An Approach to Economic Evaluation in Undergraduate Anatomy Education

Samuel D. Chumbley, Vikram S. Devaraj, Karen Mattick
University of Exeter Medical School, College of Medicine and Health, University of Exeter, Devon, United Kingdom

Medical education research is becoming increasingly concerned with the value (defined as “educational outcomes per dollar spent”) of different teaching approaches. However, the financial costs of various approaches to teaching anatomy are under-researched, making evidence-based comparisons of the value of different teaching approaches impossible. Therefore, the aims of this study were to report the cost of six popular anatomy teaching methods through a specific, yet generalizable approach, and to demonstrate a process in which these results can be used in conjunction with existing effectiveness data to undertake an economic evaluation. A cost analysis was conducted to report the direct and indirect costs of six anatomy teaching methods, using an established approach to cost-reporting. The financial information was then combined with previously published information about the effectiveness of these six teaching methods in increasing anatomy knowledge, thereby demonstrating how estimations of value can be made. Dissection was reported as the most expensive teaching approach and computer aided instruction/learning (CAI/L) was the least, based on an estimation of total cost per student per year and assuming a student cohort size of just over 1,000 (the United Kingdom average). The demonstrated approach to economic evaluation suggested computer aided instruction/learning as the approach that provided the most value, in terms of education outcomes per dollar spent. The study concludes by suggesting that future medical education research should incorporate substantially greater consideration of cost, in order to draw important conclusions about value for learners. Anat Sci Educ 14: 171–183. © 2020 The Authors. Anatomical Sciences Education published by Wiley Periodicals LLC on behalf of American Association for Anatomy.

Key words: gross anatomy education; medical education; undergraduate education; cost of education; financial evaluation; educational value

INTRODUCTION

Economic evaluations are attempts at measuring value (Levin et al., 2017). With value defined as “outcomes per dollar spent” (Mattick and Baumfield, 2016), the outcomes of economic evaluations aim to permit more efficient use of resources and increase what can be achieved on a finite budget (Levin et al., 2017; Maloney et al., 2017). Different approaches to economic evaluations exist, but all require information about financial costs and a specific measured output (Levin et al., 2017; Lin et al., 2017). A common output measure is effectiveness (Levin et al., 2017), defined as the ability of an intervention to achieve a certain outcome (Losco et al., 2017). This measure is necessary for decisions to be made regarding the appropriateness of interventions, but it is insufficient without consideration of financial cost (Gray et al., 2011). Often effectiveness is considered without financial cost (Levin et al., 2017), and this limits the utility and application of these research reports to estimate actual value (Foo et al., 2019).

For example, Graziose et al. (2017) demonstrate the benefit of economic evaluation through use of cost-effectiveness analysis as justification for the utility of a national public health intervention. The decision to continue the intervention would have been unlikely if effectiveness was considered alone (Gray et al., 2011). Muennig and Bounthavong (2016) argue that economic evaluation can enable positive change to healthcare, and
the World Health Organization’s “Choosing Interventions that are Cost-Effective” (WHO-CHOICE) project utilizes existing data to indicate the most cost-effective approaches to managing global health problems (WHO, 2020). This is particularly beneficial to resource-poor countries where maximizing outcomes for a given spend is both prudent and necessary. Given recent financial pressures, the utility of economic evaluation has begun to be recognized in the field of medical education (Foo et al., 2019).

Medical education and training are expensive but critically important. The financial cost of education is extremely topical and as the Chancellor of Newcastle University remarked, “...those funding the education of our doctors will no longer tolerate an approach of quality at any cost” (Donaldson, 2010). Lindor et al. (2010) demonstrated that positive educational outcomes can develop independently of financial investment but stressed the importance of considering financial cost. The peer-reviewed literature exploring the effectiveness of interventions on educational outcomes is well established and growing in size and quality, yet judgments about value are typically implicit due to inadequate information available on cost (Walsh et al., 2013; Walsh, 2014a, b; Mättick and Baumfield, 2016; Foo et al., 2019). Cook et al. (2012) and Zendejas et al. (2013) both undertook literature reviews that highlighted cost as an under-researched factor in medical education. Cook et al. (2012) identified 92 studies discussing the comparative effectiveness of simulation with only five taking financial cost into consideration, albeit inadequately for an economic evaluation. Meanwhile Zendejas et al. (2013) found that only 59 out of 967 comparative effectiveness studies detailed cost, but this was also lacking detail.

Some studies of effectiveness have concluded that cost must be researched for informed curricula decisions to be made (Murad et al., 2010; Cook et al., 2013; Brown et al., 2016). Brown et al. (2015) provide a good example of informative accurate and transparent cost-reporting but do not combine this with existing effectiveness data meaning that value judgments cannot be made. This demonstrates Levin et al.’s (2017) observation that cost and effectiveness results are often considered separately.

The research in the field of anatomical sciences portrays a similar inadequacy as other medical education fields (Walsh and Jaye, 2013). This is amplified by a rekindling of interest in the effectiveness of anatomy teaching methods (Yammine and Violato, 2015, 2016; Malhotra et al., 2016; Deng et al., 2018) as stakeholders attempt to maximize learning outcomes (Bergman et al., 2014) in the fewer contact hours that are being considered, albeit inadequately for an economic evaluation. Meanwhile Zendejas et al. (2013) found that only 59 out of 967 comparative effectiveness studies detailed cost, but this was also lacking detail.

Some studies of effectiveness have concluded that cost must be researched for informed curricula decisions to be made (Murad et al., 2010; Cook et al., 2013; Brown et al., 2016). Brown et al. (2015) provide a good example of informative accurate and transparent cost-reporting but do not combine this with existing effectiveness data meaning that value judgments cannot be made. This demonstrates Levin et al.’s (2017) observation that cost and effectiveness results are often considered separately.

The research in the field of anatomical sciences portrays a similar inadequacy as other medical education fields (Walsh and Jaye, 2013). This is amplified by a rekindling of interest in the effectiveness of anatomy teaching methods (Yammine and Violato, 2015, 2016; Malhotra et al., 2016; Deng et al., 2018) as stakeholders attempt to maximize learning outcomes (Bergman et al., 2014) in the fewer contact hours that are being dedicated to anatomy teaching (McBride and Drake, 2018; Rockarts et al., 2020). As the debate continues (Craig et al., 2010; Ogeng’o et al., 2013; Ghosh, 2017), the effectiveness literature is likely to grow but, as with the wider field, there is little published cost information. Based on existing literature, it would be reasonable to conclude that dissection is a more expensive approach to anatomy teaching than computer aided instruction/learning (CAI/L) (Gogalniceanu et al., 2008, 2009; Fritz et al., 2011; Benly, 2014; ten Brinke et al., 2014; Hu et al., 2016) but there is little evidence supporting the financial conclusions of these reports. In order to ensure informed curriculum decisions are made regarding anatomy teaching, high quality, accessible cost information is needed (Walsh, 2014a, b; Foo et al., 2019) but the available information on specific costs is currently insufficient in its quality and/or accessibility to key stakeholders (Walsh and Jaye, 2013; Walsh et al., 2013; Zendejas et al., 2013; Foo et al., 2019).

