The potential of the spiny lobster fishery in Aceh waters: A short review

A Damora¹*, N Fadli¹, S Andriyono², A Suman³
¹ Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
² Department of Marine Science, Universitas Airlangga, Surabaya, Indonesia
³ Research Institute for Marine Fisheries, Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia

*Corresponding author: adamora@unsyiah.ac.id

Abstract. The western-southern and northern coastal waters of Aceh are the potential fishing areas of spiny lobster, which faces the Indian Ocean and the Andaman Sea. Fishing gears that are widely used are lobster gill nets and hand-picking with compressors. In Indonesia, seven species of spiny lobsters are caught in these waters, including Panulirus homarus, P. penicillatus, P. versicolor, P. ornatus, P. polyphagus, P. longipes longipes, and P. longipes femoristiga. The habitat for spiny lobsters is spread from coral reefs, rock, sand, and muddy sand. Panulirus homarus is the most frequently caught species in these waters, followed by P. penicillatus and P. longipes. Panulirus homarus is mainly caught during the dry season (southwest wind) and high waves (May to July), where other lobster species experience a significant decrease in the catch. The stock of spiny lobster in Fisheries Management Area (FMA) 572 (including Aceh coastal waters) has been in an overfishing condition since 2008. Maximum sustainable yield (MSY) of spiny lobster in Aceh coastal waters part of Malacca Strait (FMA 571) is 188.60 tons.yr⁻¹ with a total allowable catch (TAC) of 151.10 tons. yr⁻¹. Furthermore, the MSY for Aceh coastal waters part of Indian Ocean is 292.09 tons.yr⁻¹ with a TAC of 233.92 tons.yr⁻¹. Spiny lobster fishing in Aceh coastal waters must ensure its use in the future, both ecologically, socially, and economically.

1. Introduction

Crustacean resources in Indonesia have been the object of research for several years. The crustaceans that became the target of research were mostly marine crustaceans, such as Penaeid shrimps (family Penaeidae), portunid crabs (family Portunidae) and spiny lobsters (family Palinuridae). The spiny lobsters are one of the leading fishery export commodities in Indonesia. Its production reached 1,514,653 tonnes or equivalent to US$ 28,452,601 in 2018. The export value of consumption size lobster for the 2014-2018 period grew by an average of 20.42% per year in the 2014-2018 period [1]. Spiny lobster production in Indonesia is 99.5% produced from the capture fisheries sector and the remaining 0.5% comes from the aquaculture sector. This percentage shows that the spiny lobster business is still very dependent on the catch in nature [2, 3].

In Aceh, the spiny lobster is the top five contributor to province fisheries export. This commodity contributes 0.13% to the national level. Regions that contribute to spiny lobster production include Aceh Besar, Aceh Jaya, West Aceh, and Simeulue Island. Simeulue Island and Aceh Jaya still provide the
highest production contribution until now. Its exploitation has been going on for a long time with a small fishing boat. The fishing gears used are dominated by gill nets specifically for lobsters.

The spiny lobster in Indonesia has been the object of research for several years. In general, the aspects studied include species diversity [4], habitat [5], biological aspects [6-10], growth pattern [11, 12], abundance and population dynamic [13-16], reproductive biology [17, 18], genetics [19], and management and conservation [20, 21]. The purpose of this review article is to review scientific information about spiny lobster in Aceh coastal waters from previous studies, especially research conducted in the western-southern of Aceh.

2. Species Diversity

Six species of spiny lobster found in Indonesian waters were also found in Aceh waters, particularly the south-west coast (Table 1). These species were found in Lhok Kruet, Lhok Rigaih and Sampoiniet [4, 22, 23]. These three areas are located in Aceh Jaya Regency.

Table 1. Spiny lobster species found in Aceh coastal waters.

Scientific name	English name	Local name
Panulirus homarus	Scalloped spiny lobster	Lobster pasir
Panulirus penicillatus	Pronghorn spiny lobster	Lobster batu
Panulirus versicolor	Painted spiny lobster	Lobster bambu
Panulirus ornatus	Ornate spiny lobster	Lobster mutiara
Panulirus polyphagus	Mud spiny lobster	Lobster pakistan
Panulirus longipes longipes	Longlegged spiny lobster	Lobster batik

The discovery of these six species was also reported on the coast of Aceh Besar Regency and Simeulue Island, but there has been no scientific publication that has written about this. Another species found in Indonesian waters, *P. femoristriga*, has never been reported on spiny lobster fisheries in Aceh. This species has only been reported to be found in the waters of the Celebes and Seram Islands [24].

