Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower

Elisa Bassoli¹ | Loris Vincenzi¹ | Antonio Maria D’Altri² | Stefano de Miranda² | Marianna Forghieri¹ | Giovanni Castellazzi²

¹Department of Engineering “Enzo Ferrari” (DIEF), University of Modena and Reggio Emilia, Modena, Italy
²Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Bologna, Italy

Correspondence
Elisa Bassoli, Via Vivarelli 10, Modena 41125, Italy.
Email: elisa.bassoli@unimore.it

Summary
This paper presents a vibration-based model updating procedure for historical masonry structures which have suffered severe damage due to seismic events. This allows gathering in-depth insights on the current condition of damaged buildings, which can be beneficial for the knowledge of their actual structural behaviour and, consequently, for the design of repairing and strengthening interventions. The methodology, based on the experimentally identified modal parameters, is tested on the San Felice sul Panaro medieval fortress, which was heavily damaged by the 2012 Emilia earthquake. The finite element mesh of the structure in its post-quake condition is generated by means of a non-standard semi-automatic mesh generation procedure based on a laser scanner points cloud. Ambient vibration testing is performed on the main tower of the fortress. Mechanical properties of the tower and the level of connections with the rest of the fortress in its current damaged state are investigated. To fully characterize the actual behaviour of the tower in operational condition, mesh elements corresponding to the damaged masonry are identified and different material properties are assigned to them. This allows to account for the effect of damage and cracks, which appeared essential in the calibration process. The updating procedure is carried out by means of an advanced surrogate-assisted evolutionary algorithm designed for reducing the computational effort.

KEYWORDS
ambient vibration testing, damaged material, masonry, model calibration

1 | INTRODUCTION

From the ancient times, many masonry buildings have been damaged by earthquakes.[1] Focusing, for instance, on the Italian territory, the seismic events recorded in the last 10 years caused significant damage, in many cases up to collapse, in thousands of historical masonry structures.[2]

Generally, heritage buildings have been conceived to bear static gravitational loads only, and they mostly present a low aptitude to resist toward earthquakes. This is further emphasized by the poor strength of ancient masonry against horizontal loads, where mortar joints act as planes of weakness.[3] Indeed, cracking of units and mortar, as well as shear-slip and tensile-cracking of unit-mortar interfaces have been widely recorded in post-quake surveys of ancient buildings.[4]
The disasters caused by recent earthquakes motivated the scientific community in developing innovative strengthening systems for masonry constructions\cite{5,6,7}. Nevertheless, the understanding of the weaknesses of historical masonry buildings and, therefore, the design of effective strengthening interventions is a challenging task\cite{8,9,10,11}. Numerical modelling approaches appear to be reliable tools aiming at helping the knowledge of the structural behaviour of historical buildings\cite{12} and at evaluating the effectiveness of retrofitting designs\cite{13}. Indeed, accurate finite element (FE) models that can describe the actual structural behaviour are of great importance for evaluating the seismic response, assessing post-earthquake conditions, simulating the effects of structural modifications or repair interventions, and monitoring the structural health\cite{14,15}.

Although significant advances have been achieved in this field, the understanding of the actual behaviour of historical buildings still presents a high level of uncertainty, which is related to complex geometries, mechanical properties, boundary conditions, interaction between adjacent parts, etc. When dealing with structures that have suffered severe damage due to seismic or other catastrophic events, the presence of damage, the partial collapse of some subparts, and the degradation of local and global stiffness make the characterization of the structural behaviour even more complicated.

In this field, ambient vibration testing (AVT) and vibration-based structural identification are well-known non-destructive methodologies aimed at assessing the structural conditions of historical buildings. They rely on the identification of structural dynamic characteristics from output-only records using operational modal analysis (OMA) techniques\cite{16}. The vibration-based structural assessment includes full-scale ambient vibration testing\cite{17,18,19}, modal identification from ambient vibration response\cite{20,21,22} and FE modelling and identification of the uncertain structural parameters of the model\cite{23,24,25}. Results from AVT allow to define reliable FE models to be used for the seismic assessment of historical constructions (see, for instance, D’Ambrisi et al.\cite{26}).

AVT has been successfully adopted to assess the current global behaviour of historical structures in several applications. Many of these applications involve masonry towers and have multiple goals, such as structural identification\cite{27} seismic assessment\cite{26}, evaluation of the bell swinging effects\cite{28}, evaluation of the reinforcing intervention effectiveness\cite{29,30} and damage assessment\cite{31,32}. Some investigations related to arched structures\cite{33}, churches, and monuments\cite{34,35} can also be found in literature.

Furthermore, AVT and calibrated FE models are of great importance for evaluating the modifications in the global structural behaviour, which can be due, for instance, to earthquake-induced damage\cite{36} or to retrofitting interventions\cite{30}.

This paper presents a vibration-based FE model updating procedure for historical masonry structures that have suffered severe damage due to seismic events, or other catastrophic events. First, this allows gathering further in-depth insights on the current condition of damaged buildings, which can reveal beneficial for the knowledge of their structural behaviour. Moreover, because masonry historical structures are highly vulnerable to seismic swarms (aftershocks can cause further damage due to the accumulated damage in masonry as well as to damage on the structure that exposes vulnerabilities\cite{30}), a calibrated FE model of the structure representing the current behaviour is of great importance for the safety assessment with respect to aftershocks expected before the repairing.

This is also an important tool for the design of repairing and strengthening interventions. Finally, when it is necessary to perform seismic analyses (such as push-over analyses\cite{37}) of the structure in its current (damaged) condition, mode shapes from the calibrated FE model can be required.

