Production of neoagarooligosaccharides by probiotic yeast *Saccharomyces cerevisiae* var. *boulardii* engineered as a microbial cell factory

Yerin Jin†, Sora Yu†, Jing-Jing Liu², Eun Ju Yun¹, Jae Won Lee², Yong-Su Jin²,³* and Kyoung Heon Kim¹*†

Abstract

Background: *Saccharomyces cerevisiae* var. *boulardii* is a representative probiotic yeast that has been widely used in the food and pharmaceutical industries. However, *S. boulardii* has not been studied as a microbial cell factory for producing useful substances. Agarose, a major component of red macroalgae, can be depolymerized into neoagarooligosaccharides (NAOSs) by an endo-type β-agarase. NAOSs, including neoagarotetraose (NeoDP4), are known to be health-benefiting substances owing to their prebiotic effect. Thus, NAOS production in the gut is required. In this study, the probiotic yeast *S. boulardii* was engineered to produce NAOSs by expressing an endo-type β-agarase, *Bp*GH16A, derived from a human gut bacterium *Bacteroides plebeius*.

Results: In total, four different signal peptides were compared in *S. boulardii* for protein (*Bp*GH16A) secretion for the first time. The SED1 signal peptide derived from *Saccharomyces cerevisiae* was selected as optimal for extracellular production of NeoDP4 from agarose. Expression of *Bp*GH16A was performed in two ways using the plasmid vector system and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system. The production of NeoDP4 by engineered *S. boulardii* was verified and quantified. NeoDP4 was produced by *S. boulardii* engineered using the plasmid vector system and CRISPR-Cas9 at 1.86 and 0.80 g/L in a 72-h fermentation, respectively.

Conclusions: This is the first report on NAOS production using the probiotic yeast *S. boulardii*. Our results suggest that *S. boulardii* can be considered a microbial cell factory to produce health-beneficial substances in the human gut.

Keywords: *Bp*GH16A, *Saccharomyces boulardii*, CRISPR-Cas9, Neoagarooligosaccharides, Probiotics, Prebiotics

Background

The gut microbiota and intestinal immunity have been found to have a major impact on human health [1, 2]. Microbial cell factories, including *Saccharomyces cerevisiae*, have been approved for human use and have been developed to produce therapeutic proteins [3, 4]. Thus, if a microbial cell factory that can directly produce therapeutic proteins in the intestine is developed, it would be possible to study the effects of intestinal microbes on health more accurately, and the microbial cell factory could be used for the treatment of actual diseases. When designing microbial cell factories, one important consideration is the selection of an appropriate microbial host as an expression system [5], based on its safety and health benefits. Therefore, well-known probiotics, such as lactic acid bacteria and *Saccharomyces cerevisiae* var. *boulardii*, could be promising hosts as expression systems.

Lactic acid bacteria or intestinal bacteria can be used as hosts for microbial cell factories, but there may be some constraints. First, from a pharmacokinetic point of view,
it may be necessary to control the inhabiting population and residence time in the gut [6]. In the case of S. boulardii, this yeast was washed out in the gut within 3–5 days after discontinuing oral administration [7,8]. However, in the case of intestinal bacteria, it is not possible to control their inhabiting population and residence time in the gut. Second, post-translational modifications including glycosylation and phosphorylation of eukaryotic proteins, are crucial for the expression of their biological activity [9]. Therefore, yeast has been used as an eukaryotic host to produce many therapeutic proteins [9]. Taken together, the eukaryotic probiotic S. boulardii is considered a promising host to use as an intestinal microbial cell factory [10,11].

S. boulardii, originally isolated from lychee and mangosteen, is generally recognized as safe (GRAS) yeast [12,13]. S. boulardii is known to survive in the human gastrointestinal tract owing to its high tolerance to low pH and high temperatures [13,14]. Additionally, S. boulardii is the only probiotic yeast found to be effective in double-blind studies [14,15]. Previously, the metabolic engineering of S. boulardii and its use as a potential oral vaccine delivery vehicle were studied in mouse models [16,17]. However, to our knowledge, there have been no studies yet on the production of prebiotics which possess a beneficial effect on the health of a host by selective stimulation of the activity or growth of probiotic-like bacteria in the colon using an engineered S. boulardii [18]. In this study, we engineered the probiotic yeast S. boulardii to produce bioactive substances with prebiotic effects with the ultimate goal of developing a symbiotic system for humans.

