Regularity of solutions in semilinear elliptic theory

E. Indrei, A. Minne, L. Nurbekyan

Abstract
We study the semilinear Poisson equation
\[\Delta u = f(x, u) \quad \text{in} \quad B_1. \] (1)

Our main results provide conditions on \(f \) which ensure that weak solutions of (1) belong to \(C^{1,1}(B_{1/2}) \). In some configurations, the conditions are sharp.

1 Introduction

The semilinear Poisson equation (1) encodes stationary states of the nonlinear heat, wave, and Schrödinger equation. In the case when \(f \) is the Heaviside function in the \(u \)-variable, (1) reduces to the classical obstacle problem. For an introduction to classical semilinear theory, see [BS11, Caz06].

It is well-known that weak solutions of (1) belong to the usual Sobolev space \(W^{2,p}(B_{1/2}) \) for any \(1 \leq p < \infty \) provided \(f \in L^\infty \). Recent research activity has thus focused on identifying conditions on \(f \) which ensure \(W^{2,\infty}(B_{1/2}) \) regularity of \(u \).

1.1 The classical theory

There are simple examples which illustrate that continuity of \(f = f(x) \) does not necessarily imply that \(u \) has bounded second derivatives: for \(p \in (0,1) \) and \(x \in \mathbb{R}^2 \) such that \(|x| < 1 \), the function
\[u(x) = x_1 x_2 (-\log |x|)^p \]
has a continuous Laplacian but is not in \(C^{1,1} \) [Sha15]. However, if \(f \) is Hölder continuous, then it is well-known that \(u \in C^{2,\alpha} \); if \(f \) is Dini continuous, then \(u \in C^2 \) [GT01, Kov99]. The sharp condition which guarantees bounded second derivatives of \(u \) is the \(C^{1,1} \) regularity of \(f \ast N \) where \(N \) is the Newtonian potential and \(\ast \) denotes convolution; this requirement is strictly weaker than Dini continuity of \(f \).

In the general case, the state-of-the-art is a theorem of Shahgholian [Sha03] which states that \(u \in C^{1,1} \) whenever \(f = f(x,u) \) is Lipschitz in \(x \), uniformly
in u, and $\partial_u f \geq -C$ weakly for some $C \in \mathbb{R}$. In some configurations this illustrates regularity for continuous functions $f = f(u)$ which are strictly below the classical Dini-threshold in the u-variable, e.g. the odd reflection of

$$f(t) = -\frac{1}{\log(t)}$$

about the origin. Shahgholian’s theorem is proved via the celebrated Alt-Caffarelli-Friedman (ACF) monotonicity formula and it seems difficult to weaken the assumptions by this method. On the other hand, Koch and Nadirashvili [KN] recently constructed an example which illustrates that the continuity of f is not sufficient to deduce that weak solutions of $\Delta u = f(u)$ are in $C^{1,1}$.

We say $f = f(x,u)$ satisfies assumption A provided that f is Dini continuous in u, uniformly in x, and has a $C^{1,1}$ Newtonian potential in x, uniformly in u (see §3). One of our main results is the following statement.

Theorem 1.1. Suppose f satisfies assumption A. Then any solution of (1) is $C^{1,1}$ in $B_{1/2}$.

Our assumption includes functions which fail to satisfy both conditions in Shahgholian’s theorem, e.g.

$$f(x_1, x_2, t) = \frac{x_1}{\log(|x_2|)(-\log|t|)^p},$$

for $p > 1$, $x = (x_1, x_2) \in B_1$ and $t \in (-1, 1)$. The Newtonian potential assumption in the x-variable is essentially sharp whereas the condition in the t-variable is in general not comparable with Shahgholian’s assumption.

The proof of Theorem 1.1 does not invoke monotonicity formulas and is self-contained. We consider the L^2 projection of D^2u on the space of Hessians generated by second order homogeneous harmonic polynomials on balls with radius $r > 0$ and show that the projections stay uniformly bounded as $r \to 0^+$. Although this approach has proven effective in dealing with a variety of free boundary problems [ALS13, FS14, IM15, IM], Theorem 1.1 illustrates that it is also useful in extending and refining the classical elliptic theory.

1.2 Singular case: the free boundary theory

In §4 we study the PDE (1) for functions $f = f(x,u)$ which are discontinuous in the u-variable at the origin.

If the discontinuity of f is a jump discontinuity, (1) has the structure

$$f(x,u) = g_1(x,u)\chi_{\{u>0\}} + g_2(x,u)\chi_{\{u<0\}},$$

where g_1, g_2 are continuous functions such that

$$g_1(x,0) \neq g_2(x,0), \quad \forall x \in B_1,$$

and χ_{Ω} defines the indicator function of the set Ω.

2
Our aim is to find the most general class of coefficients g_i which generate interior $C^{1,1}$ regularity.

The classical obstacle problem is obtained by letting $g_1 = 1, g_2 = 0$, and it is well-known that solutions have second derivatives in L^∞ [PSU12]. Nevertheless, by selecting $g_1 = -1, g_2 = 0$, one obtains the so-called unstable obstacle problem. Elliptic theory and the Sobolev embedding theorem imply that any weak solution belongs to $C^{1,1}$, see also [LSE09, Remark 1.3]. Theorem 1.3 improves and extends this result. Hence, if there is a jump at the origin, $C^{1,1}$ regularity can hold only if the jump is positive and this gives rise to:

Assumption B. $g_1(x,0) - g_2(x,0) \geq \sigma_0$, $x \in B_1$ for some $\sigma_0 > 0$.

The free boundary $\Gamma = \partial\{u \neq 0\}$ consists of two parts: $\Gamma^0 = \Gamma \cap \{\nabla u = 0\}$ and $\Gamma^1 = \Gamma \cap \{\nabla u \neq 0\}$. The main difficulty in proving $C^{1,1}$ regularity is the analysis of points where the gradient of the function vanishes. In this direction we establish the following result.

Theorem 1.2. Suppose g_1, g_2 satisfy A and B. Then if u is a solution of (1), $\|u\|_{C^{1,1}(K)} < \infty$ for any $K \in B_{1/2}(0) \setminus \Gamma^1$.

At points where the gradient does not vanish, the implicit function theorem yields that the free boundary is locally a $C^{1,\alpha}$ graph for any $0 < \alpha < 1$. The solution u changes sign across the free boundary, hence it locally solves the equation $\Delta u = g_1(x,u)$ on the side where it is positive and $\Delta u = g_2(x,u)$ on the side where it is negative. If the coefficients g_i are regular enough to provide $C^{1,1}$ solutions up to the boundary – this is encoded in assumption C, see §4 – then we obtain full $C^{1,1}$ regularity.

Theorem 1.3. Suppose g_1, g_2 satisfy A, B and C. Let u be a solution of (1) and $0 \in \Gamma^0$. Then $u \in C^{1,1}(B_{\rho_0}(0))$, for some $\rho_0 > 0$.

Equation (1) with right-hand side of the form (2) is a generalization of the well-studied two-phase membrane problem, where $g_i(x,u) = \lambda_i(x)$, $i = 1, 2$. The $C^{1,1}$ regularity in the case when $\lambda_1 \geq 0$, $\lambda_2 \leq 0$ are two constants satisfying B was obtained by Uraltseva [Ura01] via the ACF monotonicity formula. Moreover, Shahgholian proved this result for Lipschitz coefficients which satisfy B [Sha03, Example 2]. If the coefficients are Hölder continuous, the ACF method does not directly apply and under the stronger assumption that $\inf \lambda_1 > 0$ and $\inf -\lambda_2 > 0$, Edquist, Lindgren, Shahgholian [LS09] obtained the $C^{1,1}$ regularity via an analysis of blow-up limits and a classification of global solutions (see also [LS09, Remark 1.3]). Theorem 1.3 improves and extends this result.

