Lower bounds for algebraic connectivity of graphs in terms of matching number or edge covering number

Jing Xu1, Yi-Zheng Fan1,\dagger Ying-Ying Tan2

\textit{1. School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China}

\textit{2. Department of Mathematics and Physics, Anhui University of Architecture, Hefei 230601, P. R. China}

Abstract: In this paper we characterize the unique graph whose algebraic connectivity is minimum among all connected graphs with given order and fixed matching number or edge covering number, and present two lower bounds for the algebraic connectivity in terms of the matching number or edge covering number.

\textbf{2010 Mathematics Subject Classification:} 05C50

\textbf{Keywords:} Graph; algebraic connectivity; matching number; edge covering number

1 Introduction

Let G be a connected simple graph of order n with vertex set $V = V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = E(G)$. The adjacency matrix of the graph G is defined to be the matrix $A = A(G) = [a_{ij}]$, where $a_{ij} = 1$ if v_i is adjacent to v_j, and $a_{ij} = 0$ otherwise. The matrix $L(G) = D(G) - A(G)$ is called the Laplacian matrix of the graph G, where $D(G) = \text{diag}(d_G(v_1), d_G(v_2), \ldots, d_G(v_n))$ is a diagonal matrix, and $d_G(v)$ denotes the degree of a vertex v in the graph G. It is easy to see that $L(G)$ is a real and positive semidefinite, so that its eigenvalues can be arranged as follows:

$$0 = \mu_n(G) \leq \mu_{n-1}(G) \leq \cdots \leq \mu_1(G),$$

where $\mu_n(G) = 0$ as each row sum of L is zero, with the all-one vector 1 as an corresponding eigenvector. It is well known that the multiplicity of eigenvalue 0 is equal to the number of components of G. The eigenvalue $\mu_{n-1}(G)$, also denoted by $\alpha(G)$, is called the \textit{algebraic connectivity} of G by Fiedler \cite{10}; and the eigenvectors corresponding to $\alpha(G)$ are usually called the \textit{Fiedler vectors} of G.

The algebraic connectivity has received much attention; see \cite{11, 2, 5, 13, 14, 16, 19, 20, 21, 22, 23}. For example, upper bounding or maximizing the algebraic connectivity has been discussed

*Supported by National Natural Science Foundation of China (11071002, 11371028, 71101002), Program for New Century Excellent Talents in University (NCET-10-0001), Key Project of Chinese Ministry of Education (210091), Specialized Research Fund for the Doctoral Program of Higher Education (20103401110002), Natural Science Research Foundation of Department of Education of Anhui Province(KJ2012B040, KJ2013A196), Scientific Research Fund for Fostering Distinguished Young Scholars of Anhui University(KJJQ1001).

†Corresponding author. E-mail addresses: fanyz@ahu.edu.cn(Y.-Z. Fan), xujing@ahu.edu.cn (J. Xu), tansusan1@aiiai.edu.cn (Y.-Y. Tan).
by Lu et al. \cite{18} in terms of the domination number, Lal et al. \cite{17} subject to the number of pendant vertices, Zhu \cite{24} by means of matching number. Lower bounding or minimizing the algebraic connectivity has also been discussed by Fallat et al. \cite{5, 6} subject to diameter or girth, Biyikoglu and Leydold \cite{3, 4} subject to degree sequence or size, and Fan and Tan \cite{8} subject to domination number.

Recently Fan and Tan \cite{8} obtain a perturbation result for the algebraic connectivity of a graph when a branch of the graph is relocated from one vertex to another vertex. The result motivates us to do a lot of work on minimizing the algebraic connectivity subject to graph parameters, which provides some lower bounds for the algebraic connectivity. In this paper, we characterize the unique graph whose algebraic connectivity is minimum among all connected graphs with given order and fixed matching number or edge covering number, and present two lower bounds for the algebraic connectivity in terms of the matching number or edge covering number.

At the end of this section, we introduce some notions. Recall that a matching of a graph G is a set of independent edges of G; and the matching number of G is the maximal cardinality of all the matchings of G, denoted by $\beta(G)$. Clearly, $n \geq 2\beta(G)$. In particular, G has perfect matchings if $n = 2\beta(G)$. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all vertices of G. The edge covering number of a graph G is the minimum cardinality of all edge covers of G, denoted by $\gamma(G)$. It is known that $\beta(G) + \gamma(G) = |V(G)|$ if G contains no isolated vertices \cite{12}.