When non-digestible diets reach the large intestine, they are utilized by the gut microbiota. Subsequently, non-digestible diets change the intestinal microflora and affect the overall health of the host [19,20]. As a non-digestible diet, agarose, a polysaccharide obtained from red macroalgae, is commonly used as dietary fiber in non-digestible diets. Agarose, a polysaccharide obtained from agarose, was found to have various physiological and biological activities, including anti-obesity, anti-diabetic, anti-inflammatory, anti-viral, and anti-tumor activities [22–27]. Moreover, in vivo experiments confirmed that NAOs have a prebiotic effect [28]. In particular, neoagarotetraose (NeoDP4), which contains various bioactive properties, such as anti-inflammatory [29] and anti-oxidative activity [30], has been found to be a potential prebiotic for modulating intestinal microbiota, thereby promoting the health of the host. In addition, Bifidobacterium, which is considered as a beneficial probiotic microorganism having therapeutic benefits and is one of the most commonly used probiotics in humans [31], significantly increased in mice treated with antibiotics supplemented with NeoDP4 [29]. NeoDP4 can be produced by endo-type β-agarase from agarose. Recently, an endo-type β-agarase, BpGH16A originating from human gut bacterium Bacteroides plebeius, has been reported [32,33]. As B. plebeius was isolated from human gut microbes that can be considered relatively safe, BpGH16A was chosen to be expressed in S. boulardii to enzymatically produce NAOs, primarily NeoDP4, from agarose.

In this study, we introduced and expressed the gene for BpGH16A in the probiotic yeast S. boulardii using CRISPR-Cas9, and the production of prebiotic NeoDP4 from agarose by the engineered S. boulardii was verified and optimized (Fig. 1). To our knowledge, this is the first study to show that the probiotic S. boulardii can be used as a microbial cell factory for producing prebiotics.

Methods

Strains and media

Escherichia coli DH5α was used to construct the plasmids. *E. coli* strains were grown in Luria-Bertani medium (10 g/L tryptone, 5 g/L yeast extract, and 10 g/L sodium chloride) containing 100 µg/mL ampicillin (Sigma-Aldrich, St. Louis, MO, USA) at 37°C and 200 rpm. *S. boulardii* ATCC MYA-796 was used as the parental strain for producing NeoDP4. Yeast strains were grown at 37°C on yeast synthetic complete (YSC) medium, which contained a 6.7 g/L yeast nitrogen base without amino acids (Becton, Dickinson and Company, Franklin Lakes, NJ, USA), 20 g/L glucose, and 1.92 g/L yeast synthetic drop-out medium supplements without uracil (Sigma-Aldrich), or YSC medium, which contained a 6.7 g/L yeast nitrogen base (Becton, Dickinson and Company) and 20 g/L glucose. For CRISPR-Cas9-based genome editing experiments, 100 µg/mL nourseothricin (NAT; Jena Bioscience, Jena, Germany) and 500 µg/mL geneticin (AG Scientific, San Diego, CA, USA) were added to the medium if required for selection of the transformants.

Plasmid and strain construction

To use the auxotrophic marker for transformant selection, a strain with inactivated HIS3, TRP1, and URA3 was created first. Based on the SB-TU strain [17] in which TRP1 and URA3 were inactivated, HIS3 was further inactivated. The gene fragment of HIS3 [34] was amplified using the primer pair gHIS3_F and gHIS3_R (Table 1). The resulting polymerase chain reaction (PCR) product was digested with SacI and NotI and ligated to pRS42H, resulting in plasmid p42H_gHIS3, designed for simultaneously inactivating HIS3 (Table 2). Repair DNA for HIS3 disruption was amplified using PCR by using primers dDNA_HIS3_F and dDNA_HIS3_R (Table 1).
The Cas9-NAT plasmid conferring NAT resistance was used to select the transformants using an antibiotic marker after transformation [34]. Yeast transformation into SB-TU was carried out using the polyethylene glycol (PEG)-LiAc method, as described previously [35]. Finally, S. boulardii strain SB-HTU, in which HIS3, TRP1, and URA3 were inactivated, was constructed (Table 3).

Plasmids that were used to screen an optimal signal peptide for secretion of BpGH16A were constructed as follows. The gene BACPLE_01670, encoding BpGH16A, was cloned into the pRS426GPD plasmid. The BpGH16A gene fragment was amplified from B. plebeius DSM 17135 (DSMZ, Braunschweig, Germany) genomic DNA using PCR with different primer pairs depending on the type of signal peptide (Table 1). The predicted signal peptide sequences at the N-terminus of BpGH16A were removed for signal peptide screening. In total, four different signal peptides, namely chicken lysozyme signal peptide (CL), α-mating factor signal peptide (α-MF) from S. cerevisiae, Sta1 signal peptide (STA1) from Saccharomyces diastaticus, and Sed1 signal peptide (SED1) from S. cerevisiae, were used [17, 36, 37]. Additionally, for construction of the control strain without any signal peptide, PCR was performed using the primer pairs 16A_W/OSP_F_Spel and 16A_W/OSP_R_XhoI (Table 1). The PCR products were double-digested by restriction enzymes determined during primer design and ligated with plasmid pRS426GPD digested using the same restriction enzymes, using T4 DNA ligase (New England Biolabs, Ipswich, MA, USA). The resulting plasmids were designated as p426_Bp_W/OSP, p426_Bp_CL, p426_Bp_αMF, p426_Bp_STA1, and p426_Bp_SED1 (Table 2). Yeast transformation into SB-HTU was performed using the PEG-LiAc method. Finally, the experimental strains SB-HTU_16A_C, SB-HTU_16A_A, SB-HTU_16A_S, and SB-HTU_16A_D were prepared for signal peptide screening (Table 3). As control strains, SB-HTU_E harboring neither BpGH16A nor signal peptide, and only pRS426GPD vector, and SB-HTU_W harboring the BpGH16A gene but no signal peptide were prepared.

