Statin Utilization among Patients with Acute Coronary Syndrome: Systematic Review

Pramitha Esha Nirmala Dewi¹,², Montarat Thavorncharoenas²

¹Department of Pharmacy Profession, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Bantul, Indonesia; ²Social, Economic and Administrative Pharmacy Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand

Abstract

BACKGROUND: The early use of statin with intensive regimen has been recommended by the recent guidelines as the prevention of acute coronary syndrome (ACS) related events among the high-risk patients. Meanwhile, the inconsistent statin utilization for targeted patient in current practice is still an issue.

AIM: This study aims to review the utilization rate of statin among patients with ACS.

METHODS: A systematic search of relevant studies published between inceptions to June 2020 was conducted in PubMed. Patients and intervention domains were used to build up the searching formula. A study was eligible for inclusion if it was an original study of patients with ACS and it examined the utilization of statin. The risk of bias was assessed using Axis and NOS checklist.

RESULTS: Among the 49 eligible studies, 38 were cohort studies while the others were cross-sectional studies. The utilization rate of statin at hospital admission ranged from 16% to 61% while 25% to 75% during the hospitalization. Of the total studies, 35 studies reported the statin rate at discharge ranging from 58% to 99%. Almost all studies revealed the reduction of statin utilization rate along the follow-up period. The number of statins prescribed was found to be lower among female and elderly patients.

CONCLUSION: Despite the established benefits of statin among patients with ACS, our study revealed that statin was underutilized for secondary prevention after ACS. To improve patients’ clinical outcomes with ACS, efforts should be made to increase optimal treatment and compliance with a statin.

Introduction

The number of death and disability-adjusted life year loss due to the cardiovascular related disease has been widely reported worldwide [1]. The current guidelines recommended the use of statin as the major therapy for atherosclerotic cardiovascular disease (ASCVD) as well as the acute coronary syndrome (ACS) [2]. The primary and secondary prevention purpose of statin prescribing has been applied for patients with ACS [3]. The effect of low-density lipoprotein cholesterol (LDL-c) level reduction is closely related to the diminishing risk of cardiovascular events recurrences among ACS patients [4], [5], [6]. The guideline from American Heart Journal had given their recommendation to initiate or continue statin therapy among patients with clinical or high-risk symptoms of ASCVD since 2013 [4] and still stated in the updated version [2], [5]. Current evidence also revealed that statin could prevent major adverse cardiac events, cardiac death, and re-hospitalization among ACS patients [6], [7], [8], [9], [10]. Although the guidelines and current evidence consistently revealed the benefits of statin among the ACS patients [2], [4], [5], [10], the actual rate of statin utilization was also an issue of concerns. To date, several studies were conducted to examine the rate of statin utilization among the ACS patients in current practice. Therefore, we performed a systematic review to describe statin utilization rate among patients with ACS.

Methods

Search strategy and eligibility criteria

Relevant studies were identified from the PubMed database (from inception to June 2020). Patients (P) and Intervention (I) domains were used to build up the searching formula as follows: P- “Acute Coronary Syndrome” [Mesh]; I- “Hydroxymethylglutaryl-CoA Reductase Inhibitors” [Mesh]; statin, atorvastatin, simvastatin, rosuvastatin, pitavastatin, pravastatin, and lovastatin. The two domains were combined with AND. Study selection was performed independently.
by two reviewers. A study was eligible for inclusion if; (1) it was an original study conducted among patients with ACS, and (2) it examined the utilization of statin. A study was subsequently excluded if; (1) it was published in non-English language; (2) qualitative study; (3) interventional study; and (4) inaccessible of the full text.

Data extraction and quality assessment

The predesigned data extraction form was used by the reviewers to extract the data independently. Negotiation and consensus were done among the reviewers to resolve any disagreement. For each included full paper, the authors extracted the following data; bibliography details; setting; study design; characteristics of patients; statin utilization at hospital admission, during hospitalization, discharge and after hospital discharge; the pattern of statin utilization; and factors affecting statin utilization.

The quality assessment of all selected studies was conducted using the standard checklist to set up a good standard for the selected articles, such as the Axis checklist (for cross-sectional study) [11] and the Newcastle-Ottawa (NOS) checklist (for cohort study) [12]. The Axis checklist consisted of 20 questions, classified into the quality of introduction (Q1), study design (Q2), sample size justification (Q3), target population (Q4), sampling frame (Q5), sample selection (Q6), addressing the non-responders (Q7), measurement validity (Q8), measurement reliability (Q9), statistics (Q10), overall methods (Q11), raw data (Q12), response rate (Q13, Q14), the internally consistent result (Q15), comprehensive description of results (Q16), justified discussions and conclusions (Q17), limitations (Q18), conflicts of interest (Q19), and ethical approval (Q20) [11]. The NOS checklist covered quality assessment related to the selection process (4 questions), comparability in the analysis process (1 question), and outcome reported (3 questions) [12].

In terms of the NOS scale, the number of stars represented the quality of cohort studies with 8–9 stars representing good quality, 6–7 stars representing moderate quality, and less than 6 stars representing low-quality [12].

Data analysis

Characteristics of each included study were described. The utilization of statin was tabulated to identify patterns across the included studies. Utilization at each time point (i.e., before hospitalization, in-hospital, discharge, and follow-up period) was also reported and summarized as a trend of statin use over time.

Results

Study selection

A total of 252 studies were identified from the PubMed database. Among those studies, 100 studies were excluded after screening titles and abstracts. Thirty-seven studies were further excluded due to inaccessible of full-text. After screening full-text studies, 66 studies were excluded from the study (not examining the statin utilization-42, review articles-17, interventional studies-4, and not reporting statin utilization among ACS patients-3). Finally, 49 studies were included in this systematic review [Figure 1].

![Flow chart for study selection](image)

Study quality

Among the 41 cross-sectional studies assessed by the Axis checklist, all those studies had "Yes" answer for questions number 1, 2, 4, 5, 6, 9, 10, 11, 12, 15, 16, and 17 and "No" answer for question number 3 and 14. Eighteen studies did not measure and categorize the non-responders [6], [7], [9], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26]. There were nine studies [10], [18], [24], [27], [28], [29], [30], [31], [32] collecting data on statin use directly from the patients either by interview or self-reporting. By assessing the quality among the selected studies related to question number 13, missing data/loss to follow-up was higher than 20% in the three studies [28], [33], [34]. Referring to question number 18, six studies [8], [15], [21], [35], [36], [37] did not report their study limitation in the discussion part. Thirteen out of 41 studies declared their conflict of interest according to question number 19 in the checklist [9],
The details of the assessment are shown in Table 2.

Statin prescribing pattern

This systematic review described the pattern of statin utilization in the ten studies [9], [16], [20], [27], [30], [33], [35], [37], [41], [50], which was prescribed with another ACS medication such as antiplatelet, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker (ACEI/ARB), and beta-blocker as summarized by Table 3. Seven studies [9], [20], [33], [35], [37], [50] reported the use of statin together with aspirin, beta-blockers, and ACEI/ARB, which was considered as the evidence-based treatment of secondary prevention among the ACS patients. The utility rate of such evidence-based treatment varied from 25% [37] to 86.7% [50]. The use of statin along with beta-blocker and antiplatelet was reported in five studies [20], [30], [35], [37], [50], with the ranges between 10.1% [20] and 93.2% [30] at discharge. The combination therapy between statin and antiplatelet at discharge was examined in the four studies [20], [27], [35], [50] with prescribing rate ranging from 2.6% [20] to 97.6% [50].

