Influence of proton pump inhibitor therapy on intestinal inflammation assessed by fecal calprotectin in pediatric patients

Su Yeong Kim, MD1, Na Mi Lee, MD, PhD1,2, Sin Weon Yun, MD, PhD1,2, Soo Ahn Chae, MD, PhD1,2, In Seok Lim, MD, PhD1,2, Eung Sang Choi, MD, PhD1, Dae Yong Yi, MD, PhD1,2

1Department of Pediatrics, Chung-Ang University Hospital, Seoul, 2College of Medicine, Chung-Ang University, Seoul, 3Department of Pediatrics, Hanil General Hospital, Seoul, Korea

Background: An increase in the numbers of patients with gastrointestinal symptoms has recently been observed. Purpose: To investigate the effects of proton pump inhibitor (PPI) therapy on intestinal inflammation in children and adolescents as confirmed by clinical manifestations and objectively assessed by fecal calprotectin (FC) level measurement. Methods: Consecutive children (aged 3–18 years) who presented with gastrointestinal symptoms and were treated with or without PPI for at least 1 month were enrolled. Patients were divided into PPI and non-PPI groups. The PPI group was further subdivided by treatment duration and type of PPI used. Stool samples were collected for FC evaluation at baseline and after treatment and clinical data and FC levels were compared between the groups. Results: Fifty-one patients (15 boys, 36 girls) were enrolled in the study. The PPI group included 37 patients, while the non-PPI group included 14 patients. Clinical symptoms were not significantly different. FC levels and laboratory results, including C-reactive protein levels, white blood cell count, and absolute neutrophil count, were not statistically different before versus after PPI treatment. After treatment, FC levels decreased to 8.1 mg/kg (-575.4 to 340.3 mg/kg) in the PPI group and increased to 5.6 mg/kg (-460.0 to 186.9 mg/kg) in the non-PPI group compared to those before treatment \(P=0.841\). The number of patients with increased FC levels was not significantly different between the 2 groups (48.6% vs. 64.3%, \(P=0.363\)), similar to that observed in patients with an FC level > 50 mg/kg (24.3% and 7.1%, \(P=0.250\)). PPI therapy type and duration did not affect the FC levels \(P=0.811\) and \(P=0.502\), respectively. Conclusion: Although we aimed to confirm the evidence of intestinal inflammation due to PPI use in children and adolescents through clinical symptoms and FC measurement, no significant changes were observed.

Key words: Proton pump inhibitors, Inflammation, Calprotectin

Introduction

Recently, in South Korea, an increase in the numbers of patients with gastroesophageal reflux (GER), gastroesophageal reflux disease (GERD), or functional gastrointestinal disorders such as chronic epigastric pain, functional nausea, and functional vomiting is being observed due to changes in diet and lifestyle.1,2 The prevalence of gastrointestinal disorders in children and adolescents is increasing due to obesity, changes in dietary habits, and psychological factors. Additionally, the use of proton pump inhibitors (PPIs) is also increasing.1,3 Gastric acid suppressive therapy with PPI is also used in the management of gastric or duodenal ulcers and...
Helicobacter pylori disease, as well as GER. PPIs are more potent than histamine receptor antagonists with generally good treatment outcomes. At the same time, the possibility of side effects in the gastrointestinal tract, is high.\(^6\)\(^–\)\(^9\) Gastric acid is an important factor in suppressing bacterial overgrowth in the small intestine.\(^10\) It is known that gastric acid suppression therapies, such as use of PPI, can induce bacterial overgrowth in the gastrointestinal tract.\(^5\)\(^–\)\(^9\) Various studies have reported on gastric acid suppression and bacterial overgrowth; with most being limited to the diagnosis of bacterial overgrowth itself through a hydrogen breath test (HBT) or duodenal aspiration, or by the identification of certain strains such as *Clostridium difficile* and *H. pylori*.\(^6\)\(^,\)\(^8\)\(^,\)\(^11\)

However, even if there is bacterial overgrowth, it is not always clinical significance such as intestinal inflammation. Nevertheless, few studies have investigated the intestinal inflammation. Although studies to confirm the clinical symptoms associated with bacterial overgrowth have been conducted, there persists a shortage of research involving pediatric patients. Furthermore, previous studies have compared subjective symptoms; however, there has been no objective analysis of intestinal inflammation.\(^1\)\(^,\)\(^2\)

