Determinants and Limit Systems in some Idempotent and Non-Associative Algebraic Structure

Walter Briec
September, 2020

Abstract
This paper considers an idempotent and symmetrical algebraic structure as well as some closely related concept. A special notion of determinant is introduced and a Cramer formula is derived for a class of limit systems derived from the Hadamard matrix product and we give the algebraic form of a sequence of hyperplanes passing through a finite number of points. Thereby, some standard results arising for Max-Times systems with nonnegative entries appear as a special case. The case of two sided systems is also analyzed. In addition, a notion of eigenvalue in limit is considered. It is shown that one can construct a special semi-continuous regularized polynomial to find the eigenvalues of a matrix with nonnegative entries.

AMS: 06D50, 06F25

Keywords: Idempotent algebraic structure, semilattices, determinant, Cramer’s rule, generalized power-mean, Max-Times systems of equations.

1 Introduction

Exotic or tropical semirings such as the Max-Plus semiring, have been developed since the late fifties. They have many applications to various fields: performance evaluation of manufacturing systems; graph theory and Markov decision processes; Hamilton-Jacobi theory. However, it is well known that there is no nontrivial algebraic structures satisfying both idempotence, symmetry and having a neutral element. Despite this, there exist methods for symmetrizing an idempotent semiring imitating the familiar construction of \(\mathbb{Z} \) from \(\mathbb{N} \), for an arbitrary semiring. Symmetrization of idempotent Semirings plays a crucial role to develop an approach in term of determinant in Max-Plus Algebra. Gaubert [16] introduced a balance relation to preserve transitivity. Familiar identities valid in rings admit analogues, replacing equalities by balances. The balance relation yields to relations similar to those arising for ordinary determinant making a lexical change. This symmetrization was invented independently by G. Hegedüs [18] and M. Plus [24]. It follows that solving linear equations in the Max-Plus semi-ring requires to solve systems of linear balances. Results concerning Cramer solutions can be found in [5].
In this paper we have taken a different point of view. We consider an idempotent algebraic structure having the symmetry property and 0 as a neutral element. The price to pay is that associativity no longer holds true. More precisely, we focus on a Max-Times algebraic structure which is derived as a limit case of the generalized power-mean involving an homeomorphic transformation of the real field. The binary operation involved by this algebraic structure was mentioned in [17] as an exercise. Though it is not associative it admits an \(n \)-ary extension and satisfies some interesting properties. In particular, one can construct a scalar product which will play an important role in the paper. It has been shown in [7, 8] that such an algebraic structure is useful to extend a Max-Times idempotent convex structure from \(\mathbb{R}^n_+ \) to the whole Euclidean vector space. The problem arising with such a cancelative algebraic structure is that it involves a natural \(n \)-ary operation that is not continuous nor associative. Therefore, to circumvent this difficulty and establish separation properties of convex sets, a special class of semi-continuous (upper and lower) regularized inner products was considered in [8].

The paper focuses on the asymptotic Cramer solutions of a special sequence of generalized power-linear systems. These systems are constructed from an homeomorphic transformation of the usual matrix product involving the Hadamard power for vectors and matrices. The formula of the determinant and Cramer’s rule are then derived with respect to the non-associative algebraic structure considered in [7]. Along this line, we give the algebraic form of a sequence of hyperplanes passing through a finite number of points. More importantly, a general class of limit systems is defined over \(\mathbb{R}^n \). These limit systems involve several inequations that are derived from the semi-continuous (upper and lower) regularization of the non-associative inner product. They include as a special case all the Max-Times systems defined from a matrix with positive entries. The Kaykobad’s conditions established in [19] can then be applied to warrant the asymptotic existence of a positive solution. This algebraic structure does not require any balance relation and one can give an explicit form to some solutions of a two-sided Max-Times system. In addition, it is shown that one can construct a special polynomial to find the eigenvalues of a matrix with nonnegative entries. To do that the limit of the Perron-Frobenius eigenvalue is considered. A parallel viewpoint was adopted in [2] in a Max-Plus context.

The paper unfolds as follows. We lay down the groundwork in section 2. In section 3, a suitable notion of determinant is defined with respect to this non-associative algebraic structure. Section 4 considers a class of semi-continuous regularized operators. Hence an explicit algebraic form of the limit of a sequence of generalized hyperplanes is provided. In section 5, a class of limit systems of equations is analyzed for which an explicit Cramer formula is established including the case of Max-Times systems with nonnegative entries. In addition, we provide a solution for a class of two-sided systems and we compare the balance relations and the non-associative algebraic structure used in the paper. Finally, a notion of eigenvalues in limit is analyzed and connected to the algebraic structure proposed in the paper.

1 Exercice 41, p. 25.
2 A similar approach was considered in [2] modulo a logarithmic change in the variables related to the Max-Plus algebraic structure.
2 Preliminary Properties

2.1 An Idempotent and Non-Associative Algebraic Structure

For all \(p \in \mathbb{N} \), let us consider a bijection \(\varphi_p : \mathbb{R} \rightarrow \mathbb{R} \) defined by:

\[
\varphi_p : x \rightarrow x^{2p+1}
\]

and \(\phi_p(x_1, ..., x_n) = (\varphi_p(x_1), ..., \varphi_p(x_n)) \); this is closely related to the approach proposed by Ben-Tal \([6]\) and Avriel \([4]\). One can induce a field structure on \(\mathbb{R} \) for which \(\varphi_p \) becomes a field isomorphism. Given this change of notation via \(\varphi_p \) and \(\phi_p \) we can define a \(\mathbb{R} \)-vector space structure on \(\mathbb{R}^n \) by:

\[
\lambda \varphi_p x = \phi_p^{-1}(\varphi_p(\lambda) \phi_p(x)) = \lambda x \text{ and } x + y = \phi_p^{-1}(\phi_p(x) + \phi_p(y));
\]

we call these two operations the indexed scalar product and the indexed sum (indexed by \(\varphi_p \)).

The \(\varphi_p \)-sum denoted \(\sum_{i \in [m]} \) of \((x_1, ..., x_m) \in \mathbb{R}^{n \times m} \) is defined by:

\[
\sum_{i \in [m]} \varphi_p x_i = \phi_p^{-1}\left(\sum_{j \in [m]} \phi_p(x_j) \right).
\]

For simplicity, throughout the paper we denote for all \(x, y \in \mathbb{R}^n \):

\[
x + y = x^p + y.
\]

Recall that Kuratowski-Painlevé lower limit of the sequence of sets \(\{A_n\}_{n \in \mathbb{N}} \), denoted \(L_{i_n \rightarrow \infty} A_n \), is the set of points \(x \) for which there exists a sequence \(\{x^{(n)}\}_{n \in \mathbb{N}} \) of points such that \(x^{(n)} \in A_n \) for all \(n \) and \(x = \lim_{n \rightarrow \infty} x^{(n)} \).

The Kuratowski-Painlevé upper limit of the sequence of sets \(\{A_n\}_{n \in \mathbb{N}} \), denoted \(L_{s_n \rightarrow \infty} A_n \), is the set of points \(x \) for which there exists a subsequence \(\{x^{(n)}\}_{n \in \mathbb{N}} \) of points such that \(x^{(n)} \in A_{n_k} \) for all \(k \) and \(x = \lim_{k \rightarrow \infty} x^{(n_k)} \).

A sequence \(\{A_n\}_{n \in \mathbb{N}} \) of subsets of \(\mathbb{R}^n \) is said to converge, in the Kuratowski-Painlevé sense, to a set \(A \) if \(L_{s_n \rightarrow \infty} A_n = A = L_{i_n \rightarrow \infty} A_n \), in which case we write \(A = \text{Lim}_{n \rightarrow \infty} A_n \).

2.2 A Limit Algebraic Structure

In \([7]\) it was shown that for all \(x, y \in \mathbb{R} \) we have:

\[
\lim_{p \rightarrow +\infty} x^p y = \begin{cases}
 x & \text{if } |x| > |y| \\
 \frac{1}{2}(x + y) & \text{if } |x| = |y| \\
 y & \text{if } |x| < |y|.
\end{cases}
\]

Along this line one can introduce the binary operation \(\boxplus \) defined for all \(x, y \in \mathbb{R} \) by:

\[
x \boxplus y = \lim_{p \rightarrow +\infty} x^p y.
\]

Though the operation \(\boxplus \) does not satisfy associativity, it can be extended by constructing a non-associative algebraic structure which returns to a given \(n \)-tuple a real value. For all \(x \in \mathbb{R}^n \) and all subsets \(I \) of \([n]\), let us consider the map \(\xi_I(x) : \mathbb{R} \rightarrow \mathbb{Z} \) defined for all \(\alpha \in \mathbb{R} \) by:

\[
\xi_I(x)(\alpha) = \text{Card}\{i \in I : x_i = \alpha\} - \text{Card}\{i \in I : x_i = -\alpha\}.
\]

\(^3\text{For all positive natural numbers } n, [n] = \{1, ..., n\}.\)
This map measures the symmetry of the occurrences of a given value \(\alpha \) in the components of a vector \(x \).

For all \(x \in \mathbb{R}^n \) let \(\mathcal{J}_I(x) \) be a subset of \(I \) defined by

\[
\mathcal{J}_I(x) = \left\{ j \in I : \xi_I[x](x_j) \neq 0 \right\} = I \setminus \left\{ i \in I : \xi_I[x] = 0 \right\}.
\]

(2.6)

\(\mathcal{J}_I(x) \) is called the residual index set of \(x \). It is obtained by dropping from \(I \) all the \(i \)'s such that \(\text{Card}\{j \in I : x_j = x_i\} = \text{Card}\{j \in I : x_j = -x_i\} \).

For all positive natural numbers \(n \) and for all subsets \(I \) of \([n]\), let \(F_I : \mathbb{R}^n \longrightarrow \mathbb{R} \) be the map defined for all \(x \in \mathbb{R}^n \) by

\[
F_I(x) = \begin{cases}
\max_{i \in \mathcal{J}_I(x)} x_i & \text{if } \xi_I[x]\{\max_{i \in \mathcal{J}_I(x)} |x_i|\} > 0 \\
\min_{i \in \mathcal{J}_I(x)} x_i & \text{if } \xi_I[x]\{\max_{i \in \mathcal{J}_I(x)} |x_i|\} < 0 \\
0 & \text{if } \xi_I[x]\{\max_{i \in \mathcal{J}_I(x)} |x_i|\} = 0.
\end{cases}
\]

(2.7)

where \(\xi_I[x] \) is the map defined in (2.5) and \(\mathcal{J}_I(x) \) is the residual index set of \(x \). The operation that takes an \(n \)-tuple \((x_1, \ldots, x_n)\) of \(\mathbb{R}^n \) and returns a single real element \(F_I(x_1, \ldots, x_n) \) is called a \(n \)-ary extension of the binary operation \(\bigoplus \) for all natural numbers \(n \geq 1 \) and all \(x \in \mathbb{R}^n \), if \(I \) is a nonempty subset of \([n]\).

Then, for all \(n \)-tuple \(x = (x_1, \ldots, x_n) \), one can define the operation:

\[
\bigoplus_{i \in I} x_i = \lim_{p \to \infty} \sum_{i \in I} x_i = F_I(x).
\]

(2.8)

Clearly, this operation encompasses as a special case the binary operation defined in equation (2.2) and for all \((x_1, x_2) \in \mathbb{R}^2:\)

\[
\bigoplus_{i \in \{1,2\}} x_i = x_1 \bigoplus x_2.
\]

For example, if \(x = (-3, -2, 3, 1, -3) \), we have \(F_{\{3\}}(-3, -2, 3, 1, -3) = F_{\{2\}}(-2, 1) = -2 = \bigoplus_{i \in \{i\}} x_i \). There are some basic properties that can be inherited from the above algebraic structure. We briefly summarize some basic properties: (i) If all the elements of the family \(\{x_i\}_{i \in I} \) are mutually non-symmetrical, then: \(\bigoplus_{i \in I} x_i = \arg \max_{i \in I} \{ |\lambda| : \lambda \in \{x_i\}_{i \in I} \} \); (ii) For all \(\alpha \in \mathbb{R} \), one has: \(\alpha \left(\bigoplus_{i \in I} x_i \right) = \bigoplus_{i \in I} (\alpha x_i) \); (iii) Suppose that \(x \in \mathbb{R}^n_+ \) where \(\epsilon \) is +1 or -1. Then \(\bigoplus_{i \in I} x_i = \epsilon \max_{i \in I} \{\epsilon x_i\} \); (iv) We have \(|\bigoplus_{i \in I} x_i| \leq \bigoplus_{i \in I} |x_i| \); (v) For all \(x \in \mathbb{R}^n \):

\[
\left[x_i \bigoplus \left(\bigoplus_{j \in I \setminus \{i\}} x_j \right) \right] \in \left\{ 0, \bigoplus_{j \in I} x_j \right\} \quad \text{and} \quad \bigoplus_{i \in I} x_i = \bigoplus_{i \in I} \left[x_i \bigoplus \left(\bigoplus_{j \in I \setminus \{i\}} x_j \right) \right].
\]

The algebraic structure \((\mathbb{R}, \bigoplus, \cdot)\) can be extended to \(\mathbb{R}^n \). Suppose that \(x, y \in \mathbb{R}^n \), and let us denote \(x \bigoplus y = (x_1 \bigoplus y_1, \ldots, x_n \bigoplus y_n) \). Moreover, let us consider \(m \) vectors \(x_1, \ldots, x_m \in \mathbb{R}^n \), and define

\[
\bigoplus_{j \in [m]} x_j = \left(\bigoplus_{j \in [m]} x_{j,1}, \ldots, \bigoplus_{j \in [m]} x_{j,n} \right).
\]

(2.9)

The \(n \)-ary operation \((x_1, \ldots, x_n) \to \bigoplus_{i \in [n]} x_i \) is not associative. To simplify the notations of the paper, for all \(z \in \{z_{i_1, \ldots, i_m} : i_k \in I_k, k \in [m]\} \), where \(I_1, \ldots, I_m \) are \(m \) index subsets of \(\mathbb{N} \), we use the notation:

\[
\bigoplus_{i_k \in I_k} z_{i_1, \ldots, i_m} = \bigoplus_{(i_1, \ldots, i_m) \in I_k \times [m]} z_{i_1, \ldots, i_m}.
\]

(2.10)
Notice that for all \(x \in \mathbb{R}^n \) and all \(y \in \mathbb{R}^m \):

\[
\left(\bigoplus_{i \in [n]} x_i \right) \left(\bigoplus_{j \in [m]} y_j \right) = \bigoplus_{i \in [n]} x_i y_j.
\]

(2.11)

This relation immediately comes from the fact that for all natural numbers \(p \), we have:

\[
\left(\sum_{i \in [n]} x_i \right) \left(\sum_{j \in [m]} y_j \right) = \sum_{i \in [n]} \sum_{j \in [m]} x_i y_j = \sum_{i \in [n]} x_i y_j.
\]

(2.12)

Taking the limit on both sides yields equation (2.11). In the remainder, we will adopt the following notational convention. For all \(x \in \mathbb{R}^n \):

\[
\bigoplus_{i \in [n]} x_i = x_1 \oplus \cdots \oplus x_n = f_{[n]}(x).
\]

(2.13)

2.3 Scalar Product

This section presents the algebraic properties induced by the isomorphism of scalar field \(\varphi_p \) on the scalar product. Most of the results have been pointed in details by Avriel [4] and Ben Tal [6]. A norm \(\| \cdot \| \) yields another norm induced by the algebraic operations \(+ \) and \(\cdot \). The map \(\| \cdot \| : \mathbb{R}^n \to \mathbb{R} \) defined by

\[
\| x \|_{\varphi_p} = \varphi_p^{-1}(\| \varphi_p(x) \|)
\]

is a norm over \(\mathbb{R}^n \) endowed with the operations \(+ \) and \(\cdot \). Since \(\varphi_p \) is continuous over \(\mathbb{R} \), the topological structure is the same. Along this line it is natural to define a scalar product. If \(\langle \cdot, \cdot \rangle \) is an inner product over \(\mathbb{R}^n \), then there exists a symmetric bilinear form \(\langle \cdot, \cdot \rangle_{\varphi_p} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) defined by:

\[
\langle x, y \rangle_{\varphi_p} = \varphi_p^{-1}(\langle \varphi_p(x), \varphi_p(y) \rangle) = \left(\sum_{i \in [n]} x_i y_i \right)\sqrt{p+1}.
\]

(2.14)

Now, let us denote \(\{ y, \cdot \rangle_{\varphi_p} \leq \lambda \} = \{ x \in \mathbb{R}^n : \langle x, y \rangle_{\varphi_p} \leq \lambda \} \) and let \(\langle \cdot, \cdot \rangle_p \) stands for this scalar product.

