Compilation of SUSY particle spectra from Snowmass 2001 benchmark models

Nabil Ghodbane†, Hans-Ulrich Martyn⋆

† DESY, Hamburg, Germany, ⋆ I. Physikalisches Institut der RWTH, Aachen, Germany

Abstract

A comparative study of supersymmetric particle spectra calculated by the programs Isajet, Susygen and Pythia is presented for various SUSY scenarios defined at the Snowmass 2001 workshop.

At the Snowmass 2001 'Summer Study on the Future of Particle Physics’ a consensus was reached to define a list of SUSY models as benchmarks to be investigated in future collider studies. Various scenarios, so-called 'Snowmass Points and Slopes' (SPS), were proposed in terms of a few parameters describing ‘typical’ to ‘extreme’ RP conserving supersymmetry breaking mechanisms of mSUGRA, GMSB and AMSB. All benchmark points respect currently existing experimental constraints.

mSUGRA scenario	m₀	m₁/₂	A₀	tan β	sign μ
SPS 1 typical point	100	250	−100	10	+
SPS 2 focus point region	1450	300	0	10	+
SPS 3 model line into coannihilation region	90	400	0	10	+
SPS 4 large tan β	400	300	0	50	+
SPS 5 light stop	150	300	−1000	5	+
SPS 6 non-unified gaugino masses	150	300	0	10	+

GMSB scenario	Λ	Mₓ	Nₓ	tan β	sign μ
SPS 7 NLSP = ˜τ₁	40,000	80,000	3	15	+
SPS 8 NLSP = ˜χ₀¹	100,000	200,000	1	15	+

AMSB scenario	m₀	m₃/₂	tan β	sign μ
SPS 9 small Δm(˜χ⁺₁₀ – ˜χ₀₁)	400	60,000	10	+

masses and scales in GeV

However, at Snowmass it was recommended to take the SUSY particle spectrum as generated by the program Isajet as the reference for benchmark models, instead of the few high energy

1 'SUSY benchmark discussion' at Snowmass 2001, http://lotus.phys.nwu.edu/~schmittm/snowmass
2 M Battaglia et al, 'The Snowmass points and slopes: benchmarks for SUSY searches', Snowmass proceedings, in preparation
3 H Baer et al, hep-ph/0001086, Isajet, http://paige.home.cern.ch/paige
parameters. This arbitrary choice certainly does not imply that this program is superior to any other modern program. In fact, the purpose of this note is to compare different codes and thus to get a feeling on the reliability of presently available calculations. We present SPS model spectra, i.e. using the same input parameters, as generated by ISAJET 7.58 in comparison with results from the programs SUSYGEN 3.00/27 and PYTHIA 6.2/00. These event generators are most popular and frequently used for SUSY studies and simulations.

ISAJET uses the package ISASUGRA to solve numerically the two-loop RGE’s in the MSSM couplings in the 3rd generation approximation. Theta-function thresholds are included in the gauge and Yukawa one-loop running couplings. Decay modes are calculated with ISASUSY applying decay matrix elements. Besides generic MSSM models, specific scenarios can be selected with the mSUGRA, GMSB or AMSB options.

In SUSYGEN the mSUGRA scenarios are calculated with the program SUSPECT 2.0. All masses and couplings (except scalar masses which are run at one-loop) are evaluated numerically using two-loop RGE’s in the 3rd generation approximation and including smooth thresholds. The Higgs branching ratios are calculated using HDECAY. General models with a limited number of parameters can be chosen; GMSB and AMSB scenarios can be generated by setting the appropriate MSSM parameters.

PYTHIA is a fast and robust program and uses semi-analytical formulae to solve the RGE’s with one-loop beta functions. Thresholds are not included. Several SUSY models such as mSUGRA or fixed gaugino masses can be chosen. GMSB and AMSB scenarios can be realised via generic MSSM parameters.

In general all three programs provide mass spectra which agree at the level of about 10% for not too extreme choices of parameters. However, huge mass differences of up to factors of 2 or even more may occur in models with very large parameters, e.g. high $m_0 \gg m_{1/2}$ (SPS 2) or high $\tan \beta$ (SPS 4). Such extreme situations are very sensitive to higher order corrections, for which the programs may not be prepared. In a study of SPS model lines it was observed that ISAJET exhibits mass instabilities or wiggles as a function of gaugino masses at the level of a few percent, but which may increase up to $\sim 30\%$ for the light chargino in SPS 3 depending on the value of $m_{1/2}$.

Another concern are the decay modes and branching ratios which are treated in the three programs with different sophistication. Some of them seem to be incomplete, e.g. missing sfermion decays into gauge and Higgs bosons and missing chargino decays into Higgs (SUSYGEN) or missing Higgs decays into supersymmetric particles (PYTHIA). Obvious problems arise due to mass differences, which may suppress or open certain decay channels. The user has to carefully examine the decay modes and possibly consult the original literature. For the Higgs sector dedicated programs like HDECAY or FEYNHIGGS may be used as cross checks.

We adopt a user’s point of view and feel unable to judge which is the optimal code or event generator to produce SUSY particle spectra. However, if benchmark studies should be useful and should allow to do comparisons, we strongly advise the authors of future analyses to give

\[4\] N Ghodhane et al, hep-ph/9909499, SUSYGEN, http://lyoinfo.in2p3.fr/susygen/susygen3.html
\[5\] T Sjöstrand et al, hep-ph/0108264, PYTHIA, http://www.thep.lu.se/~torbjorn//Pythia.htm
\[6\] A Djouadi et al, hep-ph/9901240, SUSPECT, http://www.lpm.univ-montp2.fr:6714/~kneur/suspect.html
\[7\] A Djouadi et al, Comp. Phys. Comm. 108 (1998) 56
\[8\] B C Allanach, ‘Theoretical uncertainties in sparticle mass predictions’, hep-ph/0110227
\[9\] S Heinemeyer et al, Comp. Phys. Comm. 124 (2000) 76
the complete list of sparticle masses and decay branching ratios which have been used. In order to reproduce the Isajet spectra with Susygen and Pythia all necessary information is given in the SPS compilations below. Besides the physical masses and branching ratios, further relevant MSSM parameters are:

- MSSMA \(m_{\tilde{g}}, \mu, m_A, \tan^\beta \) gluino mass, \(\mu \), \(A \) mass, \(\tan^\beta \)
- MSSMB \(m_{\tilde{q}_L}, m_{\tilde{d}_R}, m_{\tilde{m}_R}, m_{\tilde{e}_L}, m_{\tilde{e}_R} \) 1st generation squark and slepton masses
- MSSMC \(m_{\tilde{q}_L}, m_{\tilde{t}_R}, m_{\tilde{t}_L}, m_{\tilde{s}_L}, m_{\tilde{s}_R} \) squark and slepton mixings
- MSSMD \(m_{\tilde{q}_L}, m_{\tilde{s}_R}, m_{\tilde{c}_R}, m_{\tilde{\mu}_L}, m_{\tilde{\mu}_R} \) 2nd generation squark and slepton masses
- MSSME \(M_1, M_2 \) gaugino masses

Keeping in mind the previous remarks, we briefly comment the main characteristics of the superparticle spectra obtained with the program codes Isajet, Susygen and Pythia. Note that there exist variants to SPS 1 and SPS 8 with \(\tan^\beta = 30 \), leading to very similar spectra\(^2\).

SPS 1 The spectra of this ‘typical’ mSUGRA scenario provided by the three programs are in remarkable agreement with each other to within a few percent. Also the decay modes are reasonably similar.

SPS 2 Most striking in this ‘focus point’ scenario with large \(m_0 \gg m_{1/2} \) are the completely different neutralino and chargino mass spectra of all three programs. Factors of 2 with respect to some central value may easily occur. This is related to the derived values of \(\mu \) which exhibit discrepancies of the same order, casting doubt on the calculations. The other sparticle masses are in reasonable agreement with each other. However, large controversies exist in the treatment of the decays. The heavy sleptons and squarks can decay via all charginos and neutralinos, which apparently do have completely different gaugino and higgsino admixtures, thus leading to different \(\chi \)’s in the final states. This model as a whole needs certainly more care and a better theoretical understanding.

SPS 3 All spectra of this scenario which lies on a model line into the ‘coannihilation region’ are in good agreement with each other. The masses differ within a few up to ten percent, some branching ratios may need to be adjusted.

SPS 4 In general the mass spectra are consistent to within 10%. But due to the high \(\tan^\beta \) value larger discrepancies are observed for the third generation of sleptons and squarks and for the Higgs sector of Pythia. The original purpose of this parameter choice was to provide a model with relatively light Higgs bosons. At the time of the Snowmass meeting\(^1\) a value of \(m_A \simeq 310 \text{ GeV} \) was supported by Isajet 7.51 and Suspect 2.0 (point d’Aix 3). Meanwhile the new release Isajet 7.58 gives a considerably higher mass \(m_A = 404 \text{ GeV} \), probably a consequence of a new treatment of the Yukawa bottom coupling at two-loops in the RG evolution. Similarly, if Suspect takes into account additional radiative corrections to all squarks and gauginos, one also gets a larger value of \(m_A = 354 \text{ GeV} \). Thus, in this parameter space with large \(\tan^\beta \) the Higgs spectrum depends sensitively on the details of higher order corrections. This also explains the lowish Higgs masses of Pythia, which uses a one-loop approximation.
SPS 5 The sparticle spectra of all three programs are in general agreement. But the scalar top \tilde{t}_1, which should be light in this scenario, is about 20% heavier in Pythia. This leads to quite different decay modes.

SPS 6 Very good agreement among the spectra is observed, since in this mSUGRA like scenario with non-unified gaugino masses the MSSM parameters calculated by Isajet serve as input to Susygen and Pythia. Slight discrepancies occur in the branching ratios.

SPS 7 & 8 Only Isajet is able to generate genuine GMSB scenarios. Since the gravitino is incorporated, the MSSM parameters of Susygen and Pythia are adjusted accordingly. Pythia does not offer to treat $\tilde{\tau}_1$ as NLSP (SPS 7). All the masses are in agreement by construction, except for discrepancies of 5 - 20% in the heavy Higgs sector of Susygen; for the time being a more precise tuning appears problematic. Again there are some differences in the decay channels, most important are those of \tilde{e}_R and $\tilde{\mu}_R$ decays in model SPS 7. The specified parameters do not fix the lifetime of the NLSP, which depends on the fundamental scale \sqrt{F} of SUSY breaking. Isajet allows to set this scale, such that finite decay length distributions $c\tau \sim F^2 \cdot m_{NLSP}^{-5}$ of the NLSP can be studied.

SPS 9 An elementary treatment of AMSB scenarios is only possible in Isajet. Using the corresponding MSSM parameters the appropriate spectra can be produced with Susygen and Pythia. Again there are some inconsistent decay modes, e.g. \tilde{e}_R and $\tilde{\mu}_R$ decays and, more important, the $\tilde{\chi}_1^\pm$ decays. The characteristic feature is the near degeneracy of the lightest chargino and neutralino masses, which critically determines the $\tilde{\chi}_1^\pm$ lifetime and decay modes. The present parameters give $\tau = 165 \text{ ps} (c\tau = 50 \text{ mm})$. The lifetime and proper branching ratios determine the $\tilde{\chi}_1^\pm/\tilde{\chi}_1^0$ search strategy and it is advisable to consult the literature10.

Conclusions The three event generators Isajet, Susygen and Pythia produce consistent supersymmetric particle spectra for a wide range of commonly accepted SUSY parameters. However, severe discrepancies exist for scenarios with extreme values of parameters, e.g. large $m_0 \gg m_{1/2}$ in the focus point scenario SPS 2 (chargino and neutralino sector) and high $\tan\beta$ of SPS 4 (Higgs sector, 3rd generation sleptons and squarks), where some particle characteristics depend sensitively on higher order corrections. Although the programs are flexible enough to be adjusted to any mass spectrum (including decay modes), it is a priori not obvious which program to prefer. It is the aim of the present compilation to provide detailed information and to help those who are interested to study the properties of the Snowmass benchmark models.

It’s a pleasure to thank S Kraml, E Perez, W Porod and G Weiglein for useful discussions on the SPS spectra and on the manuscript.

10 J F Gunion, S Mrenna, Phys. Rev. D 64 (2001) 075002
Contents

1 SPS 1 – mSUGRA scenario 1
 1.1 Spectrum & parameters of ISAJET 7.58 1
 1.2 Spectrum & parameters of SUSYGEN 3.00/27 3
 1.3 Spectrum & parameters of PYTHIA 6.2/00 5
 1.4 Decay modes 7

2 SPS 2 – mSUGRA scenario 11
 2.1 Spectrum & parameters of ISAJET 7.58 11
 2.2 Spectrum & parameters of SUSYGEN 3.00/27 13
 2.3 Spectrum & parameters of PYTHIA 6.2/00 15
 2.4 Decay modes 17

3 SPS 3 – mSUGRA scenario 22
 3.1 Spectrum & parameters of ISAJET 7.58 22
 3.2 Spectrum & parameters of SUSYGEN 3.00/27 24
 3.3 Spectrum & parameters of PYTHIA 6.2/00 26
 3.4 Decay modes 28

4 SPS 4 – mSUGRA scenario 31
 4.1 Spectrum & parameters of ISAJET 7.58 31
 4.2 Spectrum & parameters of SUSYGEN 3.00/27 33
 4.3 Spectrum & parameters of PYTHIA 6.2/00 35
 4.4 Decay modes 37

5 SPS 5 – mSUGRA scenario 40
 5.1 Spectrum & parameters of ISAJET 7.58 40
 5.2 Spectrum & parameters of SUSYGEN 3.00/27 42
 5.3 Spectrum & parameters of PYTHIA 6.2/00 44
 5.4 Decay modes 46

6 SPS 6 – MSSM scenario 49
 6.1 Spectrum & parameters of ISAJET 7.58 49
 6.2 Spectrum & parameters of SUSYGEN 3.00/25 51
 6.3 Spectrum & parameters of PYTHIA 6.2/00 53
 6.4 Branching ratios 55
1 SPS 1 – mSUGRA scenario

Parameter	Value
m_0	100 GeV
$m_{1/2}$	250 GeV
A_0	-100 GeV
$\tan \beta$	10
sign μ	$+$

‘typical’ scenario $m_0 = 0.4 m_{1/2} = -A_0$

1.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 1 mass spectrum of ISAJET
Isajet parameters

Minimal supergravity (mSUGRA) model:

\[\begin{align*}
M_0, & \quad M_(1/2), \quad A_0, \quad \tan(\beta), \quad \text{sgn}(\mu), \quad M_t = \\
100.000 & \quad 250.000 \quad -100.000 \quad 10.000 \quad 1.0 \quad 175.000
\end{align*} \]

ISASUGRA unification:

\[\begin{align*}
M_{\text{GUT}} &= 0.218\times10^{17} \quad g_{\text{GUT}} = 0.714 \quad \alpha_{\text{GUT}} = 0.041 \\
F_{\text{T}} &= 0.481 \quad F_{\text{B}} = 0.046 \quad F_{\text{L}} = 0.069
\end{align*} \]

\[\begin{align*}
1/\alpha_{\text{em}} &= 127.70 \quad \sin^2(\theta_{\text{w}}) = 0.2309 \quad \alpha_s = 0.119 \\
M_1 &= 99.13 \quad M_2 = 192.74 \quad M_3 = 580.51 \\
\mu(Q) &= 352.39 \quad B(Q) = 44.54 \quad Q = 454.65 \\
M_{H1}^2 &= 3.33\times10^5 \quad M_{H2}^2 = -3.12\times10^5
\end{align*} \]

ISAJET masses (with signs):

\[\begin{align*}
M(\text{GL}) &= 595.19 \\
M(\text{UL}) &= 537.25 \quad M(\text{UR}) = 520.45 \quad M(DL) = 543.04 \quad M(DR) = 520.14 \\
M(B1) &= 491.91 \quad M(B2) = 524.59 \quad M(T1) = 379.11 \quad M(T2) = 574.71 \\
M(SN) &= 186.00 \quad M(EL) = 202.14 \quad M(ER) = 142.97 \\
M(NTAU) &= 185.06 \quad M(TAU1) = 133.22 \quad M(TAU2) = 206.13 \\
M(Z1) &= -96.05 \quad M(Z2) = -176.82 \quad M(Z3) = 358.81 \quad M(Z4) = -377.81 \\
M(W1) &= -176.38 \quad M(W2) = -378.23 \\
M(HL) &= 113.97 \quad M(HH) = 394.15 \quad M(HA) = 393.63 \quad M(H+) = 401.77 \\
\theta_t &= 0.9603 \quad \theta_b = 0.4916 \quad \theta_l = 1.2876 \quad \alpha_h = 0.1107
\end{align*} \]

Neutralino masses (signed):

\[\begin{align*}
-96.05 & \quad -176.82 \quad 358.815 \quad -377.811
\end{align*} \]

Eigenvector 1:

\[\begin{align*}
0.05441 &= -0.15001 \quad -0.05711 \quad 0.98553
\end{align*} \]

Eigenvector 2:

\[\begin{align*}
0.16023 &= -0.27963 \quad -0.94070 \quad -0.10592
\end{align*} \]

Eigenvector 3:

\[\begin{align*}
-0.71046 &= -0.69495 \quad 0.09245 \quad -0.06120
\end{align*} \]

Eigenvector 4:

\[\begin{align*}
0.68309 &= -0.64525 \quad 0.32137 \quad -0.11730
\end{align*} \]

Chargino masses (signed):

\[\begin{align*}
-176.383 & \quad -378.229
\end{align*} \]

Gammal, Gammar:

\[\begin{align*}
1.99234 &= 1.80868
\end{align*} \]

Isajet equivalent input:

\[\begin{align*}
\text{MSSMA:} & \quad 595.19 \quad 352.39 \quad 393.63 \quad 10.00 \\
\text{MSSMB:} & \quad 539.86 \quad 519.53 \quad 521.66 \quad 196.64 \quad 136.23 \\
\text{MSSMC:} & \quad 495.91 \quad 516.86 \quad 424.83 \quad 195.75 \quad 133.55 \quad -510.01 \quad -772.66 \quad -254.20 \\
\text{MSSMD:} & \quad \text{SAME AS MSSMB (DEFAULT)} \\
\text{MSSME:} & \quad 99.13 \quad 192.74
\end{align*} \]
1.2 Spectrum & parameters of SUSYGEN 3.00/27

![Figure 2: SPS 1 mass spectrum of SUSYGEN](image-url)
Susygen parameters

Susygen Inputs:

\(m_0 = 100.000 \)
\(\tan B = 10.000 \)
\(m_{1/2} = 250.000 \)
\(\mu/|\mu| = 1 \)
\(A_0 = -100.000 \)

Sparticle masses:

\(\text{SUPR} 550. \) \(\text{SUPL} 570. \)
\(\text{SDNR} 549. \) \(\text{SDNL} 575. \)
\(\text{SELR} 145. \) \(\text{SELL} 204. \)
\(\text{SNU} 188. \)
\(\text{STP1} 412. \) \(\text{STP2} 576. \) \(\cosmix = 0.534 \)
\(\text{SBT1} 520. \) \(\text{SBT2} 550. \) \(\cosmix = 0.913 \)
\(\text{STA1} 136. \) \(\text{STA2} 208. \) \(\cosmix = 0.271 \)
\(\text{SGLU} 618. \)

Gaugino masses:

\(M_1 = 102.191 \)
\(M_2 = 191.812 \)
\(M_3 = 588.293 \)

\(\text{NEUTRALINO m, CP, ph/zi/ha/hb 1} = 98.8 \)
\(\text{NEUTRALINO m, CP, ph/zi/ha/hb 2} = 174.9 \)
\(\text{NEUTRALINO m, CP, ph/zi/ha/hb 3} = 348.4 \)
\(\text{NEUTRALINO m, CP, ph/zi/ha/hb 4} = 368.7 \)

\(\text{CHARGINO MASSES} = 174.211 \)
\(\text{CHARGINO ETA} = -1.000 \)

\(\text{U matrix} \)
\(W_1SS+ = -0.905 \)
\(W_1SS- = 0.968 \)
\(W_2SS+ = 0.426 \)
\(W_2SS- = 0.249 \)

Higgses masses:

\(\text{Light CP-even Higgs} = 111.794 \)
\(\text{Heavy CP-even Higgs} = 384.532 \)
\(\text{CP-odd Higgs} = 384.598 \)
\(\text{Charged Higgs} = 392.561 \)
\(\sin(a-b) = -0.111 \)
\(\cos(a-b) = 0.994 \)
1.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 1 mass spectrum of PYTHIA
Pythia parameters

