REVIEW

Major Depressive Disorder (MDD) and Schizophrenia—Addressing Unmet Needs With Partial Agonists at the D2 Receptor: A Review

Jasmina Mallet, Philip Gorwood, Yann Le Strat, Caroline Dubertret

INSERM U1266, Institute of Psychiatry and Neurosciences of Paris (IPNP), France (Drs Mallet, Gorwood, Le Strat, and Dubertret); AP-HP; Psychiatry Department, University Hospital Louis Mourier; Paris Diderot University, France (Drs Mallet, Le Strat, and Dubertret); GHU Paris, CMME, Sainte-Anne hospital; University of Paris, France (Dr Gorwood).

Correspondence: Professor Philip Gorwood, MD, PhD, CMME, GHU Paris Psychiatrie, 100 rue de la Sante, 75014 Paris, France (p.gorwood@ghu-paris.fr).

Abstract

Second-generation antipsychotics are common candidates for the adjunctive treatment of major depressive disorder and for the treatment of schizophrenia. However, unmet needs remain in the treatment of both disorders. Considering schizophrenia, antipsychotics are the most common treatment and have demonstrated good efficacy. Still, side effects of these treatments are commonly reported and may impact adherence to the medication and functioning in patients with schizophrenia. Regarding major depressive disorder, despite the availability of several classes of antidepressants, many patients do not achieve remission. Adjunctive treatment with antipsychotics may improve clinical and functional outcomes. Compared with dopamine D2 receptor antagonism that is exhibited by most antipsychotics, partial agonism may result in improved outcomes in major depressive disorder and in schizophrenia. Aripiprazole, cariprazine, and brexpiprazole have partial agonism at the dopamine D2 receptor and could potentially overcome limitations associated with D2 antagonism. The objectives of this review were (1) to discuss the goal of treatment with second-generation antipsychotics in major depressive disorder and schizophrenia, and the clinical factors that should be considered, and (2) to examine the short- and long-term existing data on the efficacy and safety of D2 receptor partial agonists (aripiprazole, cariprazine, and brexpiprazole) in the adjunctive treatment of major depressive disorder and in the treatment of schizophrenia.

Keywords: schizophrenia, major depressive disorder, antipsychotics, treatment, side effect

Introduction

An Unmet Need in the Pharmacological Treatment of Major Depressive Disorder (MDD)

Inadequate Response to Antidepressant Monotherapy

Despite the availability of effective antidepressants, many patients with MDD do not achieve clinical response or remission (Rush et al., 2006). Surprisingly, when comparing response rate in large samples in 182 drug-placebo comparisons (clinical trials), response rates to antidepressant treatment have not improved over the past 3 decades (Papakostas and Fava, 2009). Many patients with MDD do not achieve adequate response or remission even though different classes of antidepressants are available (Han et al., 2013).

Regarding antidepressant treatment, about 1 patient out of 3 reported feeling “frustrated,” the majority of which (59.3% of patients) because of the lack of response (Mago et al., 2018). These feelings can contribute to medication nonadherence and
therefore worsen clinical outcomes (Mago et al., 2018). Moreover, patients with inadequate response to antidepressants often fail to regain a normal quality of life (IsHak et al., 2015). Anxiety might be involved in such poor response as often associated with MDD (about 1 of 2 patients) and with greater morbidity such as increased suicidality, functional impairment, longer duration of episodes, worse response to treatment, and worse health-related quality of life (Trivedi et al., 2006; Fava et al., 2008; Zimmerman et al., 2014).

Efficacy of Adjunctive Antipsychotics on Clinical Symptoms in MDD

For patients with an inadequate response to antidepressant, a second-generation antipsychotic (SGA) is a recommended treatment option (Gelenberg et al., 2010; Bauer et al., 2015). In a large meta-analysis of 10 randomized controlled trials (RCTs) assessing adjunctive treatment with a SGA together with standard antidepressants, in patients with MDD and inadequate initial response (n=1500), response and remission rates were significantly higher for patients who received adjunctive treatment with an SGA than for those who received adjunctive placebo (57.2% vs 35.4%, and 47.4% vs 22.3%, respectively) (Papakostas et al., 2007). In another systematic review of the efficacy and safety profiles of SGA used for adjunctive treatment, the pooled response and remission rates were positive for all SGA except the combination of olanzapine and fluoxetine (Spielmans et al., 2013). Noticeably, even in patients showing minimal response after 8 weeks of treatment with antidepressant, 6 weeks of adjunctive aripiprazole treatment significantly reduced time to response and remission compared with patients who received adjunctive placebo (Nelson et al., 2012). However, in a meta-analysis examining adverse events (AEs) with an incidence greater than placebo (P<0.10, based on odds ratio), aripiprazole was associated with more akathisia and quetiapine with more sedation (Spielmans et al., 2013). This work will thus review studies examining the efficacy and tolerability of existing partial D2 receptors agonists.

An Unmet Need in the Pharmacological Treatment of Schizophrenia

The Impact of Treatment Side Effects on Adherence and Functioning
Side effects of antipsychotic medications are significantly associated with lower adherence in patients with schizophrenia and consequently with increased healthcare resource use. A study reported the impact of each side effect on complete adherence in a sample of 876 schizophrenia patients, of whom 86.2% reported a side effect (Dibonaventura et al., 2012). In another sample of 1825 patients diagnosed with a psychotic disorder, 77% reported medication side effects, 61% reported impairment in their daily life as a result of medication side effects, and 30% reported moderate or severe impairment in their daily life as a result of medication side effects (Morgan et al., 2012). Side effects markedly affect quality of life through small shifts in functional status and, if not addressed early, can cause long-term distress and contribute to chronic health complications (Awad and Hogan, 1994; Barnes and Schizophrenia Consensus Group of British Association for Psychopharmacology, 2011).

When considering international guidelines, APA guidelines recommend choosing a medication that offers good clinical response without intolerable side effects, while NICE guidelines recommend regular monitoring of side effects based on the side-effect profile of the prescribed antipsychotic (Kuipers et al., 2014; Lehman et al., 2010). Patients who experience serious side effects may decide that the adverse effects outweigh the benefits of medication.

Addressing Unmet Needs in MDD and Schizophrenia With Antipsychotic Pharmacology

Association Between Receptor Blockade and Clinical Efficacy
The best-known mechanism for antipsychotics is the D2 receptor blockade. Howes and colleagues reviewed the evidence for the major implication of dopamine in the emergence of schizophrenia (Howes and Kapur, 2009; Howes et al., 2012). They proposed a new dopamine hypothesis with a framework that links risk factors, including pregnancy and obstetric complications, stress and trauma, drug use, and genetic vulnerability, to increased presynaptic striatal dopaminergic function. It explains how a complex array of pathological conditions may converge neurochemically to cause psychosis through aberrant salience and lead to the occurrence of schizophrenia. However, it is important to remember that second-generation antipsychotics and particularly partial agonists also bind to a range of other receptors, contributing to their efficacy (Table 1). Conversely, the blockade of such receptors can also lead to specific side effects. Determining the optimal level of intrinsic activity at the receptor is crucial to avoid an activity close to agonism (potential lack of efficacy, side effects such as nausea, vomiting, insomnia, and motor effects) or on the contrary, closer to antagonism (and potential increased risk of extrapyramidal symptoms and raised prolactin levels) (Citrome et al., 2015).