The difficulty in the case when g_i depend also on u is that if $v := u + L$ for some linear function L, then v is no longer a solution to the same equation, so one has to get around the lack of linear invariance. Our technique exploits that linear perturbations do not affect certain L^2 projections.

The proof of Theorem 1.3 does not rely on classical monotonicity formulas or classification of global solutions. Rather, our method is based on an identity...
which provides monotonicity in r of the square of the L^2 norm of the projection of u onto the space of second order homogeneous harmonic polynomials on the sphere of radius r.

Theorems 1.2 & 1.3 deal with the case when f has a jump discontinuity. If f has a removable discontinuity, (1) has the structure

$$
\Delta u = g(x, u)\chi_{u\neq 0}.
$$

(3)

In this case, one may merge some observations in the proofs of the previous results with the method in [ALS13] and prove the following theorem.

Theorem 1.4. If g satisfies assumption A, then every solution of (3) is in $C^{1,1}(B_{1/2})$.

Theorems 1.1 - 1.4 provide a comprehensive theory for the general semilinear Poisson equation where the free boundary theory is encoded in the regularity assumption of f in the u-variable.

2 Technical tools

Throughout the text, the right-hand side of (1) is assumed to be bounded. Moreover, P_2 denotes the space of second order homogeneous harmonic polynomials. A useful elementary fact is that all norms on P_2 are equivalent.

Lemma 2.1. The space P_2 is a finite dimensional linear space. Consequently, all norms on P_2 are equivalent.

For $u \in W^{2,2}(B_1)$, $y \in B_1$ and $r \in (0, \text{dist}(y, \partial B_1))$, $\Pi_y(u, r)$ is defined to be the L^2 projection operator on P_2 given by

$$
\inf_{h \in P_2} \int_{B_1} \left| D^2 \frac{u(rx + y)}{r^2} - D^2 h \right|^2 dx = \int_{B_1} \left| D^2 \frac{u(rx + y)}{r^2} - D^2 \Pi_y(u, r) \right|^2 dx.
$$

Calderon-Zygmund theory yields the following useful inequality for re-scalings of weak solutions of (1).

Lemma 2.2. Let u solve (1), $y \in B_{1/2}$, and $r \leq 1/4$. Then for

$$
\tilde{u}_r(x) = \frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2}
$$

it follows that for $1 \leq p < \infty$ and $0 < \alpha < 1$,

$$
\| \tilde{u}_r - \Pi_y(u, r) \|_{W^{2,p}(B_1)} \leq C(n, \| f \|_{L^\infty(B_1 \times \mathbb{R})}, \| u \|_{L^\infty(B_1)}, p),
$$

and

$$
\| \tilde{u}_r - \Pi_y(u, r) \|_{C^{1,\alpha}(B_1)} \leq C(n, \| f \|_{L^\infty(B_1 \times \mathbb{R})}, \| u \|_{L^\infty(B_1)}, \alpha).
$$
Proof. By Calderon-Zygmund theory (e.g. [ALS13, Theorem 2.2]),
\[\| D^2 u \|_{BMO(B_1/2)} \leq C; \]
in particular,
\[\int_{B_3/2} |D^2 \bar{u}_r - \overline{D^2 \bar{u}_r}|^2 \leq C, \]
where \(\overline{D^2 \bar{u}_r} \) is the average of \(D^2 \bar{u}_r \) on \(B_{3/2} \). Now let
\[a = a(f, r, y) = \int_{B_{3/2}} f(rx + y, u(rx + y)) \, dx \]
and note that this quantity is uniformly controlled by \(\| f \|_{L^\infty(B_1 \times \mathbb{R})} \); this fact, and the definition of \(\Pi \) yields (note: trace \((D^2 u - a \text{Id}) = 0\)),
\[\hat{B}_{3/2} \| D^2 (\tilde{u}_r - \Pi_0(\tilde{u}_r, 3/2)) \|_{L^2(B_{3/2})} \leq C. \]
Two applications of Poincaré’s inequality together with the above estimate implies
\[\| \tilde{u}_r - \Pi_0(\tilde{u}_r, 3/2) \|_{W^{2,p}(B_{3/2})} \leq C, \]
where the averages are taken over \(B_{3/2} \). Elliptic theory (e.g. [GT01, Theorem 9.1]) yields that for any \(1 \leq p < \infty \),
\[\| \tilde{u}_r - \Pi_0(\tilde{u}_r, r) \|_{W^{2,p}(B_{3/2})} \leq C. \]
Let \(\phi := \tilde{u}_r - \overline{\nabla \bar{u}_r} \cdot x - \bar{u}_r \). We have that \(\phi(0) = -\bar{u}_r \) and \(\nabla \phi(0) = -\nabla \bar{u}_r \); however, by the Sobolev embedding theorem, \(\phi \) is \(C^{1,\alpha} \) and thus
\[|\phi(0)| + |\nabla \phi(0)| \leq C \]
completing the proof of the \(W^{2,p} \) estimate. The \(C^{1,\alpha} \) estimate likewise follows from the Sobolev embedding theorem.

Our analysis requires several additional simple technical lemmas involving the projection operator.

Lemma 2.3. For any \(u \in W^{2,2}(B_1) \) and \(s \in [1/2, 1] \),
\[\| \Pi_0(u, s) - \Pi_0(u, 1) \|_{L^2(B_1)} \leq C \| \Delta u \|_{L^2(B_1)}, \]
and
\[\| \Pi_0(u, s) - \Pi_0(u, 1) \|_{L^\infty(B_1)} \leq C \| \Delta u \|_{L^2(B_1)}, \]
for some constant \(C = C(n) \).
Proof. Let \(f = \Delta u \) and \(v \) be the Newtonian potential of \(f \), i.e.

\[
v(x) = \frac{1}{n(n-2)\omega_n} \int_{\mathbb{R}^n} \frac{f(y)\chi_{B_1}(y)}{|x-y|^{n-2}} \, dx,
\]

where \(\omega_n \) is the volume of the unit ball in \(\mathbb{R}^n \). Since \(u - v \) is harmonic,

\[
\Pi_0(u - v, s) = \Pi_0(u - v, 1);
\]

therefore

\[
\Pi_0(u, s) - \Pi_0(u, 1) = \Pi_0(v, s) - \Pi_0(v, 1).
\]

Invoking bounds on the projection (e.g. \cite[Lemma 3.2]{ALS13}) and Calderon-Zygmund theory (e.g. \cite[Theorem 2.2]{ALS13}), it follows that

\[
\|\Pi_0(u, s) - \Pi_0(u, 1)\|_{L^2(B_1)} = \|\Pi_0(v, s) - \Pi_0(v, 1)\|_{L^2(B_1)} \leq C\|\Delta v\|_{L^2(B_1)} = C\|\Delta u\|_{L^2(B_1)}.
\]

The \(L^\infty \) bound follows from the equivalence of the norms in the space \(P_2 \).