In the following we introduce the operation \(\langle \cdot, \cdot \rangle_{\infty} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) defined for all \(x, y \in \mathbb{R}^n \) by \(\langle x, y \rangle_{\infty} = \bigoplus_{i \in [n]} x_i y_i \). Let \(\| \cdot \|_{\infty} \) be the Tchebychev norm defined by \(\| x \|_{\infty} = \max_{i \in [n]} |x_i| \). It is established in [7] that for all \(x, y \in \mathbb{R}^n \), we have: (i) \(\sqrt{\langle x, x \rangle_{\infty}} = \| x \|_{\infty} \); (ii) \(\| x, y \|_{\infty} \leq \| x \|_{\infty} \| y \|_{\infty} \); (iii) For all \(\alpha \in \mathbb{R} \), \(\alpha \langle x, y \rangle_{\infty} = \langle \alpha x, y \rangle_{\infty} = \langle x, \alpha y \rangle_{\infty} \). By definition, we have for all \(x, y \in \mathbb{R}^n \):

\[
\langle x, y \rangle_{\infty} = \lim_{p \to \infty} \langle x, y \rangle_p
\]

(2.15)

3 Limit of Linear Operators and Determinant

This section is devoted to study the matrix representation of a linear operator defined on the scalar field \((\mathbb{R}^n, +, \cdot) \). Along this line some limit properties are derived to establish several results in closed algebraic form when \(p \to \infty \).

3.1 \(\varphi_p \)-linear Endomorphisms

Let \(\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \) denotes the set of all the linear endomorphisms defined from \(\mathbb{R}^n \) to \(\mathbb{R}^m \). Let \(\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \) is then the set of all the linear endomorphisms defined over \(\mathbb{R}^n \). In the following, we say that a map \(f : \mathbb{R}^n \to \mathbb{R}^n \) is \(\varphi_p \)-linear if for
all \(\lambda \in \mathbb{R} \), \(f(\lambda x + y) = \lambda f(x) + f(y) \). Moreover, for all natural numbers \(p \), let \(\mathcal{L}^{[p]}(\mathbb{R}^n, \mathbb{R}^n) \) denotes the set of all the \(\varphi_p \)-linear endomorphisms.

Let \(\mathcal{M}_n(\mathbb{R}) \) denotes the set of all the \(n \times n \) matrices defined over \(\mathbb{R} \). Let \(\Phi_p : \mathcal{M}_n(\mathbb{R}) \rightarrow \mathcal{M}_n(\mathbb{R}) \) be the map defined for any matrix \(A = (a_{i,j})_{i=1,\ldots,n} \in \mathcal{M}_n(\mathbb{R}) \) as:

\[
\Phi_p(A) = (\varphi_p(a_{i,j}))_{i=1,\ldots,n} = (a_{i,j}^{2^p+1})_{j=1,\ldots,n}.
\]

(3.1)

Its reciprocal is the map \(\Phi_p^{-1} : \mathcal{M}_n(\mathbb{R}) \rightarrow \mathcal{M}_n(\mathbb{R}) \) defined by:

\[
\Phi_p^{-1}(A) = (\varphi_p^{-1}(a_{i,j}))_{i=1,\ldots,n} = \left(a_{i,j}^{\frac{1}{2^p+1}} \right)_{j=1,\ldots,n}.
\]

(3.2)

\(\Phi_p \) is a natural extension of the map \(\phi_p \) from \(\mathbb{R}^n \) to \(\mathcal{M}_n(\mathbb{R}) \). \(\Phi_p(A) \) is the \(2p+1 \) Hadamard power of matrix \(A \). In the following we introduce the matrix product:

\[
A^p \cdot x = \sum_{j \in [n]} \varphi_p \cdot x_j \cdot a^j,
\]

(3.3)

where \(a^j \) stands for the \(j \)-th column of \(A \). It is straightforward to show that this formulation is equivalent to the following:

\[
A^p \cdot x = \phi_p^{-1}(\Phi_p(A) \cdot \phi_p(x)).
\]

(3.4)

Another equivalent formulation involves the inner product \(\langle \cdot, \cdot \rangle_p \):

\[
A^p \cdot x = \sum_{i \in [n]} \langle a_i, x \rangle_p e_i,
\]

(3.5)

where \(a_i \) is the \(i \)-th line of matrix \(A \) and \(\{ e_i \}_{i \in [n]} \) is the canonical basis of \(\mathbb{R}^n \).

It is easy to see that the map \(x \mapsto A^p \cdot x \) is \(\varphi_p \)-linear. Conversely, if \(g \) is a \(\varphi_p \)-linear map then it can be represented by a matrix \(A \) such that \(g(x) = A^p \cdot x \) for all \(x \in \mathbb{R}^n \). If \(A, B \in \mathcal{M}_n(\mathbb{R}) \), the product \(A^p \cdot B \) is the matrix representation of the map:

\[
\phi_p^{-1}(\Phi_p(B) \cdot \Phi_p(A) \cdot \phi_p(x)).
\]

(3.6)

Notice that the identity matrix \(I \) is invariant with respect to \(\Phi_p \).

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a linear endomorphism and let \(A \) be its matrix representation in the canonical basis. The map \(T^{(p)} : \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \rightarrow \mathcal{L}^{[p]}(\mathbb{R}^n, \mathbb{R}^n) \) defined for all \(x \in \mathbb{R}^n \) by:

\[
T^{(p)}(f)(x) = f^{(p)}(x) := \phi_p^{-1}(\Phi_p(A) \cdot \phi_p(x))
\]

is called the \(\varphi_p \)-linear transformation of \(f \).

A \(\varphi_p \)-linear endomorphism \(g \) is invertible if and only if \(\Phi_p(A) \) is invertible. For any \(n \times n \) matrix \(A \), let \(|A| \) denotes its determinant. Let us introduce the following definition of a \(\varphi_p \)-determinant

\[
|A|_p = \varphi_p^{-1}(\Phi_p(A)).
\]

(3.7)

Let \(S_n \) be the set of all the permutations defined on \([n]\). The Leibnitz formula yields

\[
|A|_p = \left(\sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i \in [n]} a_{i,\sigma(i)}^{2^p+1} \right)^{-\frac{1}{2^p+1}}.
\]

(3.8)
In the remainder, if A is the matrix of a linear endomorphism f, then we define the φ_p-determinant of f as $|f|_p = |A|_p$. If $f(p)$ is invertible, then we have the equivalences:

$$y = f(p)(x) \iff y = \phi_p^{-1}(\Phi_p(A)\phi_p(x)) \iff \phi_p^{-1}(\Phi_p(A)^{-1} \phi_p(y)) = x.$$ (3.9)

Along this line, the φ_p-cofactor matrix A^{*p} is defined as:

$$A^{*p} = (a_{i,j}^{*p})_{i \in [n]} = \left((-1)^{i+j} [A_{i,j}]_p\right)_{j \in [n]},$$ (3.10)

where $A_{i,j}$ is obtained from matrix A by dropping line i and column j. The ϕ_p-inverse matrix of a φ_p-invertible matrix A (such that $|A|_p \neq 0$) is then defined as:

$$A^{-1,p} = \frac{1}{|A|_p} t A^{*p}. \quad (3.11)$$

Suppose that f is a linear endomorphism having a matrix representation A in the canonical basis and let $b \in \mathbb{R}^n$. Given a system of φ_p-linear equations of the form:

$$f(p)(x) = b \iff A^p x = b,$$ (3.12)

if $|A|_p \neq 0$, then the solution is $x^* = A^{-1,p} b$.

3.2 Limit Properties

Proposition 3.2.1 Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear endomorphism having a matrix representation A. For all $p \in \mathbb{N}$, let $f(p)$ be its φ_p-linear transformation. Then:

$$\lim_{p \to \infty} f(p)(x) = \bigcap_{j \in [n]} x_j a^j = \bigcap_{i \in [n]} (a_i, x)_{\infty} e_1.$$

Proof: For all $i \in [n]$, we have from [7]:

$$\lim_{p \to \infty} \sum_{j \in [n]} x_j a_{i,j} = \lim_{p \to \infty} \left(\sum_{j \in [n]} x_j a_{i,j}^{2p+1} \right)^{\frac{1}{2p+1}} = \bigcap_{j \in [n]} x_j a_{i,j} = (a_i, x)_{\infty}.$$

Therefore

$$\lim_{p \to \infty} \sum_{j \in [n]} \varphi_p x_j a^j = \bigcap_{j \in [n]} x_j a^j.$$

The last equality immediately follows. □

For any squared matrix A, $|A|_{\infty}$ is called the **determinant in limit of A**. For any linear endomorphism f whose the matrix is A, the determinant in limit of f is defined as $|f|_{\infty} = |A|_{\infty}$.

Proposition 3.2.2 For all $A \in \mathcal{M}_n(\mathbb{R})$, we have:

$$\lim_{p \to \infty} |A|_p := |A|_{\infty} = \bigcap_{\sigma \in S_n} \left(\text{sgn}(\sigma) \prod_{i \in [n]} a_{i,\sigma(i)} \right).$$

Proof: From [7] we have:

$$\lim_{p \to \infty} \left(\sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i \in [n]} a_{i,\sigma(i)}^{2p+1} \right)^{\frac{1}{2p+1}} = \bigcap_{\sigma \in S_n} \left(\text{sgn}(\sigma) \prod_{i \in [n]} a_{i,\sigma(i)} \right). \quad \Box$$
Proposition 3.2.3 Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear endomorphism having a matrix representation A. For all $p \in \mathbb{N}$, let $f^{(p)}$ be its φ_p-linear transformation. If $|A|_{\infty} \neq 0$, then there is some $p_0 \in \mathbb{N}$ such that for all $p \geq p_0$, $f^{(p)}$ is φ_p-invertible and for all $b \in \mathbb{R}^n$, there exists a solution $x^{(p)}$ to the system $A^p x = b$ with:

$$x^{(p)}_i = \frac{|A^{(i)}|_p}{|A|_p} \frac{\phi_p(A^{(i)})}{\phi_p(A)} ,$$

where $A^{(i)}$ is obtained from A by dropping column i and replacing it with b. Moreover, we have:

$$\lim_{p \to \infty} x^{(p)} = x^\dagger,$$

with for all $i \in [n]$

$$x^\dagger_i = \frac{|A^{(i)}|_{\infty}}{|A|_{\infty}} .$$

Proof: Since $|A|_{\infty} \neq 0$ and $\lim_{p \to \infty} |A|_p = |A|_{\infty}$, there is some p_0 such that for all $p \geq p_0$, $|A|_p \neq 0$, which implies that A is φ_p-invertible. In such a case, there exists an uniqueness solution to the system $A^p x = b$, that is $x^{(p)} = A^{-1,p} b$. Moreover, we have:

$$A^p x = b \iff \phi_p^{-1}(\Phi_p(A)\phi_p(x)) = b \iff \Phi_p(A)\phi_p(x) = \phi_p(b).$$

Since $f^{(p)}$ is φ_p-invertible, it follows that $\Phi_p(A)$ is invertible. Set $u = \phi_p(x)$. The system $\Phi_p(A)u = \phi_p(b)$ has a solution for all $p \geq p_0$. Applying the Cramer’s rule the solution is the vector $u^{(p)}$ satisfying the relation:

$$u^{(p)} = \left[\frac{\Phi_p(A)^{\dagger}}{\Phi_p(A)} \right] = \left[\frac{\Phi_p(A^{(i)})}{\Phi_p(A)} \right].$$

Setting $x^{(p)} = \phi_p^{-1}(u^{(p)})$, we obtain the result. From Proposition 3.2.2 $\lim_{p \to \infty} |A^{(i)}|_p = |A^{(i)}|_{\infty}$ and $\lim_{p \to \infty} |A|_p = |A|_{\infty}$, which ends the proof. \square

The next properties are useful. We first establish the following Lemma.

Lemma 3.2.4 Suppose that there is some $x = (x_1, ..., x_n) \in \mathbb{R}^n$ such that

$$\bigoplus_{i \in [n]} x_i = 0.$$ Then for all $p \in \mathbb{N}$, $\sum_{i \in [n]} \varphi_p x_i = 0$. Moreover, for all matrices $A \in \mathcal{M}_n(\mathbb{R})$, if $|A|_{\infty} = 0$ then $|A|_p = 0$ for all $p \in \mathbb{N}$.

Proof: Let $\Lambda[x] = \{ \alpha \in \mathbb{R}_+ : |x| = \alpha, i \in [n] \}$. Since $\bigoplus_{i \in [n]} x_i = 0$, we have for all α, $\xi(x)(\alpha) = \text{Card}\{ i : x_i = \alpha \} - \text{Card}\{ i : x_i = -\alpha \} = 0$. Hence, for all $\alpha \in \Lambda[x]$, $\sum_{|x| = \alpha} x_i = 0$. Thus

$$\sum_{i \in [n]} \varphi_p x_i = \sum_{\alpha \in \Lambda[x]} \sum_{|x| = \alpha} \varphi_p x_i = 0.$$

The second part of the statement is an immediate consequence of the Leibniz formula. \square

For all $p \in \mathbb{N} \cup \{ \infty \}$ and for all matrices $A \in \mathcal{M}_n(\mathbb{R})$, let us denote $|a^1, ..., a^n|_p = |A|_p$ where the a^j’s are the column vectors of A.
Proposition 3.2.5 For all $A \in \mathcal{M}_n(\mathbb{R}^n)$, we have the following properties.
(a) For all $\alpha \in \mathbb{R}$, $|a^1, \ldots, a^n| = |A|_\infty$;
(b) For all permutations σ of S_n, $|a^{\sigma(1)}, \ldots, a^{\sigma(n)}| = \text{sgn}(\sigma)|A|_\infty$;
(c) If $\alpha \in \mathbb{R}^n \setminus \{0\}$ such that $\sum_{j \in [n]} a_j \alpha_j = 0$ then $|A|_\infty = 0$.
(d) If $|A|_\infty = 0$ then there exists a sequence $\{\alpha(p)\}_{p \in \mathbb{N}} \subset \mathbb{R}^n \setminus \{0\}$ such that $\sum_{j \in [n]} a_j \alpha(p)_j = 0$ for all $p \in \mathbb{N}$.

Proof: (a) Since $|A|_p = \varphi_p^{-1}([\Phi_p(A)])$, we deduce that for all natural numbers p, $|a^1, \ldots, a^n|_p = |A|_p$. Taking the limit yields the result. (b) Similarly, for all permutations $\sigma \in S_n$, $|a^{\sigma(1)}, \ldots, a^{\sigma(n)}|_p = \text{sgn}(\sigma)|A|_p$, which yields (b), by taking the limit. (c) If there exists $\alpha \in \mathbb{R}^n \setminus \{0\}$ such that $\sum_{j \in [n]} a_j \alpha_j = 0$, then $|A|_\infty = 0$, from Lemma 3.2.4, then we deduce that for all natural numbers p, $\sum_{j \in [n]} a_j \alpha(p)_j = 0$. However, this implies that $|A|_p = 0$ for all p. Hence $|A|_\infty = \lim_{p \to \infty}|A|_p = 0$. (d) If $|A|_\infty = 0$, then $\sum_{j \in [n]} a_j \alpha(p)_j = 0$. Thus, from Lemma 3.2.4

$$\sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i \in [n]} a_{i, \sigma(i)} = 0$$

for all natural numbers p. Hence, for all p, there is $\alpha(p) \in \mathbb{R}^n \setminus \{0\}$ such that $\sum_{j \in [n]} a_j \alpha(p)_j = 0$, which ends the proof. \square

Determinants are intimately linked to the exterior product product of vectors that is an algebraic construction used to study areas, volumes, and their higher-dimensional analogues. Paralleling the earlier definitions, a map $f : \mathbb{R}^n \to \mathbb{R}$ is called a φ_p-multilinear form if it is φ_p-linear in each argument.

A φ_p-multilinear form is alternating if for each permutation $\sigma \in S_n$ we have $f(x_1, \ldots, x_n) = \text{sgn}(\sigma)f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. For all natural numbers r an alternating φ_p-linear r-form is a map defined for all $x_1, x_2, \ldots, x_r \in \mathbb{R}^n$ as:

$$(f_1 \wedge f_2 \cdots \wedge f_r)(x_1, \ldots, x_r) = \sum_{\sigma \in S_r} \text{sgn}(\sigma)f_1^{(p)}(x_{\sigma(1)}) \cdots f_r^{(p)}(x_{\sigma(r)}),$$

(3.13)

where for any i, f_i is a linear form and, and $f_i^{(p)}$ is the corresponding φ_p-transformation. \wedge is called the φ_p-exterior product of the linear forms f_1, \ldots, f_r. Let $\{e_1^*, \ldots, e_n^*\}$ be the canonical basis of the dual space $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$. Suppose that $r = n$ and let $f = \sum_{i \in [n]} f(e_i)e_i^*$ be the linear endomorphism constructed from f_1, \ldots, f_n.