Such an updating procedure is tested on the main tower of the San Felice sul Panaro medieval fortress, which was heavily damaged by the 2012 Emilia earthquake. In particular, mechanical properties of the main tower and the level of connection with the rest of the fortress in the current damaged state are investigated based on the AVT performed after the earthquake. The FE mesh of the structure in its post-quake condition is generated by means of a non-standard mesh generation procedure called CLOUD2FEM, developed by some of the authors\cite{12,38}. A 3D points cloud of the fortress, obtained by means of a laser scanner survey after the Emilia earthquake, is semi-automatically transformed into a 3D FE mesh, allowing for a very accurate representation of the current geometry. Although the FE model accurately represents the geometry of the tower in the current state, the mechanical characteristics need to be calibrated with reference to the experimental results.

The methodology developed for the calibration of the FE model based on the experimentally identified modal parameters of the main tower is presented. To fully describe the actual behaviour of the main tower in operational conditions, mesh elements corresponding to the damaged masonry are identified and a different elastic modulus is assigned to them. This allows to account for the effect of damage and cracks in operational conditions and towards possible aftershocks, that is, when the external actions are not such as to involve non-linear behaviour and damage and cracks only imply a local stiffness reduction. The FE model is calibrated adopting a surrogate-assisted evolutionary algorithm, namely, the DE-S algorithm, proposed by one of the authors\cite{39}. With the aim of reducing the computational effort, the algorithm combines...
an evolutionary strategy with a quadratic response surface to evaluate the structural parameters that potentially minimize
the difference between numerical and experimental results.

The paper is organized as follows. First, the San Felice sul Panaro fortress is described in Section 2. Ambient vibra-
tion testing and modal parameter identification are presented in Section 3, whereas Section 4 describes the FE model of
the fortress generated by means of the CLOUD2FEM procedure. Finally, the updating of the FE model using the DE-S
algorithm is presented and discussed in Section 5.

2 | DESCRIPTION OF THE CASE-STUDY

The case under study is the main tower of the San Felice sul Panaro medieval fortress (Figure 1), located near the city
of Modena. Such a tower is called Mastio because of its dominant dimensions compared to the rest of the building (see
Figure 1a). The tower, 32 m high with an almost square plan with sides of slightly more than 10 m, is composed of seven
levels: three cross vaults and three timber decks as well as a timber trussed roof. The thickness of the tower trunk walls
ranges from 2.5 m at the bottom up to 1.25 m at the top. Several openings of different sizes are irregularly placed along
the tower. Furthermore, it is characterized by the presence of a crowning in its upper part, which presents a larger plan,
achieved through masonry corbels, which allows to enlarge the perimeter overhanging from the wall below. Along its
west side, the tower is adjacent to the south entrance building, whereas in its north side, it is linked to the curtain wall.

In 2012, the investigated structure was hit by the Emilia earthquake with two main shocks of magnitude $M_W = 5.86$
(May 20) and $M_W = 5.66$ (May 29). The epicentres of the first and the second main shocks were located at approximately
10 and 5 km far from San Felice sul Panaro, respectively. After the seismic sequence, the collapse of the four minor tower
roofs was observed and cracks of different relevance appeared on all the fortress structural elements extensively, as shown
in Figure 1b. In Cattari et al., an accurate description of the Emilian medieval fortresses damage mechanisms is reported.
Particularly, the Mastio most relevant damage consists of diagonal cracks, clearly visible in the lower half of the south and
north front (Figure 2a,b). In order to prevent further collapses of the structure after the seismic sequence, the San Felice
sul Panaro municipality commissioned first-aid safety interventions. In particular, the cracks of the main tower (and of
the remaining structures) have been partially filled with lime and polyurethane (Figure 2a,b). Thereby, 15-mm-diameter
steel strands have been diffusely inserted into the main tower sections (highlighted with green circles in Figure 2c), inside
60 mm large holes drilled into the walls and then grappled through lime mortar and pozzolan.

3 | MODAL IDENTIFICATION FROM AMBIENT RESPONSE

Ambient vibration tests were conducted on the Mastio of the San Felice sul Panaro fortress in July 2016, to measure the
dynamic response in operational conditions and identify its modal properties. As the fortress was significantly damaged
by the 2012 earthquake, the modal identification refers to the dynamic behaviour of the Mastio in damaged conditions.

FIGURE 1 San Felice sul Panaro fortress (a) before and (b) after the 2012 Emilia earthquake
The dynamic acquisition system was composed of 10 uniaxial piezoelectric accelerometers (seven PCB/393B12 and three PCB/393B31), with a dynamic range of ±0.5 g, a bandwidth ranging from 0.15 to 1000 Hz and a resolution of 8 µg (PCB/393B12) and 1 µg (PCB/393B31). The accelerometers were connected to a National Instruments acquisition system for data storage and system management. The sampling frequency was set to 200 Hz. The response of the tower was measured simultaneously in seven points belonging to four levels along the height of the main tower. In each measuring point, one or two accelerometers were placed, for a total of 10 measurement channels (A1–A10 in Figure 3). The accelerometers were installed on the inner walls by means of metal plates and screws, as shown in Figure 4.

Figure 5a presents a typical acceleration time series recorded at the upper instrumented level (L4). The measured acceleration ranges between ±15 mg (corresponding to ±0.15 m/s²), stating the low level of ambient excitation during the test. The corresponding power spectral density (PSD) function is shown in Figure 5b. The modal identification is performed applying the Enhanced Frequency Domain Decomposition method to the acquired accelerations.[41,42] First, the PSD matrix of the acquired accelerations is calculated and decomposed with the singular value decomposition (SVD) method. Each singular vector of the PSD matrix represents the jth mode shape whereas the corresponding singular value is the amplification factor, that is, the structural response amplification under dynamic loads. The jth natural frequency
is identified from the peak of the PSD graph. Finally, the damping ratio is estimated through the logarithmic decrement. The reader is referred to other works\cite{41,42} for all the details about the method.

