Food Self-sufficiency Decision Support Model Based on Provinces in Indonesia Using the Clustering Method

M. Safii¹, Mochamad Wahyudi¹, Solikhun¹, Muhammad Zarlis², Syahril Effendi²

¹ Doctoral Program, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Indonesia
² Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Indonesia

* m.safii@amiktunasbangsa.ac.id

Abstract. In Indonesia rice is a staple food as a major source of carbohydrates. Rice is also a staple food of the people of most countries in Asia and even most of the population in the world. Food security for Indonesia is closely linked to the adequacy of rice provision. The indicators of national food security are (1) the availability of food every time; (2) the ability or purchasing power of the people towards food; (3) guarantee of distribution and supply of food; and (4) the ability to import in urgent conditions. Rice as a rice-producing crop is a very important commodity for Indonesia, besides being the main food producer, rice commodity is also the main source of income from millions of farmers. The availability of rice at affordable prices to communities is an important factor for national security, security and stability. Indonesia has a large population, the fourth largest in the world after China, America and India. Dependence on rice imports has a high risk not only of food dependency on other countries, but also limited availability of rice in the international market. In 1977 Indonesia imported 2 million tons of rice and accounted for one third of the rice available on the international market, affecting the price of rice. Increased rice production can be achieved through increased productivity with the application of technology varieties and better cultivation and expansion of planting areas with increased intensity of planting and printing or opening of new rice cultivation area. Based on the above explanation, the researcher uses Data Mining Clustering with K-Means to get the assessment result of all rice production provinces. With this method the results of the research can be used as a model of decision makers for the government to give priority attention to areas that have the potential to increase rice production.

1. Introducing
In Indonesia the main source of food is rice as a source of carbohydrates. Rice is also a staple food for people from most countries in Asia and even most of the population in the world. Food security for Indonesia is closely related to the adequacy of rice supply. The indicator of national food security is: 1. food availability at all times; 2. the ability or purchasing power of people towards food; 3. guaranteed distribution and supply of foodstuffs; and 4. ability to import under urgent conditions [1]. Rice as a rice-producing crop is a very important commodity for Indonesia. as a producer of staple food, rice is also the main source of income for millions of farmers. The availability of rice at affordable prices for the community is an important factor for national security, security and stability of the government.
Thus rice is not only important as a food commodity, but also important as an economic commodity, cultural commodity, strategic commodity, and political commodity. Indonesia has a large population, the fourth largest in the world after China, America and India. Dependence on rice imports contains high risk not only dependence on food for other countries, but also the limited volume of rice availability in international markets.

In 1977 Indonesia imported 2 million tons of rice and reached one third of rice available in international markets, which affected the price of rice. To realize good food security, efforts to increase rice production need to be continued and improve. In addition, it is also necessary to reduce demand through reducing population growth and food diversification. Increased rice production can be achieved through increased productivity with better application of varieties and cultivation technologies and expansion of planting areas by increasing cropping intensity and printing or opening new areas of rice cultivation [2]. Based on the forecast figures of the Central Statistics Agency (BPS) and the Ministry of Agriculture, 2016 rice production reached 79.14 million tons of DUP, an increase of 3.74 million tons compared to 2015. In 2016 corn production of 23.16 million tons of dry shelled or an increase of 3.55 million tons compared to 2015. Based on the explanation above, this study was conducted using Data Mining Clustering to get the results of grouping of provinces as productive or unproductive rice producers [3][4]. There have been many clustering techniques proposed but K-means is one of the oldest and most popular clustering techniques. In this method the number of cluster (k) is predefined prior to analysis and then the selection of the initial centroids will be made randomly and it followed by iterative process of assigning each data point to its nearest centroid [5][6]. It is hoped that the government can make the right decision to prioritize areas that must be increased in production so that the self-sufficiency goals can be implemented [7]. With this grouping, it is hoped that the government can make the right decision to prioritize areas that must be increased in production so that the self-sufficiency goals can be implemented.

