GEOMETRICAL EFFECTS OF BARYON DENSITY INHOMOGENEITIES ON PRIMORDIAL NUCLEOSYNTHESIS

M. ORITO, T. KAJINO, R. N. BOYD, AND G. J. MATHEWS

Received 1996 September 3; accepted 1997 June 3

ABSTRACT

We discuss effects of fluctuation geometry on primordial nucleosynthesis. For the first time we consider condensed cylinder and cylindrical-shell fluctuation geometries in addition to condensed spheres and spherical shells. We find that a cylindrical shell geometry might allow for an appreciably higher baryonic fraction of the closure density ($\Omega_\rho h^2_50 < 0.2$) than that allowed in spherical inhomogeneous or standard homogeneous big bang models. This result, which is contrary to those of some other recent studies, is due to both geometry and recently revised estimates of the uncertainties in the observationally inferred primordial light-element abundances. We also find that inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can lead to significant Be and B production. In particular, this geometry produces a primordial beryllium abundance as high as $[\text{Be}] = 12 + \log (\text{Be}/\text{H}) \approx -3$ while still satisfying all of the light-element abundance constraints.

Subject headings: cosmology: theory — dark matter — early universe — nuclear reactions, nucleosynthesis, abundances

1. INTRODUCTION

The analysis of primordial nucleosynthesis provides valuable limits on cosmological and particle physics parameters through a comparison between the predicted and inferred primordial abundances of D, ^3He, ^4He, and ^7Li. For standard homogeneous big bang nucleosynthesis (HBBN) the predicted primordial abundances of these light elements are in rough accord with the values inferred from observations provided that baryon-to-photon ratio ($\equiv \eta$) is between about 2.5×10^{-10} and 6×10^{-10}. This corresponds to an allowed range for the baryon fraction of the universal closure density Ω_b^{HBBN} (Walker et al. 1991; Smith et al. 1993; Copi, Schramm, & Turner 1995; Schramm & Mathews 1995),

$$0.04 \lesssim \Omega_b^{\text{HBBN}} h^2_5 \lesssim 0.08,$$

where $\eta = 6.6 \times 10^{-9} \Omega_b h^2_5$. The lower limit on Ω_b^{HBBN} arises mainly from the upper limit on the deuterium plus ^3He abundance (Yang et al. 1984; Walker et al. 1991; Smith et al. 1993), and the upper limit to Ω_b arises from the upper limit on the ^4He mass fraction Y_p and/or the lower limit on the deuterium abundance D/H $\geq 1.2 \times 10^{-5}$ (Linsky et al. 1993, 1995). Here, h_5 is the Hubble constant in units of 50 km s$^{-1}$ Mpc$^{-1}$. The fact that this range for $\Omega_b h^2_5$ is so much greater than the current upper limit to the contribution from luminous matter $\Omega_Lh^2_{100} \lesssim 0.01$ (see, however, Jedamzik, Mathews, & Fuller 1995) is one of the strongest arguments for the existence of baryonic dark matter.

Over the years HBBN has provided strong support for the standard, hot big bang cosmological model as mentioned above. However, as the astronomical data have become more precise in recent years, a possible conflict between the predicted abundances of the light element isotopes from HBBN and the abundances inferred from observations has been suggested (Olive & Steigman 1995; Steigman 1996a; Turner et al. 1996; Hata et al. 1996; see also Hata et al. 1995).

There is now a good collection of abundance information on the ^4He mass fraction, Y_p, O/H, and N/H in over 50 extragalactic H ii regions (Pagel et al. 1992; Pagel 1993; Izatov, Thuan, & Lipovetsky 1994; Skillman & Kennicutt 1995). In an extensive study based upon these observations, the upper limit to η from the observed ^4He abundance was found to be $\sim 3.5 \times 10^{-10}$ (Olive & Steigman 1995; Olive & Scully 1996) when a systematic error in Y_p of $\Delta Y_{\text{sys}} = 0.005$ is adopted. Recently, it has been recognized that the ΔY_{sys} may even be factor of 2 or 3 larger (Izatov, Thuan, & Lipovetsky 1995; Copi et al. 1995; Schramm & Mathews 1995; Sasselov & Goldwirth 1995), making the upper limit to η as large as 7×10^{-10}.

On the other hand, the lower bound to η has been derived directly from the upper bound to the combined abundances of D and ^3He. This is because it is believed that deuterium is largely converted into ^3He in stars; the lower bound then applies if, as has generally been assumed, a significant fraction of ^3He survives stellar processing (Walker et al. 1991).

