UCSF
UC San Francisco Previously Published Works

Title
Clinical features, diagnostics, and outcomes of patients presenting with acute respiratory illness: A retrospective cohort study of patients with and without COVID-19.

Permalink
https://escholarship.org/uc/item/9s46v8q3

Authors
Shah, Sachin J
Barish, Peter N
Prasad, Priya A
et al.

Publication Date
2020-10-01

DOI
10.1016/j.eclinm.2020.100518

Peer reviewed
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Clinical features, diagnostics, and outcomes of patients presenting with acute respiratory illness: A retrospective cohort study of patients with and without COVID-19

Sachin J. Shah*, Peter N. Barish, Priya A. Prasad, Amy Kistler, Norma Neff, Jack Kamm, Lucy M. Li, Charles Y. Chiu, Jennifer M. Babik, Margaret C. Fang, Kirsten Neudoerffer Kangelaris, Charles Langelier, Yuiko Abe-Jones, Narges Alipanah, Francisco N. Alvarez, Olga Borisovna Botvinnik, Gloria Castaneda, The CZB CLIAhub Consortium, Rand M. Dadasov, Jennifer Davis, Xianding Deng, Joseph L. DeRisi, Angela M. Detweiler, Scot Federman, John Haliburton, Samantha Hao, Andrew D. Kerkhoff, G. Renuka Kumar, Katherine B. Malcolm, Sabrina A. Mann, Sandra Martinez, Rupa K. Mary, Eran Mick, Luao Mwakibete, Nader Najafi, Michael J. Peluso, Maira Phelps, Angela Oliveira Pisco, Kalani Ratnasiri, Luis A. Rubio, Anna Sellas, Kyla D. Sherwood, Jonathan Sheu, Natasha Spottiswoode, Michelle Tan, Guixia Yu

* Division of Hospital Medicine, University of California, San Francisco, CA, USA
1 Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA
2 Division of Infectious Diseases, University of California, San Francisco, CA, USA
3 Department of Laboratory Medicine, University of California, San Francisco, CA, USA
4 Department of Medicine, University of California, San Francisco, CA, USA
5 Chan Zuckerberg Biohub, San Francisco, CA, USA
6 Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
7 Program in Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
8 Vitalant Research Institute, San Francisco, CA, USA

Article History:
Received 27 May 2020
Revised 27 July 2020
Accepted 5 August 2020
Available online xxx

ABSTRACT

Background: Most data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been presented as case series without comparison to patients with other acute respiratory illnesses.

Methods: We examined emergency department patients between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared clinical presentation, diagnostics, treatment, and outcomes.

Findings: Among 316 patients, 33 tested positive for SARS-CoV-2; 31 without COVID-19 tested positive for another respiratory virus. Among patients with additional viral testing (27/33), no SARS-CoV-2 co-infections were identified. Compared to those who tested negative, patients with COVID-19 reported longer symptoms duration (median 7d vs. 3d, p < 0.001). Patients with COVID-19 were more often hospitalized (79% vs. 56%, p = 0.014). When hospitalized, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p < 0.001) and more often developed ARDS (23% vs. 3%, p < 0.001). Most comorbidities, medications, symptoms, vital signs, laboratories, treatments, and outcomes did not differ by COVID-19 status.

Interpretation: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections.

Funding: National Center for Advancing Translational Sciences, National Heart Lung Blood Institute, National Institute of Allergy and Infectious Diseases, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative.

https://doi.org/10.1016/j.eclinm.2020.100518
2589-5370/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Please cite this article as: S.J. Shah et al., Clinical features, diagnostics, and outcomes of patients presenting with acute respiratory illness: A retrospective cohort study of patients with and without COVID-19, EClinicalMedicine (2020), https://doi.org/10.1016/j.eclinm.2020.100518
Research in context

Evidence before this study
Emerging data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have commonly been presented as case series. Without control patients, it is not clear whether and how the clinical features, diagnostics, and outcomes differ from other respiratory infections.

Added value of this study
When compared to other patients with acute respiratory illness not caused by COVID-19, many of the clinical features and outcomes occur at similar rates. Notably different, patients with COVID-19 had a longer duration of symptoms, particularly fatigue, fever, and myalgias, were more likely to be admitted to the hospital and for a longer duration, and more likely to develop ARDS compared to those without COVID-19. Those infected with SARS-CoV-2 were unlikely to have co-existent viral infections when examined by PCR and metagenomic next generation sequencing.

Implication of all the available evidence
Given the considerable overlap in clinical features and outcomes, studies seeking to describe features unique to COVID-19 should employ a control group. Viral co-infection rates are variable and may be context specific.

1. Introduction

The severe acute respiratory coronavirus 2 (SARS-CoV-2) and its associated clinical disease, COVID-19, led to a global pandemic in early 2020, with more than 3 million cases and more than 200,000 deaths as of April 2020. [1] The initial published reports of COVID-19 describe the most common presenting symptoms as fever, cough, and dyspnea. [2–6] While many people recovered, reports from China, Italy, and the United States showed that approximately 5% of patients required intensive care, and 1.7 to 7.2% died. [1,7,8] The majority of clinical and outcomes data on COVID-19 have been from Asia and Europe, [4,6,7,9–14] although data are now emerging from China, Italy, and Northern California. [15–19] However, reports have predominantly focused on patients diagnosed with COVID-19 and have not described in detail the presentation of patients with acute respiratory illness who did not have COVID-19. Without control patients, it is uncertain whether COVID-19 presents differently from other respiratory infections.

The prevalence of viral co-infections in patients with COVID-19 appears to be low in most but not all studies. [15–18,20–23] However, these studies used conventional microbiological techniques to evaluate for co-infections that are limited in their ability to diagnose respiratory infections. [24] Understanding the true scope of co-infections in patients with COVID-19 is critical to pursue appropriate diagnostics and management. Metagenomic next-generation sequencing (mNGS) offers a powerful alternative to test for viruses in a respiratory sample in an unbiased manner. [25]

Here we report the clinical characteristics, diagnostics, and outcomes of all patients presenting with respiratory illness to a tertiary academic medical center in San Francisco at the outset of the COVID-19 pandemic. We compare patients with COVID-19 disease to patients presenting during the same time period with an acute respiratory illness and report the prevalence of viral respiratory infections using both conventional microbiology and mNGS.

2. Methods

2.1. Setting and design

We conducted a retrospective cohort study to describe the characteristics, diagnostics, and outcomes of patients with respiratory illness presenting to the University of California, San Francisco (UCSF) Health Emergency Department (ED) during the COVID-19 outbreak, comparing patients with and without COVID-19 disease. We identified all patients 18 years or older who underwent testing for COVID-19 within 24 h of presentation to the ED between February 3 and March 31, 2020. Patients were tested for SARS-CoV-2 if they met U.S. Centers for Disease Control and Prevention (CDC) clinical testing criteria. [26]

Two physicians blinded to patients’ COVID-19 status, independently reviewed the documented clinical presentation of all patients and included only those who presented with acute respiratory symptoms (e.g., cough, dyspnea) or influenza-like illness symptoms (e.g., fever, myalgias). Discordant results were re-reviewed together and a consensus decision was reached on all cases (Appendix Fig. 1). If patients had multiple encounters during the time period, the first encounter was examined. Patients who were discharged and readmitted within 48 h were considered a single clinical encounter and outcomes ascertained throughout the encounter.

2.2. Patient characteristics

Patient medical records were reviewed by trained physician chart reviewers and relevant data on initial presentation, radiology findings, and outcomes were abstracted using standardized case review forms. Additional information on patient demographics, vital signs, and laboratory results were obtained from the Epic-based electronic health record. We characterized patients’ comorbidities and their presenting signs and symptoms based on the admission History & Physical and Emergency Department documentation. If a specific comorbidity was not mentioned in the admission documentation, it was considered not present. Records were also reviewed to obtain results of laboratory tests and chest imaging reports within the first 24 h after admission.

