Developing Vulnerability Index for the Coastal Storm Surge Hazards Considering Climate Change

Pronab Kumar Halder 1
Md. Sowayib Sikder 2

Abstract
The intensity and frequency of natural disaster like cyclone, storm surge has been increasing significantly in the coastal region of Bangladesh. This paper has represented not only the impact of a storm surge hazard e.g. Aila in 2009, but also future vulnerability to storm surges under climate change perspective. Hence, a regional conceptual frame work named 'cycle way' has been developed to determine the future vulnerability of the coastal community. 'cycle way' frame work is used to comprehend the process of socio-economic condition, livelihood activities, resources availability and natural hazards in the coastal region. It interlinks with the causes behind the exposure to natural hazards and coping capacity of the community. Indicators as like drinking water availability, loss of rice production, loss of shrimp production, flooded land, migration etc have been adopted for multi criteria analysis (MCA) for this study and Aila, 2009 has been used as a base year study. Secondary data trend analysis and focus group discussion (FGD) has been used to estimate the total vulnerability index (TVI) for upcoming storm surge disaster The Total Vulnerability Indices found as 6.22, 9.77 and 12.26 for the years 2009, 2030 and 2050 respectively. This article represents the interaction among the pressure on the community, adaptation activities and climate changes on the same platform through quantification as TVI.

Key Words: Climate change; Cycle way frame work; Cyclone Aila; Multi criteria analysis; Pressure and coping effect; Total Vulnerability Index.

1 P. K. Halder; Water Resources Division (WRD)
Center for Environmental and Geographic Information Services (CEGIS)
2 Md. Sowayib Sikder
Assistant Secretary and P.S to Rector, Bangladesh Public Administration Training Centre (BPATC), Savar, Dhaka-1343
The vulnerability to climate change is considered to have massive and disastrous consequences for Bangladesh resulting one of the most susceptible countries of the world (ADB, 2004). Coastal areas, especially heavily populated mega delta regions in South, East and South-East Asia, will be at greatest risk due to increased flooding from the sea (IPCC2007). During the past 200 years, 2.6 million people may have drowned during surge events (Nicholls 2003). Approximately 19.5% (391,812 km²) of their combined coastal territory of 84 developing countries is vulnerable to inundation from a 1-in-100-year storm surge (by current reference standards). Homogenous 10% future intensification over the next 100 years (Nicholls et al., 2007) increases the potential inundation zone to 25.7% of coastal territory, taking into account sea-level rise. This translates to potential inundation for an additional 52 million people; 29,164 km² of agricultural area; 14,991 km² of urban area; 9% of coastal GDP and 7% of wetlands. (Dasgupta et al. 2009)

Tropical cyclones hitting trend of the Bangladesh coast is not steady. It has vacillated in the past century. Presently, there is an increasing trend (Islam & Peterson 2009). Higher population density increases vulnerability to climate change especially water related disaster in Bangladesh (Agraweala et al. 2003). Most of the casualties from cyclones in Bangladesh, as in other parts of the world, are caused by storm surges as for climate change will increase the height of storm surges, leading to greater coastal flooding (Ali, 1996). Under scenario A2 in year 2050 (SLR 27 cm) exposed population will be 5.0 million to high risk (inundation over 100 cm) and while 5.5 million at risk of inundation by 50-100cm. In case of 13 polders overtopped due to 62 cm sea level rise in the year 2080 under A2 scenario, 45% population will be exposed to medium to severe inundation (TWM & CEGIS, 2007).

The recent storm disaster ‘Aila’ have passed over the south west of Bangladesh and adjacent part of India with likely surge height 6-8 feet above normal astronomical tide (DMIC & DMB, 2009). In this
Developing Vulnerability Index for the Coastal Storm Surge

2.0 Methodology

The intensity and frequency of natural disaster like storm surge has been increasing day by day of the coastal region in Bangladesh. Vulnerability to climate change is the degree to which these systems are susceptible to, and unable to cope with, the adverse impacts (IPCC, 2007). It is important to analyze the vulnerability to different risks and subsequently to enhance their abilities to cope with the hazard which is a multi-dimensional approach (Makoka & Kaplan, 2005). If the climate will change in present trend, the present disaster *e.g.* Aila must be intensified and magnified in future. So the vulnerability obviously increases in future of that south west region. Cyclone Aila is selected for base year impact. This study has been conducted in a polder region *e.g.* encircle embankment (Figure-1) which was severely affected by the Aila event in 2009. A vast region inside a Polder-5 had been flooded due to storm surge flooding during Aila.

