Scalar-tensor theories, trace anomalies and the QCD-frame

Francesco Nitti1 and Federico Piazza1,2

1Laboratoire APC, Université Paris 7, 75205 Paris, France
2Paris Center for Cosmological Physics, Université Paris 7, 75205 Paris, France

We consider the quantum effects of matter fields in scalar-tensor theories and clarify the role of trace anomaly when switching between conformally related ‘frames’. We exploit the property that the couplings between the scalar and the gauge fields are not frame-invariant in order to define a ‘QCD-frame’, where the scalar is not coupled to the gluons. We show that this frame is a natural generalization of the ‘Jordan frame’ in the case of non-metric theories and that it is particularly convenient for gravitational phenomenology: test bodies have trajectories that are as close as possible to geodesics with respect to such a metric and equivalence principle violations are directly proportional to the scalar coupling parameters written in this frame. We show how RG flow and decoupling work in metric and non-metric theories. RG-running commutes with the operation of switching between frames at different scales. When only matter loops are considered, our analysis confirms that metricity is stable under radiative corrections and shows that approximate metricity is natural in a technical sense.

I. INTRODUCTION

The discovery of the acceleration of the Universe has triggered a renewed interest in scalar-tensor theories of gravity. Many models recently proposed (\cite{1–5} just to mention a few), involve, at least in some limit, a light scalar degree of freedom universally coupled to matter. The universality of the couplings is what defines a metric theory \cite{6}, i.e. a theory in which matter couples minimally to a unique metric tensor \(\tilde{g}_{\mu \nu} \). Schematically,

\[
S = \frac{M^2}{2} \int \sqrt{g} \left(\Omega^2 \tilde{\mathcal{R}} + S_\phi[\tilde{g}, \phi] + S_m[\tilde{g}, \psi_i] \right),
\]

where \(\tilde{\mathcal{R}} \) is the Ricci scalar of \(\tilde{g}_{\mu \nu} \), \(S_\phi \) contains kinetic and self-interaction terms for \(\phi \), and \(S_m \) is the action for matter fields \(\psi_i \). These couple to the scalar \(\phi \) only through the ‘Jordan’ (J-) metric \(\tilde{g}_{\mu \nu} \). As a result, test particles, independently of their compositions, follow trajectories that are geodesics of \(\tilde{g}_{\mu \nu} \). On the other hand, the effective Newton constant depends on \(\phi \), thus the universality of free fall is violated by \(\text{EP} \) only in its ‘strong’ form, i.e. among bodies of different – and non negligible – gravitational self-energies. The equivalence principle (EP) \cite{4,5} is not otherwise violated by metric theories.

String theory, with its dynamical couplings and omnipresent moduli fields, offers another main motivation for looking at scalar-tensor theories \cite{5}. The string dilaton can benefit from a ‘decoupling mechanism’ at a symmetric point in field space \cite{10}, or at infinity \cite{11} that suppresses EP violations below the present experimental limits (but very close, in the case of \cite{11}). However, metric dilaton couplings like in \(\text{EP} \) look unnatural in string theory because they are not present at tree-level to begin with. Another possible source of uneasiness with theories like \(\text{EP} \) is that metricity could be spoiled by loop corrections and/or compositeness. To which extent and in which cases this is true has been the matter of some debate. One motivation of the present paper is to further clarifying this issue.

It is often convenient to use a metric \(g_{\mu \nu} \) that is conformally related to \(\tilde{g}_{\mu \nu} \), by \(\tilde{g}_{\mu \nu} = \Omega^2(\phi) g_{\mu \nu} \). In the resulting ‘Einstein’ (E-) frame the gravitational action takes the Einstein Hilbert form:

\[
S = \frac{M^2}{2} \int \sqrt{\tilde{g}} \tilde{\mathcal{R}} + S_\phi(\tilde{g}, \phi) + S_m(\tilde{g}, \phi, \psi_i).
\]

Note that we can always define an E-frame but only metric theories allow a J-frame. In the E-frame, the propagators of the graviton and of the scalar field decouple and the contributions of different bodies to the total gravitational field are found straightforwardly. However, the J-frame looks more transparent in several other respects.

First of all, the J-frame is the one directly measured by clocks, rods etc., in the approximation that gravity is negligible inside such measuring devices. We devote App.A to clarify this point. Beside – and related with – the above consideration, there is a number of properties that, from a J-frame viewpoint, look almost self-evident:

1. As mentioned, test bodies follow geodesics; therefore, (weak) EP is not violated.
2. Couplings are not varying (at least they are not varying with \(\phi \)).
3. Metricity is preserved no matter how we assemble objects together, as far as the gravitational self-energy of the composite remains negligible: metricity is stable against compositeness.
4. Metricity is stable under radiative corrections as long as only matter loops are considered (and UV-regulators are used which are \(\phi \)-independent – it is natural to do so in the J-frame). Gravitons and
The last two points can easily be justified by considering the quantum path integral in the Jordan frame, which we will do shortly below. Thus, in metric theories, matter quantum corrections and compositeness cannot lead to violations of the weak equivalence principle: as long as one can safely consider the metric and dilaton as a fixed background, all bodies follow trajectories which are geodesic of the given J-frame metric. This conclusion is straightforward in the J-frame, but it looks far from trivial if one starts with the same theory written in the Einstein frame, where it will seem as arising from several cancellations between different contributions. This was confirmed by explicit E-frame calculations [12–14], and we will show its validity in Sec. IV by calculating the renormalization group flow of the scalar couplings.

On the other hand, including the dynamics of \(\phi \) and \(g \) is generically expected to break metricity at the quantum level. This suggests that models recently presented as metric theories could in fact be non-metric, but only slightly so, metricity being violated by Planck suppressed operators [14]. For such ‘quasi-metric’ theories, it is useful to define a ‘quasi J-frame’, in virtue of all the good qualities above mentioned.

The main purpose of this note is to propose a definition for such a frame. We do that in Sec. III. We will show that even in a generic non-metric theory, it is possible to define a frame in which, at least for massive test bodies, the trajectories are “as close as possible” to geodesics of an appropriate metric. We dubbed this metric ‘QCD-frame’ because it is the one in which the scalar field does not couple to the gluons. We show that, in this frame, it is straightforward to parametrize the effects of the dilaton in experiments that measure the difference in acceleration between test bodies falling in a common gravitational field generated by a very massive third object.

