variants in such regions, it is likely that most mutations we have found as the cause of sporadic EME were found as the cause of sporadic EME. In accordance with the severe phenotype of the present case, GABAA receptors bearing the mutated β2 subunit had several aberrant properties in vitro. For example, cell surface expression of p.Thr287Pro β2 subunits was significantly reduced compared with GABAA receptors with the wild-type subunit; this was

DISCUSSION

Here we have shown for the first time that GABRB2 is associated with EME, which is one of the most severe EE forms encountered in the clinic. We believe that this is also the first report that a pathogenic mutation in a neuronal ion channel can cause EME.

In addition to GABRB2, three other genes (ERBB4, SLC25A22 and SIK1) are associated with non-metabolic EME. A genetic abnormality of ERBB4 was found in a patient with EME because of a de novo reciprocal translocation t(2;6)(q34;p25.3). This was not a single nucleotide variation (SNV) or indel and the patient had some dysmorphic features. A homozygous mutation of SLC25A22 was found in two siblings born to their consanguineous parents. Currently, SIK1 is the only gene of which heterozygous SNVs (including missense and nonsense mutations) have been identified as the cause of sporadic EME cases; several similar SIK1 mutations have also been found in IS and OS. All three genes have been implicated in cell metabolism and growth. To ask whether there were any relationships between GABRB2 and these three genes, we examined protein-protein interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins (accessed 11 March 2016) (see online supplementary figure S2). However, we did not find any direct relationships between GABRB2 and ERBB4, SLC25A22 or SIK1, suggesting that there is significant heterogeneity for the aetiology of EME.

Another de novo heterozygous missense mutation (c.236T>C; p.Met79Thr) of GABRB2 was found in a sporadic case with mild intellectual disability and epilepsy. The patient was a 12-year-old girl who had her first seizure evoked by fever at the age of 9 months; this was followed by non-febrile GTCC in subsequent years. Her seizures responded to clobazam. Although her development slowed over the years, she was still able to attend regular school. Thus, the clinical symptoms of this patient harbouring the p.Met79Thr mutation were much milder and quite different from those of individuals with EME. The actual functional consequence of the p.Met79Thr mutation has not been evaluated. It is located in the N terminus of the β2 subunit, which is one of the regions prone to accumulation of aberrant properties.

As follow-up study, we screened three patients with EME. This is too small a population to analyse the relationships between mutations and phenotypes. However, no GABRB2 mutations were found in any of the 315 cases with IS (this number includes cases in the Epilepsy study), suggesting that the GABRB2 mutations may be more likely to be involved in the aetiology of EME than IS. According to the distribution of GABRB2 benign variants we have analysed, the chances of benign variants in such regions, it is likely that most mutations we have found as the cause of sporadic EME were found as the cause of sporadic EME.
GABAergic synapses). The current traces from GABA_A receptors containing the mutant β2(T287P) was compared with their respective wild-type (wt) α1β2γ2s current traces. (B) Bar graph shows the average peak current from cells expressing wt and mutant GABA_A receptors. Values represent mean±SEM (n=10 patches). Statistical differences were determined using unpaired t-test; **** indicates p<0.0001 compared with the wt condition.

most evident in the homozygous mutant state (figures 4D and 5A). We also showed that γ2 subunits and mutant β2 (Thr287Pro) subunits were co-localised in cells, suggesting that they oligomerised as protein complexes (figure 5B). These findings can explain why α1β2γ2 receptors containing mutant β2 (Thr287Pro) subunits are retained inside cells. Because of the β2 subunit’s essential role in α1β2 or α1β2γ2 receptor assembly, it is likely that cell surface expression of all the wild-type partnering subunits, including α1 and γ2, is also reduced. GABA_A receptors containing the mutant β2 subunits exhibited a much smaller peak current amplitude than those containing wild-type β2 subunits (figure 6). Interestingly, however, the reduction of peak current amplitude was not proportional to the reduction in cell surface expression. Indeed, reduction in peak current amplitude was much greater than would have been expected based on the levels of mutant present at the cell surface. This discrepancy suggests that, in addition to compromising subunit protein trafficking, the p.Thr287Pro mutation also functionally impairs the mutant GABA_A receptors that do reach the surface. This impaired channel function may be due to a dominant negative effect of p.Thr287Pro mutation in TM2, a domain that contributes to the pore of the GABA_A receptors along with corresponding domains of other subunits. Such deficiencies in GABA_A receptor functions likely undermine the activity of inhibitory neuronal networks and are consistent with the severe phenotype of EME.

