Helminth Infections, Type-2 Immune Response, and Metabolic Syndrome

Aprilianto E. Wiria1,2*, Erliyani Sartono2, Taniawati Supali1, Maria Yazdanbakhsh2

1 Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia, 2 Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands

The Association between Metabolic Syndrome and Inflammation

Metabolic syndrome (MetS), a disorder of energy utilization and storage, manifests as a cluster of conditions such as hypertension, dyslipidemia, abdominal obesity, and altered glucose metabolism, which increases the risk of type-2 diabetes (T2D) and cardiovascular diseases (CVD). A lifestyle that consists of overeating, high-calorie food intake, and no or irregular physical activity is a risk factor for developing MetS. Therefore, treatment for MetS comprises regular physical activity, diet modification to reduce weight and/or blood glucose, and the use of lipid-lowering drugs.

Recently, evidence is emerging that innate and/or adaptive inflammatory responses might be associated with MetS [1]. Obese people with MetS have higher concentrations of circulating inflammatory markers [2]. Nevertheless, the incidence of CVD is also found to be higher in patients with inflammatory diseases such as asthma [3] or rheumatoid arthritis [4]. It has been shown in vitro that an inflammatory milieu, with pro-inflammatory cytokines and high levels of interleukin (IL) 17 and tumor necrosis factor (TNF), can lead to the development of a prothrombotic state in human endothelial cells [5]. Several studies have shown that controlling inflammation might be linked to improved MetS. A T2D drug, thiazolidinedione (pioglitazone), can improve insulin sensitivity by activation of peroxisome proliferator-activated receptor (PPAR) γ, a type-2 nuclear receptor that regulates fatty-acid storage and glucose metabolism [6]. It was noted that the expression of PPARγ in Foxp3+CD4+ regulatory T cells (Treg) in visceral adipose tissue was essential for the restoration of insulin sensitivity in obese mice after pioglitazone treatment [6]. In addition, subcutaneous injection of adjuvant-free apolipoprotein B100-derived peptides, as atherosclerosis-related antigens, can induce accumulation of atherosclerosis-specific Treg in lymph nodes and prevent development and progression of atherosclerosis in C57BL/6J apoE−/− mice [7]. Along with the finding that statin, a lipid-lowering drug that has beneficial effects on CVD, has an anti-inflammatory role [8], there seems to be a real case for further studies into alternative therapies that interfere with inflammatory processes to combat MetS [9].

Are Helminth Infections Associated with Metabolic Syndrome?

In high-income countries (HICs), infectious diseases such as helminths (usually associated with bad hygiene or sanitation) are relatively well controlled compared to developing or low-to-middle-income countries (LMICs), especially the rural areas of LMICs. The health problems in the HICs are instead commonly related to MetS. There is increasing evidence that improvements in the infrastructure and control of infectious diseases in LMICs, which are often followed by a decline in infections (including helminth infections), are paralleled by increasing prevalence of various inflammatory diseases such as allergies and autoimmunities as well as of T2D and CVD [10].

Numerous studies have shown an inverse association between helminth infections and inflammatory diseases such as allergies, autoimmunities, and inflammatory bowel disease, but importantly there is emerging evidence that helminths seem to also be associated with a lower incidence of MetS [10]. A study in India has indicated an inverse association between lymphatic filariasis and T2D [11], while a recent report from a rural community in China, which was previously endemic for schistosomiasis, has indicated that past infection with Schistosoma japonicum was associated with lower MetS prevalence [12]. The fasting plasma glucose, postprandial blood glucose, HbA1c, and insulin resistance, as well as the level of triglyceride and low-density cholesterol, were inversely associated with self-reported past S. japonicum infection. In support of this, we have also found that in Indonesia helminth infections are associated with improved insulin sensitivity (Wiria et al., article, unpublished).

In a study in rural Indonesia, we have shown that intestinal helminth infections in adults were negatively associated with risk factors for CVD, such as body mass index (BMI), waist-to-hip ratio (WHR), and lipid levels [13]. In the same study, we did not find any association between current helminth infections and carotid intima media thickness (cIMT) [13]. This might not be surprising as the cIMT of individuals in this area was very low compared to individuals of the same age living in HICs [14], which would make it difficult for any beneficial effect to be detected. Our finding is supported by another study that investigated atherosclerosis in cadavers [15]. The authors reported that Opisthorchis felineus infection was associated with lower serum total cholesterol and was a negative predictor of aortic atherosclerosis.

