Research Article

Unusual Effects of Nicotine as a Psychostimulant on Ambulatory Activity in Mice

Toyoshi Umezu

Biological Imaging and Analysis Section, Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan

Correspondence should be addressed to Toyoshi Umezu, umechan2@nies.go.jp

Received 25 November 2011; Accepted 26 December 2011

Academic Editors: H. Y. Lane and L. D. Reid

Copyright © 2012 Toyoshi Umezu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present study examined the effect of nicotine, alone and in combination with various drugs that act on the CNS, on ambulatory activity, a behavioral index for locomotion, in ICR (CD-1) strain mice. Nicotine at 0.25–2 mg/kg acutely reduced ambulatory activity of ICR mice. The effect of nicotine was similar to that of haloperidol and fluphenazine but distinct from that of bupropion and methylphenidate. ICR mice developed tolerance against the inhibitory effect of nicotine on ambulatory activity when nicotine was repeatedly administered. This effect was also distinct from bupropion and methylphenidate as they produced augmentation of their ambulation-stimulating effects in ICR mice. Nicotine reduced the ambulation-stimulating effects of bupropion and methylphenidate as well as haloperidol and fluphenazine. Taken together, nicotine exhibited unusual effects as a psychostimulant on ambulatory activity in ICR mice.

1. Introduction

Nicotine (NIC), the primary psychoactive substance in tobacco smoke, produces a variety of psychoactive effects and has been believed to be a type of psychostimulant. In humans, NIC produces convulsions, tremors, and excitation of respiration [1], elevates the arousal level [2, 3], facilitates behaviors and performance [4–6], and improves cognition and attention abilities [7–10]. These effects support the idea that NIC is a type of psychostimulant. On the other hand, other studies suggest that NIC may have depressant and/or sedative effects [11–14]. In addition, it is well known that prolonged use of typical psychostimulants such as amphetamine, methamphetamine, and cocaine causes schizophrenia-like mental abnormalities (amphetamine (or methamphetamine) psychosis, and cocaine psychosis) [15–21] whereas prolonged smoking has been known not to produce schizophrenia-like psychosis. In contrast, smoking has been proposed as a form of self-medication to alleviate symptoms of schizophrenia [22–28]. The self-medication hypothesis arose from the following observations: (1) patients with schizophrenia smoke heavier than the normal population [29–35]; (2) patients with schizophrenia extract more nicotine from each cigarette than other smokers [36]. Thus, smoking may ameliorate symptoms of schizophrenia, and the NIC in cigarettes could contribute to the heavy smoking that has been noted in patients with schizophrenia. If the self-medication hypothesis for NIC in patients with schizophrenia is true, the effect of NIC in patients with schizophrenia is in striking contrast to the effects of typical psychostimulants in these patients as typical psychostimulants usually worsen schizophrenia or produce schizophrenia-like psychosis.

In animals, locomotion is a fundamental behavioral index for evaluating the stimulating effects of psychostimulants. Typical psychostimulants such as amphetamine [37–42], methamphetamine [43–50], and cocaine [49, 51–56] consistently stimulate locomotion in rats and mice. In terms of rodent locomotion, NIC may exhibit different properties from those of typical psychostimulants. NIC usually stimulates locomotion in rats to a small degree but frequently fails to produce locomotor hyperactivity in mice [57–66]. Although genetic factors could be involved in species and/or strain differences for effects of NIC on locomotion in rodents
[67], the effects of NIC on rodent locomotion should largely depend on pharmacological properties of NIC, as typical psychostimulants consistently stimulate locomotion in any species and/or strains of rodents. The effects of NIC on locomotion in rodents are still controversial.

Ambulatory activity is a kind of locomotor activity for mice and can be measured using a tilt-type ambulometer [68]. Because effects of many kinds of psychoactive drugs have been evaluated using this method [69–88], using ambulatory activity as a behavioral index has been well established. The present study examined the effect of NIC, alone and in combination with various CNS acting drugs, on ambulatory activity in ICR (or CD-1) strain mice, which is one of the popular strains for general multipurpose use.

2. Materials and Methods

2.1. Animals. Male ICR (CD-1) strain mice (Clea Japan, Tokyo, Japan) aged 7–10 weeks and weighing between 35 and 42 g were housed in aluminum cages (3 mice/cage) with a stainless-steel mesh top and paper bedding. Commercial solid food (Clea Japan) and tap water were available ad libitum. Cages were placed in a room artificially illuminated by fluorescent lamps on a 12L : 12D schedule (light period: 07:00–19:00), at a room temperature of 25 ± 1°C.

All experiments were conducted in accordance with the guidelines of the Ethics Committee for Experimental Animals of the National Institute for Environmental Studies, Japan.

