An epidemiological study on giardiasis in cattle and humans at Beni-Suef Governorate

Gihan K. Abdel-Latif1, Aboelhadid S. M.2

1 Department of Animal Hygiene, Management and Zoonoses and 2 Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.

The present study was conducted to assess the prevalence of Giardia species infection in cattle and human. One hundred of animal fecal samples and 139 human stool samples were collected from different veterinary clinics and its related hospitals respectively. All samples were undergone to microscopically examination by; direct smears in 0.90% Na Cl solution, Lugol's iodine stain for cyst detection and formol-ether concentration. 9 (28.1%) calves from 32 were positive in microscopic examination by the used techniques. 25% of the examined fecal samples of cattle (17/68) were containing cysts of Giardia species by microscope. 39 of 139 (28.1%) of human stool samples were found infected by this protozoon. Regarding the sex of human cases, 26.30% of examined males were positive while 30.20% of females were positive. The age factor in human infection was clear; the age group of 11 to 20 years were the more infected than the other group (1-10ys). There is no relation between form of human stool and infection rate. ELISA kits confirmed that 6 % of animal cases and 15.8% of human were positive. The epidemiological aspects were discussed in the study.

Giardia duodenalis is a common intestinal protozoan parasite that infects a wide variety of domestic and wild mammals as well as humans (O'Handley and Olson 2006). Transmission of the parasite is dependent upon ingestion of cysts, which are excreted in the feces of infected hosts. While the direct fecal-oral route of transmission is important, waterborne transmission is a major route for human infections, specifically from G. duodenalis contaminated surface water (Dixon, 2003, van Keulen et al., 2002). Typically, G. duodenalis infects the small intestine of the host. Clinical giardiasis in humans is recognized by diarrhea (acute or chronic), dehydration, abdominal pain, nausea, vomiting, and weight loss (Thompson and Monis 2004). Giardiasis in cattle is usually subclinical in adult cows. Calves may experience diarrhea; however, subclinical infections are common, probably depending on host, parasite, and environment interactions. Mixed infections with other protozoan and viral pathogens are common and may be responsible for clinical signs encountered (O'Handleyet al., 1999).

Six species of Giardia are recognized on the basis of morphological characteristics and host occurrence (Thompson, 2003). The lack of morphological differences between the genetic variants found in mammals has resulted in an informal categorization of these genotypes based on genetic differences. Cattle are susceptible to infection with two genotypes of G. duodenalis: the zoonotic genotype Assemblage A, or the livestock genotype, Assemblage E (Thompson, 2003; Olson, et al., 2004). Cattle may be a potential source of human Giardia infection through direct contact, or more importantly through contamination of surface water supplies Weniger et al., (1983), Craun (1986), Gradus (1989), Craun (1990), Le chevalier et al., (1991); even few calves infected with genotypes in assemblage A could pose a significant public health risk and may but producers, and other members of the community at risk (Santin et al., 2012).

So this study was conducted in Beni-Suef Governorate to determine the prevalence and zoonotic potential of giardiasis in domestic cattle and humans.

Material and methods

Animals' fecal samples. A total of 100 fecal samples were collected from; different veterinary clinics in the nearest villages to Beni-Suef town. These samples are 68 dairy cattle and 32 calves. Every fecal sample was collected per rectum using disposable latex glove then the feces are put into individual plastic containers. The fecal samples were transferred to the laboratory in ice bags at 4°C. Each sample was identified by animal number, age, sex and all data of him.

Human stool samples. The human stool samples were collected from the hospitals that were the only way for the inhabitants of these villages near to Beni-Suef town for medical care.
A total of 139 human stool samples of patients suffering from gastrointestinal disturbance and visiting the outpatient’s clinic laboratory for examination were collected. The data of the patients were written for each samples and its residence (age, sex, form of the stool, etc...). Samples were collected in accordance with WHO guidelines on the collection of faecal samples WHO (1991). From the samples; 112 were normal formed or semi formed stool and 27 were diarrheic stool. Each sample was labeled then was sent to laboratory for further examination.

