Pediatric metabolic liver diseases: Evolving role of liver transplantation

Jagadeesh Menon, Mukul Vij, Deepti Sachan, Ashwin Rammohan, Naresh Shanmugam, Ilankumaran Kaliamoorthy, Mohamed Rela

ORCID number: Jagadeesh Menon 0000-0002-2649-0058; Mukul vij 0000-0003-0149-0294; Deepti Sachan 0000-0003-4572-5884; Ashwin Rammohan 0000-0001-9528-8892; Naresh Shanmugam 0000-0001-9644-9838; Ilankumaran Kaliamoorthy 0000-0002-6818-9247; Mohamed Rela 0000-0003-4282-4676.

Author contributions: Menon J, Vij M, and Sachan D conceptualized the review, performed literature search, and drafting of the manuscript; Vij M, Rammohan A, Shanmugam N, Kaliamoorthy I and Rela M edited and revised the review; all authors read and approved the manuscript for publication.

Conflict-of-interest statement: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works.

Abstract

Metabolic liver diseases (MLD) are the second most common indication for liver transplantation (LT) in children. This is based on the fact that the majority of enzymes involved in various metabolic pathways are present within the liver and LT can cure or at least control the disease manifestation. LT is also performed in metabolic disorders for end-stage liver disease, its sequelae including hepatocellular cancer. It is also performed for preventing metabolic crisis', arresting progression of neurological dysfunction with a potential to reverse symptoms in some cases and for preventing damage to end organs like kidneys as in the case of primary hyperoxalosis and methyl malonic acidemia. Pathological findings in explant liver with patients with metabolic disease include unremarkable liver to steatosis, cholestasis, inflammation, variable amount of fibrosis, and cirrhosis. The outcome of LT in metabolic disorders is excellent except for patients with mitochondrial disorders where significant extrahepatic involvement leads to poor outcomes and hence considered a contraindication for LT. A major advantage of LT is that in the post-operative period most patients can discontinue the special formula which they were having prior to the transplant and this increases their well-being and improves growth parameters. Auxiliary partial orthotopic LT has been described for patients with noncirrhotic MLD where a segmental graft is implanted in an orthotopic position after partial resection of the native liver. The retained native liver can be the potential target for future gene therapy when it becomes a clinical reality.

Key Words: Liver transplantation; Metabolic liver disease; Tyrosinemia; Wilson disease;
Metabolic disorders are an important cause of morbidity and mortality in children. Their clinical presentations are varied and include end-stage liver disease, hepatocellular cancer, renal tubular acidosis, seizures, encephalopathy, myopathy etc. Liver transplantation (LT) is a curative option in many metabolic disorders. LT is contraindicated in mitochondrial disorders with significant extrahepatic involvement. A combined liver kidney transplant is needed in disorders where the underlying defects significantly damages both the organs. The outcome of LT is excellent in metabolic disorders. Auxiliary partial orthotopic LT is an attractive option as it provides the defective enzymes keeping the native liver intact and may hold an option of withdrawing immunosuppression in case gene therapy can be offered in future.

Citation: Menon J, Vij M, Sachan D, Rammohan A, Shanmugam N, Kaliamoorthy I, Rela M. Pediatric metabolic liver diseases: Evolving role of liver transplantation. *World J Transplant* 2021; 11(6): 161-179

INTRODUCTION

Metabolic disorders are an important indication for pediatric liver transplantation (LT) [1]. The advent of advanced next-generation sequencing techniques has led to more metabolic disorders being diagnosed, and hence their clinical profile is widening [2]. The balance between various biochemical reactions comprises a definite pathway for synthesis and catabolism of various metabolites, which is maintained in a very sophisticated way in the human body, and the liver is where a majority of these reactions are carried out. An error or defect of a single step in such a pathway could induce catastrophic results in the forms of inborn errors of metabolism, which in turn affect multiple organ systems and present with protean clinical manifestations. Liver involvement in metabolic disorders can vary ranging from normal architecture to steatosis, advanced fibrosis and cirrhosis with or without hepatocellular cancer [3]. Pediatric LT either offers a cure or offers symptom control in liver-based metabolic disorders [4]. Often, an auxiliary LT with a smaller liver graft may be sufficient to normalize the defective phenotype [5]. Pediatric metabolic diseases can be broadly divided into three groups (Table 1). The status of LT in the algorithmic management of each of these four groups is different. This review aims to provide insights into paediatric metabolic disease and highlight the evolving role of LT in its management. We also review pathological findings in paediatric metabolic liver diseases (MLD) undergoing transplants.

CATEGORIES OF METABOLIC DISORDERS

Metabolic disorders can be classified into the following three broad groups based on a LT perspective (Table 1).

GROUP A

Disorders with enzyme defects only in the liver, and LT is done predominantly for end-stage liver disease (ESLD) and its related complications.

Tyrosinemia

Hereditary tyrosinemia type 1 (HT-1) is an autosomal recessive (AR) disorder caused by a deficiency of fumaryl acetoacetate hydrolase enzyme with a prevalence of about 1
in 100000 new-borns in the general population[6]. The metabolic block induces accumulation of highly reactive intermediate metabolites such as malyl-and fumary-lacetoacetate, which are toxic and mutagenic to the hepatocytes. The clinical presentation is heterogeneous and includes acute liver failure (ALF), cirrhosis with or without decompensation, hepatocellular carcinoma (HCC), neurologic crisis, and renal tubular acidosis leading to florid rickets and growth failure[6]. Nitro tetrazolium blue chorde (NTBC) is useful for metabolic control in HT-1, but this agent does not fully abate the incidence of HCC[7]. A strict dietary control with phenylalanine and tyrosine-free formula needs to be followed along with NTBC, creating a huge financial burden for patients, especially those from the developing countries. LT is indicated in HCC, decompensated cirrhosis, patients non-compliant with medical therapy, and ALF. Explanted livers with tyrosinemia are usually enlarged. The most distinctive macroscopic feature in tyrosinemia is the striking nodularity of the liver and the variegated colors of the nodules ranging from the yellowish lipid-filled nodules to the deep green of cholestatic nodules (Figure 1A)[8]. Light microscopic findings include portal/peripoortal fibrosis with bridging and nodularity of varying sizes, steatosis, hepatocellular ballooning, bilirubinostasis, and pseudoacini formation (Figure 1B and C)[9]. Liver cell dysplasia, both low and high grade, is frequently observed, and the distinction between dysplastic nodules and HCC may be difficult[9]. Large cell change is also reported. HCC is usually well or moderately differentiated in tyrosinemia[10]. The long-term outcome for LT recipients with HT-1 is excellent, and ranges from 85%-100% across series[11]. There is however, a minimal risk of recurrence of HCC in the transplanted liver, and a serial surveillance is indicated. The urine succinyl acetone may continue to be detected in the post-LT period, but the long-term significance of this causing a renal impairment remains uncertain[6]. Hence a renal-sparing immunosuppression is used in the LT recipients with tyrosinemia.

Alpha-1 antitrypsin deficiency

Alpha-1 antitrypsin (A1AT) deficiency is a common inherited metabolic liver disease in the western hemisphere with an estimated incidence of 1:1600 to 1:3500 cases[12]. SERPINA1, the gene encoding A1AT, has an AR inheritance with codominant expression[13]. The liver injury is caused by aggregates of misfolded protein in the hepatocyte whereas the lung injury is caused by unopposed action of neutrophil elastase[13]. Hence the progression of lung pathology can be prevented with enzyme replacement, but the liver dysfunction does not have a standard medical therapy[14]. Serum levels of A1AT can help in diagnosis of A1AT deficiency, as they are very low in those who are homozygous. The commonest presentation is as infantile cholestasis, and it can mimic biliary atresia both clinically and radiologically. Liver biopsy shows eosinophilic intracytoplasmic globules in hepatocytes, which are periodic acid-schiff (PAS) positive and diastase resistant, and genetic analysis confirms the diagnosis[13]. LT is indicated for ESLD and also for those with HCC[13,15]. The A1AT levels become normal in the post-LT period but the lung functions may continue to deteriorate, especially after the 2nd decade of life. A higher incidence of hepatic artery thrombosis is noted as the blood vessel integrity is defective due to deficiency of A1AT, and the vessel wall can be disrupted during clamping[16]. The post-LT outcomes are excellent with over 90% of recipients living beyond 20 years[17]. Liver impairment resulting from A1AT deficiency may directly contribute to renal abnormalities resembling...
Galactosemia (type 1 galactosemia)

It is a common metabolic disorder caused by the defect in the enzyme galactose 1-phosphate uridyl transferase (GALT). The incidence is 1 in 45000 births[10]. The metabolites galactitol and galactose-1-phosphate are hepatotoxic and infants present with ALF; nevertheless, there is always an underlying liver scarring[18]. The diagnosis was classically suggested by the detection of urinary reducing sugars (nonglucose), which have no sensitivity or specificity, and may be positive with any cause of liver failure. GALT activity can be measured in erythrocytes, however the test must be done before the child receives blood transfusion[10]. Genetic assay is confirmatory. Missense mutations in GALT gene are associated with low to undetectable enzymatic activity, resulting in the most profound symptoms. Liver biopsy in galactosemia demonstrates panlobular steatosis, bilirubinostasis, bile ductular proliferation, portal/peripoportal and sinusoidal fibrosis, and hepatocyte necrosis and apoptosis (Figure 1D)[19]. An early recognition of this condition with a prompt withdrawal of lactose/galactose exposure dramatically improves the clinical status and the liver function. Hence despite being a common metabolic disorder, LT is rarely indicated, and is performed only in progressive liver dysfunction despite a galactose-free diet and in HCC[20].

