GCMS Analysis of Leaf and Salt Stress Callus of Eggplant (Solanum melongena L.)

A. Vanitha¹, K. Kalimuthu¹*, V. Chinnadurai¹, Y. Sharmila Juliet¹ and R. Prabakaran²

¹Plant Tissue Culture Division, PG and Research Department of Botany, Government Arts College (Autonomous), Coimbatore- 641018, India.
²PG and Research Department of Botany, PSG College of Arts and Science, Coimbatore- 641014, India.

Authors’ contributions

This study was carried out in collaboration between all authors. Author KK designed the study, wrote the protocol and corrected the manuscript. Authors AV and VC managed the literature searches, and performed the plant tissue culture experiment, preliminary phytochemical screening and GC-MS analysis. Author RP wrote the first draft of the manuscript. Author YSJ collected the literature and helped in the manuscript preparation. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJPR/2016/30425

Received 18th November 2016
Accepted 31st January 2017
Published 22nd February 2017

Abstract

In the present study, the leaf explant cultured on a MS medium supplemented with BAP (4.44 µM) + NAA (0.98 µM) had the ability to induce more amount of green and friable callus. The 40 days old best grown callus was sub cultured on the combination of various concentrations of BAP (2.22, 4.44, 6.66, 8.88 and 11.1 µM) along with same concentrations of NAA (0.98 µM) with different concentrations of NaCl (20, 40, 60, 80 and 100 mM). The highest percentage of callus was observed on MS + BAP (4.44 µM) + NAA (0.98 µM) + NaCl 20 mM with the percentage of 62.33±1.35. The shoot induction was observed on the same media composition with 95%
response. Preliminary phytochemical analysis of ethanol and methanol extracts of salt callus showed the presence of alkaloids, saponins, steroids, tannins/phenolics, flavonoids, glycosides and reducing sugar. GCMS analysis revealed the presence of 27 compounds in the ethanolic extract of *S. melongena*. Among that there are seven major peaks which indicating the presence of seven major phytochemical constituents. From the twenty seven compounds identified, the most prevailing compounds were, Tetracontane (12.64%), Lupeol (12.44%), N-Tetratetracontane (11.60%), Tetrapentacontane (11.05%) Dotriacontane (10.90%), n-Hexatriacontane (9.18%) and Eicosane (5.26%). Twenty five compounds were identified through GCMS analysis of methanolic salt callus extracts of *S. melongena*. The most prevailing compounds were 1-Heptacosanol (54.39%), Ergosta-5, 7, 22-trien-3-ol (8.37%), Tetracosane (5.26%), Tetratetracontane (4.49%) and Beta Carotene (4.25%).

Keywords: N-Tetratetracontane; tetracontane; reducing sugar; n-Hexatriacontane; n-Hexatriacontane.

1. INTRODUCTION

Salinity is a major problem that affects the growth and productivity of vegetable crops in salt-affected areas. Worldwide around 20% of cultivated land and 33% of irrigated agricultural lands are affected by high salinity [1]. It creates harmful effects to the plants by altering physiological, biological and molecular level. All over the World, almost 25% of the cultivable land has more quantities of salt, mostly NaCl [2]. The salt in the soil delays the growth and water absorption of the plant.

Synthesis of secondary metabolites in plants was reported to be regulated and mediated by environmental factors like drought, light intensity and salt stress. The concentrations of various secondary plant products are strongly dependent on the growing conditions, especially under stress conditions. According to Agoreyo et al. [3] the phytochemical analysis showed that phytate, oxalate, alkaloid and tannin were higher in the round variety of *S. melongena*. Saponin was higher in the oval variety of brinjal. Alkaloids, tannins and saponins have been reported to have medicinal properties. The presence of these phytochemical constituents showed that the *S. melongena* varieties have medicinal property. Sofowora [4] reported the roles of these phytochemicals as analgesic, antiinflammatory, antihypertensive and anti-microbial. Saponins and tannins also exhibit cytotoxic effects and growth inhibition making them suitable as tumor inhibiting agents [5,6]. Proline play an important role as an osmoprotectant in plants subjected to hyperosmotic stresses such as drought and soil salinity [7]. Proline occurs widely in higher plants and accumulation in large amounts than other amino acids. Free proline increased exponentially with the increase in NaCl levels in *S. Nigrum* [8]. The NaCl stress enhanced the total alkaloid content in *S. nigrum* [9,8]. The effect of salt stress on *S. melongena* has been reported by few researchers [8,10].