**Microscopical technique for examination.**
Three techniques by 3 steps for examination of each sample were done. Direct microscopic smear in saline (0.90% w/v NaCl solution) was assumed then was examined microscopically. Then; Lugol’s iodine was performed for the detection of parasites (trophozoites, cysts) and lastly formol-ether concentration method was employed according to Ridley and Hawgood (1956).

**Immunologic detection of Giardia species antigen in feces.** It was performed using Giardia specific coproantigen ELISA (Immunospec Corporation) to detect different soluble antigens dispersed in fecal matter rather than detecting cysts, trophozoites.

The procedure was conducted according the manufactured. This briefly was; the fecal samples were prepared by dilution buffer. All wells were filled by 50 ul dilution buffer. Then 50 ul of each sample was put in each well. Incubation for 60 min at room temperature was done then washing occurred. Add 2 drops of enzyme conjugate to each well. Then it was incubated for 30 minutes at room temperature, and then washed. Two drops of chromogen were added and incubation for 10 min at room temperature. Then, 2 drops of stop solution was put. Mixing was done and read the reaction within 5 minutes after adding stop solution. The results were read at a dual wavelength of 450nm. The readings were compared to the negative control and positive control.

**Results**
The microscopic examination of fecal samples from calves showed higher percentage of positivity (28.1%) than cattle (25%) as in (Table 1). Concerning the humans stool samples examination reveals positive rate of 28.1% with higher positivity rate in the age group of 11-20 years irrespective to presence or absence of diarrhea with slight rise in female positivity than male (Table 2). The ELISA confirmed 6% of animal cases and 15.8% of human cases as shown in (Table 1 and 3).

**Table (1):** Results of Microscopical and ELISA examination of animal fecal samples.

| Animal     | Test used                                      | ELISA                              |
|------------|-----------------------------------------------|------------------------------------|
|            | Direct smear &formol-ether concentration technique | Positive (%) Negative (%) Positive (%) Negative (%) |
|            |                                               | Cattle 17 (25%) 51 (75%) 3 (4.4%) 65 (95.6%) |
|            |                                               | Calves 9 (28.1%) 23 (71.9%) 3 (9.4%) 29 (90.6%) |
|            |                                               | Total 26 (26%) 74 (74%) 6(6%) 94 (94%) |

**Table (2):** Distribution of infection in relation to age and sex using microscopic examination of direct smear &formol-ether concentration technique.

| Age groups | No. of samples | Positive samples by direct smear &formol-ether concentration technique | Total positive (%) |
|------------|----------------|-------------------------------------------------------------------------|-------------------|
|            | Male Female    | Male Diarrheic stool Normal stool Female Diarrheic stool Normal stool |                   |
| 1-10       | 45 43          | 2 8 1 10                                                               | 21 (23.8%)        |
| 11-20      | 31 20          | 2 8 1 7                                                               | 18 (35.3%)        |
| Subtotal   | 76 63          | 4 16 2 17                                                             |                   |
| Total (%)  | 139(100%)      | 20(26.3%) 19(30.2%)                                                   | 39 (28.1%)        |
Table (3): Comparison of coproantigen ELISA results with microscopical examination.

| Test                                      | Positive (%) | Negative (%) |
|-------------------------------------------|--------------|--------------|
| Direct smear and formol-ether concentration technique | 39(28.1%)    | 100(71.9%)   |
| ELISA                                     | 22(15.8%)    | 117(84.2%)   |

