Parkinson’s Disease in Pregnancy: A Case Report and Review of the Literature

Sara Olivola 1*, Serena Xodo 1, Enrica Olivola 2, Fabiana Cecchini 1, Ambrogio Pietro Londero 1 and Lorenza Driul 1

1 Department of Gynaecology and Obstetrics, School of Medicine of Udine, Udine, Italy; 2 IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy

Background: Pregnancy in Parkinson’s disease is a rare occurrence, and to date, clinical experience with its management is rather limited. In clinical practice, doubts concern mainly the impact of PD on gestation, labor, and delivery as well as the safety of dopaminergic drugs.

Case and review of the literature: We report the case of a 40-year-old woman with an 8-year history of PD. In the first trimester of her pregnancy, her motor status was similar to the pre-conceptional period. In gestation week 16, her motor status dramatically worsened and she complained of predictable “off” periods in the afternoon. For this reason, her dose of L-DOPA/carbidopa was increased up to 500/125 mg per day. At 39 gestational weeks, she gave birth to a healthy girl with an Apgar score of 9 by an uncomplicated cesarean delivery. The child was not breast fed to avoid exposure to antiparkinsonian drugs. The L-DOPA/carbidopa dosage remained constant during the postpartum period. We performed a systematic review of the literature using Ovid Medline, Scopus, and PubMed (including Cochrane database). We used the search terms “Parkinson disease” AND “pregnancy.” We identified 20 studies of PD in pregnancy with a total of 37 pregnant women with PD. The most important available data concern the safety of L-DOPA therapy during pregnancy. There seems to be some risk of worsening of the condition or upcoming of new PD symptoms during or shortly after pregnancy.

Conclusion: More data concerning the safety of antiparkinsonian drugs in PD treatment, as well as the effect of pregnancy on parkinsonian symptoms are needed. According to the current state of the art, L-DOPA therapy should be considered preferable to other drugs during pregnancy.

Keywords: Parkinson’s disease, pregnancy, L-Dopa, literature review, case report

PRÉCIS

Parkinson disease in pregnancy and its management

TEACHING POINTS

1. Parkinson disease is a rare occurrence during pregnancy.
2. The change in PD symptoms during pregnancy is unpredictable and there is poor knowledge about the correct management of pregnancy in PD.
3. According to the current literature, L-DOPA therapy should be the best option for patients in terms of safety and efficacy.

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is caused by the degeneration of dopaminergic neurons in the substantia nigra pars compacta of the midbrain (1). While PD is usually thought as a disease characterized by cardinal motor symptoms including resting tremor, slowness motor (bradykinesia), and rigidity, a wide range of non-motor symptoms such as autonomic, sensory, sleep, and neuropsychiatric dysfunctions are now widely recognized as part of the clinical manifestations (2). PD frequently affects elderly people (>60 years), and its prevalence is heavily age-dependent, but ~5% of patients diagnosed with PD are under 40 years of age (3–5).

PD in young people is frequently under-diagnosed, but the interest in the disease onset among younger people is constantly growing. In addition, there is a somewhat greater incidence of PD in males than females, with an approximate ratio of 1.5:1 reported in literature (6–8). The reason for this gender difference is still unclear, but it supports the hypothesis that estrogen exerts a neuroprotective action through antioxidative, anti-inflammatory, and anti-apoptotic pathways (7, 9, 10). Estrogen also enhances dopaminergic functions by increasing dopamine synthesis and its release, by inhibiting dopamine re-uptake and by modulating dopamine receptors density and sensitivity, as demonstrated in animal studies (11, 12). Nevertheless, the exact role of estrogens in dopaminergic functions needs to be further clarified (13, 14).

Considering these epidemiological features, pregnancy in PD is a rare occurrence, and to date, clinical experience with its management is rather limited. In clinical practice, doubts concern mainly the impact of PD on gestation, labor, and delivery, as well as the safety of dopaminergic drugs. Moreover, the change in PD symptoms during pregnancy is unpredictable and there is still very poor knowledge among obstetricians about the correct management of pregnancy in PD (15). Unfortunately, the available evidence from reported cases is mainly formed by retrospective questionnaires or analyses of patients with PD who have been pregnant (16–19). In any case, the majority of cases reported in the literature ended in successful full-term deliveries.