Lemma 2.4. Let \(u \) solve (1). Then for all \(0 < r \leq 1/4 \), \(s \in [1/2, 1] \) and \(y \in B_{1/2} \),

\[
\sup_{B_1} |\Pi_y(u, rs) - \Pi_y(u, r)| \leq C,
\]

and

\[
\sup_{B_1} |\Pi_y(u, r)| \leq C \log(1/r),
\]

for some constant \(C = C(n, \|f\|_{L^\infty(B_1 \times \mathbb{R})}, \|u\|_{L^\infty(B_1)}) \).

Proof. Note that

\[
\Pi_y(u, rs) - \Pi_y(u, r) = \Pi_0(\tilde{u}_r, s) - \Pi_0(\tilde{u}_r, 1),
\]

where

\[
\tilde{u}_r(x) = \frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2}
\]

as before. From Lemma 2.3 we have that

\[
\|\Pi_0(\tilde{u}_r, s) - \Pi_0(\tilde{u}_r, 1)\|_{L^\infty(B_1 \times \mathbb{R})} \leq C\|\Delta \tilde{u}_r\|_{L^2(B_1)} \leq C\|f\|_{L^\infty(B_1)}.
\]

As for the second inequality in the statement of the lemma let \(r_0 = 1/4 \) and \(s \in [1/2, 1] \). Then we have that

\[
\sup_{B_1} |\Pi_y(u, sr_0/2^j)| \leq \sup_{B_1} |\Pi_y(u, sr_0/2^j) - \Pi_y(u, r_0/2^j)|
\]

\[
+ \sum_{k=0}^{j-1} \sup_{B_1} |\Pi_y(u, r/2^{k+1}) - \Pi_y(u, r/2^k)|
\]

\[
+ \sup_{B_1} |\Pi_y(u, r_0)| \leq Cj \leq C \log \left(\frac{2^j}{sr_0} \right),
\]

for all \(j \geq 1 \).
The previous tools imply a growth estimate on weak solutions solution of (1).

Lemma 2.5. Let u solve (1). Then for $y \in B_{1/2}$ and $r > 0$ small enough, $$\sup_{B_r(y)} |u(x) - u(y) - (x - y)\nabla u(y)| \leq Cr^2 \log(1/r).$$

Proof. Let $$\tilde{u}_r = \frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2}.$$ The assertion of the Lemma is equivalent to the estimate $$\|\tilde{u}_r\|_{L^\infty(B_1)} \leq C \log(1/r),$$ for r small enough. Lemma 2.4 and the $C^{1,\alpha}$ estimates of Lemma 2.2 imply $$\|\tilde{u}_r\|_{L^\infty(B_1)} \leq \|\tilde{u}_r - \Pi_y(u, r)\|_{L^\infty(B_1)} + \|\Pi_y(u, r)\|_{L^\infty(B_1)} \leq C + C \log(1/r) \leq C \log(1/r),$$ provided r is small enough. \qed

Next lemma relates the boundedness of the projection operator and the boundedness of second derivatives of weak solutions of (1).

Lemma 2.6. Let u be a solution to (1). If for each $y \in B_{1/2}$ there is a sequence $r_j(y) \to 0^+$ as $j \to \infty$ such that $$M := \sup_{y \in B_{1/2}} \sup_{j \in \mathbb{N}} \|D^2 \Pi_y(u, r_j(y))\|_{L^\infty(B_{1/2})} < \infty,$$ then $$|D^2 u| \leq C \quad \text{a.e. in } B_{1/2},$$ for some constant $C = C(M, n, \|f\|_{L^\infty(B_1 \times \mathbb{R})}, \|u\|_{L^\infty(B_1)}) > 0$.

Proof. Let $y \in B_{1/2}$ be a Lebesgue point for $D^2 u$ and $r_j = r_j(y) \to 0^+$ as $j \to \infty$. Then by utilizing Lemma 2.2

$$|D^2 u(y)| = \lim_{j \to \infty} \int_{B_{r_j}(y)} |D^2 u(z)|dz \leq \limsup_{j \to \infty} \int_{B_{r_j}(y)} |D^2 u(z) - D^2 \Pi_y(u, r_j)|dz + M \leq C.$$ Since a.e. $z \in B_{1/2}$ is a Lebesgue point for $D^2 u$, the proof is complete. \qed

Next, we introduce another projection that we need for our analysis. Define $Q_y(u, r)$ to be the minimizer of $$\inf_{q \in P_2} \int_{\partial B_1} \left| \frac{u(rx + y)}{r^2} - q(x) \right|^2 dH^{n-1}.$$ The following lemma records the basic properties enjoyed by this projection, cf. [ALS13, Lemma 3.2].

Lemma 2.7.

i. $Q_y(\cdot, r)$ is linear;

ii. if u is harmonic $Q_y(u, s) = Q_y(u, r)$ for all $s < r$;

iii. if u is a linear function then $Q_y(u, r) = 0$;

iv. if u is a second order homogeneous polynomial then $Q_y(u, r) = u$;

v. $\|Q_0(u, s) - Q_0(u, 1)\|_{L^2(\partial B_1)} \leq C_s\|\Delta u\|_{L^2(B_1)}$, for $0 < s < 1$;

vi. $\|Q_0(u, 1)\|_{L^2(\partial B_1)} \leq \|u\|_{L^2(\partial B_1)}$.

Proof.

i. This is evident.

ii. It suffices to prove $Q_y(u, r) = Q_y(u, 1)$ for $r < 1$. Let

$$\sigma_2 = \frac{Q_y(u, 1)}{\|Q_y(u, 1)\|_{L^2(\partial B_1)}}$$

and for $i \neq 2$, let σ_i be an ith degree harmonic polynomial. Then there exist coefficients a_i such that

$$u(x + y) = \sum_{i=0}^{\infty} a_i \sigma_i(x), \quad x \in \partial B_1;$$

in particular, $a_2 = \|Q_y(u, 1)\|$. Let

$$v(x) = \sum_{i=0}^{\infty} a_i \sigma_i(x), \quad x \in B_1.$$

Then v is a harmonic and $u(x + y) = v(x)$ for $x \in \partial B_1$. Hence, we have that $u(x + y) = v(x)$ for $x \in B_1$ and in particular

$$u(x + y) = \sum_{i=0}^{\infty} a_i \sigma_i(x), \quad x \in B_1.$$

Therefore

$$\frac{u(rx + y)}{r^2} = \sum_{i=0}^{\infty} a_i \frac{\sigma_i(rx)}{r^2} = \sum_{i=0}^{\infty} a_i r^{-i} \sigma_i(x), \quad x \in B_1,$$

so $Q_y(u, r) = a_2 \sigma_2(x) = Q_y(u, 1)$.

iii. & iv. These are evident.

v. Similar to Lemma 2.3.

vi. This follows from the fact that $Q_0(u, 1)$ is the L^2 projection of u.

\[\square \]
Next we prove some technical results for $Q_y(u, r)$ and establish a precise connection between $\Pi_y(u, r)$ and $Q_y(u, r)$ by showing that the difference is uniformly bounded in r.

