A measure of skewness for testing departures from normality

Shigekazu Nakagawaa,*, Hiroki Hashiguchib, Naoto Nikic

aDepartment of Computer Science and Mathematics, Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki-shi, Okayama 712-8505, JAPAN
bDepartment of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, JAPAN
cDepartment of Management Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN

Abstract

We propose a new skewness test statistic for normality based on the Pearson measure of skewness. We obtain asymptotic first four moments of the null distribution for this statistic by using a computer algebra system and its normalizing transformation based on the Johnson SU system. Finally the performance of the proposed statistic is shown by comparing the powers of several skewness test statistics against some alternative hypotheses.

Keywords: Pearson measure of skewness, normalizing transformation, powers,

1. Introduction

A test for normality is an essential problem in statistical practice. Earlier studies on tests for normality are summarized in Thode (2002). Traditionally, it is common to use skewness and kurtosis statistics $b_1 = m_3/m_2^{3/2}$ and $b_2 = m_4/m_2^2$, respectively, where for a random sample (X_1, X_2, \ldots, X_n), $m_r = (1/n) \sum_{i=1}^{n} (X_i - \bar{X})^r$, $r = 2, 3$, and 4, and $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$. They are used for detecting skew symmetric and heavy or light tails, respectively. The Jarque–Bera test combining b_1 and b_2 is well known as an omnibus test for normality (Jarque and Bera (1987)). The improved omnibus test was recently presented in Nakagawa et al. (2011). The above test statistics are all based on sample moments. Furthermore, the Shapiro–Wilk (W) test is famous as an extension of probability plots (Shapiro and Wilk (1964)).

In addition, the Lin–Mudholkar (LM) test is developed for asymmetric alternatives (Lin and Mudholkar (1980)). The focus of this paper is also on tests

*Corresponding author.

Email address: nakagawa@cs.kusa.ac.jp (Shigekazu Nakagawa)
that detect skew symmetric. Based on $\sqrt{b_1}$ and b_2, we propose a test statistic

$$spms = \frac{\sqrt{b_1} (b_2 + 3)}{2 (5b_2 - 6b_1 - 9)},$$

and called the sample Pearson measure of skewness $(spms)$. The statistic $spms$ corresponds to the Pearson measure of skewness defined by

$$pms = \frac{\sqrt{\beta_1} (\beta_2 + 3)}{2 (5\beta_2 - 6\beta_1 - 9)},$$

where $\sqrt{\beta_1} = \mu_3/\mu_2^{3/2}$ and $\beta_2 = \mu_4/\mu_2^2$, and for $r = 2, 3, 4$, μ_r denotes the rth population moment about the mean. The pms is introduced by Karl Pearson considering Pearson Systems which are distinguished nine types including normal distributions (Stuart and Ord (1994)). Under Pearson Systems, the pms actually coincides with a measure of skewness

$$\frac{\text{mean} - \text{mode}}{\sigma},$$

where σ is the standard deviation. As the mean and the mode coincide in a symmetric population, the distance from the mean to the mode can be treated as a measure of skewness.

The first four moments of the null distribution for $spms$ are explained in Section 2. Based on the Johnson SU system, we obtain a transformation to approximate the normality of the null distribution of $spms$ in Section 3. In Section 4, the performance of $spms$ is shown by comparing the powers of several skewness test statistics against six asymmetric alternatives.

2. Approximate moments of the null distribution for $spms$

In this section, we assume that a sample (X_1, X_2, \ldots, X_n) is drawn from a normal population. The $spms$ is invariant under the origin, and the scale changes because of the invariance of $\sqrt{b_1}$ and b_2. It is clear that $spms$ is symmetric. Figure 1 shows a histogram of $spms$ with $n = 100$.

To find the approximate moments of the distribution for $spms$, a large amount of symbolic computation is required. Niki and Nakagawa (1995) described a method for this purpose as follows:

(1) Set $U = \sqrt{n}(m_3 - 1), V = \sqrt{n}m_3, W = \sqrt{n}(m_4 - 3)$, and expand $spms$ as power series in terms of $1/\sqrt{n}$:

$$spms = \frac{1}{\sqrt{n}} \left(\frac{1}{2} V + \frac{1}{n} \left(\frac{5}{4} U V - \frac{1}{3} V W \right) + \frac{1}{n\sqrt{n}} \left(\frac{79}{16} U^2 V - \frac{13}{6} U V W + \frac{5}{2} V^3 + \frac{5}{18} V W^2 \right) \right) + \frac{1}{n^2} \left(\frac{517}{32} U^3 V - \frac{263}{24} U^2 V W + \frac{9}{4} U^3 + \frac{95}{36} U V W^2 - \frac{3}{4} V^3 W - \frac{25}{108} V W^3 \right) + O \left(n^{-5/2} \right).$$

We remark that $U = O(1), V = O(1)$, and $W = O(1)$.
(2) Take expectations term by term. Thus, we obtain the first approximate moment of $spms$.

