Hermitian codes from higher degree places

G. Korchmáros* and G.P. Nagy

Abstract

Matthews and Michel [28] investigated the minimum distances in certain algebraic-geometry codes arising from a higher degree place \(P \). In terms of the Weierstrass gap sequence at \(P \), they proved a bound that gives an improvement on the designed minimum distance. In this paper, we consider those of such codes which are constructed from the Hermitian function field \(\mathbb{F}_{q^2}(\mathcal{H}) \). We determine the Weierstrass gap sequence \(G(P) \) where \(P \) is a degree 3 place of \(\mathbb{F}_{q^2}(\mathcal{H}) \), and compute the Matthews and Michel bound with the corresponding improvement. We show more improvements using a different approach based on geometry. We also compare our results with the true values of the minimum distances of Hermitian 1-point codes, as well as with estimates due Xing and Chen [32].

Keywords: AG code, Weierstrass gap, Hermitian curve.
Mathematics Subject Classification (2000) 14H55, 11T71, 11G20, 94B27

1 Introduction

Algebraic-geometry (AG) codes are linear codes constructed from algebraic curves defined over a finite field \(\mathbb{F}_q \). The best known such general construction was originally introduced by Goppa, see [17]. It provides linear codes from certain rational functions whose poles are prescribed by a given \(\mathbb{F}_q \)-rational divisor \(G \), by evaluating them at some set of \(\mathbb{F}_q \)-rational places disjoint from \(\text{supp}(G) \). The dual to such a code can be obtained by computing residues of differential forms. The former are the functional codes, and the latter

*This research was performed while the first author was a visiting professor at the Bolyai Institute of University of Szeged during the second semester of the academic year 2011-12. The visit was financially supported by the TAMOP-4.2.1/B-09/1/KONV-2010-0005 project.
are the differential codes. If the \mathbb{F}_q-rational places are Q_1, \ldots, Q_n and $D = Q_1 + \ldots + Q_n$, then $C_L(D, G)$ and $C_\Omega(D, G)$ stand for the corresponding functional and differential codes, respectively. For $n > \deg G > 2q - 2$ where q is the genus of the curve, a lower bound on the minimum distance for $C_L(D, G)$ is $n - \deg G$, and for $C_\Omega(D, G)$ is $\deg G - (2q - 2)$. These values are the designed minimum distance.

Typically the divisor G is taken to be a multiply mP of a single place P of degree one. Such codes are the one-point codes, and have been extensively investigated; see [3, 16] and the bibliography therein. It has been shown however that AG-codes with better parameters than the comparable one-point Hermitian code may be obtained by allowing the divisor G to be more general; see the recent papers [1, 2, 10, 11, 12, 18] and the references therein.

In [28] this possibility is discussed for one-point differential codes arising from places of higher degree, that is, for $C_\Omega(D,G)$ with $G = mP$, where P is a place of degree $r > 1$. From [28, Theorem 3.4], there exist special values of m for which such a code $C_\Omega(D,G)$ has bigger minimum distance than the designed one by at least r. The Matthews-Michel bound, see [28, Theorem 3.5], shows that even better improvements may occur whenever the gap sequence at P has certain specific properties. This is verified in [28] by the examples computed by MAGMA [4] for $q = 7^2, 8^2$ and $r = 3$ where the curve is, as usual, the Hermitian curve over \mathbb{F}_{q^2}. Nevertheless, the applicability of the above results to any q requires detailed knowledge of the gap sequence at P rising the problem of determining such a sequence, in particular at a degree 3 point P of the Hermitian curve over \mathbb{F}_{q^2}. Our Theorem 3.1 solves this problem and together with [28, Theorem 3.5] provides an improvement on the designed minimum distance for an infinite family of differential codes, see Proposition 4.1. This confirms the importance of knowledge of gap sequences at r-tuples of places in the study of functional and differential codes, as clearly emerged from previous and current work by several authors, see [5, 6, 7, 8, 15, 22, 23, 24, 26, 27, 29].

In Section 5 we give more improvements using a different approach based on geometry rather than function field theory, the essential ingredient being the Noether “AF+BG” theorem. Our main result is stated in Theorem 5.10.

In Section 6 examples are given to illustrate and compare the above improvements. For the Hermitian curve over \mathbb{F}_{2^2} with a point P of degree $r = 3$, the Matthews-Michel bound as well as Theorem 5.10 show that $C_\Omega(D, 18P)$ is a $[343, 309, d]$-code with $d \geq 20$. This improves the previous Xing-Chen bound by 2, see [32], and the designed minimum distance by 6. Indeed, using MAGMA, we were able to prove that such a code has minimal distance 20.
2 Background and Preliminary Results

Our notation and terminology are standard. The reader is referred to [20, 31] and the survey paper [21].

Let \(\mathcal{X} \) be a (projective, non-singular, geometrically irreducible algebraic curve) of genus \(g \), defined over a finite field \(\mathbb{F}_q \) of order \(q = p^r \) and viewed as curve over the algebraic closure of \(\mathbb{F}_q \). Let \(\mathbb{F}_q(\mathcal{X}) \) be the function field of \(\mathcal{X} \) with constant field \(\mathbb{F}_q \). For every non-zero function \(f \in \mathbb{F}_q(\mathcal{X}) \), \(\text{Div}(f) \) stands for the principal divisor associated with \(f \) while \(\text{Div}(f)_0 \) and \(\text{Div}(f)_\infty \) for its zero and pole divisor. Furthermore, for every separable function \(f \in \mathbb{F}_q(\mathcal{X}) \), \(df \) is the exact differential arising from \(f \), and \(\Omega \) denotes the set of all these differentials. Also, \(\text{res}_D(df) \) is the residue of \(df \) at a place of \(D \) of \(\mathbb{F}_q(\mathcal{X}) \). For any divisor \(A \) of \(\mathbb{F}_q(\mathcal{X}) \), let

\[
\mathcal{L}(A) = \{ f \in \mathbb{F}_q(\mathcal{X}) \setminus \{0\} \mid \text{Div}(f) \geq -A \} \cup \{0\}
\]

and \(\ell(A) = \dim(\mathcal{L}(A)) \). Furthermore, let

\[
\Omega(A) = \{ df \in \Omega \mid \text{Div}(df) \geq A \} \cup \{0\}.
\]

Let \(D = Q_1 + \ldots + Q_n \) be a divisor where \(Q_1, \ldots, Q_n \) are \(n \) distinct degree one places of \(\mathbb{F}_q(\mathcal{X}) \). Let \(G \) be another divisor of \(\mathbb{F}_q(\mathcal{X}) \) whose support \(\text{supp}(G) \) contains none of the places \(P_i \) with \(1 \leq i \leq n \). For any function \(f \in \mathcal{L}(G) \), the evaluation of \(f \) at \(D \) is given by \(\text{ev}_D(f) = (f(Q_1), \ldots, f(Q_n)) \). This defines the evaluation map \(\text{ev}_D : \mathcal{L}(G) \to \mathbb{F}_q^n \) which is \(\mathbb{F}_q \)-linear and also injective when \(n > \deg(G) \). Therefore, its image is a subspace of the vector space \(\mathbb{F}_q^n \), or equivalently, an AG \([n, k, d] \)-code where \(d \geq n - \deg(G) \) and if \(\deg(G) > 2g - 2 \) then \(k = \deg(G) + 1 - g \). Such a code is the functional code \(C_L(D, G) \) with designed minimum distance \(n - \deg(G) \). The dual code \(C_{\Omega}(D, G) \) of \(C_L(D, G) \) is named differential code, since

\[
C_{\Omega}(D, G) = \{ (\text{res}(df)_{Q_1}, \ldots, \text{res}(df)_{Q_n}) \mid df \in \Omega(G - D) \}.
\]

The differential code \(C_{\Omega}(D, G) \) is a \([n, \ell(G - D) - \ell(G) + \deg D, d] \)-code with \(d \geq \deg(G) - (2g - 2) \), and its designed minimum distance is \(\deg(G) - (2g - 2) \).

