Pulmonary haemorrhage as the earliest sign of severe leptospirosis in hamster model challenged with \textit{Leptospira interrogans} strain HP358

Noraini Philip1, Sivan Padma Priya1,2, Ahmad Hussein Jumah Badawi3, Mohd Hafidz Mohd Izhar4, Norhafizah Mohtarudin3, Tengku Azmi Tengku Ibrahim5, Zamberi Sekawi1, Vasantha Kumari Neela1*

1 Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, 2 RAK College of Dental Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates, 3 Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, 4 Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, 5 Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

* vasantha@upm.edu.my

Abstract

Background

Severe leptospirosis is challenging as it could evolve rapidly and potentially fatal if appropriate management is not performed. An understanding of the progression and pathophysiology of \textit{Leptospira} infection is important to determine the early changes that could be potentially used to predict the severe occurrence of leptospirosis. This study aimed to understand the kinetics pathogenesis of \textit{Leptospira interrogans} strain HP358 in the hamster model and identify the early parameters that could be used as biomarkers to predict severe leptospirosis.

Methodology/Principal findings

Male Syrian hamsters were infected with \textit{Leptospira interrogans} strain HP358 and euthanized after 24 hours, 3, 4, 5, 6 and 7 days post-infection. Blood, lungs, liver and kidneys were collected for leptospiral detection, haematology, serum biochemistry and differential expression of pro- and anti-inflammatory markers. Macroscopic and microscopic organ damages were investigated. \textit{Leptospira interrogans} strain HP358 was highly pathogenic and killed hamsters within 6–7 days post-infection. Pulmonary haemorrhage and blood vessel congestion in organs were noticed as the earliest pathological changes. The damages in organs and changes in biochemistry value were preceded by changes in haematology and immune gene expression.

Conclusion/Significance

This study deciphered haemorrhage as the earliest manifestation of severe leptospirosis and high levels of IL-1\textbeta, CXCL10/IP-10, CCL3/MIP-\alpha, neutrophils and low levels of...
lymphocytes and platelets serve as a cumulative panel of biomarkers in severe leptospirosis.

Author summary

As the severe form of leptospirosis could progress rapidly and be potentially fatal if not treated earlier, deciphering the pathophysiology kinetics of infection is crucial to determine the parameters of disease severity. To understand this, we challenged hamsters with the highly virulent *Leptospira interrogans* strain HP358. Pulmonary haemorrhage was observed as the earliest pathological change followed by liver and kidneys damages. The increased expression of IL-1β, CXCL10/IP-10, CCL3/MIP-α, high neutrophils and low lymphocytes and platelets production observed in the present study indicate that these parameters could serve as a cumulative panel of biomarkers in severe leptospirosis.

Introduction

The severe manifestation of leptospirosis could be either Weil’s disease, a triad of jaundice, renal impairment and haemorrhages; or severe pulmonary forms of leptospirosis (SPFL) without distinct renal and hepatic impairments [1]. The multi-organs involvement often appears as a sudden onset of clinical manifestations, rapidly progressive and associated with high mortality rates [2–5]. This severe manifestation of leptospirosis could be either due to infecting strain of *Leptospira*, the load of leptospiral inoculum and the age and immune status of the infected host.

Despite the existence of the disease for many years, the evolution and factors determining the development of severe leptospirosis in the infected host are still not well defined. Clinical features and pathological changes in severe leptospirosis are described and suggested its association with cytokine storm [6–9]. Several studies have been focused on identifying the factors associated with severe leptospirosis [10–14]. However, the majority of these studies were performed on samples collected at a single time point. For a detailed understanding of the parameters that could be monitored to prevent the illness from progressing to a severe form, a kinetics study of the pathogenesis is vital.

In our earlier study, we isolated and identified a new genotype of *Leptospira interrogans* strain HP358 (*L. interrogans* strain HP358) with Sequence Type (ST) 238 in rodents trapped from the hotspot of human leptospirosis in the forest area of Hulu Perdik, Selangor, Malaysia [15]. We performed an in vivo pathogenesis screening for the strain HP358 in the hamster model and found that this strain is highly pathogenic manifesting pulmonary haemorrhage, liver and kidneys damages and death as early as six days of post-infection (p.i.) [16]. The evidenced life-threatening clinical manifestations prompted us to investigate and understand the kinetics of the pathophysiology of severe leptospirosis. Therefore, this study was carried out to decipher the progression of the illness by monitoring the clinical manifestation of infected hamsters, histopathological changes in tissues (lungs, liver and kidneys), the leptospiral load, hemogram and serum biochemistry and the cytokines and chemokines expression profiles. We hypothesised that understanding the virulence severity and the time course progression of the disease development may identify factors that are expressed or altered during the early stage of infection which could be recruited for further evaluation and subsequently utilized as biomarkers in severe leptospirosis.
Methods

Ethics statement

All experiments were conducted following the guidelines of the Code of Practice for the Care and Use of Animals for Scientific Purposes, Universiti Putra Malaysia. Male golden Syrian hamsters aged between four and six weeks purchased from Monash Universiti Malaysia, Bandar Sunway, Selangor were housed (three per cage) with sterile sawdust bedding, fed with commercial feed and given water ad lib in sterile bottles during the study course. The hamsters were acclimatized for 14 days prior to the experiment. All animal procedures carried out in this study were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC), Universiti Putra Malaysia with Animal Use Protocol (AUP) number: UPM/IACUC/AUP-R04/2018. This study also is in compliance with the ARRIVE guidelines.

Infection, monitoring and euthanization of hamsters

Upon completion of two weeks of acclimatization, the hamsters (n = 21) were infected intraperitoneally (IP) with 2 x 10^8 of \(L. \) interrogans strain HP358 in 500\(\mu \)l Ellinghausen-McCullough-Johnson-Harriss (EMJH) medium. The bacterial load (to develop infection) to be inoculated were selected based on our earlier investigation [16] and in previous studies [17,18]. Control hamsters (n = 7) were injected intraperitoneally with 500\(\mu \)l sterile EMJH medium (without any \(Leptospira \)). The infectivity study was carried out for seven days. The hamsters were monitored throughout the study for clinical signs such as progressive loss of weight, loss of appetite, reduced physical activity and dyspnea. One control and three infected hamsters were euthanized from day 1 to 7 p.i. except for day 2 to study the pathological events. Due to unforeseen reasons, we were not able to sacrifice the hamsters on day 2. The hamsters were anaesthetized with 100 mg/kg ketamine and 5 mg/kg xylazine injected intraperitoneally and subsequently whole blood was collected by cardiac puncture. Blood was collected for (1) direct culture in EMJH medium, (2) detection of leptospiral DNA and haematological analysis in EDTA tube, (3) biochemistry analysis in plain tube and (4) detection of immune genes in RNAprotect animal blood tube. Hamsters were euthanized by atlanto-occipital dislocation and following dissection, lungs, liver and kidneys were harvested and examined macroscopically for any morphological changes. Twenty-five milligrams of each lung, liver and kidney tissues were collected and transferred into tubes containing absolute ethanol for leptospiral DNA detection and RNAlater for immune genes expression study. The remaining parts of the organs were fixed in 10% neutral buffered formalin for histopathological investigations.

Macroscopic and microscopic examinations of infected organs

Formalin-fixed organs (lung, liver and kidney) were processed for light microscopy and stained with hematoxylin and eosin (H&E) using the standard protocol. Lesions and changes in the target organs were graded according to previously reported criteria [17,19,20].

