Advances in Quantum Deep Learning: An Overview

Siddhant Garg* Goutham Ramakrishnan*
Department of Computer Sciences
University of Wisconsin–Madison
{sidgarg,gouthamr}@cs.wisc.edu

Abstract
The last few decades have seen significant breakthroughs in the fields of deep learning and quantum computing. Research at the junction of the two fields has garnered an increasing amount of interest, which has led to the development of quantum deep learning and quantum-inspired deep learning techniques in recent times. In this work, we present an overview of advances in the intersection of quantum computing and deep learning by discussing the technical contributions, strengths and similarities of various research works in this domain. To this end, we review and summarise the different schemes proposed to model quantum neural networks (QNNs) and other variants like quantum convolutional networks (QCNNs). We also briefly describe the recent progress in quantum inspired classic deep learning algorithms and their applications to natural language processing.

1 Introduction
In recent years, deep neural networks have led to breakthroughs in several domains of machine learning, such as computer vision [58, 31, 89], natural language processing [97, 23], reinforcement learning [85], speech recognition [22], etc. Deep Learning [51] forms the backbone of a majority of modern machine learning techniques and has become one of the most active research areas in computer science, spurred on by increased availability of data and computational resources.

Parallelly, there has been remarkable progress in the domain of quantum computing focused towards solving classically intractable problems through computationally cheaper techniques. A major leap forward in quantum computing came when Shor [84, 83] proposed his famous algorithm for prime factoring numbers in polynomial time, which exposed the vulnerabilities of security protocols such as RSA. Consequent research has been aimed at developing poly-time alternatives of classical algorithms utilising the core idea of quantum superposition and entanglement. We briefly describe these ideas when reviewing basic principles of quantum computing.

Quantum computing naturally lends its ideas to the domain of machine learning and consequently there been active research on trying to use principles of quantum computing to improve the representation power and computational efficiency of classical ML approaches. Quantum extensions to classical ML problems have gained prominence in recent times, such as clustering [56, 41, 67], support vector machines [69], gradient descent for linear systems [40], principal component analysis [57], Boltzmann machines [6], feature extraction [102], recommendation systems [39], EM algorithm for Gaussian Mixture Models [42], variational generations for adversarial learning [72], etc.

The perceptron [74] represents a single neuron and forms the basic unit of the deep learning architectures. The idea of a quantum perceptron was first proposed by Kak [58] in 1995 and has since been formalized in multiple works [29, 71, 79, 99, 13, 21, 24, 81, 8]. Recently, Wiebe et al. [101] showed that quantum computing can provide a more comprehensive framework for deep learning than classical computing and can help optimization of the underlying objective function.

* Equal contribution by authors
In this work, we summarise the different ideas presented in the domain of quantum deep learning which include quantum analogues to classic deep learning networks and quantum inspired classic deep learning algorithms. We present the different schemes proposed to model quantum neural networks (QNNs) and their corresponding variants like quantum convolutional networks (QCNNs).

This work is structured as follows: we first review the basics of classical deep learning and quantum computing in Sections 2 and 3 for the benefit of an uninitiated reader. In Section 4 we provide a detailed overview of Quantum Neural Networks as formulated in several works, by examining its individual components analogous to a classical NN. We also briefly summarise several variants of QNNs and their proposed practical implementations. In Section 5 we review works that develop quantum analogues to classical convolutional and recurrent neural networks (CNNs and RNNs). In Section 6 we mention several classical deep learning algorithms which have been inspired by quantum methods, including applications to natural language processing.

2 Basic Principles of Classical Deep Learning

Neural networks represent a subset of machine learning methods, which try to mimic the structure of the human brain in order to learn. Neurons are the fundamental computational units in neural networks. Each neuron performs a sequence of computations on the inputs it receives to give an output. Most commonly, this computation is a linear combination of the inputs followed by a non-linear operation, i.e. the output is $F(\sum_{i=1}^{N} w_{i} \cdot x_{i})$ where x_{i} are the inputs to the neuron. The w_{i} are the parameters of the neuron, and $F(.)$ is the non-linear function. Commonly used non-linear functions are the Rectified Linear Unit (ReLU) and the sigmoid function σ:

$$ReLU(x) = \max(0, x), \quad \sigma(x) = \frac{1}{1 + e^{-x}}$$

Neural network architectures are constructed by stacking neurons. In fully-connected feedforward neural networks, the output of each neuron in the previous layer is fed to each neuron in the next layer. The simplest neural network is the fully-connected network with one hidden layer (Figure 1). Let the input x be d_{1}-dimensional and output be d_{2}-dimensional. Then, a NN a single hidden layer of h units performs the following computation:

$$N(x) = W_{2} \cdot F(W_{1} \cdot x)$$

W_{1} and W_{2} are weight matrices of dimensions $h \times d_{1}$ and $d_{2} \times h$ respectively. The non-linear function F is applied element-wise to the vector input. This can be generalized to a NN with M hidden layers as:

$$N(x) = W_{M+1} \cdot F(W_{M} \cdot F(W_{M-1} \cdot ... F(W_{1} \cdot x)...)$$

The universal approximation theorem [19, 52] states that, a neural network with a single hidden layer can approximate any function, under assumptions on its continuity. However, it is known that deeper networks (with greater number of hidden layers) learn more efficiently and generalize better than shallow networks [63, 61]. Increased availability of data, greater complexity of tasks and the development of hardware resources such as GPUs have led to the use of deeper and deeper neural networks, thus the term ‘deep learning’.

2
Parameter Learning Like most machine learning algorithms, tasks in deep learning are posed as Empirical Risk Minimization (ERM) problems. Fundamentally, the parameter learning is done through gradient based optimization methods to minimize a loss function. The loss function is computed over the training data, and depends on the task at hand. Common loss functions include the 0/1 and cross-entropy loss for classification tasks, \(l_2 \)-loss for regression tasks and reconstruction loss for autoencoder tasks (a form of unsupervised learning). The backpropagation algorithm \([25, 45]\) uses the chain-rule to offer a computationally efficient way of obtaining gradients in neural networks. Learning is known to be highly sensitive to the optimization algorithm \([25, 48]\) as well as the initialization of the parameters \([28]\).

