THE CLIFFORD DEFORMATION OF THE HERMITE SEMIGROUP

H. DE BIE, B. ØRSTED, P. SOMBERG, AND V. SOUČEK

ABSTRACT. This paper is a continuation of the paper [H. De Bie et al., Dunkl operators and a family of realizations of \(\mathfrak{osp}(1|2) \), arXiv:0901.4725], investigating a natural radial deformation of the Fourier transform in the setting of Clifford analysis. At the same time, it gives extensions of many results obtained in [S. Ben Said et al., Laguerre semigroup and Dunkl operators, arXiv:0907.3749]. We establish the analogues of Bochner’s formula and the Heisenberg uncertainty relation in the framework of the (holomorphic) Hermite semigroup, and also give a detailed analytic treatment of the series expansion of the associated integral transform.

1. Introduction

It is well-known that the classical Dirac operator and its Fourier symbol generate via Clifford multiplication a natural Lie superalgebra \(\mathfrak{osp}(1|2) \) contained in the Clifford-Weyl algebra. More surprisingly, this carries over to a natural family of deformations of the Dirac operator, see [7]. Moreover, it is possible to define a Fourier transform naturally associated to the deformed family.

The novelty of the present article is that we let group theory be the guiding principle in defining operators and transformations, in the next step followed by a study of explicit (analytic) properties for naturally arising eigenfunctions and kernel functions. Thus the main aim is to find the kernel function for the Fourier transform connected with our deformation, and also to study its associated holomorphic semigroup regarded as a particular descendant of the Gelfand-Gindikin program analyzing representations of reductive Lie groups, see e.g. [22].

Let us now recall the basic setup and results from [7] and also discuss further aspects of our construction. The deformation family of Dunkl-Dirac operators

\[
D = r^{1-rac{\alpha}{2}} \mathcal{D}_\kappa + br^{-\frac{\alpha}{2}-1}x + cr^{-\frac{\alpha}{2}-1}x^2, \quad a, b, c \in \mathbb{R}
\]
together with the radial deformation of the coordinate function

\[x_a = r^2 - \frac{1}{2} x_a, \quad r = \sqrt{\sum_{i=1}^{m} x_i^2} \]

forms a realization of \(\mathfrak{osp}(1|2) \) in the Clifford-Weyl algebra. Here \(D_\kappa = \sum_{i=1}^{m} e_i T_i \) with \(T_i \) the Dunkl operators, \(x = \sum_{i=1}^{m} e_i x_i \) and \(E = \sum_{i=1}^{m} x_i \partial x_i \). The \(e_i \) are generators of the Clifford algebra \(\mathcal{C}l_m \). See also the next section for more details.

We will show in Proposition 3.4 that this realization builds a Howe dual pair with \(\tilde{G} \). Here the group \(\tilde{G} \) is the double cover (contained in the Pin group) of the finite reflection group \(G \) used in the construction of the Dunkl operators.

The operator of Fourier transform is then defined by

\[\mathcal{F}_D = e^{\frac{i\pi}{2} \left(\frac{1}{2} + \frac{\mu - 1}{4} \right)} e^{-\frac{i\pi}{2} \frac{\mu - 1}{8} \left(D^2 - (1+c)^2 x^2 \right)}, \]

where \(L = D^2 - (1 + c)^2 x^2 \) is the generalized Hamiltonian and \(\mu \) the Dunkl dimension. The main aim of the present paper is to find an integral expression for this Fourier transform,

\[\mathcal{F}_D(f)(y) = \int_{\mathbb{R}^m} K(x, y) f(x) h(r_x) \, dx \]

with \(h(r_x) \, dx \) the measure associated to \(D \) and \(K(x, y) \) the integral kernel to be determined. Note that this ties in with recent work on generalized Fourier transforms in different contexts, e.g. analysis on minimal representations of reductive groups (see [19, 20, 21]) or integral transforms in Clifford analysis (see [8, 6]).

The deformation of the classical Hamiltonian for the harmonic oscillator is visualized in the following figure:

\[\Delta_\kappa - |x|^2 \]

Dunkl deformation

\[\Delta - |x|^2 \]

Clifford deformation

\[D^2 + (1 + c)^2 |x|^a \]

\[|x|^{2-a} \Delta - |x|^a \]

The Dunkl deformation is by now quite standard and described for example in [11]. The \(a \)-deformation is the subject of the paper [2] and is a scalar radial deformation of the harmonic oscillator. Our Clifford deformation is
also a radial deformation but richer in the sense that Clifford algebra- (or spinor)-valued functions are involved.

In this paper we will thus find a series representation of the kernel function for our new Fourier transform \mathcal{F}_D, and also study the holomorphic semigroup with generator L. The main results are Theorem 6.1 on the operator properties of the semigroup, Theorem 7.4 on the Fourier transform intertwining the Dirac operator and the Clifford multiplication, Proposition 7.6 on the Bochner identities, and Proposition 7.9 on the Heisenberg uncertainty relation. Finally in Theorem 7.10 we give the analogue of what is sometimes called the “Master formula” in the context of Dunkl operators (see e.g. [24, Lemma 4.5 (1)] or [4]).

Let us also remark that an algebraic analog of the Dunkl-Dirac operator D for graded affine Hecke algebras is introduced in [1] with the motivation to prove a version of Vogan’s Conjecture for Dirac cohomology. The formulation is based on a uniform geometric parametrization of spin representations of Weyl groups. This Dirac operator is an algebraic variant of our family deformation of the differential Dirac operator for special values of the deformation parameters. While in [1] the Dunkl-Dirac operator is fixed by values of the multiplicity function but varies with the representation of the graded affine Hecke algebra, the family of Dunkl-Dirac operators investigated in the present article is independent of the deformation parameter but acting on a fixed representation.

The paper is organized as follows. In section 2 we repeat basic notions on Clifford algebras and Dunkl operators needed in the rest of the paper. In section 3 we construct intertwining operators to reduce our radially deformed Dirac operator to its simplest form. Subsequently, in section 4 we discuss the representation theoretic content of our deformation and solve the spectral problem of the associated Hamiltonian. In section 5, we obtain the reproducing kernels for spaces of spherical monogenics, which allows us to construct the kernel of the holomorphic semigroup in section 6. Section 7 contains the results on the (deformed) Fourier transform. Further properties are collected in section 8. Finally, we summarize some results on special functions used in the paper in section 9 and give a list of notations.

2. Preliminaries

In this section we collect some basic results on Clifford algebras and Dunkl operators.

2.1. Clifford algebras. Let V be a vector space of dimension m with a given negative definite quadratic form and let Cl_m be the corresponding Clifford algebra. If $\{e_i\}$ is an orthonormal basis of V, then Cl_m is generated by e_i, $i = 1, \ldots, m$, with the relations

\begin{align}
 e_i e_j + e_j e_i &= 0, \quad i \neq j, \\
 e_i^2 &= -1.
\end{align}

(2.1)
The algebra \(Cl_m \) has dimension \(2^m \) as a vector space over \(\mathbb{R} \). It can be decomposed as \(Cl_m = \oplus_{k=0}^m Cl_m^k \) with \(Cl_m^k \) the space of \(k \)-vectors defined by

\[Cl_m^k := \text{span}\{e_{i_1} \ldots e_{i_k}, i_1 < \ldots < i_k\}. \]

The projection on the space of \(k \)-vectors is denoted by \(\lfloor \cdot \rfloor_k \).

The operator \(\bar{\cdot} \) is the main anti-involution on the Clifford algebra \(Cl_m \) defined by

\[\bar{ab} = \bar{b}\bar{a}, \quad \bar{e_i} = -e_i, \quad (i = 1, \ldots, m). \]

Similarly we have the automorphism \(\epsilon \) given by

\[\epsilon(ab) = \epsilon(a)\epsilon(b), \quad \epsilon(e_i) = -e_i, \quad (i = 1, \ldots, m). \]

In the sequel, we will always consider functions \(f \) taking values in \(Cl_m \), unless explicitly mentioned. Such functions can be decomposed as

\[(2.2) \quad f(x) = f_0(x) + \sum_{i=1}^m e_i f_i(x) + \sum_{i<j} e_i e_j f_{ij}(x) + \ldots + e_1 \ldots e_m f_{1 \ldots m}(x) \]

with \(f_0, f_i, f_{ij}, \ldots, f_{1 \ldots m} \) all real-valued functions.

Several important groups can be embedded in the Clifford algebra. Note that the space of 1-vectors in \(Cl_m \) is canonically isomorphic to \(\mathbb{V} \cong \mathbb{R}^m \). Hence we can define

\[\text{Pin}(m) = \{ s_1 s_2 \ldots s_n | n \in \mathbb{N}, s_i \in Cl_m^1 \text{ such that } s_i^2 = -1 \}, \]

i.e., the Pin group is the group of products of unit vectors in \(Cl_m \). This group is a double cover of the orthogonal group \(O(m) \) with covering map \(p : \text{Pin}(m) \to O(m) \), which we will describe explicitly in the next section.

Similarly we define

\[\text{Spin}(m) = \{ s_1 s_2 \ldots s_{2n} | n \in \mathbb{N}, s_i \in Cl_m^1 \text{ such that } s_i^2 = -1 \}, \]

i.e., the Spin group is the group of even products of unit vectors in \(Cl_m \). This group is a double cover of \(SO(m) \). For more information about Clifford algebras and analysis, we refer the reader to [9] [10].

