Excess body fat increases the accumulation of advanced glycation end products in the skin of patients with type 1 diabetes

Agnieszka Ewa Zawada1,A,B,D, Dariusz Naskret2,A,D,E, Paweł Niedźwiecki2,C, Marian Grzymisławski1,E,F, Dorota Anna Zozulińska-Żiółkiewicz2,E,F, Agnieszka Dobrowolska1,E,F

1 Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poland
2 Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poland

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation;
D – writing the article; E – critical revision of the article; F – final approval of the article

Address for correspondence
Agnieszka Zawada
E-mail: a.zawada@ump.edu.pl

Funding sources
The project was supported by statutory funds (grant No. 502-01-023482-00-274) from the Poznan University of Medical Sciences, Poland.

Conflict of interest
None declared

Received on December 6, 2019
Reviewed on July 4, 2020
Accepted on August 5, 2020
Published online on October 16, 2020

Abstract

Background. The process of protein glycation described by Brownlee et al. is a crucial pathogenic mechanism in the development of chronic complications of diabetes.

Objectives. To assess advanced glycation end products (AGEs) in the skin of patients with type 1 diabetes (DM1) and excess body fat (EBF) accumulation.

Material and methods. The study group consisted of 227 DM1 patients (121 women and 106 men) whose mean age was 31 ±9.2 years; the mean duration of diabetes was 12 ±7.7 years; and the mean HbA1c was 8.9 ±1.8%. The inclusion criteria were as follows: age 18–65 years, DM1, and lack of acute inflammations and uncontrolled chronic diseases. The exclusion criteria were: anemia (hemoglobin (Hb) <11 g/dL), chronic kidney disease (CKD) (glomerular filtration rate (eGFR) <30 mL/min/1.73 m2) and elevated aminotransferase levels (more than twice the upper normal limits). Total adipose tissue content was assessed using the electrical bioimpedance method, with the Tanita BC-418 MA analyzer (Tanita Corp., Tokyo, Japan). The Tanita ViScan AB 140 (Tanita Corp.) was used to evaluate visceral fat tissue (VFT). The content of glycation end products in the skin was assessed using a DiagnOptics AGE Reader device (type 214D00102; DiagnOptics, Groningen, the Netherlands).

Results. The group with normal body fat (NBF) consisted of 123 subjects, whereas 104 subjects had EBF. No significant statistical differences were found between the NBF and EBF groups with regard to age, duration of diabetes, current HbA1c value, and tobacco use. A significantly higher AGE score was observed in the EBF group.

Conclusions. Increased body fat affects the amount of AGE in the skin, which correlates with a higher risk of developing chronic diabetes complications.

Key words: advanced glycation end products, type 1 diabetes, excess body fat

Cite as
Zawada AE, Naskret D, Niedźwiecki P, Grzymisławski M, Zozulińska-Żiółkiewicz DA, Dobrowolska A. Excess body fat increases the accumulation of advanced glycation end products in the skin of patients with type 1 diabetes. Adv Clin Exp Med. 2020;29(10):1193–1199. doi:10.17219/acem/126050

DOI
10.17219/acem/126050

Copyright
© 2020 by Wroclaw Medical University
This is an article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) (https://creativecommons.org/licenses/by/3.0/)
Introduction

The process of protein glycation, described by Brownlee et al. in the 1980s, is a crucial pathogenic mechanism in the development of chronic complications of diabetes. Permanent, irreversible advanced glycation end products (AGEs) characterized by a brownish coloration and specific spectrophotometric properties (specific wavelength fluorescence) are created as a result of a non-enzymatic Millard reaction. They show substantial immunogenicity, as well as the ability to bind with certain types of cells through membrane receptors. A correlation between protein glycation and micro- and macro-angiopathic diabetic complications has been observed. Furthermore, AGEs and increased expression of their receptors for advanced glycation end products (RAGEs) are directly correlated with loss of vessel wall elasticity, crystalline aggregations in the eye, disintegration of endothelial cells, and increased thickness of epicardial fat tissue.