Complex Neural Architectures The past decades of deep learning research have led to several breakthroughs such as convolutional neural networks \([25, 50, 47]\) (designed for learning hierarchical and translation-invariant features in images), recurrent neural networks \([77, 34]\) (for sequential data such as time series and natural language), ResNets \([30]\) (designed to combat the vanishing gradient problem in deep learning) and Transformers \([98]\) (the current state of the art method in natural language processing).

CNNs Convolutional neural networks (CNNs) have revolutionized the field of computer vision, since LeCun et al. \([49]\) demonstrated how to use back propagation to efficiently learn feature maps. They form the basis of most state-of-the-art tasks in modern computer vision, and are widely deployed in applications including image processing, facial recognition, self-driving cars, etc.

Classical CNNs are designed to capture hierarchical learning of translation-invariant features in structured image data, through the use of convolutional and pooling layers. Convolutional layers consist of multiple convolutional filters, each of which computes an output feature map by convolving local subsections of the input iteratively. Pooling layers perform subsampling to reduce the dimensionality of the feature maps obtained from convolutional layers, most commonly by taking the maximum or mean of several nearby input values. A non-linear activation is usually applied to the output of the pooling layer.

A typical CNN architecture for image classification consists of several successive blocks of convolutional→pooling→non-linear layers, followed by a fully connected layer (Figure\([2]\)). Convolutional filters learn different input patterns, at different levels of abstraction depending upon the depth of the layer. For image inputs, the initial layers of the CNN learn to recognize simple features such as edges. The features learnt by successive layers become increasingly complex and domain specific through a combination of features learnt in previous layers. CNNs are a powerful technique, and several papers have adapted its ideas to the quantum setting, and we discuss these in Section\([5]\).

RNNs Feedforward neural networks are constrained as they perform predefined computations on fixed-size inputs. Recurrent Neural Networks (RNNs) are designed to handle sequences of inputs, operating on one input at a time while retaining information about preceding inputs through a hidden state. For a sequential input \(x = (x^{(1)}, \ldots, x^{(L)}) \), the simplest RNN performs the following computation:

\[
h_t = F(x_t, h_{t-1}), \quad o_t = G(h_t), \quad t = 1, \ldots, L
\]

\(h_t \) and \(o_t \) refer to the hidden state and output of the RNN at step \(t \) of the sequence, \(h_0 \) is the initial hidden state, \(F \) and \(G \) are functions to be learnt. RNNs can also be used to learn representations of sequence inputs for different downstream tasks with the final hidden state \(h_L \) as the embedding of the input \(x \). Figure\([3]\) shows the the temporal unfolding of a simple RNN.
RNNs are trained using Backpropagation-through-time (BPPT) \cite{100}, a temporal extension of the backpropagation algorithm. The versatility of RNNs is such that they are used for a wide variety of applications: sequential-input single-output (e.g. text classification), single-input sequential-output (e.g. image captioning) and sequential-input sequential-output (e.g. part-of-speech tagging, machine translation) tasks. Several innovations have improved the performance of the vanilla RNN described above, such as LSTM \cite{34} and GRU \cite{15}, bidirectional RNNs \cite{80}, attention mechanism \cite{7}, encoder-decoder architecture \cite{14} and more.

3 Principles of Quantum Computing

The qubit is the basic unit of information in quantum computing. The power of quantum computing over classical computing derives from the phenomena of superposition and entanglement exhibited by qubits. Unlike a classical bit which has a value of either 0 or 1, superposition allows for a qubit to exist in a combination of the two states. In general, a qubit is represented as:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

|0⟩ and |1⟩ represent the two computational basis states, α and β are complex amplitudes corresponding to each, satisfying $|\alpha|^2 + |\beta|^2 = 1$. Observing a qubit causes a collapse into one of the basis states. The probability of each state being observed is proportional to the square of the amplitude of its coefficient, i.e. the probabilities of observing |0⟩ and |1⟩ are $|\alpha|^2$ and $|\beta|^2$ respectively. A qubit is physically realizable as a simple quantum system, for example the two basis states may correspond to the horizontal and vertical polarization of a photon. Superposition allows quantum computing systems to potentially achieve exponential speedups over their classical counterparts, due to the parallel computations on the probabilistic combinations of states.

Entanglement refers to the phenomenon by which qubits exhibit correlation with one another. In general, a set of n entangled qubits exist as a superposition of 2^n basis states. Observing one or more qubits among them causes a collapse of their states, and alters the original superposition to account for the observed values of the qubits. For example, consider the 2-qubit system in the following initial state:

$$|\psi\rangle = \frac{1}{\sqrt{3}} |00\rangle + \frac{1}{\sqrt{3}} |01\rangle + \frac{1}{\sqrt{6}} |10\rangle + \frac{1}{\sqrt{6}} |11\rangle$$

Suppose a measurement of the first qubit yields a value of 0 (which can occur with probability $\frac{2}{3}$). Then, ψ collapses into:

$$|\psi\rangle' = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |01\rangle$$

Note that the relative probabilities of the possible states are conserved, after accounting for the state collapse of the observed qubits.

Quantum operators In classical computing, two fundamental logic gates (AND and OR) perform irreversible computations, i.e. the original inputs cannot be recovered from the output. Quantum gates (which operate on qubits) are constrained to be reversible, and operate on the input state to yield an output of the same dimension. In general, quantum gates are represented by unitary matrices, which are square matrices whose inverse is their complex conjugate.

An n-qubit system exists as a superposition of 2^n basis states. Its state can be described by a 2^n dimensional vector containing the coefficients corresponding to each basis state. For example, the $|\psi\rangle$ vector above may be described by the vector $[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}]^T$ using the basis vectors.

