Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease
Psychiat Genomics Consortium; Int Headache Genetics Consortium; 23andMe Res Team; Kas, Martien

Published in:
Nature Genetics

DOI:
10.1038/s41588-020-0610-9

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Psychiat Genomics Consortium, Int Headache Genetics Consortium, 23andMe Res Team, & Kas, M. (2020). Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nature Genetics, 52(5), 482–493. https://doi.org/10.1038/s41588-020-0610-9

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease

Julien Bryois1,209, Nathan G. Skene2,3,4,5,209, Thomas Folkmann Hansen6,7,8, Lisette J. A. Kogelman6, Hunna J. Watson9,10,11, Zijing Liu4,5, Eating Disorders Working Group of the Psychiatric Genomics Consortium*, International Headache Genetics Consortium*, 23andMe Research Team*, Leo Brueggenman12, Gerome Breen13,14, Cynthia M. Bulik1,9,15, Ernest Arenas6,2, Jens Hjerling-Leffler2 and Patrick F. Sullivan209.

Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease.

Understanding the genetic basis of complex brain disorders is critical for developing rational therapeutics. In the past decade, genome-wide association studies (GWASs) have identified thousands of highly significant loci1–4. However, interpretation of GWASs remains challenging. First, >90% of the identified variants are located in noncoding regions5, complicating precise identification of risk genes. Second, extensive linkage disequilibrium present in the human genome confounds efforts to pinpoint causal variants. Finally, it remains unclear in which tissues and cell types these variants are active, and how they disrupt specific biological networks to impact disease risk.

Functional genomic studies of the brain are now seen as critical for interpretation of GWAS findings, as they can identify functional regions (for example, open chromatin, enhancers and transcription-factor-binding sites) and target genes (via chromatin interactions and expression quantitative trait loci)6. Gene regulation varies substantially across tissues and cell types7,8, and hence it is critical to perform functional genomic studies in empirically identified cell types or tissues.

Multiple groups have developed strategies to identify tissues associated with complex traits9–13, but few have focused on the identification of salient cell types within a tissue. Furthermore, previous studies used a small number of cell types derived from one or few different brain regions14–16. For example, we recently showed that, among 24 brain cell types, 4 types of neuron were consistently associated with schizophrenia11. We were explicit that this conclusion was limited by the relatively few brain regions studied; other cell types from unsampled regions could conceivably contribute to the disorder.

Here, we integrate a wider range of gene expression data—tissues across the human body and single-cell gene expression data from an entire nervous system—to identify tissues and cell types underlying a large number of complex traits (Fig. 1a,b). We find that psychiatric and cognitive traits are generally associated with similar cell types whereas neurological disorders are associated with different cell types. Notably, we show that Parkinson’s disease is associated with cholinergic and monoaminergic neurons, enteric neurons and oligodendrocytes, providing new clues into its etiology.

1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 2Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. 3UCL Institute of Neurology, Queen Square, London, UK. 4Division of Brain Sciences, Department of Medicine, Imperial College, London, UK. 5UK Dementia Research Institute at Imperial College, London, UK. 6Danish Headache Center, Dept of Neurology, Copenhagen University Hospital, Glostrup, Denmark. 7Institute of Biological Psychiatry, Copenhagen University Hospital MHC Sct Hans, Roskilde, Denmark. 8Novo Nordic Foundations Center for Protein Research, Copenhagen University, Copenhagen, Denmark. 9Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 10School of Psychology, Curtin University, Perth, Western Australia, Australia. 11Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia. 12Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA, USA. 13Institute of Psychiatry, MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK. 14National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK. 15Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA. 16Department of Genetics, University of North Carolina, Chapel Hill, NC, USA. 209These authors contributed equally: Julien Bryois, Nathan G. Skene. *Lists of authors and their affiliations appear at the end of the paper.✉e-mail: jens.hjerling-leffler@ki.se; patrick.sullivan@ki.se
Results

Association of traits with tissues by using bulk RNA sequencing. Our primary goal was to use GWAS results to identify relevant tissues and cell types. Our primary focus was human phenotypes whose etiology is based in the central nervous system (CNS). We thus obtained 18 sets of GWAS summary statistics for brain-related complex traits. For comparison, we included GWAS summary statistics for eight diseases and traits with large sample sizes whose etiology is not rooted in the CNS (Methods).

We first aimed to identify human tissues showing enrichment for genetic associations using bulk-tissue RNA sequencing (RNA-seq; 37 tissues) from the Genotype-Tissue Expression (GTEx) project. To robustly identify tissues implied by these 26 GWASs, we used 2 approaches (MAGMA and LDSC) that employ different assumptions (Methods). For both methods, we tested whether the 10% most specific genes in each tissue were enriched in genetic associations with the different traits (Fig. 1b).

Examination of non-brain-related traits found, as expected, associations with salient tissues. For example, as shown in Fig. 1d and Supplementary Table 1, inflammatory bowel disease was strongly associated with immune tissues (blood and spleen) and alimentary tissues impacted by the disease (small intestine and colon). Lung and adipose tissues were also significantly associated with inflammatory bowel disease, possibly because of the high specificity of immune genes in these two tissues (Extended Data Fig. 1). Type 2 diabetes was associated with the pancreas, while hemoglobin A1C, which is used to diagnose type 2 diabetes and monitor glycemic controls in individuals with diabetes, was associated with the pancreas, liver and stomach (Fig. 1d). Stroke and coronary artery disease were most associated with blood vessels and waist-to-hip ratio was most associated with adipose tissue (Fig. 1d and Supplementary Fig. 1).

For brain-related traits (Fig. 1c, Supplementary Fig. 1 and Supplementary Table 1), 13 of 18 traits were significantly associated with 1 or more GTEx brain regions. For example, schizophrenia, intelligence, educational attainment, neuroticism, body mass index (BMI) and major depressive disorder (MDD) were most significantly associated with the brain cortex, frontal cortex or anterior cingulate cortex, while Parkinson’s disease was most significantly associated with the substantia nigra (as expected) and spinal cord (Fig. 1c). Alzheimer’s disease was associated with tissues with prominent roles in immunity (blood and spleen) consistent with other studies, but also with the substantia nigra and spinal cord, while stroke was associated with blood vessels (consistent with a role of arterial pathology in stroke).

In conclusion, we show that tissue-level gene expression allows identification of relevant tissues for complex traits, indicating that our methodology is suitable to explore associations between trait and gene expression at the cell-type level.

