Land Surface Temperature Retrieval based on Thermal Infrared Remotely Sensed Data of Aster

Yue Xiong, Jinxin He, Ning Ma, Xiaoyu Ren, Chao Liu

College of Earth Sciences, Jilin University, Changchun 130061, P.R. China

Abstract. For the geothermal area in the southern part of Gongchangling, Liaoyang City, Liaoning Province, China based on ENVI 5.1 software, Aster thermal infrared remote sensing data was used for surface temperature retrieval. Based on the split windowing algorithm, the ground temperature retrieval result graph is finally obtained. According to this analysis, the temperature in the study area is mainly concentrated at 23-28°C. The average temperature is approximately 22°C. The minimum temperature is 12°C and the maximum temperature is 35°C. The low temperature area is mainly near the Tanghe River and the Taizi River Basin in the study area. High-temperature areas are concentrated in the eastern fringe, where a large number of urban buildings are presented. The three hot springs are located in the study area, which is the high temperature area. In addition, the high temperature zone and the fracture structure in the study area have a large degree of fit.

Keywords: Remote sensing, Split window algorithm, Aster thermal infrared data.

1. Introduction

The use of thermal infrared remote sensing data to extract surface temperature [1] information originated in the 1970s. After years of research and development, significant progress has been made [2, 3, 4, 5]. Various inversion algorithms have emerged in an endless stream [6, 7, 8, 9], bringing great convenience to the in-depth development of earth science research and other fields. However, these algorithms often face the same problem: non-isothermal hybrid pixels are common on the surface, but we use thermal infrared remote sensing to extract the surface temperature to a uniform temperature. Therefore, the physical meaning of the object produced in this way is unknown and can only reflect the average temperature of the surface-mixed pixels. The Aster sensor mounted on the TERRA satellite is advanced among many sensors and offers significant advantages in terms of spatial resolution, spectral resolution and thermal infrared [10, 11, 12]. Based on the above analysis, the surface temperature inversion will use the ENVI 5.1 software as a platform to use the window algorithm to study the geothermal area in southern Liaoyang and explore geothermal resource exploration methods.
2. Surface specific emissivity and brightness temperature calculation

2.1. Surface specific emissivity calculation

The Normalized Difference Vegetation Index (NDVI) can convert multi-spectral data into a single image band, which is mainly used to analyze the remote sensing data and determine the surface vegetation coverage of the study area.

\[
\text{NDVI} = (r_4 - r_3)(r_4 + r_3)
\]

Where \(r_3\) and \(r_4\) are the surface reflectances of the corresponding bands.

The calculation of vegetation coverage (FVC) is based on the mixed pixel decomposition method, which roughly divides the surface objects into water, vegetation and buildings. The calculation method is as follows:

\[
\begin{align*}
\text{FVC} &= \left(\frac{\text{NDVI} - \text{NDVI}_{\text{Is}}}{\text{NDVI}_{\text{v}} - \text{NDVI}_{\text{Is}}}\right)^2 \\
&= \left(\frac{\text{NDVI} - 0.05}{0.7 - 0.05}\right)^2
\end{align*}
\]

And we have to continue to process the FVC after calculation, because the FVC value has a value limit: \(1 \geq \text{FVC} \geq 0\).

The surface specific emissivity refers to the ratio of the radiation output of an object to a black body of the same temperature and the same wavelength. In general, we think they remain the same. The specific emissivity of the water body pixel in this paper is 0.995. The specific emissivity of the natural surface and the town pixel is calculated as follows:

\[
\begin{align*}
\varepsilon_{\text{surface}} &= 0.9625 + 0.0614F_{\text{VC}} - 0.0461F_{\text{VC}}^2 \\
\varepsilon_{\text{building}} &= 0.9589 + 0.086F_{\text{VC}} - 0.0671F_{\text{VC}}^2
\end{align*}
\]

\(\varepsilon_{\text{surface}}\) is the specific emissivity of the natural surface pixel. \(\varepsilon_{\text{building}}\) is the specific emissivity of the town pixel.

We generally use LOWTRAN, MODTRAN and other software to estimate the atmospheric transmittance. However, the results of the atmospheric radiation transmission model are also affected by factors such as atmospheric radiation transmission theory, surface conditions, and atmospheric parameter acquisition. Therefore, the results of our previous simulations are only approximate data. This time, we used an atmospheric transmittance of 0.07.