2.2. Drugs. NIC was purchased from Nacalai Tesque (Kyoto, Japan). Psychostimulants bupropion (BUP) and methylphenidate (MP; Ritalin) were purchased from Sigma-Aldrich (Tokyo, Japan) and Japan Ciba-Geigy (Hyogo), respectively. CNS depressants fluphenazine (FLU), haloperidol (HAL), and nAChR antagonist mecamylamine (MECA) were purchased from Sigma-Aldrich. NIC, BUP, MP, FLU, and MECA were dissolved in saline (0.9% NaCl, Nacalai Tesque). HAL was dissolved in 0.1% acetic acid solution (Wako Pure Chemicals, Osaka, Japan).

2.3. Measurement of Ambulatory Activity in ICR Mice. Ambulatory activity was measured using a tilt-type ambulometer consisting of 10 bucket-like Plexiglas activity cages (20 cm in diameter) (SAM-10; O’Hara and Co., Tokyo, Japan) ([68, 89, 90], in press [DOI: 10.1016/j.ntt.2011.08.007], [91–93]). Each activity cage is sustained by a fulcrum in the center of the bottom of the cage; the fulcrum tilts according to horizontal movement of the mouse in the activity cage. The tilting movement of the activity cage activates microswitches that surround the cage. The number of activations of micro-switches during a set time is recorded, and the result is printed.

3. Experimental Procedure

Experiment 1. Effect of a single subcutaneous administration of NIC on ambulatory activity in ICR mice.

ICR mice were placed individually in activity cages, and, after 30 min of adaptation, saline or 0.25, 0.5, 1, or 2 mg/kg of NIC was administered subcutaneously. Thereafter, ambulatory activity was continuously measured for 60 min.

Experiment 2. Effects of single subcutaneous administrations of BUP, MP, HAL, or FLU on ambulatory activity in ICR mice.

After 30 min of adaptation in the activity cages, saline or 5 or 10 mg/kg of BUP, 2 or 4 mg/kg of MP, 0.031, 0.0625, or 0.125 mg/kg of HAL, or 0.625, 0.125, or 0.25 mg/kg of FLU was subcutaneously administered to ICR mice. Thereafter, ambulatory activity was continuously measured for 60 min.

Experiment 3. Effect of repeated administrations of NIC, BUP, or MP on ambulatory activity.

After 30 min of adaptation in the activity cages, saline or 1 mg/kg of NIC, 10 mg/kg of BUP, or 4 mg/kg of MP was administered to mice, and ambulatory activity was measured for 60 min. These steps were repeated on the same mice 5 times with 3- to 4-day intervals and changes of effects of these drugs on ambulatory activity were examined.

Experiment 4. Interaction between NIC and MECA on ambulatory activity.

After 30 min of adaptation in the activity cages, saline or 1 mg/kg of MECA was subcutaneously administered to mice. Ten minutes later, saline or 2 mg/kg of NIC was subcutaneously administered to the mice, followed by measurements of ambulatory activity for 60 min.

Experiment 5. Interactions between BUP and HAL or FLU or between NIC and BUP or MP on ambulatory activity.

After 30 min of adaptation in the activity cages, saline or 0.031, 0.0625, or 0.125 mg/kg of HAL or 0.0625, 0.125, or 0.25 mg/kg of FLU was subcutaneously administered to mice. Ten minutes later, saline or 10 mg/kg of BUP was subcutaneously administered to the mice, followed by measurements of ambulatory activity for 60 min.

After 30 min of adaptation in the activity cages, saline or 0.25, 0.5, 1, or 2 mg/kg of NIC and saline, 10 mg/kg of BUP, or 4 mg/kg of MP were subcutaneously coadministered to mice, followed by measurements of ambulatory activity for 60 min.

3.1. Statistical Analysis. To eliminate differences of baseline ambulatory activity, the activity of each animal after administration of each drug was normalized using the total activity of the animal during the 30 min adaptation period before administration of each drug.

The time course of ambulatory activity after single administration of NIC was initially examined using repeated-measures analysis of variance (ANOVA). Then, differences at each time point were examined using one-way ANOVA, followed by Dunnett’s test. Differences in total ambulatory activity over 1 h were analyzed using one-way ANOVA, followed by Dunnett’s test. P < 0.05 was established as the level of significance.
4. Results

Experiment 1. Effect of a single subcutaneous administration of NIC on ambulatory activity in ICR mice.

NIC at 0.25–2 mg/kg significantly reduced the ambulatory activity of ICR mice (Figures 1(a) and 1(b)). The effect of NIC was dose dependent (Figure 1(b); F(4, 275) = 20.1, P < 0.05) and lasted as long as 60 min—Figure 1(a); repeated measures ANOVA (dose: F(4, 275) = 20.1, P < 0.05; time: F(5, 1375) = 61.896, P < 0.05; interaction: F(20, 1375) = 5.582, P < 0.05).

Experiment 2. Effects of single subcutaneous administrations of BUP, MP, HAL, or FUL on ambulatory activity in ICR mice.

