HYPOCOERCIVITY AND HYPOCONTRACTIVITY CONCEPTS FOR LINEAR DYNAMICAL SYSTEMS*

FRANZ ACHLEITNER†, ANTON ARNOLD‡, AND VOLKER MEHRMANN§

Abstract. For linear dynamical systems (in continuous-time and discrete-time), we revisit and extend the concepts of hypocoercivity and hypocontractivity and give a detailed analysis of the relations of these concepts to (asymptotic) stability, as well as (semi-)dissipativity and (semi-)contractivity, respectively. On the basis of these results, the short-time behavior of the propagator norm for linear continuous-time and discrete-time systems is characterized by the (shifted) hypocoercivity index and the (scaled) hypocontractivity index, respectively.

Key words. semi-dissipative Hamiltonian ODEs, hypocoercivity (index), semi-contractive systems, hypocontractivity (index), Cayley transformation

AMS subject classifications. 34D30, 37M10, 93D05, 93D20

1. Introduction. In this paper, we discuss different concepts that characterize the short- and long-time behavior of linear continuous-time ordinary differential equations (ODEs)

\[(1.1) \quad x'(t) = A_c x(t) = -B x(t), \quad x(0) = x^0, \quad t \geq 0, \]

and discrete-time difference equations (DDEs)

\[(1.2) \quad x_{k+1} = A_d x_k, \quad x_0 = x^0, \quad k \in \mathbb{N}_0, \]

with matrices \(A_c, A_d \in \mathbb{C}^{n \times n}\).

It is well-known that the long-time behavior of solutions of (1.1) and (1.2) can be characterized via the spectral properties of the matrices \(A_c, A_d\) or the solutions of Lyapunov equations [5, 13, 18, 19]. To understand the short-time behavior of continuous-time systems, much progress has recently been made for systems with a semi-dissipative structure, that is, systems where \(A_c\) has a semidefinite symmetric part. For this subclass, it has recently been observed in [2, 3] that the short- and long-time behavior can be characterized via the concept of hypocoercivity and the hypocoercivity index. For this subclass also the analysis of the long-time behavior becomes simpler and more elegant.

In this paper, we show that a similar concept of hypocoercivity and a hypocontractivity index is analogously available in the discrete-time case and that it can be characterized via the polar decomposition of \(A_d\).

*Received by the editors on November 22, 2022. Accepted for publication on January 11, 2023. Handling Editor: Heike Fassbender. Corresponding Author: Volker Mehrmann

†Technische Universität Wien, Institute of Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria, franz.achleitner@tuwien.ac.at

‡Technische Universität Wien, Institute of Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria, anton.arnold@tuwien.ac.at

§Technische Universität Berlin, Institut f. Mathematik, MA 4-5, Straße des 17. Juni 136, D-10623 Berlin, mehrmann@math.tu-berlin.de
For both, the continuous- and discrete-time we present a systematic review and analysis of the different concepts and show the subtle differences and similarities to the classical spectral concepts and illustrate these with numerous examples. Furthermore, we present the close relationship of these concepts to classical controllability and observability concepts in control theory.

Note that we switch in the discussion of (1.1) between the classical notation with A_c as is common in dynamical systems and the notation with $-B$ as is common in evolution equations.

In Section 2, we recall the concepts of (asymptotic) stability, (semi-)dissipativity, and hypocoercivity for continuous-time systems that have been discussed in [3]. To better understand the decay behavior of solutions, we extend the concept of hypocoercivity to *shifted hypocoercivity*. We also show under which linear transformations of the system these properties stay invariant.

In the second part of the paper, in Section 3 we derive the corresponding results for discrete-time systems and, in particular, analyze the relation between (asymptotic) stability, (semi-)contractivity, and hypocontractivity as well as *scaled hypocontractivity*.

The third part in Section 4 studies how the discussed properties are related under Cayley transformations that map between continuous-time and discrete-time systems. We show that many properties including the hypocoercivity index and hypocontractivity index map appropriately. However, in general, the shifted hypocoercivity and scaled hypocontractivity indices are not mapped into each other. Computationally feasible staircase forms to check hypocoercivity for accretive matrices and hypocontractivity for semi-contractive matrices, and to determine the associated indices are discussed in the Appendix.

We use the following notation: The conjugate transpose of a matrix $C \in \mathbb{C}^{n \times n}$ is denoted by C^\dagger. Positive definiteness (semi-definiteness) of a Hermitian matrix C is denoted by $C > 0$ ($C \geq 0$).

2. Stability, semi-dissipativity, and hypocoercivity for continuous-time systems.

In this section, we recall some properties of linear continuous-time systems and their relationship. Let us give a simplified definition of stability, for the general definition, see, for example, [5, 13].

Definition 1. The trivial solution $x \equiv 0$ of (1.1) is called (Lyapunov) stable if all solutions of (1.1) are bounded for $t \geq 0$, and it is called asymptotically stable if it is stable and all solutions of (1.1) converge to 0 for $t \to \infty$.

For linear systems (1.1), a solution is (asymptotically) stable if and only if the trivial solution $x \equiv 0$ is (asymptotically) stable. Therefore, if the trivial solution $x \equiv 0$ of (1.1) is (asymptotically) stable, then we call the system (1.1) (asymptotically) stable.

It is well-known, see, for example, [5, 13], that (1.1) is (Lyapunov) stable if all eigenvalues of A_c have non-positive real part and the eigenvalues on the imaginary axis are semi-simple, and it is asymptotically stable if all eigenvalues of A_c have negative real part.

A concept closely related to stability is that of (semi-)dissipativity. Writing A_c as the sum of its Hermitian part $A_H := (A_c + A_c^\dagger)/2$ and skew-Hermitian part $A_S := (A_c - A_c^\dagger)/2$, we have the following definition, [8, Definition 4.1.1].

Definition 2. A matrix $A_c \in \mathbb{C}^{n \times n}$ is called dissipative (resp. semi-dissipative) if the Hermitian part A_H is negative definite (resp. negative semi-definite). For a (semi-)dissipative matrix $A_c \in \mathbb{C}^{n \times n}$,
The associated ODE (1.1) is called (semi-)dissipative Hamiltonian ODE. Alternately, a matrix $B = -A_c \in \mathbb{C}^{n \times n}$ is called accretive (or positive semi-dissipative) if its Hermitian part B_H is positive semi-definite.

A nice property of a semi-dissipative Hamiltonian ODE (1.1) is that it is (Lyapunov) stable, since for all solutions of (1.1) we have

$$\frac{d}{dt} \|x(t)\|^2 = \langle A_c x(t), x(t) \rangle + \langle x(t), A_c x(t) \rangle = \langle x(t), (A_c^H + A_c)x(t) \rangle \leq 0, \quad t \geq 0,$$

that is, the Euclidean norm (which may serve as a Lyapunov function) is non-increasing.

The converse is in general not true, because the Hermitian part of a matrix A_c associated with a stable system (1.1) does not have to be negative semi-definite, as the following example shows:

Example 3. Consider the matrix

$$B = \begin{bmatrix} 3 & 3 \\ -3 & -1 \end{bmatrix}$$

so that $A_c = -B$ has eigenvalues $\lambda = -1 \pm i\sqrt{3}$, but the Hermitian part A_H is indefinite with eigenvalues $\lambda_{\text{min}}^A = 1$ and $\lambda_{\text{max}}^A = -3$. Hence, the norm of solutions of (1.1) may increase initially at the rate e^t.

Remark 4 (Logarithmic Norm). Since the flow generated by (1.1) is given by the matrix exponential $e^{A_c t}$, the long-time behavior of the propagator norm $\|e^{A_c t}\|$, or to be precise—its exponential rate—is determined by the spectral abscissa

$$\alpha(A_c) := \max \{ \Re(\lambda) \mid \lambda \text{ is an eigenvalue of } A_c \},$$

see, for example, [28].

In contrast, the exponential rate of the short-time behavior of $\|e^{A_c t}\|$ is determined by the logarithmic norm: The logarithmic norm of a matrix $A_c \in \mathbb{C}^{n \times n}$ with respect to an inner product is defined as

$$\mu(A_c) := \sup_{\|x\|=1} \Re(\langle x, A_c x \rangle) = \max_{\|x\|=1} \Re(\langle x, A_c x \rangle),$$

that is, $\mu(A_c)$ is the maximal real part of the numerical range of A_c. Thus, the solutions $x(t)$ of (1.1) satisfy

$$\frac{d}{dt} \|x(t)\|^2 = \langle x, (A_c^H + A_c)x \rangle \leq 2\mu(A_c) \|x(t)\|^2,$$

which implies that

$$\|x(t)\| \leq e^{\mu(A_c) t} \|x^0\| \quad \text{for } t \geq 0.$$

In particular, a matrix $A_c \in \mathbb{C}^{n \times n}$ is semi-dissipative if and only if $\mu(A_c) \leq 0$.

A third related concept is that of hypocoercivity for matrices and the associated hypocoercivity index, which was introduced originally in the context of linear operators, see [1, 6, 29].

Definition 5 (Definition 2.5 of [2]). A matrix $C \in \mathbb{C}^{n \times n}$ is called coercive (or strictly accretive) if its Hermitian part C_H is positive definite, and it is called hypocoercive if the spectrum of C lies in the open right half plane. A matrix $A_c \in \mathbb{C}^{n \times n}$ is called negative hypocoercive if the spectrum of A_c lies in the open left half plane.

The relationship between positive semi-dissipativity and hypocoercivity is characterized by the following result.
Proposition 6 ([20, Lemma 3.1], [1, Lemma 2.4 with Proposition 1(B2), (B4)]). Let $B \in \mathbb{C}^{n \times n}$ be (positive) semi-dissipative. Then, B has an eigenvalue on the imaginary axis if and only if $B_H v = 0$ for some eigenvector v of B_S.

Note that, due to the assumptions, purely imaginary eigenvalues of semi-dissipative matrices are necessarily semi-simple, see also [21, 22]. Therefore, an accretive matrix B is hypocoercive if and only if no eigenvector of the skew-Hermitian part lies in the kernel of the Hermitian part. The latter condition is well known in control theory, and equivalent to the following statements:

Lemma 7. Let $B \in \mathbb{C}^{n \times n}$ be accretive. Then the following are equivalent:

(B1) There exists $m \in \mathbb{N}_0$ such that

$$\text{rank} [B_H, B_S B_H, \ldots, (B_S)^m B_H] = n.$$

(B2) There exists $m \in \mathbb{N}_0$ such that

$$T_m := \sum_{j=0}^{m} B_S^j B_H ((B_S)^H)^j > 0.$$

(B3) No eigenvector of B_S lies in the kernel of B_H.

(B4) $\text{rank} [\lambda I - B_S, B_H] = n$ for every $\lambda \in \mathbb{C}$, in particular for every eigenvalue λ of B_S.

Moreover, the smallest possible $m \in \mathbb{N}_0$ in (B1) and (B2) coincide.

Proof. The equivalence of (B1), (B3), and (B4) and its proof are classical, see, for example, [9, Theorem 6.2.1] for real matrices, but its proof extends verbatim to complex matrices; see also [1, Proposition 1]. The equivalence of (B1) and (B2) follows from Lemma 59 in the Appendix, setting $D := B_H$ and $C := B_S$.

Remark 8. In Lemma 7, we could have alternatively stated the equivalence of the following conditions that are equivalent to the corresponding ones in Lemma 7.

(B1') There exists $m \in \mathbb{N}_0$ such that

$$\text{rank} [B_H, B B_H, \ldots, B^m B_H] = n.$$

(B2') There exists $m \in \mathbb{N}_0$ such that

$$\sum_{j=0}^{m} B^j B_H (B^H)^j > 0.$$

(B2'') There exists $m \in \mathbb{N}_0$ such that

$$\sum_{j=0}^{m} (B^H)^j B_H B^j > 0.$$

(B3') No eigenvector of B lies in the kernel of B_H.

(B4') $\text{rank} [\lambda I - B, B_H] = n$ for every $\lambda \in \mathbb{C}$, in particular for every eigenvalue λ of B.

