The Importance of Sex Stratification in Autoimmune Disease Biomarker Research: A Systematic Review

Kristy Purnamawati1*, Jamie Ann-Hui Ong2, Siddharth Deshpande2, Warren Kok-Yong Tan2, Nihar Masurkar2, Jackson Kwee Low2 and Chester Lee Drum3,4,5,6,7

1 Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore (NUS), Singapore, Singapore, 2 National University of Singapore, Singapore, Singapore, 3 Cardiovascular Research Institute, National University Health System, Singapore, Singapore, 4 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 5 Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore, 6 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 7 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

The immune system is highly dynamic and regulated by many baseline characteristic factors. As such, significant variability may exist among different patient groups suffering from the same autoimmune disease (AD). However, contemporary research practices tend to take the reductionist aggregate approach: they do not segment AD patients before embarking on biomarker discovery. This approach has been productive: many novel AD biomarkers have recently been discovered. Yet, subsequent validation studies of these biomarkers tend to suffer from a lack of specificity, sensitivity, and reproducibility which hamper their translation for clinical use. To enhance reproducibility in validation studies, an optimal discovery-phase study design is paramount: one which takes into account different parameters affecting the immune system biology. In this systematic review, we highlight need for stratification in one such parameter, i.e., sex stratification. We will first explore sex differences in immune system biology and AD prevalence, followed by reported sex-bias in the clinical phenotypes of two ADs—one which more commonly affects females: systemic lupus erythematosus, and one which more commonly affects males: ankylosing spondylitis. The practice of sex stratification in biomarker research may not only advance the discovery of sex-specific AD biomarkers but more importantly, promote reproducibility in subsequent validation studies, thus easing the translation of these novel biomarkers from bench to bedside to improve AD diagnosis. In addition, such practice will also promote deeper understanding for differential AD pathophysiology in males and females, which will be useful for the development of more effective interventions for each sex type.

Keywords: autoimmune diseases, sex differences, gender, sex stratification, biomarkers

INTRODUCTION

Autoimmune diseases (ADs) are a complex class of diseases resulting from the immune system failure to differentiate between self and foreign antigens (1). This misrecognition directs the immune system to attack self-antigens, which consequently modifies the biological functions of the affected tissues. Ultimately, tissue damage and dysfunctions ensue and present as clinical symptoms. However, the onset of clinical symptoms is often delayed and occurs following irreversible damage to the affected tissues.
or organ. There is a global urgency for the discovery of specific and sensitive biomarkers for an early detection of ADs. Additionally, the ideal AD biomarker(s) should also be surrogate for disease severity, progression to disability and response to therapy (2).

The discovery of such biomarkers is not straightforward. Currently, validated biomarkers do not yet fulfill this tall order (we list validated biomarkers from select ADs in Table S1 in Supplementary Material). The immune system biology is dynamic—it varies with genetic background, age, sex, and the environment (3–11). Thus, patients with varying characteristics may present with different clinical phenotype and biomarkers despite suffering from the same AD. Conventional biomarker research strategy has been reductionist and aggregated: they compare all AD patients and controls of mixed baseline characteristics. This approach, although suboptimal, has been productive, leading to the discovery of many novel AD biomarkers (2). Yet, validation and clinical translation of such novel biomarkers have proven to be challenging, possibly due to: (1) lack of control and patient group stratification and matching; (2) inappropriate biomarker validation strategy; and/or (3) techniques used in clinical trials (12, 13). In this review, we highlight the importance of sex stratification in AD biomarker research prior to the discovery-phase, by drawing attention to the fact that: (1) ADs display stronger female bias and (2) present with different disease trajectories in males and females. There are apparent sex differences in AD pathophysiology. These need to be recognized and hopefully over time, incorporated into AD research efforts, clinical diagnosis, and management for a better patient outcome.

METHODS

We assembled a comprehensive list of disease prevalence and associated biomarkers in females and males from different geographical locations. Extensive literature review for the study variables of interest for each of the diseases was mainly carried out using PubMed, although some books and online resources were also consulted. Standard search strategies were used, including medical subject headings such as “disease name” and “biomarker,” or “disease name” and other parameters of interest (e.g., “prevalence,” “in Japan,” “diagnosis,” “autoantibodies,” etc.). Of note, we searched in futility for “sex/gender differences,” “disease name,” and “biomarkers,” perhaps highlighting the paucity of such studies. In total, we reviewed >1,000 abstracts and >400 full papers and included papers which fulfilled the following criteria:

1. **Table 1**, review papers and an immunology textbook describing sex-biased immune responses in humans, i.e., Ref. (3, 4, 14).
2. **Table 2**, clinical studies indicating numbers of females and males in their study. Studies in which the male and female numbers were not representative of the disease prevalence and incidence in that particular geography were excluded.
3. **Tables 3–6**, only reviews [i.e., Ref. (15–19)] or primary clinical research papers reporting at least one significant ($P < 0.05$) sex-bias in clinical phenotype was reported.
4. Table S1 in Supplementary Material, review papers and primary research papers that propose novel serum- or plasma-derived proteomic biomarkers. Only biomarkers that have been validated in multiple clinical studies are included. Often this means seeing multiple papers reporting the same biomarkers. Exclusion criteria include:

 a. generic biomarkers such as metabolites and oxidative stress biomarkers, likely to be observed with other diseases;
 b. genetic biomarkers such as DNA, RNA, single nucleotide polymorphisms, etc.;
 c. biomarkers derived from site-specific fluids, such as synovial and cerebrospinal fluids, urine, tears, fecal matter, etc.

RESULTS

Males and Females Have Different Biological Landscapes

A report released by the Institute of Medicine in 2001, “Exploring the Biological Contributions to Human Health: Does Sex Matter?” describes in great detail the different factors that contribute to biological differences in males and females, and how these differences affect health and diseases in these two sexes (11). Beyond the overt differences in reproductive biology, males and females show differences in immune functions, brain organization, pain perception, gene dosing (for genes that escape X-chromosome inactivation) as well as metabolism, lifestyle, and physical performance, all of which may alter pharmacokinetic and pharmacodynamics variables in the two sexes (11). Males and females operate from different biological landscapes, be it in healthy, diseased, or recovering states.

To explain autoimmune sex dimorphism, it becomes necessary to first describe the cellular and hormonal interactions found in normal immune regulation and thereafter extrapolate these to autoimmune phenomena. In comparison to the innate immunity, the adaptive immune system is known to be significantly affected by sex. Adult females in general, show stronger immune responses than others, and these responses are partially modulated by sex hormones (3, 4, 6, 11). Other contributing parameters include genetic and environmental factors; we refer the readers to a string of excellent reviews for in-depth discussions of these factors (3–10). We summarize the sex dichotomy in normal immune system biology in **Table 1** (3). All components of the innate immunity, such as the toll-like receptor pathway, antigen-presenting cells, dendritic cells, macrophages, granulocytes, and natural killer cells, show stronger activity in females. Despite the lower CD8+ T-cell count, the cytotoxicity of each of these cells is higher in females. As estrogen and progesterone levels wax and wane during the menstrual cycle, the balance between $T_{H}1$ and $T_{H}2$ system fluctuates. This balance and its interactions with other systems such as the $T_{H}17$, T_{reg}, and B-cells dictate the overall immune response. Disruptions to the equilibrium of these different systems lead to different AD pathologies and disease onsets in males and females (6).

ADs Show Stronger Female Bias

There are currently more than one hundred identified ADs, with 24 showing high prevalence (occurring in 1 per 10,000 people).
TABLE 1 | Sex dimorphism of the immune system biology.

