An Iterated, Multipoint Differential Transform Method for Numerically Evolving PDE IVPs

Hal Finkel
hfinkel@anl.gov
January 12, 2013

Abstract

Traditional numerical techniques for solving time-dependent partial-differential-equation (PDE) initial-value problems (IVPs) store a truncated representation of the function values and some number of their time derivatives at each time step. Although redundant in the $dx \rightarrow 0$ limit, what if spatial derivatives were also stored? This paper presents an iterated, multipoint differential transform method (IMDTM) for numerically evolving PDE IVPs. Using this scheme, it is demonstrated that stored spatial derivatives can be propagated in an efficient and self-consistent manner; and can effectively contribute to the evolution procedure in a way which can confer several advantages, including aiding solution verification. Lastly, in order to efficiently implement the IMDTM scheme, a generalized finite-difference stencil formula is derived which can take advantage of multiple higher-order spatial derivatives when computing even-higher-order derivatives. As is demonstrated, the performance of these techniques compares favorably to other explicit evolution schemes in terms of speed, memory footprint and accuracy.

1 Introduction

In traditional methods for solving time-dependent partial-differential-equation (PDE) initial-value problems (IVPs), a truncated representation of the function values and some number of their time derivatives, on some number of spatial slices, are stored on a discrete grid. As is well known, the grid may consist of regularly-spaced points or may be an irregular point collection, and there are many choices for the basis used to represent the function values at the grid points. Nevertheless, evolving the PDE inevitably requires reconstructing spatial derivative values, and because these values are not stored explicitly, they must be reconstructed from the truncated representation of the function values\(^1\). This paper reports on an investigation into the construction of a scheme

\(^1\)For spectral methods that use a Fourier basis, this reconstruction is trivial. Unfortunately, spectral methods are often impractical for problems with nonlinearities, irregular geometries or nonperiodic boundary conditions.
which, unlike traditional schemes, stores some number of spatial derivatives on the grid along with the function values. Although redundant in the $dx \to 0$ limit, at least in the context of the scheme presented here, storing spatial derivative values will be shown to have practical advantages. To construct a scheme that can make use of, and evolve, stored spatial derivatives, it is natural to consider methods based on generating local power-series expansions of the solution.

Constructing power-series solutions to ordinary differential equations is a basic technique included in most introductory texts on mathematical methods or differential-equations (for example, see [4]). Algorithmically constructing power-series solutions to ordinary differential equations has been extensively studied (see [6], and references therein), but has remained a little-known technique. Although sometimes used for the numerical evaluation of special functions [1], the construction of power-series solutions has been generally thought of as an analytic tool and not as the basis for numerical algorithms. This is changing, and algorithmically constructing power-series solutions to ordinary differential equations is gaining in popularity. This is now often called the Differential Transform(ation) Method (DTM) [5], but is also known as the Parker-Sochacki method [20], or generically as the Picard-iteration method or the Taylor-series method. In this paper, I adopt the notations and terminology from the DTM literature. The conventions which define the DTM can be straightforwardly extended to multivariate power series for application to PDEs, but applying the resulting definitions to solve PDEs numerically requires dealing with several complexities. This paper details a practical method for numerically applying the DTM to time-dependent PDEs: an iterated, multi-point DTM (IMDTM), and shows that the resulting evolution algorithm possesses several highly-desirable properties. Notably, by storing a sufficiently-large set of spatial derivatives, the resulting system can be configured to possess a directly-calculable self-consistency constraint, the violation of which measures the quality of the solution.

The remainder of this paper is organized as follows: Section 2 reviews how the evolution equations for higher-order derivatives can be derived. Section 3 reviews the multivariate DTM formalism. The IMDTM algorithm is presented in Section 4. The efficient implementation of IMDTM requires an efficient polynomial interpolation scheme capable of using higher-order derivative information. Such a scheme is also presented in Section 4. The paper then concludes, and a set of appendices follow.

2There has been limited investigation of using stored spatial derivatives in the context of finite-volume schemes for evolving systems of conservation laws. In the finite-volume literature, these are known as multi-moment schemes (see [15] and references therein).

3In the context of finite-volume schemes, using local (multivariate) power-series expansions to enhance the accuracy of Riemann solvers forms the basis of the well-known Arbitrary accuracy DERivative (ADER) Riemann technique [22]. Unlike ADER schemes, the technique presented in this paper can be applied to any kind of time-dependent PDE.
2 Evolution Equations for Higher-Order Derivatives

Before discussing the conventions which define the DTM, consider the following two examples which explicitly demonstrate how the higher-order derivatives of a PDE’s solution obey PDEs derivable from the PDEs for the solution function.

First, consider the 2-D wave equation:
\[
\frac{\partial^2 f}{\partial t^2} - \frac{\partial^2 f}{\partial x^2} = 0 \quad (1)
\]
from which the evolution equation for the higher-order spatial derivatives can be derived by applying the operator \(\frac{d^n}{dx^n} \):
\[
\frac{\partial^2 d^n f}{\partial t^2 dx^n} - \frac{\partial^2 d^n f}{\partial x^2 dx^n} = 0. \quad (2)
\]
Because the wave equation is linear, all of the derivatives obey structurally-identical equations. For nonlinear equations, this is not the case. For example, consider the modified KdV equation:
\[
\frac{\partial f}{\partial t} + f \frac{\partial f}{\partial x} + \frac{\partial^3 f}{\partial x^3} = 0 \quad (3)
\]
for which the evolution equation for the higher-order spatial derivatives are:
\[
\frac{\partial d^n f}{\partial t dx^n} + \sum_{k=0}^{n} \binom{n}{k} \left(\sum_{j=0}^{k} \binom{k}{j} \frac{d^j f}{dx^j} \frac{d^{k-j} f}{dx^{k-j}} \right) \frac{\partial^{n-k+1} f}{\partial x^{n-k+1}} + \frac{\partial^3 d^n f}{\partial x^3 dx^n} = 0. \quad (4)
\]
To avoid a “combinatorial explosion” in the number of terms, I have used (multivariate) versions of the Leibniz rule (the product rule) and the Faà di Bruno formula (the generalized chain rule) \[10\]. The multivariate DTM encapsulates these formulas in easy-to-apply recursion relations, thus avoiding the direct use of combinatorial calculus formulas as was done in Equation [3]. Because the higher-order coefficients depend on the lower-order coefficients, the higher-order coefficients will tend to be slower to compute, and in some cases less numerically stable, than the lower-order coefficients.

