Resistance of *Rosa* Species and Cultivars to *Pratylenchus penetrans*

Yunliang Peng¹, Wanrong Chen¹, and Maurice Moens²

Department of Crop Protection, Agricultural Research Center, Burg. Van Gansberghelaan 96, Merelbeke B-9820, Belgium

Additional index words. host suitability, multiplication factor, root-lesion nematode, *Rosa corymbifera* ‘Laxa’, *R. canina* ‘Pollermiana’, *R. laevigata anemoides*, *R. virginiana*, Pf/Pi

Abstract. Methods to screen for resistance to root-lesion nematode *Pratylenchus penetrans* in *Rosa* were modified to screen-rooted materials. Sixty days after rooting, plants were transplanted into 50-mL pots filled with river sand and each inoculated with 500 *P. penetrans* in 400 µL water 10 days later. The inoculated plants were fertilized weekly and incubated in a growth chamber or a greenhouse for 5 months when nematodes were extracted from the sand and root system and enumerated. When used for screening of the 131 *Rosa* accessions, this approach allowed the observation of a large variation in host suitability. While a majority of the accessions supported the multiplication of *P. penetrans*, previously reported resistance of *R. multiflora* ‘K1’ and *R. virginiana* to *P. penetrans* was confirmed. *Rosa laevigata anemoides* allowed a significantly lower nematode multiplication than the currently prevalent rootstock *R. corymbifera* ‘Laxa’.

The root-lesion nematode, *Pratylenchus penetrans* (Cobb, 1917) Filip’ev & Schuurmans Stekhoven, 1941, is a biotrophic plant parasite on a wide range of hosts mainly in temperate climates. It is one of the principal nematode species infecting ornamental plants. The nematode causes destruction of the root system, which results in loss of vigor in young plants. Serious losses in roses caused by *P. penetrans* were reported in California (Sher, 1959), Canada (Johnson and McClannahan, 1974), Japan (Ohkawa and Saigusa, 1981), and Europe (Coolen and D’Herde, 1970; Coolen and Hendrickx, 1972; Corbett, 1973).

Satisfactory control of *P. penetrans* in the field is achieved by the application of fumigant or non-fumigant nematicides (Corbett, 1973; Richardson and Grewal, 1993). However, increasing concern about environmental contamination stimulates the use of alternative control strategies that make use of resistance and tolerance of species and cultivars (Dubois et al., 1990; Horst, 1983). Resistance and susceptibility of many *Rosa* spp. have been evaluated (Cook and Evans, 1987). Plants that are resistant (support fewer nematodes) or are tolerant (do not exhibit growth reduction) improve nematode management and crop development. The extractable population density in soil and roots of infected plants at the end of the growing season (Pi) and its ratio (Pf/Pi) to the initial population density (Pi) of nematodes are common measurements for comparison of host suitability of plants (Westcott and Zehr, 1991). Accessions with Pf/Pi ratio less than one are considered resistant in that they do not support nematode reproduction. Measurements of plant growth characters are indicators of tolerance (Cook and Evans, 1987).

Resistance and tolerance to nematodes have been important components in a few rose breeding programs (Dubois et al., 1990; Horst, 1983). *Rosa eglanteria* (syn. *R. rubiginosa*) and *R. chinensis* ‘Major’ were found to be the least suitable *Rosa* hosts of *P. penetrans* (Coolen and Hendrickx, 1972; Ohkawa and Saigusa, 1981). In a previous study, we detected partial resistance to *P. penetrans* in *R. virginiana*, which supported significantly lower multiplication of the nematode than the control *R. corymbifera* ‘Laxa’ (Peng and Moens, 2002a). In the present study, we evaluated the host suitability of 131 accessions of *Rosa* sp. for *P. penetrans*.

