Induced W_∞ Gravity as a WZNW Model

E. Nissimov1 and S. Pacheva1

Department of Physics
Ben-Gurion University of the Negev
Box 653, 84105 Beer Sheva, Israel

I. Vaysburd

Racah Institute of Physics
Hebrew University
Jerusalem 91904, Israel

ABSTRACT

We derive the explicit form of the Wess-Zumino quantum effective action of chiral W_∞-symmetric system of matter fields coupled to a general chiral W_∞-gravity background. It is expressed as a geometric action on a coadjoint orbit of the deformed group of area-preserving diffeomorphisms on cylinder whose underlying Lie algebra is the centrally-extended algebra of symbols of differential operators on the circle. Also, we present a systematic derivation, in terms of symbols, of the “hidden” $SL(\infty; \mathbb{R})$ Kac-Moody currents and the associated $SL(\infty; \mathbb{R})$ Sugawara form of energy-momentum tensor component T_{++} as a consequence of the $SL(\infty; \mathbb{R})$ stationary subgroup of the relevant W_∞ coadjoint orbit.

1On leave from: Institute of Nuclear Research and Nuclear Energy, BG-1784 Sofia, Bulgaria.
1. Introduction

The infinite-dimensional Lie algebra W_∞ (and its generalizations $W_{1+\infty}$ etc.) \[1, 2, 3\] are nontrivial “large N” limits of the associative, but non-Lie, conformal W_N algebras \[4\]. They arise in various problems of two-dimensional physics. The list of their principal applications includes self-dual gravity \[5\], first Hamiltonian structure of integrable KP hierarchy \[6\], string field actions in the collective field theory approach \[7\], conformal affine Toda theories \[8\]. One of the most remarkable manifestations of W_∞-type algebras is the recent discovery of a subalgebra of their “classical” limit w_∞ (the algebra of area-preserving diffeomorphisms) in $c = 1$ string theory as symmetry algebra of the special discrete states \[9\] or as the algebra of infinitesimal deformations of the ground ring \[10\]. Also, it is worth noting that similar algebras are found also in $D = 2$ quasitopological models, such as $D = 2$ Yang-Mills \[11\], where the metric dependence of the partition function degenerates into a dependence on the area only.

It is well known in the mathematical literature \[12\], that the family of possible deformations $W_\infty(q)$ of the initial “classical” w_∞ depends on a single parameter q and that, for each fixed value of q, $W_\infty(q)$ possesses an one-dimensional cohomology with values in \mathbb{R}. In particular, for $q = 1$ one finds that $W_\infty(1) \simeq D\tilde{O}\mathcal{P}(S^1)$ - the centrally extended algebra of differential operators on the circle, which was recently studied in refs.\[13\] The equivalence of $D\tilde{O}\mathcal{P}(S^1)$ to the original definition of $W_\infty(1) \[1, 3\]$ was explicitly demonstrated in \[14\].

In this letter we first derive a WZNW field-theory action $W_{D\tilde{O}\mathcal{P}(S^1)}[g]$ on a generic coadjoint orbit of the group $G = D\tilde{O}\mathcal{P}(S^1)$. The elements $g(\xi, x; t)$ of this group for fixed time t are symbols of exponentiated differential operators on S^1 and in this sense $D\tilde{O}\mathcal{P}(S^1)$ is the formal Lie group corresponding to the Lie algebra $D\tilde{O}\mathcal{P}(S^1)$. As it was shown in \[15\], the Legendre transform $\Gamma[g] = -W[g^{-1}]$ of a group coadjoint orbit action $W[g]$ for a general infinite-dimensional group G provides the exact solution for the quantum effective action of matter fields possessing an infinite-dimensional Noether symmetry group G_0 - the “classical” undeformed version of the group G. Thus, our WZNW action $W_{D\tilde{O}\mathcal{P}(S^1)}[g]$ is the explicit field-theoretic expression of the induced W_∞-gravity effective action. In particular, we show that $W_{D\tilde{O}\mathcal{P}(S^1)}[g]$ reduces to the well-known Polyakov’s WZNW action of induced $D = 2$ gravity in the light-cone gauge \[16\] when restricting the WZNW field $g(\xi, x; t)$ to the Virasoro subgroup of $D\tilde{O}\mathcal{P}(S^1)$. Furthermore, the appearance of the “hidden” $SL(\infty; \mathbb{R})$ Kac-Moody symmetry and the associated $SL(\infty; \mathbb{R})$ Sugawara form of the T_{++} component of the energy-momentum tensor are shown to be natural consequences of $SL(\infty; \mathbb{R})$ stationary subgroup the pertinent $D\tilde{O}\mathcal{P}(S^1)$ coadjoint orbit. Also, we present WZNW field-theoretic expressions in terms of $g(\xi, x; t)$ for the “hidden” currents and T_{++}.