SUGRA input parameters

Parameter	IMSS	RMSS
m_0	8	100.0
m_1/2	1	250.0
A_0	16	-100.0
tan_beta	5	10.00
sign mu	4	1.000

sparticle masses & widths

Parameter	IMSS	RMSS	
M_se_R	RMSS(8) = 145.8 (0.204)	M_se_L 211.4 (0.235)	M_sne_L 195.8 (0.173)
M_se_R	RMSS(9) = 145.8 (0.204)	M_sm_L 211.4 (0.235)	M_snm_L 195.8 (0.173)
M_st_1	RMSS(10) = 146.0 (0.198)	M_st_2 220.2 (0.335)	M_snt_L 195.6 (0.171)
M_ch0_1	RMSS(11) = 99.9 (0.000)	M_ch0_2 188.4 (0.015)	M_ch0_3 375.7 (2.209)
M_ch0_4	RMSS(12) = 394.2 (2.946)	M_ch+1 187.7 (0.012)	M_ch+2 394.8 (2.888)
M_h0	RMSS(13) = 111.7 (0.004)	M_H0 412.1 (0.910)	M_A0 411.9 (0.980)
M_H+	RMSS(14) = 419.5 (0.855)	M_g~ 627.8 (11.779)	
M_uL	RMSS(15) = 554.4 (5.376)	M_uR 535.3 (1.127)	M_dL 559.3 (5.159)
M_dR	RMSS(16) = 534.4 (0.281)	M_b1 504.2 (3.590)	M_t1 381.3 (1.768)
M_t2	RMSS(17) = 587.1 (7.620)		

Parameter settings IMSS, RMSS

Parameter	IMSS	RMSS
IMSS(1)	2	250.0
IMSS(2)	0	204.0
IMSS(3)	600.2	369.6
IMSS(4)	10.00	145.8
IMSS(5)	145.8	100.0
IMSS(6)	100.0	-532.9
IMSS(7)	700.0	430.3
IMSS(8)	504.9	211.2
IMSS(9)	530.1	145.3
IMSS(10)	504.9	145.3
IMSS(11)	412.1	800.0
IMSS(12)	100.0	1.000
IMSS(13)	0.4100E-01	0.1000E+05
IMSS(14)	0.4100E-01	0.1000E+05
IMSS(15)	0.4100E-01	0.1000E+05
IMSS(16)	0.4100E-01	0.1000E+05
IMSS(17)	0.4100E-01	0.1000E+05
IMSS(18)	0.4100E-01	0.1000E+05
IMSS(19)	0.4100E-01	0.1000E+05
IMSS(20)	0.4100E-01	0.1000E+05
IMSS(21)	0.4100E-01	0.1000E+05
IMSS(22)	0.4100E-01	0.1000E+05
IMSS(23)	0.4100E-01	0.1000E+05
IMSS(24)	0.4100E-01	0.1000E+05
IMSS(25)	0.4100E-01	0.1000E+05
IMSS(26)	0.4100E-01	0.1000E+05
IMSS(27)	0.4100E-01	0.1000E+05
IMSS(28)	0.4100E-01	0.1000E+05
IMSS(29)	0.4100E-01	0.1000E+05
IMSS(30)	0.4100E-01	0.1000E+05
IMSS(31)	0.4100E-01	0.1000E+05
IMSS(32)	0.4100E-01	0.1000E+05
IMSS(33)	0.4100E-01	0.1000E+05
IMSS(34)	0.4100E-01	0.1000E+05
IMSS(35)	0.4100E-01	0.1000E+05
IMSS(36)	0.4100E-01	0.1000E+05
IMSS(37)	0.4100E-01	0.1000E+05
IMSS(38)	0.4100E-01	0.1000E+05
IMSS(39)	0.4100E-01	0.1000E+05
IMSS(40)	0.4100E-01	0.1000E+05
1.4 Decay modes

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
\tilde{e}^-_R	143.0	144.9	145.8	$\tilde{\chi}^0_1 e^-$	1.000	1.000	1.000
\tilde{e}^-_L	202.1	204.1	211.4	$\tilde{\chi}^0_1 e^-$	0.490	0.408	0.556
				$\tilde{\chi}^0_2 e^-$	0.187	0.218	0.159
				$\tilde{\chi}^0_1 \nu_e$	0.323	0.374	0.285
$\tilde{\nu}_e$	186.0	188.2	195.8	$\tilde{\chi}^0_1 \nu_e$	0.885	0.786	0.920
				$\tilde{\chi}^0_2 \nu_e$	0.031	0.057	
				$\tilde{\chi}^+ e^-$	0.083	0.157	0.059
$\tilde{\mu}^-_R$	143.0	144.9	145.8	$\tilde{\chi}^0_1 \mu^-$	1.000	1.000	1.000
$\tilde{\mu}^-_L$	202.1	204.1	211.4	$\tilde{\chi}^0_1 \mu^-$	0.490	0.408	0.556
				$\tilde{\chi}^0_2 \mu^-$	0.187	0.218	0.159
				$\tilde{\chi}^0_1 \nu_\mu$	0.323	0.374	0.285
$\tilde{\nu}_\mu$	186.0	188.2	195.8	$\tilde{\chi}^0_1 \nu_\mu$	0.885	0.786	0.920
				$\tilde{\chi}^0_2 \nu_\mu$	0.031	0.057	
				$\tilde{\chi}^+ \mu^-$	0.083	0.157	0.059
$\tilde{\tau}^-_1$	133.2	136.0	146.0	$\tilde{\chi}^0_1 \tau^-$	1.000	1.000	1.000
$\tilde{\tau}^-_2$	206.1	207.7	220.2	$\tilde{\chi}^0_1 \tau^-$	0.526	0.453	0.504
				$\tilde{\chi}^0_2 \tau^-$	0.174	0.203	0.179
				$\tilde{\chi}^0_1 \nu_\tau$	0.300	0.344	0.316
$\tilde{\nu}_\tau$	185.1	187.2	195.6	$\tilde{\chi}^0_1 \nu_\tau$	0.906	0.806	0.926
				$\tilde{\chi}^0_2 \nu_\tau$	0.052		
				$\tilde{\chi}^+ \tau^-$	0.067	0.142	0.054

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}^0_1$	96.1	98.8	99.9		1.000	1.000	1.000
$\tilde{\chi}^0_2$	176.8	174.9	188.4	$\tilde{e}_R e^+$	0.031	0.037	0.044
				$\tilde{e}_R e^-$	0.031	0.037	0.044
				$\tilde{\mu}_R \mu^+$	0.031	0.037	0.044
				$\tilde{\mu}_R \mu^-$	0.031	0.037	0.044
				$\tilde{\tau}_1 \tau^+$	0.437	0.424	0.407
				$\tilde{\tau}_1 \tau^-$	0.437	0.424	0.407
$\tilde{\chi}^0_3$	358.8	348.4	375.7	$\tilde{\chi}^+_1 W^-$	0.298	0.349	0.299
				$\tilde{\chi}^+_1 W^+$	0.298	0.349	0.299
				$\tilde{\chi}^0_2 Z^0$	0.108	0.087	0.106
				$\tilde{\chi}^0_2 Z^0$	0.215	0.155	0.218
$\tilde{\chi}^0_4$	377.8	368.7	394.2	$\tilde{\chi}^+_1 W^-$	0.263	0.302	0.263
				$\tilde{\chi}^+_1 W^+$	0.263	0.302	0.263
				$\tilde{\chi}^0_2 h^0$	0.064	0.054	0.062
				$\tilde{\chi}^0_2 h^0$	0.134	0.103	0.144

Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}^+_1$	176.4	174.2	187.7	$\tilde{\tau}^+ \nu_\tau$	0.979	0.864	0.847
				$\tilde{\chi}^+_1 W^+$	0.153		
$\tilde{\chi}^+_2$	378.2	369.0	394.8	$\tilde{\chi}^+_2 W^+$	0.064	0.062	0.065
				$\tilde{\chi}^0_2 W^+$	0.296	0.303	0.065
				$\tilde{\nu}_L \nu_e$	0.052	0.056	0.049
				$\tilde{\mu}_L \mu^+$	0.052	0.056	0.049
				$\tilde{\tau}_2 \nu_\tau$	0.056	0.055	0.051
				$\tilde{\chi}^+_2 Z^0$	0.244	0.393	0.243
				$\tilde{\chi}^+_2 h^0$	0.170	0.173	

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	114.0	111.8	111.7	$\tau^- \tau^+$	0.051	0.080	0.068
				bb	0.847	0.792	0.809
				cc	0.035	0.043	
				gg		0.060	
				W^+W^-	0.040		
H^0	394.1	384.5	412.1	$\tau^- \tau^+$	0.059	0.091	0.094
				bb	0.807	0.703	0.848
				tt	0.031	0.038	0.043
				$\tilde{\chi}^0_1 \tilde{\chi}^0_2$	0.034		
				$\tilde{\chi}^+_1 \tilde{\chi}^-_1$			0.042
A^0	393.6	384.6	411.9	$\tau^- \tau^+$	0.049	0.060	0.087
				bb	0.681	0.465	0.791
				tt	0.092	0.099	0.119
				$\tilde{\chi}^0_1 \tilde{\chi}^0_2$	0.065	0.082	
				$\tilde{\chi}^0_2 \tilde{\chi}^0_1$	0.058	0.075	
				$\tilde{\chi}^+_1 \tilde{\chi}^-_1$			0.194
H^+	401.8	392.6	419.5	$\nu_\tau \tau^+$	0.077	0.093	0.102
				tb	0.770	0.727	0.895
				$\tilde{\chi}^0_1 \tilde{\chi}^0_1$	0.130	0.165	

Table 4: Higgs masses (GeV) and significant branching ratios ($>3\%$) from **Isajet** (I), **Susygen** (S) and **Pythia** (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
t_1	379.1	411.6	381.3	$\tilde{\chi}_{1t}^0$	0.179	0.146	0.189
				$\tilde{\chi}_{2t}^0$	0.095	0.115	0.078
				$\tilde{\chi}_{1b}^+$	0.726	0.664	0.732
				$\tilde{\chi}_{2b}^+$	0.075		
t_2	574.7	575.7	587.1	$\tilde{\chi}_{1b}^+$	0.206	0.241	0.193
				$\tilde{\chi}_{2b}^+$	0.216	0.361	0.198
				$Z^0\tilde{t}_1$	0.225		0.270
				\tilde{h}_{1t}^0	0.042		0.034
				$\tilde{\chi}_{1t}^0$	0.030		0.032
				$\tilde{\chi}_{2t}^0$	0.080	0.056	0.078
				$\tilde{\chi}_{3t}^0$	0.033	0.163	0.036
				$\tilde{\chi}_{4t}^0$	0.166	0.164	0.158
b_1	491.9	520.0	504.2	$\tilde{\chi}_{1b}^0$	0.062	0.061	0.035
				$\tilde{\chi}_{2b}^0$	0.362	0.357	0.330
				$\tilde{\chi}_{1t}^-$	0.428	0.542	0.401
				$W^-\tilde{t}_1$	0.133		0.224
b_2	524.6	550.4	534.6	$\tilde{\chi}_{1b}^0$	0.148	0.196	0.242
				$\tilde{\chi}_{2b}^0$	0.171	0.118	0.192
				$\tilde{\chi}_{3b}^0$	0.053	0.181	
				$\tilde{\chi}_{4b}^0$	0.072	0.205	
				$\tilde{\chi}_{1t}^-$	0.213	0.153	0.255
				$\tilde{\chi}_{2t}^-$	0.147		
				$W^-\tilde{t}_1$	0.344		0.304

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from ISAJET (I), SUsYGEN (S) and PYTHIA (P)
2 SPS 2 – mSUGRA scenario

Parameter	Value
m_0	1450 GeV
$m_{1/2}$	300 GeV
A_0	0 GeV
$\tan \beta$	10
sign μ	+

‘focus point’ scenario

$m_0 = 2m_{1/2} + 800$ GeV

2.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 2 mass spectrum of ISAJET
Isajet parameters

Minimal supergravity (mSUGRA) model:

\[
M_0, \ M_{1/2}, \ A_0, \ \tan(\beta), \ \sgn(\mu), \ M_t =
1450.000 \ 300.000 \ 0.000 \ 10.000 \ 1.0 \ 175.000
\]

ISASUGRA unification:

\[
M_GUT = 0.270E+17 \quad g_GUT = 0.701 \quad \alpha_GUT = 0.039
\]

\[
FT_GUT = 0.460 \quad FB_GUT = 0.048 \quad FL_GUT = 0.068
\]

\[
1/\alpha_{em} = 127.71 \quad \sin^2(\theta_{\text{w}}) = 0.2310 \quad \alpha_s = 0.119
\]

\[
M_1 = 120.36 \quad M_2 = 234.12 \quad M_3 = 696.46
\]

\[
u(Q) = 124.77 \quad B(Q) = 1653.71 \quad Q = 1077.13
\]

\[
M_{H_1^2} = 0.205E+07 \quad M_{H_2^2} = 0.319E+05
\]

ISAJET masses (with signs):

\[
\begin{align*}
M(GL) &= 784.37 \\
M(UL) &= 1532.70 \quad M(UR) &= 1530.08 \\
M(B1) &= 1296.56 \quad M(B2) &= 1520.09 \\
M(SN) &= 1454.17 \quad M(EL) &= 1456.33 \\
M(NTAU) &= 1448.15 \quad M(TAU1) &= 1439.46 \\
M(Z1) &= -79.54 \quad M(Z2) &= 135.34 \\
M(W1) &= -104.03 \quad M(W2) &= -269.03 \\
M(HL) &= 115.71 \quad M(HH) &= 1444.10 \\
\theta_t &= 1.4446 \quad \theta_b = 0.0094 \\
\alpha_h &= 0.1007
\end{align*}
\]

NEUTRALINO MASSES (SIGNED) =

\[-79.537 \quad 135.343 \quad -140.839 \quad -269.450\]

EIGENVECTOR 1 =

\[0.45040 \quad -0.64968 \quad -0.26524 \quad 0.55200\]

EIGENVECTOR 2 =

\[0.72890 \quad 0.65991 \quad -0.14274 \quad 0.11336\]

EIGENVECTOR 3 =

\[0.35117 \quad -0.31805 \quad -0.32663 \quad -0.81782\]

EIGENVECTOR 4 =

\[-0.37752 \quad 0.20316 \quad -0.89587 \quad 0.11668\]

CHARGINO MASSES (SIGNED) =

\[-104.031 \quad -269.026\]

GAMMAL, GAMMAR =

\[2.85552 \quad 2.58052\]

ISAJET equivalent input:

MSSMA: 784.37 124.77 1442.95 10.00
MSSMB: 1533.62 1530.29 1530.49 1455.57 1451.04
MSSMC: 1295.25 1519.86 998.47 1449.56 1438.88 -563.70 -797.21 -187.83
MSSMD: SAME AS MSSMB (DEFAULT)
MSSME: 120.36 234.12
2.2 Spectrum & parameters of SUSYGEN 3.00/27

![Figure 2: SPS 2 mass spectrum of Susygen](image)
Susygen **parameters**

Susygen inputs:

m0 = 1450.000 \(\tan\beta = 10.000 \)

m1/2 = 300.000 \(\mu/|\mu| = 1 \)

A0 = 0.000

Sparticle masses:

SUPR 1584. \(\text{SUPL} \) 1593.

SDNR 1583. \(\text{SDNL} \) 1595.

SELR 1455. \(\text{SELL} \) 1465.

SNU 1463.

STP1 1022. \(\text{STP2} \) 1340. \(\text{cosmix} = 0.103 \)

SBT1 1335. \(\text{SBT2} \) 1571. \(\text{cosmix} = 1.000 \)

STA1 1441. \(\text{STA2} \) 1459. \(\text{cosmix} = 0.140 \)

SGLU 811.

Gaugino masses:

\(\text{NEUTRALINO} \) 1, CP, \(\phi/\zeta/\chi/\eta/\theta \) 1 = 123.1 1. 0.837 -0.523 0.077 0.142

\(\text{NEUTRALINO} \) 1, CP, \(\phi/\zeta/\chi/\eta/\theta \) 2 = 214.6 1. -0.543 -0.763 0.218 0.276

\(\text{NEUTRALINO} \) 1, CP, \(\phi/\zeta/\chi/\eta/\theta \) 3 = 377.6 -1. -0.009 0.100 -0.637 0.764

\(\text{NEUTRALINO} \) 1, CP, \(\phi/\zeta/\chi/\eta/\theta \) 4 = 399.9 1. -0.067 -0.368 -0.735 -0.566

\(\text{CHARGINO MASSES} \) = 213.915 399.841

\(\text{CHARGINO ETA} \) = -1.000 1.000

U matrix \(\text{WINO} \) HIGGSINO V matrix \(\text{WINO} \) HIGGSINO

W1SS+ -0.901 0.434 W1SS- 0.960 -0.279

W2SS+ 0.434 0.901 W2SS- 0.279 0.960

Higgses masses:

Light \(\text{CP-even Higgs} \) = 114.873

Heavy \(\text{CP-even Higgs} \) = 1490.196

\(\text{CP-odd Higgs} \) = 1489.165

\(\text{Charged Higgs} \) = 1491.171

\(\sin(a-b) \) = -0.100

\(\cos(a-b) \) = 0.995
2.3 Spectrum & parameters of PYTHIA 6.2/00

![SPS 2 mass spectrum of Pythia](image)

Figure 3: SPS 2 mass spectrum of PYTHIA
Pythia parameters

SUGRA input parameters

m_0 \quad \text{RMSS}(8) = 1450.
m_{1/2} \quad \text{RMSS}(1) = 300.0
A_0 \quad \text{RMSS}(16) = 0.000
tan_beta \quad \text{RMSS}(5) = 10.00
sign \mu \quad \text{RMSS}(4) = 1.000

sparticle masses & widths

M_{se_R} \quad 1455.3 (7.470) \quad M_{se_L} \quad 1466.8 (19.692) \quad M_{sne_L} \quad 1464.6 (19.753)
M_{sm_R} \quad 1455.3 (7.471) \quad M_{sm_L} \quad 1466.8 (19.693) \quad M_{snm_L} \quad 1464.6 (19.754)
M_{st_1} \quad 1450.0 (8.659) \quad M_{st_2} \quad 1466.1 (19.071) \quad M_{snt_L} \quad 1462.2 (19.923)
M_{ch0_1} \quad 122.0 (0.000) \quad M_{ch0_2} \quad 238.1 (0.001) \quad M_{ch0_3} \quad 632.3 (4.785)
M_{ch0_4} \quad 640.3 (4.759)
M_{ch+_1} \quad 238.0 (0.002) \quad M_{ch+_2} \quad 641.2 (4.815)
M_{h0} \quad 114.1 (0.004) \quad M_{H0} \quad 1572.3 (3.711) \quad M_{A0} \quad 1571.6 (3.733)
M_{H^+} \quad 1574.6 (3.802)
M_{g^-} \quad 814.1 (0.004)
M_{uL} \quad 1559.7 (68.025) \quad M_{uR} \quad 1549.1 (51.354) \quad M_{dL} \quad 1561.7 (68.063)
M_{dR} \quad 1548.3 (48.633)
M_{b1} \quad 1259.8 (55.517) \quad M_{b2} \quad 1530.2 (47.344) \quad M_{t1} \quad 882.7 (8.311)
M_{t2} \quad 1274.0 (52.448)

parameter settings IMSS, RMSS

IMSS(1) = 2 \quad IMSS(4) = 1 \quad IMSS(7) = 0 \quad IMSS(10) = 0
IMSS(2) = 0 \quad IMSS(5) = 0 \quad IMSS(8) = 0 \quad IMSS(11) = 0
IMSS(3) = 0 \quad IMSS(6) = 0 \quad IMSS(9) = 0 \quad IMSS(12) = 0
RMSS(1) = 300.0 \quad RMSS(9) = 700.0 \quad RMSS(17) = 0.000
RMSS(2) = 244.9 \quad RMSS(10) = 1259. \quad RMSS(18) = -0.1004
RMSS(3) = 706.3 \quad RMSS(11) = 1530. \quad RMSS(19) = 1573.
RMSS(4) = 628.3 \quad RMSS(12) = 876.4 \quad RMSS(20) = 0.4100E-01
RMSS(5) = 10.00 \quad RMSS(13) = 1464. \quad RMSS(21) = 1.000
RMSS(6) = 1467. \quad RMSS(14) = 1450. \quad RMSS(22) = 800.0
RMSS(7) = 1455. \quad RMSS(15) = 0.000 \quad RMSS(23) = 0.1000E+05
RMSS(8) = 1450. \quad RMSS(16) = -610.2 \quad RMSS(24) = 0.1000E+05
2.4 Decay modes