2.2. Dunkl operators. Denote by \(\langle \cdot, \cdot \rangle \) the standard Euclidean scalar product in \(\mathbb{R}^m \) and by \(|x| = \langle x, x \rangle^{1/2} \) the associated norm. For \(\alpha \in \mathbb{R}^m - \{0\} \), the reflection \(r_\alpha \) in the hyperplane orthogonal to \(\alpha \) is given by

\[r_\alpha(x) = x - 2\frac{\langle \alpha, x \rangle}{|\alpha|^2} \alpha, \quad x \in \mathbb{R}^m. \]

A root system is a finite subset \(R \subset \mathbb{R}^m \) of non-zero vectors such that, for every \(\alpha \in R \), the associated reflection \(r_\alpha \) preserves \(R \). We will assume that \(R \) is reduced, i.e. \(R \cap \mathbb{R}\alpha = \{ \pm \alpha \} \) for all \(\alpha \in R \). Each root system can be written as a disjoint union \(R = R_+ \cup (-R_+) \), where \(R_+ \) and \(-R_+ \) are separated by a hyperplane through the origin. The subgroup \(\mathcal{G} \subset O(m) \) generated by the reflections \(\{ r_\alpha | \alpha \in R \} \) is called the finite reflection group associated with \(R \). We will also assume that \(R \) is normalized such that
\(\langle \alpha, \alpha \rangle = 2 \) for all \(\alpha \in R \). For more information on finite reflection groups we refer the reader to [18].

If we identify \(\alpha \) with a 1-vector in \(Cl_m \) (and hence \(\alpha/\sqrt{2} \) with an element in \(Pin(m) \)), we can rewrite the reflection \(r_\alpha \) as

\[
r_\alpha(x) = \frac{1}{2} \alpha \bar{x} \alpha
\]

with \(\bar{x} = \sum_{i=1}^m e_i x_i \). Generalizing this map gives us the covering map \(p \) from \(Pin(m) \) to \(O(m) \) as

\[
p(s)(x) = \epsilon(s) \bar{x} s^{-1}, \quad s \in Pin(m).
\]

In particular, we obtain a double cover of the reflection group \(\mathcal{G} \) as \(\tilde{\mathcal{G}} = p^{-1}(\mathcal{G}) \) (see also the discussion in [1]).

A multiplicity function \(\kappa \) on the root system \(R \) is a \(\mathcal{G} \)-invariant function \(\kappa : R \to \mathbb{C} \), i.e. \(\kappa(\alpha) = \kappa(ha) \) for all \(h \in \mathcal{G} \). We will denote \(\kappa(\alpha) \) by \(\kappa_\alpha \).

For the sake of simplicity we will assume that the multiplicity function is real and satisfies \(\kappa \geq 0 \).

Fixing a positive subsystem \(R_+ \) of the root system \(R \) and a multiplicity function \(\kappa \), we introduce the Dunkl operators \(T_i \) associated to \(R_+ \) and \(\kappa \) by (see [10, 13])

\[
T_i f(x) = \frac{\partial_{x_i} f(x)}{\langle \alpha, x \rangle} + \sum_{\alpha \in R_+} \kappa_\alpha \frac{f(x) - f(r_\alpha(x))}{\langle \alpha, x \rangle^2}, \quad f \in C^1(\mathbb{R}^m).
\]

An important property of the Dunkl operators is that they commute, i.e. \(T_i T_j = T_j T_i \).

The Dunkl Laplacian is given by \(\Delta_\kappa = \sum_{i=1}^m T_i^2 \), or more explicitly by

\[
\Delta_\kappa f(x) = \Delta f(x) + 2 \sum_{\alpha \in R_+} \kappa_\alpha \left(\frac{\langle \nabla f(x), \alpha \rangle}{\langle \alpha, x \rangle^2} - \frac{f(x) - f(r_\alpha(x))}{\langle \alpha, x \rangle^2} \right)
\]

with \(\Delta \) the classical Laplacian and \(\nabla \) the gradient operator. We also define the constant

\[
\mu = \frac{1}{2} \Delta_\kappa |x|^2 = m + \sum_{\alpha \in R_+} \kappa_\alpha,
\]

called the Dunkl-dimension.

It is possible to construct an intertwining operator \(V_\kappa \) connecting the classical derivatives \(\partial_{x_j} \) with the Dunkl operators \(T_j \) such that \(T_j V_\kappa = V_\kappa \partial_{x_j} \) (see e.g. [12]). Note that explicit formulae for \(V_\kappa \) are only known in a few special cases.

The weight function related to the root system \(R \) and the multiplicity function \(\kappa \) is given by \(w_\kappa(x) = \prod_{\alpha \in R_+} |\langle \alpha, x \rangle|^{2\kappa_\alpha} \). For suitably chosen functions \(f \) and \(g \) one then has the following property of integration by parts (see [11])

\[
\int_{\mathbb{R}^m} (T_i f) g w_\kappa(x) dx = - \int_{\mathbb{R}^m} f (T_i g) w_\kappa(x) dx.
\]
The starting point in the subsequent analysis relies on the Dunkl-Dirac operator, given by
\[D_\kappa = \sum_{i=1}^{m} e_i T_i. \]
Together with the vector variable \(x = \sum_{i=1}^{m} e_i x_i \) this Dunkl-Dirac operator generates a copy of \(\mathfrak{osp}(1|2) \), see [23] or the subsequent Theorem 3.2. In particular, we have
\[D_\kappa^2 = -\Delta_\kappa \quad \text{and} \quad x^2 = -|x|^2 = -r^2 = -\sum_{i=1}^{m} x_i^2. \]

3. Intertwining operators

Let \(P \) and \(Q \) be two operators defined by
\[
P f(x) = r^{b} f\left(\left(\frac{a}{2}\right)^{\frac{1}{a}} x r^{\frac{2}{a}} - 1\right)
\]
\[
Q f(x) = r^{-\frac{ab}{a}} f\left(\left(\frac{2}{a}\right)^{\frac{1}{a}} x r^{\frac{2}{a}} - 1\right).
\]
These two operators act as generalized Kelvin transformations. Indeed, one can easily compute their composition:
\[QP = PQ = \left(\frac{2}{a}\right)^{\frac{1}{a}}. \]

We will show that these operators allow to reduce the Dirac operator \(D \) to a simpler form.

We have the following proposition, where \(E = \sum_{i=1}^{m} x_i \partial x_i \) denotes the Euler operator. Recall also from the introduction that \(x_a = r^{\frac{2}{a}} - 1 x \).

Proposition 3.1. One has the following intertwining relations
\[
\left(\frac{a}{2}\right)^{\frac{b+1}{2}} Q \left(D_\kappa + br^{-\frac{2}{a}} x + cr^{-2} x E \right) P = r^{1-\frac{a}{2}} D_k + \beta r^{-\frac{a}{2}-1} x + \gamma r^{-\frac{a}{2}-1} x E
\]
\[
\left(\frac{a}{2}\right)^{\frac{b+1}{2}} Q \ x P = x_a,
\]
with
\[\beta = 2b + 2c \]
\[\gamma = \frac{2}{a}(1 + c) - 1. \]

Proof. In [7, Proposition 3], we already proved that
\[
\left(\frac{a}{2}\right)^{\frac{b+1}{2}} Q \left(D_\kappa \right) P = r^{1-\frac{a}{2}} D_k + br^{-\frac{a}{2}-1} x + \left(\frac{2}{a} - 1\right) r^{-\frac{a}{2}-1} x E = x_a.
\]
Similarly we obtain
\[
\left(\frac{a}{2}\right)^{\frac{b^2-1}{2}} Q \left(r^{-2} x \right) P = r^{-\frac{a}{2}-1} x
\]
and
\[
\left(\frac{a}{2}\right)^{\frac{b^2-1}{2}} Q \left(r^{-2} x E \right) P = br^{-\frac{a}{2}-1} x + \left(\frac{2}{a} \right) r^{-\frac{a}{2}-1} x E.
\]
This completes the proof of the proposition. □

So we are reduced to the study of the operator
\[
D = D_\kappa + br^{-2} x + cr^{-2} x E
\]
where \(b, c \in \mathbb{R}, \ c \neq -1 \). Here, the term \(br^{-2} x \) can also be removed. Indeed, we have
\[
r^{-\alpha} (D_\kappa + br^{-2} x + cr^{-2} x E) r^\alpha = D_\kappa + cr^{-2} x E
\]
when \(\alpha = -b/(1 + c) \).

As a result of the previous discussion, we see that it is sufficient to study the function theory for the operator
\[
D = D_\kappa + cr^{-2} x E,
\]
where we have put \(a = 2, \ b = 0 \). Furthermore, we will restrict ourselves to the case \(c > -1 \) for reasons that will become clear in Proposition 3.5.

Similarly, we no longer need to consider \(x \) but can restrict ourselves to \(x \). Now we repeat the basic facts concerning this operator we need in the sequel. All the results are taken from [7], putting \(a = 2, \ b = 0 \).

Theorem 3.2. The operators \(D \) and \(x \) generate a Lie superalgebra, isomorphic to \(\mathfrak{osp}(1|2) \), with the following relations
\[
\begin{align*}
\{ x, D \} &= -2(1 + c) \left(E + \frac{\delta}{2} \right) \quad [E + \frac{\delta}{2}, D] = -D \\
\left[D^2, x \right] &= 2(1 + c) x \\
\left[D^2, x^2 \right] &= -2(1 + c)D \\
\left[D^2, x^2 \right] &= 4(1 + c)^2 \left(E + \frac{\delta}{2} \right) \\
\left[E + \frac{\delta}{2}, x^2 \right] &= 2 \Delta,
\end{align*}
\]
where \(\delta = 1 + \frac{\mu-1}{1+c} \).

Note that the square of \(D \) is a complicated operator, given by
\[
D^2 = -\Delta_\kappa - (c\mu) r^{-1} \partial_r - (c^2 + 2c) \partial_r^2 + cr^{-2} \sum x_i T_i - cr^{-2} \sum_{i<j} e_i e_j (x_i T_j - x_j T_i).
\]

If \(\kappa = 0 \), the formula for \(D^2 \) simplifies a bit as now \(\sum_i x_i T_i = r \partial_r = E \).