2. Basic Ingredients

The object of primary interest is the infinite-dimensional Lie algebra $\mathcal{G} = D\tilde{O}\mathcal{P}(S^1)$ of symbols of differential operators \[\hat{\mathcal{G}} = \{ X \equiv \sum_k \xi_k X_k(x) \} \] on the circle S^1 with vanishing zero-order part $\hat{\mathcal{G}} = \{ X \equiv \sum_k \xi_k X_k(x) \}$. Let us recall \[17\] the correspondence between (pseudo)differential operators and symbols : $X(\xi, x) = \sum_k \xi_k X_k(x) \leftrightarrow \hat{X} = \sum_k X_k(x)(-i\partial_x)^k$.

\[1\]
X(\xi, x) = \sum_{k \geq 1} \xi^k X_k(x) \right\}. For any pair X, Y \in \mathcal{G} = \mathcal{DOP}(S^1) the Lie commutator is given in terms of the associative (and non-commutative) symbol product denoted henceforth by a cirlce \circ:

\[[X, Y] \equiv X \circ Y - Y \circ X \quad ; \quad X \circ Y \equiv X(\xi, x) \exp\left(\overrightarrow{\partial_\xi \partial_x} Y(\xi, x) \right) \tag{1} \]

In order to determine the dual space \(\mathcal{G}^* = \mathcal{DOP}^*(S^1) \), let us consider the space \(\Psi\mathcal{DO}(S^1) = \left\{ U \equiv U(\xi, x) = \sum_{k=1}^\infty \xi^{-k} U_k(x) \right\} \) of all purely pseudodifferential symbols \[17\] on \(S^1 \) and the following bilinear form on \(\Psi\mathcal{DO}(S^1) \otimes \mathcal{DOP}(S^1) \):

\[\langle U | X \rangle \equiv \int dx \text{Res}_\xi U \circ X = \int dx \text{Res}_\xi \left(e^{-\partial_\xi \partial_x} U(\xi, x) \right) X(\xi, x) \tag{2} \]

The last equality in (2) is due to the vanishing of total derivatives w.r.t. the measure \(\int dx \text{Res}_\xi \), and \(\text{Res}_\xi U(\xi, x) = U_1(x) \). From (2) we conclude that any pseudodifferential symbol of the form \(U^{(0)} = e^{\partial_\xi \partial_x} \left(\frac{1}{\xi} u(x) \right) \) is “orthogonal” to any differential symbol \(X \in \mathcal{DOP}(S^1) \), i.e. \(\langle U^{(0)} | X \rangle = 0 \). Thus, the dual space \(\mathcal{G}^* = \mathcal{DOP}^*(S^1) \) can be defined as the factor space \(\Psi\mathcal{DO}(S^1) \setminus \left\{ e^{\partial_\xi \partial_x} \frac{1}{\xi} u(x) \right\} \) w.r.t. the “zero” pseudodifferential symbols. In particular, we shall adopt the definition:

\[\mathcal{G}^* = \left\{ U_* ; U_*(\xi, x) = U(\xi, x) - e^{\partial_\xi \partial_x} \left(\frac{1}{\xi} \text{Res}_\xi U(\xi, x) \right) \right\} \quad \text{for } \forall U \in \Psi\mathcal{DO} \quad \tag{3} \]

Having the bilinear form (2) one can define the coadjoint action of \(\mathcal{G} \) on \(\mathcal{G}^* \) via:

\[\langle \text{ad}^*(X) U | Y \rangle = - \langle U | [X, Y] \rangle \]
\[(\text{ad}^*(X) U)(\xi, x) \equiv [X, U]_* \quad \tag{4} \]

Here and in what follows, the subscript (−) indicates taking the part of the symbol containing all negative powers in the \(\xi \)-expansion, whereas the subscript * indicates projecting of the symbol on the dual space (3). The Jacobi identity for the coadjoint action \(\text{ad}^*(\cdot) \) (4) is fulfilled due to the following important property:

\[\left[X, e^{\partial_\xi \partial_x} \left(\frac{1}{\xi} u(x) \right) \right] = e^{\partial_\xi \partial_x} \left(\frac{1}{\xi} \text{Res}_\xi [X, e^{\partial_\xi \partial_x} \frac{1}{\xi} u(x)] \right) \tag{5} \]

i.e., the coadjoint action of \(\mathcal{DOP}(S^1) \) on \(\Psi\mathcal{DO}(S^1) \) maps “zero” pseudodifferential symbols into “zero” ones.

The central extension in \(\tilde{\mathcal{G}} \equiv \mathcal{DOP}(S^1) = \mathcal{DOP}(S^1) \oplus \mathbb{R} \) is given by the two-cocycle \(\omega(X, Y) = -\frac{1}{4\pi} \langle \dot{s}(X)|Y \rangle \), where the cocycle operator \(\dot{s} : \mathcal{G} \longrightarrow \mathcal{G}^* \) explicitly reads \[13\] :

\[\dot{s}(X) = [X, \ln \xi]_* \quad \tag{6} \]

Let us now consider the Lie group \(G = \text{DOP}(S^1) \) defined as exponentiation of the Lie algebra \(\mathcal{G} \) of symbols of differential operators on \(S^1 \):

\[G = \left\{ g(\xi, x) = \text{Exp}X(\xi, x) \equiv \sum_{N=0}^\infty \frac{1}{N!} X(\xi, x) \circ X(\xi, x) \circ \cdots \circ X(\xi, x) \right\} \quad \tag{7} \]
and the group multiplication is just the symbol product \(g \circ h \). The adjoint and coadjoint action of \(G = DOP(S^1) \) on the Lie algebra \(DOP(S^1) \) and its dual space \(DOP^*(S^1) \), respectively, is given as:

\[
(Ad(g)X) = g \circ X \circ g^{-1} ; \quad (Ad^*(g)U) = (g \circ X \circ g^{-1})^*
\]

The group property of (8) \(Ad^*(g \circ h) = Ad^*(g) Ad^*(h) \) easily follows from the “exponentiated” form of the identity (5).

