Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment

Paula Maria Quaglio Bellozi1, Isabel Vieira de Assis Lima1, Juliana Guimarães Dória2, Érica Leandro Marciano Vieira3, Alline Cristina Campos4, Eduardo Candelario-Jalil5, Helton José Reis1, Antônio Lúcio Teixeira3, Fabíola Mara Ribeiro2 & Antônio Carlos Pinheiro de Oliveira1

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease and the main cause of dementia. Substantial evidences indicate that there is over-activation of the PI3K/Akt/mTOR axis in AD. Therefore, the aim of the present study was to investigate the effects of NVP-BEZ235 (BEZ; dactolisib), a dual PI3K/mTOR inhibitor that is under phase I/II clinical trials for the treatment of some types of cancer, in hippocampal neuronal cultures stimulated with amyloid-β (Aβ) 1–42 and in mice injected with Aβ 1–42 in the hippocampus. In cell cultures, BEZ reduced neuronal death induced by Aβ. BEZ, but not rapamycin, a mTOR inhibitor, or LY294002, a PI3K inhibitor that also inhibits mTOR, reduced the memory impairment induced by Aβ. The effect induced by Aβ was also prevented in PI3Kγ−/− mice. Neuronal death and microgliosis induced by Aβ were reduced by BEZ. In addition, the compound increased IL-10 and TNF-α levels in the hippocampus. Finally, BEZ did not change the phosphorylation of Akt and p70S6K, suggesting that the involvement of PI3K and mTOR in the effects induced by BEZ remains controversial. Therefore, BEZ represents a potential strategy to prevent the pathological outcomes induced by Aβ and should be investigated in other models of neurodegenerative conditions.

Alzheimer’s Disease (AD) is the main cause of dementia and affects more than 35 million people1,2. It is a neurodegenerative progressive disease associated with memory deficits1, and its major risk factor is aging1. The classical neuropathological markers of AD are extracellular plaques of amyloid-β (Aβ) peptide and neurofibrillary intracellular tangles of hyperphosphorylated tau protein3.

The Aβ peptide is originated from the amyloid protein precursor (APP) cleavage by β- and γ-secretase2,4,5. The peptide aggregates and accumulates in the brain as diffuse and compact plaques6. Indeed, a wide range of studies shows that intracerebral injection of this peptide in mice can induce AD related cognitive and cerebral changes7–12. The disease is characterized by synaptic impairment7, neurotrophin and neurotransmitter imbalance, mitochondrial dysfunction, oxidative stress, intracellular calcium increase and cell cycle failure13. The most severe changes are in hippocampus, as well as in cortical and subcortical regions14, which are associated with the AD memory deficits15.

Neuroinflammation is also an important component of the disease, which starts as a defense mechanism against the Aβ deposition in the brain, but can lead to neurodegeneration16. The neuroinflammatory process in AD includes disruption of blood-brain barrier and overactivation of glial cells, such as microglia17. The microglia

1Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. 2Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. 3Department of Internal Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Brazil. 4Department of Pharmacology, Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil. 5Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA. Correspondence and requests for materials should be addressed to A.C.P. (email: antoniooliveira@icb.ufmg.br)
role in AD is not completely clear since these cells can have either a beneficial role, phagocytizing amyloid plaques, or a deleterious one, releasing inflammatory cytokines and reactive oxygen species17.

In spite of all advances in the study of AD, its treatment is still symptomatic, based on cholinergic neurotransmission increase by using acetylcholinesterase inhibitors, e.g. rivastigmine, and reducing glutamatergic hyperexcitability, with memantine18. These drugs do not prevent the progression of the disease19, being necessary the study of other pathways involved in AD, in order to develop new and more effective pharmacological strategies of treatment.

The regulation of the signaling pathway phosphatidylinositol 3-kinase (PI3K) / protein kinase B (Akt) / mammalian target of rapamicin (mTOR) is important for healthy aging and longevity1, since it is involved in cellular metabolism, growing and survival20. Abnormalities in this pathway are associated with several conditions, including neurodegenerative processes1. The main PI3K target to control cell growth and migration is Akt, which, in turn, phosphorylates various cellular substrates. The activation of Akt leads to the downstream activation of mTOR complex21,22, which is involved in synaptic regulation and, hence, cognitive processing. The disruption of PI3K pathway can cause detrimental effects on learning and memory processes. In AD, mTOR hyperactivation accounts for abnormal and increased protein translation in synapses23,24. Studies have shown abnormal and sustained activation of PI3K/Akt/mTOR pathway in AD25, as well as increased levels of phosphorylated mTOR and decreased cell cycle inhibitors, resulting in mTOR signaling changes22. The increased activity of mTOR pathway can induce Aβ production26. In addition, the inhibition of PI3Kγ, an isoform of PI3K, by AS605240, following intracerebroventricular Aβ 1–40 injection, reduces the parameters associated with AD, such as astrocyte and microglia cell accumulation in hippocampus, cognitive deficits and synaptic dysfunction10. The decreased mTOR signaling can induce the autophagy and lysosomal degradation of Aβ19. Thus, dual inhibition of PI3K and mTOR would be a potentially more effective mean to inhibit this pathway24,28.

Besides, PI3K and mTOR inhibitors are being developed for the treatment of some types of cancer, due to their apoptotic and antiproliferative effects. Importantly, recent studies have demonstrated beneficial effects of anticancer drugs in animal models of Alzheimer’s disease20–33. Therefore, the investigation of an anticancer drug that inhibits PI3K and mTOR may represent a potential therapeutic strategy to treat this pathological condition. NVP-BEZ235 (BEZ, Dactolisib) is an imidazoquinoline, which is in clinical phase studies I/II to treat solid tumors26,34. It has been demonstrated that this drug can regulate the production of inflammatory mediators in rat primary microglia35,36. Therefore, in the present study, we evaluated the effects of BEZ on behavioral, biochemical and histological effects induced by Aβ1–42 in vitro and in vivo.