![Figure 1](image_url). Distribution of spiny lobster *Panulirus* spp. in Indonesia waters. A compilation sources was used Tewfik [22], Berry [25], George [26], Prescott [27], Holthuis [28].

Panulirus penicillatus and *P. longipes longipes* can be found in rocky shores. *Panulirus versicolor* prefers coral reefs. *Panulirus homarus* and *P. ornatus* are distributed in sandy beaches, while *P. polyphagus* is distributed in the sand-muddy areas. Knowledge of the spatial distribution of spiny lobster based on the pattern of fisher access to the resources can help in better management of this commodity.
The spatial distribution of spiny lobster in these habitats is strongly influenced by nearshore hydrodynamics and turbidity originating from terrestrial areas [25, 26, 32].

3. Catch Composition

Spiny lobster catches in Aceh were dominated by *P. penicillatus* at 34%, followed by *P. homarus* 26%, *P. longipes* 20%, *P. versicolor* 13%, *P. ornatus* 6%, and *P. polyphagus* 1%. *Panulirus penicillatus* has a dark blue and black body. Males are darker in color than the females. There are less obvious spots on the abdomen. The antenna stalk has a blue line. This species generally lives on coral reefs with water depths of 1-4 m and a maximum depth of 16 m [33]. *Panulirus penicillatus* also live in association with *P. homarus* so that *P. homarus* is also caught in large numbers, namely 26% [4, 34].

![Figure 2](image2.png)

Figure 2. Catch composition of spiny lobster *Panulirus* spp. landed in Aceh coastal areas.

Aceh coastal waters, especially the west and south coasts, are potential areas for spiny lobster habitat. This condition causes six spiny lobster species to be caught in this area. These six species were also caught on the southern coast of Java, Bali and Nusa Tenggara [10, 14, 35, 36]. Most of the fishing gear used in these areas are gillnets specifically for catching lobster, but in some areas fishing gear such as traps, known as *krendet* are also used [14, 37].

![Figure 3](image3.png)

Figure 3. Monthly fishing season of spiny lobster *Panulirus* spp. in Aceh Jaya Regency, Indonesia [22].
4. Exploitation Status
The calculation of the spiny lobster exploitation rate in Aceh waters uses the Fisheries Management Area (FMA) 571 and 572 data approach. The data used are fishery statistics for the period 2007-2016. The results of the calculation using the Surplus Production Model of the data are shown in Figure 4.

Figure 4 shows the stock of spiny lobster in FMA 572 has been in biologically unsustainable condition (overfishing and overfished) since 2008. The same status has also occurred in FMA 571 since 2011. Overfishing and overfished does not mean that the lobster cannot be caught, but the fishing must be controlled. The calculation of exploitation status in Figure 4 is then derived to calculate the maximum sustainable yield (MSY) of spiny lobster in Aceh waters. The calculation results are shown in Table 2.

Table 2. Catch potential of spiny lobster *Panulirus* spp. in FMA 571 and 572.

FMA	Province	Catch Potential (ton)
571 Malacca Strait	Aceh	MSY: 188.60, TAC: 151.10
	North Sumatra	MSY: 23.91, TAC: 19.16
	Riau	MSY: 270.48, TAC: 216.72
FMA 572 Indian Ocean	Aceh	MSY: 103.49, TAC: 82.82
(Western Sumatra)	North Sumatra	MSY: 31.57, TAC: 25.26
	West Sumatra	MSY: 660.61, TAC: 528.69
	Bengkulu	MSY: 500.98, TAC: 400.93
	Lampung	MSY: 36.06, TAC: 28.86
	Banten	MSY: 4.29, TAC: 3.43

Note: MSY = Maximum Sustainable Yield; TAC = Total Allowable Catch
Table 2 shows the MSY of spiny lobster in Aceh coastal waters part of Malacca Strait (FMA 571) is 188.60 tons.yr\(^{-1}\) with a TAC of 151.10 tons. yr\(^{-1}\). Furthermore, the MSY for Aceh coastal waters part of Indian Ocean is 292.09 tons.yr\(^{-1}\) with a TAC of 233.92 tons.yr\(^{-1}\). Spiny lobster fishing in Aceh coastal waters must ensure its use in the future, both ecologically, socially, and economically [38-40].

