Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex

Youn-Sang Jung and Jae-Il Park

Abstract
Wnt/β-catenin signaling is implicated in many physiological processes, including development, tissue homeostasis, and tissue regeneration. In human cancers, Wnt/β-catenin signaling is highly activated, which has led to the development of various Wnt signaling inhibitors for cancer therapies. Nonetheless, the blockade of Wnt signaling causes side effects such as impairment of tissue homeostasis and regeneration. Recently, several studies have identified cancer-specific Wnt signaling regulators. In this review, we discuss the Wnt inhibitors currently being used in clinical trials and suggest how additional cancer-specific regulators could be utilized to treat Wnt signaling-associated cancer.

Introduction
Wnt signaling orchestrates various biological processes, such as cell proliferation, differentiation, organogenesis, tissue regeneration, and tumorigenesis. Classically, Wnt signaling is divided into β-catenin-dependent (canonical, Wnt/β-catenin pathway) and β-catenin-independent (noncanonical, Wnt/planar cell polarity [PCP] and calcium pathway) signaling. Canonical Wnt signaling mainly regulates cell proliferation, and noncanonical Wnt signaling controls cell polarity and movement. However, this terminological distinction is unclear, and has been questions by studies proposing the involvement of both β-catenin-dependent and β-catenin-independent Wnt signaling in tumorigenesis. For instance, APC and β-catenin are not only involved in cell proliferation but have also been linked to cell-to-cell adhesion. In this review, we will discuss an ongoing effort to inhibit Wnt signaling and suggest potential approaches to target Wnt signaling for cancer therapies proposed from recent studies.

Wnt signaling and clinical trials in human cancers
β-Catenin is a crucial signaling transducer in Wnt signaling. The β-catenin protein destruction complex composed of adenomatous polyposis coli (APC), casein kinase 1 (CK1), glycogen synthase kinase 3α/β (GSK-3α/β), and AXIN1 tightly controls β-catenin via phosphorylation-mediated proteolysis. In this section, we briefly describe how genetic alterations of Wnt signaling contribute to tumorigenesis and introduce recent clinical trials that have aimed to inhibit Wnt signaling for cancer treatment.

The β-catenin destruction complex
Colorectal cancer (CRC) is the representative of human cancer caused by Wnt signaling hyperactivation. CRC displays a high mutation frequency in APC (~70%). In 1991, APC mutation was identified as the cause of hereditary colon cancer syndrome, also called familial adenomatous polyposis. APC forms the β-catenin destruction complex in association with CK1, AXIN1, and GSK-3 and interacts with β-catenin. This protein destruction complex plays a critical role in regulating β-catenin levels, and disruptions in this complex are associated with the development of CRC.

Correspondence: Jae-Il Park (jaeil@mdanderson.org)
1Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
Full list of author information is available at the end of the article.

© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
complex downregulates β-catenin through phosphorylation and ubiquitin-mediated protein degradation. Genetic mutations causing the loss of function of the destruction complex or gain of function of β-catenin lead to nuclear translocation of β-catenin, resulting in T-cell factor (TCF)/β-catenin-mediated transcription of Wnt target genes. The Vogelstein group established a multistep tumorigenesis model of CRC. APC mutation is an early event that initiates CRC adenoma. CRC progression also requires additional genetic alterations in KRAS, PI3K, TGF-β, SMAD4, and TP53. Moreover, epigenetic silencing of negative regulators of Wnt signaling was also frequently found in the absence of APC mutations. APC is a multifunctional protein. In addition to its role in β-catenin degradation, APC binds to actin and actin-regulating proteins, which controls the interaction between E-cadherin and α-/β-catenin and various physiological processes, including migration and chromosomal fidelity. Importantly, recent studies revealed that APC mutation is able to fully activate Wnt signaling. Furthermore, even if APC is mutated, mutant APC still negatively regulates β-catenin to some extent, which will be discussed later.