Thus, a n-qubit quantum gate H represents a $2^n \times 2^n$ unitary matrix that acts on the state vector. Two common quantum gates are the Hadamard and CNOT gates. The Hadamard gate acts on 1-qubit and maps the basis states |0⟩ and |1⟩ to $\frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and $\frac{|0\rangle - |1\rangle}{\sqrt{2}}$ respectively. The CNOT gate acts on 2-qubits and maps $|a,b⟩$ to $|a, a \oplus b⟩$. In other words, the first bit is copied, and the second bit is flipped if the first bit is 1. The unitary matrices corresponding to the Hadamard and CNOT gates are:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \text{ on the basis } [|0\rangle, |1\rangle]$$
\(CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \), on the basis \([|00\rangle, |01\rangle, |10\rangle, |11\rangle]\)

The Pauli matrices (\(\{\sigma_x, \sigma_y, \sigma_z\}\)) are a set of three 2 \(\times\) 2 complex matrices which form a basis for the real vector space of 2 \(\times\) 2 Hermitian matrices along with the 2 \(\times\) 2 identity matrix.

\[
\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

For a \(d\) dimensional function space, the density operator \(\rho\) represents a mixed state and is defined as:

\[
\rho = \sum_{i=0}^{2^d} p_i \langle \psi_i | \psi_i \rangle
\]

where \(\{\psi_i\}\) represent the computational bases of the \(H^{2^d}\) Hilbert space, the coefficients \(p_i\) are non-negative probabilities and add up to 1, and \(|\psi\rangle \langle \psi|\) is an outer product written in bra-ket notation. The expected value of a measurement \(X\) can be obtained using the density operator using the following formula:

\[
\langle X \rangle = \sum_i p_i \langle \psi_i | X | \psi_i \rangle = \sum_i p_i \text{tr}(|\psi_i\rangle \langle \psi_i| X) = \text{tr}(\rho X)
\]

where \(\text{tr}\) denotes the trace of the matrix.

4 Quantum Neural Network

Multiple research works \([29, 71, 79, 99, 13, 21, 24, 81, 8]\) have proposed formulations for a quantum neural network (QNN) as a quantum analogue to a perceptron. Ricks and Ventura \([71]\) were one of the earliest to propose a QNN which was modelled using a quantum circuit gate whose weights were learned using quantum search and piecewise weight learning. Several of these papers share a high level idea with respect to formulating the QNN through reversible unitary transforms on the data and then learning them through an approach analogous to the backpropagation algorithm. In this section, we present an overview of a QNN by breaking its components for learning a regression/classification problem in the quantum setting.

4.1 Representing the input

Inherently, the classical neural network computations are irreversible, implying a unidirectional computation of the output given the input. When mathematically posed, a classical NN computes the output \(y\) from the input: \((x_1, x_2, \ldots, x_d) \rightarrow y\). In contrast, quantum mechanics inherently depends on reversible transforms and a quantum counterpart for transforming the inputs to outputs for a NN can be posed by adding an ancillary bit to the input to obtain the output: \((x_1, x_2, \ldots, x_d, 0) \rightarrow (x'_1, x'_2, \ldots, x'_d, y)\). Muthukrishnan \([24]\) show that such an operation can be always represented through a permutation matrix. To make the input representation unitary, we represent the input component of the vector \((x_1, \ldots, x_d)\) through a quantum state \(|\psi\rangle_1, \ldots, d\). An ancillary dummy qubit can be added to \(|\psi\rangle_1, \ldots, d\) corresponding to the output \(y\). The reversible transformation is thus rendered unitary in the quantum setting as: \(|\psi\rangle_{1, \ldots, d} |0\rangle \rightarrow |\psi'\rangle_{1, \ldots, d} |y\rangle\) where \(|\psi'\rangle_{1, \ldots, d}\) represents the transformed input qubits. For multi-class classification problems, when the output labels cannot be captured by a single qubit, one can allocate \(O(\log K)\) output qubits to represent the label where \(K\) is the number of label classes.

QNNs can take as input purely quantum data or transformation of classical data into quantum states. When representing quantum data, \(|\psi\rangle_{1, \ldots, d}\) can be a superposition of the \(2^d\) computational basis in
the d-dimensional Hilbert space $\mathcal{H}^{2^d} = \mathcal{H}^2 \otimes \cdots \otimes \mathcal{H}^2$ where \mathcal{H}^2 represents the 2-dimensional Hilbert space with basis $\{|0\rangle, |1\rangle\}$ and the basis for \mathcal{H}^{2^d} are $\{|0,0,\ldots,0\rangle,\ldots,|1,1,\ldots,1\rangle\}$. Thus $|\psi\rangle_{1,\ldots,d}$ can be denoted as $|\psi\rangle_{1,\ldots,d} = \sum_{i=1}^{2^d} a_i |z_i\rangle$ where $a_i, i \in \{1,\ldots,2^d\}$ represents the complex amplitudes assigned to computational basis states $|z_i\rangle \in \mathcal{H}^{2^d}$.

While exploiting truly quantum data is the eventual goal of developing QNN models, the majority of related works shift their focus to the immediate benefits derived from QNNs over classical data. To transform classical data to a quantum state represented through qubits, several popular strategies have been put to use. An easy strategy, popularly used by several QNN proposals \cite{24}, is to binarize each individual component $x_i, i \in \{1,\ldots,d\}$ of the input $x = (x_1, x_2, \ldots, x_d)$ through a threshold, and then represent each binarized dimension x_i as a corresponding $|0\rangle/|1\rangle$ qubit resulting in x being represented as a computational basis in the \mathcal{H}^{2^d} Hilbert space. This approach leads to a high loss of information contained in the data. To counter this, Allcock et al. \cite{3} suggest capturing a more fine-grained representation of x as a superposition of computational basis in the \mathcal{H}^{2^d} Hilbert space. For example, let $|i\rangle$ denote the computational basis corresponding to the quantum state $|0,\ldots,1,\ldots,0\rangle$ with the qubit 1 in the i^{th} position for each dimension $i \in \{1,\ldots,d\}$. Then x can be represented as a quantum state $|\psi\rangle_{1,\ldots,d} = \sum_{i=1}^{d} b_i |i\rangle$ where $b_i = \frac{x_i}{||x||}$.

In parallel work, some strategies have been proposed in the continuous-variable architecture \cite{44}, which encodes the input to quantum states through continuous degrees of freedom such as the amplitudes of the electromagnetic fields. This approach avoids the information loss due to the discretization of continuous inputs, however at the cost of complexity of practical realization.