CASE

We report the case of a 40-year-old woman with an 8-year history of PD. The disease began with resting tremor and rigidity of her left upper extremity. There was no history of tobacco, drug, or alcohol consumption. She became pregnant for the first time when she was on antiparkinsonian therapy. She referred to us when she was 39 years old. A brain magnetic resonance performed at the beginning of her motor symptoms was normal. Genetic testing to investigate the monogenic form of PD was not performed because of the patient’s refusal. She responded well to treatment as assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS) motor section (part III), the most widely used measure to assess motor symptoms and signs in PD (20). She had a UPDRS part III score of 39 in the “off” status (phases with important motor symptoms and no response to medication) assessed in the morning before therapy assumption and a score of 22 in the “on” state (stages with good response to medication and few symptoms) after medication intake. When she became pregnant, she was taking 300/75 mg/day of L-DOPA/carbidopa and her motor examination revealed asymmetrical bilateral tremor, rigidity, and bradykinesia predominant on the left side. In the first trimester of her pregnancy, her motor status was similar to the pre-conceptional period. In gestation week 16, her motor status dramatically worsened (stronger rigidity, resting tremor, and onset of gait disturbance such as shuffling with her left leg) and she complained of predictable “off” periods in the afternoon. For this reason, the dose of L-DOPA/carbidopa was increased up to 500/125 mg per day. At 39 gestational weeks, she gave birth to a healthy girl with an Apgar score of 9 by an uncomplicated cesarean delivery chosen instead of a vaginal delivery because of her motor impairment. General and neurological examination of the baby revealed no abnormalities and the routine blood tests were normal. The child was not breast fed to avoid exposure to antiparkinsonian drugs, but medical information on this topic is lacking. The L-DOPA/carbidopa dosage remained constant during the postpartum period and the patient’s neurological status is currently stable.

SYSTEMATIC REVIEW

We performed a systematic review of the literature using Ovid Medline, Scopus, and PubMed (including Cochrane database). Relevant articles describing any case of PD in pregnancy were identified from the above databases without any time, language, or study limitations. We used the search terms “Parkinson disease” AND “pregnancy.” All non-duplicate identified articles were independently reviewed by two authors (S.O. and S.X.), and relevant articles were selected by mutual agreement. Studies were deemed eligible for inclusion in our review if they described at least one case of PD in pregnancy. We analyzed the age of patients, medication, change in PD symptoms during pregnancy, perinatal outcome, and breastfeeding.

We identified 20 studies of PD in pregnancy with a total of 38 pregnant women with PD and 53 pregnancies (Supplementary Data 1–3). Therapy in PD is symptomatic and includes L-DOPA usually combined with a peripheral dopa-decarboxilase inhibitor (carbidopa or benserazide), monoamine oxidase-B (MAO-B) inhibitors (selegine and rasagiline), dopamine agonists commonly subdivided into ergot derivatives (bromocriptina, pergolide, cabergolina, and lisuride), and non-ergot derivatives (pramipexole, ropinirole, rotigotine, and apomorphine), amantadine, catechol-O-methyltransferase inhibitors (COMT) (entacapone or polecapone), and anticholinergic drugs. All antiparkinsonian medications are contraindicated during pregnancy and are regarded by the Food and Drug Administration (FDA) as Pregnancy Category C,
due to the lack of human or animal evidence regarding their consequences on fetal development (21).

L-DOPA and Dopa-Decarboxylase Inhibitors (Table 1)

There is no doubt that levodopa is the most efficient medication for PD. Many studies use L-DOPA alone or combined with dopa-decarboxylase inhibitors (carbidopa or benserazide) for PD in pregnancy. Of the 38 women with PD in pregnancy, only 14 use L-DOPA in monotherapy or combined with dopa-decarboxylase inhibitors (36.8%). Although some animal studies (28, 29) have shown that high doses of L-DOPA in monotherapy or combined with peripheral dopa-decarboxylase inhibitors may lead to intrauterine growth retardation or teratogenic effects as malformation of the circulatory system and skeleton malformation (15), several reports hypothesized that the use of L-DOPA in humans during pregnancy might be safe (16–18, 22–25). There is only one case report in the literature on the use of continuous intestinal infusion of L-DOPA/carbidopa gel treatment during pregnancy, after a percutaneous gastrojejunostomy (27). L-DOPA crosses the placenta and is found in fetal tissues (30). By contrast, carbidopa and benserazide are found at high concentrations in the umbilical cord, but in very low concentrations in fetal tissue, indicating that the placenta works as a defense barrier (28–30). Animal studies have shown that L-DOPA treatment was not associated with a deleterious effect on pregnancy and on fetus. However, two cases of miscarriage in the first trimester (23, 26) and one case of fetal osteomalacia were reported during L-DOPA in monotherapy or with dopa-decarboxylase treatment (15).

Dopamine Agonists (Table 2)

Few successful reports, nine studies in literature (15, 16, 31–37), indicate that dopamine agonists (such as bromocriptine, pergolide, pramipexole, cabergolina, and ropinirole) have been used in pregnancy in monotherapy or in association with L-DOPA alone or with dopa-decarboxylase inhibitors without adverse effects on fetal development (31–34, 36, 37). Studies conducted on mice have shown that Pergolide is associated with a 7% reduction of average fetal body weight of the mother, but there is no evidence of any harm to their fetuses (38). Bromocriptine has been widely used to facilitate pregnancy in women with hyperprolactinemia (39). No evidence of teratogenic effect or major complications of gestation were reported with the use of bromocriptine in human or animals (31, 39). There is no report of a teratogenic effect of pramipexole therapy during pregnancy in animals and there is no data with the use of rotigotine or apomorphine in pregnancy.