To integrate the BpGH16A gene into the genome of S. boulardii for the stable expression of BpGH16A, a guide RNA plasmid p42K_CS5 was constructed (Table 2). The plasmid was generated using reverse PCR of the pRS42K plasmid containing a guide RNA sequence using the primer pairs gRNA_CS5_F and gRNA_CS5_R (Table 1). The 20-bp targeting sequence of the guide RNA binds to the front of the PAM sequence (NGG) in the empty locus on chromosome XV (CS5). The BpGH16A and SED1 signal peptide were incorporated into this locus via homologous recombination without affecting the function of other genes. For homologous recombination, the plasmid p426_Bp_SED1 was amplified using the primer pairs dDNA-CS5_F and dDNA-CS5_R as donor DNA for genome integration using CRISPR-Cas9 (Table 1). To overcome the inefficiencies associated with genome integration, the PCR product constructed using the primer pairs dDNA-CS5-F and dDNA-CS5-R was amplified using PCR by using primer pairs.

Fig. 1 Schematic representation of NAOS production by engineered S. boulardii. BpGH16A expression was performed using two different systems. The first was a vector system with an auxotrophic marker, and the second was the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system. NAOSs, neoagarooligosaccharides; BpGH16A, endo-type β-agarase originating from human gut bacterium Bacteroides plebeius.
Table 1 Primers used in this study

Primer	Sequence (5′ → 3′, restriction sites are underlined)
gHIS3_F	TCCACCTAGCGGATGACCTT
gHIS3_R	TGCATTACCTGTCATCCT
dDNA_HIS3_F	GTCAGCAAAACTCCCAAGTTATTCGTAGATATCGAAGTGTCTTTGAAAGCTGTTGAACC
dDNA_HIS3_R	TTCTGGAAGATGCGATGTGCTCAGATGAGTTGACCTTTTTAAAGAGTCGTGCC
16A_W/OSP_F_Spel	ATA ACT AGT GCA GAA AAT TTA AAT AAA TCA TAC GAG TG
16A_W/OSP_R_Xhol	ATA CTC GAG TTC TTC TGG GAC CAG TGT ATA AAC
16A_CL_F_Spel	ATA ACT AGT ATG TCT TTC TGG CTA TAT TGG TCT TGG CTC GCC CTG GCT GTG GCC GGA GAA AAT TTA AAT AAA TCA TAC G
16A_CL_R_Xhol	ATA CTC GAG TTC TTC TGG GAC CAG TGT AT
αMF_F_Spel	ATA ACT AGT AGT AGA TTT CCT TCA ATT TTT ACT G
αMF_R_16A	GCA GAA AAT TTA AAT AAA AAT GCT ACG TCA GCC TCT TGT TTT TTT TGG TCG TCG GAG C
16A_R_αMF_BamHII	ATA GGA TCC TTC TTC TGG GAC CAG TGT AT
STA1_F_EcoRI	GCA GAA AAT TTA AAT AAA TCA TAC GAG TTT TTT TGG TCG TCG GAG C
STA1_16A_R	AAA AGG AAA AA GAG GGG ATG CCT ATT TTT AAA TTA GAG AAA AAT TAT TAT AAA AAA TGG AAA GAA AAA GAA GAA AAA AGA GAA GAA
dDNA‑CS5‑F	AAA AGA GGA GAA AAA AA GAA AAA ATG ATG TCT ATT ATG ATA GCG AAT GCA ATT AAC CT CAC CAC TAA GCG GAA
dDNA‑CS5‑R	TGG TGG TGG CCT TGT TAT TAT ATA TGG AAG AGC AGA TAA TAT TAT GAC TCA CTA TAT TAG GGC
dDNA‑CS5‑60_F	ATA GTA CAC GCC CTT GCC AAC AGT GGA ATT AACA GCT CTC ATA TAT AAA AAA TGG AAA GAA AAA AGA GAA AAA AGA GAA GAA GAA GGA GAA
dDNA‑CS5‑60_R	GGC ATA ACA ATG CAC AGA TCC GCA GGT TTT GTA ATG TTA ACA ACA GCC GTC TGC TGG TTC CTG TAT TAA TAA TAA TAA TAA TAA TAA
gCS5_F	CTG GTA GTT GCA CAG AAA GAG TTT TAG AGC TAG AAA TAG CAA G
gCS5_R	TCT TGC TGG GCA ACT ACC AGC GAT CAT TTA TCT TCC ACT GCC
Conf‑CS5‑F	AAA AGG ATT TAT TAT GAT AGC GAA GAA GTC
Conf‑CS5‑R	CCC AGG ATT TAC GAA GAC C