Proposition 3.2.6 Let us consider n linear forms f_1, \ldots, f_n. Then for all $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$, we have

$$(f_1 \wedge f_2 \cdots \wedge f_n)(x_1, \ldots, x_n) = \sum_{\sigma \in S_n} \text{sgn}(\sigma)f_1^{(p)}(e_{\sigma(1)}^*) \cdots f_n^{(p)}(e_{\sigma(n)}^*)(x_1, \ldots, x_n).$$

Moreover, we have:

$$\lim_{p \to \infty} (f_1 \wedge f_2 \cdots \wedge f_n)(x_1, \ldots, x_n) = \|f\|_\infty(e_1^* \wedge e_2^* \cdots \wedge e_n^*)(x_1, \ldots, x_n),$$

where

$$(e_1^* \wedge e_2^* \cdots \wedge e_n^*)(x_1, \ldots, x_n) = \lim_{p \to \infty} (e_1^p \wedge e_2^p \cdots \wedge e_n^p)(x_1, \ldots, x_n) = |x_1, \ldots, x_n|_\infty.$$
Proof: Suppose that for \(i = 1, \ldots, n \) there is a vector \(a_i \in \mathbb{R}^n \) such that \(f_i(x) = \langle a_i, x \rangle \). Then \(f_i^p(x) = \varphi^{-1}_p(\langle \phi_p(a_i), \phi_p(x) \rangle) = (\sum_{i \in [n]} a_i^2 x_i^{2p+1})^{\frac{1}{2p+1}}. \) It follows that:
\[
(f_1 \wedge f_2 \cdots \wedge f_n)(x_1, \ldots, x_n) = \left(\sum_{\sigma \in S_n} \text{sign}(\sigma) \prod_{i \in [n]} \langle \phi_p(a_i), \phi_p(x_{\sigma(i)}) \rangle \right)^{\frac{1}{2p+1}}
\]
\[
= \left(\sum_{\sigma \in S_n} \text{sign}(\sigma) \prod_{i \in [n]} a_i^2 x_{\sigma(i)}^{2p+1} \right)^{\frac{1}{2p+1}}.
\]
For each \(i \), let \(g_i^p : \mathbb{R}^n \to \mathbb{R} \) be the linear form defined by \(g_i^p(z) = \langle \phi_p(a_i), z \rangle \). It follows that:
\[
(f_1 \wedge f_2 \cdots \wedge f_n)(x_1, \ldots, x_n) = \varphi^{-1}_p \left((g_1^p \wedge g_2^p \cdots \wedge g_n^p)(\phi_p(x_1), \ldots, \phi_p(x_n)) \right).
\]
Let \(\{e_1^*, \ldots, e_n^*\} \) be the canonical basis of the dual space \(\mathcal{L}(\mathbb{R}^n, \mathbb{R}) \). From the usual properties of an alternating \(n \)-form we deduce that:
\[
(\varphi^p)_{1 \wedge 2 \cdots n}(\phi_p(x_1), \ldots, \phi_p(x_n)) = |\Phi_p(A)| \langle e_1^* \wedge e_2^* \cdots \wedge e_n^* \rangle(\phi_p(x_1), \ldots, \phi_p(x_n)),
\]
where \(\Phi_p(A) \) is the matrix whose line \(i \) is the vector \(\phi_p(a_i) \). Since for all \(i \) and all \(x \in \mathbb{R}^n \) we have \(\langle e_i, x \rangle_p = x_i \), this canonical basis is also, independently of \(p \), the canonical basis of \(\mathcal{L}_p(\mathbb{R}^n, \mathbb{R}) \). Since \(|A|_p = \varphi^{-1}_p(|\Phi_p(A)|) \), it follows that:
\[
(f_1^p \wedge f_2^p \cdots \wedge f_n^p)(x_1, \ldots, x_n) = |A|_p \left(\sum_{i \in [n]} \langle e_i, \phi_p(x) \rangle \right)^{\frac{1}{2p+1}}
\]
\[
= |A|_p (e_1^* \wedge e_2^* \cdots e_n^*)^p(x_1, \ldots, x_n).
\]
However, we have
\[
(e_1^* \wedge e_2^* \cdots e_n^* \wedge e_n^*)(x_1, \ldots, x_n) = |x_1, \ldots, x_n|_p.
\]
We then obtain the final result taking the limit. \(\square \)

For all \((f_1, f_2, \ldots, f_n) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})^n \), let \(f_1 \wedge f_2 \cdots \wedge f_n \) denotes the pointwise limit of the sequence \(\{f_1 \wedge f_2 \cdots \wedge f_n\}_{n \in \mathbb{N}} \). Namely
\[
f_1 \wedge f_2 \cdots \wedge f_n = \lim_{p \to \infty} f_1 \wedge f_2 \cdots \wedge f_n = |A|_\infty (e_1^* \wedge e_2^* \cdots \wedge e_n^* \wedge e_n^*).
\]
Consequently, since primal and dual spaces are isomorphic, one can define for all \(v_1, v_2, \ldots, v_n \in \mathbb{R}^n \) the exterior product:
\[
(v_1 \wedge v_2 \cdots \wedge v_n) = |v_1, v_2, \ldots, v_n|_\infty (e_1^* \wedge e_2^* \cdots \wedge e_n^*).
\]
Notice however, that though this definition extends as a limit case the usual definition of exterior product, it does not satisfy the the additivity property in each arguments with respect to the operation \(\boxplus \).

4 Semi-continuous Regularization and Limit of Hyperplanes

4.1 Semi-continuous Regularizations

In the following, we say that a map \(f : \mathbb{R}^n \to \mathbb{R} \) is a **B-form** if there exists some \(a \in \mathbb{R}^n \) such that:
\[
f(x) = \bigboxplus_{i \in [n]} a_i x_i = \langle a, x \rangle_\infty.
\]
The function above is depicted in Figure 2.2.

These functions were used in [7, 8] to establish a separation theorem for \mathbb{B}-convex sets [10]. All the points such that $\langle a, x \rangle_\infty = 0$ are represented by the diagonal line. In the following, for all subsets E of \mathbb{R}^n and $\mathfrak{int}(E)$ respectively stand for the closure and the interior of E.

For all maps $f : \mathbb{R}^n \to \mathbb{R}$ and all real numbers c, the notation $[f \leq c]$ stands for the set $f^{-1}(]-\infty, c[)$ and $[f < c]$ stands for $f^{-1}(]-\infty, c[)$ and $[f \geq c] = [-f \leq -c]$.

For all $u, v \in \mathbb{R}$, let us define the binary operation

$$u \sim v = \begin{cases} u & \text{if } |u| > |v| \\ \min\{u, v\} & \text{if } |u| = |v| \\ v & \text{if } |u| < |v|. \end{cases}$$

An elementary calculus shows that $u \boxplus v = \frac{1}{2} [u \sim v - \langle -u \rangle \sim \langle -v \rangle]$. Similarly, one can introduce a symmetrical binary operation defined for all $u, v \in \mathbb{R}$ defined as:

$$u \dagger v = \begin{cases} u & \text{if } |u| > |v| \\ \max\{u, v\} & \text{if } |u| = |v| \\ v & \text{if } |u| < |v|. \end{cases}$$

Equivalently, one has: $u \dagger v = -[\langle -u \rangle \sim \langle -v \rangle]$. This means that $u \boxplus v = \frac{1}{2} \left(u \sim v + (u \dagger v) \right)$. Notice that the operations \sim and \dagger are associative.

Given m elements u_1, \ldots, u_m of \mathbb{R}, not all of which are 0, let I_+ respectively I_-, be the set of indices for which $0 < u_1$, respectively $u_1 < 0$. We can then write

$$u_1 \cdots u_m = (\cdots (\sim_{i \in I_+} u_i) \sim (\sim_{i \in I_-} u_i) = (\max_{i \in I_+} u_i) \sim (\min_{i \in I_-} u_i)$$

from which we have:

$$u_1 \cdots u_m = \begin{cases} \max_{i \in I_+} u_i & \text{if } I_- = \emptyset \text{ or } \max_{i \in I_-} |u_i| < \max_{i \in I_+} |u_i| \\ \min_{i \in I_+} u_i & \text{if } I_- = \emptyset \text{ or } \max_{i \in I_+} |u_i| < \max_{i \in I_-} |u_i| \\ \min_{i \in I_-} u_i & \text{if } \max_{i \in I_-} |u_i| = \max_{i \in I_+} u_i. \end{cases}$$

(4.2)

\footnote{A relaxed definition of \mathbb{B}-convexity was proposed in [7]: a subset C of \mathbb{R}^n is \mathbb{B}-convex if for all $x, y \in C$ and all $t \in [0, 1]$, $x \boxplus ty \in C$.}
We define a **lower B-form** on \mathbb{R}^n_+ as a map $g : \mathbb{R}^n \to \mathbb{R}$ such that for all $(x_1, ..., x_n) \in \mathbb{R}^n_+$,

$$g(x_1, ..., x_n) = \langle a, x \rangle_{\infty} = a_1x_1 \cdots \cdots a_n x_n.$$ \hspace{1cm} (4.3)

It was established in [7] that for all $c \in \mathbb{R}$, $g^{-1}(\lfloor -\infty, c \rfloor) = \{x \in \mathbb{R}^n : g(x) \leq c\}$ is closed. It follows that a B-form is lower semi-continuous. It was established in [11] that $g^{-1}(\lfloor -\infty, c \rfloor) \cap \mathbb{R}^n_+$ is a B-halfspace, that is a B-convex subset of \mathbb{R}^n_+ whose complement in \mathbb{R}^n_+ is also B-convex.

Similarly, one can define an **upper B-form** as a map $h : \mathbb{R}^n \to \mathbb{R}$ such that, for all $(x_1, ..., x_n) \in \mathbb{R}^n$,

$$h(x_1, ..., x_n) = \langle a, x \rangle_{\infty} = a_1x_1 \cdots \cdots a_n x_n.$$ \hspace{1cm} (4.4)

For all $x \in \mathbb{R}^n$, we clearly, have the following identities

$$\langle a, x \rangle_{\infty} = -\langle a, -x \rangle_{\infty} \text{ and } \langle a, x \rangle_{\infty} = -\langle a, -x \rangle_{\infty}. \hspace{1cm} (4.5)$$

The largest (smallest) lower (upper) semi-continuous minorant (majorant) of a map f is said to be the lower (upper) semi-continuous regularization of f. In the next statements it is shown that the lower (upper) B-forms are the lower (upper) semi-continuous regularized of the B-forms.

Proposition 4.1.1 [7] Let g be a lower B-form defined by $g(x_1, ..., x_n) = a_1x_1 \cdots \cdots a_n x_n$, for some $a \in \mathbb{R}^n$. Then g is the lower semi-continuous regularization of the map $x \mapsto \langle a, x \rangle_{\infty} = \bigoplus_{i \in [n]} a_i x_i$.

The following corollary is then immediate.

Corollary 4.1.2 [7] Let h be an upper B-form defined by $h(x_1, ..., x_n) = a_1x_1 \cdots \cdots a_n x_n$, for some $a \in \mathbb{R}^n$. Then h is the upper semi-continuous regularization of the map $x \mapsto \langle a, x \rangle_{\infty} = \bigoplus_{i \in [n]} a_i x_i$.

For the sake of simplicity let us denote for all $x \in \mathbb{R}^n$:

$$\overset{\cdots}{i \in I} x_i = x_1 \overset{\cdots}{\cdots} x_n \text{ and } \overset{\cdots}{i \in I} x_i = x_1 \overset{\cdots}{\cdots} \overset{\cdots}{x_n}. \hspace{1cm} (4.6)$$

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a B-form. Let f^- and f^+ be respectively the lower and upper semi-continuous regularized of f over \mathbb{R}^n. It is shown in [8] that for all $c \in \mathbb{R}$,

$$\text{cl } [f \leq c] = [f^- \leq c] \text{ and } \text{cl } [f \geq c] = [f^+ \geq c]. \hspace{1cm} (4.7)$$

The following lemma is useful.

Lemma 4.1.3 For all dual B-forms f we have

$$[f^- \leq 0] \cap [f^+ \geq 0] = [f^- + f^+ = 0].$$

Proof: Suppose that $x \in [f^- \leq 0] \cap [f^+ \geq 0]$. If $f^-(x) = f^+(x) = 0$, the inclusion is trivial. Suppose now that $f^-(x) < 0$ and $f^+(x) > 0$. There exists $a \in \mathbb{R}^n$ such that $f^-(x) = a_1x_1 \cdots \cdots a_n x_n$ and $f^+(x) = a_1x_1 \cdots \cdots a_n x_n$. Hence there is some $i_- \in [n]$ such that $f^-(x) = a_{i_-} x_{i_-} < 0$ and some $i_+ \in [n]$ such that $f^+(x) = a_{i_+} x_{i_+} > 0$. However, since by hypothesis this implies that $|a_{i_-} x_{i_-}| = |a_{i_+} x_{i_+}|$, we deduce that $a_{i_-} x_{i_-} = -a_{i_+} x_{i_+}$. Thus $f^-(x) + f^+(x) = 0$. Hence $[f^- \leq 0] \cap [f^+ \geq 0] \subset [f^- + f^+ = 0]$. Conversely
if \(x \in [f^- + f^+ = 0] \), we have \(f^-(x)f^+(x) \leq 0 \), which implies the converse inclusion and ends the proof. □

In the remainder, it will be useful to consider the lower and upper semi-continuous determinant defined as:

\[
|A|_\infty^- = \bigcap_{\sigma \in S_n} (\text{sgn}(\sigma) \prod_{i \in [n]} a_{i,\sigma(i)}) \quad \text{and} \quad |A|_\infty^+ = \bigcup_{\sigma \in S_n} (\text{sgn}(\sigma) \prod_{i \in [n]} a_{i,\sigma(i)}).
\]

(4.8)

\[\text{Figure 4.1.1.1 Lower and Upper halfspaces.}\]

4.2 Kuratowski-Painlevé Limit of Hyperplanes

This section is devoted to analyze the Kuratowski-Painlevé limit of a sequence of half-spaces defined on the scalar field \((\mathbb{R}, +, \cdot)\). The next result was established in [8]. These half-spaces are called \(\varphi_p\)-halfspaces.

Proposition 4.2.1 Let \(f \) be a \(\mathbb{B} \)-form defined by \(f(x) = \langle a, x \rangle_\infty \) for some \(a \in \mathbb{R}^n \setminus \{0\} \). For any natural number \(p \) let \(f_p : \mathbb{R}^n \to \mathbb{R} \) be a map defined by \(f_p(x) = \langle a_p, x \rangle_p \) where \(\{a^{(p)}\}_{p \in \mathbb{N}} \) is a sequence of \(\mathbb{R}^n \setminus \{0\} \). If there exists a sequence \(\{c_p\}_{p \in \mathbb{N}} \subset \mathbb{R} \) such that \(\lim_{p \to \infty} (a^{(p)}, c_p) = (a, c) \), then:

\[
\lim_{p \to \infty} [f_p \leq c_p] = \text{cl} [f \leq c] = [f^- \leq c]
\]

and

\[
\lim_{p \to \infty} [f_p \geq c_p] = \text{cl} [f \geq c] = [f^+ \geq c].
\]

\[\text{Figure 4.2 Limit of a sequence of } \varphi_p\text{-halfspaces.}\]

In the following, one can go a bit further by showing that a sequence of \(\varphi_p\)-hyperplanes defined for all \(p \in \mathbb{N} \) as \([\langle a^{(p)}, \cdot \rangle_p = c_p]\) has a Painlevé-Kuratowski limit.
Proposition 4.2.2 Let f be a \mathbb{R}-form defined by $f(x) = \langle a, x \rangle_{\infty}$ for some $a \in \mathbb{R}^n \setminus \{0\}$. For any natural number p let $f_p : \mathbb{R}^n \to \mathbb{R}$ be a map defined by $f_p(x) = \langle a^{(p)}, x \rangle_p$ where $\{a^{(p)}\}_{p \in \mathbb{N}}$ is a sequence of $\mathbb{R}^n \setminus \{0\}$. If there exists an $i \in [n]$ such that $\lim_{q \to -\infty} \langle a^{(p)}, c_p \rangle = (a, c)$, then:

$$\lim_{p \to -\infty} [f_p = c_p] = [f^- \leq c] \cap [f^+ \geq c].$$

Proof: By definition, for all p, we have $[f_p = c_p] = [f_p \leq c_p] \cap [f_p \geq c_p]$. Hence, we have the inclusion:

$$L_{s_p \to -\infty} [f_p = c_p] = L_{s_p \to -\infty} \left([f_p \leq c_p] \cap [f_p \geq c_p] \right) \subset \left(L_{s_p \to -\infty} [f_p \leq c_p] \right) \cap \left(L_{s_p \to -\infty} [f_p \geq c_p] \right) \subset [f^- \leq c] \cap [f^+ \geq c].$$

In the following, we show that $[f^- \leq c] \cap [f^+ \geq c] \subset L_{i_p \to -\infty} [f_p = c_p]$. From Proposition 4.2.1 we have $L_{i_p \to -\infty} [f_p \leq c_p] = [f^- \leq c]$ and $L_{i_p \to -\infty} [f_p \geq c_p] = [f^+ \geq c]$. Suppose that $x \in [f^- \leq c] \cap [f^+ \geq c]$. This implies that there exist two sequences $\{y^{(p)}\}_{p \in \mathbb{N}}$ and $\{z^{(p)}\}_{p \in \mathbb{N}}$ respectively such that for any p, $y^{(p)} \in [f_p \leq c_p]$ and $z^{(p)} \in [f_p \geq c_p]$ with $x = \lim_{p \to -\infty} y^{(p)} = \lim_{p \to -\infty} z^{(p)}$. For all p, the map f_p is continuous. Therefore, for all natural numbers p, there exists some $\alpha_p \in [0,1]$ such that $f_p(\alpha_p y^{(p)} + (1 - \alpha_p) z^{(p)}) = c_p$. Set $w^{(p)} = \alpha_p y^{(p)} + (1 - \alpha_p) z^{(p)}$. We have for all natural numbers p

$$\|x - w^{(p)}\| = \|\alpha_p (x - y^{(p)}) + (1 - \alpha_p) (x - z^{(p)})\| \leq \alpha_p \|x - y^{(p)}\| + (1 - \alpha_p) \|x - z^{(p)}\|
\leq \|x - y^{(p)}\| + \|x - z^{(p)}\|.$$

By hypothesis $\lim_{p \to -\infty} \|x - y^{(p)}\| = \lim_{p \to -\infty} \|x - z^{(p)}\| = 0$. Thus $\lim_{p \to -\infty} \|x - w^{(p)}\| = 0$. Since $w_p \in [f_p = c_p]$ for all p, we deduce that $x \in L_{i_p \to -\infty} [f_p = c_p]$. Consequently, $[f^- \leq c] \cap [f^+ \geq c] \subset L_{i_p \to -\infty} [f_p = c_p]$. Since we have the sequence of inclusions

$$L_{s_p \to -\infty} [f_p = c_p] \subset [f^- \leq c] \cap [f^+ \geq c] \subset L_{i_p \to -\infty} [f_p = c_p],$$

we deduce that

$$\lim_{p \to -\infty} [f_p = c_p] = [f^- \leq c] \cap [f^+ \geq c].$$

4.3 Limit Hyperplane Passing Through n Points

In this subsection we give the equation on a limit hyperplane passing through n points. Given n points v_1, \ldots, v_n be n in \mathbb{R}^n, let V be the $n \times n$ matrix whose each column is a vector v_i. If $|v_1, \ldots, v_n|_p \neq 0$ then let $H_p(V)$ denotes the φ_p-hyperplane passing through v_1, \ldots, v_n.

