The charge-density-wave (CDW) mechanism of the 3D quantum Hall effect has been observed recently in ZrTe$_5$ [Tang et al., Nature 569, 537 (2019)]. Different from previous cases, the CDW forms on a one-dimensional (1D) band of Landau levels, which strongly depends on the magnetic field. However, its theory is still lacking. We develop a theory for the CDW mechanism of 3D quantum Hall effect. The theory can capture the main features in the experiments. We find a magnetic field induced second-order phase transition to the CDW phase. We find that electron-phonon interactions, rather than electron-electron interactions, dominate the order parameter. We extract the electron-phonon coupling constant from the non-Ohmic $I - V$ relation. We point out a commensurate-incommensurate CDW crossover in the experiment. More importantly, our theory explores a rare case, in which a magnetic field can induce an order-parameter phase transition in one direction but a topological phase transition in other two directions, both depend on one magnetic field.

DOI: 10.1103/PhysRevLett.125.206601

Introduction.—The quantum Hall effect is one of the most important discoveries in physics [1–4]. It arises from the Landau levels of two-dimensional (2D) electron gas in a strong magnetic field (Fig. 1, left). When the Fermi energy lies between two Landau levels, the interior of the electron gas is insulating but the deformed Landau levels at the edges can transport electrons dissipationlessly, leading to the quantized Hall resistance and vanishing longitudinal resistance of the quantum Hall effect. The quantum Hall effect is difficult in 3D, where the Landau levels turn to a series of 1D bands of Landau level dispersing with the momentum along the direction of magnetic field (Fig. 1, center). Because the Fermi energy always crosses some Landau bands, the interior is metallic, which buries the quantization of the edge states, so the quantum Hall effect is usually observed in 2D systems [5]. Nevertheless, searching for a 3D quantum Hall effect has been lasting for more than 30 years [6–28]. One of the famous proposals for the 3D quantum Hall effect relies on the charge density wave (CDW), which may gap the 1D Landau band so that the bulk is insulating. In real space, the CDW splits the 3D...
electron gas into decoupled 2D quantum Hall layers to realize a 3D quantum Hall effect (Fig. 1, right) [7]. Quite different from the known cases [29–31], the CDW of Landau bands depends on the magnetic field strongly [32–40]. Recently, the CDW mechanism of the 3D quantum Hall effect has been observed in 3D crystals of ZrTe₅ [41], providing a platform to study this rare phase of matter where both order parameter and topological number coexist.

In this Letter, we develop a theory for the CDW mechanism of 3D quantum Hall effect. The theory captures the main features in the experiment of ZrTe₅ at the quantitative level. We find that electron-phonon interactions dominate the formation of the CDW, instead of electron-electron interactions. We extract electron-phonon coupling constant from the non-Ohmic I – V relation. We point out a crossover between commensurate and incommensurate CDWs, tunable by the magnetic field. More importantly, the theory addresses a rare but experimentally realizable CDW of the Landau band [56]. Theory of CDW for the Landau band.—We study the CDW of the 0+ Landau band by using a mean-field approach, which can capture the physics of 1D CDWs [29,30]. Different from previous theories (e.g., [31]), the 1D Landau band here strongly depends on the magnetic field, e.g., the changing k_F in Eq. (2), the nesting momentum k_{cdw}, and CDW wavelength λ_{cdw}.

As shown by the g-o-logy diagram in Fig. 2(b), the CDW gap (described by the order parameter Δ) can be opened by the coupling between the electrons near k_F and $-k_F$, through either electron-electron or electron-phonon interactions along the z direction. The electron-electron interaction reads [37,40,54,59,60]

$$\hat{H}_{ee} = -\sum_\mathbf{k} |\Delta| (\hat{c}_{\mathbf{k}+}^\dagger \hat{c}_{\mathbf{k}-} + \text{H.c.}) + \frac{2|\Delta|^2V}{U(2k_F)},$$