AXIN1 is a multidomain scaffolding protein that forms the β-catenin destruction complex in association with APC, CK1, and GSK3. In human cancer, AXIN1 mutations are scattered throughout the whole coding sequence of the AXIN1 gene, which results in disassembly of the β-catenin destruction complex. As a priming kinase, CK1 initially phosphorylates β-catenin (Ser45), which induces the sequential phosphorylation of β-catenin by GSK3. Subsequently, phosphorylated β-catenin is recognized and degraded by E3 ubiquitin ligase (β-TrCP). GSK3 is a serine/threonine kinase that phosphorylates three serine/threonine residues of β-catenin (Ser33, Ser37, and Thr41), which induces β-TrCP-mediated β-catenin degradation. The C-terminal domain is involved in transactivation of Wnt target genes through TCF/LEF interactions. The armadillo repeat domain interacts with various proteins, including E-cadherin, APC, AXIN1, and PYGOs/Pygo.

β-catenin is mainly composed of three domains (N-terminal (~150 aa), armadillo repeat [12 copies; 550 aa], and C-terminal (~100 aa]). The N-terminal domain contains the phosphorylation sites for GSK3 and CK1, which induces the secretion of WNT ligands through inhibition of post-translational acylation of WNT ligands. However, similar to other cancer therapies targeting the Wnt pathway, skeletal side effects such as impairment of bone mass and strength and increase in bone resorption were caused by PORCN inhibitor administration.

Mutations in CTNNB1/β-catenin

Unlike CRC, in which the APC gene is frequently mutated, the CTNNB1 gene encoding β-catenin is predominantly mutated in hepatocellular carcinoma, endometrial cancer, and pancreatic cancer. The CTNNB1/β-catenin gene harbors 16 exons. β-Catenin is mainly composed of three domains (N-terminal (~150 aa), armadillo repeat [12 copies; 550 aa], and C-terminal (~100 aa)). The N-terminal domain contains the phosphorylation sites for GSK3 and CK1, which induces β-TrCP-mediated β-catenin degradation. The C-terminal domain is involved in transactivation of Wnt target genes through TCF/LEF interactions. The armadillo repeat domain interacts with various proteins, including E-cadherin, APC, AXIN1, and PYGOs/Pygo.

Therapeutic targeting of Wnt/β-catenin signaling

To suppress WNT ligands or receptors for cancer treatment, PORCN inhibitors, WNT ligand antagonists, and FZD antagonists/monoclonal antibodies have been examined in clinical trials of various Wnt signaling-associated human cancers (Table 1 and Fig. 1).

(i) PORCN inhibitors

WNT974 (LGK974; NIH clinical trial numbers [clinicaltrials.gov]: NCT02278133, NCT01351103, and NCT02649530), ETC-1922159 (ETC-159; NCT02521844), RXC004 (NCT03447470), and CGX1321 (NCT02675946 and NCT03507998) are orally administered PORCN inhibitors that commonly bind to PORCN in the endoplasmic reticulum. Therefore, PORCN inhibitors block the secretion of WNT ligands through inhibition of post-translational acylation of WNT ligands. However, similar to other cancer therapies targeting the Wnt pathway, skeletal side effects such as impairment of bone mass and strength and increase in bone resorption were caused by PORCN inhibitor administration.
(ii) SFRP and SFRP peptides

SFRPs (secreted frizzled-related proteins) are soluble proteins. Given the structural homology of SFRPs with the WNT ligand-binding domain in the FZD receptors, SFRPs function as antagonists that bind to WNT ligands and prevent Wnt signaling activation76–78. Indeed, SFRPs or SFRP-derived peptides showed tumor suppressive activity in preclinical models79,80.

(iii) FZD antagonist/monoclonal antibody

Vantictumab (OMP-18R5; NIH clinical trial numbers [clinicaltrials.gov]; NCT02005315, NCT01973309, NCT01345201, and NCT01957007) is a monoclonal antibody directly binding to FZD receptors, which blocks the binding of WNT ligands to FZD 1, 2, 5, 7, and 881. Ipafricept (OMP-54F28; NIH clinical trial numbers: NCT02069145, NCT02050178, NCT02092363, and NCT01608867) is a recombinant fusion protein that binds to a human IgG1 Fc fragment of FZD882,83. These reagents negatively regulate Wnt/β-catenin signaling through their direct binding to FZD, which thereby disrupts the function of LRPs/FZDs. Alternatively, a way of targeting and killing cancer cells that express high FZD receptors is also being examined. OTSA101 is a humanized monoclonal antibody against FZD10. OTSA101-DTPA-90Y (NIH clinical trial number [clinicaltrials.gov] Table 1 Wnt/β-catenin signaling inhibitors in current and past clinical trials.

