Wilhelm Brünings' forgotten contribution to the metabolic treatment of cancer utilizing hypoglycemia and a very low carbohydrate (ketogenic) diet

Rainer Johannes Klement

Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Robert-Koch-Str. 10, 97422, Schweinfurt, Germany

ARTICLE INFO

Article history:
Received 2 April 2018
Received in revised form 17 June 2018
Accepted 20 June 2018
Available online 20 August 2018

Keywords:
Cancer
Hypoglycemia
Insulin
Ketogenic diet
Low carbohydrate diet

ABSTRACT

The growing interest in the alterations of tumor cell metabolism and their possible therapeutic exploitation also spurred new complementary and integrative approaches such as treating patients with a ketogenic diet (KD). KDs aim at inhibiting glycolytic tumor metabolism and growth, and have therefore been proposed as adjuncts not only to standard-of-care, but also to other therapies targeting tumor metabolism. Here I describe the life and forgotten work of one of the earliest researchers who realized the importance of altered tumor cell metabolism and its possible exploitation through metabolic modifications: Wilhelm Brünings. Brünings was a German natural scientist and physician famous for his innovative contributions to the fields of physiology and otorhinolaryngology. Based on the findings of Otto Warburg and his physiological reasoning he started to experiment with insulin administration and KDs in his patients with head and neck cancers, aiming to maximally lower blood glucose concentrations. He obtained encouraging short-term results, although most tumors became refractory to treatment after several weeks. His pioneering work is worth revisiting, especially for an international readership that may be unaware of his efforts, as hypoglycemic treatments, including the use of insulin injections and KDs, are currently being re-investigated as complementary and integrative cancer treatments.

1. Introduction

There is an increasing interest in the connection between metabolism and cancer and its potential for therapeutic interventions. Among these are several approaches targeting the glucose metabolism of tumors such as the application of ketogenic diets (KD) to cancer patients. KDs are very low carbohydrate, high fat diets that mimic certain characteristics of fasting, in particular through reduction of plasma insulin with an accompanying elevation of the ketone bodies acetoacetate and β-hydroxybutyrate. The state of nutritional ketosis in adults is typically characterized by concentrations of β-hydroxybutyrate in the range 0.5–3 mmol/l and glucose in the range 85–95 mg/dl. However, with concurrent calorie restriction much lower blood glucose concentrations (55–80 mg/dl) can be achieved, resulting in a higher ketone-to-glucose ratio. This may be desirable for an optimal chance of disease management, although in some animal models unrestricted KDs led to tumor growth retardation without lowering blood glucose levels.

First clinical pilot studies on the KD and cancer have been conducted, and several others are planned or currently running. These studies are based on mainly three rationales. KDs have been shown to be capable of slowing down tumor growth in many, although not all, animal models. Second, the replacement of carbohydrates with fat that is characteristic for a KD is supposed to account for the increased fat oxidation rates in cancer patients that are due to tumor-induced insulin resistance, in this way possibly protecting against skeletal muscle loss. Third, KDs are expected to sensitize tumor cells to radio- and chemotherapy, principally opening up a very broad range of applications as complementary cancer treatments. This at least partly relates to their ability to impair tumor cell glycolysis, reducing ATP levels and the ability to utilize substrates of glycolytic metabolism for protection against reactive oxygen species.

From a historical point of view it is interesting that the major...
discoveries underlying the above rationales for KDs in cancer treatment were made approximately 100 years ago. Otto Warburg and coworkers performed systematic investigations of the high rates of fermentation of glucose to lactate in tumor versus normal tissues in the 1920s. This is nowadays referred to as the Warburg effect and routinely employed via FDG-PET (2-deoxy-2-[18F]fluorodeoxyglucose positron emission tomography) imaging for clinical tumor assessment. While first preclinical studies into the effect of different forms of diet or macronutrient manipulation on cancer growth have roughly paralleled the early studies on cancer and metabolism, the first clinical application of a KD to cancer patients is usually assumed to be much more recent, and usually attributed to Kenneth Fearon and co-workers who described the administration of a medium chain triglyceride-rich KD to five cachectic cancer patients in 1988. Others mention the case study of two pediatric brain tumor patients by Nebeling et al., from 1995 as the first clinical KD study (for example Hyde et al., Poff et al., or we ourselves in our 2011 review). Nevertheless, as I describe in the remainder of this paper, both assumptions are not correct: The first clinical study which included the description of a KD to treat cancer patients was published in 1941 by Wilhelm Brünings, a scientist and physician whose obituary has its 80th anniversary this year. His forgotten experiments are worth rediscovery and review for the international cancer and metabolism research community.

2. A brief review on the life and achievements of Wilhelm Brünings

Wilhelm Brünings was born on January 31st 1876 in Kustedt near Stade, Germany. He studied natural sciences, philosophy and medicine in Tubingen and later in Erlangen where he received his PhD in physics, chemistry and zoology in 1899. Afterwards, he turned to clinical research in Berlin and Tubingen, where he received his medical doctorate in 1901. After a round-the-world trip as a ship’s doctor, Brünings joined the department of physiology at the university of Zürich, Switzerland, where he published several papers on electrophysiology and instrumentation and habilitated in 1904. His shift towards otorhinolaryngology was made when external reasons led him to Freiburg where he became the assistant of the famous laryngologist Gustav Kilian and earned the venia legendi for this field in 1908. After World War I in which he served as a military doctor he became full professor and head of the university department for otorhinolaryngology first in Greifswald (1917), then Jena (1926) and finally Munich (1930).