Wilson disease

Wilson disease (WD) is an AR disorder causing ALF, acute-on-chronic liver failure, or cirrhosis in children with the average prevalence of 1 in 30000 individuals worldwide[10]. The genetic defect in ATP7B leads to defective copper excretion from liver leading to its toxic accumulation in liver and various extrahepatic tissues such as brain, kidney and joints[21]. It is one of the few metabolic disorders causing liver disease where a definitive medical therapy in the form of chelation can be offered. It is well-known that
a fraction of patients with even advanced liver disease due to WD can reverse hepatic fibrosis with medical treatment[20]. LT should be offered in WD presenting with ALF when the Dhawan score is > or = 11 as this predicts a mortality of more than 97%[22] (Table 2).

Patients with decompensated cirrhosis having hepatic encephalopathy, those with episodes of massive variceal bleed and synthetic failure not responding to chelation therapy or those worsening on chelation therapy should also be offered LT. In the LDLT settings, an asymptomatic heterozygous family donor can safely donate their liver. In the post-LT period, chelation therapy or dietary restrictions need not be continued. Post-LT survival for WD is excellent with 5-year survival of up to 90%[23]. Interestingly, WD patients transplanted for ALF have a similar outcome to those transplanted for an ESLD[24]. Though a controversial indication, patients with neurological symptoms in the absence of overt liver disease may be given an option for LT if there is no response to chelators. Changes in the brain were reported to reverse in the post-LT period[25]. Therapeutic plasmapheresis (TPE) may be beneficial in WD as it rapidly removes copper from circulation in significant amounts which further reduces hemolysis and progression of renal failure[26-28]. TPE also removes large molecular weight toxins and other factors that may cause hepatic encephalopathy and is often used as a bridge to LT[29]. TPE is recommended as Class IC and category I indication in fulminant liver failure due to WD[30]. A few recent reports showed that TPE combined with chelating agents improved ALF and eliminated the need for LT[31]. Explanted livers in WD are cirrhotic. Micronodular cirrhosis is most commonly seen (Figure 2A and B). A few explants show mixed nodular cirrhosis. The spectrum of histopathological features in WD is very broad and includes macrovesicular steatosis, portal and/or lobular inflammation, glycogenated nuclei, variable necrosis and apoptosis, cholestasis, and hepatocellular ballooning with Mallory-Denk bodies (Figure 2C). Neutrophilic satellitosis may also be visualized[10]. Other hepatocellular features include slight or moderate hepatocellular anisocytosis and anisokaryosis. Copper and copper associated protein deposits are identified in hepatocytes (Figure 2D). Copper accumulation can be very heterogeneous in cirrhotic liver with some nodules showing diffuse stainable copper while others show little to no stainable copper. Macrophages can also demonstrate copper granules in extensive hepatocellular necrosis.

Hereditary fructosemia
It is an AR disorder caused by deficiency of aldolase B enzyme. Patients usually become symptomatic at the time of weaning with hypoglycemia, lactic acidosis, and ketosis. Hereditary fructosemia is estimated to occur in 1 in 20000 live births[32]. It is one of the causes of infantile ALF and can also lead to cirrhosis in early childhood[32]. Prompt recognition and withholding of fructose in diet will reverse the symptoms and liver disease. Many patients develop an inherent aversion to sweet/sugary food as a secondary adaptation to prevent the accumulation of toxic metabolites. LT is offered for synthetic failure, portal hypertension, malignancies, and growth retardation. Biopsy findings include neonatal giant cell hepatitis, macrovesicular steatosis, portal/periportal fibrosis, cirrhosis, ductular proliferation, acinar transformation of hepatocytes, bilirubinostasis, and sinusoidal collagenisation (Figure 3A)[33].

Glycogen storage disorder III and IV
Among the glycogen storage disorder types (GSDs), type I, III, IV-, VI and IX are the hepatic glycoegenoses. Apart from type 1 GSD, others may lead to progressive liver disease, cirrhosis, and decompensation. Type III GSD involves the striated muscles in 85% of cases, and cardiac morbidity needs ruling out before an LT[34,35]. The liver disease in type III GSD is less severe when compared to type 4 in which cirrhosis with decompensation is universal before 5 years of age[35]. Muscle involvement is also seen in GSD IV and infantile presentations such as spinal muscular atrophy are known. Synthetic failure or portal hypertension, which are the primary indications for LT in GSD III and IV, do not occur in GSD type I. On gross inspection, the liver in GSD is typically enlarged, smooth, and pale in appearance. The liver in most GSDs including type III demonstrates pale enlarged hepatocytes with thickened borders containing abundant glycogen, which is digested with diastase (Figure 3B)[10]. Fibrosis with thin connecting septa can also be noted, as also is steatosis. Hepatocellular adenomas, frank cirrhosis, and even HCC, can develop in GSD type III. Liver in GSD type IV shows large, round or oval-shaped eosinophilic ground glass cytoplasmic inclusions, often surrounded by an artefactual halo in the majority of hepatocytes, which are especially prominent in the perportal zone (Figure 3C)[36]. The inclusions are deeply stained with PAS stain. Further diastase treatment clears the normal glycogen but not the
Table 2 The New Wilson (Dhawan) score for prediction of outcome in Wilson disease

Score	Bilirubin mg/dL	INR	AST (IU/L)	WBC (10^9/L)	Albumin (g/dL)
0	< 5.85	< 1.29	< 100	< 6.7	4.5
1	5.86-8.77	1.3-1.6	101-150	6.8-8.3	3.4-4.4
2	8.78-11.69	1.7-1.9	151-200	8.4-10.3	2.5-3.5
3	11.7-17.54	2.0-2.4	201-300	10.4-15.3	2.1-2.4
4	> 17.55	> 2.5	> 300	> 15.3	< 2.1

A score more than or equal to 11 indicates a high mortality without liver transplantation. These patients benefit most from an urgent liver transplantation. INR: International normalized ratio; WBC: White blood cell.

Figure 2 Wilson disease. A: Explant hepatectomy specimen in a case of Wilson disease (WD) with marked cholestasis; B: Micronodular cirrhosis in a case of WD [hematoxylin and eosin (HE staining)]; C: WD with hepatocellular ballooning, Mallory Denk bodies, fatty change and neutrophilic satellitosis (HE staining); and D: WD with marked copper deposition in hepatocytes and macrophages (Rhodamine staining).

abnormal amylopectin-like material in the inclusions[10]. Fibrosis, which can progress to cirrhosis, is a frequent finding in GSD type IV (Figure 3D).

Congenital disorder of glycosylation

Congenital disorder of glycosylation (CDG) has an incidence of 1 in 10000 in European countries and is known to have multisystemic manifestations including coagulation defects, protein-losing enteropathy, neurological symptoms, cardiac dysfunction, immune deficiency, etc., depending on the various subtypes described[37]. The CDGs causing ESLD are mannose phosphate isomerase deficiency (MPI-CDG), coiled-coil domain-containing 113 (CCDC113-CDG), transmembrane protein 199 and ATP6AP1-linked immunodeficiency[38,39]. In spite of oral mannose therapy, MPI-CDG can progress to cirrhosis. LT is indicated for ESLD in CDG and can improve its
extrahepatic manifestations such as exercise intolerance and protein-losing enteropathy[38,39]. LT has also been performed for CCDC115-CDG and ATP6AP1-CDG but not in other types of CDG where liver dysfunction is rarely seen, but could theoretically improve other systemic manifestations. Pathological findings are non-specific in CDG. Variable fibrosis and fatty change have been described[40].