There are several mechanisms that might, at least in part, explain antidepressive efficacy of antipsychotics: blockade of neurotransmitter receptors other than dopamine, blockade of monoamine transporters, effects on sleep, decrease in cortisol levels, and increase in neurotrrophic growth factors (Sagud et al., 2011). However, many side effects reported with SGAs could lead to diminished treatment adhesion and also inhibit the clinician from prescribing such adjunct treatment (Thase, 2016). D2 partial agonism became a new approach, stabilizing dopamine function while mitigating side effects. Aripiprazole was the first D2 partial agonist to be approved for the treatment of schizophrenia and as an augmenting agent in major depression. However, some side effects (such as activation, agitation, and akathisia) have been ascribed to its high level of intrinsic activity at the D2 receptor (Parikh et al., 2017). This led to the development of other molecules.

Distinct Receptor Profiles: Aripiprazole, Brexpiprazole, Cariprazine
Concerning pharmacologic properties, aripiprazole, brexpiprazole, and cariprazine all exhibit D2 receptor partial agonism, but each displays a distinct receptor profile. Aripiprazole preferentially binds to D2 receptors over D3 receptors (Shapiro et al., 2003). Cariprazine has an approximately 10-fold higher affinity for human D3 compared with human D2 (S or L) receptors (Kiss et al., 2010). Brexpiprazole, a serotonin-dopamine activity modulator, is a partial agonist at 5-HT1A and dopamine D2 receptors and antagonist at 5-HT2A and noradrenaline α1B and α2C receptors, all at similar potency. Brexpiprazole shows a lower intrinsic activity at the D2 receptor compared with aripiprazole, and a greater affinity at the 5-HT2A receptor compared with aripiprazole (Maeda et al., 2014). These properties would result in less akathisia and extrapyramidal symptoms. Finally, brexpiprazole and cariprazine bind less strongly to H1 receptors than aripiprazole (Table 1), suggesting a lower
antihistaminic activity resulting in less sedation, somnolence, and weight gain.

Finally, several properties of aripiprazole are probably not yet known for brexpiprazole and cariprazine: possible absence of long-term dopamine-related neurochemical adaptations (involving a lack of dopamine supersensitivity and treatment resistance) and specific changes of the neuronal transcriptome in relevant biological functions (for review, see de Bartolomeis et al., 2015).

Methods

Several Medline searches were performed to review the literature from January 2000 to January 2019, and the following keywords were used: (schizophrenia OR psychotic disorder) OR (depressive disorder OR treatment-resistant depression) AND (brexpiprazole OR cariprazine OR aripiprazole). We selected studies published in English that included only human participants with an abstract available, which restricted the results to 1368 papers. After exclusion of reviews and expert opinions, 336 papers were examined. Then we excluded doublons or nonrelated topics and meta-analyses of RCT were preferred over open-label studies. Additional unpublished clinical trials were identified through the ClinicalTrials.gov electronic database. Concerning efficacy, 12 studies were finally judged suitable for the assessment of schizophrenia disorder and major depressive disorder. The evaluation of safety for SCZ and MDD included 10 and 11 studies, respectively.

The Role of Partial Agonists in the Treatment of Schizophrenia

Efficacy of D2 Partial Agonists in the Short-Term Treatment of Schizophrenia Symptoms

Aripiprazole

In a pooled analysis of 5 RCTs (see Table 2), aripiprazole treatment resulted in a significantly greater decrease in PANSS total score from baseline to week 4/6 than placebo (−14.4 vs −2.4) with an effect size of 0.57 (Kane et al., 2008).

Cariprazine

Data from 4 short-term studies of cariprazine 1.5–12 mg (n = 1275) vs placebo (n = 568) were pooled in a meta-analysis (Zhao et al., 2018). There was a significant benefit of cariprazine vs placebo on the PANSS total score (standardized mean difference [SMD]: −0.37 [95% confidence interval (CI) = −0.47 to −0.27], P < .001).

Brexipiprazole

Efficacy of brexpiprazole was evaluated in patients with acutely exacerbated schizophrenia in 3 short-term, randomized, double-blind, placebo-controlled studies. The pooled data for 2 studies showed that combined brexpiprazole 2 mg (n = 359) and 4 mg (n = 359) was superior to placebo (n = 358) in change of PANSS total score (least square mean difference [LSMD] from placebo: −5.46, P = .0004, and −6.69, P < .0001, respectively) and CGI-S (LSMD: −0.25, P = .0035, and −0.38, P < .0001, respectively) (Correll et al., 2016).

Long-Term Efficacy on Relapse Prevention in Schizophrenia

Aripiprazole

In a 26-week, randomized, double-blind, placebo-controlled, parallel-group, multi-center study, 310 patients with DSM-IV schizophrenia were randomly assigned to receive a once-daily fixed dose of aripiprazole, 15 mg, or placebo (Pigott et al., 2003). The time to relapse following randomization was significantly longer for aripiprazole compared with placebo, with estimated Kaplan-Meier survival rate at week 26 of 62.6% for aripiprazole vs 39.4% for placebo (P < .001).

Cariprazine

The efficacy on relapse of cariprazine (3–9 mg/d) was evaluated in a multinational randomized, double-blind, placebo-controlled, parallel-group study of 97 weeks (Durgam et al., 2016).
2016b). Relapse occurred in 24.8% of cariprazine-treated patients vs 47.5% of placebo-treated patients (hazard ratio = 0.45 [95% CI = 0.28 to 0.73], P < .001 for time to relapse). Long-term cariprazine treatment was thus significantly more effective than placebo for relapse prevention in patients with schizophrenia. The long-term safety profile in this study was consistent with the safety profile observed in previous cariprazine clinical trials.

Brexpiprazole
In a recent study in 524 patients (Fleischhacker et al., 2017), patients already stabilized with brexpiprazole (1–4 mg/d, n = 202) were randomized to double-blind maintenance treatment with either brexpiprazole (at their stabilization dose, n = 97) or placebo (n = 105) for up to 52 weeks. The risk of impending relapse was significantly reduced in 13.5% of brexpiprazole patients compared with 38.5% of placebo patients (P < .0001). During the maintenance phase, the incidence of AEs was comparable with placebo (Durgam et al., 2016b). PSP total score improvement from open-label, 26–72 weeks double-blind) compared cariprazine (1–4 mg) and paliperidone (3–12 mg) (D2 antagonist) were neither activating nor sedating. Cariprazine (1.5–6 mg) was predominantly activating, while aripiprazole (2–30 mg/d) was similarly activating and sedating (Citrome, 2017).

Safety and Tolerability of D2 Partial Agonists in the Treatment of Schizophrenia

Activating and Sedating Side Effects Are Common Causes of Concern
There is heterogeneity among different SGAs with regard to AEs considered as activating (akathisia, restlessess, agitation, anxiety, insomnia) and sedating (somnolence, fatigue, sedation) (Németh et al., 2017). A recent analysis of absolute risk increase with SGAs in schizophrenia found that only brexpiprazole (1–4 mg) and paliperidone (3–12 mg) (D2 antagonist) were neither activating nor sedating. Cariprazine (1.5–6 mg) was predominantly activating, while aripiprazole (2–30 mg/d) was similarly activating and sedating (Citrome, 2017).

