Binomial Approximation to Locally Dependent Collateralized Debt Obligations

Amit N. Kumar1 · P. Vellaisamy2

Received: 15 May 2022 / Revised: 24 June 2023 / Accepted: 11 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we develop Stein’s method for binomial approximation using the stop-loss metric that allows one to obtain a bound on the error term between the expectation of call functions. We obtain the results for a locally dependent collateralized debt obligation (CDO), under certain conditions on moments. The results are also exemplified for an independent CDO. Finally, it is shown that our bounds are sharper than the existing bounds.

Keywords Binomial distribution · Error bounds · Stein’s method · CDO

Mathematics Subject Classification Primary: 62E17 · 62E20 · Secondary: 60F05 · 60E05

1 Introduction
The collateralized debt obligation (CDO) is a financial tool of structured asset-backed security. It is used to repackage assets into a product and sold to investors in the secondary market. These packages are in terms of debt such as auto loans, credit card debt, mortgages, and corporate debt. The assets are sliced into tranches, a set of repayment ties with different payment priorities and interest rates. The elementary tranches are senior (low risk and low return), mezzanine and equity (high risk and high return). Investors can choose a tranche of their interest to invest. For more details, see El Karoui and Jiao (2009), El Karoui et al. (2008), Hull and White (2004), Kumar (2021, 2022), Neammanee and Yonghint (2020), Yonghint et al. (2022), and the reference therein.
Consider the tranche pricing with \(n \) portfolios, where each portfolio has a constant recovery rate \(R > 0 \). Then, the percentage loss at time \(T \) can be defined as (see Neammanee and Yonghint (2020, p. 2))

\[
L(T) = \frac{(1 - R)}{n} \sum_{i=1}^{n} 1_{\{\tau_i \leq T\}},
\]

(1.1)

where \(\tau_i \) is the default time of the \(i \)-th portfolio and \(1_A \) denotes the indicator function of the set \(A \). For a detachment point or an attachment point, say \(z^* \), the main problem of CDO pricing is to evaluate the value of the mean of percentage total loss for each tranche given by (see Yonghint et al. (2022, p. 2))

\[
\mathbb{E}[(L(T) - z^*)^+] = \frac{(1 - R)}{n} \mathbb{E}[(W_n - z)^+],
\]

where \(h(x) = x^+ = \max\{x, 0\} \) is the call function, \(W_n = \sum_{i=1}^{n} 1_{\{\tau_i \leq T\}} \) and \(z = (nz^*/(1 - R)) > 0 \). For additional details, see, for example, Kumar (2021, 2022), Neammanee and Yonghint (2020), Yonghint et al. (2022).

In general, the mean of percentage total loss is difficult to compute when \(1_{\{\tau_i \leq T\}}, i = 1, 2, \ldots, n, \) are locally dependent random variables. Therefore, it is of interest to find a suitable approximating distribution which is close to \(W_n \). The proximity between \(\mathbb{E}[(W_n - z)^+] \) and \(\mathbb{E}[(P_\lambda - z)^+] \) is studied by Yonghint et al. (2022), where \(P_\lambda \) denotes the Poisson random variable with parameter \(\lambda \). Observe that \(W_n \) is the sum of dependent Bernoulli random variables and so the binomial distribution also could a good choice to approximate \(W_n \). See Vellaisamy and Punnen (2001), where it is shown that the binomial distribution may arise as the distribution of the sum of a certain dependent Bernoulli random variables. Therefore, we choose the binomial distribution as the target distribution.

Throughout this paper, let \(B_{\alpha, p} \) follow the binomial distribution with probability mass function

\[
P(B_{\alpha, p} = k) = \binom{\alpha}{k} p^k q^{\alpha - k}, \quad \text{for} \ k = 0, 1, \ldots, \alpha,
\]

(1.2)

where \(\alpha \) is a positive integer and \(0 < p = 1 - q < 1 \). We derive the result using the stop-loss metric defined by

\[
d_{sl}(X, Y) = \sup_{z \in \mathbb{R}} |\mathbb{E}[(X - z)^+] - \mathbb{E}[(Y - z)^+]|,
\]

(1.3)

where \(\mathbb{R} \) denotes the set of real numbers. For more details, see Boutsikas and Veggelatou (2002).

The paper is organized as follows. In Section 2, we develop Stein’s method for binomial distribution, under the stop-loss metric. In particular, we discuss uniform and non-uniform bounds for the solution of the Stein equation. In Section 3, we derive the error in approximation of a locally dependent CDO to a suitable binomial distribution. As a special case, we demonstrate the results for the independent CDO. Also, we give some numerical comparisons between our results and the existing results. It is shown that our bounds improve significantly over the existing bounds.
2 Stein’s Method

Stein (1972) proposed an elegant method to find the error in approximating the sums of real-valued random variables to a normal distribution. Then, Chen (1975) adapted the technique for approximating the sums of discrete random variables to a suitable Poisson distribution. Later, numerous authors adapted or used Stein’s method for several distributions and under various distance metrics. To mention a few relevant ones, Stein’s method for negative binomial distribution has been studied by Brown and Phillips (1999) under the total variation distance and for the Poisson distribution has been studied by Neammanee and Yonghint (2020), under the stop-loss metric. For recent developments, see Barbour et al. (1992), Brown and Xia (2001), Eichelsbacher and Reinert (2008), Kumar et al. (2022) and Kumar (2022).

In this section, we develop the Stein’s method for the binomial distribution, under the stop-loss metric defined in (1.3). Our work is mainly focused on finding the upper bound for $|\Delta g_z(k)| = |g_z(k + 1) - g_z(k)|$, where $g_z(k)$ is the solution of the Stein equation given by

$$A g_z(k) = (k - z)^+ - \mathbb{E}(B_{\alpha,p} - z)^+.$$ \hspace{1cm} (2.1)

Here, A denotes the Stein operator of $B_{\alpha,p}$ given by

$$A g_z(k) = \frac{(\alpha - k)p}{q} g_z(k + 1) - kg_z(k), \text{ for } k = 0, 1, \ldots, \alpha. \hspace{1cm} (2.2)$$

Note that $\mathbb{E}(A g_z(B_{\alpha,p})) = 0$. Using (2.2), the Stein equation (2.1) leads to

$$\frac{(\alpha - k)p}{q} g_z(k + 1) - kg_z(k) = (k - z)^+ - \mathbb{E}(B_{\alpha,p} - z)^+. \hspace{1cm}$$

From Section 2 of Kumar et al. (2022, p. 4) with appropriate changes, it can easily be verified that the solution of the above equation is

$$g_z(k) = \begin{cases} 0, & \text{if } k = 0; \\ - \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (j - 1)!}{(\alpha - j)!} \frac{p^j}{q^j} \left[(j - z)^+ - \mathbb{E}(B_{\alpha,p} - z)^+ \right], & \text{if } 1 \leq k \leq \alpha. \end{cases} \hspace{1cm} (2.3)$$

The bounds for $|\Delta g_z(k)|$ may be essentially uniform for all k and z. However, the bound depends on k may be useful in practice to get a sharper bound for the stop-loss metric. So, we obtain the non-uniform upper bound for $|\Delta g_z(k)|$.