Leptospira growth and DNA quantification in blood and organs

Portions of the kidneys of all hamsters were cultured in EMJH medium and observed for up to two months for the growth of leptospires. Leptospiral DNA from blood, lungs, liver and kidneys were extracted using the DNAeasy Blood & Tissue Kit (Qiagen, German) according to the manufacturer’s instructions. The 242bp lipL32 (primers: LipL32-45F: 5'-AAGCATTACC GCTTTGTTGTG-3’, LipL32-286R: 5’-GAACATCCATTTCAGGATT-3’, probe: LipL32-189P: FAM-5’-AAGCCAGGACACGGCGCG-3’-BHQ1) [21] gene amplification was performed for detection of leptospires in blood and organs. A serial dilution of pure culture of \(L. \)
interrogans strain HP358 was used as a standard curve to determine the leptospiral counts, linear range, efficiency and reproducibility of the qPCR assay.

Haematology and serum biochemistry analyses

Blood samples taken from the hamsters were sent to the Haematology and Biochemistry laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia for complete blood counts and biochemical analysis. The parameters for biochemical analysis were selected based on their association with organs damage in human leptospirosis.

Expression of pro-inflammatory and anti-inflammatory markers

Total RNA extraction. Total RNA from blood (RNeasy Protect Animal Blood kit, Qiagen, German), lungs, liver and kidneys (HiYield Total RNA Mini Kit) were extracted following the manufacturers’ instructions. The extracted RNA was eluted in 20μl of RNase-free water. Before storage at -80˚C, the quantity and quality of the purified RNA were measured using the NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific) at OD 260/280 and OD 260/230 ratios. The integrity of RNA was verified using gel electrophoresis.

Reverse-transcription. DNA-free total RNA extracted from blood, lungs, kidneys, (1μg) and liver (0.5μg) was reverse transcribed into cDNA using the Quantinova Reverse Transcription kit (Qiagen, German). Genomic DNA from the RNA samples was removed using gDNA removal mix (2μl). The total volume of 20μl reverse transcription (RT) reaction mix contained RT enzyme (1μl), RT mix (4μl) and template RNA (entire gDNA elimination reaction, 15μl). RT was conducted on a BioRad machine and consisted of annealing (3 min, 25˚C), RT step (10 min, 25˚C) and inactivation step (5 min, 85˚C). The transcribed cDNA was diluted in 1:2.5 with RNase-free water and kept at -40˚C until used.

Real-time PCR and amplification program. Primers for immune genes were synthesized (MyTACG Bioscience Enterprise, Malaysia) utilizing sequences from the previous studies (Table 1). These immune genes were selected based on the association of these genes with leptospirosis. For every sample, the amplification (real-time PCR) was carried out in duplicates containing 1μl cDNA in a 20μl final volume for each cytokine and chemokines (Table 1) using Quantinova SYBR green I master kit (Qiagen, German). The amplification was performed on the Eppendorf instrument using Realplex software. The amplification program consisted of an activation step at 95˚C for 2 min followed by amplification cycle of the target cDNA for 40 cycles (95˚C for 5 s and a combined annealing/extension at 55.7˚C for 10 s). Negative control with RNase-free water was included in each run. The specificity of the amplification was verified by analysis of the melting curves of the PCR products.

Gene expression analysis. The level of expression of each gene was normalized to the levels of glyceraldehyde-3-phosphate dehydrogenase (GADPH) housekeeping gene using a comparative delta delta CT method (ΔΔCT Method). The average Ct values of genes tested obtained from the control and infected hamsters for blood and organs (lungs, liver and kidneys) were directly normalized to the reference gene. Then, the difference between the Δct value of infected and control hamsters was calculated to arrive at the double delta Ct value. Finally, the value of 2^{-ΔΔCT} was calculated to obtain the expression fold change.

Statistical analysis. Statistical analysis was performed using GraphPad Prismv8 (GraphPad Software Inc.) Unpaired t-test was used for the analysis of significant differences in haematology, serum biochemistry and cytokine genes expression between controls and infected animals.
Clinical response to infection

The earliest clinical sign observed in the infected hamsters was weight loss which occurred as early as day 3 p.i. Body weight continued to decrease over the days, with average weight loss of 0.3% (D3), 2.2% (D4), 4.6% (D5), 7.3% (D6) and 7.7% (D7). On day 5 p.i., all hamsters showed loss of appetite, reduced physical activity and developed dyspnea. On day 6 p.i., three hamsters died and one hamster died on day 7 p.i.. All control (non-infected) hamsters euthanized on days 1 and 3 to 7 p.i. showed normal behaviour and progressive weight increase (16.6% increase at the end of the study).

Macroscopically pulmonary haemorrhage occurred earliest

All three hamsters euthanized on day 1 p.i. showed normal morphology of the liver and kidneys, however, few focal haemorrhagic areas were observed in the lungs. Beginning from day 3 p.i., haemorrhage in the lung continued to spread (Fig 1). The kidneys appeared pale from day 6 p.i. while the liver did not show any marked changes. Another notable finding observed was yellowish discolouration of adipose tissues in some of the dead and euthanized hamsters on days 6 and 7 p.i. (Fig 2). The lungs, liver and kidneys harvested from the control hamsters showed no gross changes.

Microscopically all organs showed progressive damages

The earliest pathological changes observed were congestion of the lung and liver on day 1 p.i. and kidneys on day 3 p.i. (Figs 3–5; Table 2). Haemorrhage was observed in the lung as early
as on day 1 and day 4 p.i. in kidneys. In the lung, apart from congestion and haemorrhage, septal thickening and collapsed alveoli were observed from day 1 p.i. while mild alveoli dilation was noted from day 5 p.i. Inflammatory cells infiltration appeared in the liver and kidneys from day 4 p.i. henceforth. In the liver, disorganized hepatic cords and enlargement of hepatocytes were observed from day 4 p.i. and progressively deteriorated. Marked pathological changes were also observed in the kidney. Shrinkage of glomerulus capillaries leading to dilatation of Bowman’s space and renal tubular damages characterized by tubular dilation and degeneration of epithelial cells lining of the proximal and distal convoluted tubules were observed in kidneys on day 4 p.i. and henceforth increased in severity. Hamsters that died
Fig 3. Histopathological lesions in the lung of infected hamsters. Congestion and haemorrhage occurred as early as day 1 p.i. while dilated and collapsed alveoli occurred on days 6 and 7 p.i. and in dead hamsters. CG: Congestion, H: Haemorrhage, CA: Collapsed alveoli, ST: Septal thickening, DA: Dilated alveoli. C: Control, D1-D7: Day 1- day 7 and DD: Dead. Magnification: x100, bar: 100 μm.

https://doi.org/10.1371/journal.pntd.0010409.g003
Fig 4. Histopathological lesions in the liver of infected hamsters. Congestion occurred as early as day 1 p.i. while infiltration of inflammatory cells, disorganized hepatocyte cords and swelling of hepatocytes occurred on day 4 p.i. onwards. SC: Sinusoid congestion, IC: Infiltration of inflammatory cells, DHC: Disorganized hepatocyte cords, SH: Swollen hepatocytes and H: Haemorrhage. C: Control, D1-D7: Day 1- day 7 and DD: Dead. Magnification: x100, bar: 100 μm.

https://doi.org/10.1371/journal.pntd.0010409.g004
earlier before day 7 p.i. showed similar pathological changes which were haemorrhagic lungs and kidneys and congested liver. No lesions or any pathological changes were observed in the organs of control hamsters.

Leptospiral load in blood and organs

Blood and kidneys samples of infected hamsters from day 1 to day 7 p.i. cultured in the EMJH medium yielded positive growth for leptospires while no growth was observed in the control hamsters. Likewise, qPCR also showed positive amplification for all samples (blood, lungs, liver and kidneys) collected from the infected hamsters from day 1 to day 7 p.i. (Fig 6). No cultures were performed for the lungs and liver. The leptospiral load (qPCR) in blood and organs showed a progressive increase from day 1 to day 5 p.i. for blood, lungs and kidneys and until day 6 for the liver. On day 7 p.i., the leptospiral load was lower than day 1 p.i. in blood, lungs and liver while the load remained unchanged in the kidneys.