Lemma 2.8. For $u \in W^{2,p}(B_1(y))$ with p large enough and $r \in (0, 1]$,
\[
\frac{d}{dr} Q_y(u, r) = \frac{1}{r} Q_0(x \cdot \nabla u(x + y) - 2u(x + y), r).
\]

Proof. Firstly,
\[
Q_y(u, r) = Q_0\left(\frac{u(rx + y)}{r^2}, 1\right).
\]
Since u is $C^{1,\alpha}$ if p large enough and Q is linear bounded operator, it follows that
\[
\frac{d}{dr} Q_y(u, r) = Q_0\left(\frac{d}{dr} \frac{u(rx + y)}{r^2}, 1\right) = Q_0\left(\frac{rx \cdot \nabla u(rx + y) - 2u(rx + y)}{r^3}, 1\right) = \frac{1}{r} Q_0(x \cdot \nabla u(x + y) - 2u(x + y), r).
\]

Lemma 2.9. Let $u \in W^{2,p}(B_1(y))$ with p large enough and $q \in \mathcal{P}_2$. Then
\[
\int_{B_1} q(x) \Delta u(x + y) \, dx = \int_{\partial B_1} q(x)(x \cdot \nabla u(x + y) - 2u(x + y)) d\mathcal{H}^{n-1}. \tag{4}
\]

Proof. Integration by parts implies
\[
\int_{B_1} q(x) \Delta u(x + y) \, dx = \int_{B_1} \Delta q(x) u(x + y) \, dx + \int_{\partial B_1} q(x) \frac{\partial u(x + y)}{\partial n} - u(x + y) \frac{\partial q(x)}{\partial n} d\mathcal{H}^{n-1}.
\]
By taking into account that q is a second order homogeneous polynomial it follows that
\[
\frac{\partial q(x)}{\partial n} = 2q(x), \quad x \in \partial B_1.
\]
Moreover,
\[
\frac{\partial u(x + y)}{\partial n} = x \cdot \nabla u(x + y), \quad x \in \partial B_1.
\]
Combining these equations yields (4).

Lemma 2.10. Let $u \in W^{2,p}(B_1(y))$ with p large enough and $0 < r \leq 1$. Then for every $q \in \mathcal{P}_2$,
\[
\int_{\partial B_1} q(x) \frac{d}{dr} Q_y(u, r)(x) d\mathcal{H}^{n-1} = \frac{1}{r} \int_{B_1} q(x) \Delta u(rx + y) \, dx.
\]
Proof. Let \(\tilde{u}_r(x) = u(rx + y)/r^2 \). From Lemmas 2.8 and 2.9 we obtain

\[
\int_{\partial B_1} q(x) \frac{d}{dr} Q_y(u, r)(x) d\mathcal{H}^{n-1} = \frac{1}{r} \int_{\partial B_1} q(x) Q_0 \left(\frac{rx \cdot \nabla u(rx + y) - 2u(rx + y)}{r^2}, 1 \right) d\mathcal{H}^{n-1}
\]

\[
= \frac{1}{r} \int_{\partial B_1} q(x) Q_0 \left(x \cdot \nabla \tilde{u}_r(x) - 2\tilde{u}_r(x), 1 \right) d\mathcal{H}^{n-1}
\]

\[
= \frac{1}{r} \int_{\partial B_1} q(x) (x \cdot \nabla \tilde{u}_r(x) - 2\tilde{u}_r(x)) d\mathcal{H}^{n-1}
\]

\[
= \frac{1}{r} \int_{B_1} q(x) \Delta \tilde{u}_r(x) dx = \frac{1}{r} \int_{B_1} q(x) \Delta u(rx + y) dx.
\]

\[
\square
\]

Lemma 2.11. For \(u \in W^{2,p}(B_1(y)) \) with \(p \) large enough and \(0 < r \leq 1 \),

\[
\frac{d}{dr} \int_{\partial B_1} Q_y^2(u, r) d\mathcal{H}^{n-1} = \frac{2}{r} \int_{B_1} Q_y(u, r) \Delta u(rx + y) dx.
\]

Proof. By Lemmas 2.8 2.10 we get

\[
\frac{d}{dr} \int_{\partial B_1} Q_y^2(u, r) d\mathcal{H}^{n-1} = 2 \int_{\partial B_1} Q_y(u, r) \frac{d}{dr} Q_y(u, r) d\mathcal{H}^{n-1}
\]

\[
= \frac{2}{r} \int_{B_1} Q_y(u, r) \Delta u(rx + y) dx.
\]

\[
\square
\]

Lemma 2.12. Let \(u \) be a solution of (1) and \(y \in B_{1/2} \). For \(0 < r < 1/2 \) consider

\[
u_r(x) := \frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2} - Q_y(u, r), \]

\[
v_r(x) := \frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2} - Q_y(u, r).
\]

Then

i. \(u_r - v_r \) is bounded in \(C^\infty \), uniformly in \(r \);

ii. the family \(\{v_r\} \) is bounded in \(C^{1,\alpha}(B_1) \cap W^{2,p}(B_1) \), for every \(0 < \alpha < 1 \) and \(p > 1 \).
Proof. i. For each r, the difference $u_r - v_r = Q_y(u, r) - \Pi_y(u, r)$ is a second order harmonic polynomial. Therefore, it suffices to show that L^∞ norm of that difference admits a bound independent of r. Note that

$$u_r - v_r = Q_y(u, r) - \Pi_y(u, r) = Q_0 \left(\frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2} - \Pi_y(u, r), 1 \right) = Q_0(u_r, 1).$$

Hence,

$$\sup_r \sup_{B_1} |Q_0(u_r, 1)| \leq C \sup_r |u_r| < \infty.$$

ii. Lemma 2.2 implies that $\{u_r\}_{r>0}$ is bounded in $C^{1,\alpha}(B_1) \cap W^{2,p}(B_1)$ for every $\alpha < 1$ and $p > 1$. Hence, the result follows from i. \qed

3 $C^{1,1}$ regularity: general case

In this section we utilize the previous technical tools and prove $C^{1,1}$ regularity provided that $f = f(x, t)$ satisfies assumption A:

Assumption A.

(i) $|f(x, t_2) - f(x, t_1)| \leq h(x)\omega(|t_2 - t_1|)$, where $h \in L^\infty(B_1)$ and

$$\int_0^\epsilon \frac{\omega(t)}{t} \, dt < \infty,$$

for some $\epsilon > 0$;

(ii) The Newtonian potential of $x \mapsto f(x, t)$ is $C^{1,1}$ locally uniformly in t: for $v_t := f(\cdot, t) \ast N$ where N is the Newtonian potential,

$$\sup_{a \leq t \leq b} \|D^2 v_t\|_{L^\infty(B_1)} < \infty, \quad \text{for all } a, b \in \mathbb{R}.$$

Proof of Theorem 1.1. Let $y \in B_{1/2}$ and $v = v_{u(y)} = f(x, u(y)) \ast N$. Note that if

$$u_r(x) = \frac{u(rx + y) - rx \cdot \nabla u(y) - u(y)}{r^2} - \Pi_y(u, r),$$

then

$$\Pi_y(u_r/2) - \Pi_y(u, r) = \Pi_y(u_r, 1/2) - \Pi_y(u_r, 1) = \Pi_y(u_r, 1/2).$$
We conclude via Lemma 2.6 and Lemma 2.4.

To generate examples, consider \(f(x, t) = \phi(x)\psi(t) \). If \(\phi \in L^\infty \) and \(\psi \) is Dini, then \(f \) satisfies condition (i). If \(\phi \ast N \) is \(C^{1, 1} \) and \(\psi \) is locally bounded, then \(f \) satisfies (ii). Thus if \(\phi \ast N \) is \(C^{1, 1} \) and \(\psi \) is Dini, then \(f \) satisfies both conditions. In particular, \(f \) may be strictly weaker than Dini in the \(x \)-variable.

