WILLMORE LEGENDRIAN SURFACES IN S^5 ARE MINIMAL LEGENDRIAN SURFACES

YONG LUO AND LINLIN SUN

ABSTRACT. In this paper we continue to consider Willmore Legendrian surfaces and csL Willmore surfaces in S^5, notions introduced by Luo in [11]. We will prove that every complete Willmore Legendrian surface in S^5 is minimal and construct nontrivial examples of csL Willmore surfaces in S^5.

1. Introduction

Let Σ be a Riemann surface, $(M^n, g) = S^n$ or $\mathbb{R}^n (n \geq 3)$ the unit sphere or the Euclidean space with standard metrics and f an immersion from Σ to M. Let B be the second fundamental form of f with respect to the induced metric, H the mean curvature vector field of f defined by

$$H = \text{trace } B,$$

k_M the Gauss curvature of $df(T\Sigma)$ with respect to the ambient metric g and $d\mu_f$ the area element on $f(\Sigma)$. The Willmore functional of the immersion f is then defined by

$$W(f) = \int_\Sigma \left(\frac{1}{4} |H|^2 + k_M \right) d\mu_f,$$

For a smooth and compactly supported variation $f : \Sigma \times I \mapsto M$ with $\phi = \partial_t f$ we have the following first variational formula (cf. [24, 25])

$$\frac{d}{dt} W(f) = \int_\Sigma \left(\overline{W}(f), \phi \right) d\mu_f,$$

with $\overline{W}(f) = \sum_{\alpha=3}^n \overline{W}(f)^\alpha e_\alpha$, where $\{e_\alpha : 3 \leq \alpha \leq n\}$ is a local orthonormal frame of the normal bundle of $f(\Sigma)$ in M and

$$\overline{W}(f)^\alpha = \frac{1}{2} \left(\Delta H^\alpha + \sum_{i,j} h_i^\alpha h_j^\beta H^\beta - 2 |H|^2 H^\alpha \right), \quad 3 \leq \alpha \leq n,$$

where h_i^α is the component of B and H^α is the trace of $\left(h_i^\alpha \right)$.

A smooth immersion $f : \Sigma \mapsto M$ is called a Willmore immersion, if it is a critical point of the Willmore functional W. In other words, f is a Willmore immersion if and only if it
satisfies
\begin{equation}
\Delta H^\alpha + \sum_{i,j} h^\alpha_{ij} h^\beta_{ij} H^\beta - 2 |H|^2 H^\alpha = 0, \quad 3 \leq \alpha \leq n. \tag{1.1}
\end{equation}

When \((M, g) = \mathbb{R}^3\), Willmore [27] proved that the Willmore energy of closed surfaces are larger than or equal to \(4\pi\) and equality holds only for round spheres. When \(\Sigma\) is a torus, Willmore conjectured that the minimum is \(2\pi^2\) and it is attained only by the Clifford torus, up to a conformal transformation of \(\mathbb{R}^3\) [6, 26], which was verified by Marques and Neves in [15]. When \((M, g) = \mathbb{R}^n\), Simon [22], combined with the work of Bauer and Kuwert [1], proved the existence of an embedded surface which minimizes the Willmore functional among closed surfaces of prescribed genus. Motivated by these mentioned papers, Minicozzi [16] proved the existence of an embedded torus which minimizes the Willmore functional in a smaller class of Lagrangian tori in \(\mathbb{R}^4\). In the same paper Minicozzi conjectured that the Clifford torus minimizes the Willmore functional in its Hamiltonian isotropic class, which he verified has a close relationship with Oh’s conjecture [19, 20]. We should also mention that before Minicozzi, Castro and Urbano proved that the Whitney sphere in \(\mathbb{R}^4\) is the only minimizer for the Willmore functional among closed Lagrangian sphere. This result was further generalized by Castro and Urbano in [4] where they proved that the Whitney sphere is the only closed Willmore Lagrangian sphere (a Lagrangian sphere which is also a Willmore surface) in \(\mathbb{R}^4\). Examples of Willmore Lagrangian tori (Lagrangian tori which also are Willmore surfaces) in \(\mathbb{R}^4\) were constructed by Pinkall [21] and Castro and Urbano [5]. Motivated by these works, Luo and Wang [13] considered the variation of the Willmore functional among Lagrangian surfaces in \(\mathbb{R}^4\) or variation of a Lagrangian surface of the Willmore functional among its Hamiltonian isotropic class in \(\mathbb{R}^4\), whose critical points are called LW or HW surfaces respectively. We should also mention that Willmore type functional of Lagrangian surfaces in \(\mathbb{CP}^2\) were studied by Montiel and Urbano [18] and Ma, Mironov and Zuo [14].

Inspired by the study of the Willmore functional for Lagrangian surfaces in \(\mathbb{R}^4\), Luo [11] naturally considered the Willmore functional of Legendrian surfaces in \(\mathbb{S}^5\).

Definition 1.1. A Willmore and Legendrian surface in \(\mathbb{S}^5\) is called a Willmore Legendrian surface.

Definition 1.2. A Legendrian surface in \(\mathbb{S}^5\) is called a contact stationary Legendrian Willmore surface (in short, a csL Willmore surface) if it is a critical point of the Willmore functional under contact deformations.

Luo [11] proved that Willmore Legendrian surfaces in \(\mathbb{S}^5\) are csL surfaces (see Definition 2.6). In this paper, we continue to study Willmore Legendrian surfaces and csL Willmore surfaces in \(\mathbb{S}^5\). Surprisingly we will prove that every complete Willmore Legendrian surface in \(\mathbb{S}^5\) must be a minimal surface (Theorem 3.2). We will also construct nontrivial examples of csL Willmore surfaces from csL surfaces in \(\mathbb{S}^5\) for the first time, by exploring relationships between them (Proposition 4.1).

The method here we used to construct nontrivial csL Willmore surfaces in \(\mathbb{S}^5\) in Section 4 should also be useful in constructing nontrivial HW surfaces in \(\mathbb{R}^4\) introduced by Luo and Wang in [13]. We will consider this problem in a forthcoming paper.
2. Basic material and formulas

In this section we record some basic material of contact geometry. We refer the reader to consult [7] and [2] for more materials.

2.1. Contact Manifolds.

Definition 2.1. A contact manifold M is an odd dimensional manifold with a one form α such that $\alpha \wedge (d\alpha)^n \neq 0$, where $\dim M = 2n + 1$.

Assume now that (M, α) is a given contact manifold of dimension $2n + 1$. Then α defines a $2n$–dimensional vector bundle over M, where the fibre at each point $p \in M$ is given by

$$\xi_p = \ker \alpha_p.$$

Since $\alpha \wedge (d\alpha)^n$ defines a volume form on M, we see that $\omega := d\alpha$ is a closed nondegenerate 2-form on $\xi \oplus \xi$ and hence it defines a symplectic product on ξ, say $(\xi, \omega|_{\xi \oplus \xi})$ becomes a symplectic vector bundle. A consequence of this fact is that there exists an almost complex bundle structure \tilde{J}: $\xi \mapsto \xi$ compatible with $d\alpha$, i.e. a bundle endomorphism satisfying:

1. $\tilde{J}^2 = -\text{id}_\xi$,
2. $d\alpha(\tilde{J}X, \tilde{J}Y) = d\alpha(X, Y)$ for all $X, Y \in \xi$,
3. $d\alpha(X, \tilde{J}X) > 0$ for $X \in \xi \setminus 0$.

Since M is an odd dimensional manifold, ω must be degenerate on $T M$, and so we obtain a line bundle η over M with fibres

$$\eta_p := \{ V \in TM | \omega(V, W) = 0, \forall W \in \xi \}.$$

Definition 2.2. The Reeb vector field R is the section of η such that $\alpha(R) = 1$.

Thus α defines a splitting of TM into a line bundle η with the canonical section R and a symplectic vector bundle $(\xi, \omega|_{\xi \oplus \xi})$. We denote the projection along η by π, i.e.

$$\pi : TM \mapsto \xi, \quad V \mapsto \pi(V) := V - \alpha(V)R.$$

Using this projection we extend the almost complex structure \tilde{J} to a section $J \in \Gamma(T^* M \otimes TM)$ by setting

$$J(V) = \tilde{J}(\pi(V)),$$

for $V \in TM$.

We have special interest in a special class of submanifolds in contact manifolds.

Definition 2.3. Let (M, α) be a contact manifold, a submanifold Σ of (M, α) is called an isotropic submanifold if $T_x\Sigma \subseteq \xi$ for all $x \in \Sigma$.

For algebraic reasons the dimension of an isotropic submanifold of a $2n + 1$ dimensional contact manifold can not bigger than n.

Definition 2.4. An isotropic submanifold $\Sigma \subseteq (M, \alpha)$ of maximal possible dimension n is called a Legendrian submanifold.
2.2. Sasakian manifolds. Let \((M, \alpha)\) be a contact manifold. A Riemannian metric \(g_\alpha\) defined on \(M\) is said to be associated, if it satisfies the following three conditions:

1. \(g_\alpha(R, R) = 1,\)
2. \(g_\alpha(V, R) = 0, \forall V \in \xi,\)
3. \(\omega(V, JW) = g_\alpha(V, W), \forall V, W \in \xi.\)

We should mention here that on any contact manifold there exists an associated metric on it, because we can construct one in the following way. We introduce a bilinear form \(b\) by

\[b(V, W) := \omega(V, JW),\]

then the tensor

\[g := b + \alpha \otimes \alpha\]
defines an associated metric on \(M\).

Sasakian manifolds are the odd dimensional analogue of Kähler manifolds.

Definition 2.5. A contact manifold \(M\) with an associated metric \(g_\alpha\) is called Sasakian, if the cone \(CM\) equipped with the following extended metric \(\tilde{g}\)

\[(CM, \tilde{g}) = (\mathbb{R}^+ \times M, dr^2 + r^2 g_\alpha)\]
is Kähler with respect to the following canonical almost complex structure \(J\) on \(TCM = \mathbb{R} \oplus \langle R \rangle \oplus \xi:\)

\[J(r\partial r) = -R, \quad J(R) = r\partial r.\]

Furthermore if \(g_\alpha\) is Einstein, \(M\) is called a Sasakian Einstein manifold.