Contemporaries described Brünings as an excellent lecturer, teacher, scientist, physician and mechanic. His deep knowledge of the natural sciences combined with great technical and manual skills would have allowed him an efficient and unusually multidimensional way to approach and solve scientific problems. Indeed, his research spanned a diverse range of topics including cell electricity, X-ray diagnostics, radium treatment for cancer and, most importantly, instrumentation. Brünings’ endoscopic instruments became world-famous and developed widespread utilization. Among all these diverse activities, his passion was active patient care. When the Prussian Ministry of Culture offered Brünings his own Kaiser-Wilhelm research institute in Berlin after he had given a lecture on electroacoustic methods for treating amblyacousia, he declined because he preferred to continue treatment of patients.

Until his death on October 3rd 1958 Brünings remained in Munich where he was full professor of otorhinolaryngology until his retirement in 1950 (Fig. 1).

It is against this background that we are going to examine Brünings’ Beiträge zum Krebsproblem (“contributions to the cancer problem”, Fig. 2), which include what is likely the first detailed description of a very low carb (ketogenic) diet to treat cancer patients – almost half of a century prior to the clinical study of Fearon et al. that usually cited as the first KD study on cancer patients.

3. Brünings’ ketogenic diet studies

In the years 1941 and 1942, Brünings published two reports and a separate conclusion paper in the journal Münchener Medizinische Wochenschrift describing his experimental treatment of head and neck cancer patients in his Munich clinic by using insulin together with a KD in order to maximally lower blood glucose levels. Having spent years studying parallels in the age-dependency, incidence rates and heritability among diabetes, hypertension and cancer, he developed a working hypothesis that there would likely also be a commonality concerning the etiology of these diseases. Combined with Warburg’s findings this commonality would strongly implicate a disturbance of carbohydrate metabolism as a general factor necessary for cancer development. In the first report, titled “Über eine diätetisch-hormonale Beeinflussung des Krebses” (“On a dietetic-hormonal manipulation of cancer”), Brünings first described the case of a diabetic patient with a maxillary tumor who was referred to dietetic and insulin therapy for several weeks prior to planned surgery. During surgery, Brünings was completely surprised to find that large parts of the tumor had regressed and the remainder transformed into a viscous-elastic tissue. This observation prompted him to quickly initiate some experiments that he had apparently planned for a long time, yet was reluctant to start due to the circumstances of the war:

![Fig. 1. Wilhelm Brünings as shown in a laudatory article by A. Greifenstein on the occasion of his 60th birthday celebration which was published in the journal Archiv für Ohren-, Nasen-und Kehlkopfheilkunde (now the European Archives of Oto-Rhino-Laryngology).](image-url)
Die Versuche begannen zunächst mit Normalkost bei vorsichtig steigenden Insulindosen. In einer zweiten Reihe wurde lediglich Kh.-freie Ernährung ohne Insulin versucht. Es folgte eine Kh.-arme Diät (ca. 50 g oder 4 WBE Kohlehydrat) mit Steigerung des Insulins bis zur Toleranzgrenze und schließlich, als schärfste Form der Zuckerentziehung, eine praktisch kohlehydratfreie Ernährung mit gleichzeitig maximalen Insulinsgaben. Eine Beschreibung der ersten drei Behandlungsformen, ihrer Wirkungen und Ergebnisse ist unnötig, da ich mich schon nach kurzer Zeit auf die letzte, schärfste Form beschränkt habe, die sich als die wirksamste erwies.\(^5\), p. 119

(The experiments began with a normal diet and carefully increasing doses of insulin. In a second trial only a carbohydrate-free diet without insulin was tried. Subsequently, a low carbohydrate diet with increasing insulin doses until the tolerance limit and finally, as the strictest form of glucose deprivation, a practically carbohydrate-free diet with maximally tolerable doses of insulin was applied. A description of the results of the first three trials is unnecessary since after a short time of experimentation, I decided to restrict the trials to the strictest form which turned out to be the most effective)

Depot insulin was administered three times daily (at 7 a.m., 2 and 9 p.m.) by a nurse, starting with 0.3 cm\(^3\) per injection and increasing by 0.1 cm\(^3\) daily until signs of hypoglycemia appeared at which point the dose would be maintained. This usually occurred up to the fourth day.

Concerning the diet and its feasibility, Brünings wrote:

Auch hat meine erfindungsreiche Küchenleiterin es verstanden, den Kranken aus Fleisch, Wurst, Fisch, Eiern, Fetten, Käse, Quark, Kh.-armen Koch- und Rohgemüsen, Sauerfrüchten, Nüssen, Sionon usw. eine abwechslungsreiche Kost herzustellen, gegen deren monatelange Verabreichung sich keiner von ihnen gesträubt hat.\(^6\), p. 119

(My inventive kitchen leader figured out how to create a varied diet out of meat, sausages, fish, eggs, fat, cheese, curd, low-carbohydrate cooked, raw and fermented vegetables, nuts, Sionon\(^7\) etc. that none of the patients was reluctant to eat for several months.\(^8\)

Brünings pointed out the importance of consuming large amounts of vegetables as a source of fiber and protection against acidosis. The diet was supplemented with twice-weekly vitamin C injections and two drops of vitamin D oil daily (with the argument that patients would have to stay in their rooms during the low-light winter). He also pointed out that he and his staff had never seen a subjective or objective deterioration of any patient caused by the combined insulin and “carbohydrate-free” diet treatment that he referred to as Entzuckerungsmethode (“de-glycation method”).