(3) The second, third, and fourth moments are obtained from $spms^2$, $spms^3$, and $spms^4$, respectively.

In step (2), each $U^iV^jW^k$ ($0 \leq i + j + k \leq 8$) is a symmetric polynomial of X_1, X_2, \ldots, X_n. We emphasize that the algorithm for the change of bases of symmetric polynomials described in Niki and Nakagawa (1995) is applied in computing expectations $E[U^iV^jW^k]$. The algorithm has been implemented in REDUCE (Hearn (2004)) with utility programs.

Let λ_r be the rth ($r = 2, 4$) moment of the distribution for $spms$ drawn from a normal population, each having the following form:

$$\lambda_2 = \left(\frac{3}{2} \right) n^{-1} + 41n^{-2} + \left(\frac{6511}{2} \right) n^{-3} + O(n^{-4}),$$

(3)
\[\lambda_4 = \left(\frac{27}{4} \right) n^{-2} + 414n^{-3} + O\left(n^{-4}\right). \] \((4) \)

Note that all odd moments are zero. From \((3) \), \(\text{spms} \) is asymptotically normally distributed with mean 0 and variance \(3/(2n) \). Thus, we obtain

\[\beta_2(\text{spms}) = \frac{\lambda_4}{\lambda_2} = 3 + 20n^{-1} + \left(\frac{48544}{3} \right) n^{-2} + \left(\frac{10386704}{9} \right) n^{-3} + O\left(n^{-4}\right), \] \((5) \)

which will be used for obtaining a normalizing transformation.

3. Transformation

A normal approximation of the null distribution for \(\text{spms} \) is obtained using a transformation described in Johnson (1949), given as follows:

Theorem 1. Assume that the null hypothesis of normality is true and let

\[Y = \frac{\text{spms}}{\sqrt{\lambda_2}}, \] \((6) \)

\[W^2 = -1 + \sqrt{2(\beta_2(\text{spms}) - 1)}, \] \((7) \)

\[\delta = \frac{1}{\log W}, \] \((8) \)

\[\alpha = \sqrt{\frac{1}{W^2 - 1}}. \] \((9) \)

Then

\[Z = \delta \log \left(\frac{Y}{\alpha} + \sqrt{1 + \left(\frac{Y}{\alpha} \right)^2} \right) \] \((10) \)

is approximately a standard normal variate with mean zero and variance unity.

This transformation is an analogy of the normalizing transformation of the null distribution for \(\sqrt{b_1} \) given by D’Agostino (1970).

Figure 2 shows a histogram of \(Z \) with \(n = 200 \) when \(10^6 \) random normal samples are generated. The dashed line denotes the probability density function of the standard normal distribution. Both one–sided and two–sided tests at any desired levels of significance can be performed. For example, for a two–sided test with a 0.05 level of significance, the null hypothesis is rejected if \(|Z| > 1.96 \).

Monte Carlo simulations are performed for judging the accuracy of the transformation. For samples of sizes \(n = 100, 150, 200, 300, 500, \) and 1000, \(10^6 \) random normal samples are generated. For each sample, the \(\text{spms} \) statistic is computed and classified into the intervals formed by the two–sided tests with levels of significance 0.01, 0.05, 0.10, and 0.20. The entries in Table 1 show the Monte Carlo relative frequencies for the intervals. For \(n \geq 500 \), the Monte Carlo results agree to at least two decimal places for any significance level. Even if \(n = 100 \), the results are good for 0.01 level of significance.
4. Power study

This section demonstrates a comparison of the powers of $spms$ with $\sqrt{b_1}$, W, and LM tests. Monte Carlo simulations are conducted with samples of sizes $n = 40, 50, 60, 80, 100$ and 10^4 replications. Two-sided tests with a 5% significance level are carried out against six alternative distributions: beta distributions with two parameters $(p, q) = (2, 1), (3, 2)$; gamma distributions with shape parameters $\alpha = 2, 3$; Weibull distributions with shape parameters $\alpha = 2$; and log–normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1/2$. The first two distributions have light tails and the rest have heavy tails.

The powers of the above four statistics are summarized in Table 2 and Figures 3–8 ($spms(\circ), \sqrt{b_1}(\triangle), W(+)$, and $LM(\times)$). In most cases, the power of the $spms$ test is better than that of the $\sqrt{b_1}$ test. The power of the $spms$ test is superior to that of all other tests in the first two cases. The $spms$ test is comparable when the alternative distributions have heavy tails.
Table 1: Monte Carlo probabilities for various levels of significance using Z with 10^6 replications per sample size

Presumed levels	sample size	100	150	200	300	500	1000
two-sided test	0.01	0.0112	0.0099	0.0098	0.0098	0.0102	0.0100
	0.05	0.0595	0.0537	0.0519	0.0513	0.0504	0.0501
	0.10	0.1207	0.1097	0.1057	0.1027	0.1009	0.1003
	0.20	0.2368	0.2191	0.2113	0.2052	0.2019	0.2004