We record more several lemmas which are well known in Sasakian geometry. These lemmas will be used in the subsequent sections.

Lemma 2.1. Let \((M, \alpha, g_\alpha, J)\) be a Sasakian manifold. Then

\[\bar{\nabla}_X R = -JX,\]

and

\[(\bar{\nabla}_X J)(Y) = g(X, Y)R - \alpha(Y)X,\]

for \(X, Y \in TM\), where \(\bar{\nabla}\) is the Levi-Civita connection on \((M, g_\alpha)\).

Lemma 2.2. Let \(\Sigma\) be a Legendrian submanifold in a Sasakian Einstein manifold \((M, \alpha, g_\alpha, J)\), then the mean curvature form \(\omega(H, \cdot)|_\Sigma\) defines a closed one form on \(\Sigma\).

For a proof of this lemma we refer to \([10, \text{Proposition A.2}],\) and \([23, \text{lemma 2.8}].\) In fact they proved this result under the weaker assumption that \((M, \alpha, g_\alpha, J)\) is a weakly Sasakian Einstein manifold, where weakly Einstein means that \(g_\alpha\) is Einstein only when restricted to the contact hyperplane.

Lemma 2.3. Let \(\Sigma\) be a Legendrian submanifold in a Sasakian manifold \((M, \alpha, g_\alpha, J)\) and \(A\) be the second fundamental form of \(\Sigma\) in \(M\). Then we have

\[g_\alpha(A(X, Y), R) = 0.\]
Proof. For any $X, Y \in T\Sigma$,
\[
\langle A(X, Y), R \rangle = \langle \bar{\nabla}_X Y, R \rangle = -\langle Y, \bar{\nabla}_X R \rangle = \langle Y, JX \rangle = 0,
\]
where in the third equality we used (2.1).

In particular this lemma implies that the mean curvature H of Σ is orthogonal to the Reeb field R. This fact is important in our following argument.

Lemma 2.4. For any $Y, Z \in \ker \bar{\alpha}$, we have
\[
\bar{g}_\sigma(\bar{\nabla}_X (JY), Z) = \bar{g}_\sigma(J\bar{\nabla}_X Y, Z).
\]

A canonical example of Sasakian Einstein manifolds is the standard odd dimensional sphere S^{2n+1}.

Example 2.1 (The standard sphere S^{2n+1}). Let $\mathbb{C}^n = \mathbb{R}^{2n+2}$ be the Euclidean space with coordinates $(x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1})$ and S^{2n+1} be the standard unit sphere in \mathbb{R}^{2n+2}. Define
\[
a_0 = \sum_{j=1}^{n+1} (x_j dy_j - y_j dx_j),
\]
then
\[
\alpha := a_0|_{S^{2n+1}}
\]
defines a contact one form on S^{2n+1}. Assume that g_0 is the standard metric on \mathbb{R}^{2n+2} and J_0 is the standard complex structure of \mathbb{C}^n. We define $g_\sigma = g_0|_{S^{2n+1}}$, then $(S^{2n+1}, \alpha, g_\sigma)$ is a Sasakian Einstein manifold. The contact hyperplane is characterized by
\[
\ker \alpha_x = \{Y \in T_x S^{2n+1} | \langle Y, J_0 x \rangle = 0 \}.
\]

2.3. Legendrian submanifolds in the unit sphere. Assume $\phi : \Sigma^n \mapsto S^{2n+1} \subseteq \mathbb{C}^{n+1}$ is a Legendrian immersion. Let B be the second fundamental form, A' be the shape operator with respect to the norm vector $v \in T^\perp \Sigma$ and H be the mean curvature vector. The shape operator A' is a symmetric operator on the tangent bundle and satisfies the following Weingarten equations
\[
\langle B(X, Y), v \rangle = \langle A'(X), Y \rangle, \quad \forall X, Y \in T\Sigma, v \in T^\perp \Sigma.
\]
The Gauss equations, Codazzi equations and Ricci equations are given by
(2.3)
\[
R(X, Y, Z, W) = \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle + \langle B(X, Z), B(Y, W) \rangle - \langle B(X, W), B(Y, Z) \rangle,
\]
(2.4)
\[
(\nabla^\perp_X B)(Y, Z) = (\nabla^\perp_Y B)(X, Z),
\]
\[
R^+(X, Y, \mu, v) = \langle A'^\perp(X), A'^\perp(Y) \rangle - \langle A'^\perp(Y), A'^\perp(X) \rangle,
\]
where $X, Y, Z, W \in T\Sigma, \mu, v \in T^\perp \Sigma$.

Let $\{e_1, e_2\}$ be a local orthonormal frame of Σ. Then $\{Je_1, Je_2, J\phi\}$ is a local orthonormal frame of the normal bundle $T^\perp \Sigma$, where J is the complex structure of \mathbb{C}^{n+1}. Set
\[
\sigma_{ijk} := \langle B(e_i, e_j), Je_k \rangle, \quad \mu_j := \langle H, Je_j \rangle = \sum_{i=1}^{n} \sigma_{ij},
\]
then by Lemma 2.2, Lemma 2.4 and the Codazzi equation (2.4) we have
\[
\sigma_{ijk} = \sigma_{jik} = \sigma_{ikj}, \quad \sigma_{ijk,l} = \sigma_{ijl,k}.
\]
(2.5)
\[
d\mu = 0, \quad \delta\mu = \text{div}(JH).
\]

Recall that

Definition 2.6. \(\Sigma\) is a csL submanifold if it is a critical point of the volume functional among Legendrian submanifolds.

CsL submanifolds satisfy the following Euler-Lagrangian equation ([3, 8]):
\[
\text{div}(JH) = 0.
\]

It is obvious that \(\Sigma\) is csL when \(\Sigma\) is minimal. The following observation is very important for the study of csL submanifolds.

Lemma 2.5. \(\Sigma\) is csL iff \(\mu\) is a harmonic 1-form iff \(JH\) is a harmonic vector field.

By using the Bochner formula for harmonic vector fields (cf. [9]), we get

Lemma 2.6. If \(\Sigma\) is csL, then
\[
\frac{1}{2} \Delta |H|^2 = |\nabla(JH)|^2 + \text{Ric}(JH, JH).
\]

From (2.6) it is easy to see that we have

Lemma 2.7. If \(\Sigma \subset S^5\) is csL and non-minimal, then the zero set of \(H\) is isolate and
\[
\Delta \log |H| = \kappa
\]
provided \(H \neq 0\), where \(\kappa\) is the Gauss curvature of \(\Sigma\).

3. Willmore Legendrian surfaces in \(S^5\)

In this section we prove that every complete Willmore Legendrian surface in \(S^5\) must be a minimal surface. Firstly, we rewrite the Willmore operator acting on Legendrian surfaces, i.e., we prove the following

Proposition 3.1. Assume that \(\Sigma\) is a Legendrian surface in \(S^5\), then its Willmore operator can be written as
\[
\hat{W}(\Sigma) = \frac{1}{2} \left\{ -J\nabla \text{div}(JH) + B(JH, JH) - \frac{1}{2} |H|^2 H - 2 \text{div}(JH)R \right\}.
\]

In particular, the Euler-Lagrangian equation of Willmore Legendrian surfaces in \(S^5\) is
\[
-\nabla \text{div}(JH) + B(JH, JH) - \frac{1}{2} |H|^2 H - 2 \text{div}(JH)R = 0.
\]

Proof. Let \(\{\nu_1, \nu_2, R\}\) be a local orthonormal frame of the normal bundle of \(\Sigma\), then the Willmore equation (1.1) can be rewritten as
\[
\Delta' H + \sum_{\alpha} \langle A^\nu, A^H \rangle \nu_\alpha - \frac{1}{2} |H|^2 H = 0.
\]

Note that by (2.2) we have
\[
\nabla_X(JY) = J\nabla_X Y + g(X, Y)R
\]
for $X, Y \in \Gamma (T\Sigma)$. Choose a local orthonormal frame field around p with $\nabla e_i\big|_p = 0$, then

$$J\nabla_{e_i}(JH) = \nabla_{e_i}(J(JH)) - g(e_i, JH)\mathbf{R}$$

$$= -\nabla_{e_i}H - g(e_i, JH)\mathbf{R}$$

and

$$J\nabla_{e_i}(\nabla_{e_i}(JH)) = \nabla_{e_i}(J\nabla_{e_i}(JH)) - g(e_i, \nabla_{e_i}JH)\mathbf{R}$$

$$= \nabla_{e_i}(-\nabla_{e_i}H - g(e_i, JH)\mathbf{R}) - g(e_i, \nabla_{e_i}JH)\mathbf{R}$$

$$= -\nabla_{e_i}\nabla_{e_i}H - 2g(e_i, \nabla_{e_i}(JH))\mathbf{R} - g(e_i, JH)\left(\nabla_{e_i}\mathbf{R}\right)$$

$$= -\nabla_{e_i}\nabla_{e_i}H - 2g(e_i, \nabla_{e_i}(JH))\mathbf{R} - g(e_i, JH)\mathbf{R}$$

where in the last equality we also used (2.1). Therefore we obtain

$$\Delta' H = -J\Delta(JH) - H - 2\text{ div}(JH)\mathbf{R},$$

which implies that Σ satisfies the following equation

$$-J\Delta(JH) + \sum_\alpha \langle A^\alpha, A^\alpha \rangle \nu_\alpha - \frac{1}{2} (2 + |H|^2) H - 2\text{ div}(JH)\mathbf{R} = 0.$$

In addition, by Lemma 2.2, the dual one form of JH is harmonic. By the Ricci identity we have

$$\Delta(JH) = \nabla \text{ div}(JH) + \kappa JH.$$

The Proposition is then a consequence of the following Claim together with above two identities.