Pearls

Helminth Infections, Type-2 Immune Response, and Metabolic Syndrome

Citation: Wiria AE, Sartono E, Supali T, Yazdanbakhsh M (2014) Helminth Infections, Type-2 Immune Response, and Metabolic Syndrome. PLoS Pathog 10(7): e1004140. doi:10.1371/journal.ppat.1004140

Editor: Laura J. Knoll, University of Wisconsin Medical School, United States of America

Published July 3, 2014

Copyright: © 2014 Wiria et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors were in part supported by The Royal Netherlands Academy of Arts and Science (KNAW), Ref.KNAW-05-PP-35 (https://www.knaw.nl/en/set_language=en). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: a.e.wiria@lumc.nl, aprilianto.eddy@gmail.com.
Table 1. Animal models investigating the relationship between helminths and diet-induced metabolic disorders.

Mouse Strain	Helminth Infection/Extract	Findings	References
(A) ApoE/–/– mice or (B) random-bred TO mice	S. mansoni infection	Reduced total serum cholesterol (in both A and B) and HDL and LDL cholesterol (B).	[26]
(A) ApoE/–/– mice or (B) random-bred TO mice	S. mansoni infection	Reduced atherosclerotic lesion development (A).	
(C) ApoE/–/– or (D) wild type (WT) C57BL/6 mice	S. mansoni eggs that had been frozen	Reduced total serum cholesterol (C and D) and LDL (C).	[27]
(C) ApoE/–/– or (D) wild type (WT) C57BL/6 mice	S. mansoni eggs that had been frozen	No effect on atherosclerotic lesion formation (C).	
(C) ApoE/–/– or (D) wild type (WT) C57BL/6 mice	S. mansoni eggs that had been frozen	Enhanced Th2 cytokine responses without affecting Th1 cytokines (C).	
(C) ApoE/–/– or (D) wild type (WT) C57BL/6 mice	S. mansoni eggs that had been frozen	Increased percentage of macrophages in peritoneal cavity (C).	
(E) ApoE/–/– mice or (F) TO mice	S. mansoni infection, live S. mansoni eggs, SEA, and SmECS	Patent bisexual worm infection reduced serum cholesterol (F) and liver lipids (E and F).	[19]
(E) ApoE/–/– mice or (F) TO mice	S. mansoni infection, live S. mansoni eggs, SEA, and SmECS	Single-sex worm infection did not significantly reduce serum cholesterol (E, F).	
(E) ApoE/–/– mice or (F) TO mice	S. mansoni infection, live S. mansoni eggs, SEA, and SmECS	Live eggs, SEA, and SmECS reduced serum cholesterol (F).	
WT C57BL/6 mice	N. brasiliensis infection	Improved insulin sensitivity and glucose tolerance.	[17]
WT C57BL/6 mice	N. brasiliensis infection	Decreased perigonadal adipose tissue weight.	
WT C57BL/6 mice	N. brasiliensis infection	Increased perigonadal adipose tissue eosiophilia.	
WT C57BL/6 mice	N. brasiliensis infection	Decreased total adipose tissue macrophages.	
(G) WT (H) IL-10/–/– or (I) Fxr-α/–/– (Nr1h4) C57BL/6J mice	SEA	Improved insulin sensitivity and glucose tolerance in an IL-10-dependent manner (G and H).	[21]
(G) WT (H) IL-10/–/– or (I) Fxr-α/–/– (Nr1h4) C57BL/6J mice	SEA	Increased circulating IL-4 and IL-10 (G).	
(G) WT (H) IL-10/–/– or (I) Fxr-α/–/– (Nr1h4) C57BL/6J mice	SEA	Promoted the expression of M2 and metabolic genes and reduced the expression of M1 genes in epididymal adipose tissue (G).	
(G) WT (H) IL-10/–/– or (I) Fxr-α/–/– (Nr1h4) C57BL/6J mice	SEA	Protected against hepatic steatosis and suppressed lipogenic gene expression (g)	
(G) WT (H) IL-10/–/– or (I) Fxr-α/–/– (Nr1h4) C57BL/6J mice	SEA	Reduced lipogenesis through activation of Fxr-α (G, I).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Reduced diet-induced weight gain and promoted weight loss in obese mice (in J).	[28]
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Decreased epididymal and brown adipose tissue mass and circulating leptin (J).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Improved glucose tolerance and fasting blood insulin (J).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Decreased intestinal glucose absorption associated with decreased expression of glucose transporters (J).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Reduced hepatic steatosis and affected the expression of genes related to lipid metabolism (J).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Up-regulated gene expression of Th2 cytokines in various organs including epididymal fat (J).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	Up-regulated gene expression of the M2 markers Arg1 and Ym1 in epididymal fat (J).	
(J) WT (K) STAT6 (–/–) (L) IL-13 (–/–) C57BL/6 mice	N. brasiliensis infection	The weight loss and attenuation of hepatic steatosis were partially or entirely dependent on IL-13 and STAT6 (J,K,L)	
(M) LDLR/–/– or WT (N) C57BL/6 mice	SEA	Induced up-regulation of splenic Th2 genes (M)	[20]
(M) LDLR/–/– or WT (N) C57BL/6 mice	SEA	Induced anti-inflammatory peritoneal macrophages but did not affect M2 gene expression (M).	
(M) LDLR/–/– or WT (N) C57BL/6 mice	SEA	Reduced systemic inflammation at the myeloid level (M).	
(M) LDLR/–/– or WT (N) C57BL/6 mice	SEA	Reduced plasma cholesterol in the VLDL- and LDL-sized particles (M).	
Taken together, it is tempting to hypothesize that helminth infections can protect against MetS, therefore decreasing the risk for subsequent development of T2D and/or CVD.