Therefore, this study used an existing cost-reporting approach to provide cost information about six popular anatomy teaching methods for which existing effectiveness data are available regarding short term outcomes in undergraduate students. The cost and effectiveness data were subsequently used to demonstrate a process by which estimations of value can be made.

The primary aims of this study are to report cost of six popular anatomy teaching methods, and to demonstrate an approach to estimating their comparative values. The methods investigated were (1) computer-assisted instruction/learning (CAI/L); (2) dissection; (3) plastic models; (4) plastinated (resin-preserved) human tissue; (5) simulation; and (6) virtual dissection tables (see Table 1 for definitions and examples). The secondary aim is to undertake this approach to estimating value as transparently as possible, so that individual institutions can and should combine it with their own unique and contextualized cost and effectiveness data. The null hypothesis of this research report is that no difference in value will be found between the six teaching methods investigated.

MATERIALS AND METHODS
Definitions

Walsh (2014b) highlighted the importance of clarity in economic terms due to the frequency of medical education literature using incorrect or inappropriate vocabulary. For this study, the following definitions were used:

- **Financial Cost:** The price that institutions or individuals pay for equipment or services, totaled with the depreciation of equipment in monetary value (Sugden and Williams, 1978).
- **Effectiveness:** The ability of an intervention to achieve a certain educational outcome (Levin et al., 2017).
- **Educational Outcome:** For this study, the educational outcome of interest was improved knowledge acquisition, since this is the most common measurement for studies of effectiveness in the anatomy teaching literature (Losco et al., 2017).
- **Educational Value:** Defined as “educational outcomes per dollar spent” (Mättick and Baumfield, 2016), although for this study £ British Pound (GBP) was used.

Identification of Teaching Methods

Six popular approaches to anatomy teaching were chosen for this study (Table 1). The choice was informed by an existing best evidence medical education (BEME) literature review (Losco et al., 2017) as it is a contemporary summary of the available anatomical sciences effectiveness literature. However, for the current study, Losco et al.’s (2017) category of “models” was further separated into plastinated (resin-preserved human) prospected specimens and molded plastic models since there is a marked expected cost difference between them, in addition to a suggested difference in anatomical accuracy (Tamura et al., 2014), which may be reflected in the effectiveness literature.

Virtual dissection tables, for example, the Anatomage Table™ (Anatomage Inc., San Jose, CA) or Sectra Table™ (Sectra AB, Linköping, Sweden) are large multi-touch screens...
that enable visualization and interactive learning in the anatomy field by translating multiple two-dimensional (2D) images into three-dimensional (3D) anatomical structures (Darras et al., 2017; Macchiarelli et al., 2017; Shi et al., 2019). These visualization tools were also included due to their increasing popularity (Gross and Masters, 2017; Paech et al., 2017; Preim and Saalfeld, 2018; Darras et al., 2019; Keenan and ben Awadh, 2019).

Study Type

This study demonstrated the comparison of the costs and consequences of six approaches to anatomy teaching, thereby defining this approach as an economic evaluation (Lin et al., 2017). For this, a systematic cost-reporting approach was identified.

Cost-Reporting Approach

Although there has been limited work undertaken in the economics of medical education, the broader field of education economics does offer some potentially useful costing frameworks, such as Levin’s framework for educational cost-effectiveness (Levin et al., 2017), which highlights five fundamental cost-components that categorize typical educational costs: equipment and materials, personnel costs, facility costs, required client inputs, and other program inputs. An earlier iteration of this framework was used by Zendejas et al. (2013) within medical education, who developed subcategories for the original five components. This study used the same approach described by Zendejas et al. (2013) but excluded 10/23 subcategories since these costs were highly specific to individual institutions, for example, donated equipment, volunteer time, facility costs; or were only available for some of the teaching approaches, for example, inflation rates, delivery charges (see Table 2).

The costs associated with each subcategory were reported for each anatomy teaching method (see Supplemental Material Tables A-F), allowing total cost per student per year of each approach to be calculated. The cost analysis included the cost of an annual training day for staff and additional time was included as an initial expenditure associated with unfamiliar software or new pieces of equipment.

Estimating Financial Cost

In order to complete the cost-reports for each teaching approach, data were collected from the available published or grey literature, or other publicly available sources. Since every medical school is unique and basing this cost-report on a particular institution would have diminished its utility, this report created and used a case study of a “typical” United Kingdom (UK) medical school, based on available literature to inform the assumptions underpinning the model (see Appendix 1).

Results for the cost-reports were given as cost per student per year over a five-year period, using Great British Pounds (GBP/£) as the currency. At the time of the study (2018), £1

Approach	Description	Example used in this study
CAI/L	Computer-assisted instruction/learning is defined as learning in which computers play a central role as the mean of information delivery with direct interaction with learners (Hu et al., 2016).	Anatomy. TV™, an online subscription teaching resource relevant to healthcare professionals (Primal Pictures Ltd., London, UK).
Dissection	Dissection is a practical teaching approach, described as essential to anatomy teaching (Rizzolo, 2002).	Full human cadaveric dissection with downdraft tables (Shoepe, 2008).
Plastic Models	Scaled plastic anatomy models are commonplace in the anatomy classroom (Raftery, 2007; Patel et al., 2015).	Plastic models supplied by Adam Rouilly Ltd. (Adam Rouilly Ltd., Sittingbourne, Kent, UK).
Plastinated Specimens	Play a similar role to plastic models but consist of resin-preserved actual human tissue (Tamura et al., 2014) more authentic than plastic models.	Plastinated specimen (von Hagens Plastination, Gubener Plastinate GmbH, Guben, Germany).
Simulation	Simulation consists of any activity that simulates examination or procedure that students are likely to encounter in their practice (Losco et al., 2017). This includes using models for invasive procedures or using medical imaging databases for interpretation.	Models suitable for simulation (Adam, Rouilly Ltd., Sittingbourne, Kent, UK).
Virtual Dissection Tables	A specific type of CAI/L whereby a large multi-touch screen visualization tool is used to render three-dimensional images (Macchiarelli et al., 2017), which can be used to simulate normal dissection processes without the need for a cadaver (Afsharpour et al., 2018). The Sectra Virtual Dissection Table™ is an alternative to the virtual dissection table used in this study (Sectra AB, Linkhöping, Sweden).	The Anatomage Table™ (Anatomage Inc., San Jose, CA).