In this paper we are interested in differential codes \(C_{\Omega}(D, G) \) with \(G = mP \) where \(P \) is a degree \(r \) place of \(\mathbb{F}_q(\mathcal{X}) \). Let \(P_1, \ldots, P_r \) be the extensions of \(P \) in the constant field extension of \(\mathbb{F}_q(\mathcal{X}) \) of degree \(r \). Then \(P_1, \ldots, P_r \) are degree one places of \(\mathbb{F}_q^r(\mathcal{X}) \) and, up to labeling the indices, \(P_{j+1} = \text{Fr}(P_j) \) where \(\text{Fr} \) is the \(q \)-th Frobenius map and the indices are taken modulo \(n \). Also, \(P \) may be identified with the \(\mathbb{F}_q^r \)-divisor \(P_1 + \ldots + P_r \) of \(\mathbb{F}_q^r(\mathcal{X}) \). The relationship between the Weierstrass semigroups \(H(P) \) of \(\mathbb{F}_q(\mathcal{X}) \) and
Our results concern differential codes arising from a degree 3 place on the Hermitian curve \mathcal{H} defined over \mathbb{F}_q. The proofs use several geometric and combinatorial properties of \mathcal{H} that we quote now, the references are [19] and [23]. In the projective plane $PG(2, \mathbb{F}_q^2)$ equipped with homogeneous coordinates (X, Y, Z), a canonical form of \mathcal{H} is $X^{q+1} - Y^qZ - YZ^q = 0$ so that $\mathcal{H} = \mathcal{V}(X^{q+1} - Y^qZ - YZ^q)$. Every degree one place of the function field $\mathbb{F}_q^2(\mathcal{H})$ of \mathcal{H} corresponds to a point of \mathcal{H} in $PG(2, \mathbb{F}_q^2)$, and this holds true for the degree one places of the constant field extension $\mathbb{F}_q(\mathcal{H})$ which correspond to the points of \mathcal{H} in $PG(2, \mathbb{F}_q^2)$. Moreover, a place P of degree $r > 1$ of $\mathbb{F}_q^2(\mathcal{H})$ is represented by a divisor $P_1 + P_2 + \ldots + P_r$ of the constant field extension $\mathbb{F}_q^2(\mathcal{H})$ where P_1 are degree one places of $\mathbb{F}_q^2(\mathcal{H})$ with $P_i = \text{Fr}^i(P_1)$ for $i = 0, 1, \ldots, r - 1$. Furthermore,

$$|\mathcal{H}(\mathbb{F}_q^2)| = |\mathcal{H}(\mathbb{F}_q)| = q^3 + 1, |\mathcal{H}(\mathbb{F}_q^6)| = q^{12} + 1 + q^4(q - 1).$$

A line l of $PG(2, \mathbb{F}_q^2)$ is either a tangent to \mathcal{H} at an \mathbb{F}_q^2-rational point of \mathcal{H} or it meets \mathcal{H} at $q + 1$ distinct \mathbb{F}_q^2-rational points. In terms of intersection divisors, see [20] Section 6.2,

$$I(\mathcal{H}, l) = \begin{cases} (q + 1)Q, & Q \in \mathcal{H}(\mathbb{F}_q^2); \\ \sum_{i=1}^{q+1} Q_i, & Q_i \in \mathcal{H}(\mathbb{F}_q^2), Q_i \neq Q_j, 1 \leq i < j \leq n. \end{cases}$$

Through every point $V \in PG(2, \mathbb{F}_q^2)$ not in $\mathcal{H}(\mathbb{F}_q^2)$ there are $q^2 - q + 1$ secants and $q + 1$ tangents to \mathcal{H}. The corresponding $q + 1$ tangency points are the common points of \mathcal{H} with the polar line of V relative to the unitary polarity associated to \mathcal{H}. Let $V = (1 : 0 : 0)$. Then the line l_∞ of equation $Z = 0$ is tangent at $P_\infty = (0 : 1 : 0)$ while another line through V with equation $Y - cZ = 0$ is either a tangent or a secant according as $c^2 + c$ is 0 or not. This gives rise to the polynomial

$$R(X, Y) = X \prod_{c \in \mathbb{F}_q^2, c^2 + c \neq 0} (Y - c)$$

\hspace{1cm} (2)
of degree $q^2 - q + 1$. By [20, Theorem 6.42],
\[
\text{Div}(R(x, y)) = (q^2 - q + 1)(q + 1)P_\infty = (q^3 - 1)P_\infty.
\]

Assume from now on that
\[
D = \sum_{Q \in \mathcal{H}(\mathcal{F}_{q^2})\setminus\{P_\infty\}} Q.
\]

Proposition 2.2 below gives an explicit description of a (monomial) equivalence between the codes $C_\Omega(D, G)$ and $C_L(D, (q^3 + q^2 - q - 2)P_\infty - G)$ constructed on \mathcal{H}. It may be noted that this is related to the equivalence $C_\Omega(D, G) = C_\Omega(D, K + D - G)$ for a canonical divisor K, mentioned in [21, Section III].

The proof of Proposition 2.2 relies on the following lemma where $\mathbb{F}_{q^2}(\mathcal{H}) = \mathbb{F}_{q^2}(x, y)$ with $x^{q+1} - y^q - y = 0$, and x is separable function.

Lemma 2.1. For any divisor E of $\mathbb{F}_{q^2}(\mathcal{H})$,

(i) $\Omega(E) = dx \mathcal{L}(-E + \text{Div}(dx))$,

(ii) $\mathcal{L}(D + \text{Div}(dx) + E) = R(x, y)^{-1}\mathcal{L}((q^3 + q^2 - q - 2)P_\infty + E)$.

Proof. Obviously, $\text{Div}(f dx) = \text{Div}(f) + \text{Div}(dx) \succeq E$ if and only if $\text{Div}(f) \succeq E - \text{Div}(dx)$, which proves (i). To show (ii), notice that the zeros of $R(x, y)$ are the points in $\mathcal{H}(\mathcal{F}_{q^2})$ each with multiplicity one. From [20, Theorem 6.42],
\[
\text{Div}(R(x, y)) = D + P_\infty - \deg R(q + 1)P_\infty = D - q^3P_\infty.
\]

Since $\text{Div}(dx) = (2g - 2)P_\infty = (q^2 - q - 2)P_\infty$, this gives
\[
\mathcal{L}((q^3 + q^2 - q - 2)P_\infty + E) = \mathcal{L}(D - \text{Div}(R(x, y)) + \text{Div}(dx) + E).
\]

Thus, $f \in \mathcal{L}((q^3+q^2-q-2)P_\infty+E)$ and $f \in R(x, y)^{-1}\mathcal{L}(D - \text{Div}(dx) + E)$ are equivalent conditions. \qed

Proposition 2.2. The codes $C_\Omega(D, G)$ and $C_L(D, (q^3 + q^2 - q - 2)P_\infty - G)$ are monomially equivalent.

