Spherical symmetry in $f(R)$-gravity

S Capozziello¹, A Stabile² and A Troisi¹

¹ Dipartimento di Scienze Fisiche and INFN, Sez di Napoli, Università di Napoli ‘Federico II’, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cintia, I-80126 - Napoli, Italy
² Dipartimento di Fisica ‘E R Caianiello’, Università degli Studi di Salerno, Via S Allende, I-84081 Baronissi (SA), Italy

E-mail: capozziello@na.infn.it, stabile@sa.infn.it and antrois@gmail.com

Received 22 November 2007, in final form 27 February 2008
Published 26 March 2008
Online at stacks.iop.org/CQG/25/085004

Abstract
Spherical symmetry in $f(R)$-gravity is discussed in detail considering also the relations to the weak field limit. Exact solutions are obtained for constant Ricci curvature scalar and for Ricci scalar depending on the radial coordinate. In particular, we discuss how to obtain results which can be consistently compared with general relativity giving the well known post-Newtonian and post-Minkowskian limits. Furthermore, we implement a perturbation approach to obtain solutions up to the first order starting from spherically symmetric backgrounds. Exact solutions are given for several classes of $f(R)$-theories in both $R =$ constant and $R = R(r)$.

PACS numbers: 04.50.+h, 04.25.Nx, 04.40.Nr

1. Introduction

The recent advent of new cosmological precision tests, capable of probing physics at very large redshifts, has changed the modern view of the cosmos ruling out the cosmological standard model based on general relativity (GR), radiation and baryonic matter. Beside the introduction of dark matter, needed to fit the astrophysical dynamics at galactic and cluster scales (i.e. to explain clustered structures), a new ingredient is required in order to explain the observed accelerated behavior of the Hubble flow: the dark energy.

In particular, the luminosity distance of Ia-type supernovae [1], the large scale structure [2] and the anisotropy of cosmic microwave background [3] suggest that the widely accepted cosmological Concordance Model ($\Lambda$CDM) is a spatially flat Universe, dominated by cold dark matter ($\sim 0.25–0.3\%$) which should explain the clustered structures) and dark energy ($A \sim 0.65–0.7\%$), in the form of an ‘effective’ cosmological constant, giving rise to the accelerated behavior.

Although the cosmological constant [4–6] remains the most relevant candidate to interpret the accelerated behavior, several proposals have been suggested in the last few years:
quintessence models, where the cosmic acceleration is generated by means of a scalar field, in a way similar to the early time inflation, acting at large scales and recent epochs [7]; models based on exotic fluids like the Chaplygin-gas [8], or non-perfect fluids [9]); phantom fields, based on scalar fields with anomalous signature in the kinetic term [10], higher dimensional scenarios (braneworld) [11]. Actually, all of these models, are based on the peculiar characteristic of introducing new sources into the cosmological dynamics, while it would be preferable to develop scenarios consistent with observations without invoking further parameters or components non-testable (up to now) at a fundamental level.

The resort to modified gravity theories, which extend in some way the GR, allows pursuit of this different approach (no further unknown sources) giving rise to suitable cosmological models where a late time accelerated expansion naturally arises.

The idea that the Einstein gravity should be extended or corrected at large scales (infrared limit) or at high energies (ultraviolet limit) is suggested by several theoretical and observational issues. Quantum field theories in curved spacetimes, as well as the low energy limit of string theory, both imply semi-classical effective Lagrangians containing higher-order curvature invariants or scalar–tensor terms. In addition, GR has been tested only at solar system scales while it shows several shortcomings if checked at higher energies or larger scales.

Of course modifying the gravitational action asks for several fundamental challenges. These models can exhibit instabilities [13] or ghost-like behavior [14], while, on the other hand, they should be matched with the low energy–limit observations and experiments (solar system tests, PPN limit). Despite all these issues, in recent years, several interesting results have been achieved in the framework of the so called $f(R)$-gravity at cosmological, galactic and solar system scales.

For example, models based on generic functions of the Ricci scalar $R$ show cosmological solution with late time accelerating dynamics [16], in addition, it has been shown that some of them could agree with CMBR observational prescriptions [17], nevertheless this matter is still subject to debate [18]. For a review of the models and their cosmological applications see, e.g., [19, 20].

Moreover, considering $f(R)$-gravity in the low energy limit, it is possible to obtain corrected gravitational potentials capable of explaining the flat rotation curves of spiral galaxies without considering huge amounts of dark matter [21–24] and, furthermore, this seems the only self-consistent way to reproduce the universal rotation curve of spiral galaxies [25]. On the other hand, several anomalies in solar system experiments could be framed and addressed for this picture [26].

In the last few years, several authors have dealt with this matter considering the parameterized post Newtonian (PPN) limit [27]. On the other hand, the investigation of spherically symmetric solutions for such kinds of models has been developed in several papers [28, 30–32]. Such an analysis deserves particular attention since it can allow interesting conclusions to be drawn on the effective modification of the gravitational potential induced by higher order gravity at low energies and, in addition, it could shed new light on the PPN limit of such theories. However, in several recent papers, it has been shown that several classes of $f(R)$-models fairly evade the solar system constraints and agree with the limits of PPN-parameters, in particular with $\gamma \sim 1$ probed by experiments in [35–39]. This is not the argument of the present paper, however it is important to stress that the spherical symmetry and the weak field limit have to be considered carefully in order to find physically viable models.

In this paper, we are going to analyze, in a general way and without specifying a priori the form of the Lagrangian, the relation between the spherical symmetry and the weak field limit of $f(R)$-gravity. Our aim here is to develop a systematic approach considering the
theoretical prescriptions to obtain a correct weak-field limit in order to point out the analogies and the differences with respect to GR. A fundamental issue is to recover the asymptotically flat solution in the absence of gravity, and the well-known results related to the specific case \( f(R) = R \), i.e. GR. Only in this situation is a correct comparison between GR and any extended gravity theory possible from an experimental and theoretical viewpoint. For example, as already shown in [34] and discussed in [40], the Birkhoff theorem is not a general result for fourth-order models also if it holds for several interesting classes of these theories as discussed, for example, in [32, 41, 42].

