C*-ALGEBRA-VALUED-SYMBOL PSEUDODIFFERENTIAL OPERATORS: ABSTRACT CHARACTERIZATIONS

SEVERINO T. MELO AND MARCELA I. MERKLEN

Abstract. Given a separable unital C*-algebra C with norm $\| \cdot \|$, let E_n denote the Banach-space completion of the C-valued Schwartz space on \mathbb{R}^n with norm $\| f \|_2 = \| \langle f, f \rangle \|^{1/2}$, $\langle f, g \rangle = \int f(x)^* g(x) dx$. The assignment of the pseudodifferential operator $A = a(x, D)$ with C-valued symbol $a(x, \xi)$ to each smooth function with bounded derivatives $a \in B^C(\mathbb{R}^2n)$ defines an injective mapping O, from $B^C(\mathbb{R}^2n)$ to the set \mathcal{H} of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E_n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes’ description [2] of \mathcal{H} in the scalar case. Combined with previous results of the second-named author, our main theorem implies that, given a skew-symmetric $n \times n$ matrix J, and if C is commutative, then any $A \in \mathcal{H}$ which commutes with every pseudodifferential operator with symbol $F(x+J\xi), F \in B^C(\mathbb{R}^n)$, is a pseudodifferential operator with symbol $G(x-J\xi)$, for some $G \in B^C(\mathbb{R}^n)$. That was conjectured by Rieffel.

2000 Mathematics Subject Classification: 47G30 (46L65, 35S05).

1. **Introduction**

Let C be a separable unital C*-algebra with norm $\| \cdot \|$, and let $S^C(\mathbb{R}^n)$ denote the set of all C-valued smooth functions on \mathbb{R}^n which, together with all their derivatives, are bounded by arbitrary negative powers of $|x|, x \in \mathbb{R}^n$. We equip it with the C-valued inner-product

$$\langle f, g \rangle = \int f(x)^* g(x) dx,$$

which induces the norm $\| f \|_2 = \| \langle f, f \rangle \|^{1/2}$, and denote by E_n its Banach-space completion with this norm. The inner product $\langle \cdot, \cdot \rangle$ turns E_n into a Hilbert module \mathcal{H}. The set of all (bounded) adjointable operators on E_n is denoted $B^*(E_n)$.

Let $B^C(\mathbb{R}^{2n})$ denote the set of all smooth bounded functions from \mathbb{R}^{2n} to C whose derivatives of arbitrary order are also bounded. For each a in $B^C(\mathbb{R}^{2n})$, a linear mapping from $S^C(\mathbb{R}^n)$ to itself is defined by the formula

$$\langle Au \rangle(x) = \frac{1}{(2\pi)^{n/2}} \int e^{ix \cdot \xi} a(x, \xi) \hat{u}(\xi) d\xi,$$

where \hat{u} denotes the Fourier transform,

$$\hat{u}(\xi) = (2\pi)^{-n/2} \int e^{-iy \cdot \xi} u(y) dy.$$
As usual, we denote $A = a(x,D)$. This operator extends to an element of $B^*(E_n)$
whose norm satisfies the following estimate. There exists a constant $k > 0$
depending only on n such that

$$||A|| \leq k \sup \{ ||\partial_x^\alpha \partial_{\xi}^\beta a(x,\xi)||; (x,\xi) \in \mathbb{R}^{2n} \text{ and } \alpha, \beta \leq (1, \cdots, 1) \}.$$

This generalization of the Calderón-Vaillancourt Theorem \cite{1} was proven by Merklen \cite{7,8}, following ideas of Hwang \cite{4} and Seiler \cite{11}. The case of $a(x,\xi) = F(x + J\xi)$, where $F \in B^C(\mathbb{R}^n)$
and J is an $n \times n$ skew-symmetric matrix, had been proven earlier by Rieffel \cite{10} Corollary 4.7.

