Abstract:
Rubiadin is identified as a bioactive anthraquinone that exists in some quinone rich plants. The current research was carried out to evaluate the potential anti-inflammatory impact of Rubiadin in acute and chronic inflammation test models in rodents. The anti-inflammatory activity of Rubiadin was examined in cotton pellet-induced granuloma and carrageenan-induced edema as chronic and acute inflammation models in rats. TNF-α level and histopathological changes were assessed using sampled foot tissue of rat in the acute model. Also, the IL-1β level was assessed in the chronic model. One-way ANOVA (post hoc Tukey’s) analysis was used for comparing the groups. Rubiadin (0.5 mg/kg, i.p.) induced a significant reduction in TNF-α level and the paw edema compared to the control group in carrageenan test. Also, it was observed that the anti-inflammatory activity of Rubiadin (0.5 mg/kg, i.p.) is comparable to mefenamic acid (30 mg/kg, i.p.) as the standard drug. Rubiadin was effective in granuloma induced by cotton pellet concerning the granuloma and transudate formation amount. Rubiadin’s anti-inflammatory effects were associated with a significant IL-1β decrease in this model. The results suggest that Rubiadin as a natural compound can possess significant peripheral anti-inflammatory impacts.

Keywords: Rubiadin, anthraquinone, anti-inflammatory, TNF-α, IL-1β.

1. Introduction

Rubiadin, with preferred IUPAC name 1, 3-Dihydroxy-2-methylnaphthacen-9,10-dione; as a bioactive anthraquinone from the plants belong to the Rubiaceae family possesses antioxidant, nephroprotective, hepatoprotective, and immunomodulatory impacts (Divakar et al., 2010; Rao et al., 2006). Common madder (Rubia tinctorum L.) is a traditionally recognized medicinal plant that contains a considerable amount of anthraquinones like Rubiadin in its rhizome and root. The major application of this plant is in dyeing textiles (Derksen and Van Beek, 2002). It has also been used traditionally as a food colorant in most areas of the world. Moreover, the Rubia raw extract has been utilized as an anti-bacterial, anti-fungal, and anti-inflammatory agent in folk medicines (Kalyoncu et al.,...
2.3. Carrageenan-induced paw edema test

The acute anti-inflammatory effect was investigated based on inhibition of paw edema stimulated by administration of 0.1 mL carrageenan 2% into the rats’ hind paw (Winter et al., 1962; Jahandar et al., 2018). Male rats were placed in 4 groups, each group consisting of 6 rats. The groups received mefenamic acid (30 mg/kg, i.p.), Rubiadin (0.3 and 0.5 mg/kg, i.p.), and the control (normal saline: 10 mL/kg, i.p.) separately 30 min prior to carrageenan injection. In the next step, 0.5, 1, 2, 3 and 4 h following the prescription of carrageenan, the paw volume was assessed by a Plethysmometer (model PM 4500, Borj Sanat Company, Iran). The anti-inflammatory activity was indicated as the inhibition percent of the edema compared to the control group. The inhibition percentage of the edema was measured using this equation: edema inhibition percentage = 100 (1-Vt/Vc), where Vt and Vc indicate the edema volume in the control group and test group, respectively.

Enzyme-linked ELISA was used for measuring the TNF-α level in the paw tissues. The gathered samples were homogenized in calcium chloride (1.5%) 4 h after the carrageenan challenge. About 1 mL CaCl₂ per 50 mg tissue was used to prepare the supernatants. The supernatants were kept at -70°C. Then, the TNF-α level was measured according to kit brochures provided by the manufacturer (Rat TNF alpha ELISA Kit, eBioscience, USA).

2.4. Histopathological examination

Rats were euthanized after 4 h of carrageenan treatment and their paw tissues were removed. Next, a 10% formaldehyde solution was used for fixing them. The samples were fixated in paraffin wax, and then cut in 5 μm sections and died with eosin and hematoxylin. An area was chosen as the representative area for qualitative light microscopic analysis of the inflammatory tissue response with a ×10 magnification.