The layout of the paper is the following. Section 2 is devoted to some general remarks on spherical symmetry in \( f(R) \)-gravity. In particular, we derive the field equations in such a symmetry. In section 3, the expression of the Ricci scalar and the general form of metric components are derived in spherical symmetry discussing how to recover the correct Minkowski flat limit. Section 4 is devoted to the discussion of spherically symmetric background solutions with constant scalar curvature considering, in particular Schwarzschild-like and Schwarzschild–de Sitter-like solutions with constant curvature. Some remarkable \( f(R) \)-models are worked out as examples. In section 5, we discuss cases in which spherical symmetry is present also for the Ricci scalar depending on the radial coordinate \( r \). This is an interesting situation, not present in GR. In fact, as is well known, in the Einstein theory, the Birkhoff theorem states that a spherically symmetric solution is always stationary and static [44] and the Ricci scalar is constant. In \( f(R) \) the situation is more general and then the Ricci scalar, in principle, can evolve with radial and time coordinates. Section 6 is devoted to the study of a perturbation approach starting from a spherically symmetric background considering the general case in which the Ricci scalar is \( R = R(r) \). The motivation is due to the fact that, in GR, the Schwarzschild solution and the weak field limit coincide under suitable conditions. This could be a good test-bed to construct a well-posed weak field limit for any extended theory of gravity. Finally, we work out some \( f(R) \)-models finding spherically-symmetric solutions by the perturbation approach. Conclusions are drawn in section 7.

2. Spherical symmetry

Let us consider an analytic function \( f(R) \) of the Ricci scalar \( R \). The variational principle for this action is:

\[
\delta \int d^4x \sqrt{-g} \left[ f(R) + \mathcal{X} \mathcal{L}_m \right] = 0
\]

where \( \mathcal{X} = \frac{16\pi G}{c^4} \), \( \mathcal{L}_m \) is the standard matter Lagrangian and \( g \) is the determinant of the metric. By varying with respect to the metric, we obtain the field equations

\[
f'(R)R_{\mu\nu} - \frac{1}{2} f(R)g_{\mu\nu} - f'(R)_{,\mu\nu} + g_{\mu\nu} \Box f'(R) = \mathcal{X} \frac{2}{2} T_{\mu\nu},
\]

where the trace equation reads

\[
3 \Box f'(R) + f'(R) R - 2 f(R) = \mathcal{X} \frac{2}{2} T,
\]

and \( T_{\mu\nu} = \frac{\sqrt{-g}}{\mathcal{X}} \frac{\delta \sqrt{-g} \mathcal{L}_m}{\delta g^{\mu\nu}} \) is the energy–momentum tensor of standard matter, \( T = T^\sigma_\sigma \) is the related trace and \( f'(R) = \frac{df(R)}{dR} \). Equations (2) can be rewritten in an Einstein-like form

---

3 It is possible to take into account also the Palatini approach in which the metric \( g \) and the connection \( \Gamma \) are considered independent variables (see for example [45]). Here we will consider the Levi-Civita connection and will use the metric approach. See [19, 46] for a detailed comparison between the two scenarios.
reframing the higher than second order contributions in the form of an effective stress–energy tensor of geometrical origin:

\[ G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = T_{\mu\nu}^{(\text{curv})} + T_{\mu\nu}^{(m)}. \]  

The effective curvature stress–energy tensor is [15]:

\[ T_{\mu\nu}^{(\text{curv})} = \frac{1}{f'(R)} \left\{ f(R) g_{\mu\nu} - \frac{R f'(R)}{2} \left( g_{\mu\nu} \left( g_{\alpha\beta} R_{\alpha\beta} - g_{\alpha\beta} g_{\mu\nu} \right) \right) \right\}. \]  

The matter term enters equations (4) through the modified stress–energy tensor:

\[ T_{\mu\nu}^{(m)} = \frac{X T_{\mu\nu}}{2 f'(R)}, \]

where there is a non-minimal coupling between matter and geometric degrees of freedom. For the purposes of this paper, we will refer to the field equations as form (2) which are revealed to be more useful for the following considerations.

The most general spherically symmetric metric can be written as follows:

\[ ds^2 = m_1(t', r') dt'^2 + m_2(t', r') dr'^2 + m_3(t', r') dt' dr' + m_4(t', r') d\Omega, \]  

where \( m_i \) are functions of the radius \( r' \) and time \( t' \) (see also [32]). In GR, due to the freedom of the frame choice, we can consider a coordinate transformation \( t = U_1(t', r'), \quad r = U_2(t', r') \) which maps the metric (7) in a new one where the off-diagonal term \( m_3(t', r') dt' dr' \) vanishes and \( m_4(t', r') = -r^2 \), that is:

\[ ds^2 = A(t, r) dt^2 - B(t, r) dr^2 - r^2 d\Omega. \]  

This expression can be considered without loss of generality as the most general definition of a spherically symmetric metric compatible with a pseudo-Riemannian manifold without torsion. Actually, by inserting this metric into the field equations (2) and (3), one obtains:

\[ f'(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + \mathcal{H}_{\mu\nu} = \frac{X}{2} T_{\mu\nu}, \]  

\[ g^{\sigma\tau} H_{\sigma\tau} = f'(R) R - 2 f(R) + \mathcal{H} = \frac{X}{2} T, \]

where the two quantities \( \mathcal{H}_{\mu\nu} \) and \( \mathcal{H} \) read:

\[ \mathcal{H}_{\mu\nu} = - f''(R) \left[ R_{\mu\nu} - \Gamma^t_{\mu\eta} R_{\eta t} - \Gamma^r_{\mu\eta} R_{\eta r} \right. \]

\[ - g_{\mu\nu} \left[ (g''_{t t} + g''_{t r} \ln \sqrt{-g_{t r}}) R_{t t} + (g''_{r t} + g''_{r r} \ln \sqrt{-g_{r r}}) R_{r r} \right. \]