Analysis of fecal calprotectin (FC) is a noninvasive method of diagnosing the activity of inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis.\(^13\)\(^,\)\(^14\)\(^,\)\(^16\) In addition, it is a useful method for the detection of inflammatory conditions in various intestinal diseases such as polyps, necrotizing enterocolitis, and bacterial colitis.\(^14\)\(^–\)\(^18\)

In the present study, we investigated the effects of PPI therapy on intestinal inflammation, in children and adolescents as confirmed by clinical manifestations and objectively assessed by measurement of FC levels.

Methods

We conducted a prospective study on consecutive children (age, 3–18 years) at the Chung-Ang University Hospital between October 2015 and February 2018. The study protocol was approved by the Institutional Review Board (IRB) of the Chung-Ang University Hospital (IRB No. C2015157), and written informed consent was provided. Patients who presented with GER symptoms (such as chronic epigastric pain, nausea, and vomiting, loose stool, nocturnal defecation, bloody stool, and abdominal tenderness), and laboratory findings (C-reactive protein [CRP] level, white blood cell [WBC] count, and absolute neutrophil count [ANC] from blood) before and after PPI treatment. Clinical data and FC level were analyzed after 4 or 8 weeks depending on the duration of PPI treatment in the PPI group, while the parameters were only analyzed after 8 weeks in the non-PPI group.

Statistical analyses were performed using SPSS ver. 18.0 (SPSS Inc., Chicago, IL, USA). Fisher exact test and Mann–Whitney test were used to analyze differences between groups. Data are presented as median (range) or numbers and the level of statistical significance was set at *P*<0.05.

Results

1. **Clinical characteristics, symptoms, and laboratory findings**

Initially, 62 patients were included in the study. Of these, 11 patients were excluded because stool samples were submitted after treatment with PPI, and 51 patients (15 boys and 36 girls) were finally enrolled in the study (Table 1). Thirty-seven patients were treated with PPI for 4 or 8 weeks (PPI group) and 14 were treated without PPI (non-PPI group). There were no significant differences in the sex, age, CRP level, WBC count, and ANC between the PPI and non-PPI groups before treatment. After treatment, the laboratory findings were not statistically different between the 2 groups.

Table 2 shows the comparison of the number of patients who demonstrated worsened laboratory findings and clinical manifestations after PPI therapy. The proportion of patients who had elevated CRP level, WBC count, and ANC after therapy did not differ between the PPI and non-PPI groups (*P*=0.668, and *P*=0.668, respectively). Deterioration in subjective symptoms was observed in the PPI group following therapy; however, there was no significant difference in the occurrence of aggravating symptoms such as...
3. Comparison of FC level according to the duration and type of PPI therapy

Table 4 shows the comparison of FC levels based on the duration of PPI therapy and type of PPI used. Of the 37 patients in the PPI group, 25 were treated with the drugs for 4 weeks and 12 were treated for 8 weeks. There were no significant differences in the changes in FC, in patients with increased levels as well as those with levels >50 mg/kg, based on the duration of PPI therapy ($P=0.811$, $P=0.449$, and $P=0.241$, respectively). In the PPI group, 22 patients were treated with lansoprazole and 15 patients were treated with esomeprazole. There were no significant differences in the changes in FC, in patients with increased levels as well as those with levels >50 mg/kg, based on the type of PPI used ($P=0.502$, $P=0.809$, and $P=0.397$, respectively).

Discussion

In the present study, the clinical symptoms, laboratory findings, and FC levels of patients who underwent treatment with PPI were not statistically different from those who did not receive PPI. There were no significant differences in FC levels before and after therapy based on the duration and type of PPI used. These results suggest that clinical intestinal inflammation does not occur in patients because of PPI treatment.