Plant tissue culture provides a lot of opportunities for plant propagation, plant improvement and production of plants with desirable agronomical characters. Production of virus free, salinity tolerant, disease resistant, herbicide resistant, frost resistant plant are possible through this techniques [11]. It also offers a means of rapid selection on a mass scale and useful for the development of hybrid for salinity resistant yields [12].

The members of the family Solanaceae has about 90 genera and 2,800-3,000 species. The largest genus is *Solanum*. It has around 1,400 species. The Solanaceae is a cosmopolitan family, occurring in tropical and temperate regions throughout the World. Brinjal or eggplant (*Solanum melongena* L.) is an important Solanaceous crop of sub-tropics and tropics. Understanding the importance of salt tolerance in crop plants such as brinjal, the present work is to focus on the production of salinity tolerance brinjal plant through *in vitro* culture technology and to find out the bioactive compounds found in the ethanol and methanol extracts obtained from *in vitro* salt callus through GC-MS analysis.

2. MATERIALS AND METHODS

2.1 Plant Material

The seeds of *Solanum melongena* L. variety Co2 (Solanaceae - Potato family) were obtained from Tamilnadu Agricultural University, Coimbatore Tamilnadu. The seeds were germinated and maintained in earthen pots in shade house at Government Arts College, Coimbatore (Latitude – 11.0168° and longitude – 76.9558°).
2.2 Explants Selection and Mode of Sterilization

The explants such as node, internode and leaves were collected from the shade house grown plants and washed with running tap water for 15 min. The explants were then cut (1-2 cm) separately and washed with Tween 20 detergent solution (5% v/v) for 5 min. After thorough washing, the surface disinfestation of explants were carried out by immersing in 70% ethanol for 30 sec and finally treated with mercuric chloride (0.12 % w/v) (HgCl₂) for 3 min followed by abundant rinsing in with sterile distilled water three to four times to remove trace of toxic chemicals.

2.3 Culture Medium and Culture Conditions

A culture medium containing Murashige and Skoog [13] salts supplemented with macro elements, micro elements and 3% w/v sucrose (Hi Media, India) and solidified with agar 0.8 % (Hi Media, India) was used as a basal medium along with plant growth regulators. The concentrations of NaCl (0, 20, 40, 60, 80 and 100 mM) were prepared for abiotic stress callus induction. The pH of the medium was adjusted to 5.8 with 1N NaOH or 1N HCl. The media were steam sterilized in an autoclave under 15 psi and 121ºC for 20 min. All the cultures were incubated under 50 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) light provided by cool-white fluorescent lamps for 16 h photo period at temperature 24 ± 2ºC.

2.4 Callus Initiation and Shoot Proliferation

Leaf explants were inoculated in the basal medium of Murashige and Skoog (MS) supplemented with 30g/l sucrose and 3% (w/v) agar enriched with cytokinin BAP (2.22 to 11.11 \(\mu \text{M} \)) with NAA (0.98 \(\mu \text{M} \)) or TDZ (1.81 \(\mu \text{M} \)) or Kinetin (2.32 \(\mu \text{M} \)) or 2, 4-D (2.26\(\mu \text{M} \)) containing the various concentrations of NaCl (0, 20, 40, 60, 80 and 100 mM). Callus culture was maintained on MS medium, subcultured every 20 days at 28 ± 2°C with a photoperiod of 16 h. Callus culture was harvested at day 30 of cultivation and dried at room temperature. Twenty explants were used for each treatment. Days for callus induction, the percentage of explants responding for callus induction, the morphology of callus and shoot formation were recorded. In the subsequent sub cultures, the callus obtained in vitro cultures were harvested and used as explants. Sub culturing was carried out at the regular interval of 15-20 days.

