Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Increased frequency of CD4$^+$ CD25$^{\text{high}}$ CD127$^{\text{low/−}}$ regulatory T cells in patients with multiple sclerosis

Maryam Khosravia,b,c, Nastaran Majdinasabd, Afshin Amaria,b, Ata A. Ghadirib,b,*

a Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
b Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
c Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
d Department of Neurology of Ahvaz Jundishapur University of Medical Sciences, Musculoskeletal Rehabilitation Research Center, Ahvaz, Iran

ARTICLE INFO

Keywords:
Autoimmunity
Multiple sclerosis
CD4$^+$ CD25$^{\text{high}}$ CD127$^{\text{low/−}}$: Regulatory T cells

ABSTRACT

Background: Multiple sclerosis (MS), one of the most common diseases of the central nervous system (CNS), is characterized by demyelination and chronic inflammation of the CNS. Failure of immune tolerance and induced autoimmune processes are involved in MS immunopathogenesis. Regulatory T (Treg) cells play an important role in maintaining peripheral tolerance and immune homeostasis.

Objective: The aim of this study was to evaluate the frequency of CD4$^+$ CD25$^{\text{high}}$ CD127$^{\text{low/−}}$ Treg cells in MS patients.

Methods: The study population was composed of 25 healthy controls (HCs), 35 patients with relapsing remitting multiple sclerosis (RRMS) and 25 patients with progressive multiple sclerosis (PMS). Frequency of CD4$^+$ CD25$^{\text{high}}$ CD127$^{\text{low/−}}$ Treg cells in RRMS and PMS patients was compared with HC by flow cytometry.

Results: Treg cells frequency in PMS patients was significantly higher compared to RRMS patients ($P < 0.001$) and HCs ($P < 0.001$). It was lower in RRMS patients than HCs ($P = 0.005$). A significant direct correlation between Treg cells frequency and expanded disability status scale (EDSS) in PMS patients ($P = 0.001$, $r = 0.6$) was observed. Reverse correlation between Treg cells frequency and EDSS in RRMS patients was found ($P = 0.01$, $r = −0.4$).

Conclusion: More detailed clarification of the role of Treg cells in MS patients could provide a basis for development of Treg cells-mediated therapeutic strategies.

1. Introduction

Multiple sclerosis (MS) is one of the most common autoimmune debilitating neurologic diseases that is characterized by demyelination and chronic inflammation of the CNS (Trapp and Nave, 2008). There are two main categories of MS: relapsing remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (PMS). RRMS, the most common type, is typified by irregular relapses followed by month-and-year-periods of relative quiet without symptoms. Clinically isolated syndrome (CIS), which does not fulfill the MS criteria, is frequently its starting point. PMS includes three types: secondary progressive multiple sclerosis (SPMS), primary progressive multiple sclerosis (PPMS) and progressive relapsing multiple sclerosis (PRMS) (Hawkes and Giovannoni, 2010; Confavreux and Vukusic, 2006). The etiology of MS is not clearly but genetic, environmental, immunological factors and some viruses, e.g. EBV, CMV, HBV, HSV, human herpetic viruses 6 and 7, measles viruses, coronaviruses, may have a role in the occurrence of MS (Sospedra and Martin, 2005). Myelin sheath surrounding nerve fibers will be damaged in MS (Jiang and Chess, 2006; Dendrou et al., 2015). The major immune cells involved in the immunopathogenesis of MS are T cells, especially TCD8 $^+$, Th1 and Th17. Amounts of Th1 and Th17 cells and their associated cytokines, e.g. IL-1, IL-6, IL-17, interferon gamma (IFN-γ), and tumor necrosis factor (TNF-α), have been shown to be increased in MS patients (Raphael et al., 2015; Li et al., 2014). In recent years, it became clear that Treg cells also participate in immunopathogenesis of MS (Buc, 2013). Treg cells are essential for...
maintaining peripheral tolerance against self antigens through a variety of soluble mediators including IL-10, IL-35, TGF-β, and cell surface molecules such as CD25, and CTLA-4 (Tai et al., 2012; Collison et al., 2010). There are multiple Treg subsets and a variety of suppressive mechanisms. Treg cells decrease activity and expansion of conventional T cells by suppressing their biological activities such as inhibition of proliferation and blocking the production of proinflammatory cytokines (Liu, 2006; Lan et al., 2005). Quantitative or functional defect of Treg cells is associated with many autoimmune diseases, including MS, rheumatoid arthritis (RA), and Type 1 diabetes (T1D) (Sakaguchi et al., 2006; Long and Buckner, 2011). The role of Treg cells in MS is controversial. While several studies reported a decrease in Treg cells frequency in MS patients (Huan et al., 2005; Haas et al., 2005; Venken et al., 2008a; Jamshidian et al., 2013; Kouchaki et al., 2014), a number of studies reported the same frequency compared to healthy subjects (Venken et al., 2006; Haas et al., 2005; Feger et al., 2007; Viglietta et al., 2004; Frisullo et al., 2009). Moreover, other studies indicated a functional defect in Treg cells (Venken et al., 2006; Haas et al., 2005; Feger et al., 2007; Frisullo et al., 2009; Sellebjerg et al., 2012; Chen et al., 2012; Venken et al., 2008b). Further studies are needed to understand the potential of Treg-based therapies in MS patients. In this study, we determined the frequency of CD4\(^+\)CD25\(^{high}\)CD127\(^{low/-}\) Treg cells in RRMS and PMS patients compared to HC in Ahvaz, the center of Khuzestan province, which is host for living of Fars and Arab ethnic populations.

