Regular Blaschke Para-Umbilical Hypersurfaces in the Conformal Space \(\mathbb{Q}^n_s \)

Tongzhu Li\(^1\), Changxiong Nie\(^2\)

1 Department of Mathematics, Beijing Institute of Technology, Beijing, China, 100081, E-mail: litz@bit.edu.cn

2 Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan, China, 430062, E-mail: chxnie@163.com

December 15, 2015

Abstract

In [2] we have classified the Blaschke quasi-umbilical submanifolds in the conformal space \(\mathbb{Q}^n_s \). In this paper we shall classify the Blaschke para-umbilical hypersurfaces in the conformal space \(\mathbb{Q}^n_s \). That may be also considered as the extension of the classification of the conformal isotropic submanifolds in the conformal space \(\mathbb{Q}^n_s \).

2010 Mathematics Subject Classification: Primary 53A30; Secondary 53B25.

Key words and phrases: regular submanifolds, conformal invariants, Blaschke para-umbilical hypersurfaces.

§ 1. Introduction.

Let \(\mathbb{R}^N_s \) denote pseudo-Euclidean space, which is the real vector space \(\mathbb{R}^N \) with the non-degenerate inner product \(\langle \cdot, \cdot \rangle \) given by

\[
\langle \xi, \eta \rangle = - \sum_{i=1}^s x_i y_i + \sum_{i=s+1}^N x_i y_i,
\]

\(^1\)T. Z. Li is supported by the grant No. 11571037 of NSFC;
\(^2\)C. X. Nie is partially supported by the grant No. 11571037 of NSFC.
where $\xi = (x_1, \cdots, x_N), \eta = (y_1, \cdots, y_N) \in \mathbb{R}^N$.

Let

$$C^{n+1} := \{\xi \in \mathbb{R}^{n+2}_{n+1} | \langle \xi, \xi \rangle = 0, \xi \neq 0\},$$

$$Q^n_s := \{[\xi] \in \mathbb{R}^{P^{n+1}} | \langle \xi, \xi \rangle = 0\} = C^{n+1}/(\mathbb{R}\{0\}).$$

We call C^{n+1} the light cone in \mathbb{R}^{n+2}_{n+1} and Q^n_s the conformal space (or projective light cone) in $\mathbb{R}^{P^{n+1}}$.

The standard metric h of the conformal space Q^n_s can be obtained through the pseudo-Riemannian submersion $\pi: C^{n+1} \rightarrow Q^n_s, \xi \mapsto [\xi]$.

We can check (Q^n_s, h) is a pseudo-Riemannian manifold.

We define the pseudo-Riemannian sphere space $S^n_s(r)$ and pseudo-Riemannian hyperbolic space $H^n_s(r)$ with radius r by

$$S^n_s(r) = \{u \in \mathbb{R}^{n+1}_s | \langle u, u \rangle = r^2\}, \quad H^n_s(r) = \{u \in \mathbb{R}^{n+1}_s | \langle u, u \rangle = -r^2\}.$$

When $r = 1$ we usually omit the radius r. When $s = 1$ and $r = 1$ we call them de Sitter space S^n_1 and anti-de Sitter space H^n_1.

We may assume Q^n_s to be the common compactification of \mathbb{R}^n_s, S^n_s and H^n_s, and \mathbb{R}^n_s, S^n_s and H^n_s to be the subsets of Q^n_s when referring only to the conformal geometry.

When $s = 0$, our analysis in this text can be reduced to the Moebius submanifold geometry in the sphere space (see [4]).

This paper is organized as follows. In Section 2 we recall the submanifold theory in the conformal space Q^n_s and give the relations between conformal invariants and isometric ones for submanifolds in several particular surroundings. In Section 3 we classify the conformal surfaces in Q^3_s. In Section 4 we classify the Blaschke para-umbilical hypersurfaces in Q^n_s.

§ 2. Fundamental equations.

We recall the scheme of submanifold theory in the conformal space Q^n_s first. A classical theorem tells us that

Theorem 2.1. (see [3]) The conformal group of the conformal space Q^n_s is $O(n - s + 1, s + 1)/\{\pm 1\}$. If φ is a conformal transformation on Q^n_s, then there is $A \in O(n - s + 1, s + 1)$, such that $\varphi = \Phi_A$ and $\Phi_A([X]) = [XA]$.

Suppose that $x: M^n_m \rightarrow Q^n_s(s \geq 1)$ is an m-dimensional Riemannian or pseudo-Riemannian submanifold with index $t(0 \leq t \leq s)$. That is, $x_*(TM)$ is non-degenerate subbundle of (TQ^n_s, h) with index $t(0 \leq t \leq s)$. When $t = 0$ we
call M space-like submanifold. When $t > 0$ we call M pseudo-Riemmanian submanifold. Especially when $t = 1$, M is called Lorentzian submanifold or time-like submanifold. From now on, we always assume that the submanifold x has index $t(0 \leq t \leq s)$.