Immune component	Cytokines (14)	Sex differences (females vs males) (3)	Effects of sex hormones (3, 4, 24)			
Innate immunity			Estradiol	Progesterone	Androgens	
Toll-like receptor (TLR) pathway	Inflammatory cytokines, chemotactic factors, antimicrobial peptides, type I interferons (IFNα and IFNβ)	↑ TLR gene expression	↑ TLR4, TLR7, TLR9	↓ TLR3, TLR7	↓ TLR4	
		↑ TLR7 expression				
		↓ IL-10 production by TLR-9 stimulated PBMCs				
Antigen-presenting cells (APCs)	Interleukins: IL 12, IL 17 (20)	↑ APC efficiency	↓ Antigen presentation (21)	↑ Antigen presentation (22)	↓ Antigen presentation (23)	
Dendritic cells (DCs)	Interleukins: IFNα, Interleukins: IL10, IL12, IL23, IL27, IL28, IL29, IL37	↑ TLR7 activity	↑ TLR4	↑ IL1β, IL6 and TNF production		
		↑ Type 1 interferon (IFN) activity				
Macrophage	Colony stimulating factors: GM-CSF, Interleukins: IFNα, Interleukins: IL1α, IL1β, IL6, IL10, IL12, IL15, IL18, IL23, IL27, oncostatin, TNF family: TNFα	↑ Activation levels	↑ FIZZ1, YM1	↓ TNF and iNOS/NO		
		↑ Phagocytic capacity	↓ IL-10 production			
		↑ Pro-inflammatory cytokine production	↓ TLR expression levels			
		↓ TLR4 expression				
Eosinophil	IFNγ, IL16	↑ Phagocytic capacity	↓ Count, anti-inflammatory activity, elastase release	Not defined		
Neutrophil	IFNγ, IL17	↑ ↓ TLR expression levels	↓ Chemotactic activity	Not defined		
NK Cells	Interleukins: IFNγ, Interleukins: IL17, IL26, IL32, TNF family: TNFα	↓ Cell count	↑ IFNγ, Granzyme B	↑ Cell count and apoptosis (caspase-dependent)	Not defined	
			↑ FASL			
			↓ Cytotoxic activity			
Adaptive immunity						
T-cells	Colony stimulating factors: GM-CSF, M-CSF, Interleukins: IFNγ, TNF family: TNFα, lymphotoxin, CD40L, Fasl, CD27L, CD30L, APRIL, LIGHT, BAFF, Interleukins: IL2, IL4, IL5, IL6, IL9, IL10, IL13, IL16, IL24, IL32, oncostatin, T17 cells: IL20, T2 cells: IL21, IL25, IL31, Tαβ: IL17, IL26, Tαβ: IL35	↑ CD4+ T cell count (25)	↑ IFNγ and T01 cells responses	↑ T1 cells activity	↑ IFNγ production by T1 cells	
		↑ CD4/CD8 T cell ratio	High estradiol: ↑ IL4 and T02 cells responses	↑ T2 cells activity	↑ T02 production by T01 cells	
		↑ Activated T cells count	↑ T cell proliferation	↑ % of T01	↑ % of T01	
		↑ CD8+ count	↑ CD8+ cytotoxicity	↑ T01 cell count	↑ T01 cell response of CD8+ T cells	
		↑ Th2 bias	↑ Th1 bias	↑ Response of CD8+ T cells	↑ Response of IL4, IL5 and GATA3	
		↑ Th0 cell count	↑ Th1 cell count and IL17 expression	↑ secretion of IFNγ and IL10 (24)	↑ IL17	
		↑ Th1 cytokine secretion	↑ CD4+ TNF production	↑ CD4+ COR1 and CCR5 expression	↑ Tαβ cell count	
B-cells	Lymphotoxin	↑ B-cell count	↑ IgM and IgG production	↑ Total antibody production	↓ Response	
		↑ Antibody production	↑ Survival of autoreactive B cells	↓ Autoantibodies		
			↓ Negative selection of naive B cells			

(212). 71% of these common ADs (Figure 1 below, in bold) are more prevalent in females than males (>50% female prevalence), suggestive of a stronger female bias (213). However, these data were an aggregated one from “world,” and “USA” (213). In Table 2, we stratify some of these ADs by geographical location (as a proxy for ethnicity), in order to gain a better insight of each AD’s prevalence in different parts of the world. In addition, we include three ADs which have been reported to be more prevalent in males: idiopathic pulmonary fibrosis (IPF), ankylosing spondylitis (AS), and Guillain–Barré syndrome (GBS).

Table 2 shows that female predominance prevails in all three systemic ADs. Regardless of the geography, females are more than thrice as likely as males to suffer from systemic ADs. For instance, Spanish women are 18.6 times more likely than men to suffer from Sjögren’s syndrome (SS). A similar trend is also observed with endocrine ADs: Grave’s disease and Hashimoto’s thyroiditis (HT). In India, the female to male ratio for HT is an astonishing 21.7 to 1. Another strong female bias (at least a 2:1 female to male ratio worldwide) is observed with some gastrointestinal and hepatic ADs (primary biliary cholangitis...
Class	Disease	North Americas	Scandinavia	Europe	Australia or New Zealand	Asia						
Systemic and connective tissue	Systemic lupus erythematosus	6 (26)–11.6 (27):1	4.7:1 (28) (Sweden)	5.8:1 (29) (France)	4.4:1 (30)	7.8 (31)–11.4 (32):1 (China)	6:1 (33) (Korea)	8.2:1 (34) (Japan)				
	Sjögren’s syndrome	5.5:1 (35)	8 (28)–8.7 (36):1 (Sweden)	15.8:1 (37)	18.6:1 (38) (Spain)	8.3:1 (39)	4.2:1 (40) (India)	17.4:1 (41) (Japan)	17:1 (42) (China)			
Pulmonary	Idiopathic pulmonary fibrosis	0.9 (43)–1.2 (44):1	0.3:1 (45) (Denmark)	0.7:1 (47) (Spain)	0.6:1 (48) (UK)	0.5:1 (50)	0.3:1 (51) (Korea)	0.4:1 (52) (Japan)				
	Psoriasis	1 (62)–1.3 (63):1	1.1:1 (63) (Spain)	1.3:1 (65) (Germany)	1.1:6 (67) (UK)	2:1 (68)	0.6:1 (69) (Japan)					
Skin	Scleroderma (also systemic)	4.8:1 (53)	3.2:1 (28) (Denmark)	9.7:1 (55) (Italy)	4.7 (66)–7.2:1 (67) (UK)	7.4:1 (59)	7.7:1 (34) (Japan)	4 (63) – 10 (61):1 (India)				
	Psoriasis	1.1:1 (28) (28):1	1:1 (64) (Norway)	1:3:1 (65) (Spain)	0.8:1 (66) (Germany)	2:1 (68)	0.6:1 (69) (Japan)					
Hematopoetic and vascular	Antiphospholipid syndrome	3.6:1 (70, 71)	4.5:1 (72) (Norway)	2.1:1 (73) (Spain)	1.7:1 (74) (Italy)	10:1 (75) (UK)	5.4:1 (76) (Japan)	4.4:1 (77) (Singapore)				
	Immune thrombocytopenic purpura	1.1 (78)–1.4 (79, 80):1	1.7:1 (81) (Denmark)	1.7:1 (82) (France)	1.4:1 (83) (Germany)	1.3:1 (84) (UK)	1.3 (85)–1.6 (86, 87):1	1.6 (88)–2.2 (89):1 (China)	1.9:1 (90) (India)	4.3:1 (91) (Singapore)		
Endocrine	Grave’s disease	6:1 (92)	5.8:1 (63) (Denmark)	3.5:1 (94) (Greece)	4.4:1 (95) (France)	4:1 (96)	2.5–2.8:1 (97) (China)					
	Hashimoto’s thyroiditis	11.8:1 (98)	4.4:1 (28)	5.4:1 (94) (Greece)	4.4:1 (95) (France)	7:3:1 (99)	10.7:1 (100) (China)	21:7:1 (101) (India)				
	Type 1 diabetes (adult*)	1:1 (102)	0.8:1 (103)	0.5:1 (104) (Italy)	0.6:1 (105) (Spain)	0.5–0.8:1 (104, 105) (UK)	0.9–1.5:1 (105, 106)	1.3:1 (107) (India)	1.4:1 (108) (Japan)			
Gastrointestinal and liver	Primary biliary cholangitis	10 (109)–12.4 (110):1	4:1:1 (29)	7:9:1 (111) (France)	12.6:1 (112) (UK)	9:1 (113)	10.5:1 (114) (China)	6:5:1 (115) (Japan)				
	Autoimmune hepatitis	4:1 (116)	3.17:1 (117) (Sweden)	5.5:1 (120) (Spain)	7:1:1 (121) (Italy)	2:7.1:1 (122) (Germany)	2.7:1 (123) (NZ)	3.1:1 (124) (AUS)	6.7:1 (125) (Japan)	5.9:1 (126) (China)	8.4:1 (127) (India)	11:1 (128) (Singapore)
	Ulcerative colitis	0.9:1 (129)	1:1 (72)	0.9:1 (73) (France)	0.8:1 (71) (Western EU)	1:1:1 (71)	1.05:1 (76) (India)	0.7:1 (77) (Asia)	0.9:1 (73) (Japan)			
	Crohn’s disease	1:1 (129)	1.1:1 (28)	1.32:1 (73) (France)	0.7:1 (71) (Western EU)	1:1 (71)	1:1 (76) (India)	0.6:1 (77) (Asia)	0.4:1 (73) (Japan)			
	Celiac disease (adult*) (CoD)	1.3 (74)–2.7 (75):1	1.8:1 (28) (Denmark)	1.1:1 (130) (Germany)	0.6:1 (130) (Italy)	0.5:1 (130) (UK)	1.6:1 (132)	0.7:1 (133) (India)	1.3:1 (134) (China)			
Musculoskeletal	Ankylosing spondylitis	0.3:1 (135)	0.5:1 (28) (Denmark)	0.2:1 (138) (Greece)	0.4:1 (139)	0.3:1 (140) (China)	0.2:1 (141) (India)	0.2–0.3:1 (142) (Japan)	(Continued)			
and autoimmune hepatitis), as well as a musculoskeletal AD (rheumatoid arthritis).