Drug	Mechanism of action	Cancer type	Phase	Identifier	
*WNT974 (with LGX818 and Cetuximab)	PORCN inhibitor	Metastatic CRC	Phase 1	NCT02278133	
WNT974	PORCN inhibitor	Squamous cell cancer	Phase 2	NCT02649530	
WNT974	PORCN inhibitor	Pancreatic cancer	Phase 1	NCT01351103	
ETC-1922159	PORCN inhibitor	Solid tumor	Phase 1	NCT02521844	
RXCO04	PORCN inhibitor	Solid tumor	Phase 1	NCT03447470	
CGX1321	PORCN inhibitor	Colorectal adenocarcinoma	Phase 1	NCT03507998	
*CGX1321 (with Pembrolizumab)	PORCN inhibitor	Solid tumors	Phase 1	NCT02675946	
OTSA101-DTPA-90Y	PORCN inhibitor	GI cancer	Phase 1	NCT01469975	
*OMP-18R5 (with Docetaxel)	Monoclonal antibody against FZD receptors	Solid tumors	Phase 1	NCT01957007	
OMP-18R5	Monoclonal antibody against FZD receptors	Metastatic breast cancer	Phase 1	NCT01973309	
OMP-18R5	Monoclonal antibody against FZD receptors	Solid tumors	Phase 1	NCT01345201	
*OMP-18R5 (with Nab-Paclitaxel and Gemcitabine)	Monoclonal antibody against FZD receptors	Pancreatic cancer	Phase 1	NCT02005315	
*OMP-54F28 (with Sorafenib)	FZD8 decoy receptor	Hepatocellular cancer	Stage IV pancreatic cancer	Phase 1	NCT02069145
*OMP-54F28 (with Paclitaxel & Carboplatin)	FZD8 decoy receptor	Ovarian cancer	Phase 1	NCT02092363	
*OMP-54F28 (with Nab-Paclitaxel and Gemcitabine)	FZD8 decoy receptor	Pancreatic cancer	Stage IV pancreatic cancer	Phase 1	NCT02050178
OMP-54F28	FZD8 decoy receptor	Solid tumors	NCT01608867		
PRI-724	CBP/β-catenin antagonist	Advanced pancreatic cancer	Metastatic pancreatic cancer	NCT01764477	
PRI-724	CBP/β-catenin antagonist	Advanced solid tumors	Phase 1	NCT01302045	
PRI-724	CBP/β-catenin antagonist	Acute myeloid leukemia	Chronic myeloid leukemia	Phase 2	NCT01606579
*PRI-724 (with Leucovorin Calcium, Oxaliplatin, or Fluorouracil)	CBP/β-catenin antagonist	Acute myeloid leukemia	Chronic myeloid leukemia	Phase 2	NCT02413853
SM08502	β-catenin-controlled gene expression inhibitor	Solid tumors	Phase 1	NCT03355066	

Official journal of the Korean Society for Biochemistry and Molecular Biology

Jung and Park Experimental & Molecular Medicine (2020) 52:183–191
NCT01469975) is labeled with a β-radiation delivering-yttrium Y90 for OSTA101, OTSA101-DTPA-90Y selectively killed cancer cells highly expressing FZD10. The side effects of vantictumab include tiredness, diarrhea, vomiting, constipation, and abdominal pain. Vantictumab and ipafircept might also cause bone metabolism disorders.

(iv) Targeting of LRP degradation and FZD endocytosis
Salinomycin, rottlerin, and monensin induce the phosphorylation of LRP6, resulting in the degradation of LRP6. In addition, niclosamide promotes FZD1 endocytosis, which downregulates WNT3A-stimulated β-catenin stabilization. However, these reagents do not specifically target cancer-specific molecules, leading to side effects, including itchiness, abdominal pain, vomiting, dizziness, skin rash, and unpleasant taste.

Given that the β-catenin protein destruction complex plays a crucial role in negatively regulating Wnt signaling, the restoration of this protein destruction complex may effectively inhibit Wnt/β-signaling. Tankyrase interacts with and degrades AXIN via ubiquitin-mediated proteasomal degradation. Tankyrase inhibitors have been developed. Indeed, Tankyrase inhibitors have been shown to negatively regulate Wnt signaling in APC-mutated cancer cells.