Let $y : U \rightarrow C^{n+1}$ be a lift of $x : M \rightarrow Q^n_s$ defined on an open subset U of M. We denote by Δ and ρ the Laplacian operator and the scalar curvature of the local non-degenerate metric $\langle dy, dy \rangle$. Then we have

Theorem 2.2. (cf. [3]) Suppose that $x : M \rightarrow Q^n_s$ is an m-dimensional Riemannian or pseudo-Riemannian submanifold with index $t(0 \leq t \leq s)$. On M the 2-form

$$g := \pm (\langle \Delta y, \Delta y \rangle - \frac{m}{m-1} \rho) \langle dy, dy \rangle$$

is a globally defined conformal invariant of x.

Definition 2.1. We call an m-dimensional submanifold $x : M \rightarrow Q^n_s$ a regular submanifold if the 2-form $g := \pm (\langle \Delta y, \Delta y \rangle - \frac{m}{m-1} \rho) \langle dy, dy \rangle$ is non-degenerate. g is called the conformal metric of the regular submanifold $x : M \rightarrow Q^n_s$.

In this paper we assume that $x : M \rightarrow Q^n_s$ is a regular submanifold. Since the metric g is non-degenerate (we call it the conformal metric), there exists a unique lift $Y : M \rightarrow C^{n+1}$ such that $g = \langle dY, dY \rangle$ up to sign. We call Y the canonical lift of x.

Definition 2.2. The two submanifolds x, \tilde{x} are conformally equivalent, if there exists a conformal transform $\sigma : Q^n_s \rightarrow Q^n_s$, such that $\tilde{x} = \sigma \circ x$.

It follows from Theorem 2.1 that

Theorem 2.3. Two submanifolds $x, \tilde{x} : M \rightarrow Q^n_s$ are conformally equivalent if and only if there exists $T \in O(n-s+1, s+1)$ such that $\tilde{Y} = TY$, where Y, \tilde{Y} are canonical lifts of x, \tilde{x}, respectively.

Let $\{e_1, \ldots, e_m\}$ be a local basis of M with dual basis $\{\omega^1, \ldots, \omega^m\}$. Denote $Y_i = e_i(Y)$. We define

$$N := -\frac{1}{m} \Delta Y - \frac{1}{2m^2} \langle \Delta Y, \Delta Y \rangle Y.$$

Analogous to the corresponding calculation of [13], we have

$$\langle N, Y \rangle = 1, \langle N, N \rangle = 0, \langle N, Y_k \rangle = 0, \quad 1 \leq k \leq m.$$

We may decompose \mathbb{R}^{n+2}_s such that

$$\mathbb{R}^{n+2}_s = \text{span}\{Y, N\} \oplus \text{span}\{Y_1, \ldots, Y_m\} \oplus \mathcal{V}$$

where $\mathcal{V} \perp \text{span}\{Y, N, Y_1, \ldots, Y_m\}$. We call \mathcal{V} the conformal normal bundle for $x : M \rightarrow Q^n_s$. Let $\{\xi_{m+1}, \ldots, \xi_n\}$ be a local basis of the bundle \mathcal{V} over M.

3
Then \(\{Y, N, Y_1, \cdots, Y_m, \xi_{m+1}, \cdots, \xi_n\} \) forms a moving frame in \(\mathbb{R}^{n+2} \) along \(M \).

We adopt the conventions on the ranges of indices in this paper without special claim:

\[1 \leq i, j, k, l, p, q \leq m; \quad m + 1 \leq \alpha, \beta, \gamma, \nu \leq n. \]

We may write the structural equations as follows

\[dY = \sum_i \omega^i Y_i; \quad dN = \sum_i \psi^i Y_i + \sum_\alpha \phi^\alpha \xi_\alpha; \quad (2.1) \]

\[dY_i = -\psi_i Y - \omega_i N + \sum_j \omega^j Y_j + \sum_\alpha \omega^\alpha \xi_\alpha; \quad (2.2) \]

\[d\xi_\alpha = -\phi_\alpha Y + \sum_i \omega^i_\alpha Y_i + \sum_\beta \omega^\beta_\alpha \xi_\alpha, \quad (2.3) \]

where the coefficients of \(\{Y, N, Y_i, \xi_\alpha\} \) are 1-forms on \(M \).

It is clear that \(A := \sum_i \psi_i \otimes \omega^i, B := \sum_{i, \alpha} \omega^\alpha_i \otimes \omega^\alpha \xi, \Phi := \sum_\alpha \phi^\alpha \xi_\alpha \) are globally defined conformal invariants. Let

\[\psi_i = \sum_j A_{ij} \omega^j, \quad \omega^\alpha_i = \sum_j B^\alpha_{ij} \omega^j, \quad \phi^\alpha = \sum_i C^\alpha_i \omega^i. \]

Denote the covariant derivatives of these tensors with respect to conformal metric \(g \) as follows:

\[\sum_j C^\alpha_{ij} \omega^j = dC^\alpha_i - \sum_j C^\alpha_j \omega^j + \sum_\beta C^\beta_i \omega^\beta; \]

\[\sum_k A_{ij,k} \omega^k = dA_{ij} - \sum_k A_{ik} \omega^k - \sum_k A_{kj} \omega^i; \]

\[\sum_k B^\alpha_{ij,k} \omega^k = dB^\alpha_{ij} - \sum_k B^\alpha_{ik} \omega^k - \sum_k B^\alpha_{kj} \omega^i + \sum_\beta B^\beta_{ij} \omega^\alpha. \]

