Search for heavy, top-like quark pair production in the
dilepton final state in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

The results of a search for pair production of a heavy, top-like quark, t', in the decay mode $t'^+t'^- \rightarrow bW^+\bar{b}W^- \rightarrow b\ell^+\nu \bar{b}\ell^-\nu$ are presented. The search is performed with a data sample corresponding to an integrated luminosity of 5.0 fb$^{-1}$ in pp collisions at a center-of-mass energy of 7 TeV, collected by the CMS experiment at the LHC. The observed number of events agrees with the expectation from standard model processes, and no evidence of t'^t' production is found. Upper limits on the production cross section as a function of t' mass are presented, and t' masses below 557 GeV/c2 are excluded at the 95% confidence level.

Published in Physics Letters B as doi:10.1016/j.physletb.2012.07.059.
1 Introduction

Since the discovery of the top quark at the Tevatron [1, 2], there have been many searches for a possible new generation of fermions. Those searches have found no evidence of new fermions beyond the standard model (SM). However, based on present knowledge, there is no compelling reason for the number of fermion generations to be limited to three [3]. Additional generations of fermions may have a significant effect on neutrino, flavor, and Higgs physics. A fourth generation of quarks, t' and b', may result in enough intrinsic matter and anti-matter asymmetry to explain the baryon asymmetry of the universe [4]. Therefore, there is continued theoretical and experimental interest in the search for a fourth generation fermion [3].

Previous direct searches restrict the masses of quarks in the fourth generation, $M_{t'}$ and $M_{b'}$, to be greater than 404 and 372 GeV/c^2, respectively, at the 95% confidence level [5, 6], and the measurement of the Z lineshape at the Large Electron-Positron collider excludes a fourth generation of light neutrinos [7–10]. At the Large Hadron Collider (LHC), the quantum chromodynamics (QCD) production cross section of $t't'$ is expected to be two orders of magnitude larger than at the Tevatron for $M_{t'} = 500$ GeV/c^2 [11]. This increase provides an opportunity to explore the possibility of new physics with an additional generation of fermions at higher masses.

We present a search for pair production of a heavy top-like quark in the final state $t't' \rightarrow bW^+bW^- \rightarrow b\ell^+\nu\bar{b}\ell^−\nu$, where a branching fraction of 100% to bW is assumed and the charged lepton is either an electron or a muon. This search is motivated if $M_{t'} < M_{b'} + M_W$, which is favored by precision electroweak constraints [12, 13]. The presence of two leptons (dileptons) in the final state helps to suppress SM backgrounds, providing a clean environment to search for physics beyond the SM. The data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$ in pp collisions at a center-of-mass energy of 7 TeV, collected by the Compact Muon Solenoid (CMS) experiment at the LHC during 2011.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field volume are several particle detection systems. Charged particle trajectories are measured by silicon pixel and silicon strip trackers, covering $0 \leq \phi < 2\pi$ in azimuth and $|\eta| < 2.5$ in pseudorapidity, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle of the trajectory of the particle with respect to the counterclockwise proton beam direction. A lead tungstate crystal electromagnetic calorimeter and a brass/scintillator hadron calorimeter surround the tracking volume, providing energy measurements of electrons and hadronic jets. Muons are identified and measured in gas-ionization detectors embedded in the steel flux return yoke of the solenoid. The CMS detector is nearly hermetic, allowing momentum balance measurements in the plane transverse to the beam direction. A two-tier trigger system selects pp collision events of interest for use in physics analyses. A more detailed description of the CMS detector can be found elsewhere [14].

3 Event samples, reconstruction, and preselection

The data used for this measurement were collected using one of the ee, $e\mu$, or $\mu\mu$ high-p_T double-lepton triggers. Muon candidates are reconstructed using two algorithms that require consistent signals in the tracker and muon systems: one matches the extrapolated trajectories from the silicon tracker to signals in the muon system (tracker-based muons), and the second performs a global fit requiring consistent patterns in the tracker and the muon system (globally
3 Event samples, reconstruction, and preselection

fitted muons) [15]. Electron candidates are reconstructed starting from a cluster of energy deposits in the electromagnetic calorimeter. The cluster is then matched to signals in the silicon tracker. A selection using electron identification variables based on shower shape and track-cluster matching is applied to the reconstructed candidates [16]. Electron candidates within $\Delta R \equiv \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.1$ from a muon are rejected to remove candidates due to muon bremsstrahlung and final-state radiation. Both electrons and muons are required to be isolated from other activity in the event. This is achieved by imposing a maximum allowed value of 0.15 on the ratio of the scalar sum of track transverse momenta and calorimeter transverse energy deposits within a cone of $\Delta R < 0.3$ around the lepton candidate direction at the origin (the transverse momentum of the candidate is excluded), to the transverse momentum of the candidate.