At the basis of our ‘QCD-frame’ idea is the possibility of setting the dilaton-gluon couplings to zero by an appropriate conformal transformation. Such a possibility is guaranteed by trace anomaly, that makes the dilaton couplings to gauge fields frame-dependent. As this simple observation has been seemingly overlooked by some of the existing literature on scalar-tensor theories, we devote Sec. III to clarify the role of trace anomaly in switching between conformal frames.

Finally, in Sec. IV we show that not only is metricity stable under radiative correction, but that also approximate metricity shares the same property, in the sense that a small deviation from metricity does not become large as a result of quantum corrections. In other words, the smallness of weak EP violation effects, although non-generic a priori from a fundamental theory point of view, is technically natural.

In all that follows we will be interested only in the linear dilaton couplings to matter. Therefore we will consider conformal factors \(\Omega(\phi) \) of the form

\[
\Omega(\phi(x)) = \Omega(\phi_0 + \delta\phi(x)) = 1 + \alpha \varphi(x)
\]

where \(\alpha = \Omega' / \Omega \) is a constant and \(\varphi(x) \) can be considered as a small deviation from an otherwise constant dilaton background \(\phi = \phi_0 \) which we can set to \(\phi_0 = 1 \) by a redefinition of the Planck mass in the Einstein frame.

Before we procede further, we provide a simple path integral argument to show that metricity is radiatively stable under loops in the matter sector. If we treat the metric and dilaton as external sources, and integrate over some of the matter fields \(\psi_i \), the resulting effective action for the metric, dilaton and remaining matter fields \(\Psi_i \) will read

\[
e^{iS_{eff}[g,\phi,\Psi_i]} = \int \mathcal{D}[\psi_i] e^{iS_{m}[g,\psi,\Psi_i]}
\]

Since the right hand side is a functional of \(\hat{g} \) alone, the effective action will depend only on the Jordan frame metric, and not on the dilaton independently, i.e.

\[
S_{eff}[g,\phi,\Psi_i] \equiv S_{eff}[\hat{g},\Psi_i].
\]

Similarly, the quantum generating functional for matter Green’s functions, obtained by adding external sources \(J_i \) for the matter fields, will only depend on \(\hat{g} \) and not on \(g \) and \(\phi \) independently, \(Z[g,\phi,J_i] = Z[\hat{g},J_i] \). Thus, all loop corrections will involve only universal coupling to the J-frame metric and will not violate the weak equivalence principle. This includes the renormalization procedure, as long as in the renormalization scheme all scales and momenta are kept fixed in the J-frame, i.e. they do not depend explicitly on \(\phi \).

The same holds for the Wilsonian effective action for any low-energy degree of freedom and composite states. If we think of \(S[\hat{g},\psi_i] \) as the effective action for the fundamental degrees of freedom at a scale \(\Lambda \), the Wilsonian effective action for the light d.o.f. \(\Psi_i \) at a scale \(\mu < \Lambda \) is obtained by integrating out the heavy d.o.f. above the scale \(\mu \): schematically,

\[
e^{iS_{eff}[g,\psi_i]} = \int_{\mu^2<p^2<\Lambda^2} \mathcal{D}[\psi_i(p)] e^{iS^{(\Lambda)}_{m}[\hat{g},\psi,\Psi_i]}.
\]

As the functional integral over the heavy d.o.f. is a function of \(\hat{g} \) alone, one can see immediately that, as long as the IR and UV cutoff are defined in a \(\phi \)-independent way, metricity is preserved, the low energy fields in the effective action couple to the J-frame metric only, and explicit couplings to the dilaton are absent at any scale.

II. METRIC THEORIES IN THE E-FRAME

Before considering general non-metric theories, it is worth clarifying the role of trace anomaly in going from one frame to a conformally related one. Starting from a metric theory in the J-frame, this will allow us to derive the linear dilaton couplings to matter in the Einstein frame.
Consider a metric theory, whose effective action at a scale \(\Lambda \) contains fermions and gauge fields (abelian and non-abelian). For example, one can think of the \(SU(3) \times U(1) \) gauge theory with fermionic matter which describes the Standard model at scales less than \(\sim 100 \) GeV. The matter action in the J-frame is

\[
S_m = \int \sqrt{g} \left[\sum_i \bar{\psi}_i (i \slashed{D} - m_i) \psi_i + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right] (6)
\]

The indices are contracted with \(\tilde{g}^{\mu\nu} \), and by assumption the strong and electromagnetic couplings, \(g_A \) and \(\epsilon \), as well as the fermion masses, are \(\phi \)-independent. Based on classical conformal transformations, one could argue that linear scalar couplings to the gauge fields never arise in any frame, since the gauge field action is invariant under Weyl rescalings of the metric. By the same argument, one could think that explicit dilaton couplings to the gauge fields are intrinsically non-metric in four dimensions: if present in one frame, they will evaluate the same in all conformally related frames.

However, this argument is invalid: conformal invariance is broken at the quantum level, due to the presence of the trace anomaly. As noticed in [20], this leads to the emergence of linear dilaton couplings to gauge fields in going from one frame to another. As one can see from the explicit calculation in [20], the anomaly arises as a Jacobian in the path integral measure over the fermions: if we rewrite the action in equation (6) explicitly in terms of \(g_{\mu\nu} \) and \(\Omega \), the matter action reads:

\[
S_\psi = \int \sqrt{g} \sum_i \Omega^3 \bar{\psi}_i (i \slashed{D} - \Omega m_i) \psi_i , \quad (7)
\]

and to reabsorb the scale factor \(\Omega^3 \) in the kinetic term (so that it is canonical in the Einstein frame) one has to make the change of variables \(\bar{\psi}_i = \Omega^{3/2} \psi_i \). This produces the anomalous Jacobian.