What Is the Possible Mechanism behind the Association between Helminths and Metabolic Syndrome?

The ability of helminth parasites to influence the immune system of their host is evident from the association between these infections and immune hyporesponsiveness and the skewing of the immune system toward modified type-2 responses [10]. These characteristic responses are thought to ensure the long-term survival of worms in the human host while benefiting the host by preventing immune pathological reactions [10]. Recent studies have shown that there might be a link between the immune responses that helminths can induce and glucose metabolism. In Table 1, a summary of the expanding body of research on the effect of helminths on various aspects of MetS is presented. Ricardo-Gonzales et al. have elegantly shown that when IL-4 is injected into mice fed a high-fat diet, the signal transducer and activator of transcription 6 (STAT-6) was activated in the liver and attenuated adipose tissue inflammation which in turn lead to improvement of insulin action [16]. Furthermore, Wu and colleagues showed in a landmark study that the nematode Nippostrongylus brasiliensis infection in mice could improve insulin sensitivity associated with adipose tissue eosinophila [17]. In the same report, using noninfected mice, the authors describe eosinophils as the major IL-4 producers in the adipose tissue partly through the production of the anti-inflammatory cytokine IL-10, a mechanism that has been previously demonstrated to counter the effect of TNF on inducing insulin resistance [18].

In a study using apoE/−/− mice, it was shown that factors released from S. mansoni eggs have lipid-lowering effects [19]. Recently, a report in another model (c57BL/6 LDLR−/− mice) showed that S. mansoni-soluble egg antigen (SEA) treatment induces anti-inflammatory macrophages, which may reduce systemic inflammation, attenuates atherosclerosis development, and inhibits plaque necrosis [20]. Moreover, Bhargava et al. [21] have demonstrated that lacto-N-fucopentose III, an immunomodulatory glycan that can be found in human milk and its Lewis-X moiety on parasitic helminths (in SEA), could improve insulin sensitivity by enhancing white-adipose-tissue insulin signaling through induction of IL-10 production. Whether helminth infections lead to similar changes in humans still requires further investigation. In a recent study, we found that total immunoglobulin E (IgE), which is associated with helminth infections, was associated with decreased fasting blood glucose and lipid levels [13]. However, recent work has suggested that there are two types of IgE, which provoke different responses when bound to FcεRI receptors on mast cells [25]. One is IgE that has a high affinity and can initiate mast cells’ degranulation and anaphylaxis when bound to its antigen, whereas another is low-affinity IgE that is functionally less active. Investigating how IgE is involved in the pathogenesis of MetS and how the biological activities of IgE differ in the absence or presence of helminth infections might generate new insights into possible MetS pathogenesis and treatments.

Is There More to IgE and CVD?