This is easily seen, since every eigenvector of B that is in the kernel of B_H is immediately an eigenvector of B_S; and conversely, every eigenvector of B_S that is in the kernel of B_H is also an eigenvector of B, see [21]. It also follows directly from the staircase forms presented in [3].
Remark 9. The equivalence of properties stated in Proposition 6, Lemma 7, and Remark 8 show that, for example, also the coercivity of the associated matrix T_m in (2.8) could have been used to define hypocoercivity for accretive matrices (in the finite-dimensional setting). Only future research of bounded and unbounded accretive operators on infinite-dimensional Hilbert spaces will decide which is the appropriate characterization for accretive operators to be hypocoercive, that is, to generate a uniformly exponentially stable C_0-semigroup.

Definition 10 ([2, Definition 3.1]). Suppose that $B \in \mathbb{C}^{n \times n}$ is accretive and hypocoercive. The hypocoercivity index (HC-index) m_{HC} of the matrix B is defined as the smallest integer $m \in \mathbb{N}_0$ such that (2.8) holds.

Note that for $B \in \mathbb{C}^{n \times n}$ (by the Cayley–Hamilton theorem applied to (B1')) it follows immediately that the hypocoercivity index (if it exists) is bounded by $n - 1$. More precisely, for a finite hypocoercivity index we even have $m_{HC} \leq \dim \ker(B_H) \leq n - 1$ (see Remark 4(b) in [1]). Furthermore, a hypocoercive matrix B is coercive if and only if $m_{HC} = 0$.

Remark 11. Hypocoercive matrices are often called *positively stable*, whereas negative hypocoercive matrices are often called *stable*. Note also that in [3, Definition 3], the HC-index for a semi-dissipative matrix $A_c \in \mathbb{C}^{n \times n}$ is defined as the HC-index of its coercive counterpart $B = -A_c$. We do not make use of this convention here.

Phenomenologically, the HC-index of an accretive matrix B describes the structural complexity of the intertwining of the Hermitian part B_H and skew-Hermitian part B_S (see [1] for illustrating examples). Moreover, for a semi-dissipative Hamiltonian ODE (1.1), the HC-index characterizes the short-time decay of the spectral norm of the propagator of the associated semigroup $S(t) := e^{-Bt} \in \mathbb{C}^{n \times n}$, $t \geq 0$.

Proposition 12 ([2, Theorem 2.7]). Let the ODE system (1.1) be semi-dissipative Hamiltonian with (accretive) matrix $B \in \mathbb{C}^{n \times n}$.

(a) The (accretive) matrix B is hypocoercive (with hypocoercivity index $m_{HC} \in \mathbb{N}_0$) if and only if

$$
\|e^{-Bt}\|_2 = 1 - et^n + O(t^{n+1}) \quad \text{for } t \in [0, \epsilon),
$$

for some $a, c, \epsilon > 0$. In this case, necessarily $a = 2m_{HC} + 1$.

(b) Consider the ODE (1.1) with ϵ-dependent system matrix $B = \epsilon A + C$ where $\epsilon \in \mathbb{R}$. If $B = \epsilon A + C$ is hypocoercive for $\epsilon \neq 0$, then the coefficient $c = c_\epsilon$ in the Taylor expansion of the propagator norm (2.10) satisfies

$$
0 < \epsilon^2 \epsilon^{2m_{HC}} \leq c = c_\epsilon \leq \epsilon^2 \epsilon^{2m_{HC}},
$$

for some positive constants $\epsilon_1, \epsilon_2 > 0$ independent of $\epsilon \neq 0$.

Remark 13.

- For genuine semi-dissipative Hamiltonian ODE systems (1.1) (such that $\mu(A_c) = 0$), the estimate (2.6) based on the logarithmic norm $\mu(A_c)$ yields only $\|z(t)\| \leq \|z(0)\|$ for $t \geq 0$.
- For semi-dissipative Hamiltonian ODE systems (1.1), (a lower bound for) the characterization of the HC-index via the short-time behavior of the propagator norm in (2.10) may also be derived by considering a suitable energy-preserving system, see, for example, [25]. However, the proof of Proposition 12 in [2] yields *quantitative* lower and upper bounds for the multiplicative constant c in (2.10). These explicit bounds allow to conclude the structural result in Proposition 12 b.

In Figure 1, we illustrate the relationship between the different concepts that we have discussed so far.
\[B \in \mathbb{C}^{n \times n} \]

Fig. 1. Illustration of the relationship between sets of matrices \(B \in \mathbb{C}^{n \times n} \) which are (hypo)coercive (circular discs), have a positive semi-definite Hermitian part (region within smaller ellipse), and those for which the solutions of the ODE system \(x' = -Bx \) are stable (region within bigger ellipse), respectively.

Remark 14. As one of the main applications of the analysis of the three discussed concepts is the study of (semi-)dissipative Hamiltonian systems, a natural concept that could be added to the description of the dynamical system is that of a *Hamiltonian or energy function*. In the abstract setting that we have discussed so far, the natural energy function is the Euclidean norm of the solution. Further energy functions will be discussed below.

Remark 15 (logarithmically optimal norms). For a Hermitian matrix \(A_c \in \mathbb{C}^{n \times n} \), its logarithmic norm \(\mu(A_c) \) and its spectral abscissa \(\alpha(A_c) \) are equal, \(\mu(A_c) = \alpha(A_c) \). In general, however, only the inequality \(\alpha(A_c) \leq \mu(A_c) \) holds, see, for example, [26, Lemma 1c]. A norm is *logarithmically optimal* with respect to a matrix \(A_c \) if its spectral abscissa \(\alpha(A_c) \) and logarithmic norm \(\mu(A_c) \) are equal, that is, \(\alpha(A_c) = \mu(A_c) \). Thus, the Euclidean norm is logarithmically optimal for all Hermitian matrices.

To analyze the relationship between the different concepts further, in the next section we first discuss the question by which transformations of (1.1) we can switch between the different concepts and which transformations leave the different properties invariant.

2.1. Linear transformations that preserve stability, semi-dissipativity, and hypocoercivity.

In this section, we discuss the classes of linear transformations that preserve the concepts of stability, semi-dissipativity, and hypocoercivity, and also those that map between the different concepts, see, for example, [15, 16] for some references. The natural classes of linear transformations that preserve the different properties...
Hypocoercivity and hypocontractivity concepts for linear dynamical systems

and the HC-index (in case of accretive matrices) are conjugate transposition \(B \to B^H \), due to Definition 10 and Lemma 7; unitary congruence transformations \(B \to UBU^H \) for a unitary matrix \(U \), due to Definition 10 and Lemma 7; scaling \(B \to tB \) for any \(t \in \mathbb{R}^+ \), due to Definition 10 and Lemma 7; and, as we will show in Lemma 20 below, the inversion of accretive hypocoercive matrices.

It is a classical result, see, for example, [5], how to construct a similarity transformation of a “stable” matrix \(B \) such that the transformed matrix is accretive: The origin \(x \equiv 0 \) is a stable state of system (1.1) if and only if there exists a positive definite matrix \(P = P^H \in \mathbb{C}^{n \times n} \) that satisfies the Lyapunov matrix inequality

\[
B^H P + PB \geq 0.
\]

A congruence transformation with the Hermitian matrix \(P^{-1/2} \), that is, the inverse of the positive definite square root of \(P \), yields

\[
0 \leq P^{-1/2}(B^H P + PB)P^{-1/2} = P^{-1/2}B^H P^{1/2} + P^{1/2}BP^{-1/2} = 2(P^{1/2}BP^{-1/2})_H.
\]

Hence, the matrix

\[
\hat{B} := P^{1/2}BP^{-1/2}
\]

is accretive. Moreover, the change of basis \(\hat{x}(t) := P^{1/2}x(t) \) transforms (1.1) into a semi-dissipative Hamiltonian ODE system of the form

\[
\ddot{x}(t) = -(P^{1/2}BP^{-1/2}) \dot{x}(t) = -\hat{B} \dot{x}(t).
\]

Although similarity transformations \(B \to SBS^{-1} \) for invertible matrices \(S \in \mathbb{C}^{n \times n} \) preserve the spectrum (and hence (negative) hypocoercivity), they may change the HC-index of accretive matrices: Example 16. The matrix

\[
B := \begin{bmatrix}
1 & -1 \\
1 & 0
\end{bmatrix}
\]

is accretive and hypocontractive with \(m_{HC} = 1 \) (having eigenvalues \(\lambda_{\pm} = (1 \pm i\sqrt{3})/2 \)). The positive definite Hermitian matrix \(P = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \) satisfies the continuous-time Lyapunov equation \(B^H P + PB = 2\Re(\lambda)P = P \). The similarity transformation (2.14) yields a coercive matrix

\[
\hat{B} = P^{1/2}BP^{-1/2} = \begin{bmatrix}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{bmatrix},
\]

hence \(m_{HC}(\hat{B}) = 0 \).

In a similar way, non-unitary congruence transformations \(B \to QBQ^H \) for some nonsingular matrix \(Q \in \mathbb{C}^{n \times n} \) may change the HC-index as the following example demonstrates.

Example 17. Consider the accretive matrix

\[
B = \begin{bmatrix}
i & 0 \\
0 & 1
\end{bmatrix}.
\]
The matrix B has an eigenvalue i, hence it is not hypocoercive. A congruence transformation with the (non-unitary) matrix

$$Q = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

yields $QBQ^H = \begin{bmatrix} i & i \\ i & 1+i \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + i \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, which is again accretive (due to Sylvester’s inertia theorem, see, for example, [10]). However, the matrix QBQ^H has eigenvalues $\frac{1}{2} + i (1 \pm \sqrt{2})$ and is hypocoercive with HC-index $m_{HC} = 1$.

As we have already discussed, changing the HC-index also changes the short-time behavior of the solutions of the dynamical system (1.1).

Example 18. Consider the matrix B in Example 3. In agreement with Proposition 12, (the norm of) solutions of the ODE (1.1) may have horizontal tangents (at any point $t_0 \geq 0$) with local behavior $\|x(t)\| = \|x(t_0)\| - c(t - t_0)^3 + O((t - t_0)^4)$ for some $c > 0$. Proceeding as in [6, Lemma 4.3], the similarity transformation (2.14) with

$$P = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$

yields a coercive matrix $\tilde{B} = P^{1/2}BP^{-1/2} = \begin{bmatrix} 1 & \sqrt{5} \\ -\sqrt{5} & 1 \end{bmatrix}$.

Accordingly, (the norm of) solutions of the associated ODE (2.15) cannot have horizontal tangents (see Figure 2).

Remark 19. We note that solutions P to the Lyapunov inequality (2.12) are typically not unique, and one can use this freedom to determine solutions that optimize certain robustness measures like the distance to instability, see, for example, [7, 12, 23].

It is an important observation that semi-dissipativity, hypocoercivity, and the HC-index stay invariant when the inverse of a matrix is taken:

Lemma 20. Let $B \in \mathbb{C}^{n \times n}$.

1. If B is hypocoercive, then B is invertible and B^{-1} is hypocoercive.
2. If B is accretive and invertible, then it follows that
 a. If $v \in \ker(B_H) \subset \mathbb{C}^n$ then $Bv \in \ker((B^{-1})_H)$.
 b. B^{-1} is accretive.
 c. $\dim \ker(B_H) = \dim \ker((B^{-1})_H)$.
3. If B is accretive and hypocoercive, then B and B^{-1} have the same HC-index.

Proof. 1. A matrix B is hypocoercive if all eigenvalues have positive real-part. Hence, the matrix B is invertible, and since the eigenvalues of the inverse of B^{-1} are the inverses of the eigenvalues of B, they have positive real-part and B^{-1} is hypocoercive.

2a. Writing $B = B_H + B_S$, it follows that if $v \in \ker(B_H)$ then $Bv = B_Sv = -B^Hv$. Thus,

$$\langle (B^{-1})_H(Bv) \rangle = \frac{1}{2} \langle B^{-1}(Bv) + (B^{-1})^H(Bv) \rangle = \frac{1}{2} (v - (B^H)^{-1}(B^Hv)) = 0 \, .$$

2b. To prove that B^{-1} is again accretive, we show the following identity: For all vectors $w \in \mathbb{C}^n$, define $v := B^{-1}w$, such that

$$\langle w , (B^{-1})_Hw \rangle = \frac{1}{2} \langle w , (B^{-1} + (B^{-1})^H)w \rangle = \frac{1}{2} \langle Bv , (B^{-1} + B^H)Bv \rangle = \frac{1}{2} \langle v , B^H(B^{-1} + B^{-H})Bv \rangle = \frac{1}{2} \langle v , (B^H + B)v \rangle = \langle v , B_Hv \rangle \geq 0 \, ,$$

$$\quad$$

The International Linear Algebra Society (ILAS)
Electronic Journal of Linear Algebra, ISSN 1081-3810
Volume 39, pp. 33-61, January 2023.
Fig. 2. For a solution $x(t)$ of the ODE (1.1) with $B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, the Euclidean norm $\|x(t)\|_2$ (blue line) and the weighted Euclidean norm $\|x(t)\|_P$ with $P = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ (orange line) are plotted. The norm of the solution $\|x(t)\|_2$ has horizontal tangents (at some point t_0), whereas the weighted norm $\|x(t)\|_P$ does not have horizontal tangents (due to our choice of P).

since B is accretive. Hence, B^{-1} is accretive as well.

