Supplement of Brown carbon’s emission factors and optical characteristics in household biomass burning: developing a novel algorithm for estimating the contribution of brown carbon

Jianzhong Sun et al.

Correspondence to: Guorui Zhi (zhigr@craes.org.cn) and Yingjun Chen (yjchenfd@fudan.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Table S1-I. Elemental analysis of biomass fuels used in this study

Biomass fuels	Classify	M%	C%	H%	N%
Rape straw	CR	10.8	43.8	5.80	0.80
Peanut stalk	CR	10.2	36.0	5.07	1.31
Rice straw	CR	7.29	37.0	5.31	0.39
Wheat straw	CR	8.79	36.7	5.22	0.34
Bean straw	CR	10.8	39.5	5.87	1.19
Corncob	CR	12.8	43.3	5.93	0.52
Sorghum stalk	CR	11.9	41.1	5.66	0.55
Maize straw	CR	6.56	43.8	5.96	0.67
Cotton straw	CR	7.66	41.8	5.75	1.19
Pine	FW	4.91	46.5	6.21	0.06
Pellet fuel	PF	9.14	46.7	6.70	1.31

Note: M% - moisture on air-dry basis (%); 11 biomass fuels used in this study were divided into 3 categories: CR - crop residue; FW - fire wood; PF - pellet fuel.
Table S1–II. The combustion parameters of biomass fuels used in this study

Biomass fuels	weight burned (g)	dilution ratio
Rape straw	275	100
Peanut stalk	300	35
Rice straw	185	50
Wheat straw	250	40
Bean straw	360	35
Corncob	220	40
Sorghum stalk	80	140
Maize straw	205	40
Cotton straw	240	40
Pine	600	40
Pellet fuel	1000	3
Table S2-I. AAE values based on IS method (365 and 650 nm) for household biomass fuel burning

Biomass fuels	AAE	SD
Rape straw	1.84	0.029
Rice straw	2.98	0.43
Wheat straw	2.92	0.42
Cotton straw	2.77	0.36
Bean straw	2.59	0.31
Corncob	2.88	0.55
Peanut stalk	2.21	0.26
Sorghum stalk	1.38	0.15
Maize straw	2.67	0.54
Pine	2.82	0.57
Pellet fuels	1.95	0.65
Average	2.46	0.53
Table S2-II. f$_{BrC}$ of biomass fuel and coal (Sun et al., 2017) values based on IS method for household biomass fuel burning and coal combustion in China