2.3. Clinical microbiological testing

Clinician-ordered testing for COVID-19 was carried out at the UCSF Clinical Microbiology Laboratory using an in-house Clinical Laboratory Improvements Amendments (CLIA)-validated reverse transcriptase polymerase chain reaction (PCR) assay. This assay was performed for 290/316 (92%) of patients on RNA extracted from oropharyngeal and/or nasopharyngeal swab specimens using primers targeting two regions of the SARS-CoV-2 N gene. The analytical sensitivity/specificity of the in-house assay compared to the US CDC assay performed at the CDC was 97% and 100%, respectively. Twenty-six (8%) of the patients had SARS-CoV-2 PCR testing ordered at the study site but performed at the Centers for Disease Control or other institutions using their clinically validated assays. At the time of the study,
PCR results were available at the earliest within 3 h, and the median time to result was 16 h.

Conventional PCR testing for other respiratory viruses was carried out at the discretion of treating clinicians for 270/316 (85%) of patients on pooled nasopharyngeal/oropharyngeal or nasopharyngeal swab specimens using two types of commercial assays as detailed in Appendix Table 2. The first was a 12-target respiratory viral PCR assay (adenovirus, influenza A/H1N3/B, human metapneumovirus, human rhinovirus, parainfluenza viruses 1–4, respiratory syncytial viruses A/B) manufactured by Luminex, Inc. The second was a 3-target (influenza A/B, respiratory syncytial virus) assay manufactured by Diasoren, Inc. Bacterial and fungal respiratory pathogens were assessed by semi-quantitative cultures. Patient blood cultures were performed via inoculation into BD Bactec Plus Aerobic and Lytic Anaerobic media (Becton Dickinson).

2.4. Respiratory virus detection by metagenomic sequencing

To further screen for the presence of other respiratory viral pathogens, metagenomic next generation sequencing (mNGS) of RNA was performed on available residual RNA initially extracted for COVID-19 clinical PCR testing. At our institution, during the time period of the study, SARS-CoV-2 PCR was performed using in-house CLIA validated PCR tests for the majority of samples. This in-house PCR test involved first extracting RNA from patient swab samples and then carrying out reverse transcriptase PCR as described in the Methods. Of the 316 PCR tests performed, leftover RNA was available for mNGS analysis on 178 patients. To balance the need for timely turnaround with the desire to assess a sufficient large fraction of the cohort, we performed mNGS on 60% (N = 107) of these 178 samples, which included as many SARS-CoV-2 positive samples as possible (mNGS data generated on 14) plus an arbitrary selection of SARS-CoV-2 negative samples. SARS-CoV-2 negative samples were distributed as evenly as possible throughout the study timeframe and were selected blinded to patient characteristics and outcomes.

After DNase treatment, human ribosomal RNA depletion was carried out using FastSelect (Qiagen). To control for background contamination, we included negative controls (water and HeLa cell RNA) as well as positive controls (spike-in dilution series of RNA standards from the External RNA Controls Consortium [ERCC]). The latter enabled subsequent bioinformatic assessment of the total RNA mass input in each sample. RNA was then fragmented and subjected to a modified metagenomic spiked sequencing primer enrichment (MSSPE) library preparation method. Briefly, a 1:1 mixture of the NEBNext Ultra II RNASeq Library Prep (New England Biolabs) random primer stock and a pool of SARS-CoV-2 primers at 100 µM was used at the first strand synthesis step of the standard RNASeq library preparation protocol to enrich for the recovery of reads spanning the length of the SARS-CoV-2 genome sequence in the context of mNGS analysis. RNA-seq libraries underwent 146 nucleotide paired-end Illumina sequencing on an Illumina NovaSeq 6000.

2.5. mNGS bioinformatic and phylogenetic analysis

Following demultiplexing, reads were host- and quality-filtered and then subjected to viral reference based alignment at both the nucleotide and amino acid level against sequences in the National Center for Biotechnology Information (NCBI) nucleotide (NT) and non-redundant (NR) databases, followed by assembly using previously validated bioinformatics pipelines. [31,32] We used spike-in positive control ERCC RNA standards to bioinformatically calculate the input RNA for the mNGS assay. Ten samples had insufficient (~25 pg) input RNA for accurate analysis and so were considered invalid, leaving 97 subjects available for analysis.

Negative control (water and HeLa cell RNA) samples enabled estimating the number of background reads to each virus, which were normalized by input mass determined based on the ratio of sample reads to spike-in positive control ERCC RNA standards. Viruses with sequencing reads significantly greater compared to negative controls (adjusted p-value < 0.05 using a Holm-Bonferroni correction within each sample) were identified by modeling the number of background reads as a negative binomial distribution with mean and dispersion fitted on the negative controls. For phylogenetic analysis of SARS-CoV-2 viruses, we constructed genomes using minimap2 [33] to align reads to the reference MN908947.3 and iVar [34] to trim primers and call variants, then restricted to samples with at least 10-fold coverage of at least 97% (2929 kgbases) of the genome (n = 10), and utilized the Nextstrain [35] pipeline to build a phylogenetic tree using iqtree. [36] Viral genomic data is publicly accessible via gisaid.org (Global Initiative on Sharing All Influenza Data) [37] and Genbank (MT385414 - MT385497).

2.6. Treatment and outcomes

Clinical treatment and outcomes were ascertained through a combination of chart review and extraction of structured fields from the electronic health record. Medication records were reviewed to identify the administration of relevant antibiotics. We determined if patients required respiratory support at any point during their hospitalization: nasal cannula, high flow nasal cannula, noninvasive ventilation (bilevel or continuous positive airway pressure), or endotracheal intubation. Patients were considered to have new-onset cardiomyopathy if a treating physician documented the diagnosis. Acute respiratory distress syndrome (ARDS) was defined according to the Berlin definition by two physicians. [38] Acute kidney injury was defined using the Kidney Disease: Improving Global Outcomes definition. [39] Outcome ascertainment was censored on April 25, 2020.

2.7. Statistical analysis

We used descriptive statistics to characterize the features of patients grouped by COVID infection. Where clinically relevant, we dichotomized continuous variables. For normally distributed continuous variables, we calculated the mean and standard deviation and tested for differences using t-tests. For non-normally distributed continuous variables, we calculated the median and interquartile range and tested for differences using the Wilcoxon rank sum test. For categorical and dichotomous variables, we evaluated differences between groups using the chi-square test or Fisher’s exact test. The analyses were not adjusted for multiple comparisons and should be interpreted as descriptive and exploratory. The Human Research Protection Program Institutional Review Board at the University of California, San Francisco, approved this study (IRB# 1–20,956). We used Stata version 14.2 (College Station, TX) and SAS version 9.4 (Cary, NC) to conduct all analyses.

2.8. Role of the funding source

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

3. Results

3.1. Demographic characteristics and comorbidities

Out of 316 patients who presented with acute respiratory illness and underwent testing for COVID-19, 33 (10%) tested positive for SARS-CoV-2 by PCR. Patients with a positive COVID-19 test result were more likely to have traveled to an area of community transmission in the past 21 days or to have had contact with someone with...
COVID-19 (46% vs. 11%, p < 0.001), to be married (64% vs. 36%, p = 0.02), or to identify as Asian (42% vs. 24%, p = 0.010) (Table 1). Patients who tested positive were also more likely to report never smoking tobacco (61% vs. 40%, p = 0.001) and to have undergone solid organ transplantation (12% vs. 3%, p = 0.027). The prevalence of hypertension and diabetes did not differ significantly between COVID-19 positive and negative patients. There was no significant difference by COVID-19 status of the proportion of patients taking an angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker.

3.2. Signs, symptoms and vital signs

Patients with COVID-19 reported a longer duration of symptoms prior to ED presentation (median 7 vs. 3 days, p < 0.001) (Table 1). COVID-19 patients reported fever (82% vs. 44%, p < 0.001), fatigue (85% vs. 50%, p < 0.001), and myalgias (61% vs 27%, p < 0.001), at a higher rate than COVID-19 negative patients. The presence and characteristics of cough, dyspnea, and chest pain did not differ based on COVID-19 infection. Gastrointestinal symptoms – nausea, vomiting, diarrhea, and abdominal pain – were present at similar rates in the two groups. With respect to vital sign abnormalities, tachycardia, hypotension, oxygen requirement, and tachypnea did not differ by COVID-19 status. However, patients with COVID-19 were more likely to present with a measured fever (46% vs 24%, p = 0.010).

