Another Shipment of Six Short-Period Giant Planets from TESS

Joseph E. Rodriguez,1,2 Sam N. Quinn,2,3 Andrew Vanderburg,3,4,5 George Zhou,4,6 Jason D. Eastman,2
Erica Thygesen,1 Bryson Cale,5,6 David R. Ciardi,5,6 Phillip A. Reed,6,7,8,9 Ryan J. Oelkers,7,8,9
Karen A. Collins,2,3 Allyson Bieryla,2,3 David W. Latham,2,3 Erica J. Gonzales,10 B. Scott Gaudi,11
Coel Hellier,12 Matías I. Jones13 Rafael Brahm14,15,16 Kirill Sokolovsky,1 Jack Schulte,1 Gregor Srdoc,17
John Kielkopf,18 Ferran Grau Horta,19 Bob Massey,20 Phil Evans,21 Denise C. Stephens,22
Kim K. McLeod,23 Nikita Chazov,24,25 Vadim Krushinsky,25,26 Mourad Ghachoui,26,27 Boris S. Safonov,28
Cayla M. Dedrick,29,30 Dennis Conti,30 Didier Laloum,30 Steven Giacalone,31 Carl Ziegler,32
Pere Guerra Serra,33 Ramon Naves Nogues,34,35 Felipe Murgas,35,36 Edward J. Michaels,37
George R. Ricker,3,4 Roland K. Vanderspek,3,4 Sara Seager,3,38,39 Joshua N. Winn,40 Jon M. Jenkins,41
Brett Addison,42,43 Owen Alfaro,43 D. R. Anderson,13,44 Elias Aydi,15 Thomas G. Beatty,45
Timothy R. Bedding,46,47 Alexander A. Belinski,27 Zouhair Benkhaldoun,25 Perry Berlind,2
Cullen H. Blake,47 Michael J. Bowen,43 Brendan P. Bowler,48 Andrew W. Boyle,5,6 Dalton Branson,49
César Briceño,50 Michael L. Calkins,2,3 Emma Campbell,23 Jessie L. Christiansen,5,6 Laura Chomiuk,1,6
Kevin I. Collins,43 Matthew A. Cornachione,51 Ahmed Daassou,52,53 Courtney D. Dressing,31
Gilbert A. Esquerdo,26 Dax L. Feliz,53 William Fong,3 Akihiko Fukui,54,55 Tianjun Gan,55,56 Holden Gill,31
Maria V. Goliguzova,27,57 Jarrod Hansen,22,58 Thomas Henning,56 Eric G. Hintz,19 Melissa J. Hobson,56,57,58
Jonathan Horner,43 Chelsea X. Huang,43 David J. James,57 Jacob S. Jensen,21 Samson A. Johnson,11
Andrés Jordán,14,15,69 Stephen R. Kane,58 Khalid Barkaoui,26,38,35 Myung-Jin Kim,59,60 Kingsley Kim,60
Rudolf B. Kuhn,61,62 Nicholas Law,63 Pablo Lewin,64 Hui-Gen Liu,65,66 Michael B. Lund,5,6
Andrew W. Mann,63 Nate McCrady,49 Matthew W. Mengel,4 Jessica Mink,2,3 Lauren G. Murphy,6,7
Nori Narita,35,65,66 Patrick Newman,42 Jack Okumura,4 Hugh P. Osborn,3,67 Martin Paegert,2
Enric Palle,35,36,68 Joshua Pepper,68 Peter Plavchan,43 Alexander A. Popov,24,25 Markus Rabus,69
Jessica Ranshaw,1 Jennifer A. Rodriguez,1,6 Dong-Goo Roh,65 Michael A. Reefe,3,4 Arjun B. Savel,70
Richard P. Schwarz,71,69 Avi Shporer,3,4 Robert J. Siverd,72,73 David H. Sliski,47 Keivan G. Stassun,53,73
Daniel J. Stevens,74,75 Abderrahmane Soubkou,23,76,77 Eric B. Ting,41 C. G. Tinney,77 Noah Vowell,1
Payton Walton,1 R. G. West,44,78 Maurice L. Wilson,2,3 Robert A. Wittenmyer,4 Justin M. Wittrock,43
Shania Wolf,67 Jason T. Wright,28,29,79 Hui Zhang,80 and Evan Zobel1

Affiliations are listed at the end of the paper

Accepted XXX. Received YYY; in original form ZZZ
ABSTRACT
We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) — TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 < G < 11.8, 7.7 < K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-Up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (R_p = 1.09-1.45 R_J), have masses ranging from 0.92 to 5.26 M_J, and orbit F, G, and K stars (4766 ≤ T_eff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, e = 0.394+0.035−0.038), TOI-2145 b (P = 10.261 days, e = 0.208+0.037−0.047), and TOI-2497 b (P = 10.656 days, e = 0.195+0.043−0.040). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log g < 4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.26+0.38−0.37 M_J (TOI-2145 b) and 4.82 ± 0.41 M_J (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.

Key words: techniques: radial velocities – techniques: photometric – planets and satellites: detection

1 INTRODUCTION
While NASA’s Transiting Exoplanet Survey Satellite (TESS) mission continues to discover a wealth of new small planets, it is also discovering many transiting hot and warm Jupiters, complementing the prior work of ground-based transit surveys (Pollacco et al. 2006; Pepper et al. 2007; Bakos et al. 2013) and space-based surveys like NASA’s Kepler and K2 missions (Borucki et al. 2010; Howell et al. 2014) and ESA’s CoRoT satellite (Auvergne et al. 2009). These surveys discovered hundreds of hot Jupiters and established that they are rare (<1%). Using observations from Kepler, three different occurrence rates of hot Jupiters have been measured: 0.43±0.05% (Fressin et al. 2013), 0.57±0.14% (Petigura et al. 2018), and 0.43±0.07% (Masuda & Winn 2017). However, radial velocity (RV) surveys have measured the occurrence rate to be significantly higher: 1.5±0.6% (Cumming et al. 2008) and 1.2±0.4% (Wright et al. 2012), with the difference in occurrence rates possibly due to the removal of spectroscopic binaries (SB2 that show two sets of lines and short-period SB1s where only one set of lines is detected but with a large RV offset consistent with a stellar companion) in the RV surveys (Moe & Kratter 2021). Since the surveys have different target selection criteria, these results suggest that the occurrence rates depend on the properties of the host star (mass, multiplicity, age, etc). Zhou et al. (2019) gave a first glimpse into the occurrence rate from the primary mission of NASA’s TESS (Ricker et al. 2015), measuring an occurrence rate of 0.41±0.10%, consistent with results from the Kepler mission. Zhou et al. (2019) used TESS data to measure occurrence rates as a function of spectral type and found it to be 0.71 ± 0.31% for G stars, 0.43 ± 0.15% for F stars, and 0.26 ± 0.11% for A stars.

As a result of its observing strategy and photometric precision, TESS should be nearly complete for discovering transiting hot Jupiters (P<10 days, TESSmag < 10, Zhou et al. 2019), providing the community with the opportunity to create a homogeneous, magnitude-complete population of giant planet parameters. Unfortunately, most ground-based surveys struggled to discover transiting planets with periods above ∼5 days due to their poor duty cycle (Gaudi et al. 2005). However, much work remains as recent results suggest that the current sample of known hot Jupiters is only 75% complete for stars brighter than Gaia magnitude (Gaia Collaboration et al. 2018) G≤10.5, 50% for G≤12, and 36% at G≤12.5 (Yee et al. 2021). Fortunately, coordinated RV efforts within the TESS Follow-up Observing Program (TFOP) are helping to extend this sample to G < 12.5. As we continue to confirm new hot Jupiters from TESS, we will gain insight into some of the key questions about their formation and evolutionary pathways (see reviews, e.g., Dawson & Johnson 2018; Fortney et al. 2021).

Here we present the discovery and characterization of six new hot and warm giant planets from NASA’s TESS mission. These six targets were selected for follow up confirmation as part of a large effort to discover and characterize transiting hot and warm Jupiters with the goal of creating a magnitude-complete sample of giant planets with measured eccentricities (Rodriguez et al. 2019, 2021; Ikwut-Ukwa et al. 2022). These discoveries, combined with other large scale efforts to use TESS to confirm and characterize giant planets (Nielsen et al. 2019; Brahm et al. 2020; Addison et al. 2021; Grunblatt et al. 2022, Yee et al. submitted), should lead to a magnitude-complete sample of hot Jupiters for future population studies. During the preparation of this paper, we became aware of another effort to announce the discovery of TOI-2025 b (Knudstrup et al. 2022). Future efforts should combine all observations of TOI-2025 b presented in both discovery papers. All results presented here on TOI-2025 were independently determined, and all communication between both groups was related to coordinating submissions. In §2 we present the TESS and follow-up observations. We review our global analysis using EXOFASTv2 (Eastman et al. 2019) in §3 and discuss our results in §4, specifically the impact TESS is having on our understanding of hot Jupiters. Our conclusions for this work are summarized in §5.