The association between total IgE and CVD in the absence of helminths has been investigated in animal models. Wang et al. have reported that IgE is associated with CVD by its binding to FcεRIα on macrophages to promote plaque instability [22]. They also reported that IgE levels were higher in subjects with CVD, especially in those with unstable angina and acute coronary events. In an urban area in China, a higher level of IgE and chymase, a mast cell protease, has been reported to be a potential risk factor for T2D [23,24]. These studies seem to be in contrast to our findings that high total IgE is associated with decreased fasting glucose and lipids [13].

The Emerging Area of Helminth Infections and MetS

It is tempting to speculate that the possible protective effect against MetS of living in areas where helminths are highly endemic is based on the presence of strong anti-inflammatory and modified responses (Figure 1). To test this hypothesis, sufficiently powered longitudinal studies are needed in the form of a randomized, double-blind, anthelmintic-placebo-controlled trial that can reveal whether de-worming leads to MetS. Another method would be to infect patients with MetS with helminths to assess whether the treatment can improve MetS. Only then will it be possible to bridge the gap between the findings in animal models and the situation in humans. Next, it might be interesting to test which helminths or which of their products can be used to modify inflammatory responses as a treatment for T2D or CVD, as is currently being done in the field of allergy, autoimmunity, and inflammatory bowel diseases [10].

Acknowledgments

We thank Leonie Hussaarts for helping with the table and Bruno Guigas for helping with the figure and for reading the manuscript critically. The authors apologize to colleagues whose papers could not be cited due to space limitations.
disadvantageous to the development of T2D and CVD (B). The solid lines represent associations based on data available, while dotted lines represent degranulation. Thus, in the presence of helminth infections, the immune system is in an anti-inflammatory mode that is considered to be activation of macrophages in this metabolically active organ; the AAMs in turn release anti-inflammatory cytokines such as IL-10. The signaling of alternatively activated Th2 and Treg. Th2 cytokines result in increased eosinophilia (EO) and, when in adipose tissue, can lead to the alternative activation of macrophages in this metabolically active organ; the AAMs in turn release anti-inflammatory cytokines such as IL-10. The signaling pathways are currently being dissected, but so far there is evidence that this cascade of events involves the activation of PPAR, STAT6, and/or Akt. Moreover, it has been noted that when the immune system is exposed to chronic helmint infections, EO and MCs no longer behave as pro-inflammatory immune cells, and IgE under these conditions appears to be of low affinity showing poor functional activity in terms of inducing MC degranulation. Thus, in the presence of helmint infections, the immune system is in an anti-inflammatory mode that is considered to be disadvantageous to the development of T2D and CVD (B). The solid lines represent associations based on data available, while dotted lines represent theoretical associations that are yet to be tested.