Denote by $\mathcal{M}_{n, \beta}$ (respectively, $\mathcal{C}_{n, \gamma}$) the set of connected graphs of order n with matching number β (respectively, edge covering number γ). Let P_d denote a path of order d, and $S_{1,m}$ a star on $m + 1$ vertices. Denote by $T(k, l, d)$ a tree obtained from a path P_d by attaching two stars $S_{1,k}, S_{1,l}$ at its two end points respectively; see Fig. 1.1. In particular, if $d = 1$, then $T(k, l, d) = S_{1,k+l}$; if $k = 1$ and $l = 0$, then $T(k, l, d) := P_{d+1}$. For convenience, a graph is called minimizing in a certain class if $\alpha(G)$ is minimum among all graphs in the class.

![Fig. 1.1 The tree $T(k, l, d)$](image)

Let $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ and let G be a graph on vertices v_1, v_2, \ldots, v_n. The vector x can be considered as a function defined on $V(G)$, which maps each vertex v_i of G to the value x_i, i.e. $x(v_i) = x_i$. If x is an eigenvector of $L(G)$, then it defines on G naturally, i.e. $x(v)$ is the entry of x corresponding to v. One can find that the quadratic form $x^T L(G)x$ can be written as

$$x^T L(G)x = \sum_{uv \in E(G)} [x(u) - x(v)]^2.$$ \hspace{1cm} (1.1)

The eigenvector equation $L(G)x = \lambda x$ can be interpreted as

$$[d_G(v) - \lambda]x(v) = \sum_{u \in N_G(v)} x(u), \quad \text{for each } v \in V(G),$$ \hspace{1cm} (1.2)
where $N_G(v)$ denotes the neighborhood of v in G. In addition, for an arbitrary unit vector $x \in \mathbb{R}^n$ orthogonal to 1,

$$\alpha(G) \leq x^T L(G)x, \quad (1.3)$$

with equality if and only if x is a Fiedler vector of G.

2 Preliminaries

First we introduce the property of Fiedler vectors of a tree.

Lemma 2.1 [11] Let T be a tree with a Fiedler vector x. Then exactly one of the two cases occurs:

Case A. All values of x are nonzero. Then T contains exactly one edge pq such that $x(p) > 0$ and $x(q) < 0$. The values in vertices along any path in T which starts in p and does not contain q strictly increase, the values in vertices along any path starting in q and not containing p strictly decrease.

Case B. The set $N_0 = \{v : x(v) = 0\}$ is non-empty. Then the graph induced by N_0 is connected and there is exactly one vertex $z \in N_0$ having at least one neighbor not belonging to N_0. The values along any path in T starting in z are strictly increasing, or strictly decreasing, or zero.

If the Case B in Lemma 2.1 occurs, the vertex z is called the characteristic vertex, and T is called a Type I tree; otherwise, T is called a Type II tree in which case the edge pq is called the characteristic edge. The characteristic vertex or characteristic edge of a tree is independent of the choice of Fiedler vectors; see [19].

Next we introduce the perturbation result of the algebraic connectivity of a graph. Let G_1, G_2 be two vertex-disjoint graphs, and let $v \in V(G_1)$, $u \in V(G_2)$. The coalescence of G_1 and G_2 with respect to v and u, denoted by $G_1(v) \diamond G_2(u)$, is obtained from G_1 and G_2 by identifying v with u and forming a new vertex p, which is also denoted as $G_1(v) \diamond G_2(p)$. If a connected graph G can be expressed as $G = G_1(v) \diamond G_2(p)$, where G_1 and G_2 are nontrivial subgraphs of G both containing p, then G_1 or G_2 is called a branch of G rooted at p. Let $G = G_1(v_2) \diamond G_2(u)$ and $G^* = G_1(v_1) \diamond G_2(u)$, where v_1 and v_2 are two distinct vertices of G_1 and u is a vertex of G_2. We say that G^* is obtained from G by relocating G_2 from v_2 to v_1; see Fig. 2.1.