Table 1 presents the first five estimated natural frequencies and damping ratios whereas the corresponding mode shapes are shown in Figure 6. Two closely spaced modes are identified around 1.75 Hz. These modes are dominant bending and involve flexure in W-E direction (Figure 6a) and N-S direction (Figure 6b). The third mode mainly involves torsion of the main tower (Figure 6c). The fourth (Figure 6d) and fifth (Figure 6e) modes are characterized by dominant flexure in both directions. It can be observed that the modal displacement of the upper level (L4) often presents abnormalities compared to the lower levels. This behaviour may be related to (a) the significant damage of the masonry walls of the upper level and (b) the fact that at the upper level sensors were mounted in different positions because of the different position of the masonry walls. Finally, damping ratios show values in the range [0.94–3.40%].

Mode no.	Mode type	Exp. frequency (Hz)	Damping ratio (%)
1	First bending E-W	1.72	2.31
2	First bending N-S	1.76	3.40
3	Torsional	3.55	2.24
4	Second bending N-S	4.83	0.99
5	Second bending E-W	5.08	0.94

4 | FE MESH GENERATION AND NUMERICAL MODELLING

The FE model of the structure under study has been generated by means of a non-standard mesh generation procedure called CLOUD2FEM\cite{12,38}. Such an innovative method semi-automatically transforms 3D points cloud of complex buildings into 3D FE meshes, minimizing the user-time investment. The procedure details are briefly revisited in this section as the FE mesh is used in the model updating process.

Given a points cloud, obtained by means of laser scanner or photogrammetric surveys of the inner and outer surfaces of a building, it can be processed by reducing the points density and by generating the triangular irregular network (TIN)
mesh, which is a standard routine. Such a mesh of the surfaces is broken down by means of a subdivision of the 3D domain into bi-dimensional subdomains by slicing it perpendicularly to an opportune direction (typically the vertical direction) with a certain step. The slicing step is chosen according to the complexity of the building along the slicing direction. By using a concave hull algorithm,[43] the boundary polygon that encloses the points of each slice is computed. Then a filled region for each slice of the building is extracted and idealized as a digital image composed of pixels with a certain resolution. Such slices are stackable as the digitalization is performed on a fixed space region. The subsequent stacking of the slices generates voxels. Finally, each voxel is automatically transformed into an eight-node hexahedral finite element and, therefore, the structure is completely discretized as an unique continuum composed by evenly spaced eight-node hexahedral elements.

As far as the investigated monument is concerned, the municipality of San Felice sul Panaro, after the first-aid safety interventions, commissioned a fine terrestrial laser scanning (TLS) survey of the damaged building in order to acquire a snapshot of the after-quake structural condition (see Figure 7). The surveyed raw points cloud (composed of over 40 millions of points) is shown in Figure 7a, whereas the processed TIN mesh is shown in Figure 7b. On this mesh, a slicing operation has been carried out (see Figure 7c), using a vertical gap of $\Delta z = 25$ cm. One hundred twenty-one slices have...
been extracted and, after their processing with a concave hull algorithm, digitalized (see some examples in Figure 7d) with a bi-dimensional resolution in the horizontal plane of 25 cm × 25 cm, as suggested in Castellazzi et al. [44].

Indeed, in Castellazzi et al. [44], the authors carried out a natural frequencies comparison between different CLOUD2FEM-based mesh sizes of the main tower (as isolated tower), obtaining a very good performance of the 25 cm × 25 cm × 25 cm mesh. Furthermore, the effectiveness of the meshing approach has been also investigated in Castellazzi et al. [38] through a comparison with a very detailed CAD-based model. As a result, the resolution 25 cm × 25 cm × 25 cm was found to be the best compromise between result accuracy and computational effort. In fact, although this mesh dimension does not accurately reproduce each small architectural detail, it guarantees a good accuracy in terms of global dynamic response having at least five hexahedral FEs in the thickness of the main tower walls [12]. The resulting mesh, depicted in Figure 8, is characterized by 409,300 hexahedral finite elements (each one 25 cm × 25 cm × 25 cm) and 1,512,444 dofs.

It has to be pointed out that, although the laser scanner survey has been carried out on the damaged fortress, its capability to collect information about the cracks is substantially limited. Indeed, the chance of picking points in the depth of a crack is extremely challenging and strongly depends on the crack width and on the relative angle between the surveyed surface and the laser direction. Furthermore, most of the cracks was partially filled in the first-aid interventions. In addition, during the idealization of each slice as a digital image composed of 25-cm-large pixels, every geometric detail smaller than this dimension is approximated.

Modelling the floors and vaults of monumental masonry structures has always been a challenging task [45]. In particular, it is commonly accepted that in order to perform 3D seismic analyses of masonry buildings, equivalent diaphragms can be used to model vaults [46]. In the adopted FE model, floors and vaults are automatically meshed by means of a jagged 3D representation of the original geometry and the mesh accuracy can be considered satisfactory aiming at the global structural response. Particularly, an isotropic elastic material has been assumed to roughly model deck timber elements with the values 8,000 MPa, 2,918 MPa, and 415 kg/m³ for Young’s modulus, shear modulus, and density, respectively [47].