2. Methods

2.1. Ethics statement

Blood samples were taken from patients and healthy controls after signing an informed consent. This study was approved by the Ethics Committee of Ahvaz Jundishapur University of Medical Sciences (IR.AJUMS.REC.1395.191).

2.2. Study population

Peripheral blood samples were obtained from 60 patients with MS and 25 HCs, who were the same age and sex matched at Golestan Hospital in Ahvaz, Iran. Diagnosis was based on clinical trials, magnetic resonance imaging (MRI), and according to the McDonald criteria 2010 (Polman et al., 2011) and were diagnosed as having either RRMS or PMS. None of the patients and HCs suffered from any other autoimmune disease or inflammatory status. MS patients were either untreated or under treatment with Cinovex, Rebif (IFN-β1a), Betaseron (IFN-β1b), Methotrexate, Glatiramer acetate (GA) at the time of blood sampling. Blood samples of MS patients were obtained during a clinically stable phase (remission) at least 1 month after the last active relapse. EDSS score and disease duration were asked at time of blood sampling. According to standard scale of EDSS, the patients’ scale was determined by neurologist.

2.3. Preparation, surface staining of cells, and analysis by flow cytometry

Peripheral blood mononuclear cells (PBMCs) were isolated from 2.5 ml of heparinized blood samples by Ficoll-hypaque density gradient centrifugation (density, 1.077 ± 0.002) (Sigma, Germany) of patients and HCs. Antibodies were purchased from eBioscience company (eBioscience, USA). The cells were washed twice with phosphate-buffered saline (PBS) and resuspended in 500 μl PBS and stored in the dark at 4 °C prior to do flow cytometry analysis. The monoclonal antibodies used were as follows: FITC-conjugated mouse anti-human CD4 (Clone RPA-T4), PE-conjugated mouse anti-human CD25 (clone BC96), and APC-conjugated mouse anti-human CD127 (clone RPA-T4). Mouse IgG1 K Isotype control PE (clone P3.6.2.8.1) and Mouse IgG1 K Isotype control APC (clone P3.6.2.8.1) were used as isotype controls. The cells were analyzed by using flow cytometry (Becton Dickinson, San Diego, CA, USA). At least 100,000 events were recorded for each sample, and the data were analyzed by FlowJo™ software (Tree Star, Ashland, USA).

