หัวข้อวิทยานิพนธ์ ผลของโบรไมด์ผสมในเมทิลแอมโมเนียมเลดไอโดไดด์ต่อสมบัติการแปลงพลังงานแสงของเซลล์แสงอาทิตย์ชนิดเพอรอฟสไกต์ที่ใช้ซิงก์ออกไซด์เป็นฐาน

ผู้เขียน นายชวิศ กล้ายวิมติ

ปริญญา วิทยาศาสตรมหาบัณฑิต (ฟิสิกส์ประยุกต์)

อาจารย์ที่ปรึกษา ศาสตราจารย์ประจำ ка

บทคัดย่อ ที่ไม่ครบ

ในงานวิจัยนี้ได้เตรียมชั้นดูดกลืนแสงเพอรอฟสไกต์ FA₀.₄MA₀.₆PbI₂₂Br₂ ที่ผสมระหว่างไอโอไดด์และโบรไมด์ด้วยวิธีล้างตอนเพื่อเพิ่มประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดเพอรอฟสไกต์ โดยชั้นดูดกลืนแสงเพอรอฟสไกต์ที่เตรียมจะมีโครงสร้างแบบ ITO/ZnO/PCBM/perovskite/P3HT/Au โดยที่อัตราส่วนระหว่างไอโอไดด์และโบรไมด์ในชั้นดูดกลืนแสงเพอรอฟสไกต์ถูกจับกันจากตัวส่วนโดยโมลของสารละลาย PbI₂ และ PbBr₂ ส่วนรับผิดชอบสัดส่วนของชั้นดูดกลืนแสงเพอรอฟสไกต์ได้ถูกศึกษาด้วยกล้องจุลทรรศน์แบบส่องกราดพบว่าขนาดของผลึกในชั้นดูดกลืนแสงเพอรอฟสไกต์มีค่าใกล้เคียงกันเมื่อเพิ่มสัดส่วนของโบรไมด์สำหรับการศึกษาองค์ประกอบทางเคมีของชั้นดูดกลืนแสงเพอรอฟสไกต์ด้วยเทคนิคการวิเคราะห์ความทินเชิงพลังงานสามารถยืนยันได้ว่าพบธาตุโบรมีในชั้นดูดกลืนแสงเพอรอฟสไกต์ การวิเคราะห์สมบัติทางผลึกด้วยเทคนิคการตรวจของยาวของผลึกพบว่าโบรไมด์ไอออนสามารถเข้าไปแทนที่ไอโอไดด์ไอออนในผลึกของชั้นดูดกลืนแสงเพอรอฟสไกต์ จากการลดลงของค่าระยะห่างของระนาบผลึก (d-spacing) และค่าคงที่แลทซิ "a" เมื่อปริมาณ Br เพิ่มขึ้นจากข้อมูลการวิเคราะห์สมบัติทางผลึกด้วยเทคนิควิสัยสีเมปลอดโฟโตประสบ สามารถนำมาคำนวณค่าความกว้างของแถบพลังงาน (E₀) ซึ่งพบว่ามีค่าเพิ่มขึ้นระหว่าง 1.56-1.62 eV เมื่อเพิ่มสัดส่วนของโบรไมด์ไอออน สำหรับการศึกษาประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดเพอรอฟสไกต์พบว่าค่าประสิทธิภาพเฉลี่ยสูงสุดมีค่า 2.17% ที่เงื่อนไข FA₀.₄MA₀.₆PbI₂₂Br₂ ซึ่งสูงกว่าเซลล์แสงอาทิตย์ชนิดเพอรอฟสไกต์แบบปกติที่เงื่อนไข
FA0.4MA0.6PbI3 ซึ่งมีค่า 1.53% โดยการเพิ่มขึ้นของค่าประสิทธิภาพนี้เป็นผลมาจากค่า Jsc และ FF ที่เพิ่มขึ้นซึ่งมีสาเหตุจากการดูดกลืนแสงที่เพิ่มขึ้นและการที่อิเล็กตรอนเดินทางสะดวกขึ้น
Thesis Title
Effects of Bromide-mixing in Methylammonium Lead Iodide on Photovoltaic Properties of ZnO-based Perovskite Solar Cells

Author
Mr. Chawit Khaywimut

Degree
Master of Science (Applied Physics)

Advisor
Asst. Prof. Dr. Pipat Ruankham

ABSTRACT

To improve efficiency of ZnO-based perovskite solar cells, a mixture iodide-bromide (I-Br) of FA_{0.4}MA_{0.6}PbI_{2-x}Br_{2x} perovskite structure was prepared by two-step sequential method and was used as photo absorber layer. Solar cells with structure of ITO/ZnO/PCBM/perovskite/P3HT/Au were fabricated and were characterized. The different content value x of Br was established by mixing precursor PbI_{2} and PbBr_{2} at various molar ratio. The morphology of photo absorber layer was studied by field emission electron microscope (FE-SEM). It was found that crystallite sizes of perovskite crystal were comparable for different Br doping. The energy dispersive spectroscopy (EDS) data showed the existence of Br ions in perovskite absorber layer. The investigation of crystallite properties via X-ray diffraction (XRD) showed the substitutional of Br ions by reducing d-spacing values and lattice constants “a” with increasing Br contents. The result of optical properties from UV-visible spectroscopy showed the increase of energy band gap value between 1.56-1.62 eV with increasing Br contents. The highest average power conversion efficiency (PCE) of 2.17% was achieved from the device with FA_{0.4}MA_{0.6}PbI_{2-x}Br_{0.2} layer. This PCE value is higher than the normal condition of FA_{0.4}MA_{0.6}PbI_{3} device which exhibited 1.53% efficiency. The enhancement in PCE could be explained by the development of light absorption and charges transport.