nm	f$_{BrC}$ of Biomass	f$_{BrC}$ of Coal	nm	f$_{BrC}$ of Biomass	f$_{BrC}$ of Coal
350	0.7957	0.4327	605	0.4813	0.2281
355	0.7911	0.4697	610	0.4744	0.2282
360	0.7845	0.4659	615	0.4633	0.2264
365	0.7903	0.4633	620	0.4575	0.2263
370	0.7798	0.4616	625	0.4478	0.2266
375	0.7684	0.4239	630	0.4384	0.2251
380	0.7626	0.4106	635	0.4308	0.2214
385	0.7596	0.4071	640	0.4172	0.2212
390	0.7570	0.4039	645	0.3944	0.2197
395	0.7532	0.4021	650	0.4221	0.2200
400	0.7480	0.3973	655	0.4282	0.2181
405	0.7416	0.3938	660	0.4095	0.2170
410	0.7365	0.3901	665	0.4204	0.2140
415	0.7320	0.3856	670	0.4062	0.2131
420	0.7275	0.3812	675	0.4056	0.2106
425	0.7223	0.3764	680	0.4118	0.2097
430	0.7172	0.3720	685	0.4003	0.2068
435	0.7110	0.3670	690	0.3879	0.2071
440	0.7070	0.3634	695	0.3798	0.2046
445	0.7011	0.3592	700	0.3686	0.2004
450	0.6962	0.3570	705	0.3697	0.1984
455	0.6911	0.3557	710	0.3836	0.1960
460	0.6863	0.3539	715	0.3632	0.1939
465	0.6825	0.3529	720	0.3448	0.1901
470	0.6764	0.3492	725	0.3224	0.1819
475	0.6721	0.3443	730	0.3068	0.1758
480	0.6654	0.3350	735	0.3115	0.1749
485	0.6563	0.3190	740	0.2924	0.1721
490	0.6480	0.3075	745	0.1703	0.1652
495	0.6419	0.3016	750	0.2068	0.1640
500	0.6372	0.3011	755	0.1837	0.1629
505	0.6344	0.3031	760	0.2522	0.1596
510	0.6306	0.3050	765	0.2360	0.1568
515	0.6264	0.3087	770	0.0000	0.1543
520	0.6228	0.3088	775	0.2246	0.1506
525	0.6185	0.3072	780	0.1082	0.1521
530	0.6130	0.3023	785	0.0000	0.1464
535	0.6062	0.2966	790	0.1279	0.1390
540	0.5998	0.2894	795	0.2240	0.1424
545	0.5941	0.2835	800	0.2487	0.1370
	0.5869	0.2776	805	0.1295	0.1389
---	--------	--------	-----	--------	--------
550	0.5793	0.2715	810	0.3461	0.1456
560	0.5539	0.2544	815	0.3587	0.1324
565	0.5415	0.2478	820	0.3523	0.1218
570	0.5345	0.2428	825	0.3644	0.1225
575	0.5270	0.2395	830	0.0659	0.1124
580	0.5227	0.2384	835	0.1829	0.1174
585	0.5169	0.2364	840	0.2823	0.1087
590	0.5062	0.2330	845	0.4437	0.2130
595	0.4951	0.2298	850	0.2488	0.0608
600	0.4938	0.2303			
Table S3. AAE values reported by literature

Part I: AAE for pure BrC (Water or methanol extracts)