Although a strong female preponderance was observed with other ADs, these tend to vary with geographical locations. For example, antiphospholipid syndrome shows a female to male ratio of at least 3:1 worldwide, except in Spain and Italy, where it shows lower ratios (2:1:1 and 1:7:1, respectively). Immune thrombocytopenic purpura (ITP) was reported to have a 70% female prevalence in Denmark (213); however, the sex ratio is much lower in our dataset, ranging from 1.1:1 in the USA to 1.7:1 in France. Asian females seem to be more likely to get ITP than other ethnicities, with a female to male ratios ranging from 1.9:1 in India to 4.3:1 in Singapore. Other ADs reported include celiac disease (CoD) and ulcerative colitis (UC), which affected 57 and 65% of females, respectively (213). The female-to-male ratios for CoD and UC vary in our dataset, favoring males or females

TABLE 2 | Continued

Disease	North America	Scandinavia	Europe	Australia or New Zealand	Asia
Rheumatoid arthritis	2.6:1 (143)	2.2:1 (28) (Denmark)	2.2:1 (144) (UK)	3.8:1 (143) (China)	
Psoriatic arthritis	0.7:1 (145)	1.23:1 (137) (Sweden)	0.2:1 (138) (Greece)		
Neurological	Multiple sclerosis	2:1-2.3:1 (28) (Denmark)	2.3 (150)-4.5 (151):1		
Myasthenia gravis	1.4:1 (155)	1:1:1 (28)	1:1 (158)		
Guillain–Barré syndrome	0.8:1 (162)	0.6:1 (163) (Finland)	0.6:1 (164) (Sweden)		

TABLE 3 | Sex differences in systemic lupus erythematosus clinical phenotypes.

Clinical phenotype	Studies showing phenotype is increased in males	Studies showing phenotype is increased in females	Studies showing statistically insignificant in males and females
Mortality	(27, 172)	(18, 27, 32, 175–182)	(18, 27, 181, 184)
Disease activity	(17, 27, 173)	(18, 27, 176, 178, 184, 185)	(18, 27, 181, 184)
Alopecia	(18, 27, 176, 178, 184, 185)	(18, 27, 181, 184)	
Photosensitivity	(18, 27, 181, 184)	(18, 27, 181, 184)	
Discoid lesions	(32, 181, 186–188)	(18, 27, 181, 184, 185)	(18, 27, 181, 184)
Malar rash	(17, 27, 176, 178, 184, 185)	(18, 27, 181, 184)	
Raynaud’s phenomenon (RP)	(17, 27, 176–179, 184, 190, 191)	(18, 27, 181, 184)	
Musculoskeletal (myositis, tendonitis, arthralgia/arthritis)	(178)	(17, 18, 27, 173, 176, 177, 179, 185, 186, 188, 192, 193)	
Oral ulcers	(17, 18, 27, 176, 178, 181, 182, 184, 187)	(18, 27, 181, 184)	
Serositis	(18, 27, 181, 184)	(18, 27, 181, 184)	
Gastrointestinal complications	(179)	(18, 27, 181, 184)	
Renal disease	(17, 18, 27, 174, 176, 177, 185, 187–191, 195, 196)	(18, 27, 176, 178, 184)	
Neurological and psychiatric disease	(182, 195), Seizure (197), peripheral neuropathy (17)	Psychosis (177), psychiatric (17, 175)	
Hematological: thrombocytopenia, leukopenia	(18, 27, 177, 195)	(17, 18, 27, 182, 184, 188, 191)	
Cardiovascular	(27, 176, 179, 187)	(18, 27, 181, 184, 185)	
Thromboses	(27, 179, 180, 190, 193)	(18, 27, 181, 184)	