After these preliminaries we are ready to introduce the two interrelated fundamental objects \(S[g] \) and \(Y[g] \) entering the construction of the geometric action on a coadjoint orbit of \(G \). To this end we shall follow the general formalism for geometric actions on coadjoint orbits of arbitrary infinite-dimensional groups with central extensions proposed in refs. [18, 19].

Namely, \(S[g] \) is a nontrivial \(\mathcal{G}^* \)-valued one-cocycle on the group \(G \) (also called finite “anomaly” or generalized Schwarzian), whose infinitesimal form is expressed through the Lie-algebra \(\mathcal{G} \) cocycle operator \(\hat{s}(\cdot) \) (infinitesimal “anomaly”):

\[
S[g \circ h] = S[g] + Ad^*(g)S[h] \quad ; \quad \left. \frac{d}{dt} S[\text{Exp}(tX)] \right|_{t=0} = \hat{s}(X)
\]

The integrability condition for (11) implies that the one-form \(Y[g] \) satisfies the Maurer-Cartan equation and that it is a \(DOP(S^1) \)-valued group one-cocycle:

\[
dS[g] = -Ad^*(g) \hat{s}(Y[g^{-1}])
\]

From (8) and (10)-(12) one easily finds:

\[
Y[g] = dg(\xi, x) \circ g^{-1}(\xi, x)
\]

At this point it would be instructive to explicitate formulas (8), (11) and (12) when the elements of \(G = DOP(S^1) \) and \(\mathcal{G} = DOP(S^1) \) are restricted to the Virasoro subgroup (subalgebra, respectively):

\[
X(\xi, x) = \xi \omega(x) \leftarrow \omega(x) \partial_x \in \text{Vir}
\]

\[
g(\xi, x) = \text{Exp}(\xi \omega(x)) \leftrightarrow F(x) \equiv \exp(\omega(x)\partial_x) x \in \text{Diff}(S^1)
\]

Substituting (14) into (8), (10) and (12), one obtains:

\[
Y[g] \bigg|_{g(\xi, x) = \text{Exp}(\xi \omega(x))} = \xi \frac{dF(x)}{\partial_x F(x)} \quad ; \quad \hat{s}(X) = [\xi \omega(x), \ln \xi]_* = -\frac{1}{6} \xi^{-2} \partial_x^3 \omega(x) + \cdots
\]

\[
S[g] \bigg|_{g(\xi, x) = \text{Exp}(\xi \omega(x))} = -\frac{1}{6} \xi^{-2} \left(\frac{\partial_x^3 F}{\partial_x F} - \frac{3}{2} \left(\frac{\partial_x^2 F}{\partial_x F} \right)^2 \right) + \cdots
\]
The dots in (13) indicate higher order terms $O(\xi^k), k \geq 3$, which do not contribute in bilinear forms with elements of $\mathcal{V}ir$ (14).

3. WZNW Action of W_∞ Gravity

According to the general theory of group coadjoint orbits [20], a generic coadjoint orbit $O(U_0, c)$ of G passing through a point (U_0, c) in the extended dual space $\tilde{G}^* = G^* \oplus \mathbb{R}$:

$$O(U_0, c) \equiv \left\{ (U(g), c) \in \tilde{G}^* ; U(g) = Ad^*(g)U_0 + cS[g] \right\}$$

has a structure of a phase space of an (infinite-dimensional) Hamiltonian system. Its dynamics is governed by the following Lagrangian geometric action written solely in terms of the interrelated fundamental group and algebra cocycles $S[g], Y[g], \hat{s}(\cdot)$ (cf. eqs.(6),(9)-(13)) [18, 19] :

$$W[g] = \int_L \langle U_0 \mid Y[g^{-1}] \rangle - c \int \left[\langle S[g] \mid Y[g] \rangle - \frac{1}{2} d^{-1} \left(\langle \hat{s}(Y[g]) \mid Y[g] \rangle \right) \right]$$

(17)

The integral in (17) is over one-dimensional curve L on the phase space $O(U_0, c)$ (16) with a “time-evolution” parameter t. Along the curve L the exterior derivative becomes $d = dt \partial_t$. Also, d^{-1} denotes the cohomological operator of Novikov [21] - the inverse of the exterior derivative, defining the customary multi-valued term present in any geometric action on a group coadjoint orbit.