2. Methodology
Cluster analysis; Clustering and segmentation actually partition the database, so each partition or group is the same according to certain criteria or metrics. If similarity measurements are available, then there are a number of techniques for forming clusters. In the Clustering method the main concept emphasized is the iterative search for cluster centers, where the cluster center is determined based on the minimum distance of each data at the center of the cluster [8][9]. The data used in this study is based on documents produced by the National Statistics Agency through the https://www.bps.go.id site. In this case the researcher raised the topic of the amount of rice production by province in 2011-2015. The results of the cluster can be used as input for the government so that provinces that enter the low cluster receive special attention as a policy to achieve self-sufficiency goals. The design of the use case diagram is shown in Figure 2.

![Figure 1. Use Case Diagram of K-Means Data Mining](image-url)
3. Results and Discussion
In Clustering, the data obtained will be calculated in advance based on the amount of rice production by province in 2011-2015. The sum result is based on 1 assessment criteria, namely the amount of rice production as shown in table 1.

Table 1. Data on Rice Production by Province

Province	Land area	Yields							
	2011	2012	2013	2014	2015	2012	2013	2014	2015
Aceh	307556	308973	300808	294129	290337	380869	387803	419183	376137
Sumut	467138	448722	438346	430443	423465	757547	765099	742968	717318
Sumbar	231463	230775	224182	225890	226377	461709	476422	478820	503198
Riau	115897	109585	93338	87594	71910	145242	144015	115818	106037
Jambi	113577	113579	113546	101195	94735	157415	149369	153243	145990
Sumsel	629355	610314	612424	616753	620632	784820	769725	800036	810900
Bengkulu	90217	88877	93382	88756	85131	127934	144448	147680	147572
Lampung	350949	364111	362037	363055	377463	606973	614876	638090	648731
Bangka Belitung	5932	6133	5358	7490	10654	5299	7995	10252	9943
Kep. Riau	393	559	487	405	246	387	382	379	385
Jakarta	1098	1001	895	778	650	1723	1897	1744	1400
Jateng	930507	923575	925042	924307	912794	1964466	1918799	2029891	1979799
Yogyakarta	55291	55023	55126	54417	53553	150827	152912	159266	158903
Jawa Timur	1106449	1105550	1102921	1101765	1091752	1926796	1975719	2037020	2072630
Banten	197165	195951	194716	190840	199492	396263	362663	393704	386398
Bali	80164	79399	78425	76655	75922	152558	149000	150380	142697
NTB	240180	246569	253208	254298	264666	418062	425448	438035	433712
NTT	144574	148610	169063	172954	177238	195201	200994	222469	246750
Kalbar	318581	322541	323959	330724	444353	427798	464988	452242	433944
Kalteng	202237	226903	225836	215545	196553	214161	251787	247473	242488
Kalsel	457155	451869	440429	431437	450152	489134	496082	479721	498133
Kaltim	90518	90887	63323	55485	57000	140215	142573	109212	100026
Kalut	-	21762	21775	21448	-	-	-	-	-
Sulut	56181	56173	56157	60475	55820	122108	126931	127413	130438
Sulteng	137786	143475	146721	141448	128323	221846	229080	224326	219613
Sulsel	576559	592376	602728	623139	628148	889232	981394	983107	1040024
Sultara	85855	92280	95378	96826	103812	118916	124511	132945	1404048
Gorontalo	28707	30728	32239	32116	32058	32811	51193	56894	62690
Sulbar	55016	59020	61070	62312	61292	76347	83796	91195	94351
Maluku	14085	15972	15042	13519	13394	21227	20489	24399	21623
Maluku Utara	9093	9359	10510	10516	11802	16783	17794	19281	21192
Papua Barat	7648	8330	9587	9587	10126	8283	7750	7523	6880
Indonesia	27756	27756	42350	42843	44462	29262	37149	41111	45493

Source: Central Bureau of Statistics

3.1. Centroid Data
Determination of the cluster point is done by taking the largest value (maximum) for the highest level rice production cluster (C1), the average value for the medium level rice production cluster (C2) and the highest value (minimum) for the low level rice production cluster (C3). The point value can be seen in the following Table 3:

Table 2. Centroid Initial Data

Cluster	High cluster	Medium cluster	Low cluster
	1101687,4	101493,6	418
	2032847,2	150979,3	359,2
3.2. Clustering Data

