HYERS–ULAM STABILITY FOR SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS OF CARATHÉODORY TYPE

MASAKAZU ONITSUKA

Abstract. This study deals with the Hyers–Ulam stability (HUS) of the second order linear differential equations \(x'' + \alpha x' + \beta x = f(t) \) without the assumption of continuity of \(f(t) \). In particular, the main purpose of this study is to find a specific exact solution near the approximate solution, and the best HUS constant. Furthermore, the instability is also discussed, and a necessary and sufficient condition is obtained. Finally, a specific application example and a numerical simulation are presented.

Mathematics subject classification (2020): 34A12, 34A30, 34D10, 34H05.

Keywords and phrases: Hyers–Ulam stability, linear differential equation, Carathéodory type, control system, best HUS constant.

REFERENCES

[1] M. R. ABDOLLAHPOUR AND C. PARK, Hyers–Ulam stability of a class of differential equations of second order, J. Comput. Anal. Appl. 18 (2015), no. 5, 899–903.

[2] W. ADKINS AND M. G. DAVIDSON, Ordinary Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2012.

[3] R. P. AGARWAL, B. XU AND W. ZHANG, Stability of functional equations in single variable, J. Math. Anal. Appl. 288 (2003), no. 2, 852–869.

[4] Q. H. ALQIFIARY AND S.-M. JUNG, On the Hyers–Ulam stability of differential equations of second order, Abstr. Appl. Anal. 2014 (2014), Art. ID 483707, 8 pp.

[5] D. R. ANDERSON AND M. ONITSUKA, Hyers–Ulam stability of first-order homogeneous linear dynamic equations on time scales, Demonstr. Math. 51 (2018), no. 1, 198–210.

[6] A. BACCIOTTI AND L. ROSIER, Liapunov functions and stability in control theory. Second edition. Communications and Control Engineering Series, Springer-Verlag, Berlin, 2005.

[7] A. B. BAIAS AND D. POPA, On the best Ulam constant of the second order linear differential operator, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 1, Paper No. 23, 15 pp.

[8] D. BARBU, C. BUŞE AND A. TABASSUM, Hyers–Ulam stability and exponential dichotomy of linear differential periodic systems are equivalent, Electron. J. Qual. Theory Differ. Equ. 2015, Paper No. 58, 12 pp.

[9] J. BRZDĘK, K. CIEPLIŃSKI AND Z. LEŚNIAK, On Ulam’s type stability of the linear equation and related issues, Discrete Dyn. Nat. Soc. 2014, Art. ID 536791, 14 pp.

[10] J. BRZDĘK, D. POPA, I. RAŞA AND B. XU, Ulam stability of operators, Mathematical analysis and its applications, Academic Press, 2018.

[11] C. BUŞE, V. LUPOLESCU AND D. O’REGAN, Hyers–Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients, Proc. Roy. Soc. Edinburgh Sect. A. 150 (2020), no. 5, 2175–2188, https://doi:10.1017/prm.2019.12.

[12] L. CĂDARIU, D. POPA AND I. RAŞA, Ulam stability of a second linear differential operator with nonconstant coefficients, Symmetry 2020 12 (9), 1451, 7 pp, https://doi.org/10.3390/sym12091451.

[13] G. CHOI AND S.-M. JUNG, Invariance of Hyers–Ulam stability of linear differential equations and its applications, Adv. Difference Equ. 2015, 2015:277, 14 pp.
A. F. Filippov, *Differential equations with discontinuous righthand sides*, translated from the Russian, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1988.

R. Fukutaka and M. Onitsuka, *Ulam stability for a class of Hill's equations*, Symmetry 11 (2019), 1483, 15 pp.

R. Fukutaka and M. Onitsuka, *Best constant for Ulam stability of Hill's equations*, Bulletin des Sciences Mathematiques, 163 (2020), 102888, 23 pp.

M. B. Ghaemi, M. E. Gordji, E. Majidi, B. Alizadeh and C. Park, *Hyers–Ulam stability of exact second-order linear differential equations*, Adv. Difference Equ. 2012, 2012:36, 7 pp.

