Endocarditis due to *Rhodotorula mucilaginosa* in a kidney transplanted patient: case report and review of medical literature

Andrea Maria Cabral,¹ Suzimari da Siveira Rioja,¹ Fabio Brito-Santos,²,³ Juliana Ribeiro Peres da Silva,⁴ Maria Luíza MacDowell,⁵ Marcia S. C. Melhem,⁵ Ana Luíza Mattos-Guaraldi,¹ Raphael Hirata Junior¹ and Paulo Vieira Damasco¹,⁴

Abstract

Introduction. Endocarditis caused by yeasts is currently an emerging cause of infective endocarditis and, when accompanied by fever of unknown origin, is more severe since interferes with proper diagnosis and endocarditis treatment.

Case presentation. The Rio de Janeiro Infective Endocarditis Study Group reports a case of infectious endocarditis (IE) with negative blood cultures in a 45-year-old white female resident in Rio de Janeiro, Brazil, previously submitted to kidney transplantation. After diagnosis and intervention, the valve culture revealed *Rhodotorula mucilaginosa*. The clinical aspects and overview of endocarditis caused by *Rhodotorula* spp. demonstrated that *R. mucilaginosa* have been isolated from the last IE cases from kidney transplanted patients.

Conclusion. Though most of the patients (in literature) recovered well from endocarditis caused by *Rhodotorula* spp., physicians must be aware for diagnosis of fungemia and fungal treatment in kidney transplanted patients suffering of fever of unknown origin in the modern immunosuppressive treatment.

INTRODUCTION

Fungal endocarditis (FE) is currently an emerging cause of infective endocarditis (IE). Although the most frequently fungal pathogens isolated from FE are *Candida* spp., there are other fungal agents including *Aspergillus* spp., and *Histoplasma capsulatum* [1–3]. *Rhodotorula* spp. is a basidiomycetous yeast, considered a member of the *Cryptococcaceae* family, and was previously described as a rare etiological agent in culture negative infective endocarditis [4, 5].

Infective endocarditis (IE) is an infection located in the endocardial valve(s), and according to the acquisition of organisms involved, is classified as Community-Acquired (CAIE) or Healthcare-Associated (HAIE). The estimated annual incidence of IE ranges from 3 to 9 per 100,000 in developed countries [6–8].

Even though the access to a microbiology laboratory and epidemiological data of IE in developing countries is scarce in medical literature, our group has shown that in Brazil, HAIE is more prevalent than CAIE in our cohort of cases in Rio de Janeiro. Our group has reported that *Staphylococcus aureus* was the most frequent (30 %) followed by *Enterococcus faecalis* (26.7 %) microorganisms isolated from positive blood cultures [9].

We hereby report a case of infective endocarditis due to *Rhodotorula mucilaginosa* in a kidney transplanted patient, who was admitted to our teaching hospital with fever of...
unknown origin (FUO). Thereafter an overview of cases of IE due to Rhodotorula spp. in English, Spanish and Portuguese literature since 1960 was done, and we have reported the 10th case.

CASE REPORT

A 45-year old woman, with a history of deceased-donor kidney transplant in 2004, was admitted at HUPE in April 2012, for investigation of FUO. Three days after the admission, she developed daily peaks of fever varying from 38.0 to 39.3°C, with intermittent fever pattern. Her complaints were fever and abdominal pain for 3 weeks prior to admission. She was under a combined immunosuppressive therapy of Azathioprine, Sirolimus and Prednisone. Six peripheral blood culture sets were drawn on admission and incubated in BacT/Alert standard aerobic, after a 2 week investigation for the cause of FUO, all the blood culture sets were negative. In the beginning, the transthoracic echocardiography and radiologic studies were all inconclusive. After insisting on searching IE, a transesophageal echocardiography showed a heterogeneous mobile lesion adherent to the ventricular side of the aortic valve with 0.30 cm thickening and mild ventricular regurgitation (Fig. 1). The patient was then submitted to cardiac surgery, in which initiation with vancomycin and ciprofloxacin but failed to reduce the fever, which persisted for the following 2 weeks. The patient was then admitted to the microbiology laboratory for microbiological culture and DNA extraction for further search of micro-organisms involved in blood culture-negative organisms. After maceration of the valve in sterilised phosphate buffered saline, aliquots (10 µl) of the suspension were seeded into Thioglycollate Broth and in anaerobic supplemented blood agar base, and incubated in both aerobic and anaerobic conditions at 37°C. The Gram-stain of the suspension demonstrated yeast cells, and a 10 µl aliquot was also seeded in Sabouraud medium containing 10 mg ml⁻¹ chloramphenicol, incubated at room (±23°C) and 37°C temperatures. The yeast grew in pure culture only after 72 h of incubation at room temperature. Sabouraud tubes also incubated at 37°C demonstrated no growth. The yeast was plated in Blood Agar Base and incubated at room temperature for 72 h, and revealed dark-red colonies, with microscopic view of budding yeast cells, and positive reaction on Gram-staining (Gram-positive). The yeast was phenotypically characterised as Rhodotorulla spp. MALDI-TOF analysis identified the yeast as Rhodotorula mucilaginosa. PCR targeting the ITS region was performed and a fragment around 739 pb was observed. Sequences generated after automated sequencing presented 99% homology with Rhodotorula mucilaginosa. The sequence was deposited at NCBI (KY113079). E-test (bioMérieux) showed susceptibility to amphotericin B (Amp B, 0.25 mg ml⁻¹), voriconazole (0.50 mg ml⁻¹) and flucytosine (5-FC, 0.19 mg ml⁻¹). Two resistance profiles were observed for fluconazole (>256 mg ml⁻¹) and for itraconazole (>32 mg ml⁻¹). The patient was discharged after a 40 day therapy treatment with liposomal amphotericin B.