It is possible to evolve all of the higher-order coefficients using a traditional PDE evolution scheme by discretizing the associated evolution equations, which will, generally, increase the computational time required by at least a factor of \(n \) for evolving \(n \) spatial derivatives. The IMDTM scheme allows multiple coefficients to be evolved together, significantly reducing the computational overhead.

3 Multivariate Differential Transform Method

In many cases, the application of the classic integral transform methods (i.e. Laplace and Fourier) can be reduced to use of a table of substitutions \[4\]. Similarly, a differential equation can be transformed into a recursion relation for the
coefficients of its power series solution(s) using a table of substitutions [6], and recent literature refers to this as The Differential Transform Method [5]. The conventions which define the DTM can be extended to the multivariate case in the obvious way [3], specifically:

\[
W(k_1, k_2, \ldots, k_n) = \frac{1}{k_1!k_2! \cdots k_n!} \left[\frac{\partial^{k_1+k_2+\cdots+k_n}}{\partial x_1^{k_1} \partial x_2^{k_2} \cdots \partial x_n^{k_n}} w(x_1, x_2, \ldots, x_n) \right]_{0,0,\ldots,0}
\]

so the inverse transform is:

\[
w(w_1, w_2, \ldots, w_n) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \cdots \sum_{k_n=0}^{\infty} W(k_1, k_2, \ldots, k_n) \prod_{i=1}^{n} x_i^{k_i}
\]

and the basic operations are given in Table 1. By combining Equations 5 and 6 it is clear that the multivariate DTM is nothing more than the construction of a multivariate Taylor expansion. The efficient evaluation of nonlinear terms is an important practical concern. Fortunately, efficiently computing nonlinear functions of power series is a well-researched problem by the creators of automatic-differentiation software, and is generally done either by directly evaluating a set of multivariate recurrence relations [23] or by combining different evaluations of univariate recurrence relations using different directional projections of the original series [2] [19]. Direct evaluations of the multivariate recurrence relations will be used here, and the DTM translations for additional (nonlinear) functions are provided in Appendix B.

Original Function	Transformed Function
\(w(x) = y(x) \pm z(x) \)	\(W(k) = Y(k) \pm Z(k) \)
\(w(x) = \lambda y(x), \lambda \text{ a constant} \)	\(W(k) = \lambda Y(k) \)
\(w(x) = \frac{\partial^{k_1+k_2+\cdots+k_n}}{\partial x_1^{k_1} \partial x_2^{k_2} \cdots \partial x_n^{k_n}} y(x) \)	\(W(k) = \frac{(k_1+k_2+\cdots+k_n)!}{k_1!k_2! \cdots k_n!} Y(k+r) \)
\(w(x) = y(x)z(x) \)	\(W(k) = \sum_{l_1=0}^{k_1} \cdots \sum_{l_n=0}^{k_n} Y(l_1)Z(k-l) \)
\(w(x) = x_1^{m_1} \cdots x_n^{m_n} \)	\(W(k) = \prod_{i=1}^{n} \delta_{k_i,m_i}, \delta \text{ is the Kronecker delta} \)

Table 1: Basic operations under Multidimensional DTM

Note that in the example 1+1-dimensional systems discussed in later sections, the temporal coordinate is called \(t \) and the spatial coordinate is called \(x \). Correspondingly, \(k \) is the DTM-coefficient index for temporal derivatives, and \(h \) is the DTM-coefficient index for spatial derivatives. Also, an overdot will be used to indicate a time derivative.

\[1+1\text{-dimensional means that the system has one spatial dimension and one time dimension.}\]
4 Iterated, Multipoint DTM

Although the multivariate DTM has been applied as a convenient way to analytically construct a power-series solution to PDEs [3] [14], a novel contribution of this paper is a method for using the multivariate DTM as a numerical evolution scheme which can handle an arbitrarily-large Cauchy surface. When solving ODEs, the initial conditions can be exactly represented using a finite set of values. For PDEs, however, the initial conditions are themselves (differentiable) functions and they cannot be represented, in general, using only a finite set of numbers. As expected, applying the multivariate DTM to a PDE results in a recurrence relation which allows higher-order derivative coefficients in one variable to be calculated in terms of the complete set of derivatives with respect to the remaining variables (i.e. on the Cauchy surface). For example, consider the 2-D wave equation:

$$\frac{\partial^2 f}{\partial t^2} = \frac{\partial^2 f}{\partial x^2}$$

for which the DTM gives the recurrence:

$$F(k, h) = \frac{(h+2)(h+1)}{k(k-1)} F(k-2, h+2).$$

Given the initial tower of derivative coefficients, $F(0, h)$ and $F(1, h)$ (the spatial derivatives of f and \dot{f}, respectively), any $F(k, h)$ can be calculated.

Even if the radius of convergence of a power series is infinite, when working at finite precision, the useful range may be limited, even as more terms are used. As a result, the IMDTM uses power-series expansions around multiple points on the Cauchy surface to precisely represent the initial conditions. In other words, at each point on the spatial hypersurface, a tower of DTM coefficients are stored, $\{F(k, h)_{t,x}\}$. For a PDE which is first-order in time, only the $k = 0$ coefficients are stored; for an equation which is second-order in time, only the $k \in (0, 1)$ coefficients are stored; and so on for higher-order PDEs. In combination with the recursion relation derived from the PDE, the power-series expansion of the solution at each spatial point can be reconstructed from the stored coefficients. This provides the IMDTM scheme with a powerful feature: it can yield an internal self-consistency condition. Specifically, the power series around some point must, by self-consistency, provide the values of the function at the neighboring points. As the system is evolved forward in time (via iteration), this condition will break down, and this breakdown can be used to measure the quality of the evolved solution.