Remark 2. The projection \(Q_y \) has similar properties to \(\Pi_y \). Consequently, if \(f \) satisfies assumption A, (5) holds for \(\Pi_y \) replaced by \(Q_y \).

4 \(C^{1, 1} \) regularity: discontinuous case

The goal of this section is to investigate the optimal regularity for solutions of (1) with \(f \) having a jump discontinuity in the \(t \)-variable. This case may be viewed as a free boundary problem. The idea is to employ again an \(L^2 \) projection operator.
4.1 Two-phase obstacle problem

Suppose $f = f(x, u)$ has the form

$$f(x, u) = g_1(x, u)\chi_{\{u > 0\}} + g_2(x, u)\chi_{\{u < 0\}},$$

where g_1, g_2 are continuous. We recall from the introduction that if f has a jump in u at the origin, then we assume it to be a positive jump:

Assumption B. $g_1(x, 0) - g_2(x, 0) \geq \sigma_0$, $x \in B_1$ for some $\sigma_0 > 0$.

Remark 3. In the unstable obstacle problem, i.e. $g_1 = -1$, $g_2 = 0$, there exists a solution which is $C^{1,\alpha}$ for any $\alpha \in (0, 1)$ but not $C^{1,1}$.

Let $\Gamma^0 := \Gamma \cap \{|\nabla u| = u = 0\}$ and $\Gamma^1 := \Gamma \cap \{|\nabla u| \neq 0\}$. Our main result provides optimal growth away from points with sufficiently small gradients.

Theorem 4.1. Suppose $g_1, g_2 \in C^0$ satisfy B. Then for all constants $\theta, M > 0$ there exist $r_0(\theta, M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$ and $C_0(\theta, M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$ such that for any solution of (11) with $\|u\|_{L^\infty(B_1)} \leq M$

$$\|Q_g(u, r)\|_{L^2(\partial B_1(0))} \leq C_0,$$

for all $r \leq r_0$ and $y \in B_{1/2} \cap \Gamma \cap \{|\nabla u(y)| < \theta r\}$. Consequently, for the same choice of r and y we have that

$$\sup_{x \in B_r} |u(x + y) - x \cdot \nabla u(y)| \leq C_1 r^2,$$

for some constant $C_1(\theta, M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$.

The proof of the theorem is carried out in several steps. A crucial ingredient is the following monotonicity result.

Lemma 4.2. Suppose $g_1, g_2 \in C^0$ satisfy B. Then for all constants $\theta, M > 0$ there exist $\kappa_0(\theta, M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$ and $r_0(\theta, M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$ such that for any solution u of (11) with $\|u\|_{L^\infty(B_1)} \leq M$ if

$$\|Q_g(u, r)\|_{L^2(\partial B_1)} \geq \kappa_0,$$

for some $0 < r < r_0$ and $y \in B_{1/2} \cap \Gamma \cap \{|\nabla u(y)| < \theta r\}$, then

$$\frac{d}{dr} \int_{\partial B_1} Q_g^2(u, r) d\mathcal{H}^{n-1} > 0.$$

Proof. If the conclusion is not true, then there exist radii $r_k \to 0$, solutions u_k and points $y_k \in B_{1/2} \cap \Gamma_k \cap \{|\nabla u_k(y_k)| < \theta r_k\}$ such that $\|u_k\|_{L^\infty(B_1)} \leq M$, and $\|Q_g(u_k, r_k)\|_{L^2(\partial B_1)} \to \infty$, and

$$\frac{d}{dr} \int_{\partial B_1} Q_g^2(u_k, r) d\mathcal{H}^{n-1} \bigg|_{r=r_k} \leq 0.$$
Let

\[T_k := \|Q_{y_k}(u_k, r_k)\|_{L^2(\partial B_1)}, \]

and consider the sequence

\[v_k(x) = \frac{u_k(r_k x + y_k) - r_k x \cdot \nabla u_k(y_k)}{r_k^2} - Q_{y_k}(u_k, r_k). \]

Without loss of generality we can assume that \(y_k \to y_0 \) for some \(y_0 \in B_{1/2} \).

Lemma 2.11 implies the existence of a function \(v \) such that up to a subsequence

\[v_k(x) = \frac{u_k(r_k x + y_k) - r_k x \cdot \nabla u_k(y_k)}{r_k^2} - Q_{y_k}(u_k, r_k) \to v, \text{ in } C^{1,\alpha}_\text{loc}(\mathbb{R}^n) \cap W^{2,p}_\text{loc}(\mathbb{R}^n). \]

Evidently, \(v(y_0) = |\nabla v(y_0)| = 0 \). Moreover, for \(q_k(x) := Q_{y_k}(u_k, r_k)/T_k \), we can assume that up to a further subsequence, \(q_k \to q \) in \(C^\infty \) for some \(q \in \mathcal{P}_2 \). Note that

\[\Delta v_k(x) = g_1(r_k x + y_k, u_k(r_k x + y_k))\chi_{\{u_k(r_k x + y_k) > 0\}} + g_2(r_k x + y_k, u_k(r_k x + y_k))\chi_{\{u_k(r_k x + y_k) < 0\}} \]

hence

\[\Delta v_k \to \Delta v = g_1(y_0, 0)\chi_{\{q(x) > 0\}} + g_2(y_0, 0)\chi_{\{q(x) < 0\}}. \]

By Lemma 2.11

\[0 \geq \frac{d}{dr} \int_{\partial B_1} Q_{y_k}^2(u_k, r) d\mathcal{H}^{n-1} \bigg|_{r=r_k} = \frac{2}{r_k} \int_{B_1} Q_{y_k}(u_k, r_k) \Delta u_k(r_k x + y_k) dx \]

\[= \frac{2T_k}{r_k} \int_{B_1} q_k(x) \Delta v_k(x) dx. \]

Therefore

\[\int_{B_1} q_k(x) \Delta v_k(x) dx \leq 0. \]

On the other hand

\[\lim_{k \to \infty} \int_{B_1} q_k(x) \Delta v_k(x) dx = \int_{B_1} q(x) \left(g_1(0, y_0)\chi_{\{q(x) > 0\}} + g_2(0, y_0)\chi_{\{q(x) < 0\}} \right) dx \]

\[= (g_1(0, y_0) - g_2(0, y_0)) \int_{q(x) > 0} q(x) dx > 0, \]

a contradiction. \(\square \)

Proof of Theorem 4.1 Let \(\kappa_0 \) and \(r_0 \) be the constants from Lemma 4.2. Without loss of generality we can assume that \(r_0 \leq 1/4 \). From Lemmas 2.4 and 2.12 we have that

\[\|Q_y(u, r_0)\|_{L^2(\partial B_1)} \leq C \log \frac{1}{r_0}. \]
for all \(y \in B_{1/2} \), where \(C = C(M, \|g_1\|_{\infty}, \|g_2\|_{\infty}, n) \) is a constant. Take

\[
C_0 = \max \left(k_0, 2C \log \frac{1}{r_0} \right).
\]

We claim that

\[
\|Q_y(u, r)\|_{L^2(\partial B_1)} \leq C_0,
\]

for \(r \leq r_0 \) and \(y \in B_{1/2} \cap \Gamma \cap \{ |\nabla u(y)| < \theta r \} \). Let us fix \(y \) such that \(|\nabla u(y)| \leq \theta r_0 \) and consider

\[
T_y(r) := \|Q_y(u, r)\|_{L^2(\partial B_1)}
\]

as a function of \(r \) on the interval \(\frac{|\nabla u(y)|}{\theta} \leq r \leq r_0 \). Let

\[
e := \inf \{ r \text{ s.t. } T_y(r) \leq C_0 \}.
\]

We have that \(T_y(r_0) < C_0 \), so \(\frac{|\nabla u(y)|}{\theta} < e < r_0 \). If \(e = \frac{|\nabla u(y)|}{\theta} \) then \(T_y(e) = C_0 \) and by Lemma 4.2 we have that \(T_y(r) < C_0 \) for \(e - \varepsilon < r < e \) which contradicts (8).