**Discussion**

The prevalence of *G. duodenalis* infection is high in cattle throughout the world and all age-groups can be infected (Langkjaer et al., 2007). The present results show infection rate of 26% with higher percentage of positivity in calves (28.1%) than cattle (25%). This result showed that the domestic animals such as cattle especially calves may serve as reservoir hosts for *Giardia* infection provide the risk of the infection with subsistence farming and animal husbandry being the major occupation of the people which in accordance to Buret et al., (1990) who found that the prevalence of giardiasis was 10.4% in cattle and 27.7% in calves in Canada and postulated that domestic ruminants may be a reservoir for human infection and vice versa, thus classifying giardiasis as a zoonanthroponotic disease. Also, Ilburg et al., (1996) found Giardia cysts in 7.6% of 92 samples from 59 cows and 33 calves in Denmark. Six species of *Giardia* are recognized on the basis of morphological characteristics and host occurrence (Thompson, 2003). The lack of morphological differences between the genetic variants found in mammals has resulted in an informal categorization of these genotypes based on genetic differences. Cattle are susceptible to infection with two genotypes of *G. duodenalis*: the zoonotic genotype Assemblage A, or the livestock genotype, Assemblage E (Thompson, 2003; Olson, et al., 2004). *Giardia* has the potential to cause clinical disease in cattle and to be transmitted to other animal species and humans; in addition Olson et al., (1997) stated that *Giardia* infections are highly prevalent in dairy calves (73%) in Columbia and should be considered in animals with diarrhea or failure to thrive. Recent attention has also focused on the widespread and unexpectedly high levels of infection of *Giardia* in young livestock, particularly calves O’Handley et al., (2000a). A number of North American studies have demonstrated a high prevalence of *Giardia* in dairy calves, with infection rates of 100% in some herds Xiao and Herd (1994) and Handley et al., (1999) . As *Giardia* isolates recovered from ruminants are morphologically and antigenically identical to isolates recovered from humans Buret et al., (1990). Calves in dairy herds may harbor two genotypes, one of which is capable of causing infection in humans. Although the livestock genotype of *Giardia* appears to be the most common encountered one in cattle, studies in Canada and Australia have shown that a small proportion of cattle in a herd, <20%, may harbor genotypes in assemblage A, the most common zoonotic genotype affecting humans O’Handley et al., (2000b) and Trout et al., (2005), also Santin et al.,(2012) stated that even few calves infected with genotypes in assemblage A could pose a significant public health risk and may but producers, and other members of the community at risk while other studies in the United States, Canada, and the United Kingdom did not show such an association Xiao and Fayer. (2008).

Cysts are discharged in the feces of infected cattle and are of primary importance for the dispersal and survival of the parasites. Transmission can be direct from host to host, by ingestion of fecal contaminated food or water, or, as with other fecal transmitted parasites mechanical insect vectors are likely to play a role in transmission. Limiting factors for oocyst and cyst survival are high temperatures and desiccation. Transmission is likely to be direct between infected animals since environmental contamination on farms with oocysts and cysts would be insufficient to account for the high levels of infection seen in cattle, particularly with *Giardia*. Although the transmission process is complex and the risk is low, there is a definite potential for *Giardia* and *Cryptosporidium* contamination of ground and surface waters from livestock operations. Management of fecal waste is crucial when water runoff can reach receiving surface water or contaminate groundwater. There are major concerns with applying fresh animal manure to fertilize agricultural land due to the potential for fecal pathogens to reach surface and/or groundwater. It is believed that the primary modes by which parasites such as *Giardia* and *Cryptosporidium* are transported to surface water are via the drainage from manure storage areas, direct contact by cows with water,
Parasites such as *Giardia* and *Cryptosporidium* have been associated with contamination of fruits and vegetables through contaminated irrigation water and manure fertilizer. *Giardia* cysts have been shown to be viable for up to 84 days in cold river and lake water but are eliminated within a week when frozen or desiccated (O’Handley et al., 2000a; Olson et al., 1999).