Association of brain complex traits with cell types. We leveraged gene expression data from 39 broad categories of cell types from the mouse central and peripheral nervous system to systematically map brain-related traits to cell types (Fig. 2a and Extended Data Fig. 2).
In our previous study of schizophrenia based on a small number of brain regions, we found the strongest signals for telencephalon projecting excitatory neurons (that is, excitatory neurons from the cortex, hippocampus and amygdala), telencephalon projecting inhibitory neurons (that is, medium spiny neurons from the striatum) and telencephalon inhibitory neurons (Fig. 2a and Supplementary Table 2). We also found that other types of neuron were associated with schizophrenia albeit less significantly (for example, dentate gyrus granule neurons). Other psychiatric and cognitive traits had similar cellular association patterns to schizophrenia (Extended Data Figs. 2 and 3), reflecting that neurological disorders have minimal functional overlap with psychiatric disorders.

Stroke was significantly associated with vascular smooth muscle cells (Fig. 2a), consistent with an important role of vascular processes for this trait. Alzheimer’s disease had the strongest signal in microglia, as reported previously, but the association did not survive multiple testing correction.

We found that Parkinson’s disease was significantly associated with cholinergic and monoaminergic neurons (Fig. 2a). This cluster consists of neurons (Supplementary Table 3) that are known to degenerate in Parkinson’s disease, such as dopaminergic neurons from the substantia nigra (the hallmark of Parkinson’s disease), noradrenergic neurons from the locus coeruleus, and neurons from afferent nuclei in the pons and the medulla (the brain region associated with the earliest lesions in Parkinson’s disease). In addition, hindbrain neurons and peptidergic neurons were also significantly associated with Parkinson’s disease (with LDSC alone). Interestingly, we also found that enteric neurons were significantly associated with Parkinson’s disease (Fig. 2a), which is consistent with Braak’s hypothesis, which postulates that Parkinson’s disease could start in...
the gut and travel to the brain via the vagus nerve\(^{12,13}\). Furthermore, we found that oligodendrocytes (mainly sampled in the midbrain, medulla, pons, spinal cord and thalamus; Supplementary Fig. 3) were significantly associated with Parkinson’s disease, indicating a strong glial component to the disorder. This finding was unexpected but consistent with the strong association of the spinal cord at the tissue level (Fig. 1c), as the spinal cord contains the highest proportion of oligodendrocytes (71%) in the nervous system\(^{23}\). Together, these findings provide genetic evidence for a role of enteric neurons, cholinergic and monoaminergic neurons, and oligodendrocytes in Parkinson’s disease etiology.

Neuronal prioritization in the mouse CNS. A key goal of this study was to prioritize specific cell types for follow-up experimental studies. As our metric of gene expression specificity was computed based on all cell types in the nervous system, it is possible that the most specific genes in a given cell type capture genes that are shared within a high-level category of cell types (for example, neurons). To rule out this possibility, we computed new specificity metrics based only on neurons from the CNS. We then tested whether the 10% most specific genes for each CNS neuron were enriched in genetic association for the brain-related traits that had a significant association with a CNS neuron (13/18) in our initial analysis.

Using the CNS neuron gene expression specificity metrics, we observed a reduction in the number of neuronal cell types associated with the different traits (Extended Data Fig. 4), suggesting that some of the signal was driven by core neuronal genes. However, we found that multiple neuronal cell types remained associated with a number of traits. For example, we found that telencephalon projecting excitatory and projecting inhibitory neurons were strongly associated with schizophrenia, bipolar disorder, educational attainment and intelligence using both LDSC and MAGMA. Similarly, telencephalon projecting excitatory neurons were significantly associated with BMI, neuroticism, MDD, autism and anorexia using one of the two methods, while hindbrain neurons and cholinergic and monoaminergic neurons remained significantly associated with Parkinson’s disease.

Together, these results suggest that specific types of CNS neurons can be prioritized for follow-up experimental studies for multiple traits.

Trait and cell-type associations conditioning on other traits. As noted above, the patterns of associations of psychiatric and cognitive traits were highly correlated across the 39 different cell types tested (Extended Data Fig. 3). For example, the Spearman rank correlation of cell-type associations (−log\(_{10}\)\(P\)) between schizophrenia and intelligence was 0.96 (0.94 for educational attainment) as both traits had the strongest signal in telencephalon projecting excitatory neurons and little signal in immune or vascular cells. In addition, we observed that genes driving the association signal in the top cell types of the two traits were enriched in relatively similar Gene Ontology (GO) terms involving neurogenesis and synaptic processes (Supplementary Note). We evaluated two possible explanations for these findings: schizophrenia and intelligence are both associated with the same genes that are specifically expressed in the same cell types; or schizophrenia and intelligence are associated with different sets of genes that are both specific to the same cell types. Given that these two traits have a significant negative genetic correlation (\(r_g = -0.22\), from GWAS results alone) (Supplementary Table 4), we hypothesized that the strong overlap in cell-type associations for schizophrenia and intelligence was due to the second explanation.

To evaluate these hypotheses, we tested whether the 10% most specific genes for each cell type were enriched in genetic associations for schizophrenia controlling for the gene-level genetic association of intelligence using MAGMA (and vice versa) and found that the patterns of associations were largely unaffected. Similarly, we found that controlling for educational attainment had little effect on the schizophrenia associations and vice versa (Extended Data Fig. 5). In other words, genes driving the cell-type associations of schizophrenia appear to be distinct from genes driving the cell-type associations of cognitive traits.

Trait and cell-type associations conditioning on cell types. Many neuronal cell types passed our stringent significance threshold for multiple brain traits (Fig. 2a). This could be because gene expression profiles are highly correlated across cell types and/or because many cell types are independently associated with the different traits. To address this, we performed univariate conditional analysis using MAGMA, testing whether cell-type associations remained significant after controlling for the 10% most specific genes from other cell types (Supplementary Table 5). We observed that multiple cell types were independently associated with age at menarche, anorexia, autism, bipolar disorder, BMI, educational attainment, intelligence, MDD, neuroticism and schizophrenia (Supplementary Fig. 4). As in our previous study\(^{11}\), we found that the association between schizophrenia and telencephalon projecting inhibitory neurons (that is, medium spiny neurons) was independent from telencephalon projecting excitatory neurons (that is, pyramidal neurons). For Parkinson’s disease, enteric neurons, oligodendrocytes and cholinergic and monoaminergic neurons were independently associated with the disorder (Fig. 2b), suggesting that these three different cell types play an independent role in the etiology of the disorder.

Replication in other single-cell RNA-seq datasets. To assess the robustness of our results, we repeated these analyses in independent datasets. A key caveat is that these other datasets did not sample the entire nervous system as in the analyses above.