2.5. Granuloma induced by cotton pellet

The chronic anti-inflammatory activity of Rubiadin was evaluated based on cotton pellet-induced granuloma in accordance with the approach proposed by Winter and Porter (1957). Six rats were placed in each group. Pellets with a weight of almost 60 mg were made with 5 mm of dental cotton tampons. An autoclave was used for sterilizing the pellets. The pellets were sterilized at 120°C for 30 min under 15 lb pressures. It must be noted that the rats were anesthetized during the experiments. Using a single needle incision, pellets were embedded subcutaneously in the axilla region of the rats. Treatment on the groups was carried out daily lasting for seven days. The rats were treated with indomethacin (5 mg/kg, i.p.), Rubiadin (0.3 and 0.5 mg/kg, i.p.).
Rubiadin exerts anti-inflammatory effect in rodents i.p.), and vehicle (normal saline: 10 ml/kg). Next, they were anesthetized again on day 8. The cotton pellets, as well as the granuloma tissues, were separated through surgery, and the extraneous tissues were removed. The weight of the wet pellets was calculated and then they were dried in an incubator for 24 h at 60°C so that a constant weight was achieved. Afterward, the weight of the dried pellets was calculated again. The quantity of the exudates (mg) was measured by subtracting the pellet’s constant dry weight from the pellet’s immediate wet weight. Granuloma’s dry weight was measured following deducting the cotton pellet weight from the pellet’s constant dry weight and taken as the amount of granuloma tissue formation. Finally, the inhibition percentage of granuloma tissue formation and exudates were estimated.

IL1-β level in this model evaluated by enzyme-linked ELISA, 8 days after cotton pellet-induced granuloma, the collected blood samples were measured via the heart and IL-1β in serum according to kit brochures provided by the manufacturer (Rat IL-1 beta ELISA Kit).

2.6. Statistical analysis
One-way ANOVA analysis was used for comparing the groups. Then, the post hoc Tukey’s test was run. P < 0.05 was regarded as a significant difference in means. GraphPad Prism 8 statistical software was utilized for data analysis.

3. Results

3.1. Carrageenan-induced inflammation test
Figure 1 shows the Rubiadin effect (0.3 and 0.5 mg/kg) in rat paw edema caused by carrageenan. Mefenamic acid (30 mg/kg) and Rubiadin (0.5 mg/kg) caused a significant inhibition (P < 0.05) of the carrageenan paw edema formation that was specified at the third hour of the test (peak of edema formation) by 61 and 43% (Table 1).

3.2. Effect of Rubiadin on carrageenan-induced TNFα level in paw tissue
The role of TNFα was considered for evaluating the potential mechanism underlying the anti-inflammatory effects of Rubiadin. About 4 h after the inflammation induced by carrageenan in each treatment group, animals were sacrificed and then the plantar tissue samples were evaluated based on TNFα. Figure 2 shows the plantar tissue levels of TNF-alpha in animal groups. Tissue levels of TNF-alpha were significantly (P<0.001) lower in the mefenamic acid group compared to the control group. Rubiadin (0.5 mg/kg) could cause a significant decrease (P<0.05) in TNF levels in the rat tissue after 4 h and the inflammation induced by carrageenan.

3.3. Histopathological studies
Paw tissue of vehicle-treated rats showed an acute inflammation with extensive damage in the epidermis layer (Figure 3A). Treatments of rats with mefenamic acid (Figure 3B), Rubiadin 0.3mg/kg (Figure 3C), and 0.5mg/kg (Figure 3D) exhibited a significant decrease in the edema and tissue damage.

3.4. Cotton pellet-induced inflammation test
Transudate and granuloma were significantly decreased in the Rubiadin-treated (0.3 and 0.5 mg/kg, i.p.) group in the cotton pellet-induced inflammation test (Figure 4). The inflammation reduction with Rubiadin (0.5 mg/kg) was 46% compared to the standard drug indomethacin (40%) (Table 2).

3.5. Effect of Rubiadin on serum IL-1β level
The IL-1β level involvement was considered for evaluating the potential mechanism underlying the anti-inflammatory impacts of Rubiadin.
Figure 5 shows the IL-1β serum levels in animal groups. Rubiadin (0.5 mg/kg) could cause significant reduction (P < 0.05) in serum IL-1β levels in the cotton pellet-induced granuloma test in the rat. The levels of IL-1β were significantly lower (p < 0.01) in the indomethacin group compared to the control group.