However, there is mounting evidence that low-mass stars destroy ^3He (Wasserburg, Boothroyd, & Sackmann 1995; Charbonnel 1995), although it is possible that massive stars produce ^3He. Therefore, the uncertainties of chemical evolution models render it difficult to infer the primordial deuterium and ^3He abundances by using observations of the present interstellar medium (ISM) or from the solar meteoritic abundances. Recent data and analysis lead to a lower bound of $\eta \gtrsim 3.5 \times 10^{-10}$ on the basis of D and ^3He (Dearborn, Steigman, & Tosi 1996; Hata et al. 1996; Steigman 1996a; Steigman & Tosi 1995), if the fraction of...
3\He that survives stellar processing in the course of galactic evolution exceeds $\frac{1}{2}$. This poses a potential conflict between the observations (Y_p with low ΔY_{sys}, D) and HBBN.

In this context, possible detections (Songaila et al. 1994; Carswell et al. 1994; 1996; Tytler & Fan 1994; Tytler, Fan, & Burles 1996; Rugers & Hogan 1996; Wampler et al. 1996) of an isotope-shifted Lyman-α absorption line at high redshift ($z \gtrsim 3$) along the line of sight to quasars are of considerable interest. Quasar absorption systems can sample low-metallicity gas at early epochs where little destruction of D should have occurred. Thus, they should give definitive measurements of the primordial cosmological D abundance. A very recent high-resolution detection by Rugers & Hogan (1996) suggests a ratio D/H of

$$D/H = 1.9 \pm 0.4 \times 10^{-4}.$$

This result is consistent with the estimates made by Songaila et al. (1994) and Carswell et al. (1994), using lower resolution. It is also similar to that found recently in another absorption system by Wampler et al. (1996), but it is inconsistent with high-resolution studies in other systems at high redshift (Tytler, Fan, & Burles 1996; Burles & Tytler 1996) and with the local observations of D and $^3\He$ in the context of conventional models of stellar and Galactic evolution (Edmunds 1994; Gloeckler & Geiss 1996). If the high value of D/H is taken to be the primordial abundance, then the consistency between the observations and HBBN is recovered and the allowed range of Ω_b inferred from HBBN changes to $\Omega_b \sim 0.024 \pm 0.002$ (Jedamzik, Fuller, & Mathews 1994a; Krauss & Kernan 1994; Vangioni-Flam & Casse 1995). In this case, particularly if h_{50} is greater than ~1.5, the big bang prediction could be so close to the baryonic density in luminous matter that little or no baryonic dark matter is required (Persic & Salucci 1992; Jedamzik, Mathews, & Fuller 1995). This could be in contradiction with the observations, particularly if the recently detected sources of halo microlensing (Alcock et al. 1993; Bennett et al. 1995; Alcock et al. 1996a, 1996b; Aubourg et al. 1993) are shown to be baryonic. This low baryonic density limit would also be contrary to evidence (White et al. 1993; White & Fabian 1995) that baryons in the form of hot X-ray gas may contribute a significant fraction of the closure density.

The observations by Tytler et al. (1996) and Burles & Tytler (1996) yield a low value of D/H. Their average abundance is

$$D/H = 2.4 \pm 0.9 \times 10^{-5},$$

with $\pm 2\sigma$ statistical error and $\pm 1\sigma$ systematic error. This value is consistent with the expectations of local galactic chemical evolution. However, this value would imply an HBBN helium abundance of $Y_p = 0.249 \pm 0.003$, which is only marginally consistent with the observationally inferred Y_p even if the high ΔY_{sys} is adopted.

With this in mind, it is worthwhile to consider alternative cosmological models. One of the most widely investigated possibilities is that of an inhomogeneous density distribution at the time of nucleosynthesis. Such studies were initially motivated by speculation (Witten 1984; Applegate & Hogan 1985) that a first-order quark-hadron phase transition (at $T \sim 100$ MeV) could produce baryon inhomogeneities as the baryon number was trapped within bubbles of shrinking quark-gluon plasma. In previous calculations using the baryon inhomogeneous big bang nucleosynthesis (IBBN) model, it has usually been assumed that the geometry of baryon density fluctuations is approximated by condensed spheres. Such geometry might be expected to result from a first-order QCD phase transition in the limit that the surface tension dominated the evolution of shrinking bubbles of quark-gluon plasma. However, the surface tension may not be large (Kajantie, Kärkkäinen, & Rummukainen 1990, 1991, 1992) during the QCD transition, which could lead to a "shell" geometry or the development of dendritic fingers (Freese & Adams 1990). Furthermore, such fluctuations might have been produced by a number of other processes operating in the early universe (cf. Malaney & Mathews 1993), for which other geometries may be appropriate, e.g., strings, sheets, etc. Thus, the shapes of any cosmological baryon inhomogeneities must be regarded as uncertain.