Study characteristics

Characteristics of all 49 included studies are shown in Table 4. The 49 included studies were published from 2008 to 2020. Among the included studies, 13 studies were from Asia, 16 studies from Europe, nine studies from Australia-New Zealand, six from America, one from Africa, and four studies conducted in the selected countries from multiple continents. Of all included studies, nine studies were conducted in multiple countries. Data sources were registry, teaching hospital, specific care unit, national data linkage, and secondary and tertiary hospital. The range of sample sizes varied from 151 to 159,713. In terms of study design, 38 were cohort, while 11 were cross-sectional studies. All studies except one study [9] examined statin utilization as secondary prevention.

Statin utilization

Table 5 displays statin utilization along with factors associated with statin utilization. Among all included studies, 14 studies reported the use of statin at hospital admission. Statin utilization at admission...
ranged from 11.43% to 94.8%. Unfortunately, there were only two studies whose statin utilization at admission was more than 50% [6], [47]. In terms of statin utilization during hospitalization, many studies (7 out of 11 studies) reported that statin utilization was higher than 80% [22], [29], [30], [32], [34], [51], [52]. We found that most of the selected studies (39 studies) measured statin utilization rates at hospital discharge. Statin utilization at discharge varied from 20% to 99%. It should be noted that 29 studies (74%) reported that more than 80% of ACS patients received statin at hospital
discharge.

Among the included studies, 18 studies reported statin use in a specified follow-up period after discharge. Most of those studies (17 of 18) reported statin use at 6 and/or 12 months as the follow-up time points. During the follow-up period, statin utilization rate ranged between 24.7% [31] and 94% [49]. The lowest rate (24.7%) of statin utilization during the follow-up period was reported among elderly patients (≥65 years old) [31].

Table 2: Quality assessment of cohort studies

Study	Year	Selection	Comparability	Outcome	Score
Kim et al. [42]	2012	9	9	8	
Zeymer et al. [43]	2013	9	9	8	
Gencer et al. [44]	2015	9	9	8	
Ferreira-Gonzalez et al. [44]	2016	9	9	8	
Mantel et al. [45]	2017	9	9	8	
Turner et al. [46]	2017	9	9	8	
Al-Zakwani et al. [47]	2018	9	9	8	
Sun et al. [48]	2018	9	9	8	

The decreasing trends of statin utilization from discharge time point to follow-up periods were reported in the 11 studies [23], [27], [28], [31], [35], [36], [38], [43], [49], [51], [53]. Only one study conducted by Hoedemaker et al. [25] found that statin utilization slightly increased (85.2–88.1%) during 30 days of post-hospitalization discharge then decreased during 12 months of follow-up period (88.1–84.1%). Among the 11 studies that reported the decreasing tendency of statin utilization, the average of alteration did not exceed 25% except for one study conducted by Jin et al. [31].

Several studies reported the utilization rate of statin by age and gender. Of the included studies, seven studies compared statin utilization between male and female groups [6], [13], [21], [34], [39], [41], [54]. All of these studies reported that the use of statin was lower in females than males. At discharge time point, the male group was more likely to receive statin therapy compared to the female (p < 0.001) as reported by Lee et al. [41] and Vermeer and Bajorek [13] (OR 3.36; 95% CI 1.11–10.15). Ghadri et al. [21] reported that the female group was less likely to be prescribed with statins at hospital discharge (85.2% vs. 89.4%). Shehab et al. [6] reported that the proportion of male versus females receiving statin at admission was 95.1% versus 93.6%, and, at discharge, it was 92.1% versus 88.2%. Females were less likely to receive statin during the hospitalization (94.3% vs. 95.4%) and at discharge (90.7% vs. 93.2%) compared to male as reported by Hao et al. [34]. Among the STEMI patients, 92.4% of female participants received statin compared to 93.6% of males. Similarly, in the NSTE-ACS subgroup, 87.1% of females and 92.2% of males received statin therapy [54].

Four studies reported the use of statin utilization by age [23], [31], [41], [54]. All of these studies reported a significantly lower rate of statin utilization among the elderly. Elderly patients aged ≥80 years with NSTE-ACS were much less likely to receive statins (OR 0.35, 95% CI 0.19–0.64) at a discharge time point, as reported by Pereira et al. [54]. More specifically, into the age group, Lee et al. [41] reported that patients with ages <45, 65–79, and ≥80 years old were significantly less likely to receive statin compared to patients in the 45–64 age group (p < 0.05).

Table 3: Statin prescribing pattern with others acute coronary syndrome medication

Study	Year	AP+S	ACEI+S	BB+S	BB+AP+S	BB+ACEI/ARB+S	AP+ACEI/ARB+S	AP+BB+ACEI/ARB+S
Amar et al. [38]	2008	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Lee et al. [41]	2008	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Bi et al. [27]	2009	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Wong et al. [27]	2009	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Boudet et al. [50]	2011	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Andrikopoulos et al. [53]	2012	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Shimi et al. [16]	2014	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge
Gausia et al. [20]	2014	83.4	54.1	54.1	54.1	47.5 at discharge	54.1	47.5 at discharge

AP: Antiplatelet, S: Statin, ACEI: Angiotensin-converting enzyme inhibitor, BB: Beta-blocker, ARB: Angiotensin receptor blocker.
Table 4: The characteristics of studies

