Brief Definitive Report

Regulation of T Cell Receptor δ Gene Rearrangement by c-Myb

By Cristina Hernández-Munain, Pilar Lauzurica, and Michael S. Krangel

From the Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710

Summary

Developmental activation of VDJ recombination at the T cell receptor (TCR) δ locus is controlled by an intronic transcriptional enhancer (Eδ). Transcriptional activation by Eδ is dependent on c-Myb. To determine whether c-Myb plays a role in the activation of TCR-δ gene rearrangement, we compared VDJ recombination in transgenic mice carrying two versions of a human TCR-δ gene minilocus recombination substrate. One includes a wild-type Eδ, whereas the other carries an Eδ with a mutation that abrogates c-Myb binding. We demonstrate that an intact Myb binding site is necessary for efficient rearrangement of the minilocus substrate, suggesting that c-Myb plays a crucial role in activating VDJ recombination at the endogenous TCR-δ locus.

The protein c-Myb plays important roles in the differentiation and proliferation of hematopoietic cells (1, 2). Gene-targeted c-myb-homozygous mutant mice die in utero and display severe anemia and other defects in hematopoiesis by fetal day 14.5 (3). Further, T cell–specific overexpression of dominant-negative myb alleles in transgenic mice results in impaired T cell proliferation and differentiation (4). However, because inhibition of Myb function has pleiotropic effects, specific roles for Myb proteins in vivo have remained elusive. Myb proteins activate transcription by specific binding to the nucleotide sequence PyAAC/CCG (1, 2). Yet only a few genes that are specifically expressed in hematopoietic cells are known to be Myb targets (5–10). We have previously shown in transient transfection experiments that TCR-δ gene transcription is regulated by the T lineage–specific TCR-δ enhancer (Eδ)1 (11), and that the binding of c-Myb to the δE3 element of Eδ is essential for enhancer activity (7).

The regulated activation of VDJ recombination at TCR and Ig gene loci is an essential feature of lymphoid cell development (12, 13). VDJ recombination has been correlated with germine transcription, suggesting a link between the two processes (14–18). Direct evidence that transcriptional promoters and enhancers can regulate VDJ recombination in developing lymphocytes has been obtained from studies of transgenic mice that carry recombination substrates (19–24) and from studies that use homologous recombination to eliminate regulatory elements from endogenous loci (25–27).

We have previously studied VDJ recombination in transgenic mice carrying an unrearranged human TCR-δ gene minilocus (22, 23). This construct includes germline Vδ1, Vδ2, Dδ3, Jδ1, Jδ3, and Cδ segments, as well as the TCR-δ enhancer (Eδ) within the Jδ3-Cδ intron. Frameshift mutations in the V segments prevent the expression of functional TCR chains such that the transgene serves as a neutral reporter of VDJ recombination. We found that transgene rearrangement is T cell specific and occurs stepwise, first V to D and then VD to J. Notably, in most lines of transgenic mice carrying a minilocus with Eδ deleted, the initial V to D step still occurs, but the subsequent VD-to-J step is dramatically inhibited. This result suggests that Eδ is required for J segment accessibility, but is not required for V or D segment accessibility. This system therefore offers the opportunity to test the role of specific cis-acting enhancer sequences in regulating VDJ recombination. In this study, we specifically address the role of Myb proteins in the recombinational enhancer activity of Eδ.

Materials and Methods

Production of Transgenic Mice. Eδ with a Myb–binding site mutation (EδmMyb) was generated by PCR using as a template the 1.4-kb wild-type Eδ subcloned into the XbaI site of pBluescript KS+ (1.4EδBS). Mutagenic oligonucleotides MybPCRup and MybPCRdn that include a 2-bp change in the δE3 element and generate a HindIII site were described (7). Linearized plasmid was subjected to PCR in two different reactions including either oligonucleotides MybPCRup and EδPCR. (AAGGTTAATTC-
AGTCGAGA) or MybPCR.dn and the reverse primer. The 5’ 550-bp fragment was digested with HindIII and PstI, the 3’ 290-bp fragment was digested with HindIII and BamHI, and the two were ligated together into PstI- and BamHI-digested 1.4EBS. The insert was sequenced to confirm its structure, after which the 1.4-kb EgmMyb was excised with XbaI and cloned into XbaI-digested, phosphatase-treated pBlueScript carrying the enhancerless minilocus (22). Minilocus DNA was purified and microinjected into fertilized C57BL/6 × SJL F2 eggs as described previously (22). Transgenes were maintained on a mixed C57BL/6 × SJL background.