3.3. Laboratory studies and imaging upon presentation

Lymphopenia was more common in patients with COVID-19 at the time of presentation (55% vs 34%, p = 0.018) (Table 2). Aspartate transaminase but not alanine transaminase was more often elevated in patients with COVID-19 (36% vs. 18% p = 0.022 and 11% vs. 10% p = 1.000, respectively). Patients with COVID-19 were less often acidemic (0% vs. 15%, p = 0.031) and less often found to be hypercarbic (4% vs. 28%, p = 0.002) by venous blood gas. Of the patients tested on presentation, neither troponin nor procalcitonin elevation differed by COVID-19 status. Chest X-rays were performed on all but 6 patients. Radiographs from patients with COVID-19 were more likely to reveal bilateral patchy or hazy opacities (55% vs. 24%, p = 0.001). Focal consolidations, interstitial abnormalities, and pleural effusions were observed at similar proportions.

3.4. Pathogen diagnostics

Clinicians ordered Influenza/Respiratory syncytial virus PCR testing for 99/316 (31%) patients and 12-target respiratory virus PCR for 171/316 (54%) patients; testing rates did not differ by COVID-19 status (Table 3). Orthogonal mNGS analysis was performed on swab specimens from 97/316 (31%) of patients to provide additional broad range screening of both common and uncommon viral pathogens. By PCR, SARS-CoV-2 was the most prevalent respiratory virus detected in 33/316 patients (10%). No co-infections with SARS-CoV-2 and other viruses were identified. Other respiratory viruses were identified in 31/194 (16%) of patients without COVID-19. Independent mNGS analyses corroborated 13/14 (93%) of SARS-CoV-2 infections and 11/11 (100%) of other respiratory viral infections detected by clinical PCR assays. Respiratory bacterial co-infection was not more common in patients with COVID-19 (11% vs. 18%, p = 1.000) and no cases of ventilator associated pneumonia were identified in COVID-19 patients. Bacteremia or fungemia was also not more common in patients with COVID-19 disease (5% vs. 7%, p = 1.00).

3.5. Genomic epidemiology of SARS-CoV-2

To understand the genomic epidemiology of SARS-CoV-2 in the cohort, phylogenetic analysis was performed. SARS-CoV-2 genomes with at least 97% coverage at 10-fold sequencing depth could be recovered from 10 of the 13 mNGS-positive subjects. These 10 genomes originate from several parts of the global SARS-CoV-2 phylogeny, with clades A2a (n = 3, widely prevalent in New York) and B1 (n = 3, detected in Washington State in February 2020) representing slightly more than half of the lineages we identified (Appendix Fig. 2). The SARS-CoV-2 isolated from patients who required ICU care were not associated with any single clade.

3.6. Hospitalization treatment and outcomes

In all, 186 patients were hospitalized and patients with COVID-19 were more likely to be admitted (79% vs. 56%, p = 0.014) and have longer lengths of stay (median 10.7 vs. 4.7 days, p < 0.001). Among hospitalized patients, antibiotics and oseltamivir were used in similar proportions (Table 4). Hydroxychloroquine was more often used in patients with COVID-19 (22% vs. 1%, p < 0.001); however, azithromycin and corticosteroids use did not differ by COVID-19 status. Six of 26 patients with COVID-19 were enrolled in a randomized trial of remdesivir. Respiratory support was provided in similar proportions of patients and, when respiratory support was needed, the level of support did not differ by COVID-19 status.

Numerically, more patients with COVID-19 required ICU care compared to non-COVID-19 patients, although the difference was not statistically significant (42% vs. 26%, p = 0.092) (Table 5). When transferred to the ICU, there was no observed difference in the use of ICU interventions; however, patients with COVID-19 had a longer ICU length of stay (median 8.8 vs. 2.9 days, p = 0.005). Those diagnosed with COVID-19 were more likely to develop ARDS (23% vs. 4%, p < 0.001) but were no more likely to develop cardiomyopathy or acute kidney injury when compared to non-COVID-19 patients. Among those tested, patients diagnosed with COVID-19 were no more often observed to have abnormal coagulation tests or elevated troponin. Treatment administered to patients not admitted to the hospital are presented in Appendix Table 1.

4. Discussion

While a number of studies describe the clinical features of patients with COVID-19, few have directly compared the clinical presentation and outcomes of COVID-19 to other respiratory illnesses. [23,40–44] Without a control group, and in settings of restricted COVID-19 test availability, we cannot ascertain whether COVID-19 presents differently from other forms of respiratory illnesses. In our study comparing acutely ill patients with and without COVID-19 presenting for emergency care, we found that patients with COVID-19 had a longer duration of symptoms, were more likely to be admitted to the hospital, had longer hospitalizations and were more likely to develop ARDS. Using standard laboratory PCR testing, and mNGS, we found a 16% prevalence of other respiratory viruses in the COVID-19 negative patients, and a lack of detectable viral co-infections in the COVID-19 positive patients.

Patients diagnosed with COVID-19 were more likely to be Asian (44%), which likely reflects differences in the dynamics of COVID-19 transmission early in the pandemic in San Francisco, where the proportion of people who self-identify as Asian is high (36%). [5] Although Asians were overrepresented in the initial COVID-19 cases at our institution, this is not indicative of the current situation in San Francisco, where Asians make up only 13% of the total number of COVID-19 cases. [45] COVID-19 patients were more likely to be never smokers, in line with other studies showing no link between tobacco use and increased COVID-19 risk. [4] [46,47] Largely similar comorbidity profiles were observed between COVID-19 positive and negative patients, aside from a higher proportion of chronic kidney disease and history of solid organ transplantation in COVID-19 patients.
Table 1
Characteristics of 316 patients presenting with acute respiratory illness and tested for COVID-19.

Demographics	COVID-19 positive (n = 33)	COVID-19 negative (n = 283)	P value
Demographics			
Age, median (IQR), yr	63 (50, 75)	62 (43, 72)	0.243
Female sex	12 (36%)	140 (50%)	0.154
Married or partnered	21 (64%)	103 (36%)	0.019
Single	7 (21%)	136 (48%)	
Divorced	2 (6%)	18 (6%)	
Widowed	2 (6%)	19 (7%)	
Housing insecure	1 (3%)	44 (16%)	0.063
Race			
White	8 (24%)	124 (44%)	0.010
Black or African American	2 (6%)	50 (18%)	
Asian	14 (42%)	60 (24%)	
Hispanic or Latino ethnicity	5 (15%)	21 (8%)	0.128
Required interpreter	6 (18%)	46 (16%)	0.777
Travel to an area with known community transmission in last 21 days or known COVID exposure	15 (46%)	31 (11%)	<0.001
Comorbidities			
Tobacco use			
Current smoker	0 (0%)	52 (18%)	0.001
Former smoker	9 (27%)	47 (17%)	
Never smoker	20 (61%)	113 (40%)	
Unknown	4 (12%)	71 (25%)	
Hypertension	16 (49%)	119 (42%)	0.479
Coronary artery disease	5 (15%)	38 (13%)	0.785
Diabetes	9 (27%)	50 (18%)	0.180
Cancer, active (excluding non-melanoma skin cancer)	5 (15%)	42 (15%)	0.962
Cancer, in remission (excluding non-melanoma skin cancer)	5 (15%)	19 (7%)	0.090
Prior stroke	0 (0%)	25 (9%)	0.090
Chronic kidney disease	7 (21%)	28 (10%)	0.049
Liver disease	0 (0%)	13 (5%)	0.375
Human immunodeficiency virus	0 (0%)	15 (5%)	0.382
Chronic obstructive pulmonary disease/asthma	1 (3%)	41 (15%)	0.098
Asthma	4 (12%)	38 (13%)	1.000
Chronic bronchitis	0 (0%)	5 (2%)	1.000
Congestive heart failure	4 (12%)	43 (15%)	0.798
Solid organ transplant	4 (12%)	8 (3%)	0.027
Other immunosuppressive condition	5 (15%)	33 (12%)	0.560
Home medications			
Steroids	5 (15%)	26 (9%)	0.275
Immunosuppression medications (aside from steroids)	6 (18%)	35 (13%)	0.347
ACE inhibitors or ARB	6 (18%)	43 (15%)	0.654
Signs and Symptoms			
Onset of symptoms relative to presentation, d (IQR)	7 (5, 9)	3 (2,7)	<0.001
Fever, patient reported	27 (82%)	125 (44%)	<0.001
Fatigue/malaise	28 (85%)	140 (50%)	<0.001
Cough	28 (85%)	208 (74%)	0.156
Dry	12 (43%)	62 (30%)	0.298
Productive	10 (36%)	77 (32%)	
Unspecified	6 (21%)	69 (33%)	
Myalgia	20 (61%)	77 (27%)	<0.001
Dyspnea	23 (70%)	171 (60%)	0.301
Chest pain	5 (15%)	81 (29%)	0.100
Sore throat	9 (27%)	73 (26%)	0.855
Congestion/Rhinorrhea	10 (30%)	74 (26%)	0.610
Diarrhea	9 (27%)	45 (16%)	0.101
Nausea	8 (24%)	48 (17%)	0.300
Vomiting	5 (15%)	28 (10%)	0.350
Abdominal pain	4 (12%)	26 (9%)	0.535
Headache	7 (21%)	47 (17%)	0.506
Altered mentation	2 (6%)	39 (14%)	0.280
Presenting vital signs			
Tachycardia (HR > 100 beats/min)	16 (49%)	164 (58%)	0.299
Low mean arterial pressure (<60 mmHg)	0 (0%)	2 (1%)	1.00
Tachypnea (RR > 20 breaths/min)	13 (39%)	124 (44%)	0.616
Fever (Tmax ≥ 100.4°F)	15 (46%)	69 (24%)	0.010
Highest level of respiratory support in the first 24 h			
Nasal cannula	10 (30%)	64 (23%)	0.864
High flow nasal cannula	2 (6%)	23 (8%)	
CPAP or BiPAP	0 (0%)	10 (4%)	
Mechanical ventilation	1 (3%)	12 (4%)	