Short-Term Safety and Tolerability
Aripiprazole
In a pooled analysis of 5 placebo-controlled trials (4–6 weeks duration), aripiprazole showed a favorable safety and tolerability profile with low potential for extra-pyramidal symptoms (EPS), weight gain, prolactin elevation, QT(c) prolongation, and sedation (aripiprazole, n = 926 patients; placebo, n = 413 patients; haloperidol, n = 200 patients) (Marder et al., 2003).

Brexpiprazole
A recent pooled analysis of 2 studies comparing placebo with brexpiprazole (2 or 4 mg) showed that no treatment-emergent AEs appeared with an incidence ≥5% and twice that of placebo in patients treated with brexpiprazole 2–4 mg (Kane et al., 2016). More specifically, akathisia rates were low (5.8%, pooled brexpiprazole group), sedation rates were low (2.3%, pooled brexpiprazole group), and mean body weight increase was 1.1 kg.

Cariprazine
A pooled analysis of 4 studies using 3 daily dose subgroups (n = 539, 1.5–3 mg; n = 575, 4.5–6 mg; n = 203, 9–12 mg) showed a general good tolerability (Earley et al., 2017). The incidence of treatment-emergent AEs vs placebo was similar for cariprazine 1.5–3 mg/d and higher for cariprazine 4.5–6 and 9–12 mg/d; a dose-response relationship was observed for akathisia, extra-pyramidal symptoms, and diastolic blood pressure. The mean changes in metabolic parameters were generally similar in cariprazine-treated and placebo-treated patients. There was no significant prolactin level increase or heart rate-corrected QT interval value >500 ms; small increases in mean body weight (~1 to 2 kg) vs placebo were observed.
Authors	Design	Duration	Drug	Titration	Main outcome	Results and comments
Kane, 2018	Short-term Pooled analysis of 5RCT	4 weeks	Aripiprazole vs Placebo	5–30 mg	PANSS total score	Improvement in the aripiprazole group vs placebo group (-14.4 vs -2.4) \(P < .001, ES = 0.57 \)
Zhao, 2018	Meta-analysis, 4 RCT	6 weeks	Cariprazine vs Placebo	3–9 mg	PANSS total score	Improvement in the cariprazine group vs placebo group SMD -0.37 \(P < .00001 \)
Correll, 2016	Pooled analysis of 2RCT	6 weeks	Brexpiprazole vs Placebo	1) 2 mg 2) 4 mg	(a) PANSS total score (b) CGI-s	Improvement in the brexpiprazole group vs placebo group \(a) SMD = 1)− 5.46, \(P = .0004 \), and 2)− 6.69, \(P < .0001 \) \(b) SMD = 1)− 0.25, \(P = .0035 \), and 2)− 0.38, \(P < .0001 \)
Pigott, 2003	Long term RCT	26 weeks	Aripiprazole vs Placebo	15 mg	Relapse	- Improvement in the aripiprazole group vs placebo group \(P < .0001 \) (log-rank test) for time to relapse with aripiprazole vs placebo; RR of relapse = 0.50 (95% CI: 0.35, 0.71)
Durgam, 2016b	RCT after open-label stabilization	Up to 97 weeks	Cariprazine vs Placebo	3–9 mg	Relapse	Improvement in the cariprazine group vs placebo group- Relapse in 24.8% of cariprazine-treated patients vs 47.5% of placebo-treated patients; HR = 0.45 (95% CI: 0.28–0.73); \(P = .001 \) for time to relapse with cariprazine vs placebo
Fleischhacker, 2017	Double-blind (RCT) maintenance after stabilization	52 weeks	Brexpiprazole vs Placebo	1–4 mg	(1) Relapse (2) PANSS total score	(1) Risk of impending relapse reduced by 71% vs placebo; 13.5% of brexpiprazole patients vs 38.5% of placebo patients experienced an impending relapse \(P < .0001 \) \(2) Improvements sustained during the double-blind phase, worsening in placebo group \(P < .001 \)
Authors	Design	Duration	Drug	Titration	Main outcome	Results and comments
-------------------------	-------------------------------	---------------------------	---------------------------	----------------------------	-----------------------------------	--
Fleischhacker, 2014	Pooled analysis of 2 RCT	1) 12 weeks	Aripiprazole vs Placebo	- Oral 10–30 mg until 38 weeks - Monthly 50 mg - Monthly 400 mg	PSP total score	(1) Improvement in the aripiprazole group vs placebo group (P < .001) (2) During the double-blind maintenance phase, PSP total score stable in the aripiprazole once-monthly 400 mg and oral aripiprazole groups but decreased in the aripiprazole once-monthly 50 mg group (P < .05); no difference between aripiprazole once-monthly 400 mg and oral aripiprazole (3) During the double-blind, placebo-controlled phase, greater functional deterioration with placebo (P < .001)
Németh, 2017	RCT	26 weeks	Cariprazine vs Risperidone (3–6 mg)	3–6 mg	PSP total score	(1) PSP increase during open label in the cariprazine group (mean change = 11.1 [14.6]) (2) No effect during double-blind under cariprazine, decreasing under placebo (mean change = -7.2 [16.2])
Durgam, 2016b	(1) Open label then (2) Double-blind study (RCT)	1) 20 weeks 2) 26/72 weeks	Cariprazine vs Placebo	3–9 mg	PSP total score	(1) 2 mg: mean change (increasing) P < .01 (2) 4 mg: mean change (increasing) P < .001
Correll, 2016	Pooled analysis of 2 short-term studies (RCT)	6 weeks	Brexpiprazole vs Placebo	-2 mg -4 mg	PSP total score	(1) GAF increase at week 24, 36, and 52 (mean change from baseline 0.9; 1; 0.6 in brexpiprazole groups vs -4.5; -5.8; -6 in placebo group) P < .001 vs placebo at week 36, 52, P < .01 at week 24 Improvement (mean change in score of 7.7), irrespective of prior treatment
Fleischhacker, 2017	Single-blind than double-blind maintenance phase (RCT)	Up to 52 weeks	Brexpiprazole vs Placebo	1–4 mg	GAF score	
Forbes, 2018	Open label study from 3RCT+de novo patients	Up to 52 weeks	Brexpiprazole	1–4 mg	PSP total score (secondary outcome)	Improvement in the brexpiprazole group vs placebo group (mean change -8.7 vs -5.7; P < .001)

MDD: Clinical efficacy

Authors	Design	Duration	Drug	Titration	Main outcome	Results
Thase, 2008	Pooled analysis of 2 RCT	6 weeks (after 8-week prospective antidepressant therapy treatment phase)	Aripiprazole vs placebo	2–20 mg	MADRS	Improvement in the aripiprazole group vs placebo group (mean change -8.7 vs -5.7; P < .001)
Table 2. Continued