As you might expect from the definition of the Taylor expansion, a time step
from $t = 0$ to $t = dt$ is calculated as:

$$F(0, 0)_{t = dt, x} = f(x, dt) = \sum_{k=0}^{\infty} F(k, 0)_{t = 0, x} dt^k$$ \hspace{1cm} (9)

$$F(1, 0)_{t = dt, x} = f'(x, dt) = \sum_{k=0}^{\infty} (k + 1) F(k + 1, 0)_{t = 0, x} dt^k$$ \hspace{1cm} (10)

$$F(0, 1)_{t = dt, x} = \frac{d}{dx} f(x, dt) = \sum_{k=1}^{\infty} F(k, 1)_{t = 0, x} dt^k$$ \hspace{1cm} (11)

... where, again, the overdot indicates a time derivative.

At any time, t, the system is specified by an infinite set of coefficients, thus the description must be truncated for numerical implementation. This truncation immediately generates an impediment to the construction of an iterative scheme: at whatever order the truncation is performed, even-higher-order terms are necessary to compute the evolution of the highest-order terms being stored. If these missing coefficients are simply taken to be zero, then the scheme will quickly destabilize. Qualitatively, if n is the highest order stored, and all terms of an order greater than n are taken to be zero, then the term of order n will remain constant, the term of order $n-1$ will grow linearly with time, the term of order $n-2$ will grow quadratically with time, and so on. For the scheme to be practical, a method for computing these missing coefficients must be provided.

4.1 Interpolating Polynomials

In many traditional grid-based numerical evolution schemes, the derivatives are approximated by a finite-difference computation. Conceptually, this approximation uses some number of neighboring values to construct an interpolating polynomial, and uses the derivative of that polynomial (at the central point) to estimate the derivative of the function represented on the grid [24]. Since the IMDTM stores truncated spatial power series on the grid, instead of just the function values, it is possible to use multiple coefficients per point (the lower-order derivative values) in order to reconstruct the needed higher-order derivative values. However, there are several complications which need to be discussed.

First, because the coefficients are stored only to some fixed precision, not all of the neighboring-point power series coefficients should be used for the derivative-reconstruction procedure. To understand this, assume that the power series at a point can be used to calculate the function value at any neighboring point to some precision, and that the stored function value at any neighboring point is accurate to that same precision. This means that at least the neighboring zeroth-order components have no significant information to contribute to the higher-order derivative interpolation. To put it another way, since it takes n orders (i.e. n terms of the power series) to converge to the desired precision,
that limited precision is equivalent to introducing an error term of order $n + 1$. Adding numbers with an error of order $n + 1$ to calculate an order-$(n + 1)$ coefficient would be impossible. Even restricting the interpolation procedure to use only the last few orders, it is still, in general, not possible to reconstruct the missing derivatives to the same precision as the inputs. Luckily, by making dt small enough, reconstructing the missing higher-order coefficients to the same precision as the inputs is unnecessary.

The naive method for constructing a polynomial interpolant using higher-order derivative information — by solving the implied matrix equation — is not practical for higher-dimensional systems. Fortunately, it is possible to write down an explicit solution to the general interpolation problem, and use that solution to calculate the required coefficients. The method used here, detailed in Appendix A, uses the multipoint Taylor expansion as defined by López and Temme [18] to explicitly construct the interpolating polynomial. Although the method seems relatively complicated, a number of the needed factors depend only on the geometry, specifically the relative distances between neighboring grid points, and can be cached once calculated (or, precalculated, if the problem geometry is static). After all of the geometry-dependent factors have been calculated, a linear combination of the input coefficients from the various neighboring points yields the missing higher-order coefficients. This method can be thought of as a generalization of a finite-difference stencil that can make use of higher-order derivative information.

An IMDTM scheme where many higher-order coefficients are stored on the grid and interpolation is used only for the highest-order coefficients is numerically unstable. This arises for the same reason that the missing higher-order coefficients cannot be set to zero: a constant error in the order-n coefficient will lead to an error in the order-$(n - 1)$ coefficient which grows linearly with time, and so on. In practice, only a couple of orders can be evolved together. You can store only a couple of orders on the grid and use interpolation to generate the coefficients necessary for forward evolution. That can be stable, but lacks the self-consistency constraint. A stable scheme with a self-consistency constraint can be constructed by “stacking” a number of such lower-order schemes on top of one another. For example, interpolate using orders zero and one to evolve orders zero and one, interpolate using orders two and three to evolve orders two and three, and so on. This is illustrated in Figure 1. The following examples demonstrate this technique.

4.2 Example: The Wave Equation

The salient features of the IMDTM scheme are highlighted with a simple example: the 1+1-dimensional linear wave equation. This example, like the nonlinear equation example which follows, have been chosen because they have known periodic, non-singular, analytic solutions. The implementation uses periodic boundary conditions so that the interpretation of the results is not complicated by details of more-complicated boundary-condition handling. Since each grid point stores an entire tower of derivatives, the boundary points would need to do
this as well. How best to use this freedom for other kinds of boundary conditions will be the subject of future research.

For this demonstration, the IMDTM implementation used a grid of $N = 16$ points with the coefficients of the first 14 spatial orders, including the constant term, stored at each point for both the field value and its first time derivative (i.e. $F(0,0)$ through $F(0,13)$ and $F(1,0)$ through $F(1,13)$ are stored at each point). The physical size of the grid is $L = 18$, so $dx = 1.125$ and $dt = 1$ is used for the temporal evolution. In this case, the values of dx and dt are exactly-representable floating-point numbers, although the accuracy is not significantly degraded if this is not the case. The initial conditions were $\phi_0(x) = \cos(2\pi x/L)$, $\phi'_0(x) = 0$. Unlike traditional explicit temporally-higher-order algorithms (e.g. RK4), IMDTM does not require additional grid copies to hold intermediate grid states. Nevertheless, the performance of the IMDTM implementation is compared to an RK4-based scheme. For the particular system chosen here, a second-order stencil (with $dx \approx 0.08$) is accurate to approximately 4 significant digits, and an eighth-order spatial stencil is accurate to over 13 digits. The dt values for the RK4 scheme were chosen to match the single-core running time to that of the IMDTM implementation.

Next, consider the most-basic stable use of the IMDTM scheme: only the function values (the zeroth-order coefficients) are stored on the grid. The error of this method in solving the wave equation is illustrated in Figure 2. In such a configuration, the scheme becomes a kind of fancy finite-differencing algorithm. As expected, using a larger interpolation radius leads to a more-accurate evolution; this is exactly equivalent to using a higher-order finite-differencing stencil.