Aerosol type	Method	AAE range	AAE average	Reference
Ambient air	Water extract	6.9 (365-550 nm)	6.9	Zhu et al., 2017
Biomass burning	Water extract	6.4-6.8 (300-700 nm)	6.6	Hoffer et al., 2006
Ambient air	Water extract	6-8 (300-500 nm)	7	Liu et al., 2013
Ambient air	Water extract	5.8-11.7 (300-500 nm)	7.5	Du et al., 2014
Ambient air	Water extract	6.2-8.3 (365 nm)	7.25	Hecobian et al., 2010
Ambient air	Water extract	7.6 ± 0.5 (300-600 nm)	7.6	Zhang et al., 2013
Ambient air	Water extract	3.4 ± 0.7 (300-550 nm)	3.4	Zhang et al., 2011
Ambient air	Water extract	Summer 7.0 ± 0.8,		
Ambient air	Water extract	Winter 7.5 ± 0.9, (330-480 nm)	7.25	Cheng et al., 2011
Ambient air	Water extract	5.6-7.7 (330-400 nm)	6.4	Kirillova et al., 2014a
Ambient air	Water extract	6.1 (300-500 nm)	6.1	Voisin et al., 2012
Ambient air	Water extract	5.1 ± 2.0 (330-400 nm)	5.1	Kirillova et al., 2014b
Ambient air	Water extract	5.1 ± 1.9 day,	5.2	Srinivas et al., 2016
Ambient air	Water extract	5.3 ± 2.0 night, (300–700 nm)	5.2	
Ambient air	Water extract	6.0 ± 1.1 (300-700 nm)	6	Srinivas and Sarin, 2014
Ambient air	Water extract	5.8 ± 1.5 (300–700 nm)	5.8	Srinivas and Sarin, 2013
Ambient air	Water extract	6.9 ± 1.9 (300-700 nm)	6.9	
Ambient air	Water extract	7.2 ± 0.7 (330-400 nm)	7.2	Bosch et al., 2014
	Water extract	4.9 ± 0.7 afternoon,	4.75	
		4.6 ± 0.8 night, (330-500 nm)		
Ambient air	Methanol extract	4.0 ± 1.0 afternoon,	3.85	Kirillova et al., 2016
		3.7 ± 1.3 night, (330-500 nm)		
Ambient air	Methanol extract	4-6 (300-500 nm)	5	Liu et al., 2013
Ambient air	Methanol extract	8.2 (365-550 nm)	8.2	Zhu et al., 2017
Ambient air	Methanol extract	4.82 ± 0.49 (300-600 nm)	4.82	Zhang et al., 2013
Ambient air	Methanol extract	5.2 (330-400 nm)	5.2	Lei et al., 2018
Source	Method	AAE range	AAE average	Reference
-------------------------------	---------------------------------------	----------------------------	-------------	----------------------------
Kentucky Bluegrass			6.8	
Wheat	Methanol extract	6.8 ± 0.16 (300-500 nm)	6.8	
Wheat + Herbicide			7.06 ± 0.32 (300-500 nm)	7.06
Forest burn			7.18 ± 0.61 (300-500 nm)	7.18
Grass burn			7.27 ± 0.22 (300-500 nm)	7.27
Heavy fuel oil	extinction-minus-scattering technique	6.68 (300-500 nm)	6.68	
Wheat straw	AE31 method	3.016 ± 0.181 (370-880 nm)	3.02	Cai et al., 2014
Oak	AE31 method	1.38 (370-950 nm)	1.37	Saleh et al., 2013
Pocosin pine	AE31 method	1.48 (370-950 nm)	1.48	
Gallberry	AE31 method	1.25 (370-950 nm)	1.25	
Forest fire	A photo-acoustic aerosol absorption spectrometer (PAS)	2.3 (658-404 nm)	2.30	Lack et al., 2012
Wood combustion	a spectrometer in transmission mode for QFF	3-7.4 (300-2500 nm)	5.00	Kirchstetter and Thatcher, 2012
Wood combustion (Smog chamber)	Perkin-Elmer Lambda 35	400-700 nm	4.74	Zhong et al., 2013
Biomass smoldering combustion	integrated photoacoustic-nephelometer (IPNs)	2.3, 2.4, 2.8 (532-780 nm)	2.50	Chakrabarty et al., 2010
Summer, southern California forest fires	AERONET	4.55 ± 2.01 (440-675 nm)	4.55	Bahadur et al., 2012
Biomass (birch)	AE33 method	2.5-2.7 (370-950 nm)	2.60	Martinsson et al., 2015
Source of Smoke/Combustion	Method	Wavelength Range	Absorbance/Reflectance	Reference
----------------------------	--------	------------------	-------------------------	-----------
Incense smoke	3-wave length integrated photoacoustic-nephelometer (IPN)	8.32 (405-532 nm); 6.48 (532-781 nm)	7.40	Chakrabarty et al., 2013
Funeral wood combustion	Maya-2000 spectrophotometer	2.8-4 (450-880 nm)	3.40	Chakrabarty et al., 2014
		1.49 ± 0.08 (370-950 nm), 1.53 ± 0.1 (470-660 nm)		Yang et al., 2009
		1.35 ± 0.1 (370-950 nm), 1.35 ± 0.12 (470-660 nm)		
	AE31 method	1.43		
Fresh plume		1.2-2.1 (440-780 nm)		
	AERONET network	2.14		Reid, et al., 2005
		1.4-2.2 (440-780 nm)		
		1.0-2.3 (440-780 nm)		
Amazonian Forest:		1.2-2.1 (440-780 nm)		
Brazil		1.2-2.1 (440-780 nm)		
Bolivia (1998-1999)		1.2-2.1 (440-780 nm)		
South American Cerrado:		1.2-2.1 (440-780 nm)		
Brazil (1993-1995)		1.2-2.1 (440-780 nm)		
African Savanna:		1.4-2.2 (440-780 nm)		
Zambia (1995-2000)		1.4-2.2 (440-780 nm)		
Boreal Forest:		1.0-2.3 (440-780 nm)		
USA, Canada (1994-1998)		1.0-2.3 (440-780 nm)		
Bonfire festival in Israel	UV-Vis spectrometer (USB 2000+, Ocean Optics)	300-650 nm	3.50	Bluvshtein, et al., 2017
Leaf litter	AE31	532-870 nm	5.92	Olson et al., 2015
Abracos Hill, Brazil		440-870 nm	1.78	Matichuk, et al., 2008
Alta Floresta, Brazil		440-870 nm	1.78	Matichuk, et al., 2008
Jaru Reserve, Brazil		440-870 nm	1.78	Matichuk, et al., 2008
Rio Branco, Brazil		440-870 nm	1.78	Matichuk, et al., 2008
Mean		3.44		
SD		1.75		
SD of means		0.42		
Table S4. The values of MCEs and EF for OC/EC of every samples