Results

BEZ prevents neuronal death induced by Aβ in hippocampal neuronal cultures. In order to investigate whether BEZ would prevent the toxic effects of Aβ, we first determined the optimal concentration of Aβ peptide required for inducing neuronal death in vitro. The baseline cell death in non-treated neuronal cultures (percentage) was observed in controls (20.760 ± 0.630, n = 3). Incubation of the cultures with Aβ at 0.74 μM, 2.21 μM or 6.64 μM resulted in a significant increase in cell death with percent values of 36.770 ± 2.924 (p < 0.05, n = 4), 33.680 ± 3.339 (p < 0.05, n = 4) and 54.010 ± 5.119 (p < 0.001, n = 3), respectively.

To evaluate the cell death induced by the drugs themselves, we treated the cultures without Aβ peptide required for inducing neuronal death in vitro. The treatment of the wild-type animals with BEZ, rapamycin or LY294002, as well as the injection of intracerebroventricular Aβ 1–40, reduces the parameters associated with AD, such as astrocyte and microglia cell accumulation in hippocampus, cognitive deficits and synaptic dysfunction10. The decreased mTOR signaling can induce the autophagy and lysosomal degradation of Aβ19. Thus, dual inhibition of PI3K and mTOR would be a potentially more effective mean to inhibit this pathway24,28.

As we demonstrated a reduction of neuronal cell death induced by BEZ in vitro, we further investigated whether this compound could improve the memory deficits induced by Aβ. To assess the memory impairment of mice submitted to the hippocampal Aβ3 injection, the new object recognition task was performed. Animals that received Aβ3 and were treated with vehicle presented memory deficits (51.980 ± 5.214%, n = 14), but no memory impairment was observed in groups PBS + vehicle (69.830 ± 3.616%; p < 0.001, n = 14) and PBS + BEZ 25 mg/kg (70.760 ± 4.589%; p < 0.05, n = 4). Moreover, memory deficit induced by Aβ3 was prevented by the higher dose of BEZ (25 mg/kg; 71.690 ± 2.365%; p < 0.001, n = 11), but not by the lower dose of the compound (5 mg/kg; 62.320 ± 5.901%; n = 8) (Fig. 1A,B). Aβ3 (6.64 μM) induced a significant increase in cell death (51.710 ± 3.144; p < 0.001, n = 7) (Fig. 1C,D), which was reversed both by memantine 30 μM (38.140 ± 3.166; p < 0.05, n = 4) and BEZ 20 μM (28.900 ± 2.983; p < 0.01, n = 4) (Fig. 1E–G).

BEZ prevents Aβ induced memory deficits in the Object Recognition Task. As we demonstrated a reduction of neuronal cell death induced by BEZ in vitro, we further investigated whether this compound could improve the memory deficits induced by Aβ. To assess the memory impairment of mice submitted to the hippocampal Aβ3 injection, the new object recognition task was performed. Animals that received Aβ3 and were treated with vehicle presented memory deficits (51.980 ± 5.214%, n = 14), but no memory impairment was observed in groups PBS + vehicle (69.830 ± 3.616%; p < 0.001, n = 14) and PBS + BEZ 25 mg/kg (70.760 ± 4.589%; p < 0.05, n = 4). Moreover, memory deficit induced by Aβ3 was prevented by the higher dose of BEZ (25 mg/kg; 71.690 ± 2.365%; p < 0.001, n = 11), but not by the lower dose of the compound (5 mg/kg; 62.320 ± 5.901%; n = 8) (Fig. 2A). The total distance travelled did not differ between the groups (Fig. 2D). In order to investigate the involvement of PI3K and mTOR pathway inhibition in the effects mediated by BEZ, we also treated a group of animals, which underwent Aβ3 injection, with LY294002 (25 mg/kg), a well-known pan PI3K inhibitor that also inhibits mTOR24,37. We further used another group with rapamycin (5 mg/kg) treatment, a mTOR inhibitor, as well as PI3Kγ knockout (PI3Kγ−/−) mice. Memory impairment was not prevented both by LY294002 (64.190 ± 8.174%; n = 7), in spite of the trend to recovery (p = 0.133), and rapamycin (46.070 ± 6.628%; p = 0.57, n = 9). However, PI3Kγ−/− mice did not reveal memory deficit (68.450 ± 4.124; p < 0.01, n = 9) after Aβ3 injection. The total distance travelled by the animals treated with LY294002 and rapamycin was not statistically different from the other group (Fig. 2B,E), indicating that different recognition indexes of new object over the groups were not related to motor disability. On the other hand, PI3Kγ−/− mice traveled a longer distance (11.360 ± 1.017; n = 9) in comparison with the Aβ3 + vehicle (4.548 ± 1.030; p < 0.001, n = 4) and PBS + vehicle (7.681 ± 0.404; p < 0.01, n = 5) groups (Fig. 2C,F).

