Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats

Tao-Tao Liu, Ning-Sheng Liang, Yan Li, Fan Yang, Yi Lu, Zi-Qing Meng, Li-Sheng Zhang

INTRODUCTION

Tea polyphenols (TPs) are a large and diverse class of compounds extracted from tea. These polyphenolic compounds, specifically catechins epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), and epicatechin-3-gallate (ECG), account for 30-40 % of the extractable solids in green tea leaves[1]. Many health benefits are associated with consumption of tea and such effects are mainly attributed to the polyphenolic constitutes of tea[2-8]. We are more concerned about the beneficial effect of TPs on cancer[9-13].

Primary liver cancer (PLC) is a very prevalent form of cancer in the world. The incidence of PLC in China is high. Guangxi Zhuang Autonomous Region is a high mortality and morbidity region of PLC. Unfortunately, its curative effect is disappointed no matter what therapy is used. How to improve the prevention and treatment of PLC is a long-term goal of our research work. There are some evidences indicating that TPs may play a positive role in PLC prevention and treatment[14-16]. However, the mechanism of the action is not fully understood. It is known that the risk factors of PLC are intake of AFB1, pollution of drinking water and HBV infection[17-20]. The factors are closely related to the activity of hepatic microsomal drug metabolizing enzymes and function of the liver. Because bioactivation of precarcinogens and detoxification of ultimate carcinogens are mainly carried out by drug metabolizing enzymes in the liver, to explore the effects of TPs on these enzymes and the liver function will be helpful to understanding the mechanism of TPs in prevention and treatment of PLC, and the safety of TPs. Further more, this work will provide some useful information for the application of TPs in PLC chemoprevention and chemotherapy.

MATERIALS AND METHODS

Chemicals and reagents
TPs were purchased from Shili Natural Food Co. Ltd (Guilin, China), NADPH from Lishuboxiang Biological Technology Co., (Shanghai, China), aminopyrine from Shanghai Chemical Co., glutathione S-transferase (GST) and protein assay kits from Jiancheng Biological Technology Institute (Nanjing, China), serum biochemical tests of liver function kits from Shenneng Co. (Shanghai, China).

Animals
Five-week-old Wistar rats weighing from 80 to 130 g provided by Experimental Animal Center of Guangxi Medical University were used in the study. The rats were randomly divided into high dose, low dose, and control groups, 20 each group. The animals in high dose and low dose groups were administered intragastrically with TPs at doses of 833 mg·kg-1·d-1 and 83.3 mg·kg-1·d-1 respectively six times each week for six months. Same procedures were also performed in the control rats except feeding equal amount of normal saline (1.0 ml·100 g-1·day-1) instead of TPs. The animals were housed in a temperature-controlled room at 22 °C-24 °C and fed with standard rat chow. At the end of six months experimental period, all the rats were anesthetized with intramuscular injection of sodium pentobarbital (30 mg/kg) before sacrificed. Blood was collected.

RESULTS

The contents of cytochrome P450 and b5, enzyme activities of aminopyrine N-demethylase (ADM), glutathione S-transferase (GST) and the biochemical liver function of serum were determined.

CONCLUSION: The antidotal capability of rats’ lives can be significantly improved after long-term consumption of TPs. There are differences in changes of drug-metabolizing enzymes between the sexes induced by TPs and normal condition.

REFERENCES

1. T.T. Liu TT, Liang NS, Li Y, Yang F, Lu Y, Meng ZQ, Zhang LS. Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzyme and liver function in Wistar rats. World J Gastroenterol 2003; 9(12): 2742-2744

http://www.wjgnet.com/1007-9327/9/2742.asp

Copyright © 2003 by The WJG Press ISSN 1007-9327
from the heart and serum obtained through centrifugation to measure liver function. The livers were removed immediately, perfused with cold 0.15M KCl and homogenized in 4 volumes of 0.15M KCl solution containing 10 mM EDTA using a Potter-type Teflon glass homogenizer. The homogenate was centrifuged, 10 000xg for 15 min at 4°C in a refrigerated centrifuge (OM 3593 IEC Co. Ltd. USA). The supernatant was then centrifuged 105 000xg for 60 min at 4°C in a preparative ultracentrifuge (20PR-52D; Hitachi, Tokyo). The pellet of microsomes was suspended in the homogenization solution in the homogenizer and centrifuged again as described above. The resulting pellet was suspended in 20 mM potassium phosphate buffer (pH 7.4) containing 15% glycerol until analysis.

