BOUNDS ON ACCUMULATION RATES OF EIGENVALUES ON MANIFOLDS WITH DEGENERATING METRICS

JEFFREY MCGOWAN

ABSTRACT. We consider a family of manifolds with a class of degenerating warped product metrics
\[g_\epsilon = \rho(\epsilon, t)^{2a} dt^2 + \rho(\epsilon, t)^{2b} ds_M^2, \]
with \(M \) compact, \(\rho \) homogeneous degree one, \(a \leq -1 \) and \(b > 0 \). We study the Laplace operator acting on \(L^2 \) differential \(p \)-forms and give sharp accumulation rates for eigenvalues near the bottom of the essential spectrum of the limit manifold with metric \(g_0 \).

1. INTRODUCTION

There are many examples of non-compact manifolds which can be thought of as a ‘limit’ of a sequence of compact manifolds. Particularly nice examples are hyperbolic manifolds in dimensions 2 and 3; the cusp closing theorem of Thurston [17] then says that every complete, non-compact manifold \(M_0 \) is the limit of a sequence of hyperbolic manifolds \(M_k \to M_0 \). Since the Laplacian on \(M_0 \) has continuous spectrum, one expects the eigenvalues of \(M_k \) to accumulate. In dimension 2, Ji, Zworski, and Wolpert ([10, 11, 19, 20]) have given bounds for the accumulation rate of eigenvalues near the bottom of the essential spectrum in the hyperbolic case, while in dimension 3 analogous results were obtained by Chavel and Dodziuk ([3]). Dodziuk and McGowan obtained similar results for the Laplacian acting on differential forms ([9]).

Colbois and Courtois considered convergence of eigenvalues below the bottom of the essential spectrum in a much more general setting [6]. The accumulation rate for eigenvalues of the Laplacian on functions for manifolds \(N = \tilde{N} \cup (M^n \times I) \) with ’pseudo-hyperbolic’ metrics on \((M^n \times I) \) was given by Judge [12]. Judge also computes the essential spectrum for a more general class of degenerating metrics, and investigates the convergence of eigenfunctions.

We will consider manifolds \(N_\epsilon = \tilde{N} \cup (M^n \times I) \), \(\tilde{N} \) and \(M^n \) compact, with \(n = dim(M) \), and a family of metrics
\[g_\epsilon = \rho(\epsilon, t)^{2a} dt^2 + \rho(\epsilon, t)^{2b} ds_M^2 \]
on \(M^n \times I \). Here \(\rho = c_1 \epsilon + c_2 t \), \(c_1, c_2 > 0 \), \(t \in I = [0, 1] \), \(a \leq -1 \), \(b > 0 \), and \(ds_M^2 \) is the metric on \(M^n \). We identify the boundary of \(\tilde{N} \) with \(M^n \times 1 \). These are the metrics discussed by Melrose in [16] and considered by Judge in [12]. We consider only non-negative values of \(t \) with \(t \in [0, 1] \), which simplifies
the statements of the results, although we must consider manifolds with boundary. The condition $a \leq -1$ means that the limiting manifold N_0 is complete.

We study the accumulation rate for eigenvalues near the bottom of the essential spectrum of the Laplacian acting on both functions and differential forms. Our main results are

Theorem 1. Suppose $N_\epsilon = \tilde{N} \cup (M^n \times I)$, \tilde{N} and M^n compact, with metric

\[(2)\quad g_\epsilon = \rho(\epsilon, t)^{2a} dt^2 + \rho(\epsilon, t)^{2b} ds_M^2\]
on $M^n \times I$, with ρ as above. Let

\[R = \int_0^1 \rho(\epsilon, s)^a ds\]

be the geodesic distance from the boundary $0 \times M^n$ of N_ϵ to \tilde{N}. Let $\Xi_\epsilon(x^2)$ be the number of eigenvalues of the Laplacian acting on coexact p-forms (satisfying absolute boundary conditions on the boundary of N_ϵ) in $[\sigma, \sigma + x^2)$ where σ is the bottom of the essential spectrum for coexact forms of degree p and $0 < p < n$. Then

\[\Xi_\epsilon(x^2) = \frac{dxR}{\pi} + O_x(1)\]

where d is the dimension of the space of harmonic forms of degree p on M.

This agrees with the results of Judge [12], Chavel and Dodziuk [3] and Dodziuk and McGowan [9] in the special cases they considered.