Claim.

$$2\kappa = 2 + |H|^2 - |B|^2,$$

$$\sum_\alpha \langle A^\alpha, A^\alpha \rangle \nu_\alpha - \frac{1}{2} |B|^2 H = B(JH, JH) - \frac{1}{2} |H|^2 H.$$

Proof: The first equation is obvious by the Gauss equation (2.3). The second equation can be proved by the Gauss equation (2.3) and the tri-symmetry of the tensor σ (see (2.5)). To be precise, for every tangent vector field $Z \in T\Sigma$ we have

$$\langle B(JH, JH), JZ \rangle - \sum_\alpha \langle A^\alpha, A^\alpha \rangle \nu_\alpha, JZ \rangle$$

$$= -\langle B(Z, JH), H \rangle - \sum_{i,j} \langle B(e_i, e_j), JZ \rangle \langle B(e_i, e_j), H \rangle$$

$$= \sum_{i,j} \langle B(Z, e_j), Je_i \rangle \langle B(JH, e_j), e_i \rangle - \langle B(Z, JH), H \rangle$$

$$= \sum_j \langle B(Z, e_j), B(JH, e_j) \rangle - \langle B(Z, JH), H \rangle$$

$$= Ric(Z, JH) - \langle Z, JH \rangle$$

$$= (\kappa - 1) \langle Z, JH \rangle$$
\[\frac{1}{2} (|H|^2 - |B|^2) \langle Z, JH \rangle \]
\[= \frac{1}{2} (|B|^2 - |H|^2) \langle H, JZ \rangle. \]

This completes the proof of the second equation. \(\square \)

Now we are in position to prove the following

Theorem 3.2. Every complete Willmore Legendrian surface in \(S^5 \) is a minimal surface.

Proof. We prove by a contradiction argument. Assume that \(\Sigma \) is a complete Willmore Legendrian surface in \(S^5 \) which is not a minimal surface. If \(H \neq 0 \), then let \(\{ e_1 = \frac{JH}{|H|}, e_2 \} \) be a local orthonormal frame field of \(\Sigma \). From (3.1) we have
\[
B(e_1, e_1) = -\frac{1}{2} |H| J e_1,
\]
which also implies that
\[
B(e_2, e_2) = -\frac{1}{2} |H| J e_1, \quad h_{11}^2 = 0.
\]
Then by the Gauss equation (2.3) we have
\[
\kappa = 1 + \langle B(e_1, e_1), B(e_2, e_2) \rangle - |B(e_1, e_2)|^2
\]
\[
= 1 + \frac{1}{4} |H|^2 - |h_{12}^2|^2 - |h_{12}^2|^2
\]
\[
= 1 + \frac{1}{4} |H|^2 - |h_{12}^2|^2
\]
\[
= 1.
\]
Since \(\Sigma \) is a Willmore Legendrian surface, from (3.1) we see that \(\text{div}(JH) = 0 \). By Lemma 2.7 the minimal points of \(\Sigma \) are discrete and so the Gauss curvature of \(\Sigma \) equals 1 everywhere on \(\Sigma \), therefore \(\Sigma \) is compact by Bonnet-Myers theorem. Apply Lemma 2.6 to obtain that on \(\Sigma \)
\[
\frac{1}{2} \Delta |H|^2 = |\nabla (JH)|^2 + |H|^2.
\]
Then the maximum principle implies that \(H \equiv 0 \) which is a contradiction. Therefore \(\Sigma \) is a minimal surface. \(\square \)

4. **Examples of csL Willmore surfaces in \(S^5 \)**

From the definition we see that complete Willmore Legendrian surfaces, which are minimal surface by Theorem 3.2 in the last section, are trivial examples of csL Willmore surfaces in \(S^5 \). Thus it is very natural and important to construct nonminimal csL Willmore surfaces in \(S^5 \). This will be done in this section by analyzing a very close relationship between csL Willmore surfaces and csL surfaces in \(S^5 \).

Assume that \(\Sigma \) is a csL Willmore surface in \(S^5 \), then since the variation vector field on \(\Sigma \) under Legendrian deformations can be written as \(J \nabla u + \frac{1}{2} u R \) for smooth function \(u \) on \(\Sigma \) (cf.
Therefore we can find the following examples of csL Willmore surfaces from csL surfaces in \mathbb{S}^5.

Remark 4.1. Note that the coefficient of the Euler-Lagrangian equation (4.1) for csL Willmore surfaces in \mathbb{S}^5 is slightly different with (1.7) in [11]. That is because here we use the notation $H = \text{trace } B$, whereas in [11] we defined $H = \frac{1}{2} \text{trace } B$.

Then by (3.1), Σ satisfies the following equation.

$$\text{div} \left(\nabla \text{div}(J H) + J B(J H, J H) - \frac{1}{2} |H|^2 J H - 4 J H \right) = 0.$$

In addition, by the four-symmetric of (τ_{ijkl}) (see (2.5)), a direct computation shows

$$\text{div}(J B(J H, J H)) = 2 \text{ trace } \langle B(\cdot, \nabla(J H)), H \rangle + \frac{1}{2} \nabla_{J H} |H|^2.$$

Therefore Σ satisfies the following equation

$$\Delta \text{div}(J H) + 2 \text{ trace } \langle B(\cdot, \nabla(J H)), H \rangle - \frac{1}{2} |H|^2 \text{div}(J H) - 4 \text{div}(J H) = 0.$$

Proposition 4.1. Assume that Σ is a csL surface in \mathbb{S}^5 and trace $\langle B(\cdot, \nabla(J H)), H \rangle = 0$, then Σ is a csL Willmore surface.

With the aid of Proposition 4.1, we can find the following examples of csL Willmore surfaces from csL surfaces in \mathbb{S}^5. Firstly, according to Proposition 4.1, all closed Legendrian surfaces with parallel tangent vector field $J H$, which are exactly minimal surfaces or the Calabi tori (cf. [12, Proposition 3.2]), are csL Willmore surfaces. For reader’s convenience, we give some detailed computations as follows.

Example 4.1 (Calabi tori). For every four nonzero real numbers r_1, r_2, r_3, r_4 with $r_1^2 + r_2^2 = r_3^2 + r_4^2 = 1$, the Calabi torus Σ is a csL surface in \mathbb{S}^5 defined as follows.

$$F : [0,1] \times [0,1] \rightarrow \mathbb{S}^5, \quad (t, s) \mapsto \left(r_1 r_3 \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t + \frac{r_4}{r_3} s \right) \right), r_1 r_4 \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t - \frac{r_3}{r_4} s \right) \right), r_2 \exp \left(- \sqrt{-1} \frac{r_4}{r_2} t \right) \right).$$

Denote

$$\phi_1 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t + \frac{r_4}{r_3} s \right) \right), \quad \phi_2 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t - \frac{r_3}{r_4} s \right) \right), \quad \phi_3 = \exp \left(- \sqrt{-1} \frac{r_4}{r_2} t \right),$$

and

$$\phi_4 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t + \frac{r_3}{r_4} s \right) \right), \quad \phi_5 = \exp \left(\sqrt{-1} \left(- \frac{r_3}{r_4} t + \frac{r_2}{r_1} s \right) \right), \quad \phi_6 = \exp \left(- \sqrt{-1} \frac{r_4}{r_2} t \right).$$

Then

$$\phi_1 \phi_2 \phi_3 \phi_4 \phi_5 \phi_6 = 1.$$

Therefore Σ is a csL Willmore surface.

We can find the following examples of csL Willmore surfaces from csL surfaces in \mathbb{S}^5.

Example 4.1 (Calabi tori). For every four nonzero real numbers r_1, r_2, r_3, r_4 with $r_1^2 + r_2^2 = r_3^2 + r_4^2 = 1$, the Calabi torus Σ is a csL surface in \mathbb{S}^5 defined as follows.

$$F : [0,1] \times [0,1] \rightarrow \mathbb{S}^5, \quad (t, s) \mapsto \left(r_1 r_3 \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t + \frac{r_4}{r_3} s \right) \right), r_1 r_4 \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t - \frac{r_3}{r_4} s \right) \right), r_2 \exp \left(- \sqrt{-1} \frac{r_4}{r_2} t \right) \right).$$

Denote

$$\phi_1 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t + \frac{r_4}{r_3} s \right) \right), \quad \phi_2 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t - \frac{r_3}{r_4} s \right) \right), \quad \phi_3 = \exp \left(- \sqrt{-1} \frac{r_4}{r_2} t \right),$$

and

$$\phi_4 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} t + \frac{r_3}{r_4} s \right) \right), \quad \phi_5 = \exp \left(\sqrt{-1} \left(- \frac{r_3}{r_4} t + \frac{r_2}{r_1} s \right) \right), \quad \phi_6 = \exp \left(- \sqrt{-1} \frac{r_4}{r_2} t \right).$$

Then

$$\phi_1 \phi_2 \phi_3 \phi_4 \phi_5 \phi_6 = 1.$$
then \(F(t, s) = (r_1 r_3 \phi_1, r_1 r_4 \phi_2, r_2 \phi_3) \). Since
\[
\frac{\partial F}{\partial t} = \left(\sqrt{-1} r_2 r_3 \phi_1, \sqrt{-1} r_2 r_4 \phi_2, -\sqrt{-1} r_1 \phi_3 \right),
\]
\[
\frac{\partial F}{\partial s} = \left(\sqrt{-1} r_1 r_4 \phi_1, -\sqrt{-1} r_1 r_3 \phi_2, 0 \right),
\]
the induced metric in \(\Sigma \) is given by
\[
g = dt^2 + r_1^2 ds^2.
\]
Let \(E_1 = \frac{\partial F}{\partial t}, E_2 = \frac{1}{r_1} \frac{\partial F}{\partial s} \), then \(\{E_1, E_2, \nu_1 = \sqrt{-1} E_1, \nu_2 = \sqrt{-1} E_2, R = -\sqrt{-1} F \} \) is a local orthonormal frame of \(S^3 \) such that \(\{E_1, E_2\} \) is a local orthonormal tangent frame and \(R \) is the Reeb field. A direct calculation yields
\[
\frac{\partial \nu_1}{\partial t} = \left(-\sqrt{-1} \frac{r_2^2 r_3}{r_1} \phi_1, -\sqrt{-1} \frac{r_2^2 r_4}{r_1} \phi_2, -\sqrt{-1} \frac{r_1^2}{r_2} \phi_3 \right),
\]
\[
\frac{\partial \nu_1}{\partial s} = \left(-\sqrt{-1} \frac{r_2 r_3^2}{r_4} \phi_1, -\sqrt{-1} \frac{r_2 r_4^2}{r_3} \phi_2, 0 \right),
\]
\[
\frac{\partial \nu_2}{\partial t} = \left(-\sqrt{-1} \frac{r_2^2 r_4}{r_1} \phi_1, -\sqrt{-1} \frac{r_2^2 r_3}{r_1} \phi_2, 0 \right),
\]
\[
\frac{\partial \nu_2}{\partial s} = \left(-\sqrt{-1} \frac{r_1^2 r_4}{r_3} \phi_1, -\sqrt{-1} \frac{r_1^2 r_3}{r_4} \phi_2, 0 \right),
\]
\[
\frac{\partial R}{\partial t} = (r_2 r_3 \phi_1, r_2 r_4 \phi_2, -r_1 \phi_3),
\]
\[
\frac{\partial R}{\partial s} = (r_1 r_4 \phi_1, -r_1 r_3 \phi_2, 0).
\]

