Induced orders in free monoids of words

Jerzy Kocik
Department of Mathematics, Southern Illinois University, Carbondale, IL 62901
small jkocik@siu.edu

Abstract
A family of partial orders in the free monoid A^* of words, induced from a partial order in alphabet A, is presented. The induced orders generalize the chronological posets that have been defined for the two-letter alphabet only, and the morphological order. We show that the induced orders are natural with respect to alphabet homomorphisms.

Keywords: Order, alphabet, words, tense systems,
MSC: 06A06, 68R15.

1. Motivation

Algebra of orientons A^* is defined in [Ko] as the free monoid of words [Lo] over a two-letter alphabet $A = \{\pi, \varphi\}$ ordered $\pi < \varphi$. Two partial orders [Be] are introduced into the monoid A^*: the self-evident morphological order representing complexity of words, and a less apparent chronological order that has been induced from $\pi < \varphi$ assumed in the alphabet A. The relations are defined as follows:

Definition 1.1. Let $A^* = \{\pi, \varphi\}^*$ be words over $A = \{\pi, \varphi\}$. For any two elements $v, w \in A^*$ one defines

(a) morphological order: $v < w$ if w may be obtained by inserting some letters of A into v.

(b) chronological order: $v < w$ if w may be obtained from v by erasing some letters π and/or inserting some letters φ into v.

If \ll and \lll denote the covering relation (immediate succession) of the respective orders, then the above definitions may be expressed in terms of single insertions:

(a') $v \ll w$ if $\exists x \in A : v' \circ x \circ v'' = w$ for some splitting $v = v' \circ v''$

(b') $v \lll w$ if either $v' \circ \varphi \circ v'' = w$ or $v = w' \circ \pi \circ w''$ for some splitting $v = v' \circ v''$ or $w = w' \circ w''$.

The corresponding posets are denoted respectively Morph $A^* = \{A^*, <\}$ and Chron $A^* = \{A^*, \ll\}$. Figure 1 displays them for words of length $|w| < 4$. Poset Morph A^* has the least element, the empty word ε; Chron A^* is unbounded.
Remark 1.2. Algebra of “orientons” \(\{\pi, \varphi\}^* \) was introduced in [Ko] to model chronological meanings of grammatical tenses. Intuitively, \(\pi \) refers to the “past”, \(\varphi \) — to the “future”, the empty word \(\varepsilon \) — to the “present tense,” and, for instance, \(\pi\pi\varphi \) — to the “future-in-the-past-in-the-past”. The order \(\pi \prec \varphi \) in the alphabet (“past” precedes “future”) induces a “chronological order” among the words of \(\{\pi, \varphi\}^* \). This infinite set contains a homomorphic images of formal tense systems including a mathematical model of the tense system of English.

While the morphological order is a natural relation associated with any free monoid over an alphabet, the chronological order in \(\{\pi, \varphi\}^* \) is not, and the question rises, “How far may this construction be extended beyond the simple two-letter alphabet?” The form of Definition 1 hardly seems to suggest any possible natural generalization.

Problem 1. Let \(A \) be a partially ordered set of a countable cardinality, and let \(A^* \) be the free monoid of words over the alphabet \(A \). Is there any natural order in \(A^* \) which (i) would be an extension of the order in \(A \) (\(A \) is embedded into \(A^* \) as the one-letter words); (ii) would be natural with respect to homomorphisms of alphabets; and (iii) would coincide with the chronological order for the simple case of \(A = \{\pi \prec \varphi\} \)?

The answer to this problem is affirmative, although the construction is not a direct generalization of Definition 1.1b. The following notes describe this construction.

2. Induced order

In this section, we show a principal construction by which every letter of an ordered alphabet defines an induced order among the words over the original alphabet without the chosen letter.