CAI/L, computer aided instruction/learning.
British Pound (GBP) was approximately $1.34 in United States Dollars (USD), $1.75 Australian Dollars (AUD), and €1.14 Euros (EUR) (XE, 2020). For each teaching approach, the cost-reports were recorded and justified. This transparency allows readers to replace the assumptions made within the model presented here with data specific to their education context. These results were then summarized as “cost per student per year” for ease of comparison.

The teaching interventions were given a five-point rating based on the cost per student per year. This presentation
format was aligned to that used by the Teaching and Learning Toolkit for primary and secondary education (EEF, 2018), which provides an “accessible summary of educational research” (Higgins et al., 2012). The five-point scale was established by considering the extremes of results as the extremes of the scale, proportionally divided with equal weighting between thresholds.

Estimating Effectiveness

In order to demonstrate an approach to economic evaluation, a synthesis of relevant outcome data was necessary. As such, contemporaneous effectiveness data were drawn from Wilson et al.’s (2018) meta-analysis and the 29 articles cited in Losco et al.’s (2017) systematic review. These two papers were contemporary, but they did not include virtual dissection tables, therefore Afsharpour et al.’s (2018) comparison of this teaching approach with plastic models and dissection was used. This provided further effectiveness data on plastic models and dissection that was not included in Losco et al.’s (2017) or Wilson et al.’s (2018) review.

Plastinated specimens were not explicitly included in any of the aforementioned reports, so literature was identified that compared this approach with one of the other approaches included in this economic evaluation (Chytas et al., 2019).

Effectiveness data were presented in different formats across each source (Losco et al., 2017; Afsharpour et al., 2018; Wilson et al., 2018; Chytas et al., 2019); therefore, a method was devised for uniformly summarizing the conclusions of each study. For each study, all teaching approaches were given an effectiveness rating out of five by initially assigning them to the midpoint of the scale (3/5), and then amending their scores to accommodate each paper’s conclusion. For example, if a paper had ranked all five teaching approaches from most to least effective, with significantly different outcomes between each approach, the most effective would have been awarded five points and the least, no points. The average rating from each paper equated to an overall effectiveness rating out of five, which was used in the value-estimations.

Estimating Value

Walsh et al. (2013) stated that a teaching “approach cannot be cost-effective in and of itself.” Through extrapolation, this suggests that an approach cannot be “good value” in and of itself, but only of more or less value than an alternative. As such, comparisons in value permit conclusions on value. The approach of Lin et al. (2017) was adopted, who suggest that value-comparisons can be made by mapping cost and effectiveness comparisons onto Black’s Cost-Effectiveness Plane (Black, 1990). Alternatives are compared with a control, and the quadrant onto which the alternative is mapped corresponds to differing conclusions on value. Alternative teaching approaches can be more costly with reduced outcomes (Quadrant II), less costly with improved outcomes (Quadrant IV), increased cost and effectiveness (Quadrant I), or reduced cost and effectiveness (Quadrant III). Evaluation is not simple for the two latter conclusions, as increased cost or reduced effectiveness may be an acceptable outlay for improved effectiveness or reduced cost, respectively—but this approach provides data on which these judgments can be based. As recommended by O’Day and Campbell (2016) and Lin et al. (2017) the incremental cost-effectiveness ratio (ICER) was used to calculate the cost per knowledge acquired—the chosen unit of effectiveness—for those teaching approaches that were mapped onto the areas of Black’s (1990) cost-effectiveness plane with unclear conclusions on value (Quadrants I and III).

\[
\text{ICER} = \frac{(\text{Cost}_A - \text{Cost}_B)}{\left(\frac{\text{Effectiveness}_A - \text{Effectiveness}_B}{\text{Effects}_A}
ight)}
\]

Raw data were used to calculate ICERs where possible but utilized the five-point rating to standardize units of effectiveness from the existing effectiveness literature.
Table 4.
Synthesis of Published Effectiveness Information

Intervention	Losco et al. (2017)	Wilson et al. (2018)	Afsharpour et al. (2018)	Chytas et al. (2019)					
	Rating	Rationale	Rating	Rationale	Rating	Rationale	Rating	Rationale	Overall
CAI/L	5	“CAI/CAL... demonstrated better results overall compared to traditional teaching methods.”	3	“Student performance scores were found to be statistically equivalent when comparing traditional dissection to other laboratory methods.”	N/A	Not discussed.	N/A	Not discussed.	4
Plastic Models	2	“Both studies, looking at alternative dissection methods, showed positive... outcomes when compared to... incorporating the use of plastic models.”	3	[See above]	3	[See below]	2.75		
Plastinated Specimens	N/A	Not discussed.	3	[See above]	N/A	Not discussed.	2.67		
Simulation	4	“…simulation demonstrated better results overall compared to traditional teaching methods.”	3	[See above]	N/A	Not discussed.	N/A	Not discussed.	3.5
Virtual Dissection Tables	N/A	Not discussed.	N/A	Not discussed.	4	“...and cohort 3 [virtual dissection table] (85.1%).”	N/A	Not discussed.	4
Summary		CAI/L and Simulation were described as superior to the traditional approaches such as dissection. Simulation was deemed more effective than dissection, but CAI/L was superior to this. Plastic models were suggested to be less effective than dissection. This led to the four-tier ranking summarized above.		All modalities were ranked insignificantly different with regards to effectiveness. Therefore, they were all awarded the midpoint of the effectiveness rating.		This study suggested ranked virtual dissection tables, plastic models and dissection in the order reflected by the ratings above.		This review found that dissection and plastinated specimens did not have significantly different impacts on educational outcomes, thereby provided no reason for either approach to deviate from the baseline of three.	

For each study, all teaching approaches were given an effectiveness rating out of five by initially assigning them to the midpoint of the scale (3/5), and then amending their scores to accommodate each paper's conclusion. For example, if a paper had ranked all five teaching approaches from most to least effective, the most effective would have been awarded five points and the least, one point. The average (mean) rating from each paper equated to an overall effectiveness rating out of five. CAI, computer aided instruction; CAL, computer aided learning.
Ethical Approval

This study was approved by a subgroup of the University of Exeter Medical School Research Ethics Committee (UEMS REC), and was provided by the policy set out in UEMS REC Application Number 17/11/147.

RESULTS

The following results section details the cost results, effectiveness results and then synthesizes these into a series of value-estimations.

