Suppression of hyaluronidase reduces invasion and establishment of *Haemonchus contortus* larvae in sheep

Xiangshu Yang1,2†, Sawar Khan1†, Xiaochao Zhao1, Jiayan Zhang1,2, Ayesha Nisar1 and Xingang Feng1*

Abstract

Haemonchus contortus is a hematophagous endoparasite of small ruminants, which is responsible for huge economic losses in livestock sector. Hyaluronidase produced by infective larvae of *H. contortus* can degrade hyaluronic acid present in the host’s abomasal tissue. Thus, it facilitates larval tissue invasion and early establishment. We herein explored this ability of hyaluronidase in *H. contortus*, and tested whether hyaluronidase is utilized as a virulence factor by *H. contortus* while establishing the infection. We first successfully blocked the hyaluronidase gene in L3 larvae by RNA interference (RNAi), which was subsequently confirmed by qPCR, enzymatic activity, and immunohistochemistry assays. Using these larvae we then conducted in vivo and in vitro assays on sheep to assess the effects of hyaluronidase suppression on larval invasion and establishment of infection. The in vivo assay showed a significant drop in worm burden in siRNA treated group in comparison to control group. During in vitro assay we applied an ovine ex vivo model where siRNA treated group of larvae showed significantly reduced invasion of the abomasal tissue explants as compared to control group. These findings indicate that hyaluronidase plays a key role in host’s tissue invasion and larval establishment, and it is used as a virulence factor by *H. contortus* while establishing the infection. As an invasive virulence molecule, its functional research is thus conducive to the prevention of haemonchosis.

Keywords: *Haemonchus contortus*, hyaluronidase, RNA interference, virulence factor, ex vivo tissue explants, in vivo

Introduction

Haemonchus contortus is an important gastrointestinal parasitic nematode of domestic and wild small ruminants whose origin is traced back to an assemblage of antelopes in Africa during the late Tertiary period [1–3]. It feeds on blood while living in the host’s abomasum and causes an infection called haemonchosis (a pathological condition characterized by anaemia, weight loss, and even mortality in infected animals), thereby leading to serious economic losses [4–6]. Currently, the prevention and control of *H. contortus* is based on application of drugs such as macrocyclic lactones, salicylanilides, and benzimidazoles. Recently, a vaccine named Barbervax® (http://barbervax.com.au/) was also launched as alternative to chemical control of *H. contortus*. This parasite has shown a great ability to develop resistance against all anthelminthic drugs [7–11], and even showed to develop resistance within a few years of application of a new drug [12–15]. It has emerged as a model parasitic species to serve as a system for functional and comparative genomics to test the anthelmintic resistance, and drug and vaccine discovery efforts as alternative methods of control [16–18]. Its use as a model is largely due to its rapid ability to acquire drug resistance, the relative amenability to experimentation under lab conditions [16], the development of extensive genomic resources [19, 20], testing novel functional
validation approaches, such as RNAi [21, 22], and its
closer phylogeny with other nematodes of clade V [23].
It has a successful track record in anthelmintic resistance
[24] and drug discovery [25].

Haemonchus contortus undergoes both, the free living
as well as the parasitic stages of its life cycle. The eggs
hatch into free living larval stage L1, which is followed
by another free living stage L2. The L2 then matures into
infective stage L3. These infective larvae (L3) are ingested
by host. Once they reach into the abomasum of the host
they start to invade into the mucosa and develop into L4.
These final stage larvae (L4) then molt into adult worms.

Invasion into the mucosa is a crucial step in larval estab-
lishment of *H. contortus*, and transition from a free-living
to a parasitic life style takes place at this stage [26].
Thus, it could be a putative site for exploring new preventive
and control strategies for haemonchosis. However, not
much is known about the mechanism and molecular
mediators involved in larval establishment at this step.

Hyaluronidases are a family of enzymes that degrade
hyaluronic acid [27, 28]. Hyaluronic acid is an anionic,
nonsulfated polysaccharide (consisting on glycosami-
noglycan), which constitutes the intercellular ground
substance of connective tissue, controls tissue permea-
tion, and maintains the integrity of extracellular matrix
[29, 30]. Hyaluronidases are involved in physiological as
well as in pathological activities. They play a critical role
in: cell differentiation, proliferation, and adhesion [31];
embryogenesis [32]; osteogenesis and skeletal growth
[33, 34]; and wound healing and tissue repair [35, 36].

Bacteria, leeches, and venomous animals (in venom) use
hyaluronidase to promote invasion and spread through
the tissue by destroying its integrity [36]. In parasitic
nematodes the hyaluronidases are postulated to act as
a virulence factor while facilitating larval invasion and
migration through the host’s tissues [37, 38].