Table 2. Histological scoring in hamsters infected with *L. interrogans* strain HP358.

Parameters	D1	D3	D4	D5	D6	D7	Dead
Lungs							
Capillary congestion	4	4	4	4	4	4	4
Haemorrhage	1	3	4	4	3	3	3
Thickening of interalveolar septa	4	4	4	4	4	4	3
Dilated alveoli (Emphysema)	0	0	0	1	1	1	2
Collapsed alveoli (Atelectasis)	0	0	0	4	4	4	4
Liver							
Sinusoid congestion	3	3	3	4	4	4	4
Infiltrating mononuclear or polymorphonuclear cells/inflammatory cells/Periportal hepatitis	0	0	2	4	4	4	4
Disorganized hepatic cords	0	0	2	4	4	4	4
Swelling of hepatocytes	0	0	1	4	4	4	4
Kidneys							
Congestion in glomerulus	0	2	4	4	4	4	4
Haemorrhage	0	0	2	4	4	4	4
Dilation of Bowman’s space	0	0	2	2	2	3	3
Collapse of Bowman’s space	0	0	2	2	2	3	3
Dilation of tubule	0	0	0	1	1	1	1
Inflammatory infiltration	0	0	1	2	3	3	3
Degeneration of epithelial cells lining of the proximal and distal convoluted tubules	0	0	0	2	4	4	4

*Scoring system:

0: No lesion
1: Lesion observed in one quadrant
2: Lesion observed in two quadrants
3: Lesion observed in three quadrants
4: Lesion observed in four quadrants/all areas
Haematological and serum biochemical changes

Haematological changes. White blood cells (WBC), neutrophils and monocytes counts in infected hamsters showed an increase from as early as day 1 p.i. \((p\text{-value} = <0.05)\) (Fig 7) while lymphocytes and platelets showed a decreasing trend \((p\text{-value} = <0.05)\).

Serum Biochemical changes. The level of total bilirubin (TB), direct bilirubin (DB) and creatinine kinase (CK) in infected hamsters showed a significant increase \((p\text{-value}<0.05)\) compared to that of control hamsters from day 5 p.i. onwards (Fig 8). Similarly, alanine transaminase (ALT) and aspartate aminotransferase (AST) levels rose significantly \((p\text{-value} = <0.05)\) beginning on day 5 p.i. The levels of creatinine and urea in infected hamsters began to increase beginning from day 3 p.i. and 5 p.i. respectively.

Fig 6. Leptospiral load in blood and organs tissues of hamsters infected with *L. interrogans* HP358. D1-D7: day 1 to day 7; DD: dead hamsters. The leptospiral copies number in blood and organs can be found in S1 Table. https://doi.org/10.1371/journal.pntd.0010409.g006
Expression of immune mediators in infected animals

Pro-inflammatory mediators. Among the pro-inflammatory cytokines and enzymes (interleukin-1beta: IL-1β, interleukin-6: IL-6, Tumor necrosis factor alpha: TNF-α, interferon gamma: IFN-γ, cyclooxygenase-2: COX-2 and inducible nitric oxide synthase: iNOS) tested, IL-1β was found to be significantly expressed in blood and all organs (Figs 9–12) from day 3 onwards. Expression of IL-6 and TNF-α was only observed in the lungs and kidneys. IL-6 was significantly higher in the lungs on days 1 and 7 p.i. while in kidneys, it demonstrated a progressive increase from day 3 p.i. TNF-α showed increased expression in the lungs from day 1 to day 4 p.i. while in kidneys, it showed a progressive increase from day 3 p.i. IFN-γ was higher until day 4 p.i. in blood and lungs. COX-2 was higher than the control in blood until day 5 p.i. while in kidneys, it increased progressively from day 3 p.i. In the lungs, COX-2 was found to be downregulated beginning on day 1 p.i. IL-1β, TNF-α and COX-2 were found to be highly expressed in the liver of dead hamsters. iNOS was downregulated in lungs and kidneys and not detected in blood and liver.
Chemokines CXCL10/IP-10 and CCL3/MIP-α. Increased expression of C-X-C motif chemokine ligand 10 (CXCL10/IP-10) in the blood (from day 1 to 4 p.i.), liver (day 1 to 5 p.i.) and kidneys (day 1 to 7 p.i.) (Fig 13). Likewise, chemokine (C-C motif) ligand 3 (CCL3/MIP-α) expression increased in blood, liver and kidneys.
Fig 10. Modulation of pro-inflammatory cytokines and enzymes in the lungs of control (blue line) and infected hamsters (red line). Total RNA was extracted from lungs on day 1 p.i. and days 3 to 7 p.i. D1-D7: Day 1 to day 7. DD: dead. *P≤0.05, **P≤0.01, ***P≤0.001. The fold gene expression value can be found in S2 Table.

https://doi.org/10.1371/journal.pntd.0010409.g010

Fig 11. Modulation of pro-inflammatory cytokines and enzymes in the liver of control (blue line) and infected hamsters (red line). Total RNA was extracted from liver on day 1 p.i. and days 3 to 7 p.i. D1-D7: Day 1 to day 7. DD: dead. *P≤0.05, **P≤0.01, ***P≤0.001. The fold gene expression value can be found in S2 Table.

https://doi.org/10.1371/journal.pntd.0010409.g011
Anti-inflammatory mediators. The expression of transforming growth factor-beta 1 (TGF-β1) showed an increasing pattern in the liver and kidneys (Fig 14) beginning on day 4 p.i. and significantly high on days 6 and 7 p.i. TGF-β1 was found to be downregulated in blood while in the lungs it was slightly higher on days 3 and 4 p.i. Two hamsters showed amplification of IL-10 in lungs, liver and kidneys with a ct value of > 35 on days 5 and 6 p.i. One dead hamster showed amplification of IL-10 in the lung with a ct value of 33.63.

Association between clinical manifestations and pathophysiology in infected hamsters:
Identification of biomarkers for severe leptospirosis. As summarized in Table 3, the pathophysiological presentations observed for severe leptospirosis in the hamster model included:

1. Occurrence of pulmonary haemorrhage earlier than liver and kidney damages (before any clinical manifestations),
2. Increased WBC, monocytes and neutrophils and decreased lymphocytes and platelets (before severe signs and symptoms),
3. Serum biochemistry parameters changes were concurrent with the apparent clinical manifestations and
4. Earlier expression of pro-inflammatory mediators IL-1β, CXCL10/IP-10 and CCL3/MIP-α in all organs (blood, lungs, liver and kidneys) prior to observable damages. The early expression of IL-1β, CXCL10/IP-10 and CCL3/MIP-α, increase of neutrophils and decrease of lymphocytes and platelets suggesting that these parameters could be used as a cumulative panel for potential biomarkers in severe leptospirosis.
Discussion

Leptospirosis presents a protean clinical manifestation and most cases (90%) are mild. Severe cases account for 5 to 15% and usually occur in the immune phase of illness [12,24,25]. Severe leptospirosis also presents with a fulminant monophasic illness [26–28]. In both conditions, the evolution of the disease is rapid and potentially fatal if not treated. Hence, early management of the disease is vital. Given the fact that the prompt diagnosis of this illness is challenging and the sudden progression to severe leptospirosis is life-threatening; understanding the sequence of disease progression and determination of early prognosis markers are of utmost importance for a favourable outcome.