Theorem 2. Suppose N_ϵ is as in Theorem 2. Then the essential spectrum of the Laplacian acting on coexact p-forms, $0 \leq p \leq n$ on N_0 is

\[\left[\left(\frac{n-2p}{2}\right)^2 c_2^2 b^2, \infty\right) \quad a = -1\]

\[[0, \infty) \quad a < -1\]

Note that this agrees with Judges results ([12]) for functions when $p = 0$, and with Mazzeo and Phillips results for the essential spectrum on geometrically finite hyperbolic manifolds ([14], with $c_2 = b = 1$ and $a = -1$). We have recently learned that these results for the essential spectrum have been obtained independently by Antoci (??).

This paper is organized as follows. In Section 2 we discuss the geometry of the manifolds under consideration, and rewrite the metric (1) in a way which makes the geometry more evident. In Section 3 we illustrate our techniques by computing the essential spectrum and accumulation rates for eigenvalues as $\epsilon \to 0$ in the case of functions ($p = 0$). In Section 4 we compute the essential spectrum and give lower bounds on the accumulation rate in the $p \neq 0$ case. Finally, in Section 5 we give upper bounds on the accumulation rate for $p \neq 0$, completing the proof of Theorem 2.
We wish to thank Józef Dodziuk for many helpful conversations.

2. The Geometry

Metrics of the type (1) are discussed by Melrose in [16]. When \(a \leq -1 \) such metrics are complete on the limit manifold \(N \). Melrose classifies metrics where \(a = -1, b = 1 \) as 'hc', or hyperbolic cusp metrics, and metrics where \(a = -1, b = 0 \) as 'boundary', or metrics with cylindrical end. Since we will consider metrics where \(a \leq -1, b > 0 \) we rewrite the metric to make the geometry more evident.

Let \(\tau \) be the geodesic distance from \(t = 0 \) to \(t = 1 \), in other words the geodesic distance from a point \((0, p \in M)\) to \(\tilde{N} \). Then

\[
\tau = \int_0^1 \rho(\epsilon, s)^a \, ds = \int_0^1 (c_1 \epsilon + c_2 s)^a \, ds
\]

and we have two distinct cases,

\[
\tau = \frac{1}{c_2} \left(\ln \left(\frac{c_1 \epsilon + c_2 t}{c_1 \epsilon} \right) \right) \quad a = -1
\]

\[
\tau = \frac{1}{c_2} \left(\frac{(c_1 \epsilon + c_2 t)^{a+1} - (c_1 \epsilon)^{a+1}}{c_2(a+1)} \right) \quad a < -1
\]

Solving for \(t \) and substituting into the metric (1) we get

\[
ds^2 = d\tau^2 + (c_1 \epsilon)^{2b} e^{2bc_2 \tau} ds_M^2 \quad a = -1
\]

\[
ds^2 = d\tau^2 + (c_2(a + 1) \tau + (c_1 \epsilon)^{a+1})^{2b} \tau ds_M^2 \quad a < -1
\]

which is of the form \(ds^2 = d\tau^2 + f_\epsilon(\tau) ds_M^2 \) in both cases. As \(\epsilon \to 0, \tau \to \infty \), and we have a warped product \(I \times f_\epsilon M \), with the length of the interval given by

\[
\tau(1) = \begin{cases}
R = \frac{1}{c_2} \ln \left(\frac{c_1 \epsilon + c_2}{c_1 \epsilon} \right) & a = -1 \\
R = \frac{1}{c_2} \left(\frac{(c_1 \epsilon + c_2)^{a+1} - (c_1 \epsilon)^{a+1}}{c_2(a+1)} \right) & a < -1
\end{cases}
\]

When \(a = -1 \), \(f_\epsilon(\tau) \) gives an essentially hyperbolic metric; one thinks of pinching off a closed geodesic, with \(\epsilon \) the length of that geodesic. When \(a < -1 \), the cross sections \(M \) shrink at a slower rate as one recedes from \(\tilde{N} \), and the warped product \(I \times f_\epsilon M \) is intermediate between a hyperbolic cusp and a flat cylinder.