His first report presents 14 cases with no further curative treatment options and tumors that could easily be measured by eye. Of these, 6 (43%) achieved a moderate remission, 7 (50%) an extensive remission and 1 (7%) a macroscopic complete remission.\(^9\) In addition, there was a general improvement in the physical and psychological conditions of the patients as early as 8–10 days after therapy initiation. However, while the rate of remission appeared to peak at about 2–3 weeks, there also was a rebound effect after 2–3 months of which Brünings was apparently very disappointed. He was neither able to explain the fast regression nor the late-onset regrowth, but his observations allowed him to rule out several theories. In particular, he mentioned that:

Die naheliegende, primitive Vorstellung, daß der Krebs zu seinem Wachstum „Zucker braucht“ und durch dessen Entziehung „ausgehungert werden kann“, erwies sich von vornherein als unzureichend.\(^4\), p. 122

(The obvious, primitive belief that cancer “needs glucose” for its growth and can be “starved” through its deprivation turned out as insufficient right from the beginning.)

He was also able to conclude that neither insulin nor the KD alone could be responsible for the observed effects — only their combination was sufficient for efficacy.

His second report “Klinische Anwendungen der diätetisch-hormonalen Krebsbeeinflussung (‘Entzuckerungsmethode’)”\(^10\) contained more practical details on the insulin dosing and diet. Brünings was

---

\(^{a}\) Sionon was the trade name for D-sorbitol.\(^11\)

\(^{b}\) This diet was estimated to contain <50 g carbohydrates and about 100 g fat and 200 g protein per day, although it seems that Brünings counted meat, sausages and eggs simply as “protein”.

\(^{c}\) Concerning beverages, it is interesting that Brünings wrote that no coffee or tea (which would be allowed) were available in Bavaria, but beer was. He cautioned against allowing beer which despite its “war dilution” with water still had too many carbohydrates.
eager to emphasize that even though the circumstances of the war made the provision of adequate foods difficult, one should not make compromises in the diet concerning its carbohydrate limitation and caloric adequacy — it would be better to limit the number of applications of the method. The second report contained another 30 cases of patients with various tumors that Brünings sampled from a larger collective of roughly 100 cases he had treated. The increased sample size had also increased the variance in the observed effects, with a larger percentage of tumors being refractory to the treatment. This, together with the rebound effect in those tumors that had responded, had apparently shifted Brünings’ focus from a potentially curative intent to the general management of clinical symptoms that — contrary to the response of the tumor — had shown improvements in every single patient within a few days. Therefore, Brünings concluded his reports with the following suggestions for using his de-glycation method:

1. Prior to surgery in order to improve post-surgery prognosis.
2. As a means to diagnose occult cancer based on the positive response of a patients’ general condition to the insulin and KD treatment — known as diagnosis ex juvante.
3. As palliative treatment of desperate cancer cases.
4. As a supportive treatment during radiotherapy or to make a patient eligible for radiotherapy in the first place.

The suggested treatment duration was 5–7 days for the applications 1 and 2 and up to 14 days for the applications 3 and 4. Finally, given the simplicity of the approach, Brünings closed with the proposal to adopt his method for general clinical usage and further research.

4. Discussion

The above summary shows that the idea to alter cancer patients’ metabolism through a very low carbohydrate (ketogenic) diet is much older than usually acknowledged. The aim of this review was to reveal, 80 years after his death, Brünings’ forgotten ingenious and original experiments to an international audience, especially given the recent renewed interest in metabolic therapies against cancer.

A list of relevant KD studies published in peer-reviewed journals is given in Table 1, and Fig. 3 shows their chronological appearance relating to Brünings’ publications. It took almost half a century after Brünings’ first publication until what is generally considered the first clinical study treating cancer patients with a KD was published (Fearon et al. 1988), and 70 years until the publication of a study with a comparable number of cancer patients (Schmidt et al. 2011). While Brünings’ diet was based on whole foods with an emphasis on vegetables and animal products, the diets that followed were apparently influenced by the application of KDs against epileptic seizures where such diets typically consisted “predominantly of heavy cream and butter fat” so that the “falsely vitamin/mineral supplements is essential to maintain nutrient adequacy in the ketogenic diet.” From the beginning, however, it was the goal to make the KDs for cancer patients more flexible by using ketogenic medium-chain triglycerides, and later allowing for a much larger percentage of whole foods and vegetables in so-called modified KDs. Together with other recent approaches such as the Paleolithic KD at least part of the research community therefore seems to appraise KDs not as per se unhealthy, but as an holistic and from an evolutionary perspective natural approach to dieting, much in line with Brünings’ experiences.