For the case where only the function values are stored, and using a unit radius for interpolation (meaning each point and its two immediate neighbors contribute to the interpolation), it is practical to write down the explicit time-stepping rule. Expanding Equations 26 and 30 (using Equations 31 and 32 as noted) and using the recurrence relations derived from the wave equation’s PDE (given in Equation 8) with Equations 9 and 10, yields the following time-

\footnote{The method of (spectral) deferred corrections can also be used to produce higher-order temporal evolution for general time-dependent PDEs without storing several intermediate grid copies \cite{7}. As mentioned previously, for systems of conservation laws, ADER schemes can generate higher-order temporal evolution without storing intermediate grid copies.}

\footnote{All code was compiled using GNU g++ version 4.4.4 given the flags: -O3 -march=native -msse -mfpmath=sse -DNDEBUG.}

\footnote{The average error at each time slice is computed by taking the mean of the base-ten logarithm of the relative error at each point.}

\footnote{The equations in Appendix A use α to represent the multiset of spatial derivative orders; to apply those formulas to the 1+1-dimensional case here, note that α always has unit cardinality, and its only integer element runs from zero to infinity. In practice, the sum must be truncated at some finite order (determined by the maximum possible order of the interpolating polynomial, which is determined by the number of neighbors and the number of stored spatial derivative orders used for interpolation).}
stepping rule:

\[
\begin{align*}
 f(t + dt, x) &= \frac{1}{36dx^2} \left(-18 \left(dt^2 - 2dx^2 \right) f(t, x) + \\
 &\quad dt \left(9dt f(t, x - dx) + 9dt f(t, x + dx) - 2dt^2 \dot{f}(t, x) + \\
 &\quad 36dx^2 \dot{f}(t, x) + dt^2 \dot{f}(t, x - dx) + dt^2 \dot{f}(t, x + dx) \right) \right) \\
 \dot{f}(t + dt, x) &= \frac{1}{12dx^2} \left(-12dt f(t, x) + 6dt f(t, x - dx) + 6dt f(t, x + dx) - \\
 &\quad 2dt^2 \dot{f}(t, x) + 12dx^2 \dot{f}(t, x) + dt^2 \dot{f}(t, x - dx) + dt^2 \dot{f}(t, x + dx) \right)
\end{align*}
\]

where the overdot indicates a time derivative. Note that because the interpolating polynomials are fitting only one value from each of three points, they are only quadratic functions, and so can only estimate the first and second spatial derivatives at each point. So, at each point, \(\{F(0, 0), F(1, 0)\} \) are given and \(\{F(0, 1), F(0, 2), F(1, 1), F(1, 2)\} \) are estimated using the interpolating polynomials. From the recurrence relation given by Equation 8, the values of \(\{F(2, 0), F(3, 0)\} \) can be calculated. The sums in Equations 9 and 10 can be truncated accordingly. Because the PDE is linear, these same equations are obeyed for each spatial derivative order. The point of this paper, which is that there can be a benefit to storing and evolving spatial derivative values, is demonstrated next. Figure 3 shows the case where two orders are stored on the grid and both of those orders are used for the interpolation procedure. Even with a smaller interpolation radius, the result is much more accurate than in the preceding case. As expected, using more coefficients from closer grid points yields a more accurate result.

The IMDTM implementation yields very-high precision evolution while taking large time steps. This could be advantageous for parallel implementations on non-shared-memory clusters, because each time step involves slow synchronizing communication. As for the construction of a scheme with the aforementioned neighbor-to-neighbor self-consistency constraint, the suggested mechanism of “stacking” evolution schemes for the coefficients in order pairs is demonstrated in Figure 4. As can be seen by comparing the neighbor-to-neighbor constraint-violation error and the analytic error, the solution is more self-consistent than it is accurate. Comparing the absolute errors instead of the relative errors does not change this conclusion.

\(^9\)To be clear, two interpolating polynomials are constructed: One to estimate the spatial derivatives of \(f(t, x) \) and one to estimate the spatial derivatives of \(\dot{f}(x, t) \).

\(^{10}\)This linear case does not form a fair basis for benchmark-like comparison with other numerical evolution schemes, such as an RK4 implementation, in general, because evaluating the recursion relations necessary for the computation of the nonlinear terms can add significant expense, whereas the same is not true for schemes which work only with the function values.
Example: A Strongly-Nonlinear Equation

While solving the linear wave equation allows the demonstration of several features of the IMDTM scheme, it is not restricted to linear problems. As an example, the IMDTM scheme can be used to evolve the strongly-nonlinear PDE in Equation 3. This equation has a non-singular, periodic solution [16]:

\[-2\sqrt{2}a + \frac{6\sqrt{2}a}{2 \pm \cos(2ax - 8a^3t)}\]

(14)

where \(a\) is a free real parameter. Applying the multivariate DTM (see Table 1) to Equation 3 yields:

\[H(k, h) = \sum_{m=0}^{k} \sum_{n=0}^{h} F(k - m, n)F(m, h - n)\]

(15)

\[G(k, h) = \sum_{m=0}^{k} \sum_{n=0}^{h} (h - n + 1)H(k - m, n)F(m, h - n + 1)\]

(16)

\[F(k, h) = -\frac{1}{k} (G(k - 1, h) + (h + 3)(h + 2)(h + 1)F(k - 1, h + 3))\]