Hyaluronic acid is also present abundantly in the abo-
masal mucosa (interstitial connective tissue) of the *H.
contortus*’ hosts, and a temporal expression of the hya-
uronidase has been reported during L3 to L4 develop-
mental process in *H. contortus* [39]. In this context the
hyaluronidase of *H. contortus*, thus, might act as the
virulence factor while facilitating the invasion of L3 into
the mucosal lining of host’s abomasum, protecting larvae
from elimination, and providing larvae with immediate
access to nutrients. However, it has not been proven so
far in *H. contortus*. We therefore in this study tested the
question whether hyaluronidase could be a virulence fac-
tor that assists the *H. contortus* to invade and colonize
the host’s abomasal tissue. To this end, we first blocked
the hyaluronidase gene in L3 larvae by RNA interference
(RNAi). We then used these larvae to perform in vivo and
in vitro assays to monitor the ability of larvae to cause
infection. Finally, our results showed that hyaluronidase
enhances the larval invasion of the abomasal tissue dur-
ing *H. contortus* infection.

Materials and methods

Parasites and animals

Parasite free sheep (15 animals of a local breed) used in
this study were purchased from a local farm in Shanghai.
Sheep were 3 months old and were under 15 kg of body
weight. Feces were inspected continuously for 3 weeks
for parasitic eggs in order to ascertain that sheep were
parasite free. Furthermore, it was also ensured that the
drinking water and feed were parasite free. Six to eight
weeks old BALB/c mice were purchased from the Shang-
hai Experimental Animal Center, Chinese Academy of
Sciences. The *H. contortus* L3 larvae of an Australian
strain that we have been maintaining in sheep for several
years [6, 40], were harvested from faecal cultures.

RNA interference

In order to block the *H. contortus* hyaluronidase gene
[(the only hyaluronidase gene sequence in *H. contor-
tus* to date that we found under the GenBank acces-
sion number: CDJ92372.1), (% amino acid identity with
other nematodes, Additional file 1)], a specific double
stranded siRNA sequence (HAase-siRNA) was designed
using GenScript siRNA Target Finder tool (https://www.
genscript.com/tools/sirna-target-finder). As a negative
control, a non-specific double stranded siRNA sequence
(NC-siRNA) was also designed that was not targeting
any of *H. contortus* genes. These sequences were crossed
checked for their off targets by BLAST tool (https://paras-
ite.wormbase.org/Haemonchus_contortus_prjeb506/
Tools/Blast). All the siRNA sequences (Additional file 2)
were commercially synthesized from the Gene Pharma,
Shanghai. The L3 larvae were exsheathed (xL3s) with
0.2% sodium hypochlorite (for 5 min at RT), washed
twice with PBS, and re-suspended into water (10,000 lar-
vae/mL). Two groups of xL3s (HAase-siRNA, and NC-
siRNA) were added to xL3s with a final con-
centration of 1 μg/μL. Electroporation was then applied
using a Bio-Rad GenePulser (100 V for 30 ms). Both
groups of xL3s were collected in a 12-well plate (about
5000/well) after electroporation, and were incubated at
37 °C, 5% CO₂ for 48 h.

RNA extraction and qPCR

After 48 h of culturing siRNA treated xL3s, aliquots
(50 μL pellet) from both groups were subjected to total
RNA extraction. Procedures were performed using QIA-
GEN RNaseasy Mini Kit (cat#74104) as per manufactur-
er’s protocol. Quality and quantity of isolated RNA was
checked using a Nanodrop spectrophotometer (Thermo Scientific, USA). First-strand cDNA was synthesized using 1 μg of total RNA with Takara PrimeScript RT reagent Kit having gDNA eraser (cat#RR047A) by following the manufacturer's instructions. The qPCR assays were performed with specifically designed primers (Additional file 3), and SYBR Green reagents (YEASEN Hieff® cat#11202ES03) as per kit’s protocol on an ABI-7500 system in triplicate set up. Hc-NADH was used as a housekeeping/normaliser gene, to quantitate the level of HC-HAase transcript relative to it. The relative quantification of the target transcripts were performed by 2^−ΔΔCt method [41].