Proof. By Lemma 2.1, every differential in $C_\Omega(D, G)$ can be written as $h dx$ with $h \in \mathcal{L}(D - G + \text{Div}(dx)) = R(x, y)^{-1}\mathcal{L}((q^3 + q^2 - q - 2)P_\infty - G)$. Let $f = g R(x, y) \in \mathcal{L}((q^3 + q^2 - q - 2)P_\infty - G)$. Then $f \in \mathbb{F}_{q^2}[x, y]$ with $x^{q+1} - y^q - y = 0$. Also, P_∞ is not a pole of $g dx$. Hence $\text{res}_{P_\infty}(g dx) = 0$. Take a point $S \in \mathcal{H}(\mathcal{F}_{q^2})$ other than P_∞. Then $S = (a, b, 1)$ with $b^q + b = c^{q+1}$. Also, $t = x - a$ is a local parameter at S, and the local expansion of y at S...
is \(y(t) = b + ta^q + t^{q+1} \ldots \). Therefore \(f(a + t, y(t)) = f(a, b) + t[\ldots] \) while \(R(a, b) = 0 \) and \(R(a + t, y(t)) = ut + t^2[\ldots] \) with nonzero \(u \) given by

\[
\begin{align*}
 u &= \left\{ \begin{array}{l}
 \prod_{c \in \mathbb{F}_{q^2}, c^i+c \neq 0} (b - c), \quad \text{for } a = 0, \\
 a^{q+1} \prod_{c \in \mathbb{F}_{q^2}, c^i+c \neq 0, c \neq b} (b - c), \quad \text{for } a \neq 0.
 \end{array} \right.
\end{align*}
\]

Thus,

\[
g(a + t, y(t)) = R(a + t, y(t))^{-1} f(a + t, y(t)) = u^{-1} f(a, b)t^{-1} + \cdots,
\]

whence

\[
\text{res}_S(gdx) = \text{res}_t(u^{-1} f(a, b)t^{-1} + \cdots) = u^{-1} f(S).
\]

which shows the monomial equivalence between the codes \(C_G(D, G) \) and \(C_L(D, (q^3 + q^2 - q - 2)P_\infty - G) \).

The group \(\text{Aut}(\mathcal{H}) \) of all automorphisms of \(\mathcal{H} \) is defined over \(\mathbb{F}_{q^2} \) and it is a projective group of \(PG(2, \mathbb{F}_{q^2}) \) isomorphic to the projective unitary group \(PGU(3, q) \). Furthermore, \(\text{Aut}(\mathcal{H}) \) acts doubly transitively on \(\mathcal{H}(\mathbb{F}_{q^2}) \), transitively on the points of \(PG(2, \mathbb{F}_{q^2}) \) not in \(\mathcal{H}(\mathbb{F}_{q^2}) \), as well as on the points in \(\mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{q^2}) \), and also on the set of all triangles in \(\mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{q^2}) \) which are invariant under the action of the Frobenius map. The latter property shows that the geometry of degree 3 places of \(\mathbb{F}_{q^2}(\mathcal{H}) \) is independent on the choice of \(P \). Write \(P = P_1 + P_2 + P_3 \) with \(P_i \in \mathcal{H}(\mathbb{F}_{q^2}) \setminus \mathcal{H}(\mathbb{F}_{q^2}) \) and fix a projective frame \((X_1, X_2, X_0)\) whose vertices are the points \(P_i \). For a suitable choice of the unity point \(U_0 \in \mathcal{H}(\mathbb{F}_{q^2}) \), the equation of \(\mathcal{H} \) becomes

\[
X_1 X_0^q + X_2 X_0^q + X_0^q X_1 = 0,
\]

see [11, Proposition 4.6] where the non-singular matrix \(M \) realizing the change of coordinates \((X, Y, Z) \rightarrow (X_1, X_2, X_0)\) is given explicitly. In doing so, every \(f \in \mathcal{H}(\mathbb{F}_{q^2}) \) will have an equation in \((X_1, X_2, X_0)\). In other words, the linear map \(\mu \) of \(\mathcal{H}(\mathbb{F}_{q^2}) \) associated to \(M \) takes \(\mathcal{H}(\mathbb{F}_{q^2}) \) to a subfield \(\mathcal{H}(\mathbb{F}_{q^2}) \) which is isomorphic to (but distinct from) \(\mathcal{H}(\mathbb{F}_{q^2}) \).

For \(i = 0, 1, 2 \mod 3 \), the tangent to \(\mathcal{H} \) at \(P_i \) is the line \(l_i = P_i P_{i+1} \) of equation \(X_{i+1} = 0 \). Therefore

\[
I(\mathcal{H} \cap l_i) = qP_i + P_{i+1}, \quad i = 0, 1, 2 \mod 3.
\]

(4)
Let $l_i = v(\ell_i)$. Then

\[
\text{Div}(\ell_1) = qP_1 + P_2 - (q + 1)P_\infty, \\
\text{Div}(\ell_2) = qP_2 + P_3 - (q + 1)P_\infty, \\
\text{Div}(\ell_0) = qP_3 + P_1 - (q + 1)P_\infty, \\
\text{Div}(\ell_1\ell_2\ell_0) = (q + 1)P - 3(q + 1)P_\infty.
\]

Observe that $v(\ell_1\ell_2\ell_0)$ is defined over \mathbb{F}_{q^2} while l_i is defined over \mathbb{F}_{q^d}.

Lemma 2.3. Let C be any (possible singular or reducible) plane curve not containing the tangent l_i to \mathcal{H} at P_i as a component where $0 \leq i \leq 2$. If $I(P_i, \mathcal{H} \cap C) \leq q$, then

\[I(P_i, \mathcal{H} \cap C) = I(P_i, l_i \cap C). \]

Proof. We prove the assertion for $i = 1$. We use affine coordinates (X, Y) with $X = X_1/X_0$, $Y = X_2/X_0$ so that \mathcal{H} has equation $Y + X^q + XY^q = 0$ and $P_1 = (0, 0)$. Then X is a local parameter at P_1 and the expansion of Y is $Y(X) = X^q(-1 + X[\ldots])$. Furthermore, ℓ_1 has equation $Y = 0$. Let $F(X, Y) = 0$ be an affine equation of C. Then $I(P_1, \ell_1 \cap C) = m$ if and only if $F(X, 0) = c_1X^m(c_2 + X[\ldots])$ with nonzero $c_1, c_2 \in \overline{\mathbb{F}}_{q^2}$. Since Y does not divide $F(X, Y)$ and $I(P_1, \mathcal{H} \cap C) \leq q$, we also have $F(X, Y(X)) = d_1X^m(d_2 + X[\ldots])$ with nonzero $d_1, d_2 \in \overline{\mathbb{F}}_{q^2}$. Therefore $I(P_1, \mathcal{H} \cap C) = m$. \hfill \Box

From the above discussion we have the following result

Proposition 2.4. Let $m = m_1(q + 1) + m_0$ with m_1 and m_0 non-negative integers such that $m_0 \leq q$. In $\mathbb{F}_{q^2}(\mathcal{H})$, take a degree 3 place P together with a degree one place P_{∞} \mathbb{F}_{q^2}-rational. Let

\[
A_1 = (q^3 + q^2 - q - 2)P_{\infty} - mP, \\
A_2 = (q^2 - 3m_1 - 1)(q + 1)P_{\infty} - (P_{\infty} + m_0P).
\]

Then the codes $C_L(D, A_1)$ and $C_L(D, A_2)$ are monomially equivalent.

Proof. The monomial equivalence of the two codes follows from $A_2 = A_1 + m_1(\ell_1\ell_2\ell_3)$ after observing that the \mathbb{F}_{q^2}-rational polynomial $\ell_1\ell_2\ell_0$ has neither zeros nor poles in $\text{supp} \ D$. \hfill \Box

Remark 2.5. By Propositions 2.2 and 2.4, the differential code $C_{\Omega}(D, mP)$ and the functional code $C_L(D, (q^2 - 3m_1 - 1)(q + 1)P_{\infty} - (P_{\infty} + m_0P))$ are
monomially equivalent. They have length \(q^3 \), dimension \(q^3 + \frac{1}{2}(q^2 - q - 2) - 3m \) and designed minimum distance
\[
\delta = 3m - q^2 + q + 2. \tag{5}
\]
In particular, \(3m \geq q^2 - q - 2 \geq 0 \) holds.