In the present study, the first investigation was focused on the clinical manifestation developed in the hamsters when infected with the \(L. \) interrogans strain HP358. Hamsters reproduce the severe form of human leptospirosis [29] thereby suitable to be used as a model for studying the progression of severe leptospirosis. As seen from the results, loss of body weight started from day 3 p.i. and from day 5 p.i., all hamsters showed loss of appetite, reduced physical activities and difficulty in breathing (dyspnea). Similar clinical signs were also reported in several previous studies [19,30,31].

To relate the above clinical manifestations with the sequence of events occurring within the body during the infection, four hamsters (one control and three infected) were euthanized on days 1 (24 hours post-infection), 3, 4, 5, 6 and 7 p.i. The earliest pathological changes (macroscopically and microscopically) observed in the infected hamsters were pulmonary...
Fig 14. Expression of TGF-β1 in blood, lungs, liver and kidneys of control (blue line) and infected hamsters (red line). D1-D7: Day 1 to day 7. DD: dead. *P<0.05, **P<0.01, ***P<0.001. The fold gene expression value can be found in S4 Table.

https://doi.org/10.1371/journal.pntd.0010409.g014

Table 3. Summary of disease progression in hamsters infected with *L. interrogans* strain HP358.

Parameters	D1	D3	D4	D5	D6	D7												
Clinical Signs	None	Reduction in body weight	Reduction in body weight	Reduction in body weight	Loss of appetite	Reduced physical activity	Developed dyspnea	Reduction in body weight	Loss of appetite	Reduced physical activity	Dyspnea	3 animals died	Reduction in body weight	Loss of appetite	Reduced physical activity	Dyspnea	1 animal died	
Macroscopy of organs	Haemorrhage in lungs	Pale kidney	Haemorrhage in lungs	Pale kidney														
Microscopic (Cumulative score of organ damage)	Lungs (9)	Liver (3)	Kidney (0)	Lungs (11)	Liver (3)	Kidney (2)	Lungs (12)	Liver (8)	Kidney (11)	Lungs (17)	Liver (16)	Kidney (17)	Lungs (16)	Liver (16)	Kidney (20)	Lungs (16)	Liver (16)	Kidney (22)

(Continued)
Table 3. (Continued)

Parameters	D1	D3	D4	D5	D6	D7
Hemogram	[WBC]	[WBC(‘)]	[WBC(‘)]	[WBC(‘)]	[WBC(‘)]	[WBC(‘)]
	[Monocytes]	[Monocytes]	[Monocytes]	[Monocytes]	[Monocytes]	[Monocytes]
	[Neutrophils]	[Neutrophils]	[Neutrophils]	[Neutrophils]	[Neutrophils]	[Neutrophils]
	[Lymphocytes]	[Lymphocytes]	[Lymphocytes]	[Lymphocytes]	[Lymphocytes]	[Lymphocytes]
	[Platelets (**)]					
Serum Biochemistry	Same as control					
	[Creatinine (‘)]					
	[TB (**)]					
	[DB (**)]					
	[AST (‘)]					
	[ALT(‘**)]	[ALT(‘**)]	[ALT(‘**)]	[ALT(‘**)]	[ALT(‘**)]	[ALT(‘**)]
	[Creatinine (‘)]					
	[Urea (‘)]					
Pro-inflammatory and anti-inflammatory markers						
Blood	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]
	[IFN-γ(‘)]	[IFN-γ(‘)]	[IFN-γ(‘)]	[IFN-γ(‘)]	[IFN-γ(‘)]	[IFN-γ(‘)]
	[COX-2]	[COX-2]	[COX-2]	[COX-2]	[COX-2]	[COX-2]
	[CXCL10/IP-1]	[CXCL10/IP-1]	[CXCL10/IP-1]	[CXCL10/IP-1]	[CXCL10/IP-1]	[CXCL10/IP-1]
	[CCL3/MIP-α (**)]					
Lungs	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]
	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]
	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]
	[IFN-γ]	[IFN-γ]	[IFN-γ]	[IFN-γ]	[IFN-γ]	[IFN-γ]
	[CCL3/MIP-α (**)]					
	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]
Liver	[COX-2]	[COX-2]	[COX-2]	[COX-2]	[COX-2]	[COX-2]
	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]
	[IL-1β(‘**)]	[IL-1β(‘**)]	[IL-1β(‘**)]	[IL-1β(‘**)]	[IL-1β(‘**)]	[IL-1β(‘**)]
	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]
	[CCL3/MIP-α (**)]					
	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]
Kidneys	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]	[IL-1β]
	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]
	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]	[CXCL10/IP-10]
	[CCL3/MIP-α (**)]					
	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]
	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]	[IL-6(‘**)]
	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]	[TNF-α]
	[CCL3/MIP-α (**)]					
	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]	[TGF-β1(‘**)]

Note
- The number of indicated in microscopic organ observation is the cumulative score of organs damage (Table 2)
- ‘: Increase
- Only immune mediators showing expression are included.

(*) P ≤ 0.05
(**) P ≤ 0.01
(***) P ≤ 0.001

- WBC: White blood cell
- ALT: Alanine transaminase
- AST: Aspartate aminotransferase
- TB: Total bilirubin
- DB: Direct bilirubin
- IL-1β: interleukin-1β
- TNF-α: Tumor necrosis factor alpha
- IL-6: interleukin-6
- COX-2: cyclooxygenase-2
- CXCL10/IP-10: C-X-C motif chemokine ligand 10/ interferon gamma-induced protein 10
- CCL3/MIP-α: Chemokine (C-C motif) ligand 3 (CCL3)/macrophage inflammatory protein 1-alpha
- TGF-β1: Transforming growth factor beta

https://doi.org/10.1371/journal.pntd.0010409.t003
haemorrhage and blood vessel congestion in the lungs, liver and kidneys. The earliest sign of haemorrhage was observed in the lungs from day 1 p.i. while in kidneys on day 4 p.i. Marked organ damages (Table 3) were detected beginning from day 4 p.i concurrent with the clinical manifestations. These were followed by the death of four hamsters on days 6 and 7 p.i. while progressive moribund conditions were observed in the remaining hamsters. A similar observation was reported in a recent study where pulmonary haemorrhage appeared much earlier followed by liver and renal damages prior to the animal’s state of moribund and death [31]. In human leptospirosis, pulmonary haemorrhage is the severe form of the illness, though it occurs only in a small number of cases, mortality is seen higher among these patients (more than 70%) [32,33]. The ability of the leptospires to invade multiple organs also depends on the *Leptospira* species or strain [16]. It could be postulated that in patients with severe leptospirosis, the patients might be infected with a highly virulent *Leptospira* strain invading multiple organs. As observed in the present study, the lungs were the first organ showing damage, hence it is important to monitor the respiratory problems or bleeding in leptospirosis patients as a prognostic factor for severe leptospirosis. As reported in previous studies, pulmonary haemorrhage could occur prior to jaundice and renal failure and led to severe disease and fatality in human leptospirosis [34,35].

Leptospiral DNA was detected in the blood and all organs on day 1 p.i. indicating rapid dissemination and successful colonization of *L. interrogans* strain HP358 in the hamster as reported in other studies [17,36]. The bacterial load in blood and all organs continued to increase until day 5 p.i. denoting the replication of leptospires. We observed a decrease in the leptospiral load from day 6 p.i. onwards in blood, lungs and liver while it was maintained in kidneys. Hamsters that died before the completion of the study had a high load of leptospires in all organs (lungs, liver and kidneys) compared to those euthanized on day 7 p.i.

