Web-based real time air properties display application

A Badarudin*, P Pratikto and M A Falahuddin
Refrigeration and Air Conditioning Department, Politeknik Negeri Bandung, Jln. Gegerkalong Hilir, Ciwaruga, Bandung, 40012

*apipbdr@polban.ac.id

Abstract. A point on the psychrometric chart can show 7 properties of air. If two properties are known then 5 other properties can be calculated. Air treatment will change the properties of air conditions. Changes in air condition can be determined by measuring each air properties and plotted on a psychrometric chart. One of the uses of psychrometric analysis is to determine the amount of cooling capacity used in air conditioning systems. To show the condition of the air at any time needed a system that is integrated between the data acquisition device and data display. This research designs and develops applications that are ready to display data and psychrometric charts that can later be integrated with hardware equipped with sensors through an interface. Psychrometric applications are designed using the JavaScript programming language, so they can be opened using any web browser. Psychrometric charts are drawn using iteration calculation methods. Based on the results of data analysis, the difference in value between the results of manual calculations and applications is as follows: wet-bulb temperature (Twb) is 0.27%, Moisture Content (ω) is 0.77%, specific enthalpy (h) is 0.52 %, Specific Volume (v) is 0.28%, Dew-Point Temperature (Tdp) is 0.92%.

1. Introduction
Over the years, the application of passive ventilation technology in refrigeration and dehumidification of green buildings has become a trend. Li et al proposed a passive lateral ventilation evaporative cooling technique, which is based on the capillary action. By comparison from psychrometric chart, the final state point of air is nearly 2.2% lower than the begin point. That means the temperature of air decreases by 2.2% after passing over through the capillary window, but this value does not exclude the possible errors caused by drawing, marking and reading [1].

Case studies of the demarcation criteria for the formation of frost on the evaporator coil using experimental measured data and on the walls of the cold storage freezer using measured literature data are used to validate the formula and results are found to be completely in line with the psychrometric chart data graph [2].

Thermal comfort within a region of the psychrometric chart can be identified by a comfort zone. Two approaches for measuring thermal comfort are used by the control schemes to improve thermal comfort. A characteristic of the schemes is the assumption of a SIMO (single input, multiple output) building system, where variables are measured indoor temperature and relative humidity, and the single manipulated variable is the power applied to the HVAC device [3]. Within a psychrometric chart thermal comfort can be defined by a comfort zone. The comfort zone of the ASHRAE is shown in Figure 1.
Psychrometric charts are very important in the design and analysis of air processing systems. Madu analyzes the air treatment system at a given ambient temperature [4]. Horan and Luther introduces various psychrometric chart applications for research analysis and reporting and addresses Microsoft Office Excel software to generate the chart and display user data [5]. Energy efficiency and exergy analysis can be done using data and psychrometric equations [3,6,7]. Vadoudi and Marinhas approach the AHU (Air Handling Unit) energy efficiency calculation using psychrometric chart [8].

The temperature of the dew point and the temperature of the wet-bulb on the psychrometric chart can be used to estimate the frost potential and to determine the best time for frost protection sprinklers to turn on. The nighttime low temperature is determined by the heat lost to the atmosphere and the temperature at the dew point, unless a weather front causes cold air to move into an area. At night, the dry-bulb temperature decreases as heat radiates to the atmosphere [9].

A psychrometric chart point shows 7 properties of an air condition. If two properties are known, then it is possible to calculate 5 other properties. Air treatment can change the air properties. It is possible to determine changes in air properties by measuring each air properties and plotting them on a psychrometric chart. Determining the amount of cooling capacity used in air conditioning systems is one of the applications of psychrometric analysis. A system that is integrated between the data acquisition device and data display was needed to show the air properties at any time. This research designs and develops applications that are ready to display data and psychrometric charts that can later be integrated with hardware equipped with sensors through an interface.

