On some Godbillon-Vey classes of a family of regular foliations

Cristian Ida and Paul Popescu

Abstract

The aim of the paper is to construct some Godbillon-Vey classes of a family of regular foliations, defined in the paper. These classes are cohomology classes on the manifold or on suitable open subsets. Some examples are also considered.

Keywords: family of regular foliations, singular foliation, test function, differential form, basic form, cohomology class, Godbillon-Vey class.

2010 Mathematics Subject Classification: 57R15, 57R30, 57R25.

1 Introduction

The families of regular foliations considered in the paper are regular foliations on open subsets such that all the induced leaves on an intersection set give a system of subfoliations as in [1, 7] (i.e. the induced larger-sized leaves are saturated with smaller-sized ones; see conditions (F1)–(F3) in the next section). The resulting geometric distribution, given by the tangent subspaces to leaves of maximal dimension, is a singular one (1. of Proposition 1). Assuming that any intersection is saturated by whole leaves, particular classes of Stefan-Sussmann foliations are obtained (2. of Proposition 1), called here singular foliations that are locally regular.

A tool used to extend Godbillon-Vey forms, on a stratum with a non-minimal dimensional leaves, is the existence of a basic test function on the complement of the stratum. We call a test function, according to a closed subset $M_0 \subset M$, a smooth real function that has M_0 as its set of zeros. The existence of a general test function follows from a classical results of Whitney and some properties of extension of smooth sections on closed subsets (see [8, 11, 16], but in a slight different form). Using the line of [3, Section 4], we give a proof in Proposition 2.

The main constructions in the paper are performed in the fourth section. The most important one is that of the Godbillon-Vey class of leaves of minimal dimension in M and in $\Sigma_{\geq r_i}$ (Theorem 1), where we prove that the Godbillon-Vey form of the leaves extends to a global cohomology class $GV_{\text{min}}(F) \in H^{1+2d_{\text{max}}}(M)$ (for the leaves of minimal dimension on U_0) and to some Godbillon-Vey classes $GV_{\text{min}}(F_{\Sigma_{\geq r_i}}) \in H^{2(m-r_i)+1}(\Sigma_{\geq r_i})$ (for the other leaves on U_i, $i > 0$). In the
case when there is a basic test function of $M \setminus U_i$, then one get a cohomology class on M (Proposition \ref{prop1}).

Two cases are considered in the last section. First, given a regular foliation F_0 on M, one can easily construct a family of regular foliations on M (for example, adding in a suitable open set a trivial foliation with one leaf), such that its Godbillon-Vey class $GV_{\text{min}}(F)$ is the same as $GV(F_0)$, the usual Godbillon-Vey class of F_0 (Proposition \ref{prop2}). Thus if the the Godbillon-Vey class of F_0 is non-trivial, also is that of the family F. Second, we prove that if 0 is a regular value for the (weak) test basic function φ, then the cohomology class $[\nu] \in H^{2n+1}(M)$ vanishes (Proposition \ref{prop3}).

Looking at the first example, it seems likely to find a non-trivial family of regular foliations, maybe a singular foliation, that is locally regular, having a non-trivial Godbillon-Vey class. The second example shows that a non-trivial Godbillon-Vey class can be found not for a regular (weak) test function, possible for a strong one. We let it as an open problem.

2 Families of regular foliations

Let M be a differentiable manifold. Let us suppose that there is an open cover $\{U_i\}_{i \in I}$ of M such that the following three conditions hold:

- (F1) - on every U_i there is a regular foliation F_i having r_i as dimension of leaves,

- (F2) - if $i \neq j$ then $r_i \neq r_j$ and

- (F3) - if $U_i \cap U_j \neq \emptyset$, $r_i < r_j$, then $U_i \cap U_j$ is saturated by open subsets of leaves of F_j and every such open set is saturated to its turn by open subsets of leaves of F_i.

We can consider a stronger condition than (F3) as:

- (F3') - if $U_i \cap U_j \neq \emptyset$, $r_i < r_j$, then $U_i \cap U_j$ is saturated by leaves of F_j and every such leaf of F_j is saturated to its turn by leaves of F_i.

It is easy to see that I is a finite set, $I = 0, k$. The rank of a point $x \in M$ is $r(x) = \max\{r_i : x \in U_i\}$; if $r(x) = r_i$, then and we denote by D_x the tangent space to the leaf of F_i. We denote by $\mathcal{R} = \{r(x) = \dim D_x : x \in M\}$. If $S \subset M$ and by $D_S = \bigcup_{x \in S} D_x$ the restriction of D to S. Let $\mathcal{R} = \{r_i\}_{i=0 \text{ to } k}$, where $r_{\min} = r_0 < r_1 < \cdots < r_k = r_{\max}$. For $r_i \in \mathcal{R}$, we denote by $\Sigma_{r_i} = \{x \in M : \dim D_x = r_i\}$, $\Sigma_{\leq r_i} = \{x \in M : \dim D_x < r_i\}$, $\Sigma_{\geq r_i} = \{x \in M : \dim D_x > r_i\}$, $\Sigma_{< r_i} = \{x \in M : \dim D_x < r_i\}$, $\Sigma_{> r_i} = \{x \in M : \dim D_x > r_i\}$. We say that the subset $\Sigma_{r_{\min}}$ is the minimal set and $\Sigma_{r_{\max}}$ is the maximal set. The subsets $\Sigma_{< r_i}$ and $\Sigma_{\leq r_i}$ are closed subsets and their complements, the sets $\Sigma_{\geq r_i}$ and $\Sigma_{> r_i}$ are open closed subsets in M. The subset $\Sigma_{r_i} \subset \Sigma_{\geq r_i}$ is the minimal subset of $D_{\Sigma_{\geq r_i}}$, and $\Sigma_{> r_i}$ is void if $i = k$ and is equal to $\Sigma_{\geq r_{i+1}}$ if $0 \leq i < k$. We say also that the leaves of F_i are leaves of minimal dimension.

