EDITORIALS

Is It Worth Correcting Hyperparathyroidism if Hyperphosphatemia and Hypocalcemia Worsen? A Cinacalcet Story

Mineral and bone disorders (MBD) are common and are associated with adverse outcomes in chronic kidney disease (CKD). The 2 fundamental questions are whether there are effective interventions to correct CKD-MBD and, if so, whether such interventions improve outcomes. Treatment modalities for CKD-MBD range from nutritional interventions to various pharmaceutical agents. The aims of therapy are to correct hyperparathyroidism and to control serum phosphorus and calcium levels. In this issue of the American Journal of Kidney Diseases, Chonchol and colleagues report the results of a phase 3 trial of cinacalcet for treatment of hyperparathyroidism in CKD patients. In this editorial, we review the implications of cinacalcet therapy on serum phosphorus and calcium across the range of CKD stages.

Cinacalcet activates the calcium sensing receptor (CaSR) indirectly by enhancing its sensitivity to extracellular calcium. As a result, even a low serum calcium level can suppress CaSR-dependent parathyroid hormone (PTH) secretion, making cinacalcet an effective agent for correcting secondary hyperparathyroidism. The consequences of cinacalcet therapy are reminiscent of the effects of parathyroid resection. In dialysis patients, cinacalcet-induced “medical parathyroidectomy” lowers serum calcium and phosphorus concentrations, similar to what is observed in “hungry bone syndrome.” The decline in serum phosphorus level is probably the result of both decreased phosphorus release from (or its increased uptake to) the bone and its decreased intestinal absorption. This bonus effect of cinacalcet is in sharp contradistinction to the worsening of hyperphosphatemia often observed with vitamin D sterols, as vitamin D sterols suppress PTH secretion by stimulating vitamin D receptors (VDR) of the parathyroid glands, but also stimulate VDRs of the intestinal tract, leading to enhanced phosphorus absorption (Table 1).

Another unique effect of cinacalcet is a reduction in serum calcium concentration, probably as a result of reduced bone turnover activity (as manifested by a decline in serum alkaline phosphatase), increased urinary calcium excretion, and, possibly, decreased intestinal calcium absorption. This hypocalcemic effect of cinacalcet is also in contrast to the hypercalcemic effects of vitamin D sterols (Table 1).

In contrast to what is seen with kidney failure, in patients with earlier stages of CKD, cinacalcet-induced PTH suppression mitigates the phosphaturic effect of PTH, leading to decreased urinary phosphorus excretion and increased phosphorus retention in the body. Cinacalcet-associated hyperphosphatemia was first observed in the phase 2 trial by Charytan et al, in which the cinacalcet arm exhibited significantly higher occurrence of serum phosphorus levels greater than 4.7 mg/dL after 4 weeks of therapy.
another unpublished phase 2 trial, use of cinacalcet in persons with CKD stages 3 and 4 led to an increase in serum phosphorus from 4.1 mg/dL at baseline to 4.9 mg/dL at 16 weeks, and 30% of these patients had to either initiate de novo treatment with phosphorus binders or increase their binder dose.19,20 The hyperphosphatemic effect of cinacalcet has also been confirmed in kidney transplant recipients.16,21 Vitamin D sterols may also lead to hyperphosphatemia, but this effect is somewhat consistent across the entire range of CKD,11 and the antiphosphaturic effect of PTH suppression with vitamin D sterols in non–dialysis-dependent CKD is practically neutralized by the phosphaturic effect of elevated fibroblast growth factor (FGF) 23 induced by vitamin D receptor activation (Table 1).22,23 According to the study by Chonchol and colleagues, a 32-week phase 3 double-blind, randomized controlled trial of 404 individuals with CKD stages 3 and 4 and with random 3:1 assignment to cinacalcet versus placebo,3 cinacalcet administration corrected hyperparathyroidism; however, it also led to a 21% rise in serum phosphorus, as compared to a 6% rise among controls (4.5 ± 1.0 mg/dL v 4.0 ± 0.7 mg/dL, respectively).3 Another less favorable outcome was hypocalcemia, as 62% of cinacalcet-receiving participants had at least 2 consecutive serum calcium concentrations below 8.4 mg/dL despite concurrent vitamin D therapy, compared with only 1% in the placebo group. At 32 weeks, serum calcium was 1.0 mg/dL lower in the cinacalcet group versus the placebo group (8.9 ± 0.8 mg/dL v 9.9 ± 0.6 mg/dL). The result of the concurrent hyperphosphatemia and hypocalcemia was an unchanged calcium-phosphorus product.3