Concerning the stool sample examination the results revealed positive rate of (28.1%) with higher positivity rate in the age group of 11-20 years (35.3%) irrespective to presence or absence of diarrhea with slight rise in female positivity (30.2%) than male (26.3%) which revealed that *Giardia* infection may either be present sub-clinically or the parasite have partial pathogenicity or the majority of the patients within the study area are asymptomatic carriers of a non-pathogenic strain, this in agreement with Haque et al., (2005) who stated that different genotypes of *Giardia lamblia* (Assemblage A and Assemblage B) has been reported in Bangladesh with the Assemblage A genotype more associated with diarrhoea than the Assemblage B genotype. The incidence of infection increased significantly with age. The majority of the patients in this study were children of school and pre-school age and thus they have very active playing habits in and out of school. These children normally play in the soil which harbors this parasite cyst and are less mindful of some very important personal hygiene practices such as washing of hands with soap and water before eating, after playing in the soil and after visiting the toilets, also, they may buy a lot of food from streets vendors some of whom do not practice proper personal hygiene and may be carriers of some infective parasites the same was explained by Ayeh et al., (2009), Nyarango et al., (2009), also Mahmud et al.,(1995) who suggested that in addition to age of infants, poverty, low education, gender discrimination, and certain environmental conditions potentiated the risk for developing the 1% infection in addition Addy et al., (2004) and Wongjindanon et al., (2005) explained that the nature of everyday activities bring people, especially children, into close contact with natural sources of soil and water, therefore increasing their risk of ingestion of infective stage parasites. This study shows contrary to previous suggestions that giardiasis was highest only among children of pre-school age who are usually in child care settings Heidari and Rokni (2003). Higher isolation rates were reported in Egypt (44%) Zaki et al., (1986), children in the aborigine community in Pahang, Malaysia (44.1%) Noor et al., (2007), and children in Amman, Jordan (78%) Shakkoury and Wendy (2005). Even lower prevalence have been reported in other areas such as diarrheal children in Kumasi, Ghana (11.0%) Addy and Aikins (1986) and pre-school children in Gaza, Palestine (10.3%), Al-Hindi and El-Kichaoi (2008). Both studies showed no clear trend in prevalence with age. In agreement with our results Wongjindanon et al., (2005) found that *Giardia infection* was observed almost three times more in asymptomatic children (9.7%) than in symptomatic children (3.7%).

The study also revealed that ELISA is an easy, rapid, sensitive and specific procedure for confirming the diagnosis of suspected cases of giardiasis. It should be a valuable diagnostic aid under field conditions as well as in the laboratory as deduced by Vinayak et al., (1991) who suggested that ELISA appears to be a simple, rapid, and accurate method for the detection of *G. lamblia* in unprocessed stool samples, also Danciger, (1975) and Faust (1970) who found that diagnosis of *Giardia* infection by microscopic examination for ova & parasite (O&P) is a laborious process. Moreover Burke (1975), Healy (1979) and Kamath and Murugasu (1974) found that iodine stained wet smears, gimsa stained cyst concentrates prepared by formol-ether concentration are standard methods of stool preparation used to increase the sensitivity of *Giardia* detection but even after application of these techniques, the sensitivity of microscopic examination is dependent upon the skill of the microscopist, on the other hand Jelinek et al., (1996) who stated that the coproantigen-ELISA is especially advantageous in situations where only a single stool sample can be examined. It was worthy to mention that ELISA result was lower than microscopic examination; this may attributed to; chronic giardiasis has local reaction in the intestine, also the detection of this kit was directed to IgG not any other immunglobulines.

Finally, cattle especially calves may a role in the dissemination and epidemiology of human giardiasis.