The assignment of a vector subspace $D_x \subset T_x M$, $(\forall) x \in M$, gives a singular
distribution \mathcal{D} on M, $\mathcal{D} = \bigcup_{x \in M} \mathcal{D}_x \subset TM$. We denote by $\Gamma_{loc}(\mathcal{D})$ the set of local smooth vector fields tangent to \mathcal{D} in every point where they are defined. One say that \mathcal{D} is:

- smooth, if \mathcal{D}_x is spanned by some restrictions to x of some smooth local vector fields from $\Gamma_{loc}(\mathcal{D})$, $(\forall)x \in M$;
- (completely) integrable, if \mathcal{D} is smooth and there is a partition of M in immersed submanifolds $L \subset M$ such that if $x \in L$, then $\mathcal{D}_x = T_xL$.

(See, for example [2, 15] for more details.)

Proposition 1.

1. Assuming the conditions (F1), (F2) and (F3), then \mathcal{D} is a smooth singular distribution on M.

2. Assuming the conditions (F1), (F2) and (F3'), then the singular distribution \mathcal{D} is integrable.

Proof. Let $x \in M$ and a regular foliate chart of the leaf F_i of \mathcal{F}_i that contain x, where $r(x) = r_i$. The condition (F3) implies that the canonical tangent vectors to F_i belong to $\Gamma_{loc}(\mathcal{D})$ and their restrictions to x generate $T_xF_i = \mathcal{D}_x$. Assuming supplementary the condition (F3'), then this local chart is also one corresponding to a singular Stefan-Sussmann foliation on M (according for example to [15]) that is tangent to \mathcal{D}. □

We say that

- the conditions (F1), (F2) and (F3) define a *family of regular foliations* and

- the conditions (F1), (F2) and (F3') define a *singular foliation that is locally regular*.

For a family regular foliations, we can define the *leaf* of $x \in M$ as the leaf F_i of \mathcal{F}_i that contains x, of maximal dimension $r(x) = r_i$. Moreover, in general a non-ambiguous leaf can be defined only for totally integrable foliations.

Notice that the conditions (F1), (F2) and (F3) does not always assure that \mathcal{D} (defined as above) is integrable. Indeed, consider the open cover of \mathbb{R}^2 given by $U_1 = \{(x,y) \in \mathbb{R}^2, \ x > 0\}$ and $U_2 = \{(x,y) \in \mathbb{R}^2, \ x < 1\}$. Let us consider the foliation \mathcal{F}_1 by one leaf on U_1 and the foliation \mathcal{F}_2 by horizontal lines $y = const.$ on U_2. The conditions (F1)-(F3) are fulfilled, but the condition (F3') is not fulfilled. It generates a singular smooth distribution \mathcal{D} that is not integrable, generated by the vector fields $X_1 = \frac{\partial}{\partial x}$ and $X_2 = \varphi(x)\frac{\partial}{\partial y}$, where φ vanishes for $x \leq 0$ and $\varphi(x) = e^{-\frac{1}{x}}$ for $x > 0$.

Let us consider some other examples.

- Given a family of regular foliations (or a singular foliation that is locally regular), the open set $\Sigma_{\geq r}$ is saturated by leaves of \mathcal{F}_i, where $r_i \geq r$, thus a family of regular foliations (or a singular foliation that is locally regular) $\mathcal{F}_{\geq r}$ is induced. In particular $\mathcal{F}_{\geq r_k} = \mathcal{F}_{r_k}$ on $\Sigma_{\geq r_k} = \Sigma_{r_{\text{max}}}$ is regular.

- A regular foliation on M is an singular foliation that is locally regular, when all the points have the same rank, equal to the dimension of the leaves (i.e. of the foliation).
A non-trivial example the foliation of \mathbb{R}^n by concentric spheres (as leaves of dimension $n-1$) and the origin (as a leaf of dimension 0) is a singular foliation that is locally regular. An other non-trivial example is a singular foliation having as leaves concentric spheres, as in the previous example (of dimension $n-1$), outside a compact ball $B(0, \rho) \subset \mathbb{R}^n$, $\rho > 0$, while $B(0, \rho)$ is a union of points (as leaves of dimension 0).

A singular Stefan-Sussmann foliation on M that has $\mathcal{R} = \{0, r\}$, where $0 < r \leq m = \dim M$ is locally regular. In general, consider a regular foliation \mathcal{F}_U on an open subset $U \subset M$, such that the dimension of fibers is r, where $0 < r \leq m$. The partition of M by the leaves of U and by the points of $\Sigma_0 = M \setminus U$ gives a locally regular Stefan-Sussmann foliation on M. The singular distribution has $\mathcal{R} = \{0, r\}$. Notice that any singular Stefan-Sussmann foliation on M that has $\mathcal{R} = \{0, r\}$ can be obtained in this way.

Consider a regular foliation \mathcal{F}_U on an open subset $U \subset M$, such that the dimension of fibers is r, where $0 \leq r < m$. Let $\Sigma_0 \subset U$ be a closed subset of M, saturated or not by leaves of \mathcal{F}_U. The partition of M by the leaves of \mathcal{F}_Σ_0 and the leaf $\Sigma_1 = M \setminus \Sigma_0$ gives a family of regular foliations. This is a singular foliation that is locally regular only if Σ_0 is saturated by the leaves of \mathcal{F}_U, when it gives a locally regular Stefan-Sussmann foliation on M. This singular distribution has $\mathcal{R} = \{r, m\}$.

Consider some open subsets $U_1, U_2 \subset M$ and a regular foliation \mathcal{F}_1 on U_1; we suppose that $U_1 \cap U_2 \neq \emptyset$ and $U_1 \cap U_2 \neq M$. Denote by $\Sigma_0 = M \setminus (U_1 \cup U_2)$ and let $U_0 \supset \Sigma_0$ be an open set. We consider on U_0 and U_2 the trivial foliations \mathcal{F}_0 and \mathcal{F}_2 respectively, where \mathcal{F}_0 has points as leaves and \mathcal{F}_2 has one leaf. It follows a family of regular foliations. If $U_1 \cap U_2$ is saturated by leaves of \mathcal{F}_1, then the family of regular foliations is a singular foliation that is locally regular.