Calprotectin is a 36.5-kDa calcium-binding heterodimer consisting of S100A8 (MRP-8) and S100A9 (MRP-14) subunit proteins. It is mainly derived from neutrophilic granulocytes in the bowel mucosa, and the accumulation of neutrophils results in release of calprotectin in the stool. Calprotectin remains stable in stools for 3–7 days, and since the levels have been shown to correlate with inflammatory activity, analysis of FC has been proposed as a useful marker of bowel inflammation. Several studies have demonstrated the role of FC in the diagnosis and monitoring of the disease activity of IBD. FC has also been suggested as a reliable...
In addition to intestinal inflammation, there are other side effects of PPI use, such as infectious colitis or necrotizing enterocolitis. Some publications have shown use for FC in identifying the presence of small bowel inflammation in patients with intestinal inflammation. Previous studies have suggested that PPI therapy is a risk factor for the development of intestinal problems including bacterial overgrowth. However, bacterial overgrowth does not cause intestinal inflammation, and the overgrowth alone would not be a significant factor, unless clinically relevant. Therefore, in the present study, we investigated whether PPI therapy caused significant inflammation in the intestine. The results demonstrated that although there were patients who had worsened clinical symptoms, such as abdominal pain, tenderness, and nocturnal defecation after PPI therapy, there were no significant differences between the PPI and non-PPI groups. In addition, there was no significant difference in terms of the evidence of inflammation as assessed by FC levels. From these results, we considered it unlikely that the use of PPI further exacerbated the inflammatory response in the intestines. Additionally, other hematologic tests to assess inflammatory responses such as CRP level, WBC count, and ANC showed no significant differences between the 2 groups.

In addition to intestinal inflammation, there are other side effects of PPI; indeed, there are reports that respiratory infections or otitis media may be increased. There is also an increased risk of polyps or hyperplasia in the stomach following PPI therapy. However, the GERD guidelines published by the North American Society for Pediatric Gastroenterology, Hepatology, and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition suggest that the reported side effects of PPI use, such as upper and lower respiratory infections, constipation, and eczema, are not more common than placebo groups. Our results also support the above-mentioned observations. In the GERD guidelines, PPI treatment is usually recommended to last 4 to 8 weeks. In the present study, there was no difference in FC levels based on the duration of treatment.

Table 3. Comparison of calprotectin changes with versus without PPI therapy

Variable	PPI group (n=37)	Non-PPI group (n=14)	P value
Calprotectin before PPI therapy (mg/kg)	63.6 (5.0–626.3)	35.1 (10.1–468.1)	0.527
Calprotectin after PPI therapy (mg/kg)	60.8 (0.4–363.3)	29.4 (8.1–358.0)	0.113

No. of patients with increased calprotectin

Duration of PPI	4 Weeks (n=25)	8 Weeks (n=12)	P value
Changed calprotectin level (mg/kg)	-8.1 (-575.4 to 340.3)	-3.5 (-575.4 to 199.1)	0.811
No. of patients with increased calprotectin	12 (48.0)	6 (50.0)	0.449
No. of patients with increased calprotectin over 50 mg/kg	6 (24.0)	3 (25.0)	0.241

Table 4. Comparison of calprotectin changes by PPI therapy duration and type

Variable	Duration of PPI	PPI type	P value	
Changed calprotectin level (mg/kg)	4 Weeks (n=25)	Lansoprazole (n=22)	4.9 (-247.8 to 199.1)	0.502
	8 Weeks (n=12)	Esomeprazole (n=5)	-21.4 (-575.4 to 340.3)	0.809
No. of patients with increased calprotectin	12 (48.0)	6 (50.0)	0.449	
	8 Weeks (n=12)	13 (59.1)	5 (33.3)	0.397
No. of patients with increased calprotectin over 50 mg/kg	6 (24.0)	3 (25.0)	0.241	

Values are presented as median (range) or number (%). PPI, proton pump inhibitor.
tion as well as analysis of FC.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This study was supported by a 2015 research grant from the Korean Pediatric Society (Seokcheon Research Award).