Proposition 4.3.1 Let v_1, \ldots, v_n be n points in \mathbb{R}^n and let V be the $n \times n$ matrix whose each column is a vector v_i. Let $V_{(i)}$ be the matrix obtained from V by replacing line i with the transpose of the unit vector $\mathbb{1}_n$. Suppose that $|V|_\infty \neq 0$. Then

$$\lim_{p \to -\infty} H_p(V) = \left\{ x \in \mathbb{R}^n : \sum_{i \in [n]} |V_{(i)}|_\infty x_i \leq |V|_\infty \leq \sum_{i \in [n]} |V_{(i)}|_\infty x_i \right\}.$$
Proof: First note that since $|V|_{\infty} \neq 0$, there exists $p_0 \in \mathbb{N}$ such that for all $p \geq p_0$, $|V|_p \neq 0$. Therefore, for all $p \geq p_0$, there exists a hyperplane $H_p(V)$ which contains v_1, \ldots, v_p. Therefore, there exists some $a^{(p)} \in \mathbb{R}^n$ and some $c_p \in \mathbb{R}$ such that
\[H_p(V) = [(a^{(p)}, \cdot)_p = c]. \]

Suppose that $x \in H_p(V)$. For all $i \in [n]$:
\[\langle a^{(p)}, v_i - x \rangle_p = c \]

Let us denote $F_p(V) = [(a^{(p)}, \cdot)_p = 0]$. Since $F_p(V)$ is a $n - 1$-dimensional φ_p-subspace of \mathbb{R}^n:
\[|v_1 - x, v_2 - x, \ldots, v_n - x|_p = 0. \]

Let $V_{i,j}$ be the matrix obtained suppressing line j and column j. It follows that:
\[|v_1 - x, v_2 - x, \ldots, v_n - x|_p = |V|_p^p - |x, v_2, \ldots, v_n|_p^p - |v_1, x, v_3, \ldots, v_n|_p^p - |v_1, v_2, \ldots, v_{n-1}, x|_p^p = |V|_p^p - \sum_{j \in [n]} \sum_{i \in [n]} (-1)^{i+j}|V_{i,j}|_{p} = |V|_p^p - \sum_{i \in [n]} |V(i)|_p x_i = 0. \]

Therefore, we have:
\[H_p(V) = \left\{ x \in \mathbb{R}^n : \sum_{i \in [n]} |V(i)|_p x_i = |V|_p \right\}. \]

Since $\lim_{p \to \infty} |V(i)|_p = |V(i)|_{\infty}$ and $\lim_{p \to \infty} |V|_p = |V|_{\infty}$, we deduce the result from Proposition 4.2.2. \(\square \)

A simple intuition is given in the case $n = 2$ with two points. The hyperplane passing from two points u and v is a line. Let us denote $D_p(u,v)$ the φ_p-line spanned by u and v in \mathbb{R}^2. Every points $x = (x_1, x_2) \in D_0(x,y)$ satisfy the relation:
\[|u - x, v - x| = \begin{vmatrix} u_1 - x_1 & v_1 - x_1 \\ u_2 - x_2 & v_2 - x_2 \end{vmatrix} = 0. \]

Equivalently, we have
\[(v_2 - u_2)x_1 + (u_1 - v_1)x_2 = |u, v|. \]

For every points $z \in D_p(u,v)$ we have the relation:
\[|u - x, v - x|_p = \begin{vmatrix} u_1 - x_1 & v_1 - x_1 \\ u_2 - x_2 & v_2 - x_2 \end{vmatrix} = 0 \iff (v_2 - u_2)x_1 + (u_1 - v_1)x_2 = |u, v|_p. \]

We obtain that
\[\lim_{p \to \infty} D_p(u,v) = \left\{ x \in \mathbb{R}^2 : \begin{vmatrix} 1 & 1 \\ u_2 & v_2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = 0 \iff \begin{vmatrix} 1 & 1 \\ u_2 & v_2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \leq |u, v|_{\infty} \iff \begin{vmatrix} 1 & 1 \\ u_2 & v_2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \leq |u, v|_{\infty} \leq \begin{vmatrix} 1 & 1 \\ u_2 & v_2 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \right\}. \]
Thus
\[
V = \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & 1 \\ -3 & 1 & 2 \end{pmatrix}.
\]

Hence \(|V|\infty = 1.1.2\oplus 2.1.(-3)\ominus 0.1.4\oplus (-4).(-1).(-3)\ominus (-1).1.1\oplus 0.2.2 = -12; |V(1)|\infty = 1.(-1).2\oplus 1.1.(-3)\ominus 0.1.1\ominus (-1).(-3)\ominus (-1).1.1\oplus 0.1.2 = -3; |V(2)|\infty = 1.1.2\oplus 2.1.(-3)\oplus 1.1.4\ominus (-4).(-3)\ominus (-1).1.1\oplus (-1).2.2 = 12; |V(3)|\infty = 1.(-1).1\oplus 2.1.1\oplus 0.1.4\ominus (-4).(-1).1.1\oplus (-1).1.1\oplus 0.2.1 = 4.

\[H_\infty(V) = \{(x_1, x_2, x_3) : (-3)x_1 \preceq 12x_2 \preceq 4x_3 \leq -12 \leq (-3)x_1 \preceq 12x_2 \preceq 4x_3\}\]

It is easy to check that \(v_1, v_2, v_3 \in H_\infty(V)\).

5 Limit Systems of Equations

5.1 Limit Solutions of a Sequence of Systems of Equations

For all \(\varphi_p\)-linear endomorphisms \(f : x \mapsto A^px\), where \(A \in M_n(\mathbb{R})\), we consider a sequence of \(\varphi_p\)-linear systems of the form \(A^px = b\).

Proposition 5.1.1 Let \(A \in M_n(\mathbb{R})\) be a square matrix. If \(|A|\infty \neq 0\) then there exists a uniqueness \(x^* = \sum_{i \in [n]} \frac{|A^{(i)}|_{\infty}}{|A|_{\infty}} e_i\) such that
\[
\{x^*\} = \text{Lim}_{p \to \infty} \{x \in \mathbb{R}^n : A^px = b\}.
\]

Conversely, if there is some \(x^* \in \mathbb{R}^n\) such that:
\[
x^* \in Ls_{p \to \infty} \{x \in \mathbb{R}^n : A^px = b\}
\]
then \(|A|\infty \neq 0\) and \(\{x^*\} = \text{Lim}_{p \to \infty} \{x \in \mathbb{R}^n : A^px = b\}\).

Proof: If \(|A|\infty \neq 0\) then there is some \(p_0\) such that for all \(p \geq p_0\), \(|A|_p \neq 0\).

Thus for all \(p \geq p_0\), \(x^{(p)} = \sum_{i \in [n]} \frac{|A^{(i)}|_{\infty}}{|A|_{\infty}} e_i\) is solution of the system \(A^px = b\) and therefore \(x^{(p)} \in \{x \in \mathbb{R}^n : A^px = b\}\). However, \(x^* = \sum_{i \in [n]} \frac{|A^{(i)}|_{\infty}}{|A|_{\infty}} e_i = \text{lim}_{p \to \infty} x^{(p)}\). Thus \(x^* \in Ls_{p \to \infty} \{x \in \mathbb{R}^n : A^px = b\}\). Moreover, for all \(p \geq p_0\), since \(|A|_p \neq 0\) we have \(\{x^{(p)}\} = \{x \in \mathbb{R}^n : A^px = b\}\). Consequently \(x^*\) is the uniqueness solution. This implies that \(x^* \in Ls_{p \to \infty} \{x \in \mathbb{R}^n : A^px = b\}\). Moreover, for all increasing sequence of natural numbers \(\{p_k\}_{k \in \mathbb{N}}\), \(x^{(p_k)} = \sum_{i \in [n]} \frac{|A^{(i)}|_{p_k}}{|A|_{p_k}} e_i\) is the uniqueness solution of the system of the form \(A^{p_k}x = b\).
Hence $L_{i_p \to \infty} \{ x \in \mathbb{R}^n : A^p x = b \} = L_{s_p \to \infty} \{ x \in \mathbb{R}^n : A^p x = b \} = \{ x^* \}$ which ends the first part of the statement.

To complete the proof, suppose that $\{ x^* \} = L_{s_p \to \infty} \{ x \in \mathbb{R}^n : A^p x = b \}$ with $|A|_{\infty} = 0$ and let us show a contradiction. This implies that for any $p \in \mathbb{N}$ we have $|A|_p = 0$. Thus, for any p, the system $\{ x \in \mathbb{R}^n : A^p x = b \}$ has either an infinity of solutions or is an empty set. If, for all $p \in \mathbb{N}$, it is an empty set then the upper limit of the sequence of solution sets is empty. Suppose that this is not the case and let us show a contradiction. Suppose that $x^* \in L_{s_p \to \infty} \{ x \in \mathbb{R}^n : A^p x = b \}$. In such case there exists a subsequence $\{ p_k \} \in \mathbb{N}$ such that $x^* = \lim_{k \to \infty} x^{(p_k)}$ where for all k, $x^{(p_k)} \in \{ x \in \mathbb{R}^n : A^{p_k} x = b \}$ that is a φ_{p_k} affine subspace that contains an infinity of points. For any k let us consider the ball $B_\infty(x^{(p_k)}, 1)$ of center $x^{(p_k)}$ and of radius 1. Since $\{ x \in \mathbb{R}^n : A^{p_k} x = b \}$ is a φ_{p_k} affine subspace of \mathbb{R}^n, for all k there exits a vector $v^{(p_k)} \neq 0$ such that $A^{p_k} v^{(p_k)} = 0$. This implies that:

$$\{ x^{(p_k)} : \delta \in \mathbb{R} \} \subset \{ x \in \mathbb{R}^n : A^{p_k} x = b \}.$$

Let $\delta_{p_k} = \sup \{ \delta : x^{(p_k)} + \delta v^{(p_k)} \in B_\infty(x^{(p_k)}, 1) \}$. Since the map $\delta \mapsto x^{(p_k)} + \delta v^{(p_k)}$ is a continuous vector valued function, $y^{(p_k)} = x^{(p_k)} + \delta_{p_k} v^{(p_k)} \in C_\infty(x^{(p_k)}, 1)$ which implies that $d_\infty(x^{(p_k)}, y^{(p_k)}) = 1$. Now since $\{ x^{(p_k)} \} \in \mathbb{N}$ converges to x^*. There exists some $d > 0$ and $k_d \in \mathbb{N}$ such that for all $k \geq k_d$, $x^{(p_k)}, y^{(p_k)} \in B_\infty(x^*, d)$. Since $B_\infty(x^*, d)$ is a compact subset of \mathbb{R}^n one can extract a sequence $\{ y^{(p_{k^r})} \} \in \mathbb{N}$ which converges to some $y^* \in L_{s_p \to \infty} \{ x \in \mathbb{R}^n : A^p x = b \}$. However, for all $r \in \mathbb{N}$, $d_\infty(x^{(p_{k^r})}, y^{(p_{k^r})}) = 1$, and we deduce that $d_\infty(x^*, y^*) = 1$. This implies that $x^* \neq y^*$ which contradicts the unicity. Consequently if the upper limit of the sequence of solution sets has a uniqueness element, then $|A|_{\infty} \neq 0$. □

In the following, for all matrices $A \in \mathcal{M}_{n,l}(\mathbb{R})$ and $B \in \mathcal{M}_{l,m}(\mathbb{R})$ let us define the product:

$$A \boxtimes B = \left(\bigoplus_{k \in [l]} a_{i,k} b_{k,m} \right)_{i \in [n], j \in [m]}.$$

(5.1)

The lower and upper semi-continuous regularized products are respectively defined as:

$$A \bar{\boxtimes} B = \left(\bigoplus_{k \in [l]} a_{i,k} b_{k,m} \right)_{i \in [n], j \in [m]} \quad \text{and} \quad A \bar{\boxtimes} B = \left(\bigoplus_{k \in [l]} a_{i,k} b_{k,m} \right)_{i \in [n], j \in [m]}.$$

(5.2)

By construction, it follows that for all vectors $x \in \mathbb{R}^n$, the matrix-vector products derived from $\bar{\boxtimes}$ and \boxtimes are defined by:

$$A \bar{\boxtimes} x = \begin{pmatrix} a_1, x \end{pmatrix}_\infty^- \quad \text{and} \quad A \bar{\boxtimes} x = \begin{pmatrix} a_1, x \end{pmatrix}_\infty^+.$$

(5.3)

The next result is an immediate consequence.

Proposition 5.1.2 Let $A \in \mathcal{M}_{n,l}(\mathbb{R})$ be a square matrix. Suppose that $x^d \in L_{s_p \to \infty} \{ x \in \mathbb{R}^n ; A^p x = b \}$. Then x^d is solution of the system:

$$\left\{ \begin{array}{c} A \bar{\boxtimes} x \leq b \\ A \boxtimes x \geq b, \end{array} \right. \quad x \in \mathbb{R}^n.$$

(5.4)
Moreover, if $|A|_\infty \neq 0$ then $x^* = \sum_{i \in [n]} \frac{|A^{(i)}|_\infty}{|A|_\infty} e_i$ is solution of system (5.4).

Proof: From Proposition 4.2.2 for all $i \in [n]$:

$$L_{s_p \rightarrow \infty}\{x : \langle a_i, x \rangle_p = b_i\} = \lim_{p \rightarrow \infty}\{x : \langle a_i, x \rangle_p = b_i\}$$

$$= [x : \langle a_i, x \rangle^- \leq b_i] \cap [x : \langle a_i, x \rangle^+ \geq b_i].$$

From (5.15), we deduce that:

$$L_{s_p \rightarrow \infty}\{x \in \mathbb{R}^n : A^p x = b\} = L_{s_p \rightarrow \infty}\bigcap_{i \in [n]}\{\langle a_i, \cdot \rangle_p = b_i\}$$

$$\subset \bigcap_{i \in [n]} L_{s_p \rightarrow \infty}\{\langle a_i, \cdot \rangle_p = b_i\}$$

$$\subset \bigcap_{i \in [n]} \big[\langle a_i, \cdot \rangle^- \leq b_i\big] \cap \big[\langle a_i, \cdot \rangle^+ \geq b_i\big],$$

which implies that if $x^p \in L_{s_p \rightarrow \infty}\{x \in \mathbb{R}^n : A^p x = b\}$ then it satisfies the system (5.4). If $|A|_\infty \neq 0$, from Proposition 5.1.1 $\{x^*\} = \lim_{p \rightarrow \infty}\{x \in \mathbb{R}^n : A^p x = b\}$ and this implies that x^* satisfies system (5.4). \(\Box\)

Since it contains any element of the upper limit set $L_{s_p \rightarrow \infty}\{x \in \mathbb{R}^n : A^p x = b\}$, the system (5.4) is called a limit system.