The treatment of the wild-type animals with BEZ, rapamycin or LY294002, as well as the injection of amyloid-β in PI3Kγ−/− mice did not induce body weight (g) changes at any administered doses (data not shown).
BEZ prevents hippocampal neuronal death induced by Aβ. One mechanism by which BEZ could prevent the memory impairment induced by Aβ would be the reduction of neuronal cell death induced by the peptide. To investigate this issue, we stained hippocampal slices with Fluoro-Jade C (FJC), a gold standard marker for degenerating neurons. Indeed, previously published data demonstrated that FJC staining is increased at 24 h, 8 and 15 days after the injection of the peptide. Intrahippocampal injection of Aβ induced neuronal death (FJC positive cells; pixels/μm²) in the CA1 layer of the ipsilateral hippocampus of animals treated with vehicle (2.481 ± 0.673, n = 11), when compared with groups PBS + vehicle (0.579 ± 0.094; p < 0.05, n = 8) and PBS + BEZ 25 mg/kg (0.598 ± 0.042; p < 0.05, n = 5). Treatment with BEZ 5 mg/kg (1.101 ± 0.168; p < 0.05, n = 5) significantly reduced the cell death induced by Aβ. These results suggest that BEZ may be a potential therapeutic agent for the treatment of Alzheimer's disease.
n = 7) and 25 mg/kg (0.853 ± 0.201; p < 0.05, n = 8) prevented the Aβ induced neuronal death (Fig. 2G,J–N). There was no significant change in neuronal death in the CA1 layer of contralateral hippocampus among all the groups [PBS + vehicle (0.347 ± 0.065, n = 8), PBS + BEZ 25 mg/kg (0.770 ± 0.146, n = 6), Aβ + vehicle (0.454 ± 0.079, n = 11), Aβ + BEZ 5 mg/kg (0.668 ± 0.140, n = 7) and Aβ + BEZ 25 mg/kg (0.551 ± 0.134, n = 8)].

In addition, we investigated whether PI3K and mTOR inhibition would also reduce FJC staining induced by Aβ. The treatment with LY294002 reduced the FJC staining in the ipsilateral hippocampus [PBS + vehicle (0.544 ± 0.091, n = 5), Aβ + vehicle (3.315 ± 1.430, n = 4) and Aβ + LY294002 25 mg/kg (0.333 ± 0.048, n = 5); p < 0.05] (Fig. 2H,O), although no changes in FJC staining were found in the contralateral hippocampus [PBS + vehicle (0.381 ± 0.067, n = 6), Aβ + vehicle (0.297 ± 0.031, n = 6) and Aβ + LY294002 25 mg/kg (0.280 ± 0.044, n = 6)]. No alteration was observed in the neuronal cell death of either wild-type animals
treated with rapamycin or in PI3Kγ−/− mice in the ipsilateral [PBS + vehicle (0.346 ± 0.048, n = 6), Aβ + vehicle (1.727 ± 0.579, n = 5), Aβ + rapamycin 5 mg/kg (2.554 ± 0.902, n = 7), Aβ + PI3Kγ−/− (1.322 ± 0.435, n = 5)] (Fig. 2L,RQ) and contralateral [PBS + vehicle (0.323 ± 0.054, n = 6), Aβ + vehicle (0.576 ± 0.145, n = 5), Aβ + rapamycin 5 mg/kg (0.883 ± 0.364, n = 6), Aβ + PI3Kγ−/− (1.956 ± 0.753, n = 6)] hippocampi.

Aβ3 and BEZ do not modify BDNF and NGF levels, as well as caspase-3 activation. Different studies have demonstrated the neuroprotective roles of neurotrophins. Thus, we further investigated whether one mechanism by which BEZ reduces cell death is by increasing the levels of these proteins. However, there was no significant change in BDNF and NGF levels (pg/mg of protein) between groups, both in ipsilateral (BDNF: PBS + vehicle = 187.800 ± 16.730, n = 6; Aβ3 + vehicle = 193.700 ± 8.438, n = 6; Aβ3 + BEZ 25 mg/kg = 193.600 ± 28.20, n = 6; NGF: PBS + vehicle = 65.850 ± 6.791, n = 6; Aβ3 + vehicle = 71.350 ± 2.099, n = 5; Aβ3 + BEZ 25 mg/kg = 58.96 ± 6.277, n = 6) and contralateral (BDNF: PBS + vehicle = 189.300 ± 11.210, n = 6; Aβ3 + vehicle = 163.300 ± 11.040, n = 6; Aβ3 + BEZ 25 mg/kg = 198.800 ± 22.980, n = 6; NGF: PBS + vehicle = 47.350 ± 1.572, n = 6; Aβ3 + vehicle = 64.210 ± 7.366, n = 5; Aβ3 + BEZ 25 mg/kg = 57.510 ± 7.116, n = 6) hippocampi.

In addition, in order to investigate whether neuronal death induced by Aβ3 and its prevention by BEZ is through apoptosis prevention, we determined the levels of caspase-3. Therefore, we determined the ratio between the levels of cleaved caspase-3 and total caspase-3, as well as the ratio between total caspase-3 and actin. Nevertheless, no significant differences were identified between groups PBS + BEZ 25 (107.200 ± 2.719 and 105.600 ± 12.720, n = 4), Aβ3 + vehicle (99.430 ± 8.458 and 102.500 ± 6.814, n = 5), Aβ3 + BEZ 5 (103.400 ± 5.698 and 106.500 ± 15.120, n = 5) and Aβ3 + BEZ 25 (102.900 ± 7.261 and 89.010 ± 5.351, n = 5), for cleaved caspase-3/total caspase-3 and total caspase-3/actin, respectively. The groups were compared to the control group PBS + vehicle, which expression was corrected to 100% for the protein (n = 5).