Mutations in different of GABA_A receptor subunits, such as α1, β1, β3, γ2 and δ, have been identified in various epilepsy phenotypes.6 7 15 21–13 Mutations in GABRA1 have been identified in early infantile EE and are thought to be associated with childhood absence epilepsy (CAE) and juvenile myoclonic epilepsy.15 19 24 Mutations in GABRG2 have been found in genetic epilepsy with febrile seizures and are thought to be associated with CAE.22 23 Mutations in GABRD have also been identified in GEFS+13 and mutations in GABRB1 and GABRB3 were identified in LGS or IS by the Epi4K consortium.6 Although we reported a mutation in a patient with EME, mutations in GABRB2 may be found in EME or other epilepsy-related phenotypes, as observed in other genes encoding GABA_A receptors. Functional studies have examined why mutations in these genes cause various phenotypes. Recently, Janve et al14 published in vitro functional studies of LGS-associated GABRB3 (p.D120N, p.E180G and p.Y302C) mutations reduced whole-cell currents by decreasing the probability of single channel opening; cell surface receptor expression was normal in these cases. In contrast, the IS-associated GABRB3 (p.N110D) and GABRB1 (p.F246S) mutations caused subtle changes in whole-cell current peak amplitude, but altered current deactivation by decreasing or increasing single channel burst duration, respectively. These molecular and cellular perturbations brought about by these mutations are different from those engendered by the p.Thr287Pro mutant we describe here. These findings suggest that although the diverse phenotypes of patients with epilepsy-associated diseases may depend on the specific GABA_A receptor subunit mutation, the heterogeneous clinical consequences of each mutant cannot necessarily be anticipated by in vitro studies.

Although our discovery of a de novo missense mutation of GABRB2 in a child with non-syndromic EME confirms the heterogeneity of EME aetiology, it remains unclear why different GABA_A receptor subunit mutations cause a variety of phenotypes, even though they all trigger the same receptor dysfunction (eg, reduction of Cl– current in GABAergic synapses). Perhaps the effect of the mutation is dictated by the precise combination of subunits in the GABA_A receptor; this may effectively alter the configuration of GABA receptors in the brain and thus affect the neuronal network. To address these questions, animal models should be used to test the phenotypic effect of novel mutations that are discovered in subunits of the GABA_A receptor.

Web resources
The URLs for data presented herein are as follows:

- ANNOVAR, http://annovar.openbioinformatics.org/en/latest/
- 1000 Genomes, http://www.1000genomes.org/
- ExAC browser, http://exac.broadinstitute.org/
- HGVD, http://www.genome.med.kyoto-u.ac.jp/SnpDB/index.html
- ESP6500, http://evs.gs.washington.edu/ESV/
- dbSNP142, http://www.ncbi.nlm.nih.gov/snp/
- SIFT, http://sift.jcvi.org/
- PolyPhen2 hvar, http://genetics.bwh.harvard.edu/pph2/
- Mutation Taster, http://www.mutationtaster.org/
This work was supported by a grant-in-aid for scientific research (A) (24249860 and 15H04580 to SH), grant-in-aid for Challenging Exploratory Research (25670481) to AI, and a grant-in-aid for Challenging Exploratory Research on Innovative Areas (15K0010903B) from the Strategic Research Foundation at Private Universities 2013–2017 (to SH), a grant from The Mitsubishi Foundation (to SH) and Takeda Scientific Foundation (to SH), the Kobayashi Magobei Foundation (to AI) and the Japan Epilepsy Research Foundation Grant (to AI). The research was also supported by research grants from CURE, Dravet Syndrome Foundation and NINDS R01 062835 (to J-QK) and NINDS R01 NS 33300 (to RLM).

Competing interests None declared.

Patient consent Parental/guardian consent obtained.

Ethics approval Parents of each patient provided signed informed consent using a protocol approved by the Ethics Review Committee of Fukuoka University.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

1 Ohtahara S, Yamatogoi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res 2006;70(Suppl 1):S58–67.

2 Roger J, Bureau M, Drapeau D, Genton P. Epileptic syndromes in infancy, childhood and adolescence. John Libbey Eurotext, 2005.

3 Backx L, Ceulemans B, Vermeesch JR, Devriendt K, Van Esch H. Early myoclonic encephalopathy caused by a disruption of the neuregulin-1 receptor ErbB4. Eur J Hum Genet 2009;17:378–82.