Microsomal enzyme assays

The content of cytochrome P450 was determined by the method of Omura and Sat0[21,22]. The content of cytochrome b5 was assayed as described by Omura and Takesue[23]. The activities of ADM were determined as described by Imai et al[24]. The content of liver microsomal protein and the activities of GST were measured as described in the booklet of kits. All the enzymes possessed anticarcinogenic effects [21,22].

Biochemical liver function tests

Biochemical liver function tests (ALT, AST, TP, and ALB) were performed by using an automatic biochemical analyzer (7170A Beckman, Fullerton, CA, USA).

Statistical analyses

Data were counted separately in male and female rats and expressed as ±sd. Statistical significances were analyzed by t-test. The difference was considered significant in case of a two-tailed P value less than 0.05, and <0.01 as very significant.

RESULTS

Effects of TPs on contents of P450, b5 and activities of ADM and GST

In high dose group, the contents of P450 and b5 were significantly increased in male rats (respectively 2.66±0.55; 10.43±2.78 mmol·mg MS pro⁻¹) compared with those in the control group (1.08±1.04; 5.51±2.98 mmol·mg MS pro⁻¹; P<0.01, respectively). The enzymatic activities of ADM in female rats (0.91±0.08 mmol·mg MS pro⁻¹·min⁻¹) were higher than those in the control group (0.82±0.08 mmol·mg MS pro⁻¹·min⁻¹; P<0.05). But the activities of GST were unchanged in all treated groups. In control group, the contents of b5 and the activities of ADM in male and female rats were significantly different (5.51±2.98, 13.42±1.85 mmol·mg MS pro⁻¹; 0.92±0.11, 0.82±0.08 mmol·mg MS pro⁻¹·min⁻¹, respectively, P<0.05). The results indicated that there was a difference of hepatic microsomal drug-metabolizing enzymes under normal conditions in different sex rats (Table 1).

Effects of TPs on biochemical liver functions

TPs did not damage rat liver function after used for a long-term, and it indicated that TPs were a quite safe agent, even at a high dose of 833.3 mg·kg⁻¹·d⁻¹ for six months (Table 2).

DISCUSSION

Hepatic drug metabolizing enzyme is called mixed-function oxidase or monoxygenase containing many enzymes including phase I enzymes such as cytochrome P450, cytochrome b5 and NADPH-cytochrome P450 reductase and phase II enzymes such as GST, sulfatase and UDP-glucuronyl transferase[25]. AFB1, one of the risk factors of PLC, damages DNA after conversion to the reactive compound AFB1-epoxide, by the action of cytochrome P450-dependent enzymes[26]. Sufficient evidences have shown that tea and TPs possessed anticarcinogenic effects[27-32]. Some works have been done in the field of TPs modulated or interacted with drug metabolizing enzymes. Maliaikal et al reported that treating with green tea from different sources could markedly increase cytochrome P450 1A2 activity in rats, and green tea from certain sources could increase cytochrome P450 1A1 and cytosolic GST activities[33]. However, in vitro experiment, Mukhtar et al and Wang et al reported that TPs had an inhibitory effect on microsomal cytochrome P450 enzyme system[34,35]. Until now, no one could give a clear explanation of the different results. We tried to make clear what would happen in these enzyme activities in rats treated with TPs. Considering PLC chemopreventive and chemotherapeutic effects could not be achieved in a short term of TPs administration, and a long-term experiment has not been carried out in this aspect, so the rats were treated for 6 months. At the end of treatment, we determined the contents of cytochrome P450 and b5, the activities of ADM and GST, and the liver function in the rats. The results showed that the contents and activities

Table 1 Effects of long-term TPs consumption on microsomal enzymes

Group	P450 nmol/ mg MS pro	b5 nmol/ mg MS pro	ADM mmol/ mg MS pro/ min	GST U/mgpro
δ High dose(n=10)	2.66±0.55	10.43±2.78	0.90±0.12	24.66±0.06
Low dose(n=10)	1.94±0.90	7.82±1.66	0.94±0.11	27.05±0.59
Control(n=10)	1.08±0.04	5.51±2.98	0.92±0.11	25.88±0.02
ϕ High dose(n=10)	0.66±0.42	11.74±2.31	0.91±0.08	29.48±0.16
Low dose(n=10)	0.66±0.38	11.34±3.17	0.73±0.09	26.44±0.54
Control(n=10)	0.36±0.18	13.42±1.85	0.82±0.08	29.40±1.19

*P<0.01 versus control, *P<0.05 versus control, *P<0.05 versus control.