Legend:
COVID-19 - Coronavirus Disease 2019; IQR - interquartile range; ACE - angiotensin-converting enzyme; ARB - Angiotensin II receptor blockers; HR - heart rate; CPAP - continuous positive airway pressure; BiPAP - bilevel positive airway pressure; RR - respiratory rate.
Patients diagnosed with COVID-19 had a longer duration of symptoms prior to presentation and were more likely than control patients to report fever, fatigue, and myalgias. It is notable, however, that 44% of patients prior to presentation and were more likely than control patients to have lymphopenia and no patient with COVID-19 had leukocytosis.

Determining rates of co-infection in patients with COVID-19 has significance given that SARS-CoV-2 testing may be deferred if an alternative respiratory pathogen is identified, especially in settings with limited test availability. In this cohort, no patients with COVID-19 had evidence of viral co-infection by either clinical PCR testing or by mNGS analysis. Only one COVID-19 positive patient had evidence of co-infection with a bacterial respiratory pathogen, and no difference in the prevalence of bacterial co-infection was identified based on COVID-19 status. These results are distinct from those reported in a recent study of COVID-positive patients that found a 21% rate of viral co-infections [23] but consistent with data from several other institutions demonstrating very low rates (≤6%) of viral or bacterial co-infection in hospitalized COVID-19 positive patients, including two recent large studies from New York City. [15–18,20–23] Given the consistency in the low rate of co-infections across studies, it may be that there is an inherently low rate of viral and bacterial co-infection in COVID-19 patients. Alternatively, it is possible that early social distancing initiatives and school closures in San Francisco may have contributed to a lower recovery rate of bacterial co-infection in our population. Similarly, the high rate of antibiotic use in our cohort may have contributed to a lower recovery rate of bacterial co-infection.

Further investigation of co-infections in COVID-19 positive patients, and assessment of their potential impact on disease severity

Table 2 Laboratory and imaging findings within 24 h of presentation among 316 patients presenting with acute respiratory illness and tested for COVID-19.

Lab normal values	COVID-19 positive (n = 33)	COVID-19 negative (n = 283)	P value	
Complete blood count				
White blood cell count				
Leukopenia*	3.4–10.0 × 10^9/L	3/33 (9%)	10/279 (4%)	0.148
Neutrophil count	1.8–6.8 × 10^9/L	0/33 (0%)	110/279 (39%)	<0.001
Neutrophilia	2/33 (6%)	7/279 (3%)	0.250	
Neutropenia*	4/33 (12%)	126/279 (46%)	<0.001	
Lymphocyte count	1.0–3.4 × 10^9/L	18/33 (55%)	92/279 (34%)	0.018
Lymphopenia*	0/33 (0%)	15/279 (6%)	0.384	
Platelet count	140–450 × 10^9/L	7/33 (21%)	31/279 (11%)	0.093
Thrombocytopenia*	0/33 (0%)	14/279 (5%)	0.377	
Thrombocytosis				
Hemoglobin	13.6–17.5 g/dL	19/33 (58%)	176/280 (63%)	0.554
Chemistry				
Hyponatremia*	135–145 mmol/L	11/32 (34%)	56/274 (20%)	0.071
Hypernatremia*	3/32 (9%)	12/274 (4%)	v	
Creatinine, elevatedd (%)	0.73–1.18 mg/dL	11/32 (34%)	71/274 (26%)	0.306
Aspartate transaminase, elevatedd	5–44 U/L	10/28 (36%)	38/217 (18%)	0.022
Alanine transaminase, elevatedd	10–61 U/L	3/28 (11%)	22/217 (10%)	1.000
Troponin I, elevated<	<0.05 ng/mL	2/13 (15%)	37/161 (23%)	0.735
Procalcitonin, elevated<	<0.26 ng/mL	4/25 (16%)	44/125 (35%)	0.065
Venous blood gas				
pH	7.31–7.41			
Acidemic*	0/29 (0%)	28/192 (15%)	0.031	
Alkalenic	11/29 (38%)	46/192 (24%)	0.116	
Hypercarbic	1/29 (4%)	54/192 (28%)	0.002	
Elevated lactate<	41–51 mmol/L	5/29 (17%)	51/194 (26%)	0.295
Chest X-ray findings				
X-ray within first 24 h				
Unilateral	33/33 (100%)	277/283 (98%)	1.000	
Bilateral	4/33 (12%)	37/277 (13%)	0.001	
Not present	18/33 (55%)	67/277 (24%)	173/277 (63%)	
Focal consolidation				
Unilateral	1/33 (3%)	29/277 (11%)	0.368	
Bilateral	2/33 (6%)	13/277 (5%)		
Not Present	30/33 (91%)	235/277 (85%)		
Interstitial abnormalities				
Unilateral	0/33 (0%)	7/277 (3%)	0.561	
Bilateral	4/33 (12%)	52/277 (19%)		
Not Present	29/33 (88%)	218/277 (79%)		
Pleural effusion				
Unilateral	1/33 (3%)	18/277 (7%)	0.031	
Bilateral	0/33 (0%)	18/277 (7%)		
Not Present	32/33 (97%)	241/277 (87%)		

Legend
Results reflect lab tests and imaging tests performed within 24 h of presentation.
COVID-19 - Coronavirus Disease 2019.
* lower than the lower limit of normal.
† greater than the upper limit of normal.
Table 3
Results of infectious disease testing among 316 patients presenting with acute respiratory illness and tested for COVID-19.