First, we used a single-cell RNA-seq dataset that identified 88 broad categories of cell types from 9 mouse brain regions\(^6\). We found similar patterns of association in this external dataset (Fig. 3a, Extended Data Fig. 6 and Supplementary Table 6). Notably, for schizophrenia, we strongly replicated associations with neurons from the cortex, hippocampus and striatum. We also observed similar cell-type associations for other psychiatric and cognitive traits (Fig. 3a and Extended Data Figs. 6 and 7). For neurological disorders, we found that stroke was significantly associated with mural cells while Alzheimer’s disease was significantly associated with microglia (Extended Data Fig. 6). The associations of Parkinson’s disease with neurons from the substantia nigra and oligodendrocytes were significant at a nominal level in this dataset (\(P = 0.006\) for neurons from the substantia nigra; \(P = 0.027\) for oligodendrocytes using LDSC). By computing gene expression specificity within neurons, we replicated our findings that neurons from the cortex can be prioritized for multiple traits (schizophrenia, bipolar disorder, educational attainment, intelligence, BMI, neuroticism, MDD and anorexia; Extended Data Fig. 8).

Second, we reanalyzed these GWAS datasets using our previous dataset\(^11\) (24 cell types from 5 mouse brain regions; Fig. 3b, Extended Data Fig. 9 and Supplementary Table 7). We again found strong associations of pyramidal neurons from the somatosensory cortex, pyramidal neurons from region 1 of the cornu ammonis (CA1) of the hippocampus (both corresponding to telencephalon projecting excitatory neurons in our main dataset) and medium spiny neurons from the striatum (corresponding to telencephalon projecting inhibitory neurons) with psychiatric and cognitive traits. MDD and autism were most associated with neuroblasts, while intracranial volume was most associated with neural progenitors. The association of dopaminergic adult neurons with Parkinson’s disease was significant at a nominal level using LDSC (\(P = 0.01\)), while oligodendrocytes did not replicate in this dataset, perhaps because they
were not sampled from the regions affected by the disorder (that is, spinal cord, pons, medulla or midbrain). A within-neuron analysis again found that projecting excitatory (that is, pyramidal CA1) and projecting inhibitory neurons (that is, medium spiny neurons) can be prioritized for multiple traits (schizophrenia, bipolar disorder, intelligence, educational attainment and BMI). In addition, neuroblasts could be prioritized for MDD and neural progenitors could be prioritized for intracranial volume (Extended Data Fig. 10).

Third, we evaluated a human dataset consisting of 15 different cell types from the cortex and hippocampus\(^3\) (Fig. 4a and Supplementary Table 8). We replicated our findings with psychiatric and cognitive traits being associated with pyramidal neurons (excitatory) and interneurons (inhibitory) from the somatosensory cortex and hippocampus. We also replicated the association of Parkinson’s disease with oligodendrocytes (enteric neurons and cholinergic and monoaminergic neurons) (Supplementary Table 11).

As for the common variant, we found the strongest enrichment for expressing in cell types from the mouse nervous system (Methods). With parkinsonism (Supplementary Table 10) were specifically combined probability test).

Validation of oligodendrocyte pathology in Parkinson’s disease. We investigated the role of oligodendrocytes in Parkinson’s disease. First, we confirmed the association of oligodendrocytes with Parkinson’s disease by combining evidence across all datasets (Fisher’s combined probability test, \(P = 2.5 \times 10^{-7}\) using MAGMA and \(6.3 \times 10^{-1}\) using LDSC; Supplementary Table 2 and Supplementary Fig. 5). In addition, oligodendrocytes remained significantly associated with Parkinson’s disease after conditioning on the top neuronal cell type in each dataset (\(P = 1.2 \times 10^{-5}\), Fisher’s combined probability test).

Second, we tested whether genes with rare variants associated with parkinsonism (Supplementary Table 10) were specifically expressed in cell types from the mouse nervous system (Methods). As for the common variant, we found the strongest enrichment for cholinergic and monoaminergic neurons (Supplementary Table 11). However, we did not observe any significant enrichments for oligodendrocytes or enteric neurons for these genes.

Third, we applied expression-weighted cell-type enrichment (EWCE)\(^3\) to test whether genes that are upregulated/downregulated in post-mortem brains from humans with Parkinson’s disease
Articles

Fig. 4 | Human replication of associations between cell type and trait. a, Associations between cell type and trait for 15 cell types (derived from single-nuclei RNA-seq) from 2 different brain regions (cortex and hippocampus). b, Associations between cell type and trait for 35 cell types (derived from single-nuclei RNA-seq) from 3 different brain regions (frontal cortex, visual cortex and cerebellum). The mean strength of association (−log10(P)) of MAGMA and LDSC is shown, and the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate). INT, intelligence; SCZ, schizophrenia; EDU, educational attainment; NEU, neuroticism; BMI, body mass index; BIP, bipolar disorder; MDD, major depressive disorder; MEN, age at menarche; ASD, autism spectrum disorder; MIG, migraine; PAR, Parkinson’s disease; ADHD, attention deficit hyperactivity disorder; ICV, intracranial volume; HIP, hippocampal volume; AN, anorexia nervosa; ALZ, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; STR, stroke. SS1, somatosensory cortex type 1; SS2, somatosensory cortex type 2; CA1, cornu ammonis region 1; CA3, cornu ammonis region 3.

(from six separate cohorts) were enriched in cell types located in the substantia nigra and ventral midbrain (Fig. 5). Three of the studies had a case–control design and measured gene expression in: the substantia nigra of 9 controls and 16 cases44; the medial substantia nigra of 8 controls and 15 cases38; and the lateral substantia nigra of 9 controls and 16 cases37. In all three studies, downregulated genes in Parkinson’s disease were specifically enriched in dopaminergic neurons (consistent with the loss of this particular cell type in disease), while upregulated genes were significantly enriched in cells from the oligodendrocyte lineage. This suggests that an increased oligodendrocyte activity or proliferation could play a role in Parkinson’s disease etiology. Surprisingly, no enrichment was observed for microglia, despite recent findings45,46.

We also analyzed gene expression data from post-mortem human brains that had been scored by neuropathologists for their Braak stage47. Differential expression was calculated between brains with Braak scores of 0 (controls) and brains with Braak scores of 1–2, 3–4 and 5–6. At the later stages (Braak scores 3–4 and 5–6), downregulated genes were specifically expressed in dopaminergic neurons, while upregulated genes were specifically expressed in oligodendrocytes (Fig. 5), as observed in the case–control studies. Moreover, Braak stages 1 and 2 are characterized by little degeneration in the substantia nigra, and consistently, we found that downregulated genes were not enriched in dopaminergic neurons at this stage. Notably, upregulated genes were already strongly enriched in oligodendrocytes at Braak stages 1–2. These results not only support the genetic evidence indicating that oligodendrocytes may play a causal role in Parkinson’s disease but also indicate that their involvement precedes the emergence of pathological changes in the substantia nigra.

Discussion

In this study, we used gene expression data from cells sampled from the entire nervous system to systematically map cell types to GWAS results from multiple psychiatric, cognitive and neurological complex phenotypes.