4.2 Modeling the Quantum Network

The quantum network has been most popularly modelled through learnable variational quantum circuits \cite{94}. A permutation matrix can be used to transform $|\psi\rangle_{1,\ldots,d} |0\rangle \rightarrow |\psi\rangle_{1,\ldots,d} |y\rangle$ and therefore is the simplest technique for the QNN model. Mathematically, a square matrix P is a permutation matrix if $PP^T = I$ and all entries of P are either 0 or 1. However, the total number of distinct permutation matrices is a discrete set of size $n!$ and therefore restricts the richness of representations that they can capture. This transformation can be modelled more richly using unitary matrices, which are characterized by learnable free parameters. Any unitary matrix U can be expressed as $U = e^{iH}$, where H is a Hermitian matrix. Since every Hermitian matrix can be written as linear combinations of tensor products of the Pauli matrices ($\{\sigma_x, \sigma_y, \sigma_z\}$) and the identity matrix(I), the unitary matrix U over K bits can be written as...
When the data is truly quantum in nature, the output state \(\rho \) obtained after the unitary matrix operations. A popular measure of closeness between the observed and actual output quantum state is their fidelity, which when averaged over the training data can be mathematically represented as:

\[
C = \frac{1}{N} \sum_{x=1}^{N} \langle y_x | \rho_x^{\text{out}} \rangle | y_x \rangle
\]

Beer et al. [8] show that the fidelity is a direct generalization of the classical empirical risk. When the the output state \(| y \rangle \) for the input is mixed quantum state and not a computational basis, the fidelity expression can simply be modified to account for the case when \(| y \rangle \) is mixed.
When the input data was originally in a classical form and the output is a classical scalar/vector value, measurement of the output state from the QNN has been the popular approach [24, 99] to compute the cost function \(C \). Farhi and Neven [24] measure a Pauli operator, say \(\sigma_y \) on the readout bit and denote this measurement by \(Y \). Measuring \(Y \) is probabilistic in the different possible outcomes, and hence an average of \(Y \) is measured for multiple copies of the input \(|\psi\rangle_{1,...,d} |0\rangle \). Averaging \(Y \) computes the following:

\[
y_{\text{out}} = \langle \psi_{1,...,d} | U(\Theta)^\dagger Y U(\Theta) | \psi_{1,...,d} |0\rangle
\]

The loss \(C \) can now be defined as a mean squared error or 0/1 loss with respect to this averaged value of \(Y \) as:

\[
C_{\text{MSE}} = \frac{1}{N} \sum_{x=1}^{N} |y_x - y_{x,\text{out}}|^2 \quad \text{or} \quad C_{0/1} = \frac{1}{N} \sum_{x=1}^{N} 1[y_x = y_{x,\text{out}]}
\]

where \(y_x, y_{x,\text{out}} \) corresponds to the original output and averaged QNN output for input \(x \).

4.4 Learning network parameters

Similar to classical deep learning, the QNN parameters, \(\Theta \) for \(U \), are learnt by using first-order optimization techniques to minimize a loss function over the dataset. The simplest gradient based update rule is the following:

\[
\Theta \leftarrow \Theta - \eta \frac{\partial C(\Theta)}{\partial \Theta}
\]

where \(\Theta \) are the parameters being learnt, \(C \) is the loss computed over the data and \(\eta \) is the step-size.

A second order estimate of the derivative of a function can be found using the finite difference method as:

\[
\frac{dC(\Theta_i)}{d\Theta_i} = \frac{C(\Theta_i + \epsilon) - C(\Theta_i - \epsilon)}{2\epsilon} + O(\epsilon^2)
\]

For this, the loss function \(C \) for a particular value of the parameter set \(\Theta_i \) for the unitary matrix \(U \) of layer \(i \), needs to be estimated to within \(O(\epsilon^3) \) and Farhi and Neven [24] show that this requires \(O(\frac{1}{\epsilon^2}) \) measurements. This needs to be done for every layer parameter \(\Theta_i \) independently resulting in \(L \) such repetitions for a \(L \)-layer QNN.

Under a special condition on the unitary matrices \(U(\Theta) \) for the QNN where they can be represented as \(e^{i\Theta \Sigma} \) (\(\Sigma \) being a tensor product of Pauli operators \(\{\sigma_x, \sigma_y, \sigma_z\} \) acting on a few qubits), an explicit gradient descent update rule can be obtained. The gradient of the cost function \(C(\Theta) \) with respect to the \(\Theta_i \) for the \(i^{th} \) layer parameters is given by:

\[
\frac{dC(\Theta)}{d\Theta_i} = 2Im(\langle \psi_{1,...,d} | U_1^\dagger \cdots U_L^\dagger YU_L \cdots U_{i+1} \Sigma_i U_i \cdots U_1 | \psi_{1,...,d} |0\rangle)
\]

where \(\Sigma_i \) is the tensor product of Pauli operators corresponding to layer \(i \) defined above and \(Im() \) refers to the imaginary part. Farhi and Neven [24] make the interesting observation that \(U_1^\dagger \cdots U_L^\dagger YU_L \cdots U_{i+1} \Sigma_i U_i \cdots U_1 \) is a unitary operation and can therefore be viewed as a quantum circuit of \(2L + 2 \) unitaries each acting on a few qubits, therefore enabling efficient gradient computations.

4.5 QNN Variants

There have been multiple ideas proposed similar to a learnable QNN as described above. Mitarai et al. [62] pose a problem through the lens of learning a quantum circuit, very similar to the QNN, and use a gradient-based optimization to learn the parameters. Romero et al. [73] introduce a quantum auto-encoder for the task of compressing quantum states which is optimized through classical algorithms. Ngoc and Wiklicky [65] propose an alternate QNN architecture only using multi-controlled NOT
gates and avoiding using measurements to capture the non-linear activation functions of classical NNs. Zhao and Gao \cite{108} suggest interleaved quantum structured layers with classical non-linear activations to model a variant of the QNN. Multiple ideas \cite{62, 108, 3} utilise a hybrid quantum-classical approach where the computation is split so as to be easily computable on classical computers and quantum devices.

4.6 Practical implementations of QNNs

While modelling a QNN has been a hot topic in the field of quantum deep learning, several of the algorithms cannot be practically implemented due to the poor representation capability of current quantum computing devices. There has been considerable research in the field of practically implementing QNNs \cite{11} and developing hybrid quantum-classical algorithms which can successfully perform computations using a small QRAM.