2 OBSERVATIONS AND ARCHIVAL DATA
We used a series of photometric and spectroscopic observations to rule out false positive scenarios, confirm planet candidates as bona fide planets, and measure key parameters such as orbital eccentricity and the planet’s mass. All observations presented here were coordinated through the TESS Follow-up Observing Program (TFOP) Working Groups. The literature values for previously measured parameters of these stars are listed in Table 1.

* E-mail: jrod@msu.edu

MNRAS 000, 1–20 (2022)
2.1 TESS Photometry

Launched in 2018, NASA’s TESS mission has been in full operation with over 200 planets confirmed to date\(^1\). Using a 24°×96° field of view, TESS monitors each observing sector for ~27 days before moving to the next sector (Ricker et al. 2015). During the prime mission, TESS observed nearly the entire sky at a 30-minute cadence and a pre-selected set of a few hundred thousand stars at 2-minute cadence. After a successful 2-year primary mission that observed each ecliptic hemisphere for about a year, TESS began its 27-month first extended mission that is ongoing and has already revisited some of the prime-mission targets but also observed a large portion of the ecliptic plane, where the repurposed Kepler mission (K2, Howell et al. 2014) discovered over 500 planetary systems and over 1000 more candidates (Barros et al. 2016; Crossfield et al. 2016; Vanderburg et al. 2016; Mayo et al. 2018; Zink et al. 2019; Hardegree-Ullman et al. 2020; Zink et al. 2021, e.g.). During the 27-month extended mission, TESS has added a third, 20-second cadence mode for some pre-selected targets and the exposure time of the Full Frame Images (FFI, where the entire 24°×96° field of view is observed) was reduced to 10 min-

\(^1\) https://exoplanetarchive.ipac.caltech.edu/
To date, TESS has announced over 5000 targets that display a signal consistent with it being an exoplanet, which are known as TESS Objects of Interest (TOIs) (Guerrero et al. 2021). TESS observed all six TOIs presented here during the 2-year primary mission, and, in the cases of TOI-2025 and TOI-2497, re-observed during the extended mission. TOI-1811 and TOI-2145 were only observed at 2-minute cadence, TOI-2152 and TOI-2154 were only observed in the 30-min full frame images, and TOI-2025 and TOI-2497 were observed in both cadences during different sectors (see Figure 1). For the 2-minute observations, the TESS images were downlinked, reduced, and analyzed by the Science Processing Operations Center (SPOC) pipeline (Smith et al. 2012; Stumpe et al. 2014; Jenkins et al. 2016). The final SPOC lightcurves were searched for transits with the SPOC Transiting Planet Search (TPS, Jenkins 2002). The final processed lightcurves were downloaded from the Mikulski Archive for Space Telescopes (MAST) archive and included in our global fitting (see §3).

For our final transit fits, we adopt the SPOC 2-minute lightcurves when available but we re-extracted the 30-minute FFI light curves using a custom full frame image pipeline derived from that of Vanderburg et al. (2019). We downloaded the pixels surrounding the locations of each host star using the TESSCut interface (Brasseur et al. 2019) to the MAST. We first extracted light curves from a series of 20 different photometric apertures. We then removed systematic errors from each light curve by decorrelating with the mean and standard deviations of the spacecraft quaternion time series within each exposure and the TESS SPOC pipeline’s Presearch Data Condition (PDC) cotrending basis vectors (binned to the cadence of each sector’s observations). We performed the decorrelation via linear regression, where we solved for the best-fit coefficients for each model component using a matrix inversion technique, while iteratively excluding outlier points. We also included a basis spline in our linear regression model to simultaneously account for the stars’ photometric variability. After subtracting the best-fit systematics components from our linear regression from the light curve, we then applied a correction for dilution from nearby stars customized for each of the 20 apertures based on a model of the TESS pixel response function and the known positions and magnitudes from the TESS Input Catalog (TIC, Stassun et al. 2018) of nearby stars. Finally, for each star we selected one of the 20 photometric apertures by finding which one minimized its photometric scatter (outside of transit) and chose that as the final light curve for each star. We compared our final FFI lightcurve of TOI-2025 with that created by the SPOC pipeline and the MIT Quick Look Pipeline (QLP, Huang et al. 2020) as a check for the lightcurve quality (see Figure 2). We adopt our custom FFI lightcurve for the final global fitting but note no significant difference in the transit properties when comparing the three versions of the FFI lightcurves. Additionally, we have photometric follow-up transits from the ground for each system other than TOI-2497.

To properly fit our TESS photometry within the global fit, we flatten the out-of-transit features using Keplerspline2, which fits a spline to the variability seen and divides out the best-fit model (Vanderburg & Johnson 2014). The spline requires spacing for the break points (breaks in the spline to handle discontinuities) and we optimized this by following the methodology from Shallue & Vanderburg (2018) to minimize the Bayesian information criterion. Most of the out-of-transit information provides little to no useful information in determining the full system parameters in the case of these six TOIs but is still computationally intensive to model. Therefore, we remove all baseline photometry from the TESS lightcurves, only keeping one full transit duration before the transit until one full transit duration after each transit. In the global model, we modeled all flattened lightcurve segments for each system of a given cadence with the same zero point and added variance (see §3).

2.2 KELT Photometry

Since TESS focuses on observing bright (V<12) stars, there is a wealth of archival data on these targets from even small-aperture surveys like the Kilodegree Extremely Little Telescope (KELT) survey4 (Pepper et al. 2007, 2012, 2018). See Siverd et al. (2012) & Kuhn et al. (2016) for a discussion on the KELT-North and KELT-South observing strategy and reduction techniques. KELT uses two small aperture telescopes (Mamiya 645 80mm f/1.9 lens with 42mm aperture, Apogee 4K×4K CCD) to observe most of the entire sky on a 20 to 30 minute cadence. Light curves from the KELT survey are accessible through the NASA Exoplanet Archive5.

We do not recover the transits detected by TESS, likely due to a combination of the poor duty cycle from the ground (for the longer period systems, Gaudi et al. 2005), the faintness of the host stars (for the shorter orbital period systems), and some of the transits being shallow (<0.5%). However, KELT data can be useful to measure stellar rotation periods. Following the approach of Stassun et al. (1999); Oelkers et al. (2018); Rodriguez et al. (2021), we executed a search for periodic signals using the KELT data. For these stars, we post-processed the light curve data using the Trend-Filtering Algorithm (Kovács et al. 2005) to remove common systematics. We then searched for candidate rotation signals using a modified version of the Lomb-Scargle period finder algorithm (Lomb 1976; Scargle 1982). We searched for periods between a minimum period of 0.1 days and a maximum period of 100 days using the autopower feature of the astropy implementation of Lomb-Scargle. We masked periods between 0.5 and 0.505 days and 0.97–1.04 days to avoid the

3 https://github.com/avanderburg/keplerspline
4 https://keltsurvey.org
5 https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblSearch/nph-tblSearchInit?app=ExoTb1s&config=kelttimeseries

2 https://tess.mit.edu/toi-releases/
Figure 3. The TESS (orange) and TFOP SG1 follow-up transits of TOI-1811 b (top-left), TOI-2025 b (top-right), TOI-2145 b (bottom-left), and TOI-2497 b (bottom-right). The EXOFASTv2 model for each transit observation is shown by the red solid line.
Figure 4. The TESS (orange) and TFOP SG1 follow-up transits of TOI-2152A b (Left) and TOI-2154 b (Right). The EXOFASTv2 model for each transit observation is shown by the red solid line.

most common detector aliases associated with KELT’s observational cadence and its interaction with the periods for the solar and sidereal day. For each star, we selected the highest statistically significant peak of the power spectrum as the candidate period for stellar variability.

We then executed a boot-strap analysis, using 100 Monte-Carlo iterations, where the dates of the observations were not changed but the magnitude values of the light curve were randomized, following the work of Henderson & Stassun (2012); VanderPlas (2018). We recalculated the Lomb-Scargle power spectrum for each iteration, and recorded the maximum peak power of all iterations. If the highest power spectrum peak was larger than the maximum simulated peak after 100 iterations, we considered the periodic signal to be a candidate rotation period. We find only TOI-1811 to have a significant candidate rotation period at 25.779 days using KELT data.

2.3 WASP Photometry

Additional observations were available for only TOI-1811 from the Wide Angle Survey for Planets (WASP) survey. Each WASP site (La Palma and SAAO) used an array of eight 200-mm, f/1.8 lenses to create a large field of view (Pollacco et al. 2006). The typical cadence of the observations were 15-30 minutes. Observations of TOI-1811 from 2007 and 2011 were available and following the techniques from Maxted et al. (2011), we searched for periodic modulation consistent with the rotation period of the star. We find a similar period to that what was in the KELT data, 23±1 days. Additionally, using the WASP search algorithm described in Collier Cameron et al. (2007) on the observations and the identification of planetary period of TOI-1811 b from TESS, we measure the WASP ephemeris of planet to be a period of 3.7130803±0.0000292 and a mid-transit epoch (Tc) of 2454006.04900±0.00337 HJD{TDB}. This ephemeris is consistent with the TESS ephemeris and therefore is used as a prior for the EXOFASTv2 global analysis of TOI-1811 b (see §3).