Lysosomal storage disorders

Characterised by multisystemic involvement, lysosomal storage disorders (LSD) are also known to present with cirrhosis, portal hypertension (also contributed by massive splenomegaly), and HCC[41-44]. LSD where LT may be offered include non-neuropathic Gaucher’s disease, Niemann-Pick disease types B, C and lysosomal acid lipase deficiency with variable outcomes[45-48]. Patients with LSD need to continue enzyme replacement therapy in the post-LT period to control their extrahepatic symptoms and prevent disease recurrence in the graft. Gaucher’s is the most common genetic LSD with estimated incidence around 1 in 50000 to 100000 live births. The diagnostic histological features in Gaucher’s disease are produced by sphingolipid-engorged Kupffer cells and macrophages in sinusoids and portal areas. These cells are large with an eccentric nucleus and eosinophilic, corrugated (“crinkled-paper”) cytoplasm[33]. These cells may completely block the sinusoidal spaces disrupting and atrophying the hepatocyte plates. Eventually, bridging, scarring, and cirrhosis may develop. The liver in Niemann-Pick disease types A and B is estimated to affect 1 in 250000 individuals. Niemann-Pick disease accumulates large macrophages with foamy cytoplasm within hepatic sinusoids with fibrosis (Figure 4A and B)[10]. One may also observe vacuoles in hepatocytes. Cholesteryl ester storage disease shows scarring, fine vacuolation of hepatocytes, and foamy portal macrophages and Kupffer cells with tan-colored cytoplasm (Figure 4C)[49].
Figure 4 Metabolic liver disease. A: Niemann Pick disease with marked fibrosis [hematoxylin and eosin (HE staining)]; B: Pale-staining storage cell clusters as compared to deeply stained glycogen containing hepatocytes [Periodic acid Schiff (PAS) staining]; C: Cholesteryl ester storage disease liver with granular microphages in portal tract and finely vacuolated hepatocytes (HE staining); and D: Largely unremarkable explant liver in a patient with urea cycle defect.

Other disorders

Transaldolase deficiency, Zellweger spectrum disorders, which are peroxisomal defects, and pyruvate kinase deficiency are the other disorders where LT has been offered for ESLD[50-52]. The overall incidence of Zellweger spectrum disorders is estimated to be around 1/50000. Morphological features in liver in Zellweger spectrum disorders are mostly nonspecific and include disarray of hepatic plates with enlarged hepatocytes, cholestasis, hypoplasia of interlobular bile ducts, portal inflammation, hemosiderosis, fibrosis, and cirrhosis.

GROUP B

This group includes disorders with enzyme defects limited to the liver. These patients rarely have ESLD; LT is instead performed for extrahepatic organ involvement.

Urea cycle disorders

The urea cycle operates in the liver to detoxify the nitrogenous wastes in the body. Urea cycle disorders (UCDs) are inherited in AR pattern [except ornithine transcarbamylase deficiency (OTC), which is X-linked recessive]. LT is offered in severe metabolic defects, elevated ammonia more than 300 umol/L and refractoriness to medical therapy[53]. LT has a definite role in arresting progression of neurological damage by preventing hyperammonemia and occurrence of metabolic crisis[54]. The incidence of UCD is 1 in 30000 live births[54]. These children do not require to continue their low-protein special formula in the post-LT period. Children when transplanted in time can have normal neuro development, and those having brain involvement may potentially have their injury reversed to achieve milestones[54]. Rarely UCDs can have hepatic involvement in form of ALF (OTC deficiency), cirrhosis
(arginosuccinic aciduria and hyperammonemia-homocitrullinemia syndrome), or HCC (citrin deficiency)\[55]. When present, an acute metabolic crisis should be treated before LT. Ammonia-scavenging agents should not be stopped as a sudden withdrawal can precipitate a metabolic crisis\[56]. Hemodialysis may need to be offered when the serum ammonia is > 300 umol/dL in the pre-LT period. Ideally, the serum ammonia should be maintained < 80 umol/L immediately prior to LT\[56]. Studies based on the United Network for Organ Sharing database show a post-LT survival for UCD of 89% at 5 years and 87% at 10 years\[57]. The reported morphological findings vary from normal histology to variable steatosis, cholestasis, variable portal/peripoportal fibrosis, early cirrhotic transformation, glycogen accumulation with enlarged pale hepatocytes, and ultrastructural changes with no specific findings for a particular UCD disorder\[58]. We have observed largely unremarkable liver explants with no significant morphological features, patchy steatosis, and/or bilirubinostasis in USD (Figures 4D and 5A). One case of arginase-1 deficiency showed glycogen accumulation with clusters of pale enlarged hepatocytes, mild portal inflammation, and focal bridging fibrosis (Figure 5B and C).

Porphyrias

Porphyrias are a group of disorders associated with metabolism of heme with a prevalence of 1 in 20000. The major clinical manifestations are either neurovisceral or cutaneous photosensitivity. Among the seven known types, all are curable by LT except congenital erythropoietic porphyria\[59]. Among the hepatic porphyrias, only erythropoietic protoporphyrias are known to be associated with ESLD\[59]. There is a higher incidence of HCC in these patients. Parenteral heme therapy is known to abort neurological crisis but does not help in reversing neuronal injury. Timely LT prevents the onset and/or progression of neuronal injury\[59,60] and also helps to abate the autonomic dysfunction, which otherwise may lead to sudden death. A few anesthetic agents such as tramadol, ketamine, and thiopentone and a few other drugs such asazole antifungals, cotrimoxazole, and carbapenems should be avoided in these patients. The porphyrin levels need to be maintained by plasmapheresis or by heme infusion. The outcome following LT is excellent but with a differential favorable prognosis in those with mild-to-moderate neurological symptoms than those with severe symptoms prior to LT\[61]. Liver shows black discoloration macroscopically in erythropoietic protoporphyria\[10]. Microscopic examination in erythropoietic protoporphyria shows focal accumulation of a dense, dark-brown pigment in canaliculi, interlobular bile ducts, connective tissue, and Kupffer cells.

GSD type I: Type I GSD is an AR disorder caused by deficiency of glucose-6-phosphatase enzyme in 1 in 100000 live births, and there are two subtypes, 1a and 1b, with the latter having neutropenia or neutrophil dysfunction\[62]. The liver function remains normal in these patients, but they are prone to develop hepatic adenomas and HCC (on a non-cirrhotic background). Poor metabolic control with recurrent hypoglycemia can irreversibly injure the brain. They also are prone to chronic kidney disease, hypertriglyceridemia, and osteoporosis. LT is indicated in those with poor metabolic control despite a complex carbohydrate diet (e.g., uncooked corn starch), those developing multiple and growing hepatic adenomas or HCC and growth retardation\[63]. A simultaneous liver-kidney transplant needs to be offered in coexisting end-stage kidney disease with or without hepatic neoplasms. Apart from achieving metabolic control, LT in GSD 1b improves the neutropenia and/or neutrophil dysfunction in 50%-66% cases\[64]. In those, undergoing an isolated LT, renal-sparing immunosuppression needs to be administered.

Primary hyperoxaluria

Type 1 primary hyperoxaluria (PH) is an AR disorder with a prevalence of 1-3 per 100000 people, characterized by systemic deposition of oxalate crystals. The enzyme alanine glyoxylate aminotransferase is primarily expressed in liver, and its deficiency leads to systemic oxalosis and end-stage renal disease, cardiomyopathy, and fractures, and bone marrow suppression ensues\[65]. Patients develop systemic hypertension due to the renal pathology and a relative kidney disease along with systemic arterial involvement causing its non-compliance. LT along with kidney transplant is the only curative option available. Patients having a GFR more than 50 mL/m²/min may undergo an isolated LT. A simultaneous liver-kidney transplant is offered upfront in deceased donor liver transplant, as the transplanted organs have immune privilege with reduced chance of rejections. Also, it is done in living donor-related donor with organ harvested from two different individuals when the GFR > 15 mL/m²/min, children having large abdominal cavity, and GFR < 15 mL/m²/min with no features of
Figure 5 Metabolic liver disease. A: Canalicular bilirubinostasis in case with urea cycle defect [hematoxylin and eosin (HE staining)]; B: Explanted liver in Arginase-1 (ARG-1) deficiency displaying nodules of pale enlarged hepatocytes (arrow, HE staining); C: Focal bridging fibrosis in a case of ARG-1 deficiency [Masson trichrome staining]; D: Portal vessel with oxalate crystals in primary hyperoxaluria type 1 (arrow, HE staining).

Systemic oxalosis. A sequential liver-kidney transplant is done predominantly in a living donor-related transplant when there is GFR < 15 mL/m²/min with severe systemic hyperoxalosis, a single liver donor (sequential harvesting after 6 wk), and infants (due to a relatively small abdominal cavity), which can accept only a graft that can be reduced in size, i.e., liver but not kidneys, which is done at a later age[66]. Heterozygous donors need to be screened for high urine oxalate even if their renal function is normal. They can be liver donors but not kidney donors as there is a risk that the contralateral kidney may develop renal failure on a long-term basis. A cardiac evaluation is essential prior to transplant surgery to ensure that the ejection fraction is more than 40%-45%. In low ejection fraction, it is also recommended to do aggressive hemodialysis 4-6 wk prior to LT to decrease the systemic oxalate load, which may improve the cardiac contractility[56]. An increased risk of bleeding episodes in the post-LT period can be attributed to the platelet dysfunction and renal pathology needing support. Liver explants in PH may show oxalate crystals in vessels (Figure 5D). The role of LT in PH type 2 remains unclear, and isolated renal transplant may be an option[67]. A novel Food and Drug Administration-approved small interfering ribonucleic acid called lumasiran decreases hepatic oxalate production by inhibiting the enzyme glycolate oxidase and hence has been found to reduce systemic oxalate load, thereby, decreasing renal excretion of oxalates.