References

[1] BPS 2018 Statistik Indonesia *Jakarta: Badan Pusat Statistik*
[2] Damora A 2020 Benih Lobster Dieksploitasi, Berbahayakah Secara Ekologi? https://www.mongabay.co.id/2020/2007/2022/benih-lobster-dieksploitasi-berbahayakah-secara-ekologi/
[3] Khudori 2020 Ekonomi-Politik Ekspor Benih Lobster https://investor.id/opinion/ekonomipolitik-ekspor-benih-lobster
[4] Irfannur, Wahju R I and Riyanto M 2017 Komposisi hasil tangkapan dan ukuran lobster dengan jaring insang di perairan Kabupaten Aceh Jaya *ALBACORE Jurnal Penelitian Perikanan Laut* 1 211-223
[5] Tasidale S N, Sara L and Halili H Preferensi Habitat Benih Lobster (Panulirus spp.) Di Kawasan Konservasi Teluk Staring, Kecamatan Moramo, Konawe Selatan *Jurnal Manajemen Sumber Daya Perairan* Perairan 5
[6] Suman A and Subani W 1993 Pengusahaan sumberdaya udang karang di perairan Aceh Barat *Jurnal Penelitian Perikanan Laut* 81 84-90
[7] Suman A, Rijal M and Subani W 1993 Status perikanan udang karang di perairan Pangandaran, Jawa Barat *Jurnal Penelitian Perikanan Laut* 81 1-7
[8] Suman A, Subani W and Prahor P 1994 Beberapa parameter biologi udang pantung (*Panulirus homarus*) di perairan Pangandaran Jawa Barat *Jurnal Penelitian Perikanan Laut* 85 1-8
[9] Nuraini S and Sumiono B 2008 Prosiding Seminar Nasional Tahun V Hasil Penelitian Perikanan dan kelautan. Universitas Gadja Mada 14
[10] Kembaren D D, Lestari P and Ramadhan R 2015 Parameter biologi lobster pasir (*Panulirus homarus*) di perairan tabanan, Bali *BAWAL Widya Riset Perikanan* Tangkap 7 35-42
[11] Situmorang Y M, Omar S B and Tresnati J 2021 Carapace length-body weight relationship and condition factor of painted rock lobster *Panulirus versicolor* in Sorong waters, West Papua, Indonesia *Aquaculture, Aquarium, Conservation & Legislation* 14 519-535
[12] Hargiyatno I T, Satria F, Prasetyo A P and Fauzi M 2016 Hubungan panjang-berat dan faktor kondisi lobster pasir (*Panulirus homarus*) di perairan Yogyakarta dan Pacitan *BAWAL Widya Riset Perikanan* Perairan 5 41-48
[13] Kembaren D D, Ernawati T and Sadhotomo B 2016 Analisis hasil per penambahan baru perikanan lobster pasir *Panulirus homarus* (Linnaeus, 1758) di perairan Aceh Barat *Jurnal Penelitian Perikanan Indonesia* 22 61-70
[14] Damora A, Wardiatno Y and Adrianto L 2018 Hasil tangkapan per upaya dan parameter populasi lobster pasir (*Panulirus homarus*) di perairan Gunung Kidul *Marine Fisheries: Journal of Marine Fisheries Technology and Management* 9 11-23
[15] Suman A, Pane A R P and Panggabean A S 2019 Penangkapan, parameter populasi serta tingkat pemanfaatan lobster pasir (*Panulirus homarus*) dan lobster batu (*Panulirus penicillatus*) di perairan Gunung Kidul dan sekitarnya *Jurnal Penelitian Perikanan Indonesia* 25 147-160
[16] Tirtadanu T, Chodrijah U and Wagiyo K 2021 Reference point and exploitation status of mud spiny lobster (*Panulirus polyphagus* Herbst, 1793) in Sebatik waters, Indonesia *Indonesian Fisheries Research Journal* 27 27-36
[17] Kintani N I, Setyobudiandi I and Wardiatno Y 2020 Biologi reproduksi lobster pasir (*Panulirus homarus* Linnaeus, 1758) di Teluk Palabuhanratu *Habitus Aquatica* 1 1–15–11–15
[18] Wirosaputro S 1996 Jenis dan seks-rasio udang panggang (*Panulirus spp.*) di kawasan pantai Gunung Kidul, Yogyakarta *Jurnal Perikanan Universitas Gadjah Mada* 1 12-21
[19] Farajallah A, Handayani B K T and Wardiatno Y 2019 The suitable COI Marker for lobster of Genus Panulirus Biological Sciences-PJSIR 62 111-115
[20] Kembaren D, Anggawangsa R, Hargiyatno I, Hakim A, Ekawaty R and Jafani A 2021 Proceedings From Workshops on Management Strategy Evaluation of Data-Limited Fisheries 51