particle	m_I	m_S	m_P	decay	\mathcal{B}_I	\mathcal{B}_S	\mathcal{B}_P
\tilde{e}_R	1451.7	1455.1	1455.3	$\chi_1^0 e^-$	0.308	0.973	0.995
				$\chi_2^0 e^-$	0.667		
\tilde{e}_L	1456.3	1464.9	1466.8	$\chi_1^0 e^-$	0.074	0.300	0.307
				$\chi_2^0 e^-$	0.190	0.030	0.113
				$\chi_3^0 e^-$	0.207	0.563	0.601
				$\tilde{\chi}_1^+ \nu_e$	0.051	0.498	0.582
				$\tilde{\chi}_2^+ \nu_e$	0.551	0.104	
$\tilde{\nu}_e$	1454.2	1462.7	1464.6	$\chi_1^0 \nu_e$	0.103	0.112	0.101
				$\chi_2^0 \nu_e$	0.231	0.285	
				$\chi_3^0 \nu_e$	0.274	0.048	
				$\tilde{\chi}_1^+ \mu^-$	0.179	0.563	0.601
				$\tilde{\chi}_2^+ \mu^-$	0.426	0.043	
$\tilde{\mu}_R$	1451.7	1455.1	1455.3	$\chi_1^0 \mu^-$	0.308	0.973	0.995
				$\chi_2^0 \mu^-$	0.667		
$\tilde{\mu}_L$	1456.3	1464.9	1466.8	$\chi_1^0 \mu^-$	0.074	0.300	0.307
				$\chi_2^0 \mu^-$	0.190	0.030	0.113
				$\chi_3^0 \mu^-$	0.207	0.563	0.601
				$\tilde{\chi}_1^+ \nu_\mu$	0.051	0.498	0.582
				$\tilde{\chi}_2^+ \nu_\mu$	0.551	0.104	
$\tilde{\nu}_\mu$	1454.2	1462.7	1464.6	$\chi_1^0 \nu_\mu$	0.103	0.112	0.101
				$\chi_2^0 \nu_\mu$	0.231	0.285	
				$\chi_3^0 \nu_\mu$	0.274	0.048	
				$\tilde{\chi}_1^+ \mu^-$	0.179	0.563	0.601
				$\tilde{\chi}_2^+ \mu^-$	0.426	0.043	
$\tilde{\tau}_1$	1439.5	1441.3	1450.0	$\chi_1^0 \tau^-$	0.306	0.869	0.819
				$\chi_2^0 \tau^-$	0.039	0.054	
				$\chi_3^0 \tau^-$	0.613	0.045	
				$\tilde{\chi}_1^+ \nu_\tau$	0.045	0.555	0.102
$\tilde{\tau}_2$	1450.4	1458.5	1466.1	$\chi_1^0 \tau^-$	0.079	0.108	
				$\chi_2^0 \tau^-$	0.291	0.293	
				$\chi_3^0 \tau^-$	0.190	0.033	
				$\tilde{\chi}_1^+ \nu_\tau$	0.046	0.478	0.554
				$\tilde{\chi}_2^+ \nu_\tau$	0.545	0.111	
$\tilde{\nu}_\tau$	1448.2	1456.0	1464.4	$\chi_1^0 \nu_\tau$	0.101	0.112	0.100
				$\chi_2^0 \nu_\tau$	0.231	0.282	
				$\chi_3^0 \nu_\tau$	0.270	0.048	
				$\tilde{\chi}_1^+ \tau^-$	0.190	0.563	0.595
				$\tilde{\chi}_2^+ \tau^-$	0.421	0.042	

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^0$	79.5	123.1	122.0	$\tilde{\chi}_1^0$	1.000	1.000	1.000
$\tilde{\chi}_2^0$	135.3	214.6	238.1	$\tilde{\chi}_1^0 ud$	0.033		
				$\tilde{\chi}_I^0 d\bar{u}$	0.033		
				$\tilde{\chi}_I^0 c\bar{s}$	0.033		
				$\tilde{\chi}_I^0 u\bar{u}$	0.096		
				$\tilde{\chi}_I^0 d\bar{d}$	0.124		
				$\tilde{\chi}_I^0 s\bar{s}$	0.124		
				$\tilde{\chi}_I^0 c\bar{c}$	0.096		
				$\tilde{\chi}_I^0 b\bar{b}$	0.114		
				$\tilde{\chi}_I^0 \nu_e\bar{\nu}_e$	0.056		
				$\tilde{\chi}_I^0 \nu_\mu\bar{\nu}_\mu$	0.056		
				$\tilde{\chi}_I^0 \nu_\tau\bar{\nu}_\tau$	0.056		
	$\tilde{\chi}_I^0 Z^0$			1.000	0.223		
	$\tilde{\chi}_I^0 h^0$				0.777		
$\tilde{\chi}_3^0$	140.8	377.6	632.3	$\tilde{\chi}_1^0 ud$	0.155		
				$\tilde{\chi}_I^0 \nu_e\bar{e}^+$	0.052		
				$\tilde{\chi}_I^0 \nu_\mu\bar{\mu}^+$	0.052		
				$\tilde{\chi}_I^0 d\bar{u}$	0.155		
				$\tilde{\chi}_I^0 e^-\bar{\nu}_e$	0.052		
				$\tilde{\chi}_I^0 \mu^-\bar{\nu}_\mu$	0.052		
				$\tilde{\chi}_I^0 c\bar{s}$	0.155		
				$\tilde{\chi}_I^0 \nu_\tau\tau^+$	0.052		
				$\tilde{\chi}_I^0 \tau^-\bar{\nu}_\tau$	0.052		
	$\tilde{\chi}_I^0 Z^0$				0.094	0.075	
	$\tilde{\chi}_I^0 h^0$				0.151	0.253	
	$\tilde{\chi}_2^0 h^0$				0.033		
	$\tilde{\chi}_I^0 W^-$			0.369	0.309		
	$\tilde{\chi}_I^0 W^+$			0.369	0.309		
$\tilde{\chi}_4^0$	269.4	399.9	640.3	$\tilde{\chi}_1^0 W^-$	0.371	0.391	0.314
				$\tilde{\chi}_1^0 W^+$	0.371	0.391	0.314
				$\tilde{\chi}_1^0 Z^0$	0.152	0.038	
				$\tilde{\chi}_1^0 h^0$	0.033	0.069	0.068
				$\tilde{\chi}_3^0 h^0$	0.119	0.242	
				$\tilde{\chi}_I^0 h^0$	0.050		

Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	\mathcal{B}_I	\mathcal{B}_S	\mathcal{B}_P
$\tilde{\chi}_1^+$	104.0	213.9	238.0	$\tilde{\chi}_1^0 u d$	0.333	0.333	0.111
				$\tilde{\chi}_1^0 c \bar{s}$			
				$\tilde{\chi}_1^0 e^+ \nu_e$	0.111	0.111	0.111
				$\tilde{\chi}_1^0 \mu^+ \nu_\mu$			
				$\tilde{\chi}_1^0 \tau^+ \nu_\tau$			
				$\tilde{\chi}_1^0 W^+$	1.000	1.000	
$\tilde{\chi}_2^+$	269.0	399.8	641.2	$\tilde{\chi}_2^0 W^+$	0.126	0.084	0.085
				$\tilde{\chi}_3^0 W^+$	0.250	0.378	0.328
				$\tilde{\chi}_1^+ Z^0$	0.187		0.297
				$\tilde{\chi}_1^+ h^0$	0.297	0.537	0.307

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	115.7	114.9	114.1	$\tau^-\tau^+$	0.049	0.076	0.065
				bb	0.819	0.747	0.774
				$c\bar{c}$	0.040	0.048	
				gg	0.031	0.071	0.040
				W^+W^-	0.070	0.061	
H^0	1444.1	1490.2	1572.3	bb	0.149	0.094	0.724
				$t\bar{t}$	0.032	0.033	0.184
				$\tilde{\chi}^0_1\tilde{\chi}^0_1$	0.060		
				$\tilde{\chi}^0_2\tilde{\chi}^0_4$	0.055		
				$\tilde{\chi}^0_3\tilde{\chi}^0_2$	0.033		
				$\tilde{\chi}^0_3\tilde{\chi}^0_3$	0.114		
				$\tilde{\chi}^0_3\tilde{\chi}^0_4$	0.133		
				$\tilde{\chi}^0_1\tilde{\chi}^0_1$	0.118	0.082	
				$\tilde{\chi}^+_1\tilde{\chi}^-_2$	0.177	0.211	
				$\tilde{\chi}^-_1\tilde{\chi}^+_2$	0.177	0.211	
A^0	1443.0	1489.2	1571.6	bb	0.151	0.094	0.720
				$t\bar{t}$	0.033	0.034	0.190
				$\tilde{\chi}^0_1\tilde{\chi}^0_1$	0.080		
				$\tilde{\chi}^0_2\tilde{\chi}^0_4$	0.069		
				$\tilde{\chi}^0_3\tilde{\chi}^0_2$	0.046		
				$\tilde{\chi}^0_3\tilde{\chi}^0_4$	0.086	0.064	
				$\tilde{\chi}^0_4\tilde{\chi}^0_4$	0.062		
				$\tilde{\chi}^0_5\tilde{\chi}^0_4$	0.033		
				$\tilde{\chi}^0_5\tilde{\chi}^0_4$	0.044		
				$\tilde{\chi}^+_1\tilde{\chi}^-_1$	0.143	0.114	
				$\tilde{\chi}^-_2\tilde{\chi}^+_2$	0.035	0.044	
				$\tilde{\chi}^-_1\tilde{\chi}^+_2$	0.152	0.181	
				$\tilde{\chi}^-_1\tilde{\chi}^+_2$	0.152	0.181	
H^+	1446.2	1491.2	1574.6	tb	0.167	0.125	0.912
				$\tilde{\chi}^+_1\tilde{\chi}^0_1$	0.045		
				$\tilde{\chi}^+_2\tilde{\chi}^0_2$	0.030		
				$\tilde{\chi}^+_3\tilde{\chi}^0_3$	0.098	0.219	
				$\tilde{\chi}^+_4\tilde{\chi}^0_4$	0.191	0.229	
				$\tilde{\chi}^+_2\tilde{\chi}^0_1$	0.186	0.034	
				$\tilde{\chi}^+_2\tilde{\chi}^0_2$	0.186	0.295	
				$\tilde{\chi}^+_2\tilde{\chi}^0_3$	0.104	0.034	

Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
t_1	1003.9	1022.4	882.7	$\tilde{g}t$	0.119	0.233	
				$\tilde{\chi}_1^0 t$	0.112	0.053	0.214
				$\tilde{\chi}_2^0 t$	0.225		
				$\tilde{\chi}_3^0 t$	0.089	0.172	0.178
				$\tilde{\chi}_4^0 t$	0.036	0.142	0.113
				$\tilde{\chi}_1^+ b$	0.342	0.055	0.059
				$\tilde{\chi}_2^0 b$	0.077	0.321	0.409
t_2	1307.4	1340.1	1274.0	$\tilde{g}t$	0.456	0.376	0.420
				$\tilde{\chi}_1^+ b$	0.034	0.140	0.183
				$\tilde{\chi}_2^0 t$	0.129		0.202
				$\tilde{\chi}_1^0 t$	0.051		
				$\tilde{\chi}_2^0 t$	0.145	0.051	0.088
				$\tilde{\chi}_3^0 t$	0.052	0.113	0.112
				$\tilde{\chi}_4^0 t$	0.109	0.117	0.128
b_1	1296.6	1334.9	1259.8	$\tilde{\chi}_3^0 b$	0.080	0.087	
				$\tilde{\chi}_4^0 b$	0.063		
				$\tilde{g} b$	0.468	0.670	0.464
				$\tilde{\chi}_1^0 t$	0.207	0.151	0.167
				$\tilde{\chi}_2^0 t$	0.216	0.057	0.224
				$W^- t_1$			0.051
b_2	1520.1	1570.6	1530.2	$\tilde{g} b$	0.948	0.921	0.980

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from **Isajet (I)**, **Susygen (S)** and **Pythia (P)**
3 SPS 3 – mSUGRA scenario

Parameter	Value
m_0	90 GeV
$m_{1/2}$	400 GeV
A_0	0 GeV
$\tan \beta$	10
sign μ	+

model line into 'coannihilation region'

$m_0 = 0.25 m_{1/2} - 10$ GeV

3.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 3 mass spectrum of ISAJET
Isajet parameters

Minimal supergravity (mSUGRA) model:
\[
M_0, M_{1/2}, A_0, tan(beta), sgn(mu), M_t = 90.000, 400.000, 0.000, 10.000, 1.0, 175.000
\]

ISASUGRA unification:
\[
M_GUT = 0.166E+17, g_GUT = 0.711, alpha_GUT = 0.040
\]
\[
1/alpha_{em} = 127.72, sin^2(\theta_w) = 0.2304, alpha_s = 0.121
\]
\[
M_1 = 162.83, M_2 = 311.38, M_3 = 894.68
\]
\[
u(Q) = 508.59, B(Q) = 64.52, Q = 703.81
\]
\[
M_{H1^2} = 0.700E+05, M_{H2^2} = -0.248E+06
\]

ISAJET masses (with signs):
\[
M(GL) = 914.26
\]
\[
M(UL) = 816.57, M(UR) = 791.78, M(DL) = 820.39, M(DR) = 789.34
\]
\[
M(B1) = 757.50, M(B2) = 791.35, M(T1) = 623.83, M(T2) = 819.54
\]
\[
M(SN) = 275.99, M(EL) = 287.11, M(ER) = 178.33
\]
\[
M(NTAU)= 275.11, M(TAU1)= 170.59, M(TAU2)= 289.22
\]
\[
M(Z1) = -160.55, M(Z2) = -296.95, M(Z3) = 512.87, M(Z4) = -529.57
\]
\[
M(W1) = -296.85, M(W2) = -529.51
\]
\[
M(HL) = 116.95, M(HH) = 573.03, M(HA) = 572.42, M(H+) = 578.30
\]
\[
theta_t= 1.0446, theta_b= 0.4105, theta_l= 1.3960, alpha_h= 0.1052
\]

NEUTRALINO MASSES (SIGNED) = -160.555, -296.949, 512.872, -529.573

EIGENVECTOR 1 = 0.04140, -0.10275, -0.02726, 0.99347

EIGENVECTOR 2 = 0.15060, -0.23308, -0.95905, -0.05670

EIGENVECTOR 3 = 0.70876, 0.70153, -0.06164, 0.04133

EIGENVECTOR 4 = 0.68794, -0.66556, 0.27510, -0.08996

CHARGINO MASSES (SIGNED) = -296.846, -529.512

GAMMAL, GAMMAR = 1.91245, 1.78958

ISAJET equivalent input:
\[
\text{MSSMA: } 914.26, 508.59, 572.42, 10.00
\]
\[
\text{MSSMB: } 818.29, 788.94, 792.57, 283.27, 172.98
\]
\[
\text{MSSMC: } 760.72, 785.64, 661.24, 282.42, 170.03, -733.51, -1042.16, -246.11
\]
\[
\text{MSSMD: SAME AS MSSMB (DEFAULT)}
\]
\[
\text{MSSME: } 162.83, 311.38
\]
3.2 Spectrum & parameters of SUSYGEN 3.00/27

![Figure 2: SPS 3 mass spectrum of Susygen](image-url)
Susygen parameters

Susygen inputs:

\[\begin{align*}
m_0 & = 90.000 \\
m_{1/2} & = 400.000 \\
A_0 & = 0.000 \\
m_{\mu/\bar{\mu}} & = 1 \\
\tan \beta & = 10.000
\end{align*} \]

Sparticle masses:

\[\begin{align*}
\text{SUPR} & = 835. \\
\text{SDNR} & = 831. \\
\text{SNU} & = 280. \\
\text{STP1} & = 668. \\
\text{SBT1} & = 800. \\
\text{STA1} & = 175. \\
\text{SGLU} & = 949.
\end{align*} \]

Gaugino masses:

\[\begin{align*}
M_1 & = 165.439 \\
M_2 & = 309.159 \\
M_3 & = 910.421
\end{align*} \]

Neutralino masses:

\[\begin{align*}
\text{Neutralino } m, \text{ CP, ph/zi/ha/hb} & = \begin{array}{rrrrrr}
1 & 1 & 0.857 & -0.503 & 0.053 & 0.100 \\
2 & 2 & -0.513 & -0.811 & 0.175 & 0.219 \\
3 & 3 & -0.006 & 0.075 & -0.635 & 0.768 \\
4 & 4 & 0.053 & -0.288 & -0.750 & -0.593 \\
\end{array}
\end{align*} \]

Chargino masses:

\[\begin{align*}
\text{Chargino masses} & = 294.202 \\
\text{Chargino eta} & = -1.000 \\
\end{align*} \]

\[\begin{align*}
U \text{ matrix } & \quad W1SS+ \\
V \text{ matrix } & \quad W1SS- \\
W1SS+ & = -0.941 \\
W1SS- & = 0.339 \\
W2SS+ & = 0.339 \\
W2SS- & = 0.941
\end{align*} \]

Higgses masses:

\[\begin{align*}
\text{Light CP-even Higgs} & = 114.496 \\
\text{Heavy CP-even Higgs} & = 569.934 \\
\text{CP-odd Higgs} & = 570.032 \\
\text{Charged Higgs} & = 575.354 \\
\sin(\alpha-\beta) & = -0.105 \\
\cos(\alpha-\beta) & = 0.994
\end{align*} \]
3.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 3 mass spectrum of PYTHIA
Pythia parameters

SUGRA input parameters

Parameter	RMSS value
m_0	90.00
m_1/2	400.0
A_0	0.000
tan_beta	10.00
sign mu	1.000

sparticle masses & widths

Particle	Mass (GeV)
M_se_R	184.4 (0.046)
M_se_L	305.8 (0.185)
M_sne_L	295.2 (0.196)
M_sm_R	184.4 (0.046)
M_sm_L	305.8 (0.185)
M_snm_L	295.2 (0.227)
M_st_1	184.2 (0.045)
M_st_2	311.9 (0.246)
M_snt_L	295.0 (0.227)
M_ch0_1	162.5 (0.000)
M_ch0_2	314.7 (0.103)
M_ch0_3	573.9 (3.857)
M_ch0_4	587.5 (4.406)
M_ch+1	314.4 (0.100)
M_ch+2	587.9 (4.398)
M_h0	114.9 (0.004)
M_H0	633.8 (1.470)
M_A0	633.7 (1.531)
M_H+	638.9 (1.511)
M_g^-	951.2 (21.123)
M_uL	834.6 (7.816)
M_uR	800.8 (1.684)
M_dL	837.9 (7.677)
M_dR	797.5 (0.419)
M_b1	756.0 (7.559)
M_b2	795.7 (1.538)
M_t1	591.7 (2.509)
M_t2	824.7 (12.076)

parameter settings IMSS, RMSS

| IMSS(1) | IMSS(2) | IMSS(3) | IMSS(4) | IMSS(5) | IMSS(6) | IMSS(7) | IMSS(8) | IMSS(9) | IMSS(10) | IMSS(11) | IMSS(12) | IMSS(13) | IMSS(14) | IMSS(15) | IMSS(16) | IMSS(17) | IMSS(18) | IMSS(19) | IMSS(20) | IMSS(21) | IMSS(22) | IMSS(23) | IMSS(24) |
|---------|
| 2 | 0 | 0 | 1 | 0 |

RMSS value	RMSS value	RMSS value	RMSS value
400.0	700.0	0.000	
326.5	757.1	-0.1040	
914.1	792.1	634.1	
570.0	638.0	0.4100E-01	
10.00	305.6	1.000	
184.4	0.000	0.1000E+05	
90.00	-813.6	0.1000E+05	
3.4 Decay modes

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
\tilde{e}^-_R	178.3	182.1	184.4	$\tilde{\chi}_1^0 e^-$	1.000	1.000	1.000
\tilde{e}^-_L	287.1	290.8	305.8	$\tilde{\chi}_1^0 e^-$	1.000	1.000	1.000
$\tilde{\nu}_e$	276.0	279.8	295.2	$\tilde{\chi}_1^0 \nu_e$	1.000	1.000	1.000
$\tilde{\mu}^-_R$	178.3	182.1	184.4	$\tilde{\chi}_1^0 \mu^-$	1.000	1.000	1.000
$\tilde{\mu}^-_L$	287.1	290.8	305.8	$\tilde{\chi}_1^0 \mu^-$	1.000	1.000	1.000
$\tilde{\nu}_\mu$	276.0	279.8	295.2	$\tilde{\chi}_1^0 \nu_\mu$	1.000	1.000	1.000
$\tilde{\tau}_1$	170.6	175.0	184.2	$\tilde{\chi}_1^0 \tau^-$	1.000	1.000	1.000
$\tilde{\tau}_2$	289.2	292.7	311.9	$\tilde{\chi}_1^0 \tau^-$	0.873	1.000	0.847
$\tilde{\nu}_\tau$	275.1	278.9	295.2	$\tilde{\chi}_1^0 \nu_\tau$	0.872	1.000	0.862

