ON THE REPRESENTATION OF INTEGERS BY BINARY
QUADRATIC FORMS

STANLEY YAO XIAO

Abstract. In this note we show that for a given irreducible binary quadratic form
$f(x, y)$ with integer coefficients, whenever we have $f(x, y) = f(u, v)$ for integers
x, y, u, v, there exists a rational automorphism of f which sends (x, y) to (u, v).

1. Introduction

Let F be a binary form with integer coefficients, non-zero discriminant, and degree
d ≥ 2. We say that an integer h is representable by F if there exist integers x, y such
that $F(x, y) = h$. It is an old question, dating back to Diophantus in the case of sums
of two squares, to determine which integers h are representable by a given form F.
While an exact description (for example, in terms of congruence conditions) remain
elusive for all but the simplest of cases, asymptotic results have now been established.
Define
\begin{equation}
R_F(Z) = \{h \in \mathbb{Z} : h \text{ is representable by } F, |h| \leq Z\}
\end{equation}
and $R_F(Z) = \#R_F(Z)$. Landau proved in 1908 that there exists a positive number
C_1 such that
\begin{equation}
R_{x^2+y^2}(Z) \sim C_1Z \sqrt{\log Z},
\end{equation}
and shortly after the result was established for all positive definite binary quadratic
forms.

In general, one expects that for a binary form F with degree $d \geq 3$, integer coef-
ficients, and non-zero discriminant, that there exists a positive number $C(F)$ such
that the asymptotic relation
\begin{equation}
R_F(Z) \sim C(F)Z^{\frac{d}{2}}
\end{equation}
holds. It would take over half a century before the analogous asymptotic formula
would be established for non-abelian cubic forms, which was achieved by Hooley. He
proved in [3] that (1.3) holds whenever F is a non-abelian binary cubic form. In
subsequent works [4], [5], he established (1.3) for bi-quadratic binary quartic forms
and abelian binary cubic forms, respectively. In [7], Stewart and Xiao established
(1.3) for all integral binary forms of degree $d \geq 3$ and non-zero discriminant.

For F a binary form of degree $d \geq 2$, define
\[
\text{Aut}_Q F = \left\{ T = \begin{pmatrix} t_1 & t_2 \\ t_3 & t_4 \end{pmatrix} \in \text{GL}_2(\mathbb{Q}) : F(x, y) = F(t_1x + t_2y, t_3x + t_4y) \right\}.
\]
The absence of the logarithmic term in (1.3) as opposed to (1.2) is accounted for by
the fact that for a binary form F of degree at least 3, Aut_Q F is always finite. When
F is a quadratic form, the group $\text{Aut}_Q F$ is infinite.

We say a representable integer h is \textit{essentially represented} if whenever $(x, y), (u, v) \in \mathbb{Z}^2$ are such that $F(x, y) = F(u, v) = h$, there exists $T \in \text{Aut}_Q F$ such that $(x, y) = T(u, v)$. Note that if $F(x, y) = h$ has a unique solution, then h is essentially represented since $(1, 0) \in \text{Aut}_Q F$. Put

$$R_F^{(1)}(Z) = \{ h \in R_F(Z) : h \text{ is essentially represented} \}$$

and $R_F(Z) = \#R_F^{(1)}(Z)$. In the $d \geq 3$ case Heath-Brown showed in [2] that there exists $\eta_d > 0$, depending only on the degree d, such that for all $\varepsilon > 0$

$$R_F(Z) = R_F^{(1)}(Z) \left(1 + O_\varepsilon \left(Z^{-\eta_d + \varepsilon} \right) \right).$$

This is essentially reduces the question of enumerating $R_F(Z)$ to that of $R_F^{(1)}(Z)$, which is far simpler, and the key to our success in [7]. Heath-Brown’s theorem does not address the case of quadratic forms, which we do so now:

\textbf{Theorem 1.1.} Let f be an irreducible and primitive binary quadratic form. Then every integer h representable by f is essentially represented.

Consider the quadric surface X_f defined by

$$X_f : f(x_1, x_2) = f(x_3, x_4).$$

In [2], Heath-Brown showed that lines on X_f correspond to automorphisms of f, possibly defined over a larger field. His result and our Theorem 1.1 has the following consequence:

\textbf{Corollary 1.2.} Let X_f be the surfaced defined by $f(x_1, x_2) = f(x_3, x_4)$, with f a binary quadratic form with integer coefficients and non-zero discriminant. Then every point in $X_f(\mathbb{Q})$ lies on a rational line contained in X_f.

