On the Quantum Origin of the Mixmaster Chaos Covariance

January 1, 2022

Giovanni Imponente1,2 and Giovanni Montani1,3
1ICRA—International Center for Relativistic Astrophysics, Piazza A.Moro 5 00185 Rome, Italy
2Università degli Studi di Napoli “Federico II” and INFN– Sezione di Napoli
3Physics Department, University of Rome “La Sapienza”
Authors can be contacted at e-mail addresses: imponente@icra.it, montani@icra.it.

Abstract

Our analysis shows how the covariant chaotic behavior characterizing the evolution of the Mixmaster cosmology near the initial singularity can be taken as the semiclassical limit in the canonical quantization performed by the corresponding Hamiltonian representation.

1 Cosmological Framework

Though the Standard Cosmological Model (SCM) is based on the highly symmetric Friedmann-Lemaitre-Robertson-Walker (FLRW) solution of the Einstein equations, nevertheless don’t exist neither theoretically neither experimentally any evidences to prevent that our universe underwent a more general dynamics in the very early stages of its evolution, and only in a later phase it isotropized reaching a complete agreement with actual experimental data.

The simplest generalization of the FLRW dynamics consists of the so-called Bianchi models, whose anisotropic evolution, for some of them, can be represented as a FLRW model plus a gravitational waves packet \cite{1, 2}. Among this classification, the types VIII1 and IX appear as the most general ones allowed by

1All the considerations we will develop for the type IX apply also to the VIII one since, close to the singularity, they have the same morphology.
the homogeneity constraint and their asymptotic evolution toward the cosmological singularity manifests a chaotic-like behavior \cite{3}. The cosmological interest lies in the IX model (the so-called Mixmaster \cite{4}), which has the same space symmetries as the closed FLRW universe, and whose dynamics allows the line element to be decomposed as

\[ds^2 = ds_0^2 - \delta_{(a)(b)} G_{ik}^{(a)(b)} dx^i dx^k \]

(1)

where \(ds_0 \) denotes the line element of an isotropic universe having constant positive curvature, \(G_{ik}^{(a)(b)} \) is a set of spatial tensors\(^3\) and \(\delta_{(a)(b)}(t) \) are amplitude functions, resulting small sufficiently far from the singularity.

We dedicate our analysis to find a precise relation between the Mixmaster deterministic chaos and the quantum behavior characterizing the Planckian era, showing how the invariant measure for the former, provided general Misner-Chitré-like coordinates (MCI) \cite{5,6}, is independent of the time gauge \cite{7} and coincides with the stationary probability for the semiclassical limit of the latter.

\section{Billiard Representation}

Using generic MCI variables (\(\xi, \theta, \tau \)) \cite{7}, the dynamics is described by the two-dimensional canonical variational principle

\[\delta \int \left(p_\xi \xi' + p_\theta \theta' - f' \mathcal{H}_{ADM} \right) d\eta = 0, \]

(2)

where \(f \) is a generic function,

\[\mathcal{H}_{ADM} = \sqrt{\varepsilon^2 + U}, \quad \varepsilon^2 = q^2 p_{\xi}^2 + \frac{p_\theta^2}{q^2} \]

(3)

where \(U(\xi, \theta, \eta) \) denotes the corresponding potential term and \(q = q(\xi) \equiv \sqrt{\xi^2 - 1} \). Moreover the equation for the temporal gauge reads

\[N(\eta) = \frac{12D}{\mathcal{H}_{ADM}} e^{2f} \frac{df}{d\tau'}, \]

(4)

so that our analysis remains fully independent of the choice of the time variable until the form of \(f \) and \(\tau' \) is not fixed.

\(^2\) IX’s geometry is invariant under the \(SO(3) \) group.

\(^3\) These tensors satisfy the equations

\[
G_{ik}^{(a)(b)} = -(n^2 - 3)G_{ik}^{(a)(b)}, \quad G_{ik}^{(a)(b)} = 0, \quad G_{ik}^{(a)(b)} = 0,
\]

in which the Laplacian is referred to the geometry of the sphere of unit radius.
For the following developments it is of key interest the following relation
\[\frac{d(\mathcal{H}_{ADM} f')}{d\eta} = \frac{\partial (\mathcal{H}_{ADM} f')}{\partial \eta}. \] (5)

