A Review of the Medicinal Plants of Genus Orthosiphon (Lamiaceae)

1Mukesh K. Singh, 1Bina Gidwani, 1Anshita Gupta, 1Hemant Dhongade, 1Chanchal Deep Kaur, 2Pranita P. Kashyap and 3D.K. Tripathi
1Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
2Maharashtra Institute of Pharmacy, Bramhapuri, Chandrapur, Maharashtra
3Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India

Corresponding Author: Mukesh Kumar Singh, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India Tel: +91-9691699320

ABSTRACT

In the genus Orthosiphon (Lamiaceae), Orthosiphon aristatus, Orthosiphon pallidus, Orthosiphon thymiflorus, Orthosiphon stamineus are widely used in traditional medicine to prevent different diseases such as diabetes, kidney stone, edema, rheumatism, hepatitis, hypertensive and jaundice. A different variety of phytoconstituents has been isolated from the Orthosiphon species which include monoterpenes, diterpenes, triterpenes, saponins, organic acid and flavonoids compound. Antidiabetic, anti-inflammatory, antioxidant, hepatoprotective, analgesic and nephroprotective activities have been reported in the plant extract and phytoconstituents. Hence, the purpose of this review is to provide a comprehensive report about the Orthosiphon genus based on its toxicity in order to identify its therapeutic potential and future prospects for betterment of research.

Key words: Orthosiphon, phytochemistry, pharmacological activities, toxicity studies

INTRODUCTION

The genus Orthosiphon was coined from two Latin words, iorthos and siphon. The words referred to straight while siphon meant tube like or cylindrical. These two words actually referred to the straight tube like flowers that were produced by the Orthosiphon species and this was considered as one of the main characteristics of the Labiatae or Lamiaceae family (Keng and Siong, 2006).

The genus Orthosiphon benth in tribe ocimeae comprises 40 species and was recorded from the old world: in tropical and subtropical Asia including Southern Africa and Madagascar. The species usually occurs in grassland, woodland or forest margins (Sadashiva et al., 2013).

Some of these species are important medicinal plants that are used in herbolism and thought to have medicinal properties. Up to date, the genus provided a large number of chemical compounds of which some indicated dynamic pharmacological activity (Sundarammal et al., 2012).

Orthosiphon aristatus has long history of medicinal use in Indonesia, Malaysia, Southeast Asia, this plant was initially recorded as a treatment for diabetes, kidney stone and hypertension (Matsubara et al., 1999; Ohashi et al., 2000; Masuda et al., 1992; Shibuya, 1999). Orthosiphon pallidus is herbaceous shrub native to South East Asia and India has been used to treat urinary lithiasis, edema, fever, influenza, rheumatism, hepatitis and jaundice (Kiruthika and Meenakshi, 2011). Orthosiphon thymiflorus used in India to treat cytotoxic, diabetic,
anti-inflammatory and hypertensive (Sundarammal et al., 2012; Sini et al., 2012; Kavimani et al., 1997). Orthosiphon stamineus is used to treat diabetes, hypertension, oedema, epilepsy, fever, influenza and jaundice (Arafat et al., 2008; Akowuah et al., 2005; Ho et al., 2010; Awale et al., 2003a). The traditional indigenous uses and pharmacology of ethnobotanic herbs provides basic knowledge for further development of medicinal plants and a useful approach for drug discovery (Heinrich and Gibbons, 2001).

The genus Orthosiphon comprises an impressive number of species some of which have been used in traditional medicine. Hence the purpose of this review is to provide a comprehensive report about the genus based on its toxicity in order to identify its therapeutic potential and future prospects for betterment of research. This will be possible through analysis of collected data related to botany, local and traditional uses, pharmacology and toxicology of Orthosiphon species.

BOTANICAL DESCRIPTION

Orthosiphon plants are herbaceous shrubs which grow to a height of 1.5 m. Orthosiphon is a popular garden plant with whitish flower having unique identification and bluish filaments resembling a cast’s whiskers. Orthosiphon pallidus Royle ex Benth, O. aristatus, O. thymiflorus and O. stamineus are commonly used in traditional medicines.

The morphology characteristics of O. pallidus are as follows: perennial herb with a woody root stock not aromatic. Stems are diffusely branched ascending erect 10-35 cm, slender, quadrangular, velvety or almost hairless. Leaves are ovate, 1-3.5×1.2, palegreen, slightly fleshy, nearly entire to saw-toothed, gland-dotted, stalked, velvety to almost hairless. Flower stalks are 2 mm in flower and up to 6 mm in fruit, velvety in lower part, upper lobe ovate-circular.

Orthosiphon aristatus is slender, smooth or hairy undershrub 30-60 cm high. Leaves in distant pair, narrowed in to the stalk ovate, 5-10 cm long, pointed at both ends, coarsely toothed margins. The flowers are borne with extreme lax racemes. The calyxes of flowers have naked throat and bell shape with two slender lower teeth. Corolla is purple-white in color with 2.5 cm long and smooth. Nutlets are oblong and compressed.

Orthosiphon thymiflorus straggling, somewhat shrubby perennial herb up to 1.5 m tall not or hardly aromatic. Stems several ascending to erect to 4-angled, normally well branched, retrorsely pubescent along the angles and sometimes with dense hairs. Leaves are usually oval or elliptic with 1.4-4.5 cm long but larger in well shaded plants, glandular punctuate and hairless/pubescent mostly along the veins beneath, margin scalloped or toothed, petiole up to 25 mm long.

Orthosiphon stamineus is a perennial herb. It attains 0.3-1.5 m high and 4 angle stem. Leaves are simple, opposite, ovate, oblong lanceolate, elliptic or rhomboid, which have 2-4 cm wide and 4-7 cm long. The flowers are white, blue or violet.

TRADITIONAL USES OF SELECTED SPECIES

The plants of genus Orthosiphon have been used by the various parts of Asia and Africa. Traditional uses of selected Orthosiphon species (Table 1) point to their importance especially in the treatment of diabetes, kidney stone, influenza, hepatitis and jaundice.