The fortress was surrounded by a moat, and, therefore, the outer ground level is approximately 3.5 m lower than the inner one. Accordingly, clamped boundary conditions have been applied in all the nodes located at the moat level, whereas the elements located within the courtyard have been modelled through an elastic continuum to coarsely take into account the presence of terrain. In particular, a linear elastic material with Young’s modulus, shear modulus, and density equal to 935 MPa, 316 MPa, and 1,200 kg/m³, respectively, has been considered for terrain [48].

For the masonry elements, a linear elastic material with density and Poisson’s ratio equal to 1,800 kg/m³ and 0.2, respectively, has been adopted. According to the Italian Codes [49], the Young’s modulus of rubble masonry elements made of solid bricks and lime mortar is expected to lie in the range [850–1,250 MPa]. However, the actual value of the masonry elastic modulus is identified from the model updating procedure in Section 5.

Finally, roofing wooden structures have been considered as concentrated mass on the Mastio top elements, that is, where the roof is borne.

Although in this study the attention is focused on the Mastio modal identification and model updating, the modelling of the whole fortress is considered essential by the authors as the tower under study is clearly non-isolated and the
interaction between adjacent structures can play a considerable role in the evaluation of natural frequencies and modal shapes. In particular, in previous studies,[50,51] it arises that the stiffness of the adjacent parts and their mutual level of connection with the tower strongly influences its dynamic response. This aspect is further investigated in the following section. Therefore, by modelling the whole monument, the actual stiffness of the adjacent parts of the tower is directly accounted for.

To conclude, it has to be particularly stressed that the the adopted mesh generation approach directly considers the after-quake geometry of the structure, including for instance partial collapses, that is, the configuration of the structure when the ambient vibration testing was carried out.

5 | MODEL UPDATING AND STRUCTURAL PARAMETER IDENTIFICATION

The FE model of the fortress is calibrated with respect to the experimental results so that the modal properties of the main tower agree as close as possible with the experimental ones. To this aim, a set of unknown structural parameters is evaluated from the minimization of an objective function defined as the difference between measured data and numerical predictions. Due to the complexity of the numerical model, the evaluation of numerical modal parameters is highly time-consuming and the success of the optimization problem strongly depends on the efficiency of the optimization algorithm. Hence, an improved surrogate-assisted evolutionary strategy is adopted to reduce the number of objective function evaluations and find a compromise between local and global search. The optimization algorithm is described in Section 5.1 whereas the identification of the structural parameters is presented in Section 5.2.

5.1 | The DE-S algorithm

Genetic and evolutionary algorithms are widely used to solve global optimization problems. Their architecture is designed for large-scale problems and allows to avoid local minima. The main drawback is that a large number of function evaluations is often required to reach the convergence. Surrogate-assisted evolutionary strategies[52] use efficient computational models, such as response surfaces (RSs), high polynomial functions, or Kriging models,[53] to approximate the objective function. They aim at evaluating those individuals that potentially have a good prediction of the objective function value. The introduction of a second-order surrogate in the differential evolution (DE) algorithm is proposed in Vincenzi and Savoia.[54]

In the DE-S algorithm, proposed by Vincenzi and Gambarelli,[39] a proper infill sampling strategy is introduced to further reduce the number of objective function evaluations. The candidate points are chosen trying to find a compromise between local and global search, that is, enhancing both the accuracy in the region of the optimum predicted by the surrogate (local exploitation) and the global exploration. The DE-S algorithm is summarized in the following.

The optimization process is based on the simultaneous adoption of NP vectors $x_{i,G}$, with $i = 1,..NP$. Each vector $x_{i,G}$ has dimension D, being D the number of unknown structural parameters, whereas G indicates the Gth population of vectors. First, the objective function values are evaluated for the initial population of vectors, randomly chosen in the search space. At each subsequent iteration and for each vector $x_{i,G}$, a trial vector $v_{i,G}$ is generated. To this aim, NP subsets of NS vectors are built, with $NS < NP$. Each subset contains the vector $x_{i,G}$ and other $NS - 1$ vectors randomly selected among the remaining vectors of the Gth population. Each subset is used to calibrate a second-order response surface \hat{H} as a local approximation of the objective function H:

$$\hat{H} = \frac{1}{2}x^TQx + L^Tx + \beta_0,$$

where Q is a $D \times D$ coefficient matrix collecting the quadratic terms, L is a D-dimensional vector of linear terms, and β_0 is a constant. Applying the least square estimation methods from the NS evaluated points, the parameters calibrating the RS model are evaluated. Depending on the shape of the approximating function \hat{H}, two possibilities occur. If the response surface is convex, the mutant vector $v_{i,G}$ is defined as the minimizer x^* of the approximating function, that is,

$$v_{i,G} = x^* = -Q^{-1}L.$$
On the contrary, if the response surface is nonconvex, the mutant vector \(\mathbf{v}_{l,G} \) is obtained from the Mutation operation, based on a linear combination of vectors \(\mathbf{v}_r \):

\[
\mathbf{v}_{l,G} = \mathbf{x}_{r,G} + F(\mathbf{x}_{r,G} - \mathbf{x}_{r,G}),
\]

where \(r_1, r_2, r_3 \) are integer numbers randomly selected in the range \([1-NP]\), with \(r_1 \neq r_2 \neq r_3 \), and \(F \) is a positive constant controlling the amplitude of the mutation, normally assumed smaller than 2. The Crossover operation is applied to increase the diversity of vectors and escaping local optima.

Each mutant vector represents a candidate for a new evaluation. For each candidate \(\mathbf{v}_{l,G} \), the score is defined as the weighted sum of two criteria. The first one depends on the objective function value predicted by the surrogate. The second criterion depends on the distances of the candidate from the points where the objective function has already been evaluated.