The curvature forms \(\{\Omega^i_j\} \) and the normal curvature forms \(\{\Omega^\alpha_\beta\} \) of the submanifold \(x : M \to \mathbb{Q}^n_\alpha \) can be written by

\[\Omega^i_j = \frac{1}{2} \sum_{k,l} R^i_{jkl} \omega^k \wedge \omega^l = \omega^i \wedge \psi_j + \psi^i \wedge \omega_j - \sum_\alpha \omega^\alpha_i \wedge \omega^\alpha_j; \]

\[\Omega^\alpha_\beta = \frac{1}{2} \sum_{k,l} R^\alpha_{\beta kl} \omega^k \wedge \omega^l = -\sum_i \omega^\alpha_i \wedge \omega^\beta_j. \]

Denote

\[g_{ij} = \langle Y_i, Y_j \rangle, \quad g_{\beta\gamma} = \langle \xi_\beta, \xi_\gamma \rangle, \quad (g^{ij}) = (g_{ij})^{-1}, \quad (g^{\beta\gamma}) = (g_{\beta\gamma})^{-1}, \]
\[R_{ijkl} = \sum_p g_{ip} R^p_{jkl}, \quad R_{\alpha\beta kl} = \sum_\nu g_{\alpha\nu} R^{\nu}_{\beta kl}. \]

Then the integrable conditions of the structure equations are

\[A_{ij,k} - A_{ik,j} = -\sum_{\alpha\beta} g_{\alpha\beta}(B^\alpha_{ij} C^\beta_k - B^\alpha_{ik} C^\beta_j); \quad B^\alpha_{ij,k} - B^\alpha_{ik,j} = g_{ij} C^\alpha_k - g_{ik} C^\alpha_j; \]

\[C^\alpha_{i,j} - C^\alpha_{j,i} = \sum_{kl} g^{kl}(B^\alpha_{ik} A_{lj} - B^\alpha_{jk} A_{li}); \quad R_{\alpha\beta ij} = \sum_{kl\gamma\nu} g_{\alpha\gamma} g_{\beta\nu} g^{kl}(B^\gamma_{ik} B^\nu_{lj} - B^\nu_{ik} B^\gamma_{lj}); \]

\[R_{ijkl} = \sum_{\alpha\beta} g_{\alpha\beta}(B^\alpha_{ik} B^\beta_{jl} - B^\beta_{ik} B^\alpha_{jl}) + (g_{ik} A_{jl} - g_{il} A_{jk}) + (A_{ik} g_{jl} - A_{il} g_{jk}). \]

Furthermore, we have

\[\text{tr}(A) = \frac{1}{2m}(\frac{m}{m-1}\rho \pm 1); \quad R_{ij} = \text{tr}(A) g_{ij} + (m-2) A_{ij} - \sum_{k\alpha\beta} g^{kl} g_{\alpha\beta} B^\alpha_{ik} B^\beta_{lj}; \]

\[(1-m) C^\alpha_i = \sum_{jk} g^{jk} B^\alpha_{ij,k}; \quad \sum_{ijkl\alpha\beta} g^{ij} g^{kl} g_{\alpha\beta} B^\alpha_{ik} B^\beta_{lj} = \pm \frac{m-1}{m}; \quad \sum_{ij} g^{ij} B^\alpha_{ij} = 0. \]

From above we know that in the case \(m \geq 3 \) all coefficients in the PDE system (2.1)-(2.3) are determined by the conformal metric \(g \), the conformal second fundamental form \(B \) and the normal connection \(\{\omega^\alpha\} \) in the conformal normal bundle. Then we have

Theorem 2.4. Two hypersurfaces \(x : M^m_t \to \mathbb{Q}^{m+1}_s \) and \(\tilde{x} : \tilde{M}^m_t \to \mathbb{Q}^{m+1}_s (m \geq 3) \) are conformal equivalent if and only if there exists a diffeomorphism \(f : M \to \tilde{M} \) which preserves the conformal metric and the conformal second fundamental form. In another word, \(\{g, B\} \) is a complete invariants system of the hypersurface \(x : M^m \to \mathbb{Q}^{m+1}_s (m \geq 3) \).

When \(\epsilon = 1, 0, -1 \), let the pseudo-Riemannian space form \(R^n_s(\epsilon) \) denote \(\mathbb{S}^n_s, \mathbb{R}^n_s, \mathbb{H}^n_s \), respectively. Let \(\sigma_\epsilon : R^n_s(\epsilon) \to \mathbb{Q}^n_s \) be the standard conformal embedding (see [3]).