2.4 Ground-based Photometry from the TESS Follow-up Observing Program Working Group

As part of the confirmation processes within TFOP, we observed five of the six giant planet systems presented in this paper using a variety of small-aperture (<2 meter) telescopes to confirm the transit was on target and to refine the system parameters (particularly increasing the photometric baseline to improve our precision and accuracy on future times of transit). Observations were obtained using the Las Cumbres Observatory (LCO) telescope network (Brown et al. 2013), KeplerCam on the 1.2m telescope at Fred Lawrence Whipple Observatory (FLWO), C. R. Chambliss Astronomical Observatory (CRCAO) at Kutztown University, Brigham Young University’s campus telescopes, El Sauce Observatory, MUSCAT2 on the 1.5m Telescope Carlos Sánchez (TCS), the University of Louisville’s Moore Observatory, Michigan State University’s Observatory, George Ma-
son University’s Observatory, Optical Wide-field patrol network (OWL-Net) Oukaimeden observatory (OWL), Waffelow Creek Observatory, Observatori de Ca l’Ou, MASTER-Ural observatory, Villa 39 Observatory, Observatoire Privé du Mont (OPM), Conti Private Observatory (CPO), and Kotizarovci Observatory. Table 2 shows the information on each observatory and the detrending parameters used within the global fit. The photometric observations were reduced and aperture photometry extraction was conducted using AstroImageJ (Collins et al. 2017) for all follow-up transit observations except MUSCAT2 and the MASTER-Ural observations. Below we briefly review the reduction process used for these facilities. Unfortunately, due to its longer orbital period, we were not able to get photometric information on each observatory and the detrending parameters used within the global fit. The photometric observations were reduced and aperture photometry extraction was conducted using AstroImageJ (Collins et al. 2017) for all follow-up transit observations except MUSCAT2 and the MASTER-Ural observations. Below we briefly review the reduction process used for these facilities. Unfortunately, due to its longer orbital period, we were not able to get photometric follow-up on TOI-2497.

Two of our follow up transit observations did not use AstroImageJ to perform the reduction and photometry. TOI-1811 was observed on the night of UT 2021 June 05 with the multicolor imager MuSCAT2 (Narita et al. 2019) mounted on the 1.5 m Telescopio Carlos Sánchez (TCS) at Teide Observatory, Spain. The raw data were reduced by the MuSCAT2 pipeline (Parviainen et al. 2019) which performed a standard image calibration and aperture photometry. TOI-2152 was observed on UT 2020 December 12 with MASTER-Ural 0.4m telescope. The data reduction included standard dark, flat field and astrometry corrections, and is performed using the MASTER-Ural pipeline. Comparison stars were selected from the Gaia DR2 catalog. Aperture photometry of the object and the ensemble of comparison stars was performed using Python/Photutills (Bradley et al. 2019). Photometric data processing and detrending was completed with the Python version of the Astrok (Burdenov et al. 2014), to minimize the standard deviation of the ensemble of comparison stars.

2.5 Spectroscopy

To confirm these six systems as bona fide transiting giant planets by removing any remaining false positive scenario, we obtained time-series spectroscopic measurements of each target coordinated through TFOP. These radial velocity measurements, combined with the transit photometry, allowed us to precisely measure the mass and orbital eccentricity of each system, a key component in understanding their evolutionary origins. Table 3 shows a sample radial velocity (RV) point per target per instrument (the full table will be available in machine-readable form in the online journal). The RVs and best-fit models from our EXOFASTv2 analysis are shown in Figure 5 (see §3).

2.5.1 TRES Spectroscopy

Using the Tillinghast Reflector Echelle Spectrograph (TRES; Fúrész 2008) on the 1.5m Tillinghast Reflector, we measured the radial velocity orbit of all six TOIs presented in this paper. The telescope and spectrograph are located at the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins, AZ. The reduction and RV analysis followed the procedure described in Buchhave et al. (2010) and Quinn et al. (2012). The only difference is that the template spectra for the RV extraction were created by median-combining all of the out-of-transit spectra (after shifting each to align them). To rule out scenarios in which the apparent velocity variation is caused by a blended binary or stellar activity, we performed a line bisector analysis on the TRES spectra following the work of Torres et al. (2007). In all six cases, we find no evidence for these false positive scenarios in the bisector span variations. The bisector span measurements do not correlate with the derived radial velocities or orbital phase, and the measurements for each star agree to within the uncertainties. The TRES spectra were also analyzed using the Stellar Parameter Classification (SPC) package (Buchhave et al. 2012) to determine the [Fe/H], T_{eff}, and rotational velocity of each host star (see Tables 1 and 6).

2.5.2 CHIRON Spectroscopy

We obtained 26 spectra of TOI-2497, between UT 2021 March 06 and UT 2022 March 25. The data were taken with the CHIRON (Tokovinin et al. 2013) high-resolution spectrograph, installed in the 1.5 m telescope at the Cerro Tololo International Observatory. The observations were performed with the image slicer (R ~ 80000), with exposure times between 600s and 1800s, leading to a SNR per extracted pixel between ~20 - 80, at 550 nm. For each observation, we obtained a ThAr spectrum immediately before the science spectra to account for the instrument spectral drift, and thus a new wavelength solution was automatically computed from that calibration, by the CHIRON pipeline (Paredes et al. 2021). The radial velocities were computed using an updated version of the pipeline used in Jones et al. (2019). A sample of the resulting values are listed in Table 3.

2.5.3 MINERVA Australis Spectroscopy

We make use of the Minerva-Australis array for additional radial velocities of TOI-2497. Minerva-Australis is an array of four identical 0.7 m telescopes located at Mt Kent Observatory, Australia. The telescopes are fed by four independent fibers into the KiwiSpec high resolution échelle spectrograph, yielding a spectral resolving power of R~80,000 over the wavelength range of 5000-6300Å (Addison et al. 2019). Simultaneous wavelength calibration is provided by two calibration fibers, illuminated by a quartz lamp through an iodine cell, that tracks the instrument drift over an exposure. Radial velocities are measured from each telescope independently via a least-squares deconvolution between the extracted spectra and a synthetic, following the procedure described in Zhou et al. (2021). The template is generated from an ATLAS9 atmosphere model (Castelli & Hubrig 2004) at the atmosphere parameters of the target star, and has no rotational broadening applied. The resulting line-broadening function is modeled with a kernel describing the rotational, macroturbulent, and instrumental broadening effects, as well as the radial velocity shift of a given exposure.

2.5.4 MINERVA North Spectroscopy

The MINERVA North observations of TOI-2145 were made with the MINERVA telescope array and KiwiSpec Spectrograph (Wilson et al. 2019; Swift et al. 2015), which consists of four robotic telescopes at Whipple Observatory in Arizona, fiber fed to a temperature and pressure stabilized, R~80,000, iodine cell calibrated spectrograph. We obtained 24 observations with T1, 16 observations with T2, and 5 observations with T3 spanning from UT 2020 May 09 to UT 2021 May 31. We extracted 1D spectra from the 2D spectra with our standard methods. The corresponding MINERVA RVs are computed from the 1D spectra with pyche11 using updated methods compared to those described in Cale et al. (2019). Each 1-dimensional spectrum is forward modeled on a per-order basis. The model accounts for the wavelength solution, instrumental profile (IP), continuum, tellurics,
and stellar Doppler shift. An iodine vapor gas cell in the calibration unit constrains the wavelength solution and IP. We use the Fourier Transform Spectrometer (FTS) scan measured at NIST, described in Wilson et al. (2019). A synthetic BT-Settl model (Teff = 6000 K, log g = 3.5, (Fe/H)⊙ = 0) is used as an initial stellar template, which is further Doppler broadened to \(v \sin i = 19 \text{ km s}^{-1} \) with PyAstronomy (Czesla et al. 2019), pychell then iteratively updates this template based on the residuals between the data and model, and although the fits suggest the stellar template is more accurate at later iterations, the corresponding RVs are inconsistent with the orbit of the planet, whereas the initial BT-Settl template yields consistent RVs with the TRES observations which strongly support the planetary orbit. To ensure that the MINERVA North observations were not improperly influencing our results, we ran a global fit using only the TRES RVs and the results were consistent to 1σ. We have yet to find cause for the loss of accuracy at later iterations, and is a subject of future work. We therefore use RVs from the first iteration. The RMS of the residuals of our adopted RV model suggest a median S/N per-spectral pixel of 17.