Remark 3.3. The operator \(D = D_\kappa + cr^{-2} x E \) is also considered from a very different perspective in [3] (in the case \(\kappa = 0 \)), where the eigenfunctions of this operator are studied.
Let us now discuss the symmetry of the generators of \(\mathfrak{osp}(1|2) \). First we define the action of the Pin group on \(C^\infty(\mathbb{R}^m) \otimes Cl_m \) for \(s \in \text{Pin}(m) \) as

\[
\rho(s) : C^\infty(\mathbb{R}^m) \otimes Cl_m \mapsto C^\infty(\mathbb{R}^m) \otimes Cl_m
\]

\[
f \otimes b \mapsto f(p(s^{-1})x) \otimes sb.
\]

We then have

Proposition 3.4. Let \(s \in \widetilde{G} \) and define \(\text{sgn}(s) := \text{sgn}(p(s)) \). Then one has

\[
\rho(s) \underline{e} = \text{sgn}(s) \underline{e} \rho(s)
\]

\[
\rho(s) D = \text{sgn}(s) D \rho(s).
\]

Proof. This follows immediately from the definition of \(\rho \) and the \(G \)-equivariance of the Dunkl operators. \(\square \)

So up to sign, the Dirac operator \(D \) is \(\widetilde{G} \)-equivariant. This is the same symmetry as obtained for the Dirac operator defined in the Hecke algebra (see [1], Lemma 3.4).

There is a measure naturally associated with \(D \) given by

\[
h(r) = r^{1-\frac{1+\mu c}{1+c}}.
\]

One has

Proposition 3.5. If \(c > -1 \), then for suitable differentiable functions \(f \) and \(g \) one has

\[
\int_{\mathbb{R}^m} (\overline{Df} \circ g) h(r) w_{\kappa}(x) dx = \int_{\mathbb{R}^m} (\overline{Dg} \circ f) h(r) w_{\kappa}(x) dx
\]

with \(h(r) = r^{1-\frac{1+\mu c}{1+c}} \), provided the integrals exist.

In this proposition, \(\overline{\cdot} \) is the main anti-involution on the Clifford algebra \(Cl_m \).

4. **Representation space for the deformation family of the Dunkl-Dirac operator**

The function space we will work with is \(L^2_{\kappa,c}(\mathbb{R}^m) = L^2(\mathbb{R}^m, h(r) w_{\kappa}(x) dx) \otimes Cl_m \). This space has the following decomposition

\[
L^2_{\kappa,c}(\mathbb{R}^m) = L^2(\mathbb{R}^+, r^{\frac{m-1}{2m}} dr) \otimes L^2(\mathbb{S}^{m-1}, w_{\kappa}(\xi) d\sigma(\xi)) \otimes Cl_m
\]

where on the right-hand side the topological completion of the tensor product is understood and with \(d\sigma(\xi) \) the Lebesgue measure on the sphere \(\mathbb{S}^{m-1} \). The space \(L^2(\mathbb{S}^{m-1}, w_{\kappa}(\xi) d\sigma(\xi)) \otimes Cl_m \) can be further decomposed into Dunkl harmonics and subsequently into Dunkl monogenic. This leads to

\[
L^2(\mathbb{S}^{m-1}, w_{\kappa}(\xi) d\sigma(\xi)) \otimes Cl_m = \bigoplus_{\ell=0}^{\infty} (M_\ell \oplus \mathcal{M}_\ell)[\mathbb{S}^{m-1}],
\]
where $\mathcal{M}_\ell = \ker D_\kappa \cap (\mathcal{P}_\ell \otimes \mathfrak{C}_m)$ is the space of Dunkl monogenics of degree ℓ, with \mathcal{P}_ℓ the space of homogeneous polynomials of degree ℓ (see also [5] for more details on Dunkl monogenics).

Using this decomposition, we have obtained in [7] a basis for $L^2_{\kappa,c}(\mathbb{R}^m)$. This basis is given by the set $\phi_{t,\ell,m}$ ($t, \ell \in \mathbb{N}$ and $m = 1, \ldots \dim \mathcal{M}_\ell$), defined as

$$\phi_{2t,\ell,m} = 2^{2t}(1 + c)^{2t} t! L^{2t}_{\ell} \frac{1}{\ell} \gamma_{\ell} M^{(m)}_\ell e^{-r^2/2},$$

$$\phi_{2t+1,\ell,m} = -2^{2t+1}(1 + c)^{2t+1} t! L^{2t+1}_{\ell} \frac{1}{\ell} \gamma_{\ell} M^{(m)}_\ell e^{-r^2/2}$$

with L^{2t}_{α} the Laguerre polynomials and

$$\gamma_{\ell} = \frac{2}{1 + c} \left(\frac{\mu - 2}{2} \right) + \frac{c + 2}{1 + c}$$

and where $M^{(m)}_\ell$ ($m = 1, \ldots \dim \mathcal{M}_\ell$) forms an orthonormal basis of \mathcal{M}_ℓ, i.e.

$$\left[\int_{\mathbb{S}_{m-1}} M^{(m_1)}_\ell(\xi) M^{(m_2)}_\ell(\xi) w_\kappa(\xi) d\sigma(\xi) \right]_0 = \delta_{m_1 m_2}.$$

The dimension of \mathcal{M}_ℓ is given by

$$\dim_{\mathbb{R}} \mathcal{M}_\ell = \dim_{\mathbb{R}} \mathfrak{C}_m \dim_{\mathbb{R}} \mathcal{P}_\ell(\mathbb{R}^{m-1}) = 2^m \frac{\ell + m - 2)!}{\ell!(m - 2)!}$$

with $\mathcal{P}_\ell(\mathbb{R}^{m-1})$ the space of homogeneous polynomials of degree ℓ in $m - 1$ variables (see [9]).

Using formula (4.10) in [7] and the proof of Theorem 3 in [7], one obtains the following formulas for the action of D and x on the generalized Laguerre functions

$$2D \phi_{t,\ell,m} = \phi_{t+1,\ell,m} + C(t, \ell) \phi_{t-1,\ell,m},$$

$$-2(1 + c)x \phi_{t,\ell,m} = \phi_{t+1,\ell,m} - C(t, \ell) \phi_{t-1,\ell,m}$$

with

$$C(2t, \ell) = 4(1 + c)^2 t,$$

$$C(2t + 1, \ell) = 2(1 + c)^2 (\gamma_{\ell} + 2t).$$

These formulas determine the action of $\mathfrak{osp}(1|2)$ on $L^2_{\kappa,c}(\mathbb{R}^m)$. Recall also that the action of \tilde{G} on $L^2_{\kappa,c}(\mathbb{R}^m)$ is given by ρ (see section 3).

Subsequently, we can define a creation and annihilation operator in this setting by

$$A^+ = D - (1 + c)x,$$

$$A^- = D + (1 + c)x$$
satisfying
\begin{align}
A^+ \phi_{t, \ell, m} &= \phi_{t+1, \ell, m}, \\
A^- \phi_{t, \ell, m} &= C(t, \ell) \phi_{t-1, \ell, m}.
\end{align}
(4.4)

Now we introduce the following inner product
\begin{align}
\langle f, g \rangle = \left[\int_{\mathbb{R}^m} f^c h(r) w_r(x) dx \right]_0
\end{align}
(4.5)
where \(h(r) \) is the measure associated to \(D \) (see Proposition 3.5) and \(f^c \) is the complex conjugate of \(f \). It is easy to check that this inner product satisfies
\begin{align}
\langle Df, g \rangle = \langle f, Dg \rangle \\
\langle xf, g \rangle = -\langle f, xg \rangle.
\end{align}
(4.6)

The related norm is defined by \(\|f\|^2 = \langle f, f \rangle \).

Theorem 4.1. We have
\begin{align}
\langle \phi_{t_1, \ell_1, m_1}, \phi_{t_2, \ell_2, m_2} \rangle = c(t_1, \ell_1) \delta_{t_1 t_2} \delta_{\ell_1 \ell_2} \delta_{m_1 m_2}
\end{align}
where \(c(t, \ell) \) is a constant depending on \(t \) and \(\ell \).

The functions \(\phi_{t, \ell, m} \) are eigenfunctions of the Hamiltonian of a generalized harmonic oscillator.

Theorem 4.2. The functions \(\phi_{t, \ell, m} \) satisfy the following second-order PDE
\begin{align}
(D^2 - (1 + c)^2 x^2) \phi_{t, \ell, m} = (1 + c)^2 (\gamma \ell + 2t) \phi_{t, \ell, m}.
\end{align}

Proof. This follows immediately from the formula (4.2). \(\square \)

Theorem 4.2 combined with the definition of \(A^+, A^- \) in (4.3) allows us to decompose the space \(\mathcal{L}^2_{r,c}(\mathbb{R}^m) \) under the action of \(\mathfrak{osp}(1|2) \). Clearly the odd elements \(A^+ \) and \(A^- \) generate \(\mathfrak{osp}(1|2) \) as they are linear combinations of \(D \) and \(x \). Moreover, they act between two basis vectors \(\{ \phi_{t, \ell, m} \} \) of \(\mathcal{L}^2_{r,c}(\mathbb{R}^m) \), so it is sufficient to consider vectors in an irreducible representation of \(\mathfrak{osp}(1|2) \) inside the functional space. This is achieved as follows - for fixed \(\ell \) and \(m \) each vector \(\phi_{0, \ell, m} \) generates the irreducible representation
\begin{align*}
\phi_{0, \ell, m} \xrightarrow{A^+} \phi_{1, \ell, m} \xrightarrow{A^-} \phi_{2, \ell, m} \xrightarrow{A^+} \phi_{3, \ell, m} \xrightarrow{A^-} \phi_{4, \ell, m} \xrightarrow{A^+} \cdots
\end{align*}
where \(L = \frac{1}{2} \{ A^+, A^- \} = D^2 - (1 + c)^2 x^2 \)
with the action given in Theorem 4.2. In fact this highest weight representation is labeled by \(\ell \) only and we will denote it \(\pi(\ell) \). In conclusion,
we obtain the decomposition of our functional space \(L^2_{\kappa,c}(\mathbb{R}^m) \) into a discrete direct sum of highest weight (infinite dimensional) Harish-Chandra modules for \(\mathfrak{osp}(1|2) \):

\[
L^2_{\kappa,c}(\mathbb{R}^m) = \bigoplus_{\ell=0}^{\infty} \pi(\ell) \otimes \mathcal{M}_\ell.
\]

These results should be compared with Theorem 3.19 and section 3.6 in [2] (where one uses \(\mathfrak{sl}_2 \) instead of \(\mathfrak{osp}(1|2) \)). Also notice that the claim should be understood as an assertion on the deformation of the Howe dual pair for \(\mathfrak{osp}(1|2) \) inside the Clifford-Weyl algebra on \(\mathbb{R}^m \) acting on a fixed vector space \(L^2_{\kappa,c}(\mathbb{R}^m) \).

