Centrality determination of Au + Au collisions at 1.23A GeV with HADES

HADES Collaboration

J. Adamczewski-Musch, O. Arnold, C. Behnke, A. Belouzas, A. Belyaev, J.C. Berger-Chen, J. Biernat, A. Blanco, C. Blume, M. Böhmer, P. Bordalo, S. Cheremeno, L. Chlad, C. Deveaux, J. Dreyer, A. Dybczak, E. Eppler, O. Fateev, P. Fonte, C. Franco, J. Friese, I. Fröhlich, T. Galatyuk, J. A. Garzón, R. Gernhäuser, M. Golubev, R. Greifenhagen, F. Guber, M. Gumberidze, S. Harabasz, T. Heinze, T. Hennino, S. Hlavac, C. Höhne, R. Holzmann, I. Ierusalimov, I. Yashkin, B. Kämpfer, T. Karavicheva, B. Kardan, I. Koenig, W. Koenig, B. W. Kolb, G. Koryt, G. Kornakov, R. Kotte, W. Kühn, A. Kugler, T. Kunz, A. Kurepin, A. Kurilkin, P. Kurilkin, V. Ladygin, R. Lalik, K. Lapidus, A. Lebedev, L. Lopes, M. Lorenz, T. Mahmoud, L. Maier, A. Mangiarotti, J. Markert, S. Maurus, V. Metag, J. Michel, D.M. Mihaylov, S. Morozov, C. Müntz, R. Münzer, N. Nowakowski, M. Palka, Y. Parpottas, V. Pechenkov, O. Pechenova, O. Petukhov, J. Pietraszko, W. Przygoda, B. Ramstein, A. Reshetin, P. Rodriguez-Ramos, P. Rosier, A. Rost, A. Sadovsky, P. Salabura, T. Scheib, H. Schuldes, E. Schwab, F. Scozzi, F. Seck, P. Sellheim, J. Siebenson, L. Silva, Y. G. Sobolev, S. Spataro, H. Ströbele, J. Stroth, P. Strzempek, C. Sturm, O. Svoboda, M. Szala, P. Tlusty, M. Traxler, H. Tsertos, I. Usenko, W. Wagner, C. Wendisch, M.G. Wiebusch, J. Wirth, A. Zanevsky, and P. Zumburgh

1 Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
2 IIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
3 Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
4 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
5 Technische Universität Darmstadt, 64289 Darmstadt, Germany
6 Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
7 Institute of Nuclear Research, 141980 Dubna, Russia
8 Institute für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany
9 Excellence Cluster "Origin and Structure of the Universe", 85748 Garching, Germany
10 Physik Department E62, Technische Universität München, 85748 Garching, Germany
11 II. Physikalisches Institut, Justus-Liebig Universität Giessen, 35392 Giessen, Germany
12 Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia
13 Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia
14 Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
15 Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France
16 Nuclear Physics Institute, The Czech Academy of Sciences, 25068 Rez, Czech Republic
17 LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain

a e-mail: hades-info@gsi.de
b also at ISEC Coimbra, Coimbra, Portugal
c also at Technische Universität Dresden, 01062 Dresden, Germany
d also at ExtreMe Matter Institute EMMI, 64291 Darmstadt, Germany
e also at Utrecht University, 3584 CC Utrecht, The Netherlands
f also at Moscow Engineering Physics Institute (State University), 115409 Moscow, Russia
g also at Frederick University, 1036 Nicosia, Cyprus
h also at Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy
† Deceased.