Materials and Methods

Inoculum preparation. The population of *P. penetrans* used in this study was isolated in a mist chamber (Seinhorst, 1950) from maize roots collected in a field at Lokeren, Belgium. Traditional species identification using morphology and morphometrics was confirmed with rDNA-RFLP patterns compared to those obtained by Waeyenberge et al. (2000). Isolated nematodes were sterilized with a mixture of malachite green and streptomycin sulfate for 10 min (Peng and Moens, 1999) and were cultured in the sand and root system and enumerated. The adult to juvenile ratio of the inoculum varied between 1 and 1.2. The sequence of extraction, sterilization, and culturing on carrot disks was repeated to build up and to maintain the nematode population. The isolate used in this study was shown to be pathogenic on *Rosa* after its inoculation on seedlings of *Rosa corymbifera* ‘Laxa’ (Peng and Moens, 2002b). Determination of optimum inoculation density. Optimum inoculation density was identified in an experiment conducted in a growth chamber. Fifty-day-old plants of the known susceptible standard *R. corymbifera* ’Laxa’ were transplanted into 50-mL pots filled with sand (sizes between 150–212 µm) and amended with 27.75 mg·mL⁻¹ soluble composed fertilizer M77 (Scotts, The Netherlands) according to Peng and Moens (2002a) and subjected to a 12-h photoperiod and temperature and relative humidity set at 22 °C and 85% during the light and 20 °C and 80% during the dark. Ten days later they were inoculated at their base with 125, 250, 500, or 1000 mobile stages including larvae and adults of *P. penetrans* that had passed through the filter paper placed under the carrot disks in the mist chamber. Nematodes were inoculated in 400 µL water. Plants were placed in a completely randomized design. Each treatment was replicated 8 to 10 times. Each week, every pot was watered (10 mL) twice and fertilized once (10 mL) with 7.5 mg·mL⁻¹ M77 fertilizer. Fifty days after inoculation, *P. penetrans* density was determined separately in the sand and the roots. Roots were cut into 1–2 cm fragments and macerated in 500 mL water in a Waring blender for 90 s. Nematodes were extracted from both the obtained nematode-root suspension or the sand with a fully automated nematode extractor based on centrifugation (Hendrickx, 1995). All the nematodes in the 10 mL extract were counted under a dissecting microscope.

Plant material. A total of 131 accessions of *Rosa* was obtained from different sources (Table 1). The collection was composed of 29 tea or hybrid tea rose cultivars, 11 floribunda roses, 9 hybrid musk roses, 7 shrub roses, 23 other modern roses, 35 accessions of a total of 24 botanical *Rosa* species or subspecies, and 17 other old garden roses. The accessions were classified according to the American Rose Society (ARS) Approved Horticultural Classification (Liberta and Young, 2000). The rootstocks *R. corymbifera* ‘Laxa’ and *R. canina* ‘Pollermiana’ (Pf/Pi = 15.8 and 24.2, respectively) were assigned as standards with known susceptibility.

As seeds were not available for the majority of the screened accessions, each accession was propagated by dipping hardwood cuttings (two leaves) in a mixture of active carbon and 2000 ppm IBA and planted in a shaded greenhouse in a 1:1 sand (v/v) mixture previously pasteurized with steam at 80 °C in late June. Forty days later, the majority of the plants were successfully rooted. After another 20 d, the rooted plants with 3–4 roots and 4–6 new leaves were uprooted. The peat was washed off and plants were transplanted singly into 50-mL plastic pots (see above).

Screening. From Aug. 1998 to Jan. 1999, plants of 59 accessions were screened in a growth chamber (conditions as above). From Aug. 1999 to Jan. 2000, another 72 accessions were screened in the greenhouse (20 to 22 °C) along with ‘Barcarolle’, ‘Pauline Sport’, ‘Pink Prosperity’, ‘Rose Romantic’, and *R. laevigata*

Received for publication 14 Jan. 2002. Accepted for publication 5 Dec. 2002.

¹On study leave from Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Jinjusi Road 20, Chengdu 610066, China.
²Also affiliated with Laboratory for Agrozoology, Univ. of Gent, Coupare 555, 9000 Gent, Belgium. To whom reprint requests should be sent. E-mail address: m.moens@clos.gov.be.

HortScience, Vol. 38(4), July 2003

HortScience 38(4):560–564. 2003.

560

HortScience, Vol. 38(4), July 2003

HortScience, Vol. 38(4), July 2003
Table 1. Host reaction of *Rosa* accessions to *Pratylenchus penetrans* 5 months after inoculation with 500 nematodes in 400 µL water in the 1998–2000 screening.