Sample ID	Biomass fuels	MCE (%)	EF\textsubscript{OC}a (g/kg)	EF\textsubscript{EC}a (g/kg)
1	rape straw	88.12	15.46	3.43
2	peanut stalk	83.95	0.53	0.05
3	rice straw	93.40	2.76	0.35
4	wheat straw	84.83	0.82	0.10
5	bean straw	92.70	0.67	0.081
6	corncob	99.21	1.15	0.12
7	sorghum stalk	~100.00	0.28	0.08
8	maize straw	99.86	0.76	0.086
9	cotton straw	98.63	0.91	0.16
10	pine	97.34	0.37	0.063
11	pellet fuel	94.45	0.05	0.016
Mean		93.86	2.16	0.42

aReference from Sun et al., 2018.
Methods for calculation of EFs (BrC and BC), AAEs, $f_{\text{BrC}(\lambda)}$, and F_{BrC}.

(A) EFs.

Each EF (g/kg) of BrC or BC can be calculated as follows:

$$\text{EF} = \frac{CF \times \rho \times A \times 10^{-6}}{(M1 - M2) \times f}$$ \hspace{1cm} (1)

Where,

CF—conversion factor from measured equivalent of carbon black (CarB) to BC or from measured equivalent of humic acid sodium salt (HASS) to BrC. As described in our manuscript, CF is 1 for the former and is 0.47 for the latter

ρ—the mass of CarB equivalent or HASS equivalent per unit area of sampling filter (μg/cm2)

A—the area of sampling filter (cm2)

$M1$—the mass of biomass before combustion (kg)

$M2$—the mass of biomass after combustion (kg)

f—the fraction of sampled flue gas in total flue gas

(B) Absorption Ångström Exponents (AAEs).

Based on the light absorption at the wavelength pair of 365 and 650 nm measured by the IS method, AAEs are calculated as follows (Krivácsy et al., 2001; Chen an Bond, 2010; Sun et al., 2007; Lukács et al., 2007; Lack et al., 2013; Forrister et al., 2015; Yuan et al., 2016):

$$\text{AAE} = \frac{-\ln(A_{650}/A_{365})}{\ln(650/365)}$$ \hspace{1cm} (2)

(C) $f_{\text{BrC}(\lambda)}$ and F_{BrC}.

The attenuated signal is measured using an Ocean Optics model Maya-2000 spectrophotometer in the 300-1000 nm spectral range. If an absorbing substance is present in the sample, the signal attenuates, which is given by (Kirchstetter, and Thatcher, 2012).

$$\text{ABS}(\lambda) = -\ln[I(\lambda)/I_0(\lambda)]$$ \hspace{1cm} (3)

where $I(\lambda)$ and $I_0(\lambda)$ are the intensities measured with a sample filter and a blank filter, respectively, for each wavelength, λ.

The spectrally dependent absorbance by BrC ($\text{ABS}_{\text{BrC}(\lambda)}$) is obtained by subtracting the BC absorbance from the total absorbance (Chakrabarty et al., 2014; Kirchstetter and Thatcher, 2012; Sun et al., 2017):
\[\text{ABS}_{\text{BrC}}(\lambda) = \text{ABS}_{\text{sum}}(\lambda) - \text{ABS}_{\text{BC}}(\lambda) \]
\[\text{(4)} \]

The acquisition of \(\text{ABS}_{\text{BrC}}(\lambda) \) and \(\text{ABS}_{\text{BC}}(\lambda) \) depends on an iterative process. The detail of the iteration process is provided in a note to Figure S4.