2.5 GCMS Analysis

The GC – MS analysis was carried out using a Clarus 500 Perkin – Elmer (Auto system XL) Gas Chromatograph equipped and coupled to a mass detector Turbo mass gold – Perkin Elmer Turbomass 5.2 spectrometer with an Elite – 5MS (5% Diphenyl / 95% Dimethyl poly siloxane), 30m x 0.25 \(\mu \text{m} \) DF of capillary column. The instrument was set to an initial temperature of 110ºC, and maintained at this temperature for 2 min. At the end of this period the oven temperature was rose up to 280ºC, at the rate of an increase of 5ºC /min, and maintained for 9 min. Injection port temperature was ensured as 200ºC and Helium flow rate as one ml/min. The ionization voltage was 70eV. The samples were injected in split mode as 10:1. Mass spectral scan range was set at 45-450 (m/z). Using computer searches on a NIST Version –Year 2011 were used MS data library and comparing the spectrum obtained through GC – MS compounds present in the plants sample were identified.

3. RESULTS

3.1 Callus Culture

The morphogenetic potential of leaf explants on MS medium augmented with various concentration BAP alone or BAP with TDZ or KIN or NAA or 2, 4-D are shown in Table 1. Callus initiation was started from 7th day of culture and more amount of callus was formed within 30-35 days. Among the various concentration used for callus induction, 1.0 \(\mu \text{M} \) BAP and 0.2 \(\mu \text{M} \) NAA showed the higher percentage (99.33 ± 1.70) followed by 4.44 \(\mu \text{M} \) BAP and 0.98 \(\mu \text{M} \) NAA (99.33 ± 1.70). The morphology of the callus is friable, dark green and nodular in nature (Fig. 1).

3.2 In vitro Salt Treatment

The 40 days old best grown callus from MS + BAP (2.22 \(\mu \text{M} \)) + NAA (0.98 \(\mu \text{M} \)) was subcultured on the combination of various concentrations of BAP (2.22 \(\mu \text{M} \)) along with same concentrations of NAA (0.98 \(\mu \text{M} \)) with different concentrations of NaCl (20 to 100 mM).
The highest percentage of callus was observed on MS + BAP (2.22 µM) + NAA (0.98 µM) + NaCl 20 mM, with the percentage of 62.33±1.35 (Fig. 1, Table 2). The callus production was very in the medium containing NaCl and compared with normal medium. It was observed that increasing in NaCl concentration decreases the callus production (Table 2). The addition of NaCl at 60 mM to culture medium caused an increase in calli necrosis. No callus formation was observed at the concentration of 80 and 100 mM NaCl. The first callus necrosis was observed at 40 mM NaCl. The higher concentrations of NaCl caused brown coloration and apparent necrosis and reduced callus growth.

Table 1. Effect of MS medium and different concentration and combination of BAP, TDZ, KN, NAA and 2, 4- D on callus induction in leaf explant of Solanum melongena

S. no	BAP (µM)	TDZ (µM)	KIN (µM)	NAA (µM)	2,4-D (µM)	Days taken for initiation	% Explant Callus	Callus amount	Nature of the callus
1	2.22	-	-	-	-	13	51.16±1.35	++	WF
2	4.44	-	-	-	-	14	42.5±1.25	++	WF
3	6.66	-	-	-	-	15	55.5±1.25	++	WF
4	8.88	-	-	-	-	14	60.1±1.56	++	WF
5	11.1	-	-	-	-	16	40.5±1.34	++	WF
6	2.22	1.81	-	-	-	14	29.66±1.23	++	WF
7	4.44	1.81	-	-	-	12	25.33±1.41	++	WF
8	6.66	1.81	-	-	-	13	40.16±1.35	++	WF
9	8.88	1.81	-	-	-	10	60.0±1.29	++	WF
10	11.1	1.81	-	-	-	11	46±1.18	++	WF
11	2.22	2.32	-	-	-	11	73.33±1.28	++	GF
12	4.44	2.32	-	-	-	13	80.5±1.33	+ +	YF
13	6.66	2.32	-	-	-	14	85.33±1.54	+ ++	WF
14	8.88	2.32	-	-	-	10	79.66±1.35	+	WF
15	11.1	2.32	-	-	-	13	69.3±1.33	+	YF
16	2.22	-	0.98	-	-	11	87.66±1.66	+ ++	GF
17	4.44	-	0.98	-	07	99.33±1.70	+ ++	GF	
18	6.66	-	0.98	-	08	77.33±1.35	++	YF	
19	8.88	-	0.98	-	10	90.83±1.16	+ + +	WF	
20	11.1	-	0.98	-	12	63±1.31	++	YF	
21	2.22	-	-	2.26	11	72.5±1.43	++	GF	
22	4.44	-	-	2.26	13	79.5±1.33	+ + +	YF	
23	6.66	-	-	2.26	14	84.33±1.35	+ + +	WF	
24	8.88	-	-	2.26	10	79.83±1.42	+ + +	WF	
25	11.1	-	-	2.26	13	62.33±1.35	+ + +	GF	
Basal medium	-	-	-	-	-	-	-	-	-

