The Impact of Sociodemographic Factors, Comorbidities and Physiologic Response on 30-day Mortality in COVID-19 Patients in Metropolitan Detroit

Joseph Miller, MD, MS¹,²
Raef A Fadel, DO¹
Amy Tang, PhD¹
Giuseppe Perrotta, MD¹
Erica Herc¹
Sandeep Soman, MD¹
Sashi Nair, MD¹
Zachary Hanna, DO¹
Marcus J Zervos, MD¹,²
George Alangaden, MD¹,²
Indira Brar, MD¹,²
Geehan Suleyman, MD, MLS¹

1. Henry Ford Hospital, Detroit, MI, USA
2. Wayne State University, Detroit, MI, USA

Correspondence
Joseph Miller, MD, MS
Department of Emergency Medicine
Henry Ford Hospital
2799 W Grand Blvd, CFP 317
Detroit, MI 48202
Jmiller6@hfhs.org

Summary: In a large cohort of COVID-19 patients in Southeast Michigan, comorbidities, advanced age, and initial physiological disturbances, but not disparities in income or source of health insurance, were associated with mortality. Black women had lower adjusted odds of death.
ABSTRACT

Background:

The relationship of health disparities and comorbidities in coronavirus disease 2019 (COVID-19) related outcomes are an ongoing area of interest. This report assesses risk factors associated with mortality in patients presenting with Covid-19 infection and healthcare disparities.

Methods:

A retrospective cohort study of consecutive patients presenting to emergency departments within an integrated health system who tested positive for COVID-19 between March 7 and April 30, 2020 in Metropolitan Detroit. The primary outcomes were hospitalization and 30-day mortality.

Results:

A total of 3,633 patients with mean age of 58 years were included. The majority were female and black non-Hispanic. Sixty-four percent required hospitalization, 56% of whom were black. Hospitalized patients were older, more likely to reside in a low-income area, and had a higher burden of comorbidities. By 30-days, 433 (18.7%) hospitalized patients died. In adjusted analyses, the presence of comorbidities, age >60 years and more severe physiological disturbance were associated with 30-day mortality. Residence in low income areas (odds ratio, 1.02; 95% confidence interval 0.76 – 1.36), and public insurance (odds ratio, 1.24; 95% confidence interval 0.76 – 2.01) were not independently associated with higher risk of mortality. Black female patients had a lower adjusted risk of mortality (odds ratio, 0.46; 95% confidence interval, 0.27 to 0.78).
Conclusions:

In this large cohort of COVID-19 patients, those with comorbidities, advanced age, and physiological abnormalities on presentation had higher odds of death. Disparities in income or source of health insurance were not associated with outcomes. Black women had a lower risk of dying.

Key Words: COVID-19, Detroit, mortality, outcomes, SARS-CoV-2
INTRODUCTION

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) overwhelmed multiple metropolitan areas during March and April 2020.1-3 Data from various states have shown racial disparities in rates of Covid-19, the disease caused by SARS-CoV-2, cases and deaths. In a nationwide analysis of federal data through July 5, 2020, COVID-19 cases were 62 and 73 per 10,000 people among blacks and Latinos, and 23 per 10,000 people among whites in the US.4 The Bronx, which has the highest proportion of racial/ethnic minorities and number of persons living in poverty among the 5 boroughs, had higher COVID-19-related hospitalization and death rates compared to the other 4 boroughs.5 In Chicago, reported mortality rates were substantially higher among African American/black individuals (129 per 100,000) compared with Latino (89 per 100,000) and white (48 per 100,000) residents.6

Recent studies have also highlighted that non-Hispanic black patients are overrepresented among hospitalized U.S. COVID-19 patients.2,7,8 Furthermore, hospitalized black patients have been reported to have higher prevalence of pre-existing conditions, including obesity, diabetes, hypertension, and chronic kidney disease, at baseline than their white counterparts.2 However, there was no association between black race and mortality after adjusting for differences in sociodemographic and clinical characteristics.2,7,8,9

Southeast Michigan became a coronavirus hot spot as cases surged in the state, with one of the highest incident rates in the nation during the early phase of the pandemic.9 As of July 13, 2020, there were 69,338 confirmed cases and 6,075 (8.7%) deaths in Michigan, representing the highest case fatality rate in the nation. Moreover, Wayne County, including the City of Detroit, was the hardest hit with 23,996 infections and 2759 (11.5%) deaths and was in the top 5 counties for the total number of COVID19 deaths.10
The objective of this report is to assess risk factors associated with hospitalization and 30-day mortality in patients presenting to the emergency department (ED) with Covid-19 infection and determine if health disparities influenced mortality.