Hence,
\[
A^\nu_1 = - \Re \langle dF, d\nu_1 \rangle = \left(\frac{r_2}{r_1} - \frac{r_1}{r_2} \right) dt^2 + r_1 r_2 ds^2,
\]
\[
A^\nu_2 = - \Re \langle dF, d\nu_2 \rangle = 2r_2 dt ds + r_1 \left(\frac{r_4}{r_3} - \frac{r_3}{r_4} \right) ds^2,
\]
\[
A^R = 0.
\]

Thus
\[
H = \left(\frac{2r_2}{r_1} - \frac{r_1}{r_2} \right) \nu_1 + \frac{1}{r_1} \left(\frac{r_4}{r_3} - \frac{r_3}{r_4} \right) \nu_2.
\]
Moreover \(E_1 \) and \(E_2 \) are two parallel tangent vector field. It is obvious that \(\Sigma \) is a csL Willmore surface.

Secondly, we give some examples that \(JH \) is not parallel. Mironov [17] constructed some new csL surfaces in \(S^3 \). We can verify that Mironov’s examples are in fact csL Willmore surfaces.
Example 4.2 (Mironov’s examples [17]). Let $F : \Sigma^2 \hookrightarrow S^5$ be an immersion. Then F is a Legendrian immersion if

$$\langle F_x, F \rangle = \langle F_y, F \rangle = 0.$$

Here $\{x, y\}$ is a local coordinates of Σ and \langle , \rangle stands for the hermitian inner product in \mathbb{C}^3. Set

$$G = \begin{pmatrix} F \\ F_x \\ F_y \end{pmatrix},$$

then

$$GG^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \langle F_x, F_x \rangle & \langle F_x, F_y \rangle \\ 0 & \langle F_y, F_x \rangle & \langle F_y, F_y \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix}.$$

where g is a real positive matrix which is the induce metric of Σ. There is a hermitian matrix Θ such that

$$G = \left(\begin{array}{cc} 1 & 0 \\ 0 & g^{1/2} \end{array} \right) e^{-\sqrt{-1} \Theta}.$$

We compute

$$GG^T_x = \begin{pmatrix} 0 & -\langle F_x, F_x \rangle & -\langle F_x, F_y \rangle \\ \langle F_x, F_x \rangle & \langle F_x, F_{xx} \rangle & \langle F_x, F_{xy} \rangle \\ \langle F_y, F_x \rangle & \langle F_y, F_{xx} \rangle & \langle F_y, F_{xy} \rangle \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{g} \end{pmatrix} e^{-\sqrt{-1} \Theta} \left(e^{-\sqrt{-1} \Theta} \right)_x \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{g} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{g} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence

$$\mathcal{R} \left(\sqrt{-1} GG^T_x \right) = \mathcal{R} \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \langle F_x, F_{xx} \rangle & \langle F_x, F_{xy} \rangle \\ 0 & \langle F_y, F_{xx} \rangle & \langle F_y, F_{xy} \rangle \end{pmatrix} \right)$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & A^{-1} F_x \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{g} \end{pmatrix} \mathcal{R} \left(\sqrt{-1} e^{\sqrt{-1} \Theta} \left(e^{-\sqrt{-1} \Theta} \right) \right) \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{g} \end{pmatrix},$$

which implies

$$\begin{pmatrix} 0 & 0 \\ 0 & g^{-1/2} A^{-1} F_x g^{1/2} \end{pmatrix} = \mathcal{R} \left(\sqrt{-1} e^{\sqrt{-1} \Theta} \left(e^{-\sqrt{-1} \Theta} \right) \right).$$

Similarly,

$$\begin{pmatrix} 0 & 0 \\ 0 & g^{-1/2} A^{-1} F_y g^{1/2} \end{pmatrix} = \mathcal{R} \left(\sqrt{-1} e^{\sqrt{-1} \Theta} \left(e^{-\sqrt{-1} \Theta} \right) \right).$$

The Lagrangian angle is then given by $\theta = tr \mathcal{R} \Theta$. The above discussion implies that

$$J \nabla \theta = H.$$
Let a, b, c are three positive constants and consider the following immersion

$$F : \mathbb{S}^1 \times \mathbb{S}^1 \mapsto \mathbb{S}^3, \\
(x, y) \mapsto (\phi(x)e^{-\sqrt{\tan}y}, \psi(x)e^{-\sqrt{\tanh}y}, \zeta(x)e^{-\sqrt{\tan}y}),$$

where

$$\phi(x) = \sqrt{\frac{c}{a + c}} \sin x,$$

$$\psi(x) = \sqrt{\frac{c}{b + c}} \cos x,$$

$$\zeta(x) = \frac{a \sin^2 x}{a + c} + \frac{b \cos^2 x}{b + c} = \sqrt{\frac{ab + u(x)}{(a + c)(b + c)}},$$

where

$$u(x) = \frac{c(a + b + (b - a) \cos(2x))}{2}.$$

One can check that F is a Legendrian immersion. Denote $\Sigma := F(\mathbb{S}^1 \times \mathbb{S}^1)$. Notice that

$$F_x = \left(\sqrt{\frac{c}{a + c}} \cos x e^{-\sqrt{\tan}y}, -\sqrt{\frac{c}{b + c}} \sin x e^{-\sqrt{\tanh}y}, \frac{-c(b - a) \sin(2x)}{2 \sqrt{(a + c)(b + c)(ab + u(x))}} e^{-\sqrt{\tan}y}\right),$$

$$F_y = \left(\sqrt{-1}a\phi(x)e^{-\sqrt{\tan}y}, \sqrt{-1}b\psi(x)e^{-\sqrt{\tanh}y}, -\sqrt{-1}c\zeta(x)e^{-\sqrt{\tan}y}\right).$$

The induced metric g is given by

$$g = \left[\frac{c \cos^2 x}{a + c} + \frac{c \sin^2 x}{b + c} + \frac{c^2(b - a)^2 \sin^2(2x)}{4(a + c)(b + c)(ab + u(x))}\right] dx^2$$

$$+ \left[\frac{a^2 \sin^2 x}{a + c} + \frac{b^2 \cos^2 x}{b + c} + \frac{c^2(a \sin^2 x)}{a + c} + \frac{b \cos^2 x}{b + c}\right] dy^2$$

$$= \frac{(ab + u(x))}{dx^2 + u(x) dy^2}$$

$$=: e^{2p(x)} dx^2 + e^{2q(x)} dy^2.$$

A strait forward calculation yields that

$$A^{-1}F_x = \Re \begin{pmatrix} 0 & \sqrt{-1}\langle F_x, F_x \rangle \\
-\sqrt{-1}\langle F_y, F_x \rangle & 0 \end{pmatrix} = \begin{pmatrix} 0 & c(1 - e^{2p(x)}) \\
c(1 - e^{2p(x)}) & 0 \end{pmatrix},$$

$$A^{-1}F_y = \Re \begin{pmatrix} \sqrt{-1}\langle F_x, F_y \rangle & 0 \\
0 & \sqrt{-1}\langle F_y, F_y \rangle \end{pmatrix} = \begin{pmatrix} c(1 - e^{2p(x)}) & 0 \\
(a + b - c)e^{2q(x)} & 0 \end{pmatrix}.$$

We get

$$\Re \begin{pmatrix} \sqrt{-1}e^{\sqrt{-1}\theta}(e^{-\sqrt{-1}\theta}) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\
0 & 0 & \frac{abc}{u \sqrt{ab + u}} \\
0 & \frac{abc}{u \sqrt{ab + u}} & 0 \end{pmatrix},$$
\[
\Re \left(\sqrt{-1} e^{\sqrt{-1}\Theta} \left(e^{-\sqrt{-1}\Theta} \right)_y \right) = \begin{pmatrix}
0 & 0 & 0 \\
0 & \frac{abc}{u} & 0 \\
0 & 0 & (a + b - c) - \frac{abc}{u}
\end{pmatrix}.
\]

Thus
\[
H^{\sqrt{-1}F_i} = 0, \quad H^{\sqrt{-1}F_j} = a + b - c.
\]

We get
\[
H = \frac{a + b - c}{u(x)} \sqrt{-1} \frac{\partial}{\partial y},
\]
and
\[
\nabla_{\partial_y} \left(\sqrt{-1} H \right) = \frac{(a + b - c)u_x}{2u^2} \frac{\partial}{\partial y}, \quad \nabla_{\partial_x} \left(\sqrt{-1} H \right) = \frac{(ab + u)(a + b - c)u_y}{2u^2} \frac{\partial}{\partial x}.
\]

In particular
\[
\text{div} \left(\sqrt{-1} H \right) = 0.
\]

Hence \(\Sigma\) is csL. Moreover
\[
\sum_{i=1}^{2} \langle B(e_i, \nabla e_i(JH)), H \rangle = 0.
\]

Therefore, \(\Sigma\) is a csL Willmore surface in \(S^5\).