DISCUSSION

The prevalence of IE depends on the underlying heart disease, including structural congenital heart disease, rheumatic fever, degenerative heart disease, intravenous drug addiction, reconstructive cardiac surgery, pacemakers and implantable cardioverter defibrillator, the prolonged use of intravenous catheters, immunocompromised and diabetic patients. The institutions have patients undergoing haemodialysis therapy and immunocompromised patients receiving cytostatic cancer chemotherapy have a higher prevalence of HAIE [6–10].

Rhodotorula spp. has been isolated from different sites including skin, nails, conjunctiva, as well as from respiratory and gastrointestinal tracts [11, 12]. Although Rhodotorula spp. has a low prevalence in fungal endocarditis (FE), compared to Candida spp., Aspergillus spp. and Histoplasma capsulatum, the infective endocarditis team or internal medical physician should consider this fungus. Rhodotorula spp. is a high risk for IE in a host with central venous catheter or immunosuppression [5, 11]. A search of MEDLINE, PubMed, Scielo and LILACS for endocarditis caused by Rhodotorula using the terms: ‘fungal endocarditis’, ‘fungus endocarditis’, ‘Endocarditis due to Rhodotorula’, ‘Infective Endocarditis caused by Rhodotorula’, in our overview, this case report is the 10th (Table 1) case of IE due to Rhodotorula since 1960 [1, 4, 13–19]. Amongst the genus, Rhodotorula mucilaginosa seems to be the most pathogenic species, and was responsible for 54.5% cases of endocarditis, including in the last two described cases, occurring in kidney transplanted patients (Table 1). Rhodotorula spp. has been reported in cases of fungemia, sepsis, meningitis, ventriculitis, peritonitis, keratitis, endophthalmitis, dacryocystitis, pneumonia, IE and more recently has been considered as an emerging pathogen.

Fig. 1. Infective endocarditis (IE) due to Rhodotorula mucilaginosa. A transesophageal echocardiogram showed a 0.3 cm thickening in the ventricular side of aortic valve (arrow).
Table 1. Summary of the case reports of infective endocarditis (IE) due to **Rhodotorula spp.** found in the literature (n=9)

Year	Country/Reference	Age/Sex	Risk factors	Valve/type*	Species	Blood culture	Valve culture	Antifungal treatment†	Outcome
1960	USA/1	47/F	Mitral and aortic stenosis from rheumatic fever, dental procedure, indwelling catheter.	Ao/Native	NS	+	+	None	Deceased
1962	USA/13	56/M	Diabetes, rheumatic fever, prolonged urinary catheter, decubitus ulcer	NS	NS	+	+	Amp B	Recovered
1969	USA/14	39/M	Dental procedure, prolonged urinary catheter, decubitus ulcer	Mi/native	R. pilimanae	+	+	Amp B	Recovered
1975	Israel/15	7/M	Recurrent tonsillitis, tonsillectomy	Mi/Ao/native	+	+	+	Flucy	Recovered
2003	Switzerland/16	53/M	Prosthetic valve, antibiotic use, endocarditis	Ao/Prosth.	R. mucilaginosa	–	+	Amp B+Itrac	Recovered
2005	Switzerland/17	56/M	Cardiac transplant recipient	Left Atrium appendice	R. glutinis	–	+	Lipos Amp B	Recovered
2005	Brazil/18	10/F	Central venous catheter	Right Atrium appendice	R. mucilaginosa	–	+	Amp B+Flucy+Rifampicin	Recovered
2011	Brazil/19	58/M	Coronary stent	Ao/Native	R. mucilaginosa	NP*	NP	Amp B	Recovered
2014	USA/4	54/F	Diabetes, kidney transplant	Ao/Prosth.	R. mucilaginosa	+	+	Lipos AmpB	Recovered
2017	Brazil4	45/F	Kidney transplant	Ao/Prosth.	R. mucilaginosa	–	+	Lipos AmpB	Recovered

*Valve/Type: Mi, Mitral; Ao, Aortic; Prosth, Prosthetic; Bioprosth, Bioprosthetic; NS, Not specified; NP, Not performed.