Schizophrenia: Clinical efficacy

Authors	Design	Duration	Drug	Titration	Main outcome	Results and comments
Dunner, 2012	Pooled analysis of 3 RCT	6 weeks (after 8-week prospective antidepressant therapy treatment phase with a switch to another ADT medication, either of the same class or of a different class from what they had been treated)	Aripiprazole vs Placebo	2–15 mg	MADRS	Improvement in the aripiprazole group vs placebo group (in between-class (-9.2 vs -6.2, P<.001) & within-class (-9.8 vs -6.6, P<.001) groups)
Thase, 2019	Pooled analysis of 3 RCT	6 weeks	Brexpiprazole vs Placebo	2–3 mg	MADRS in patients with (1) anxious distress (2) no anxious distress	Improvement in the brexpiprazole groups vs placebo groups (1) SMD = -3.00 (CI 95% = -4.29, -1.71; P<.0001) (2) SMD = -1.38 (CI 95% = -2.71, -0.05; P = .043)
Durgam, 2016a	RCT	8 weeks (after 1-2 weeks screening)	Cariprazine vs placebo	1) 1–2 mg/d 2) 2–4.5 mg/d	MADRS	Improvement in the cariprazine group under 2–4.5 mg vs placebo (not in the 1–2 mg/d group) (1) LSMD = -0.9; P = .2404 (2) LSMD = -2.2; P = .0114
Earley, 2018	RCT	8 weeks (after 8 week prospective treatment)	Cariprazine vs placebo	1.5–4.5 mg	(1) MADRS (2) CGI-I	No difference in MADRS scores, improvement in CGI-I scores in cariprazine groups vs placebo (1) LSMD = -0.2; P = .795 (2) LSMD = -0.2; P = .041
Fava, 2018	RCT	8 weeks (after 8 weeks prospective treatment)	Cariprazine vs placebo	1) 0.1–0.3 mg 2) 1.0–2.0 mg	MADRS	No statistical difference (1) ns (nonspecified) (2) LSMD = -1.8; P = .227
Berman, 2011	Long-term Open label after short term RCT+ de novo patients	52 weeks	Aripiprazole	Mean dose 10.1 mg	CGI-S = 1 or 2: remission percentage	69.7% remission
Bauer, 2019	RCT after 8 weeks prospective treatment	24 weeks	Brexpiprazole vs placebo	1–3 mg	Full remission: MADRS <10, or >50% decrease	NS (OR: 0.83; P = .2641)
Hobart, 2019	Open label from 3RCT	1)26 weeks 2)52 weeks	Brexpiprazole	0.5–3 mg	CGI-S and CGI-I	CGI-S: improvement at weeks 26 and 52 CGI-I: improvement at weeks 26 and 52
MDD: functional outcomes					SDS total score	Improvement in the aripiprazole group vs placebo group: -1.2 vs -0.7, P = .001
Fabian, 2012	Pooled analysis of 3 RCT	6 weeks (after 8 weeks prospective treatment)	Aripiprazole vs placebo	2–20 mg	SDS total score	Improvement (LSMD = -0.40 (95% CI: -0.56, -0.23, P<.0001))
Hobart, 2018	Pooled analysis of 6 RCT	6 weeks	Brexpiprazole	1–3 mg	SDS total score	Improvement (LSMD = -0.40 (95% CI: -0.56, -0.23, P<.0001))
Long-Term Safety and Tolerability

Aripiprazole

In a 26-week double-blind study of stabilized patients randomly assigned to receive placebo (n = 153) or aripiprazole (n = 153, 15 mg/d), aripiprazole was well tolerated, with no evidence of marked sedation and no evidence of hyperprolactinemia or prolonged heart rate-corrected QT interval. Extrapyramidal symptoms were comparable in the aripiprazole and placebo groups. Modest mean weight loss at endpoint was evident in both groups (Pigott et al., 2003).

Brexpiprazole

In Fleischhacker et al. (2017), a total 524 patients were enrolled, 202 of whom were stabilized on brexpiprazole and randomized to brexpiprazole (n = 97) or placebo (n = 105). During the maintenance phase (weeks 12–52), the incidence of AEs was comparable. The results of this long-term extension study are similar to those observed in the short-term double-blind lead-in study (Durgam et al., 2016b). Akathisia (19.2%), insomnia (14.4%), and headache (12.0%) were reported in ≥10% of patients during open-label treatment; there were no brexpiprazole AEs ≥10% during double-blind treatment.

A recent study by the same group (Durgam et al., 2017) showed that open-label treatment with brexpiprazole at flexible doses ranging from 1.5 to 4.5 mg/d was generally safe and well tolerated for up to 1 year without any apparent loss of efficacy. The results of this long-term extension study are similar to those observed in the short-term double-blind lead-in study (Durgam et al., 2014). Approximately 50% (46/93) of patients completed the 48 weeks of open-label treatment. The most common AEs were akathisia (14%), insomnia (14%), and weight increase (12%). Serious AEs occurred in 13% of patients; 11% discontinued due to AEs. Mean changes in metabolic parameters were generally small and not clinically relevant.

Cariprazine

In a randomized, double-blind, placebo-controlled trial by stable patients who completed open-label treatment (first step) could be randomized to continued cariprazine (n = 99, 3, 6, or 9 mg/d) or placebo (n = 101) for double-blind treatment (up to 72 weeks) (Durgam et al., 2016b). Akathisia (19.2%), insomnia (14.4%), and headache (12.0%) were reported in ≥10% of patients during open-label treatment; there were no cariprazine AEs ≥10% during double-blind treatment.

A recent study by the same group (Durgam et al., 2017) showed that open-label treatment with cariprazine at flexible doses ranging from 1.5 to 4.5 mg/d was generally safe and well tolerated for up to 1 year without any apparent loss of efficacy. The results of this long-term extension study are similar to those observed in the short-term double-blind lead-in study (Durgam et al., 2014). Approximately 50% (46/93) of patients completed the 48 weeks of open-label treatment. The most common AEs were akathisia (14%), insomnia (14%), and weight increase (12%). Serious AEs occurred in 13% of patients; 11% discontinued due to AEs. Mean changes in metabolic parameters were generally small and not clinically relevant.

Effect of Partial Agonists on Body Weight in Schizophrenia

Short-Term Effect on Body Weight

A recent study explored the effects of brexpiprazole and aripiprazole on body weight when used as monotherapy to treat schizophrenia in short-term (≤6 weeks) and long-term (≤52 weeks) studies (Weiss et al., 2018). In short-term ones, the mean weight increase was 1.2 kg for brexpiprazole and 0.6 kg for aripiprazole. A pooled analysis of 4 studies including a 6-week double-blind treatment period (comparing placebo [n = 300], risperidone 4 mg/d [n = 140], cariprazine [doses ranging from 1.5 mg to 12 mg/d, n = 1317], and aripiprazole 10 mg/d [n = 152]) showed similar results. The mean body weight increase was greater in all active treatment groups than in the placebo group. Regarding cariprazine, the mean increase in body weight was lower in the lower dose groups than in the 9- to 12-mg group. In the approved dose range, weight gain of 7% or more occurred in approximately 8% of cariprazine patients, which was less than that in the cariprazine 9- to 12-mg (17.2%) and risperidone (16.7%) groups and was similar to the aripiprazole (6.0%) group. Taken together, these results suggest that cariprazine, aripiprazole, and brexpiprazole in the approved dose range are on the lower end of the atypical antipsychotic weight gain hierarchy.

Long-Term Effect on Body Weight

In the pooled results of different studies by Weiss et al. (2018), in the long term (week 52) the mean weight increase was 2.1 kg for brexpiprazole (n = 724, 2–4.5 mg/d) and 3.0 kg for aripiprazole (n = 674, 10–30 mg/d). The authors concluded that brexpiprazole and aripiprazole had a similar effect on body weight over the course of 1 year. However, in the RCT by Pigott et al. (2003), with different methods, aripiprazole (n = 151, 15 mg) and placebo (n = 151) were responsible for a modest and comparable weight loss in the 2 groups at the end point (26 weeks).