References

[1] Matthias Bauer and Ernst Kuwert, Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. 10 (2003), 553–576. MR1941840
[2] David E. Blair, Riemannian geometry of contact and symplectic manifolds, Second, Progress in Mathematics, vol. 203, Birkhäuser Boston, Inc., Boston, MA, 2010. MR2682326
[3] Ildefonso Castro, Haizhong Li, and Francisco Urbano, Hamiltonian-minimal Lagrangian submanifolds in complex space forms, Pacific J. Math. 227 (2006), no. 1, 43–63. MR2247872
[4] Ildefonso Castro and Francisco Urbano, Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form, Tohoku Math. J. (2) 45 (1993), no. 4, 565–582. MR1245723
[5] Willmore surfaces of \(\mathbb{R}^4\) and the Whitney sphere, Ann. Global Anal. Geom. 19 (2001), no. 2, 153–175. MR1826399
[6] Bang-Yen Chen, On the total curvature of immersed manifolds. VI. Submanifolds of finite type and their applications, Bull. Inst. Math. Acad. Sinica 11 (1983), no. 3, 309–328. MR726979
[7] Hansjörg Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge, 2008. MR2397738
[8] Hiroshi Iriyeh, Hamiltonian minimal Lagrangian cones in \(\mathbb{C}^m\), Tokyo J. Math. 28 (2005), no. 1, 91–107. MR2149626
[9] Jürgen Jost, Riemannian geometry and geometric analysis, Seventh, Universitext, Springer, Cham, 2017. MR3726907
[10] Hồng-Van Lê, A minimizing deformation of Legendrian submanifolds in the standard sphere, Differential Geom. Appl. 21 (2004), no. 3, 297–316. MR2091366
[11] Yong Luo, On Willmore Legendrian surfaces in \(S^5\) and the contact stationary Legendrian Willmore surfaces, Calc. Var. Partial Differential Equations 56 (2017), no. 3, Art. 86, 19. MR3658339
[12] Yong Luo and Linlin Sun, Rigidity of closed CSL submanifolds in the unit sphere, arXiv e-prints (2018Nov), arXiv:1811.02839, available at 1811.02839.
[13] Yong Luo and Guofang Wang, *On geometrically constrained variational problems of the Willmore functional I. The Lagrangian-Willmore problem*, Comm. Anal. Geom. **23** (2015), no. 1, 191–223. MR3291368

[14] Hui Ma, Andrey E. Mironov, and Dafeng Zuo, *An energy functional for Lagrangian tori in \mathbb{CP}^2*, Ann. Global Anal. Geom. **53** (2018), no. 4, 583–595. MR3803341

[15] Fernando C. Marques and André Neves, *Min-max theory and the Willmore conjecture*, Ann. of Math. (2) **179** (2014), no. 2, 683–782. MR3152944

[16] William P. Minicozzi II, *The Willmore functional on Lagrangian tori: its relation to area and existence of smooth minimizers*, J. Amer. Math. Soc. **8** (1995), no. 4, 761–791. MR1311825

[17] A. E. Mironov, *New examples of Hamilton-minimal and minimal Lagrangian submanifolds in \mathbb{C}^n and \mathbb{CP}^n, Mat. Sb. **195** (2004), no. 1, 89–102. MR2058378

[18] Sebastián Montiel and Francisco Urbano, *A Willmore functional for compact surfaces in the complex projective plane*, J. Reine Angew. Math. **546** (2002), 139–154. MR1900995

[19] Yong-Geun Oh, *Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds*, Invent. Math. **101** (1990), no. 2, 501–519. MR1243525

[20] _, *Volume minimization of Lagrangian submanifolds under Hamiltonian deformations*, Math. Z. **212** (1993), no. 2, 175–192. MR1202805

[21] U. Pinkall, *Hopf tori in S^3*, Invent. Math. **81** (1985), no. 2, 379–386. MR799274

[22] Leon Simon, *Existence of surfaces minimizing the Willmore functional*, Comm. Anal. Geom. **1** (1993), no. 2, 281–326. MR1243525

[23] Knut Smoczyk, *Closed Legendre geodesics in Sasaki manifolds*, New York J. Math. **9** (2003), 23–47. MR2016178

[24] G. Thomsen, *Grundlagen der konformen flächentheorie*, Abh. Math. Sem. Univ. Hamburg **3** (1924), no. 1, 31–56. MR3069418

[25] Joel L. Weiner, *On a problem of Chen, Willmore, et al*, Indiana Univ. Math. J. **27** (1978), no. 1, 19–35. MR467610

[26] James H. White, *A global invariant of conformal mappings in space*, Proc. Amer. Math. Soc. **38** (1973), 162–164. MR324603

[27] T. J. Willmore, *Note on embedded surfaces*, An. Şti. Univ. “Al. I. Cuza” Iaşi Sect. I a Mat. (N.S.) **11B** (1965), 493–496. MR202066

(Yong Luo) School of Mathematics and Statistics & Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China

E-mail address: yongluo@whu.edu.cn

(Linlin Sun) School of Mathematics and Statistics & Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China

E-mail address: sunll@whu.edu.cn
Complete Willmore Legendrian surfaces in S^5 are minimal Legendrian surfaces✩

Yong Luoa,b, Linlin Sun$^{a,b,c,∗}$

aSchool of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
bHubei Key Laboratory of Computational Science, Wuhan University, Wuhan, 430072, China
cMax Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany

Abstract

In this paper we continue to consider Willmore Legendrian surfaces and csL Willmore surfaces in S^5, notions introduced by Luo in [9]. We will prove that every complete Willmore Legendrian surface in S^5 is minimal and find nontrivial examples of csL Willmore surfaces in S^5.

Keywords: Willmore Legendrian surface, csL surface, csL Willmore surface

2010 MSC: 53C24, 53C42, 53C44

1. Introduction

Let $Σ$ be a Riemann surface, $(M^n, g) = S^n$ or $\mathbb{R}^n (n ≥ 3)$ the unit sphere or the Euclidean space with standard metrics and f an immersion from $Σ$ to M. Let B be the second fundamental form of f with respect to the induced metric, H the mean curvature vector field of f defined by

$$H = \text{tr} \, B,$$

$κ_M$ the Gauss curvature of $df(TΣ)$ with respect to the ambient metric g and $dμ_f$ the area element on $f(Σ)$. The Willmore functional of the immersion f is then defined by

$$W(f) = \int_{Σ} \left(\frac{1}{4} |H|^2 + κ_M \right) dμ_f.$$

For a smooth and compactly supported variation $f : Σ×I \mapsto M$ with $φ = \partial_t f$ we have the following first variational formula (cf. [22, 23])

$$\frac{d}{dt} W(f) = \int_{Σ} \left(\langle \vec{W}(f), φ \rangle \right) dμ_f,$$

with $\vec{W}(f) = \sum_{α=3}^n \vec{W}(f)^α e_α$, where $\{e_α : 3 ≤ α ≤ n\}$ is a local orthonormal frame of the normal bundle of $f(Σ)$ in M and

$$\vec{W}(f)^α = \frac{1}{2} \left(ΔH^α + \sum_{i,j,k} h_{ij}^α h_{kj}^α H^β - 2 |H|^2 H^α \right), \quad 3 ≤ α ≤ n,$$

where $h_{ij}^α$ is the component of B and $H^α$ is the trace of $(h_{ij}^α)$.

✩This work was partially supported by the NSF of China (Nos. 11501421, 11801420, 11971358) and the Youth Talent Training Program of Wuhan University.

∗Corresponding author.

Email addresses: yongluo@whu.edu.cn (Yong Luo), sunll@whu.edu.cn (Linlin Sun)
A smooth immersion $f : \Sigma \mapsto M$ is called a Willmore immersion, if it is a critical point of the Willmore functional W. In other words, f is a Willmore immersion if and only if it satisfies
\[
\Delta H^\alpha + \sum_{i,j} h^i_j h^j_i H^\alpha - 2 |H|^2 H^\alpha = 0, \quad 3 \leq \alpha \leq n.
\] (1.1)

When $(M, g) = \mathbb{R}^3$, Willmore [25] proved that the Willmore energy of closed surfaces are larger than or equal to 4π and equality holds only for round spheres. When Σ is a torus, Willmore conjectured that the minimum is $2\pi^2$ and it is attained only by the Clifford torus, up to a conformal transformation of \mathbb{R}^3 [24, 6], which was verified by Marques and Neves in [13]. When $(M, g) = \mathbb{R}^4$, Simon [20], combined with the work of Bauer and Kuwert [1], proved the existence of an embedded surface which minimizes the Willmore functional among closed surfaces of prescribed genus. Motivated by these mentioned papers, Minicozzi [14] proved the existence of an embedded torus which minimizes the Willmore functional in a smaller class of Lagrangian tori in \mathbb{R}^4. In the same paper Minicozzi conjectured that the Clifford torus minimizes the Willmore functional in its Hamiltonian isotropic class, which he verified has a close relationship with Oh’s conjecture [17, 18]. We should also mention that before Minicozzi, Castro and Urbano proved that the Whitney sphere in \mathbb{R}^4 is the only minimizer for the Willmore functional among closed Lagrangian sphere. This result was further generalized by Castro and Urbano in [4] where they proved that the Whitney sphere is the only closed Willmore Lagrangian sphere (a Lagrangian sphere which is also a Willmore surface) in \mathbb{R}^4. Examples of Willmore Lagrangian tori (Lagrangian tori which also are Willmore surfaces) in \mathbb{R}^4 were constructed by Pinkall [19] and Castro and Urbano [5]. Motivated by these works, Luo and Wang [11] considered the variation of the Willmore functional among Lagrangian surfaces in \mathbb{R}^4 or variation of a Lagrangian surface of the Willmore functional among its Hamiltonian isotropic class in \mathbb{R}^4, whose critical points are called LW or HW surfaces respectively. We should also mention that Willmore type functional of Lagrangian surfaces in $\mathbb{C}P^2$ were studied by Montiel and Urbano [16] and Ma, Mironov and Zuo [12].

Inspired by the study of the Willmore functional for Lagrangian surfaces in \mathbb{R}^4, Luo [9] naturally considered the Willmore functional of Legendrian surfaces in S^5.