In order to cover all published botanical names, a list of synonyms based on the relevant taxonomic literature is provided (Table 2). The list encompasses representatives of the genus that have ethanomedicinal relevance according to the present comprehensive literature review.
Table 1: Traditional uses, pharmacological and biological activities of selected *Orthosiphon* species

Species	Region	Plant part	Traditional uses	Pharmacological activity	Active extract	Reference
Orthosiphon aristatus	Indonesia and Malaysia	Dried leaves and tops of stem	Used in hypertension and diabetes	Antibacterial activity	Aqueous extract	Chen *et al.* (1989)
	Indonesia and Malaysia	Leaves	Used as a diuretics	Diuretic effects	Aqueous extract	Chen *et al.* (1999)
	Indonesia	Dried leaves	Used in hypertension and diabetes	Antihypertensive	Water decoction	Matsubara *et al.* (1999), Ohashi *et al.* (2000), Masuda *et al.* (1992) and Shibuya *et al.* (1999)
	Southeast Asia and Australia	Dried leaves	Treatment of renal inflammation used in Kidney stone	Antioxidant and anti-inflammatory	Methanol, ethanol and water extract	Di *et al.* (2013) and Hsu *et al.* (2010)
Orthosiphon pallidus	Africa and South-East Asia	Aerial part	Used to treat urinary lithiasis, edema, influenza, rheumatism, hepatitis and jaundice	Anticancer (51.74% cytotoxicity)	Absolute alcohol	Ashokan and Muthuraman (2011)
	Baluchistan, Arabia, India (Kashmir, Punjab, West Bihar and Southwards to Travancore)	Whole plant (coarse powder)	Treatment of neurasthenia, general tonic and aphrodisiac	Lower the blood pressure and inhibition of heart of pithed frog	Absolute alcohol and Basu and Singh (1956)	Basu and Singh (1956)
Orthosiphon thymiflorus	Ailsyar foot hills of valparal, Coimbatore, Tamilnadu	Fresh leaves	Antioxidant	Antioxidant, cytotoxic and vasodilative	Hydrodistillation, Clevenger and apparatus	Sundarammal et al. (2012)
	Attapady palakkad and Kerala	Powdered plant material	Anticancer	Cytotoxic activity, anti diabetic, antihepatotoxic, antibacterial and hypertensive	Imbibition, meceration and percolation in chloroform	Sini *et al.* (2012)
	Tirunelveli and Tamilnadu	Whole plant	Aquaretic	Diuretic activity and anti-inflammolary	Meceration in boiling water	Kavimani *et al.* (1997)
	Maruthamal hills Coimbatore and Tamilnadu	Dried leaves	Larvacidal	Larvacidal activity	Hexane, chloroform, ethyl acetate, acetone and methanol	Kovendan *et al.* (2012)
Orthosiphon stamineus	Malaysia, Indonesia and Japan	Leaf part (fresh)	Treating stone diseases and gout, Java tea and decocted leaves as diuretics	Bladder inflammation, food preservative, inhibitory effect in growth of calcium crystal, diabetes, hypertension, rheumatism, tusslitis, menstrual disorder, urinary lithiasis, biliary lithiasis, epilepsy, oedema, eruptive fever, hepatitis, jaundice, influenza, gonorrhoea, syphilis, renal calculus, gallstone, diuretics, inhibitory activity of nitric oxide and body detoxification	Methanol, Chloroform, Ethyl acetate and Acetone	Awale *et al.* (2003a, b), Hossain and Ismail (2013), Akowuah *et al.* (2005), Ho *et al.* (2010), Arafat *et al.* (2008), Akowuah *et al.* (2005) and Hossain and Ismail (2013)
	Myanmar	Leaf part (dried)	Antidiabetics to treat urinary tract and renal diseases	Diabetes, urinary tract and renal diseases	Methanol	Awale *et al.* (2003a, b, 2004) and Han *et al.* (2008)
	China, Indonesia and Vietnam	Arial part	Urinary lithiasis, edema, eruptive fever, influenza, hepatitis and jaundice	Methanol	Awale *et al.* (2003b, 2004) and Paton *et al.* (2004)	
Table 2: Representatives of genus Orthosiphon used in traditional medicine and their synonyms