Cluster process by taking the closest distance from each data that is processed. From the data on the amount of rice production by province in 2011-2015, it was found that the grouping in iterations 1 for the 3 clusters. High-level rice production cluster (C1), namely West Java, Central Java, East Java), 10 medium-level rice production cluster provinces (C2) namely (Aceh, North Sumatra, West Sumatra, South Sumatra, Lampung, Banten, West Nusa Tenggara, West Kalimantan, South Kalimantan, South Sulawesi) and 21 low-level rice production cluster provinces (C3) namely (Riau, Jambi, Bengkulu, Kep. Bangka Belitung, Kep.Riau, DKI Jakarta, DI Yogyakarta, Bali, East Nusa Tenggara, Central Kalimantan, East Kalimantan, North Kalimantan, North Sulawesi, Southeast Sulawesi, Gorontalo, West Sulawesi, Maluku, North Maluku, West Papua, Papua). The process of finding the shortest distance, grouping data on iteration 1 and Clustering data used by Euclidian Distance can be seen in the following table:

Table 3. Calculation of Center Cluster Distance

Province	Land area	Yields	C1	C2	C3	Distance Shortest	Group
Aceh	300360,6	404973,8	1.814.414	322.585	503665,1048	322.585	C2
Sumut	442142,8	752940,2	1.439.848	691.664	872639,078	691.664	C2
Sumbar	227737,4	487338,8	1.775.496	359.270	537422,7763	359.270	C2
Riau	95664,8	124271,6	2.157.485	27.336	156288,9497	27.336	C3
Jambi	107322,4	145651,4	2.133.136	7.897	180383,963	7.897	C3
Sumsel	617895,6	807643,6	1.317.262	835.392	1016359,527	835.392	C2
Bengkulu	89272,6	139293,4	2.147.214	16.909	164917,7124	16.909	C3
Lampung	363163	648887,2	1.568.947	562.214	742821,2941	562.214	C2
Bangka Belitung	7113,4	9063,4	2.300.824	170.434	10981,4155	170.434	C3
Kep. Riau	418	359,2	2.311.666	181.391	0	181.391	C3
Jakarta	884,4	1580,2	2.310.371	180.117	1307,04623	180.117	C3
Jabar	923245	1950113,4	196.689	1.977.918	2157116,388	1.977.918	C1
Jateng	961629,6	1803990,4	268.313	1.863.405	2043774,265	1.863.405	C1
Yogyakarta	54682	155549,2	2.149.527	47.034	164403,5212	47.034	C3
Jawa Timur	1101687,4	2032847,2	-	2.131.153	2311666,447	2.131.153	C1
Banten	197560,8	385287	1.879.335	253.237	432475,08	253.237	C2
Bali	78113	146409,4	2.146.241	23.823	165430,2691	23.823	C3
NTB	251784,2	436556,4	1.808.447	322.710	503441,1225	322.710	C2
NTT	162527,8	226151,2	2.036.215	96.830	277595,7354	96.830	C3
Kalbar	325337,6	444647	1.767.795	369.252	550422,016	369.252	C2
Kalteng	213414,8	242118,8	1.998.937	144.334	322201,6301	144.334	C3
Kalsel	446208,4	494856,6	1.671.846	486.909	667575,3069	486.909	C3
Kalim	71442,6	17034,2	2.175.257	45.336	136592,6405	45.336	C3
Kalut	216616,6667	36371	2.269.884	139.672	41810,80139	139.672	C2
Sulut	56961,2	128863,6	2.171.775	49.722	140394,1391	49.722	C2
Sulteng	139550,6	220784,4	2.051.653	79.505	260662,9033	79.505	C3
Sulsel	604590	987557,4	1.157.470	976.201	1157404,031	976.201	C2
Sultara	94776,2	131432	2.151.569	20.669	161504,021	20.669	C3
Gorontalo	31169,6	56651,2	2.247.523	117.657	64143,97997	117.657	C3
Subar	59742	87831,8	2.206.521	75.702	105691,971	75.702	C2
Maluku	14402,4	21775,8	2.286.175	155.815	25578,00225	155.815	C3
Maluku Utara	10256	19297,6	2.290.328	160.201	21341,25672	160.201	C3
Papua Barat	9055,6	7522,8	2.301.258	170.660	11221,13353	170.660	C3
Papua	37033,4	38873,2	2.260.402	129.317	53141,90371	129.317	C3