This study has been commenced through projecting storm surge flooding in future projected years (*e.g.* 2030 & 2050) through DEM analysis in GIS. Then, flooded area of Aila, vulnerable region to future flood and the sensitive area have been selected for the study.

A number of homogenous groups have been selected to collect social aggravated data through focus group discussion (FGD). The homogenous group is characterized by-

- a. Geographically identical location (distance, elevation)
- b. Assets are more and less same in that group
- c. Lively hood or relation to the resource extraction must be same
d. Similar in social status e.g. ethnicity, gender, cast and culture.

Figure 1: Polder-5 (e.g. encircled embankment)

From FGD and secondary literature survey a livelihood and resource use matrix (Table, 1) can be developed of the coastal population. It represents the changing of livelihood and opportunity of assets use in general of the coastal population.
Table 1: Livelihood and resource use matrix

Location	Types of group	Types of livelihood	Natural Assets	Physical Assets	Economic Assets	Social Assets
Totally flooded in Aila	Agricultural farmer	Rice cultivation, Day labor, Rickshaw puller	2	1	1.5	1.5
	Shrimp farmer	Shrimp cultivation, business,	1.5	2	2.5	3
	Business men	Small and large business, Retails	1	2.5	2	2
	Day labors	Day labors, Rickshaw puller	1.5	1	1	1.5
Transition zone	Agricultural farmer	Rice cultivation, Day labor, Rickshaw puller	2	1	1.5	2
	Shrimp farmer	Shrimp cultivation, business,	1	2	2.5	2
	Business men	Small and large business, Retails	1	2.5	2	2
	Day labors	Day labors, Rickshaw puller	1	1	1	1.5
Tentative to flooded in	Agricultural farmer	Rice cultivation, Day labor, Rickshaw puller	2	2	1.5	2.5
future	Shrimp farmer	Shrimp cultivation, business,	1	1.5	2	2
	Business men	Small and large business, Retails	1	2.5	2.5	3
	Day labors	Day labors, Rickshaw puller	1.5	1	1.5	1

Note: 1 = Fail; 2 = Good, 3 = Very good

In case of 'Aila', 2009, about 147 people died, 3,694,874 people and 783,286 families were affected, 545,226 houses were destroyed and 340,660 acre crops were damaged (DMIC & DMB, 2009). Total 14 districts were affected among 19th coastal district of Bangladesh. About 70% resources of the three south west coastal districts have been directly and indirectly affected by cyclone 'Aila'.

A conceptual frame work (e.g. cycle way) has been developed (Figure-2) for future vulnerability assessment with respect to present disaster. This frame work is like a rolling cycle over a way. It is actually a process related frame work. The shape of the wheel represents socio economic condition of the community. The center of the cycle is quite uneven that represents the livelihood situation of the community in resource extraction. In the coastal zone...
maximum population are involve in habitat dependent livelihood. So the star is quite lower and adjacent to the way. Due to economic development of the country and improvement of social welfare enhance the cycle of the frame work in future.

Figure 2: Cycle-way frame work for vulnerability analysis

The rotation of the cycle enriches resource from the resource platform with time interval for socio-economic development. Different kinds of pressure act as a driving force to move the community to more vulnerable stage. One the other hand coping capacity tends to obstruct or reduce this vulnerability. The major driving forces and related coping capacity of the south west region are identified in table-2.