Table 2. Survival percentage and callus morphology scores of BAP and NAA derived callus in the stressed media with different concentration of NaCl

S. no	BAP (µM)	NAA (µM)	NaCl (mM)	Survival percentage	Callus amount	Nature of the callus	Nature of response	
1	4.44	0.98	0	96.83±1.42	++	GF	CWMS	
2	4.44	0.98	20	62.33±1.35	++ +	GF	CWMS	
3	4.44	0.98	40	24.33±1.35	+	YF	BRC	
4	4.44	0.98	60	9.83±1.51	+	YF	BRC	
5	4.44	0.98	80	-	-	-	-	
6	4.44	0.98	100	-	-	-	-	
Basal medium	-	-	-	-	-	-	-	-

YF-Yellow Friable, WF-White Friable, GF-Green Friable
WS-Callus With Shoot, CWMS-Callus With Multiple Shoot, CM-Callus Multiplication, BLC-Black Callus, BRC-Brown Callus, CD-Callus Dead, NR- No Response
3.3 Preliminary Phytochemical Analysis

Preliminary phytochemical analysis of ethanolic and methanolic extracts of salt callus derived *Solanum melongena* are presented in Table 3. The phytochemical analysis showed the presence of alkaloids, saponins, steroids, tannins/phenolics, flavonoids, glycosides and reducing sugar. It was concluded that the salt callus extracts of eggplant contains important constituents for pharmacological activities.

3.4 GCMS Analysis

GCMS analysis revealed the presence of 27 and 25 compounds in the ethanolic and methanolic extracts of salt callus of *S. melongena* by comparing their retention time and by interpretation of their mass spectra (Figs. 2 and 3). The ethanolic extract of *S. melongena* shows twenty seven peaks (Fig. 2). Among these there are seven major peaks which indicating the presence of seven major phytochemical constituents. From the twenty seven compounds...
identified, the most prevailing compounds were, Tetracontane (12.64%), Lupeol (12.44%), N-Tetracontane (11.60%), Tetratetracontane (11.05%) Dotriacontane (10.90%), n-Hexatriacontane (9.18%) and Eicosane (5.26%) (Table 4).

Twelve five peaks were observed in GC-MS chromatogram analysis of the methanolic extract of S. melongena (Fig. 3). Among these there are five major peaks which indicating the presence of five major phytochemical constituents. From the twenty five compounds identified, the most prevailing compounds were 1-Heptacosanol (54.39%), Ergosta-5, 7, 22-trien-3-ol (8.37%), Tetracosane (5.26%), Tetratetracontane (4.49%) and Beta Carotene (4.25%). The active principles with their retention time (RT), molecular formula and molecular weight (MW) and peak area in the ethanolic salt callus extract of S. melongena are presented in Table 5.

4. DISCUSSION

In the present study, the explant cultured on medium supplemented with BAP (4.44 µM) + NAA (0.98 µM) had the ability to induce more amount of green and friable callus. Similar observation was reported in Solanum melongena [14], that NAA was involved in the development

Table 3. Preliminary phytochemical analysis of ethanol and methanol extracts Solanum melongena salt callus

S. no.	Compounds	Ethanol extract	Methanol extract
1	Alkaloids	+	+
2	Saponins	+	+
3	Steroids	+	+
4	Tannins	+	+
5	Phenol	+	+
6	Flavonoids	+	+
7	Glycosides	+	+
8	Triterpenoids	+	+
9	Reducing sugars	+	+

+ Denotes presence of compound; - Denotes absence of compound

Table 4. Phytocomponents identified in ethanolic leaf callus extracts of Solanum melongena by GCMS