While Brünings’ experiments probably constitute the first clinical cohort study involving a detailed description of and focus on a KD, there exists one earlier report from 1927 by Fritz Silberstein and co-workers involving 21 non-operable cancer patients who were also treated with insulin injections (partly into the tumor) and a concurrent high caloric, very low carbohydrate diet. Again, beneficial effects of the insulin on the general condition of the patients were noted, and some cases responded with a local regression of their tumors. Silberstein et al. also compared blood glucose curves between the cancer patients and normal subjects and found not only elevated fasting glucose concentrations in the former, but also an abnormal postprandial elevation after a very low carbohydrate meal, even after prior insulin administration, similar to what would be expected in diabetics. Indeed, later studies have justified the belief that insulin resistance is a general hallmark of advanced cancer patients.

After Brünings had published his second report, there was a huge media coverage which motivated others to try reproducing his experiments. Among them were Schulte and Schütz in 1942, who were able to reproduce the short-term beneficial effects of insulin on the general condition of their patients, but not to induce macroscopic tumor regression or longer-term improvements, so that they discouraged clinicians from using the method. However, in their paper no details of the “carbohydrate-free” diet are given, and it appears possible that — given the difficulties of obtaining the appropriate foods during the war as mentioned by Brünings — their diet was not as strict as demanded by Brünings. In 1957 Joseph Weiss published his results of treating 90 incurable cancer patients with depot insulin and a calorie restricted low carbohydrate diet containing 124 g carbohydrates, 66 g fat and 56 g protein per day. He again reported pleiotropic effects such as pain reduction, euphoria and weight gain; 20 patients achieved stable disease and 9 patients tumor regression which lasted several months, in one case up to 4 years. This work was not directly comparable to Brünings’, as the carbohydrate content was considerably higher and would certainly not have induced ketosis.

It is not straightforward to interpret Brünings’ results and those of the replication studies in hindsight. The insulin administrations appear to have been responsible for short-term improvements in the general condition of the patients such as improved appetite, euphoria and weight gain. However, concerning pain reduction, at least in mice insulin does not appear to have analgesic effects. What further complicates the interpretation is that insulin in former times used to be contaminated with anti-cancer agents. As these are derived from whole animal and plant foods, their concentration would also be much higher in diets containing large amounts of vegetables and animal foods of marine and terrestrial origin.

As a supportive treatment during radiotherapy, Brünings’ diet was also treated with insulin injections (partly into the tumor) and a meal consisting of 500 ml whipped cream and 2 eggs. A typical breakfast meal consisted of 500 ml whipped cream and 2 eggs. A typical breakfast meal consisted of 500 ml whipped cream and 2 eggs.

---

References:

1. An anonymous reviewer mentioned the potential role of bioactive peptides as anti-cancer agents. As these are derived from whole animal and plant foods, their concentration would also be much higher in diets containing large amounts of vegetables and animal foods of marine and terrestrial origin.
2. Brünings mentioned in an appendix that he became aware of Silberstein’s work only after his experiments had been conducted.
3. This meal consisted of 500 ml whipped cream and 2 eggs. A typical breakfast described by Silberstein et al. would consist of 250 ml whipped cream and one egg.
4. I thank Dr. Michael Fink for pointing this out to me.

---
Table 1: Human studies on the ketogenic diet and cancer published since Brünings' initial experiments. The list should contain all articles listed in PubMed upon a search using the keyword “ketogenic”. Only studies published as peer-reviewed journal articles have been listed, while those mentioned solely in abstracts, comments or posters have been left out. In case of more than two study participants, their ages are given either as median (range) or mean ± standard deviation. CT: Chemotherapy; MCT: Medium chain triglycerides; N: Number of subjects on a KD; RCT: Radio-chemotherapy; RT: Radiotherapy.