Changes in haematological parameters were observed to occur as early as on day 1 p.i. indicating the response of the innate immunity of hamsters against the invading leptospires. Monocytes and neutrophils continued to increase while lymphocytes and platelets showed decreasing trends. Although neutrophils and monocytes could recognize leptospires, both have limited capacity to control the pathogen [37–42]. It was reported that pathogenic *Leptospira* spp. could bind to platelets and induce cytotoxic effects resulting in dysfunction and clearance of platelets [43–47]. A low level of platelets noticed in the present study could also play important role in the haemorrhagic presentation as observed in both animal [46] and human leptospirosis [48–50]. Significant neutrophilia and lymphocytopenia had also been reported in severe and fatal cases of human leptospirosis [6,51–55]. The significant changes in total and direct bilirubin, AST, ALT, creatinine, urea and CK appeared much later than the haematological parameters which were on days 4 and 5 p.i. henceforth concurrent with the appearance of damage in the liver and kidneys. These changes in the liver and kidney function tests were in agreement with changes in human leptospirosis [51,55–59].

Both pro-inflammatory cytokines and chemokines were expressed in the infected hamsters. Pro-inflammatory cytokines and enzymes which were IL-1β, IL-6, TNF-α, IFN-γ and COX-2 and chemokines CXCL10/IP-10 and CCL3/MIP-α showed upregulation as reported in both human and animal leptospirosis [6,17,18,23,60–62]. Pro-inflammatory enzyme iNOS was downregulated in lungs and kidneys and not expressed in blood and liver which was similarly reported in a previous study [63]. Anti-inflammatory cytokine TGF-β1 showed expression from day 3 p.i. while IL-10 was slightly induced in some of the dead hamsters on days 5 and 6 p.i. as similarly reported in the previous study [64].

Overall, two main manifestations of pathophysiology in severe leptospirosis were observed; haemorrhage and organ damage where pulmonary haemorrhage appeared as the earliest pathological event. The mechanism of pulmonary haemorrhage is still poorly understood and
could result from multiple factors [65]. Direct injury by leptospires or their circulating products (leptospiral outer membrane proteins, glycoproteins, hemolysins and lipopolysaccharides) and indirectly by the host’s immune dysregulation have been proposed to contribute to the haemorrhagic manifestation in leptospirosis [66–69]. Pathogenic leptospires could bind to the endothelial lining of the blood vessels [50,67,70–72] and potentially disrupts the endothelial cell layer [69,73]. IL-6 has been associated with severe pulmonary haemorrhage [6]. In the present study, IL-6 was significantly high in the lung on day 1 p.i. and while in the kidney, it only appears on day 4 p.i. concurrent with the haemorrhagic presentation, thereby could support the role of this cytokine in the haemorrhagic presentation in leptospirosis.

Haemorrhagic manifestation of leptospirosis could also be due to vascular cell damage by reactive oxygen species (ROS) and arterial hypertension [74]. Neutrophils could produce ROS [75], thus the high production of neutrophils in the infected animals may indirectly contribute to the haemorrhagic manifestation observed in this study. Nitric oxide (NO) production catalyzed by the enzyme iNOS [76,77] functions as a vasodilator [78] and is also able to control the production and activity of ROS [79,80] in inhibiting the replication of the pathogen [81–83]. The down-regulation of iNOS influences the release and activities of NO [76,77]. Low or specific inhibition of iNOS is associated with pulmonary haemorrhage [63], increased mortality, bacterial load in the kidney and reduced specific humoral response [84] in the hamster model and patients with severe disease [85].

Mild alveoli dilation observed on day 5 p.i. is a contributing factor for dyspnea which is in agreement with a report in a recent study [86]. The dilated alveolus is a characteristic of chronic obstructive pulmonary disease (COPD) with dyspnea as the cardinal symptom. Enlargement of the alveolus destructs the alveoli walls through inflammation [87]. Cytokine IL-1β has been shown to exert airway inflammation and emphysema in the COPD mice model [88–92]. The raised level of serum IL-1β in patients with mild alveolar dilation is in agreement with the present investigation where expression of IL-1β was significantly high from day 4 p.i. onwards [93].

The progression of damage in the liver and kidneys is associated with the changes in the serum biochemistry and increased expression of inflammatory cytokines and chemokines. The liver and kidney functions test markers (total bilirubin, direct bilirubin, ALT, AST, creatinine and urea, CK) showed a significant increase from day 4 p.i. The progressive upregulation of inflammatory cytokines and chemokines in the kidney (IL-1β, IL-6, TNF-α, COX-2, TGF-β1, CXCL10/IP-10 and CCL3/ MIP-α) and liver (IL-1β, TGF-β1, CXCL10/IP-10 and CCL3/ MIP-α) beginning from day 3 p.i. support the possibility that damage in these organs is associated with the increased inflammatory response. CXCL10/IP-10 and CCL3/MIP-α are known to mediate the migration of T cells, monocytes, neutrophils and natural killer (NK) cells from the bloodstream to tissues in response to inflammation [94–97].

A severe manifestation of leptospirosis is comparable to sepsis that occurs due to an imbalance in the inflammatory responses in the host infected with pathogens. The infected hosts release inflammatory mediators in an attempt to neutralize the pathogenic effect. The occurrence of a sustained and increased expression of pro-inflammatory cytokines characteristic of a “cytokine storm” will lead to persistent inflammation [9] and this is followed by a massive and systemic production of anti-inflammatory mediators resulting in a state of “immunoparalysis” and tissue oedema [98,99]. Tissues oedema could impair the local organ perfusion leading to loss of organ function and endothelial permeabilization [98,100]. In asymptomatic or mild leptospirosis and mice animal models, homeostasis between pro-inflammatory and anti-inflammatory is maintained where both are produced early and strictly regulated [9,17]. In severe leptospirosis in humans, two scenarios have been reported; either high IL-10 and low TNF-α [6,61] or low IL-10 and high TNF-α [17,101,102]. In this present study, we saw a
sudden surge of the pro-inflammatory mediators (cytokines and chemokines) beginning from day 3 p.i. without the prominent expression of anti-inflammatory IL-10. A low expression of IL-10 (ct value of >33 cycles) and early (day 3) expression of TNF-α, TGF-β and IP-10 in hamsters infected with *L. interrogans* serovar *Pyrogenes* has been reported earlier [64]. In conclusion, severe leptospirosis due to the *L. interrogans* strain HP358 could be characterized as a sudden and increased pro-inflammatory response with delayed and significantly low expression of anti-inflammatory IL-10. The severe leptospirosis characterized in the hamster model in the present study is in accordance with the severe form of leptospirosis in humans where patients showed mild symptoms during the early course of the disease and developed a rapidly worsening condition leading to fatality within 72 hours [70,103]. As observed in this study, the rapid evolution to severe illness and fatality in hamsters occurred when most inflammatory mediators were expressed and all organs (lungs, liver and kidneys) were affected. Likewise, the severe form of human leptospirosis involves haemorrhage and multiple organ damages.

Identification of biomarkers in leptospirosis is important not only for diagnosis but also to predict the progression to severity. The main characteristic of ideal biomarkers is their early detection [104] for timely intervention in patients management. A panel of biomarkers will increase the specificity and sensitivity of the diagnosis compared to a single biomarker [101,105]. Serum biochemistry may not be a good predictor for severe leptospirosis as these markers are detected only after the occurrence of serious damage to the liver and kidneys. Cytokines play a major role in host-pathogen interaction and prognosis [18]. Several earlier studies have identified significant expression of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-α in severe leptospirosis [6,102,106]. However, these studies were conducted in one-time sampling. Progressive monitoring is important to elucidate the progression of cytokines levels and to determine the most appropriate biomarker for disease severity. As the damage in leptospirosis surge rapidly, we recommend performing blood and cytokines profiling at 24 hours interval to monitor the biomarkers for the severe illness that could prevent substantial damage to the organs. From the present investigation, we found the expression of IL-1β, CXCL10/IP-10 and CCL3/MIP-α increased in the blood and most organs day by day as the infection progressed. On the other hand, neutrophils increased progressively from day 1 p.i. while lymphocytes and platelets showed a declining trend. Taken all these data together, we suggest that high levels of IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of lymphocytes and platelets could serve as a cumulative panel of potential biomarkers in the disease progression from mild to severe in leptospirosis. As this study was conducted in an animal model, a progressive validation study in human leptospirosis is recommended.

