weeks. Virologic response, adverse events (AEs), and laboratory abnormalities were evaluated.

Results. Across the two trials, 152 patients without cirrhosis and 16 with compensated cirrhosis received glecacrevir/pibrentasvir for 8 and 12 weeks, respectively. Baseline demographics are shown in Tables 1 and 2. The overall intention-to-treat (ITT) SVR12 rate was 98.2% (165/168), with no virologic failures among non-cirrhotic patients treated for 8 weeks; mITT rate (excluding non-virologic failures) was 99.4% (167/168). Reasons for nonresponse were breakthrough (n = 1; patient with incomplete study drug adherence), premature study drug discontinuation (n = 1), and missing SVRL (n = 1). Safety analyses included all 18 non-cirrhotic GT1 patients treated for 12 weeks (all achieved SVR12). AEs occurring in ≥25% of patients were fatigue, headache, nausea, and nasopharyngitis. Serious AEs and AEs leading to discontinuation were rare; none were related to study drug. Grade 3 or higher laboratory abnormalities were infrequent. All patients maintained HIV-1 sup-pression (<200 copies/mL) during treatment.

Conclusion. Glecacrevir/pibrentasvir was highly efficacious and well tolerated in patients co-infected with HCV GT1–6/HIV-1 without or with cirrhosis following 8 or 12 weeks of treatment, respectively, and could be the first 8-week pan-genotypic treat-ment option for HCV/HIV-1 co-infected patients without cirrhosis.

Disclosures. J. K. Rockstroh, Gilead, Abbott, AbbVie, BMS, Bionor, Cipla, Janssen, Merck, ViIV: Consultant, Grant Investigator, Research Contractor and Scientific Advisor; Consulting fee, Research grant, Research support and Speaker honorarium. S. R. Bhagani, AbbVie, BMS, Gilead, Janssen, Merck, ViIV: Board Member, Consultant, Scientific Advisor and Speaker's Bureau; Consulting fee and Speaker honorarium. C. Orkin, AbbVie, Abbott, Boehringer Ingelheim, BMS, Gilead, GSK, Janssen, ViIV: Grant Investigator and Research Contractor, Research grant and Research support. R. Soto-Malave, AbbVie, Janssen, Merck: Consultant, Grant Investigator, Research Contractor and Scientific Advisor, Consulting fee, Research grant and Research support. K. Lacombe, AbbVie, BMS, Gilead, Janssen, Merck: Board Member, Consultant and Scientific Advisor, Consulting fee and Speaker honorarium. Z. Zhang, AbbVie Inc.: Employee and Shareholder, Salary and Stock and/or options. S. Wang, AbbVie Inc.: Employee, Shareholder, Salary and Stock and/or options. F. Menza, AbbVie Inc.: Employee and Shareholder, Salary and Stock and/or options. R. Trinh, AbbVie Inc.: Employee and Shareholder, Salary and Stock and/or options.

1966. Evaluating a Prototype Microbiome Health Index (MHI) as a Measure of Microbiome Restoration Using Data Derived From a Published Study of Fecal Microbiota Transplant (FMT) to Treat Recurrent Clostridium difficile Infections (rCDI)

Ken Blount, PhD1; Courtney Jones, BS2; Elena Deych, MS3 and Bill Shannon, PhD, MBA1; Rebiotix, Inc., Roseville, Minnesota,1 Rebiotix Inc., Roseville, Minnesota, 2BioRankings, LLC, St. Louis, MO, 3BioRankings LLC, St. Louis, Missouri

Session: 227. Clinical Trials
Saturday, October 6, 2018: 12:30 PM

Background. There are efforts to develop FDA-approved microbiota-based drugs to restore the microbiota, notably for recurrent clostridium difficile infections (rCDI). Given the lack of established biomarkers for microbiome restoration, we are evaluating unidimensional Microbiome Health Indices (MHI®). We previously presented a prototype MHI for clinical trials of RBX2660—a standardized microbiota restoration therapy in Phase 3 clinical development. Herein we assessed MHI for a published study of rCDI.

Methods. The prototype MHI is based on the associations of Bacteroidia and Clostridia with colonization resistance, and Gammaproteobacteria and Bacilli with dysbiosis, and Receiver Operating Characteristic analysis of pooled RBX2660 trial data indicated a cutpoint (baseline) are distinguishable from the healthier RBX2660 profile with an odds ratio of 121 (AUC = 0.99, sensitivity = 0.96, specificity = 0.99, cutpoint = 8.2). MHI data for the published FMT cohort were calculated using publicly available data derived from pre- and post-treatment fecal samples (Khan S, et al. Microbiome 2017 5:55), and this study included patients with or without a co-inflammation of intestinal bowel disease (IBD).

Results. At baseline, 92% of patients in the FMT cohort were below the MHI = 8.2 cutpoint, consistent with a rCDI diagnosis. Among FMT responders 7 days after treat-ment, 91% of patients had shifted to MHI>8.2. (P < 0.001 compared with baseline). Likewise, a significant shift was observed from baseline to 30 days (P < 0.0001, with 83% having MHI > 8.2. There were insufficient patients to support a statistical com-parison of BID vs. no, but BIDs trended lower at all time points among patients with IBD.