Clearly, for any fixed \(\epsilon \) and \(\tau \), the cross section \(\{ \tau \} \times f_\epsilon(\tau) M \) has injectivity radius bounded below by some constant. Moreover, \(f_\epsilon(\tau) \) is an increasing function of \(\tau \) for all \(a \leq -1 \). Since \(M \) is compact, a scaling argument shows that the first non-zero eigenvalue of the Laplacian acting on coexact forms of degree \(p \) on \(M_{\epsilon, \tau} \), say \(\nu_{p, \epsilon}(\tau) \), is a decreasing function of \(\tau \). Hence, as the geodesic distance of a given cross section from \(\tilde{N} \) increases, \(\nu_{p, \epsilon}(\tau) \) increases. This allows us, for technical reasons, to restructure our decomposition of \(N \) as follows:

\[
N = \tilde{N}' \cup (M \times [0, R - r_0 + 1]),
\]
where \(\tilde{N}' = \tilde{N} \cup M \times [R-r_0, R] \). \(r_0 \) will be chosen so that \(\nu_{p,\epsilon}(r_0) \) is relatively large.

3. Functions

We follow essentially the argument in [9]. First, we choose a function \(f \) whose restriction to \(\tilde{N}' \) is orthogonal to a basis of eigenfunctions with eigenvalues less than or equal to \(\sigma + x^2 \). This will only change the counting function \(N_\epsilon(x^2) \) by a bounded amount which can be absorbed into the \(O(1) \) term ([3, Lemma 3.6]). Next, we decompose \(f \) on \(M \times [0, R-r_0] \) as \(f = \bar{f} + \bar{\bar{f}} \), where \(\bar{f} \) depends only on \(\tau \) and \(\bar{\bar{f}} \) is orthogonal to constants on \(M \). \(\bar{f} \) is computed by averaging over each cross section.

Now, if we choose \(r_0 \) so that \(\nu_{p,\epsilon}(r_0) > \sigma + x^2 \), then \(\bar{\bar{f}} \) does not contribute to the counting function \(N_\epsilon(x^2) \). Concentrating on \(\bar{f} \), a straightforward calculation shows that

\[
\Delta \bar{f} = *d * d \bar{f} = \frac{1}{f^2_\epsilon(\tau)} \frac{d}{d\tau} \left(\frac{d \bar{f}}{d\tau} \frac{\partial}{\partial \tau} f^2_\epsilon(\tau) \right)
\]

is a classical Sturm-Liouville problem, and we can convert to the form (see [7])

\[
u'' - ru = \lambda u
\]

with

\[
u = f^2_\epsilon(\tau) \bar{f}, \quad r = \left(\frac{f^2_\epsilon(\tau)}{f^2_\epsilon(\tau)} \right)''
\]

When \(a = -1 \),

\[
r = \left(\frac{ncy^2}{2} \right)^2,
\]

and (6) becomes

\[
u'' = \left(\lambda + \left(\frac{ncy^2}{2} \right)^2 \right) u.
\]

We get

Proposition 3. Suppose \(N_\epsilon = \tilde{N} \cup (M^n \times I) \), \(\tilde{N} \) and \(M^n \) compact, with metric

\[
g_\epsilon = \rho(\epsilon, t)^{-2} dt^2 + \rho(\epsilon, t)^{2b} ds^2_M
\]

on \(M^n \times I \), with \(\rho = c_1 \epsilon + c_2 t \). Then the essential spectrum of the Laplacian acting on functions on \(N_0 \) is

\[
\left[\left(\frac{ncy^2 b}{2} \right)^2 = \sigma, \infty \right).
\]
Let R be as in (5) and let $N_\epsilon(x^2)$ be the number of eigenvalues of the Laplacian acting on function in $[\sigma, \sigma + x^2)$. Then

$$N_\epsilon(x^2) = \frac{xR}{\pi} + O_x(1).$$

This is as in [12], with slightly different notation. When $a < -1$, (8)

$$r = \frac{(a + 1)bn(bn - 2a - 2)c_2^2}{2(c_2(a+1)\tau + (c_1\epsilon)^{a+1})^2}.$$

The potential ϕ is integrable, and [3, Theorem 4.1] tells us the counting function for the corresponding Sturm-Liouville problem has the same asymptotics as if the potential were identically 0. Hence,

Proposition 4. Suppose N is as in Proposition 3 with metric

$$g_\epsilon = \rho(\epsilon,t)^{2a} dt^2 + \rho(\epsilon,t)^{2b} ds_M^2$$

on $M^n \times I$, where $a < -1$ and ρ as above. Then the essential spectrum of the Laplacian acting on functions on N_0 is $[0, \infty)$. Let R be as in [9] and let $N_\epsilon(x^2)$ be the number of eigenvalues of the Laplacian acting on function in $[0, x^2)$. Then

$$N_\epsilon(x^2) = \frac{xR}{\pi} + O_x(1).$$

The essential spectrum in this case was given by Judge ([12]). The accumulation estimate (10) can also be obtained using Judge’s techniques ([13]).

