Maximum entropy and the problem of moments: A stable algorithm

K. Bandyopadhyay and A. K. Bhattacharya

Department of Physics, University of Burdwan, Burdwan, WB 713104, India

Parthapratim Biswas and D. A. Drabold

Department of Physics and Astronomy, Ohio University, Athens, OH 45701

We present a technique for entropy optimization to calculate a distribution from its moments. The technique is based upon maximizing a discretized form of the Shannon entropy functional by mapping the problem onto a dual space where an optimal solution can be constructed iteratively. We demonstrate the performance and stability of our algorithm with several tests on numerically difficult functions. We then consider an electronic structure application, the electronic density of states of amorphous silica and study the convergence of Fermi level with increasing number of moments.

PACS numbers: 71.23.Cq, 71.55.Jv, 02.30.Za

One of the fixed themes of physics is the solution of inverse problems. A ubiquitous example in theoretical physics is the “Classical Moment Problem” (CMP), in which only a finite set of power moments of a non-negative distribution function \(p \) is known, and the full distribution is needed. It is obvious that the solution for \(p \) is not unique for a finite set of moments. This non-uniqueness suggests the need for a “best guess” for \(p \), based upon the available information. With its ultimate roots in nineteenth century statistical mechanics and a subsequent strong justification based upon probability theory, the “maximum entropy” (maxent) method has provided an extremely successful variational principle to address this type of inverse problem. Collins and Wragg used the maxent method to solve the CMP for a modest number of moments. In a comprehensive paper with seminal applications, Mead and Papanicolaou solved the CMP with maximum entropy techniques and proposed the first practical numerical scheme to solve the moment problem for up to 15 moments. In a host of subsequent papers, the utility of the method as an unbiased and surprisingly efficient (rapidly convergent) solution of the CMP has been established. The principle has been used extensively in a number of diverse applications ranging from image construction to spectral analysis, large-scale electronic structure problems, series extrapolation and analytic continuation, quantum electronic transport, ligand-binding distribution in polymers, and transport planning.

There exist a number of maximum entropy algorithms that have been developed over the last two decades. Many of the algorithms (but not all) are constrained by the number of moments that it can deal with and become unreliable when the number of constraints exceeds a problem-dependent upper limit. As the number of moments increases, the calculation of moments (particularly the power moments) becomes more sensitive to machine precision and the optimization problem becomes ill-conditioned. It has been observed that implementation of a maxent algorithm with more than 20 power moments is notoriously difficult even with extended precision arithmetic and it rarely gives any further information on the nature of the distribution. The use of orthogonal polynomials as basis set significantly improves the accuracy and remedies most of the problems one encounters with power moments.

In this paper we present an iterative approach to construct the maxent solution of CMP, which is based upon discretization of the Shannon entropy functional. The essential idea is to discretize Shannon entropy and map the problem from the primal space onto dual space where an optimal solution can be constructed iteratively without the need of matrix inversion. We discuss theoretical ideas and develop algorithms that can be used with both power and Chebyshev moments. The stability and the accuracy of the method are discussed with reference to two numerically non-trivial examples – a uniform distribution and a double-delta function. We illustrate the usefulness of our technique by computing the electronic density of states (EDOS) of amorphous silica with particular emphasis on convergence of the Fermi level as a function of number of moments.

The starting point of our approach is to use a discretized form of the Shannon entropy functional using a quadrature formula

\[
S = -\int p(x) \ln p(x) dx \approx -\sum_{j=1}^{n} w_j p_j \ln p_j \quad (1)
\]

Here \(w_j \) and \(x_j \) are the weights and abscissas of any accurate quadrature formula, say the Gauss-Legendre and without any loss of generality we restrict ourselves to \(x \in [0,1] \). We want to maximize \(S \) subject to the discretized moment constraints

\[
\sum_{j=1}^{n} w_j x_j^i p_j = \sum_{j=1}^{n} a_{ij} \bar{p}_j = \mu_i, \quad i = 1, 2, ..., m \quad (2)
\]
where we define \(\tilde{p}_j = w_j p_j \) and \(a_{ij} = x_j^i \). The entropy optimization program (EOP) can now be stated as to optimize the Lagrangian function

\[
L(\tilde{\mathbf{p}}, \eta) = \sum_{j=1}^{n} \tilde{p}_j \ln \left(\frac{\tilde{p}_j}{w_j} \right) - \sum_{i=1}^{m} \eta_i \left(\sum_{j=1}^{n} a_{ij} \tilde{p}_j - \mu_i \right)
\]