In the RCT by Fleischhacker et al. (2017), in the final phase patients were assigned with brexpiprazole (n = 97) or placebo (n = 105). During the maintenance phase, patients had a mean weight decrease from baseline to their last visit (week 52) in the brexpiprazole (−0.3 kg) and placebo (−2.2 kg) groups, and the
incidence of potentially clinically relevant weight gain was 5.2% in the brexpiprazole group compared with 1.0% in the placebo group. In the long-term 72-week RCT comparing placebo (n = 99) with cariprazine (n = 101; daily dose 3, 6, or 9 mg) (Durgam et al., 2016b), weight gain >7% (which is clinically relevant) was reported in 10.6% of open-label patients, 32.3% of placebo-treated patients, and 27.0% of cariprazine-treated patients during double-blind treatment, showing a good tolerability.

Short- and Long-Term Effect on Laboratory Parameters in Schizophrenia

Short-term aripiprazole treatment is associated with a decrease in prolactin, and minimal effects on glucose and lipid parameters (Marder et al., 2003). Regarding RCTs, for brexpiprazole as well as for cariprazine, mean changes from baseline in lipid parameters in the short- and long-term of the double-blind treatment were generally not clinically relevant (Correll et al., 2016; Earley et al., 2017).

Finally, long-term treatment with D2 partial agonist was generally well tolerated (Pigott et al., 2003; Durgam et al., 2016b; Fleischhacker et al., 2017), with no new or unexpected AEs compared with the short-term studies and only small mean changes in metabolic parameters.

Conclusion

The Role of Partial Agonists in the Treatment of Schizophrenia

Goals in the treatment of schizophrenia include symptom resolution, maintenance of symptomatic efficacy, and improvement in functioning. To achieve these goals with a low incidence of adverse effects, D2 receptor partial agonists are valuable choices. Aripiprazole, brexpiprazole, and cariprazine are both efficacious in the treatment of schizophrenia (on clinical symptoms but also on patient functioning) in the short and the long term. On the whole, the majority of the data available are positive for each molecule used when compared with placebo or first-generation antipsychotics. Few studies include other atypical antipsychotics, making a direct comparison difficult. Future RCTs are needed with a head-to-head comparison between each partial agonist.

In clinical practice, partial agonists may be considered in those patients who may be especially sensitive to EPS-related side effects or have experienced problems with somnolence or prolactinemia with other antipsychotic treatments. However, the clinician must keep in mind that partial agonist may also provide side effects such as akathisia or weight increase in the short term and possibly cardiovascular side effects in the long term (for review, refer to Citrome, 2015). The aripiprazole starting and recommended dose is 10–15 mg/d (maximum 30 mg/d), the brexpiprazole starting dose is 1 mg/d with a recommended dose range 2–4 mg/d (maximum 4 mg/d), and the cariprazine starting dose is 1.5 mg/d (recommended dose range 1–6 mg/d) (Citrome, 2015).

MDD and Partial Agonists

Several long-term studies have demonstrated high rates of inadequate response with antidepressant therapy in MDD, even after several switches with other agents or after combinations (Rush et al., 2006; Papakostas and Fava, 2009). One option is to address this inadequate antidepressant response with an adjunctive SGA. According to international guidelines, only 1 D2 receptor antagonist is indicated for the adjunctive therapy to any antidepressants for the treatment of MDD: quetiapine (in the European Union and United States) (Bauer et al., 2015). In the United States, olanzapine is also available in combination with fluoxetine for the treatment of treatment-resistant depression (named Symbyax, www.fda.gov). Aripiprazole and brexpiprazole are indicated as an adjunctive therapy to antidepressants for the treatment of MDD in adults in the United States, and cariprazine is in development for the same indication (Durgam et al., 2016a).

Efficacy of D2 Partial Agonist Antipsychotics in the Short- and Long-Term Treatment of MDD

Short-Term Efficacy on Symptoms

Adjunctive Aripiprazole

The efficacy of adjunctive aripiprazole in MDD has been investigated in a pooled analysis of 2 short-term studies (Thase et al., 2008): greater improvement in Montgomery-Asberg Depression Rating Scale (MADRS) total score was observed compared with adjunctive placebo (week 6, P < .001). Similar improvements vs adjunctive placebo were also observed in a later pooled analysis of 3 studies (Dunner et al., 2012).

Adjunctive Brexpiprazole—The efficacy of adjunctive brexpiprazole (2–3 mg; n = 770) has been investigated in a pooled analysis of 4 short-term studies (Thase et al., 2019). Greater improvement from baseline in MADRS total score (week 6, P < .001) compared with adjunctive placebo (n = 788).

Adjunctive Cariprazine

Cariprazine is in development as an adjunctive therapy to antidepressant. One phase II RCT (Durgam et al., 2016a) evaluated the efficacy and safety of cariprazine as adjunctive therapy in patients with MDD who have inadequate response to standard antidepressant therapy alone. Compared with placebo (n = 264), reduction in MADRS total score at week 8 was significantly greater with adjunctive cariprazine 2–4.5 mg/d (n = 271) but not with 1–2 mg/d (n = 273). Among 2 phase-III RCTs, 1 study failed to meet the primary endpoint (Earley et al., 2018), and the outcome of the other study is not publicly available.

Short-Term Efficacy on Functioning in MDD

In a comprehensive review of depression research (not focused on individual treatments), symptomatic improvement was not necessarily accompanied by improvement in functioning or quality of life (McKnight and Kashdan, 2009; Saltiel and Silvershein, 2015). Improving functioning is still an unmet need in the treatment of MDD.

Adjunctive Aripiprazole

In a study pooling three 6-week trials (Fabian et al., 2012), adjunctive aripiprazole (vs placebo) has shown efficiency (mean change from baseline) in the total score and in social and family life domains of the Sheehan Disability Scale (SDS), which is a patient-rated measure of functional disability (Sheehan and Sheehan, 2008).

Adjunctive Brexpiprazole

A recent pooled analysis of data from six 6-week RCT studies (n = 2066 randomized) of adjunctive brexpiprazole (2 and 3 mg/d in fixed-dose studies; 1–3 mg/d in flexible-dose studies) vs placebo in patients with MDD and inadequate response to antidepressant showed improved functioning with adjunctive brexpiprazole (mean change from baseline to week 6; total score and work and family life domains, P < .001) (Hobart et al., 2018).
Adjunctive Cariprazine
In the phase II study of adjunctive cariprazine (Durgam et al., 2016a), significantly greater improvements in SDS total score were found in both cariprazine groups (2–4.5 mg/d and 1–2 mg/d) during double-blind treatment (week 4), but no significant differences were detected at week 8. Mean change in SDS family/home was significantly greater with cariprazine 2–4.5 mg/d vs placebo at all study visits, including week 8 (P = .01). No significant improvements in SDS work/school and social life were found in either cariprazine group at week 8. The phase III study failed to show an improvement in SDS scores at week 8 with adjunctive cariprazine (1.5–4.5 mg/d) (Earley et al., 2018).

Long-Term Efficacy on Symptoms of MDD

Adjunctive Aripiprazole
In an open label study following a short-term RCT (Berman et al., 2013), endpoint CGI-S scores suggest that adjunctive aripiprazole provides clinically meaningful, persistent efficacy with long-term treatment (up to 52 weeks). Nearly 70% of participants who continued long-term treatment had a stable CGI-S score of 1 (normal) or 2 (borderline ill), indicating that scores are consistent with remission from symptoms. On average, most improvement in CGI-S scores occurred in the first month of treatment and was sustained over a year of treatment. To our knowledge, there is no double-blind long-term study using a placebo-controlled discontinuation design.