Cost Results

The cost per student per year of each teaching approach over a five-year period can be ranked from least to most expensive as follows: CAI/L, plastic models, virtual dissection tables, simulation, plastinated specimens, dissection. Table 3 presents a summary of each cost-report with full details provided in Supplemental Material Tables A-F.

While CAI/L had the lowest initial cost, the lowest recurring cost was shared by plastinated specimens and plastic models. In contrast, dissection had the largest recurring cost, while plastinated specimens had the largest initial cost.

Effectiveness Results

The conclusions from Losco et al. (2017), Wilson et al., (2018), Afsharpour et al. (2018) and Chytas et al. (2019) enabled numerical rankings to be assigned to each teaching approach (Table 4). The mean of the rankings for each approach provided overall effectiveness ratings from most to least effective: CAI/L and virtual dissection tables (4), simulation (3.5), plastinated specimens (3), dissection (2.75), plastic models (2.67). Resources permitting further statistical analysis were not available.

Synthesis of Cost and Effectiveness Information

The cost results generated through the current study and previously published effectiveness results were synthesized into two five-point scales that when presented alongside each other permit quick comparisons of the cost and effectiveness of different anatomy teaching approaches (Fig. 1). In order to maximize the accessibility of these results, the results figure (Fig. 1) was based upon an existing summary of education research (EEF, 2018), which has previously been regarded as an accessible, manageable and practical tool (Higgins et al., 2012).

Value Information

In the demonstrated approach to economic evaluation, using the assumptions made by the case-study model, CAI/L appears to be better value than the included alternatives, since all alternatives were mapped to Quadrant II on Black’s (1990) cost-effectiveness plane when CAI/L was the control (Fig. 2), suggesting they have reduced effectiveness for a given spend. In this comparison, virtual dissection tables are not mapped to Quadrant II, but as they have the same effectiveness for a greater spend, they are also deemed less cost-effective.

Dissection can be interpreted as lesser value than the included alternatives because it most commonly mapped onto Quadrant II when compared with each control, and because most alternatives are mapped to Quadrant IV (less expensive and more effective) when dissection is the control (Fig. 2). Teaching with virtual dissection tables appeared to be of better value than with plastic models because they mapped on the similar plane of cost but markedly different planes of effectiveness, suggesting that despite incurring similar costs, virtual dissection tables were markedly more effective.

Simulation, plastinated specimens and dissection can be ranked in this respective order of diminishing value. This is based on ICERs calculated for dissection, plastinated specimens and simulation when each compared with plastic models since simple graphical interpretation is not straightforward when interventions are mapped to quadrants I or III of Black’s (1990) cost-effectiveness plane. Dissection, plastinated specimens and simulation cost an additional £675.00, £136.36 and £21.00 per unit of effectiveness gained per student per year when compared with plastic models, respectively.

Of the two least effective approaches to anatomy teaching, plastic models appear to be better value than dissection. This is because when compared with CAI/L, the ICERs show that plastic models and dissection cost £4.51 and £48.00 per unit of effectiveness lost per student per year. This is an unusual comparison because the control, in this instance, is better value than both interventions. However, the ICERs of the two interventions suggest plastic models to be better value as for a similar reduction in effectiveness, the costs incurred are much smaller.

DISCUSSION

The aims of this study were to investigate the cost, and then demonstrate an approach to comparing value, of six popular anatomy teaching methods. The teaching approaches were ranked from most to least expensive as follows: dissection, plastinated specimens, simulation, virtual dissection tables, plastic models and CAI/L. This order does not reflect the suggested comparative value of each approach, since it does not incorporate effectiveness information, only the costs incurred over a five-year period at a typical UK medical school (Appendix 1).

Since value is determined by both cost and a measurable outcome (Mattick and Baumfield, 2016), this report then demonstrated how cost information can be combined with existing effectiveness data to estimate value. This process suggested CAI/L as providing the greatest value, in terms of education outcomes per dollar spent, since it had highest scores for effectiveness as well as the lowest scores for cost; and dissection as providing lowest value, when the educational outcome measure is knowledge acquisition at least, due to its high cost.

These findings regarding CAI/L are in contrast with existing literature that considers effectiveness alone (Clunie et al., 2018; Wainman et al., 2018, 2020) but, when effectiveness is considered with cost, which is much lower for CAI/L, different conclusions may be drawn about relative value.

Due to the lack of cost-reporting in the evaluation or comparison of approaches to teaching in medical education (Walsh et al., 2013; Walsh, 2014a, b; Mattick and Baumfield, 2016), the suggested findings of this economic evaluation cannot easily be compared to the existing literature. For example, Chang Chan et al. (2019) iterated the diminished economic feasibility of dissection compared with CAI/L, despite highlighting the educational merits of both; however,
Figure 1.
Comparative cost and effectiveness of the different approaches to anatomy teaching considered in this study. This format is based on the Teaching and Learning Toolkit (EEF, 2018) and, using five-point summaries of cost and effectiveness, it provides a simple and accessible synthesis of the data presented in Tables 3 and 4, permitting quick and easy comparison of the costs and effectiveness in short-term knowledge acquisition of different teaching approaches. The five-point scale for cost was established by considering the extremes of results as the extremes of the scale, proportionally divided with equal weighting between thresholds. In this figure, the number of shaded pound sterling icons represents a different cost bracket for the total cost of interventions per student per year: £ ≤ £376.00; ££ = £376.00-£395.99; £££ = £396.00-£415.99; ££££ = £416.00-£435.99; £££££ ≥ £436.00. At the time of the study (2018), £1 GBP was approximately $1.34 in United States Dollars (USD). The five-point effectiveness ratings were calculated by originally assigning all teaching approaches to the midpoint of the scale (3/5), and then amending their scores to accommodate each paper’s conclusion. For example, if a paper had ranked all five teaching approaches from most to least effective, with significantly different outcomes between each approach, the most effective would have been awarded five points and the least, no points. The average rating from each paper equated to an overall effectiveness rating out of five, which is both represented pictorially by the number of colored stars and numerically, rounded to one decimal place, in the following column. This figure, therefore, shows that of the included teaching approaches, dissection is the most expensive, followed by plastinated specimens, and then simulation. Plastic models and virtual dissection tables are shown to cost a similar amount, which are the second most inexpensive approaches. Computer aided instruction/learning (CAI/L) is the least expensive teaching approach included in the report. The approach taken raises the apparent costs of approaches that have high initial expenses and low recurring costs or those that have a lifespan greater than the five-year period assumed by the model. For example, if plastic models had a lifespan of 20 years, the cost per student per year would be greatly reduced, which would explain their common use in anatomy teaching laboratories (Raftery, 2007; Patel et al., 2015). Despite excluding some cost subcategories to maintain generalizability, the cost-reporting relates to a specific setting. Efforts were made to maximize generalizability by creating and utilizing a model of a typical medical school (Appendix 1), but the assumptions made in this model may vary substantially from the costs to individual institutions. For example, learner group size may be based on other evidence or local constraints, and therefore may not align with Chan and Ganguly’s (2008) and Appaji and Kulkarni’s (2012) suggestions; the available teaching and holiday time of academic clinicians may not be the same as Christmas et al. (2010) and BMA (2019), respectively suggest; there may be a significant disparity between the cohort size and the UK average used here (MSAG, 2020); and curricula may not be reviewed as regularly as the World Health Organization recommended (WHO, 1985).