Orthosiphon species	Synonyms
Orthosiphon adenocaulis	Orthosiphon adornatus, Orthosiphon affinis Benth, Orthosiphon adscendence and Orthosiphon albiflorus
Orthosiphon allenii	Orthosiphon amabiis, Orthosiphon ambiguous Bolus and Orthosiphon angolensis
Orthosiphon aristatus var. aristatus	Orthosiphon asperus, Orthosiphon atacorensis, Orthosiphon australis and Orthosiphon bartsoides
Orthosiphon biflorus	Orthosiphon bodiniieri, Orthosiphon bolusii, Orthosiphon braceatus, Orthosiphon brevicaulis, Orthosiphon buchananii and Orthosiphon braceatus
Orthosiphon bullosus	Orthosiphon buryi, Orthosiphon calaminthoides, Orthosiphon cameronii, Orthosiphon canescens and Orthosiphon capitus
Orthosiphon cladotrichos	Orthosiphon cleistocaulys, Orthosiphon colouratus, Orthosiphon comosus Wight and Orthosiphon comosus Baker
Orthosiphon cuanzae	Orthosiphon debilis, Orthosiphon decipiens, Orthosiphon degasperianus and Orthosiphon diffuses
Orthosiphon discolor	Orthosiphon dissifolius, Orthosiphon ehrenbergii, Orthosiphon ellenbecki and Orthosiphon eliottii
Orthosiphon ellipticus	Orthosiphon emirnensis and Orthosiphon engleri Perkins
Orthosiphon ferruginos	Orthosiphon foliaceus
Orthosiphon fraticosus	Orthosiphon gerrardii, Orthosiphon glabrateus Benth, Orthosiphon glabrateus var. Palviflorus (Benth) and Orthosiphon glabraceae
Orthosiphon glandulosus	Orthosiphon glutinuosus Chiov., Orthosiphon gosensis S. Moore and Orthosiphon grandiflorus Bold.
Orthosiphon hanningtonii	Orthosiphon helenae Buscal, Orthosiphon heterochrous Briq, Orthosiphon heterophyllus Gurke, Orthosiphon hildebrandtii Vatke, Orthosiphon hildebrandtii Baker, Orthosiphon hispisus Benth., Orthosiphon hookii, Orthosiphon holubii and Orthosiphon hombele
Orthosiphon humbertii	Orthosiphon humilis, Orthosiphon incisus and Orthosiphon inconcinnus
Orthosiphon incurvus	Orthosiphon inodoras, Orthosiphon iodoxyc Briq, Orthosiphon johnstonii Baker, Orthosiphon kelleri Briq, Orthosiphon kirki Baker and Orthosiphon labiatus
Orthosiphon lanatus Doan	Orthosiphon lanceolatus Gurke, Orthosiphon lanceolatus, Orthosiphon latidens, Orthosiphon laurantii, Orthosiphon liebrechtiaurom, Orthosiphon linearis Benth, Orthosiphon longipes Baker, Orthosiphon macranthus, Orthosiphon macrocheilus, Orthosiphon macrophyllus, Orthosiphon macrileus, Orthosiphon malosanus Baker, Orthosiphon marmoritis, Orthosiphon marquesi Briq., Orthosiphon menthofilius Briq and Orthosiphon massinensis
Orthosiphon miserabilis	Orthosiphon molis Baker, Orthosiphon mombacius, Orthosiphon mossianus, Orthosiphon muddii, Orthosiphon natatalis and Orthosiphon neglectus
Orthosiphon nigripunctatus	Orthosiphon nyacicus, Orthosiphon obbiadiensis, Orthosiphon oblongifolius, Orthosiphon obscurus and Orthosiphon omatus
Orthosiphon parvifolius	Orthosiphon pascuenas, Orthosiphon persimilis, Orthosiphon petiolaris, Orthosiphon petrensis, Orthosiphon physocalycinus and Orthosiphon pretoriae
Orthosiphon pseudoaristatus	Orthosiphon pseudomatus, Orthosiphon pseudorubicundus, Orthosiphon pseudoserratus, Orthosiphon rabaenensis, Orthosiphon reflexus, Orthosiphon rehmannii, Orthosiphon retinervis and Orthosiphon rhodosianus
Orthosiphon robustus	Orthosiphon rogersii and Orthosiphon roseus
Orthosiphon rubicundus Benth	Orthosiphon rubicundus var. canescene
Orthosiphon rubicundus var. hainanensis	Orthosiphon rubicundus var. hohenackeri, Orthosiphon rubicundus var. macaropus, Orthosiphon rubicundus var. macrurans, Orthosiphon rubicundus var. mollissimus and Orthosiphon rubicundus var. rigidus
Orthosiphon rubicundus var. rubicundus	Orthosiphon rubinervis and Orthosiphon salagensis
Orthosiphon sarmentotus	Orthosiphon scabridus
Orthosiphon schimperi	Orthosiphon schizianius, Orthosiphon secundiflorus, Orthosiphon serratus, Orthosiphon shirensis, Orthosiphon silvicola, Orthosiphon sinensis, Orthosiphon somalensis, Orthosiphon spicatus Baker, Orthosiphon spicatus Benth, Orthosiphon spiralis, Orthosiphon stamineus, Orthosiphon stenophyllus, Orthosiphon stuhlmannii, Orthosiphon subelutatus, Orthosiphon suffrutescens, Orthosiphon tagauae Orthosiphon tenuiflorus, Orthosiphon tenuifrons, Orthosiphon teucrilifolius, Orthosiphon teucriformis var. galpinianus, Orthosiphon teucrilifolius var. teucrilifolius and Orthosiphon thorncroftii
Orthosiphon thymiflorus	Orthosiphon thymiflorus var. viscosus, Orthosiphon tomentosus Benth, Orthosiphon tomentosus De wild, Orthosiphon tomentosus var. glabrateus, Orthosiphon tomentosus var. parciflorus, Orthosiphon tomentosus var. rubiginosus, Orthosiphon tomentosus var viscosus, Orthosiphon transvaalensis and Orthosiphon tristis Benth
Orthosiphon truncates	Orthosiphon tuberosus, Orthosiphon tubiformis, Orthosiphon tubulascene, Orthosiphon unyikensis Orthosiphon usambarensis, Orthosiphon varians and Orthosiphon veltleri
Orthosiphon vernalis	Orthosiphon viatoum and Orthosiphon villosus Orthosiphon viator and Orthosiphon villosus Orthosiphon violinus Orthosiphon violaeus
Orthosiphon waltii	Orthosiphon virgatus, Orthosiphon viscosus and Orthosiphon wellefeldii Orthosiphon welaentsehii, Orthosiphon wilmseii gurke, Orthosiphon wilmseii var. komhensis, Orthosiphon wilmseii var. wilomseii, Orthosiphon woodii and Orthosiphon xylorhizus
PHYTOCHEMISTRY

These plants generally reported to contain monoterpenes, diterpenes, triterpenes, saponins, flavonoids, organic acids and etc. Considering the similarity of the chemical constituents of plants in the same genus. We summarized the phytochemical studies of five investigated plants, including O. stamineus, O. ariatatus, O. pallidus, O. thymiflorus and O. diffuses. This summary allows an understanding of the general and phytochemical constituents that has been discovered. It should also aid in further utilization of the plant resources in this genus. Selected chemical structure identified in Orthosiphon plants are depicted in Fig. 1.