Then, in each wavelength, the fraction of BrC absorbance in total absorbance (\(f_{\text{BrC}}(\lambda) \)) is calculated as:

\[f_{\text{BrC}}(\lambda) = \frac{\text{ABS}_{\text{BrC}}(\lambda)}{\text{ABS}_{\text{sum}}(\lambda)} \]
\[\text{(5)} \]

Finally, solar spectrum is considered. The average fraction of absorbed solar radiation by BrC relative to the combined absorption by BrC+BC over the wavelength range from 350 to 850 nm:

\[F_{\text{BrC}} = \frac{\int_{350}^{850} f_{\text{BrC}}(\lambda) k(\lambda) d\lambda}{\int_{350}^{850} k(\lambda) d\lambda} \]
\[\text{(6)} \]

where \(k(\lambda) \) is the clear sky air mass one global horizontal solar spectrum at the earth’s surface.
Figure S1. Cross sections of the selected Chinese household biomass burning stove

1, flue; 2, fuel inlet and removable lid; 3, iron casting; 4, biomass burning area; 5, steel grates; 6, air inlet and/or dust bin. The biomass burning stove is 40 cm high by 30 cm wide and has an upper lid and an outlet to flue pipe.
Figure S2. Diversion-dilution-sampling system (Sun et al., 2017)
Figure S3. The sketch of integrating sphere method (Sun et al., 2017)

Note: PTFE is the Polytetrafluoroethylene reflective coating.
Figure S4. Calibration curves for CarB (diamonds, squares) and HASS (crosses, triangles) at 365 and 650 nm (Sun et al., 2017).

Note 1: T is the transmittance of incident light through calibration solution.

Note 2: Iteration process used in this study. The absorbances of BC (ABS_{BC}) and BrC (ABS_{BrC}) and the mass values of BC and BrC are iterated between the wavelengths 650nm and 365nm. The calibration curves in this Figure serve as:

1. $ABS_{BC}(650)$
2. $ABS_{BrC}(650)$
3. $ABS_{BC}(365)$
4. $ABS_{BrC}(365)$
5. $ABS_{sum}(650)$

![Diagram of iterative process]

Figure S5 Calculation of BC and BrC with iterative process
(i) Assuming the measured absorbance at 650nm \((\text{ABS}_{\text{sum}}(650))\) totally comes from BC \((\text{ABS}_{\text{BC}}(650))\), the first mass value of BC can be calculated according to the standard curve \((y = 0.222x-0.006)\).

(ii) Bring the first mass value of BC into the standard curve \((y = 0.0301x + 0.005)\) to calculate the absorbance of BC at 365 nm \((\text{ABS}_{\text{BC}}(365))\).

(iii) Subtracting \(\text{ABS}_{\text{BC}}(365)\) from the total absorbance at 365nm \((\text{ABS}_{\text{sum}}(365))\) leads to the absorbance of BrC at 365nm \((\text{ABS}_{\text{BrC}}(365))\), and then the first mass value of BrC can be calculated by using the standard curve \((y = 0.0073x - 0.004)\).

(iv) Bring the first mass value of BrC into the standard curve \((y = 0.0006x + 0.005)\) to calculate the absorbance of BrC at 650 nm \((\text{ABS}_{\text{BrC}}(650))\) can be obtained.

(v) Subtracting \(\text{ABS}_{\text{BrC}}(650)\) from the total absorbance at 650nm \((\text{ABS}_{\text{sum}}(650))\) leads to the updated absorbance of BC at 650nm \((\text{ABS}_{\text{BC}}(650))\), and then the second mass value of BC can be calculated by using the standard curve \((y = 0.222x-0.006)\) again.