where the order parameter is defined as $\Delta = \Delta_{ee} = |U(2k_F)/2V| \sum_\mathbf{k} (\hat{a}_{\mathbf{k}+}^\dagger \hat{a}_{\mathbf{k}-})$ and V is the volume. Δ $= |\Delta| e^{i\phi}$, where ϕ is the phase, $\hat{a}_{\mathbf{k}+}$ and $\hat{a}_{\mathbf{k}-}$ are the creation and annihilation operators in the vicinity of $\pm k_F$, respectively, where $\mathbf{k} \equiv 0 \leq k_z \leq k_F$. As shown in Fig. 2(b), the electron-electron potential takes the Yukawa form [61] $U(2k_F) = e^{2/\{e_{r}(e_{c})(2k_F)^2 + \kappa^2\}}$, where e_{r} (e_{c}) is the relative (vacuum) dielectric constant and $1/\kappa$ is the screening length. Under the random phase approximation [Fig. 2(b)], we have $\kappa = \sqrt{e^3/4\pi^2 e^2\hbar^2 v_F}$ (Eq. (S18) in [59]) with $e = e_0 e_r$. The Hamiltonians for electron-phonon interaction and phonons can be, respectively, written as [29,54,62,63]

$$\hat{H}_{e-ph} = \sum_\mathbf{k} |\Delta| (e^{i\phi} \hat{d}_{\mathbf{k}+}^\dagger \hat{d}_{\mathbf{k}-} + \text{H.c.}),$$

$$\hat{H}_{ph} = \sum_\mathbf{q} \hbar \omega_\mathbf{q} \hat{b}_\mathbf{q}^\dagger \hat{b}_\mathbf{q},$$

where $\Delta = \Delta_{e-ph} = (\mathbf{a}_\mathbf{q}/V)(\langle \hat{b}_\mathbf{q}^\dagger \rangle - \langle \hat{b}_\mathbf{q} \rangle)$, $\hat{b}_\mathbf{q}$ and $\hat{b}_\mathbf{q}^\dagger$ are the creation and annihilation operators for the phonons with momentum $\mathbf{q} = \pm 2k_F e_z$, the electron-phonon coupling $\mathbf{a}_\mathbf{q}$ also takes the Yukawa form (Sec. SIV(B) of [59]). Near $\pm k_F$, the mean-field Hamiltonian of the 0+ Landau band can be written as (Sec. SIV of [59])

$$\mathcal{H}_{0^+} = \begin{pmatrix} \hat{h}v_F(k_z \pm k_F) & \Delta \\ \Delta^* & -\hat{h}v_F(k_z \pm k_F) \end{pmatrix},$$

where $\hat{h}v_F \equiv |\partial E_{0^+}/\partial k_z|_{k_z = k_F}$ (Sec. SIII of [59]). The eigen energies of \mathcal{H}_{0^+} can be found as $E_{k_z} = E_F \pm 8.87 \times 10^{16}$ cm$^{-3}$, comparable with the experiment [41], showing that our model and parameters can capture the noninteracting energy spectrum. At this low carrier density, the pocket at the M point does not contribute [41,58].
FIG. 2. (a) The 1D energy bands of Landau levels dispersing with the z-direction wave vector k_z in a z-direction magnetic field $B = 1.6$ T. The CDW opens the gap (2\(\Delta\)) at the Fermi energy E_F. n marks the indices of the Landau bands. $n = 0 \pm$ are the lowest Landau bands. (b) Up: the θ-ology, which is a diagrammatic representation of the interaction and scattering processes (arrowed $\pm k_F$) involved in the charge density wave and competing phases [30]. Down: the diagrams for the Yukawa potential. The solid wavy line stands for interactions under the random phase approximation [54], the dashed wavy line represents the bare Coulomb interaction, and the solid line represents the bare electronic propagator. (c)–(e) The calculated CDW order parameter for electron-electron (c) and electron-phonon (d), (e) interactions, respectively. B_{C} indicates a threshold magnetic field at which there is a second-order phase transition as Δ overcomes temperature. “Comm.” and “8 a comm.” indicate that commensurate and incommensurate (CDW wavelength/lattice constant = 8) CDWs are assumed, respectively. The parameters are $v_x = 9 \times 10^5$ m/s, $v_y = 1.9 \times 10^5$ m/s, $v_z = 0.3 \times 10^5$ m/s, $M_0 = -4.7$ meV, $M_\perp = 150$ meV \cdot nm2, $M_\parallel = 0.01 M_\perp$, $a = 7.25$ Å [41,51], $n_0 = 8.87 \times 10^{16}$ cm$^{-3}$, $\epsilon_r = 25.3$ [55], and the electron-phonon coupling constant $g_0 = 537.3$ eV \cdot nm$^{-1}$ (determined by comparing with the nonlinear $I - V$ data [41] in Fig. 4(h)), and $T = 0$ K.