Therefore, \(e = \frac{|\nabla u(y)|}{\theta} \) and \(T_y(r) \leq C_0 \) for all \(|\nabla u(y)|/\theta \leq r \leq r_0 \) which proves (6).

Inequality (7) follows from Lemmas 2.2 and 2.12.

Remark 4. Note that \(A \) is the condition given in Theorem 1.1. If \(g_i \) only depend on \(x \), then this reduces to the assumption that the Newtonian potential of \(g_i \) is \(C^{1,1} \), which is sharp.

Proof of Theorem 1.2. Suppose \(A \) and \(B \) hold. We show that for every \(\delta > 0 \) there exists \(C_{\delta} > 0 \) such that for all \(y \in B_{1/2}(0) \) such that \(\text{dist}(y, \Gamma^1) \geq \delta \), there exists \(r_y > 0 \) such that

\[
\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq C_{\delta},
\]

for \(r \leq r_y \).

Consequently,

\[
|u(x) - u(y) - \nabla u(y)(x - y)| \leq \tilde{C}_{\delta}|x - y|^2
\]

for \(|x - y| \leq r_y \), \(y \in B_{1/2}(0) \) and \(\text{dist}(y, \Gamma^1) \geq \delta \); this readily yields the desired result.

Note that (10) follows from (9) via Lemmas 2.2 and 2.12.

Without loss of generality assume that \(\delta \leq r_0 \), where \(r_0 > 0 \) is the constant from Theorem 1.1. For every \(y \in B_{1/2}(0) \) consider the ball \(B_{\delta/2}(y) \). Then there are two possibilities.
i. \(B_{\delta/2}(y) \cap \Gamma^0 = \emptyset \).

In this case \(B_{\delta/2} \cap \Gamma = \emptyset \), hence \(u \) satisfies the equation

\[
\Delta u = g_i(x, u)
\]

in \(B_{\delta/2}(y) \) for \(i = 1 \) or \(i = 2 \). Inequality (5) in the Theorem 1.1 assumption \(A \) yields

\[
\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq C \log \frac{4}{\delta} + C(\|D^2v^i_{u(y)}\|_{\infty} + 1),
\]

for \(r \leq \delta/4 \).

ii. \(B_{\delta/2}(y) \cap \Gamma^0 \neq \emptyset \).

Let \(w \in \Gamma^0 \) be such that \(d := |y - w| = \text{dist}(y, \Gamma_0) \). We have that \(d \leq \delta/2 \). As before, assumption \(A \) yields

\[
\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq \|Q_y(u, d/2)\|_{L^2(\partial B_1(0))} + C(\|D^2v^i_{u(y)}\|_{\infty} + 1),
\]

for \(r \leq d/2 \). From Theorem 4.1 we have that

\[
\left| u \left(y + \frac{d}{2} z \right) \right| \leq C \left| y + \frac{d}{2} z - w \right|^2 \leq Cd^2,
\]

for all \(|z| \leq 1 \) because \(d \leq \delta/2 \leq r_0 \). On the other hand

\[
Q_y(u, d/2) = \text{Proj}_{P_2} \left(u \left(y + \frac{d}{2} z \right) - \frac{d}{2} z \cdot \nabla u(y) - u(y) \right) - \frac{d}{2} / 4,
\]

where \(\text{Proj}_{P_2} \) is the \(L^2(\partial B_1(0)) \) projection on the space \(P_2 \). We have used the fact that the projection of a linear function is 0. Hence

\[
\|Q_y(u, d/2)\|_{L^2(\partial B_1(0))} \leq \left\| u \left(y + \frac{d}{2} z \right) \right\|_{L^2(\partial B_1(0))} \leq C,
\]

which yields

\[
\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq C + C(\|D^2v^i_{u(y)}\|_{\infty} + 1),
\]

for \(r \leq d/2 \).

The proof is now complete.
Lastly we point out that if the coefficients g_i are regular enough to provide $C^{1,1}$ solutions at points where the gradient does not vanish, then we obtain full interior $C^{1,1}$ regularity.

Assumption C. For any $M > 0$ there exist $\theta_0(M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$ and $C_3(M, \|g_1\|_\infty, \|g_2\|_\infty, n) > 0$ such that for all $z \in B_{1/2}$ any solution of

\[
\begin{cases}
\Delta v = g_1(x, v) \chi_{v>0} + g_2(x, v) \chi_{v<0}, & x \in B_{1/2}(z); \\
|v(x)| \leq M, & x \in B_{1/2}(z); \\
v(z) = 0, & 0 < |\nabla v(z)| \leq \theta_0/4; \\
v|_{\partial B_{1/2}(z)} \text{ continuous,}
\end{cases}
\]

admits a bound

\[\|D^2v\|_{L^\infty(B_{1/2}(z))/\theta_0(z)} \leq C_3.\]

Remark 5. A sufficient condition which ensures C is that g_i are Hölder continuous, see [LSE09, Proposition 2.6] and [ADN64, Theorem 9.3]. The idea being that at such points, the set $\{u = 0\}$ is locally $C^{1,\alpha}$ (via the implicit function theorem) and one may thereby reduce the problem to a classical PDE for which up to the boundary estimates are known.

Theorem 4.1 and C imply Theorem 1.3.

Proof of Theorem 1.3. By Lemmas 2.12 and 2.6 the assertion follows if we show that there exist $\rho_0, C > 0$ such that for every $y \in B_{\rho_0}(0)$ there exists $r_y > 0$ such that

\[\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq C \quad (11)\]

for $0 < r \leq r_y$.

Let ρ_0 be such that $|\nabla u(y)| \leq \theta_0$ for $y \in B_{\rho_0}(0)$, where θ_0 is the constant from assumption C (we can do this because u is $C^{1,\alpha}$ and $0 \in \Gamma^0$). For $y \in B_{\rho_0}(0)$ let $d := \text{dist}(y, \Gamma)$ and let $w \in \Gamma$ be such that $d = |y - w|$.

From Corollary 1.2 we can assume that $2d < r_0$. One of the following cases is possible.

i. $d = 0, y \in \Gamma^0$.

In this case we have that (11) holds for $r \leq r_0$ by Theorem 1.4.

ii. $d = 0, y \in \Gamma^1$.

Here, (11) follows from the assumption C.

iii. $d > 0, w \in \Gamma^0$.

u solves $\Delta u = g_i(x, u)$ in $B_{d/2}(y)$ for $i = 1$ or $i = 2$. Then, by the analysis similar to the one in Corollary 1.2 we get that (11) holds for $r \leq d/2$.

17
iv. $d > 0, w \in \Gamma^1$.