Received: 23 January 2018 / Revised: 10 April 2018

Abstract. The centrality determination for Au + Au collisions at 1.23A GeV, as measured with HADES at the GSI-SIS18, is described. In order to extract collision geometry related quantities, such as the average impact parameter or number of participating nucleons, a Glauber Monte Carlo approach is employed. For the application of this model to SIS18, a number of special investigations were performed. As a result a well defined procedure to determine centrality classes for ongoing analyses of heavy-ion data is established.
1 Introduction

Heavy-ion collisions at relativistic and ultra-relativistic energies allow to study highly excited, strongly interacting matter. Due to the extended volume of the colliding nuclei, the size of the interaction volume varies strongly with impact parameter b, defined as the distance between the centers of the nuclei in a plane transverse to the beam axis. Therefore, it is crucial to define a framework which allows to relate observable quantities, such as the measured charge particle multiplicity, to the centrality of the collision. The centrality C is defined as the fraction of the total cross section σ_{AA} and is directly related to the impact parameter

$$C = \frac{\int_0^b d\sigma/db' db'}{\int_0^\infty d\sigma/db db'} = \frac{1}{\sigma_{AA}} \int_0^b \frac{d\sigma}{db} db',$$

(1)

with the differential cross section $d\sigma/db'$. On one side this requires a good determination of σ_{AA} and on the other side one has to establish a relation between b and the observable multiplicity N, such that the latter can be sorted according to the corresponding fraction of the total cross section

$$C \approx \frac{1}{\sigma_{AA}} \int_{N_{\text{th}}}^\infty \frac{d\sigma}{dn'} dn',$$

(2)

where N_{th} is the lower multiplicity threshold of a given class. Experiments at high energies usually employ the Glauber model [1–3] for this purpose, as described, e.g., in refs. [4, 5]. In this approach, heavy-ion collisions are treated as a superposition of independent nucleon-nucleon interactions. Following the eikonal approximation, the trajectories of the individual nucleons are assumed to be straight lines, and a nucleon is defined as a participant, if it experiences at least one binary collision along its path. The number of participating nucleons N_{part} can thus be used to quantify the size of the interaction volume. The number of spectators, i.e. of non-interacting nucleons, is related to the participants by

$$N_{\text{spec}} = N_{\text{proj}} - A_{\text{part}},$$

where $N_{\text{proj}} (A_{\text{part}})$ is the nucleon number of the projectile (target) nucleus. Following the assumptions of the wounded nucleon model [6], the number of produced particles should be directly proportional to N_{part}.

This relation allows to fit measured multiplicity distributions with a Glauber Monte Carlo (MC) model, in which many nucleus-nucleus collisions are statistically sampled. Based on this fit, centrality classes with their corresponding average impact parameter $\langle b \rangle$ and average number of participants $\langle N_{\text{part}} \rangle$ can be derived by selecting intervals of event multiplicity. The aim of the procedure described in this article is to provide a framework which allows to categorize events measured by HADES according to their multiplicity in centrality classes and to relate these classes to $\langle b \rangle$ and $\langle N_{\text{part}} \rangle$.

While the validity of the Glauber model at higher energies (i.e. $\sqrt{s_{NN}}$ around 10 GeV and above) is well established, the applicability at lower energies is not immediately evident. The semi-classical description of the eikonal approximation requires that the reduced de Broglie wavelength, $\lambda_B = h/p$, where p is the characteristic momentum of the nucleon, is small relative to the size of the nucleus. This condition is clearly satisfied for a nucleon of ~ 2 GeV/c momentum traversing a gold nucleus at rest, a situation close to Au + Au collisions at 1.23A GeV, where

$$\lambda_B \approx 0.1 \text{ fm} \ll R_{\text{Au}} \approx 5.4 \text{ fm}.$$

(3)

Indeed, it was claimed that, with appropriate corrections of the order of 15%, the validity of the eikonal Glauber model can even be extended down to energies as low as about 45 MeV [7]. In this article, we describe the application of a Glauber MC model to Au + Au data at 1.23A GeV, as measured with HADES, the High-Acceptance Di-Electron Spectrometer, which is installed at the SIS18\(^1\) accelerator at the GSI\(^2\) in Darmstadt, Germany. The implementation and the adjustments to the model, necessary for this data set, are discussed in sect. 2 and the experimental observables for the charged particle multiplicity as used for the centrality determination are presented in sect. 3. In sect. 4 we present the method and in sect. 4.1 the systematic uncertainties on the centrality determination. The corresponding centrality classes are shown in sect. 4.2 and a conclusion is drawn in sect. 5.