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^0$	160.6	163.1	162.5	$\tilde{\chi}_1^0 h^0$	0.089	0.140	0.098
$\tilde{\chi}_2^0$	296.9	294.5	314.7	$\tilde{\chi}_1^0 h^0$	0.121	0.177	0.126
$\tilde{\tau}_1^- \tau^-$	121	1.177	0.126				
$\tilde{\nu}_e \nu_e$	0.083	0.067	0.088				
$\tilde{\nu}_\mu \nu_\mu$	0.083	0.067	0.088				
$\tilde{\nu}_\tau \nu_\tau$	0.090	0.074	0.089				
$\tilde{\chi}_3^0$	512.9	508.5	573.9	$\tilde{\chi}_1^0 W^-$	0.295	0.334	0.298
$\tilde{\chi}_4^0$	529.6	525.5	587.5	$\tilde{\chi}_1^0 W^+$	0.272	0.306	0.278

Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^+$	296.8	294.2	314.4	$\tilde{\chi}_1^0W^+$	0.108	0.450	0.111
				$\tilde{\nu}_e e^+$	0.185	0.169	0.189
				$\tilde{\nu}_\mu \mu^+$	0.185	0.169	0.189
				$\tilde{\nu}_\tau \tau^+$	0.202	0.189	0.194
				$\tilde{\mu}_L \nu_e$	0.039	0.037	0.037
				$\tilde{\tau}_L \nu_e$	0.219	0.240	0.240
$\tilde{\chi}_2^+$	529.5	525.4	587.9	$\tilde{\chi}_1^0W^+$	0.080	0.087	0.081
				$\tilde{\chi}_2^0W^+$	0.291	0.322	0.296
				$\tilde{\mu}_L \nu_e$	0.035	0.038	0.038
				$\tilde{\tau}_L \nu_e$	0.039	0.039	0.039
				$\tilde{\chi}_1^+ Z^0$	0.260	0.415	0.270
				$\tilde{\chi}_1^+ h^0$	0.201	0.226	0.226

Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	117.0	114.5	114.9	$\tau^- \tau^+$	0.049	0.077	0.065
				$b \bar{b}$	0.820	0.761	0.777
				$c \bar{c}$	0.037	0.045	0.045
				$g g$	0.066	0.038	0.038
				$W^+ W^-$	0.062	0.063	0.063
H^0	573.0	569.9	633.8	$\tau^- \tau^+$	0.061	0.096	0.090
				$b \bar{b}$	0.799	0.693	0.764
				$t \bar{t}$	0.113	0.164	0.139
A^0	572.4	570.0	633.7	$\tau^- \tau^+$	0.057	0.088	0.086
				$b \bar{b}$	0.748	0.638	0.735
				$t \bar{t}$	0.144	0.202	0.176
				$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	0.037	0.037	0.037
H^+	578.3	575.4	638.9	$\nu_\tau \tau^+$	0.072	0.095	0.088
				$t \bar{b}$	0.861	0.820	0.910
				$\tilde{\chi}_1^+ \tilde{\chi}_1^0$	0.057	0.078	0.078
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
----------	--------	--------	--------	-------	--------	--------	--------
t_1	623.8	667.7	591.7	$\tilde{\chi}^0_{1t}$	0.231	0.189	0.311
				$\tilde{\chi}^0_{2t}$	0.159	0.128	0.155
				$\tilde{\chi}^0_{1b}$	0.483	0.390	0.534
				$\tilde{\chi}^0_{2b}$	0.128	0.294	
t_2	819.5	830.4	824.8	$\tilde{\chi}^0_{1b}$	0.206	0.220	0.223
				$\tilde{\chi}^0_{2b}$	0.157	0.330	0.107
				$Z^0\tilde{\tau}_1$	0.143		0.259
				$h^0\tilde{\tau}_1$	0.053		0.069
				$\tilde{\chi}^0_2$	0.090	0.071	0.096
				$\tilde{\chi}^0_3$	0.088	0.172	0.051
				$\tilde{\chi}^0_4$	0.238	0.195	0.166
b_1	757.5	800.2	756.0	$\tilde{\chi}^0_{1b}$			0.037
				$\tilde{\chi}^0_{2b}$	0.233	0.311	0.249
				$\tilde{\chi}^0_{1t}$	0.373	0.555	0.395
				$\tilde{\chi}^0_{2t}$	0.224		0.051
				$W^-\tilde{\tau}_1$	0.127		0.333
b_2	791.3	831.3	795.7	$\tilde{\chi}^0_{1b}$	0.125	0.168	0.255
				$\tilde{\chi}^0_{2b}$	0.087	0.078	0.123
				$\tilde{\chi}^0_{3b}$	0.041	0.137	
				$\tilde{\chi}^0_{4b}$	0.058	0.165	
				$\tilde{\chi}^0_{1t}$	0.143	0.130	0.203
				$\tilde{\chi}^0_{2t}$	0.356	0.322	0.101
				$W^-\tilde{\tau}_1$	0.189		0.315

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from ISAJET (I), SUSYGEN (S) and PYTHIA (P)
4 SPS 4 – mSUGRA scenario

Parameter	Value
m_0	400 GeV
$m_{1/2}$	300 GeV
A_0	0 GeV
$\tan \beta$	50
sign μ	+

‘large tan β’ scenario

4.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 4 mass spectrum of ISAJET
ISAJET parameters

Minimal supergravity (mSUGRA) model:

\[
\begin{align*}
M_0, & \quad M_{1/2}, \quad A_0, \quad \tan(\beta), \quad \text{sgn}(\mu), \quad M_t = \\
400.000 & \quad 300.000 \quad 0.000 \quad 50.000 \quad 1.0 \quad 175.000
\end{align*}
\]

ISASUGRA unification:

\[
\begin{align*}
M_{\text{GUT}} &= 0.211E+17 \quad g_{\text{GUT}} = 0.710 \quad \alpha_{\text{GUT}} = 0.040 \\
F_{\text{T_GUT}} &= 0.486 \quad F_{\text{B_GUT}} = 0.186 \quad F_{\text{L_GUT}} = 0.463
\end{align*}
\]

\[
\begin{align*}
\frac{1}{\alpha_{\text{em}}} &= 127.73 \quad \sin^2(\theta_{\text{w}}) = 0.2310 \quad \alpha_s = 0.119 \\
M_1 &= 120.80 \quad M_2 = 233.17 \quad M_3 = 689.41 \\
\mu(Q) &= 377.03 \quad B(Q) = 13.05 \quad Q = 571.25 \\
M_{H1^2} &= 0.602E+05 \quad M_{H2^2} = -0.140E+06
\end{align*}
\]

ISAJET masses (with signs):

\[
\begin{align*}
M(\text{GL}) &= 721.03 \\
M(\text{UL}) &= 730.24 \quad M(\text{UR}) = 715.10 \quad M(\text{DL}) = 734.59 \quad M(\text{DR}) = 714.32 \\
M(\text{B1}) &= 606.86 \quad M(\text{B2}) = 706.45 \quad M(\text{T1}) = 530.58 \quad M(\text{T2}) = 695.88 \\
M(\text{SN}) &= 441.22 \quad M(\text{EL}) = 448.40 \quad M(\text{ER}) = 416.54 \\
M(\text{NTAU}) &= 389.43 \quad M(\text{TAU1}) = 267.61 \quad M(\text{TAU2}) = 414.91 \\
M(Z1) &= -118.66 \quad M(Z2) = -218.14 \quad M(Z3) = 383.91 \quad M(Z4) = -401.08 \\
M(W1) &= -218.06 \quad M(W2) = -402.28 \\
M(\text{HL}) &= 115.39 \quad M(\text{HH}) = 404.63 \quad M(\text{HA}) = 404.43 \quad M(\text{H+}) = 416.28 \\
\end{align*}
\]

\[
\begin{align*}
\theta_t &= 1.0387 \quad \theta_b = 0.6261 \quad \theta_l = 1.1998 \quad \alpha_h = 0.0204
\end{align*}
\]

NEUTRALINO MASSES (SIGNED) = -118.657 -218.137 383.909 -401.079

EIGENVECTOR 1 = 0.04547 -0.13669 -0.03365 0.98900

EIGENVECTOR 2 = 0.17072 -0.28852 -0.93876 -0.07966

EIGENVECTOR 3 = -0.70951 -0.69629 0.09011 -0.06055

EIGENVECTOR 4 = -0.68219 0.64285 -0.33089 0.10895

CHARGINO MASSES (SIGNED) = -218.062 -402.275

GAMMAL, GAMMAR = 1.99843 1.81882

ISAJET equivalent input:

MSSMA: 721.03 377.03 404.43 50.00

MSSMB: 732.20 713.87 716.00 445.90 414.23

MSSMC: 640.09 673.40 556.76 394.72 289.48 -552.20 -729.52 -102.27

MSSMD: SAME AS MSSMB (DEFAULT)

MSSME: 120.80 233.17
4.2 Spectrum & parameters of SUSYGEN 3.00/27

Figure 2: SPS 4 mass spectrum of Susygen
Susygen parameters

Susygen inputs:

\[m_0 = 400.000 \quad \text{TANB} = 50.000 \]
\[m_{1/2} = 300.000 \quad \mu/|\mu| = 1 \]
\[A_0 = 0.000 \]

Sparticle masses:

\begin{align*}
\text{SUPR} & \quad 755. \\
\text{SDNR} & \quad 753. \\
\text{SELR} & \quad 418. \\
\text{SNU} & \quad 445. \\
\text{STP1} & \quad 569. \\
\text{SBT1} & \quad 628. \\
\text{STA1} & \quad 296. \\
\text{SGLU} & \quad 747. \\
\end{align*}

Gaugino masses:

\[M_1 = 124.255 \quad M_2 = 232.053 \quad M_3 = 694.630 \]
\[\text{NEUTRALINO m, CP, ph/zi/ha/hb 1} = 122.0 \quad 1. \quad 0.849 \quad -0.508 \quad 0.050 \quad 0.138 \]
\[\text{NEUTRALINO m, CP, ph/zi/ha/hb 2} = 216.9 \quad 1. \quad -0.525 \quad -0.782 \quad 0.177 \quad 0.286 \]
\[\text{NEUTRALINO m, CP, ph/zi/ha/hb 3} = 382.6 \quad -1. \quad -0.009 \quad 0.109 \quad -0.695 \quad 0.710 \]
\[\text{NEUTRALINO m, CP, ph/zi/ha/hb 4} = 400.0 \quad 1. \quad -0.062 \quad -0.345 \quad -0.695 \quad -0.628 \]
\[\text{CHARGINO MASSES} = 216.667 \quad 401.170 \]
\[\text{CHARGINO ETA} = -1.000 \quad 1.000 \]

\begin{align*}
\text{U matrix} & \quad \text{WINO} \quad \text{HIGGSINO} \\
\text{U1SS+} & \quad -0.909 \quad 0.417 \\
\text{U2SS+} & \quad 0.417 \quad 0.909 \\
\text{V matrix} & \quad \text{WINO} \quad \text{HIGGSINO} \\
\text{V1SS-} & \quad 0.969 \quad -0.246 \\
\text{V2SS-} & \quad 0.246 \quad 0.969 \\
\end{align*}

Higgses masses:

\[\text{Light CP-even Higgs} = 113.437 \]
\[\text{Heavy CP-even Higgs} = 351.833 \]
\[\text{CP-odd Higgs} = 353.570 \]
\[\text{Charged Higgs} = 361.880 \]
\[\sin(a-b) = -0.021 \]
\[\cos(a-b) = 1.000 \]
4.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 4 mass spectrum of PYTHIA
Pythia parameters

SUGRA input parameters

Parameter	RMSS(8)		RMSS(1)		RMSS(16)		RMSS(5)		RMSS(4)	
m_0	400.0		m_1/2	300.0	A_0	0.000	tan_beta	50.00	sign mu	1.000

sparticle masses & widths

sparticle	RMSS(1)		RMSS(2)		RMSS(3)		RMSS(4)		RMSS(5)		RMSS(6)		RMSS(7)		RMSS(8)		RMSS(9)		RMSS(10)		RMSS(11)		RMSS(12)		RMSS(13)		RMSS(14)		RMSS(15)		RMSS(16)		RMSS(17)		RMSS(18)		RMSS(19)		RMSS(20)		RMSS(21)		RMSS(22)		RMSS(23)		RMSS(24)																						
M_se_R	418.8 (1.782)		M_se_L	457.2 (3.377)	M_sne_L	450.1 (3.396)		M_sm_R	418.8 (1.783)	M_sm_L	457.2 (3.377)	M_snm_L	450.1 (3.396)		M_st_1	356.4 (1.972)	M_st_2	467.2 (2.618)	M_snt_L	433.7 (3.243)		M_ch0_1	121.7 (0.000)	M_ch0_2	233.3 (0.001)	M_ch0_3	440.9 (2.634)		M_ch0_4	454.0 (2.855)		M_ch+_1	233.1 (0.005)	M_ch+_2	455.6 (3.020)		M_h0	114.1 (0.004)	M_H0	209.6 (7.886)	M_A0	209.8 (7.909)		M_H+	226.9 (3.453)		M_g~	749.4 (7.937)		M_uL	746.3 (7.718)	M_uR	725.0 (1.563)	M_dL	750.4 (7.534)		M_dR	723.4 (0.390)		M_b1	519.8 (1.335)	M_b2	634.0 (4.829)	M_t1	486.7 (2.672)		M_t2	668.7 (10.050)	
4.4 Decay modes

particle	m_I (GeV)	m_S (GeV)	m_P (GeV)	decay	B_I	B_S	B_P
\tilde{e}_R^-	416.5	418.3	418.8	$\tilde{\chi}_1^0 e^-$	0.996	0.995	0.996
\tilde{e}_L^-	448.4	452.0	457.2	$\tilde{\chi}_1^0 e^-$	0.127	0.122	0.136
				$\tilde{\chi}_2^0 e^-$	0.318	0.320	0.309
				$\tilde{\chi}_1^+ \nu_e$	0.546	0.547	0.555
$\tilde{\nu}_e$	441.2	444.9	450.1	$\tilde{\chi}_1^0 \nu_e$	0.157	0.155	0.157
				$\tilde{\chi}_2^0 \nu_e$	0.250	0.250	0.261
				$\tilde{\chi}_1^+ e^-$	0.588	0.590	0.582
$\tilde{\mu}_R^-$	416.5	418.3	418.8	$\tilde{\chi}_1^0 \mu^-$	0.996	0.995	0.996
$\tilde{\mu}_L^-$	448.4	452.0	457.2	$\tilde{\chi}_1^0 \mu^-$	0.127	0.122	0.136
				$\tilde{\chi}_2^0 \mu^-$	0.318	0.320	0.309
				$\tilde{\chi}_1^+ \nu_\mu$	0.546	0.547	0.555
$\tilde{\nu}_\mu$	441.2	444.9	450.1	$\tilde{\chi}_1^0 \nu_\mu$	0.157	0.155	0.157
				$\tilde{\chi}_2^0 \nu_\mu$	0.250	0.250	0.261
				$\tilde{\chi}_1^+ \mu^-$	0.588	0.590	0.582
$\tilde{\tau}_1^-$	267.6	296.0	356.4	$\tilde{\chi}_1^0 \tau^-$	0.836	0.742	0.631
				$\tilde{\chi}_2^0 \tau^-$	0.057	0.090	0.129
				$\tilde{\chi}_1^+ \nu_\tau$	0.107	0.168	0.240
$\tilde{\tau}_2^-$	414.9	424.1	467.2	$\tilde{\chi}_1^0 \tau^-$	0.196	0.222	0.292
				$\tilde{\chi}_2^0 \tau^-$	0.263	0.308	0.261
				$\tilde{\chi}_1^+ \nu_\tau$	0.378	0.437	0.407
				$Z^0 \tilde{\tau}_1^-$	0.088	0.031	
				$h^0 \tilde{\tau}_1^-$	0.063		
$\tilde{\nu}_\tau$	389.4	400.8	433.7	$\tilde{\chi}_1^0 \nu_\tau$	0.152	0.171	0.157
				$\tilde{\chi}_2^0 \nu_\tau$	0.209	0.246	0.248
				$\tilde{\chi}_1^+ \tau^-$	0.542	0.583	0.595
				$W^+ \tilde{\tau}_1^-$	0.097		

Table 1: Sleponte masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}^0_1$	118.7	122.0	121.7	$\tilde{\chi}^0_1 Z^0$	1.000	1.000	1.000
$\tilde{\chi}^0_2$	218.1	216.9	233.3	$\tilde{\chi}^0_1 W^-$, $\tilde{\chi}^0_1 W^+$, $\tilde{\chi}^0_2 Z^0$, $\tilde{\tau}_1^+ \tau^+$, $\tilde{\tau}_1^+ \tau^-$	0.989	0.995	1.000
$\tilde{\chi}^0_3$	383.9	382.6	440.9	$\tilde{\chi}^0_1 W^-$, $\tilde{\chi}^0_1 W^+$, $\tilde{\chi}^0_2 Z^0$, $\tilde{\tau}_1^+ \tau^+$, $\tilde{\tau}_1^+ \tau^-$	0.323	0.345	0.279
$\tilde{\chi}^0_4$	401.1	400.0	454.0	$\tilde{\chi}^0_1 W^-$, $\tilde{\chi}^0_1 W^+$, $\tilde{\chi}^0_2 Z^0$, $\tilde{\tau}_1^+ \tau^+$, $\tilde{\tau}_1^+ \tau^-$	0.312	0.364	0.285

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}^+_1$	218.1	216.7	233.1	$\tilde{\chi}^0_1 W^+$	0.998	1.000	1.000
$\tilde{\chi}^+_2$	402.3	401.2	455.6	$\tilde{\chi}^0_1 W^+$, $\tilde{\chi}^0_2 W^+$, $\tilde{\tau}_1^+ \nu_\tau$, $\tilde{\tau}_1^+ \tau^+$, $\tilde{\tau}_1^+ \tau^-$	0.100	0.103	0.082

Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	115.4	113.4	114.1	$\tau^- \tau^+$, $b\bar{b}$, $c\bar{c}$, gg, $W^+ W^-$	0.050	0.078	0.066
H^0	404.6	351.8	209.6	$\tau^- \tau^+$, $b\bar{b}$	0.067	0.112	0.137
A^0	404.4	353.6	209.8	$\tau^- \tau^+$, $b\bar{b}$	0.067	0.112	0.137
H^+	416.3	361.9	226.9	$\nu_\tau \tau^+$, $t\bar{b}$	0.105	0.149	0.339
particle	m_I	m_S	m_P	decay	\mathcal{B}_I	\mathcal{B}_S	\mathcal{B}_P
----------	--------	--------	--------	-------	----------------	----------------	----------------
t_1	530.6	568.5	486.7	\tilde{t}_1	0.150	0.127	0.192
				\tilde{t}_2	0.127	0.116	0.154
				$\tilde{t}_1^+ b$	0.468	0.396	0.631
				$\tilde{t}_2^+ b$	0.256	0.343	0.488
t_2	695.9	688.8	666.7	$\tilde{t}_1^+ b$	0.209	0.207	0.488
				$\tilde{t}_2^+ b$	0.343	0.344	0.720
				$W^+ \tilde{b}_1$	0.190		
				$Z^0 \tilde{t}_1$	0.057		
				$\tilde{\chi}_1^0 t$	0.040		
				$\tilde{\chi}_2^0 t$	0.058	0.054	0.133
				$\tilde{\chi}_3^0 t$	0.079	0.175	0.208
				$\tilde{\chi}_4^0 t$	0.210	0.209	0.243
b_1	606.9	627.5	519.8	\tilde{b}_1	0.072	0.060	0.139
				\tilde{b}_2	0.273	0.206	0.411
				\tilde{b}_3	0.166	0.204	
				\tilde{b}_4	0.099	0.133	
				$\tilde{\chi}^0_1 t$	0.343	0.333	0.447
				$\tilde{\chi}^0_2 t$	0.047	0.064	
b_2	706.5	700.7	634.0	\tilde{b}_1	0.042		
				\tilde{b}_2	0.213	0.243	0.215
				\tilde{b}_3	0.208	0.220	
				\tilde{b}_4		0.319	
				$W^- \tilde{t}_1$	0.450	0.488	0.073
				$Z^0 \tilde{b}_1$	0.086	0.310	0.033

