Fast Multiple Pattern Cartesian Tree Matching

Geonmo Gu1, Siwoo Song1, Simone Faro2, Thierry Lecroq3, and Kunsoo Park1(E)

1 Seoul National University, Seoul, Korea
\texttt{\{gmgu,swsong,kpark\}@theory.snu.ac.kr}
2 University of Catania, Catania, Italy
\texttt{faro@dmi.unict.it}
3 Normandie University, Rouen, France
\texttt{thierry.lecroq@univ-rouen.fr}

Abstract. Cartesian tree matching is the problem of finding all substrings in a given text which have the same Cartesian trees as that of a given pattern. In this paper, we deal with Cartesian tree matching for the case of multiple patterns. We present two fingerprinting methods, i.e., the parent-distance encoding and the binary encoding. By combining an efficient fingerprinting method and a conventional multiple string matching algorithm, we can efficiently solve multiple pattern Cartesian tree matching. We propose three practical algorithms for multiple pattern Cartesian tree matching based on the Wu-Manber algorithm, the Rabin-Karp algorithm, and the Alpha Skip Search algorithm, respectively. In the experiments we compare our solutions against the previous algorithm \cite{18}. Our solutions run faster than the previous algorithm as the pattern lengths increase. Especially, our algorithm based on Wu-Manber runs up to 33 times faster.

Keywords: Multiple pattern Cartesian tree matching \cdot Parent-distance encoding \cdot Binary encoding \cdot Fingerprinting methods.

1 Introduction

Cartesian tree matching is the problem of finding all substrings in a given text which have the same Cartesian trees as that of a given pattern. For instance, given text $T = (6, 1, 5, 3, 6, 5, 7, 4, 2, 3, 1)$ and pattern $P = (1, 4, 3, 4, 1)$ in Figure 1a, P has the same Cartesian tree as the substring $\langle 3, 6, 5, 7, 4 \rangle$ of T. Among many generalized matchings, Cartesian tree matching is analogous to order-preserving matching \cite{5, 9, 13, 15} in the sense that they deal with relative order between numbers. Accordingly, both of them can be applied to time series data such as stock price analysis, but Cartesian tree matching can sometimes be more appropriate than order-preserving matching in finding patterns \cite{18}.

Gu, Song, and Park were supported by Collaborative Genome Program for Fostering New Post-Genome industry through the National Research Foundation of Korea(NRF) funded by the Ministry of Science ICT and Future Planning (No. NRF-2014M3C9A3063541).
In this paper, we deal with Cartesian tree matching for the case of multiple patterns. Although finding multiple different patterns is interesting by itself, multiple pattern Cartesian tree matching can be applied in finding one meaningful pattern when the meaningful pattern is represented by multiple Cartesian trees: Suppose we are looking for the double-top pattern \cite{17}. Two Cartesian trees in Figure 1b are required to identify the pattern, where the relative order between \(S[1] \) and \(S[5] \) causes the difference. In general, the more complex the pattern is, the more Cartesian trees having the same lengths are required. (e.g., the head-and-shoulder pattern \cite{17} requires four Cartesian trees.)

Recently, Park et al. \cite{18} introduced (single pattern) Cartesian tree matching, multiple pattern Cartesian tree matching, and Cartesian tree indexing with their respective algorithms. They proposed the parent-distance representation that has a one-to-one mapping with Cartesian trees, and gave linear-time solutions for the problems, utilizing the representation and existing string algorithms, i.e., KMP algorithm, Aho-Corasick algorithm, and suffix tree construction algorithm. Song et al. \cite{19} proposed new representations about Cartesian trees, and proposed practically fast algorithms for Cartesian tree matching based on the framework of filtering and verification.

Extensive works have been done to develop algorithms for multiple pattern matching, which is one of the fundamental problems in computer science \cite{11,16,20}. Aho and Corasick \cite{1} presented a linear-time algorithm based on an automaton. Commentz-Walter \cite{6} presented an algorithm that combines the Aho-Corasick algorithm and the Boyer-Moore technique \cite{3}. Crochemore et al. \cite{8} proposed an algorithm that combines the Aho-Corasick automaton and a Directed Acyclic Word Graph, which runs linear in the worst case and runs in \(O((n/m) \log m) \) time in the average case, where \(m \) is the length of the shortest pattern. Rabin and Karp \cite{12} proposed an algorithm that runs linear on average and \(O(nM) \) in the worst case, where \(M \) is the sum of lengths of all patterns. Charras et al. \cite{4} proposed an algorithm called Alpha Skip Search, which can efficiently handle both single pattern and multiple patterns. Wu and Manber \cite{22}
presented an algorithm that uses an extension of the Boyer-Moore-Horspool technique.

In this paper we present practically fast algorithms for multiple pattern Cartesian tree matching. We present three algorithms based on Wu-Manber, Rabin-Karp, and Alpha Skip Search. All of them use the filtering and verification approach, where filtering relies on efficient fingerprinting methods of a string. Two fingerprinting methods are presented, i.e., the parent-distance encoding and the binary encoding. By combining an efficient fingerprinting method and a conventional multiple string matching algorithm, we can efficiently solve multiple pattern Cartesian tree matching. In the experiments we compare our solutions against the previous algorithm [18] which is based on the Aho-Corasick algorithm. Our solutions run faster than the previous algorithm. Especially, our algorithm based on Wu-Manber runs up to 33 times faster.