Table 2 Plasmids used in this study

Plasmid	Description	References
pRS42H	2µ origin	EUROSCARF
p42H_gHIS3	pRS42H carrying HIS3 disruption gRNA cassette	This study
pRS426GPD	URA3, GPD promoter, CYC1 terminator, 2µ origin, and Amp	Mumberg et al. [45]
p426_Bp_W/OSP	pRS426GPD harboring BpGH16A from B. plebeius, deletion signal peptide	This study
p426_Bp_CL	pRS426GPD harboring BpGH16A and chicken lysozyme signal peptide	This study
p426_Bp_adMF	pRS426GPD harboring BpGH16A and a-mating factor signal peptide	This study
p426_Bp_STA1	pRS426GPD harboring BpGH16A and STA1 signal peptide	This study
p426_Bp_SED1	pRS426GPD harboring BpGH16A and SED1 signal peptide	This study
Cas9-NAT	p414-TEF1p-Cas9-CYC1t-NAT1	Zhang et al. [34]
pRS42K	2µ origin, KanMX	Taxis and Knop [46]
p42K_CS5	pRS42K gRNA cassette targeting the intergenic site on Chr XV	This study
16 A-D-CS5	BpGH16A, SED1 signal peptide, donor DNA for CSS site integration	This study
pairs CS5+60_F and CS5+60_R (Table 1). The homologous region was found to be approximately 120 bp. During yeast transformation, 1 µg of Cas9-NAT plasmid, 20 µg of 16 A-D-CS5 with donor DNA, and 2 µg of p42K_CS5 with guide RNA were added to S. boulardii and transformed. Genomic integration was verified with yeast colony PCR by using the primer pairs Conf-CS5-F and Conf-CS5-R (Table 1).

Fermentation experiments

To produce NAOSs in the engineered S. boulardii, fermentation was performed with 2.5 g/L agarose at 37 °C and 200 rpm in 125-mL flasks for 72 h. During fermentation, agarose, low gelling temperature (Sigma-Aldrich) was used to prevent congealing of agarose. First, strains SB-HTU_16A_C, SB-HTU_16A_A, SB-HTU_16A_S, and SB-HTU_16A_D were grown in YSC medium at 37 °C and 200 rpm. Pre-cultured cells were centrifuged at 10,170 × g for 10 min and washed twice using sterilized distilled water. The harvested cells were inoculated into 20 mL of YSC medium containing 20 g/L glucose and 2.5 g/L agarose in 50 mM potassium hydrogen phthalate (KHP) buffer (pH 5.5). The initial cell density was adjusted to an optical density at 600 nm (OD₆₀₀) of 1.0. As a control, strains SB-HTU_16A_E and SB-HTU_16A_W were fermented under the same conditions.

To examine NAOSs production by S. boulardii SB_16A_D engineered by CRISPR-Cas9, fermentation was performed in YSC medium. Pre-cultured cells in YSC medium were inoculated in 20 mL of YSC medium containing 20 g/L glucose and 2.5 g/L agarose in 50 mM KHP buffer (pH 5.5). The initial cell density was adjusted to OD₆₀₀ = 1.0. Wild-type S. boulardii ATCC MYA-796 was used as the control strain. Fermentation experiments were performed in triplicates.

Analyses of cell growth and NAOS production using high-performance liquid chromatography

Cell growth was monitored by measuring OD₆₀₀ using a UV-visible spectrophotometer (Bio-Rad, Hercules, CA, USA). To analyze and quantify the reaction products of agarose by the engineered S. boulardii, including NeoDP4, glucose, acetic acid, and ethanol, high-performance liquid chromatography (HPLC) analysis was performed. The HPLC system (Agilent Technologies, Santa Clara, CA, USA) was equipped with a refractive index (RI) detector (Agilent Technologies) using an Aminex HPX-87H column (Bio-Rad). The column and RI detector temperatures were set to 65 and 55 °C, respectively, and the column was eluted with 0.005 M H₂SO₄ at a flow rate of 0.5 mL/min.

Identification of NAOSs using thin-layer chromatography

To identify the hydrolyzed products of agarose during fermentation, thin-layer chromatography (TLC) analysis was performed. During fermentation, 1 mL of cell culture containing the fermentation products was obtained for each time point (0, 12, 24, 36, 48, and 72 h). For accurate measurements, the obtained cell culture was boiled to terminate the possible enzymatic reaction. After centrifugation at 16,609 × g for 15 min at 4 °C, a 1-µL aliquot from each supernatant was loaded onto silica gel 60 plates (Merck, Damstadt, Germany). After drying the TLC plates, they were visualized with 10% (v/v) H₂SO₄ in ethanol and 0.2% (w/v) naphthoresorcinol in ethanol, as previously described [38].

