Practice Gap in Atrial Fibrillation Oral Anticoagulation Prescribing at Emergency Department Home Discharge

Button D¹, Kea B²

¹. Oregon Health and Science University, School of Medicine, Portland OR
². Center for Policy and Research – Emergency Medicine, Department of Emergency Medicine, Oregon Health and Science University, Portland, OR
Atrial Fibrillation (AF)

- Quivering of the atrium due to aberrant electrical impulses coming from ectopic areas
- Five-fold increase in an individual’s lifetime risk of stroke
- Expected prevalence of 12 million Americans by 2030

“My heart flip-flops, skips beats, and feels like it’s banging against my chest wall, especially if I’m carrying stuff up my stairs or bending down.”
“I was nauseated, light-headed, and weak. I had a really fast heartbeat and felt like I was gasping for air.”
“I had no symptoms at all. I discovered my AF at a regular check-up. I’m glad we found it early.”
Treatment

- Oral anticoagulation therapy can reduce stroke risk by 64%
- Risk of bleeding vs risk of stroke

Letter	Risk factor	Score
C	Congestive heart failure/LV dysfunction	1
H	Hypertension	1
A₂	Age ≥75	2
D	Diabetes mellitus	1
S₂	Stroke/TIA/thrombo-embolism	2
V	Vascular disease*	1
A	Age 65–74	1
S	Sex category (i.e., female sex)	1
	Maximum score	9

Congestive heart failure/LV dysfunction means LV ejection fraction ≤40%. Hypertension includes the patients with current antihypertensive medication. *Prior myocardial infarction, peripheral artery disease, aortic plaque. LV: left ventricular, TIA: transient ischemic attack

Letter	Clinical Characteristic	Points
H	Hypertension	1
A	Abnormal Liver or Renal Function	1 or 2
S	Stroke	1
B	Bleeding	1
L	Labile INR	1
E	Elderly (age > 65)	1
D	Drugs or Alcohol	1 or 2

Maximum Score: 9
AF in the Emergency Department (ED)

• Most common arrhythmia presenting to ED
 • Accounts for 500,000 annual ED visits and ¼ of all diagnoses are made in the ED
• Up to 89% of patients with new-onset AF may be discharged from ED
• More than half of patients with AF discharged from the ED fail to achieve outpatient follow-up within 90 days of hospital discharge
Study Objectives

• Describe baseline ED OAC prescribing rates for eligible OAC-naïve AF patients
• Characterize predictors of OAC prescribing
• Identify variation from established guidelines and risk stratification tools
Methods

• Population: Patients >18 years old evaluated in the ED for primary diagnosis of AF and discharged home between 2012 – 2014

• Charts reviewed by five abstractors blinded to study hypotheses

• Abstracted demographics and data from problem lists and medical history to calculate CHA₂DS₂-VASc and HAS-BLED scores.

• Descriptive statistics used to summary demographics and stroke/bleed risk profiles

• Multivariable logistic regression used to identify factors associated with provision of OAC at ED discharge and factors associated with cardiology consultation.
Results

Characteristic (n, %)	Overall (n=138, 100%)	OAC (n=118, 85.5%)	No OAC	p-value*
Age (years), mean (SD)	58.7 (17.1)	61.4 (13.77)	58.2 (17.61)	0.69
Female sex	54 (39.1%)	13 (65.0%)	41 (34.7%)	0.91
Race				
White	128 (92.8%)	20 (100.0%)	108 (91.5%)	1.00
Black or African American	3 (2.2%)	0 (0.0%)	3 (2.5%)	
Asian or Pacific Islander	2 (1.4%)	0 (0.0%)	2 (1.7%)	
Other	2 (1.4%)	0 (0.0%)	2 (1.7%)	
Not reported	3 (2.2%)	0 (0.0%)	3 (2.5%)	

CHA2DS2-VASc group

- **Low stroke risk**: 62 (39.9%) 6 (30.0%) 49 (41.5%) 0.30
- **Intermediate stroke risk**: 22 (15.9%) 2 (10.0%) 20 (16.9%) 0.23
- **High stroke risk**: 61 (44.2%) 12 (60.0%) 41 (41.5%) 0.30

HAS-BLED group

- **Low bleeding risk**: 81 (58.7%) 10 (50.0%) 71 (50.0%) 0.42
- **Intermediate bleeding risk**: 31 (22.5%) 7 (35.0%) 24 (20.0%) 0.23
- **High bleeding risk**: 26 (18.8%) 3 (15.0%) 23 (19.5%) 0.01

Number of methods of control attempted

Method of control	Overall (n=138)	OAC (n=118)	No OAC	p-value*
0	57 (41.3%)	13 (109.0%)	44 (39.5%)	1.00
1	52 (37.7%)	3 (109.3%)	49 (39.5%)	
2	21 (15.2%)	2 (109.3%)	19 (39.5%)	
3	6 (4.3%)	0 (109.3%)	6 (39.5%)	
4	2 (1.4%)	0 (109.3%)	2 (39.5%)	
Cardioversion attempted	18 (13.3%)	4 (20.0%)	14 (11.9%)	0.30

First method of control

- **Rhythm**: 16 (11.6%) 1 (5.0%) 15 (12.7%) 0.52
- **Rate**: 65 (47.1%) 9 (45.0%) 56 (47.5%) 0.47
- **None**: 57 (41.3%) 10 (50.0%) 47 (39.8%) 0.30
OAC-naive patients, n=138

Low Stroke Risk, n=55

Intermediate Stroke Risk, n=22

High Stroke Risk, n=61

Low Bleed Risk, n=81

Intermediate Bleed Risk, n=31

High Bleed Risk, n=26

No OAC Prescribed, n=118

OAC Prescribed, n=20
Results

Characteristic	OR (95% CI)	P Value
Sex, Female	2.9 (1.0-8.5)	0.05
CHA²DS²-VASc stratification		
High risk	1.9 (0.7-5.7)	0.21
Low/intermediate risk	referent	
Cardiology consultation	12.5 (1.5-100.5)	< 0.01

OAC = oral anticoagulant; AF = atrial fibrillation; SD = standard deviation; ED = emergency department * = years; PTA = prior to arrival. Significant values are bolded.

