Recent advances in the therapeutic efficacy of hepatocyte growth factor gene-modified mesenchymal stem cells in multiple disease settings

Hong-fang Meng¹,² | Jide Jin² | Hua Wang² | Li-sheng Wang² | Chu-tse Wu¹,²

INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent postnatal stromal cells that can be isolated from various adult tissues, such as bone marrow (BM),¹ umbilical cord (UC),² umbilical cord blood (UCB),³ adipose tissue (AD)⁴ and dental pulp.⁵ MSCs are plastic adherent and can be expanded in vitro. They possess several features, including self-renewability, multipotency, immune evasion or privilege, homing and immune regulation. MSC therapy has been adopted in various conditions, such as ageing frailty,⁶ inflammatory diseases,⁷ lung diseases,⁸ liver diseases,⁹ renal diseases¹⁰ and neurodegenerative diseases.¹¹ There were approximately 1300 studies of MSC therapy registered on ClinicalTrials.gov by the end of 2021. MSCs have been generally proven to be safe and effective. Although significant progress has been made in MSC therapy, several hurdles limit their therapeutic efficacy, such as poor survival, homing and engraftment rates.

Abstract

Mesenchymal stem cell (MSC) therapy is considered a new treatment for a wide range of diseases and injuries, but challenges remain, such as poor survival, homing and engraftment rates, thus limiting the therapeutic efficacy of the transplanted MSCs. Many strategies have been developed to enhance the therapeutic efficacy of MSCs, such as preconditioning, co-transplantation with graft materials and gene modification. Hepatocyte growth factor (HGF) is secreted by MSCs, which plays an important role in MSC therapy. It has been reported that the modification of the HGF gene is beneficial to the therapeutic efficacy of MSCs, including diseases of the heart, lung, liver, urinary system, bone and skin, lower limb ischaemia and immune-related diseases. This review focused on studies involving HGF/MSCs both in vitro and in vivo. The characteristics of HGF/MSCs were summarized, and the mechanisms of their improved therapeutic efficacy were analysed. Furthermore, some insights are provided for HGF/MSCs’ clinical application based on our understanding of the HGF gene and MSC therapy.

KEYWORDS

clinical application, hepatocyte growth factor (HGF), HGF gene-modified MSCs (HGF/MSCs), mesenchymal stem cells (MSCs), therapeutic efficacy

¹School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
²Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China

Correspondence
Chu-tse Wu, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Rd, Haidian District, Beijing 100850, China. Email: 13910026365@163.com
Hepatocyte growth factor (HGF) is a pleiotropic factor primarily secreted by mesenchymal cells that was first identified and cloned in the 1980s. HGF has mitogenic, motogenic, anti-apoptotic, morphogenic and immune regulation activities, which can prevent fibrosis, apoptosis and inflammation, and promote angiogenesis in multiple conditions. It has been proven that MSCs’ therapeutic efficacy completely or partially depends on the secretion of HGF. In 2003, our group first reported research about HGF gene-modified MSCs, in which the MSCs’ therapeutic efficacy on myocardial ischaemia was improved by HGF gene modification. Since then, dozens of studies about HGF gene-modified MSCs have been conducted. This review summarizes the characteristics of HGF gene-modified MSCs (HGF/MSCs). In addition, the mechanisms of their enhanced therapeutic efficacy were analysed, thus giving some insights into their clinical application.

2 | CHARACTERISTICS OF HGF/MSC IN VITRO

Up to now, seven kinds of HGF gene modification vectors have been used in preclinical studies, namely Ad-HGF, adeno-associated virus vector carrying HGF gene (AAV-HGF), lentivirus vector carrying HGF gene (Lenti-HGF), retrovirus vector carrying HGF (Retro-HGF), HGF plasmid, transcription activator-like effector nucleases (TALEN) system and gene-delivery nano-system (Table S1). Ad-HGF, AAV-HGF, plasmid and gene-delivery nano-systems use non-integrating vectors, and Lenti-HGF, Retro-HGF and TALEN systems use integrating vectors. The definition of cell characteristics is vital for stem cell-based therapeutic products. In 2006, the International Society for Cellular Therapy defined the minimal criteria characteristics of MSCs. For HGF/MSC application, it is important to clarify whether the HGF gene modification has changed these characteristics. According to the preclinical studies, the MSCs’ phenotype was not changed by HGF gene modification. In the HGF/MSCs, the stem cell markers CD105, CD73 and CD90 are still positive, but the haematopoietic markers CD34, CD45, CD11b, endothelial marker CD31 and major HLA II are negative. The expression percentages of these markers in HGF/MSCs are the same as in the unmodified MSCs. Also, HGF/MSCs were as multipotent as MSCs. They were capable of adipogenesis, osteogenesis and chondrogenesis under appropriate induction. Some studies indicated that HGF gene modification by Ad-HGF vector might enhance MSCs’ osteogenic and neurogenic differentiation abilities. The expression of osteogenic differentiation-related genes encoding alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osteocalcin (OC) in dental pulp stem cells (DPSCs), and the expression of dopaminergic neuron-related genes tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine (DA) in UC-MSCs were all upregulated by Ad-HGF modification. This enhancement might depend on the multiplicity of infection (MOI) dosage. It was confirmed that the formation of mineralized extracellular matrix (ECM) in BM-MSCs infected with Ad-HGF at MOI = 10 or 50 was not significantly different from BM-MSCs infected with adenovirus vector lack of exogenous genes (Ad-Null). However, a significantly enhanced osteogenic differentiation was observed in BM-MSCs infected with Ad-HGF, which was higher than in those infected with Ad-Null when the MOI was elevated to 250.

3 | HGF OVEREXPRESSION BY HGF/MSCS

Although HGF/MSCs’ characteristics did not show obvious differences by different modification vectors, the HGF overexpression varied (Table 1). Ad-HGF’s infection acting time was the shortest; the HGF expression peak appeared at day 2 post-infection, and the overexpressing time was maintained for about 14 days. AAV-HGF’s infection acting time was the longest; the HGF expression peak appeared at day 11 post-infection, while the overexpressing-maintained time was the longest, too, about 31 days. However, when the HGF/MSCs fabricated by different MSCs and HGF vectors were transplanted in vivo, they showed similar overexpressing-maintained time, about 3–4 weeks. The advanced therapeutic effect was maintained for about the same period, indicating that the in vivo survival of HGF/MSCs was barely affected by the MSC source and HGF modification method.