Results

NeoDP4 production by engineered yeast

To produce NeoDP4 by engineered yeast, β-agarase secretion from yeast was necessary for agarose degradation. Therefore, the expression and secretion of an endotype β-agarase, BpGH16A, by yeast S. boulardii, was tested first. To confirm that BpGH16A is functionally

Table 3 Strains used in this study

Strain	Description	References
S. boulardii	ATCC MYA-796	ATCC
SB-TU	S. boulardii; TRP1 and URA3 disruption	Liu et al. [17]
SB-HTU	S. boulardii; HIS3, TRP1, and URA3 disruption	This study
SB-HTU_16A_E	SB-HTU; pRS426GPD	This study
SB-HTU_16A_W	SB-HTU, BpGH16A, deletion signal peptide, pRS426GPD	This study
SB-HTU_16A_C	SB-HTU, BpGH16A, chicken lysozyme signal peptide, pRS426GPD	This study
SB-HTU_16A_A	SB-HTU, BpGH16A, α-mating factor signal peptide, pRS426GPD	This study
SB-HTU_16A_S	SB-HTU, BpGH16A, STA1 signal peptide, pRS426GPD	This study
SB-HTU_16A_D	SB-HTU, BpGH16A, SED1 signal peptide, pRS426GPD	This study
SB_16A_D	S. boulardii, BpGH16A, SED1 signal peptide	This study
expressed and secreted by *S. boulardii*, SB-HTU_16A_C containing CL, which has been previously proven to work in *S. boulardii*, was used [17].

In the HPLC analysis of SB-HTU_16A_C fermentation products, a significant peak at an approximate retention time of 7.6 min, corresponding to NeoDP4, was detected in the sample (Fig. 2). In contrast, no peak was detected in the sample from the control strain, SB-HTU_16A_E, harboring the empty vector. Thus, these results showed that *Bp*GH16A was functionally expressed, secreted from *S. boulardii*, and produced NeoDP4 by hydrolyzing agarose.

Screening of the optimal signal peptide for NeoDP4 production by *S. boulardii*

As the enzyme *Bp*GH16A was confirmed to be functionally expressed and secreted by *S. boulardii*, the next step was to identify the optimal signal peptide to further increase NeoDP4 production. Four different signal peptides, CL, α-MF, STA1, and SED1, were tested. Each signal peptide was individually pre-fixed to the *Bp*GH16A sequences and introduced into SB-HTU to identify the signal peptide that produces more NeoDP4. Production of NeoDP4 by the engineered yeasts was verified using TLC analysis at 72 h (Fig. 3A); NeoDP4 was strongly produced by the strains containing CL and SED1. The NeoDP4 spot was weakly detected by the strain with α-MF. To compare the amount of NeoDP4 produced by each engineered yeast more accurately, HPLC analysis was performed (Fig. 3B). NeoDP4 was found to have gradually increased during the 72-h fermentation by each strain, and the highest amount of NeoDP4 was produced by the strain containing SED1. The amount of NeoDP4 produced after 72 h of fermentation was 1.73, 0.95, 0.99, and 1.86 g/L when signal peptides, namely CL, α-MF, STA1, and SED1, respectively, were used. The production of NeoDP4 by the strain containing SED1 was 1.08, 1.96, and 1.88 times higher than that by the strains containing CL, α-MF, and STA1, respectively. Thus, SED1 from *S. cerevisiae*, which showed the highest production of NeoDP4, was selected for further NeoDP4 production.

Meanwhile, NeoDP4 was not produced in any control group, whereas it was produced in all groups in which the signal peptide was present (Fig. 3). In particular, SB-HTU_16A_W, which was used as a negative control, was constructed to confirm that the extracellular activity of *Bp*GH16A was not derived from cell lysis but from secretion due to the heterologously expressed signal peptides. As NeoDP4 was not detected in the culture broth of SB-HTU_16A_W, the degradation of agarose into NeoDP4 was confirmed to be caused by the secreted *Bp*GH16A.