Detection of hyaluronidase activity

Activity of hyaluronidase was assessed by 3,5-dinitrosalicylic acid (DNS) method [42]. A standard curve of hyaluronidase activity was first generated using the different concentrations of hyaluronidase (20–125 U) in serial dilutions on its substrate hyaluronic acid, HA (0.5% w/v). Briefly, 500 μL enzyme solution was mixed with 500 μL HA solution, and samples were incubated at 37 °C for 30 min. In control sample (blank) PBS was used instead of hyaluronidase. After incubation, samples were placed in boiling water for 5 min to terminate the reaction. An aliquot of 200 μL of each sample was mixed with 400 μL of DNS solution, placed in boiling water for 5 min, and loaded to a 96-well plate (150 μL/well) in triplicate. Samples were analyzed under a 540 nm wavelength of maximum absorbance with a microplate reader. Data was analyzed by linear regression (compare of slopes) and a standard curve was generated with the corresponding relationship between absorbance and concentration. Subsequently, samples (500 μL) from culture solution of siRNA treated xL3s after 48 h (from both groups of larvae) were mixed with 500 μL. HA solution, and incubated at 37 °C for 30 min. Immediately after the incubation, samples were transferred to boiling water for 5 min, and an aliquot of 200 μL of each sample was taken. The aliquot was then mixed with 400 μL of DNS solution, placed in boiling water for 5 min, and loaded to a 96-well plate (150 μL/well) in triplicate. Samples were analyzed in a microplate reader under a 540 nm wavelength of maximum absorbance. The enzyme activity of the solution was calculated by already generated standard curve.

Worm burden and morphometric analysis

A total of 15 worm-free sheep were divided into three groups (five sheep in each group). Sheep in the first group were infected with 8000 treated larvae (xL3s-HAase-siRNA) by oral feeding. The second group of sheep was infected with same numbers of xL3s-NC-siRNA larvae. Whereas the third group of sheep was left uninfected. Fecal egg count (total number of eggs per gram of feces) was conducted onward from 18 day post infection (dpi) to 32 dpi using McMaster’s technique. After 32 dpi, the sheep were slaughtered and abomasae were obtained. The adult worms recovered from abomasae were counted in each individual sheep. Worm burden was calculated as percentage of recovered adult worms in relation to total number of larvae in a given infection. Morphometric analyses were performed to capture any morphological variation that likely occurred in adult worms of any group. Body lengths were measured in adult worms (randomly chosen 50 worms) of both groups. Adults were fixed with 2.5% glutaraldehyde, and subjected to scanning electron microscopy to observe any changes occurred in body surface in both groups.

Analysis of larval invasion of abomasal tissue explants

To observe the effects of blocking hyaluronidase on the larval invasion of abomasal tissue, an ovine ex vivo model [43, 44] was applied. Abomasal tissue obtained from a worm-free sheep (from third group) was gently washed with warm 0.85% saline, and cut down into 2 cm × 2 cm tissue pieces. A 6-well plate was used to place every tissue piece into a single well containing Hanks balance solution (added to surround but not submerge the tissues). A 5 mL syringe was cut (the needle end was removed) into a cylindrical barrel (about 1.6 cm) for each sample. The syringe barrel was placed onto the center of each abomasal tissue piece into which siRNA treated xL3s (about 2400) of the respective groups were introduced. The tissue samples were then incubated at 38 °C for 3 h in the dark under high oxygen conditions. The experiments were conducted in five replicates for both groups. All operations from slaughter to incubations were performed in about 20 min. Three different tubes (50 mL centrifuge tube) were prepared for post-incubation procedures (rinse, wash, and digest). After incubation the tissues along with syringe barrel were first rinsed in the first tube containing 0.85% physiological saline to wash out all unassociated larvae. Tissues were then washed vigorously in the second tube containing 25 mL of physiological saline to further wash off the weakly attached larvae. Finally, the tissues were transferred to the third tube (containing 1% pepsin + 1% HCl) for digestion (at 38 °C for 12 h). Number of larvae in all three tubes (rinse, wash, and digest) were counted, and the percentage of larval establishment was calculated as:

\[
\% \text{ of larval establishment} = \left[\frac{D}{(R + W + D)} \right] \times 100
\]

where: D represents the number of larvae in the digest tube; R represents number of larvae in the rinse tube; and W represents number of larvae in the wash tube.
For histological analysis the tissues were fixed in 4% paraformaldehyde, processed to paraffin sections (4 μm), and subjected to H&E staining according to standard protocols. Slides were visualized and photographed using optical microscope (Nikon, model H500S).