(17)

where \(H(k, h)\) corresponds to the \(f^2\) factor, and \(G(k, h)\) corresponds to the \(f^2 \frac{\partial f}{\partial x}\) term. Caching the computed values of \(H(k, h)\) is essential to an efficient implementation. The stable evolution of Equation 14 as the solution of Equation 3 requires a smaller \(dx\) and a smaller \(dt\) compared to those used for the linear wave equation. For this demonstration, the IMDTM implementation used a grid of \(N = 78\) points. The physical size of the grid is \(L = 43.875\), so \(dx = 0.56250\) and \(dt = 0.001\) is used for the temporal evolution. The initial conditions were \(\phi_0(x) = -2\sqrt{2}a + \frac{6\sqrt{2}a}{2 \pm \cos(2ax - 8a^3t)}, a = \pi/L\). As should be expected given the range of the sums in the recurrence relations, unlike for linear PDEs, computing the higher-order terms is significantly more expensive than computing the lower-order terms. Figure 5 shows how the IMDTM scheme, when only two orders are stored on the grid, compares to an RK4 implementation performing the same amount of computational work and using the same number of grid degrees-of-freedom (not counting the auxiliary grid copies used for the intermediate RK steps). However, reducing the RK4 time step to \(dt = 0.001\), identical to that used for the IMDTM scheme, does not significantly degrade the RK4 accuracy. While the IMDTM scheme is less stable than the RK4 scheme, it is far more accurate for tens of thousands of time steps. Although the IMDTM scheme does need extra buffers to efficiently evaluate the nonlinear terms, for this equation it still uses significantly less memory than the RK4 implementation. Although it might seem “more fair” to compare to a RK16 scheme, the memory use of an RK16 implementation would be almost 10 times that of the IMDTM scheme, and would likely be unsuitable for practical, large-scale implementation.

Pair-wise order evolution (as illustrated in Figure 1) was used in order to generate a scheme with a neighbor-to-neighbor self-consistency constraint, and
the results were similar to those for the linear case (shown in Figure 6). The growth of the analytic error over the neighbor-to-neighbor constraint-violation error is exacerbated when computing at higher precision. Specifically, when using the double-double type from Bailey’s qd package [13], which has twice the precision of an IEEE double, after some hundreds of time steps, the analytic error becomes greater than the neighbor-to-neighbor constraint-violation error. This is demonstrated in Figure 7.

5 Future Work

The work presented here leaves a lot of room for future research. The following are some of the items which deserve further investigation:

- A procedure for performing a stability analysis of an IMDTM scheme should be developed.

- The IMDTM should apply naturally to problems with nontrivial boundary conditions, so long as the multiple power series expansion can be generated in a self-consistent manner. The exact conditions under which this is possible should be investigated.

- DTM can be applied to boundary-value problems by leaving some of the lower-order coefficients free and then solving for them in a way consistent with the boundary constraints after expressions for the higher-order coefficients have been obtained [11] [12]. Similarly, it may be possible to extend IMDTM to handle multivariate boundary-value problems and evolution problems with constraints.

- Alternate methods for computing the power series at time $t + \delta t$ from those at time t which are more stable than the method presented here might exist. For example, it has been demonstrated that using Padé approximants can increase the stability of an iterated DTM scheme [21] [9]. It may also be possible to formulate the IMDTM as an implicit scheme.

- A reusable framework for developing IMDTM codes is under development, and its interface definitions and features will be presented in a future publication.

6 Conclusion

In this paper, the IMDTM PDE evolution scheme for initial-value problems has been introduced. Methods to stabilize the evolution and efficiently use polynomial interpolation to enable iterative forward propagation have been detailed. It is an explicit evolution scheme, and it tends to be able to take larger time steps compared to other explicit schemes (e.g. RK4) while performing a similar amount of computational work. For many equations, the IMDTM scheme
will also use less memory than the corresponding RK-like scheme. The larger
time steps should allow for substantially-reduced communication on non-shared-
memory machines. Because the algorithm is local and explicit, it should scale
strongly to the largest conceivable supercomputers. Furthermore, IMDTM can
naturally be used to construct a verifiably-self-consistent code in the sense that
it has an internal self-consistency constraint which can be used to measure the
quality of the solution. Not only does this often allow the user to know when
the solution can no longer be trusted, it can allow the IMDTM solution to be
used as a baseline for verifying other codes. More generally, this paper demon-
strates that efficient numerical schemes can be constructed which store and
evolve higher-order spatial derivative information, and that doing so can confer
significant practical advantages.

Acknowledgments

Most of this work was done while I was supported by the United States De-
partment of Energy Computational Science Graduate Fellowship, provided un-
der grant DE-FG02-97ER25308. I am now supported under grant DE-AC02-
06CH11357. I thank Richard Easther for his advice, feedback, and for reading
an early draft of this paper. I also thank Christopher Gilbreth, Jim Stewart,
Bill Rider and Matt Norman for providing corrections and useful suggestions.

References

[1] Javier Segura Amparo Gil and Temme Nico M. Numerical Methods for
Special Functions. SIAM, 2007.

[2] Jean Utke Andreas Griewank and Andrea Walther. Evaluating higher
derivative tensors by forward propagation of univariate taylor series. Math-
ematics of Computation, 69(231):1117–1130, 2000.

[3] Galip Oturan¸c Aydin Kurnaza and Mehmet E. Kiris. n-Dimensional dif-
ferential transformation method for solving PDEs. International Journal
of Computer Mathematics, 82(3):369 – 380, 2005.

[4] William E. Boyce and Richard C. Diprima. Elementary Differential Equa-
tions and Boundary Value Problems, 7th edition. John Wiley and Sons,
Inc., 2000.

[5] Cha-Kuang Chen and Shing-Huei Ho. Application of differential transfor-
mation to eigenvalue problems. Applied Mathematics and Computation,
79(2-3):173 – 188, 1996.

[6] G. Corliss and Y.F. Chang. Solving ordinary differential equations using
taylor series. ACM Trans. on Math. Software, 8(2):114 – 144, 1982.
[7] Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. Spectral deferred correction methods for ordinary differential equations. *BIT Numerical Mathematics*, 40:241–266, 2000.

[8] G.W. Forbes. Truncation and manipulation multivariate power series. *Journal of Computational and Applied Mathematics*, 15:27 – 36, 1986.

[9] Onur Karao˘glu, Haldun Alpaslan Peker, and Galip Oturanç. The Differential Transformation Method and Padé Approximant for a Form of Blasius Equation. *Mathematical and Computational Applications*, 2010.

[10] M. Hardy. Combinatorics of Partial Derivatives. *Electronic Journal of Combinatorics*, 13(1), January 2006.

[11] I. H. Abdel-Halim Hassan and V. Ertürk. Applying differential transformation method to the one-dimensional planar bratu problem. *International Journal of Contemporary Mathematical Sciences*, 2(29-32):1493 – 1504, 2007.