4 | THERAPEUTIC EFFICACY OF HGF/MSCS IN PRECLINICAL STUDIES

HGF/MSCs showed a synergic therapeutic effect of MSC and HGF (Table 2). Both MSC therapy and HGF protein/gene therapy were beneficial to angiogenesis, organ structure recovery, organ function recovery and anti-fibrosis. In contrast, HGF/MSC therapy was more effective than either alone. This review summarized 49 preclinical studies that applied HGF/MSC therapy in various disease settings, such as myocardial infarction, hindlimb ischaemia, liver/kidney fibrosis, pulmonary arterial hypertension, acute lung/kidney injury, osteoporosis and immune-related diseases. They all showed that HGF/MSCs had advanced therapeutic efficacy compared with MSCs or HGF protein/gene therapy (except for one study, which is mentioned in the ‘Discussion and perspectives’ section). The details about the preclinical studies of HGF/MSC therapy are summarized in Table S1. The main mechanisms of HGF/MSC therapy are summarized in Figure 1, and they are further demonstrated below.

5 | PROMOTING ENGRAFTMENT AND TISSUE REPAIRMENT

The proliferation and migration activities of the transplanted MSCs are related to their in vivo engraftment efficiency. HGF is a mitogen factor involved in organ development and regeneration. In preclinical studies, HGF gene modification enhanced the therapeutic effect of MSCs on the organ structure recovery through enhancing soft
MENG et al. tissue re-epithelialization, restoring cell–cell connection and promoting hard tissue regeneration. Epithelial cells are widely distributed between the external and internal surfaces of the host, thus playing an important role in organ physiological homeostasis. HGF/MSCs promoted the activities and reduced the apoptosis of epithelial cells in the diseased organs, including the injured intestine, transplanted trachea, involute thymi and burned skin. Cells are connected by tight junctions and gap junctions, while the tight junctions are only found among epithelial cells. Zonula occludens-1 (ZO-1) is a major component of tight junctions, and connexin 43 (Cx43) is a kind of gap junction protein. The expression of ZO-1 and Cx43 was upregulated by HGF/MSCs more efficiently than only MSCs. Other than enhancing re-epithelialization and restoring the cell–cell connection, the bone regeneration was promoted by HGF/MSCs more than only MSCs in the diseased microenvironments.

PROMOTING ANGIOGENESIS

All tissues should be nurtured by the extensive networks formed by blood vessels. The progression of various diseases correlates with tissue destruction, such as necrosis and ischaemic and inflammatory diseases. It was reported that HGF/MSCs promoted vascular endothelial cell proliferation and blood vessel regeneration more efficiently than MSCs and HGF protein. The endothelial marker CD31 was expressed by the transplanted HGF/BM-MSCs in the model of rats with hindlimb ischaemia, suggesting that the transplanted HGF/MSC might differentiate into endothelial cells in the host. Moreover, HGF/MSC also can upregulate the expression of proangiogenic cytokines. In mice with hindlimb ischaemia, FGF-2 expression in the limb can be induced by HGF/BM-MSCs and higher than BM-MSCs. HGF/MSCs might promote angiogenesis through the ERK1/2 signalling pathway. HGF/MSC promoted the expression of phosphorylated ERK1/2 both in vitro and in vivo, and the treatment with an ERK1/2 inhibitor decreased the capillary-like structures. Moreover, the expression of sphingosine 1-phosphate receptors 1 (S1PR1), one of the downstream proteins of the ERK1/2 signalling pathway, was upregulated by HGF/BM-MSCs treatment in the injured lung.

PROMOTING NEUROGENESIS

Both MSC and HGF are beneficial to neurogenesis. In addition, HGF gene modification could enhance the expression of the dopaminergic neuron-related genes TH, DAT and DA in UC-MSCs. Three studies about HGF/MSCs addressed their therapeutic efficacy on the neural system. These studies showed that HGF/MSCs promoted the re-innervation in infarcted heart and ischaemic limb more efficiently than MSCs. Also, significantly more myelinated fibres were present in intracerebral haemorrhage rats transplanted with HGF/UC-MSCs than with UC-MSCs. Therefore, the HGF gene modification enhanced the MSC potential of neurogenesis in vivo.

Table 1	HGF overexpression by HGF/MSCs				
Vector	MSC source	HGF in vitro expression	HGF in vivo expression	Advanced therapeutic effect maintains Peak Half peak Maintain Peak Maintain	
Adenovirus BM-MSCs	At day 2	26,42–45,76	At day 8–9	26,42–45,76	At least 28 days
Adenovirus UC-MSCs	At least 3 days	26–42,45,76	At least 28 days		
AAV BM-MSCs	At day 1	26,42–45,76	At least 28 days		
AAV UC-MSCs	At least 3 days	26–42,45,76	At least 28 days		
Lentivirus BM-MSCs	At day 11	26,42–45,76	At least 9 days		
Lentivirus UC-MSCs	At least 7 days	26–42,45,76	At least 9 days		
pMEX plasmid BM-MSCs	At day 3	26,42–45,76	At least 9 days		
pMEX plasmid UC-MSCs	At least 7 days	26–42,45,76	At least 9 days		
Spermine-pullulan plasmid BM-MSCs	At day 3	26,42–45,76	At least 9 days		
Spermine-pullulan plasmid UC-MSCs	At least 7 days	26–42,45,76	At least 9 days		

Abbreviations: HGF, hepatocyte growth factor; MSC, mesenchymal stem cell; HGF/MSC, HGF gene-modified MSC; AAV, adeno-associated virus vector; BM, bone marrow; UC, umbilical cord; UCB, umbilical cord blood; AD, adipose tissue; DPSC, dental pulp stem cell; MCSC, mesenchymal stem cell; HGF/MSC, HGF gene-modified MSC; AAV, adeno-associated virus vector; BM, bone marrow; UC, umbilical cord; UCB, umbilical cord blood; AD, adipose tissue; DPSC, dental pulp stem cell; VS., versus; =, equal; ↑, improved; – , not mentioned.
Disease	Cells	HGF	Therapeutic effect
Myocardial ischaemia	5×10^6	1×10^6 pfu Ad-HGF	↓ Collagen content↑ capillaries count↑ infarct size↑ heart functions
			↓ Collagen content↑ capillaries count↑ infarct size↑ heart functions
			↓ Collagen content↑ capillaries count↑ infarct size↑ heart functions
Myocardial infarction	2×10^5	2.1×10^7 cfu retro-HGF	↓ Infarct size↑ anterior wall thickness↑ vascular density↑ heart function
			↓ Infarct size↑ anterior wall thickness↑ vascular density↑ heart function
Hindlimb ischaemia	2×10^7	2 μg protein	↑ Blood flow↑ capillaries count↑ micro vessels count↑ endothelial thickness
			↑ Blood flow↑ capillaries count↑ micro vessels count↑ endothelial thickness
Liver transplant	5×10^6	1×10^7 pfu Ad-HGF	↓ Mortality rate↑ liver weight↑ liver function↑ hepatocytes proliferation↑ hepatocytes apoptosis
			↓ Mortality rate↑ liver weight↑ liver function↑ hepatocytes proliferation↑ hepatocytes apoptosis
Liver transplant	5×10^6	1×10^7 pfu Ad-HGF	↓ Fibrosis↑ hepatocytes proliferation↑ hepatocytes apoptosis↑ hepatic stellate cells activities↑ liver function
			↓ Fibrosis↑ hepatocytes proliferation↑ hepatocytes apoptosis↑ hepatic stellate cells activities↑ liver function
Sinonasal wound	6×10^5	1×10^7 pfu Ad-HGF	↑ Wound healing↑ collagen deposition↑ cilia recovery
			↑ Wound healing↑ collagen deposition↑ cilia recovery
			↑ Wound healing↑ collagen deposition↑ cilia recovery