The two scoring criteria are combined as follows:

\[
W(\mathbf{v}_{l,G}) = w_R V_R(\mathbf{v}_{l,G}) + w_D V_D(\mathbf{v}_{l,G}),
\]

where \(V_R(\mathbf{v}_{l,G}) \) and \(V_D(\mathbf{v}_{l,G}) \) are the scores and \(w_R \) and \(w_D \) the weights associated to the two criteria. Candidate points with low values of \(W \) are preferred.

The score \(V_R \) depends on the objective function value predicted by the surrogate as follows:

\[
V_R(\mathbf{v}_{l,G}) = 1 - e^{\frac{\left(\mathbf{v}_r - \hat{H}\right)^2}{2\sigma_{min}^2}}
\]

where \(\sigma_j \) is the minimum of the quadratic approximation \(\hat{H} \) (that is the minimum estimated by the surrogate), \(H_{best} \) is the best objective function value at the current iteration, whereas

\[
H_{min,s} = \min_{x=1...NS} H(\mathbf{x}_{s,G})
\]

is the minimum of the evaluations of the \(NS \) points \((\mathbf{x},G) \) selected for the calibration of the response surface.

The score \(V_D \) is derived from the distances of the candidate point to the points where the objective function has already been evaluated:

\[
V_D(\mathbf{v}_{l,G}) = 1 - \frac{\Delta_{min}}{\Delta_{max}}
\]

where \(\Delta_{min} \) and \(\Delta_{max} \) are the minimum and maximum weighted distances of the candidate point to the \(n \) points where the objective function is evaluated:

\[
\Delta_{min} = \min_{p=1...n} D(\mathbf{v}_{l,G}, \mathbf{x}_{p,G}),
\]

\[
\Delta_{max} = \max_{p=1...n} D(\mathbf{v}_{l,G}, \mathbf{x}_{p,G}).
\]

The weighted distances \(D \) are calculated from the Euclidean distances \(d \) and the objective function values as

\[
D(\mathbf{v}_{l,G}, \mathbf{x}_{l,G}) = d(\mathbf{v}_{l,G}, \mathbf{x}_{l,G}) \sqrt{\frac{H_{best}}{H(\mathbf{x}_{p,G})}}.
\]

The weights \(w_R \) and \(w_D \) are chosen in the range \(0 \leq w \leq 1 \), with \(w_R + w_D = 1 \). If \(w_D \) is close to 1, the global exploration prevails on the local one and candidate points placed in a rather unexplored region of the parameter domain are preferred. On the contrary, if \(w_R \) is high, candidate points with low objective function values are preferred (local exploitation).

Results of analyses performed in Vincenzi and Gambarelli\[^{39}\] suggest the adoption of the following weight factors: \(w_R = 2/3 \), \(w_D = 1/3 \) if the surrogate presents a minimum (Case A in the flowchart of Figure 9) and \(w_R = 0 \), \(w_D = 1 \) when the surrogate search fails (Case B). Indeed, in Case A, it is worth investigating the region close to the optimum predicted by the surrogate whereas in the second case, the global exploration of the parameter domain is preferred.

To reduce the number of the objective function evaluations, a subset of \(NH \) candidates (with \(NH < NP \)) is selected. Candidates with the lowest score are preferred and only for this subset of points the objective function is evaluated. Finally, in the Selection operation, all points (candidates and points of the current population) are ordered depending on their objective function value. The \(NP \) points with the lowest value of the objective function are selected to be the members of the next population.
5.2 Identification of the structural parameters

The objective function H is a measure of the difference between numerical ($f_{\text{num}}, \phi_{\text{num}}$) and experimental ($f_{\text{sper}}, \phi_{\text{sper}}$) natural frequencies and mode shapes:

$$H(x) = \sum_{j=1}^{N} \left[\alpha \left(\frac{f_{\text{sper},j} - f_{\text{num},j}}{f_{\text{sper},j}} \right)^2
ight. + \left. (1 - \alpha) \left(\frac{1 - \text{MAC}(\phi_{\text{num},j}; \phi_{\text{sper},j})}{\text{MAC}(\phi_{\text{num},j}; \phi_{\text{sper},j})} \right)^2 \right],$$

(11)

where $\alpha (0 \leq \alpha \leq 1)$ is a weighting factor that determines the relative importance between frequency and mode shape residuals, x is the vector of unknown structural parameters, and N is the number of modes considered in the calibration procedure. Finally, MAC is the modal assurance criterion, representing the correlation between two modal vectors.

First, it is important to identify which modes should be included in the calibration process. Indeed, in ambient vibration testing, higher frequencies are often obtained with less accuracy than the lower order ones. Minimizing the error between experimental and numerical modal properties for higher modes may prevent matching the lower modes of vibration.
In this study, the first three natural modes (Modes 1–3 in Table 1) are accounted for in the calibration procedure, whereas Modes 4 and 5 are adopted for the purpose of validation of the updated FE model. This is in-line with the fact that generally, only the first natural modes are relevant for seismic analyses.

In Forghieri et al.,[25] the influence of the weighting factor α on the identified structural parameters is investigated by evaluating the optimal solutions forming the Pareto front. Adopting two different selection criteria, an optimal value of α equal to 0.4 is obtained, although results are observed to be similar for α in the range [0.1–0.8]. Hence, in this study, the weighting factor α is set to 0.4.

Moreover, a proper selection of structural parameters is fundamental for the success of the calibration process. In particular, those parameters whose values are uncertain and that potentially have a considerable effect on the vibration response of the structure are to be selected.