Adjunctive Brexpiprazole
In a recent study (Bauer et al., 2019), patients with inadequate response to antidepressant were randomized to antidepressant with brexpiprazole 1–3 mg/d or antidepressant and placebo (24 weeks). The primary endpoint was full clinical remission (MADRS total score ≤10 and ≥50% decrease from randomization, i.e., baseline, in MADRS total score for at least 8 consecutive weeks). Adjunctive brexpiprazole did not differentiate from antidepressant with placebo on the primary endpoint of full remission. In a 52-week open-label study (from 3RCT), adjunctive treatment with open-label brexpiprazole 0.5 to 3 mg/d was associated with continued improvement in efficacy measures and functional outcomes (Clinical Global Impressions-Severity and Improvement Scales; SDS scale) (Hobart et al., 2019a).

Safety and Tolerability of D2 Partial Agonist Antipsychotics in the Short- and Long-Term Treatment of MDD
Despite demonstrated efficacy in MDD, the side-effect profile of SGA may limit their use in clinical practice. A meta-analysis of 3549 patients from 14 clinical studies demonstrated that SGAs are associated with tolerability concerns (Spielmans et al., 2013). In a real-world study, clinicians’ concerns over side effects prevented or delayed prescription of an adjunctive antipsychotic in 13% of patients (McIntyre and Weiller, 2015).

Short-Term Safety and Tolerability in the Treatment of MDD

Aripiprazole
In a review and pooled analysis of 3 RCTs (Pae et al., 2011), adjunctive aripiprazole was safe and well-tolerated. The overall discontinuation rates due to AE were low (4.4% vs 1.7% with placebo). Akathisia was the most common adverse events (AE) (in 22.7% of patients in the pooled analysis [antidepressant+aripiprazole 2–20 mg (n = 543) vs 4.1%, antidepressant+placebo (n = 538)]. Restlessness was also common (12.2% vs 2.4%) as well as fatigue and insomnia (around 8%).

Brexpiprazole
In a review and pooled analysis of 4 studies (Thase et al., 2019), adjunctive brexpiprazole was safe and well-tolerated, with discontinuation rates around 2%. Akathisia was found in 8% of patients with adjunctive brexpiprazole (1–3 mg, n = 1032) and in 2.6% with placebo (n = 819). Weight increase was also more frequent (5.8% vs 1.6%).

Cariprazine
In phase II study comparing adjunctive cariprazine (1–2 mg, n = 273, or 2–4.5 mg, n = 273) vs placebo (n = 266) (Durgam et al., 2016a), treatment emergent adverse events (TEAE) were reported in ≥10% of patients in either cariprazine dosage group. In the 2 to 4.5-mg group, the most common were akathisia (22.3%), insomnia (13.6%), and nausea (12.8%) (6.6%, 9.9%, and 7.0%, respectively, in the 1- to 2-mg group).

Short-Term Effect on Body Weight in the Treatment of MDD
Several clinical trials evaluated mean change from baseline to last visit in body weight, as it can be a frequent side effect with antipsychotics (clinicalTrials.gov).

Aripiprazole and Brexpiprazole
In a pooled analysis (Weiss et al., 2018), the overall weight profiles for brexpiprazole and aripiprazole (adjunctive to antidepressant) were similar. The mean weight increase was 1.5 kg for brexpiprazole and 1.6 kg for aripiprazole.

Cariprazine
In one RCT comparing antidepressant with adjunctive brexpiprazole (1–2 mg, n = 273 or 2–4.5 mg, n = 271) with placebo (n = 264) (Durgam et al., 2016a), the percentage of patients with ≥7% body weight increase at week 8 from baseline was low in all groups (placebo, 1.9%; 1–2 mg/d, 1.5%; 2–4.5 mg/d, 3.3%).

Long-Term Safety and Tolerability in the Treatment of MDD

Long-term safety and tolerability of classical parameters

Aripiprazole
In a 52-week open-label study (n = 994) (Berman et al., 2011), long-term adjunctive aripiprazole therapy was well tolerated, with an acceptable long-term safety and tolerability profile in patients who had not responded to treatment with 1 or more antidepressant. However, the discontinuation rate due to AE was high in the total group (22.7%). Common (>15% of patients) spontaneously reported AEs were akathisia (26.2%), fatigue (18.0%), and weight gain (17.1%). The incidence of serious AEs was 4.0% (e.g. suicidal ideations, depression, pneumonia, cholecystitis). No clinically relevant changes in other metabolic parameters were seen.

Brexpiprazole
In a 24-week randomized study comparing brexpiprazole 1–3 mg to placebo in adjunct to antidepressant (Bauer et al., 2019), the most frequent TEAE in patients receiving antidepressant with brexpiprazole was weight increase (9.5% vs 5.0% in
antidepressant with placebo, which was lower than the incidence reported in a 52-week open label study (25.5%) (Nelson et al., 2016). The incidence of TEAEs leading to withdrawal was 6.3% in the antidepressant + brexpiprazole group and 3.4% in the antidepressant + placebo group. Activating side effects were infrequently reported (akathisia, 4.7% vs 0.9%; restlessness, 4.1% vs 0.5%; insomnia, 1.8% vs 0.9%; anxiety, 1.6% vs 0.9%, and agitation 0.7% vs 0% for antidepressant + brexpiprazole and antidepressant + placebo, respectively). Sedating side effects were also relatively uncommon (fatigue, 3.8% vs 1.4%; somnolence, 2.9% vs 1.4%, and sedation, 0% vs 0%). The proportion of patients with EPS-related TEAEs with an incidence ≥2% in either treatment group were (brexpiprazole vs placebo): akathisia (4.7% vs 0.9%) and tremor (2.9% vs 2.0%). Overall, brexpiprazole was well tolerated, with no unexpected side effects.

Long-Term Effect on Body Weight—In a review and pooled analysis (Weiss et al., 2018), at week 52, the mean weight increase was 3.2 kg for brexpiprazole (n = 1015, 0.25–3 mg/d) and 4.0 kg for aripiprazole (n = 303, 2–30 mg/d). Overall, in adjunctive treatment of MDD, brexpiprazole and aripiprazole had a similar effect on relevant body weight changes (7%) over the course of 1 year.

Long-Term Effect on Sexual Functioning in the Treatment of MDD

Aripiprazole
In a 52-week, open-label safety study of adjunctive aripiprazole (antidepressant SSRI/SNRI [n = 245] or bupropion [n = 47]), sexual functioning in patients with MDD on antidepressants was modestly improved after adding aripiprazole, in both men and women, with a similar pattern/level of change across all antidepressant medications (Clayton et al., 2014).

Brexpiprazole
In a 52-week open label study of adjunctive brexpiprazole as an adjunctive treatment to antidepressant, brexpiprazole was associated at week 26 and week 52 with an improvement in sexual functioning (mean change from baseline in MSFQ scores) (Hobart et al., 2019b).

Effect on Biological Parameters in the Treatment of MDD

Aripiprazole
In short-term studies, the incidence of potentially clinically relevant laboratory abnormalities was similar to placebo, and prolactin levels decreased with aripiprazole treatment (Nelson et al., 2009). During >46 weeks’ aripiprazole exposure, median changes in fasting parameters were small (<10 mg/dL) (Berman et al., 2011).