Adapted with modifications from Ref. (15–18).
The results depict studies where significant (\(P < 0.05\)) differences were detected.
Year of Study	Country (ethnicity)	Study type	Size (%male)	Age at onset	Clinical phenotype (P < 0.05)	Serology	
					Increased in males	Increased in females	
North America							
1969–1983	US (multiethnic)	Prospective	618 (10.2)	37.1 (M), 36.5 (F)	Renal disease	Musculoskeletal	
	US (198)	Inception	361 (17.2)	44.7 (M), 35.2 (F)	Seizures	Neurological, alopecia, ↓ platelets	
1982–1983	US (175)	Prospective control	100 (50)	45 (M), 44 (F)	Hypertension, renal disease, Thrombotic episode, hypertension, disability, lymphopenia	Malar rash, RP, photosensitivity, oral ulcers, alopecia, arthralgia	
1987–2012	US (multiethnic)	Retrospective	1979 (7.9)	49.8 (M), 37.6 (F)	Proteinuria, lymphopenia, platelets count	Anti-Sm, DAT, LAC, anti-dsDNA, low C3 (M)	
2002–2007	US (multiethnic)	Case-control	265 (9)	NA		6 antibodies assayed, P > 0.05	
Latin America							
1997–2005	Latin America	Inception	1213 (10.1)	27 (M), 29.2 (F)	Constitutional symptoms, hypertension, proteinuria, any renal, hemolytic anemia	Low C3, IgG aCL (M)	
1972–1993	Latin America	Cross-sectional	1316 (8.1)	26 (M), 28 (F)	Renal disease	Anti-dsDNA (M)	
2000–2011	Colombia (multiethnic)	Cross-sectional	160 (23)	32.0 (M), 30.5 (F)	Severe disease activity	Anti-dsDNA (M)	
2008–2012	Brazil (189)	Prospective	888 (8.1)	29.9 (M), 29.9 (F)	Malar rash, renal disease		
Scandinavia, Europe, and North Africa							
1980–1990	Spanish (186)	Prospective	261 (11.5)	34 (M), 31 (F)	Discoid lesion, subcutaneous lesion	Arthritis, malar rash	
1981–2000	Greek (184)	Retrospective	580 (14)	34.6 (M), 31.4 (F)	NA	Photosensitivity, RP, oral ulcers, anemia	
1982–2012	UK (multiethnic)	Retrospective	484 (9.3)	30.9 (M), 29.1 (F)	Secondary Sjögren’s syndrome (over course of disease), thrombocytopenia	Oral ulcers	
1987–2006	Spain (191)	Retrospective	150 (15.3)	54 (M), 43 (F)	NA	IgM aCL (F)	
1989–2007	Greek (179)	Retrospective	743 (7.9)	34 (M), 31 (F)	Nephropathy, tendonitis, myositis	Anti-SSA/Ro (F)	
1990–1999	Tunisian (180)	Retrospective	295 (8.1)	NA	Vascular thrombosis	Anti-SSA/Ro (F)	
1992–2006	Spain (182)	Retrospective	363 (13)	47.8 (M), 36.6 (F)	Serositis, renal disease, neurologic disorder	Anti-DNA (M)	
2000–2008	Brazil (199)	Retrospective	513 (11.5)	46.2 (M), 36.2 (F)	Serositis, nephropathy, hypertension		
Middle East							
1976–2011	Iran (188)	Retrospective	2355 (10.1)	25 (M), 24.5 (F)	Discoid rash, nephritis	Arthritis, leucopenia	
1996–2010	Turkey (185)	Retrospective	428 (6.8)	40.4 (M), 38.5 (F)	Renal disease, CNS	Dry eyes, Dry mouth, photosensitivity	
Asia							
1990–1993	Asian (192)	Retrospective	147 (41.5)	28.2 (M), NA (F)	NA	Arthritis, leucopenia	
1994–2010	Korea (196)	Retrospective	632 (9)	32.9 (M), 32.6 (F)	Renal disease	Discoid rash, leucopenia, Leukopenia	
1999	Hong Kong (Asian)	Retrospective	252 (20.2)	31 (M), 31.9 (F)	NA	Anti-SSA/Ro (F)	
2001	Malaysian (Asian)	Prospective	134 (9.0)	30 (M), 26 (F)	Thrombosis	Anti-SSA/Ro (F)	
2006–2010	Indian (Asian)	Retrospective	250 (11.2)	22.3 (M), 28.3 (F)	Renal disease	Arthritis	
2008	Thai (Asian)	Retrospective	111 (33.3)	34.6 (M), 34.4 (F)	↓ Platelets, ↓ Serum creatinine	Panel of 13 antibodies, P > 0.05	
2010	Chinese (181)	Case-control	1790 (9.8)	31.5 (M), 30.9 (F)	Serositis, pleuritis, and discoid rash	7 antibodies assayed, P > 0.05	

F = female; M = male; NA, not applicable; DAT, direct antiglobulin test; LAC, lupus anticoagulant; ESR, erythrocyte sedimentation rate; anti-dsDNA, anti-double stranded deoxyribonucleic acid; anti-Sm, anti-Smith; IgG Acl, anti-cardiolipin; anti-Sjögren’s syndrome-related antigen A (SSA/Ro), anti- Sjögren’s syndrome-related antigen B (SSB/La).
TABLE 5 | Sex differences in ankylosing spondylitis clinical phenotypes.

Clinical phenotype	Studies showing phenotype is significantly higher in males	Studies showing phenotype is significantly higher in females	Studies showing statistically insignificant differences in males and females
Baseline characteristics			
Age at onset	(203)	(141, 201–204)	(19⁸⁶, 205, 206)
Age at diagnosis	(141, 203, 204)	(19⁸⁶, 202, 206)	
Delay in diagnosis	(19⁸⁶, 205)	(141, 203, 204, 206, 207)	
Night pain	(206)		
Sleep disturbance	(206)		
Duration of morning stiffness	(207)		
Relevant family history	(200, 208, 209)	(202, 203)	
HLA-B27-positive, %	(202–204, 209)	(19, 141, 200, 201, 205)	
Disease activity and functional index			
ESR	(203–205, 208)	(201, 208)	(141, 202, 203, 205, 207)
CPP	(203–205, 208)		(201)
Disease activity: BASDAI score	(201, 205–210)	(141, 202–204)	
BAS-G			(203, 205)
Back pain	(201, 202, 209)	(203, 205)	
BASRI	(207, 208, 210)		
BASRI-spinal	(200, 201)		
BASRI-hip	(205)		
Physical function: BASFI score			
Spinal mobility: BASMI score	(203, 204, 207)	(141, 200, 201, 203–205, 207, 209, 210)	
Occiput-to-wall distance	(202, 207, 209, 210)		
Chest expansion			
Modified Schober’s test	(202, 209, 210)		
Finger-to-floor	(203, 209, 210)		
Lumbar rotation			(203)
Clinical data			
MASES	(204, 209)		
Enthesitis	(202–208, 210)	(141, 209)	
Swollen joint score	(204, 206, 209)		
Tender joint score	(205, 207–209)		
Definite deterioration and radiographic progression — cervical spine	(208, 211)		
Cervical pain			(203, 209)
Radiographic sacroiliitis, %	(208, 209)		
Dactylitis			(204, 210)
Root joint involvement (shoulder and hip)	(205)	(141)	(202, 203, 209)
Localization of clinical symptoms to buttock	(209)		
Peripheral arthritis	(204, 208)		
Upper limb arthritis (%)	(209)		
Lower limb arthritis (%)			(209)
Knee involvement	(202)		
Intensity of axial pain	(209)	(203)	
mSASSS	(205)		
Thoracic syndesmophyte	(202)		
Bamboo spine	(202)		
Definite deterioration and radiographic progression — lumbar spine	(211)		
MRI-inflammatory lesions of the spine, %	(208)		
Uveitis	(141, 202)	(203–205, 209)	
Measures of Quality of Life			
SF-36 mental score	(205, 208)		
SF-36 physical score	(208)		
ASQoL score	(209, 210)	(203, 205)	
EuroQol score			(205)
HAQ-AS	(208)		

The results depict studies where significant (P < 0.05) differences were detected; R(x) indicates meta-analysis of x number of published studies; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; BAS-G, Bath Ankylosing Spondylitis Patient Global disease activity score; BASRI, The Bath Ankylosing Spondylitis Radiology Index; BASFI, Bath Ankylosing Spondylitis Functional Index; BASMI, Bath Ankylosing Spondylitis Metrology Index; MASES, Maastricht Ankylosing Spondylitis Enthesitis Score; mSASSS, modified Stoke Ankylosing Spondylitis (AS) Spine Score; SF-36, Medical Outcomes Study 36-Item Short Form; ASQoL, Ankylosing Spondylitis Quality of Life Questionnaire; EuroQol, European Quality Of Life scale; HAQ-AS, Health Assessment Questionnaire for the Spondyloarthropathies.
TABLE 6 | Comparative studies of male and female ankylosing spondylitis: main clinical and demographic findings.