The K-Means process will continue to operate until the data grouping is the same as the previous grouping of iteration data. The iteration process stops at the second iteration, in the iteration 2 the process of finding the midpoint or centroid value can be found in Table 6 below:

Table 4. Centroid Iteration Data 1

Group	High cluster	Medium cluster	Low cluster
	1031659	1918418,8	651,2
	201806,2	328514,81	969,7
After getting the midpoint or centroid value, the same process is done by looking for the closest distance. The process of finding the shortest distance, grouping data in iteration 2 and Clustering data can be described in the following tables and figures:

Table 5. Calculation of Center Cluster Iteration Distance 2

Province	Land area	Yields	C1	C2	C3	Distance Shortest	Group
Aceh	300.361	404.974	1.680.867	124.735	503.035.821	124.735	C2
Sumut	442.143	752.940	1.306.089	487.748	871.994.533	487.748	C2
Sumbar	227.737	487.339	1.641.426	160.927	536.770.9415	160.927	C2
Riau	95.665	124.272	2.023.623	230.177	155.662.9138	155.662	C3
Jambi	107.322	145.651	1.999.275	205.831	179.754.1077	179.754	C3
Sumsel	617.896	807.644	1.185.336	634.582	101.573.952	634.582	C3
Bengkulu	89.273	139.293	2.013.300	220.156	164.277.809	164.278	C3
Lampung	363.163	648.587	1.435.047	358.444	742.174.6367	358.444	C2
Bangka Belitung	7.113	9.063	2.166.871	374.105	103.257.0217	103.257	C3
Kep. Riau	418	359	2.177.707	385.024	653.523.1365	653.523	C3
Jakarta	884	1.580	2.176.411	383.739	653.523.1365	653.523	C3
Jabar	923.245	1.950.113	112.951	1.774.840	215.646.811	112.951	C3
Jateng	961.630	1.803.990	134.156	1.659.626	204.315.823	134.156	C3
Yogyakarta	54.682	155.549	2.015.488	227.074	163.750.2646	163.750	C3
Jawa Timur	1.101.687	2.032.847	134.156	1.927.314	231.018.583	134.156	C3
Banten	197.561	385.287	1.745.340	56.931	431.825.4018	56.931	C3
Bali	78.113	146.409	2.012.279	220.142	164.781.7854	164.782	C3
NTB	251.784	436.556	1.674.551	119.041	502.795.7407	119.041	C3
NTB	162.528	226.151	1.902.408	109.641	277.327.8593	109.641	C2
Kalbar	325.338	444.647	1.634.287	169.548	549.791.6013	169.548	C2
Kalteng	213.415	242.116	1.865.346	87.175	321.589.4759	87.175	C3
Kalsel	440.208	494.857	1.539.347	295.63S	665.165.7601	295.63S	C3
Kaltim	71.443	117.034	2.041.323	248.433	135.949.9558	135.950	C2
Kalut	21.662	36.371	2.135.930	343.220	411.663.3936	41.167	C3
Sulut	56.961	128.864	2.037.779	246.659	139.741.4246	139.741	C3
Sulteng	139.551	220.784	1.917.764	124.425	260.022.2022	124.425	C3
Sulsel	604.590	987.557	1.024.154	772.381	115.676.1585	772.381	C3
Sultara	94.776	131.432	2.017.689	224.270	160.872.3946	160.872	C3
Gorontalo	31.170	56.651	2.113.565	320.978	634.964.7377	63.496	C3
Sulbar	39.742	87.832	2.072.600	279.483	105.053.9235	105.053	C3
Maluku	14.402	21.776	2.152.223	359.457	249.397.1228	249.397	C3
Maluku Utara	10.256	19.298	2.156.368	363.740	206.921.2656	206.921	C3
Papua Barat	9.056	7.522	2.167.312	374.418	106.566.7192	10.657	C3
Papua	37.033	38.874	2.126.492	333.230	525.398.688	52.539	C3

