Nonmonotonic \(d_{x^2-y^2} \) Superconducting Order Parameter in \(\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4 \)

G. Blumberg\(^1\), A. Koitzsch\(^1\), A. Gozar\(^1\), B.S. Dennis\(^1\), C.A. Kendziora\(^2\), P. Fournier\(^3\), and R.L. Greene\(^3\)

\(^1\)Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
\(^2\)United States Naval Research Laboratory, Code 6333, Washington, D.C. 20375
\(^3\)Center for Superconductivity Research and Department of Physics, University of Maryland, College Park, MD 20742

(June 15, 2001; accepted for PRL)

PACS numbers: 74.25.Gz, 74.72.Jt, 78.30.-j

Introduction.\(^3\) \(\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4 \) (NCCO) is one of a few electron doped cuprate superconductors\(^2\). The physical properties of the electron doped cuprates are different from the hole-doped. Structurally, NCCO does not have apical oxygen atoms. It is commonly believed that the charge carriers in NCCO are electrons rather than holes as in other cuprate families\(^1\).\(^2\). In optimally hole doped cuprates the normal state resistivity increases linearly over a wide range of temperatures while for NCCO the in-plane resistivity is quadratic in temperature with a large residual value\(^4\). For the electron doped cuprates the superconducting (SC) transition temperature is relatively low and the superconductivity occurs in a narrow doping range\(^1\). From the early tunneling\(^5\) and microwave measurements an \(s \)-wave SC order parameter (OP) was suggested\(^6\) that is in contrast with the \(d \)-wave symmetry established for hole doped compounds. The early Raman measurements were interpreted as evidence for nearly uniformly gapped Fermi surface (FS)\(^7\) consistent with the \(s \)-wave OP. However, the interpretation of more recent microwave measurements\(^8\) along with angle resolved photoemission spectroscopy (ARPES)\(^8\)\(^9\), and phase sensitive scanning SQUID microscope experiments\(^9\) are consistent with \(d \)-wave OP.

We report polarized low energy electronic Raman scattering studies on NCCO single crystals and show that the data is consistent with a SC OP of the \(d_{x^2-y^2} \) symmetry. However, as distinguished from the simplest commonly assumed SC gap function, \(\Delta (\mathbf{k}) \propto \cos(\mathbf{k}_x a) - \cos(\mathbf{k}_y a) \), where \(\mathbf{k} \) is a wave vector on the FS and \(a \) is the \(ab \)-plane lattice constant, the present results require a nonmonotonic form of the OP. We find that in contrast with hole doped cuprates for NCCO the positions of the SC gap maxima are located closer to the nodes than to the Brillouin zone (BZ) boundaries. The gap opens up quickly with departure from the diagonal nodal directions and quickly reaches its maximum value of 4.4\(k_B T_c \) at the intersections of the FS and the antiferromagnetic (AF) BZ. However, the gap value drops to 3.3\(k_B T_c \) at the BZ boundaries. The implications of such nonmonotonic OP to the doping dependence of \(T_c \) are discussed.

Experimental.\(^1\) The Raman experiments were performed from a natural \(ab \) surface of a plate-like single crystal grown as described in Ref.\(^1\). After growth, the crystal was annealed in an oxygen-reduced atmosphere to induce the doping level for optimal \(T_c \). SC transition measured by SQUID was about 22 K with a width about 2 K. The sample was mounted in an optical continuous helium flow cryostat. Spectra were taken in a backscattering geometry using linearly polarized excitations of a Kr\(^+\) laser from near infrared to violet. An incident laser power less than 2 mW was focused to a 50 \(\mu \)m spot onto the sample surface. The referred temperatures were corrected for laser heating. The spectra were measured at temperatures between 5 and 35 K and were analyzed by a custom triple grating spectrometer. The data were corrected for the spectral response of the spectrometer and for the optical properties of the material at different wavelengths as described in the Ref.\(^1\).

The polarization directions of the incident (\(\mathbf{e}_i \)) and scattered (\(\mathbf{e}_s \)) photons are indicated by (\(\mathbf{e}_i, \mathbf{e}_s \)) with \(x = [100] \), \(y = [010] \), \(x' = [110] \), and \(y' = [110] \). The presented data were taken in (\(xy \)), (\(x'y' \)), and (\(xx \)) scattering geometries. For tetragonal \(D_{4h} \) symmetry these geometries correspond to spectra of \(B_{2g} + A_{2g} \), \(B_{1g} + A_{2g} \), and \(A_{1g} + B_{1g} \) representations. In addition, by using geometries with circularly polarized light we checked the intensity of the \(A_{2g} \) component and found it to be negligibly weak.

