Case report

*Candida parapsilosis* keratitis treated successfully with topical and oral fluconazole

Pei-Hsuan Li a, Chun-Chen Chen a, b, *, Shiow-Wen Liu a, c, d

a Department of Ophthalmology, Taipei City Hospital Renai Branch, Taipei, Taiwan
b Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
c Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
d Taipei Medical University, Taipei, Taiwan

1. Introduction

Cases of *Candida parapsilosis* keratitis have been reported in patients with topical or systemic corticosteroid usage, prior corneal surgery [e.g., corneal graft or laser-assisted in situ keratomileusis (LASIK) surgery], or chronic keratopathy.1–3 Although *C. parapsilosis* is less virulent than *Candida albicans* in animal experiments, the clinical prognosis of *C. parapsilosis* keratitis is poor and indeed not better than that of keratitis caused by other *Candida* species.4

The first-line antifungal agent for yeast keratitis is usually topical amphotericin B (amp B).5,6 However, previous studies have shown that most patients with *C. parapsilosis* keratitis treated with amp B have poor visual prognosis; furthermore, in these patients, corneal grafts or anterior chamber washing may be needed to eradicate the pathogen.5

Topical azoles [e.g., fluconazole (FCZ) and voriconazole] are considered to be a good alternative to amp B for the treatment of *Candida* keratitis.7–11 It has better ocular penetration and is less toxic to the corneal epithelium, compared with amp B. In this report, we present a case of *C. parapsilosis* keratitis treated successfully with topical 0.2% FCZ in combination with oral FCZ.

2. Case report

A 73-year-old male patient presented with ocular pain, redness, and blurred vision in the left eye, which had been ongoing for more than 2 months. An oval-shaped paracentral corneal ulcer with stromal infiltration and a mild anterior chamber reaction were noted. Despite treatment with empiric antibiotics, the lesion progressed and corneal thinning in the middle area was noted. The culture yielded *Candida parapsilosis*. We therefore prescribed topical 0.2% fluconazole (FCZ) in combination with oral FCZ as an antifungal treatment, following which the stromal infiltration gradually subsided. Complete epithelialization was noted on the 8th day after initiating FCZ therapy. There was no recurrent disease in the subsequent 2 years. Our case demonstrates that topical FCZ 0.2% in combination with oral FCZ can successfully treat *C. parapsilosis* keratitis and result in a good visual outcome.

Copyright © 2016, The Ophthalmologic Society of Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Article history:
Received 16 October 2015
Received in revised form 8 April 2016
Accepted 14 April 2016
Available online 1 June 2016

Keywords:
*Candida parapsilosis*
Fluconazole
Fungal keratitis
prepared with an intravenous injectable solution (100 mg/50 mL) in combination with oral FCZ (100 mg 2 times daily). Of note, the 0.2% FCZ eye drops should be kept in the refrigerator (4°C). The storage life of the FCZ eye drops is 1 week. After 1 week, a new bottle of FCZ eye drops should be prepared at the time of use.

After initiation of FCZ therapy, the stromal infiltration subsided gradually (Figure 2). Complete epithelialization was noted on the 6th day after initiating FCZ therapy. There was no recurrent disease in the following 2 years. Although a paracentral corneal opacity was found, the BCVA at the 3-month and 2-year follow-ups were 0.7 and 1.0, respectively (Figure 3).

3. Discussion

Infection due to C. parapsilosis is thought to be opportunistic. The incidence of C. parapsilosis infection (e.g., fungemia, endocarditis, and meningitis) has increased dramatically over the past decade, which may be due to the increasing use of corticosteroids and rising numbers of immunocompromised patients. Previous studies have shown that C. parapsilosis is one of the most commonly cultured yeasts and are thus commonly detected on the hands of healthcare workers. Therefore, nosocomial infection is also a possible cause of the increasing prevalence of C. parapsilosis infection.

Ocular diseases linked to C. parapsilosis include infectious keratitis and endophthalmitis. A large case series reported that C. parapsilosis accounted for ~10% of all causes of yeast keratitis in south Florida between 1982 and 1992. According to a more recent study, C. parapsilosis constitutes about 31% of all Candida keratitis cases. Because C. parapsilosis is an emerging fungal pathogen, we expect that there may be an increase in the number of cases of ocular infection in the future. Ophthalmologists should therefore pay attention to, and augment their knowledge of, C. parapsilosis keratitis.