Table 1. Comparison of Changes in Relevant Serum and Urine Measurements Upon Administration of Cinacalcet Versus Activated Vitamin D Analogs

	Cinacalcet (CKD 3-4)	Cinacalcet (CKD-5D)	Vitamin D Analogs* (CKD 3-4)	Vitamin D Analogs* (CKD-5D)
Serum calcium	↓	↓	↑	↑
Serum phosphorus	↑	↓	↓	↓
Serum PTH	↓	↓	↓	↓
Serum FGF-23	↓, (?) or ↑, (?)‡	↓, (?) or ↑, (?)‡	↑	↑
Serum calcitriol	↓ (?)	↓ (?)	↑, ↓ (?) §	↑, ↓ (?) §
Serum alkaline phosphatase	↓ (?)	↓ (?)	↓	↓
Urine calcium	↑	NA	↑	NA
Urine phosphorus	↓	NA	↑	NA

Note: CKD stages 3 and 4 also include kidney transplant recipients. CKD-5D includes long-term dialysis patients.

Abbreviations: CKD, chronic kidney disease; FGF-23, fibroblast growth factor 23; NA, not applicable; PTH, parathyroid hormone.

*Magnitude of the effect may vary according to product used.
†A recent randomized controlled trial showed no increase in serum phosphorus, nor any changes in urine calcium or phosphorus in patients treated with paricalcitol.11
‡Some preliminary data from kidney transplant recipients have indicated a decline in FGF-23 upon cinacalcet treatment.12
§Native serum calcitriol levels may decrease with the administration of paricalcitol.13
Patients With Secondary Hyperparathyroidism; SHPT, secondary hyperparathyroidism.

peritoneal dialysis; PTH, parathyroid hormone; SENSOR, Study to Investigate Cinacalcet Treatment in Haemodialysis Randomized Study Using Cinacalcet to Improve Achievement of KDOQI Targets in Patients With ESRD; P, phosphorus; PD, glomerular filtration rate; HD, hemodialysis; KDOQI, Kidney Disease Outcomes Quality Initiative; OPTIMA, An Open-label, Randomized Study Using Cinacalcet to Improve Achievement of KDOQI Targets in Patients With ESRD; P, phosphorus; PD, peritoneal dialysis; PTH, parathyroid hormone; SENSOR, Study to Investigate Cinacalcet Treatment in Haemodialysis Patients With Secondary Hyperparathyroidism; SHPT, secondary hyperparathyroidism.

Reference	Study Population	Drug Dose/Control	Results	Comments
Lindberg et al,44 2005	N = 395; Patients with SHPT on HD or PD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Significant reduction of PTH, Ca, P, and Ca × P with cinacalcet	Randomized, placebo-controlled, double-blind study
Block et al,45 2004	N = 741; Patients with SHPT on HD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Significant reduction of PTH and Ca × P with cinacalcet	Randomized, placebo-controlled, double-blind studies; data from 2 trials combined
Moe et al,46 2005	N = 1,136; Patients with SHPT on HD or PD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Significantly higher likelihood to achieve KDOQI bone-mineral targets with cinacalcet	Randomized, placebo-controlled, double-blind studies; data from 3 trials combined
Schaefer et al,47 2008 (SENSOR)	N = 673; Patients with uncontrolled SHPT on HD	Cinacalcet with post-dialysis meal + standard SHPT therapy v cinacalcet with food during dialysis + standard SHPT therapy	Noninferiority of post-dialysis–administered cinacalcet	Randomized, active comparator-controlled, open label study
Malluche et al,48 2008	N = 48; Patients with uncontrolled SHPT on HD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Reduced bone turnover and tissue fibrosis after cinacalcet therapy	Randomized, placebo-controlled, double-blind study
Messa et al,30 2008 (OPTIMA)	N = 552; Patients with uncontrolled SHPT on HD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	More patients in the cinacalcet arm achieved KDOQI bone-mineral treatment targets	Randomized, open label study
Fukagawa et al,9 2008	N = 144; Japanese patients with uncontrolled SHPT on HD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Significant reduction of PTH with cinacalcet	Randomized, placebo-controlled, double-blind study in Japan
Sterrett et al,48 2007	N = 266; Patients with uncontrolled SHPT on HD	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Sustained reduction of PTH, Ca, P, and Ca × P with cinacalcet	Double-blind 12-month extension study
Charytan et al,18 2005	N = 54; Patients with eGFR 15-50 mL/min/1.73 m² and PTH > 130 pg/mL	Cinacalcet + standard SHPT therapy v placebo + standard SHPT therapy	Significant reduction in PTH with cinacalcet	Randomized, placebo-controlled, double-blind study
Chonchol et al,49 2009	N = 404; Patients with eGFR 15-59 mL/min/1.73 m² and PTH > 100 (CKD stage 3) or > 160 (CKD stage 4) pg/mL	Cinacalcet v placebo	Significant PTH reduction and increased incidence of serum calcium < 8.4 mg/dL for cinacalcet compared with placebo	Randomized, placebo-controlled, double-blind study; extension study halted by sponsor due to safety concerns