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
5 SPS 5 – mSUGRA scenario

\[
\begin{array}{|l|c|}
\hline
m_0 & 150 \text{ GeV} \\
\hline
m_{1/2} & 300 \text{ GeV} \\
\hline
A_0 & -1000 \text{ GeV} \\
\hline
\tan \beta & 5 \\
\hline
\text{sign } \mu & + \\
\hline
\end{array}
\]

‘light stop’ scenario

5.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 5 mass spectrum of ISAJET
ISAJET parameters

Minimal supergravity (mSUGRA) model:

\[
M_0, \ M_{(1/2)}, \ A_0, \ \tan(\beta), \ \text{sgn}(\mu), \ M_t =
\begin{array}{cccccc}
150.000 & 300.000 & -1000.000 & 5.000 & 1.0 & 175.000
\end{array}
\]

ISASUGRA unification:

\[
\begin{align*}
M_{\text{GUT}} &= 0.190\times10^{17} \\
g_{\text{GUT}} &= 0.713 \\
\alpha_{\text{GUT}} &= 0.040 \\
1/\alpha_{\text{em}} &= 127.66 \\
\sin^2(\theta_{\text{W}}) &= 0.2309 \\
\alpha_s &= 0.119 \\
M_1 &= 121.39 \\
M_2 &= 234.56 \\
M_3 &= 694.68 \\
\mu(Q) &= 639.80 \\
B(Q) &= 144.90 \\
Q &= 449.79 \\
M_{H1}^2 &= 0.572\times10^5 \\
M_{H2}^2 &= -0.393\times10^6 \\
M_{H1} &= 119.79 \\
M_{H2} &= 694.03 \\
M_{H1} &= 693.86 \\
M_{H+} &= 698.49 \\
\theta_t &= 1.0031 \\
\theta_b &= 0.1580 \\
\theta_l &= 1.3356 \\
\alpha_h &= 0.2069 \\
\text{NEUTRALINO MASSES (SIGNED)} &= -119.510, -226.329, 642.833, -652.949 \\
\text{EIGENVECTOR 1} &= 0.02835, -0.07603, -0.02968, 0.99626 \\
\text{EIGENVECTOR 2} &= 0.07465, -0.14434, -0.98579, -0.04251 \\
\text{EIGENVECTOR 3} &= -0.70833, -0.70332, 0.05073, -0.03201 \\
\text{EIGENVECTOR 4} &= 0.70135, -0.69190, 0.15735, -0.06807 \\
\text{CHARGINO MASSES (SIGNED)} &= -226.327, -652.683 \\
\text{GAMMAL, GAMMAR} &= 1.77997, 1.67887
\end{align*}
\]

ISAJET equivalent input:

MSSMA: 710.31 639.80 693.86 5.00
MSSMB: 643.88 622.91 625.44 252.24 186.76
MSSMC: 535.16 620.50 360.54 250.13 180.89 -905.63 -1671.36 -1179.34
MSSMD: SAME AS MSSMB (DEFAULT)
MSSME: 121.39 234.56
5.2 Spectrum & parameters of SUSYGEN 3.00/27

![Figure 2: SPS 5 mass spectrum of Susygen](image-url)

Figure 2: SPS 5 mass spectrum of Susygen
Susygen parameters

Susygen inputs:

\[
\begin{align*}
m_0 &= 150.000 \\
m_{1/2} &= 300.000 \\
A_0 &= -1000.000
\end{align*}
\]

\[
\begin{align*}
\text{TANB} &= 5.000 \\
\text{mu}/|\text{mu}| &= 1
\end{align*}
\]

Sparticle masses:

\[
\begin{align*}
\text{SUPR} &= 658. \\
\text{SDNR} &= 656. \\
\text{SELR} &= 193. \\
\text{SNL} &= 248. \\
\text{STP1} &= 210. \\
\text{STP2} &= 632. \\
\text{SBT1} &= 561. \\
\text{SBT2} &= 654. \\
\text{STA1} &= 183. \\
\text{STA2} &= 261. \\
\text{SGLU} &= 728.
\end{align*}
\]

Gaugino masses:

\[
\begin{align*}
M_1 &= 123.173 \\
M_2 &= 231.684 \\
M_3 &= 712.143
\end{align*}
\]

\[
\begin{align*}
\text{NEUTRALINO } m, \text{ CP, ph/zi/ha/hb } 1 &= 121.2 \\
\text{NEUTRALINO } m, \text{ CP, ph/zi/ha/hb } 2 &= 223.1 \\
\text{NEUTRALINO } m, \text{ CP, ph/zi/ha/hb } 3 &= 628.5 \\
\text{NEUTRALINO } m, \text{ CP, ph/zi/ha/hb } 4 &= 639.0
\end{align*}
\]

\[
\begin{align*}
\text{CHARGINO MASSES} &= 222.964 \\
\text{CHARGINO ETA} &= -1.000
\end{align*}
\]

\[
\begin{align*}
U \text{ matrix } \\
W1SS^+ &= -0.977 \\
W1SS^- &= 0.214 \\
W2SS^+ &= 0.214 \\
W2SS^- &= 0.977
\end{align*}
\]

\[
\begin{align*}
V \text{ matrix } \\
W1SS^+ &= 0.994 \\
W1SS^- &= -0.112 \\
W2SS^+ &= 0.112 \\
W2SS^- &= 0.994
\end{align*}
\]

Higgses masses:

\[
\begin{align*}
\text{Light CP-even Higgs} &= 113.925 \\
\text{Heavy CP-even Higgs} &= 679.220 \\
\text{CP-odd Higgs} &= 679.964 \\
\text{Charged Higgs} &= 684.484 \\
\sin(a-b) &= -0.205 \\
\cos(a-b) &= 0.979
\end{align*}
\]
5.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 5 mass spectrum of PYTHIA
Pythia parameters

SUGRA input parameters

\[
\begin{align*}
\text{m}_0 & \quad \text{RMSS}(8) = 150.0 \\
\text{m}_{1/2} & \quad \text{RMSS}(1) = 300.0 \\
A_0 & \quad \text{RMSS}(16) = -1000. \\
\text{tan}_\beta & \quad \text{RMSS}(5) = 5.000 \\
\text{sign } \mu & \quad \text{RMSS}(4) = 1.000
\end{align*}
\]

Sparticle masses & widths

\[
\begin{align*}
\text{M}_{\text{se}_R} & \quad 194.4 \ (0.366) \\
\text{M}_{\text{se}_L} & \quad 267.1 \ (0.349) \\
\text{M}_{\text{sne}_L} & \quad 255.7 \ (0.281) \\
\text{M}_{\text{sm}_R} & \quad 194.4 \ (0.366) \\
\text{M}_{\text{sm}_L} & \quad 267.1 \ (0.349) \\
\text{M}_{\text{snm}_L} & \quad 255.7 \ (0.281) \\
\text{M}_{\text{st}_1} & \quad 195.9 \ (0.373) \\
\text{M}_{\text{st}_2} & \quad 271.3 \ (0.399) \\
\text{M}_{\text{snt}_L} & \quad 255.1 \ (0.276) \\
\text{M}_{\text{ch0}_1} & \quad 121.4 \ (0.000) \\
\text{M}_{\text{ch0}_2} & \quad 236.5 \ (0.004) \\
\text{M}_{\text{ch0}_3} & \quad 649.9 \ (12.037) \\
\text{M}_{\text{ch0}_4} & \quad 660.1 \ (24.943) \\
\text{M}_{\text{ch}+1} & \quad 236.2 \ (0.005) \\
\text{M}_{\text{ch}+2} & \quad 660.0 \ (15.581) \\
\text{M}_{\text{h0}} & \quad 111.9 \ (0.004) \\
\text{M}_{\text{H0}} & \quad 702.4 \ (1.405) \\
\text{M}_{\text{A0}} & \quad 702.0 \ (1.610) \\
\text{M}_{\text{H}+} & \quad 707.6 \ (1.624) \\
\text{M}_{\text{g}^{-}} & \quad 737.6 \ (19.386) \\
\text{M}_{\text{uL}} & \quad 658.1 \ (6.389) \\
\text{M}_{\text{uR}} & \quad 634.3 \ (1.344) \\
\text{M}_{\text{dL}} & \quad 662.1 \ (6.306) \\
\text{M}_{\text{dR}} & \quad 632.5 \ (0.335) \\
\text{M}_{\text{b1}} & \quad 547.2 \ (14.603) \\
\text{M}_{\text{b2}} & \quad 629.3 \ (0.466) \\
\text{M}_{\text{t1}} & \quad 274.0 \ (0.068) \\
\text{M}_{\text{t2}} & \quad 647.9 \ (15.171)
\end{align*}
\]

Parameter settings IMSS, RMSS

\[
\begin{align*}
\text{IMSS}(1) & = 2 \quad \text{IMSS}(4) = 1 \quad \text{IMSS}(7) = 0 \quad \text{IMSS}(10) = 0 \\
\text{IMSS}(2) & = 0 \quad \text{IMSS}(5) = 0 \quad \text{IMSS}(8) = 0 \quad \text{IMSS}(11) = 0 \\
\text{IMSS}(3) & = 0 \quad \text{IMSS}(6) = 0 \quad \text{IMSS}(9) = 0 \quad \text{IMSS}(12) = 0
\end{align*}
\]

\[
\begin{align*}
\text{RMSS}(1) & = 300.0 \quad \text{RMSS}(9) = 700.0 \quad \text{RMSS}(17) = 1000.0 \\
\text{RMSS}(2) & = 244.9 \quad \text{RMSS}(10) = 544.6 \quad \text{RMSS}(18) = -0.2049 \\
\text{RMSS}(3) & = 706.3 \quad \text{RMSS}(11) = 628.4 \quad \text{RMSS}(19) = 703.5 \\
\text{RMSS}(4) & = 646.9 \quad \text{RMSS}(12) = 384.8 \quad \text{RMSS}(20) = 0.4100\times10^{-1} \\
\text{RMSS}(5) & = 5.000 \quad \text{RMSS}(13) = 266.5 \quad \text{RMSS}(21) = 1.000 \\
\text{RMSS}(6) & = 267.1 \quad \text{RMSS}(14) = 192.7 \quad \text{RMSS}(22) = 800.0 \\
\text{RMSS}(7) & = 194.4 \quad \text{RMSS}(15) = 1000.0 \quad \text{RMSS}(23) = 0.1000\times10^{5} \\
\text{RMSS}(8) & = 150.0 \quad \text{RMSS}(16) = -819.2 \quad \text{RMSS}(24) = 0.1000\times10^{5}
\end{align*}
\]
5.4 Decay modes

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
\tilde{e}_R	191.4	193.5	194.4	$\tilde{\chi}_1^0 e^-$	1.000	1.000	1.000
\tilde{e}_L	256.3	259.3	267.1	$\tilde{\chi}_1^0 e^-$	0.536	0.448	0.552
				$\tilde{\chi}_2^0 e^-$	0.161	0.191	0.154
				$\tilde{\chi}_1^0 \nu_e$	0.303	0.361	0.294
$\tilde{\nu}_e$	244.5	247.7	255.7	$\tilde{\chi}_1^0 \nu_e$	0.764	0.651	0.762
				$\tilde{\chi}_2^0 \nu_e$	0.075	0.110	0.075
				$\tilde{\chi}_1^+ e^-$	0.161	0.239	0.163
$\tilde{\mu}_R$	191.4	193.5	194.4	$\tilde{\chi}_1^0 \mu^-$	1.000	1.000	1.000
$\tilde{\mu}_L$	256.3	259.3	267.1	$\tilde{\chi}_1^0 \mu^-$	0.536	0.448	0.552
				$\tilde{\chi}_2^0 \mu^-$	0.161	0.191	0.154
				$\tilde{\chi}_1^0 \nu_\mu$	0.303	0.361	0.294
$\tilde{\nu}_\mu$	244.5	247.7	255.7	$\tilde{\chi}_1^0 \nu_\mu$	0.764	0.651	0.762
				$\tilde{\chi}_2^0 \nu_\mu$	0.075	0.110	0.075
				$\tilde{\chi}_1^+ \mu^-$	0.161	0.239	0.163
$\tilde{\tau}_1^-$	180.7	182.7	195.9	$\tilde{\chi}_1^0 \tau^-$	1.000	1.000	1.000
$\tilde{\tau}_2^-$	257.9	260.5	271.3	$\tilde{\chi}_1^0 \tau^-$	0.573	0.490	0.517
				$\tilde{\chi}_2^0 \tau^-$	0.148	0.176	0.166
				$\tilde{\chi}_1^+ \nu_\tau$	0.279	0.334	0.317
$\tilde{\nu}_\tau$	242.3	245.4	255.1	$\tilde{\chi}_1^0 \nu_\tau$	0.801	0.686	0.773
				$\tilde{\chi}_2^0 \nu_\tau$	0.064	0.099	0.072
				$\tilde{\chi}_1^+ \tau^-$	0.134	0.215	0.155

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^0$	119.5	121.2	121.4		1.000	1.000	1.000
$\tilde{\chi}_2^0$	226.3	223.1	236.5	$\tilde{\tau}_1^- \tau^+$	0.466	0.465	0.224
				$\tilde{\tau}_2^+ \tau^-$	0.466	0.465	0.224
				$\tilde{\chi}_1^0 h^0$			0.416
$\tilde{\chi}_3^0$	642.8	628.5	649.9	$\tilde{\chi}_1^+ W^-$	0.125	0.079	0.139
				$\tilde{\chi}_1^- W^+$	0.125	0.079	0.139
				$\tilde{\chi}_1^0 Z^0$	0.033		0.036
				$\tilde{\chi}_1^0 Z^0$	0.106	0.062	0.118
				$\tilde{t}_1 \tilde{t}$	0.294	0.373	0.270
				$\tilde{t}_1 t$	0.294	0.373	0.270
$\tilde{\chi}_4^0$	652.9	639.0	660.1	$\tilde{\chi}_1^+ W^+$	0.064	0.089	0.068
				$\tilde{\chi}_1^- W^+$	0.064	0.089	0.068
				$\tilde{\chi}_2^0 h^0$	0.049	0.064	0.054
				$\tilde{t}_1 \tilde{t}$	0.391	0.352	0.383
				$\tilde{t}_1 t$	0.391	0.352	0.383

Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^+$	226.3	223.0	236.2	$\tilde{\chi}_1^0 W^+$	0.205	0.369	0.667
				$\tilde{t}_1 \tilde{b}$	0.163	0.548	
				$\tilde{\tau}_1^+ \nu_\tau$	0.622	0.080	0.333
$\tilde{\chi}_2^+$	652.7	638.8	660.0	$\tilde{\chi}_2^0 W^+$	0.109	0.112	0.117
				$\tilde{t}_1 \tilde{b}$	0.647	0.723	0.623
				$\tilde{\chi}_1^+ Z^0$	0.103	0.115	0.109
				$\tilde{\chi}_1^+ h^0$	0.093		0.099

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	119.8	113.9	111.9	$\tau^+\tau^-$	0.048	0.080	0.066
				bb	0.798	0.790	0.796
				$c\bar{c}$	0.036	0.047	
				gg	0.034	0.037	
				W^+W^-	0.060	0.045	
H^0	694.0	679.2	702.4	bb	0.058	0.030	0.237
				$t\bar{t}$	0.162	0.139	0.708
				$\tilde{t}_1\tilde{t}_1$	0.735	0.790	
A^0	693.9	680.0	702.0	bb	0.065	0.121	0.208
				$t\bar{t}$	0.214	0.641	0.764
				$\tilde{t}_1\tilde{t}_1$	0.661		
				$\tilde{h}^0\tilde{h}^0$			0.111
H^+	698.5	684.5	707.6	tb	0.885	0.891	0.973
				$\tilde{t}_1\tilde{h}^0$	0.051	0.058	
				$\tilde{t}_1\tilde{\tau}_1^+$	0.036		

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
t_1	220.7	210.0	274.0	\tilde{x}^0_{1c}	1.000	1.000	1.000
				\tilde{x}^+_1b			
t_2	644.6	631.6	647.9	\tilde{x}^+_1b	0.125	0.704	0.155
				$Z^0\tilde{t}_1$	0.612	0.611	
				$h^0\tilde{t}_1$	0.139	0.112	
				$W^+\tilde{b}_1$	0.060	0.043	
				\tilde{x}^0_1t	0.061		
				\tilde{x}^0_2t	0.048	0.235	0.060
b_1	535.9	560.8	547.2	\tilde{x}^0_2b	0.080	0.389	0.101
				\tilde{x}^0_1t	0.101	0.584	0.129
				$W^-\tilde{t}_1$	0.813	0.764	
b_2	623.0	654.5	629.3	\tilde{x}^0_1b	0.285	0.894	0.711
				$\tilde{\tau}_2^0b$	0.041		
				\tilde{x}^0_1t	0.042	0.062	
				$W^-\tilde{t}_1$	0.644	0.238	
6 SPS 6 – MSSM scenario

Parameter	Value
m_0	150 GeV
$m_{1/2}$	300 GeV
A_0	0 GeV
$\tan \beta$	10
sign μ	+

‘non-unified gaugino masses’

$M_1 = 480$ GeV, $M_2 = M_3 = 300$ GeV

$m_0 = 0.5 M_2$

6.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 6 mass spectrum of ISAJET
ISAJET parameters

Minimal supergravity (mSUGRA) model:

\[
\begin{align*}
M_0, & \quad M_{(1/2)}, \quad A_0, \quad \tan(\beta), \quad \text{sgn}(\mu), \quad M_t = \\
& 150.000 \quad 300.000 \quad 0.000 \quad 10.000 \quad 1.0 \quad 175.000 \\
M_1(\text{GUT}) = & \quad 480.00 \quad M_2(\text{GUT}) = \quad 300.00 \quad M_3(\text{GUT}) = \quad 300.00
\end{align*}
\]

ISASUGRA unification:

\[
\begin{align*}
M_GUT = & \quad 0.190E+17 \quad g_GUT = 0.713 \quad \alpha_GUT = 0.040 \\
\alpha_{em} = & \quad 127.65 \quad \sin^2(\theta_{\text{w}}) = 0.2308 \quad \alpha_s = 0.119 \\
M_1 = & \quad 195.89 \quad M_2 = \quad 232.06 \quad M_3 = \quad 691.24 \\
\mu(Q) = & \quad 393.89 \quad B(Q) = 54.73 \quad Q = 548.25 \\
M_{H1}^2 = & \quad 0.612E+05 \quad M_{H2}^2 = -0.151E+06 \\
\theta_t = & \quad 0.9831 \quad \theta_b = 0.3882 \quad \theta_l = 1.1799 \quad \alpha_h = 0.1079 \\
\text{EIGENVECTOR 1} = & \quad -0.11796 \quad 0.21288 \quad 0.25953 \quad -0.93456 \\
\text{EIGENVECTOR 2} = & \quad 0.13928 \quad -0.22503 \quad -0.90923 \quad -0.32133 \\
\text{EIGENVECTOR 3} = & \quad -0.70987 \quad -0.69812 \quad 0.08065 \quad -0.04702 \\
\text{EIGENVECTOR 4} = & \quad -0.68027 \quad 0.64550 \quad -0.31533 \quad 0.14534 \\
\end{align*}
\]

ISAJET masses (with signs):

\[
\begin{align*}
M(\text{GL}) = & \quad 708.45 \\
M(\text{UL}) = & \quad 639.13 \quad M(\text{UR}) = \quad 628.29 \quad M(\text{DL}) = \quad 644.01 \quad M(\text{DR}) = \quad 622.27 \\
M(\text{B1}) = & \quad 588.93 \quad M(\text{B2}) = \quad 624.45 \quad M(\text{T1}) = \quad 476.16 \quad M(\text{T2}) = \quad 660.67 \\
M(\text{SN}) = & \quad 252.77 \quad M(\text{EL}) = \quad 264.88 \quad M(\text{ER}) = \quad 236.76 \\
M(\text{NTAU}) = & \quad 251.75 \quad M(\text{TAU1}) = \quad 227.92 \quad M(\text{TAU2}) = \quad 269.64 \\
M(\text{Z1}) = & \quad -189.37 \quad M(\text{Z2}) = \quad -217.91 \quad M(\text{Z3}) = \quad 399.31 \quad M(\text{Z4}) = \quad -419.98 \\
M(\text{W1}) = & \quad -215.34 \quad M(\text{W2}) = \quad -418.91 \\
M(\text{HL}) = & \quad 114.83 \quad M(\text{HH}) = \quad 463.62 \quad M(\text{HA}) = \quad 463.04 \quad M(\text{H+}) = \quad 470.11
\end{align*}
\]

\[
\begin{align*}
\theta_t = & \quad 0.9831 \quad \theta_b = \quad 0.3882 \quad \theta_l = \quad 1.1799 \quad \alpha_h = \quad 0.1079 \\
\text{NEUTRALINO MASSES (SIGNED)} = & \quad -189.375 \quad -217.905 \quad 399.307 \quad -419.978 \\
\text{EIGENVECTOR 1} = & \quad -0.11796 \quad 0.21288 \quad 0.25953 \quad -0.93456 \\
\text{EIGENVECTOR 2} = & \quad 0.13928 \quad -0.22503 \quad -0.90923 \quad -0.32133 \\
\text{EIGENVECTOR 3} = & \quad -0.70987 \quad -0.69812 \quad 0.08065 \quad -0.04702 \\
\text{EIGENVECTOR 4} = & \quad -0.68027 \quad 0.64550 \quad -0.31533 \quad 0.14534 \\
\end{align*}
\]