$\text{sgn}(k_z \pm k_F) \sqrt{\frac{\hbar v_F}{\sqrt{\hbar}} k_z \pm k_F} \right)^2 + |\Delta|^2$ near $\pm k_F$ [green curves in Fig. 2(a)], respectively, where $\text{sgn}(x)$ is the sign function.

The CDW order parameter is calculated self-consistently from the gap equation defined by $\partial E_g/\partial |\Delta| = 0$, where the ground-state energy $E_g \equiv \langle \hat{H}_m \rangle$ is found as (Sec. SV of [59])

$$E_g = \sum_k (E_k - E_F) \Theta(E_F - E_k) + \frac{|\Delta|^2 V}{g_{2k_F}}, \quad (6)$$

where E_g includes the phonon part, $\Theta(x)$ is the step function, $\hat{H}_m = \sum_k \hat{\Psi}^\dagger_k \hat{\Psi}^\ddagger_k + |\Delta|^2 V/g_{2k_F}$, $\hat{\Psi}^\dagger_k \equiv (\hat{a}^\dagger_k, \hat{\tilde{a}}^\dagger_k)^T$, and $\hat{\Psi}^\ddagger_k$ has been given in Eq. (5). The coupling $g_{2k_F} = e^2/(2\epsilon_0(2k_F^2 + k^2))$ for electron-electron interactions and $g_{2k_F} = g_0/(2k_F^2 + k^2)^2$ for electron-phonon interactions with the coupling constant g_0 (Sec. SIV(B) of [59]). The second positive term is from the mean-field phonon Hamiltonian (Eq. (528) in [59]). As a function of the order parameter, Eq. (6) reduces to a minimum value (GS energy) at a finite gap as shown in Fig. S3 of the Supplemental Material [59]. Different from non-magnetic-field theories, here the summand $\sum_{k_x,k_y} S_{xy}/(2\pi \hbar^2)$ gives the Landau degeneracy, with the area S_{xy} in the x–y plane, $V = S_{xy} L_z$, and the length L_z along the z direction.

At extremely low temperatures, i.e., $T \to 0$, the finite-temperature gap equation can be expressed as (Sec. SVII of [59])

$$\int_0^{\nu_B \hbar k_B} \frac{1}{1 + e^{-E/(\Delta)/|k_B|^2}} \frac{dt}{E_F(t, \Delta)} = \frac{4\pi^2 \hbar^2 v_F^2}{g_{2k_F} eB}, \quad (7)$$

where $E_F(t, \Delta) = \sqrt{t^2 + |\Delta|^2}$, k_B is the Boltzmann constant, and T is the temperature. We use the Ginzburg criterion [29,64–67] to justify the mean-field approximation at the experimental finite temperatures (Sec. SIV of [59]). Also, we find that the commensurability energy from the ionization potential of the crystal [29,68,69] can be ignored (Sec. SVII of [59]).

Electron-electron or electron-phonon interactions?—As shown in Fig. 2(c), the order parameter calculated using electron-electron interactions is sizable only beyond a threshold magnetic B_C about 10 T, an order larger than those in the experiments [Fig. 3(a)]. On the other hand, for electron-phonon interactions with a proper coupling constant ($g_0 = 537.3$ eV \cdot nm$^{-1}$, determined by the non-Ohmic $I - V$ relation [Fig. 4(h)]), the threshold B_C could be less than 1.5 T and Δ could be of several to tens of meV [Fig. 2(e)], both consistent with the experiment. Therefore, electron-phonon interactions may be the mechanism in the ZrTe$_5$ experiment.

Commensurate-incommensurate crossover.—In the experiment, the plateau of the Hall resistivity covers a wide range from 1.7 to 2.1 T, which is surprising for the following reason. According to Fig. 1, the Hall conductivity in units of e^2/h is given by the number of the CDW layers $\sigma_{xy} = (e^2/h)/\lambda_{cdw}$ per unit length, where λ_{cdw} is the CDW wavelength, so the height of plateau should be $\rho_{xy} = 1/\sigma_{xy} = (h/e^2)/\lambda_{cdw}$ when $\sigma_{xx} = 0$. It is known that the CDW wavelength λ_{cdw} is related to the Fermi wavelength as [29] (Sec. SV of [59])

$$\lambda_{cdw} = \lambda_F/2 = \pi/k_F, \quad (8)$$

where λ_F is the Fermi wavelength.
According to Eq. (2), k_F decreases with the magnetic field, leading to a λ_{cdw} linearly increasing with the magnetic field [e.g., $B > 2.1$ T in Fig. 3(e)], so ρ_{xy} should increase linearly with B. That is why the plateau in Fig. 3(a) is surprising.