Primary antibody and immunohistochemistry (IHC)
The hyaluronidase gene (full-length) of *H. contortus* was PCR-amplified using specific primers: F-5′ AAGGCCATGGCTGATATCCAACCTGACAGCTTC CCGGT3′; R-5′ACGGAGCTGAAATCGGATCTC AATTAATCGGAAATCCAGTG3′. PCR conditions were as following. An initial pre-denaturation at 94 °C for 5 min, followed by 35 cycles of: denaturation at 94 °C for 30 s; annealing at 57 °C for 30 s; and extension at 72 °C for 1.5 min. The final extension step was of 10 min at 72 °C. PCR products were gel purified, and ligated to PET-32a vector to form a recombinant plasmid pET- 32a-Hc-Haase. The recombinant plasmid was transformed into *E. coli* BL21, and IPTG induced expression of the recombinant protein was obtained in *E. coli*. Protein was purified by nickel column, and verified on SDS page. The concentration of protein was detected by BCA (Shanghai Shenggong). The purified hyaluronidase protein was used to immunize mice by subcutaneous injection of a dose of 90 μg per week. Serum of challenged mice was collected after 5 weeks. A HRP-Goat anti-mouse universal secondary antibody (Dako, Denmark: Code K5007) was used to spot the hyaluronidase in both groups of larvae. Briefly, the samples were first processed for antigen retrieval by heating (8–15 min) in antigen retrieval buffer. Following this, endogenous peroxidase activity was blocked in 3% hydrogen peroxide for 25 min in the dark, and slides were washed with PBS. Samples were then blocked (at RT for 30 min) with 3% BSA (bovine serum albumin) prior to incubation (at 4 °C, overnight) with the primary antibody (at a dilution of 1:100). Slides were washed with PBS, and the secondary antibody (HRP-labelled) was then added. Finally, detection was performed using DAB staining (brown), while Harris hematoxylin was used as counterstain. Slides were dehydrated with ethanol and xylene, and sealed with gum. Slides were visualized and photographed using optical microscope (Nikon Eclipse 50i, model H5505S).

Statistical analysis
Statistical analyses were performed using Microsoft Excel and GraphPad Prism 6 software. A two tailed student’s *T* test was performed for determining significance changes among both groups. A p-value of < 0.05 was considered as significant. Data of enzymatic activity was analyzed by linear regression (compare of slopes) and a standard curve was generated with the corresponding relationship between absorbance and concentration.

Results

Silencing of hyaluronidase
We explored the role of hyaluronidase in larval establishment of *H. contortus* infection. In order to block the production of hyaluronidase in infective L3 larvae, we applied the RNAi to L3 larvae. To ascertain that expression of hyaluronidase mRNA was blocked, we detected the mRNA level by real-time PCR. The relative expression profile showed that inhibitory effect was significant (Figure 1A). A standard calibration curve for enzymatic activity was generated that showed a coefficient of determination (R2) 0.999, which indicates that 99.9% of the variation in absorbance can be explained by variation in the concentration (Figure 1B). The calibration curve was represented by $y = 0.0013x - 0.0002$. The relative enzymatic activity as calculated here also indicated significant decrease in hyaluronidase activity of RNAi treated worms (Figure 1C).

Effects of hyaluronidase inhibition on worm burden and morphology
After having blocked the hyaluronidase in L3 larvae by RNAi, we observed the effects of hyaluronidase inhibition in larval establishment during the infection. We first analysed the worm burden by fecal egg count. Fecal eggs were counted in both groups after day 18 of infection, and we observed a significant drop in the number of fecal eggs from the RNAi treated group as compared to control group (Figure 2A). After day 33 of infection, sheep were slaughtered and worm burden was analysed by counting the adult worms recovered from abomasum of slaughtered animals. This also showed a significant drop in the worm burden in RNAi treated group against the control group (Figure 2B). To observe morphological differences that likely occurred among the worms of the two groups, we performed morphometric analyses on the adult worms recovered from the abomasum of slaughtered animals. No obvious differences were found in the body lengths of male and female worms in treated group against the control (Figure 2C). We also performed electron microscopy to capture any marked variations in the morphological features of the worms (Figure 2D). We carefully observed the head region, the middle and lower portion of the worm body, and the tail of the worm, in both groups. No significant change was observed in the morphological features of the worms in both groups.
Effects of hyaluronidase interference on larval invasion of abomasal tissue

In order to observe the effects of hyaluronidase interference on larval invasion of abomasal tissue, we conducted an in vitro assay of *H. contortus* infection of sheep abomasal tissue (Figure 3). We subjected abomasal explants to L3 larval penetration of both groups (control and siRNA treated) for 3 h and carefully observed the larval invasion of both groups. Tissue larvae count showed a significant drop in larval invasion in the siRNA treated groups as compared to control group (Figure 3A). To further investigate the role of hyaluronidase in the larval establishment of abomasal tissue, we observed the abomasal surface changes in both groups in comparison to normal sheep’s abomasal tissue by microscopy (Figure 3B). Results showed that the cross sections of tissue infected with siRNA treated group of larvae were much similar in appearance to that of the normal sheep’s abomasal sections. In contrast, the cross sections of explant infected with control group of larvae (Figure 3B, iv). The larval establishment and invasion rate was significantly reduced when hyaluronidase was blocked in the infective larvae.