4 Hansen J, Snow C, Tuttle E, Ghoneim DH, Yang CS, Spencer A, Gunter SA, Smyser CD, Gunnert CA, Shinawi M, Dobyns WB, Welleit J, Halterman JW,ansen LA, Paschal BM, Pacekowsky AR. De novo mutations in SKI cause a spectrum of developmental epilepsies. Am J Hum Genet 2015;96:682–90.

5 Cohen R, Basel-Vanagaite L, Vermeesch JR, Devriendt K, Van Esch H. Early myoclonic encephalopathy caused by a missense mutation at the gamma+/beta- interface disrupt GABA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 2014;68:167–79.

6 Richards S, Aziz N, Bale S, Bik D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelker K, Rehm HL, Committee ALGA. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Medical Molecular Pathology. Genet Med 2015;17:105–20.

7 Harkin LA, Bowser DN, Dibbens LM, Singh R, Phillips F, Wallace RH, Richards MC, Williams DA, Mulley JC, Berkovic SF, Scheffer IE, Petrous S. Truncation of the GABRA1 receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002;70:530–6.

8 Lo WV, Botolzakos EJ, Tang X, Macdonald RL. A conserved Cys-loop receptor aspartate residue in the M3-M4 cytoplasmic loop is required for GABAB receptor assembly. J Biol Chem 2008;283:27940–52.

9 Kang JQ, Shew RL. Trafficking-deficient mutant GABRG2 subunit amount May modify epilepsy phenotype. Ann Neurol 2013;74:57–69.

10 Hillier SE, Goussia E. Principles of activation and permeation in an ion-selective Cys-loop receptor. Nature 2011;474:54–60.

11 Huang X, Hernandez CC, Hu N, Macdonald RL. Three epilepsy-associated GABRG2 missense mutations at the gamma/beta-interface disturb GABAB receptor assembly and trafficking by similar mechanisms but to different extents. Nat Genet 2013;45:1689–90.

12 Richards S, Aziz N, Bale S, Bik D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelker K, Rehm HL, Committee ALGA. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Medical Molecular Pathology. Genet Med 2015;17:105–20.

13 Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Luchetta L, Oliver KL, Mazarib A, Alawi Z, Kurczyn A, Piozzi G, Petrovsk S, Berkovic SF, Dibbens LM. Missense mutations in the sodium-potassium-potassium channel gene KCNQ1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 2012;44:1188–90.

14 Garcia F, Fleming MR, Deligniere A, Gazula VR, Hong L, Lortie A, Carmant L, Bedford F, Bowie D, Cossette P. Novel alpha1 and gamma2 subunits of the GABAB receptor gamma2 subunit A322D mutation causes malignant migrating partial seizures of infancy. Nat Genet 2012;44:1255–9.

15 Carvill GL, Weckhuysen SJ, McMahon JM, Hartmann C, Moller RS, Hjalgrim H, Cook J, Jeraghty O, Roa BJ, Petrovs S, Clarke A, Gill M, Sadler LG, Muleh H, von Spiczak S, Nikiarorova M, Hodges BL, Gazzoli EA, Suls A, Shenderud J, Dibbens LM, De Jonghe P, Heibig L, Berkovic SF, Scheffer IE, Melford H. GABRA1 and STXB1P1: novel genetic causes of Dravet syndrome. Neurology 2014;82:1126–33.

16 Saitt M, Hato M, Okada I, Ori E, Higuchi T, Hoshino H, Kubota M, Ari K, Tagawa T, Kimura S, Sudo A, Myasai T, Takayi Y, Watanabe T, Nishimura A, Nishiyama K, Miyake N, Wada T, Osaka H, Kondo N, Hayasaka K, Matsumoto M. STXB1P1 mutations in early infantile epileptic encephalopathy with suppression-burst pattern. Epilepsia 2010;51:2397–405.

17 Kang JQ, Macdonald RL. The GABAB receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes reduction of alpha1beta2gamma2 receptors in the endoplasmic reticulum. J Neurosci 2004;24:8672–7.

18 Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009;15:430–8.

19 Connolly CN, Kitter TL, Thomas P, Uren JM, Brandon NJ, Smith MG, Moss SJ. Cell surface stability of gamma-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J Biol Chem 1999;274:3655–62.