MAO-B Inhibitors (Table 3)

MAO-B inhibitors (selegine and rasagiline) are used as monotherapy or as added therapy. Animal studies of MAO-B inhibitors have evidenced mild to seriously harmful neurobehavioral effects (19). No study has been published on treatment with selegine alone in pregnant animals. Only two studies (19, 40) report the use of selegine associated with L-DOPA in woman with PD in pregnancy, with no evidence of harmful effect for the fetus and the mother.

COMT Inhibitors (Table 4)

COMT is an enzyme for peripheral metabolism of levodopa. COMT inhibitors are always used in association with levodopa and carbidopa. There is only one report in the literature that uses COMT inhibitor in association with selegine starting at the 19th week of pregnancy in a spontaneous dichorionic/diamniotic twin pregnancy, with the delivery of healthy male twins (40).

Amantidine (Table 5)

Amantidine is originally introduced as an antiviral medication. It was accidentally found that the drug is able to relieve PD early symptoms. Amantidine seems to be teratogenic in both animals and humans (42), because it increases the risk of complications and malformations during pregnancy (especially in the first trimester). Amantidine should be avoided before conception and during gestation and breast feeding. Skeletal developmental defects have been reported in the offspring of rats receiving amantidine in high doses (42). We found two studies (16, 41) using amantidine in monotherapy or combined with other medications in pregnant women with PD.

References	Medication during pregnancy	Change of therapy
1a Cook and Klawans (22)	L-DOPA/CARBIDOPA	Increase L-DOPA dosage during pregnancy
2b	L-DOPA	None
2c	L-DOPA	None
3a Gershank and Leist (23)	L-DOPA/CARBIDOPA	None
3b	L-DOPA/CARBIDOPA	None
4 Golbe (16)	L-DOPA/CARBIDOPA	None
5	L-DOPA/CARBIDOPA	None
6	L-DOPA/CARBIDOPA	None
7	L-DOPA/CARBIDOPA	None
8a	L-DOPA/CARBIDOPA	None
8b	L-DOPA/CARBIDOPA	None
9 Allan et al. (17)	L-DOPA/BENSERAZIDE	None
10 Ball and Sagar (18)	L-DOPA/CARBIDOPA	None
11 Shulman et al. (24)	L-DOPA/CARBIDOPA	Increase L-DOPA dosage during pregnancy
12a Campos-Sousa et al. (25)	L-DOPA	None
12b	L-DOPA	None
12c	L-DOPA	None
12d	L-DOPA	None
13 Robottom et al. (26)	L-DOPA	None
14 Zlotnik et al. (27)	L-DOPA/CARBIDOPA INTESTINAL GEL (LOCI)	None
TABLE 2 | Use of dopamine agonist for PD in pregnancy.

References	Medication during pregnancy	Change of therapy during pregnancy
1 Golbe (16)	BROMOCPRTINE	None
2 Hagell et al. (15)	L-DOPA/BENESERAZIDE + BROMOCPRTINE	Bromocriptine was discontinued in the 2nd month of pregnancy During pregnancy was increased L-DOPA dosage
3 Benito-Leon et al. (31)	BROMOCPRTINE	None
4 De Mari et al. (32)	L-DOPA + PERGOLIDE	None
5a Scott and Chowedhury (33)	L-DOPA/CARBIDOPA + CABERGOLINE	None
5b	L-DOPA/CARBIDOPA + CABERGOLINE	None
6 Mucchiut et al. (34)	PRAMIPEXOLE	None
7 Lindh (35)	L-DOPA/CARBIDOPA + ENTACAPONE + BROMOCPRTINE	None
8 Asha et al. (36)	L-DOPA/CARBIDOPA + BROMOCPRTINE + ROPINIROL	None
9 Bernbir et al. (37)	PRAMIPEXOLE	None

TABLE 3 | Use of MAO-B inhibitors for PD in pregnancy.

References	Medications during pregnancy	Change of therapy during pregnancy
1 Kupsch and Oertel (19)	L-DOPA/BENESERAZIDE + SELEGINE	None
2 Serikawa et al. (40)	L-DOPA/CARBIDOPA until 19th week, then ENATCAPONE + SELEGINE	Increase dose of L-DOPA/carbidopa

TABLE 4 | Use of COMT inhibitors for PD in pregnancy.

Reference	Medications during pregnancy	Change of therapy during pregnancy
1 Serikawa et al. (40)	L-DOPA/CARBIDOPA + ENATCAPONE + SELEGINE	L-DOPA/CARBIDOPA until 19th week, then + ENATCAPONE + SELEGINE

TABLE 5 | Use of amantidine for PD in pregnancy.