The estimate \cite{2} implies that the mapping

$$\mathbb{R}^{2n} \ni (z,\zeta) \mapsto A_{z,\zeta} = T_{-z}M_{-\zeta}AM_{\zeta}T_{z} \in B^*(E_n)$$

is smooth (i.e., C^∞ with respect to the norm topology), where T_z and M_ζ are defined by $T_zu(x) = u(x-z)$ and $M_\zeta u(x) = e^{i\zeta \cdot x}u(x)$, $u \in S^C(\mathbb{R}^n)$. That follows just like in the scalar case \cite{3} Chapter 8.

Definition 1. We call Heisenberg smooth an operator $A \in B^*(E_n)$ for which the mapping \cite{3} is smooth, and denote by \mathcal{H} the set of all such operators.

The elements of \mathcal{H} are the smooth vectors for the action of the Heisenberg group
on $B^*(E_n)$ given by the same formula as the standard one in the scalar case (i.e.,
when C is the algebra \mathbb{C} of complex numbers and then $E_n = L^2(\mathbb{R}^n)$, and we denote
$S^C(\mathbb{R}^n)$ and $B^C(\mathbb{R}^n)$ by $\mathcal{S}(\mathbb{R}^n)$ and $\mathcal{B}(\mathbb{R}^n)$, respectively).

We therefore have a mapping

$$O : B^C(\mathbb{R}^{2n}) \rightarrow \mathcal{H}$$

$$a \mapsto O(a) = a(x, D).$$

In the scalar case, it is well-known (this can be proven by a Schwartz-kernel ar-
ument) that if a pseudodifferential operator as in \cite{1} vanishes on $\mathcal{S}(\mathbb{R}^n)$, then a
must be zero. Let us show that this implies that O is injective for arbitrary C.

Given any complex-valued function u defined on \mathbb{R}^n, we denote by $\tilde{u} : \mathbb{R}^n \rightarrow C$
the function defined by

$$\tilde{u}(x) = u(x)1_C,$$

where 1_C denotes the identity of C. If $O(a) = 0$, the fact that $O(a)\tilde{u} = 0$
for every $u \in \mathcal{S}(\mathbb{R}^n)$ and the injectivity of O in the scalar case imply that $(x,\xi) \mapsto \rho(a(x,\xi))$
vanishes identically, for every $\rho \in C^*$, the (Banach-space) dual of C. We then get
$a = 0$, as we wanted.

Our results in this paper can now be summarized in the following theorem,
proven in Sections 2 and 8.

Theorem 1. Let C be a unital separable C^*-algebra. There exists a linear mapping
$S : \mathcal{H} \rightarrow B^C(\mathbb{R}^{2n})$ such that $S \circ O$ is the identity operator. If C is commutative,
then S is injective.

Since an injective left-inverse is an inverse, we get:

Corollary 1. If C is commutative and an operator $A \in B^*(E_n)$ is given, then the mapping defined in \cite{3} is smooth if and only if $A = a(x, D)$ for some $a \in B^C(\mathbb{R}^{2n})$.

Theorem \cite{1} and Corollary \cite{1} were proven by Cordes \cite{2} in the scalar case. His construction \cite{3} Chapter 8] of the left-inverse S works also in the general case, if only
one is careful enough to avoid mentioning trace-class or Hilbert-Schmidt operators.
That is what we show in Section 2. His proof that S is injective, however, strongly
depends on the fact that, when $C = \mathbb{C}$, $E_n = L^2(\mathbb{R}^n)$ is a Hilbert space. In the
general commutative case, the lack of an orthonormal basis in E_n can be bypassed
by still reducing the problem to copies of $L^2(\mathbb{R}^n)$, as shown at the beginning of
Section 3. After this reduction, we are then able to follow the steps of Cordes’ proof.
Crucial for this strategy, our Lemma 1 is essentially [9, Lemma 2.4] specialized to
commutative C^*-algebras. In Section 4 we explain how Theorem 1 implies, in the
commutative case, an abstract characterization, conjectured by Rieffel [10], of a
certain class of C^*-algebra-valued-symbol pseudodifferential operators.

The assumption of separability of C is needed to justify several results about
vector-valued integration (see [8, Apêndice], for example), which are used without
further comments throughout the text.