2c. Due to part 2a. and a similar statement with the roles of B and B^{-1} exchanged, B is a bijection from $\ker(B_H)$ to $\ker((B^{-1})_H)$.

3. By assumption, the matrix B has a finite HC-index m_{HC} which is the smallest integer such that (2.7) holds or equivalently, due to (2.9), that

$$\bigcup_{j=0}^{m_{HC}} \ker(B_H B^j) = \{0\}$$

holds, see also [1, Remark 4]. Hence, there exists a vector $v_0 \neq 0$ such that

$$(2.19) \quad B^j v_0 \in \ker(B_H), \quad j \in \{0, \ldots, m_{HC} - 1\} \quad \text{and} \quad B^{m_{HC}} v_0 \notin \ker(B_H).$$
Due to 2b., it follows that

$$B^j v_0 \in \ker((B^{-1})H), \quad j \in \{0, \ldots, m_{HC} - 1\}$$

and $B^{m_{HC} + 1} v_0 \notin \ker((B^{-1})H)$.

The matrix B^{-1} is hypocoercive and accretive with finite HC-index $\tilde{m}_{HC} := m_{HC}(B^{-1})$ and hence, there exists a vector $w_0 \neq 0$ such that

$$B^{-j} w_0 \in \ker((B^{-1})H), \quad j \in \{0, \ldots, \tilde{m}_{HC} - 1\}$$

and $(B^{-1})^{\tilde{m}_{HC}} w_0 \notin \ker((B^{-1})H)$.

To show that $m_{HC} = m_{HC}(B) = m_{HC}(B^{-1}) = \tilde{m}_{HC}$, suppose that v_0 is a vector in \mathbb{C}^n satisfying (2.20) with $m_{HC} = m_{HC}(B)$. Then $w_0 := B^{m_{HC}} v_0$ satisfies $w_0 \neq 0$, hence, (2.21) implies that $m_{HC}(B^{-1}) \geq m_{HC}(B)$. Exchanging the roles of B and B^{-1} shows that $m_{HC}(B^{-1}) \leq m_{HC}(B)$. Altogether, $m_{HC}(B) = m_{HC}(B^{-1})$ holds.

In this section, we have discussed linear transformations and their effects on the concepts of hypocoercivity, stability, and semi-dissipativity. In the next section, we discuss how the (concept of the) HC-index for accretive matrices can be transferred to general matrices.

2.2. Shifted hypocoercivity index for general matrices

A possibility to turn a general system (1.1) into a semi-dissipative Hamiltonian system is to shift the spectrum. Consider the transformation

$$v(t) := \exp(\lambda_{\text{min}} t) x(t),$$

where λ_{min}^B is the minimal (real) eigenvalue of the Hermitian matrix B_H. Then, $v(t)$ satisfies the ODE

$$v'(t) = -(B - \lambda_{\text{min}}^B I) v(t),$$

where the Hermitian part B_H of $B = B - \lambda_{\text{min}}^B I$ is indeed positive semi-definite. Of course, the hypocoercivity index of matrix B is typically modified by the shift parameter λ.

Remark 21. The transformation (2.22) can be motivated as follows: The propagator for ODE (1.1) with $A_c = -B$ satisfies estimate (2.6) based on the logarithmic norm $\mu(A_c)$. Therefore, for $t \geq 0$,

$$1 \geq \|e^{A_c t}\|_{\mathcal{L}(\mathbb{C}^n, \mathbb{C}^n)} = \|e^{(A_c - \mu(A_c) I) t}\| = \|e^{-(B - \lambda_{\text{min}}^B I) t}\|,$$

since the logarithmic norm $\mu(A_c)$ can also be characterized as

$$\mu(A_c) := \sup_{\|x\| = 1} \Re(\langle x, A_c x \rangle) = \sup_{\|x\| = 1} \langle x, (A_c^H + A_c)x \rangle = \lambda_{\text{max}}^A = -\lambda_{\text{min}}^B,$$

where λ_{max}^A is the maximal (real) eigenvalue of the Hermitian matrix A_H.

In view of this shifting property, for general linear time-invariant ODE systems (1.1) with matrix $B \in \mathbb{C}^{n \times n}$, we will define a *shifted hypocoercivity index* which characterizes “the algebraic factor” in the decay of its propagator norm for short time, see Corollary 26 below. As a first step, we decompose the matrix $B \in \mathbb{C}^{n \times n}$.

Lemma 22. Let $B \in \mathbb{C}^{n \times n}$ with Hermitian part B_H, and let λ_{min}^B be the minimal (real) eigenvalue of the Hermitian matrix B_H (which could be negative or non-negative). Then, the matrix
Hypocoercivity and hypocontractivity concepts for linear dynamical systems

\[(2.23) \quad \tilde{B} := B - \lambda_{\text{min}}^{B_H} I \]

is accretive and, if \(\tilde{B}\) is hypoercoercive, has an HC-index \(m_{HC}(\tilde{B})\) greater than 0.

In particular, \(\tilde{B}\) is hypoercoercive if and only if no eigenvector of \(B_H\) associated with \(\lambda_{\text{min}}^{B_H}\) is an eigenvector of the skew-Hermitian part \(B_S\) of \(B\).

Proof. If we decompose \(B = B_H + B_S\) into its Hermitian part \(B_H\) and its skew-Hermitian part \(B_S\), then \(B_H\) has only real eigenvalues. Consider the matrix \(\tilde{B} := B - \lambda I\) for \(\lambda \in \mathbb{R}\). Then \(\lambda = \lambda_{\text{min}}^{B_H}\) is the only value for which the Hermitian part of \(B\) is positive semi-definite and singular (hence, if \(B\) is hypoercoercive then \(m_{HC}(\tilde{B}) > 0\)).

The hypocoercivity condition for \(\tilde{B}\) follows from Lemma 7, (B3): Matrix \(\tilde{B}\) fails to be hypoercoercive if and only if an eigenvector \(v\) of \(B_S\) (which is not changed by the shift) is in the kernel of \((\tilde{B} + \tilde{B}^H)/2 = B_H - \lambda_{\text{min}}^{B_H} I\), or equivalently \(v\) is an eigenvector of \(B_H\) to the eigenvalue \(\lambda_{\text{min}}^{B_H}\).

Definition 23. Let \(B \in \mathbb{C}^{n \times n}\) with Hermitian part \(B_H\), and let \(\lambda_{\text{min}}^{B_H}\) be the minimal (real) eigenvalue of the Hermitian matrix \(B_H\). If the accretive matrix \(\tilde{B} := B - \lambda_{\text{min}}^{B_H} I\) is hypoercoercive, then its HC-index \(m_{HC} \in \mathbb{N}\) is called the shifted hypocoercivity index (SHC-index) \(m_{SHC}\) of \(B\).

By definition, an accretive matrix has a (finite) HC-index \(m_{HC}\) if and only if it is positively stable, see also [2, 3]. However, a general (constant) matrix can have a finite SHC-index \(m_{SHC}\) without being positively stable, see the following example and Figure 1.

Example 24. Consider the matrix

\[
B := \begin{bmatrix}
9 & -3 \\
3 & -1
\end{bmatrix}
\]

which has the eigenvalues \(\lambda_1 = 0\) and \(\lambda_2 = 8\) and hence is not positively stable. Its Hermitian part \(B_H = \text{diag}(9, -1)\) has the minimal eigenvalue \(\lambda_{\text{min}}^{B_H} = -1\). Then, in (2.23) we have

\[
\tilde{B} = B - \lambda_{\text{min}}^{B_H} I = \begin{bmatrix}
10 & -3 \\
3 & 0
\end{bmatrix}
\]

which has eigenvalues 1 and 9. Therefore, \(m_{SHC}(B) = m_{HC}(\tilde{B}) = 1\).

We have the following characterization for accretive matrices to have a (finite) SHC-index.

Corollary 25. Let \(J, R \in \mathbb{C}^{n \times n}\) satisfy \(R = R^H\) and \(J = -J^H\) and let \(\lambda_{\text{min}}\) be the minimal eigenvalue of \(R\). Define \(\overline{R} := R - \lambda_{\text{min}} I\). Then the following conditions are equivalent:

(B1) There exists \(m \in \mathbb{N}_0\) such that

\[(2.24) \quad \text{rank}([R, JR, \ldots, J^mR] - \lambda_{\text{min}}[I, J, \ldots, J^m]) = n.\]

(B2) There exists \(m \in \mathbb{N}_0\) such that

\[(2.25) \quad \sum_{j=0}^{m} J^jR(J^H)^j > \lambda_{\text{min}} \sum_{j=0}^{m} J^j(J^H)^j.\]

(B3) No eigenvector of \(J\) is an eigenvector to \(\lambda_{\text{min}}\) of \(R\).

(B4) \(\text{rank}([\lambda I - J, R - \lambda_{\text{min}} I]) = n\) for every \(\lambda \in \mathbb{C}\), in particular for every eigenvalue \(\lambda\) of \(J\).

Moreover, the smallest possible \(m \in \mathbb{N}_0\) in (B1) and (B2) coincide.
Proof. The Hermitian matrix \(\tilde{R} = R - \lambda_{\text{min}} I \) is positive semi-definite. Hence, the statement (which is stated for the original matrix \(R \) using \(R = R - \lambda_{\text{min}} I \)) follows from Lemma 7. \(\square \)

In the following result, we show that we can use the SHC-index to characterize the short-time behavior of the propagator norm for general linear time-invariant systems of ODEs. For this, we denote the solution semigroup pertaining to (1.1) by \(S(t) := e^{-Bt} \in \mathbb{C}^{n \times n}, t \geq 0 \).

Corollary 26. Consider an ODE (1.1) with system matrix \(B \in \mathbb{C}^{n \times n} \). If \(B \) has a finite SHC-index \(m_{\text{SHC}}(B) \), then

\[
\|e^{-Bt}\|_2 = e^{-\lambda_{\text{min}}Bt} (1 - ct^n + O(t^{n+1})) \quad \text{for } t \to 0^+, \tag{2.26}
\]

where \(\lambda_{\text{min}}B \) is the smallest eigenvalue of the Hermitian matrix \(B_H, a = 2m_{\text{SHC}}(B) + 1 \geq 3 \), and \(c > 0 \).

Proof. Write \(B \) as in (2.23) and compute the HC-index \(m_{\text{HC}}(\tilde{B}) \) of the accretive matrix \(\tilde{B} = B - \lambda_{\text{min}}B I \). Using the decomposition (2.23) yields

\[
e^{-Bt} = e^{-(\lambda_{\text{max}}I + \tilde{B})t} = e^{-\lambda_{\text{max}}I t} e^{-\tilde{B}t}, \quad \text{such that } \|e^{-Bt}\|_2 = e^{-\lambda_{\text{min}}Bt} \|e^{-\tilde{B}t}\|_2. \tag{2.27}
\]

If an accretive matrix, \(\tilde{B} \) is hypocontractive, that is, having a finite HC-index \(m_{\text{HC}}(\tilde{B}) \) (or equivalently \(B \) has a finite SHC-index \(m_{\text{SHC}}(B) \)) then (2.26) follows from Proposition 12. \(\square \)

In this section, we have gathered and extended results about stable, hypocontractive, and semi-dissipative matrices. These results have analoga for discrete-time systems that are studied in the next section.

3. Stability, semi-contractivity, and hypocontractivity for discrete-time systems.

In this section, we study the analogous concepts for linear discrete-time systems

\[
x_{k+1} = A_d x_k, \quad k \in \mathbb{N}_0, \tag{3.28}
\]

for a given matrix \(A_d \in \mathbb{C}^{n \times n} \).