References	Medications during pregnancy	Change of therapy during pregnancy
1 Nora et al. (41)	AMANTIDINE	None
2 Golbe (16)	L-DOPA/CARBIDOPA + AMANTIDINE	None
3 Benito-Leon et al. (31)	L-DOPA + AMANTIDINE	None
4 De Mari et al. (32)	AMANTIDINE	None
5b	AMANTIDINE + TRIHEXYPHENIDYL	None

TABLE 6 | Use of anticholinergics for PD in pregnancy.

References	Medications during pregnancy	Change of therapy during pregnancy
1 Golbe (16)	TRIHEXYPHENIDYL	None
2 Hagell et al. (15)	BROMOCRIPTINE + DIPHENHYDRAMINE	None
3 Benito-Leon et al. (31)	TRICERGLINE + DIPHENHYDRAMINE	None
4 De Mari et al. (32)	TRICERGLINE + DIPHENHYDRAMINE	None
5a Scott and Chowedhury (33)	TRICERGLINE + DIPHENHYDRAMINE	None
5b	TRICERGLINE + DIPHENHYDRAMINE	None
6 Mucchiut et al. (34)	PRAMIPEXOLE	None
7 Lindh (35)	L-DOPA/CARBIDOPA + ENTACAPONE + BROMOCPRTINE	None
8 Asha et al. (36)	L-DOPA/CARBIDOPA + BROMOCPRTINE + ROPINIROL	None
9 Bernbir et al. (37)	PRAMIPEXOLE	None

Anticholinergics (Table 6)
Clinical use of anticholinergics is limited due to adverse effects. In the few reports on anticholinergic drugs in pregnant women with PD (16), they are used either as monotherapy or as adjunctive treatment. Trihexyphenidyl, diphenhydramine, procyclidine, benzotropine mesylate, hydrochloride, and biperiden hydrochloride or antihistaminic derivatives such as diparalene are commonly used. Most anticholinergics are pregnancy category B2, but their safety in pregnancy has not been well-established (21). Except for one case of spontaneous miscarriage and a case of probable molar pregnancy, all pregnancies were successful (16).

In the limited literature available, the effect of pregnancy on PD symptoms seems to be quite controversial (Table 7). In 9 of the 53 pregnancies described (17.0%), no antiparkinsonian drug was used (16, 22, 26, 27). Two studies (two pregnant women) did not evaluate the change of PD symptoms during pregnancy (23, 41). In 28 (52.8%) out of 53 pregnancies, symptoms did not change during pregnancy (16, 18, 22, 25–27, 31–33, 35–37); in 3 women (5.7%), some improvement was evidenced (16, 19); and in 21 cases (39.6%), a significant worsening of PD during pregnancy was described (15–17, 23, 24, 26, 27, 34, 40). About complications of pregnancy in women suffering from PD and treated with antiparkinsonian agents during gestation, Table 7 summarizes the results found in the literature. All studies reported pregnancy complications except one study (41). Most women (68.6%) completed their pregnancy without complications (15–19, 22–27, 31–37). Described complications were Trisomy 21 in one case (16), placenta abruption in one case (33), preeclampsia and dystocia in one case (16), and depression with nausea and vomiting in one case (16). The most common complication was miscarriage (8.0%) (16, 23, 26) and spotting in the first trimester (6.0%) (16, 22).

Analyzing the data in the literature, quite a few case reports showed worsening during intrapartum or postpartum period (16, 24, 26, 27, 34, 40). The main complication in the postpartum period was depression (16, 24) (Table 8). Most of the reported
TABLE 7 | Change in PD symptoms and complications during pregnancy.