S. no.	RT	Compound name	Molecular formula	Molecular weight	Peak area (%)
1	5.650	Benzeneethanamine	C_{22}H_{24}FNO_3	381	0.00
2	6.208	Methylbenzeneethanamine	C_{9}H_{13}N	135	0.06
3	7.017	Methoxy, Phenyl- ,Oxime	C_{8}H_{9}NO_2	151	1.21
4	14.658	N-Ethylformamide	C_{3}H_{7}NO	73	0.04
5	25.614	Propane, 2-methoxy-2-methyl	C_{2}H_{12}O	88	0.08
6	26.084	4-Undecene	C_{12}H_{24}	168	0.18
7	26.982	Neophytadiene	C_{20}H_{38}	278	0.74
8	28.472	1-Hexanol	C_{10}H_{20}O	158	0.34
9	29.161	2-Isopropyl-5-methyl-1-heptanol	C_{11}H_{20}O	172	0.34
10	29.595	Hexadecanoic acid	C_{18}H_{36}O_2	284	1.61
11	29.794	4- (3,5-Di-tert-butyl-4-hydroxyphenyl) butyl acrylate	C_{21}H_{32}O_3	332	1.26
12	31.282	3,7,11,15-Tetramethylhexadec-2-en-1-ol	C_{26}H_{40}O	296	1.09
13	32.265	Palmitic acid	C_{18}H_{36}O_2	284	1.46
14	33.476	Tetracontane	C_{24}H_{32}	618	1.87
15	34.686	Eicosane	C_{20}H_{42}	282	5.26
16	36.108	n-Hexatriacontane	C_{30}H_{64}	506	9.18
17	37.841	Dotriacontane	C_{22}H_{46}	450	10.90
18	40.009	Tetratetracontane	C_{54}H_{110}	758	11.05
19	42.547	N-Tetratetracontane	C_{44}H_{90}	618	11.60
20	43.201	Squalene	C_{30}H_{50}	410	1.46
21	43.754	n-Tetracosane	C_{30}H_{50}	562	0.77
22	44.368	Tetracontane	C_{40}H_{82}	562	12.64
23	45.358	Hexacosane	C_{60}H_{122}	842	1.49
24	45.546	1,54-Dibromotetrapentacontane	C_{54}H_{108}Br_2	914	2.13
25	45.986	Tetrapentacontane	C_{54}H_{110}	758	10.12
26	46.439	4,6-Cholestadien-3.beta.-ol	C_{27}H_{44}O	384	0.67
27	46.871	Lupeol	C_{30}H_{50}O	68	12.44
of callus. Some studies revealed that plant hormones are essential for induction of callus from explants and no callus was induced by basal medium without hormones. For shoot proliferation cytokinin is one of the major important factors affecting the response [15]. The effect of BAP on shoot initiation and multiple shoot formation has been demonstrated in many cases using different explants [14,16,17,18]. In the present study also BAP along with NAA produced maximum number of shoots (15.13±1.09). These results were in confirmation with the observation reported by Muthusamy et al. [19] and Rahman et al. [20] against leaf and cotyledon morphogenic response of *S. melongena* varieties respectively.

![Fig. 2. Phytocomponents identified from ethanolic extracts of *Solanum melongena*](image1)

![Fig. 3. Phytocomponents identified from methanolic extracts of *Solanum melongena*](image2)
Table 5. Phytocomponents identified in methanolic leaf callus extracts of *Solanum melongena* by GCMS