Event preselection is applied to reject events other than those from $t\bar{t}$ or $t^{'\prime}\bar{t}'$ in the dilepton final state. Events are required to have two opposite-sign, isolated leptons ($e^+ e^-$, $e^\pm \mu^\mp$, or $\mu^+ \mu^-$). Both leptons must have transverse momentum $p_T > 20 \text{ GeV}/c$, and the electrons (muons) must have $|\eta| < 2.5$ (2.4). The reconstructed lepton trajectories must be consistent with a common interaction vertex. In the rare case ($< 0.1\%$) of events with more than two such leptons, the two leptons with the highest p_T are selected. Events with an $e^+ e^-$ or $\mu^+ \mu^-$ pair with invariant mass between 76 and 106 GeV/c2 or below 12 GeV/c2 are removed to suppress Drell–Yan (DY) events ($Z/\gamma^* \rightarrow \ell^+ \ell^-$) as well as low mass dilepton resonances. The jets and the missing transverse energy E_T^{miss} are reconstructed with a particle-flow technique [17]. The anti-k_T clustering algorithm [18] with a distance parameter of 0.5 is used for jet clustering. At least two jets with $p_T > 30 \text{ GeV}/c$ and $|\eta| < 2.5$, separated by $\Delta R > 0.4$ from leptons passing the analysis selection, are required in each event. Exactly two of these jets are required to be consistent with coming from the decay of heavy flavor hadrons and be identified as b jets by the TCHEM b-tagging algorithm [19], which relies on tracks with large impact parameters. The E_T^{miss} in the event is required to exceed 50 GeV, consistent with the presence of two undetected neutrinos with large p_T.

Signal and background events are generated using the MADGRAPH 4.4.12 [20] and PYTHIA 6.4.22 [21] event generators. The samples of $t\bar{t}$, $W +$ jets, DY with $M_\ell^2 > 50 \text{ GeV}/c^2$, diboson ($WW$, WZ, and ZZ only: the contribution from $W\gamma$ is assumed to be negligible), and single top quark events are generated using MADGRAPH. The DY event samples with $M_\ell^2 < 50 \text{ GeV}/c^2$ are generated using PYTHIA. The samples of $t^{'\prime}\bar{t}'$ events are generated using MADGRAPH, but decayed using PYTHIA. The $t' \rightarrow Wb$ decay is modeled assuming a V-A structure of the interaction. Events are then simulated using a GEANT4-based model [22] of the CMS detector, and finally reconstructed and analyzed with the same software used to process collision data. The cross section for $t\bar{t}$ production is taken from a recent CMS measurement [23], while next-to-leading order (NLO) cross sections are used for the remaining SM background samples. The $t^{'\prime}\bar{t}'$ cross sections are calculated to approximate next-to-NLO (NNLO) using HATHOR [24].

With the steadily increasing LHC instantaneous luminosity, the mean number of interactions in a single bunch crossing also increased over the course of data taking, reaching about 15 at the end of the 2011 running period. In the following, the yields of simulated events are weighted such that the distribution of reconstructed vertices observed in data is reproduced. The average efficiency for events containing two leptons satisfying the analysis selection to pass at least one of the double-lepton triggers is measured to be approximately 100%, 95%, and 90% for the ee, $e\mu$, and $\mu\mu$ triggers, respectively, and corresponding weights are applied to the simulated event yields. In addition, b-tagging scale factors are applied to simulated events for each jet, to account for the difference between b-tagging efficiencies in data and simulation [19].
The observed and simulated yields after the above event preselection are listed in Table 1, in which the categories $t\bar{t} \rightarrow \ell^+\ell^-$ and DY $\rightarrow \ell^+\ell^-$ correspond to dileptonic $t\bar{t}$ and DY decays, including τ leptons only when they also decay leptonically. All other $t\bar{t}$ decay modes are included in the category $t\bar{t} \rightarrow$ other. The yields are dominated by top-pair production in the dilepton final state, and agreement is observed between data and simulation. The expected yields from $t\bar{t}'$ are also shown for different values of $M_{t'}$.