In particular, we have the following result. Recall that an operator \(T \) is essentially selfadjoint on a Hilbert space \(H \) if \(T \) is a symmetric operator with a dense domain \(D(T) \subset H \) such that for a complete orthogonal set \(\{f_n\}_n \) in \(H \) with \(f_n \in D(H) \), there exist \(\{\mu_n\}_n \) solving \(T f_n = \mu_n f_n \) for all \(n \in \mathbb{N} \).

Proposition 4.3. Let \(c > -1 \) and \(\kappa > 0 \). The operator \(L \) acting on \(L^2_{\kappa,c}(\mathbb{R}^m) \) is essentially selfadjoint (i.e. symmetric and its closure is a selfadjoint operator). Moreover, \(L \) has no continuous spectrum and its discrete spectrum is given by

\[
\text{Spec}(L) = \{2(1 + c)\ell + 2(1 + c)^2 t + (1 + c)(\mu + c)|\ell, t \in \mathbb{N}\}.
\]

Using Theorem 4.2 we can now define the holomorphic semigroup for the deformed Dirac operator by

\[
F^\omega_D = e^{\omega(1 + \frac{c}{2}) + \frac{c}{(1 + c)}(D^2 - (1 + c)^2 x^2)}.
\]

Here, \(\omega \) takes values in the right half-plane of \(\mathbb{C} \). The special boundary value \(\omega = i\pi/2 \) corresponds to the Fourier transform. In that case, we will use the notation \(F_D \). The functions \(\phi_{t,\ell,m} \) are eigenfunctions of \(F_D^\omega \) satisfying

\[
(4.7) F_D^\omega(\phi_{t,\ell,m}) = e^{-\omega t} e^{-\frac{c\ell}{1+c}} \phi_{t,\ell,m}.
\]

Note that in the special case \(\kappa = 0, c = 0 \) the operator \(F_D^\omega \) reduces to the classical Hermite semigroup (see e.g. [17]).

Remark 4.4. One can also consider more general deformations of the Dirac operator, by adding suitable odd powers of \(\Gamma = -\mathcal{D}_\kappa - \mathcal{E} \) to \(D \) as follows

\[
D = \mathcal{D}_\kappa + cr^{-2} \frac{\mathcal{E}}{2} + \sum_{j=0}^{\ell} c_j r^{-1} \left(\Gamma - \frac{\mu - 1}{2} \right)^{2j+1}, \quad c_j \in \mathbb{R}.
\]

This does not alter the \(\mathfrak{osp}(1|2) \) relations, as \(\Gamma - \frac{\mu - 1}{2} \) anti-commutes with \(x \) and has the correct homogeneity. In particular, \(\Gamma - \frac{\mu - 1}{2} \) can be seen as the square root of the Casimir of \(\mathfrak{osp}(1|2) \), see [15], example 2 in section 2.5.
In the sequel of the paper, we will always assume \(\kappa = 0 \) or in other words, we do not consider the Dunkl deformation. This is to simplify the notation of the results. Most statements can immediately be generalized to the Dunkl case by composition with the Dunkl intertwining operator \(V_\kappa \), except the results obtained in section \([5]\).

Recall that for \(\kappa = 0 \), the Dunkl-Dirac operator \(\mathcal{D}_\kappa \) reduces to the orthogonal Dirac operator \(\partial_x = \sum_{i=1}^m e_i \partial_{x_i} \).

5. Reproducing kernels

In this section we determine the reproducing kernels for \(\mathcal{M}_k \) and \(\mathfrak{A} \mathcal{M}_k \). We start with an auxiliary Lemma, which can be thought of as a Clifford analogue of the Funk-Hecke transform. We define the wedge product of two vectors as

\[x \wedge y := \sum_{j<k} e_j e_k (x_j y_k - x_k y_j). \]

Lemma 5.1. Put \(x = r x' \) and \(y = s y' \) with \(x', y' \in \mathbb{S}^{m-1} \). Furthermore, put \(\lambda = (m-2)/2 \) and \(\sigma_m = 2\pi^{m/2}/\Gamma(m/2) \). Then one has, with \(M_\ell \in \mathcal{M}_\ell \)

\[
\begin{align*}
\int_{\mathbb{S}^{m-1}} C^\lambda_k(\langle x', y' \rangle) M_\ell(x') d\sigma(x') &= \sigma_m \frac{\lambda}{\lambda + k} \delta_{\kappa, \ell} M_\ell(y'), \\
\int_{\mathbb{S}^{m-1}} C^\lambda_k(\langle x', y' \rangle) x'_\ell M_\ell(x') d\sigma(x') &= \sigma_m \frac{\lambda}{\lambda + k} \delta_{\kappa, \ell + 1} y'_\ell M_\ell(y'), \\
\int_{\mathbb{S}^{m-1}} (x' \wedge y') C^{\lambda+1}_k(\langle x', y' \rangle) M_\ell(x') d\sigma(x') &= -\sigma_m \frac{k}{2(\lambda + k)} \delta_{\kappa, \ell} M_\ell(y'), \\
\int_{\mathbb{S}^{m-1}} (x' \wedge y') C^{\lambda+1}_{k-1}(\langle x', y' \rangle) y'_\ell M_\ell(x') d\sigma(x') &= -\sigma_m \frac{k + 2\lambda}{2(\lambda + k)} \delta_{\kappa, \ell + 1} y'_\ell M_\ell(y'),
\end{align*}
\]

where \(C^\lambda_k(\langle x', y' \rangle) \) is the \(k \)-th Gegenbauer polynomial in the variable \(\langle x', y' \rangle \).

Proof. The first integral is trivial: \(M_\ell \) is a spherical harmonic of degree \(\ell \) and \(C^\lambda_k(\langle x', y' \rangle) \) is the reproducing kernel for spherical harmonics of degree \(k \) (see e.g. \([13]\)). The second integral immediately follows, because \(x'_\ell M_\ell(x') \in \mathcal{H}_{\ell+1} \).

The other two integrals are a bit more complicated. We show how to obtain the last one. First rewrite \((x' \wedge y') x' = y' - \langle x', y' \rangle x' \). The first term then follows from the first integral. For the second term, we use the recursive property of Gegenbauer polynomials:

\[
(5.1) \quad w C^{\lambda+1}_{n-1}(w) = \frac{n}{2(n + \lambda)} C^\lambda_n(w) + \frac{n + 2\lambda}{2(n + \lambda)} C^{\lambda+1}_{n-2}(w).
\]

The result then follows by collecting everything. \(\square \)

We can use this lemma to determine the reproducing kernels. This is the subject of the following proposition.
Remark 5.3. Note that, as expected, this follows immediately from Lemma 5.1. Let \(k, l \) act on the space \(k \).

Proposition 5.2. For \(k \in \mathbb{N}^* \) put
\[
P_k(x', y') = \frac{k + 2\lambda}{2\lambda} C_k^\lambda((x', y')) - (x' \wedge y') C_k^{\lambda+1}((x', y')),
\]
\[
Q_{k-1}(x', y') = \frac{k}{2\lambda} C_k^\lambda((x', y')) + (x' \wedge y') C_k^{\lambda+1}((x', y'))
\]
with \(P_0(x', y') = C_0^\lambda(0) = 1 \). Then
\[
\int_{\mathbb{S}^{m-1}} P_k(x', y') M_\ell(x') d\sigma(x') = \sigma_m \delta_{k,\ell} M_\ell(y'),
\]
\[
\int_{\mathbb{S}^{m-1}} P_k(x', y') x'_\ell M_\ell(x') d\sigma(x') = 0
\]
and
\[
\int_{\mathbb{S}^{m-1}} Q_{k-1}(x', y') M_\ell(x') d\sigma(x') = 0,
\]
\[
\int_{\mathbb{S}^{m-1}} Q_{k-1}(x', y') x'_\ell M_\ell(x') d\sigma(x') = \sigma_m \delta_{k,\ell+1} y'_\ell M_\ell(y').
\]

Proof. This follows immediately from Lemma [5.1] \(\square \)

Remark 5.3. Note that, as expected, \(P_k(x', y') + Q_{k-1}(x', y') = \frac{\lambda+k}{\lambda} C_k^\lambda((x', y')) \), which is the reproducing kernel for the space of spherical harmonics of degree \(k \).

We will also need the following lemma.

Lemma 5.4. The reproducing kernels satisfy the following properties, for all \(k, \ell \in \mathbb{N} \):
\[
\int_{\mathbb{S}^{m-1}} P_k(y', x') P_\ell(z', y') d\sigma(y') = \sigma_m \delta_{k,\ell} P_\ell(z', x'),
\]
\[
\int_{\mathbb{S}^{m-1}} P_k(y', x') Q_\ell(z', y') d\sigma(y') = 0,
\]
\[
\int_{\mathbb{S}^{m-1}} Q_k(y', x') Q_\ell(z', y') d\sigma(y') = \sigma_m \delta_{k,\ell} Q_\ell(z', x').
\]

Proof. This follows immediately using Lemma 7.6 and 7.10 from \([8]\). \(\square \)

Remark 5.5. Mind the order of the variables in the previous lemma. The kernels \(P_k(x', y') \) and \(Q_k(x', y') \) are not symmetric.