The function \(f(\eta) \) plays the role of a parametric function of time and actually the anisotropy parameters \(H_i \) \((i = 1, 2, 3)\) are functions of the variables \((\xi, \theta)\) only \(\mathcal{H} \). In the domain \(\Gamma_H \) where all the \(H_i \) are simultaneously greater than 0, the potential term \(U \) can be modeled by the potential walls
\[U_\infty = \Theta_\infty (H_1) + \Theta_\infty (H_2) + \Theta_\infty (H_3) \] (6)

therefore, by (5), in \(\Gamma_H \) the ADM Hamiltonian becomes (asymptotically) an integral of motion
\[\forall \{\xi, \theta\} \in \Gamma_H \left\{ \begin{array}{c}
\frac{\partial \mathcal{H}_{ADM}}{\partial f} = \frac{\partial E}{\partial f} = 0 \\
\mathcal{H}_{ADM} = \sqrt{\varepsilon^2 + U} \approx \varepsilon = E
\end{array} \right. \] (7)

where \(E \) is a constant. In view of (5) the variational principle (2) reduces to
\[\delta \int (p_\xi d\xi + p_\theta d\theta - Edf) = \delta \int (p_\xi d\xi + p_\theta d\theta) = 0. \] (8)

Following the standard Jacobi procedure to reduce this principle to a geodesic one we get, for the closed domain region \(\Gamma_H \), the Riemannian line element
\[ds^2 = E^2 \left[\frac{d\xi^2}{\xi^2 - 1} + (\xi^2 - 1) d\theta^2 \right]. \] (9)

Since the above metric (1) has curvature scalar \(R = -\frac{2}{E^2} \) the point-universe moves over a negatively curved bidimensional space on which the potential wall (3) cuts the region \(\Gamma_H \); indeed the invariant Lyapunov exponent for the dynamical flux associated to (3) reads \(\lambda_v = 1/E > 0 \) \([7] \). The point-universe, bouncing on the potential walls, is reflected from a geodesic to another one, making each of them unstable. By itself, the positivity of Lyapunov number is not enough to ensure the system chaoticity, since its derivation remains valid for any Bianchi type model, but for the Mixmaster case the potential walls reduce the configuration space to a compact region \(\Gamma_H \), ensuring a real chaotic behavior.

3 Statistical Mechanics Approach

For a Statistical Mechanics reformulation of the dynamics, we adopt in (3) the restricted time gauge \(\tau' = 1 \), leading to the variational principle
\[
\delta \int \left(p_\xi \frac{d\xi}{df} + p_\theta \frac{d\theta}{df} - \mathcal{H}_{ADM} \right) df = 0.
\] (10)

\[4\Theta_\infty(x) = \begin{cases} +\infty & \text{if } x < 0 \\ 0 & \text{if } x > 0 \end{cases} \]
In spite of this restriction, for any assigned time variable τ (i.e. η) there exists a corresponding function $f(\tau)$ (i.e. a set of MCl variables able to provide the scheme presented in Section 4) defined by the (invertible) relation

$$\frac{df}{d\tau} = \frac{H_{ADM}}{12D} N(\tau) e^{-2f}. \quad (11)$$

Hence the analysis to derive the invariant measure for the system follows the same lines presented in [5, 6]. Indeed we got a suitable representation of the Mixmaster chaoticity in terms of a two-dimensional point-universe randomizing within Γ_H, admitting an “energy-like” constant of motion $\varepsilon = E$, then well-described by a microcanonical ensemble, whose Liouville invariant measure reads

$$d\varrho = A\delta(E - \varepsilon) d\xi d\theta dp_\xi dp_\theta, \quad A = \text{const}. \quad (12)$$

After the natural positions

$$p_\xi = \frac{\varepsilon}{q} \cos \phi, \quad p_\theta = \varepsilon q \sin \phi, \quad (13)$$

being $0 \leq \phi < 2\pi$, and the integration over all values of ε, we arrive to the uniform invariant measure [10, 5]

$$d\mu = w_\infty(\xi, \theta, \phi) d\xi d\theta d\phi \equiv \frac{1}{8\pi^2} d\xi d\theta d\phi. \quad (14)$$

The key point of our analysis is that any stationary solution of the Liouville theorem, like (14), remains valid for any choice of the time variable τ; indeed in [6] the construction of the Liouville theorem with respect to the variables (ξ, θ, ϕ) shows the existence of such properties even for the invariant measure (14).

More precisely, in agreement with the analysis presented in [6], during a free geodesic motion the asymptotic functions $\xi(f), \theta(f)$ and $\phi(f)$ are provided by the simple system

$$\frac{d\xi}{df} = q \cos \phi, \quad \frac{d\theta}{df} = \frac{\sin \phi}{q}, \quad \frac{d\phi}{df} = -\frac{\xi \sin \phi}{q} \quad (15)$$

and therefore over the reduced phase space $\{\xi, \theta\} \otimes S^1_\phi$ the distribution w_∞ behaves like the step-function

$$w_\infty(\xi, \theta, \phi) = \begin{cases} \frac{1}{8\pi^2} & \forall \{\xi, \theta, \phi\} \in \Gamma_H \otimes S^1_\phi \\ 0 & \forall \{\xi, \theta, \phi\} \notin \Gamma_H \otimes S^1_\phi \end{cases} \quad (16)$$

$^5\delta(x)$ denotes the Dirac function.