Let \(\{A, \prec\} \) be a partially ordered set. For any \(a \in A \) we denote \(A_a = A - \{a\} \). Consequently,

\[
A_a^* = (A - \{a\})^*
\] (1)
denotes the free monoid over the alphabet A_a. Of course, the relation $<$ restricted to A_a makes it a poset. We shall call a word $w' \in A_a^*$ an a-extension of a word $w \in A_a^*$ if w' may be obtained by a number of insertions of the letter a into w. (For instance mississippi is an s-extension of miiipii, which in turn is a p-extension of miii).

Now, we define a relation among words of A_a^*, induced by the order $<$ in A.

Definition 2.1. Let $v, w \in A_a^*$ be two words over a partially ordered alphabet $\{A_a, <\}$. We say write

$$v <_a w$$

if a-extensions v' and w' of v and w respectively exist, such that they are of the same length $|v'| = |w'| = n$, and $v' < w'$ in A^n, i.e., for each letter it is $v'_i < w'_i$ in A, $i = 1, \ldots, n$.

It is not clear whether different insertions would not lead to different directions of $<_a$ for the same pair of words. Here is the main assertion of this note:

Theorem 2.2. The relation $<_a$ defines a partial order in A_a^*.

The relation $<_a$ is clearly reflexive and transitive. The problem is whether it is skew-symmetric. First, we prove the following lemma.

Lemma 2.3. Let w' and w'' be two a-extensions of the same length $|w'| = |w''| = n$ of a word $w \in A_a^*$ such that $w' < w''$ in A^n. Then $w' = w''$.

Proof. Let $w' = w'_1 \circ w'_2 \circ \ldots \circ w'_{n'}$, where $w'_i \in A$ for each $i = 1, \ldots, n$. Since w'' is of the same length as w', it must be composed from the same collection of letters, and the arrangement of letters in w'' is a permutation of the arrangement of letters in w':

$$w'' = w'_{\sigma(1)} \circ w'_{\sigma(2)} \circ \ldots \circ w'_{\sigma(n)}$$

for some $\sigma \in S_n$.

Now, by definition the assumed relation $w' < w''$ in A^n means that it holds for the corresponding letters of w' and w'' in A:

$$w'_1 < w''_1 = w'_{\sigma(1)}$$
$$w'_2 < w''_2 = w'_{\sigma(2)}$$
$$\vdots$$
$$w'_n < w''_n = w'_{\sigma(n)}$$

Each permutation may be uniquely decomposed into a number of cycles. Assume that σ has a cycle of order bigger than 1, say k. Then, for some $w'_i \in A$ it is

$$w'_i < w'_{\sigma(i)} < w'_{\sigma^2(i)} < \ldots < w'_{\sigma^{k-1}(i)} < w'_{\sigma^k(i)} = w'_i$$

By transitivity both $w'_i < w'_{\sigma(i)}$ and $w'_{\sigma(i)} < w'_i$ hold. This contradicts the partial order of the alphabet, unless the order of each cycle of σ is 1. Therefore $w'_i = w'_{\sigma(i)}$ for each i, so $w' = w''$, proving the lemma. □
Corollary. Any two a-extensions of the same length n of a word $w \in A_n^a$ are either identical or incomparable in the product poset A^n.

Now we can prove the theorem.

Proof of Theorem 2.2: In order to show that the induced relation \prec_a in A_n^a is skew-symmetric for different elements, let us assume a contrario that there exist two different insertions of the letter a into a pair of words v and w in A_n^a, such that the resulting two pairs of a-extensions, v', w', and v'', w'', lead to opposite relations:

- $v \prec_a w$ by one insertion, for which $v' \prec w'$ in A^n, and
- $v \succ_a w$ by the other one, for which $v'' \succ w''$ in A^k,

where the lengths of the words are $|v'| = |w'| = n$ and $|v''| = |w''| = k$ for some n and k.

In the form of a diagram:

$$
\begin{array}{c}
 v \\
\downarrow \times \downarrow \\
 v' \prec w' \quad v'' \succ w''
\end{array}
$$

(in A^n) (in A^k)

Assume that $v \neq w$, since Lemma 2.3 proves the theorem for $v = w$.

