Basic Study

Gut microbiota profile in healthy Indonesians

Endang Sutriswati Rahayu, Tyas Utami, Mariyatun Mariyatun, Pratama Nur Hasan, Rafli Zulfa Kamil, Ryan Haryo Setyawan, Fathyah Hanum Pamungkaningtyas, Iskandar Azmy Harahap, Devin Varian Wiryohanjoyo, Putrika Citta Pramesi, Muhammad Nur Cahyanto, I Nengah Sujaya, Mohammad Juffrie

ORCID number: Endang Sutriswati Rahayu (0000-0002-6101-3433); Tyas Utami (0000-0003-3600-6060); Mariyatun Mariyatun (0000-0002-7996-2531); Pratama Nur Hasan (0000-0001-7780-2421); Rafli Zulfa Kamil (0000-0002-5575-9642); Ryan Haryo Setyawan (0000-0002-2437-2322); Fathyah Hanum Pamungkaningtyas (0000-0002-2106-0040); Iskandar Azmy Harahap (0000-0002-9194-9514); Devin Varian Wiryohanjoyo (0000-0002-2495-6328); Putrika Citta Pramesi (0000-0003-0246-5189); Muhammad Nur Cahyanto (0000-0002-1448-8762); I Nengah Sujaya (0000-0002-7826-2831); Mohammad Juffrie (0000-0002-2862-3897).

Author contributions: Rahayu ES acted as the lead investigator; Utami T supervised the field research at the Yogyakarta site; Mariyatun performed the majority of field research at both sites; Hasan PN, Kamil RZ and Setyawan RH participated equally in field research at both sites; Pamungkaningtyas FH and Harahap IA assisted with field research and performed data analysis; Wiryohanjoyo DV wrote the paper; Pramesi PC edited the paper and was responsible for journal submission; Cahyanto MN was the consultant for the research design; Sujaya IN supervised the research at the Bali site; Juffrie M consulted from both the medical and ethical view.

Supported by The Yakult Honsha, The Yakult Honsha

Abstract

BACKGROUND
Recently, gut microbiota has been associated with various diseases other than intestinal disease. Thus, there has been rapid growth in the study of gut microbiota. Considering the numerous factors influencing gut microbiota such as age, diet, etc., area-based research is required. Indonesia has numerous different tribes and each of these tribes have different lifestyles. Hence, it is expected that each tribe has a specific gut microbiota. A deeper insight into the composition of gut microbiota can be used to determine the condition of gut microbiota in Indonesians and to consider which treatment may be suitable and effective to improve health status.

AIM
To investigate the gut microbiota of Indonesian subjects represented by Javanese and Balinese tribes by analyzing fecal samples.

METHODS
Fecal samples were collected from a total of 80 individuals with 20 in each of the young groups ranging from 25-45 years and the elderly group aged 70 years or more from two different regions, Yogyakarta and Bali. Fecal sample collection was performed at the end of the assessment period (day 14 ± 1 d) during which time the subjects were not allowed to consume probiotic or antibiotic products. The quantification of various Clostridium subgroups, Lactobacillus subgroups,
Indonesia has a population of 262 million people, with children (aged 0-14 years) comprising 25%, young-adults (aged 15-64 years) comprising 68%, and the elderly (aged 65 and over years) comprising 7% of the population, as suggested by Index Mundi (https://www.indexmundi.com/indonesia/age_structure.html). Moreover, Indonesia has hundreds of tribes each of which has its own lifestyle which has...
resulted in an expected variety of gut microbiota. The development of gut microbiota composition starts when an infant is born; however, it changes markedly when an infant learns to eat, followed by a stable state starting from teenager and adult age and finally begins to undergo other changes in the elderly. In the child age group, fecal microbiota is not as complicated as that in advanced age. This was indicated by a decrease in Bifidobacteria species diversity and an increase in Bacteroidetes species diversity[6]. These microbial composition changes may affect gut microbiota, especially the individual’s metabolic capacity, and have an important role in health. In addition, degenerative transformation effects on the physiology and function of the gut are possibly due to aging and associated with changes in colonic ecosystem composition and metabolic activities[6]. Previous studies have also found that Bifidobacteria is a protective intestinal microorganism, and decreases in the elderly group age. With regard to putatively detrimental microorganism populations, notably Clostridia and Enterobacteriaceae, these increase in the elderly age group[6].

Three principal human enterotypes were proposed based on a genus or group of specific bacteria[6]. These three enterotypes, which are Bacteroides, Prevotella, and Ruminococcus, were based on 39 individuals (22 European, 13 Japanese, 4 American) that were not nation or continent specific. The study showed that all three enterotypes were largely driven by a certain species composition, although most species are not obligated to provide a plethora of molecular functions. This indicates that functional analysis is needed to understand more about microbial composition. In addition[6], a total of 98 individuals were observed to detect how gut microbial composition is affected by diet, and supported the previously mentioned enterotypes[6]. However, the study showed that the dominant enterotypes, which are Bacteroides and Prevotella, better described gut composition. Both enterotypes have their own role on gut microbiota composition. The former enterotype was related to a diet containing high protein and animal fat, while the latter enterotype was associated with a high carbohydrate diet.

According to a study of 303 Asian children in which the subjects’ gut microbiota community profiles were investigated, Prevotella (P-type) or Bifidobacterium/ Bacteroides (BB-type) are able to encourage two classifications of enterotype-like clusters[6]. The P-type is mostly found in subjects from Indonesia and Thailand, while the BB-type is mainly found in Japan, Taiwan, and China. Subjects with high P-type have diets rich in resistant starch. This explained the low bile acid biosynthesis and high carbohydrate digestion suggested by predictive metagenomics.