2.2. Calculation of brightness temperature

When an object has the same spectral radiance as the absolute black body at the same wavelength, the temperature of the black body is the brightness temperature. The radiation transfer equation is used to calculate the brightness temperature:

\[
L_\lambda = \left[\varepsilon \cdot B(T) + (1 - \varepsilon) \cdot L \downarrow \right] \cdot \tau + L \uparrow
\]

\(\varepsilon\) is the surface emissivity; \(T\) is the true temperature of the surface; the thermal radiance of the black body at \(B(T)\); \(\tau\) is the transmittance of the atmosphere in the thermal infrared band;

When the temperature is \(T\), the radiance \(B(T)\) of the black body is:

\[
B(T) = \left[L_\lambda - L \uparrow - \tau \cdot (1 - \varepsilon) \cdot L \downarrow \right] / \tau \cdot \varepsilon
\]

3. Calculation of land surface temperature

3.1. Split window algorithm

The basic principle of the split window algorithm is that there are large differences in the absorption characteristics of two adjacent thermal infrared spectral windows in the remote sensing data. Therefore, we can use the difference between the brightness temperature of these two channels to get the
The use of Aster data for surface temperature retrieval is affected by many factors, hence there is a certain error. Therefore, when using Aster thermal infrared remote sensing data for
The objective is to retrieve surface temperature retrieval, and we are going to choose sunny climatic conditions to reduce the impact of clouds.

References

[1] Li Hua, Du Yong-ming, Liu Qin-huo, et al. Surface temperature inversion of Tiangong No.1 data and its application in urban heat island effect [J]. Journal of Remote Sensing, 2014, 18(s1): 133-143.

[2] Wang Junfei. Remote sensing inversion and variation of urban surface temperature in Xi (An) Xian (Yang) New District [D]. Southwest University, 2015.

[3] Zheng Wenwu, Zeng Yongnian. Remote Sensing Inversion of ASTER Data of Urban Scale Component Temperature [J]. Journal of Geo-Information Science, 2012, 14(05): 658-665.

[4] Shen Shuanghe, Zhao Xiaoyan, Yang Shenbin, Zhou Qiang. Analysis of Urban Surface Temperature Distribution in Nanjing Using ASTER Data [J]. Quarterly Journal of Applied Meteorology, 2009, 20(04): 458-464.

[5] Tian Qian. Research on surface temperature inversion algorithm in Harbin based on ETM+ thermal infrared band [J]. Natural Science Journal of Harbin Normal University, 2015, 31(01): 120-122.

[6] Qin Fuying. Application and comparative analysis of thermal infrared remote sensing surface temperature inversion method [D]. Inner Mongolia Normal University, 2008.

[7] Wang Kun, Jiang Qigang, Cheng Bin. Research progress in inversion of land surface temperature using ASTER data [J]. World Geology, 2007 (03): 309-312.

[8] Wu Wenfeng. Temporal and spatial fusion of surface temperature based on Landsat-8 and MODIS data: SADFAT algorithm improvement and programming implementation [D]. Fujian Normal University, 2016.

[9] Wang Mengmeng. Study on thermal infrared remote sensing inversion method of surface temperature and near-surface temperature [D]. University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017.

[10] Liao Zhihong. Surface temperature inversion based on ground sensor data and remote sensing data [D]. China University of Mining and Technology, 2014.

[11] Sun Jing. Temperature inversion of surface components based on ASTER multi-band data [D]. Anhui Normal University, 2012.

[12] Liu Jian, He Zhengwei, Liu Xiaojin, Yang Yili. Surface Temperature Retrieval and Analysis Using ASTER Image [J]. Geospatial Information, 2010, 8(05): 111-113+116.

[13] Mao Kezheng, Tang Huajun, Chen Zhongxin, Qiu Yubao, Geng Zhihao, Li Manchun. A Window Algorithm for Retrieving Surface Temperature from ASTER Data [J]. Remote Sensing Information, 2006(05): 7-11.

[14] Sun Jing, Zhao Ping, Ye Qi. A Window Algorithm for Surface Temperature Retrieval of ASTER Data [J]. Remote Sensing Technology and Application, 2012, 27(5): 728-734.