BUP at 5–10 mg/kg (Figure 2(a)) and MP at 2–4 mg/kg (Figure 2(b)) stimulated ambulatory activity of ICR mice in a dose-dependent manner (BUP: F(2, 217) = 26.132, P < 0.05; MP: F(2, 317) = 100.433, P < 0.05).

HAL at 0.031–0.125 mg/kg (Figure 2(c)) and FLU at 0.625–0.25 mg/kg (Figure 2(d)) significantly and dose-dependently reduced the ambulatory activity in ICR mice (HAL: F(3, 68) = 5.945, P < 0.05; FLU: F(3, 64) = 2.907, P < 0.05).

Experiment 3. Effect of repeated administrations of NIC, BUP, or MP on ambulatory activity.

Repeated administration of saline to the same mice with intervals of 3–4 days did not significantly alter normalized ambulatory activity of ICR mice (Figures 3(a), 3(b), and 3(c); F(4, 595) = 2.373, P > 0.05). The inhibitory effect of
1 mg/kg of NIC on ambulatory activity gradually attenuated during repeated administration with intervals of 3-4 days (Figure 3(a)). Analysis of variance failed to show statistical significance on the change of effect of NIC (F(4, 95) = 2.433, \(P = 0.0527\)); however, significant differences between saline control and NIC observed at the first three administrations disappeared at the last two administrations, indicating that the inhibitory effect of NIC gradually weakened. The ambulation-stimulating effect of 10 mg/kg of BUP (Figure 3(b)) and 4 mg/kg of MP (Figure 3(c)) gradually and significantly increased when they were administered repeatedly to the same mice with intervals of 3-4 days (BUP: \(F(3, 236) = 4.942, P < 0.05\); MP: \(F(4, 494) = 10.489, P < 0.05\) (Figures 3(b) and 3(c)).

Experiment 4. Interaction between NIC and MECA on ambulatory activity.

NIC at 2 mg/kg significantly reduced the ambulatory activity and 1 mg/kg of MECA eliminated the inhibitory effect of 2 mg/kg of NIC on ambulatory activity when administered together (Figure 4; \(F(2, 137) = 5.598, P < 0.05\)).

Experiment 5. Interactions between BUP and HAL or FLU or between NIC and BUP or MP on ambulatory activity.

HAL at 0.031–0.125 mg/kg (Figure 5(a)) and 0.0625–0.25 mg/kg of FLU (Figure 5(b)) significantly reduced the ambulation-stimulating effect of 10 mg/kg of BUP in a dose-dependent manner (HAL: \(F(4, 115) = 21.148, P < 0.05\); FLU: \(F(4, 185) = 15.622, P < 0.05\)). Similarly, 0.25–2 mg/kg of NIC significantly reduced the ambulation-stimulating effect of 10 mg/kg of BUP in a dose-dependent manner (Figure 5(c); \(F(5, 234) = 23.778, P < 0.05\)). The same doses of NIC also significantly reduced the ambulation-stimulating...
Figure 3: Effects of repeated administrations of saline or 1 mg/kg of NIC (a), 10 mg/kg of BUP (b), or 4 mg/kg of MP (c) to the same ICR mice on ambulatory activity. The administration was repeated 5 times with intervals of 3-4 days. Symbols represent mean values of ambulatory activity for 60 min periods after the administrations, and vertical lines indicate SEM. Saline: \(N = 60\), NIC: \(N = 20\), BUP: \(N = 60\), and MP: \(N = 100\). \(^*P < 0.05\) compared with saline control at the same time point. \(^#P < 0.05\) compared with the first administration of the drug.

Figure 4: Effects of combined administration of 2 mg/kg of NIC with 1 mg/kg of MECA on ambulatory activity. Filled columns indicate mean values of total ambulatory activity for 60 min after the administrations, and vertical lines indicate SEM. Saline + saline: \(N = 80\), NIC + saline: \(N = 20\), and NIC + MECA: \(N = 40\). \(^*P < 0.05\) compared with NIC + saline.

Figure 5(d): \(F(5, 194) = 23.86, P < 0.05\).

5. Discussion

Ambulatory activity measured using a tilt-type ambulometer is sensitive to vertical movement of mice in the activity cage of the ambulometer but insensitive to vertical movement of animals. Therefore, ambulatory activity can be used as a measure of behavioral indices for locomotion in mice. This notion is further supported by results of the previous [91–93] and present studies that show the ambulatory activity of ICR (CD-1) mice was stimulated by psychostimulants such as BUP and MP, which have been known to stimulate mouse locomotion [94–99], and reduced by depressants such as HAL and FLU, which have been known to reduce mouse locomotion [98, 100–102].