S. no.	RT	Compound name	Molecular formula	Molecular weight	Peak area (%)
1	6.98	Hexamethylphosphoramide	C₆H₁₈N₃OP	179	0.36
2	8.233	3,6-Bis-dimethylaminomethyl-2,7-dihydroxy-fluoren-9-one	C₁₀H₂₂N₂O₂	326	0.29
3	10.782	Benzeneethanamine	C₂₅H₂₆F₂NO₂Si₂	475	0.65
4	32.363	Pentanoic acid	C₅H₁₀O	172	0.23
5	33.507	Decanedioic acid	C₃₀H₅₈O₄	482	0.42
6	34.715	2,6,10,15-Tetramethylheptadecane	C₂₁H₄₄	296	1.17
7	36.139	n-Dotriacontane	C₃₂H₆₆	450	2.35
8	37.874	Tetrapentacontane	C₅₂H₁₁₀	758	2.97
9	39.225	Undecanecan	C₁₁H₂₂O	170	0.56
10	40.039	Tetrapentacontane	C₅₂H₁₁₀	758	2.72
11	42.568	N-Tritriacontane	C₂₃H₆₈	464	3.38
12	43.225	2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-oxetane	C₁₅H₂₆O	222	0.44
13	43.787	Heneicosan	C₂₂H₄₆	310	0.32
14	44.225	Nonyl-Phenol mix of isomers	C₁₃H₂₄O	220	0.37
15	45.750	Cyclobutaneethanol	C₁₃H₁₈O	154	0.74
16	45.386	N-Tetracosane	C₂₄H₅₀	338	5.26
17	45.549	Ergosta-5,7-Dien-3-ol	C₂₆H₄₆O	398	8.37
18	44.725	[1,1'-Biphenyl]-4,4'-dicarboxaldehyde	C₁₁H₁₀O₂	210	1.76
19	45.062	Heptacosyl heptafluorobutyrate	C₂₃H₅₅F₂O₂	592	54.39
20	45.677	Beta Carotene	C₂₆H₅₆	536	4.25
21	45.908	Hexahydrofarnesyl acetone	C₁₈H₂₆O	268	2.58
22	46.003	Hexacontane	C₁₉H₁₄O₂	842	4.49
23	46.436	7,7,9,9-Tetrakis-hydroxymethyl-1,4dioxa-spiro[4.5]decan-8-ol	C₁₂H₂₂O₇	278	0.38
24	46.483	4-Fluoro-2-nitroaniline	C₁₈H₂₂FN₅O₃	351	0.25
25	46.885	d-Norandrostanne	C₁₈H₃₀	246	1.29

Callus formation at the leaf segments of *S. melongena* on MS medium supplemented with a higher concentration of BAP and lower concentration of NAA is the result obtained in *Tylophora indica* [16], *Ceropegia pusilla* [17] and *S. melongena* [21]. The synergistic effect of BAP in combination with an auxin has been demonstrated in *S. melongena* [19,22,21]. Of the different level of BAP tested along with NAA or TDZ or KIN or 2,4D, the BAP (2.22 µM) and NAA (0.98 µM) proved to be most effective, as in this medium an average of 15.13±1.09 shoots per explants developed in 99.33% of culture. Lowering the concentration of BAP a reduction in the number of shoots per culture was recorded. Similarly higher concentration, the number as well as percentage was drastically reduced.

The reduction in the fresh weight of the callus is the indicator of the effect of NaCl on callus induction. Increase in salt concentration with a decrease in fresh weight of the callus previously reported in *Oryza sativa* [23]. The fresh weight reduction might be due to the decrease in water availability by the increased NaCl concentration. The callus was exposed to regeneration medium with different concentration of NaCl for analyzing the effects of salinity on plant regeneration. The regeneration frequency decreased with increasing NaCl concentration. In *Solanum nigrum* also the increasing concentration of NaCl reduces the regeneration capacity [8]. There was a gradual decrease in root length than the shoot length as the NaCl concentration increases. This may be due to the excess soluble salts leads to osmotic stress [24].

In addition to major compounds there are some minor peak compounds also has some biological active principles like 10-n-Hexadecanoic acid, is...
used as an anti-inflammatory compound. The chemical 4- (3, 5-Di-tert-butyl-4-hydroxyphenyl) butyl acrylate used as an ethanomedicinal and antimicrobial because butyl acrylate and their derivatives are used pharmaceutically as anticancer drugs [25]. Another compound 3,7,11,15-Tetramethylhexadec-2-en-1-ol used as an anti-tuberculosis, insecticidal, anti-inflammatory, antioxidant, antimicrobial [26]. The squalene were also has anticancer, anti-oxidant, chemopreventive, pesticide, anti-tumor, and sunscreen properties [27(33)].

Among the twenty five peaks observed in GC-MS chromatogram analysis of the methanolic extract of S. melongena, five major peak compounds all of them were biologically active compounds. 1Heptacosanol have nematicidal, anticancer, antioxidant and antimicrobial activity [26(32)] followed by Ergosta-5, 7, 22-trien-3-ol were also have antimicrobial activity [28(34)]. Tetracosane showed significant cytotoxicity colon cancer cells. It also showed some toxicity against the estrogen dependent breast cancer, a variety of pharmacological activities, including other cytotoxicity [29,30]. Tetratetracontane, Neutral components, which has medicinal importance as an anti-inflammatory, antibacterial, antiulcer genic [31]. Beta carotene have been reported to protecting against cancer, antioxidant and cardiovascular diseases [32]. The minor peak compounds also has some biological active principles, lupeol was reported to have antiprotazoal, antimicrobial, anti-inflammatory, antitumor and chemo preventive properties [33]. Tetratetracontane, Neutral components in the leaves and seeds of Syzygium cumini, the plant which has medicinal importance as an anti-inflammatory, antibacterial, antiulcergeni [31]. Eicosanoid has the antitumor activity against the human gastric cell line [34].

