Weighted Remez- and Nikolskii-Type Inequalities on a Quasismooth Curve

Vladimir Andrievskii

Abstract

We establish sharp L_p, $1 \leq p < \infty$ weighted Remez- and Nikolskii-type inequalities for algebraic polynomials considered on a quasismooth (in the sense of Lavrentiev) curve in the complex plane.

Keywords. Polynomial, quasismooth curve, Remez inequality, Nikolskii inequality.

2000 MSC. 30A10, 30C10, 30C62.

1. Introduction

From the numerous generalizations of the classical Remez inequality (see, for example, [20, 5, 8, 10]), we mention three results which are the starting point of our analysis.

Let $|S|$ be the linear measure (length) of a Borel set S in the complex plane C. By P_n we denote the set of all complex polynomials of degree at most $n \in \mathbb{N} := \{1, 2, \ldots\}$. The first result is due to Erdélyi [7]. Assume that for $p_n \in P_n$ and $T := \{z : |z| = 1\}$ we have

$$\{|\{z \in T : |p_n(z)| > 1\}| \leq s, \quad 0 < s \leq \frac{\pi}{2}. \quad (1.1)$$

Then, $|p_n(e^{it})|^2$ is a trigonometric polynomial of degree at most n and, by the Remez-type inequality on the size of trigonometric polynomials (cf. [7, Theorem 2] or [5, p. 230]), we obtain

$$||p_n||_{C(T)} \leq e^{2sn}, \quad 0 < s \leq \frac{\pi}{2}. \quad (1.2)$$

Here $|| \cdot ||_{C(S)}$ means the uniform norm over $S \subset C$.

The second result is due to Mastroianni and Totik [17]. Let T_n be a trigonometric polynomial of degree $n \in \mathbb{N}$, $1 \leq p < \infty$, and $W : [0, 2\pi] \rightarrow \{x \geq 0\}$ be
an A_{∞} weight function. Then, according to [17, (5.2) and Theorem 5.2], there are positive constants c_1 and c_2 depending only on the A_{∞} constant of W and p, such that for a measurable set $E \subset [0, 2\pi]$ with $|E| \leq s$, $0 < s \leq 1$, we have

\begin{equation}
\int_{[0,2\pi]} |T_n|^p W \leq c_1 \exp(c_2 sn) \int_{[0,2\pi]\setminus E} |T_n|^p W.
\end{equation}

The third result, which is due to Andrievskii and Ruscheweyh [4], extends (1.1)-(1.2) to the case of algebraic polynomials considered on a Jordan curve $\Gamma \subset \mathbb{C}$ instead of the unit circle T. In the present paper, we always assume that Γ is quasismooth (in the sense of Lavrentiev), see [19], i.e., for every $z_1, z_2 \in \Gamma$,

\begin{equation}
|\Gamma(z_1, z_2)| \leq \Lambda_{\Gamma} |z_1 - z_2|,
\end{equation}

where $\Gamma(z_1, z_2)$ is the shorter arc of Γ between z_1 and z_2 (including the endpoints) and $\Lambda_{\Gamma} \geq 1$ is a constant.

Let Ω be the unbounded component of $\overline{\mathbb{C}} \setminus \Gamma$, where $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$. Denote by Φ the conformal mapping of Ω onto $D^* := \{z : |z| > 1\}$ with the normalization $\Phi(\infty) = \infty$, $\Phi'(\infty) := \lim_{z \to \infty} \frac{\Phi(z)}{z} > 0$.

For $\delta > 0$ and $A, B \subset \mathbb{C}$, we set

\begin{equation}
d(A, B) = \text{dist}(A, B) := \inf_{z \in A, \zeta \in B} |z - \zeta|,
\end{equation}

\begin{equation}
\Gamma_\delta := \{\zeta \in \Omega : |\Phi(\zeta)| = 1 + \delta\}.
\end{equation}

Let the function $\delta(t) = \delta(t, \Gamma), t > 0$ be defined by the equation $d(\Gamma, \Gamma_\delta(t)) = t$ and let $\text{diam} S$ be the diameter of a set $S \subset \mathbb{C}$.

According to [4, Theorem 2], if for $p_n \in \mathbb{P}_n$,

\begin{equation}
|\{z \in \Gamma : |p_n(z)| > 1\}| \leq s < \frac{1}{2} \text{diam } \Gamma,
\end{equation}

then

\begin{equation}
\|p_n\|_{C(\Gamma)} \leq \exp(c_3 \delta(s)n)
\end{equation}

holds with a positive constant $c_3 = c_3(\Gamma)$.

Our objective is to provide the weighted L_p analogue of (1.5)-(1.6) which extends (1.3) to the case of complex polynomials considered on Γ. Some of our proofs and constructions are modifications of arguments from [17, 1, 2, 9]. For the sake of completeness, we describe them in detail.

We denote by $\alpha, c, \varepsilon, \alpha_1, c_1, \varepsilon_1, \ldots$ positive constants (different in different sections) that are either absolute or they depend on parameters inessential for the argument; otherwise, such dependence will be explicitly stated. For nonnegative functions f and g we use the expression $f \preceq g$ (order inequality) if $f \leq cg$. The expression $f \asymp g$ means that $f \preceq g$ and $g \preceq f$ simultaneously.
2. Main Results

We say that a finite Borel measure ν supported on Γ is an A_∞ measure ($\nu \in A_\infty(\Gamma)$ for short) if there exists a constant $\lambda_\nu \geq 1$ such that for any arc $J \subset \Gamma$ and a Borel set $S \subset J$ satisfying $|J| \leq 2|S|$ we have

\[\nu(J) \leq \lambda_\nu \nu(S), \tag{2.1} \]

see for instance [6, 12]. The measure defined by the arclength on Γ is automatically the A_∞ measure. Another interesting example is the equilibrium measure μ_Γ on Γ (see for example [21]). By virtue of [13] $\mu_\Gamma \in A_\infty(\Gamma)$.