Abbreviations: HGF, hepatocyte growth factor; Ad-HGF, adenovirus vector carrying HGF gene; retro-HGF, retrovirus vector carrying HGF; VS., versus; =, equal; ↑, improved; ↓, reduced; \, not mentioned.
Fibrosis is defined by the accumulation of excess ECM components, which can affect any organ and is responsible for up to 45% of all deaths in the industrialized world. It has been reported that HGF/MSCs could reduce fibrosis efficiently in various diseased organs, including the heart, lung, liver, and skin. Collagen (COL) is the most important component of ECM, hydroxyproline is the most important component of COL, and fibronectin (FN) is the most important non collagenous component of ECM. It has been shown that HGF/MSCs could reduce the expression of COL, hydroxyproline, and FN more efficiently than MSCs. The matrix metalloproteinase (MMP) family can degrade a wide spectrum of extracellular matrix proteins, such as fibronectin and laminins. It has been reported that HGF/BMMSCs transplantation could upregulate the expression of MMP-14 and downregulate the expression of the tissue inhibitors of MMP-1 (TIMP-1) in the liver fibrosis, whereas BM-MSCs cannot. Therefore, HGF/MSCs could inhibit fibrosis by reducing ECM accumulation and promoting ECM degradation. Alpha-smooth muscle actin (α-SMA) indicates activated hepatic stellate cells (HSCs) and fibroblasts, which are the major source of ECM. It was demonstrated that the expression of α-SMA was reduced by HGF/MSC transplant more than when only MSCs were transplanted. HGF/MSC administration could induce more HSC apoptosis than MSCs and Ad-HGF in liver fibrosis. Hence, HGF/MSCs could suppress the activities of HGF/MSCs promote anti-fibrosis effect. (5) HGF/MSCs promote anti-apoptosis effect. (6) HGF/MSCs promote anti-inflammatory effect. They can deactivate Th1 and Th17 cells and activate Treg cells. (7) HGF/MSCs promote anti-oxidation effect. Bcl, B-cell lymphoma; COL, collagen; Cx43, connexin 43; CXCR4, chemokine (C-X-C motif) receptor 4; ERK1/2, extracellular regulated protein kinases 1/2; FGF, fibroblast growth factor; FN, fibronectin; GSH, antioxidant glutathione; ICAM, intercellular adhesion molecule; IFN-γ, interferon gamma; IL, interleukin; MDA, antioxidant metabolite malondialdehyde; MMP, matrix metalloproteinase; S1PR1, sphingosine 1-phosphate receptors 1; SDF-1, stromal cell-derived factor-1; Smad, small mothers against decapentaplegic; SOD, superoxide dismutase; TGF-β, transforming growth factor-beta; Th1, T helper 1 cell; Th17, interleukin 17 (IL-17)-secreting helper T; TNF-α, tumour necrosis factor alpha; Treg, regulatory T cell; VCAM, vascular cell adhesion protein; VEGF, vascular endothelial growth factor; ZO-1, zonula occludens-1; α-SMA, alpha-smooth muscle Actin; γ-GCS, gamma glutamylcysteine synthetase.

8 | PROMOTING ANTI-FIBROSIS EFFECT

FIGURE 1 Main mechanisms of HGF/MSC therapy. HGF/MSCs were adopted in treatment for a variety of diseases, including ischaemic, heart, lung, liver, urinary system, bone, and immune-related diseases. (1) HGF/MSC promote cell migration and engraftment, in which SDF-1α/CXCR-4 axis and ERK1/2 signalling pathway were involved. (2) HGF/MSCs promote cell–cell connection restoration and soft tissue re-epithelialization. (3) HGF/MSCs promote angiogenesis and neurogenesis. (4) HGF/MSCs promote anti-fibrosis effect. (5) HGF/MSCs promote anti-inflammatory effect. They can deactivate Th1 and Th17 cells and activate Treg cells. (6) HGF/MSCs promote anti-apoptosis effect. (7) HGF/MSCs promote anti-oxidation effect. Bcl, B-cell lymphoma; COL, collagen; Cx43, connexin 43; CXCR4, chemokine (C-X-C motif) receptor 4; ERK1/2, extracellular regulated protein kinases 1/2; FGF, fibroblast growth factor; FN, fibronectin; GSH, antioxidant glutathione; ICAM, intercellular adhesion molecule; IFN-γ, interferon gamma; IL, interleukin; MDA, antioxidant metabolite malondialdehyde; MMP, matrix metalloproteinase; S1PR1, sphingosine 1-phosphate receptors 1; SDF-1, stromal cell-derived factor-1; Smad, small mothers against decapentaplegic; SOD, superoxide dismutase; TGF-β, transforming growth factor-beta; Th1, T helper 1 cell; Th17, interleukin 17 (IL-17)-secreting helper T; TNF-α, tumour necrosis factor alpha; Treg, regulatory T cell; VCAM, vascular cell adhesion protein; VEGF, vascular endothelial growth factor; ZO-1, zonula occludens-1; α-SMA, alpha-smooth muscle Actin; γ-GCS, gamma glutamylcysteine synthetase.
EFFECT of transforming growth factor-beta (TGF-β) more efficiently than MSCs. TGF-β is the key activator of fibroblasts and the central cellular effector of fibrotic responses, which exerts its biological effects by activating downstream mediators, including small mothers against decapentaplegic (DPP) Smad2 and Smad3, is negatively regulated by Smad7 expression. In the rats with liver fibrosis, the HGF/UC-MSC transplant downregulated the expression of TGF-β1, Smad2 and Smad3 more efficiently than UC-MSCs, suggesting that the advantageous therapeutic efficacy of HGF/MSCs might depend on the TGF-β1/Smad signalling pathway.