In the present case of $G = DOP(S^1)$, the co-orbit action (17) takes the following explicit form, which (as discussed in section 1) is precisely the Wess-Zumino action for induced W_∞-gravity (the explicit dependence of symbols on $(\xi, x; t)$ will in general be suppressed below) :

$$W[g] = - \int dt dx \text{Res}_\xi U_0 \circ g^{-1} \circ \partial_t g +$$

$$\frac{c}{4\pi} \int_L \int dx \text{Res}_\xi \left(\left[\ln \xi , g \right] \circ g^{-1} \circ \partial_t g \circ g^{-1} - \frac{1}{2} d^{-1} \left(\left[\ln \xi , g^{-1} \circ dg \right] \wedge \left(g^{-1} \circ dg \right) \right) \right)$$

(18)

The physical meaning of the first term on the r.h.s. of (18) is that of coupling of the chiral W_∞ Wess-Zumino field $g = g(\xi, x; t)$ to a chiral W_∞-gravity “background”. For simplicity, we shall consider henceforth the case $U_0 = 0$.

It is straightforward to obtain, upon substitution of eqs.(14)-(15), that the restriction of $g(\xi, x; t)$ to the Virasoro subgroup reduces the W_∞ Wess-Zumino action (18) to the well-known Polyakov’s Wess-Zumino action of induced $D = 2$ gravity [10, 22].

The group cocycle properties (eqs.(9),(12)) of $S[g]$ (11) and $Y[g]$ (13) imply the following fundamental group composition law for the W_∞ geometric action (18):

$$W[g \circ h] = W[g] + W[h] - \frac{c}{4\pi} \int dt dx \text{Res}_\xi \left(\left[\ln \xi , h \right] \circ h^{-1} \circ g^{-1} \circ \partial_t g \right)$$

(19)

Eq.(19) is a particular case for W_∞ of the group composition law for geometric actions on coadjoint orbits of arbitrary infinite-dimensional groups with central extensions [19]. It
generalizes the famous Polyakov-Wiegmann group composition law [23] for ordinary $D = 2$
WZNW models.

Using the general formalism for co-orbit actions in [18, 19] we find, that the basic Poisson
brackets for $S[g]$ (11) following from the action (18) read:

$$\{ S[g](\xi, x), S[g](\eta, y) \}_PB = \left[S[g](\xi, x) + \ln \xi, \delta_{DOP}(\eta, \xi, x, \eta) \right]$$

(20)

where $\delta_{DOP}(\cdot, \cdot) \in G^* \otimes G$ denotes the kernel of the δ-function on the space of differential
operator symbols:

$$\delta_{DOP}(x, \xi, \eta, y) = e^{\partial_x \partial_{\xi}} \left(\sum_{k=1}^{\infty} \xi^{-(k+1)} \eta^k \delta(x - y) \right)$$

(21)

Eq. (20) is a succinct expression of the Poisson-bracket realization of W_∞, which becomes
manifest by rewriting (20) in the equivalent form:

$$\{ \langle S[g] | X \rangle, \langle S[g] | Y \rangle \}_PB = -\langle S[g] | [X, Y] \rangle + \langle \delta(X) | Y \rangle$$

(22)

for arbitrary fixed $X, Y \in G = DOP(S^1)$. Alternatively, substituting into (20) (or (22)) the
ξ-expansion of the pseudodifferential symbol $S[g](\xi, x) = \sum_{r \geq 2} \xi^{-r} S_r(x)$, one recovers the
Poisson-bracket commutation relations for W_∞ among the component fields $S_r(x)$ in the
basis of ref. [14] (which is a “rotation” of the more customary W_∞ basis of refs. [2]).

In particular, for the component field $S_2(x) \equiv \frac{4\pi c}{3} T_{-1}(x)$ (the energy-momentum tensor component, cf. [15])
one gets from (20) the Poisson-bracket realization of the Virasoro algebra:

$$\{ S_2(x), S_2(y) \}_PB = -\frac{4\pi}{c} \left(2S_2(x) \partial_x \delta(x - y) + \partial_x S_2(x) \delta(x - y) + \frac{1}{6} \partial^3_x \delta(x - y) \right)$$

(23)

The higher component fields $S_r(x), r = 3, 4, \cdots$ turn out to be quasi-primary conformal
fields of spin r. The genuine primary fields $W_r(x) (r \geq 3)$ are obtained from $S_r(x)$ by adding derivatives of the lower spin fields $S_q(x) (2 \leq q \leq r - 1)$. For instance, for
$W_3(x) = S_3(x) - \frac{3}{2} \partial_x S_2(x)$, eq. (20) yields:

$$\{ S_2(x), W_3(y) \}_PB = -\frac{4\pi}{c} \left(3W_3(x) \partial_x \delta(x - y) + 2\partial_x W_3(x) \delta(x - y) \right)$$

(24)

4. Noether and “Hidden” Symmetries of W_∞ Gravity

The general group composition law (13) contains the whole information about the symmetries of the W_∞ geometric action (18). First, let us consider arbitrary infinitesimal left
group translation. The corresponding variation of the action (18) is straightforwardly obtained from (19):

$$\delta_\varepsilon W[g] \equiv W[(1 + \varepsilon) \circ g] - W[g] = \frac{c}{4\pi} \int dt \, dx \, \text{Res}_\xi \left\{ \left[\ln \varepsilon, g \right] \circ g^{-1} \right\}_* \circ \partial_t \varepsilon$$

(25)
From (25) one finds that (18) is invariant under \(t \)-independent left group translations and the associated Noether conserved current is the generalized “Schwarzian” \(S[g] \) whose components are the (quasi)primary conformal fields \(S_r(x; t) \) of spin \(r \).