Figure 2. Clustering of Iteration Data 2

3.3. Data analysis
In the iteration 2, data grouping performed on 3 clusters with 2 iterations obtained the same results. Of the 34 rice production data by province in 2011-2015 based on the province it can be seen, 3 provinces of high level rice production cluster (C1) namely (West Java, Central Java, East Java), 10 medium-
level rice production cluster provinces (C2) namely (Aceh, North Sumatra, West Sumatra, South Sumatra, Lampung, Banten, West Nusa Tenggara, West Kalimantan, South Kalimantan, South Sulawesi) and 21 low-level rice production cluster provinces (C3) namely (Riau, Jambi, Bengkulu, Kep. Bangka Belitung, Kep.Riau, DKI.Jakarta, DI.Yogyakarta, Bali, East Nusa Tenggara, Central Kalimantan, East Kalimantan, North Kalimantan, North Sulawesi, Southeast Sulawesi, Gorontalo, West Sulawesi, Maluku, North Maluku, West Papua, Papua).

4. Conclusions
From the results of these calculations, rice production by province in 2011-2015 results in the lowest 21 rice production provinces, namely (Riau, Jambi, Bengkulu, Kep. Bangka Belitung, Kep.Riau, DKI.Jakarta, DI.Yogyakarta, Bali, East Nusa Tenggara, Central Kalimantan, East Kalimantan, North Kalimantan, North Sulawesi, Southeast Sulawesi, Gorontalo, West Sulawesi, Maluku, North Maluku, West Papua, Papua). Based on this, the government must mobilize existing potentials by maximizing tidal land and swampy swamps and the use of agricultural machinery for the provinces that have the lowest rice production.

References
[1] Hidayat, A., S. Ritunga, and A. M. Fagi.2009. Classification of soil type of rice crop. p 185-214. In Suyamto, I.N. Widiarta, and Satoto (ed). Rice. Technological innovation and Food Security. Book 1. Rice Research Center, Agricultural Research and Development Agency. LIPI Press. Jakarta.
[2] Kathryn T. Morrison, Trisalyn A. Nelson, Farouk S. Nathoo & Aleck S. Ostry. 2012. Application of Bayesian spatial smoothing models to assess agricultural self-sufficiency, International Journal of Geographical Information Science, Volume 26
[3] Oyelade, O. J, Oladipupo, O. O, Obagbuwa, I. C, 2010, Application Of K-Means Clustering Algorithm For Prediction Of Students’ Academic Performance, International Journal Of Computer Science And Information Security, Vol. 7
[4] R.Refianti, A.B. Mutiara, A. Juarna, S.N. Ikhsan (2012) Analysis And Implementation Of Algorithm Clustering Affinity Propagation And K-Means At Data Student Based On Gpa And Duration Of Bachelor-Thesis Completion, Journal of Theoretical and Applied Information Technology, Vol. 35 No.1
[5] Unnati R. Raval, Chaita Jani,2016,Implementing & Improvisation of K-means Clustering Algorithm, International Journal of Computer Science and Mobile Computing, Vol.5, pg. 191-203
[6] Sudesh Kumar, Nancy, Efficient K-Mean Clustering Algorithm for Large Datasets using Data Mining Standard Score Normalization, International Journal on Recent and Innovation Trends in Computing and Communication, Volume: 2 Issue: 10
[7] Fang, Cheng and Beghin, John C., "Food Self-Sufficiency, Comparative Advantage, and Agricultural Trade: A Policy Analysis Matrix for Chinese Agriculture" (2000). CARD Working Papers. 270.
[8] S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In Indonesia,” IOP Conference Series: Materials Science and Engineering, vol. 420, no. 12089, pp. 1–8, 2018.
[9] H. Siahaan, H. Mawengkang, S. Efendi, A. Wanto, and A. P. Windarto, “Application of Classification Method C4 . 5 on Selection of Exemplary Teachers,” in IOP Conference Series, 2018, pp. 1–6.