References

1. Odegard JL, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339: 172-177. doi:10.1126/science.1230721
2. Van Guider GP, Hoetzer GL, Greiner JJ, Stauffer BL, Desouza CA (2006) Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults. Obesity (Silver Spring) 14: 2127-2131. doi:10.1038/oby.2006.248
3. Iribergen C, Tolskhty IV, Miller MK, Sobel E, Eizer MD (2012) Adult asthma and risk of coronary heart disease, cerebrovascular disease, and heart failure: a prospective study of 2 matched cohorts. Am J Epidemiol 176: 1014-1024. doi:10.1093/aje/kws181
4. Ong KL, Wu BJ, Cheung BM, Barter PJ, Rye KA (2013) Arthritis: its prevalence, risk factors, and association with cardiovascular diseases in the United States, 1999 to 2008. Am J Epidemiol 23: 80-86. doi:10.1093/aje/kans081
5. Hot A, Lenief V, Miossec P (2012) Combination of IL-17 and TNFalpha induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Ann Rheum Dis 71: 768-776. doi:10.1136/annrheumdis-2011-200468
6. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, et al. (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486: 549-553. doi:10.1038/nature11132
7. Herban O, Ait-Oufella H, Yu W, Frederikson GN, Aubier B, et al. (2012) Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32: 605-612. doi:10.1161/ATVBAHA.111.242900
8. Belaleaz LM, Haffner SM, Lang W, Hoogeveen RC, Rushing J, et al. (2013) Lifestyle intervention and/or statins for the reduction of C-reactive protein in individuals with metabolic syndrome. PLoS One 8(1): e53800. doi:10.1371/journal.pone.0053800
9. Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339: 166-172. doi:10.1126/science.1230720
10. Wira AE, Dharjy Y, Supali T, Sartono E, Yazdanbakhsh M (2012) Helmint infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 34: 879-901. doi:10.1007/s00281-012-0358-0
11. Aravindhan V, Mohan V, Suresh J, Murugadhas R, Paukkunnan N, et al. (2010) Decreased prevalence of lymphatic filariasis among diabetic subjects associated with a diminished pro-inflammatory cytokine response (CURES 83). PLoS Negl Trop Dis 4: e707. doi:10.1371/journal.pntd.0000707
12. Chen Y, Lu J, Huang Y, Wang T, Xu Y, et al. (2013) Immunomodulatory effects of helminth infection with diabetes and metabolic syndrome: a cross-sectional study in rural china. J Clin Endocrinol Metab 98: E283-E287. doi:10.1210/jc.2012-2517
13. Wira AE, Wamnes LJ, Hamid F, Dekkers OM, Prasetyani MA, et al. (2013) Relationship between Carotid Intima Media Thickness and Helminth Infections on Flores Island, Indonesia. PLoS One 8: e54855. doi:10.1371/journal.pone.0054855
14. Solomon EZ, Ding J, Hsu FC, Carr JJ, Polak JF, et al. (2010) Association between carotid intima-media thickness and pericardial fat in the Multi-Ethnic Study of Atherosclerosis (MESA). J Stroke Cerebrovasc Dis 19: 58-65. doi:10.1016/j.jsctcd.2009.03.008
15. Magen E, Bychkov V, Ginovker A, Kashuba E (2013) Chronic Opiostichorum felifelocercosis—An autopsy study. Int J Parasitol 43: 819-824. doi:10.1016/j.ijpara.2013.04.008
16. Ricardo-Gonzalez RR, Red EA, Odegard JT, Jouihan H, Morel CR, et al. (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 107: 22817-22822. doi:10.1073/pnas.1009152108
17. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, et al. (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332: 245-247. doi:10.1126/science.1204157
18. Lumenk CN, Bodin JL, Salitet AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175-184. doi:10.1172/JCI29868
19. Stanley RG, Jackson CL, Griffiths K, Doenhoff MJ (2009) Effects of Schistosoma mansoni worms and eggs on circulating cholesterol and liver lipids in mice. Atherosclerosis 207: 131-138. doi:10.1016/j.atherosclerosis.2009.04.037
20. Wofls IM, Stogler JL, Goossens P, Potgera C, Gibeljs MJ, et al. (2013) Reprogramming macrophages to an anti-inflammatory phenotype by helmint antigens reduces murine atherosclerosis. FASEB J 27: 269 – 299. doi:10.1096/fj.12-235911
21. Bhargava P, Li-C, Stanya KJ, Jacob DD, Liu L, et al. (2012) Immunomodulatory glycans LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med 18: 1665-1672. doi: 10.1038/nm.2962
22. Wang J, Cheng X, Xiang MX, Alame-Inunnmen W, Wang JA, et al. (2011) Eosinophils stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice. J Clin Investig 121: 3564-3577. doi:10.1172/JCI46028
23. Wang Z, Zhang H, Shen XH, Jin KL, Ye GF, et al. (2011) Immunoglobulin E and mast cell proteases are potential risk factors of human pre-diabetes and diabetes mellitus. PLoS One 6: e28962. doi:10.1371/journal.pone.0028962
24. Wang Z, Zhang H, Shen XH, Jin KL, Ye GF, et al. (2013) Immunoglobulin E mast cell proteases are potential risk factors of impaired fasting glucose and impaired glucose tolerance in humans. Ann Med 45: 220-229. doi:10.3109/07853850.2012.732234
25. Xiao H, Dolphcy J, Wahb M, Curtoress de Lafaille MA, Lafaille JJ (2012) Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med 209: 553-564. doi:10.1084/jem.20111941
26. Doenhoff MJ, Stanley RG, Griffiths K, Jackson CL (2009) Ovist. Science 323: 838-842. doi:10.1126/science.1172234
27. Wira AE, Dharjy Y, Supali T, Sartono E, Yazdanbakhsh M (2012) Helmint infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 34: 879-901. doi:10.1007/s00281-012-0358-0
28. Yang Z, Grinchuk V, Smith A, Qin B, Bohl JA, et al. (2013) Parasitic nematode-induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity. Infect Immun 81: 1905-1914. doi:10.1128/IAI.00553-13