The following lemma gives the non-uniform upper bound for $|\Delta g_z(k)|$, for all $z \geq 0$.

Lemma 2.1 For $z \geq 0$, the following inequality holds:

$$|\Delta g_z(k)| \leq \begin{cases} 2q^{1-\alpha} - q, & \text{for } k = 0; \\ 2q^{k-\alpha}, & \text{for } 1 \leq k \leq \alpha. \end{cases}$$
Proof It can be easily verified that $\mathbb{E}[B_\alpha,p - z]^+] \leq \alpha p$. For $k = 0$, we have

$$|\Delta g_z(0)| = |g_z(1)| \leq \sum_{j=1}^{\alpha} \frac{(\alpha - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-1} [(j - z)^+ + \mathbb{E}(B_\alpha,p - z)^+]$$

$$\leq \sum_{j=1}^{\alpha} \left(\frac{\alpha - 1}{j - 1} \right) \left(\frac{p}{q} \right)^{j-1} + p \sum_{j=1}^{\alpha} \left(\frac{\alpha}{j} \right) \left(\frac{p}{q} \right)^{j-1}$$

$$= 2q^{1-\alpha} - q.$$

For $1 \leq k \leq \alpha - 1$, let

$$h_1(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} (j - z)^+$$

and

$$h_2(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \mathbb{E}(B_\alpha,p - z)^+.$$

Then,

$$\Delta g_z(k) = g_z(k+1) - g_z(k) = [h_1(k) - h_1(k+1)] - [h_2(k) - h_2(k+1)]. \quad (2.4)$$

First, consider

$$0 < h_1(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} (j - z)^+$$

$$\leq \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! (j - 1)!} \left(\frac{p}{q} \right)^{j-k}$$

$$= 1 + \sum_{j=k+1}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)!} \frac{1}{k(k+1) \ldots (j-1)} \left(\frac{p}{q} \right)^{j-k}$$

$$\leq 1 + \sum_{j=k+1}^{\alpha} \frac{1}{j - k} \left(\frac{p}{q} \right)^{j-k}$$

$$= 1 + \sum_{j=1}^{\alpha-k} \left(\frac{\alpha - k}{j} \right) \left(\frac{p}{q} \right)^{j}$$

$$= q^{k-\alpha}. \quad (2.5)$$
Similarly, $0 < h_1(k + 1) \leq q^{k+1-\alpha} \leq q^{k-\alpha}$. Now, consider

$$0 < h_2(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \mathbb{E}(B_{\alpha,p} - z)^+$$

$$\leq \frac{\alpha p}{k} \sum_{j=k+1}^{\alpha} \frac{(\alpha - k)! k!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k}$$

$$\leq \frac{\alpha p}{k} \left(1 + \sum_{j=k+1}^{\alpha} \frac{(\alpha - k)! 1}{(\alpha - j)! (k+1) \ldots j} \left(\frac{p}{q} \right)^{j-k} \right)$$

$$= \frac{\alpha p}{k} \left(1 + \frac{1}{\alpha - k + 1} \sum_{j=k+1}^{\alpha} \left(\frac{\alpha - k + 1}{j - k + 1} \right) \left(\frac{p}{q} \right)^{j-k} \right)$$

$$= \frac{\alpha p}{k} \left(1 + \frac{q^{k-\alpha} - (\alpha - k + 1)p}{(\alpha - k + 1)p} \right)$$

$$\leq \frac{\alpha p q^{k-\alpha}}{(\alpha - k + 1)kp}$$

$$\leq q^{k-\alpha}. \quad (2.6)$$

Similarly, it follows that $0 < h_2(k + 1) \leq q^{k+1-\alpha} \leq q^{k-\alpha}$. Therefore, from (2.4), (2.5) and (2.6), the result follows for $1 \leq k \leq \alpha - 1$.

Finally, for $k = \alpha$, it is easy to verify that

$$|\Delta g_z(\alpha)| = |g_z(\alpha)| = \frac{(\alpha - z)^+}{\alpha} + \frac{\mathbb{E}(B_{\alpha,p} - z)^+}{\alpha} \leq 2.$$

This proves the result. \qed

Remark 2.1

(i) Observe that the uniform bound can be taken as

$$|\Delta g_z(k)| \leq 2q^{1-\alpha}, \quad \text{for all } z \geq 0 \text{ and } 0 \leq k \leq \alpha. \quad (2.7)$$

(ii) From (2.3), (2.5) and (2.6), it can be easily seen that

$$|g_z(k)| \leq 2q^{k-n}, \quad \text{for all } z \geq 0. \quad (2.8)$$

Also, the uniform bound for $|g_z(k)|$ is the same as given in (2.7).
Next, using the similar technique of the proof of Lemma 2.1, we obtain the following lemma which gives the non-uniform upper bound for $|\Delta g_z(k)|$ for all $z > 1$.