\[ + g''_{t r} R_{t r} + g''_{r r} R_{r r} \] \( - f'''(R) \left[ R_{\mu\nu} R_{\nu\sigma} - g_{\mu\σ} \left( g''_{t t} R_{t t}^2 + g''_{r r} R_{r r}^2 \right) \right] \]  

\[ \mathcal{H} = g^{\sigma\tau} H_{\sigma\tau} = 3 f'''(R) \left[ (g''_{t t} + g''_{t r} \ln \sqrt{-g_{t r}}) R_{t t} \right. \]

\[ + (g''_{r t} + g''_{r r} \ln \sqrt{-g_{r r}}) R_{r r} + g''_{t r} R_{t r} + g''_{r r} R_{r r} \] \( + 3 f'''(R) \left[ g''_{t t} R_{t t}^2 + g''_{r r} R_{r r}^2 \right] \]

where \( \Gamma^t_{\mu\eta} \), \( \Gamma^r_{\mu\eta} \) are the standard Christoffel symbols related to the metric \( g_{\mu\nu} \). These equations show the interesting feature that the derivatives of \( f(R) \) with respect to \( R \) are very distinct with respect to the time and spatial derivatives of \( R \). This peculiarity will allow for a better understanding of the dynamical behavior of solutions, as we shall see below.

---

[4] This condition allows us to obtain the standard definition of the circumference with radius \( r \).
3. The Ricci curvature scalar in spherical symmetry

As standard, the Ricci scalar can be written as
\[ R = g^{\mu\nu} R_{\mu\nu} = g^{\alpha\beta} \left[ \Gamma^{\mu}_{\beta\alpha} - \Gamma^{\alpha}_{\beta\mu} + \Gamma^{\alpha}_{\mu\beta} \right], \tag{13} \]
where \( \Gamma^{\alpha}_{\mu\nu} \) is the Christoffel symbols defined as
\[ \Gamma^{\alpha}_{\mu\nu} = \frac{1}{2} g^{\alpha\sigma} \left( g_{\mu\sigma,\nu} + g_{\nu\sigma,\mu} - g_{\mu\nu,\sigma} \right). \tag{14} \]
Imposing the spherical symmetry (8), the Ricci scalar in terms of the gravitational potentials reads:
\[ R(t, r) = \frac{B(\dot{A}B - A' r^2 + 4A'[2A' + r A'' - r \ddot{B}]) - 4A^2[B^2 - B + r B']}{2r^2 A^2 B^2}, \tag{15} \]
where, for the sake of brevity, we have discarded the explicit dependence in \( A(t, r) \) and \( B(t, r) \) and the prime indicates the derivative with respect to \( r \) while the dot that with respect to \( t \).

If the metric (8) is time-independent, i.e. \( A(t, r) = a(r), B(t, r) = b(r) \), equation (15) assumes the simpler form:
\[ R(r) = \frac{a(r)[2b(r)(2a'(r) + ra''(r)) - ra'(r)]b'(r) - b(r)a'(r)r^2 - 4a(r)^2(b(r)^2 - b(r) + rb'(r))}{2r^2 a(r)^2 b(r)^2}, \tag{16} \]
where the radial dependence of the gravitational potentials is now explicitly shown. This expression can be seen as a constraint for functions \( a(r) \) and \( b(r) \) once a specific form of Ricci scalar is given. In particular, it reduces to a Bernoulli equation of index two, that is
\[ b'(r) + h(r)b(r) + l(r)b(r)^2 = 0, \]
with respect to the metric potential \( b(r) \):
\[ b'(r) + \left\{ \frac{r^2 a'(r)^2 - 4a(r)^2 - 2a(r)2a'(r)' + ra(r)''}{ra(r)[4a(r) + ra'(r)]} \right\} b(r) + \left\{ \frac{2a(r)}{r} \left[ \frac{2 + r^2 R(r)}{4a(r) + ra'(r)} \right] \right\} b(r)^2 = 0. \tag{17} \]
A general solution of (17) is:
\[ b(r) = \exp \left[ \frac{-\int dr h(r)}{K + \int dr l(r) \exp \left[ -\int dr h(r) \right]} \right], \tag{18} \]
where \( K \) is an integration constant while \( h(r) \) and \( l(r) \) are the two functions which, respectively, define the coefficients of the quadratic and the linear term with respect to \( b(r) \), as in the standard definition of the Bernoulli equation \[47\]. Looking at the equation, we can note that it is possible to have \( l(r) = 0 \) which implies finding solutions with a Ricci scalar scaling as \( -\frac{2}{r} \) in terms of the radial coordinate. On the other hand, it is not possible to have \( h(r) = 0 \) since otherwise we will get imaginary solutions. The limit \( r \to \infty \) deserves particular consideration. In order to achieve a gravitational potential \( b(r) \) with the correct Minkowski limit, both \( h(r) \) and \( l(r) \) have to go to zero provided that the quantity \( r^2 R(r) \) turns out to be constant: this result implies \( b'(r) = 0 \), and finally, the metric potential \( b(r) \) also has a correct Minkowski limit.

In general, if we ask for the asymptotic flatness of the metric as a feature of the theory, the Ricci scalar has to evolve at infinity as \( r^{-n} \) with \( n \geq 2 \). Formally it has to be:
\[ \lim_{r \to \infty} r^2 R(r) = r^{-n} \tag{19} \]
with \( n \in \mathbb{N} \). Any other behavior of the Ricci scalar could affect the requirement of the correct asymptotic flatness. This result can be easily deduced from equation (17). In fact, let us consider the simplest spherically symmetric case:

\[
\text{d}s^2 = a(r) \text{d}t^2 - \frac{\text{d}r^2}{a(r)} - r^2 \text{d}\Omega.
\]

The Bernoulli equation (17) is easy to integrate and the most general metric potential \( a(r) \), compatible with the Ricci scalar constraint (16), is:

\[
a(r) = 1 + \frac{k_1}{r} + \frac{k_2}{r^2} + \frac{1}{r^2} \int \left[ \int r^2 R(r) \text{d}r \right] \text{d}r
\]

where \( k_1 \) and \( k_2 \) are integration constants. Actually one gets the standard result \( a(r) = 1 \) (Minkowski) for \( r \to \infty \) only if the condition (19) is satisfied, otherwise, a diverging gravitational potential.