Brexpiprazole
In short-term studies, mean changes in fasting metabolic parameters were small (all less than 2 mg/dL), whereas in long-term treatment, triglycerides increased by 14.2 mg/dL at week 58. Other parameters showed only small changes from baseline to week 58 (<10 mg/dL) (Newcomer et al., 2018).

Cariprazine
In a short-term study, mean changes in fasting metabolic parameters were small (all <5 mg/dL) (Durgam et al., 2016a).

New Adjunctive Treatment Opportunities for Patients With MDD

Inadequate response to antidepressant treatment remains a substantial burden in clinical practice. The efficacy, safety, and tolerability of the D2 receptor partial agonists aripiprazole and brexpiprazole as adjunctive treatment to antidepressants have been demonstrated in both short- and long-term studies. Cariprazine is in development as an adjunctive treatment for MDD. They represent a valuable treatment option for patients with MDD and an inadequate response to antidepressant. However, no study comparing each partial agonist exists to date, making a head-to-head comparison difficult. Besides, further research is needed to appreciate the superiority of partial agonists over other augmenting agents in depressive disorder (lithium, quetiapine, lamotrigine, thyroid hormones...). Data are scarce but more information about the pros and cons of different strategies with augmenting agents in MDD are exposed in other reviews (Edwards et al., 2013; Tundo et al., 2015).

In clinical practice, augmentation with partial agonists should be considered after failed trials antidepressant agents across at least 2 classes of antidepressants, particularly when symptoms severity or the urgency for rapid benefit is sufficient to justify the potential risks (Thase, 2016). Clinicians must consider the main side-effects reported in RCT, explaining relevant dropout rate (weight gain, akathisia, metabolic parameters) (for review, see Citrome, 2015). Besides, few data are available on late-onset side-effects (tardive dyskinesia, insulin-resistance/diabetes mellitus), and further studies are needed to determine the side-effect profiles over years. The aripiprazole starting dose is 2.5–5 mg/d and the recommended dose is 5–10 mg/d (maximum 15 mg/d), the brexpiprazole starting dose is 0.5 or 1 mg/d and recommended dose is 2 mg/d (maximum dose 3 mg/d) (Citrome, 2015).

Conclusion and Future Perspectives

MDD and schizophrenia both represent therapeutic challenges for clinicians, functional burden for patients, and a major public health concern. The efficacy, safety, and tolerability of the D2 receptor partial agonists aripiprazole and brexpiprazole as adjunctive treatment to antidepressants or as monotherapy in schizophrenia has been demonstrated in both short- and long-term studies. Cariprazine is in development as an adjunctive treatment for MDD and has demonstrated efficacy, safety, and tolerability in the treatment of schizophrenia. D2 receptor partial agonists represent a valuable option for many patients. Further studies should compare efficacy and safety profiles between partial agonists, both in MDD and in schizophrenia and over years. Further research is needed to appreciate the superiority of partial agonists over other augmenting agents in depressive disorder. While the efficacy and side effects of SGA may differ in schizophrenia and MDD, no study has yet examined this hypothesis.

Statement of Interest

J.M. and C.D. declare that they have no conflict of interest. Y.L.S. has received speaker honoraria from Janssen-Cilag, Lundbeck, Otsuka, and Takeda. P.G. received during the last 5 years research grants from Ethypharm and Servier and fees for presentations at congresses or participation in scientific boards from Alcedia-Alcen, Biocodex, Bristol-Myers-Squibb, Ethypharm, Janssen, Lilly, Lundbeck, Otsuka, Sanofi Pasteur MSD, and Servier.
References

Awad AG, Hogan TP (1994) Subjective response to neuroleptics and the quality of life: implications for treatment outcome. Acta Psychiatr Scand Suppl 380:27–32.

Barnes TR; Schizophrenia Consensus Group of British Association for Psychopharmacology (2011) Evidence-based guidelines for the pharmacological treatment of schizophrenia: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 25:567–620.

Bauer M, Severus E, Köhler S, Whybrow PC, Angst J, Möller HJ, Wfsbp Task Force on Treatment Guidelines for Unipolar Depressive Disorders (2015) World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders. part 2: maintenance treatment of major depressive disorder-update 2015. World J Biol Psychiatry 16:76–95.

Bauer M, Hefting N, Lindsten A, Josiassen MK, Hobart M (2019) A randomised, placebo-controlled 24-week study evaluating adjunctive brexpiprazole in patients with major depressive disorder. Acta Neuropsychiatr 31:27–35.

Berman RM, Thase ME, Trivedi MH, Hazel JA, Marler SV, McQuade RD, Carson W, Baker RA, Marcus RN (2011) Long-term safety and tolerability of open-label aripiprazole augmentation of antidepressant therapy in major depressive disorder. Neuropsychiatr Dis Treat 7:303–312.

Brissos S, Moldynski A, Dias VV, Figueira ML (2011) The importance of measuring psychosocial functioning in schizophrenia. Ann Gen Psychiatry 10:18.

Citrome L (2015) The ABC’s of dopamine receptor partial agonists - aripiprazole, brexpiprazole and cariprazine: the 15-min challenge to sort these agents out. Int J Clin Pract 69:1211–1220.

Citrome L (2017) Activating and sedating adverse effects of second-generation antipsychotics in the treatment of schizophrenia and major depressive disorder: absolute risk increase and number needed to harm. J Clin Psychopharmacol 37:138–147.

Citrome L, Stensbøl TB, Maeda K (2015) The preclinical profile of brexpiprazole: what is its clinical relevance for the treatment of psychiatric disorders? Expert Rev Neurother 15:1219–1229.

Clayton AH, Baker RA, Sheehan JJ, Cain ZJ, Forbes RA, Marler SV, Marcus R, Berman RM, Thase ME (2014) Comparison of adjunctive use of aripiprazole with bupropion or selective serotonin reuptake inhibitors/serotonin-norepinephrine reuptake inhibitors: analysis of patients beginning adjunctive treatment in a 52-week, open-label study. BMC Res Notes 7:459.

Correll CU, Skuban A, Hobart M, Ouyang J, Weiller E, Weiss C, Kane JM (2016) Efficacy of brexpiprazole in patients with acute schizophrenia: Review of three randomized, double-blind, placebo-controlled studies. Schizophr Res 174:82–92.

de Bartolomeis A, Tomasetti C, Iasevoli F (2015) Update on the mechanism of action of aripiprazole: translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs 29:773–799.

Dibonaventura M, Gabriel S, Duplacy L, Gupta S, Kim E (2012) A patient perspective of the impact of medication side effects on adherence: results of a cross-sectional nationwide survey of patients with schizophrenia. BMC Psychiatry 12:20.

Dunner DL, Laubmeier KK, Manos G, Forbes RA, Baker RA, Berman RM (2012) Beneficial effects of adjunctive aripiprazole in major depressive disorder are not dependent on antidepressant therapy history: a post hoc analysis of 3 randomized, double-blind, placebo-controlled trials. Prim Care Companion CNS Disord 14.

Durgam S, Starace A, Li D, Migliore R, Ruth A, Németh G, Laszlovzky I (2014) An evaluation of the safety and efficacy of cariprazine in patients with acute exacerbation of schizophrenia: a phase II, randomized clinical trial. Schizophr Res 152:450–457.