2 Problem Definition

2.1 Notation

A string is a sequence of characters drawn from an alphabet Σ, which is a set of integers. We assume that a comparison between any two characters can be done in constant time. For a string S, $S[i]$ represents the i-th character of S, and $S[i..j]$ represents the substring of S starting from i and ending at j.

A Cartesian tree [21] is a binary tree derived from a string. Specifically, the Cartesian tree $CT(S)$ for a string S can be uniquely defined as follows:

- If S is an empty string, $CT(S)$ is an empty tree.
- If S is not empty and $S[i]$ is the minimum value in $S[1..n]$, $CT(S)$ is the tree with $S[i]$ as the root, $CT(S[1..i-1])$ as the left subtree, and $CT(S[i+1..n])$ as the right subtree. If there is more than one minimum value, we choose the leftmost one as the root.

Given two strings $T[1..n]$ and $P[1..m]$, where $m \leq n$, we say that P matches T at position i if $CT(T[i-m+1..i]) = CT(P[1..m])$. For example, given $T = (6, 1, 5, 3, 6, 5, 7, 4, 2, 3, 1)$ and $P = (1, 4, 3, 4, 1)$ in Figure 1a, P matches T at position 8. We also say that $T[4..8]$ is a match of P in T.

Cartesian tree matching is the problem of finding all the matches in the text which have the same Cartesian trees as a given pattern.

Definition 1. (Cartesian tree matching [18]) Given two strings text $T[1..n]$ and pattern $P[1..m]$, find every $m \leq i \leq n$ such that $CT(T[i-m+1..i]) = CT(P[1..m])$.

2.2 Multiple Pattern Cartesian Tree Matching

Cartesian tree matching can be extended to the case of multiple patterns. Multiple pattern Cartesian tree matching is the problem of finding all the matches in the text which have the same Cartesian trees as at least one of the given patterns.
Definition 2. (Multiple pattern Cartesian tree matching [18]) Given a text \(T[1..n]\) and patterns \(P_1[1..m_1], P_2[1..m_2], \ldots, P_k[1..m_k]\), find every position in the text which matches at least one pattern, i.e., it has the same Cartesian tree as that of at least one pattern.

3 Fingerprinting Methods

Fingerprinting is a technique that maps a string to a much shorter form of data, such as a bit string or an integer. In Cartesian tree matching, we can use fingerprints to filter out unpromising matching positions with low computational cost.

In this section we introduce two fingerprinting methods, i.e., the parent-distance encoding and the binary encoding, for the purpose of representing information about Cartesian tree as an integer. The two encodings make use of the parent-distance representation and the binary representation, respectively, both of which are strings that represent Cartesian trees.

3.1 Parent-distance Encoding

In order to represent Cartesian trees efficiently, Park et al. proposed the parent-distance representation [18], which is another form of the all nearest smaller values [2].

Definition 3. (Parent-distance representation) Given a string \(S[1..n]\), the parent-distance representation of \(S\) is an integer string \(PD(S)[1..n]\), which is defined as follows:

\[
PD(S)[i] = \begin{cases}
 i - \max_{1 \leq j < i} \{j : S[j] \leq S[i]\} & \text{if such } j \text{ exists} \\
 0 & \text{otherwise}
\end{cases} \quad (1)
\]

Intuitively, \(PD(S)[i]\) stores the distance between \(S[i]\) and the parent of \(S[i]\) in \(CT(S[1..i])\). For example, the parent-distance representation of string \(S = (11, 14, 13, 15, 12)\) is \(PD(S) = (0, 1, 2, 1, 4)\), where \(PD(S)[3] = 3 - 1 = 2\) stores the distance between \(S[3]\) and \(S[1]\) (\(S[1]\) is the parent of \(S[3]\) in \(CT(S[1..3])\)). The parent-distance representation has a one-to-one mapping to the Cartesian tree [18], and so if two strings have the same parent-distance representations, the two strings also have the same Cartesian trees. The parent-distance representation of a string can be computed in linear time [18]. Note that \(PD(S)[i]\) holds a value between 0 to \(i - 1\) by definition, and \(PD(S)[1] = 0\) at all times.

With the parent-distance representation, we can define a fingerprint encoding function that maps a string to an integer, using the factorial number system [14].

Definition 4. (Parent-distance Encoding) Given a string \(S[1..n]\), the encoding function \(f(S)\), which maps \(S\) into an integer within the range \([0..n! - 1]\), is defined as follows:

\[
f(S) = \sum_{i=2}^{n} (PD(S)[i]) \cdot (i - 1)!
\]

(2)
The parent-distance encoding maps a string into a unique integer according to its
parent-distance representation. That is, given two strings \(S_1 \) and \(S_2 \), \(CT(S_1) = CT(S_2) \) if and only if \(f(S_1) = f(S_2) \). This is because if \(PD(S_1) \neq PD(S_2) \) then \(f(S_1) \neq f(S_2) \) due to the fact that \(PD(S)[i] < i \). The encoding function \(f(S[1..n]) \) can be computed in \(O(n) \) time, since \(PD(S) \) can be computed in linear time. For a long string, the fingerprint may not fit in a word size, so we select a prime number by which we divide the fingerprint, and use the residue instead of the actual fingerprint. A similar encoding function was used to solve the multiple pattern order-preserving matching problem [10].