Raman scattering symmetries.\(^1\) The electronic Raman response function for a given geometry (\(\mathbf{e}_i, \mathbf{e}_s \)) is proportional to the sum over the density of states at the FS weighted by the momentum \(\mathbf{k} \) dependent form factor\(^1\)\(^8\). By choosing the scattering geometries one can selectively probe different regions of the FS and obtain information about the \(\mathbf{k} \) dependence of the SC OP. For the \(B_{1g} \) channel the Raman spectrum has a form factor of \(d_{x^2-y^2} \) symmetry that vanishes at the \((0,0) \rightarrow (\pi, \pi) \) and the equivalent diagonal lines of the BZ (See Fig.\(^1\)). The spectrum intensity in the \(B_{1g} \) channel integrates mainly...
from the regions of the FS distant from these diagonals, near intersections of the FS and the BZ boundary (ZB). In contrast, the form factor for B_{2g} spectrum has d_{xy} symmetry and therefore vanishes along $(0,0) \rightarrow (0,\pi)$ and the equivalent lines. The intensity in the B_{2g} channel is mainly determined by excitations near $(\pi/2,\pi/2)$ and the equivalent points. All regions of momentum space may contribute to the fully symmetric A_{1g} channel \[19\].

The pair breaking excitations. In the Fig. 2 we compare the low energy Raman spectra above and below the SC transition taken with the excitation energy $\omega_L = 1.9$ eV for three symmetry representations: B_{1g}, B_{2g} and A_{1g}. Above T_c spectra exhibit a flat electronic Raman continuum. In the SC state the low-frequency tail of the Raman continuum changes to reflect the opening of the SC gap: the strength of the low-frequency continuum is reduced and the spectrum acquires the so-called 2Δ-peak as a result of excitations across the anisotropic gap, $2\Delta(k)$. These peaks correspond to the excitations out of the SC condensate. For different scattering geometries spectra differ in their intensity as well as in the position of the 2Δ-peaks. The peaks in the A_{1g} and B_{2g} channels are an order of magnitude stronger than in the B_{1g} channel. For B_{2g} symmetry the peak is at the highest energy, at about 67 cm$^{-1}$, followed by the peaks in B_{1g} and A_{1g} channels at 50 and 40 cm$^{-1}$ correspondingly.

These results are in sharp contrast to the hole doped cuprates where the most prominent scattering is observed in B_{1g} channel for which the 2Δ-peak is at the highest frequency \[24] \[26\]. For the hole doped cuprates the interpretation of Raman data is consistent with $d_{x^2-y^2}$ SC OP of the simplest monotonous $\sin(2\phi)$ form shown in the Fig. 1B. The role of orthorhombic distortions and impurities has been discussed in the Refs. \[23] \[24] \[26\].

The earlier low-temperature Raman data from NCCO was measured down to about 25 cm$^{-1}$ with $\omega_L = 2.6$ eV \[1\]. The data exhibited a strong residual scattering intensity. The observed 2Δ-peak in the B_{1g} channel started at a threshold from the low energy side. The authors discuss possible experimental artifacts for the residual intensity and suggest that the observed threshold supports an anisotropic s-wave gap interpretation (see Fig. 1B). Our data extends to much lower frequencies (Figs. 2 \[2] \[8\]). The spectra for all scattering channels show a smoothly dropping intensity below the 2Δ-peak down to the lowest energies measured. Based on our data we exclude the anisotropic s-wave interpretation since any fully gapped FS would lead to a Raman intensity threshold as it has

FIG. 1. (A) A schematic representation of the electron doped FS of NCCO \[1\]. The occupied electron states are shaded. The AF BZ at half filling is shown as the square rotated by 45°. AF fluctuations enhance interactions between fermions around the "hot spots" (filled circles), the regions of the FS connected by the $Q = (\pi,\pi)$ vector \[14\]. The location of the "hot spots" sensitively depend on the doping level. The FS shrinks with further electron doping until the intersection with the AF BZ vanishes (dotted lines and empty circle in the lower left quadrant) \[15\]. The dotted diagonal (dashed horizontal and vertical) lines denote the nodes of the B_{1g} (B_{2g}) Raman form factor. (B) The magnitude of the $d_{x^2-y^2}$ OP as a function of the angle ϕ along the FS. Solid line: non-monotonic OP for NCCO. The gap value rises rapidly from the nodal diagonal direction (N) to its maximum value $2\Delta = 67$ cm$^{-1}$ at the "hot spot" (HS) observed in the B_{2g} channel. The 2Δ-peak at 50 cm$^{-1}$ in the B_{1g} channel corresponds to the value at the BZ boundary (ZB). Dashed line: monotonic $\sin(2\phi)$ form. Dotted line: anisotropic s-wave OP proposed in the Ref. \[8\].