Durgam S, Earley W, Guo H, Li D, Németh G, Laszlovzky I, Fava M, Montgomery SA (2016a) Efficacy and safety of adjunctive cariprazine in inadequate responders to antidepressants: a randomized, double-blind, placebo-controlled study in adult patients with major depressive disorder. J Clin Psychiatry 77:371–378.

Durgam S, Earley W, Li R, Li D, Lu K, Laszlovzky I, Fleischhacker WW, Nasrallah HA (2016b) Long-term cariprazine treatment for the prevention of relapse in patients with schizophrenia: a randomized, double-blind, placebo-controlled trial. Schizophr Res 176:264–271.

Durgam S, Greenberg WM, Li D, Lu K, Laszlovzky I, Németh G, Migliore R, Volk S (2017) Safety and tolerability of cariprazine in the long-term treatment of schizophrenia: results from a 48-week, single-arm, open-label extension study. Psychopharmacology (Berl) 234:199–209.

Earley W, Durgam S, Lu K, Laszlovzky I, Debelle M, Kane JM (2017) Safety and tolerability of cariprazine in patients with acute exacerbation of schizophrenia: a pooled analysis of four phase II/III randomized, double-blind, placebo-controlled studies. Int Clin Psychopharmacol 32:319–321.

Earley WR, Guo H, Németh G, Harsányi J, Thase ME (2018) Cariprazine augmentation to antidepressant therapy in major depressive disorder: results of a randomized, double-blind, placebo-controlled trial. Psychopharmacol Bull 48:62–80.

Edwards SJ, Hamilton V, Nherera L, Trevor N (2013) Lithium or an atypical antipsychotic drug in the management of treatment-resistant depression: a systematic review and economic evaluation. Health Technol Assess 17:1–190.

Fabian TJ, Cain ZJ, Ammerman D, Eudicone JM, Tang Y, Rollin LM, Forbes RA, Berman RM, Baker RA (2012) Improvement in functional outcomes with adjunctive aripiprazole vs placebo in major depressive disorder: a pooled post hoc analysis of 3 short-term studies. Prim Care Companion CNS Disord 14.

Fava M, Durgam S, Earley W, Lu K, Hayes R, Laszlovzky I, Németh G (2018) Efficacy of adjunctive low-dose cariprazine in major depressive disorder: a randomized, double-blind, placebo controlled trial. Int Clin Psychopharmacol 33:312–321.

Fleischhacker WW, Baker RA, Eramo A, Sanchez R, Tsai LF, Peters-Strickland T, Perry PP, McQuade RD, Johnson BR, Carson WH, Kane JM (2014) Effects of aripiprazole once-monthly on domains of personal and social performance: results from 2 multicenter, randomized, double-blind studies. Schizophr Res 159:415–420.

Fleischhacker WW, Hobart M, Ouyang J, Forbes A, Pfister S, McQuade RD, Carson WH, Sanchez R, Nyilas M, Weiller E (2017) Efficacy and safety of brexpiprazole (OPC-34712) as maintenance treatment in adults with schizophrenia: a randomized, double-blind, placebo-controlled study. Int J Neuropsychopharmacol 20:11–21.

Forbes A, Hobart M, Ouyang J, Shi L, Pfister S, Hakala M (2018) A long-term, open-label study to evaluate the safety and tolerability of brexpiprazole as maintenance treatment in adults with schizophrenia. Int J Neuropsychopharmacol 21:433–441.

Gelenberg AJ, Freeman MP, Markowitz JC, Rosenbaum JF, Thase ME, Trivedi MH, Rhoads RSV, Reus VI, DePaulo JR,
of double-blind, randomized clinical trials in MDD. Eur Neuropsychopharmacol 19:34–40.

Papakostas GI, Shelton RC, Smith J, Fava M (2007) Augmentation of antidepressants with atypical antipsychotic medications for treatment-resistant major depressive disorder: a meta-analysis. J Clin Psychiatry 68:826–831.

Parikh NB, Robinson DM, Clayton AH (2017) Clinical role of brexipiprazole in depression and schizophrenia. Ther Clin Risk Manag 13:299–306.

Pigott TA, Carson WH, Saha AR, Torbeyns AF, Stock EG, Ingenito GG; Aripiprazole Study Group (2003) Aripiprazole for the prevention of relapse in stabilized patients with chronic schizophrenia: a placebo-controlled 26-week study. J Clin Psychiatry 64:1048–1056.

Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JIV, Warden D, Niederehe C, Thase ME, Lawori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeiim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163:1905–1917.

Sagud M, Mihaļjevič-Peleš A, Begić D, Vuksan-Ćuša B, Kramarić M, Živković M, Jakovljević M (2011) Antipsychotics as antidepressants: what is the mechanism? Psychiatr Danub 23:302–307.

Saltiel PF, Silvershein DI (2015) Major depressive disorder: mechanism-based prescribing for personalized medicine. Neuropsychiatr Dis Treat 11:875–888.

Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411.

Sheehan KH, Sheehan DV (2008) Assessing treatment effects in clinical trials with the discan metric of the Sheehan Disability Scale. Int Clin Psychopharmacol 23:70–83.

Spielmans GI, Berman MI, Linardatos E, Rosenlicht NZ, Perry A, Tsai AC (2013) Adjunctive atypical antipsychotic treatment for major depressive disorder: a meta-analysis of depression, quality of life, and safety outcomes. Plos Med 10:e1001403.

Thase ME (2016) Adverse effects of second-generation antipsychotics as adjuncts to antidepressants: are the risks worth the benefits? Psychiatr Clin North Am 39:477–486.

Thase ME, Trivedi MH, Nelson JC, Fava M, Swanink R, Tran QV, Pikalov A, Yang H, Carlson BX, Marcus RN, Berman RM (2008) Examining the efficacy of adjunctive aripiprazole in major depressive disorder: a pooled analysis of 2 studies. Prim Care Companion J Clin Psychiatry 10:440–447.

Thase ME, Weiller E, Zhang P, Weiss C, McIntyre RS (2019) Adjunctive brexipiprazole in patients with major depressive disorder and anxiety symptoms: post hoc analyses of three placebo-controlled studies. Neuropsychiatr Dis Treat 15:37–45.

Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M; STAR*D Study Team (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163:28–40.

Tundo A, de Filippis R, Projetti L (2015) Pharmacologic approaches to treatment resistant depression: evidences and personal experience. World J Psychiatry 5:330–341.

Weiss C, Weiller E, Baker RA, Duffy RA, Gwin KK, Zhang P, McQuade RD (2018) The effects of brexipiprazole and aripiprazole on body weight as monotherapy in patients with schizophrenia and as adjunctive treatment in patients with major depressive disorder: an analysis of short-term and long-term studies. Int Clin Psychopharmacol 33:255–260.

Zhao MJ, Qin B, Wang JB, Zhang YP, Zhao JT, Mao YG, Zhang XY, Zhang RL (2018) Efficacy and acceptability of cariprazine in acute exacerbation of schizophrenia: meta-analysis of randomized placebo-controlled trials. J Clin Psychopharmacol 38:55–59.

Zimmerman M, Chelminski I, Young D, Dalrymple K, Walsh E, Rosenstein L (2014) A clinically useful self-report measure of the DSM-5 anxious distress specifier for major depressive disorder. J Clin Psychiatry 75:601–607.