(i) Tankyrase inhibitors
Tankyrase inhibitors downregulate β-catenin stabilization. In preclinical studies, Tankyrase inhibitors, including XAV939, JW-55, RK-287107, and G007-LK, stabilized AXIN by inhibiting the poly-ADP-ribosylating enzyme Tankyrase. However, currently, no clinical trials are being conducted with Tankyrase inhibitors.

(ii) CK1 agonist
Pyrvinium is an FDA-approved anti-helminthic drug. Pyrvinium binds to CK1 family members in vitro and promotes CK1 kinase activity. β-Catenin contributes to tumorigenesis via transactivation of Wnt target genes such as CCND1, CD44, AXIN2, and MYC. Thus, approaches inhibiting either β-catenin transcriptional activity or β-catenin target genes have been developed as potential therapeutic candidates for Wnt signaling-associated cancers (Table 1).

(i) Inhibitors of β-catenin transcriptional activity
β-Catenin/CREB binds to WRE (Wnt-responsive element; 5′-CTTTGA/TA/T-3′) and activates target gene transcription. PRI-724 (ICG-001; NIH clinical trial numbers: NCT01302405, NCT02413853, NCT01764477, and NCT01606579) inhibits the interaction between CBP and β-catenin and prevents transcription of Wnt target genes. Moreover, various inhibitors of TCF/LEF and β-catenin interactions have been identified and evaluated in preclinical settings.

To transactivate Wnt target genes, β-catenin forms a transcriptional complex with coactivators, including
BCL9 and PYGO105,106, which is inhibited by carnosic acid, compound 22, and SAH-BLC9107,108. In addition, Pyrininium downregulates Wnt transcriptional activity through the degradation of PYGO96.

(ii) Inhibitor of Wnt target genes
SM08502 (NIH clinical trial number NCT03355066) is a small molecule that inhibits serine and arginine-rich splicing factor (SRSF) phosphorylation and disrupts spliceosome activity. Upon oral administration, SM08502 was shown to downregulate Wnt signaling-controlled gene expression.

(iii) Proteasomal degradation of β-catenin
MSAB (methyl \textit{3-[(4-methylphenyl)sulfonyl]amino-benzoate}) binds to β-catenin and facilitates the ubiquitination-mediated proteasomal degradation of β-catenin108,109.

However, since β-catenin controls various physiological processes, downregulation of the transcriptional activity β-catenin was shown to induce diarrhea, hypophosphatemia, reversible elevated bilirubin, nausea, fatigue, anorexia, and thrombocytopenia39,110.

Additional layers of Wnt/β-catenin signaling activation

The β-catenin paradox

Wnt signaling hyperactivation by mutations in β-catenin destruction complex components or β-catenin itself contributes to tumorigenesis. In addition to APC mutations, β-catenin can be further activated by additional layers of regulation39,40,111–117, which demonstrated the complexity of Wnt signaling deregulation in cancer. Accumulating evidence supports the notion that additional regulatory processes contribute to Wnt signaling hyperactivation in cancer, as demonstrated in the following examples. (a) Mutant APC is still able to down-regulate β-catenin39. (b) Even in the presence of APC mutations, blockade of WNT ligands triggers apoptosis or growth inhibition40,113,118. (c) β-Catenin fold induction is essential for the activation of β-catenin target genes119–121. (d) Increased AXIN1 by Tankyrase inhibitor suppresses cell proliferation of cancer cells where Wnt/β-catenin signaling is genetically hyperactive43,90,93,95,122. (e) Mutations in RNF43 and ZNF33 E3 ligases that degrade Wnt receptors contribute to tumor development111,113. (f) Ras/ MAPK signaling is also required for Wnt signaling activation112,123. These reports suggest that additional layers further enhance Wnt signaling activation in cancer.

The lysosome and Wnt signaling

The lysosome contains 40 types of hydrolytic enzymes, including cathepsins, which become active under acidic conditions124. Lysosomal hydrolytic enzymes mediate the degradation of phagocytosed material and proteolysis of cytosolic proteins through fusion with the multivesicular body (MVB). Luminal acidification of the lysosome is required for lysosomal protein degradation, which is mainly controlled by vacuolar H+ transporters in the lysosomal membrane125.

Recently, this classical view of lysosomal functions has evolved into new perspectives highlighting the roles of lysosomes in transcriptional regulation and metabolic homeostasis126. In human cancer, lysosomal dysfunction is involved in the generation of building blocks, cell proliferation, metastasis, angiogenesis, and tumor suppressor degradation39,127.