Early works in practically implementing QNNs used the idea of representing the qubits through polarized optical modes and weights by optical beam splitters and phase shifters \cite{5}. Parallely, Behrman et al. \cite{12} proposed implementing the QNN through a quantum dot molecule interacting with phonons of a surrounding lattice and an external field. Such a model using quantum dotshas been extensively studied since \cite{95, 10, 4}.

Korkmaz et al. \cite{46} used a central spin model as a practical implementation of a QNN using a system of 2 coupled nodes with independent spin baths. A similar idea was earlier proposed by Türkpençe et al. \cite{96}, using a collisional spin model for representing the QNN thereby enabling them to analyse the Markovian and non-Markovian dynamics of the system.

The majority of the recent research in the area of practical implementations of QNNs has been centered on simulating quantum circuits on Noisy Intermediate-Scale Quantum Computing (NISQ) devices. Shen et al. \cite{82} presented a neuromorphic hardware co-processor called Darwin Neural Processing Unit (NPU) which is a practical implementation of the Spiking Neural Network (SNN) \cite{93, 36}, a type of biologically-inspired NN which has been popularly studied recently.

Potok et al. \cite{68} conduct a study of performance of deep learning architectures on 3 different computing platforms: quantum (a D-Wave processor \cite{37}), high performance, and neuromorphic and show the individual benefits of each. Tacchino et al. \cite{91} experimentally use a NISQ quantum processor and test a QNN with a small number of qubits. They propose a hybrid quantum classical update algorithm for the network parameters which is also parallely suggested by \cite{90}.

5 Complex Quantum Neural Network Architectures

5.1 Quantum CNNs

Cong et al. \cite{18} propose a quantum CNN through a quantum circuit model adapting the ideas of convolutional and pooling layers from classical CNNs. The proposed architecture (shown in Figure 5) is similarly layered, however it differs in the fact that it applies 1D convolutions to the input quantum state (contrary to 2D/3D convolutions on images). The convolutional layer is modeled as a quasi-local unitary operation on the input state density ρ_{in}. This unitary operator is denoted by U_i and is applied on several successive sets of input qubits, up to a predefined depth. The pooling layer is implemented by performing measurements on some of the qubits and applying unitary rotations V_i to the nearby qubits. The rotation operation is determined by the observations on the qubits. This combines the functionality of dimensionality reduction (the output of V_i is of lower dimension) as well as non-linearity (due to the partial measurement of qubits). After the required number of blocks of convolutional and pooling unitaries, the unitary F implements the fully connected layer. A final measurement on the output of F yields the network output.

Similar to classical CNNs, the overall architecture of the quantum CNN is user-defined, whereas the parameters of the unitaries are learned. The parameters are optimized by minimizing a loss function, for example by using gradient descent using the finite difference method described in Section 4.4. Cong et al. \cite{18} demonstrate the effectiveness of the proposed architecture on two classes of problems, quantum phase recognition (QPR) and quantum error correction (QEC).

More recently, Kerenidis et al. \cite{43} identify the relation between convolutions and matrix multiplications, and propose the first quantum algorithm to compute the forward pass of a CNN as a
convolutional product. They also provide a quantum back propagation algorithm to learn network parameters through gradient descent. In an application of CNNs, Zhang et al. [107] and Melnikov et al. [59] propose special convolutional neural networks for extracting features from graphs, to identify graphs that exhibit quantum advantage.

5.2 Hybrid CNNs

Henderson et al. [32] introduce the *quanvolutional* layer, a transformation based on random quantum circuits, as an additional component in a classical CNN, thus forming a hybrid model architecture. Quanvolutional layers consist of multiple quantum filters, each of which takes a matrix of 2D values as input, and outputs a single scalar value. Similar to convolutional filters, the operations are iteratively applied to subsections of the input. Each quantum filter is characterized by an encoder, random circuit, and decoder, where the encoder converts the raw input data into an initialization state to be fed into the random circuit and the output from the circuit is fed to the decoder which yielding a scalar value. [32] do not present a learning methodology to optimize the random circuits since the quanvolutional layer has no learnable parameters. However, the experimental results suggest that the quanvolutional layer performed identically to a classical random feature extractor, thus questioning its utility.

5.3 Quantum RNNs

There has also been several interesting suggestions to the front of developing quantum variants of recurrent neural networks. Hibat-Allah et al. [33] propose a quantum variant of recurrent neural networks (RNNs) using variational wave-functions to learn the approximate ground state of a quantum Hamiltonian. Roth [75] propose an iterative retraining approach using RNNs for simulating bulk quantum systems via mapping translations of lattice vectors to the RNN time index. Hopfield Networks [55] were a popular early form of a recurrent NN for which several works [70, 92, 76] have proposed quantum variants.

6 Quantum inspired Classical Deep Learning

Quantum computing methods have been applied to classical deep learning techniques by several researchers. Adachi and Henderson [11] suggest a quantum sampling-based approach for generative training of Restricted Boltzmann Machines, which is shown to be much faster than Gibbs sampling. Smith et al. [86] use quantum mechanical (QM) DFT methods to train deep neural networks to build an molecular energy estimating engine. Li et al. [55] propose to use quantum based particle swarm optimization to find optimal CNN model architectures. da Silva and de Oliveira [20] propose a quantum algorithm to evaluate the performance of neural network architectures. Behera et al. [9] use a quantum RNN variant to simulate a brain model, and use it to explain eye tracking movements.

Natural Language Processing Clark et al. [16], Coecke et al. [17] introduce a tensor product composition model (CSC) to incorporate grammatical structure into algorithms that compute meaning.
Zeng and Coecke [104] show the shortcomings of the CSC model with respect to computational overhead and resolve it using QRAM based quantum algorithm for the closest vector problem.

Sordoni et al. [88], Zhang et al. [105] suggest a language modelling approach inspired from the quantum probability theory which generalizes [87]. Zhang et al. [106] present an improved variant of the quantum language model which has higher representation capacity and can be easily integrated with neural networks.

Galofaro et al. [27] tackle the problem of typification of semantic relations between keyword couples in hate and non-hate speech using quantum geometry and correlation. Li et al. [54] utilise the Hilbert space quantum representation by assigning a complex number relative phase to every word and use this to learn embeddings for text classification tasks. O’Riordan et al. [66] recently present a hybrid workflow toolkit for NLP tasks where the classical corpus is encoded, processed, and decoded using a quantum circuit model.