Definition 1.1. A Willmore and Legendrian surface in S^5 is called a Willmore Legendrian surface.

Definition 1.2. A Legendrian surface in S^5 is called a contact stationary Legendrian Willmore surface (in short, a csL Willmore surface) if it is a critical point of the Willmore functional under contact deformations.

Luo [9] proved that Willmore Legendrian surfaces in S^5 are csL surfaces (see **Definition 2.1**). In this paper, we continue to study Willmore Legendrian surfaces and csL Willmore surfaces in S^5. Surprisingly we will prove that every complete Willmore Legendrian surface in S^5 must be a minimal surface (**Theorem 2.5**). We also find nontrivial examples of csL Willmore surfaces from csL surfaces in S^5 for the first time, by exploring relationships between them (**Proposition 3.1**).

The method here we used to find nontrivial csL Willmore surfaces in S^5 in Section 4 should also be useful in discovering nontrivial HW surfaces in \mathbb{R}^4 introduced by Luo and Wang in [11]. We will consider this problem in the future.

2. Willmore Legendrian surfaces in S^5

In this section we will prove that every complete Willmore Legendrian surfaces in S^5 is minimal. Firstly we briefly record several facts about Legendrian surfaces in S^5. We refer the reader to consult [2] for more materials about the contact geometry.

Let S^5, the 5-dimensional unit sphere, be the standard Sasakian Einstein manifold with contact one form α, almost complex structure J, Reed field R and canonical metric g. Let Σ be a closed surface of $S^5 \subset C^5$. We say that Σ is Legendrian if

$$JT \Sigma \subset T^\alpha \Sigma, \quad JF \in \Gamma (T^\alpha \Sigma)$$
where $F : \Sigma \rightarrow S^5$ is the position vector and $T\Sigma, T^\perp \Sigma$ are tangent and normal bundles of Σ respectively. We say that Σ is a minimal Legendrian surface of S^5 if Σ is a minimal and Legendrian surface of S^5. Define

$$\sigma(X, Y, Z) := \langle B(X, Y), JZ \rangle, \quad \forall X, Y, Z \in T\Sigma.$$

The Weingarten equation implies that

$$\sigma(X, Y, Z) = \sigma(Y, X, Z).$$

Moreover, by definition, one can check that σ is a three order symmetric tensor, i.e.,

$$\sigma(X, Y, Z) = \sigma(Y, X, Z) = \sigma(X, Z, Y).$$ \hspace{1cm} (2.1)

The Gauss equation, Codazzi equation and Ricci equation becomes

$$R(X, Y, Z, W) = \langle X, Z \rangle \langle Y, W \rangle - \langle X, W \rangle \langle Y, Z \rangle + \sigma(X, Z, e_i) \sigma(Y, W, e_i) - \sigma(X, W, e_i) \sigma(Y, Z, e_i),$$

$$\nabla X \sigma(Y, Z, W) = \nabla Y \sigma(X, Z, W),$$

where $\{e_i\}$ is an orthonormal basis of $T\Sigma$. The Codazzi equation implies

$$\nabla X \sigma(Y, Z, W) = \nabla Y \sigma(X, Z, W) = \nabla X \sigma(Z, Y, W) = \nabla Y \sigma(Y, W, Z),$$ \hspace{1cm} (2.3)

i.e., $\nabla \sigma$ is a fourth order symmetric tensor.

Recall that

Definition 2.1. Σ is a csL surface in S^5 if it is a critical point of the volume functional among Legendrian surfaces.

CsL surfaces in S^5 satisfy the following Euler-Lagrange equation ([3, 7]):

$$\text{div}(JH) = 0.$$

It is obvious that Σ is csL in S^5 when Σ is minimal. The following observation is very important for the study of csL surfaces.

Lemma 2.1. Σ is csL in S^5 iff JH is a harmonic vector field.

By using the Bochner formula for harmonic vector fields (cf. [8]), we get

Lemma 2.2. If Σ is csL in S^5, then

$$\frac{1}{2} \Delta |H|^2 = |\nabla (JH)|^2 + \text{Ric}(JH, JH).$$

From Lemma 2.2 it is easy to see that we have

Lemma 2.3. If $\Sigma \subset S^5$ is csL and non-minimal, then the zero set of H is isolate and

$$\Delta \log |H| = \kappa$$

provided $H \neq 0$, where κ is the Gauss curvature of Σ.

We then prove that every complete Willmore Legendrian surface in S^5 must be a minimal surface. Firstly, we rewrite the Willmore operator acting on Legendrian surfaces, i.e., we prove the following
Proposition 2.4. Assume that \(\Sigma \) is a Legendrian surface in \(S^5 \), then its Willmore operator can be written as

\[
\tilde{W}(\Sigma) = \frac{1}{2} \left\{ -J \nabla \text{div}(JH) + B(JH, JH) - \frac{1}{2} |H|^2 H - 2 \text{div}(JH)R \right\}.
\]

In particular, the Euler-Lagrange equation of Willmore Legendrian surfaces in \(S^5 \) is

\[
-J \nabla \text{div}(JH) + B(JH, JH) - \frac{1}{2} |H|^2 H - 2 \text{div}(JH)R = 0. \tag{2.4}
\]

Proof. Let \(\{v_1, v_2, R\} \) be a local orthonormal frames of the normal bundle of \(\Sigma \), then the Willmore equation (1.1) can be rewritten as

\[
\Delta^\nu H + \sum_a \langle A^a, A^H \rangle v_a - \frac{1}{2} |H|^2 H = 0.
\]

Note that by (2.8) in [9] we have

\[
\nabla_X^e (JY) = (\tilde{\nabla}_X^e (JY))^\nu = ((\tilde{\nabla}_X^e JY + J\tilde{\nabla}_X^e Y)^\nu = J \nabla_X Y + g(X, Y)R
\]

for \(X, Y \in \Gamma(T\Sigma) \), where \(\tilde{\nabla} \) denotes the covariant derivative of \(S^5 \). Choose a local orthonormal frame field around \(p \) with \(\nabla_{e_i} e_j \mid_p = 0 \), then

\[
J \nabla_{e_i} (JH) = \nabla_{e_i}^e (J(JH)) - g(e_i, JH)R
= -\nabla_{e_i}^e H - g(e_i, JH)R
\]

and

\[
J \nabla_{e_i} (\nabla_{e_i} (JH)) = \nabla_{e_i}^e (J \nabla_{e_i} (JH)) - g(e_i, \nabla_{e_i} JH)R
= \nabla_{e_i}^e (-\nabla_{e_i}^e H - g(e_i, JH)R - g(e_i, \nabla_{e_i} JH)R
= -\nabla_{e_i}^e H - 2g(e_i, \nabla_{e_i} (JH)R - g(e_i, JH)R)
\]

where in the last equality we used (2.7) in [9]. Therefore we obtain

\[
\Delta^\nu H = -J \Delta(JH) - H - 2 \text{div}(JH)R,
\]

which implies that \(\Sigma \) satisfies the following equation

\[
-J \Delta(JH) + \sum \langle A^a, A^H \rangle v_a - \frac{1}{2} \left(2 + |H|^2 \right) H - 2 \text{div}(JH)R = 0.
\]

In addition, by [9, Lemma 2.9], the dual one form of \(JH \) is closed, thus by the Ricci identity we have

\[
\Delta(JH) = \nabla \text{div}(JH) + \kappa JH.
\]

The Proposition is then a consequence of the following Claim together with above two identities.

Claim.

\[
2\kappa = 2 + |H|^2 - |B|^2;
\]

\[
\sum \langle A^a, A^H \rangle v_a - \frac{1}{2} |B|^2 H = B(JH, JH) - \frac{1}{2} |H|^2 H.
\]
Proof. The first equation is obvious by the Gauss equation (2.2). The second equation can be proved by the Gauss equation (2.2) and the tri-symmetry of the tensor σ (see (2.1)). To be precise, for every tangent vector field $Z \in T\Sigma$ we have

$$\langle B(JH, JH), JZ \rangle - \sum_{i,j} \langle A_{ij} JH, JZ \rangle = -\langle B(Z, HJ), H \rangle - \sum_i \langle B(Z, e_i), (B(JH, e_i)) - \langle B(Z, HJ), H \rangle$$

This completes the proof of the second equation.

Now we are in position to prove the following

Theorem 2.5. Every complete Willmore Legendrian surface in S^5 is a minimal surface.

Proof. We prove by a contradiction argument. Assume that Σ is a complete Willmore Legendrian surface in S^5 which is not a minimal surface. If $H \neq 0$, then let $\{e_1 = \frac{JH}{|H|}, e_2\}$ be a local orthonormal frame field of $T\Sigma$. From (2.4) we have

$$B(e_1, e_1) = -\frac{1}{2} |H| Je_1,$$

which also implies that

$$B(e_2, e_2) = -\frac{1}{2} |H| Je_1, \quad h_{11}^2 = 0.$$

Then by the Gauss equation (2.2) we have

$$\kappa = 1 + \langle B(e_1, e_1), B(e_2, e_2) \rangle - |B(e_1, e_2)|^2$$

$$= 1 + \frac{1}{4} |H|^2 - |h_{12}|^2 - |h_{22}|^2$$

$$= 1 + \frac{1}{4} |H|^2 - |h_{22}|^2$$

$$= 1.$$

Since Σ is a Willmore Legendrian surface, from (2.4) we see that $\text{div}(JH) = 0$. By Lemma 2.3 the minimal points of Σ are discrete and so the Gauss curvature of Σ equals one everywhere on Σ, therefore Σ is compact by Bonnet-Myers theorem. Apply Lemma 2.2 to obtain that on Σ

$$\frac{1}{2} \Delta |H|^2 = |\nabla(JH)|^2 + |H|^2.$$

Then the maximum principle implies that $H \equiv 0$, which is a contradiction. Therefore Σ is a minimal Legendrian surface in S^5.