We note several limitations. First, we emphasize that we can implicate a particular cell type, but it is premature to exclude cell types for which we do not have data11. Second, we used gene expression data from mice to understand human phenotypes. We believe our approach is appropriate for several reasons. First, crucially, the key findings were replicated in human data. Second, single-cell RNA-seq is achievable in mouse but difficult in human neurons (where single-nuclei RNA-seq is typical35,36,42,43). In the brain, differences between single-cell and single-nuclei RNA-seq are important as transcripts
that are missed by sequencing nuclei are important for psychiatric disorders\cite{11}, and we previously showed that dendritically transported transcripts are specifically depleted from nuclei datasets\cite{11} (confirmed in four additional datasets; Supplementary Fig. 6). Third, correlations in gene expression for cell type across species are high (median correlation 0.68; Supplementary Fig. 7), and as high as or higher than correlations across methods within cell type and species (single-cell versus single-nuclei RNA-seq, median correlation 0.6)\cite{11}. Fourth, we evaluated only protein-coding genes with 1:1 orthologs between mice and humans, which are highly conserved. Fifth, we previously showed that gene expression data cluster by cell type and not by species\cite{11}, indicating broad conservation of core brain cellular functions across species. Sixth, we used a large number of genes to map cell types to traits (~1,500 genes for each cell type), minimizing potential bias due to individual genes differentially expressed across species. Seventh, if there were strong differences in cell-type gene expression between mice and humans, we would not expect that specific genes in mouse cell types would be independently associated with human disorders. However, it remains possible that some cell types have different gene expression patterns between mice and humans, are present in only one species, have a different function or are involved in different brain circuits.

A third limitation is that gene expression data were from adolescent mice. Although many psychiatric and neurological disorders have onsets in adolescence, some have onsets earlier (autism) or later (Alzheimer's and Parkinson's disease). It is thus possible that some cell types are vulnerable at specific developmental times. Data from studies mapping cell types across brain development and aging are required to resolve this issue.

We found that psychiatric traits implicated largely similar cell types. These biological findings are consistent with genetic and epidemiological evidence of a general psychopathy factor underlying diverse psychiatric disorders\cite{11,45,46}. Although intelligence and educational attainment implicated similar cell types, conditional analyses showed that the same cell types were implicated for different reasons. This suggests that different sets of genes highly specific to the same cell types contribute independently to schizophrenia and cognitive traits.

Our findings for neurological disorders were strikingly different from those for psychiatric disorders. We found, in contrast to previous studies that either did not identify any cell-type associations with Parkinson's disease\cite{47} or identified significant associations with cell types from the adaptive immune system\cite{40,45,46}, that cholinergic and monoaminergic neurons (which include dopaminergic neurons), enteric neurons and oligodendrocytes were significantly and independently associated with the disease. Our findings suggest that dopaminergic neuron loss in Parkinson's disease (the hallmark of the disease) is at least partly due to intrinsic biological mechanisms.

Interestingly, enteric neurons were also associated with Parkinson's disease. This result is in line with prior evidence
implicating the gut in Parkinson’s disease. Notably, dopaminergic defects and Lewy bodies (that is, abnormal aggregates of proteins enriched in α-synuclein) are found in the enteric nervous system of individuals affected by Parkinson’s disease. In addition, Lewy bod

2. Lee, J. J., Wedow, R. & Okbay Gene discovery and polygenic prediction from single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 1–11 (2016).

3. Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825–833 (2018).

4. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

5. Caldeiron, D. et al. Inferring relevant cell types for complex traits by using single-cell gene expression. Ann. J. Hum. Genet. 101, 686–699 (2017).

6. Zhang, J. et al. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. Front. Genet. 10, 518 (2019).

7. Saito, K. et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 1123–1131 (2019).

8. Anttila, V. et al. Analysis of shared heritability in common disorders of the nervous system. Nature 518, 317–329 (2015).

9. Skene, N. G. & Grant, S. G. N. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Genomics 109, 16–26 (2017).

10. Finucane, H. K. et al. Genomic-wide meta-analysis of 289,704 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).

11. Coleman, J. R. I. et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Mol. Psychiatry 24, 182–197 (2019).

12. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

13. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

14. de Leeuw, C. A., Mooy, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, 1–19 (2015).

15. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

16. Jevtic, S., Sengar, A. S., Salter, M. W. & McLaurin, J. A. The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Res. Rev. 40, 84–94 (2017).

17. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

18. O’Leary, D. H. et al. Carotid-artery intimad and media thickness as a risk factor for myocardial infarction and stroke in older adults. N. Engl. J. Med. 340, 14–22 (1999).

19. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

20. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Science 360, (2018).

21. Keren-Shaul, H. et al. A unique microglia type associated with restricted development of Alzheimer’s disease. Cell 169, 1267–1280.e17 (2017).

22. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 24, 197–211 (2003).

23. Sulzer, D. & Surnerre, J. D. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord. 28, 41–50 (2013).

24. Buee, L. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).

25. Halliday, G. M. et al. Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann. Neurol. 27, 373–385 (1990).

26. Delaville, C., de Deurwaerdère, P. & Benazzouz, A. Noradrenaline and brainstem neurons in Parkinson’s disease. Mov. Disord. 28, 41–50 (2013).

27. Sulzer, D. & Surmeier, D. J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord. 28, 41–50 (2013).

28. Buee, L. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).

29. Halliday, G. M. et al. Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann. Neurol. 27, 373–385 (1990).

30. Delaville, C., de Deurwaerdère, P. & Benazzouz, A. Noradrenaline and Parkinson disease. Front. Syst. Neurosci. https://doi.org/10.3389/fnsys.2011.00081 (2011).

31. Rinne, J. O., Ma, S. Y., Lee, M. S., Collan, Y. & Röyttä, M. Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat. Disord. 14, 553–557 (2008).

32. Braak, H., Rüb, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

33. Liddle, R. A. Parkinson’s disease from the gut. Brain Res. 1693, 201–206 (2018).

34. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1036.e16 (2018).

35. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955 (2017).

36. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

37. Lesnick, T. G. et al. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 3, e984–e995 (2007).

38. Moran, L. B. et al. Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 7, 1–11 (2006).

39. Kannarkat, G. T., Boss, J. M. & Tansey, M. G. The role of innate and adaptive immunity in Parkinson’s disease. J. Parkinsons Dis. 3, 493–514 (2013).
Eating Disorders Working Group of the Psychiatric Genomics Consortium