METHODS

STUDY DESIGN, SETTING, AND POPULATION

This retrospective, observational cohort study included all consecutive patients who presented to an ED within the Henry Ford Health System (HFHS) between March 7 and April 30, 2020 and had laboratory confirmed SARS-CoV-2 on reverse-transcription polymerase chain-reaction (RT-PCR) assay in a nasopharyngeal sample. Laboratory confirmation was performed by the Michigan Department of Health and Human Services or the Henry Ford Health System clinical microbiology laboratory. We assessed mortality through May 30, 2020. Centered in metropolitan Detroit and serving southeast and south-central Michigan, HFHS is one of the largest integrated health systems in the state with 9 EDs and 5 acute care hospitals. The five hospitals together have a total of 2,305 inpatient beds. Between March 1 and April 30, 2019, these 9 EDs evaluated 62,450 unique patients, of whom 36.7% identified themselves as black non-Hispanic and 52.4% as white non-Hispanic. The health system's institutional review board approved this study (#13903).

DATA COLLECTION AND DEFINITIONS

The HFHS utilizes the Epic electronic health record (EHR) system. A team of data analysts created dedicated Covid-19 data tables within our enterprise data warehouse by March 7, 2020 for the purpose of public health monitoring and quality improvement. These data tables
extracted patient demographic information, chronic comorbid conditions, body mass index (BMI), prescribed medications, chief complaint symptoms, ED vital signs, laboratory values, insurance status, and procedure codes. Based on the last recorded BMI, obesity was defined as BMI $\geq 30 \text{ kg/m}^2$. Data for comorbid conditions included any documentation in problem lists within ambulatory or inpatient encounters that occurred at any point within the health system. Due to low numbers of patients that self-identified as Asian, American Indian or Alaska native, Native Hawaiian or Pacific Islander, and Middle Eastern, we grouped these patients as an “other” category. Patients who declined to provide race/ethnicity or those with missing data were categorized as “unknown”.

For patients admitted to the hospital, standard protocols for Covid-19 blood examinations included complete blood count (CBC) with differential, basic metabolic panel (BMP), liver function tests (LFT), ferritin, C-reactive protein (CRP), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), high-sensitivity troponin-I (hs-cTnI), and D-dimer. Covid-19 data tables also included the Charlson comorbidity index, which was tabulated from comorbid condition diagnostic codes in each patient’s EHR.11 Treatment protocols were initiated within the health system by March 20, 2020, which included hydroxychloroquine and corticosteroid administration for hospitalized patients requiring oxygen. We used each patient’s residing zip code to determine whether the patient lived in a low-income area. We defined a low-income area as one in which the percentage of low-income residents, defined by the Uniform Data System Mapper, exceeds the Michigan benchmark of 31%, as previously described.2,4 Categories of health insurance included Medicare, Medicaid and commercial or private based on what was documented in the patient chart.

Acute kidney injury (AKI) was defined by a rise in serum creatinine consistent with the Kidney Disease: Improving Global Outcomes definition.5 Cardiac injury was characterized by the presence of serum levels of high-sensitivity cardiac troponin I (hs-cTnI) above the 99th
percentile upper reference limit. Primary outcomes included hospital admission and 30-day mortality. In addition to health system inpatient death data, we cross-referenced all patients for 30-day mortality with data from the Michigan Health Information Network, a health information exchange that tracks all admission and discharge information for any hospital in the state, to determine if patients discharged within 30-days had a death outside the HFHS.