[12] I. H. Abdel-Halim Hassan and V. Ertürk. Solutions of different types of the linear and nonlinear higher-order boundary value problems by differential transformation method. *European Journal of Pure and Applied Mathematics*, 2(3):426 – 447, 2009.

[13] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Algorithms for quad-double precision floating point arithmetic. *Computer Arithmetic, IEEE Symposium on*, 0:0155, 2001.

[14] Maryam Alipour Hossein Jafari and Hale Tajadodi. Two-Dimensional Differential Transform Method for Solving Nonlinear Partial Differential Equations. *International Journal of Research and Reviews in Applied Sciences*, 2(1):47 – 52, 2010.

[15] S. Ji and F. Xiao. Cip/multi-moment finite volume method for euler equations: A semi-lagrangian characteristic formulation. *Journal of Computational Physics*, 222(2):849 – 871, 2007.

[16] Ji-Huan He and Xu-Hong Wu. Exp-function method for nonlinear wave equations. *Chaos, Solitons & Fractals*, 30(3):700 – 708, 2006.

[17] Gershon Kedem. Automatic differentiation of computer programs. *ACM Transactions on Mathematical Software*, 6(2):150 – 165, 1980.

[18] J. L. López and N. M. Temme. Multi-point Taylor Expansions of Analytic Functions. *Trans. Amer. Math. Soc.*, 356(11):4323–4342, November 2004.

[19] Richard D. Neidinger. Directions for computing truncated multivariate taylor series. *Mathematics of Computation*, 74(249):321–340, 2004.

[20] G.E. Parker and J.S. Sochacki. Implementing the picard iteration. *Neural, Parallel and Scientific Computations*, 4(1):97–112, 1996.
[21] Arshad Hussain Sirajul Haq and Siraj ul Islam. Solutions of Coupled Burger’s, Fifth-Order KdV and Kawahara Equations Using Differential Transform Method with Padé Approximant. Selçuk Journal of Applied Mathematics, 11(1):43–62, 2010.

[22] V. A. Titarev and E. F. Toro. Ader: Arbitrary high order godunov approach. Journal of Scientific Computing, 17:609 – 618, 2002.

[23] I. Tsukanov and M. Hill. Fast forward automatic differentiation library (fadlib), user manual. 2000.

[24] William T. Vetterling William H. Press, Saul A. Teukolsky and Brian P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK, 2nd edition edition, 1997.
A Interpolating Polynomial

The interpolating polynomial can be derived from the multipoint Taylor expansion as defined by López and Temme [18]. Let \(\{x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(m)}\} \) be the set of \(m \) unique coordinate values in dimension \(i \in \{1, \ldots, D\} \). In one dimension, a function \(f(x) \) has the multipoint expansion:

\[
 f(x) = \sum_{n=0}^{\infty} \left(\sum_{j=1}^{m} \frac{1}{n!} \frac{d^n}{dx^n} \left[\prod_{k=1, k\neq j}^{m} (x - x_j^{(k)}) \right] \left(x - x_j^{(s)} \right)^n \right) \prod_{k=1}^{m} (x - x_j^{(k)})^n
\]

(18)

where

\[
 a_{n,j} = \frac{1}{n!} \frac{d^n}{dx^n} \left[\prod_{k=1, k\neq j}^{m} (x - x_j^{(k)}) \right] \left(x - x_j^{(s)} \right)^n \bigg|_{x=x_j^{(s)}}
\]

(19)

which can be written as:

\[
 a_{n,j} = \sum_{k=1}^{m} \frac{1}{(n-1)!} \frac{d^{n-1}}{dx^{n-1}} \left[\prod_{k=1, k\neq j}^{m} (x - x_j^{(k)}) \right] \left(x - x_j^{(s)} \right)^n \bigg|_{x=x_j^{(s)}}
\]

(20)

This can be generalized in the usual way to a multidimensional function by recursive expansion, yielding:

\[
 f(x) = \sum_{\alpha} \left(\sum_{\beta \in \{1,\ldots,m\}^D} \prod_{i=1}^{D} \prod_{k=1, k\neq \beta_i}^{m} (x_i^{(\beta_i)} - x_i^{(k)}) a_{\alpha, \beta} \right) \prod_{i=1}^{D} \prod_{k=1}^{m} (x_i^{(k)})^{a_i}
\]

(21)

Expanding the final, non-constant binomial term gives:

\[
 f(x) = \sum_{\alpha} \left(\sum_{\beta \in \{1,\ldots,m\}^D} \prod_{i=1}^{D} \sum_{\gamma \in \{0,\ldots,m\} \times \{0,1\}^{m-1}, |\gamma|=m-1} x_i^{\gamma_{m-1}} \prod_{k=1, k\neq \beta_i}^{m} (x_i^{(\beta_i)} - x_i^{(k)}) a_{\alpha, \beta} \right) \prod_{i=1}^{D} \prod_{k=1}^{m} \sum_{p=0}^{\min(a_i, m-a_i)} \binom{a_i}{p} (-1)^{a_i-p} x_i^{(k)} x_i^{p}
\]

(22)

Note that the product of two sequences of length \(N \) is their convolution:

\[
 \left(\sum_{n=0}^{N} a_n x^n \right) \left(\sum_{n=0}^{N} b_n x^n \right) = \sum_{i=0}^{2N} \left(\sum_{i=0}^{n} a_i b_{n-i} \right) x^n
\]

(23)
and the same applies for three sequences:

\[
\left(\sum_{n=0}^{N} a_n x^n \right) \left(\sum_{n=0}^{N} b_n x^n \right) \left(\sum_{n=0}^{N} c_n x^n \right) = \left(\sum_{i=0}^{2N} \left(\sum_{i=0}^{n} a_i b_{n-i} \right) x^n \right) \left(\sum_{n=0}^{N} c_n x^n \right) = 3N \left(\sum_{i=0}^{n} a_i b_{j-i} \right) c_{n-j} \]

\]

(24)

from which the pattern can be seen.