Fermentation for the production of NeoDP4 by the engineered yeast

Based on the signal peptide screening results, the strain SB-HTU_16A_D containing the SED1 signal peptide was fermented in YSC medium without uracil containing 2.5 g/L agarose for 72 h. The fermentation products were analyzed using TLC and HPLC. NeoDP4 production was confirmed using TLC analysis (Fig. 4A). The initially added glucose was confirmed to be depleted after 36 h. Based on HPLC analysis of the fermentation products at each time point, 1.86 g/L NeoDP4 was obtained after 72 h of fermentation (Fig. 4B). Cell growth entered the stationary phase from 24 h onwards and reached an OD₆₀₀ = 6.7. Both ethanol and acetic acid accumulated up to a concentration of 4.8 g/L. In conclusion, NeoDP4 was produced as the target major product by the engineered yeast SB-HTU_16A_D.
Strain construction using CRISPR-Cas9 and fermentation

For stable expression, BpGH16A and SED1 were introduced into the genome of S. boulardii, in this study. BpGH16A gene knock-in was performed via homologous recombination using CRISPR-Cas9 (Additional file 1: Fig. S1A). After yeast transformation, the gene encoding BpGH16A was confirmed to have entered the genome successfully, using yeast colony PCR. Primer pairs Conf-CS5-F and Conf-CS5-R were designed and used so that the size was 2.4-kb when the gene entered and 0.5-kb when the gene was not entered (Table 2). The successful integration of BpGH16A and SED1 into S. boulardii was confirmed with yeast colony PCR, based on the formation of a 2.4-kb single band in 3 lanes, namely, 4, 7, and 8 out of total 9 lanes (Additional file 1: Fig. S1B).

Finally, strain SB_16A_D containing BpGH16A and SED1 in the S. boulardii genome was constructed using CRISPR-Cas9, and flask fermentation proceeded in YSC medium containing 2.5 g/L agarose, for 72 h. NeoDP4 production was confirmed using TLC analysis (Fig. 5A), suggesting that BpGH16A was secreted from strain SB_16A_D. For more accurate fermentation products analysis, HPLC analysis and growth measurement were performed at each time point as well (Fig. 5B). Glucose was depleted before 12 h of fermentation had passed, and the strain grew to an OD600 = 15.51 at 72 h. After fermentation, 0.80 g/L NeoDP4 was produced, as well as 3.03 g/L ethanol and 3.65 g/L acetic acid.

Discussion

S. boulardii has been widely used as a probiotic because it can compete with diarrhea-causing pathogens in the human gut [39]. Additionally, S. boulardii may be
used as a host for a microbial cell factory that produces useful proteins in the gut [11]. *S. boulardii* has been metabolically engineered; however, it has not yet been engineered to produce prebiotics [17]. In this study, we introduced an endo-type β-agarase, *Bp*GH16A, into *S. boulardii* to produce potential prebiotics, NAOSs from red macroalgal agarose (Fig. 1). The production of NeoDP4, a NAOS, was verified by engineered *S. boulardii*.

NAOSs, which can be produced by hydrolyzing agarose extracted from red macroalgae by endo-type β-agarase, have been reported to possess various health benefits [22–27]. NeoDP4, which is a representative NAOS, has been reported to have various biological properties [40, 41]. For example, the anti-fatigue effects of NeoDP4 via short-chain fatty acid production and regulation of the microbial composition have been demonstrated in mice [29]. Moreover, a significant increase in *Lactobacillus* and *Bifidobacterium* was observed by supplementing mice with NeoDP4, implying that NeoDP4 is a potential prebiotic [29]. NeoDP4 is also known to alleviate the inflammatory response by inhibiting the MAPK and NF-κB signaling pathways [26]. Therefore, the requirement for production of NAOSs, especially NeoDP4, is increasing rapidly [42].

One of the goals of this study was to effectively secrete *Bp*GH16A to hydrolyze agarose into NeoDP4 by expressing a signal peptide in engineered yeast. Previous studies have used CL or α-MF signal peptides to secrete proteins from *S. boulardii* [11, 16, 17]. Based on additional screening using STA1 and SED1 used in other yeast strains [36, 37], all of them (CL, α-MF, STA1, and SED1) were
confirmed to secrete BpGH16A in S. boulardii (Fig. 3). Through signal peptide screening, SED1 was shown to have the highest efficiency in producing NeoDP4 via secretion of BpGH16A. Because of the lack of other reports on signal peptide screening in S. boulardii so far, this study could contribute to studies on the production and secretion of other proteins by S. boulardii.

Genomic integration can avoid problems that may arise in a complex intestinal environment when using plasmids. These problems include plasmid instability in the absence of selective pressure, potential diffusion to other microorganisms, and an increased metabolic burden associated with the maintenance of multicopy plasmids [43]. Therefore, we attempted to integrate BACPLE_01670 coding for BpGH16A into the genome of S. boulardii using the CRISPR-Cas9 system, which is a sophisticated and advanced genomic engineering tool (Additional file 1: Fig. S1A) [44], and succeeded in constructing an S. boulardii strain that secretes BpGH16A, namely, SB_16A_D. SB_16A_D strain produced 0.80 g/L NeoDP4 (Fig. 5) at 72 h. Compared to that when using a plasmid vector system with an auxotrophic marker, the final OD600 after 72 h of fermentation of the strain constructed using the CRISPR-Cas9 system was 2.3 times higher, but the NeoDP4 production was lower. This difference was presumed to be due to the relatively strong constitutive promoter and the high copy number of the pRS426GPD plasmid [45]. Nevertheless, the successful protein secretion from S. boulardii using genomic integration showed that S. boulardii could be used as a microbial cell factory for producing useful proteins and their products in the human gut.