Previous results[6] revealed that gut microbiota in Indonesian schoolchildren was represented by two unique populations, which were quite distinct from those in other countries. Yogyakarta and Bali regions were selected to represent the Javanese tribe, the most abundant and widespread throughout the Indonesian archipelago and the Balinese tribe which is only concentrated in Bali Island. Both tribes have different lifestyles and diets as are strongly associated with different religions and beliefs. Based on these facts, Yogyakarta and Bali were selected as the sites for the current study as in the previous study[6]. Currently, various methods have been used to study gut microbiota populations. In this research, culture methods on various selective media reflecting living microorganisms are rarely used and replaced by culture independent methods, including quantitative real-time polymerase chain reaction (PCR). The objectives of the present study were to establish a baseline microbiota composition in both healthy young and elderly Indonesian subjects living in Yogyakarta and Bali. This baseline was then used to further study the correlation between gut microbiota and several diseases, such as obesity, type II diabetes, and liver diseases. Therefore, Yogyakarta and Bali were selected due to their different lifestyles and diet habits.

MATERIALS AND METHODS

Subject characteristics and ethic statement

The study subjects were selected from two different sites, Yogyakarta and Bali, Indonesia. Elderly subjects (aged 70 years and above) were recruited from Elderly Houses, while younger subjects (aged from 25-45 years) were volunteer university students and employees. All subjects signed an informed consent before the study. During pre-screening of the study subjects, they were instructed not to consume fermented milk products, probiotics, or prebiotics for the entire study (1-14 d). In addition, information on medical history, physical examination, demographic parameters and vital signs were obtained from each subject (Table 1). A pregnancy test was performed in women, where applicable. Ethical clearance was approved by the Medical and Health Research Ethics Committee, Faculty of Medicine, Universitas
Gadjah Mada-Dr. Sardjito General Hospital (Ref: KE/FK/988/EC/2016), on 2 September 2016.

Sample collection
During the assessment period (1-14 d), information on the intestinal microbiota and intestinal environment were collected. Before fecal collection, each subject was given a stool kit and the procedure was explained. On day 14 (± 1 d), the subjects were asked to defecate upon a trail paper (Eiken Chemical Co., Ltd) which was immediately transferred into a fecal tube containing RNAlater (Thermo Fischer Scientific). If the fecal samples were collected during the day, the subjects delivered the sample to the clinical center as soon as possible. However, if fecal samples were collected during the evening, the subjects stored the samples in an icebox containing ice bags and brought them to the clinical center the following morning. In the elderly group, the study team was involved in fecal sample collection and questionnaire completion.

Intestinal microbiota
The Yakult intestinal flora-scan (YIF-SCAN), an intestinal flora analysis system, was used to measure the intestinal microbiota. The basic principle of YIF-SCAN is the quantitative reverse transcription PCR method and it was conducted in Yakult Central Institute, Japan. The samples were brought to Japan by the investigating team from Indonesia. The gut microbiota composition was analyzed using a previously published method\(^{[7,16]}\) as follows: Total Bacteria: *Clostridium coccoides* group, *Clostridium leptum* subgroup, *Bacteroides fragilis* group, *Bifidobacterium*, *Apopobium* cluster, *Prevotella*, *Clostridium perfringens*, *Clostridium difficile*, *Enterobacteriaceae*, *Lactobacillus* (6 subgroups and 3 species); *Lactobacillus casei* subgroup, *Lactobacillus gasseri* subgroup, *Lactobacillus plantarum* subgroup, *Lactobacillus reuteri* subgroup, *Lactobacillus ruminis* subgroup, *Lactobacillus sakei* subgroup, *Lactobacillus brevis*, *Lactobacillus fermentum*, *Lactobacillus fructivorans*, *Enterococcus*, *Staphylococcus*, *Streptococcus* and *Pseudomonas*. The primer sets used for *C. difficile* and *Streptococcus* were previously described\(^{[8,9]}\).

Culture method was also used to detect the composition of intestinal microbiota in this study. By using selective media, this enabled bacterial growth and detection that may be missed. Therefore, the researchers used two methods and compared the results of total *Lactobacillus* to anticipate different results. Culture method was performed to detect the population of yeast and mold in general using the selective medium Malt Extract Agar (MEA), the population of *Lactobacillus plantarum* was calculated using *Lactobacillus plantarum* Selective Media (LPSM), while the population of *Escherichia coli*, and coliform non *E. coli* were calculated using Brilliance *E. coli* / Coliform Selective Agar from Oxoid.

Questionnaire
The subjects were given a questionnaire at the screening period (15-23 August 2016). The questionnaire was designed to obtain stool frequency (number of stools per day) and stool consistency. For stool consistency parameters, the Bristol Stool Form Scale\(^{[10]}\) was used as the measurement scale.

Data analysis
Microbiota composition data were tabulated into a spreadsheet (Microsoft Excel, 2016) as log\(_{10}\) bacterial cells/g feces mean ± SD (detection rate %), and for demographic parameters as [median (min-max)], unless stated otherwise. All under limit detection data were excluded from statistical analysis. All statistical analyses were conducted using (SPSS/PC + 4.0, Chicago, IL, United States). A comparison of continuous variables was conducted with the Student’s \(t\)-test for normally distributed data and the Mann Whitney test. Statistical analysis of the YIF-SCAN data was performed using the number of bacterial cells and the detection rate in the four groups (young subjects in Yogyakarta, elderly subjects in Yogyakarta, young subjects in Bali, elderly subjects in Bali), with the Mann-Whitney \(U\)-test and chi-square test, respectively. We used R software for the Mann-Whitney \(U\)-test and the chi-square test. The statistical methods and techniques mentioned were appropriate for the research.

RESULTS

Stool frequency and consistency
The data retrieved from the questionnaires regarding stool frequency and consistency are illustrated in Figures 1 and 2.

