Taxonomic Position and Species Identity of the Cultivated Yeongji ‘Ganoderma lucidum’ in Korea

O-Chul Kwon1†, Young-Jin Park†, Hong-Il Kim†, Won-Sik Kong†, Jae-Han Cho† and Chang-Soo Lee2*.
1Department of Biomedical Chemistry, Konkuk University, Chungju 27478, Korea
2Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea

Abstract Ganoderma lucidum has a long history of use as a traditional medicine in Asian countries. However, the taxonomy of Ganoderma species remains controversial, since they were initially classified on the basis of their morphological characteristics. Recently, it was proposed that G. lucidum from China be renamed as G. sichuanense or G. lingzhi. In the present study, phylogenetic analysis using the internal transcribed spacer region rDNA sequences of the Ganoderma species indicated that all strains of the Korean ‘G. lucidum’ clustered into one group together with G. sichuanense and G. lingzhi from China. However, strains from Europe and North American, which were regarded as true G. lucidum, were positioned in a clearly different group. In addition, the average size of the basidiospores from the Korean cultivated Yeongji strains was similar to that of G. lingzhi. Based on these results, we propose that the Korean cultivated Yeongji strains of ‘G. lucidum’ should be renamed as G. lingzhi.

Keywords Ganoderma lingzhi, Ganoderma sichuanense, ITS rDNA, Phylogeny, Taxonomy

Ganoderma has been used in traditional medicine in Korea, China, and Japan for thousands of years, and its use has spread to other regions of the world. It is known to prevent and treat immunological diseases and tumorigenesis, control blood glucose levels, modulate the immune system, have hepatoprotective and bacteriostatic effects [1, 2]. In addition, Ganoderma has been recognized as a potentially important source of lignin-degrading enzymes [3]. For these reasons, the cultivation of Korean Ganoderma is beneficial to both public health and industry.

The genus Ganoderma was initially classified on the basis of morphological characteristics [4, 5]. However, environmental factors, variability, interhybridization, and morphological propensity can lead to the inaccurate identification of Ganoderma species [6]. In the case of Ganoderma lucidum, the identification of species was often unclear, and the taxonomic segregation of East Asian and European G. lucidum has remained controversial [7, 8]. Based on analyses of nuclear rDNA gene regions, it was reported that the collections named G. lucidum in East Asia were not conspecific with European G. lucidum [9, 10]. Pegler and Yao [11] reported that, based on morphological examination, G. lucidum from East Asia and Europe are different. In addition, Hawksworth [12] proposed to retain the name G. lucidum for the Asian species and introduce a new name for the European species. A number of Ganoderma isolates have still been misidentified and misnamed [13]. Wang et al. [8] and Cao et al. [14] reported that, based on both morphological and molecular data, the identity of cultivated G. lucidum in China is conspecific with G. sichuanense and G. lingzhi. In the present study, we have investigated the taxonomic position of Korean G. lucidum by analyzing the internal transcribed spacer region (ITS) rDNA, and compared the results of our phylogenetic analysis with those obtained by the group from China [8].

MATERIALS AND METHODS

Ganoderma species and culture conditions. The Ganoderma strains listed in Table 1 were obtained from the Korean Collection for Type Culture (KTCT, Jeongeup, Korea), the American Type Culture Collection (ATCC, Rockville, MD, USA), the Korean Agricultural Culture Collection (KACC, Suwon, Korea), the Mushroom Division
Table 1. *Ganoderma* strains used in the present study