4. Upper eigenvalue bounds for forms

We consider the sequence of eigenvalues of the Laplacian acting on coexact forms of degree p, $0 < \nu_1 \leq \nu_2 \leq \cdots \to \infty$. If we can give an upper bound $y \geq \nu_j$ for some j, we will obtain a lower bound for the counting function $\Xi_\epsilon(y) \leq j$. We work in the space E of C^∞ coexact forms of degree p on N_ϵ with support contained in $\{x | 1 \leq d(x, \check{N}) \leq R\}$, with coefficients which depend only on τ. Any form $\omega \in E$ is zero on \check{N}, and we choose forms

$$\omega = \sum_{i=1}^{d} b_i d\tau \wedge H_i$$

where d is the dimension of the space of harmonic p forms on the cross section M and $H_i, i = 1, 2, \ldots, d$ is a basis of harmonic p forms on M.

Using Courant’s min-max principle the eigenvalues ν_j are no greater than the critical values of the Rayleigh-Ritz quotient $(\Delta \omega, \omega)/(\omega, \omega)$ with $\omega \in E$. Since ω is coexact, we have

$$\frac{(\Delta \omega, \omega)}{(\omega, \omega)} = \frac{(d\omega, d\omega)}{(\omega, \omega)}$$
Since the b_i depend only on τ, and an application of d to the sum in (11) involves only derivatives with respect to other basis elements, we compute

$$d\omega = \sum_{i=1}^{d} b_i' d\tau \wedge H_i$$

where the prime indicates differentiation with respect to τ. Computing the respective L^2 norms we have

$$(\omega, \omega) = C_M \sum_{i=1}^{d} \int_{1}^{R} b_i^2 f_\epsilon \frac{n-2p}{2} (\tau) \, d\tau$$

(12)

$$(d\omega, d\omega) = C_M \sum_{i=1}^{d} \int_{1}^{R} (b_i')^2 f_\epsilon \frac{n-2p}{2} (\tau) \, d\tau$$

(13)

C_M can be computed by integrating the basis elements of the cross section M.

Using integration by parts in the numerator of the Rayleigh-Ritz quotient, we get d copies of a Sturm-Liouville problem very similar to the one in section 3,

$$-\frac{1}{f_\epsilon^{n-2p}} \left(b_i f_\epsilon^{\frac{n-2p}{2}} \right)' = \lambda b_i.$$

As in Section 3 we reduce to the form

$$u'' - ru = \lambda u.$$

In the pseudo-hyperbolic case, when $a = -1$, we have

$$r = \left(\frac{n-2p}{2} \right)^2 c_2^2 b^2$$

and we get

Proposition 5. Suppose $N_\epsilon = \tilde{N} \cup (M^n \times I)$, \tilde{N} and M^n compact, with metric

$$g_\epsilon = \rho(\epsilon, t)^{-2} dt^2 + \rho(\epsilon, t)^{2b} ds_M^2$$

on $M^n \times I$, with $\rho = c_1 \epsilon + c_2 t$. If $N_\epsilon(x^2)$ is the number of eigenvalues of the Laplacian acting on coexact p-forms in $[\left(\frac{n-2p}{2} \right)^2 c_2^2 b^2, \left(\frac{n-2p}{2} \right)^2 c_2^2 b^2 + 2^2]$, then

$$N_\epsilon(x^2) \geq \frac{dxR}{\pi} + O_x(1)$$

where d is the dimension of the space of harmonic forms of degree p on M. In this case, $R = \frac{1}{c_2} \ln \left(\frac{c_1 + c_2}{c_1} \right)$, and letting $\epsilon \to 0$, we see that the essential spectrum of the Laplacian acting on coexact p-forms, $0 \leq p \leq n$ on N_0 is $\left[\left(\frac{n-2p}{2} \right)^2 c_2^2 b^2, \infty \right)$ if $d \neq 0$.