The number of AGEs in an organism can be evaluated directly by assessing their concentration in blood, and indirectly using their spectrophotometric properties – skin autofluorescence (SAF) caused by the accumulation of protein glycation products. Evaluating the accumulation of AGEs in the skin based on SAF is a straightforward, non-invasive method that gives objective and reproducible results. Elevated AGEs in the skin in patients with diabetes are related to an increased risk of cardiovascular complications and are a better death predictability factor than glycated hemoglobin (HbA1c) or lipid parameters.

The use of intensive functional insulin therapy (IFI) in the treatment of type 1 diabetes (DM1) decreases the risk of micro- and macroangiopathy. Sometimes the use of IFI is related to an increase in body mass and insulin resistance which, as a result, leads to the typical characteristics of metabolic syndrome. Eighteen years after the Pittsburgh Epidemiology of Diabetes Complications Study (EDC), an increased prevalence of overweight and obesity was observed. According to the World Health Organization (WHO) definition, metabolic syndrome was recognized by McGill et al. in 15% of DM1 patients; according to the International Diabetes Federation (IDF) definition, Uruksa et al. found it in 20% of patients with DM1. The highest frequency of metabolic syndrome (38% of women and 40% of men with DM1) was noted according to the National Cholesterol Education Program (NECP) criteria. Observations have confirmed a relationship between metabolic syndrome and micro- and macroangiopathy in patients with DM1.

The aim of the study was to assess AGEs in the skin of patients with DM1 and excess body fat (EBF) accumulation.

Patients and methods

The study group consisted of 227 DM1 patients (121 women and 106 men) treated in the Department of Internal Medicine and Diabetology at the Poznan University of Medical Sciences (Poland). Their mean age was 31 ±9.2 years; the mean duration of diabetes was 12 ±7.7 years. The study group presented poorly controlled diabetes; the mean HbA1c was 8.9 ±1.8%. The detailed characteristics of the study group are presented in Table 1.

The inclusion criteria were as follows: age 18–65 years, DM1, and lack of acute inflammations and uncontrolled chronic diseases. The exclusion criteria were anemia (hemoglobin [Hb] <11 g/dL), chronic kidney disease (CKD) (glomerular filtration rate [eGFR] <30 mL/min/1.73 m²) and elevated aminotransferase levels (more than twice the upper normal limits).

Anthropometric parameters such as height [m] and body mass [kg] were evaluated in all the subjects of the study. The body mass index (BMI) [kg/m²], waist and hip circumference, and waist-to-hip ratio (WHR) were also determined. Systolic and diastolic blood pressure (SBP and DBP) were measured twice, sitting and after a five-minute rest. The measurement was performed with a sphygmometer using Korotkov’s method [mm Hg]. The daily dosage of insulin was calculated the day before the study [number of units/kg/day].

A venous blood sample was drawn in order to note the following parameters: fasting glucose in the venous blood serum and glucose in the venous blood serum 2 h after breakfast using the standard method; HbA1c using high performance liquid chromatography (HPLC); lipid parameters (total cholesterol [TC], HDL-C, LDL-C, TG) and glycated hemoglobin (HbA1c).
lipoprotein (HDL) and low-density lipoprotein (LDL) fraction in the blood and triglyceride (TG) levels in the serum) using the enzymatic method; and aminotransferase activity (alanine aminotransferase – ALT, and aspartate aminotransferase – AST) in the serum using the standard method. The estimated glomerular filtration rate index (eGFR) was measured using the Modification of Diet in Renal Disease Study (MDRD) equation. All the laboratory tests were performed in the Raszeja Hospital Laboratory in Poznań.

The insulin resistance index – visceral adiposity index (VAI) and estimated glucose disposal rate (eGDR) – were calculated using the equations listed below:
- VAI in women: waist circumference/(36.58 + (1.89 × BMI)) × (TG/0.81) × (1.52/HDL);
- VAI in men: waist circumference/(39.68 + (1.88 × BMI)) × (TG/1.03) × (1.31/HDL);
- eGDR = 24.31–12.22 (WHR) – 3.29 (HA0/1) – 0.57 [mg/kg/min].

An eGDR value below 7.5 mg/kg/min was considered an indicator of lowered tissue sensitivity to insulin action.