Note: Conversion factors for units: serum calcium in mg/dL to mmol/L, × 0.2495; eGFR in mL/min/1.73 m² to mL/s/1.73 m², × 0.01667. Parathyroid hormone levels expressed in pg/mL and ng/L are equivalent.

Abbreviations: Ca, calcium; Ca × P, calcium-phosphorus product; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HD, hemodialysis; KDOQI, Kidney Disease Outcomes Quality Initiative; OPTIMA, An Open-label, Randomized Study Using Cinacalcet to Improve Achievement of KDOQI Targets in Patients With ESRD; P, phosphorus; PD, peritoneal dialysis; PTH, parathyroid hormone; SENSOR, Study to Investigate Cinacalcet Treatment in Haemodialysis Patients With Secondary Hyperparathyroidism; SHPT, secondary hyperparathyroidism.
be associated with increased mortality compared with PTH in the 100 to 300 pg/mL range. These U-shaped associations are usually interpreted as unfavorable outcomes related to both high-turnover and adynamic bone disease. Nevertheless, when PTH is below 100 pg/mL, vitamin D analogs and/or cinacalcet are usually withheld due to the “adynamic bone disease apprehension,” hence eliminating the hypothesized survival benefits of vitamin D analogs or cinacalcet in low PTH ranges.

Second, what is the consequence of inducing hypocalcemia? Indeed, in several trials, a notable increase in the use of calcium-based phosphorus binders has been observed in the cinacalcet arm, probably reflecting the effort to compensate for the calcium-lowering effect of cinacalcet. Whereas hypercalcemia appears associated with increased mortality according to most observational studies, the adverse effects of acute or chronic hypocalcemia in CKD patients are less well described. Two recent large epidemiologic studies in long-term hemodialysis patients showed that more than a moderate drop in serum calcium may be associated with increased mortality. A drop in serum calcium greater than 0.6 mg/dL over 6 months was associated with an approximately 40% increase in death risk. Since both acute and chronic hypocalcemia may be proarrhythmogenic and associated with cardiovascular and musculoskeletal abnormalities, it may be prudent to avoid extreme declines in serum calcium or levels below 8.4 mg/dL.

Third, what is the consequence of raising serum phosphorus? It may be argued that the concurrent hypocalcemia would offset the deleterious effect of hyperphosphatemia by maintaining the calcium-phosphorus product essentially unchanged. Indeed, in the current study, the end-trial calcium-phosphorus product was 40.1 ± 8.3 mg²/dL² in the cinacalcet group versus 38.9 ± 6.9 mg²/dL² among controls. However, the biological plausibility and clinical utility of the calcium-phosphorus product in the management of CKD-MBD has been questioned. It is also not clear whether a higher calcium-phosphorus product is a risk factor for vascular calcification, since in most observational studies there has been no association or only a weak association between this parameter and vascular calcification. Higher serum phosphorus has been associated with increased mortality in CKD patients independent of serum calcium levels.