Immunohistochemistry showed suppressed level of hyaluronidase in siRNA treated group

Finally we performed the immunohistochemistry to observe the expressed hyaluronidase in L3 larvae (Figure 4). We used the anti-hyaluronidase antibodies to capture the expressed protein in infective larval stage. We observed a high expression level of hyaluronidase in the larvae of control group (Figure 4A–D). Whereas the larvae of siRNA treated group significantly lacked hyaluronidase expression (Figure 4A, B).

Discussion

During transition from a free-living to a parasitic life style in the life cycle of *H. contortus*, the L3 larvae encounter hyaluronic acid in the ground substance of host’s abomasal tissue. The hyaluronidase released by infective larvae of *H. contortus* [39] would degrade the abomasal mucosa, and could facilitate tissue invasion and larval
establishment. In this study we tested this hypothesis and our results showed that hyaluronidase enhanced the larval invasion of the abomasal tissue during *H. contortus* infection. After some preliminary studies on *H. contortus* [26, 45, 46] hyaluronidase was identified as being temporally expressed during L3 to L4 developmental stage in *H. contortus* [39], and it was proposed to play a role associated exclusively with the L3–L4 developmental process. Hyaluronidase has been identified as a virulence factor utilized by the parasitic nematodes *Anisakis simplex*, *Ancylostoma braziliense*, and *A. caninum* while penetrating host’s tissue [37, 38]. Hyaluronidase activity in invasion of hosts’ intestine has also been described previously in intestinal protozoan parasites *Entamoeba histolytica* [47] and *Blastocystis hominis* [48].

We successfully blocked the hyaluronidase gene by RNAi, which was confirmed by qPCR, enzymatic activity, and immunohistochemistry assays. RNAi is an established technique in *H. contortus* [49–51], and previously we and others have successfully applied the RNAi based silencing of target genes in *H. contortus* [21, 22, 52–54]. We investigated the role of hyaluronidase in larval establishment through in vivo assays, which showed a significantly drop in fecal eggs count and worm burden. These findings show that hyaluronidase has a role in the larval establishment of *H. contortus*, and when it was inhibited the worm burden significantly dropped. Whereas, no obvious effects of hyaluronidase were found on worm morphology. To further examine the effects of blocking hyaluronidase, we also applied an ovine ex vivo model [43, 44] where siRNA treated group of larvae showed significantly reduced invasion of the abomasal tissue explants in comparison to control group. Hyaluronic acid is present in the ground substance of abomasal mucosa of the host, whereas the hyaluronidase is expressed during L3 to L4 developmental process in *H. contortus* [39]. Thus, release of hyaluronidase at this stage helps the larvae to dissolve the hyaluronic acid in the abomasal tissue of host, which in turn assists the larvae to invade through and colonize the host’s tissue, and ultimately invading larvae get the protection and access to nutrients. These findings indicate that hyaluronidase plays a key role in
host’s tissue invasion and larval establishment, and it is used as a virulence factor by *H. contortus* to invade the host’s tissue. Thus blocking of hyaluronidase gene, and subsequently reduced expression of protein (hyaluronidase) in L3 larvae resulted in an overall significantly reduced level of *H. contortus* infection during the present study. By performing RNAi based gene silencing followed by in vivo and in vitro assays we showed that blocking the expression of hyaluronidase significantly reduced the larval establishment and worm burden, and like others.
we speculate for *H. contortus* that release of hyaluronidase by its larvae helps them to dissolve the HA in the abomasal tissue of host and facilitate the tissue penetration. However, HA is also present in the extracellular cuticle of larvae, and thus hyaluronidase could also hydrolyse nematode HA during molting as another putative role while establishing the infection [39], which can be analysed in further studies.

In conclusion, we explored the role of hyaluronidase in early establishment of infection by *H. contortus*. Our findings show that hyaluronidase is used as a virulence factor by *H. contortus*, facilitating tissue invasion and larval establishment. These findings provide a new target for the therapeutic strategies to control the infection caused by *H. contortus*.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13567-020-00831-8.

Additional file 1. Comparison of *Haemonchus contortus*’ HAase gene (% amino acid identity) with other nematodes.

Additional file 2. Details of siRNA sequences used in present study.

Additional file 3. Primers for qPCR assays used in present study.

Acknowledgements

We thank Xiaoping Luo and Junyan Li from Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences China for their technical assistance.