Study	Year	Country	Time points	Data Source	Patients characteristics	Design	Sample Size
Amar et al. [35]	2008	France	At discharge to 14-month follow-up	PREVENIR-4 study	Patients hospitalized with ACS (2005)	Cross-Sectional	1700
Lee et al. [41]	2008	US (Mid Atlantic state)	At discharge to 14-month follow-up	Medical claim from Managed Care Organization	Patients with ACS at discharge	Cohort	1135
Vermeer and Bajorek [13]	2008	Australia	At discharge	1 Major public teaching hospital	Patients diagnosed as primary or secondary ACS (January-April 2007)	Cross-Sectional	169
Bi et al. [27]	2009	China	At discharge, 6 and 12-months follow-up	51 Hospitals (Secondary and Tertiary Hospital)	Patients admitted to hospitals with a diagnosis of STEMI, NSTEMI, or UA during Sept 2004-May 2006	Cohort	2901
Wong et al. [37]	2009	New Zealand	At discharge	2 Coronary Care Units	Hospital survivors with ACS discharged during 2000–2002 prescribed with aspirin	Cohort	1057
Wong et al. [8]	2009	New Zealand	At discharge to 5-year follow-up	2 Coronary Care Units	Hospital survivors with ACS discharged during 2000–2002 prescribed with aspirin	Cohort	1025
Abdallah et al. [14]	2010	Lebanon	In hospital and at discharge	Tertiary referral university hospital	Patients hospitalized and diagnosed with ACS (2002–2005)	Cross-Sectional	1025
Melloni et al. [28]	2010	USA	At admission, at discharge, and 12-month follow-up	University of Michigan Health System’s ACS registry	ACS patients (January 2006-September 2007)	Cohort	788
Ramanath et al. [17]	2010	USA	In hospital and 6-month follow-up	University of Michigan Health System’s ACS registry	Patients hospitalized due to ACS and underwent coronary angiography	Cohort	2264
Aijandi-Costa et al. [18]	2011	Australia	In hospital and 6-month follow-up	PREVENIR-5 study	Patients hospitalized for the first episode of ACS	Cross-Sectional	4850
Bourdes et al. [50]	2011	France	At discharge	GWTG program	ACS related hospitalization from 2005–2009	Cohort	159713
Javed et al. [33]	2011	USA	At discharge	ACCESS registry	Patients hospitalized with ACS (2007–2008) 46.1%STEMI and 54% NSTEMI-ACS	Cohort	11731
The Access Investigators [29]	2011	Latin America Middle Eastern Countries	At admission, at discharge, 6 and 12-months follow-up	TARGET study (17 centers)	Patients admitted with ACS (2012): 44.7% STEM1, 34.2% NSTEMI, 21.1% UA	Cohort	418
Andrikopoulos et al. [30]	2012	Greece	At discharge and 6-month follow-up	MUSTANG Registry	Patients presented with ACS and underwent PCI	Cohort	3362
Kim et al. [42]	2012	Korea	In hospital and 30-day follow-up	GRACE registry	Patients hospitalized and diagnosed with ACS at admission and discharge time points	Cohort	5556
Ranasinghe et al. [19]	2012	Australia New Zealand	In a hospital, at discharge, and 6-month follow-up	DMACS project (49 hospitals)	Patients discharged with ACS (June-Sep 2008) 22%STEMI, 38% NSTEMI, 20% UA, 20% Un-specified	Cross-Sectional	1545
Wai et al. [36]	2012	Australia	At discharge, 14-day and 3-month follow-up	1 University hospital	Patients discharged with acute MI (2000–2006)	Cohort	456
Yusuf et al. [7]	2012	USA	At discharge and 12-month follow-up	TARGET study	Patients with ACS admitted to the selected 17 hospitals	Cohort	366
Andrikopoulos et al. [30]	2013	Greece	At discharge and 6-month follow-up	Kerala ACS registry	Patients admitted to 125 hospitals (2007–2009)	Cross-Sectional	25718
Huffman et al. [55]	2013	India	At hospital and at discharge	1 Tertiary hospital	Patients with a primary diagnosis of ACS	Cross-Sectional	380
Kassab et al. [15]	2013	Malaysia	At admission and discharge	Gulf RACE-2 Registry	Patients hospitalized with ACS as final diagnostic from 65 hospitals (2008–2009)	Cohort	7930
Shehab et al. [8]	2013	6 Middle Eastern Countries	At admission, at discharge, and 12 months follow-up	APTOR registry	Patients presented with ACS and underwent PCI	Cohort	4546
Zeymer et al. [72]	2013	Spain UK France Czech rep Germany Greece Norway Austria Hungary Belgium Netherlands Sweden Denmark Finland Australia Yemen	At admission, in hospital, at discharge, 3-month, 6-month, and 12-month follow-up	WA hospital morbidity datasets and National datasets linkage of Public Hospital	Patients with ACS discharged alive (2002–2004)	Cohort	1717
Gausia et al. [20]	2014	Australia	At admission and discharge	WA hospital morbidity datasets and National datasets linkage of Public Hospital	Patients with ACS discharged from hospital over the year in 2007	Cohort	11384
Grey et al. [71]	2014	New Zealand	At discharge, 7-day, 30-day, 90-day, 12-month, 2-year, and 3-year follow-up	Data Linkage System	Patients with ACS admitted to hospitals	Cohort	469
Jin et al. [31]	2014	China	At discharge and 12-month follow-up	Cardiac center unit at a university hospital	Hospitalized patients with ACS (2009–2011)	Cohort	3078
Maggioni et al. [38]	2014	Italy	At discharge	ARNO Observatory record linkage (7 local Italian health authorities)	Patients discharged with ACS	Cross-Sectional	2111
Pereira et al. [54]	2014	Portugal	At discharge	10 Public Hospitals	Patients discharged with ACS (744 STEMI and 1364 NSTEM-ACS)	Cohort	2111

(Contd...)
Table 4: (Continued)

Study	Year	Country	Time points	Data Source	Patients characteristics	Design	Sample Size
Shimony et al. [16]	2014	High-income (Canada and United States) and Low-middle-income (India, Iran, Pakistan, and Tunisia)	At discharge	ZESCA study (36 Centers from 6 countries)	Current smoker (smoked ≥ 10 cigarettes/day) ACS patients admitted to the ICU or similar type of cardiology ward	Cross-Sectional	392 (265 from HIC, 127 from LMIC)
Wang et al. [51]	2014	Brazil	In a hospital, at discharge, and 6-month follow-up	ACCEPT registry	ACS patients (2011–2012)	Cohort	2453
Anzai et al. [23]	2015	Japan	In a hospital, at discharge, and 2-year follow-up	Teaching hospital	Patients underwent PCI for ACS with stenting (2005–2009)	Cohort	405
Gencer et al. [49]	2015	Switzerland	In hospital and 12-month follow-up	Teaching hospitals	ACS patients hospitalized during 2009–2012	Cohort	1602
Ghiatri et al. [21]	2015	Switzerland	In-hospital and 30-day follow-up	Z-ACS registry (1 university hospital)	ACS patients underwent coronary angiography during 2007–2012	Cohort	2612
Kassaian et al. [32]	2015	Iran	1 month and 12-month follow-up	11 Tertiary hospitals	Patients discharged alive with confirmed ACS	Cohort	1799
Medagama et al. [22]	2015	Sri Lanka	In hospital and at discharge	Tertiary teaching hospital	Patients presented with ACS (November 2011–March 2012)	Cohort	256
Selby et al. [9]	2015	Switzerland	At admission	Teaching hospital	Patients admitted with ACS without previous CVD	Cross-Sectional	3172
Ferreira-Gonzalez et al. [44]	2016	Spain	At discharge and 2-year follow-up	ACC registry (22 hospitals)	Patients admitted with ACS + PCI (Jan–April 2008)	Cohort	917
Gunnell et al. [39]	2016	Western Australia	At discharge and 20 years follow-up	Western Australia Data Linkage System PACS-HIV study	Patients alive after ACS (2008)	Cohort	23642
Bocca et al. [24]	2017	France	3-month and 6-month follow-up	SOLID-TIMI 52 study	Patients after ACS (2009–2011)	Cohort	12446
Eisen et al. [10]	2017	36 countries from North America, South America, Western Europe, Eastern Europe, Asia Pacific	3-month and 6-month follow-up	SOLID-TIMI 52 study	Patients after ACS (2009–2011)	Cohort	12446
Khedri et al. [40]	2017	Sweden	At admission, at discharge, and 3-month follow-up	SWEDHEART registry (72 hospitals)	Patients admitted with first ACS (2005–2010)	Cohort	77432
Mantel et al. [45]	2017	Sweden	12-month follow-up	National Population-based data linkage	Patients experienced first MI or UA (2007–2010)	Cohort	4319
Turner et al. [46]	2017	UK	At discharge, 1 month and 12-month follow-up	PhAACS study, NSTE-ACS cohort	ACS patients discharged on high potency statin	Cohort	1005
Al-Zakwani et al. [47]	2018	4 Middle Eastern Countries	At admission, in-hospital and 12-month follow-up	Gulf COAST registry (24 hospitals)	Patients diagnosed with ACS admitted to the hospital (2012–2013)	Cohort	3681
Boldt et al. [26]	2018	USA	At admission, in-hospital and 12-month follow-up	MarketScan Research Databases	Patients who experienced at least 1 inpatient admission with ACS as primary diagnosis (2002–2014), STEMI and NSTEMI patients admitted to a hospital (2006–2014)	Cohort	7802
Hoedemaker et al. [25]	2018	Netherlands	In a hospital, 30-day and 12-month follow-up	1 Tertiary hospital (Single center registry)	Patients with STEMI or NSTEMI admitted to hospital (2013–2018)	Cross-Sectional	151
Sun et al. [49]	2018	China	In-hospital and 6-month follow-up	12-month follow-up	Patients with STEMI or NSTEMI admitted to hospital (2013–2018)	Cross-Sectional	151
Hao et al. [34]	2019	China	In hospital and at discharge	CAC-ACS registry	Patients with STEMI or NSTEMI admitted to hospital (2013–2018)	Cross-Sectional	82196
Desta et al. [52]	2020	Ethiopia	In hospital and at discharge	1 Specialized Hospital	Patients with STEMI or NSTEMI admitted to hospital (2013–2018)	Cross-Sectional	151