Additional unanswered questions remain about the effects of cinacalcet on plasma calcitriol, FGF-23, and alkaline phosphatase levels. Cinacalcet might worsen calcitriol deficiency by sensitizing CaSR in the proximal tubule and reducing circulating PTH levels, both of which can suppress 1α-hydroxylation of 25-hydroxyvitamin D. The latter effect can be opposed by concurrent administration of vitamin D or its analogs. Indeed, in the current phase 3 study, not only were cholecalciferol and ergocalciferol offered to participants in the cinacalcet arm, but calcitriol intake was also encouraged to prevent very low calcium levels. Even though the impact of cinacalcet on FGF-23 levels is currently only speculative (see previous discussion), cinacalcet can reduce serum alkaline phosphatase concentrations at least in long-term dialysis patients (Table 1), probably by correcting high-turnover bone disease. This can be seen as another salutary effect of cinacalcet, especially since increased alkaline phosphatase levels are associated with increased mortality.

In summary, the current phase 3 cinacalcet trial in patients with CKD stages 3 to 4 confirms the findings that were reported earlier in the phase 2 study. What stands out as the main difference between these patients and those with kidney failure treated by dialysis is the rise in serum phosphorus in the former group, contrasting with the robust phosphorus-lowering effect that has been repeatedly described in several clinical trials of dialysis patients (Table 2). In long-term dialysis patients, cinacalcet therapy can engender conditions similar to parathyroidectomy and hungry bone syndrome with resultant hypocalcemia and hypophosphatemia, whereas in patients with CKD stages 3 to 4 it creates the clinical picture of primary hypoparathyroidism with concurrent hyperphosphatemia and hypocalcemia. In our opinion, the hyperphosphatemic and hypocalcemic effects of cinacalcet in CKD stages 3 to 4 mitigate the level of enthusiasm for its use. Hyperphosphatemia and hypocalcemia have similarly been reported in several small cinacalcet studies in kidney transplant recipients, but cinacalcet can be an appropriate treatment in these patients, especially when re-
fractory (tertiary) hyperparathyroidism and its associated hypercalcemia and hypophosphatemia persist posttransplantation. The intense marketing battle among pharmaceutical companies manufacturing CKD-MBD medications has led to a highly polarized environment that may confound appropriate judgment about the scientific and public health merits of therapeutic interventions. Notwithstanding that our opinions may be confounded by such biases, we tend to conclude that in nontransplant CKD stages 3 and 4, the indication for cinacalcet therapy appears somewhat limited at this time, and its use as an adjunct therapy needs further investigation.

Kamyar Kalantar-Zadeh, MD, MPH, PhD
Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center Torrance, California
David Geffen School of Medicine at UCLA
Los Angeles, California

Csaba P. Kovesdy, MD
Salem VA Medical Center
Salem, Virginia
University of Virginia School of Medicine
Charlottesville, Virginia

ACKNOWLEDGEMENTS

The authors thank Dr Eduardo Slatopolsky for reviewing this manuscript and for his suggestions about the effect of cinacalcet on FGF-23.

Financial Disclosure: Drs Kalantar-Zadeh and Kovesdy have received honoraria and/or grants from Genzyme, the manufacturer of sevelamer (Renagel and Renvela); Haas Pharmaceuticals, KRN 1493, NPS 1493; Amgen, the manufacturer of cinacalcet hydrochloride (Sensipar); and Shire Pharmaceuticals, the manufacturer of lanthanum carbonate (Fosrenol). In addition, Dr Kalantar-Zadeh has received honoraria and grants from Amgen, the manufacturer of cinacalcet hydrochloride (Sensipar).