Authors’ contributions

Conceived and designed the experiments: XF, XY, SK; Performed the experiments: XY, SK, XZ, JZ; Analysed the data: SK, XY, XF, XZ, AN; Wrote the first draft of the manuscript: SK, XY; Reviewed the written manuscript: SK, XY, SK, XZ, AN. All authors read and approved the final manuscript.

Funding

This study was supported by the National Key Basic Research Program (973 program) of China (Grant No. 2015CB150303) and Central Public-interest Scientific Institution Basal Research Fund (2018-B008).

Availability of data and materials

All supporting data is presented either within the article or within the additional files of this article.

Ethics approval and consent to participate

This study was approved by the Animal Ethics Committee of the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (Permit No. shvri-eh-0886). All animals were handled in strict accordance with good animal practice according to the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

Consent to publish

The authors consent to publication of this work.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, People’s Republic of China. 2 College of Life Sciences, Shanghai Normal University, Shanghai 200334, People’s Republic of China.

Received: 12 May 2020 Accepted: 11 August 2020

Published online: 27 August 2020

References

1. Hobberg EP, Zarlinga DS (2016) Evolution and biogeography of *Haemonchus contortus*: linking faunal dynamics in space and time. Adv Parasitol 93:1–30
2. Saillé G, Doyle SR, Cortet J, Cabaret J, Berriman M, Holroyd N, Cotton JA (2019) The global diversity of *Haemonchus contortus* is shaped by human intervention and climate. Nat Commun 10:4811
3. Troell K, Engstrom A, Morrison DA, Mattsson JG, Hoglund J (2006) Global patterns reveal strong population structure in *Haemonchus contortus*, a nematode parasite of domesticated ruminants. J Parasitol 92(1):1305–1316
4. Emery DL, Hunt PW, Le Jambre LF (2016) *Haemonchus contortus*: the then and now, and where to from here? Int J Parasitol 46(12):755–769
5. Roeber F, Jex AR, Gasser RB (2013) Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—an Australian perspective. Parasit Vectors 6:153
6. Khan S, Luo X, Yuan C, Zhao X, Nisor A, Li J, Yang X, Zhang J, Feng X (2019) Microsatellite analysis reveals extensive gene flow, and lack of population structure in the farm populations of *Haemonchus contortus* in northern China. Parasitol Int 73:101959
7. Yadav CL, Kumar R, Uppal RP, Verma SP (1995) Multiple anthelmintic resistance in *Haemonchus contortus* on a sheep farm in India. Vet Parasitol 60(3–4):355–360
8. Jabbar A, Campbell AJ, Charles JA, Gasser RB (2013) First report of anthelmintic resistance in *Haemonchus contortus* in alpacas in Australia. Parasit Vectors 6(1):243
9. Echevarria PA, Trindade GN (1989) Anthelmintic resistance by *Haemonchus contortus* to ivermectin in Brazil: a preliminary report. Vet Rec 124(6):147–148
10. Van den Brom R, Moll L, Kappert C, Vellema P (2015) *Haemonchus contortus* resistance to monepantel in sheep. Vet Parasitol 209(3–4):278–280
11. Howell SB, Burke JM, Miller JE, Terrill TH, Valencia E, Williams MJ, Williamson LH, Zajac AM, Kaplan RM (2008) Prevalence of anthelmintic resistance on sheep and goat farms in the southeastern United States. J Am Vet Med Assoc 233(12):1913–1919
12. Williamson SM, Storey B, Howell S, Harper KM, Kaplan RM, Wolstenholme AJ (2011) Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of *Haemonchus contortus*: Mol Biochem Parasitol 180(2):99–105
13. van Wyk JA, Malan FS (1988) Resistance of field strains of *Haemonchus contortus* to ivermectin, closantel, tafonoxadine and the benzimidazoles in South Africa. Vet Rec 123(9):226–228
14. Hoeckstra R, Borgsteede FH, Boersema JH, Roos MH (1997) Selection for high levamisole resistance in *Haemonchus contortus* monitored with an egg-hatch assay. Int J Parasitol 27(11):1395–1400
15. Coles GC, Rhodes AC, Wolstenholme AJ (2005) Rapid selection for ivermectin resistance in *Haemonchus contortus*. Vet Parasitol 129(3–4):345–347
16. Gilleard JS (2013) *Haemonchus contortus* as a paradigm and model to study anthelmintic drug resistance. Parasitology 140(12):1506–1522