The purpose of this paper is, therefore, to explore the sensitivity of the predicted elemental abundances in IBBN models to the geometry of the fluctuations. We consider here various structures and profiles for the fluctuations in addition to condensed spheres. Mathews et al. (Mathews et al. 1990; Mathews, Boyd, & Fuller 1993; Mathews, Kajino, & Orito 1996) found that placing the fluctuations in spherical shells rather than condensed spheres allowed for lower calculated abundances of $^3\He$ and $^7\Li$ for the same Ω_b. We find that shell geometries allow for a slightly higher baryon density. This we attribute to the fact that, for optimum parameters, shell geometries involve a larger surface area to volume ratio and hence more efficient neutron diffusion.

An important possible consequence of baryon inhomogeneities at the time of nucleosynthesis may be the existence of unique nucleosynthetic signatures. Among the possible observable signatures of baryon inhomogeneities already pointed out in previous works are the high abundances of heavier elements such as beryllium and boron (Boyd & Kajino 1989; Kajino & Boyd 1990; Malaney & Fowler 1989; Terasawa & Sato 1990; Kawano et al. 1991), intermediate mass elements (Kajino, Mathews, & Fuller 1990), or heavy elements (Malaney & Fowler 1988; Applegate, Hogan, & Scherrer 1988; Rauscher et al. 1994). Such possible signatures are also constrained, however, by the light-element abundances. It was found in several previous calculations that the possible abundances of synthesized heavier nuclei was quite small (e.g., Alcock et al. 1990; Terasawa & Sato 1990; Rauscher et al. 1994). We find, however, that substantial production of heavier elements may nevertheless be possible in IBBN models with cylindrical geometry.

2. Baryon Density Inhomogeneities

After the initial suggestion (Witten 1985) of QCD motivated baryon inhomogeneities it was quickly realized (Applegate & Hogan 1985; Applegate, Hogan, & Scherrer 1987) that the abundances of primordial nucleosynthesis could be affected. A number of papers have addressed this point (Alcock, Fuller, & Mathews 1987; Applegate et al. 1987, 1988; Fuller, Mathews, & Alcock 1988; Kurki-Suonio et al. 1988, 1990; Terasawa & Sato 1989a, 1989b, 1989c,
1990; Kurki-Suonio & Matzner 1989, 1990; Mathews et al. 1990, 1993b, 1994; Jedamzik et al. 1994a, 1995; Jedamzik et al. 1994b; Thomas et al. 1994; Rauscher et al. 1994). Most recent studies in which the coupling between the baryon diffusion and nucleosynthesis has been properly accounted for (e.g., Terasawa & Sato 1989a, 1989b, 1989c, 1990; Kurki-Suonio & Matzner 1989, 1990; Mathews et al. 1990, 1993b; Jedamzik et al. 1994a, 1994b; Thomas et al. 1994) have concluded that the upper limit on $\Omega_b h^2$ is virtually unchanged when compared to the upper limit on $\Omega_b h^2$ derived from standard HBBN. It is also generally believed (e.g., Vangioni-Flam & Casse 1995) that the same holds true if the new high D/H abundance is adopted.

However, in the previous studies, it was usually assumed that a fluctuation geometry of centrally condensed spheres produces the maximal impact on nucleosynthesis. Here we emphasize that condensed spheres are not necessarily the optimal nor the most physically motivated fluctuation geometry.

Several recent lattice QCD calculations (Kajantie et al. 1990, 1991, 1992; Brower et al. 1992) indicate that the surface tension of nucleated hadron bubbles is relatively low. In this case, after the hadron bubbles have percolated, the structure of the regions remaining in the quark phase may not form spherical droplets but rather sheets or filaments. We note that significant effects on nucleosynthesis may require a relatively strong first-order phase transition and sufficient surface tension to generate an optimum separation distance between baryon fluctuations (Fuller et al. 1988). However, even if the surface tension is low, the dynamics of the coalescence of hadron droplets may lead to a large separation between regions of shrinking quark-gluon plasma. Furthermore, even though lattice QCD has not provided convincing evidence for a strongly first-order QCD phase transition (e.g., Fukugita & Hogan 1991), the order of the transition must still be considered as uncertain (Gottlieb 1991; Petersson 1993). It depends sensitively upon the number of light quark flavors. The transition is first order for three or more light flavors and second order for two. However, the proximity of the s quark mass to the transition temperature has made it difficult to determine the order of transition. At least two recent calculations (Iwasaki et al. 1995; Kanaya 1996) indicate a clear signature of a first-order transition when realistic u, d, s quark masses are included, but others indicate either second-order or no phase transition at all.