The present study revealed that NIC at 0.25–2 mg/kg acutely reduced ambulatory activity in ICR mice under the same experimental condition for evaluating effects of psychostimulants BUP and MP and depressants HAL and FLU. Psychostimulants sometimes cause stereotyped or repetitive
behaviors (i.e., stereotypy) that are able to cause decrease of the ambulatory activity measurement of mice. However, NIC at 0.25–2 mg/kg did not produce such effect in ICR mice but animals exhibited less activity or sedation in the bucket-like activity cage. Because previous studies have also shown that 0.1–3 mg/kg of NIC produces hypoactivity on locomotion in ICR mice [60, 103, 104], it is possible to conclude that NIC acutely reduces locomotion in ICR mice. This locomotor effect of NIC in ICR mice is distinct from the effects of psychostimulants such as BUP and MP.

The idea that NIC exhibits distinct properties on locomotor effects from those of psychostimulants in ICR mice is further supported by results in the present study that examined effects of repeated administration of NIC, BUP, and MP. It is well established that repeated administration of psychostimulants to the same animals produces augmented responses to these agents, a phenomena referred to as behavioral sensitization. BUP and MP also produce the same properties as psychostimulants on locomotor effects in rodents [105–109], and the properties of BUP and MP were confirmed in ICR mice in the present study. On the other hand, ICR mice developed tolerance against the inhibitory effect of NIC on the ambulatory activity when NIC was repeatedly administered. Thus, NIC produces unusual properties as a psychostimulant on locomotion in ICR mouse.

NIC exhibited effects similar to depressants such as HAL and FLU rather than psychostimulants such as BUP and MP on locomotion of ICR mice in this study; that is,
NIC reduced the ambulatory activity of ICR mice and the ambulation-stimulating effects of BUP and MP. These results suggest that NIC may lead to similar effects as HAL and FLU. It has been reported that NIC is able to ameliorate symptoms such as deficits of cognition and/or attention in animal models for psychosis as well as the effects of antipsychotics [110–117], indicating that NIC exhibits similar pharmacological properties to antipsychotics in animals. Thus, the idea in which NIC produces similar effects to antipsychotics in rodents has already been known; however, it has not been elucidated whether this notion is true for effects of NIC on rodent locomotion. The present study revealed that NIC exhibits similar effects as antipsychotics such as HAL and FLU on locomotion in ICR mice. Both BUP and MP are able to induce psychosis-like illnesses in humans [118–129], and the psychosis-like illnesses could be ameliorated by antipsychotics such as HAL and FLU. In light of these observations and the results of the present study, the self-medication hypothesis for heavy smoking among patients with schizophrenia [22–28] seems reasonable. NIC may reduce psychomotor excitation that accompanies with schizophrenia, and such efficacy of nicotine may be involved in heavy smoking in schizophrenia patients [29–35].

Neuronal acetylcholine receptors (nAChRs) could be involved in the inhibitory effect of NIC on ambulatory activity in ICR mice as the nAChRs antagonist, MECA, ameliorated the effect of NIC. nAChRs are known to be involved in the inhibitory effect of NIC on locomotion in C57Bl/6 mice [63, 130]. ICR mice developed tolerance against the inhibitory effect of NIC on ambulatory activity when NIC was repeatedly administered. C57Bl/6 mice also develop tolerance against the inhibitory effect on locomotion when NIC was chronically or repeatedly administered, and the development of tolerance is accompanied by changes in nAChRs in the brain [63, 130]. The involvement of nAChRs in the inhibitory effect of NIC and in the development of tolerance against the NIC effect on locomotion in C57Bl/6 mice suggests that nAChRs may play similar roles in locomotor effects of NIC in ICR mice.

The neurotransmitter dopamine (DA) might also be involved in the effects of NIC on ambulatory activity in ICR mice. Because both BUP and MP enhance DA neurotransmission through inhibition of its reuptake [96, 131–136], changes of DA neurotransmission could be involved in the ambulation-stimulating effects of these agents. The involvement of DA in the ambulation-stimulating effect of BUP in ICR mice is further supported by the present results in which both HAL and FLU, which possess DA receptor antagonizing abilities, reduced the ambulation-stimulating effect of BUP in ICR mice. Because effects of NIC observed in the present study were similar to those of HAL and FLU, it is probable that NIC influences DA neurotransmission to reduce ambulatory activity and the ambulation-stimulating effects of BUP and MP in ICR mice. Because nAChRs are directly and/or indirectly able to affect DA neurotransmission [137–140], interaction between nAChRs and the DA system might account for the effects of NIC on ambulatory activity in ICR mice.

Acknowledgment

This study was supported by the Smoking Research Foundation, Japan.

References

[1] A. G. Goodman, Ed., *Goodman and Gilman’s The Pharmacological Basis of Therapeutics*, Pergamon Press, New York, NY, USA, 8th edition, 1990.

[2] J. E. Henningfield, “Behavioral pharmacology of cigarette smoking,” *Advances in Behavioral Pharmacology*, vol. 4, pp. 131–210, 1984.

[3] E. F. Domino, “Nicotine: a unique psychoactive drug. Arousal with skeletal muscle relaxation,” *Psychopharmacology Bulletin*, vol. 22, no. 3, pp. 870–874, 1986.