Here, rather than going through the explicit calculation, we illustrate this by simply highlighting the general relation between E-frame gauge couplings and the trace anomaly, and use the well-known field theory result for the latter. Let us write the path integral as a function of the background fields \(g_{\mu\nu} \) and \(\varphi \). The generating functional depends only on the J-frame metric \(g_{\mu\nu} = \Omega^2 \tilde{g}_{\mu\nu} \),

\[
Z[\varphi, \varphi] = \int D[\bar{\psi}] D[A_\mu] e^{iS_m[\Omega^2 \tilde{g}_{\mu\nu}, \bar{\psi}_i, \psi_i, A_\mu]} . \quad (8)
\]

Differentiating with respect to \(\varphi \) and evaluating at \(\varphi = 0 \) we obtain an insertion of the trace of the stress tensor:

\[
\left. \frac{\delta Z[\varphi, \varphi]}{\delta \varphi(x)} \right|_{\varphi=0} = i \int D[\bar{\psi}] D[A_\mu] \frac{\delta S_m}{\delta g_{\mu\nu}} \frac{\partial \Omega^2}{\partial \varphi} e^{iS_m} = i \Omega^3 \int D[\bar{\psi}] D[A_\mu] \sqrt{g} T^{\mu\nu}(x) e^{iS_m} \quad (9)
\]

where we have used eq. (3) and the definition of the (J-frame-) stress tensor, \(T^{\mu\nu} = (2/\sqrt{g}) (\delta S_m/\delta \tilde{g}_{\mu\nu}) \). We can also perform the same calculation in the Einstein frame, in which at the linear level in \(\varphi \) the action will take the general form:

\[
S_m(E) = \frac{1}{2} \mu \phi, A_\mu] = S_m[g, \tilde{\psi}_i, A_\mu] + \int \sqrt{g} \varphi(x) A(x) \quad (10)
\]

where \(S_m[g, \psi_i, A_\mu] \) is the same action as in the J-frame\(^2\), but with \(\tilde{g} \rightarrow g \). The matter functional integral in terms of the Einstein frame action reads:

\[
Z[g, \varphi] = \int D[\bar{\psi}_i] D[A_\mu] e^{iS_m[g, \bar{\psi}_i, A_\mu]} \cdot \sqrt{\gamma} A(x) . \quad (11)
\]

Once again, differentiating with respect to \(\varphi \) we obtain:

\[
\left. \frac{\delta Z[g, \varphi]}{\delta \varphi(x)} \right|_{\varphi=0} = i \int D[\bar{\psi}_i] D[A_\mu] e^{iS_m[g, \bar{\psi}_i, A_\mu]} \sqrt{\gamma} A(x) . \quad (12)
\]

On the other hand the frame change is nothing but a field redefinition in the path integral variables, so the two results (10) and (12) must agree. The same must be true if we insert any combination of the fields in the path integral. This imposes the relation

\[
A(x) = \alpha T^{\mu\nu}(x) \quad (13)
\]

In other words, the additional term needed in the Einstein frame action (13) must coincide with the quantum field theory trace anomaly. This includes a classical contribution from the fermion mass terms, plus a quantum contribution containing the beta-functions of the theory and the fields’ anomalous dimensions. The full linear dilaton coupling in the Einstein frame thus reads

\[
S_m(E) = S_m + \alpha \int \sqrt{g} \left[\sum_i m_i (1 + \gamma_{m_i}) \bar{\psi}_i \psi_i + \beta_3(g_3) \frac{\tilde{g}^{\mu\nu}}{2g_3} F_{\mu\nu} F^{\mu\nu} \right] . \quad (14)
\]

where \(\beta_3(g_3) \) and \(\beta_3(e) \) are the QCD and QED beta-functions and \(\gamma_{m_i}(\epsilon) \) are the fermions anomalous dimensions. As we said earlier, we will be considering this action in a Wilsonian sense. In this case, if we perform the change at a certain scale \(\Lambda \), we should consider the beta-functions contributions of the relevant degrees of freedom at that scale. This may seem counter-intuitive, but as we will explicitly show in Section [15] it is a consequence of the underlying metricity of the theory and of the decoupling of heavy fields at scales lower than their masses.

\(^2\) To be precise, as mentioned before, the canonically normalized fermions in the E-frame are related to those in the J-frame by \(\bar{\psi}_i^{(E)} = \Omega^{3/2} \bar{\psi}_i \). Below we omit the label \((E) \) and rename the Einstein fermions \(\bar{\psi}_i \). This relabeling is immaterial when writing the path integral, as long as one keeps track of the appropriate Jacobian, which precisely gives rise to the extra anomalous contribution in eq. (14).
A few comments are in order. Firstly, the theory in the Einstein frame looks fine-tuned, since all the dilaton couplings are related in a very specific way and depend on the single parameter α. However, we know from the J-frame analysis of Sec. I that the underlying metricity prevents this tuning to be destroyed by quantum corrections: thus the form of the action (14) is radiatively stable.

Secondly, the presence of a scalar-photon coupling $\varphi F_{\mu\nu} F^{\mu\nu}$ does not imply per se EP-violations nor potential coupling variations. For instance, if all the other terms are ‘tuned’ as in (14), the theory is perfectly metric and the four properties mentioned in the introduction apply. This should be taken into account when making connection with phenomenology. Experimental limits on EP violations are normally used (e.g. [10, 11, 15–18]) to bound the E-frame QED dilaton coupling \tilde{d}_e, defined by

$$L_{QED}^{(E)} = -\frac{1}{4\epsilon^2} \left(1 - \tilde{d}_e \varphi \right) F_{\mu\nu} F^{\mu\nu}. \quad (15)$$

However, as we show below, the value of \tilde{d}_e for a metric theory can exceed the experimental bounds that are normally quoted when the effects of QED trace anomaly are neglected.

What is the largest value of \tilde{d}_e compatible with a metric theory? From (14) $\tilde{d}_e = 2\alpha\beta(e)/\epsilon$. At the nuclear scales ~ 1 GeV relevant for EP experiments we can safely calculate $\beta(e)$ by considering electron loops, giving

$$\tilde{d}_e \approx \frac{\alpha\epsilon^2}{6\pi^2}. \quad (16)$$

This is likely to be a lower bound because the positive contribution of the muon to the beta function has been neglected. Now, the current upper bound on composition-independent effects gives $\alpha^2 < 10^{-6}$ [19]. Therefore, according to (16), \tilde{d}_e can be as large as $\tilde{d}_e \sim 5 \times 10^{-6}$. On the other hand, by using the combined results of the EotWash collaboration and of Lunar Laser Ranging experiments, the upper bound $|\tilde{d}_e \alpha| \lesssim 4 \times 10^{-9}$ is found [18], which translates into $|\tilde{d}_e| \lesssim 1.2 \times 10^{-6}$ for the maximum allowed value of α. We are going to show that what EP experiments actually constrain is, more properly, the ‘QCD-frame’ dilaton couplings c_e that we define in Section IV.