□
3. Examples of csL Willmore surfaces in \mathbb{S}^5

From the definition we see that complete Willmore Legendrian surfaces, which are minimal surfaces by Theorem 2.5 in the last section, are trivial examples of csL Willmore surfaces in \mathbb{S}^5. Thus it is very natural and important to find nonminimal csL Willmore surfaces in \mathbb{S}^5. This will be done in this section by analyzing a very close relationship between csL Willmore surfaces and csL surfaces in \mathbb{S}^5.

Assume that Σ is a csL Willmore surface in \mathbb{S}^5, then since the variation vector field on Σ under Legendrian deformations can be written as $J\nabla u + \frac{1}{2}u R$ for smooth function u on Σ (cf. [21, Lemma 3.1]), we have

$$0 = \int_{\Sigma} \left(\nabla (\nabla u) + JH u \right) d\mu_{\Sigma}$$

$$= \int_{\Sigma} \left(\nabla (\nabla u) + \frac{1}{2}u R \right) d\mu_{\Sigma}$$

$$= \int_{\Sigma} \nabla \left(\nabla u + JH u \right) d\mu_{\Sigma}$$

where in the last equality we used $(\nabla (\nabla u), R) = -2 \text{div}(JH)$, by Proposition 2.4. Therefore Σ satisfies the following Euler-Lagrange equation:

$$\text{div} \left(J\nabla (\nabla u) + JH u \right) = 0.$$ \hspace{1cm} (3.1)

Remark 3.1. Note that the coefficient of the Euler-Lagrange equation (3.1) for csL Willmore surfaces in \mathbb{S}^5 is slightly different with [9, equation (1.7)]. That is because here we use the notation $H = \text{tr} \ B$, whereas in [9] we defined $H = \frac{1}{2} \text{tr} \ B$.

Then by (2.4), Σ satisfies the following equation.

$$\text{div} \left(\nabla \text{div}(JH) + JB(JH, JH) - \frac{1}{2}|H|^2 JH - 4JH \right) = 0.$$ \hspace{1cm} (3.2)

In addition, by the four-symmetric of (σ_{ijkl}) (see (2.3)), a direct computation shows

$$\text{div}(JB(JH, JH)) = 2 \text{tr} \left(B(\cdot, \nabla(JH)), H \right) + \frac{1}{2} \nabla_{JH} |H|^2.$$ \hspace{1cm} (3.3)

Therefore Σ satisfies the following equation

$$\Delta \text{div}(JH) + 2 \text{tr} \left(B(\cdot, \nabla(JH)), H \right) - \frac{1}{2}|H|^2 \text{div}(JH) - 4 \text{div}(JH) = 0.$$ \hspace{1cm} (3.4)

Therefore we have

Proposition 3.1. Assume that Σ is a csL surface in \mathbb{S}^5 and $\text{tr} \left(B(\cdot, \nabla(JH)), H \right) = 0$, then Σ is a csL Willmore surface.

With the aid of Proposition 3.1, we can find the following examples of csL Willmore surfaces from csL surfaces in \mathbb{S}^5. Firstly, according to Proposition 3.1, all closed Legendrian surfaces with parallel tangent vector field JH, which are exactly minimal surfaces or the Calabi tori (cf. [10, Proposition 3.2]), are csL Willmore surfaces. For reader’s convenience, we give some detailed computations as follows.

Example 3.1 (Calabi tori). For every four nonzero real numbers r_1, r_2, r_3, r_4 with $r_1^2 + r_2^2 = r_3^2 + r_4^2 = 1$, the Calabi torus Σ is a csL surface in \mathbb{S}^5 defined as follows.

$$F: \mathbb{S}^1 \times \mathbb{S}^1 \mapsto \mathbb{S}^5,$$

$$(t, s) \mapsto \left(r_1 r_3 \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} + \frac{r_4}{r_3} \right) \right), r_1 r_4 \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} - \frac{r_3}{r_4} \right) \right), r_2 \exp \left(-\sqrt{-1} \frac{r_1}{r_2} \right) \right).$$
Denote
\[\phi_1 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} + \frac{r_3}{r_4} \right) \right), \quad \phi_2 = \exp \left(\sqrt{-1} \left(\frac{r_2}{r_1} - \frac{r_3}{r_4} \right) \right), \quad \phi_3 = \exp \left(-\sqrt{-1} \frac{r_4}{r_2} \right), \]
then \(F(t, s) = (r_1 r_3 \phi_1, r_1 r_4 \phi_2, r_2 \phi_3) \). Since
\[\frac{\partial F}{\partial t} = \left(\sqrt{-1} r_2 r_3 \phi_1, \sqrt{-1} r_2 r_4 \phi_2, -\sqrt{-1} r_1 \phi_3 \right), \]
\[\frac{\partial F}{\partial s} = \left(\sqrt{-1} r_1 r_4 \phi_1, -\sqrt{-1} r_1 r_3 \phi_2, 0 \right), \]
the induced metric in \(\Sigma \) is given by
\[g = dt^2 + r_1^2 ds^2. \]
Let \(E_1 = \frac{\partial F}{\partial t}, E_2 = \frac{1}{r_1} \frac{\partial F}{\partial r_1} \), then \(\{ E_1, E_2, v_1 = \sqrt{-1} E_1, v_2 = \sqrt{-1} E_2, R = -\sqrt{-1} F \} \) is a local orthonormal frame of \(S^5 \) such that \(\{ E_1, E_2 \} \) is a local orthonormal tangent frame and \(R \) is the Reeb field. A direct calculation yields
\[\frac{\partial v_1}{\partial t} = \left(-\sqrt{-1} \frac{r_2 r_3}{r_1} \phi_1, -\sqrt{-1} \frac{r_2 r_4}{r_1} \phi_2, -\sqrt{-1} \frac{r_2}{r_1} \phi_3 \right), \]
\[\frac{\partial v_1}{\partial s} = \left(-\sqrt{-1} \frac{r_2 r_3}{r_4} \phi_1, \sqrt{-1} \frac{r_2 r_4}{r_4} \phi_2, 0 \right), \]
\[\frac{\partial v_2}{\partial t} = \left(-\sqrt{-1} \frac{r_2 r_4}{r_1} \phi_1, \sqrt{-1} \frac{r_2 r_3}{r_1} \phi_2, 0 \right), \]
\[\frac{\partial v_2}{\partial s} = \left(-\sqrt{-1} \frac{r_2}{r_4} \phi_1, -\sqrt{-1} \frac{r_2}{r_4} \phi_2, 0 \right), \]
\[\frac{\partial R}{\partial t} = (r_2 r_3 \phi_1, r_2 r_4 \phi_2, -r_1 \phi_3), \]
\[\frac{\partial R}{\partial s} = (r_1 r_4 \phi_1, -r_1 r_3 \phi_2, 0). \]
Hence,
\[A^r = -\Re \langle dF, dv_1 \rangle = \left(\frac{r_2}{r_1} - \frac{r_1}{r_2} \right) dt^2 + r_1 r_2 ds^2, \]
\[A^{v_1} = -\Re \langle dF, dv_2 \rangle = 2 r_2 dt ds + r_1 \left(\frac{r_4}{r_3} - \frac{r_3}{r_4} \right) ds^2, \]
\[A^R = 0. \]
Thus
\[H = \left(\frac{2 r_2}{r_1} - \frac{r_1}{r_2} \right) v_1 + \frac{1}{r_1} \left(\frac{r_4}{r_3} - \frac{r_3}{r_4} \right) v_2. \]
Moreover \(E_1 \) and \(E_2 \) are two parallel tangent vector field. It is obvious that \(\Sigma \) is a csL Willmore surface.

Secondly, we give some examples that \(JH \) is not parallel. Mironov [15] constructed the following new csL surfaces in \(S^5 \). We will verify that Mironov’s examples are in fact csL Willmore surfaces.

Example 3.2 (Mironov’s examples [15]). Let \(F : \Sigma^2 \mapsto S^5 \) be an immersion. Then \(F \) is a Legendrian immersion iff
\[\langle F_*, F \rangle = \langle F_y, F \rangle = 0. \]
Here \(\{x, y\} \) is a local coordinates of \(\Sigma \) and \(\langle, \rangle \) stands for the hermitian inner product in \(\mathbb{C}^3 \). Set

\[
G = \begin{pmatrix} F \\ F_x \\ F_y \end{pmatrix},
\]

then

\[
GG^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \langle F_x, F_x \rangle & \langle F_x, F_y \rangle \\ 0 & \langle F_y, F_x \rangle & \langle F_y, F_y \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix},
\]

where \(g \) is a real positive matrix which is the induce metric of \(\Sigma \). There is a hermitian matrix \(\Theta \) such that

\[
G = \begin{pmatrix} 1 & 0 \\ 0 & g^{1/2} \end{pmatrix} e^{-\sqrt{-1} \Theta}.
\]

We compute

\[
GG^T = \begin{pmatrix} 0 & -\langle F_x, F_x \rangle & -\langle F_x, F_y \rangle \\ \langle F_x, F_x \rangle & \langle F_x, F_x \rangle & \langle F_x, F_y \rangle \\ \langle F_y, F_x \rangle & \langle F_y, F_x \rangle & \langle F_y, F_y \rangle \end{pmatrix} \implies \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix} x \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix} e^{\sqrt{-1} \Theta}
\]

Hence

\[
\mathbb{R} \left(\sqrt{-1} GG^T \right) = \begin{pmatrix} 0 & 0 \\ 0 & A \sqrt{-1} \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \mathbb{R} \left(\sqrt{-1} e^{-\sqrt{-1} \Theta} \right) \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix},
\]

which implies

\[
\begin{pmatrix} 0 & 0 \\ 0 & g^{-1/2} A \sqrt{-1} g^{1/2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & A \sqrt{-1} \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \mathbb{R} \left(\sqrt{-1} e^{-\sqrt{-1} \Theta} \right) \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix}.
\]

Similarly,

\[
\begin{pmatrix} 0 & 0 \\ 0 & g^{-1/2} A \sqrt{-1} g^{1/2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & A \sqrt{-1} \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \mathbb{R} \left(\sqrt{-1} e^{-\sqrt{-1} \Theta} \right) \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{-1} \end{pmatrix}.
\]