Familial hypercholesterolemia

Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by defective low-density lipoprotein cholesterol receptors in the liver. The incidence of homozygous state is 1 in 1 million live births[10]. This persistently elevates serum cholesterol leading to complications such as early atherosclerosis in childhood, which can lead to myocardial infarction[68]. It is, however, more common in a homozygous or a compound heterozygous mutation. LT is curative and is recommended before the development of atherosclerosis in the pediatric age group. In the post-LT period, the cholesterol levels fall to normal within a week’s time. LT by improving the dyslip-
Propionic academia

Propionic academia (PA) is an AR disorder caused by the deficiency of propionyl-CoA carboxylase, and the resulting toxic metabolites damage primarily the central nervous system and myocytes[78]. The prevalence is 1 in 100000 of the general population[78]. Medical therapy includes oral antibiotics to control propionic acid production by the gut bacteria and special nutritional formulae. However, patients may still present with metabolic decompensation and growth retardation. LT provides a good control of the
metabolism, decreases the toxic metabolic burden and improves the QOL[84]. Despite metabolic control, because of the deficient enzyme in brain and in cardiac muscle, the injury in these organs is usually irreversible, and annual monitoring with clinical examinations and investigations is warranted[84,85]. Improvement in development and cognition has been reported in the post-LT period[86]. Isolated reports reveal reversal of cardiomyopathy after LT. The peri and post-operative lactate levels have been found to indicate good metabolic control followed by serum ammonia in both MMA and PA[87]. The patient should be started on low protein at 0.5 g/kg/d and then gradually built up to 2.5 to 3 g/kg/d by the end of first week so that metabolic adaption happens over this period of time[86]. These patients have a relatively higher incidence of hepatic artery thrombosis when compared to other indications of LT, but a recent analysis has challenged that association[88]. In a recent series, 5-year patient survival for PA liver transplant recipients was 89.5%[89].

Maple syrup urine disease
Maple syrup urine disease (MSUD) is a group AR disorder characterized by defective metabolism of branched chain amino acids including leucine, isoleucine, and valine. It affects 1 in 185000 infants worldwide[90]. The commonest and most severe is the classical MSUD (type 1) caused by defective branched chain keto acid dehydrogenase (BCKAD)[90]. Lethargy, poor feeding, and intermittent apnea along with maple syrup odor of urine or cerumen is the earliest clue in a newborn[90]. Recurrent seizures and cognitive dysfunction start early and leads to early mortality. The E3 type (type 5) is a defect in dihydroprolamine reductase, which results in mitochondrial dysfunction and is the only type presenting with liver dysfunction along with other neurological manifestations. Acute encephalopathy is caused by elevated levels of leucine and isocapric acid. Liver is the site of 9%-13% of BCKAD enzyme, and LT is found to prevent further recurrence of metabolic crisis and arrest the neurological progression. However, reversal of neurological deficit is not seen except in a few[91]. In a large series involving 37 patients on long-term follow up, the patient survival was found to be 100%[92]. The levels of toxic amino acids normalize within hours of the graft implantation but usually do not return to a physiologically normal value[93]. Hence LT prevents further occurrence of life-threatening metabolic crisis in MSUD[92]. Special formula does not need to be continued in the post-LT period.

Primary mitochondrial hepatopathies
Mitochondrial disorders can happen due to mutations in either nuclear or mitochondrial deoxyribonucleic acid. Even though liver is involved in mitochondrial disorders, it is usually as a part of the multisystemic involvement[94]. It affects 1 in 20000 children under 16 years of age[94]. The spectrum of hepatic presentations includes isolated fatty liver, ALF, chronic cholestasis and cirrhosis[95]. Morphologically, microvesicular and macrovesicular steatosis, cytoplasmic and canalicular bilirubinostasis (Figure 6B), and giant cell transformation are identified. In addition, portal fibrosis and cirrhosis are also reported. The disorders can be grossly classified into disorders of single respiratory chain defects (e.g., BCSIL and SCO1) and multiple complex defects (thymidine kinase 2/TK2, deoxy guanosine kinase/DGUOK, and
polymerase gamma/POLG)\[^95,96\]. The common systems involved are brain, cardiac and skeletal muscles, hematological, renal tubules, intestines, and inner ear as these have maximum energy turnover. LT in mitochondrial disorders has always been an area of controversy and initially was listed as contraindication for the same, but current recommendations for LT are for a primary hepatic involvement without apparent extrahepatic organ involvement, and the same policy is followed at the authors’ institute\[^97,98\]. A baseline screen includes a magnetic resonance imaging brain with magnetic resonance spectroscopy, BERA, 2D echocardiography, urine evaluation for tubulopathy, and bone marrow examination (in significant anemia or pancytopenia). The parents should be made aware of the fact that LT will correct only the hepatic manifestations, and the child may have onset of other system involvement as age progresses. These may include pulmonary hypertension, progressive neurological dysfunction, and cardiomyopathy, which are the common causes of death. This is of particular importance in DGUOK, TK2, and POLG defects where the ESLD may overshadow the underlying neurological and other system involvement\[^96\]. Intra- and post-operative use of propofol or Ringer lactate should be preferentially avoided, and sevoflurane is the preferred agent\[^99\]. Rare reports of successful LT for this condition have been reported in literature\[^100\].

Auxiliary LT

Auxiliary LT is a technique by which a healthy grafted liver is implanted on the native liver without fully removing it. When the implantation is done after removing a part of the native liver, it is called auxiliary partial orthotopic LT (APOLT) and when done without manipulating the native liver being in a non-anatomical location is called heterotopic auxiliary LT (HALT)\[^101\]. The HALT technique was initially described in a 15-year-old girl with ALF caused by WD, as it was noted that manipulation of native liver raised intracranial pressure and hence recipient hepatectomy was not done. Even with the aforementioned advantage, certain significant drawbacks with this technique include graft congestion being of primary concern in the long run\[^102,103\]. In the right lobe HALT, the congestion is caused by raised caval pressure whereas in left lobe HALT it occurs due to venous stretching. Also since the portal flow is shared between the native and graft, this along with graft congestion can lead to early graft dysfunction\[^103\]. There is also a higher risk of abdominal compartment syndrome and prolonged post-operative ventilation. Hence, APOLT is preferred more to HALT as it rectifies the above drawbacks, in spite of being technically more challenging, and is currently an accepted technique for the management of ALF. It allows time for the native liver to regenerate and then the patient can be off immunosuppressants\[^103\]. The role of APOLT in MLDs is to provide the defective enzymes, and it has shown excellent results for selected metabolic indications such as CNS, PA, and UCD\[^5,103,104\]. Rarely has it been done for WD with a normal liver and neurological dysfunction\[^105\]. The authors have one of the largest experiences of performing APOLT in non-cirrhotic MLDs till date where the post LT outcome was comparable to OLT\[^5\]. OLT is offered for babies less than 6 mo and weighing less than 5 kg for the aforementioned disorders, and APOLT is offered for children more than 6 mo of age\[^5\]. A right lobe graft is preferred in organic acidemias (for a larger volume) whereas left (usually a left lateral segment) APOLT is sufficient in CNS as it is proven that even a 2%-5% of hepatocyte mass with normal UGTIA1 gene is enough for normal conjugation of bilirubin\[^103,104\]. The advantages include an intact native liver with a possibility of gene therapy in future (when immunosuppression can be stopped) and it also helps in recovery till the graft function is stable\[^101\]. There is a risk of portal steal phenomenon due to relatively lower stiffness of the native liver, which is prevented by various flow modulation techniques\[^106\]. Heterozygous carriers can be used as donors except in OTC deficiency unless a normal OTC enzyme level is established\[^101\]. The long-term outcomes after APOLT are excellent in the author’s experience\[^107\].

Domino LT

Liver from a patient with MLD is donated to another with a defect of different enzyme or an ESLD\[^108\]. This is done with the expectation that the enzyme deficiency in the donor liver is negligible for the recipient, which would be expressed by the extrahepatic tissues. The potential domino liver donors include patients suffering from MSUD, familial amyloid polyneuropathy and possibly FH\[^109-112\]. Livers from patients with PH should not be used for domino LT (DLT) as the liver continues to produce oxalates and may result in renal failure in the recipient\[^97\]. Livers of patients with MSUD caused by a defect in BCKADH are used as the allograft in DLT. This is because only 9%-13% of the BCKADH is produced from the liver and hence there are no reports of de novo recurrence of MSUD in DLT recipient as the rest 87%-91% of the
enzymes are synthesized from extrahaepatic sources. In a recently reported series on DLT describing 21 recipients of MSUD livers, the long-term survival after a median time period of 6.4 years was 100%[113]. Hence DLT should be encouraged as an excellent alternative to deceased donor LT. Recently, Govil et al[114] proposed a novel concept, utilizing domino auxiliary LT to use the normally discarded liver from a patient with a liver-based monogenic metabolic disorder as a domino graft in a patient with another such disorder.

CONCLUSION

LT is a curative option for metabolic monogenic disorders. In many cases, it prevents the progression of extrahaepatic organ injury and may potentially reverse them. Life-threatening multisystem organ involvement in MLD is an absolute contraindication to LT.