Roger Adan7,18,39, Lars Alfredsson20, Tetsuya Ando21, Ole Andreassen22, Jessica Baker9, Andrew Bergen23,24, Wade Berrettini25, Andreas Birgegård26,27, Joseph Boden28, Ilka Boehm29, Claudette Boni30, Vesna Boraska Perica31,32, Harry Brandt33, Gerome Breen3,4,34, Julien Bryois1, Katharina Buehren34, Cynthia Bulik19,15, Roland Burghardt35, Matteo Cassina36, Sven Cichon37, Maurizio Clementi38, Jonathan Coleman3,14, Roger Cone38, Philippe Courtet39, Steven Crawford33, Scott Crow40, James Crowley16,26, Unna Danner18, Oliver Davis41,42, Martina de Zwaan43, Scott Dina49,50, Monika Dmitrzak-Weglarz51, Elisa Docampo Martinez52,53,54, Laramie Duncan55, Roger Adan40,17,18,19, Lars Alfredsson20, Tetsuya Ando21, Ole Andreassen22, Jessica Baker9, Andrew Bergen23,24, Wade Berrettini25, Andreas Birgegård26,27, Joseph Boden28, Ilka Boehm29, Claudette Boni30, Vesna Boraska Perica31,32, Harry Brandt33, Gerome Breen3,4,34, Julien Bryois1, Katharina Buehren34, Cynthia Bulik19,15, Roland Burghardt35, Matteo Cassina36, Sven Cichon37, Maurizio Clementi38, Jonathan Coleman3,14, Roger Cone38, Philippe Courtet39, Steven Crawford33, Scott Crow40, James Crowley16,26, Unna Danner18, Oliver Davis41,42, Martina de Zwaan43, George Dedoussis44, Daniela Degortes45, Janiece DeSocio46, Danielle Dick47, Dimitris Dikeos48, Christian Dina49,50, Monika Dmitrzak-Weglarz51, Elisa Docampo Martinez52,53,54, Laramie Duncan55, Karin Egberts56, Stefan Ehrlich29, Gèorgia Escaramís52,53,54, Tõnu Esko57,58, Xavier Estivill52,53,54,59, Anne Farmer13, Angela Favaro45, Fernando Fernández-Aranda60,61, Manfred Fichter62,63, Krista Fischer37, Manuel Föker64, Lenka Foretova65, Andreas Forstner37,66,67,68,69, Monica Forzan36, Christopher Franklin31, Stephen Gallinger70, Hélène Gaspar31,14, Ina Giegling31, Johanna Giuranna64, Paola Giusti-Rodríguez36, Fragiskos Gonidakis72, Scott Gordon73, Philip Gorwood80,74, Monica Gratacos Mayora52,53,54, Jakob Grove75,76,77,78, Sébastien Guillaume39, Yiran Guo79, Hakon Hakonarson79,80, Katherine Halmi81, Ken Hanscombe82, Konstantinos Hatzikotoulas31, Joanna Hauser83, Johannes Hebebrand64, Sietske Helder13,84, Anjali Henders85, Stefan Herms37,69, Beate Herpertz-Dahlmann34, Wolfgang Herzog86, Anke Hinney64, L. John Horwood28, Christopher Hübel13, Laura Huckins31,87, James Hudson88, Hartmut Imgart89, Hidetoshi Inoko90, Vladimir Janout91, Susana Jiménez-Murcia60,61, Craig Johnson92, Jennifer Jordan93,94, Antonio Julià95, Anders Jureús1, Gursharan Kalsi13, Deborah Kaminská96, Allan Kaplan97, Jaakko Kaprio98,99, Leila Karhuinen100, Andreas Karwautz101, Martien Kas17,102, Walter Kaye103, James Kennedy1, Martin Kennedy104, Anna Keski-Rahkonen98, Kirsty Kiezebrink105, Youl-Ri Kim106, Katherine Kirk73, Lars Klareskog107, Kelly Klump108, Gun Peggy Knudsen109, Maria LaVia9, Mikael Landén39, Janne Larsen76,110,111, Stephanie Le Hellard112,113,114, Virpi Leppä1, Robert Leviatan105, Dong Li97, Paul Lichtenstein1, Lisa Lilenfeld116, Bochao Danue Lin17, Jolanta Lissowska87, Jurgen Luykx17, Pierre Magistretti118,119, Mario Maj120, Katrin Mannik57,61, Sara Marsal95, Christian Marshall122,
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (PSYCH), Aarhus, Denmark. 79Centre for Integrative Sequencing, ISEQ, Aarhus University, Aarhus, Denmark. 80Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark. 81Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. 82Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 83Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA. 84Department of Medical and Molecular Genomics, King's College London, Guy's Hospital, London, UK. 85Department of Adult Psychiatry, Poznań University of Medical Sciences, Poznań, Poland. 86Zorg op Orde, Leidschendam, the Netherlands. 87Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia. 88Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany. 89Department of Psychiatry, and Genetics and Genomics Sciences, Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 90Biological Psychiatry Laboratory, McLean Hospital/Harvard Medical School, Boston, MA, USA. 91Eating Disorders Unit, Parklandklinik, Bad Wildungen, Germany. 92Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University, Isehara, Japan. 93Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic. 94Eating Recovery Center, Denver, CO, USA. 95Department of Psychological Medicine, University of Otago, Christchurch, New Zealand. 96Canterbury District Health Board, Christchurch, New Zealand. 97Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain. 98Department of Psychiatry, First Faculty of Medicine, Charles University, Prague, Czech Republic. 99Center for Addiction and Mental Health, Department of Psychiatry, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 100Public Health, University of Helsinki, Helsinki, Finland. 101Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. 102Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. 103Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria. 104Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands. 105Department of Psychiatry, University of California San Diego, San Diego, CA, USA. 106Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. 107Health Services Research Unit, University of Aberdeen, Aberdeen, UK. 108Department of Psychiatry, Seoul Paik Hospital, Inje University, Seoul, Korea. 109Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden. 110Department of Psychology, Michigan State University, East Lansing, MI, USA. 111Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway. 112National Centre for Register-Based Research, Aarhus BSS, Aarhus University, Denmark. 113Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark. 114Department of Clinical Science, K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), University of Bergen, Bergen, Norway. 115Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway. 116Department of Clinical Medical Genetics, Laboratorie Building, Haukeland University Hospital, Bergen, Norway. 117Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. 118BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. 119Department of Psychiatry, University of Lausanne-University Hospital of Lausanne (UNIL-CHUV), Lausanne, Switzerland. 120Department of Psychiatry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy. 121Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. 122Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada. 123Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany. 124Department of Psychiatry, University College Cork, Cork, Ireland. 125Eist Linn Adolescent Unit, Bessborough, Health Service Executive South, Cork, Ireland. 126Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 127Molecular Epidemiology Section (Department of Medical Statistics), Leiden University Medical Centre, Leiden, the Netherlands. 128Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland. 129Division of Child and Adolescent Psychiatry, Geneva University Hospital, Geneva, Switzerland. 130Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA. 131National Center for PTSD, VA Boston Healthcare System, Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA. 132Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy. 133Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. 134Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy. 135Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA. 136Kartini Clinic, Portland, OR, USA. 137Center for Human Genome Research at the Massachusetts General Hospital, Boston, MA, USA. 138Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand. 139Saint Joan de Déu Research Institute, Saint Joan de Déu Barcelona Children's Hospital, Barcelona, Spain. 140Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain. 141Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain. 142Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 143Department of Health Science, University of Florence, Florence, Italy. 144Department of Biometry, University of Helsinki, Helsinki, Finland. 145Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 146Stanley Center for Psychiatric Research, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA. 147Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Germany. 148Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. 149Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnologies, University of Pisa, Pisa, Italy. 150Department of Psychiatry, Poznań University of Medical Sciences, Poznań, Poland. 151Department of Neurosciences, Padua Neuroscience Center, University of Padova, Padua, Italy. 152Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany. 153Department of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. 154J. Craig Venter Institute (JCVI), La Jolla, CA, USA. 155Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. 156Department of Pediatrics and Center of Applied Genomics, First Faculty of Medicine, Charles University, Prague, Czech Republic. 157Center for Eating Disorders Unit, Parklandklinik, Bad Wildungen, Germany. 158Department of Child and Adolescent Psychiatry, Poznań University of Medical Sciences, Poznań, Poland. 159IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy. 160Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA. 161Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 162Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland. 163Department of Psychiatry, University of Naples SUN, Naples, Italy. 164Department of Psychiatry, University of Perugia, Perugia, Italy. 165Brain Sciences Department, Stremble Ventures, Limassol, Cyprus. 166Adolescent Health Unit, Second Department of Pediatrics, ‘P & A. Kyriakou’ Children's Hospital, University of Athens, Athens, Greece. 167Pediatric Intensive Care Unit, ‘P & A. Kyriakou’ Children’s Hospital, University of Athens, Athens, Greece. 168Neurology, Psychology, and Social and Behavioral Sciences, Utrecht University, Utrecht, the Netherlands. 169School of Psychology, Flinders University, Adelaide, South Australia, Australia. 170Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. 171Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. 172Department of Translational Genomics, Helmholtz Zentrum München, Neuherberg, Germany. 173Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, University Medical Hospital Tübingen, Tübingen, Germany.
International Headache Genetics Consortium