Remark 27. While the stability analysis in discrete-time systems is well studied in linear algebra and operator theory [19] using spectral properties and discrete-time Lyapunov equations, we proceed by studying hypocontractivity—the analogon to the concept of hypocoercivity in continuous time—and relating to these classical concepts.

Definition 28. The trivial solution \(x \equiv 0 \) of the discrete-time system (3.28) is called stable if all solutions of (3.28) are bounded for \(k \in \mathbb{N}_0 \), and it is called asymptotically stable if it is stable and all solutions of (3.28) converge to 0 for \(k \to \infty \).

For linear systems (3.28), a solution is (asymptotically) stable if and only if the trivial solution \(x \equiv 0 \) is (asymptotically) stable. Therefore, if the trivial solution \(x \equiv 0 \) of (3.28) is (asymptotically) stable, then the linear system (3.28) is called (asymptotically) stable.

It is well-known that (3.28) is stable if all eigenvalues of \(A_d \) have modulus less or equal than one and the eigenvalues of modulus one are semi-simple (see [13, Theorem 3.3.11]); and it is asymptotically stable if all eigenvalues of \(A_d \) have modulus strictly less than one.

Definition 29. Let \(A_d \in \mathbb{C}^{n \times n} \) have eigenvalues \(\lambda_j, j = 1, \ldots, n \). The spectral radius of \(A_d \) is defined as \(\rho(A_d) := \max\{\|\lambda_1\|, \ldots, |\lambda_n|\} \), that is, as the largest absolute value of its eigenvalues.
Hence, a discrete-time system (3.28) is asymptotically stable if the spectral radius of A_d is strictly less than one, $\rho(A_d) < 1$.

An alternative characterization of (asymptotic) stability can be given via the discrete-time Lyapunov (or Stein) equation: System (3.28) is asymptotically stable if and only if, for all positive definite Hermitian matrices Q

$$A_d^H P A_d - P = -Q$$

(3.29)

has a solution $P = P^H > 0$, see [13, Theorem 3.3.49] which is formally given by

$$P = \sum_{j=0}^{\infty} (A_d^H)^j Q A_d^j$$

(3.30)

see [13, (89b) in Section 3.3.5]. In the discrete-time case, the concept of hypocoercivity is replaced by that of hypocontractivity, which we introduce in the next subsection.

3.1. Hypocontractive matrices and the hypocontractivity index.

For $A_d \in \mathbb{C}^{n \times n}$, the spectral norm satisfies

$$\|A_d\|_2 = \sqrt{\|A_d^H A_d\|_2} = \sqrt{\lambda_{\max}(A_d^H A_d)} = \sigma_{\max}(A_d),$$

(3.31)

where $\lambda_{\max}(A_d^H A_d)$ denotes the largest eigenvalue of the positive semi-definite Hermitian matrix $A_d^H A_d$ and $\sigma_{\max}(A_d)$ is the largest singular value of A_d. Then, the estimate $\|A_d^n\|_2 \leq \|A_d\|_2^n$ for $n \in \mathbb{N}$ yields that $\sigma_{\max}(A_d) \leq 1$ is a sufficient condition for the stability of (3.28). However, $\sigma_{\max}(A_d) \leq 1$ is not a necessary condition for (3.28) to be stable.

Example 30. The eigenvalues of

$$A_d(\alpha) = \alpha \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}, \quad \alpha \in \mathbb{R},$$

(3.32)

are $\pm \alpha$. Hence, the discrete-time system (3.28) with matrix A_d in (3.32) is stable if and only if $\alpha \in [-1, 1]$. But the matrix

$$A_d^H A_d = \alpha^2 \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$$

(3.33)

has positive eigenvalues $\mu_{\pm} = \alpha^2 (3 \pm \sqrt{8})$ and singular values $\sigma_{\pm} = \sqrt{\mu_{\pm}}$ with $\sigma_{\max}(A_d) = \sigma_{+}$. Thus, $\sigma_{\max}(A_d) \leq 1$ holds if $|\alpha| \leq (3 + \sqrt{8})^{-1/2} \leq 1/2$ which is strictly less than one. Hence in this example, the condition $\sigma_{\max}(A_d) \leq 1$ is sufficient but not necessary to ensure the stability of (3.28).

In the following, we will need a result relating singular values and eigenvalues.

Proposition 31. Let $A_d \in \mathbb{C}^{n \times n}$ have singular values $\sigma_1 \geq \ldots \geq \sigma_n \geq 0$ (such that $\sigma_{\max}(A_d) = \sigma_1$) and eigenvalues λ_j, $j = 1, \ldots, n$ being ordered as $|\lambda_1| \geq \ldots \geq |\lambda_n|$. Then, $|\lambda_1| \leq \sigma_1$. Moreover, if A_d is nonsingular, then $|\lambda_n| \geq \sigma_n > 0$.

Proof. The statements follow from the bounds in [14, Theorem 5.6.9].

We then have the following discrete-time analogon of semi-dissipativity.
Definition 32 ([8, Definition 4.1.2]). Let $A_d \in \mathbb{C}^{n \times n}$ and let $\sigma_{\max}(A_d)$ be the largest singular value (the spectral norm) of A_d. We call A_d contractive if $\sigma_{\max}(A_d) < 1$, and we call A_d semi-contractive if $\sigma_{\max}(A) \leq 1$.

Note that sometimes A_d is called contractive if $\sigma_{\max}(A_d) < 1$, and A_d is called strictly contractive if $\sigma_{\max}(A_d) < 1$, see, for example, [14, p. 493]. Other related notions are (semi-)convergent matrices and power-bounded matrices, see [14, p. 180].

In the following, we consider the class of semi-contractive matrices A_d and present a characterization when (3.28) is (asymptotically) stable. For this, we need a concept that corresponds to hypocoercivity in the continuous-time case.

Definition 33. A matrix $A_d \in \mathbb{C}^{n \times n}$ is called hypocontractive if all eigenvalues of A_d have modulus strictly less than one.

Consequently, a discrete-time system (3.28) is asymptotically stable if and only if the system matrix A_d is hypocontractive. We can also characterize those semi-contractive matrices A which are actually hypocontractive:

Proposition 34. Let $A_d \in \mathbb{C}^{n \times n}$ be semi-contractive. Then, A_d has an eigenvalue of modulus one if and only if some eigenvector v of A_d satisfies $v \in \ker(I - A_d^H A_d)$.

Proof. Since A_d is semi-contractive, the Hermitian matrix $I - A_d^H A_d$ is positive semi-definite. Moreover, if A_d has an eigenvalue λ of modulus $|\lambda| = 1$ with eigenvector $v \neq 0$, then

$$0 \leq \langle v, (I - A_d^H A_d)v \rangle = \|v\|^2 - \|A_d v\|^2 = \|v\|^2 - |\lambda|^2 = 0.$$

Therefore, v is in the kernel of the positive semi-definite Hermitian matrix $I - A_d^H A_d$.

Conversely, if some eigenvector v of A_d (associated to an eigenvalue λ) satisfies $v \in \ker(I - A_d^H A_d)$, then

$$0 = \langle v, (I - A_d^H A_d)v \rangle = \|v\|^2 - \|A_d v\|^2 = \|v\|^2 - |\lambda|^2,$$

and hence, the eigenvalue λ has modulus one.

Remark 35. In the operator theory setting, the matrix $(I - A_d^H A_d)^{1/2}$ is often called the defect operator of the semi-contractive A_d and the closure of its image is the defect space with its dimension being called the defect index $d(A_d)$. The defect operator and its index are a measure for the distance of an operator from being unitary. See, for example, [27].

We again have an equivalent characterization in terms of properties from control theory:

Lemma 36. Let $A_d \in \mathbb{C}^{n \times n}$ be semi-contractive. Then the following conditions are equivalent:

(D1) There exists $m \in \mathbb{N}_0$ such that

$$\text{rank}[(I - A_d^H A_d), A_d^H(I - A_d^H A_d), \ldots, (A_d^H)^m(I - A_d^H A_d)] = n.$$

(D2) There exists $m \in \mathbb{N}_0$ such that

$$D_m := \sum_{j=0}^m (A_d^H)^j(I - A_d^H A_d)A_d^j > 0.$$

(D3) No eigenvector of A_d lies in the kernel of $(I - A_d^H A_d)$.

(D4) $\text{rank}[A - A_d^H I - A_d^H A_d] = n$ for every $\lambda \in \mathbb{C}$, in particular for every eigenvalue λ of A_d^H.

Moreover, the smallest possible $m \in \mathbb{N}_0$ in (D1) and (D2) coincide.

Proof. Like Lemma 7, this result follows from Theorem 6.2.1 of [9] and Lemma 59 in the Appendix.

Remark 37. In control theory, conditions (D1), (D3), and (D4) in Lemma 36 are equivalent characterizations of the controllability of the pair $(A_d^H, I - A_d^H A_d)$, or the dynamical system

$$x_{k+1} = A_d^H x_k + (I - A_d^H A_d) u_k.$$

There is always also the dual concept of observability which in this case would correspond to the controllability of $(A_d, I - A_d A_d^H)$. A dual result to Lemma 36 can then be formulated with this pair. Based on this pair, in [25] a similar result has been derived (in different terminology). A similar result for the continuous-time case follows from [24].

If we compare Lemma 36 with Lemma 7, then we need to substitute B_S with A_d^H, and B_H with $I - A_d^H A_d$, respectively. Using Lemma 36 (D2), we then define the hypocontractivity index.

Definition 38. For semi-contractive matrices $A_d \in \mathbb{C}^{n \times n}$, we define the hypocontractivity index or discrete HC-index (dHC-index) m_{dHC} as the smallest integer $m \in \mathbb{N}_0$ (if it exists) such that (3.35) holds.

Remark 39. The hypocontractivity index is sometimes also called the norm-one index, see [11], where it is shown that this index is finite if and only if the spectral radius of A_d is strictly smaller than one.

Clearly, a semi-contractive matrix A_d is contractive if and only if $m_{dHC} = 0$. Since (3.35) is a telescopic sum, we have that $D_m = I - (A_d^H)^{m+1} A_d^{m+1}$ and thus if a semi-contractive matrix $A_d \in \mathbb{C}^{n \times n}$ is hypocontractive with index $m_{dHC} \in \mathbb{N}_0$, then $A_d^{m_{dHC}+1}$ is contractive. Conversely, if a semi-contractive matrix $A_d \in \mathbb{C}^{n \times n}$ satisfies that A_d^m is contractive for some $m \in \mathbb{N}$, then A_d is hypocontractive with index $m_{dHC} \leq m - 1$.

The following result may be considered as a discrete counterpart of the short-time decay behavior from Proposition 12.

Theorem 40. Let $A_d \in \mathbb{C}^{n \times n}$ be semi-contractive and hypocontractive. Its (finite) hypocontractivity index is $m_{dHC} \in \mathbb{N}_0$ if and only if

(3.36) $\|A_d^j\|_2 = 1$ for all $j = 1, \ldots, m_{dHC}$, and $\|A_d^{m_{dHC}+1}\|_2 < 1$.

Proof. The spectral norm $\|C\|_2$ of a matrix $C \in \mathbb{C}^{n \times n}$, that is, the operator norm induced by the Euclidean norm on \mathbb{C}^n, is given by $\|C\|_2 = \max_{w \in \mathbb{C}^n: \|w\|_2 = 1} \|Cw\|_2$. If a matrix A_d is semi-contractive, then the estimates $\|A_d\|_2 \leq 1$ and $\|A_d^j\|_2 \leq \|A_d\|_2^j \leq 1$ hold for all $j \in \mathbb{N}$. Thus, for vectors $w \in \mathbb{C}^n$ with $\|w\|_2 = 1$, we have

$$\langle w, (A_d^H)^j A_d^j w \rangle = \langle A_d^j w, A_d^j w \rangle = \|A_d^j w\|_2^2 \leq 1 = \langle w, w \rangle,$$

such that $0 \leq \langle w, (I - (A_d^H)^j A_d^j) w \rangle$. Therefore, for all $m \in \mathbb{N}_0$,

$$D_m = \sum_{j=0}^{m} (A_d^H)^j (I - A_d^H A_d) A_d^j = I - (A_d^H)^{m+1} A_d^{m+1} \geq 0.$$
and hence, the semi-contractive matrix A_d has (finite) hypocontractivity index m_{dHC} if and only if (3.36) holds.

We summarize the relationship between the different concepts discussed in this section in Figure 3.