2. Left Inverse for O

Given f and g functions from \mathbb{R}^n to X (X will be either C or \mathbb{C}), let $f \otimes g :$
$\mathbb{R}^{2n} \to X$ be defined by

$$f \otimes g(x, y) = f(x)g(y).$$

(6)

Given a vector space V we denote by $V \otimes V$ the algebraic tensor product of V by
itself. In case the elements of V are functions from \mathbb{R}^n to X, $V \otimes V$ is isomorphic
to the linear span of all function as in (6) with f and g in V.

Lemma 1. Given $A \in B^*(E_n)$ mapping $S^C(\mathbb{R}^n)$ to itself, there exists a unique
operator $A \otimes I \in B^*(E_{2n})$ such that, for all $f \in S^C(\mathbb{R}^n)$,

$$(A \otimes I)(f \otimes g) = Af \otimes g.$$

(7)

Proof: Let $L^2(\mathbb{R}^n; C)$ denote the set of equivalence classes (for the equality almost
everywhere equivalence) of Borel measurable functions $f : \mathbb{R}^n \to C$ such that

$$\int \|f(x)\|^2 dx < \infty.$$

and let $\|f\|_{L^2}$ denote the square root of the integral above. $L^2(\mathbb{R}^n; C)$ equipped
with $\| \cdot \|_{L^2}$ is a Banach space, containing $S^C(\mathbb{R}^n)$ as a dense subspace. It follows
from the inequality

$$\|f\|_2 \leq \|f\|_{L^2}, \text{ for all } f \in S^C(\mathbb{R}^n),$$

that $L^2(\mathbb{R}^n; C)$ embeds in E_n as a $\| \cdot \|_2$-dense subspace.

Let S_n denote the set of all simple measurable functions from \mathbb{R}^n to C. It
takes an elementary but messy argument to show that $S_n \otimes S_n$ is $\| \cdot \|_{L^2}$-dense
in S_{2n}, which is dense in $L^2(\mathbb{R}^n; C)$. Since S_n is dense in $L^2(\mathbb{R}^n; C)$, it follows
that $L^2(\mathbb{R}^n; C) \otimes L^2(\mathbb{R}^n; C)$ is dense in $L^2(\mathbb{R}^{2n}; C)$. Since $S^C(\mathbb{R}^n)$ is dense in
$L^2(\mathbb{R}^n; C)$, it follows that $S^C(\mathbb{R}^n) \otimes S^C(\mathbb{R}^n)$ is $\| \cdot \|_{L^2}$-dense in $L^2(\mathbb{R}^{2n}; C)$, hence
it is also $\| \cdot \|_{L^2}$-dense in E_{2n}.

Let $\phi : C \to B^*(E_n)$ be given by left multiplication on $S^C(\mathbb{R}^n)$, and denote by
$E_n \otimes_{\phi} E_n$ the interior tensor product (given by ϕ) as defined in [5 page 41]. The
fact that $S^C(\mathbb{R}^n) \otimes S^C(\mathbb{R}^n)$ is dense in E_{2n} allows us to identify $E_n \otimes_{\phi} E_n$ with
E_{2n} (notice that the space N in [5 Proposition 4.5] consists only of 0 in this case).
Given $A \in \mathcal{B}^\ast(E_n)$, it now follows from the more general result around \cite{5} (4.6) that there exists a unique $A \otimes I \in \mathcal{B}^\ast(E_{2n})$ such that $A \otimes I(f \otimes g) = Af \otimes g$ for all $f \otimes g \in E_n \otimes E_n$. In particular, we get \cite{7} for all f and g in $\mathcal{S}^\mathcal{C}(\mathbb{R}^n)$. That \cite{7} uniquely determines $A \otimes I$ also follows from the fact that $\mathcal{S}^\mathcal{C}(\mathbb{R}^n) \otimes \mathcal{S}^\mathcal{C}(\mathbb{R}^n)$ is dense in E_{2n}.