2 Glauber Monte Carlo model implementation

The analysis discussed in the following is based on the implementation of a Glauber MC model as described in refs. [4, 8]. In this approach, the following steps are processed event-by-event:

1. The impact parameter b of a given collision is selected randomly according to a probability distribution $P(b) \propto b db$ in

\(^1\) Schwer-Ionen-Synchrotron.
\(^2\) Gesellschaft für Schwerionenforschung.
the range from 0 to \(b_{\text{max}} \), where \(b_{\text{max}} \) has to be larger than the sum of the radii of the projectile and target nucleus, \(b_{\text{min}} \geq R_{\text{proj}} + R_{\text{arg}} \).

2. For each of the nuclei, the \(N_{\text{proj}} \) and \(N_{\text{arg}} \) nucleons are positioned randomly, within spheres of radii \(R_{\text{proj}} \) and \(R_{\text{arg}} \). This is achieved by using a uniform probability distribution in the azimuthal (\(\phi \)) and polar (\(\cos \theta \)) angles, and a radial density distribution given by \(P(r) \propto r^2 \rho(r) \), where \(\rho(r) \) is specified in eq. 6.

3. The collision process itself is evaluated such that binary combinations of all nucleons in the two nuclei are formed and a decision is made whether a collision is actually taking place between them. This decision is based on the criterion that the distance between nucleon \(i \) and \(j \) in the transverse plane,

\[
d_{ij} = \sqrt{\Delta x^2 + \Delta y^2},
\]

is smaller than the radius defined by the inelastic nucleon-nucleon cross section (black disk approximation):

\[
d^2 \leq \sigma_{\text{inel}}^{\text{NN}} / \pi.
\]

Figure 1 shows an example for the spatial configuration of two colliding nuclei obtained with the above described procedure. In order to apply the Glauber MC model to the relatively low centre-of-mass energies of the heavy ion collisons under consideration here, several adjustments had to be performed [9]. To parametrize the radial charge density distributions a two-parameter Fermi distribution is used:

\[
\rho(r) = \frac{1 + w (r/R)^2}{1 + \exp \left(-\frac{r - a}{w} \right)}.
\]

For the gold nuclei, we use the parameters \(R = 6.55 \) fm and \(a = 0.52 \) fm, which best describe the measurements in [10]. The parameter \(w \), which is used to describe nuclei whose density is lower at the centre than in the outer regions, is here set to \(w = 0 \). To make sure that two nucleons cannot overlap in space, a new position can be reassigned to one of them during step 2. of the above described MC procedure, if their distance falls below a minimal separation distance \(d_{\text{min}} \). Here we use a value of \(d_{\text{min}} = 0.9 \) fm, as it facilitates a consistent description of the total cross section. However, as pointed out in [11], \(d_{\text{min}} = 0 \) might be more suitable for a proper calculation of eccentricities. While at high energies the inelastic nucleon-nucleon cross section is only weakly dependent on \(\sqrt{s_{\text{NN}}} \), it exhibits a rapid variation with energy in the energy regime discussed here. Possible variations thus constitute a significant contribution to the systematic uncertainty (see sect. 4.1). Based on the data collected in [12] and parametrized in [13] we use the following values as default: \(\sigma_{\text{inel}}^{\text{pp}} = 26.4 \) mb and \(\sigma_{\text{inel}}^{\text{np}} = 21.0 \) mb. Assuming isospin symmetry (i.e. \(\sigma_{\text{inel}}^{\text{pp}} = \sigma_{\text{inel}}^{\text{nn}} \) and \(\sigma_{\text{inel}}^{\text{np}} = \sigma_{\text{inel}}^{\text{np}} \)), we construct the isospin averaged nucleon-nucleon cross section for a gold nucleus as \(\sigma_{\text{inel}}^{\text{NN}} = 23.8 \) mb.