6. The Series Representation of the Holomorphic Semigroup

The aim of the present section is to investigate basic properties of the holomorphic semigroup defined by
\[
\mathcal{F}_D^\omega = e^{\omega \left(\frac{1}{2} + \frac{\omega-1}{2(1+c)} \right) e^{\frac{-\omega}{2(1+c)^2} (D^2 - (1+c)^2 z^2)}} \quad \Re \omega \geq 0
\]
acting on the space \(L^2_{0,c}(\mathbb{R}^m) \). We start with the following general statement.
Theorem 6.1. Suppose $c > -1$. Then

(1) For any $t, \ell \in \mathbb{N}$ and $m \in 1, \ldots, \dim \mathcal{M}_\ell$, the function $\phi_{t,\ell,m}$ is an eigenfunction of the operator \mathcal{F}_D^ω:

$$\mathcal{F}_D^\omega(\phi_{t,\ell,m}) = e^{-\omega t} e^{-\frac{\omega \ell}{1+c}} \phi_{t,\ell,m}.$$

(2) \mathcal{F}_D^ω is a continuous operator on $L^2_{0,c}(\mathbb{R}^m)$ for all ω with $\Re \omega \geq 0$, in particular

$$\|\mathcal{F}_D^\omega(f)\| \leq \|f\|$$

for all $f \in L^2_{0,c}(\mathbb{R}^m)$.

(3) If $\Re \omega > 0$, then \mathcal{F}_D^ω is a Hilbert-Schmidt operator on $L^2_{0,c}(\mathbb{R}^m)$.

(4) If $\Re \omega = 0$, then \mathcal{F}_D^ω is a unitary operator on $L^2_{0,c}(\mathbb{R}^m)$.

Proof. (1) is an immediate consequence of Theorem 4.2. For (2), let f be an element in $L^2_{0,c}(\mathbb{R}^m)$ and expand it with respect to the (normalized) basis $\{\phi_{t,\ell,m}\}$ as

$$f = \sum_{t,\ell,m} a_{t,\ell,m} \phi_{t,\ell,m}.$$

Then one has, using orthogonality,

$$\|\mathcal{F}_D^\omega(f)\|^2 = \sum_{t,\ell,m} |a_{t,\ell,m}|^2 e^{-2(\Re \omega)t} e^{-\frac{2(\Re \omega)\ell}{(1+c)}} \leq \sum_{t,\ell,m} |a_{t,\ell,m}|^2$$

because $\Re \omega \geq 0$.

As for (3), we have to show that the Hilbert-Schmidt norm is finite. We compute

$$\|\mathcal{F}_D^\omega\|^2_{HS} = \sum_{t,k,\ell} \|\mathcal{F}_D^\omega(\phi_{t,k,\ell})\|^2$$

$$= \sum_{t,k,\ell} e^{-2(\Re \omega)t} e^{-\frac{2(\Re \omega)k}{(1+c)}} \dim_\mathbb{R} \mathcal{M}_k$$

$$= \sum_{t,k} e^{-2(\Re \omega)t} e^{-\frac{2(\Re \omega)k}{(1+c)}} \frac{(k + m - 2)!}{k!(m - 2)!} 2^m$$

Using the ratio test, we see that these series are convergent for $\Re \omega > 0$.

(4) follows immediately, because when $\Re \omega = 0$ the eigenvalues all have unit norm. □
We have already observed that \mathcal{F}_D^ω is a Hilbert-Schmidt operator for $\Re \omega > 0$ and a unitary operator for $\Re \omega = 0$. The Schwartz kernel theorem implies that \mathcal{F}_D^ω can be expressed by a distribution kernel $K(x; y; \omega)$, so

$$(\mathcal{F}_D^\omega f)(y) = \int_{\mathbb{R}^m} K(x; y; \omega) f(x) h(r_x) dx,$$

and $K(x; y; \omega) h(r_x)$ is a tempered distribution on $\mathbb{R}^m \times \mathbb{R}^m$.

6.1. The case $\Re \omega > 0$. Using the reproducing kernels of section 5, we can now make a reasonable Ansatz for the kernel of the full holomorphic semigroup. We want to write this semigroup as

$$\mathcal{F}_{0,c}^\omega (f)(y) = \sigma_m^{-1} \int_{\mathbb{R}^m} K(x; y; \omega) f(x) h(r_x) dx$$

with $K(x; y; \omega) = K_0(x; y; \omega) + K_1(x; y; \omega)$ and

$$K_0 = e^{-\coth \omega (z^2 + s^2)} \sum_{k=0}^{+\infty} \alpha_k z^{1+k} \bar{J}_{2k+1} \left(\frac{iz}{\sinh \omega} \right) P_k(\xi', \eta'),$$

$$K_1 = e^{-\coth \omega (z^2 + s^2)} \sum_{k=0}^{+\infty} \beta_k z^{1+k} \bar{J}_{2k} \left(\frac{iz}{\sinh \omega} \right) Q_k(\xi', \eta').$$

(6.1)

Here we used the notation $J_\nu(z) = (z/2)^{-\nu} J_\nu(z)$ and $r^2 = |x|^2$, $s^2 = |y|^2$. We calculate

$$\begin{align*}
\mathcal{F}_D^\omega &= e^{\omega \left(\frac{1}{2} + \frac{\mu-1}{2(1+\mu)} \right)} e^{-\frac{m}{2(1+\mu)}} (D^2 - (1+c)^2 x^2) \\
&\sigma_m^{-1} \int_{\mathbb{R}^m} K_0(x; y; \omega) \phi_{2t,\ell,m} dx = \alpha_\ell M^{(m)}(y) e^{-\coth \omega s^2} \frac{i}{2 \sinh \omega} \left(\frac{iz}{\sinh \omega} \right)^{-\gamma/2+1} \times \int_0^{+\infty} r^{\gamma/2} e^{-\coth \omega s^2} J_{\gamma/2-1} \left(\frac{ir}{\sinh \omega} \right) L_t^{\gamma/2-1} r^{\gamma/2-1} dr \\
&= \alpha_\ell e^{-2\omega \mu \gamma/2 \gamma/2-1} (\coth \omega + 1)^{\gamma/2} \phi_{2t,\ell,m},
\end{align*}$$

where we used the identity (see [2], Corollary 4.6)

$$2 \int_0^{+\infty} r^{\alpha+1} J_\alpha(r\beta) L_\beta^\gamma(r^2) e^{-\delta x^2} dr = \frac{(\delta - 1)^j \beta^2}{2^\alpha \delta^\alpha + 1} L_\beta^\gamma \left(\frac{\beta^2}{4\delta(1-\delta)} \right) e^{-\frac{\delta x^2}{4\delta}}.$$
Similarly, we find
\[
\sigma_m^{-1} \int_{\mathbb{R}^m} K_0(x, y; \omega) \phi_{2t+1, \ell, m} dx = 0
\]
\[
\sigma_m^{-1} \int_{\mathbb{R}^m} K_1(x, y; \omega) \phi_{2t, \ell, m} dx = 0
\]
\[
\sigma_m^{-1} \int_{\mathbb{R}^m} K_1(x, y; \omega) \phi_{2t+1, \ell, m} dx = \beta_t e^{-2\omega t} 2^{\gamma t/2} (\coth \omega + 1)^{\gamma t/2 + 1} \phi_{2t+1, \ell, m}.
\]
Hence we obtain by comparison with (4.7):
\[
\alpha_t = e^{-\frac{\omega t^2}{(1 + \gamma / 2)}} (\coth \omega + 1)^{\gamma t/2} = 2 e^{\omega t} (2 \sinh \omega)^{-\gamma t/2},
\]
\[
\beta_t = \frac{\alpha_t}{2 \sinh \omega}.
\]
We summarize our results in the following theorem.

Theorem 6.2. Let \(\Re \omega > 0 \) and \(c > -1 \). Put
\[
K(x, y; \omega) = e^{-\frac{\omega t^2}{(1 + \gamma / 2)}} (A(z, w) + \frac{\omega}{2} B(z, w))
\]
with
\[
A(z, w) = \sum_{k=0}^{+\infty} \left(\alpha_k \frac{k + 2 \lambda}{2 \lambda} \frac{i z}{\sinh \omega} J_{2k-1} \frac{i z}{\sinh \omega} \right) C_k^\lambda(w),
\]
\[
B(z, w) = \sum_{k=1}^{+\infty} \left(-\alpha_k z^{1+c} J_{2k-1} \frac{i z}{\sinh \omega} \right) + \frac{\alpha_k}{2 \sinh \omega} \frac{k + 2 \lambda}{2 \lambda} \frac{i z}{\sinh \omega} C_{k-1}^\lambda(w)
\]
for \(z = \|x||y| \), \(w = (x, y)/z \), \(\alpha_{-1} = 0 \) and
\[
\alpha_k = 2 e^{\omega t} (2 \sinh \omega)^{-\gamma t/2}.
\]
Then these series are convergent and the integral transform defined on \(\mathcal{L}_0^2(\mathbb{R}^m) \) by
\[
\mathcal{F}_\omega (f) (y) = \sigma_m^{-1} \int_{\mathbb{R}^m} K(x, y; \omega) f(x) h(r_x) dx
\]
coincides with the operator \(\mathcal{F}_D^\omega = e^{\omega \left(\frac{1}{2} \frac{1}{1 + c \gamma} \right)} e^{\omega \left(\frac{\gamma}{2} \frac{1}{1 + c \gamma} \right)} (D^2 - (1+c)^2 \mathcal{Z}^2) \) on the basis \(\phi_{t, \ell, m} \).