20 Srivastava S, Cohen J, Peuser J, Aradhya S, McKnight D, Butler E, Johnston M, Fatemi A. A novel variant in GABRB2 associated with intellectual disability and epilepsy. Am J Med Genet A 2014;164A:2914–1.

21 Connolly C, Liu B, Lissner J, Vanasse M, Saint-Hilaire JM, Nicholls J, Watanabe T, Nishimura A, Nishiyama K, Miyake N, Wada T, Osaka H, Kondo N, Hayasaka K, Matsumoto M. STXB1P1 mutations in early infantile epileptic encephalopathy with suppression-burst pattern. Epilepsia 2010;51:2397–405.

22 Kang JQ, Macdonald RL. The GABAB receptor gamma2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes reduction of alpha1beta2gamma2 receptors in the endoplasmic reticulum. J Neurosci 2004;24:8672–7.

23 Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009;15:430–8.

24 Bradley CA, Taghibiglou C, Collingridge GL, Wang YT. Mechanisms involved in the reduction of GABAB receptor alpha1-subunit expression caused by the epilepsy mutation A322D in the traffickingcompetent receptor. J Biol Chem 2008;283:22043–50.

25 Ding L, Feng HJ, Macdonald RL, Botolzakos EJ, Hu N, Gallagher MJ. GABAB receptor alpha1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABAB1 receptors. J Biol Chem 2010;285:26390–405.

26 Majewska S, Krampl K, Cobaljarz I, Tilgen N, Beyer S, Weber YG, Schlesinger F, Ursu D, Melzer W, Cossette P, Butler J, Lerche H, Heils A. A mutation in the GABAB receptor alpha1-subunit is associated with absence epilepsy. Ann Neurol 2006;59:983–7.

27 Lachance-Touchette P, Brenier P, Meloche C, Kininoris P, Lapointe L, Lacasse H, Lortie A, Carmant L, Bedford F, Bowie D, Cossette P. Novel alpha1 and gamma2 GABA receptor subunits in families with idiopathic generalized epilepsy. Eur J Neurosci 2011;34:237–40.

28 Tanaka M, Olsen RW, Medina MT, Schwartz E, Alonso ME, Duron RM, Castro-Ortega R, Martinez-Juarez IE, Paschal-Castroviejo I, Machado-Salas J, Silva R, Bailey JN, Bai D, Ochoa A, Jara-Prado A, Pineda G, Macdonald RL,
Delgado-Escueta AV. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. *Am J Hum Genet* 2008;82:1249–61.

27 Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. *Nat Genet* 2001;28:46–8.

28 Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. *Nat Genet* 2001;28:49–52.

29 Kananura C, Haug K, Sander T, Runge U, Gu W, Hallmann K, Rebstock J, Heils A, Steinlein OK. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. *Arch Neurol* 2002;59:1137–41.

30 Audenaert D, Schwartz E, Claes KG, Claes L, Deprez L, Suls A, Van Dyck T, Lagae L, Van Broeckhoven C, Macdonald RL, De Jonghe P. A novel GABRG2 mutation associated with febrile seizures. *Neurology* 2006;67:687–90.

31 Carvill GL, Heavlin SC, McMahon JM, O’Roak BJ, Cook J, Khan A, Dorschner MO, Weaver M, Calvert S, Malone S, Wallace G, Stanley T, Bye AM, Bleasel A, Howell KB, Kivity S, Mackay MT, Rodriguez-Casero V, Webster R, Korczyn A, Afawi Z, Zelnick N, Lerman-Sagie T, Lev D, Moller RS, Gill D, Andrade DM, Freeman JL, Sadleir LG, Shendure J, Berkovic SF, Scheffer IE, Mefford HC. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. *Nat Genet* 2013;45:825–30.

32 Dibbens LM, Feng HJ, Richards MC, Harkin LA, Hodgson BL, Scott D, Jenkins M, Petrou S, Sutherland GR, Scheffer IE, Berkovic SF, Macdonald RL, Mulley JC. GABRD encoding a protein for extra- or peri-synaptic GABA(A) receptors is a susceptibility locus for generalized epilepsies. *Hum Mol Genet* 2004;13:1315–19.

33 Hirose S. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy. *Prog Brain Res* 2014;213:55–85.

34 Janve VS, Hernandez CC, Verdier KM, Hu N, Macdonald RL. Epileptic encephalopathy de novo GABBR8 mutations impair GABA receptor function. *Ann Neurol* 2016;79:806–25.