Next, let us consider arbitrary right group translation. Now, from (19) the variation of the \(W_\infty \) action (18) is given by:

\[
\delta R \zeta W \equiv W[g \circ (\mathbb{I} + \zeta)] - W[g] = -\frac{c}{4\pi} \int dt \, dx \, \text{Res}_\xi \left([\ln \xi, \zeta] \circ Y_t(g^{-1}) \right) = -\frac{c}{4\pi} \int dt \, dx \, \text{Res}_\xi \left([\ln \xi, Y_t(g^{-1})] \circ \zeta \right)
\]

where \(Y_t(g^{-1}) \) denotes the Maurer-Cartan gauge field:

\[
Y_t(g^{-1}) = -\frac{1}{g - 1} \partial_t g
\]

Equality (27) implies the equations of motion:

\[
\hat{s} \left(Y_t(g^{-1}) \right) \bigg|_{\text{on-shell}} = 0
\]

As a matter of fact, the off-shell relation (11) exhibits the full equivalence between the Noether conservation law \(\partial_s S[g] = 0 \) (25) and the equations of motion (29).

On the other hand, equality (26) shows that the \(W_\infty \) geometric action (18) is gauge-invariant under arbitrary time-dependent infinitesimal right-group translations \(g(\xi, x; t) \rightarrow g(\xi, x; t) \circ (1 + \tilde{\zeta}(\xi, x; t)) \) which satisfy:

\[
\hat{s}(\tilde{\zeta}) \equiv -[\ln \xi, \tilde{\zeta}]_* = 0
\]

Equality (26) implies the equations of motion:

\[
\hat{s} \left(Y_t(g^{-1}) \right) \bigg|_{\text{on-shell}} = 0
\]

Equality (27) implies the equations of motion:

\[
\hat{s} \left(Y_t(g^{-1}) \right) \bigg|_{\text{on-shell}} = 0
\]

As a matter of fact, the off-shell relation (11) exhibits the full equivalence between the Noether conservation law \(\partial_s S[g] = 0 \) (25) and the equations of motion (29).

On the other hand, equality (26) shows that the \(W_\infty \) geometric action (18) is gauge-invariant under arbitrary time-dependent infinitesimal right-group translations \(g(\xi, x; t) \rightarrow g(\xi, x; t) \circ (1 + \tilde{\zeta}(\xi, x; t)) \) which satisfy:

\[
\hat{s}(\tilde{\zeta}) \equiv -[\ln \xi, \tilde{\zeta}]_* = 0
\]

For finite right group translations \(k = \text{Exp} \tilde{\zeta} \) the integrated form of (30) reads:

\[
S[k] \equiv -[\ln \xi, k \circ k^{-1}]_* = 0
\]

The solutions of eqs. (30) and (31) form a subalgebra in \(DOP(S^1) \), and a subgroup in \(DOP(S^1) \), respectively. From (16) one immediately concludes that the latter subgroup:

\[
G_{\text{stat}} = \left\{ k ; S[k] = 0 \right\}
\]

is precisely the stationary subgroup of the underlying coadjoint orbit \(\mathcal{O}_{(U_0 = 0, c)} \). The Lie algebra of (32):

\[
\mathcal{G}_{\text{stat}} = \left\{ \tilde{\zeta} ; \hat{s}(\tilde{\zeta}) \equiv -[\ln \xi, \tilde{\zeta}]_* = 0 \right\}
\]

is the maximal centerless (“anomaly-free”) subalgebra of \(\text{DO}(S^1) \), on which the cocycle (3) vanishes:

\[
\omega(\tilde{\zeta}_1, \tilde{\zeta}_2) = -\left\langle \hat{s}(\tilde{\zeta}_1) | \tilde{\zeta}_2 \right\rangle = 0 \quad \text{for any pair} \quad \tilde{\zeta}_1, \tilde{\zeta}_2 \in \mathcal{G}_{\text{stat}}.
\]

The restriction of eq. (29) to the Virasoro subgroup via (14)-(15) takes the well known from [16]

\[
\partial^3_x (\partial_t f \partial_x f) = 0, \quad \text{and} \quad f(x; t) \text{ is the inverse Virasoro group element : } f(F(x; t); t) = x.
\]
The Cartan subalgebra of \(\mathfrak{g}_{\text{stat}} \), can be written in the form:

\[
\zeta^{(l,m)}(\xi, x) = \sum_{q=1}^{l} \binom{l}{q} \frac{(l-1)!(l+q)!}{(q-1)!(2l)!} \frac{\xi^q x^{q+m}}{\Gamma(q+m+1)}
\]

where \(l = 1, 2, \ldots \) and \(m = -l, -l+1, \ldots, l-1, l \).