Species	Misidentified name	Collection ID	GenBank accession No. (ITS)	Origin	References
G. lingzhi	G. lucidum	ASI-7004	JQ520167	Korea	This study
G. lingzhi	G. lucidum	ASI-7013	JQ520168	Korea	This study
G. lingzhi	G. lucidum	ASI-7071	JQ520169	Korea	This study
G. lingzhi	G. lucidum	ASI-7074	JQ520170	Korea	This study
G. lingzhi	G. lucidum	ASI-7091	JQ520171	Korea	This study
G. lingzhi	G. lucidum	ASI-7094	JQ520172	Korea	This study
G. lingzhi	G. lucidum	ASI-7135	JQ520173	Korea	This study
G. lingzhi	G. lucidum	KU-4035	JQ520207	Korea	This study
G. lingzhi	G. lucidum	IUM-0047	JQ520174	Korea	This study
G. lingzhi	G. lucidum	IUM-0757	JQ520175	Korea	This study
G. lingzhi	G. lucidum	IUM-0938	JQ520176	Korea	This study
G. lingzhi	G. lucidum	IUM-3986	JQ520177	Korea	This study
G. lingzhi	G. lucidum	IUM-4002	JQ520178	Korea	This study
G. lingzhi	G. lucidum	IUM-4100	JQ520179	Korea	This study
G. lingzhi	G. lucidum	IUM-4537	JQ520180	Korea	This study
G. lingzhi	G. lucidum	IUM-4304	JQ520181	Bangladesh	This study
G. lingzhi	G. lucidum	KACC 42232	KT717954	Japan	This study
G. lingzhi	G. lucidum	KACC 51689	KT717955	Japan	This study
G. lingzhi	G. lucidum	KACC 51690	KT717956	Japan	This study
G. lingzhi	G. sichuanense	HMAS 251145	JF915400	China	[8]
G. lingzhi	G. sichuanense	HMAS 251146	JF915401	China	[8]
G. lingzhi	G. sichuanense	HMAS 251147	JF915402	China	[8]
G. lingzhi	G. sichuanense	HMAS 251148	JF915403	China	[8]
G. lingzhi	G. sichuanense	HMAS 62503	JF915405	China	[8]
G. lingzhi	G. sichuanense	HMAS 76566	JF915406	China	[8]
G. lingzhi	G. sichuanense	HMAS 99391	JF915407	China	[8]
G. lingzhi	G. sichuanense	HMAS 130128	JF915408	China	[8]
G. lingzhi	G. sichuanense	HMAS 130131	JF915409	China	[8]
G. lingzhi	G. sichuanense	HMAS 240175	JF915393	China	[8]
G. lingzhi	G. sichuanense	HMAS 240176	JF915394	China	[8]
G. lingzhi	G. sichuanense	HMAS 240177	JF915395	China	[8]
G. lingzhi	G. sichuanense	HMAS 240178	JF915396	China	[8]
G. lingzhi	G. sichuanense	HMAS 240187	JF915397	China	[8]
G. lingzhi	G. sichuanense	HMAS 250672	JF915398	China	[8]
G. lingzhi	G. sichuanense	HMAS 250677	JF915399	China	[8]
G. lingzhi	G. sichuanense	HMAS 60537	JN197281	China	[8, 14]
G. lingzhi	–	Wu 1006-38 (holotype)	JQ781858	China	[14]
G. lingzhi	–	Cai 9164	JQ781859	China	[14]
G. lingzhi	–	Dai 12438	JQ781861	China	[14]
G. lingzhi	–	Cai 6982	JQ781862	China	[14]
G. lucidum	–	ATCC 46755	JQ520185	Canada	This study
G. lucidum	–	GI-1-3	JN588574	France	[15]
G. lucidum	–	Glu1	JN588575	Italy	[15]
G. lucidum	–	Dai 11593	JQ781852	Finland	[14]
G. lucidum	–	Dai 2272	JQ781851	Sweden	[14]
G. lucidum	–	HMAS 86597	AY884176	UK	[8]
G. meredithae	–	ATCC 6492	JQ520190	USA	This study
G. multipileum	–	ASI-7140	JQ520191	Unknown	This study
G. multipileum	–	HMAS 242384	JF915409	China	[8]
G. multipileum	–	BCRC 37033	EU021462	Taiwan	[16]
G. resinaeum	–	IUM-3651	JQ520204	Czech	This study
G. resinaeum	–	HMAS 86599	AY884177	UK	[8]
G. resinaeum	–	CBS 152.27	JQ520200	UK	This study
G. sichuanense	–	HMAS 42798 (holotype)	JQ781877	China	[14]
G. sichuanense	–	Cai 7691	JQ781878	China	[14]
G. tropicum	–	HMAS 263143	JF915410	China	[8]
G. tropicum	–	Wu 0407-2	EU021458	Taiwan	[16]
ITS, internal transcribed spacer region; ASI, agricultural science institute.