Rosa accessions	Breeder	Group	Source	n	Difference in Pf/Pi Within groups	Maximum Pf/Pi in one of the three replicates	
Barcarolle	Laperrière, 1959	HT MR	DPGB	5	1.49	A	4.25
Aruba	Spek, 1996	HT MR	DPGB	3	1.69	A	4.04
G.D. Jardins de Bagatelle	de Bagatelle, 1986	HT MR	DPGB	3	1.89	A	5.06
Red Unica	HT MR	DPGB	3	1.95	A	3.04	
Frederik Chopin	Zyla, 1973	HT MR	DPGB	3	2.27	A	4.04
Pavarotti	deRuiter, 1993	HT MR	DPGB	3	2.38	A	2.76
Dame de Coeur	Lens, 1958	HT MR	DPGB	3	2.47	A	4.78
Paline Sport	RvS-Melle, 1989	HT MR	DPGB	7	2.49	A	7.24
Velvet Fragrance	Fryer’s Nursery Ltd., 1988	HT MR	DPGB	3	2.97	A	4.54
Isabelle	RvS-Melle, 1989	HT MR	DPGB	3	3.09	A	3.96
Christine	McGredy, 1918	HT MR	DPGB	3	3.66	A	5.04
Rossini	HT MR	DPGB	3	3.97	AB	6.74	
Gypsy Curiosa	HT MR	DPGB	3	4.01	AB	5.42	
Inka	Tantau, 1978	HT MR	DPGB	3	4.03	AB	6.24
Dream	Dramm, 1938	HT MR	DPGB	3	4.17	AB	8.44
Limona	Kordes, 1993	HT MR	DPGB	3	5.07	A	5.22
Josée	RvS-Melle, 1987	HT MR	DPGB	3	5.67	A	12.78
Orange Unique	HT MR	DPGB	3	5.77	AB	7.36	
Versa	HT MR	DPGB	3	5.83	A	6.50	
Texas	Kordes, 1993	HT MR	DPGB	3	5.91	A	6.44
Kiss	HT MR	DPGB	3	5.97	AB	11.50	
Pascali	Lens, A. Dickson, 1963	HT MR	DPGB	3	6.11	AB	9.36
Auguste Renoir	Meilland, A. A., 1992	HT MR	DPGB	3	7.38	A–C	11.34
Helena	RvS-Melle, 1988	HT MR	DPGB	3	8.53	A–C	12.48
Sweet Shot	HT MR	DPGB	3	8.97	ABC	16.12	
Madelon	de Ruiter, G., 1987	HT MR	DPGB	3	13.74	BC	17.02
Red Calypso	HT MR	DPGB	4	17.00	C	23.88	
Katrien	RvS-Melle, 1990	HT MR	DPGB	3	32.76	D	35.56
Ville du Reux	RvS-Melle, 1989	F MR	DPGB	5	1.64	A	3.48
Mercedes	Kordes, R., 1974	F MR	DPGB	3	2.30	AB	5.66
Rose Romantic	Kordes, 1984	F MR	DPGB	12	2.83	AB	8.14
Modern Fire	F MR	DPGB	3	2.99	AB	4.02	
Floranje	RvS-Melle, 1985	F MR	DPGB	4	4.30	AB	6.84
Miracle	Verbeek, 1962	F MR	DPGB	3	4.37	AB	5.38
Red Velvet	Kordes, 1940	F MR	DPGB	3	5.85	AB	7.50
Gaetane	RvS-Melle, 1985	F MR	DPGB	3	7.75	AB	9.46
Bonica	Meilland, F., 1958	F MR	DPGB	3	9.81	A–C	13.06
Vanille	Kordes, 1994	F MR	DPGB	4	12.05	BC	20.26
Melghory	RvS-Melle, 1982	F MR	DPGB	3	19.39	C	28.24
Pink Prosperity	Bentall, 1931	HMsk MR	DPGB	8	1.81	A	6.01
Lavender Lassie	Kordes, 1960	HMsk MR	DPGB	5	2.05	A	3.93
Felicia	Pemberton, 1928	HMsk MR	DPGB	3	3.19	A	4.52
Plaisanterie	Lens, 1996	HMsk MR	DPGB	3	3.23	A	5.78
Diamond Rose	Lens, 1995	HMsk MR	DPGB	3	5.97	A	9.86
Ravel	Lens, 1987	HMsk MR	DPGB	4	6.43	A	8.70
Jacqueline Humery	Lens, 1995	HMsk	DPGB	3	6.75	A	9.46
Moonlight	Pemberton, 1913	HMsk MR	DPGB	3	6.82	A	7.86
Mozart	P. Lambert, 1937	HMsk MR	DPGB	6	7.68	A	11.52
Camenetta	Central Exp. Farm, 1923	S MR	DPGB	3	2.16	A	2.65
William Shakespeare	Austin, David, 1987	S MR	DPGB	3	2.31	A	2.46
Fredica	INRA, 1974	S MR	INRA	3	2.59	A	4.88
Rush	Lens, 1983	S MR	DPGB	3	3.97	A	5.90
Heidtraum	Noack, W., 1991	S MR	DPGB	3	5.26	AB	7.16
Graham Thomas	Austin, David, 1983	S MR	DPGB	6	5.39	AB	6.92
x 8914	Lens, 1989	MR	DPGB	4	1.74	A	3.71
Pink Surprise	Lens, 1890	Min MR	DPGB	3	1.93	A	3.46
Flash	Hatton, 1938	LCI MR	DPGB	3	1.95	A	3.28
x 8843	Lens, 1988	MR	DPGB	6	2.27	A	4.34
Swany	Meilland, Mrs. Marie-Louis, 1978	Min MR	DPGB	3	2.54	A	6.71
Lena	Dickson, R., 1906	T MR	DPGB	3	2.55	A	4.58
Enigma	MR	DPGB	3	3.17	A	3.58	
New Dawn Somerset	Somerset Rose Nursery, 1930	LCI MR	DPGB	3	3.20	A	6.51
Max Graf	Bowditch, 1919	HRg MR	DPGB	3	3.67	A	12.89
Dr Huey	Thomas, 1914	LCI MR	INRA	3	3.94	A	5.34
Veilchenblau	Schmidt, J.C., 1909	HMult MR	DPGB	3	4.29	A	5.77
Prairie	MR	DPGB	3	4.56	A	6.78	
Marstem	MR	INRA	3	5.10	A	11.60	
Kathleen Harrop	Dickson, A., 1919	B MR	DPGB	3	6.20	A	7.96