The suspension constructed for regular foliations (as, for example, in [5, 2.7, 2.8]) can be extended to a family of regular foliations, as follows. Let B and M be two manifolds and \mathcal{F} be a family of regular foliations or a singular foliation that is locally regular. Let us suppose that $\rho : \pi_1(B) \to Diff(M)$ is a representation (i.e. a group morphism) such that every diffeomorphism $\rho(g) \in Diff(M)$ invariate an open neighborhood U_k of Σ_k, as well as the leaves of the foliation \mathcal{F}_k on U_k that restricts to the leaves on Σ_k. If we denote by \tilde{B} the universal simple connected cover of B, then the suspension space is the quotient space $S = (\tilde{B} \times M)/\sim$ of the equivalence relation $(b, m)^\sim (bg, \rho(g)^{-1}m)$, $g \in \pi_1(B)$, on $\tilde{B} \times M$. As in the classical case, one can first consider on $\tilde{B} \times M$ the product foliations \mathcal{F}_0 of the foliation by one leaf on B and the foliations \mathcal{F}_i on M. An family of regular foliations or a singular foliation that is locally regular (accordingly to that on M) is induced on the quotient space S; the leaves, the sets $\Sigma_{k'}$ of the leaves of a same dimension k' and the open neighborhoods $U_{k'}$ of $\Sigma_{k'}$ are naturally induced.

As a particular case, consider an open subset $U \subset M$, a regular foliation \mathcal{F}_U on U and $f \in Diff(M)$ such that $f(U) = U$ and f invariate \mathcal{F}_U. We can consider an open neighborhood W of the closed set $M \setminus U$ (for example $W = M$) and the trivial foliation \mathcal{F}_W by points on W. The leaves of \mathcal{F}_U and the points of $M \setminus U$ as 0-dimensional leaves give a locally regular Stefan-Sussmann foliation.
on M. The suspension of f is considered for $B = S^1, \hat{B} = \mathbb{R}, \pi_1(S^1) = \mathbb{Z}$ and the actions $\mathbb{R} \times \mathbb{Z} \to \mathbb{R}, (x,n) \to x - n$ and $\mathbb{Z} \times M \to M, (n,m) \to f^n(m)$.

For example, consider the natural central symmetry $\sigma : S^n \to S^n \subset \mathbb{R}^{n+1}, \sigma(x) = -x$. Consider also two open spherical caps $C_1 \subset C_2$ centred in the same point A of the sphere S^n and let $C'_1 = \sigma(C_1) \subset C'_2 = \sigma(C_2)$ the symmetric spherical caps centred in $A' = \sigma(A)$, such that $C_2 \cap C'_2 \neq \emptyset$. Denote by $U_1 = S^n \setminus (C_1 \cup C'_1)$ and by $U_2 = C_2 \cup C'_2$. Consider the trivial foliation \mathcal{F}_2 on U_2 by points and a k-regular foliation \mathcal{F}_1 on U_1 obtained by intersection of U_1 by $k+1-$ parallel planes that can be parallel or not with the support $n-$hyperplanes of the spherical caps. Obviously the open sets U_1 and U_2, as well as the foliations \mathcal{F}_1 and \mathcal{F}_2 are invariant by σ. One can consider a quotient locally regular foliation on $\mathbb{R}P^n$, as well as a suspension locally regular foliation on $S = (\mathbb{R} \times S^n)/\sim$, given by the \mathbb{Z}–action $n \cdot (\alpha, \bar{x}) = (\alpha - n, \sigma^n(\bar{x}))$.

3 Test functions

We consider now test functions, that allow us to extend smooth functions and vector fields.

Let $M_0 \subset M$ be a closed subset. We say that a real function $\varphi \in \mathcal{F}(M)$ is a weak test function for M_0 if $M_0 = \varphi^{-1}(0)$ (i.e. $\varphi(x) = 0$ iff $x \in M_0$). We say that a weak test function is a strong test function for M_0 if, additionally, its values are in $[0, 1]$ and all its differentials vanish in every $x \in M_0$. The existence of test functions is an important tool used in the sequel.

The following simple Lemma shows that the existence of a weak test function gives a strong one.

Lemma 1 Let $\psi_0 : \mathbb{R} \to [0, 1]$ be smooth such that $\psi_0(t) = 0$ iff $t = 0$ and all the derivatives of ψ_0 vanish in $t = 0$. Then for every function $f : M \to \mathbb{R}$ the function $F = \psi_0 \circ f$ has the same zeros as f and all the differentials of F vanish in its zeros.

Notice that a function ψ_0 as in Lemma 1 is

$$\psi_0(t) = \begin{cases} e^{-\frac{t}{1+e^{-\frac{1}{t}}}} & \text{if } t \neq 0, \\ 0 & \text{if } t = 0. \end{cases} \quad (1)$$

A first fact is the existence of a weak test function φ_{M_0} for any closed subset $M_0 \subset M$, i.e. a positive smooth real function on M, having the set of zeros exactly M_0. The existence follows from a classical results of Whitney and some properties of extension of smooth sections on closed subsets (see [8, 11, 16]), but in a slight different form. We give a proof below, in line of [3, Section 4].

Proposition 2 Let M be a differentiable manifold and $M_0 \subset M$ be a closed subset. Then there is a weak test function for M_0.