2.6 High Resolution Imaging

As part of our standard process for validating transiting exoplanets to assess the possible contamination of bound or unpicked companions on the derived planetary radii (Ciardi et al. 2015), we observed the TOIs with a combination of high-resolution imaging resources including near-infrared adaptive optics (AO) imaging at Lick (TOI-2145, TOI-2497) and Palomar (TOI-1811, TOI-2145) Observatories and with optical speckle imaging using the 2.5m SAI telescope (TOI-1811, TOI-2025, TOI-2145, TOI-2152, TOI-2154) and the Southern Astrophysical Research (SOAR) telescope (TOI-2497). While the optical speckle observations tend to provide higher resolution, the NIR AO observations tend to provide better sensitivity, especially to lower-mass stars. If a companion is detected, the combination of the observations in multiple filters enables better characterization. Additionally, recent studies have shown that Gaia (DR2 and eDR3) (Gaia Collaboration et al. 2018) is most efficient at identifying companions with separations greater than \(\sim 0.5 – 1'' \) (Ziegler et al. 2018). Gaia eDR3 (Gaia Collaboration et al. 2021) is also used to identify targets that have a large Renormalised Unit Weight Error (RUWE) value indicative of a single-star model and possibly indicating the presence of undetected stellar companions. For all of the observations, We only detect one faint companion to TOI-2152 (ΔMag \(\sim 5 \)) within 1″ of the primary target.

2.6.1 Summary of AO Observations

The Palomar Observatory observations of TOI-1811 and TOI-2145 were made with the PHARO instrument (Hayward et al. 2001) behind the natural guide star AO system P3K (Dekany et al. 2013) on UT 2021 February 23 and UT 2021 February 24, respectively, in a standard 5-point quincunx dither pattern with steps of 5″ in the narrow-band \(Br – γ \) filter (\(\lambda_\gamma = 2.1686 \mu \text{m} \), \(\Delta \lambda = 0.0326 \mu \text{m} \)). Each dither position was observed three times, offset in position from each

Table 1. Literature and Measured Properties

Parameter Description	Value	Value	Value	Value	Value	Reference
Other identifiers						
TOI-1811						
TOI-2025						
TOI-2145						
TOI-2152						
TOI-2154						
TOI-2497						
TIC 376524552						
TIC 394050153						
TIC 88992642						
TIC 395939265						
TIC 428787891						
TIC 97568467						
HIP 88040						
TYCHO-2						
TYC 1992-0387-1						
TYC 4595-0079-1						
TYC 2091-0884-1						
TYC 4899-0138-1						
TYC 4671-00138-1						
TYC 0725-01745-1						
TYC 250208						
2MASS						
J2-02412-2175184						
TESS Sector	[20]	[18, 19, 20, 24, 25, 26, 40]	[25, 26, 40]	[18, 19, 25, 26]	[19, 20, 25, 26]	[6, 33]

NOTES: The uncertainties of the photometry have a systematic error floor applied.‡ RA and Dec are in epoch J2000. The coordinates come from Vizier where the Gaia RA and Dec have been precessed and corrected to J2000 from epoch J2015.5.† Values have been corrected for the -0.30 mas offset as reported by Lindgren et al. (2018) but this is not significant for these systems. References are: 1Gaia Collaboration et al. (2018), 2Stassun et al. (2018), 3Cutri et al. (2003), 4Cutri et al. (2012)
other by 0.5″ for a total of 15 frames; with an integration time of 30 and 1.4 seconds per frame, respectively for total on-source times of 450 and 21 seconds. PHARO has a pixel scale of 0.025″ per pixel for a total field of view of ~25″.

We also observed TIC 88992642 (TOI-2145) and TIC 97568467 (TOI-2497) on UT 2021 March 29 using the ShARCS camera on the Shane 3-meter telescope at Lick Observatory (Kupke et al. 2012; Gavel et al. 2014; McGurk et al. 2014). Observations were taken with the Shane adaptive optics system in natural guide star mode in order to search for nearby, unresolved stellar companions. For each target, we collected sequences of observations using a Ks filter (λ0 = 2.150 µm, Δλ = 0.320 µm) and a J filter (λ0 = 1.238 µm, Δλ = 0.271 µm). We reduced the data using the publicly available SIMMER pipeline (Savel et al. 2020).8 We find no nearby stellar companions within our detection limits.

The AO data were processed and analyzed with a custom set of IDL tools. The science frames were flat-fielded and sky-subtracted. The flat fields were generated from a median average of dark subtracted flats taken on-sky. The flats were normalized such that the median value of the flats is unity. The sky frames were generated from the median average of the 15 dithered science frames; each science image was then sky-subtracted and flat-fielded. The reduced science frames were combined into a single combined image using an intra-pixel interpolation that conserves flux, shifts the individual dithered frames by the appropriate fractional pixels, and median-coadds the frames. The final resolutions of the combined dithers were determined from the FWHM of the point spread functions for each of the stars: 0.102″ for TOI-1811 and 0.092″ for TOI-2145. The sensitivities of the final combined AO image were determined by injecting simulated sources azimuthally around the primary target every 20° at separations of integer multiples of the central source’s FWHM (Furlan et al. 2017). The brightness of each injected source was scaled until standard aperture photometry detected it with 5σ significance. The resulting brightness of the injected sources relative to primary target set the contrast limits at that injection location. The final 5σ limit at each separation was determined from the average of

8 https://github.com/arjunsavel/SIMMER
limits at that separation (across all azimuthal samples) and the uncertainty on the limit was set by the rms dispersion of the azimuthal slices at a given radial distance. For both TOI-1811 and TOI-2145, no additional stellar companions were detected in agreement with the other observations.

2.6.2 Speckle Imaging

Using the 4.1-m SOAR telescope, we obtained speckle imaging of TOI-2497 using HR Cam on UT 2021 February 27 in the I-band following the observing and reduction strategy described in Tokovinin (2018). HR Cam on SOAR has a 15"×15" field of view and has a 0.01575″ pixel scale. With a contrast of ΔMag of 7.7 at 1″, we detected no nearby companions around TOI-2497. For a complete description of the observing strategy for TESS targets, see Ziegler et al. (2020).

TOI-1811, TOI-2025, TOI-2145, TOI-2152, and TOI-2154 were observed with the Speckle Polarimeter (Safonov et al. 2017) on the 2.5 m telescope at the Caucasian Observatory of Sternberg Astronomical Institute (SAI) of Lomonosov Moscow State University. SPP uses Electron Multiplying CCD Andor iXon 897 as a detector. The atmospheric dispersion compensator allowed observation of relatively faint targets through the wide-band I filter. For TOI-2145 we used a medium band interference filter with FWHM of 50 nm and centered on 625 nm. The power spectrum was estimated from 4000 frames with 30 ms exposure. The detector has a pixel scale of 20.6 mas pixel^−1. For all targets except for TOI-2152 we did not detect stellar companions, the contrast limits at 1″ are Δmag = 6.7 (TOI-1811), 6.4 (TOI-2025), 3.3 (TOI-2145), 5.9 (TOI-2152), this had multiple observations ranging from 4.7 to 6.3, and 6.5 (TOI-2154). We note

Figure 5. The RV observations of TOI-1811 (top-left), TOI-2025 (top-middle), TOI-2145 (top-right), TOI-2152 (bottom-left), TOI-2154 (bottom-middle), and TOI-2497 (bottom-right). In each case, the top figure shows the RVs vs time and the bottom panel is phased to the best-fit ephemeris from our global fit. The EXOFASTv2 model is shown in red and the residuals to the best-fit are shown below each plot.
that the difference image analysis performed in the data validation reports from TESS show that the source of the transit signal for TOI-2145 was located within 5.0±2.7\arcsec and for TOI-1811 was within 1.78±2.5\arcsec, complementing the high resolution imaging results.

TOI-2152 is the only star that we found to have a close-in stellar companion. The separation, position, and contrast of the TOI-2152 inner companion were estimated on 4 dates; the results are presented in Table 4. According to proper motion from Gaia eDR3, the primary star is expected to move by 22 ± 0.02 mas over the period of our observations, from UT 2020 October 21 to UT 2021 July 17; however, there apparent motion is only 13 ± 11 mas which is consistent with no discernible separation change. While not definitive, the companion appears to be a common proper motion imaging target and is likely gravitationally bound. With a contrast of ΔI = 4.8 mag, the detection is consistent with the companion being an M1V star ((M = 0.5 M\odot; T\textsubscript{eff} = 3600K; Pecaut & Mamajek 2013b). At a distance of ~320pc, the companion has a projected separation of ~250au. Interestingly, TOI-2152 also has another companion further out detected by Gaia with an angular separation of ~20\arcsec (~6000au; see §2.7).