17. Nisbet AJ, Meeusen EN, González JE, Pfedraffta DM (2016) Chapter Eight—Immunity to *Haemonchus contortus* and vaccine development. In: Gasser RB, Samson-Himmelstjerna GV (eds) Advances in parasitology, vol 93. Academic Press, New York, pp 353–396
18. Geary TG (2016) Chapter Ten—Immunity to *Haemonchus contortus*: applications in drug discovery. In: Gasser RB, Samson-Himmelstjerna GV (eds) Advances in parasitology, vol 93. Academic Press, New York, pp 429–463
19. Laiw R, Kikuchi T, Martellini A, Tui U, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devanehy E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryakov L, Lu K, Morrison AA, Reid AJ, Sargison N, Saunders GJ, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cottone JA (2013) The genome and transcriptome of *Haemonchus contortus*.
a key model parasite for drug and vaccine discovery. Genome Biol 14(8):R88–R88
20. Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, Hall
RS, Mondal A, Hove AC, Pell J, Hofmann A, Boag PR, Zhu X-Q, Gregory TR,
Loukas A, Williams BA, Antoshechkin I, Brown CT, Sternberg PW, Gasser RB
(2013) The genome and developmental transcriptome of the strongyloid
nematode Haemonchus contortus. Genome Biol 14(8):R89
21. Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C,
Harmache A, Duguet T, O’Connor V, Castagnone-Sereno P, Reaves B,
Wolstenholme AJ, Beech RN, Holden-Dye L, Neveu C (2016) Decipher-
ing the molecular determinants of cholinergic anhthemetic sensitivity
in nematodes: when novel functional validation approaches highlight
major differences between the model Caenorhabditis elegans and para-
sitic species. PLoS Pathog 12(5):e1005933
22. Ménez C, Alberich M, Courtot E, Guégnard F, Blanchard A, Agulaini H,
Lespine A (2019) The transcription factor NHR-R8: a new target to increase
ivermectin efficacy in nematodes. PLoS Pathog 15(2):e1007598
23. IHGC (2019) Comparative genomics of the major parasitic worms. Nat
Genet 51(1):163–174
24. Redman E, Sargison N, Whitefeld F, Jackson F, Morrison A, Bartley DJ,
Gillead JS (2012) Intragenic of ivermectin resistance genes into a suscep-
tible Haemonchus contortus strain by multiple backcrossing. PLoS
Pathog 8(2):e1002334
25. Taylor CM, Martin J, Rao RU, Powell K, Abubucker S, Mitreva M (2013)
Using existing drugs as leads for broad spectrum anthelmintics targeting
protein kinases. PLoS Pathog 9(2):e1003149
26. Gamble HR, Purcell JP, Fetterer RH (1989) Purification of a 44 kilodalton
protease which mediates the ecdysis of infective Haemonchus contortus
larvae. Mol Biochem Parasitol 33(1):49–58
27. Meyer K (1971) Hyaluronidases. In: Boyer PD (ed) The Enzymes, vol 5.
Academic Press, New York, pp 307–320
28. Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures,
and mechanisms of action. Chem Rev 106(3):818–839
29. Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribu-
tion, functions and turnover. J Intern Med 242(1):27–33
30. Laurent TC, Laurent UB, Fraser JR (1996) The structure and function of
hyaluronan, an overview. Immunol Cell Biol 74(2):A1–A7
31. Fiszer-Szafarz B (1984) Hyaluronidase polymorphism detected by
polyacrylamide gel electrophoresis. Application to hyaluronidases from
bacteria, slime molds, bee and snake venoms, bovine testes, rat liver
lysosomes, and human serum. Anal Biochem 139(3):76–81
32. Hyde CE, Old RW (1999) Expression pattern of a novel hyaluronidase dur-
ing Xenopus embryogenesis. Mech Dev 82(1–2):213–217
33. Pillon ML, Bernard GW (1998) The effect of hyaluronan on mouse intram-
embranous osteogenesis in vitro. Cell Tissue Res 294(2):323–333
34. Matsumoto K, Li Y, Jakuba C, Sugiyama Y, Sayo T, Okuno M, Dealy CN,
Toole BP, Takeda J, Yamaguchi Y, Kosher RA (2009) Conditional inactivation
of Has2 reveals a crucial role for hyaluronan in skeletal growth, pattern-
ing Xenopus embryogenesis. Mech Dev 82(2):197–202
35. Trissl D (1983) Glycosidases of Entamoeba histolytica. Zeitschrift für Para-
sitenkunde 69(3):291–298
36. Chandramathi S, Suresh KG, Mahmood AA, Kuppusamy UR (2010) Urinary
hyaluronidase activity in rats infected with Blastocystis hominis—evidence for