The basis \(\{ \zeta^{(l,m)} \} \) identifies the stationary subalgebra \(\mathfrak{g}_{\text{stat}} \) as the infinite-dimensional algebra \(\mathfrak{sl}(\infty; \mathbb{R}) \). Namely, \(\mathfrak{g}_{\text{stat}} \) decomposes (as a vector space) into a direct sum of irreducible representations \(\mathcal{Y}^{(l)}_{\text{sl}(2)} \) of its \(\mathfrak{sl}(2; \mathbb{R}) \) subalgebra with spin \(l \) and unit multiplicity: \(\mathfrak{g}_{\text{stat}} = \bigoplus_{l=1}^{\infty} \mathcal{Y}^{(l)}_{\text{sl}(2)} \). This \(\mathfrak{sl}(2; \mathbb{R}) \) subalgebra is generated by the symbols \(2\zeta^{(1,1)} = \xi x^2, \zeta^{(1,0)} = \xi x \) and \(\zeta^{(1,-1)} = \xi \). The subspaces \(\mathcal{Y}^{(l)}_{\text{sl}(2)} \) are spanned by the symbols \(\{ \zeta^{(l,m)}; \ |m| \leq l \} \) with \(\zeta^{(l,l)} \) being the highest-weight vectors:

\[
[\xi x^2, \zeta^{(l,l)}] = 0; \quad [\xi x, \zeta^{(l,m)}] = m \zeta^{(l,m)}; \quad [\xi, \zeta^{(l,m)}] = \zeta^{(l,m-1)}
\]

The Cartan subalgebra of \(\mathfrak{g}(\infty; \mathbb{R}) \) is spanned by the subset \(\{ \zeta^{(l,0)}; l = 1, 2, \ldots \} \) of symbols \(\{ \zeta^{(l,0)} \} \).

The above representation of \(\mathfrak{sl}(\infty; \mathbb{R}) \) in terms of symbols \(\{ \zeta^{(l,m)} \} \) is analogous to the construction of \(\mathfrak{sl}(\infty; \mathbb{R}) \) as “wedge” subalgebra \(\mathfrak{W}(\mu) \) of \(\mathfrak{W}_\infty \) for \(\mu = 0 \) [2, 24], which in turn is isomorphic to the algebra \(\mathfrak{A}_\infty \) of Kac [23].

Now, accounting for (33)-(34), one can write down explicitly the solution to the equations of motion (29):

\[
Y_t(g^{-1}) \bigg|_{\text{on-shell}} = \sum_{l=1}^{\infty} \sum_{|m| \leq l} J^{(l,m)}(t) \zeta^{(l,m)}(\xi, x)
\]

with \(\zeta^{(l,m)} \) as in (34). The coefficients \(J^{(l,m)}(t) \) in (36) are arbitrary functions of \(t \) and represent the on-shell form of the currents of the “hidden” \(\mathfrak{g}_{\text{stat}} \equiv \mathfrak{sl}(\infty; \mathbb{R}) \) Kac-Moody symmetry of \(\mathfrak{W}[g] \) (28).

Indeed, upon right group translation with \(\zeta(a) = \sum a^{(l,m)}(x, t) \circ \zeta^{(l,m)}(\xi, x) \) with arbitrary coefficient functions (zero order symbols) \(a^{(l,m)}(x, t) \), one obtains from (26):

\[
\delta_{\zeta(a)} W[g] = -\frac{c}{4\pi} \int dt \, dx \sum_{l=1}^{\infty} \sum_{|m| \leq l} \partial_x a^{(l,m)}(x, t) J^{(l,m)}(x, t) \]

\[
\bar{J}^{(l,m)} \equiv \sum_{r=1}^{\infty} (-\partial_x)^{r-1} \left\{ (-1)^r l!(l+1)! \frac{x^m}{\Gamma(m)} \left(Y_t(g^{-1}) \right)_r \right\} - \frac{1}{r+1} \partial_x \left(\zeta^{(l,m)} \circ Y_t(g^{-1}) \right)_r \]

The subscripts \(r \) in (38) and below indicate taking the coefficient in front of \(\xi^r \) in the corresponding symbol.

The Noether theorem implies from (17) that \(\bar{J}^{(l,m)}(x, t) \) (38) are the relevant Noether currents corresponding to the symmetry of the \(\mathfrak{W}_\infty \) action (18) under arbitrary right group \(SL(\infty; \mathbb{R}) \) translations. Clearly, \(\bar{J}^{(l,m)}(x, t) \) are \(\mathfrak{sl}(\infty; \mathbb{R}) \)-valued and are conserved w.r.t. the “time-evolution” parameter \(x \equiv x^{-} : \)

\[
\partial_x \bar{J}^{(l,m)}(x, t) \bigg|_{\text{on-shell}} = 0
\]
Substituting the on-shell expression (36) into (38) we get:

$$\bar{J}^{(l,m)}(x, t) \bigg|_{\text{on-shell}} = \sum_{l=1}^{\infty} \sum_{|m| \leq l} K^{(l,m)(l',m')} J^{(l',m')}(t)$$

(40)

where $K^{(l,m)(l',m')}$ is a constant invariant symmetric $sl(\infty; \mathbb{R})$ tensor:

$$K^{(l,m)(l',m')} = \sum_{r=1}^{\infty} (-\partial_x)^{r-1} \left\{ \left(\zeta^{(l',m')} \right)_r \text{Res}_\xi \left[\ln \xi, \zeta^{(l,m)} \right] - \frac{1}{r+1} \partial_x \left(\zeta^{(l,m)} \circ \zeta^{(l',m')} \right)_r \right\}$$

(41)

naturally representing the Killing metric of $sl(\infty; \mathbb{R})$.

