1. Introduction

Let $I \subset k[x_0, \ldots, x_N]$ be a homogeneous ideal. For $r \geq 0$, the r-th symbolic power of I is defined to be

$$I^{(r)} = \bigcap_{p \in \text{Ass}(R/I)} (I^r R_p \cap R).$$

Symbolic powers of ideals are interesting for a number of reasons, not least of which is that, for a radical ideal I, the r-th symbolic power $I^{(r)}$ is the ideal of all polynomials vanishing to order at least r on $V(I)$ (by the Zariski-Nagata theorem).

Containment relationships between symbolic and ordinary powers are a source of great interest. As an immediate consequence of the definition, $I^{(r)} \subseteq I^r$ for all r. However, the other type of containment, namely that of a symbolic power in an ordinary power is much harder to pin down. It has been proved by Ein-Lazarsfeld-Smith [ELS] and Hochster-Huneke [HH] that $I^{(m)} \subseteq I^r$ for all $m \geq Nr$, but as of yet there are no examples in which this bound is sharp.

It was conjectured by Harbourne in [BDHKSS, Conjecture 8.4.3] (and later in [HaHu, Conjecture 4.1.1] in the case $e = N - 1$) that $I^{(m)} \subseteq I^r$ for all $m \geq er - (e - 1)$, where e is the codimension of $V(I)$. While this conjecture holds in a number of important cases, some counterexamples have also been found. Notably, the main counterexamples come from singular points of hyperplane arrangements [BNAL]. One particular family is known in the literature under the name of Fermat configurations of points cf. \mathbb{P}^2 [BNAL, MS]. These have been recently generalized to Fermat-like configurations of lines in \mathbb{P}^3 in [MS]. The Ceva(n) arrangement of hyperplanes in \mathbb{P}^N is defined by the linear factors of

$$F_{N,n} = \prod_{0 \leq i < j \leq N} (x_i^n - x_j^n),$$

where $n \geq 3$ is an integer.

In [DST] Dunnicki, Szemberg, and Tutaj-Gasinska showed that, for the ideal $I_{2,3}$ corresponding to all triple intersection points of the lines defined by linear factors of $F_{2,3}$ in \mathbb{P}^2, $F_{2,3} \notin I_{2,3}^2$, but $F_{2,3} \in I_{2,3}^{(3)}$. This was the first counterexample to the above mentioned conjecture. Later, in [MS] Malara and Szpond generalized this construction to \mathbb{P}^3, by showing that for the ideal $I_{3,n}$, corresponding to all triple intersection lines of the planes defined by the linear factors of $F_{3,n}$, $F_{3,n} \notin I_{3,n}^2$, but $F_{3,n} \in I_{3,n}^{(3)}$. In the following, the construction of counterexamples to $I^{(3)} \subseteq I_2$ from Fermat arrangements is generalized to \mathbb{P}^N for all $N \geq 2$.

2. Main result

Let \(n \in \mathbb{N} \). Let \(k \) be a field which contains a primitive \(n \)-th root of unity, \(\varepsilon \). For each \(N \in \mathbb{N} \), let \(S_N := k[x_0, x_1, \ldots, x_N] \), and define

\[
F_{N,n} := \prod_{0 \leq i < j \leq N} (x_i^n - x_j^n).
\]

Let

\[
C_{N,n} := \bigcap_{0 \leq i < j \leq N} (x_i, x_j)
\]

\[
J_{N,n} := \bigcap_{0 \leq i < j < l \leq N} (x_i - \varepsilon^a x_j, x_i - \varepsilon^b x_l, x_j - \varepsilon^{b-a} x_l),
\]

and let

\[
I_{N,n} := J_{N,n} \cap C_{N,n}.
\]

We show in Lemma 2.2 that \(I_{N,n} \) is the ideal of the \(N - 2 \) dimensional flats arising from triple intersection of hyperplanes corresponding to linear factors of \(F_{N,n} \).

Theorem 2.1. For all \(N \geq 2 \), \(I_{N,n}^{(3)} \not\subseteq I_{N,n}^2 \).

Before we can prove this, we must introduce a few lemmas.

Lemma 2.2. The ideal \(I_{N,n} \) defined above defines the union of all the \(N - 2 \) dimensional linear spaces that are intersections of at least three hyperplanes corresponding to linear factors of \(F_{N,n} \).

Proof. Let \(0 \leq a, b < n \), and let \(0 \leq i < j \leq l \leq N \). Then

\[
(x_i - \varepsilon^a x_j, x_i - \varepsilon^b x_l) = (x_i - \varepsilon^a x_j, x_i - \varepsilon^b x_l, x_j - \varepsilon^{b-a} x_l)
\]

defines the intersection of the three hyperplanes corresponding to \((x_i - \varepsilon^a x_j), (x_i - \varepsilon^b x_l), \) and \((x_j - \varepsilon^{b-a} x_l) \). Furthermore

\[
(x_i, x_j) = (x_i - \varepsilon^a x_j : a = 0, 1, \ldots, n),
\]

so \((x_i, x_j)\) defines the intersection of \(n \) hyperplanes corresponding to linear factors of \(x_i^n - x_j^n \).