The observed ρ_{xy} plateau between 1.7 and 2.1 T implies that there is a commensurate CDW, i.e., the CDW wavelength is pinned at integer times of the lattice constant a [Fig. 3(b)]. According to the experiment, $\lambda_{cdw}/a = 8.1 \pm 0.8$ [41]. We compare the ground-state energies of commensurate ($\lambda_{cdw}/a = 8$) and incommensurate CDWs near 2.1 T, which can be obtained by minimizing the ground-state energy E_g in Eq. (6). As shown in Fig. 3(d), the commensurate (incommensurate) CDW has lower energy for $B \in [1.7, 2.1]$ T, so there is a crossover between the commensurate and incommensurate CDWs [B = 2.1 T in Fig. 3(c)]. In the range $B \in [1.7, 2.1]$ T, the fixed λ_{cdw} means a fixed Fermi energy, i.e., the system is a grand canonical ensemble and the number of carriers can change. By contrast, the number of carriers in the incommensurate CDW phase cannot change. Therefore, the change of electrons leads to lower ground-state energy of the commensurate CDW phase in the range $B \in [1.7, 2.1]$ T. Further increasing the magnetic field above 2.1 T, the magnetic field will push the Fermi energy lower (eventually to the band bottom), so there is a crossover from commensurate to incommensurate CDW phase as a function of the magnetic field. These are unique properties of this magnetic field–induced CDW.

Non-Ohmic $I - V$ relation. An evidence of CDW is the non-Ohmic $I - V$ relation [70,71], because a bias voltage has to overcome the barriers of CDW [Fig. 4(a)], which can be used to determine Δ and more importantly the electron-phonon interaction coupling constant g_0 by comparing with our theory. The tunneling current I_{cdw} is found as [29,72]

$$I_{cdw} = \frac{e}{\hbar} |T|^2 \int_{-\infty}^{\infty} dE_{cdw}(\epsilon) D_N(\epsilon + eV_z)$$

with the density of states [Fig. 4(b)] $D_{cdw}(E_{cdw})/D_N(0) = [E_{cdw} - E_F]\Theta([E_{cdw} - E_F] - |\Delta|)/\sqrt{(E_{cdw} - E_F)^2 - |\Delta|^2}$ (Sec. VIII(A) of [59]), where the normal (N) density of states $D_N(0)$ and tunneling matrix element T are assumed energy independent, and $f(x) = 1/[1 + e^{x/(k_BT)}]$ is the Fermi function [73]. Figure 4(c) shows the non-Ohmic $I_{cdw} - V_z$ relation at different temperatures. At zero temperature, there is no tunneling current below the threshold voltage $V_{th} \equiv |\Delta|/e$. Finite temperatures can lead to a small tunneling current for $|V_z| < V_{th}$. Figure 4(d) shows the differential conductance dI_{cdw}/dV_z as a function of V_z at different temperatures, where the peak near the threshold V_{th} at $T = 2.5$ K is due to the abrupt increase of I_{cdw} across the threshold and is smeared at higher temperatures.

Figure 4(h) shows the differential resistance dV_z/dI_z in the experiment [41]. There is a plateau below the threshold current $I_{th} \approx 450 \mu$A, besides the non-Ohmic behavior above I_{th}. This implies that besides the 0+ Landau band, there is another Ohmic channel, likely the broadened +1 band bottom which lasts till $B = 1.7$ T [Fig. 4(e)]. Therefore, we model the current as $I_z = I_{cdw} + I_N$ [63,74], where I_{cdw} is the CDW current from the 0+ band and the normal band is assumed to satisfy the Ohmic law $I_N = G_N V_z$. We reproduce the Ohmic plateau and non-Ohmic $I_z - V_z$ relation at different temperatures [Fig. 4(g)]. Using I_{th} in the experiment, we find that $g_0 = 537.3$ eV nm$^{-1}$. For $T = 1.5$ K, we assume that $I_z = I_{cdw}^{(1)}(T) + I_N^{(1)}$ for $I_z < I_{th}$ and $I_z = I_{cdw}^{(2)}(\alpha_1 T) + I_N^{(2)}$ for $I_z > I_{th}^L$; for $T = 2.5$ K, $I_z = I_{cdw}^{(3)}(\alpha_1 T) + I_N^{(3)}$, where $\alpha_{1,2}$ describe the Joule heat from the abrupt current.
increase. Without the Joule heat, dV_z/dI_z shows a dip near I_{th} [Fig. 4(d)], due to the dI_{cdw}/dV_z peak in Fig. 4(d).