Theorem 1 Let $\nu \in A_\infty(\Gamma)$, $1 \leq p < \infty$, and let $E \subset \Gamma$ be a Borel set. Then for $p_n \in P_n, n \in \mathbb{N}$, we have

\[\int_{\Gamma} |p_n|^p d\nu \leq c_1 \exp(c_2\delta(s)n) \int_{\Gamma \setminus E} |p_n|^p d\nu \]

provided that $0 < |E| \leq s < (\text{diam}\, \Gamma)/12$, where the constants c_1 and c_2 depend only on Γ, λ_ν, p.

Let $\Gamma = T$. Starting with the trigonometric polynomial

\[T_n(t) = \sum_{k=0}^{n} (a_k \sin kt + b_k \cos kt), \]

consider the algebraic polynomial

\[p_{2n}(z) := z^n \sum_{k=0}^{n} \left(\frac{a_k}{2i} (z^k - z^{-k}) + \frac{b_k}{2} (z^k + z^{-k}) \right). \]

Then (2.2) implies (1.3) (up to the upper bound on a parameter s).

The sharpness of Theorem 1 is established by our next theorem. Let $ds = |dz|, z \in \Gamma$ be the arclength measure on Γ.

Theorem 2 Let $0 < s < \text{diam} \, \Gamma$ and $1 \leq p < \infty$. Then there exist an arc $E_s \subset \Gamma$ with $|E_s| = s$ as well as constants $\varepsilon_1 = \varepsilon_1(\Gamma)$ and $n_0 = n_0(s, \Gamma, p) \in \mathbb{N}$ such that for any $n > n_0$, there is a polynomial $p_{n,s} \in P_n$ satisfying

\[\int_{\Gamma} |p_{n,s}|^p ds \geq \exp(\varepsilon_1\delta(s)n) \int_{\Gamma \setminus E_s} |p_{n,s}|^p ds. \tag{2.3} \]
If, in the definition of the A_∞ measure, we assume that S is also an arc, then ν is called a doubling measure. In [17, Section 5] one can find an example showing that the weighted Remez-type inequality may not be true in the case of doubling measures.

A straightforward consequence of Theorem 1 is the following Nikolskii-type inequality which partially overlaps with [24, Corollary 3.10] where the analogous inequality is proved in another way. For more details on the classical Nikolskii inequality, its generalizations, and further references see, for example [11, 5, 8, 16].

Theorem 3 Let $\nu \in A_\infty(\Gamma)$ satisfy $d\nu = wd\sigma$, $w : \Gamma \to \{x \geq 0\}$, and let $1 \leq p < q < \infty$. Then, for $p_n \in P_n$, $n > n_1$,

$$
(\int_\Gamma |p_n|^q wds)^{1/q} \leq c_3 d(\Gamma, \Gamma_1/n)^{1/q-1/p} \left(\int_\Gamma |p_n|^p w^{p/q}ds\right)^{1/p}
$$

holds with constants $c_3 = c_3(\Gamma, p, q, \lambda_\nu)$ and $n_1 = n_1(\Gamma)$.

For $\Gamma = T$ (2.4) yields [17, Theorem 5.5]. The estimate (2.4) is sharp in the following sense.

Theorem 4 For $n \in \mathbb{N}$, there exists a polynomial $p_n^* \in P_n$, such that for $1 \leq p < q < \infty$,

$$
(\int_\Gamma |p_n^*|^q ds)^{1/q} \geq \varepsilon_2 d(\Gamma, \Gamma_1/n)^{1/q-1/p} \left(\int_\Gamma |p_n^*|^p ds\right)^{1/p}
$$

holds with $\varepsilon_2 = \varepsilon_2(\Gamma, p, q)$.

Note that $\delta(s)$ and $d(\Gamma, \Gamma_\delta)$ can be further estimated. We mention three well known results. For a more complete theory see, for example [25, 18, 15, 19].

The Ahlfors criterion [14, p. 100] implies that Γ is quasiconformal. Therefore, Φ can be extended to a quasiconformal homeomorphism $\Phi : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$. Taking into account Lemma 1 below and distortion properties of conformal mappings with quasiconformal extension (cf. [18, pp. 289, 347]) we have

$$
\delta(s) \lesssim s^{1/\alpha}, \quad 0 < s < \text{diam } \Gamma,
$$

$$
d(\Gamma, \Gamma_\delta) \geq \delta^\alpha, \quad 0 < \delta < 1,
$$

with some $\alpha = \alpha(\Gamma)$ such that $1 \leq \alpha < 2$.

Next, following [19] we call Γ Dini-smooth if it is smooth and if the angle $\beta(s)$ of the tangent, considered as a function of the arc length s, has the property

$$
|\beta(s_2) - \beta(s_1)| \leq h(s_2 - s_1), \quad 0 < s_2 - s_1 < |\Gamma|/2,
$$
where \(h \) is a function satisfying
\[
\int_0^{\|\Gamma\|/2} \frac{h(x)}{x} \, dx < \infty.
\]

We call a Jordan arc \(Dini\)-smooth if it is a subarc of some \(Dini\)-smooth curve. According to [4, Theorem 4] if \(\Gamma \) is \(Dini\)-smooth, then
\[
\delta(s) \asymp s, \quad 0 < s < \text{diam} \, \Gamma,
\]
\[
d(\Gamma, \Gamma_\delta) \asymp \delta, \quad 0 < \delta < 1.
\]
Moreover, the distortion properties of \(\Phi \) in the case of a piecewise \(Dini\)-smooth \(\Gamma \) (cf. [19, Chapter 3] or [3, pp. 32-36]) imply that if \(\Gamma \) consists of a finite number of \(Dini\)-smooth arcs which meet under the angles \(\alpha_1 \pi, \ldots, \alpha_m \pi \) with respect to \(\Omega \), where \(0 < \alpha_j < 2 \), then
\[
\delta(s) \asymp s^{1/\alpha}, \quad 0 < s \leq \text{diam} \, \Gamma,
\]
\[
d(\Gamma, \Gamma_\delta) \asymp \delta^\alpha, \quad 0 < \delta < 1,
\]
hold with \(\alpha := \max(1, \alpha_1, \ldots, \alpha_m) \).