FIG. 2. Low-frequency Raman scattering spectra with 1.9 eV excitation for different symmetry channels. The solid lines denote spectra at 11 K in the SC state and the dashed lines spectra taken above T_c at 35 K. The baselines are shifted as indicated by the ticks. The B_{1g} spectra corresponds to $x'y'$, the B_{2g} to xy and the A_{1g} to $xx - x'y'$ scattering geometries. The inset shows the temperature evolution of the 2Δ-peak energy in the B_{2g} channel. The line indicates the mean field BCS temperature dependence.
been observed for classical superconductors [16]. The smooth decrease of the scattering intensity is a signature of the nodes in the OP [23].

The gap anisotropy.— The observation of the 2Δ-peak in the B_{2g} channel at energies higher than in the B_{1g} channel suggests a nonmonotonic OP with maxima in $\Delta(k)$ closer to the $(0,0) \rightarrow (\pi, \pi)$ diagonal than to the BZ boundary. The recent ARPES studies of NCCO exhibit a node in $\Delta(k)$ along this diagonal direction [9,10]. Our Raman data can be reconciled with the ARPES results by including higher harmonics, like $\sin(6\phi)$, to the monotonic $\sin(2\phi)$ form of the $d_{x^2-y^2}$ OP. The resulting nonmonotonic form is shown in Fig. 1B. In Fig. 1A we sketch the FS as seen by ARPES [9]. The latter data exhibits regions of suppressed spectral weight at the intersections with the AF BZ boundary, a behavior similar to the destruction of the FS at the “hot spots” in the pseudogap phase seen in hole-doped cuprates [14,31–33]. Strong AF fluctuations are believed to be responsible for such “hot spot” behavior [14,24,33].

We assume that the AF interactions are responsible for the SC coupling mechanism and that like in the hole-doped cuprates the SC gap reaches its maximum value in the vicinity of the “hot spots”. For the hole-doped cuprates with a large FS the “hot spots” are close to the BZ boundary. For electron-doped cuprates the position of the “hot spots” sensitively depends on the size of the FS and, hence, on the amount of doping. As it is seen in the ARPES data [9] for the optimally doped NCCO the “hot spots” are close to the BZ diagonals and therefore in Raman the maximum gap value appears in the B_{2g} channel. The peak position at about 67 cm^{-1} is consistent with the maximum gap value of 3.7 meV observed in tunneling spectroscopy [1]. The 2Δ-peak in the B_{1g} channel reflects the gap magnitude at the BZ boundary (See Fig. 1B). Indeed, the peak position at about $2\Delta_{B_{1g}} = 50 \text{ cm}^{-1}$ corresponds to 3 meV for a single $\Delta(k_{BZ})$ that is consistent with the leading edge gap estimates between 1.5 and 3 meV at the BZ boundary by ARPES [14,20]. For slightly stronger electron doping the intersection of the AF BZ and the FS disappears. This naturally explains the narrow window range for superconductivity in the electron-doped cuprates.

The superconducting gap temperature dependence.— In the inset of Fig. 2 we show the temperature development of the 2Δ-peak position in the B_{2g} channel. The SC gap opens up very rapidly with cooling below T_c and soon approaches its maximum value $4.4k_BT_c$ which is within the margin of the strong coupling limit and is close to the gap value observed for heavily hole overdoped cuprates. Optimally and especially hole underdoped cuprates exhibit much larger gap values [13,20].

The resonant Raman excitation profile.— We performed a systematic study of the Raman scattering efficiency as a function of the excitation photon energy. The low frequency response at 8 K in the B_{1g} and B_{2g} channels for excitations from blue to near IR are shown in Fig. 3. For the blue excitation ($\omega_L = 2.6 \text{ eV}$) our data is consistent with the earlier results of Ref. [6] showing comparable intensities in both B_{1g} and B_{2g} channels. The relative intensities change drastically when the excitation energy is decreased below 2.5 eV. While the peak in the B_{1g} channel only slightly increases in intensity the peak in the B_{2g} channel rapidly increases by an order of magnitude and exhibits a maximum around excitation $\omega_L = 1.9 \text{ eV}$. The resonance profiles of the 2Δ-peak for both B_{1g} and B_{2g} channels are presented in the Fig. 3A and are compared with optical conductivity data [24] that exhibits a band between 1.7 eV and 2.5 eV. This band has been ascribed to the charge-transfer process between the fully occupied oxygen 2p band and the upper Hubbard band (UHB) [24] that has been suggested to be a doubly occupied hybridized oxygen 2p and copper 3d state.