3 Experimental observables

The setup of the HADES experiment is described in detail in [14]. HADES is a charged particle detector consisting of a six-coil toroidal magnet centered around the beam axis and six identical detection sections located between the coils and covering polar angles between 18° and 85°. Each sector is equipped with a Ring-Imaging Cherenkov (RICH) detector followed by four layers of Multi-Wire Drift Chambers (MDCs), two in front of and two behind the magnetic field, as well as a scintillator Time-Of-Flight detector (TOF) (45° – 85°) and Resistive Plate Chambers (RPC) (18° – 45°). Hadron identification is based on the time-of-flight measured with TOF and RPC, and on the energy-loss information from TOF as well as from the MDC tracking chambers. Electron candidates are in addition selected via their signals in the RICH detector. Combining these information with the track momenta, as determined from the deflection of the tracks in the magnetic field, allows to identify charged particles (e.g. pions, kaons or protons) with a high significance.

Several triggers are implemented to start the data acquisition. The minimum bias trigger is defined by a signal in the START detector in the beam line (CVD diamond detector). In addition, online Physics Triggers (PT) are used, which are based on hardware thresholds on the TOF signals, proportional to the event multiplicity, corresponding to at least 5 (PT2) or 20 (PT3) hits in the TOF. Events are selected offline by requiring that their global event vertex is inside the target region, i.e. between \(z = -65 \) mm and 0 mm along the beam axis.

For the centrality determination, currently two different experimental observables are considered within HADES, both of which provide a measurement of the charged particle density close to mid-rapidity. One is the number of tracks reconstructed with the MDCs, \(N_{\text{tracks}} \), while the other is based on the summed number of hits detected by the TOF and the RPC detectors, \(N_{\text{hits}} = N_{\text{TOF}} + N_{\text{RPC}} \). The first one has the advantage of being less contaminated by background hits, but requires a full reconstruction of the tracks in all MDCs. \(N_{\text{tracks}} \) contains only track candidates which do not share any space points with other tracks, have a good matching of track to point position and have a distance-of-approach relative to the global event vertex of less than 10 mm. These cuts provide a very clean track sample but also significantly reduce the available multiplicity. The second one, \(N_{\text{hits}} \), provides generally a larger and more stable acceptance and thus a better statistical significance than \(N_{\text{tracks}} \). Therefore it is the default observable for centrality selection in most analyses of HADES data. However, in order to assure that the larger background from secondary hits included in \(N_{\text{hits}} \) does not distort the centrality determination, we investigate in the following both observables in comparison.

4 Centrality determination

Following the assumption of the wounded nucleon model [6], the measured charged particle multiplicity, \(N_{\text{ch}} \), should on average be directly proportional to \(N_{\text{part}} \). To allow for event-by-event fluctuations around this average value, the number of charged particles per participant is sampled for each MC participant from a Negative Binomial probability Distribution (NBD)

\[N_{\text{ch}} \]
Fig. 2. Upper panel: The cross section as a function of N_{tracks} for minimum bias (blue symbols) and central (PT3 trigger, green symbols) data in comparison with a fit using the Glauber MC model (red histogram). The centrality classes are represented by the vertical lines. See text and table 1 for a description of the parameters μ, k and α. Lower panel: The difference between data and Glauber MC model divided by the quadratic sum of both errors.

Fig. 3. Upper panel: The cross section as a function of $N_{\text{hits}}^{\text{TOF+RPC}}$ for the sum of TOF and RPC hits. The upper panel shows minimum bias (blue symbols) and central (PT3 trigger, green symbols) data in comparison with the Glauber MC model (red histogram). See text and table 1 for a description of the parameters μ, k and α. Lower panel: The difference between data and Glauber MC model divided by the quadratic sum of both errors.

with a mean μ, i.e.

$$P_{\mu,k}(n) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \cdot \frac{(\mu/k)^n}{\Gamma(n+k+1)} \cdot \left(\frac{\mu}{k} + 1\right)^{n+k},$$

(7)

where Γ is the gamma function and the dispersion parameter k is related to the relative width by $\sigma/\mu = \sqrt{1/\mu + 1/k}$. After summing over all participants in a given event this procedure yields on average the proportionality $\langle N_{\text{ch}} \rangle = \mu \cdot \langle N_{\text{part}} \rangle$. The parameters μ and k take into account the acceptance, reconstruction efficiency and resolution of the specific observables ($N_{\text{ch}} = N_{\text{tracks}}$ or N_{hits}) and are determined by a minimization procedure in which the simulated N_{ch} distribution is fitted to the measured one.