III. NON-METRIC THEORIES AND THE QCD-FRAME

Although metric theories display many nice properties, there is no reason a priori that the low energy effective action be of this kind. As mentioned, string theory does not seem to have any particular preference for metricity. But also standard model portals into light sectors (e.g. [21, 22]) will generally violate the universality of the couplings. Thus, let us now turn to general non-metric theories, in which there is no frame where all matter-dilaton couplings vanish. In the last section we noted that gauge dilaton couplings in the effective action are frame-dependent. Therefore, we can exploit the trace anomaly trick and reabsorb to zero one coupling of our choice in some appropriate frame. As most of the mass of a proton or a neutron comes from the gluonic contribution ($T_{\mu\nu} F^{\mu\nu}$), in order to describe the interaction of ordinary matter it is natural to introduce QCD-frame where the scalar does not couple directly to gluons at the level of the effective action.

In writing the QCD-frame action we follow closely the remarkable analysis of Damour and Donoghue [18]. There, the E-frame dilaton couplings and the relative charges are discussed and calculated. The authors argue that the effective action relevant for EP experiments is that at the nucleon energy scale, $A_{QCD} \sim 1$ GeV, and includes only the QED and QCD gauge fields, the two lightest quarks and the electron fields. Heavier fields are meant to be already integrated out, while the contribution of the strange quark is argued to be negligible.

If we start with the above field content and generic dilaton couplings, in the Einstein frame the Lagrangian will read, in the notation of [18]:

$$L_{\text{in}}^{(E)} = -\frac{1}{4g_3^2} \left(1 + d_e \frac{2\beta(e)}{g_3} \varphi \right) F_{\mu\nu} F^{\mu\nu} - \frac{1}{4\epsilon^2} \left(1 + d_e \frac{2\beta(e)}{e} \varphi \right) F_{\mu\nu} F^{\mu\nu} + \sum_{i=u,d,e} \left[i\bar{\psi}_i \not{D} \psi_i - m_i(1 + d_m \varphi + d_g \gamma_m \varphi) \bar{\psi}_i \psi_i \right]. \quad (17)$$

where the d_i parameters are chosen in such a way as to consider renormalization group invariant operators.\footnote{Whenever convenient, we use the notation of [18]. We make an exception by calling d_e what in [18] is called d_{φ}. Instead, for us d_e is defined as $d_e = -e \tilde{d}_e/(2\beta)$ (see next section).}

The QCD frame is defined by performing a Weyl rescaling of the form (3) with $\alpha = -d_g$. This way, the coupling of the dilaton to the gluons disappears from the action. The general QCD-frame matter Lagrangian, by including dilaton couplings up to linear order, reads

$$L_{\text{in}}^{(qcd)} = -\frac{1}{4g_3^2} F_{\mu\nu}^{\alpha} F^{\alpha \mu\nu} - \frac{1}{4\epsilon^2} \left(1 + c_e \frac{2\beta(e)}{e} \varphi \right) F_{\mu\nu} F^{\mu\nu} + \sum_{i=u,d,e} \left[i\bar{\psi}_i \not{D} \psi_i - m_i(1 + c_{m_i} \varphi) \bar{\psi}_i \psi_i \right]. \quad (18)$$

where

$$c_e = d_e - d_g, \quad c_{m_i} = d_{m_i} - d_g. \quad (19)$$

\footnote{With respect to ref. [18] we include the QED β-function contribution in the definition of d_e. Also we are using the same normalization conventions for the $U(1)$ and $SU(3)$ gauge fields.}
Notice that, if all the \(d'_i\)s were equal, as already noted in \([18]\) the dilaton would couple to the trace of the stress tensor, and the E-frame action would take the form \([14]\).

In this case the theory would be metric and the QCD frame would reduce to the J-frame.

The gravitational action in the QCD frame reads:

\[
S_G = \frac{M^2}{2} \int d^4x \sqrt{g} \left[(1 - 2\alpha \phi) R - 2\partial_{\mu} \phi \partial^{\mu} \phi \right],
\]

(20)

where we have included the kinetic term of a suitably normalized minimally coupled massless scalar. Since we focus on such a QCD-metric from now on, we indicate it simply as \(g_{\mu\nu}\) without the concern of confusing it with the E-metric of eq. (2).

Electromagnetic effects and the ‘bare’ masses of quarks and electrons contribute to the total mass of an atom only by a factor of about \(10^{-3} \[10, 18]\). Hence, in first approximation, atoms follow trajectories that are geodesics for the QCD-metric \(g_{\mu\nu}\). In this sense, the QCD frame is a good replacement for the J-frame in the case of non-metric theories. More subtle is to understand what ‘times’ and ‘distances’ do our instruments measure in the case of a non-metric theory – a separate analysis should be done for each measuring device. It is plausible that measurements of lengths and time intervals are generally more sensitive to the electromagnetic and electron-mass couplings \(c_e\) and \(c_m\).

Since the universal (which is also the most sizable) part of the contribution to nucleon masses has been removed, the coefficients \(c_i\) in the QCD frame action \([18]\) parametrize directly the purely composition dependent effects in tests of the equivalence principle: on the other hand these tests cannot constrain general dilaton couplings as they appear in the Einstein frame. The introduction of the QCD frame makes manifest the result obtained in \([18]\), who showed by direct calculations that only the differences \(d_i - d_j\) contribute to composition-dependent violations of the EP.

In the remaining part of this section we find the deviations from the geodesic motion for test bodies of different compositions in the QCD-frame. By varying the action of a test particle of \(\varphi\)-dependent mass \(m_A\),

\[
S_A = -\int g_{\mu\nu} dx^\mu dx^\nu m_A(\varphi),
\]

we find a proper acceleration proportional to the gradient of \(m_A(\varphi)\). If the initial velocity is null (i.e., in the reference frame that is ‘almost’ free falling with the particle), the proper acceleration reads

\[
\delta a_A = -\frac{d\log m_A}{d\varphi} \ddot{\varphi}. \tag{21}
\]

Note that in the QCD-frame only QED and quark and electron masses are responsible for the ‘effectively varying mass’ of an atom. These different contributions are directly proportional to the relative couplings \(c\),

\[
\bar{\alpha}_A \equiv \frac{d\log m_A}{d\varphi} = Q_e^{(A)} c_e + Q_m^{(A)} c_m . \tag{22}
\]

In the above expression a sum over \(i = u, d, e\) is implied in the last term on the RHS. The ‘charges’ of the species \(A\), defined as,

\[
Q_e^{(A)} = \frac{\partial \log m_A}{\partial \log e^2}, \quad Q_m^{(A)} = \frac{\partial \log m_A}{\partial \log m_i} \tag{23}
\]

are accurately estimated in \([18]\) as a function of the atomic number \(Z\) and the nucleon number \(A\).