3. Auxiliary Constructions and Results

In this section, we review some of the properties of conformal mappings \(\Phi \) and \(\Psi := \Phi^{-1} \) whose proofs can be found, for example, in [1, Section 3]. We also prove some new facts about these conformal mappings which are used in the proofs of the main results.

Lemma 1 Assume that \(z_j \in \overline{\Omega}, \ t_j := \Phi(z_j), \ j = 1, 2, 3. \) Then,

(i) the conditions \(|z_1 - z_2| \leq |z_1 - z_3| \) and \(|t_1 - t_2| \leq |t_1 - t_3| \) are equivalent;

(ii) if \(|z_1 - z_2| \leq |z_1 - z_3| \), then
\[
\frac{|t_1 - t_3|^{1/\alpha}}{|t_1 - t_2|} \leq \frac{|z_1 - z_3|}{|z_1 - z_2|} \leq \frac{|t_1 - t_3|}{|t_1 - t_2|}^\alpha, \quad \alpha = \alpha(\Gamma) \geq 1.
\]

Most of the geometrical facts below can be obtained by a straightforward application of Lemma 1 to specifically chosen triplets of points.

For \(\delta > 0 \) and \(z \in \Gamma \), set
\[
\rho_\delta(z) := d(\{z\}, \Gamma_\delta), \quad \tilde{z}_\delta := \Psi[(1 + \delta)\Phi(z)].
\]
Then
\[(3.1) \quad \rho_\delta(z) \asymp |z - \tilde{z}_\delta|. \]

Moreover, for \(0 < v < u \leq 1\) and \(z \in \Gamma\), Lemma 1 for the triplet \(z, \tilde{z}_v, \tilde{z}_u\) and (3.1) yield
\[(3.2) \quad \left(\frac{u}{v} \right)^{1/\alpha} \leq \frac{\rho_\alpha(z)}{\rho_v(z)} \leq \left(\frac{u}{v} \right)^{\alpha} \]

which implies
\[(3.3) \quad \delta(2s) \leq \delta(s), \quad 0 < s < \text{diam } \Gamma. \]

Indeed, the only nontrivial case is where \(s\) satisfies \(\delta(2s) \leq 1\). Let \(z_{2s} \in \Gamma\) be such that
\[\rho_\delta(z_{2s}) = d(\Gamma, \Gamma_{\delta(2s)}) = 2s. \]

Since
\[\frac{\rho_\delta(z_{2s})}{\rho_\delta(s)(z_{2s})} \leq \frac{\rho_\delta(z_{2s})}{d(L, L_{\delta(s)})} = \frac{2s}{s} = 2, \]

by the left-hand side of (3.2) we obtain (3.3).

Furthermore, for \(0 < \delta \leq 1\) and \(z, \zeta \in L\), the following relations hold:
\[\text{if } |z - \zeta| \leq \rho_\delta(z), \text{ then } \rho_\delta(\zeta) \asymp \rho_\delta(z); \]
\[\text{if } |z - \zeta| \geq \rho_\delta(z), \text{ then } \]
\[(3.5) \quad \left(\frac{\rho_\delta(z)}{|z - \zeta|} \right)^{\alpha_1} \leq \rho_\delta(\zeta) \leq \left(\frac{\rho_\delta(z)}{|z - \zeta|} \right)^{1/\alpha_1}. \]

Let \(\delta_0 = \delta_0(\Gamma) > 0\) be fixed such that
\[\max_{z \in \Gamma} \rho_{\delta_0}(z) < \frac{|\Gamma|}{2}. \]

For \(z \in \Gamma\) and \(0 < \delta < \delta_0\), denote by \(z'_\delta, z''_\delta \in \Gamma\) the two points with the properties
\[z \in \Gamma(z'_\delta, z''_\delta), \quad |\Gamma(z'_\delta, z)| = |\Gamma(z, z''_\delta)| = \frac{\rho_\delta(z)}{2}. \]

If \(\delta \geq \delta_0\), we set \(\Gamma(z'_\delta, z''_\delta) := \Gamma\). Let
\[l_n(z) := \Gamma(z'_{1/n}, z''_{1/n}), \quad z \in \Gamma, n \in \mathbb{N}. \]

Hence, we have
\[(3.6) \quad |l_n(z)| \asymp \rho_{1/n}(z). \]
Let $\nu \in A_{\infty}(\Gamma)$. Consider the function

$$w_n(z) := \frac{\nu(l_n(z))}{\rho_{1/n}(z)}, \quad z \in \Gamma, n \in \mathbb{N}. \quad (3.7)$$

Since ν is also a doubling measure on Γ, for any arcs J_1 and J_2 with $J_1 \subset J_2 \subset \Gamma$,

$$\frac{\nu(J_2)}{\nu(J_1)} \leq c_1 \left(\frac{|J_2|}{|J_1|} \right)^{\alpha_2}, \quad c_1 = c_1(\Gamma, \lambda_\nu), \alpha_2 = \alpha_2(\Gamma, \lambda_\nu). \quad (3.8)$$

The proof of (3.8) follows along the same lines as the proof of [2, (4.1)] (cf. [17, Lemma 2.1]).

Next, according to [1, Lemma 4] for $z, \zeta \in \Gamma$ and $n \in \mathbb{N}$,

$$\frac{1}{c_2} \left(1 + \frac{|\zeta - z|}{\rho_{1/n}(z)} \right)^{-\alpha_3} \leq \frac{w_n(\zeta)}{w_n(z)} \leq c_2 \left(1 + \frac{|\zeta - z|}{\rho_{1/n}(z)} \right)^{\alpha_3}, \quad (3.9)$$

where $c_2 = c_2(\Gamma, \lambda_\nu), \alpha_3 = \alpha_3(\Gamma, \lambda_\nu)$.