In addition to the QCD phase transition, there remain a number of alternative mechanisms for generating baryon inhomogeneities prior to the nucleosynthesis epoch (cf. Malaney & Mathews 1993), such as electroweak baryogenesis (Fuller et al. 1994), inflation-generated iso-curvature fluctuations (Dolgov & Silk 1993), and kaon condensation (Nelson 1990). Cosmic strings might also induce baryon inhomogeneities through electromagnetic (Malaney & Butler 1989) or gravitational interactions.

Since the structures, shapes, and origin of any baryon inhomogeneities are uncertain, a condensed spherical geometry is not necessarily the most physically motivated choice. Indeed, we will show that a condensed spherical geometry is also not necessarily the optimum to allow for the highest values for Ω_b while still satisfying the light-element abundance constraints. Here we consider the previously unexplored cylindrical geometry. String geometries may naturally result from various baryogenesis scenarios such as superconducting axion strings or cosmic strings. Also, the fact that QCD is a string theory may predispose QCD-generated fluctuations to a stringlike geometry (Kajino & Tassie 1993; Tassie & Kajino 1993). Hence, cylindrical fluctuations may even be a natural choice.

3. OBSERVATIONAL CONSTRAINTS

We adopt the following constraints on the observed helium mass fraction Y_p and ^7Li taken from Balbes et al. (1993), Schramm & Mathews (1995), Copi et al. (1995), and Olive & Scully (1996):

$$0.226 \leq Y_p \leq 0.247,$$

$$0.7 \times 10^{-10} \leq ^7\text{Li}/\text{H} \leq 3.5 \times 10^{-10}.$$

This primordial ^4He abundance constraint includes a statistical uncertainty of ± 0.003 and possible systematic errors as much as $+0.01/ -0.005$ with central value of 0.234. A recent reinvestigation (with new data) of the linear regression method for estimating the primordial ^4He abundance has called into question the systematic uncertainties assigned to Y_p (Izatov, Thuan, & Lipovetsky 1997). The upper limit to Y_p indicated in equation (4) is essentially equal to the limit derived in their study with 1 σ statistical error.

The upper limit to the lithium abundance adopted here includes the systematic increase from the model atmospheres of Thorburn (1994) and the possibility of as much as a factor of 2 increase due to stellar destruction. This is consistent with the recent observations of ^6Li in halo stars (Smith, Lambert, & Nissen 1992; Hobbs & Thorburn 1994). We note that the recent discussion of model atmospheres (Kurucz 1995) suggests that as much as an order of magnitude upward shift in the primordial lithium abundance could be warranted due to the tendency of one-dimensional models to underestimate the ionization of lithium. Furthermore, a recent determination of the lithium abundance in the globular cluster M92 having the metallicity $[\text{Fe}/\text{H}] = -2.25$ has indicated that at least one star out of seven shows $^[7]\text{Li} = 12 + \log (\text{Li}/\text{H}) \approx 2.5$ (Boesgaard 1996a). Since the abundance measurement of the globular cluster stars is more reliable than that of field stars, this detection along with the possible depletion of lithium in stellar atmospheres suggests that a lower limit to the primordial abundance is given by $3.2 \times 10^{-10} \leq ^7\text{Li}$. There also remains the question as to why several stars that are in all respects similar to the other stars in the Population II “lithium plateau,” are so lithium rich or lithium deficient (Deliyannis, Boesgaard, & King 1995; Boesgaard 1996a, 1996b). Until this is clarified, it may be premature to assert that the Population II abundance of lithium reflects the primordial value. The primordial abundance may instead correspond to the much higher value typical of Population I stars, and the lithium has been depleted down to the lithium plateau in the Population II stars. The observational evidence (Deliyannis, Pinsonneault, & Duncan 1993) for a $\pm 25\%$ dispersion in the Population II lithium plateau is consistent with this hypothesis (Deliyannis et al. 1993, Charbonnel 1996; Steigman 1996b). Rotational depletion was studied in detail by Pinsonneault, Deliyannis, & Demarque (1992), who note that the depletion factor could have been as large as 10. Chaboyer & Demarque (1994) also demonstrated that models incorporating both rotation and diffusion provide a good match to the observed ^7Li depletion with decreasing...
temperature in Population II stars. Their model indicated that the initial lithium abundance could have been as high as \(\frac{\text{Li}}{\text{H}} = 1.23 \pm 0.78 \times 10^{-9} \).