Conclusion. MHI parameters derived from RBX2660 trials were predictive of pre- and post-treatment states for a published cohort of FMT-treated rCDI patients, suggesting that this tool can represent a useful dysbiosis measure beyond RBX2660 trials. Lower MHI among patients co-diagnosed with IBD suggests the potential utility of MHI beyond rCDI. Collectively our results continue to support the utility of MHI and its prospective evaluation in ongoing Phase 3 clinical trials.

Disclosures. K. Blount, Rebiotix Inc.: Employee, Salary. C. Jones, Rebiotix, Inc.: Consulting fee. B. Shannon, Rebiotix, Inc.: Research Contractor, Consulting fee.

1967. Study of the Immunogenicity and Safety of an Investigational Quadrivalent Meningococcal Conjugate Vaccine (MenACYW-TT) When Co-administered with Other Vaccines in Healthy Adolescents

James Hedrick, MD1; Shane Christensen, MD2; Lee-Jah Chang, MD3; Judy Pan, Ph.D4; Emilia Jordanov, MD5 and Mandape Dhinghra, MD6; 7Kentucky Pediatric and Adult Research, Bardstown, Kentucky; 2J Lewis Research, Salt Lake City, Utah, 8sanofi pasteur, Swiftwater, Pennsylvania

Session: 227. Clinical Trials
Saturday, October 6, 2018: 12:30 PM

Background. The MenACYW-TT conjugate vaccine is a quadrivalent meningoco-ccal vaccine for global use in all age groups. This protocol Phase II study evaluated the safety and immunogenicity of the vaccine when compared with a licensed quadrivalent conjugated meningococcal vaccine (MCV4-CRM) when co-ad-ministered with tetanus, diphtheria, acellular pertussis (Tdap), and human papilloma virus (HPV4) vaccines in meningococcal vaccine naïve adolescents (10–17 years of age).

Methods. A randomized, open-label, multicenter study (NCT02199691) was conducted in 1,715 healthy subjects in the United States, who were randomly assigned to receive MenACYW-TT conjugate vaccine, MCV4-CRM, MenACYW-TT conjugate vaccine (co-administered with Tdap and HPV4), or Tdap and HPV4 vaccines. Serum bacteriational assay with human (hSBA) and baby rabbit (rSBA) complement was used to measure antibodies against serogroups A, C, W, and Y test strains at baseline and 30 days after vaccination. Safety data were collected up to 6 months post-vaccination.

Results. Noninferiority of immune response was demonstrated between MenACYW-TT conjugate vaccine and MCV4-CRM, and MenACYW-TT conjugate vaccine when co-administered with Tdap and HPV4 vaccines vs. when administered alone, based on percentages of study participants achieving hSBA vaccine seroresponse at Day 30 from baseline. The proportions of individuals with ≥4 hSBA and rabbit (rSBA) complement was used to measure antibodies against serogroups A, C, W, and Y test strains at baseline and 30 days after vaccination. Safety data were collected up to 6 months post-vaccination.

Conclusion. MenACYW-TT conjugate vaccine was immunogenic and well toler-ated when administered as a single dose to meningococcal vaccine naïve adolescents along with Tdap and HPV4 vaccines. Such a vaccine will offer an alternative for the pre-vention of invasive meningococcal disease in susceptible populations across the world.

Disclosures. All authors: no reported disclosures.

1968. Procalcitonin-Guided Antibiotic Therapy for Lower Respiratory Tract Infections in a US Academic Medical Center

Jennifer Townsend, MD1; Victoria Adams-Sommer, PharmD2; Panagis Galiatsatos, MD3; David Pearse, MD4; Flora Kisuule, MD4; Hardin Pantle, MD4; Mary Masterson, PA-C5; Catherine Kiruthi, PharmD5; Paul Ortiz, PharmD5; Eileen Jacob, PharmD5; Jacob Sama, MD6; Michael Melgar, MD7; Seema Nayak, MD7; Jillian Irwin, MD7; Cyrus Mazzali, MD8; Sam Stern, MD8; Albert Agbaniley, RN9; Robert Juran, RN9; Kevin Pieter, PhD, MPA10 and Robin McKenzie, MD11; Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 2Johns Hopkins Bayview Medical Center, Baltimore, Maryland, 3Pulmonary and Critical Care, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, 4Hospital Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, 5Emergency Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, 6Pharmacy, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, 7Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland

Session: 227. Clinical Trials
Saturday, October 6, 2018: 12:30 PM

Background. European trials using procalcitonin (PCT)-guided antibiotic ther-apy for patients with lower respiratory tract infections (LRTI) have resulted in significa-tant reductions in antibiotic use without increasing adverse outcomes. Few prospective studies have examined PCT-guided antibiotic therapy for LRTI in the United States.