Fig. 1: Continue
Fig. 1(a-s): Chemical Structures of typical and bioactive constituents isolated from *Orthosiphon* species, (a) 3’-hydroxy-5, 6, 7, 4’-tetramethoxyflavone Neoorthosiphol A, (b) Neoorthosiphol Ba-amyrin, (c) β-amyrin Maslinic acid, (d) Urosolic Acid Oleanolic Acid, (e) *Orthosiphonone A* Orthosiphonone B, (f) Orthosiphol A Orthosiphol B, (g) Myo-inositol, (h) Neoorthosiphol A Neorthosiphol B, (i) Betulinic acid β-Elemene, (j) β-Caryophyllene Caffeic acid, (k) Sinensetin Tetra-methyl scutellarein, (l) Eupatorin Cirsimaritin, (m) Acetovanillochromene Orthochromene A, (n) Methylripario Chromene Agermacrene-D, (o) β-Selinen α-Cadinol, (p) Choline Betaine, (q) O-cyamene-terpineol, (r) LyrolValencene and (s) Nephthalin Camphor α-elemene

Moreover, previous research have detected 116 chemical compound have been isolated from the *O. stamineus*. They were 3-hdroxy-5, 6, 7, 4 tetramethoxy flavones, 2-O-deacetyl *Orthosiphol* J, 4’ hydroxyl-5,6,7-trimethoxy flavone, α-cadinol, α-humulene, β-bourbonene, β-caryophyllene, β-elemene, β-pinene, aurantiamide acetate, caffeic acid depside A-C, cismaritin, eugenol, eupatorin, ladanein, methylripario chromene A, neoorthosiphol A-B, neo*Orthosiphon* A, norstaminol A-C, Othosiphol A-Z, Orthosiphol A-D, pillion, quercetin, rosamarinic acid salvigenin, secocorthosiphol A-C, siphonol A-E, staminol A-D, ursolic acid, betulinic acid, vomifoliol beta amyrin, α-amyрин, maslinic acid, oleanolic acid and other minor constituents (Adnyana *et al*., 2013; Ameer *et al*., 2012; Guerin *et al*., 1989).
In the case of \textit{O. aristatus}, the major constituents were sesquiterpenes including \(\beta\)-elemene, \(\beta\)-caryophyllene, orthochromene A, acetovanillochromene, sinensetin, tetramethyl scutellarein, eupatorin, neo\textit{Orthosiphon}s A and B, \textit{Orthosiphones} A and B with some minor constituents (Shibuya et al., 1999; Schut and Zwaving, 1986; Bombardelli, 1972; Lyckander and Malterud, 1992).

In the case of \textit{O. pallidus} is rich in gemacrene D, \(\beta\)-selinene, \(\alpha\)-cadinol, choline, betaine, \textit{Orthosipholone} A and B, \textit{Orthosiphol} A and B with some minor other constituents (Basu and Sing, 1956; Basu and Singh, 1956).

Moreover \textit{O. thymiflorus} and diffuses leaves were identified 33 and 25 compound. Most of the compounds are terpenoids. \textit{Orthosiphon thymiflorus} content camphor, o-cymene, \(\alpha\)-terpineal, nephthaline, lyrol, \(\alpha\)-elemene and valencene etc.

Other major compound of \textit{Orthosiphon diffuses} were t-caryophyllene, octocosane, n-eicosane, limonene, \(\beta\)-ocimene and kauran-18-al and minor compounds were farnesol, calarene, octanol, \(\beta\)-selive, \(\beta\)-bisebolene, \(\alpha\)-terpinolene and methylisostearate etc. (Sadashiva et al., 2013).

PHARMACOLOGICAL PROPERTIES

Anti-inflammatory activity: Mostly 60-75\% of the medicinal species of \textit{Orthosiphon} reported in Table 1 have been traditionally used for treatment of inflammation and diseases like arthritis, bronchitis and rheumatoid. The pharmacological activity of the species of genus \textit{Orthosiphon} provides primarily \textit{in vivo} information for anti-inflammatory effects.

In different studies on \textit{O. stamineus} methanolic extract on various amount model suggested that oral administration of methanolic extract of \textit{O. stamineus} exerted significant anti-inflammatory activity from 250-1000 mg kg\(^{-1}\) of dose (Ameer et al., 2012).

The activity of chloroform extract was studied on various models like anti-peritoneal capillary permeability, carrageenan-induced rat paw edema along with \textit{in vitro} radical scavenging activity. It was found that oral administration of chloroform extract at 500-1000 mg kg\(^{-1}\) reduced edema and no dye leakage to the peritoneal cavity (Yam et al., 2010).

Masuda et al. (1992) investigated that isolation of \textit{Orthosiphol} A and B showed strong inhibitory activity against the inflammation induced by a tumor promoter on the ears gene targeted mice (Masuda et al., 1992).

Antioxidant activity: Several \textit{Orthosiphon} species traditionally used for expectorant and rheumatism indicated antioxidant activity. In different studies of \textit{O. stamineus} for different extract (50\% hydroalcoholic, distilled water, 50-70\% hydroacetone and chloroform extract) was investigated that for free radical scavenging activity using different model like DPPH, superoxides and xanthin oxidase that \textit{O. stamineus} extract showed potential antioxidant activity. The highest activity was found in hydroacetone extract. Other study found that all the extract had potential antioxidants comparable to that of some standard antioxidants BHA and quercetin (Adnyana et al., 2013).

Hepatoprotective activity: Yam et al. (2009) reported that pretreatment with methanolic extract of \textit{O. stamineus} to hepatoprotective activity in CCL\(_4\) induced liver damage in rats. It was investigated that hepatoprotective effects caused by antioxidants properties (Yam et al., 2007).

Another study Maheswari et al. (2008) investigated that methanol extract of \textit{O. stamineus} showed hepatoprotective activity on paracetamol-induced rats. Further, they proposed that there quality of medicinal plant due to ability to prevent the depletion of the tissue GSH (Maheswari et al., 2008).
Anticancer activity: Stampoulis et al. (1999) proposed cytotoxic activity of methanolic extract of O. stamineus against liver methanolic clon 26-LS carcinoma cells. The isolated compound stamina lactones A and B and norstaminal a showed mild cytotoxic activity against high malignant live metal static clone carcinoma cells (Stampoulis et al., 1999). Another study Awale et al. (2003a) investigated the possible cytotoxic activity a compound isolated from japans O. stamineus against highly malignant liver metastatices murine colon 26-LS carcinoma and human HT-1080 fibrosarcoma cell line (Adnyana et al., 2013).