Remark 2.6. Propositions \(2.2 \) shows that if \(m_0 = 0 \) then \(C_L(D, A_2) \) is \(C_L(D, tP_\infty) \) with \(t = (q^2 - 3m_1 - 1)(q + 1) \). For such particular codes, the minimum distance problem has been solved in [30, 33]. Therefore we may limit ourselves to the case where \(m = m_1(q + 1) + m_0 \) with \(m_0 > 0 \).

3 The Weierstrass gap sequence of places of higher degree

As we have pointed out in the Introduction, in the study of differential codes \(C_{\Omega}(D, G) \) where \(\text{supp}(G) \) consists of just one place \(P \), possibly of degree \(r > 1 \), a key issue is to determine the gap sequence at \(P \). In the case where \(P \) has degree one, this essentially requires to determine the Weierstrass semigroup at \(P \) and the relative computations can generally be carried out using methods from classical algebraic geometry. For instance, for the Hermitian function field \(\mathbb{F}_{q^2}(\mathcal{H}) \), the Weierstrass semigroup is as simple as possible being generated by \(q \) and \(q + 1 \). The analog question for places of degree \(r > 1 \) is still open even for \(\mathbb{F}_{q^2}(\mathcal{H}) \), apart from some smallest values of \(q \) namely \(q \leq 9 \) where the computations were carried out by using the MAGMA; see [28].

In this section we determine the gap sequence of \(\mathbb{F}_{q^2}(\mathcal{H}) \) at any place \(P \) of degree 3, see Theorem 3.1. It turns out that the smallest non-gap is \(q - 2 \), and we first explain why this occur.

There exists \(\alpha \in \text{Aut}(\mathcal{H}) \) of order 3 which has no fixed point off \(\mathcal{H}(\mathbb{F}_{q^2}) \) and acts on \(\{P_1, P_2, P_3\} \) as a 3-cycle. The quotient curve \(C = \mathcal{H}/\langle \alpha \rangle \) is a \(\mathbb{F}_{q^2} \)-maximal curve. Furthermore, the place of \(P \) of \(\mathbb{F}_{q^2}(C) \) lying under \(P \) is unramified and the smallest non-gap at \(P \) is \(q - 2 \). Take \(f \in \mathbb{F}_{q^2}(C) \) such that \(\text{Div}(f)_\infty = (q - 2)\tilde{P} \). Then \(f \) can also be viewed as an element of \(\mathbb{F}_{q^2}(\mathcal{H}) \) and \(\text{Div}(f)_\infty = (q - 2)\tilde{P} \) remains true in \(\mathbb{F}_{q^2}(\mathcal{H}) \). Viceversa, if \(i < q - 2 \) is a non-gap at \(P \), let \(f \in \mathbb{F}_{q^2}(\mathcal{H}) \) with \(\text{Div}(f)_\infty = iP \) and \(f^\alpha = f \). The latter property implies that \(f \in \mathbb{F}_{q^2}(C) \) with \(\text{Div}(f)_\infty = i\tilde{P} \). But this is impossible since \(q - 2 \) is the smallest non gap at \(\tilde{P} \).

Theorem 3.1. For any degree 3 place \(P \) of \(\mathbb{F}_{q^2}(\mathcal{H}) \), the Weierstrass gap sequence at \(P \) is
\[
G(P) = \{u(q + 1) - v \mid 0 \leq v \leq q, 0 < 3u \leq v\}. \tag{6}
\]
Proof. For two integers u, v with $0 \leq v \leq q$, $0 < 3u \leq v$, let $m = u(g+1) - v$. First we construct the complete linear series $|m(P_1 + P_2 + P_3)|$ using [20, Theorem 6.52]. From (4), we have $\sum_{i=0}^{1} I(P_i, \mathcal{H} \cap l_i) = (q+1)(P_1 + P_2 + P_3)$. This shows that the curve $v((\ell_1 \ell_2 \ell_3)^u)$ of degree $3u$ is an adjoint of the divisor $m(P_1 + P_2 + P_3)$. Therefore, up to the fixed divisor $v(P_1 + P_2 + P_3)$, the complete linear series $|m(P_1 + P_2 + P_3)|$ consists of the divisors cut out by the adjoint curves Φ of degree 3 for which $I(P_i, \mathcal{H} \cap \Phi) \geq v$ for $i = 0, 1, 2$. Reformulating this in terms of Riemann-Roch spaces; see [20, Section 6.4], gives

$$\mathcal{L}(mP) = \left\{ \frac{f}{(\ell_1 \ell_2 \ell_3)^u} \mid f \in \mathbb{F}_q[X, Y], \deg f \leq 3u, v_{P_i}(f) \geq v \right\} \cup \{0\}.$$

Since $v \leq q$ and the tangent line at P_i is $v(\ell_i)$, this together with Lemma 2.3 yield $I(\ell_i \cap v(f), P_i) \geq v$. Moreover, $P_{i+1} \in v(f) \cap v(\ell_i)$. Therefore, counted with multiplicity, $v(\ell_i)$ and $v(f)$ have at least $v+1$ common points. If $\deg v(f) = 3u \leq v$ then Bézout’s theorem, see [20, Theorem 3.14], yields $\ell_i \mid f$. This holds for $i = 0, 1, 2$. Thus, $\ell_1 \ell_2 \ell_3 \mid f$. Hence $f/(\ell_1 \ell_2 \ell_3)^{u-1} = g/(\ell_1 \ell_2 \ell_3)^{u-1}$ with $\deg g \leq 3(u-1)$. This yields that $L(mP) \subseteq L((m+1)P)$. Therefore, the right hand side in (4) is indeed in $G(P)$.

Viceversa, assume that $0 \leq v \leq q$ and $3u > v$. Let $w = \ell_1^{2u-v} \ell_2^{-u} \ell_3^{-u}$. Then $\text{Div}(w) = m_1P_1 + m_2P_2 + m_3P_3$, where

- $m_1 = (2u - v)q - u,$
- $m_2 = (v - u)q + 2u - v,$
- $m_3 = -uq - u + v.$

Obviously, $m_3 = -m$. Also, $m_2 \leq m_3$ is equivalent to $vq \leq 2v - 3u < 2v$. Since $q \geq 2$, this yields $v = 0$ and $0 \leq -3u$, a contradiction. Now, assume $m_1 \leq m_3$. Then $(3u - v)q \leq v \leq q$, which implies $3u - v \leq 1$. As $3u > v$, this yields $3u = v + 1$ and $v = q$ whence $m = \frac{1}{3}(q^2 - q + 1)$ follows. Thus, $\deg(mP) = 3m > 2g - 1$, where $g = \frac{1}{2}q(q - 1)$ is the genus of \mathcal{H}. From [28, Proposition 2.1], m is not in $G(P)$.

We are left with the case where $m_1, m_2 > m_3 = -m$. For $w \in \mathbb{F}_q(\mathcal{H})$, let $\text{Tr}(w) = w + \text{Fr}(w) + \text{Fr}^2(w)$. Obviously $\text{Tr}(w) \in \mathbb{F}_q(\mathcal{H})$. Furthermore,

$$v_{P_i}(\text{Tr}(w)) \leq \min\{v_{P_1}(w), v_{P_2}(\text{Fr}(w)), v_{P_3}(\text{Fr}^2(w)))\}$$

$$= \min\{v_{P_1}(w), v_{P_2}(w), v_{P_3}(w)\}$$

$$= \min\{m_1, m_2, m_3\} = -m$$

for $i = 0, 1, 2$. As the minimum is unique by assumption, the equality holds. Therefore m is not in $G(P)$. \qed
As a corollary we have the following result.

Corollary 3.2. The maximal consecutive gap sequences in $G(P)$ are $(u - 1)q + u, \ldots, u(q - 2)$, where u is an integer satisfying $0 < 3u \leq q$.