Inevitably there were also some limitations. Only 13/23 cost subcategories were included since the remaining ten were highly specific to individual institutions. For example, a significant subcategory that was excluded was that of “shared costs,” which could significantly reduce financial costs if additional cohorts of learners could utilize, and therefore share the financial expenses of teaching resources.

Despite excluding some cost subcategories to maintain generalizability, the cost-reporting relates to a specific setting. Efforts were made to maximize generalizability by creating and utilizing a model of a typical medical school (Appendix 1), but the assumptions made in this model may vary substantially from the costs to individual institutions. For example, learner group size may be based on other evidence or local constraints, and therefore may not align with Chan and Ganguly’s (2008) and Appaji and Kulkarni’s (2012) suggestions; the available teaching and holiday time of academic clinicians may not be the same as Christmas et al. (2010) and BMA (2019), respectively suggest; there may be a significant disparity between the cohort size and the UK average used here (MSAG, 2020); and curricula may not be reviewed as regularly as the World Health Organization recommended (WHO, 1985).

The approach taken raises the apparent costs of approaches that have high initial expenses and low recurring costs or those that have a lifespan greater than the five-year period assumed by the model. For example, if plastic models had a lifespan of 20 years, the cost per student per year would be greatly reduced, which would explain their common use in anatomy teaching laboratories (Raftery, 2007; Patel et al., 2015). Readers can adjust the assumptions made and remodel for their specific context.

The report also relied on specific suppliers when costing each teaching approach, but alternative suppliers might...
Figure 2.

Mapping of anatomy teaching approaches included in this study to Black’s cost-effectiveness planes (Black, 1990). Black’s (1990) cost-effectiveness plane is a model that compares the cost and effectiveness of interventions with a control in order to draw conclusions on their comparative cost-effectiveness. Using Black’s methodology, each separate plane shows an anatomy teaching approach as the control (i.e., when it is at the center of the plane) and compares it with the cost (y-axis) and effectiveness (x-axis) of other teaching approaches. When approaches are mapped to specific quadrants, conclusions can be easily established: Quadrant II—less cost-effective, or more expensive and less effective, than the control; Quadrant IV—more cost-effective, or less expensive and more effective, than the control. However, teaching approaches mapped to quadrants I and III require further consideration: Quadrant I—more expensive and more effective than the control; Quadrant III—less expensive and less effective than the control. The planes show that all teaching approaches are less cost-effective than computer aided instruction/learning (CAI/L; as they are mapped to quadrant II) except virtual dissection tables, which while more expensive is equally effective. They also show that all approaches are more cost-effective than dissection (as they are mapped to quadrant IV) except plastic models (mapped to quadrant III), which while less expensive are less effective. Incremental cost-effectiveness ratios (ICERs) were undertaken for interventions that were mapped to quadrants I or III. CAI/L, computer aided instruction/learning.
The accessible summary of cost and effectiveness could be criticized as over-simplistic and the point-thresholds chosen could make a significant difference to the conclusions drawn, but the methodology is deliberately transparent so that it can be repeated and altered as necessary.

While attempts were made to collate effectiveness data on the included teaching approaches from contemporary literature reviews and meta-analyses (Losco et al., 2017; Wilson et al., 2018), these sources did not include effectiveness data on virtual dissection tables and plastinated specimens. As such, lower level evidence, defined by the “Hierarchy of Evidence” (CEBM, 2009), was used (Afsharpour et al., 2018; Chytas et al., 2019). These sources of effectiveness data were selected as they compared the less-documented teaching approaches with other approaches included in this report, which allowed the data to be easily incorporated. This identification process can, therefore, not guarantee that all of the relevant publications were included in this demonstration to economic evaluation.

Furthermore, this study attempts cost-reports and demonstrates value-estimations of individual teaching approaches while some authors have recommended a blended anatomy curriculum that combines the different pedagogies (Kerby et al., 2011; Estai and Bunt, 2016). A blended approach was not included since the exact combinations are highly institution specific.

Another limitation of this study is that there were other approaches to teaching anatomy that could have been included, such as using predissected (prosected) specimens as part of cadaveric observation. Additionally, the only outcome considered is knowledge acquisition, whereas other outcomes, or combinations of outcomes, might be (more) important (Mattick and Baumfield, 2016; Pickering and Joynes, 2016), which has been raised previously as a limitation of cost-effectiveness analyses (Owens, 1998).

Impact on Policy and Practice

This study has provided a novel approach to estimating value that contributes to the required identification for alternative approaches to economic evaluation (Baumfield and Mattick, 2016), which can be utilized or developed by others. Furthermore, this study has demonstrated the simplicity of accurate cost-reporting, which may empower those investigating learning outcomes to include cost as an outcome in their research reports. In turn, this would enhance the available research, thereby aiding value judgments.

Studies utilizing this approach can enable policy makers to make recommendations based on evidence. Consensus building with key stakeholders can then move beyond a conversation that focuses on effectiveness at any cost to more nuanced conversations about maximizing value when resources such as time or money are limited (as is likely to be the case in most medical schools).

The findings suggested by this study could be used by existing medical schools to review their anatomy teaching methods, tailoring the information used in this transparent approach to their own context. It could also be used by new medical schools to make informed choices regarding their curriculum, which is particularly relevant for the UK, where a number of new medical schools are currently being established (Rimmer, 2018). This may also be of interest to other health professions and perhaps education beyond health.

Future Research

Further research could both benefit this specific report and the wider field of academia. The approach taken here to synthesizing the effectiveness data did not warrant statistical analysis, since this was not necessary to achieve our aims (“to report cost of six popular anatomy teaching methods and to demonstrate an approach to estimating their comparative values”) and might suggest a level of precision that we did not feel was appropriate in this first paper of its kind. However, future research building upon this methodological approach could also consider including statistical analysis to assess the uncertainty of the outcome data (Baio et al., 2017), which would strengthen conclusions made on effectiveness and, therefore, value.