B. Goodwine, *Engineering differential equations. Theory and applications*, Springer, New York, 2011.

J. K. Hale, *Ordinary differential equations*, Pure and Applied Mathematics 11, Wiley-Interscience, New York, London, Sydney (1969).

D. H. Hyers, *On the stability of the linear functional equation*, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222–224.

D. H. Hyers, G. Isac and Th. M. Rassias, *Stability of functional equations in several variables*, (English summary) Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998.

A. Javadian, E. Sorouri, G. H. Kim and M. Eshaghi Gordji, *Generalized Hyers–Ulam stability of the second-order linear differential equations*, J. Appl. Math. 2011 (2011), Art. ID 813137, 10 pp.

S.-M. Jung, *Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis*, Springer Optimization and Its Applications, 48, Springer, New York, 2011.

S.-M. Jung and J. Roh, *The linear differential equations with complex constant coefficients and Schrödinger equations*, Appl. Math. Lett. 66 (2017), 23–29.

Y. Li, *Hyers–Ulam stability of linear differential equations $y'' = \lambda^2 y$*, Thai J. Math. 8 (2010), no. 2, 215–219.

Y. Li and J. Huang, *Hyers–Ulam stability of linear second-order differential equations in complex Banach spaces*, Electron. J. Differential Equations 2013 (2013), no. 184, 7 pp.

Y. Li and Y. Shen, *Hyers–Ulam stability of linear differential equations of second order*, Appl. Math. Lett. 23 (2010), no. 3, 306–309.

T. Miura, S. Miyajima and S.-E. Takahasi, *A characterization of Hyers–Ulam stability of first order linear differential operators*, J. Math. Anal. Appl. 286 (2003), no. 1, 136–146.

M. Onitsuka, *Hyers–Ulam stability of first order linear differential equations of Carathéodory type and its application*, Appl. Math. Lett. 90 (2019), 61–68.

M. Onitsuka and T. Shoji, *Hyers–Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient*, Appl. Math. Lett. 63 (2017), 102–108.

D. Popa and I. Raşa, *On the Hyers–Ulam stability of the linear differential equation*, J. Math. Anal. Appl. 381 (2011), no. 2, 530–537.

D. Popa and I. Raşa, *Hyers–Ulam stability of some differential equations and differential operators*, Handbook of functional equations, 301–322, Springer Optim. Appl., 96, Springer, New York, 2014.

Y. Shen, *An integrating factor approach to the Hyers–Ulam stability of a class of exact differential equations of second order*, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2520–2526.

Y. Shen, W. Chen and Y. Li, *On the Ulam stability of a class of Banach space valued linear differential equations of second order*, Adv. Difference Equ. 2014 (2014), 2014:294, 9 pp.

Y. Shen and Y. Li, *Hyers–Ulam stability of first order nonhomogeneous linear dynamic equations on time scales*, Comm. Math. Research 35:2 (2019) 139–148, https://doi:10.13447/j.1674-5647.2019.02.05.

E. D. Sontag, *Mathematical control theory. Deterministic finite-dimensional systems*, second edition, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998.

S.-E. Takahasi, T. Miura and S. Miyajima, *On the Hyers–Ulam stability of the Banach space-valued differential equation $y' = \lambda y$*, Bull. Korean Math. Soc. 39 (2002), no. 2, 309–315.

S. M. Ulam, *A collection of mathematical problems*, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960.

S. M. Ulam, *Problems in modern mathematics*, Science Editions John Wiley & Sons, Inc., New York 1964.
[40] G. WANG, M. ZHOU AND L. SUN, *Hyers–Ulam stability of linear differential equations of first order*, Appl. Math. Lett. 21 (2008), no. 10, 1024–1028.

[41] J. XUE, *Hyers–Ulam stability of linear differential equations of second order with constant coefficient*, Ital. J. Pure Appl. Math. (2014), no. 32, 419–424.

[42] X. ZHANG, Z. HAO AND W. GE, *Hyers–Ulam stability of a class second differential equation* $y''(x) + p(x)y'(x) + q(x)y(x) = F(y(x))$, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 2, 891–906.