4 On the Matthews-Michel bound for AG-codes from Hermitian curves

Corollary 3.2 allows us to compute explicitly the Matthews-Michel bound (1) on the minimum distance for any one-point differential code $C_{\Omega}(D, mP)$ constructed on \mathcal{H} where P is a degree 3 place and D is defined by (3). Indeed, from Corollary 3.2 we can read out the consecutive gap sequences in $G(mP)$, the longest are $\alpha = (u - 1)q + u, \ldots, u(q - 2)$ when

$m = 2\alpha + t - 1 = m_1(q + 1) + m_0, \quad m_1 = 2u - 2, \quad m_0 = q + 1 - 3u.$

For such a sequence, the Matthews-Michel bound is $(q - 2)(6u - q - 1)$ and it gives an improvement on the designed minimum distance by $3(t + 1) = 3(q + 1 - 3u) = 3m_0$. It should be noted that the improvement is nontrivial when $m_1 = 2u - 2$ satisfies the condition $q - 4 \leq 3m_1 \leq 2(q - 3)$. From the above discussion we have the following result.

Theorem 4.1. Let \mathcal{H} be the Hermitian curve over \mathbb{F}_{q^2}. Define P to be a degree 3 place in $\mathcal{H}(\mathbb{F}_{q^2})$ and D to be the divisor defined by (3). Let u be an integer with $q + 1 \leq 6u \leq 2(q + 1)$. Let $m = (2u - 1)q - u - 1 = m_1(q + 1) + m_0$ with $0 \leq m_0 \leq q$. Then the minimum distance of the differential code $C_{\Omega}(D, mP)$ is at least

$\delta + 3(q + 1 - 3u) = \delta + 3m_0,$

where δ is the designed minimum distance of the code given in (3).

5 Improvements on the Matthews-Michel bound

Remark 2.5 tells us that the parameters of the differential code $C_{\Omega}(D, mP)$ may be investigated using the functional code

$$C_L(D, (q^2 - 3m_1 - 1)(q + 1)P_{\infty} - (P_{\infty} + m_0(P_1 + P_2 + P_3))).$$

(7)

The advantage is that more geometry can be exploited, and we will do it with an approach based on the Noether “AF+BG” theorem, see [20, Theorem 4.66]. For our particular need, we state this theorem in the following form.
Lemma 5.1. Let $F = \psi(F)$ and $C = \psi(C)$ be any two (possible singular or reducible) curves defined over \mathbb{F}_{q^2} such that $I(F \cap H) \geq I(C \cap H)$. Then there exist $A, B \in \mathbb{F}_{q^2}[X,Y]$ with $F = AC + BH$. If both F and C are defined over \mathbb{F}_{q^2}, then A, B can be chosen in $\mathbb{F}_{q^2}[X,Y]$.

Here, we take $C(X,Y)$ to be the polynomial whose evaluation in D gives a codeword with minimum distance in (7). The curve $C = \psi(C)$ has degree $q^2 - 3m_1 - 1$ and $I(\mathcal{H} \cap C) \geq P_\infty + m_0(P_1 + P_2 + P_3)$. In fact, the complete linear series $|(q^2 - 3m_1 - 1)(q + 1)P_\infty - (P_\infty + m_0(P_1 + P_2 + P_3))|$ is cut out, up to fixed divisor $P_\infty + m_0(P_1 + P_2 + P_3)$, by the (adjoint) curves A of degree $q^2 - 3m_1 - 1$ satisfying the condition $I(\mathcal{H} \cap A) \geq P_\infty + m_0(P_1 + P_2 + P_3)$. In terms of C, the minimum distance d of (7) is equal to $q^3 - N$ where N is the number of points of $\mathcal{H}(\mathbb{F}_{q^2}) \setminus \{P_\infty\}$ which are also points of C.

Let r_0 be the non-negative integer satisfying $I(P_i, \psi(C) \cap H) = m_0 + r_0$. From Bézout’s theorem, see [20, Theorem 3.14],

$$(q^2 - 3m - 1)(q + 1) = \deg C \deg \mathcal{H} \geq (q^3 - d) + 3(m_0 + r_0)$$

whence $d \geq \delta + 3r_0$ with δ being the designed minimum distance, see [5] in Remark 2.5.

Lemma 5.2. If $m_0 + r_0 \geq q + 1$ then $m_0 + r_0 = q + 1$ and the minimum distance is $d = \delta + 3(q + 1 - m_0)$ where δ is the designed minimum distance given in (5).

Proof. Let $C^*(X,Y) = \ell_i \ell_2 \ell_3 X(Y - c_1) \cdots (Y - c_k)$ for $k + 4 = q^2 - 3m_1 - 1$ with $c_i^3 + c_i \neq 0$. Obviously, $C^*(x,y) \in \mathcal{L}(A_2)$. Also, $I(\psi(C^*) \cap \mathcal{H}) = P_\infty + (q + 1)(P_1 + P_2 + P_3) + B$ where B is the sum of $q + (q + 1)(q^2 - 3m_1 - 5)$ points in $\mathcal{H}(\mathbb{F}_{q^2})$. The weight of the corresponding codeword c^* is

$$d^* = q^3 - \deg B = 3m_1(q + 1) - q^2 + 4q + 5 = \delta + 3(q + 1 - m_0). \quad (8)$$

Now, $d^* \geq d \geq \delta + 3r_0$ together with $m_0 + r_0 \geq q + 1$ yield $r_0 = q + 1 - m_0$ whence $d = d^*$.

Remark 5.3. From (8), a lower bound for the minimum distance of (7) is $\delta + 3(q + 1 - m_0)$ with δ designed minimum distance given in (5).

As we have pointed out, there are precisely $d \mathbb{F}_{q^2}$-rational points in \mathcal{H} not on $\psi(C)$. Let E_0 be the sum of the \mathbb{F}_{q^2}-rational points in $\text{supp} \ I(\psi(C) \cap \mathcal{H})$. Then

$$I(\psi(C) \cap \mathcal{H}) = E_0 + E + (m_0 + r_0)P,$$
where \(r_0 \geq 0 \) and \(E \) is an effective divisor defined over \(\mathbb{F}_{q^2} \). The minimum distance \(d \) satisfies
\[
d = \delta + \deg E + 3r_0, \tag{9}
\]
with designed minimum distance given in (5).

For a given integer \(1 \leq \alpha \leq q \), let \(|U| \) be the complete linear series cut out on \(\mathcal{H} \) by all plane curves of degree \(\alpha \). Then \(||U| - |E|| \) is a complete linear series consisting of all intersection divisors \(I(F \cap \mathcal{H}) \) with \(F \) ranging over all plane curves of degree \(\alpha \); see [20, Theorem 6.40]. If \(\dim(||U| - |E||) \geq 0 \) then \(||U| - |E|| \) contains a divisor cut out by a curve defined over \(\mathbb{F}_{q^2} \), as \(E \) itself is defined over \(\mathbb{F}_{q^2} \). Furthermore, since \(\dim(U) = \frac{1}{2} \alpha(\alpha + 3) \), [20, Corollary 6.27] gives \(\dim(||U| - |E||) \geq \frac{1}{2} \alpha(\alpha + 3) - \deg E \). If we take the minimum value of \(\alpha \) for which
\[
\deg E \leq \frac{1}{2} \alpha(\alpha + 3), \tag{10}
\]
then \(||U| - |E|| \neq \emptyset \). In terms of Riemann-Roch spaces, the \(\mathbb{F}_q \)-linear space
\[
T_\alpha = \{T \in \mathbb{F}_q[X,Y] \mid \deg T \leq \alpha, I(v(T) \cap \mathcal{H}) \geq E\},
\]
has
\[
\dim T_\alpha \geq \frac{1}{2} (\alpha + 1)(\alpha + 2) - \deg E.
\]
and if \(\alpha \) is chosen according to (10) then \(T_\alpha \) is nontrivial. Noether “AF+BG” theorem gives the following result.