Total adipose tissue content was assessed using the electrical bioimpedance method using a Tanita BC-418MA Body Composition Analyzer and a Tanita ViScan AB 140 (Tanita Corp., Tokyo, Japan). Total body fat (TFB) and visceral fat tissue (VFT) were assessed according to WHO age- and gender-adjusted criteria.

The content of AGEs in the skin was evaluated using an AGE Reader Type 214D00102 (DiagnOptics, Groningen, the Netherlands). The device emits ultraviolet light at a wavelength of 300–420 nm, which illuminates 1 cm² of skin on the inside of the forearm, about 10 cm from the elbow; a built-in spectrometer registers light in the 300–600 nm range. The autofluorescence (AF) score is calculated automatically.

Statistical analysis

The statistical analysis of the results was performed using STATISTICA PL v. 13.3 software (StatSoft Polska sp. z o.o., Kraków, Poland). The normality of the distribution of the results was tested using the Kolmogorov–Smirnov test with the Lilliefors correction. The parameters analyzed did not have normal distributions; therefore, nonparametric tests were used for further analysis. The results were presented as numbers and percentages as well as medians and interquartile ranges (IQR). In the case of numerical variables, differences between subgroups were analyzed using the Mann–Whitney test. Differences in qualitative data were assessed with the χ² test. We used the multivariate regression method to analyze correlations between AGE level and selected parameters (such as sex, age, BMI, and the presence of chronic complications). In the correlation analysis, the Spearman correlation coefficients were used. A value of p < 0.05 was considered statistically significant.

Results

The normal body fat (NBF) group consisted of 123 subjects, whereas the EBF group included 104 subjects. Age and gender were taken into consideration in accordance with WHO norms. No significant statistical differences were found between the NBF and EBF groups with regard to age, duration of diabetes, current HbA1C value, daily dosage of insulin, and tobacco use.

The NBF and EBF groups were statistically different with regard to the following: anthropometric index (body mass, waist circumference, WHR), fasting blood glucose, blood glucose 2 h after eating, lipid parameters, and insulin resistance index (VAI, eGDR) (Table 2). A significantly higher AGE score was observed in the EBF group.

Statistically significant relationship was noted in the Spearmen correlation between lowered eGDR index (increased insulin resistance) and increased TBF, VBF and skin AGE (Table 3). The multifactor regression model showed the influence of VAI on the AGEs in the skin. It was gender-independent and disregarded chronic complications (Table 4).

Discussion

The Diabetes Control and Complications Trial (DCCT) published in 1993 revealed that intensive functional insulin therapy was the leading treatment to avoid microvascular complications (retinopathy and CKD) in patients with DM1. Improved metabolic control during the first 2 years of DM1 treated with intensive functional insulin therapy modified β cell function and increased C-peptide, compared with conventional insulin treatment. However, these intensively treated subjects become more vulnerable to severe hypoglycemia and weight gain, accompanied by efforts to lower blood glucose with multiple insulin injections. The adverse consequences of undesirable weight gain accelerate the development of chronic complications, and increase blood pressure and the parameters of the lipid profile. The greatest metabolic damage is caused by the accumulation of VFT, which directly affects endothelial function in patients with either DM1 or DM2. This accelerates the development of atherogenic dyslipidemia. A study by den Engelsen et al. suggested that AGE accumulation in the skin can increase in populations with central obesity without diabetes. In this study, AGE skin levels were measured in 816 non-diabetic obese patients and in 431 patients without central obesity; the mean AGE index increased with age and smoking, and was significantly higher in patients with central obesity.