Let us denote by $\gamma_1(t)$ and $\gamma_2(t)$, respectively, the fundamental solutions of $(\partial_t + 1)$ and $(\partial_t + i)^2$ given by:

$$
\gamma_1(t) = \begin{cases} e^{-t}, & \text{if } t \geq 0 \\ 0, & \text{if } t < 0 \end{cases}
$$

and

$$
\gamma_2(t) = \begin{cases} te^{-t}, & \text{if } t \geq 0 \\ 0, & \text{if } t < 0 \end{cases}.
$$

We then define u and v in $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ by

$$(8) \quad v(\xi, \eta) = \gamma_1(\xi - \eta)/(1 + i\xi)^2$$

and

$$(9) \quad u(x, \eta) = (1 + \partial_\eta)[(1 - i\eta)^2\gamma_2(-\eta)e^{ix\eta}].$$

The following lemma can be proven exactly like in the scalar case \cite{3} Section 8.3]

Lemma 2. If a and b in $\mathcal{B}^\mathcal{C}(\mathbb{R}^2)$ are such that $(1 + \partial_x)^2(1 + \partial_\zeta)^2a(z, \zeta) = b(z, \zeta)$, then we have, for all $(z, \zeta) \in \mathbb{R}^2$,

$$(10) \quad a(z, \zeta) = \int_{\mathbb{R}^3} u(x, \eta)e^{ix\zeta}b(x + z, \xi + \zeta)v(\xi, \eta)d\xi d\eta.$$
For each \(l \in \mathbb{N} \), define \(c_l(z, \zeta) = \sqrt{2\pi} (\hat{u}, (B_{z, \zeta} F^* \otimes I) \hat{v}_l \rangle \), where \(v_l \) is the sequence given by Lemma 3 and \(B_{z, \zeta} \) is what one gets in (11), making \(A = O(a) \). Since, for every \(f \in \mathcal{S}(\mathbb{R}^2) \),

\[
\| \int [c_l(z, \zeta) - c(z, \zeta)] f(z, \zeta) \, dz \, d\zeta \| \leq \| u \|_{L^2} \cdot |B| \cdot \| v - v_l \|_{L^2} \cdot \int |f(z, \zeta)| \, dz \, d\zeta \to 0,
\]
as \(l \to \infty \), it is enough to show that

\[
\lim_{l \to \infty} \int [c_l(z, \zeta) - a(z, \zeta)] f(z, \zeta) \, dz \, d\zeta = 0.
\]

It follows from (2) that \(B = O(b) \), for \(b(x, \xi) = (1 + \partial_x)^2 (1 + \partial_\xi)^2 a(x, \xi) \). We then get \(B_{z, \zeta} = O(b_{z, \zeta}) \), for \(b_{z, \zeta}(x, \xi) = b(x + z, \xi + \zeta) \). Hence, if \(\varphi \) and \(\psi \) belong to \(\mathcal{S}(\mathbb{R}) \), then

\[
[(B_{z, \zeta} F^* \otimes I) (\varphi \otimes \psi)](x, \eta) = \frac{1}{\sqrt{2\pi}} \int e^{ix\xi} b(x + z, \xi + \zeta) \varphi(\xi) \psi(\eta) \, d\xi.
\]

Using that \(v_l \in \mathcal{S}(\mathbb{R}^n) \otimes \mathcal{S}(\mathbb{R}^n) \), we then get

\[
c_l(z, \zeta) = \int_{\mathbb{R}^n} u(x, \xi) e^{ix\xi} b(x + z, \xi + \zeta) v_l(\xi, \eta) \, dx \, d\eta.
\]

By Lemma 2 we then have

\[
\int [c_l(z, \zeta) - a(z, \zeta)] f(z, \zeta) \, dz \, d\zeta = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} u(x, \eta) e^{ix\xi} b(x + z, \xi + \zeta) (v(\xi, \eta) - v_l(\xi, \eta)) \, dx \, d\eta \, dz \, d\zeta.
\]

Since \((x, \xi, \eta) \mapsto \overline{u(x, \eta)} (v(\xi, \eta) - v_l(\xi, \eta)) \) belongs to \(L^1(\mathbb{R}^3) \), we may interchange the order of integration and obtain that the above expression is bounded by

\[
\sup_{x, \xi} \| b(x, \xi) \| \cdot \| f \|_{L^1} \cdot \int_{\mathbb{R}^3} \| u(x, \eta) \| \cdot \| v(\xi, \eta) - v_l(\xi, \eta) \| \, dx \, d\eta \, dz \, d\zeta,
\]

which tends to zero, by Lemma 3 as we wanted.