Year of Study	Country (ethnicity)	Study type	Size (% female)	Age at onset	Clinical data ($P < 0.05$)	Serology	
					Higher in males	Higher in females	NA
North America							
2007	USA (White, African American, Asian/ Pacific Islander, Native American, Hispanic, others) (200)	Prospective	402 (24.9)	23.6 (M), 21.5 (F)	BASRI, BASFI and HAQ-S (when adjusted for BASRI), thoracic, and lumbar spinal radiographic severity	AS family history, neck and peripheral joint pain*	
Latin America							
2006–2009	Brazil (209)	Prospective	1,505 (27.6)	NA	% of HLA-B27+ patients, axial inflammatory pain, lumbar pain, urethritis, occiput-to-wall and finger-to-floor distances, BASRI, BASRI-spine, BASRI-hip, grade 4 sacroilitis	AS family history, upper limb arthritis, dactylytis and nail involvement, psoriasis, number of painful and swollen joints, MASSES, BASDAI, ASQoL, Schober's test	
2006	Argentina, Brazil, Costa Rica, Chile, Ecuador, Mexico, Peru, Uruguay, and Portugal (210)	Cross-sectional	1,072 (23.8)	NA	BASRI, occiput-to-wall and finger-to-floor distance	BASDAI, ASQoL, Enthesitis, Schober's test	NA
Europe							
2004–2009	UK (206)	Prospective	516 (66.7)	NA	Night pain, sleep disturbance, BASDAI score, BASFI score	ESR (F)	
2005–2016	Switzerland (204)	Prospective	440 (33.2)	25 (M), 27.3 (F)	% of HLA-B27+ patients, BASMI score	Diagnostic delay, peripheral arthritis, number of swollen joints, % enthesitis, MASSES	CRP (M)
2004–2013	Spain (201)	Retrospective	1,514 (25.3)	26.7 (M), 28.2 (F)	Lumbalgia	AS family history	NA
2007–2010	France (208)	Prospective	475 (49.7)	NA	SF-36 mental and physical scores, % radiographic sacroilitis, MRI-inflammatory lesion of sacroiliac joints and spine	Pain at cervical spine, buttock, axial, and peripheral joint pain intensity, tender joint and swollen joint scores, MASSES, AS family history, BASDAI, BAS-G, BASFI scores, HAQ-AS, ASQoL	CRP (M)
1996–2008	Netherlands, Belgium, France (205)	Prospective	216 (62)	23.1 (M), 23.3 (F)	Hip involvement, SF-36 mental score, mSASSS	BASDAI, back pain, tender joint count, MASSES	CRP (M)
Middle East and North Africa							
2010–2011	Iran (Fars, Turk, Kurd, Lor, and others) (203)	Prospective	320 (20.9)	22.2 (M), 24.3 (F)	% of HLA-B27+ patients, tragus-to-wall and finger-to-floor distances, BASMI, lateral lumbar flexion score	Enthesitis (thoracic, chest wall), elbow joint involvement, back pain, degree of lumbar rotation, lateral lumbar flexion distance, modified Schober's test	CRP (M)
2009–2010	Morocco (207)	Prospective	130 (33.1)	27.9 (M), 28.8 (F)	Occiput-wall distance, BASMI, BASRI	Duration of morning stiffness, number of tender joints, BASDAI, Schober's test, MEI	NA
Asia							
2009	India (141)	Prospective	70 (15.7)	22.3 (M), 30.0 (F)	NA	Uveitis, root joint involvement	NA
2006	Korea (202)	Cross-sectional	505 (14.1)	25.0 (M), 27.7 (F)	% of HLA-B27+ patients, joint pain, higher occiput-to-wall distance, thoracic syndesmophyes, bamboo spine	Uveitis, modified Schober's test, knee joint involvement, plantar fasciitis	NA

F, female; M, male; NA, not applicable; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; BAS-G, Bath Ankylosing Spondylitis Patient Global disease activity score; BASRI, The Bath Ankylosing Spondylitis Radiology Index; BASFI, Bath Ankylosing Spondylitis Functional Index; BASMI, Bath Ankylosing Spondylitis Metrology Index; MASES, Maastricht Ankylosing Spondylitis Enthesitis Score; mSASSS = modified Stoke Ankylosing Spondylitis (AS) Spine Score; SF-36 = Medical Outcomes Study 36-item Short Form; ASQoL = Ankylosing Spondylitis Quality of Life Questionnaire; HAQ-AS = Health Assessment Questionnaire for the Spondyloarthropathies; MEI = Mander enthesis index.
In SLE, clinical phenotypes show sex-bias. Alopecia, photosensitivity, malar rash, Raynaud’s phenomenon, musculoskeletal complications, oral ulcers as well as psychiatric disorders are female-biased (Table 3). In addition, females are more likely to suffer from relapses and a concurrent diagnosis for SS. Male-specific clinical phenotypes include discoid lesions, serositis, renal disease, seizure, and peripheral neuropathy, as well as cardiovascular complications. Males also tend to display constitutional symptoms and higher score in Systemic Lupus Erythematosus Disease Activity Index, indicative of a higher disease activity. Indeed, higher mortality has been reported in male patients vs female patients. Serology in SLE also shows some sex-bias: females SLE patients more frequently present with higher erythrocyte sedimentation rate (ESR) and test positive for anti-SSA/Ro while the male SLE patients more frequently test positive for lupus anticoagulant, anti-Sm, anti-dsDNA, and hypocomplementemia.

In AS, clinical phenotypes also show some degree of sex-bias. Male AS patients tend to have disease onset at younger age and present with higher CRP, more back pain, knee involvement, higher scores for BASRI (including BASRI-spinal and BASRI-hip), radiographic sacroilitis, higher modified Stoke Ankylosing Spondylitis Spinal Score, lower functional indices (occiput-to-wall and finger-to-floor distances), but higher SF-36 mental and physical scores. Female AS patients, on the other hand, present more with AS family history, higher Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score, enthesitis, more numbers of swollen, tender joints and peripheral arthritis but higher ASQoL score. Notably, in a multivariate model, Lee et al. found that for a given level of radiographic damage, female AS patients have more functional limitations than their male counterparts (200).

DISCUSSION

In this systematic review, we summarize sex differences in immune system biology, AD prevalence, as well as clinical phenotypes of SLE and AS. Data accrued highlight female predominance in common ADs, although there exist geographical differences in some cases. These observed geographical differences are suggestive of potential contributions of genetics and environmental factors toward AD pathology.

In SLE, disease complications and serology seem to show sex-bias. Alopecia, for example, is exclusively observed in females just as serositis is exclusively seen in males. It is interesting how the serology in these males and females is reflective of sex-bias in clinical phenotypes. In The Genetic Profile Predicting the Phenotype (PROFILE) multiethnic cohort of 2,322 SLE patients, anti-Sm were significantly associated with antinuclear antibody, anti-double-stranded DNA (dsDNA), and clinical phenotypes, such as serositis, renal involvement, psychosis, vasculitis, Raynaud’s phenomenon, hemolytic anemia, leukopenia, lymphopenia, and arterial hypertension (214). Furthermore, double positive serology for anti-Sm and anti-dsDNA has been strongly associated with renal involvement (215–218) and higher disease activity (219). Most of these clinical phenotypes are male-specific SLE complications (Tables 3 and 4). Similarly, anti-SSA/Ro antibodies have been reported to be strongly associated with low C3 (hypocomplementemia) and clinical phenotypes such as systemic lupus erythematosus systemic features.
as photosensitivity, subacute cutaneous lupus erythematosus, cutaneous vasculitis (palpable purpura), hematological disorder (anemia, leukopenia, and thrombocytopenia) (220–227), as well as Jaccoud's arthropathy (a type of arthritis) (228, 229). These phenotypes show female bias in our dataset (Tables 3 and 4). There are some clinical phenotypes such as mucocutaneous and hematological involvements, vasculitis, and association of anti-SSA/Ro with low C3 that differ between these correlation studies and our dataset. This may arise either from ethnic or age differences in the different study groups, or the size of the study groups. The trend for renal involvement persists in all of the studies we have analyzed; however, this clinical phenotype may or may not show a statistical difference for sex-bias owing to the low number of male SLE patients in some studies.