3.2 Binary Encoding

For order-preserving matching, the representation of a string as a binary
string is first presented by Chhabra and Tarhio [5]. Recently, Song et al. make
use of the binary representation for Cartesian tree matching as follows [19].

Definition 5. (Binary representation) Given an \(n \)-length string \(S \), binary representation \(\beta(S) \) of length \(n - 1 \) is defined as follows: for \(1 \leq i \leq n - 1 \),

\[
\beta(S)[i] = \begin{cases}
1 & \text{if } S[i] \leq S[i + 1] \\
0 & \text{otherwise.}
\end{cases}
\]

(3)

Given two strings \(S_1[1..n] \) and \(S_2[1..n] \), the binary representations \(\beta(S_1) \) and \(\beta(S_2) \) are the same if the Cartesian trees \(CT(S_1) \) and \(CT(S_2) \) are the same [19]. Obviously, the Cartesian tree has a many-to-one mapping to the binary representation. Thus, two strings whose binary representations are the same may not have the same Cartesian trees, but two strings whose Cartesian trees are the same have the same binary representations.

A fingerprint encoding function \(f(S) \) can be defined using the binary repre-
sentation.

Definition 6. (Binary Encoding) Given a string \(S[1..n] \), encoding function \(f(S) \), which maps \(S \) into an integer within the range \([0..2^{n-1} - 1] \), is defined as follows:

\[
f(S) = \sum_{i=1}^{n-1} (\beta(S)[i] \cdot 2^{n-1-i}).
\]

(4)

Since \(f(S) \) is a polynomial, it can be efficiently computed in linear time using
Horner’s rule [7]. Moreover, a fingerprint computed by the binary encoding can be reused when two strings overlap, which will be discussed in Appendix A.3. Like the parent-distance encoding, in case the fingerprint does not fit in a word size, we select a prime number by which we divide the fingerprint, and use the residue instead of the actual fingerprint.

4 Fast Multiple Pattern Cartesian Tree Matching

Algorithms

In this section we introduce three algorithms for multiple pattern Cartesian
tree matching. Each of them consists of preprocessing and search. In the prepro-
cessing step, hash tables are built using fingerprints of patterns. In the search
Algorithm 1: Algorithm based on Wu-Manber

1: input: text $T[1..n]$ and patterns $P_1[1..m_1], P_2[1..m_2], ..., P_k[1..m_k]$
2: output: every position in T that matches at least one of the patterns
3: procedure Preprocessing
4: $m \leftarrow \min(m_1, m_2, ..., m_k)$
5: $b \leftarrow \log_2(km)$
6: Initialize each entry of SHIFT to $m - b + 1$
7: for $i \leftarrow 1$ to k do
8: for $j \leftarrow b$ to $m - 1$ do
9: $fp \leftarrow f(P_i[j - b + 1..j])$
10: if $\text{SHIFT}[fp] > m - j$ then
11: $\text{SHIFT}[fp] \leftarrow m - j$
12: $fp \leftarrow f(P_i[m - b + 1..m])$
13: $\text{HASH}[fp].\text{add}(i)$
4: procedure Search
5: index $\leftarrow m$
6: while $\text{index} \leq n$ do
7: $fp \leftarrow f(T[\text{index} - b + 1..\text{index}])$
8: for $i \in \text{HASH}[fp]$ do
9: if P_i matches $T[\text{index} - m + 1..\text{index} - m + m_i]$ then
10: output $\text{index} = \text{index} - m + m_i$
11: $\text{index} \leftarrow \text{index} + \text{SHIFT}[fp]$

step, the filtering and verification approach is adopted. To filter out unpromising matching positions, a fingerprinting method is applied to either length-m substrings of the text, where m is the length of the shortest pattern, or much shorter length-b substrings of the text (we will discuss how to set b in Section 4.4). Then each candidate pattern is verified by an efficient comparison method (see Appendix A.3).

4.1 Algorithm Based on Wu-Manber

Algorithm 1 shows the pseudo-code of an algorithm for multiple pattern Cartesian tree matching based on the Wu-Manber algorithm [22]. The algorithm uses two hash tables, HASH and SHIFT. Both tables use a fingerprint of length-b string, called a block. Either the parent-distance encoding or the binary encoding is used to compute the fingerprint. Given patterns $P_1, P_2, ..., P_k$, let m be the length of the shortest pattern. HASH maps a fingerprint fp of a block to the list of patterns P_i such that the fingerprint of the last block in P_i’s length-m prefix is the same as fp. For a block $B[1..b]$ and a fingerprint encoding function f, HASH is defined as follows:

$$\text{HASH}[f(B)] = \{ i : f(P_i[m - b + 1..m]) = f(B), 1 \leq i \leq k \}$$ (5)