A recent study (Ryan et al. 1996), which includes new data on seven halo dwarfs, fails to find evidence of significant depletion through diffusion, although other mechanisms are not excluded. For example, stellar wind-driven mass loss could deplete a high primordial lithium abundance of down to the Population II value (eq. [5]) in a manner consistent with \(^{6}\text{Li}\) observations (Vauclair & Charbonnel 1995). Furthermore, it could be possible (Yoshii, Mathews, & Kajino 1995) that some of the \(^{6}\text{Li}\) is the result of more recent accretion of interstellar material that could occur as halo stars episodically plunge through the disk. Such a process could mask the earlier destruction of lithium. For comparison, therefore, we adopt a conservative upper limit on the primordial lithium abundance of

\[\frac{\text{Li}}{\text{H}} < 1.5 \times 10^{-9}. \] (6)

Finally, the primordial abundance of deuterium is even harder to clarify since it is easily destroyed in stars (at temperatures exceeding about \(6 \times 10^6 \) K). Previously, limits on the deuterium, and also the \(^3\text{He}\), abundances have been inferred from their presence in presolar material (e.g., Walker et al. 1991). It is also inferred from the detection in the local interstellar medium (ISM) through its ultraviolet absorption lines in stellar spectra (McCullough 1992; Linsky et al. 1993, 1995). The limit from ISM data is consistent with that from abundances in presolar material. It has been argued that there are no important astrophysical sources of deuterium (Epstein, Lattimer, & Schramm 1976) and ongoing observational attempts to detect signs of deuterium synthesis in the Galaxy are so far consistent with this hypothesis (see Pasachoff & Vidal-Madjar 1989). If this is indeed so, then the lowest D abundance observed today should provide a lower bound to the primordial abundance. Recent precise measurements by Linsky et al. (1995, 1993) using the Hubble Space Telescope imply

\[\frac{D}{H} > 1.2 \times 10^{-5}. \] (7)

We adopt this as a lower limit to the primordial deuterium abundance for the purpose of exploring the maximal cosmological impact from IBBN. In addition, we consider the two possible detections of the deuterium abundance along the line of sight to high redshifted quasars (eqs. [2] and [3]) to obtain possible upper and lower limits.

In order to derive a lower limit to \(\Omega_D h^2\), it is useful to consider the sum of deuterium plus \(^3\text{He}\). In the context of a closed box instantaneous recycling approximation, it is straightforward (Olive et al. 1990) to show that the sum of primordial deuterium and \(^3\text{He}\) can be written

\[y_{23p} = A^{(91-1)} y_{23o} \frac{X_\odot}{X_p}, \] (8)

where \(A_\odot \) is the fraction of the initial primordial deuterium still present when the solar system formed, \(q_3 \) is the fraction of \(^3\text{He}\) that survives incorporation into a single generation of stars, \(y_{23o} \) is the presolar value of \([D + ^3\text{He}]/\text{H}\) inferred from gas-rich meteorites, and \(X_\odot/X_p \) is the ratio of the presolar hydrogen mass fraction to the primordial value. These factors together imply an upper limit (Walker et al. 1991; Copi et al. 1995) of

\[y_{23p} \leq 1.1 \times 10^{-4}. \] (9)

4. Calculations

The calculations described here are based upon the coupled diffusion and nucleosynthesis code of Mathews et al. (1990), but with a number of nuclear reaction rates updated and the numerical diffusion scheme modified to accommodate cylindrical geometry. We also have implemented an improved numerical scheme that gives a more accurate description of the effects of proton and ion diffusion, and Compton drag at late times. Although our approach is not as sophisticated as that of Jedamzik et al. (1994a), it produces essentially the same results for the parameters employed here. We have also included all of the new nuclear reaction rates summarized in Smith, Kawano, & Malaney (1993) as well as those given in Thomas et al. (1993). We obtain the same result as Smith et al. (1993) using these rates and homogeneous conditions in our IBBN model.

Calculations were performed in a cylindrical geometry both with the high-density regions in the center (condensed cylinders), and with the high-density regions in the outer zone of computation (cylindrical shells). Similarly, calculations were made in a spherical geometry with the high-density regions in the center (condensed spheres) and with the high-density region in the outer zones of computation (spherical shells).