2.4. Statistical analysis

Statistical analysis was done by SPSS version 17 (SPSS Inc., Chicago, IL, USA). Comparisons of Treg cells frequency between different groups of patients and HCs were performed by using the one-way analysis of variance (ANOVA) and Tukey Post Hoc test. Correlations between parameters were calculated by Pearson’s correlation coefficient test and independent t-test. Data are expressed as mean ± standard error of the mean. P-value < 0.05 was considered as significant.

Table 1

Characteristic	RRMS	PMS	HC
Number	35	25	25
Male/ Female	13/22	8/17	10/15
Ethnicity (Fars/ Arab)	18/17	8/17	12/13
Age (Year, Mean ± SD)	32.14 ± 7.26	34.6 ± 8.2	32.76 ± 7.56
Disease Duration (Year, Mean ± SD)	3 ± 2.68	6.68 ± 4.51	
EDSS (Mean ± SD)	1.61 ± 0.97	5.29 ± 4.74	
Drug	Cinovex	12	-
	Rebif (IFN-β1a)	9	10
	Betaseron (IFN-β1b)	6	1
	Methotrexate	-	3
	Glatiramer acetate (GA)	2	3
	No treatment	6	8

RRMS: Relapsing remitting multiple sclerosis, PMS: Progressive multiple sclerosis, HC: Healthy control, EDSS: Expanded disability status scale, GA: Glatiramer acetate.

2.5. Statistical analysis

Statistical analysis was done by SPSS version 17 (SPSS Inc., Chicago, IL, USA). Comparisons of Treg cells frequency between different groups of patients and HCs were performed by using the one-way analysis of variance (ANOVA) and Tukey Post Hoc test. Correlations between parameters were calculated by Pearson’s correlation coefficient test and independent t-test. Data are expressed as mean ± standard error of the mean. P-value < 0.05 was considered as significant.
3. Results

3.1. Patients’ characteristics

Demographic and clinical characteristics of MS patients and HCs are shown in Table 1. Some patients due to expense of medicine and economic condition could not supply medicine, considered as no treatment.

3.2. Identification of Treg cells population

Because a single marker cannot describe Treg cells, this population was defined by flow cytometry as CD4⁺CD25highCD127low/− cells (Fig. 1).

3.3. Frequency of Treg, TCD4⁺CD25⁺, and TCD4⁺CD25− cells in RRMS patients

Lower frequency of Treg cells in RRMS patients than the subject in their age and sex matched HCs was observed (1.25 ± 0.23 vs 1.57 ± 0.34, P = 0.005). There was no difference of CD4⁺CD25⁺ and CD4⁺CD25− T cells frequency between RRMS patients and HCs, (2.5 ± 0.9 vs 2.18 ± 0.66, P = 0.14 and 38 ± 6.5 vs 39 ± 10.49, P = 0.81, respectively, as shown in Fig. 2.

3.4. Frequency of Treg, TCD4⁺CD25⁺, and TCD4⁺CD25− cells in PMS patients

Treg cells frequency in PMS patients was significantly higher than RRMS patients and HCs (2.12 ± 0.53 vs 1.25 ± 0.23 and 1.57 ± 0.34, respectively, P < 0.001 in all cases).

Also T CD4⁺CD25− cells frequency in PMS patients was significantly higher than HCs (44.7 ± 5.2 vs 39 ± 10.49, P = 0.03). The frequency of T CD4⁺CD25− cells in PMS patients versus HCs was not different (2.69 ± 0.82 vs 2.18 ± 0.66, P = 0.07), (Fig. 2).

3.5. Correlation of Treg cells frequency with different parameters

There was not any correlation between Treg cells frequency with age, sex and ethnicity in RRMS and PMS patients (data not shown). Using Pearson’s correlation coefficient test, significant inverse correlation between Treg cells frequency and EDSS in RRMS patients was
observed ($P = 0.01, r = -0.4$), but there was not any correlation between Treg cells frequency and disease duration ($P = 0.55, r = 0.41$). Direct correlation between Treg cells frequency and EDSS, and disease duration in PMS patients have been shown, ($P = 0.001, r = 0.6$) and ($P = 0.03, r = 0.41$), respectively, as shown in Table 2.