Earlier studies highlighted the increased accumulation of AGE in the skin in patients with DM2. Samborski et al. also demonstrated increased AGE content in the skin in patients with DM1 in comparison to patients not suffering from diabetes. However, a study by Dozio et al.
showed reduced content of soluble receptors for end products of protein glycation (sRAGEs) in obese women with waist circumferences >80 cm, higher fatty mass, epicardial adipose tissue, and VFT. In our study group of patients with DM1, Spearman’s correlation demonstrated that increased TBF correlates with increased accumulation of AGEs in the skin. A similar relationship was also found for VAI. The occurrence of obesity and excess weight in patients with DM1 is inextricably linked to insulin resistance. Increased insulin dose adjustment and increased numbers of mealtime insulin injections contribute to the development of this condition in patients treated with IFI. In a study...
Our study revealed differences in blood pressure in patients with or without metabolic memory in patients with DM1. As in our study, there was no correlation between one-time HbA1c values expressed and overproduction of reactive oxygen species (ROS) play an important role AGE production, which may reflect metabolic control of diabetes over a longer period of time. In DM1, AGEs are a reliable marker of past glycemic control and their accumulation is connected with diabetic microangiopathy. In another study by Araszkiewicz et al., an association between SAF and long-term metabolic control and carotid IMT was revealed. Although many studies have shown an association between AGEs and late diabetic complications, in our study, the EBF and NBF groups did not differ in diabetic complications, and there were no correlations between AGEs and diabetic complications. A positive correlation has also been found between serum levels of AGEs and isovolumetric relaxation time measured during echocardiography in patients with DM1. The AGEs also correlate with intima-media thickness (IMT) in DM1 patients, and increase with CVD, other autoimmune diseases and inflammatory processes. Metabolic memory and overproduction of reactive oxygen species (ROS) play an important role AGE production, which may reflect metabolic control of diabetes over a longer period of time. In DM1, AGEs are a reliable marker of past glycemic control and their accumulation is connected with diabetic microangiopathy. In another study by Araszkiewicz et al., an association between SAF and long-term metabolic control and carotid IMT was revealed. Although many studies have shown an association between AGEs and late diabetic complications, in our study, the EBF and NBF groups did not differ in diabetic complications, and there were no correlations between AGEs and diabetic complications.

A correlation between AGE concentration in tissue, severity of atherosclerotic lesion and increased retention of AGE-LDL in the aortic wall has also been demonstrated. The AGEs in DM2 are also inversely related to HDL anti-oxidative capacity. Our study revealed differences in lipid profiles in the EBF and NBF groups, but there was no statistical correlation between lipid profile and AGE accumulation.

It has been shown that ageing correlates with high rates of AGE formation and accumulation. Accumulation of AGES is also a reliable biomarker of in vivo ageing. Accumulation of AGES inside cells and tissues reflects a reaction between the intensity of inflammatory processes, modification of proteins like albumin or collagen, and modification of the proteasomal and lysosomal pathways. In addition, high amounts of intracellular AGES inhibit active immuno-proteasomes through the involvement of RAGEs and the Janus kinase 2/signal transducer and activator of transcription 1 (JAK2/STAT1) signaling pathway. It is worth noting that the concentration of immuno-proteasome is higher in aged cells. In the aforementioned study by Araszkiewicz et al., a positive correlation was found between SAF and patient age. In our study, this correlation was not confirmed.

A study by Schram et al. among patients with DM1 found no correlation between AGES and mean arterial pressure. Skin and blood AGES were strongly and independently associated with pulse pressure. This is probably connected with arterial stiffness. In our study, we did not observe any differences in blood pressure in patients with or without EBF, nor between hypertension and AGEs.

Conclusions

Skin autofluorescence is simple to evaluate, and offers a valuable prognostic marker of the risk of developing chronic complications of diabetes. Increased body fat
content affects the amount of AGEs in the skin, which is associated with a higher risk of developing chronic diabetes complications. In patients with DM1, it is important to maintain proper body weight in order to avoid increasing the risk of chronic complications.

The study has some limitations. Firstly, no prospective observation was performed. Secondly, the results obtained are limited by the lack of a control group. However, AGEs are always higher in populations with diabetes, which is why we did not recruit a control group without diabetes. Moreover, an indirect method was used to assess insulin resistance (eGDR, not the gold standard glucose clamp technique); however, the 2 methods are comparable.

An advantage of the study is that it involved a homogenous group of patients with autoimmune disease treated with intensive functional insulin pen therapy.

ORCID iDs

Agnieszka Ewa Zawada https://orcid.org/0000-0001-6995-090X

Dariusz Naskret https://orcid.org/0000-0002-6927-7812

Pawel Niedzwiecki https://orcid.org/0000-0002-4033-0085

Marian Grzymislawski https://orcid.org/0000-0003-0868-354X

Dorota Anna Zozulińska-Ziółkiewicz https://orcid.org/0000-0003-2995-9971

Agnieszka Dobrowolska https://orcid.org/0000-0002-3647-5070

References

1. Brownlee M, Cerami A, Vlassara H. Advanced glycation end products in tissue and the biochemical basis of diabetic complications. *New Engl J Med*. 1988;318(20):1315–1321.