In the wider field, Walsh and Jaye (2013) recommended examining cost and value of one aspect of medical education at a time. This study focused on anatomy teaching in medical schools but similar approaches to other areas of medical education are needed. Future research into anatomy teaching might consider other educational outcomes, or combinations of outcomes.

Research studies that describe educational interventions might also include more information about financial costs and journals might require authors to critically evaluate both effectiveness and value of identified educational resources. Baio (2018) recommended this expansion of standard statistical assessment to full economic assessment in health interventions, this can and should also apply to education interventions.

CONCLUSIONS

In conclusion, computer aided instruction/learning appeared to have the highest value of the included anatomy teaching approaches, and dissection appeared to have the lowest value due to its high financial cost for a given unit of effectiveness. These suggested findings could be strengthened by further research that utilizes this approach to economic evaluation with the addition of meta-analyses and higher tier statistical analysis.

This report may be limited by the relative infancy of education economics, but it adds to a growing field, of which this report has stressed the importance. If educators could use research such as this to maximize the value of anatomy teaching, students and ultimately patients stand to benefit. The approach demonstrated here could easily be applied to other aspects of medical education and beyond.

ACKNOWLEDGMENTS

The author wishes to thank Dr. Michelle Lazarus, Monash University, Australia, for her suggestion of using a case study for generalizability in cost-reporting.

NOTES ON CONTRIBUTORS

SAMUEL D. CHUMBLEY, B.M.B.S., M.Sc (Clin. Ed.), is a medical doctor, and honorary lecturer at the Hull York Medical School, University of Hull, Kingston-Upon-Hull,
East Riding of Yorkshire, UK. He graduated from the University of Exeter Medical School, College of Medicine and Health at University of Exeter in Devon, UK. He is teaching clinical skills alongside his clinical responsibilities to undergraduate medical students and his research interest is in medical education.

VIKRAM S. DEVARAJ, M.B.Ch.B., F.R.C.S. (Eng.), F.R.C.S. (Plast.), PG Dip. (Clin. Ed.), S.F.I.H.E.A., is a consultant plastic and reconstructive surgeon, an associate professor of medical education and clinical lead for anatomy at the University of Exeter Medical School, College of Medicine and Health, University of Exeter, Devon, United Kingdom. He is teaching clinical and contextualized anatomy to undergraduate healthcare students and his research interests reflect his clinical and academic practice.

KAREN MATTICK, Ph.D., M.Sc., is a professor of medical education at the University of Exeter Medical School, College of Medicine and Health, University of Exeter, Devon, United Kingdom. She is teaching medical education research methodologies to postgraduate healthcare students and her research interest is in medical education.