We also observed sex-bias in our dataset for AS clinical phenotypes: female AS patients present with enthesis and higher BASDAI scores, while male patients present with higher BASRI scores. AS is clinically tested with HLA-B27, ESR, and CRP. While some studies suggested that high CRP is more significantly seen in male patients and high ESR with female patients, many other studies have not come to similar conclusions.

The findings from SLE and AS suggest that disease phenotypes differ between males and females. In some cases, these diseases arguably have higher activity in the sex having lower prevalence. Awareness of sex-bias in disease presentation is crucial for early diagnosis, as well as treatment strategies for ADs in different sexes. More importantly, such awareness may guide the development of improved study design strategies for biomarker discovery.

FUTURE DIRECTION AND CONCLUSION

Timely diagnosis and treatment can be very effective for AD patients (230, 231) and biomarkers have great potential to enable it. Although AD biomarkers discovery is thriving, the same cannot be said of their clinical translation. Many biomarker projects fail at validation/replication stage (13) due to suboptimal sensitivity and specificity, as well as reproducibility in different studies (12). A few potential contributing factors to this observed failure include suboptimal infrastructure, study design, and execution in discovery-phase (12). Suboptimal study design includes small sample numbers, lack of patient history and subject matching (in terms of age, race, and sex) (12). Here we highlight the importance of sex stratification in biomarker discovery studies to promote reproducibility in replication/validation stage. Drawing example from SLE and AS, we note that differential clinical phenotypes exist in male and female patients. Different sexes may require different biomarkers for proper diagnosis of the same disease. From SLE serology we learn that some biomarkers are more frequently detected in one specific sex, and they show strong associations with sex-biased clinical phenotypes. Such specific associations may be missed when data from both sexes are aggregated.

In addition to enhancing sex-specific biomarker discovery and promoting reproducibility, a thorough understanding of sex differences in autoimmune milieu may guide disease prevention, diagnosis, and management. Our findings in Table 2 clearly demonstrate a higher prevalence ADs among females. Breast cancer screening mammography among women at average risk aged 50–74 has been shown to reduce breast cancer mortality by 30–40% (232). These findings suggest potential benefits of AD screenings specifically for women, for early AD detection and reduction of mortality rates through early intervention. Another plausible area of further study is to sex-stratify serological benchmarks for males and females, in light of varying cytokine levels and activity in different sexes as observed in Table 1. We have limited our scope in this review to SLE, AS and sex stratification. Further stratifications for improved patient segmentation and more specific biomarker discovery may include stratifications by age, ethnicities and disease stages.

AUTHOR CONTRIBUTIONS

KP conceptualized, gathered literature for all other autoimmune diseases, consolidated literature review from others, and wrote the manuscript. JO gathered literature for IPF, SLE, gastrointestinal and liver autoimmune diseases and proofread the manuscript. SD gathered literature for autoimmune hepatitis. WT gathered literature for rheumatoid arthritis. NM gathered literature for ankylosing spondylitis and proofread the manuscript. JL gathered literature for SLE and antiphospholipid syndrome. CLD contributed to study design and provided clinical insights which enhanced manuscript quality.

ACKNOWLEDGMENTS

This project was supported by National Medical Research Council of Singapore (NMRC/CG/014/2013) and Agency for Science Technology and Research (A*STAR) Biomedical Research Council (SPF2014/001).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at https://www.frontiersin.org/articles/10.3389/fimmu.2018.01208/full#supplementary-material.
49. Behr J, Kreuter M, Hoepner MM, Wirtz H, Klotzsche J, Koschel D, et al. Management of patients with idiopathic pulmonary fibrosis in clinical practice: the INSIGHTS-IPF registry. *Eur Respir J* (2015) 46(1):186–96. doi:10.1183/09031936.0217614.

50. Moody E, Goh N, Glaspole I, Macansh S, Walters EH, Chapman S, et al. Australian Idiopathic Pulmonary Fibrosis Registry: vital lessons from a national prospective collaborative project. *Respirology* (2014) 19(7):1088–91. doi:10.1111/resp.12358.

51. Song JW, Hong SB, Lim CM, Koh Y, Kim D-S. Acute exacerbation of idiopathic pulmonary fibrosis: risk factors and outcome. *Eur Respir J* (2011) 37(2):336. doi:10.1183/09031936.00159709.

52. Natsuiyama K, Chiba H, Kurumona K, Otsuka M, Kudo K, Mori M, et al. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. *Am J Respir Crit Care Med* (2014) 190(7):773–9. doi:10.1164/rcrm.2014-05560C.

53. Gelber AC, Mannol RN, Shah AA, Woods A, Le EN, Boint F, et al. Race and association with disease manifestations and mortality in scleroderma: a 20-year experience at the Johns Hopkins Scleroderma Center and review of the literature. *Medicine* (2013) 92(4):191–205. doi:10.1097/MD.0b013e31828e125.

54. Hoffmann-Vold AM, Midtvedt O, Molberg O, Garen T, Gran JT. Prevalence of systemic sclerosis in south-east Norway. *Rheumatology* (Oxford) (2012) 51(9):1600–5. doi:10.1093/rheumatology/kes076.

55. Y. Eung H, Takeshita J, Mehta NN, Kimmel SE, Ogdie A, Margolis DJ, et al. Psoriasis in the United States: results of the 2011 ECCO-EpiCom inception cohort. *J Crohns Colitis* (2014) 8(11):1506–15. doi:10.1016/j.crohns.2014.06.004.

56. Lee SM, Grotzinger KM. Analysis of the impact and burden of venous thromboembolism and sepsis in patients with immune thrombocytopenia. *Am J Hematol* (2013) 88(11):1210–8. doi:10.1002/ajh.23433.

57. Nourse JP, Lea R, Crooks P, Wright G, Tran H, Catalano J, et al. The association of anti-RNA polymerase III autoantibodies and cancer in systemic sclerosis. *Arthritis Res Ther* (2014) 16(1):R33–53. doi:10.1186/ar4486.

58. Basappa K, Reddy KN. Period prevalence of systemic sclerosis (morphae) in tertiary care hospital in India: an update. *Am J Pharmtech Res* (2013) 3(6):676–74.

59. Prasadhan V, Rajadhayaksha A, Nadkar M, Pandit P, Surve P, Lecerf M, et al. Clinical and autoimmune profile of scleroderma patients from Western India. *Int J Rheumatol* (2014) 2014:1. doi:10.1155/2014/983781.

60. Yeung H, Takeshita J, Mehta NN, Kimmel SE, Ogdje A, Margolis DJ, et al. Psoriasis severity and the prevalence of major medical co-morbidities: a population-based study in the United Kingdom. *J Invest Dermatol* (2012) 132(3 Pt 1):556–62. doi:10.1038/jid.2011.365.

61. Usmani ZS, Derkx FH, Oomen CC, van der Worp HB, van der Meer JT, Algra A, et al. Celiac disease is diagnosed less frequently in young adult males. *Am J Gastroenterol* (2012) 107(10):1538–44; quiz 1537, 1545. doi:10.1038/ajg.2012.219.

62. Takeshita J, Gelfand JM, Li P, Pinto L, Yu X, Rao P, et al. Psoriasis in the Asia-Pacific Crohn’s and colitis epidemiology study. *Gastroenterology* (2013) 145(1):158–65.e2. doi:10.1053/j.gastro.2013.04.007.