[4] K. A. Perkins, L. H. Epstein, R. L. Stiller, J. E. Sexton, T. D. Debaksi, and R. G. Jacob, “Behavioral performance effects of nicotine in smokers and non-smokers,” *Psychology Biochemistry and Behavior*, vol. 37, no. 1, pp. 11–15, 1990.

[5] G. J. Spilich, L. June, and J. Renner, “Cigarette smoking and cognitive performance,” *British Journal of Addiction*, vol. 87, no. 9, pp. 1313–1326, 1992.

[6] S. J. Heishman, B. A. Kleykamp, and E. G. Singleton, “Meta-analysis of the acute effects of nicotine and smoking on human performance,” *Psychopharmacology*, vol. 210, no. 4, pp. 453–469, 2010.

[7] B. Hahn, T. J. Ross, F. A. Wolkenberg, D. M. Shakleya, M. A. Huestis, and E. A. Stein, “Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study,” *Cerebral Cortex*, vol. 19, no. 9, pp. 1990–2000, 2009.

[8] G. E. Swan and C. N. Lessov-Schlaggar, “The effects of tobacco smoke and nicotine on cognition and the brain,” *Neuropsychology Review*, vol. 17, no. 3, pp. 259–273, 2007.

[9] A. Mendrek, J. Monterosso, S. L. Simon et al., “Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence,” *Addictive Behaviors*, vol. 31, no. 5, pp. 833–844, 2006.

[10] M. Ernst, S. J. Heishman, L. Spurgeon, and E. D. London, “Smoking history and nicotine effects on cognitive performance,” *Neuropsychopharmacology*, vol. 25, no. 3, pp. 313–319, 2001.

[11] D. G. Gilbert, “Paradoxical tranquilizing and emotion-reducing effects of nicotine,” *Psychological Bulletin*, vol. 86, no. 4, pp. 643–661, 1979.

[12] J. B. Acri, “Nicotine modulates effects of stress on acoustic startle reflexes in rats: dependence on dose, stressor and initial reactivity,” *Psychopharmacology*, vol. 116, no. 3, pp. 255–265, 1994.

[13] D. G. Gilbert, J. H. Robinson, C. L. Chamberlin, and C. D. Spielberger, “Effects of smoking/nicotine on anxiety, heart rate, and lateralization of EEG during a stressful movie,” *Psychophysiology*, vol. 26, no. 3, pp. 311–320, 1989.

[14] S. B. Morissette, M. T. Tull, S. B. Gulliver, B. W. Kamholz, and R. T. Zimering, “Anxiety, anxiety disorders, tobacco use, and nicotine: a critical review of interrelationships,” *Psychological Bulletin*, vol. 133, no. 2, pp. 245–272, 2007.
[45] T. Uehara, T. Sumiyoshi, T. Seo et al., “Neonatal exposure to MK-801, an N-methyl-d-aspartate receptor antagonist, enhances methamphetamine-induced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats,” Brain Research, vol. 1352, pp. 223–230, 2010.

[46] D. A. Hall, J. P. Powers, and J. M. Gulley, “Blockade of D1 dopamine receptors in the medial prefrontal cortex attenuates amphetamine- and methamphetamine-induced locomotor activity in the rat,” Brain Research, vol. 1300, pp. 51–57, 2009.

[47] P. S. Clifford, N. Hart, J. Thompson et al., “Prenatal lead exposure enhances methamphetamine sensitization in rats,” Pharmacology Biochemistry and Behavior, vol. 93, no. 2, pp. 165–169, 2009.

[48] R. L. Good and R. A. Radcliffe, “Methamphetamine-induced locomotor changes are dependent on age, dose and genotype,” Pharmacology Biochemistry and Behavior, vol. 98, no. 1, pp. 101–111, 2011.

[49] J. A. Zombeck, A. D. Lewicki, K. Patel, T. Gupta, and J. S. Rhodes, “Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6 mice,” Neuroscience, vol. 165, no. 4, pp. 1087–1099, 2010.

[50] Y. Kaneko, A. Kashia, T. Ito, S. Ishii, A. Umino, and T. Nishikawa, “Selective serotonin reuptake inhibitors, fluoxetine and paroxetine, attenuate the expression of the established behavioral sensitization induced by methamphetamine,” Neuropsychopharmacology, vol. 32, no. 3, pp. 658–664, 2007.

[51] S. Clifford, R. A. Zeckler, S. Buckman et al., “Impact of food restriction and cocaine on locomotion in ghrelin- and ghrelin-receptor knockout mice,” Addiction Biology, vol. 16, no. 3, pp. 386–392, 2011.

[52] D. Thompson, L. Martini, and J. L. Whistler, “Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine,” PLoS ONE, vol. 5, no. 6, Article ID e11038, 2010.