(vi) In this way, the mass values of BC and BrC are worked out again and again until the data converges enough.
References:

Bahadur, R., Praveen, S., Xu, Y., and Ramanathan, V.: Solar absorption by elemental and brown carbon determined from spectral observations, PNAS, 109(43), 17366–17371, doi: 10.1073/pnas.1205910109, 2012.

Blavstein, N., Lin, P., Flores, J. M., Segev, L., Mazar, Y., Tas, E., Snider, G., Weagle, C., Brown, S. S., Laskin, A. and Rudich, Y.: Broadband optical properties of biomass burning aerosol and identification of brown carbon chromophore, J. Geophys. Res. Atmos., 122, 5441-5456, doi: 10.1002/2016JD026230, 2017.

Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P. S., Russell, L. M., Beres, N. D., Ramanathan, V., and Gustafsson, Ö.: Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean, J. Geophys. Res.: Atmos., 119(20), 11743-11759, doi: 10.1002/2014jd022127, 2014.

Cai, J., Zhi, G., Chen, Y., Meng, F., Xue, Z., Li, J., and Fang, Y.: A preliminary study on brown carbon emissions from open agricultural biomass burning and residential coal combustion in China, Res. Environ. Sci., 27(5), 455-461, doi: 10.13198/j.issn.1001-6929.2014.05.01, 2014.

Chakrabarty, R. K., Arnold, I. J., Francisco, D. M., Hatchett, B., Hosseinpour, F., Loria, M., Pokharel, A., and Woody, B. M.: Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals, Journal of Quantitative Spectroscopy and Radiative Transfer., 122, 25-30, doi: 10.1016/j.jqsrt.2012.12.011, 2013.

Chakrabarty, R. K., Moosmüller, H., Chen, L. W. A., Lewis, K., Arnott, W. P., Mazzoleni, C., Dubey, M. K., Wold, C. E., Hao, W. M., and Kreidenweis, S. M.: Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10(13), 6363-6370, doi: 10.5194/acp-10-6363-2010, 2010.

Chakrabarty, R. K., Pervez, S., Chow, J. C., Watson, J. G., Dewangan, S., Robles, J., and Tian, G.: Funeral pyres in South Asia: Brown carbon aerosol emissions and climate impacts, Environ. Sci. Technol., 1(1), 44-48, doi: 10.1021/es4000669, 2014.

Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, doi: 10.5194/acp-10-1773-2010, 2010.

Cheng, Y., He, K., Zheng, M., Duan, F., Du, Z., Ma, Y., Tan, J., Yang, F., Liu, J., Zhang, X., Weber, R. J., Bergin, M. H., and Russell, A. G.: Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China, Atmos. Chem. Phys., 11(22), 11497-11510, doi: 10.5194/acp-11-11497-2011, 2011.

Corbin, J., Pieber, S., Czech, H., Zanatta, M., Jakobi, G., Massabò, D., Orasche, J., Haddad, I., Mensah, A., Stengel, B., Drinovec, L., Mocnik, G., Zimmermann, R., Prévôt, A., and Gysel, M.: Brown and black carbon emitted by a marine engine operated on heavy fuel oil and distillate fuels: Optical properties, size distributions, and emission factors. J. Geophys. Res. Atmos., 123, 6175–6195, doi: 10.1002/2017JD027818, 2018.

Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., and Weber, R.: A yearlong...
study of water-soluble organic carbon in Beijing II: Light absorption properties, Atmos. Environ., 89, 235-241, doi: 10.1016/j.atmosenv.2014.02.022, 2014.

Forrister, H., Liu, J., and Scheue, E.: Evolution of brown carbon in biomass burning plumes, Geophys. Res. Lett., 42, 1-8, doi: 10.1002/2015GL063897, 2015.

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States, Atmos. Chem. Phys., 10(13), 5965-5977, doi: 10.5194/acp-10-5965-2010, 2010.

Hoffer, A., Gelencser, A., Guyon, P., Kiss, G., and Schmid, O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563-3570, doi: 10.5194/acp-6-3563-2006, 2006.