Discussion

The present systematic review included data regarding statin utilization from the 49 studies over the world. Our review found that the rate of statin utilization at discharge varied from 20% to 99%. It should be noted that one-third (ten studies) of the included studies, which reported the use of statin at discharge, found that less than 80% of ACS patients received statin at hospital discharge. It should be noted that almost all those studies [7], [8], [14], [20], [23], [24], [33], [37], [55] collected the data before 2013 except Boccaro et al. [24], who collected the data from 2002 to 2014 when the recommendation of using statin as primary prevention and secondary prevention for ACS was just published in 2014 [4].

About 64% of the studies found that statin utilization rate during hospitalization was higher than 80%. Of the four studies, which reported statin utilization rate during less than 80% hospitalization, two studies were conducted in low and middle-income countries, including Lebanon [14] and Ethiopia [52]. The affordability and limited access to the essential medicines were reported among the low- and middle-income countries [56]. The others were conducted in high-income countries, but they used retrospective data in 1999–2007 [19] and 2002–2014 [26].

Although existing evidence indicated that adherence to statin treatment was associated with the reduction in cardiovascular related events and all-cause mortality [57], [58], [59], a previous systematic review found a low adherence rate of statin treatment [60]. Similarly, almost all included studies in our review, which examined the statin utilization trend along the follow-up time points, found that the level of statin use was diminished since the discharge time point. It could probably be due to several reasons, including the...
Study	Statin utilizationx	Pattern of statin use	Factor predicting statin use		
	At Admission (%)	In Hospital (%)	At Discharge (%)	Post Discharge (%)	46.2%, 45.6% use combination of 4 treatments (Beta blocker, antiplatelet, stain, ACE) at discharge and 14 mos follow-up
			Older patients were less likely to receive statin (p < 0.001)	Women were less likely than men to receive statin (<0.001)	
			Men were likely to be discharged with a statin; OR = 3.36 (1.11, 10.15)		
			Female are less likely than male to received statin during hospitalization and at discharge		
			In hospital: 40% received optimal treatment (Aspirin, clopidogrel, Beta-blocker, stain, and heparin) At discharge: 46% received optimal treatment (Aspirin, clopidogrel, Beta-blocker, stain)		
			Female is less likely than male to receive statin during hospitalization and at discharge		
			Undersused at follow-up occurred in elderly > nonelderly		
			At discharge: 55% received atorvastatin, 26.6%-simvastatin, 14.8%-rosuvastatin, 10.1%-pravastatin, 8.5%-Simvastain+Ezetimibe 0.6%-Lovastatin		

Study	Statin utilizationx	Pattern of statin use	Factor predicting statin use	
Amar et al. [35]	89.2	85.6 (14 mos)		
Lee et al. [41]	62.6 (3 mos)	60.3 (6 mos)	73.5 (12 mos)	76.6 (18 mos)
Vermeer and Bajorek [13]	85			
Bi et al. [27]	62.6 (3 mos)	60.3 (6 mos)	73.5 (12 mos)	76.6 (18 mos)
Lee et al. [41]	58.8 (47% for patients without revascularization; 73% among patients with revascularization)	59.4 (12 mos)		
Vermeer and Bajorek [13]	85			
Lee et al. [41]	40	85	89 (69.1% among non-obstructive CAD, 81.1% among obstructive CAD) 64.5, 65.4 for STEMI, NSTEMACS (2000–2001) 80, 80.6 for STEMI, NSTEMACS (2004–2005) 88.5, 84.4 for STEMI, NSTEMACS (2006–2007)	Of 2131 patients who received EBCM at discharge, 98.1% still used statin at 24 months after discharge
Aliprandi-Costa et al. [18]	40	93	93.7	87.7 (6 mos)
Bourdès et al. [50]	40	93	93.7	87.7 (6 mos)
Javed et al. [33]	90.7 (90% in NSTEMI; 91% in STEMI)	89.2 (88% in NSTEMI; 91% in STEMI)	83 (12 mos)	The use of intensive statin monotherapy: 26.9 at 2005 29.1 at 2006 30.2 at 2007 30.4 at 2008 32.2 at 2009 89.2 (88% in NSTEMI; 91% in STEMI)
The Access of Investigators [29]	90.7 (90% in NSTEMI; 91% in STEMI)	89.2 (88% in NSTEMI; 91% in STEMI)	83 (12 mos)	Of 2131 patients who received EBCM at discharge, 98.1% still used statin at 24 months after discharge
Andrikopoulos et al. [30]	40	93	93.7	87.7 (6 mos)
Kim et al. [42]	49.8	76	92 (3 mos)	
Wai et al. [38]	20.6	93.2	87.7 (6 mos)	
Yusuf et al. [37]	11.43	78.9	87.7 (6 mos)	
Kassab et al. [15]	94.8 (Male 95.1%, female 93.6%, p = 0.019)	95.9 (Male = 92.1%, female = 88.2%, p < 0.001)	87 (12 mos)	Female is less likely than male to receive statin during hospitalization and at discharge
Shehab et al. [8]	94.8 (Male 95.1%, female 93.6%, p = 0.019)	95.9 (Male = 92.1%, female = 88.2%, p < 0.001)	87 (12 mos)	
Zeymer et al. [72]	34	89	88.5 (6 mos)	
Gausia et al. [20]	75.4% (aboriginal 73.5%, non-aboriginal 76.2%, p = 0.25)	59 (7 days)	77 (12 mos)	
Grey et al. [71]	44		83 (3 mos)	
Jin et al. [31]	88.8 (85.1 in elderly vs. 90.6 in non-elderly, p = 0.067)	24.7 (12 mos) (21.8 in elderly vs. 29.6 in non-elderly, 9 = 0.005)	67.2 (12 mos)	
Maggioni et al. [38]	80.3		67.2 (12 mos)	At discharge: 55% received atorvastatin, 26.6%-simvastatin, 14.8%-rosuvastatin, 10.1%-pravastatin, 8.5%-Simvastain+Ezetimibe 0.6%-Lovastatin