Table 1: The observed and simulated yields after the preselection described in the text. The uncertainties on the yields of the simulated samples are statistical only, while for the simulated total background yields the systematic uncertainties from the sources described in Section 6 are also given. For $W + \text{jets}$, where the simulated yields are zero, upper limits are given based on the weighted yield, had one of the simulated events passed the preselection.

Sample	ee	$\mu\mu$	$e\mu$	all
$t\bar{t}'$, $M_{t'} = 400$ GeV/c^2	10.6 ± 0.9	13.9 ± 1.0	29.4 ± 1.5	53.9 ± 2.0
$t\bar{t}'$, $M_{t'} = 500$ GeV/c^2	3.0 ± 0.2	3.3 ± 0.2	6.7 ± 0.4	12.9 ± 0.5
$t\bar{t}'$, $M_{t'} = 600$ GeV/c^2	0.9 ± 0.1	1.0 ± 0.1	2.2 ± 0.1	4.1 ± 0.2
$t\bar{t} \rightarrow \ell^+\ell^-$	488 ± 11	615 ± 12	1472 ± 19	2575 ± 25
$t\bar{t} \rightarrow$ other	7.2 ± 1.3	0.5 ± 0.3	10.5 ± 1.6	18.2 ± 2.1
$W + \text{jets}$	< 1.9	< 1.9	< 1.9	< 1.9
DY $\rightarrow \ell^+\ell^-$	2.9 ± 1.5	1.6 ± 1.0	0.6 ± 0.5	5.1 ± 1.8
Diboson	0.5 ± 0.1	1.1 ± 0.2	1.9 ± 0.2	3.6 ± 0.3
Single top quark	15.6 ± 1.0	19.5 ± 1.1	46.9 ± 1.7	82.0 ± 2.2
Total background	$514 \pm 11 \pm 54$	$637 \pm 12 \pm 67$	$1532 \pm 19 \pm 162$	$2683 \pm 25 \pm 284$
Data	510	615	1487	2612

4 Signal region

After preselection, the sample is dominated by SM $t\bar{t}$ events. Since a t' quark is expected to have a much larger mass than that of the top quark, variables that are correlated with the decaying quark mass can help distinguish $t\bar{t}'$ events from $t\bar{t}$ events. The mass of the system defined by the lepton and b jet (M_{lb}) from the quark decay is chosen for this purpose. In the decay of a given top quark, M_{lb} is less than $\sqrt{M_t^2 - M_W^2}$, where M_t and M_W are the masses of the top quark and W boson. In contrast, most t' decays have M_{lb} larger than that value. At the reconstruction level, however, there are two ways to combine the two leptons and two b jets in each event, giving four possible values of M_{lb}. The minimum value of the four masses (M_{lb}^{min}) is found to be a good variable for distinguishing $t\bar{t}'$ events from $t\bar{t}$ events. A comparison between $t\bar{t}'$ events and $t\bar{t}$ events for this variable is shown in Fig. 1.

The signal region is defined by adding the requirement for the minimum mass of lepton and jet pairs to be $M_{lb}^{\text{min}} > 170$ GeV/c^2. This additional selection reduces the expected number of $t\bar{t}$ events by four orders of magnitude compared with the preselection prediction given in Table 1. The simulated yields of $t\bar{t}'$ events are typically reduced by 50%; they are given for different values of $M_{t'}$ in Table 2.
Table 2: The expected yields of $t\bar{t}$ events in the signal region for different values of $M_{t'}$. Uncertainties are statistical only.

$t\bar{t}$ sample	ee	$\mu\mu$	$e\mu$	all
$M_{t'} = 400\text{ GeV}/c^2$	3.5 ± 0.5	5.5 ± 0.6	11.2 ± 0.9	20.1 ± 1.2
$M_{t'} = 500\text{ GeV}/c^2$	1.4 ± 0.2	1.9 ± 0.2	3.3 ± 0.2	6.7 ± 0.4
$M_{t'} = 600\text{ GeV}/c^2$	0.6 ± 0.1	0.6 ± 0.1	1.3 ± 0.1	2.5 ± 0.1

5 Background estimation

One of the main sources of background events in the signal region is the misidentification of b jets and leptons. A misidentified lepton is defined as a lepton candidate not originating from a prompt decay, such as a lepton from a semileptonic b or c quark decay, a muon from a pion or kaon decay, an unidentified photon conversion, or a pion misidentified as an electron. Misidentified b jets are referred to as “mistags”, and occur when a non-b jet satisfies the b-tagging requirements.