	HAS-BLED score §	OAC Prescription	
	Yes n=20	No n=118	Total n=138
Low Stroke Risk			
Low Bleeding Risk	6 (11.1%)	48 (88.9%)	54 (100%)
Intermediate Bleeding Risk	0 (0%)	1 (100%)	1 (100%)
High Bleeding Risk	0(0%)	0 (0%)	0 (0%)
Total	6	49	55
Intermediate			
Low Bleeding Risk	2 (14.3%)	12 (85.7%)	14 (100%)
Intermediate Bleeding Risk	0 (0%)	5(100%)	5 (100%)
High Bleeding Risk	0 (0%)	3 (100%)	3 (100%)
Total	2	20	22
High Stroke Risk			
Low Bleeding Risk	2 (15.4%)	11 (84.6%)	13 (100%)
Intermediate Bleeding Risk	7 (28.0%)	18 (72.0%)	25 (100%)
High Bleeding Risk	3 (13.0%)	20 (87.0%)	23 (100%)
Total	12	49	61
Results

Patient	OAC Rx recommended by cardiology	OAC Rx provided by ED provider	CHA$_2$DS$_2$-VASc	HASBLED	Rx given	Reason for discrepancy?
1	Yes	No	High Risk	High Risk		N/A
2	Yes	No	Low Risk	Low Risk		“Low stroke risk”
3	Yes	No	High Risk	Low Risk		N/A
4	Yes	No	High Risk	High Risk		N/A
5	Yes	No	Low Risk	Low Risk		N/A
6	Yes	No	High Risk	Intermediate		N/A
7	Yes	No	Low Risk	Low Risk		N/A
8	No	Yes	Intermediate	Low Risk	Warfarin	CHADS2 score
9	No	Yes	Low Risk	Low Risk	Warfarin	N/A
10	No	Yes	High Risk	Intermediate	Dabigatran	N/A
11	No	Yes	High Risk	Intermediate	Other	N/A
12	No	Yes	Low Risk	Low Risk	Dabigatran	N/A

OAC = Oral anticoagulation; Rx = Prescription; ED = Emergency Department Rx = Prescription
Discussion

• The majority of OAC-eligible patients were discharged home without an OAC prescription
 • Previous work has shown that patients started on an OAC in the ED continue to take that prescription for longer than those referred to another provider
 • Other work has shown that when this population is started on an OAC the risk of bleeding is unchanged at 1 year and risk of stroke is decreased

• Cardiology consult and female sex were predictive of OAC prescription
 • Academic medical centers are more likely to consult cardiology (roughly 2/3) while community less so (roughly 1/3)

• Access to expert opinion may improve provider comfort with OAC prescribing

• Other work highlights that ED providers would feel more comfortable with ED specific guidelines
Questions?
Dana Button – buttond@ohsu.edu
Bibliography

• Markides, Vias, and Richard J Schilling. “Atrial Fibrillation: Classification, Pathophysiology, Mechanisms and Drug Treatment.” *Heart* 89, no. 8 (August 2003): 939–43.

• www.heart.org. “What Is Atrial Fibrillation (AFib or AF)?” Accessed June 11, 2020. https://www.heart.org/en/health-topics/atrial-fibrillation/what-is-atrial-fibrillation-afib-or-af.

• Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation: a major contributor to stroke in the elderly. The Framingham Study. *Arch Intern Med.* 1987;147(9):1561-1564.

• Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. *The Am J Cardiol.* 2013;112(8):1142-1147.

• Diner BM. Evidence-based emergency medicine. Anticoagulation or antiplatelet therapy for non-rheumatic atrial fibrillation and flutter. *Ann Emerg Med.* 2003;41(1):141-143.

• American College of Cardiology. “Which Risk Score Best Predicts Bleeding With Warfarin in Atrial Fibrillation?” Accessed June 11, 2020. http://3a%2f%2fwww.acc.org%2flatest-in-cardiology%2frarticles%2f2014%2f07%2f18%2f11%2f38%2fwhich-risk-score-best-predicts-bleeding-with-warfarin-in-atrial-fibrillation.

• ResearchGate. “Table 1. The CHA2DS2-VASc Score.” Accessed June 11, 2020. https://www.researchgate.net/figure/The-CHA2DS2-VASc-score_tbl1_272081305.

• Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. *Chest.* 2010;137(2):263-272.

• Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. *Chest.* 2010;138(5):1093-1100.

• January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. *J Am Coll Cardiol.* 2014;64(21):e1-76.

• January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. *Circulation.* 2019;140:e125-e151.

• Lip GY, Lane DA. Stroke prevention in atrial fibrillation: a systematic review. *JAMA.* 2015;313(19):1950-1962.

• Vinson DR, Hoehn T, Graber DJ, Williams TM. Managing emergency department patients with recent-onset atrial fibrillation. *J Emerg Med.* 2012;42(2):139-148.