[53] K. R. Rodvelt, S. Z. Lever, J. R. Lever, L. R. Blount, K.-H. Fan, and D. K. Miller, “SA 4503 attenuates cocaine-induced hyperactivity and enhances methamphetamine substitution for a cocaine discriminative stimulus,” Pharmacology Biochemistry and Behavior, vol. 97, no. 4, pp. 676–682, 2011.

[54] C. Brabant, L. Alleva, T. Grisar et al., “Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions,” Psychopharmacology, vol. 202, no. 4, pp. 673–687, 2009.

[55] A. K. Stoker and A. Markou, “Withdrawal from chronic cocaine administration induces deficits in brain reward function in C57BL/6J mice,” Behavioural Brain Research, vol. 223, no. 1, pp. 176–181, 2011.

[56] M. J. Acerbo and A. K. Johnson, “Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior,” Pharmacology Biochemistry and Behavior, vol. 98, no. 3, pp. 440–448, 2011.

[57] M. J. Marks, J. B. Burch, and A. C. Collins, “Genetics of nicotine response in four inbred strains of mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 226, no. 1, pp. 291–302, 1983.

[58] G. B. Freeman, K. A. Sherman, and G. E. Gibson, “Locomotor activity as a predictor of times and dosages for studies of nicotine’s neurochemical actions,” Pharmacology Biochemistry and Behavior, vol. 26, no. 2, pp. 305–312, 1987.

[59] T. Kita, T. Nakashima, M. Shirase, M. Asahina, and Y. Kuboguchi, “Effects of nicotine on ambulatory activity in mice,” Japanese Journal of Pharmacology, vol. 46, no. 2, pp. 141–146, 1988.

[60] M. I. Damaj and B. R. Martin, “Is the dopaminergic system involved in the central effects of nicotine in mice?” Psychopharmacology, vol. 111, no. 1, pp. 106–108, 1993.

[61] A. Smolen, M. J. Marks, J. C. DeFries, and N. D. Henderson, “Individual differences in sensitivity to nicotine in mice: response to six generations of selective breeding,” Pharmacology Biochemistry and Behavior, vol. 39, no. 3, pp. 331–340, 1994.

[62] Y. Itzhak and J. L. Martin, “Effects of cocaine, nicotine, dizocilpine and alcohol on mice locomotor activity: cocaine-alcohol cross-sensitization involves upregulation of striatal dopamine transporter binding sites,” Brain Research, vol. 818, no. 2, pp. 204–211, 1999.

[63] J. A. Sparks and J. R. Pauly, “Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57BL/6 mice,” Psychopharmacology, vol. 141, no. 2, pp. 145–153, 1999.

[64] H. Gäädnäs, K. Pietilä, and L. Ahtee, “Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice,” Behavioural Brain Research, vol. 113, no. 1–2, pp. 65–72, 2000.

[65] A. Castañé, E. Valjent, C. Ledent, M. Parmentier, R. Maldonado, and O. Valverde, “Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence,” Neuropsychopharmacology, vol. 43, no. 5, pp. 857–867, 2002.

[66] A.-S. Villégier, L. Salomon, S. Granon et al., “Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine,” Neuropsychopharmacology, vol. 31, no. 8, pp. 1704–1713, 2006.

[67] K. J. Gill and A. E. Boyle, “Genetic basis for the psychostimulant effects of nicotine: a quantitative trait locus analysis in AcB/BcA recombinant congenic mice,” Genes, Brain and Behavior, vol. 4, no. 7, pp. 403–411, 2005.

[68] M. Hirabayashi, M. Iizuka, and S. Tadokoro, “Simple and easy method for measurement of ambulatory activity in mice,” Folia Pharmacologica Japonica, vol. 74, no. 5, pp. 629–639, 1978.

[69] H. Kuribara and S. Tadokoro, “Development of tolerance to amphetamine-increasing effect of scopolamine dependent on environmental factors in mice,” Japanese Journal of Pharmacology, vol. 33, no. 5, pp. 1041–1048, 1983.

[70] H. Kuribara and S. Tadokoro, “Circadian variation in the amphetamine-increasing effect of apomorphine after repeated administration in mice,” Japanese Journal of Psychopharmacology, vol. 4, no. 3, pp. 231–236, 1984.

[71] T. Asami, H. Kuribara, and S. Tadokoro, “Effects of repeated administration of bromocriptine on ambulatory activity in mice, and changes in methamphetamine sensitivity in bromocriptine-experienced mice,” Japanese Journal of Psychopharmacology, vol. 6, no. 3, pp. 309–317, 1986.

[72] Y. Iijima, T. Asami, and H. Kuribara, “Modification by MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist, of morphine sensitization: evaluation by ambulation in mice,” Japanese Journal of Psychopharmacology, vol. 16, no. 1, pp. 11–18, 1996.