Lemma 2.2 For $z > 1$, the following inequality holds:

$$|\Delta g_z(k)| \leq \begin{cases}
2 \left(1 + \frac{q^{k-\alpha} - 1}{qz}\right), & \text{for } k \geq z; \\
3 \left(\frac{q^{k-\alpha} - 1}{qz}\right), & \text{for } 2 \leq k < z; \\
\frac{pz}{z}, & \text{for } 1 \leq k < z.
\end{cases}$$

Proof Let $k \geq z$. First, consider

$$0 < h_1(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q}\right)^{j-k} (j-z)^+$$

$$\leq 1 + \sum_{j=k+1}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! (j-1)!} \left(\frac{p}{q}\right)^{j-k}$$

$$= 1 + \frac{(\alpha - k)p}{kq} + \frac{1}{k} \sum_{j=k+2}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)! (k+1) \ldots (j-1)} \left(\frac{p}{q}\right)^{j-k}$$

$$\leq 1 + \frac{(\alpha - k)p}{kq} + \frac{1}{k} \sum_{j=2}^{\alpha-k} \binom{\alpha - k}{j} \left(\frac{p}{q}\right)^j$$

$$= 1 + \frac{(\alpha - k)p}{kq} + \frac{1}{k} \left(\frac{q^{k-\alpha} - (\alpha - k)p}{q} - 1\right)$$

$$\leq 1 + \frac{q^{k-\alpha} - 1}{z}. \quad (2.9)$$

Next, for $k \geq z$ and $k \geq \alpha p$, we have

$$0 < \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q}\right)^{j-k}$$

$$= \frac{1}{\alpha p} \left(1 + \frac{(\alpha - k)p}{(k+1)q} + \frac{1}{k+1} \sum_{j=k+2}^{\alpha} \frac{(\alpha - k)! k!}{(\alpha - j)! j!} \left(\frac{p}{q}\right)^{j-k}\right)$$

$$= \frac{1}{\alpha p} \left(1 + \frac{(\alpha - k)p}{(k+1)q} + \frac{1}{k+1} \sum_{j=k+2}^{\alpha} \frac{(\alpha - k)! (k+1)!}{(\alpha - j)! j!} \left(\frac{p}{q}\right)^{j-k}\right)$$
\[
\begin{align*}
\frac{1}{\alpha p} \left(1 + \frac{(\alpha - k)p}{(k + 1)q} + \frac{1}{(k + 1)} \sum_{j=k+2}^{\alpha} (\alpha - k)! \frac{1}{(\alpha - j)! (k + 2)\ldots(j - k)} \left(\frac{p}{q} \right)^{j-k} \right) & \\
& \leq \frac{1}{\alpha p} \left(1 + \frac{(\alpha - k)p}{(k + 1)q} + \frac{1}{(k + 1)} \sum_{j=k+2}^{\alpha} (\alpha - k)! \frac{1}{(\alpha - j)! (j - k)} \left(\frac{p}{q} \right)^{j-k} \right) \\
& = \frac{1}{\alpha p} \left(1 + \frac{(\alpha - k)p}{(k + 1)q} + \frac{1}{(k + 1)} \sum_{j=2}^{\alpha-k} (\alpha - k)! \frac{1}{j!} \left(\frac{p}{q} \right)^{j-k} \right) \\
& = \frac{1}{\alpha p} \left(1 + \frac{(\alpha - k)p}{(k + 1)q} + \frac{1}{(k + 1)} \left(q^{k-\alpha} - \frac{(\alpha - k)p}{q} - 1 \right) \right) \\
& \leq \frac{1}{\alpha p} \left(1 + \frac{q^{k-\alpha} - 1}{zq} \right).
\end{align*}
\]

Also, for \(k \geq z \) and \(k \leq \alpha p \), we have

\[
\begin{align*}
0 & \leq \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \\
& = \frac{1}{\alpha - k + 1} \sum_{j=k}^{\alpha} \frac{(\alpha - k + 1)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \\
& = \frac{1}{\alpha - k + 1} \left(\frac{\alpha - k + 1}{k} + \frac{1}{k} \sum_{j=k+1}^{\alpha} \frac{(\alpha - k + 1)! k!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \right) \\
& = \frac{1}{\alpha - k + 1} \left(\frac{\alpha - k + 1}{k} + \frac{1}{k} \sum_{j=k+1}^{\alpha} \frac{(\alpha - k + 1)!}{(\alpha - j)! (k + 1)\ldots(j - k)} \left(\frac{p}{q} \right)^{j-k} \right) \\
& \leq \frac{1}{\alpha - k + 1} \left(\frac{\alpha - k + 1}{k} + \frac{1}{k} \sum_{j=k+1}^{\alpha} \frac{(\alpha - k + 1)!}{(\alpha - j)! (j - k + 1)} \left(\frac{p}{q} \right)^{j-k} \right) \\
& = \frac{1}{\alpha - k + 1} \left(\frac{\alpha - k + 1}{k} + \frac{1}{k} \sum_{j=1}^{\alpha} (\alpha - k + 1) \left(\frac{p}{q} \right)^{j} \right) \\
& = \frac{1}{\alpha - k + 1} \left(\frac{\alpha - k + 1}{k} + \frac{1}{k} \left(q^{k-\alpha} - \frac{1}{p} (\alpha - k) \right) \right) \\
& = \frac{1}{\alpha - k + 1} \left(\frac{1}{k} + \frac{q^{k-\alpha} - 1}{kp} \right) \\
& \leq \frac{1}{\alpha - k + 1} \left(\frac{q^{k-\alpha} - 1}{(\alpha - k)zp} \right) \\
& \leq \frac{1}{\alpha} + \frac{q^{k-\alpha} - 1}{\alpha pqz} \\
& \leq \frac{1}{\alpha p} \left(1 + \frac{q^{k-\alpha} - 1}{qz} \right).
\end{align*}
\]
Therefore, form (2.10) and (2.11), for \(k \geq z \), we have

\[
0 < h_2(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \mathbb{E}(B_{\alpha,p} - z)^+ \\
\leq 1 + q^{k-\alpha - 1} \frac{1}{qz}.
\]

(2.12)

Hence, from (2.4), (2.9) and (2.12), the result follows for \(k \geq z \).