9 | PROMOTING ANTI-INFLAMMATORY EFFECT

Both MSCs and HGF possess anti-inflammatory properties. Inflammation is a complex set of interactions in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injuries, which can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. It was reported that HGF/MSCs were beneficial to the survival of the graft in the host. The degree of inflammatory infiltration and the expression of infiltration indicators, such as intercellular adhesion molecule (ICAM)-1 and myeloperoxidase (MPO), were suppressed by the HGF/MSCs more than by the MSCs. Moreover, the pro-inflammatory factors IL-1β, interferon-gamma (IFN-γ), TNF-α and IL-17A were more downregulated by HGF/MSCs transplantation, whereas the anti-inflammatory factors IL-4 and IL-10 were more upregulated. IFN-γ and TNF-α are two of the cytokines mainly expressed by Th1 cells, IL-17A is one of the cytokines mainly expressed by Th17 cells, IL-4 is one of the cytokines mainly expressed by (T helper 2) Th2 cells, and IL-10 is one of the cytokines mainly expressed by Treg cells. When co-cultured with lymphocytes in vitro, HGF gene modification did not change the suppression effect of MSCs on the stimulated lymphocyte proliferation but enhanced the suppression effect of MSCs on the activities of Th1 and Th17 cells, and enhanced the promotion effect of MSCs on the Treg cell activities. HGF/MSCs decreased the ratio of Th1 to Th2 cells in the spleen more efficiently than the MSCs. HGF/MSCs might reduce the inflammatory responses through regulating the polarization and activities of CD4+ T cells.

10 | PROMOTING ANTI-APOPTOSIS EFFECT

HGF gene modification not only could enhance the anti-apoptosis potential of MSCs in the microenvironments of hypoxia or inflammation in vitro, but it also could enhance their suppression effect on the apoptosis of parenchymal cells in vivo, such as cardiomyocytes, lung epithelial cells, hepatocytes, renal cells and intestinal epithelial cells. It was reported that the expression of caspase-3 was suppressed by HGF/MSCs more than when only MSCs were used. Caspases are proteolytic enzymes known largely for controlling cell death and inflammation. The apoptotic caspases are subdivided into the initiators and the effectors. Initiator caspase activation during apoptosis is mediated mainly by the mitochondrial (intrinsic) and the death receptor (extrinsic) pathways. The intrinsic pathway is regulated by pro-apoptotic B-cell lymphoma (BCL)-2 homology domain 3 (BH3) of the members (Bim, Bid, Puma, Noxa, Hrk, Bmf and Bad), pro-apoptotic effector molecules (Bax and Bak) and anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, Mcl1, A1 and Bcl-B). Once initiator caspases are activated through the extrinsic or intrinsic apoptosis pathways, they mediate the activation of effector caspases, leading to cell structure destruction and apoptosis, and caspase-3 is one of the effector caspases. It was reported that HGF/MSCs upregulated the expression of Bcl-2 and downregulated the expression of BCL-2-associated X (Bax) more efficiently than MSCs, indicating that HGF/MSCs could suppress the apoptosis through deactivation of the mitochondrial pathway. In addition, the expression of AKT and p65 was increased by HGF/MSCs treatment more than the MSCs. Akt can rescue the cells from apoptosis by the activation of anti-apoptotic factors, such as glycogen synthase kinase-3 (GSK3), Bcl-2, and inactivation of pro-apoptotic factors, such as BCL-2-associated agonist of cell death (Bad), caspase-9, and forkhead (FH) transcription factors. The heterodimer of p65 and p50 is the most abundant and canonical form of NF-κB. NF-κB has anti-apoptotic functions by downregulating the inflammation response. To sum up, HGF/MSCs could suppress the apoptosis of parenchymal cells by deactivating the mitochondrial (intrinsic) pathway, in which the AKT and NF-κB signalling pathways might be involved.

11 | PROMOTING ANTI-OXIDATION EFFECT

Oxidative stress is implicated in various chronic/degenerative diseases, resulting in macromolecular damage. There are two kinds of oxidant compounds, namely reactive oxygen species (ROS) and reactive nitrogen species (RNS), which introduce various oxidative insults to lipids, proteins and nucleic acids, with consequences ranging from subtle modulation of cell signal transduction processes to apparent biomolecular damage and cell death. The antioxidant system is composed of enzymatic antioxidants and enzymatic antioxidants. The nonenzymatic antioxidants are low molecular weight compounds, including glutathione (GSH), vitamin C and β-carotene. The enzymatic antioxidants can be divided into two groups: the antioxidant response element-driven enzymes and primarily or constitutively acting antioxidant enzymes, such as superoxide dismutase (SOD), catalase and GSH peroxidase. It was reported that HGF/
MSCs could upregulate the expression of SOD and downregulate the expression of malondialdehyde (MDA), GSH and γ-glutamyl cysteine synthetase (γ-GCS) more efficiently than the MSCs when transplanted in vivo. MDA is an indicator for lipid peroxidation, and γ-GCS is a rate-limiting enzyme of GSH synthesis within the cell. Therefore, HGF/MSCs could reduce oxidative stress by decreasing lipid peroxidation, probably through their ability to promote the activity of SOD and the synthesis of GSH.

12 | THERAPEUTIC EFFICACY OF HGF/MSC APPLICATION IN A CLINICAL STUDY

Silicosis is an irreversible disease characterized by lung fibrosis. A clinical study on HGF/MSCs therapy for silicosis concluded that the administration of HGF/BM-MSCs was safe and effective in some patients with silicosis. Briefly, HGF/BM-MSCs were prepared by transfecting autologous BM-MSCs with plasmid HGF. Then, HGF/BM-MSCs were administered intravenously to four patients with pulmonary silicosis at a dose of 2 × 10^6 cells/kg weekly for three consecutive weeks. Two patients had dexamethasone-releasable fever after the administration, but no other abnormal symptoms were observed after the treatment for 6 months. The lung function indicators, such as forced vital capacity (FVC), the forced expiratory volume averages at the first second (FEV1) and the arterial blood oxyhemoglobin saturation (SPO2), were improved; the ratios of peripheral blood CD4+/CD8+ cell concentrations were increased; the serum IgG levels were decreased to the normal range; and the average ceruloplasmin level was slightly decreased, indicating an improvement of lung function and a reduction of inflammation. Furthermore, the absorption of the nodular lesion was observed after treatment for 12 months in 2 patients, suggesting structural healing from the silicotic fibrosis.

13 | DISCUSSION AND PERSPECTIVES

Gene-modified stem cells could be applied to the next generation of cell-based therapies. How to screen for the gene and cell source, the modification process, and the indications for the modified cell suitable for the therapies are three basic questions that need to be answered in gene-modified stem cell therapy. In Table 2, HGF/MSCs prepared by different MSCs and HGF vectors showed a similar overexpression lasting time in vivo. Therefore, in vitro infection efficiency and in vivo safety are the key factors for selecting a vector, cell source and modification processes. For now, the adenovirus is the most efficient vector for HGF gene modification. Ad-HGF modification did not change the cell genome, and the characteristics of Ad-HGF-modified cells are similar and fit the minimal criteria definition of MSCs. Therefore, MSCs are safe for clinical application at present, and in this review, no safety issues about HGF/MSCs occurred. However, HGF is a tumor growth promotion factor. Therefore, the issue of HGF/MSCs safety still needs to be further explored.