invasion? Parasitol Res 106(6):1459–1463
37. Kotze AC, Bagnall NH (2006) RNA interference in Haemonchus contortus:
suppression of beta-tubulin gene expression in L3, L4 and adult worms in
vitro. Mol Biochem Parasitol 145(1):101–110
38. Geldhof P, Murray L, Courthe E, Gillead JS, McLauchlan G, Knox DP,
Britton C (2006) Testing the efficacy of RNA interference in Haemonchus
contortus for invasion. Int J Parasitol 36(7):801–810
39. Zawadzki JL, Presidente PJ, De Veer MJ (2006) RNAi in
Haemonchus contortus: a potential method for target validation. Trends
Parasitol 22(11):495–499
40. Zawadzki JL, Kotze AC, Fritz JA, Johnson NM, Hemsworth JE, Hines BM,
Behm CA (2012) Silencing of essential genes by RNA interference in
Haemonchus contortus at different stages of the life cycle. Vet Parasitol
184(1–2):2–10
41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data
using real-time quantitative PCR and the 2−ΔΔCt Method. Methods 25(4):402–408
42. Wang X, Liu F, Zhang L, Zhu X, Ling P, Zhang T (2011) Comparison of three
methods for activity assay of recombinant human hyaluronidase. Food
Drug 13(1):5–8
43. Jackson F, Greer AW, Huntley J, McAnulty RW, Bartley DJ, Stanley A,
Steenhouse L, Stankiewicz M, Sykes AR (2004) Studies using Teladorsagia
circumcincta in an in vitro direct challenge method using abomasal tissue
explants. Vet Parasitol 124(1–2):73–89
44. Kemp JM, Robinson NA, Meeusen EN, Piedrafita DM (2009) The relation-
ship between the rapid rejection of Haemonchus contortus larvae with
cells and mediators in abomasal tissues in immune sheep. Int J Parasitol
39(14):1589–1594
45. Ray Gamble H, Mansfield LS (1996) Characterization of excretory-secre-
tory products from larval stages of Haemonchus contortus cultured in
vitro. Vet Parasitol 62(3):291–305
46. Gamble HR, Fetterer RH, Mansfield LS (1996) Developmentally regulated
zinc metalloproteinases from third- and fourth-stage larvae of the ovine
nematode Haemonchus contortus. J Parasitol 82(2):197–202
47. Platt B (2013) Role of arylsulfatase in the pathogenesis of cutaneous larva
migrans. Infect Immun 60(3):1018–1023
48. Richards FF (1992) Hyaluronidase from infective Ancylostoma hookworm
larvae and its possible function as a virulence factor in tissue invasion and
in cutaneous larva migrans. Infect Immun 60(3):1018–1023
49. Rhoads ML, Fetterer RH, Romanowski RD (2000) A developmentally regu-
lated hyaluronidase of Haemonchus contortus. J Parasitol 86(5):916–921
50. Khan S, Zhao X, Hou Y, Yuan C, Li Y, Luo X, Liu J, Feng X (2019) Analysis of
genome-wide SNPs based on 2b-RAD sequencing of pooled samples
reveals signature of selection in different populations of Haemonchus
contortus. J Biol 44:97
51. Kotze AC, Bagnall NH (2006) RNA interference in
Haemonchus contortus: a potential method for target validation. Trends
Parasitol 22(11):495–499
52. Zawadzki JL, Kotze AC, Fritz JA, Johnson NM, Hemsworth JE, Hines BM,
Behm CA (2012) Silencing of essential genes by RNA interference in
Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in
vitro. Mol Biochem Parasitol 145(1):101–110
53. Geldhof P, Murray L, Courthe E, Gillead JS, McLauchlan G, Knox DP,
Britton C (2006) Testing the efficacy of RNA interference in Haemonchus
contortus. Int J Parasitol 36(7):801–810
54. Zawadzki JL, Presidente PJ, De Veer MJ (2006) RNAi in
Haemonchus contortus: a potential method for target validation. Trends
Parasitol 22(11):495–499
55. Zawadzki JL, Kotze AC, Fritz JA, Johnson NM, Hemsworth JE, Hines BM,
Behm CA (2012) Silencing of essential genes by RNA interference in
Haemonchus contortus: Paraiteology 139(5):613–629
56. Khan S, Nisar A, Yuan J, Luo X, Dou X, Liu F, Zhao X, Li J, Ahmad H,
Mehmood SA, Feng X (2020) A whole genome re-sequencing based
GWA analysis reveals candidate genes associated with ivermectin resist-
ance in Haemonchus contortus. Genes 11(4):367
57. Samarasinghe B, Knox DP, Britton C (2011) Factors affecting susceptibility
to RNA interference in Haemonchus contortus and in vivo silencing of an
H11 aminopeptidase gene. Int J Parasitol 41(1):51–59

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.