In order to take additional, non-linear multiplicity dependent inefficiencies into account, the value sampled from the NBD is further folded with a phenomenological efficiency function $\epsilon(\alpha) = 1 - \alpha \cdot N_{\text{part}}^2$. This function models the relative variation of the efficiency for charged tracks and parametrizes the corresponding efficiency obtained from events simulated with the transport model UrQMD [15] filtered through a detailed simulation of the detector response based on GEANT3.21 [16]. In case of N_{hits} it also takes into account the
Fig. 4. The cross section as a function of $N_{\text{hit}}^{\text{TOP-RPC}}$ for the sum of TOF and RPC hits. The panel shows a simulation based on UrQMD events filtered through the detailed detector simulation (blue symbols) and in addition through an emulator of the PT3 trigger (green symbols) in comparison with the Glauber MC model (red histogram) also show in fig. 3. See text and table 1 for a description of the parameters μ, k and α.

additional contribution from secondary particles produced in the detector material. Even for very central events ε differs not more than 20% from unity. Table 1 summarizes the parameters used for the different observables. Please note that, for $N_{\text{hit}}^{\text{TOP-RPC}}$, the individual numbers $N_{\text{hit}}^{\text{TOF}}$ and $N_{\text{hit}}^{\text{RPC}}$ had to be fit separately, since the two measurements are subject to different systematic effects.

Observable	Parameter	μ	k	α
N_{tracks}	0.24	20.34	$1.0 \cdot 10^{-7}$	
$N_{\text{hit}}^{\text{TOF}}$	0.20	6.36	$1.64 \cdot 10^{-6}$	
$N_{\text{hit}}^{\text{RPC}}$	0.50	29.06	$1.64 \cdot 10^{-6}$	

Table 1. The fit parameters obtained for the different observables.

The upper panel of fig. 2 shows the comparison of the fit result to the measured N_{tracks} distribution. As illustrated in the lower panel of the figure, a good description is achieved for the 60% most central part of the minimum bias data. Also, the largest part (i.e. most central 30%) of the PT3 triggered events is fitted quite well. Below these centralities the corresponding trigger thresholds set in, which are not included in the presented Glauber MC model. The PT3 trigger covers the most central 43% of the total cross section, whereas the PT2 trigger includes 72%. Most physics analyses are based on PT3 triggered data, which are further restricted to the 0 – 40% most central event class or smaller subclasses.

For the measured $N_{\text{hit}}^{\text{TOP-RPC}}$ distribution the comparison to the Glauber MC model is shown in the upper panel of fig. 3. Also here a very good agreement is achieved in the same regions of the cross section, as demonstrated in the lower panel. The fit has also been performed on UrQMD events, processed by the full detector simulation and reconstruction chain, as well as an additional emulator of the PT3 trigger (green symbols). As shown in fig. 4 the simulated data can be well described by the same Glauber MC model fit, illustrating that our centrality selection procedure provides a good correspondence between event classes defined in data and in models.
In comparison to the default parameter selection this causes a deviation of at most 15% for very peripheral collisions, which decreases to 3-4% for very central ones. Furthermore, the fits were repeated with an inter-nucleon exclusion distance of \(b_{\text{min}} = 0 \) and \(b_{\text{max}} = 35 \) fm, as well as \(R = 6.75 \) fm and \(a = 0.623 \) fm, as well as \(R = 6.35 \) fm and \(a = 0.423 \) fm, were used, as motivated by [17] and [18]. In comparison to the default parameter selection this causes a variation of \(\langle N_{\text{part}} \rangle \) of at most 15% for very peripheral collisions, which decreases to 3-4% for very central ones. Furthermore, the fits were repeated with an inter-nucleon exclusion distance of \(b_{\text{min}} = 0 \). It was found that this modification affects the resulting \(\langle N_{\text{part}} \rangle \) by not more than 3%. The final systematic uncertainty of \(\langle N_{\text{part}} \rangle \) from the Glauber MC model is determined as the maximal deviation between the different parameter sets and procedures to the default version for each centrality.

