Customer experience dimensions and e-government success in United Arab Emirates

Ahmed Ibrahim Al Hosani1,*, Zuraidah Zainol1
1Universiti Pendidikan Sultan Idris, Malaysia

Abstract
This systematic research study examined the connection between customer experience dimensions and e-government success in Abu Dhabi in United Arab Emirates (UAE). The organized study utilized a descriptive and cross-sectional survey research design with a positivism philosophy. A sample of 382 participants out of 108,825 target population was chosen employing a table developed by Morgan & Krejcie (1970). Facts were gathered utilizing a questionnaire, simple random sampling and examined applying Descriptive Statistics and Structural Equation Modeling using the Smart Partial Least Squares (SPLS) Version 3.3.3 software to test the hypotheses. The inquiry study findings came up with a significant correlation between customer experience dimensions (comfort, security and usability) and e-government success at significant level of 0.05. It was thus concluded that the customer experience dimensions significantly affect e-government success. The logical investigation study recommended that the UAE government should augment the budget for e-government successful implementation programs.

Citation:
Al Hosani, A. I., & Zainol, Z. (2022). Customer experience dimensions and e-government success in the United Arab Emirates. Global Advances in Business Studies, 1(2), 81-93. https://doi.org/10.55584/Gabs.001.02.3
1. Introduction

Globally, governments keep trying to obtain e-government success because of Information and Communication Technologies (ICTs). Maharaja and Munyoka (2019) opined that global e-government development index among 193 countries by 2018, especially the developing countries lacked modernized online service provided through the internet. Geisser (1975) held that e-government promotes cost-effectiveness and efficiency within the public sector service delivery and improves communication between stakeholders and the government. In the Middle East, several Arabic states like Abu Dhabi developing portals expanded services to their users (Lallmahomed, 2019). The usability of e-government services improves public accountability, makes access to information more straightforward, and ensures enhanced quality in the public services. Hence improving customer experiences and engagement with e-government services (Mensah & Granić, 2015).

The establishment of digital transformation vision and rallying citizen around the vision is still an important challenge for the economy. People do not engage in e-service to the full extent even though Sigwejo and Pather (2016) noted that smart governments have a prerequisite of concentrating on comprehending citizen requirements for developing e-services that are effective and efficient for citizens' needs. Worse still, although the high level of e-Readiness indexes determines acceptance and usage of electronic services, people do not have the expertise needed for usage of e-services. Citizen awareness in the UAE was assessed and it was found that the public still lacked basic understanding and had myths and misconceptions about the e-government initiative (Almutairi et al., 2020) yet in the last e-government implementation stage, citizen awareness was a priority (Alketbi, 2018).

According to Bhuvana and Vasantha (2020), e-government is synonymous with digital, online, and transformational government. In related works of literature, the term e-government remains conceptualized and defined in several ways. Besides, based on the available definitions, numerous scholars have given the issue a narrow and passive outlook hence inadequate utilization of Information Communication Technology (ICT) and the internet to ensure efficiency within government systems. According to Chung (2020), some definitions view e-government from a broader outlook as a modified system and a model for re-engineering government processes. “E-Government” refers to the use by government agencies of information technologies (such as Wide Area Networks, the Internet, and mobile computing) that have the ability to transform relations with citizens, businesses, and other arms of government.

The dimensions of e-government include e-government to citizens (G2C), e-government to businesses (G2B), e-government to employees (G2E), e-government to governments (G2G), citizens to governments (C2G) (Ntulo & Otige, 2020). The relationship between the government and the public is the focus of e-government to citizens (G2C). It enables citizens to quickly and easily access government information and services through a variety of channels, from anywhere. Government-to-citizens models were created to make it easier for people to interact with the government. This approach places a strong emphasis on customer-centric, integrated electronic services that allow for the delivery of public services using the "one-stop shop" idea (Ntulo & Otige, 2020). This suggests that citizens can complete a range of tasks, particularly those involving several agencies, without having to make contact with each one separately. Additionally, having a single access point makes it easier for citizens to participate in democratic processes because they can more easily access administrative procedures and communicate their requirements to public officials (Nasution & Bazin, 2018).