Kirchstetter, T. W. and Thatcher, T. L.: Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation, Atmos. Chem. Phys., 12(14), 6067-6072, doi: 10.5194/acp-12-6067-2012, 2012.

Kirillova, E. N., Andersson, A., Han, J., Lee, M., and Gustafsson, Ö.: Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China, Atmos. Chem. Phys., 14, 1413–1422, doi: 10.5194/acp-14-1413-2014, 2014a.

Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S., and Gustafsson, Ö.: Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties, J. Geophys. Res. Atmos., 119(6), 3476-3485, doi: 10.1002/2013JD020041, 2014b.

Kirillova, E. N., Marinoni, A., Bonasoni, P., Vuillermoz, E., Facchini, M., Fuzzi, S. and Decesari, S.: Light absorption properties of brown carbon in the high Himalayas, J. Geophys. Res. Atmos., 121(16), 9621-9639, doi: 10.1002/2016JD025030, 2016.

Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, g., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D., and Varga, B.: Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem., 39(3), 235-259, doi: 10.1023/A:1010637003083, 2001.

Lack, D. A. and Langridge, J. M.: On the attribution of black and brown carbon light absorption using the Ångström exponent, Atmos. Chem. Phys., 13 (20), 10535-10543, doi: 10.5194/acp-13-10535-2013, 2013.

Lack, D. A., Langridge, J. M., Schwarz, J. P., Bahreini, R., Cappa, C. D., Middlebrook, A. M., and Schwarz, J. P.: Brown carbon and internal mixing in biomass burning particles, PNAS, 109, 14802–14807, doi: 10.1073/pnas.1206575109, 2012.

Lei, Y., Shen, Z., Wang, Q., Zhang, T., Cao, J., Sun, J., Zhang, Q., Wang, L., Xu, H., Tian, J., and Wu, J.: Optical characteristics and source apportionment of brown carbon in winter PM2.5 over Yulin in Northern China, Atmos. Res., 213, 27-33, doi: 10.1016/j.atmosres.2018.05.018, 2018.

Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to
ambient fine-particle light absorption, Atmos. Chem. Phys., 13(24), 12389-12404, doi: 10.5194/acp-13-12389-2013, 2013.

Lukács, H., Gelencsér, A., Hammer, S., Puxbaum, H., Pio, C., Legrand, M., Kasper-Giebl, A., Handler, M., Limbeck, A., Simpson, D., and Preunkert, S.: Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe, Journal of Geophysical Research., 112 (D23S18), 1-9, doi: 10.1029/2006JD008151, 2007.

Matichuk, R. I., Colarco, P. R., Smith, J. A., and Toon, O. B.: Modeling the transport and optical properties of smoke plumes from South American biomass burning, J. Geophys. Res. Atmos., 113(D07208), doi: 10.1029/2007JD009005, 2008.

Martinsson, J., Eriksson, A. C., Nielsen, I. E., Malmborg, V. B., Ahlberg, E., Andersen, C., Lindgren, R., Nystrom, R., Nordin, E. Z., Brune, W. H., Svenningsson, B., Swietlicki, E., Boman, C., and Pagels, J. H.: Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol, Environ. Sci. Technol., 49(24), 14663-14671, doi:10.1021/acs.est.5b03205, 2015.

Olson, M. R., Victoria, G. M., Robinson, M. A., Rooy, P. V., Dietenberger, M. A., Bergin, M., and Schauer, J. J.: Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions, J. Geophys. Res. Atmos., 120(13), 6682-6697, doi: 10.1002/2014JD022970, 2015.

Reid, J. S., Eck, T. F., Christopher, S. A., Kopppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A. and Zhang, J.: A review of biomass burning emissions part III: intensive optical properties of biomass burning particles, Atmos. Chem. Phys., 5(3), 827-849, doi:10.5194/acp-5-827-2005, 2005.