We follow a technique of [1, (3.12)] and consider for $n, m \in \mathbb{N}$ and $z, \zeta \in \Gamma$ the polynomial (in z)

$$q_{n,m}(\zeta, z) = \sum_{j=0}^{N} a_j(\zeta) z^j, \quad N = (10n - 11)m, \quad (3.10)$$

which satisfies the following properties:

if $|\zeta - z| \leq \rho_{1/n}(z) \approx \rho_{1/n}(\zeta)$, then

$$\frac{1}{c_3} \leq |q_{n,m}(\zeta, z)| \leq c_3, \quad c_3 = c_3(\Gamma, m); \quad (3.11)$$

if $|\zeta - z| > \rho_{1/n}(z)$, then by virtue of (3.5),

$$|q_{n,m}(\zeta, z)| \leq c_4 \left(\frac{\rho_{1/n}(\zeta)}{|\zeta - z|} \right)^m \leq c_5 \left(\frac{\rho_{1/n}(z)}{|\zeta - z|} \right)^{m/\alpha_1}, \quad (3.12)$$

where $c_j = c_j(\Gamma, m), j = 4, 5$.

Let for $z \in \Gamma$ and $n, m \in \mathbb{N}$,

$$I_{n,m}(z) := \int_{\Gamma} |q_{n,m}(\zeta, z)| \frac{w_n(\zeta)}{w_n(z) \rho_{1/n}(\zeta)} |d\zeta| \frac{|d\zeta|}{\rho_{1/n}(\zeta)} \quad \frac{1}{w_n(z)} \int_{\Gamma} |q_{n,m}(\cdot, z)| \frac{w_n(\zeta)}{\rho_{1/n}(\zeta)} ds. \quad (3.12)$$

We use the following notation: for $z \in \mathbb{C}$ and $\delta > 0$,

$$D(z, \delta) := \{ \zeta : |\zeta - z| < \delta \}, \quad D^*(z, \delta) := \mathbb{C} \setminus \overline{D(z, \delta)}. \quad (3.12)$$
Lemma 2 There exist sufficiently large $m = m(\Gamma, \lambda_\nu) \in \mathbb{N}$ and $c_6 = c_6(\Gamma, \lambda_\nu)$ such that
\begin{equation}
\frac{1}{c_6} \leq I_{n,m}(z) \leq c_6, \quad z \in \Gamma.
\end{equation}

Proof. According to the inequalities (1.4), (3.4), (3.9), and (3.10) we obtain
\begin{align*}
I_{n,m}(z) &\geq \int_{\Gamma \cap D(z, \rho_{1/n}(z))} |q_{n,m}(\zeta, z)| w_n(\zeta) \frac{|d\zeta|}{w_n(z) \rho_{1/n}(\zeta)} \geq 1,
\end{align*}
which yields the left-hand side of (3.13).

Next, by (1.4), (3.4), (3.5), (3.9)-(3.11), and [1, (3.20)] we have
\begin{align*}
I_{n,m}(z) &\leq \int_{\Gamma \cap D(z, \rho_{1/n}(z))} |q_{n,m}(\zeta, z)| w_n(\zeta) \frac{|d\zeta|}{w_n(z) \rho_{1/n}(\zeta)} \\
&\quad + \int_{\Gamma \cap D^*(z, \rho_{1/n}(z))} |q_{n,m}(\zeta, z)| w_n(\zeta) \frac{|\zeta - z|}{w_n(z) \rho_{1/n}(\zeta)} \frac{|d\zeta|}{|\zeta - z|} \\
&\leq 1 + \int_{\Gamma \cap D^*(z, \rho_{1/n}(z))} \left(\frac{|\zeta - z|}{\rho_{1/n}(z)} \right)^{\alpha_3 - m/\alpha_1 + \alpha_1} \frac{|d\zeta|}{|\zeta - z|} \leq 1
\end{align*}
if m is any (fixed) number with $\alpha_3 - m/\alpha_1 + \alpha_1 < 0$.

Hence, the right-hand side of (3.13) is also proved.

\[\square\]

Lemma 3 For $r \geq 1$,
\begin{equation}
\frac{\rho_{1/n}(\zeta)}{c_7} \leq \int_\Gamma |q_{n,2}(\zeta, z)|^r |dz| \leq c_7 \rho_{1/n}(\zeta), \quad \zeta \in \Gamma,
\end{equation}
where $c_7 = c_7(\Gamma, r)$.

Proof. The left-hand side inequality follows from (1.4) and (3.10):
\begin{align*}
\int_\Gamma |q_{n,2}(\zeta, z)|^r |dz| &\geq \int_{\Gamma \cap D(\zeta, \rho_{1/n}(\zeta))} |q_{n,2}(\zeta, z)|^r |dz| \geq \rho_{1/n}(\zeta).
\end{align*}
Furthermore, according to (1.4), (3.10), (3.11), and [1, (3.20)] we have
\begin{align*}
\int_\Gamma |q_{n,2}(\zeta, z)|^r |dz| &\leq \int_{\Gamma \cap D(\zeta, \rho_{1/n}(\zeta))} |dz| + \int_{\Gamma \cap D^*(\zeta, \rho_{1/n}(\zeta))} \left(\frac{\rho_{1/n}(\zeta)}{|\zeta - z|} \right)^{2r} |d\zeta| \\
&\leq \rho_{1/n}(\zeta),
\end{align*}
which proves the right-hand side of (3.14).

\[\square \]

4. Proofs of Theorems

We start with some preliminaries. Let

\[q_r(z) := c \prod_{j=1}^{m} |z - z_j|^{\beta_j}, \quad z \in \mathbb{C}, \]

where \(z_j \in \mathbb{C}, c > 0, \beta_j > 0 \) be a generalized polynomial of degree \(r := \beta_1 + \ldots + \beta_m \) and let

\[E(q_r) := \{ z \in \Gamma : q_r(z) > 1 \}. \]

By [4, Theorem 2], the condition

\[|E(q_r)| \leq \frac{1}{2} \text{diam } \Gamma \]

yields

\[\|q_r\|_{C(\Gamma)} \leq \exp(c_1 \delta(s)r), \quad c_1 = c_1(\Gamma). \]

Consider the set

\[F_s = F_s(q_r) := \{ z \in \Gamma : q_r(z) > \exp(-c_1 \delta(s)r)\|q_r\|_{C(\Gamma)} \} \]

and the generalized polynomial

\[f_{r,s}(z) := \frac{q_r(z) \exp(c_1 \delta(s)r)}{\|q_r\|_{C(\Gamma)}} \]

so that \(E(f_{r,s}) = F_s \).