While the above discussed systematic effects are inherent of the ideal geometrical Glauber MC model implementation, additional effects have to be taken into account for the experimental centrality estimators. On one side, these are due to different levels of background and distortions, which cause deviations from the ideal multiplicity estimation. On the other side, the estimators provide different resolutions for the event centrality due to the reconstructed event-wise multiplicities \(N_{\text{tracks}} \). Therefore, \(\langle N_{\text{part}} \rangle \) was calculated again according to the corresponding fraction of the total cross section as determined by \(N_{\text{tracks}} \), respectively \(N_{\text{tracks}} \), instead of using cuts on the impact parameter. It is found that the resulting value of \(\langle N_{\text{part}} \rangle \) differs by less than 1% in the case of \(N_{\text{tracks}} \) from the values given in table 2. For \(N_{\text{tracks}} \), a slightly larger deviation of 3% is observed for the 10% most central events, while it is 1% in the other centrality ranges.

4.1 Systematic uncertainties

The systematic uncertainties on the \(\langle N_{\text{part}} \rangle \) determination can be separated into two categories. On one side there are those related to the input parameters of the Glauber MC model itself, on the other side the different experimental centrality estimators introduce systematic deviations from the ideal model scenario.

To investigate systematic effects due to the model parameters, the fits were repeated with Glauber MC simulations based on different input parameters. The inelastic nucleon-nucleon cross section was varied up to \(\sigma_{\text{NN}} = 30 \) mb, which causes a change of the extracted \(\langle N_{\text{part}} \rangle \) values of around 5%, almost independent of centrality. We also tested the impact of different parameters for the radial charge density distribution: the values \(R = 6.75 \) fm and \(a = 0.623 \) fm, as well as \(R = 6.35 \) fm and \(a = 0.423 \) fm, were used, as motivated by [17] and [18]. In comparison to the default parameter selection this causes a variation of \(\langle N_{\text{part}} \rangle \) at most 15% for very peripheral collisions, which decreases to 3-4% for very central ones. Furthermore, the fits were repeated with an inter-nucleon exclusion distance of \(b_{\text{min}} = 0 \). It was found that this modification affects the resulting \(\langle N_{\text{part}} \rangle \) by not more than 3%. The final systematic uncertainty of \(\langle N_{\text{part}} \rangle \) from the Glauber MC model is determined as the maximal deviation between the different parameter sets and procedures to the default version for each centrality.

4.2 Centrality classes

The above described Glauber MC model implementation results in a total cross section for Au+Au collisions at 1.23A GeV of \(\sigma_{\text{tot}}^{\text{Au+Au}} = (6833 \pm 430) \) mb. The events can thus be categorised into centrality classes according to their fraction of \(\sigma_{\text{tot}}^{\text{Au+Au}} \). Using the fits shown in figs. 2 and 3 this can be translated into intervals of \(N_{\text{tracks}} \), respectively \(N_{\text{tracks}} \), corresponding to these centrality classes. Figure 5 shows the anti-correlation of \(N_{\text{tracks}} \) and the impact parameter \(b \), obtained from the Glauber MC model (upper panel) and from