7 Conclusion

Quantum computing and deep learning are two of the most popular fields of research today. In this work, we have presented a comprehensive and easy to follow survey of the field of quantum deep learning. We have summarized different schemes proposed to model quantum neural networks (QNNs), variants like quantum convolutional networks (QCNNs) and the recent progress in quantum inspired classic deep learning algorithms. There is a tremendous potential for collaborative research at the intersection of the two fields, by applying concepts from one to solve problems in the other. For example, Levine et al. [53] demonstrate the entanglement capacity of deep networks, and therefore suggest their utility for studying quantum many-body physics.

References

[1] Steven H. Adachi and Maxwell P. Henderson. Application of quantum annealing to training of deep neural networks. CoRR, abs/1510.06356, 2015. URL http://dblp.uni-trier.de/db/journals/corr/corr1510.html#AdachiH15.

[2] Sajad Ahmadian and Alireza Khanghanyoobi. Training back propagation neural networks using asexual reproduction optimization. 05 2015. doi: 10.1109/IKT.2015.7288738.

[3] Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and Shengyu Zhang. Quantum algorithms for feedforward neural networks. CoRR, abs/1812.03089, 2018. URL http://dblp.uni-trier.de/db/journals/corr/corr1812.html#abs-1812-03089.

[4] M. Altaisky, Natalia Kaputkina, and V. Krylov. Quantum neural networks: Current status and prospects for development. Physics of Particles and Nuclei, 45:1013–1032, 11 2014. doi: 10.1134/S1063779614060033.

[5] M. V. Altaisky. Quantum neural network, 2001.

[6] Mohammad H. Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko. Quantum boltzmann machine. Physical Review X, 8(2), May 2018. ISSN 2160-3308. doi: 10.1103/physrevx.8.021050. URL http://dx.doi.org/10.1103/PhysRevX.8.021050.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate, 2014. URL http://arxiv.org/abs/1409.0473.

[8] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias Osborne, Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. Training deep quantum neural networks. Nature Communications, 11:808, 02 2020. doi: 10.1038/s41467-020-14454-2.

[9] Laxmidhar Behera, Indrani Kar, and Avshalom Elitzur. Quantum brain: A recurrent quantum neural network model to describe eye tracking of moving targets. Foundations of Physics Letters, 18, 07 2004. doi: 10.1007/s10702-005-7125-6.

[10] E. C. Behrman, J. E. Steck, and S. R. Skinner. A spatial quantum neural computer. In IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), volume 2, pages 874–877 vol.2, 1999.
[11] E. C. Behrman, V. Chandrashekar, Z. Wang, C. K. Belur, J. E. Steck, and S. R. Skinner. A quantum neural network computes entanglement, 2002.

[12] Elizabeth Behrman, L.R. Nash, James Steck, V.G. Chandrashekar, and S.R. Skinner. Simulations of quantum neural networks. Information Sciences, 128:257–269, 10 2000. doi: 10.1016/S0020-0255(00)00056-6.

[13] Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. Quantum neuron: an elementary building block for machine learning on quantum computers, 2017.

[14] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. 06 2014. doi: 10.3115/v1/D14-1179.

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. 12 2014.

[16] Stephen Clark, Bob Coecke, and Mehrnoosh. A compositional distributional model of meaning. 2008.

[17] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations for a compositional distributional model of meaning, 2010.

[18] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273–1278, Aug 2019. ISSN 1745-2481. doi: 10.1038/s41567-019-0648-8. URL http://dx.doi.org/10.1038/s41567-019-0648-8

[19] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–494, December 1989. ISSN 0932-4194. doi: 10.1007/BF02551274. URL http://dx.doi.org/10.1007/BF02551274

[20] Adenilton Jose da Silva and Rodolfo Luan Franco de Oliveira. Neural networks architecture evaluation in a quantum computer. 2017 Brazilian Conference on Intelligent Systems (BRACIS), Oct 2017. doi: 10.1109/bracis.2017.33. URL http://dx.doi.org/10.1109/BRACIS.2017.33

[21] Ammar Daskin. A simple quantum neural net with a periodic activation function. 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct 2018. doi: 10.1109/smc.2018.00491. URL http://dx.doi.org/10.1109/smc.2018.00491

[22] li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. pages 8599–8603, 10 2013. doi: 10.1109/ICASSP.2013.6639344.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423

[24] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term processors. 2018.

[25] Weijiang Feng, Naiyang Guan, Yuan Li, Xiang Zhang, and Zhigang Luo. Audio visual speech recognition with multimodal recurrent neural networks. pages 681–688, 05 2017. doi: 10.1109/ICCNN.2017.7965918.

[26] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980.
[27] Francesco Galofaro, Zeno Toffano, and Bich-Liên Doan. Quantum semantic correlations in hate and non-hate speeches. *Electronic Proceedings in Theoretical Computer Science*, 283:62–74, Nov 2018. ISSN 2075-2180. doi: 10.4204/eptcs.283.5. URL http://dx.doi.org/10.4204/EPTCS.283.5

[28] Xavier Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. *Journal of Machine Learning Research - Proceedings Track*, 9:249–256, 01 2010.

[29] Sanjay Gupta and R.K.P. Zia. Quantum neural networks. *Journal of Computer and System Sciences*, 63(3):355 – 383, 2001. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.2001.1769. URL http://www.sciencedirect.com/science/article/pii/S0022000001917696.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016.

[32] Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional neural networks: Powering image recognition with quantum circuits, 2019.

[33] Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Carrasquilla. Recurrent neural network wavefunctions, 2020.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9 (8):1735–1780, 1997.

[35] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the National Academy of Sciences of the United States of America*, 79(8):2554–2558, April 1982. ISSN 0027-8424. URL http://view.ncbi.nlm.nih.gov/pubmed/6953413.

[36] Dongsung Huh and Terrence J Sejnowski. Gradient descent for spiking neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, *Advances in Neural Information Processing Systems 31*, pages 1433–1443. Curran Associates, Inc., 2018.

[37] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose. Quantum annealing with manufactured spins. *Nature*, 473(7346):194–198, May 2011. ISSN 0028-0836. doi: 10.1038/nature10012.