Notice that additional simultaneous insertion of the letter a into the words v', w' at the same position preserves the original relation, now in A^{n+1}. A number of such insertions will be called a coherent a-extension of a pair of words (of the same length).

Now, since w' and w'' result by insertions of the letter a into the same word w, one may find a further minimal a-extensions of w' and of w'' such that the resulting words \bar{w}' and \bar{w}'' will be identical in A^m for some m:

$$
\bar{w}' = \bar{w}'' \quad \text{in } A^m
$$

If \bar{v}' is the a-extension of v' coherent with that of w', and \bar{v}'' the extension coherent with that of w'', the relations between the words become:

$$
\begin{array}{c}
 v' \prec w' \\
\bar{w}' \prec \bar{w}'' \prec \bar{v}'',
\end{array}
$$

in A^m, and by (2) and transitivity:

$$
\bar{v}' \prec \bar{v}''.
$$

By Lemma 2.3, this implies $\bar{v}' = \bar{v}''$. Therefore, from (3):

$$
\bar{v}' = \bar{w}' = \bar{w}'' = \bar{v}'' \quad \text{(in } A^m)
$$

Removing all a’s from these words we get $v = w$, which contradicts the assumption and concludes the proof. □

We obtain a whole family of induced orders, labeled by the elements of A. In particular:
Corollary. If $A = \{ \pi, \eta, \varphi \}$ is linearly ordered $\pi < \eta < \varphi$, then the induced order \prec_η in $A_\eta^* = \{ \pi, \varphi \}^*$ coincides with the chronological order of the word algebra over the alphabet $\{ \pi, \varphi \}$. (see Definition 1.1).

3. Augmentation

Now the solution to the Problem (Section 1) seems plausible. In order to obtain a relation in the monoid A^* over an ordered alphabet A, one has to enrich first the alphabet by one element, say e, and to extend the order of A into $A' = A \cup \{ e \}$, and then apply the technique of induced order described in the previous section. We shall call letter e an auxiliary letter. Poset A' will be called an augmented alphabet.

Definition 3.1. An augmentation of a (finite) poset A is an isomorphism of A into a poset A' of cardinality $|A'| = |A| + 1$.

The original alphabet is restored by dropping letter e, i.e. as a set $A \equiv (A \cup \{ e \})_e$. The partial order \prec_e defined by Definition 1.1 turns $A^* \equiv (A \cup \{ e \})^*_e$, due to Theorem 2.3, into a poset.

Of course, the order so obtained strongly depends on the particular choice of augmentation.

Example 1: Consider $A = \{ \pi, \varphi \}$ with $\pi < \varphi$. In order to get an induced order in A^*, an augmented poset must be constructed with elements $A' = \{ \pi, \varphi, \eta \}$, where η is an auxiliary letter. There are three ways to equip A' with a linear order that agrees with the order in A:

(a) $\eta < \pi < \varphi$,
(b) $\pi < \eta < \varphi$,
(c) $\pi < \varphi < \eta$

Each leads to another partial order in $A^* = \{ \pi, \varphi \}^*$. Figure 2 displays the corresponding induced posets for the words of length $|w| \leq 3$. Case (b) is identical with the chronological order (see Definition 1.1). Case (c) is dual to the case (a) (replace φ with π and flip the diagram upside down). Notice that in each of these cases, the one-letter words, which may be identified with the elements of the alphabet, preserve their order $\pi < \varphi$ within A^*.

![Figure 2: Three posets over $\{ \pi, \varphi \}^*$ induced by linear augmentations of $\pi < \varphi$.](image-url)
The last observation can be generalized:

Proposition 3.2. For any \(n \in \mathbb{N} \) and for any augmentation of a poset \(A \), the poset \(A^n \) with the product partial order is isomorphically embedded into the induced word posets \(A^* \).

Proof. Identify the Cartesian product \(A^n \) with words in \(A^* \) of the fixed length \(n \), \(A^n \equiv \{ a \in A^* \mid |a| = n \} \). For any augmentation, if two words are related in \(A^n \), so are they, by definition, in \(A^* \); if they are not related in \(A^n \), then by Corollary 2.4 they are not related in \(A^* \).