LITERATURE CITED
Afscharpour S, Gonsalves A, Hosek R, Partin E. 2018. Analysis of immediate student outcomes following a change in gross anatomy laboratory teaching methodology. J Chiropr Educ 32:98–106.
Appaji AC, Kulkarni R. 2012. A survey on the role and the status of cadavers in medical education: An Indian scenario. J Clin Diagn Res 6:1132–1136.
Azer SA, Eisenberg N. 2007. Do we need dissection in an integrated problem-based learning medical course? Perceptions of first- and second-year students. Surg Radiol Anat 29:173–180.
Baio G, Berardi A, Heath A. 2017. Bayesian Cost-Effectiveness Analysis with the R package BCEA. 1st Ed. Cham, Switzerland: Springer International Publishing AG. 184 p.
Baio G. 2018. Statistical modelling for health economic evaluations. Annu Rev Stat Appl 5:289–309.
Baumfeld V, Mattick K. 2016. Cost, value and quality in professional learning: Promoting economic literacy in medical and teacher education. British Educational Research Association (BERA), London, UK. URL: https://www.bera.ac.uk/project/cost-value-and-quality-in-professional-learning-predicting-economic-literacy-in-medical-and-teacher-education [accessed 27 June 2020].
Benly P. 2014. Teaching methodologies on anatomy-A review. J Pharmac Sci Res 6:242–243.
Bergman EM, Verheijen JW, Schrepfer AJ, Van de Vleuten CP, De Bruin AB. 2014. Influences on anatomical knowledge: The complete arguments. Clin Anat 27:296–303.
Black WC. 1990. The CE plane: A graphic representation of cost-effectiveness. Med Decis Making 10:212–214.
BMA. 2019. British Medical Association. Overview of your annual leave entitlement. British Medical Association, London, UK. URL: https://www.bma.org.uk/advice/employment/leave/leave-overview [accessed: 20 July 2020].
Brown C, Cleland K, Walsh K. 2016. The costs of medical education assessment. Med Teach 38:111–112.
Brown C, Ross S, Cleland J, Walsh K. 2015. Money makes the (medical assessment) world go round: The cost of components of a summative final year objective structured clinical examination (OSCE). Med Teach 37:653–659.
CEBM. 2009. Centre for Evidence-Based Medicine. Oxford Centre for Evidence-based Medicine – Levels of Evidence (March 2009). Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK. URL: https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ [accessed 20 June 2020].
Chan LK, Ganguly PK. 2008. Evaluation of small-group teaching in human gross anatomy in a Caribbean medical school. Anat Sci Educ 1:19–22.
Chang Chan AJ, ten Cate O, Custers EJ, van Leeuwen MS, Bleys RL. 2019. Approaches of anatomy teaching for seriously resource-deprived countries: A literature review. Educ Cell Biol 48:205–212.
Christmas C, Durso SC, Kravet SJ, Wright SM. 2010. Advantages and challenges of working as a clinician in an academic department of medicine: Academic clinicians’ perspectives. J Grad Med Educ 2:478–484.
Chytas D, Piagiou M, Johnson EO, Tsakotos G, Mazarakis A, Babis GC, Nikolaou VS, Kaseta M, Nassis K. 2019. Outcomes of the use of plastination in anatomy education: Current evidence. Surg Radiol Anat 41:1181–1186.
Clinic L, Morris NP, Joynes VCT, Pickering JD. 2018. How comprehensive are research studies investigating the efficacy of technology-enhanced learning resources in anatomy education? A systematic review. Anat Sci Educ 11:303–319.
Cook DA, Brydges R, Hamstra SJ, Zendejas B, Szostek JH, Wang AT, Erwin PJ, Hatala R. 2012. Comparative effectiveness of technology-enhanced simulation versus other instructional methods: A systematic review and meta-analysis. Simul Healthc 7:308–320.
Cook DA, Hamstra SJ, Brydges R, Zendejas B, Szostek JH, Wang AT, Erwin PJ, Hatala R. 2013. Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Med Teach 35:e687–e898.
Craig S, Tait N, Boers D, McAndrew D. 2010. Review of anatomy education in Australian and New Zealand medical schools. ANZ J Surg 80:212–216.
Darras KE, Forster BB, Nicolaou S, Munk PL. 2017. A golden opportunity for radiologists: Bringing clinical relevance to undergraduate anatomy through virtual dissection. Can Assoc Radiol J 68:232–233.
Darras KE, Spouge R, Hamstra R, Nicolaou S, Hu J, Workington A, Krebs C, Forster BR. 2019. Integrated virtual and cadaveric dissection laboratories enhance first year medical students’ anatomy experience: A pilot study. BMC Med Educ 19:366.
Deng X, Zhou G, Xiao B, Zhao Z, He Y, Chen C. 2018. Effectiveness evaluation of digital virtual simulation application in teaching of gross anatomy. Ann Anat 218:276–282.
Dussabandara LO, Nirthanan SN, Khoi TK, Tredman R. 2015. Role of cadaveric dissections in modern medical curricula: A study on student perceptions. Anatomical Sciences Education MARCH/APRIL 2021 181
Evans DJ, Pawlina W, Lachman N. 2018. Human skills for human[istic] anatomy: An emphasis on nontraditional discipline-independent skills. Anat Sci Educ 11:221–224.
Fou J, Cook DA, Walsh K, Golub R, Abdalla ME, Ilie D, Maloney S. 2019. Cost evaluations in health professions education: A systematic review of methods and reporting quality. Med Educ 53:1196–1208.
Fritz D, Hu A, Wilson T, Ladak H, Haase P, Fung K. 2011. Long-term retention of a 3-dimensional educational computer model of the larynx: A follow-up study. Arch Otolaryngol Head Neck Surg 137:598–603.
Ghosh SK. 2017. Cadaveric dissection as an educational tool for anatomical sciences in the 21st century. Anat Sci Educ 10:286–299.
Gogalniceanu P, Fitzgerald O’Connor E, Kaferty A. 2009. Undergraduate anatomy teaching in the UK. Ann Roy Coll Surg Engl 91:102–106.
Gogalniceanu P, Madani H, Paraskeva PA, Darzi A. 2008. A minimally invasive approach to undergraduate anatomy teaching. Anatomical Sci Educ 1:46–47.
Gray AM, Clarke PM, Wolstenholme JL, Wordsworth S. 2011. Applied Methods of Cost-Effectiveness Analysis in Health Care. 1st Ed. Oxford, UK: Oxford University Press. 31 p.
Graziose MM, Koch PA, Wang YC, Gray HL, Contento IR. 2017. Cost-effectiveness of a nutrition education curriculum intervention in elementary schools. J Nutr Educ Behav 49:684–691.
Gross M, Masters C. 2017. Virtual dissection: Using active learning with the Anatomage table to enhance student learning. FASEB J 31:SIb9.
Gray AM, Clarke PM, Wolstenholme JL, Wordsworth S. 2011. Applied Methods of Cost-Effectiveness Analysis in Health Care. 1st Ed. Oxford, UK: Oxford University Press. 31 p.
Haywards S. 2007. A survey of current teaching methods. Clin Anat 20:289–291.
Hatala R. 2013. Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Med Teach 35:e687–e898.
Leuwen MS, Bleys RL. 2019. Approaches of anatomy teaching for seriously resource-deprived countries: A literature review. Educ Cell Biol 48:205–212.
Lin Y, Cheng A, Hecker K, Grant V, Currie GR. 2017. Implementing economic evaluation in simulation-based medical education: Challenges and opportunities. Med Decis Making 32:62–74.
Prakash A. 2008. The role of simulation in education: A review. J Med Educ 33:455–464.
Prakash A. 2008. The role of simulation in education: A review. J Med Educ 33:455–464.
Prakash A. 2008. The role of simulation in education: A review. J Med Educ 33:455–464.
Prakash A. 2008. The role of simulation in education: A review. J Med Educ 33:455–464.
Macchiarelli G, Bernardi S, Continenza MA, Biasi JD, Pal-merini MG, Bianchi S. 2017. Student learning performance in human anatomy using a virtual dissection table. Ital J Anat Embryol 121:124–131.

Malhotra R, Malhotra M, Kumari R. 2016. A comparative study of effectiveness of cadaver dissection versus computer assisted dissection. J Anat Soc India 65:128–131.

Maloney S, Reeves S, Rivers G, Ilie D, Foo J, Walsh K. 2017. The Prato statement on cost and value in professional and interprofessional education. J Interprof Care 31:1–4.

Mattick K, Baumfield V. 2016. From cost to value in medical education. Med Teach 38:533.

McBride JM, Drake RL. 2018. National survey on anatomical sciences in medical education. Anat Sci Educ 11:7–14.

MSAG. 2016. Medical School Application Guide. theMSAG.com., London, UK. URL: www.themsag.com [accessed: 30 June 2017].

MSAG. 2020. Medical School Application Guide. theMSAG.com., London, UK. URL: www.themsag.com [accessed: 20 February 2020].

Muenning P, Bonthavong M. 2016. Cost-Effectiveness Analysis in Health: A Practical Approach. 3rd Ed. San Francisco, CA: Jossey-Bass. 480 p.

Murad MH, Coto-Yglesias F, Varkey P, Prokop LJ, Murad AL. 2010. The effectiveness of self-directed learning in health professions education: A systematic review. Med Educ 44:1057–1068.

O’Day K, Campbell DJ. 2016. What’s The matter with average cost-effectiveness ratios? A simple graphical explanation. Value Health 19:A107–A108.

Ogeng’o J, Ongen K, Misiani M, Olabu B. 2013. Maintaining excellence in teaching of human anatomy: University of Nairobi experience. Anat J Afr 2:117–129.

Owens DK. 1998. Interpretation of cost-effectiveness analyses. J Gen Int Med 13:716–717.

Pach D, Giesel FL, Unterhinninghofen R, Soerensen M, Kummer T, Doll S. 2017. Cadaver-specific CT scans visualized at the dissection table combined with virtual dissection tables improve learning performance in general gross anatomy. Eur Radiol 27:2153–2160.

Papa V, Vaccarezza M. 2013. Teaching anatomy in the XXI century: New aspects and pitfalls. Sci World J 7:310–348.

Patel SB, Mauro D, Fenn J, Sharkey DR, Jones C. 2015. Is dissection the only way to learn anatomy? Thoughts from students at a non-dissecting based medical school. Perspect Med Educ 4:259–260.

Pickering JD, Joynes VK. 2016. A holistic model for evaluating the impact of individual technology-enhanced learning resources. Med Teach 38:1242–1247.