2.7 Gaia Assessment

In addition to the high resolution imaging, we have utilized Gaia to identify any wide stellar companions that may be bound members of the system. Typically, these stars are already in the TESS Input Catalog and their flux dilution to the transit has already been accounted for in the transit fits and associated derived parameters. Based upon similar parallaxes and proper motions (Mugrauer & Michel 2020, 2021), the only TOI in our sample which appears to have a wide stellar companion is TOI-2152 (in addition to the close-in companion identified in §2.6.2); the wide companion TIC 395393263 (Gaia DR3 562112709676597376) is 20\arcsec to the NW (PA ≈ 300\degree) which corresponds to a projected physical separation of ~6000au. The companion has a mass and temperature consistent with an M4V star (M ≈ 0.24M\odot; T\textsubscript{eff} ≈ 3223K Mugrauer & Michel 2021) – for such a small star at such a large separation, the stellar companion does not affect the stability of the planets or the measured radial velocities. Interestingly, the projected positions on the sky of the three stars are not in a line indicating that the mutual inclination of the two stellar companions is non-zero - astrometric and/or radial velocity observations would be needed to determine if the transiting planet is aligned or not with either of the two stellar companions. A summary of the hierarchical triple TOI-2152 is given in Table 5.

Gaia DR3 astrometry (Gaia Collaboration et al. 2021) provides additional information on the possibility of inner companions that may have gone undetected by either Gaia DR2 data or the high resolution imaging. The Gaia Renormalised Unit Weight Error (RUWE) is a metric, similar to a reduced chi-square, where values that are ≤ 1 indicate that the Gaia astrometric solution is consistent with the star being single whereas RUWE values ≥ 1.4 may indicate an astrometric excess noise, possibly caused the presence of an unseen companion (e.g., Ziegler et al. 2020). All of the TOIs in this sample, except TOI 1811, have RUWE values of < 1.1 indicating that the astrometric fits are consistent with the single star model. The RUWE for TOI-1811 is 1.66; there is no clear fixed boundary for when the RUWE unambiguously identifies the presence of an unseen stellar companion. The transit of TOI-1811 is very deep (19 mmag in the TESS light curves) and with a short orbital period of 3.7 days, it may be the transit of the planet itself that is affecting the Gaia RUWE value.

Table 3. One RV point from each spectrograph for all six systems. The full table of RVs for each system is available in machine-readable form in the online journal.

BJD(TDB)	RV (m s\(^{-1}\))	\(\sigma_{RV} (\text{m s\(^{-1}\)}) \)	Target	Instrument
2459206.9696936	-91.2	24.7	TOI-1811	TRES
2459060.767111	395.0	39.8	TOI-2025	TRES
2459097.65584	-194.7	103.1	TOI-2145	MINERVA T1
2459326.76336	311.8	51.8	TOI-2145	MINERVA T2
2459330.93081	94.6	167.0	TOI-2145	MINERVA T3
2459072.693111	70.6	60.6	TOI-2145	TRES
2459095.870551	481.26	40.01	TOI-2152	TRES
2459201.888006	90.4	43.7	TOI-2154	TRES
2459596.60887	385.0	76.0	TOI-2497	CHIRON
2459279.908926	56275.1	271.6	TOI-2497	M-Australis T3
2459504.25082	56250.9	316.1	TOI-2497	M-Australis T4
2459279.908926	56019.7	340.9	TOI-2497	M-Australis T6
2459271.812986	-634.1	71.0	TOI-2497	TRES

Table 4. Binarity parameters of TOI-2152B on the basis of SPP observations: separation, position angle and magnitude difference in \(I\) band.

Date (UT)	\(\rho\) \(\degree\)	P.A. \(\degree\)	\(\Delta m\)
2020 Oct 21	0.765 ± 0.008	85.2 ± 0.2	4.8 ± 0.2
2020 Oct 28	0.762 ± 0.009	86.1 ± 0.3	4.8 ± 0.1
2020 Dec 02	0.770 ± 0.008	87.0 ± 0.2	4.8 ± 0.1
2021 Jul 17	0.782 ± 0.008	85.8 ± 0.2	4.6 ± 0.1

NOTES: The \(\rho\) \(\degree\) is the projected separation of the neighbor, if at the distance of the primary star.

3 EXOFASTv2 GLOBAL FITS

Following the same strategy laid out in §3 of Rodriguez et al. (2021), we globally fit the RVs, TESS and TFOp photometry (see Figures 3, 4, & 5; and §2) for TOI-1811 b, TOI-2025 b, TOI-2145 b, TOI-2152a b, TOI-2154 b, and TOI-2497 b with EXOFASTv2 (Eastman et al. 2013, 2019) to determine their individual system parameters and place them in context with the known exoplanet population. To ensure that none of the SG1 partial transits are influencing the results for any system, we run fits with and without partial transits and the fitted system parameters are consistent (< 1\sigma). The SG1 photometry provides a strong constrain on the transit ephemerides of these systems by significantly extending the baseline of the observations. The Spectral Energy Distribution (SED) and the MESA Isochrones and Stellar Tracks (MIST) stellar evolution models (Paxton et al. 2011, 2013, 2015; Choi et al. 2016; Dotter 2016) were included to constrain the host star’s parameters within the fit, and we account for the 30 minute smearing in the TESS FFI lightcurves. We enforced a systematic limit on the precision broad-band photometry (see Table 1, Stassun & Torres 2016) and use EXOFASTv2’s default lower limit on the systematic error on the bolometric flux (\(F_{\text{bol}} \sim 3\%\)). We adopted a Gaussian prior on the [Fe/H], parallax from Gaia DR2 (Gaia Collaboration et al. 2016, 2018, correcting for the offset reported by Lindegren et al. 2018), and an upper bound on the line of sight extinction from Schlegel et al. (1998) & Schlafly & Finkbeiner (2011). Both SPOC and our custom pipeline correct the TESS photometry for known nearby blended stars in the aperture. To allow
some flexibility while checking this correction, we fit for dilution term on the TESS band, and placed a Gaussian prior of \(0 \pm 10\%\) of the contamination ratio reported by the TESS Input Catalog (TIC, Stassun et al. 2018). We saw no evidence of any significant dilution in TOI-1811, TOI-2025, TOI-2152, and TOI-2154. Unfortunately, without an independent full transit for TOI-2145 and TOI-2497, we are not able to perform this test with the limited amount of photometric follow-up. We use the recommended convergence criteria by Eastman et al. (2019) of a Gelman-Rubin statistic \(<1.101\) and independent draws \(>1000\). The results for each system are in Tables 6, 7, & 8 and in Figures 3, 4, & 5.

4 DISCUSSION

The combination of precision, baseline, and cadence of TESS will provide the ability to create a magnitude-complete, self-consistent catalog of exoplanetary systems to investigate questions about formation and evolution, and directly test tentative trends seen in the current population (Nelson et al. 2017; Rodriguez et al. 2021; Ikwut-Ukwa et al. 2022). These six new hot and warm giant planets increase the current sample of systems with precise mass and eccentricity measurements. We first review our results on each system and then discuss the impact TESS has made on the field of giant exoplanets. In all six systems, we see no significant inflation \((R_p > 1.5 \ R_\oplus)\). We also see some significant reddening for TOI-2152 and TOI-2497 from our global fit (see Table 6).

4.1 Review of Six New Discoveries

Orbiting an early K-star, TOI-1811 b is a hot Jupiter on a 3.71 day orbital period that shows no signs of inclination relative to the known population \((R_p = 0.994^{+0.025}_{-0.023} \ R_\oplus \text{ and } M_p = 0.972^{+0.076}_{-0.078} \ M_\text{J}\)). The host star has a relatively high metallicity \((\text{[Fe/H]} = 0.306^{+0.076}_{-0.077} \text{ dex})\), and the lack of a significant eccentricity is consistent with the very short tidal circularization timescale of \(740^{+13}_{-15} \text{ Myr}\) (Adams & Laughlin 2006) and that the host star parameters suggest a main-sequence star with an age well above this.

TOI-2025 b is a super Jupiter mass \((M_p = 3.60 \pm 0.33 \ M_\text{J})\) planet on an 8.872 day orbital period around an early-G star. We detect a moderate, but significant eccentricity, \(e = 0.394^{+0.035}_{-0.038}\). Given the long circularization timescale (see Table 6) and the detected eccentricity, it is possible that TOI-2025 b migrated to its current location through dynamical interactions (e.g., Dawson & Fabrycky 2010).

Orbiting a bright \((G = 8.94^{+0.02}_{-0.02} \text{ mag})\), sub-giant \((\log g = 3.794^{+0.023}_{-0.027} \text{ cgs})\), TOI-2145 is a massive \((M_p = 5.26^{+0.35}_{-0.32} \ M_\text{J})\) warm Jupiter on an eccentric \((e = 0.208^{+0.034}_{-0.047})\) on a 10.261 day orbit. Of the known transiting planets to date, TOI-2145 b joins only five other known planets to have a mass above 3 \(M_\text{J}\) and orbit a sub-giant \((\log g < 4.0 \text{ cgs})\), but it orbits the brightest star of that group, a valuable aspect for future detailed characterization.