Conclusion

Severe leptospirosis is characterized by a sudden over-expression of pro-inflammatory cytokines after infection of *L. interrogans* strain HP358 and without prominent expression of regulatory cytokines. The massive expression of cytokines and chemokines led to sudden and rapid damage to the liver and kidneys. Damages in the lungs, liver and kidneys were preceded by the early occurrence of haemorrhage in the lungs. High levels of IL-1β, CXCL10/IP-10, CCL3/MIP-α, neutrophils and low levels of lymphocytes and platelets might serve as a cumulative panel of biomarkers in severe leptospirosis.

Supporting information

S1 Table. Leptospiral copies number in blood and organs.

(DOC)
Acknowledgments

We thank the staff in the Animal Research Facility—Low-level infection at the Faculty of Veterinary, UPM for their help in providing the equipment needed for this study.

Author Contributions

Conceptualization: Noraini Philip, Vasantha Kumari Neela.
Data curation: Noraini Philip.
Formal analysis: Noraini Philip.
Funding acquisition: Zamberi Sekawi, Vasantha Kumari Neela.
Investigation: Noraini Philip, Ahmad Hussein Jumah Badawi.
Methodology: Noraini Philip, Tengku Azmi Tengku Ibrahim, Vasantha Kumari Neela.
Project administration: Noraini Philip.
Resources: Vasantha Kumari Neela.
Software: Noraini Philip.
Supervision: Tengku Azmi Tengku Ibrahim, Zamberi Sekawi, Vasantha Kumari Neela.
Validation: Sivan Padma Priya, Mohd Hafidz Mohd Izhar, Norhafizah Mohtarrudin.
Visualization: Noraini Philip.
Writing – original draft: Noraini Philip.
Writing – review & editing: Noraini Philip, Sivan Padma Priya, Vasantha Kumari Neela.

References

1. Vijayachari P, Sugunan AP, Singh SS, Mathur PP. Leptospirosis among the self-supporting convicts of Andaman Island during the 1920s—the first report on pulmonary haemorrhage in leptospirosis? Indian J Med Res. 2015; 142(1):11–22. https://doi.org/10.4103/0971-5916.162087 PMID: 26261162
2. Scoot GM, Coleman TJ. Leptospirosis. In: Cook C, Zumla AI, editors. Manson’s tropical diseases. British: Saunders Elsevier; 2009. pp. 1161–7. https://doi.org/10.1002/cphc.200800403 PMID: 19142925
3. Day NPJ, Edward CN. 2010 Leptospirosis. In: Cohen J, Powderly WG, Opal SM, editors. Infectious diseases. 3rd ed. British: Mosby Elsevier; 2010. pp. 1241–6.
4. Watt G. Leptospirosis. In: Ryan E, Hill D, Solomon T, Magill A, editors. Hunter’s tropical medicine and emerging infectious diseases. 9th ed. British: Saunders Elsevier; 2013. pp 597–601.
5. Hartskeerl RA, Wagenaar JF. Leptospirosis. In: Kasper DL, Fauci A, Hauser S, Longo D, Jameson J, editors. Harrison’s principles of internal medicine. 19th ed. New York: McGraw-Hill Education; 2015. pp. 1140–5.
6. Reis EA, Hagan JE, Ribeiro GS, Teixeira-Carvalho A, Martins-Filho OA, Montgomery RR, et al. Cytokine response signatures in disease progression and development of severe clinical outcomes for...
leptospirosis. PLoS Negl Trop Dis. 2013; 7(9):e2457. https://doi.org/10.1371/journal.pntd.0002457 PMID: 24069500

7. Chirathaworn C, Kongpan S. Immune responses to Leptospira infection: roles as biomarkers for disease severity. Braz J Infect Dis. 2014; 18(1):77–81. https://doi.org/10.1016/j.bjid.2013.08.002 PMID: 24275371

8. Haake DA, Levettn PN. Leptospirosis in humans. Curr Top Microbiol Immunol. 2015; 387:65–97. https://doi.org/10.1007/978-3-662-45059-8_5 PMID: 25388133

9. Cagliero J, Villanueva SYAM, Matsui M. Leptospirosis pathophysiology: into the storm of cytokines. Front Cell Infect Microbiol. 2018; 8:204. https://doi.org/10.3389/fcimb.2018.00204 PMID: 29974037

10. Dupont H, Dupont-Perdrizet D, Perie JL. Leptospirosis: prognostic factors associated with mortality. Clin Infect Dis. 1997; 25(3):720–4. https://doi.org/10.1086/513767 PMID: 9314467

11. Panaphut T, Domrongkitchaiaporn S, Thinkamrop B. Prognostic factors of death in leptospirosis: a prospective cohort study in Khon Kaen, Thailand. Int J Infect Dis. 2002; 6(1):52–9. https://doi.org/10.1016/s1201-9712(02)90137-2 PMID: 12044303

12. Spichler AS, Vilaça PJ, Athanazio DA, Albuquerque JOM, Buzzar M, Castro B, et al. Predictors of lethality in severe leptospirosis in urban Brazil. Am J Trop Med Hyg. 2008; 79(6):911–4. PMID: 19052303

13. Fann RJ, Vidya RR, Chong HE, Indralingam V, Chan WSC. Clinical presentations and predictors of mortality for leptospirosis—A study from suburban area in Malaysia. Med J Malaysia. 2020; 75(1):52–6. PMID: 32008021

14. Wang HK, Lee MH, Chen YC, Hsueh PR, Chang SC. Factors associated with severity and mortality in patients with confirmed leptospirosis at a regional hospital in northern Taiwan. J Microbiol Immun Infect. 2020; 53(2):307–14. https://doi.org/10.1016/j.jmii.2018.05.005 PMID: 29934034

15. Azhari NN, Ramli SNA, Joseph N, Philip N, Mustapha NF, Ishak SN, et al. Molecular characterization of pathogenic Leptospira sp. in small mammals captured from the human leptospirosis suspected areas of Selangor state, Malaysia. Acta Trop. 2018; 188:68–77. https://doi.org/10.1016/j.actatropica.2018.08.020 PMID: 30145261

16. Philip N, Jani J, Azhari NN, Sekawi Z, Neela V.K. In vivo and in silico virulence analysis Leptospira species isolated from environments and rodents in leptospirosis outbreak areas in Malaysia. Front Microbiol. 2021; 12:753328. https://doi.org/10.3389/fmicb.2021.753328 PMID: 34803975

17. Matsui M, Rouleau V, Bruyere-Ostell L, Goarant C. Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: comparison between susceptible hamsters and resistant mice. Infect Immun. 2011; 79(11):4480–92. https://doi.org/10.1128/IAI.00447-06 PMID: 16790792

18. Vernel-Pauillac F, Goarant C. Differential cytokine gene expression according to outcome in a hamster model of leptospirosis. PLoS Negl Trop Dis. 2010; 4(1):e582. https://doi.org/10.1371/journal.pntd.0000582 PMID: 20076757

19. Villanueva SY, Saito M, Tsutsumi Y, Segawa T, Baterna RA, Chakraborty A, et al. High virulence in hamsters of four dominant Leptospira serovars isolated from rats in the Philippines. Microbiology. 2014; 160(2):418–28. https://doi.org/10.1099/mic.0.072439-0 PMID: 24257815