References	Medications during pregnancy	Change in PD during pregnancy	Complications during pregnancy
1 Nora et al. (41)	AMANTIDINE	NS	NS
2a Cook and Klawans (22)	None	None	None
2b L-DOPA/CARBIDOPA	None	None	Spotting in the 1st trimester
3a L-DOPA	None	None	None
3b L-DOPA	None	None	None
4a Gershanik and Leist (23)	L-DOPA/CARBIDOPA	Worsening of “wearing off” effect	None
4b L-DOPA/CARBIDOPA	NS	None	Miscarriage at the 2nd month
5 L-DOPA/CARBIDOPA	None	Transient increase in “OFF” time	Spotting in the 1st trimester
6 L-DOPA/CARBIDOPA	Transient worsening of Cornea	None	None
7 L-DOPA/CARBIDOPA	None	None	None
8 L-DOPA/CARBIDOPA	None	Gait worsened	Depression (until delivery), nausea and vomiting at 8-9 months
9a L-DOPA/CARBIDOPA	None	Rigidly worsened	None
9b L-DOPA/CARBIDOPA	None	None	None (elective abortion at the 1st trimester)
9c L-DOPA/CARBIDOPA + AMANTIDINE	“ON” state worsened	None	Preeclampsia
10a L-DOPA + AMANTIDINE	None	None	Miscarriage at 4 months
10b TRIHEXYPHENIDYL	None	None	None
10c PROCICLYDINE	None	None	None
11 None	None	None	None
12 AMANTIDINE	None	Rigidly worsened slightly	None
13 DIPARALENE	Gait slowed	None	None
14b TRIHEXYPHENIDYL + DIPHENHYDRAMINE	General rigidity worsened	None	None
15 None	Bradykinesia began, transient resting tremor during labor	None	None
16 None	Micrographia, gait, gait difficult began soon after delivery	None	None
17 None	Dexterity worsened, nausea all pregnancy, depression	None	None
18 None	None	None	None
19 TRIHEXYPHENIDYL + DIPHENHYDRAMINE	None	None	Spontaneous miscarriage in 4 months
20 AMANTIDINE + TRIHEXYPHENIDYL	None	None	Probable molar pregnancy
21a None---------------	None	None	None (elective abortion at 10 weeks)
21b BROMOCRIPTINE	None	None	None (elective abortion at 10 weeks)
22 AMITRIPTYLINE	Mood improved	None	Trisomy 21 on amniocentesis (elective abortion)
23 Allain et al. (17)	L-DOPA/BENSERAZIDE	Motor status worsened, depression began	None
24 Ball and Sagar (18)	L-DOPA/CARBIDOPA	None	None
25 Hagell et al. (15)	L-DOPA/BENSERAZIDE + BROMOCRIPTINE (bromocriptine discontinued in the 2nd month of pregnancy)	Transient depression, increased L-DOPA dosage	None
26 Kupsch and Oertel (19)	L-DOPA/BENSERAZIDE + SELEGINE	Improving symptoms	None
27 Benito-Leon et al. (31)	BROMOCRIPTINE	None	None
28 Shulman et al. (24)	L-DOPA/CARBIDOPA	Increased motor dysfunctions, increased L-DOPA dosage	None
29 De Mari et al. (32)	L-DOPA + PERGOLIDE	None	None

(Continued)
cases showed no teratogenic effect of drugs on the fetus resulting in an uncomplicated birth of a healthy baby. In one case, the use of amantidine was associated with fetal cardiovascular malformations (a single ventricle with pulmonary atresia) (31). carbidopa/levodopa administration was associated with one case of osteomalacia (15). A single case of seizure was reported in a newborn exposed to bromocriptine plus a combination of levodopa, carbidopa, and entacapone (35) and a woman treated with L-DOPA/carbidopa until 19 weeks of pregnancy and then with entacapone and selegine gave birth to an infant with ventricular septum defect (40). Breast feeding is inhibited by dopamine agonists, because they inhibit physiologic lactation (43). Amantadine is known to enter breast milk in low quantities, but there is no report of adverse effects in breast-fed infants (43, 44). It is not known whether L-DOPA, selegine, or peripheral dopa decarboxylase inhibitors are excreted into breast milk (45, 46).

COMMENT

PD is an age-related disease, and pregnancy in women with PD is very uncommon. The incidence of PD increases with age, although about 5% is diagnosed before the age of 40 (3). The literature available on pregnancy in PD includes 38 case reports, but the amount of the evidence on the effect of pregnancy on PD and on safety of dopaminergic medications is so far inconclusive. Studies on the impact of pregnancy on PD described no change (16, 18, 22, 25–27, 31–33, 35–37), improvement (16, 19), or worsening (15–17, 23, 24, 26, 27, 34, 40) of the motor symptoms. Non-motor symptoms seem to worsen during pregnancy as well (16). Our patient experienced worsening of her motor symptoms during gestation and a need for higher L-DOPA dosage throughout pregnancy. The rapid deterioration during gestation and the clinical stability in the postpartum period support the idea of a deleterious effect of pregnancy on PD, which is probably determined by hormonal modifications or L-DOPA pharmacokinetic alteration induced by pregnancy or both. The main concern for managing pregnancy in PD is the safety of antiparkinsonian medications for the fetus. The remaining antiparkinsonian medications belong to category C of PD (21), which means that animal studies point to some risk, while human studies are either not available or they have not confirmed that risk (39, 42). Based on current knowledge, dopamine agonists do not seem to have abortive or teratogenic effects on pregnancy (25, 31–36). The most important available data concern the safety of L-DOPA therapy during pregnancy. Animal data indicate that L-DOPA with or without dopa-decarboxylase inhibitors (carbidopa or benserazide) induces some teratogenic risk when given in high doses in animal models (39). However, in seven cases where L-DOPA was used as monotherapy, there were no reports of a teratogenic effect (22, 25). However, there were two miscarriages in PD patients using L-DOPA (23, 26) and one case of fetal osteomalacia when L-DOPA was associated with benserazide (15). Amantadine is the only antiparkinsonian medication where administration was associated with cardiovascular malformations in one infant.