Figure 3: Powers of the tests when the alternative distribution is Beta ($\alpha = 2, \beta = 1$)
Table 2: Monte Carlo powers of some tests for normality, level of significance 0.05, population skewness $\sqrt{\beta_1}$, and kurtosis β_2

Alternative hypotheses	$\sqrt{\beta_1}$	β_2	n	spms	$\sqrt{b_1}$	SW	LM
Beta ($\alpha = 2, \beta = 1$)	-0.57	2.4	40	0.771	0.257	0.706	0.515
	50	0.894	0.347	0.855	0.647		
	60	0.945	0.424	0.925	0.720		
	80	0.985	0.561	0.987	0.849		
	100	0.995	0.703	0.999	0.920		
Beta ($\alpha = 3, \beta = 2$)	-0.29	2.4	40	0.284	0.048	0.153	0.095
	50	0.362	0.059	0.213	0.141		
	60	0.406	0.062	0.259	0.153		
	80	0.510	0.081	0.400	0.203		
	100	0.600	0.114	0.518	0.263		
Wiebull ($\alpha = 2$)	0.63	3.3	40	0.297	0.313	0.322	0.369
	50	0.430	0.377	0.420	0.469		
	60	0.556	0.432	0.500	0.541		
	80	0.728	0.570	0.675	0.673		
	100	0.847	0.687	0.789	0.798		
Gamma ($\alpha = 3$)	1.16	5.0	40	0.611	0.684	0.708	0.751
	50	0.803	0.778	0.829	0.849		
	60	0.900	0.851	0.894	0.912		
	80	0.976	0.938	0.968	0.968		
	100	0.994	0.978	0.991	0.991		
Gamma ($\alpha = 2$)	1.41	6.0	40	0.810	0.823	0.880	0.893
	50	0.935	0.895	0.955	0.950		
	60	0.980	0.937	0.981	0.979		
	80	0.998	0.988	0.998	0.996		
	100	1.000	0.998	1.000	1.000		
log normal ($\mu = 0, \sigma = 1/2$)	1.80	8.9	40	0.764	0.833	0.846	0.884
	50	0.909	0.908	0.932	0.940		
	60	0.963	0.945	0.962	0.975		
	80	0.993	0.986	0.992	0.993		
	100	0.999	0.996	0.999	0.999		
Figure 4: Powers of the tests when the alternative distribution is Beta ($\alpha = 3, \beta = 2$)
Figure 5: Powers of the tests when the alternative distribution is Weibull ($\alpha = 2$)
Figure 6: Powers of the tests when the alternative distribution is Gamma ($\alpha = 3$)
Figure 7: Powers of the tests when the alternative distribution is Gamma ($\alpha = 2$)
Figure 8: Powers of the tests when the alternative distribution is log normal ($\mu = 0, \sigma = 1/2$)
5. Concluding remarks

Corresponding to the Pearson measure of skewness \(pms \), we propose \(spms \) as a skewness test statistic for normality. We obtain the normalizing transformation \(\text{(10)} \) of the null distribution for \(spms \) based on the second and fourth approximate moments shown in \(\text{(3)} \) and \(\text{(4)} \). For a moderate sample size, such as \(n \geq 200 \), the transformation is valid in practice, as shown in Table \(\text{I} \).

Acknowledgement

This research is partially supported by the Japan Society for the Promotion of Science (JSPS), Grant–in–Aid for Scientific Research (C), No 22500266.

References

D’Agostino, R. B. (1970). Transformations to normality of the null distribution of \(g_1 \). *Biometrika*, 57, 679-681.

Hearn, A. C. (2004). *REDUCE User’s Manual, Version 3.8. Report*. Santa Monica.

Jarque, C. M. and Bera, A. K. (1987). A test for normality of observations and regression residuals. *International Statistical Review*, 55, 163–172.

Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. *Biometrika*, 36, 149–176.

Lin and Mudholker (1980). A simple test for normality against asymmetric alternatives. *Biometrika*, 67(2), 455–461.

Nakagawa, S., Hashiguchi, H. and Niki, N. (2011). Improved omnibus test statistic for normality. *Computational Statistics*, DOI 10.1007/s00180-011-0258-0.

Niki, N. and Nakagawa, S. (1995). Computer algebra application to the distribution theory of multivariate statistics. *Proc. of the First Asian Tech. Conf. in Math.*, 689–696.

Thode, H. C. (2002). Testing for normality (Statistics, a Series of Textbooks and Monographs). Marcel Dekker Inc., New York.

Shapiro, S.S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). *Biometrika*, 52 (3-4), 591–611.

Stuart, A. and Ord, J. K. (1994). *Kendall’s Advanced Theory of Statistics*. vol.I, 6th ed., Edward Arnold.