REFERENCES

1. Moe SM, Drueke T, Lameire N, Eknoyan G: Chronic kidney disease-mineral-bone disorder: A new paradigm. Adv Chronic Kidney Dis 14:3-12, 2007
2. Kovesdy CP, Kalantar-Zadeh K: Bone and mineral disorders in pre-dialysis CKD. Int Urol Nephrol 40:427-440, 2008
3. Chonchol M, Locatelli F, Abboud HE, et al: A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet HCl in participants with CKD not receiving dialysis. Am J Kidney Dis 53:197-207, 2009
4. Cinacalcet: AMG 073, Calcimimetics–Amgen/NPS Pharmaceuticals, KRN 1493, NPS 1493. Drugs R D 4:349-351, 2003
5. Valle C, Rodriguez M, Santamaria R, et al: Cinacalcet reduces the set point of the PTH-calcium curve. J Am Soc Nephrol 19:2430-2436, 2008
6. Narayan R, Perkins RM, Berbano EP, et al: Parathyroidectomy versus cinacalcet hydrochloride-based medical therapy in the management of hyperparathyroidism in ESRD: A cost utility analysis. Am J Kidney Dis 49:801-813, 2007
7. Wang HY, Yu CC, Huang CC: Successful treatment of severe calciphylaxis in a hemodialysis patient using low-calcium dialysate and medical parathyroidectomy: Case report and literature review. Ren Fail 26:77-82, 2004
8. Lazar ES, Stankus N: Cinacalcet-induced hungry bone syndrome. Semin Dial 20:83-85, 2007
9. Fukagawa M, Yumita S, Akizawa T, et al: Cinacalcet (KRN1493) effectively decreases the serum intact PTH level with favorable control of the serum phosphorus and calcium levels in Japanese dialysis patients. Nephrol Dial Transplant 23:328-335, 2008
10. Haas M, Sunder-Plassmann G: Cinacalcet increases calcium excretion in hypercalcemic hyperparathyroidism. Blood Purif 14:234-241, 1996
11. Coyne D, Acharya M, Qiu P, et al: Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis 47:263-276, 2006
12. Serra AL, Wuhrmann C, Wuthrich RP: Phosphatemic effect of cinacalcet in kidney transplant recipients with persistent hyperparathyroidism. Am J Kidney Dis 53:1151-1157, 2008
13. Repo JM, Rantalainen H, Honkanen TT, et al: Paricalcitol aggravates perivascular fibrosis in rats with renal insufficiency and low calcitriol. Kidney Int 72:977-984, 2007
14. Belozeroff V, Goodman WG, Ren L, Kalantar-Zadeh K: Cinacalcet lowers serum alkaline phosphatase in maintenance hemodialysis patients. Clin J Am Soc Nephrol 2009 (in press)
15. Esposito L, Rostaing L, Gennero I, Mehrenberger M, Durand D, Kamar N: Hypercalcemia induced by a high dose of cinacalcet in a renal-transplant recipient. Clin Nephrol 68:245-248, 2007
16. Borchhardt KA, Heinzl H, Mayerwoger E, Horl WH, Haas M, Sunder-Plassmann G: Cinacalcet increases calcium excretion in hypercalcemic hyperparathyroidism after kidney transplantation. Transplantation 86:919-924, 2008
17. Coyne DW, Grief M, Ahya SN, Giles K, Norwood K, Slatopolsky E: Differential effects of acute administration of 1,25-dihydroxy-vitamin D2 and 1,25-dihydroxy-vitamin D3 on serum calcium and phosphorus in hemodialysis patients. Am J Kidney Dis 40:1283-1288, 2002
18. Charytan C, Coburn JW, Chonchol M, et al: Cinacalcet hydrochloride is an effective treatment for secondary hyperparathyroidism in patients with CKD not receiving dialysis. Am J Kidney Dis 46:58-67, 2005
19. United States Food and Drug Administration (USFDA): USFDA Sensipar (Cinacalcet HCI) Tablets Approval Application No. 021688. Available at: http://www.fda.gov/cder/foi/nda/2004/21-688_Sensipar.htm. Accessed July 5, 2004
20. Coyne DW: Cinacalcet should not be used to treat secondary hyperparathyroidism in stage 3-4 chronic kidney disease. Nat Clin Pract Nephrol 4:364-365, 2008

21. Serra AL, Braun SC, Starke A, et al: Pharmacokinetics and pharmacodynamics of cinacalcet in patients with hyperparathyroidism after renal transplantation. Am J Transplant 8:803-810, 2008

22. Gutierrez O, Isakova T, Rhee E, et al: Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205-2215, 2005

23. Gutierrez OM, Mannstadt M, Isakova T, et al: Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584-592, 2008

24. Kovesdy CP, Ahmadzadeh S, Anderson JE, Kalantar-Zadeh K: Secondary hyperparathyroidism is associated with higher mortality in men with moderate to severe chronic kidney disease. Kidney Int 73:1296-1302, 2008

25. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al: Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70:771-780, 2006