REFERENCES

1 Kim JS, Kim KM, Oh SH, Kim HJ, Cho JM, Yoo HW, Namgoong JM, Kim DY, Kim KH, Hwang S, Lee SG. Liver transplantation for metabolic liver disease: experience at a living donor dominant liver transplantation center. Pediatr Gastroenterol Hepatol Nutr 2015; 18: 48-54 [PMID: 25866733 DOI: 10.5223/pghn.2015.18.1.48]

2 Alam S, Sood V. Metabolic Liver Disease: When to Suspect and How to Diagnose? Indian J Pediatr 2016; 83: 1321-1333 [PMID: 27130505 DOI: 10.1007/s12098-016-2097-z]

3 Ferreira CR, Cassiman D, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. II. Metabolic liver diseases. Mol Genet Metab 2019; 127: 117-121 [PMID: 31005404 DOI: 10.1016/j.ymgme.2019.04.002]

4 Pham VH, Miloh T. Liver Transplantation in Children. Clin Liver Dis 2018; 22: 807-821 [PMID: 30266163 DOI: 10.1016/j.cld.2018.06.004]

5 Shammugam NP, Valapamparampil JJ, Reddy MS, Al Said KJ, Al-Thilili K, Al-Hashmi N, Al-Jishi E, Isa HMA, Janal AB, Rela M. Auxiliary Partial Orthotopic Liver Transplantation for Monogenic Metabolic Liver Diseases: Single-Centre Experience. JIMD Rep 2019; 45: 29-36 [PMID: 30311140 DOI: 10.1007/8904_2018_157]

6 Scott CR. The genetic tyrosinemas. Am J Med Genet C Semin Med Genet 2006; 142C: 121-126 [PMID: 16602095 DOI: 10.1002/ajmg.c.30092]

7 Larochelle J, Alvarez F, Bussières JF, Chevalier I, Dallaire L, Dubois J, Faucher F, Fenyves D, Goodyer P, Grenier A, Holme E, Laframboise R, Lambert M, Lindstedt S, Maranda B, Melançon S, Merouani A, Mitchell J, Parizeault G, Pelletier L, Phan V, Rinaldo P, Scott CR, Soderberg P, Mitchell GA. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Qu bec. Mol Genet Metab 2012; 107: 49-54 [PMID: 22885033 DOI: 10.1016/j.ymgme.2012.05.022]

8 Jaffe R. Liver transplant pathology in metabolic liver disorders. Pediatr Dev Pathol 1998; 1: 102-117 [PMID: 9507034 DOI: 10.1002/pdp.10024990013]

9 Russo PA, Mitchell GA, Tanguy RM. Tyrosinemia: a review. Pediatr Dev Pathol 2001; 4: 212-221 [PMID: 11370259 DOI: 10.1016/s1046-5203(01)80001-4]

10 Quaglia A, Roberts EA, Torberson M. Developmental and Inherited Liver Disease. In: Burt AD, Ferrell LD, Hubscher SG. MacSween’s Pathology of the Liver. 7th ed. Philadelphia: Elsevier; 2018: 111-274 [DOI: 10.1016/B978-0-7020-6697-9.00003-0]

11 Fagioli S, Daina E, D'Antiga L, Colledan M, Remuzzi G. Monogenic diseases that can be cured by liver transplantation. J Hepatol 2013; 59: 595-612 [PMID: 23578885 DOI: 10.1016/j.jhep.2013.04.004]

12 Mitchell EI, Khan Z. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Approaches and Future Directions. Curr Pathobiol Rep 2017; 5: 243-252 [PMID: 29399420 DOI: 10.1007/s40139-017-0147-5]

13 Narayananan P, Mistry PK. Update on Alpha-1 Antitrypsin Deficiency in Liver Disease. Clin Liver Dis (Hoboken) 2020; 15: 228-235 [PMID: 32617155 DOI: 10.1002/cldd.896]

14 Carey EJ, Iyer VN, Nelson DR, Nguyen JH, Krowka MJ. Outcomes for recipients of liver transplantation for alpha-1 antitrypsin deficiency–related cirrhosis. Liver Transpl 2013; 19: 1370-1376 [PMID: 24019185 DOI: 10.1002/lt.23745]

15 Antoury C, Lopez R, Zein N, Stoller JK, Alkhouri N. Alpha-1 antitrypsin deficiency and the risk of hepatocellular carcinoma in end-stage liver disease. World J Hepatol 2015; 7: 1427-1432 [PMID: 26052388 DOI: 10.4245/wjh.v7.i10.1427]

16 Prachalias AA, Kalife M, Francavilla R, Mueses P, Dhawan A, Baker A, Hadzie D, Mieli-Vergani G, Rela M, Heaton ND. Liver transplantation for alpha-1 antitrypsin deficiency in children. Transpl Int 2000; 13: 207-210 [PMID: 10935704 DOI: 10.1016/s0934-974x(00)75068-x]

17 Guillaud O, Jacquemin E, Couchonnal E, Vanlemmens C, Francoz C, Chouik Y, Conti F, Davoud C, Hilleret MN, Kamar N, Housset-Debry P, Neau-Cransac M, Pageaux GP, Gonzales E,
Ackermann O, Gugenheim J, Lachaux A, Ruiz M, Radeussen S, Debray D, Lacaille F, McLin V, Duclos-Vallée JC, Samuel D, Coilly A, Dumortier J. Long term results of liver transplantation for alpha-1 antitrypsin deficiency. Dig Liver Dis 2021; 53: 606-611 [PMID: 33139195 DOI: 10.1016/j.dld.2020.10.016]

Ishak KG. Inherited metabolic diseases of the liver. Clin Liver Dis 2002; 6: 455-479, viii [PMID: 12122865 DOI: 10.1016/s1089-3261(02)00013-2]

Welling L, Bernstein LE, Berry GT, Burlina AB, Eyskens F, Gautschi M, Grünswald S, Gubbels CS, Knerr J, Labrune P, van der Lee JH, MacDonald A, Murphy E, Portnoi PA, Öunap K, Potter NL, Rubio-Gozalbo ME, Spencer JB, Timmers I, Treacy EP, Van Calcar SC, Waibiren SE, Bosch AM; Galactosemia Network (GaINet). International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis 2017; 40: 171-176 [PMID: 27858262 DOI: 10.1007/s10545-016-9990-5]

Otto G, Herfarth C, Senninger N, Feist G, Post S, Gmelin K. Hepatic transplantation in galactosemia. Transplantation 1989; 47: 902-903 [PMID: 2541522 DOI: 10.1097/00007890-198905000-00033]

Socha P, Janczyk W, Dhawan A, Baumann U, D’Antiga L, Tanner S, Iorio R, Vajro P, Houwen R, Fiscler B, Dezsofi A, Hadzie N, Hierro L, Jahnle J, McLin V, Nobili V, Smets F, Verkade HJ, Debray D. Wilson’s Disease in Children: A Position Paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 66: 334-344 [PMID: 29341979 DOI: 10.1097/MPG.0000000000001778]

Dhawan A, Taylor RM, Cheeseman P, De Silva P, Katsiyanakissi L, Mieli-Vergani G. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl 2005; 11: 441-448 [PMID: 15776453 DOI: 10.1002/lt.20352]

Arnon R, Annunziato R, Schilsky M, Miloh T, Willis A, Stardevant M, Sakworawich A, Suchy F, Kerkar N. Liver transplantation for children with Wilson disease: comparison of outcomes between children and adults. Clin Transplant 2011; 25: E52-E60 [PMID: 20946468 DOI: 10.1111/j.1399-0012.2010.01327.x]

Schilsky ML. Liver transplantation for Wilson's disease. Ann N Y Acad Sci 2014; 1315: 45-49 [PMID: 24820352 DOI: 10.1111/nyas.12454]

Peedikayil MC, Al Ashgar HI, Al Mousa A, Al Sebayel M, Al Kahtani K, Alkhail FA. Liver transplantation in Wilson's disease: Single center experience from Saudi Arabia. World J Hepatol 2013; 5: 127-132 [PMID: 23556045 DOI: 10.4254/wjh.v5.i3.i127]

Hursitoglu M, Kara O, Cikrikcioglu MA, Celepku1 T, Aydin S, Tukel T. Clinical improvement of a patient with severe Wilson's disease after a single session of therapeutic plasma exchange. J Clin Apher 2009; 24: 25-27 [PMID: 19156772 DOI: 10.1002/jca.20186]

Morgan SM, Zantek ND. Therapeutic plasma exchange for fulminant hepatic failure secondary to Wilson’s disease. J Clin Apher 2012; 27: 282-286 [PMID: 22718095 DOI: 10.1002/jca.21239]

Reynolds HV, Talekar CR, Bellapart J, Leggett BA, Boots RJ. Copper removal strategies for Wilson's disease crisis in the ICU. Anaesth Intensive Care 2014; 42: 253-257 [PMID: 24580393]