(Contd...)
side-effect of statin [61], [62], poor prescriber-patient relationship [60], and the quantity of received drugs at discharge [31]. The previous studies also found that under-used of statin among ACS was also associated with low education (OR 3.39; 95% CI 1.65–9.32), the greater number of comorbidities (OR 1.64; 95%CI 1.12–2.39), the quantity of received drugs at discharge (OR 1.31; 95%CI 1.11–1.55), low income (OR 3.97; 95%CI 1.47–10.75), and depression (OR 2.62; 95%CI 2.03–3.38) [31]. As the rate of statin utilization during follow-up was decreasing, effective intervention by a multi-disciplinary team, which included physician/cardiologist, pharmacist as well as patient’s family support to improve statin utilization among ACS should be implemented. Health system and policy support were also required to improve ACS evidence-based medicine adherence, including statin.

Our studies also revealed that statin utilization rate was lower among females, as compared to males. It could lead to higher mortality among female patients with ACS [63], [64], [65]. On the other hand, it could probably be due to the fact that males experienced more invasive procedures than females; thus, they were supposed to receive more statin prescriptions [6], [39]. Furthermore, statin utilization was also found to be lower among the elderly. A prior study reported that the number of concurrent medication and the comorbid diseases owned by the elderly could impact their adherence [31]. Therefore, more efforts should be made to improve the utilization rate among these patients.

This review is not without any limitations. First, only one database (PubMed) was used to identify studies. Second, our study mainly focused on statin utilization by putting aside other evidence-based treatment for ACS. However, recent guidelines recommended using statin among the ACS patients and recommended that high-risk statin be used among high-risk populations without considering their LDL-c level [2], [5], [66], [67]. It should be noted that our

Study	Statin utilization (%)	Pattern of statin use	Factor predicting statin use
Pereira et al. [54]	93% among STEMI, 90% among NSTE-ACS	Patients aged≥80 years with NSTE-ACS were much less likely to be discharged with statins (OR 0.35, 95% CI 0.19–0.64)	
Shimony et al. [16]	90.3% in HIC, 76.8% in LIC (OR = 2.8, 95% CI: 1.6–5.0)	The elderly were less likely to receive statin	
Wang et al. [51]	90.6 vs. 87 (age< 80 yrs)	Females were less likely to receive a statin at discharge as compared to males	
Anza et al. [23]	87 (age ≥ 80 yrs) vs. 69 (age < 80 yrs)		
Gencer et al. [49]	99 (of this 70 were at high-intensity statin) vs. 94 (12 mos)		
Ghadri et al. [21]	31.3 (31.8 in male vs. 29.4 in female, p = 0.26)		
Kassaia et al. [32]	94.3 vs. 96.1 vs. 96.1		
Medagama et al. [22]	94.3 vs. 96.1 vs. 96.1		
Selby et al. [8]	16 compared to 27 eligible for statin		
Ferreira-González et al. [44]	89.4		
Gunnell et al. [39]	79.6 (82% in male, 75.5% in female)		
Boccara et al. [24]	12.4 vs. 95.2	Of those received statin, 41.9% got high intensity statin. Of these patients, 82% were still on high potency statin after 2.3 years	
Eisen et al. [10]	95.2		
Khedri et al. [40]	21 vs. 84.4	Patients with eGFR 30-59 were more likely to statin treatment cessation (OR = 1.35, 1.29–1.41)	
Mantel et al. [45]	73.5 (3 mos) vs. 63.5 (6-12 mos) vs. 84.4 (12 mos)		
Turner et al. [46]	61 vs. 97 vs. 84.4 (12 mos)		
Al-Zaikani et al. [47]	70.9 vs. 85.2 vs. 84.1 (12 mos)	43.7, 46.6, 25.5 received optimal treatment at discharge, 30 days, and 12 mos, respectively.	
Hoedemaker et al. [25]	30.5 vs. 30.5 vs. 30.5 (12 mos)		
Sun et al. [48]	17.5 vs. 95.1 (95.4 in male, 94.3 in female) vs. 85 vs. 92.6 (93.2 in male, 87.0 in female)	Female were less likely to receive statin at discharge (OR = 0.86, 0.81–0.92)	
Desta et al. [52]	84.1 vs. 94.7		

NSTEMI: Non–ST-elevation myocardial infarction, NSTE-ACS: Non–ST-elevation acute coronary syndrome, STEMI: ST-elevation myocardial infarction, UA: Unstable angina, Mos: Months.
study did not mainly focus on the intensity of statin as well as other evidence-based treatment for secondary prevention among ACS. Nevertheless, our study could imply that the rate of evidence-based treatment among ACS patients would be even lower than the rate of statin utilization. Finally, it should be noted that the utilization rate of statin among ACS also depends on the characteristics of ACS patients, such as renal function [40], [68], liver function [69], and Parkinson’s disease [70].

Conclusion

Although the benefits of statin in ACS patients have been established [6], [7], [8], [9], [10], our study revealed the under-utilization rate of statin for secondary prevention among ACS patients, especially during follow-up. This review highlighted the suboptimal adherence to the guideline recommendation in real-world practice. To improve patients’ clinical outcomes with ACS, substantial efforts should be made to increase optimal treatment prescription among physicians and increase adherence of statin among ACS patients [5].