In the calculations, the fluctuations are resolved into 16 zones of variable width as described by Mathews et al. (1990). We assumed three neutrino flavors and an initially homogeneous density within the fluctuations. Such fluctuation shapes are the most likely to emerge, for example, after neutrino-induced expansion (Jedamzik & Fuller 1994). We use a neutron mean lifetime of \(\tau_n = 8870.0 \) s (Particle Data Group 1994). In addition to the cosmological parameter, \(\Omega_D \) and fluctuation geometry, there remain three parameters to specify the baryon inhomogeneity. They are \(R \), the density contrast between the high- and low-density regions; \(f_v \), the volume fraction of the high-density region; and \(r \), the average separation distance between fluctuations. Of course a realistic inhomogeneity might not correspond to a single distance scale but would involve an average over a distribution of distance scales. However, in Meyer et al. (1991) it has been shown that introducing such an ensemble average makes very little difference in the results. Hence, we have restricted our analysis to a single distance scale.

5. Results

The parameters \(R \) and \(f_v \) were optimized to allow for the highest values for \(\Omega_D h^2 \), while still satisfying the light-element abundance constraints. For fluctuations represented by condensed spheres, optimum parameters are \(R \sim 10^6 \) and \(f_v^{1/3} \sim 0.5 \) (Mathews et al. 1996). For other fluctuation geometries, we have found that optimum parameters are

\[R \sim 10^6 \] for all fluctuation geometries ,
\[f_v^{1/3} \sim 0.19 \] for spherical shells ,
\[f_v^{1/2} \sim \begin{cases} 0.5 & \text{for condensed cylinders} \\ 0.15 & \text{for cylindrical shells} \end{cases} \]

although there is not much sensitivity to \(R \) once \(R \gtrsim 10^3 \). Regarding \(f_v \), we have written the appropriate length scale of high-density regions, i.e., \(f_v^{1/3} \) and \(f_v^{1/2} \) for the spherical and cylindrical fluctuation geometries, respectively. The variable parameters in the calculation are then the fluctua-
Fig. 1.—Contours of allowed values for baryon-to-photon ratio \(\eta \) (or \(\Omega_b h^2 \)) and fluctuation separation radius \(r \) based upon the various light-element abundance constraints as indicated. The separation \(r \) is given in units of meters comoving at \(kT = 1 \) MeV. This calculation is based upon baryon density fluctuations represented by condensed spheres. The cross-hatched region is allowed by the adopted primordial abundance limits with high (eq. [2]) and low (eq. [3]) deuterium abundance in Lyman limit systems and also a higher extreme \(^7\)Li upper limit (eq. [5]). The single-hatched region depicts the allowed parameters for the lower \(^7\)Li (eq. [5]) constraint. Note that the \(^7\)Li abundance is the sum of \(^7\)Li and \(^7\)Be.

5.1. Constraints on \(\Omega_b h_{50}^2 \)

Figures 1, 2, 3a, and 4a show contours of allowed parameters in the \(r \) versus \(\eta \) and \(\eta \) versus \(\Omega_b h_{50}^2 \) plane, for the adopted light-element abundance constraints of equations (4)-(6) and for a possible Lyman-\(\alpha \) D/H of equations (2) and (3), for the condensed sphere, spherical shell, condensed cylinder, and cylindrical shell fluctuation geometries, respectively. The fluctuation cell radius \(r \) is given in units of meters for a comoving length scale fixed at a temperature of \(kT = 1 \) MeV. In previous work, (e.g., Mathews et al. 1990) results were given relative to the comoving length of the QCD scale (\(T \approx 100 \) MeV). An approximate comparison with those results can be made by scaling our distances by the ratio of comoving temperatures, i.e., a factor of 0.01. Both of the possible \(^7\)Li limits, equations (5) and (6), which we have discussed above, are also drawn as indicated. In order to clearly distinguish the two abundance constraints, we use the single and double-cross hatches for the regions allowed by the adopted lower (eq. [5]) and higher (eq. [6]) limits to the \(^7\)Li primordial abundance.

Even in the HBBN scenario, if the low D/H of equation (3) (Burles & Tytler 1996) is adopted as primordial, this range for D/H appears to be compatible with the \(^7\)Li abundance only when a higher (Population I) primordial \(^7\)Li abundance limit is adopted, except for a very narrow region of \(\eta \sim 6 \times 10^{-10} \) and \(r \leq 10^2 \) m. This conclusion remains unchanged for any other fluctuation geometries. Therefore, the acceptance of the low (Burles & Tytler 1996) value of D/H would require that significant depletion of \(^7\)Li has occurred.