This review summarizes 49 preclinical studies on HGF/MSC therapy. These studies demonstrated that HGF/MSCs showed a more conspicuous therapeutic efficacy than MSCs or HGF protein/gene therapy. Except for one report, HGF/DPSCs and DPSCs were confirmed to possess an equal therapeutic effect on rheumatoid arthritis in mice within the first 41 days. However, HGF/DPSCs disappeared on day 41 after the administration, while the therapeutic effect of DPSCs was maintained. Therefore, HGF/MSCs are only suitable for the scenarios in which both MSCs and HGF are beneficial. MSCs can attenuate neuroinflammation, reduce neural degeneration, promote neural regeneration, nourish and protect neurons and preserve the blood-brain barrier. HGF is involved in the development of nervous system from prenatal to adult life, and HGF also attenuates neuroinflammation, reduces neurodegeneration, promotes neuro-regeneration, and nourishes and protect neurons. Hence, HGF/MSCs are beneficial to the recovery from nervous system diseases. However, few studies have adopted HGF/MSCs to treat neural diseases. It was shown that the culture supernatant of HGF/UC-MSCs could promote neural regeneration, reduce intracellular free calcium levels and promote the intracellular levels of bound calcium in a Parkinson’s disease cell model. Also, the beneficial effect of HGF/UC-MSCs on myelination was confirmed in an intracerebral hemorrhage rat model. Hence, the therapeutic efficacy of HGF/MSCs on neural diseases could be further explored.

The prominent therapeutic effect of HGF/MSCs comes from both HGF and MSC. HGF has angiogenesis, anti-fibrosis and anti-inflammation properties; the overexpression of HGF in vivo is beneficial to many conditions. HGF gene modification promotes the in vivo survival rate of MSC, hence improving the MSCs’ therapeutic effect. Furthermore, HGF/MSCs’ therapeutic efficacy could be enhanced by prolonging the time for HGF overexpression by using HGF/MSCs cell sheet technology or HGF inducible microgel preparation. Theoretically, multiple doses could also enhance HGF/MSCs’ therapeutic efficacy. Only two preclinical studies adopted multiple dosages of HGF/MSCs; however, the authors did not compare the therapeutic efficacy with single doses. Therefore, the optimal dosage of HGF/MSCs needs to be explored further.

The HGF/MSC therapy mechanism is essential for the indication choice and its clinical application, thus being worth further and deeper exploration. Except for the mechanisms of HGF/MSC therapy mentioned in the preclinical studies, there probably were some unexplored mechanisms for the advanced therapeutic efficacy of HGF/MSCs; for example, (1) the death receptor (extrinsic) pathway might be involved in the anti-apoptosis effect of HGF/MSCs. Death receptor-mediated apoptosis is initiated following ligand-binding and activation of the death domain-containing tumor necrosis receptor superfamily, such as CD95 (Fas). At the same time, MSCs might inhibit the host cell apoptosis through the Fas...
ligand (FasL)/Fas-mediated death pathway.95 In addition, HGF can promote cell survival by inhibiting Fas activation-mediated apoptosis.96 Hence, HGF/MSCs suppressed the apoptosis of parenchymal cells through the mitochondrial (intrinsic) pathway and might also through the death receptor (extrinsic) pathway. (2) HGF gene modification might affect mitochondrial activities. Mitochondria are the energy-producing dynamic double-membrane organelles essential for cellular and organismal survival. Both the advanced anti-apoptosis and anti-oxidation effects of HGF/MSCs correlate with mitochondrial activities. Mitochondria can be transferred between transplanted MSCs and damaged host cells to regulate their biological functions, such as cellular metabolism, survival, proliferation and differentiation.97 Also, MSC-derived extracellular vesicles could attenuate the mitochondrial damage of the host cell.98 Whether the gene modification could affect the mitochondrial quality of MSCs, the host cells through mitochondrial transfer, and regulate the mitochondrial quality of the host cells or not still need to be explored. (3) In this review, we demonstrated that HGF/MSC could reduce oxidation, apoptosis and inflammation. Oxidative stress could induce senescence;99 senescence evolved alongside apoptosis100 and contributed to inflammation.101 Therefore, HGF/MSC might be anti-senescence. It should be explored whether HGF modification could reduce MSC senescence and whether HGF/MSC could decelerate host senescence. Furthermore, there were other cytokines, such as fibroblast growth factor 21 (FGF21),102 stem cell factor (SCF)103 and Erb-B2 receptor tyrosine kinase 4 (ERBB4),104 that could reduce senescence and apoptosis. Exploring the common and unique properties of HGF compared with these cytokines might be beneficial to the application of HGF/MSC. (4) The in vivo microenvironment affects HGF/MSC’s function. There were some controversial results of HGF/MSC therapy, such as HGF/MSC therapy decreased the expression of Col I in the trabeculae, but increased its expression in medullary cavities48; decreased the expression of α-SMA in fibrosis (Table 2), but increased its expression in the cavernous tissue.35 The reason might be that the behaviour and activities of the transplanted HGF/MSCs could be affected by the surrounding physical (e.g. stiffness, elasticity, viscosity, hypoxia, fluid shear stress, hydrostatic pressure, bioelectricity and microgravity), chemical (e.g. ECM, chemokines and enzymes) and cellular (e.g. parenchymal cells, nonparenchymal cells and immune cells) microenvironments. To determine the changes in cell behaviours and activities between MSCs and gene-modified MSCs under the same microenvironment would provide new strategies for cell therapy.

AUTHOR CONTRIBUTIONS

Hongfang Meng: Conceptualization (lead); writing – original draft (lead). Jide Jin: Writing – review and editing (equal). Hua Wang: Writing – review and editing (equal). Li-sheng Wang: Writing – review and editing (equal). Chu-tse Wu: Project administration (lead); writing – review and editing (lead).

FUNDING INFORMATION

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest.

ORCID

Chu-tse Wu https://orcid.org/0000-0003-0417-8925

REFERENCES

1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):144-147. [doi:10.1126/science.284.5411.143]

2. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330-1337. [doi:10.1634/stemcells.2004-0013]

3. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669-1675. [doi:10.1182/blood-2003-05-1670]

4. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228. [doi:10.1089/10763270130006289]

5. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal bone and neural stem cells. Science. 1999;284(5411):143-147. [doi:10.1126/science.284.5411.143]

6. Shen Y. Stem cell therapies for retinal diseases: from bench to bedside. *J Mol Med (Berl)*. 2018;96(11):1513-1526. [doi:10.1007/s00109-018-2879-0]

7. Behneke J, Kremer S, Shahzad T, et al. MSC based therapies-new perspectives for the injured lung. *J Clin Med*. 2020;9(3):682. [doi:10.3390/jcm9030682]

8. Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. *Eur J Cell Biol*. 2019;98(5–8):151041. [doi:10.1016/j.ejcb.2019.04.002]

9. Cao Y, Ji C, Lu L. Mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. *Theranostics*. 2021;11(12):5675-5685. [doi:10.7150/thno.46436]