Table 7 | Continued

References	Medications during pregnancy	Change in PD during pregnancy	Complications during pregnancy		
30 Mucchiut et al. (34)	L-DOPA/CARBIDOPA, BROMOCRIPTINA	None	None		
31a Scott and Chowedhury (33)	L-DOPA/CARBIDOPA + CABERGOLINE	None	None		
31b	L-DOPA/CARBIDOPA + CABERGOLINE	None	None (Placental abruption at 32 weeks)		
32 Lindh (35)	L-DOPA/CARBIDOPA + ENTACAPONE + BROMOCRIPTINA	None	None		
33a Campos-Sousa et al. (25)	L-DOPA	None	None		
33b	L-DOPA	None	None		
33c	L-DOPA	None	None		
33d	L-DOPA	None	None		
34a Robottom et al. (26)	L-DOPA	None	Spontaneous miscarriage at 11 weeks		
34b	None	Motor disability worsened	None		
35 Asha et al. (38)	L-DOPA/CARBIDOPA, BROMOCRIPTINA and ROPINIROLE	None	None (IVF pregnancy)		
36 Serikawa et al. (40)	L-DOPA/CARBIDOPA until 19th weeks then + ENATCAPONE + SELEGINE	Motor disability worsened	Preterm premature rupture of the membranes		
37 Bernbör et al. (37)	PRAMIPEXOLE	None	None		
38a Zlotnik et al. (27)	None	None	None		
38b Levodopa–carbidopaintestinal gel (LOG)	Severe dyskinesia during labor	None			
References	Mode of delivery	Complication intrapartum	Postpartum period	Perinatal outcome	Breast feeding
----------------------	------------------------	--------------------------	-------------------	--	----------------
1 Nora et al. (41)	NS	NS	NS	Single ventricle with pulmonary atresia	NS
2a Cook and Klawans (22)	Term spontaneous VD	None	NS	None	None
2b	Term spontaneous VD	None	NS	None	None
3a	Term spontaneous VD	None	NS	None	None
3b	Term spontaneous VD	None	NS	None	None
4 Gershnik and Leist (23)	Term spontaneous VD	None	None	NS	None
5 Golbe (16)	Term CD	Inadequate progression in labor	None	Healthy	None
6	Term spontaneous VD	None	None	Healthy	None
7	Term spontaneous VD	None	None	Healthy	None
8	Term spontaneous VD	None	None	Healthy	None
9a	Term spontaneous VD	Rigidity worsened	None	Healthy	None
9b	Term spontaneous VD	Preeclampsia /	/	Inguinal hernia	None
10a	Term spontaneous VD	None	Mild postpartum depression	Healthy	None
10b	Term spontaneous VD	None	Mild postpartum depression	Healthy	None
11	CD for dynamic dystocia	Dystocia	Post-partum depression for 2-3 days	Healthy	None
12	Term spontaneous VD	None	None	Healthy	None
13	Term spontaneous VD	None	None	Healthy	None
14	Term spontaneous VD	None	None	Healthy	None
15a	Term spontaneous VD	None	Post-partum depression	Healthy	None
15b	Term spontaneous VD	Transient resting tremor during labor	None	Healthy	None
16	Term spontaneous VD	None	Gait difficulty began soon after delivery	Healthy	None
17	Term spontaneous VD	None	None	Healthy	None
18	Forceps delivery	None	None	Healthy	None
19 Allain et al. (17)	Term spontaneous VD	None	None	Healthy*	None
20 Ball and Sagar (18)	Forceps delivery + epidural anesthesia	None	None	Healthy	None
21 Hagell et al. (15)	Term elective CD	None	None	Osteomalacia	None
22 Kupsch and Oertel (19)	Term elective CD	None	None	Healthy	None
23 Benito-Leon et al. (31)	Term spontaneous VD	None	None	Healthy	None
24 Shulman et al. (24)	Term spontaneous VD	None	None	Postpartum depression	Healthy
25 De Mari et al. (32)	Term CD (podalic presentation)	None	None	Healthy	None
26 Mucchiut et al. (34)	CD because motor impairment	Motor disability worsened	None	Healthy	None
27a Scott and Chowdhury (33)	Term spontaneous VD	None	None	Healthy	None
27b Urgent CD for placental abruption (32 weeks)	None	None	Healthy	None	
28 Lindh (35)	Term spontaneous VD	None	None	Generalized seizures**	None
29a Campos-Sousa et al. (25)	Term spontaneous VD	None	None	Healthy	None
29b Term spontaneous VD	None	None	Healthy	None	
29c Term spontaneous VD	None	None	Healthy	None	
29d Term spontaneous VD	None	None	Healthy	None	