5
Proof. We can proceed as in [3, Section 4] reducing the problem to the case when \(M = \mathbb{R}^n \) and considering \(M \) properly embedded in \(\mathbb{R}^k \) for some \(k \). Then \(M_0 \subset \mathbb{R}^k \) is also closed. A test function on \(\mathbb{R}^k \) for \(M_0 \) reduces to \(M \) also to a test function for \(M_0 \). Since \(M_0 \) is a closed set, then \(M_1 = \mathbb{R}^k \setminus M_0 \) is an open subset of \(\mathbb{R}^k \). For any point \(p \in M_1 \) there is a ball \(B_p = B(p, 2r) \subset M_1 \). We denote by \(B'_p = B(p, r) \) such that its support is \(\bar{B}_p = B(p, 2r) \), its values are 0 outside \(B_p \) (i.e. on \(\mathbb{R}^n \setminus B_r \)), 1 on \(B'_p = B(p, r) \) and all the other values are in the open interval \((0, 1)\). We can consider an at most countable cover of \(M_1 \) with such balls \(B_p \). In the case when the cover of \(M_1 \) is a finite set \(\{B_i\}_{i=1}^r \), we can consider \(\psi = \sum_{i=1}^r \psi_i \), that is obviously a test function for \(M_0 \). In the case when the cover of \(M_1 \) is a finite set \(\{B_i\}_{i=1}^r \), we can proceed as in [3, Section 4]. For each \(i \in \mathbb{N} \) consider the constants \(c_i \) such that \(c_i \|\psi_i\| \leq 1/2^i \), where the norms are in \(BC^\infty(\mathbb{R}^n, \mathbb{R}) \), then denote \(\varphi_i = c_i \psi_i \) and finally

\[
\varphi = \sum_{i=1}^\infty \varphi_i.
\]

As in the proof of [3, Proposition 4.3], \(\varphi \) is a smooth function and the set of its zeros is \(\mathbb{R}^n \setminus M_1 = M_0 \). Using Lemma [1] with \(\psi_0 \) given by the formula (1), we obtain a test function for \(M_0 \). □

The existence of a weak test function that is not a strong one depends on the zero set (i.e. the closed set). For example, the singular foliation of \(\mathbb{R}^n \) by concentric spheres (as leaves of dimension \(n-1 \)) and the origin (as a leaf of dimension 0) is locally regular and the square of the euclidian norm is a weak test function that is not a strong one. But the singular foliation having as leaves concentric spheres, as in the previous example (of dimension \(n-1 \)), outside a compact ball \(\bar{B}(\overline{0}, \rho) \subset \mathbb{R}^n, \rho > 0 \), while \(\bar{B}(\overline{0}, \rho) \) is a union of points (as leaves of dimension 0) is also locally regular, but every test function of \(\bar{B}(\overline{0}, \rho) \) is always a strong one.

4 The construction of Godbillon-Vey forms and classes

Integrability conditions for a regular foliation are given by Frobenius theorem. It can be expressed using differential forms, as, for example, in [14, Ch. 2. and Ch. 3]. We use this in a similar way as in [12]. If a differentiable \(q \)-form \(\nu \) on \(M \) has locally the form \(\nu = \omega_1 \wedge \cdots \wedge \omega_q \), where \(\omega_1, \ldots, \omega_q \) are local one-forms, we say that \(\nu \) has rank \(q \).

A regular foliation of co-dimension \(q \) on a differentiable manifold \(M \) is given by a non-singular global form \(\nu \in \Omega^q(M) \) of rank \(q \) and, in the locally form \(\nu = \omega_1 \wedge \cdots \wedge \omega_q \), the local one-forms \(\omega_1, \ldots, \omega_q \) are sections of the transverse bundle of the foliations, that generate the \(\mathcal{F}(M) \)-module of transverse one-forms...
One briefly say that the foliation (or its tangent bundle) is given by \(\nu = 0 \), or by vanishing \(\nu \).

Let us consider now two regular foliations \(\mathcal{F}_U \) and \(\mathcal{F}_V \), \(\mathcal{F}_{U|U\cap V} \subset \mathcal{F}_{V|U\cap V} \), such that the tangent bundles of the foliations \(\mathcal{F}_U \) and \(\mathcal{F}_V \) are given vanishing the differential forms \(\omega_1 \in \Omega^{\nu_1+q_2}(U) \) and \(\omega_2 \in \Omega^\nu(V) \) respectively.

Proposition 3 Denoting by \(\omega'_1 \in \Omega^\nu(U \cap V) \) and \(\omega'_2 \in \Omega^{\nu_1+q_2}(U \cap V) \) the restrictions to \(U \cap V \) of \(\omega_1 \) and \(\omega_2 \) respectively, where \(q_1 > 0 \), then there is a differentiable form \(\theta \in \Omega^\nu(U \cap V) \) such that

\[
\omega'_1 = \omega'_2 \wedge \theta.
\]

Proof. First, let us suppose that \(U = V = U \cap V \) is a domain of coordinates \(\{x^u, \bar{x}^\alpha, \bar{x}^\bar{\beta}\}, u = 1, \ldots, q_1 \) and \(\bar{u} = \bar{1}, \ldots, q_2 \) such that \(\{x^u\} \) and \(\{x^\alpha, \bar{x}^\bar{\beta}\} \) are coordinates on the leaves of \(\mathcal{F}_{U|U\cap V} \) and \(\mathcal{F}_{V|U\cap V} \) respectively. Then \(\omega'_1 = h_1 \bar{d}x^1 \wedge \cdots \wedge \bar{d}x^{q_1} \wedge \bar{d}^\alpha \wedge \cdots \wedge \bar{d}^\bar{\beta} \) and \(\omega'_2 = h_2 \bar{d}x^1 \wedge \cdots \wedge \bar{d}x^{q_2} \) with \(h_1, h_2 \in \mathcal{F}(U \cap V) \) having no zeros, thus relation (2) holds for \(\theta = \frac{h_2}{h_1} \bar{d}x^1 \wedge \cdots \wedge \bar{d}x^{q_2} \).

Returning to the general case, let us consider a partition of unity \(\{v_\alpha\}_{\alpha \in A} \) on \(U \cap V \) subordinated to a cover with open domain of local foliated charts, as above, where \(A \) is finite or \(A = N \). Then define \(\theta = \sum_{\alpha \in A} v_\alpha \theta_\alpha \in \Omega^\nu(U \cap V) \).