When $a < -1$ a messy but straightforward calculation give

$$r = \frac{c_2^2 b(n-2p)(\frac{b(n-2p)}{2}) - 1}{2(c_2(a+1)\tau + (c_1\epsilon)^{a+1})^2}.$$

This is an integrable potential, and we get

Proposition 6. Suppose $N_\epsilon = \tilde{N} \cup (M^n \times I)$, \tilde{N} and M^n compact, with metric

\begin{equation}
(15) \quad g_\epsilon = \rho(\epsilon, t)^{2a} dt^2 + \rho(\epsilon, t)^{2b} ds^2_M
\end{equation}

on $M^n \times I$, with $\rho = c_1\epsilon + c_2 t$. If $N_\epsilon(x^2)$ is the number of eigenvalues of the Laplacian acting on coexact p-forms in $[0, x^2)$, then

$$N_\epsilon(x^2) \geq \frac{dxR}{\pi} + O_x(1)$$

where d is the dimension of the space of harmonic forms of degree p on M. In this case, $R = \frac{(c_1\epsilon + c_2)^{a+1} - (c_1\epsilon)^{a+1}}{c_2(a+1)}$, and letting $\epsilon \to 0$, we see that the essential spectrum of the Laplacian acting on coexact p-forms, $0 \leq p \leq n$ on N_0 is $[0, \infty)$ if $d \neq 0$.

5. **Lower eigenvalue bounds for forms**

We will use the method of [15, Lemma ?] to get global lower eigenvalue bounds for forms on N_ϵ based on lower eigenvalue bounds on local eigenvalue bounds on (overlapping) pieces of N_ϵ. In particular, we use the idea of constructing a globally defined form while keeping control of the Rayleigh-Ritz quotient as in [9]. For details on the underlying Čech-de Rham formalism see [2, Chapter 2]. The pieces we will consider might have mildly singular boundaries, but all the familiar results of Hodge theory hold ([3, 5], see also [15, Section ?] and [9, Section 4]). We omit many details here, but refer the reader especially to [9] if they wish to fill in the blanks.

First, we pick a simple open cover of N_ϵ consisting of two pieces; $U_1 = \tilde{N}' \setminus \partial N'$, and $U_2 = M \times [0, R - r_0 + 1]$. Recall that $\tilde{N}' = \tilde{N} \cup M \times [R - r_0, R]$, so U_1 and U_2 overlap, with $U_1 \cap U_2 = M \times [R - r_0, R - r_0 + 1]$. Next, we choose a coexact p form ϕ so that the restriction $\phi|_{U_1} = \phi_1$ is orthogonal to the finite dimensional space of exact eigenforms (on U_1) of degree $p+1$ with eigenvalue less than or equal to y^2. This is possible using [9, Proposition 5.1]; the proof must be modified somewhat to account for the more general setting here, but the modifications are simple if messy. We will specify values for r_0 and y^2 later.

Now, since ϕ_1 is assumed to be exact with eigenvalue greater than or equal to y^2, there exists a unique coexact form ψ_1 of degree p on U_1 with $d\psi_1 = \phi_1$ and

$$\frac{(\phi_1, \phi_1)}{(\psi_1, \psi_1)} = \frac{(d\psi_1, d\psi_1)}{(\psi_1, \psi_1)} \geq y^2.$$
Likewise, by exactness, there exists a unique coexact form ψ on U with $d\psi = \phi$, but we do not yet have any bounds on the Rayleigh-Ritz quotient (and hence on eigenvalues)

$$\frac{(\phi, \phi)}{(\psi, \psi)} = \frac{(d\psi, d\psi)}{(\psi, \psi)}.$$ \hfill (16)

Next, we wish to decompose ϕ_i, $i = 1, 2$ on $M \times [0, R]$ in a similar fashion to our decomposition for functions at the beginning of Section 3. We will model ourselves on the argument in [9], but since the cross section $\tau \times M^n$ is arbitrary here, we cannot just average coefficients. Rather, we use a harmonic projection. First, decompose $\phi_i = \alpha \wedge d\tau + \beta$, where β does not contain $d\tau$. Next, use harmonic projection on α to get,

$$\alpha = \sum_{i=1}^{d} a_i d\tau \wedge H_i + \gamma$$ \hfill (17)

where d is the dimension of the space of harmonic p forms on M, H_i is a basis of harmonic p forms on M, and the a_i depend only on τ.