Antihypertensive activity: The antihypertensive activity of aqueous extract of leaves and active constituent isolated from O. stamineus benth was examined. Methylripariochromene A (from aqueous extract of leaves), Orthochromene A, Orthosiphonone A and B and neoorthosiphol A and B (from CHCl3 fraction of leaves), tetramethylscutell are in posses diuretic action. These constituents led to decrease in blood pressure and cardiac output. Subcutaneous administration of aqueous decoction of leaves led to decrease in systolic blood pressure conscious SHRSP. Does dependent decrease in urinary volume was observed after oral administration of isolated constituents of Orthosiphon stamineus benth urinary excretion of electrolytes was increased 2-3 times. These results confirmed that flavonoids and isopimarane-type compounds contribute significant antihypertensive activity (Adnyana et al., 213; Ameer et al., 2012).

Koay and Amir (2012) investigated antihypertensive activity of O. stamineus benth in combination with folic acid, coenzyme-Q, policosanol which indicated effective control of high blood pressure in patients with metabolic syndrome (Koay and Amir, 2012).

Gastro protective activity: Methanolic extract of leaves of O. stamineus benth posses significant effects for treatment gastric ailments. Fifty percentage of methanolic extract led to decrease in ulcer index, gastric mucosa mucosal damage, lipid peroxidation with an increase in mucus secretion.

The antiulcerogenic activity was investigated in male Sprague Dawley rats against ethanol-induced ulcers. The traces of histological changes, mucosal secretion, Ulcer index and lipid. Peroxidation level was estimated using both in vitro and ex vivo models. The results showed significant does dependent gastro protective responses (125-1000 mg kg⁻¹) (Yam et al., 2009).

Antisebum activity: Sebum is an oily waxy matter secreted by exocrine sebaceous gland. Antisebum activity is observed in plants with phenolic and flavonoidal, terpenoidal contents. O. stamineus benth exhibit prominent antisebum activity. The leaf extracts of O. stamineus decrease the activity of enzyme 5 α-reductase. The enzyme triggers the secretion of sebum. The extract of O. stamineus inhibits the synthesis of squaline (30 carbon natural organic compound) important sebum constituents and help in skin glow there by reducing the oily appearance. Two percentage of leaf extract of O. stamineus reduces the oily appearance of skin and significantly reduces the pore size leading to improved skin complexion (Vogelgesang et al., 2011).

Hyperlipidemic activity: The aqueous extract of O. stamineus benth showed significant hyperlipidemic activity in diabetic rats. Mariam et al. (1996) investigated the oral administration of aqueous extract of O. stamineus benth on lipid profile in normal and Streptozotocic induced diabetic male wistar rats (Mariam et al., 1996).
Nephroprotective activity: Adnyana et al. (2013) investigated the potential of hydroalcoholic O. stamineus. The study revealed that the plant possesses nephroprotective activity significantly at a dose of 50 mg kg\(^{-1}\). When compared to standard drug hydrochlorothiazide (10 mg kg\(^{-1}\)). Similarly when the methanolic extract of the plant was investigated gentamycin-induced nephrotic model, A does dependent nephroprotective effect was observed (100-200 mg kg\(^{-1}\)) with a steep decrease in decreased serum creatinine and blood urea level (Adnyana et al., 2013).

Antipyretic activity: Antipyretic study of O. stamineus hydrochloric extract executed a profound effect from a dose range of 50-1000 mg kg\(^{-1}\) b.wt. The yeast induced pyrexia model was employed to investigate the effect. Similarly the effect was observed in 50% methanolic extract of O. stamineus in yeast-induced pyrexia in Sprague Dawley rats was investigated. The study showed that oral administration of the extract in the range from 450-1000 mg kg\(^{-1}\) led to no reduction in body temperature, but a significant alleviation of the pyrexia induced by yeasts was observed (Yam et al., 2008).

Antiangiogenic activity: Plant O. stamineus possess significant anti-angiogenic activity. Ethanolic extract of O. stamineus showed retarding effect on the colorectal tumor and human umbilical vein endothetical cell formation. Ethanolic extract of the plant at a concentration of (211±0.26 pg mL\(^{-1}\)) inhibited VEGF in vitro and in vivo (53-54) (Sahib et al., 2009; Goodwin, 2007).

Antibacterial activity: The studies on O. stamineus extract showed antibacterial activity on serotypes c and d of Streptococcus mutans (MIC = 7.8-23.4 mg mL\(^{-1}\)). The potency decreased about one-half for type d but no change was found in type c, with the presence of 5% sucrose (Chen et al., 1989). Orthosiphon stamineus methanolic extract at concentration of 50% inhibited Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Salmonella enteritidis, Salmonella typhimurium and Klebsiella pneumoniae. This antibacterial activities of O. stamineus may be due to the high concentration of rosmarinic acid (Hossain et al., 2008).

Whole O. stamineus plant (powdered) methanolic extract demonstrated inhibitory activity against vibrio parahaemolyticus in vitro. The inhibition showed with O. stamineus extracts was comparable to the inhibition seen with that of 5% lactic acid; this may be likely due to high concentration of rosmarinic acid found in the O. stamineus extracts (Ho et al., 2010).

Antidiabetic activity: In oral glucose tolerance test, the water extract at doses of 0.2-1.0 g kg\(^{-1}\) significantly decreased plasma glucose concentration in dose-dependent manner for both normal and diabetic rats. At a dose of 1.0 g kg\(^{-1}\) showed similar effect with glibenclamide (5 mg kg\(^{-1}\)). In diabetic rats, after they were given the extract orally (0.5 g kg\(^{-1}\)) for 14 days, plasma glucose concentrations were reduced significantly. In addition, plasma triglyceride concentration was also lower in the extract-treated diabetic rats than that of untreated group. Furthermore, plasma HDL-cholesterol concentration was significantly increased in diabetic rats treated with the extract. In perfused rat pancreas, 100 µg mL\(^{-1}\) extract potentiated the glucose-induced insulin secretion (Sriplang et al., 2007).