Jhang JS, Schilsky ML, Letkowitch JH, Schwartz J. Therapeutic plasmapheresis as a bridge to liver transplantation in fulminant Wilson disease. J Clin Apher 2007; 22: 10-14 [PMID: 17285615 DOI: 10.1111/j.1399-0012.2007.00637.x]

Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, Pham HP, Schneiderman J, Witt V, Wu Y, Zantek ND, Dunbar NM, Schwartz GEJ. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice - Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J Clin Apher 2019; 34: 171-354 [PMID: 31180581 DOI: 10.1002/jca.21705]

Motohayashi M, Fukuyama T, Nakayama Y, Sano K, Noda S, Hirakata Y, Amano Y, Ikeda S, Koike K, Inaba Y. Successful treatment of fulminant Wilson's disease without liver transplantation. Pediatr Int 2014; 56: 429-432 [PMID: 24894332 DOI: 10.1111/ped.12291]

Li H, Byers HM, Diaz-Kuan A, Vos MB, Hall PL, Tortorelli S, Singh R, Wallenstein MB, Allain M, Dimmock DP, Farrell RM, McCandless S, Gambello MJ. Acute liver failure in neonates with undiagnosed hereditary fructose intolerance due to exposure from widely available infant formulas. Mol Genet Metab 2018; 123: 428-432 [PMID: 29510902 DOI: 10.1016/j.ymgme.2018.02.016]

Jevon GP, Dimmick JE. Histopathological approach to metabolic liver disease: Part 2. Pediatr Dev Pathol 1998; 1: 261-269 [PMID: 10463287 DOI: 10.1016/s10924900(98)00038]

Kishnani PS, Austin SL, Aru P, Bali DS, Boney A, Case IE, Chung WK, Desai DM, El-Gharbawy A, Haller R, Smitt GP, Smith AD, Hoobson-Webb LD, Wechsler SB, Weinstein DA, Watson MS; ACMG. Glycogen storage disease type III diagnosis and management guidelines. Genet Med 2010; 12: 446-463 [PMID: 20631546 DOI: 10.1097/GIM.0b013e3181e655b6]

Matera D, Starzl TE, Arnaout W, Barnard J, Byon JS, Dhawan A, Emmond J, Haagmans EB, Hug G, Lachaux A, Smitt GP, Chen YT. Liver transplantation for glycogen storage diseases type I, II, and IV. Eur J Pediatr 1999; 158 Suppl 2: S43-S48 [PMID: 10603098 DOI: 10.1007/s004302]

Jevon GP, Dimmick JE. Histopathological approach to metabolic liver disease part 1: Pediatr Dev Pathol 1998; 1: 179-199 [PMID: 10463278 DOI: 10.1016/s10924900(98)00026]

Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, Janeiro P, Videira PA, Witters P, Jakeman J, Cassiman D. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 2017; 40: 195-207 [PMID: 28108845 DOI: 10.1007/s10545-016-0012-4]
Menon J et al. Pediatric metabolic liver diseases

38 Jansen MC, de Kleine RH, van den Berg AP, Heijdra Y, van Scherpenzeel M, Lefebvre DJ, Morava E. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. *Pediatrics* 2014; 134: e279-e283 [PMID: 24982104 DOI: 10.1542/peds.2013-2732]

39 Verheijen J, Tahata S, Koziez T, Witters P, Morava E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. *Genet Med* 2020; 22: 268-279 [PMID: 31534212 DOI: 10.1038/s41436-019-0647-2]

40 Socha P, Vajer P, Lefebre D, Adamowicz M, Tanner S. Search for rare liver diseases: the case of glycosylation defects mimicking Wilson Disease. *Clin Res Hepatol Gastroenterol* 2014; 38: 403-406 [PMID: 24972800 DOI: 10.1016/j.clinre.2014.04.012]

41 Carubbi F, Cappellini MD, Fargion S, Fraenzani AL, Naschimbini F. Liver involvement in Gaucher disease: A practical review for the hepatologist and the gastroenterologist. *Dig Liver Dis* 2020; 52: 368-373 [PMID: 32057684 DOI: 10.1016/j.dld.2020.01.004]

42 Lidove O, Sedl F, Charlotte F, Froissart R, Vanier MT. Cirrhosis and liver failure: expanding phenotype of Acid sphingomyelinase-deficient niemann-pick disease in adulthood. *JIMD Rep* 2015; 15: 117-121 [PMID: 24718843 DOI: 10.1007/8904_2014_306]

43 Pastores GM, Hughes DA. Lysosomal Acid Lipase Deficiency: Therapeutic Options. *Drug Des Devel Ther* 2020; 14: 591-601 [PMID: 32103901 DOI: 10.2147/DDDT.S149264]

44 Bernstein DL, Hülkkova H, Bialer MG, Desnick RJ. Cholesterol ester storage disease: reviewing findings of the 135 reported patients with underdiagnosed disease. *J Hepatol* 2013; 58: 1230-1243 [PMID: 23485521 DOI: 10.1016/j.jhep.2013.02.014]

45 Ayto RM, Hughes DA, Jeevanantham P, Rolles K, Burroughs AK, Mistry PK, Mehta AB, Pastores GM. Long-term outcomes of liver transplantation in type 1 Gaucher disease. *Am J Transplant* 2010; 10: 1934-1939 [PMID: 20659098 DOI: 10.1111/j.1600-6143.2010.03168.x]

46 Liu Y, Luo Y, Xia L, Qiu B, Zhou T, Feng M, Xue F, Chen X, Han L, Zhang J, Xia Q. The Effects of Liver Transplantation in Children With Niemann-Pick Disease Type B. *Liver Transpl* 2019; 25: 1223-1240 [PMID: 30912297 DOI: 10.1002/lt.25457]

47 Yamada N, Inui A, Sanada Y, Ibara Y, Urahashi T, Fukuda A, Sakamoto S, Kasahara M, Yoshizawa A, Okamoto S, Okajima H, Fujisawa T, Mizuta K. Pediatric liver transplantation for neonatal-onset Niemann-Pick disease type C: Japanese multicenter experience. *Pediatr Transplant* 2019; 23: e13462 [PMID: 31081242 DOI: 10.1111/petr.13462]

48 Bernstein DL, Lobitro S, Iuga R, Remotelli H, Schiano T, Fiel MI, Balwani M. Lysosomal acid lipase deficiency allograft recurrence and liver failure- clinical outcomes of 18 liver transplantation patients. *Mol Genet Metab* 2018; 124: 11-19 [PMID: 29655841 DOI: 10.1016/j.mgen.2018.03.010]

49 Botero V, Garcia VH, Gomez-Duarte C, Aristizabal AM, Arrunategui AM, Echeverri GJ, Pachajoa H. Lysosomal Acid Lipase Deficiency, a Rare Pathology: The First Pediatric Patient Reported in Colombia. *Am J Case Rep* 2018; 19: 669-672 [PMID: 29884776 DOI: 10.12659/AJCR.908808]

50 Tytki-Szymanska A, Wamelink MM, Stradomska TJ, Salomon GS, Taybert J, Djährwoska-Leonik N, Rurarz M. Clinical and molecular characteristics of two transaldolase-deficient patients. *Eur J Pediatr* 2014; 173: 1679-1682 [PMID: 24497183 DOI: 10.1007/s00431-014-2261-2]

51 Baes M, Van Veldhoven PP. Hepatic dysfunction in peroxisomal disorders. *Biochim Biophys Acta* 2016; 1863: 956-970 [PMID: 26453505 DOI: 10.1016/j.bjba.2015.09.035]

52 Charterie ME, Hart L, Paganelli M, Ahmed N, Bilodeau M, Alvarez F. Successful Liver Transplants for Liver Failure Associated With Pyruvate Kinase Deficiency. *Pediatrics* 2018; 141 Suppl 5: S385-S389 [PMID: 29610156 DOI: 10.1542/peds.2016-3896]

53 Leonard JV, McKiernan PJ. The role of liver transplantation in urea cycle disorders. *Mol Genet Metab Rev* 2004; 81 Suppl 1: S74-S78 [PMID: 15050978 DOI: 10.1016/j.ymgmr.2003.08.027]

54 Kim IK, Nieni AK, Krueger C, Bonham CA, Conception W, Cowan TM, Enns GM, Essquivel C. Liver transplantation for urea cycle disorders in pediatric patients: a single-center experience. *Pediatr Transplant* 2013; 17: 158-167 [PMID: 23347504 DOI: 10.1111/petr.12041]

55 Bigot A, Tchan MC, Thoreau B, Blasco H, Mailiot F. Liver involvement in urea cycle disorders: a review of the literature. *J Inherit Metab Dis* 2017; 40: 757-769 [PMID: 28900784 DOI: 10.1007/s10545-017-0088-5]

56 Shannugam N, Dhwani A. Pediatric Liver Intensive Care. Springer, Singapore. 2019; 1-215 [DOI: 10.1007/978-981-13-1304-2]

57 Perito ER, Rhee S, Roberts JP, Rosenthal P. Pediatric liver transplantation for urea cycle disorders and organic acidemias: United Network for Organ Sharing data for 2002-2012. *Liver Transpl* 2014; 20: 89-99 [PMID: 24136671 DOI: 10.1002/lt.23765]