The fact that the currents $J^{(l,m)}(t)$ in (36) generate a $sl(\infty; \mathbb{R})$ Kac-Moody algebra, can be shown most easily by considering infinitesimal right group translation $g \rightarrow g \circ (\mathbb{1} + \zeta_t)$ with $\zeta_t = \sum_{l,m} \varepsilon^{(l,m)}(t) \zeta^{(l,m)}(\xi, x) \in sl(\infty; \mathbb{R})$ on $Y_t(g^{-1}) \equiv -g^{-1} \circ \partial_t g$. Recall (cf. (37), (40)), that $J^{(l,m)}(t)$ are the corresponding Noether symmetry currents. From the cocycle property (12) one obtains:

$$\delta_{\zeta_t} Y_t(g^{-1}) \equiv Y_t \left((\mathbb{1} - \zeta_t) \circ g^{-1} \right) - Y_t(g^{-1}) = -\partial_t \zeta_t + \left[Y_t(g^{-1}), \zeta_t \right]$$

(42)

which upon substitution of (36) yields:

$$\delta_{\zeta_t} J^{(l,m)}(t) = -\partial_t \varepsilon^{(l,m)}(t) + f^{(l,m)(l',m')} J^{(l',m')}(t) \varepsilon^{(l',m')}(t)$$

(43)

Here $f^{(l,m)(l',m')}$ denote the the structure constants of $sl(\infty; \mathbb{R})$ in the basis $\zeta^{(l,m)}$ (i.e., $[\zeta^{(l,m)}, \zeta^{(l',m')}]) = f^{(l,m)(l',m')} \zeta^{(l',m')} \right)$.

Finally, let us also show that the canonical Noether energy-momentum tensor T_{++} (the Noether current corresponding to the symmetry of the W_∞ action (18) under arbitrary rescaling of $t \equiv x^+$) autohmatically has the (classical) Sugawara form in terms of the “hidden” $sl(\infty; \mathbb{R})$ Kac-Moody currents $J^{(l,m)}(t)$ (36). Indeed, the variation of (18) under a reparametrization $t \rightarrow t + \rho(t, x)$ reads:

$$\delta_{\rho} W[g] = -\frac{1}{4\pi} \int dt \, dx \, \partial_x \rho(t, x) \, T_{++}(t, x)$$

(44)

$$T_{++} \equiv \frac{1}{2e} \sum_{r=0}^{\infty} \frac{(-1)^r}{r+1} \partial_x^r \left\{ (Y_t(g^{-1}) \circ Y_t(g^{-1}))_r + \frac{1}{r!} \text{Res}_\xi \left(\partial_x^{r+1} Y_t(g^{-1}) \circ \left[\ln \xi, Y_t(g^{-1}) \right] \right) \right\}$$

(45)

Substituting (36) into (43) and accounting for (37), one easily gets the $sl(\infty; \mathbb{R})$ Sugawara representation of the energy-momentum tensor (13):

$$T_{++}(t, x) \bigg|_{\text{on-shell}} = \frac{1}{2e} \sum_{(l,m),(l',m')} K^{(l,m)(l',m')} J^{(l,m)}(t) J^{(l',m')}(t)$$

(46)

where $K^{(l,m)(l',m')}$ is the $sl(\infty; \mathbb{R})$ Killing metric tensor (11).

In particular, substituting into (15) the restriction of $g(\xi, x; t)$ to the Virasoro subgroup via (14)-(15), we recover the well-known (classical) $sl(2; \mathbb{R})$ Sugawara form of T_{++} in $D = 2$ induced gravity (26).
5. Conclusions and Outlook

According to the general discussion in [15], the Legendre transform $\Gamma[y] = -W[g^{-1}]$ of the induced W_∞-gravity WZNW action (18) is the generating functional, when considered as a functional of $y \equiv Y_t(g^{-1})$, of the quantum correlation functions of generalized Schwarzians $S[g]$. Similarly, $W[J] \equiv -W_{DOP(S^1)}[g]$, when considered as a functional of $J \equiv -\frac{c}{4\pi}S[g]$, is the generating functional of all correlation functions of the currents $Y_t(g^{-1})$. These correlation functions can be straightforwardly obtained, recursively in N, from the functional differential equations (i.e., Ward identities):

$$\partial_t \frac{\delta \Gamma}{\delta y} + \left[\frac{\delta \Gamma}{\delta y} - \frac{c}{4\pi} \ln \xi, y \right] = 0 \ ; \ \partial_t J + \left[\frac{\delta W}{\delta J}, J - \frac{c}{4\pi} \ln \xi \right] = 0$$ (47)

An interesting problem is to derive the W_∞ analogue of the Knizhnik-Zamolodchikov equations [27] for the correlation functions $\langle g(\xi_1, x_1; t_1) \cdots g(\xi_N, x_N; t_N) \rangle$. To this end we need the explicit form of the symbol $r((\xi, x); (\xi', x')) \in DOP(S^1) \otimes DOP(S^1)$ of the classical r-matrix of W_∞. This issue will be dealt with in a forthcoming paper.

Another basic mathematical problem is the study of the complete classification of the coadjoint orbits of $DOP(S^1)$ and the classification of its highest weight irreducible representations.