In the Fig. 3B we show a schematic diagram for the resonant Raman scattering process in strongly correlated electron doped cuprates. The lower Hubbard band (LHB) and the oxygen band above are fully occupied. Doped electrons shift the Fermi energy to the UHB. Resonant enhancement of the Raman scattering process occurs when the energy of the incoming or scattered photons, or both, are in resonance with the interband transitions. Our results imply that the intermediate state for the Raman process is the same state which is seen near 2.1 eV in the optical conductivity. Moreover, because the observed resonance enhancement for the B_{2g} channel is much stronger than for the B_{1g} channel we anticipate that the interband transition occurs near $(\pi/2, \pi/2)$ point. Angle-resolved valence-band photoemission spectra indeed exhibits a band that is peaked at this point at about 2.6 eV below the Fermi energy [10]. The ex-
To whom correspondence should be addressed. E-mail: girs@bell-labs.com

Permanent address: Centre de recherche sur les propriétés électroniques de matériaux avancés and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, CANADA, J1K 2R1.

[1] Y. Tokura, H. Takagi, S. Uchida, Nature 377, 345 (1989); H. Takagi, S. Uchida, Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).

[2] The assignment of electrons as the charge carriers is based on the negative value of the Hall coefficient. However, there is evidence for both electron and hole carriers in the temperature dependence of the Hall coefficient and a two band model with electrons and holes acting as charge carriers has been proposed to account for this less than trivial behavior. Wu Jiang et al., Phys. Rev. Lett. 73, 1291 (1994); S.I. Woods et al., Phys. Rev. B 58, 8800 (1998).

[3] J.L. Peng et al., Phys. Rev. B 55, R6145 (1997).

[4] Q. Huang et al., Nature 347, 369 (1990).

[5] D.H. Wu et al., Phys. Rev. Lett. 70, 85 (1993).

[6] B. Stadlober et al., Phys. Rev. Lett. 74, 4911 (1995); D. Einzel and R. Hackl, J. of Raman Spectroscopy 27, 307 (1996).

[7] J.D. Kokales et al., Phys. Rev. Lett. 85, 3696 (2000).

[8] R. Prozorov et al., Phys. Rev. Lett. 85, 3700 (2000).

[9] N.P. Armitage et al., Phys. Rev. Lett. 86, 1126 (2001).

[10] T. Sato et al., Science 291, 1517 (2001).

[11] C.C. Tsuei, J.R. Kirtley, Phys. Rev. Lett. 85, 182 (2000).

[12] J.L. Peng et al., Physica C 177, 79 (1991).

[13] G. Blumberg et al., Phys. Rev. B 49, R13295 (1994).

[14] R. Hlibina, T.M. Rice, Phys. Rev. B 52, 13043 (1995).

[15] M.R. Norman et al., Nature 392, 157 (1998); Phys. Rev. Lett. 79, 3506 (1997).

[16] S.B. Dierker et al., Phys. Rev. Lett. 50, 853 (1983); R. Hackl, R. Kaiser, S. Schicktanz, J. Phys. C 16, 1729 (1983).

[17] M.V. Klein, S.B. Dierker, Phys. Rev. B 29, 4976 (1984).

[18] T.P. Devereaux, D. Einzel, Phys. Rev. B 51, 16336 (1995); D. Einzel, R. Hackl, J. of Raman Spectroscopy 27, 307 (1996).

[19] For the simplest nearest neighbor tight binding approximation the minimum contribution to the A_{1g} channel comes from proximity of the $(\pi, 0) \rightarrow (0, \pi)$ and the equivalent diagonals.

[20] S.L. Cooper et al., Phys. Rev. B 37, 5920 (1988); Phys. Rev. B 38, 11934 (1988).

[21] T. Stauffer et al., Phys. Rev. Lett. 68, 1069 (1992).

[22] X.K. Chen et al., Phys. Rev. Lett. 73, 3290 (1994).

[23] T.P. Devereaux et al., Phys. Rev. Lett. 72, 396 (1994).

[24] M. Kang et al., Phys. Rev. Lett. 77, 4434 (1996).

[25] G. Blumberg et al., Science 278, 1427 (1997); J. Phys. Chem. Solids 59, 1932 (1998).

[26] H.L. Liu et al., Phys. Rev. Lett. 82, 3524 (1999).

[27] M.T. Beal-Monod, J.B. Bieri, and M. Maki, Europhys. Lett., 40, 201 (1997); 41, 345 (1998).

[28] R. Nemetshke et al., Eur. Phys. J. B 5, 495 (1998).

[29] A.P. Kempf and T.P. Devereaux, Phys. Rev. B 56, 2360 (1997).

[30] Z-X. Shen et al., Science 280, 259 (1998).

[31] A. Chubukov, Europhys. Lett. 44, 655 (1997).

[32] J. Schmalian et al., Phys. Rev. Lett. 80, 3839 (1998).

[33] L.B. Ioffe, A.J. Millis, Phys. Rev. B 58, 11631 (1998).

[34] E.J. Singley et al., Phys. Rev. B 64, 224503 (2001).

[35] S. Uchida et al., Phys. Rev. B 43, 7942 (1991).