The atomic dilaton couplings \(\bar{\alpha}_A\) defined in (22) should be compared with their more often used E-frame counterparts

\[
\alpha_A = \alpha + \bar{\alpha}_A . \tag{24}
\]

The common – and typically dominant – term \(\alpha\) just gives a constant non-geodesic drift to all particles in the E-frame, independently of their compositions. On the opposite, particles follows geodesics ‘on average’ in the QCD-metric.

EP experiments measure the fractional difference of acceleration of two test particles \(A\) and \(B\) falling in the gravitational field of a common attractor,

\[
\frac{\Delta a}{a}_{AB} = 2 \left[\frac{\bar{a}_A - \bar{a}_B}{\bar{a}_A + \bar{a}_B} \right]. \tag{25}
\]

Such accelerations should be intended with respect to a Newtonian reference frame. At the Newtonian order of approximation,

\[
\bar{a}_A = -\ddot{V}_{\text{New}} + \delta \bar{a}_A \tag{26}
\]

where the last term on the RHS is the composition-dependent scalar contribution \([21]\). The Newtonian potential and the scalar field shape are both generated by a common attractor in the proportion\(^5\) \(\varphi = \alpha V_{\text{New}}\). We conclude that

\[
\frac{\Delta a}{a}_{AB} = \alpha (\delta \bar{a}_A - \delta \bar{a}_B). \tag{27}
\]

Since this is a frame-invariant quantity, not surprisingly, we recover a known result.

\section{IV. FRAME STABILITY AND DILATON COUPLING RUNNING}

Now we want to address the question whether the ‘QCD-frame’ prescription – that the dilaton coupling to the gluons be null – is RG invariant and, more generally, how the dilaton couplings \(d_i\) and \(c_i\) run with the scale in any given frame.

We start with the Einstein frame. One may consider the terms in the action \([17]\) as \(\varphi\)-dependent gauge couplings and masses \([10]\). Let us consider for definiteness the QCD coupling \(g_3\), which for simplicity we denote \(g\)

\(^5\) See e.g. [2] – this is better seen in the E-frame where the propagators of the scalar field and the gravitons decouple
in this section (similar remarks hold for the electromagnetic coupling). From equation (17) we can regard g a φ-dependent coupling:

$$g(\varphi) = g_0 \left(1 - \frac{d_g \beta}{g_0} \varphi\right), \quad (28)$$

where g_0 is φ-independent and corresponds to the QCD coupling in a trivial dilaton background. We can extract the parameter d_g by differentiating w.r.t. φ:

$$d_g = -\frac{g \partial \ln g}{\beta \partial \varphi}. \quad (29)$$

The action (17) is written in terms of the coupling at the UV cutoff but we can also define a running $d_g(\mu)$ and write equation (28) at any scale μ by substituting the cutoff coupling for the running coupling. As long as no mass thresholds are crossed, it is easy to see that d_g is in fact independent of scale: by differentiating (29) with respect to $\log \mu$ we obtain:

$$\frac{\partial d_g}{\partial \log \mu} = 0. \quad (30)$$

To obtain this result it is crucial to assume that the only dilaton-dependence of the β-function is through g. We will see below that this is generally invalid when one crosses a physical mass threshold and integrates out a massive particle.

The running of mass-dilaton couplings d_m can be studied by analogous means. By the definition, the anomalous dimension γ appearing in (17) is given by

$$\frac{d \log m}{d \log \mu} = -\gamma(g), \quad (31)$$

which we can integrate in the form

$$\ln(m(\Lambda_1)) - \ln(m(\Lambda_2)) = \int_{g(\Lambda_1)}^{g(\Lambda_2)} \frac{\gamma dg}{\beta}. \quad (32)$$

The masses at different scales can be considered as functions of φ: for example at the UV-cutoff we have $m(\Lambda_{UV}) = m(1 + m_\varphi + d_\varphi \varphi)$. Differentiating equation (32) with respect to φ and assuming that both Λ_1 and Λ_2 are dilaton-independent, we obtain:

$$\frac{d \log m(\Lambda_1)}{d \varphi} - d_\varphi \gamma(\Lambda_1) = \frac{d \log m(\Lambda_2)}{d \varphi} - d_\varphi \gamma(\Lambda_2). \quad (33)$$

where we have made use of equation (29). The above equation implies that, at any scale Λ,

$$\frac{d \log m(\Lambda)}{d \varphi} = m_\varphi + \gamma(\Lambda) d_g, \quad (34)$$

where the coefficient d_m does not depend on φ, and the only scale-dependence of the dilaton couplings in (17) is through that of their anomalous dimensions. In other words, we re-derived the fact that the coefficients d_g and d_m are defined to be RG-invariant [18].

There is however a subtlety that we encounter when, along the RG-flow, we are in the vicinity of the mass of a particle: in this case, the β-function will also be sensitive to the ratio of the RG-scale to that mass. For example, in crossing a mass threshold, the one-loop β-function coefficient changes to account for the lower number of degrees of freedom at low energy, and becomes approximately constant again when we are far below the mass of the particle we have integrated out.

For simplicity, we will consider the RG-running at the one-loop order. The RG equation for the (φ-dependent) gauge couplings between two different scales Λ_1 and Λ_2 can be integrated to give the familiar relation

$$\frac{1}{g^2(\Lambda_1)} - \frac{1}{g^2(\Lambda_2)} = -b_{N_c,N_f} \ln \frac{\Lambda_1^2}{\Lambda_2^2}, \quad b_{N_c,N_f} = \frac{11N_c - 2N_f}{48\pi^2} \quad (35)$$

Let us turn to the case in which between Λ_1 and Λ_2 there is one charged particle whose mass m_\ast depends non-trivially on φ, say $\Lambda_2 \ll m_\ast \ll \Lambda_1$. The parameter b is now a function of the scale. In particular, it will smoothly vary across $\mu = m_\ast$ and asymptote to, say, $b_1 = b_{N_c,N_f}$ in the UV, and $b_2 = b_{N_c,N_f} - 1$ in the IR. Accordingly, the β function depends explicitly on m_\ast:

$$\beta(\mu) = b \left(\frac{\mu^2}{m_\ast^2}\right) g^3(\mu). \quad (36)$$

Then, (35) generalizes to

$$\frac{1}{g^2(\Lambda_1)} - \frac{1}{g^2(\Lambda_2)} = -\int_{\Lambda_2^2/m_\ast^2}^{\Lambda_1^2/m_\ast^2} \frac{b(x)}{x}. \quad (37)$$