STATISTICAL ANALYSIS

Data are presented as mean and standard deviation (SD), or median and interquartile range, for continuous variables, and as frequency and percentage for categorical variables. Baseline comparisons between the groups were made using the two sample t tests or Wilcoxon rank tests based on distributions, for continuous variables, and Pearson’s χ² tests or Fisher’s exact tests, as appropriate, for categorical variables. We assessed outcomes with multilevel logistic regression models, clustered on community (zip code) to evaluate the risk factors associated with overall 30-day mortality among all patients that required hospitalization. We performed modeling to assess factors associated with death in 2 stages. The first stage, model 1, was limited to fixed patient factors, including age, sex, race, comorbid conditions, insurance status, and low-income status. Age was tested as a continuous variable or as a categorical variable of >60 or ≤60 years, and minimal difference in the models was present. Hence, we retained the categorical variable for age. The second stage, model 2, added physiological disturbances to these fixed factors. Physiological disturbances included vital signs on ED presentation, categorized as heart rate >100 beats/minute, respiratory rate >24/min, pulse oximetry <94%, and systolic blood pressure (SBP) <100 mm Hg. Physiological disturbances also included the following laboratory findings collected either at initial ED presentation or upon admission to the hospital: hs-cTnI >18 ng/L (>99th percentile), creatinine >1.5 mg/dl, D-dimer
>1.5 mcg/ml, ferritin >500ng/ml, alanine aminotransferase (ALT) >40 U/liter, CRP >8.2 ng/ml, procalcitonin >0.25 ng/ml, hematocrit >40%, and absolute lymphocyte count <1000/ul.

We used multiple imputation modeling by fully conditional specification to impute continuous variables that had <20% missing data. These variables included the following variables: BMI, blood pressure, temperature, respiratory rate, pulse oximetry, procalcitonin, c-reactive protein (CRP), d-dimer, ferritin, ALT, hs-cTnI, creatinine, hematocrit, and absolute lymphocyte count. Five imputed data sets were created and used for these analyses. A two-sided α<0.05 was considered statistically significant. Odds ratio (OR) with 95% confidence interval (95% CI) was reported for all models. Statistical analyses were performed using R version 4.0.2 (Vienna, Austria).

RESULTS

CHARACTERISTICS OF COVID-19 PATIENTS

During the study period, there were 3,633 patients who presented to one of 9 EDs and tested positive for SARS-CoV-2. Patient characteristics are summarized in Table 1. The mean age of the cohort was 58.4 years. A majority were female (1,954, 53.8%) and black (2,019, 55.6%). Rates of hypertension (51.3%), obesity (51.8%) and diabetes mellitus (31.7%) were high. Over half of the patients lived in low-income areas (52.2%) and had public insurance (Medicare or Medicaid insurance). Dyspnea (26.0%), fever (14.9%) and cough (13.5%) were the most common presenting symptoms. Tachycardia and elevated temperature were common (39.7% and 22.4% of patients, respectively), and 16.2% of patients required supplemental oxygen in the ED. There were 460 (12.7%) patients that died within 30-days. Among the
decedents, 433 (94%) were hospitalized. The remaining 27 (6%) patients died in the ED or at a subsequent healthcare encounter following discharge to home from the ED.

CHARACTERISTICS AND OUTCOMES OF HOSPITALIZED COVID-19 PATIENTS

A total of 2316 (63.7%) were hospitalized, 55.7% of whom were black. Hospitalized patients had a higher mean age (64.5 vs. 48.2 years) and were more likely to be male (51.8% vs. 36.7%), have Medicare (56.4% vs 21.2%), reside in a low-income area (54.3% vs. 48.4%) or have more than two comorbidities (90.6% vs. 55%). Patients requiring hospitalization were more likely to present with altered mental status (4.9% vs 0.2%) and dyspnea (34.2% vs 11.5%) and had higher rates of physiological disturbances (Table 1). The mean age of hospitalized black patients was 61.8 (SD 15.6) years compared to 69.5 (SD 16.6) years among white patients.

Clinical characteristics and outcomes for hospitalized patients are presented in Table 2. A total of 433 (18.7%) hospitalized patients died within 30 days of their hospital encounter, of whom 407 (94%) died during their index admission. Twenty-six (6%) patients died following discharge from their initial hospitalization, either at home or during readmission. Patients who died were more likely to be male, older, and have chronic comorbidities. Figure 1 illustrates the proportion of deaths between the different age groups based on race, which was higher among the elderly across all races. The mean age of white patients who died was 80.0 (SD 11.9) years compared to 70.9 (SD 14.4) years among black patients. Black patients who died had higher average Charlson comorbidity index scores (3.8, SD 2.8) compared to white patients (3.3, SD 2.3). During the first week of the pandemic, a higher proportion of blacks died. However, over the course of the outbreak, whites contributed to a higher proportion of deceased patients (Figure 2).
Deceased patients more frequently had physiological disturbances on presentation, including abnormal vital signs and higher inflammatory markers, rates of cardiac injury, AKI, and lymphopenia (Table 2). Rates of complications were higher among the deceased patients compared with patients who survived, including AKI, respiratory failure, sepsis, need for mechanical ventilation, and delirium (Table 2). The mean length of hospitalization among survivors was 7.9 (SD 8.0) days, and the mean time to death was 11.1 (SD 7.9) days.