PCR. The preparation of genomic DNA, conditions for PCR, probes for Southern blot analysis, and quantification of PCR signals were as described (22). The amount of template DNA used for PCR reactions was 12 ng for single-copy integrants. Template quantity was reduced for multicopy integrants to account for copy number and to keep all PCR signals in the linear range. Reported VD and VDJ rearrangement signals were normalized to the Cg signal for each DNA sample.

Transfection and Chloramphenicol Acetyl Transferase (CAT) Assays. Enhancers were cloned upstream of the V81 promoter in XbaI-digested and phosphatase-treated V81-CAT (11). The human T cell line Jurkat was transfected, and CAT assays were performed as described (7, 11).

Results

A 2-bp mutation within the δE3 element of a 370-bp Eδ fragment eliminates in vitro binding of c-Myb and abrogates transcriptional activation (7). The same 2-bp mutation was introduced into the 1.4-kb Eδ fragment previously shown to regulate transgene rearrangement to generate EgmMyb (Fig. 1 A). We first examined the effect of the Myb binding site mutation on Eδ transcriptional activity by subcloning Eδ and EgmMyb into the enhancer-dependent test construct V81-CAT, and assaying CAT activity after transient transfection of the constructs into Jurkat cells (Fig. 2). Eδ was active in both orientations (38.7- and 34.8-fold induction), whereas EgmMyb was completely inactive (0.5- and 0.2-fold induction). Thus, an intact Myb binding site within δE3 is essential for the transcriptional activity of the 1.4-kb Eδ as assayed by transient transfection.

EgmMyb was then substituted for the wild-type Eδ within the transgenic minilocus (Fig. 1 A), and three independent lines of transgenic mice carrying the mutant enhancer were established. Minilocus rearrangements in three transgenic lines carrying wild-type Eδ (A, B, and C) (22) were compared with those in the three transgenic lines carrying EgmMyb (P, Q, and R). Eδ lines A, B, and C each carry a single copy of the minilocus (22). Among the EgmMyb lines, P carries three copies, Q carries four copies, and R carries 15 copies. To assess transgene rearrangement, thymocyte genomic DNA templates were analyzed by quantitative PCR, and specific PCR products were identified by hybridization with radiolabeled V81 and Vδ2 cDNA probes (Fig. 1 B). The primer combinations V81-Jδ3 and V82-Jδ3 can amplify a product of 0.3 kb that reflects VDJ rearrangement and one of 1.2 kb that reflects VD rearrangement (22). The primer combinations V81-Jδ3 and V82-Jδ3 amplify only a 0.3-kb product that reflects VDJ rearrangement (Fig. 1 B). Amplification was also performed using a pair of C8 primers as an internal control. Of note, Eδ line C carries a truncated minilocus that lacks the V81 gene segment, limiting the analysis to V82 rearrangements in this line (22).

Consistent with previous experiments (22), VDJ rearranged products were readily detectable with all four primer combinations in Eδ lines A and B, and with V82 and Jδ primers in Eδ line C (Fig. 3 A). Furthermore, as assessed using the primer combinations V81-Jδ1 and V82-Jδ1, VDJ-

![Figure 1. Human TCR-δ gene minilocus. (A) Filled boxes represent exons, open boxes represent protein-binding sites within Es, and sequences of wild-type and mutant δE3 elements are shown. (B) Vδ1 rearrangement products generated using Vδ1, Jδ1, and Jδ3 primers are depicted. Arrows denote PCR primers. A similar set of Vδ2 rearrangement products are generated using Vδ2, Jδ1, and Jδ3 primers. No products are amplified from unrearranged templates.](https://example.com/figure1)

![Figure 2. Transcriptional activation by wild-type Eδ and EgmMyb. The indicated enhancers were tested in both orientations (arrow) upstream of the Vδ1 promoter in the enhancer-dependent test construct Vδ1-CAT. Jurkat cells were transfected in duplicate, and values for percent chloramphenicol acetylation were averaged and then normalized to the activity of the E- Vδ1-CAT construct.](https://example.com/figure2)
rearranged products were more abundant than VD-rearranged products in each case, indicating that the enhancer-dependent VD-to-J step of transgene rearrangement is highly efficient. Remarkably, the EsmMyb lines displayed a very different phenotype. In all three lines and with every primer combination, the absolute amount of VDJ rearrangement was dramatically inhibited. Relative to E8 line A, the levels of V81-D83-J81 rearrangement in the EsmMyb lines were 0.1% in P (i.e., \(0.036/25.618\times 100\)), 0.2% in Q, and 5.4% in R, and the levels of V81-D83-J81 rearrangement were 0.1% in line P, 0.1% in Q, and 1.5% in R (Table 1). Levels of V82 rearrangements were similarly diminished. Furthermore, in all three lines, VD-rearranged products were more abundant than VDJ-rearranged products, indicating that the VD-to-J step of transgene rearrangement was preferentially inhibited. Some inhibition of the V-to-D step of rearrangement was nevertheless apparent, most notably in line P. Similar conclusions were drawn from analysis of a second individual in each of the EsmMyb-transgenic lines (Fig. 3 B).