Lemma 5.4. Assume \(m_0 + r_0 \leq q \). Then for any nonzero \(T \in T_\alpha \) there are polynomials \(A, B \in \mathbb{F}_q[X,Y] \) such that
\[
T \ell_1 \ell_2 \ell_3 R = AC + BH. \tag{11}
\]
If \(T \) is defined over \(\mathbb{F}_{q^2} \) then so are \(A, B \), as well.

Proof. From the definition of \(T \),
\[
I(Q, v(T \ell_1 \ell_2 \ell_3 R) \cap \mathcal{H}) \geq I(Q, v(C) \cap \mathcal{H})
\]
for all points \(Q \in PG(2, \mathbb{F}_{q^2}) \) of \(\mathcal{H} \). Therefore, Lemma 5.1 applies.

From now on, whenever a fixed nonzero \(T \in T_\alpha \) is given, then \(A, B \) will denote a polynomials satisfying (11). Comparing the degrees in (11) gives
\[
\deg A = 3m_1 - q + 5 + \alpha. \tag{12}
\]

Lemma 5.5. Assume \(m_0 + r_0 \leq q \) and let \(0 \neq T \in T_\alpha \). Then \(P_1, P_2, P_3 \in v(A) \cap v(B) \).
Lemma 5.8. Assume Lemma 5.7. Assume Lemma 5.6. Proof. As \(I(P_i, v(\ell_1 \ell_2 \ell_3) \cap \mathcal{H}) = q + 1 \) and \(I(P_i, v(R) \cap \mathcal{H}) = 0 \), we have
\[
I(P_i, v(A) \cap \mathcal{H}) + I(P_i, v(C) \cap \mathcal{H}) = I(P_i, v(T) \cap \mathcal{H}) + q + 1 + 0.
\]
This implies \(I(P_i, v(A) \cap \mathcal{H}) \geq q + 1 - m_0 - r_0 \), and \(P_i \in v(A) \). To prove \(P_i \in v(B) \), observe first that if \(\ell_{i-1} \mid A \) then \(\ell_{i-1} \mid B \) and \(P_i \in v(B) \). Assume \(\ell_{i-1} \nmid A \). From \(P_i = \ell_{i-1} \cap \ell_i \),
\[
I(P_i, v(\ell_{i-1}) \cap v(A)) + I(P_i, v(\ell_{i-1}) \cap v(C)) \geq 2.
\]
Therefore \(I(P_i, v(\ell_{i-1}) \cap v(B)) \geq 1 \) follows from \(I(P_i, v(\ell_{i-1}) \cap \mathcal{H}) = 1 \). \(\square \)

Lemma 5.6. Assume \(m_0 + r_0 \leq q \), and suppose that there is a nonzero \(T \in T_\alpha \) such that \(\ell_i \nmid A \). Then, \(\alpha + r_0 \geq 2q - 3m_1 - m_0 - 3 \).

Proof. Since \(m_0 + r_0 \leq q \) and \(v(\ell_i) \) is the tangent line to \(\mathcal{H} \) at \(P_i \),
\[
I(P_i, v(C) \cap v(\ell_i)) = I(P_i, v(C) \cap \mathcal{H}) = m_0 + r_0.
\]
Moreover,
\[
\deg A - 1 + m_0 + r_0 \geq I(P_i, v(A) \cap v(\ell_i)) + I(P_i, v(C) \cap v(\ell_i)),
\]
and
\[
I(P_i, v(B) \cap v(\ell_i)) + I(P_i, \mathcal{H} \cap v(\ell_i)) \geq 1 + q.
\]
This implies \(\deg A - 1 + m_0 + r_0 \geq 1 + q \). The result follows from [12]. \(\square \)

Lemma 5.7. Assume \(m_0 + r_0 \leq q \), \(T_\alpha \neq 0 \), and \(\ell_1 \ell_2 \ell_3 \mid A \) for all \(0 \neq T \in T_\alpha \). Then \(\alpha \geq m_0 + r_0 + 1 \).

Proof. If \(\ell_1 \ell_2 \ell_3 \mid A \) then \(\ell_1 \ell_2 \ell_3 \mid B \) and \(TR = A'C + B'H \) with polynomials \(A', B' \). Take \(\alpha \) to be the least integer with \(T_\alpha \neq 0 \), see [10]. Since supp\((E) \cap supp I(\mathcal{H} \cap v(\ell_1 \ell_2 \ell_3)) = \emptyset \), we have \(\ell_i \nmid T \). The equation
\[
\overbrace{I(P_i, v(T) \cap \mathcal{H})}^{=0} + \overbrace{I(P_i, v(R) \cap \mathcal{H})}^{=m_0 + r_0} = I(P_i, v(A') \cap \mathcal{H}) + I(P_i, v(C) \cap \mathcal{H})
\]
implies \(m_0 + r_0 \leq I(P_i, v(T) \cap \mathcal{H}) = I(P_i, v(T) \cap v(\ell_i)) \). Hence, counted with multiplicity, the line \(\ell_i = 0 \) has at least \(m_0 + r_0 + 1 \) points in common with \(T = 0 \). This implies \(\alpha \geq \deg T \geq m_0 + r_0 + 1 \). \(\square \)

Lemma 5.8. Assume \(2 \leq m_0 + r_0 \leq q \) and let \(T \in T_\alpha \) be a nonzero polynomial such that \(P_i \in v(T) \) and \(\ell_i \nmid A \) for some \(i \in \{1, 2, 3\} \). Then,
\[
I(P_i, v(\ell_i) \cap v(B)) \geq 2.
\]
Proof. We prove the assertion for $i = 1$. Take $P_1P_2P_3$ to be the fundamental triangle of a homogeneous coordinate system (X, Y, Z), and use inhomogeneous coordinates where $Z = 0$ the infinite line, and P_1 is the origin. Then

(a) $T(0, 0) = 0$, $R(0, 0) \neq 0$, $\ell_1\ell_2\ell_3 = XY$;

(b) $A(X, Y) = Y(a_1 + \ldots + X^{q+1-(m_0+r_0)}(a_2 + \ldots))$;

(c) $C(X, Y) = c_1Y + c_2X^{m_0+r_0} + \ldots$;

(d) $B(X, Y) = b_0 + b_1X + b_2Y + \ldots$, $H(X, Y) = Y + X^q + XY^{q+1}$.

By Lemma 5.5, $b_0 = 0$. Observe that the polynomials $T \ell_1\ell_2\ell_3R$ and AC contain no term XY. From $BH = T \ell_1\ell_2\ell_3R - AC$, the coefficient of XY in the polynomial BH must vanish. This yields $b_1 = 0$. Therefore,

$$2 \leq I(P_1, v(B) \cap v(Y)) = I(P_1, v(B) \cap v(\ell_1)) = I(P_1, v(T) \cap H),$$

whence the assertion follows.

Lemma 5.9. Assume $m_0 + r_0 \leq q$ and let $T \in T_\alpha$ be a nonzero polynomial such that $\ell_i \mid A$ for some $i \in \{1, 2, 3\}$. Then, either $\ell_i \mid T$, or $I(P_1, v(\ell_i) \cap v(T)) \geq m_0 + r_0 - 1$.

Proof. We prove the assertion for $i = 1$. If $\ell_1 \mid A$ then $\ell_1 \mid B$ and $T \ell_2\ell_3R = A'C + B'H$ for some polynomials A', B'. On the one hand,

$$I(P_1, v(T \ell_2\ell_3R) \cap H) = I(P_1, v(T) \cap H) + 0 + 1 + 0.$$

On the other hand, $I(P_1, v(A'C) \cap H) = I(P_1, v(A') \cap H) + m_0 + r_0$. Thus,

$$I(P_1, v(T) \cap H) \geq m_0 + r_0 - 1,$$

whence the assertion follows.