We have

\[|F_s| \geq s, \quad 0 < s < \frac{1}{2} \text{diam } \Gamma. \]

Indeed, the case \(|F_s| \geq (\text{diam } \Gamma)/2 \) is trivial. If \(|F_s| < (\text{diam } \Gamma)/2 \), then by (4.1)-(4.2), applied to \(f_{r,s} \) and \(|F_s| \) instead of \(q_r \) and \(s \), we obtain

\[\exp(c_1 \delta(s)r) = \|f_{r,s}\|_{C(\Gamma)} \leq \exp \left(c_1 \delta(|F_s|)r \right), \]

that is, \(\delta(|F_s|) \geq \delta(s) \) which implies (4.3).

Let, as before, \(1 \leq p < \infty \). We claim that if a Borel set \(A \subset \Gamma \) satisfies

\[|A| \geq |\Gamma| - s, \quad 0 < s < \frac{1}{4} \text{diam } \Gamma, \]
\[\int_{\Gamma} (q_r)^p ds \leq (1 + \exp(c_2 \delta(s)pr)) \int_{A} (q_r)^p ds, \quad c_2 = c_2(\Gamma). \]

Indeed, by virtue of (4.3) for \(0 < s < (\text{diam } \Gamma)/4\), we have \(|F_{2s}| \geq 2s\) which yields \(|A \cap F_{2s}| \geq s\). Therefore, according to (3.3),

\[
\int_{\Gamma \setminus A} (q_r)^p ds \leq s ||q_r||_{C(\Gamma)}^p \leq \int_{A \cap F_{2s}} ||q_r||_{C(\Gamma)}^p ds \\
\leq \exp (c_1 \delta (2s) pr) \int_{A \cap F_{2s}} (q_r)^p ds \\
\leq \exp (c_2 \delta (s) pr) \int_{A} (q_r)^p ds,
\]

which proves (4.5).

Let \(w_n, n \in \mathbb{N}\) be defined by (3.7).

Lemma 4 For a Borel set \(A \subset \Gamma\) satisfying (4.4), \(1 \leq p < \infty\), and \(p_n \in P_n, n \in \mathbb{N}\),

\[
\int_{\Gamma} |p_n|^p w_n ds \leq c_3 \exp(c_4 \delta(s)n) \int_{A} |p_n|^p w_n ds,
\]

where \(c_j = c_j(\Gamma, p, \lambda_\nu), j = 3, 4\).

Proof. Let \(q_{n,m}\) be the polynomial defined in Section 3. By (4.5) applied to the generalized polynomial \(q_r := |p_n||q_{n,m}(\cdot, \cdot)|^{1/p}\), where \(\zeta \in \Gamma, m = m(\Gamma)\) is from Lemma 2 and \(r \asymp n\), we have

\[
\int_{\Gamma} |p_n|^p |q_{n,m}(\zeta, \cdot)| ds \leq (1 + \exp(c_4 \delta(s)n)) \int_{A} |p_n|^p |q_{n,m}(\zeta, \cdot)| ds.
\]

Multiplying the both sides of this inequality by \(w_n(\zeta)/\rho_{1/n}(\zeta)\), integrating by \(\zeta\) over \(\Gamma\), and applying the Fubini theorem we obtain

\[
\int_{\Gamma} |p_n|^p w_n I_{n,m} ds \\
= \int_{\Gamma} \int_{\Gamma} |p_n(z)|^p |q_{n,m}(\zeta, z)| \frac{w_n(\zeta)}{\rho_{1/n}(\zeta)} d\zeta |dz| \\
\leq (1 + \exp(c_4 \delta(s)n)) \int_{A} \int_{\Gamma} |p_n(z)|^p |q_{n,m}(\zeta, z)| \frac{w_n(\zeta)}{\rho_{1/n}(\zeta)} d\zeta |dz| \\
= (1 + \exp(c_4 \delta(s)n)) \int_{A} |p_n|^p w_n I_{n,m} ds,
\]
where $I_{n,m}$ is defined by (3.12), which, together with (3.13), yields (4.6).

\[\square \]

Proof of Theorem 1. The construction below is partially adapted from the proof of [17, Theorem 3.1] and the proof of [2, Theorem 4]. Let $m = m(n, s, \Gamma) \in \mathbb{N}$ be a sufficiently large number to be chosen later and let

$$
\begin{align*}
\theta_k &= \frac{2\pi k}{N}, \\
\xi_k &= \Psi(e^{i\theta_k}), \\
J'_k &= \{ e^{i\theta} : \theta_{k-1} \leq \theta < \theta_k \}, \\
J_k &= \Psi(J'_k), \\
J_{k+1} &= \{ e^{i\theta} : \theta_k \leq \theta < \theta_{k+1} \},
\end{align*}
$$

By virtue of Lemma 1, (1.4), and (3.1) for $k = 1, \ldots, N$, we have

$$
|J_k| \asymp |\xi_k - \xi_{k-1}| \asymp |\xi_k - (\xi_k)/N| \asymp \rho_{1/N}(\xi_k).
$$

(4.7)