Gut microbiota composition of healthy Indonesians

WJG | https://www.wjgnet.com

March 28, 2019 | Volume 25 | Issue 12
Table 1 General characteristics of the subjects (n = 80)

	n (%)
Gender	
Male	30 (37.50)
Female	50 (62.50)
Ethnicity	
Javanese	34 (42.50)
Balinese	40 (50.00)
Chinese	3 (3.75)
Ambonese	1 (1.25)
Bugis	1 (1.25)
Melayu	1 (1.25)
Weight (kg) (mean ± SD)	55.65 (14.35)
Height (cm) (mean ± SD)	156.07 (10.54)
Body mass index (kg/m²) (mean ± SD)	22.57 (4.54)

Before conducting gut microbiota composition analysis, subject characteristics consisting of gender, ethnicity, weight, height and body mass index (BMI) were obtained and are described in Table 1. Microbiota profiles (based on the YIF-SCAN) in young and elderly subjects living in Yogyakarta and Bali, Indonesia are presented in Table 2 and Figure 3. Populations of bacteria in the feces of young subjects were higher than in the elderly group. The total amount was approximately $\log_{10} 10.0-10.6$ bacterial cells/g feces, and the most abundant bacteria in all groups were Clostridium, followed by Prevotella, Atopobium, Bifidobacterium, and Bacteroides. These bacteria are obligate anaerobic bacteria. Interestingly, even though Prevotella showed the second highest population following Clostridium, its prevalence was not 100%. Furthermore, its prevalence in the elderly group from Yogyakarta was only 75%.

Among the analyzed Clostridia, the most dominant was the Clostridium cocoides group, followed by Clostridium leptum subgroup and Clostridium perfringens, whereas the pathogenic Clostridium difficile was not found in any group. Enterobacteriaceae (phylum Proteobacteria), which is a facultative anaerobe had a population of $\log_{10} 7.3 \pm 0.8$ to 8.4 ± 0.8 bacterial cells/g feces, less than the other obligate anaerobic phylum.

In terms of the bacterial counts in Yogyakarta subjects, total bacteria, Clostridium cocoides group, Bifidobacterium, Prevotella, Lactobacillus plantarum subgroup, and Streptococcus were significantly higher ($P < 0.05$) in younger than in elderly subjects, while the Lactobacillus gasseri subgroup, Lactobacillus casei subgroup, and Lactobacillus reuteri subgroup counts were significantly lower ($P < 0.05$) in younger subjects. On the other hand, in Balinese subjects, the younger groups had significantly higher ($P < 0.05$) total bacteria count, Prevotella subgroup, Clostridium leptum subgroup, Bacteroides fragilis group and Clostridium cocoides group. The counts for Lactobacillus ruminis subgroup and Enterobacteriaceae were significantly lower ($P < 0.05$) in younger subjects.

A comparison within young subjects showed that the Bifidobacterium count in Yogyakarta was significantly higher ($P < 0.05$) than that in Bali, while the Clostridium perfringens count was significantly lower ($P < 0.05$) in Yogyakarta. On the other hand, a comparison of elderly subjects from both sites showed significantly low ($P < 0.05$) counts for Clostridium perfringens, Lactobacillus plantarum subgroup and Enterococcus in Yogyakarta, while the counts for Lactobacillus casei subgroup and Lactobacillus fermentum were significantly higher ($P < 0.05$) in Yogyakarta. Counts for Lactobacillus plantarum subgroup were significantly higher ($P < 0.05$) in young subjects, while the counts for Lactobacillus reuteri subgroup and Enterobacteriaceae were significantly lower ($P < 0.05$) in young subjects.

In a comparison of young and elderly, younger subjects tend to have higher concentrations of microbiota based on the YIF-SCAN, compared to the elderly as shown in Table 3 and Figure 3, and a significant difference between younger and elderly subjects was found. Younger subjects had significantly higher ($P < 0.05$) total bacteria, Clostridium cocoides and Bacteroides fragilis groups, and Clostridium leptum, Bifidobacterium, Prevotella, and Lactobacillus plantarum subgroups, while Lactobacillus reuteri subgroup and Enterobacteriaceae were significantly lower ($P < 0.05$) in younger subjects. No significant difference was found in the distribution of total Lactobacillus. Additionally, Atopobium cluster showed a constant number.

In terms of the bacterial counts in Yogyakarta subjects, total bacteria, Clostridium
coccoides group, Bifidobacterium, Prevotella, Lactobacillus plantarum subgroup, and Streptococcus were significantly higher ($P < 0.05$) in young subjects compared to the elderly, while the counts for Lactobacillus gasseri, Lactobacillus casei, and Lactobacillus reuteri subgroups were significantly lower ($P < 0.05$) in young subjects. Bacterial counts in Balinese younger subjects were significantly higher ($P < 0.05$) including total bacteria, Clostridium coccoides, Clostridium leptum, Bacteroides fragilis, and Prevotella compared to elderly subjects, while the counts for Lactobacillus ruminis subgroup and Enterobacteriaceae were significantly lower ($P < 0.05$) in younger subjects.

Differences between Prevotella, Bifidobacterium, and Bacteroides and Enterobacteriaceae

Populations of Prevotella, Bifidobacterium and Bacteroides fragilis group in young and elderly subjects in Yogyakarta and Bali are shown in Figure 4. From the figure, it can be seen that Prevotella was the most abundant bacteria in each group, and Prevotella enterotype was found in each group. It should also be noted that the populations of Prevotella, Bifidobacterium and Bacteroides fragilis group were fewer in elderly subjects. The bacteria which provide health benefits, namely Bifidobacterium were not widespread in elderly subjects. On the other hand, Enterobacteriaceae which has a disadvantageous effect on health was more common in the elderly.

The Lactobacillus group and others

The Lactobacillus subgroups which were dominant and had high prevalence (> 85%) were Lactobacillus plantarum, Lactobacillus gasseri, and Lactobacillus reuteri, while Lactobacillus ruminis although it showed a high population (6.4±1.7 – 7.6±0.9 log_{10} bacterial cells/g), its prevalence in Balinese subjects was only 70%-80% and as few as 35%-45% in Yogyakarta subjects. With regard to Lactobacillus casei subgroup, the number and prevalence were low.