Proof. We have already shown that the integral transform coincides with \(\mathcal{F}_D^\omega = e^{\omega \left(\frac{1}{2} \frac{1}{1 + c \gamma} \right)} e^{\omega \left(\frac{\gamma}{2} \frac{1}{1 + c \gamma} \right)} (D^2 - (1+c)^2 \mathcal{Z}^2) \) on the basis \(\phi_{t, \ell} \). So we only have to show that the series are convergent. We do this for the term
\[
\sum_{k=0}^{+\infty} (2 \sinh \omega)^{-\gamma k/2} \frac{k + 2 \lambda}{2 \lambda} \frac{i z}{\sinh \omega} J_{2k-1} \frac{i z}{\sinh \omega} C_k^\lambda(w)
\]
\[
= (2 \sinh \omega)^{-\gamma/2} \sum_{k=0}^{+\infty} \frac{k + 2 \lambda}{2 \lambda} \left(\frac{z}{2 \sinh \omega} \right)^{1+c} J_{2k-1} \frac{i z}{\sinh \omega} C_k^\lambda(w),
\]
Theorem 6.3. Let \(c > -1 \). Then for \(\omega = i\eta \) with \(\eta \notin \pi \mathbb{Z} \), we put

\[
K(x, y; i\eta) = e^{i\frac{\eta}{2}(y^2 + x^2)} (A(z, w) + x \wedge y B(z, w))
\]

with

\[
A(z, w) = \sum_{k=0}^{+\infty} \frac{\kappa + 2\lambda}{2\lambda} \left(\frac{z}{2\sinh \omega} \right)^{\frac{k+1}{2}} J_{\frac{\kappa}{2} - 1} \left(\frac{i z}{\sinh \omega} \right) C_1^\lambda(w),
\]

\[
B(z, w) = \sum_{k=1}^{+\infty} \left(-\alpha_k z \left(\frac{z}{\sin \eta} \right)^{\frac{k+1}{2}} J_{\frac{\kappa}{2} - 1} \left(\frac{z}{\sin \eta} \right) \right) C_1^{\lambda+1}(w)
\]

for \(z = |x|/\mu \), \(w = (x, y)/z \), \(\alpha_{-1} = 0 \) and

\[
\alpha_k = 2e^{\frac{2\mu}{\mu^2}} (2i \sin \eta)^{-\gamma_k/2}.
\]

These series are convergent and the unitary integral transform defined in distributional sense on \(L^2_0((-c, c)^m) \) by

\[
\mathcal{F}^{i\eta}_{0,c}(f)(y) = \sigma_m^{-1} \int_{\mathbb{R}^m} K(x, y; i\eta) f(x) h(r_x) dx
\]

coincides with the operator \(\mathcal{F}^{i\eta}_D = e^{i\eta \left(\frac{1}{2} + \frac{x^2}{2(1+c)^2} \right)} e^{-\frac{i\eta}{2(1+c)^2} (D^2 - (1+c)^2 x^2)} \) on the basis \(\phi_{t, c, m} \).

Proof. This follows by taking the limit \(\omega \to i\eta \) in Theorem 6.2. \(\square \)

7. The series representation of the Fourier transform

The Fourier transform is the very special case of the holomorphic semigroup, evaluated at \(\omega = i\pi/2 \). In this case, the kernel \(K(x, y) = K(x, y; i\pi/2) \) is given by the following theorem.

Theorem 7.1. Put \(K(x, y) = A(z, w) + x \wedge y B(z, w) \) with

\[
A(z, w) = \sum_{k=0}^{+\infty} z^{-\frac{k+1}{2}} \left(\frac{z}{2\lambda} \right)^{\frac{k+1}{2}} \left(\frac{z}{2\lambda} \right)^{\frac{k+1}{2}} J_{\frac{\kappa}{2} - 1}(z) C_1^\lambda(w),
\]

\[
B(z, w) = \sum_{k=1}^{+\infty} z^{-\frac{k}{2}} \left(-\alpha_k z \left(\frac{z}{\sin \eta} \right)^{\frac{k+1}{2}} J_{\frac{\kappa}{2} - 1}(z) \right) C_1^{\lambda+1}(w)
\]
and $z = |x|/y$, $w = |x, y|/z$, $\alpha - 1 = 0$ and $\alpha_k = e^{-i|x|/y}$. These series are convergent and the integral transform defined in distributional sense on $L^2_{0, c}(\mathbb{R}^m)$ by

$$F_{0, c}(f)(y) = \sigma^{-1}_m \int_{\mathbb{R}^m} K(x, y)f(x)h(r_x)dx$$

coincides with the operator $F_D = e^{i\pi/2} e^{(1 + c)/2} e^{(1 + c)/2} e^{-i\pi/2} (D^2 - (1 + c)^2 w^2)$ on the basis $\phi_{t, \ell, m}$.

Proof. Using the well-known identity (see [26, exercise 21, p. 371])

$$\int_0^{+\infty} r^{\alpha + 1} J_\alpha(rs) L^\alpha_j(r^2) e^{-r^2/2} dr = (-1)^j s^\alpha L^\alpha_j(s^2) e^{-s^2/2}$$

we can prove in the same way as leading to Theorem 6.2 that the integral transform $F_{0, c}$ coincides with

$$F_D = e^{i\pi/2} e^{(1 + c)/2} e^{(1 + c)/2} e^{-i\pi/2} (D^2 - (1 + c)^2 x^2),$$

on the basis $\phi_{t, \ell}$. The theorem also follows as a special case of Theorem 6.2, taking the limit $\omega \to i\pi/2$. □

Remark 7.2. One can also define an analogue of the Schwartz space of rapidly decreasing functions in this context. Let $L = D^2 - (1 + c)^2 x^2$ and denote by $D(L)$ the domain of L in $L^2_{0, c}(\mathbb{R}^m)$. Then the Schwartz space is defined by

$$S_{0, c}(\mathbb{R}^m) = \bigcap_{k=0}^{\infty} D(L^k)$$

and one can check that the Fourier transform $F_{0, c}$ is an isomorphism of this space.

Remark 7.3. In the limit case $c = 0$, we can check that the kernel reduces to

$$K(x, y) = \sum_{k=0}^{+\infty} \frac{k + \lambda}{\lambda} (-i)^k z^{-\lambda} J_{k+\lambda}(z) C_k^\lambda(w).$$

This is a well-known expansion of the classical Fourier kernel (see [28, Section 11.5]): $K(x, y) = e^{-i|x|/y} / \left(\Gamma(m/2)2^{-m/2} \right)$.

We can now summarize the main properties of the deformed Fourier transform in the following theorem.

Theorem 7.4. The operator $F_{0, c}$ defines a unitary operator on $L^2_{0, c}(\mathbb{R}^m)$ and satisfies the following intertwining relations on a dense subset:

$$F_{0, c} \circ D = i(1 + c) x \circ F_{0, c},$$

$$F_{0, c} \circ D = i \frac{1 + c}{1 + c} e\circ F_{0, c},$$

$$F_{0, c} \circ E = -(E + \delta) \circ F_{0, c}.$$
Moreover, \(\mathcal{F}_{0,c} \) is of finite order if and only if \(1 + c \) is rational.

Proof. Every \(f \) in \(L_{0,c}^2(\mathbb{R}^m) \) can be expanded in terms of the orthogonal basis \(\phi_{t,\ell,m} \), satisfying
\[
\langle \phi_{t_1,\ell_1,m_1}, \phi_{t_2,\ell_2,m_2} \rangle = \delta_{t_1} \delta_{t_2} \delta_{\ell_1} \delta_{\ell_2} \delta_{m_1} \delta_{m_2} \langle \phi_{t_1,f_1,m_1}, \phi_{t_2,f_2,m_2} \rangle,
\]
see section 3. Note that the normalization can be computed explicitly (see [7], Theorem 6). As the eigenvalues of \(\mathcal{F}_{0,c} \) are given by (see (4.7))
\[
(-i)^t e^{-\frac{\pi t}{2(1+c)}}
\]
which clearly live on the unit circle, we conclude that
\[
\langle f, g \rangle = \langle \mathcal{F}_{0,c}(f), \mathcal{F}_{0,c}(g) \rangle
\]
and that \(\mathcal{F}_{0,c} \) is a unitary operator.

The intertwining relations are an immediate consequence of formula (4.2) combined with the fact that \(\phi_{t,\ell,m} \) is an eigenbasis of \(\mathcal{F}_{0,c} \). The formula for \(E \) follows from the anti-commutator (see Theorem 3.2)
\[
\{D, x\} = -2(1 + c) \left(E + \frac{\delta}{2} \right).
\]
The statement on the finite order of the Fourier transform is an immediate consequence of the explicit expression for the eigenvalues of the transform.

Now we collect some properties of the kernel \(K(x,y) \).

Proposition 7.5. One has, with \(x, y \in \mathbb{R}^m \)
\[
K(\lambda x, y) = K(x, \lambda y), \quad \lambda > 0
\]
\[
K(y, x) = K(x, y),
\]
\[
K(0, y) = \frac{1}{2^{\gamma_0/2 - 1} \Gamma(\gamma_0/2)},
\]
\[
K(\bar{s} x s, \bar{s} y s) = \bar{s} K(x,y) s, \quad s \in \text{Spin}(m).
\]
where \(\bar{\cdot} \) is the anti-involution on the Clifford algebra \(\mathcal{C}l_m \).

Proof. The first property is trivial. The second follows because
\[
\bar{x} \wedge y = -x \wedge \bar{y} = y \wedge \bar{x}.
\]
The third property follows from Theorem 7.1. Finally, the 4th equation follows because \(z \) and \(w \) are spin-invariant and
\[
(\bar{s} x s) \wedge (\bar{s} y s) = \bar{s} (x \wedge y) s.
\]

We can also obtain Bochner identities for the deformed Fourier transform. They are given in the following proposition.
Proposition 7.6. Let $M_\ell \in M_\ell$ be a spherical monogenic of degree ℓ. Let $f(x) = f(r)$ be a radial function. Then the Fourier transform of $f(r) M_\ell$ and $f(x) M_\ell$ can be computed as follows:

$$
F_{0,c}(f(r) M_\ell) = e^{-i\pi\ell/2(1+c)} M_\ell(y') \int_0^{+\infty} r^\ell f(r) z^{-\delta/2} J_{\frac{\delta}{2}-1}(z) h(r) r^{m-1} dr,
$$

$$
F_{0,c}(f(x) M_\ell) = -ie^{-i\pi\ell/2(1+c)} y' M_\ell(y') \int_0^{+\infty} r^{\ell+1} f(r) z^{-\delta/2} J_{\frac{\delta}{2}}(z) h(r) r^{m-1} dr
$$

with $y = sy'$, $y' \in S^{m-1}$ and $z = rs$. $h(r)$ is the measure associated with D.