In particular, the natural embedding of an alphabet \(A \) into the one-letter words in \(A^* \) is an isomorphism of the order structures. For an illustration of \(n = 2 \) and \(n = 3 \), recognize the particular posets of \(A^n \) (Figure 4) in Figure 2 and Figure 3. Notice that the above property may be extended to an embedding of \(A' = A \cup \{ \varepsilon \} \rightarrow A^* \), if the empty word \(\varepsilon \in A^* \) is reinterpreted as the auxiliary letter \(\eta \) in \(A' \).

The following obvious property ensures naturality of induced order, which was sought in Problem 1.2.

Proposition 3.3. Let \(f : A \rightarrow B \) be a homomorphism of posets. For any \(e \in A \), the induced map \(f^* : A^*_e \rightarrow B^*_f(e) \), defined letter-wise, is also a poset homomorphism of induced orders.

Proof. Proof is straightforward. Let \(f : A \rightarrow B \) be a poset homomorphism, i.e. if \(a < b \) in \(A \), then \(f(a) < f(b) \) in \(B \). Let \(f^* : A^* \rightarrow B^* \) be a letter-wise extension of \(f \). Clearly, it may be restricted to \(f^* : A^*_e \rightarrow B^*_f(e) \). Relation \(v <_e w \) in \(A^*_e \) means that there are \(e \)-extensions of \(v \) and \(w \), such that \(v' <_e w' \) in \(A^*_e \) for some \(n \in \mathbb{N} \), i.e. \(v'_j <_e w'_j \) in \(A_e \) for \(j = 1, \ldots, n \). So, \(f(v'_j) <_{f(e)} f(w'_j) \) in \(B_e \), and therefore \(f^*(v') <_{f(e)} f^*(w') \) in \(B^*_f(e) \). Hence, by definition, \(f^*(v) <_{f(e)} f^*(w) \) in \(B^* \).

In particular,

Corollary. (i) If \(B \subset A \) as sets, and the partial order of \(B \) is that of \(A \) restricted to \(B \), then the induced poset \(B^*_e \) is a subposet of \(A^*_e \), for any \(e \in B \).

(ii) If \(\prec' \) be a suborder of a partial order \(\prec \) in \(A \), then for any \(a \in A \) the order \(\prec'_a \) is a suborder of \(\prec_a \) in \(A^*_a \).

As an extremely simple illustration of (i), consider \(\{ \varepsilon \} \) as a one-element subposet of \(A' = \{ \pi, \eta, \varphi \} \) for any of the given examples of augmentation. The word algebra \(\{ \varphi \}^* \) consists of powers \(\varphi^n \). In a particular example either \(\varphi > \eta \) or \(\varphi \neq \eta \), and hence \(\{ \varphi \}^* \) is either linearly ordered or trivial, and so it occurs in the corresponding posets \(\{ \pi, \varphi \}^* \). For an illustration of (ii), compare Figure 3 with Figure 2, where the corresponding Hasse diagrams form subgraphs on the alphabet level, as well as in the word algebras.

Example 2: Consider two nonlinear extensions of \(\pi < \varphi \):

\[
\begin{array}{ccc}
\varphi & \nearrow & \varphi \\
\searrow & \pi & \searrow \\
(a) & & (b)
\end{array}
\]

These lead to posets, which are displayed in Figure 3 for words \(|w| \leq 3 \).
Although posets of Example 2 look “strange,” notice that each is a particular suborder of two of the posets considered in Example 1. This is because the orders of A in Example 1 are particular linearizations of the alphabet posets (a) and (b) above).

4. Further examples and applications

Now let us review a few special cases, illustrated by rather simple examples.

Definition 4.1. A raising augmentation of a poset A is a poset $A' = A \cup \{e\}$ with the partial order this of A complemented by relation $e < a$ for any $a \in A$. The induced poset will be denoted Rais_A^*.

For illustration of $\text{Rais} \{\pi < \varphi\}^*$ see Example 1a.