In contrast, adoption of the high D/H of equation (2) (Rugers & Hogan 1996) as primordial allows the concord-
ance of all light elements. The upper limits to η and Ωb h50² are largely determined by D/H and 7Li. The concordance range for the baryon density is comparable to that for HBBN for small separation distance r. However, there exist other regions of the parameter space with optimum separation distance. These roughly correspond to the neutron diffusion length during nucleosynthesis (Mathews et al. 1990), which increases the maximum allowable value of the baryonic contribution to the closure density to Ωb h50² ≤ 0.05 for the cylindrical geometry, as displayed in Figure 4a. This is similar to the value for spherical shells as shown in Mathews et al. (1996) and also in Figure 2 in the present work. The limits in the condensed sphere case, however, are essentially unchanged from those of the HBBN model. If the primordial 7Li abundance could be as high as the upper limit of Li/H ≤ 1.5 × 10⁻⁹, the maximum allowable value of the baryonic content in the condensed sphere scenario would increase to Ωb h50² ≤ 0.08, with similar values for the spherical shell case (Mathews et al. 1996). For both the condensed cylinder and cylindrical shell case, the upper limits could be as high as Ωb h50² ≤ 0.1 as shown in Figures 3a and 4a. These higher upper limits relative to those of the HBBN are of interest, since they are consistent with the inferred baryonic mass in the form of hot X-ray gas (White et al. 1993; White & Fabian 1995) in dense galactic clusters. However, as noted above, this requires significant stellar depletion of 7Li.

In Figures 3b and 4b, we also show contours for the condensed cylinder and cylindrical shell geometries, respectively, but this time with the conventional light-element constraints of equations (4), (5), (7), and (9) as indicated. Since the results for the condensed sphere and spherical shell geometries with this set of the conventional abundance constraints have already been discussed by Mathews et al. (1996), we do not show those contours here. The cylindrical shell geometry of the present work gives the highest allowed value of Ωb h50². Figure 4b shows that the upper limits to η and Ωb h50² are largely determined by Yp and 7Li. The upper limits for a cylindrical shell geometry could be as high as Ωb h50² ≤ 0.13 with similar results for the spherical shell geometry (Mathews et al. 1996). A high primordial lithium abundance would increase the allowable baryonic content to as high as Ωb h50² ≤ 0.2. The fact that shell geometries allow for higher baryon densities we attribute to more efficient neutron diffusion, which occurs when the surface area to volume ratio is increased. This allows for more initial diffusion to produce deuterium, and more efficient back diffusion to avoid overproducing 7Li.

5.2. Observational Signature

The production of beryllium and boron as well as lithium in IBBN models can be sensitive to neutron diffusion. Therefore, their predicted abundances are sensitive to not only the fluctuation parameters r, R, and f, but also the fluctuation geometry (Boyd & Kajino 1989; Malaney & Fowler 1989; Kajino & Boyd 1990; Terasawa & Sato 1990). Figures 5, 6, and 7 show the contours of the calculated abundances for lithium, beryllium and boron, respectively in the r versus η (or r versus Ωb h50²) plane. The shaded regions depict the allowed values of r and η from the light element abundance constraints [cf. Fig. 4b] for a cylindrical shell fluctuation geometry. The contour patterns of lithium (Fig. 5) and boron (Fig. 7) abundances are very similar,
whereas there is no similarity found between the lithium (Fig. 5) and beryllium (Fig. 6) abundances.

In order to understand the similarities and differences among these three elemental abundances, we show in Figures 8 and 9 the decompositions of the $A = 7$ abundance into 7Li and 7Be and the boron abundance into 10B and 11B. These figures show also the dependence of the predicted LiBeB abundances in IBBN on the scale of fluctuations for a cylindrical shell geometry with fixed $\Omega_b h^2_{10} = 0.1$. This value of $\Omega_b h^2_{10}$ corresponds to a typical value in the allowable range of η in Figure 4b, which optimizes the light element abundance constraints, even satisfying the lower 7Li abundance limit of equation (5). The fluctuation parameters f_c and R are the same as for Figure 4b. Once the baryonic content Ω_b is fixed, the only variable parameter is the separation distance, r.

As can be seen in Figure 8, as the separation r increases, neutron diffusion plays an increasingly important role in the production of t and 7Li [by the 4He(t, γ)7Li reaction]. It works maximally around $r \sim 10^4$ m, which is the typical length scale of neutron diffusion at $kT = 1$ MeV. A similar behavior is observed in the 7Li(t, n)8Be reaction. This reaction produces most of the 8Be in neutron-rich environments where t and 7Li are abundant, as was first pointed out by Boyd & Kajino (1989). At other separation distances, r, in a $\Omega_b h^2_{10} = 0.1$ model, most of the $A = 7$ nuclides are created as 7Be by the 4He(3He, γ)7Be reaction. In the limit of $r = $ horizon scale, the nucleosynthesis products are approximately equal to the sum of those produced in the proton-rich and neutron-rich zones separately (Jedamzik et al. 1994b). The predominant contribution from the proton-rich zones makes the 7Be abundance almost constant at larger r, while both 7Li and 8Be decrease as r increases toward the horizon at any separation distance.