Parasuraman et al. (2005) claimed that "cheap pricing and web presence were initially considered as the drivers of success" in the context of e-service quality. When transactions could not be completed, when goods were not delivered on time or at all, when information
could not be accessed, and when customers’ emails went unanswered, were just a few of the reasons given by Parasuraman et al. (2005) as to why electronic services can fail or not successful. Regarding benefits, Information Technology (IT) success is divided into three categories: economic, technological, and strategic (Almalki, 2014). Almalki (2014) stated that "the success of outsourcing can be judged in terms of attaining advantages." To illustrate what success means in the context of cloud computing, Garrison et al. (2012) go over the three kinds of advantages which are: Technological benefits including access to cutting-edge equipment and knowledgeable staff, while strategic benefits include increasing an organization's focus on its core business operations when all or some of its IT functions are hosted and managed by an external vendor. Economic benefits refer to the ability of organizations to use the cloud vendor's expertise and technological resources to minimize the costs of in-house IT.

The ability of the government organization to employ all current and accessible technical resources to lower the cost of providing services to citizens and residents is related to the first category of benefits, which is economic. The e-government today gives barcode tax filing procedures with the Internet lowers the cost of tax collection. The capacity of government entities to take advantage of the enormous benefits connected with accessing the Internet. The Internet is one of the key technologies that may supply e-government services to citizens, employees, business partners, organizations and entities, according to the broad definition of e-government provided by Wang and Liao (2008) and keep the citizens happy.

The third key advantage of e-government success is the strategic advantages. According to Zhao (2013), strategic management is crucial to the success of any e-government project, taking a strategic management approach to the development of e-government because it encourages long-term orientation in addition to forward-thinking and systemic thinking. The long-term, present, and future development of a country must be properly aligned with the e-government strategy in order for initiatives to be successful.

The goal of the Abu Dhabi e-Government Strategy is to enable rapid transitioning of government services into digital ones. Clear and scalable objectives, processes, and Key Performance Indicators (KPIs) have been used to map out the strategy, through a unified gateway, which will mainly concentrate on the numerous facets of world-class e-Government services. It requires following a road plan to achieve a fully smart government (Liao & Wu, 2008). Also, the road map has been created to increase the rate and capacity at which new government services can be absorbed. It equally describes how partner governmental organizations may participate in the adoption and implementation of the new approach in the field of e-Services. The Strategy aims to establish the emirate's e-Government as a pioneering smart administration that is committed to delivering cutting-edge digital services while laying the groundwork for an ICT-mature society (TDGRA, 2021).

2. Literature review and hypothesis development

2.1. Technology acceptance model (TAM)

According to Salloum et al (2019), the present research adopts a theory of Technology Acceptance Model (TAM) to develop a framework to explain the phenomenon of e-Government success. Davis (1986) developed the Technology Acceptance Model (TAM) to help understand how people adopt and use new technology by analyzing the factors that influenced the decision to accept new technology. The objective of the model was to explain and predict the user’s acceptability of new technologies like TAM services, analyzing and exploring factors influencing the acceptability of such technologies. The purpose of this model is to explain and predict the acceptability of an information technology, analyzing and exploring factors influencing the acceptability of a certain information technology. TAM is built on two key precepts: perceived usefulness (PU) and perceived ease of use (PEOU) as key
factors that relate to adoption and attitude towards new innovative technology.

2.2. Hypothesis development

Numerous studies on customer experience dimensions analysed Information Technology (IT) as an important feature in e-government success. The studies emphasised the frequent use of IT in government business.

H1: Customer experience dimensions are positively associated with e-government success.
H1a: Comfort as a dimension has a significant effect on e-government success.
H1b: Security as a dimension has a significant effect on e-government success.
H1c: Usability as a dimension has a significant effect on e-government success.

3. Research methods

3.1. Data capturing

The data used for the planned exploration study was garnered while applying both primary and secondary bases of information. Primary data was gathered by means of questionnaires in connection to the methodical research study. Complementary information was congregated with the use of documentary archives. The rational realistic study applied a survey descriptive examination design with a positivism philosophy. Amin (2005) stated that descriptive inquiry design is usually used to echo an event and its data features. The scholar got a total of 382 persons (sample size) while using a table developed by Morgan & Krejcie (1970) to fit in the inquiry schoolwork.

3.2. Sampling methods

The intellectual engaged simple random sampling strategies in the investigation structured study. The study population included the categories like citizens, political front-runners, civil servants, traditional leaders and departmental executives.