Augmentation may also be applied to mere sets (viewed as posets with the trivial order). In particular:

Corollary. The induced order of a trivial poset is the morphological order.

Example 3: Let $A = \{\varphi, \pi\}$ be a set. Raising augmentation of A into a poset $A' = \{\pi, \varphi, \eta\}$ with a two-step relation:

```
  $\varphi$  $\pi$
     /    \
   \     / \\
   $\eta$
```

results in morphological order of orientons. (See Definition 1.1 and Figure 1.) Quite surprisingly, both key orders of the ‘algebra of orientons’ are describable in terms of induced orders.

Definition 4.2. A trivial augmentation of a poset A is a poset $A' = A \cup \{e\}$ with the auxiliary letter e left unrelated to A.

Corollary. The poset induced from the trivial augmentation of a poset A is the disjoint sum of product orders in subsets of A^*:

$$\{ A^*, < \} = \text{Prod} A^0 + \text{Prod} A^1 + \ldots + \text{Prod} A^k + \ldots$$

where $\text{Prod} A^k$ is the Boolean lattice of the product order among the words of a fixed length. (Clearly, $\text{Prod} A^0 \equiv \{e\}$, and $\text{Prod} A^1 \equiv \{A, <\}$.)
Proof. By Proposition 3.2, two words of the same length, \(|w| = |v| = k\), are related in \(A^*\) in the same way as in Prod \(A^k\). Words of different lengths in \(A^*\) are not related: any \(e\)-extensions of \(w\) and \(v\) resulting in the same length must have different numbers of the letter \(e\), with some of them occurring where a letter of \(A\) appears in the other word. Since \(e \not\in A\), the extended words are incomparable, and therefore so are the original words \(w\) and \(v\).

Example 4: Trivial augmentations of the two-letter poset \(A = \{\pi < \varphi\}\) with auxiliary letter \(\eta\) is left unrelated to \(A\):

\[
\varphi \quad \eta \\
\quad \pi
\]

splits the word algebra \(A^*\) into a family of disconnected Boolean lattices of constant word length, as illustrated in Figure 4.

![Figure 4: Order in \(\{\pi, \varphi\}^*\) induced from trivial augmentation.](image)

Note, the range of the induced orders over the same word monoid: the words of connected pieces of Prod \(A^*\) appear as the horizontal layers in Morph \(A^*\) (Cf. Figure 1 and Figure 4).

Example 5: Consider the poset \(A^*_\eta\) induced from the following augmentation of a trivial poset

\[
\varphi \quad \pi \quad \eta
\]

(letter \(\eta\) related to \(\varphi\) only). The resulting partial order is illustrated in Figure 5.

![Figure 5: The partition poset for \(A = \{\pi, \varphi\}\).](image)
If the letter π is viewed as a separating bar, “|”, then the i^{th} connected piece of the above graph shows the possible distributions of a number of items ϕ into i boxes, including the partial order of such distributions. The i^{th} piece has $π^{i-1}$ as the least element (i empty boxes), and is isomorphic to the product \mathbb{N}^i. This suggests the following:

Definition 4.3. Let A be a poset. Consider an augmented poset $A'' = A \cup \{ e, \} |$ with the extended partial order: $e < A$, and $|$ unrelated to A or e. A partition poset Part A' is the word algebra over the alphabet $(A \cup \{\} |) \equiv A'$ with the order induced from A''.

5. Summary

Each poset A treated as an alphabet leads to a natural family of well-defined *induced* partial orders in the set of words over this alphabet (Theorem 2.2). The principal construction of the induced order goes via dropping a letter, say a, from the alphabet A, and considering the new set, A_a, as the alphabet for words, A_a^*. The choice of the letter to be dropped determines the partial order in A_a^*. **Augmentation** allows an induced order to be defined between the words over the initial alphabet A by, first, embedding the alphabet A into a larger poset $A' = A \cup \{ e \}$, and then applying the principal construction by dropping the auxiliary letter e.