(3)

and the solution can be written as

\[
\tilde{p}_j = w_j \exp \left(\sum_{i=1}^{m} a_{ij} \tilde{\eta}_i - 1 \right), \quad j = 1, 2, \ldots, n
\]

(4)

Since \(w \geq 0 \), Eq. (4) implies that \(\tilde{\mathbf{p}} \geq 0 \). Furthermore, the conditions in Eqs. (2) and (4) can be lumped together

\[
h_i(\tilde{\eta}) = \sum_{j=1}^{n} a_{ij} w_j \exp \left(\sum_{k=1}^{m} a_{kj} \tilde{\eta}_k - 1 \right) - \mu_i = 0, \quad \forall i.
\]

(5)

We now see from Eq. (4) that the original constrained optimization program is now reduced to an unconstrained convex optimization program involving the dual variables

\[
\min_{\tilde{\eta} \in R^m} d(\tilde{\eta}) = \sum_{j=1}^{n} w_j \exp \left(\sum_{k=1}^{m} a_{kj} \tilde{\eta}_k - 1 \right) - \sum_{i=1}^{m} \mu_i \tilde{\eta}_i
\]

(6)

If the dual optimization program stated above has an optimal solution \(\tilde{\eta}^* \), the solution \(\tilde{\mathbf{p}}(\eta^*) \) can be obtained from Eq. (4). Bergman has proposed an iterative method to minimize the dual objective function \(d(\tilde{\eta}) \) taking only one dual variable at a time \[15\]. The method starts with an arbitrarily chosen \(\tilde{\eta}^0 \in R^m \), and then cyclically updates all the dual variables as follows:

1. Step 1: Start with any \(\tilde{\eta}^0 \in R^m \) and a sufficiently small tolerance level \(\epsilon > 0 \). Set \(k = 0 \) and obtain \(\tilde{p}_j^k \).
2. Step 2: Let \(i = (k \mod m) + 1 \). Solve the equation

\[
\phi^k_i(\lambda^k) = \sum_{j=1}^{n} a_{ij} \tilde{p}_j^k \exp (a_{ij} \lambda^k) - \mu_i = 0
\]

(7)

Step 3: Update each component of \(\tilde{\eta} \)

\[
\tilde{\eta}_i^{k+1} = \tilde{\eta}_i^k + \lambda^k \text{ if } l = i, \quad \tilde{\eta}_i^{k+1} = \tilde{\eta}_i^k \text{ if } l \neq i
\]

(8)

Step 4: If Eq. (8) is satisfied within the preset level of tolerance, then stop with \(\eta^* = \tilde{\eta}^k \), and obtain the primal solution from Eq. (4). Otherwise, calculate

\[
\tilde{p}_j^{k+1} = w_j \exp \left(\sum_{i=1}^{m} a_{ij} \tilde{\eta}_i^{k+1} - 1 \right), \quad j = 1, 2, \ldots, n
\]

(9)

and go to Step 2.

From a computational point of view, the most problematic part of the above algorithm is the solution of the set of Eq. (7) in Step 2. In a variant of the above scheme known as multiplicative algebraic reconstruction technique \[16\], one uses the following closed-form expression to approximate the correction term \(\lambda^k_i \)

\[
\lambda^k_i = \ln \left(\frac{\mu_i}{\sum_{j=1}^{n} a_{ij} \tilde{p}_j^k} \right)
\]

(10)

Step 3 of the algorithm is now modified by substituting the expression above for \(\lambda^k_i \) in Eq. (8). A convergence theorem for the modified algorithm can be found in Lent \[18\]. It is, however, quite easy to see that the algorithm will fail unless for every \(i = 1, 2, \ldots, m \), either

\[
\mu_i > 0 \quad \text{and} \quad 0 \leq a_{ij} \leq 1, \quad j = 1, 2, \ldots, n
\]

(11)

or

\[
\mu_i < 0 \quad \text{and} \quad 0 \geq a_{ij} \geq -1, \quad j = 1, 2, \ldots, n
\]

(12)

We note that in this case we are assured of convergence of the solution of our discretized EOP because the condition (11) holds.