We are in a position to prove our main result.

Theorem 5.10. Let m be an integer such that $q^2 - q - 2 \leq 3m \leq 2q^2 - q - 2$ and $q + 1 \nmid m$. Let d and δ be the minimum distance and the designed minimum distance of the differential code $C_\Omega(D, mP)$, respectively. Write $m = m_1(q + 1) + m_0$ with $0 < m_0 \leq q$. Assume that

$$K = 2q - 3m_1 - m_0 - 4 \geq 0. \quad (13)$$

Then one of the following holds:
(i) \(d = \delta + 3(q + 1 - m_0) \).

(ii) \(d \geq \delta + \frac{1}{2}(m_0 + 1)(m_0 + 2) \).

(iii) \(d \geq \delta + 3K \) and if \(d = \delta + 3K \) then \(m_0 \leq 2 \).

Proof. We continue to work on the equivalent functional code \((7)\) and use the above notation. If \(m_0 + r_0 \geq q + 1 \) then (i) holds by Lemma 5.2. Assume \(m_0 + r_0 \leq q \). According to the discussion made before Lemma 5.4, we may choose \(\alpha \) such that

\[
\frac{\alpha(\alpha + 3)}{2} \geq \deg E \geq \frac{\alpha(\alpha + 1)}{2}.
\]

\(T_\alpha \neq 0 \). If for all nonzero \(T \in T_\alpha \), \(\ell_1 \ell_2 \ell_3 \mid A \) then \(\alpha \geq m_0 + 1 \) by Lemma 5.7, and case (ii) occurs by (10).

Therefore, we may suppose the existence of \(T \in T_\alpha \setminus \{0\} \) such that \(\ell_1 \nmid T \).

By Lemma 5.6 \(\alpha + r_0 \geq K + 1 \) and

\[
\deg E + 3r_0 \geq \frac{\alpha(\alpha + 1)}{2} + 3r_0
\]

\[
\geq \frac{(K + 1 - r_0)(K + 2 - r_0)}{2} + 3r_0
\]

\[
= \frac{(K - r_0 + \frac{3}{2})^2 - \frac{1}{4}}{2} + 3K
\]

\[
\geq 3K.
\]

This proves \(d \geq \delta + 3K \), and also shows that \(d = \delta + 3K \) if and only if equality occurs everywhere in the last computation. Therefore

\[
K - r_0 \in \{1, 2\}, \quad \alpha = K + 1 - r_0 \in \{2, 3\}, \quad \deg E = \frac{1}{2} \alpha(\alpha + 1) \in \{3, 6\}.
\]

It remains to show \(m_0 \leq 2 \).

Assume \(m_0 \geq 3 \), and define the subspace

\[
\tilde{T}_\alpha = \{ T \in T_\alpha \mid P_1 \in v(T) \}
\]

of \(T_\alpha \). Suppose that there is a nonzero polynomial \(T \in \tilde{T}_\alpha \) such that \(\ell_1 \nmid A \). Then Lemma 5.8 improves the inequality in Lemma 5.6 by 1.

Assume \(\ell_1 \mid A \) for all nonzero polynomials \(T \in \tilde{T}_\alpha \), and investigate several cases separately.

Case 1: \(\deg E = 3 \) and \(I(\mathcal{H} \cap r) \geq E \) for some line \(r \).
Remark 5.11. By hypothesis (13) and Remarks 2.5, 2.6, Theorem 5.10 applies to m in the range

$$\frac{1}{3} (q - 1)(q + 1) \leq m \leq \frac{2}{3} q(q + 1), \quad (q + 1) \nmid m. \quad (14)$$
6 Examples

First we compare our bound with the Matthews-Michel bound as stated in Theorem 4.1. It turns out that Theorem 5.10 implies the Matthews-Michel bound for all possible values of u. Actually, an effective improvement occurs apart from exceptional cases, namely:

(i) if $m_0 + r_0 \geq q + 1$ then we have an exact value for the minimum distance of $C_\Omega(D, mP)$;

(ii) if $m_0 = 1$ or 2.

In case (ii), several extra information can be obtained on the geometry of the minimum distance codeword. Using this knowledge, we were able to find with a computer aided search by MAGMA and GAP4 \cite{13} that for $q = 7$, the differential code $C_\Omega(D, 18P)$ has a codeword of weight $d = 20$, see the program code in Appendix A. Therefore, the minimum distance is at most 20, showing the sharpness of the Matthews-Michel bound for this specific case.

Next, we present a comparison of our bound with the true values of the minimum distances of Hermitian 1-point codes; see \cite{30, 33} and \cite{32, Table 1}. The parameters of the code $C_\Omega(D, mP)$ can be compared with the parameters of the 1-point differential code $C_\Omega(D, 3mP_\infty)$, or, with the equivalent 1-point functional code $C_L(D, (q^3 + q^2 - q - 2 - 3m)P_\infty)$. Assume that m satisfies

$$q^2 - q - 2 \leq 3m \leq 2q^2 - q - 2$$

and define the integers a, b by $0 \leq a, b \leq q - 1$ by $3m = 2q^2 - (a + 1)q - b - 2$. Then the designed minimum distance is $\delta = 3m - q^2 + q + 2$ and the true minimum distance of $C_\Omega(D, 3mP_\infty)$ is

$$d_{\text{true}} = \begin{cases}
\delta & \text{if } a < b, \\
\delta + b & \text{if } a \geq b.
\end{cases}$$

The following table contains some values q and m for which our bound is better that the true minimum distance of the compared 1-point code.

q	cond. on m	values of m improving the 1-point min. distances
5	6 \leq m \leq 14	7, 8
7	14 \leq m \leq 29	18
8	18 \leq m \leq 39	20, 21, 22, 23, 24, 28, 29, 30
9	24 \leq m \leq 50	24, 25, 26, 32, 33, 41
11	36 \leq m \leq 76	38, 39, 40, 41, 42, 43, 44, 50, 51, 52, 61, 62, 63
13	52 \leq m \leq 107	59, 60, 61, 62, 63, 64, 65, 72, 73, 74, 86, 87, 88
16	80 \leq m \leq 164	88, 89, 90, 91, 92, 93, 94, 95, 96, 105, 106, 107, 108, 109, 110, 111, 112, 121, 122, 123, 124, 138, 139, 140
Finally, we compare our result with the Xing-Chen bound [32, Corollary 2.6]. Xing and Chen [32] used probabilistic method to show the existence of certain divisors G for which the differential code $C_\Omega(D, G)$ with D being as in [3] has good parameters. We confront their results with Theorem 5.10 for small values of q. Notice that the results by Xing and Chen are not constructive; they show the existence of an \mathbb{F}_{q^2}-rational divisor G such that $\text{supp} \, D \cap \text{supp} \, G = \emptyset$, $t = \deg G$, and the code $C_\Omega(D, G)$ has parameters

$$\left[q^3, t + 1 - \frac{q^2 - q}{2}, \geq \frac{2q^3 + q^2 - q - 1 - 2t}{4 + \log_q e} \right].$$

a) If $(q, m) = (5, 7), (5, 8)$ or $(7, 19)$ then Xing and Chen improve the designed minimum distance δ by 2, 2, or 1, respectively. In these cases, Theorem 5.10 improves δ by 3, 3, and 4, respectively.

b) If $q = 7$ and $m = 18$ then the improvement by Xing and Chen is 4, while Theorem 5.10 gives the true value $d = \delta + 6$.

c) If $q = 8$ and $m = 21$ then the improvement of Theorem 5.10 equals to the improvement by Xing and Chen. However, our method is constructive, giving them the divisor G explicitly.