The Lagrangian angle is then given by \(\theta = tr \mathbb{R} \Theta \). The above discussion implies that

\[
J \nabla \theta = H.
\]

Let \(a, b, c \) are three positive constants and consider the following immersion

\[
F : \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^5,
\]

\[
(x, y) \mapsto \left(\phi(x)e^{\sqrt{-1} \gamma}, \psi(x)e^{\sqrt{-1} \delta}, \xi(x)e^{\sqrt{-1} \gamma} \right),
\]

8
where
\[\phi(x) = \sqrt{\frac{c}{a+c}} \sin x, \]
\[\psi(x) = \sqrt{\frac{c}{b+c}} \cos x, \]
\[\zeta(x) = \sqrt{\frac{a \sin^2 x}{a+c} + \frac{b \cos^2 x}{b+c}}. \]

where
\[u(x) = \frac{c(a + b + (b - a) \cos(2x))}{2}. \]

One can check that \(F \) is a Legendrian immersion. Denote \(\Sigma := F(\mathbb{S}^1 \times \mathbb{S}^1) \). Notice that
\[F_x = \left(\sqrt{\frac{c}{a+c}} \cos x e^{\sqrt{-1} \theta_0} - \sqrt{\frac{c}{b+c}} \sin x e^{\sqrt{-1} \theta_0}, \frac{-c(b-a) \sin(2x)}{2 \sqrt{(a+c)(b+c)(ab+u(x))}} e^{-\sqrt{-1} \theta_0} \right), \]
\[F_y = \left(-1a \phi(x)e^{\sqrt{-1} \theta_0}, -1b \phi(x)e^{\sqrt{-1} \theta_0}, -1c \zeta(x)e^{-\sqrt{-1} \theta_0} \right). \]

The induced metric \(g \) is given by
\[g = \left[\begin{array}{cc} \frac{c \cos^2 x}{a+c} + \frac{c \sin^2 x}{b+c} + \frac{c^2(b-a)^2 \sin^2(2x)}{4(a+c)(b+c)(ab+u(x))} & \frac{2}{a+c} \frac{a \sin^2 x}{a+c} + \frac{b \cos^2 x}{b+c} \\ \frac{2}{a+c} \frac{a \sin^2 x}{a+c} + \frac{b \cos^2 x}{b+c} & \frac{2}{a+c} \frac{a \sin^2 x}{a+c} + \frac{b \cos^2 x}{b+c} \end{array} \right] dx^2 + \frac{u(x)}{ab+u(x)} dy^2 \]
\[:= e^{2\varphi(x)} dx^2 + e^{2\varphi(x)} dy^2. \]

A strait forward calculation yields that
\[A^{\sqrt{-1} F_x} = \Re \left(\begin{array}{cc} 0 & \sqrt{-1}(F_{x}, F_{x}) \\ 0 & \sqrt{-1}(F_{y}, F_{y}) \end{array} \right) = \left(\begin{array}{cc} 0 & c \left(1 - e^{2\varphi(x)}\right) \\ c \left(1 - e^{2\varphi(x)}\right) & 0 \end{array} \right), \]
\[A^{\sqrt{-1} F_y} = \Re \left(\begin{array}{cc} -\sqrt{-1}(F_{x}, F_{y}) & 0 \\ 0 & \sqrt{-1}(F_{y}, F_{y}) \end{array} \right) = \left(\begin{array}{cc} c \left(1 - e^{2\varphi(x)}\right) & 0 \\ 0 & (a + b - c)e^{2\varphi(x)} - abc \end{array} \right). \]

We get
\[\Re \left(\sqrt{-1} e^{\sqrt{-1} \theta_0} \left(e^{-\sqrt{-1} \theta_0} \right) \right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \frac{abc}{u \sqrt{ab+u}} & 0 \\ \frac{abc}{u \sqrt{ab+u}} & 0 & 0 \end{array} \right), \]
\[\Re \left(\sqrt{-1} e^{\sqrt{-1} \theta_0} \left(e^{-\sqrt{-1} \theta_0} \right) \right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \frac{abc}{u} & 0 \\ \frac{abc}{u} & 0 & 0 \end{array} \right), \]
\[\Re \left(\sqrt{-1} e^{\sqrt{-1} \theta_0} \left(e^{-\sqrt{-1} \theta_0} \right) \right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & \frac{abc}{u} & 0 \\ \frac{abc}{u} & 0 & 0 \end{array} \right). \]
Thus
\[H \nabla^2 F_c = 0, \quad H \nabla^2 F_c = a + b - c. \]

We get
\[H = \frac{a + b - c}{u(x)} \sqrt{-1} \frac{\partial}{\partial y}, \]
and
\[\nabla_{\partial_i} \left(\sqrt{-1} H \right) = \frac{(a + b - c)u}{2u^2} \frac{\partial}{\partial y}, \quad \nabla_{\partial_i} \left(\sqrt{-1} H \right) = \frac{(ab + u)(a + b - c)u}{2u^2} \frac{\partial}{\partial x}. \]

In particular
\[\text{div} \left(\sqrt{-1} H \right) = 0. \]

Hence \(\Sigma \) is csL. Moreover
\[\sum_{i=1}^{2} \langle B(e_i, \nabla_{e_i} (JH)), H \rangle = 0. \]

Therefore, \(\Sigma \) is a csL Willmore surface in \(S^5 \).

References

[1] Bauer, M., Kuwert, E., 2003. Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not., 553–576.
URL: https://doi.org/10.1155/S1073792803208072

[2] Blair, D.E., 2010. Riemannian geometry of contact and symplectic manifolds. volume 203 of Progress in Mathematics. Second ed., Birkhäuser Boston, Inc., Boston, MA.
URL: https://doi.org/10.1007/978-0-8176-4959-3

[3] Castro, I., Li, H., Urbano, F., 2006. Hamiltonian-minimal Lagrangian submanifolds in complex space forms. Pacific J. Math. 227, 43–63.
URL: https://doi.org/10.2140/pjm.2006.227.43

[4] Castro, I., Urbano, F., 1993. Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form. Tohoku Math. J. (2) 45, 565–582.
URL: https://doi.org/10.2748/tmj/1178225859

[5] Chen, B.Y., 1983. On the total curvature of immersed manifolds. VI. Submanifolds of finite type and their applications. Bull. Inst. Math. Acad. Sinica 11, 309–328.

[6] Chen, B.Y., 1990. Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101, 501–519.
URL: https://doi.org/10.1007/BF01231513

[7] Mironov, A.E., 2004. New examples of Hamilton-minimal and minimal Lagrangian submanifolds in \(S^n \). Pacific J. Math. 227, 43–63.
URL: https://doi.org/10.1155/S1073792803208072

[8] Minicozzi, II, W.P., 1995. The Willmore functional on Lagrangian tori: its relation to area and existence of smooth minimizers. J. Amer. Math. Soc. 8, 761–791.
URL: https://doi.org/10.1007/BF02152528

[9] Montiel, S., Urbano, F., 2002. A Willmore functional for compact surfaces in the complex projective plane. J. Reine Angew. Math. 546, 139–154.
URL: https://doi.org/10.1007/s00526-017-1183-z

[10] Oh, Y.G., 1990. Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101, 501–519.
URL: https://doi.org/10.1007/BF01231513

[11] Luo, Y., Wang, G., 2015. On geometrically constrained variational problems of the Willmore functional I. The Lagrangian-Willmore problem. J. Geom. Phys. 96, 105–119.
URL: https://doi.org/10.1007/978-3-319-61860-9

[12] Luo, Y., Wang, G., 2014. Min-max theory and the Willmore conjecture. Ann. of Math. (2) 179, 683–782.
URL: https://doi.org/10.4007/annals.2014.179.2.6

[13] Luo, Y., 2015. On Willmore Legendrian submanifolds in \(S^n \) and the Whitney sphere. Ann. Global Anal. Geom. 19, 153–175.
URL: https://doi.org/10.1007/s00526-017-1183-z

[14] Ma, H., Mironov, A.E., Zuo, D., 2018. An energy functional for Lagrangian tori in \(\mathbb{CP}^2 \). Ann. Global Anal. Geom. 53, 583–595.
URL: https://doi.org/10.1007/s10455-017-9589-6

[15] Marques, F.C., Neves, A., 2014. Min-max theory and the Willmore conjecture. Ann. of Math. (2) 179, 683–782.
URL: https://doi.org/10.1007/s00526-017-1183-z

[16] Mironov, A.E., 2004. New examples of Hamilton-minimal and minimal Lagrangian submanifolds in \(S^n \) and \(\mathbb{CP}^n \). Mat. Sb. 195, 89–102.
URL: https://doi.org/10.1070/SM2004v195n01ABEH000974
[18] Oh, Y.G., 1993. Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z. 212, 175–192. URL: https://doi.org/10.1007/BF02571651, doi:10.1007/BF02571651.

[19] Pinkall, U., 1985. Hopf tori in S^3. Invent. Math. 81, 379–386. URL: https://doi.org/10.1007/BF01389060, doi:10.1007/BF01389060.

[20] Simon, L., 1993. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1, 281–326. URL: https://doi.org/10.4310/CAG.1993.v1.n2.a4, doi:10.4310/CAG.1993.v1.n2.a4.

[21] Smoczyk, K., 2003. Closed Legendre geodesics in Sasaki manifolds. New York J. Math. 9, 23–47. URL: http://nyjm.albany.edu:8000/j/2003/9_23.html.

[22] Thomassen, G., 1924. Grundlagen der konformen flächentheorie. Abh. Math. Sem. Univ. Hamburg 3, 31–56. URL: https://doi.org/10.1007/BF01389060, doi:10.1007/BF01389060.

[23] Weiner, J.L., 1978. On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27, 19–35. URL: https://doi.org/10.1512/iumj.1978.27.27003, doi:10.1512/iumj.1978.27.27003.

[24] White, J.H., 1973. A global invariant of conformal mappings in space. Proc. Amer. Math. Soc. 38, 162–164. URL: https://doi.org/10.2307/2038790, doi:10.2307/2038790.

[25] Willmore, T.J., 1965. Note on embedded surfaces. An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 11B, 493–496.