Table 2

Characteristic	RRMS	PMS
	Treg: 1.25 ± 0.23	Treg: 2.12 ± 0.53
	p-value r	p-value r
EDSS	1.61 ± 0.97	0.01 -0.4
	5.29 ± 1.47	0.001 0.6
Disease duration	2.68	0.55 0.41
	6.68 ± 4.51	0.03 0.41

RRMS: Relapsing remitting multiple sclerosis, PMS: Progressive multiple sclerosis, Treg: Regulatory T cell, EDSS: Expanded disability status scale.

4. Discussion

Previous studies have controversial results on the quality and quantity of Treg cells in MS patients. More often, characterization of Treg cells has been based on the quantification of CD4$^+$ CD25$^+$ FoxP3$^+$ cells. The obtained frequency by this way will be more than the actual value; because active T cells without regulatory activity up-regulate the FoxP3 expression (Allan et al., 2007; Tran et al., 2007). To rule out these phenomena, we used the combination of CD4, high expression of the CD25, and low levels of IL-7 α-receptor (CD127) expression for identification of Treg cells in peripheral blood (Seddiki et al., 2006; Liu et al., 2006).

In this study, we have shown that CD4$^+$ CD25high CD127$^{low/−}$ Treg cells frequency in RRMS patients was significantly lower than PMS patients and HCs. In accordance with our results, others demonstrated that Treg cells frequency was reduced in RRMS patients compared to the HCs (Huan et al., 2005; Haas et al., 2007; Venken et al., 2008a; Kouchaki et al., 2014; Jamshidian et al., 2013) and the reduced number of Treg cells have been considered as a possible reason for the onset of MS or as a predisposing factor (Venken et al., 2008b; Namdar et al., 2010). Consistent with this observation, may due to the clonal or functional exhausting and more migration of the most potent suppressor cells in RRMS patients to inflammatory sites, the function and frequency of Treg cells is lower in RRMS patients rather than PMS patients (Venken et al., 2006). As shown in the MOG35–55 EAE model, the function of Treg cell is seemingly more affected (Liet al., 2014). As one of the main functions of Treg cells is to control self-reactive cells and inflammation with negative feedback.

The marked paradox results between different studies due to different sample size, patients' characteristics, different include and exclude criteria, different patient categories, comparators, markers of Treg identification and the method used.

So far there is no clear indication of Treg cells frequency in PMS patients. In this study we found a significant increase in the Treg cells frequency in PMS patients compared to RRMS patients and HCs.

Increase frequency of Treg cells in PMS patients may be a defensive approach to progressive trend of the disease; the immune system increases Treg cells to control self-reactive cells and inflammation with negative feedback.

Taking into account of the reports of Treg cells increase in the elderly (Kouchaki et al., 2014; Venken et al., 2006) also an early immunosenescence in MS disease similar to other autoimmunities (Haas et al., 2005; Feger et al., 2007), the enhancement of Treg cells may occur as a result of premature activation of mechanisms which normally cause immunosenescence in the elderly people.

Some studies demonstrated that Treg cells can not properly infiltrate in CNS during the disease course (de Oliveira et al., 2015; Müller et al., 2007; Fritsching et al., 2011). Inefficient migration of Treg cells to neuroinflammatory sites lead to profound implications (Keil et al., 2016; Buckner, 2010). Inefficient migration can be the reason for the higher frequency of Tregs cells in PMS patients compared to RRMS patients and HCs.

In present study we have seen a significant direct correlation between Treg cells frequency and both EDSS and disease duration in PMS patients. As Venken et al. expressed it is likely the restored function of Treg cells among PMS patients is related to their long-duration treatment (Venken et al., 2006) and increase of Treg cells frequency in PMS patients may also due to disease duration and long-duration treatment.

We have shown an inverse correlation between Treg cells frequency and EDSS in remission RRMS patients. Our result is in agreement with an inverse correlation between Treg cells frequency and EDSS in remission MS patients, has been noted in a study conducted by Bjerg et al. (2012), and another study that has been reported in relapse of MS patients by Jamshidian et al. (2013).

We found a direct correlation between frequency of Treg cells with disease duration in PMS patients but not about RRMS.