BEZ prevents the increased microglial induction by Aβ3 and alters the levels of cytokines in the hippocampus. As neuroinflammation and microglialosis are important features of AD, we investigated whether the tested doses of the drug were effective to decrease microglialosis through Iba-1 staining, which is a classical marker for microglia41. Intrahippocampal injection of Aβ3 increased microglialosis (Iba-1 positive cells; pixels/μm²) in the CA1 layer of ipsilateral hippocampus of animals treated with vehicle (8.520 ± 1.240, n = 4), when compared with animals in groups PBS + vehicle (3.494 ± 0.155; p < 0.001, n = 4), and PBS + BEZ 25 mg/kg (3.852 ± 0.544; p < 0.001, n = 5). The treatment with BEZ 5 mg/kg (4.264 ± 0.355; p < 0.01, n = 4) and 25 mg/kg (4.402 ± 0.183; p < 0.001, n = 4) prevented the Aβ3 induced increase in Iba-1 positive cells (Fig. 3A–F). There was no significant change in microglial staining in the CA1 layer of the contralateral hippocampus between groups PBS + vehicle (4.469 ± 0.178, n = 5), PBS + BEZ 25 mg/kg (4.514 ± 0.162, n = 5), Aβ3 + vehicle (3.845 ± 0.239, n = 4), Aβ3 + BEZ 5 mg/kg (3.788 ± 0.199, n = 4) and Aβ3 + BEZ 25 mg/kg (4.624 ± 0.298, n = 4).

Considering that microglia are important sources of cytokines, a reduction in their activation or proliferation could alter the production of these inflammatory mediators. Thus, we investigated the effect of BEZ on the production of various cytokines. We first demonstrated that the levels of IL-10 (pg/mg of protein) were significantly higher in ipsilateral hippocampus of animals in group Aβ3 + BEZ 25 mg/kg (0.718 ± 0.108, n = 5) when compared with group PBS + vehicle (0.262 ± 0.033; p < 0.01, n = 6) (Fig. 3G). There was no significant change in IL-10 levels in contralateral hippocampus (Fig. 3I). TNF-α levels were also significantly increased in ipsilateral hippocampus of animals in the group Aβ3 + BEZ 25 mg/kg (0.658 ± 0.218, n = 8), compared to groups PBS + vehicle (0.240 ± 0.018, n = 9) and Aβ3 + vehicle (0.229 ± 0.010, n = 10) (p < 0.05) (Fig. 3H). There was no significant change in TNF-α levels in contralateral hippocampus (Fig. 3I).

Regarding IL-6, one-way ANOVA analysis revealed a general significant difference between all the groups (p < 0.05), albeit post-hoc analysis showed no difference in ipsilateral hippocampus of animals treated with Aβ3 + BEZ 25 mg/kg (0.433 ± 0.156, n = 8) compared to the groups PBS + vehicle (0.167 ± 0.017, n = 9) and Aβ3 + vehicle (0.164 ± 0.011, n = 10) (Fig. 3I). There was no significant change in IL-6 levels in contralateral hippocampus (Fig. 3I).

Finally, there was no significant change in the IL-2, IL-4, IFN-γ and IL-17 levels in both ipsilateral and contralateral hippocampus (Fig. 3K).

BEZ does not change Akt and p70 phosphorylation in the ipsilateral hippocampus. We next investigated whether BEZ would reduce the activation of Akt and p70e6K, two indirect methods to determine PI3K and mTOR activities, respectively, in the hippocampus. The injection of Aβ3 did not induce significant changes in Akt and p70e6K kinase phosphorylation (96.880 ± 7.349%, n = 4 and 109.700 ± 4.686%, n = 3, respectively) when compared to the control group PBS + vehicle, to which the expression was normalized to 100%. The phosphorylation of Akt and p70e6K was also not modified in animals treated with BEZ (25 mg/kg) that received PBS (94.050 ± 6.424%, n = 3 and 114.400 ± 15.36%, n = 4, respectively), as well as in animals that received BEZ (5 mg/kg) (92.920 ± 6.254%, n = 4 and 104.900 ± 15.360%, n = 4, respectively) or BEZ (25 mg/kg) (95.930 ± 8.062%, n = 4 and 90.450 ± 20.66%, n = 4, respectively) that were treated with Aβ3 (Fig. 4A,B).

Discussion
In the present study, we demonstrated that Aβ3 caused neuronal death both in vitro and in vivo, as well as memory impairment and increased microglialosis in hippocampus of mice. We showed that the treatment with BEZ, an anticancer drug, prevented all these pathological alterations. In addition, BEZ increased the levels of IL-10 and TNF-α and there was a trend toward an increase in IL-6 levels in the hippocampus following injection with Aβ3.
After the diagnosis of AD, the disease generally leads patients to cognitive impairments and death into about 3 to 9 years\(^{13}\). Memory impairment and other cognitive deficits are associated with increased dependence and incapacity in AD\(^{42}\). These symptoms are related to the functions of cerebral structures affected, specially hippocampus and neocortical areas\(^{15}\). Once there is no effective therapy against AD progression, there is a great need of pharmacological development in this area\(^{43}\).

The PI3K/Akt/mTOR pathway plays an important role in the integration of synaptic signaling\(^{20}\). A series of evidences suggest that the increase in cell cycle events, loss of neuronal processes and neurotoxicity after exposition to A\(_\beta\) depends on the activation of PI3K pathway. A previous study showed that the blockade of PI3K with wortmannin in mixed neuron-glia cultures treated with A\(_\beta\) reduces microglia activation\(^{44}\). Therefore, the inhibition of this pathway might represent a potential therapeutic strategy for the treatment of AD\(^{45}\). The inhibition with a drug targeting both PI3K and mTOR would be useful, once it would avoid retrograde activation of Akt usually observed after treatment with mTOR inhibitors\(^{26}\).

According to previous reports, A\(_\beta\) injection led to memory impairment\(^{10,39,40,46}\), which was prevented by the BEZ treatment. However, whether PI3K and mTOR inhibition mediates the effects on memory induced BEZ is still controversial. First, we demonstrated that LY294002, a compound known to inhibit PI3K and mTOR, as well as rapamycin, which inhibits mTOR, did not avoid memory impairment in this context. Second, BEZ also
mulate in the vicinity of Aβ molecule.