[73] K. Hirate and H. Kuribara, “Characteristics of the amphetamine-increasing effect of GBR-12909, a selective dopamine uptake inhibitor, in mice,” Japanese Journal of Pharmacology, vol. 55, no. 4, pp. 501–511, 1991.
[74] H. Kuribara and Y. Uchihashi, “Dopamine antagonists can inhibit methamphetamine sensitization, but not cocaine sensitization, when assessed by ambulatory activity in mice,” *Journal of Pharmacy and Pharmacology*, vol. 45, no. 12, pp. 1042–1045, 1993.

[75] H. Kuribara and Y. Uchihashi, “Effects of haloperidol on the methamphetamine sensitization: assessment by ambulatory activity in mice,” *Japanese Journal of Psychiatry and Neurology*, vol. 47, no. 3, pp. 661–668, 1993.

[76] H. Kuribara and Y. Uchihashi, “Effects of dopamine antagonism on methamphetamine sensitization: evaluation by ambulatory activity in mice,” *Pharmacology Biochemistry and Behavior*, vol. 47, no. 1, pp. 101–106, 1994.

[77] H. Kuribara, T. Asami, T. Saito, I. Ida, and S. Tadokoro, “Behavioral study on m ergocriptine (CBM36-733) by ambulatory activity in mice: repeated administration and interaction with methamphetamine,” *Japanese Journal of Pharmacology*, vol. 54, no. 2, pp. 163–170, 1990.

[78] H. Kuribara, T. Katsuya, T. Asahi, and S. Tadokoro, “Effects of repeated administration of buprenorphine on ambulatory activity in mice,” *Japanese Journal of Psychopharmacology*, vol. 11, no. 2, pp. 123–127, 1991.

[79] H. Kuribara, T. Asami, I. Ida, and S. Tadokoro, “Characteristics of the ambulation-increasing effect of the non-competitive NMDA antagonist MK-801 in mice: assessment by the coadministration with central-acting drugs,” *Japanese Journal of Pharmacology*, vol. 58, no. 1, pp. 11–18, 1992.

[80] H. Kuribara, “Can posttreatment with the selective dopamine D2 antagonist, YM-O9151-2, inhibit induction of methamphetamine sensitization? Evaluation by ambulatory activity in mice,” *Pharmacology Biochemistry and Behavior*, vol. 49, no. 2, pp. 323–326, 1994.

[81] H. Kuribara, “Dopamine D1 and D2 receptor antagonists suppress acute stimulant action of cocaine, but enhance cocaine sensitization,” *Japanese Journal of Psychiatry and Neurology*, vol. 48, no. 4, pp. 907–911, 1994.

[82] H. Kuribara, “Modification by caffeine of the sensitization to methamphetamine and cocaine in terms of ambulation in mice,” *Life Sciences*, vol. 55, no. 12, pp. 933–940, 1994.

[83] H. Kuribara, “Caffeine enhances the stimulant effect of methamphetamine, but may not affect induction of methamphetamine sensitization of ambulation in mice,” *Psychopharmacology*, vol. 116, no. 2, pp. 125–129, 1994.

[84] H. Kuribara, “Effects of sulpiride and nemonapride, benzamide derivatives having distinct potencies of antagonistic action on dopamine D2 receptors, on sensitization to methamphetamine in mice,” *Journal of Pharmacy and Pharmacology*, vol. 48, no. 3, pp. 292–296, 1996.

[85] H. Kuribara, “Modification of morphine sensitization by opioid and dopamine receptor antagonists: evaluation by studying ambulation in mice,” *European Journal of Pharmacology*, vol. 275, no. 3, pp. 251–258, 1995.

[86] H. Kuribara, “Caffeine enhances acute stimulant effect of morphine but inhibits morphine sensitization when assessed by ambulation of mice,” *Progress in Neuro-Psychopharmacology and Biological Psychiatry*, vol. 19, no. 2, pp. 313–321, 1995.

[87] H. Kuribara, “Inhibition of methamphetamine sensitization by post-methamphetamine treatment with SCH 23390 or haloperidol,” *Psychopharmacology*, vol. 119, no. 1, pp. 34–38, 1995.

[88] H. Kuribara, “Interaction between D1 and D2 antagonists in the inhibition of methamphetamine-induced ambulation in mice,” *Pharmaceutical Sciences*, vol. 2, no. 3, pp. 141–144, 1996.

[89] T. Umez, H. Yonemoto, Y. Soma, and T. Suzuki, “Tris(2-chloroethyl)phosphate increases ambulatory activity in mice: pharmacological analyses of its neurochemical mechanism,” *Toxicology and Applied Pharmacology*, vol. 148, no. 1, pp. 109–116, 1998.

[90] T. Umez, A. Sakata, and H. Ito, “Ambulation-promoting effect of peppermint oil and identification of its active constituents,” *Pharmacology Biochemistry and Behavior*, vol. 69, no. 3–4, pp. 383–390, 2001.