| Study author(s) | Year | Study type | N | Age [years] | Tumor | Concurrent treatment | KD/study duration | Concurrent calorie restriction prescribed | Supplements/artificial foods prescribed |
|-----------------|------|------------|---|-------------|-------|----------------------|------------------|------------------------------------------|----------------------------------------|
| Brünings        | 1941 | Intra-cohort study | 14 | 56 (42–68) | Head and neck cancer | Insulin | = 12 weeks | No | No |
| Brünings        | 1942 | Intra-cohort study | 30 | 55 (38–70) | Various extra-cranial tumors | Insulin | 1.6 (0.3–3.0) weeks | No | No |
| Fearon et al.   | 1988 | Case study | 5 | 59 (52–73) | Stage IV extra-cranial tumors | None | 6 days control diet, then 7 days KD | No | Yes (MCT, arginine D-3-hydroxybutyrate, whey protein) |
| Nebeling et al. | 1995 | Case study | 2 | 3 and 8.5 | Grade III anaplastic/cerebellar astrocytoma | None/CT | 8 weeks | No | Yes (MCT, artificial flavorings, protein powder, multivitamins, vitamin D, multiminerals) |
| Chu-Shore et al. | 2010 | Case study | 5 | 8 (2–47) | Renal angiomyolipomas/subependymal giant cell tumors | None | 50 (3–66) months | No | Probably yes (hospital-prescribed KD with specified ratios) |
| Zuccoli et al.  | 2010 | Case study | 1 | 65 | Glioblastoma | RCT | 2 months | Yes | Yes (4:1 KetoCal®, MCT, multivitamins, multiminerals) |
| Schmidt et al.  | 2011 | Intra-cohort study | 16 | 50 (30–65) | Stage IV extra-cranial tumors | None | 12 weeks | No | Yes (yoghurt drinks including MCT, vegetable oils and milk protein) |
| Fine et al.     | 2012 | Intra-cohort study (registered) | 10 | 62 (52–73) | Stage IV extra-cranial tumors | None | 4 weeks | No | No |
| Schroeder et al.| 2013 | Case study | 11 | 67 | Stage II-IV head and neck cancer | None/CT | 4 days | No | No |
| Champ et al.    | 2014 | Case study | 6 | 59 (34–62) | Glioblastoma | RCT | 32 (13–52) weeks | No | Yes (commercial yoghurt drinks and plant oils) |
| Rieger et al.   | 2014 | Intra-cohort study (registered) | 20 | 57 (30–72) | Glioblastoma | None | 5 weeks | No | No |
| Branca et al.   | 2015 | Case study | 1 | 66 | Grade 3 breast cancer | Vitamin D3 (10000 IU every other day) | 3 weeks | No | No |
| Schwartz et al. | 2015 | Case study (registered) | 2 | 55 and 52 | Glioblastoma | None | 4 and 12 weeks | Yes | Yes (KetoCal®) |
| Strowd et al.   | 2015 | Case study | 8 | 41 ± 10 | Low and high grade glioma | None/CT | 2-24 (mean 13.2) months | No | Yes (multivitamins, vitamin D, calcium) |
| Jansen & Walach | 2016 | Case study | 13 | 68 | Various curative (6)/palliative (6)/end stage (1) tumors | Mixed | = 1 year | No | Yes (commercial artificial foods) |
| Klement &Sweeteney | 2016 | Case study | 6 | 54 (40–74) | Stage IV extra-cranial tumors | RCT (5), CT (1) | 6.6 (4.6–10.4) weeks | No | No |
| Schwalb et al.  | 2016 | Case study | 6 | 64 (55–73) | Stage IV extra-cranial | Complementary immunotherapeutic treatment | 4.5 (1–34) weeks | No | No |
| Tan-Shalaby et al. | 2016 | Intra-cohort study (registered) | 17 | 65 (42–87) | Stage IV various tumors | None | 16 weeks (with extension up to 131 weeks in 3 patients) | No | No |
| Tóth & Clemens | 2016 | Case study | 1 | 60 | Grade 2 myoepithelial soft palate tumor | None | 20 months | No | No |
| Artzi et al.    | 2017 | Controlled case study (registered) | 5 | 42 (37–69) | Low and high grade glioma | None (1), bevacizumab (4) | 8 (2–31) months | No | Yes (4:1 KetoCal®) |
| lyikesici et al. | 2017 | Case study | 1 | 29 | | | 1 year | No | No |
patients. Still in 1985, substantial amounts of glucagon were found in insulin from three commercial manufacturers.

There is also the possibility that the diet itself mediated the pain reduction described by Brünings. Indeed, reduction in glycolytic metabolism and KDs are known to have anti-inflammatory and analgesic properties. Brünings' observations concerning the superiority of a very strict carbohydrate restricted diet over milder versions provide some evidence that the diet has indeed played an important role. Concerning Brünings' descriptions of the influence on the tumor, two possible interpretations arise:

First, KDs by themselves have been shown to impair glycolytic tumor metabolism in humans, as demonstrated specifically in head and neck cancer patients in which tumor lactate levels dropped significantly after only a few days on the diet. As discussed elsewhere this could be indicative of impaired growth and increased susceptibility to cytotoxic treatments. One case study with 20 months follow-up even reports the halted progression of a soft palate tumor through initiation of an animal fat and meat–based Paleolithic KD with no further therapy. An indication of the mechanisms at work can be derived from in vitro experiments showing that both ketone bodies and free fatty acids are able to impair tumor cell glycolysis. This is problematic for these cells because they frequently lack metabolic flexibility. On the one hand, many studies have found that tumor cells display decreased expression of ketogenic enzymes although more recently a few counterexamples were discovered. On the other hand, a large part of a solid tumor would consist of hypoxic areas in which oxygen concentrations are too low to efficiently metabolize ketone bodies and fatty acids, even if the necessary enzymes would be expressed. Furthermore, a hallmark of tumor cells appears to be dysfunctional mitochondria which generate large amounts of reactive oxygen and nitrogen species without effectively generating ATP. A ketone- and fatty acid-mediated inhibition of glucose-6-phosphate in these cells induces a reduction of NADPH (required for regeneration of reduced glutathione) and lactate (a free radical scavenger) and therefore an increase in oxidative stress (reviewed in). Accordingly, mouse studies have shown that the combination of KDs with pro-oxidative therapies such as chemotherapies or hyperbaric oxygen works better than either of these treatments on its own, which emphasizes their role as complementary cancer treatments. Lastly, Martuscello et al. showed that KDs downregulated the mTOR (mammalian target of rapamycin) pathway in xenografted tumors derived from glioblastoma cells. Collectively these examples show that KDs can exert pleiotropic effects on tumor cell metabolism and signaling pathways, providing some justification for their supportive application.