Next, let \(2 \leq k < z \). Note that

\[
0 < h_1(k) = \sum_{j=\lceil z \rceil}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! (j - 1)!} \left(\frac{p}{q} \right)^{j-k} (j - z) \\
\leq \frac{1}{z} \sum_{j=\lceil z \rceil}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! (j - 1)!} \left(\frac{p}{q} \right)^{j-k} (j - z)^+ \\
\leq \frac{1}{z} \sum_{j=k+1}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! (j - 1)!} \left(\frac{p}{q} \right)^{j-k} \\
= \frac{1}{z} \left(\frac{(\alpha - k)p}{q} + \sum_{j=k+2}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)! k(k+1) \ldots (j-2)} \left(\frac{p}{q} \right)^{j-k} \right) \\
\leq \frac{1}{z} \left(\frac{(\alpha - k)p}{q} + \sum_{j=k+2}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)! 2.3 \ldots (j-k)} \left(\frac{p}{q} \right)^{j-k} \right) \\
= \frac{1}{z} \left(\frac{(\alpha - k)p}{q} + \sum_{j=2}^{\alpha-k} \frac{(\alpha - k)}{j} \left(\frac{p}{q} \right)^{j} \right) \\
= \frac{q^{k-\alpha - 1}}{z}.
\]

(2.13)

Next, consider

\[
0 < \sum_{j=k}^{\alpha} \frac{(\alpha - k)! (k - 1)!}{(\alpha - j)! j!} \left(\frac{p}{q} \right)^{j-k} \\
= \frac{1}{k} \sum_{j=k}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)!} \left(\frac{p}{q} \right)^{j-k} \\
\leq \frac{1}{k} \left(1 + \sum_{j=k+1}^{\alpha} \frac{1}{(\alpha - j)! (k+1) \ldots j} \left(\frac{p}{q} \right)^{j-k} \right)
\]
\[
\leq \frac{1}{k} \left(1 + 2 \sum_{j=k+1}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)!(j - k)!} \left(\frac{p}{q} \right)^{j-k} \right)
\]
\[
\leq \frac{1}{k} \left(1 + \frac{2}{(\alpha - k)(\alpha - k + 1)} \sum_{j=1}^{\alpha-k} \left(\frac{\alpha - k + 2}{j + 2} \right) \left(\frac{p}{q} \right)^{j} \right)
\]
\[
= \frac{1}{k} \left(1 + \frac{2}{(\alpha - k)(\alpha - k + 1)} \left(\frac{2q^{k-\alpha} - 2(\alpha - k)p - (\alpha - k)(\alpha - k + 1)p^2}{2p^2} \right) \right)
\]
\[
\leq \frac{2(q^{k-\alpha} - 1)}{(\alpha - k)(\alpha - k + 1)kp^2}
\]
\[
\leq \frac{2(q^{k-\alpha} - 1)}{\alpha(\alpha - z)p^2}.
\]

Note that, for \(k < z \leq \alpha \), we have
\[
\mathbb{E}(B_{\alpha,p} - z) = \sum_{m=\lceil z \rceil}^{\alpha} (m - z) \binom{\alpha}{m} p^m q^{\alpha-m}
\]
\[
\leq (\alpha - z) \sum_{m=\lceil z \rceil}^{\alpha} \frac{\alpha!}{(\alpha - m)!m!} p^m q^{\alpha-m}
\]
\[
\leq \frac{\alpha(\alpha - z)}{z} \sum_{m=1}^{\alpha} \left(\frac{\alpha - 1}{m - 1} \right) p^m q^{\alpha-m}
\]
\[
= \frac{\alpha(\alpha - z)p}{z}.
\]

Therefore,
\[
0 < h_2(k) = \sum_{j=k}^{\alpha} \frac{(\alpha - k)!}{(\alpha - j)!} \left(\frac{p}{q} \right)^{j-k} \mathbb{E}(B_{\alpha,p} - z) \leq \frac{2(q^{k-\alpha} - 1)}{pz}.
\]

(2.14)

Hence, from (2.4), (2.13) and (2.14), the result follows for \(2 \leq k < z \leq \alpha \).

Next, for \(1 = k < z \), we have
\[
0 < h_1(1) = \sum_{j=\lceil z \rceil}^{\alpha} \frac{(\alpha - 1)!}{(\alpha - j)!} \left(\frac{p}{q} \right)^{j-1} \leq \frac{\alpha - 1}{z} \sum_{j=2}^{\alpha} \left(\frac{\alpha - 2}{j - 2} \right) \left(\frac{p}{q} \right)^{j-1}
\]
\[
= \frac{(\alpha - 1)pq^{1-\alpha}}{z}.
\]
and

\[
0 < h_2(1) = \sum_{j=1}^{\alpha} \frac{(\alpha - 1)!}{(\alpha - j)!j!} \left(\frac{p}{q} \right)^{j-1} \mathbb{E}(B_{\alpha,p} - z)^+ + \mathbb{E}(B_{\alpha,p} - z)^-
\]

\[\leq \left(\frac{q^{1-\alpha} - q}{\alpha p} \right) \left(\frac{\alpha(\alpha - 1)p^2}{z} \right) = \frac{(\alpha - 1)pq^{1-\alpha}}{z}.
\]

This proves the result. \qed

3 Bounds for Binomial Approximation

In this section, we obtain the error bounds for binomial approximation to locally dependent CDO. We derive the results for the stop-loss metric under certain conditions on moments. Moreover, we demonstrate the results under an independent setup. It is shown that binomial distribution is more suitable for a CDO using the numerical comparison between our bounds and the existing bound given by Neammanee and Yonghint (2020).

In Yonghint et al. (2022), it is shown that the locally dependent CDO is useful in real-life applications in various aspects. So, we consider a similar locally dependent structure that can also be used for independent setup. Let \(X_1, X_2, \ldots, X_n\) be a collection of random variables such that \(X_i\) is independent of \(X \notin A_i\), while \(X_{A_i}\) is independent of \(X_{B_i}\), where \(i \in A_i \subseteq B_i \subseteq \{1, 2, \ldots, n\}, i = 1, 2, \ldots, n\). Here, \(X_A\) denotes the collection of random variables \(\{X_i, i \in A\}\), and \(A^c\) denotes the complement of the set \(A\). Note that if \(A_i = B_i = \{i\}\), then \(X_1, X_2, \ldots, X_n\) become independent random variables. See Kumar (2021, 2022), Röllin (2008) and Čekanavičius and Vellaisamy (2015, 2021) for a similar locally dependent setup.

Let \(\tau_i\) be the default time of the \(i\)-th portfolio and \(X_i\) henceforth denote the random variable \(1_{\{\tau_i \leq T\}}\) with \(\mathbb{P}(X_i = 1) = p_i = 1 - q_i = 1 - \mathbb{P}(X_i = 0)\). Consider

\[
W_n = \sum_{i=1}^{n} X_i, \quad (3.1)
\]

which is a key factor of percentage loss up to time \(T\) defined in (1.1). Our aim is to approximate \(W_n\) by a suitable binomial random variable.

Throughout this section, let \(g_z = g\),

\[
W_i = W_n - X_{A_i} = \sum_{j \notin A_i} X_j \quad \text{and} \quad W_i^* = W_n - X_{B_i} = \sum_{j \notin B_i} X_j. \quad (3.2)
\]

Note that \(X_i\) is independent of \(W_i\). Also, \(X_i\) and \(X_{A_i}\) are independent of \(W_i^*\).