[38] Subhash Kak. On quantum neural computing. *Inf. Sci.*, 83(3–4):143–160, March 1995. ISSN 0020-2055. doi: 10.1016/0020-2055(94)00095-S. URL https://doi.org/10.1016/0020-2055(94)00095-S.

[39] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems, 2016.

[40] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear systems and least squares. *Physical Review A*, 101(2), Feb 2020. ISSN 2469-9934. doi: 10.1103/physreva.101.022316. URL http://dx.doi.org/10.1103/PhysRevA.101.022316.

[41] Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means: A quantum algorithm for unsupervised machine learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 4134–4144. Curran Associates, Inc., 2019.

[42] Iordanis Kerenidis, Alessandro Luongo, and Anupam Prakash. Quantum expectation-maximization for gaussian mixture models, 2019.

[43] Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolutional neural networks. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=Hygab1rKDS.
[44] Nathan Killoran, Thomas R. Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd. Continuous-variable quantum neural networks. *CoRR*, abs/1806.06871, 2018. URL http://dblp.uni-trier.de/db/journals/corr/corr1806.html#abs-1806-06871

[45] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL http://arxiv.org/abs/1412.6980 Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

[46] Ufuk Korkmaz, Deniz TÃ Açkerpenç, Tahir Çetin Akinci, and Serhat ¸ Seker. Evolution of entanglement in quantum neural network. *IOP Conference Series: Materials Science and Engineering*, 618:012006, oct 2019. doi: 10.1088/1757-899x/618/1/012006.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012. URL http://papers.nips.cc/paper/4824-Imagenet-classification-with-deep-convolutional-neural-networks.

[48] Quoc Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Ng. On optimization methods for deep learning. volume 2011, pages 265–272, 01 2011.

[49] Y . LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541. URL https://doi.org/10.1162/neco.1989.1.4.541.

[50] Yann LeCun, Patrick Haffner, and Y . Bengio. Object recognition with gradient-based learning. 08 2000.

[51] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539

[52] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. *Neural Networks*, 6(6):861–867, 1993. URL http://dblp.uni-trier.de/db/journals/nn/nn6.html#LeshnoLPS93.

[53] Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua. Quantum entanglement in deep learning architectures. *Physical Review Letters*, 122(6), Feb 2019. ISSN 1079-7114. doi: 10.1103/physrevlett.122.065301. URL http://dx.doi.org/10.1103/PhysRevLett.122.065301.

[54] Qiuchi Li, Sagar Uprety, Benyou Wang, and Dawei Song. Quantum-inspired complex word embedding. *Proceedings of The Third Workshop on Representation Learning for NLP*, 2018. doi: 10.18653/v1/w18-3006. URL http://dx.doi.org/10.18653/v1/w18-3006

[55] Yangyang Li, Junjie Xiao, Yanqiao Chen, and Licheng Jiao. Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification. *Neurocomputing*, 362:156–165, 2019. URL http://dblp.uni-trier.de/db/journals/ijon/ijon362.html#LiXCJ19

[56] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and unsupervised machine learning, 2013.

[57] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis. *Nature Physics*, 10(9):631–633, Jul 2014. ISSN 1745-2481. doi: 10.1038/nphys3029. URL http://dx.doi.org/10.1038/nphys3029

[58] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 3431–3440, 2015.
[59] Alexey A. Melnikov, Leonid Fedichkin, and Alexander Alodjants. Detecting quantum speedup by quantum walk with convolutional neural networks. *CoRR*, abs/1901.10632, 2019. URL http://dblp.uni-trier.de/db/journals/corr/corr1901.html#abs-1901-10632

[60] Tamaryn Menneer and Ajit Narayanan. Quantum-inspired neural networks. 06 1995.

[61] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. When and why are deep networks better than shallow ones?, 2017. URL https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14849.

[62] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning. 2018. URL http://arxiv.org/abs/1803.00745 cite arxiv:1803.00745.

[63] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems* 27, pages 2924–2932. Curran Associates, Inc., 2014.

[64] Ashok Muthukrishnan. Classical and quantum logic gates: An introduction to quantum computing quantum information seminar, 1999.

[65] Viet Pham Ngoc and Herbert Wikicky. Tunable quantum neural networks for boolean functions, 2020.

[66] Lee J. O’Riordan, Myles Doyle, Fabio Baruffa, and Venkatesh Kannan. A hybrid classical-quantum workflow for natural language processing, 2020.

[67] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E. Schuyler Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo, N. Rubin, Colm A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, Robert S. Smith, A. Staley, N. Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti. Unsupervised machine learning on a hybrid quantum computer, 2017.

[68] Thomas E. Potok, Catherine Schuman, Steven R. Young, Robert M. Patton, Federico Spedalieri, Jeremy Liu, Ke-Thia Yao, Garrett Rose, and Gangotree Chakma. A study of complex deep learning networks on high performance, neuromorphic, and quantum computers, 2017. URL http://arxiv.org/abs/1703.05364 cite arxiv:1703.05364.

[69] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big data classification. *Physical Review Letters*, 113(13), Sep 2014. ISSN 1079-7114. doi: 10.1103/physrevlett.113.130503. URL http://dx.doi.org/10.1103/PhysRevLett.113.130503.

[70] Patrick Rebentrost, Thomas R. Bromley, Christian Weedbrook, and Seth Lloyd. Quantum hopfield neural network. *Physical Review A*, 98(4), Oct 2018. ISSN 2469-9934. doi: 10.1103/physreva.98.042308. URL http://dx.doi.org/10.1103/PhysRevA.98.042308.

[71] Bob Ricks and Dan Ventura. Training a quantum neural network. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, *Advances in Neural Information Processing Systems* 16, pages 1019–1026. MIT Press, 2004. URL http://papers.nips.cc/paper/2363-training-a-quantum-neural-network.pdf.

[72] Jonathan Romero and Alan Aspuru-Guzik. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions, 2019.

[73] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. Quantum autoencoders for efficient compression of quantum data. *Quantum Science and Technology*, 2(4):045001, Aug 2017.

[74] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6):386–408, 1958. ISSN 0033-295X. doi: 10.1037/h0042519. URL http://dx.doi.org/10.1037/h0042519.
[75] Christopher Roth. Iterative retraining of quantum spin models using recurrent neural networks, 2020.