2. Pietkiewicz J, Seweryn E, Bartyś A, Gamian A. Receptors for advanced glycation end products and their physiological and clinical significance. *Postepy Hig Med Dosw*. 2008;62:511–523.

3. Otsawa S, Katakami N, Sato I, et al. Skin autofluorescence is associated with vascular complications in patients with type 2 diabetes. *J Diabetes Complications*. 2018;32(9):839–844.

4. Araszkiewicz A, Naskret D, Niedźwiecki P, Samborski P, Wierusz-Wysocka B, Zozulińska-Ziółkiewicz D. Increased accumulation of skin advanced glycation end products is associated with microvascular complications in type 1 diabetes. *Diabetes Technol Ther*. 2011;13(8):837–842.

5. Dozzo E, Vianello E, Briganti S, et al. Expression of the receptor for advanced glycation end products in epicardial fat: Link with tissue thickness and local insulin resistance in coronary artery disease. *J Diabetes Res*. 2016;2016:2327341.

6. Nathan DM, Genuith S, Lachin J, et al. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on development and progression of long-term complications in insulin dependent diabetes mellitus. *N Engl J Med*. 1993;329:977–986.

7. Bos D, deRantzien-Greven W, devAkk H. Advanced glycation end products, measured as skin autofluorescence and diabetes complications: A systematic review. *Diabetes Technol Ther*. 2011;13(7):773–779.

8. Lugtgers HL, Gerrits EG, Grat R, et al. Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus. *Diabetologia*. 2005;52(5):789–797.

9. Nathan DM, Genuith S, Lachin J, et al; Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. *N Engl J Med*. 1993;329(14):977–986.

10. Purnell JQ, Zinman B, Brunzell JD; DCCT/EDIC Research Group. The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: Results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. *Circulation*. 2013;127(2):180–187.
31. Brownle M. Advanced protein glycosylation in diabetes and aging. *Annu Rev Med*. 1995;46:223–234.
32. Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. *Am J Kidney Dis*. 1995;26(6):875–888.
33. Makita Z, Bucala R, Rayfield E, et al. Reactive glycosylation end products in diabetic uremia and treatment of renal failure. *Lancet*. 1994;343(8912):1519–1522.
34. Stitt A, He C, Friedman S, Scher L, Rossi P, Ong L. Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: Relationship to tissue AGES. *J Mol Med*. 1997;39(9):617–627.
35. Berg T, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. *Diabetes Care*. 1999;22(7):1186–1190.
36. Araszkiewicz A, Naskret D, Zozulinska-Ziolkiewicz D, et al. Skin autofluorescence is associated with carotid intima-media thickness, diabetic microangiopathy, and long-lasting metabolic control in type 1 diabetic patients: Results from Poznan Prospective Study. *Microvasc Res*. 2015;98:62–67.
37. Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control. *Diabetes*. 1987;36(7):808–812.
38. Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end products in the development of coronary artery disease in patients with and without diabetes mellitus. *Mol Med*. 2018;24(1):59.
39. Li S, Du M, Dolence E, et al. A ging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation end products and protein modification. *Aging Cell*. 2005;4(2):57–64.
40. Grimm S, Ott C, Hörlacher M, Weber D, Höhn A, Grune T. Advanced-glycation-end-product-induced formation of immunoproteasomes: Involvement of RAGE and Jak2/STAT1. *Biochem J*. 2012;448(1):127–139.
41. Stratford F, Chondrogianni N, Trougakos I, Gonos E, Rivett A. Proteasome response to interferon-gamma is altered in senescent human fibroblasts. *FEBS Lett*. 2006;580(16):3989–3994.
42. Schram M, Schalkwijk C, Bootma A, Fuller J, Chaturvedi N, Stehouwer C; EURODIAB Prospective Complications Study Group. Advanced glycation end products are associated with pulse pressure in type 1 diabetes: The Eurodiab Prospective Complications Study. *Hypertension*. 2005;46(1):222–237.