Table 1. Continued

Species	Misidentified name	Collection ID	GenBank accession No. (ITS)	Origin	References
G. tsugae	–	ATCC 64795	JQ520215	Canada	This study
G. tsugae	–	ASI-7064	JQ520216	USA	This study
G. weberianum	–	SUT H2	AY569451	Australia	[17]
G. weberianum	–	HMAS 97365	JF1915411	China	[8]
G. weberianum	–	CBS 219.36	JQ520219	Philippines	This study
Tomophagus colossus	–	CGMCC 5.763	ZQ081068	Philippines	[8]
Tomophagus colossus	–	HCMC 10	JN184396	Vietnam	

ITS, internal transcribed spacer region; ASI, agricultural science institute.

of the Rural Development Administration (Eumseong, Korea), the Centraalbureau voor Schimmelcultures (CBS, Utrecht, Netherlands), Incheon University (Incheon, Korea), and Konkuk University (Seoul, Korea). *Ganoderma* species were cultured on potato dextrose broth (Difco, Detroit, MI, USA) and incubated at 30°C for 2 wk.

Genomic DNA extraction and PCR amplification. Cultured mycelia, filtered through 2 layers of MiraCloth (Calbiochem, La Jolla, CA, USA), were ground in liquid nitrogen, and genomic DNA was extracted using the cetyltrimethylammonium bromide method [19]. The ITS rDNA region was amplified using the primers ITS1 and ITS4 [20]. PCRs were performed using a premixed polymerase kit (Taq PreMix; TNT Research, Anyang, Korea) in a 20 μL reaction mixture containing 1 μL of DNA. Amplification of the ITS region was carried out using a thermal cycler (TaKaRa, Tokyo, Japan) at the following conditions: 5 min at 94°C for initial denaturation, followed by 30 cycles of 30 sec at 94°C for denaturation, 30 sec at 56°C for primer annealing, and 1 min at 72°C for extension, and 10 min at 72°C for a final extension. PCR products were detected by electrophoresis on 1.2% agarose gels in 0.5× Tris-acetate ethylenediaminetetraacetic acid buffer. Gels were stained with ethidium bromide and inspected visually under a UV transilluminator.

Cloning and sequencing. PCR products were ligated into the pGEM-T easy vector (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Ligation products were transformed into the *Escherichia coli* DH5α competent cell (RBC, Taiwan) by heat shock [21]. Plasmid DNAs were extracted using the DNA Hybrid-QTM Plasmid mini DNA Isolation Kit (GeneAll, Seoul, Korea). Recombinant clones were identified, and the presence of inserts was confirmed by EcoRI restriction enzyme digestion and sequencing (using the SP6 and T7 promoters; GenoTech, Daejeon, Korea).

Sequence analysis. Nucleotide sequences were deposited in the National Center for Biotechnology Information GenBank database (Table 1). The sequences of the ITS rDNA were aligned for phylogenetic analysis using the program BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html). The phylogenetic trees were constructed by using the MEGAS program [22] and the neighbor-joining method [23]. Confidence levels for individual branches of the resulting tree were assessed using the bootstrap test [24] in which 1,000 replicate trees were generated from resampled data.

Basidiospore observation. The size of basidiospores from the Korean cultivated Yeongji strains was determined using a fluorescence microscope (Axio Observer A1; Carl Zeiss, Jena, Germany) and a 5% KOH solution as a mounting medium. At least 10 basidiospores of each mature specimen were measured. The size of each spore was calculated, and the mean value was used in the description.