It has been reported that Wnt signaling is involved in the endocytosis-mediated formation of the LRP signalosome into the MVB123,128. GSK3 in the LRP signalosome is sequestered into the MVB, which leads to an increase in the level of cytosolic β-catenin and inhibition of Wnt signaling129. However, decreased GSK3 kinase activity by MVB sequestration lasts approximately 1 h129,130. Moreover, it is unclear how sequestered APC, GSK3, AXIN, and CK1 in MVB are processed. A recent study showed that clathrin-mediated endocytosis is required for Wnt signaling activation, which is inhibited by APC31. These studies suggest that vesicular acidification and trafficking also play crucial roles in controlling Wnt/β-catenin signaling through modulation of the protein destruction complex. Next, we discuss how APC is deregulated for Wnt signaling hyperactivation in cancer cells.

Wnt signaling activation requires v-ATPase (vacuolar H+-ATPase; an electrogenic H+ transporter)125,128,133. Previous studies imply that in cancer cells, the upregulation of v-ATPase activity might trigger abnormal Wnt/β-catenin signaling and contribute to Wnt signaling-dependent tumorigenesis. Growing evidence has demonstrated the effect of v-ATPase on various oncogenic processes, including cellular signaling, survival, drug resistance, and metastasis125,134. Moreover, the v-ATPase subunits are highly expressed in colorectal, breast, prostate, liver, ovarian, and pancreatic cancer cells135–138. The v-ATPase complex is composed of the V1 domain (in the cytosol) and V0 domain (on the membrane)139,140. The V1 domain shows reversible dissociation from the V0 domain under physiological conditions, including glucose concentration, starvation of amino acids, and infection of cells by influenza virus141–144. Recently, TMEM9 (transmembrane protein 9) was identified as an activator of v-ATPase and is highly expressed in cancer39. TMEM9 amplifies Wnt signaling through the v-ATPase-mediated lysosomal protein degradation of APC39. Given that TMEM9 is highly expressed in CRC cells and that \textit{tmem9} knockout mice are also viable39, molecular targeting of TMEM9 may selectively suppress Wnt signaling activity in cancer cells.
Novel therapeutic target: v-ATPase

Conventional approaches targeting Wnt/β-catenin have led to various side effects, as mentioned above. Therefore, cancer-specific Wnt signaling regulators such as v-ATPase may be attractive molecular targets for Wnt signaling blockade. Chloroquine (CQ) and hydroxychloroquine (HCQ), inhibitors of lysosomes and autophagy, are clinically used for the treatment of diseases such as malaria and rheumatoid arthritis. While the mechanism of action of CQ and HCQ is somewhat unclear, other v-ATPase inhibitors, such as bafilomycin (BAF) and concanamycin (CON), directly bind to and inhibit v-ATPase. Compared with CQ and HCQ, BAF and CON showed marked inhibition of Wnt/β-catenin signaling in CRC. In addition, BAF and CON displayed an antiproliferative effect in CRC patient-driven xenograft and animal models without toxicity to normal cells and animals. In addition, BAF and CON also strongly inhibit Wnt signaling activity in CRC cells, regardless of APC mutations. Thus, further research may lead to the development of anti-v-ATPase drugs as cancer-specific Wnt/β-catenin inhibitors (Fig. 2).

Conclusion

Genetic and epigenetic deregulation of Wnt/β-catenin signaling contributes to human cancer, which has led to the development of extensive approaches targeting Wnt/β-catenin signaling as cancer therapies. Nonetheless, the blockade of Wnt signaling impairs tissue homeostasis and regeneration, which needs to be resolved. Recent studies have identified several Wnt signaling regulators whose expression is specific to cancer cells. These cancer-specific regulatory processes of Wnt signaling may be druggable vulnerabilities of Wnt-signaling-associated cancer.

Acknowledgements

This work was supported by grants from the Cancer Prevention and Research Institute of Texas (RP140563 to J.-I.P.), the National Institutes of Health (R01 CA193297-01 to J.-I.P.), the Department of Defense Peer Reviewed Cancer Research Program (WB1XWH-15-1-0140 to J.-I.P.), an Institutional Research Grant (MD Anderson Cancer Center to J.-I.P.), SPORE in endometrial cancer (PS0159350 to J.-I.P.), the Anne Eastland Spears Fellowship in Gastrointestinal Cancer Research (MD Anderson Cancer Center to Y.-S.J.), and the Debbie’s Dream Foundation-American Association for Cancer Research Gastric Cancer Research Fellowship, in memory of Petros Palandjian (19-40-41-Jung to Y.-S.J.).