First, we choose one parameter of binomial distribution of our choice, and accordingly, another parameter can be obtained. Since \(\alpha\) should be a positive integer (number of identical Bernoulli trials) for the binomial distribution, we choose \(\alpha = n\) and let

\[
p = \frac{1}{\alpha} \sum_{i=1}^{n} \mathbb{E}(X_i) = \frac{1}{n} \sum_{i=1}^{n} p_i. \quad (3.3)
\]

The following theorem gives the error in the approximation between \(B_{\alpha,p}\) and \(W_n\).
Theorem 3.1 Let $B\alpha, p$ and W_n be defined as in (1.2) and (3.1), respectively, and satisfy (3.3). Then

$$d_{sl}(W_n, B_{n, p}) \leq \frac{2}{pq^n} \sum_{i=1}^{n} \left[\mathbb{E} \left((X_i + p)q^{W_i} \right) - \mathbb{E} \left((p_i + qX_i)q^{W_n} \right) \right].$$

where d_{sl} denote the stop-loss distance defined in (1.3).

Proof Multiplying the Stein operator (2.2) by q and taking expectation with respect to W_n, we have

$$q \mathbb{E}[Ag(W_n)] = \alpha p \mathbb{E}(Ag(W_n + 1)) - p \mathbb{E}(W_n g(W_n + 1)) - q \mathbb{E}(W_n g(W_n)).$$

Using (3.3), we get

$$q \mathbb{E}[Ag(W_n)] = \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E}(g(W_n + 1)) - \sum_{i=1}^{n} \mathbb{E}(X_i g(W_n + 1)) + q \sum_{i=1}^{n} \mathbb{E}(X_i \Delta g(W_n))$$

From (3.2), note that X_i and W_i are independent. Therefore, the above expression can be written as

$$q \mathbb{E}[Ag(W_n)] = \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E}(g(W_i + X_{A_i} + 1) - g(W_i + 1)) + q \sum_{i=1}^{n} \mathbb{E}(X_i \Delta g(W_n))$$

$$- \sum_{i=1}^{n} \mathbb{E}(X_i (g(W_n + 1) - g(W_i + 1)))$$

$$= \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E}(g(W_i + X_{A_i} + 1) - g(W_i + 1)) + q \sum_{i=1}^{n} \mathbb{E}(X_i \Delta g(W_n))$$

$$- \sum_{i=1}^{n} \mathbb{E}(X_i (g(W_i + X_{A_i} + 1) - g(W_i + 1)))$$

$$= \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E} \left(\sum_{j=1}^{X_{A_i}} \Delta g(W_i + j) \right) + q \sum_{i=1}^{n} \mathbb{E}(X_i \Delta g(W_n))$$

$$- \sum_{i=1}^{n} \mathbb{E} \left(X_i \sum_{j=1}^{X_{A_i}} \Delta g(W_i + j) \right).$$

Using Lemma 2.1, with some algebraic calculations, it can be easily verified that

$$\left| \mathbb{E} \left(\sum_{j=1}^{X_{A_i}} \Delta g(W_i + j) \right) \right| \leq \frac{2q}{pq^n} \mathbb{E} \left(W_i (1 - q^{X_{A_i}}) \right), \quad \left| \mathbb{E}(X_i \Delta g(W_n)) \right| \leq \frac{2}{q^n} \mathbb{E}(X_i q^{W_n})$$

and

$$\left| \mathbb{E} \left(X_i \sum_{j=1}^{X_{A_i}} \Delta g(W_i + j) \right) \right| \leq \frac{2q}{pq^n} \mathbb{E} \left(X_i q^{W_i} (1 - q^{X_{A_i}}) \right).$$
Therefore,
\[
|\mathbb{E}[A_g(W_n)]| \leq \frac{2}{pq^n} \sum_{i=1}^{n} p_i \mathbb{E} \left(q^{W_i} \left(1 - q^{X_{A_i}} \right) \right) + \frac{2}{q^n} \sum_{i=1}^{n} \mathbb{E} \left(X_i q^{W_n} \right) + \frac{2}{pq^n} \sum_{i=1}^{n} \mathbb{E} \left(X_i q^{W_i} \left(1 - q^{X_{A_i}} \right) \right)
\]
\[
= \frac{2}{pq^n} \sum_{i=1}^{n} \left[\mathbb{E} \left((X_i + p)q^{W_i} \right) - \mathbb{E} \left((p_i + qX_i)q^{W_n} \right) \right].
\]
This proves the result.

Corollary 3.1 Let \(B_{\alpha, p} \) and \(W_n \) be defined as in (1.2) and (3.1), respectively, and satisfy (3.3). Assume \(X_1, X_2, \ldots, X_n \) are independent random variables then
\[
d_{sl}(W_n, B_{n, p}) \leq \frac{2}{q^n} \sum_{i=1}^{n} |p - p_i| p_i \prod_{j \neq i} (1 - pp_j). \tag{3.7}
\]

Proof Substituting \(A_i = \{i\} \) in (3.6), it can be easily verified that
\[
q \mathbb{E}[A_g(W_n)] = \sum_{i=1}^{n} p_i^2 \mathbb{E}((\Delta g(W_i + 1)) + q \sum_{i=1}^{n} p_i \mathbb{E}((\Delta g(W_i + 1))
\]
\[
- \sum_{i=1}^{n} p_i \mathbb{E}(\Delta g(W_i + 1))
\]
\[
= \sum_{i=1}^{n} (p_i - p) p_i \mathbb{E}(\Delta g(W_i + 1)).
\]

Hence, using Lemma 2.1, we get
\[
|\mathbb{E}[A_g(W_n)]| \leq \frac{2}{q^n} \sum_{i=1}^{n} |p - p_i| p_i \mathbb{E} \left(q^{W_i} \right) = \frac{2}{q^n} \sum_{i=1}^{n} |p - p_i| p_i \prod_{j \neq i} (1 - pp_j).
\]
This proves the result.