The possible predisposing factors of C. parapsilosis keratitis are topical or systemic corticosteroid usage and prior ocular surgery, such as penetrating keratoplasty, LASIK surgery, or keratoprosthesis implantation. In our case, the patient had not received any ocular surgery or systemic steroids. Nevertheless, his topical medical history was unclear; it is possible that he may have been exposed to topical corticosteroids due to poor compliance, although the exposure period would have been short (i.e., not longer than 1 week). He mentioned frequent visits to hospitals because of his wife’s illness, and therefore, nosocomial infection due to C. parapsilosis was also a possibility.

The clinical presentation of C. parapsilosis keratitis has shown great diversity. Patients usually present with symptoms of redness, photophobia, pain, and decreased vision of variable severity. Some eyes have a yellow-white infiltrate with dry, raised slough, and feathery edges. Severe keratitis may cause wet, necrotic stromal inflammation to develop with features indistinguishable from those of other forms of microbial keratitis. Infectious crystalline keratopathy has also been reported in some cases. Anterior chamber reactions are variable and may combine with endophthalmitis.

To date, the Cochrane Reviews have reported no evidence that any particular drug, or combination of drugs, is more effective in the management of fungal keratitis. Conventionally, amp B is the first-line antifungal agent for yeast keratitis; however, the ocular penetration of amp B is poor. Topical amp B prepared from powder is irritating for the cornea and toxic to the corneal epithelium.

Bourcier et al. reported four cases of C. parapsilosis keratitis treated with topical amp B with or without adjuvant oral azole antifungal agents; in their study, two patients needed therapeutic corneal grafts and one needed anterior chamber washing with diluted amp B to cure the infection. The other patient needed further keratoplasty due to persistent corneal opacity. The visual outcomes ranged from no light perception to 0.5. Chen et al. reported a case of C. parapsilosis interface keratitis after LASIK surgery; this patient was successfully treated with amp B after which visual acuity improved to 1.0.

It has also been reported that topical 0.2% FCZ is a safe and effective antifungal drug for the management of Candida keratitis. The corneal penetration of topical 0.2% FCZ is good; the
concentration in the aqueous humor satisfies the minimal inhibitory concentrations of most Candida strains, including C. parapsilosis. Therefore, topical 0.2% FCZ is thought to be a good alternative to topical amp B for the treatment of Candida keratitis.20 Matsumoto et al12 compared the efficacy of topical 0.1% micafungin and topical 0.2% FCZ in the treatment of Candida fungal keratitis and concluded that the efficacy of 0.1% micafungin eye drops appears to be comparable with that of 0.2% FCZ eye drops. In their study, six cases of C. parapsilosis keratitis were treated successfully with topical 0.2% FCZ as the first-line antifungal eye drops, and the mean healing period was 51 days. In the management of deep fungal keratitis, oral FCZ is usually considered as an adjuvant therapy because it is absorbed systemically with good levels in the anterior chamber and the cornea.20 The recommended dosage of oral FCZ is 200–400 mg daily.11

Given the inconvenience and side effects of amp B, as well as the good penetration of FCZ, we prescribed topical 0.2% FCZ in combination with adjuvant oral FCZ for our patient once the culture yielded the growth of C. parapsilosis. We started from a relatively low dose (200 mg daily) of oral FCZ because we already prescribed topical FCZ and due to concerns of a possible drug interaction between FCZ and glimepiride, an antidiabetic medication that was used in this patient.22,23 The stroma infiltration soon subsided and the epithelium healed in 8 days. The patient did not have any significant side effects to topical 0.2% FCZ.

Experimental studies have generally shown that C. parapsilosis is less virulent than C. albicans or C. tropicalis; however, poor prognoses due to C. parapsilosis keratitis have been reported. This pathogen may be associated with endophthalmitis and can lead to graft failure and poor visual outcomes.5,12,16 Early diagnosis and appropriate antifungal treatment, which can result in good outcomes, are therefore important.16 Our patient showed an excellent response to FCZ, and the healing period was much shorter than those reported previously.16 The visual outcome of our patient was good and the BCVA was 1.0 at the 2-year follow-up. This may be attributable to the relatively healthy cornea of our patient and a successful strategy of antifungal treatment.

4. Conclusion

Cases of C. parapsilosis keratitis are rare. However, it is reported to occur in patients with compromised cornea or with long-term corticosteroid use. Although this pathogen is less virulent than C. albicans, relative poor prognosis and longer healing periods have been reported in combination with oral FCZ, we could successfully treat C. parapsilosis keratitis and result in good visual outcome.