From Table 2 and Table 3, it can be seen that in the elderly, there was an increase in Enterobacteriaceae (qPCR) together with Coliform and E. coli. Similar results were found for yeasts and molds, notably molds. Initially, molds were not found in younger subjects but were later found in the elderly. This may indicate that the elderly is more prone to mold infection. Also, it should be noted that Coliform and E. coli, which belong to Enterobacteriaceae were analyzed using culture methods, had a lower count in younger subjects compared to the elderly, and this was in accordance with the YIF-SCAN results. Using the culture method, the amount of yeast in feces was observed to be 4.17 log_{10} bacterial cells/g (younger subjects) and 4.28 log_{10} bacterial cells/g (elderly subjects), respectively, with a prevalence of 53% and 43%, respectively. Mold was not found in the feces of younger subjects, although a prevalence of 8% was found in the elderly with the highest number accounting for 3.68 log_{10} mold cells/g.

A comparison of Lactobacillus analysis between qPCR and culture method was conducted and the results are presented in Table 4. It was shown that no significant difference between the results of the two methods was detected.
DISCUSSION

Several factors are reported to have important roles that affect the normal gut microbiota\(^{[3,11]}\). These factors are: delivery type (vaginal or cesarean)\(^{[1]}\); infancy (breast milk or formula feeds) and adult (vegetable based or meat based) diet\(^{[2]}\); and antibiotics or antibiotic-like molecules derived from gut environment intake\(^{[3]}\). Of these, diet is the main factor affecting the change in gut microbiota following aging.

Changes in gut microbiota start when babies are weaned and consume solid foods, and these changes become stable in teenage and adult years\(^{[12-14]}\). Changes occur again in the elderly. Intestinal movements are weaker with age, extending transit time and changes in nutrient turn-over dynamics. The elderly possibly have reduced dentition and chewing strength affecting their diet that causes low support of microbial growth. Therefore, when compared, the elderly group was different from the younger group as the elderly have different physical aspects, such as reduced bowel function. This is in accordance with the results of the present study in subjects from Yogyakarta and Bali. The results showed that differences in gut microbiota were only seen between age groups, as some bacteria such as *Bifidobacteria*, *Prevotella* and *Lactobacillus plantarum* were reduced, while *Enterobacteriaceae* and *Lactobacillus reuteri* increased in elderly subjects. Both locations did not show a difference in gut microbiota composition, as rice is consumed as a staple carbohydrate source in both locations. Even though there was a slight difference in the main protein source, this did not result in a significant difference in the gut microbiota.

This difference in gut microbiota concentration may have been influenced by the difference in eating habits between younger and elderly subjects\(^{[15]}\). In terms of eating habit, most elderly subjects eat regularly (3 times a day) compared to younger subjects. The difference in daily eating frequency is significant. Younger people tend to consume probiotic and fruit or vegetable juices more than the elderly. However, milk, vegetables and fruits are more frequently consumed among younger subjects compared to the elderly. This might explain why there was a higher concentration of *Bacteroides* in the gut microbiota of younger subjects\(^{[15]}\). Our study had a limitation in study population heterogeneity; therefore, our subjects may not be representative of the Indonesian population. However, the subjects included in this study may provide a background description of the gut microbiota profile in young compared to elderly Indonesians.

Based on 16S rRNA gene sequencing, *Firmicutes* is the most abundant bacteria living in the human gastrointestinal tract, followed by *Bacteroidetes*, *Actinobacteria* and *Proteobacteria*\(^{[16-19]}\). The results of the present study showed that the gut microbiota is dominated by *Firmicutes*, *Bacteroidetes*, and *Actinobacteria* (which are obligate anaerobic bacteria) and *Proteobacteria* (which is a facultative anaerobic bacterium). This was in line with the results of previous research. Based on the bacterial composition, it
should be noted that each group had a *Prevotella* enterotype. From the recent gut microbiota profiling of children in Yogyakarta and Bali, it was stated that *Prevotella* was the most dominant bacteria\(^a\). In addition, Papua New Guineans, which is the neighboring country to Indonesia, showed a gut composition dominated by *Prevotella* over *Bacteroides*\(^a\). Therefore, it can be concluded that Indonesians, from children to the elderly had a *Prevotella* enterotype.

Bifidobacterium-Enterobacteriaceae. The low abundance of *Proteobacteria* in younger subjects was due to the strict anaerobic environment of the colon. The facultative species may represent 0.1% in this strict anaerobic environment\(^a\). Interestingly, during aging, the population of *Enterobacteriaceae* from phyla *Proteobacteria* increased, followed by a reduction in protective bacteria *Bifidobacterium*. This also agrees with the results of prior research, notably by\(^c\) where even though there was a difference in population between *Bacteroides*, *Prevotella* and *Bifidobacterium* in each country and age group, in common was that higher proportions of *Enterobacteriaceae* were found in all elderly volunteers independent of the location.

Probiotic supplementation contributes to gut microbiota composition alterations from adults to the elderly\(^c\). As humans age, factors related to their diet are highly

Table 2 Microbiota profile comparison (based on Yakult intestinal flora-scan)