4. Discussion
Inflammation, in acute type and especially chronic type, cause numerous clinical problems in patients suffering it. Despite the new and varied methods of treating

Table 1. Rubiadin activity on the inflammation caused by carrageenan in rat.

Groups	%Paw edema inhibition in various time intervals				
	0.5 hr	1 hr	2 hr	3 hr	4 hr
Mefenamic acid (30 mg/kg)	55	42.5	48	43	44
Rubiadin (0.3 mg/kg)	24	17.5	8.3	21	13
Rubiadin (0.5 mg/kg)	48	40	45	61	54

Table 2. Comparison of Rubiadin activity on inhibition percent of inflammation induced by a cotton pellet.

Groups	% Inhibition Granuloma	% Inhibition Transudate
Indomethacin (5 mg/kg)	39.37	26.51
Rubiadin (0.3 mg/kg)	34.71	19.76
Rubiadin (0.5 mg/kg)	46.12	38.13
Figure 1. Effect of Rubiadin on the inflammation induced by Carrageenan in rat. Each value represents the mean ± SEM of 6 mice. * P<0.05, ** P<0.01, *** P<0.001, and **** P<0.0001 compared to the control group using one-way ANOVA followed by Turkey’s multiple comparison test.
Rubiadin exerts anti-inflammatory effect in rodents

Inflammation, there is a wide research field in this area. These studies are being carried out or underway to create new, better, more effective treatments, and fewer side effects. The present research is the first report that described the anti-inflammatory activity of Rubiadin on chronic and acute inflammation experiment models in rodents.

Our results indicate that Rubiadin (0.5 mg/kg) causes an anti-inflammatory impact in carrageenan-induced inflammation. The inhibitory activity observed in Rubiadin in a 4-h period in carrageenan-induced paw inflammation is more efficient than standard drug (mefenamic acid). The carrageenan test is often used as an acute inflammation model in the experimental animals and shows a high sensitivity to non-steroidal anti-inflammatory drugs. The mechanism of inducing the inflammatory response by carrageenan is a complicated mechanism that requires liberating different mediators of acute inflammation as well as increasing vascular permeability. The rise in the TNF-α, IL-1β, and IL-6 levels, and cytokine has been reported in the inflamed paw (Annamalai and Thangam, 2017). It has been evidenced that TNF-α has a significant role in the formation of edema. It critically plays a role in mechanical alldynia and neutrophil migration after the administration of carrageenan (Rocha et al., 2006).

Figure 2. Effect of Rubiadin on carrageenan-induced TNFα in paw tissue at 4 h in rats. The groups received mefenamic acid (30 mg/kg, i.p.), Rubiadin (0.3 and 0.5 mg/kg, i.p.), and the control (normal saline: 10 mL/kg, i.p.) separately 30 min prior to carrageenan injection. Each value represents the mean ± SEM of 6 mice. * P<0.05 and *** P<0.001 compared to the control group using one-way ANOVA followed by Turkey’s multiple comparison test.

Figure 3. Effect of Rubiadin on histopathological damages induced by carrageenan in paw plantar of the rats. Histopathologic examination of paw tissue of rats treated with Rubiadin, 4 h after injection of carrageenan. (A): Carrageenan-injected paw tissue in the vehicle group. Vasodilatations with edema were observed. (B,C, and D): Carrageenan-injected paw of rats treated with mefenamic acid (30 mg/kg, intraperitoneal) and Rubiadin (0.3 and 0.5 mg/kg) respectively. The edema reduced. Sections were stained with H and E, X10.
In addition, it was reported that the paw edema induced by carrageenan in rats causes a significant rise in serum TNF-α and NO levels (Kataoka et al., 2012). Also, the cotton-pellet granuloma test is a commonly used practice for evaluating chronic anti-inflammatory materials (Ismail et al., 1997; Swingle and Shideman, 1972; Cheng et al., 2016; Dzoyem et al., 2017). There is a correlation between the pellet’s dry weight and the amount of granulomatous tissue and a correlation between the wet weight of the pellets and Transudate. Chronic inflammation is observed when the proliferating cells are developed. Proliferating cells might be in granuloma form or in spread form. Rubiadin (0.5 mg/kg) showed a significant anti-inflammatory impact on granuloma induced by cotton pellet. Hence, it is efficient in chronic inflammatory situations and demonstrates potential effectiveness in inhibition of increasing fibroblasts and synthesis of collagen and mucopolysaccharides when granuloma tissue is formed.