Antidiabetic effects of the chloroform, methanol, petroleum ether and water extracts of Orthosiphon stamineus was studied. Chloroform extract at a dose of 1 g kg\(^{-1}\) b.wt., significantly
reduced blood glucose level. Further, this extract was fractionated and finally one subfraction showed similar antidiabetic effect with metformin (Mohamed et al., 2011a).

Diuretic activity: Diuretic activity of *O. stamineus* hydroalcohol extract from aerial parts was reported. At a dose of 50 mg kg\(^{-1}\), this extract showed similar effectivity with hydrochlorothiazide at a dose of 10 mg kg\(^{-1}\) (Beaux et al., 1999).

Other studies reported that a water extract and tincture of leaves enhanced ion excretion of rats which were not due to the potassium content of the starting material (Englert and Harnischfeger, 1992).

Arafat et al. (2008) studied the diuretic and hypouricemic activity of different *O. stamineus* methanol extracts by Sprague, Dawley rats model. A single dose infusion (2 g kg\(^{-1}\)) of methanol and methanol: water (1:1) extracts showed an increase in diuresis from the third day of treatment. Oral administration of 0.5, 1.0 and 2.0 g kg\(^{-1}\) of methanol: water (1:1) extracts significantly reduced serum urate level of hyperuricemic rats at hour 6, whereby the decrease in the uric acid level was also observed for the standard, allopurinol at hour 6 (Arafat et al., 2008).

Adam et al. (2009) investigated the diuretic effects of *Orthosiphon stamineus* aqueous extract. Orally at doses of 5 and 10 mg kg\(^{-1}\) to Sprague, Dawley rats and was compare with furosemide or hydrochlorothiazide at 10 mg kg\(^{-1}\). Urine pH, urine volume, urine density and urine electrolytes were determined every hour for 4 h. Blood was assayed for albumin, glucose, Blood Urea Nitrogen (BUN) and creatinine. *Orthosiphon stamineus* extract exhibited dose-dependent diuretic activity. However, Na\(^+\) and Cl\(^-\) excretion was not markedly elevated but urinary excretion of K\(^+\) was significantly increased. *Orthosiphon stamineus* extracts increased the serum BUN, creatinine and blood glucose level slightly (Adam et al., 2009).

The diuretic, saluretic and uricosuric actions of 50 and 70% ethanol extracts of *O. stamineus* (700 mg kg\(^{-1}\)) in rats revealed that the diuretic effect of the 50% ethanolic extract was higher than that of the 70% ethanolic extract or furosemide. It was characterized by higher absolute excretion of sodium and lower potassium wasting. Furthermore, the same 50% ethanol extract showed a relatively higher uricosuric effect. As the hydrophilicity of the extract increases, its diuretic and uricosuric effects also increase. This may be attributed to the abundance of polyphenols (Olah et al., 2003).

TOXICITY STUDY

The only toxicity literature and reports on members of the *Orthosiphon* genus were concerning *O. stamineus*. Different studies proved that the possible acute toxicity effects of orally administered *Orthosiphon stamineus* plant extract in rats. Acute toxicity was evaluated by LD\(_{50}\) method. No toxicity was found at a dose of 2 g kg\(^{-1}\) (Padilla et al., 1996).

Another study Mohamed et al. (2011b) proved that standardized 50% ethanol plant extract at a dose 5 g kg\(^{-1}\) given orally to Sprague Dawley rats did not show an changes in macroscopic and microscopic. These results were proved that subchronic toxicity. Different concentration of plant extract (1250-5000 mg kg\(^{-1}\)) on male and female Sprague Dawley rats for 4 weeks, showed no significant changes with control group. The parameters were hematological, organ weight, biochemical value, macroscopic and microscopic observation of the heart, brain, liver, kidney, spleen, tests, uterus and stomach (Mohamed et al., 2011a).
Recently Muhammad et al. (2011) investigated genotoxicity of *O. stamineus* using salmonellal microsome mutation and mouse bone marrow micronucleus assays method. The results were concluded that use of *Orthosiphon stamineus* in traditional medicine poses no genotoxic risk (Muhammad et al., 2011).

SUMMARY AND CONCLUSION

In the present review, summarized to congregate traditional use of medicinal plants in the genus *Orthosiphon* and research on its phytochemical, pharmacological and toxicological information on *O. aristatus, O. pallidus, O. thymiflorus* and *O. stamineus*, medicinal herbs used in the India and all over the world.

Survey of literature data provided a practical base for further scientific research on this genus. In another equally very important to understand if the pharmacological studies on this genus are available to validate their traditional uses. Preliminary report in experimental studies says that it is significantly effective in diseases related to gastrointestinal, lungs and liver. Hence the purpose of this review is to provide comprehensive report about the genus based on its toxicity in order to identify its therapeutic potential and further prospects for betterment of research and provides basic knowledge for development of medicinal plants and useful approach for drug discovery.

REFERENCES

Adam, Y., M.N. Somchit, M.R. Sulaiman, A.A. Nasaruddin, A. Zuraini, A.A. Bustamam and Z.A. Zakaria, 2009. Diuretic properties of *Orthosiphon stamineus* Benth. J. Ethnopharmacol., 124: 154-158.

Adnyana, I.K., F. Setiawan and M. Insanu, 2013. From ethnopharmacology to clinical study of *Orthosiphon stamineus* Benth. Int. J. Pharm. Pharmaceut Sci., 5: 66-73.

Akowuah, G.A., Z. Ismail, I. Norhayati and A. Sadikun, 2005. The effects of different extraction solvents of varying polarities on polyphenols of *Orthosiphon stamineus* and evaluation of the free radical-scavenging activity. Food Chem., 93: 311-317.

Ameer, O.Z., I.M. Salman, M.Z. Asmawi, Z.O. Ibraheem and M.F. Yam, 2012. *Orthosiphon stamineus*: Traditional uses, phytochemistry, pharmacology and toxicology. J. Med. Food, 15: 678-690.

Arafat, O.M., S.Y. Tham, A. Sadikun, I. Zhari, P.J. Haughton and M.Z. Asmawi, 2008. Studies on diuretic and hypouricemic effects of *Orthosiphon stamineus* methanol extracts in rats. J. Ethnopharmacol., 118: 354-360.