References

1. Ritchie MRaH. Burden of Disease; 2017. Available from: https://www.ourworldindata.org/burden-of-disease. [Last accessed on 2020 Aug 11]
2. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-88. https://doi.org/10.15882/1560-4071-2020-3826 PMid:31504418
3. Ruscica M, Macchi C, Pavanello C, Corsini A, Sahebkar A, Sirtori CR. Appropriateness of statin prescription in the elderly. Eur J Intern Med. 2018;50:33-40. https://doi.org/10.1016/j.ejim.2017.12.011 PMid:29310996
4. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889-934. https://doi.org/10.1016/j.jacc.2014.05.018 PMid:24239923
5. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldbergier ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596-646. https://doi.org/10.1161/cir.0000000000007275 PMid:30879355
6. Shehab A, Al-Dabbagh B, AlHabib KF, Alsheikh-Ali AA, Almahmeed W, Sulaiman K, et al. Gender disparities in the presentation, management and outcomes of acute coronary syndrome patients: Data from the 2nd Gulf Registry of Acute Coronary Events (Gulf RACE-2). PLoS One. 2013;8(2):e55508. https://doi.org/10.1371/journal.pone.0055508 PMid:23405162
7. Yusuf SW, Daraban N, Abbasi N, Lei X, Durand JB, Daher IN. Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35(7):443-50. https://doi.org/10.1002/clc.22207 PMid:22589843
8. Wong CK, Tang EW, Herbison P. Prognostic interactions between statins and in-hospital revascularisation on the outcome of acute coronary syndrome. Heart Lung Circ. 2009;18(4):262-5. https://doi.org/10.1016/j.hlc.2008.12.001 PMid:19167924
9. Selby K, Nanchen D, Auer R, Gencer B, Räber L, Klingenberg R, et al. Low statin use in adults hospitalized with acute coronary syndrome. Prev Med. 2015;77:131-6. https://doi.org/10.1016/j.ypmed.2015.05.012 PMid:26007299
10. Kassab YW, Hassan Y, Aziz NA, Akram H, Ismail O, et al. Predictors of nonuse of a high-potency statin after an acute coronary syndrome: Insights from the stabilization of plaques using darapladib-thrombolysis in myocardial infarction 52 (SOLID-TIMI 52) trial. J Am Heart Assoc. 2017;6(1):e004332. https://doi.org/10.1161/jaha.116.004332 PMid:28077384
11. Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open. 2016;6(12):e011458. https://doi.org/10.1136/bmjopen-2016-011458 PMid:27932337
12. Peterson J, Welch V, Losos M, Tugwell P, The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses. UK: University of Liverpool; 2000.
13. Vermeer NS, Bajorek BV. Utilization of evidence-based therapy for the secondary prevention of acute coronary syndromes in Australian practice. J Clin Pharm Ther. 2008;33(6):581-801. https://doi.org/10.1111/j.1365-2708.2008.00959.x PMid:19138236
14. Abdallah M, Karrwini W, Shamseddelen W, Itani S, Kobeissi L, Ghazzal Z, et al. Acute coronary syndromes: Clinical characteristics, management, and outcomes at the American University of Beirut Medical Center, 2002-2005. Clin Cardiol. 2010;33(1):E6-13. https://doi.org/10.1002/clc.20636 PMid:20014175
15. Kassab YW, Hassan Y, Aziz NA, Akram H, Ismail O. Use of evidence-based therapy for the secondary prevention of acute coronary syndromes in Malaysian practice. J Eval Clin Pract. 2013;19(4):658-63. https://doi.org/10.1111/j.1365-2753.2012.01894.x PMid:22845427
16. Shimony A, Grandi SM, Pilote L, Joseph L, O’Loughlin J, Paradis G, et al. Utilization of evidence-based therapy for acute coronary syndrome in high-income and low-middle-income countries. Am J Cardiol. 2014;113(5):793-7. https://doi.org/10.1016/j.amjcard.2013.11.024 PMid:24440324
17. Ramanath VS, Armstrong DF, Grzybowski M, Rahnama-Mohagdam S, Tamhane UU, Gordon K, et al. Receipt of cardiac medications upon discharge among men and women with acute coronary syndrome and nonobstructive coronary artery disease. Clin Cardiol. 2010;33(1):36-41. https://doi.org/10.1002/
18. Aliprandi-Costa B, Ranasinghe I, Chou V, Kapila S, Juergens C, Devlin G, et al. Management and outcomes of patients with acute coronary syndromes in Australia and New Zealand, 2000-2007. Med J Aust. 2011;195(3):116-21. https://doi.org/10.5694/j.1326-5377.2011.tb03237.x
PMID:21806528

19. Ranasinghe I, Naoum C, Aliprandi-Costa B, Sindone AP, Steg PG, Elliott J, et al. Management and outcomes following an acute coronary event in patients with chronic heart failure 1999-2007. Eur J Heart Fail. 2012;14(5):464-72. https://doi.org/10.1093/eurjhf/hfs041
PMID:22499543

20. Gausia K, Katzenellenbogen JM, Sanfilippo FM, Knuiman MW, Thompson PL, Hobbs MS, et al. Evidence-based prescribing of drugs for secondary prevention of acute coronary syndrome in Aboriginal and non-Aboriginal patients admitted to Western Australian hospitals. Intern Med J. 2014;44(4):353-61. https://doi.org/10.1111/imj.12375
PMID:24528030

21. Ghadri JR, Sarcon A, Jaguszewski M, Diekmann J, Bataisou RD, Hellermann J, et al. Gender disparities in acute coronary syndrome: A closing gap in the short-term outcome. J Cardiovasc Med (Hagerstown). 2015;16(5):355-62. https://doi.org/10.1016/j.jcmg.2015.03.008
PMID:26492726

22. Medagama A, Bandara R, De Silva C, Galgomuwa MP. Management of acute coronary syndromes in a developing country: time for a paradigm shift? An observational study. BMC Cardiovasc Disord. 2015;15:133. https://doi.org/10.1186/s12872-015-0125-y
PMID:26185712

23. Anzai A, Maekawa Y, Kodaira M, Mogi S, Arai T, Kawakami T, et al. Prognostic implications of optimal medical therapy in patients undergoing percutaneous coronary intervention for acute coronary syndrome in octogenarians. Heart Vessels. 2015;30(2):186-92. https://doi.org/10.1007/s00380-014-0474-y
PMID:24493327

24. Boccarda F, Miantezila Basilia J, Mary-Krause M, Lang S, Teiger E, Steg PG, et al. Statin therapy and low-density lipoprotein cholesterol reduction in HIV-infected individuals after acute coronary syndrome: Results from the PACS-HIV lipids substudy. Am J Heart. 2017;183:91-101. https://doi.org/10.1016/j.amjheart.2016.10.013
PMID:27979047

25. Hoedemaker NP, Damman P, Ottervanger JP, Dambrink JH, Gosselinik AT, Kedhi E, et al. Trends in optimal medical therapy prescription and mortality after admission for acute coronary syndrome: A 9-year experience in a real-world setting. Eur Heart J Cardiovasc Pharmacother. 2018;4(2):102-10. https://doi.org/10.1007/s40229-017-0147-1
PMID:29394340

26. Boklage SH, Malangone-Monaco E, Lopez-Gonzalez L, Ding Y, Henriques C, Ellassal J. Statin utilization patterns and outcomes for patients with acute coronary syndrome during and following inpatient admissions. Cardiovasc Drugs Ther. 2018;32(3):273-80. https://doi.org/10.1007/s10557-018-6800-3
PMID:29855748

27. Bi Y, Gao R, Patel A, Su S, Gao W, Hu D, et al. Evidence-based medication use among Chinese patients with acute coronary syndromes at the time of hospital discharge and 1 year after hospitalization: Results from the Clinical Pathways for acute coronary syndromes in China (CPACS) study. Am Heart J. 2009;157(3):509-16. https://doi.org/10.1016/j.ahj.2008.09.026
PMID:19249422

28. Melloni C, Shah BR, Ou FS, Roe MT, Smith SC Jr., Pollack CV Jr., et al. Lipid-lowering intensification and low-density lipoprotein cholesterol achievement from hospital admission to 1-year follow-up after an acute coronary syndrome event: Results from the Medications Applied aNd SusTaIned Over Time (MAINTAIN) registry, Am Heart J. 2010;160(6):1121-9. https://doi.org/10.1016/j.ahj.2010.09.008
PMID:21146667