### 4. Solutions with constant curvature scalar

The case of constant curvature is equivalent to GR with a cosmological constant and the solution is time independent. This result is well known (see, for example, [48]) but we report, for the sake of completeness, some considerations related to it in order to deal with a more general case where a radial dependence is supposed. Let us assume a constant scalar curvature (\( R = R_0 \)). The field equations (9) and (10), being \( H_{\mu\nu} = 0 \), reduce to:

\[
f_0' R_{\mu\nu} - \frac{1}{2} f_0 g_{\mu\nu} = \frac{\chi}{2} T_{\mu\nu},
\]

\[
f_0' R_0 - 2 f_0 = \frac{\chi}{2} T.
\]

where \( f(R_0) = f_0 \), \( f'(R_0) = f'_0 \). Such equations can be arranged as:

\[
R_{\mu\nu} + \lambda g_{\mu\nu} = q \frac{\chi}{2} T_{\mu\nu}
\]

\[
R_0 = q \frac{\chi}{2} T - 4 \lambda
\]

where \( \lambda = -\frac{f_0}{2f_0'} \) and \( q^{-1} = f'_0 \). As an standard, the stress–energy tensor of perfect-fluid matter is

\[
T_{\mu\nu} = (\rho + p) u_\mu u_\nu - pg_{\mu\nu};
\]

where \( \rho \) is the energy density, \( p \) is the pressure and \( u^\mu = \text{d}x^\mu/\text{d}s \) is the fourth-velocity. A general solution of the above set of equations is achieved for \( p = -\rho \) and reads:

\[
\text{d}s^2 = \left( 1 + \frac{k_1}{r} + \frac{q \chi \rho - 2 \lambda}{6} r^2 \right) \text{d}t^2 - \frac{\text{d}r^2}{1 + \frac{k_1}{r} + \frac{q \chi \rho - 2 \lambda}{6} r^2} - r^2 \text{d}\Omega.
\]

This result means that any \( f(R) \)-theory in the case of constant curvature scalar (\( R = R_0 \)) exhibits solutions with cosmological constant-like behavior (de Sitter). This is one of the reason why the dark energy issue can be addressed using this theory [15, 16]. This fact is well known using the FRW metric [48]. As another remark we have to say that this solution cannot describe stellar structures since this kind of equation of state does not work for stars so it could be interesting only in cosmological contexts.
Table 1. Examples of $f(R)$-models admitting constant and zero scalar curvature solutions. On the right hand side, the field equations are given for each model. The powers $n$ and $m$ are natural numbers, while $\xi_i$ are generic real constants.

\[
\begin{array}{|l|l|}
\hline
f(R)-theory & \text{Field equations:} \\
\hline
\xi_1 R + \xi_2 R^n & \begin{cases} 
R_{\mu\nu} = 0, \text{ with } R = 0 \\
R_{\mu\nu} = \xi_1 R + \xi_2 R^n \text{ with } R = 0, \xi_1 \neq 0 
\end{cases} \\
\xi_1 R + \xi_2 R^{-m} & \begin{cases} 
R_{\mu\nu} = 0, \text{ with } R = 0, n \neq 2 \\
R_{\mu\nu} = \xi_1 R + \xi_2 R^{-m} \text{ with } R = R_0, \xi_1 = 0, n = 2 
\end{cases} \\
\frac{R}{\sqrt{\tau R}} & \begin{cases} 
R_{\mu\nu} = 0, \text{ with } R = 0 \\
R_{\mu\nu} = \xi_1 R + \xi_2 R^{-m} \text{ with } R = -\frac{1}{\sqrt{\tau R}} 
\end{cases} \\
\frac{1}{\sqrt{\tau R}} & \begin{cases} 
R_{\mu\nu} = 0, \text{ with } R = -\frac{1}{\sqrt{\tau R}} 
\end{cases} \\
\hline
\end{array}
\]

If $f(R)$ is analytic, it is:

\[
f(R) = \Lambda + \Psi_0 R + \Psi(R), \quad (28)
\]

where $\Psi_0$ is a coupling constant, $\Lambda$ plays the role of the cosmological constant and $\Psi(R)$ is a generic analytic function of $R$ satisfying the condition

\[
\lim_{R \to 0} R^{-2} \Psi(R) = \Psi_1 \quad (29)
\]

where $\Psi_1$ is a constant. If we neglect the cosmological constant $\Lambda$ and $\Psi_0$ is set to zero, we obtain a new class of theories which, in the limit $R \to 0$, do not reproduce GR (from equation (29), we have $\lim_{R \to 0} f(R) \sim R^2$). In such a case analyzing the whole set of equations (22) and (23), one can observe that both zero and constant $\neq 0$ scalar curvature solutions are possible. In particular, if $R = R_0 = 0$ field equations are solved for every form of gravitational potentials entering the spherically symmetric background, provided that the Bernoulli equation (17), relating these functions, is fulfilled for the particular case $R(r) = 0$. The solutions are thus defined by the relation

\[
b(r) = \frac{\exp\left[-\int dr h(r)\right]}{K + 4 \int \frac{dr}{hr}[\exp[-\int dr h(r)]]}, \quad (30)
\]

being $B(t, r) = b(r)$ from equation (8). In table 1, we give some examples of $f(R)$-theories admitting solutions with constant $\neq 0$ or null scalar curvature. Each model admits Schwarzschild, Schwarzschild–de Sitter, and the class of solutions given by (30).

