Abstract—Replacing a portion of current light duty vehicles (LDV) with plug-in hybrid electric vehicles (PHEVs) offers the possibility to reduce the dependence on petroleum fuels together with environmental and economic benefits. The charging activity of PHEVs will certainly introduce new load to the power grid. In the framework of the development of a smarter grid, the primary focus of the present study is to propose a model for the electrical daily demand in presence of PHEVs charging. Expected PHEV demand is modeled by the PHEV charging time and the starting time of charge according to real world data. A normal distribution for starting time of charge is assumed. Several distributions for charging time are considered: uniform distribution, Gaussian with positive support, Rician distribution and a non-uniform distribution coming from driving patterns in real-world data. We generate daily demand profiles by using real-world residential profiles throughout 2014 in the presence of different expected PHEV demand models. Support vector machines (SVMs), a set of supervised machine learning models, are employed in order to find the best model to fit the data. SVMs with radial basis function (RBF) and polynomial kernels were tested. Model performances are evaluated by means of mean squared error (MSE) and mean absolute percentage error (MAPE). Best results are obtained with RBF kernel: maximum (worst) values for MSE and MAPE were about 2.89 10^{-8} and 0.023, respectively.

Keywords—Energy demand, plug-in hybrid electric vehicle (PHEV), smart grids, support vector machines.

I. INTRODUCTION

The daily residential power demand profile has a high peak-to-average ratio (PAR) which significantly decreases the power grids’ efficiency and causes huge costs for fortifying the power grid’s infrastructure, i.e., increasing the power generation capacity, transmission lines, and distribution sector of the grid. This enormous extra investment is just to serve the power demand of the users throughout few peak demand periods. Hence, addressing this problem has motivated considerable research on techniques that can employ the current power grid more efficiently so that more consumers can be served without developing new costly infrastructure [1, 2].
assumed. Several distributions for charging time that could represent real-world vehicles’ usage are considered: uniform distribution, Gaussian with positive support, Rician distribution and a non-uniform distribution which shows vehicles’ mileage in real-world more accurately. The primary focus of this work is providing a unique model which is able to deal with several PHEVs charging scenarios including when no PHEV requires charging. A supervised machine learning algorithm is employed in order to find the best model to fit the data. In particular, we aim to find a single set of model parameters able to simultaneously cover all charging and weather scenarios.

II. REGRESSION VIA SUPERVISED LEARNING

Supervised learning is the machine learning task of inferring a function from labeled training examples [9]. In machine learning, each example is a pair consisting of an input vector and a desired (target) output value (also called the supervisory vector). Support Vector Machines (SVMs) are a set of very effective supervised learning methods based on statistical learning theory originally developed by Vapnik [9]. The basic idea is to map the original input data using a nonlinear kernel function into a high dimensional feature space and determine an optimal separating hyperplane. SVMs are used for classification (SVC), regression (SVR) and outliers’ detection [10].

In a classification problem, the aim is to find an optimal hyperplane that separates sample data into two classes. In a regression problem the normal to the hyperplane defines a function for which the target and the estimated values are as close as possible. In this study we used SVR in order to estimate a function based on a given training data set. Considering a set of data points \(D = \{(x_1, t_1), \ldots, (x_N, t_N)\} \) where \(x_i \in R^p \) represents the input vector, \(t_i \in R \) is the corresponding target and \(N \) is the size of the data set, the general form of \(\nu \)-SVR [11] estimating function is:

\[
f(x) = w^T \phi(x) + b
\]

where \(\phi(x) \) is the nonlinear map to the feature space and coefficients \(w \) and \(b \) are obtained by solving the following minimization problem:

\[
\min \left\{ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N (\nu \epsilon + \max(0, t_i - \nu \epsilon - y_i) + \max(0, -\nu \epsilon - y_i)) \right\}
\]

subject to

\[
(w^T \phi(x) + b) - t_i \leq \epsilon + \xi_i,
\]

\[
t_i - (w^T \phi(x) + b) \leq \epsilon + \xi_i^*,
\]

\[
\xi_i, \xi_i^* \geq 0, i = 1, \ldots, N, C > 0, \epsilon \geq 0
\]

where \(C \) is the regularization parameter, \(\xi_i \) and \(\xi_i^* \) are slack variables, \(0 \leq \nu \leq 1 \), and the \(\epsilon \)-insensitive loss function means that no loss is assumed if \(f(x) \) is in the \([t_i \pm \epsilon] \) range. \(\nu \) parameter is used to control the number of support vectors. It represents an upper bound on the fraction of training errors and a lower bound of the fraction of support vectors.