6The dependence on the initial conditions doesn’t contain any information about the system chaoticity.

$^7S^1_\phi$ denotes the ϕ-circle.
stationary solution of the Liouville theorem
\[q \cos \phi \frac{\partial w_\infty}{\partial \xi} + \frac{\sin \phi}{q} \frac{\partial w_\infty}{\partial \theta} - \frac{\xi \sin \phi}{q} \frac{\partial w_\infty}{\partial \phi} = 0. \] (17)

If now we restrict our attention to the distribution function on the configuration space \(\Gamma_H \)
\[\varrho (\xi, \theta) \equiv \int_0^{2\pi} w_\infty (\xi, \theta, \phi) d\phi, \] (18)
by (17) we get for such reduced form the two dimensional continuity equation
\[q \cos \phi \frac{\partial \varrho_\infty}{\partial \xi} + \frac{\sin \phi}{q} \frac{\partial \varrho_\infty}{\partial \theta} = 0 \] (19)
and the microcanonical solution on the whole configuration space \(\{\xi, \theta\} \) then reads
\[\varrho_\infty (\xi, \theta) = \begin{cases} \frac{1}{4\pi} & \forall \{\xi, \theta\} \in \Gamma_H \\ 0 & \forall \{\xi, \theta\} \notin \Gamma_H \end{cases}. \] (20)

4 Quantum Origin of the Chaos

The main result of the above Section 3 [7, 8] is the proof that the chaoticity of the Bianchi IX model above outlined is an intrinsic feature of its dynamics and not an effect induced by a particular class of references. Appearing this intrinsic chaos close to the Big Bang, we infer that it has strict relations with the indeterministic quantum dynamics the model performs in the Planckian era. The link between quantum and deterministic chaos is searched in the sense of a semiclassical limit for the canonical quantization of the model.

Indeed the asymptotical principle (2) can be quantized by a natural Schröedinger approach
\[i\hbar \frac{\partial \psi}{\partial \tau} = \hat{\mathcal{H}}_{ADM} \psi, \] (21)
being \(\psi = \psi (\tau, \xi, \theta) \) the wave function for the point-universe and, implementing \(\hat{\mathcal{H}}_{ADM} \) (see (3)) to an operator i.e.
\[\xi \rightarrow \hat{\xi}, \quad \theta \rightarrow \hat{\theta}, \]
\[p_\xi \rightarrow \hat{p}_\xi \equiv -i\hbar \frac{\partial}{\partial \xi}, \quad p_\theta \rightarrow \hat{p}_\theta \equiv -i\hbar \frac{\partial}{\partial \theta}. \] (22)

The non vanishing canonical commutation relations are
\[[\hat{\xi}, \hat{p}_\xi] = i\hbar, \quad [\hat{\theta}, \hat{p}_\theta] = i\hbar. \]
the equation (21) rewrites explicitly, in the asymptotic limit \(U \to U_\infty \),

\[
i \frac{\partial \psi}{\partial \tau} = \sqrt{\varepsilon^2 + \frac{U_\infty}{\hbar^2}} \psi,
\]

where we left \(U_\infty \) to stress that the potential cannot be neglected on the entire configuration space \(\{ \xi, \theta \} \) and, being infinity out of \(\Gamma_H \), it requires as boundary condition for \(\psi \) to vanish outside the potential walls \(\psi(\partial \Gamma_H) = 0 \). Since the potential walls \(U_\infty \) are time independent, a solution of (23) can be taken in the form

\[
\psi(\tau, \xi, \theta) = \sum_{n=1}^{\infty} c_n e^{-iE_n\tau/\hbar} \varphi_n(\xi, \theta)
\]

where \(c_n \) are constant coefficients and we assumed a discrete “energy” spectrum because the quantum point-universe is restricted in the finite region \(\Gamma_H \). Once taken an appropriate symmetric normal ordering prescription, the squared relation from (23) and the position (24) lead to the eigenvalue problem

\[
\left[-q \frac{\partial}{\partial \xi} q \frac{\partial}{\partial \xi} - \frac{1}{q} \frac{\partial}{\partial \theta} q \frac{\partial}{\partial \theta} \right] \varphi_n = \frac{E_n^2 - U_\infty}{\hbar^2} \varphi_n \equiv \frac{E_\infty^2}{\hbar^2} \varphi_n.
\]

The quantum equation (23) is equivalent to the Wheeler-DeWitt one for the same Bianchi model, once separated the positive and negative frequency solutions, with the advantage that now \(\tau \) is a real time variable.