58 Yaplito-Lee J, Chow CW, Bonhe A. Histopathological findings in livers of patients with urea cycle disorders. *Mol Genet Metab* 2013; 108: 161-165 [PMID: 23403242 DOI: 10.1016/j.ymgme.2013.01.006]

59 Seth AK, Badninton MN, Mirza D, Russell S, Elias E. Liver transplantation for porphyria: who, when, and how? *Liver Transpl* 2007; 13: 1219-1227 [PMID: 17763398 DOI: 10.1002/lt.21261]

60 Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM. Liver transplantation in the management of porphyria. *Hepatology* 2014; 60: 1082-1089 [PMID: 24700519 DOI: 10.1002/hep.27086]

61 Lissing M, Nowak G, Adam R, Karam V, Boyd A, Gouya L, Meersseman W, Melum E, Oldakowska-Jedynak U, Reiter FP, Colmenero J, Sanchez R, Herden U, Langendonk J, Ventura P, Isoniemi H, Boillot O, Braun F, Perrodin S, Mowlem E, Wahlin S. European Liver and Intestine
Transplant Association. Liver Transplantation for Acute Intermittent Porphyria. Liver Transpl 2021; 27: 491-501 [PMID: 32596854 DOI: 10.1002/lt.25930]

62 Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, Boney A, Chung WK, Dagli AI, Dale D, Koerber D, Somers MJ, Wechsler SB, Weinstein DA, Wolfsdorf JJ, Watson MS; American College of Medical Genetics and Genomics. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2014; 16: e1 [PMID: 25356975 DOI: 10.1038/gim.2014.128]

63 Boers SJ, Visser G, Smit PG, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis 2014; 9: 47 [PMID: 24716823 DOI: 10.1186/1750-1172-9-47]

64 Kasahara M, Horikawa R, Sakamoto S, Shigeta T, Tanaka H, Fukuda A, Abe K, Yoshii K, Naiki Y, Kosaki R, Nakagawa A. Living donor liver transplantation for glycogen storage disease type Ib. Liver Transpl 2009; 15: 1867-1871 [PMID: 19938129 DOI: 10.1002/lt.21929]

65 Bhasin B, Ürekli HM, Ata MG. Primary and secondary hyperoxaluria: Understanding the enigma. World J Nephrol 2015; 4: 215-244 [PMID: 25949937 DOI: 10.5527/wjn.v4i2.235]

66 Narasimhan G, Govil S, Rajalingam R, Venkataraman C, Shanmugan NP, Rela M. Preserving double equipoise in living donor liver-kidney transplantation for primary hyperoxaluria type 1. Liver Transpl 2015; 21: 1324-1326 [PMID: 25980756 DOI: 10.1002/lt.24167]

67 Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int 2009; 75: 1264-1271 [PMID: 19225556 DOI: 10.1038/ki.2009.32]

68 Raal FJ, Hovingh GK, Catapano AL. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis 2018; 277: 483-492 [PMID: 30270089 DOI: 10.1016/j.atherosclerosis.2018.06.859]

69 Gulsoy Kirnap N, Kınnap M, Bascıll Tutuncu N, Moray G, Haberal M. The curative treatment of familial hypercholesterolemia: Liver transplantation. Clin Transplant 2019; 33: e13730 [PMID: 31626710 DOI: 10.1111/ctr.13730]

70 Ishigaki Y, Kawagishi N, Hasegawa Y, Sawada S, Katagiri H, Satomi S, Oikawa S. Liver Transplantation for Homozygous Familial Hypercholesterolaemia. J Atheroscler Thromb 2019; 26: 121-127 [PMID: 3055551 DOI: 10.5551/jat.RV17029]

71 Dhawan A, Lawlor MW, Mazarioglos GV, McKiernan P, Squires JE, Strauss KA, Gupta D, James E, Prasad S. Disease burden of Crigler-Najjar syndrome: Systematic review and future perspectives. J Gastroenterol Hepatol 2020; 35: 530-543 [PMID: 31495946 DOI: 10.1111/jgh.14853]

72 Pett S, Mowat AP. Crigler-Najjar syndrome types I and II. Clinical experience—King's College Hospital 1972-1978. Phenobarbitone, phototherapy and liver transplantation. Mol Aspects Med 1987; 9: 473-482 [PMID: 3306242 DOI: 10.1016/0098-2997(87)90009-4]

73 Seller AL, Labrunne P, Kwon T, Boudjemline AM, Deschênes G, Gaidos V. Successful plasmapheresis for acute and severe unconjugated hyperbilirubinemia in a child with crigler najjar type I syndrome. JIMD Rep 2012; 32: 33-36 [PMID: 23430851 DOI: 10.1007/8904_2011_40]

74 Strauss KA, Robinson DL, Veenman HJ, Puffenberger EG, Hart G, Morton DH. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr 2006; 165: 306-319 [PMID: 16435131 DOI: 10.1007/s00431-005-0055-2]

75 Ozçay F, Alehan F, Sevimiş S, Karakayali H, Moray G, Aslan A, Aşrân G, Haberal M. Living related liver transplantation in Crigler-Najjar syndrome type 1. Transplant Proc 2009; 41: 2875-2877 [PMID: 19765461 DOI: 10.1016/j.transproceed.2009.07.025]

76 Tu ZH, Shang DS, Jiang JC, Zhang W, Zhang M, Wang WL, Lou HY, Zhong SS. Liver transplantation in Crigler-Najjar syndrome type I disease. Hepatobiliary Pancreat Dis Int 2012; 11: 545-548 [PMID: 23060403 DOI: 10.1016/j.hbp.2011.09.002]

77 Sze YK, Dhawan A, Taylor RM, Bansal S, Mieli-Vergani G, Rela M, Heaton N. Pediatric liver transplantation for metabolic liver disease: experience at King's College Hospital. Transplantation 2009; 87: 87-93 [PMID: 19136896 DOI: 10.1097/TP.0b013e31818bc0c4]

78 Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, Huemer M, Hochuli M, Assoun M, Bullhausen D, Burlina A, Fowler B, Grünert SC, Grünewald S, Hertz H, Merinero B, Pérez-Cerdá C, Scholl-Bürgi S, Skovby F, Wijburg F, MacDonald A, Martinelli D, Sass JO, Valayanotopoulos V, Chakrapani A. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis 2014; 9: 130 [PMID: 25205257 DOI: 10.1186/s13023-014-0130-8]

79 Alkhunaizi AM, Al-Sanna N. Renal Involvement in Methylmalonic Aciduria. Kidney Int Rep 2017; 2: 956-960 [PMID: 29270502 DOI: 10.1016/j.ekir.2017.04.007]

80 Kasahara M, Horikawa R, Tagawa M, Uemoto S, Yokoyama S, Shibata Y, Kawano T, Kuroda T, Honna T, Tanaka K, Saeki M. Current role of liver transplantation for methylmalonic acidemia: a review of the literature. Pediatr Transplant 2006; 10: 943-947 [PMID: 17096763 DOI: 10.1111/j.1399-3046.2006.00585.x]

81 Jiang YZ, Sun LY. The Value of Liver Transplantation for Methylmalonic Acidemia. Front Pediatr 2019; 7: 87 [PMID: 30949461 DOI: 10.3389/fped.2019.00087]

82 Yap S, Vara R, Morais A. Post-transplantation Outcomes in Patients with PA or MMA: A Review of the Literature. Adv Ther 2020; 37: 1866-1896 [PMID: 32270363 DOI: 10.1007/s12325-020-01305-1]

83 Noone D, Reidl M, Atkinson P, Avitzur Y, Sharma AP, Filler G, Sirivardena K, Prasad C. Kidney disease and organ transplantation in methylmalonic acidemia. Pediatr Transplant 2019; 23: e13407 [PMID: 30973671 DOI: 10.1111/petr.13407]
Menon J et al. Pediatric metabolic liver diseases

84 Vara R, Turner C, Mundy H, Heaton ND, Rela M, Mieli-Vergani G, Champion M, Hadzic N. Liver transplantation for propionic academia in children. Liver Transpl 2011; 17: 661-667 [PMID: 21618686 DOI: 10.1002/lt.22279]

85 Curnock R, Heaton ND, Vilca-Melendez H, Dhawan A, Hadzic N, Vara R. Liver Transplantation in Children With Propionic Acidemia: Medium-Term Outcomes. Liver Transpl 2020; 26: 419-430 [PMID: 31715057 DOI: 10.1002/lt.25679]

86 Critelli K, McKiennan P, Vockley J, Mazarieggios G, Squires RH, Soltsy K, Squires JE. Liver Transplantation for Propionic Acidemia and Methylmalonic Acidemia: Perioperative Management and Clinical Outcomes. Liver Transpl 2018; 24: 1260-1270 [PMID: 30880956 DOI: 10.1002/lt.25304]