This proves that \(S \) is a left-inverse for \(O \) when \(n = 1 \). We now comment on some of the changes needed to extend these definitions and proof for arbitrary \(n \). We have to replace \(u \) and \(v \), respectively, by \(u_n(x, \eta) = u(x_1, \eta_1) \cdots u(x_n, \eta_n) \) and \(v_n(\xi, \eta) = v(\xi_1, \eta_1) \cdots v(\xi_n, \eta_n) \). In the definitions on \(S \) and \(c_l \), we replace \(\sqrt{2\pi} \) by \((2\pi)^{n/2} \), \(\langle \cdot, \cdot \rangle \) denotes the inner product of \(E_{2n} \) and \(F \in \mathcal{B}^*(E_n) \). The new \(B_{z, \zeta} \) is defined by

\[
B_{z, \zeta} = \prod_{j=1}^n (1 + \partial_{x_j})^2 (1 + \partial_{\xi_j})^2 |A_{z, \zeta}|.
\]

The integral in Lemma 2 is now an integral over \(\mathbb{R}^{3n} \) and the equality in (10) holds for all \((z, \zeta) \in \mathbb{R}^{2n} \). The integral in Lemma 3 is also over \(\mathbb{R}^{3n} \), and \(v_l \) belongs to \(\mathcal{S}(\mathbb{R}^n) \otimes \mathcal{S}(\mathbb{R}^n) \).
3. Commutative Case

In this section, we assume that C is equal to $C(\Omega)$, the algebra of continuous functions on a Hausdorff compact topological space Ω. For each $\lambda \in \Omega$ and each $f \in \mathcal{S}^C(\mathbb{R}^n)$, we define $V_\lambda f \in \mathcal{S}(\mathbb{R}^n)$ by

$$(V_\lambda f)(x) = \langle f(x) \rangle(\lambda), \quad x \in \mathbb{R}^n.$$

V_λ extends to a continuous linear mapping $V_\lambda : E_n \rightarrow L^2(\mathbb{R}^n)$, with $\|V_\lambda\| \leq 1$.

Lemma 4. Let there be given $T \in B^*(E_n)$, $f \in E_n$ and $\lambda \in \Omega$. If $V_\lambda f = 0$, then $V_\lambda Tf = 0$.

Proof: The equality $\langle V_\lambda g, V_\lambda g \rangle_{L^2(\mathbb{R}^n)} = \langle g, g \rangle(\lambda)$ holds for all $g \in \mathcal{S}^C(\mathbb{R}^n)$; hence also for all $g \in E_n$. We then have:

$$\sqrt{(f, f)(\lambda) \sqrt{(T^* Tf, T^* Tf)(\lambda)}} \leq \sqrt{(V_\lambda f, V_\lambda f)_{L^2(\mathbb{R}^n)}} \sqrt{(V_\lambda T^* Tf, V_\lambda T^* Tf)_{L^2(\mathbb{R}^n)}}.$$

This implies our claim. \hfill \Box

Given $\varphi \in \mathcal{S}(\mathbb{R}^n)$, let $\tilde{\varphi} \in \mathcal{S}^C(\mathbb{R}^n)$ be defined by $[\tilde{\varphi}(x)](\lambda) = \varphi(x)$, for all $\lambda \in \Omega$ and all $x \in \mathbb{R}^n$. It is obvious that $V_\lambda \tilde{\varphi} = \varphi$. Given $T \in B^*(E_n)$ and $\lambda \in \Omega$, let T_λ denote the unique linear mapping defined by the requirement that the diagram

$$\begin{array}{ccc}
\mathcal{S}(\mathbb{R}^n) & \xrightarrow{T_\lambda} & L^2(\mathbb{R}^n) \\
\downarrow V_\lambda & & \downarrow V_\lambda \\
\mathcal{S}^C(\mathbb{R}^n) & \xrightarrow{T} & E_n
\end{array}$$

commutes. This is well defined by Lemma 4 and because the left vertical arrow in the above diagram is surjective.