Example 5.1.3 Let us consider the matrix

$$A = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$

with $a_1 = (-1, 1)$, $a_2 = (1, 1)$ and suppose that $b_1 = 2$, $b_2 = 3$. Now, let us consider the matrices:

$$A^{(1)} = \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \quad A^{(2)} = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}.$$

We have $|A|_\infty = \left((-1) \cdot 1 \right) \oplus \left((-1) \cdot 4 \right) = -1$; $|A^{(1)}|_\infty = (2 \cdot 1 \oplus (-3 \cdot 1)) = -3$; $|A^{(2)}|_\infty = (-1) \cdot 3 \oplus ((-2) \cdot 1) = -3$. We obtain the solutions: $x^*_1 = \frac{-3}{3} = 3 \quad x^*_2 = \frac{3}{3} = 3$. One can then check that:

$$\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \ominus \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \ominus 3 \\ 3 \ominus 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \end{pmatrix} \leq \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

and

$$\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \oplus 3 \\ 3 \oplus 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \geq \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

Therefore $x^* = (3, 3)$ is a solution of the limit system. This example is depicted in Figure 6.2.
We obtain that

\[((a_2, \cdot)_\infty \leq 3) \cap ((a_2, \cdot)_\infty \geq 3) \]

Let us check that

Let us consider the matrix:

\[
\begin{bmatrix}
3 & -1 & 3 \\
2 & -4 & 1 \\
-4 & 5 & 3 \\
\end{bmatrix}
\]

Example of a two dimensional Limit System.

Figure 5.2

Example 5.1.4 Let us consider the matrix:

\[
A = \begin{pmatrix}
3 & -1 & 3 \\
2 & -4 & 1 \\
-4 & 5 & 3 \\
\end{pmatrix}
\]

with \(a_1 = (3, 1, -3), a_2 = (2, -4, 1), a_3 = (-4, 5, 3), b_1 = 6, b_2 = 8, b_3 = 4. \)

The limit system is:

\[
\begin{cases}
3 & -1 & 3 & \Leftrightarrow & (x_1) \\
2 & -4 & 1 & \Leftrightarrow & (x_2) \\
-4 & 5 & 3 & \Leftrightarrow & (x_3) \\
\end{cases} \quad \begin{cases}
x_1 \\ x_2 \\ x_3 \\
\leq 8 \\ \leq 4 \\ \geq 8 \\
\end{cases} \quad x \in \mathbb{R}^3.
\]

Now, let us consider the matrices:

\[
A^{(1)} = \begin{pmatrix}
6 & -1 & 3 \\
8 & -4 & 1 \\
4 & 5 & 3 \\
\end{pmatrix} \quad ; \quad A^{(2)} = \begin{pmatrix}
3 & 6 & 3 \\
2 & 8 & 1 \\
-4 & 4 & 3 \\
\end{pmatrix} \quad ; \quad A^{(3)} = \begin{pmatrix}
3 & -1 & 6 \\
2 & -4 & 8 \\
-4 & 5 & 4 \\
\end{pmatrix}.
\]

We have \(|A|_\infty = (-36) \boxplus 4 \boxplus 30 \boxplus (-48) \boxplus (-15) \boxplus 6 = -48; |A^{(1)}|_\infty = (-72) \boxplus (-4) \boxplus 120 \boxplus 48 \boxplus 24 \boxplus (-30) = 120; |A^{(2)}|_\infty = 72 \boxplus (-24) \boxplus 24 \boxplus 96 \boxplus (-12) \boxplus (-36) = 96; |A^{(3)}|_\infty = (-48) \boxplus 32 \boxplus 60 \boxplus (-96) \boxplus 8 \boxplus (-120) = -120. \)

We obtain that

\[
x^*_1 = \frac{120}{48} = -\frac{5}{2}, \quad x^*_2 = \frac{96}{48} = -2 \quad \text{and} \quad x^*_3 = \frac{5}{2}.
\]

Let us check that \(x^* = (-\frac{5}{2}, -2, -\frac{5}{2}) \) satisfies the system of equations (5.5). We have:

\[
\begin{cases}
3 & -1 & 3 & \Leftrightarrow & (x_1) \\
2 & -4 & 1 & \Leftrightarrow & (x_2) \\
-4 & 5 & 3 & \Leftrightarrow & (x_3) \\
\end{cases} \quad \begin{cases}
x_1 \\ x_2 \\ x_3 \\
\leq 6 \\ \leq 8 \\ \geq 8 \\
\end{cases} \quad x \in \mathbb{R}^3.
\]
Thus $x^* = (-\frac{5}{2}, -2, -\frac{5}{2})$ satisfies the system (5.5).

In the following, we say that a solution x^* of the limit system is regular if for all $i \in [n]$, $(a_i, x^*)_\infty = (a_i, x^*)^- = (a_i, x^*)^+$. This implies that x^* is also solution of the equation $A \boxtimes x = b$. (5.6)

Equivalently, this means that:

$$\begin{cases}
\sum_{j \in [n]} a_{1,j} x_j = b_1 \\
\vdots \\
\sum_{j \in [n]} a_{m,j} x_j = b_m.
\end{cases}$$ (5.7)

![Figure 5.3 Regular Solutions of a Limit System.](image)

5.2 Positive Solutions of Positive Systems of Maximum Equations

In the following, we consider a theorem established by Kaykobad [19] that gives a necessary condition for the existence of a positive solution to a positive invertible linear system.

Theorem 5.2.1 Suppose that $A = (a_{i,j})_{i,j \in [n]} \in \mathcal{M}_n(\mathbb{R})$ is a square matrix such that for all i, j $a_{i,j} \geq 0$ and $a_{i,i} > 0$ for all $i \in [n]$. Suppose moreover that $b \in \mathbb{R}^n_++$. If for all $i \in [n]$

$$b_i > \sum_{j \in [n] \setminus \{i\}} \frac{a_{i,j} b_j}{a_{j,j}}$$

then A is invertible and $A^{-1}b \in \mathbb{R}^n_+$.

In the following this result is extended to a φ_p-endomorphism.

Lemma 5.2.2 Suppose that $A = (a_{i,j})_{i,j \in [n]} \in \mathcal{M}_n(\mathbb{R})$ is a square matrix such that for all i, j $a_{i,j} \geq 0$. Suppose that there exists a permutation $\sigma : [n] \to [n]$ such that $a_{i,\sigma(i)} > 0$ for all $i \in [n]$. Suppose moreover that $b \in \mathbb{R}^n_+$. If for all $i \in [n]$

$$b_i > \left(\sum_{j \in [n] \setminus \{i\}} (a_{i,\sigma(j)})^{2p+1} \left(\frac{b_j}{(a_{j,\sigma(j)})^{2p+1}} \right)^{\frac{1}{2p+1}} \right)^{\frac{1}{2p+1}}$$

then A is invertible and $A^{-1}b \in \mathbb{R}^n_+$.

20
then A is φ_p-invertible and there is a solution $x^{(p)} \in \mathbb{R}^n_{++}$ to the equation $A^p x = b$.

Proof: Let $A = (\bar{a}_{i,j})_{i,j \in [n]}$ be the $n \times n$ matrix defined by $\bar{a}_{i,j} = a_{i,\sigma(j)}$. The system $A^p x = b$ is equivalent to $\Phi_p(A)u = \phi_p(b)$ setting $u = \phi_p(x)$. Since $a_{i,\sigma(i)} > 0$ for all i, we deduce that for all i, $\bar{a}_{i,i} > 0$. Since by definition $\Phi_p(A) = (\bar{a}_{i,j}^{2p+1})_{i,j \in [n]}$ and $\phi_p(b) = (b_1^{2p+1}, \ldots, b_n^{2p+1})$, it follows from Theorem 5.2.1 that this system has a positive solution if:

$$ \min_{j \in [n] \setminus \{i\}} (\bar{a}_{i,j})^{2p+1} \frac{b_j}{(\bar{a}_{j,j})^{2p+1}} > 0. $$

Equivalently, we deduce that the system $A^p x = b$ has a solution if

$$ \min_{j \in [n] \setminus \{i\}} (a_{i,\sigma(j)})^{2p+1} \frac{b_j}{(a_{j,\sigma(j)})^{2p+1}} > 0. $$

which ends the proof. \(\square\)

First, we consider systems of max-equations, that is, systems of the form

$$\begin{align*}
\max\{a_{1,1} x_1, \ldots, a_{1,n} x_n\} &= b_1 \\
\vdots \\
\max\{a_{m,1} x_1, \ldots, a_{m,n} x_n\} &= b_m
\end{align*}$$

(5.8)

where $a_i = (a_{i,1}, \ldots, a_{i,n}) \in \mathbb{R}^n_{++}, i = 1, \ldots, m$, $b = (b_1, \ldots, b_m) \in \mathbb{R}^m$ and the solution (x_1, \ldots, x_n) is to be found in \mathbb{R}^n_{++}. Notice that if $b_i = 0$ then we have to take $x_i = 0$ for each j such that $a_{i,j} > 0$, and, as far as equation i is concerned, the other values x_i are irrelevant; equation i can therefore be removed from the system and the number of variables decreases. In other words, we can assume that $b_i > 0$ for all i. In the remainder these types of systems will called system of maximum-equations. We can assume that for all j there is at least one index i such that $a_{i,j} > 0$; let $\eta(j) = \{i : a_{i,j} > 0\}$ and

$$x^* = \sum_{i \in [n]} \left(\min_{i \in \eta(j)} \frac{b_i}{a_{i,j}} \right) e_i.$$

(5.9)

From (10), the system of maximum equations (5.8) has some solution, then x^* is a solution and, for any solution x one has $x \leq x^*$. This condition is equivalent to the following.

Lemma 5.2.3 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix such that $a_{i,j} \geq 0$ for all $i, j \in [n]$. For all $i, j \in [n]$, let us denote $\mu(i) = \{j : a_{i,j} > 0\}$ and $\eta(j) = \{i : a_{i,j} > 0\}$ and assume that $\eta(j)$ and $\mu(i)$ are nonempty. Suppose moreover that $b \in \mathbb{R}^n_{++}$. The system of maximum equations (5.8) has a solution in \mathbb{R}^n_{++} if and only if there exists a permutation $\sigma : [n] \rightarrow [n]$ such that for all $i \in [n]$

$$b_i \geq \max_{j \in [n] \setminus \{i\}} a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}}.$$

Moreover, this solution is uniqueness if and only if for all $i \in [n]$

$$b_i > \max_{j \in [n] \setminus \{i\}} a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}}.$$
Proof: The system \([5.8]\) has a solution if and only if the point \(x^* = \sum_{j \in [n]} (\min_{i \in \eta(j)} \frac{b_j}{a_{i,j}}) \epsilon_j\) is a solution. Suppose that \(x^*\) is solution. Let us assume that there exists \(j \in [n]\) such that for all \(k\) and all \(i \neq j\), we have \(\frac{a_{j,k}}{b_j} < \frac{a_{i,k}}{b_i}\) and let us show a contradiction. This implies that for all \(k\), \(\frac{a_{j,k}}{b_j} < \max_{i \in [n]} \left(\frac{a_{i,k}}{b_i}\right)\). Therefore for all \(k \in \mu(j)\), \(\min_{i \in \eta(k)} \left(\frac{b_i}{a_{i,j}}\right) < \frac{b_j}{a_{j,j}}\). Set \(x(j) = \sum_{k \in \mu(j)} \frac{b_j}{a_{j,j}} \epsilon_k\). Hence \(\max_{k \in [n]} \left(a_{j,k} x^*_k\right) < \max_{k \in \mu(j)} (a_{j,k} x(j)_k) = b_j\). However, since \(x^*\) is solution of system \([5.8]\), this is a contradiction. Hence, for all \(j\), there exists \(\sigma(j)\) such that for all \(i \neq j\), we have \(\frac{a_{j,\sigma(j)}}{b_j} \geq \frac{a_{i,\sigma(j)}}{b_i}\).

Since for all \(j\) we have \(\eta(j) \neq \emptyset\), we deduce that, for all \(j\), \(a_{j,\sigma(j)} > 0\). Therefore, this is equivalent to the condition \(b_i \geq a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}}\) for all \(j \neq i\). Consequently, we deduce that

\[
b_i \geq \max_{j \in [n] \setminus \{i\}} a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}}. \tag{1}
\]

Now, note that if \(j \neq j'\), we should have \(\sigma(j) \neq \sigma(j')\). Thus, \(\sigma\) is a permutation defined on \([n]\). Hence, the first implication is established. To prove the converse note that, condition (1) implies that for all \(j\)

\[
x^*_\sigma(j) = \frac{b_j}{a_{j,\sigma(j)}}. \tag{2}
\]

We have for all \(i\), for all \(\max_{k \in [n]} (a_{i,\sigma(k)} x^*_\sigma(k)) = \max_{k \in [n]} \left(a_{i,\sigma(k)} \frac{b_k}{a_{k,\sigma(k)}}\right) = b_i\). Consequently, \(x^*\) is a solution. To end the proof, the strict inequality

\[
b_i > \max_{j \in [n] \setminus \{i\}} a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}}. \tag{2}
\]

is equivalent to

\[
\max_{j \in [n]} \left(a_{i,\sigma(j)} x^*_\sigma(j)\right) = a_{i,\sigma(i)} x^*_\sigma(i) = b_i > \max_{j \in [n] \setminus \{i\}} \left(a_{i,\sigma(j)} x^*_\sigma(j)\right)
\]

for all \(i \in [n]\). However, this latter condition is not compatible with the existence of some \(u \leq x^*\) such that \(u_k < x^*_k\) for some \(k\), which ends the proof. \(\square\)

The next statement shows that if the limit system \([5.3]\) has a regular solution, then there exists a nonnegative solution to the system of maximum equations \([5.8]\).

Lemma 5.2.4 Let \(A \in \mathcal{M}_n(\mathbb{R}_+)\) be a square matrix such that \(a_{i,j} \geq 0\) for all \(i, j \in [n]\). Suppose moreover that \(b \in \mathbb{R}_+^n\). Any solution of the limit system \([5.3]\) in \(\mathbb{R}_+^n\) is solution of system of maximum equations \([5.8]\). Moreover, if the limit system has a regular solution \(x^* \in \mathbb{R}^n\) then the system of maximum equations \([5.8]\) has a solution in \(\mathbb{R}_+^n\) that is \(\sum_{i \in [n]} |x^*_i| \epsilon_i\).

Proof: First note that if \(x^* \in \mathbb{R}_+^n\) is solution of the limit system, then we have \(b_i = \max_{j \in [n]} a_{i,j} x^*_j = b_i = (a_i, x^*)_\infty = (a_i, x^*)^\infty_\infty\). Hence \(x^*\) is solution of system \([1.8]\). Suppose now that \(x^*\) is a regular solution of the semi-continuous regularized system \([5.3]\). This implies that for all \(i\), \(b_i = (a_i, x^*)_\infty = (a_i, x^*)^\infty_\infty\).

Let us prove that \(y^* = \sum_{i \in [n]} |x^*_i| \epsilon_i\) is solution of system \([5.8]\). Let \(J_0 = \{j : x^*_j < 0\}\). If \(y^*\) is not solution of system \([5.8]\) then, since \(A \in \mathcal{M}_n(\mathbb{R}_+)\), there is some \(i \in [n]\) and some \(j_0 \in J_0\) such that \((a_i, y^*)^\infty_\infty = a_{i,j_0} |x^*_{j_0}| > b_i\).
However, this implies that $\langle a_i, x^* \rangle_\infty = a_{i,j} x^*_j < 0 \leq b_i$, which is a contradiction. Consequently y^* is solution of system (5.4). □

In the following, a condition is given to ensure that the Cramer formula expressed in this idempotent and non-associative algebraic structure yields a solution to a system of maximum equations. This is a limit case of the condition proposed by Kaykobad [19] when $p \to \infty$.

Proposition 5.2.5 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix such that $a_{i,j} \geq 0$ for all $i, j \in [n]$. Suppose that $b \in \mathbb{R}^n_{++}$. If there exists a permutation $\sigma : [n] \to [n]$ such that for all i, we have $a_{i,\sigma(i)} > 0$ and

$$b_i > \max_{j \in [n] \setminus \{i\}} a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}},$$

then $|A|_\infty \neq 0$. Moreover, there exists a solution $x^* = \sum_{i \in [n]} \frac{|A^{(i)}|}{|A|_\infty} e_i \in \mathbb{R}^n$ to the system of maximum equations (5.8).

Conversely, suppose that $|A|_\infty \neq 0$. If $x^* = \sum_{i \in [n]} \frac{|A^{(i)}|}{|A|_\infty} e_i$ is a uniqueness regular solution of the limit system (5.8), then x^* is a nonnegative solution of system of maximum equations (5.8).