Let $K := \{ k : |E \cap J_k| < |J_k|/2 \}$. Then

$$
\sum_{k \in K} |J_k| \leq 2 \sum_{k \notin K} |E \cap J_k| \leq 2|E| < 2s,
$$

which for

$$
A := \Gamma \setminus E \text{ and } A^* := \bigcup_{k \in K} (A \cap J_k) \subset A
$$

implies

$$
|\Gamma| = \bigcup_{k \notin K} |A \cap J_k| + |A^*| + |E| \leq \bigcup_{k \notin K} |J_k| + |A^*| + |E| < |A^*| + 3s,
$$

that is,

$$
(4.8) \quad |A^*| > |\Gamma| - 3s.
$$

Let

$$
B_k := \sup_{\xi \in J_k} w_n(\xi),
$$

and let $\eta_k, \nu_k \in J_k$ be such that

$$
|p_n(\eta_k)| = \min_{\xi \in J_k} |p_n(\xi)|, \quad |p_n(\nu_k)| = \max_{\xi \in J_k} |p_n(\xi)| = ||p_n||_{C(J_k)}.
$$

Consider

$$
R = R(p_n, p, m, n) := \sum_{k \in K} |p_n(\nu_k)|^p B_k |J_k \cap A|
$$
and
\[V = V(p_n, p, m, n) := R - \sum_{k \in K} |p_n(\eta_k)|^p B_k |J_k \cap A| \]

which satisfy
\[
V = \sum_{k \in K} (|p_n(v_k)|^p - |p_n(\eta_k)|^p) B_k |J_k \cap A| \leq p \sum_{k \in K} |p_n(v_k) - p_n(\eta_k)||p_n(v_k)|^{p-1} B_k |J_k \cap A|.
\]

If \(p > 1 \) and \(q > 1 \) satisfy \(1/p + 1/q = 1 \), Hölder’s inequality implies
\[
V \lesssim \left(\sum_{k \in K} |p_n(v_k) - p_n(\eta_k)|^p B_k |J_k \cap A| \right)^{1/p} R^{1/q}
\]
\[
\leq \left(\sum_{k \in K} \left(\int_{J_k} |p_n'|^p ds \right)^{p} B_k |J_k \cap A| \right)^{1/p} R^{1/q}.
\]

If \(p = 1 \), setting \(R^{1/q} := 1 \), we have the same estimate for \(V \).

Note that by (3.9) and (4.7) \(B_k \simeq A_k := \inf_{\xi \in J_k} w_n(\xi) \).

Since Hölder’s inequality also yields
\[
\left(\int_{J_k} |p_n'|^p ds \right)^{p} \leq |J_k|^{p-1} \int_{J_k} |p_n'|^p ds,
\]
by [1, Lemma 1], Lemma 1, (3.2)-(3.4), (3.9), and (4.6)-(4.8) for the nonzero polynomial \(p_n \) we further have
\[
VR^{1/q} \leq \left(\sum_{k=1}^{N} \left(\frac{\rho_{1/n}(\xi_k)}{\rho_{1/n}(\xi_k)} \right)^p \int_{J_k} (|p_n'|(\rho_{1/n})^p w_n ds \right)^{1/p}
\]
\[
\lesssim m^{-\varepsilon} \left(\int_{\Gamma} (|p_n'|(\rho_{1/n})^p w_n ds \right)^{1/p}
\]
\[
\lesssim m^{-\varepsilon} \left(\int_{\Gamma} |p_n|^p w_n ds \right)^{1/p}
\]
\[
\lesssim m^{-\varepsilon} \exp(c_4 \delta(3s)n) \left(\int_{A^*} |p_n|^p w_n ds \right)^{1/p}
\]
\[
\lesssim m^{-\varepsilon} \exp(c_5 \delta(s)n) R^{1/p},
\]
Taking m to be the integral part of
$$1 + (2c_6 \exp(c_5 \delta(s)n))^{1/\epsilon}$$
we have $V \leq R/2$ and $m \asymp \exp(c_7 \delta(s)n)$. Therefore,
$$R \leq 2 \sum_{k \in K} |p_n(\eta_k)|^p B_k |J_k \cap A| \asymp \sum_{k \in K} |p_n(\eta_k)|^p A_k |J_k \cap A|.$$

Since $\nu \in A_\infty(\Gamma)$ and $|J_k \cap A| \geq |J_k|/2$, $k \in K$,
according to (2.1), (3.6), (3.8), and (4.7) for $\xi \in J_k$ we have
$$w_n(\xi) = \frac{\nu(l_n(\xi))}{\rho_{1/n}(\xi)} \leq \frac{1}{|J_k|} \frac{\nu(l_n(\xi)) \nu(l_N(\xi))}{\nu(l_N(\xi))} \frac{\nu(J_k)}{\nu(J_k \cap A)} \nu(J_k \cap A) \leq m^{\alpha_1} \frac{\nu(J_k \cap A)}{|J_k|}.$$

Therefore,
$$R \leq m^{\alpha_1} \sum_{k \in K} |p_n(\eta_k)|^p \nu(J_k \cap A) \leq m^{\alpha_1} \int_{A^*} |p_n|^p d\nu.$$

Moreover, by [1, Lemma 2], (3.3), (4.8), and Lemma 4,
$$\int_{\Gamma} |p_n|^p d\nu \leq \int_{\Gamma} |p_n|^p w_n ds \leq \exp(c_4 \delta(3s)n) \int_{A^*} |p_n|^p w_n ds \leq \exp(c_5 \delta(s)n) R \leq \exp((c_5 + c_7 \alpha_1) \delta(s)n) \int_{A^*} |p_n|^p d\nu \leq \exp(c_8 \delta(s)n) \int_A |p_n|^p d\nu, \quad c_8 = c_5 + c_7 \alpha_1,$$
which is the desired conclusion.