The FE model of the fortress has been generated from the 3D points cloud obtained after a fine TLS survey of the fortress. This means that the physical dimensions of the masonry elements and floors are defined with reasonable accuracy. On the contrary, the material properties of the major structural components are more uncertain. Indeed, due to the serious damage of the fortress and its age of construction, the effective stiffness of the masonry is uncertain.

The first attempt to update the numerical model (Model updating #1) is carried out considering a homogeneous distribution of the masonry elastic properties. In particular, the structural parameter considered in the optimization procedure is the equivalent elastic modulus of the cracked masonry of the Mastio, indicated as E_M.

Table 2 presents the optimization analysis results, including the range of variation for each updating parameter and the identified value, the average frequency error, and the average MAC value. The average frequency error and MAC value are calculated with reference to Modes 1–3 and 4–5. The first are the natural modes against which the FE model is calibrated whereas the second are used to evaluate the goodness of fit of the calibrated model. The numerical frequency and MAC value for each natural mode are reported in Table 3, together with a comparison to the experimental results. As far as the calibrated modes (1–3) are concerned, a pretty good match between numerical and experimental frequencies is obtained, with errors lower than 6%. Modes 1 and 3 show MAC values higher than 0.90, whereas a slightly lower correlation is observed for Mode 2, characterized by a MAC value of 0.86. Larger differences between numerical and experimental results are obtained for Modes 4 and 5, in relation to both natural frequencies (Mode 4) and mode shapes (Mode 5).

Table 2: Parameters for structural identification and updated model

Structural parameter	Lower value	Upper value	Updated model	Average f error (%)	Average MAC		
				Modes 1–3	Modes 4–5	Modes 1–3	Modes 4–5
Model updating #1				[4.20]	[20.63]	0.92	0.61
E_M (MPa)	500	1,500	825				
Model updating #2				[5.16]	[32.95]	0.94	0.76
E_{CW} (MPa)	10	1,500	38				
E_{CN} (MPa)	10	1,500	12				
E_M (MPa)	500	1,500	931				
Model updating #3				[4.39]	[3.54]	0.93	0.78
E_D (MPa)	10	1,500	700				
E_U (MPa)	500	1,500	892				

Note. MAC = modal assurance criterion.

Table 3: Experimental and numerical modes

Mode no.	Exp. freq. (Hz)	Model updating #1			Model updating #2			Model updating #3			
	Num. freq. (Hz)	Err. freq. (%)	MAC		Num. freq. (Hz)	Err. freq. (%)	MAC		Num. freq. (Hz)	Err. freq. (%)	MAC
1	1.72	1.81	−4.83	0.94	1.76	−2.43	0.95	1.78	−3.51	0.95	
2	1.76	1.65	6.03	0.86	1.61	8.32	0.92	1.62	7.72	0.90	
3	3.55	3.61	−1.75	0.94	3.71	−4.73	0.95	3.61	−1.94	0.94	
4	4.83	6.41	−36.24	0.77	6.09	−29.46	0.77	4.84	−2.91	0.75	
5	5.08	5.08	−5.01	0.45	6.60	−36.44	0.75	5.04	−4.16	0.81	

Note. MAC = modal assurance criterion.
With regard to the identified structural parameters, an equivalent elastic modulus of the masonry of about 825 MPa is obtained. The identified value is lower than the expected one due to the presence of significant cracks in the masonry.

As the updated model does not describe the actual behaviour of the tower with respect to Modes 4 and 5, additional structural parameters are accounted for in the optimization procedure. Due to the complex historical evolution of the fortress, its monolithic behaviour and the efficiency of connections between adjacent walls cannot be assured. Furthermore, some important damage can be observed in correspondence of the interfaces between the Mastio and the rest of the fortress. Therefore, the elastic moduli of the portions of walls connecting the Mastio to the fortress on the west (E_{CW}) and north (E_{CN}) side are considered as additional unknown parameters (highlighted in Figure 10).

A sensitivity analysis is performed to evaluate how each structural parameter influences the dynamic behaviour. The analysis is carried out varying the structural parameters one-by-one and setting the others to 825 MPa (i.e., the elastic modulus obtained from model updating #1). Figure 11 presents the value of the objective function evaluated from Equation 11 as well as the partial contributions of natural frequency and mode shape residuals to the objective function. Figure 11a,b is obtained considering Modes 1–3, whereas Figure 11c considering Modes 4 and 5.

As expected, the variation in the masonry elastic modulus E_M affects the natural frequencies and not the mode shapes (Figure 11a). On the contrary, the variation in the elastic moduli E_{CW} and E_{CN} of the connection elements causes changes in modes shapes and slightly affects natural frequencies. In particular, the objective function values for different E_{CW} calculated considering Modes 1–3 and 4–5 are reported in Figures 11b,c, respectively. When E_{CW} decreases, values of the objective function calculated from Modes 1–3 increase whereas those calculated from Modes 4–5 decrease. This highlights the non-negligible contribution of the interface element stiffness.

Hence, a second calibration (Model updating #2) is carried out considering as uncertain parameters the elastic modulus of the cracked masonry E_M and the elastic moduli of the connection elements E_{CW} and E_{CN}. The updated model shows an equivalent elastic modulus of the masonry equal to 932 MPa whereas the connection elements are character-
FIGURE 12 Highlighting of the damaged elements (red)

ized by low (<50 MPa) elastic moduli (Table 2). Compared to the model updating #1, the elastic modulus of masonry E_M increases to make up for the reduction of the connection stiffness. Moreover, the calibrated modes (Modes 1–3) show a slight improvement in the mode shapes against a slight worsening in terms of natural frequencies. Similar to the model updating #1, a low correlation between experimental and numerical results is observed for Modes 4 and 5.