29. ACCESS Investigators. Management of acute coronary syndromes in developing countries: Acute coronary events—a multinational survey of current management strategies. Am Heart J. 2011;162(5):852-9. https://doi.org/10.1016/j.ahj.2011.07.029
PMID:22093201

30. Andrikopoulos G, Tzeis S, Mantas I, Olympios C, Kitsiou A, Kartalis A, et al. Epidemiological characteristics and in-hospital management of acute coronary syndrome patients in Greece: Results from the TARGET study. Hellenic J Cardiol. 2012;53(1):33-40.
PMID:22275741

31. Jin H, Tang C, Wei Q, Chen L, Sun Q, Ma G, et al. Age-related differences in factors associated with the underuse of recommended medications in acute coronary syndrome patients at least one year after hospital discharge. BMC Cardiovasc Disord. 2014;14(1):127. https://doi.org/10.1186/1471-2261-14-127
PMID:25252927

32. Kassaian SE, Masoudkabir F, Sezavar H, Mohammadi M, Pourmoghadass A, Kojuri J, et al. Clinical characteristics, management and 1-year outcomes of patients with acute coronary syndrome in Iran: The Iranian Project for Assessment of Coronary Events 2 (iPACE2). BMJ Open. 2015;5(12):e007786. https://doi.org/10.1136/bmjopen-2015-007786
PMID:26667197

33. Javed U, Deedwania PC, Bhatt DL, Cannon CP, Dai D, Hernandez AF, et al. Use of intensive lipid-lowering therapy in patients hospitalized with acute coronary syndrome: An analysis of 65,396 hospitalizations from 344 hospitals participating in Get With The Guidelines (GWTG). Am Heart J. 2010;160(6):1130-6. https://doi.org/10.1016/j.ahj.2010.08.041
PMID:21146668

34. Hao Y, Liu J, Liu J, Yang N, Smith SC Jr., Hoo Y, et al. Sex differences in in-hospital management and outcomes of patients with acute coronary syndrome. Circulation. 2019;139(15):1776-85.
PMID:30667281

35. Amar J, Ferrieres J, Cambou JP, Amelineau E, Danchin N. Persistence of combination of evidence-based medical therapy in patients with acute coronary syndromes. Arch Cardiovasc Dis. 2008;101(5):301-6. https://doi.org/10.1016/j.acvd.2008.04.005
PMID:18656088

36. Wai A, Pulver LK, Oliver K, Thompson A. Current discharge management of acute coronary syndromes: Baseline results from a national quality improvement initiative. Intern Med J. 2012;42(5):e53-9. https://doi.org/10.1111/j.1445-5994.2010.02308.x
PMID:20646093

37. Wong CK, Tang EW, Herbison P. The use of different evidence-based medications and 5-year survival after an acute coronary syndrome: An observational study. Int J Cardiol. 2009;132(2):197-202. https://doi.org/10.1016/j.ijcard.2007.11.005
PMID:18191242

38. Maggioni AP, Rossi E, Cinconze E, De Rosa M. Use and misuse of statins after ACS: Analysis of a prescription database of a community setting of 2,042,968 subjects.
https://oamjms.eu/index.php/oamjms/index
Eur J Prev Cardiol. 2014;21(9):1109-16. https://doi.org/10.1177/2047487314523400
PMid:25339716

39. Gunnell AS, Hung J, Knuiman MW, Nedkoff L, Gillies M, Geelhoed E, et al. Secondary preventive medication use in a prevalent population-based cohort of acute coronary syndrome survivors. Cardiovasc Ther. 2016;34(6):e423-30. https://doi.org/10.1111/1755-5922.12212
PMid:27448953

40. Khedri M, Szummer K, Carrero JJ, Jernberg T, Evans M, Jacobson SH, et al. Systematic underutilisation of secondary preventive drugs in patients with acute coronary syndrome and reduced renal function. Eur J Prev Cardiol. 2017;24(7):724-34. https://doi.org/10.1177/2047487317693950
PMid:28195517

41. Lee HY, Cooke CE, Robertson TA. Use of secondary prevention drug therapy in patients with acute coronary syndrome after hospital discharge. J Manag Care Pharm. 2008;14(3):271-80. https://doi.org/10.18553/jmpc.2008.14.3.271
PMid:18439049

42. Kim MJ, Jeon DS, Gwon HC, Kim SJ, Chang K, Kim HS, et al. Current statin usage for patients with acute coronary syndrome undergoing percutaneous coronary intervention: Multicenter survey in Korea. Clin Cardiol. 2012;35(11):700-6. https://doi.org/10.1002/clc.22038
PMid:22285844

43. Zeymer U, Berkenboom G, Coufal Z, Belger M, Sartral M, Nornbacka K, et al. Predictors, cost, and outcomes of patients with acute coronary syndrome who receive optimal secondary prevention therapy: Results from the antplatelet treatment observational registries (APTOR). Int J Cardiol. 2013;170(2):239-45. https://doi.org/10.1016/j.ijcard.2013.10.057
PMid:24225199

44. Ferreira-González I, Carrillo X, Martín V, de la Torre Hernández JM, Baz JA, Navarro Manchón J, et al. Interhospital variability in drug prescription after acute coronary syndrome: Insights from the ACDC study. Rev Esp Cardiol (Engl Ed). 2016;69(2):117-24. https://doi.org/10.1016/j.repc.2015.04.018
PMid:26253861

45. Mantel Á, Holmqvist M, Jernberg T, Wallberg-Jonsson S, Askling J. Long-term outcomes and secondary prevention after acute coronary events in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76(12):2017-24. https://doi.org/10.1136/annrheumdis-2017-211608
PMid:28823986

46. Turner RM, Yin P, Hanson A, FitzGerald R, Morris AP, Stables RH, et al. Investigating the prevalence, predictors, and prognosis of suboptimal statin use early after a non-ST elevation acute coronary syndrome. J Clin Lipidol. 2017;11(1):204-14. https://doi.org/10.1016/j.jacl.2016.12.007
PMid:28391887

47. At-Zakwani I, Zubaid M, Alsheikh-Alia AA, Almahmeed W, Rashed W. Effect of evidence-based cardiac drug therapy on mortality in patients with acute coronary syndrome: Findings from the Gulf COAST registry. Cardiovasc Ther. 2018;36(6):e12463. https://doi.org/10.1111/1755-5922.12463
PMid:30080024

48. Sun Y, Xie G, Patel A, Li S, Zhao W, Yang X, et al. Prescription of statins at discharge and 1-year risk of major clinical outcomes among acute coronary syndromes patients with extremely low LDL-cholesterol in clinical pathways for acute coronary syndromes studies. Clin Cardiol. 2018;41(9):1192-200. https://doi.org/10.1002/clc.23040
PMid:30084224

49. Gencer B, Auer R, Nanchen D, Räuber L, Klingenberg R, Carballo D, et al. Expected impact of applying new 2013 AHA/ACC cholesterol guidelines criteria on the recommended lipid target achievement after acute coronary syndromes. Atherosclerosis. 2015;239(1):118-24. https://doi.org/10.1016/j.atherosclerosis.2014.12.049
PMid:25585031