In what follows we search the semiclassical solution of this equation regarding the eigenvalue \(E_\infty n \) as a finite constant (i.e. we consider the potential walls as finite) and only at the end of the procedure we will take the limit for \(U_\infty \) (6).

We infer that in the semiclassical limit when \(\hbar \to 0 \) and the occupation number \(n \) tends to infinity (but \(n \hbar \) approaches a finite value) the wave function \(\varphi_n \to \varphi \) and \(E_\infty n \to E_\infty \) so that we have

\[
\varphi(\xi, \theta) = \sqrt{r(\xi, \theta)} \exp \left\{ \frac{i}{\hbar} \frac{S(\xi, \theta)}{\hbar} \right\},
\]

where \(r \) and \(S \) are functions to be determined.

Substituting (26) in (23) and separating the real from the complex part we get two independent equations, i.e.

\[
E_\infty^2 = q^2 \left(\frac{\partial S}{\partial \xi} \right)^2 + \frac{1}{q^2} \left(\frac{\partial S}{\partial \theta} \right)^2 + O(\hbar^2) \quad \text{classical term}
\]

\[
0 = q \frac{\partial}{\partial \xi} \left(q r \frac{\partial S}{\partial \xi} \right) + \frac{1}{q^2} \frac{\partial}{\partial \theta} \left(q r \frac{\partial S}{\partial \theta} \right) + O(1/\hbar)
\]
The dominant term in (27) reduces to the Hamilton-Jacobi equation and its solution can be easily checked to be

$$S(\xi, \theta) = \int \left\{ \frac{1}{q} \sqrt{E_\infty^2 - \frac{k^2}{q^2}} d\xi + k d\theta \right\}$$ \quad (29)$$

where \(k\) is an integration constant. Through the identifications

$$\frac{\partial S}{\partial \xi} = p_\xi, \frac{\partial S}{\partial \theta} = p_\theta \iff S = \int (p_\xi d\xi + p_\theta d\theta),$$ \quad (30)$$

(27) is reduced to a mere algebraic constraint which is the asymptotic one \(H_{ADM}^2 = E^2 \equiv E_\infty^2\) and is solved by (13) replacing \(\varepsilon = E_\infty\), whose compatibility with (29) and (30) is then obtained using the equations of motion (15) which provide

$$\frac{d\xi}{d\phi} = -\frac{\xi^2}{\xi^2 - 1} \text{ctg} \varphi \Rightarrow \sqrt{\xi^2 - 1} \sin \varphi = c,$$ \quad (31)$$

where \(c = \text{const.}\); the required compatibility comes from the identification \(k = E_\infty c\). Since \(E_\infty \to \imath \infty\) outside \(\Gamma_H\) the solution \(\varphi(\xi, \theta)\) vanishes out of the billiard. The substitution in (28) of the positions (13) leads to the new equation

$$q \cos \phi \frac{\partial r}{\partial \xi} + \frac{\sin \phi}{q} \frac{\partial r}{\partial \theta} = 0,$$ \quad (32)$$

which coincides with (19), provided the identification \(r \equiv \rho_\infty\); this result ensures the correspondence between the statistical and the semiclassical quantum analysis.

References

[1] V.Lukash, Sov.Phys.-JETP 40 5 (1974) 792.
[2] L.P.Grischchuk et al., Sov. Phys.-JETP 42 n.6 (1975) 943.
[3] V.A.Belinski et al., Adv. Phys. 19 (1970) 525.
[4] C.W.Misner, Phys. Rev. Lett. 22 (1969) 1071.
[5] A.A. Kirillov and G. Montani, Phys. Rev. D 56 10 (1997) 6225.
[6] G. Montani, in “The Chaotic Universe”, V.G. Gurzadyan and R. Ruffini (eds), 173 World Sci 2000.

\(^9\)The discontinuity of this function on the boundary of \(\Gamma_H\) is due to the model adopted and doesn’t affect the probability distribution.
[7] G.P. Imponente and G. Montani, Phys. Rev. D 63 (2001) 103501.

[8] G.P. Imponente and G. Montani (gr-qc/0106028) (2001).

[9] A.A. Kirillov and G. Montani, JETP Lett. 66 7 (1997) 475.

[10] D.F. Chernoff and J.D. Barrow, Phys. Rev. Lett. 50 (1983) 134.