3.3. Questionnaires

The academic researcher utilized a structured questionnaire to collect facts from the field because it covers a varied geographical cosmos in data exposure; it gathers much evidence within a short period, and offers strong assurance in relationship to secrecy (Karoro, 2017).

3.4. Validity and reliability of logical research instruments

Validity of the researcher prepared questionnaire was reached at by using content validity Index. After testing of the validity of the examination study tools, the researcher acquired content validity index (CVI) of 0.78 which was by and large beyond 0.75 signifying that the research tool was genuine to elicit data vital for the reasonable orderly study (Amin, 2005). Reliability of the informative adapted questionnaire was measured using Cronbach’s alpha coefficient formula considering the examination study variables that acquired an alpha coefficient of value more than 0.70. Since the reliability figure attained by the academic talked of 0.79 alpha value, it meant that the research actualities gathering method was reliable to produce statistics reliable for the study (Gibbs, 2007).

3.5. Data analysis

Investigation statistical methods which were involved to scrutinize data for this meticulous survey study included; descriptive statistics and structural equation modeling using SPSSV 3.3.3 software to test the hypothesis involving quantitative data.

3.6. Measurement of e-government success

According to Almukhlifi et al. (2019), the significance of measuring the efficiency of e-
government to determine its success cannot be overestimated. Various studies have established numerous measurement criteria to measure e-government success; while some are similar, others are distinctive from each other. Identifying the current measurement criteria of e-government clarifies the present state of knowledge and allows developing it further. Numerous researchers have developed instruments that measure the success of e-government from the perspective of citizens. Suri and Sushil (2017) studied the citizen’s expectations from e-government. If the existing e-government systems serve according to citizen expectations may adopt or develop the SERVQUAL model used, which strongly measures the quality of services. The model adopts gap analysis to examine and measure five gaps between customer expectations and service perception. These gaps include the service gap among the citizen expectations from the e-government services and service perception after its delivery. Other gaps have the understanding gap in management views on public expectations and the design of service quality, the delivery gap between the claim of service quality and the actual service quality provided, and the communication gap between the promise of service quality and the real service quality provided.

Table 1. Measurement of e-government success

No	Items	Adopted
1	This e-government portal is user friendly	
2	I find this e-government portal available every time I need it (i.e., 24/7)	
3	I can login to this e-government portal using the same login account of other e-government portals	
4	This e-government portal is reliable	
5	This e-government portal provides complete information (i.e., all the information I expect to find is available online)	
6	This e-government portal provides up-to-date information	
7	This e-government portal provides reliable information	
8	All services provided by this government organization in their portal can be completed online without visiting the government office at any stage.	Andry et al. (2019)
9	This e-government portal is responsive to my request (i.e., quick response and the ability to get help if there is a problem or question)	
10	Using this e-government portal makes me feel confident that information/services will be delivered as promised.	
11	E-Government can be accessed from remote areas so that people from all walks of life may receive all facilities extended by Government	

The questionnaire consisted of three main parts as follows (see Table 1):
- Part one (the cover letter): in this part, a cover letter was attached to the survey, which introduces the survey and provides the study's purpose and importance. It also pretests instruction to the respondent on answering the survey questions and explaining how their confidence will be ensured.
- Part two (demographic information): this part seeks to collect descriptive demographic information about the respondents regarding gender, age, education level, income, and the level of experience of using e-government.
- Part three (questions on the constructs): this part includes questions on the study independent (comfort, security, usability, and dependent (e-government success) variables.

Andry et al. (2019) argues that measurement of website quality has remained a significant concern in information systems and marketing studies. Lociacono et al (2000) made a WEBQUAL scale of 12 different dimensions to measure a website's effectiveness and success. The author adopted a five-pointed Likert scale, strongly disagree, Disagree, Neutral, Agree, and Strongly Agree to measure e-government success. Almukhlifi et al. (2019) also tried to measure website success in e-commerce using six different dimensions. Smith (2018) constructed other criteria to measure e-government portals. The researcher divided the requirements into information content criteria and ease of use criteria. Besides, the researcher estimated them using a seven-pointed Likert scale with high reliability and validity. Al-Rawahna et al. (2018) adopted the measurement of e-government success by evaluating three different dimensions of e-government success: information quality, e-services quality, and...
system quality; each measured with the help of a five-pointed Likert scale. Besides, each one consists of a satisfactory Cronbach’s alpha value. Al-Kaseasbeh et al. (2019) studied e-government services assessment from citizens’ interaction and satisfaction. The author adopted a four-component approach to measure e-government usage among the citizens. The process included questions like ‘I would like to continue using e-Government services in the future, ‘I will continue using e-Government services rather than using any alternative means,’ and so on. These components are measured with the help of a five-pointed Likert scale. For this study 5 point, Likert scale was adopted to allow the respondents to express their feelings through rating with a particular statement in evaluating their experience towards e-government success. In addition, the 5 points Likert scale has been proven and recommended by various researchers to reduce the frustration level of respondents and increase their response rate and response quality. In addition, utilizing the scale would allow the comparison of results with other studies that have adopted the scale concerning the research subject matter.