Since patients with SPMS have a relapsing remitting course at the disease onset and there was a strong correlation between the activity of Treg cells and disease duration , in the early phase of the disease the function of Treg cells is seemingly more affected (Li et al., 2014). As one reported the enhancement of the frequency of Treg cells has also been seen as a function of disease duration (Liu, 2006).

In this study, we have shown that there was no significant correlation between Treg cells frequency and age, sex and ethnicity in RRMS and PMS patients.

In this study, a quantitative comparison was done on Treg cells between RRMS and PMS patients with each other and with healthy controls via CD4, CD25, and CD127 markers for the first time.

Abbreviations list

- MS: Multiple sclerosis
- CNS: Central nervous system
- RRMS: Relapsing remitting multiple sclerosis
- PMS: Progressive multiple sclerosis
- CIS: Clinically isolated syndrome
- SPMS: Secondary progressive multiple sclerosis
- PPRMS: Primary progressive multiple sclerosis
- PRMS: Progressive relapsing multiple sclerosis
- IFN-γ: Interferon gamma
- TNF-α: Tumor necrosis factor
phenotype in relapsed multiple sclerosis and its correlation with severity of symp-
toms. J. Neuroimmunol. 262 (1), 106–112.

Jiang, H., Chess, L., 2006. Regulation of immune responses by T cells. N. Engl. J. Med.
354 (11), 1166–1176.

Keil, M., Sonner, J.K., Lanz, T.V., Ozen, I., Bunse, T., Bittrer, S., et al., 2016. General
control non-derepresser 2 (GCN2) in T cells controls disease progression of auto-
immune neuroinflammation. J. Neuroimmunol. 297, 117–126.

Kouchaki, E., Sabahi, M., Sharif, M.R., Nikouienejad, H., Akhbari, H., 2014. Numerical
status of CD4+ CD25+ Foxp3+ and CD8+ CD28− regulatory T cells in multiple
sclerosis. Iran. J. Basic Med. Sci. 17 (4), 250.

Lan, R.Y., Ansari, A.A., Lian, Z.X., Gershwin, M.E., 2005. Regulatory T cells: develop-
mation, function and role in autoimmunity. Autoimmun. Rev. 4 (6), 351–363.

Li, S., Jin, T., Zhang, H.L., Yu, H., Meng, F., Concha Quezada, H., et al., 2014. Circulating
Th17, Th22, and Th1 cells are elevated in the Guillain–Barre syndrome and down-
regulated by IVig treatments. Mediat. Inflamm. 2014.

Liu, Y.J., 2006. A unified theory of central tolerance in the thymus. Trends Immunol.
27 (5), 215–221.

Liu, W., Putnam, A.L., Xu-Yu, Z., Ztot, G.L., Lee, M.R., Zhu, S., et al., 2006. CD127 ex-
pression inversely correlates with Foxp3 and suppressive function of human CD4+ T
reg cells. J. Exp. Med. 203 (7), 1701–1711.

Long, S.A., Buckner, J.H., 2011. CD4+ FOXP3+ regulatory T cells in human auto-
immunity: more than a numbers game. J. Immunol. 187 (5), 2061–2066.

van Mierlo, G.J., Scherer, H.U., Hameetman, M., Morgan, M.E., Flierman, R., Huizinga,
T.W., et al., 2008. Cutting edge: TNFR-shedding by CD4+ CD25+ regulatory T cells
inhibits the induction of inflammatory mediators. J. Immunol. 180 (5), 2747–2751.

Müller, M., Carter, S.L., Hofier, M.J., Manders, P., Gets, D.R., Gets, M.T., et al., 2007.
CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis
by controlling the parenchymal distribution of effector and regulatory T cells in the
central nervous system. J. Immunol. 179 (5), 2774–2786.