Proof. This follows immediately from Theorem 7.1 combined with Proposition 5.2. □

Remark 7.7. As a special case of this proposition, we reobtain the eigenfunctions of the Fourier transform by putting $f(r) = L^{2\gamma\ell - 1} x^\beta e^{-r^2/2}$, resp. $f(x) = L^{\gamma\ell} x^\beta e^{-r^2/2}$ (see equation (4.7)).

Now we prove the following lemma.

Lemma 7.8. For all $f \in L^2_{0,c}(\mathbb{R}^m)$ one has

$$
||x f(x)||^2 + ||x (F_{0,c} f)(x)||^2 \geq \delta ||f(x)||^2.
$$

The equality holds if and only if f is a multiple of $e^{-r^2/2}$.

Proof. Using formula (4.6) and the unitarity of $F_{0,c}$, one can compute that

$$
||x f(x)||^2 + ||x (F_{0,c} f)(x)||^2 = \frac{1}{(1+c)^2} \langle (D^2 - (1+c)^2 x^2) f, f \rangle.
$$

Now use the fact that the smallest eigenvalue of

$$
\frac{1}{(1+c)^2} (D^2 - (1+c)^2 x^2)
$$

is given by δ, see Theorem 5.2. This proves the inequality.

The equality holds when f is a multiple of an eigenfunction corresponding to the smallest eigenvalue, i.e. when f is a multiple of $e^{-r^2/2}$. □

This lemma allows us to obtain the Heisenberg inequality for the deformed Fourier transform

Proposition 7.9. For all $f \in L^2_{0,c}(\mathbb{R}^m)$, the deformed Fourier transform satisfies

$$
||x f(x)|| \cdot ||x (F_{0,c} f)(x)|| \geq \frac{\delta}{2} ||f(x)||^2.
$$

The equality holds if and only if f is of the form $f(x) = \lambda e^{-r^2/\alpha}$.

Proof. Using Lemma 7.8, we can continue in the same way as in the proof of Theorem 5.28 in [2]. □
Now we can obtain the Master formula for the kernel of the Fourier transform. We use the formula (see [14, p. 50])

\[
\int_0^{+\infty} J_\nu(at)J_\nu(bt)e^{-\gamma^2t^2} dt = \frac{1}{2} \gamma^{-2} e^{-\frac{a^2+b^2}{4\gamma^2}} I_\nu\left(\frac{ab}{2\gamma^2}\right), \quad \Re \nu > -1, \Re \gamma > 0
\]

where \(I_\nu(z) = e^{-i\pi\nu/2} J_\nu(iz) \).

We then obtain

Theorem 7.10 (Master formula). Let \(s > 0 \). Then one has

\[
\int_{\mathbb{R}^m} K(y, x; i\frac{\pi}{2}) K(z, y; -i\frac{\pi}{2}) e^{-sr^2} h(r_y) dy = \sigma_m e^{-\frac{i\omega}{2} K(z, x; \omega)} e^{-\frac{|x||z|}{\sinh \omega}}
\]

with \(2s = \sinh \omega \).

Proof. First observe that \(K(y, x; i\frac{\pi}{2}) = K(y, x) \) and that \(K(z, y; -i\frac{\pi}{2}) \) is the complex conjugate of \(K(z, y; i\frac{\pi}{2}) \).

We rewrite the kernel \(K \) obtained in Theorem 7.1 in terms of the reproducing kernels \(P_k \) and \(Q_k \), i.e. as \(K(x, y) = K_0(x, y) + K_1(x, y) \) with

\[
K_0 = \sum_{k=0}^{+\infty} \alpha_k (|x||y|)^{-\frac{\delta-2}{2}} J_{\frac{\delta}{2}-1}(|x||y|) P_k(x', y'),
\]

(7.2)

\[
K_1 = \sum_{k=0}^{+\infty} \beta_k (|x||y|)^{-\frac{\delta-2}{2}} J_{\frac{\delta}{2}}(|x||y|) Q_k(x', y').
\]

where \(\alpha_k = e^{-\frac{i\pi k}{2(1+c)}} \) and \(\beta_k = -i\alpha_k \).

When passing to spherical co-ordinates, the integral simplifies, using Lemma 5.4 to

\[
\sigma_m \sum_{k=0}^{+\infty} (|x||z|)^{-\frac{\delta-2}{2}} P_k(z', x') \int_0^{+\infty} r e^{-sr^2} J_{\frac{\delta}{2}-1}(r|x|) J_{\frac{\delta}{2}-1}(r|z|) dr
\]

\[
\quad + \sigma_m \sum_{k=0}^{+\infty} (|x||z|)^{-\frac{\delta-2}{2}} Q_k(z', x') \int_0^{+\infty} r e^{-sr^2} J_{\frac{\delta}{2}}(r|x|) J_{\frac{\delta}{2}}(r|z|) dr.
\]

The radial integral can be computed explicitly using (7.1). Comparing with formula (6.1) and Theorem 6.2 leads to the statement of the theorem.

\[\Box\]

Remark 7.11. For the Dunkl transform (see e.g. [25, 27]) and for the Clifford-Fourier transform (see [8]) one can compute even a more general integral of the form

\[
\int_{\mathbb{R}^m} K(y, x; i\frac{\pi}{2}) K(z, y; -i\frac{\pi}{2}) f(r_y) h(r_y) dy
\]
with \(f(r_y) \) an arbitrary radial function of suitable decay. This is done by using the addition formula for the Bessel function

\[
u^{-\lambda} J_\lambda(u) = 2^\lambda \Gamma(\lambda) \sum_{k=0}^{\infty} (k + \lambda)(r^2|x||z|)^{-\lambda} J_{k+\lambda}(r|x|) J_{k+\lambda}(r|z|) C_k^\lambda(\langle x', z' \rangle)
\]

with \(u = r \sqrt{|x|^2 + |z|^2 - 2 \langle x, z \rangle} \) instead of formula (7.1). Here, we cannot do that, as the orders of the Bessel functions do not match the order of the Gegenbauer polynomials.

Remark 7.12. Theorem 7.10 is the starting point for the study of a generalized heat equation, see e.g. [24, Lemma 4.5 (1)] in the context of Dunkl operators.

8. Further results for the kernel

In this section we will always be working in the non-Dunkl case, i.e. we put the multiplicity function \(\kappa = 0 \).

Theorem 7.1 implies that the kernel of our deformed Fourier transform is a function of the type

\[
K(x, y) = f(z, w) + x \wedge y g(z, w)
\]

with \(f, g \) scalar functions of the variables \(z = |x| |y| \) and \(w = \langle x, y \rangle / z \). On the other hand, this kernel needs to satisfy the system of PDEs

\[
D_y K(x, y) = -i(1 + c) K(x, y) x, \\
(K(x, y) D_x) = -i(1 + c) y K(x, y),
\]

as can be deduced from Theorem 7.4. In order to rewrite this system in terms of the variables \(z, w \), we first observe that

\[
\partial_z f(z, w) = r^{-2} \overline{z} \partial_z f(z, w) + (z^{-1} y - r^{-2} \overline{z} w) \partial_w f(z, w), \\
\nabla f(z, w) = z \partial_z f(z, w), \\
\partial_z (z \wedge y) = (1 - m) y.
\]

Using these identities, one obtains that the kernel is determined by the following 2 PDEs:

(8.1)

\[
(m - 1 + c) g + (1 + c) z \partial_z g + \frac{1}{z} \partial_w f + i(1 + c) f - i(1 + c) z w g = 0, \\
(1 + c) z \partial_z f - w \partial_w f - cz w g - (1 + c) z^2 w \partial_z g + z(w^2 - 1) \partial_w g + i(1 + c) z^2 g = 0.
\]

Remark 8.1. Note that, contrary to the case of the classical Fourier transform and the Dunkl transform, where the kernel is uniquely determined by the system of PDEs

\[
T_{j,x} K(x, y) = iy_j K(x, y), \quad j = 1, \ldots, m
\]

this is not the case for the kernel of the radially deformed Fourier transform. In fact, one can observe that there exist several different types of
solutions of \(8.1\). This is discussed in detail in [1] for a similar system of PDEs in the context of the so-called Clifford-Fourier transform (see [8]).

Now we show that it is sufficient to solve this system in dimension \(m = 2\) and \(m = 3\). Recall that the kernel \(K(x, y)\) is given in Theorem 7.1. To know this kernel, it is hence sufficient to know the series

\[
A_{\lambda} = \sum_{k=0}^{+\infty} \alpha_k (k + \lambda) J_{\frac{\gamma_k}{2} - 1}(z) C_k^\lambda(w), \quad D_{\lambda} = \sum_{k=0}^{+\infty} \alpha_{k-1} J_{\frac{\gamma_k}{2} - 1}(z) C_k^\lambda(w),
\]

\[
B_{\lambda} = \sum_{k=0}^{+\infty} \alpha_k J_{\frac{\gamma_k}{2} - 1}(z) C_k^\lambda(w), \quad E_{\lambda} = \sum_{k=1}^{+\infty} \alpha_k J_{\frac{\gamma_k}{2} - 1}(z) C_k^{\lambda+1}(w),
\]

\[
C_{\lambda} = \sum_{k=0}^{+\infty} \alpha_{k-1} (k + \lambda) J_{\frac{\gamma_k}{2} - 1}(z) C_k^\lambda(w), \quad F_{\lambda} = \sum_{k=1}^{+\infty} \alpha_{k-1} J_{\frac{\gamma_k}{2} - 1}(z) C_k^{\lambda+1}(w),
\]

because then one has

\[
K = \frac{1}{2\lambda} z^{-\frac{\delta - 2}{2}} (A_{\lambda} - iC_{\lambda}) + \frac{1}{2} z^{-\frac{\delta - 2}{2}} (B_{\lambda} + iD_{\lambda}) - z^{-\frac{\delta}{2}} x \wedge y (E_{\lambda} + iF_{\lambda}).
\]

Using the well-known property of the Gegenbauer polynomials \(2\lambda C_k^{\lambda+1}(w) = \partial_w C_k^\lambda(w)\), we observe the following recursion relations

\[
A_{\lambda+1} = e^{i\frac{\pi}{2(1+c)}} \frac{1}{2\lambda} \partial_w A_{\lambda}, \quad D_{\lambda+1} = e^{-i\frac{\pi}{2(1+c)}} \frac{1}{2\lambda} \partial_w D_{\lambda},
\]

\[
B_{\lambda+1} = e^{i\frac{\pi}{2(1+c)}} \frac{1}{2\lambda} \partial_w B_{\lambda}, \quad E_{\lambda} = \frac{1}{2\lambda} \partial_w B_{\lambda},
\]

\[
C_{\lambda+1} = e^{-i\frac{\pi}{2(1+c)}} \frac{1}{2\lambda} \partial_w C_{\lambda}, \quad F_{\lambda} = \frac{1}{2\lambda} \partial_w D_{\lambda}.
\]

We conclude that it suffices to know \(A_{\lambda}, B_{\lambda}, C_{\lambda}\) and \(D_{\lambda}\) for \(\lambda = 0, 1/2\) or \(m = 2, 3\). At this point, the problem of finding explicit expressions for these functions for special values of the deformation parameter \(c\) is still open.