continued on next page.
Table 1. Continued.

Rosa accessions	Breeder	Groupa	Sourceb	n	Difference in Pf/Pi within groupsa	Difference in Pf/Pi between all accessionsa	Maximum Pf/Pi in one of the three replicates
Excelsa	Walsh, 1909	HWiCh	DPGB	3	6.57 A a–c	9.16	
Josephine Charlotte		MR	DPGB	3	7.23 A a–c	13.82	
Mevr. Nathalie Nypels	Leenders, M., 1919	Pol. MR	DPGB	3	7.73 A a–c	13.82	
× R. semprevirens	Linnaeus						
Neigé d'été	Gailloux, G., 1984	Min MR	DPGB	3	11.38 A a–d	17.94	
Romantic Curiosa		MR	DPGB	4	11.48 A a–d	15.86	
Sander's White Rambler	Sanders and Sons, 1912	HwHich	DPGB	9	12.69 A a–e	32.56	
Yesterday	Harkness, 1974	Pol MR	DPGB	3	14.08 A a–e	25.06	
R. indica CE33		Sp OGR INRA	3	1.53 A a	2.50		
R. indica CE35		Sp OGR INRA	3	2.57 A a	3.74		
R. indica CE4		Sp OGR INRA	5	2.60 A a	4.66		
R. indica CE20		Sp OGR INRA	3	2.73 A a	3.08		
R. indica CE25-1		Sp OGR INRA	3	5.29 A a-c	7.58		
R. indica CE7-1-1		Sp OGR INRA	3	5.82 A a-c	8.56		
R. indica 64-11-85-1		Sp OGR INRA	3	42.60 A g	91.60		
R. multiflora K1		Sp OGR INRA	5	0.88 A a	2.48		
R. multiflora cathayensis		Sp OGR INRA	5	5.08 A a-c	7.62		
R. multiflora ‘Alfred Dietrich’		Sp OGR DPGB	3	8.43 A a-c	11.99		
R. multiflora ‘Catholica angelica’		Sp OGR DPGB	3	10.39 A a-c	10.50		
R. multiflora Thunberg		Sp OGR INRA	3	13.34 A a-c	17.62		
R. multiflora Thuinen		Sp OGR Lens	3	15.55 A a-c	30.94		
R. glauca Prouet (syn. R. rubrifolia)		Sp OGR Lens	3	0.75 A a	1.19		
R. californica Chamisso and Schlechtendahl		Sp OGR Lens	3	1.10 AB a	1.48		
R. holodonta Stark		Sp OGR INRA	3	3.20 A-C a-c	3.89		
R. glauca Prouet		Sp OGR Lens	3	3.24 A-C a-c	4.53		
R. hemisphaerica Hermann		Sp OGR Lens	3	3.37 A-C	4.49		
R. spinissima Linnaeus		Sp OGR DPGB	4	3.99 A-C	6.80		
R. gallica Linnaeus		Sp OGR Lens	3	5.21 A-C	9.07		
R. nitida Willnow		Sp OGR Lens	6	5.86 A-C a	12.39		
R. palustris nutalliana Rehder		Sp OGR DPGB	3	7.82 A-C	9.82		
R. corymbifera ‘Laxa’		Sp OGR Standart	4	15.85 A-C a-c	22.64		
R. virginiana Miller		Sp OGR Lens	4	16.5 A-C a-f	32.44		
R. hagomins Hemley		Sp OGR Lens	3	22.83 BC bc	44.82		
R. canina ‘Polmeriana’		Sp OGR INRA	3	24.2 C abc	39.16		
R. laevigate anemoides		OGR	Lens	5	0.56 A a	0.80	
R. johannisens		OGR INRA	6	1.37 A a	2.93		
R. beggeriana postmarian		OGR DPGB	3	2.32 A a	5.65		
R. tomentos cinerascens		OGR DPGB	3	2.44 A ab	2.55		
Jules Margottin	Margottin, 1853	HP OGR DPGB	9	2.48 A ab	5.00		
R. glauca carmenetta		OGR DPGB	3	2.87 A a	3.60		