Proof: We first establish that $|A|_\infty \neq 0$. Let $B = \text{diag}(b)$ be the diagonal matrix such that for all $i \in [n]$, $B_{i,i} = b_i$. Since $b \in \mathbb{R}^n_{++}$, B is φ_p-invertible for all p. Moreover, for all p, $|B^{-1}|_p = (\prod_{i \in [n]} b_i)^{-1}$. Let $A' \in \mathcal{M}_n(\mathbb{R}_+)$ such that:

$$A' = B^{-1} A.$$

Since $|A'|_p = |B^{-1}|_p |A|_p$ for all $p \in \mathbb{N}$, we deduce taking the limit that: $|A'|_\infty = |B^{-1}|_\infty |A|_\infty = (\prod_{i \in [n]} b_i)^{-1} |A|_\infty$. Hence, $|A|_\infty \neq 0$ if and only if $|A'|_\infty \neq 0$. Since,

$$b_i > \max_{j \in [n] \setminus \{i\}} a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}},$$

we deduce that for all i and all $j \neq i$:

$$a'_{j,\sigma(j)} > a'_{i,\sigma(j)}.$$

In particular this implies that for all j, $a'_{j,\sigma(j)} > 0$. From the limit form of the Leibniz formula, we deduce that:

$$|A'|_\infty = \text{sgn}(\sigma) \prod_{j \in [n]} a'_{j,\sigma(j)} \neq 0.$$

Hence $|A|_\infty \neq 0$. Let us consider the system $A^p \cdot x = b$. We have established that if

$$b_i > \left(\sum_{j \in [n] \setminus \{i\}} (a_{i,j})^{2p+1} \frac{(b_j)^{2p+1}}{(a_{j,j})^{2p+1}} \right)^{\frac{1}{2p+1}},$$

for all $i \in [n]$, then A is φ_p-invertible and there is a solution $x^{(p)} \in \mathbb{R}^n_{++}$ to the system $A^p \cdot x = b$. However, we have

$$\lim_{p \to \infty} \left(\sum_{j \in [n] \setminus \{i\}} (a_{i,\sigma(j)})^{2p+1} \frac{(b_j)^{2p+1}}{(a_{j,\sigma(j)})^{2p+1}} \right)^{\frac{1}{2p+1}} = \max_{j \in [n] \setminus \{i\}} \{ a_{i,\sigma(j)} \frac{b_j}{a_{j,\sigma(j)}} \}. $$
Hence, there is some $p_0 \in \mathbb{N}$ such that for all $p \geq p_0$, we have $|A|_p \neq 0$ which implies that $x^{(p)} = \sum_{i \in [n]} \frac{|A^{(i)}|}{|A|_p} e_i \in \mathbb{R}^n_+$ is solution of the system $A^p x = b$.

However $x^* = \sum_{i \in [n]} \frac{|A^{(i)}|}{|A|_\infty} e_i = \lim_{p \to \infty} x^{(p)}$. It follows that $x^* \in \mathbb{R}^n_+$. We only need to prove that for all $i \in [n]$, $\max_j a_{i,j} x_j^* = b_i$. We have shown that $x^* \in Li_{p \to \infty}\{x \in \mathbb{R}^n : A^p x = b\}$. Since $Li_{p \to \infty}\{x \in \mathbb{R}^n : A^p x = b\} \subset \bigcap_{i \in [n]} \left(\left\{ \langle a_i, \cdot \rangle \leq b_i \right\} \cap \left\{ \langle a_i, \cdot \rangle \geq b_i \right\} \right)$. However since $a_i \geq 0$ for all i, it follows that for all i:

$$\langle a_i, x^* \rangle = \langle a_i, x^*_\infty \rangle = \max_j a_{i,j} x_j = b_i.$$ \hspace{1cm} (5.10)

Therefore x^* is solution of system of maximum equations. Conversely, if $|A|_\infty \neq 0$, then $x^* \in Li_{p \to \infty}\{x \in \mathbb{R}^n : A^p x = b\}$. Consequently, if x^* is regular, we deduce from Lemma 5.2.4 that x^* is a nonnegative solution system of maximum equations 5.8 \blacksquare

From Lemma 5.2.3 and Proposition 5.3.2, the following corollary is immediate.

Corollary 5.2.6 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix such that $a_{i,j} \geq 0$ for all $i, j \in [n]$. For all $i, j \in [n]$, let us denote $\mu(i) = \{j : a_{i,j} > 0\}$ and $\eta(j) = \{i : a_{i,j} > 0\}$ and assume that $\eta(j)$ and $\mu(i)$ are nonempty. Suppose moreover that $b \in \mathbb{R}^n_+$. If the system of maximum equations (5.8) has a uniqueness solution in \mathbb{R}^n_+ then $|A|_\infty \neq 0$ and this solution is $x^* = \sum_{i \in [n]} \frac{|A^{(i)}|}{|A|_\infty} e_i \in \mathbb{R}^n_+$.

![Positive Solutions of Limit Systems](image)

We illustrate these results on simple numerical examples.

Example 5.2.7 Let us consider the following system:

$$\begin{align*}
\max\{2x_1, 3x_2\} &= 1 \\
\max\{4x_1, x_2\} &= 1.
\end{align*}$$ \hspace{1cm} (5.11)

We have $a_1 = (2,3)$, $a_2 = (4,1)$, $b_1 = 1$ and $b_2 = 1$, from which we get $u_1 = \min\{\frac{1}{2}, \frac{1}{3}\} = \frac{1}{2}$ and $u_2 = \min\{\frac{1}{4}, \frac{1}{1}\} = \frac{1}{2}$. One can check that $(\frac{1}{4}, \frac{1}{2})$ is a solution of system 5.11. Let us consider the matrices:

$$A = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \quad A^{(1)} = \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} \quad A^{(2)} = \begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix}.$$
We have $|A|_{\infty} = (2 \cdot 1 \oplus (-3 \cdot 4)) = -12$; $|A^{(1)}|_{\infty} = (1 \cdot 1 \oplus (-3 \cdot 1)) = -3$; $|A^{(2)}|_{\infty} = (2 \cdot 1 \oplus (-1 \cdot 4)) = -4$. One can then retrieve the above solutions:

$$x^*_1 = \frac{1}{4}, \quad x^*_2 = \frac{-4}{12} = \frac{1}{3}.$$

In the following a three dimensional example is given.

Example 5.2.8 Let us consider the following system:

$$\begin{align*}
\max\{x_1, 3x_2, 4x_3\} &= 1 \\
\max\{2x_1, 5x_2, x_3\} &= 1 \\
\max\{4x_1, 2x_2, x_3\} &= 1.
\end{align*}$$

We have $a_1 = (1, 3, 4)$, $a_2 = (2, 5, 1)$, $a_3 = (4, 2, 1)$, $b_1 = b_2 = b_3 = 1$, from which we get $u_1 = \min\{1, \frac{1}{3}, \frac{1}{2}\} = \frac{1}{3}$, $u_2 = \min\{\frac{1}{2}, \frac{1}{5}, \frac{1}{4}\} = \frac{1}{5}$, and $u_3 = \min\{\frac{1}{4}, 1, 1\} = \frac{1}{4}$. One can check that $(\frac{1}{3}, \frac{1}{5}, \frac{1}{4})$ is a solution of system (5.12).

Let us consider the matrices:

$$A = \begin{pmatrix}
1 & 3 & 4 \\
2 & 5 & 1 \\
4 & 2 & 1
\end{pmatrix}, \quad A^{(1)} = \begin{pmatrix}
1 & 3 & 4 \\
1 & 5 & 1 \\
1 & 2 & 1
\end{pmatrix}, \quad A^{(2)} = \begin{pmatrix}
1 & 1 & 4 \\
2 & 1 & 1 \\
4 & 1 & 1
\end{pmatrix}, \quad A^{(3)} = \begin{pmatrix}
1 & 3 & 1 \\
2 & 5 & 1 \\
4 & 2 & 1
\end{pmatrix}.$$

We have:

$|A|_{\infty} = 1 \cdot 5 \cdot 1 \oplus 3 \cdot 1 \cdot 4 \oplus 2 \cdot 2 \cdot 4 \oplus (-4 \cdot 5 \cdot 4) \oplus (-1 \cdot 2 \cdot 1) \oplus (-2 \cdot 3 \cdot 1) = -80$;

$|A^{(1)}|_{\infty} = 1 \cdot 5 \cdot 1 \oplus 3 \cdot 1 \cdot 1 \oplus 1 \cdot 2 \cdot 4 \oplus (-4 \cdot 5 \cdot 1) \oplus (-3 \cdot 1 \cdot 1) \oplus (-2 \cdot 1 \cdot 1) = -20$;

$|A^{(2)}|_{\infty} = 1 \cdot 1 \cdot 1 \oplus 2 \cdot 1 \cdot 4 \oplus 1 \cdot 1 \cdot 4 \oplus (-4 \cdot 1 \cdot 4) \oplus (-1 \cdot 2 \cdot 1) \oplus (-1 \cdot 1 \cdot 1) = -16$ and

$|A^{(3)}|_{\infty} = 1 \cdot 5 \cdot 1 \oplus 2 \cdot 2 \cdot 1 \oplus 3 \cdot 1 \cdot 4 \oplus (-4 \cdot 5 \cdot 1) \oplus (-1 \cdot 2 \cdot 1) \oplus (-2 \cdot 3 \cdot 1) = -20.\quad$\(\texttt{End}\)

One can then retrieve the above solutions:

$$x^*_1 = \frac{-20}{-80} = \frac{1}{4}, \quad x^*_2 = \frac{-16}{-80} = \frac{1}{5}, \quad x^*_3 = \frac{-20}{-80} = \frac{1}{4}.$$

5.3 Limit Two-Sided Systems

Let $A, C \in \mathcal{M}_n(\mathbb{R})$ and let $b, d \in \mathbb{R}^n$. We consider the following system:

$$\begin{align*}
(A \ominus x) \subseteq d \leq (C \ominus x) \supseteq b \\
(A \oplus x) \supseteq d \geq (C \oplus x) \subseteq b, \quad x \in \mathbb{R}^n
\end{align*}$$ (5.13)

In the following, we provide a sufficient condition for the existence of a solution and given. To do that we introduce the matrix:

$$A \boxplus C = (a_{i,j} \boxplus c_{i,j})_{i,j \in [n]}$$

where the symbol \boxplus means that for all $\alpha, \beta \in \mathbb{R}, \alpha \boxplus \beta = \alpha \oplus (-\beta)$.

Proposition 5.3.1 Let $A, C \in \mathcal{M}_n(\mathbb{R})$ and let $b, d \in \mathbb{R}^n$. If $|A \boxplus B|_{\infty} \neq 0$, then

$$x^* = \sum_{i \in [n]} \frac{|(A \boxplus B)(i)|_{\infty}}{|A \boxplus B|_{\infty}} e_i.$$
is solution of system \([5.13]\), where \((A \boxplus B)^{(i)}\) is the matrix obtained by replacing the \(i\)-th column with \(b \boxplus d\). Moreover, \(\{x^*\} = \lim_{p \to \infty} \{x \in \mathbb{R}^n : (A \boxplus B)^p \ x = (b \boxplus d)\}\). It follows that \(x^*\) is a solution of the limit system:

\[
\begin{align*}
(A \boxplus C)^{\leftarrow} & \ x \leq b \boxplus d \\
(A \boxplus C)^{\rightarrow} & \ x \geq b \boxplus d, \quad x \in \mathbb{R}^n.
\end{align*}
\]

\(5.14\)

Proof: Let \((a \boxplus c)_i = a_i \boxplus c_i\) denotes the \(i\)-th line of the matrix \(A \boxplus C\). Moreover, for all natural numbers \(p\), let us denote \(a_i \boxplus c_i\) the \(i\)-th line of matrix \(A \boxplus C\).

We have \(a_i \boxplus c_i = \lim_{p \to \infty} a_i \boxplus c_i\) and \(b_i \boxplus d_i = \lim_{p \to \infty} b_i \boxplus d_i\). This implies from Proposition \([2.2.2]\) that for all \(i\):

\[
\lim_{p \to \infty} [(a_i \boxplus c_i, \cdot)_p \leq b_i \boxplus d_i] = \lim_{p \to \infty} [(a_i \boxplus c_i, \cdot)_p \leq b_i \boxplus d_i].
\]

Moreover, we have:

\[
\lim_{p \to \infty} \bigcap_{i \in [n]} [(a_i \boxplus c_i, \cdot)_p = b_i \boxplus d_i] \subseteq \bigcap_{i \in [n]} \lim_{p \to \infty} [(a_i \boxplus c_i, \cdot)_p = b_i \boxplus d_i].
\]

Hence, we deduce that

\[
\lim_{p \to \infty} \bigcap_{i \in [n]} [(a_i \boxplus c_i, \cdot)_p = b_i \boxplus d_i] \subseteq \bigcap_{i \in [n]} \lim_{p \to \infty} [(a_i \boxplus c_i, \cdot)_p \leq b_i \boxplus d_i].
\]

Moreover, since \(|A \boxplus B|_{\infty} \neq 0\), from Proposition \([5.1.1]\)

\[
x^* = \sum_{i \in [n]} \frac{|(A \boxplus B)^{(i)}|}{|A \boxplus B|_{\infty}} \varepsilon_i \in \lim_{p \to \infty} \bigcap_{i \in [n]} [(a_i \boxplus c_i, \cdot)_p = b_i \boxplus d_i].
\]

Hence, we deduce that

\[
x^* \in \bigcap_{i \in [n]} \lim_{p \to \infty} [(a_i \boxplus c_i, \cdot)_p = b_i \boxplus d_i].
\]

\(5.15\)

For all natural numbers \(p\), let us denote: \(E_i^{(p)} = \{z \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^2 : \langle(a_i, -c_i, d_i, -b_i), z\rangle_p \leq 0\}\), \(F_1 = \{z \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^2 : z_i = z_{i+n} : i \in [n]\}\) and \(F_2 = \{z \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^2 : z_{2n+1} = z_{2n+2} = 1\}\). However,

\[
\{(x, x, 1, 1) \in \mathbb{R}^{2n+2} : \langle(a_i \boxplus c_i, x\rangle_p \leq b_i \boxplus d_i\} = E_i^{(p)} \cap F_1 \cap F_2.
\]

Therefore

\[
\lim_{p \to \infty} \{(x, x, 1, 1) \in \mathbb{R}^{2n+2} : \langle(a_i \boxplus c_i, x\rangle_p \leq b_i \boxplus d_i\} \subseteq \lim_{p \to \infty} (E_i^{(p)} \cap F_1 \cap F_2).
\]

It follows that

\[
z^* = (x^*, x^*, 1, 1) \in (\lim_{p \to \infty} E_i^{(p)}) \cap (F_1 \cap F_2).
\]

However

\[
\lim_{p \to \infty} E_i^{(p)} = \left[\langle(a_i, -c_i, d_i, -b_i), \cdot\rangle_{\infty} \leq 0\right] \cap \left[\langle(a_i, -c_i, d_i, -b_i), \cdot\rangle_{\infty} \geq 0\right].
\]

Hence:

\[
(\lim_{p \to \infty} E_i^{(p)}) \cap (F_1 \cap F_2) =
\]

\[
\{(x, x, 1, 1) \in \mathbb{R}^{2n+2} : \langle\sum_{j \in [n]} a_{i,j}x_j \rangle \leq \langle\sum_{j \in [n]} (-c_{i,j})x_j \rangle \leq d_i \leq (-b_i) \leq 0, \langle\sum_{j \in [n]} a_{i,j}x_j \rangle \geq \langle\sum_{j \in [n]} (-c_{i,j})x_j \rangle \geq d_i \geq (-b_i) \geq 0\}
\]

26
Now, note that, for all real numbers α, β
\[
\alpha \leq \beta \iff \alpha \preceq (-\beta) \leq 0 \iff 0 \leq (-\alpha) \preceq \beta.
\]
Starting from System (5.13), we have for all $i \in [n]$:
\[
\begin{align*}
\left(\sum_{j \in [n]} a_{i,j}x_j \right) \preceq \left(\sum_{j \in [n]} (-c_{i,j})x_j \right) \preceq d_i \preceq (-b_i) & \leq 0 \\
\iff \left(\sum_{j \in [n]} a_{i,j}x_j \right) \preceq d_i \leq \left(\sum_{j \in [n]} c_{i,j}x_j \right) \preceq b_i
\end{align*}
\]
and
\[
\begin{align*}
\left(\sum_{j \in [n]} a_{i,j}x_j \right) \preceq \left(\sum_{j \in [n]} (-c_{i,j})x_j \right) \preceq d_i \preceq (-b_i) & \geq 0 \\
\iff \left(\sum_{j \in [n]} a_{i,j}x_j \right) \preceq d_i \geq \left(\sum_{j \in [n]} c_{i,j}x_j \right) \preceq b_i.
\end{align*}
\]
Hence from equation (5.13), and since $(x^*, x^*, 1, 1) \in \bigcap_{i \in [n]} (L_i \cap F_i) \cap (F_1 \cap F_2)$ we deduce that x^* satisfies system (5.13). □

If the the matrices $A = (a_{i,j})_{i,j \in [n]}, C = (c_{i,j})_{i,j \in [n]}$ and the vectors b and d have positive entries, the problem of finding a nonnegative solution to the system (5.13) can be written:
\[
\begin{align*}
\max\{a_{1,1}x_1, \ldots, a_{1,n}x_n, d_1\} &= \max\{c_{1,1}x_1, \ldots, c_{1,n}x_n, b_1\} \\
\vdots & \vdots \\
\max\{a_{m,1}x_1, \ldots, a_{m,n}x_n, d_n\} &= \max\{c_{m,1}x_1, \ldots, c_{m,n}x_n, b_m\}. \tag{5.16}
\end{align*}
\]
A solution of system (5.13) is said to be regular if for all $i \in [n]$:
\[
\begin{align*}
\sum_{j \in [n]} a_{i,j}x^*_j \preceq d_i = \sum_{j \in [n]} a_{i,j}x^*_j \preceq d_i \quad \text{and} \quad \sum_{j \in [n]} c_{i,j}x^*_j \preceq b_i = \sum_{j \in [n]} c_{i,j}x^*_j \preceq b_i. \tag{5.17}
\end{align*}
\]

Proposition 5.3.2 Let $A, C \in M_n(\mathbb{R}^+_0)$ and let $b, d \in \mathbb{R}^+_0$. If x^* is a regular solution of system (5.13) then it is solution of system (5.16), moreover $\sum_{i \in [n]} |x^*_i|e_i$ is a nonnegative solution of (5.16).