[91] T. Umez and M. Morita, “Evidence for the involvement of dopamine in ambulation promoted by menthol in mice,” *Journal Pharmacological Sciences*, vol. 91, no. 2, pp. 125–135, 2003.

[92] T. Umez, “Evidence for dopamine involvement in ambulation promoted by menthone in mice,” *Pharmacology Biochemistry and Behavior*, vol. 91, no. 3, pp. 315–320, 2009.

[93] T. Umez, “Evidence for dopamine involvement in ambulation promoted by pulegone in mice,” *Pharmacology Biochemistry and Behavior*, vol. 94, no. 4, pp. 497–502, 2010.

[94] R. Redolat, J. Vidal, M. C. Gómez, and M. C. Carrasco, “Effects of acute bupropion administration on locomotor activity in adolescent and adult mice,” *Behavioural Pharmacology*, vol. 16, no. 1, pp. 59–62, 2005.

[95] P. Bredeloux, I. Dubuc, and J. Costentin, “Comparisons between bupropion and dexamphetamine in a range of in vivo tests exploring dopaminergic transmission,” *British Journal of Pharmacology*, vol. 150, no. 6, pp. 711–719, 2007.

[96] S. K. Billes and M. A. Cowley, “Catecholamine reuptake inhibition causes weight loss by increasing locomotor activity and thermogenesis,” *Neuropsychopharmacology*, vol. 33, no. 6, pp. 1287–1297, 2008.

[97] H. Tilleman, O. Kofman, L. Nashelsky et al., “Critical role of the embryonic mid-hindbrain organizer in the behavioral response to amphetamine and methylenidate,” *Neuroscience*, vol. 163, no. 4, pp. 1012–1023, 2009.

[98] K. M. Smith, D. M. Fagel, H. E. Stevens et al., “Deficiency in inhibitory cortical interneurons associated with hyperactivity in fibroblast growth factor receptor 1 mutant mice,” *Biological Psychiatry*, vol. 63, no. 10, pp. 953–962, 2008.

[99] M. Niculescu, M. E. Ehrlich, and E. M. Unterwald, “Age-specific behavioral responses to psychostimulants in mice,” *Pharmacology Biochemistry and Behavior*, vol. 82, no. 2, pp. 280–288, 2005.

[100] K. Minck, P. Danneberg, and F. Knappen, “Effects of psychotropic drugs on exploratory behavior of mice,” *Psychopharmacologia*, vol. 39, no. 3, pp. 245–257, 1974.

[101] B. S. Starr and M. S. Starr, “Behavioural interactions involving D1 and D2 dopamine receptors in non-habituated mice,” *Neuropharmacology*, vol. 26, no. 6, pp. 613–619, 1987.

[102] E. A. Stone, S. J. Manavalan, Y. Zhang, and D. Quartermain, “Beta adrenoceptor blockade mimics effects of stress on motor activity in mice,” *Neuropsychopharmacology*, vol. 12, no. 1, pp. 65–71, 1995.

[103] M. I. Damaj, “Influence of gender and sex hormones on nicotine acute pharmacological effects in mice,” *Journal of Pharmacology and Experimental Therapeutics*, vol. 296, no. 1, pp. 132–140, 2001.
[134] N. Sidhpura, P. Redfern, H. Rowley, D. Heal, and S. Wonncott, "Comparison of the effects of bupropion and nicotine on locomotor activation and dopamine release in vivo," *Biochemical Pharmacology*, vol. 74, no. 8, pp. 1292–1298, 2007.

[135] O. T. Ukairo, S. Ramanujapuram, and C. K. Surratt, “Fluctuation of the dopamine uptake inhibition potency of cocaine, but not amphetamine, at mammalian cells expressing the dopamine transporter,” *Brain Research*, vol. 1131, no. 1, pp. 68–76, 2007.

[136] P. Weikop, J. Kehr, and J. Scheel-Krüger, "Reciprocal effects of combined administration of serotonin, noradrenaline and dopamine reuptake inhibitors on serotonin and dopamine levels in the rat prefrontal cortex: the role of 5-HT1A receptors," *Journal of Psychopharmacology*, vol. 21, no. 8, pp. 795–804, 2007.

[137] L. M. Marubio, A. M. Gardier, S. Durier et al., “Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors,” *European Journal of Neuroscience*, vol. 17, no. 7, pp. 1329–1337, 2003.

[138] M. R. Picciotto, M. Zoli, R. Rimondini et al., “Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine,” *Nature*, vol. 391, no. 6663, pp. 173–177, 1998.

[139] S. R. Grady, N. M. Meinerz, J. Cao et al., “Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nAChR than dopamine release from striatum,” *Journal of Neurochemistry*, vol. 76, no. 1, pp. 258–268, 2001.

[140] J. E. Rose and W. A. Corrigall, “Nicotine self-administration in animals and humans: similarities and differences,” *Psychopharmacology*, vol. 130, no. 1, pp. 28–40, 1997.