FACTORS ASSOCIATED WITH 30-DAY MORTALITY AMONG HOSPITALIZED PATIENTS

Table 3 shows the odds ratio for factors associated with 30-day mortality among hospitalized patients. Unadjusted death rates were higher in white patients compared with black patients (16.4% vs. 9.9%) and in patients >60 years (21.3% vs. 3.0%) or with more than 2 comorbidities (27.8% vs. 6.6%). In an adjusted analysis inclusive of fixed patient variables, age >60 years, male sex, Medicare insurance, and a history of dementia were associated with mortality. Cardiopulmonary comorbidities were also associated with death. With the addition of physiological disturbances (model 2), age >60 years, cardiopulmonary comorbidities, and dementia remained significantly associated with death. Otherwise, multiple physiological disturbances remained significantly associated with 30-day mortality. Residence in a low-income area and public insurances were not independently associated with higher risk of mortality among hospitalized patients. Black race was independently associated with lower mortality (odds ratio, 0.56; 95% confidence interval, 0.40 to 0.77). When categorized by sex, the association of black race and mortality compared to white patients was significant for females (odds ratio, 0.45; 95% confidence interval, 0.27 to 0.78) but not males (odds ratio, 0.84; 95% confidence interval, 0.54 to 1.30).
DISCUSSION

In contrast to recently published studies that addressed risk factors associated with mortality among patients admitted to the ICU, our report is the first and largest study that examines the clinical characteristics and risk factors associated with 30-day mortality in a cohort of all comers, irrespective of severity of illness, who presented to an ED with confirmed COVID19 infection.

The majority of Covid-19 patients in our cohort were female and black, similar to previous reports. Although black patients represented 36.7% of the patients evaluated in our EDs during the same period in 2019, they represented 55.5% of the overall Covid-19–positive patients within the health system. This disproportionate number of black patients affected by Covid-19 is consistent with previous reports. During the first two weeks of the pandemic, black patients had higher rates of death, but lower rates compared to whites for the remaining weeks. This finding may reflect random variability given the lower number of patients treated in the first weeks. It could also reflect evolution of clinical management, including initiation of corticosteroids as part of routine care, which may have contributed to this change.

Our findings support earlier observations, which found the majority of hospitalized Covid-19 patients to be female, black and of older age with underlying comorbidities. Additionally, a higher proportion of hospitalized patients had public insurance, resided in low income areas and had noted physiologic abnormalities.

Among hospitalized patients, those who died were more likely to be male, older than 60 years of age, white, and have underlying cardiopulmonary comorbidities, including coronary artery disease, congestive heart failure, and chronic kidney disease. Most deceased patients had public insurance, particularly Medicare, which reflects advanced age, particularly among white patients. Nevertheless, the majority of decedents did not reside in low-income areas.
Clinical features such as tachypnea and hypoxia, and abnormal laboratory parameters, including elevated inflammatory and cardiac markers and lymphopenia, were more common among the deceased patients. These findings were consistent with other studies2,16 and likely reflect severity of the host response to COVID-19 infection. Notably, the vast majority (94\%) of our deceased cohort died during their index hospitalization, in contrast to recently published reports, where in-hospital mortality was 62.0\% across the US.17

Physiologic disturbances present at the time of hospitalization, including hypoxia, tachypnea, low blood pressure, elevated hs-cTnI, elevated D-dimer, and elevated procalcitonin were associated with increased odds of mortality. In adjusted analysis, insurance status and residence in low-income areas were not associated with 30-day mortality.

Death rates were higher in white patients compared with black patients and those of other races. This finding was significant among black women, who had substantially lower risk of death compared to white females. This higher death rate associated with white race persisted when adjusted for multiple patient characteristics, including extensive physiological variables. Notably, black patients died at nearly a decade younger on average compared to white patients, a finding consistent with published national data.7 This difference in age reflects the finding that black ED patients that required hospitalization were, on average, nearly a decade younger than white patients requiring hospitalization. Whether other factors contribute to the differences in mortality based on race and sex warrants additional investigation.