3.2. Polar decomposition. In [3], a computationally feasible procedure has been presented to check the conditions of Lemma 7 in the continuous-time case via a staircase form under unitary congruence transformations. A similar procedure can be derived in the discrete-time case. It is based on polar decomposition, see, for example, [14, Theorem 7.3.1], which is the discrete-time analogon of the additive splitting of a matrix into its Hermitian and skew-Hermitian part:

Proposition 41 (Polar decomposition). Let $A_d \in \mathbb{C}^{n \times n}$.

(a) There exist positive semi-definite Hermitian matrices $P_d, Q_d \in \mathbb{C}^{n \times n}$ and a unitary matrix $U_d \in \mathbb{C}^{n \times n}$ such that

$$A_d = P_d U_d = U_d Q_d .$$

The factors P_d, Q_d are uniquely determined as $P_d = (A_d A_d^H)^{1/2}$ and $Q_d = (A_d^H A_d)^{1/2}$. If A_d is nonsingular, then $U_d = P_d^{-1} A_d = A_d Q_d^{-1}$ is uniquely determined (as well).

(b) If A_d is real, then the factors P_d, Q_d, and U_d may be taken to be real.
49 Hypocoercivity and hypocontractivity concepts for linear dynamical systems

Consider a stable discrete-time system (3.28) with matrix A_d. Hence, all eigenvalues of matrix A_d have modulus less or equal than one. Then, the polar decomposition (3.37) yields that the (largest) singular values of A_d, P_d, and Q_d are the same, since $A_d A_d^\dagger = P_d P_d^\dagger$ and $A_d A_d = Q_d Q_d$. An immediate consequence is that a matrix $A_d \in \mathbb{C}^{n \times n}$ with polar decomposition (3.37) is semi-contractive if and only if the spectra of P_d and Q_d (which coincide) are contained in $[0,1]$. We can rephrase the statement of Proposition 34 as follows:

Proposition 42. Let $A_d \in \mathbb{C}^{n \times n}$ be semi-contractive with polar decomposition $A_d = U_d Q_d$ and $Q_d = (A_d^\dagger A_d)^{1/2}$. Then, A_d has an eigenvalue of modulus one (and hence A_d is not hypocontractive) if and only if some eigenvector v of U_d satisfies $v \in \ker(I - Q_d)$.

Proof. For the forward direction, we assume that the eigenvalue equation $A_d v = \lambda v$ holds for some λ with $|\lambda| = 1$ and $v \in \mathbb{C}^n \setminus \{0\}$. Then, Proposition 34 implies that $v \in \ker(I - A_d^\dagger A_d)$, that is, $0 = (I - A_d^\dagger A_d)v = (I + Q_d)(I - Q_d)v$ which holds if and only if $0 = (I - Q_d)v$, such that $0 = U_d(I - Q_d)v = U_d v - \lambda v$. Hence, $v \in \ker(I - Q_d)$ is an eigenvector of U_d.

Conversely, let w be an eigenvector of U_d, that is, $U_d w = \lambda w$ with $|\lambda| = 1$, that satisfies $(I - Q_d)w = 0$. Then $0 = U_d(I - Q_d)w = \lambda w - A_d w$.

Note that, for semi-contractive matrices A_d, eigenvalues with modulus one are necessarily semi-simple. Therefore, a semi-contractive matrix A_d (with polar decomposition $A_d = U_d Q_d$) is hypocontractive if and only if no eigenvector of A_d lies in the kernel of the positive semi-definite Hermitian matrix $I - Q_d$.

Using this relationship, we formulate an analogous result to Lemma 36, in terms of matrices appearing in polar decompositions. It follows again from Theorem 6.2.1 of [9] and Lemma 59:

Lemma 43. Let $A_d \in \mathbb{C}^{n \times n}$ be semi-contractive with polar decomposition $A_d = U_d Q_d$ (that is, with U_d unitary, Q_d semi-contractive Hermitian, and $Q_d^2 = A_d^\dagger A_d$). Then the following conditions are equivalent:

(D1') There exists $m \in \mathbb{N}_0$ such that

$$\text{rank}[(I - Q_d^2), U_d^\dagger (I - Q_d^2), \ldots, (U_d^\dagger)^m (I - Q_d^2)] = n. \tag{3.38}$$

(D2') There exists $m \in \mathbb{N}_0$ such that

$$\hat{D}_m := \sum_{j=0}^{m} (U_d^\dagger)^j (I - Q_d^2) U_d^j > 0. \tag{3.39}$$

(D3') No eigenvector of U_d lies in the kernel of $I - Q_d^2$.

(D4') $\text{rank}[\lambda I - U_d^\dagger, I - Q_d^2] = n$ for every $\lambda \in \mathbb{C}$, in particular for every eigenvalue λ of U_d^\dagger.

Moreover, the smallest possible $m \in \mathbb{N}_0$ in (D1') and (D2') coincide.

Note that (D3') and (D3') are equivalent, due to Proposition 42 and since $\ker(I - Q_d) = \ker(I - Q_d^2)$. Consequently, all conditions of the Lemmata 36 and 43 are equivalent and the smallest possible values of m coincide.

3.3. Scaled hypocontractivity index.

The analogon to the shifted hypocoercivity index is obtained by scaling.
L**E**MMA 44. Let \(A_d \in \mathbb{C}^{n \times n} \) be a nonzero matrix, and let \(\sigma_{\text{max}}(A_d) \) be the maximal singular value of \(A_d \). Then, the matrix
\[
\tilde{A}_d := (\sigma_{\text{max}}(A_d))^{-1} A_d
\]
(3.40)
is semi-contractive and, if \(\tilde{A}_d \) is hypocontractive, has a discrete HC-index \(m_{dHC}(\tilde{A}_d) \) greater than 0.

Furthermore, \(\tilde{A}_d \) is hypocontractive if and only if the matrices in the polar decomposition of \(A_d = U_d Q_d \) satisfy that no eigenvector of \(Q_d = (A_d^H A_d)^{1/2} \) associated with the eigenvalue \(\sigma_{\text{max}}(A_d) \) is an eigenvector of \(U_d \).

Proof. Consider the matrix \(\tilde{A}_d(\sigma) := \sigma^{-1} A_d \) for \(\sigma > 0 \). Then \(\sigma = \sigma_{\text{max}}(A_d) \) is the only value such that the largest singular value of \(\tilde{A}_d(\sigma) \) is one, since
\[
\sigma_{\text{max}}(\tilde{A}_d) = \sqrt{\lambda_{\text{max}}(\tilde{A}_d^H \tilde{A}_d)} = \sqrt{\frac{\lambda_{\text{max}}(A_d^H A_d)}{\sigma_{\text{max}}(A_d)}} = 1.
\]
Consequently, if the scaled matrix \(\tilde{A}_d \) is hypocontractive, then its discrete HC-index \(m_{dHC}(\tilde{A}_d) \) is greater than 0.

To prove the final statement, we consider the polar decomposition of \(A_d \) in the form \(A_d = U_d Q_d \). Then, \(\tilde{A}_d = (\sigma_{\text{max}}(A_d))^{-1} A_d \) has the polar decomposition \(\tilde{A}_d = U_d Q_d \) with the same unitary matrix \(U_d \), and \(Q_d := (\sigma_{\text{max}}(A_d))^{-1} Q_d \). Due to Proposition 42, \(\tilde{A}_d \) is hypocontractive if and only if no eigenvector \(v \) of \(U_d \) is in the kernel of \(I - Q_d \). The latter is equivalent to \(v \) being an eigenvector of \(Q_d \) to the eigenvalue one, or \(v \) being an eigenvector of \(Q_d \) to the eigenvalue \(\sigma_{\text{max}}(A_d) \).

DEFINITION 45. Consider a nonzero matrix \(A_d \in \mathbb{C}^{n \times n} \), and let \(\sigma_{\text{max}}(A_d) \) be the maximal (positive) singular value of \(A_d \). If the semi-contractive matrix \(\tilde{A}_d := (\sigma_{\text{max}}(A_d))^{-1} A_d \) is hypocontractive with discrete HC-index \(m_{dHC}(\tilde{A}_d) \), then we define the scaled hypocontractivity index or discrete SHC-index \(dSHC \) of \(A_d \) as \(m_{dSHC}(A_d) := m_{dHC}(\tilde{A}_d) \).

In analogy to Theorem 40, we then have the following characterization when \(\tilde{A}_d \) has a finite scaled hypocontractivity index.

THEOREM 46. Let \(A_d \in \mathbb{C}^{n \times n} \) be nonzero, and let \(\sigma_{\text{max}}(A_d) \) be the maximal (positive) singular value of \(A_d \). If \(A_d \) has a finite discrete SHC-index \(m_{dSHC} \), then
\[
\|A_j\|_2 = (\sigma_{\text{max}}(A_d))^j \quad \text{for all } j = 1, \ldots, m_{dSHC}, \quad \text{and} \quad \|A_d^{m_{dSHC}+1}\|_2 < (\sigma_{\text{max}}(A_d))^{m_{dSHC}+1}.
\]

Proof. We scale \(A_d \) as in (3.40) and compute the discrete HC-index \(m_{dHC}(\tilde{A}_d) \) \((\geq 1)\) of the semi-contractive matrix \(\tilde{A}_d = (\sigma_{\text{max}}(A_d))^{-1} A_d \) so that \(m_{dSHC}(A_d) := m_{dHC}(\tilde{A}_d) \). Using the scaling (3.40) yields
\[
\|A_j\|_2 = \|((\sigma_{\text{max}}(A_d))\tilde{A}_d)^j\|_2 = (\sigma_{\text{max}}(A_d))^j\|\tilde{A}_d\|_2 \quad \text{for all } j \in \mathbb{N}.
\]

If the semi-contractive matrix \(\tilde{A}_d \) has a (finite) discrete HC-index \(m_{dHC}(\tilde{A}_d) \) (or equivalently the discrete SHC-index \(m_{dSHC}(A_d) \) of \(A_d \) is finite), then (3.41) follows from Theorem 40.

We summarize the analogy between discrete-time and continuous-time systems in Table 1.

In this section, we have given characterizations for the concepts of stability, semi-contractivity, and hypocontractivity for linear discrete-time systems. In the next section, we relate the continuous-time and discrete-time concepts.
Hypocoercivity and hypocontractivity concepts for linear dynamical systems

4. Transformation between discrete-time and continuous-time systems. We have seen the close analogy between the results for the continuous-time and discrete-time case. In this section, we recall that the typical bilinear transformations between continuous-time and discrete-time systems such as the Cayley transformation (in fact of $-\mathbf{A}_c$) relate hypocoercive with hypocontractive systems (see, for example, [13]), and semi-dissipative with semi-contractive systems (see, for example, [27]). Moreover, we show that the Cayley transformation (of $-\mathbf{A}_c$) directly relates the hypocoercivity and hypocontractivity indices.

Lemma 47. Let $\mathbf{A}_c \in \mathbb{C}^{n \times n}$ be a matrix such that (1.1) is (Lyapunov) stable. Then, the Cayley transform

$$\mathbf{A}_d := (\mathbf{I} + \mathbf{A}_c)(\mathbf{I} - \mathbf{A}_c)^{-1}$$

is well-defined and the following properties hold:

(i) If \mathbf{A}_c is negative hypocoercive, then \mathbf{A}_d is hypocontractive.

(ii) If \mathbf{A}_c is semi-dissipative, then \mathbf{A}_d is semi-contractive. Let $\mathbf{A}_H := \frac{1}{2}((\mathbf{A}_c + \mathbf{A}_c^H))$, then the matrix $(\mathbf{I} - \mathbf{A}_c)$ is a bijection from $\ker(\mathbf{A}_H)$ to $\ker((\mathbf{I} - \mathbf{A}_c)^H \mathbf{A}_d)$. Consequently, $\dim \ker(\mathbf{A}_H) = \dim \ker((\mathbf{I} - \mathbf{A}_c^H) \mathbf{A}_d)$.

Proof. If the continuous-time system (1.1) with system matrix \mathbf{A}_c is (Lyapunov) stable, then all eigenvalues of \mathbf{A}_c have non-positive real part and the eigenvalues on the imaginary axis are semi-simple. Hence, the matrices $(\mathbf{I} - \mathbf{A}_c), (\mathbf{I} - \mathbf{A}_c^H)$ are invertible, and the Cayley transform $\mathbf{A}_d = (\mathbf{I} + \mathbf{A}_c)(\mathbf{I} - \mathbf{A}_c)^{-1}$ is well-defined.