![Fig. 2.1. Relocating G_2 from v_2 to v_1.](image)

Lemma 2.2 [8] Let G_1 be a connected graph containing at least two vertices v_1, v_2, and let G_2 be a nontrivial connected graph containing a vertex u. Let $G = G_1(v_2) \diamond G_2(u)$ and $G^* = \diamond G_2(p)$, where G_1 and G_2 are nontrivial subgraphs of G both containing p, then G_1 or G_2 is called a branch of G rooted at p. Let $G = G_1(v_2) \diamond G_2(u)$ and $G^* = G_1(v_1) \diamond G_2(u)$, where v_1 and v_2 are two distinct vertices of G_1 and u is a vertex of G_2. We say that G^* is obtained from G by relocating G_2 from v_2 to v_1; see Fig. 2.1.
If there exist a Fiedler vector x of G such that $x(v_1) \geq x(v_2) \geq 0$ and all vertices in G_2 are nonnegatively valued by x, then
\[
\alpha(G^*) \leq \alpha(G),
\]
with equality if and only if $x(v_1) = x(v_2) = 0$, $\sum_{w \in N_{G_2}(u)} x(w) = 0$, and x is also a Fiedler vector of G^*.

Now we investigate the property of the algebraic connectivity of the graph $T(k, l, d)$ listed in Section 1. Denote $T_d := T(\lceil \frac{n-d}{2} \rceil, \lceil \frac{n-d}{2} \rceil, d)$.

Lemma 2.3 Among all trees of order n and diameter $d + 1$, the tree T_d is the unique graph with minimum algebraic connectivity.

Lemma 2.4
1. If $k \geq 2$, $\alpha(T(k, l, d)) > \alpha(T(k - 1, l, d + 1))$;
2. If $l \geq 2$ $\alpha(T(k, l, d)) > \alpha(T(k, l + 1, d + 1))$.

Lemma 2.5 Let $\beta(T_d) = \beta \geq 2$, where $n \geq d + 2$ and $n \geq 2\beta + 1$. Then $2(\beta - 1) \leq d \leq 2\beta - 1$.

Furthermore,
\[
\alpha(T_d) \geq \alpha(T_{2\beta - 1}),
\]
with equality if and only if $d = 2\beta - 1$.

Proof: Since $\beta(T_d) = \lceil \frac{d+2}{2} \rceil$, then $\beta \leq \frac{d+2}{2} < \beta + 1$, that is $2(\beta - 1) \leq d < 2\beta$. Hence $2\beta - 2 \leq d \leq 2\beta - 1$. It suffices to show that $\alpha(T_{2\beta - 2}) \geq \alpha(T_{2\beta - 1})$. By Lemma 2.4 and Lemma 2.3, we have
\[
\alpha(T_{2\beta - 2}) = \alpha(T \left(\left\lceil \frac{n - (2\beta - 2)}{2} \right\rceil, \left\lceil \frac{n - (2\beta - 2)}{2} \right\rceil, 2\beta - 2 \right))
\]
\[
> \alpha(T \left(\left\lceil \frac{n - (2\beta - 2)}{2} \right\rceil - 1, \left\lceil \frac{n - (2\beta - 2)}{2} \right\rceil, 2\beta - 1 \right))
\]
\[
\geq \alpha(T_{2\beta - 1}).
\]

Lemma 2.6 Let $T_{2\beta_1 - 1}, T_{2\beta_2 - 1}$ be two trees of order n with matching number β_1, β_2. If $\beta_1 < \beta_2$ and $n \geq 2\beta_2 + 1$, then
\[
\alpha(T_{2\beta_1 - 1}) > \alpha(T_{2\beta_2 - 1}).
\]

Proof: Let $T_{2\beta_1 - 1} := T(k, l, 2\beta_1 - 1)$. By Lemma 2.4, we have
\[
\alpha[T(k, l, 2\beta_1 - 1)] > \alpha[T(k - 1, l, 2\beta_1)]
\]
\[
> \alpha[T(k - 1, l - 1, 2\beta_1 + 1)]
\]
\[
= \alpha[T(k - 1, l - 1, 2(\beta_1 + 1) - 1)].
\]
That is $\alpha(T_{2\beta_1 - 1}) > \alpha(T_{2(\beta_1 + 1) - 1})$. The result follows by induction on the matching number.
Lemma 2.7 Let $G \in \mathcal{M}_{n,\beta}$. Then G contains a spanning tree also with matching number β.

Proof: Let $G \in \mathcal{M}_{n,\beta}$ and let M be a maximum matching of G. Denote $e(G) = |E(G)|$. Clearly, $e(G) \geq n - 1$ as G is connected. The result is certainly true if $e(G) = n - 1$, in which case G is a tree. So we assume that $e(G) > n - 1$.