Pressure	Coping capacity
Population growth	Family planning, Out migration
Staple food production	Alternate food habit and import
Per capita income	Subsidy, Alternate livelihood opportunity
Salinity increases in water and soil	Salinity tolerant verities, move to different crops.
Land use vulnerability	Awareness and Management
Household structure	Protective structure, Govt., laws and policy
Social relationship	Local culture, media
Climate change	Warning system, laws and regulation

Table 2: Identification of the pressure and coping capacity for the community
In the figure-1, a hazard zone can be found aside with the natural systems. Hazard front increases toward the community with the changing climate. So vulnerability of the community increases in both intrinsic and extrinsic phenomenon of the system. Actually the position of the cycle, socio-economic structure, livelihood and hazard front over a time period determine the total vulnerability of the coastal community.

3.0 Result and Discussion

Total Vulnerability Index will be developed through the aggregation of various criteria and indicator with respect to their involved in storm surge hazard. Cyclone 'Aila' reflects the impacted subjects which are adopted in future vulnerability study. By using the steps of the frame work, the qualitative and quantitative data can be collected by FGD from the field survey. Secondary data also are used for future impact projection.

Table 3: Field survey and projected qualitative and quantitative data

Assets	Criteria	Indicator	Impact of Aila, 2009	Vulnerability for 2020	Vulnerability for 2050
Natural	Loss of forest plant %		32	45	64
	Loss of Livestock %		40	60	90
	Availability of drinking Water	Population	112	2/3	1
	Inundated Area Coverage of polder No-5	Km²	22.5	78	48
	Collection from wild animals	less	rare	least	
	Water Salinity ppt		14	23	35
Physical	Roads, bridge, culvert %		40	60	75
	Residential Status Damage in affected areas	Increasing than previous	More Damage than previous		
	Vehicle, boat, Network %		50	60	65
Economic	Loss of Agricultural land (ha)	%	70	80	95
	Loss of Shrimp farm (ha) %		50	55	60
Different tools of PRA as like social mapping, chapatti diagram and chart drawing are used to estimate the future impact under climate change context. The concept of vulnerability requires a reduction of potentially gatherable data to a set of important indicators and criteria (Birkmann, 2006). The disaggregated data are justified through analysis of secondary literature.

Raw information of quantitative and qualitative data are arrange in tabular form for multi-criteria analysis. Cyclone Aila, 2009 destroy almost 70% resources of the south west coastal districts (Accounted from DMIC & DMB, 2009). In case of future vulnerability assessment Aila, 2009 is used as a base year situation. Adaptation to climate change impacts is necessary, that it is already occurring, and will occur with greater urgency in the future (Adger et.al. 2005). The causes of increasing vulnerable and the coping capacity are highly considered in future impact assumption. Finally we use equation-1 for the standardization of the score.

\[
STD_{k,j} = \frac{ACT_{k,j}}{Best(1...N)}
\]

Where:
- **N** = Number of years (2009, 2030 and 2050)
- **k** = Situations
- **j** = Criteria
- **STD** = Standardized score (Base year condition)
- **ACT** = Actual score

After standardization we apply weighted sum method for giving preference to subjective issues and multiply the score with normalizing coefficient and weighted coefficient. At the end we added the score of different year vulnerability and find the total vulnerability index (TVI). So the index for 2009, 2030 and 2050 is consequently 6.22, 9.77, and 12.26 (Table No-4).
Table 4: Total vulnerability Index estimation table

Assets	Criteria	Weighed Coefficient	Normalizing Coefficient	Impact of Aila, 2009	Vulnerability for 2020	Vulnerability for 2050	Results	Impact of Aila, 2009	Vulnerability for 2030	Vulnerability for 2050
Natural	Loss of forest plant	0.17	1	1.41	2	0.17	0.24	0.34		
	Loss of Livestock	0.17	1	1.5	2.25	0.17	0.26	0.38		
	Availability of drinking Water	0.17	1	1.5	2	0.17	0.26	0.34		
	Inundated Area Coverage	0.17	1	1.25	2.13	0.17	0.21	0.36		
	Collection from wild life	0.17	1	2	2.5	0.17	0.34	0.43		
	Land salinity coverage	0.17	1	1.64	2.5	0.17	0.28	0.43		
Physical	Roads, bridge, culvert	0.33	1	1.5	1.88	0.50	0.74	0.93		
	Residential Status	0.33	1	1.4	1.75	0.50	0.69	0.87		
	Vehicle, boat, Network	0.33	1	1.2	1.3	0.50	0.59	0.64		
Economic	Loss of Agricultural land (ha)	0.33	1	1.14	1.36	0.58	0.66	0.79		
	Loss of Shrimp farm (ha)	0.33	1	1.1	1.2	0.58	0.64	0.69		
	Livelihood	0.33	1	1.5	2	0.58	0.87	1.16		
Social	Gender situation/ Sanitation	0.33	1	2	2.5	0.66	1.32	1.65		
	Migration	0.33	1	2.31	2.69	0.66	1.52	1.78		
	Cultural entanglement	0.33	1	1.75	2.25	0.66	1.16	1.49		