[21] Tirtadanu, Suman A, Chodrijah U, Kang B and Zhang C-I 2021 Stock assessment and management implications of three lobster species in Gunungkidul waters, Indonesia Ocean & Coastal Management 211 105780
[22] Tewfik A 2014 The influence of waves on landing patterns within a diverse Sumatran spiny lobster (Panulirus spp.) fishery New Zealand Journal of Marine and Freshwater Research 48 245-255
[23] Tewfik A, Mills D and Adhuri D 2008 Spiny lobster resources and opportunity for culture in post-tsunami Aceh, Indonesia Proceedings of An International Symposium, Nha Trang, Vietnam, 9-10 Dec 2008.
[24] Wahyudin R A, Hakim A A, Boer M, Farajallah A and Wardiatno Y 2016 New records of Panulirus femoristriga Von Martens, 1872 (crustacea achatela palinuridae) from Celebes and Seram Islands, Indonesia Biodiversity Journal 7 901-906
[25] Berry J W 1971 Ecological and cultural factors in spatial perceptual development Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement 3 324
[26] George R 1974 Proc. Int. Coral Reef Symp. 1 321-325
[27] Prescott J 1988 Tropical spiny lobster: An overview of their biology, the fisheries and the economics with particular reference to the double spined rock lobster Panulirus penicillatus
[28] Holthuis L B 1991 Marine lobsters of the world FAO Fisheries synopsis 13 1
[29] Tewfik A and Béné C 2004 “The Big Grab”: non-compliance with regulations, skewed fishing effort allocation and implications for a spiny lobster fishery Fisheries Research 69 21-33
[30] Wynne S P and Côté I M 2007 Effects of habitat quality and fishing on Caribbean spotted spiny lobster populations Journal of Applied Ecology 488-494
[31] Eddy T D, Gardner J P and Pérez-Matus A 2010 Applying fishers' ecological knowledge to construct past and future lobster stocks in the Juan Fernández Archipelago, Chile Plos one 5 e13670
[32] Coutures E and Chauvet C 2001 Growth and minimum suitable catch size of spiny lobsters, Panulirus penicillatus (Olivier, 1791) and Panulirus longipes bispinosus Borradaile, 1899 (Decapoda, Palinuridae) in the southern lagoon of New Caledonia Crustaceana 1189-1199
[33] Carpenter K E and Niem V H 1998 The living marine resources of the Western Central Pacific. v. 1: Seaweeds, corals, bivalves and gastropods.-v. 2: Cephalopods, crustaceans, holothurians and sharks.-v. 3: Batoid fishes, chimaeras and bony fishes, pt. 1 (Elopidae to Linophrynidae).-v. 4: Bony fishes, pt. 2 (Mugilidae to Carangidae).-v. 5: Bony fishes, pt. 3:(Menidae to Pomacentridae).-v. 6: Bony fishes, pt. 4:(Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals
[34] Suadi R W and Soeparno N P 2001 Kajian sumber daya lobster di pantai selatan Daerah Istimewa Yogyakarta J. Ilmu-Ilmu Perairan dan Perikanan Indonesia Edisi Khusus Crustacea I (2) 33-42
[35] Junaidi M, Cokrowati N and Abidin Z 2010 Aspek reproduksi lobster (Panulirus sp.) di perairan Teluk Ekas Pulau Lombok Jurnal Kelautan: Indonesian Journal of Marine Science and Technology 3 29-35
[36] Wahyudin R A, Hakim A A, Qonita Y, Boer M, Farajallah A, Mashar A and Wardiatno Y 2017 Lobster diversity of Palabuhanratu Bay, South Java, Indonesia with new distribution record of Panulirus ornatus, P. polyphagus and Parribacus antarcticus Aquaculture, Aquarium, Conservation & Legislation 10 308-327
[37] Bakhtiar E, Boesono H and Sardiyatmo S 2014 Diponegoro University
[38] Erlania E, Radiarta I N and Haryadi J 2017 Status pengelolaan sumberdaya benih lobster untuk mendukung perikanan budidaya: Studi kasus perairan Pulau Lombok *Jurnal Kebijakan Perikanan Indonesia* 8 85-96

[39] Zulham A 2018 Kontruksi sosial dalam membanguan bisnis lobster di indonesia *Jurnal Kebijakan Perikanan Indonesia* 10 43-52

[40] Damora A, Adrianto L, Wardiatno Y and Suman A 2019 IOP Conference Series: Earth and Environmental Science 348 012113