SHIFT maps a fingerprint fp of a block to the amount of a valid shift when the block appears in the text. The shift value is determined by the rightmost occurrence of a block in terms of the fingerprint among length-$(m - 1)$ prefixes of the patterns. For a block $B[1..b]$ and a fingerprint encoding function f, we
define the rightmost occurrence r_B as follows:

$$r_B = \begin{cases} \max_{b \leq j \leq m-1} \{ j : f(P_i[j-b+1..j]) = f(B), 1 \leq i \leq k \} & \text{if such } j \text{ exists} \\ 0 & \text{otherwise} \end{cases}$$

Then SHIFT is defined as follows:

$$\text{SHIFT}[f(B)] = m - r_B$$

In the preprocessing step, we build HASH and SHIFT (as described in Algorithm 1). In the search step, we scan the text from left to right, computing the fingerprint of a length-b substring of the text to get a list of patterns from HASH. Let index be the current scanning position of the text. We compute fingerprint fp of $T[index-b+1..index]$, and get a list of patterns in the entry HASH[fp]. If the list is not empty, each pattern is verified by an efficient comparison method (see Appendix A.3). Consider $P_i[1..m_i]$ in the list. The comparison method verifies whether P_i matches $T[index-m+1..index-m+m_i]$. After verifying all patterns in the list, the text is shifted by SHIFT[fp].

The worst case time complexity of Algorithm 1 is $O((M + b)n)$, where M is the total pattern length, b is the block size, and n is the length of the text (consider $T = 1^n$ and the patterns of which prefixes are 1^m). On the other hand, the best case time complexity of Algorithm 1 is $O(bn/m-\epsilon)$.

4.2 Algorithm Based on Rabin-Karp

Algorithm 2 in Appendix shows the pseudo-code of an algorithm for multiple pattern Cartesian tree matching based on the Rabin-Karp algorithm [12]. The algorithm uses one hash table, namely HASH. HASH is similarly defined as in Algorithm 1 except that we consider length-m prefixes instead of blocks and we use only binary encoding for fingerprinting. For a string $S[1..m]$ and the binary encoding function f, HASH is defined as follows:

$$\text{HASH}[f(S)] = \{ i : f(P_i[1..m]) = f(S), 1 \leq i \leq k \}$$

In the preprocessing step, we build HASH. In the search step, we shift one by one, and compute the fingerprint of a length-m substring of the text to get candidate patterns by using HASH. Again, each candidate pattern is verified by an efficient comparison method.

Given a fingerprint at position i of the text, the next fingerprint at position $i + 1$ can be computed in constant time if we use the binary encoding as a fingerprinting method. Let the former fingerprint be $fp_i = f(T[i-m+1..i])$ and the latter one be $fp_{i+1} = f(T[i-m+2..i+1])$. Then,

$$fp_{i+1} = 2(fp_i - 2^{m-2} \beta(T)[i-m+1]) + \beta(T)[i]$$

Subtracting $2^{m-2} \beta(T)[i-m+1]$ removes the leftmost bit from fp_i, multiplying the result by 2 shifts the number to the left by one position, and adding $\beta(T)[i]$ brings in the appropriate rightmost bit.
The worst case time complexity of Algorithm 2 is $O(Mn)$ (consider $T = 1^n$ and patterns of which prefixes are 1^m). The best case time complexity is $O(n)$ since fingerprint f_i at position i, $m + 1 \leq i \leq n$, can be computed in $O(1)$ time using Equation (9).

4.3 Algorithm Based on Alpha Skip Search

Algorithm 3 in Appendix shows the pseudo-code of an algorithm for multiple pattern Cartesian tree matching based on Alpha Skip Search [4]. Recall that a length-b string is called a block. The algorithm uses a hash table POS that maps the fingerprint of a block to a list of occurrences in all length-m prefixes of the patterns. Either the parent-distance encoding or the binary encoding is used for fingerprinting. For a block $B[1..b]$ and a fingerprint encoding function f, POS is defined as follows:

$$\text{POS}[f(B)] = \{(i, j) : f(P_i[j-b+1..j]) = f(B), 1 \leq i \leq k, b \leq j \leq m\} \quad (10)$$

In the preprocessing step, we build POS. In the search step, we scan the text from left to right, computing the fingerprint of a length-b substring of the text to get the list of pairs (i, j), meaning that the fingerprint of $P_i[j-b+1..j]$ is the same as that of the substring of the text. Verification using an efficient comparison method is performed for each pair in the list. Note that the algorithm always shifts by $m - b + 1$.

The worst case time complexity of Algorithm 3 is $O((M + b)n)$, where M is the total pattern length, b is the block size, and n is the length of the text (consider $T = 1^n$ and patterns of which prefixes are 1^m). On the other hand, the best case time complexity of Algorithm 3 is $O(\frac{bm}{m-1})$ since the algorithm always shifts by $m - b + 1$.

4.4 Selecting the Block Size

The size of the block affects the running time of Algorithms 1 and 3. A longer block size leads to a lower probability of candidate pattern occurrences; so it decreases verification time. On the other hand, a longer block size increases the overhead required for computing fingerprints. Thus, it is important to set a block size appropriate for each algorithm.

In order to set a block size, we first study the matching probability of two strings, in terms of Cartesian trees. Assume that numbers are independent and identically distributed, and there are no identical numbers within any length-n string.