Cytokine production is also increased during the inflammatory event. In this regard, Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) critically plays a role

Figure 4. Effect of Rubiadin on the cotton pellet-induced granuloma and transudate in rats
Each value represents the mean ± SEM of 6 mice. *** p<0.001 and **** p<0.0001 compared to the control group, * p<0.05 compared to the Indomethacin group, #### p<0.0001 compared to the Rubiadin 0.5 mg/kg using one way ANOVA followed by Tukey’s multiple comparison test.

Figure 5. Effect of Rubiadin on cotton pellet-induced IL-1β level in serum in rats. Each The groups received indomethacin (5 mg/kg, i.p.), Rubiadin (0.3 and 0.5 mg/kg, i.p.), and the control (normal saline: 10 mL/kg, i.p.) for 8 days in rats. Value represents the mean ± SEM of 6 mice. * P<0.05 and ** P<0.01 compared to the control group using one-way ANOVA followed by Turkey’s multiple comparison test.
in inflammatory profile maintenance (Holtmann and Neurath, 2004). Thus, the IL-1β and TNF-α release in cotton pellet granuloma and carrageenan tests is considered as a reliable model for assessing the anti-inflammatory impact. It was observed that Rubiadin (0.5 mg/kg) is effective in TNF-α and IL-1β level reduction in carrageenan-induced rat paw edema and cotton-pellet granuloma tests. This finding supports the efficacy of Rubiadin in inflammation control through regulating inflammatory reactions. It also shows that Rubiadin is likely involved in arachidonic acid metabolites, producing an edema dependency on neutrophils mobilization. In addition, it is possible that the anti-inflammatory impact of Rubiadin is linked to the scavenging of acute-phase inflammatory mediators, thus reducing edema development. It is probable that Rubiadin plays a role in the regulation of free radical reactions, which unquestionably is involved in inflammatory processes.

Considering previous studies on the pharmacological activity of some species of Rubiaceae genus, they exhibit anti-inflammatory, immunomodulatory, renal calcium eliminative, hepatoprotective, anti-thrombotic, and calcium channel antagonist effects and DNA binding activities in humans and animals (Singh and Chauhan, 2004). Previously, anthraquinones were reported to have anesthetic and anti-inflammatory capability in different in vitro and in vivo animal models of inflammation. Anthraquinones have shown the anti-inflammatory impact through inhibiting COX-2 protein (Choi et al., 2013) and shown antioxidant activity (Yen et al., 2000). Additionally, it has been shown that phytochemicals with antioxidant potentials have anti-inflammatory and analgesic impacts regarding plant extracts (Sur et al., 2001).

The toxicant-protective effect of Rubiadin was reported in some organs. Rubiadin as the main constituent of Rubia cordifolia Linn. possesses a strong hepatoprotective effect against hepatic damage induced by carbon tetrachloride in rats (Rao et al., 2006). Moreover, according to the reports, the root extract of R. cordifolia Linn. has the nephroprotective impact in the ethylene glycol induced urolithiatic model (Divakar et al., 2010). According to the findings of the current research, there are significant anti-inflammatory impacts of Rubiadin that reduce all parameters measured in chronic and acute inflammation. Considering the regulation of leukocyte migration by TNF-α and IL-1β, it can be concluded that the leukocyte reduction might be the direct effect of Rubiadin and the indirect effect caused by the reduction in the levels of the cytokines. Overall, the results demonstrate similar actions of Rubiadin and immunomodulators in the reduction of inflammatory mediator production and cell migration. Findings are consistent with some other findings, indicating the inhibitory effect of anthraquinones against cytokine production (Hu et al., 2014; Lu et al., 2013). For example, emodin inhibited IL-6 and TNF-α in mouse bone marrow-derived mast cells (BMMCs) induced by phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Lu et al., 2013).