RESULTS AND DISCUSSION

The phylogenetic analysis of *Ganoderma* species in this study was generally consistent with the findings reported by the group from China [8, 14]. The 62 *Ganoderma* strains were divided into 7 groups, A to G (Fig. 1). This result was strongly supported by high bootstrap values ranging from 91% to 99%. In addition, *Ganoderma lucidum* were largely divided into two groups (groups A and G). Group A included all the Korean *G. lucidum* strains, as well as the *G. lucidum* strains from Bangladesh and Japan, and Chinese *G. sichuanense* and *G. lingzhi*. This group had a high bootstrap support value of 91%. *G. meredithae* (USA and unknown sources) in group B was closely related to *G. lucidum* in group A as evidenced by a high bootstrap value of 98%. *G. multipileum* (China and Taiwan) was grouped within group C and *G. tropicum* (China and Taiwan) within group D, with 96% and 99% bootstrap support, respectively. Group E includes three strains of *G. resinaceum* from the Czech Republic and UK (two strains), and was supported by very high bootstrap values of 99%. Strains of *G. weberianum* (Australia, China, and Philippines) and two other Chinese *G. sichuanense* strains (Cui 7691 and HMAS 86597; holotype) were grouped within group F with 99% bootstrap support. Groups E and F were closely related with bootstrap values of 96%.

It is worth noting that other *G. lucidum* strains from
Europe (France, Finland, Italy, Sweden, and UK) and Canada could be clustered into group G with G. tsugae strains from North America (Canada and USA), supported by a very high bootstrap value of 99%. It was clearly separated from Korean G. lucidum (group A). The findings of the current study are consistent with those of Park et al. [25] who reported that G. lucidum strains from Europe and North America could be clustered into one group together with G. tsugae based on both analyses of the ITS rDNA gene and partial β-tubulin gene sequences. Interestingly, Korean G. lucidum strains could be clustered into A group together with G. sichuanense and G. lingzhi strains from China.

This study produced results that corroborate the findings of previous work in this field. Based on both morphological and molecular evidence, Wang et al. [8] reported that G. lucidum is incorrectly recorded in China, as well as in other countries, and suggested that the name ‘G. lucidum’ as used for the Chinese species should be corrected as G. sichuanense. However, they did not obtain sequences from type specimens of G. sichuanense (the holotype; HMAS 42798). Liao et al. [26] reported that Korean G. lucidum (ASI-7004) could be clustered into one group together with Chinese G. lucidum and G. lingzhi based on the ITS2 sequences and RNA secondary structures.

Fig. 1. Phylogenetic relationships of 62 Ganoderma species based on their internal transcribed spacer region rDNA gene region sequences. This tree was obtained using the neighbor-joining method. Numbers at the branch nodes represent bootstrap values obtained from 1,000 replications (only values greater than 91% are shown). Two strains of Tomaphagus colossus were used as the outgroup.
Furthermore, Cao et al. [14] reported that G. sichuanense (included the holotype; HMAS 42798) was distantly phylogenetically related to G. lingzhi (included the holotype; Wu 1006-38), but it was closely related to G. resinaceum. With regard to the morphological characteristics, it has been reported that Chinese G. lucidum (G. lingzhi) has a yellow pore surface [27, 28], European G. lucidum has a white pore surface [29, 30], and Korean G. lucidum has pale brownish thread-like tissues in the middle of the context [31]. Cao et al. [14] found that the morphological characteristics of ‘G. lucidum’ from East Asia were consistent with those of G. lingzhi. Thus, they concluded that G. sichuanense was a distinct species since they display obvious morphological differences from G. lingzhi and suggested that the name ‘G. lucidum’ should be corrected as G. lingzhi not G. sichuanense.

Ganoderma lucidum (Curtis) P. Karst. was given its name by Petter Adolf Karsten in 1881 based on its morphology [32, 33]. It is commonly called “Yeongji” in Korea, “Lingzhi” in China, and “Reishi” or “Mannentake” in Japan [34]. Phylogenetic analyses placed G. lucidum from various regions of the world in different lineages [9, 13, 35-37]. However, the Ganoderma species from various countries including Africa, Oceania, America, Asia (China, Korea, and Japan), and Europe [8] have been incorrectly reported as G. lucidum. In addition, Moncalvo et al. [7, 9] classified G. lucidum collections from different regions (Asia and Europe) into different species based on ITS and partial nuclear large subunit ribosomal DNA sequences. This is similar to the results of our ITS nucleotide sequence analysis of G. lucidum. Likewise, Hong and Jung [35] reported that the G. lucidum from Korea and Japan were monophyletic, and were distinguished from the G. lucidum from Europe and North America based on sequence analysis of mitochondrial small-subunit ribosomal DNA.