Lemma 1. Given two strings $S_1[1..n]$ and $S_2[1..n]$, the probability $p(n)$ that S_1 and S_2 have the same Cartesian tree can be defined by the recurrence formula, where $p(0) = 1$ and $p(1) = 1$, as follows:

$$p(n) = \frac{p(0)p(n-1) + p(1)p(n-2) + \cdots + p(n-1)p(0)}{n^2} \quad (11)$$

We have the following upper bound on the matching probability.
Theorem 1. Assume that numbers are independent and identically distributed, and there are no identical numbers within any length-n string. Given two strings $S_1[1..n]$ and $S_2[1..n]$, the probability that the two strings match, in terms of Cartesian trees, is at most $\frac{1}{n^r}$, i.e., $p(n) \leq \frac{1}{n^r}$.

We set the block size $b = \log_2(km)$ if $\log_2(km) \leq m$; otherwise we set $b = m$, where k is the number of patterns and m is the length of the shortest pattern, in order to get a low probability of match and a relatively short block size with respect to m. By Theorem 1 if we set $b = \log_2(km)$, $p(b) \leq \frac{2}{km}$.

5 Experiments

We conduct experiments to evaluate the performances of the proposed algorithms against the previous algorithm. We compare algorithms based on Aho-Corasick (AC) [18], Wu-Manber (WM), Rabin-Karp (RM), and Alpha Skip Search (AS). By default, all our algorithms use optimization techniques introduced in Appendix A.3 except the min-index filtering method which is evaluated in the experiments. Particularly, in order to compare the fingerprinting methods and see the effect of min-index filtering method, we compare variants of our algorithms. The following algorithms are evaluated.

- AC: multiple Cartesian tree matching algorithm based on Aho-Corasick [18].
- WMP: algorithm based on Wu-Manber that uses the parent-distance encoding as a fingerprinting method.
- WMB: algorithm based on Wu-Manber that uses the binary encoding as a fingerprinting method. The algorithm reuses fingerprints when adjacent blocks overlap $b-1$ characters (i.e., when the text shifts by one position), where b is the block size.
- WMBM: WMB that exploits additional min-index filtering in Appendix A.3.
- RK: algorithm based on Rabin-Karp that uses the binary encoding as a fingerprinting method.
- ASB: algorithm based on Alpha Skip Search that uses the binary encoding as a fingerprinting method. The algorithm reuses fingerprints when adjacent blocks overlap $b-1$ characters.

All algorithms are implemented in C++. Experiments are conducted on a machine with Intel Xeon E5-2630 v4 2.20GHz CPU and 128GB memory running CentOS Linux.

The total time includes the preprocessing time for building data structures and the search time. To evaluate an algorithm, we run it 100 times and measure the average total time in milliseconds.

We randomly build a text of length 10,000,000 where the alphabet size is 1,000. A pattern is extracted from the text at a random position.

5.1 Evaluation on the Equal Length Patterns

We first conduct experiments with sets of patterns of the same length. Figures 2a, 2c, 2e, and Table 1 show the results, where k is the number of patterns and x-axis represents the length of the patterns, i.e., m. As the length of the patterns
increases, WMB, WMBM, and ASB become the fastest algorithms due to a long shift length, low verification time, and light fingerprinting method. WMBM and WMB outperforms AC up to 33 times ($k = 100$ and $m = 256$). ASB outperforms AC up to 28 times ($k = 10$ and $m = 256$). RK outperforms AC up to 3 times ($k = 50, 100$ and $m = 16$). When the length of the patterns is extremely short, however, AC is the clear winner ($m = 4$). In this case, other algorithms naively compare the greatest part of patterns for each position of the text. WMP works visibly worse when $m = 8$ due to the extreme situation and overhead of the fingerprinting method. Since short patterns are more likely to have the same Cartesian trees, the proposed algorithms are sometimes faster when $m = 4$ than when $m = 8$ due to the grouping technique in Appendix A.3. Comparing WMB and WMBM, the min-index filtering method is more effective when there are many short patterns ($k = 100$ and $m = 4, 8$).
5.2 Evaluation on the Different Length Patterns

We compare algorithms with sets of patterns of different lengths. Figures 2b, 2d, 2f, and Table 2 show the results. The length is randomly selected in an interval, i.e., \([8, 32]\), \([16, 64]\), \([32, 128]\), and \([64, 256]\). After a length is selected, a pattern is extracted from the text at a random position. When there are many short patterns, i.e., \(k = 100\) and patterns of length 8–32, AC is the fastest due to the short minimum pattern length.

Table 1: Evaluation on the patterns of equal length. Total time in ms.

\(k\)	\(m\)	AC	WMP	WMB	WMBM	RK	ASB
4		129.46	303.093	176.249	166.04	165.351	147.889
8		142.114	241.573	83.6087	92.1517	69.0761	88.5753
10	16	138.79	93.5485	30.7575	33.4786	57.5673	39.4656
32		160.921	42.6767	12.3674	13.3405	115.497	21.5187
64		156.562	25.2625	7.59158	30.7575	33.4786	57.5673
128		145.905	15.0862	5.0663	5.97869	115.381	11.0158
256		157.123	9.00974	4.69218	4.81503	102.995	5.43152
50	32	197.931	145.531	58.6471	59.2581	63.8881	68.6459
64		197.544	30.9735	9.86238	10.6876	115.381	11.0158
128		201.09	59.732	21.66	22.8856	115.723	30.24
256		201.09	59.732	21.66	22.8856	115.723	30.24
100	32	197.544	30.9735	9.86238	10.6876	115.381	11.0158

Table 2: Evaluation on the patterns of different lengths. Total time in ms.