Lemma 5. For each $T \in B^*(E_n)$ and each $\lambda \in \Omega$, T_λ extends to a bounded operator on $L^2(\mathbb{R}^n)$. Moreover, we have

$$\|T\| = \sup \{\|T_\lambda\|; \lambda \in \Omega\}.$$

Proof: Given $\varphi \in \mathcal{S}(\mathbb{R}^n)$, let $\tilde{\varphi}$ denote the element of E_n defined after Lemma 4. We have:

$$\|T_\lambda \varphi\|_{L^2(\mathbb{R}^n)} = \|V_\lambda T \tilde{\varphi}\|_{L^2(\mathbb{R}^n)} \leq \|T \tilde{\varphi}\| \leq \|T\| \cdot \|\tilde{\varphi}\|_{L^2(\mathbb{R}^n)}.$$

This implies that T_λ extends to a bounded operator on $L^2(\mathbb{R}^n)$ with norm bounded by $\|T\|$.

Let M denote the right-hand side of (14). For each $\lambda \in \Omega$ and each $f \in \mathcal{S}^C(\mathbb{R}^n)$, using Lemma 4 and the first statement in its proof, we get:

$$\langle (Tf, Tf)(\lambda) \rangle = \|V_\lambda Tf, V_\lambda Tf\|_{L^2(\mathbb{R}^n)} \leq \|T_\lambda \varphi\| \cdot \|\varphi\|_{L^2(\mathbb{R}^n)} \leq M\|f\|_{L^2(\mathbb{R}^n)} \leq M\|f\|_2.$$

Taking the supremum in λ on the left, we get $\|Tf\|_2 \leq M\|f\|_2$. \hfill \Box

Our goal in this Section is to prove that the mapping S defined in the previous section is injective for $C = C(\Omega)$. This will finish the proof of Theorem 1.

Given $A \in \mathcal{H}$ such that $SA = 0$, we want to show that $A = 0$. In view of the following lemma, it suffices to show that $B = 0$, where $B = B_{0,0} \{B_{\epsilon, \zeta} \text{ as defined}}$
Lemma 6. If \(Y \in \mathcal{H}, Y_{z, \zeta} = T_{-z} M_{-\zeta} Y M_{\zeta} T_{z} \) (\(z, \zeta \in \mathbb{R}^n \)), and either \((1 + \partial_x)Y_{z, \zeta} \equiv 0 \) or \((1 + \partial_{\zeta})Y_{z, \zeta} \equiv 0 \) for some \(j \), then \(Y = 0 \).

By Lemma 5 in order to prove that \(B = 0 \), it suffices to show that \(B_{\lambda} = 0 \) for each \(\lambda \in \Omega \). For \(z \) and \(\zeta \) in \(\mathbb{R}^n \), define \(E_{z, \zeta} = M_{\zeta} T_{z} \). We then have \(B_{z, \zeta} = E_{z, \zeta}^* B E_{z, \zeta} \). Using that \(E_{z, \zeta} F^* = e^{iz \zeta} F^* E_{\zeta, -z} \), we may rewrite equation \(SA = 0 \) as

\[
e^{iz \zeta} ((E_{z, \zeta} \otimes I) \tilde{u}_n, (B F^* E_{\zeta, -z} \otimes I) \tilde{v}_n) = 0, \quad \text{for all } (z, \zeta).
\]

Evaluating this equation at \(\lambda \) gives:

\[
e^{iz \zeta} ((E_{z, \zeta} \otimes I) u_n, (B_{\lambda} F^* E_{\zeta, -z} \otimes I) v_n)_{L^2(\mathbb{R}^n)} = 0, \quad \text{for all } (z, \zeta).
\]