3.7. Measurement of customers’ experience

Thayer and Dugan (2009) found out that measuring customer’s experience is a significant aspect of e-government success since it provides a detailed insight into customer’s perceptions regarding particular components of an e-service. Researchers have utilized customer’s experience to find the information system's success. Rauschenberger et al. (2018) formed a customer’s experience questionnaire to evaluate the customer’s experience for any service quickly. The questionnaire scales are made to include a detailed impression of the customer’s experience. The questionnaire assists the user's responsibility to immediately show feelings, impressions, and attitudes that naturally arise with the usage of the system services. The items in the user’s experience questionnaire scale consist of -3 to +3, where -3 shows the negative response on the service, 0 represents the neutral response, and +3 shows the positive response on the service. The positive values indicate a positive impression of the users, while negative values show a negative experience of the users. Permana and Salim (2019) attempted to provide a model for measuring customer experience in e-services. The model includes Questionnaire for User Interaction Satisfaction (QUIS), the Standardized User Experience Percentile Rank Questionnaire (SUPR-Q), System Usability Scale (SUS), and Software Usability Measurement Inventory (SUMI). Questionnaire for User Interaction Satisfaction (QUIS) includes the dimension of user’s satisfaction in evaluating customer’s experience. In addition, it employs the measurement of usability to find out users’ expertise in using services.

Franke et al. (2019) found out that the questionnaire for User Interaction Satisfaction (QUIS) surpasses System Usability Scale (SUS) in comprehensive support readiness. Therefore, it supports a user to validate the results achieved from the questionnaire accurately. The tools help evaluate the questionnaire results, while Software Usability Measurement Inventory (SUMI) evaluates the usability in a comprehensive range of systems or services. However, Standardized User Experience Percentile Rank Questionnaire (SUPR-Q) is a particular model used to assess overall websites in terms of security and ease of use. According to Fang (2019), among the discussed measurement tools, the User Experience Questionnaire (UEQ) remains widely accepted and used, providing exceptional benefits to the users. Besides, the User Experience Questionnaire (UEQ) gives a detailed impression of customers’ experience that includes usability and customer satisfaction.
3.7.1. Measurement of security

Table 2. Items constructing security

No	Items	Adopted
1	There is strong user privacy in TAMM	
2	Citizens of most countries trust the Internet and their government.	
3	There is strong user confidentiality in TAMM	
4	There is strong protection during the transition process in TAMM	
5	Users’ concerns about perceived risks related to e-governance are not genuine.	Alharbi & Drew (2014)
6	There is a strong physical security equipment	
7	The integrity and security system of TAMM is reliable	
8	Audit systems and networks employed in TAMM ensure user privacy and security.	Li & Shang (2020)
9	Security in TAMM system uses encryption method.	
10	Authentication of accounts is done on and off.	
11	I know that my personal information submitted to the government websites is used securely.	
12	The website has adequate security measures to protect my personal information from being stolen or leaked.	
13	I trust that hackers will not access the information I provide when performing my e-government transactions.	

This study in Table 2 above, measures security by adapting 13 items from the study (Li & Shang, 2020). A 5-point Likert scale was used to measure the variable, ranging from 1 (strongly disagree) to 5 (strongly agree). The motivation for adapting this construct were influenced by the cultural context similar to Abu Dhabi and the high reliability reported in this study with most items scoring above 0.7.