Since \(\omega'_1 = \omega'_2 \wedge \theta_\alpha \) and \(\sum_{\alpha \in A} v_\alpha = 1 \), then relation (2) holds. \(\square \)

In order to avoid coordinates, we consider in the sequel the ideals \(\mathcal{I}(\mathcal{F}_1) \subset \Omega^\nu(U) \) and \(\mathcal{I}(\mathcal{F}_2) \subset \Omega^\nu(V) \) of differential forms that vanish when evaluated when all vectors are tangent to the leaves of \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) respectively. The two ideals are finitely generated, each homogeneous term containing at least one of the local forms that on \(U \cap V \) can be taken of the form \(\{\bar{w}^\alpha, \bar{w}^\bar{\beta}\}_{\alpha = 1, \ldots, q_1, \bar{\beta} = 1, \ldots, q_2} \) and \(\{\bar{w}^\alpha\}_{\alpha = 1, \ldots, q_1} \) respectively. Notice that \(d\bar{w}^\alpha = \sum_{\nu = 1}^{q_2} \bar{w}^\nu \wedge \nu^\alpha_\nu \) and \(d\bar{w}^\bar{\beta} = \sum_{\nu = 1}^{q_2} \bar{w}^\nu \wedge \nu^\bar{\beta}_\nu \), with \(\nu^\alpha_\nu \) and \(\nu^\bar{\beta}_\nu \) \(\in \Omega^1(U \cap V) \). Then \(\omega_2 \) has the local form

\[
\omega_2 = h_2 \bar{w}^\alpha \wedge \cdots \wedge \bar{w}^{q_1}.
\]

The Frobenius theorem used for \(\mathcal{F}_U \) and \(\mathcal{F}_V \) reads that there are \(\mu_1 \in \Omega^\nu(U) \) and \(\mu_2 \in \Omega^\nu(V) \) such that

\[
d\omega_1 = \omega_1 \wedge \mu_1, \quad d\omega_2 = \omega_2 \wedge \mu_2.
\]

A product of \(q_1 + q_2 + 1 \) forms in \(\mathcal{I}(\mathcal{F}_1) \) as well as of \(q_2 + 1 \) forms in \(\mathcal{I}(\mathcal{F}_2) \) are null. This enables to consider the closed *Godbillon-Vey forms* \(\mu_1 \wedge (d\mu_1)^{\nu_1+q_2} \in \Omega^{2(q_1+q_2)+1}(U) \) and \(\mu_2 \wedge (d\mu_2)^{q_2} \in \Omega^{2q_2+1}(U) \) and the *Godbillon-Vey classes* of the foliations \(\mathcal{F}_U \) and \(\mathcal{F}_V \) as the cohomology classes \([\mu_1 \wedge (d\mu_1)^{\nu_1+q_2}] \in H^{2(q_1+q_2)+1}(U) \) and \([\mu_2 \wedge (d\mu_2)^{q_2}] \in H^{2q_2+1}(U) \).

Let us look closely to \(U \cap V \), when the relation (2) holds. For sake of simplicity, we use notations \(\omega_1 \) and \(\omega_2 \) instead of \(\omega'_1 \) and \(\omega'_2 \) respectively.
Differentiating by \(d \), then using (4) and the usual properties of the exterior product, we obtain
\[
\omega_2 \wedge ((-1)^{q_2} d\theta - \theta \wedge (\mu_1 - (-1)^{q_1} q_2 \mu_2)) = 0.
\]
Taking into account (3), then
\[
d\theta - (-1)^{q_2} \theta \wedge (\mu_1 - (-1)^{q_1} q_2 \mu_2) = \sum_{\bar{v}=1}^{q_2} \bar{\omega}^\bar{v} \wedge \eta_\bar{v}, \tag{5}
\]
with \(\eta_\bar{v} \in \Omega^{q_2+1}(\bar{U} \cap \bar{V}) \). Thus the left side of equality (5) belongs to \(\mathcal{I}(\mathcal{F}_2)|_{U \cap V} \subset \Omega^{q_2+1}(U \cap V) \). Denote by
\[
\mu_3 = (-1)^{q_2} (\mu_1 - (-1)^{q_1} q_2 \mu_2). \tag{6}
\]
Differentiating by \(d \) and using again the same relation (5), we obtain
\[
\theta \wedge d\mu_3 = \sum_{\bar{v}=1}^{q_2} \bar{\omega}^\bar{v} \wedge \bar{\eta}_\bar{v}, \tag{7}
\]
with \(\bar{\eta}_\bar{v} \in \Omega^{q_2+1}(U \cap V) \), i.e. \(\theta \wedge d\mu_3 \in \mathcal{I}(\mathcal{F}_2)|_{U \cap V} \). But using local coordinates as in the proof of Proposition 3 we have that, on a domain \(U' \) of such coordinates, there is a local function \(h_3 \) such that \(\theta - h_3 d\tilde{x}^1 \wedge \cdots \wedge d\tilde{x}^{q_1} \in \mathcal{I}(\mathcal{F}_2)|_{U'} \). Using this fact in (7), it follows that
\[
d\mu_3 = \sum_{\bar{v}=1}^{q_2} \bar{\omega}^\bar{v} \wedge \bar{\eta}_\bar{v}
\]
with \(\bar{\eta}_\bar{v} \in \Omega^1(U \cap V) \), i.e. \(d\mu_3 \in \mathcal{I}(\mathcal{F}_2)|_{U \cap V} \). But \(d\mu_2 \in \mathcal{I}(\mathcal{F}_2)|_{U \cap V} \), thus using (6) it follows that \(d\mu_1 \in \mathcal{I}(\mathcal{F}_2)|_{U \cap V} \).

Proposition 4 Assuming \(q_1 > 0 \), then the following assertions hold true:

1. The restriction \(d\mu_1|_{U \cap V} \) belongs to the ideal \(\mathcal{I}(\mathcal{F}_2)|_{U \cap V} \).
2. The Godbillon-Vey form of \(d\mu_1|_{U \cap V} \) and its cohomology class according to the foliation \(\mathcal{F}_U|_{U \cap V} \), both vanish.
3. If \(\mathcal{F}' \subset \mathcal{F}'' \), \(\mathcal{F}' \neq \mathcal{F}'' \), are regular foliations on \(M \) and the foliation \(\mathcal{F}'' \) has not a null co-dimension, then the Godbillon-Vey class of \(\mathcal{F}' \) vanishes.