Remark 3.1
(i) Note that if \(p_i = p, i = 1, 2, \ldots, n \), in (3.7) then \(d_{sl}(W_n, B_{n, p}) = 0 \), as expected.
(ii) In Theorem 3.1 and Corollary 3.1, the bounds become sharper for sufficiently small values of \(p_i \).
(iii) If we choose the parameter \(p \) of our choice, then \(\alpha = \frac{1}{p} \sum_{i=1}^{n} \mathbb{E}(X_i) \). In this situation, the parameter \(\alpha \) may not be an integer. So, we can take
\[
\alpha = \left[\frac{1}{p} \sum_{i=1}^{n} \mathbb{E}(X_i) \right],
\]
where \([x] \) is the integer part of \(x > 0 \), and use (2.8) and (3.12) to get
\[
d_{sl}(W_n, B_{\alpha, p}) \leq \frac{2}{pq^\alpha} \sum_{i=1}^{n} \left[\mathbb{E} \left((X_i + p)q^{W_i} \right) - \mathbb{E} \left((p_i + qX_i - \delta p^2)q^{W_n} \right) \right]. \tag{3.8}
\]
Therefore, it is suggested to consider the minimum of the bounds given in (3.4) and (3.8).

If we choose $\alpha_p = \mathbb{E}(W_n)$ and $\alpha pq = \text{Var}(W_n)$ (the first two moments matching condition), then the choice of α may not be a positive integer. So, we choose

$$\alpha = \lfloor \frac{(\mathbb{E}(W_n))^2}{\mathbb{E}(W_n) - \text{Var}(W_n)} \rfloor \quad \text{and} \quad p = \frac{\mathbb{E}(W_n) - \text{Var}(W_n)}{\mathbb{E}(W_n)}.$$ \hspace{1cm} (3.9)

Also, define $D(Z) := 2d_{TV}(Z, Z + 1)$ and

$$\delta := \frac{(\mathbb{E}(W_n))^2}{\mathbb{E}(W_n) - \text{Var}(W_n)} - \alpha.$$ \hspace{1cm} (3.10)

Observe that $0 \leq \delta < 1$. Also, it can be seen that $\alpha_p = \mathbb{E}(W_n) - \delta p$ and $\alpha pq = \text{Var}(W_n) - \delta pq$ \hspace{1cm} (3.10)

The next result gives the error in approximation between $B_{\alpha, p}$ and W_n satisfying the above conditions.

Theorem 3.2 Let $B_{\alpha, p}$ and W_n be as defined in (1.2) and (3.1), respectively, and satisfy (3.9). Then

$$d_{sl}(W_n, B_{\alpha, p}) \leq \frac{2}{p^2} q \alpha_p \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E}\left(\left(\sum_{j=1}^{||X_A_i||} \Delta g(W_i + j) \right) \right)$$

$$+ \frac{p}{q} \sum_{i=1}^{n} \mathbb{E} \left(\left(\sum_{j=1}^{||X_A_i||} \Delta g(W_i + j) \right) \right)$$

$$+ \frac{p}{q} \sum_{i=1}^{n} \mathbb{E}(X_i) |\mathbb{E}(X_A_i) - \mathbb{E}(X_i X_{A_i})|$$

$$+ q \mathbb{E}(X_i) |\mathbb{E}(q B_i - q) D(W^n_i | X_B_i)\right|.$$ \hspace{1cm} (3.11)

Proof From (3.5), we have

$$q \mathbb{E}[Ag(W_n)] = \alpha_p \mathbb{E}(g(W_n + 1)) - p \mathbb{E}(W_n g(W_n + 1)) - q \mathbb{E}(W_n g(W_n)).$$

Using (3.10) and following the steps similar to the proof of Theorem 3.1, we get

$$q \mathbb{E}[Ag(W_n)] = \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E}\left(\sum_{j=1}^{||X_A_i||} \Delta g(W_i + j) \right) - \sum_{i=1}^{n} \mathbb{E} \left(\sum_{j=1}^{||X_A_i||} \Delta g(W_i + j) \right)$$

$$+ q \sum_{i=1}^{n} \mathbb{E}(X_i) \Delta g(W_n)) - \delta p \mathbb{E}(g(W_n + 1)).$$ \hspace{1cm} (3.12)
Using (3.2) and (3.10), the above expression leads to

\[q \mathbb{E}[\Delta g(W_n)] = \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E} \left(\sum_{j=1}^{X_{A_i}} (\Delta g(W_i + j) - \Delta g(W_i^* + 1)) \right) \]

\[- \sum_{i=1}^{n} \mathbb{E} \left(X_i \sum_{j=1}^{X_{A_i}} (\Delta g(W_i + j) - \Delta g(W_i^* + 1)) \right) \]

\[+ q \sum_{i=1}^{n} \mathbb{E}(X_i(\Delta g(W_n) - \Delta g(W_i^* + 1))) - \delta p \mathbb{E}(g(W_n + 1)) \]

\[- \sum_{i=1}^{n} \left[\mathbb{E}(X_i) \mathbb{E}(X_{A_i}) - \mathbb{E}(X_i X_{A_i}) + q \mathbb{E}(X_i) \mathbb{E}(g(W_n + 1) - g(W_i^* + 1)) \right] \]

\[= \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E} \left(\sum_{j=1}^{X_{A_i}} \sum_{\ell=1}^{X_{B_i} \setminus A_j + j - 1} \Delta^2 g(W_i^* + \ell) \right) \]

\[- \sum_{i=1}^{n} \mathbb{E} \left(X_i \sum_{j=1}^{X_{A_i}} \sum_{\ell=1}^{X_{B_i} \setminus A_j + j - 1} \Delta^2 g(W_i^* + \ell) \right) \]

\[+ q \sum_{i=1}^{n} \mathbb{E} \left(X_i \sum_{\ell=1}^{X_{B_i} - 1} \Delta^2 g(W_i^* + \ell) \right) - \delta p \mathbb{E}(g(W_n + 1)) \]

\[- \sum_{i=1}^{n} \left[\mathbb{E}(X_i) \mathbb{E}(X_{A_i}) - \mathbb{E}(X_i X_{A_i}) + q \mathbb{E}(X_i) \mathbb{E} \left(\sum_{\ell=1}^{X_{B_i} - 1} \Delta^2 g(W_i^* + \ell) \right) \right] \]

\[= \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E} \left(\sum_{j=1}^{X_{A_i}} \sum_{\ell=1}^{X_{B_i} \setminus A_j + j - 1} \mathbb{E}(\Delta^2 g(W_i^* + \ell)|X_{A_j}, X_{B_i}) \right) \]