Centrality Classes	\(b_{\text{min}} \)	\(b_{\text{max}} \)	\(\langle b \rangle \)	\(\langle N_{\text{part}} \rangle \)	RMS(\(\langle N_{\text{part}} \rangle \))	Uncertainties on \(\langle N_{\text{part}} \rangle \)	Model	\(N_{\text{tracks}}^{\text{tot}} \)	\(N_{\text{tracks}} \)
0 – 5 %	0.00	3.50	2.20	331.3	19.4	± 10.4	± 10.6	± 19.1	± 19.1
5 – 10 %	3.30	4.70	4.04	275.6	16.4	± 11.4	± 11.1	± 7.6	± 7.6
10 – 15 %	4.70	5.70	5.22	231.9	13.7	± 9.2	± 10.4	± 9.2	± 9.2
15 – 20 %	5.70	6.60	6.16	195.5	13.0	± 7.6	± 9.5	± 7.4	± 7.4
20 – 25 %	6.60	7.40	7.01	163.3	12.2	± 7.5	± 8.4	± 7.8	± 7.8
25 – 30 %	7.40	8.10	7.75	135.8	11.4	± 7.7	± 8.0	± 7.9	± 7.9
30 – 35 %	8.10	8.70	8.40	113.2	10.6	± 6.1	± 6.6	± 5.7	± 5.7
35 – 40 %	8.70	9.30	9.00	93.7	10.5	± 4.5	± 5.3	± 4.8	± 4.8
40 – 45 %	9.30	9.90	9.60	75.5	10.1	± 4.8	± 5.8	± 4.5	± 4.5
45 – 50 %	9.90	10.40	10.15	60.4	9.4	± 4.8	± 5.3	± 3.6	± 3.6
50 – 55 %	10.40	10.90	10.65	48.0	8.9	± 3.6	± 4.3	± 2.8	± 2.8
55 – 60 %	10.90	11.40	11.15	36.9	8.3	± 2.5	± 3.7	± 3.4	± 3.4

Table 2. Centrality classes in fixed intervals of impact parameter \(b_{\text{min}} \) – \(b_{\text{max}} \) for Au+Au collisions at 1.23A GeV. Listed are the mean impact parameter \(\langle b \rangle \), mean number of participants \(\langle N_{\text{part}} \rangle \) and the RMS of the \(N_{\text{part}} \) distributions in the different centrality classes. Also given are the systematic uncertainties resulting from the variation of the Glauber model parameters as described in the text. The first corresponds to a centrality selection in the impact parameter, while in the case of the other two the fraction of the total cross section is selected from the observables \(N_{\text{clus}}^{\text{tot}} \) or \(N_{\text{tracks}} \) and thus also takes into account their different sensitivities in the centrality selection.
Fig. 6. Upper panel: The correlations between the average impact parameter $\langle b \rangle$ and the total number of hits $N_{\text{hits}}^{\text{TOF+RPC}}$ in TOF and RPC, as obtained from simulated UrQMD events filtered through the detector simulation. The error bars shown here are the Gaussian σ. The different centrality classes are indicated by the dashed lines. In one case, b is taken directly from UrQMD (blue symbols), while in the other case (red symbols) it is derived from the Glauber MC model fit. Lower panel: The corresponding resolution in b, defined as the ratio of the Gaussian σ and the mean of the impact parameter distributions $\langle b \rangle$.

Simulated UrQMD events (lower panel). Over a large part of the total cross section, a well defined anti-correlation is visible in both, allowing a good definition of the different centrality classes, here indicated by the dashed lines. As illustrated in the upper panel of fig. 6, these two anti-correlations are in agreement well within their errors. This demonstrates that a meaningful comparison of centrality selected events is possible between data and model using $N_{\text{hits}}^{\text{TOF+RPC}}$. From these anti-correlations also the resolution in the impact parameter b can be derived (see upper panel of fig. 6). It is here defined as the ratio of the dispersion σ obtained with a Gaussian fit to the mean of the corresponding b distribution at a given value of $N_{\text{hits}}^{\text{TOF+RPC}}$. Also here, a reasonable agreement is achieved between UrQMD and the Glauber MC model fit. The resolution is found to be below 15% for all centralities, except for the very central interval 0-5%. Figure 7 shows the same comparison for the observable N_{tracks}.