3.7.2. Measurement of usability

Table 3. Items constructing usability

No	Items	Adopted
1	I find it easy to obtain information from the E-Government website.	Okunola & Rowley (2019)
2	I find it easy to navigate the E-Government website.	
3	I find it easy to complete transactions on the E-Government website.	
4	I find that the E-Government website is user-friendly.	
5	The E-Government website layout makes it easy for me to find things quickly.	
6	I find it easy to use the services on the E-Government website.	
7	I feel comfortable using the E-Government website.	
8	The E-Government portal provides a user-friendly interface	
9	The smart phone application of E-Government website provides notification regarding the amount due and deadline for payments	

This study in Table 3 above, measures Usability by adopting nine items from the study (Okunola & Rowley, 2019). A 5-point Likert scale was used to measure the variable, ranging from 1 (strongly disagree) to 5 (strongly agree).

3.7.3. Measurement of comfort

Table 4. Items constructing comfort

No	Items	Adopted
1	I can use E-Government services at a time that suits me.	Okunola & Rowley (2019)
2	I can use the E-Government services anywhere in the world	
3	Making use of the E-Government website allows me to conduct transactions out of normal working hours	
4	I can accomplish tasks more quickly using the E-Government website compared to face-to-face service.	
5	When the E-Government service portal breaks down due to high traffic and user requests, it is fixed within 1 hour next following	
6	The Android or IOS application of the E-Government website allows more flexibility in registration, payment, claiming refund and raising complain	
7	Both the smart phone application and website shows real-time information of	

This study in Table 4 above, measures Comfort by adopting seven items from the study of (Okunola & Rowley, 2019). First, a 5-point Likert scale was used to measure the variable, ranging from 1 (strongly disagree) to 5 (strongly agree).
3.7.4. Questionnaire design

Table 5. Questionnaire design

Section A	Adopt from	
Information		
Demographic profile		
Gender		
Age	5	Self-developed
Education level		
Experience in using e-government		

Section B	Adopt from	
Independent variables		
Security	13	Li & Shang (2020)
Usability	9	Okunola & Rowley (2019)
Comfort	7	Okunola & Rowley (2019)
Dependent variable		
E-Government Success	11	Andry et al. (2019)

(Source: Created by the researcher)

In this section, in table 5 above the researcher looked at the questionnaire while considering: demographic characteristics of respondents, customer experience dimensions (comfort, security and usability) and e-government success in Abu Dhabi in UAE.

4. Results and discussion

4.1. Results

4.1.1. Demographic information

Table 6. Demographic information

Age	Frequency	Percentage
Below 18 years	0	0.0%
18 - 26 years	35	9.1%
27 - 30 years	52	13.5%
31 - 36 years	110	29.4%
37 - 46 years	165	42.9%
47 years old and above	20	5.2%

Gender	Frequency	Percentage
Female	136	35.6%
Male	246	64.4%

Nationality	Frequency	Percentage
UAE	336	87.8%
Other	46	12.2%

Service Location	Frequency	Percentage
Within Abu Dhabi City	285	74.6%
Al Ain City	51	13.3%
Western Region of Abu Dhabi	11	2.87%
Other	35	9.1%

Descriptive statistics including frequencies and percentages as shown in table 6 above, were used to describe and explore the demographic variables of age, gender, nationality and service city.

Age: The table 6 above shows that majority of the respondents were in the age group 37-46 years with 165 participants representing (42.9%), followed by the age group of 31-36 years with 113(28.8 %) respondents. No minors (below 18 years) participated in this study.

Gender: The table 6 above, shows that majority of the respondents were males (64.9%) representing 246 while 35.1% were females representing 135 respondents.

Nationality: Majority of the respondents were nationals from the UAE with 336 respondents (87.8%) and 46 (12.2%) were from other nationalities but working in the UAE as shown in the table 6 above.

Service Location: Table 6 above, shows that most of the respondents had service location within Abu Dhabi City (74.0%), 13.2% within Al Ain city, 2.9% from Western Region of Abu Dhabi and 9.9% from others.
4.1.2. Descriptive statistics

Table 7. Descriptive statistics of the mean scores of constructs (N=382)

	Comfort	Security	Usability	E-government success
N=382				
Mean	2.8108	2.8308	2.8525	2.9013
Std. Deviation	1.28779	1.25043	1.27191	1.28325
Skewness	.433	.409	.359	.302
Std. Error of Skewness	.124	.124	.124	.124
Kurtosis	-1.596	-1.682	-1.668	-1.737
Std. Error of Kurtosis	.248	.248	.248	.248
Minimum	1.00	1.15	1.11	1.00
Maximum	4.86	4.77	4.89	4.82