The background events in the signal region can be divided into the following categories:

- Category I: events with mistagged b jet(s) and two real leptons;
- Category II: events with misidentified lepton(s) and two real b jets;
- Category III: events with two real b jets and two real leptons;
- Category IV: events with mistagged b jet(s) and misidentified lepton(s).

For each category, an estimate of the combined yield of ee, $e\mu$, and $\mu\mu$ events is made.

To predict the number of events with mistagged b jet(s) (Category I), control regions in data are used where events pass all selection requirements except the number of b-tagged jets. The number of background events with one mistag, $N_{1\text{mistag}}$, is estimated from events with one b tag. Each event is weighted based on the mistag rate r_i for each untagged jet in the event, where r_i gives the p_T- and η-dependent probability (with a mean of 0.02) for a non-b jet to be b-tagged [19]. Where there are no untagged jets passing the $M_{\ell b}^{\text{min}}$ selection, the event weight is zero, and for each untagged jet i passing the selection the event weight is increased by $r_i / (1 - r_i)$. The subtraction of r_i in the denominator is necessary to account for non-b jets that were mistagged, and are thus missing from the sample of untagged jets. A similar calculation is made using events with no b tags to estimate the number of events with two mistags, $N_{2\text{mistags}}$. This time a weight of $r_i / (1 - r_i) \times r_j / (1 - r_j)$ is used for each pair of untagged jets passing selection, where r_i and r_j are the mistag rates for the two untagged jets. The final prediction is obtained as $N_{\text{mistags}} = N_{1\text{mistag}} - N_{2\text{mistags}}$, which takes into account that $N_{2\text{mistags}}$ is counted twice in $N_{1\text{mistag}}$. The performance of the method is checked using simulated events, and an under-prediction of up to 50% is observed. We therefore assign a large systematic uncertainty, 100%, to this prediction. In data, the predicted number of events with mistags in the signal region is $N_{\text{mistags}} = 0.7 \pm 0.3 \pm 0.7$, where the uncertainties are statistical and systematic, respectively. The Category I yield in the simulation, taken as a cross-check using the samples mentioned in Section 3, is 1.0 ± 0.3, and is consistent with the prediction based on data.

The background from events with misidentified leptons (Category II) is predicted based on the number of events in data with a candidate lepton that can pass only loosened selection criteria [25]. Using a measurement of the fraction of such “loose” leptons that go on to pass the selection requirements, the number of misidentified leptons in the event sample can be estimated. However, there are no observed data events where one or more of the lepton can-
didates passes only the loosened selection criteria, resulting in a prediction of $0.0^{+0.4}_{-0.0}$ events where the upper uncertainty corresponds to the prediction of the method, had there been one such event. The Category II event yield is also zero in the simulation.

The simulation is used to predict the number of events with no misidentified b jets or leptons (Category III), using the background event samples of Section 3. Selecting only events where both b jets and leptons are well matched to the corresponding particles at the generator level, the resulting prediction is 1.0 ± 0.7 where the uncertainty is statistical. The systematic uncertainty is small in comparison (Section 6), so the total uncertainty is also 0.7.

The contribution of events from Category IV is found to be negligible and is covered by both the Category I and Category II predictions. Since the Category II prediction is zero, there is no possibility of double-counting.

6 Systematic uncertainties

The systematic uncertainty on the overall selection efficiency is dominated by the uncertainty on the b-tagging efficiency. This uncertainty is 15% for b jets with $p_T > 240 \text{ GeV}/c$, and 4% for b jets with $p_T \leq 240 \text{ GeV}/c$ [19]. Other uncertainties include those on trigger efficiency (2%), lepton selection (2%), and jet and E_T^{miss} energy scale (8%) [26]. These four sources combine to yield a 19% relative uncertainty on the overall selection efficiency for signal events. There is a further 2.2% uncertainty on the luminosity measurement [27].

The systematic uncertainty on the background estimate is dominated by the uncertainty on the estimate of events with mistagged b jets from data (100%), and by the lack of selected events in the loose-lepton control region. The systematic uncertainties on these sources of background are included in the summary of background predictions given in Table 3.