20. Marinho M, Oliveira-Júnior IS, Monteiro CM, Perri SH, Salomão R. 2009. Pulmonary disease in hamsters infected with Leptospira interrogans: histopathological findings and cytokine mRNA expressions. Am J Trop Med Hyg. 2009; 80(5):832–6. PMID: 19407133

21. Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR. 2009. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the lipL32 gene. Diagn Microbiol Infect Dis. 2009; 64(3):247–55. https://doi.org/10.1016/j.diagmicrobio.2009.03.014 PMID: 19395218

22. Vernel-Pauillac F, Merien F. Proinflammatory and immunomodulatory cytokine mRNA time course profiles in hamsters infected with a virulent variant of Leptospira interrogans. Infect Immun. 2006; 74(7):4172–9. https://doi.org/10.1128/IAI.00447-06 PMID: 16790792

23. Matsui M, Roche L, Gerout S, Soupère-Gilbert ME, Monchy D, Huerre M, et al. Cytokine and chemokine expression in kidneys during chronic leptospirosis in reservoir and susceptible animal models. PLoS One. 2016; 11(5):e0156084. https://doi.org/10.1371/journal.pone.0156084 PMID: 27219334

24. Doudier B, Garcia S, Quinnée V, Jarno P, Broqui P. Prognostic factors associated with severe leptospirosis. Clin Microbiol Infect. 2006; 12(4):299–300. https://doi.org/10.1111/j.1469-0691.2005.01335.x PMID: 16524404

25. Hinjoy S, Kongyu S, Doung-Ngem P, Doungchawee G, Colombe SD, Tsukayama R, et al. Environmental and behavioral risk factors for severe leptospirosis in Thailand. Trop Med Infect Dis. 2019; 4(2):79. https://doi.org/10.3390/tropicalmed4020079 PMID: 31100812
45. Tunjungputri RN, Gasem MH, van der Does W, Isbandrio B, Urbanus RT, et al. Platelet
Hoffmeister KM, Felbinger TW, Fayeulle S, Moiton MP, Gerber A, et al. The clearance
44. Isogai E, Kitagawa H, Isogai H, Matsuzawa T, Shimizu T, Yana
42. Charo N, Scharrig E, Ferrer MF, Sanjuan N, Carrera Silva EA, Schattner M, et al.
40. Wang B, Sullivan JA, Sullivan GW, Mandell GL. Role of specific antibody in interacti
39. Scharrig E, Carestia A, Ferrer MF, Cedola M, Pretre G, Drut R, et al. Neutrophil ex
38. Wunder EA, Figueira CP, Benaroudj N, Hu B, Tong BA, Trajtenberg F, et al. A novel flagellar sheath
37. Allen P, Rafte
35. Dong WH, Chen Z. Leptospir
34. Allen P, Ra
33. Gouveia EL, Metcalf J, de Carvahlo ALF, Aires TSF, Villasboas-Bisneto JC, Queiroz A, et al. Lepto-
32. Barnacle J, Gurney S, Ledot S, Singh S. Leptospirosis as an importan
dysfunction contribu
tes to bleeding complicati
31. Nikaido Y, Ogawa M, Fukuda K, Yokoyama M, Kanemaru T, Nakayama T, et al. Transbronchial inva
30. Nikaido Y, Ogawa M, Fukuda K, Yokoyama M, Kanemaru T, Nakayama T, et al. Transbronchial inva
29. Coutinho ML, Matsunaga J, Wang LC, de la Pe
28. Predescu A, Diaconu S, Tiuca N, Purca
to a model of leptospir
27. Gulati S, Gulati A. Pulmon
tions. Lung India. 2012; 29(4):347–53. https://doi.org/10.4103/0970-2113.102822 PMID: 23243349
26. Spichler A, Moock M, Chapola EG, Vinetz J. Weil’s disease: an unusually fulminant presentation char-
gerized by pulmonary hemorrhage and shock. Braz J Infect Dis. 2005; 9(4):336–40. https://doi.org/10.1590/s1413-86720050000400011 PMID: 16270127
25. Gulati S, Gulati A. Pulmonary manifestations of leptospirosis. Lung India. 2012; 29(4):347–53. https://doi.org/10.4103/0970-2113.102822 PMID: 23243349
24. Predescu A, Diaconu S, Tiuca N, Purca
to a case report. Internal Medicine. 2018; 15(4):45–53.
23. Haa
to model of leptospir
22. Predescu A, Diaconu S, Tiuca N, Purca
to a case report. Internat
21. Allen P, Ra
20. Nikaido Y, Ogawa M, Fukuda K, Yokoyama M, Kanemaru T, Nakayama T, et al. Transbronchial inva
19. Allen P, Raf
to model of leptospir
18. Allen P, Raf
to model of leptospir
17. Allen P, Raff
to a model of leptospir
16. Wunder EA, Figueira CP, Benaroudj N, Hu B, Tong BA, Trajtenberg F, et al. A novel flagellar sheath
15. Allen P, Raf
to a model of leptospir
14. Gouveia EL, Metcalf J, de Carvahlo ALF, Aires TSF, Villasboas-Bisneto JC, Queiroz A, et al. Lepto-
sociation severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis. 2008; 14(3):505–8.
https://doi.org/10.3201/eid1403.071064 PMID: 18325275
13. Allen P, Raftery S, Phelan D. Massive pulmonary hemorrhage due to leptospir
12. Barnacle J, Gurney S, Ledot S, Singh S. Leptospirosis as an importan
dysfunction contribu
tes to bleeding complicati
11. Nikaido Y, Ogawa M, Fukuda K, Yokoyama M, Kanemaru T, Nakayama T, et al. Transbronchial inva
10. Wunder EA, Figueira CP, Benaroudj N, Hu B, Tong BA, Trajtenberg F, et al. A novel flagellar sheath protein, FcpA, determin
9. Scharrig E, Carestia A, Ferrer MF, Cedola M, Pretre G, Drut R, et al. Neutrophil extracellular traps are involved in the innate immune response to infection with Leptospira. PLoS Negl Trop Dis. 2015; 9(7): e0003927. https://doi.org/10.1371/journal.pntd.0003927 PMID: 26161745
8. Veire ML, Teixeira AF, Pidde G, Ching ATC, Tambourgi DV, Nascimento A, et al. Leptospirosis-asso
ciated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis. 2018; 9(1):414–25. https://doi.org/10.1080/21505594.2017.1407484 PMID: 29235397
7. Wang B, Sullivan JA, Sullivan GW, Mandell GL. Role of specific antibody in infection of leptospires with human monocytes and monocyte-derived macrophages. Infect Immun. 1984; 46(3):809–13. https://doi.org/10.1128/iai.46.3.809-813.1984 PMID: 6500713
6. Wunder EA, Fige
era MP, Benaroudj N, Hu B, Tong BA, Trajtenberg F, et al. A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete. Mol Microbiol. 2016; 101(3):457–470. https://doi.org/10.1111/mmi.13403 PMID: 27113476
5. Dong WH, Chen Z. Leptospirosis with pulmonary hemorrhage and multiple organ failure: a case report and literature review. J Int Med Res. 2021; 49(5):1–9. https://doi.org/10.1177/03000605211019665 PMID: 34044641
4. Veire ML, Teixeira AF, Pidde G, Ching ATC, Tambourgi DV, Nascimento A, et al. Leptospirosis-asso
ciated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis. 2018; 9(1):414–25. https://doi.org/10.1080/21505594.2017.1407484 PMID: 29235397
3. Charo N, Scharrig E, Ferrer MF, Sanjuan N, Carrera Silva EA, Schattner M, et al. Leptospira species promote a pro-inflammatory phenotype in human neutrophils. Cell Microbiol. 2019; 21(2):e12990. https://doi.org/10.1111/cmi.12990 PMID: 30537301
2. Raffray L, Giry C, Vandoxet Y, Leclercq D, Fayeulle S, Molion MP, Merker WA, et al. Leptospir
1. Spichler A, Moock M, Chapola EG, Vinetz J. Weil’s disease: an unusually fulminant presentation char-
egenerated by pulmonary hemorrhage and shock. Braz J Infect Dis. 2005; 9(4):336–40. https://doi.org/10.1590/s1413-86720050000400011 PMID: 16270127
46. Fang JQ, Imran M, Hu WL, Ojcius DM, Li Y, Ge YM, et al. vWF proteins of *Leptospira interrogans* induce hemorrhage in leptospirosis by competitive inhibition of vWF/GPIb-mediated platelet aggregation. EBioMedicine. 2018; 37:428–41. https://doi.org/10.1016/j.ebiom.2018.10.033 PMID: 30337247