10. Zhu Y, Ge J, Huang C, Liu H, Jiang H. Application of mesenchymal stem cell therapy for aging frailty: from mechanisms to therapeutics. *Theranostics*. 2021;11(12):5675-5685. [doi:10.7150/thno.46436]

11. Fishbein-Cason CK, Scherer L, Garvey TF, et al. Mesenchymal stem cells improve cardiac function in a canine model of heart failure. *J Heart Lung Transplant*. 2013;32(7):726-734. [doi:10.1016/j.healun.2013.04.009]

12. Oguro K, Tomiyama T, Iida M, et al. Mesenchymal stem cell transplantation improves cardiac function after myocardial infarction. *Cell Transplant*. 2017;26(9):1315-1326. [doi:10.1080/09636897.2016.1249169]

13. Wang H, Wang H, Wang W, et al. Mesenchymal stem cells enhance cardiac regeneration via modulation of cardiac microenvironment. *Stem Cells Transl Med*. 2017;6(9):2226-2233. [doi:10.1002/stem.1727]

14. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669-1675. [doi:10.1182/blood-2003-05-1670]

15. Sonnenberg E, Meyer D, Weidner KM, Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and glandular epithelium. *Eur J Cell Biol*. 1999;78(5):438-447. [doi:10.1078/0171-9335(1999)78<438:SFHGFAT>2.0.CO;2]
epithelia during mouse development. J Cell Biol. 1993;123(1):223-235. doi:10.1083/jcb.123.1.223

16. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatocarcinized rats. Biochim Biophys Acta. 1984;122(3):1450-1459. doi:10.1016/0006-291x(84)91253-1

17. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342(6248):440-443. doi:10.1038/342440a0

18. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutic potentials for renal diseases. Kidney Int. 2001;59(6):2023-2038. doi:10.1046/j.1523-1755.2001.00717.x

19. Molnarfi N, Benkhoucha M, Funakoshi H, Nakamura T, Lalive PH. The discovery of hepatocyte growth factor: a regulator of inflammation and autoimmunity. Autoimmun Rev. 2015;14(4):293-303. doi:10.1016/j.autrev.2014.11.013

20. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):588-610. doi:10.2183/pjab.86.588

21. Hu S, Li J, Xu X, et al. The hepatocyte growth factor-expressing character is required for mesenchymal stem cells to protect the lung injured by lipopolysaccharide in vivo. Stem Cell Res Ther. 2016;7(1):66. doi:10.1186/s13287-016-0320-5

22. Wang H, Zheng R, Chen Q, Shao J, Yu J, Hu S. Mesenchymal stem cells improve ischemia/reperfusion-induced pulmonary fibrosis through paracrine effects of the hepatocyte growth factor. Stem Cells Transl Med. 2017;6(3):1006-1017. doi:10.5966/sctm.2016.0054

23. Wang H, Zheng R, Chen Q, Shao J, Yu J, Hu S. Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Res Ther. 2017;8(1):211. doi:10.1186/s13287-017-0662-7

24. Chen QH, Wu F, Liu L, et al. Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Res Ther. 2020;11(1):91. doi:10.1186/s13287-020-01612-y

25. Song P, Han T, Xiang X, et al. The role of hepatocyte growth factor in mesenchymal stem cell-induced recovery in spinal cord injured rats. Stem Cell Res Ther. 2020;11(1):178. doi:10.1186/s13287-020-01691-x

26. Duan HF, Wu CT, Wu DL, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther. 2003;8(3):467-474. doi:10.1016/s1525-0016(03)00186-2

27. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. doi:10.1080/14653240600855905

28. Chen S, Chen X, Wu X, et al. Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther. 2017;24(1):3-11. doi:10.1038/gt.2016.64

29. Wang H, Yang YF, Zhao L, et al. Hepatocyte growth factor gene-modified mesenchymal stem cells reduce radiation-induced lung injury. Hum Gene Ther. 2013;24(3):343-353. doi:10.1089/hum.2012.177

30. Chen Y, Qian H, Zhu W, et al. Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev. 2011;20(1):103-113. doi:10.1089/scd.2009.0495

31. Tang Y, Li Q, Meng F, et al. Therapeutic potential of HGF-expressing human umbilical cord mesenchymal stem cells in mice with acute liver failure. Int J Hepatol. 2016;2016:5452487. doi:10.1155/2016/5452487

32. Meng H, Wei F, Zhou Y, et al. Overexpression of hepatocyte growth factor in dental pulp stem cells ameliorates the severity of psoriasis by reducing inflammatory responses. Stem Cells Dev. 2021;30(17):876-889. doi:10.1089/scd.2021.0129

33. Park BW, Jung SH, Das S, et al. In vivo priming of human mesenchymal stem cells with hepatocyte growth factor-engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci Adv. 2020;6(13):eaay6994. doi:10.1126/sciadv.ayy6994

34. Zhao L, Liu X, Zhang Y, et al. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res. 2016;344(1):30-39. doi:10.1016/j.yexcr.2016.03.024

35. Liu T, Peng Y, Jia C, Fang X, Li J, Zhong W. Hepatocyte growth factor-modified adipose tissue-derived stem cells improve erectile function in streptozotocin-induced diabetic rats. Growth Factors. 2015;33(2):282-289. doi:10.1016/j.gtw.2015.1077825

36. Zhou D, Cheng H, Liu J, Zhang L. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor. Iran J Basic Med Sci. 2017;20(6):662-675. doi:10.22038/ijbms.2017.8834

37. Jung WS, Han SM, Kim SM, et al. Stimulatory effect of HGF-overexpressing adipose tissue-derived mesenchymal stem cells on thymus regeneration in a rat thymus involution model. Cell Biol Int. 2014;38(10):1106-1117. doi:10.1002/cbi.10306

38. Cao Y, Liu Z, Xie Y, et al. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for peri-odontal regeneration in swine. Stem Cell Res Ther. 2015;6:249. doi:10.1186/s13287-015-0244-5

39. Liu AM, Lu G, Tsang KS, et al. Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery. 2010;67(2):357-365. doi:10.1227/01.neu.0000371983.06278.83

40. Kong F, Shi X, Xiao F, et al. Transplantation of hepatocyte growth factor-modified dental pulp stem cells prevents bone loss in the early phase of ovarioctomy-induced osteoporosis. Hum Gene Ther. 2018;29(2):271-282. doi:10.1089/hum.2017.091

41. Li JF, Yin HL, Shuboy A, et al. Differentiation of hUC-MSC into dopaminergic-like cells after transduction with hepatocyte growth factor. Mol Cell Biochem. 2013;381(1-2):183-190. doi:10.1007/s11010-013-1701-z

42. Wen Q, Zhang SM, Du XL, et al. The multiplicity of infection-dependent effects of recombinant adenovirus carrying HGF gene on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. Int J Mol Sci. 2018;19(3):12. doi:10.3390/ijms19030734