Figure 9 shows that 11B is the predominant component of the total boron abundance at any separation distance. This is true for almost all values of $\Omega_b h^2_{10}$. It has been pointed out (Malaney & Fowler 1988; Applegate, Hogan, & Scherrer 1988; Kajino & Boyd 1990) that much of the 11B is produced (at least at early times) by the 7Li(n, γ)8Li(x, n)11B reaction sequence in neutron-rich environments. At such times most of the other heavier nuclides are also
made. Recent measurements of the previously unmeasured $^7\text{Li}(x, n)^{11}\text{B}$ reaction cross section (Boyd et al. 1992; Gu et al. 1995; Boyd, Paradellis, & Rolfs 1996) at the energies of cosmological interest have removed the most significant ambiguity in the calculated ^{11}B abundance due to this reaction. The factor of 2 discrepancy among several different measurements of the reaction cross section for $^7\text{Li}(\gamma, n)^{11}\text{Li}$ was also resolved by a new measurement (Nagai et al. 1991). The $^7\text{Li}(\gamma, n)^{11}\text{B}$ reaction also makes an appreciable but weaker contribution to the production of ^{11}B in the neutron-rich environment. In the proton-rich environment, on the other hand, the $^7\text{Be}(\gamma, \gamma')^6\text{C}$ reaction contributes largely to the production of ^{11}C, which beta decays to ^{11}B with a half-life of 20.39 minutes. These facts explain why the contour patterns of the lithium and boron abundances in Figures 5 and 7 look very similar.

It is conventional in the literature to quote the beryllium and boron abundances relative to $H = 10^{12}$. Hence, one defines the quantity $[X] = 12 + \log(X/H)$. In cylindrical shell fluctuation geometry the beryllium abundance can take the value of $[\text{Be}] \sim -3$ while still satisfying all of the light-element abundance constraints and the Population II lithium abundance constraint (Figs. 5 and 6). This abundance is higher by 3 orders of magnitude than that produced in the HBBN model with conventional light-element abundance constraints. This result is contrary to a recent result with the condensed sphere geometry and for a more restricted parameter space (Thomas et al. 1994). Recent beryllium observations of Population II stars (Rebolo et al. 1988; Ryan et al. 1990, 1992; Ryan 1996; Gilmore, Edvardsson, & Nissen 1992a, Gilmore et al. 1992b; Boesgaard & King 1993; Boesgaard 1996a, 1996b) have placed the upper limit on the primordial ^7Be abundance to $[\text{Be}] \sim -2$, 1 order of magnitude greater than the beryllium abundance predicted in the IBBN cylindrical model.

The calculated boron abundance at the optimum separation distance is essentially equal to the value of the HBBN model. However, a high primordial lithium abundance would increase the upper limit to $\Omega_b h^2_{50}$. In this case, the boron abundance could be 1 or 2 orders of magnitude larger than that of the HBBN model (Fig. 7).

6. CONCLUSIONS

We have reinvestigated the upper limit to η and $\Omega_b h^2_{50}$ in inhomogeneous primordial nucleosynthesis models. We have considered the effects of various geometries. In particular, for the first time we consider cylindrical geometry. We have also incorporated recently revised light-element abundance constraints including implications of the possible detection (Songaila et al. 1994; Carswell et al. 1994, 1996; Tytler & Fan 1994; Tytler, Fan, & Burles 1996; Rugers & Hogan 1996; Wampler et al. 1996) of a high deuterium abundance in Lyman-α absorption systems. We have shown that with low primordial deuterium (Tytler & Fan 1994; Tytler, Fan, & Burles 1996), significant depletion of ^7Li is required to obtain concordance between predicted light-element abundance of any model of BBN and the observationally inferred primordial abundance. If high primordial deuterium (Rugers & Hogan 1996) is adopted (eq. [2]), there is a concordance range that is largely determined by D/H, and the upper limit to $\Omega_b h^2_{50}$ is 0.05. However, with our presently adopted (eqs. [4], [6], [7], and [9]) light-element abundance constraints which allow a higher ^7Li abundance (Schramm & Mathews 1995; Copi et al. 1995; Olive & Scully 1996), values of $\Omega_b h^2_{50}$ as large as 0.2 are possible in IBBN models with cylindrical shell fluctuation geometry.

We have also found that significant beryllium and boron production is possible in IBBN models without violating the light element abundance constraints. The search for the primordial abundance of these elements in low-metallicity stars could, therefore, be a definitive indicator of the presence or absence of cylindrical baryon inhomogeneities in the early universe.