No	Type of Bacteria	Yogyakarta	Bali		
		Young	Elderly	Young	Elderly
1	*Clostridium coccoides* group	9.9 ± 0.5 (100)	9.3 ± 1.2\(^a\) (100)	9.9 ± 0.5 (100)	9.4 ± 0.5\(^a\) (100)
2	*Clostridium leptum* subgroup	9.7 ± 0.4 (100)	9.3 ± 1.1 (100)	9.6 ± 0.5 (100)	9.4 ± 0.6\(^a\) (100)
3	*Clostridium perfringens*	5.6 ± 0.9 (100)	5.0 ± 1.1 (85)	6.7 ± 1.2\(^a\) (100)	6.9 ± 1.4\(^a\) (95)
4	*Clostridium difficile*	- (0)	- (0)	- (0)	- (0)
5	Total *Lactobacillus*	6.7 ± 1.1 (95)	7.2 ± 1.2 (95)	6.8 ± 1.1 (100)	7.1 ± 1.2 (100)
6	*Lactobacillus plantarum* subgroup	5.0 ± 1.0 (100)	4.1 ± 0.8\(^a\) (85)	5.1 ± 1.1 (100)	4.8 ± 0.8 (100)
7	*Lactobacillus gasseri* subgroup	5.4 ± 1.1 (100)	6.4 ± 1.6\(^a\) (90)	5.5 ± 1.2 (100)	5.6 ± 1.7 (90)
8	*Lactobacillus ruminis* subgroup	4.6 ± 0.8 (95)	5.3 ± 1.4\(^a\) (90)	4.5 ± 0.9 (90)	4.9 ± 1.3 (100)
9	*Lactobacillus ruminis* subgroup	6.8 ± 1.6 (45)	7.6 ± 0.9 (35)	6.4 ± 1.7 (80\(^d\))	7.4 ± 1.3\(^e\) (70\(^d\))
10	*Lactobacillus casei* subgroup	3.7 ± 0.6 (40)	4.9 ± 1.0\(^a\) (25)	3.8 ± 0.8 (40)	3.6 ± 0.00\(^a\) (35)
11	*Lactobacillus sakei* subgroup	3.6 ± 0.5 (35)	0\(^a\)	3.1 ± 0.6 (55)	3.0 ± 0.6 (30\(^a\))
12	*Lactobacillus fermentum*	5.3 ± 0.8 (75)	5.9 ± 1.1 (80)	5.3 ± 0.8 (55)	5.1 ± 0.8\(^a\) (60)
13	*Lactobacillus brevis*	3.9 ± 0.8 (50)	4.0 ± 0.9 (15\(^a\))	4.7 ± 0.9 (35)	3.7 ± 0.8 (40)
14	*Lactobacillus fructivorans*	- (0)	- (0)	- (0)	- (0)
15	*Enterococcus*	7.4 ± 0.7 (90)	7.1 ± 1.0 (90)	7.4 ± 0.9 (95)	7.9 ± 1.1 (95)
16	*Streptococcus*	8.4 ± 0.5 (95)	7.5 ± 1.6\(^a\) (75)	8.0 ± 0.7 (95)	8.2 ± 0.7 (45\(^a\))
17	*Staphylococcus*	5.3 ± 0.5 (100)	5.1 ± 1.1 (90)	5.0 ± 0.6 (100)	5.2 ± 1.0 (100)
18	*B. fragilis* group	8.9 ± 0.7 (100)	8.3 ± 1.1 (100)	9.3 ± 0.6 (100)	7.9 ± 1.1\(^a\) (100)
19	*Prevotella*	10.0 ± 1.2 (85)	9.1 ± 1.6\(^a\) (75)	9.4 ± 1.9 (80)	9.0 ± 1.1\(^a\) (85)
20	*Atopobium* cluster	9.1 ± 0.6 (100)	8.9 ± 0.7 (100)	8.9 ± 0.7 (100)	9.0 ± 0.5 (100)
21	*Bifidobacterium*	9.4 ± 0.6 (100)	8.4 ± 1.3\(^a\) (100)	8.6 ± 0.9\(^a\) (100)	8.4 ± 1.2 (100)
22	*Enterobacteriaceae*	7.3 ± 0.8 (100)	7.8 ± 1.6 (100)	7.6 ± 0.9 (100)	8.4 ± 0.8\(^a\) (100)
23	*Pseudomonas*	4.1 ± 0.6 (25)	4.7 ± 1.0 (50)	3.1 ± 0.0 (10)	4.2 ± 0.8\(^a\) (55\(^a\))
24	Total Bacteria	10.6 ± 0.4 (100)	10.0 ± 1.0\(^a\) (100)	10.5 ± 0.5 (100)	10.1 ± 0.5 (100)

\(^a\) *P* < 0.05 Yogyakarta Young vs Yogyakarta Elderly.

\(^b\) *P* < 0.01 Yogyakarta Young vs Yogyakarta Elderly.

\(^c\) *P* < 0.05 Bali Young vs Bali Elderly.

\(^d\) *P* < 0.01 Bali Young vs Bali Elderly.

\(^e\) *P* < 0.05 Yogyakarta Young vs Young.

\(^f\) *P* < 0.05 Yogyakarta Elderly vs Bali Elderly.

Mann-Whitney *U*-test for bacterial cells/g feces, chi-square test for detection rate.
linked with changes in the gut microbiome. However, a connection between these factors has not been proven. An increase in medication intake is also prevalent in the elderly and can support reduced gut microbiota composition. On the other hand, the use of anti-diabetic drugs has been shown to have a positive impact on gut microbiota, which was shown by increasing populations of beneficial microbiota and their metabolites\(^{[23,24]}\). Several studies have reported that the gut microbiota has an important impact not only in colorectal cancer development, but also in the treatment of colorectal cancer. It was reported that the efficacy of anticancer agents is regulated by gut microbiota and improves the killing effect of 5-fluorouracil, an anticancer drug\(^{[25]}\). Nevertheless, chemotherapy treatments can disrupt the equilibrium of gut microbiota and cause damage to gut microbiota\(^{[26,27]}\). In specific diseases such as heartburn and other symptoms caused by gastroesophageal reflux disease and functional dyspepsia, proton pump inhibitors (PPIs) are used worldwide. However, it was shown that long-term use of PPIs lowered Faecalibacteria and increased Streptococci thought to be associated with enteric infection\(^{[28]}\). Alterations in gut microbiota following the use of pharmaceutical agents, which is associated with disease, possibly recovers after the administration of pre-and probiotics. The manipulation of gut microbiota to improve health status using foods composed of prebiotic oligosaccharide components is being investigated. A previous study found that ingestion of fermented milk containing probiotics was able to enhance stool quality and defecation frequency\(^{[29]}\).