In conclusion, Rubiadin effectively and significantly decreased granuloma induced by cotton pellet and paw inflammation induced by carrageenan, implying its impact in the proliferative stage of the inflammation and the acute phase. Rubiadin is introduced as a new drug for the control of inflammation for further research.

The findings of this study show that Rubiadin is biologically active and has considerable activity against chronic and acute inflammations, justifying the use of plants belonging to the Rubia genus in relieving inflammation.

Acknowledgement

Supports from Tehran Medical Sciences, Islamic Azad University is gratefully acknowledged.

References

ANNAMALAI, P. and THANGAM, E.B., 2017. Local and systemic profiles of inflammatory cytokines in carrageenan-induced paw inflammation in rats. Immunological Investigations, vol. 46, no. 3, pp. 274-283. http://dx.doi.org/10.1080/08820139.2016.1248562. PMid:27967265.

CHENG, J.-M., MA, T., LIU, W., WANG, H., JIANG, J., WEI, Y., TIAN, H., ZOU, N., ZHU, Y., SHI, H., CHENG, X. and WANG, C., 2016. In vivo evaluation of the anti-inflammatory and analgesic activities of compound Munitiziqu granule in experimental animal models. BMC Complementary and Alternative Medicine, vol. 16, no. 1, pp. 20. http://dx.doi.org/10.1186/s12906-016-0999-y. PMid:26800679.

CHOI, R.J., NGOC, T.M., BAE, K., CHO, H.J., KIM, D.D., CHUN, J., KHAN, S. and KIM, Y.S., 2013. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression. European Journal of Pharmaceutical Sciences, 48, no. 1-2, pp. 272-281. http://dx.doi.org/10.1016/j.ejps.2012.10.027. PMid:23174748.

DERKSEN, G.C.H. and VAN BEEK, T.A., 2002. Rubia tinctorum L.Studies in Natural Products Chemistry, vol. 26, pp. 629-684. http://dx.doi.org/10.1016/S12906-016-0999-y. PMid:20079795.

DULO, B., PHAN, K., GITHAGA, J., RAES, K. and MEESTER, S., 2021. Natural quinone dyes: a review on structure, extraction techniques, analysis and application potential. Waste and Biomass Valorization, vol. 12, no. 12, pp. 6339-6374. http://dx.doi.org/10.1007/s12649-021-01443-9.

DZIERZICKA, K. and KOLODZIEJCZYK, A., 2005. Anthracenedione analogues—synthesis and biological activity. Polish Journal of Chemistry, vol. 79, pp. 1-29.

DOYOEM, J., MCCAW, L., KUETE, V. and BAKOWSKY, U., 2017. Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In: VKUETE, ed. Medicinal spices and vegetables from Africa: therapeutic potential against metabolic, inflammatory, infectious and systemic diseases. Amsterdam: Academic Press, pp. 239-270.

GRANADOS-PRINCIPAL, S., QUILLES, J.L., RAMIREZ-TORTOSA, C.L., SANCHEZ-ROVIRA, P. and RAMIREZ-TORTOSA, M., 2010. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food and Chemical Toxicology, vol. 48, no. 6, pp. 1425-1438. http://dx.doi.org/10.1016/j.fct.2010.04.007. PMid:20385199.
HOLTZ, M.W. and NEURATH, M.F., 2004. Differential TNF-signaling in chronic inflammatory disorders. Current Molecular Medicine, vol. 4, no. 4, pp. 439-444. http://dx.doi.org/10.2174/1566524043360636. PMid:15354874.

HUI, B., ZHANG, H., MENG, X., WANG, F. and WANG, P., 2014. Aloes-emodin from rubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Journal of Ethnopharmacology, vol. 153, no. 3, pp. 846-853. http://dx.doi.org/10.1016/j.jep.2014.03.059. PMid:24685589.

ISMAIL, T.S., GOPALAKRISHNAN, S., BEGUM, V.H. and ELANGO, V., 1997. Anti-inflammatory activity of Salacia oblonga Wall. and Azima tetracantha Lam. Journal of Ethnopharmacology, vol. 56, no. 2, pp. 145-152. http://dx.doi.org/10.1016/S0378-8741(96)01523-1. PMid:9174976.