43. Bian L, Guo ZK, Wang HX, et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. Int J Surg. 2009;23(1):21-27.

44. Yu Y, Yao AH, Chen N, et al. Mesenchymal stem cells overexpressing hepatocyte growth factor improve small-for-size liver grafts regeneration. Mol Ther. 2007;15(7):1382-1389. doi:10.1038/sj.mt.6300202

45. Liu X, Chen W, Yang Y, Liu G. Therapeutic implications of mesenchymal stem cells transfected with hepatocyte growth factor transplanted in rat kidney with unilateral ureteral obstruction. J Pediatr Surg. 2011;46(3):537-545. doi:10.1016/j.jpedsurg.2010.09.040

46. Boldyreva MA, Shevchenko EK, Molokotina YD, et al. Transplantation of adipose stromal cell sheet producing hepatocyte growth factor induces pleiotropic effect in ischemic skeletal muscle. Int J Mol Sci. 2019;20(12):17. doi:10.3390/ijms2012088

47. Yu Y, Lu L, Qian X, et al. Antifibrotic effect of hepatocyte growth factor-expressing mesenchymal stem cells in small-for-size liver transplant rats. Stem Cells Dev. 2010;19(6):903-914. doi:10.1089/scd.2009.0254
Xie M, Wan J, Zhang F, Zhang R, Zhou Z, You D. Influence of hepatocyte growth factor-transfected bone marrow-derived mesenchymal stem cells towards renal fibrosis in rats. *Indian J Med Res*. 2019;149(4):508-516. doi:10.4103/ijmij.UMR_1527_16

Li J, Zheng CQ, Li Y, Yang C, Lin H, Duan HG. Hepatocyte growth factor gene-modified mesenchymal stem cells augment Sinonasal wound healing. *Stem Cells Dev*. 2015;24(15):1817-1830. doi:10.1089/scd.2014.0521

Su GH, Sun YF, Lu YX, et al. Hepatocyte growth factor gene-modified bone marrow-derived mesenchymal stem cells transplantation promotes angiogenesis in a rat model of hindlimb ischemia. *J Huazhong Univ Sci Technolog Med Sci*. 2013;33(4):511-519. doi:10.1007/s11596-013-1151-6

Seo KW, Sohn SY, Bhang DH, Nam MJ, Lee HW, Youn HY. Therapeutic effects of hepatocyte growth factor-overexpressing human umbilical cord blood-derived mesenchymal stem cells on liver fibrosis in rats. *Cell Biol Int*. 2014;38(1):106-116. doi:10.1002/cbin.10186

Zhang Y, Li R, Rong W, et al. Therapeutic effect of hepatocyte growth factor-overexpressing bone marrow-derived mesenchymal stem cells on CCl(4)-induced hepatocirrhosis. *Cell Death Dis*. 2018;9(12):1186. doi:10.1038/s41419-018-1239-9

Wang H, Sun RT, Li Y, et al. HGF gene modification in mesenchymal stem cells reduces radiation-induced intestinal injury by modulating immunity. *PloS One*. 2015;10(5):e0124420. doi:10.1371/journal.pone.0124420

Cao XP, Han DM, Zhao L, et al. Hepatocyte growth factor enhances the inflammation-alleviating effect of umbilical cord-derived mesenchymal stromal cells in a bronchiolitis obliterans model. *Cytotherapy*. 2016;18(3):402-412. doi:10.1016/j.jcct.2015.12.006

Moon SH, Lee CM, Park SH, Jin NM. Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats. *Growth Factors*. 2019;37(3-4):105-119. doi:10.1080/08977194.2019.1652399

Wang S, Qin X, Sun D, et al. Effects of hepatocyte growth factor overexpressed bone marrow-derived mesenchymal stem cells on prevention from left ventricular remodelling and functional improvement in infarcted rat hearts. *Cell Biochem Funct*. 2012;30(7):574-581. doi:10.1002/cbf.2836

Yamamoto Y, Matsuura T, Narazaki G, et al. Synergistic effects of autologous cell and hepatocyte growth factor gene therapy for neovascularization in a murine model of hindlimb ischemia. *Am J Physiol Heart Circ Physiol*. 2009;297(4):H1329-H1336. doi:10.1152/ajpheart.00321.2009

Chang HK, Kim PH, Cho HM, et al. Inducible HGF-secreting human umbilical cord blood-derived MSCs produced via TALEN-mediated genome editing promoted angiogenesis. *Mol Ther*. 2016;24(9):1644-1654. doi:10.1038/mt.2016.120

Dong X, Kong F, Liu C, et al. Pulp stem cells with hepatocyte growth factor overexpression exhibit dual effects in rheumatoid arthritis. *Stem Cell Res Ther*. 2020;11(1):229. doi:10.1186/s13287-020-01747-y

Kreitzer G, Myat MM. Microtubule motors in establishment of epithelial cell polarity. *Cold Spring Harb Perspect Biol*. 2018;10(2):a027896. doi:10.1101/cshperspect.a027896

Ha XQ, Lu TD, Hui L, Dong F. Effects of mesenchymal stem cells transfected with human hepatocyte growth factor gene on healing of burn wounds. *Clin J Traumatol*. 2010;13(6):349-355.

Tapia R, Kralicek SE, Hecht GA. Modulation of epithelial cell polarity by bacterial pathogens. *Ann N Y Acad Sci*. 2017;1405(1):16-24. doi:10.1111/nyas.13388

Zhuang Y, Peng H, Mastej V, Chen W. MicroRNA regulation of endothelial junction proteins and clinical consequence. *Mediators Inflamm.* 2016;2016:5078627. doi:10.1155/2016/5078627

Su LX, Guo YH, Guo N, Chang D, Xie LX, Liu CT. The efficacy of MSC-HGF in treating pulmonary arterial hypertension (PAH) and renovascular remodelling. *Cent Eur J Biol*. 2013;8(3):240-251. doi:10.2478/s11535-013-0128-y

Potente M, Gerhardt C, Carmeliet P. Basic and therapeutic aspects of angiogenesis. *Cell*. 2011;146(6):873-887. doi:10.1016/j.cell.2011.08.039

Song MB, Yu XJ, Zhu GX, Chen JF, Zhao G, Huang L. Transfection of HGF gene enhances endothelial progenitor cell (EPC) function and improves EPC transplant efficiency for balloon-induced arterial injury in hypercholesterolemic rats. *Vasc Pharmacol*. 2009;51(2-3):205-213. doi:10.1016/j.vph.2009.06.009

Zhu K, Wu M, Lai H, et al. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair. *Biomaterials*. 2016;74:188-199. doi:10.1016/j.biomater.2015.10.010

Zhang J, Wang LL, Du W, et al. Hepatocyte growth factor modification enhances the anti-arrhythmic properties of human bone marrow-derived mesenchymal stem cells. *PloS One*. 2014;9(10):e111246. doi:10.1371/journal.pone.0111246

Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. *Nature*. 2020;587(7835):555-566. doi:10.1038/s41586-020-2938-9

Lu F, Zhao X, Wu J, et al. MSCs transfected with hepatocyte growth factor or vascular endothelial growth factor improve cardiac function in the infarcted porcine heart by increasing angiogenesis and reducing fibrosis. *Int J Cardio*. 2013;167(6):2524-2532. doi:10.1016/j.jcicard.2012.06.052

Gazdhar A, Susuri N, Hostetter T, et al. HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic. *PloS One*. 2013;8(6):e65453. doi:10.1371/journal.pone.0065453

Geng P, Zhang Y, Zhang H, et al. HGF-modified dental pulp stem cells mitigate the inflammatory and fibrotic responses in paragraft-induced acute respiratory distress syndrome. *Stem Cells Int*. 2021;2021:6662831. doi:10.1155/2021/6662831

Guo YH, Su LX, Li YH, et al. Synergistic therapeutic effect of hepatocyte growth factor and granulocyte colony-stimulating factor on pulmonary hypertension in rats. *Heart Vessels*. 2014;29(4):520-531. doi:10.1007/s00380-013-0395-1

Zhang J, Zhou S, Zhou Y, et al. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model. *PloS One*. 2014;9(12):e114670. doi:10.1371/journal.pone.0114670

Kim MD, Kim SS, Cha HY, et al. Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. *Exp Mol Med*. 2014;46(8):e110. doi:10.1038/emm.2014.49

Ishikawa H, Jo J, Tabata Y. Liver anti-fibrosis therapy with mesenchymal stem cells mitigate the inflammation and fibrotic responses in paragraft-induced acute respiratory distress syndrome. *Stem Cells*. 2020;39(21):13951406. doi:10.1002/stem.368912x637488

Song YS, Lee HJ, Doo SH, et al. Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. *Cell Transplant*. 2012;21(8):1641-1650. doi:10.3727/096368912x134788

Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β1/Smad signaling in tissue fibrosis. *Chem Biol Interact*. 2018;292:76-83. doi:10.1016/j.cbi.2018.07.008
81. Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846-852. doi:10.1038/nature01320

82. Guo Y, He J, Wu J, et al. Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res. 2008;39(2):179-188. doi:10.1016/j.arcmed.2007.11.001

83. Shalini S, Dorstyn L, Dawar S, Kumar S, Old, new and emerging functions of caspasps. Cell Death Differ. 2015;22(4):526-539. doi:10.1038/cdd.2014.216

84. Rong SL, Wang XL, Zhang CY, et al. Transplantation of HGF gene-engineered skeletal myoblasts improve infarction recovery in a rat myocardial ischemia model. Plos One. 2017;12(5):19. doi:10.1371/journal.pone.0175807

85. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C, PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983-8998. doi:10.1038/sj.onc.1207115

86. Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi:10.1101/cshperspect.a001651

87. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homoeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-990. doi:10.1016/j.cellsig.2012.01.008

88. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. J Cell Mol Med. 2003;22(56):8983-8998. doi:10.1101/cshperspect.a001651

89. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F. Hepatocyte growth factor (HGF), HGF activator, and c-met in synovial tissues in rheumatoid arthritis and osteoarthritis. Stem Cells. 2015;34(6):975-991. doi:10.1002/scit.2015.09.7

90. Liu WW, Wang HX, Yu W, et al. Treatment of silicosis with hepatocyte growth factor gene expression HGF into a rat model of liver fibrosis. Stem Cells. 2012;24(5):981-990. doi:10.1101/cshperspect.a001651

91. Nagashima M, Hasegawa J, Kato K, et al. Hepatocyte growth factor (HGF), HGF activator, and c-met in synovial tissues in rheumatoid arthritis and osteoarthritis. J Rheumatol. 2001;28(8):1772-1778.

92. Badyra B, Sulkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med. 2014;10(1):1174-1189. doi:10.1002/stcm.2014.09.7

93. Desole C, Gallo S, Vitacolonna A, et al. HGF and MET: from brain development to neurological disorders. Front Cell Dev Biol. 2021;9:683609. doi:10.3389/fcell.2021.683609

94. Liu XS, Li JF, Wang SS, et al. Human umbilical cord mesenchymal stem cells infected with adenovirus expressing HGF promote regeneration of damaged neuron cells in a Parkinson's disease model. Biomed Res Int. 2014;2014:909657. doi:10.1155/2014/909657

95. Tian Y, Wang J, Wang W, et al. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther. 2016;7(1):157. doi:10.1186/s13287-016-0416-y

96. Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology. 2000;32(4 Pt 1):796-802. doi:10.1053/hep.2000.17738

97. Han D, Zheng X, Wang X, Jin T, Cui L, Chen Z. Mesenchymal stem/stromal cell-mediated mitochondrial transfer and the therapeutic potential in treatment of neurological diseases. Stem Cells Int. 2020;2020:8838046. doi:10.1155/2020/8838046

98. Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano. 2021;15(1):1519-1538. doi:10.1021/acsnano.0c08947

99. Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells. Int J Mol Med. 2017;39(4):775-782. doi:10.3892/ijmm.2017.2912

100. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dual or complementary cell fates? EMBO Rep. 2014;15(11):1139-1153. doi:10.15252/embr.201439245

101. Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238-246. doi:10.1016/j.trendsmm.2010.03.003

102. Li X, Hong Y, He H, et al. FGF2 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxid Med Cell Longev. 2019;2019:4915149. doi:10.1155/2019/4915149

103. Li X, Zhang Y, Liang Y, et al. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J Cell Mol Med. 2017;21(2):265-277. doi:10.1111/jcmm.12962

104. Liang X, Ding Y, Lin F, et al. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J. 2019;33(3):4559-4570. doi:10.1096/fj.201801690R

105. Choi YJ, Lee CM, Lee JH, Park SH, Nam MJ. Protective effects of hepatocyte growth factor gene overexpression against hydrogen peroxide-induced apoptosis in mesenchymal stem cells. Environ Toxicol. 2019;34(11):1236-1245. doi:10.1002/tox.22824

106. Jang YH, You DH, Nam MJ. Protective effects of HGF gene expressing human mesenchymal stem cells in acetaminophen-treated hepatocytes. Growth Factors. 2015;33(5-6):319-325. doi:10.3109/08977194.2015.1080695

107. Guo YH, He JG, Wu JL, et al. Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovascularogenenic therapy for ischemic cardiomyopathy. Cytotherapy. 2008;10(8):857-867. doi:10.1016/j.cyt.2008.02.019

108. Lai L, Chen J, Wei X, et al. Transplantation of MSCs overexpressing HGF into a rat model of liver fibrosis. Mol Imaging Biol. 2016;18(1):43-51. doi:10.1007/s11307-015-0869-x

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.