Conclusions
We have, for the first time, demonstrated that NAOSs can be produced by the probiotic yeast S. boulardii. Our signal peptide screening results provide more options available in S. boulardii. We also succeeded in producing health beneficial substances using probiotic yeast harboring BpGH16A, an endo-type β-agarase, originating from the human gut bacteria B. plebeius. Our results suggest that symbiotics can be achieved by engineered probiotic yeast that produce prebiotics in the human gut.

Abbreviations
α-MF: α-Mating factor signal peptide; CL: Chicken lysozyme signal peptide; CRISPR: Clustered regularly interspaced short palindromic repeat; GH16: Glycoside hydrolase 16; GRAS: Generally regarded as safe; HPLC: High-performance liquid chromatography; KHP: Potassium hydrogen phthalate; NAOSs: Neoagarooligosaccharides; NAT: Nourseothricin; NeoDP4: Neoagarotetraose; OD600: Optical density at 600 nm; PCR: Polymerase chain reaction; PEG: Polyethylene glycol; RI: Refractive index; SED1: Signal peptide; STA1: STA1 Signal peptide; TLC: Thin-layer chromatography; YSC: Yeast synthetic complete.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12934-021-01644-w.

Additional file 1: Fig. S1. Engineering of S. boulardii for NAOSs production using CRISPR-Cas9 system. (A) Diagram for the construction of engineered S. boulardii expressing BpGH16A using the CRISPR-Cas9 system. (B) Yeast colony PCR for confirmation of the genomic integration of each mutant.

Acknowledgements
Facility support from the Institute of Biomedical Science and Food Safety at the Korea University Food Safety Hall is acknowledged.

Authors’ contributions
YJ and SY designed and performed the experiments, analyzed the data, and wrote the manuscript. JW, JJL, and EJY performed the experiments, analyzed the data, and wrote the manuscript. YSJ and KHK conceived the project, designed the experiments, analyzed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Mid-career Researcher Program (2020R1A2B5B02002631) through the National Research Foundation of Korea (NRF), the Ministry of Oceans and Fisheries, Korea (20200367), and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries, funded by the Ministry of Agriculture, Food, and Rural Affairs (S2103605158010). This research was also funded by National Institute of Food and Agriculture, U.S. Department of Agriculture: ILU-698-914 awarded to YSJ and DNS Vision 20/20 awarded to EJY and YSJ.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea. 2 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. 3 Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Received: 25 February 2021 Accepted: 23 July 2021
Published online: 18 August 2021

References
1. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.
2. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.
3. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Fact. 2009;8:17.
4. Schmidt F. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol. 2004;65:363–72.
5. Rangel AE, Gómez Ramírez JM, González Barrios AF. From industrial by-products to value-added compounds: the design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses. Biofuel Bioprod Biorefin. 2020;14:1228–38.

6. Marteau P, Vesa T. Pharmacokinetics of probiotics and biotherapeutic agents in humans. Biosci Microflora. 1998;17:1–6.

7. Blehaut H, Massot J, Elmer G, Levy R. Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm Drug Dispos. 1989;10:533–64.

8. Elmer G, McFarland L, Surawicz C, Danko L, Greenberg R. Behaviour of Saccharomyces boulardii in recurrent Clostridium difficile disease patients. Aliment Pharmacol Ther. 1999;13:1663–7.

9. Jenkins N. Modifications of therapeutic proteins: challenges and prospects. Cytotherapy. 2007;9:121–5.

10. Al-zaidi RE, Al-Mozan HD, Alrikabi NJ. Eukaryotic probiotic Saccharomyces boulardii application in clinical trials: a review. Int J Pharm Qual Assur. 2020;11:160–5.

11. Li R, Wan X, Takala TM, Saris PE. Heterologous expression of the leucocin A plasmid in Candida boulardii. Eukaryotic Cell. 2001;2:103–11.

12. van der Aa Kühle A, Jespersen L. The taxonomic position of Saccharomyces boulardii as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1-5.8S rDNA-ITS2 region and the mitochondrial cytochrome-c oxidase II gene. Syst Appl Microbiol. 2003;26:564–71.

13. Douradina B, Reis VC, Rogers MB, Torres FA, Evans JD, Marques ET Jr. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii. Bioengineered. 2014;5:21–9.

14. Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther. 2007;26:767–78.

15. Kowalska M, Albrecht P, Szymanska H. Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea in children: a randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther. 2005;21:583–90.

16. Bagherpour G, Ghasemi H, Zand B, Zarei N, Roohvand F, Ardakani EM. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev. 2016;74:624–34.

17. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.

18. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125:401–12.