Proof: Suppose that x^* is a regular solution system (5.13). Let us denote $y^*_i = \sum_{i \in [n]} |x_i|e_i$. For any equations (i), we consider four cases:

(i) $\sum_{j \in [n]} a_{i,j}x^*_j \preceq d_i = b_i$. In such a case, since $b_i \geq 0$, $\sum_{j \in [n]} a_{i,j}y^*_j \preceq d_i = b_i$

(ii) $b_i = \sum_{j \in [n]} c_{i,j}x^*_j \preceq b_i$. Similarly, since $d_i \geq 0$, $\sum_{j \in [n]} c_{i,j}y^*_i \preceq b_i = d_i$

(iii) Suppose that (i) and (ii) do not holds. In such a case:
\[
\begin{align*}
\sum_{j \in [n]} a_{i,j}x^*_j \preceq d_i &= \sum_{j \in [n]} a_{i,j}x^*_j = \sum_{j \in [n]} c_{i,j}x^*_j = \sum_{j \in [n]} c_{i,j}x^*_j \preceq b_i.
\end{align*}
\]
If $\sum_{j \in [n]} a_{i,j}x^*_j = \sum_{j \in [n]} c_{i,j}x^*_j < 0$, then there is some $j_0, k_0 \in [n]$ such that $x^*_{j_0} < 0, x^*_{k_0} < 0$ and such that
\[
\begin{align*}
\sum_{j \in [n]} a_{i,j}x^*_{j_0} &= \sum_{j \in [n]} a_{i,j}x^*_j = \sum_{j \in [n]} c_{i,j}x^*_j = c_{i,k_0}x_{k_0}.
\end{align*}
\]
It follows that
\[\sum_{j \in [n]} a_{i,j}y_j^* = -a_{i,j_0}x_{j_0}^* = -c_{i,j_0}x_{j_0}^* = \sum_{j \in [n]} c_{i,j}y_j^* > 0, \]
which implies that
\[\sum_{j \in [n]} c_{i,j}y_j^* \supset d_i = \sum_{j \in [n]} c_{i,j}y_j^* \supset b_i. \]
Since these properties hold for all \(i \), we deduce the result. \(\square \)

Example 5.3.3 Let us consider the system
\[
\begin{align*}
\max\{2x_1, x_2, 3\} &= \max\{x_1, x_2, 4\} \\
\max\{x_1, 3x_2, 2\} &= \max\{2x_1, 2x_2, 3\}.
\end{align*}
\]
We have \(A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right) \), \(C = \left(\begin{array}{cc} 1 & 1 \\ 2 & 2 \end{array} \right) \), \(b = \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \), and \(d = \left(\begin{array}{c} 3 \\ 2 \end{array} \right) \).

We obtain \(A \bowtie C = \left(\begin{array}{cc} 2 & 0 \\ -2 & 3 \end{array} \right) \) and \(b \bowtie d = \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \).

It follows that:
\[
(A \bowtie C)^{(1)} = \left(\begin{array}{cc} 4 & 0 \\ 3 & 3 \end{array} \right) \quad \text{and} \quad (A \bowtie C)^{(2)} = \left(\begin{array}{cc} 2 & 4 \\ -2 & 3 \end{array} \right).
\]
We obtain
\[x_1^* = \frac{12}{6} = 2 \quad \text{and} \quad x_2^* = \frac{8}{6} = \frac{4}{3}. \]

5.4 Some Remarks on the Symmetrisation of Idempotent Semiring

The above algebraic structure can be viewed as some kind of non-associative symmetrization of the idempotent semi-ring \((\mathbb{R}_+, \lor, \cdot)\). However, there exists another approach to construct a ring involving a balance relation and symmetrizing \((\mathbb{R}_+, \lor, \cdot)\) (see [15] and [24] in a Max-Plus context). Following the usual construction of integers from natural numbers, one can introduce the following balance relation defined on \(\mathbb{R}_+^2 \times \mathbb{R}_+^2 \) by:
\[
(x_+, x_-) \nabla (y_+, y_-) \iff \max\{x_+, y_+\} = \max\{y_+, x_-\}, \quad (5.19)
\]
where \(x_+, x_-, y_+, y_- \in \mathbb{R}_+ \). Let us denote \(x = (x_+, x_-) \) for all \((x_+, x_-) \in \mathbb{R}_+^2 \) and consider the quotient \(S = \mathbb{R}_+^2 \backslash \nabla \). Let us define the operations \(\oplus \) and \(\otimes \) on \(S \) as:
\[
x \oplus y = (x_+ \oplus y_+, x_- \oplus y_-) = (\max\{x_+, y_+\}, \max\{x_-, y_-\}), \quad (5.20)
\]
and
\[
t \otimes x = (t_+x_+ + t_-x_-, t_-x_+ + t_+x_+). \quad (5.21)
\]
\(S \) can be decomposed in three equivalence classes \(S_\oplus, S_\otimes \) and \(S_\circ \) respectively associated to the sets \(\{(x_+, t) : t < x_+\} \) (called positive), \(\{(t, x_-) : t < x_-\} \) (called negative) and \(\{(x_0, x_0)\} \) called balanced. All the familiar identities valid in rings admit analogues replacing equalities by balances. This means that associativity holds over \(S \). It follows that the binary operation \(\oplus \) defined on \(S \)
cannot be identified to the binary operation \boxplus. However, it can be related to
the semi-continuous regularized operators \boxplus and \boxtimes.

Let $V : S \rightarrow \mathbb{R}$ be the map defined as $V(\boxplus x) = x_+$ for all $x_+ \in \mathbb{R}_+$, $V(\boxtimes x) = -x_-$ for all $x_- \in \mathbb{R}_+$, and $V(x_0, x_0) = 0$ for all $x_0 \in \mathbb{R}_+$. Suppose that $(x_1, ..., x_m) \in S^m$. Then

$$
V\left(\bigoplus_{i \in [m]} x_i \right) = \frac{1}{2} \left(\bigoplus_{i \in [m]} V(x_i) + \bigotimes_{i \in [m]} V(x_i) \right).
$$

(5.22)

Suppose that $A = (a_{ij})_{i,j=1,...,n} \in M_n(S)$. A determinant can be derived from this associative algebraic structure as:

$$
|A|_S = \bigoplus_{\sigma \in S_n} \text{sgn}(\sigma) \bigotimes_{i \in [n]} a_{i,\sigma(i)},
$$

(5.23)

where $\text{sgn}(\sigma) = \oplus 1$ if σ is even and $\text{sgn}(\sigma) = \ominus 1$ if σ is odd. Suppose that A is a 3×3-dimensional real matrix

$$
A = \begin{pmatrix} 3 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 1 & 3 \end{pmatrix}.
$$

The positive components of A can be identified to $S_\mathbb{R}$. If A is the corresponding matrix, then $|A|_S = (27, 27) \bigotimes 0$ and we cannot derive a Cramer solution. However, one can check that $|A|_\mathbb{R} = 12 \neq 0$.

The symmetrization process described above is in general used in the context of Maslov’s semi module where we replace \lor with \oplus and $+$ with \otimes [21]. Applications can be found in [20] and [22] for Max-Plus. To be more precise, let $M = \mathbb{R} \cup \{-\infty\}$. For x and y in M^n let $d_M(x, y) = ||e^x - e^y||_\infty$ where $e^x = (e^{x_1}, ..., e^{x_n})$, with the convention $e^{-\infty} = 0$, and, for $u \in \mathbb{R}_+$, $||u|| = \max_{1 \leq i \leq n} x_i$. The map $x \mapsto e^x$ is a homeomorphism from M^n to M^n endowed with the metric induced by the norm $|| \cdot ||_\infty$; its inverse is the map $\ln(x) = (\ln(x_1), ..., \ln(x_n))$ from M^n to M^n, with the convention $\ln(0) = -\infty$. For all $(t_1, ..., t_n) \in [-\infty, 0]^n$ and all $x_1, ..., x_n \in M^n$, let us denote:

$$
\bigoplus_{i=1}^n t_i \otimes x_i = \bigvee_{i=1}^n (x_i + t_i \mathbb{1}_n).
$$

(5.24)

In the following a non-associative symmetrisation is proposed. Suppose now that $x \in \mathbb{R}_-$ and let us extend the logarithm function to the whole set of real numbers. This we do by introducing the set

$$
\tilde{M} = M \cup (\mathbb{R} + i\pi)
$$

(5.25)

where i is the complex number such that $i^2 = -1$ and $\mathbb{R} + i\pi = \{x + i\pi : x \in \mathbb{R}\}$. In the following we extend the logarithm function to \tilde{M}. $\psi_{\ln} : \tilde{M} \rightarrow \tilde{M}$ defined by

$$
\psi_{\ln}(x) = \begin{cases}
\ln(x) & \text{if } x > 0 \\
-\infty & \text{if } x = 0 \\
\ln(-x) + i\pi & \text{if } x < 0.
\end{cases}
$$

(5.26)

The map $x \mapsto \psi_{\ln}(x)$ is an isomorphism from M to \tilde{M}. Let $\psi_{\exp}(x) : \tilde{M} \rightarrow M$ be its inverse. Notice that $\psi_{\ln}(-1) = i\pi$. The scalar multiplication is extended to the binary operation $\otimes : \tilde{M} \times \tilde{M} \rightarrow \tilde{M}$ defined by

$$
\begin{align*}
&x \otimes (y + i\pi) = (y + i\pi) \otimes x = x + y \\
&\otimes (y + i\pi) \otimes (x + i\pi) = (y + i\pi) \otimes (x + i\pi) = x + y \\
&\otimes -\infty = -\infty.
\end{align*}
$$

(5.27)
For all $z \in \hat{M}$ the symmetrical element is $\tilde{z} = i\pi \otimes z$. One can then introduce a corresponding absolute value function $| \cdot |_{\hat{M}} : \hat{M} \rightarrow \mathbb{R} \cup \{ -\infty \}$ defined by:

$$
|z|_{\hat{M}} = \begin{cases}
 z - i\pi & \text{if } z \in \mathbb{R} + i\pi \\
 z & \text{if } z \in \mathbb{R} \\
 -\infty & \text{if } z = -\infty.
\end{cases} \tag{5.28}
$$

This absolute value allows us to define the following binary operation on $\hat{M} \times \hat{M}$:

$$
\tilde{z} \boxplus u = \begin{cases}
 z & \text{if } |z|_{\hat{M}} > |u|_{\hat{M}} \\
 z & \text{if } z = u \\
 -\infty & \text{if } z = u \\
 u & \text{if } |z|_{\hat{M}} < |u|_{\hat{M}}.
\end{cases} \tag{5.29}
$$

By definition we have $\tilde{z} \boxplus u = \psi_{\hat{M}}(\psi_{\exp}(z) \boxplus \psi_{\exp}(u))$. Moreover, we have $\tilde{z} \boxplus u = \psi_{\hat{M}}(\psi_{\exp}(z) \boxplus \psi_{\exp}(u))$. For all $z \in \hat{M}^n$, let us denote

$$
\bigoplus_{i \in [n]} z_i = \psi_{\hat{M}}(\bigoplus_{i \in [n]} \psi_{\exp}(z_i)). \tag{5.30}
$$

In the remainder, we introduce an sign function $\tilde{\text{sgn}}$ defined on S_p such that $\tilde{\text{sgn}}(\sigma) = 1$ if σ is even and $\tilde{\text{sgn}}(\sigma) = i\pi$ if σ is odd. Suppose that A is a square matrix of $\mathcal{M}_n(\hat{M})$. The symmetrized determinant defined on \hat{M} is now:

$$
|A|_{\hat{M},\infty} = \psi_{\hat{M}}(\psi_{\exp}(A)_{\infty}) = \bigoplus_{\sigma \in S_n} (\tilde{\text{sgn}}(\sigma) \bigotimes_{i \in [n]} a_{i,\sigma(i)}). \tag{5.31}
$$

6 Eigenvalues in Limit

In the following, we say that $\lambda \in \mathbb{R}$ is an eigenvalue of A in limit, if: (1) there exists a sequence $\{ (\lambda_p, v_p) \}_{p \in \mathbb{N}} \subset \mathbb{R} \times \mathbb{R}^n$ such that for all p, $A^p v_p = \lambda_p v_p$; (2) there is an increasing subsequence $\{ p_k \}_{k \in \mathbb{N}}$ with $\lim_{k \to \infty} (\lambda_{p_k}, v_{p_k}) = (\lambda, v)$. v is called an eigenvector in limit of A.

We start with the following intermediary result which will be useful in the following. We say that for all $\lambda \in \mathbb{R}$, $P_A^{(p)}(\lambda) = |A - \lambda I|_P$ is a φ_p-characteristic polynomial in λ.

Proposition 6.0.1 Let $A \in \mathcal{M}_n(\mathbb{R})$ be a square matrix. Let $\lambda \in \mathbb{R}$ and let us consider the matrix $A^p - \lambda I_n$ where I_n is the n-dimensional identity matrix. Then the φ_p-polynomial $P_A^{(p)}(\lambda)$ in λ is

$$
P_A^{(p)}(\lambda) = \sum_{\sigma \in S_n} (-1)^{n-k} \sum_{1 \leq h_1 < \ldots < h_k \leq n} \sum_{\sigma \in S_{h_1,\ldots,h_k}} (\text{sign}(\sigma) \prod_{i \in \{h_1,\ldots,h_k\}} a_{i,\sigma(i)}) \lambda^{n-k},
$$

where S_{h_1,\ldots,h_k} denotes the set of all the permutations defined on $\{h_1,\ldots,h_k\}$. Moreover for all $\lambda \in \mathbb{R}$

$$
P_A^{(\infty)}(\lambda) = \lim_{p \to \infty} P_A^{(p)}(\lambda) = \bigoplus_{\sigma \in S_{h_1,\ldots,h_k}, k \in [0] \cup [n]} (-1)^{n-k}(\text{sign}(\sigma) \prod_{i \in \{h_1,\ldots,h_k\}} a_{i,\sigma(i)}) \lambda^{n-k}.
$$

Proof: The first part of the statement is derived using the usual procedure making the formal substitution $+ \mapsto ^p$. Let us denote $q_n = \sum_{k=0}^n k! C_n^k$. Let
Let us denote \(A \) a square matrix. Frobenius theorem states that there is an eigenvalue called the spectral radius \(\rho_A \) of \(A \), such that \(\rho_A = \lim_{n \to \infty} \frac{\|A^n\|_2}{\|A^{n-1}\|_2} \). However, this limit may not exist, and \(\rho_A \) is only an upper bound for \(\|A^n\|_2 \). Let us introduce the transformation \(\tau_A : \mathbb{R} \to \mathbb{R}^n \) defined by

\[
\tau_A(\lambda) = \sum_{k \in \{0\} \cup [n]} \sum_{1 \leq h_1 < \cdots < h_k \leq n} \sum_{\sigma \in S_{h_1, \ldots, h_k}} (-1)^{n-k} \prod_{i \in \{h_1, \ldots, h_k\}} a_{i, \sigma(i)} e_{k, h, \sigma}.
\]

An elementary calculus shows that, for all \(\lambda \in \mathbb{R} \)

\[
P_A^{(p)}(\lambda) = \langle \gamma_A, \tau_A(\lambda) \rangle_p.
\]

For all \(u \in \mathbb{R}^n \), we have

\[
\lim_{p \to \infty} \langle \gamma_A, u \rangle_p = \langle \gamma_A, u \rangle_\infty.
\]

Hence, \(P_A^\infty(\lambda) = \lim_{p \to \infty} \langle \gamma_A, \tau_A(\lambda) \rangle_p \). \(\Box \)

\(P_A^\infty \) is called the limit characteristic polynomial. Let us introduce now the lower and upper characteristic polynomial, respectively defined by

\[
P_{A,-}^{(\infty)}(\lambda) = \sum_{1 \leq h_1 < \cdots < h_k \leq n} \sum_{\sigma \in S_{h_1, \ldots, h_k}, k \in \{0\} \cup [n]} (-1)^{n-k} \prod_{i \in \{h_1, \ldots, h_k\}} a_{i, \sigma(i)} \lambda^{n-k}
\]

and

\[
P_{A,+}^{(\infty)}(\lambda) = \sum_{1 \leq h_1 < \cdots < h_k \leq n} \sum_{\sigma \in S_{h_1, \ldots, h_k}, k \in \{0\} \cup [n]} (-1)^{n-k} \prod_{i \in \{h_1, \ldots, h_k\}} a_{i, \sigma(i)} \lambda^{n-k}
\]