To estimate the effect of crossing the mass m_\ast we differentiate (37) with respect to φ on both sides. By making use of (29) and (30) this gives the “jump” of the gauge-dilaton coupling d_g when we integrate out one quark of physical mass m_\ast:

$$d_g(\Lambda_2)b_2 = d_g(\Lambda_1)b_1 + \frac{d \log m(\Lambda)}{d \varphi}(b_2 - b_1). \quad (38)$$

To obtain the dependence of m_\ast from φ we have to specify m_\ast. It is natural to define it as the RG-invariant mass where the RG-scale μ crosses the quark mass $m(\mu)$,

$$m(m_\ast) = m_\ast. \quad (39)$$

Generically, the φ-dependence of the cutoff mass parameter will give a similar dependence on φ in m_\ast. We can obtain this explicitly by rewriting eq. (32) and replacing Λ_1 with m_\ast and Λ_2 with the φ-dependent UV cutoff Λ_{UV}. In this case however the lower integration limit

6 We should specify the dilaton dependences of the two mass scales Λ_1 and Λ_2. We will simply assume them to be φ-independent in the frame of interest, so that the Wilsonian UV and IR scale keep the “background” meaning they have in the absence of φ.
does depend on φ, so the result \(33\) picks up an extra term:

$$
\frac{d \log m(m_\ast)}{d \varphi} = \frac{d \log m(\Lambda)}{d \varphi} - g_d [\gamma(\Lambda) - \gamma_\ast] - \gamma_\ast \frac{d \log m_\ast}{d \varphi},
$$

where we have defined $\gamma_\ast = \gamma(m_\ast)$. Using the definition of m_\ast and equation \(34\) we obtain:

$$
\frac{d \log m_\ast}{d \varphi} = g_d + \frac{d_m - d_g}{1 + \gamma_\ast}. \quad (40)
$$

With this result, we can finally use equation \(38\) to evaluate the “kick” in the gauge-dilaton coupling g_d when crossing a mass threshold in terms of the calculable parameters $b_{N_c N_f}$:

$$
d_g(\Lambda_2) = d_g(\Lambda_1) + \frac{b_2 - b_1}{b_2(1 + \gamma_\ast)} [d_m - d_g(\Lambda_1)]. \quad (41)
$$

In metric theories the second term in equation \(41\) vanishes and d_g is unchanged by integrating out a heavy quark: the change in the dilaton-gluon coupling is completely encoded in the change of the beta function coefficients. As a result, the action will take the form \(14\), with the same dilaton-gluon coupling c_g in the Einstein frame do not depend on the scale. Furthermore, if we now perform the Weyl transformation backwards at the scale Λ_2, with the same coefficient α we used at the scale Λ_1, we obtain again the action in the Jordan frame, with no explicit dilaton couplings to matter at the scale Λ_2. This is exactly what we would have expected to find by running the RG-flow from Λ_1 to Λ_2 directly in the Jordan frame, with a φ-independent quark mass scale m_\ast. This example shows explicitly that, as we argued in the introduction, metricity is stable under the RG-flow even when the particles are being integrated out.

The same considerations apply to the electromagnetic coupling. Let us consider the QED dilaton coupling d_e in the lowest energy limit, i.e. at scales $\mu \ll m_e$. This limit could be of interest for experiments and observations of α_{QED} variations. In this regime b and β go to zero linearly in μ/m_e^2. Thus, it is better to define the dilaton coupling d_e as in \(13\) i.e. without multiplying it for the combination β/e. By applying equation \(11\) we then get

$$
d_e(\mu) = \frac{2\beta(\mu)}{e} d_{m_\ast} + 2e^2 b(\Lambda) [d_e(\Lambda) - d_{m_\ast}], \quad (42)
$$

where $\Lambda \gg m_\ast$. If we consider a metric theory at energies $\mu \ll m_e$ and go to the E-frame we still obtain \(13\), but now the QED dilaton coupling is suppressed by the vanishing of the β function as μ^2/m_e^2. The very same operation could be done by switching to the E-frame at energies above m_e and RG-running down in the E-frame. At those energies, since the theory is metric, $d_e = d_{m_\ast}$, and by \(12\) we get to the same low energy dilaton coupling. The operation of frame-switching commutes with the RG-running.

In non-metric theories things are different: if at the UV scale Λ_1 the couplings to quarks are not tuned to those of gluons from the start, as in the general action \(17\), integrating out some of these quarks will induce a shift in the dilaton gluon coupling d_g. However, according to equation \(11\) this change is proportional to the deviation from metricity, which is controlled at the scale Λ_1 by the difference $d_m - d_g \equiv c_m$, i.e. by the coupling appearing naturally in the QCD-frame.

Also, from equation \(34\) it is easy to see that the change in any c_m, when as we run down with the RG flow is at most proportional to other c_m’s, since $c_m(\Lambda_2) - c_m(\Lambda_1) = d_g(\Lambda_1) - d_g(\Lambda_2)$. Thus, if all the c_m's are small, their change will be small as we move along the RG-flow. Since the coefficients c_m parametrize the deviation from metricity, we can define a theory to be approximately metric if all $c_m \ll 1$. Then the discussion above shows that approximate metricity is stable under (matter) quantum corrections, which a priori is far from trivial. One can assert this by stating that approximate metricity is natural in the technical sense. In fact, the matter action in metric theories has an extra exact symmetry, which protects metricity against quantum corrections: its infinitesimal action is:

$$
g_{\mu \nu} \rightarrow (1 + 2\epsilon)g_{\mu \nu}, \quad \psi \rightarrow (1 - 3\epsilon/2)\psi, \quad \varphi \rightarrow \varphi - \epsilon/\alpha, \quad (43)
$$

where α is the common dilaton coupling. The same (approximate) symmetry is what protects approximately metric theories from growing large deviations from metricity by RG-flow. This symmetry however is broken by the Einstein-Hilbert action, thus violations of metricity will be present due to Planckian effects.

Finally, let us consider a general non-metric theory in our QCD-frame, in which we have chosen to set $c_g = 0$ at the scale Λ_{QCD}, as apparent from \(18\). In this case, according to equation \(11\), as we move up with the energy scale, heavier particles will contribute to the beta function and their dilaton couplings c_m will generate a gluon-dilaton coupling $c_g \neq 0$ according to \(11\). In principle, at a different scale, another conformal transformation is needed to re-define a QCD frame, so the definition of the QCD frame is scale-dependent. However in practice, the gravitational phenomenology is most sensitive to the scale $\mu \sim \Lambda_{QCD}$, so it is at this scale that it is most convenient to set to zero the gluon-dilaton coupling.