An air mixing system is a system that changes air conditions by mixing air streams that have different temperatures. In some systems, supply air is usually a mixture of outside air with return air so that the use of energy is more efficient. The process of mixing water is often found in room air conditioning systems that use Air Handling Units (AHU) or Fan Coil Units (FCU). The air mixing is in the cooling coil input (entering water, EA). The use of return air (RE) from rooms with temperatures lower than environmental air (fresh / outdoor air, OA), with sufficient discharge will reduce the level of energy entering the coil and reduce capacity or save energy absorption in the cooling coil. The scheme and process line of the water mixing system can be seen in Figure 2 and Figure 3.
2. Methods
The method used to draw psychrometric charts is based on the work done by Bucklin et al [9]. The psychrometric chart has been widely used to analyze air processes in air conditioning systems.

To show the condition of the air at any time needed a system that is integrated between the data acquisition device and data display. This research designs and develops applications that are ready to display data and psychrometric charts that can later be integrated with hardware equipped with sensors through an interface [10-13]. Psychrometric applications are designed using the JavaScript programming language, so they can be opened using any web browser. Psychrometric charts are drawn using iteration calculation methods [14].

3. Results and discussion
Figure 4 shows the initial appearance of the Psychrometric application. This application can be used off-line, not connected with data acquisition equipment. However, simulations can still be used to obtain the properties of air.
Figure 4. Psychrometric application.

Figure 5 shows the simulation output using a psychrometric application. In this study, simulations were carried out with the input variable Dry-bulb Temperature (Tdb) and Relative Humidity (RH). Whereas the output is Wet-bulb Temperature (Twb), Moisture Content (ω), Specific Enthalpy (h), Specific Volume (v), Dew-Point Temperature (Tdp). Simulation output compared to manual plots on psychrometric charts.

Figure 5. Simulation psychrometric application.
Table 1 shows the output results from the T_{wb} simulation drawn manually on the psychrometric chart and T_{wb} from the application. The average difference between the values of manual T_{wb} with T_{wb} application is 0.0433 °C (0.27%) with a standard deviation of 0.0418 °C.

Table 1. The result of T_{wb} drawn manually on the psychrometric chart and T_{wb} from the application.

Input	T$_{db}$ [°C]	RH [%]	Manual [°C]	Application [°C]	Difference [°C]	Percentage (%)
35	75	30.90	30.94	0.04	0.129	
35	70	30.05	30.07	0.02	0.067	
35	60	28.20	28.18	0.02	0.071	
35	50	26.20	26.14	0.06	0.229	
33	75	29.20	29.10	0.10	0.343	
33	70	28.30	28.24	0.06	0.212	
33	60	26.60	26.43	0.17	0.639	
33	50	24.60	24.49	0.11	0.447	
30	70	25.60	25.50	0.10	0.391	
30	60	23.80	23.82	0.02	0.084	
30	50	22.05	22.01	0.04	0.181	
28	60	22.05	22.07	0.02	0.091	
28	50	20.40	20.36	0.04	0.196	
27	60	21.20	21.21	0.01	0.047	
27	50	19.60	19.54	0.06	0.306	
26	60	20.30	20.34	0.04	0.197	
26	50	18.80	18.72	0.08	0.426	
25	50	18.00	17.88	0.12	0.667	
25	45	17.05	17.06	0.01	0.059	
24	50	17.05	17.06	0.01	0.059	
24	45	16.30	16.26	0.04	0.245	
23	50	16.30	16.24	0.06	0.368	
23	45	15.60	15.46	0.14	0.897	
22	50	15.40	15.42	0.02	0.130	
22	45	14.80	14.68	0.12	0.811	
15	100	15.00	15.00	0.00	0.000	
15	90	14.10	14.01	0.09	0.638	
15	80	13.00	12.99	0.01	0.077	
14	100	14.00	14.00	0.00	0.000	
14	90	13.10	13.04	0.06	0.458	
14	80	12.05	12.05	0.00	0.000	
Table 1. Cont.