Test	COVID-19 positive (n = 33)	COVID-19 negative (n = 283)	P value
Other viral testing performed	82% (27/33)	69% (194/283)	0.116
Influenza/Respiratory syncytial virus PCR	27% (9/33)	32% (90/283)	0.596
12-target respiratory virus PCR panel	55% (18/33)	54% (153/283)	0.958
Metagenomic next generation sequencing	42% (14/33)	29% (83/283)	0.123
Positive identification of virus other than SARS-CoV-2*	0% (0/27)	16% (31/194)	0.025
Other viruses tested			
Influenza A	0/27	5/194	
Influenza B	0/27	2/194	
Respiratory syncytial virus	0/27	3/194	
Rhinovirus	0/26	9/188	
Metapneumovirus	0/26	8/188	
Parainfluenza	0/26	1/188	
Coronavirus-229E	0/14	2/83	
Coronavirus-NL63	0/14	1/83	
Bocavirus	0/14	1/83	
Blood culture ordered	19/33 (58%)	139/283 (49%)	0.358
Blood culture positive	1/19 (5%)	10/139 (7%)	1.000
Enterococcus faecalis	0/19	1/139	
Enterococcus faecium	1/19	1/139	
E. coli	0/19	1/139	
Group A Streptococcus	0/19	2/139	
Group C Streptococcus	0/19	1/139	
Group G Streptococcus	0/19	1/139	
Klebsiella pneumonia	0/19	1/139	
Staphylococcus aureus	0/19	1/139	
Candida glabrata	0/19	1/139	
Sputum or lower respiratory culture ordered	9/33 (27%)	33/283 (12%)	0.012
Sputum or lower respiratory culture positive	1/9 (11%)	6/33 (18%)	1.000
Other antibiotics			
Enterobacter cloacae complex	0/9	1/33	
H. parainfluenza	0/9	3/33	
Staphylococcus aureus	0/9	1/33	
Pseudomonas aeruginosa	0/9	2/33	
Stenotrophomonas maltophilia	1/9	0/33	

Legend: COVID-19 - Coronavirus Disease 2019; PCR - polymerase chain reaction.

* One case of viral co-infection identified (i.e., 32 pathogenic viruses in 31 patients).

Table 4
Treatment of 186 hospitalized patients with acute respiratory illness and tested for COVID-19.

Treatment	COVID-19 positive (n = 26)	COVID-19 negative (n = 160)	P value
Antibiotics administered	17/26 (65%)	134/160 (84%)	0.054
Vancomycin	8/26 (31%)	72/160 (45%)	0.126
Piperacillin/tazobactam	5/26 (19%)	55/160 (35%)	0.107
Cefepime	4/26 (15%)	17/160 (11%)	0.504
Ceftriaxone*	10/26 (39%)	74/160 (46%)	0.459
Carbapenems	3/26 (12%)	19/160 (12%)	1.000
Azithromycin	8/26 (31%)	44/160 (28%)	0.731
Doxycycline	7/26 (29%)	70/160 (44%)	0.106
Fluoroquinolones	4/26 (15%)	32/160 (20%)	0.581
Other antibiotics	4/26 (15%)	43/160 (27%)	0.329
Oseltamivir	3/26 (12%)	15/160 (9%)	0.729
Remdesivir clinical trial*	6/26 (23%)	0/160 (0%)	<0.001
Chloroquine	0/26 (0%)	0/160 (0%)	-
Hydroxychloroquine	6/26 (23%)	1/160 (0.6%)	<0.001
Steroids	3/26 (12%)	23/160 (14%)	1.000
No respiratory support	6/26 (23%)	55/160 (34%)	0.255
Respiratory support			
Supplemental oxygen	10/20 (50%)	61/105 (58%)	0.711
High flow oxygen	5/20 (25%)	21/105 (20%)	
Noninvasive positive-pressure ventilation or invasive mechanical ventilation	5/20 (25%)	23/105 (22%)	

Legend

COVID-19 - Coronavirus Disease 2019.

* Rows are not mutually exclusive, 1 patient received hydroxychloroquine and was enrolled in a blinded remdesivir trial.
and outcomes is needed, especially if SARS-CoV-2 circulation extends to overlap with other highly prevalent seasonal respiratory pathogens.

Although patients with COVID-19 were more likely to be diagnosed with ARDS, there were no differences in their need for ICU care or mechanical ventilation. We also did not find significant differences in terms of acquired cardiomyopathy or troponin elevation during the hospitalization. Despite concerns for cardiac complications in COVID-19 positive patients, our findings highlight the importance of comparisons to control groups of hospitalized patients. [16,48,59] Large proportions of patients in both groups received broad-spectrum antibiotics, despite all of the COVID-19 positive patients having a confirmed viral etiology. This has important implications for antibiotic stewardship in the COVID-19 era and likely reflects clinical uncertainty about the true rate of bacterial co-infection early in the pandemic. COVID-19 was associated with longer hospital lengths of stay. While the duration of hospitalization may reflect the severity of illness, it could also be a marker of concern for late decompensation in these patients [50] or difficulties with hospital discharge due to requirements for isolation and infection control.

Prior studies describing the clinical presentation of patients with COVID-19, have for the most part, identified non-specific features that characterize respiratory infections in general. To our knowledge, this is the first U.S. study to identify characteristics distinguishing patients with COVID-19 from patients who underwent investigation for COVID-19 but were ultimately found to have an alternate diagnosis. Previous publications on this topic are primarily smaller in scope and are all outside of the US. [40,40,43] The clinical, laboratory, and imaging data we highlight have important implications for front line providers making decisions in real-time regarding the pre-test probability of COVID-19, especially in settings with limited access to rapid COVID-19 diagnostics.

In contrast to other areas in the United States, the Bay Area has not yet experienced a large surge in cases of COVID-19. The fact that resources were not strained may have affected the clinical course and outcomes observed. For example, while the sample size is not sufficient to evaluate differences in mortality, only one of the 33 with COVID-19 died (3%), which is lower than in other studies of hospitalized U.S. patients. [17,18] There is speculation that variations in circulating SARS-CoV-2 strains may affect pathogenicity and contribute to

Table 5

Outcomes of 186 hospitalized patients with acute respiratory illness and tested for COVID-19.
COVID-19 Positive (n = 26)

ICU admission
ICU stay during hospitalization
Time to ICU, median days (IQR)
ICU days, median days (IQR)
Intensive care unit interventions
Endotracheal intubation
Paralytics
Prone positioning
Vasopressors
Extracorporeal membrane oxygenation
Renal replacement therapy
Acute respiratory distress syndrome
Acute kidney injury
Acquired cardiomyopathy
Troponin tested
Final diagnosis
Pulmonary - infectious
Pulmonary - non-infectious
Other infections
Cardiac
Malignancy
Renal
Other
Discharge disposition
Home
Home hospice
Home with services
Skilled nursing facility
Still admitted
Length of stay, median days (IQR)

Legend
All outcomes assessed through April 25, 2020.
COVID-19 – Coronavirus Disease 2019; ICU – intensive care unit; INR – international normalised ratio; aPTT - activated partial thromboplastin time.
* censored at April 25; length of stay for those still admitted, calculated.
† ARDS defined using Berlin definition.
‡ based on treating physician diagnosis.
§ based on KDIGO definition.

Please cite this article as: S.J. Shah et al., Clinical features, diagnostics, and outcomes of patients presenting with acute respiratory illness: A retrospective cohort study of patients with and without COVID-19, EClinicalMedicine (2020), https://doi.org/10.1016/j.eclinm.2020.100518
geographic differences in case fatality rates. [51,52] Exploratory phylogenetic analysis presented here demonstrated a diversity of strains among the COVID-19 patients requiring ICU care without a predomi-
nant clade; larger studies are needed to assess any potential relation-
ship.

There are several limitations inherent to the study design and data
available that should be considered when interpreting the results of
this study. As a retrospective study based in a single academic medi-
cal center and focusing on patients presenting for emergency care, it
can not generalize to other institutions with different patient popu-
lations or patients with milder forms of the disease. The study design
relies on review of the medical record and thus variation in clinician
assessment and documentation, particularly absent mention of
symptoms and comorbidities, may result in misestimation of the
prevalence of these clinical features. Although all patients in the
COVID-19 negative group presented with respiratory complaints
and/or influenza-like illness, only 56% of patients were given a final
diagnosis of respiratory infection, which may affect the generalizabil-
ity of our outcomes data. The low co-infection rate may have been
influenced by incomplete testing for respiratory viral PCR and meta-
genomics though this is unlikely to have accounted for the full differ-
ence when compared to other cohorts. Additionally, as community-
transmission increased, CDC clinical criteria for testing changed dur-
ing the study period; this temporal change could bias the estimate of
presenting clinical features. Finally, this study was undertaken at the
end of the influenza season and during a period of social distancing,
both of which likely impacted the prevalence of circulating viruses
and the rate of co-infections. In summary, while many clinical features of COVID-19 overlap with
those of other acute respiratory illnesses, several unique characteristics
were identified. Patients with COVID-19 had a longer duration of symp-
toms, particularly fatigue, fever, and myalgias, were more likely to be
admitted to the hospital and for a longer duration, were unlikely to have
coopresent viral infections, and were more likely to develop ARDS.