Commensal Clostridia-known to be the microbial with the highest population found in the gut, was represented by Clostridium cocoides and Clostridium leptum subgroup in the present study (Table 2). The number of Clostridia decreased in elderly subjects in both locations. The Gram-positive bacteria, Clostridia, start to colonize in the first month in breastfed infants, and populate a certain area of the intestinal mucosa within intestinal cells\(^{[30]}\). Therefore, Clostridia can play an important role in affecting the physiologic, metabolic and immune processes. On the other hand, Bifidobacterium is believed to be one of the first microbes to colonize the human gastrointestinal tract and provide beneficial health effects as they have the ability to produce butyric acid\(^{[31,32]}\). The Atopobium cluster belongs to phylum Actinobacteria alongside Bifidobacterium. The population of this bacterium in adults was the same as that of Bifidobacterium, approximately 10\(^9\), and unlike Bifidobacterium which decreased in the elderly, Atopobium counts were constant\(^{[16]}\).

Lactobacillus plantarum was found to have the highest prevalence among the higher-
level species of Lactobacillus within the gut. This bacterium was related to high BMI and blood glucose. However, other groups and species of Lactobacillus have been found at various glucose levels in adults and the elderly[2]. Additionally, Lactobacillus plantarum is abundant in fermented Indonesian traditional food[33], and has been found to have probiotic potential[34,35].

A culture method was used in this research to determine some microorganisms. However, another culture-independent method based on cloned 16S rRNA sequence was introduced[21]. Moreover, with profiling culture enriched molecules, most human gut microbiota, especially bacteria, are able to be cultured[36]. In addition, using selective media will enable bacterial growth and detection that may be missed. The culture method which relied on various specific media was compared with molecular-based analysis in this research and a significant difference was not found between the two methods. With the culture method, elderly subjects tended to have higher concentrations of Coliform, E. coli and total lactic acid bacteria. Thus, our findings were not similar to those in previous studies in an Asian population[37,38]. However, these data were obtained from an East Asian population (Japanese) and the study was conducted in the early 1970s. Our study population, both young and elderly subjects showed a different pattern where these bacteria were found in relatively higher concentrations (Table 3). The different distribution of gut microbiota in our study showed that the gut microbiota may change over time, and the gut microbiota of Indonesians was unique.

Probiotics and prebiotics have the potential to maintain gut microbiota balance. Analysis of the gut microbiota was carried out to observe its potential to modulate and improve health, particularly in the elderly when protective bacteria (Bifidobacteria) declined and potential pathogenic Enterobacteriaceae increased. Numerous conditions could trigger the shift in elderly gut microbiota, such as weakened chewing ability, a decline in intestinal physiological condition to digest, lowered appetite, and limited ability to prepare food. Consumption of probiotics and prebiotics could be used as a way to retain the balance of microbiota in the elderly, in order to maintain health.

Table 3 Microbiota profile (culture method) in young and elderly subjects

Microbiota (Log10 CFU/g feces)	mean ± SD (detection rate %)	P value	
	Younger (n = 40)	Elderly (n = 40)	
Coliform	6.80 ± 0.83 (100)	7.20 ± 0.73 (100)	0.028
Escherichia coli	6.87 ± 0.74 (100)	7.29 ± 0.78 (100)	0.016
Yeast	4.17 ± 0.51 (53)	4.28 ± 0.50 (43)	0.411
Mold	0.0 ± 0.0 (0)	3.68 ±0.27 (8)	-
Lactobacillus plantarum	4.16 ± 0.85 (8)	4.16 ± 0.03 (5)	1.000
Total LAB	7.03 ± 0.83 (100)	7.67 ± 1.23 (100)	0.008

Comparison of continuous variable was carried out using the Independent T test for normally distributed data and the Mann Whitney test for non-normally distributed data.
ARTICLE HIGHLIGHTS

Research background

Studies on gut microbiota are growing rapidly, as the gut microbiota has been associated with various diseases. There are numerous factors influencing gut microbiota composition; hence, further research is needed. Indonesia has a high diversity of tribes and lifestyles. Therefore, it is expected that each tribe has its specific gut microbiota. Thus, a deeper insight into the composition of gut microbiota can be further used to determine the condition of gut microbiota in Indonesians and assess which treatment may be suitable and effective to improve health status.

Research motivation

This research aimed to investigate gut microbiota composition in two different groups in relation to age and tribe. The results obtained may be further used to determine the condition of gut microbiota in Indonesians and to assess which treatment may be suitable and effective to improve health status.

Research objectives

The objective of this study was to compare gut microbiota composition in Indonesian subjects represented by two different age groups (elderly and young) from the Javanese and Balinese tribes, by the analysis of fecal samples. The results obtained may be further used to determine the condition of gut microbiota in Indonesians and to assess which treatment may be suitable and effective to improve health status.

Table 4 Comparison between qPCR and culture method

Lactobacillus (Log10 CFU/g feces)	mean ± SD (detection rate %)	Younger (n = 40)	Elderly (n = 40)		
Culture method		Bali	Yogyakarta	Bali	Yogyakarta
		7.04 ± 0.87 (100)	7.01 ± 0.81 (100)	8.17 ± 0.99^b (100)	7.17 ± 1.33^a (100)
Yakult intestinal flora-scan		6.7 ± 1.1 (95)	7.2 ± 1.2 (95)	6.8 ± 1.1 (100)	7.1 ± 1.2 (100)

^aP < 0.05 Yogyakarta Elderly vs Bali Elderly;
^bP < 0.01 Bali Young vs Bali Elderly.

Figure 4 Populations of _Prevotella_, _Bifidobacterium_, _Bacteroides_ and _Enterobacteriaceae_ in young and elderly subjects from Yogyakarta and Bali.
and effective to improve health status.

Research methods
Fecal samples were collected from a total of 80 subjects with 20 in each young group ranging from 25-45 years and elderly group ranging from 70 years or more from two different regions, Yogyakarta and Bali. The collection of fecal samples was performed at the end of the assessment period (day 14 ± 1 d) and during this period, the subjects were not allowed to consume probiotic and antibiotic products. The quantification of various Clostridium subgroups, Lactobacillus subgroups, Enterococcus, Streptococcus, Staphylococcus; Bacteroides fragilis group and Prevotella, Bifidobacterium and Atopobium cluster; Enterobacteriaceae and Pseudomonas was performed using the Yakult intestinal flora-scan (YIF-SCAN).