Table 2 Effects of long-term TPs consumption on major biochemical parameters of rat liver

Group	ALT U/ L	AST U/ L	TP g/ L	ALB g/ L
δ High dose(n=10)	76.31±52.0	294.69±68.8	75.26±3.44	32.95±1.39
Low dose(n=10)	74.75±11.62	285.4±54.95	78.75±1.83	32.78±1.64
Control(n=10)	65.5±9.89	271.6±37.32	80.97±3.43	34.4±1.11
ϕ High dose(n=10)	59.15±9.14	247.3±63.03	81.43±3.97	34.6±1.11
Low dose(n=10)	50.31±22.32	213.5±47.92	78.76±5.31	34.8±2.30
Control(n=10)	56.92±7.62	236.0±51.94	79.56±2.35	35.63±1.06

ALT: serum alanine transaminase, AST: serum aspartate transaminase, TP: total protein, ALB: albumin.
of drug metabolizing enzymes and the antidotal capability of liver were significantly improved in the high dose group. It shortened the time of carcinogen staying in the body and reduced DNA damages. Therefore, TPs could protect human against the risk of chemically induced PLC and other cancers.

Gender differences in drug metabolism in rats have been known for more than 60 years since it was reported that the much shorter duration of drug action in the male was due to the effects of testicular androgens[36]. The activities of hepatic drug-metabolizing enzymes, especially cytochrome P450 and sulfotransferase, were regulated through the sex-related secretion pattern of growth hormone[37]. Some studies reported the sex-related effect on drug-metabolizing enzymes[38,39]. In our study, a marked sex difference in the effects of long-term treatment with TPs on hepatic drug-metabolizing enzymes in rats was observed. In control groups, there were differences between male and female rats. The results indicated that there was a sex difference in activities of hepatic drug-metabolizing enzymes and ability of liver detoxification in normal rats. Epidemiological studies of PLC showed that there was a sex difference in human (male>female). But it is not known whether this difference is related to the difference of hepatic drug-metabolizing enzymes.

ACKNOWLEDGMENTS
We appreciate the assistance of Drs Ren-Bin Huang, Xiao-Qun Duan and Yang Jiao from Gunagxi Medical University.