Verneri Anttila177, Ville Artto178, Andrea Carmine Belin179, Irene de Boer180, Dorret I. Boomsma181, Sigrid Borte182, Daniel I. Chasman183, Lynn Cherkas184, Anne Francke Christensen185, Bru Cormand186, Ester Cuenza-Leon177, George Davey-Smith187, Martin Dichgans188, Cornelia van Duijn189, Tonu Esko57, Ann Louise Esserlin190, Michel Ferrari180, Rune R. Frants180, Tobias Freilinger191, Nick Furlotte192, Padhraig Gormelly177, Lyn Griffiths193, Eija Hamalainen194, Thomas Folkmann Hansen6, Marjo Hiekkanen195, M. Arfan Ikram189, Andres Ingason196, Marjo-Riitta Järvelin197, Risto Kajanne194, Mikko Kallelle178, Jaakko Kaprio98,99, Mari Kaunisto195, Lisette J. A. Kogelman6, Christian Kubisch198, Mitja Kurki177, Tobias Kurth199, Lenore Launer200, Terho Lehtimaki201, Davor Lessel198, Lannie Ligthart181, Nadia Litterman192, Arn van den Maagdenberg180, Alfons Macaya202, Rainer Malik188, Massimo Mangino184, George McMahon187, Bertram Muller-Mylskens203, Benjamin M. Neale177, Carrie Northover192, Dale R. Nyholt193, Jes Olesen190, Aarno Palotie58,99,137, Priti Palta194, Linda Pedersen182, Nancy Pedersen1, Danielle Posthuma181, Patricia Pozo-Rosich204, Alice Pressman205, Olli Raitakari206, Markus Schürks199, Celia Sintas86, Kari Stefansson196, Hreinn Stefansdottir196, Stacy Steinberg96, David Strachan207, Gisela Terwindt180, Marta Vila-Pueyo202, Maija Wessman195, Bendik S. Winsvold182, Huiying Zhao193 and John Anker Zwart182

177Broad Institute of MIT and Harvard, Cambridge, MA, USA. 178Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland. 179Karolinska Institutet, Stockholm, Sweden. 180Leiden University Medical Centre, Leiden, the Netherlands. 181VU University, Amsterdam, the Netherlands. 182Oslo University Hospital and University of Oslo, Oslo, Norway. 183Harvard Medical School, Cambridge, MA, USA. 184Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK. 185Danish Headache Center, Copenhagen University Hospital, Copenhagen, Denmark. 186University of Barcelona, Barcelona, Spain. 187Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 188Institute for Stroke and Dementia Research, Munich, Germany. 189Erasmus University Medical Centre, Rotterdam, the Netherlands. 190Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup, Denmark. 191University of Tübingen, Tübingen, Germany. 19223andMe Inc., Mountain View, CA, USA. 193Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia. 194Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. 195Folkhälsan Institute of Genetics, Helsinki, Finland. 196Decode genetics Inc., Reykjavik, Iceland. 197University of Oulu, Biocenter Oulu, Finland. 198University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 199Harvard Medical School, Boston, MA, USA. 200National Institute on Aging, Bethesda, MD, USA. 201School of Medicine, University of Tampere, Tampere, Finland. 202Vall d’Hebron Research Institute, Barcelona, Spain. 203Max Planck Institute of Psychiatry, Munich, Germany. 204Headache Research Group, Universitat Autònoma de Barcelona, Barcelona, Spain. 205National Institute on Aging, Bethesda, MD, USA. 206Population Health Research Institute, St George’s University of London, London, UK.

23andMe Research Team

Michelle Agee208, Babak Alipanahi208, Adam Auton208, Robert Bell208, Katarzyna Bryc208, Sarah Elson208, Pierre Fontanillas208, Nicholas Furlotte208, Karl Heilbron208, David Hinds208, Karen Huber208, Aaron Kleinman208, Nadia Litterman208, Jennifer McCrea208, Matthew McIntyre208, Joanna Mountain208, Elizabeth Noblin208, Carrie Northover208, Steven Pitts208, J. Sathirapongsasuti208, Olga Sazonova208, Janie Shelton208, Suyash Shringarpure208, Chao Tian208, Joyce Tung208, Vladimir Vacic208 and Catherine Wilson208

20823andMe, Inc., Mountain View, CA, USA.
Methods

GWAS results. Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary focus was human phenotypes whose etiopathology is based in the CNS. We thus included 18 sets of GWAS summary statistics from European samples for brain-related complex traits. These were selected because they had at least one genome-wide significant association (as of 2018; for example, Parkinson's disease, schizophrenia and IQ (intelligence quotient)). For comparison, we also included GWAS summary statistics for eight diseases and traits with large sample sizes whose etiopathology is not rooted in the CNS (for example, type 2 diabetes). The selection of these conditions allowed contrasts of tissues and cells highlighted by our primary interest in brain phenotypes with non-brain-related traits.