Nonlinear \(\nu \)-SVR has also a dual formulation given by [12]:

\[
\min \frac{1}{2} (\alpha - \alpha^*)^T Q (\alpha - \alpha^*) + t^T (\alpha - \alpha^*)
\]

subject to

\[
e^T (\alpha - \alpha^*) = 0,
\]

\[
e^T (\alpha + \alpha^*) \leq CV,
\]

where \(Q(x_i, x_j) = \phi(x_i)^T \phi(x_j) \) is the kernel, \(e \) is the vector with all components equal to 1 and \(\alpha_i \) and \(\alpha_i^* \) are the Lagrange multipliers. There are number of kernels that can be used in

Fig. 1. Averaged electrical load measured at a residential household during four months in 2014.

Fig. 2: Expected daily power demand of a PHEV with uniform, non-uniform, Gaussian with positive support and Rician distributions for the required charging time [13].

\[
0 \leq \alpha_i, \alpha_i^* \leq C/N, i = 1, \ldots, N
\]
SVM models. These include linear, polynomial, Gaussian radial basis function (RBF) and sigmoid. RBF kernel is defined as:

\[Q(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2), \quad \gamma > 0 \]

(4)

where \(\gamma \) represents the inverse of the radius of influence of samples selected by the model as support vectors [14]. For the present study we tested RBF and polynomial kernels, the most popular choices of kernel types used in SVMs [15].

III. EXPECTED PHEV DEMAND MODEL

In this section the input to the SVMs model is presented. Electrical daily demand considered for this work consists of real measured data from the huge Electrical Reliability Council of Texas (ERCOT) database [16], in which power loads from clusters of households were recorded for nearly 200 different locations.

In the ERCOT database, 15-minute kWh values related to three different profile types (residential, business and non-metered) and eight weather zones are available. Besides dependence on profile type and weather zone, power demand changes depending on the time scale considered: the hour within a given day, business or non-working day, month and season [8]. ERCOT data measured at a cluster of residential households located in north Texas during four months in 2014 (January, April, July and October) were considered in order to cover all weather scenarios [17].

As an example, in Fig. 1 is shown the electrical load averaged over all 15-minute intervals for the above-mentioned months. It is evident from Fig. 1 the dependence of electrical demand on the season and the hour within a day. As in [18], we modeled a case in which a very low percentage of the light-duty fleet in ERCOT is PHEVs.

Without loss of generality we then assumed that the total daily demand \(D_T \) in a smart grid under a high penetration of PHEVs was the sum of real-world data \(R_d \) and expected PHEVs demand \(E_d \):

\[D_T = R_d + E_d \]

(5)

where \(E_d = E(C_d(t)) \) and \(C_d(t) \) is the PHEVs’ charging demand.

In order to obtain the expected power demand from PHEVs, commuting data collection by surveying can be carried out. However, in [12], it has been proven that by assigning certain distributions to the required information such as the arrival times at the households and the required charging times for respective PHEVs can provide a closed-form expression to show the uncoordinated charging demand of a PHEV mathematically. In fact, PHEVs’ power demand depends on their mileage as well as their respective arrival time. Hence, we used the distributions presented in [13] and [19]. A Gaussian distribution in modulo 24 hours with \(\mu = 19 \) and \(\sigma^2 = 10 \) has been assigned to the arrival time \(T_a \). A uniform distribution over the interval [1,11] and a non-uniform distribution coming from driving patterns based on National Household Travel Survey (NHTS) data [20], a Gaussian with positive support and a Rician distribution has been considered for the required charging time \(T_c \). We set the parameters of the distributions such that they have the same mean and variance. The authors showed that these distributions match the practical commuting data.

The curves in Fig. 2 show the expected daily uncoordinated demand of a PHEV when the charging demand \(C_d(t) \) is defined as follows [13]:

\[C_d(t) = \begin{cases} p, & T_a \leq t < T_a + T_c \\ 0, & \text{otherwise} \end{cases} \]

(6)

where \(p \) is the outlet power delivery assumed to be constant.