(i) If $\mathbf{A}_c \in \mathbb{C}^{n \times n}$ is negative hypocoercive, then all eigenvalues of \mathbf{A}_d have absolute value less than one, hence, \mathbf{A}_d is hypocontractive.

(ii) If $\mathbf{A}_c \in \mathbb{C}^{n \times n}$ is semi-dissipative, then $\mathbf{I} - \mathbf{A}_c$ is positive dissipative (hence $\mathbf{I} - \mathbf{A}_c$ is invertible). It follows that

$$\mathbf{I} - \mathbf{A}_d^H \mathbf{A}_d = \mathbf{I} - (\mathbf{I} - \mathbf{A}_c)^{-H}(\mathbf{I} + \mathbf{A}_c)^H(\mathbf{I} + \mathbf{A}_c)(\mathbf{I} - \mathbf{A}_c)^{-1}$$

$$= (\mathbf{I} - \mathbf{A}_c)^{-H}((\mathbf{I} - \mathbf{A}_c)^H(\mathbf{I} - \mathbf{A}_c) - (\mathbf{I} + \mathbf{A}_c)^H(\mathbf{I} + \mathbf{A}_c))(\mathbf{I} - \mathbf{A}_c)^{-1}$$

$$= 2(\mathbf{I} - \mathbf{A}_d)^H(\mathbf{A}_c^H + \mathbf{A}_c)(\mathbf{I} - \mathbf{A}_c)^{-1}$$

$$= -4(\mathbf{I} - \mathbf{A}_c)^{-H} \mathbf{A}_H(\mathbf{I} - \mathbf{A}_c)^{-1}.$$
Hence, the matrices $-A_H$ and $(I - A_d^H A_d)$ are related via a congruence transformation. Therefore, A_d is semi-contrac-tive (or equivalently, $(I - A_d^H A_d)$ is positive semi-definite) if A_c is semi-dissipative.

Due to (4.44), if $v \in \ker(A_H)$, then $(I - A_c)v \in \ker(I - A_c^H A_d)$. Thus, $(I - A_c)\ker(A_H) \subseteq \ker(I - A_c^H A_d)$. Conversely, if $w \in \ker(I - A_d^H A_d)$, then $(I - A_c)^{-1}w \in \ker(A_H)$. Thus, $(I - A_c)^{-1}\ker(I - A_d^H A_d) \subseteq \ker(A_H)$. Altogether, $(I - A_c)$ is a bijection from $\ker(A_H)$ to $\ker(I - A_d^H A_d)$, and $\dim \ker(A_H) = \dim \ker(I - A_d^H A_d)$.

Remark 48. As a consequence of Lemma 47(ii), we have that $\text{rank}(A_H) = \text{rank}(I - A_d^H A_d) =: d(A_d)$, the defect index of A_d, see Remark 35. As a follow-up consequence (using also Theorem 51 below), we find that the lower bound on the hypocoercivity index of A_c, that is, $m_{HC}(A_c) \geq \frac{n - d(A_d)}{\text{rank}(A_H)}$ equals our lower bound on the hypocoercivity index of A_c, that is, $m_{HC}(A_c) \geq \frac{n - \text{rank}(A_d)}{\text{rank}(A_H)}$.

The inverse Cayley transform leads to a similar result for the mapping from the discrete-time to the continuous-time problem:

Lemma 49. Let $A_d \in \mathbb{C}^{n \times n}$ be such that $x_{k+1} = A_d x_k$, $k \in \mathbb{N}_0$ is stable and that -1 is not an eigenvalue of A_d. Then, the inverse Cayley transform

$$ (4.45) \quad A_c := (A_d - I)(A_d + I)^{-1} $$

is well-defined and the following properties hold.

(i) If A_d is hypocontractive, then A_c is negative hypocoercive.

(ii) If A_d is semi-contrac-tive, then A_c is semi-dissipative. Moreover, with $A_H = \frac{1}{2}(A_c + A_c^H)$, the matrix $(A_d + I)$ is a bijection from $\ker(I - A_d^H A_d)$ to $\ker(A_H)$ and $\dim \ker(A_H) = \dim \ker(I - A_d^H A_d)$.

Proof. Since -1 is not an eigenvalue of A_d then the matrices $(A_d + I)$, $(A_d + I)^{H}$ are invertible, and the inverse Cayley transform (4.45) is well-defined.

(i) If A_d is hypocontractive, then all eigenvalues of A_d have modulus less than one; hence, all eigenvalues of A_c have negative real part. Thus, A_c is negative hypocoercive.

(ii) If $A_d \in \mathbb{C}^{n \times n}$ is semi-contrac-tive, then $x_{k+1} = A_d x_k$, $k \in \mathbb{N}_0$ is stable (due to Proposition 31). Then

$$ (4.46) \quad A_H = \frac{1}{2}(A_c + A_c^H) $$

$$ = \frac{1}{2}((A_d - I)(A_d + I)^{-1} + (A_d + I)^{-H}(A_d - I)^H) $$

$$ = \frac{1}{2}(A_d + I)^{-H}((A_d + I)^H(A_d - I) + (A_d - I)^H(A_d + I))(A_d + I)^{-1} $$

$$ = -(A_d + I)^{-1}(I - A_d^H A_d)(A_d + I)^{-1}. $$

Thus, the matrices $-A_H$ and $(I - A_d^H A_d)$ are related via a congruence transformation, and hence A_d is semi-contrac-tive (or equivalently, $(I - A_d^H A_d)$ is positive semi-definite) if A_c is semi-dissipative.

Due to (4.46), if $v \in \ker(A_H)$, then $(A_d + I)^{-1}v \in \ker(I - A_d^H A_d)$. Thus, $(A_d + I)^{-1}\ker(A_H) \subseteq \ker(I - A_d^H A_d)$. Conversely, if $w \in \ker(I - A_d^H A_d)$, then $(A_d + I)w \in \ker(A_H)$. Thus, $(A_d + I)\ker(I - A_d^H A_d) \subseteq \ker(A_H)$. Altogether, $(A_d + I)$ is a bijection from $\ker(I - A_d^H A_d)$ to $\ker(A_H)$ which implies that $\dim \ker(A_H) = \dim \ker(I - A_d^H A_d)$.

Remark 50. The assumption in Lemma 49 that -1 is not an eigenvalue of A_d can be relaxed by considering $A_c = (A_d - \alpha I)(A_d + \alpha I)^{-1}$, where $-\alpha \in \mathbb{C}$ (with $|\alpha| = 1$) is not an eigenvalue of A_d. Such an α clearly exists in the complex case, but this will not work in the real case if both 1 and -1 are eigenvalues of A_d and one wants to stay within the class of real matrices.
Hypocoerativity and hypocontractivity concepts for linear dynamical systems

The Cayley transformation also gives a direct relation between the hypocoercivity and hypocontractivity indices.

Theorem 51. (i) Let $A_c \in \mathbb{C}^{n \times n}$ be semi-dissipative and negative hypocoercive and let $A_d := (I + A_c)(I - A_c)^{-1}$. Then the hypocoercivity index $m_{HC} \in \mathbb{N}_0$ of A_c and the hypocontractivity index m_{dHC} of A_d are the same, that is, $m_{dHC}(A_d) = m_{HC}(A_c)$.

(ii) Let $A_d \in \mathbb{C}^{n \times n}$ be semi-contractive and hypocontractive and let $A_c := (A_d - I)(A_d + I)^{-1}$. Then the hypocontractivity index $m_{dHC} \in \mathbb{N}_0$ of A_d and the hypocoercivity index m_{HC} of A_c are the same, that is, $m_{HC}(A_c) = m_{dHC}(A_d)$.

Proof. (i) Due to the assumptions and Lemma 47, $A_d = 2(I - A_c)^{-1} - I$ is semi-contractive and hypocontractive. Thus, by Lemma 49, the inverse Cayley transform $(A_d - I)(A_d + I)^{-1}$ is well-defined and satisfies $(A_d - I)(A_d + I)^{-1} = I - 2(A_d + I)^{-1} = A_c$.

By assumption, the matrix $A_c = A_H + A_S$ has a finite HC-index $m_{HC} = m_{HC}(A_c)$ which is the smallest integer such that, due to (2.9),

$$\bigcap_{j=0}^{m_{HC}} \ker(A_H A_c^j) = \{0\}.$$

Hence, there exists a vector $v_0 \in \mathbb{C}^n \setminus \{0\}$ such that

$$(4.47) \quad A_c^j v_0 \in \ker(A_H), \quad j \in \{0, \ldots, m_{HC} - 1\} \quad \text{and} \quad A_c^{m_{HC}} v_0 \notin \ker(A_H).$$

Thus, by Lemma 47 (ii), we obtain that

$$(4.48) \quad (I - A_c)A_c^j v_0 \in \ker(I - A_d^H A_d), \quad j \in \{0, \ldots, m_{HC} - 1\}, \quad \text{and} \quad (I - A_c)A_c^{m_{HC}} v_0 \notin \ker(I - A_d^H A_d).$$

Conversely, the existence of some $v_0 \neq 0$ satisfying the “first part” of (4.48) with some $m_{HC} \geq 1$ implies that the HC-index of A_c is at least m_{HC}.

The matrix $A_d = (I + A_c)(I - A_c)^{-1}$ is hypocontractive with HC-index $m_{dHC} := m_{dHC}(A_d) \in \mathbb{N}_0$. Due to (3.35) this is the smallest integer such that

$$\bigcap_{j=0}^{m_{dHC}} \ker((I - A_d^H A_d)A_d^j) = \{0\}.$$

Hence, there exists a vector $w_0 \in \mathbb{C}^n \setminus \{0\}$ such that

$$(4.49) \quad w_0 \in \bigcap_{j=0}^{m_{dHC} - 1} \ker((I - A_d^H A_d)A_d^j), \quad \text{and} \quad w_0 \notin \ker((I - A_d^H A_d)A_d^{m_{dHC}}),$$

or equivalently, there exists $w_0 \in \mathbb{C}^n \setminus \{0\}$ such that

$$(4.50) \quad A_d^j w_0 \in \ker(I - A_d^H A_d), \quad j \in \{0, \ldots, m_{dHC} - 1\} \quad \text{and} \quad A_d^{m_{dHC}} w_0 \notin \ker(I - A_d^H A_d).$$

Conversely, the existence of some $w_0 \neq 0$ satisfying the “first part” of (4.50) with some $m_{dHC} \geq 1$ implies that the dHC-index of A_d is at least m_{dHC}.

It remains to show that $m_{HC}(A_c) = m_{dHC}(A_d)$: If $m_{HC} = 0$, then A_c is dissipative such that $\ker(A_H) = \{0\}$. Hence, $\ker(I - A_d^H A_d) = \{0\}$ due to Lemma 47 (ii) and A_d is contractive, that is, $m_{dHC} = 0$. Conversely,
if $m_{dHC}(A_d) = 0$, then $\ker(I - A_d^H A_d) = \{0\}$. Hence, $\ker(A_H) = \{0\}$ by Lemma 47 (ii) and thus A_c is dissipative and $m_{HC} = 0$.

If $m_{HC} \geq 1$, then let $v_0 \in \mathbb{C}^n \setminus \{0\}$ satisfy (4.48) with $m_{HC} = m_{HC}(A_c)$. Hence,

$$q(A_c)(I - A_c)v_0 \in \ker(I - A_d^H A_d)$$

for all polynomials q of order up to $m_{HC} - 1$. In particular

$$w_0 := (I - A_c)^{m_{HC}}v_0 \in \ker(I - A_d^H A_d),$$

and $w_0 \neq 0$ since $(I - A_c)$ is regular. Also, using (4.43) we find that

$$A_d^j w_0 = (I + A_c)^j(I - A_c)^{m_{HC} - j}v_0 \in \ker(I - A_d^H A_d)\quad j \in \{0, \ldots, m_{dHC} - 1\}.$$

Hence, (4.50) implies $m_{dHC}(A_d) \geq m_{HC}(A_c)$.