\[
f(x) = \sum_{\alpha} \left(\sum_{\beta \in \{1,\ldots,m\}^D} \prod_{i=1}^{D} \sum_{\gamma \in \{0,1\}^{m-1} \setminus \{1\}^{m-1-\gamma}} \left(x_i^{(\beta_i)} - x_i^{(k_i)} \right) a_{\alpha,\beta} \right) \\
\times \prod_{i=1}^{D} \sum_{p=0}^{m_{a_i}} x_i^p \sum_{j=0}^{q_i} \left(x_{i-1}^{(m-1)} x_i^{(1)} \right)^{a_i-\gamma_i} \cdot \left(\sum_{q_i=0}^{q_i} \sum_{q_{m-1}=0}^{q_{m-1}} \left(\prod_{j=1}^{i} \frac{\partial^j}{\partial x^j} \left(x_i^{(\beta_i)} - x_i^{(k_i)} \right) a_{\alpha,\beta} \right) \\
\times \left(x_i^{(m-1)} a_i - (m-1) q_m \right) \right) \right) \]

(25)

The contribution to the DTM coefficient \(F(h) \) is then easily derived from the \(x^h \) coefficient of \(f(x) \):

\[
f(x) = \sum_{\alpha} \sum_{\beta \in \{1,\ldots,m\}^D} \prod_{i=1}^{D} \sum_{k=1, k \neq \beta_i}^{m} \left(x_i^{(\beta_i)} - x_i^{(k)} \right) a_{\alpha,\beta} \\
\times \prod_{i=1}^{D} \sum_{p=0}^{m_{a_i}} x_i^p \sum_{j=0}^{q_i} \left(x_{i-1}^{(m-1)} x_i^{(1)} \right)^{a_i-\gamma_i} \cdot \left(\sum_{q_i=0}^{q_i} \sum_{q_{m-1}=0}^{q_{m-1}} \left(\prod_{j=1}^{i} \frac{\partial^j}{\partial x^j} \left(x_i^{(\beta_i)} - x_i^{(k)} \right) a_{\alpha,\beta} \right) \\
\times \left(x_i^{(m-1)} a_i - (m-1) q_m \right) \right) \]

(26)

and

\[
a_{\beta,\gamma} = \sum_{\gamma \in \{1,\ldots,m\}^D} \frac{1}{\alpha!} \frac{\partial^{\alpha}}{\partial x^\alpha} \left[\prod_{i=1}^{D} \left(x_i - x_i^{(\beta_i)} \right) a_{\alpha,\beta} \right] \left(x_i - x_i^{(k)} \right) \right]_{x=x^{(\gamma)}}
\]

(27)

where \(\alpha = \tilde{\alpha} - \{\gamma_i \neq \beta_i\} \). The product rule for a general partial derivative is [10]:

\[
\frac{\partial^{k_1 \ldots k_n}}{\partial x_1^{\ell_1} \ldots \partial x_n^{\ell_n}} (uv) = \sum_{\ell_1=0}^{k_1} \cdots \sum_{\ell_n=0}^{k_n} \left(\begin{array}{c} k_1 \\ \ell_1 \end{array} \right) \cdots \left(\begin{array}{c} k_n \\ \ell_n \end{array} \right) \frac{\partial^{\ell_1} \cdots \partial^{\ell_n}}{\partial x^{\ell_1} \cdots \partial x^{\ell_n}} \frac{\partial^{k_1 - \ell_1} \cdots \partial^{k_n - \ell_n}}{\partial x^{k_1 - \ell_1} \cdots \partial x^{k_n - \ell_n}} .
\]

(28)
So we can expand the expression for $a_{\alpha, \beta}$:

$$a_{\alpha, \beta} = \sum_{\gamma \in \{1, \ldots, m\}^D} \frac{1}{\alpha !} \sum_{\delta, \forall i \delta_i \leq \alpha_i} \left(\frac{\alpha}{\delta} \right) \frac{\partial^{\alpha-\beta}}{\partial x^{\alpha-\beta}} \left[\frac{1}{\prod_{i=1}^{D} (x_i - x_i^{(\beta_i)})_{\gamma_i \neq \beta_i} \prod_{k=1, k \neq \gamma_i}^{m} (x_i - x_i^{(k)})^{\alpha_i}} \right]_{x=x^{(\gamma)}} , \tag{29}$$

and the factor for each dimension can be separated:

$$a_{\alpha, \beta} = \sum_{\gamma \in \{1, \ldots, m\}^D} \frac{1}{\alpha !} \sum_{\delta, \forall i \delta_i \leq \alpha_i} \left(\frac{\alpha}{\delta} \right) \frac{\partial^{\alpha-\beta}}{\partial x^{\alpha-\beta}} \left[\frac{1}{(x_i - x_i^{(\beta_i)})_{\gamma_i \neq \beta_i} \prod_{k=1, k \neq \gamma_i}^{m} (x_i - x_i^{(k)})^{\alpha_i}} \right]_{x=x^{(\gamma)}} , \tag{30}$$

Because $\frac{d}{dx} \ln f = \frac{1}{f} \frac{df}{dx}$ we can write $\frac{df}{dx} = f \frac{d}{dx} \ln f$, and so:

$$\frac{\partial}{\partial x_i} \left[\frac{1}{(x_i - x_i^{(\beta_i)})_{\gamma_i \neq \beta_i} \prod_{k=1, k \neq \gamma_i}^{m} (x_i - x_i^{(k)})^{\alpha_i}} \right]_{x=x^{(\gamma)}} \left(- \frac{1}{x_i - x_i^{(\beta_i)}} \right) - \tilde{\alpha}_i \sum_{k=1, k \neq \gamma_i}^{m} \frac{1}{x_i - x_i^{(k)}} \right]_{x=x^{(\gamma)}} . \tag{31}$$

The second factor in Equation 30 can be evaluated recursively using Equation 31 and the product rule:

$$\frac{d^n}{dx^n} uv = \sum_{k=0}^{n} \binom{n}{k} \frac{d^{n-k} u}{dx^{n-k}} \frac{d^k v}{dx^k}. \tag{32}$$

B Additional Multivariate DTM Recurrences

The following table shows how to apply the Multidimensional DTM to some common nonlinear terms. Once the formulas for the basic arithmetic operations are known, deriving the formulas for functions that are solutions of an ODE is straightforward [8] [17] (just apply the DTM transformation rules to the defining ODE). A large table of these recurrences can be found in an appendix of the Fast Forward Automated Differentiation Library (FFADLib) User Manual [23].