References

1. Solomon R, Biser SA, Dennenfeld ED, Perry HD, Doshi SJ, Lee CC. Candida parapsilosis keratitis following treatment of epithelial ingrowth after laser in situ keratomileusis. Eye Contact Lens. 2004;30:85–86.
2. Muallem MS, Alfonso EC, Romano AC, et al. Bilateral Candida parapsilosis interface keratitis after laser in situ keratomileusis. J Cataract Refract Surg. 2003;29:2022–2025.
3. Mitchell BM, Kanellopoulos AJ, Font RL. Post intrastromal corneal ring segment insertion complicated by Candida parapsilosis keratitis. Clin Ophthalmol. 2013;7:443–448.
4. Chen W, Tsai YY, Lin JM, Chiang CC. Unilateral Candida parapsilosis interface keratitis after laser in situ keratomileusis: case report and review of the literature. Cornea. 2009;28:105–107.
5. Bourcier T, Touzeau O, Thomas F, et al. Candida parapsilosis keratitis. Cornea. 2003;22:51–55.
6. Jones DB. Diagnosis and management of fungal keratitis. In: Tasman W, Jaeger EA, eds. Duane’s Clinical Ophthalmology on CD-ROM. Philadelphia, PA: J. B. Lippincott & Co.; 2005.
7. Yee RW, Cheng CJ, Meenakshi S, Ludden TM, Wallace JE, Rinaldi MG. Ocular penetration and pharmacokinetics of topical fluconazole. Cornea. 1997;16:64–71.
8. Pand A, Sharma N, Angra SK. Topical fluconazole therapy of Candida keratitis. Cornea. 1996;15:373–375.
9. Matsumoto Y, Murat D, Kojima T, Shimazaki J, Tsubota K. The comparison of solitary topical micafungin or fluconazole application in the treatment of Candida fungal keratitis. Br J Ophthalmol. 2011;95:1406–1409.
10. Behrens-Baumann W, Kluge B, Ruchel R. Topical fluconazole for experimental candida keratitis in rabbits. Br J Ophthalmol. 1990;74:40–42.
11. Abbasoglu O, Hosal BM, Sener B, Erdemoglu N, Gurses E. Penetration of topical fluconazole into human aqueous humor. Exp Eye Res. 2001;72:147–151.
12. Weems Jr JJ. Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis. 1994;12:754–766.
13. Trofa D, Gascier A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev. 2008;21:606–625.
14. Rosa Jr RH, Miller D, Alfonso EC. The changing spectrum of fungal keratitis in south Florida. Ophthalmol. 1994;101:1005–1013.
15. Sun RL, Jones DB, Wilhelmus KR. Clinical characteristics and outcome of Candida keratitis. Am J Ophthalmol. 2007;143:1043–1045.
16. Barnes SD, Dohlman CH, Durand ML. Fungal colonization and infection in Boston keratoprosthesis. Cornea. 2007;26:9–15.
17. Rhein MN, Wilhelmus KR, Font RL. Inflammatory crystalline keratopathy caused by Candida parapsilosis. Cornea. 1996;15:543–545.
18. FlorCruz NV, Pecon IV, Evans JR. Medical interventions for fungal keratitis. Cochrane Database Syst Rev. 2012;2:CD004241.
19. Kimakura M, Usui T, Yokoo S, Nakagawa S, Yamagami S, Amano S. Toxicity of topical antifungal agents to stratified human cultivated corneal epithelial sheets. J Ocul Pharmacol Ther. 2014;30:810–814.
20. Urbak SF, Degn T. Fluconazole in the management of fungal ocular infections. Ophthalmologica. 1994;208:147–156.
21. Müller GG, Kara-José N, Castro RS. Antifúngicos em infecções oculares: drogas e vias de administração. Rev Bras Oftalmol. 2013;72:132–141 [In Portuguese].
22. Niemi M, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ, Kivisto KT. Effects of uvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther. 2001;69:194–200.
23. Tirkkonen T, Heikinlahti P, Huupponen R, Laine K. Potential CYP2C9-mediated drug-drug interactions in hospitalized type 2 diabetes mellitus patients treated with the sulphonylureas glibenclamide, glimepiride or glipizide. J Intern Med. 2010;268:359–366.