Input	RH [%]	Manual [°C]	Application [°C]	Difference [°C]	Percentage (%)
Twb					
T_{db} [°C]		Manual [°C]	Application [°C]	Difference [°C]	Percentage (%)
13	100	13.00	13.01	0.01	0.077
13	90	12.10	12.07	0.03	0.248
13	80	11.10	11.10	0.00	0.000
12	100	12.00	12.00	0.00	0.000
12	90	11.20	11.10	0.10	0.893
12	80	10.10	10.17	0.07	0.693
11	100	11.00	11.01	0.01	0.091
11	90	10.10	10.13	0.03	0.297
11	80	9.20	9.23	0.03	0.326
10	100	10.00	10.00	0.00	0.000
10	90	9.20	9.16	0.04	0.435
10	80	8.30	8.28	0.02	0.241
9	100	9.00	9.01	0.01	0.111
9	90	8.20	8.19	0.01	0.122
9	80	7.40	7.35	0.05	0.676
8	100	8.00	8.00	0.00	0.000
8	90	7.20	7.22	0.02	0.278
8	80	6.40	6.42	0.02	0.313

| Average | 0.0433 | 0.270 |
| Standard Deviation | 0.0418 |

Another simulation shows Moisture Content (ω) that the average difference is 0.079 gv/kga (0.77%) with a standard deviation of 0.0502 gv/kga. While the Specific Enthalpy (h) the average of the difference is 0.2376 kJ/kg (0.52%) with a standard deviation of 0.1609 kJ/kg. Furthermore, the Specific Volume (v) of the average difference is 0.0024 m³/kg (0.28%) with a standard deviation of 0.0031 m³/kg. For Dew-Point Temperature (T_{dp}) the average difference of 0.1155 °C (0.92%), the standard deviation of 0.1029 °C.

4. Conclusion
Based on the results of data analysis, the difference in value between the results of manual calculations and applications is as follows: wet-bulb temperature (Twb) is 0.27%, Moisture Content (ω) is 0.77%, specific enthalpy (h) is 0.52 %, Specific Volume (v) is 0.28%, Dew-Point Temperature (T_{dp}) is 0.92%.

Acknowledgments
The authors would like to thank to Raydha Zul Fitriani as programmer team for his work on the application software and the preparation of the experiments.

References
[1] Li R, Hao N, Liu C and Zhu J 2019 Theoretical Analysis of Passive Lateral Ventilation Evaporative Cooling Based on the Capillary Action *Energy Procedia* **158** 3177-83
[2] Ali A H H 2009 Delineation of frost characteristics on cold walls by using a new formula for psychrometrics demarcation boundary Energy Conversion and Management 50 1570-7
[3] Freire R Z, Oliveira G H C and Mendes N 2008 Predictive controllers for thermal comfort optimization and energy savings Energy and Buildings 40 1353-65
[4] Madu K 2018 Psychrometric Analysis of an Air-Conditioning System Operating Under Given Ambient Conditions International Journal of Innovation and Sustainability 2 34-40
[5] Horan P and Luther M B 2010 Using the Psychrometric Chart in building measurements 44th Annual Conference of the Architectural Science Association (Unitec Institute of Technology)
[6] Tailor V H and Kapadia D R G 2014 A Literature review on an energy and exergy analysis of psychrometric processes International Journal of Engineering Development and Research 2 620-6
[7] Bonjour J and Clausse M 2006 Psychrometric-like charts for the energy analysis of VOC recovery processes International Journal of Thermal Sciences 45 520-7
[8] Vadoudi K and Marinhas S 2018 Development of Psychrometric diagram for the energy efficiency of Air Handling Units International Journal of Ventilation 3 491
[9] Bucklin R A, Haman D Z, Bayabil H K and Guzman S M 2019 Using Psychrometric Chart for Frost Protection (U.S.: Department of Agriculture, UF/IFAS Extension Service, University of Florida)
[10] Román F and Hensel O 2014 Real-time product moisture content monitoring in batch dryer using psychrometric and airflow measurements Computers and Electronics in Agriculture 107 97-103
[11] Teitelbaum E, Jayathissa P, Miller C and Meggers F 2020 Design with Comfort: Expanding the psychrometric chart with radiation and convection dimensions Energy and Buildings 209 109591
[12] Teitelbaum E and Meggers F 2017 Expanded psychrometric landscapes for radiant cooling and natural ventilation system design and optimization Energy Procedia 122 1129-34
[13] Kundu B and Lee K-S 2016 Effects of psychrometric properties on fin performances of minimum envelope shape of wet fins Energy Conversion and Management 110 481-93
[14] Bell I H, Lemmon E W and Harvey A H 2018 Algorithms for the calculation of psychrometric properties from multi-fluid Helmholtz-energy-explicit models International Journal of Refrigeration 87 26-38