Proof of Theorem 2. Let $z_s \in \Gamma$ and $\zeta_s \in \Gamma_{\delta(s)}$ satisfy $|z_s - \zeta_s| = s = \rho_{\delta(s)}(z_s)$. Define points $z^*_s, z^{**}_s \in \Gamma$ such that $z_s \in \Gamma(z^*_s, z^{**}_s) =: E_s$ and
$$|\Gamma(z^*_s, z_s)| = |\Gamma(z_s, z^{**}_s)| = \frac{s}{2},$$

13
Lemma 1 and (1.4) yield

\[|\Phi(z^*_s) - \Phi(z_s)| \asymp |\Phi(z_s) - \Phi(z^*_s)| \asymp |\Phi(z_s) - \Phi(\zeta_s)| \geq \delta(s). \]

Let \(A_s := \Gamma \setminus E_s \) and let \(\Phi_s \) be the conformal mapping of \(\Omega_s := C \setminus A_s \) onto \(D^* \) normalized by

\[\Phi_s(\infty) = \infty, \quad \Phi_s'(\infty) > 0. \]

According to [4, Lemma 5], (1.4), and (4.9) we obtain

\[\log |\Phi_s(z_s)| \geq |\Phi_s(z^*_s) - \Phi_s(z_s^*)| \geq \delta(s), \]

that is,

\[|\Phi_s(z_s)| \geq \exp(\varepsilon_1 \delta(s)) \geq 1 + \varepsilon_1 \delta(s), \quad \varepsilon_1 = \varepsilon_1(\Gamma). \]

Let \(p_{n,s} \in P_n \) be the \(n \)-th Faber polynomial for \(\Omega_s \) (see [22, Chapter II, §1] or [23, Chapter II]). From a result by Pommerenke [18, p. 85, Theorem 3.11] (see also [23, Chapter IX, §3]) it follows that

\[||p_{n,s}||_{C(A_s)} \leq 2 \sqrt{n \log n + 2}. \]

Moreover, according to [22, Chapter II, §1] for \(\xi \in \Omega_s \),

\[p_{n,s}(\xi) = \Phi_s(\xi)^n + \omega_{n,s}(\xi), \]

where

\[|\omega_{n,s}(\xi)| \leq \left(n \log \frac{1}{|\Phi_s(\xi)|^2 - 1} \right)^{1/2}. \]

Next, by (1.4) for \(d_s := \text{dist}(z_s, A_s) \) we have \(\varepsilon_2 s \leq d_s \leq s/2 \), where \(\varepsilon_2 = \varepsilon_2(\Gamma) \).

According to [3, p. 23, Lemma 2.3] for \(\xi \in W_s := \Gamma \cap D(z_s, d_s/32) \) we obtain

\[|\Phi_s(\xi) - \Phi_s(z_s)| \leq \frac{1}{2}(|\Phi_s(z_s)| - 1), \]

and by (4.10)

\[|\Phi_s(\xi)| \geq 1 + \frac{\varepsilon_1}{2} \delta(s), \]

which, together with (4.13), implies

\[||\omega_{n,s}||_{C(W_s)} \leq \left(n \log \frac{1}{1 + \frac{\varepsilon_1}{2} \delta(s)} \right)^{1/2} \leq \left(n \log \left(1 + \frac{1}{\varepsilon_1 \delta(s)} \right) \right)^{1/2}. \]
Furthermore, (4.12), (4.14), and (4.15) yield
\[||p_{n,s}||_{C(W_s)} \geq \left(1 + \frac{\varepsilon_1}{2} \delta(s) \right)^n - \left(n \log \left(1 + \frac{1}{\varepsilon_1 \delta(s)} \right) \right)^{1/2}. \]

Let \(n_2 = n_2(\Gamma, s) \in \mathbb{N} \) and \(\varepsilon_3 = \varepsilon_3(\Gamma) \) be such that
\[||p_{n,s}||_{C(W_s)} \geq \frac{1}{2} \left(1 + \frac{\varepsilon_1}{2} \delta(s) \right)^n, \quad n > n_2, \]
and
\[1 + \frac{\varepsilon_1}{2} \delta(s) \geq \exp(2\varepsilon_3 \delta(s)), \]
that is,
\[||p_{n,s}||_{C(W_s)} \geq \frac{1}{2} \exp(2\varepsilon_3 \delta(s)n), \quad n > n_2. \]
Summarizing, by virtue of (4.11), we have
\[\exp(\varepsilon_3 \delta(s)n) \int_{A_s} |p_{n,s}|^p ds \leq \frac{\int_{W_s} |p_{n,s}|^p ds}{\int_{W_s} |p_{n,s}|^p ds} \leq \frac{\exp(\varepsilon_3 \delta(s)n)\Gamma[2^p(n \log(n + 2))^{p/2}}{2^{-p} \exp(2\varepsilon_3 \delta(s)np)\varepsilon_2 16^{-1}s} = 4^{p+2}|\Gamma|(n \log(n + 2))^{p/2}s^{-1} \varepsilon_2^{-1} \exp(-\varepsilon_3 \delta(s)n) \to 0 \quad \text{as } n \to \infty. \]

Let \(n_0 = n_0(s, \Gamma, p) > n_2 \) be such that for \(n > n_0 \) the right-hand side of the last inequality is at most 1. Then, the left-hand side is also \(\leq 1 \) from which (2.3) follows.

Proof of Theorem 3. Modifying the reasoning from the proof of [17, Theorem 5.5], we let \(d_n := d(\Gamma, \Gamma_{1/n}) \) and
\[E_n = E_{n,q} := \left\{ z \in \Gamma : |p_n(z)|^q w(z) \geq d_n^{-1} \int_{\Gamma} |p_n|^q w ds \right\}. \]
Since
\[\int_{\Gamma} |p_n|^q w ds \geq |E_n| d_n^{-1} \int_{\Gamma} |p_n|^q w ds, \]
we have \(|E_n| \leq d_n. \)