We also analyzed minilocus rearrangement directly by genomic Southern blot (Fig. 4). Unlike the PCR experiments, in which DNA samples were adjusted to normalize for copy number before analysis, in this experiment similar quantities of genomic DNA were analyzed. In accord with the PCR data, thymus DNA from E8 line A displayed a low level of V81-D83 rearrangement (0.9 kb), and higher levels of V81-D83-J81 and V81-D83-J83 rearrangement (1.7 and 3.2 kb, respectively). This rearrangement profile was dramatically perturbed in EsmMyb lines P, Q, and R. Rearrangement was undetectable in line P. Line Q displayed a high level of VD rearrangement but no VDJ rearrangement, whereas line R displayed a high level of VD rearrangement and a very low level of VDJ rearrangement. Notably, VDJ rearrangement in line R was just barely detected by genomic Southern blot despite a 15-fold increase in transgene copy number relative to E8 line A. The Southern hybridization signals from the PCR experiment presented in Fig. 3 A were quantified using a Betascope (Betagen, Waltham, MA). The reported VD and VDJ rearrangement signals were normalized to the C8 signal for each DNA sample. nd, not detectable.

Table 1. Quantification of Minilocus Rearrangement

	E8	EsmMyb				
	A	B	C	P	Q	R
V81–D83	4.491	4.423	nd	0.322	2.391	6.194
V81–D83–J81	25.618	5.255	nd	0.036	0.059	1.388
V81–D83–J83	14.110	1.452	nd	0.015	0.011	0.215
V82–D83	0.051	0.060	0.012	nd	0.045	0.427
V82–D83–J81	2.297	0.261	1.219	nd	0.007	0.026
V82–D83–J83	0.419	0.064	0.260	nd	0.016	<.016

Hybridization signals from the PCR experiment presented in Fig. 3 A were quantified using a Betascope (Betagen, Waltham, MA). The reported VD and VDJ rearrangement signals were normalized to the C8 signal for each DNA sample. nd, not detectable.
ern blot data are therefore highly consistent with those of PCR.

The quantitative differences among E8mMyb lines could result from differences in the properties of transgene integration sites, differences in transgene copy number, or both. Importantly, the range of phenotypes displayed by the E8mMyb-transgenic lines is very similar to the range of phenotypes displayed by lines of transgenic mice carrying distinct integrations of an enhancerless (E−) minilocus (22). We conclude that the E8mMyb minilocus is functionally equivalent to an E− minilocus, and that disruption of the δE3 Myb-binding site essentially eliminates the ability of E8 to activate VDJ recombination.

Discussion

c-Myb clearly has pleiotropic effects on cell proliferation and differentiation within multiple hematopoietic lineages. It has therefore been difficult to obtain information from either gene-targeting or dominant negative approaches that would implicate c-Myb in the regulation of specific molecular events. As an alternative, we chose to disrupt a functional Myb-binding site within a phenotypically neutral VDJ recombination reporter construct in transgenic mice. This approach has the clear advantage over the gene-targeting and dominant-negative approaches in that any defect in VDJ recombination must be a direct effect of the mutation, rather than an indirect effect that is secondary to a developmental perturbation. Using this strategy, we found that efficient VDJ recombination of a TCR-δ gene reporter construct requires an intact Myb-binding site within the δE3 element of E8.

Our data argue strongly that a member of the Myb family plays a crucial role in activating TCR-δ gene rearrangement. However, the disruption of a cis-acting element cannot by itself formally implicate c-Myb. Nevertheless, we have previously shown that c-Myb can bind to the δE3 site in vitro and can transactivate gene expression in vivo (7). Furthermore, the activation of TCR-δ gene rearrangement correlates closely with the apparent onset of c-Myb expression in developing hematopoietic cells. c-Myb is known to be expressed at highest levels in immature thymocytes (28), and the defect in hemopoiesis in c-Myb knockout mice is first apparent at day 14.5 of fetal development (31). According to this, VDJ recombination at the endogenous murine TCR-δ locus occurs in the immature CD3−CD4−CD8− population of postnatal thymocytes and is initiated at day 14.5 of fetal development (29, 30), and the enhancer-dependent VD-to-J step of transgenic minilocus rearrangement is activated in the same population of postnatal thymocytes and at the same stage of fetal thymocyte development (23). Given all of the available data, we conclude that c-Myb plays a direct role in the developmental activation of VDJ recombination at the TCR-δ locus.