As described above, the taxonomy of G. lucidum has been reported by many researchers. Nevertheless, the name G. lucidum has been misapplied to various species around the world. The results of this study also reveal that Korean G. lucidum was clustered into one group together with Chinese G. sichuanense and Chinese G. lingzhi (both formerly G. lucidum), and it was clearly separated from G. lucidum from Europe and North America. In addition, G. sichuanense were divided into two groups (groups A and F). G. sichuanense strains (Cui 7691 and HMAS 86597; holotype), including the holotype, could be clustered into group F together with G. weberianum, and it was closely related to G. resinaceum.

Cao et al. [14] also reported that the size of basidiospores of G. lingzhi [(9.85 ± 0.85) × (6.4 ± 0.6) μm] differs from that of G. sichuanense [(8.3 ± 0.9) × (5.8 ± 0.8) μm]. Interestingly, the average size of the basidiospores from the Korean cultivated Yeongji strains [(10.65 ± 0.65) × (6.6 ± 0.6) μm for ASI-7004, (10 ± 1) × (6.4 ± 0.3) μm for ASI-7071] were similar to that of G. lingzhi (Fig. 2).

Thus, the comparison of the ITS rDNA sequences and the estimation of the basidiospores size presented in this study confirm previous findings and contribute additional evidence that suggests the naming Korean cultivated Yeongji strains of ‘G. lucidum’ should be renamed as G. lingzhi.

ACKNOWLEDGEMENTS

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ010223112016)” Rural Development Administration, Republic of Korea.

REFERENCES

1. Liu X, Yuan JP, Chung CK, Chen XJ. Antitumor activity of the sporoderm-broken germinating spores of Ganoderma lucidum. Cancer Lett 2002;182:155-61.
2. Wachtel-Galor S, Benzie IF. Herbal medicine: an introduction to its history, usage, regulation, current trends, and research needs. In: Benzie IF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects [Internet]. Boca Raton (FL): CRC Press; 2011 [cited 2013 Apr 25]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK92773/.
3. Otjen L, Blanchette R, Effland M, Leatham G. Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 1987;41:343-9.
4. Patouillard N. Le genre Ganoderma. Bull Soc Mycol Fr 1889; 5:64-80.
5. Steyaert RL. Species of Ganoderma and related genera mainly of the Bogor and Lieden herbaria. Persoonia 1972;7:55-118.
6. Zheng L, Jia D, Fei X, Luo X, Yang Z. An assessment of the genetic diversity within *Ganoderma* strains with AFLP and ITS PCR-RFLP. Microbiol Res 2009;164:312-21.

7. Moncalvo JM, Wang HH, Hseu RS. Phylogenetic relationships in *Ganoderma* inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 1995;87:223-38.

8. Wang XC, Xi RJ, Li Y, Wang DM, Yao YJ. The species identity of the widely cultivated *Ganoderma* ‘G. lucidum’ (Ling-zhi), in China. PLoS One 2012;7:e40857.

9. Moncalvo JM, Wang HF, Hseu RS. Gene phylogeny of the *Ganoderma* complex based on ribosomal DNA sequences: comparison with traditional taxonomic characters. Mycologia 1995;99:1489-99.

10. Moncalvo JM, Wang HF, Wang HH, Hseu RS. The use of rRNA nucleotide sequence data for species identification and phylogeny in the Ganodermataceae. In: Proceedings of Contributed Symposium 59A, B, 5th International Mycological Congress; 1994 Aug 14-21; Vancouver, Canada. Taipei: National Taiwan University; 1995. p. 31-44.

11. Hawksworth DL. Reflections on changing names and related nomenclatural issues in edible and medicinal mushrooms. Int J Med Mushrooms 2005;7:29-38.

12. Smith BJ, Sivasithamparam K. Internal transcribed spacer ribosomal DNA sequence of five species of *Ganoderma* from Australia. Mycologia 2000;104:943-51.

13. Cao H, But PP, Shaw PC. Methodological studies on genomic DNA extraction and purification from plant drug materials. J Chin Pharm Sci 1998;7:130-7.

14. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.

15. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.

16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.

17. Gottlieb AM, Ferrer E, Wright JE. rDNA analyses as an aid to the taxonomy of species of *Ganoderma*. Mycologia 1987;79:1033-1045.