Natural properties of induced order easily follow (expressed here for augmentation). The induced order is an extension of the order in the alphabet A:

$$A \xrightarrow{\text{homo}} A^*$$

The construction is *natural* with respect to the homomorphisms of alphabets (Proposition 3.3), making the following diagram commute:

$$
\begin{array}{ccc}
A^* & \xrightarrow{f^*} & B^* \\
\uparrow & & \uparrow \\
A & \xrightarrow{f} & B
\end{array}
$$

where f^* is a letter-wise homomorphism induced from f. The property that contrasts the induced orders with the lexicographical order is that the product posets Prod A'' are isomorphically embedded into A^* (Proposition 3.2).

Since the induced order extends that of the alphabetic order, let us denote the induced poset as Ext A^* for augmentation, or Ext A_e^* for the principal construction:

$$\text{Ext } A_e^* = \{ A_a^*, <_a \}$$

A few canonical constructions (by augmentation, $e \notin A$) may be indicated:

- **Morph A^*** = Ext $\{ e < A \}^*_e$ (A is a set)
- **Prod A^*** = Ext $\{ e \neq A \}^*_e$
- **Rais A^*** = Ext $\{ e < A \}^*_e$
- **Part A^*** = Ext $\{ e < A, \eta \neq A \}^*_e$ ($\eta \notin A$, A is a poset)
- **Span A^*** = Ext $\{ L(A) < e < G(A) \}^*_e$
where in the last poset \(L(A) \) and \(G(A) \) are the least and the greatest elements of \(A \) respectively.

The above augmentations may be illustrated symbolically:

\[
\begin{array}{cccccc}
\text{Morph} & A^* & \text{Rais} & A^* & \text{Prod} & A^* \\
\text{Part} & A^* & \text{Span} & A^* & \text{Chron} & (A \prec B)^* \\
\end{array}
\]

As to the algebra of orientons \(A^* = \{\pi, \varphi\}^* \), surprisingly both the chronological and the morphological order turns out to be induced extensions:

\[
\begin{align*}
\text{Chron} A^* &= \text{Ext} \{\pi < \eta < \varphi\}_\eta^* \\
\text{Morph} A^* &= \text{Ext} \{\pi > \eta < \varphi\}_\eta^*
\end{align*}
\]

Another construction (interesting in the context of discrete models of causal properties of space-time) concerns the union \(A \cup B \cup \{e\} \) of posets \(A \) and \(B \), complemented by \(A < e < B \). The induced order in \((A \cup B)^*\) defines a poset

\[
\text{Chron} (A < B)^* = \text{Ext} \{A < e < B\}_e^*
\]

which may be viewed as a direct generalization of the chronological order. By analogy to relativity theory, it seems natural to define the future cone and the past cone as the image of \(A^* \) and \(B^* \) in \((A \cup B)^*\), respectively, and the elsewhere as \((A \cup B)^* - (A^* \cup B^*)\).

Here are some questions concerning the induced orders: How are particular properties of the ordered alphabet reflected in the induced order of words; How does the induced order relate to the "algebra of products of partial orders" (in the sense of [2]); What is the relationship between algebra of partial orders (treated on the level of alphabets) and that lifted to the words; How is the structure of the alphabet \(A \) reflected in the structure of the family of posets obtained by deleting different letters from \(A \). In particular, notice "non-commutativity" of the construction; although \((A_a)^*_b = (A_b)^*_a = (A - \{a, b\})^*\), but \(\text{Ext} (A_a)_b^* \neq \text{Ext} (A_b)_a^* \).

References

[1] Birkhoff, Garret, *Lattice Theory*, AMS, Providence Rhode Island, 1967 (third ed.).

[2] Jónsson, Bjarni, *Arithmetic of Ordered Sets*, in *Ordered Sets*, pp. 3–41, Ivan Rival (ed.), Reidel, Boston, 1981.

[3] Kocik, Jerzy, *Formal Tense Systems*, submitted.

[4] Lothaire, M. (ed.), *Combinatorics on Words*, Addison-Wesley Pub. Comp., London, 1983.