JAHANDAR, F., ASGARPAHAN, J., NAJAFIZADEH, P. and MOUSAVI, Z., 2018. Anti-inflammatory activity and chemical composition of Pycnocycla bashagardiana fruit’s essential oil in animal models. Iranian Journal of Basic Medical Sciences, vol. 21, no. 2, pp. 188-193. PMid:29456816.

KALYONCU, F., CETIN, B. and SAGLAM, H., 2006. Antimicrobial activity of common madder (Rubia tinctorum L.). Phytotherapy research: PTR, vol. 20, no. 6, pp. 490-492. PMid:16619348.

KATAOKA, T., TERAOKA, J., SAKODA, A., NISHIYAMA, Y., YAMATO, K., MONDEN, M., ISHIMORI, Y., NOMURA, T., TAGUCHI, T. and YAMAOKA, K., 2012. Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice. Inflammation, vol. 35, no. 2, pp. 713-722. http://dx.doi.org/10.1007/s10753-011-9364-y. PMid:21800149.

LU, Y., JEONG, Y.T., LI, X., KIM, M.J., PARK, P.H., HWANG, S.I., SON, J.K. and CHANG, H.W., 2013. Emodin isolated from Polygoni cuspidati Radix inhibits TNF-α and IL-6 release by blocking NF-κB and MAP kinase pathways in mast cells stimulated with PMA plus A23187. Biomolecules & Therapeutics, vol. 21, no. 6, pp. 435-441. http://dx.doi.org/10.4062/biomolther.2013.068. PMid:24404333.

RAO, G.M.M., RAO, C.V., PUSHPANGADAN, P. and SHIRWAIKAR, A., 2006. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. Journal of Ethnopharmacology, vol. 103, no. 3, pp. 484-490. http://dx.doi.org/10.1016/j.jep.2005.08.073. PMid:16213120.

ROCHA, A.C., FERNANDES, E.S., QUINTÃO, N.L., CAMPOS, M.M. and CALIXTO, J.B., 2006. Relevance of tumour necrosis factor-α for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. British Journal of Pharmacology, vol. 148, no. 5, pp. 688-695. http://dx.doi.org/10.1038/sj.bjp.0706775. PMid:16702985.

SINGH, R., GEETANJALI and CHAIHAN, S.M.S., 2004, 9-10-Anthraquinones and other biologically active compounds from the genus Rubia. Chemistry & Biodiversity, vol. 1, no. 9, pp. 1241-1264. http://dx.doi.org/10.1002/cbdv.200490088. PMid:17191903.

SUR, P., CHAUDHURI, T., VEDASIROMONI, J., GOMES, A. and GANGULY, D., 2001. Antiinflammatory and antioxidant property of saponins of tea [Camellia sinensis (L). O. Kuntze] root extract. Phytotherapy Research, vol. 15, no. 2, pp. 174-176. http://dx.doi.org/10.1002/ptr.696. PMid:11268124.

SWINGLE, K.F. and SHIDEMAN, F.E., 1972. Phases of the inflammatory response to subcutaneous implantation of a cotton pellet and their modification by certain antiinflammatory agents. The Journal of Pharmacology and Experimental Therapeutics, vol. 183, no. 1, pp. 226-234. PMid:4562620.

WINTER, C.A. and PORTER, C.C., 1957. Effect of alterations in side chain upon anti-inflammatory and liver glycogen activities of hydrocortisone esters. Journal of the American Pharmaceutical Association, vol. 46, no. 9, pp. 515-519. http://dx.doi.org/10.1002/jspa.20050460902. PMid:13491439.

WINTER, C.A., RISLEY, E.A. and NUSS, G.W., 1962. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, vol. 111, no. 3, pp. 544-547. http://dx.doi.org/10.3818/00379727-111-27849. PMid:14001233.

YEN, G.C., DUH, P.D. and CHUANG, D.Y., 2000. Antioxidant activity of anthraquinones and anthrone. Food Chemistry, vol. 70, no. 4, pp. 437-441. http://dx.doi.org/10.1016/S0308-8146(00)00108-4.