This report highlights that advanced age and physiological abnormalities were most strongly associated with mortality and suggests that white patients who were hospitalized had higher rates of mortality as a result. Although previously published reports have demonstrated the association between comorbidities and outcomes in patients with Covid-19, these findings suggest that the host response and advanced age may be more important predictors of
mortality. The study benefited from early implementation of a health system protocol that standardized collection of laboratory parameters among hospitalized patients. This relatively comprehensive assessment of presenting physiological disturbances may explain the discrepancy in the significance of comorbid conditions previously reported.

This study has a number of limitations. While a strength of the study is inclusion of a large and diverse population over Southeast and south-central Michigan, we limited data to an integrated health system, which may have regional characteristics that are not generalizable to other health care settings. Many ED patients were not sick enough to warrant hospitalization and complete laboratory evaluation, which limited detailed laboratory data on the full cohort. As the main focus of the study was on patient factors present on initial presentation, we did not incorporate inpatient pharmacologic treatment into our analysis. Treatment guidance within the health system evolved during the first month of the pandemic to include a higher proportion of patients receiving corticosteroids and hydroxychloroquine, which may have influenced outcomes over time. Our analysis did not account for stratification of disease severity, which could uncover additional details on the interplay of healthcare disparities and outcomes. Finally, data collection relied on structured data elements in the EHR, and all findings are dependent on the accuracy of documentation by study teams. While we incorporated comorbidity data in the EHR well beyond that of each patient’s encounter with COVID-19, incomplete documentation may underestimate the burden of comorbidities in some patients.
CONCLUSION

In this large cohort of COVID-19 patients in Metropolitan Detroit, patients with comorbidities, advanced age, and physiological abnormalities on presentation had higher odds of death. Among those hospitalized, black race and socioeconomic disparities were not associated with higher risk of 30-day mortality, and black females had a lower adjusted risk of death compared to white females.
ACKNOWLEDGMENTS

Dana Larkin and Mohammed Baseer led data analytics for the study. Margaret Beyer, Timothy Asmar, Rebecca Bussa, Madison Lee, Jo-Ann Rammal, Kaleem Chaudhry, and Lakeeda Johnson assisted with data validation.

FUNDING

Funding for data abstraction and analysis was through the Henry Ford Health System, Detroit, MI.

POTENTIAL CONFLICTS

Dr. Zervos reports grants from Pfizer, grants from Merck, grants from Johnson and Johnson, consulting fees from Contrafect, outside the submitted work. Dr. Miller reports grants from Calcimedica, grants from Abbott, consulting fees from Astrazeneca, grants from Brainscope, grants from Gilead, outside the submitted work. Dr. Brar reports grants from Gilead, outside the submitted work. All other authors report no conflicts of interest relevant to this work.
REFERENCES

1. Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382:929-36.

2. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med. 2020;382(26):2534-2543.

3. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ 2020;369:m1996.

4. The Fullest Look Yet at the Racial Inequity of Coronavirus. The New York Times. https://www.nytimes.com/interactive/2020/07/05/us/coronavirus-latinos-african-americans-cdc-data.html?searchResultPosition=13. Accessed July 20, 2020.

5. Wadhera RK, Wadhera P, Gaba P, et al. Variation in COVID-19 Hospitalizations and Deaths Across New York City Boroughs. JAMA. 2020;323(21):2192-2195.

6. Latest Data, COVID-19. City of Chicago. https://www.chicago.gov/city/en/sites/covid-19/home/latest-data.html. Accessed July 20, 2020.
7. Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19 - Georgia, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69:545-50.

8. Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020;3:e2012270.

9. Gupta S, Hayek SS, Wang W, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. [published online July 15, 2020]. JAMA Intern Med. doi:10.1001/jamainternmed.2020.3596.

10. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html. Accessed July 20, 2020.

11. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373-83.

12. Uniform Data System Mapper. Health Resources and Services Administration. https://www.udsmapper.org/. Accessed July 20, 2020.