7 Results and summary

The number of expected events from background processes is 1.8 ± 1.1, and one event is observed in the $e\mu$ channel. There is thus no evidence for an excess of events above SM expectations. A summary of the observed and predicted yields is presented in Table 3.

The simulated distribution of $M_{\ell b}^{\text{min}}$ from background processes is compared with the data in Fig. 1, where the expected distribution for a $t^{'\overline{t}}$ signal with $M_{t'} = 450 \text{ GeV}/c^2$ is also shown.

Table 3: Summary of the predicted background yields and the measured yield in data. Statistical and systematic uncertainties are combined.

Sample	Yield
Category I (from data)	0.7 ± 0.8
Category II (from data)	$0.0^{+0.4}_{-0.0}$
Category III (simulated)	1.0 ± 0.7
Total prediction	1.8 ± 1.1

Data | 1 |

Finally, 95% confidence level (CL) upper limits on the production cross section of $t^{'\overline{t}}$ as a function of t' mass are set, using the CLs method [28][29], where nuisance parameters are varied in the ensemble tests using log-normal distributions.
Figure 1: Comparison between the data and the simulated background for $M_{\text{min}}^{\ell b}$. The signal region is defined by $M_{\text{min}}^{\ell b} > 170$ GeV/c2. The Category I simulated background yield in the signal region is scaled so that it matches the yield estimated from control regions in data, as given in Table [3]. Outside the signal region the simulated background yields are taken without rescaling. One event is observed in the signal region. The expected distribution for a $t't'$ signal with $M_{t'} = 450$ GeV/c2 is also shown.

The limit calculation is based on the information provided by the observed event count combined with the values and the uncertainties of the luminosity measurement, the background prediction, and the fraction of $t't'$ events expected to be selected. This fraction (the overall selection efficiency) is taken as the product of efficiency, acceptance, and the branching fraction for simulated signal events, and is given in Table [4] for different values of $M_{t'}$. The calculated limits are shown in Table [5] and Fig. 2.

In summary, assuming a branching fraction of 100% for $t' \rightarrow bW$, the expected and observed 95% CL lower bounds on the t' mass are 547 and 557 GeV/c2, respectively, from the analysis of a data sample of pp collisions at $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of 5.0 fb$^{-1}$.

Acknowledgment

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CIN-
Table 4: Overall selection efficiency in simulated events for different t' masses. The branching fraction of 6.5% for the dilepton decay mode of $t't'$ is included. The uncertainties are calculated using the systematic uncertainty of 19% from Section 6.

$t't'$ sample	$\text{Eff} \times \text{Acc} \times \text{Br}$ (%)
$M_{t'} = 350 \text{ GeV}/c^2$	0.16 ± 0.03
$M_{t'} = 400 \text{ GeV}/c^2$	0.29 ± 0.06
$M_{t'} = 450 \text{ GeV}/c^2$	0.35 ± 0.07
$M_{t'} = 500 \text{ GeV}/c^2$	0.41 ± 0.08
$M_{t'} = 550 \text{ GeV}/c^2$	0.48 ± 0.09
$M_{t'} = 600 \text{ GeV}/c^2$	0.54 ± 0.10

Table 5: The approximate NNLO theoretical cross section of $t't'$ production assuming standard QCD couplings [24], and the expected and observed 95% CL upper limits on the production cross section of $t't'$, for different t' masses.

$M_{t'}$ (GeV/c^2)	350	400	450	500	550	600
Theoretical cross section (pb)	3.20	1.41	0.62	0.33	0.17	0.09
Expected limit (pb)	0.53	0.29	0.24	0.21	0.18	0.16
Observed limit (pb)	0.47	0.26	0.22	0.18	0.16	0.14

Figure 2: The 95% CL upper limits on the production cross section of $t't'$ as a function of t' mass. The observed (expected) 95% CL lower bound on $M_{t'}$ is 557 (547) GeV/c^2.
References

[1] CDF Collaboration, “Observation of top quark production in $\bar{p}p$ collisions with the Collider Detector at Fermilab”, Phys. Rev. Lett. 74 (1995) 2626, doi:10.1103/PhysRevLett.74.2626, arXiv:hep-ex/9503002.

[2] D0 Collaboration, “Observation of the top quark”, Phys. Rev. Lett. 74 (1995) 2632, doi:10.1103/PhysRevLett.74.2632, arXiv:hep-ex/9503003.