For a fixed \(\varphi \in \mathcal{C}_0^\infty (\mathbb{R}^{2n}) \) to be chosen soon, and for each bounded operator \(D \) on \(L^2(\mathbb{R}^n) \), define

\[
\Xi(D) = \int \varphi(z, \zeta) e^{iz \zeta} ((E_{z, \zeta} \otimes I) u_n, (D F^* E_{\zeta, -z} \otimes I) v_n)_{L^2(\mathbb{R}^n)} \, dz \, d\zeta.
\]

In case \(D \) is finite-rank, and hence we may take \(b^1, \ldots, b^k, c^1, \ldots, c^k \) in \(L^2(\mathbb{R}^n) \) such that, for all \(f \in L^2(\mathbb{R}^n) \),

\[
D F^* f = \sum_{j=1}^k b^j \langle c^j, f \rangle_{L^2(\mathbb{R}^n)},
\]

we have: \(\Xi(D) = 0 \).

Making the change of variables \(x - z = z', \xi - \zeta = \zeta' \) on the inner triple integral above, we get:

\[
\Xi(D) = \sum_{j=1}^k \int b^j (x) \bar{c}^j (\xi) \int \int e^{i z' \zeta} \varphi(x, \zeta') e^{-i z' \xi} \tilde{u}_n(x - z', \eta) e^{-i z' \zeta} v_n(\xi - \zeta, \eta) \, dx \, d\xi \, d\eta \, dx.
\]

For arbitrary \(\chi \) and \(\psi \) in \(\mathcal{C}_0^\infty (\mathbb{R}^n) \), let \(\varphi \) be defined by

\[
(1 + \partial_x)^2 (1 + \partial_{\zeta})^2 e^{i z \zeta} \bar{\chi}(-x) \psi(-\xi) = \varphi^2(x, \xi), \quad \varphi(x, \xi) = \varphi^2(-x, -\xi).
\]

Using the higher dimensional version of Lemma 2 mentioned at the end of Section 2, the right side of (17) becomes:

\[
\sum_{j=1}^k \int b^j (x) \bar{c}^j (\xi) \bar{\chi} (x) \psi(\xi) \, dx \, d\xi = \langle \chi, D F^* \psi \rangle_{L^2(\mathbb{R}^n)}.
\]

This shows that, for this choice of \(\varphi \),

\[
\Xi(D) = \langle \chi, D F^* \psi \rangle_{L^2(\mathbb{R}^n)},
\]

whenever \(D \) has finite rank.

Let \(\{ \phi_1, \phi_2, \ldots \} \) be an orthonormal basis of \(L^2(\mathbb{R}^n) \). For each positive integer \(j \), let \(P_j \) denote the orthogonal projection onto the span of \(\{ \phi_1, \ldots, \phi_j \} \). Cordes proved (\cite{Cordes} Chapter 8), between equations (3.27) and (3.29)) that, for any bounded
operator \(T \) on \(L^2(\mathbb{R}^n) \), one has \(\lim_{j \to \infty} \Xi(P_j TP_j) = \Xi(T) \). Applying this to \(T = B_\lambda \) and using (15), we get
\[
\Xi(B_\lambda) = \lim_{j \to \infty} \Xi(P_j B_\lambda P_j) = \lim_{j \to \infty} \langle \chi, P_j B_\lambda P_j F^* \psi \rangle_{L^2(\mathbb{R}^n)} = \langle \chi, B_\lambda F^* \psi \rangle_{L^2(\mathbb{R}^n)}.
\]
By (15), the left-hand side of this equality vanishes. Since \(\chi \) and \(\psi \) are arbitrary test functions, this shows that \(B_\lambda = 0 \). This finishes the proof of Theorem 1 (recall our remarks before and after the statement of Lemma 3).

4. Rieffel’s Conjecture

Given a skew-symmetric \(n \times n \) matrix \(J \) and \(F \in \mathcal{B}^C(\mathbb{R}^n) \) (i.e., \(F : \mathbb{R}^n \to C \) is smooth and, together with all its derivatives, is bounded), let us denote by \(L_F \) the pseudodifferential operator \(a(x, D) \in \mathcal{B}^s(E_n) \) with symbol \(a(x, \xi) = F(x + J\xi) \).