Moreover, treatment with either BDNF or NGF in animal models of AD is able to improve some features associated with the disease, like the memory impairment. Interestingly, LY294002 also reduced FJC staining induced by Aβ, albeit it did not prevent memory impairment. Indeed, different studies demonstrated that LY294002 reduced memory improvement induced by other drugs, albeit it has no effect on memory per se. Thus, even though a reduction in neuronal cell death induced by LY294002 would improve memory deficits, this effect would be counteracted by its direct effect on cognition. On the other hand, PI3Kγ−/− mice were resistant to the memory impairment, but not neuronal death, induced by Aβ. Importantly, the neuronal cell death observed in the present model is not as intense as observed in other models, such as in neurodegeneration induced by excitotoxic stimuli. Thus, considering that there is a dichotomy between neuronal death induced by Aβ injection and memory, it is possible that different mechanisms underlie the beneficial effects of BEZ.

Since BDNF and NGF promote proliferation, differentiation and survival of neurons and glial cells, as well as mediate cognitive and behavioral responses, we measured their levels in the hippocampus. Other studies have shown a decrease in neurotrophin receptors in cholinergic neurons of patients with AD. It has also been shown that BDNF is reduced both in brains of patients with AD and in cell cultures treated with Aβ plaques, leading to plaque phagocytosis and Aβ degradation. However, due to a sustained activation, microglia also releases pro-inflammatory cytokines, neurotoxins and other substances that can lead to neuronal death. The chronic inflammatory process, associated with the production of inflammatory mediators and cellular stress, increases APP amyloidogenic processing, causing a vicious cycle. In a previous study, we demonstrated here that Aβ increased microgliosis, which was prevented by BEZ treatment. This effect could contribute to the reduced neurotoxicity, and could be associated with the cognitive improvement after the drug treatment. Different studies have shown that cytokines may be involved in the pathogenesis of AD and cognitive dysfunction. IL-10 is a neuroprotective cytokine that interacts with cell surface receptors, especially in glia. IL-10 has some behavioral effects arising from pro-inflammatory cytokines inhibition, showing its potential to ameliorate neuroinflammation, cognitive deficits and neurodegeneration. Previous data showed that this cytokine is able to reduce microgliosis, improve spatial learning in the radial arm water maze and enhance neurogenesis in a transgenic model of AD. Therefore, the improvement in Object Recognition Task could be related to IL-10 increased levels after treatment with BEZ.

Figure 4. Effect of BEZ on Akt and p70S6K phosphorylation 8 days after Aβ injection. Quantification and representative western blotting images of Akt (A) and p70S6K (B) phosphorylation in ipsilateral hippocampus in different treatment groups: PBS + vehicle, PBS + BEZ 25 mg/kg, Aβ + vehicle, Aβ + BEZ 5 mg/kg and Aβ + BEZ 25 mg/kg. Results are expressed as mean ± SEM.
TNF-α plays a central role in cytokine production cascade during the inflammatory response, being predominantly produced by microglia in AD52. Several authors have demonstrated that increased expression of TNF-α participate in the neuroinflammation associated with AD54–56. On the other hand, it has been demonstrated a neuroprotective role of this cytokine against glutamate free radicals and Aβ induced toxicity in cultured neurons52–57. In AD, IL-6 levels are also altered, with increased expression in the vicinity of Aβ plaques and in the cerebrospinal fluid of patients. In spite of stimulating the synthesis of APP in glial cells, increasing the damage in cortical neurons cultures stimulated with Aβ58, IL-6 may also have beneficial roles. Studies with transgenic models for AD showed that IL-6 was important to promote gliosis, leading to clearance of amyloid plaques58–60. Herein, BEZ increased TNF-α and showed a trend to increase in IL-6 levels in the ipsilateral hippocampus. It has been previously shown that BEZ enhances the levels of other inflammatory mediators, such as COX-2, and prostaglandins, such as PGE2 and PGD2, in LPS-stimulated microglia55,56. Nevertheless, no difference in the levels of these cytokines was detected 7 days after the peptide infusion. This could be related to variations between the model and the protocol adopted by our study in comparison with the others.

In this study, we demonstrated that the treatment with BEZ, a PI3K and mTOR inhibitor with anticancer properties, improves mice performance in the object recognition task after intrahippocampal Aβ administration. In parallel with this cognitive effect, treatment induces neuroprotective effects, preventing cell death and reducing microgliaosis. These effects might be related to the change in the production of different cytokines, albeit the mechanism remains unclear. Thus, BEZ might represent a potential drug to prevent the pathological outcomes induced by Aβ. However, more studies are necessary in order to investigate the protective mechanism promoted by BEZ in transgenic AD models.

Methods

Culture of primary hippocampal neurons. Neuronal cultures were prepared from the hippocampus of C57Bl/6 mice neonates up to 1 day of age. After dissection, hippocampal tissue was subjected to digestion with trypsin, followed by cell dissociation. Cells were added to the Neurobasal medium supplemented with N2 and B27, GlutaMAX (2.0 mM), penicillin (50.0 U/ml) and streptomycin (50.0 mg/ml), and then plated on previously prepared poly-L-ornithine four well plates. The cells were incubated at 37 °C and 5% CO2 in a humidified incubator and cultured for 8 days, with medium change every 4 days. Importantly, we have previously established that 95% of the cells in these cultures are neurons61.

Cell death assay. Cell death assay was performed using the Live/ Dead kit (Life Technologies). Neurons were incubated for 20 h in the presence of PBS or Aβ 1–42 (6.64 μM), and treated with DMSO, memantine (30 μM) or BEZ (20 nm). After incubation, neurons were labeled with calcein-AM (2.0 μM) and ethidium homodimer-1 (2.0 μM) solution for 15 minutes in the incubator. Afterward, neurons were washed 3 times with PBS.

Photographs were taken with the microscope EVOS® FLoid® Cell Imaging Station, using 488 nm filter for green images (Calcein-AM) and 633 nm for red images (ethidium homodimer-1). Images were analyzed with ImageJ software. The number of dead cells was expressed as a percentage of total cell number.