The presence of various bioactive compounds in the both Ethanolic and methanolic extracts of salt stressed callus of S. melongena justifies that, the salt stress have been induced to produce strong bioactive compounds. However, isolation of individual phytochemical constituents and subjecting it to the biological activity from salinity tolerance callus will definitely give fruitful results. The results, shows that the salt stressed S. melongena callus contains various bioactive compounds. Therefore, it is concluded that in vitro clonal propagation with salt stress could alter the biochemical changes which could be a phytopharmaceutically and morphopotentially importance.

5. CONCLUSION
Preliminary phytochemical analysis of ethanolic and methanolic extracts of salt callus derived Solanum melongena showed the presence of alkaloids, saponins, steroids, tannins/ phenolics, flavonoids, glycosides and reducing sugar presence of these phytochemical constituents showed that the S. melongena have medicinal property.

CONSENT
It is not applicable.

ETHICAL APPROVAL
It is not applicable.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Foolad MR. Recent advances in genetics of salt tolerance in tomato. Review of Plant Biotechnology and applied genetics. Plant Cell Tissue Organ Cult. 2004;76:101-119.
2. Sharry SE, Teixeira DSJ. Effective organogenesis. somatic embryogenesis and salt tolerant induced in vitro in the Persian Lilac Tree (Melia azedarach L). Floriclt Ornam Plant Biotech. 2006;2:317-317.
3. Agoreyo BO, Obansa ES, Obanor EO. Comparative nutritional and phytochemical analyses of two varieties of Solanum melongena. Sci World Journal. 2012;7(1): 5-8.
4. Sofowora A. Medicinal plants and traditional medicines in Africa. Chichester John Wiley and Sons New York. 1993;34-36.
5. Akindahunsi AA, Salawu SO. Phytochemical screening and nutrient composition of selected tropical green leafy vegetables. Afr J Biotech. 2005;4:497-501.
6. Asl MN, Hossein H. Review of pharmacological effects of Glycorrhiza sp and its bioactive compounds. Phytotherapy Research. 2008;22:709-724.
7. Delauney AJ, Verma DPS. Proline biosynthesis and osmoregulation in plants. Plant Physiol. 1993;4:215-223.
8. Santhi M, Muthulakshmi S, Gurulakshmi G, Rajathi S. Effect of salt stress on physiological and biochemical characteristics in Solanum nigrum L. International Journal of Science and Research (IJSR). 2013;6:14.

9. Jaleel CA, Manivannan P, Sankar B. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Plant Physiol. 2007;60:7-11.

10. Ferdausi A, Nath UK, Das BL, Alam MS. In vitro regeneration system in brinjal (Solanum melongena L.) for stress tolerant somaclonal selection. J Bangladesh Agril Univ. 2009;7(2):253–258.

11. Basavaraju R. Plant tissue culture-Agriculture and health of man. Ind J Sci Tech. 2011;4(3):333-335.

12. Cherian S, Reddy MP. Evaluating of NaCl tolerant in the callus culture of Suaeda mudiflora Moq. Biol plant. 2003;46:193-198.

13. Murashige T, Skoog F. A revised medium from rapid growth and bioassays tobacco tissue cultures. Plant Physiol. 1962;15:473-497.

14. Sammaiah D, Chandra Shekar C, Jaya Prakash M, Aganmohan Reddy K. In vitro callus induction and organogenesis studies under pesticidal stress in Eggplant (Solanum melongena L.). Annals of Bio Res. 2011;2(2):116-121.

15. Bhojwani SS. In vitro propagation of garlic by shoot proliferation. Sci Hort. 1980;13:47-52.

16. Kalimuthu K, Jeyaraman S. Morphogenetic callus and multiple shoot regeneration, and thin layer chromatography studies of Tylophora indica (Burn.f) Merill. J Med Plants Res. 2012;6(37):5094-5098.