13. Kidney disease: improving global outcomes (KIDGO)—clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1.

14. Health Information Exchange for Providers. Michigan Health Information Network. https://mihin.org/. Accessed July 10, 2020

15. Grasselli G, Greco M, Zanella A, et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy [published online July 15, 2020]. JAMA Intern Med. 2020;10.1001/jamainternmed.2020.3539.

16. Tian S, Liu H, Liao M, et al. Analysis of Mortality in Patients With COVID-19: Clinical and Laboratory Parameters. Open Forum Infect Dis. 2020;7:ofaa152.
17. Wortham JM LJ, Althomsons S, et al. Characteristics of Persons Who Died with COVID-19 — United States, February 12–May 18, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(28):923-929

18. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.

19. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. [Published online March 23, 2020]. JAMA. doi: 10.1001/jama.2020.4683

20. Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-1614.
Table 1. Characteristics of 3,633 consecutive, confirmed COVID-19 Patients to Henry Ford Health System Emergency Departments

Characteristics	All	Discharged Home	Hospitalized
	N=3633	n=1317	n=2316
Age – years	58.4 ± 18.1	48.2 ± 16.5	64.5 ± 16.3
Female sex – no. (%)	1954 (53.8)	837 (63.6)	1117 (48.2)
Race and Ethnicity – no. (%)			
Black	2019 (55.6)	728 (55.3)	1291 (55.7)
White	1160 (31.9)	405 (30.8)	755 (32.6)
Hispanic	247 (6.8)	94 (7.1)	153 (6.6)
Other	207 (5.7)	90 (6.8)	117 (5.1)
Unknown	117 (3.2)	37 (2.8)	80 (3.5)
Low-income – no. (%)	1895 (52.2)	638 (48.4)	1257 (54.3)
Insurance – no. (%)			
Commercial	1152 (31.7)	525 (39.9)	627 (27.1)
Medicare	1586 (43.7)	279 (21.2)	1307 (56.4)
Medicaid	565 (15.6)	214 (16.2)	351 (15.2)
Physiological parameters – no. (%)			
Temperature > 38.0 C	806 (22.4)	222 (17.3)	584 (25.3)
Respiratory rate > 24/min	729 (21.0)	55 (4.7)	674 (29.2)
SpO2 <94%	889 (24.7)	49 (3.8)	840 (36.4)
HR ≥ 100 beats/min	1434 (39.7)	433 (33.3)	1001 (43.3)
Body mass index – kg/m²	31.7 ± 9.1	31.7 ± 9.9	31.6 ± 8.7
Comorbidities – no. (%)			
Human immunodeficiency virus	26 (0.7)	0 (0.0)	26 (1.1)
Coronary artery disease	552 (15.2)	55 (4.2)	497 (21.5)
Congestive heart failure	530 (14.6)	57 (4.3)	473 (20.4)
Stroke	222 (6.1)	23 (1.7)	199 (8.6)
Asthma	319 (8.8)	102 (7.7)	217 (9.4)
Chronic obstructive pulmonary disease	727 (20.0)	98 (7.4)	629 (27.2)
Peripheral vascular disease	218 (6.0)	25 (1.9)	193 (8.3)
Chronic kidney disease	782 (21.5)	84 (6.4)	698 (30.1)
------------------------	------------	---------	------------
End stage renal disease	218 (6.0)	25 (1.9)	193 (8.3)
Hypertension	1862 (51.3)	389 (29.5)	1473 (63.6)
Diabetes Mellitus	1150 (31.7)	219 (16.6)	931 (40.2)
Solid organ transplant	44 (1.2)	9 (0.7)	35 (1.5)
Cancer	305 (8.4)	59 (4.5)	246 (10.6)
Obesity	1758 (51.8)	574 (52.0)	1184 (51.7)
Dementia	358 (9.9)	14 (1.1)	344 (14.9)
Total mean comorbid conditions	2.6 ± 2.2	1.3 ± 1.5	3.3 ± 2.3
Charlson comorbidity index	1.6 ± 2.2	0.44 ± 1.2	2.2 ± 2.4

Chief complaint – no. (%)

Altered mental status	117 (3.2)	3 (0.2)	114 (4.9)
Fever	543 (14.9)	215 (16.3)	328 (14.2)
Nausea or vomiting	155 (4.3)	50 (3.8)	105 (4.5)
Dyspnea	943 (26.0)	152 (11.5)	791 (34.2)
Cough	490 (13.5)	218 (16.6)	272 (11.7)
Weakness	158 (4.3)	30 (2.3)	128 (5.5)