References

1. Kim SE, Park HK, Kim N, Joo YE, Baik GH, Shin JE, et al. Prevalence and risk factors of functional dyspepsia: a nationwide multicenter prospective study in Korea. J Clin Gastroenterol 2014;48:e12-8.
2. Ronkainen J, Agréus L. Epidemiology of reflux symptoms and GORD. Best Pract Res Clini Gastroenterol 2013;27:325-37.
3. Forbes D, Lim A, Ravikumara M. Gastroesophageal reflux in the 21st century. Curr Opin Pediatr 2013;25:597-603.
4. Cohen S, Bueno de Mesquita M, Mimouni FB. Adverse effects reported in the use of gastroesophageal reflux disease treatments in children: a 10 years literature review. Br J Clin Pharmacol 2015;80:200-8.
5. Vela MF. Medical treatments of GERD: the old and new. Gastroenterol Clin North Am 2014;43:121-33.
6. McCarthy DM. Adverse effects of proton pump inhibitor drugs: clues and conclusions. Curr Opin Gastroenterol 2010;26:624-31.
7. Fujimori S. What are the effects of proton pump inhibitors on the small intestine? World J Gastroenterol 2015;21:6817-9.
8. Corleto VD, Festa S, Di Giulio E, Annibale B. Proton pump inhibitor therapy and potential long-term harm. Curr Opin Endocrinol Diabetes Obes 2014;21:3-8.
9. Compare D, Fica L, Rocco A, De Giorgi F, Cuomo R, Sarnelli G, et al. Effects of long-term PPI treatment on producing bowel symptoms and SIBO. Eur J Clin Invest 2011;41:380-6.
10. Malferttheiner P, Fass R, Quigley EM, Modlin IM, Malagelada JR, Moss SF, et al. Review article: from gastrin to gastro-oesophageal reflux disease—a century of acid suppression. Aliment Pharmacol Ther 2006;23:683-90.
11. Franco DL, Disbrow MB, Kahn A, Koepke LM, Harris LA, Harrison ME, et al. Duodenal aspirates for small intestine bacterial overgrowth: yield, PPIs, and outcomes after treatment at a tertiary academic medical center. Gastroenterol Res Pract 2015;2015:971582.
12. Szeckowska A, Landowski P, Zagajdzon P, Kaminska B, Lifschitz C. Small bowel bacterial overgrowth associated with persistence of abdominal symptoms in children treated with a proton pump inhibitor. J Pediatr 2015;166:1310-2.e1.
13. Waugh N, Cummings E, Royle P, Kandala NB, Shyangdan D, Arasaradnam R, et al. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: systematic review and economic evaluation. Health Technol Assess 2013;17:xv-xix, 1-211.
14. Berni Canani R, Rapacciuolo L, Romano MT, Tanturri de Horatio L, Terrin G, Manguso F, et al. Diagnostic value of faecal calprotectin in paediatric gastroenterology clinical practice. Dig Liver Dis 2004;36:467-70.
15. Bonnín Tomàs A, Vila Vidal M, Rosell Camps A. Fecal calprotectin as a biomarker to distinguish between organic and functional gastrointestinal disease. Rev Esp Enferm Dig 2007;99:689-8.
16. Ezri J. Pediatric Fecal calprotectin. Rev Med Suisse 2011;7:69-70.
17. Rodrigo L. Fecal calprotectin in children: use and interpretation. Rev Med Suisse 2011;7:69-70.
18. Jang HJ, Park JH, Kim CS, Lee SL, Lee WM. Amino acid-based formula in premature infants with feeding intolerance: comparison of fecal calprotectin level. Pediatr Gastroenterol Hepatol Nutr 2018;21:189-95.
19. Höög CM, Bark LÅ, Broström O, Sjöqvist U. Capsule endoscopic findings correlate with fecal calprotectin and C-reactive protein in patients with suspected small-bowel Crohn’s disease. Scand J Gastroenterol 2014;49:1084-90.
20. Olsen PA, Fossmark R, Qvigstad G. Fecal calprotectin in patients with suspected small bowel disease--a selection tool for small bowel capsule endoscopy? Scand J Gastroenterol 2015;50:272-7.
21. Montalto M, Santoro L, Dalvai S, Curigliano V, D’Onofrio F, Scarpellini E, et al. Fecal calprotectin concentrations in patients with small intestinal bacterial overgrowth. Dig Dis 2008;26:183-6.
22. Rosen R, Vandenplas Y, Singendonk M, Cabana M, Di Lorenzo C, Gottrand F, et al. Pediatric gastroesophageal reflux clinical practice guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2018;66:516-54.
23. Owen DA. Gastritis and carditis. Mod Pathol 2003;16:325-41.