A second interpretation that a very strict low carbohydrate diet was found necessary by Brünings is that a KD would minimally compromise, and even support, hypoglycemic treatments. The switch to ketone body and fatty acid metabolism (known as ketoadaptation) is able to protect against signs of hypoglycemia. This was impressively demonstrated when Drenick et al. infused insulin into keto-adapted obese subjects, resulting in serum glucose levels as low as 9 mg/dl without symptoms. It is therefore possible that Brünings' diet contributed to improved tolerance of hypoglycemia, and that hypoglycemia in turn was the principle cause of the regression of tumors observed by Brünings and later by Joseph Weiss.

Proof-of-principle that hypoglycemia itself can induce tumor regression was provided in 1962 by Koroljow, who reported the achievement of a one-year complete remission in two metastasized cancer patients who were put into an insulin coma (lowest
blood glucose reading 22 mg/dl.1 A multitude of recent in vitro experiments have shown that in contrast to normal cells, many tumor cells are very vulnerable to glucose withdrawal by mechanisms involving both energy stress96,97 and oxidative stress.101–105 Again, this confirms the metabolic inflexibility of tumor cells arising from their dysfunctional mitochondria as described above.

Today, insulin administration is still in use in some centers with the aim of inducing hypoglycemia prior to administration of chemotherapy in what is referred to as “insulin potentiation therapy” or “metabolically supported chemotherapy”. In a recently published combination of this concept with a KD, hyperthermia and hyperbaric oxygen, a metastasized breast cancer patient achieved a complete radiological and pathological response.60 Insulin administration in these applications is usually limited to pulsed doses since it is now established that insulin is also a growth factor for many tumor cells106,107 Another drawback is that insulin also inhibits ketogenesis, reducing the possibility of utilizing ketone bodies as an alternative energy source for the brain, and exploiting their putative anti-tumor effects. Alternative proposals for hypoglycemic treatment of cancer patients therefore avoid using insulin; they include methods such as removal of glucose (and glutamine) through dialysis108 or application of gluconeogenesis inhibitors in patients who have been keto-adapted.109,110

The examples above highlight the renewed interest in metabolic therapies of cancer, including KD interventions. My hope is that the discussion of Brünings’ scientific reasoning and experimental data will further strengthen this interest. The significance of altered tumor and patient metabolism for the treatment of cancer as well as the supportive role of very low carbohydrate diets were already recognized and realized many decades ago by a remarkable investigator ahead of his time.

Compliance with ethical standards

The author declares that he has no potential conflicts of interest. The reader should be aware that many of the historical articles discussed in this review were performed prior to the Declaration of Helsinki and therefore that the ethical standards of today do not apply to these experiments.

Data statement

All historical papers mentioned in this article are available from the author upon request.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. I am grateful to Dr. Michael K. Fink who revealed to me his collected copies of Brünings’ work. I also thank Dr. Eugene J. Fine for thoroughly reading and spell-checking this work. Finally, I would like to thank Dr. Ciro Isidoro and three anonymous reviewers for constructive comments that helped to improve an earlier version of this paper.

References

1. Seyfried TN, Flores RE, Pof AM, D’Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515–527. https://doi.org/10.1093/carcin/bgp480.
2. Martinez-Outschoorn UE, Petois-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(2).
3. https://doi.org/10.1038/nrcelinonc.2017.113–113.
4. Winter SF, Loebel F, Dietrich J. Role of ketogenic metabolic therapy in malignant glioma: a systematic review. Crit Rev Oncol Hematol. 2017;112:41–58. https://doi.org/10.1016/j.critrevonc.2017.02.016.
5. Hamaguchi R, Wada H. Paradigm shift in cancer treatment: cancer treatment as a metabolic disease – fusion of Eastern and Western medicine. J Tradit Chinese Med Sci. 2018. https://doi.org/10.1016/j.jcems.2017.12.001.
6. Miller VJ, Villanueva FA, Volek JS. Nutritional ketosis and mitochondrial: potential implications for mitochondrial function and human health. J Nutr Metab. 2018;2018:5157645.
7. Bartmann C, Raman S, Fitzer J, et al. Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation. Canc Metabol. 2018:6:8.
8. Schwartz K, Chang HT, Nikolai M, et al. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Canc Metabol. 2015;3:3. https://doi.org/10.1186/s40170-015-0129-1.
9. Otto C, Kaeumerle U, Ilbert B, et al. Growth of human gastric cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. BMC Canc Metabol. 2008;8(1):122. https://doi.org/10.1186/1471-2407-8-122.
10. Hao G-W, Chen Y-S, He D-M, Wang H-Y, Wu G-H, Zhang B. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. Asian Pac J Cancer Prev. 2015;16(5):2061–2068.
11. Fine EJ, Segal-isaacson CJ, Feinman RD, et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition. 2012;28(10):1028–1035. https://doi.org/10.1016/j.nut.2012.05.001.
12. Rieger J, Bähr O, Maurer GD, et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014;44(6):1843–1852. https://doi.org/10.3892/ijo.2014.2382.
13. Tan-Shalaby JL, Carrick J, Edinger K, et al. Modified Atkins diet in advanced malignancies – final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr Metab. 2016;13:52. https://doi.org/10.1186/s12986-016-0113-y.
14. Zahra A, Fath MA, Opal E, et al. Consuming a ketogenic diet while receiving...
radiation and chemotherapy for locally advanced lung cancer and pancreatic cancer: the University of Iowa experience of two phase 1 clinical trials. Radiat Oncol. 2017;12:754. https://doi.org/10.1186/s13058-017-0968-2.