5. Solutions with curvature scalar function of $r$

Up to now we have discussed the behavior of $f(R)$-gravity seeking for spherically symmetric solutions with constant scalar curvature. This situation is well known in GR and gives rise to the Schwarzschild solution ($R = 0$) and the Schwarzschild–de Sitter solution ($R = R_0 \neq 0$). The problem can be generalized for $f(R)$-gravity considering the Ricci scalar as an arbitrary function of the radial coordinate $r$. 

This approach is interesting since, in general, higher-order gravity theories are supposed to admit such kinds of solutions and several such examples have been found in the literature [14, 21, 30, 32]. Here we want to face the problem from a general point of view.

If we choose Ricci scalar $R$ as a generic function of the radial coordinate ($R = R(r)$), it is possible to show that in this case also the solution of the field equations (9) and (10) is time independent (if $T_{\mu\nu} = 0$). In other words, the Birkhoff theorem holds. The crucial point of the approach is to study the off-diagonal $\{t, r\}$-component of (9) as well as in the case of GR.

This equation, for a generic $f(R)$, reads:

$$\frac{d}{dr} \left( r^2 f'(R) \right) B(t,r) = 0,$$

and two possibilities are in order. First, we can choose $\dot{B}(t,r) \neq 0$. This choice implies that $f'(R) \sim \frac{1}{r^2}$. If this is the case, the remaining field equation turns out to be not fulfilled and it can easily be recognized that the dynamical system encounters a mathematical incompatibility.

The only possible solution is given by $\dot{B}(t,r) = 0$ and then the gravitational potential has to be $B(t,r) = b(r)$. Considering also the $\{\theta, \theta\}$-equation one can determine that the gravitational potential $A(t,r)$ can be factorized with respect to the time, so that we get solutions which can be recast in the stationary spherically symmetric form after a suitable coordinate transformation.

As a matter of fact, even the more general radial dependent case admits time-independent solutions. From the trace equation and the $\{\theta, \theta\}$-component, we deduce a relation which links $A(t,r) = a(r)$ and $B(t,r) = b(r)$:

$$a(r) = \frac{b(r) e^{\frac{1}{3} \int \frac{R'}{R} \frac{df}{f} dr}}{r^2 R^2 f'^2},$$

(with $f'' \neq 0$) and also one which relates $b(r)$ and $f(R)$ (see also [30] for a similar result):

$$b(r) = \frac{6 \left[ f'(r R' f'')' - r R^2 f''^2 \right]}{rf(r R' f'' - 4 f') + 2 f'(r R(f' - r R' f'') - 3 r R f')).}

As above, three further equations have to be satisfied to completely solve the system (respectively the $\{t, t\}$ and $\{r, r\}$-components of the field equations and the Ricci scalar constraint) while the only unknown functions are $f(R)$ and the Ricci scalar $R(r)$.

If we now consider a fourth order model of the form $f(R) = R + \Phi(R)$, with $\Phi(R) \ll R$ we are capable of satisfying the whole set of equations up to the third order in $\Phi$. In particular, we can solve the whole set of equations: the relations (32) and (33) will give the general solution depending only on the forms of $\Phi(R)$ and $R = R(r)$, that is:

$$a(r) = \frac{b(r) e^{\frac{1}{3} \int \frac{R'}{R} \frac{df}{f} dr}}{r^2 R^2 \Phi'^2},$$

$$b(r) = -\frac{3(r R' \Phi')_R}{r R}.

This solution is one of the main results of this paper. In fact, once the radial dependence of the scalar curvature is obtained, equations (34) allow us to write down the solution of the field equations, and the gravitational potential related to the function $a(r)$ can be deduced. Furthermore, one can check the physical relevance of such a potential by means of the astrophysical data, see for example the analysis in [31]. As a final remark, we have to stress that the solution (34) has been achieved here for the vacuum case but, in general, $R(r)$ should be obtained from the source $T$ using the trace equation (3). This task is simpler for Palatini
approach than for the metric approach since, in the former case, the box operator is not present in the trace equation. For a detailed discussion, see [28, 29].

6. Perturbing the spherically symmetric solutions

The search for solutions in $f(R)$-gravity, in the case of Ricci scalar dependent on the radial coordinate, can be attempted by means of a perturbation approach. There are several perturbation techniques by which higher order gravity can be investigated in the weak field limit. A general approach is to start from analytical $f(R)$-theories assuming that the background model slightly deviates from the Einstein GR (this means considering $f(R) = R + \Phi(R)$ where $\Phi(R) \ll R$ as shown above). Another approach can be developed starting from the background metric considered as the 0th-order solution. Both these approaches assume the weak field limit of a given higher-order gravity theory as a correction to the Einstein GR, supposing that zero order approximation should yield the standard lore.

Both these methods can provide interesting results on the astrophysical scales where spherically symmetric solutions characterized by small values of the scalar curvature can be taken into account.

In the following, we will consider the first approach assuming that the background metric matches, at zero order, the GR solutions.

In general, searching for solutions by means of a perturbation technique means also perturbing the metric $g_{\mu\nu} = g_{\mu\nu}^{(0)} + g_{\mu\nu}^{(1)}$. This implies that the field equations (9) and (10) split, up to the first order, into two levels. Besides, a perturbation on the metric acts also on the Ricci scalar $R$ (see the relation (13)) and then we can Taylor expand for the analytic $f(R)$ about the background value of $R$, i.e.:

$$f(R) = \sum_{n} f^{(0)}_n / n! [R - R^{(0)}]^n = \sum_{n} \frac{f^{(0)}_n}{n!} R^{(1)n}.$$  \hfill (36)

However the above condition $\Phi(R) \ll R$ has to imply the validity of the linear approximation $f''(R^{(0)})/f'(R^{(0)})R^{(1)} \ll 1$. This is demonstrated by assuming $f'(R) = 1 + \Phi'(R)$ and $f''(R) = \Phi''(R)$. Immediately we obtain that the condition is fulfilled for

$$\frac{\Phi''(R^{(0)}) R^{(1)}}{1 + \Phi'(R^{(0)})} \ll 1.$$  \hfill (37)

For example, given a Lagrangian of the form $f(R) = R + \frac{\mu}{R}$, it means

$$\frac{2\mu R^{(1)}}{R^{(0)^2} - \mu} \ll 1,$$  \hfill (38)

while, for $f(R) = R + \alpha R^2$, it is

$$\frac{2\alpha R^{(1)}}{1 + 2\alpha R^{(0)}} \ll 1.$$  \hfill (39)

This means that the validity of the approximation depends strictly on the form of the models and the value of the parameters, in the previous case $\mu$ and $\alpha$. For the considerations below, we will assume that this validation holds. A detailed discussion for the Palatini formalism can be found in [28, 29].