Proof. Taking into account (6), \(d\mu_3 \in \mathcal{I}(\mathcal{F}_2)|_{U \cap V} \) and since \(d\mu_2 \in \mathcal{I}(\mathcal{F}_2)|_{U \cap V} \), then the first assertion holds true. If \(q_1 > 0 \), then \(q_1 + q_2 \geq q_1 + 1 \), thus \((d\mu_1)^{q_1+q_2} = 0 \), because \((d\mu_1)^{1+q_2} = 0 \); it follows that \(\mu_1 \wedge (d\mu_1)^{q_1+q_2} = 0 \), as well as its cohomology class, thus 2. follows. Then 3. is a simple consequence of 2. □

The result in this Proposition allows to consider the Godbillon-Vey class of the foliation \(\mathcal{F}_U \) having the maximal co-dimension \(q_{\text{max}} = m - r_{\text{min}} \), on
the open subset \(U_{r_{\min}} \subset M \); the foliation has the leaves of minimal dimension. The Godbillon-Vey class is the class \([\mu_{r_{\min}} \wedge (d\mu_{r_{\min}})^{r_{\min}}]\). The differential form \(GV_{r_{\min}} = \mu_{r_{\min}} \wedge (d\mu_{r_{\min}})^{m-r_{\min}} \in \Omega^{1+2q_{\max}}(U_{\max}) \) is null on any intersection \(U_{r_{\min}} \cap U_0 \neq \emptyset \), where \(U_0 \) is an open subset corresponding to a foliation \(F_{U_0} \) of codimension \(q_0 = m - r_0 < q_{\max} = m - r_{\min} \). Thus, extending \(GV_{r_{\min}} \) as null outside \(U_{r_{\min}} \), we obtain a global closed form that gives \(GV_{r_{\min}}(F) \in H^{1+2q_{\max}}(M) \); we call it as the Godbillon-Vey class on leaves of minimal dimension.

In the general case, let us consider the ascending sequence of open sets \(\Sigma_{r_k} \subset \Sigma_{r_{k-1}} \subset \cdots \subset \Sigma_{r_1} \subset \Sigma_{r_0} = M \). Denote by \(F_{\Sigma_{r_i}} \) the restriction of \(F \) to the open set \(\Sigma_{r_i} \), \(i = 0, \cdots, k \); notice that the set \(\Sigma_{r_i} \) is saturated by the leaves of \(F = F_{\Sigma_{r_0}} \). The subset \(\Sigma_{r_i} \subset \Sigma_{r_{i-1}} \) is that of minimal dimensions of leaves. We can consider the Godbillon-Vey classes \(GV_{\min}(F_{\Sigma_{r_i}}) \in H^{2(q_{r_i}+1)}(\Sigma_{r_i}) \). In particular, \(GV_{\min}(F) = GV_{\min}(F_{\Sigma_{r_0}}) \in H^{2(q_{r_0}+1)}(\Sigma_{r_0}) = H^{2(q_{r_0}+1)}(M) \).

Theorem 1 A Godbillon-Vey form of the leaves extends to a global cohomology class \(GV_{\min}(F) \in H^{1+2q_{\max}}(M) \) (for the leaves of minimal dimension) and to some Godbillon-Vey classes \(GV_{\min}(F_{\Sigma_{r_i}}) \in H^{2(q_{r_i}+1)}(\Sigma_{r_i}) \) (for the leaves on the other \(U_i \), \(i > 0 \)).

In order to obtain global cohomology classes on \(M \), the construction on the Godbillon-Vey class on the leaves of minimal dimension can be extended to the other strata, provided that there is a foliated test function according to that stratum. We perform below this construction.

Let us suppose that the foliation \(F_{r_i} \) on \(U_i \subset M \) has the dimension \(r_i \) of leaves and it is defined on \(U_i \) by the equation \(\omega_i = 0 \), where \(\omega_i \in \Omega^{q_i}(U_i) \), \(q_i = m - r_i \). Then

\[
\text{d} \omega_i = \omega_i \wedge \mu_i
\]

with \(\mu_i \in \Omega^{1}(U_i) \). We suppose below that there is a test function \(\varphi_i \in \mathcal{F}(M) \) for \(M \setminus U_i \) that restricts to a basic function for the foliation \(F_{r_i} \) on \(U_i \); we suppose also that \(\bar{\mu}_i = \varphi_i \mu_i \) (where \(\mu_i \) is defined by zero on \(M \setminus U_i \)) is differentiable on \(M \), i.e. \(\bar{\mu}_i \in \Omega^{1}(M) \); this is always true if \(\varphi_i \) is a strong test function.

Proposition 5 Let us suppose that the test function \(\varphi_i \) is basic and \(\bar{\mu}_i = \varphi_i \mu_i \) is differentiable on \(M \). Then the differential form \(\bar{\nu}_i = \bar{\mu}_i \wedge (d\bar{\mu}_i)^{q_i} \) is closed, giving a cohomology class \([\bar{\nu}_i] \in H^{2q_i+1}(M) \).