**References**

Addy, P. A. K. and Aikins-Bekoe, P. (1986): Cryptosporidiosis in diarrhoeal children in Kumasi, Ghana.
Lancet 1986, 1(8483):735
Addy, P. A. K.; Antepim, G. and Ffrimppong, E. H. (2004): Prevalence of pathogenic Escherichia coli and parasites in children with diarrhoea in Kumasi, Ghana. E Afr Med J 2004, 81(7):353-357.
Al-Hindi, A. I. and El-Kichaoi, A. (2008): Occurrence of gastrointestinal parasites among pre-school children, Gaza, Palestine. The Islamic University Journal (Series of Natural Studies and Engineering) 2008, 16(1):125-1
Ayeh-Kumi, P. F.; Quarcoo, S.; Kwakye-Nuako, G.; Kretchy, J. P.; Osofo-Kantanka, A. and Mortu, S. (2009): Prevalence of Intestinal Parasitic Infections among Food Vendors in Accra, Ghana. J Trop Med Parasitol 2009, 32(1):1.
Burke, J. A. (1975): The clinical and laboratory diagnosis of giardiasis. Crit. Rev. Clin. Lab. Sci. 7:373-391
Buret, A.; den Hollander, N.; Wallis, P. M.; Befus, D. and Olson, M. E. (1990): Zoonotic potential of giardiasis in domestic ruminants. J Infect Dis. 1990 jul; 162 (1): 231-7.
Craun, G. (1980): Waterborne outbreaks in the United States 1965–1984. Lancet, II (1986), pp. 513–514
Craun, G.F.(1990): Waterborne giardiasis. E.A. Meyer (Ed.), Giardiasis, Elsevier, Amsterdam (1990), pp. 267–293.
Danciger, M. and Lopez, M. (1975): Number of Giardia in the feces of infected children. Am. J. Trop. Med. Hyg. 24:237-242.
Dixon, B. R. (2003): The prevalence and control of foodborne protozoan parasites. In: Blais BW, editor. Current Challenges in Food Microbiology. Kerala, India: Research Signpost; 2003, pp. 31–76.
Faust, E. C. (1970): 103. In W.jakubowski and J.C. Hoff (ed), water borne disease. Acta Veterinaria Scandinavica Vol. 37 No. 3 pp. 337-341
Fay, J. L.; McAllister, T. A.; Jelinski, M. D. and Morck, D. W. (1999): Molecular and phylogenetic characterization of Cryptosporidium and Giardia from pigs and cattle in Denmark. Parasitology. 2007 Mar; 134( Pt 3):339-50.
Mahmoud, M. A.; Chappell, C.; Hossain, M. Mand Dupont, H. L. (1995): Risk factors for development of first symptomatic Giardia infection among infants of a birth cohort in rural Egypt. The American Journal of Tropical Medicine and Hygiene (1995, 53(1):84-88
Noor Azian, M. Y.; San, Y. M.; Gan, C. C.; Yusri, M. W.; Nuruksyzamwazaty, Y.; Zainahaim, A. H.; Maslawaty, M. N.; Norparinna, I. and Vyvthinglam, I. (2007): Prevalence ofintestinal protozoa in an aborigine community in Pahang, Malaysia. Trop Biomed 2007, 24:55-62.
Nyarango, R. M.; Aloo, P. A.; Kabiru, E. W.; and Nyanchongh, B. O. (2009): The risk of pathogenic intestinalparasitic infections in Kisii Municipality, Kenya. BMC Public Health 2008,8:237.
O’Handley, R. M.; Cockwill, C.; McAllister, T. A.; Jelinski, M.; Morek, D. W. and Olson, M. E. (1999): Duration of naturally acquired giardiosis and cryptosporidiosis in dairy calves and their association with diarrheaa. J Am Vet Med Assoc. 1999 Feb 1; 214(3):391-6.
O’Handley, R. M.; Cockwill, C.; Jelinski, M.; McAllister, T. A. and Olson, M. E. (2000a): Effects of repeat fenbendazole treatment in dairy calves with giardiosis on cyst excretion, clinical signs and production. Vet Parasitol. 2000, 89(3): 209-18.
O’Handley, R. M.; Olson, M. E. and Fraser, D. (2000b): Prevalence and genotypic characterisation of Giardia in dairy calves from Western Canada and Western Canada. Vet Parasitol, 90 (2000), pp. 193–200.
O’Handley, R. M. and Olson, M. E. (2006): Review Giardiasis and cryptosporidiosis in ruminants. Vet Clin North Am Food Anim Pract. 2006 Nov; 22(3):623-43.
Olson, M. E.; Guselle, N. J.; O’Handley, R. M.; Swift, M. L.; McAllister, T. A.; Jelinski, M. D. and Morek, D. W. (1997): Giardia and Cryptosporidium in dairy calves in British Columbia. Can Vet J. 1997 November; 38(11): 703–706.
Olson, M. E.; Goh, J.; Phillips, M.; Guselle, N. and McAllister, T. A. (1999): Giardia cyst and Cryptosporidiumoocyst survival in water, soil, and cattle feces. J Environ Qual. 1999;28(6):1911-196
Olson, M. E.; O’Handley, R. M.; Ralston, B. J.; McAllister, T. A. and Thompson, R. C. A. (2004): Update on Cryptosporidiosis and Giardia infections in cattle. Trends Parasitol. 20, 185–191.
Ridley, D. S. and Hawgood, B. C. (1956): The Value of Formal-Ether Concentration of Faecal Cysts and Ova. J ClinPathol. 1956 February; 9(1): 74–76.
Shakkoury, W. A. and Wandy, E. A. (2005): Prevalence of Giardia lamblia infection in Amman, Jordan. Pak J Med Sci 2005. 21(2):199-201.
Santin, M.; Dargatz, D. and Fayer, R. (2012): Prevalence of Giardia duodenalis assemblages in weaned cattle on cow-calf operations in the United States. Vet Parasitol. 2012 Feb 10;183(3-4):231-6.
Thompson, R. C. A. (2003): Molecular epidemiology of Giardia and Cryptosporidium infections. J. Parasitol. 89, S134-140
Thompson, R. C. and Monis, P. T. (2004): Review Variation in Giardia: implications for taxonomy and epidemiology. Adv Parasitol. 2004; 58(6):69-137.
Trout, J. M.; Santin, M.; Greiner, E. and Fayer, R. (2005): Prevalence and genotypes of Giardia duodenalis in post-weaned dairy calves. Vet Parasitol.30; 130:177-83.
Vinayak, V. K.; Dutt, P.; and Puri, M. (1991): An immunoenzymatic dot-ELISA for the detection of Giardia lamblia antigen in stool eluates of clinical cases of giardiasis. J Immunol Methods. 1991 Mar 21; 137(2):245-51.