Delete an edge e_1 of some cycle of G, where $e_1 \notin M$, producing a graph G_1 such that $\beta(G_1) = \beta(G)$. If $e(G_1) = n - 1$, then G_1 is a spanning tree of G. If $e(G_1) > n - 1$, delete an edge e_2 of some cycle of G_1, where $e_2 \notin M$, producing a graph G_2 such that $\beta(G_2) = \beta(G_1) = \beta(G)$. We continue the above process until we arrive at a spanning tree G_k of G such that $\beta(G_k) = \beta(G_{k-1}) = \cdots = \beta(G_1) = \beta(G)$, where $k = e(G) - n + 1$. ■

Corollary 2.8 Let $G \in \mathcal{M}_{n,\beta}$. If G contains cycles, then G contains a spanning unicyclic graphs with matching number β.

Proof: By Lemma 2.7, G contains a spanning tree T with matching number β. The result follows by adding an edge $e \in E(G) \setminus E(T)$ to the tree T. ■

3 Main results

We first restrict our discussion to trees with minimum algebraic connectivity.

Theorem 3.1 Among all trees of order n with matching number β, where $n \geq 2\beta + 1$, the tree $T_{2\beta-1}$ is the unique graph with minimum algebraic connectivity.

Proof: Here we adopt a similar technique used in the paper [8]. If $n = 2\beta + 1$, the result follows obviously since $T_{2\beta-1} = P_n$ is the unique minimizing graph among all connected graphs of order n.

Now assume that $n \geq 2\beta + 2$. Let T be a minimal tree of order n with matching number β. If T has exactly two pendant stars (i.e. the star with maximum possible size centered at a quasi-pendant vertex), then $T = T(k,l,d)$ for some k,l,d, where $d \geq 2$. By Lemma 2.3, $k = \left\lceil \frac{n-d}{2} \right\rceil$, $l = \left\lfloor \frac{n-d}{2} \right\rfloor$ and $T = T_d$; by Lemma 2.4, $d = 2\beta - 1$. The result follows.

Next suppose that $T := T_0$ has more than two pendant stars, which has p_0 pendent vertices and q_0 quasi-pendent vertices. Let x be a Fiedler vector of T_0. First assume T_0 is of Type I. Let $N_0 = \{v \in V(T_0) : x(v) = 0\}$. If $|N_0| \geq 2$, then there exist at least one zero pendant star S attached at some vertex say u, and at least one positive quasi-pendant vertex w. Relocating the zero star S at u to w, we will arrive at a new tree T_1 such that $\alpha(T_1) < \alpha(T_0)$ by Lemma 2.2. Note that $\beta(T_1) \leq \beta(T_0)$ (in fact, $\beta(T_1) < \beta(T_0)$); otherwise we will get a contradiction to the fact that T_0 is minimizing. If $|N_0| = 1$, there exist at least two pendant stars S_1, S_2 both being positive or negative valued by x, attached at u_1, u_2 respectively. Without loss of generality, assume S_1, S_2 are both positive and $x(u_1) \geq x(u_2) > 0$. Relocating S_2 from u_2 to u_1, we arrive at a new tree T_1 such that $\alpha(T_1) < \alpha(T_0)$ by Lemma 2.2 and $\beta(T_1) < \beta(T_0)$.
If T is of Type II, then there exist at least two pendant stars S_1, S_2 both being positive or negative valued by x, attached at u_1, u_2 respectively. By the similar way with the case $|N_0| = 1$ above, we also arrive at a new tree T_1 such that $\alpha(T_1) < \alpha(T_0)$ and $\beta(T_1) < \beta(T_0)$.

Repeat the above procession on T_1 if T_1 has more than two pendant stars and continue a similar discussion to the resulting tree. Note that from the k-th step to the $(k + 1)$-th step, either $p_{k+1} = p_k$ and $g_{k+1} = g_k - 1$, or $p_{k+1} = p_k + 1$ and $q_{k+1} = q_k$. So the above procession will be terminated at the n-th step in which the tree T_n has exactly two pendant stars, i.e. $T_n = T(k, l, d)$ for some k, l, d, where $d \geq 2$. Hence

$$\alpha(T) = \alpha(T_0) > \alpha(T_1) > \cdots > \alpha(T_n), \quad \beta(T) = \beta(T_0) > \beta(T_1) > \cdots > \beta(T_n).$$

Therefore, noting that $T_{2\beta-1}$ has matching number β, by Lemma 2.3 and Lemma 2.5

$$\alpha(T_{2\beta-1}) \geq \alpha(T) > \alpha(T_n) \geq \alpha(T_d) \geq \alpha(T_{2\beta(T_n)-1}).$$

However, since $\beta(T_n) < \beta(T) = \beta$, by Lemma 2.6 we have $\alpha(T_{2\beta-1}) < \alpha(T_{2\beta(T_n)-1})$, a contradiction. So this case cannot happen and the result follows.