At the end of Chapter 4 in [10], Rieffel made a conjecture that may be rephrased as follows: any operator \(A \in \mathcal{B}^s(E_n) \) that is Heisenberg-smooth and commutes with every operator of the form \(R_G = b(x, D) \), where \(b(x, \xi) = G(x - J\xi) \) with \(G \in \mathcal{B}^C(\mathbb{R}^n) \), is of the form \(A = L_F \) for some \(F \in \mathcal{B}^C(\mathbb{R}^n) \).

Using Cordes characterization of the Heisenberg-smooth operators in the scalar case, we have shown [3] that Rieffel’s conjecture is true when \(C = \mathbb{C} \). It has been further proven by the second-named author [7] that Rieffel’s conjecture is true for any separable \(C^* \)-algebra \(C \) for which the operator \(O \) defined in (11) is a bijection.

Under this assumption, a result actually stronger than what was conjectured by Rieffel was proven in [7] Theorem 3.5: To get \(A = L_F \) for some \(F \in \mathcal{B}^C(\mathbb{R}^n) \), one only needs to require that a given \(A \in \mathcal{B}^s(E_n) \) is “translation-smooth” (i.e., the mapping \(\mathbb{R}^n \ni z \mapsto T_z AT_z \in \mathcal{B}^s(E_n) \) is smooth) and commutes with every \(R_G \) with \(G \in \mathcal{S}^C(\mathbb{R}^n) \). Combining this result with our Theorem 1 we then get:

Theorem 2. Let \(C \) be a unital commutative separable \(C^* \)-algebra. If a given \(A \in \mathcal{B}^s(E_n) \) is translation-smooth and commutes with every \(R_G, G \in \mathcal{S}^C(\mathbb{R}^n) \), then \(A = L_F \) for some \(F \in \mathcal{B}^C(\mathbb{R}^n) \).

Acknowledgements

Severino Melo was partially supported by the Brazilian agency CNPq (Processo 306214/2003-2), and Marcela Merklen had a posdoc position sponsored by CAPES-PRODOC. We thank Ricardo Bianconi, Ruy Exel and Jorge Hounie for several helpful conversations.

References

[1] A. P. Calderón & R. Vaillancourt, On the boundedness of pseudo-differential operators; J. Math. Soc. Japan 23 (1971), 374-378.
[2] H. O. Cordes, On pseudodifferential operators and smoothness of special Lie-group representations, Manuscripta Math. 28 (1979), 51-69.
[3] H. O. Cordes, The technique of Pseudodifferential Operators, London Mathematical Society Lecture Note Series 202, Cambridge University Press, Cambridge, 1995.
[4] I. L. Hwang, The \(L^2 \)-boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. 302-1 (1987), 55-76.
[5] C. Lance, Hilbert \(C^* \)-modules - A toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
[6] S. T. Melo & M. I. Merklen, On a conjectured Beals-Cordes-type characterization, Proc. Amer. Math. Soc. 130-7 (2002), 1997-2000.
[7] M. I. Merklen, Boundedness of Pseudodifferential Operators of \(C^* \)-Algebra-Valued Symbol; Proc. Roy. Soc. Edinburgh Sect. A 135-6 (2005), 1279-1286.
[8] M. I. Merklen, Resultados motivados por uma caracterização de operadores pseudo-diferenciais conjecturada por Rieffel, Tese de Doutorado, Universidade de São Paulo, 2002, http://arxiv.org/abs/math.OA/0309464.

[9] M. Rieffel, Induced Representations of C^*-Algebras, Advances in Math. 13 (1974), 176-257.

[10] M. Rieffel, Deformation Quantization for Actions of \mathbb{R}^d, Memoirs of the American Mathematical Society 506, 1993.

[11] J. Seiler, Continuity of edge and corner pseudodifferential operators, Math. Nachr. 205 (1999), 163-182.

Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 66281
05311-970 São Paulo, Brazil.

Email: toscano@ime.usp.br, marcela@ime.usp.br