Van Keulen, H.; Macechko, P. T.; Wade, S.; Schaaf, S.; Wallis, P. M. and Erlandsen, S. L. (2002): Presence of human Giardia in domestic, farm and wild animals, and environmental samples suggests a zoonotic potential for giardiasis. Vet Parasitol. 2002 Sep 10; 108(2):97-107.

Weniger, B. G.; Blaser, M. J.; Gedrose, J.; Lippy, E. C. and Juranek, D. D. (1983): An outbreak of waterborne giardiasis associated with heavy runoff due to warm weather and volcanic ashfall. Am J Public Health, 73. 868–872

WHO (1991): Basic Laboratory methods in medical parasitology. Geveva: World Health Organisation; 1991.

Wongjindanon, N.; Suksrichavalit, T.; Subsutti, W.; Sarachart, T.; Worapisuttiwong, U. and Norramatha, P. (2005): Current infection rate of Giardia lamblia in two provinces of Thailand. Southeast Asian J Trop Med Public Health 2005, 36(suppl 4):21-25.

Xiao, L. and Herd, R. P. (1994): Infection pattern of Cryptosporidium and Giardia in calves. Vet Parasitol. 55(1994), pp. 257-262.

Xiao, L. and Fayer, R. (2008): Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int. J. Parasitol. 38:1239-1255.

Zaki, A. M.; Dupont, H. L.; El Alamy, M. A.; Arafat, R. R.; Amin, K.; Awad, M. M.; Bassiouni, L.; Imam, I. Z.; El Malih, G. S. and El Marsafie A. (1986): The detection of enteropathogens in acute diarrhea in a family cohort population in rural Egypt. American Journal of Tropical Medicine and Hygiene 35: 1013–102.