(Continued)
TABLE 8 | Continued

References	Mode of delivery	Complication intrapartum	Postpartum period	Perinatal outcome	Breast feeding
30 Robottom et al. (26)	Term spontaneous delivery	Motor disability worsened	None	Healthy	For 6 months
31 Asha et al. (36)	(IVF pregnancy) Term CD for non-reassuring CTG	None	None	Healthy	None
32 Serikawa et al. (40)	CD at 35 weeks (premature rupture of membranes) D/D twin pregnancy	Motor disability worsened	None	Ventricular septum defect in one infant	None
33 Bernbir et al. (37)	CD at 36 weeks	None	None	Healthy	None
34a Zlotnik et al. (27)	Term spontaneous VD (42 weeks)	None	None	Healthy	Yes
34b	Term spontaneous VD	Severe dyskinesia during labor	None	Healthy***	For 3 months

*The newborn was immediately transferred to the newborn intensive care unit and observed for 8 days without any indication of neurological, vegetative, or metabolic abnormality.
**One hour after delivery, the infant developed generalized seizures. Phenobarbital was given without effect. Diazepam was added and no further seizures were observed. The baby was also short of breath and had increased CRP, and the chest X-ray showed pneumonia.
***The newborn at 10 months, 0.1st weight percentiles for age (low weight percentile for age during the first year of life).

There is no report of major malformations with the use of selegine (19), but data are insufficient. Up to now, there is no data available on rotigotine and apomorphine. As for the risk of using antiparkinsonian drugs during breast feeding, here too evidence is fairly limited. Almost all drugs are excreted into breast milk and are bioavailable to the infant (43), but, generally speaking, concentrations in breast milk are close to or even lower than concentrations in the mother’s plasma, and the total dose to which the infant is exposed is usually much lower than the therapeutic dose range.

CONCLUSIONS

It is necessary that obstetricians and neurologists learn how to manage pregnancy in PD patients, to ensure the best possible maternal and fetal outcome. There seems to be some risk of worsening of the condition or upcoming of new PD symptoms during or shortly after pregnancy. Patients with PD considering pregnancy should be informed about this. More data concerning the safety of antiparkinsonian drugs in PD treatment as well as the effect of pregnancy on parkinsonian symptoms are needed. There is also a need for clinical trials to evaluate the use of antiparkinsonian medication in pregnancy. According to the current state of the art, L-DOPA therapy should be considered preferable to other drugs during pregnancy.

ETHICS STATEMENT

Written informed consent was obtained from the patient for publication of this case report as per our standard institutional rules. A copy of the written consent is available from the corresponding author.

AUTHOR CONTRIBUTIONS

SO and SX conceived the idea and wrote the manuscript. Together with FC performed the revision of the current literature. These authors mainly gave to the draft an obstetrical perspective. EO wrote the manuscript. She gave an insight into the neurological point of view of this challenging issue. AL performed the statistical calculation. LD corrected and supervised the work. Each author approved the final version of the draft.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2019.01349/full#supplementary-material

REFERENCES

1. Braak H, Del Tredici K. Cortico-basal ganglia-cortical circuitry in Parkinson’s disease considered. Exp Neurol. (2008) 212:226–9. doi: 10.1016/j.expneurol.2008.04.001
2. Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord. (2014) 29:454–62. doi: 10.1002/mds.25844
3. Rana AQ, Siddiqui I, Youssuf MS. Challenges in diagnosis of young onset Parkinson’s disease. J Neurol Sci. (2012) 323:113–6. doi: 10.1016/j.jns.2012.08.029
4. Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. (2009) 373:2055–66. doi: 10.1016/S0140-6736(09)60492-X
5. Shulman LM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. (2011) 6:193–222. doi: 10.1146/annurev-pathol-011110-130242
6. Kurtzke JF, Goldberg ID. Parkinsonism death rates by race, sex, and geography. Neurology. (1988) 38:1558–61. doi: 10.1212/WNL.38.10.1558
7. Svedlow RH, Parker WD, Currie LJ. Gender ratio differences between Parkinson’s disease patients and their affected relatives. Parkinsonism Relat Disord. (2001) 7:129–33. doi: 10.1016/S1353-8020(00)00829-8
Olivola et al.

Parkinson's Disease in Pregnancy

8. Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Incidence and distribution of parkinsonism in Olmsted County, Minnesota, 1976-1990. Neurology. (1999) 52:1214–20. doi: 10.1212/WNL.52.6.1214

9. Bourque M, Dzuze DE, Di Paolo T. Neuroprotective action of sex steroids in Parkinson's disease. Front Neuroendocrinol. (2009) 30:142–57. doi: 10.1016/j.yfrne.2009.04.014

10. Callier S, Le Saux M, Liaubet AM, Di Paolo T, Rostene W, Pelaprat D. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (MPP+) towards dopaminergic, mesencephalic neurons in primary culture. J Neurochem. (2002) 80:307–16. doi: 10.1046/j.0022-3042.2001.00693.x

11. Saunders-Pullman R, Gordon-Elliot J, Parides M, Fahn S, Sanders HR, Bressman S. The effect of estrogen replacement on early Parkinson's disease. Neurology. (1999) 52:1417–21. doi: 10.1212/WNL.52.7.1417