Concept and design: Shah, Barish, Prasad, Kistler, Babik, Fang, Kange-
elaris, Langelier

Acquisition, analysis, or interpretation of data: Shah, Barish, Prasad,
Kistler, Kamm, Li, Chiu, Babik, Fang, Kangelaris, Langelier, Abe-Jones,
Alipanah, Alvarez, Botvinnik, Castaneda, The CZB CLIAhub Consor-
tium, Dadasovich, Davis, Deng, Detweiler, Federman, Haliburton,
Hao, Kerkhoff, Kumar, Malcolm, Mann, Martinez, Marya, Mick, Mwa-
kibete, Najafi, Peluso, Phelps, Pisco, Ratnasiri, Rubio, Sellas, Sher-
wood, Spottiswoode, Tan, Yu

Drafting of the manuscript: Shah, Barish, Kistler, Kamm, Babik,
Fang, Kangelaris, Langelier,

Critical revision of the manuscript for important intellectual content:
All authors

Statistical analysis: Shah, Prasad, Li, Kamm, Hao, Martinez

Obtained funding: Shah, Chiu, Fang, Kangelaris, Langelier, DeRisi,

Supervision: Shah, Kistler, Chiu, Kangelaris, Langelier, DeRisi

Declarations of interests

Dr. Prasad reports personal fees from EpiExcellence, LLC, outside
the submitted work. Dr. Chiu reports grants from National Institutes
of Health/NHLBI, grants from National Institutes of Health/NIADD,
during the conduct of the study. Dr. Peluso reports grants from Gilead
Sciences, outside the submitted work. Dr. Deng has a patent 62/667,344 pending. All other authors have nothing to disclose.

Funding

This study was supported by the National Center for Advancing
Translational Sciences (KL2TR001870), the National Heart Lung Blood
Institute (1K23HL138461-01A1, R01-HL105704), National Institute of
Allergy and Infectious Diseases (T32 AI060530, R33-AI120977), the
Chan Zuckerberg Biohub, the Chan Zuckerberg Initiative. The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Data sharing

Data used to complete this analysis used protected health ele-
ments. Researchers can contact the corresponding authors to request
access to the study data.

Appendix

Tables A1 and A2, Figs. A1 and A2.
Patient	COVID-19 PCR	Respiratory Viral PCR	mNGS	Respiratory Culture Pathogen	Blood Culture Pathogen	Multiples Viral PCR Ordered	RSV/Flu PCR Ordered
1	negative	n/a		yes	yes		yes
2	negative	negative		yes	yes		yes
3	negative	n/a		yes	yes		yes
4	negative	n/a		yes	yes		no
5	negative	negative		no	no		no
6	negative	negative		no	no		no
7	negative	n/a		yes	yes		no
8	negative	n/a		yes	yes		no
9	negative	n/a		no	no		no
10	negative	n/a		yes	yes		no
11	negative	n/a		yes	yes		no
12	negative	Human Metapneumovirus	n/a	yes	yes		
13	negative	Rhinovirus + RSV	n/a	yes	yes		yes
14	negative	Rhinovirus		yes	yes		no
15	negative	n/a		yes	yes		yes
16	negative	n/a		yes	yes		yes
17	negative	n/a		no	no		no
18	negative	n/a		yes	yes		no
19	negative	n/a		yes	yes		no
20	negative	n/a		no	no		no
21	negative	SARS-CoV-2		no	no		no
22	negative	n/a		yes	yes		no
23	negative	n/a		yes	yes		no
24	negative	n/a		no	no		no
25	negative	SARS-CoV-2		no	no		no
26	SARS-CoV-2	n/a		yes	yes		no
27	SARS-CoV-2	n/a		yes	yes		no
28	negative	n/a		no	no		no
29	negative	SARS-CoV-2		no	no		no
30	negative	Human metapneumovirus	n/a	yes	yes		yes
31	negative	n/a		no	no		no
32	negative	n/a		no	no		no
33	negative	SARS-CoV-2		yes	yes		yes
34	negative	SARS-CoV-2		yes	yes		yes
35	negative	n/a		yes	yes		no
36	negative	n/a		yes	yes		no
37	negative	n/a		yes	yes		no
38	negative	n/a		yes	yes		no
39	negative	n/a		yes	yes		no
40	negative	n/a		yes	yes		no
41	negative	n/a		yes	yes		no
42	negative	n/a		yes	yes		no
43	negative	n/a		yes	yes		no
44	negative	n/a		yes	yes		no
45	negative	n/a		yes	yes		no
46	negative	n/a		yes	yes		no
47	negative	n/a		yes	yes		no
48	negative	Rhinovirus		yes	yes		no
49	negative	Rhinovirus C		yes	yes		no
50	negative	n/a		yes	yes		no
51	negative	Human CoV 229E		yes	yes		no
52	negative	n/a		no	no		no
53	negative	n/a		yes	yes		no
54	negative	n/a		yes	yes		yes

(continued on next page)
Patient	COVID-19 PCR	Respiratory Viral PCR	nNGS	Respiratory Culture Pathogen	Blood Culture Pathogen	Multiplex Viral PCR Ordered	RSV/Flu PCR Ordered
55	negative	RSV	RSV	yes	yes		yes
56	negative	n/a	n/a	no	no		no
57	negative	n/a	yes	yes	yes		no
58	negative	n/a	yes	no	no		no
59	negative	n/a	Klebsiella pneumoniae	yes	yes		
60	negative	n/a	yes	no	no		no
61	negative	negative	yes	yes	yes		yes
62	negative	n/a	no	no	no		no
63	negative	n/a	yes	no	no		no
64	negative	n/a	no	no	no		no
65	negative	n/a	no	no	no		no
66	negative	n/a	no	no	no		no
67	negative	SARS-CoV-2	n/a	no	no		no
68	negative	n/a	no	no	no		no
69	negative	n/a	yes	no	no		no
70	negative	SARS-CoV-2	SARS-CoV-2	yes	no		no
71	negative	n/a	yes	no	no		no
72	negative	n/a	yes	yes	yes		no
73	negative	n/a	yes	yes	yes		no
74	negative	n/a	yes	yes	yes		no
75	negative	n/a	yes	yes	yes		no
76	negative	n/a	yes	no	no		no
77	negative	negative	yes	yes	yes		no
78	negative	negative	yes	yes	yes		no
79	negative	Influenza A	n/a	yes	yes		no
80	negative	n/a	no	no	no		no
81	negative	n/a	yes	no	no		no
82	negative	invalid	no	no	no		no
83	negative	n/a	no	no	no		no
84	negative	n/a	yes	yes	yes		yes
85	negative	negative	yes	yes	yes		no
86	negative	SARS-CoV-2	yes	yes	yes		no
87	negative	SARS-CoV-2	yes	yes	yes		no
88	negative	negative	yes	yes	yes		no
89	negative	negative	H. parainfluenzae	no	no		no
90	negative	n/a	no	no	no		no
91	negative	n/a	no	no	no		no
92	negative	n/a	yes	yes	yes		no
93	negative	n/a	yes	yes	yes		no
94	negative	SARS-CoV-2	yes	yes	yes		no
95	negative	SARS-CoV-2	yes	yes	yes		no
96	negative	SARS-CoV-2	yes	yes	yes		no
97	negative	negative	yes	yes	yes		no
98	negative	negative	yes	yes	yes		no
99	negative	Human metapneumovirus	n/a	yes	yes		no
100	negative	n/a	no	no	no		no
101	negative	Human metapneumovirus	n/a	yes	yes		no
102	negative	n/a	yes	no	no		no
103	negative	n/a	yes	no	no		no
104	negative	n/a	yes	no	no		no
105	negative	n/a	yes	no	no		no
106	negative	SARS-CoV-2	n/a	yes	yes		no
107	negative	SARS-CoV-2	n/a	yes	yes		no
108	negative	SARS-CoV-2	invalid	yes	yes		no
109	negative	n/a	yes	yes	yes		no