Research results
Bacteria populations in younger subjects’ feces were higher than in elderly subjects. The most abundant bacteria in both age groups were Clostridium, followed by Prevotella, Atopobium, Bifidobacterium and Bacteroides. In the elderly, an increase in Enterobacteriaceae, Coliform and E. coli was found. In terms of bacterial counts in Yogyakarta, total bacteria, Clostridium cocoides group, Bifidobacterium, Prevotella, Lactobacillus plantarum subgroup, and Streptococcus were significantly higher (P < 0.05) in younger than in elderly subjects, while the counts for Lactobacillus gasseri subgroup, Lactobacillus casei subgroup, and Lactobacillus reuteri subgroup were significantly lower (P < 0.05) in the younger group. In Balinese subjects, total bacteria, Clostridium cocoides group, Clostridium leptum subgroup, Bacteroides fragilis group, and Prevotella were significantly higher (P < 0.05) in younger compared to elderly subjects, while the counts for Lactobacillus ruminis subgroup and Enterobacteriaceae were significantly lower (P < 0.05) in younger subjects. The results also revealed that the Clostridium perfringens count in Balinese subjects was 10 times that in Yogyakarta subjects. This may have been a response to the lifestyles of the different tribes although this phenomenon requires further extensive study.

Research conclusions
Bacterial populations were higher in younger than in elderly subjects. The most dominant bacterial groups in these subjects were Clostridium followed by Prevotella, Atopobium, Bifidobacterium, and Bacteroides. The gut microbiota of the two tribes in this study were similar, but it was observed that Clostridium perfringens in Yogyakarta subjects was almost ten times lower than that in Balinese due to lifestyle and diet. However, the effect of lifestyle and diet on gut microbiota composition requires further investigation.

Research perspectives
These results proved that gut microbiota composition within different age groups and tribes is different. Different tribes may have different lifestyles and diets; therefore, future studies should investigate how different diets contribute to gut microbiota composition.

ACKNOWLEDGEMENTS
We would like to expression our gratitude to Shuta Yamamoto, Yukiko Kado, Akira Takahashi, Takashi Asahara and Takuya Takahashi for their participation in stool DNA extraction and intestinal microbiota analysis. We would also like to thank Akira Shigejsa for assisting with the protocol development. Indonesian Prodia Lab Services, specifically the CRO Division, is acknowledged for managing and field-organizing the research.

REFERENCES
1 Hopkins MJ, Sharp R, Macfarlane GT. Variation in human intestinal microbiota with age. Dig Liver Dis 2002; 34 Suppl 2: S12-S18 [PMID: 12408433 DOI: 10.1016/S1590-8658(02)8157-8]
2 Štěpětová J, Sepp E, Kolk H, Lõivukene K, Songisepp E, Mikelsaar M. Diversity and metabolic impact of intestinal Lactobacillus species in healthy adults and the elderly. Br J Nutr 2011; 105: 1235-1244 [PMID: 21303268 DOI: 10.1017/S0007114510004770]
3 Toole PWO, Claesson MJ. Gut microbiota : Changes throughout the lifespan from infancy to elderly. Int Dairy J 2010; 20: 281-291 [DOI: 10.1016/j.idairyj.2009.11.010]
4 Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hatton M, Hayashi T, Kleerebezem M, Kurkowa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nisa T, Pons N, Poulsen J, Qin J, Sicheritz-Ponten T, Sims T, Torres D, E. Gees, Jang G, Guarnieri F, Pedersen O, de Vos WM, Brunak S, Dorè J. MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariez G, Dervyn R, Ferey M, Kacere KU, Friss C, van de Guchte M, Guedon E, Hamel F, Huber W, van Hylckama-Vlieg J, Janot A, Juste C, Kaci G, Knei J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mériaux A, Mello Minardi R, Mynin C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebroeck G, Varela E, Winogradsky Y, Zeller G, Weishein J, Ehrlich SD, Brown P. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-180 [PMID: 21308938 DOI: 10.1038/nature09946]
5 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA,
Rahayu ES et al. Gut microbiota profile in healthy Indonesians

Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334: 105-108 [PMID: 21885731 DOI: 10.1126/science.1208346]

6 Nakayama J, Watanabe K, Jiang J, Matsuda K, Chao SH, Haryono P, La-Onghtam O, Sarwoko MA, Sujaya IN, Zhao L, Chen KT, Chen YP, Chiu HH, Hidaka T, Huang NX, Kiyohara C, Kurakata T, Sakamoto N, Sonomoto K, Tashiro K, Tsuji H, Chen MJ, Leeavatchararams V, Liao CC, Nitisinprasert S, Rahayu ES, Ren FZ, Tsai YC, Lee YK. Diversity in gut bacterial community of school-age children in Asia. Sci Rep 2015; 5: 8397 [PMID: 25703686 DOI: 10.1038/srep08397]

7 Matsuda K, Tsuji H, Asahara T, Matsumoto T, Takada T, Nomoto K. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy RNA molecules. Appl Environ Microbiol 2009; 75: 1961-1969 [PMID: 19201979 DOI: 10.1128/AEM.01845-08]

8 Matsuda K, Tsuji H, Asahara T, Takahashi T, Kubota H, Nagata S, Yamashiro Y, Nomoto K. Sensitive quantification of Clostridium difficile cells by reverse transcription-quantitative PCR targeting RNA molecules. Appl Environ Microbiol 2012; 78: 5111-5118 [PMID: 22582062 DOI: 10.1128/AEM.07990-11]

9 Kubota H, Tsuji H, Matsuda K, Kurakata T, Asahara T, Nomoto K. Detection of human intestinal catalase-negative, Gram-positive cocci by RNA-targeted reverse transcription-PCR. Appl Environ Microbiol 2010; 76: 5440-5451 [PMID: 20581195 DOI: 10.1128/AEM.03132-09]

10 Heaton K, Lewis S. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 2007; 32: 920-924 [PMID: 9299672 DOI: 10.1080/03651580700912031]