V. DISCUSSION

In this note we clarified some issues related with scalar-tensor theories when quantum corrections are taken into account, and proposed a conformal frame, the ‘QCD-frame’, that is particularly appropriate to study the violation of the weak equivalence principle in the motion of test bodies. Our analysis confirms the unavoidable presence of scalar couplings to gauge fields in the E-frame.
for metric theories different than GR. Following the arguments raised in Ref. 20, one could then wonder whether the photon-scalar coupling that is generated has observable consequences—weak EP-violations, α_{QED} variations etc. We took the “privileged” J-frame viewpoint to argue that none of those effects are in order. More generally, E-frame dilaton couplings have no universal implication on EP-phenomenology.

A point which is worth stressing is that, although all frames are physically equivalent, different frames can be more convenient to address different questions. The fact that in the Einstein and Jordan (or QCD) frame the dilaton couplings in the Lagrangian are different, does not mean that the answer to physical questions is different. For example consider, say, the production of photons in a time-dependent dilaton background, but in which the Einstein frame metric is static. In the Einstein frame this process will be governed solely by the dilaton-photon coupling, $d_\varepsilon \beta(e)/\varepsilon$ of equation 17. Suppose now we go to a Jordan or Jordan-like frame where this coupling is absent: here, there will be instead a time-dependent conformally flat metric, which will couple to the photon stress-tensor. This will result in a photon production rate which will arise exclusively from the one-loop breaking of conformal invariance, and will be proportional to the β-function, giving exactly the same result. Thus the two frames are physically equivalent, and a one-loop effect in one frame is translated in a tree-level effect in another frame.

However, this does not mean that all frames are equivalently suitable for calculating different effects: for example, the Einstein frame is most useful when one wants to separate the dynamics of the dilaton from that of the metric, at least for what concerns perturbations around flat space, since in the E-frame the kinetic terms fluctuations are diagonal. Thus, the meaning of E-frame dilaton couplings is most transparent when one wants to calculate the decay rate of a dilaton, say, into two photons, or the dilaton emission by a photon, we need to suitably define asymptotic states; and the appropriate “in” state for this problem is the E-frame dilaton. In any other frame, due to kinetic mixing, the “in” state would be a mixture of dilaton and gravitons. It follows that the E-frame dilaton couplings are those to be used for calculating the decaying rate of such state.

Similarly, when one is interested solely in the violation of the equivalence principle, we argue that the QCD frame is the most transparent, since it is only in this frame that all couplings are proportional to weak EP violations, and therefore have a direct physical meaning as far as these effects are concerned. Possible variations of the coupling constants like α_{QED}, or experimental bounds thereof, should be analyzed case by case depending on the specific instruments adopted. However, we argue that the QCD-frame is, again, a preferred view point to quantify them. Since in the limit of a metric theory c_ε and not necessarily d_ε vanishes, those effects are naturally proportional to the parameter c_ε: the QCD-frame coupling.

Finally, the QCD couplings, rather than those in the Einstein frame, are the ones that directly parametrize small deviations from metricity. This is particularly important in light of the Renormalization Group Analysis we performed in Section IV, where we analyzed the stability of metricity and approximate metricity under radiative corrections and RG-flow. We found that not only exact, but even approximate metricity is stable under the RG-flow. The definition of approximate metricity involves again the dilaton-matter couplings in the QCD frame: if they are small, then one can call the theory approximately metric. Here, we showed that this property is technically natural: if valid at the cutoff, it is preserved under RG-flow and radiative corrections. For metric theories, this statement reduces to the expected result that metricity is preserved under RG-flow, as could be argued on general grounds by performing calculations directly in the Jordan frame.

Acknowledgments

We are grateful to Philippe Brax, Cliff Burgess, John Donoghue, Elias Kiritsis, Jihad Mourad, Alberto Nicolis, Lam Hui and David Seery for discussions and correspondence.

Appendix A: The ‘physicality’ of Jordan frame

In this appendix we clarify the statement made in the introduction that the Jordan frame is the “physical frame”. In field theory we are used to field redefinitions that leave the physical content of a theory (i.e., scattering amplitudes) unchanged. However, in GR the metric tensor $g_{\mu\nu}$ has also the straightforward semi-classical meaning of physical distance, in the sense that, integrated along a curve, it gives the physical length of such a curve. To be more precise, a curve parametrically defined by $x^\mu(\lambda)$, with λ a real parameter evaluating λ_1 and λ_2 at the two extremes, has length

$$
l = \int ds = \int_{\lambda_1}^{\lambda_2} \sqrt{g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda}} d\lambda.
$$

(A1)

This can be a space distance or a time interval. Now, it is an interesting question whether or not l is measurable in practice. If the curve is timelike and smooth enough it simply can be the world-line of a clock. Space-like curves are more subtle, but certainly l has a very well defined operational meaning in a stationary spacetime. Stationarity allows to make a local operation (i.e., lay down a ruler) several times in the same physical conditions. The measurement, in practice, takes place along a timelike or null trajectory, but this is fine because of stationarity: we can project the events $x^\mu(\lambda_1)$ and $x^\mu(\lambda_2)$ arbitrarily far in the past and future along the time-like Killing vector field.

For scalar tensor theories the problem poses as which one of the different conformally related metrics, when
used in (A1), gives the measured physical length \(l \). If there exists a metric that minimally couples to matter fields it is easy to convince oneself that that is the metric that we are talking about. Imagine, for definiteness, that there is a strong gradient of scalar field between \(x^\mu(\lambda_1) \) and \(x^\mu(\lambda_2) \), so that the Einstein and Jordan metrics, when used in eq. (A1), produce two very different outcomes \(l^E \) and \(l^J \). The matter field dynamics, responsible for the internal equilibrium of the atoms inside the rod, is insensitive to such a gradient only in the Jordan frame. This means that only \(l^J \) will be proportional to the number of rods fitting between \(x^\mu(\lambda_1) \) and \(x^\mu(\lambda_2) \), which is the chosen operational definition of length. Similar considerations can be drawn for measures of time intervals. Of course, by previous and independent knowledge of the scalar field’s configuration we can easily switch from \(l^J \) to \(l^E \) and in this respect the two frames are perfectly equivalent. But the statement that, say, the length \(l \) of the rod, is insensitive to such a gradient only in the Jordan frame introduces another useful example for this discussion. The metric of a spatially flat Friedmann-Robertson-Walker reads, say, in Einstein frame, \(ds^2 = -dt^2 + a^2(t)dx^2 \). Upon conformally transforming to Jordan frame, \(g_{\mu\nu} = \Omega^2(\phi)g_{\mu\nu} \), and an appropriate redefinition of the time coordinate, the metric becomes