Animals. All procedures used in this study were approved and strictly followed the ethical principles of animal experimentation adopted by the Ethic Committee on Animal Use of Federal University of Minas Gerais, and institutionally approved under protocol number 336/2012. Experiments were conducted using male C57Bl/6 mice (25–30 g, 10–12 weeks of age) obtained from Animal Care Facilities of the Institute of Biological Sciences (ICB), and P13Kγ−/−, which were a kind gift from Prof. Mauro M. Teixeira, from ICB - UFMG, Belo Horizonte, Brazil. Animals were kept under controlled room temperature (24 °C) under 12 h:12 h light-dark cycle, with free access to food and water. In total, 86 animals were used in this study.

Drug treatment protocol. Human Aβ 1–42 (Invitrogen) was prepared according to manufacturer instructions. The aggregated peptide (400 pmol/ 0.5 μL/mice) or PBS (vehicle) was administered via intra-hippocampal route. Briefly, the animals were anesthetized with an intraperitoneal (i.p.) injection of ketamine (80 mg/kg) and xylazine (8 mg/kg) and then submitted to stereotactic surgery and intrahippocampal injection. The needle was inserted unilaterally and Aβ 1–42 or PBS solution was injected into the right hippocampus at the following coordinates from bregma: anterior–posterior = −1.9 mm, mediolateral = −1.5 mm, and dorsoventral = −2.3 mm. The confirmation of the correct placement of the needle was made using Cresyl Violet staining (data not shown).

Animals were treated by oral gavage with de dual PI3K and mTOR inhibitor BEZ (2-Methyl-2-(4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl][phenyl]propanenitrile) (LC Laboratories) (5 or 25 mg/kg), diluted in 1-methyl-2-pirrolidone 10% in polyethylene glycol 300, 1 h prior to Aβ 1–42 injection and once a day for 7 days. According to the intra-hippocampal injection (PBS or Aβ 1–42) and the treatment (BEZ or vehicle), they were divided into 5 groups: PBS + vehicle, PBS + BEZ 25 mg/kg, Aβ3 + vehicle, Aβ3 + BEZ 5 mg/kg and Aβ3 + BEZ 25 mg/kg. The doses of BEZ were chosen based on previous published data63–66. Animals were weighed every day before the drug administration. Other animals were treated intraperitoneally with LY294002 (LC Laboratories) 25 mg/kg diluted in DMSO 5%, ethanol 5%, polyethylene glycol 400% in sodium chloride 0.9%, or rapamycin (LC Laboratories) 5 mg/kg diluted in ethanol 4%, polyethylene glycol 400% 5%, tween 80% in sodium chloride 0.9%. The treatment was 1 h prior to Aβ 1–42 injection and once a day for 7 days. In addition, Aβ 1–42 was microinjected also in P13Kγ−/− mice. For the investigation of the effect of LY294002 on memory, the following groups were used: PBS + vehicle, Aβ3 + vehicle, Aβ3 + LY294002 25 mg/kg. To evaluate the effect of rapamycin and genetic deletion of P13Kγ, the following groups were used: PBS + vehicle, Aβ3 + vehicle, Aβ3 + rapamycin 5 mg/kg, Aβ3 in P13Kγ−/− mice. The doses of LY294002 and rapamycin were chosen based on previous published data66–71.
Object Recognition Task. On the 4th day after surgery, the Object Recognition Task was started. The animals were habituated during 5 minutes in an acrylic square box, dimensions 380 × 380 × 15 mm (length × width × height), covered with shavings. On the 5th and 6th days the animals were re-exposed to the box, in which 2 equal objects were introduced diagonally. Animals were let 10 and 5 minutes inside de box, in the 2 subsequently days, respectively. On the 7th day, one of the old objects (OO) was replaced by a new object (NO), and the animals were exposed for 5 minutes. The records were analyzed through ANY-maze software version 4.99, and the recognition index was obtained by the formula: time NO × 100/(time NO + time OO). The total travelled distance was also measured as a control of the test. Animals that did not investigated the objects were not included in the analysis.

Intracardiac perfusion and brain slice preparation. In the last day of treatment, 4 hours after the drug administration a subgroup of animals were anesthetized with ketamine (80 mg/kg) and xylazine (8 mg/kg) via i.p. route and then were subjected to thoracotomy to expose the heart. A hypodermic needle was inserted into the left ventricle, through which PBS and buffered paraformaldehyde (PFA) 4% were administered with the assistance of a peristaltic pump (4 mL/min). Meanwhile, an incision was made in the aortic arch to allow blood output. After completing the perfusion, the animals were decapitated, their brains were removed and stored in buffered PFA 4% overnight. Subsequently, the brains were moved to a 30% sucrose solution, until complete saturation, then were frozen in isopentane 99% and dry ice for 20 seconds and stored at −80 °C. Brains were sliced into 30-μm-thick sections at −20 °C with the aid of a cryostat.

Fluoro-Jade C staining. Fluoro-Jade C (FJC) is an anionic fluorescein derivate used to label degenerating neurons. Although the exact mechanism is not known, different studies have demonstrated that FJC is a reliable dye used to stain dying neurons. The hippocampal slices were washed 3 times in PBS for 30 minutes and mounted on gelatinized slides. After drying, slides were immersed in a basic solution of sodium hydroxide (1%) in ethanol (80%) for 5 min, EtOH (70%) for 2 minutes and rinsed with distilled water for 2 minutes. Protected from light, the slides were incubated in a solution of potassium permanganate (0.06%) for 20 minutes, washed with distilled water for 2 minutes and incubated in FJC (Millipore, Billerica, MA, USA) solution (0.0001%) in acetic acid (0.1%) for 20 minutes. Subsequently, they were washed again twice with distilled water for 1 min. After complete drying, slides were dipped in xylene for 1 minute and coverslipted with DPX (Sigma-Aldrich, St. Louis, MO, USA). The slides were observed under fluorescence microscope Zeiss in 10 × magnification lens and pictures of the CA1 layer of both hippocampi were taken for quantification of labeled cells.