Author details

1Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 2Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 3Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Conflict of interest

The authors declare that they have no conflict of interest.
References

1. Aebi, S. P., Kaulanen, E., Berger, B. S., Huang, Y. L. & Niehrs, C. Mitotic Wnt signaling promotes protein stabilization and regulates cell size. Mol. Cell 54, 665–674 (2014).

2. Zhang, Y. et al. Wnt signaling regulates the lineage differentiation potential of mouse embryonic stem cells through Tcf3 down-regulation. PLoS Genet. 9, e1003424 (2013).

3. Cleton-Jansen, A. M. et al. Wnt signaling and stem cell differentiation. Stem Cell Rev. 10, 533–554 (2014).

4. Green, J. L., Inoue, T. & Stemberg, P. W. Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134, 646–656 (2008).

5. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

6. Grumolato, L. et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated co-receptors. Genes Dev. 24, 2571–2590 (2010).

7. Kato, M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int. J. Oncol. 51, 1357–1369 (2017).

8. Mirabeli, C. K., Nusse, R., Tuveson, D. A. & Williams, B. O. Perspectives on the role of Wnt biology in cancer. Sci. Signal. 12, https://doi.org/10.1126/scisignal.aay4994 (2019).

9. Amin, N. & Vincen, E. The Wnt signaling pathways and cell adhesion. Front. Biosci. Landmark Ed. 17, 784–808 (2012).

10. Li, V. S. et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axl1 complex. Cell 149, 1245–1256 (2012).

11. MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

12. Gao, Z. H., Seeling, J. M., Hill, V., Yochum, A. & Virshup, D. M. Casein kinase I phosphorylates mammalian xin domains of Wnt corceptors. J. Biol. Chem. 284, 17516–17524 (2009).

13. Ha, N. C., Tonozuka, T., Stamos, J. L., Choi, H. J. & Weis, W. I. Mechanism of beta-catenin degradation. EMBO J. 26, 716–726 (2007).

14. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell migration and microtubule-induced focal adhesion turnover. J. Cell Biol. 216, 2859–2875 (2017).

15. Rusen, N. M. et al. CIN: reviewing roles for APC in chromosome instability. J. Cell Biol. 181, 719–726 (2008).

16. Tian, X. et al. E-cadherin/beta-catenin complex and the epithelial barrier. J. Biomed. Biotechnol. 2011, 57305 (2011).

17. Jung, Y. S. et al. TWEM9 promotes intestinal tumorigenesis through vascular AT1-activated Wnt/beta-catenin signaling. Nat. Cell Biol. 20, 1421–1433 (2018).

18. Voloshansenko, O. et al. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat. Commun. 4, 2610 (2013).

19. Kishida, M. et al. Axin prevents Wnt-3a-induced accumulation of beta-catenin. Oncogene 18, 979–985 (1999).

20. Luo, W. & Lin, S. C. Axin: a master scaffold for multiple signaling pathways. Neurosignals 13, 99–113 (2004).

21. Mazzoni, S. M. & Fearon, E. R. AXIN1 and AXIN2 variants in gastrointestinal cancers. Natl Acad. Sci. U.S.A. 106, 7592–7597 (2009).

22. Kim, N. G., Xu, C. & Gumbiner, B. M. Identification of targets of the Wnt pathway destruction complex in addition to beta-catenin. Proc. Natl Acad. Sci. U.S.A. 106, 5166–5171 (2009).

23. Djuran, R. et al. Structural basis for recruitment of glycogen synthase kinase 3beta to the axin APC scaffolding complex. EMBO J. 22, 494–501 (2003).

24. Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384 (1998).