König von Dinemark	Booth, 1826	A OGR DPGB	3	4.35 A ab	5.16		
R. pendula × R. tomentosa var. ‘Denudata’		OGR	Lens	3	5.38 A a-c	11.22	
R. noisettiana ‘Manetti’		N OGR INRA	4	6.08 A a-c	10.22		
R. noisettiana ‘Manetti’ CE2		N OGR INRA	3	6.39 A a-c	8.28		
R. virginiana × macrophylla		OGR	Lens	3	6.53 A a-c	7.79	
Rosa × Mariae Graebneriae	Ascheson and Graebner	OGR DPGB	3	7.23 A a-c	10.55		
Coupe d’Hébé	Laflay, M., 1840	OGR HP DPGB	3	9.26 A a-c	10.62		
R. chinesis Jacquin		Ch OGR Lens	3	9.56 A a-c	11.41		
Gele Dorenbos		OGR DPGB	3	10.27 A a-c	13.21		
R. × inulata wilsoni (Borror) Baker		OGR DPGB	3	31.95 B d–g	44.96		
R. canina ‘Kies’		OGR	Lens	3	37.16 B fg	38.92	

aAccessions classified according to the American Rose Society (ARS) Approved Horticultural Classification (Liberta and Young, 2000) grouping accessions as Hybrid Tea (HT), Floribunda (F), Hybrid Musk (HMsk), Shrub (S), or other modern roses (MR) including large-flowered climbers (LCI), Hybrid Wichurana (HWich), Bourbon (B), Tea (T), Hybrid Rugosa (HRG), Polyantha (P), Miniature (M), and Hybrid Multiflora (Hmul). Other accessions are botanical species or subspecies (Sp.) or other old garden roses (OGR) including Hybrid Perpetual (HP), Alba (A), China (Ch), and Noisettta (N).

bDPGB: Dept. of Plant Genetics and Breeding, Agricultural Research Centre, Melle, Belgium. INRA: Station de Fréjus, Fréjus, France. Lens: Nurseries Louis Lens, Oudenburg, Belgium. Standaert: Standaert Nurseries, Brugge, Belgium.

cMeans of accessions of a same species group followed by a common character are not significantly different according to Tukey honest difference (THD) test for unequal N ($P < 0.05$).

dMeans of accessions of a same species group followed by a common character are not significantly different when accessions were compared altogether using THD test for unequal N ($P < 0.05$).
anemonoides, all accessions with a P/Pi<1.0 during the 1998–99 screening, as well as with the randomly selected accession ‘Jules Magrotlin’. In the greenhouse, 4 h of supplemental illumination were applied in winter.

For each accession, three to five plants were screened with 500 mobile stages of *P. penetrans* in 400 µL water (see above). They were placed in a completely randomized design, and fertilized and watered as described above. Five months after their inoculation, nematodes were extracted from the sand and the root system and counted separately (see optimum inoculation density).