Now, we can write $\phi_i = \bar{\phi}_i + \bar{\psi}_i$, with

$$\bar{\phi}_i = \sum_{i=1}^{d} a_i d\tau \wedge H_i$$ \hfill (17)

$$\bar{\psi}_i = \phi_i - \bar{\phi}_i = \beta + \gamma$$ \hfill (18)

We do the same for ψ_i. By construction, the coefficients of $\bar{\phi}_i$ and $\bar{\psi}_i$ depend only on τ. A straightforward calculation (see, for example, [8]), shows that as the metric on the cross sections scales by a factor $f_{\tau}(\tau)$, the Rayleigh-Ritz quotient scales as

$$\frac{(d\bar{\phi}_i, d\bar{\phi}_i)|_{g_\tau}}{(\bar{\phi}_i, \bar{\phi}_i)|_{g_\tau}} = \frac{1}{f_{\tau}(\tau)} \frac{(d\bar{\phi}_i, d\bar{\phi}_i)|_{g_1}}{(\bar{\phi}_i, \bar{\phi}_i)|_{g_1}}.$$ \hfill (19)

For small τ, $f_{\tau}(\tau)$ is small, and thus if r_0 is chosen appropriately, $\bar{\phi}_i$ will not contribute to any accumulation of eigenvalues.

So far, we have put only a finite number of conditions, depending only on x, on our original selection of ϕ. These conditions guarantee that ϕ_1 is orthogonal to the finite dimensional space of exact eigenforms (on U_1) of degree $p + 1$ with eigenvalue less than or equal to y^2. We still need to determine how many additional choices we must make to gain control of the Rayleigh-Ritz quotient \hfill (16). By construction, we can write

$$\bar{\phi}_2 = \sum_{i=1}^{d} a_i d\tau \wedge H_i$$

where d is the dimension of the space of harmonic p forms on M, H_i is a basis of harmonic p forms on M, and the a_i depend only on τ. Consequently,
we can write
\[\bar{\psi}_2 = \sum_{i=1}^{\zeta} f_i \, d\tau \wedge \alpha_{i,p-1} + \sum_{i=1}^{d} b_i H_i \]
with \(d\bar{\psi}_2 = \bar{\phi}_2, a_i = b'_i \), and the prime denoting differentiation with respect to \(\tau \).

To evaluate the Rayleigh-Ritz quotient on \(U_2 \), we use
\[(\bar{\psi}_2, \bar{\psi}_2) = C_M \sum_{i=1}^{d} \int_{0}^{R-r_0} b^2_i f_\epsilon \frac{n-2\mu}{\pi} (\tau) \, d\tau \]
\[(\bar{\phi}_2, \bar{\phi}_2) = C_M \sum_{i=1}^{d} \int_{0}^{R-r_0} (b'_i)^2 f_\epsilon \frac{n-2\mu}{\pi} (\tau) \, d\tau \]
and we again have \(d \) copies of
\[\frac{1}{f_\epsilon^n} \left(b'_i f_\epsilon \frac{n-2\mu}{\pi} \right)' = \lambda b_i. \]

Letting \(\sigma \) be the bottom of the essential spectrum for \(N_0 \) we see that the number of eigenvalues in the interval \([\sigma, \sigma + x^2] \) for the equation \(\Delta_p \psi_2 = \nu \psi_2 \) is given by \(\frac{dx}{\pi} + O(x) \). Thus, we can choose \(\phi \) in such a way that \(\psi_2 \) is orthogonal in \(L^2 \) to the basis of eigenforms with eigenvalues less than \(\sigma + x^2 \) on \(U_2 \) by imposing \(\frac{dx}{\pi} + O(x) \) conditions. The number of conditions imposed on the choice of \(\phi \) depends only on \(x \).

We have chosen \(\phi \) in such a way that we have control over the relevant Rayleigh-Ritz quotients on both \(U_1 \) and \(U_2 \), but it is not the case that \(\psi_1 \) and \(\psi_2 \) must match on \(U_1 \cap U_2 \). Since \(d\psi_1 = \phi|_{U_1} \) and \(d\psi_2 = \phi|_{U_2} \) it is clear that the difference \(\psi_2 - \psi_1 \) must be exact, and we use the method of \[15\] Section 7 to build a globally defined form \(\psi \) with \(d\psi = \phi \) and with control over the Rayleigh-Ritz quotient. Since our open cover has only two pieces, this produces no difficulties. If we choose \(y^2 \) above in such a way that summing the relevant Rayleigh-Ritz inequalities gives the correct lower eigenvalue bound, we have