(continued on next page)
Patient	COVID-19 PCR	Respiratory Viral PCR	mNGS	Respiratory Culture Pathogen	Blood Culture Pathogen	Multiplex Viral PCR Ordered	RSV/Flu PCR Ordered
110	SARS-CoV-2	SARS-CoV-2		Stenotrophomonas maltophilia	Enterococcus faecium	yes	yes
111	negative	n/a	yes	no			
112	negative	RSV	yes	yes			
113	negative	negative	yes	yes			
114	negative	n/a	no	no			
115	negative	negative	yes	yes			
116	negative	n/a	no	no			
117	negative	Human CoV NL63					
118	negative	n/a	yes	no			
119	negative	n/a	yes	yes			
120	negative	n/a	yes	yes			
121	negative	RSV	yes	no			
122	SARS-CoV-2	n/a	no	no			
123	negative	negative	yes	yes			
124	negative	negative	no	no			
125	negative	negative	yes	yes			
126	negative	n/a	yes	no			
127	negative	n/a	no	no			
128	negative	n/a	yes	yes			
129	SARS-CoV-2	n/a	yes	no			
130	negative	n/a	yes	no			
131	SARS-CoV-2	SARS-CoV-2					
132	negative	negative	yes	yes			
133	negative	n/a	no	no			
134	negative	n/a	no	no			
135	negative	Influenza A virus					
136	negative	n/a	no	no			
137	negative	Group A Streptococcus	yes	yes			
138	negative	n/a	yes	yes			
139	negative	n/a	yes	no			
140	negative	negative	no	no			
141	negative	Influenza B	n/a	no			
142	negative	n/a	no	no			
143	negative	n/a	no	no			
144	negative	n/a	yes	no			
145	negative	negative	yes	no			
146	negative	n/a	yes	no			
147	negative	n/a	yes	yes			
148	negative	invalid	yes	no			
149	negative	invalid	no	no			
150	negative	n/a	yes	no			
151	negative	n/a	yes	no			
152	negative	negative	no	no			
153	negative	negative	no	yes			
154	negative	n/a	yes	yes			
155	negative	Human metapneumovirus	Human Metapneumovirus	yes	yes		
156	negative	n/a	yes	yes			
157	negative	negative	no	no			
158	negative	invalid	no	no			
159	negative	n/a	yes	yes			
160	negative	Parainfluenza virus 4	no	no			
161	negative	negative	no	no			
162	negative	n/a	yes	no			
163	negative	n/a	no	no			
164	negative	n/a	yes	no			

(continued on next page)
Patient	COVID-19 PCR	Respiratory Viral PCR	mNGS	Respiratory Culture Pathogen	Blood Culture Pathogen	Multiplex Viral PCR Ordered	RSV/Flu PCR Ordered
165	negative	n/a	yes	yes			
166	negative	n/a	yes	no			
167	negative	n/a	no	no			
168	negative	Influenza A virus	yes	yes			
169	negative	n/a	yes	yes			
170	negative	n/a	yes	yes			
171	negative	n/a	yes	no			
172	negative	SARS-CoV-2	no	no			
173	negative	n/a	yes	yes			
174	SARS-CoV-2	n/a	yes	yes			
175	negative	n/a	yes	yes			
176	negative	Rhinovirus A	no	no			
177	negative	n/a	no	no			
178	negative	SARS-CoV-2	no	no			
179	negative	n/a	yes	yes			
180	negative	n/a	no	no			
181	negative	n/a	no	no			
182	negative	n/a	no	no			
183	negative	Human metapneumovirus	invalid	yes			
184	negative	n/a	no	no			
185	negative	n/a	no	no			
186	negative	n/a	yes	yes			
187	negative	n/a	no	no			
188	negative	n/a	yes	yes			
189	negative	n/a	yes	yes			
190	negative	Human Metapneumovirus	no	no			
191	negative	n/a	no	no			
192	negative	n/a	no	no			
193	negative	n/a	no	no			
194	negative	n/a	yes	no			
195	negative	n/a	no	no			
196	negative	invalid	yes	no			
197	negative	n/a	yes	no			
198	negative	n/a	no	no			
199	negative	n/a	no	no			
200	negative	n/a	no	no			
201	SARS-CoV-2	n/a	yes	no			
202	negative	n/a	yes	no			
203	negative	n/a	yes	no			
204	negative	n/a	yes	no			
205	negative	n/a	yes	yes			
206	negative	n/a	no	no			
207	negative	n/a	no	no			
208	negative	n/a	no	no			
209	negative	n/a	no	no			
210	negative	n/a	no	no			
211	negative	Human CoV 229E	no	no			
212	negative	n/a	no	no			
213	negative	n/a	no	no			
214	negative	n/a	yes	yes			
215	negative	n/a	yes	yes			
216	SARS-CoV-2	SARS-CoV-2	no	no			
217	negative	n/a	no	no			
218	negative	invalid	yes	no			
219	negative	n/a	yes	no			
Patient	COVID-19 PCR	Respiratory Viral PCR	mNGS	Respiratory Culture Pathogen	Blood Culture Pathogen	Multiplex Viral PCR Ordered	RSV/Flu PCR Ordered
---------	--------------	-----------------------	------	------------------------------	------------------------	---------------------------	---------------------
220	negative	n/a	no	no			
221	negative	negative	yes	yes			
222	negative	n/a	no	no			
223	negative	negative	no	yes			
224	negative	n/a	no	no			
225	negative	invalid	no	no			
226	negative	negative	no	no			
227	negative	n/a	no	yes			
228	negative	n/a	no	no			
229	negative	negative	yes	yes			
230	negative	Rhinovirus C	no	no			
231	negative	n/a	no	no			
232	negative	negative	yes	yes			
233	negative	n/a	yes	no			
234	negative	n/a	no	no			
235	negative	n/a	no	no			
236	negative	n/a	no	no			
237	negative	Influenza A virus	no	no			
238	negative	Influenza A virus	no	no			
239	negative	n/a	yes	yes			
240	negative	negative	no	no			
241	negative	n/a	yes	yes			
242	negative	negative	yes	yes			
243	negative	n/a	no	no			
244	negative	n/a	yes	no			
245	negative	Rhinovirus Rhinovirus A	yes	no			
246	negative	n/a	yes	no			
247	negative	n/a	no	no			
248	negative	n/a	yes	yes			
249	negative	n/a	no	yes			
250	negative	n/a	no	no			
251	negative	n/a	no	no			
252	negative	n/a	yes	no			
253	negative	Rhinovirus C	no	no			
254	negative	negative	yes	no			
255	negative	n/a	E. coli	yes	no	no	
256	negative	n/a	yes	no			
257	negative	negative	yes	yes			
258	negative	n/a	yes	no			
259	negative	n/a	no	no			
260	negative	Human Bocavirus	yes	yes			
261	SARS-CoV-2	n/a	yes	no			
262	negative	n/a	yes	no			
263	SARS-CoV-2	SARS-CoV-2	no	no			
264	SARS-CoV-2	n/a	yes	no			
265	negative	n/a	yes	no			
266	negative	n/a	yes	no			
267	negative	n/a	no	no			
268	negative	Human metapneumovirus	n/a	yes	yes	yes	
269	negative	n/a	yes	no			
270	negative	n/a	yes	yes			
271	negative	negative	Pseudomonas aeruginosa	yes	yes	yes	
272	negative	negative	yes	yes			
273	negative	n/a	yes	yes			
274	negative	Rhinovirus A	yes	yes			