14. Santos JG, Da Cruz WMS, Schonthal AH, et al. Efficacy of a ketogenic diet with concomitant intranasal perillyl alcohol as a novel strategy for the therapy of recurrent glioblastoma. Oncol Lett. 2018;15(1):1263–1270. https://doi.org/10.3892/ol.2017.7369.

15. Martin-Gill KJ, Marson AG, Tudur Smith C, Jenkinson MD. Ketogenic diets for the treatment of primary progressive brain cancer: challenges and lessons learned. Front Nutr. 2018;5.11. https://doi.org/10.3389/fnut.2018.00011.

16. Freedland SJ, Allen J, Armstrong AJ, et al. Interim analysis of a prospective randomized trial of dietary carbohydrate restriction for men with a rising PSA after failed primary treatment: Carbohydrate and Prostate Study 2 (CAPS2). J Urol. 2015;193(6). https://doi.org/10.1016/j.juro.2015.03.016.

17. Schwartz KA, Noel M, Nikolai M, Chang HT. Investigating the ketogenic diet as a potential therapeutic approach for patients with advanced cancer: a randomised pilot study. Pilot Feasibility Stud. 2017;3:67. https://doi.org/10.1186/s40814-017-0204-x.

18. Klement RJ. Benefits of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med Oncol. 2017;34:132. https://doi.org/10.1007/s12032-017-0951-5.

19. Weber DD, Aminazdeh-Gohari S, Kummer J, et al. Effect of a ketogenic diet in patients with advanced cancer: a randomized controlled study. Wien Klin Wochenschr. 2011;123(11):562–566. https://doi.org/10.1007/s00508-011-0455-3.

20. Condon HA, Brünings W. Brünings' bronchoscopic mask. Anesth Analg. 1987;62:996–997. https://doi.org/10.1213/00000535-198706000-00022.

21. Brünings W. Brünings' ketogenic diet in adults with glioblastoma: an evaluation of feasibility and efficiency. J Neurosurg. 2018;15(1):126–131. https://doi.org/10.3171/2017.6.JNS161362.

22. Brünings W. Brünings' ketogenic diet in adults with glioblastoma: a 24-months follow-up. J Neurol Oncol. 2018;165. https://doi.org/10.1007/s11763-018-3260-2.

23. Brünings W. Brünings’ bromophosphoric acid. Anesthesia. 1978;174:707–715. https://doi.org/10.1016/0030-4902(78)90077-9.

24. Brünings W. Contributions of ketoacidosis and ketosis to the treatment of cancer. Münchener Med Wochenschr. 1941;88(5):117–123.

25. Brünings W. Brünings' carbohydrate restriction: evidence and confounding factors in the use of ketosis for cancer therapy. J Clin Oncol. 2018;36:316–326. https://link.springer.com/article/10.1200/JCO.2017.70.1041.

26. Brünings W. Brünings' carbohydrate restriction: evidence and confounding factors in the use of ketosis for cancer therapy. J Clin Oncol. 2018;36:316–326. https://link.springer.com/article/10.1200/JCO.2017.70.1041.

27. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

28. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

29. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

30. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

31. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

32. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

33. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

34. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

35. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

36. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

37. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

38. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.

39. Brünings W. Brünings’ ketogenic diet: a novel approach for cancer therapy. Jl Nutr Metab. 2010;7:33. https://doi.org/10.1155/2010/750939.
200
R.J. Klement / Journal of Traditional and Complementary Medicine 9 (2019) 192–200

66. Silverstein F, Freud J, Révész T, Versuèie, inoperable Carcinome mit Insulin zu behandeln. Z Gesamte Exp Med. 1927;55(1):76–102.

67. Bishop JS, Marks PA. Studies on carbohydrate metabolism in patients with neoplastic disease. II. Response to insulin administration. J Clin Invest. 1959;38(4):668–67.

68. Lundholm K, Hoim G, Scherstén T. Insulin resistance in patients with cancer. Canc Res. 1978;38(12):4665–4670.

69. Perment J, Adrian TE, Jacobsson P, Jorfelt L, Fruin AB, Larsson J. Is profound peripheral insulin resistance in patients with pancreatic cancer caused by a tumor-associated factor? Am J Surg. 1993;165(1):51–66. https://doi.org/10.1016/S0002-9610(89)90402-2.

70. Yoshikawa T, Noguchi Y, Matsumoto A. Effect of tumor removal and body weight loss on insulin resistance in patients with cancer. Surgery. 1994;116(1):62–66. http://www.ncbi.nlm.nih.gov/pubmed/8023270.

71. Yoshikawa T, Noguchi Y, Doi C, Makino T, Okamoto T, Matsumoto A. Insulin resistance was connected with the alterations of substrate utilization in patients with cancer. Canc Lett. 1999;141(1–2):93–98. http://www.ncbi.nlm.nih.gov/pubmed/10454248.