[76] P. Rotondo, M. Marcuzzi, J. P. Garrahan, I. Lesanovsky, and M. Müller. Open quantum generalisation of hopfield neural networks. *Journal of Physics A: Mathematical and Theoretical*, 51 (11):115301, Feb 2018.

[77] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. *Learning Internal Representations by Error Propagation*, page 318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

[78] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by Back-propagating Errors. *Nature*, 323(6088):533–536, 1986. doi: 10.1038/323533a0. URL http://www.nature.com/articles/323533a0

[79] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a quantum neural network. *Quantum Inf. Process.*, 13(11):2567–2586, 2014. URL http://dblp.uni-trier.de/db/journals/qip/qip13.html#SchuldSP14

[80] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. *IEEE Transactions on Signal Processing*, 45(11):2673–2681, 1997.

[81] Changpeng Shao. A quantum model for multilayer perceptron, 2018.

[82] Juncheng Shen, De Ma, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaojian Xu, Qi Xu, Yangjing Shen, and Gang Pan. Darwin: a neuromorphic hardware co-processor based on spiking neural networks. *Science China Information Sciences*, 59:1–5, 12 2015. doi: 10.1007/s11432-015-5511-7.

[83] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In *Proceedings of the 35th Annual Symposium on Foundations of Computer Science*, SFCS ’94, page 124–134, USA, 1994. IEEE Computer Society.

[84] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. *SIAM J. Comput.*, 26(5):1484–1509, October 1997. ISSN 0097-5397. doi: 10.1137/S0097539795293172. URL https://doi.org/10.1137/S0097539795293172

[85] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. *Nature*, 529:484–489, 01 2016. doi: 10.1038/nature16961.

[86] J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1: an extensible neural network potential with dft accuracy at force field computational cost. *Chem. Sci.*, 8(4):3192–3203, 2017. doi: 10.1039/C6SC05720A. URL http://dx.doi.org/10.1039/C6SC05720A

[87] Alessandro Sordoni and Jian-Yun Nie. Looking at vector space and language models for ir using density matrices. *Lecture Notes in Computer Science*, page 147–159, 2014.

[88] Alessandro Sordoni, Jian-Yun Nie, and Yoshua Bengio. Modeling term dependencies with quantum language models for ir. In *Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR ’13, page 653–662, New York, NY, USA, 2013. Association for Computing Machinery.

[89] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1–9, 2015.

[90] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tavernelli, Dario Gerace, and Daniele Bajoni. Quantum implementation of an artificial feed-forward neural network, 2019.
[91] Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. An artificial neuron implemented on an actual quantum processor. *npj Quantum Information*, 5, 12 2019.

[92] Hao Tang, Zhen Feng, Ying-Han Wang, Peng-Cheng Lai, Chao-Yue Wang, Zhuo-Yang Ye, Cheng-Kai Wang, Zi-Yu Shi, Tian-Yu Wang, Yuan Chen, and et al. Experimental quantum stochastic walks simulating associative memory of hopfield neural networks. *Physical Review Applied*, 11(2), Feb 2019.

[93] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and Anthony Maida. Deep learning in spiking neural networks. *Neural Networks*, 111:47–63, Mar 2019.

[94] E. Torrontegui and J. Garcia-Ripoll. Universal quantum perceptron as efficient unitary approximators. *EPL (Europhysics Letters)*, 125, 01 2018. doi: 10.1209/0295-5075/125/30004.

[95] Geza Toth, Craig S. Lent, P. Douglas Tougaw, Yuriy Brazhnik, Weiwen Weng, Wolfgang Porod, Ruey-Wen Liu, and Yih-Fang Huang. Quantum cellular neural networks. *Superlattices and Microstructures*, 20(4):473–478, Dec 1996.

[96] Deniz Türkpençe, T. Cetin AKINCI, and Serhat Seker. Quantum neural networks driven by information reservoir. 09 2017.

[97] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems 30*, pages 5998–6008. Curran Associates, Inc., 2017.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, pages 5998–6008, 2017.

[99] Kwok Ho Wan, Oscar Dahlsten, Hlér Kristjánsson, Robert Gardner, and M. S. Kim. Quantum generalisation of feedforward neural networks. *npj Quantum Information*, 3(1), Sep 2017.

[100] P. J. Werbos. Backpropagation through time: what it does and how to do it. *Proceedings of the IEEE*, 78(10):1550–1560, 1990.

[101] Nathan Wiebe, Ashish Kapoor, and Krysta M. Svore. Quantum deep learning, 2014.

[102] C. M. Wilson, J. S. Otterbach, N. Tezak, R. S. Smith, A. M. Pollorenco, Peter J. Karalekas, S. Heidel, M. Sohaib Alam, G. E. Crooks, and M. P. da Silva. Quantum kitchen sinks: An algorithm for machine learning on near-term quantum computers, 2018.

[103] Michail Zak and Colin Williams. Quantum neural nets. *International Journal of Theoretical Physics - INT J THEOR PHYS*, 37:651–684, 02 1998. doi: 10.1023/A:1026656110699.

[104] William Zeng and Bob Coecke. Quantum algorithms for compositional natural language processing. *Electronic Proceedings in Theoretical Computer Science*, 221:67–75, Aug 2016. ISSN 2075-2180.

[105] Peng Zhang, Jiabin Niu, Zhan Su, Benyou Wang, Liqun Ma, and Dawei Song. End-to-end quantum-like language models with application to question answering. In AAAI, 2018.

[106] Peng Zhang, Zhan Su, Lipeng Zhang, Benyou Wang, and Dawei Song. A quantum many-body wave function inspired language modeling approach. *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*, Oct 2018.

[107] Zhihong Zhang, Dongdong Chen, Jianjia Wang, Lu Bai, and Edwin R. Hancock. Quantum-based subgraph convolutional neural networks. *Pattern Recognit.*, 88:38–49, 2019. URL http://dblp.uni-trier.de/db/journals/pr/pr88.html#ZhangCWBH19

[108] Chen Zhao and Xiao-Shan Gao. Qdnn: Dnn with quantum neural network layers, 2019.

[109] Qiaomu Zhu, Jinfu Chen, Lin Zhu, Xianzhong Duan, and Yilu Liu. Wind speed prediction with spatio–temporal correlation: A deep learning approach. *Energies*, 11:705, 03 2018. doi: 10.3390/en11040705.