Iba-1 staining. The hippocampal slices were washed 3 times in Tris-Buffered Saline (TBS) for 30 minutes. Free-floating slices were incubated with citrate buffer at 70 °C for 30 minutes, for antigen retrieval. After, blocking solution [BSA (4%), Triton X (0.5%) in TBS] was added to the slices for 2 h, and they were incubated overnight with anti-Iba-1 primary antibody (1:500; Wako Chemicals, Osaka, Japan). On the next day, the slices were incubated with the secondary antibody Alexa Fluor 594 anti-rabbit (1:1000; Invitrogen, Carlsbad, CA, USA) for 1 h, washed, mounted in gelatinized slides and coverslipted with Fluoromount media (Sigma-Aldrich, St. Louis, MO, USA). The slides were observed under a Zeiss fluorescence microscope in 10 × magnification lens. Pictures of the CA1 layer of both hippocampi were taken for quantification of labeled cells.

Analyses of neurotrophins and cytokines. Animals that did not underwent intracardiac perfusion were anesthetized with ketamine (80 mg/kg) and xylazine (8 mg/kg) i.p., and had both their right and left hippocampus dissected after the behavior studies. For biochemical analyses, the tissue was homogenized in 200 μL of a buffer containing protease inhibitors [NaCl (0.4 M); Tween 20 (0.05%); Bovine Serum Albumin (BSA) (0.5%); phenylmethylsulfonyl fluoride (PMSF) (0.1 mM); benzethonium chloride (0.1 mM); EDTA (10 mM); aprotinin (20 IU) in PBS]. Total proteins were measured by Bradford method and analyzed by Enzyme Linked Immunosorbent Assay (ELISA) to measure BDNF and NGF (kits DuoSet® R&D Systems), or Cytometric Bead Array (CBA), (kit Th1/Th2 BD) to detect IL-2, IL-4, IL-6, IFN-γ, TNF-α, IL-10 and IL-17 A. The procedures followed manufacturer’s instructions.

Evaluation of Akt, p70 and caspase-3 by western blotting. In the last day of the treatment, hippocampal tissues of the animals were carefully dissected 4 h after the drug administration, homogenized in a lysis buffer (1% Triton X-100; 100 mM Tris/HCl, pH 8.0; 10% glycerol; 5 mM EDTA; 200 mM NaCl, 1 mM DTT; 1 mM PMSF; 25 mM NaF; 2.5 μg/ml leupeptin; 5 μg/ml aprotinin; and 1 mM sodium orthovanadate) and stored in −80 °C until the beginning of the analysis. Protein concentration was determined by using the Bradford protein assay (Bio-Rad, Hercules, CA, USA). Fifty μg of protein samples were separated on 10% SDS-polyacrylamide gels and then transferred to nitrocellulose membranes. After blocking in 10% bovine serum albumin (BSA) in Tris-buffered saline containing 0.1% Tween-20 (TBST) for 2 h at room temperature, membranes were incubated overnight at 4 °C with primary antibodies against anti-phospho-AktSer473 (1:1000; DB Biotech), anti-Akt1 clone C20-A (1:1000; DB Biotech), anti-phospho-p70 S6 Kinase (T389) (1:250; Cell Signaling), anti-p70 S6 Kinase (1:250; Cell Signaling), anti-caspase-3 (1:1000; Cell Signaling) and anti-Actin (20–33) (1:5000; Sigma- Aldrich). Following three washes with TBST, membranes were incubated with the appropriate peroxidase-conjugated secondary antibodies (1:2500). Finally, membranes were incubated with enhanced chemiluminescence ECL-Plus (GE Healthcare). The optical densities of detected bands were quantified using the ImageJ software. The results were normalized to the levels of β-actin in each sample lane.
Statistical Analysis. Statistical analysis was performed using the statistical software GraphPad Prism 5.0. Body weight data was analyzed by two-way analysis of variance (ANOVA) followed by Bonferroni's test for variables with parametric distribution. Behavioral, biochemical, histological and in vitro data was analyzed by one-way ANOVA followed by Newman-Keuls test for variables with parametric distribution. The data were presented as mean ± standard error of the mean (SEM). The level of significance was set at p < 0.05.