Proof. We have \(\bar{\nu}_i = \bar{\mu}_i \wedge (d\bar{\mu}_i)^{q_i} = \varphi_i^{1+q_i} \mu_i \wedge (d\mu_i)^{q_i} \). If \(\varphi_i \) is basic, then \(\psi_i = \varphi_i^{1+q_i} \) is also basic and \(d\psi_i \wedge \mu_i \wedge (d\mu_i)^{q_i} = 0 \). Thus \(d\bar{\nu}_i = 0 \) and the conclusion follows. \(\square \)

Notice that if the maximal stratum has the dimension \(r_k = m \), then its Godbillon-Vey form vanishes, as well as its Godbillon-Vey class. In particular, if a family of regular foliations has \(R = \{r_0, r_1\} \) and \(r_1 = m \), then the only possible non-null is the Godbillon-Vey class of the leaves of minimal dimension.
5 Two cases

First, we prove that the usual Godbillon-Vey class of a regular foliation is the same with the Godbillon-Vey class of leaves of minimal dimension of a suitable non-trivial family of regular foliations. Let \((M, \mathcal{F}_0)\) be a regular foliation of codimension \(q_0\) defined by a \(q_0\)-differential form \(\omega_0 = 0\), such that \(d\omega_0 = \omega_0 \wedge \mu_0\). Let us consider two open and non-void subsets \(W, U_2\) having the properties that \(W \subset U_2\) and \(\varphi \in \mathcal{F}(M)\) a Uryson function such that \(supp \varphi = M \setminus W = U_1\). Consider on \(U_1\) the foliation \(\mathcal{F}_{U_1}\) as being the restriction to \(U_1\) of foliation \(\mathcal{F}\). Let us suppose that there is on \(U_2\) a non–trivial foliation \(\mathcal{F}_{U_2}\) such that its leaves are saturated by leaves of \(\mathcal{F}_{0|U_2}\) (for this we can take \(U_2\) the domain of a \(\mathcal{F}_0\)–foliate simple chart and then take as \(\mathcal{F}_{U_2}\) a proper foliation having as subfoliation \(\mathcal{F}_{0|U_2}\) (for example, a trivial foliation with one leaf). The foliation \(\mathcal{F}_{U_2}\) is defined by the \(q_0\)-form \(\bar{\omega} = \varphi \omega_0\), that has the same support as \(\varphi\). The foliations \(\mathcal{F}_{U_1}\) and \(\mathcal{F}_{U_2}\) give a non-trivial family of regular foliations on \(M\). The Godbillon-Vey class \(GV_{min}(\mathcal{F}) \in H^{2q_0+1}(M)\) is given extending naturally (using Proposition\(\[1]\) a form that gives the Godbillon-Vey class of \(\mathcal{F}_{U_1}\).

Proposition 6 The Godbillon-Vey class \(GV_{min}(\mathcal{F})\) is the same as \(GV(\mathcal{F}_0)\), the usual Godbillon-Vey class of \(\mathcal{F}_0\).

Proof. The Godbillon-Vey class of \(\mathcal{F}_0\) is given by a differential form \(\eta \wedge (\partial \eta)^{[q_0]}\), such that \(d\varphi = \omega \wedge \eta\), where the definition does not depend of \(\omega\) and \(\eta\) (see \[13\] Theorem 3.11). It can be easy proved that we can take the restriction of \(\varphi\) to \(U_2\) having the form \(f \partial x_1 \cdots \partial x_{q_0}\), where \(\{\bar{x}^i\}_{\alpha = 1, q_0}\) are transverse coordinates for \(\mathcal{F}_0\) on \(U_2\), thus \(\eta|_{U_2} = (-1)^{q_0}df\) and \(d\eta|_{U_2} = 0\). Thus the restriction of the differential form \(\eta \wedge (\partial \eta)^{[q_0]}\) to \(U_2\) vanishes and it extends the differential form on \(U_1\) that gives the Godbillon-Vey class of \(\mathcal{F}_{0|U_2}\), thus it gives \(GV_{min}(\mathcal{F})\). It follows that \(GV_{min}(\mathcal{F}) = GV(\mathcal{F}_0)\). □

We consider below a non-trivial case when the Godbillon-Vey class vanishes. More specifically, we prove that for a regular (weak) test function \(\varphi_i \in \mathcal{F}(M)\) for \(M \setminus U_i\) that restricts to a basic function for the foliation \(\mathcal{F}_{r_i}\) on \(U_i\) the cohomology class \([\varphi_i]\) \(\in H^{2q_0+1}(M)\) vanishes.

Firstly we shall need some preliminary notions about singular forms and cohomology attached to a function, for more see \[2\] [10]. Accordingly, for a smooth function \(f \in \mathcal{F}(M)\) and \(U \subset M\) a \(p\)-form \(\omega \in \Omega^p(U)\) is called a singular \(p\)-form if the form \(f^p \omega\) can be extended to a smooth form on \(M\), that is \(f^p \omega \in \Omega^p(M)\). We denote the space of singular \(p\)-forms with respect to \(f\) by \(\Omega^p_f(M)\). We notice that if \(\omega \in \Omega^p_f(M)\) then \(d\omega \in \Omega^{p+1}_f(M)\) and so we have a differential complex \((\Omega^*_{M}, d)\). The cohomology of this differential complex is isomorphic with the cohomology attached to the function \(f\), denoted by \(H^*_f(M)\), which is defined as cohomology of the differential complex \((\Omega^*(M), d_f)\), where the coboundary operator \(d_f : \Omega^p(M) \rightarrow \Omega^{p+1}(M)\) is defined by \(d_f \omega = f d\omega - pdf \wedge \omega\). The mentioned isomorphism is produced by the map of chain complexes \(\phi : (\Omega^*_{M}, d) \rightarrow (\Omega^*_{M}, d_f)\) given by \(\phi^p : \Omega^p_f(M) \rightarrow \Omega^p(M), \phi(\omega) = f^p \omega\), see \[10\].
Now, let us return to our study. As well as we seen from the above discussion $\mu_i \in \Omega_{p_i}^1(M)$ and, accordingly $d\mu_i \in \Omega_{p_i}^2(M)$. We have then that $\mu_i \wedge (d\mu_i)^q_i \in \Omega_{p_i}^{2q_i + 1}(M)$. Since $\mu_i \wedge (d\mu_i)^q_i$ is closed, from the above isomorphism we have that $\varphi_i^{2q_i + 1} \mu_i \wedge (d\mu_i)^q_i$ is $d\varphi_i$-closed. Thus, if φ_i is basic function for the foliation \mathcal{F}_{r_1} on U_i then $d\varphi_i(\varphi_i^q \pi_i) = 0$ which leads to the cohomology class $[\varphi_i^q \pi_i] \in H_{2q_i + 1}(M)$. Let us consider now the regular case for the test function φ_i, that is φ_i does not have singularities in a neighborhood of its zero set (i.e., 0 is a regular value). The subsets $S_i = \varphi_i^{-1}(\{0\}) = M \setminus U_i$ are then embedded submanifolds of M. We also assume that S_i are connected.