12. Dissonh KA, Boja JW, Dzuze DE. Inhibition of the striate dopamine transporter activity by 17beta-estradiol. Eur J Pharmacol. (1998) 345:207–11. doi: 10.1016/S0014-2999(98)00089-9

13. Saunders-Pullman R. Estrogens and Parkinson's disease: neuroprotective, symptomatic, neither, or both? Endocrine. (2003) 21:81–7. doi: 10.1385/ENDO:21:81

14. Cordellini MF, Piazzetta G, Pinto KC, Delattre AM, Matheussi F, Carolino RO, et al. Effect of different doses of estrogen on the nigrostriatal dopaminergic system in two 6-hydroxydopamine-induced lesion models of Parkinson's disease. Neurochem Res. (2011) 36:955–61. doi: 10.1007/s11064-011-0428-z

15. Hagell P, Odin P, Vinge C. Pregnancy in Parkinson's disease: A review of the literature and a case report. Mov Disord. (1998) 13:334–8. doi: 10.1002/mds.870130110

16. Kolbe ML. Parkinson's disease and pregnancy. Neurology. (1987) 37:1245–9. doi: 10.1212/WNL.37.7.1245

17. Allain H, Benteur-Ferrer D, Milton D, Moran P, Jaquemard E, Defawe G. Pregnancy and parkinsonism: a case report without problem. Clin Neuropsychopharmacol. (1989) 12:21–9. doi: 10.1097/00002826-198906000-00006

18. Ball MC, Sagar HJ. Levodopa in pregnancy. Mov Disord. (1995) 10:115. doi: 10.1002/mds.870100119

19. Kupsch A, Oertel WH. Selegine, pregnancy and Parkinson's disease. A case report and discussion. Fertil Steril. (1979) 30:142–5. doi: 10.1016/0015-0262(79)90054-2

20. Fahn S, Elton R. Selegiline, pregnancy and Parkinson's disease. Mov Disord. (1988) 3:175–6. doi: 10.1002/mds.870130134

21. Fahn S, Elton R. The UPDRS Development Committee in Recent Developments in Parkinson's Disease. Florham Park, NJ: Macmillan Healthcare Information, (1987).

22. Brucker MC, King TL. The 2015 US food and drug administration pregnancy and lactation labeling rule. J Midwifery Womens Health. (2017) 62:30. doi: 10.1111/jmwh.12611

23. Cook DG, Klawans HL. Levodopa during pregnancy. Clin Neuropsychopharmacol. (1985) 8:93–5. doi: 10.1097/00002826-198503000-00010

24. Ball MG, Sagar HJ. Levodopa in pregnancy. Mov Disord. (1995) 10:115. doi: 10.1002/mds.870100119

25. Shulman LM, Minagar A, Weiner WJ. The effect of pregnancy in Parkinson's disease. Mov Disord. (2000) 15:132–5. doi: 10.1002/1094-8527(20000115)15:1<132::AID-MDS1020>3.0.CO;2-C

26. Campos-Sousa RN, Almeida KJ, Dossantos AR, da Silva BB. Antiparkinsonian treatment in pregnancy. J Hum Reprod Sci. (2011) 4:43–5. doi: 10.1016/j.jhreps.2011.01.007

27. Turkalj I, Braun P, Krupp P. Surveillance of bromocriptine in pregnancy. JAMA. (1982) 247:1589–91. doi: 10.1001/jama.247.11.1589

28. Narburg LJ, Turner J, Freeman SJ. Evaluation of the teratogenic potential of the dopamine agonist bromocriptine in rats. Toxicol Lett. (1990) 50:189–94. doi: 10.1016/0378-4274(90)90110-J

29. Serikawa T, Shimohata T, Akashi M, Yokoseki A, Tsuchiya M, Hasegawa A, et al. Successful twin pregnancy in a patient with Parkinson-associated autosomal recessive juvenile parkinsonism. BMC Neurol. (2011) 11:72. doi: 10.1186/1471-2377-11-72

30. Nata J, Nata AH, Way HL. Cardiovascular maldevelopment associated with maternal exposure to amantadine [letter]. Lancet. (1975) 2607. doi: 10.1016/0140-6736(75)90198-1

31. Lamar JK, Calhoun FJ, Darr AG. Effect of amantadine hydrochloride on cleavage and embryonic development in the rats and rabbits. Toxicol Appl Pharmacol. (1970) 17:272. doi: 10.1016/0041-008X(70)90054-2

32. Kacew S. Adverse effects of drug and chemicals in breast milk on the nursing infant. J Clin Pharmacol. (1993) 33:213–21. doi: 10.1002/jcph.4950330507

33. Sharp and Dohme (1996). Product information. Virofral (amantidine). Tampa, FL: Somerset Pharmaceuticals (1996). Product information. Virofral (amanitidine).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Olivola, Xodo, Olivola, Cecchini, Londero and Driial. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.