\(k\)	interval	AC	WMP	WMB	WMBM	RK	ASB
10	[8, 32]	152.628	240.46	97.506	103.019	65.6954	97.5208
	[16, 64]	153.663	95.9347	30.7575	33.4786	57.5673	39.4656
	[32, 128]	150.329	44.4056	12.1087	13.629	103.051	19.3249
	[64, 256]	147.741	25.5997	7.22873	7.83777	102.949	10.1762
50	[8, 32]	205.042	724.675	201.416	190.008	180.04	169.276
	[16, 64]	196.745	149.612	60.3754	61.1807	79.0707	70.1237
	[32, 128]	206.627	61.7051	18.5565	20.2259	104.574	27.9782
	[64, 256]	203.731	31.6943	9.79816	10.678	104.11	15.3719
100	[8, 32]	217.625	757.974	331.015	250.613	304.732	
	[16, 64]	228.42	180.796	60.9719	63.0149	55.602	79.0707
	[32, 128]	228.194	71.0881	22.5928	24.1753	104.574	33.8765
	[64, 256]	237.803	35.1944	11.8472	12.4182	103.943	19.3238
When the length of the shortest pattern is sufficiently long, however, the proposed algorithms outperform AC. Specifically, WMB outperforms AC up to 20 times ($k = 10, 50, 100$ and patterns of length $64–256$). ASB outperforms AC up to 14 times ($k = 10$ and patterns of length $64–256$). RK outperforms AC up to 4 times ($k = 100$ and patterns of length $16–64$).

5.3 Evaluation on the Real Dataset

We conduct experiment on a real dataset, which is a time series of Seoul temperatures. The Seoul temperatures dataset consists of 658,795 integers referring to the hourly temperatures in Seoul (multiplied by ten) in the years 1907–

	AC	WMP	WMB	WMBM	RK	ASB
10	4 6.46631	20.9454	12.6187	10.2736	10.9732	11.8492
	8 6.53721	14.3666	7.37876	7.14195	5.57104	8.00697
	16 7.76917	7.8657	4.57646	4.85934	2.78754	4.5365
	32 8.18157	3.89075	2.06438	2.27235	6.73496	5.99976
	64 7.60696	4.37882	2.60346	2.7861	7.06377	3.01767
	128 7.84501	1.34343	0.643153	0.743147	7.19664	1.86238
	256 9.47242	0.88061	0.337183	0.36453	7.22575	0.850833
50	4 6.1634	22.5166	15.2899	11.4285	13.4452	14.4079
	8 7.47185	33.9852	12.581	11.9699	10.2026	11.0986
	16 9.53764	17.3211	11.0096	10.48	5.12495	15.234
	32 9.80261	6.14176	5.79404	6.21041	6.90745	9.44348
	64 9.82792	4.34029	4.09002	4.16979	7.15372	6.4055
	128 11.6782	2.40814	1.91395	2.1363	7.34409	3.99501
	256 14.7849	2.54673	1.5183	1.67897	7.47328	3.50649
100	4 6.15083	23.0344	16.4377	11.9024	14.58	15.904
	8 8.11009	35.6604	16.5101	14.9557	13.8331	15.015
	16 10.5246	22.2591	14.8361	14.3679	7.22885	21.4713
	32 11.5976	8.5304	9.03897	9.25709	7.05395	13.7257
	64 11.8653	5.6808	5.67174	5.92024	7.35357	9.04152
	128 13.6058	3.71476	3.36717	3.74349	7.50687	6.83653
	256 22.7509	4.3859	2.38758	2.66045	7.73048	5.58111