From Theorem 4.1 we have that
\[|u(z + w) - z \cdot \nabla u(w)| \leq C_1|z|^2 \] (12)
for $|\nabla u(w)|/\theta_0 \leq |z| \leq r_0$. On the other hand, by assumption C we obtain that (12) holds for $|z| \leq |\nabla u(w)|/\theta_0$. Hence, (12) holds for all z such that $|z| \leq r_0$.

By assumption A we have that
\[\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq \|Q_y(u, d/2)\|_{L^2(\partial B_1(0))} + C(\|D^2v_i^u(y)\|_{\infty} + 1), \]
for $r \leq d/2$.

Furthermore,
\[Q_y(u, d/2) = \text{Proj}_{P^2_2} \left(u \left(y + \frac{d}{2} z \right) - \frac{d}{2} z \cdot \nabla u(y) - u(y) \right) \]
\[= \text{Proj}_{P^2_2} \left(u \left(y + \frac{d}{2} z \right) - (y + \frac{d}{2} z - w) \cdot \nabla u(w) \right). \]

Hence from (12) we get
\[\|Q_y(u, d/2)\|_{L^2(\partial B_1(0))} \leq \left\| u \left(y + \frac{d}{2} z \right) - (y + \frac{d}{2} z - w) \cdot \nabla u(w) \right\|_{L^2(\partial B_1(0))} \]
\[\leq C, \]
which yields
\[\|Q_y(u, r)\|_{L^2(\partial B_1(0))} \leq C + C(\|D^2v_i^u(y)\|_{\infty} + 1), \]
for $r \leq d/2$.

The previous analysis applies to the following example.

Example. Let $g_i(x, u) = \lambda_i(x)$ for $i = 1, 2$, where λ_i are such that
i. $\lambda_1(x) - \lambda_2(x) \geq \sigma_0 > 0$ for all $x \in B_1$;
ii. $\lambda_1(x), \lambda_2(x)$ are Hölder continuous.

We recall from the introduction that under the stronger assumption $\inf_{B_1} \lambda_1 > 0, \inf_{B_1} -\lambda_2 > 0$, this problem is studied in [LSE09] and the optimal interior $C^{1,1}$ regularity is established. The authors use a different approach based on monotonicity formulas and an analysis of global solutions via a blow-up procedure.
4.2 No-sign obstacle problem

Here we observe that assumption A implies that the solutions of (3) are in $C^{1,1}(B_{1/2})$. This theorem was proven in [ALS13] (Theorem 1.2) for the case when $g(x,t)$ depends only on x. Under assumption A, appropriate modifications of the proof in [ALS13] work also for the general case; since the arguments are similar, we provide only a sketch of the proof and highlight the differences.

Sketch of the proof of Theorem 1.4.

Let $\tilde{\Gamma} := \{ y \text{ s.t. } u(y) = |\nabla u(y)| = 0 \}$.

For $r > 0$ let $\Lambda_r := \{ x \in B_1 \text{ s.t. } u(rx) = 0 \}$ and $\lambda_r := |\Lambda_r|$.

The proof of Theorem 1.2 in [ALS13] consists of the following ingredients.

- Interior $C^{1,1}$ estimate
- Quadratic growth away from the free boundary
- [ALS13, Proposition 5.1]

Let us recall that the interior $C^{1,1}$ estimate is the inequality

$$\|u\|_{C^{1,1}(B_{d/2})} \leq C \left(\|g\|_{L^\infty(B_d)} + \frac{\|u\|_{L^\infty(B_d)}}{d^2} \right), \quad (13)$$

where $\Delta u(x) = g(x)$ for $x \in B_d$ and the Newtonian potential of g is $C^{1,1}$. This estimate is purely a consequence of g having a $C^{1,1}$ Newtonian potential.

Quadratic growth away from the free boundary is a bound

$$|u(x)| \leq C \text{dist}(x, \tilde{\Gamma})^2. \quad (14)$$

The first observation in [ALS13] is that if $g(x,t) = g(x)$ has a $C^{1,1}$ Newtonian potential, then (14) and (13) yield $C^{1,1}$ regularity for the solution. Indeed, “far” from the free boundary, the solution u solves the equation $\Delta u = g(x)$ and is locally $C^{1,1}$ by assumption. For points close to the free boundary, u solves the same equation but now on a small ball centered at the point of interest and touching the free boundary. At this point one invokes (14) and by (13) obtains that the $C^{1,1}$ bound does not blow up close to the free boundary (see Lemma 4.1 in [ALS13]).

To prove (14), the authors prove in Proposition 5.1 [ALS13] that if the projection $\Pi_y(u, r)$ (for some $y \in \tilde{\Gamma}$) is large enough then the density λ_r of the coincidence set diminishes at an exponential rate. On the other hand, if λ_r diminishes in an exponential rate, $\Pi_y(u, r)$ has to be bounded. Consequently, by invoking Lemma 2.2 one obtains (14).

Now let g satisfy A.

- Interior $C^{1,1}$ estimate

In the general case, (13) is replaced by

$$\|Q_y(u,s)\|_{L^2(\partial B_1(0))} \leq \|Q_y(u,r)\|_{L^2(\partial B_1(0))} + C(\|D^2v_{u(y)}\|_{\infty} + 1), \quad (15)$$

where $0 < s < r < d$, $\Delta v_{u(y)} = g(x, u(y))$ and $\Delta u = f(x, u)$ in $B_d(y)$. Estimate (15) is purely a consequence of assumption A (see [5] in the proof of Theorem 1.1).
In this proposition, it is shown that there exists C such that if $\Pi_y(u,r) \geq C$ then
\[
\lambda_{1/2}^1 \leq \frac{\hat{C}}{\|\Pi_y(u,r)\|_{L^\infty(B_1)}} \lambda_{1/2}^1
\] (16)
for some $\hat{C} > 0$. The inequality is obtained by the decomposition
\[
u(rx + y) = \Pi_y(u,r) + h_r + w_r,
\]
where h_r, w_r are such that
\[
\begin{aligned}
\{ & \Delta h_r = -g(rx + y)\chi_{\Lambda_r} \quad \text{in } B_1, \\
& h_r = 0 \quad \text{on } \partial B_1,
\end{aligned}
\]
and
\[
\begin{aligned}
\{ & \Delta w_r = g(rx + y) \quad \text{in } B_1, \\
& w_r = \frac{u(rx+y)}{r^2} - \Pi_y(u,r) \quad \text{on } \partial B_1.
\end{aligned}
\]
The authors show that
\[
\|D^2 h_r\|_{L^2(B_1/2)} \leq C\|g\|_{L^\infty} \|\chi_{\Lambda_r}\|_{L^2(B_1)},
\]
\[
\|D^2 w_r\|_{L^2(B_1/2)} \leq C \left(\|g\|_{L^\infty} + \|u\|_{L^\infty(B_1)}\right).
\] (17)
In the general case one may consider the decomposition
\[
u(rx + y) = Q_y(u,r) + h_r + w_r + z_r,
\]
where h_r, w_r, z_r are such that
\[
\begin{aligned}
\{ & \Delta h_r = -g(rx + y,0)\chi_{\Lambda_r} \quad \text{in } B_1, \\
& h_r = 0 \quad \text{on } \partial B_1,
\end{aligned}
\]
and
\[
\begin{aligned}
\{ & \Delta w_r = g(rx + y,0) \quad \text{in } B_1, \\
& w_r = \frac{u(rx+y)}{r^2} - Q_y(u,r) \quad \text{on } \partial B_1,
\end{aligned}
\]
and
\[
\begin{aligned}
\{ & \Delta z_r = (g(rx + y, u(rx+y)) - g(rx + y,0))\chi_{B_1 \setminus \Lambda_r} \quad \text{in } B_1, \\
& z_r = 0 \quad \text{on } \partial B_1.
\end{aligned}
\]
Evidently, estimates (17) are still valid. Additionally, we have
\[
\|D^2 z_r\|_{L^2(B_1/2)} \leq C\|\Delta z_r\|_{L^2(B_1)} \leq C\omega(r^2\log \frac{1}{r}),
\] (18)
since $g(x,t)$ is uniformly Dini in t.