Discussions and perspectives.—At higher magnetic fields, signatures of fractional quantum Hall effect have been reported [41,75], which is a promising topic. At lower magnetic fields ($B \in [0, 6.5]$ T), the experiment also shows some plateau-like behaviors in the Hall resistivity [41], implying a simultaneous CDW phase of multiple bands. The CDW mechanism of 3D quantum Hall effect could be realized also in layered structures HfTe$_3$, TaS$_2$, NbSe$_3$, etc. In Type-II Weyl semimetals [38], the overlifted pockets may lead to a cascade of CDW and even multiple 3D Hall plateaus for weak interactions.

We thank helpful discussions with Liyuan Zhang, Kun Jiang, Fanqi Yuan, Changle Liu, Lianyi He, Peng-Lu Zhao, and Rui Chen. This work was supported by the National Natural Science Foundation of China (Grants No. 11534001, No. 11974249, and No. 11925402), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), Guangdong province (Grants No. 2016ZT06D348, No. 2017ZT070C062, and No. 2020KJXTD001), the National Key R&D Program (Grant No. 2016YFA0301700), the National Science Foundation of Shanghai (Grant No. 19ZR1437300), Shenzhen High-level Special Fund (Grants No. G02206304 and No. G02206404), and the Science, Technology and Innovation Commission of Shenzhen Municipality (Grants No. ZDSYS20190902092905285, No. ZDSYS20170303165926217, No. JCYJ20170412152620376, and No. KYYTDP20181011104202253). F.Q. acknowledges support from the project funded by the China Postdoctoral Science Foundation (Grants No. 2019M662150 and No. 2020T130635) and the SUSTech Presidential Postdoctoral Fellowship. The numerical calculations were supported by Center for Computational Science and Engineering of Southern University of Science and Technology. The reuse of Fig. 3(a) and Fig. 4(h) has been approved by Springer Nature under Licence Number 4782250194315.

1. K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, *Phys. Rev. Lett.* **45**, 494 (1980).
2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, *Phys. Rev. Lett.* **48**, 1559 (1982).
3. R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, *Phys. Rev. Lett.* **50**, 1395 (1983).
4. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, *Phys. Rev. Lett.* **49**, 405 (1982).
5. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, *Nature (London)* **438**, 201 (2005).
6. H.-Z. Lu, Perspective: 3D quantum Hall effect, *Nat. Sci. Rev.* **6**, 208 (2019).
7. B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, *Jpn. J. Appl. Phys.* **26**, 1913 (1987).
8. G. Montambaux and M. Kohmoto, Quantized Hall effect in three dimensions, *Phys. Rev. B* **41**, 11417 (1990).
9. M. Kohmoto, B. I. Halperin, and Y.-S. Wu, Diophantine equation for the three-dimensional quantum Hall effect, *Phys. Rev. B* **45**, 13488 (1992).
[10] M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, and T. Osada, Hofstadter Butterfly and Integer Quantum Hall Effect in Three Dimensions, Phys. Rev. Lett. 86, 1062 (2001).

[11] B. A. Bernevig, T. L. Hughes, S. Raghu, and D. P. Arovas, Theory of the Three-Dimensional Quantum Hall Effect in Graphite, Phys. Rev. Lett. 99, 146804 (2007).

[12] H. L. Störmer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann, and K. Baldwin, Quantization of the Hall Effect in an Anisotropic Three-Dimensional Electronic System, Phys. Rev. Lett. 56, 85 (1986).

[13] J. R. Cooper, W. Kang, P. Auban, G. Montambaux, D. Jérome, and K. Bechgaard, Quantized Hall Effect and a New Field-Induced Phase Transition in the Organic Superconductor (TMTSF)$_2$PF$_6$, Phys. Rev. Lett. 63, 1984 (1989).

[14] S. T. Hannahs, J. S. Brooks, W. Kang, L. Y. Chiang, and P. M. Chaikin, Quantum Hall Effect in a Bulk Crystal, Phys. Rev. Lett. 63, 1988 (1989).