From the previous calibrations, it follows that the equivalent elastic moduli of the cracked masonry is not the appropriate parameter to accurately characterize the Mastio dynamic behaviour. Indeed, the Mastio presents a severe crack pattern whose contribution cannot be accounted for simply defining an equivalent elastic modulus of the cracked masonry. To fully describe the actual behaviour of the main tower in operational conditions, an improvement of the FE model is proposed in this paper. After an accurate survey of damage and cracks, mesh elements corresponding to the damaged masonry are identified in the FE model (highlighted in Figure 12) and a different elastic modulus E_D is assigned to them. This allows to account for the effect of damage and cracks in operational conditions, that is, when the external actions are not such as to involve non-linear behaviour and damage and cracks only imply a local stiffness reduction. As the calibration is performed with reference to the modal properties of the Mastio, only the cracks of the Mastio are introduced in the FE model.

The third calibration process (Model updating #3) is carried out considering as unknown structural parameters the elastic moduli of the damaged E_D and undamaged E_U masonry. The updated model presents elastic moduli of the damaged and undamaged masonry equal to 700 and 892 MPa, respectively (Table 2). As expected, the elastic modulus of the damaged masonry is lower than the one of the undamaged of masonry. However, the elastic modulus of the damaged masonry is representative of the cracks that, for the greater part, have been partially filled with lime and polyurethane after the 2012 earthquake. Once the FE model is improved accounting for the actually damaged portions of masonry, a much better consistency between numerical and experimental results is achieved. Indeed, the calibrated FE model presents frequency errors between 3.51% and 7.72% and MAC values in the range $[0.75–0.95]$ for the five natural modes.

6 | CONCLUDING REMARKS

In this paper, a vibration-based model updating procedure for historical masonry structures that have suffered severe damage due to seismic events has been presented.

The methodology developed for the calibration of the numerical model, based on the experimentally identified modal parameters, has been carried out on the earthquake-damaged main tower of San Felice sul Panaro medieval fortress. The FE model of the structure in its post-quake condition has been generated by means of a non-standard semi-automatic mesh generation procedure. Ambient vibration testing was performed on the main tower of the fortress. Mechanical properties of the tower in its current damaged state have been investigated. To fully characterize the actual behaviour of the tower in operational conditions, mesh elements corresponding to the damaged masonry have been identified in the FE model and different material properties have been assigned to them, allowing to account for the effect of damage and cracks. This improvement was found to be fundamental aiming at consistently describing the dynamic behaviour of the tower in operational conditions by means of numerical modelling.
The updated FE model of the structure was able to guarantee a good accuracy of modal parameters of the concerned modes, which were in close agreement with the experimental results, still preserving the physical meaning of updated parameters.