The phenotypes were: schizophrenia, educational attainment, intelligence, BMI, bipolar disorder, neuroticism, MDD, age at menarche, autism, migraine, amyotrophic lateral sclerosis, ADHD, Alzheimer's disease, age at menopause, coronary artery disease, height, hemoglobin A1c, hipocampal volume, inflammatory bowel disease, intracranial volume, stroke, diabetes mellitus type 2, diabetes adjusted for BMI, waist–hip ratio adjusted for BMI and anorexia nervosa.

For Parkinson's disease, we performed an inverse-variance-weighted meta-analysis using summary statistics from Nalls et al. (9,581 cases, 33,245 controls) and summary statistics from 23andMe (12,657 cases, 941,586 controls). We found a very high genetic correlation (r²) between the results from these cohorts (r² = 0.87, s.e. = 0.068) with little evidence of sample overlap (LDSC bivariate intercept = 0.0288, s.e. = 0.0066). The P-values from the meta-analysis strongly deviated from the expected (Supplementary Fig. 8) but the trend was consistent with polygenicity rather than a minor allele frequency unadjusted for population stratification. In this new meta-analysis, we identified 61 independent loci associated with Parkinson's disease (49 reported previously17 and 12 novel; Supplementary Table 13). The replication datasets were: a mouse study (Supplementary Table 13). The replication datasets were: a mouse study (Supplementary Table 13). The replication datasets were: a mouse study (Supplementary Table 13). The replication datasets were: a mouse study (Supplementary Table 13). The replication datasets were: a mouse study (Supplementary Table 13). The replication datasets were: a mouse study (Supplementary Table 13).

We observed strong Pearson correlations in the cell-type association score (−log₁₀[P]) across the different window sizes tested (Supplementary Fig. 14). Our selected window size (35 kb upstream to 10 kb downstream) had Pearson correlations ranging from 0.94 to 0.98 with the other window sizes, indicating that our results are robust to this parameter.

LD score regression analysis. We used partitioned LD score regression to test whether a given level of association in cell-type specific genes can be attributed to specific cell types. Unlike related tests, LD score regression does not require a metric of gene expression specificity by dividing the expression of each gene in each cell type from the single-cell expression data (if this statistic was not provided by the authors). We used the pre-computed median expression across individuals for the GTEx dataset and excluded tissues that were not sampled at least 100 individuals, non-natural tissues (for example, human–Bacillus–transformed lymphocytes) and testis tissues (outlier using hierarchical clustering). We then averaged the expression of tissues by organ (with the exception of brain tissues) resulting in gene expression profiles of a total of 37 tissues. For all datasets, we filtered out any genes with non-unique names, genes not expressed in any cell type, non-protein-coding genes or for mouse datasets, genes that had no or curvatur 1:1 orthologies between mice and humans (Mouse Genome Informatics, The Jackson Laboratory, version 11/22/2016). Gene expression was then scaled to a total of 1 million UMIs (or transcripts per million (TPM)) for each cell type/tissue. We then calculated a metric of gene expression specificity by dividing the expression of each gene in each cell type by the total expression of that gene in all cell types, leading to values ranging from 0 to 1.0. The meaning that the gene is not expressed in that cell type; 0.6: that 0.6% of the total expression of that gene is performed in that cell type; 1: that 100% of the expression of that gene is performed in that cell type). The 10% most specific genes (Supplementary Tables 14 and 15) in each tissue/cell type were used for this analysis. To capture most regulatory elements that could contribute to the effect of the region on the trait, we extended the gene coordinates by 100 kb.
upstream and by 100 kb downstream of each gene as previously12. SNPs located in 100-kb regions surrounding the 10% most specific genes in each cell type were added to the baseline model (consisting of 53 different annotations) independently for each cell type (1 file for each cell type). We then selected the coefficient z-score P value as a measure of the association of the cell type with the traits. The significance threshold was set to a 0.5 false discovery rate across all tissues/cell types and traits within each dataset. All plots show the mean −log10[P] of partitioned LD score regression and MAGMA. All results for MAGMA or LDSC are available in supplementary data files (Supplementary Tables 1, 2 and 5–9).

We evaluated the effect of varying the window size and varying the percentage of most specific genes on the schizophrenia cell-type association strength (−log10[P]). We observed strong Pearson correlations in the cell-type association strength (−log10[P]) across the different percentages and window sizes tested (Supplementary Fig. 15). Our selected window size (100 kb upstream to 100 kb downstream, 10% most specific genes) had Pearson correlations ranging from 0.96 to 1 with the other window sizes and percentages, indicating that our results are robust to these parameters.

MAGMA versus LDSC ranking. To test whether the cell-type rankings obtained using MAGMA and LDSC in the Zeisel et al. dataset14 were similar, we computed the Spearman rank correlation of the cell-type association strength (−log10[P]) between the two methods for each complex trait. The Spearman rank correlation was strongly correlated with λs (a measure of the deviation of the GWAS test statistics from the expected; Supplementary Fig. 16) and with the average number of cell types below our stringent significance threshold (Spearman correlation = 0.92), indicating that the overall ranking of the cell types is very similar between the two methods, provided that the GWAS is well powered (Supplementary Fig. 17). In addition, we found that λs was strongly correlated with the strength of association of the top tissue (−log10[P]; Spearman correlation = 0.88; Supplementary Fig. 18), as well as with the effect size (beta) of the top tissue (Spearman correlation=0.9), indicating that as the association strength between cell type and trait are stronger for well-powered GWASs. The significance level (−log10[P]) was also strongly correlated with the effect size (Spearman correlation=0.996; Supplementary Fig. 18) for the top cell type of each trait.

Dendritic depletion analysis. This analysis was performed as previously described14. In brief, all datasets were reduced to a set of six common cell types: pyramidal neurons, interneurons, astrocytes, microglia and oligodendrocyte precursors. Specificity was recalculated using only these six cell types. Comparisons were then made between pairs of datasets (denoted in the graph with the format ‘X versus Y’). The difference in specificity for a set of dendrite-enriched genes is thus estimated.

Dendritically enriched transcripts were obtained from Supplementary Table 10 of Caigás et al.9. For the KI dataset14, we used SI pyramidal neurons. For the Zeisel 2018 dataset14, we used all ACTE+ cells as astrocytes, TEBL1G+ as pyramidal neurons, FEINH+ as interneurons, OPC+ as oligodendrocyte precursors and MGL+ as microglia. For the Saunders dataset14, we used all neuron.SlC17a7 cell types from FC, HC or PC as pyramidal neurons; all Neuron.Gad1Gad2 cell types from FC, HC or PC as interneurons; Polydendrocyte as OPCs; Astrocyte as astrocytes, and Microglia as microglia. The Lake datasets both came from a single publication that had data from the frontal cortex, visual cortex and cerebellum. The cerebellum data were not used here. Data from frontal and visual cortices were analyzed separately. All other data were described as described in our previous publication14. The code and data for this analysis are available as an R package (see ‘Code availability’ below).