It has been pointed out to the author that Theorem 1.1 essentially follows from Witt’s theorem (see Theorem 42.16 in [1]). Nevertheless, we feel that this result is of independent interest to number theorists and does not appear to be well-known.

\section{2. Preliminary lemmas}

The strategy is very simple: for a given pair of integers $(x, y), (u, v)$ such that $f(x, y) = f(u, v)$, we exhibit an explicit automorphism of f which sends (x, y) to (u, v). In fact, we will draw such an automorphism from a proper subgroup of $\text{Aut}_Q f$. Put

$$f(x, y) = f_2 x^2 + f_1 xy + f_0 y^2,$$

and put

$$\delta = \left| \frac{f_1^2 - 4 f_2 f_0}{4} \right|.$$
2.1. **Positive definite binary quadratic forms.** In this case, we shall pick our T from the group $\text{Aut}_\mathbb{Q} f \cap SO_f(\mathbb{R})$, where

$$SO_f(\mathbb{R}) = \{ T \in \text{GL}_2(\mathbb{R}) : \det T = 1, fT = f \}.$$

The group $SO_f(\mathbb{R})$ is conjugate to the special orthogonal group $SO_2(\mathbb{R})$ and its elements look like

$$T_f(t) = \left(\begin{array}{cc} \cos t + \frac{f_1 \sin t}{2\sqrt{\delta}} & \frac{f_0 \sin t}{\sqrt{\delta}} \\ \frac{-f_2 \sin t}{\sqrt{\delta}} & \cos t - \frac{f_1 \sin t}{2\sqrt{\delta}} \end{array} \right), t \in [0, 2\pi).$$

If we demand that $T_f(t) \in \text{GL}_2(\mathbb{Q})$, then it follows that $\cos t \in \mathbb{Q}$ and $\sqrt{\delta} \sin t \in \mathbb{Q}$. Put

$$u = \cos t, v = \frac{\sin t}{\sqrt{\delta}}.$$

Then u, v satisfy the equation

$$u^2 + \delta v^2 = 1.$$

Put E_δ for the curve defined by

$$(2.1) \quad E_\delta : x^2 + \delta y^2 = 1.$$

We then see that there is a bijection between rational points on E_δ and rational elements $T \in \text{Aut}_\mathbb{Q} f$. We now characterize the set of rational points on E_δ.

Lemma 2.1. Let E_δ be the curve given by (2.1), with 4δ a positive integer. Then the set of rational points on E_δ is given by the parametrization

$$\left(\frac{\delta p^2 - q^2}{\delta p^2 + q^2}, \frac{2pq}{\delta p^2 + q^2} \right), p, q \in \mathbb{Z}, q > 0, \gcd(p, q) = 1.$$

Proof. Using the fact that $(1, 0)$ is a point on the curve E_δ, we use the slope method to find all other rational points. Indeed, the intersection of the line given by

$$y = m(x - 1), m \in \mathbb{Q}$$

and the curve E_δ is another rational point on E_δ, and all such points arise this way. Substituting, we find that

$$x^2 + \delta(m(x - 1))^2 = 1$$

is equivalent to

$$x = \frac{\delta m^2 \pm 1}{\delta m^2 + 1}.$$

The $+$ sign gives $x = 1$, and the $-$ sign gives

$$x = \frac{\delta m^2 - 1}{\delta m^2 + 1}$$

which corresponds to the point

$$(x, y) = \left(\frac{\delta m^2 - 1}{\delta m^2 + 1}, \frac{2m}{\delta m^2 + 1} \right).$$
If we write the slope m as $m = p/q$, where $q > 0$ and $\gcd(p, q) = 1$, then the point can be given as

$$(x, y) = \left(\frac{\delta p^2 - q^2}{\delta p^2 + q^2}, \frac{2pq}{\delta p^2 + q^2}\right),$$
as desired. \square

2.2. **Indefinite binary quadratic forms.** In this case, the group $SO_f(\mathbb{R})$ is no longer connected, and we shall focus on the principal branch of $SO_f(\mathbb{R})$, which is the branch containing the identity matrix. This branch can be identified as the set of matrices of the form

$$T_f(t) = \begin{pmatrix}
\cosh t - \frac{f_1 \sinh t}{2\sqrt{\delta}} & -\frac{f_0 \sinh t}{\sqrt{\delta}} \\
\frac{f_2 \sinh t}{\sqrt{\delta}} & \cosh t + \frac{f_1 \sinh t}{2\sqrt{\delta}}
\end{pmatrix}, t \in \mathbb{R}.
$$

Again, if we demand that $T_f(t) \in \text{GL}_2(\mathbb{Q})$, then necessarily $\cosh t, \sqrt{\delta} \sinh t \in \mathbb{Q}$. Put $u = \cosh t, v = \frac{\sinh t}{\sqrt{\delta}}$.