ORCID

Loris Vincenzi http://orcid.org/0000-0003-2541-7104

REFERENCES

[1] W. Addis, Building: 3000 Years of Design Engineering and Construction, London (UK): Phaidon Press 2007.
[2] E. Coissou, D. Ferretti, E. Lenticchia, Bull. Earthquake Eng. 2017, 15(12), 5139.
[3] C. Mazzotti, E. Sassoni, G. Pagliai, Constr. Build. Mater. 2014, 54, 421.
[4] S. Cattari, S. Degli Abbati, D. Ferretti, S. Lagomarsino, D. Ottonelli, A. Tralli, Bull. Earthquake Eng. 2014, 12(5), 2333.
[5] C. Shermi, R. N. Dubey, Constr. Build. Mater. 2017, 143, 104.
[6] R. S. Nezhad, M. Z. Kabir, Constr. Build. Mater. 2017, 131, 630.
[7] A. Bilotta, F. Ceroni, E. Nigro, M. Pecce, Constr. Build. Mater. 2017, 138, 114.
[8] A. G. El-Attar, A. M. Saleh, A. H. Zaghw, Struct. Control. Health Monit. 2005, 12(2), 157.
[9] S. El-Borgi, H. Smaoui, F. Casciani, K. Jerbi, F. Kanoun, Struct. Control. Health Monit. 2005, 12(2), 179.
[10] A. S. Aydilek, Sensors 2015, 15(8), 162.
[11] M. Bettin, L. Galano, A. Vignoli, Earthquakes and their Impact on Society, Springer International Publishing, Cham 2016, 377.
[12] A. De Stefano, R. Ceravolo, J. Intell. Mater. Syst. Struct. 2007, 18, 793.
[13] S. Podestà, G. Riatto, F. Marzazi, Struct. Control. Health Monit. 2008, 15(4), 622.
[14] A. Pau, F. Vestroni, Struct. Control. Health Monit. 2008, 15(8), 1105.
[15] A. Elyamani, O. Caselles, R. Rosa, J. Clapes, Struct. Control. Health Monit. 2017, 24(3), e1885.
[16] K. A. Bani-Hani, H. S. Zibdeh, K. Hamdaoui, Smart Struct. Syst. 2008, 4(2), 195.
[17] T. Demetriou, C. Chrysostomou, A. Stassis, Smart Struct. Syst. 2008, 4(2), 183.
[18] A. J. Garcia-Palencia, E. Santinelli-Bell, J. D. Sipple, M. Sanaye, Struct. Control. Health Monit. 2015, 22(10), 1265.
[19] J. L. Zapico, K. Worden, F. J. Molina, Smart Mater. Struct. 2001, 10(3), 553.
[20] C. H. Chen, Smart Mater. Struct. 2005, 14(3).
[21] M. Forghieri, E. Bassoli, L. Vincenzi, in Proc. 6th ECCOMAS Thematic Conf. Comput. Methods Struct. Dyn Earthquake Eng., Rhodes Island, Greece 2017.
[22] A. D’Ambris, V. Mariani, M. Mezzi, Eng. Struct. 2012, 36, 210.
[23] G. Russo, O. Bergamo, L. Damiani, D. Lugato, Eng. Struct. 2010, 32(2), 353.
[24] S. Ivorra, F. J. Pallarés, Eng. Struct. 2006, 28(5), 660.
[25] E. Bassoli, L. Vincenzi, M. Bovo, C. Mazzotti, in Proc. 2015 IEEE Workshop Environ., Energy Struct. Monit. Syst., Trento, Italy 2015.
[26] L. Zanotti Fragonara, G. Boscato, R. Ceravolo, S. Russo, S. Ientile, M. L. Pecorelli, A. Quattrone, Bull. Earthquake Eng. 2017, 15(1), 313.
[27] C. Gentile, A. Saisi, Constr. Build. Mater. 2007, 21(6), 1311.
[28] L. F. Ramos, L. Marques, P. B. Lourenço, G. De Roeck, A. Campos-Costa, J. Roque, Mech. Syst. Sig. Process. 2010, 24(5), 1291.
[29] L. F. Ramos, G. De Roeck, P. B. Lourenço, A. Campos-Costa, Eng. Struct. 2010, 32(1), 146.
[30] R. A. Votsis, N. Kyriakides, C. Z. Chrysostomou, E. Tantele, T. Demetriou, Soil Dyn. Earthquake Eng. 2012, 43, 58.
[31] A. Pau, F. Vestroni, Mech. Syst. Sig. Process. 2013, 41(1), 454.
[32] A. Saisi, C. Gentile, M. Guidobaldi, Constr. Build. Mater. 2015, 81, 101.
[33] S. Degli Abbati, A. M. D’Altri, D. Ottonelli, G. Castellazzi, S. Cattari, S. de Miranda, S. Lagomarsino, in Proc. 6th ECCOMAS Thematic Conf. Comput. Methods Struct. Dyn Earthquake Eng., Rhodes Island, Greece 2017.
[34] G. Castellazzi, A. M. D’Altri, G. Boscato, E. Nigro, M. Pecce, Sensors 2015, 15(8), 18360.
[35] L. Vincenzi, P. Gambarelli, Comput. Struct. 2017, 178, 58.
[36] M. Savoia, N. Buratti, L. Vincenzi, Eng. Struct. 2017, 137, 162.
[37] R. Brinker, L. Zhang, P. Andersen, Smart Mater. Struct. 2001, 10(3), 441.
[38] R. Brinker, C. Ventura, P. Andersen, in Proc. 19th Int. Modal Anal. Conf., San Antonio, Texas, USA 2001.
[43] A. Moreira, M. Y. Santos, in Proc. 2nd Int. Conf. Comput. Graphics Theory Appl., Scitepress, Setúbal (Portugal) 2007.

[44] G. Castellazzi, A. M. D’Altri, S. de Miranda, F. Ubertini, G. Bitelli, A. Lambertini, I. Selvaggi, A. Tralli, in ECCOMAS Congr. 2016 - Proc. 7th Eur. Congr. Comput. Methods Appl. Sci. Eng., 2016, 409.

[45] A. M. D’Altri, G. Castellazzi, S. de Miranda, A. Tralli, J. Build. Eng. 2017, 13, 224.

[46] S. Cattari, S. Resemini, S. Lagomarsino, Structural Analysis of Historic Construction: Preserving Safety and Significance, London (UK): CRC Press, 2008, 517.

[47] Dm 14/01/2008. nuove norme tecniche per le costruzioni. ministero delle infrastrutture (gu n.29 04/02/2008), Rome, Italy [new technical norms on constructions, in Italian].

[48] M. Ghandil, F. Behnamfar, Soil Dyn. Earthquake Eng. 2015, 75, 1–17.

[49] Circolare 2009. circolare n. 617 del 02/02/2009. istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al d.m. del 14/01/2008 [in Italian].

[50] G. Castellazzi, A. M. D’Altri, S. de Miranda, S. Magagnini, A. Tralli, in Int. Conf. Comput. Methods Sci. Eng. 2016, ICCMSE 2016, AIP Publishing, Melville (USA) 2016.

[51] G. Castellazzi, A. M. D’Altri, S. de Miranda, A. Chiozzi, A. Tralli, Bull. Earthq. Eng. 2018, 16(2), 933.

[52] Y. Jin, Swarm Evol. Comput. 2011, 1(2), 61.

[53] J. Müller, C. A. Shoemaker, R. Piché, Comput. Oper. Res. 2013, 40(5), 1383.

[54] L. Vincenzi, M. Savoia, Comput.-Aided Civ. Infrastruct. Eng. 2015, 30(5), 376.

[55] R. Storn, K. Price, J. Global Optim. 1997, 11, 341–359.

[56] D. J. Ewins, Modal Testing: Theory and Practice, John Wiley & Sons, New York 2000.

[57] X. Chen, P. Omenzetter, S. Beskhyroun, in Proc. 7th European Workshop on Structural Health Monitoring, Nantes, France July 2014.

How to cite this article: Bassoli E, Vincenzi L, D’Altri AM, de Miranda S, Forghieri M, Castellazzi G. Ambient vibration-based finite element model updating of an earthquake-damaged masonry tower. Struct Control Health Monit. 2018;25:e2150. https://doi.org/10.1002/stc.2150