REFERENCES
1 Brown MD. Green tea (Camellia sinensis) extract and its possible role in the prevention of cancer. Alt N Med Ed Rev 1999; 4: 360-370
2 Ho CT, Chen Q, Shi H, Zhang KQ, Rosen RT. Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev Med 1992; 21: 520-525
3 Wang ZY, Cheng SJ, Zhou ZC, Athar M, Khan WA, Bickers DR, Mukhtar H. Antimutagenic activity of green tea polyphenols. Mutat Res 1989; 223: 273-285
4 Mukhtar H, Wang ZY, Katryk SK, Agarwal R. Tea components: antimutagenic and anticarcinogenic effects. Prev Med 1992; 21: 351-360
5 Zhang G, Miura Y, Yagasaki K. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett 2000; 159: 169-173
6 Mcs KS, Kuttan R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 2002; 83: 109-116
7 Nie G, Cao Y, Zhao B. Protective effects of green tea polyphenols and their major components (—)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Ribo Rep 2002; 7: 171-177
8 Shi S, Zheng S, Jia C, Zhu Y, Xie H. The effect of an antioxidant tea polyphenol on cell apoptosis in rat model of cyclosporine-induced chronic nephrotoxicity. Zhonghua Wei Za Zhi 2002; 40: 709-712
9 Yang CS, Wang ZY. Tea and cancer. J Natl Cancer Inst 1993; 85: 1038-1049
10 Bushman JL. Green tea and cancer in humans: a review of the literature. Nutr Cancer 1998; 31: 151-159
11 Gong Y, Han C, Chen J. Effect of tea polyphenols and tea pigments on the inhibition of precancerous liver lesions in rats. Nutr Cancer 2000; 38: 81-85
12 Hammons GJ, Fletcher JV, Stepp KS, Smith EA, Bealantine DA, Harbowy ME, Kadlubar FF. Effects of chemoprotective agents on the metabolic activation of the carcinogenic arylamines PhIP and 4-aminobiphenyl in human and rat liver microsomes. Nutr Cancer 1999; 33: 46-52
13 Jung YD, Ellis LM. Inhibition of tumor invasion and angiogenesis by epigallocatechin gallate (EGCG), a major component of green tea. J Exp Pathol 2001; 82: 300-316
14 Lambart JD, Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 2003; 523-524: 201-208
15 Hsu S, Lewis J, Singh B, Schoenlein P, Osaki T, Athar M, Porter AG, Schuster G. Green tea polyphenol targets the mitochondria in tumor cells inducing caspase 3-dependent apoptosis. Anticancer Res 2003; 23: 1533-1539
16 Roy M, Siddiqi M, Bhattacharya RK. Cancer chemoprevention: tea polyphenol induced cellular and molecular responses. Asian Pac J Cancer Prev 2001; 2: 109-116
17 Wogan GN. Antixtans as risk factors for hepatocellular carcinoma in humans. Cancer Res 1992; 52(7 Suppl): 2114s-2118s
18 Lu P, Kuang S, Wang J. Hepatitis B virus infection and aflatoxin exposure in the development of primary liver cancer. Zhonghua Yu Rexi Za Zhi 1998; 28: 340-342
19 Yen FS, Shen KJ. Epidemiology and early diagnosis of primary liver cancer in China. Adv Cancer Res 1996; 67: 297-329
20 Yu SZ. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 1995; 10: 674-682
21 Heffernan LM, Winston GW. Distribution of microsomal CO-binding chromophores and EROD activity in sea anemontes. Mar Environ Res 2000; 50: 23-27
22 Bhamre S, Anandatheerthavarada H, Shankar SK, Ravindranath V. Microsomal cytochrome P450 in human brain regions. Biochem Pharmacol 1992; 44: 1223-1225
23 Omura T, Takeue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome reductase from rat liver microsomes. J Biochem 1970; 67: 249-257
24 Imai Y, Ita A, Sato R. Evidence for biochemically different types of vesicles in the hepatic microsomal fraction. J Biochem 1996; 60: 427-428
25 Shewata SA. Drug-metabolizing enzymes: mechanisms and functions. Curr Drug Metab 2000; 1: 107-132
26 De Oliveira CA, Germano PM. Antixtans: current concepts on mechanisms of toxicity and their involvement in the etiology of hepatocellular carcinoma. Rev Saude Publica 1997; 31: 417-424
27 Ferguson LR. Role of plant polyphenols in genomic stability. Mutat Res 2001; 475: 89-111
28 Suganuma M, Okabe S, Kal Y, Sueoka N, Sueoka E, Fujiki H. Synergistic effects of (—)-epigallocatechin gallate with (—)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res 1999; 59: 44-47
29 Isemura M, Sasaki S, Togashi H, Endo S, Sato A, Ito T, Imai Y, Taka H, Hanakawa K, Nakazawa K, Sato Y, Sato S, Suganuma M, Okabe S, Kal Y, Sueoka N, Sueoka E, Fujiki H. Synergistic effects of (—)-epigallocatechin gallate with (—)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res 1999; 59: 44-47
30 Qi L, Han C. Induction of NAD(P)H: quinone reductase by antignocarcinogenic ingredients of tea. Cancer Lett 2000; 159: 169-173
31 Wei D, Mei Y, Liu J. Quantification of doxorubicin and validation of reversal effect of tea polyphenols on multidrug resistance in human cancer cells. Biotechnol Lett 2003; 25: 291-294
32 Mei Y, Wei D, Liu J. Reversal of cancer multidrug resistance by tea polyphenol in KB cells. J Chemother 2003; 15: 260-265
33 Malaiakal PP, Coville PF, Wanwimolruk S. Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 2001; 53: 569-577
34 Mukhtar H, Wang ZY, Katryk SK, Agarwal R. Tea components: antimutagenic and anticarcinogenic effects. Prev Med 1992; 21: 351-360
35 Wang ZY, Das M, Bickers DR, Mukhtar H. Interaction of epicatechins derived from green tea with rat hepatic cytochrome P450. Drug Metab Dispos 2000; 28: 98-103
36 Shapiro BH, Agrawal AK, Pampori NA. Gender differences in drug metabolism regulated by growth hormone. Int J Biochem Cell Biol 1995; 27: 9-23
37 Kato R. Molecular pharmacological and toxicological studies of drug-metabolizing enzymes. Yakugaku Zasshi 1995; 115: 661-680
38 Finnen MJ, Hassall KA. Effects of hypophysectomy on sex differences in the induction and depression of hepatic drug-metabolizing enzymes in the rat. J Pharmacol Exp Ther 1994; 269: 250-254
39 Kobayashi Y, Ohshiro N, Suzuki M, Sasaki T, Tokuyama S, Yohida T, Yanamoto T. Sex-related effect of hemin on cytochrome P450 and drug-metabolizing enzymes in rat liver. J Toxicol Sci 2000; 25: 213-222

Edited by Zhang JZ and Wang XL