A Program code

```plaintext
q:=7;
BaseRing:=PolynomialRing(GF(q^2),["x","y"]);
x:=BaseRing.1; y:=BaseRing.2;

LoadPackage("singular");
SetInfoLevel( InfoSingular, 2 );
GBASIS:= SINGULARGBASIS;
SingularSetBaseRing( BaseRing );
SetTermOrdering( BaseRing, "dp" );

H:=x^(q+1)-y-y^q;
R:=x*Product(Filtered(GF(q^2),c->not IsZero(c^q+c)),c->y-c);
a:=Z(q^2);; b:=Z(q^6);;
P:=[b^11896,b^108645];
# Check: P is on the Hermitian curve
IsZero(Value(H,[x,y],P));
```

18
T:=a^26*x^3+a^39*x^2*y+a^32*x*y^2+a^45*x^2+a^40*x*y+
a^18*y^2+a^41*x+a^45*y-a^0;
A:=a^25*x^4+a^7*x^3*y+x^2*y^2+a^10*x*y^3+a^44*y^4+
a^4*x^3+a^19*x^2*y+a^4*x*y^2+a^9*y^3+a^37*x^2+
a^2*x*y+a^3*y^2+a^37*x+a^41*y+a^10;
I:=Ideal(BaseRing,[A,H]);;
liftcoeffs:=SingularInterface("lift", [I,R*T], "matrix");;
C:=liftcoeffs[1][1];;

Check: I(P,C \cap H)=2
The tangent of H(X,Y) at P is Y=P[1]^q*X-P[2]^q.
Substitue this in C(X,Y) and show that X=P[1] is
a double root.
IsPolynomial(Value(C,[y],[P[1]^q*x-P[2]^q])/(x-P[1])^2);
Check: C vanishes at te infinite point (0,1,0).
Show that \text{deg}(C)=42 and Y^{-42} is not a monomial of C.
DegreeIndeterminate(C,y);
Check: The Hermitian curve has 20 affine rational
points not lying on C(X,Y)=0.
Hermite:=Filtered(Cartesian(GF(q^2),GF(q^2)),
p->IsZero(Value(H,[x,y],p)));
Size(Hermite);
Number(Hermite,p->not IsZero(Value(C,[x,y],p)));

References

[1] E. Ballico and A. Ravagnani, On Goppa codes on the Hermitian curve,
http://arxiv.org/abs/1202.0894.

[2] E. Ballico and A. Ravagnani, On the geometry of the Hermitian two-
point codes, http://arxiv.org/abs/1202.2453.

[3] E. Ballico and A. Ravagnani, On the geometry of the Hermitian one-
point codes, http://arxiv.org/abs/1203.3162.

[4] W. Bosma, J. Cannon and C. Playoust, The MAGMA algebra system.
I. The user language, J. Symbolic Comput. 24 235-265, (1997).

[5] C. Carvalho and T. Kato, On Weierstrass semigroups and sets: review
of new results, Geom. Dedicata 239 195–210, (2009).
[6] C. Carvalho and T. Kato, Codes from curves with total inflection points, *Des. Codes Cryptogr.* **45**, 359–364 (2007).

[7] C. Carvalho, On V-Weierstrass sets and gaps, *J. Algebra* **312**, 956–962 (2007).

[8] C. Carvalho and F. Torres, On Goppa codes and Weierstrass gaps at several points, *Des. Codes Cryptogr.* **35**, 211–225 (2005).

[9] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve. *J. Algebra* **216** (1999), 56–76.

[10] A. Couvreur, The dual minimum distance of arbitrary-dimensional algebraic-geometric codes, *J. Algebra* **350** (2012), 84–107.

[11] I. Duursma, R. Kirov and S. Park, Distance bounds for algebraic geometric codes, *J. Pure Appl. Algebra*, **215** (2011), 1863–1878.

[12] I. Duursma and S. Park, Coset bounds for algebraic geometric codes. *Finite Fields Appl.* **16** (2010), 36–55.

[13] The GAP Group, *GAP – Groups, Algorithms, and Programming*, Version 4.4.12; 2008, (\protect\url{http://www.gap-system.org}).

[14] A. Garcia and R.F. Lax, Goppa codes and Weierstrass gaps. In: Coding Theory and Algebraic Geometry. Proc. Int. Workshop, Luminy/Fr. 1991, Lecture Notes in Mathematics, **1518**, 33–42 (1992).

[15] A. Garcia, S.J. Kim and R.F. Lax, Consecutive Weierstrass gaps and minimum distance of Goppa codes. *J. Pure Appl. Algebra* **84**, 199–207 (1993).

[16] O. Geil, C. Munuera, D. Ruano and F. Torres, On the order bounds for one-point AG codes, *Advances in Mathematics of Communication*, **5**, 489-504 (2011).

[17] V.D. Goppa, *Geometry and codes*. Translated from the Russian by N. G. Shartse. Mathematics and its Applications (Soviet Series), 24. Kluwer Academic Publishers Group, Dordrecht, 1988. x+157 pp.

[18] C. Güneri, H. Stichtenoth and I. Taskin, Ihsan, Further improvements on the designed minimum distance of algebraic geometry codes, *J. Pure Appl. Algebra* **213** (2009), 87–97.
[19] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, second ed., Oxford Univ. Press, Oxford, 1998, xiv+555 pp.

[20] J. W. P. Hirschfeld, G. Korchmáros and F. Torres, *Algebraic curves over a finite field*. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008. xx+696 pp

[21] T. Hoholdt and R. Pellikaan, On the decoding of algebraic-geometric codes, *IEEE Trans. Inform. Theory* **41** (1995), 1589–1614.

[22] M. Homma, The Weierstrass semigroup of a pair of points on a curve, *Arch. Math.* **67**, 337–348 (1996).

[23] M. Homma and S.J. Kim, Goppa codes with Weierstrass pairs, *J. Pure Appl. Algebra* **162**, 273–290 (2001).

[24] M. Homma, S.J. Kim and J. Komeda, A semigroup at a pair of Weierstrass points on a cyclic 4-gonal curve and a bielliptic curve, *J. Algebra* **305**, 1–17 (2006).

[25] D.R. Hughes and F.C. Piper, *Projective Planes*, Graduate Texts in Mathematics **6**, Springer, New York, 1973, x+291 pp.

[26] G.L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, *Des. Codes Cryptogr.* **22**, 107–121 (2001).

[27] G.L. Matthews, The Weierstrass Semigroup of an m-Tuple of Collinear Points on a Hermitian Curve. Finite Fields and Applications. Lecture Notes in Computer Science, vol. 2948, pp. 12–24. Springer, Berlin (2004)

[28] G.L. Matthews and T.W. Michel. One-Point Codes Using Places of Higher Degree, *IEEE Trans. Inform. Theory* **51** 2005, 1590-1593.

[29] G.L. Matthews, Weierstrass semigroups and codes from a quotient of the Hermitian curve, *Des. Codes Cryptogr.* **37**, 473–492 (2005).

[30] H. Stichtenoth, A note on Hermitian codes over $GF(q^2)$, *IEEE Trans. Inform. Theory*, vol. **34**, 1345-1348 (1988).

[31] H. Stichtenoth, *Algebraic Function Fields and Codes*, Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009. xiv+355 pp.

[32] C.P. Xing and H. Chen, Improvements on parameters of one-point AG-codes from Hermtian codes, *IEEE Trans. Inform. Theory* **48** 2002, 535-537.
[33] K. Yang and P. V. Kumar, On the True Minimum Distance of Hermitian Codes, in *Coding theory and algebraic geometry*, Lecture Notes in Mathematics, 1992, Volume 1518/1992, 99-10.