* Plus-minus values are means ±SD. Race and ethnic groups are self-reported by each patient. Chronic kidney disease inclusive of end stage renal disease. Comorbid conditions are determined by clinical documentation and assumed to not be present if not documented. Obesity determined by presence of body mass index ≥30 kg/m².
Table 2. Characteristics of hospitalized patients with COVID-19 based on primary outcome

Characteristics	Alive at 30-days	Deceased at 30-days	p-value
N=1883	n=433		
Age - years	62.0 ± 15.9	74.7 ± 13.8	<0.001
Female sex – no. (%)	933 (49.5)	184 (42.5)	0.004
Race and Ethnicity – no. (%)			
Black	1087 (57.7)	204 (47.1)	<0.001
White	566 (30.1)	189 (43.6)	
Hispanic	132 (7.0)	21 (4.8)	
Other	65 (3.5)	15 (3.5)	
Low-income – no. (%)	1042 (55.3)	215 (49.7)	0.037
Insurance – no. (%)			
Commercial	581 (30.9)	46 (10.6)	<0.001
Medicaid	321 (17.0)	30 (6.9)	
Medicare	951 (50.5)	356 (82.2)	
Physiological parameters – no. (%)			
Temperature > 38.0 C	497 (26.4)	87 (20.2)	0.009
Respiratory rate > 24/min	468 (24.9)	206 (47.7)	<0.001
SpO2 < 94%	637 (33.9)	203 (47.2)	<0.001
HR ≥ 100 beats/min	822 (43.7)	179 (41.4)	0.422
Body mass index – kg/m²	32.2 ± 8.6	29.4 ± 8.6	<0.001
Comorbidities – no. (%)			
Human immunodeficiency virus	18 (1.0)	8 (1.8)	0.182
Coronary artery disease	336 (17.8)	161 (37.2)	<0.001
Peripheral vascular disease	123 (6.5)	70 (16.2)	<0.001
Congestive heart failure	320 (17.0)	153 (35.3)	<0.001
Stroke	133 (7.1)	66 (15.2)	<0.001
Asthma	186 (9.9)	31 (7.2)	0.097
Chronic obstructive pulmonary disease	474 (25.2)	155 (35.8)	<0.001
Chronic kidney disease	501 (26.6)	197 (45.5)	<0.001
End stage renal disease	79 (4.2)	35 (8.1)	0.001
Hypertension	1171 (62.2)	302 (69.7)	0.004
Condition	No. (%)	No. (%)	P-Value
---------------------------------	-----------	-----------	---------
Diabetes Mellitus	731 (38.8)	200 (46.2)	0.006
Solid organ transplant	28 (1.5)	7 (1.6)	1.00
Cancer	183 (9.7)	63 (14.5)	0.004
Obesity	1022 (54.7)	162 (38.1)	<0.001
Total mean comorbid conditions	3.1 ± 2.2	4.3 ± 2.4	<0.001
Charlson comorbidity index	1.9 ± 2.3	3.4 ± 2.6	<0.001
Laboratory values – no. (%)			
Troponin >99th percentile	603 (31.4)	301 (72.0)	<0.001
Absolute lymphocyte <1000/ul	1137 (59.3)	298 (71.3)	<0.001
Creatinine >1.5 mg/dl	523 (27.3)	220 (52.6)	<0.001
Glucose >150 mg/dl	496 (25.9)	152 (36.4)	<0.001
CRP >10 mg/dl	650 (33.9)	228 (54.6)	<0.001
Anion gap >15	205 (10.7)	92 (22.0)	<0.001
Hematocrit >40%	900 (46.9)	164 (39.2)	0.033
Ferritin >500 ng/ml	778 (41.3)	241 (55.7)	<0.001
D-dimer >1.5 mg/L	655 (34.1)	251 (60.1)	<0.001
Procalcitonin >0.25 ng/ml	461 (24.0)	224 (53.6)	<0.001
ALT >40 IU/L	436 (23.2)	100 (23.1)	0.152
Respiratory failure – no. (%)	793 (42.1)	345 (79.7)	<0.001
Mechanical ventilation – no. (%)	151 (8.0)	208 (48.0)	<0.001
Delirium – no. (%)	212 (11.3)	136 (31.4)	<0.001
Acute kidney injury – no. (%)	581 (30.9)	254 (58.7)	<0.001
Sepsis – no. (%)	276 (14.7)	184 (42.5)	<0.001