Preim B, Saafler P. 2018. A survey of virtual human anatomy education systems. Comput Graph 71:132–153.

Raifery AT. 2007. Anatomy teaching in the UK. Surgery (Oxford) 25:1–2.

Rimmer A. 2018. Five medical schools are created in England in bid to increase home grown doctors. BMJ 363:k1328.

Rizzolo LJ. 2002. Human dissection: An approach to intertwearing the traditional and humanistic goals of medical education. Anat Rec 254:24–24v8.

Rockarts J, Brewer-Deluce D, Shali A, Mohaiidin V, Wainman B. 2020. National survey on Canadian undergraduate medical programs: The decline of the anatomical sciences in Canadian medical education. Anat Sci Educ 13:381–389.

Shahid ST. 2015. Cadaver dissection in anatomy: The ethical aspect. Anat Physiol 5:55.

Shi D, Walline JH, Liu J, Yu X, Xu J, Song PP, Zhu H, O’Donnell JM. 2019. An exploratory study of Sectra table visualization improves the effectiveness of emergency bedside echocardiography training. J Ultrasound Med 38:363–370.

Shoeppe TC. 2008. Human Cadaver Laboratory Proposal. 1st Ed. Los Angeles, CA: Loyola Marymount University. 37 p. URL: https://www.lifescitr.org/download.cfm?submissionID=2869 [accessed 22 February 2020].

Sirotalji G. 2014. The emergence of humanistic anatomy. Med Teach 36:912–913.

Sugden R, Williams A. 1978. The Principles of Practical Cost-Benefit Analysis. 1st Ed. Oxford, UK: Oxford University Press. 275 p.

Tamura K, Snickley CD, Labrash SJ, Lozanoff S. 2014. Effectiveness of plastinated anatomical specimens depicting common sports injuries to enhance musculoskeletal injury evaluation education. Athl Train Educ J 9:174–181.

Ten Brinke B, Klinie PJ, Timman R, Buschbach JJ, Lange JF, Kleinrensink GJ. 2014. Anatomy education and classroom versus laparoscopic dissection-based training: A randomized study at one medical school. Acad Med 89:806–810.

Wainman B, Pukas G, Wolkal L, Mohanraj S, Lamb J, Norman GR. 2020. The critical role of stereoscopy in virtual and mixed reality learning environments. Anatomical Sciences Education 13:401–412.

Wainman B, Wolkal L, Pukas G, Zheng F, Norman GR. 2018. The superiority of three-dimensional physical models to two-dimensional computer presentations in anatomy learning. Med Educ 52:1138–1146.

Walsh K. 2014a. Research into cost and value in medical education: Can we make findings more generalisable? Ann Inst Super Sanita 50:4–5.

Walsh K. 2014b. Economic analysis in medical education: Definition of essential terms. Med Teach 36:890–893.

Walsh K. 2013. Cost and value in medical education. Educ Prim Care 24:391–393.

Walsh K, Levin H, Jaye P, Gazzard J. 2013. Cost analyses approaches in medical education: There are no simple solutions. Med Educ 47:962–968.

Walsh K, Jaye P. 2013. Cost and value in medical education. Educ Prim Care 24:391–393.

Walsh K, Levin H, Jaye P, Gazzard J. 2013. Cost analyses approaches in medical education: There are no simple solutions. Med Educ 47:962–968.

Wilson AB, Miller CH, Klein BA, Taylor MA, Goodwin M, Boyle EK, Brown K, Hoppe C, Lazarus M. 2018. A meta-analysis of anatomy laboratory pedagogies. Clin Anat 31:122–133.

WHO. 1985. World Health Organization. A Guide to Curriculum Review for Basic Nursing Education: Orientation to Primary Health Care and Community Health. 1st Ed. Geneva, Switzerland: World Health Organization. 59 p.

WHO. 2020. World Health Organization. Cost effectiveness and strategic planning (WHO-CHOICE). World Health Organization, Geneva, Switzerland. URL: who.int/choice/cost-effectiveness [accessed: 4 June 2020].

Wolfe C, Schermerhorn R, Gabbay J, Klein DR, Greenbaum J, Loewen J, Omi D, Wainman B, Norman GR, Wolkal L. 2020. An exploratory study of Sectra table visualization improves the effectiveness of emergency bedside echocardiography training. J Ultrasound Med 38:363–370.

Yammine K, Violato C. 2015. A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ 8:525–538.

Yammine K, Violato C. 2016. The effectiveness of physical models in teaching anatomy: A meta-analysis of comparative studies. Adv Health Sci Educ 21:883–895.

Zendejas B, Wang AT, Brydges R, Hamstra SJ, Cook DA. 2013. Cost: The missing outcome in simulation-based medical education research: A systematic review. Surgery 153:160–176.
APPENDIX 1.

CASE STUDY.

A Typical Medical School in the United Kingdom

The fictional, yet typical, medical school in the United Kingdom has a five-year medicine program with 203 students per year group. It was founded ten years ago but is looking to introduce a new approach to teaching anatomy. In the five-year curriculum, the course dedicates 149 hours to anatomy teaching per student. Teaching takes place in small groups of approximately ten students, so there are 20 groups per cohort. Therefore, there is 2,980 hours of anatomy-teaching per academic year.

The institution dedicates 1 hour of preparation to a one-hour teaching session. As each prepared session will be delivered 20 times, 3,129 hours are dedicated to preparing and delivering the teaching sessions. Since the typical academic clinician works 977.6 hours either preparing or teaching, four (3.2) academic clinicians would be needed to cover the appropriate workload at the medical school in an academic year. However, as this equates to 15.6 hours of work per day, seven (6.4) academic clinicians are employed to reduce the academic clinicians’ daily working hours to an acceptable amount. At any given moment of the working day, a maximum of two groups are being taught simultaneously, therefore, requiring double the standard amount of most teaching resources.

This typical medical school revises their curriculum every five years on average, so any cost calculations will consider the costs incurred over a five-year period.

aThe average (mean) cohort size of UK Medical Schools (calculated from data from The Medical School Applications Guide (MSAG, 2016));
bThe average time dedicated to anatomy teaching in UK Medical Schools (Gogalniceanu et al., 2009); cRecommended size for small-group teaching (Chan and Ganguly, 2008) and the ideal number of students per cadaver in dissection (Appaji and Kulkarni, 2012); dAcademic clinicians spend 52% of their working hours in the academic environment (Christmas et al., 2010) and they typically work 47 5-day weeks per year (BMA, 2019); eIn a 40-week academic year; fThe World Health Organization recommends curricula reform every five years (WHO, 1985).