[3] B. Holdom et al., “Four statements about the fourth generation”, PMC Phys. A 3 (2009) 4, doi:10.1186/1754-0410-3-4, arXiv:0904.4698.

[4] W.-S. Hou, “CP violation and baryogenesis from new heavy quarks”, Chin. J. Phys. 47 (2009) 134, arXiv:0803.1234.

[5] ATLAS Collaboration, “Search for pair production of a heavy quark decaying to a W boson and a b quark in the lepton+jets channel with the ATLAS detector”, (2012). arXiv:1202.3076. Submitted to Phys. Rev. Lett.

[6] CDF Collaboration, “Search for heavy bottom-like quarks decaying to an electron or muon and jets in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV”, Phys. Rev. Lett. 106 (2011) 141803, doi:10.1103/PhysRevLett.106.141803, arXiv:1101.5728.

[7] D. Decamp et al., “Determination of the number of light neutrino species”, Phys. Lett. B 231 (1989) 519, doi:10.1103/RevModPhys.62.1.

[8] L3 Collaboration, “A determination of the properties of the neutral intermediate vector boson Z^0”, Phys. Lett. B 231 (1989) 509, doi:10.1016/0370-2693(89)90703-X.

[9] OPAL Collaboration, “Measurement of the Z^0 mass and width with the OPAL detector at LEP”, Phys. Lett. B 231 (1989) 530, doi:10.1016/0370-2693(89)90705-3.

[10] Delphi Collaboration, “Measurement of the mass and width of the Z^0 particle from multi-hadronic final states produced in $e^+ e^-$ annihilations”, Phys. Lett. B 231 (1989) 539, doi:10.1016/0370-2693(89)90706-5.

[11] E. L. Berger and Q.-H. Cao, “Next-to-leading order cross sections for new heavy fermion production at hadron colliders”, Phys. Rev. D 81 (2010) 035006, doi:10.1103/PhysRevD.81.035006, arXiv:0909.3555.

[12] G. D. Kribs, T. Plehn, M. Spannowsky, and T. M. P. Tait, “Four generations and Higgs physics”, Phys. Rev. D 76 (2007) 075016, doi:10.1103/PhysRevD.76.075016, arXiv:0706.3718.

[13] O. Eberhardt, A. Lenz, and J. Rohrwild, “Less space for a new family of fermions”, Phys. Rev. D 82 (2010) 095006, doi:10.1103/PhysRevD.82.095006, arXiv:1005.3505.
[14] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[15] CMS Collaboration, “Performance of muon identification in pp collisions at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-MUO-10-002, 2010.

[16] CMS Collaboration, “Electron Reconstruction and Identification at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-EGM-10-004, 2010.

[17] CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-002, 2010.

[18] M. Cacciari, G. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[19] CMS Collaboration, “Measurement of the b-tagging efficiency using $t\bar{t}$ events”, CMS Physics Analysis Summary CMS-PAS-BTV-11-003, 2011.

[20] J. Alwall et al., “MadGraph/MadEvent v4: the new web generation”, JHEP 09 (2007) 028, doi:10.1088/1126-6708/2007/09/028, arXiv:0706.2334.

[21] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:0706.2334.

[22] S. Agostinelli et al., “GEANT4 – a simulation toolkit”, Nucl. Instr. and Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[23] CMS Collaboration, “Measurement of the $t\bar{t}$ production cross section in pp collisions at 7 TeV in lepton + jets events using b-quark jet identification”, Phys. Rev. D 84 (2011) 092004, doi:10.1103/PhysRevD.84.092004, arXiv:1108.3773.

[24] M. Aliev et al., “HATHOR, hadronic top and heavy quarks cross section calculator”, Comput. Phys. Commun. 182 (2011) 1034, doi:10.1016/j.cpc.2010.12.040, arXiv:1007.1327.

[25] CMS Collaboration, “Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC”, JHEP 6 (2011) 077, doi:10.1007/JHEP06(2011)077, arXiv:1104.3168.

[26] CMS Collaboration, “Determination of the Jet Energy Scale in CMS with pp Collisions at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-010, 2010.

[27] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, 2012.