(continued on next page)
Patient	COVID-19 PCR	Respiratory Viral PCR	mNGS	Respiratory Culture Pathogen	Blood Culture Pathogen	Multiplex Viral PCR Ordered	RSV/Flu PCR Ordered
275	negative	negative	yes	yes			
276	SARS-CoV-2	n/a	no	no			
277	negative	negative	yes	yes			
278	negative	n/a	yes	yes			
279	negative	Influenza B	n/a	yes	yes		
280	negative	n/a	no	no			
281	negative	n/a	no	no			
282	negative	n/a	no	no			
283	negative	n/a	no	no			
284	negative	n/a	no	no			
285	negative	n/a	no	no			
286	negative	n/a	no	no			
287	negative	n/a	no	no			
288	negative	n/a	no	no			
289	negative	invalid	no	no			
290	SARS-CoV-2	n/a	yes	yes			
291	negative	n/a	yes	no			
292	negative	n/a	yes	no			
293	negative	n/a	yes	no			
294	negative	n/a	no	no			
295	SARS-CoV-2	negative	no	no			
296	negative	n/a	no	no			
297	negative	n/a	no	no			
298	negative	n/a	yes	no			
299	negative	n/a	no	no			
300	negative	n/a	no	no			
301	negative	negative	no	no	yes		
302	negative	n/a	yes	no			
303	negative	n/a	yes	no			
304	negative	n/a	yes	no			
305	negative	n/a	yes	no			
306	negative	n/a	yes	no			
307	negative	n/a	yes	no			
308	negative	n/a	yes	no			
309	SARS-CoV-2	SARS-CoV-2	yes	no			
310	negative	n/a	yes	yes			
311	negative	n/a	yes	no			
312	negative	n/a	yes	no			
313	negative	n/a	yes	no			
314	SARS-CoV-2	n/a	yes	yes			
315	negative	n/a	no	no			
316	negative	n/a	no	no			

Legend: Respiratory culture: sputum, endotracheal aspirate or bronchoalveolar lavage; negative: not detected; n/a = not applicable because RNA from patient sample unavailable for testing; invalid = sample unable to be analyzed by mNGS due to insufficient (< 25 pg) RNA.
Fig. A1. Cohort flow diagram.

Fig. A2. Genomic epidemiology of SARS-CoV-2 in study population. Phylogenetic analysis of 10 SARS-CoV-2 genomes from patients in the cohort indicated strains originating from a diversity of geographic locations. Single nucleotide polymorphisms are plotted in the panel adjacent to the phylogenetic tree. Most samples fell into the Nextstrain.org clades A2a (widely prevalent in New York) and B1 (detected in Washington State in February 2020). The SARS-CoV-2 from patients who required ICU care were not associated with any single clade.
References

[1] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis February 2020 Published online.s1473309920301201.
[2] Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA Feb-
ruary 7, 2020 Published online.
[3] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet North Am Ed 2020;395(10223):567–73.
[4] Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. February 28, 2020 Published onlineNEJMoa2002032.
[5] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet North Am Ed 2020;395(10223):497–506.
[6] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: asingle-centered, retrospective, ob-
servational study. Lancet Respir Med 2020 0(0).
[7] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected Pneumonia in Wuhan, China. JAMA February 7, 2020 Published online.
[8] Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of patients with COVID-19 outside of Wuhan, China: retrospective case series. BMJ 2020:368.
[9] Yun H, Sun Z, Wu J, Tang A, Hu M, Xiang Z. Laboratory data analysis of novel coro-
navirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center observational study. JAMA April 24, 2020 Published online.
[10] Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of patients with COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020.
[11] Naccache SN, Federman S, Veeraraghavan N, et al. A cloud-compatible bioinfor-
matics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014;24(7):1180–92.
[12] Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospital-
ized patients with coronavirus disease 2019 (COVID-19). Eur. J. Intern. Med. 2020;75:107–8.
[13] Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Infectious Diseases (except HIV/AIDS) 2020.
[14] Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpa-
tients with COVID-19 in Wuhan, China. JAMA Cardiol. March 27, 2020 Published online.
[15] Lin D, Liu L, Zhang M, et al. Co-infections of SARS-CoV-2 with multiple common respiratory pathogens in infected patients. Sci China Life Sci 2020;63(4):606–9.
[16] Kim D, Quinn J, Finsky B, Shah NH, Brown I. Rates of Co-infection between SARS-
CoV-2 and other respiratory Pathogens. JAMA. April 15, 2020 Published online.
[17] Jain S, Self WH, Wunderink RG, et al. Community-acquired Pneumonia requiring hospitalization among U.S. Adults. N Engl J Med; 2015;373(5):415–27.
[18] Langeler G, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci USA 2018;115(52):E12353–62.
[19] CDC. Coronavirus Disease 2019 (COVID-19). Centers for disease control and pre-
vention. Published February 2020;11 https://www.cdc.gov/coronavirus/2019-
ncov/hcp-clinical-criteria.html. Accessed June 8, 2020.
[20] Lemmey A, Lea K, Batten D, et al. Development of ERCC RNA Spike-In control mixes. J Biomol Tech 2011;22(Suppl):S54.
[21] Mayday MY, Khan LM, Chow ED, Zinter MS, DeRisi JL. Miniaturization and optimi-
zation of 384-well compatible RNA sequencing library preparation Thomas T, ed. J Biomol Tech 2011;22(Suppl):S54.
[22] Deng X, Achari A, Federman S, et al. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol 2020;5 (3):443–54.
[23] Manning JE. SARS-CoV-2 Enrichment sequencing by spiked primer MSPE
method. Published onlineApril 7, 2020. doi:10.17504/protocols.io.hesyljbe6.
[24] Gruban DH, Gangavarapu K, Quick J, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using Primer3 and Var. Genome Biol 2019;20(1):8.
[25] Hoffeld J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evo-
lution Kejos, ed. Bioinformatics 2018;34(23):4121–3.
[26] MeGu BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new Models and efficient methods for Phylogenetic Inference in the Genomic Era Teeling E, editor Mol. Biol. Evol. 2020;37(5):1530–4.
[27] GSARD – Next hCoV-19 App. Accessed 25 April 2020. https://www.gisaid.org/epi-
flu-applications/next-hcov-19-app/.
[28] Acute Respiratory Distress Syndrome. The Berlin Definition. JAMA 2012;307(23).
[29] Notice. Kidney Int Suppl (2011) 2012;2(1):1.
[30] Sun Y, Koh V, Marsimuthu K, et al. Epidemiological and Clinical Predictors of COVID-19. 2020, 7.
[31] Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis. 2020.
[32] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus–infected Pneumonia admitted to ICUs of the Lombardy Region, Italy. JAMA April 6, 2020 Published online.
[33] Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumo-
nia in Wuhan, China. Clin Infect Dis. March 24, 2020.
[34] Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. March 23, 2020 Published online.
[35] Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020:368.
[36] Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with Coronavi-
rus disease 2019 in Wuhan, China. Clin Infect Dis. 2020.
[37] Xu W-W, Wu X-X, Jiang X-G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retro-
spective case series. BMJ 2020:368.
[38] Young BE, Ong SWK, Kalimuthu S, et al. Epidemiologic features and clinical course of patients with SARS-CoV-2 in Singapore. JAMA. March 3, 2020 Published online.
[39] Bhatraju PK, Chasemieh BJ, Nichols M, et al. COVID-19 in critically ill patients in the Seattle region-case series. N Engl J Med. March 30, 2020 Published onlineNEJM-
moa2002032.
[40] Arenz M, Yin E, Klaflf, L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. March 19, 2020 Published online.
[41] Goyal P, Choi J, Pinheiro LC, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. April 17, 2020 Published onlineNEJMq2010419.
[42] Richardson S, Hirsch EJ, Narasimhan M, et al. Presenting characteristics, Comor-
bidities, and outcomes among 5703 patients hospitalized with COVID-19 in the New York City Area. JAMA. April 22, 2020 Published online.
[43] Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California. JAMA. April 24, 2020 Published online.
[44] Wu J, Liu J, Zhao X, et al. Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu Province: a Multicenter Descriptive Study. Clin Infect Dis. February 29, 2020 Published onlineNEJMca199.
[45] Spellberg B, Addicks M, Lee R, et al. Community Prevalence of SARS-CoV-2 among patients with influenza-like illnesses presenting to a Los Angeles medical center in March 2020. JAMA March 31, 2020 Published online.
[46] Lin D, Liu L, Zhang M, et al. Co-infections of SARS-CoV-2 with multiple common respiratory pathogens in infected patients. Sci China Life Sci 2020;63(4):606–9.
[47] Kim D, Quinn J, Finsky B, Shah NH, Brown I. Rates of Coinfection between SARS-
CoV-2 and other Respiratory Pathogens. JAMA. April 15, 2020 Published online.
[48] Jain S, Self WH, Wunderink RG, et al. Community-acquired Pneumonia requiring hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415–27.
[49] Langeler G, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci USA 2018;115(52):E12353–62.