Ashokan, K. and M.S. Muthuraman, 2011. Anticancer studies on *Orthosiphon pallidus* royle. and *Peristrophe bicalyculata* nees. J. Pharm. Res., 4: 2654-2656.

Awale, S., Y. Tezuka, A.H. Banskota and S. Kadota, 2003a. Siphonols A-E: Novel nitric oxide inhibitors from *Orthosiphon stamineus* of Indonesia. Bioorgan. Med. Chem. Lett., 13: 31-35.

Awale, S., Y. Tezuka, A.H. Banskota, I.K. Adnyana and S. Kadota, 2003b. Highly-oxygenated isopimarane-type diterpenes from *Orthosiphon stamineus* of Indonesia and their nitric oxide inhibitory activity. Chem. Pharm. Bull., 51: 268-275.

Awale, S., Y. Tezuka, M. Kobayashi, J.Y. Ueda and S. Kadota, 2004. Neo*Orthosphophonon* a; A nitric oxide (NO) inhibitory diterpene with new carbon skeleton from *Orthosiphon stamineus*. Tetrahedron Lett., 45: 1359-1362.

Basu, N.K. and H. Sing, 1956. Investigation of *Orthosiphon pallidus* royle I. Preliminary chemical study and isolation of *Orthosphophonol*. J. Am. Pharmaceut. Assoc., 9: 595-598.
Basu, N.K. and H. Singh, 1956. Investigation of Orthosiphon pallidus Royle II. Isolation of choline and betaine. J. Am. Pharmaceut. Assoc., 9: 598-601.

Beaux, D., J. Fleurentin and F. Mortier, 1999. Effect of extracts of Orthosiphon stamineus benth, Hieracium pilosella L., Sambucus nigra L. and arctostaphylos uva-ursi (L.) spreng. in rats. Phytother. Res., 13: 222-225.

Bombardelli, E., 1972. Flavonoid constituents of Orthosiphon stamineus. Fitoterapia, 43: 35-38.

Chen, C.P., C.C. Lin and N. Tsuneo, 1989. Screening of Taiwanese crude drugs for antibacterial activity against Streptococcus mutans. J. Ethnopharmacol., 27: 285-295.

Chen, H., F. Chen, Y.L. Zhang and J.Y. Song, 1999. Production of rosmarinic acid and lithospermic acid B in Ti transformed Salvia miltiorrhiza cell suspension cultures. Process Biochem., 34: 777-784.

Di, X.X., S.Q. Wang, X.L. Zhang, B. Wang, H.X. Lou and X.N. Wang, 2013. Diterpenoids from the aerial parts of Orthosiphon aristatus var. aristatus. Phytochemistry, 6: 412-417.

Englert, J. and G. Harnischfeger, 1992. Diuretic action of aqueous Orthosiphon extract in rats. Planta Med., 58: 237-238.

Goodwin, A.M., 2007. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvascular Res., 74: 172-183.

Guerin, J.C., H.P. Reveillere, P. Ducrey and L. Toupet, 1989. Orthosiphon stamineus as a potent source of methylripariochromene A. J. Nat. Prod., 52: 171-173.

Han, C.J., A.H. Hussin and S. Ismail, 2008. Toxicity study of Orthosiphon stamineus benth (Misai Kucing) on sprague dawley rats. Trop. Biomed., 25: 9-16.

Heinrich, M. and S. Gibbons, 2001. Ethnopharmacology in drug discovery: An analysis of its role and potential contribution. J. Pharm. Pharmacol., 53: 425-432.

Ho, C.H., I. Noryati, S.F. Sulaiman and A. Rosma, 2010. In vitro antibacterial and antioxidant activities of Orthosiphon stamineus Benth. extracts against food-borne bacteria. Food Chem., 122: 1168-1172.

Hossain, M.A. and Z. Ismail, 2013. Isolation and characterization of triterpenes from the leaves of Orthosiphon stamineus. Arabian J. Chem., 6: 295-298.

Hossain, M.A., Z. Ismail, A. Rahman and S.C. Kang, 2008. Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Ind. Crops Prod., 27: 328-334.

Hsu, C.L., B.H. Hong, Y.S. Yu and G.C. Yen, 2010. Antioxidant and anti-inflammatory effects of Orthosiphon aristatus and its bioactive compounds. J. Agric. Food Chem., 58: 2150-2156.

Kavimani, S., R. Ilango, J. Thangadurai, B. Jaykar, U. Majumdar and M. Gupta, 1997. Diuretic activity of aqueous extract of Orthosiphon thymiflorus in rats. Indian J. Pharmaceut. Sci., 59: 96-98.

Keng, C.L. and L.P. Siong, 2006. Morphological similarities and differences between the two varieties of cat’s whiskers (Orthosiphon stamineus Benth.) grown in Malaysia. Int. J. Bot., 2: 1-6.

Kiruthika, A. and S.M. Meenakshi, 2011. Anticancer studies on Orthosiphon pallidus royle. and Peristrophe bicalyculata nees. J. Pharm. Res., 4: 2654-2656.

Koay, Y.C. and F. Amir, 2012. A survey of the chemical constituents and Biological activities of Orthosiphon stamineus. Sci. Int., 24: 133-138.
Kovendaran, K., K. Murugan, S. Vincent and D.R. Barnard, 2012. Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pac. J. Trop. Biomed., 5: 299-305.

Lyckander, I.M. and K.E. Malterud, 1992. Lipophilic flavonoids from Orthosiphon spicatus as inhibitors of 15-lipoxygenase. Acta Pharmaceutica Nordica, 4: 159-166.

Maheswari, C., R. Maryammal and R. Venkatanarayanan, 2008. Hepatoprotective activity of Orthosiphon stamineus on liver damage caused by paracetamol in rats. Jordan J. Biol. Sci., 1: 105-108.

Mariam, A., M.Z. Asmawi and A. Sadikun, 1996. Hypoglycaemic activity of the aqueous extract of Orthosiphon stamineus. Fitoterapia, 67: 465-468.