According to Fig. 2, we can observe that the expected daily demand from Rician and Gaussian with positive support distributions tends to the same curve as the one obtained from uniform distribution. We should notice that this happens when the first and second order statistics of these two distributions are adjusted to be the same. Thus, we only considered uniform and non-uniform distribution for \(T_c \) in the present work. We then built our dataset by generating quarter-hourly values of \(D_T \) for each day in considered months and for three PHEVs’ demand scenarios: no PHEVs, uniform and non-uniform distribution for \(T_c \).

Effectiveness of load demand fit via SVMs has been verified by minimizing the mean squared error (MSE) between the model \(f(x_i) \) and the target datum \(t_i \):
\[MSE = \frac{1}{N} \sum_{i=1}^{N} \left(t_i - f(x_i) \right)^2 \]

where \(N \) is the number of 15-minute intervals in chosen data set. For all performed experiments, we quantified the prediction performance by means of MSE and mean absolute percentage error (MAPE), defined as:

\[MAPE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{t_i - f(t_i)}{t_i} \right| \]

MAPE is regarded as a better error measurement than MSE because it does not accentuate large errors [21]. Model and kernel parameters were then optimized searching for the best MSE and MAPE values across generated dataset.

IV. MODEL PERFORMANCES

In the present section the performances of the proposed \(\nu \)-SVR model are reported. For the practical use of SVR, authors in [22] showed that SVMs with normalized input data into the \([0, 1]\) range outperform those with unscaled input data. Therefore, the SVR model was fed with normalized data, and then the model outputs were returned to their original scale. The load demand model has been optimized by minimizing both the MSE and MAPE for all four months and for all charging scenarios.

In this way we looked for a single set of model and kernel parameters that was suitable for the whole year, regardless of the PHEVs charging demand. \(\nu \)-SVR model with RBF kernel outperformed polynomial kernels. This was not a surprising result, since it is known [23] that when the dynamics of the signal under investigation are nonlinear, SVR with RBF returns more satisfactory results than other kernels such as linear or polynomial kernel.

Table I shows the results obtained by using \(\nu \)-SVR model with ERCOT data measured during whole year 2014 in presence of three different expected PHEVs charging demand scenarios: no PHEV charging demand, uniform and non-uniform distribution for required charging time. A value of \(p = 2 \) kW was used for the outlet power delivery.

PHEVs charging time distribution	Month	MSE	MAPE
No demand	January	2.887 10^{-3}	0.0195
	April	0.288 10^{-3}	0.0127
	July	1.29 10^{-3}	0.0187
	October	0.193 10^{-3}	0.0107
Uniform	January	0.177 10^{-3}	0.0143
	April	0.1016 10^{-3}	0.0174
	July	0.763 10^{-3}	0.0229
	October	0.721 10^{-3}	0.0153
Non-uniform	January	2.406 10^{-3}	0.0155
	April	0.111 10^{-3}	0.0213
	July	2.082 10^{-3}	0.0202
	October	0.56 10^{-3}	0.0169

The following settings for model and kernel parameters have been found to be optimal for the SVM algorithm: \(C=1000, \nu=0.5 \) and \(\gamma=10 \). Such values have been obtained performing a coarse/fine grid search in the parameters space [8]. The proposed method required a processing time of about 13 minutes on a commercial PC platform (2 GB RAM, 3.4 GHz CPU). Results in Table I represent the average MSE and MAPE values over the considered period given a PHEVs charging scenario.

We can summarize model performances by taking the maximum (worst) values of MSE and MAPE over all charging and weather scenarios and obtaining 2.887 10^{-3} and 0.0229, respectively. Maximum MSE and MAPE values are observed during additional electric demand for heaters on winter (with no PHEVs charging demand) and for air conditioners on summer (with PHEVs charging time uniformly distributed).

It can also be seen from Fig. 3 where \(D_p \), evaluated with electrical load as in Fig. 1 and assuming three different PHEVs’ demand scenarios, is reported for January and July 2014. In [8], the modeling approach proposed for this work was used for one-day ahead demand forecasting based on \(n_d \) days as training data; in that case main objective was to predict the load demand by minimizing \(n_d \) and PHEVs penetration was not considered: MAPE values ranged from 0.81 to 1.03 depending on the season. Further work is then needed to employ SVMs for short-term load demand forecasting in presence of PHEVs penetration. This stems from the fact that MAPE = 0.9%, obtained using Wavelet Transformation Error Correction-ANN, is reported in [24] and reviewed in [7] as the best result for short-term load demand forecasting. By comparing results in [24] and [8], we can observe that, although MAPE values are within the same range of forecast error, main advantages of using SVMs rather than ANNs are that the computational complexity does not depend on the dimensionality of the input and the provided solution is global and unique [25].