We consider some useful notations. Let $V_i \subset V_i'$ be tubular neighborhoods of S_i. We may assume that $V_i = S_i \times [-\epsilon_i, \epsilon_i]$ and $V_i' = S_i \times [-\epsilon_i', \epsilon_i']$, with $\epsilon_i' > \epsilon_i$, and that $\varphi_i|_{V_i'} : S_i \times [-\epsilon_i', \epsilon_i'] \to \mathbb{R}$, $(x, t) \mapsto t$. We denote by π_i the projections $V_i' \to S_i$. Let $\rho : \mathbb{R} \to \mathbb{R}$ be a smooth function which is 1 on $[-\epsilon_i, \epsilon_i]$ and has support contained in $[-\epsilon_i', \epsilon_i']$. Note that the function $\rho \circ \varphi_i$ is 1 on V_i, and we can assume that the function $\rho \circ \varphi_i$ vanishes on $M \setminus V_i'$. If ω is a form on S_i, we will denote by $\tilde{\omega}$ the form $\rho(\varphi_i)\pi_i^*\omega$ and notice that $d\varphi_i \wedge d\tilde{\omega} = d\varphi_i \wedge d\omega$, see [10].

According to Theorem 4.1 from [10], if 0 is a regular value of φ_i then, for each $p \geq 1$, there is an isomorphism

$$H_{\varphi_i}^p(M) \cong H_{dR}^p(M) \oplus H_{dR}^{p-1}(S_i),$$

(8)

given by $\Phi : \Omega^p(M) \oplus \Omega^{p-1}(S_i) \to \Omega^p(M)$ defined by $\Phi(\alpha, \beta) = \varphi_i^p \alpha + \varphi_i^{p-1} d\varphi_i \wedge \beta$.

Now, taking into account the isomorphism (8) it follows that there exist $\alpha_i \in \Omega_{p_i}^{2q_i + 1}(M)$ and $\beta_i \in \Omega_{p_i}^{2q_i}(S_i)$ with $d\alpha_i = d\beta_i = 0$ such that

$$\varphi_i^q \pi_i = \varphi_i^{1+2q_i} \alpha_i + \varphi_i^{2q_i} d\varphi_i \wedge \beta_i.$$

(9)

Thus we obtain that $\alpha_i = \varphi_i^{-q} \pi_i - \frac{d\alpha_i}{\varphi_i} \wedge \beta_i$ and by differentiation and taking into account $d\pi_i = d\alpha_i = d\beta_i = 0$, one get

$$(-1 - q_i)\varphi_i^{-2q_i - 1} d\varphi_i \wedge \pi_i = 0,$$

where we have used $d\varphi_i \wedge d\beta_i = d\varphi_i \wedge d\beta_i = 0$.

Now, since $d\pi_i = 0$ and $d\varphi_i \wedge \pi_i = 0$, by Proposition 3.4 from [9] there exist $\pi_i \in \Omega_{p_i}^{2q_i - 1}(M)$ such that $d\pi_i = d\varphi_i \wedge d\pi_i$ and so $\pi_i = d(\varphi_i d\pi_i)$. Thus, we obtain the announced result:

Proposition 7 If 0 is a regular value for the (weak) test function φ_i that is also basic, then the cohomology class $[\pi_i] \in H_{2q_i + 1}(M)$ vanishes.

References

[1] Dominguez, D., *Sur les Classes Caractéristiques des Sous-Feuilletages*, Publ. RIMS, Kyoto Univ., 23 (1987) 813-840.
[2] Dazord P., *Féquilletages à singularités*, Indagationes Math. Volumen, 1, 47 (1985) 21-39.

[3] Drager L.D., Lee J.M., Park E., Richardson K., *Smooth vector subbundles are finitely generated*, Ann. Glob. Anal. Geom., 41, 3 (2012) 357-369.

[4] Greub W., Halperin S., Vanstone R., *Connections, Curvature, and Cohomology*, vol. I, Academic Press, New York, 1972.

[5] Godbillon C, Reeb G., *Feuilletages: études géométriques*, Birkhäuser, Basel, 1991.

[6] Hirsch M., *Differential Topology*, Graduate Text in Math. 33 Springer-Verlag, New York, 1976.

[7] Hoster, M. *Derived secondary classes for flags of foliations*, PhD Diss. LMU, 2001.

[8] Lee J.M., *Introduction to Smooth Manifolds*, Springer Verlag, New York, 2003.

[9] Monnier, Ph., *Computations of Nambu-Poisson cohomologies*. IJMMS 26, 2 (2001) 65–81.

[10] Monnier, Ph., *A cohomology attached to a function*. Diff. Geom. and Appl. 22 (2005) 49–68.

[11] Muger M., *An Introduction to Differential Topology, de Rham Theory and Morse Theory*, http://www.math.ru.nl/~mueger/diff_notes.pdf (2005).

[12] Kotschick D., *Godbillon-Vey invariants for families of foliations*, Eliashberg, Yakov (ed.) et al., Symplectic and contact topology: Interactions and perspectives. Papers of the workshop on symplectic and contact topology, quantum cohomology, and symplectic field theory, Montreal and Toronto, Canada, March–April 2001. Providence, RI, AMS, Fields Inst. Commun. 35 (2003) 131-144.

[13] Lang S., *Differential and Riemannian Manifolds*, 3-rd ed., Springer Verlag, New York, 1995.

[14] Tondeur P., *Foliations on Riemannian manifolds*, Universitext. Springer-Verlag, Berlin, Heidelberg, New York, 1988.

[15] Vaisman I., *Lectures on the Geometry of Poisson Manifolds*, Progress in Math., vol. 118, Birkhäuser Verlag, Boston, 1994.

[16] H. Whitney, *Analytic extensions of differentiable functions defined in closed sets*, Trans. Amer. Math. Soc. 36 (1934) 63-89.