72. Schulte C, Schütz H. Insulin in der Krebsbehandlung. Münchener Med Wochenschr. 1942;89(29):648–650.

73. Weiss J. Über Erfahrungen mit Insulin und kohlenhydratreduzierender Diät bei inkurativen Krebskrankheiten. Med Klin. 1957;52(27):1190–1191.

74. Akamns MA, Nwabudike ML, Iyssani OR. Analgesic, learning and memory and anxiolytic effects of insulin in mice. Behav Brain Res. 2009;196(2):237–241. https://doi.org/10.1016/j.bbr.2008.09.008.

75. Adrians TE, Bloom SR. The continuing hormonal contamination of insulin. Prac Diabetes Int. 1985;26:34–36. http://www.ncbi.nlm.nih.gov/pubmed/19602061.

76. Masino SA, Ruskin DN. Ketogenic diets and pain. Clin Res. 2013;28(8):993–1001. https://doi.org/10.1088/0002-9610/sodd/38/12/4670.

77. Seyfried TN, Yu G, Maroon JC, D’Agosto DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab. 2017;14:19. https://doi.org/10.1186/s12986-017-0178-2.

78. Fine EJ, Miller A, Quadros EV, Sequeira JM, Feinman RD. Acetoacetate reduces growth and ATP concentration in cancer cells which over-express uncoupling protein 2. Canc Cell Int. 2009;9:14. https://doi.org/10.1475/2867-9–14.

79. Shukla SK, Gebregiorgis T, Purohit V, et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Canc Metabol. 2014;2:18. https://doi.org/10.1186/2049-3002-2-18.

80. Marchut E, Gumieniak M, Kryczyńska M, Kryczyński M. Combination of metronomic cyclophosphamide and dietary ketogenic diet prolong survival in mice with systemic metastatic cancer. Pls One. 2013;8(6):e65522. https://doi.org/10.1371/journal.pone.0065522.

81. Martuscello RT, Vedam-Mai V, McCarthy DJ, et al. A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin Canc Res. 2016;22(10):2482–2495. https://doi.org/10.1158/1078-0432.CCR-15-0916.

82. Drenick EJ, Alvarez LC, Tamasi GC, Brickman AS. Resistance to symptomatic insulin reactions after fasting. J Clin Invest. 1972;51(10):2757–2762. https://doi.org/10.1172/JCI107095.2000.

83. Korolow S. Two cases of malignant tumors with metastases apparently treated successfully with hypoglycemic coma. Psychiatr Q. 1962;36(1–4):261–270. https://doi.org/10.1002/pdi.1960020611.

84. Demetrapibopulos GE, Lim B, Amos H. Rapid loss of ATP by tumor cells deprived of glucose: contrast to normal cells. Biochem Biophys Res Commun. 1978;83(3):787–794. https://doi.org/10.1016/0006-291X(78)90583-1.

85. Prieto A, Tan L, Wahl H, et al. Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecol Oncol. 2011;122(2):389–395. https://doi.org/10.1016/j.ygyno.2011.04.024.

86. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ. Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci. 2000;899:349–362.

87. Ahmad IM, Akyin-Burns N, Sim JE, et al. Mitochondrial O2- and H2O2 mediate glucose deprivation-induced stress in human cancer cells. J Biol Chem. 2005;280(6):4254–4263. https://doi.org/10.1074/jbc.M410622200.

88. Jellina N, Yang X, Stokoe D, Evan GI, Danisen TB, Haas-Kogan DA. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Canc Res. 2006;4(5):319–330. https://doi.org/10.1158/1541-7786.MCR-05-0061.

89. Akyin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009;418:29–37. https://doi.org/10.1042/BJ20091258.

90. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol. 2012;8:385. https://doi.org/10.1038/msb.2012.20.

91. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Canc. 2012;12(3):159–169.

92. Klement RJ, Fink MK. Dietary and pharmacological modulation of the insulin/GF-1 system: exploiting the current therapeutic repertoire against cancer. Oncogenesis. 2016;5:e193. https://doi.org/10.1089/onsc.2016.2.

93. Mathews EH, Liebenberg L. Cancer control via glucose and glutamine deprivation. J Intern Med. 2013;274(5):452. https://doi.org/10.1111/j.1365-2796.2013.02937.x.

94. Olek, A., Klement, R.J., Robinet, J., Mehta, A., R.Y., Blom, S. & Pan, J. The complete control of glucose level utilizing the composition of ketogenic diet with the glucoseconesich inhibitor, the anti-diabetic drug metformin, as a potential anti-cancer therapy. Med Hypotheses. 2011;77(2):171–173. https://doi.org/10.1016/j.mehy.2011.04.001.

95. Kapeler N, Vorsanger M. Starvation of cancer via induced ketogenesis and severe hypoglycemia. Med Hypotheses. 2015;84(3):162–168. https://doi.org/10.1016/j.mehy.2014.11.002.

96. Payne WW, Lawrence RD, McCanne RA. Sorbitol (SILON) for diabetics. Lancet. 1933;2:753(3):1257–1258.

97. Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol. 2017;174(11):1378–1394. https://doi.org/10.1111/bph.13608.