Theorem 3.2 Let $G \in \mathcal{M}_{n, \beta}$. Then G is minimizing in $\mathcal{M}_{n, \beta}$ if and only if $G = T_{2\beta-1}$.

Proof: If $\beta = 1$, the result holds as $T_1 = S_{1, n-1}$ is the unique graph of matching number 1 for $n \geq 2$ and $n \neq 3$. When $n = 3$, there are exactly two graphs: $S_{1, 2}$ and the triangle C_3, both having matching number 1. Since $\alpha(S_{1, 2}) < \alpha(C_3)$, the result also holds in this case.

Assume that $\beta \geq 2$. If $n = 2\beta$, the result surely holds as $P_{2\beta}$ is the unique minimizing graph. So suppose that $n \geq 2\beta + 1$ in the following. Let G be a minimizing graph in $\mathcal{M}_{n, \beta}$. Then G contains a spanning tree T with matching number β by Lemma 2.7. Furthermore, by Theorem 3.1

$$\alpha(G) \geq \alpha(T) \geq \alpha(T_{2\beta-1}). \quad (3.1)$$

Hence $\alpha(G) = \alpha(T) = \alpha(T_{2\beta-1})$, which implies that $T = T_{2\beta-1}$ also by Theorem 3.1.

We claim that $G = T_{2\beta-1}$; otherwise $E(G) \setminus E(T_{2\beta-1}) \neq \emptyset$. Let x be a unit Fiedler vector of G. Then

$$\alpha(G) = \sum_{uv \in E(G)} [x(u) - x(v)]^2$$

$$= \sum_{uv \in E(T_{2\beta-1})} [x(u) - x(v)]^2 + \sum_{uv \in E(G) \setminus E(T_{2\beta-1})} [x(u) - x(v)]^2$$

$$\geq \sum_{uv \in E(T_{2\beta-1})} [x(u) - x(v)]^2$$

$$\geq \alpha(T_{2\beta-1}).$$

Since $\alpha(G) = \alpha(T_{2\beta-1})$, then x is also a Fiedler vector of $T_{2\beta-1}$, and $x(u) = x(v)$ for each edge $uv \in E(G) \setminus E(T_{2\beta-1})$. By Lemma 2.1, whenever $T_{2\beta-1}$ is of Type I or Type II, u, v should be both the pendent vertices lying in a same pendent star. However, in this case $\beta(T_{2\beta-1} + uv) \geq \beta = \beta(G)$ for any $uv \in E(G) \setminus E(T_{2\beta-1})$; a contradiction.
The sufficiency results follows from the discussion of (3.1).

As a byproduct, we get the following result on edge covering number.

Corollary 3.3 Let $G \in C_{n,\gamma}$. Then G is minimizing in $C_{n,\gamma}$ if and only if $G = T_{2(n-\gamma)-1}$.

Proof: The result follows by Theorem 3.2 and the fact that $\beta(G) + \gamma(G) = n$. ■

Lemma 3.4 Suppose that $d \geq 3$, $k \geq 1$, $l \geq 1$ and $n := k + l + d - 1$. Then

$$\alpha(T(k,l,d-1)) \geq \left(\frac{nd}{4} - \frac{2n + d^2 - 6d - 5}{8} \right)^{-1}.$$

Corollary 3.5 Let $G \in M_{n,\beta}$. Then

$$\alpha(G) \geq \frac{8}{-4\beta^2 + 4\beta(n + 2) - 2n + 5}.$$

Proof: By Theorem 3.2, $\alpha(G) \geq \alpha(T_{2\beta-1})$. If $\beta = 1$, surely

$$\alpha(T_{2\beta-1}) = \alpha(T_1) = 1 > \frac{8}{-4\beta^2 + 4\beta(n + 2) - 2n + 5} = \frac{8}{2n + 9}.$$

If $\beta \geq 2$ and $n = 2\beta$, noting that in this case $T_{2\beta-1} = P_n$,

$$\alpha(P_n) = 2 \left(1 - \cos \frac{\pi}{n} \right) > \frac{8}{-4\beta^2 + 4\beta(n + 2) - 2n + 5} = \frac{8}{n^2 + 2n + 5}.$$

If $\beta \geq 2$ and $n \geq 2\beta + 1$, the result follows by taking $d = 2\beta$ in Lemma 3.4. ■

Similarly we have the following corollary.