50. Bourdès V, Ferrières J, Amar J, Amelineau E, Bonnevey S, Berlon M, et al. Prediction of persistence of combined evidence-based cardiovascular medications in patients with acute coronary syndrome after hospital discharge using neural networks. Med Biol Eng Comput. 2011;49(8):947-55. https://doi.org/10.1007/s11517-011-0754-5
PMid:21598000

51. Wang R, Neuenenschwander FC, Lima Filho A, Moreira CM, Santos ES, Reis HJ, et al. Use of evidence-based interventions in acute coronary syndrome - Subanalysis of the ACCET registry. Arq Bras Cardiol. 2014;102(4):319-26. https://doi.org/10.5935/abc.20140033
PMid:24652052

52. Desta DM, Nedi T, Hailu A, Atey TM, Tsadik AG, Agsedom SW, et al. Treatment outcome of acute coronary syndrome patients admitted to Ayder Comprehensive Specialized Hospital, Mekelle, Ethiopia; A retrospective cross-sectional study. PLoS One. 2020;15(2):e0228953. https://doi.org/10.1371/journal.pone.0228953
PMid:32053702

53. Andrikopoulos G, Tzeis S, Nikas N, Richter D, Pipilas A, Gotsis A, et al. Short-term outcome and attainment of secondary prevention goals in patients with acute coronary syndrome -results from the countrywide TARGET study. Int J Cardiol. 2013;168(2):922-7. https://doi.org/10.1016/j.ijcard.2012.10.049
PMid:23186596

54. Pereira M, Araújo C, Dias P, Lunet N, Subirana I, Marrugat J, et al. Age and sex inequalities in the prescription of evidence-based pharmacological therapy following an acute coronary syndrome in Portugal: The EURHOBOP study. Eur J Prev Cardiol. 2014;21(11):1401-8. https://doi.org/10.1177/2047487314523400
PMid:23787795

55. Huffman MD, Prabhakaran D, Abraham AK, Krishnan MN, Namibiar AC, Mohanan PP. Optimal in-hospital and discharge medical therapy in acute coronary syndromes in Kerala: Results from the Kerala acute coronary syndrome registry. J Indian Heart Assoc. 2014;13(6):436-43. https://doi.org/10.1111/jiah.12067
PMid:24691160

56. Ozawa S, Shankar R, Leopold C, Onubu S. Access to medicines through health systems in low- and middle-income countries. Health Policy Plan. 2019;34;i1-i3. https://doi.org/10.1093/heapol/czz119

57. De Vera MA, Bhote V, Burns LC, Lalonde D. Impact of statin adherence on cardiovascular disease and mortality outcomes: A systematic review. Br J Clin Pharmacol. 2014;78(4):684-98. https://doi.org/10.1111/bcp.12339
PMid:25364801

58. Simpson RJ Jr., Mendys P. The effects of adherence and persistence on clinical outcomes in patients treated with statins: A systematic review. J Clin Lipidol. 2010;4(6):462-71. https://doi.org/10.1016/j.jacl.2010.08.026
PMid:21122692

59. Huber CA, Meyer MR, Stelfel J, Blozik E, Reich O, Rosemann T. Post-myocardial infarction (MI) care: Medication adherence for secondary prevention after MI in a large real-world population. Clin Ther. 2019;41(1):107-17. https://doi.org/10.1016/j.clincerr.2018.11.012
PMid:30591287

Open Access Maced J Med Sci. 2021 May 14; 9(14):267-278.
60. Lemstra M, Blackburn D, Crawley A, Fung R. Proportion and risk indicators of nonadherence to statin therapy: A meta-analysis. Can J Cardiol. 2012;28(5):574-80. https://doi.org/10.1016/j.cjca.2012.05.007
PMId:22884278

61. Mathews R, Wang T, Honeycutt E, Henry TD, Zettel M, Chang M, et al. Persistence with secondary prevention medications after acute myocardial infarction: Insights from the TRANSLATE-ACS study. Am Heart J. 2015;170(1):62-9. https://doi.org/10.1016/j.ahj.2015.03.019
PMId:26093865

62. Gencer B, Rodondi N, Auer R, Räber L, Klingenberg R, Nanchen D, et al. Reasons for discontinuation of recommended therapies according to the patients after acute coronary syndromes. Eur J Intern Med. 2015;26(1):56-62. https://doi.org/10.1016/j.ejim.2014.12.014
PMId:25582072

63. Akhter N, Milford-Beland S, Roe MT, Piana RN, Kao J, Shroff A. Gender differences among patients with acute coronary syndromes undergoing percutaneous coronary intervention in the American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR). Am Heart J. 2009;157(1):141-8. https://doi.org/10.1016/j.ahj.2008.08.012
PMId:19081410

64. Tamargo J, Rosano G, Walther T, Duarte J, Niessner A, Kaski JC, et al. Gender differences in the effects of cardiovascular drugs. Eur Heart J Cardiovasc Pharmacother. 2017;3(3):163-82. https://doi.org/10.1093/ehjcvp/pww042
PMId:28329228

65. Yang HY, Huang JH, Hsu CY, Chen YJ. Gender differences and the trend in the acute myocardial infarction: A 10-year nationwide population-based analysis. ScientificWorldJournal. 2012;2012:184075. https://doi.org/10.1100/ehjcvp/pww042
PMId:22997490

66. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;130(25):2354-94. https://doi.org/10.1161/cir.0000000000000133
PMId:25249586

67. Grundy SM, Stone NJ, Bailey AL, Beam C, Bircher KK, Blumenkal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACFM/ADA/AGS/APhA/ASP/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):e285-350. https://doi.org/10.1161/cir.0000000000000700
PMId:30423393

68. Deedwania PC. Statins in chronic kidney disease: Cardiovascular risk and kidney function. Postgrad Med. 2014;126(1):29-36. https://doi.org/10.3810/pgm.2014.01.2722
PMId:24393749

69. Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res. 2019;124(2):328-50. PMId:30653440

70. Swallow DM, Lawton MA, Grosset KA, Malek N, Klein J, Baig F, et al. Statins are underused in recent-onset Parkinson's disease with increased vascular risk: Findings from the UK Tracking Parkinson’s and Oxford Parkinson’s Disease Centre (OPDC) discovery cohorts. J Neurol Neurosurg Psychiatry. 2016;87(11):1183-90. https://doi.org/10.1136/jnnp-2016-313642
PMId:27671901

71. Grey C, Jackson R, Wells S, Thornley S, Marshall R, Crenglie S, et al. Maintenance of statin use over 3 years following acute coronary syndromes: A national data linkage study (ANZACS-QI). Heart. 2014;100(10):770-4. https://doi.org/10.1136/heartjnl-2014-304960
PMId:24436219

72. Zeymer U, James S, Berkenboom G, Mohacsi A, Iniguez A, Coufal Z, et al. Differences in the use of guideline-recommended therapies among 14 European countries in patients with acute coronary syndromes undergoing PCI. Eur J Prev Cardiol. 2013;20(2):218-28. https://doi.org/10.1177/2047487312437060
PMId:22345684