\[
 ds^2_J = -dt^2 + \Omega^2 a^2(t)dx^2
\]

which defines a different scale factor, \(a_J(t) = \Omega(\phi(t))a(t) \) and therefore a different Hubble constant \(H_J = \frac{d\ln a_J}{dt} \). Because in Jordan frame Maxwell’s equations are oblivious to \(\phi \), the photons from a far away source simply redshift with the Jordan frame scale factor. This means that in a scalar tensor theory the redshift has the usual expression in terms of the scale factor, only if the J-frame is used for the latter,

\[
 1 + z = \frac{a_J(t)}{a_J(t_0)}, \quad (A3)
\]

\(t_0 \) being the present time. With a similar straightforward argument, just more pedantic, we could also conclude that the value of the Hubble constant measured by the Hubble Space Telescope [20], \(H_0 = 72 \pm 8 \text{ km/s Mpc}^{-1} \), matches that of the Jordan frame quantity \(H_J \). Again, we can equivalently use \(H_J = d\ln a/dt \) instead, but in order to determine the value of the latter we need also independent knowledge of \(\phi \) and \(\Phi \).

[1] G. R. Dvali, G. Gabadadze and M. Porrati, “4-D gravity on a brane in 5-D Minkowski space,” Phys. Lett. B 485, 208 (2000) [hep-th/0005016].

[2] J. Khoury and A. Weltman, “Chameleon cosmology,” Phys. Rev. D 69, 044026 (2004) [astro-ph/0309411].

[3] M. Carroll, S. Mantry, M. J. Ramsey-Musolf and A. Weltman, “Sub-eV scalar dark matter,” Phys. Rev. D 82, 081601 (2010) [arXiv:1009.2520 [hep-th]].

[4] F. Piazza and M. Pospelov, “Sub-eV scalar dark matter,” Phys. Rev. D 82, 040006 (2007) [hep-th/0703027 [HEP-TH]].

[5] A. Nicolis, R. Rattazzi and E. Trincherini, “The Galileon as a local modification of gravity,” Phys. Rev. D 79, 064036 (2009) [arXiv:0811.2197 [hep-th]].

[6] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev. 124, 925 (1961).

[7] T. Damour, “Gravitation, experiment and cosmology,” gr-qc/9606079.

[8] C. M. Will, “Theory and experiment in gravitational physics,” Cambridge, UK: Univ. Pr. (1993) 380 p.

[9] T. R. Taylor and G. Veneziano, “Dilaton Couplings at Large Distances,” Phys. Lett. B 213, 450 (1988).

[10] T. Damour and A. M. Polyakov, “The String dilaton and a least coupling principle,” Nucl. Phys. B 423, 532 (1994) [arXiv:hep-th/9401069 [hep-th]]; “String theory and gravity,” Gen. Rel. Grav. 26, 1171 (1994) [gr-qc/9411069].

[11] T. Damour, F. Piazza and G. Veneziano, “Runaway dilaton and equivalence principle violations,” Phys. Rev. Lett. 89, 081601 (2002) [gr-qc/0204094]; “Violations of the equivalence principle in a dilaton runaway scenario,” Phys. Rev. D 66, 046007 (2002) [hep-th/0205111].

[12] Y. Fujii, “Role of regularization in quantum corrections to the scalar - tensor theories of gravity,” Mod. Phys. Lett. A 12, 371 (1997) [gr-qc/9610006].

[13] L. Hui, A. Nicolis, “An Equivalence principle for scalar forces,” Phys. Rev. Lett. 105, 231101 (2010). [arXiv:1009.2520 [hep-th]].

[14] C. Armendariz-Picon and R. Penco, “Quantum Equivalence Principle Violations in Scalar-Tensor Theories,” arXiv:1108.6028 [hep-th].

[15] D. B. Kaplan and M. B. Wise, “Coupings of a light dilaton and violations of the equivalence principle,” JHEP 0008, 037 (2000) [hep-ph/0008116].

[16] T. Dent, “Eotvos bounds on couplings of fundamental parameters to gravity,” Phys. Rev. Lett. 101, 041102 (2008) [arXiv:0805.0318 [hep-ph]].

[17] G. R. Dvali and M. Zaldarriaga, “Changing alpha with time: Implications for fifth force theory experiments and quintessence,” Phys. Rev. Lett. 88, 091303 (2002) [hep-ph/0108217].

[18] T. Damour, J. F. Donoghue, “Equivalence Principle Violations and Couplings of a Light Dilaton,” Phys. Rev. D82, 084033 (2010). [arXiv:1007.2702 [gr-qc]].

[19] B. Bertotti, L. Iess, P. Tortora, “A test of general relativity using radio links with the Cassini spacecraft,” Nature 425, 374 (2003).

[20] P. Brax, C. Burrage, A.-C. Davis, D. Seery and A. Weltman, “Anomalous coupling of scalars to gauge fields,” Phys. Lett. B 699, 5 (2011) [arXiv:1010.4538 [hep-th]].

[21] S. M. Carroll, S. Mantry, M. J. Ramsey-Musolf and C. W. Stubbs, “Dark-Matter-Induced Weak Equivalence Principle Violation,” Phys. Rev. Lett. 103, 011301 (2009) [arXiv:0807.4363 [hep-ph]].

[22] F. Piazza and M. Pospelov, “Sub-eV scalar dark matter
through the super-renormalizable Higgs portal," Phys. Rev. D 82, 043533 (2010) [arXiv:1003.2313 [hep-ph]].

[23] C. Burgess and M. Horbatsch, private communication
[24] J. -P. Uzan, “Varying Constants, Gravitation and Cosmology,” Living Rev. Rel. 14, 2 (2011) [arXiv:1009.5514].
[25] T. Chiba, “The Constancy of the Constants of Nature: Updates,” arXiv:1111.0092 [gr-qc].
[26] W. L. Freedman et al. [HST Collaboration], “Final results from the Hubble Space Telescope key project to measure the Hubble constant,” Astrophys. J. 553, 47 (2001) astro-ph/0012376.