[15] S. Hill, S. Uji, M. Takashita, C. Terakura, T. Terashima, H. Aoki, J. S. Brooks, Z. Fisk, and J. Sarrao, Bulk quantum Hall effect in η-Mo$_5$O$_{11}$, Phys. Rev. B 58, 10778 (1998).

[16] H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, and H. L. Störmer, J. P. Eisenstein, A. C. Gossard, W. Kang, P. Auban, G. Montambaux, W. Wang, and F. Xiu, Zeeman splitting and dynamical mass of Dirac fermions, Sci. Adv. 2, e1501117 (2016).

[17] H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiohagi, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T.-h. Arima, Y. Tokura, and S. Ishiwata, Quantum Hall effect in a bulk antiferromagnet EuMnBi$_5$ with magnetically confined two-dimensional Dirac fermions, Phys. Rev. Lett. 112, 216803 (2012).

[18] Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe$_5$, Nat. Commun. 7, 12516 (2016).

[19] C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie, 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals, Phys. Rev. Lett. 119, 136806 (2017).

[20] Z. Pan and R. Shindou, Ground-state atlas of a three-dimensional Dirac semimetal Cd$_3$As$_2$, Nat. Commun. 8, 13741 (2017).

[21] M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa et al., Quantum Hall states observed in thin films of Dirac semimetal Cd$_3$As$_2$, Nat. Commun. 8, 2277 (2017).

[22] M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa et al., Quantum Hall states observed in thin films of Dirac semimetal Cd$_3$As$_2$, Nat. Commun. 8, 2277 (2017).

[23] T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, and S. Stemmer, Observation of the Quantum Hall Effect in Confined Films of the Three-Dimensional Dirac Semimetal Cd$_3$As$_2$, Phys. Rev. Lett. 120, 016801 (2018).

[24] C. Zhang, Z. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H.-Z. Lu, A. C. Potter, and F. Xiu, Quantum Hall effect based on Weyl orbit in Cd$_3$As$_2$, Nature (London) 565, 331 (2019).
[43] H. Weng, X. Dai, and Z. Fang, Transition-Metal Pentatelluride ZrTe$_3$ and HfTe$_3$: A Paradigm for Large-Gap Quantum Spin Hall Insulators, Phys. Rev. X 4, 011002 (2014).

[44] Z. Fan, Q.-F. Liang, Y. B. Chen, S.-H. Yao, and J. Zhou, Transition between strong and weak topological insulator in ZrTe$_3$ and HfTe$_3$, Sci. Rep. 7, 45667 (2017).

[45] G. Manzoni, L. Gragnanelli, G. Aut`es, T. Kuhn, A. Sterzi, F. Cilento, M. Zacchigna, V. Enenkel, I. Vobornik, L. Barba, F. Bisti, P. Bugnon, A. Magrez, V. N. Strocov, H. Berger, O. V. Yazyev, M. Fonin, F. Parmigiani, and A. Crepaldi, Evidence for a Strong Topological Insulator Phase in ZrTe$_3$, Phys. Rev. Lett. 117, 237601 (2016).

[46] R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang, Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe$_3$, Phys. Rev. B 92, 075107 (2015).

[47] N. L. Nair, P. T. Dumitrescu, S. Channa, S. M. Griffin, J. B. Neaton, A. C. Potter, and J. G. Analytis, Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe$_3$, Phys. Rev. B 97, 041111(R) (2018).

[48] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe$_3$, Nat. Phys. 12, 550 (2016).

[49] X.-B. Li, W.-K. Huang, Y.-Y. Lv, K.-W. Zhang, C.-L. Yang, B.-B. Zhang, Y. B. Chen, S.-H. Yao, J. Zhou, M.-H. Lu, L. Sheng, S.-C. Li, J.-F. Jia, Q.-K. Xue, Y.-F. Chen, and D.-Y. Xing, Experimental Observation of Topological Edge States at the Surface Step Edge of the Topological Insulator ZrTe$_3$, Phys. Rev. Lett. 116, 176803 (2016).

[50] Z.-G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe$_3$, Proc. Natl. Acad. Sci. U.S.A. 114, 816 (2017).

[51] Y. Jiang, Z. L. Dun, H. D. Zhou, Z. Lu, K.-W. Chen, S. Moon, T. Besara, T. M. Siegrist, R. E. Baumbach, D. Smirnov, and Z. Jiang, Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe$_3$ thin flakes, Phys. Rev. B 96, 041101(R) (2017).