\[- \sum_{i=1}^{n} \mathbb{E} \left(X_i \sum_{j=1}^{X_{A_i}} \sum_{\ell=1}^{X_{B_i} \setminus A_j + j - 1} \mathbb{E}(\Delta^2 g(W_i^* + \ell)|X_i, X_{A_i}, X_{B_i}) \right) \]

\[+ q \sum_{i=1}^{n} \mathbb{E} \left(X_i \sum_{\ell=1}^{X_{B_i} - 1} \mathbb{E}(\Delta^2 g(W_i^* + \ell)|X_{B_i}) \right) - \delta p \mathbb{E}(g(W_n + 1)) \]

\[- \sum_{i=1}^{n} \left[\mathbb{E}(X_i) \mathbb{E}(X_{A_i}) - \mathbb{E}(X_i X_{A_i}) \right] \]

\[+ q \mathbb{E}(X_i) \mathbb{E} \left(\sum_{\ell=1}^{X_{B_i} - 1} \mathbb{E}(\Delta^2 g(W_i^* + \ell)|X_{B_i}) \right) \]

(3.13)
Note that $\mathbb{E}(\Delta^2 g(W_i^n + \ell)|\cdot) \leq 2q^{\ell-a} D(W_i^n|\cdot)$. Hence, using (2.8), we get

\begin{align*}
|\mathbb{E}[Ag(W_n)]| & \leq \frac{2}{pq^{a}} \left\{ \sum_{i=1}^{n} \mathbb{E}(X_i) \mathbb{E}\left(\left(pX_{A_i} + q^{X_{B_i}} \left(1 - q^{-X_{A_i}} \right) \right) D(W_i^n|X_{A_i}, X_{B_i}) \right) \\
& \quad + \sum_{i=1}^{n} \mathbb{E}\left(X_i \left(pX_{A_i} + q^{X_{B_i}} \left(1 - q^{-X_{A_i}} \right) \right) D(W_i^n|X_i, X_{A_i}, X_{B_i}) \right) \\
& \quad + p \sum_{i=1}^{n} \mathbb{E}\left(X_i \left(q^{B_i} - q \right) D(W_i^n|X_{B_i}) \right) + \frac{\delta p^3}{q} \mathbb{E}(q^{W_n}) \\
& \quad + \frac{p}{q} \sum_{i=1}^{n} |\mathbb{E}(X_i) \mathbb{E}(X_{A_i}) - \mathbb{E}(X_i X_{A_i})| \\
& \quad + q \mathbb{E}(X_i) |\mathbb{E}\left(\left(q^{B_i} - q \right) D(W_i^n|X_{B_i}) \right) \right\}.
\end{align*}

This proves the result. \square

Corollary 3.2 Let $B_{a,p}$ and W_n be defined as in (1.2) and (3.9), respectively, and satisfy (3.2). If X_1, X_2, \ldots, X_n are independent random variables, then

\begin{align*}
\text{d}_{sl}(W_n, B_{a,p}) \leq \frac{2}{q^a} \left\{ \sqrt{\frac{2}{\pi}} \left(\frac{1}{4} + \sum_{i=1}^{n} \gamma_i - \gamma^* \right)^{-1/2} \sum_{i=1}^{n} |p - p_i| p_i^2 + \delta p \prod_{i=1}^{n} (1 - pp_i) \right\},
\end{align*}

(3.14)

where $\gamma_j = \min\{\frac{1}{2}, 1 - \frac{1}{2}(q_j + |q_j - p_j|)\}$ and $\gamma^* = \max_{1 \leq j \leq n} \gamma_j$.

Proof Substituting $A_i = \{i\}$ in (3.12), it can be easily verified that

\begin{align*}
q \mathbb{E}[Ag(W_n)] = \sum_{i=1}^{n} (p_i - p)p_i \mathbb{E}(\Delta g(W_i + 1)) - \delta p \mathbb{E}(g(W_n + 1)).
\end{align*}

Using (3.10), we get

\begin{align*}
q \mathbb{E}[Ag(W_n)] & = - \sum_{i=1}^{n} (p - p_i)p_i \mathbb{E}(\Delta g(W_n + 1) - \Delta g(W_i + 1)) - \delta p \mathbb{E}(g(W_n + 1)) \\
& = - \sum_{i=1}^{n} (p - p_i)p_i^2 \mathbb{E}(\Delta^2 g(W_i + 1)) - \delta p \mathbb{E}(g(W_n + 1))
\end{align*}

Note that $|\mathbb{E}(\Delta^2 g(W_i + 1))| \leq 2\gamma/q^{a-1}$, where $\gamma = 2 \max_{i \in J} d_{TV}(W_i, W_i + 1)$ (see Barbour and Xia (1999), and Barbour and Čekanavičius (2002, p. 517)). Also, from Corollary 1.6 of Mattner and Roos (2007) (see also Remark 4.1 of Vellaisamy et al. (2013)), we have

\begin{align*}
\gamma \leq \sqrt{\frac{2}{\pi}} \left(\frac{1}{4} + \sum_{i=1}^{n} \gamma_j - \gamma^* \right)^{-1/2},
\end{align*}
where
\[\gamma_j = \min\left\{ \frac{1}{2}, 1 - d_{TV}(X_j, X_j + 1) \right\} \]
\[= \min\left\{ \frac{1}{2}, 1 - \frac{1}{2}(q_j + |q_j - p_j|) \right\} \]

and \(\gamma^* = \max_{1 \leq j \leq n} \gamma_j \). Hence,
\[|E\left[A_g(W_n) \right]| \leq 2q^{\frac{1}{2}} \frac{\sqrt{2}}{\pi} \left(\frac{1}{4} + \sum_{i=1}^{n} \gamma_i - \gamma^* \right)^{-1/2} \sum_{i=1}^{n} |p_i - p_i|p_i^2 + \frac{\delta}{2} \prod_{i=1}^{n} (1 - pp_i) \].

This proves the result. \(\square \)

Remark 3.2

(i) Note that \(W_i^* \) can be expressed as the conditional sum of independent random variables. Therefore, Subsections 5.3 and 5.4 of Röllin (2008) and Remark 3.1(ii) of Kumar et al. (2022) are useful to find the upper bound of \(D(W_i^* | \cdot) \).