It remains to be seen that all \(N - 2 \) dimensional linear spaces that arise as intersections of at least three hyperplanes corresponding to linear factors of \(F_{N,n} \) are accounted for above. Let \(L \) be the ideal defining such a linear space, then \(L \) contains three linearly dependent binomials of the form \(x_i - \varepsilon^a x_j, x_k - \varepsilon^b x_l, x_u - \varepsilon^c x_v \). Without loss of generality (after multiplication by appropriate powers of \(\varepsilon \)) this yields \(i = k \) and \(\{j, l\} = \{u, v\} \). If \(j \neq l \) then \(L = (x_i - \varepsilon^a x_j, x_i - \varepsilon^b x_l) \) is one of the primes appearing in the decomposition of \(J_{N,n} \) and if \(j = l \) then \(L = (x_i, x_j) \) is one of the primes appearing in the decomposition of \(C_{N,n} \). \(\square \)

Lemma 2.3. Let \(R \) and \(S \) be finitely generated graded-local Noetherian rings. Let \(m \) be the homogeneous maximal ideal of \(R \). Let \(I \subset R \) be a homogeneous ideal, and suppose \(F \not\subseteq I^r \) for some \(r \in \mathbb{N} \). Let \(J \subset S \) be an ideal, and let \(\pi : S \to R \) be a (not necessarily homogeneous) ring homomorphism such that \(\pi(J) \subseteq I \). If \(G \in R \) is such that \(\pi(G) = Fg \), where \(g \not\in m \), then \(G \not\subseteq J^r \).
Thus \(F g = \pi(G) \subseteq (\pi(J))^r \subseteq \Gamma' \). Then

\[
F g = \pi(G) \subseteq (\pi(J))^r \subseteq \Gamma'.
\]

This lemma allows us to construct an inductive argument for the main theorem.

Proof of Theorem 2.1. By Lemma 2.2 \(F_{N,n} \) must vanish to order 3 or greater on each of the linear spaces whose union is \(V(I_{N,n}) \), thus \(F_{N,n} \in I^{(3)}_{N,n} \). To finish the proof, it suffices to show that for all \(N \geq 2 \), \(F_{N,n} \notin I^2_{N,n} \).

We argue by induction on \(N \). For \(N = 2 \), this is proved in the paper of Dumnicki, Szemberg, and Tutaj-Gasinska [DST].

For \(N > 3 \), assume that \(F_{N-1,n} \notin I^2_{N-1,n} \) and consider the evaluation homomorphism \(\pi : S_N \to S_{N-1} \) defined by \(\pi(x_N) = 1 \) and \(\pi(x_i) = x_i \) for \(i \leq N - 1 \). Then:

\[
\pi(I_{N,n}) \subseteq C_{N-1,n} \cap \left(\bigcap_{0 \leq i < N} (x_i, 1) \right) \subseteq I_{N-1,n}.
\]

We note that \(\pi(F_{N,n}) = F_{N-1,n}g \) where \(g = \prod_{0 \leq i < N} (x_i^n - 1) \). Since \(g \notin (x_0, \ldots, x_{N-1}) \), we conclude by Lemma 2.3 that \(F_{N,n} \notin I^2_{N,n} \). □

3. Concluding Remarks

Another proof for the noncontainment noncontainment \(I^{(3)}_{N,n} \subseteq I^2_{N,n} \) has been found by Grzegorz Malara and Justyna Szpond and can bee seen in their upcoming paper [MS2].

References

[BNAL] Th. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, T. Szemberg. *Bounded Negativity and Arrangements of Lines*. Int. Math. Res. Not. IMRN 2015, no. 19, 9456–9471

[BDHKSS] Th. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A.L. Knutsen, W. Syzdek, T. Szemberg. A primer on Seshadri constants. pp. 33–70, in: Interactions of Classical and Numerical Algebraic Geometry, Proceedings of a conference in honor of A. J. Sommese, held at Notre Dame, May 22–24 2008. Contemporary Mathematics vol. 496, 2009, eds. D. J. Bates, G-M. Besana, S. Di Rocco, and C. W. Wampler, 362 pp.

[DST] M. Dumnicki, T. Szemberg and H. Tutaj-Gasińska. *A counter-example to a question by Huneke and Harbourne*. J. Algebra 393 (2013), 24–29.

[ELS] L. Ein and R. Lazarsfeld and K. Smith. *Uniform Behavior of Symbolic Powers of Ideals*. Invent. Math., 144 (2001), 241–252.

[HaHu] B. Harbourne, H. Huneke. *Are symbolic powers highly evolved?*, J. Ramanujan Math. Soc. 28, No.3 (Special Issue-2013) 311–330.

[HH] M. Hochster and C. Huneke. *Comparison of symbolic and ordinary powers of ideals*. Invent. Math. 147 (2002), no. 2, 349–369.

[MS] G. Malara, J. Szpond. *Fermat-type configurations of lines in \(\mathbb{P}^3 \) and the containment problem*, preprint, 2017, arXiv 1702.02160.

[MS2] B. Malara, J. Spond. *On codimension two flats in Fermat-type arrangements*, preprint, 2017.