The zero-order field equations read:

$$f'^{(0)} g^{(0)}_{\mu\nu} - \frac{1}{2} g^{(0)}_{\mu\nu} f'^{(0)} + \Lambda^{(0)} g^{(0)}_{\mu\nu} = \frac{\mathcal{N}}{2} T^{(0)}_{\mu\nu}.$$  \hfill (40)
where
\[
\mathcal{H}^{(0)}_{\mu\nu} = -f^{(0)} \left\{ R^{(0)}_{\mu\nu} - \Gamma^{(0)}_{\mu\nu\rho} R^{(0)}_{\rho} - g^{(0)}_{\mu\nu} \left( g^{(0)}_{\rho\sigma} R^{(0)}_{\rho\sigma} + g^{(0)}_{\rho\sigma} \ln \sqrt{-g_{\rho\sigma} R^{(0)}_{\rho\sigma}} \right) \right\}
- f^{(0)} \left\{ R^{(0)}_{\mu\nu} - g^{(0)}_{\mu\nu} R^{(0)}_{\rho} \right\}.
\] (41)

In the first order one has:
\[
f^{(0)} \left\{ R^{(1)}_{\mu\nu} - \frac{1}{2} f^{(0)} g^{(0)}_{\mu\nu} R^{(1)} \right\} + f^{(0)} R^{(1)}_{\mu\nu} = \frac{1}{2} f^{(0)} g^{(0)}_{\mu\nu} + \mathcal{H}^{(1)}_{\mu\nu} = \frac{\lambda}{2} T^{(1)}_{\mu\nu} \] (42)

with
\[
\mathcal{H}^{(1)}_{\mu\nu} = -f^{(0)} \left\{ R^{(1)}_{\mu\nu} - \Gamma^{(1)}_{\mu\nu\rho} R^{(1)}_{\rho} - g^{(0)}_{\mu\nu} \left( g^{(1)}_{\rho\sigma} R^{(1)}_{\rho\sigma} + g^{(1)}_{\rho\sigma} \ln \sqrt{-g_{\rho\sigma} R^{(1)}_{\rho\sigma}} \right) \right\}
+ g^{(0)}_{\mu\nu} \left( g^{(1)}_{\rho\sigma} R^{(1)}_{\rho\sigma} + g^{(1)}_{\rho\sigma} \ln \sqrt{-g_{\rho\sigma} R^{(1)}_{\rho\sigma}} \right)
- f^{(0)} \left\{ R^{(0)}_{\mu\nu} R^{(1)} - g^{(0)}_{\mu\nu} R^{(1)}_{\rho} \right\}
- f^{(0)} \left\{ R^{(0)}_{\mu\nu} R^{(1)} - g^{(0)}_{\mu\nu} R^{(1)}_{\rho} \right\}.
\] (43)

As part of the analyticity, no hypothesis has been invoked on the form of \( f(R) \). As a matter of fact, \( f(R) \) can be completely general. At this level, to solve the problem, the zero-order solution of equations (40) which, in general, could be a GR solution is required. This problem can be overcome assuming the same order of perturbation on the \( f(R) \), that is:
\[
f = R + \Phi(R),
\] (44)

where \( \Phi(R) \) is a generic function of the Ricci scalar fulfilling the prescription \( \Phi \ll R \). Then we have
\[
f = R^{(0)} + R^{(1)} + \Phi^{(0)}, \quad f' = 1 + \Phi^{(0)}, \quad f'' = \Phi^{(0)}, \quad f''' = \Phi^{(0)}.
\] (45)

and equations (40) reduce to the form
\[
R^{(0)}_{\mu\nu} - \frac{1}{2} R^{(0)} g^{(0)}_{\mu\nu} = \frac{\lambda}{2} T^{(0)}_{\mu\nu}.
\] (46)

On the other hand, equations (42) reduce to
\[
R^{(1)}_{\mu\nu} - \frac{1}{2} g^{(0)}_{\mu\nu} R^{(1)}_{\rho} - \frac{1}{2} g^{(0)}_{\mu\nu} \Phi^{(0)} + \Phi^{(0)} R^{(1)}_{\mu\nu} + \mathcal{H}^{(1)}_{\mu\nu} = \frac{\lambda}{2} T^{(1)}_{\mu\nu}.
\] (47)

where
\[
\mathcal{H}^{(1)}_{\mu\nu} = -\Phi^{(0)} \left\{ R^{(0)}_{\mu\nu} - g^{(0)}_{\mu\nu} R^{(0)}_{\rho} \right\} - \Phi^{(0)} \left\{ R^{(0)}_{\mu\nu} - \Gamma^{(0)}_{\mu\nu} R^{(0)}_{\rho} \right\}
- g^{(0)}_{\mu\nu} \left( g^{(0)}_{\rho\sigma} R^{(0)}_{\rho\sigma} + g^{(0)}_{\rho\sigma} \ln \sqrt{-g_{\rho\sigma} R^{(0)}_{\rho\sigma}} \right) \right\}.
\] (48)