4.1.3. Tests of normality

Table 8. Tests of normality

	Kolmogorov-Smirnov	Shapiro-Wilk		
	Statistic	Sig.	Statistic	Sig.
Comfort	0.24	0	0.808	0
Security	0.269	0	0.786	0
Usability	0.238	0	0.806	0
E-Government Success	0.247	0	0.8	0

According to Kim (2013), for sample sizes greater than 300, absolute skew value larger than 2 or an absolute kurtosis larger than 7 may be used as reference values for determining substantial non-normality, which may imply normality for the data basing on the mean scores of the constructs. Kim (2013), we found that the data is normally distributed as the values fall within the acceptable range of -2 and 2 for skewness and -7 and 7 for kurtosis. Kolmogorov-Smirnov and Shapiro-Wilk tests were further used to examine the normality of the data as presented in table 8. The values suggested that the mean scores of the constructs are not normally distributed. Examining the skewness and Kurtosis, the data seem normally distributed by as seen on Table 8, it is not normally distributed. However, given that Kolmogorov-Smirnov and Shapiro-Wilk are sensitive to sample size, and according to the central limit theorem states that when sample size has 100 or more observations, violation of the normality is not a major issue according to (Mishra et al., 2019). Also, either an absolute skewness value ≤2 or an absolute kurtosis (excess) ≤4 may be used as reference values for determining considerable normality (Kim, 2013).

4.1.4. Hypothesis testing

Table 9. Hypothesized path coefficients

	Beta (β)	Standard Deviation	T Statistics	P Values	Decision
Comfort -> E-Government Success	0.265	0.077	3.455	0.001	supported
Security -> E-Government Success	0.156	0.081	1.980	0.048	supported
Usability -> E-Government Success	0.425	0.082	5.160	0.000	supported

A structural equation model was generated to examine the hypothesis set for the study. The following subsection verifies the hypothesis stated and how it was tested in this study. Refer to table 9 above.

H1: Customer experience (CX) dimensions (comfort (CXC), security (CXS) and usability (CXU)) have a significant influence on e-Government success.
 i. H1a: Comfort has a significant influence on e-Government success.
 ii. H1b: Security has a significant influence on e-Government success.
 iii. H1c: Usability has a significant influence on e-Government success.

The study assessed the influence of Comfort on e-Government success. The study found that the influence of comfort on e-Government success was positive and significant (β=0.265, t =3.455, P<0.001) thus sub hypothesis H1a is supported. The implication is that as customer comfort improves, it tends to positively affect the e-Government success.

The influence of Security on e-Government success was assessed and the results depicted that security has a significant and positive influence on e-Government success (β =0.156, t =1.980, p=0.048), supporting the hypothesis that Security has a significant influence on e-Government success.

The third aspect of the hypothesis assessed the influence of usability of e-government platform on e-Government success. It was discovered from the results that the influence is positive and significant (β=0.425, t = 5.160, P =0.0001) thus sub hypothesis H1c is supported. Generally, there is a positive significant influence of customer experience dimensions (comfort, security and usability) on e-government success, suggesting that improving customer experience dimensions on e-government platform with everything held constant would positively influence e-government success.
4.1.5. Discussion

The findings showed that the association between customer experience dimensions and e-government success in Abu Dhabi was statistically significant. This inferred that the customer experience dimensions really affect e-government success in Abu Dhabi in UAE.

This discovery was in harmony with the study conducted by Sigwejo and Pather (2016) on Satisfaction of Citizens Needs in Brazil, who found out that once the citizens are supplied with necessary information and gadgets related to e-government, their concerns can easily be addressed for development. Nevertheless, these findings are not in consonance with a popular inquiry study conducted by Maharaja and Munyoka (2019) on Modernized Online Services who found out that lack of enough internet connectivity in the nation curtails development altogether in society.

5. Conclusion and Suggestions

5.1. Conclusion

Consequently, promoting customer experience dimensions may definitely result into true happiness and eventually e-government success. The study highlights the current strategies and initiatives to be used in e-government implementation, for example exploring success factors in e-government service outside Abu Dhabi. Most importantly, authorities in practicing states are called upon to understand and mitigate all critical problems in the experience and happiness of the citizens within the e-government system.