Namdar, A., Nibnik, B., Ghahaei, M., Bayati, A., Izad, M., 2010. Effect of IFN-γ therapy
on the frequency and function of CD4+ CD25+ regulatory T-cells and Foxp3 gene
expression in relapsing-remitting multiple sclerosis (RRMS): a preliminary study. J.
Neuroimmunol. 218 (1), 120–124.

de Oliveira, D.M., de Oliveira, E.M.L., Ferrari, M.R., Semedo, P., Hiyane, M.I., Cenedese,
M.A., et al., 2015. Simvastatin ameliorates experimental autoimmune en-
cephalomyelitis by inhibiting Th1/Th17 response and cellular infiltration.
Inflammopharmacology 23 (6), 343–354.

Polman, C.H., Reingold, S.C., Banwell, B., Cohen, J.A., Filippi, M., et al., 2011.
Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria.
Ann. Neurol. 69 (2), 297–309.

Raphael, I., Nalawade, S., Edgar, T.N., Forshberg, T.G., 2015. T cell subsets and their
signature cytokines in autoimmune and inflammatory diseases. Cytokine 74 (1), 6–17.

Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., et al., 2006.
Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and auto-
immune disease. Immunol. Rev. 212 (1), 8–27.

Sedikdi, N., Samnani-Nazan, B., Martinson, J., Saunders, J., Saxson, L., Sanday, A., et al., 2006.
Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human
regulatory and activated T-cells. J. Exp. Med. 203 (7), 1693–1700.

Sellebjerg, F., Krakauer, M., Khademi, M., Olsson, T., Sorensen, P., 2012. FoxP3, CBL
and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression is
3+ CD25 high T cells in multiple sclerosis. Clin. Exp. Immunol. 170 (2), 149–155.

Snedick, N., Martinis, R., 2005. Immunology of multiple sclerosis. Annu. Rev. Immunol.
23, 683–747.

Tai, X., Van Laethem, F., Pobezinsky, L., Guinter, T., Sharrow, S.O., Adams, A., et al., 2012.
Basis of CTLA-4 function in regulatory and conventional CD4+ T cells. Blood
119 (22), 5155–5163.

Tran, D.Q., Ramsey, H., Shevach, E.M., 2007. Induction of FoxP3 expression in naive
human CD4+ FOXP3+ T cells by T-cell receptor stimulation is transforming growth
factor-β-dependent but does not confer a regulatory phenotype. Blood 110 (8),
2983–2990.

Trapp, B.D., Nave, K.A., 2008. Multiple sclerosis: an immune or neurodegenerative
disease? Annu. Rev. Neurosci. 31, 247–269.

Venken, K., Helling, N., Hensen, K., Rummens, J.L., Meder, R., D’hooge, M.B., et al.,
2006. Secondary progressive in contrast to relapsing–remitting multiple sclerosis
patients show a normal CD4+ CD25+ regulatory T-cell function and FoxP3 ex-
pression. J. Neurosci. Res. 83 (8), 1432–1446.

Venken, K., Helling, N., Thewissen, M., Somers, V., Hensen, K., Rummens, J.L., et al.,
2008a. Compromised CD4+ CD25high regulatory T-cell function in patients with
relapsing-remitting multiple sclerosis is correlated with a reduced frequency of
FoxP3-positive cells and reduced FoxP3 expression at the single-cell level.
Immunology 123 (1), 79–85.

Venken, K., Helling, N., Broekmans, T., Hensen, K., Rummens, J.L., Stinissen, P., 2008b.
Natural naive CD4+ CD25+ CD127low regulatory T-cell (Treg) development and
function are disturbed in multiple sclerosis patients: recovery of memory Treg
function during disease remission. J. Immunol. 180 (9), 6411–6420.

Vigiletta, V., Baecher-Allan, C., Weiner, H.L., Hafler, D.A., 2004. Loss of functional sup-
pression inversely correlates with FoxP3 and suppressive function of human CD4+ T
reg cells. J. Exp. Med. 203 (7), 1701–1711.

Wang, W.-J., Hao, C.-F., Qu, Q.-L., Wang, X., Qiu, L.-H., Lin, Q.-D., 2010. The dereg-
ulation of regulatory T cells on interleukin-17 producing T helper cells in patients
with unexplained early recurrent miscarriage. Hum. Reprod. 25 (10), 2591–2596.