The resistance of *R. laevigata anemoides* on which *P. penetrans* did not multiply (P/Pi averaged at 0.80) in the 2 years of screening was confirmed in a 0.5-L pot experiment in 2001. In mid-Sept. 2000, plants of *R. laevigata anemoides* were rooted as above, transplanted into 0.5-L pots filled with sand and inoculated with 500 mobile stages of *P. penetrans* in 400 µL water 10 d after transplanting in early Dec. 2000. Plants of *R. virginiana* and *R. corymbifera* ‘Laxa’ were infested similarly for comparison. Fifty milliliters of 7.5 mg·mL⁻¹ · water (see above) and counted after 20 d postinoculation in rooted sand in the growth chamber.

Statistics. For all of the experiments, P was calculated as the sum of numbers of nematode (including eggs) extracted from both sand and roots. The t and ANOVA analyses were performed with the Statistica software package (StatSoft, 1999). Tukey honest difference test (THD) test for unequal N (Sjøtvoll/Stoline test) was used to compare the means (P = 0.05).

Results

Optimum inoculation density. Final nematode population on *R. corymbifera* ‘Laxa’ was inoculum density dependent (F = 13.03, P < 0.0001). The differences in P/Pi, however, were nonsignificant between the tested inoculum levels (Table 2). The standard deviation on the P/Pi averages was least at Pi = 500, which was then used during the screening.

Effects of accession on *P. penetrans* multiplication. During both screening periods, significant effects of the accessions on the multiplication of *P. penetrans* were observed (F = 4.88, P < 0.0001; and F = 3.81, P < 0.0001, during 1998–99 and 1999–2000, respectively). However, significant effects of screening times were observed among these accessions. *Rosa multiflora* ‘K1’ did not allow nematode reproduction (P/Pi = 0.88) whereas on other accessions of this species great reproduction factors were registered (e.g., *R. multiflora* ‘Alfred Dietrich’ and ‘Catholica Angelica’). The majority of the accessions of *R. indica* allowed medium nematode multiplication, the P/Pi observed on *R. indica* 64–11–85–1 was extremely large (42.60). In one of the replicates of this accession, a P/Pi = 91.6 was scored. *Rosa species* and subspecies other than *R. multiflora* and *R. indica*. One accession of *R. glauca* (syn. *R. rubrifolia*) did not support *P. penetrans* reproduction (P/Pi = 0.75). Another accession from the same nursery, however, did not support nematode multiplication (P/Pi = 3.24). Poor multiplication of the nematode was also observed on *R. californica, R. sempervirens, R. serigeramontosa*, and *P. pendulina pyrenaica* (P/Pi = 1.10–2.09) and good multiplication was observed on *R. canina* ‘Pollimeriana’. The reproduction factor on *R. virginiana* did not differ from the P/Pi obtained on *R. corymbifera* ‘Laxa’ and *R. canina* ‘Pollimeriana’. The maximum P/Pi in these accessions varied between 1.19 and 44.82.

Old garden roses. Nematode multiplication on Old garden roses varied in two categories. *Pratylenchus penetrans* did not multiply in any of the five replicates of *R. laevigata anemoides* (average P/Pi = 0.56) whereas very high nematode multiplication was observed on *R. sinuolata willsonii* (P/Pi = 31.95 and R. canina ‘Kiese’ (P/Pi = 37.16). Other accessions supported the multiplication of nematodes, which was not different from that on *R. laevigata anemoides*.

In the experiment comparing the host suitability of *R. laevigata anemoides, R. corymbifera* ‘Laxa’, and *R. virginiana* in 0.5-L pots, the difference in multiplication of *P. penetrans* was significant (F = 45.35, P < 0.0001). The P/Pi on *R. laevigata anemoides* averaged 1.89 and was lower than that of *R. corymbifera* ‘Laxa’ but similar to that of *R. virginiana* (Table 3).

Discussion

Because cultural conditions can greatly influence the growth of plants on one hand and the survival, development and reproduction of nematodes on the other hand, it is necessary to conduct resistance-screening experiments in carefully defined conditions. In previous research we determined optimal conditions for screening the host suitability of seed propagated *Rosa* species and cultivars to *P. penetrans*.
Inoculum density was modified here because the amount of the inoculum is critical for differentiating the plant response among genotypes (Fassuliotis, 1985). The inoculum should be enough to establish a population (Kaplan, 1990) and be limited so that high dosages do not cause too much injury and mask potentially useful genetic material (Young, 1998). As the data obtained in the inoculum density experiment did not show differences in multiplication factor between densities ranging from 250 to 1000 and as the standard deviation was least at density Pi = 500, this latter quantity was selected for use in the screening tests.