Proposition 6.0.2 Let \(A \in M_n(\mathbb{R}) \) be a square matrix. We have:

\[
\lim_{p \to \infty} [P_A^{(p)}(\lambda) = 0] = \overline{[P_{A,-}^{(\infty)}(\lambda) \leq 0] \cap [P_{A,+}^{(\infty)}(\lambda) \geq 0]} = [P_{A,-}^{\infty} + P_{A,+}^{\infty} = 0].
\]

Moreover, \(\lambda \in \mathbb{R} \) is an eigenvalue in limit if and only if:

\[
\lambda \in \overline{[P_{A,-}^{\infty} + P_{A,+}^{\infty} = 0]}.
\]

Proof: Let us denote \(\gamma_A \) and \(\tau_A(\lambda) \) respectively as in equation (6.1) and (6.2). From Proposition 1.2.2.2, we have \(\lim_{p \to \infty} \langle \gamma_A, \lambda^p \rangle_p = 0 = \langle \gamma_A, \tau_A(\lambda) \rangle_\infty \). Since that map \(\tau_A \) is continuous, \(\lim_{p \to \infty} [P_A^{(p)}(\lambda) = \lim_{p \to \infty} \langle \gamma_A, \tau_A(\lambda) \rangle_p = 0] = [\gamma_A, \tau_A(\lambda) \rangle_\infty^{- \infty} \leq 0] \cap [\gamma_A, \tau_A(\lambda) \rangle_\infty^{- \infty} \geq 0] \). Hence \(\lim_{p \to \infty} [P_A^{(p)}(\lambda) = 0] = [P_{A,-}^{\infty} \leq 0] \cap [P_{A,+}^{\infty} \leq 0] \). The last equality is an immediate consequence of Lemma 4.1.3. The second part of the statement is immediate since from Proposition 1.2.2.2, \(\lambda \in [P_{A,-}^{\infty} \leq 0] \cap [P_{A,+}^{\infty} \leq 0] \) if and only if there is an increasing sequence \(\{p_q\}_{q \in \mathbb{N}} \) and a sequence of real numbers \(\{\lambda_{p_q}\}_{q \in \mathbb{N}} \) such that \(\lim_{q \to \infty} \lambda_{p_q} = \lambda \) and \([P_A^{(p_q)}(\lambda_{p_q}) = 0] \) for all \(q \). \(\Box \)

Given a square matrix with positive entries \(A \in M_n(\mathbb{R}^+) \), the Perron-Frobenius theorem states that there is an eigenvalue called the spectral radius of \(A \) and denoted \(\rho_A \) such that \(\rho_A \geq |\lambda| \) for all eigenvalues of \(A \), where \(|\cdot|\) denotes the module of \(\lambda \). \(\rho_A \) is related to an eigenvector \(v_A \in \mathbb{R}^+_n \), with \(Av_A = \rho_A v_A \). \(\lambda > 0 \) is an eigenvalue in the sense of the matrix product \(\otimes \) (a \(\otimes \)-eigenvalue) if there is a positive vector \(v \in \mathbb{R}^+_n \) such that \(A \otimes v = \lambda v \). We say that \(\lambda \) is a
Proposition 6.0.3 Let $A \in \mathcal{M}_n(\mathbb{R}^+)$ and all vectors $\{p_{\lambda}\} = \lim_{\lambda \to \infty} p_{\lambda}$. Hence $\Phi p_{\lambda} = \rho_{p_{\lambda}} u_{\lambda}$.

Proof: We first prove that the sequence of the φ_p Perron-Frobenius eigenvalues converges to a \varnothing-eigenvalue. For all p, there is an upper bound of $\rho_{p_{\lambda}}(\varphi_p)$. Moreover, φ_p can be chosen so that $\|v_{\lambda}(p)\| = 1$. Hence, there exists a compact subset K of \mathbb{R}^{n+1} which contains the sequence $\{(\rho_{p_{\lambda}}(p), v_{\lambda}(p))\}_{p \in \mathbb{N}}$. Therefore, one can extract an increasing sequence $\{p_q\}_{q \in \mathbb{N}}$ such that there is some $(\rho_{p_{\lambda}}, v_{\lambda}) \in \mathbb{R}^{n+1}$ with $\lambda = \lim_{\lambda \to \infty} \rho_{p_{\lambda}}(p)$ and $v = \lim_{\lambda \to \infty} v_{\lambda}(p)$. Since for all q, $v_{\lambda}(p) \in \mathbb{R}^n$ and $A \in \mathcal{M}_n(\mathbb{R}^+)$, it follows that:

$$\lim_{\lambda \to \infty} A^{p_{\lambda}} v_{\lambda}(p) = A \otimes v_{\lambda} = \rho_{\lambda} v_{\lambda}.$$

Since there exists an uniqueness \varnothing-eigenvalue, we deduce that $\lambda = \rho_{\lambda}$ and that v_{λ} is a \varnothing-eigenvector. \hfill \Box

Proposition 6.0.4 Let $A \in \mathcal{M}_n(\mathbb{R}^+)$ be a square matrix. If $\lambda \in \mathbb{R}^+$ is a \varnothing-eigenvalue then $\lambda \in [P_{A-}^\infty + P_{A+}^\infty = 0]$. Moreover, if λ is maximal in $[P_{A-}^\infty + P_{A+}^\infty = 0]$, then $\lambda = \lim_{\lambda \to \infty} \rho_{\lambda}(p)$. \hfill \Box

Proof: From Proposition 6.0.3 we have $\lambda = \rho_{\lambda}$, we deduce that $\lambda \in \text{Lim}_{p \to \infty} P_{A}^\lambda = 0 = [P_{A-}^\infty \leq 0] \cap [P_{A+}^\infty \geq 0] = [P_{A-}^\infty + P_{A+}^\infty = 0]$. Conversely, suppose that $\lambda \in [P_{A-}^\infty \leq 0] \cap [P_{A+}^\infty \geq 0]$ and assume that λ is maximal in $[P_{A-}^\infty + P_{A+}^\infty = 0]$. Then there is a real sequence $\{\lambda(p)\}_{p \in \mathbb{N}}$ with $\lambda(p) = 0$ for all natural numbers p and such that $\lambda(p) = \lambda(p)$ for all p. Let $\rho_{\lambda(p)}(p) \in \mathbb{N}$ such that $\rho_{\lambda(p)}(p)$ is a φ_p Perron-Frobenius eigenvalue for all p. From Proposition 6.0.3 there is a \varnothing-eigenvalue $\mu(p)$ such that $\mu(p) = \lim_{p \to \infty} \rho_{\lambda(p)}(p)$. It follows that $\mu \in [P_{A-}^\infty \leq 0] \cap [P_{A+}^\infty \geq 0] = [P_{A-}^\infty + P_{A+}^\infty = 0]$. Suppose that $\mu \neq \lambda$ and let us show a contradiction. Since λ is maximal, this implies that $\mu < \lambda$. However, this also implies that there is some $p_0 \in \mathbb{N}$ such that for all $p > p_0$, $\lambda(p) > \rho_{\lambda(p)}(p)$, which is a contradiction. Consequently, $\mu = \lambda$ and it follows that λ is a \varnothing-eigenvalue, which ends the proof. \hfill \Box

Example 6.0.5 Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ and $v = (1, 1)$ is a \varnothing-eigenvector, since $A \otimes v = 2v$. The φ_p Perron-Frobenius eigenvalue is $\rho_{\lambda}(p) = \left(2^{2p+1} + 1^{2p+1}\right)\frac{1}{\phi(p)}$ and we have $\lim_{p \to \infty} \rho_{\lambda}(p) = 2$. We have $P_{A}^\lambda(p) = \left((2)^{2p+1} - (2)^{2p+1} - (2)2p+1 + 4^{2p+1} - 1\right)\frac{1}{\phi(p)}$. 32
Hence, taking the limit yield:

\[P_{A_{-}}^{\infty}(\lambda) = (\lambda^2) \circ (2\lambda) \circ (2\lambda) \circ 4 \circ (-1). \]

Therefore

\[P_{A_{-}}^{\infty}(\lambda) = (\lambda^2) \circ (2\lambda) \circ (2\lambda) \circ 4 \circ (-1) \]

and

\[P_{A_{+}}^{\infty}(\lambda) = (\lambda^2) \circ (2\lambda) \circ (2\lambda) \circ 4 \circ (-1). \]

We have \(P_{A_{-}}^{\infty}(2) = -4 \leq 0 \) and \(P_{A_{+}}^{\infty}(2) = 4 \geq 0. \)

Example 6.0.6 Let us consider the matrix \(\begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 9 \\ 1 & 1 & 3 \end{pmatrix} \). Clearly 3 is a \(\boxminus \)-eigenvalue and \(v = (2, 3, 1) \) is a \(\boxminus \) eigenvector, since \(A \boxtimes v = 3v. \) We have

\[
P_{A}^{(p)}(\lambda) = \left(- (\lambda^3)^{2p+1} + \left[(2\lambda^2)^{2p+1} + (3\lambda^2)^{2p+1} \right] \right)
- \left[(1 \cdot 3 \cdot 2 \cdot 1)^{2p+1} + (2 \cdot 3 \cdot 2 \cdot 9)^{2p+1} + (3 \cdot 3 \cdot 1 \cdot 3)^{2p+1} \right]
\]

Hence, taking the limit yield:

\[P_{A_{-}}^{\infty}(\lambda) = -\lambda^3 \circ 2\lambda^2 \circ \lambda^2 \circ 3\lambda^2 \]

\[
\begin{aligned}
\circ & \ 6\lambda \circ (-9\lambda) \circ (-2\lambda) \circ 4\lambda \circ (-3\lambda) \circ \lambda \\
\circ & \ 3 \circ 2 \circ 18 \circ (-2) \circ (-12) \circ (-9).
\end{aligned}
\]

Therefore

\[P_{A_{-}}^{\infty}(\lambda) = -\lambda^3 \circ 2\lambda^2 \circ \lambda^2 \circ 3\lambda^2 \]

\[
\begin{aligned}
\circ & \ 6\lambda \circ (-9\lambda) \circ (-2\lambda) \circ 4\lambda \circ (-3\lambda) \circ \lambda \\
\circ & \ 3 \circ 2 \circ 18 \circ (-2) \circ (-12) \circ (-9).
\end{aligned}
\]

and

\[P_{A_{+}}^{\infty}(\lambda) = -\lambda^3 \circ 2\lambda^2 \circ \lambda^2 \circ 3\lambda^2 \]

\[
\begin{aligned}
\circ & \ 6\lambda \circ (-9\lambda) \circ (-2\lambda) \circ 4\lambda \circ (-3\lambda) \circ \lambda \\
\circ & \ 3 \circ 2 \circ 18 \circ (-2) \circ (-12) \circ (-9).
\end{aligned}
\]

We have \(P_{A_{-}}^{\infty}(3) = -27 \leq 0 \) and \(P_{A_{+}}^{\infty}(3) = 27 \geq 0. \)

In the next example, we consider a case where there is some \(\mu \in [P_{A_{-}}^{\infty} \leq 0] \cap [P_{A_{+}}^{\infty} \geq 0] = [P_{A_{-}}^{\infty} + P_{A_{+}}^{\infty} = 0] \) that is an eigenvalue in limit but is not a \(\boxminus \)-eigenvalue.

Example 6.0.7 Let us consider the matrix \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \). 1 is a \(\boxminus \)-eigenvalue associated to \(v = (1, 1) \) since \(A \boxtimes v = 1.v \) The \(\varphi_p \) Perron-Frobenius eigenvalue
is \(\rho^{(p)}_A = 2^{\frac{1}{2p+1}} \) and we have \(\lim_{p \to \infty} \rho^{(p)}_A = 1 \). For all \(p \), there is another eigenvalue \(\mu^{(p)} = 0 \). We have

\[
P^{(p)}_A(\lambda) = (\lambda^2)^{2p+1} - \lambda^{2p+1} - \lambda^{2p+1}.
\]

Taking the limit yield:

\[
P^\infty_A(\lambda) = (\lambda^2)^\triangledown (-\lambda) \triangledown (-\lambda).
\]

Therefore

\[
P^\infty_{A,-}(\lambda) = (\lambda^2) \triangledown (-\lambda) \triangledown (-\lambda) \quad \text{and} \quad P^\infty_{A,+}(\lambda) = (\lambda^2) \triangledown (-\lambda) \triangledown (-\lambda).
\]

We have \(P^\infty_{A,-}(1) = -1 \leq 0 \) and \(P^\infty_{A,+}(1) = 1 \geq 0 \). There is another solution \(\mu = 0 \), we have \(P^\infty_{A,-}(0) = P^\infty_{A,+}(0) = 0 \). However, 0 is not a \(\mathbb{B} \)-eigenvalue.

References

[1] Adilov, G., I. Yesilce and G. Tınaztepe (2014), Separation of \(\mathbb{B}^{-1} \)-Convex Sets by \(\mathbb{B}^{-1} \)-Measurable Maps, Journal of Convex Analysis, 21, pp. 571-580.

[2] Akian, M., R. Bapat, S. Gaubert (1998), Asymptotics of the Perron eigenvalue and eigenvector using max-algebra, Comptes Rendus de l’Academie des Sciences - Series I: Mathematics Open Access, 327 (11), pp. 927-932.

[3] Akian, M., S. Gaubert and A. Marchesini (2014), Tropical bounds for eigenvalues of matrices, Linear Algebra and its Applications, 446 pp. 281-303.

[4] Avriel, M. (1972), \(R \)-convex Functions, Mathematical Programming, 2, pp. 309-323.

[5] Baccelli, F., G. Cohen, G.J. Olsder, and J.P. Quadrat (1992), Synchronization and Linearity, Wiley.

[6] Ben-Tal, A. (1977), On Generalized Means and Generalized Convex Functions, Journal of Optimization Theory and Applications, 21, pp. 1-13.

[7] Briec, W. (2015), Some Remarks on an Idempotent and Non-Associative Convex Structure, Journal of Convex Analysis, 22, 1, pp. 259-289.

[8] Briec, W. (2017), Separation Properties in some Idempotent and Symmetrical Convex Structure, Journal of Convex Analysis, 24(4), pp. 547-570.

[9] Briec, W. (2019), On some Class of Polytopes in an Idempotent, Symmetrical and Non-Associative Convex Structure, Journal of Convex Analysis, 26(3), pp. 823-853.

[10] Briec, W. and C.D. Horvath (2004), \(\mathbb{B} \)-convexity, Optimization, 53 (2), pp. 103-127.

[11] Briec, W. and C.D. Horvath (2011), On the separation of convex sets in some idempotent semimodules, Linear Algebra and its Applications, 435, pp. 1542-1548.

[12] Butkovic, P. (2010), Max-linear Systems: Theory and Algorithms, Springer Monographs in Mathematics.
[13] BUTKOVIC, P AND G. HEGEDŰS (1984), An elimination method for finding all solutions of the system of linear equations over an extremal algebra. *Ekonomicko-matematicky Obzor*, 20.

[14] COHEN, C., GAUBERT, S., QUADRAT, J.P., *Hahn-Banach Separation Theorem for Max-Plus Semimodules*, In Optimal Control and Partial Differential Equations, J.L. Menaldi, E. Rofman and A. Sulem Eds, IOS Press 2001.

[15] COHEN, C., GAUBERT, S., QUADRAT, J.P. (2004), Duality and separation theorems in idempotent semimodules, *Linear Algebra and its Application*. 379, pp. 395-422.

[16] GAUBERT, Théorie des systèmes linéaires dans les dioïdes. Thèse, Ecole des Mines de Paris, July 1992.

[17] GAUBERT, C. (1998), *Two Lectures on Max-plus Algebra*, Working Paper, INRIA.

[18] HEGEDŰS, G. (1985), Az extremális sajátvektorok meghatározása eliminációs módszerrel - az általánosított Warshall algoritmus egy játása. Alkalmazott Matematikai Lapok, 11: pp. 399-408.

[19] KAYKOBAD, M. (1985), Positive Solutions of Positive Linear Systems, *Linear Algebra and its Applications*, 64, pp. 133-140.

[20] KOLOKOLTSOV, V.N. AND V.P. MASLOV (1997), *Idempotent Analysis and its Applications*, Mathematics and its Applications, vol. 401, Kluwer Academic Publishing.

[21] LITVINOV, V.P., V.P. MASLOV AND G.B. SHPITZ (2001), *Idempotent functional analysis: An algebraic approach*, Math. Notes, 69 (5), pp. 696-729.

[22] MASLOV, V.P. AND S.N. SAMBORSKII (EDS), *Idempotent Analysis*, Advances in Soviet Mathematics, American Mathematical Society, Providence, 1992.

[23] NITICA, V. AND I. SINGER (2007), The structure of Max-Plus hyperplanes, *Linear Algebra and its Applications*, 426, pp. 382-414.

[24] PLUS. M. Linear systems in (max,+)-algebra In Proceedings of the 29th Conference on Decision and Control, Honolulu, Dec. 1990.