The new system of field equations is evidently simpler than the starting one and once the zero order solution is obtained, the solutions at the first order correction can easily be achieved. In table 2, a list of solutions, obtained with this perturbation method, is given considering different classes of \( f(R) \)-models.
Some remarks on these solutions are in order up to this point. In the case of \( f(R) \)-models which are evidently corrections to the Hilbert–Einstein Lagrangian as \( \Lambda + R + \epsilon R \ln R \) and \( R + \epsilon R^n \), with \( \epsilon \ll 1 \), one obtains exact solutions for the gravitational potentials \( a(r) \) and \( b(r) \) related by \( a(r) = b(r)^{-1} \). The first order expansion is straightforward as in GR. If the functions \( a(r) \) and \( b(r) \) are not related, for \( f(R) = \Lambda + R + \epsilon R \ln R \), the first order system is directly solved without any prescription on the perturbation functions \( x(r) \) and \( y(r) \). This is not the case for \( f(R) = R + \epsilon R^n \) since, for this model, one can obtain an explicit constraint on the perturbation function implying the possibility of deducing the form of the gravitational potential \( \phi(r) \) from \( a(r) = 1 + \frac{2\epsilon r}{c^2} \). In such a case, no corrections are found with respect to
the standard Newtonian potential. The theories $f(R) = R^n$ and $f(R) = \frac{R}{(\xi + R)}$ show similar behavior. The case $f(R) = R^2$ is peculiar and it has to be dealt with independently.

7. Conclusions

General relativity has been consistently tested in physical situations implying, essentially, spherical symmetry and weak field limit [49]. One of the fundamental and obvious issues that any theory of gravity should satisfy is the fact that, in the absence of gravitational field or very far from a given distribution of sources, the spacetime has to be asymptotically flat (Minkowski). Any alternative or modified gravitational theory (beside the diffeomorphism invariance and the general covariance) should address these physical requirements to be compared consistently with GR. This is a crucial point which several times is not considered when we construct weak field limits for alternative theories of gravity.

In this paper, we have faced this problem discussing, in the most general way, what the meaning of spherical solutions is in $f(R)$-theories of gravity and when the standard results of GR are recovered in the limits $r \to \infty$ and $f(R) \to R$. Essentially, spherical solutions can be classified, with respect to the Ricci curvature scalar $R$, as $R = 0$, $R = R_0 \neq 0$, and $R = R(r)$, where $R_0$ is a constant and $R(r)$ is a function of the radial coordinate $r$. In these cases, the Birkhoff theorem holds which means that stationary solutions are also static. However, as shown in the companion paper [34], this theorem does not hold, in general, for every $f(R)$-theory since time-dependent evolution can emerge depending on the order of perturbations.

In order to achieve exact spherical solutions, a crucial role is played by the relations existing between the metric potentials and between them (metric potentials) and the Ricci curvature scalar. In particular, the relations between the metric potentials and the Ricci scalar can be used as a constraint giving a Bernoulli equation. Solving this Bernoulli equation, in principle, spherically symmetric solutions can be obtained for any analytic $f(R)$-function, both for the constant curvature scalar and for the curvature scalar depending on $r$.

Such spherically symmetric solutions can be used as background to test how generic $f(R)$-theories of gravity deviate from GR. Particularly interesting are those theories that imply $f(R) \to R$ in the weak field limit. In such cases, the experimental comparison is straightforward and also experimental results, evading GR constraints, can be framed in a self-consistent picture [26].

Finally, we have constructed a perturbation approach in which we searched for spherically symmetric solutions at the zeroth-order and then we searched for solutions at the first order. The scheme is iterative and could be, in principle, extended to any order in perturbations. The crucial point is to take into account $f(R)$-theories which are Taylor expandable about some value $R = R_0$ of the curvature scalar.

A important remark seems in order at this point. Considering interior and exterior solutions, the junction conditions are related to the integration constants of the problem and depend strictly on the source (e.g. the form of $T$). We have not considered this aspect here since we have, essentially, searched for vacuum solutions. However, such a problem has to be faced carefully in order to deal with physically consistent solutions. For example, the Schwarzschild solution $R = 0$, which is one of the exterior solutions that we have considered, always satisfies the junction conditions with physically interesting interior metric. This is not the case for several spherically symmetric solutions which could give rise to unphysical junction conditions and not be in agreement with Newton’s law of gravitation, also asymptotically. In these cases, such solutions have to be discarded. A detailed analysis in this sense is given in the paper.
[42] for spherically symmetric solutions obtained in the Palatini formalism, and in [43] for the metric approach.

References

[1] Riess A G et al 1998 Astron. J. 116 1009
Riess A G et al 2004 Astrophys. J. 607 665
Perlmutter S et al 1999 Astrophys. J. 517 565
Perlmutter S et al 2006 Astron. Astrophys. 447 31

[2] Cole S et al 2005 Mon. Not. R. Astron. Soc. 362 505

[3] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
Spergel D N et al 2007 Astrophys. J. Suppl. 170 377

[4] Padmanabhan T 2003 Phys. Rept. 380 235

[5] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559

[6] Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753

[7] Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
Caldwell R R, Dave R and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582

[8] Kamenshchik A Y, Moshella U and Pasquier V 2001 Phys. Lett. B 511 265
Bilić N, Tupper G B and Viollier R D 2002 Phys. Lett. B 535 17
Bento M C, Bertolami O and Sen A A 2003 Phys. Rev. D 67 063503

[9] Cardone V F, Tortora C, Troisi A and Capozziello S 2006 Phys. Rev. D 73 043508

[10] Caldwell R R 2002 Phys. Lett. B 545 23
Singh P, Sumi M and Dadhich N 2003 Phys. Rev. D 68 023522
Nojiri S, Odintsov S D and Tsujikawa S 2005 Phys. Rev. D 71 063004
Faraoni V 2005 Class. Quantum Grav. 22 3235

[11] Dvali G R, Gabadadze G and Porrati M 2000 Phys. Lett. B 485 208
Dvali G R, Gabadadze G, Kolanovic M and Nitti F 2001 Phys. Rev. D 64 084004
Dvali G R, Gabadadze G, Kolanovic M and Nitti F 2002 Phys. Rev. D 64 024031
Maartens R 2004 Living Rev. Rel. 7 7

[12] Higuchi 1986 Nucl. Phys. B 282 397
Gorbunov D, Koyama K and Sibiryakov S 2006 Phys. Rev. D 73 044016
Koyama K 2005 Phys. Rev. D 72 123511