TOI-2152A b and TOI-2154 b are both hot Jupiters orbiting similar main-sequence F-stars at similar distances from the Sun. TOI-2152A b is a massive Jupiter \((M_p = 2.83^{+0.38}_{-0.35} \ M_\text{J})\) while TOI-2154 b is only \(0.92^{+0.19}_{-0.18} \ M_\text{J}\). We see no evidence of any significant eccentricity \((e = 0.057^{+0.068}_{-0.040})\). TOI-2154 b \((e = 0.117^{+0.10}_{-0.079})\) from our results but note that these two planets provide a nice comparative study since their host stars and the planets share many similar characteristics, but exhibit a significant difference in the planet’s mass.

The last system in our sample is TOI-2497 b, another very massive \((M_p = 5.21 \pm 0.52 \ M_\text{J})\) warm Jupiter on a 10.656 day orbital period. Its host star, TOI-2497, is a rapidly rotating \((\tau \sin i_c = 39.6^{+1.0}_{-1.0} \text{ km s}^{-1})\) early F-star \((T_{\text{eff}} = 7360^{+320}_{-300} \text{ K})\) that has possibly left the main sequence \((\log g = 3.962^{+0.050}_{-0.049} \text{ cgs})\). The host star is also bright \((G = 9.47^{+0.02}_{-0.02} \text{ mag})\), and combined with the rapid rotation, TOI-2497 b is an excellent target for future Doppler spectroscopy, using observations of the Rossiter-McLaughlin effect (Rossiter 1924; McLaughlin 1924) or Doppler tomography (e.g., Miller et al. 2010; Johnson et al. 2014; Zhou et al. 2016) to measure the projected spin-orbit alignment of the planet’s orbit.

4.2 TESS’s impact on Giant Planets

As NASA’s TESS mission continues to observe, it is expected to discover thousands of giant planets over its lifetime (Sullivan et al. 2015; Barclay et al. 2018), while providing great value to already known systems (Ikwut-Ukwa et al. 2020; Edwards et al. 2021; Kane et al. 2021). This is highly dependent on the number of extended missions that TESS is given. Even in the ~4 years since its launch, TESS has discovered over 200 planets\(^9\), of which 47 are above 0.4 \(M_\text{J}\), nearly 10% of the known transiting giant planet population (See Figure 6). As multiple efforts, including ours, continue to confirm and characterize new transiting giant planets, it will lead to a magnitude-complete, self-consistent sample of planet properties (Zhou et al. 2019; Yee et al. 2021).

There is an obvious trend in the eccentricity distribution of giant planets, where long period giant planets tend to have a wider distribution of orbital eccentricities than shorter period systems, possibly indicative of the system’s migration history. If a planet migrates to a close-in configuration through dynamical interactions with other bodies, it can result in a highly eccentric and/or misaligned orbit (Rasio & Ford 1996; Wu & Lithwick 2011). Specifically, looking at Figure 6, we see that the eccentricity range appears to broaden beyond an orbital period of ~3 days. We note that many components of a planet’s formation and evolutionary history are incorporated into this distribution, and a proper analysis of the population as a function of host star parameters is warranted prior to drawing any conclusions. This trend is also seen for brown dwarfs, indicating that

\[\text{https://exoplanetarchive.ipac.caltech.edu, accessed April 2022} \]

\[\text{Table 5. Estimated Parameters for TOI-2152 Stellar Components} \]

Stellar Component	Separation [au]	Mass \([M_\odot]\)	Radius \([R_\odot]\)	\(T_{\text{eff}}\) [K]	Spectral Type	Notes
TOI-2152A	⋯	1.52	1.61	6630	F4V	
TOI-2152B	250	0.5	0.4	3600	M1V	Pecaut & Mamajek (2013a); Boyajian et al. (2012)
TOI-2152C	6000	0.24	0.2	3200	M4V	Mugrauer & Michel (2020); Boyajian et al. (2012)

\[\text{Table 6} \]

Component	[au]	\([M_\odot]\)	\([R_\odot]\)	\(T_{\text{eff}}\) [K]	Spectral Type	Notes
TOI-2152A	6000	0.24	0.2	3200	M4V	
TOI-2152B	250	0.5	0.4	3600	M1V	
TOI-2152C	6000	0.24	0.2	3200	M4V	

\[\text{Figure 6} \]

\[\text{https://exoplanetarchive.ipac.caltech.edu, accessed April 2022} \]
Parameter	Units	Values					
\(M_\odot\)	Mass (\(M_\odot\))	0.810 ± 0.020	1.190 ± 0.074	1.720 ± 0.057	1.518 ± 0.065	1.233 ± 0.077	1.859 ± 0.087
\(R_\odot\)	Radius (\(R_\odot\))	0.769 ± 0.020	1.497 ± 0.042	2.797 ± 0.054	1.613 ± 0.043	1.396 ± 0.043	2.36 ± 0.11
\(M_\star\)	Initial Metallicity (dex)	0.771 ± 0.002	0.771 ± 0.002	0.771 ± 0.002	0.771 ± 0.002	0.771 ± 0.002	0.771 ± 0.002
\(L_\star\)	Luminosity (L_\odot)	2.075 ± 0.001	2.075 ± 0.001	2.075 ± 0.001	2.075 ± 0.001	2.075 ± 0.001	2.075 ± 0.001
\(\rho_{\text{Bol}}\)	Bolometric Flux \(10^{15}\) ergs (s)	0.536 ± 0.012	0.663 ± 0.033	6.29 ± 0.18	5.15 ± 0.16	4.92 ± 0.19	5.27 ± 0.26
\(\rho\)	Density (g/cm\(^3\))	2.54 ± 0.04	2.52 ± 0.02	1.161 ± 0.050	0.511 ± 0.060	0.639 ± 0.080	0.200 ± 0.090
\(\log g\)	Surface gravity (cm/s\(^2\))	4.507 ± 0.025	4.167 ± 0.040	3.794 ± 0.027	4.252 ± 0.048	4.292 ± 0.051	3.962 ± 0.060
\(T_\text{eff}\)	Effective Temperature (K)	6762 ± 20	5977 ± 41	6177 ± 67	6638 ± 120	6260 ± 160	7360 ± 270
\(V_\text{eff}\)	Effective Temperature (K)	4769 ± 28	5969 ± 41	6134 ± 42	6610 ± 620	6270 ± 150	7350 ± 250
\(\text{EEF}^\dagger\)	Effective Evolutionary Phase	32 ± 1	40 ± 1	38 ± 1	32 ± 1	36 ± 1	360 ± 3
\(\rho_{\text{V-bol}}\)	V-band extinction (mag)	0.02 ± 0.01	0.05 ± 0.04	0.07 ± 0.05	0.08 ± 0.06	0.07 ± 0.08	0.05 ± 0.07
\(\rho_{\text{SED}}\)	SED photometry error scaling	0.86 ± 0.03	0.50 ± 0.13	0.92 ± 0.21	1.09 ± 0.30	0.67 ± 0.14	0.76 ± 0.26
\(\varpi\)	Parallax (mas)	7.80 ± 0.20	2.98 ± 0.01	4.43 ± 0.01	3.30 ± 0.02	3.374 ± 0.034	3.507 ± 0.050
\(\Delta\)	Distance (pc)	128.1 ± 2.82	335.8 ± 3.5	324.7 ± 1.6	302.8 ± 3.9	296.3 ± 2.9	285 ± 4.0

NOTES:
See Table 3 in Eastman et al. (2019) for a detailed description of all derived and fitted parameters.

T\(_E\) Prior comes from analysis of the WASP photometry (see §2.3). We note that this time is in HJD\(_\text{TDB}\) while all data files and results here are in BJD\(_\text{TDB}\). The difference between these two time systems is on the order of seconds while the precision on T\(_E\) used as a prior is on order of minutes, and therefore has no influence on the results.

\(^a\)We assume the TESS correction for blending is much better than 10%. We use a prior of 10% of the determined blending from TICVs (Stassun et al. 2018).
\(^b\)The initial metallicity is the metallicity of the star when it was formed.
\(^c\)The Equal Evolutionary Point corresponds to static points in a stars evolutionary history when using the MIST isochrones and can be a proxy for age. See §2 in Dotter (2016) for a more detailed description of EEP.

\(^d\)Optimal time of conjunction minimizes the covariance between T\(_E\) and Period. This is the transit mid-point.