Conversely, if $m_{dHC} \geq 1$, then let $w_0 \in \mathbb{C}^n \setminus \{0\}$ satisfy (4.50) with $m_{dHC} = m_{dHC}(A_d)$. Hence,

$$q(A_d)w_0 \in \ker(I - A_d^H A_d)$$

for all polynomials q of order up to $m_{dHC} - 1$. We define $v_0 := (A_d + I)^{m_{dHC}}w_0 \neq 0$ since $(A_d + I)$ is regular. Using (4.45) and $I - A_c = 2(A_d + I)^{-1}$ we compute

$$A_c^j(I - A_c)v_0 = 2(A_d - I)^j(A_d + I)^{m_{dHC} - j - 1}w_0 \in \ker(I - A_d^H A_d)\quad j \in \{0, \ldots, m_{dHC} - 1\}.$$

Hence, (4.48) implies $m_{HC}(A_c) \geq m_{dHC}(A_d)$. Altogether, we deduce that $m_{dHC}(A_d) = m_{HC}(A_c)$, which finishes the proof of statement (i).

(ii) The proof is analogous to that of (i).

Remark 52. It was pointed out to the authors that the results presented in Lemmas 47 and 49 as well as Theorem 51 can be proved in an alternative way by using the characterization via unobservability subspaces, see Remark 37. The results then can be proved via Lemmas 12.3.10 and 12.2.6 of [25].

Example 53. Consider the continuous-time system (1.1) with the coefficient matrix

$$A_c = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

which is semi-dissipative and $B = -A_c$ has hypocontractivity index $m_{HC} = 2$. Applying the Cayley transformation gives

$$A_d = (I + A_c)(I - A_c)^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -4 & 2 & 0 \\ 4 & -1 & -2 & 0 \\ 2 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

which is semi-contracive and has hypocontractivity index $m_{dHC} = 2$.

Unfortunately, the Cayley transform does not relate the shifted hypocoercivity index m_{SHC} and the scaled hypocontractivity index m_{dSHC} in the same way, as the following example illustrates.
Invariance of properties of continuous-time and discrete-time systems under Cayley transformation $A_d = (I + A_c)(I - A_c)^{-1}$ and inverse Cayley transformation $A_c = (A_d - I)(A_d + I)^{-1}$

Continuous-time	Discrete-time,
$\frac{dx}{dt} = Ax$ for $t \geq 0$	$x_{k+1} = A_d x_k$ for $k \in \mathbb{N}_0$,
(asymptotically) stable	(asymptotically) stable,
semi-dissipative	semi-contractive,
(hypo)coercive	(hypo)contractive,
$m_{HC}(A_c)$	$m_{dHC}(A_d)$,
Lyapunov solution P_c	Lyapunov solution P_d.

Example 54. Consider the matrix

$$A_d = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

which is hypocontractive with hypocontractivity index $m_{dHC} = 2$. The matrix $A_d := 2A_d$ is not semi-contractive, since $A_d^H A_d = \text{diag}(0, 4, 4)$, but it has scaled hypocontractivity index $m_{dSHC} = 2$. For the inverse Cayley transform of A_d, we obtain

$$A_c := (A_d - I)(A_d + I)^{-1} = \begin{bmatrix} -1 & 4 & -8 \\ 0 & -1 & 4 \\ 0 & 0 & -1 \end{bmatrix}, \quad A_H = \begin{bmatrix} -1 & 2 & -4 \\ 2 & -1 & 2 \\ -4 & 2 & -1 \end{bmatrix}.$$

The eigenvalues of A_H are $\lambda = 3, \lambda_{\pm} = -3 \pm \sqrt{12}$ and hence they are simple and the shifted HC-index of A_c is $m_{SHC} = 1$. This example shows that $2 = m_{dSHC}(A_d) \neq m_{SHC}(A_c) = 1$.

It is well-known, see, for example, [17, page 180], that the Cayley transformation also directly relates the stabilizing solutions of the discrete-time and continuous-time Lyapunov equation. We summarize these results in the following Lemma.

Lemma 55. Let $A_c \in \mathbb{C}^{n \times n}$ be a matrix such that (1.1) is (Lyapunov) stable and let $A_d = (I + A_c)(I - A_c)^{-1}$. Then P is the positive definite solution $P_c = P$ of the continuous-time Lyapunov equation

$$A_c^H P + P A_c = -Q_c,$$

for some positive semidefinite matrix Q_c, if and only if P is the positive definite solution $P_d = P$ of the discrete-time Lyapunov equation

$$A_d^H P_d A_d - P_d = -Q_d$$

for positive semidefinite Q_d, where the right-hand sides are related via $Q_d = 2(I - A_c^H)^{-1}Q_c(I - A_c)^{-1}$.

In summary, we have an almost complete analogy between the properties of continuous-time and discrete-time systems. We summarize these invariance properties under the Cayley transformation and the inverse Cayley transformation (if it exists) in Table 2.
Finally, we consider the scaled Cayley transform

\[
A_d(t) := \left(I + \frac{t}{2} A_c \right) \left(I - \frac{t}{2} A_c \right)^{-1} \quad \text{for } t > 0,
\]

which can be considered as a short-time approximation of the matrix exponential for (1.1). Due to the scaling invariance of the hypocoercivity (index) of a matrix \(A_c \in \mathbb{C}^{n \times n} \) (see Section 2.1), we readily obtain:

Corollary 56. Let \(A_c \in \mathbb{C}^{n \times n} \) be semi-dissipative and negative hypocoercive. Then, for all \(t > 0 \), the scaled Cayley transform \(A_d(t) \) is hypocontractive (due to Lemma 47 (i)), its dHC-index satisfies \(m_{dHC}(A_d(t)) = m_{HC}(A_c) =: m_{dHC} \) (due to Theorem 51 (i)), and the norms of its powers satisfy

\[
\|A_d(t)^j\|_2 = 1 \quad \text{for all } j = 1, \ldots, m_{dHC}, \quad \text{and} \quad \|A_d(t)^{m_{dHC}+1}\|_2 < 1,
\]

(due to Theorem 40).

Conclusions. In this paper, we have given a systematic analysis of different concepts related to the stability and short-time behavior of solutions to linear constant coefficient continuous-time and discrete-time systems. While many results for the continuous-time setting were already established in [3], we have analyzed under which linear transformations the properties of asymptotic stability, semi-dissipativity, and hypocoercivity stay invariant.

For linear time-invariant continuous-time systems, it is well-known that the exponential rate of the short-time behavior of the propagator norm \(\|e^{A_c t}\| \) is determined by the logarithmic norm of the system matrix. In this work, we established that the shifted hypocoercivity index characterizes the (remaining) algebraic decay of the propagator norm in the short-time regime.

For each of the continuous-time results, we have derived a corresponding result for the discrete-time case. These include the relation between (asymptotic) stability, semi-contractivity, and hypocontractivity. We have also introduced the new concept of shifted hypocoercivity and scaled hypocontractivity. We then have analyzed how the properties relate under the Cayley transformation that relates continuous-time and discrete-time systems. While the role of the hypocontractivity index (or norm-one index) in the discrete-time setting has been recognized before, the corresponding concept—the hypocoercivity index—in the continuous-time setting and its role has been established only recently.

Future work will include the extension of the results of [3] for linear continuous-time differential-algebraic systems to discrete-time descriptor systems.

Appendix A. Staircase forms. In [3], a computationally feasible procedure to check the conditions of Lemma 7 in the continuous-time case via a staircase form under unitary congruence transformations of the pair \((J, R) = (B_S, B_H)\) has been presented.

Lemma 57 (Staircase form for \((J, R)\)). Let \(J \in \mathbb{C}^{n \times n} \) be a skew-Hermitian matrix, and \(R \in \mathbb{C}^{n \times n} \) be a nonzero Hermitian matrix. Then there exists a unitary matrix \(V \in \mathbb{C}^{n \times n} \), such that \(VJV^H \) and \(VRV^H \) are block tridiagonal matrices of the form.
Hypocoercivity and hypocontractivity concepts for linear dynamical systems

\[
V J V^H = \begin{bmatrix}
J_{1,1} & -J_{2,1}^H & & & & \\
J_{2,1} & J_{2,2} & -J_{3,2}^H & & & \\
& & \ddots & \ddots & & \\
& & & J_{k,k-1} & -J_{k+1,k}^H & \\
& & & & \ddots & \ddots & \\
0 & \cdots & & & & J_{s-2,s-3} & J_{s-2,s-2} & -J_{s-1,s-2}^H & 0 \\
\end{bmatrix}
\]

(A.54)

\[
V R V^H = \begin{bmatrix}
R_1 & 0 & & & & \\
0 & 0 & & & & \\
& \vdots & \ddots & & & \\
& \vdots & \ddots & \ddots & & \\
0 & 0 & \cdots & & & n_s \\
\end{bmatrix}
\]

where \(n_1 \geq n_2 \geq \cdots \geq n_{s-1} > 0, n_s \geq 0, \) and \(R_1 \in \mathbb{C}^{n_1 \times n_1} \) is nonsingular.

If \(R \) is nonsingular, then \(s = 2 \) and \(n_2 = 0 \). For example, \(V = I, J_{1,1} = J \) and \(R_1 = R \) is an admissible choice.

If \(R \) is singular, then \(s \geq 3 \) and the matrices \(J_{i,i-1}, i = 2, \ldots, s - 1, \) in the subdiagonal have full row rank and are of the form

\[
J_{i,i-1} = \begin{bmatrix}
\Sigma_{i,i-1} & 0 \\
\end{bmatrix}, \quad i = 2, \ldots, s - 1,
\]

with nonsingular matrices \(\Sigma_{i,i-1} \in \mathbb{C}^{n_i \times n_{i-1}} \), moreover \(\Sigma_{s-1,s-2} \) is a real-valued diagonal matrix.

A system (1.1) with an accretive matrix \(B = B_S + B_H \) is hypocoercive if \(n_s = 0 \) and if this is the case then the hypocoercivity index is \(m_{HC}(B) = s - 2 \).

A similar staircase form can be derived in the discrete-time case. It is based on the polar decomposition \(A_d = UQ \), see Proposition 41.

Lemma 58 (Staircase form for \((U, Q) \)). Let \(U \in \mathbb{C}^{n \times n} \) be a unitary matrix, and \(Q \in \mathbb{C}^{n \times n} \) be a nonzero semi-contractive Hermitian matrix. Then there exists a unitary matrix \(V \in \mathbb{C}^{n \times n} \), such that \(VQV^H \) and \(VUV^H \) are block upper Hessenberg matrices of the form

\[
V U V^H = \begin{bmatrix}
U_{1,1} & U_{1,2} & \cdots & \cdots & U_{1,s-1} & 0 & \\
U_{2,1} & U_{2,2} & U_{2,3} & \cdots & U_{2,s-1} & 0 & \\
& \ddots & \ddots & \ddots & & \vdots & \\
& & U_{s-2,s-3} & U_{s-2,s-2} & U_{s-2,s-1} & 0 & n_{s-2} \\
& & 0 & \cdots & 0 & U_{s-1,s-2} & U_{s-1,s-1} & 0 & n_{s-1} \\
0 & \cdots & 0 & \cdots & 0 & U_{s,s} & n_s \\
\end{bmatrix}
\]

(A.55)
\[
V Q V^H = \begin{bmatrix}
Q_1 & 0 & \cdots & 0 \\
0 & I_{n_1} & 0 & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & 0 & I_{n_{s-1}} \\
0 & 0 & \cdots & 0 & I_{n_s}
\end{bmatrix}
\begin{bmatrix}
n_1 \\
n_2 \\
\vdots \\
n_{s-1} \\
n_s
\end{bmatrix},
\]

where \(n_1 \geq n_2 \geq \cdots \geq n_{s-1} > 0, n_s \geq 0, \) and \(Q_1 \in \mathbb{C}^{n_1 \times n_1} \) is contractive and Hermitian.

If \(Q \) is contractive, then \(s = 2 \) and \(n_2 = 0 \). Then \(V = I, U_{1,1} = U \) and \(Q_1 = Q \) is an admissible choice.

If \(Q \) is not contractive, then \(s \geq 3 \) and the matrices \(U_{i,i-1}, i = 2, \ldots, s-1, \) in the subdiagonal have full row rank and are of the form

\[
U_{i,i-1} = \begin{bmatrix}
\Sigma_{i,i-1} & 0 \\
0 & \ddots & \ddots \\
\end{bmatrix}, \quad i = 2, \ldots, s-1,
\]

with nonsingular matrices \(\Sigma_{i,i-1} \in \mathbb{C}^{n_i \times n_i}, \) moreover \(\Sigma_{s-1,s-2} \) is a real-valued diagonal matrix.