19. Pistollato F, Sumalla Cano S, Elío L, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev. 2016;74:624–34.

20. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.

21. Kolb N, Vallorani L, Milanović N, Stocchi V. Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food Technol Biotechnol. 2004;42:57–61.

22. Torres MD, Flórez-Fernández N, Domínguez H. Integral utilization of red seaweed for bioactive production. Mar Drugs. 2019;17:314.

23. Hong SJ, Lee J-H, Kim EJ, Yang HJ, Park J-S, Hong S-K. Anti-obesity and anti-diabetic effect of neogarooligosaccharides on high-fat diet-induced obesity in mice. Mar Drugs. 2017;15:90.

24. Lee MH, Jang J-H, Yoon YG, Lee SJ, Lee M-G, Kang TH, Han HD, Kim HS, Choi WS, Park WS. Neogaroligosaccharide-activated mediation of dendritic cells via Toll-like receptor 4 leads to stimulation of natural killer cells and enhancement of antitumor immunity. BMB Rep. 2017;50:263.

25. Lin F, Yang D, Huang Y, Zhao Y, Ye J, Xiao M. The potential of neogarooligosaccharides as a treatment of type II diabetes in mice. Mar Drugs. 2019;17:541.

26. Wang W, Liu P, Hao C, Wu L, Wan W, Mao X. Neogaroo-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-kB pathways. Sci Rep. 2017;7:44252.

27. Kim M, Lee J-E, Cho H, Jung H-G, Lee W, Seo HY, Lee S-H, Ahn D-G, Kim S-I, Yu J-W. Antiviral efficacy of orally delivered neogarooligosaccharae, a nonconventional TLR4 agonist, against norovirus infection in mice. Biomaterials. 2020;263:120391.

28. Hu B, Gong Q, Wang Y, Ma Y, Li J, Yu W. Prebiotic effects of neogarooligosaccharides prepared by enzymatic hydrolysis of agarose. Anserobio. 2006;12:260–6.

29. Zhang N, Hou E, Song J, Li J, Tang Q, Mao X. Neogaracteasemase-modulated gut microbiota and alleviated gut inflammation in antibiotic treatment mice. Food Agric Immunol. 2017;28:1408–23.

30. Xu X-Q, Su B-M, Xie J-S, Li R-K, Yang J, Lin J, Ye X-Y. Preparation of bioactive neogarooligosaccharides through hydrolysis of Gracilaria leniemaniformis agar: a comparative study. Food Chem. 2018;240:330–7.

31. Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immuno Cell Biol. 2000;78:80–8.

32. Hehemann J-H, Kelly AG, Pudlo NA, Martens EC, Boraston AB. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extant microbes. Proc Natl Acad Sci U S A. 2012;109:19786–91.

33. Hehemann J-H, Correc G, Barbevron T, Helbert W, Czpek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japane- nese gut microbiota. Nature. 2010;464:908–12.

34. Zhang G-C, Kong II, Hu J-J, Cate JH, Jin Y-S. Construction of a quadruple auxotrophic mutant of an industrial polyplid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Appl Environ Microbiol. 2014;80:7694–701.

35. Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355–60.

36. Inokumia K, Bamba T, Ishii I, Ito Y, Hasunuma T, Kando A. Enhanced cell-surface display and secretory production of cellulosytic enzymes with Saccharomyces cerevisiae Ser1 signal peptide. Biotechnol Bioeng. 2016;133:2358–66.

37. Yanagisawa M, Kasuu M, Ariga O, Nakasaki K. Direct production of ethanol from neogarobioreiose using recombinant yeast that secretes a-neogarooligosaccharide hydrolase. Enzyme Microb Technol. 2016;68:82–9.

38. Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, Pelton JG, Kang NJ, Choi KG, Kim KH. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol. 2013;97:2961–70.

39. Micklefield G. Saccharomyces boulardii in the treatment and prevention of antibiotic-associated diarrhea. MMW Fortschr Med. 2014;156:61.

40. Hong SJ, Lee J-H, Kim EJ, Yang HJ, Chang Y-K, Park J-S, Hong S-K. In vitro and in vivo investigation for biological activities of neogarooligosacchara-rides prepared by hydrolyzing agar with β-agarase. Biotechnol Bioprocess Eng. 2017;22:489–96.

41. Fu XT, Kim SM. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs. 2010;8:200–18.

42. Koti BA, Shinde M, Lalitha J. Repeated batch production of agar-oligo- saccharides from agarose by an amberlite IRA-900 immobilized agarase system. Biotechnol Bioprocess Eng. 2013;18:333–41.

43. Durmusoglu D, A’Abri IS, Collins SP, Beisel C, Crook NC. Establishing probiotic Saccharomyces boulardii as a model organism for synthesis and delivery of biomolecules. bioRv. 2020:01.22:915389.

44. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

45. Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expres- sion of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119–22.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.