Next we give the relations between the conformal invariants induced above and isometric invariants of \(u : M^m_t \to R^n_s(\epsilon) \). Let \(\{e_1, \ldots, e_m\} \) be an local basis for \(u \) with dual basis \(\{\omega^1, \ldots, \omega^m\} \). Let \(\{e_{m+1}, \ldots, e_n\} \) be a local basis of the normal bundle of \(u \). Then we have the first and second fundamental forms \(I, II \) and the mean curvature vector \(\tilde{H} \). We may write

\[I = \sum_{ij} I_{ij} \omega^i \otimes \omega^j, \quad II = \sum_{i\alpha} h^i_{\alpha} \omega^i \otimes \omega^\alpha. \]
\[(I^{ij}) = (I_{ij})^{-1}, \quad \vec{H} = \frac{1}{m} \sum_{ij\alpha} I^{ij} h^\alpha_{ij} e_\alpha = \sum_\alpha H^\alpha e_\alpha.\]

From the structure equations
\[
du = \sum_i \omega^i u_i, \quad du_i = \sum_j \theta^j_i u_j + \sum_\alpha \theta^\alpha_i u_j - \epsilon \omega_i, \quad dc_\alpha = \sum_j \theta^j_\alpha u_j + \sum_\beta \theta^\beta_\alpha e_\beta,
\]
we have
\[
\Delta_I u = m(\vec{H} - \epsilon u), \quad \rho_I = m(m-1)\epsilon + (m^2|\vec{H}|^2 - |II|^2),
\]
where
\[
|\vec{H}|^2 = \sum_{\alpha\beta} I_{\alpha\beta} H^\alpha H^\beta, \quad |II|^2 = \sum_{ijk\alpha\beta} I_{\alpha\beta} I^{ij} h^\alpha_{ij} h^\beta_{kl}.
\]

For the global lift \(y : M \to C^{m+1}\), the conformal factor of \(y\) is
\[
e^{2\tau} = \pm \frac{m}{m-1} (|II|^2 - m|\vec{H}|^2).
\]

Furthermore, we have
\[
\Delta_I u = m(\vec{H} - \epsilon u), \quad \rho_I = m^2|\vec{H}|^2 - |II|^2;
\]
\[
A_{ij} = \tau_i \tau_j + \sum_\alpha h^\alpha_{ij} H_\alpha - \tau_{i,j} - \frac{1}{2}(\sum_{ij} I^{ij} \tau_i \tau_j + |\vec{H}|^2 - \epsilon) I_{ij},
\]
\[
B^\alpha_{ij} = e^\tau (h^\alpha_{ij} - H^\alpha I_{ij}), \quad e^\tau C^\alpha_i = H^\alpha \tau_i - \sum_j h^\alpha_{ij} \tau^j - H^\alpha_{ij},
\]
where \(\tau_{i,j}\) is the Hessian of \(\tau\) respect to \(I\) and \(H^\alpha_{ij}\) is the covariant derivative of the mean curvature vector field of \(u\) in the normal bundle \(N(M)\) respect to \(I\).

\section{3. Conformal surfaces in \(Q^3_s\).}

In this section let \(x : M^{m}_{t} \to Q^{m+1}_{s}\) be an \(m\)-dimensional regular hypersurface with index \(t(0 \leq t \leq s)\). We use the notations in Section 2 and omit all normal scripts in the formulas because the codimension now is one. Let
\[
A^i_j = \sum_k g^{ik} A_{kj}, \quad A = (A^i_j),
\]
\[
B^i_j = \sum_k g^{ik} B_{kj}, \quad B = (B^i_j).
\]
We rewrite some equations occurred previously in the new form as follows

\[\sum_{ij} B^i_j B^j_i = \frac{m-1}{m}, \quad \sum_i B^i_i = 0, \quad (3.1) \]

\[B_{ij,k} - B_{ik,j} = g_{ij}C_k - g_{ik}C_j, \quad A_{ij,k} - A_{ik,j} = B_{ij}C_k - B_{ik}C_j, \quad (3.2) \]

\[C_{i,j} - C_{j,i} = \sum_k (B_{ik}A^k_j - B_{jk}A^k_i), \quad (3.3) \]

\[\sum_i A^i_i = \frac{1}{2m}(\frac{m}{m-1}\rho \pm 1). \quad (3.4) \]

Definition 3.1. We call an m-dimensional regular submanifold \(x: M \to \mathbb{Q}^n_s \) conformal if the conformal form \(\Phi \equiv 0 \).

Let \(x: M \to \mathbb{Q}^n_s \) be a regular space-like surface. We can write the structural equations as

\[e_i(N) = \sum_j A^i_j Y_j + C_i \xi, \quad e_i(\xi) = C_i Y + \sum_j B^i_j Y_j, \quad (3.5) \]

\[e_j(Y_i) = -A_{ij} Y - g_{ij} N + \sum_k \Gamma^k_{ij} Y_k + B_{ij} \xi. \]

Since \(m = 2 \), we can find an orthonormal basis \(e_1, e_2 \) of \(x \) from (3.1) such that

\[B = \text{diag}(\frac{1}{2}, -\frac{1}{2}). \]

If \(x \) is a conformal surface, we have \(C_i = 0, i = 1, 2 \). It implies from (3.2) that \(B_{ij,k}, A_{ij,k} \) are all symmetric with respect to the subscripts. For the same reason that \(x \) has vanishing conformal form, by (3.3), we can modify the orthonormal basis \(e_1, e_2 \) such that

\[A = \text{diag}(a, b). \]

Taking \(i, j \) various values in

\[\sum_k B_{ij,k} \omega^k = dB_{ij} - \sum_k B_{ik} \omega^k_j - \sum_k B_{kj} \omega^i_k, \quad (3.6) \]

we have

\[B_{11,i} = B_{22,i} = 0, i = 1, 2. \]