References

1. O’Neill, C. PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48, 647–653, doi: 10.1016/j.exger.2013.02.025 (2013).
2. Grimm, M. O. et al. Neflin is a microtubule-binding protein that affects neurite outgrowth and synaptogenesis. J. Neurochem 105, 1174–1184, doi: 10.1111/j.1471-4159.2007.05226.x (2008).
3. Romberg, C. et al. False recognition in a mouse model of Alzheimer’s disease: rescue with sensory restriction and memantine. Brain 135, 2103–2114, doi: 10.1093/brain/awt074 (2012).
4. Jiang, S. et al. Mechanisms of neuronal loss in Alzheimer’s disease. Mol Neurodegener 9, 6, doi: 10.1186/1750-1269-9-6 (2014).
5. Robinson, A. et al. Uptightness of PGC-1α expression by Alzheimer’s disease-associated pathway: presenilin 1 amyloid precursor protein (APP)/intracerebral domain of APP. Aging Cell 13, 263–272, doi: 10.1111/acel.12183 (2014).
6. Lorenzo, A. & Yankner, B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91, 12243–12247 (1994).
7. Canas, P. M. et al. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J. Neurosci 29, 14741–14751, doi: 10.1523/JNEUROSCI.3728-09.2009 (2009).
8. Chen, L. et al. DMXBA (GTS-21) ameliorates the cognitive deficits in beta amyloid(25–35(−)) injected mice through preventing the dysfunction of alpha7 nicotinic receptor. J Neurosci Res 88, 1784–1794, doi: 10.1002/jnr.22345 (2010).
9. Giovannini, M. G. et al. Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 11, 257–274, doi: 10.1016/j.nbd.2009.10.033 (2002).
10. Passos, G. F. et al. Involvement of phosphoinositide 3-kinase gamma in the neuro-inflammatory response and cognitive impairments induced by beta-amyloid 1–40 peptide in mice. Brain Behav Immun 24, 493–501, doi: 10.1016/j.bbi.2009.12.003 (2010).
11. Prediger, R. D. et al. Differential susceptibility following beta-amyloid peptide 1–40 (−1) and 1–10 (−6) administration in C57BL/6 and Swiss albino mice: Evidence for a dissociation between cognitive deficits and the glutathione system response. Behav Brain Res 177, 205–213, doi: 10.1016/j.bbr.2006.11.032 (2007).
12. Xuan, A. et al. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer’s disease. J Neuroinflammation 9, 202, doi: 10.1186/1742-2094-9-202 (2012).
13. Querfurth, H. W. & LaFerla, F. M. Alzheimer’s disease. N Engl J Med 362, 329–344, doi: 10.1056/NEJMra0909912 (2010).
14. Arnold, S. E., Hyman, B. T., Florhy, J., Damasio, A. R. & Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cortical center of patients with Alzheimer’s disease. Cereb Cortex 1, 103–116 (1991).
15. Wirth, M. et al. Alzheimer’s disease neurodegenerative biomarkers are associated with decreased cognitive function but not beta-amylloid in cognitively normal older individuals. J Neurosci 33, 5553–5563, doi: 10.1523/JNEUROSCI.4409-12.2013 (2013).
16. Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28, 8354–8360 (2008).
17. Kettenmann, H., Hanisch, U. K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol Rev 91, 461–553, doi: 10.1152/physrev.00011.2010 (2011).
18. Alzheimer’s Disease and Dementia(Alzheimer’s Association), http://www.alz.org/ (2015).
19. Tell, V. & Hilgerson, A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front Cell Neurosci 7, 189, doi: 10.3389/fncel.2013.00189 (2013).
20. Kitagishi, Y., Kobayashi, M., Kikuta, K. & Matsuda, S. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat 2012, 752563, doi: 10.1155/2012/752563 (2012).
21. Huang, J. & Manning, B. D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37, 217–222, doi: 10.1042/BST0370217 (2009).
22. Costa-Mattioli, M. & Monteggia, L. M. mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16, 1537–1543, doi: 10.1038/nn.3546 (2013).
23. Bhaskar, K. et al. The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol Neurodegener 4, 14, doi: 10.1186/1750-1326-4-14 (2009).
24. Cai, Z. et al. Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res 90, 1105–1118, doi: 10.1002/jnr.23011 (2012).
25. Maira, S. M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7, 1851–1863, doi: 10.1158/1535-7163.MCT-08-0017 (2008).
26. Mukherjee, B. et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM- and DNA-PKCs-mediated DNA damage responses. Neoplasia 14, 34–43 (2012).
27. Moulder, S. et al. Inhibition of the Phosphoinositide 3-kinase Pathway for the Treatment of Patients with Metastatic Metaplastic Breast Cancer. Ann Oncol 10, 1093–1098, doi: 10.1093/annonc/mdv213 (2005).
28. Zhu, V. E. et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma. Cancer Biol Ther 1, 1–8, doi: 10.1080/15384047.2015.1017155 (2015).
29. He, K., Zheng, X., Li, M., Zhang, L. & Yu, J. mTOR inhibitors induce apoptosis in colon cancer cells via CHOP-dependent DR5 induction on 4E-BP1 dephosphorylation. Oncogene, doi: 10.1038/onc.2015.79 (2015).
30. Aker, K. G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602, doi: 10.1126/science.1249893 (2014).
31. Chakrabarty, P. et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 59, 519–533, doi: 10.1016/j.neuron.2014.11.020 (2015).
32. Guillot-Sestier, M. V. et al. IL10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85, 534–548, doi: 10.1016/j.neuron.2014.12.068 (2015).
33. Okno, H. et al. Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans. Science 345, 313–317, doi: 10.1126/science.1250799 (2014).
34. Clinical Trials. gov. https://clinicaltrials.gov (2015).
35. de Oliveira, A. C. et al. Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia. J Neuroinflammation 9, 2, doi: 10.1186/s12974-015-0473-7 (2016).
Acknowledgements
This work was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; protocol numbers PPM-00372-13 and CBB-APQ-04625-10) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq): protocol number 479254/2013-3. A.C.P.O., H.J.R. and A.L.T. are recipients of CNPq fellowships.

Author Contributions
A.C.P.O. and P.M.Q.B. designed the study. P.M.Q.B. conducted stereotaxic surgery, treatment, object recognition task, removal of tissues, intracardiac perfusion and Nissl staining. Iba-1 and FJC staining were performed by P.M.Q.B. and I.V.A.L. The cell cultures experiments were conducted by J.G.D. and P.M.Q.B. Neurotrophins and cytokines dosages were done by E.L.M.V., P.M.Q.B. and I.V.A.L. Western blotting experiments were performed by P.M.Q.B. and J.G.D. Results were analyzed by P.M.Q.B and article was written by P.M.Q.B and A.C.P.O. All other authors revised the data and discussed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Bellozi, P. M. Q. et al. Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment. Sci. Rep. 6, 25226; doi: 10.1038/srep25226 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/