Saleh, R., Donahue, N. M., and Robinson, A. L.: Time scales for gas-particle Partitioning equilibration of secondary organic aerosol formed from Alpha-Pinene Ozonolysis, Environ. Sci. Technol., 47(11), 5588-5594, doi: 10.1021/es400078d, 2013.

Srinivas, B., Rastogi, N., Sarin, M. M., Singh, A., and Singh, D.: Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain, Atmos. Environ., 125, 360-370, doi: 10.1016/j.atmosenv.2015.07.017, 2016.

Srinivas, B. and Sarin, M. M.: Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: Impact of biomass burning emissions, Environ. Res. Lett., 8(4), 1-7, doi: 10.1088/1748-9326/8/4/044042, 2013.

Srinivas, B. and Sarin, M. M.: Brown carbon in atmospheric outflow from the Indo-Gangetic Plain: Mass absorption efficiency and temporal variability, Atmos. Environ., 89, 835-843, doi: 10.1016/j.atmosenv.2014.03.030, 2014.

Sun, H., Biedermann, L., and Bond, T. C.: Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol, Geophys. Res. Lett., 34(L17813), 1-5, doi: 10.1029/2007gl029797, 2007.

Sun, J., Zhi, G., Hitzenberger, R., Chen, Y., Tian, C., Zhang, Y., Feng, Y., Cheng, M., Zhang, Y., Cai, J., Chen, F., Qiu, Y., Jiang, Z., Li, J., Zhang, G., and Mo, Y.: Emission factors and light absorption...
properties of brown carbon from household coal combustion in China, Atmos. Chem. Phys., 17, 4769-4780, doi: 10.5194/acp-17-4769-2017, 2017.

Sun, J., Zhi, G., Jin, W., Chen, Y., Shen, G., Tian, C., Zhang, Y., Zong, Z., Cheng, M., Zhang, X., Zhang, Y., Liu, C., Lu, J., Wang, H., Xiang, J., Tong, L., and Zhang, X.: Emission factors of organic carbon and elemental carbon for residential coal and biomass fuels in China: A new database for fuel-stove combinations, Atmos. Environ., 190, 241-248, doi: 10.1016/j.atmosenv.2018.07.032, 2018.

Voisin, D., Jaffrezo, J. L., Houdier, S., Barret, M., Cozic, J., King, M. D., France, J. L., Reay, H. J., Grannas, A., Kos, G., Ariya, P. A., Beine, H. J., and Domine, F.: Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. J. Geophys. Res., 117, 1-17, doi: 10.1029/2011jd016612, 2012.

Xie, M., Hays, M., and Holder, A.: Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions, Scientific reports, 7, 7318, doi: 10.1038/s41598-017-06981-8, 2017.

Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE, Atmos. Chem. Phys., 9, 2035-2050, doi: 10.5194/acpd-8-10913-2008, 2009.

Yuan, J., Huang, X., Cao, L., Cui, J., Zhu, Q., Huang, C., Lan, Z., and He, L.: Light absorption of brown carbon aerosol in the PRD region of China, Atmos. Chem. Phys., 16(3), 1433-1443, doi: 10.5194/acp-16-1433-2016, 2016.

Zhang, X., Lin, Y., Surratt, J. D., and Weber, R. J.: Sources, composition and absorption Ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles basin, Environ. Sci. Technol., 47(8), 3685-3693, doi: 10.1021/es305047b, 2013.

Zhang, X., Lin, Y., Surratt, J. D., Zotter, P., Prévôt, A. S. H., and Weber, R. J.: Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol, Geophys. Res. Lett., 38(21), 1-4, doi: 10.1029/2011gl049385, 2011.

Zhong, Min. Uv-Visible Light Absorption Properties of Organic Carbon Aerosol in Atmosphere, Dissertations & Theses Gradworks, 2013.

Zhu, C., Cao, J., Huang, R., Shen, Z., Wang, Q., and Zhang, N.: Light absorption properties of brown carbon over the southeastern Tibetan Plateau, Sci. of The Total Environ., 625, 246-251, doi: 10.1016/j.scitotenv.2017.12.183, 2017.