Corollary 3.6 Let $G \in C_{n,\gamma}$. Then

$$\alpha(G) \geq \frac{8}{-4\gamma^2 + 4\gamma(n - 2) + 6n + 5}.$$

References

[1] N. M. M. de Abreu, Old and new results on algebraic connectivity of graphs, *Linear Algebra Appl.*, 423(2007), 53-73.

[2] R. B. Bapat, S. Pati, R. Merris, Algebraic connectivity and the characteristic set of a graph, *Linear Multilinear Algebra*, 45(1998), 247-273.

[3] T. Biyikoglu, J. Leydold, Algebraic connectivity and degree sequences of trees, *Linear Algebra Appl.*, 430(2009), 811-817.

[4] T. Biyikoglu, J. Leydold, Graphs of given order and size and minimum algebraic connectivity, *Linear Algebra Appl.*, 436(2012), 2067-2077.

[5] S. Fallat, S. Kirkland, Extremizing algebraic connectivity subject to graph theoretic constraints, *Electron. J. Linear Algebra*, 3(1998), 48-74.

[6] S. Fallat, S. Kirkland, S. Pati, Minimizing algebraic connectivity over connected graphs with fixed girth, *Discrete Math.*, 254(2002) 115-142.
[7] S. Fallat, S. Kirkland, S. Pati, Maximizing algebraic connectivity over unicyclic graphs, *Linear Multilinear Algebra*, 51 (2003), 221-241.

[8] Y.-Z. Fan, Y.-Y. Tan, A lower bound for the algebraic connectivity of a graph in terms of the domination number, *arXiv: 1310.8533v1*.

[9] L.-H. Feng, G.-H. Yu, Q. Li, Minimizing the Laplacian eigenvalues for trees with given domination number, *Linear Algebra Appl.*, 419(2006), 648-655.

[10] M. Fiedler, Algebraic connectivity of graphs, *Czechoslovak Math. J.*, 23 (1973), 298-305.

[11] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, *Czechoslovak Math. J.*, 25 (1975), 619-633.

[12] T. Gallai, Über extreme Punkt- und Kantenmengen. *Ann. Univ. Sci. Budapest. Eötvös Sect. Math.*, 2(1959), 133-138.

[13] R. Grone, S. Diego, R. Merris, Hayward, Algebraic connectivity of trees, *Czechoslovak Math. J.*, 37(1987), 660-670.

[14] R. Grone, R. Merris, V.S. Sunder, The Laplacian Spectrum of a graph, *SIAM J. Matrix Anal. Appl.*, 11(1990), 218-238.

[15] S. Kirkland, M. Neumann, Algebraic connectivity of weighted trees under perturbation, *Linear Multilinear Algebra*, 42(1997), 187-203.

[16] S. Kirkland, A bound on the algebraic connectivity of a graph in terms of the number of cut points, *Linear Multilinear Algebra*, 47(2000), 93-103.

[17] A. K. Lal, K. L. Patra, B. K. Sahoo, Algebraic connectivity of connected graphs with fixed number of pendant vertices, *Graphs Combin.*, 27(2011), 215-229.

[18] M. Lu, H.-Q. Liu, F. Tian, Bounds of Laplacian spectrum of graphs based on the domination number, *Linear Algebra Appl.*, 402(2005), 390-396.

[19] R. Merris, Characteristic vertices of trees, *Linear Multilinear Algebra*, 22(1987), 115-131.

[20] R. Merris, Degree maximal graphs are Laplacian integral, *Linear Algebra Appl.*, 199(1994), 381-389.

[21] R. Merris, Laplacian matrices of graphs: a survey, *Linear Algebra Appl.*, 197/198(1994), 143-176.

[22] R. Merris, A survey of graph Laplacian, *Linear Multilinear Algebra*, 392(1995), 19-31.

[23] R. Merris, Laplacian graph eigenvectors, *Linear Algebra Appl.*, 278(1998), 221-236.

[24] B.-X. Zhu, The algebraic connectivity of graphs with given matching number, *Graphs Combin.*, 29(2013), 1989-1995.