Therefore \(B_{12,i} = 0, i = 1, 2 \). Letting \(i = 1, j = 2 \) in (3.6), we get the connection of \(x \) is flat, i.e., \(\omega^1_2 = 0 \). It follows from (3.4) that

\[a + b = -\frac{1}{4}. \quad (3.7) \]
In addition, we may assume that there exist local co-ordinates u, v such that

$$e_1 = \frac{\partial}{\partial u}, \quad e_2 = \frac{\partial}{\partial v}.$$

Taking $i = 1, j = 2$ in

$$\sum_k A_{ij,k} \omega^k = dA_{ij} - \sum_k A_{ik} \omega^j - \sum_k A_{kj} \omega^i,$$

(3.8)

and noting $\omega^1_2 = 0$, we have

$$A_{12,i} = 0, \quad i = 1, 2.$$

So, when taking $i = j = 1$ and $i = j = 2$ in (3.8) respectively, we know that $a_v = b_u = 0$. Adding (3.7) we shall see that a, b are both constant.

Next, we have the structural equations as the following new form

$$N_u = aY_u, \quad N_v = bY_v, \quad \xi_u = \frac{1}{2}Y_u, \quad \xi_v = -\frac{1}{2}Y_v,$$

(3.9)

$$Y_{uv} = 0, \quad Y_{uu} = -aY - N + \frac{1}{2}\xi, \quad Y_{vv} = -bY - N - \frac{1}{2}\xi.$$

(3.10)

So, we know from $Y_{uv} = 0$ that Y can be split as

$$Y = F(u) + G(v).$$

Substituting it into the structural equations, we have

$$F''' + (2a - \frac{1}{4})F' = 0, \quad G''' + (2b - \frac{1}{4})G' = 0.$$

(3.11)

By (3.7) we have

$$(2a - \frac{1}{4}) + (2b - \frac{1}{4}) = -1.$$

(3.12)

In the following we discuss the resolve into three essential cases by noting the character of the coefficients of the above PDEs (3.11).

Case I: $2a - \frac{1}{4} < 0, 2b - \frac{1}{4} < 0$.

Let $2a - \frac{1}{4} = -r^2$. Then $2b - \frac{1}{4} = r^2 - 1$ and $0 < r < 1$. We have a particular resolve

$$F = (r \cosh(ru), 0, r \sinh(ru), 0, 1),$$

$$G = (0, \sqrt{1 - r^2} \cosh(\sqrt{1 - r^2}v), 0, \sqrt{1 - r^2} \sinh(\sqrt{1 - r^2}v), 0).$$
And we know that any resolve \((Y, N, Y_u, Y_v, \xi)\) of PDEs (3.9) and (3.10) is different from the initial resolve \((Y, N, Y_u, Y_v, \xi)_0\) up to an isometric transformation \(T\) in \(\mathbb{R}^5_2\), i.e., \((Y, N, Y_u, Y_v, \xi) = T(Y, N, Y_u, Y_v, \xi)_0\) so

\[Y = F + G := (x, 1) \]

\[= (r \cosh(ru), \sqrt{1-r^2} \cosh(\sqrt{1-r^2}v), r \sinh(ru), \sqrt{1-r^2} \sinh(\sqrt{1-r^2}v), 1) \]

locally determines a surface \(x : \mathbb{H}^1(r) \times \mathbb{H}^1(\sqrt{1-r^2}) \rightarrow \mathbb{H}^3_1\) whose canonical lift is \(Y\).

Case II: \(2a - \frac{1}{4} < 0, 2b - \frac{1}{4} > 0\).

Let \(2a - \frac{1}{4} = -r^2 - 1\). Then \(2b - \frac{1}{4} = r^2\) and \(r > 0\). We have a particular resolve

\[F = (1, r \cosh(\sqrt{r^2 + 1}u), r \sinh(\sqrt{r^2 + 1}u), 0, 0), \]

\[G = (0, 0, 0, \sqrt{r^2 + 1} \cos(rv), \sqrt{r^2 + 1} \sin(rv)). \]

And we know that any resolve \((Y, N, Y_u, Y_v, \xi)\) of PDEs (3.9) and (3.10) is different from the initial resolve \((Y, N, Y_u, Y_v, \xi)_0\) up to an isometric transformation \(T\) in \(\mathbb{R}^5_2\), i.e., \((Y, N, Y_u, Y_v, \xi) = T(Y, N, Y_u, Y_v, \xi)_0\) so

\[Y = F + G := (1, x) \]

\[= (1, r \cosh(\sqrt{r^2 + 1}u), r \sinh(\sqrt{r^2 + 1}u), \sqrt{r^2 + 1} \cos(rv), \sqrt{r^2 + 1} \sin(rv)) \]

locally determines a surface \(x : \mathbb{H}^1(r) \times S^1(\sqrt{r^2 + 1}) \rightarrow S^3_1\) whose canonical lift is \(Y\).

Case III: \(2a - \frac{1}{4} = -1, 2b - \frac{1}{4} = 0\).