17. Prabakaran R, Sasikala T, Kalimuthu K. Regeneration of shoots from callus of Ceropogia pusilla Wight and Arn. Bri Bio J. 2013;3(3):416-423.

18. Kalimuthu K, Prabakaran R, Paulsamy S, Jeyaraman S. Micropropagation and Microtuberization of Ceropogia pusilla Wight and Arn an endangered medicinal plant. Euro J Med Plants. 2014;4(1):64-74.

19. Muthusamy A, Vidya KS, Pratibha PK, Radhakrishna Rao M, Vidhu SB, Guruprasath KP, Raghavendra U, Gobinath PM, Sathymoorthy K. Establishment of an in vitro plantlets regeneration protocol for unique varieties of brinjal (Solanum melongena) var Mattu Gulla and Perampalli and Gulla. Ind J of Exp Bio. 2014;52:80-88.

20. Rahman M, Asaduzzaman M, Nahar N, Bari MA. Efficient plant regeneration from cotyledon and midrib derived callus in eggplant (Solanum melongena L.). J Bio-Sci. 2006;14:31-38.

21. Muhammad Parvaiz, Khalid Hussain, Yasir Rafique, Asma Haider, Shumaila Nasreen, Samra Kousar. In vitro Techniques for propagation of brinjal (Solanum melongena L.). World App Sci J. 2013;27(8):1071-1078.

22. Philip Robinson J, Saranya S. An improved method for the in vitro propagation of Solanum melongena L. Int J Curr Microbiol App Sci. 2013;2(6):299-306.

23. Mohana Priya A, Karutha Pandian S, Ramesh M. Effect of NaCl on in vitro plant regeneration from embryogenic callus cultures of 'cv IR 64' indica rice (Oryza sativa L.). Afr J Biotechn. 2011;10(36):6947-6953.

24. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2003;25:239-250.

25. Thenmozhi M, Bhavya PK, Rajeshwari S. Compound identification using HPLC and FTIR in Eclipta alba and Emilia sonchifolia. Inter J of Eng Sci and Tech (IJEST). 2011;3(1):292-298.

26. Venkata Raman B, Samuel La, Pardha Saradhi M, Narashimha Rao B, Naga Vamsi, Krishna A, Sudhakar M, Radhakrishnan TM. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J Pharm Clin Res. 2012;5:99-106.

27. Scortichini M, Pia Rossi M. Preliminary in vitro evaluation of antimicrobial activity of terpenes and terpenoids towards Erwinia amylovora (Burrill) Winslow et al. J Appl Bacterial. 1991;71:109–12.

28. Vazirian M, Faramarzi MA, Ebrahimi SE, Esfahani HR, Samadi N, Hosseini SA, Asghari A, Manayi A, Mousazadeh A, Asef MR, Habibi E, Amanzadeh Y. Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom. Ganoderma lucidum (higher Basidiomycetes) and its main compounds. Int J Med Mushrooms. 2014;16(1):77-84.

29. Ashaal A, Farghaly HA, Abd EAA, Aziz MM, Ali MA. Phytochemical investigation and medicinal evaluation of fixed oil of
Balanites aegyptiaca fruits (Balantiaceae). J Ethnopharmacol. 2010;127:495–501.

30. Kansoh AL, Afifi MS, Elgindi OD, Ro B. Chemical composition, antimicrobial and cytotoxicity activities of essential oil and lipoidal matter of the flowers and pods of Tipuana tipu growing in Egypt. Can J Pure Appl Sci. 2009;3:661–668.

31. Kumar A, Jayachandran T, Aravindhan P, Deecaraman D, liavarasan R, Padmanabhan N. Neutral components in the leaves and seeds of Syzigium cumini. Afr J Pharmacy Pharma. 2009;3(11):560–561.

32. Lars Mueller, Volker Boehm. Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules. 2011;16(2):1055-1069.

33. Geetha T, Varalakshmi P. Antiinflammatory activity of lupeol and lupeol linoleate in rats. J Ethnopharm. 2001;76(1):77–80.

34. Fa-Rong Yu, Xiu-Zhen Lian, Hong-Yun Guo, Peter M, McGuire, Ren-De Li, Rui Wang, Fa-Hong Yu. Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J Pharm Pharmaceut Sci. 2005;8(3):528-535.

© 2016 Vanitha et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/17925