The EOP algorithm above can only be used provided that the condition stated by the inequality (11) or (12) is satisfied. This constrains us to apply the algorithm for power moments but neither of these two are necessarily true for other polynomial moments. In order to work with Chebyshev polynomials, we first employ the averages of shifted Chebyshev polynomials \[14\] of the first kind \(T_n^*(x) = T_n(2x - 1) \) to recast the entropy optimization program (EOP) given by statement (3). The only change needed for this purpose is to redefine \(a_{ij} \) by \(a_{ij} = T_n^*(x_j) \).

Our next step is to find a transformation that will convert the EOP into an equivalent problem in which all the program parameters are non-negative. For finding the necessary transformation, we define for \(i = 1, 2, 3, \ldots, m \),

\[
u_j = \max_{j}(-a_{ij}) + 1.
\]

(13)

Obviously, for \(i = 1, 2, 3, \ldots, m \) and \(j = 1, 2, 3, \ldots, n \),

\[
u_i + a_{ij} > 0.
\]

(14)

Let us now define for \(i = 1, 2, 3, \ldots, m \),

\[
M_i \equiv \max_{j} (\nu_j + a_{ij}) : t_i \equiv \frac{1}{m(M_i + 1)}.
\]

(15)

It is easy to see that the following relations hold for \(i = 1, 2, 3, \ldots, m \)

\[
M_i > 0, \quad t_j > 0 \quad (M_i + 1) t_j = \frac{1}{m}, \quad t_i (\nu_i + a_{ij}) \leq t_i M_i < \frac{1}{m}.\]

(16)
For \(i = 1, 2, 3, \ldots, m \) and \(j = 1, 2, 3, \ldots, n \), let us define
\[
a_{ij}' \equiv t_i(u_i + a_{ij}).
\] (16)

 Apparently, for \(i = 1, 2, 3, \ldots, m \) and \(j = 1, 2, 3, \ldots, n \), we have
\[
\frac{1}{m} > a_{ij}' > 0 ; \quad 0 < \sum_{i=1}^{m} a_{ij}' = \sum_{i=1}^{m} t_i(u_i + a_{ij}) < 1.
\] (17)

It is interesting to note that if \(\tilde{p} \) is a feasible solution to the EOP involving averages of \(T_n^i(x) \), then for \(i = 1, 2, 3, \ldots, m \)
\[
\sum_{j=1}^{n} a_{ij}' \tilde{p}_j = \sum_{j=1}^{n} t_i(u_i + a_{ij}) \tilde{p}_j = t_i(u_i + \mu_i).
\] (18)

Hence, if we define for \(i = 1, 2, 3, \ldots, m \),
\[
\mu_i' \equiv t_i(u_i + \mu_i) = \sum_{j=1}^{n} a_{ij}' \tilde{p}_j.
\] (19)

It is easy to verify that \(1/m > \mu_i' \) for \(i = 1, 2, 3, \ldots, m \).

The transformed EOP has thus the same form as previously, except for the fact that we use Eq.\,19 in place of Eq.\,4. Since both \(a_{ij} \) and \(\mu_i' \) can take only positive values, a feasible solution to the original program can now be obtained by replacing \(a_{ij} \) and \(\mu_i' \) in Eq.\,5 by \(a_{ij}' \) and \(\mu_i' \) respectively.

We consider two numerically difficult examples, a uniform distribution and a double-delta function, to study the stability and accuracy of the algorithm. The Chebyshev moments of these two functions can be exactly calculated. Earlier efforts to reproduce these distributions have met with limited success because of the difficulty in matching a sufficient number of moments and for the singular nature of the functions. It would be interesting to see how the algorithm performs in case of a) Uniform distribution \(f(x) = 1, \quad x \in [0,1] \) and b) a double-delta function \(g(x) = \delta(x-\frac{1}{4}) + \delta(x-\frac{3}{4}) \), \(x \in [0,1] \).

The algorithm produces the uniform distribution correctly up to five decimal places. We found that the first 25 shifted Chebyshev moments are sufficient for this purpose. The fact that the end points have been produced so accurately without any spurious oscillations is a definitive strength of this approach and reflects the stability and accuracy of our algorithm. In figure\,1 we have plotted the result for the double-delta function. The result is equally convincing and certainly establishes the usefulness of this method over the other existing ones in the literature. In addition to these examples, we have also tested our algorithm to reconstruct a Tent map, a semicircular distribution, a square-root distribution and a distribution with a gap in the spectrum. In all these cases, the algorithm correctly produces all the features of the distributions without failing. These results clearly demonstrate that the algorithm is very stable, accurate and is capable of producing some very uncommon distributions (such as double-delta function) without any difficulty.