V. CONCLUSIONS

In this study, a method based on supervised machine learning was proposed in the Smart Grid framework in order to model the electrical daily demand in presence of PHEVs charging. The effectiveness of the model was tested using real-world data from a cluster of residential households and evaluated by means of MSE and MAPE. The total daily demand was assumed as the sum of real demand data and expected power demand from PHEVs. The latter was modeled by assigning several probability distributions to the starting times of charging and the required charging times. Main advantages of using the proposed method rather than other artificial intelligence algorithms such as neural networks are that the computational complexity does not depend on the dimensionality of the input, model size is automatically selected and the provided solution is global and unique.

REFERENCES

[1] C. Wu, H. Akhavan-Hejazi, H. Mohsenian-Rad, and J. Huang, “PEV-based PQ control in line distribution networks with high requirement for reactive power compensation,” In IEEE Innovative Smart Grid Technologies Conference (ISGT), IEEE PES, pp. 1–5, 2014.
[21] P. S. Yu, S. T. Chen, and I. F. Chang, “Real-Time Flood Stage Forecasting Using Support Vector Regression,” In Practical Hydroinformatics: Computational Intelligence and Technological Developments in Water Applications, Water Science and Technology Library, Springer, Berlin Heidelberg, vol. 68, pp. 359–373, 2008.

[22] N. A. Sakhanenko, G. F. Luger, H. E. Makaruk, J. B. Aubrey, and D. B. Holtkamp, “Shock physics data reconstruction using support vector regression,” Int. J. of Modern Physics C, vol. 17, no. 9, pp. 1313–1325, 2006.

[23] H. T. Yang, J. T. Liao and C. I. Lin, “A load forecasting method for HEMS applications,” in PowerTech (POWERTECH), 2013 IEEE, pp. 1–6, 2013.

[24] D. L. Olson, and D. Delen, “Advanced Data Mining Techniques,” Berlin Heidelberg: Springer-Verlag, 2008.

[25] E. V. Holtkamp, “Shock physics data reconstruction using support vector regression,” Int. J. of Modern Physics C, vol. 17, no. 9, pp. 1313–1325, 2006.

[26] V. Vapnik, “Statistical Learning Theory”, Wiley, New York, 1998.

[27] C. C. Chang, and C. J. Lin, “Training ν-Support Vector Regression: Theory and Algorithms,” Neural Computation, vol. 14, no. 8, pp. 1959–1977, 2002.

[28] M. Pellegrini, “Short-term load demand forecasting in Smart Grids using support vector regression,” Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), 2015 IEEE 1st International Forum on, Turin (Italy), pp. 264-268, 2015.

[29] F. Rassaei, W S Soh, and K C Chua, “A Statistical modelling and analysis of residential electric vehicles' charging demand in smart grids,” Innovative Smart Grid Technologies Conference (ISGT), 2015 IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 492–499, 2012.

[30] A.R. Khana, A. Mahmooda, A. Safdara, Z.A. Khanb, N. A. Khana, “Load forecasting, dynamic pricing and DSM in smart grid: A review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1311–1322, 2016.

[31] G. Li, and X.P. Zhang, “Modeling of Plug-in Hybrid Electric Vehicle Charging Demand in Probabilistic Power Flow Calculations,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 492–499, 2012.

[32] A.R. Khana, A. Mahmooda, A. Safdara, A. Khan, “Load forecasting, dynamic pricing and DSM in smart grid: A review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1311–1322, 2016.

[33] D. Zhang, S. Li, M. Sun, and Z. O'Neill, “An Optimal and Learning-Based Demand Response and Home Energy Management System,” accepted for publication on IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2016.2552169, 2016.

[34] L. Ahmadi, E. Croiset, A. Elkamel, P.L. Douglas, W. Unbangluang, and R. Sioshansi, “Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions,” Operations Research, vol. 60, no. 2, pp. 1–11, 2012.

[35] F. Rassaei, W S Soh, and K C Chua, “Demand response for residential electric vehicles with random usage patterns in smart grids,” Sustainable Energy, IEEE Transactions on 6.4 (2015): 1367-1376.

[36] R. Sioshansi, “Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions,” Operations Research, vol. 60, no. 2, pp. 1–11, 2012.