Combining (17) and (18) and arguing as in [ALS13] one obtains the existence of $C > 0$ such that
\[
\lambda_{r/2}^{1/2} \leq \tilde{C} \frac{\lambda_{r/2}^{1/2}}{\|Q_y(u,r)\|_{L^2(\partial B_1)}} + \omega \left(r^2 \log \frac{1}{r} \right), \tag{19}
\]
whenever $\|Q_y(u,r)\|_{L^2(\partial B_1)} \geq C$.

- **Quadratic growth away from the free boundary**

In [ALS13], the norms of $\Pi_y(u,r/2^j), k \geq 1$ are estimated in terms of the sum $\sum_{j=0}^{\infty} \lambda_{r/2^j}$. If the norms of projections are unbounded, one obtain estimate (16) which implies convergence of the previous sum and hence boundedness of the projections. This is a contradiction.

Similarly, in the general case the norms of $Q_y(u,r/2^j), k \geq 1$ can be estimated by
\[
\sum_{j=0}^{\infty} \lambda_{r/2^j} + \sum_{j=0}^{\infty} \omega \left(\left(\frac{r}{2^j} \right)^2 \log \frac{r}{2^j} \right).
\]

Inequality (19) and Dini continuity imply
\[
\sum_{j=0}^{\infty} \omega \left(\left(\frac{r}{2^j} \right)^2 \log \frac{r}{2^j} \right), \sum_{j=0}^{\infty} \lambda_{r/2^j} < \infty,
\]
if the norms of projections are unbounded. Furthermore, one completes the proof of the quadratic growth as in [ALS13].

To verify that the above ingredients imply $C^{1,1}$ regularity, we split the analysis into two cases. If we are “far” from the free boundary, u locally solves $\Delta u = g(x,u)$ so by Theorem 3.1 u is $C^{1,1}$. If we are close to the free boundary then u solves $\Delta u = g(x,u)$ in a small ball $B_d(y)$ that touches the free boundary. We invoke (15) for $0 < s < r = d/2$ and the quadratic growth to obtain
\[
\|Q_y(u,s)\|_{L^2(\partial B_1(0))} \leq \|Q_y(u,d/2)\|_{L^2(\partial B_1)} + C(\|D^2v_{u(y)}\|_\infty + 1)
\leq C \left| \frac{u(y+d/2x)}{d^2/4} \right|_{L^2(\partial B_1)} + C(\|D^2v_{u(y)}\|_\infty + 1)
\leq C + C(\|D^2v_{u(y)}\|_\infty + 1).
\]
for $s \leq d/2$.

So there exists a constant C such that for all $y \in B_{1/2}$ there exist radii $r_j(y) \to 0$ such that
\[
Q_y(u,r_j(y)) \leq C.
\]

We conclude via Lemma 2.6.
Acknowledgements We thank Henrik Shahgholian for introducing us to the regularity problem for semilinear equations. Special thanks go to John Andersson for valuable feedback on a preliminary version of the paper. E. Indrei acknowledges partial support from NSF Grants OISE-0967140 (PIRE), DMS-0405343, and DMS-0635983 administered by the Center for Nonlinear Analysis at Carnegie Mellon University and an AMS-Simons Travel Grant. L. Nurbekyan was partially supported by KAUST baseline and start-up funds and KAUST SRI, Uncertainty Quantification Center in Computational Science and Engineering.

References

[ADN64] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92. MR 0162050 (28 #5252)

[ALS13] John Andersson, Erik Lindgren, and Henrik Shahgholian, Optimal regularity for the no-sign obstacle problem, Comm. Pure Appl. Math. 66 (2013), no. 2, 245–262. MR 2999297

[AW06] J. Andersson and G. S. Weiss, Cross-shaped and degenerate singularities in an unstable elliptic free boundary problem, J. Differential Equations 228 (2006), no. 2, 633–640. MR 2289547 (2007k:35522)

[BS11] Marino Badiale and Enrico Serra, Semilinear elliptic equations for beginners, Universitext, Springer, London, 2011, Existence results via the variational approach. MR 2722059 (2012f:35002)

[Caz06] T. Cazenave, An introduction to semilinear elliptic equations, Editora do IM-UFRJ, Rio de Janeiro, ISBN: 85-87674-13-7 (2006).

[FS14] A. Figalli and H. Shahgholian, A general class of free boundary problems for fully nonlinear elliptic equations, Arch. Ration. Mech. Anal. (2014), no. 1, 269–286.

[GT01] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Springer, 2001.

[IM] E. Indrei and A. Minne, Non-transversal intersection of free and fixed boundary for fully nonlinear elliptic operators in two dimensions, arXiv:1505.02303.

[IM15] Emanuel Indrei and Andreas Minne, Regularity of solutions to fully nonlinear elliptic and parabolic free boundary problems, Annales de l’Institut Henri Poincare (C) Non Linear Analysis (2015), –.

[KN] H. Koch and N. Nadirashvili, Partial analyticity and nodal sets for nonlinear elliptic systems., arXiv:1506.06224.
[Kov99] Jay Kovats, Dini-Campanato spaces and applications to nonlinear elliptic equations, Electron. J. Differential Equations (1999), No. 37, 20 pp. (electronic). MR 1713596 (2000g:35049)

[LSE09] Erik Lindgren, Henrik Shahgholian, and Anders Edquist, On the two-phase membrane problem with coefficients below the Lipschitz threshold, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2359–2372. MR 2569898 (2011a:35179)

[PSU12] Arshak Petrosyan, Henrik Shahgholian, and Nina Uraltseva, Regularity of free boundaries in obstacle-type problems, Graduate Studies in Mathematics, vol. 136, American Mathematical Society, Providence, RI, 2012. MR 2962060

[Sha03] Henrik Shahgholian, $C^{1,1}$ regularity in semilinear elliptic problems, Comm. Pure Appl. Math. 56 (2003), no. 2, 278–281. MR 1934623 (2003h:35087)

[Sha15] H. Shahgholian, Regularity issues for semilinear pdes (a narrative approach), Algebra i Analiz 27 (2015), no. 3, 311–325.

[Ura01] N. N. Uraltseva, Two-phase obstacle problem, J. Math. Sci. (New York) 106 (2001), no. 3, 3073–3077, Function theory and phase transitions. MR 1906034 (2003e:35331)
EMANUEL INDREI
CENTER FOR NONLINEAR ANALYSIS
Carnegie Mellon University
Pittsburgh, PA 15213, USA
email: egi@cmu.edu

ANDREAS MINNE
DEPARTMENT OF MATHEMATICS
KTH Royal Institute of Technology
100 44 Stockholm, Sweden
email: minne@kth.se

LEVON NURBEKYAN
CEMSE Division,
King Abdullah University of Science and Technology (KAUST)
Thuwal 23955-6900, Saudi Arabia
email: levon.nurbekyan@kaust.edu.sa