According to (1.4) and Lemma 1, there exists \(n_1 = n_1(\Gamma) \in \mathbb{N} \) such that for \(n > n_1 \) we have \(d_n < (\text{diam } \Gamma)/12. \)
Since $\delta(d_n) = 1/n$, by Theorem 1 for $n > n_1$ we obtain
\[
\int_{\Gamma} |p_n|^q w ds \leq \int_{\Gamma \setminus E_n} |p_n|^q w ds = \int_{\Gamma \setminus E_n} (|p_n|^p w^{p/q})(|p_n|^q w)^{(q-p)/q} ds
\]
\[
\leq \left(d_n^{-1} \int_{\Gamma} |p_n|^q w ds \right)^{(q-p)/q} \int_{\Gamma} |p_n|^p w^{p/q} ds,
\]
that is,
\[
\left(\int_{\Gamma} |p_n|^q w ds \right)^{p/q} \leq d_n^{(p-q)/q} \int_{\Gamma} |p_n|^p w^{p/q} ds,
\]
which establishes (2.4).

\[\blacksquare\]

Proof of Theorem 4. There is no loss of generality in assuming that $n > 100$ (for $n \leq 100$ take $p_n^* \equiv 1$). Let $z_{1/n} \in \Gamma$ satisfy
\[
\rho_{1/n}(z_{1/n}) = \min_{z \in \Gamma} \rho_{1/n}(z) = d(\Gamma, \Gamma_{1/n}).
\]
Consider polynomial
\[
p_n^*(z) := q_{k,2}(z_{1/n}, z),
\]
where k is the integral part of $n/20$ and $q_{k,2}$ is introduced in Section 3. By (3.2) and Lemma 3 for any fixed $r \geq 1$,
\[
\int_{\Gamma} |p_n^*|^r w ds \simeq \rho_{1/k}(z_{1/n}) \simeq d(\Gamma, \Gamma_{1/n}),
\]
which implies (2.5).

\[\blacksquare\]

Acknowledgements Part of this work was done during the Fall of 2016 semester, while the author visited the Katholische Universität Eichstätt-Ingolstadt and the Julius Maximilian University of Würzburg. The author is also grateful to M. Nesterenko for his helpful comments.

References

[1] V. Andrievskii, Weighted L_p Bernstein-type inequalities on a quasismooth curve in the complex plane, Acta Math. Hungar. 135 (1-2) (2012), 8-23.

[2] V. Andrievskii, Weighted polynomial inequalities in the complex plane, Journal of Approximation Theory 164 (2012), 1165-1183.
[3] V. V. Andrievskii and H.-P. Blatt, *Discrepancy of Signed Measures and Polynomial Approximation*, Berlin/New York, Springer-Verlag, 2002.

[4] V. Andrievskii and St. Ruscheweyh, Remez-type inequalities in terms of linear measure, *Comput. Methods Funct. Theory* 5 (2005), 347-363.

[5] P. Borwein and T. Erdelyi, *Polynomials and Polynomial Inequalities*, Berlin/New York, Springer-Verlag, 2002.

[6] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, *Studia Math.* 51 (1974), 241-250.

[7] T. Erdélyi, Remez-type inequalities on the size of generalized polynomials, *J. London Math. Soc.* 45 (1992), 255-264.

[8] T. Erdélyi, Remez-type inequalities and their applications, *J. Comput. Appl. Math.* 47 (1993), 167-209.

[9] T. Erdélyi, Xin Li and E. B. Saff, Remez- and Nikolskii-type inequalities for logarithmic potentials, *SIAM J. Math Anal.* 25 (1994), 365-383.

[10] M. I. Ganzburg, On Remez-type inequality for trigonometric polynomials, *Journal of Approximation Theory* 164 (2012), 1233-1237.

[11] I. I. Ibragimov and Dzh. I. Mamedkhanov, On inequalities of Nikol’skii type, *Proceedings of the Steklov Institute of Mathematics* 3 (1989), 137-138.

[12] D. S. Jerison and C. E. Kenig, Hardy spaces, A_∞, and singular integrals on chord-arc domains, *Mathematica Scandinavica* 50 (1982), 221-247.

[13] M. Lavrentiev, Boundary problems in the theory of univalent functions, *Mat. Sb. (N.S.)* 1(43) (1936), 815-844; English translation: *Amer. Math. Soc. Translations* Ser. 2, 32 (1963), 1-36.

[14] O. Lehto and K. I. Virtanen, *Quasiconformal Mappings in the Plane*, 2nd ed., New York, Springer-Verlag, 1973.

[15] F. Lesley, Holder continuity of conformal mappings at the boundary via the strip method, *Indiana Univ. Math. J.* 31 (1982), 341-354.

[16] Dzh. I. Mamedkhanov, On Nikol’skii-type inequalities with new characteristics, *Doklady Mathematics* 82 (2010), 882-883.

[17] G. Mastroianni and V. Totik, Weighted polynomial inequalities with doubling and A_∞ weights, *Constr. Approx.* 16 (2000), 37-71.

[18] Ch. Pommerenke, *Univalent Functions*, Goettingen: Vandenhoeck and Ruprecht, 1975.
[19] Ch. Pommerenke, *Boundary Behaviour of Conformal Maps*, Berlin/New York, Springer-Verlag, 1992.

[20] E. J. Remez, Sur une propriété des polynômes de Tchebycheff, *Comm. l’Inst. Sci., Kharkow*, 13, (1936), 93–95.

[21] E. B. Saff and V. Totik, *Logarithmic Potentials with External Fields*, New York/Berlin, Springer-Verlag, 1977.

[22] V. I. Smirnov and N. A. Lebedev, *Functions of a Complex Variable. Constructive Theory*, Cambridge, Mass. Institute of Technology, 1968.

[23] P. K. Suetin, *Series of Faber Polynomials*, Amsterdam, Gordon and Breach Science Publishers, 1998.

[24] T. Varga, Christoffel functions for doubling measures on quasismooth curves and arcs, *Acta Math. Hungar.* 141 (2013), 161-184.

[25] S. E. Warschawski, On differentiability at the boundary in conformal mapping, *Proc. Amer. Math. Soc.* 12 (1961), 614-620.

V. V. Andrievskii
Department of Mathematical Sciences
Kent State University
Kent, OH 44242
USA
e-mail: andriyev@math.kent.edu