Original Function	Transformed Function			
$w(x) = y(x) / z(x)$	$W(k) = \frac{1}{z(0)} \left[Y(k) - \sum_{l=0}^{k_1} \cdots \sum_{l_n=0}^{k_n} Z(l) W(k - l) \right] W(k - l)$			
$w(x) = \sqrt{y(x)}$	$W(k) = \frac{1}{2W(0)} \left[Y(k) - \sum_{l_1=0}^{k_1} \cdots \sum_{l_n=0}^{k_n} W(l) W(k - l) \right]$			
$w(x) = \exp(y(x))$	$w(x) = \ln(y(x))$	$w(x) = y(x)^a$	$w(x) = \sin(y(x))$	$w(x) = \cos(y(x))$
-----------------	----------------	----------------	----------------	----------------
$W(k) = \frac{1}{k^a} \sum_{l_1=0}^{k_1} \cdots \sum_{l_{n-1}=0}^{k_{n-1}} \sum_{l_n=0}^{k_n} (k_n - l_n) W(l) Y(k - l)$	$W(k) = \frac{1}{Y(0)} \left[Y(k) - \frac{1}{k^a} \sum_{l_1=0}^{k_1} \cdots \sum_{l_{n-1}=0}^{k_{n-1}} \sum_{l_n=0}^{k_n} (k_n - l_n) Y(l) W(k - l) \right]$	$W(k) = \frac{1}{Y(0)} \left[sW(0) Y(k) + \frac{1}{k^a} \sum_{l_1=0}^{k_1} \cdots \sum_{l_{n-1}=0}^{k_{n-1}} \sum_{l_n=0}^{k_n} (k_n - l_n) [sW(l) Y(k - l) - Y(l) W(k - l)] \right]$	$W(k) = \frac{1}{k^a} \sum_{l_1=0}^{k_1} \cdots \sum_{l_{n-1}=0}^{k_{n-1}} \sum_{l_n=0}^{k_n} (k_n - l_n) W_{\cos}(l) Y(k - l)$	$W(k) = -\frac{1}{k^a} \sum_{l_1=0}^{k_1} \cdots \sum_{l_{n-1}=0}^{k_{n-1}} \sum_{l_n=0}^{k_n} (k_n - l_n) W_{\sin}(l) Y(k - l)$

For the self-referential recurrences, note that $W(0)$ is always determined by applying the original function to the zeroth-order coefficients of the respective power series. In addition, any terms which would cause $W(k)$ to depend on itself should be omitted; their appearance is only for notational convenience. For some of the entries it is necessary to pick an index, a, for which the sum only goes from 0 to $k_a - 1$. The choice of this index is arbitrary, although it generally must be such that $k_a \neq 0$.
Evolving $f, \dot{f}, f^{(1)}, f^{(1)}$

Figure 1: This diagram illustrates the stacking technique for a second-order-in-time PDE using the pairwise spatial-order evolution. $f^{(n)}$ indicates the n^{th} spatial derivative of f. The solid arrows indicate direct (scaled) assignment. The dot-dashed lines indicate computation using the interpolation procedure detailed in Appendix A. The label “R” indicates computation using the recurrence relation derived from the PDE. The right-curly bracket indicates the linear combinations from taking derivatives of the Taylor expansion which defined the recursion coefficients.
Figure 2: The relative error compared to the analytic solution for the system described in Section 4.2 with 1 DTM coefficient per point per temporal order. The interpolation uses a six-grid-point radius (13 points per neighborhood). Coefficients of order 13 were the highest-order coefficients used. Also shown is the relative error using an interpolation neighborhood radius of seven (15 points per neighborhood).
Figure 3: The relative error compared to the analytic solution for the system described in Section 4.2 with 2 DTM coefficients per point per temporal order. This plot shows cases where the interpolation uses the two highest orders from all points within a three-grid-point radius (7 points per neighborhood), a four-grid-point radius (9 points per neighborhood), and a five-grid-point radius (11 points per neighborhood). Coefficients of order 14 were the highest-order coefficients used. For comparison, also shown is the case where only the zeroth-order components are stored as a seven-grid-point interpolation radius is used. As can be seen, using two orders per grid point yields a much-more-accurate evolution than using only one.
Figure 4: The relative error compared to the analytic solution for the system described in Section 4.2 with 14 DTM coefficients per point per temporal order. This plot shows cases where the interpolation uses a five-grid-point radius (11 points per neighborhood). Each pair of spatial orders is evolved together, and, because the PDE is linear, independently of all of the other orders. Coefficients of order 25 were the highest-order coefficients used (coefficients of order 14 were the highest-order coefficients used for the first pair, and so on). The neighbor-to-neighbor constraint-violation error, also shown, becomes less than the analytic error.
Figure 5: The relative error compared to the analytic solution for the system described in Section 4.3 with 2 DTM coefficients per point per temporal order. This plot shows cases where the interpolation uses a five-grid-point radius (11 points per neighborhood). Coefficients of order 17 were the highest-order coefficients used. The RK4 scheme shown used $N = 156$, $dx = 0.28125$ and $dt = 0.001/2650 = 3.77358e-07$, but using $dt = 0.001$ with the RK4 scheme yields an almost-identical curve.
Figure 6: The relative error compared to the analytic solution for the system described in Section 4.3 with 17 DTM coefficients per point per temporal order. This plot shows cases where the interpolation uses a five-grid-point radius (11 points per neighborhood). Each pair of spatial orders is evolved together. Coefficients of order 32 were the highest-order coefficients used (coefficients of order 17 were the highest-order coefficients used for the first pair, and so on).
Figure 7: The relative error compared to the analytic solution for the system described in Section 4.3 with 17 DTM coefficients per point per temporal order computed using the double-double type from Bailey’s qd package [13], which has twice the working precision of an IEEE double. This plot shows cases where the interpolation uses a five-grid-point radius (11 points per neighborhood). Each pair of spatial orders is evolved together. Coefficients of order 32 were the highest-order coefficients used (coefficients of order 17 were the highest-order coefficients used for the first pair, and so on).