We have a particular resolve

\[F = (0, \cosh u, \sinh u, 0, 0), \]

\[G = (\frac{v^2}{2}, 0, 0, v, \frac{v^2}{2} - 1). \]

And we know that any resolve \((Y, N, Y_u, Y_v, \xi)\) of PDEs (3.9) and (3.10) is different from the initial resolve \((Y, N, Y_u, Y_v, \xi)_0\) up to an isometric transformation \(T\) in \(\mathbb{R}^5_2\), i.e., \((Y, N, Y_u, Y_v, \xi) = T(Y, N, Y_u, Y_v, \xi)_0\) so

\[Y = F + G := (\frac{(x, x)}{2}, x, \frac{(x, x)}{2} - 1) \]

\[= (\frac{v^2}{2}, \cosh u, \sinh u, v, \frac{v^2}{2} - 1) \]

locally determines a surface \(x : \mathbb{H}^1 \times \mathbb{R}^1 \rightarrow \mathbb{R}^3_1\) whose canonical lift is \(Y\).
Summing up, we obtain

Theorem 3.1 If $x: \mathbb{M}^2 \to \mathbb{Q}^3_1$ is a space-like conformal surface, then it must be locally conformally equivalent to one of the three standard embedding surfaces: $\mathbb{H}^1(r) \times \mathbb{H}^1(\sqrt{1-r^2}) \subset \mathbb{H}^3_1$, $\mathbb{H}^1(r) \times \mathbb{S}^1(\sqrt{r^2+1}) \subset \mathbb{S}^3_1$, and $\mathbb{H}^1 \times \mathbb{R}^1 \subset \mathbb{R}^3_1$, where all radii of sphere or hyperbolic forms should be positive.

Similarly, we shall get

Theorem 3.2 If $x: \mathbb{M}^2_1 \to \mathbb{Q}^3_1$ is a time-like conformal surface, then it must be locally conformally equivalent to one of the five standard embedding surfaces: $\mathbb{H}^1(r) \times \mathbb{H}^1(\sqrt{1-r^2}) \subset \mathbb{H}^3_1$, $\mathbb{S}^1(r) \times \mathbb{H}^1(\sqrt{1+r^2}) \subset \mathbb{H}^3_1$, $\mathbb{S}^1(r) \times \mathbb{S}^1(\sqrt{1-r^2}) \subset \mathbb{S}^3_1$, $\mathbb{R}^1 \times \mathbb{S}^1 \subset \mathbb{R}^3_1$, and $\mathbb{S}^1 \times \mathbb{R}^1 \subset \mathbb{R}^3_1$, where all the radii of (pseudo-Riemannian) sphere or hyperbolic forms should be positive.

§ 4. Blaschke para-umbilical hypersurfaces in \mathbb{Q}^n_0.

We remind readers that we shall retain the assumption on the head of Section 2. First, we give the

Definition 4.1. We call an m-dimensional regular hypersurface $x: \mathbb{M}^m \to \mathbb{Q}^m_1$ Blaschke para-umbilical if there exist a smooth function λ, μ on \mathbb{M} such that

$$A = \lambda I_m + \mu B, \quad \text{and} \quad \Phi \equiv 0, \quad (4.1)$$

where I_m means m order unit matrix.

Remark 4.1. This definition is well-defined and it has no matter with the choose of local basis of \mathbb{M}. When $n = m + 1$, a Blaschke quasi-umbilical submanifold reduces to a Blaschke para-umbilical hypersurface (c.f. [2]).

We have

Proposition 4.1. If $u: \mathbb{M}^m_t \to \mathbb{R}^m_1(\epsilon)$ is a regular hypersurface with constant scalar curvature ρ_t and mean curvature H, then $x = \sigma_\epsilon \circ u$ is a Blaschke para-umbilical hypersurface in \mathbb{Q}^m_1.

Proof Because of (2.4) and (2.5), we know immediately that $|\vec{H}|^2$ and $|II|^2$ are both constant. And one can easily see that the conformal factor $e^{2\tau} = \pm \frac{m}{m-1}(|II|^2 - m|\vec{H}|^2)$ =constant. If the unit normal vector of hypersurface x is space-like (or time-like), then we denote $\epsilon = 1$ (or -1). By use of (2.6) and (2.7), it follows from above that

$$e^{2\tau} A = \epsilon H h + \frac{1}{2}(\epsilon - \epsilon H^2) I_m;$$

$$e^{\tau} B = h - H I_m, \quad C_i = 0, \forall i.$$

If we choose $\lambda = \frac{1}{2}e^{-2\tau}(\epsilon + \epsilon H^2)$, and $\mu = \epsilon e^{\tau} H$, we can verify that all the conditions of a Blaschke quasi-umbilical submanifold are satisfied. □
Proposition 4.2. Suppose that \(x : M^m \to Q_{m+1} \) is a Blaschke para-umbilical hypersurface in \(Q_{m+1} \). Then the smooth function \(\lambda \) in (4.1) must be constant.