5.2. Implications for the study

The technical survey study recommended that the political governance of the Abu Dhabi administration in UAE should sit together on a round table, make a needs assessment on how to improve on the services of e-government in the country. Generally, there is need to be compliant with all the stakeholders in the UAE so that development can blossom digitally. The UAE central government should promulgate useful information to the political leadership in sub-national governments on the best methods to deal with e-government strategies implementation processes. The UAE government should also augment the budget for e-government successful implementation programs.

References
Alharbi, S., & Drew, S. (2014). Using the technology acceptance model in understanding academics’ behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155. https://pdfs.semanticscholar.org/f996/9c881e622873b0e6975abc190b30926d1ef.pdf
Alketbi, H. (2018). An evaluation of e-government effectiveness in Dubai smart government departments [Doctoral dissertation, Southampton Solent University]. Solent Electronic Archive. https://pure.solent.ac.uk/ws/portalfiles/portal/31179051/Hamad_Alketbi.pdf
Al-Kaseasbeh, H. M., Harada, Y., & Saraih, U. N. B. (2019). E-Government services assessment from the perspective of citizens’ interaction and satisfaction in Jordan: Pilot study. International Journal of Research & Review, 6(12), 50-56. https://www.ijrrjournal.com/IJRR_Vol.6_Issue.12_Dec2019/Abstract_IJRR008.html
Almalki, O. (2014). A framework for e-government success from the user’s perspective [Doctoral dissertation, University of Bedfordshire]. https://uobrep.openrepository.com/handle/10547/344620
Almukhlifi, A, Deng, H., & Kam, B. (2019, April 3-5). Critical factors for the adoption of e-government in developing countries: validation of a measurement model [Paper presented at the 2019 IEEE 26th International Conference on e-Business (EBusiness), Bangkok, Thailand]. doi.org/10.55584/Gabs.001.02.3
Al Hosani, F. L. F. H., & Zainol, Z. (2020). Historical development of e-government in the Middle East. *International Journal of Recent Technology and Engineering (IJRTE)*, 8(5), 748-751. https://www.ijrte.org/wp-content/uploads/papers/v8i5/E4912018520.pdf

Al-Rawahna, M., Chen, S., & Hung, C. (2018). The barriers of e-government success: an empirical study from Jordan. *International Journal of Managing Public Sector Information and Communication Technologies (IJMPICT)*, 9(2), 18. https://ssrn.com/abstract=3465470

Almutairi, F. L. F. H., Thurasamy, R., & Yeap, J. A. L. (2020). Historical development of e-government in the Middle East. *International Journal of Recent Technology and Engineering (IJRTE)*, 8(5), 748-751. https://www.ijrte.org/wp-content/uploads/papers/v8i5/E4912018520.pdf

Andry, J., Christianto, K., & Wilujeng, F. R. (2019). Using Webqual 4.0 and importance performance analysis to evaluate e-commerce website. *Journal of Information Systems Engineering and Business Intelligence*, 5(1), 23-31. https://e-journal.unair.ac.id/JISEBI/article/viewFile/9671/7362

Bhuvana, M., & Vasantha, S. (2020). Role of information and communication technology (ICT) for rural development through e-governance initiatives. *International Journal of Psychosocial Rehabilitation*, 24(08), 1475-7192. http://doi.org/10.37200/IJPR/V24I8/PR280289

Chung, C. (2020). The origin and background of e-government. Routledge. http://doi.org/10.4324/9780429054426-4

Cronbach, L. J., (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, 16:3, 297 – 334.

Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results [Doctoral dissertation, MIT Boston].

Franke, T., Attig, C., & Wessel, D. (2019). A personal resource for technology interaction: development and validation of the affinity for technology interaction (ATI) scale. *International Journal of Human–Computer Interaction*, 35(6), 456-467. https://doi.org/10.1080/10447318.2018.1456150

Garrison, G., Kim, S., & Wakefield, R. L. (2012). Success factors for deploying cloud computing. *Communications of the ACM*, 55(9), 62-68. https://doi.org/10.1145/2330667.2330685

Geisser, S. (1975). The predictive sample reuse method with applications. *Journal of the American Statistical Association*, 70(350), 320-328. https://www.tandfonline.com/doi/abs/10.1080/01621459.1975.10479865

Gibbs, C. (2007). *Research Methodology*. Irwin publishing house

Karoro, E.A. (2017). Research Methodology. Makerere Printery Press, Kampala, Uganda.