Proof. If \(Q \) is contractive, then \(n_1 = n \) and we have to choose \(s = 2 \) and \(n_2 = 0 \) to fit \(U \) into the proposed structure in (A.55).

If \(Q \) is not contractive, then we have the following constructive proof.

Algorithm 1 Staircase algorithm for pair \((U, Q)\)

Input: \((U, Q)\)

Step 0

1. Perform a (spectral) decomposition of \(Q \) such that

\[
Q = V_1 \begin{bmatrix}
Q_1 & 0 \\
0 & I
\end{bmatrix} V_1^H,
\]

with \(V_1 \in \mathbb{C}^{n \times n} \) unitary, \(\tilde{Q}_1 \in \mathbb{C}^{n_1 \times n_1} \) contractive and Hermitian.

2. Set \(V := V_1^H, \tilde{Q} := V_1^H Q V_1, \)

\[
\tilde{U} := V_1^H U V_1 =: \begin{bmatrix}
\tilde{U}_{1,1} & \tilde{U}_{1,2} \\
\tilde{U}_{2,1} & \tilde{U}_{2,2}
\end{bmatrix}.
\]

Step 1

3. Perform a singular value decomposition (SVD) of \(\tilde{U}_{2,1} \in \mathbb{C}^{(n-n_1) \times n_1} \) such that

\[
\tilde{U}_{2,1} = W_{2,1} \begin{bmatrix}
\Sigma_{2,1} & 0 \\
0 & 0
\end{bmatrix} V_{2,1}^H,
\]

with unitary matrices \(W_{2,1} \) and \(V_{2,1} \) as well as a positive definite, diagonal matrix \(\tilde{\Sigma}_{2,1} \in \mathbb{R}^{n_2 \times n_2} \).

4. Set \(V_2 := \text{diag}(V_{2,1}^H, W_{2,1}^H) \), \(V := V_2 V \).

5. Set

\[
\tilde{V} := V_2 \tilde{U} V_{2}^H =: \begin{bmatrix}
\tilde{U}_{1,1} & \tilde{U}_{1,2} & \tilde{U}_{1,3} \\
\tilde{U}_{2,1} & \tilde{U}_{2,2} & \tilde{U}_{2,3} \\
0 & \tilde{U}_{3,2} & \tilde{U}_{3,3}
\end{bmatrix}, \quad R := V_2 \tilde{Q} V_{2}^H =: \begin{bmatrix}
\tilde{Q}_1 & 0 & 0 \\
0 & I_{n_2} & 0 \\
0 & 0 & I
\end{bmatrix}.
\]
Hypocoercivity and hypocontractivity concepts for linear dynamical systems

(The lines indicate the partitioning of the block matrices \tilde{U} and \tilde{Q} in the previous step.)

———– Step 2 ———–

6: $i := 3$
7: while $n_i > 0$ or $\tilde{U}_{i,i-1} \neq 0$ do
8: Perform an SVD of $\tilde{U}_{i,i-1}$ such that
\[
\tilde{U}_{i,i-1} = W_{i,i-1} \begin{bmatrix} \tilde{\Sigma}_{i,i-1} & 0 \\ 0 & 0 \end{bmatrix} V_{i,i-1}^H,
\]
with unitary matrices $W_{i,i-1}$ and $V_{i,i-1}$ as well as a positive definite, diagonal matrix $\tilde{\Sigma}_{i,i-1} \in \mathbb{R}^{n_i, n_i}$.
9: Set $V_i := \text{diag}(I_{n_1}, \ldots, I_{n_{i-2}}, V_{i,i-1}^H, W_{i,i-1}^H)$, $V := V_i V$.
10: Set
\[
\tilde{U} := V_i \tilde{U} V_i^H := \begin{bmatrix}
U_{1,1} & U_{1,2} & \cdots & \cdots & \tilde{U}_{1,i+1} \\
U_{2,1} & U_{2,2} & \tilde{U}_{2,3} & \ddots & \\
0 & \ddots & \ddots & \ddots & \\
\vdots & \ddots & \tilde{U}_{i,i-1} & \tilde{U}_{i,i} & \tilde{U}_{i,i+1} \\
0 & \cdots & 0 & \tilde{U}_{i+1,i} & \tilde{U}_{i+1,i+1}
\end{bmatrix},
\]
where $\tilde{U}_{i,i-1} = [\tilde{\Sigma}_{i,i-1} \ 0]$.
11: $i := i + 1$
12: end while

———– Step 3 ———–

13: $s := i$
14: for $i = 1, \ldots, s$ do
15: for $j = i, \ldots, s$ do
16: Set $U_{i,j} := \tilde{U}_{i,j}$.
17: end for
18: end for
19: for $i = 2, \ldots, s$ do
20: Set $U_{i,i-1} := \tilde{U}_{i,i-1}$.
21: end for

Output: Unitary matrix V.

It is clear that Algorithm 1 terminates after a finite number of steps, either with $n_{i-1} = 0$ or $U_{i,i-1} = 0$. We also note that Step 3 provides the nonzero entries of the r.h.s. of VUV^H in (A.55).

Note that Algorithm 1 can be applied to the polar decomposition $P_d U_d$ analogously. In both cases, it immediately follows that A_d is hypocontractive if $n_s = 0$ and the hypocontractivity index is then $m_{dHC}(A_d) = s - 2$.

Appendix B. Equivalent hypocoercivity conditions. The following lemma is a simple generalization of Lemma 2.3 in [4] and Proposition 1 in [1].
Lemma 59. Let $D \in \mathbb{C}^{n \times n}$ be positive semi-definite and $C \in \mathbb{C}^{n \times n}$. Then the following are equivalent:

(E1) There exists $m \in \mathbb{N}_0$ such that

\[\text{rank}[D, CD, \ldots, C^m D] = n. \]

(E2) There exists $m \in \mathbb{N}_0$ such that

\[\sum_{j=0}^{m} C^j D (C^H)^j > 0. \]

Moreover, the smallest possible $m \in \mathbb{N}_0$ in (E1) and (E2) coincide.

Proof. First, we show that (E1) is equivalent to:

(E1') There exists $m \in \mathbb{N}_0$ such that

\[\text{rank}[D^{1/2}, CD^{1/2}, \ldots, C^m D^{1/2}] = n, \]

with the same m as in (E1):

(E1) holds iff the statement

\[x^H[D, CD, \ldots, C^m D] = 0 \]

for some $x \in \mathbb{C}^n$, that is, $D(C^H)^j x = 0$ for $j = 0, \ldots, m$ implies $x = 0$. Now, since $\ker(D) = \ker(D^{1/2})$, (E1) and (E1') are equivalent.

Next, let (E1) hold and define

\[E := [D^{1/2}, CD^{1/2}, \ldots, C^m D^{1/2}] \in \mathbb{C}^{n \times (m+1)n}. \]

Then,

\[\mathbb{C}^{n \times n} \ni E^H E = \sum_{j=0}^{m} C^j D (C^H)^j \geq 0, \]

has rank n and (B.57) follows.

Conversely, let (E2) hold but assume we had rank $E < n$. Then, $\exists 0 \neq x \in \mathbb{C}^n$ with $x^H E = 0$. Hence, $x^H E^H E = 0$ would contradict (B.57).

Acknowledgments. The first author (FA) was supported by the Austrian Science Fund (FWF) via the FWF-funded SFB # F65. The second author (AA) was supported by the Austrian Science Fund (FWF), partially via the FWF-doctoral school “Dissipation and dispersion in non-linear partial differential equations” (# W1245) and the FWF-funded SFB # F65. The third author (VM) was supported by Deutsche Forschungsgemeinschaft (DFG) via the DFG-funded SFB # 910.

REFERENCES

[1] F. Achleitner, A. Arnold, and E.A. Carlen. On multi-dimensional hypocoercive BGK models. *Kinet. Relat. Models*, 11(4):953–1009, 2018.

[2] F. Achleitner, A. Arnold, and E.A. Carlen. The hypocoercivity index for the short time behavior of linear time-invariant ODE systems. *arXiv preprint arXiv:2109.10784v2*, 2021.
Hypocoercivity and hypocontractivity concepts for linear dynamical systems

[3] F. Achleitner, A. Arnold, and V. Mehrmann. Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations. ZAMM - J. Appl. Math. Mech./Z. Angew. Math. Mech., c202100171, 2021.

[4] F. Achleitner, A. Arnold, and D. Stürzer. Large-time behavior in non-symmetric Fokker–Planck equations. Riv. Math. Univ. Parma (N.S.), 6(1):1–68, 2015.

[5] L.Y. Adrianova. Introduction to Linear Systems of Differential Equations. Trans. Math. Monographs, Vol. 146, AMS, Providence, RI, 1995.

[6] A. Arnold and J. Erb. Sharp entropy decay for hypocoercive and non-symmetric Fokker–Planck equations with linear drift. arXiv preprint arXiv:1409.5425, 2014.

[7] D. Bankmann, V. Mehrmann, Y. Nesterov, and P. Van Dooren. Computation of the analytic center of the solution set of the linear matrix inequality arising in continuous- and discrete-time passivity analysis. Vietnam J. Math., 48:633–660, 2020. http://arxiv.org/abs/1904.08202.

[8] D.S. Bernstein. Scalar, Vector, and Matrix Mathematics. Princeton University Press, Princeton, NJ, 2018.

[9] B.N. Datta. Numerical Methods for Linear Control Systems. Elsevier Academic Press, San Diego, CA, 2004.

[10] F.R. Gantmacher. The Theory of Matrices. Vols. 1, 2. Translated by K. A. Hirsch. Chelsea Publishing Co., New York, 1959.

[11] H.-L. Gau and P.Y. Wu. Defect indices of powers of a contraction. Linear Algebra Appl., 432(11):2824–2833, 2010.

[12] N. Gillis, V. Mehrmann, and P. Sharma. Computing the nearest stable matrix pairs. Numer. Linear Algebra Appl., 25(5):e2153, 16, 2018.

[13] D. Hinrichsen and A.J. Pritchard. Mathematical Systems Theory I. Springer, Heidelberg, 2010.

[14] R.A. Horn and C.R. Johnson. Matrix Analysis, 2nd edition. Cambridge University Press, Cambridge, 2013.

[15] C.R. Johnson and R.L. Smith. Closure properties. In F. Zhang, editor, The Schur Complement and Its Applications, pp. 111–136. Springer US, Boston, MA, 2005.

[16] C.R. Johnson and R.L. Smith. Closure of matrix classes under Schur complementation, including singularities. In Algebra and Its Applications, volume 419 of Contemp. Math., pp. 185–200. Amer. Math. Soc., Providence, RI, 2006.

[17] T. Kailath. Linear Systems. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

[18] P. Lancaster and M. Tismenetsky. The Theory of Matrices, 2nd edition. Academic Press, Orlando, Fl, 1985.

[19] J.P. LaSalle. The Stability and Control of Discrete Processes, vol. 62. Applied Mathematical Sciences. Springer-Verlag, New York, 1986.

[20] C. Mehl, V. Mehrmann, and P. Sharma. Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl., 37(4):1625–1654, 2016.

[21] C. Mehl, V. Mehrmann, and M. Wojtylak. Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J. Matrix Anal. Appl., 39(3):1489–1519, 2018.

[22] C. Mehl, V. Mehrmann, and M. Wojtylak. Distance problems for dissipative Hamiltonian systems and related matrix polynomials. Linear Algebra Appl., 2020.

[23] V. Mehrmann and P. Van Dooren. Optimal robustness of discrete-time passive systems. IMA J. Math. Control Inf., 37:1248–1269, 2020.

[24] O. Staffans. Passive and conservative infinite-dimensional impedance and scattering systems (From a personal point of view). In Mathematical Systems Theory in Biology, Communications, Computation, and Finance (Notre Dame, IN, 2002), vol. 134,IMA Vol. Math. Appl., pp. 375–413, New York, 2005. Springer.

[25] O. Staffans. Well-Posed Linear Systems, vol. 103. Cambridge University Press, 2005.

[26] T. Ström. On logarithmic norms. SIAM J. Numer. Anal., 12(5):741–753, 1975.

[27] B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy. Harmonic Analysis of Operators on Hilbert Space, 2nd edition. Universitext. Springer, New York, 2010.

[28] C. Van Loan. The sensitivity of the matrix exponential. SIAM J. Numer. Anal., 14(6):971–981, 1977.

[29] C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009.