We now consider a practical case where exact moments are not known but approximate moments are available. An archetypal example is the calculation of electronic density of states from its moments. In the context of solid state physics, maxent has been used profitably to calculate the density of electronic (vibrational) states from a knowledge of the moments of the Hamiltonian (Dynamical) matrix. The computation of moments itself is an interesting problem in this field and there are methods available in the literature that specifically address this issue. Here one is interested in determining physical quantities such as Fermi level and band energy of large systems (e.g. clusters, biological macromolecules etc.) without diagonalizing the Hamiltonian.

For \(i = 1, 2, 3, \ldots, m \) and \(j = 1, 2, 3, \ldots, n \), let us define
\[
a_{ij}' \equiv t_i(u_i + a_{ij}).
\] (16)

The transformed EOP has thus the same form as previously, except for the fact that we use Eq.\,19 in place of Eq.\,4. Since both \(a_{ij} \) and \(\mu_i' \) can take only positive values, a feasible solution to the original program can now be obtained by replacing \(a_{ij} \) and \(\mu_i \) in Eq.\,5 by \(a_{ij}' \) and \(\mu_i' \) respectively.

We consider two numerically difficult examples, a uniform distribution and a double-delta function, to study the stability and accuracy of the algorithm. The Chebyshev moments of these two functions can be exactly calculated. Earlier efforts to reproduce these distributions have met with limited success because of the difficulty in matching a sufficient number of moments and for the singular nature of the functions. It would be interesting to see how the algorithm performs in case of a) Uniform distribution \(f(x) = 1, \quad x \in [0,1] \) and b) a double-delta function \(g(x) = \delta(x-\frac{1}{4}) + \delta(x-\frac{3}{4}) \), \(x \in [0,1] \).

The algorithm produces the uniform distribution correctly up to five decimal places. We found that the first 25 shifted Chebyshev moments are sufficient for this purpose. The fact that the end points have been produced so accurately without any spurious oscillations is a definitive strength of this approach and reflects the stability and accuracy of our algorithm. In figure\,1 we have plotted the result for the double-delta function. The result is equally convincing and certainly establishes the usefulness of this method over the other existing ones in the literature. In addition to these examples, we have also tested our algorithm to reconstruct a Tent map, a semicircular distribution, a square-root distribution and a distribution with a gap in the spectrum. In all these cases, the algorithm correctly produces all the features of the distributions without failing. These results clearly
matrix. For amorphous semiconductors, this is particularly suitable because of disordered scattering (of electrons) that washes out the van Hove singularities in the electronic spectrum. A stable and accurate maxent algorithm, therefore, would be very useful in calculating electronic properties of amorphous semiconductors. The two examples discussed above suggest that we should be able to produce complex electronic spectrum with a gap (or gaps) to a high degree of precision and hence the Fermi level and band energy. As for metallic systems, the determination of Fermi energy is a non-trivial problem for \(O(n) \) methods. A primary requirement for a maxent algorithm in this case is that 1) it must produce the distribution accurately and 2) it must do so in a stable way using a sufficient number of moments to correctly produce the singularities of the spectrum. It is very pleasing to note that our algorithm does satisfy this requirement and therefore may offer an alternative approach to compute Fermi energy of metallic systems.

In figure 2 we have plotted the EDOS of amorphous silica using first 60 moments and compared it to the result obtained by direct diagonalization of the Hamiltonian matrix. It is clear from the figure that all the features of the EDOS are correctly produced by our maxent algorithm. Finally, in figure 3 we have plotted the variation of Fermi energy with the number of moments. The Fermi energy is computed by integrating the normalized density of states to obtain the correct number of total electrons. It is clear from figure 3 that the Fermi energy starts to converge after first 30 moments and eventually converges after 40 moments.

In conclusion, we present an algorithm for maximum entropy construction of a distribution from its moments. The algorithm is very stable, accurate and can handle a large number of moments (up to 500). The usefulness of this algorithm is demonstrated by constructing some numerically difficult distributions and applying it to amorphous silica to compute the electronic density of states and the Fermi level.

We acknowledge the support of National Science Foundation under Grant Nos. DMR-0205858 and DMR-0310933.

\[M. \text{ Abramowitz and I. A. Stegun, Handbook of mathematical functions, (Cambridge University Press, 1972).} \]

\[L. \text{ R. Mead and N. Papanicolaou, J. Math. Phys. 25, 2404 (1984).} \]