It is accepted that experiments evaluating plant resistance to parasitic nematodes should have replicates ranging between six and ten because data are often highly variable (Kaplan, 1990). In the reported experiments we frequently observed important variation among replicates. However, less replicates with repeated screening as in reported experiments is acceptable (Kunde et al., 1968). In any case results obtained in pot experiments need to be confirmed in the field. A first selection in a limited number of pots reduces the extent of field experiments.

Nematode reproduction is the selection criterion in resistance screening tests. Reproduction on one accession can be evaluated by comparison with the reproduction on a known resistant accession (Verdejo-Lucas et al., 2000) or by assessing the total number of nematodes extracted from both soil and roots (Potter and Dale, 1994). We used the reproduction factor relating the final population density (found in the sand and the roots) to the inoculum density as suggested by Westcot and Zehr (1991).

When used for the screening of the 131 Rosa accessions, this approach allowed the observation of a large variation in host suitability. Previously reported resistance of _R. multiflora_ ‘Ki’ (Ohkawa and Saigusa, 1981; Santo and Lærd, 1976; Schneider et al., 1995) and one accession of _R. virginiana_ (Peng and Moens, 2002a) to _P. penetrans_ was confirmed in this experiment. However, the resistance of _R. eglanteria_ (Coolen and Hendrickx, 1972) was not confirmed in this and our previous experiment (Peng and Moens, 2002a); the species supported a nematode multiplication similar to that of _R. corymbifera_ ‘Laxa’. _Rosa laevigata_ anemoides was the only species for which resistance was present in all of the tested plants, as none of the replicates scored a PI/Pi>. 1. However, in the 0.5-L pot experiments for which _R. laevigata_ anemoides of another origin was used, the PI/Pi averaged 1.89. Variations between different accessions were also observed in the species of _R. glauca_ and _R. virginiana_. Obviously, the screening of different accessions of the same species is a valuable strategy for searching sources of resistance. The majority of _Rosa_ accessions in our experiment supported the multiplication of _P. penetrans_. It would therefore be of great interest to evaluate the accessions for their tolerance, i.e., the ability to limit the damage caused by nematode infection.

Although screenings using a local pathogenic nematode population are of practical importance for the regional application of resistance or tolerance, results obtained with a single population can not be generalized as differences in pathogenicity were observed among populations of _P. penetrans_ (Peng and Moens, unpublished data) and _P. vulnus_ (Pinochet et al., 1993). Therefore, further screening with populations of various origins would extend the use of resistance in _Rosa_ sp. to _P. penetrans_.

Literature Cited

Cook, R. and K. Evans. 1987. Resistance and tolerance, p. 179–231. In: R.H. Brown and B.R. Kerry (eds.). Principles and practice of nematode control in crops. Academic Press, Sydney, Australia.

Coolen, W.A. and C.J. D’Herde. 1970. Nematodes associated with glasshouse roses. In: Proc. Intl. Nematol. Symp., Wageningen, 1967. Zeszyty Problem Owe Postpouzo Nauk Roleniczych. No. 92,259–266.

Coolen, W.A. and G.T. Hendrickx. 1972. Investigation on the resistance of rose rootstocks to _Meloidogyne hapla_ and _Pratylenchus penetrans_. Nematologica 18:155–158.

Corbett, D.C.M. 1973. _Pratylenchus penetrans_, Set 2, No. 5. In: S. Willmott, P.S. Goosh, M.R. Sidji, and M. Franklin (eds.), C.H. description of plant-parasitic nematodes. Cnwwth. Instil. Helminthology, St. Albans, England.

Dubois, L.A.M., D.P. De Vries, and H. Jansen. 1990. Rose rootstock on the move. Prophyla 44:117–119.

Fassuliotis, G. 1985. The role of the nematologist in the development of resistant cultivars, p. 233–240. In: J.N. Sasser and C.C. Carter (eds.). An advanced treatise of _Meloidogyne_. Vol. 1 North Carolina State Univ. Graphics, Raleigh.