Proof Suppose that \(\xi \) is the unit normal vector of hypersurface \(x \). Then from (3.1) and (3.5) we get
\[
e_i(N) = \lambda e_i(Y) + \mu e_i(\xi).
\]
That means,
\[
dN + \lambda dY + \mu d\xi = 0, \tag{4.2}
\]
which implies that
\[
d\lambda \wedge dY + d\mu \wedge d\xi = 0.
\]
Letting \(\lambda_i = e_i(\lambda), \mu_i = e_i(\mu) \), combining with (3.5) and the vanishing conformal form, we have
\[
\sum_{ijk} \lambda_i \omega^i \wedge \omega^j \delta^k Y_k + \sum_{ijk} \mu_i \omega^i \wedge \omega^j B^k_j Y_k = 0.
\]
Because of the linear independence of \(\{Y_1, \ldots, Y_m\} \) and the Cartan’s lemma, we have
\[
\lambda_i \delta^k_j + \mu_i B^k_j = \lambda_j \delta^k_i + \mu_j B^k_i. \tag{4.3}
\]
Because \(x \) has vanishing conformal form, by (3.3), we can choose an appropriate orthonormal basis \(\{e_1, \ldots, e_m\} \) such that
\[
A = \text{diag}(a_i), \quad B = \text{diag}(b_i).
\]
For (4.2), fixing \(i \), letting \(j = k \), and taking summation over \(j \), it follows from (3.4) that
\[
\lambda_i - \frac{1}{m-1} \mu_i b_i = 0. \tag{4.4}
\]
Taking \(i \neq j = k \) in (4.2), we get
\[
\lambda_i + \mu_i b_j = 0, \quad i \neq j. \tag{4.5}
\]
From (4.4) and (4.5) we have
\[
\mu_i (b_j + \frac{1}{m-1} b_i) = 0, \quad i \neq j. \tag{4.6}
\]
If \(\mu_i \)'s are all zero, it follows from (4.4) that \(\lambda_i \)'s are all zero. Then \(\lambda, \mu \) are both constant over \(M \).

On the contrary, if \(\mu_i \)'s are not all zero, without the loss of generality, we may assume that \(\mu_1 \neq 0 \), then combining (3.1) and
\[
b_i = -\frac{1}{m-1} b_1,
\]
11
we can adjust the orient of the unit normal vector \(\xi \) such that
\[
b_1 = \frac{m - 1}{m}, \quad b_2 = \cdots = b_m = -\frac{1}{m}. \tag{4.7}
\]
In the following we adopt the conventions on the ranges of indices
\[
2 \leq \alpha, \beta \leq m.
\]
Taking \(i, j \) various values in (3.6), we have
\[
B_{11,i} = B_{\alpha\beta,i} = 0, \forall i.
\]
Therefore \(B_{1\alpha,i} = 0, \forall i \). Taking \(i = 1, j = \alpha \) in (3.6), we have \(\omega_{1\alpha} = 0 \). Similarly as precious induction in Section 3, we have
\[
R_{1\alpha1\alpha} = 0 = \epsilon b_1 b_2 + a_1 + a_\alpha, \tag{4.8}
\]
where \(\epsilon = \langle \xi, \xi \rangle \). So we know that \(A = (a_1) \oplus (a_2 I_{m-1}) \). By (4.1) we get
\[
a_1 + a_2 = 2\lambda + (b_1 + b_2)\mu. \tag{4.9}
\]
Combining (4.7)-(4.9), we get
\[
2\lambda + \frac{m - 2}{m} \mu = \epsilon \frac{m - 1}{m^2},
\]
Therefore
\[
2\lambda_1 + \frac{m - 2}{m} \mu_1 = 0. \tag{4.10}
\]
Taking \(i = 1, j = 2 \) in (4.5), we have
\[
\lambda_1 = \frac{1}{m} \mu_1. \tag{4.11}
\]
Substituting (4.11) into (4.10), we get
\[
\mu_1 = 0.
\]
This is a contraction to the assumption \(\mu_1 \neq 0 \). So, if \(\mathbf{M} \) is connected, then \(\lambda = \text{constant}, \mu = \text{constant}. \Box

If we take trace of the first equation of (4.1), we will find by (3.4) that
\[
m\lambda = \text{tr}(A) = \frac{1}{2m} \left(\frac{m}{m - 1} \rho \pm 1 \right) = \frac{1}{2(m - 1)} \rho \pm \frac{1}{2m}. \tag{4.12}
\]
which implies that the conformal scalar curvature

$$\rho = \text{constant}. $$

Using the structural equations in Section 2, we have

$$-mN = \Delta Y + \text{tr}(A)Y. $$

From (4.12), we get

$$-mN = \Delta Y + m\lambda Y. \quad (4.13)$$

Therefore by Proposition 4.1 and (4.2) we can find a constant vector $\vec{c} \in \mathbb{R}^{n+2}$ such that

$$N = \lambda Y + \mu \xi + \vec{c}. \quad (4.14)$$

It follows from (4.13) and (4.14) that

$$\langle \vec{c}, Y \rangle = 1, \quad \langle \vec{c}, \xi \rangle = -\varepsilon \mu^2, \quad \langle \vec{c}, \vec{c} \rangle = -2\lambda + \varepsilon \mu^2, \quad (4.15)$$

where $\varepsilon = \langle \xi, \xi \rangle$.

Then we discuss into the following three cases.

Case 1: $\langle \vec{c}, \vec{c} \rangle = -2\lambda + \varepsilon \mu^2 = 0$.