26. Shinaberger CS, Kopple JD, Kovesdy CP, et al: Ratio of paricalcitol dosage to serum parathyroid hormone level and survival in maintenance hemodialysis patients. Clin J Am Soc Nephrol 3:1769-1776, 2008

27. Kalantar-Zadeh K, Duong U, Miller JE, Dezfuli A, Kovesdy CP: Kidney bone disease and mortality in CKD: the role of vitamin D, alkaline phosphatase and minerals. Kidney Int Suppl 2009 (in press)

28. Kovesdy CP, Kalantar-Zadeh K: Vitamin D receptor activation and survival in chronic kidney disease. Kidney Int 73:1355-1363, 2008

29. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM: Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int 68:1793-1800, 2005

30. Messa P, Macario F, Yaqoob M, et al: The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol 3:36-45, 2008

31. Melamed ML, Eustace JA, Plantinga L, et al: Changes in serum calcium, phosphate, and PTH and the risk of death in incident dialysis patients: A longitudinal study. Kidney Int 70:351-357, 2006

32. Spodick DH: Hypocalcemia, hyperkalemia, and junctional or sinoventricular rhythm. Am J Geriatr Cardiol 14:273, 2005

33. Spodick DH: Classic chronic renal failure: hyperkalemia and hypocalcemia. Am J Geriatr Cardiol 14:336-337, 2005

34. National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42:S1-S202, 2003 (suppl 3)

35. O’Neill WC: The fallacy of the calcium-phosphorus product. Kidney Int 72:792-796, 2007

36. Goodman WG, Goldin J, Kuizon BD, et al: Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478-1483, 2000

37. Braun J, Oldendorf M, Moshage W, Heidler R, Zeitler E, Luft FC: Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis 27:394-401, 1996

38. Moe SM: Vascular calcification and renal osteodystrophy relationship in chronic kidney disease. Eur J Clin Invest 36:51-62, 2006 (suppl 2)

39. Kestenbaum B, Sampson JN, Rudser KD, et al: Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16:520-528, 2005

40. Slatopolsky E, Brown A, Dusso A: Pathogenesis of secondary hyperparathyroidism. Kidney Int Suppl 73:S14-S19, 1999

41. Ba J, Friedman PA: Calcium-sensing receptor regulation of renal mineral ion transport. Cell Calcium 35:229-237, 2004

42. Malluche HH, Monier-Faugere MC, Wang G, et al: An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin Nephrol 69:269-278, 2008

43. Regidor DL, Kovesdy CP, Mehrotra R, et al: Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J Am Soc Nephrol 19:2193-2203, 2008

44. Lindberg JS, Culleton B, Wong G, et al: Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: A randomized, double-blind, multicenter study. J Am Soc Nephrol 16:800-807, 2005

45. Block GA, Martin KJ, de Francisco AL, et al: Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516-1525, 2004

46. Moe SM, Chertow GM, Coburn JW, et al: Achieving NKF-K/DOQI bone metabolism and disease treatment goals with cinacalcet HCl. Kidney Int 67:760-771, 2005

47. Schaefer RM, Bover J, Dellanna F, et al: Efficacy of cinacalcet administered with the first meal after dialysis: the SENSOR Study. Clin Nephrol 70:126-134, 2008

48. Sterrett JR, Strom J, Stummvoll HK, et al: Cinacalcet HCl (Sensipar/Mimpara) is an effective chronic therapy for hemodialysis patients with secondary hyperparathyroidism. Clin Nephrol 68:10-17, 2007

49. Kooh SW, Fraser D, DeLuca HF, et al: Treatment of hypoparathyroidism and pseudohypoparathyroidism with metabolites of vitamin D: Evidence for impaired conversion of 25-hydroxyvitamin D to 1 alpha,25-dihydroxyvitamin D. N Engl J Med 293:840-844, 1975

50. Bergua C, Torregrosa JV, Fuster D, Gutierrez-Dalmay A, Oppenheimer F, Campistol JM: Effect of cinacalcet on hypercalcemia and bone mineral density in renal transplanted patients with secondary hyperparathyroidism. Transplantation 86:413-417, 2008

51. Kovesdy CP, Mehrotra R, Kalantar-Zadeh K: Battle-ground: Chronic kidney disorders mineral and bone disease–calcium obsession, vitamin D, and binder confusion. Clin J Am Soc Nephrol 3:168-173, 2008