Masuda, T., K. Masuda, S. Shiragami, A. Jitoe and N. Nakatani, 1992. Orthosiphol A and B, novel diterpenoid inhibitors of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation, from Orthosiphon stamineus. Tetrahedron, 48: 6787-6792.

Matsumura, T., T. Bohgaki, M. Watarai, H. Suzuki, K. Ohashi and H. Shibuya, 1999. Antihypertensive actions of methylripariochromene A from Orthosiphon aristatus, an Indonesian traditional medicinal plant. Biol. Pharm. Bull., 22: 1083-1088.

Mohamed, E.A.H., A.J. Mohamed, M.Z. Asmawi, A. Sadikun, O.S. Ebrika and M.F. Yam, 2011a. Antihyperglycemic effect of Orthosiphon stamineus Benth leaves extract and its bioassay-guided fractions. Molecules, 16: 3787-3801.

Muhammad, H., M.R. Gomes-Carneiro, K.S. Poca, A.C.A.X. De-Oliveira and A. Afzan et al., 2011. Evaluation of the genotoxicity of Orthosiphon aristatus aqueous extract. J. Ethnopharmacol., 133: 647-653.

Ohashi, K., T. Bohgaki, T. Matsumura and H. Shibuya, 2000. Indonesian medicinal plants. XXIII. Chemical structures of two new migrated pimarane-type diterpenes, neoorthosiphols A and B and suppressive effects on rat thoracic aorta of chemical constituents isolated from the leaves of Orthosiphon aristatus (Lamiaceae). Chem. Pharm. Bull., 48: 433-435.

Olaj, N.K., L. Radu, C. Mogosan, D. Hangana and S. Gocan, 2003. Phytochemical and pharmacological studies on Orthosiphon stamineus Benth. (Lamiaceae) hydroalcoholic extracts. J. Pharmaceut. Biomed. Anal., 33: 117-123.

Padilla, M.C.L., J.T. Capo, A.H. Rodriguez, J.L.C. Freixas and L.S.C. Alvarez, 1996. Efecto diuretico y toxicidad aguda del Orthosiphon aristatus blume (Te de Rinon). Rev. Cubana Plant Med., 1: 26-30.

Paton, A.J., D. Springate, S. Suddee, D. Otieno and R.J. Grayer et al., 2004. Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Mol. Phylogenet. Evol., 31: 277-299.

Sadashiva, C.T., P. Sharanappa, Y. Naaidoo, C.T. Sulaimon and I. Balachandran, 2013. Chemical composition of essential oil from Orthosiphon diffuses Benth. J. Med. Plants Res., 7: 170-172.

Sahib, H.B., Z. Ismail, N.H. Othman and A.M.S. Abdul-Majid, 2009. Orthosiphon stamineus benth. methanolic extract enhances the anti-proliferative effects of tamoxifen on human hormone dependent breast cancer. Int. J. Pharmacol., 5: 273-276.
Schut, G.A. and J.H. Zwaving, 1986. Content and composition of the essential oil of *Orthosiphon aristatus*. Planta Med., 52: 240-241.

Shibuya, H., 1999. Chemical structures of two new isopimarane-type diterpenes, *Orthosiphonones A* and B and a new benzochromene, orthochromene A from the leaves of *Orthosiphon aristatus* (Lamiaceae). Chem. Pharmaceut. Bull., 47: 695-698.

Shibuya, H., T. Bohgaki, T. Matsubara, M. Watarai, K. Ohashi and I. Kitagawa, 1999. Chemical structures of two new isopimarane-type diterpenes, *Orthosiphonones A* and B and a new benzochromene, orthochromene A from the leaves of *Orthosiphon aristatus* (Lamiaceae). Chem. Pharm. Bull., 47: 695-698.

Sini, K.R., Y. Haribabu, M.S. Sajith and K.S. Sreekumar, 2012. *In-vitro* cytotoxic activity of *Orthosiphon thymiflorus* Roth.) sleensen leaf extract against dalton lymphoma ascites cell line. J. Chem. Pharmaceut. Res., 4: 917-921.

Sriplang, K., S. Adisakwattana, A. Rungsipipat and S. Yibchok-Anun, 2007. Effects of *Orthosiphon stamineus* aqueous extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats. J. Ethnopharmacol., 109: 510-514.

Stampoulis, P., Y. Tezuka, A.H. Banskota, K.Q. Tran, I. Saiki and S. Kadota, 1999. Staminolactones A and B and norstaminol A: Three highly oxygenated staminane-type diterpenes from *Orthosiphon stamineus*. Org Lett., 1: 1367-1370.

Sundarammal, S., R. Thirugnanasampandan and M.T. Selvi, 2012. Chemical composition analysis and antioxidant activity evaluation of essential oil from *Orthosiphon thymiflorus* (Roth) Sleesen. Asian Pac. J. Trop. Biomed., 2: S112-S115.

Vogelgesang, B., N. Abdul-Malak, C. Reymermier, C. Altobelli and J. Saget, 2011. On the effects of a plant extract of *Orthosiphon stamineus* on sebum-related skin imperfections. Int. J. Cosmetic Sci., 33: 44-52.

Yam, M.F., R. Basir, M.Z. Asmawi and Z. Ismail, 2007. Antioxidant and hepatoprotective effects of *Orthosiphon stamineus* Benth. standardized extract. Am. J. Chinese Med., 35: 115-126.

Yam, M.F., M.Z. Asmawi and R. Basir, 2008. An investigation of the anti-inflammatory and analgesic effects of *Orthosiphon stamineus* leaf extract. J. Med. Food., 11: 362-368.

Yam, M.F., L.F. Ang, I.M. Salman, O.Z. Ameer and V. Lim *et al*., 2009. *Orthosiphon stamineus* leaf extract protects against ethanol-induced gastropathy in rats. J. Med. Food., 12: 1089-1097.

Yam, M.F., V. Lim, I.M. Salman, O.Z. Ameer and L.F. Ang *et al*., 2010. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of *Orthosiphon stamineus* leaves. Molecules, 15: 4452-4466.