Notice that (u, v) lies on the curve

$$(2.2) \quad E_\delta : x^2 - \delta y^2 = 1.
$$

It is immediate that there is a bijection between the set of rational points $E_\delta(\mathbb{Q})$ and elements in $SO_f(\mathbb{Q})$. We have the following characterization of the rational points on E_δ:

Lemma 2.2. Let E_δ be the curve given by (2.2). Then the set of rational points $E_\delta(\mathbb{Q})$ are given by the parametrization

$$(\delta p^2 + q^2, \frac{2pq}{\delta p^2 - q^2}; \frac{2pq}{\delta p^2 + q^2}), p, q \in \mathbb{Z}, q > 0, \gcd(p, q) = 1.
$$

Proof. Same as Lemma 2.1. \square

3. Proof of Theorem 1.1

We first address the case when f is positive definite. Let h be a representable integer of f. If there exists exactly one pair of integers (x, y) such that $f(x, y) = h$, then h is essentially represented. Now suppose there exist distinct representations $(x, y), (u, v)$ of h, so that

$$(3.1) \quad h = f(x, y) = f(u, v).
$$

Put

$$m = 2f_2ux + f_1(uy + vx) + 2f_0vy - 2h, n = 2\delta(uy - vx)
$$

and

$$T_f(m, n) = \frac{1}{\delta m^2 + n^2} \begin{pmatrix}
\delta m^2 - n^2 + f_1mn & \frac{2f_0mn}{\delta m^2 - n^2 - f_1mn} \\
-2f_2mn & \delta m^2 - n^2 - f_1mn
\end{pmatrix} \in \text{Aut}_\mathbb{Q} f.
$$

Observe that

$$(\delta m^2 - n^2 + f_1mn)x + 2f_0mny = hm\delta u$$
and

\[-2f_2mnx + (\delta m^2 - n^2 - f_1mn)y = hm\delta v.\]

Moreover, by expanding, we see that

\[\delta m^2 + n^2 = hm\delta.\]

It then follows that

\[T_f(m, n) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}.\]

The proof of the theorem when \(f \) is indefinite is similar, but we include the full argument for the sake of completeness. Suppose that (3.1) holds and put

\[m = 2f_2ux + f_1(uy + vx) + 2f_0vy - 2h, \quad n = 2\delta(vx - uy).\]

Then the associated \(T_f(m, n) \in \text{Aut}_\mathbb{Q} f \) is given by

\[T_f(m, n) = \frac{1}{\delta m^2 - n^2} \begin{pmatrix} \delta m^2 + n^2 - f_1mn & -2f_0mn \\ 2f_2mn & \delta m^2 + n^2 + f_1mn \end{pmatrix}.\]

A routine calculation then yields that

\[T_f(m, n) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix},\]

as desired.
References

[1] J. W. S. Cassels, *Rational Quadratic Forms*, Academic Press, New York, 1978.
[2] D. R. Heath-Brown, *The density of rational points on curves and surfaces*, Annals of Mathematics (2) **155** (2002), 553-598.
[3] C. Hooley, *On binary cubic forms*, J. reine angew. Math. **226** (1967), 30-87.
[4] C. Hooley, *On binary quartic forms*, J. reine angew. Math. **366** (1986), 32-52.
[5] C. Hooley, *On binary cubic forms: II*, J. reine angew. Math. **521** (2000), 185-240.
[6] C. L. Stewart, *On the number of solutions to polynomial congruences and Thue equations*, Journal of the American Mathematical Society, (4) **4** (1991), 793-835.
[7] C. L. Stewart, S. Y. Xiao, *On the representation of integers by binary forms*, arXiv:1605.03427 [math.NT].
[8] S. Y. Xiao, *On binary cubic and quartic forms*, arXiv:1610.09208 [math.NT].

Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom

E-mail address: stanley.xiao@maths.ox.ac.uk