9. Appendix

9.1. Properties of Laguerre and Gegenbauer polynomials. The generalized Laguerre polynomials \(L_k^{(\alpha)}(t)\) for \(k \in \mathbb{N}\) are defined as

\[
(9.1) \quad L_k^{(\alpha)}(t) = \sum_{j=0}^{k} \frac{\Gamma(k + \alpha + 1)}{j!(k - j)!\Gamma(j + \alpha + 1)} (-t)^j
\]

and satisfy the orthogonality relation (when \(\alpha > -1\))

\[
\int_0^\infty t^\alpha L_k^{(\alpha)}(t) L_l^{(\alpha)}(t) \exp(-t) dt = \delta_{kl} \frac{\Gamma(k + \alpha + 1)}{k!}.
\]
The Gegenbauer polynomials $C_k^{(\alpha)}(t)$ are a special case of the Jacobi polynomials. For $k \in \mathbb{N}$ and $\alpha > -1/2$ they are defined as

$$C_k^{(\alpha)}(t) = \sum_{j=0}^{\lfloor k/2 \rfloor} (-1)^j \frac{\Gamma(k-j+\alpha)}{\Gamma(j!)(k-2j)!} (2t)^{k-2j}$$

and satisfy the orthogonality relation

$$\int_{-1}^{1} C_k^{(\alpha)}(t) C_l^{(\alpha)}(t)(1-t^2)^{\alpha-1/2} \, dt = \delta_{kl} \frac{\pi 2^{1-2\alpha} \Gamma(k+2\alpha)}{k! \Gamma(k+\alpha)(\Gamma(\alpha))^2}.$$

One can prove that there exists a constant $B(\alpha)$ such that

$$\sup_{-1 \leq t \leq 1} \left| \frac{1}{\alpha} C_k^{(\alpha)}(t) \right| \leq B(\alpha) k^{2\alpha-1}, \quad \forall k \in \mathbb{N},$$

see [2, Lemma 4.9].

The Bessel function $J_\nu(z)$ is defined using the following Taylor series

$$J_\nu(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+\nu+1)} \left(\frac{z}{2} \right)^{2k+\nu}.$$

For $z \in \mathbb{C}$ and $\nu \geq -1/2$ one has the inequality (see e.g. [26])

$$\left| \left(\frac{z}{2} \right)^{-\nu} J_\nu(z) \right| \leq \frac{1}{\Gamma(\nu+1)} |z|^{|\Im z|}.$$

9.2. **List of notations.** List of notations used in this paper:

- m dimension of \mathbb{R}^m,
- κ multiplicity function on root system,
- μ Dunkl-dimension,
- c deformation parameter of D,
- ω semigroup parameter, with $\Re \omega \geq 0$,
- $\partial_\mathbf{x}$ ordinary Dirac operator,
- \mathcal{D}_k Dunkl Dirac operator,
- D radially deformed Dirac operator,
- \mathcal{F}_D exponential form of the holomorphic semigroup,
- $\mathcal{F}_{0,c}$ integral form of the holomorphic semigroup,
- \mathcal{F}_ω exponential form of the Fourior transform,
- $\mathcal{F}_{0,c}$ integral form of the Fourier transform.
We also have the following definitions:

$$\mu = m + 2 \sum_{\alpha \in \mathbb{R}_+} \kappa_{\alpha},$$

$$\lambda = \frac{m - 2}{2},$$

$$\sigma_m = 2\pi^{m/2}/\Gamma(m/2),$$

$$\delta = 1 + \frac{\mu - 1}{1 + c},$$

$$\beta_\ell = -\frac{c}{1 + c}, \quad \ell \in \mathbb{N},$$

$$\gamma_\ell = \frac{2}{1 + c} \left(\ell + \frac{\mu - 2}{2} \right) + \frac{c + 2}{1 + c}, \quad \ell \in \mathbb{N}.$$

Notations for variables:

Let \(x\) and \(y\) be vector variables in \(\mathbb{R}^m\). Then we denote

$$z = |x|/|y|,$$

$$w = (x, y)/z.$$

When using spherical co-ordinates, we use \(x = r x'\) with \(x' \in S^{m-1}\), hereby implicitly identifying a vector in the Clifford algebra with a vector in \(\mathbb{R}^m\).

Acknowledgment

H. De Bie would like to thank E. Opdam and J. Stokman for valuable input and discussions during his visit to the Korteweg-de Vries Institute for Mathematics in Amsterdam. The last two authors would like to acknowledge a support of the research project MSM 0021620839 and the grant GA ČR 201/08/0397.

References

[1] D. Barbasch, D. Ciubotaru, P. E. Trapa, Dirac cohomology for graded affine Hecke algebras. Preprint: [arXiv:1006.3822](http://arxiv.org/abs/1006.3822), 22 pages.

[2] S. Ben Said, T. Kobayashi and B. Ørsted, Laguerre semigroup and Dunkl operators. Preprint: [arXiv:0907.3749](http://arxiv.org/abs/0907.3749), 75 pages.

[3] I. Caçao, D. Constales and R. S. Krausshar, On the role of arbitrary order Bessel functions in higher dimensional Dirac type equations. *Arch. Math. (Basel)* **87** (2006), 468–477.

[4] I. Cherednik and Y. Markov, Hankel transform via double Hecke algebra. *Lecture Notes in Math. 1804*, Springer, Berlin, 2002, pp. 1-25.

[5] H. De Bie and N. De Schepper, Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator. *Accepted for publication in Bulletin of the BMS*, [arXiv:1003.1512](http://arxiv.org/abs/1003.1512), 19 pages.

[6] H. De Bie, N. De Schepper and F. Sommen, The class of Clifford-Fourier transforms. *Accepted for publication in J. Fourier Anal. Appl.*, [arXiv:1101.1793](http://arxiv.org/abs/1101.1793), 30 pages.

[7] H. De Bie, B. Ørsted, P. Somberg and V. Souček, Dunkl operators and a family of realizations of \(\mathfrak{osp}(1|2)\). Preprint: [arXiv:0911.4725](http://arxiv.org/abs/0911.4725), 25 pages.
[8] H. De Bie and Y. Xu, On the Clifford-Fourier transform. Accepted for publication in IMRN, arXiv:1003.0689, 30 pages.

[9] R. Delanghe, F. Sommen and V. Soucek, Clifford algebra and spinor-valued functions, vol. 53 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1992.

[10] C. F. Dunkl, Differential-difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311 (1989), 167–183.

[11] C. F. Dunkl, Hankel transforms associated to finite reflection groups. Proc. of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications. Proceedings, Tampa 1991, Contemp. Math. 138 (1992), 123 – 138.

[12] C. F. Dunkl, M. F. E. de Jeu and E. M. Opdam, Singular polynomials for finite reflection groups. Trans. Amer. Math. Soc. 346 (1994), 237–256.

[13] C. F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, vol. 81 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2001.

[14] A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

[15] L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras. Academic Press Inc., San Diego, CA, 2000.

[16] J. E. Gilbert and M. A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, vol. 26 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1991.

[17] R. Howe, The oscillator semigroup. The mathematical heritage of Hermann Weyl (Durham, NC, 1987), 61–132, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988.

[18] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, 1990.

[19] T. Kobayashi and G. Mano, Integral formulas for the minimal representation of $O(p, 2)$. Acta Appl. Math. 86 (2005), 103–113.

[20] T. Kobayashi and G. Mano, The inversion formula and holomorphic extension of the minimal representation of the conformal group. Harmonic analysis, group representations, automorphic forms and invariant theory, 151–208, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12, World Sci. Publ., Hackensack, NJ, 2007.

[21] T. Kobayashi and G. Mano, The Schrödinger model for the minimal representation of the indefinite orthogonal group $O(p, q)$. To appear in Memoirs of the Amer. Math. Soc., 171 pp. arXiv:0712.1769.

[22] G. Olshanski, Complex Lie semigroups, Hardy spaces, and the Gelfand- Gindikin program, Topics in group theory and homological algebra, Yaroslavl University Press, 1982, 85-98 (Russian). English translation: Differential Geometry and its Applications, 1 (1991), 297–308.

[23] B. Ørsted, P. Somberg and V. Soucek, The Howe duality for the Dunkl version of the Dirac operator. Adv. appl. Clifford alg. 19 (2009), 403–415.

[24] M. Rössler, Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998), 519–542.

[25] M. Rössler, A positive radial product formula for the Dunkl kernel. Trans. Amer. Math. Soc. 355 (2003), 2413–2438.

[26] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23, Providence, 4th edition, 1975.

[27] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform. J. Anal. Math. 97 (2005), 25–55.
[28] G. N. Watson, *A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.

Department of Mathematical Analysis, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.
E-mail address: Hendrik.DeBie@UGent.be

Department of Mathematical Sciences, University of Aarhus, Building 530, Ny Munkegade, DK 8000, Aarhus C, Denmark.
E-mail address: orsted@imf.au.dk

Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha, Czech Republic.
E-mail address: somberg@karlin.mff.cuni.cz

Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha, Czech Republic.
E-mail address: soucek@karlin.mff.cuni.cz