* Plus-minus values are means ±SD. Race and ethnic groups are self-reported by each patient. Comorbid conditions are determined by clinical documentation and assumed to not be present if not documented. Obesity determined by presence of body mass index ≥30 kg/m². Normal lab value ranges: troponin [<19 ng/L], absolute lymphocyte [1.1-4.0 K/ul], creatinine [<1.28 mg/dl, glucose [50-140 mg/dl], CRP [<0.5 mg/dL], anion gap [3-13], hematocrit [41-53%], ferritin [24-336], d-dimer [<0.59 mg/L], procalcitonin [<0.25 ng/ml], ALT [<52 IU/L]
Table 3. Odds ratios for 30-day mortality among hospitalized patients with COVID-19. Model 1 is inclusive of fixed patient variables, including demographic, socioeconomic, and comorbid condition data. Model 2 is inclusive of model 1 with the addition of physiological disturbances present on admission.

Variable	Odds Ratio (95% CI)	
Model 1	Model 2	
Sex: male vs female	1.51 (1.20 – 1.91)	1.22 (0.94 – 1.60)
Age >60 years	2.77 (1.92 – 4.00)	2.45 (1.65 – 3.64)
Resides in low income area	1.02 (0.78 – 1.33)	1.01 (0.76 – 1.35)
Medicaid insurance*	1.11 (0.67 – 1.83)	1.06 (0.62 – 1.82)
Medicare insurance	1.87 (1.28 – 2.75)	1.41 (0.93 – 2.15)
Race: black vs. white	0.79 (0.59 – 1.05)	0.56 (0.40 – 0.77)
Chronic obstructive pulmonary disease	1.31 (1.02 – 1.68)	1.49 (1.13 – 1.97)
Congestive heart failure	1.36 (1.03 – 1.81)	1.36 (1.00 – 1.83)
Coronary artery disease	1.46 (1.11 – 1.90)	1.35 (1.02 – 1.80)
Chronic kidney disease	1.24 (0.96 – 1.61)	0.94 (0.69 – 1.27)
Hypertension	0.69 (0.53 – 0.92)	0.73 (0.54 – 0.99)
Obesity	0.93 (0.73 – 1.20)	0.94 (0.71 – 1.24)
Diabetes mellitus	1.18 (0.92 – 1.52)	1.22 (0.93 – 1.60)
Cancer	1.06 (0.76 – 1.49)	1.02 (0.71 – 1.47)
Dementia	1.90 (1.43 – 2.52)	1.67 (1.21 – 2.29)
Peripheral vascular disease	1.38 (0.97 – 1.98)	1.27 (0.87 – 1.87)
Stroke	1.28 (0.90 – 1.82)	1.30 (0.89 – 1.91)
Pulse oximetry <94%	1.49 (1.15 – 1.94)	
Respiratory rate >24/min	1.87 (1.43 – 2.43)	
SBP <100 mmHg	1.78 (1.21 – 2.64)	
Troponin >99th percentile	2.36 (1.76 – 3.16)	
Absolute lymphocyte < 1000/ul	1.31 (1.00 – 1.72)	
Creatinine >1.5 mg/dl	1.08 (0.79 – 1.49)	
D-Dimer >1.5 mg/L	1.55 (1.18 – 2.03)	
Ferritin >500 ng/ml	1.28 (0.98 – 1.68)	
ALT >40 IU/L	0.87 (0.64 – 1.17)	
CRP >10 mg/L	1.43 (1.08 – 1.89)	
Procalcitonin >0.25 ng/ml	1.69 (1.19 – 2.39)	

*Reference for insurance is commercial insurance.
Figure 1. Percentage of hospitalized patients that had 30-day mortality based on race and age groups.

Figure 2. Weekly mortality rate over peak period of the pandemic based on race.
Figure 1

Bar chart showing the percentage distribution of different age groups among White, Black, and Other racial categories. The age groups are:
- ≥80 years
- 65-79 years
- 50-64 years
- <50 years

For White:
- (n=755) with a percentage of approximately 40%

For Black:
- (n=1291) with a percentage of approximately 35%

For Other:
- (n=270) with a percentage of approximately 30%
Figure 2