By use of an isometric transform of \mathbb{R}^{n+2} if necessary, assume that

$$\vec{c} = (1, 0, 1).$$

Letting

$$Y = (x_1, u, x_{n+2}),$$

it follows from the first equation of (4.15) and $\langle Y, Y \rangle = 0$ that

$$Y = \left(\frac{\langle u, u \rangle - 1}{2}, u, \frac{\langle u, u \rangle + 1}{2}\right).$$

Then x determines a hypersurface $u : M^m_t \to \mathbb{R}^{m+1}$ with

$$I = \langle du, du \rangle = \langle dY, dY \rangle = g,$$

which implies that

$$\Delta_I = \Delta, \quad \rho_I = \rho = \text{constant}.$$

We know from [2] that

$$\xi = \varepsilon HY + (0, \zeta, 0), \quad (4.16)$$

where ζ is the unit normal vector of u. It follows from the first and the second equations of (4.15) and (4.16) that

$$H = -\mu^2 = \text{constant.}$$
Then, \(u \) is a regular hypersurface with constant scalar curvature and mean curvature in \(\mathbb{R}^{m+1}_s \). In this case \(x \) is locally conformally equivalent to a regular hypersurface with constant scalar curvature and mean curvature in \(\mathbb{R}^{m+1}_s \).

Case 2: \(\langle \vec{c}, \vec{c} \rangle = -2\lambda + \varepsilon \mu^2 := -r^2, r = \text{constant} > 0 \).

By use of an isometric transform of \(\mathbb{R}^{n+2}_s \) if necessary, assume that
\[
\vec{c} = (r, 0).
\]

Letting
\[
Y = (x_1, u/r),
\]
by similar method as above we have
\[
x_1 = 1/r.
\]
So
\[
Y = (1, u)/r, \quad \langle u, u \rangle = 1.
\]
Then \(x \) determines a hypersurface \(u : \mathcal{M}_t^m \rightarrow S^{m+1}_s \) with
\[
I/r^2 = \langle du, du \rangle / r^2 = \langle dY, dY \rangle = g,
\]
which implies that
\[
r^2 \Delta_I = \Delta, \quad \rho_I = \rho / r^2 = \text{constant}.
\]
We know from [2] that
\[
\xi = \varepsilon H Y + (0, \zeta), \quad (4.17)
\]
where \(\zeta \) is the unit normal vector of \(u \). It follows from the first and the second equations of (4.15) and (4.17) that
\[
H = -\mu^2 = \text{constant}.
\]
Then, \(u \) is a regular hypersurface with constant scalar curvature and mean curvature in \(S^{m+1}_s \). In this case \(x \) is locally conformally equivalent to a regular hypersurface with constant scalar curvature and mean curvature in \(S^{m+1}_s \).

Case 3: \(\langle \vec{c}, \vec{c} \rangle = -2\lambda + \varepsilon \mu^2 := r^2, r = \text{constant} > 0 \).

By use of an isometric transform of \(\mathbb{R}^{n+2}_s \) if necessary, assume that
\[
\vec{c} = (0, r).
\]
Letting
\[
Y = (u/r, x_{n+2}),
\]
\[
\]
similarly we have
\[x_{n+2} = 1/r. \]
So
\[Y = (u, 1)/r, \quad \langle u, u \rangle = -1. \]
Then \(x \) determines a hypersurface \(u : M^m_t \to \mathbb{H}^{m+1}_s \) with
\[I/r^2 = \langle du, du \rangle/r^2 = \langle dY, dY \rangle = g, \]
which implies that
\[r^2 \Delta I = \Delta, \quad \rho I = \rho/r^2 = \text{constant}. \]
We know from [2] that
\[\xi = \varepsilon HY + (\zeta, 0), \quad (4.18) \]
where \(\zeta \) is the unit normal vector of \(u \). It follows from the first and the second equations of (4.15) and (4.18) that
\[H = -\mu^2 = \text{constant}. \]
Then, \(u \) is a regular hypersurface with constant scalar curvature and mean curvature in \(\mathbb{H}^{m+1}_s \). In this case \(x \) is locally conformally equivalent to a regular hypersurface with constant scalar curvature and mean curvature in \(\mathbb{H}^{m+1}_s \).

So combining Proposition 4.1 we get

Theorem 4.1. Any Blaschke para-umbilic hypersurface in \(Q^n_s \) is locally conformally equivalent to a regular hypersurface with constant scalar curvature and mean curvature in \(\mathbb{R}^n_s, S^n_s \), or \(\mathbb{H}^n_s \).

Acknowledgements

The authors is deeply grateful to Professor Changping Wang’s guidance and inspiration.

References

[1] H. L. Liu, C. P. Wang and G. S. Zhao, *Möbius isotropic submanifolds in \(S^n \).* Tohoku Math. J. **53**(2001): 553-569.

[2] C. X. Nie, *Regular Blaschke Quasi-Umbilical Submanifolds in the Conformal Space \(Q^n_s \).* Chin. J. Contemporary Math. **36**(2015): 49-58.

[3] C. X. Nie and C. X. Wu, *Regular Submanifolds in the Conformal Space \(Q^n_p \).* Chin. Ann. Math. **33B**(2012): 695-714.

[4] C. P. Wang, *Moebius geometry of submanifolds in \(S^n \).* Manuscripta Math. **96**(1998): 517-534.