25. Kim, S. E. et al. Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340, 867–870 (2013).

26. Willett, K., Shibamoto, S. & Nusse, R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev. 13, 1768–1773 (1999).

27. Zeng, X. et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 (2005).

28. MacDonald, B. T. & He, X. Fizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb. Perspect. Biol. 4, https://doi.org/10.1101/cshperspect.a007880 (2012).
53. Zeng, X. et al. Initiation of Wnt signaling: control of Wnt coceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135, 367–375 (2008).
54. Hrckula, D., Kolar, M., Strnad, H. & Korinek, V. TCF/LEF transcription factors: an update from the internet resources. J. Biol. Chem. 288, 4611–4617 (2013).
55. Delaroché, M., Worm, J. & Bienz, M. The function of BCL9 in Wnt/beta-catenin signaling and colorectal cancer. Cell. Mol. Life Sci. 74, 6468–6501 (2017).
56. Gonzalez, D. M. & Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8 (2014).
57. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).
58. Fischer, M. M. et al. WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Sci. Adv. 3, e1700900 (2017).
59. Jimeno, A. et al. A first-in-human phase 1 study of the anticancer stem cell stem cell antagonist apicamcept (OMP-5428), a decay receptor for Wnt ligands, in patients with advanced solid tumors. Clin. Cancer Res. 23, 7490–7497 (2017).
60. Moore, K. N. et al. Phase 1 dose escalation study of apicamcept (OMP5428) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol. Oncol. 154, 294–301 (2019).
61. Graudet, A. L. et al. A first-in-human study investigating biodistribution, safety and recommended dose of a new radiolabeled MAb targeting FZD10 in metastatic synovial sarcoma patients. BMC Cancer 18, 646 (2018).
62. Lu, D. et al. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc. Natl Acad. Sci. USA 108, 13252–13257 (2011).
63. Turnova, L. et al. Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol. Cancer Ther 13, 812–822 (2014).
64. Zhu, Y. et al. Rottlerin as a novel chemotherapy agent for adenocortical carcinoma. Oncotarget 8, 22825–22834 (2017).
65. Li, Y. et al. Multi-targeted therapy of cancer by niclosamide: a new application for an old drug. Cancer Lett. 349, 8–14 (2014).
66. Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).
67. Mariotti, L., Pollock, K. & Guettler, S. Regulation of Wnt/beta-catenin signaling by tankyrase-dependent poly(ADP-ribosylation) and scaffolding. Br. J. Pharmac. 174, 4611–4616 (2017).
68. Mironov, S., Cheng, Z., Moon, R. T., Cong, F. & Xu, W. Crystal structure of a Tankyrase-Asx complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc. Natl Acad. Sci. USA 109, 1500–1505 (2012).
69. Lai, T. et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73, 3132–3144 (2013).
70. Menon, M. et al. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci. Rep. 9, 201 (2019).
71. Mizutani, A. et al. RK-287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model. Cancer Sci. 109, 1183–1193 (2018).
72. Thome, C. A. et al. Small-molecule inhibition of Wnt signaling through activation of casin kinase 1alpha. Nat. Chem. Biol. 6, 829–836 (2010).
73. Monfared, L., Pollock, K. & Guettler, S. Regulation of Wnt/beta-catenin signalling by tankyrase-dependent poly(ADP-ribosylation) and scaffolding. Br. J. Pharmac. 174, 4611–4616 (2017).
74. Morrone, S., Cheng, Z., Moon, R. T., Cong, F. & Xu, W. Crystal structure of a Tankyrase-Asx complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc. Natl Acad. Sci. USA 109, 1500–1505 (2012).
75. Lai, T. et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73, 3132–3144 (2013).
76. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).
77. Weilenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Annu. Rev. Pathol. 5, 367–391 (2010).
78. Thome, C. A. et al. Small-molecule inhibition of Wnt signaling through activation of casin kinase 1alpha. Nat. Chem. Biol. 6, 829–836 (2010).
79. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).
80. Jho, E. H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).
81. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of c-jun in colon carcinoma cells. Nature 398, 422–426 (1999).
82. Wolf, D., Rodova, M., Miska, E. A., Calvet, J. P. & Kouzantides, T. Acetylation of beta-catenin by CREB-binding protein (CBP). J. Biol. Chem. 277, 25562–25567 (2002).
83. Yu, W. et al. Beta-catenin cooperates with CREB binding protein to promote the growth of tumor cells. Cell Physiol. Biochem 44, 467–478 (2017).
84. Takemaru, K. I. & Moon, R. T. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).
85. Yang, K. et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis. Int. J. Cancer 126, 2289–2298 (2010).
86. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of c-jun in colon carcinoma cells. Nature 398, 422–426 (1999).
87. Weilenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Annu. Rev. Pathol. 5, 367–391 (2010).
88. Thome, C. A. et al. Small-molecule inhibition of Wnt signaling through activation of casin kinase 1alpha. Nat. Chem. Biol. 6, 829–836 (2010).
89. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of c-jun in colon carcinoma cells. Nature 398, 422–426 (1999).
90. Weilenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Annu. Rev. Pathol. 5, 367–391 (2010).
91. Wolf, D., Rodova, M., Miska, E. A., Calvet, J. P. & Kouzantides, T. Acetylation of beta-catenin by CREB-binding protein (CBP). J. Biol. Chem. 277, 25562–25567 (2002).
92. Yu, W. et al. Beta-catenin cooperates with CREB binding protein to promote the growth of tumor cells. Cell Physiol. Biochem 44, 467–478 (2017).
93. Takemaru, K. I. & Moon, R. T. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).
94. Yang, K. et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis. Int. J. Cancer 126, 2289–2298 (2010).
95. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of c-jun in colon carcinoma cells. Nature 398, 422–426 (1999).
96. Weilenga, V. J. et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Annu. Rev. Pathol. 5, 367–391 (2010).
97. Wolf, D., Rodova, M., Miska, E. A., Calvet, J. P. & Kouzantides, T. Acetylation of beta-catenin by CREB-binding protein (CBP). J. Biol. Chem. 277, 25562–25567 (2002).
98. Yu, W. et al. Beta-catenin cooperates with CREB binding protein to promote the growth of tumor cells. Cell Physiol. Biochem 44, 467–478 (2017).
99. Takemaru, K. I. & Moon, R. T. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).
119. Benary, U., Kofahl, B., Hecht, A. & Wolf, J. Modeling Wnt/beta-catenin target