63. Almond DM, Batt AG, Balducci A, Bone AM, Bottomley C. Prognostic factor analysis for plaque psoriasis. *Dermatology* (2005) 211(2):103–6. doi:10.1159/000086437.

64. Nourie JP, Asselbergs GF, Gordon D, Gardner JP, Hunter S, Taylor N, et al. The KIR2DS2/DL2 genotype is associated with adult persistent/chronic and relapsed immune thrombocytopenia independently of FCGR3a-158 polymorphisms. *Blood* (2013) 121(1):124–31. doi:10.1182/blood-2012-12-467068.

65. Borthwick J, Johnson D, Bader-Meunier B, Barad DB, et al. Ninety-nine B-cell antigens are associated with immune thrombocytopenia. *Br J Haematol* (2016) 163(3):362–70. doi:10.1111/bjh.14637.

66. Seymour LA, Nourse JP, Crooks P, Wockner L, Bird R, Tran H, et al. Thirty years of experience in Australia: results of the 2011 ECCO-EpiCom inception cohort. *J Crohns Colitis* (2014) 8(11):1506–15. doi:10.1016/j.crohns.2014.06.004.

67. Langan SM, Seminara NM, Shin DB, Trotel AB, Kimmel SE, Mehta NN, et al. Prevalence of metabolic syndrome in patients with psoriasis: a population-based study. *Arthritis Care Res* (2016) 68(2):252–61. doi:10.1002/acr.22912.

68. Veld R, Janssen I, Baecklund E, et al. Psoriasis and cardiometabolic traits: modest association but distinct genetic architecture. *Nat Commun* (2015) 6:6331. doi:10.1038/ncomms7331.

69. Plunkett A, Merlin K, Gill D, Zuo Y, Jolley D, Marks R. The frequency of common nonmalignant skin conditions in adults in central Victoria, Australia. *Int J Dermatol* (1999) 38(12):901–8. doi:10.1111/j.1365-4362.1999.08356.x.

70. Nelson J, Monnet E, Etienne A, Louafi S, Ramee C, Rican S, et al. Geographical variations of inflammatory bowel disease in France: a study based on national health insurance data. *Inflamm Bowel Dis* (2006) 12(3):218–26. doi:10.1097/MIB.0000000000001377.

71. Veld R, Janssen I, Baecklund E, et al. Psoriasis severity and the prevalence of major medical co-morbidities: a population-based study from Copenhagen, Denmark. *Inflamm Bowel Dis* (2007) 13(4):481–9. doi:10.1097/IBD.0b013e3180231b34.

72. Akarka K, Nishiwayaki Y, Inoue N, Hitbi T, Watanabe M, Takebayashi T. Prevalence of ulcerative colitis and Crohn’s disease in Japan. *J Gastroenterol* (2009) 44(7):659–65. doi:10.1007/s00535-009-0057-3.

73. Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murray JA, Everhart JE. The prevalence of celiac disease in the United States. *Am J Gastroenterol* (2012) 107(10):1538–44; quiz 1537, 1545. doi:10.1038/ajg.2012.219.

74. Takeshita J, Gelfand JM, Li P, Pinto L, Yu X, Rao P, et al. Psoriasis in the Asia-Pacific Crohn’s and colitis epidemiology study. *Gastroenterology* (2013) 145(1):158–65.e2. doi:10.1053/j.gastro.2013.04.007.

75. Takeshita J, Gelfand JM, Li P, Lecerf M, et al. Psoriasis and cardiometabolic traits: modest association but distinct genetic architecture. *J Invest Dermatol* (2015) 135(5):1283–93. doi:10.1038/jid.2015.8.

76. Langan SM, Seminara NM, Shin DB, Trotel AB, Kimmel SE, Mehta NN, et al. Prevalence of metabolic syndrome in patients with psoriasis: a population-based study in the United Kingdom. *J Invest Dermatol* (2012) 132(3 Pt 1):556–62. doi:10.1038/jid.2011.365.
87. Choi PY, Gordon JE, Harvey M, Chong BH. Presentation and outcome of idiopathic thrombocytopenic purpura in a single Australian centre. Intern Med (2011) 42(7):841–9. doi:10.1111/j.1445-5994.2011.02040.x

88. Zhou H, Fu R, Wang H, Zhou F, Li H, Zhou Z, et al. Immune thrombocytopeinia in the elderly: clinical course in 525 patients from a single center in China. Ann Hematol (2013) 92(1):97–89. doi:10.1007/s00277-012-1567-2

89. Cheng G, Saleh MN, Marcher C, Vasey S, Mayer B, Aivado M, et al. Eltrombopag for management of chronic immune thrombocytopaenia (RAISE): a 6-month, randomised, phase 3 study. Lancet (2011) 377(9763):393–402. doi:10.1016/S0140-6736(10)60959-2

90. Rao K, Rao G, Patil N, Balaji O, Rao NR, Rao J, et al. A clinical study of adult idiopathic thrombocytopenic purpura (ITP) – a prospective tracking of its natural history. Singapore Med J (1995) 36:367–70.

91. Kueh YK. Adult idiopathic thrombocytopenic purpura (ITP) – a prospective study. Ann Hematol (2017) 10(7):373–77. doi:10.22159/ajpcr.2017.v10i7.18775

92. Phitayakorn R, Morales-Garcia D, Wanderer J, Lubitz CC, Gaz RD, Carle A, Pedersen IB, Knudsen N, Perrild H, Ovesen L, Rasmussen LB, et al. Seasonality of type 1 diabetes mellitus in the elderly: clinical course in 525 patients from a single centre in China. Intern Med (2011) 50(3):126–31. doi:10.1053/j.amjmed.2013.07.005

93. Krassas GE, Tziomalos K, Pontikides N, Lewy H, Laron Z. Presentation and outcome of celiac disease in the elderly: clinical course in 525 patients from a single centre in China. Intern Med (2011) 50(3):126–31. doi:10.1053/j.amjmed.2013.07.005

94. Carle A, Pedersen IB, Knudsen N, Perrild H, Ovesen L, Rasmussen LB, et al. Epidemiology of subtypes of hyperthyroidism in Denmark: a population-based study. Eur J Endocrinol (2011) 165(4):801–9. doi:10.1530/EJE-10-1155

95. Krassas GE, Tziomalos K, Pontikides N, Lewy H, Laron Z. Seasonality of mortality of birth of patients with Graves’ and Hashimoto’s diseases differ from that in the general population. Eur J Endocrinol (2007) 156(6):631–6. doi:10.1530/EJE-07-0015

96. Gao J, Li B, Li X, Liu W, Li J, Liu N, et al. Genetic association between IL-17F gene polymorphisms and the pathogenesis of Graves’ Disease in the Han Chinese population. Gene (2013) 512(2):300–4. doi:10.1016/j.tig.2012.10.021

97. Xu S, Gowan PJ, Christie JM, Angus PW. Epidemiology of primary biliary cirrhosis in Victoria. Australia: high prevalence in migrant populations. Gastroenterology (2004) 127(2):470–5. doi:10.1016/j.gastro.2004.04.064

98. Wang L, Zhang F-C, Chen H, Zhang X, Xu D, Li Y-Z, et al. Connective tissue diseases in primary biliary cirrhosis: a population-based cohort study. World J Gastroenterol (2013) 19(31):5131–7. doi:10.3748/wjg.v19.i31.5131

99. Tjiang H, Lahooti H, McCorquodale T, Parmar KR, Wall JR. Eye and eyelid abnormalities in the elderly: clinical course in 525 patients from a single centre in China. Intern Med (2011) 50(3):126–31. doi:10.1053/j.amjmed.2013.07.005

100. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology (2002) 35(1):377–84. doi:10.1002/hep.10199

101. Torsvik-Larsen S, Vold H, Pedersen BO, Kristiansen K, Holmskov U, et al. Population-based epidemiology study of autoimmune hepatitis: a contemporary analysis. J Hepatol (2008) 48(4):624–30. doi:10.1016/j.jhep.2007.07.026

102. Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from the United states. Hepatology (2001) 33(1):16–21. doi:10.1053/jhep.2001.21165

103. Gershwin ME, Selmi C, Worman HJ, Gold EB, Watnick M, Uts I, et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology (2005) 42(5):1194–202. doi:10.1002/hep.20907

104. Perchotz C, Chretien Y, Chazouilleres O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol (2010) 53(1):162–9. doi:10.1016/j.jhep.2009.12.019

105. Prince MI, Duck SJ, James OFW. Case–control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut (2010) 59(8):1048–53. doi:10.1136/gut.2009.184218

106. Solod S, Gow PJ, Christie JM, Angus PW. Epidemiology of primary biliary cirrhosis in Victoria. Australia: high prevalence in migrant populations. Gastroenterology (2004) 127(2):470–5. doi:10.1016/j.gastro.2004.04.064

107. Balaji O, Rao NR, Rao J, et al. A clinical study of adult idiopathic thrombocytopenic purpura (ITP) – a prospective tracking of its natural history. Singapore Med J (1995) 36:367–70.
205. Webers C, Essers I, Ramiro S, Stolwijk C, Landewe R, van der Heijde D, et al. Gender-attributable differences in outcome of ankylosing spondylitis: long-term results from the outcome in Ankylosing Spondylitis International Study. *Inflammatory (Oxford) (2016) 55(3):419–28. doi:10.1093/rheumatology/kev340*

206. Roussou E, Sultana S. Spondyloarthritis in women: differences in disease onset, clinical presentation, and bath ankylosing spondylitis disease activity and functional indices (BASDAI and BASFI) between men and women with spondyloarthritis. *Clin Rheumatol (2011) 30(1):121–7. doi:10.1007/s10067-010-1581-5*

207. Ibn Yacoub Y, Amine B, Latirir B, Hajjaj-Hassouni N. Gender and disease features in Moroccan patients with ankylosing spondylitis. *Clin Rheumatol (2012) 31(2):293–7. doi:10.1007/s10067-011-1819-x*

208. Tournadre A, Pereira B, Lhoste A, Dubost JJ, Ristori JM, Claudepierre P, et al. Differences between women and men with recent-onset axial spondyloarthritis: results from a prospective multicenter French cohort. *Arthritis Care Res (Hoboken) (2013) 65(9):1482–9. doi:10.1002/acr.22001*

209. de Carvalho HM, Bortoluzzo AB, Goncalves CR, da Silva JA, Ximenes AC, Bertolo MB, et al. Gender characterization in a large series of Brazilian patients with spondyloarthritis. *Clin Rheumatol (2012) 31(4):687–95. doi:10.1007/s10067-011-1890-3*

210. Landi M, Maldonado-Ficco H, Perez-Alamino R, Maldonado-Cocco JA, Citera G, Arturi P, et al. Gender differences among patients with primary ankylosing spondylitis and spondylitis associated with psoriasis and inflammatory bowel disease in an iberoamerican spondyloarthritides cohort. *Medicine (2016) 95(5):e5652. doi:10.1097/MD.0000000000005652*

211. Baralaioks X, Listing J, von der Acke B, Braun J. The natural course of radiographic progression in ankylosing spondylitis: differences between genders and appearance of characteristic radiographic features. *Curr Rheumatol Rep (2011) 13(5):383–7. doi:10.1007/s11926-011-0192-8*

212. A.A.R.D. Association. *Autoimmune Disease List*. (2017). Available from: https://www.aarda.org/disease/list/ (accessed June 20, 2017)

213. Hayter SM, Cook MC. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. *Autoimmun Rev (2012) 11(10):754–60. doi:10.1016/j.autrev.2011.02.001*

214. Arroyo-Ávila M, Santiago-Casas Y, McGowan G, Cantor RS, Petri M, Ramsey-Goldman R, et al. Clinical associations of anti-Smith antibodies in PROFILE: a multi-ethnic lupus cohort. *Clin Rheumatol (2015) 34(7):1217–23. doi:10.1007/s10067-015-2941-y*

215. Reveille JD. Predictive value of autoantibodies for activity of systemic lupus erythematosus. *Lupus (2004) 13(5):290–7. doi:10.1191/0961203304lu1015oa*

216. Vila LM, Molina MJ, Mayor AM, Peredo RA, Santaela ML, Vila S. Clinical and prognostic value of autoantibodies in puerto Ricans with systemic lupus erythematosus. *Lupus (2006) 15(12):892–8. doi:10.1097/01.203300.6069352*

217. Alba P, Bento L, Cuadrado MJ, Karim Y, Tungekar MF, Abbs I, et al. Anti-dsDNA and Sm autoantibodies in systemic lupus erythematosus. *Clin Rheumatol (1993) 12(3):300–5. doi:10.1007/BF02231577*

218. Martinez-Cordero E, Martinez-Miranda E, Negrete-Garcia MC, Padilla A, Aguilar Leon DE. Anti-dsDNA and Sm autoantibodies in systemic lupus erythematosus. *Clin Rheumatol (1992) 11(3):341–5. doi:10.1007/BF02207190*

219. Mond CB, Peterson MGE, Rothfield NF. Correlation of anti-Ro antibody with photosensitivity rash in systemic lupus erythematosus patients. *Arthritis Rheum (1989) 32(2):202–4. doi:10.1002/art.1780320212*

220. Kerlikowske K, Grady D, Rubin SM, Sandrock C, Ernster VL. Efficacy of Antinuclear Antibodies in Identifying Lupus Nephritis. *Clin Rheumatol (2008) 28(3):301. doi:10.1007/s10067-008-1043-5*

221. Alexander EL, Arnett FC, Provost TT, Stevens M. Sjogren’s syndrome: association of anti-r(0)(a)-a antibodies with vasculitis, hematologic abnormalities, and serologic hyperreactivity. *Ann Intern Med (1983) 98(2):155–9. doi:10.7326/0003-4819;19830215002-00005*

222. Harley JB, Alexander EL, Bias WB, Fox OF, Provost TT, Reichlin M, et al. Anti-Ro(SS-A) and Anti-La(SS-B) in patients with Sjogren’s syndrome. *Arthritis Rheum (1986) 29(2):196–200. doi:10.1002/art.178029207*

223. Simmons-O’Brien E, Chen S, Watson R, Antoni C, Petri M, Hochberg M, et al. One hundred anti-Ro (SS-A) antibody positive patients: a 10-year follow-up. *Medicine (1995) 74(3):109–30. doi:10.1097/00005792-199505000-00001*

224. Doria A, Zen M, Canova M, Bettio S, Bassi N, Maloletto L, et al. SLE diagnosis and treatment: when early is early. *Arthritis Rheum (2010) 62(5):155–60. doi:10.1002/art.27616*

225. Hennes EM, Zeniya M, Cazaja AJ, Parés A,увеличен A, Grunewald KO, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. *Hepatology (2008) 48(1):169–76. doi:10.1002/hep.22322*

226. Kerlikowske K, Grady D, Rubin SM, Sandrock C, Ernster VL. Efficacy of screening mammography. A meta-analysis. *JAMA (1995) 273(2):149–54. doi:10.1001/jama.1995.0325206017035*

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer YL and handling Editor declared their shared affiliation.