87 Alexopoulos SP, Matsuoka I, Haßberg E, Morgan T, Thurn C, Hall M, Godown J. Liver Transplantation for Propionic Acidemia: A Multicenter-linked Database Analysis. J Pediatr Gastroenterol Nutr 2020; 70: 178-182 [PMID: 31978012 DOI: 10.1097/MGP.0000000000002534]

88 Quintero J, Molera C, Juarezperez J, Redecillas S, Meavilla S, Nuñez R, Garcia C, Del Toro M, Garcia A, Ortega J, Segarra J, Carpi JM, Bilbao I, Charco R. The Role of Liver Transplantation in Propionic Acidemia. Liver Transpl 2018; 24: 1736-1745 [PMID: 30242960 DOI: 10.1002/lt.25344]

89 Zhou GP, Jiang YZ, Wu SS, Kong YY, Sun LY, Zhu ZJ. Liver Transplantation for Propionic Acidemia: Evidence from A Systematic Review and Meta-analysis. Transplantation 2020 [PMID: 33093405 DOI: 10.1097/TP.0000000000002350]

90 Blackburn PR, Gass JM, Vairo FPE, Farnham KM, Atwal HK, MacInnis S, Klee EW, Atwal PS. Maple syrup urine disease: mechanisms and management. Appl Clin Genet 2017; 10: 57-66 [PMID: 28919799 DOI: 10.2147/TACG.S125962]

91 Díaz VM, Camarena C, de la Vega A, Martínez-Pardo M, Díaz C, López M, Hernández F, Andrés A, Jara P. Liver transplantation for classical maple syrup urine disease: long-term follow-up. J Pediatr Gastroenterol Nutr 2014; 59: 636-639 [PMID: 24979318 DOI: 10.1097/MJP.0000000000000469]

92 Mazarieggios GV, Morton DH, Sindhi R, Soltsy K, Nayyar N, Bond G, Sheller M, Shneider B, Vockley J, Strauss KA. Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J Pediatr 2012; 160: 21-26 [PMID: 21839471 DOI: 10.1016/j.jpeds.2011.06.033]

93 Wendel U, Saudubre JM, Bodner A, Schawaldt P. Liver transplantation in maple syrup urine disease. Eur J Pediatr 1999; 158 Suppl 2: S60-S64 [PMID: 10603101 DOI: 10.1007/pl00014324]

94 Lee WS, Sokol RJ. Mitochondrial hepatopathies: advances in genetics and pathogenesis. Hepatology 2007; 45: 1555-1565 [PMID: 17538929 DOI: 10.1002/hep.21710]

95 Lee WS, Sokol RJ. Liver disease in mitochondrial disorders. Semin Liver Dis 2007; 27: 259-273 [PMID: 17682973 DOI: 10.1055/s-2007-985071]

96 Bandyopadhyay SK, Dutta A. Mitochondrial hepatopathies. J Assoc Physicians India 2005; 53: 973-978 [PMID: 16515238]

97 Squires RH, Ng V, Romero R, Ekong U, Hardikar W, Emre S, Mazarieggos GV. Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the American Association for the Study of Liver Diseases, American Society of Transplantation and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. Hepatology 2014; 60: 362-398 [PMID: 24782219 DOI: 10.1002/hep.27191]

98 Lane M, Boczonadi V, Bachetti S, Gomez-Duran A, Langer T, Griffiths A, Kleinle S, Dinegier C, Absicht A, Holinski-Feder E, Schara U, Gerner P, Horvath R. Mitochondrial dysfunction in liver failure requiring transplantation. J Inherit Metab Dis 2016; 39: 427-436 [PMID: 27053192 DOI: 10.1007/s10545-016-9272-z]

99 Niezgoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth 2013; 23: 785-793 [PMID: 23534340 DOI: 10.1111/pan.12158]

100 Shimura M, Kuranobu N, Ogawa-Tominaga M, Akiyama N, Sugiyama Y, Ebihara T, Fushimi T, Ichimoto K, Matsunaga A, Tsuruoka T, Kishita Y, Umetu S, Inui A, Fujisawa T, Tanikawa K, Ito R, Fukuda A, Murakami J, Kaji S, Kasahara M, Shiraki K, Ohtake A, Okazaki Y, Murayama K. Clinical and molecular basis of atypical mitochondrial DNA depletion syndrome in Japan: evaluation of outcomes after liver transplantation. Orphanet J Rare Dis 2020; 15: 169 [PMID: 32703289 DOI: 10.1186/s13023-020-01441-5]

101 van Hoek B, de Boer J, Boudjema K, Williams R, Corsmit O, Terpstra OT. Auxiliary vs orthotopic liver transplantation for acute liver failure. EURALT Study Group. European Auxiliary Liver Transplant Registry. J Hepatol 1999; 30: 699-705 [PMID: 10207813 DOI: 10.1016/s0168-8278(99)00202-5]

102 Rammohan A, Reddy MS, Line PD, Rela M. Heterotopic liver transplantation: Temporary solution, permanent problem? Am J Transplant 2021; 21: 903-904 [PMID: 32808481 DOI: 10.1111/ajt.16271]

103 Rela M, Battula N, Madanur M, Mieli-Vergani G, Dhawan A, Champion M, Raiman J, Heaton N. Auxiliary liver transplantation for propionic academia: a 10-year follow-up. Am J Transplant 2007; 7: 2200-2203 [PMID: 17697263 DOI: 10.1111/j.1600-6143.2007.01899.x]

104 Rela M, Muiesan P, Vilca-Melendez H, Dhawan A, Baker A, Mieli-Vergani G, Heaton ND. Auxiliary partial orthotopic liver transplantation for Crigler-Najjar syndrome type 1. Ann Surg 1999; 229: 565-569 [PMID: 10203091 DOI: 10.1097/00000658-199904000-00001]
105 **Haberal M**, Akdur A, Moray G, Boyacioglu S, Torgay A, Arslan G, Ozdemir BH. Auxiliary Partial Orthotopic Living Liver Transplant for Wilson Disease. *Exp Clin Transplant* 2017; 15: 182-184 [PMID: 28260463 DOI: 10.6002/ect.mesot2016.P64]

106 **Rela M**, Bharathan A, Palaniappan K, Cherian PT, Reddy MS. Portal flow modulation in auxiliary partial orthotopic liver transplantation. *Pediatr Transplant* 2015; 19: 255-260 [PMID: 25692474 DOI: 10.1111/petr.12436]

107 **Rammohan A**, Reddy MS, Narasimhan G, Rajalingam R, Kaliamoorthy I, Shanmugam N, Rela M. Auxiliary Partial Orthotopic Liver Transplantation for Selected Noncirrhotic Metabolic Liver Disease. *Liver Transpl* 2019; 25: 111-118 [PMID: 30317682 DOI: 10.1002/lt.25352]

108 **Celik N**, Squires JE, Soltys K, Vockley J, Shellmer DA, Chang W, Strauss K, McKiernan P, Ganoza A, Sindhi R, Bond G, Mazariogos G, Khanna A. Domino liver transplantation for select metabolic disorders: Expanding the living donor pool. *JIMD Rep* 2019; 48: 83-89 [PMID: 31392117 DOI: 10.1002/jmd2.12053]

109 **Mohan N**, Karkra S, Rastogi A, Vohra V, Soin AS. Living donor liver transplantation in maple syrup urine disease - Case series and world’s youngest domino liver donor and recipient. *Pediatr Transplant* 2016; 20: 395-400 [PMID: 26869348 DOI: 10.1111/petr.12666]

110 **Hemming AW**, Cattral MS, Chari RS, Greig PD, Lilly LB, Ashby P, Levy GA. Domino liver transplantation for familial amyloid polyneuropathy. *Liver Transpl Surg* 1998; 4: 236-238 [PMID: 9563964 DOI: 10.1002/Lt.500040303]

111 **Liu C**, Niu DM, Loong CC, Hsia CY, Tsou MY, Tsai HL, Wei C. Domino liver graft from a patient with homozygous familial hypercholesterolemia. *Pediatr Transplant* 2016; 14: E30-E33 [PMID: 26890487 DOI: 10.1111/ctr.12053.x]

112 **Kitchens WH**. Domino liver transplantation: indications, techniques, and outcomes. *Transplant Rev (Orlando)* 2011; 25: 167-177 [PMID: 21803558 DOI: 10.1016/j.trre.2011.04.002]

113 **Celik N**, Kelly B, Soltys K, Squires JE, Vockley J, Shellmer DA, Strauss K, McKiernan P, Ganoza A, Sindhi R, Bond G, Mazariogos G, Khanna A. Technique and outcome of domino liver transplantation from patients with maple syrup urine disease: Expanding the donor pool for live donor liver transplantation. *Clin Transplant* 2019; 33: e13721 [PMID: 31556146 DOI: 10.1111/ctr.13721]

114 **Govil S**, Shanmugam NP, Reddy MS, Narasimhan G, Rela M. A metabolic chimera: Two defective genotypes make a normal phenotype. *Liver Transpl* 2015; 21: 1453-1454 [PMID: 26122900 DOI: 10.1002/lt.24202]