It is generally accepted that enhancers regulate VDJ recombination by modulating the accessibility of chromosomal substrates to the recombinase (12). However, the mechanism by which accessibility is regulated is poorly understood. Although VDJ recombination correlates with germline transcription (14–18), a causal relationship has not been established (24, 31, 32). Our results implicate a transcription factor that is known to be important for TCR-δ gene transcription as an important regulator of VDJ recombination. Although consistent with the correlation between transcription and rearrangement, our results do not necessarily argue that transcription is causal in activating VDJ recombination. Enhancers can affect local chromatin accessibility, even in the absence of detectable transcription (33, 34). Thus, the binding of c-Myb to E8 could play a direct role in modulating TCR-δ locus accessibility to the recombinase that is at least in part distinct from its role in transcription. Additional studies are clearly necessary to resolve this issue.

We thank Carolyn Doyle, Carlos Sune, and Joseph Roberts for their helpful comments on the manuscript. We thank Cheryl Bock of the Duke University Comprehensive Cancer Center Transgenic Mouse Shared Resource for the production of transgenic mice.

This work was supported by National Institutes of Health grant 2RO1 GM41052. M. S. Krangel is the recipient of American Cancer Society Faculty Research Award FRA-414.

Address correspondence to Michael S. Krangel, Department of Immunology, P.O. Box 3010, Duke University Medical Center, Durham, NC 27710.

Received for publication 25 May 1995 and in revised form 10 August 1995.

Note added in proof: Recent data indicates that an additional E8mMyb transgenic line (O) displays a phenotype that is consistent with those of lines P, Q, and R.

References

1. Shen-Ong, G.L.C. 1990. The myb oncogene. Biochim. Biophys. Acta. 1032:39–52.
2. Luscher, B., and R.N. Eisenman. 1990. New light on Myc and Myb. II. Myb. Genes Dev. 4:2235–2241.
3. Mucenski, M.L., K. McLain, A.B. Kier, S.H. Swerdlow, C.M. Schreiner, T.A. Miller, D.W. Pietryga, W.J. Scott, and S.S. Potter. 1991. A functional c-myb gene is required for normal murine fetal hepatic hemopoiesis. Cell. 65:677–689.
4. Badiani, P., P. Corbella, D. Kioussis, J. Marvel, and K. Weston. 1994. Dominant interfering alleles define a role for c-Myb in T-cell development. *Genes Dev.* 8:770-782.

5. Ness, S.A., A. Markrell, and T. Graf. 1989. The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. *Cell.* 59:1115-1125.

6. Sui, G., A.L. Wurster, J.S. Lipsick, and S.M. Hedrick. 1992. Expression of the CD4 gene requires a Myb transcription factor. *Mol. Cell. Biol.* 12:1592-1604.

7. Hernández-Munain, C., and M.S. Krangel. 1994. Regulation of the T-cell receptor δ enhancer by functional cooperation between c-Myb and core-binding factors. *Mol. Cell. Biol.* 14:473-483.

8. Reddi, M.A., B.-S. Yang, X. Yue, C.J.K. Barnett, I.L. Ross, M.J. Sweet, D.A. Hume, and M.C. Ostrowski. 1994. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. *J. Exp. Med.* 180:2309-2319.

9. Melotti, P., D.-H. Ku, and B Calabretta. 1994. Regulation of the expression of the hematopoietic stem cell antigen CD34: role of c-myb. *J. Exp. Med.* 179:1023-1028.

10. McCracken, S., S. Leung, R. Bosselut, J. Ghysdael, and N.G. Miyamoto. 1994. Myb and ets related transcription factors are required for activity of the human lck type I promoter. *Onogene.* 9:3609-3615.

11. Redondo, J.M., S. Hata, C. Brocklehurst, and M.S. Krangel. 1990. A T cell specific transcriptional enhancer within the human T cell receptor δ locus. *Science (Wash. DC).* 247:1225-1229.

12. Alt, F.W., E.M. Oltz, F. Young, J. Gorman, G. Taccioli, and J. Chen. 1992. V(D)J recombination. *Immunol. Today.* 13:306-314.

13. Schatz, D.G., M.A. Oettinger, and M.S. Schlissel. 1992. V(D)J recombination: Molecular biology and regulation. *Annu. Rev. Immunol.* 10:359-383.