Table 3: Evaluation on the Seoul temperatures dataset. Total time in ms.
In general, temperatures rise during the day and fall at night. Therefore, the Seoul temperatures dataset has more matches than random datasets when patterns are extracted from the text. Figure 3 and Table 3 show the results on the Seoul temperatures dataset with sets of patterns of the same length. As the pattern length grows, the proposed algorithms run much faster than AC. For short patterns \((m = 4, 8)\), AC is the fastest algorithm, and AC is up to twice times faster than WMBM \((m = 4 \text{ and } k = 100)\) and 1.7 times faster than RK \((m = 8 \text{ and } k = 100)\). For moderate-length patterns \((m = 16, 32)\), RK is up to 2.8 times faster than AC \((m = 16 \text{ and } k = 10)\), and WMB is up to 4 times faster than AC \((m = 32 \text{ and } k = 10)\). For relatively long patterns \((m = 64, 128, 256)\), all the proposed algorithms outperform AC. Specifically, WMB, WMBM, ASB, and WMP outperform AC up to 28, 26, 11, and 10 times, respectively \((m = 256 \text{ and } k = 10)\), and RK outperforms AC up to 2.9 times \((m = 256 \text{ and } k = 100)\).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Communications of the ACM 18(6), 333–340 (1975)
2. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algorithms based on finding all nearest smaller values. Journal of Algorithms 14(3), 344–370 (1993)
3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the ACM 20(10), 762–772 (1977)
4. Charras, C., Lecroq, T., Pehoushek, J.D.: A very fast string matching algorithm for small alphabets and long patterns. In: Annual Symposium on Combinatorial Pattern Matching. pp. 55–64. Springer (1998)
5. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In: International Symposium on Experimental Algorithms. pp. 307–314. Springer (2014)
6. Commentz-Walter, B.: A string matching algorithm fast on the average. In: International Colloquium on Automata, Languages, and Programming. pp. 118–132. Springer (1979)
7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms second edition. The Knuth-Morris-Pratt Algorithm (2001)
8. Crochemore, M., Czumaj, A., Gasieniec, L., Lecroq, T., Plandowski, W., Rytter, W.: Fast practical multi-pattern matching. Information Processing Letters 71(3-4), 107–113 (1999)
9. Ganguly, A., Hon, W.K., Sadakane, K., Shah, R., Thankachan, S.V., Yang, Y.: Space-efficient dictionaries for parameterized and order-preserving pattern matching. In: 27th Annual Symposium on Combinatorial Pattern Matching (CPM). pp. 2:1–2:12. LIPIcs (2016)
10. Han, M., Kang, M., Cho, S., Gu, G., Sim, J.S., Park, K.: Fast multiple order-preserving matching algorithms. In: International Workshop on Combinatorial Algorithms. pp. 248–259. Springer (2015)
11. Hua, N., Song, H., Lakshman, T.: Variable-stride multi-pattern matching for scalable deep packet inspection. In: IEEE INFOCOM 2009. pp. 415–423. IEEE (2009)
12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM journal of research and development 31(2), 249–260 (1987)
13. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi, S.J., Tokuyama, T.: Order-preserving matching. Theoretical Computer Science 525, 68–79 (2014)
14. Knuth, D.E.: The Art of Computer Programming, volume 2: Seminumerical algorithms. Addison-Wesley Professional (2014)

15. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear time algorithm for consecutive permutation pattern matching. Information Processing Letters 113(12), 430–433 (2013)

16. Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.: Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications 36(1), 16–24 (2013)

17. Liu, J.N., Kwong, R.W.: Automatic extraction and identification of chart patterns towards financial forecast. Applied Soft Computing 7(4), 1197–1208 (2007)

18. Park, S., Amir, A., Landau, G.M., Park, K.: Cartesian tree matching and indexing. In: 30th Annual Symposium on Combinatorial Pattern Matching (CPM). pp. 16:1–16:14. LIPIcs (2019)

19. Song, S., Ryu, C., Faro, S., Lecroq, T., Park, K.: Fast cartesian tree matching algorithms. Accepted to SPIRE (2019), https://arxiv.org/abs/1908.04937

20. Song, T., Zhang, W., Wang, D., Xue, Y.: A memory efficient multiple pattern matching architecture for network security. In: IEEE INFOCOM 2008-The 27th Conference on Computer Communications. pp. 166–170. IEEE (2008)

21. Vuillemin, J.: A unifying look at data structures. Communications of the ACM 23(4), 229–239 (1980)

22. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Technical report. TR-94-17, Department of Computer Science, University of Arizona (1994)

A APPENDIX

Algorithm 2 Algorithm based on Rabin-Karp

1: **input:** text $T[1..n]$ and patterns $P_1[1..m_1], P_2[1..m_2], ..., P_k[1..m_k]$
2: **output:** every position in T that matches at least one of the patterns
3: **procedure** Preprocessing
4: \quad $m \leftarrow \min(m_1, m_2, ..., m_k)$
5: \quad for $i \leftarrow 1$ to k do
6: \quad \quad $fp \leftarrow f(P_i[1..m])$
7: \quad \quad HASH[fp].add(i)
8: **procedure** Search
9: \quad $index \leftarrow m$
10: \quad while $index \leq n$ do
11: \quad \quad $fp \leftarrow f(T[index - m + 1..index])$
12: \quad \quad for $i \in$ HASH[fp] do
13: \quad \quad \quad if P_i matches $T[index - m + 1..index - m + m_i]$ then
14: \quad \quad \quad \quad output $index - m + m_i$
15: \quad \quad $index \leftarrow index + 1$
Algorithm 3 Algorithm based on Alpha Skip Search

1: **input:** text $T[1..n]$ and patterns $P_1[1..m_1], P_2[1..m_2], \ldots, P_k[1..m_k]$
2: **output:** every position in T that matches at least one of the patterns
3: **procedure** **Preprocessing**
4: $m \leftarrow \min(m_1, m_2, \ldots, m_k)$
5: $b \leftarrow \log_2(km)$
6: **for** $i \leftarrow 1$ to k **do**
7: **for** $j \leftarrow b$ to m **do**
8: $fp \leftarrow f(P_i[j - b + 1..j])$
9: $\text{POS}[fp].\text{add}(i, j)$
10: **procedure** **Search**
11: index $\leftarrow m$
12: **while** index $\leq n$ **do**
13: $fp \leftarrow f(T[index - b + 1..index])$
14: **for** $(i, j) \in \text{POS}[fp]$ **do**
15: if P_i matches $T[index - j + 1..index - j + m_i]$ then
16: output $index - j + m_i$
17: index $\leftarrow index + m - b + 1$