[28] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[29] A. L. Read, “Presentation of search results: the CL_s technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer¹, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka¹, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, K. Cerny, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco², J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, L. Soares Jorge, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
T.S. Anjos³, C.A. Bernardes³, F.A. Dias⁴, T.R. Fernandez Perez Tomei, E. M. Gregores³, C. Lagana, F. Marinho, P.G. Mercadante⁵, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev¹, P. Iaydiev¹, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. and Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Haranko, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, T. Maenpaa, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauger, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi
F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, U. Husemann, I. Katkov13, J.R. Komaragiri, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, C. Saout, A. Scheurer, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, T. Weiler, M. Zeise, E.B. Ziebarth

Institute of Nuclear Physics “Demokritos”, Athens, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas1, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu1, P. Hidas, D. Horvath15, K. Krajczar16, B. Radics, F. Sikler1, V. Veszpremi, G. Vesztergombi16

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellai, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulosalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty1, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guchait17, A. Gurtu18, M. Maity19, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi20, S.M. Etesami21, A. Fahim20, M. Hashemi, H. Hesari, A. Jafari20, M. Khakzad, A. Mohammadib22, M. Mohamedi Najafabadi, S. Paktinat Mehdibadi, B. Safarzadeh23, M. Zeinalib21

INFN Sezione di Bari \(\text{a,b}\), Università di Bari \(\text{b}\), Politecnico di Bari \(\text{c}\), Bari, Italy
M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b,1, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c,1, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, L. Lusitoa,b, G. Maggia,c,
M. Maggia,b, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa,b, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, G. Zitoa

INFN Sezione di Bolognaa, Università di Bolognab, Bologna, Italy
G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Brabant-Giacomellia,b, L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbrinia, A. Fanfania,b, D. Fasanellaa,b,1, P. Giacomellia, C. Grandia, L. Guiducci, S. Marcellinia, G. Masettia, M. Meneghellia,b,1, A. Montanaria, F.L. Navarraa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rotellia,b, G. Sirolia,b, R. Travaglinia,b

INFN Sezione di Cataniaa, Università di Cataniab, Catania, Italy
S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenzea,b, Firenze, Italy
G. Barbaglioa, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolettia, G. Squazzonia, A. Troianoa,1

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi24, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Bicoccaa, Università di Milano-Bicoccab, Milano, Italy
A. Benagliaa,b,1, F. De Guiccia,b, L. Di Matteoa,b,1, S. Fiorendia,b, S. Gennaia,b, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b,1, A. Martellia,b,1, A. Massironia,b,1, D. Menascoa, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b

INFN Sezione di Napolia, Università di Napoli “Federico II”b, Napoli, Italy
S. Buontempoa, C.A. Carrillo Montoyaa,1, N. Cavalloa,25, A. De Cosaa,b, O. Doganguna,b, F. Fabozzia,25, A.O.M. Iorioa,1, L. Listaa, S. Meolaa,26, M. Merolaa,b, P. Paoluccia

INFN Sezione di Padovaa, Università di Padovab, Università di Trento (Trento)c, Padova, Italy
P. Azzia, N. Bacchettaa,1, D. Biselloa,b, A. Brancaa,1, R. Carlina,b, P. Checchiaa, T. Dorigoa, U. Dossellia, G. Gasparinia,b, U. Gasparinia,b, A. Gozzelloa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, M. Nespoloa,b,1, L. Perrozzia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b,1, S. Vaninia,b, G. Zumerlea,b

INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b

INFN Sezione di Perugiaa, Università di Perugiab, Perugia, Italy
G.M. Bileia, L. Fana,b, P. Laricciaa,b, A. Lucaronia,b,1, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Saha, A. Santochiccaa,b, S. Taronia,b,1

INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, Italy
P. Azzurria,c, G. Bagliesia, T. Boccia, G. Broccolia,c, R. Castaldia, R.T. D’Agnoloa,c, R. Dell’Orsoa, F. Fioria,b,1, L. Foàa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martina,c, A. Messineoa,b, F. Pallaa, F. Palmonaria, A. Rizzia,b, A.T. Serbana, P. Spagnoloa, P. Squillaciotia, R. Tenchinia, G. Tonellia,b,1, A. Venturia, P.G. Verdinia

INFN Sezione di Romaa, Università di Roma “La Sapienza”b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b,1, M. Diemoza, C. Fanellia,b, M. Grassia,1, E. Longoa,b
A The CMS Collaboration

P. Meridiania,1, F. Michelia,b, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

\textbf{INFN Sezione di Torino }a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argoi,a,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,1, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,1, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