CHARGINO MASSES (SIGNED):

\[
\begin{align*}
\text{GAMMAL, GAMMAR} = & \quad 1.97743 \quad 1.81705 \\
\end{align*}
\]

ISAJET equivalent input:

\[
\begin{align*}
\text{MSSMA:} & \quad 708.45 \quad 393.89 \quad 463.04 \quad 10.00 \\
\text{MSSMB:} & \quad 641.33 \quad 621.76 \quad 629.29 \quad 260.71 \quad 232.75 \\
\text{MSSMC:} & \quad 591.24 \quad 618.96 \quad 516.96 \quad 259.71 \quad 230.48 \quad -569.95 \quad -811.30 \quad -213.39 \\
\text{MSSMD: SAME AS MSSMB (DEFAULT)} \\
\text{MSSME:} & \quad 195.89 \quad 232.06
\end{align*}
\]
6.2 Spectrum & parameters of SUSYGEN 3.00/25

Figure 2: SPS 6 mass spectrum of SUSYGEN
Susygen parameters

Susygen inputs:

\[\begin{align*}
 m_0 & = 150.000 \\
 m_{1/2} & = 300.000 \\
 A_0 & = 0.000 \\
 \tan \beta & = 10.000 \\
 \mu/|\mu| & = 1
\end{align*} \]

Sparticle masses:

\[
\begin{align*}
 \text{SUPR} & \quad 639. \\
 \text{SDNR} & \quad 644. \\
 \text{SELR} & \quad 237. \\
 \text{SNU} & \quad 253. \\
 \text{STP1} & \quad 476. \\
 \text{STP2} & \quad 661. \quad \cos \text{mix} = 0.554 \\
 \text{SBT1} & \quad 589. \\
 \text{SBT2} & \quad 624. \quad \cos \text{mix} = 0.926 \\
 \text{STA1} & \quad 228. \\
 \text{STA2} & \quad 270. \quad \cos \text{mix} = 0.381 \\
 \text{SGLU} & \quad 708.
\end{align*}
\]

Gaugino masses:

\[
\begin{align*}
 M_1 & = 195.890 \\
 M_2 & = 232.060 \\
 M_3 & = 691.240
\end{align*}
\]

\[
\begin{align*}
 \text{NEUTRALINO} & \quad m, \text{CP}, \phi/z/\bar{h}/a/hb \ 1 = 189.3 \quad 1. \quad -0.693 \quad 0.678 \quad -0.139 \quad -0.201 \\
 \text{NEUTRALINO} & \quad m, \text{CP}, \phi/z/\bar{h}/a/hb \ 2 = 217.8 \quad 1. \quad 0.720 \quad 0.641 \quad -0.161 \quad -0.210 \\
 \text{NEUTRALINO} & \quad m, \text{CP}, \phi/z/\bar{h}/a/hb \ 3 = 399.3 \quad -1. \quad -0.002 \quad 0.094 \quad -0.637 \quad 0.765 \\
 \text{NEUTRALINO} & \quad m, \text{CP}, \phi/z/\bar{h}/a/hb \ 4 = 420.1 \quad 1. \quad -0.025 \quad -0.347 \quad -0.741 \quad 0.574
\end{align*}
\]

\[
\begin{align*}
 \text{CHARGINO} \quad \text{MASSES} & = 215.088 \quad 419.050 \\
 \text{CHARGINO} \quad \text{ETA} & = -1.000 \quad 1.000
\end{align*}
\]

\[
\begin{align*}
 U \text{ matrix} & \quad W1SS+/ \quad -0.918 \quad 0.396 \\
 \text{WINO} & \quad HIGGSINO \quad W1SS-/ \quad 0.970 \quad -0.244 \\
 V \text{ matrix} & \quad W2SS+/ \quad 0.396 \quad 0.918 \\
 \text{WINO} & \quad HIGGSINO \quad W2SS-/ \quad 0.244 \quad 0.970
\end{align*}
\]

Higgses masses:

\[
\begin{align*}
 \text{Light \ CP-even \ Higgs} & = 114.830 \\
 \text{Heavy \ CP-even \ Higgs} & = 463.620 \\
 \text{CP-odd \ Higgs} & = 463.040 \\
 \text{Charged \ Higgs} & = 470.110 \\
 \sin(a-b) & = 0.108 \\
 \cos(a-b) & = 0.994
\end{align*}
\]
6.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 6 mass spectrum of PYTHIA

Figure 3: SPS 6 mass spectrum of PYTHIA
Pythia parameters

MSSM input parameters

Parameter	IMSS Value	RMSS Value
M_1	1	195.0
M_2	2	235.0
M_3	3	680.0
tan_beta	5	10.00
mu	4	400.0

Sparticle masses & widths

Sparticle	IMSS Value	RMSS Value
M_se_R	195.0	(0.146)
M_se_L	265.0	(0.343)
M_sne_L	252.0	(0.281)
M_sm_R	237.0	(0.146)
M_sm_L	265.0	(0.343)
M_snm_L	252.0	(0.281)
M_st_1	227.8	(0.095)
M_st_2	269.6	(0.369)
M_snt_L	247.5	(0.224)
M_ch0_1	189.1	(0.000)
M_ch0_2	220.7	(0.000)
M_ch0_3	405.3	(2.256)
M_ch+1_1	218.2	(0.000)
M_ch+2_2	424.2	(2.282)
M_h0	112.2	(0.004)
M_H0	465.0	(1.051)
M_A0	464.8	(1.124)
M_H+	471.5	(1.022)
M_g^-	713.5	(10.510)
M_uL	637.8	(6.177)
M_uR	619.0	(1.145)
M_dL	642.7	(5.991)
M_dR	620.5	(0.287)
M_b1	589.7	(4.359)
M_b2	623.6	(1.080)
M_t1	474.3	(2.734)
M_t2	662.0	(9.357)

Parameter settings IMSS, RMSS

IMSS(1)	1
IMSS(2)	0
IMSS(3)	0
IMSS(4)	1
IMSS(5)	0
IMSS(6)	0
IMSS(7)	0
IMSS(8)	0
IMSS(9)	0
IMSS(10)	0
IMSS(11)	0
IMSS(12)	0

RMSS(1)	195.0
RMSS(2)	235.0
RMSS(3)	680.0
RMSS(4)	400.0
RMSS(5)	10.00
RMSS(6)	265.0
RMSS(7)	237.0
RMSS(8)	640.0
RMSS(9)	620.0
RMSS(10)	590.0
RMSS(11)	620.0
RMSS(12)	515.0
RMSS(13)	260.0
RMSS(14)	230.0
RMSS(15)	0.000
RMSS(16)	-560.0
RMSS(17)	0.000
RMSS(18)	-0.1078
RMSS(19)	465.0
RMSS(20)	0.4100E-01
RMSS(21)	1.000
RMSS(22)	620.0
RMSS(23)	0.1000E+05
RMSS(24)	0.1000E+05
6.4 Branching ratios

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
\tilde{e}^-	236.8	236.8	237.0	$\tilde{\chi}^0_1 e^-$	0.979	0.979	0.988
\tilde{e}^+_L	264.9	264.9	265.0	$\tilde{\chi}^0_1 e^-$	0.046	0.045	0.070
				$\tilde{\chi}^0_2 e^-$	0.370	0.370	0.355
				$\tilde{\chi}^+_1 \nu_e$	0.583	0.585	0.575
$\tilde{\nu}_e$	252.8	252.8	252.7	$\tilde{\chi}^0_1 \nu_e$	0.394	0.392	0.409
				$\tilde{\chi}^0_2 \nu_e$	0.121	0.121	0.126
				$\tilde{\chi}^+_1 e^-$	0.485	0.487	0.465
$\tilde{\mu}^R$	236.8	236.8	237.0	$\tilde{\chi}^0_1 \mu^-$	0.979	0.979	0.988
$\tilde{\mu}^L$	264.9	264.9	265.0	$\tilde{\chi}^0_1 \mu^-$	0.046	0.045	0.070
				$\tilde{\chi}^0_2 \mu^-$	0.370	0.370	0.355
				$\tilde{\chi}^+_1 \nu_\mu$	0.583	0.585	0.575
$\tilde{\nu}_\mu$	252.8	252.8	252.7	$\tilde{\chi}^0_1 \nu_\mu$	0.394	0.392	0.409
				$\tilde{\chi}^0_2 \nu_\mu$	0.121	0.121	0.126
				$\tilde{\chi}^+_1 \mu^-$	0.485	0.487	0.465
$\tilde{\tau}^-$	227.9	227.9	227.8	$\tilde{\chi}^0_1 \nu_\tau$	0.933	0.932	0.966
				$\tilde{\chi}^+_1 \nu_\tau$	0.040	0.041	
$\tilde{\tau}^-$	269.6	269.6	269.6	$\tilde{\chi}^0_{1,2} \nu_\tau$	0.135	0.133	0.159
				$\tilde{\chi}^0_2 \tilde{\tau}^-	0.346	0.346	0.329
				$\tilde{\chi}^+_1 \nu_\tau$	0.519	0.521	0.511
$\tilde{\nu}_\tau$	251.7	251.8	247.5	$\tilde{\chi}^0_1 \nu_\tau$	0.400	0.398	0.450
				$\tilde{\chi}^0_2 \nu_\tau$	0.120	0.119	0.115
				$\tilde{\chi}^+_1 \tau^-$	0.480	0.483	0.435

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^0$	189.4	189.3	189.1		1.000	1.000	1.000
$\tilde{\chi}_2^0$	217.9	217.8	220.7	$\tilde{\chi}_1^0 e^- e^+$	0.131	0.169	0.123
				$\tilde{\chi}_1^0 \mu^- \mu^+$	0.131	0.169	0.123
				$\tilde{\chi}_1^0 \tau^- \tau^+$	0.375	0.195	0.272
				$\tilde{\chi}_1^0 \nu_e \bar{\nu}_e$	0.093	0.119	0.116
				$\tilde{\chi}_1^0 \nu_\mu \bar{\nu}_\mu$	0.093	0.119	0.116
				$\tilde{\chi}_1^0 \nu_\tau \bar{\nu}_\tau$	0.099	0.127	0.160
$\tilde{\chi}_3^0$	399.3	399.3	405.3	$\tilde{\chi}_1^0 W^-$	0.305	0.350	0.305
				$\tilde{\chi}_1^0 W^+$	0.305	0.350	0.305
				$\tilde{\chi}_1^0 Z^0$	0.192	0.144	0.176
				$\tilde{\chi}_2^0 Z^0$	0.152	0.114	0.165
$\tilde{\chi}_4^0$	420.0	420.1	425.6	$\tilde{\chi}_1^0 W^-$	0.279	0.337	0.276
				$\tilde{\chi}_1^0 W^+$	0.279	0.337	0.276
				$\tilde{\chi}_1^0 h^0$	0.121	0.072	0.111
				$\tilde{\chi}_2^0 h^0$	0.099	0.059	0.114

Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^+ u d$	215.3	215.1	218.2		0.295	0.303	0.292
$\tilde{\chi}_1^+ c s$	215.3	215.1	218.2	$\tilde{\chi}_1^0 e^+ \nu_e$	0.133	0.137	0.136
				$\tilde{\chi}_1^0 \mu^+ \nu_\mu$	0.133	0.137	0.136
				$\tilde{\chi}_1^0 \tau^+ \nu_\tau$	0.144	0.128	0.146
$\tilde{\chi}_2^+ e^+ L$	418.9	419.0	424.9	$\tilde{\chi}_2^0 W^+$	0.363	0.376	0.356
				$\tilde{\chi}_2^0 \nu_e$	0.038	0.040	0.038
				$\tilde{\chi}_2^0 \nu_\mu$	0.038	0.040	0.038
				$\tilde{\chi}_2^0 \nu_\tau$	0.041	0.037	0.042
				$\tilde{\chi}_1^0 Z^0$	0.265	0.433	0.263
				$\tilde{\chi}_1^0 h^0$	0.185	0.188	

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	114.8	114.8	112.2	$\tau^-\tau^+$	0.050	0.069	0.067
				$b\bar{b}$	0.837	0.799	0.802
				$c\bar{c}$	0.036		0.044
				gg	0.060	0.034	
				W^+W^-	0.047	0.043	
H^0	463.6	463.6	464.9	$\tau^-\tau^+$	0.060	0.066	0.092
				$b\bar{b}$	0.817	0.560	0.818
				$t\bar{t}$	0.074	0.111	0.078
				$\tilde{\chi}_1^+\tilde{\chi}_1^-$		0.090	
				$\tilde{\chi}_1^0\tilde{\chi}_3^0$	0.064		
				$\tilde{\chi}_2^0\tilde{\chi}_2^0$	0.036		
A^0	463.0	463.0	464.8	$\tau^-\tau^+$	0.051	0.062	0.086
				$b\bar{b}$	0.693	0.529	0.767
				$t\bar{t}$	0.118	0.141	0.144
				$\tilde{\chi}_1^0\tilde{\chi}_1^1$	0.036		
				$\tilde{\chi}_1^0\tilde{\chi}_2^1$	0.060		
				$\tilde{\chi}_1^1\tilde{\chi}_2^1$	0.263		
H^+	470.1	470.1	471.5	$\nu_\tau\tau^+$	0.076	0.077	0.096
				$t\bar{b}$	0.839	0.746	0.902
				$\tilde{\chi}_1^+\tilde{\chi}_1^0$	0.074	0.138	
				$\tilde{\chi}_1^0\tilde{\chi}_1^1$	0.032		

Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from **Isajet** (I), **Susygen** (S) and **Pythia** (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
t_1	476.2	476.2	474.3	$\tilde{\chi}_1^0 t$	0.134	0.115	0.140
				$\tilde{\chi}_2^0 t$	0.166	0.143	0.163
				$\tilde{\chi}_1^- b$	0.624	0.639	0.635
				$\tilde{\chi}_2^+ b$	0.075	0.103	0.062
t_2	660.7	660.7	662.0	$\tilde{\chi}_1^+ b$	0.182	0.200	0.180
				$\tilde{\chi}_2^+ b$	0.210	0.359	0.203
				$Z^0 t_{\tilde{t}1}$	0.155		0.169
				$h^0 t_{\tilde{t}1}$	0.036		
				$\tilde{\chi}_2^0 t$	0.088	0.060	0.089
				$\tilde{\chi}_3^0 t$	0.072	0.181	0.076
				$\tilde{\chi}_4^0 t$	0.249	0.196	0.247
b_1	588.9	588.9	589.7	$\tilde{\chi}_1^0 b$	0.102	0.113	0.072
				$\tilde{\chi}_2^0 b$	0.281	0.282	0.293
				$\tilde{\chi}_1^- t$	0.479	0.559	0.481
				$W^- t_{\tilde{t}1}$	0.115		0.140
b_2	624.5	624.5	623.6	$\tilde{\chi}_1^0 b$	0.121	0.133	0.253
				$\tilde{\chi}_2^0 b$	0.099	0.108	0.152
				$\tilde{\chi}_3^0 b$	0.056	0.179	
				$\tilde{\chi}_4^0 b$	0.078	0.201	
				$\tilde{\chi}_1^- t$	0.127	0.111	0.235
				$\tilde{\chi}_2^- t$	0.325	0.268	0.159
				$W^- t_{\tilde{t}1}$	0.193		0.191

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
7 SPS 7 – GMSB scenario

Parameter	Value
Λ	40 TeV
M_{mess}	80 TeV
N_{mess}	3
$\tan \beta$	15
sign μ	$+$

NLSP = $\tilde{\tau}$

$M_{mess} = 2 \Lambda$

7.1 Spectrum & parameters of ISAJET 7.58

![Diagram of SPS 7 mass spectrum of ISAJET](image)

Figure 1: SPS 7 mass spectrum of ISAJET
Isajet parameters

Minimal gauge mediated (GMSB) model:

\[
\begin{align*}
\Lambda, & \quad M_{\text{mes}}, \quad N_5, \quad \tan(\beta), \quad \text{sgn}(\mu), \quad M_t, \quad C_{\text{grav}} = \\
& 0.400 \times 10^5 \quad 0.800 \times 10^5 \quad 3.000 \quad 15.000 \quad 1.0 \quad 175.000 \quad 0.100 \times 10^1 \\
\end{align*}
\]

GMSB2 model input:

\[
\begin{align*}
R_{\text{s}}, \quad \Delta m_{\text{d}}^2, \quad \Delta m_{\text{u}}^2, \quad d_Y, \quad N_{5,1}, \quad N_{5,2}, \quad N_{5,3} = \\
& 1.000 \quad 0.000 \times 10^0 \quad 0.000 \times 10^0 \quad 3.000 \quad 3.000 \quad 3.000 \\
\end{align*}
\]

\[M(\text{gravitino}) = 0.770 \times 10^{-09}\]

\[1/\alpha_{\text{em}} = 127.86 \quad \sin^2(\theta_{\text{w}}) = 0.2311 \quad \alpha_s = 0.118\]

\[
\begin{align*}
M_1 & = 168.59 \quad M_2 & = 326.81 \quad M_3 & = 895.45 \\
\mu(Q) & = 300.03 \quad B(Q) & = 31.35 \quad Q & = 839.57 \\
M_{H1}^2 & = 0.574 \times 10^5 \quad M_{H2}^2 & = -0.746 \times 10^5 \\
\end{align*}
\]

Isajet masses (with signs):

\[
\begin{align*}
M(\text{GL}) & = 926.04 \quad M(\text{UL}) & = 859.66 \quad M(\text{UR}) & = 830.54 \quad M(\text{DL}) & = 863.34 \quad M(\text{DR}) & = 828.93 \\
M(\text{B1}) & = 822.17 \quad M(\text{B2}) & = 843.35 \quad M(\text{T1}) & = 779.09 \quad M(\text{T2}) & = 863.00 \\
M(\text{SN}) & = 249.06 \quad M(\text{EL}) & = 261.47 \quad M(\text{ER}) & = 127.43 \\
M(\text{NTAU}) & = 248.62 \quad M(\text{TAU1}) & = 120.45 \quad M(\text{TAU2}) & = 263.40 \\
M(\text{Z1}) & = -161.65 \quad M(\text{Z2}) & = -260.06 \quad M(\text{Z3}) & = 306.26 \quad M(\text{Z4}) & = -379.94 \\
M(\text{W1}) & = -256.33 \quad M(\text{W2}) & = -379.45 \\
M(\text{HL}) & = 113.57 \quad M(\text{HH}) & = 378.37 \quad M(\text{HA}) & = 377.89 \quad M(\text{H+}) & = 386.70 \\
\theta_t & = 1.1366 \quad \theta_b & = 1.0603 \quad \theta_l & = 1.4237 \quad \alpha_h & = 0.0765 \\
\end{align*}
\]

Neutralino masses (signed):

\[-161.653 \quad -260.057 \quad 306.255 \quad -379.941\]

Eigenvector 1

\[0.13633 \quad -0.23326 \quad -0.07337 \quad 0.96001\]

Eigenvector 2

\[0.48781 \quad -0.55279 \quad -0.62706 \quad -0.25151\]

Eigenvector 3

\[0.71148 \quad 0.69498 \quad -0.08382 \quad 0.06142\]

Eigenvector 4

\[-0.48709 \quad 0.39625 \quad -0.77096 \quad 0.10653\]

Chargino masses (signed):

\[-256.330 \quad -379.452\]

Gammal, Gammar

\[2.54887 \quad 2.38244\]

Isajet equivalent input:

MSSMA:

\[926.04 \quad 300.03 \quad 377.89 \quad 15.00\]

MSSMB:

\[861.32 \quad 828.55 \quad 831.31 \quad 257.19 \quad 119.73\]

MSSMC:

\[836.27 \quad 826.88 \quad 780.14 \quad 256.77 \quad 117.61 \quad -319.43 \quad -350.48 \quad -38.97\]

MSSMD:

SAME AS MSSMB (DEFAULT)

MSSME:

\[168.59 \quad 326.81\]
7.2 Spectrum & parameters of SUSYGEN 3.00/27

Figure 2: SPS 7 mass spectrum of Susygen
Susygen parameters

Susygen inputs:

\[
\begin{align*}
M2 & = 326.810 & \mu & = 300.030 \\
M1 & = 168.590 & M3 & = 895.450 \\
XRFSUSY & = 56.568 & NFAM & = 3 \\
TANB & = 15.000
\end{align*}
\]