A.1 Proof of Lemma 1

Proof. When the i-th numbers are the roots of both $\text{CT}(S_1)$ and $\text{CT}(S_2)$, the probability that $\text{CT}(S_1) = \text{CT}(S_2)$ is $p(i - 1)p(n - i)$. Since there are n distinct numbers, the probability that both $\text{CT}(S_1)$ and $\text{CT}(S_2)$ have the i-th numbers as their roots is $\frac{1}{n^2}$. Summing the probabilities $\frac{p(i - 1)p(n - i)}{n^2}$ for $1 \leq i \leq n$ gives the probability $p(n)$. \hfill \Box

A.2 Proof of Theorem 1

Proof. We prove the theorem by induction on n.

If $n \leq 3$, $p(1) = 1 \leq \frac{1}{2^3}$, $p(2) = \frac{1}{2} \leq \frac{1}{2^7}$, $p(3) = \frac{2}{9} \leq \frac{1}{2^4}$. Therefore, the theorem holds when $n \leq 3$.

Let’s assume that the theorem holds when $n \leq k$, for $k \geq 3$, and show that it holds when $n = k + 1$.

$$p(k + 1) = \frac{p(0)p(k) + p(1)p(k - 1) + \cdots + p(k)p(0)}{(k + 1)^2}$$

$$\leq \left(\frac{1}{2^1} \frac{1}{2^k - 1} + \frac{1}{2^2} \frac{1}{2^k - 2} + \cdots + \frac{1}{2^k} \frac{1}{2^k - 1} \right) \frac{1}{(k + 1)^2}$$

$$= \frac{k + 1}{2^{k - 2}} \frac{1}{(k + 1)^2}$$

$$\leq \frac{1}{2^{k - 2}} \frac{1}{4}$$

$$= \frac{1}{2^k}$$

Therefore, we have proved that $p(n) \leq \frac{1}{2^k}$. \hfill \Box
A.3 Optimization Techniques

Optimizing Naïve Verification An efficient verification method is essential for the proposed three algorithms because they all adopt the filtering and verification approach. We employ the verification method introduced by Song et al. [19]. They first introduce the notion of the global-parent representation $GP_S[1..m]$ of a string $S[1..m]$, where $GP_S[i]$ stores the index of the parent of $S[i]$ in $CT(S[1..m])$. For example, the global-parent representation of string $S = (11, 14, 13, 15, 12)$ is $GP_S = (1, 3, 5, 3, 1)$. Note that the parent of the root is the root itself. Two strings $S_1[1..m]$ and $S_2[1..m]$ have the same Cartesian trees if and only if $S_1[GP_{S_2[i]}] < S_1[i]$, or $S_1[GP_{S_2[i]}] = S_1[i]$ with $GP_{S_2[i]} \leq i$, for all $1 \leq i \leq m$ [19]. Note that we do not need any representation of S_1. After the global-parent representation of S_2 is computed, we can verify whether $CT(S_1) = CT(S_2)$ in linear time by checking the conditions. In our algorithms, the global-parent representation of the patterns are computed and stored in advance, and verification is done by the above method without computing any representation about the text.

Reusing Fingerprint of Binary Encoding In Algorithm 2 successive fingerprints can be computed in constant time by Equation (9) when using the binary encoding. Likewise, we can reuse a previous fingerprint to create the current fingerprint in Algorithms 1 and 3 as well. This can be done by applying Equation (9) $b - l$ times when two blocks of size b overlap by l. Our experimental study showed that reusing fingerprints when $l = b - 1$ is the most efficient. Thus, we reuse fingerprints only when the text shifts by one position. It is worth mentioning that we do not reuse fingerprints of the parent-distance encoding because multiple characters in the parent-distance representation can be changed by just one shift, countervailing the effect of reusing.

Additional Filtering via Min-index In the filtering stage of an algorithm, we may further filter out candidate patterns by additional filtering methods. We introduce a simple filtering method based on the index of the minimum value (min-index). Since two strings have the same Cartesian trees only if the indices of the minimum values (roots) of the two strings are the same, we may first compare the min-index before we verify each candidate pattern retrieved by a fingerprint. To this end, for each input pattern P, we store the min-index among $P[m-b+1..m]$ where m is the length of the shortest pattern in the preprocessing step. In the search step, the fingerprint and the min-index of a block in the text are computed at the same time. Among the patterns retrieved by the fingerprint, only patterns P_i are verified such that the min-index of the last block in P_i’s length-m prefix is the same as that of the block in the text. The information of the root is not represented by the binary representation, but it is represented by the parent-distance representation. Therefore, this additional filtering method is effective only when we use the binary encoding.
Grouping Patterns Having the Same Cartesian Trees Since the input patterns are strings, some of them may have the same Cartesian trees. The Aho-Corasick algorithm \[18\] assembles those patterns in a state of its automaton, while the presented algorithms in this paper do not perform it explicitly. In our implementation, we group those patterns having the same Cartesian trees, so as to avoid the redundant computation. This process is particularly beneficial for short input patterns.