The distributions of the impact parameter b and number of participants N_{part} for different centrality classes, as selected by $N_{\text{hits}}^{\text{TOF+RPC}}$, are shown in fig. 8. The averaged values are summarized in table 2. Even though the distributions have some overlap (the corresponding RMS values can also be found in table 2), a clear separation of the centrality classes is possible.
5 Conclusions

The Glauber Monte Carlo model has been employed for the event characterization of Au + Au collisions at 1.23 AGeV, as measured with HADES at GSI-SIS18. The different experimental centrality estimators, number of reconstructed tracks, N_{tracks}, and number of recorded hits in TOF and RPC, $N_{\text{TOF+RPC}}$, can successfully be described by the model fits. Based on these fits the events can thus be categorised in different centrality classes with corresponding average number of participating nucleons $\langle N_{\text{part}} \rangle$ and impact parameter $\langle b \rangle$. This procedure provides a well defined and universal approach to determine the centrality dependences of many observables measured by HADES, such as strange hadron production [19], dileptons and flow patterns.

The HADES Collaboration gratefully acknowledges the support by PTDC/FIS/113339/2009 LIP Coimbra, NCN grant 2013/10/M/ST2/00042 SIP JUC Cracow, Helmholtz Alliance HA216/EMMI GSI Darmstadt, VH-NG-823, Helmholtz Alliance HA216/EMMI TU Darmstadt, 283286, 05P12CRGHE HZDR Dresden, Helmholtz Alliance HA216/EMMI, HIC for FAIR (LOEWE), GSI F&E Goethe-Universität, Frankfurt-VH-NG-330, BMBF 06MT7180 TU München, Garching BMBF:05P12RGGHM JLU Giessen, Giessen UCY/3411-23100, University Cyprus, CNRS/IN2P3 IPN Orsay, Orsay, MEYS LM2015049, CZ.02.1.01/0.0/0.0/16_013/0001677 NPI CAS Rez.

References

1. R.J. Glauber, Phys. Rev. 100, 242 (1955).
2. R.J. Glauber, Lectures in Theoretical Physics, Vol. 1 (Interscience, New York, 1959), p. 315
3. R.J. Glauber, Nucl. Phys. A774, 3 (2006).
4. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).
5. B. Abelev, et al., Phys. Rev. C88(4), 044909 (2013).
6. A. Bialas, M. Bleszynski, W. Czyz, Nucl. Phys. B111, 461 (1976).
7. M. Buuck, G.A. Miller, Phys. Rev. C90, 024606 (2014).
8. C. Loizides, J. Nagle, P. Steinberg, SoftwareX 1-2, 13 (2015).
9. B. Kardan, Centrality Determination at 1.23 AGeV Gold-Gold Collisions and Readout-Electronics for the HADES Calorimeter, Diploma-thesis, Goethe-Universität Frankfurt am Main (2015).
10. G. Fricke, K. Heilig, Nuclear Charge Radii Landolt-Börnstein – Group I Elementary Particles, Nuclei and Atoms, Vol. 20 (Springer Berlin Heidelberg, 2004) pp. 1-4.
11. M. Alvioli, H. Holopainen, K.J. Eskola, M. Strikman, Phys. Rev. C85, 034902 (2012).
12. K.A. Olive, et al., Chin. Phys. C 38, 090001 (2014).
13. J. Bystricky, P. La France, F. Lehar, F. Perrot, T. Siemiarczuk, P. Winternitz, J. Phys. (Paris) 48, 1901 (1987).
14. G. Agakishiev, et al., Eur. Phys. J. A 41, 243 (2009).
15. S.A. Bass, et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
16. R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. Urban, DOI 10.17181/CERN.MUHF.DMJ1
17. B. Hahn, D.G. Ravenhall, R. Hofstadter, Phys. Rev. 101, 1131 (1956).
18. O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A.B. Larionov, T. Leitner, J. Weil, U. Mosel, Phys. Rept. 512, 1 (2012).
19. J. Adamczewski-Musch, et al., Phys. Lett. B 778, 403 (2018).