Hendrickx, G. 1995. An automatic apparatus for extracting free-living nematode stages from soil. _Nematologica_ 41:308. (Abstr.)

Horst, R.K. 1983. Disease caused by nematodes, p. 30–32. In: R.K. Horst (ed.). Compendium of rose diseases. Amer. Phytopathol. Soc., St. Paul, Minn.

Johnson, P.W. and R.J. McClannahan. 1974. Nematode control and other effects of soil treatment of greenhouse rose beds with aldicarb and oxamyl. _Plant Dis. Rpt_. 58:730–732.

Kaplan, D.T. 1990. Screening resistance to _Tylenchulus semipenetrans_ and _Radopholus similis_ species, p. 51–57. In: J.L. Starr (ed.). Methods for evaluating plant species for resistance to plant-parasitic nematodes. Soc. Nematol., Hyattsville, Md.

Kunde, R.M., L.A. Lider, and R.V. Schmitt. 1968. A test of _Vitis_ resistance to _Xiphinema index_. Amer. J. Enol. Viticult. 19:30–36.

Liberta, A. and M. Young. 2000. The classification of roses, p. xi–xiv. In: T. Cairns (ed.). Modern roses XI, the world encyclopaedia of roses. Academic Press, New York.

O’Bannon, J.H. and A.L. Taylor. 1969. Migratory endoparasitic nematodes reared on carrot discs. _Phytopathology_ 58:385.

Ohkawa, K. and T. Saigusa. 1981. Resistance of rose rootstocks to _Meloidogyne hapla_, _Pratylenchus penetrans_ and _P. vulnus_. _HortScience_ 16:590–560.

Peng, Y. and M. Moens. 1999. Effects of surface sterilisation and cold storage on _in vitro_ behaviour of _Pratylenchus penetrans_. _Nematologica_ 1:647–653.

Peng, Y. and M. Moens. 2002a. Host suitability of rose rootstocks to root lesion nematode, _Pratylenchus penetrans_. _Nematologica_ 4:387–394.

Peng, Y. and M. Moens. 2002b. Tolerance of _Rosa_ rootstocks and species to _Pratylenchus penetrans_. _Nematologica_ 4:395–401.

Pinochet, J., C. Fernández, D. Esmanjaud, and M. Doucet. 1993. Effect of six _Pratylenchus vulnus_ isolates on the growth of peach-almond hybrid and apple rootstocks. J. Nematol. 25:843–848.

Potter, J.W. and A. Dale. 1994. Wild and cultivated strawberries can tolerate or resist root-lesion nematode. _HortScience_ 1074–1077.

Richardson, P.N. and P.S. Grewal. 1993. Nematode pests of greenhouse crops and mushrooms, p. 501–544. In: K. Evans, D.L. Trudgill, and J.M. Webster (eds.). Plant parasitic nematodes in temperate agriculture. CAB Intnl., Wallingford, U.K.

Santo, G.S. and B. Lear. 1976. Influence of _Pratylenchus vulnus_ and _Meloidogyne hapla_ on the growth of rootstocks of rose. J. Nematol. 8:18–23.

Schneider, J.H.M., J.J. ’s Jacob and P.A. van de Pol. 1995. _Rosa multiflora_ ‘Ludiek’, a rootstock with resistant features to the root lesion nematode _Pratylenchus vulnus_. _HortScience_ 36:37–45.

Seinhorst, J.W. 1950. De betekenis van de toestand _Pratylenchus penetrans_ sp. in _Rosa_ accessions. _Nematologica_ 1:447–453.

Sher, S. A. 1959. Nematodes on ornamentals. _Calif. Agric._ 13:21–22.

StatSoft. 1999. Statistica. StatSoft USA, Tulsa, Okla.

Verdejo-Lucas, S., F.J. Sorrías, J.B. Forner, and M. Alcolea. 2000. Molecular characterisation of 18 _Pratylenchus_ species using rDNA restriction fragment length polymorphism. _Nematology_ 2:135–142.

Westcott III, S.W. and E.I. Zehr. 1991. Evaluation of host suitability in _Prunus_ for _Criconemella xenoplax_. J. Nematol. 23:393–401.

Young, L.D. 1998. Breeding for nematode resistance and tolerance, p. 187–207. In: K.R. Barker, G.A. Pederson, and G.L. Windham (eds.). Plant and nematode interactions. Amer. Soc. Agron., Madison, Wis.