(ii) Observe that \(|\Delta^2 g(X + \ell)| \leq 4q^{X+\ell-\alpha} \). Therefore, from (3.13), we get
\[
\begin{aligned}
d_{sl}(W_n, B_{\alpha, p}) &\leq \frac{4}{p^2q^{\alpha}} \left\{ \sum_{i=1}^{n} \left[(X_i + p_i) \left(p X_{A_i} q_{W_i} + q_{W_n} - q_{W_i} \right) \right] \\
&\quad + p \sum_{i=1}^{n} \left[X_i \left(q_{W_n} - q_{W_i}^* + 1 \right) \right] + \frac{\delta}{2} p^3 \sum_{i=1}^{n} \left[q_{W_n} - q_{W_i}^* \right] \\
&\quad + \frac{p}{q} \sum_{i=1}^{n} \left[|E(X_i)E(X_{A_i})| - E(X_i X_{A_i}) + q E(X_i) |E\left(q_{W_n} - q_{W_i}^* + 1 \right) | \right] \right\\
&\quad (3.15)
\end{aligned}
\]

Therefore, in practice, one could take the minimum of the bounds (3.11) and (3.15).

(iii) Theorems 3.1 and 3.2 are established using Lemma 2.1 for all \(z \geq 0 \). Following the steps similar to the proofs of Theorems 3.1 and 3.2, the results can also be derived using Lemma 2.2 in terms of \(z > 1 \). This can be used to approximate \(E[(W_n - z)^+ \] by \(E[(B_{x, p} - z)^+ \) for \(z > 1 \).

(iv) From Corollary 1 of Neammanee and Yonghint (2020), we have
\[
\begin{aligned}
d_{sl}(P_{\lambda}, W_n) &\leq (2e^\lambda - 1) \sum_{i=1}^{n} p_i^2, \\
&\quad (3.16)
\end{aligned}
\]

where \(\lambda = \sum_{i=1}^{n} p_i \). The bound given in (3.7) and (3.14) are better than the above bound, for example, let \(n = 100 \) and \(p_i \), \(1 \leq i \leq 100 \), be defined as in Table 1.

Then, Table 2 gives a comparison between our bounds (3.7) and (3.14), and the existing bound (3.16).

Table 1 The values of \(p_i \)

i	\(p_i \)	i	\(p_i \)	i	\(p_i \)	i	\(p_i \)	i	\(p_i \)
1-20	0.06	21-40	0.07	41-60	0.08	61-80	0.09	81-100	0.10
Table 2 Comparison of bounds

n	From (3.16) (existing bound)	From (3.7)	From (3.14)
10	0.095193	0	7.6 × 10^{-16}
20	0.406097	0	6.8 × 10^{-15}
30	1.496990	0.109842	0.638717
40	4.407670	0.324195	1.188300
50	13.78920	1.186000	1.474570
60	3.947110	3.261280	1.676520
70	123.9500	12.78810	12.56050
80	370.6940	39.29820	13.90400
90	1227.670	136.3000	68.75740
100	3934.200	425.1760	335.1310

For $1 \leq n \leq 20$, note that the bounds given in (3.7) are zero, as expected. Further, our bounds improve upon the existing bounds for various values of p_i. Also, for sufficiently large values of n, the bound given in (3.14) is better than the bound given in (3.7).

Acknowledgements The authors thank the referee for some helpful comments.

Funding No funding was received to assist with the preparation of this manuscript.

Declarations

Conflict of Interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

Barbour AD, Holst L, Janson S (1992) Poisson Approximation. Oxford University Press
Barbour AD, Čekanavičius V (2002) Total variation asymptotes for sum of independent integer random variables. Ann Prob 30:509–545
Barbour AD, Xia A (1999) Poisson perturbation. ESAIM Probab Statist 3:131–150
Boutsikas MV, Vaggelatou E (2002) On the distance between convex-ordered random variables, with applications. Adv Appl Probab 34:349–374
Brown TC, Phillips MJ (1999) Negative binomial approximation with Stein’s method. Methodol Comput Appl Probab 1:407–421
Brown TC, Xia A (2001) Stein’s method and birth-death processes. Ann Probab 29:1373–1403
Čekanavičius V, Vellaisamy P (2015) Discrete approximations for sums of m-dependent random variables. ALEA Lat Am J Probab Math Stat 12:765–792
Čekanavičius V, Vellaisamy P (2021) Compound Poisson approximations in ℓ_p-norm for sums of weakly dependent vectors. J Theoret Probab 34:2241–2264
Chen LHY (1975) Poisson approximation for dependent trials. Ann Probability 3:534–545
Eichelsbacher P, Reinert G (2008) Stein’s method for discrete Gibbs measures. Ann Appl Probab 18:1588–1618
El Karoui N, Jiao Y (2009) Stein’s method and zero bias transformation for CDO tranche pricing. Finance Stoch 13:151–180
El Karoui N, Jiao Y, Kurtz D (2008) Gaussian and Poisson approximation: applications to CDOs tranche pricing. J Comput Finance 12:31–58
Hull JC, White AD (2004) Valuation of a CDO and an n^{th} to default CDS without Monte Carlo simulation. J Deriv 12:8–23
Kumar AN (2021) Approximations to weighted sums of random variables. Bull Malays Math Sci Soc 44:2447–2464
Kumar AN (2022) Bounds on negative binomial approximation to call function. To appear in Revstat Stat J
Kumar AN, Upadhye NS, Vellaisamy P (2022) Approximations related to the sums of m-dependent random variables. Braz J Probab Stat 36:349–368
Kumar AN, Vellaisamy P, Viens F (2022) Poisson approximation to the convolution of power series distributions. Probab Math Statist 42:63–80
Mattner L, Roos B (2007) A shorter proof of Kanter’s Bessel function concentration bound. Probab Theory Relat Fields 139:191–205
Neammanee K, Yonghint N (2020) Poisson approximation for call function via Stein-Chen method. Bull Malays Math Sci Soc 43:1135–1152
Röllin A (2008) Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron J Probab 13:756–776
Stein C (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proc. Sixth Berkeley Symp. Math. Statist. Probab. II. Probability Theory, Univ. California Press, Berkeley, Calif., pp 583–602
Vellaisamy P, Punnen AP (2001) On the nature of the binomial distribution. J Appl Probab 38:36–44
Vellaisamy P, Upadhye NS, Čekanavičius V (2013) On negative binomial approximation. Theory Probab Appl 57:97–109
Yonghint N, Neammanee K, Chaidee N (2022) Poisson approximation for locally dependent CDO. Comm Statist Theory Methods 51:2073–2081

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.