118. He, B. et al. Blockade of Wnt-1 signaling induces apoptosis in human col-

117. Kim, M. J. et al. PAF-Myc-controlled cell stemness is required for intestinal

116. Jung, H. Y. et al. PAF and EZH2 induce Wnt/beta-catenin signaling hyper-

113. Jung, Y. S., Jun, S., Lee, S. H., Sharma, A. & Park, J. I. Wnt2 complements Wnt/

114. Jung, Y. S. et al. Deregulation of CRAD-controlled cytoskeleton initiates

111. Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-

112. Horst, D. et al. Differential WNT activity in colorectal cancer confers limited

107. Feng, M. et al. Pharmacological inhibition of beta-catenin/BCL9 interaction

108. Lyuoi, Y., Habowski, A. N., Chen, G. T. & Waterman, M. L. Inhibition of nuclear

109. Hwang, S. Y. et al. Direct targeting of beta-catenin by a small molecule

110. Cantu, C. et al. The Pygo2-H3K9me2/3 interaction is dispensable for mouse
development and Wnt signaling-dependent transcription. Development 140,
2377–2386 (2013).

115. Koo, B. K. et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces

116. Jung, H. Y. et al. PAF and EZH2 induce Wnt/beta-catenin signaling hyper-

117. Kim, M. J. et al. PAF-Myc-controlled cell stemness is required for intestinal

118. He, B. et al. Blockade of Wnt-1 signaling induces apoptosis in human col-

119. Benary, U., Kofahl, B., Hecht, A. & Wolf, J. Modeling Wnt/beta-catenin target

120. Goentoro, L. & Kirschner, M. W. Evidence that fold-change, and not absolute

121. Herbst, A. et al. Comprehensive analysis of beta-catenin target genes in
colorectal carcinoma cell lines with deregulated Wnt/beta-catenin signaling.
BMC Genomics 15, 74 (2014).

122. Scarborough, H. A. et al. AZ1366, an inhibitor of tankyrase and the canonical
Wnt pathway that limits the persistence of non-small cell lung cancer cells
following EGFR inhibition. Clin. Cancer Res. 23, 1531–1541 (2017).

123. Phelps, R. A. et al. A two-step model for colon adenoma initiation and
progression caused by APC loss. J. Cell Biol. 212, 677–692 (2016).

124. Pamarthy, S., Kulkarni, A., Katara, G. K. & Beanland, K. D. The curious case of
vacuolar ATPase regulation of signaling pathways. Mol. Cancer 17, 41 (2018).

125. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling,
metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).