\(^e\)The tidal quality factor (Q\(_T\)) is assumed to be 10\(^6\).
Table 7. Median values and 68% confidence intervals for the global models

TOI-1811	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.944 ± 0.037	0.666 ± 0.045	0.941 ± 0.041	0.482 ± 0.023
v_2	quadratic limb-darkening coeff	-0.108 ± 0.037	0.203 ± 0.046	-0.035 ± 0.045	0.746 ± 0.050
A_D	Dilation from neighboring stars	-	-	0.941 ± 0.041	1.071 ± 0.022

Telescope Parameters:	TRES	
γ_{rel}	Relative RV Offset (m/s)	-180.9 ± 9.5
σ_{rel}	RV Jitter (m/s)	11 ± 5
σ_{vrel}	RV Jitter Variance	300 ± 300

TOI-2025	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.611 ± 0.053	0.416 ± 0.036	0.346 ± 0.050	0.556 ± 0.054
v_2	quadratic limb-darkening coeff	0.263 ± 0.037	0.247 ± 0.026	0.432 ± 0.039	2.036 ± 0.051
A_D	Dilation from neighboring stars	-	-	0.0001 ± 0.0025	-

Telescope Parameters:	TRES	
γ_{rel}	Relative RV Offset (m/s)	189 ± 19
σ_{rel}	RV Jitter (m/s)	61 ± 22
σ_{vrel}	RV Jitter Variance	3800 ± 3800

TOI-2145	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.242 ± 0.051	0.316 ± 0.051	0.220 ± 0.029	0.297 ± 0.035
v_2	quadratic limb-darkening coeff	0.314 ± 0.050	0.310 ± 0.050	-	-

Telescope Parameters:	MINERVAT1	
γ_{rel}	Relative RV Offset (m/s)	61 ± 41
σ_{rel}	RV Jitter (m/s)	167 ± 43
σ_{vrel}	RV Jitter Variance	28000 ± 16000

TOI-2215	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.305 ± 0.051	0.316 ± 0.051	0.220 ± 0.029	0.297 ± 0.035

Telescope Parameters:	MINERVAT2	
γ_{rel}	Relative RV Offset (m/s)	61 ± 41
σ_{rel}	RV Jitter (m/s)	167 ± 43
σ_{vrel}	RV Jitter Variance	28000 ± 16000

TOI-2627	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.342 ± 0.051	0.316 ± 0.051	0.220 ± 0.029	0.297 ± 0.035

Telescope Parameters:	MINERVAT3	
γ_{rel}	Relative RV Offset (m/s)	61 ± 41
σ_{rel}	RV Jitter (m/s)	167 ± 43
σ_{vrel}	RV Jitter Variance	28000 ± 16000

TOI-2326	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.342 ± 0.051	0.316 ± 0.051	0.220 ± 0.029	0.297 ± 0.035

Telescope Parameters:	TRES	
γ_{rel}	Relative RV Offset (m/s)	61 ± 41
σ_{rel}	RV Jitter (m/s)	167 ± 43
σ_{vrel}	RV Jitter Variance	28000 ± 16000

TOI-2327	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.342 ± 0.051	0.316 ± 0.051	0.220 ± 0.029	0.297 ± 0.035

Telescope Parameters:	TRES	
γ_{rel}	Relative RV Offset (m/s)	61 ± 41
σ_{rel}	RV Jitter (m/s)	167 ± 43
σ_{vrel}	RV Jitter Variance	28000 ± 16000

TOI-2328	Wavelength Parameters:	B	R	g'	i'
u_1	linear limb-darkening coeff	0.342 ± 0.051	0.316 ± 0.051	0.220 ± 0.029	0.297 ± 0.035

Telescope Parameters:	TRES	
γ_{rel}	Relative RV Offset (m/s)	61 ± 41
σ_{rel}	RV Jitter (m/s)	167 ± 43
σ_{vrel}	RV Jitter Variance	28000 ± 16000
Table 8. Median values and 68% confidence intervals for the global models

TOI-2152	Wavelength Parameters:	B	R	g'	i'
		TESS	TESS	TESS	TESS
w₁	linear limb-darkening coeff…	0.484 ± 0.067	0.262 ± 0.047	0.423 ± 0.067	0.207 ± 0.057
w₂	quadratic limb-darkening coeff	0.205 ± 0.039	0.205 ± 0.039	0.205 ± 0.039	0.205 ± 0.039
AD	Dilution from neighboring stars	0.030 ± 0.049	–	–	–
		–0.001 ± 0.018	–	–	–

Telescope Parameters:	TESS	CHIRON	MINERVAT3	MINERVAT4	MINERVAT5
τᵣ	Relative RV Offset (m/s)	2.10 ± 0.29	32 ± 0.25	7000 ± 700	
σ₁ᵣ	RV Jitter (m/s)	32 ± 5.7			
σᵡᵢʳ	RV Jitter Variance	7000 ± 7000			

Transit Parameters:	TESS	OWL UT 2020-08-17 (R)	WaffelowCreek UT 2020-10-11 (g')	WaffelowCreek UT 2020-10-11 (i')
ω²	Added Variance × 10⁻⁵	–1.00n±0.00094	1.16 ± 0.21	0.56 ± 0.22
F₀	Baseline flux	0.67 ± 0.15	1.23 ± 0.15	0.68 ± 0.18
F₀ₚₜ	Baseline flux	1.00023 ± 0.000037	1.00036 ± 0.00030	1.00344 ± 0.00038
C₀	Additive detrending coeff	0.00013 ± 0.000052	0.00023 ± 0.000066	0.000219 ± 0.000094

TOI-2154	Wavelength Parameters:	B	I	Kepler	z'	TESS
		TESS	OWL UT 2020-08-17 (R)	TESS	G4	TESS
w₁	linear limb-darkening coeff…	0.493 ± 0.056	0.211 ± 0.052	0.325 ± 0.052	0.195 ± 0.038	
w₂	quadratic limb-darkening coeff	0.265 ± 0.054	0.298 ± 0.050	0.306 ± 0.050	0.304 ± 0.035	
AD	Dilution from neighboring stars	–	–	–	–	
		–0.0001 ± 0.00055				

Telescope Parameters:	TESS	CHIRON	MINERVAT3	MINERVAT4	MINERVAT5
τᵣ	Relative RV Offset (m/s)	10 ± 1.8			
σ₁ᵣ	RV Jitter (m/s)	32 ± 5.7			
σᵡᵢʳ	RV Jitter Variance	1000 ± 1100			

Transit Parameters:	TESS	V399m4 UT 2020-08-18 (I)	OPM UT 2020-10-29 (z')	CALOU UT 2020-11-23 (B)
ω²	Added Variance × 10⁻⁵	–0.1708 ± 0.0014	2.42 ± 0.59	0.137 ± 0.014
F₀	Baseline flux	0.75 ± 0.13	1.6 ± 0.18	0.46 ± 0.13
F₀ₚₜ	Baseline flux	1.000067 ± 0.000021	0.99986 ± 0.00064	0.9995 ± 0.00012
C₀	Additive detrending coeff	1.000037 ± 0.000033	0.99992 ± 0.000018	0.99915 ± 0.00027
M₀	Multiplicative detrending coeff	0.00116 ± 0.00078	0.00064 ± 0.00041	0.00160 ± 0.00054

TOI-2497	Wavelength Parameters:	TESS	MINERVAT6	CHIRON
w₁	linear limb-darkening coeff…	0.156 ± 0.035	0.016 ± 0.035	
w₂	quadratic limb-darkening coeff	0.327 ± 0.036	0.016 ± 0.035	

Telescope Parameters:	TESS	MINERVAT3	MINERVAT4	MINERVAT5
τᵣ	Relative RV Offset (m/s)	43 ± 24	55864 ± 28	56050 ± 110
σ₁ᵣ	RV Jitter (m/s)	342 ± 75	210 ± 81	
σᵡᵢʳ	RV Jitter Variance	83 ± 25	251 ± 20	
M₀ₚₜ	Additive detrending coeff	0.0001 ± 0.0001	0.0010 ± 0.0002	

Transit Parameters:	TESS S6	TESS S33	
ω²	Added Variance × 10⁻⁵	0.015 ± 0.0003	0.0108 ± 0.0016
F₀ₚₜ	Baseline flux	1.000031 ± 0.000032	1.000258 ± 0.000019
planets it has discovered to date, with many of them on longer orbital periods (P > 5 days) where the ground-based transit surveys struggled due to poor duty cycles (Gaudi et al. 2005). With the expectation of hundreds of additional discoveries as TESS continues to scan the entire sky, the community will have a large number of systems to consider for future detailed characterization using ongoing and future facilities like the James Webb Space Telescope (JWST), the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL, Tinetti et al. 2016), and future 30-meter class ground-based telescopes. Future work should consider obtaining Doppler spectroscopy on TOI-2497 b to determine the orbital obliquity of the planet, a key aspect related to a planet’s migration history.