GO term enrichment. We tested whether genes that were highly specific to a trait-associated cell type (top 20% in a given cell type) and highly associated with the genetics of the traits (top 10% MAGMA gene-level genetic association) were enriched in biological functions using the topGO R package14. As background, we used genes that were highly specific to the cell type (top 20%) or highly associated with the trait (top 10% MAGMA gene-level genetic association).

Parkinson’s disease rare variant enrichments. We searched the literature for genes associated with parkinsonism on the basis of rare and familial mutations. We found 66 genes (listed in Supplementary Table 10). We used linear regression to test whether the z-score specificity metrics (per cell type) of the 66 genes were greater than 0 in the different cell types.

Parkinson’s disease post-mortem transcriptomes. The Moran dataset was obtained from GEO (accession code GSE8397). Processing of the U133a and U133b Cel files was performed separately. The data were read in using the ReadAffy function from the R affy package14; then robust multi-array averaging was applied. The U133a and U133b array expression data were merged after applying robust multi-array averaging. Probe annotation and mapping to HUGO Gene Nomenclature Committee symbols were performed using the biomart R package14. Differential expression analysis was performed using limma14.
75. Auton, A. et al. A global reference for human genetic variation. *Nature* **526**, 65–74 (2015).
76. Watanabe, K., Umčičević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. *Nat. Commun.* **10**, 3222 (2019).
77. Cañigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. *Neuron* **74**, 453–466 (2012).
78. Alexa, A. & Rahnenführer, J. topGO: enrichment analysis for Gene Ontology v.2.36 (2016).
79. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. Affy - analysis of Affymetrix GeneChip data at the probe level. *Bioinformatics* **20**, 307–315 (2004).
80. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. *Nat. Protoc.* **4**, 1184–1191 (2009).
81. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

Acknowledgements

J.B. was funded by a grant from the Swiss National Science Foundation (P400PB_180792). N.G.S. was supported by the Wellcome Trust (108726/Z/15/Z). N.G.S. and L.B. performed part of the work at the Systems Genetics of Neurodegeneration summer school funded by BMBF as part of the e:Med programme (FKZ 01ZX1704). J.H.-L. was funded by the Swedish Research Council (Vetenskapsrådet, award 2014-3863), StratNeuro, the Wellcome Trust (108726/Z/15/Z) and the Swedish Brain Foundation (Hjärnfonden). P.F.S. was supported by the Swedish Research Council (Vetenskapsrådet, award D0886501), the Horizon 2020 Program of the European Union (COSYN, RIA grant agreement no. 610307) and US NIMH (U01 MH109528 and R01 MH07139). E.A. provided expert knowledge on Parkinson’s disease and reviewed the manuscript.

Competing interests

P.F.S. reports the following potentially competing financial interests: current—Lundbeck (advisory committee, grant recipient); past three years—Pfizer (scientific advisory board), Element Genomics (consultation fee) and Roche (speaker reimbursement). C.M.B. reports: Shire (grant recipient, Scientific Advisory Board member); Pearson and Walker (author, royalty recipient).

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41588-020-0610-9. Supplementary information is available for this paper at https://doi.org/10.1038/s41588-020-0610-9. Correspondence and requests for materials should be addressed to J.H.-L. or P.F.S. Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Enrichment of immune genes in GTEx tissues. Enrichment p-values of genes belonging to the GO term ‘Immune System Process’ in the 10% most specific genes in each tissue. The one-sided p-values were computed using linear regression, testing whether the average specificity metric of the gene set was higher than 0 (z-scaled specificity metrics per tissue). The GO term was selected because it is the most associated with inflammatory bowel disease using MAGMA.
Extended Data Fig. 2 | Associations of brain related traits with cell types from the entire mouse nervous system. Associations of the top 15 most associated cell types are shown. The mean strength of association (-\log_{10}P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate).
Extended Data Fig. 3 | Correlation in cell type associations across traits. The Spearman rank correlations between the cell types associations across traits (-log_{10}P) are shown. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).
Extended Data Fig. 4 | Associations of brain related traits with neurons from the central nervous system. Associations of the 15 most associated neurons from the central nervous system (CNS) are shown. The specificity metrics were computed only using neurons from the CNS. The mean strength of association (\(-\log_{10}P\)) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate).
Extended Data Fig. 5 | Associations of cell types with schizophrenia/cognitive traits conditioning on gene-level genetic association of cognitive traits/schizophrenia. MAGMA association strength for each cell type before and after conditioning on gene-level genetic association for another trait. The black bar represents the significance threshold (5% false discovery rate). SCZ (schizophrenia), INT (intelligence), EDU (educational attainment).
Extended Data Fig. 6 | Replication of cell type—trait associations in 88 cell types from 9 different brain regions. The mean strength of association (-log_{10}P) of MAGMA and LDSC is shown for the 15 top cell types for each trait. The bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate).
Extended Data Fig. 7 | Correlation in cell type associations across traits in a replication data set (88 cell types, 9 brain regions). Spearman rank correlations for cell types associations (−log₁₀ P) across traits are shown. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).
Extended Data Fig. 8 | Associations of brain related traits with neurons from 9 different brain regions. Trait—neuron association are shown for neurons of the 9 different brain regions. The specificity metrics were computed only using neurons. The mean strength of association (-log₁₀P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate).
Extended Data Fig. 9 | Top associated cell types with brain related traits among 24 cell types from 5 different brain regions. The mean strength of association (-log10(P)) of MAGMA and LDSC is shown for the 15 top cell types for each trait. The bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold: 5% false discovery rate).
Extended Data Fig. 10 | Top associated neurons with brain related traits among 16 neurons from 5 different brain regions. The specificity metrics were computed only using neurons. The mean strength of association (-log₁₀P) of MAGMA and LDSC is shown for the top 15 cell types for each trait. The bar color indicates whether the cell type is significantly associated with both methods, one method or none (significance threshold= 5% false discovery rate).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection
Data are publicly available. The 10,000 most associated SNPs from the 23andMe cohort are available in Supplementary Table 12.

Data analysis
Code is available at: https://github.com/jbryois/scRNA_disease

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data are publicly available. The 10,000 most associated SNPs from the 23andMe cohort are available in Supplementary Table 12.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	N/A
Data exclusions	GTEx tissues were excluded if expression was measured in less than 100 samples, the tissues were non-natural (e.g. lymphoblast cell lines) and testis (gene expression outlier).
Replication	Multiple datasets in both human and mouse were used for replication
Randomization	N/A
Blinding	N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods		
n/a	Involved in the study	n/a	Involved in the study
✗	Antibodies	✗	ChIP-seq
✗	Eukaryotic cell lines	✗	Flow cytometry
✗	Palaeontology	✗	MRI-based neuroimaging
✗	Animals and other organisms		
✗	Human research participants		
✗	Clinical data		