14. Yancopoulos, G., and F. Alt. 1985. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. *Cell.* 40:271-281.

15. Blackwell, T.K., M.W. Moore, G.D. Yancopoulos, H. Suh, S. Lutzker, E. Selsing, and F.W. Alt. 1986. Recombination between immunoglobulin variable region gene segments is enhanced by transcription. *Nature (Lond.).* 324:585-589.

16. Schlissel, M.S., and D. Baltimore. 1989. Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. *Cell.* 58:1001-1007.

17. Foddel, J.D., and K.B. Marcu. 1992. Transcription of germ line Vα segments correlates with ongoing T-cell receptor α-chain rearrangement. *Mol. Cell. Biol.* 12:1480-1489.

18. Goldman, J.P., D.M. Spencer, and D.H. Raulet. 1993. Ordered rearrangement of variable region genes of the T cell receptor γ genes correlates with transcription of the unrearranged genes. *J. Exp. Med.* 177:729-739.

19. Ferrier, P., B. Kripl, T.K. Blackwell, A.J.W. Furley, H. Suh, A. Winoto, W.D. Cook, L. Hood, F. Costantini, and F.W. Alt. 1990. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. *EMBO (Eur. Mol. Biol. Organ.)* 9:117-125.

20. Capone, M., F. Watrin, C. Fernex, B. Horvat, B. Kripl, L. Wu, R. Scollay, and P. Ferrier. 1993. TCRβ and TCRα gene enhancers confer tissue- and stage-specificity on V(DJ) recombination events. *EMBO (Eur. Mol. Biol. Organ.)* J. 12:4335-4346.

21. Luster, R., C.-A. Reynaud, I.-L. Martensson, A. Peter, D. Bucchini, J. Jami, and J.-C. Weill. 1993. Promoter, enhancer and silencer elements regulate rearrangement of an immunoglobulin transgene. *EMBO (Eur. Mol. Biol. Organ.)* J. 12:4615-4623.

22. Lauzurica, P., and M.S. Krangel. 1994. Enhancer-dependent and -independent steps in the rearrangement of a human T cell receptor δ transgene. *J. Exp. Med.* 179:43-55.

23. Lauzurica, P., and M.S. Krangel. 1994. Temporal and lineage-specific control of T cell receptor α/β gene rearrangement by T cell receptor α and δ enhancers. *J. Exp. Med.* 179:1913-1921.

24. Okada, A., M. Mendelsohn, and F. Alt. 1994. Differential activation of transcription versus recombination of transgenic T cell receptor β variable region gene segments in B and T lineage cells. *J. Exp. Med.* 180:261-272.

25. Chen, J., F. Young, A. Bottaro, V. Stewart, R.K. Smith, and F.W. Alt. 1993. Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. *EMBO (Eur. Mol. Biol. Organ.)* J. 12:4635-4645.

26. Serwe, M., and F. Sablitzky. 1993. V(DJ) recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. *EMBO (Eur. Mol. Biol. Organ.)* J. 12:2321-2327.

27. Takeda, S., Y.-R. Zou, H. Bluethmann, D. Kitamura, U. Muller, and K. Rajewsky. 1993. Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in αs but not lambda chain gene rearrangement in trans. *EMBO (Eur. Mol. Biol. Organ.)* J. 12:2329-2336.

28. Sheiness, D., and M. Gardinier. 1984. Expression of a proto-oncogene (proto-myb) in hematopoietic tissues of mice. *Mol. Cell. Biol.* 4:1206-1212.

29. Chien, Y.-H., M. Iwashima, D.A. Wettstein, K.B. Kaplan, J.F. Elliot, W. Born, and M.M. Davis. 1987. T-cell receptor δ gene rearrangements in early thymocytes. *Nature (Lond.).* 330:722-727.

30. Wilson, A., W. Held, and H.R. MacDonald. 1994. Two waves of recombinese gene expression in developing thymocytes. *J. Exp. Med.* 179:1385-1360.

31. Fried, C.-I., R.P. McCloskey, and M.R. Lieber. 1992. V(DJ) recombination on minichromosomes is not affected by transcription. *J. Biol. Chem.* 267:15613-15619.

32. Kallenbach, S., C. Babinet, S. Pourm, P. Cavelier, M. Goodhardt, and F. Rougeon. 1993. The intronic immunoglobulin κ gene enhancer acts independently on rearrangement and on transcription. *Eur. J. Immunol.* 23:1917-1921.

33. Jenuwein, T., W.C. Forrester, R.-G. Qua, and R. Grosschled. 1993. The immunoglobulin μ enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. *Genes Dev.* 7:2016-2032.

34. Pazin, M.J., R.T. Kamakaka, and J.T. Kadonaga. 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. *Science (Wash. DC).* 266:2007-2011.