Total Vulnerability Index (TVI)

	Impact of Aila, 2009	Vulnerability for 2030	Vulnerability for 2050
	6.22	9.77	12.26

4.0 Conclusion

If cyclone Aila is representative all of the year but TVI remains increasing with time. From the frame work we find that location, socioeconomic condition, livelihood and climate change are responsible for agitate TVI. Just after Aila, they become vulnerable due to poor socioeconomic condition and livelihood opportunity. In 2030 and 2050 their socioeconomic condition and livelihood opportunity may improve but their position and climate change influencing hazard front enhance TVI. Pressure behind the society and easy resource enrichment process drive the community to increase exposure. Different adaptation options pull them to safer place. Finally, climate change intensified natural hazard and exposure of the assets simultaneously make the coastal community more vulnerable in future.
REFERENCES

ADB, 2004; "Country Environmental Analysis, Bangladesh"; July 2004, p-15

Adger W. N, N. W. Arnell and E.L. Tompkins, 2005; "Successful adaptation to climate change across scales", *Global Environmental Change*, Vol-15; Elsevier Ltd. pp 77–86

Agraweala S, T, Ota, A. U. Ahmed, J. Smith and M. Aalst 2003; "Development and Climate Change in Bangladesh: Focus on the Coastal Flooding and Sundarban, OECD, Head of the publication service, 75775 Paris, Cedex 16, France

Ali A 1996; "Vulnerability of Bangladesh to Climate Change and Sea Level Rise through Tropical Cyclones and Storm Surges", *Water, Air, and Soil Pollution 92*. Kluwer Academic Publishers, Printed in the Netherlands. 171-179

Birkmann J. 2006; "Measuring Vulnerability to Natural Hazards towards Disaster Resilient Societies", *Indicators and criteria for measuring vulnerability: Theoretical bases and requirements*, United Nations University (Tokyo, New York). pp. 55–77

Dasgupta S, B. Laplante, S. Murry and D. Wheeler, 2009; "Climate Change and the Future Impacts of Storm-Surge Disasters in Developing Countries" *Center for Global Development*, 1800 Massachusetts Ave., NW Washington, DC.

DMIC & DMB, 2009; Summary of Cyclonic Storm "AILA"http://www.cdmp.org.bd, www.dmb.gov.bd

IPCC, 2007: Climate Change 2007: "Climate Change Impacts, Adaptation and Vulnerability" *Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*; Cambridge University Press, Cambridge, UK pp- 11,782.

Islam T. and R. E. Peter 2009; "Climatology of land falling tropical cyclones in Bangladesh 1877–2003" *Nat Hazards, 48:115–135*, Springer, Science+ Business Media B.V.
IWM & CEGIS, 2007; "Investigating the impact of Relative Sea level Rise on Coastal Communities and their Livelihoods in Bangladesh", Department for Environment Food and Rural Affairs, UK.

Makoka D and M. Kaplan 2005; "Poverty and Vulnerability: An Interdisciplinary Approach" Centre for Development Research, University of Bonn. http://mpra.ub.uni-muenchen.de/6964/

Nicholls R. J, 2003; An Expert Assessment of Storm Surge "Hotspots" Final Report (Draft Version) to Center for Hazards and Risk Research, Lamont-Dohert Observatory, Columbia University.

Nicholls R.J, S. Hanson, C. Herweijer, N. Patmore, S. Hallegatte, J. Corfee-Morlot, J. Chateau, R. Muir-Wood 2007; "Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes" OECD, Environment Directorate, Environment Working Papers No. 1.