†Antifungal therapy: AmpB, Amphotericin B; Flucy, Flucytosine; Amp B+Itrac, Amphotericin B+Itracconazole; Lipos AmpB, Liposomal Amphotericin B.

‡Case presented in this report.
Acknowledgements
This investigation was supported by Brazilian agencies: CAPES, FAPERJ, CNPq, and from the State University of Rio de Janeiro: SR-2/UERJ.

Conflicts of interest
The authors declare that there are no conflicts of interest

Ethical statement
The patient was informed and agreed with the report. Written informed consent was obtained, as required by the institutional committee: CAAE: 01247512.3.0000.5259.

References
1. Louria DB, Greenberg SM, Molander DW. Fungemia caused by certain nonpathogenic strains of the family Cryptococcaceae. Report of two cases due to Rhodotorula and Torulopsis glabrata. N Engl J Med 1960;263:1281–1284.
2. Wirth F, Goldani LZ. Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip Perspect Infect Dis 2012;2012:1–7.
3. Antinori S, Ferraris L, Orlando G, Tocalli L, Ricaboni D et al. Fungal endocarditis observed over an 8-year period and a review of the literature. Mycopathologia 2014;178:37–51.
4. Simon MS, Somersan S, Singh HK, Hartman B, Wickes BL et al. Endocarditis caused by Rhodotorula infection. J Clin Microbiol 2014;52:374–378.
5. Tuon FF, Costa SF. Rhodotorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol 2008;25:135–140.
6. Hoen B, Duval X. Infective endocarditis. N Engl J Med 2013;369:1425–1433.
7. Baddour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015;132:1435–1486.
8. Holland TL, Baddour LM, Bayer AS, Hoen B, Miro JM et al. Infective endocarditis. Nat Rev Dis Primers 2016;2:16059. doi: 10.1038/nrdp.2016.59.
9. Damasco PV, Ramos JN, Correal JC, Potsch MV, Vieira VV et al. Infective endocarditis in Rio de Janeiro, Brazil: a 5-year experience at two teaching hospitals. Infection 2014;42:835–842.
10. Lomas JM, Martinez-Marcos FJ, Plata A, Ivanova R, Galvez J et al. Healthcare-associated infective endocarditis: an undesirable effect of healthcare universalization. Clin Microbiol Infect 2010;16:1683–1690.
11. Petrocheilou-Paschou V, Pritti H, Kostis E, Papadimitriou C, Dimopoulos MA et al. Rhodotorula septicemia: case report and minireview. Clin Microbiol Infect 2001;7:100–102.
12. Spiliopoulos A, Anastassiou ED, Christofidou M. Rhodotorula fungemia of an intensive care unit patient and review of published cases. Mycopathologia 2012;174:301–309.
13. Shelburne PF, Carey RJ. Rhodotorula fungemia complicating staphylococcal endocarditis. JAMA 1962;180:38–42.
14. Leeber DA, Scher I. Rhodotorula fungemia presenting as “endotoxic” shock. Arch Intern Med 1969;123:78–81.
15. Naveh Y, Friedman A, Merzbach D, Hashman N. Endocarditis caused by Rhodotorula successfully treated with 5-fluorocytosine. Br Heart J 1975;37:101–104.
16. Mader M, Vogt PR, Schaer G, von Graevenitz A, Gunthard HF. Aortic homograft endocarditis caused by Rhodotorula mucilaginosa. Infection 2003;31:181–183.
17. Gamma R, Carrel T, Schmidli J, Zimmerli S, Tanner H et al. Transplantation of yeast-infected cardiac allografts: a report of 2 cases. J Heart Lung Transplant 2005;24:1159–1162.
18. Pasqualotto GC, Copetti FA, Meneses CF, Machado AR, Brunetto AL. Infection by Rhodotorula sp. in children receiving treatment for malignant diseases. J Pediatr Hematol Oncol 2005;27:232–233.
19. Loss SH, Antonio AC, Roehrig C, Castro PS, Maccari JG. Meningitis and infective endocarditis caused by Rhodotorula mucilaginosa in an immunocompetent patient. Rev Bras Ter Intensiva 2011;23:507–509.
20. Brandão TJ, Januario-da-Silva CA, Correia MG, Zappa M, Abrantes JA et al. Histopathology of valves in infective endocarditis, diagnostic criteria and treatment considerations. Infection 2017;45:199–207.

Five reasons to publish your next article with a Microbiology Society journal
1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.