\textbf{INFN Sezione di Trieste }a, Università di Trieste b, Trieste, Italy

S. Belforta, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,1, D. Montaninoa,b,1, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyoungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Konkuk University, Seoul, Korea
H.Y. Jo

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. Dela Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magana Villalba, J. Martinez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Trifonov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilo, M. Kossov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, A. Korablev, V. Kryuchkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krsic, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardo, D. Dominguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jordà, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Aufsfray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterría, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karvakis, K. Kousouris, P. Lecoq, P. Lenzi, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas, D. Spiga, M. Spiropulu, M. Stoye, A. Tsirou, G.I. Veres, J.R. Vlimant, H.K. Wöhr, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bertignone, M.A. Buchmann, B. Casal, N. Chanon, Z. Chen, A. Deisher, G. Dissertori, M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, P. Lecomte, W. Lüstermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli, P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland
E. Aguiló, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti
National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, A. Go, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom
F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Fuyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough
The University of Alabama, Tuscaloosa, USA
C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazz, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, D. Cuts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinhuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Plager, G. Rakness, P. Schlein1, J. Tucker, V. Valuev, G. Landsberg, M. Luk

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneil, B. Mangan, J. Muelmenstaedt, S. Padhi, C. Palmer, G. Petrucciani, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi1, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebasso, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gatauillin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
L. Agostino, J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich
Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat,
I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk,
J. Freeman, Y. Gao, D. Green, O. Gutsche, A. Hahn, J. Hanlon, R.M. Harris, J. Hirschauer,
B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan,
D. Lincoln, R. Lipton, L. Lueking, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama,
D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell,
O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor,
S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang,
F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni,
D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim,
J. Koniogsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic,
G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze,
M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian,
V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner,
R. Cavanaugh, C. Dragoiu, O. Evdokimov, E.J. Garcia-Solis, L. Gauthier, C.E. Gerber,
D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, K. Chung, W. Clarida, F. Duru, S. Griffiths, C.K. Lae,
J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom,
E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu,
P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, V. Radicci,
S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha,
I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright
University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, A. Peterman, K. Rossato, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, Y.-J. Lee, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, J. Warchol, M. Wayne, M. Wolf, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, P. Killewald, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, E. Laird, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel,
D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulayouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, S. Korjenevski, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, A. Richards, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safo, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, D. Engh, C. Florez, S. Greene, A. Gurrola, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Cairo University, Cairo, Egypt
8: Also at British University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Now at Ain Shams University, Cairo, Egypt
11: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
12: Also at Université de Haute-Alsace, Mulhouse, France
13: Also at Moscow State University, Moscow, Russia
14: Also at Brandenburg University of Technology, Cottbus, Germany
15: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
16: Also at Eötvös Loránd University, Budapest, Hungary
17: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
18: Now at King Abdulaziz University, Jeddah, Saudi Arabia
19: Also at University of Visva-Bharati, Santiniketan, India
20: Also at Sharif University of Technology, Tehran, Iran
21: Also at Isfahan University of Technology, Isfahan, Iran
22: Also at Shiraz University, Shiraz, Iran
23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
24: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
25: Also at Università della Basilicata, Potenza, Italy
26: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
27: Also at Università degli studi di Siena, Siena, Italy
28: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
29: Also at University of Florida, Gainesville, USA
30: Also at University of California, Los Angeles, Los Angeles, USA
31: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
32: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
33: Also at University of Athens, Athens, Greece
34: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
35: Also at The University of Kansas, Lawrence, USA
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Gaziosmanpasha University, Tokat, Turkey
39: Also at Adiyaman University, Adiyaman, Turkey
40: Also at The University of Iowa, Iowa City, USA
41: Also at Mersin University, Mersin, Turkey
42: Also at Kafkas University, Kars, Turkey
43: Also at Suleyman Demirel University, Isparta, Turkey
44: Also at Ege University, Izmir, Turkey
45: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
46: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
47: Also at University of Sydney, Sydney, Australia
48: Also at Utah Valley University, Orem, USA
49: Also at Institute for Nuclear Research, Moscow, Russia
50: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
51: Also at Argonne National Laboratory, Argonne, USA
52: Also at Erzincan University, Erzincan, Turkey
53: Also at Kyungpook National University, Daegu, Korea