[52] H. Xiong, J. A. Sobota, S.-L. Yang, H. Soifer, A. Gauthier, M.-H. Lu, Y.-Y. Lv, S.-H. Yao, D. Lu, M. Hashimoto, P. S. Kirchmann, Y.-F. Chen, and Z.-X. Shen, Three-dimensional nature of the band structure of ZrTe$_3$ measured by high-momentum-resolution photoemission spectroscopy, Phys. Rev. B 95, 195119 (2017).

[53] B. Xu, L. X. Zhao, P. Marsik, E. Sheveleva, F. Lyzwa, Y. M. Dai, G. F. Chen, X. G. Qiu, and C. Bernhard, Temperature-Driven Topological Phase Transition and Intermediate Dirac Semimetal Phase in ZrTe$_3$, Phys. Rev. Lett. 121, 187401 (2018).

[54] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, Oxford, 2004).

[55] Y. Hochberg, Y. Kahn, M. Lisanti, K. M. Zurek, A. G. Grushin, R. Ilan, S. M. Griffin, Z.-F. Liu, S. F. Weber, and J. B. Neaton, Detection of sub-GeV dark matter with three-dimensional Dirac materials, Phys. Rev. D 97, 015004 (2018).

[56] G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang, and M. Tian, Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe$_3$, Phys. Rev. B 93, 115414 (2016).

[57] H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B 92, 045203 (2015).

[58] J. L. Zhang, C. M. Wang, C. Y. Guo, X. D. Zhu, Y. Zhang, J. Y. Yang, Y. Q. Wang, Z. Qu, L. Pi, H.-Z. Lu, and M. L. Tian, Anomalous Thermoelectric Effects of ZrTe$_3$ in and Beyond the Quantum Limit, Phys. Rev. Lett. 123, 196602 (2019).

[59] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.125.206601 for detailed calculations, which includes Refs. [29,30,37,40–42,51,54,58,60–74].

[60] R. A. Jishi, Feynman Diagram Techniques in Condensed Matter Physics (Cambridge University Press, Cambridge, United Kingdom, 2013).

[61] A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58, 2788 (1998).

[62] B. Roy, J. D. Sau, and S. Das Sarma, Migdal’s theorem and electron-phonon vertex corrections in Dirac materials, Phys. Rev. B 89, 165119 (2014).

[63] G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60, 1129 (1988).

[64] A. P. Levanyuk, Contribution to the theory of light scattering near the second-order phase transition points, J. Exp. Theor. Phys. 36, 571 (1959).

[65] V. L. Ginzburg, Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectrics, J. Exp. Theor. Phys. 2, 1824 (1960).

[66] F. Coleman, Introduction to Many-Body Physics (Cambridge University Press, Cambridge, United Kingdom, 2015).

[67] P. A. Lee, T. M. Rice, and P. W. Anderson, Fluctuation Effects at a Peierls Transition, Phys. Rev. Lett. 31, 462 (1973).

[68] P. A. Lee, T. M. Rice, and P. W. Anderson, Conductivity from charge or spin density waves, Solid State Commun. 14, 703 (1974).

[69] S. Kagoshima, H. Nagasawa, and T. Sambongi, One-Dimensional Conductors (Springer, Berlin, Heidelberg, 1988).

[70] J. Bardeen, Theory of Non-Ohmic Conduction from Charge-Density Waves in NbSe$_3$, Phys. Rev. Lett. 42, 1498 (1979).

[71] J. Bardeen, Tunneling Theory of Charge-Density-Wave Depinning, Phys. Rev. Lett. 45, 1978 (1980).

[72] G. D. Mahan, Many-Particle Physics, 3rd ed., Physics of Solids and Liquids (Springer Science & Business Media, New York, 2000).

[73] R. K. Pathria, Statistical Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1996).

[74] G. Grüner and A. Zettl, Charge density wave conduction: A novel collective transport phenomenon in solids, Phys. Rep. 119, 117 (1985).

[75] S. Galeski, X. Zhao, R. Wawrzynczak, T. Meng, T. Förster, S. Honnali, N. Lamba, T. Ehmcke, A. Markou, W. Zhu, J. Wosnitza, C. Felser, G. F. Chen, and J. Gooth, Observation of a three-dimensional fractional hall response in HfTe$_3$, arXiv:2003.07213.