Kim, H. Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. *Restorative Dentistry & Endodontics*, 38(1), 52-54. https://doi.org/10.5395/rde.2013.38.1.52

Lallmahomed, D. (2019). Delivering fantastic customer experience; how to turn customer satisfaction into customer relationships. Productivity Press.

Li, & Shang. (2020). Service quality, perceived value, and citizens’ continuous-use intention regarding e-government: empirical evidence from China. *Information & Management*, 57, 103-197. https://doi.org/10.1016/j.im.2019.103197

Liao, K., & Wu, S. (2008). Protecting intellectual property in China. *A123 Systems*. https://web.mit.edu/suma/vships/A123SystemsFinal.pdf

Lociacorno, E., Watson, R. T., & Goodhue, D. (2000). WebQual™: a web site quality
instrument (Working paper). Worcester Polytechnic Institute.
Maharaja Y. & Munyoka, J. (2019). National e-government performance and citizen satisfaction: a multilevel analysis across European countries. International Review of Administrative Sciences, 85(3), 506-526.
Mensah, N. & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. https://doi.org/10.1007/s10209-014-0348-1
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18
Morgan, D. & Krejcie, R. (1970)/ Determining sample size for research activities. Educational and Psychological Measurement, Vol. 30pp. 607-10.
Ntulo, D. & Otige, C. (2020). A conceptual model of e-government adoption in Indonesia. International Journal on Advanced Science, Engineering and Information Technology. 7. 1471. http://doi.org/10.18517/ijaset.7.4.2518
Nasution, F. B., & Bazin, N. E. N. (2018, October). E-government maturity model to support system dynamics in public policymaking [Paper presentation]. 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, Malang, Indonesia.
Okunola, O. M., & Rowley, J. E. (2019). User experience of e-government: the Nigeria immigration service. Library. Hi Tech, 37, 355-373. https://doi.org/10.1108/LHT-09-2018-0138
Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). ES-QUAL: a multiple-item scale for assessing electronic service quality. Journal of Service Research, 7(3), 213-233. https://doi.org/10.1177/1046670504271156
Pernama, W., & Salim, A. (2019). Website quality analysis of evaluation development monitoring system using the webqual 4.0 method. International Journal of Scientific and Research Publications, 9(7), 849 Article ISSN 2250-3153
Rauschenberger, M., Cota, M., & Thomaschewski, R. (2018). Efficient measurement of the user experience of interactive products. How to use the user experience questionnaire (UEQ). Example: Spanish language version. International Journal of Artificial Intelligence and Interactive Multimedia, 2(1). http://dx.doi.org/10.9781/ijimai.2013.215
Salloum, S. A., Alhamad, A. Q. M., Al-Emran, M., Monem, A. A., & Shaalan, K. (2019). Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE Access, 7, 128445-128462.
Sigwejo, A., & Pather, S. (2016). A citizen-centric framework for assessing e-government effectiveness. The Electronic Journal of Information Systems in Developing Countries, 74(1), 1-27. https://doi.org/10.1002/j.1681-4835.2016.tb00542.x
Smith, S. K. (2018). Fostering innovation in the public sector: An organizational innovation ecosystem maturity model [Master’sdisseertaiton, University of Alberta]. https://era.library.ualberta.ca/items/73254988-2d00-40e9-9bbe-adb042a2f875/view/1b29649e-7ccb-4fd2-8e73-261e85253aeb/Kubinec%20Smith%20Capstone.pdf
Suri, P. K., & Sushil, (2017). Strategic planning and implementation of e-governance. Springer Nature.
TDGRA (2021). Co-creating e-government services: an empirical analysis of participation methods in Belgium. In Setting Foundations for the Creation of Public Value in Smart Cities (pp. 225-245). Springer, Cham.
Thayer, A., & Dugan, T. E. (2009, July). Achieving design enlightenment: Defining a new user experience measurement framework [Paper presentation]. IEEE International
Wang, Y. S., & Liao, Y. W. (2008). Assessing eGovernment systems success: a validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717-733. https://doi.org/10.1016/j.giq.2007.06.002

Zhao, F. (2013). An empirical study of cultural dimensions and e-government development: implications of the findings and strategies. Behaviour & Information Technology, 32(3), 294-306. https://doi.org/10.1080/0144929X.2011.644580