[13] Faraoni V 2005 Phys. Rev. D 72 124005
Cognola G and Zerbini S 2006 J. Phys. A: Math. Gen. 39 6245
Cognola G, Gastaldi M and Zerbini S 2007 (Preprint gr-qc/0701138)

[14] Stelle K S 1978 Gen. Rel. Grav. 9 353

[15] Capozziello S 2002 Int. J. Mod. Phys. D 11 483
Capozziello S, Carlone S and Troisi A 2003 Rec. Res. Develop. Astron. Astrophys. 1 625 (Preprint astro-ph/0303041)
Capozziello S, Cardone V F, Carlone S and Troisi A 2003 Int. J. Mod. Phys. D 12 1969

[16] Nojiri S and Odintsov S D 2003 Phys. Lett. B 576 5
Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 12352
Carroll S M, Duvvuri V, Trodden M and Turner M S 2004 Phys. Rev. D 70 043528
Allemandi G, Borowiec A and Francaviglia M 2004 Phys. Rev. D 70 103503
Capozziello S, Cardone V F and Troisi A 2005 Phys. Rev. D 71 043503
Carlone S, Dunsby P K S, Capozziello S and Troisi A 2005 Class. Quantum Grav. 22 4839

[17] Li J and Barrow J D 2007 Phys. Rev. D 75 084010
Carlone S, Dunsby P K S and Troisi A 2007 (Preprint gr-qc/0707.0106)

[18] Bean R, Bernat D, Pogosian L, Silvestri A and Trodden M 2007 Phys. Rev. D 75 064020
Song Y S, Hu W and Sawicki I 2007 Phys. Rev. D 75 044004

[19] Capozziello S and Francaviglia M 2008 Gen. Rel. Grav. Special issue on Dark Energy 40 357

[20] Nojiri S and Odintsov S D 2007 Int. J. Mod. Phys. D 4 115

[21] Capozziello S, Cardone V F and Troisi A 2006 J. Cosmol. Astropart. Phys. JCAP08(2006)001
Capozziello S, Cardone V F and Troisi A 2007 Mon. Not. R. Astron. Soc. 375 1423

[22] Martina C Figerio and Salucci P 2007 Mon. Not. R. Astron. Soc. (Preprint astro-ph/0703243) (to appear in)

[23] Sobouti Y 2007 A&A 464 921

[24] Mendoza S and Rosas-Guevara Y M 2007 Astron. Astrophys. 472 367
[25] Salucci P, Lapi A, Tonini C, Gentile G, Yegorova I and Klein U 2007 *Preprint* astro-ph/0703115
[26] Bertolami O, Boehmer Ch G, Harko T and Lobo F S N 2007 *Phys. Rev. D* 75 104016
[27] Olmo G I 2005 *Phys. Rev. Lett.* 95 261102
   Capozziello S and Troisi A 2005 *Phys. Rev. D* 72 044022
   Chiba T 2005 *Phys. Lett. B* 575 1
   Faraoni V 2006 *Phys. Rev. D* 74 023529
   Allemandi G, Francaviglia M, Ruggiero M L and Tartaglia A 2005 *Gen. Rel. Grav.* 37 1891
[28] Sotiriou T P 2006 *Gen. Rel. Grav.* 38 1407
[29] Bustelo A J and Barraco D E 2007 *Class. Quantum Grav.* 24 2333
[30] Multamäki T and Vilja I 2006 *Phys. Rev. D* 74 064020
[31] Kainulainen K, Pullonen J, Reijonen V and Sunhede D 2007 *Phys. Rev. D* 76 024020
[32] Capozziello S, Stabile A and Troisi A 2007 *Class. Quantum Grav.* 24 2153
[33] Capozziello S, Stabile A and Troisi A 2006 *Mod. Phys. Lett. A* 21 2291
[34] Capozziello S, Stabile A and Troisi A 2007 *Phys. Rev. D* 76 104019
[35] Hu W and Sawicki I 2007 *Phys. Rev. D* 76 064004
[36] Starobinsky A A 2007 *JETP Lett.* 86 157
[37] Appleby S A and Battye R A 2007 *Phys. Lett. B* 654 7
[38] Tsujikawa S 2008 *Phys. Rev. D* 77 023507
[39] Nojiri S and Odintsov S D 2007 *Phys. Lett. B* 652 343
[40] Clifton 2006 *PhD Thesis* (Preprint gr-qc/0610071)
[41] Whitt B 1988 *Phys. Rev. D* 38 3000
[42] Barraco D E and Hamity V H 2000 *Phys. Rev. D* 62 044027
[43] Havas P 1977 *Gen. Rel. Grav.* 8 631
[44] Hawking S W and Ellis G F R 1973 *The Large Scale Structure of Space-time* (Cambridge, UK: Cambridge University Press)
[45] Vollick D N 2003 *Phys. Rev. D* 68 063510
   Meng X H and Wang P 2003 *Class. Quantum Grav.* 20 4949
   Flanagan E E 2004 *Phys. Rev. Lett.* 92 071101
   Flanagan E E 2004 *Class. Quantum Grav.* 21 417
   Meng X H and Wang P 2004 *Class. Quantum Grav.* 21 951
   Kremer G M and Alves D S M 2004 *Phys. Rev. D* 70 023503
   Allemandi G, Borowiec A and Francaviglia M 2004 *Phys. Rev. D* 70 103503
[46] Allemandi G, Capone M, Capozziello S and Francaviglia M 2006 *Gen. Rel. Grav.* 38 33
[47] Barrow J D and Ottewill A C 1983 *J. Phys. A: Math. Gen.* 16 2757
[48] Will C M 1981 *Theory and Experiment in Gravitational Physics* (Cambridge: Cambridge University Press)
   Will C M 1993 *Theory and Experiment in Gravitational Physics* 2nd edn (New York: Cambridge University Press)
   Will C M 2001 *Living Rev. Rel.* 4 4