11 Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787-8803 [PMID: 26269668 DOI: 10.3748/wjg.v21.i12.8787]

12 Odamaki T, Kato K, Sugahara H, Hashikura N, Takashiki S, Xiao JZ, Abe F, Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 2016; 16: 90 [PMID: 27220822 DOI: 10.1186/s12866-016-0768-2]

13 Voreades N, Kozii A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol 2014; 5: 494 [PMID: 25295033 DOI: 10.3389/fmicb.2014.00494]

14 Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7: 17-44 [PMID: 25545101 DOI: 10.3390/nu7010017]

15 Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr Healthy Aging 2016; 4: 3-16 [PMID: 28035338 DOI: 10.3233/NHA-150022]

16 Thorasin T, Hoyles L, McCartney AL. Dynamics and diversity of the 'Atopobium cluster' in the human faecal microbiota, and phenotypic characterization of 'Atopobium cluster' isolates. Microbiology 2015; 161: 565-579 [PMID: 25353465 DOI: 10.1099/mic.0.000016]

17 Rajilić-Stojanović M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007; 9: 2125-2136 [PMID: 17868612 DOI: 10.1111/j.1462-2920.2007.01169.x]

18 Zoetendal EG, Rajilić-Stojanović M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008; 57: 1605-1615 [PMID: 18941009 DOI: 10.1136/gut.2007.133601]

19 Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hockstra JB, Nieuwdorp M. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 2010; 53: 606-613 [PMID: 20101384 DOI: 10.1007/s00412-010-1662-7]

20 Greenhill AR, Tsuji H, Ogata K, Natsuhashi K, Morita A, Soli K, Larkin JA, Tadokoro K, Odani S, Baba J, Naito Y, Tominotsuka I, Nomoto K, Siba PM, Horwood PF, Umezaki M. Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR. PLoS One 2015; 10: e0117427 [PMID: 25658868 DOI: 10.1371/journal.pone.0117427]

21 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635-1638 [PMID: 15831718 DOI: 10.1126/science.1158912]

22 Mueller S, Saumier K, Hanisch C, Norin E, Alm L, Midveldt T, Cressi A, Silvi S, Orpanais C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Doré J, Blaut M. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 2006; 72: 1027-1033 [PMID: 16461647 DOI: 10.1128/AEM.01843-08]

23 Montandon SA, Jornayvaz FR. Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes (Basel) 2017; 8 [PMID: 28973971 DOI: 10.3390ogen10020250]

24 Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y, Feng Y, Xu X, Xie H, Li F, Xu A, Yang H, Xu G, Madsen L, Kristiansen K, Ning G, Wang W. Analyses of gut microbiota and plasma bile acids enables stratification of patients for antidiabetic treatment. Nat Commun 2017; 8: 1785 [PMID: 29176714 DOI: 10.1038/s41467-017-01682-2]

25 Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, Zhou X. Role of Gut Microbiota in the Development and Treatment of Colorectal Cancer. Digestion 2018; 1-7 [PMID: 30332668 DOI: 10.1159/000494852]

26 Mateeva E, Smilov I. Acid-base balance and blood gas composition in the mother, fetus and newborn infant following the use of central electroanaesthesia during natural labor. Acta Ginecol (Sofiaia) 1988; 27: 38-43 [PMID: 5260509 DOI: 10.3332/ceancar.2018.868]

27 van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, Harmsen HJ. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis 2009; 49: 262-270 [PMID: 19514856 DOI: 10.1086/599346]

28 Takagi T, Naito Y, Inoue R, Kashiwagi S, Uchiyama K, Mizushima K, Tsuji T, Okazawa S, Hayashi A, Tominotsuka I, Nomoto K. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting RNA molecules. PLoS One 2018; 13: 100-105 [PMID: 29371761 DOI: 10.1371/journal.pone.17.178]

29 Utami T, Cabyanto MN, Juffrie M, Rahayu ES. Recovery of Lactobacillus Casei Shirota (Lcs) from the Intestine of Healthy Indonesian Volunteers After Intake of Fermented Milk and Its Impact on the Gut Microbiota Profile. J Infect Dis Prev 2015; 10: 77-84

30 Lopetuso LR, Scalabrini F, Petito V, Garbarini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 2013; 5: 23 [PMID: 23941657 DOI: 10.1186/s13099-013-0023-0]
10.1186/1757-4749-5-23

31 O’Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. *Front Microbiol* 2016; 7: 925 [PMID: 27379055 DOI: 10.3389/fmicb.2016.00925]

32 Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. *Front Microbiol* 2016; 7: 979 [PMID: 27446020 DOI: 10.3389/fmicb.2016.00979]

33 Rahayu ES. Lactic Acid Bacteria in Fermented Food of Indonesian Origin. *Agrotech* 2003; 23: 75-84 [DOI: 10.22146/agrotech.13515]

34 Rahayu ES, Cahyanto MN, Windiarti L, Sutriyanto J, Utami T. Effects of consumption of fermented milk containing indigenous probiotic lactobacillus plantarum dad-13 on the fecal microbiota of healthy Indonesian volunteers. *Int J Probiotics Prebiotics* 2016; 11: 91-98

35 Rahayu ES, Yogeswara A, Mariyutin, Windiarti L, Utami T, Watanabe K. Molecular Characteristic of Indigenous Probiotic Strain From Indonesia. *Int J Probiotics Prebiotics* 2015; 10: 1-7

36 Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, Surette MG. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. *Genome Med* 2016; 8: 72 [PMID: 27363992 DOI: 10.1186/s13073-016-0327-7]

37 Finegold SM, Attebery HR, Sutter VL. Effect of diet on human fecal flora: comparison of Japanese and American diets. *Am J Clin Nutr* 1974; 27: 1456-1469 [PMID: 4432829 DOI: 10.1093/ajcn/27.12.1456]

38 Mitsuoka T, Hayakawa K. The fecal flora in man. I. Composition of the fecal flora of various age groups. *Zentralbl Bakteriol Orig A* 1973; 223: 333-342 [PMID: 4145840]