Let us note that, in order to obtain the WZNW action of induced $W_{1+\infty}$ gravity along the lines of the present approach, one should start with the algebra of differential operator symbols containing a nontrivial zero order term in the ξ-expansion $X = X_0(x) + \sum_{k \geq 1} \xi^k X_k(x)$. In this case one can solve the “hidden” symmetry (i.e. the “anomaly” free subalgebra) equation $[\ln \xi, \xi] = 0$ and the result is the Borel subalgebra of $gl(\infty; \mathbb{R})$ spanned by the symbols $\zeta^{(p,q)} = \xi^p x^q$ with $p \geq q$. The $W_{1+\infty}$ WZNW action will have formally the same form as (18), however, now the meaning of the symbol $g^{-1}(\xi, x; t)$ of the inverse group element is obscure due to the nontrivial ($((\xi, x)$-dependent) zero order term in the ξ-expansion of $g(\xi, x; t)$.

Acknowledgements. It is a pleasure to thank S. Elitzur, V. Kac, D. Kazhdan, A. Schwimmer and A. Zamolodchikov for useful comments and illuminating discussion.

References

[1] C. Pope, L. Romans and X. Shen, Phys. Lett. 236B (1990) 173 ; E. Bergshoeff, C. Pope, L. Romans, E. Sezgin and X. Shen, Phys. Lett. 245B (1990) 447

[2] C. Pope, L. Romans and X. Shen, Nucl. Phys. B339 (1990) 191

[3] I. Bakas, Phys. Lett. 228B (1989) 57 ; Comm. Math. Phys. 134 (1990) 487

[4] A. Zamolodchikov, Theor. Math. Phys. 65 (1985) 1205

[5] Q. Han-Park, Phys. Lett. 236B (1990) 429, 238B 208 ; K. Yamagishi and G. Chapline, Class. Quant. Grav. 8 (1991) 1
[6] K. Yamagishi, Phys. Lett. 259B (1991) 436; F. Yu and Y.-S. Wu, 263B (1991) 220
[7] J. Avan and A. Jevicki, Brown Univ. preprint BROWN-HET-389 (Oct. 1991)
[8] H. Aratyn, L. Ferreira, J. Gomes and A. Zimerman, Univ. Illinois preprint UICHEP-TH/92-1
[9] I. Klebanov and A. Polyakov, Princeton preprint PUPT-1281 (1991)
[10] E. Witten, IAS preprint IASSNS-HEP-91/51
[11] E. Witten, Comm. Math. Phys. 141 (1991) 153
[12] B. Feigin, Usp. Math. Nauk 35 (1988) 157; V. Kac and P. Peterson, MIT preprint 27/87 (1987)
[13] A. Radul, Funct. Anal. Appl. 25 (1991) 33; Phys. Lett. 265 (1991) 86; B. Khesin and O. Kravchenko, Funct. Anal. Appl. 23 (1989) 78; A. Radul and I. Vaysburd, Hebrew Univ. preprint RI-9-91 (Phys. Lett. B, to appear)
[14] I. Bakas, B. Khesin and E. Kiritsis, Berkeley preprint LBL-31303 (1991)
[15] H. Aratyn, E. Nissimov and S. Pacheva, Phys. Lett. 255B (1991) 359
[16] A. Polyakov, Mod. Phys. Lett. A2 (1987) 893; A. Polyakov and A. Zamolodchikov, ibid A3 (1988) 1213
[17] F. Treves, “Introduction to Pseudodifferential and Fourier Integral Operators”, vol.1 & 2, Plenum, New York (1980)
[18] H. Aratyn, E. Nissimov, S. Pacheva and A.H. Zimerman, Phys. Lett. 240B (1990) 127
[19] H. Aratyn, E. Nissimov and S. Pacheva, Phys. Lett. 251B (1990) 401; Mod. Phys. Lett. A5 (1990) 2503
[20] A.A. Kirillov, “Elements of the Theory of Representations”, Springer Verlag (1976); B. Kostant, Lect. Notes in Math. 170 (1970) 87; J.M. Souriau, “Structure des Systems Dynamiques”, Dunod, Paris, (1970); R. Abraham and J. Marsden, “Foundations of Mechanics”, Benjamin, Mass. (1978); Guillemin V. and S. Sternberg, “Symplectic Techniques in Physics”, Cambridge Univ., Cambridge-New York, (1984)
[21] B. Dubrovin, A. Fomenko and S. Novikov, “Modern Geometry. Methods of Homology”, Nauka, Moscow (1984)
[22] A. Alekseev and S.L. Shatashvili, Nucl. Phys. B323 (1989) 719
[23] A. Polyakov and P. Wiegmann, Phys. Lett. 131B (1983) 121; ibid 141B (1984) 223
[24] C. Pope, X. Shen, K.-W. Xu and K. Yuan, Nucl. Phys. B (to appear)
[25] V. Kac, “Infinite Dimensional Lie Algebras”, Cambridge Univ. Press (1985)
[26] A. Polyakov, in “Fields, Strings and Critical Phenomena” (eds. E. Brézin and J. Zinn-Justin), Elsevier, Amsterdam (1989)
[27] V. Knizhnik and A. Zamolodchikov, Nucl. Phys. B247 (1984) 83