Theorem 7. Suppose \(N_\epsilon = \tilde{N} \cup (M^n \times I), \tilde{N} \) and \(M^n \) compact, with metric
\[(21) \quad g_\epsilon = \rho(\epsilon, t)^{2\alpha} dt^2 + \frac{\rho(\epsilon, t)^{2\beta}}{s_M^n} ds \]
on \(M^n \times I \), with \(\rho \) as above, and \(d \) the dimension of the space of harmonic \(p \)-forms on \(M^n \). Let
\[R = \int_{0}^{1} \rho(\epsilon, s)^{a} ds. \]

Let \(N_\epsilon(x^2) \) be the number of eigenvalues of the Laplacian acting on coexact \(p \)-forms in \([\sigma, \sigma + x^2] \) where \(\sigma \) is the bottom of the essential spectrum for
coexact forms of degree \(p \) and \(0 < p < n \). Then

\[
N_e(x^2) = \frac{dx R}{\pi} + O_x(1)
\]

where \(d \) is as in theorem 2.

In the special case when \(d = 0 \), i.e. when there are no harmonic forms on the cross section, we have the following corollary,

Corollary 8. Suppose \(N \) is as above, with \(d = 0 \) for some \(p \). Then the essential spectrum of the Laplacian acting on exact forms of degree \(p \) is empty.

References

[1] F. Antoci *On the spectrum of the Laplace-Beltrami operator for \(p \)-forms for a class of warped product metrics.* to appear, Advances in Mathematics.

[2] R. Bott and L. W. Tu. *Differential forms in algebraic topology,* Graduate Texts in Math., no. 82 Springer Verlag, New York, 1982.

[3] I. Chavel and J. Dózziuk. *The spectrum of degenerating hyperbolic 3-manifolds.* J. Diff. Geometry 39 (1994), 123–137.

[4] J. Cheeger. *On the Hodge theory of Riemannian pseudomanifolds,* Geometry of the Laplace Operator (R. Osserman and A. Weinstein, eds.), Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 91–146.

[5] J. Cheeger. *Spectral geometry of singular Riemannian spaces.* J. Diff. Geometry 18 (1983), 575-657.

[6] B. Colbois and G. Courtois. *Convergence de varités et convergence du spectre du Laplacien.* Ann. Sci. École Norm. Sup. 24, (4) (1991),507–518.

[7] R. Courant and D. Hilbert. *Methods of Mathematical Physics Volume I.* John Wiley Sons, New York, 1937.

[8] J. Dózziuk *Eigenvalues of the Laplacian on forms.* Proc. Amer. Math Soc. 85 (1982), 438-443.

[9] J. Dózziuk and J. McGowan. *The spectrum of the Hodge Laplacian for a degenerating family of hyperbolic three manifolds.* Trans. Amer. Math Soc. 347, 6 (1995), 1981–1995.

[10] L. Ji *Spectral degeneration of hyperbolic surfaces.* J. Geom. Anal. 38, (1993), 263–313.

[11] L. Ji and M. Zworski *The remainder estimate in spectral accumulation for degenerating surfaces.* J. Functional Anal. 38, (1993), 263–313.

[12] C. Judge. *Tracking eigenvalues to the frontiers of moduli space, I.* J. Functional Anal. 184, (2001),273–290.

[13] C. Judge. *Private correspondence.*

[14] R. Mazzeo and R. Phillips. *Hodge theory on hyperbolic manifolds.* Duke Math. J. 60, (1990), 509-559.

[15] J. McGowan. *The p-spectrum of compact hyperbolic three manifolds.* Math. Ann. 279, (1993), 725–745.

[16] R. Melrose. *Geometric scattering theory.* Cambridge Univ. Press, Cambridge, 1995.

[17] W. Thurston. *Three-dimensional geometry and topology. Vol. I.* Edited by Silvio Levy, Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.

[18] E. Titchmarsh. *Eigenfunction expansions associated with second order differential equations, I.* Cambridge Univ. Press, London, 1946.

[19] S. Wolpert. *Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces.* Comm. Math. Phys. 112, (1987),283–315.
[20] S. Wolpert. *Spectral limits for hyperbolic surfaces, II*. Invent. Math. **108**, (1992), 91-129.