Sparticle masses: (input from Isajet)

\[
\begin{align*}
\text{SUPR} & = 831. & \text{SUPL} & = 860. \\
\text{SDNR} & = 829. & \text{SDNL} & = 863. \\
\text{SELR} & = 127. & \text{SELL} & = 261. \\
\text{SNU} & = 249. \\
\text{STP1} & = 779. & \text{STP2} & = 863. \cosmix = 0.421 \\
\text{SBT1} & = 822. & \text{SBT2} & = 843. \cosmix = 0.489 \\
\text{STA1} & = 120. & \text{STA2} & = 263. \cosmix = 0.147 \\
\text{SGLU} & = 926.
\end{align*}
\]

Gravitino mass: 0.769799202 eV

Gaugino masses:

\[
\begin{align*}
M1 & = 168.590 & M2 & = 326.810 & M3 & = 895.450 \\
\text{NEUTRALINO} m, \text{CP, ph/zi/ha/hb 1} & = 161.6 & 1. & 0.806 & -0.526 & 0.152 & 0.224 \\
\text{NEUTRALINO} m, \text{CP, ph/zi/ha/hb 2} & = 259.9 & 1. & -0.523 & -0.429 & 0.523 & 0.519 \\
\text{NEUTRALINO} m, \text{CP, ph/zi/ha/hb 3} & = 306.3 & -1. & -0.013 & 0.103 & -0.664 & 0.741 \\
\text{NEUTRALINO} m, \text{CP, ph/zi/ha/hb 4} & = 380.1 & 1. & -0.277 & -0.727 & -0.513 & -0.363 \\
\text{CHARGINO MASSES} & = 256.014 & 379.662 \\
\text{CHARGINO ETA} & = -1.000 & 1.000
\end{align*}
\]

\[
\begin{align*}
\text{U matrix} \quad \text{WINO} & \quad \text{HIGGSINO} \quad \text{V matrix} \quad \text{WINO} & \quad \text{HIGGSINO} \\
\text{W1SS+} & = -0.559 & 0.829 & \text{W1SS-} & = 0.689 & -0.725 \\
\text{W2SS+} & = 0.829 & 0.559 & \text{W2SS-} & = 0.725 & 0.689
\end{align*}
\]

Higgses masses:

\[
\begin{align*}
\text{Light CP-even Higgs} & = 113.895 \\
\text{Heavy CP-even Higgs} & = 400.218 \\
\text{CP-odd Higgs} & = 400.000 \\
\text{Charged Higgs} & = 407.406 \\
\sin(a-b) & = -0.076 \\
\cos(a-b) & = 0.997
\end{align*}
\]
7.3 Decay modes

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
\tilde{e}^-_R	127.4	127.4		$\tilde{\tau}^-_1 e^-\tau^+$	0.342		
				$\tilde{\tau}^+_1 e^-\tau^-$	0.591		
				$e^-\tilde{G}$	0.067	1.000	
\tilde{e}^-_L	261.5	261.5		$\tilde{\chi}^0_1 e^-$	0.987	0.986	
$\tilde{\nu}_e$	249.1	249.1		$\tilde{\chi}^0_1 \nu_e$	1.000	1.000	
$\tilde{\mu}^-_R$	127.4	127.4		$\tilde{\tau}^-_1 \mu^-\tau^+$	0.342		
				$\tilde{\tau}^+_1 \mu^-\tau^-$	0.591		
				$\mu^-\tilde{G}$	0.067	1.000	
$\tilde{\mu}^-_L$	261.5	261.5		$\tilde{\chi}^0_1 \mu^-$	0.987	0.986	
$\tilde{\nu}_\mu$	249.1	249.1		$\tilde{\chi}^0_1 \nu_{\mu}$	1.000	1.000	
$\tilde{\tau}^-_1$	120.4	120.4		$\tau^-\tilde{G}$	1.000	1.000	
$\tilde{\tau}^-_2$	263.4	263.4		$\tilde{\chi}^0_1 \tau^-$	0.604	0.978	
				$Z^0\tilde{\tau}^-_1$	0.168		
				$h^0\tilde{\tau}^-_1$	0.215		
$\tilde{\nu}_{\tau}$	248.6	248.6		$\tilde{\chi}^0_1 \nu_{\tau}$	0.746	1.000	
				$W^+\tilde{\tau}^-_1$	0.254		

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^+$	256.3	256.0		$\tilde{\chi}_1^+ W^+$	0.292	0.954	
				$\tilde{\chi}_1^+ \nu_\tau$	0.638		
$\tilde{\chi}_2^+$	379.5	379.7		$\tilde{\chi}_2^+ W^+$	0.143	0.109	
				$\tilde{\chi}_2^+ \nu_e$	0.118	0.090	
				$\tilde{\chi}_2^+ \nu_\mu$	0.118	0.090	
				$\tilde{\chi}_2^+ \nu_\tau$	0.122	0.094	
				$\tilde{\tau}_L^+ \nu_e$	0.131	0.100	
				$\tilde{\tau}_L^+ \nu_\mu$	0.131	0.100	
				$\tilde{\tau}_L^+ \nu_\tau$	0.131	0.103	
				$\tilde{\chi}_1^+ Z^0$	0.092	0.304	

Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	113.6	113.9		$\tau^- \tau^+$	0.051	0.070	
				bb	0.854	0.810	
				$c\bar{c}$	0.032		
				gg	0.052		
				W^+W^-	0.045		
H^0	378.4	400.2		$\tau^- \tau^+$	0.066	0.097	
				bb	0.921	0.877	
A^0	377.9	400.0		$\tau^- \tau^+$	0.065	0.096	
				bb	0.898	0.868	
				$t\bar{t}$	0.034		
H^+	386.7	407.4		$\nu_\tau \tau^+$	0.107	0.118	
				tb	0.887	0.878	
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
---------	------	------	------	-------	------	------	------
t_1	779.1	779.1		$\tilde{\chi}_1^0 t$	0.083	0.071	
				$\tilde{\chi}_2^0 t$	0.156	0.152	
				$\tilde{\chi}_3^0 t$	0.263	0.190	
				$\tilde{\chi}_1^+ b$	0.409	0.463	
				$\tilde{\chi}_2^+ b$	0.065	0.095	
t_2	863.0	863.0		$\tilde{\chi}_1^+ b$	0.047	0.126	
				$\tilde{\chi}_2^+ b$	0.310	0.253	
				$\tilde{\chi}_2^0 t$	0.133	0.066	
				$\tilde{\chi}_3^0 t$	0.221	0.173	
				$\tilde{\chi}_4^0 t$	0.282	0.144	
				$\tilde{g} t$		0.214	
b_1	822.2	822.2		$\tilde{\chi}_1^0 b$	0.115	0.121	
				$\tilde{\chi}_2^0 b$	0.167	0.226	
				$\tilde{\chi}_3^0 b$	0.059	0.130	
				$\tilde{\chi}_1^+ t$	0.438	0.481	
				$\tilde{\chi}_2^+ t$	0.205	0.034	
b_2	843.4	843.4		$\tilde{\chi}_2^0 b$	0.048	0.089	
				$\tilde{\chi}_3^0 b$	0.041	0.132	
				$\tilde{\chi}_4^0 b$	0.115	0.196	
				$\tilde{\chi}_1^+ t$	0.297	0.130	
				$\tilde{\chi}_2^+ t$	0.492	0.448	

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from ISAJET (I), SUSYGEN (S) and PYTHIA (P)
8 SPS 8 – GMSB scenario

Parameter	Value
Λ	100 TeV
M_{mess}	200 TeV
N_{mess}	1
$\tan \beta$	15
sign μ	$+$

NLSP = $\tilde{\chi}^0_1$

$M_{mess} = 2 \Lambda$

8.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 8 mass spectrum of ISAJET
ISAJET parameters

Minimal gauge mediated (GMSB) model:

$$\Lambda, M_{\text{mes}}, N_5, \tan(\beta), \text{sgn}(\mu), M_t, C_{\text{grav}} =$$

Value
0.100E+06
0.200E+06
1.000
15.000
1.0
175.000
0.100E+01

GMSB2 model input:

$$R_{\text{s}l}, \ d_{\text{mH}_d^2}, \ d_{\text{mH}_u^2}, \ d_Y, \ N_{5_1}, N_{5_2}, N_{5_3} =$$

Value
1.000
0.000E+00
0.000E+00
1.000
1.000
1.000

$$M(\text{gravitino}) = 0.481E-08$$

$$\frac{1}{\alpha_{\text{em}}} = 127.87 \quad \sin^2(\theta_{\text{w}}) = 0.2311 \quad \alpha_{s} = 0.118$$

$$M_{1} = 140.00 \quad M_{2} = 271.80 \quad M_{3} = 755.00$$

$$\mu(Q) = 398.31 \quad B(Q) = 44.32 \quad Q = 987.76$$

$$M_{\text{H1}}^2 = 0.111E+06 \quad M_{\text{H2}}^2 = -0.135E+06$$

ISAJET masses (with signs):

$$M(\text{GL}) = 820.50$$

$$M(\text{UL}) = 1080.25 \quad M(\text{UR}) = 1033.16 \quad M(DL) = 1083.17 \quad M(DR) = 1029.29$$

$$M(\text{B1}) = 1021.90 \quad M(\text{B2}) = 1048.26 \quad M(T1) = 957.65 \quad M(T2) = 1058.68$$

$$M(\text{SN}) = 347.61 \quad M(\text{EL}) = 356.61 \quad M(\text{ER}) = 175.87$$

$$M(\text{NTAU}) = 346.94 \quad M(\text{TAU1}) = 169.42 \quad M(\text{TAU2}) = 357.59$$

$$M(\text{Z1}) = -137.19 \quad M(\text{Z2}) = -252.33 \quad M(\text{Z3}) = 404.00 \quad M(\text{Z4}) = -426.28$$

$$M(\text{W1}) = -252.03 \quad M(\text{W2}) = -426.47$$

$$M(\text{HL}) = 114.83 \quad M(\text{HH}) = 515.01 \quad M(\text{HA}) = 514.49 \quad M(H^+) = 521.17$$

$$\theta_{\text{t}} = 1.3169 \quad \theta_{\text{b}} = 1.1767 \quad \theta_{\text{l}} = 1.4639 \quad \alpha_{h} = 0.0719$$

Neutralino masses (signed):

[-137.192, -252.334, 404.003, -426.276]

Eigenvector 1 = [0.05427, -0.13503, -0.03750, 0.98864]

Eigenvector 2 = [0.20544, -0.30581, -0.92547, -0.08815]

Eigenvector 3 = [0.70961, 0.69819, -0.07827, 0.05344]

Eigenvector 4 = [0.67179, -0.63307, 0.36873, -0.10936]

Chargino masses (signed):

[-252.028, -426.469]

Gamma, Gamma = [2.02894, 1.87308]

ISAJET equivalent input:

MSSMA: 820.50 398.31 514.49 15.00

MSSMB: 1081.56 1028.98 1033.78 353.48 170.37

MSSMC: 1042.74 1025.51 952.74 352.82 167.23 -296.71 -330.28 -36.69

MSSMD: SAME AS MSSMB (DEFAULT)

MSSME: 140.00 271.80

Warning in SSXINT: Bad convergence for 508 intervals.
8.2 Spectrum & parameters of SUSYGEN 3.00/27

Figure 2: SPS 8 mass spectrum of Susygen
Susygen parameters

Susygen inputs:

\[\begin{align*}
M_2 &= 271.800 \quad \text{mu} &= 398.310 \\
M_1 &= 140.000 \quad M_3 &= 755.000 \\
XRFSUSY &= 141.421 \quad NFAM &= 1 \\
TANB &= 15.000
\end{align*} \]

Sparticle masses: (input from Isajet)

\[\begin{align*}
SUPR &= 1033. \quad SUPL &= 1080. \\
SDNR &= 1029. \quad SDNL &= 1083. \\
SELR &= 176. \quad SELL &= 357. \\
SNU &= 348. \\
STP1 &= 958. \quad STP2 &= 1059. \cos\text{mix} = 0.425 \\
SBT1 &= 1022. \quad SBT2 &= 1048. \cos\text{mix} = 0.384 \\
STA1 &= 169. \quad STA2 &= 358. \cos\text{mix} = 0.107 \\
SGLU &= 820.
\end{align*} \]

Gravitino mass: 4.81125246 eV

Gaugino masses:

\[\begin{align*}
M_1 &= 140.000 \quad M_2 &= 271.800 \quad M_3 &= 755.000
\end{align*} \]

\[\begin{align*}
\text{NEUTRALINO m, CP, ph/zi/ha/hb 1} &= 137.2 \quad 1. \quad 0.849 \quad -0.508 \quad 0.063 \quad 0.131 \\
\text{NEUTRALINO m, CP, ph/zi/ha/hb 2} &= 252.2 \quad 1. \quad -0.522 \quad -0.769 \quad 0.226 \quad 0.292 \\
\text{NEUTRALINO m, CP, ph/zi/ha/hb 3} &= 404.0 \quad -1. \quad -0.009 \quad 0.095 \quad -0.662 \quad 0.744 \\
\text{NEUTRALINO m, CP, ph/zi/ha/hb 4} &= 426.4 \quad 1. \quad -0.082 \quad -0.377 \quad -0.712 \quad -0.587
\end{align*} \]

\[\begin{align*}
\text{CHARGINO MASSES} &= 251.761 \quad 426.622 \\
\text{CHARGINO ETA} &= -1.000 \quad 1.000
\end{align*} \]

\[\begin{align*}
U \text{ matrix} &= W1SS+ \quad -0.896 \quad 0.443 \quad W1SS- \quad 0.955 \quad -0.298 \\
W1SS+ &= 0.443 \quad 0.896 \quad W2SS- \quad 0.298 \quad 0.955 \\
W2SS+ &= -0.896 \quad 0.443 \quad V \text{ matrix} \quad W1SS- \\
W1SS- &= 0.955 \quad -0.298 \\
\end{align*} \]

Higgses masses:

\[\begin{align*}
\text{Light CP-even Higgs} &= 116.282 \\
\text{Heavy CP-even Higgs} &= 400.221 \\
\text{CP-odd Higgs} &= 400.000 \\
\text{Charged Higgs} &= 407.301 \\
\sin(a-b) &= -0.076 \\
\cos(a-b) &= 0.997
\end{align*} \]
8.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 8 mass spectrum of PYTHIA
Pythia parameters

MSSM input parameters

Parameter	RMSS(1)
M_1	140.0
M_2	272.0
M_3	740.0
tan_beta	15.00
mu	406.0

sparticle masses & widths

Sparticle	Mass (GeV)	Width (GeV)
M_se_R	176.0	0.134
M_se_L	356.0	1.239
M_sne_L	346.9	1.197
M_sm_R	176.0	0.134
M_sm_L	356.0	1.239
M_snm_L	346.9	1.197
M_st_1	169.8	0.101
M_st_2	357.9	1.342
M_snt_L	343.8	1.248
M_ch0_1	137.3	0.000
M_ch0_2	253.5	0.028
M_ch0_3	411.6	1.832
M_ch0_4	432.9	2.306
M_ch+1	252.8	0.026
M_ch+2	433.4	2.192
M_h0	114.3	0.004
M_H0	517.0	2.425
M_A0	516.9	2.456
M_g~	824.3	0.021
M_uL	1078.7	23.774
M_uR	1029.4	10.449
M_dL	1081.6	23.823
M_dR	1030.3	8.794
M_b1	1021.0	12.139
M_b2	1045.9	29.128
M_t1	955.9	23.923
M_t2	1058.4	28.340

parameter settings IMSS, RMSS

IMSS(1)	IMSS(4)	IMSS(7)	IMSS(10)
1	1	0	0

RMSS(1)	RMSS(9)	RMSS(17)
140.0	1030.	-35.00
272.0	1040.	-0.7168E-01
740.0	1025.	517.0
406.0	950.0	0.4100E-01
15.00	353.0	1.000
356.0	168.0	1030.
176.0	-330.0	0.1000E+05
1080.	-295.0	0.1000E+05
8.4 Decay modes

particle	\(m_I \)	\(m_S \)	\(m_P \)	decay	\(B_I \)	\(B_S \)	\(B_P \)
\(\tilde{e}_R^- \)	175.9	175.9	176.0	\(\tilde{\chi}_1^0 e^- \)	1.000	1.000	1.000
\(\tilde{e}_L^- \)	356.6	356.6	356.0	\(\tilde{\chi}_1^0 e^- \)	0.225	0.224	0.228
				\(\tilde{\chi}_2^0 e^- \)	0.287	0.287	0.283
				\(\tilde{\chi}_1^- \nu_e \)	0.488	0.490	0.489
\(\tilde{\nu}_e \)	347.6	347.6	346.9	\(\tilde{\chi}_1^0 \nu_e \)	0.292	0.291	0.294
				\(\tilde{\chi}_2^0 \nu_e \)	0.209	0.209	0.209
				\(\tilde{\chi}_1^+ e^- \)	0.499	0.500	0.497
\(\tilde{\mu}_R^- \)	175.9	175.9	176.0	\(\tilde{\chi}_1^0 \mu^- \)	1.000	1.000	1.000
\(\tilde{\mu}_L^- \)	356.6	356.6	356.0	\(\tilde{\chi}_1^0 \mu^- \)	0.225	0.224	0.228
				\(\tilde{\chi}_2^0 \mu^- \)	0.287	0.287	0.283
				\(\tilde{\chi}_1^- \nu_\mu \)	0.488	0.490	0.489
\(\tilde{\nu}_\mu \)	347.6	347.6	346.9	\(\tilde{\chi}_1^0 \nu_\mu \)	0.292	0.291	0.294
				\(\tilde{\chi}_2^0 \nu_\mu \)	0.209	0.209	0.209
				\(\tilde{\chi}_1^+ \mu^- \)	0.499	0.500	0.497
\(\tilde{\tau}_1^- \)	169.4	169.4	169.8	\(\tilde{\chi}_1^0 \tau^- \)	1.000	1.000	1.000
\(\tilde{\tau}_2^- \)	357.6	357.6	357.9	\(\tilde{\chi}_1^0 \tau^- \)	0.215	0.232	0.218
				\(\tilde{\chi}_2^0 \tau^- \)	0.262	0.286	0.262
				\(\tilde{\chi}_1^- \nu_\tau \)	0.441	0.482	0.447
				\(Z^0 \tilde{\tau}_1^- \)	0.038	0.041	0.041
				\(h^0 \tilde{\tau}_1^- \)	0.044	0.032	0.032
\(\tilde{\nu}_\tau \)	346.9	346.9	343.8	\(\tilde{\chi}_1^0 \nu_\tau \)	0.271	0.292	0.278
				\(\tilde{\chi}_2^0 \nu_\tau \)	0.193	0.209	0.191
				\(\tilde{\chi}_1^+ \tau^- \)	0.463	0.499	0.456
				\(W^+ \tilde{\tau}_1^- \)	0.073	0.075	0.075

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^0$	137.2	137.2	137.3	$G\gamma$	0.947	0.974	0.968
				$\tilde{G}Z^0$	0.033	0.032	
$\tilde{\chi}_2^0$	252.3	252.2	253.5	$\tilde{\chi}_1^0Z^0$	0.086	0.091	0.075
				$\tilde{\chi}_1^0h^0$	0.078	0.078	0.168
				$\tilde{e}_R^+e^-$	0.053	0.057	0.043
				$\tilde{\mu}_R^+\mu^-$	0.053	0.057	0.043
				$\tilde{\tau}_1^+\tau^-$	0.311	0.340	0.292
$\tilde{\chi}_3^0$	404.0	404.0	411.7	$\tilde{\chi}_1^+W^-$	0.289	0.363	0.291
				$\tilde{\chi}_1^-W^+$	0.289	0.363	0.291
				$\tilde{\chi}_1^0Z^0$	0.142	0.092	0.133
				$\tilde{\chi}_1^0h^0$	0.207	0.134	0.211
$\tilde{\chi}_4^0$	426.3	426.4	432.9	$\tilde{\chi}_1^+W^-$	0.307	0.361	0.303
				$\tilde{\chi}_1^-W^+$	0.307	0.361	0.303
				$\tilde{\chi}_1^0h^0$	0.087	0.063	0.082
				$\tilde{\chi}_1^0h^0$	0.142	0.102	0.153

Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from **Isajet** (I), **Susygen** (S) and **Pythia** (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}_1^+$	252.0	251.8	252.8	$\tilde{\chi}_1^0W^+$	0.508	0.899	0.480
				$\tilde{\tau}_1^+\nu_\tau$	0.491	0.099	0.520
$\tilde{\chi}_2^+$	426.5	426.6	433.4	$\tilde{\chi}_1^0W^+$	0.097	0.089	0.093
				$\tilde{\chi}_2^0W^+$	0.348	0.323	0.343
				$\tilde{\chi}_1^+Z^0$	0.283	0.509	0.281
				$\tilde{\chi}_1^+h^0$	0.173	0.099	0.180

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from **Isajet** (I), **Susygen** (S) and **Pythia** (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	114.8	117.3	114.3	$\tau^-\tau^+$	0.050	0.077	0.066
				bb	0.837	0.758	0.789
				$c\bar{c}$	0.036	0.043	
				gg		0.057	0.035
				W^+W^-	0.076	0.055	
H^0	515.0	400.1	517.0	$\tau^-\tau^+$	0.067	0.112	0.100
				bb	0.888	0.860	0.874
A^0	514.5	400.0	516.9	$\tau^-\tau^+$	0.063	0.107	0.099
				bb	0.845	0.822	0.864
				tt	0.031	0.038	0.036
				$\tilde{\chi}_1^0\tilde{\chi}_2^0$	0.033		
H^+	521.2	407.3	523.0	$\nu_\tau\tau^+$	0.086	0.131	0.109
				tb	0.854	0.833	0.890
				$\tilde{\chi}_1^+\tilde{\chi}_1^0$	0.056	0.033	

Table 4: Higgs masses (GeV) and significant branching ratios (> 3%) from ISAJET (I), SUSYGEN (S) and PYTHIA (P)
particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
t_1	957.6	957.7	955.9	$\tilde{\chi}_1^0 t$	0.089	0.066	0.081
				$\tilde{\chi}_2^0 t$	0.057	0.077	0.056
				$\tilde{\chi}_3^0 t$	0.245	0.195	0.248
				$\tilde{\chi}_4^0 t$	0.140	0.122	0.144
				$\tilde{\chi}_1^+ b$	0.131	0.197	0.127
				$\tilde{\chi}_2^+ b$	0.339	0.343	0.345
t_2	1058.7	1058.7	1058.4	$\tilde{g} t$	0.269	0.230	0.140
				$\tilde{\chi}_1^+ b$	0.174	0.125	0.189
				$\tilde{\chi}_2^+ b$	0.098	0.282	0.092
				$\tilde{\chi}_3^0 t$	0.088	0.041	0.102
				$\tilde{\chi}_1^0 t$	0.158	0.195	0.204
				$\tilde{\chi}_2^0 t$	0.209	0.122	0.267
b_1	1021.9	1021.9	1021.5	$\tilde{\chi}_1^0 b$	0.049	0.038	0.041
				$\tilde{\chi}_2^0 b$	0.075	0.069	0.046
				$\tilde{\chi}_3^0 b$	0.030	0.050	
				$\tilde{g} b$	0.594	0.651	0.639
				$\tilde{\chi}_1^0 t$	0.144	0.132	0.093
				$\tilde{\chi}_2^0 t$	0.098	0.037	0.175
b_2	1048.3	1048.3	1045.9	$\tilde{\chi}_2^0 b$	0.082	0.082	0.095
				$\tilde{\chi}_3^0 b$			0.046
				$\tilde{\chi}_4^0 b$	0.038	0.063	
				$\tilde{g} b$	0.322	0.509	0.312
				$\tilde{\chi}_1^0 t$	0.164	0.144	0.197
				$\tilde{\chi}_2^0 t$	0.367	0.152	0.373

Table 5: Light squark masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
9 SPS 9 – AMSB scenario

Parameter	Value
m_0	400 GeV
$m_{3/2}$	60 TeV
$\tan \beta$	10
sign μ	+

$m_0 = 0.0075 \, m_{3/2}$

9.1 Spectrum & parameters of ISAJET 7.58

Figure 1: SPS 9 mass spectrum of ISAJET
Isajet parameters

WARNING: TACHYONIC SLEPTONS AT GUT SCALE
POINT MAY BE INVALID

Supergravity model with right-handed neutrinos:

\[M_0, \ M_{(3/2)}, \ \tan(\beta), \ \text{sgn}(\mu), \ M_t = \]
\[400.000 \ 60000.000 \ 10.000 \ 1.0 \ 175.000 \]

ISASUGRA unification:

\[M_{GUT} = 0.101E+17 \ g_{GUT} = 0.711 \ \alpha_{GUT} = 0.040 \]
\[F_T_{GUT} = 0.476 \ \ F_B_{GUT} = 0.046 \ \ F_L_{GUT} = 0.069 \]

\[1/\alpha_{\text{em}} = 127.81 \ \sin^2(\theta_{\text{w}}) = 0.2306 \ \alpha_s = 0.120 \]
\[M_1 = -550.60 \ M_2 = -175.53 \ M_3 = 1232.27 \]
\[\mu(Q) = 869.90 \ \ B(Q) = 94.70 \ \ Q = 1076.05 \]
\[M_{H1^2} = 0.714E+05 \ \ M_{H2^2} = -0.720E+06 \]

ISAJET masses (with signs):

\[M(GL) = 1275.18 \]
\[M(UL) = 1218.09 \ M(UH) = 1227.35 \ M(DL) = 1220.65 \ M(DR) = 1237.81 \]
\[M(B1) = 1112.07 \ M(B2) = 1232.88 \ M(T1) = 1005.17 \ M(T2) = 1128.80 \]
\[M(SN) = 309.71 \ M(EL) = 319.66 \ M(ER) = 303.01 \]
\[M(TAU)= 300.71 \ M(TAU1)= 271.28 \ M(TAU2)= 322.54 \]
\[M(Z1) = 175.51 \ M(Z2) = 549.03 \ M(Z3) = -874.37 \ M(Z4) = 875.97 \]
\[M(W1) = 175.67 \ M(W2) = 877.22 \]
\[M(HL) = 114.83 \ M(HH) = 912.56 \ M(HA) = 911.74 \ M(H+) = 915.83 \]

\[\theta_t = 1.3055 \ \ \theta_b = 0.0919 \ \ \theta_l = 1.0546 \ \ \alpha_h = 0.1020 \]

NEUTRALINO MASSES (SIGNED) = 175.505 549.027 -874.365 875.970
EIGENVECTOR 1 = -0.00966 -0.09301 -0.99562 0.00004
EIGENVECTOR 2 = 0.04358 0.07687 -0.00765 -0.99606
EIGENVECTOR 3 = 0.70715 -0.70420 0.05892 -0.02386
EIGENVECTOR 4 = 0.70565 0.69968 -0.07220 0.08543

CHARGINO MASSES (SIGNED) = 175.672 877.221
GAMMAL, GAMMAR = 1.70212 1.55731

ISAJET equivalent input:

MSSMA: 1275.18 869.90 911.74 10.00
MSSMB: 1219.24 1237.55 1227.86 316.22 299.89
MSSMC: 1111.59 1231.65 1003.22 307.41 281.16 -350.26 216.41 1162.39
MSSMD: SAME AS MSSMB (DEFAULT)
MSSME: -550.60 -175.53
WARNING IN SSXINT: BAD CONVERGENCE FOR 264 INTERVALS.
9.2 Spectrum & parameters of SUSYGEN 3.00/27

Figure 2: SPS 9 mass spectrum of Susygen
Susygen parameters

Susygen inputs:

\[
\begin{align*}
M2 &= 175.530 \quad \mu &= 869.900 \\
M1 &= 550.600 \quad M3 &= 1232.270 \\
TANB &= 10.000
\end{align*}
\]

Sparticle masses: (input from Isajet)

\[
\begin{align*}
\text{SUPR} &= 1227. \quad \text{SUPL} &= 1218. \\
\text{SDNR} &= 1238. \quad \text{SDNL} &= 1221. \\
\text{SELR} &= 303. \quad \text{SELL} &= 320. \\
\text{SNU} &= 310. \\
\text{STP1} &= 1005. \quad \text{STP2} &= 1129. \quad \cosmix = 0.262 \\
\text{SBT1} &= 1112. \quad \text{SBT2} &= 1233. \quad \cosmix = 0.996 \\
\text{STA1} &= 271. \quad \text{STA2} &= 323. \quad \cosmix = 0.493 \\
\text{SGLU} &= 1275.
\end{align*}
\]

Gaugino masses:

\[
\begin{align*}
M1 &= 550.600 \quad M2 &= 175.530 \quad M3 &= 1232.270
\end{align*}
\]

\[
\begin{align*}
\text{NEUTRALINO} \quad m, CP, ph/zi/ha/hb \ 1 &= 172.5 \quad 1 \quad -0.475 \quad -0.874 \quad 0.038 \quad 0.094 \\
\text{NEUTRALINO} \quad m, CP, ph/zi/ha/hb \ 2 &= 547.6 \quad 1 \quad 0.879 \quad -0.466 \quad 0.067 \quad 0.079 \\
\text{NEUTRALINO} \quad m, CP, ph/zi/ha/hb \ 3 &= 872.9 \quad -1 \quad 0.006 \quad 0.052 \quad -0.634 \quad 0.772 \\
\text{NEUTRALINO} \quad m, CP, ph/zi/ha/hb \ 4 &= 878.9 \quad 1 \quad 0.048 \quad -0.126 \quad -0.769 \quad -0.624
\end{align*}
\]

\[
\begin{align*}
\text{CHARGINO MASSES} &= 172.486 \quad 877.866 \\
\text{CHARGINO ETA} &= -1.000 \quad 1.000
\end{align*}
\]

\[
\begin{align*}
U \text{ matrix} \quad WINO \quad HIGGSINO \quad V \text{ matrix} \quad WINO \quad HIGGSINO \\
W1SS+ &= -0.991 \quad 0.136 \quad W1SS- &= 0.999 \quad -0.040 \\
W2SS+ &= 0.136 \quad 0.991 \quad W2SS- &= 0.040 \quad 0.999
\end{align*}
\]

Higgses masses:

\[
\begin{align*}
\text{Light CP-even Higgs} &= 114.830 \\
\text{Heavy CP-even Higgs} &= 912.560 \\
\text{CP-odd Higgs} &= 911.740 \\
\text{Charged Higgs} &= 915.830 \\
\sin(a-b) &= 0.102 \\
\cos(a-b) &= 0.995
\end{align*}
\]
9.3 Spectrum & parameters of PYTHIA 6.2/00

Figure 3: SPS 9 mass spectrum of PYTHIA
Pythia parameters

MSSM input parameters

Parameter	RMSS Value
M_1	550.6
M_2	178.5
M_3	1200.
tan_beta	10.00
mu	870.0

Sparticle masses & widths

Sparticle	RMSS Value
M_se_R	303.0 (0.000)
M_se_L	319.7 (1.949)
M_sne_L	309.6 (1.807)
M_sm_R	303.0 (0.000)
M_sm_L	319.7 (1.949)
M_snm_L	309.6 (1.807)
M_st_1	274.5 (0.619)
M_st_2	320.4 (0.959)
M_snt_L	284.5 (1.381)
M_ch0_1	175.4 (0.000)
M_ch0_2	547.6 (6.016)
M_ch0_3	873.0 (6.869)
M_ch0_4	879.0 (7.023)
M_ch+_1	175.7 (0.000)
M_ch+_2	878.0 (7.060)
M_h0	113.3 (0.004)
M_H0	911.4 (2.071)
M_H+	915.3 (2.236)
M_g^-	1275.4 (5.103)
M_uL	1217.8 (15.156)
M_uR	1236.5 (1.836)
M_dL	1220.4 (15.051)
M_dR	1237.2 (0.460)
M_b1	1112.5 (15.069)
M_b2	1233.2 (0.654)
M_t1	1005.5 (3.225)
M_t2	1132.0 (15.159)

Parameter settings IMSS, RMSS

IMSS Setting	RMSS Value
IMSS(1) = 1	550.6
IMSS(4) = 1	1237.
IMSS(7) = 0	1162.
IMSS(10) = 0	0
IMSS(2) = 0	1112.
IMSS(5) = 0	1232.
IMSS(8) = 0	912.0
IMSS(3) = 0	1003.
IMSS(6) = 0	0.4100E-01
IMSS(9) = 0	295.4
IMSS(12) = 0	1.000
9.4 Decay modes

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
\tilde{e}_R^-	303.0	303.0	303.0	$\tilde{\chi}_1^0 e^-\tilde{\tau}_1^- e^-\tau^+$	0.103	1.000	1.000
				$\tilde{\tau}_1^+ e^-\tau^-$	0.657		
\tilde{e}_L^-	319.7	319.7	319.7	$\tilde{\chi}_1^0 e^-\tilde{\chi}_1^- e^-$	0.336	0.334	0.335
				$\tilde{\chi}_1^0 \nu_e\tilde{\chi}_1^- e^-$	0.664	0.667	0.665
$\tilde{\nu}_e$	309.7	309.7	309.6	$\tilde{\chi}_1^0 \nu_e\tilde{\chi}_1^- e^-$	0.332	0.333	0.333
				$\tilde{\chi}_1^0 \nu_e\tilde{\chi}_1^- e^-$	0.668	0.667	0.667
$\tilde{\mu}_R^-$	303.0	303.0	303.0	$\tilde{\chi}_1^0 \mu^-\tilde{\chi}_1^- \nu_\mu \tilde{\tau}_1^- \mu^-\tau^+$	0.103	0.886	0.888
				$\tilde{\tau}_1^- \mu^-\tau^+$	0.240	0.114	0.112
				$\tilde{\tau}_1^- \mu^-\tau^+$	0.657		
$\tilde{\mu}_L^-$	319.7	319.7	319.7	$\tilde{\chi}_1^0 \mu^-\tilde{\chi}_1^- \nu_\mu \tilde{\tau}_1^- \mu^-\tau^+$	0.336	0.334	0.335
				$\tilde{\tau}_1^- \mu^-\tau^+$	0.664	0.666	0.665
				$\tilde{\tau}_1^- \mu^-\tau^+$	0.668	0.667	0.667
$\tilde{\nu}_\mu$	309.7	309.7	309.6	$\tilde{\chi}_1^0 \nu_\mu\tilde{\chi}_1^- \mu^-\tau^+$	0.332	0.333	0.333
				$\tilde{\tau}_1^- \mu^-\tau^+$	0.668	0.667	0.667
				$\tilde{\tau}_1^- \mu^-\tau^+$	0.668	0.667	0.667
$\tilde{\tau}_1^-$	271.3	271.3	275.4	$\tilde{\chi}_1^0 \tau^-\tilde{\chi}_1^- \nu_\tau \tilde{\tau}_1^- \tau^+$	0.336	0.334	0.335
				$\tilde{\tau}_1^- \tau^+$	0.664	0.666	0.665
				$\tilde{\tau}_1^- \tau^+$	0.664	0.666	0.665
$\tilde{\tau}_2^-$	322.5	322.5	320.4	$\tilde{\chi}_1^0 \tau^-\tilde{\chi}_1^- \nu_\tau \tilde{\tau}_2^- \tau^+$	0.336	0.334	0.335
				$\tilde{\tau}_2^- \tau^+$	0.664	0.666	0.665
				$\tilde{\tau}_2^- \tau^+$	0.664	0.666	0.665
$\tilde{\nu}_\tau$	300.7	300.7	284.5	$\tilde{\chi}_1^0 \nu_\tau\tilde{\chi}_1^- \tau^+$	0.332	0.333	0.333
				$\tilde{\tau}_1^- \tau^+$	0.668	0.667	0.667

Table 1: Slepton masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)
Table 2: Neutralino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}^0_1$	175.5	172.5	175.4		1.000	1.000	1.000
$\tilde{\chi}^0_2$	549.0	547.6	547.6	$\tilde{e}_R e^+$	0.110	0.109	0.110
				$\tilde{e}_R e^-$	0.110	0.109	0.110
				$\tilde{\mu}_R \mu^+$	0.110	0.109	0.110
				$\tilde{\mu}_R \mu^-$	0.110	0.109	0.110
				$\tilde{\tau}_1 \tau^+$	0.108	0.107	0.082
				$\tilde{\tau}_2 \tau^-$	0.108	0.107	0.082
				$\tilde{\tau}_2 \tau^+$	0.042	0.042	0.062
				$\tilde{\tau}_2 \tau^-$	0.042	0.042	0.062
$\tilde{\chi}^0_3$	874.4	872.9	873.0	$\tilde{\chi}^+_1 W^-$	0.304	0.292	0.302
				$\tilde{\chi}^-_1 W^+$	0.304	0.292	0.302
				$\tilde{\chi}^0_1 Z^0$	0.181	0.221	0.230
				$\tilde{\chi}^0_2 Z^0$	0.057	0.067	0.069
				$\tilde{\chi}^0_3 h^0$	0.115	0.097	0.067
$\tilde{\chi}^0_4$	876.0	878.9	879.0	$\tilde{\chi}^+_1 W^-$	0.296	0.322	0.291
				$\tilde{\chi}^-_1 W^+$	0.296	0.322	0.291
				$\tilde{\chi}^0_1 Z^0$	0.118	0.075	0.068
				$\tilde{\chi}^0_2 Z^0$	0.171	0.158	0.219
				$\tilde{\chi}^0_3 h^0$	0.054	0.049	0.064

Table 3: Chargino masses (GeV) and significant branching ratios (> 3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
$\tilde{\chi}^+_1$	175.7	172.5	175.7	$\tilde{\chi}^0_1 \pi^+$	0.960		
				$\tilde{\chi}^0_1 \nu_{\tau} e^+$	1.000		
				$\tilde{\chi}^0_1 \nu_{\mu} \mu^+$		0.500	
$\tilde{\chi}^+_2$	877.2	877.9	878.0	$\tilde{\chi}^0_2 W^+$	0.300	0.416	0.298
				$\tilde{\chi}^0_2 W^+$	0.066	0.112	0.079
				$\tilde{\chi}^0_2 Z^0$	0.298	0.421	0.293
				$\tilde{\chi}^+_1 h^0$	0.286		0.283
Table 4: Higgs masses (GeV) and significant branching ratios (>3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
h^0	114.8	114.8	113.3	τ^-τ^+	0.050	0.071	0.065
				bb	0.827	0.824	0.783
				c\bar{c}	0.040	0.044	0.048
				gg	0.030	0.051	0.038
				W^+W^-		0.032	0.054
H^0	912.6	912.6	911.4	τ^-τ^+	0.055	0.089	0.092
				bb	0.680	0.808	0.726
				t\bar{t}	0.133	0.057	0.178
				\tilde{\chi}_1^+ \tilde{\chi}_1^-	0.030		
A^0	911.7	911.7	911.1	τ^-τ^+	0.054	0.081	0.090
				bb	0.670	0.735	0.713
				t\bar{t}	0.143	0.147	0.195
				\tilde{\tau}_1^- \tilde{\tau}_1^+	0.030		
				\tilde{\chi}_1^+ \tilde{\chi}_1^-	0.033		
H^+	915.8	915.8	915.3	ν_ττ^+	0.064	0.097	0.086
				tb	0.826	0.873	0.913
				\tilde{\tau}_1^- \tilde{\nu}_τ	0.066		

Table 5: Light squark masses (GeV) and significant branching ratios (>3%) from Isajet (I), Susygen (S) and Pythia (P)

particle	m_I	m_S	m_P	decay	B_I	B_S	B_P
t_1	1005.2	1005.2	1005.5	\tilde{\chi}_1^0 t	0.095	0.116	0.129
				\tilde{\chi}_2^0 t	0.341	0.291	0.302
				\tilde{\chi}_1^+ b	0.205	0.259	0.280
				\tilde{\chi}_2^+ b	0.359	0.334	0.289
t_2	1128.8	1128.8	1132.0	\tilde{\chi}_1^0 b	0.558	0.442	0.545
				\tilde{\chi}_2^0 b	0.184		
				\tilde{\chi}_1^0 t	0.262	0.198	0.256
				\tilde{\chi}_3^0 t	0.088	0.082	0.054
				\tilde{\chi}_4^0 t	0.042	0.087	0.103
b_1	1112.1	1112.1	1112.5	\tilde{\chi}_1^0 b	0.301	0.333	0.297
				\tilde{\chi}_1^0 t	0.565	0.624	0.556
				\tilde{\chi}_2^0 t	0.114		0.133
b_2	1232.9	1232.9	1233.2	\tilde{\chi}_1^0 b		0.063	
				\tilde{\chi}_2^0 b	0.434	0.303	0.690
				\tilde{\chi}_3^0 b	0.097	0.182	
				\tilde{\chi}_4^0 b	0.098	0.181	
				\tilde{\chi}_1^0 t		0.119	
				\tilde{\chi}_2^0 t	0.256	0.324	0.061
				\tilde{t_1}W^-		0.037	