5 CONCLUSION

Using a combination of photometric and spectroscopic observations, we present the discovery of six new hot and warm giant planets (TOI-1811 b, TOI-2025 b, TOI-2145 b, TOI-2152A b, TOI-2154 b, and TOI-2497 b). These systems increase the number of giant planets discovered by TESS to date and are a part of a larger effort to create a complete sample of systems brighter than G < 12.5 in support of future population studies. Of the six systems presented here, we note a few interesting aspects. First, TOI-2145 is a bright (G = 8.94 ± 0.02 mag), sub-giant (log g = 3.798 ± 0.026 cgs) with a 10.26 day period and a ~5 M_J planet. Interestingly, we see no signs of inflation from the measured radius of TOI-2145 b, but it is important to note that hot Jupiters discovered around evolved stars suggest planets may re-inflate in the post-main sequence phase (Almenara et al. 2015; Grunblatt et al. 2016; Hartman & Bakos 2016; Stevens et al. 2017; Komacek et al. 2020), when a warm Jupiter (like TOI-2145 b) will receive a similar amount of irradiation to that of a hot Jupiter (Lopez & Fortney 2016). TOI-2152A b and TOI-2154 b are similar orbital period hot Jupiters that orbit similar hosts but the planets are 2.83±0.38 M_J and 0.92±0.12 M_J providing a nice opportunity for future comparative studies. TOI-2497 b orbits a massive, early F-star (T_eff = 7360±250 K), and the combination of its host star’s brightness (G = 9.47±0.02 mag) and rotation period (v sin i_s = 39.6±1.0 km s⁻¹) make it well-suited for orbital obliquity measurements through transit spectroscopy followup. TESS continues to discover a wealth of transiting giant planets that may provide insight into their formation and evolutionary mechanisms.

ACKNOWLEDGEMENTS

L.C.K.S., E.A., J.R., J.E.R., J.A.R., P.W., and E.Z. are grateful for support from NSF grants AST-1751874 and AST-1907790, along with a Cottrell Fellowship from the Research Corporation. C.Z. is supported by a Dunlap Fellowship at the Dunlap Institute for Astronomy & Astrophysics, funded through an endowment established by the Dunlap family and the University of Toronto. T.H. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 83 24 28. J.V.S. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project Four Aces; grant agreement No. 724427). P.R. acknowledges support from NSF grant No. 1952545. R.B. and A.J. acknowledges support from FONDECYT Project 11200751 and from CORFO project No. 14EN12-26865. A.J. R.B. and M.H. acknowledge support from project IC120009 “Millennium Institute of Astrophysics (MAS)” of the Millenium Science Initiative, Chilean Ministry of Economy, The Pennsylvania State University Eberly College of Science. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. K.K.M. gratefully acknowledges support from the New York Community Trust’s Fund for Astrophysical Research. L.G. and A.G. are supported by NASA Massachusetts Space Grant Fellowships. E.W.G., M.E., and P.C. acknowledge support by Deutsche Forschungsgemeinschaft (DFG) grant HA 3279/12-1 within the DFG Schwerpunkt SPP1992, Exploring the Diversity of Extrasolar Planets. B.S.G. was partially supported by the Thomas Jefferson Chair for Space Exploration at the Ohio State University. C.D. acknowledges support from the Hellman Fellows Fund and NASA XRP via grant 80NSSC20K0250. B.S.S., M.V.G. and A.A.B. acknowledge the support of Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (NIS.1902.21.0039).

B.A. is supported by Australian Research Council Discovery Grant DP180100972. T.R.B acknowledges support from the Australian Research Council (DP210103119). T.R.B acknowledges support from the Australian Research Council (DP210103119 and FL220100117).

We thank the CHIRON team members, including Todd Henry, Leonardo Paredes, Hodari James, Azmain Nisak, Rodrigo Hinojosa, Roberto Aviles, Wei-Chun Jao and CTIO staffs, for their work in acquiring RVs with CHIRON at CTIO. This research has made use of SAO/NASA’s Astrophysics Data System Bibliographic Services. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work makes use of observations from the LCO network. Based in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia e Inovações (MCTI/LNA) do Brasil, the US National Science Foundation’s NOIRLab, the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

Funding for the TESS mission is provided by NASA’s Science Mission directorate. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the NASA Exoplanet Archive and the Exoplanet Follow-up Observation Program website, which are operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). This paper includes observations obtained under Gemini program GN-2018B-LP-101. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planets data visualisation, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the Swiss expertise in Exoplanet research. The DACE platform is available at https://dace.unige.ch.

Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the
California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the Indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

MINERVA-Australis is supported by Australian Research Council LIEF Grant LE160100001 (Discovery Grant DP180100972 and DP220100365) Mount Cuba Astronomical Foundation, and institutional partners University of Southern Queensland, UNSW Sydney, MIT, Nanjing University, George Mason University, University of Louisville, University of California Riverside, University of Florida, and The University of Texas at Austin. We respectfully acknowledge the traditional custodians of all lands throughout Australia, and recognise their continued cultural and spiritual connection to the land, waterways, cosmos, and community. We pay our deepest respects to all Elders, ancestors and descendants of the Giabal, Jarowir, and Kambuwal nations, upon whose lands the MINERVA-Australis facility at Mt Kent is situated.

Data presented herein were obtained at the MINERVA-Australis from telescope time allocated under the NN-EXPLORE program with support from the National Aeronautics and Space Administration.

MINERVA-North is a collaboration among the Harvard-Smithsonian Center for Astrophysics, The Pennsylvania State University, the University of Montana, the University of Southern Queensland, University of Pennsylvania, and George Mason University. It is made possible by generous contributions from its collaborating institutions and Mt. Cuba Astronomical Foundation, The David & Lucile Packard Foundation, National Aeronautics and Space Administration (EPSCOR Grant NNX13AM97A, XRP 80NSSC20K0233), the Australian Research Council (LIEF Grant LE140100050), and the National Science Foundation (Grants 1516242, 1608203, and 2007811). This article is based on observations made with the MusCAT2 instrument, developed by ABC, at Telescopio Carlos Sánchez operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This work is partly financed by the Spanish Ministry of Economics and Competitiveness through grants PGC2018-098153-B-C31. The work of VK was supported by the Ministry of science and higher education of the Russian Federation, topic FEUZ-2020-0038.

This work is partly supported by JSPS KAKENHI Grant Number JP18H05439, JST CREST Grant Number JPMJCR1761. This article is based on observations made with the MusCAT2 instrument, developed by ABC, at Telescopio Carlos Sánchez operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide.

The Center for Exoplanets and Habitable Worlds and the Eberly College of Science.

This paper was partially based on observations obtained at the OWL-Net system, which is operated by the Korea Astronomy and Space Science Institute (KASI).

DATA AVAILABILITY

The TESS observations used in this paper (see §2.1) and are shown in in Figure 1 are publicly available on the MAST10 archive. The photometric transit follow up observations from the SG1 working groups in TFOP (underlying data for Figure 3 and 4) are publicly available on Exofop11, along with the the AO and SPECKLE contrast curves and images discussed in §2.6. The RV data (sample shown in Table 3) underlying this article (shown in Figure 5) are available in the article and in its online supplementary material.

Software Used: EXOFASTv2 (Eastman et al. 2013, 2019), Astrolmage (Collins et al. 2017), TAPIR (Jensen 2013), QLP Pipeline (Huang et al. 2020)

10 https://mast.stsci.edu/
11 https://exofop.ipac.caltech.edu/tess/
AFFILIATIONS

1Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
2Center for Astrophysics | Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138, USA
3Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Centre for Astrophysics, University of Southern Queensland, West Street, Toowoomba, QLD 4350, Australia
5Caltech IPAC – NASA Exoplanet Science Institute 1200 E. California Ave, Pasadena, CA 91125, USA
6Department of Physical Sciences, Kutztown University, Kutztown, PA 19530, USA
7George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843 USA
8Charles R. & Judith G. Munnerlyn Astronomical Laboratory, Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA
9Center for Gravitational Wave Astronomy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
10Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
11Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA
12 Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK
13European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile
14Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Diagonal las Torres 2640, Peñalolén, Santiago, Chile
15Millennium Institute for Astrophysics, Chile
16Data Observatory Foundation, Chile
17Kotizarovci Observatory, Sarsoni 90, 51216 Viskovo, Croatia
18Department of Physics and Astronomy, University of Louisville, Louisville, KY 40292, USA
19Observatari de Ca l’Ou
20Villa ‘39 Observatory, Landers, CA 92285, USA
21El Sauce Observatory, Coquimbo Province, Chile
22Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
23Department of Astronomy, Wellesley College, Wellesley, MA 02481, USA
24Ural Federal University, Ekaterinburg, Russia, ul. Mira d. 19, Yekaterinburg, Russia, 620002
25Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco
26Astrobiology Research Unit, Université de Liège, 19C Allée du 6 Août, 4000 Liège, Belgium
27Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 13, Universitetskij pr., 119234, Moscow, Russia
28Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
29Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA
30American Association of Variable Star Observers 185 Alewife Brook Parkway, Suite 410 Cambridge, MA 02138
31Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411, USA
32Department of Physics, Engineering and Astronomy, Stephen F. Austin State University, TX 75962, USA
33Observatori Astronòmic de l’Albanyà, Camí de Bassegoda S/N, Albanyà 17733, Girona, Spain
34Citizen Scientist
35Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife, Spain
36Departamento de Astrofísica, Universidad de La Laguna (ULL),