47. Vieira ML, Nascimento ALTO. Virulent *Leptospira interrogans* induce cytotoxic effects in human platelets *in vitro* through direct interactions. Front Microbiol. 2020; 11:572972. https://doi.org/10.3389/fmicb.2020.572972 PMID: 33117318

48. Edwards CN, Nicholson GD, Everard CO. Thrombocytopenia in leptospirosis. Am J Trop Med Hyg. 1982; 31(4):827–9. https://doi.org/10.4269/ajtmh.1982.31.827 PMID: 7102918

49. Casiple LC. Thrombocytopenia and bleeding in leptospirosis. Phil J Microbiol Infect Dis. 1998; 27(1):18–22.

50. Nicoldeo AC, Duarte MI, Alves VA, Takakura CF, Santos RT, Nicoldeo EL. Lung lesions in human leptospirosis: microscopic, immunohistochemical, and ultrastructural features related to thrombocytopenia. Am J Trop Med Hyg. 1997; 56(2):181–7. https://doi.org/10.4269/ajtmh.1997.56.181 PMID: 9080878

51. Jaureguiberry S, Roussel M, Brinchault-Rabin G, Gacouin A, Le Meur A, Auviece C, et al. Clinical presentation of leptospirosis: a retrospective study of 34 patients admitted to a single institution in metropolitan France. Clin microbiol Infect. 2005; 11(5):391–4. https://doi.org/10.1111/j.1469-0691.2005.01148.x PMID: 15819866

52. Craig SB, Graham GC, Bums MA, Dohnt MF, Smythe LD, McKay DB. Haematological and clinical-chemistry markers in patients presenting with leptospirosis: a comparison of the findings from uncomplicated cases with those seen in the severe disease. Ann Trop Med Parasitol. 2009; 103(4):333–41. https://doi.org/10.1179/136485909X345058 PMID: 19508751

53. Craig SB, Collet TA, Wynwood SJ, Smythe LD, Weier SL, McKay DB. Neutrophil counts in leptospirosis patients infected with different serovars. Trop Biomed. 2013; 30(4):579–83. PMID: 24521225

54. De Silva NL, Niloofa MJR, Fernando N, Karunanayake L, Rodrigo C, De Silva HJ, et al. Changes in full blood count parameters in leptospirosis: a prospective study. Int J Med Res Rev 2017; 5(9):857–64. https://doi.org/10.17511/ijmrr.2017.i09.05.

55. Craig SB, Collet TA, Wynwood SJ, Smythe LD, Weier SL, McKay DB. Haematological and clinical-chemistry markers in patients presenting with leptospirosis: a comparison of the findings from uncomplicated cases with those seen in the severe disease. Ann Trop Med Parasitol. 2009; 103(4):333–41. https://doi.org/10.1111/j.1469-0691.2005.01148.x PMID: 15819866

56. De Silva NL, Niloofa MJR, Fernando N, Karunanayake L, Rodrigo C, De Silva HJ, et al. Changes in full blood count parameters in leptospirosis: a prospective study. Int J Med Res Rev 2017; 5(9):857–64. https://doi.org/10.17511/ijmrr.2017.i09.05.

57. Daher EF, Lima RS, Junior GBS, Silva EC, Karbage NN, Kataoka RS, et al. Clinical presentation of leptospirosis: a retrospective study of 201 patients in a metropolitan city of Brazil. Braz J Infect Dis. 2010; 14(1):3–10. PMID: 20428646.

58. Goswami RP, Goswami RP, Basu A, Tripathi SK, Chakrabarti S, Chattopadhyay I. Predictors of mortality in leptospirosis: an observational study from two hospitals in Kolkata, eastern India. Trans R Soc Trop Med Hyg. 2014; 108(12):791–6. https://doi.org/10.1093/trstmh/tru144 PMID: 25359320

59. Divakar A, Pillai MGK, Thomas E. Clinical profile of mortality predictors in leptospirosis: a prospective study in a tertiary care center. Int J Med Res Rev 2017; 5(9):857–64. https://doi.org/10.17511/ijmrr.2017.i09.05.

60. Sandhu RS, Ismail HB, Ja‘afar MH, Rampal S. The predictive factors for severe leptospirosis cases in Kedah. Trop Med Infect Dis. 2020; 5(2):79. https://doi.org/10.3390/tropicalmed5020079 PMID: 32422911

61. De Fost M, Chierakul W, Limpaiboon R, Dondorp A, White NJ, van Der Poll T. Release of granzymes and chemokines in Thai patients with leptospirosis. Clin Microbiol Infect. 2007; 13(4):433–6. https://doi.org/10.1111/j.1469-0691.2006.01640.x PMID: 17359329

62. Kyriakidis I, Samara P, Papa A. Serum TNF-α, sTNFR1, IL-6, IL-8 and IL-10 levels in Weil's syndrome. Cytokine. 2011; 54(2):117–20. https://doi.org/10.1016/j.cyto.2011.01.014 PMID: 21369885

63. Senavirathna I, Rathish D, Agampodi A. Cytokine response in human leptospirosis with different clinical outcomes: a systematic review. BMC Infect Dis. 2020; 20(1):268. https://doi.org/10.1186/s12879-020-04986-9 PMID: 32264832

64. Lowanitchapat A, Payungpoorn S, Sereemasapun A, Ekpo P, Phulsuksombati D, Poovorawan Y, et al. Expression of TNF-α, TGF-β, IP-10 and IL-10 mRNA in kidneys of hamsters infected with pathogenic *Leptospira*. Comp Immunol Microbiol Infect Dis. 2010; 33(5):423–34. https://doi.org/10.1016/j.cimid.2009.05.001 PMID: 1959480
65. Medeiros FR, Spichler A, Athanazio DA. Leptospirosis associated disturbances of blood vessels, lungs and hemostasis. Acta Trop. 2010; 115(1–2):155–62. https://doi.org/10.1016/j.actatropica.2010.02.016 PMID: 20260112

66. Luks AM, Lakshminarayanan S, Hirschmann JV. Leptospirosis presenting as diffuse alveolar hemorrhage—case report and literature review. Chest. 2003; 123(2):639–43. https://doi.org/10.1378/chest.123.2.639 PMID: 12576935

67. Dohnikoff M, Maud T, Bethlem EP, Carvalho CR. Pathology and pathophysiology of pulmonary manifestations in leptospirosis. Braz J Infect Dis. 2007; 11(1):142–8. https://doi.org/10.1590/s1413-86702007000100029 PMID: 17625743

68. Croda J, Neto AN, Brasil RA, Pagliari C, Nicodemo AC, Duarte MIS. Leptospirosis pulmonary haemorrhage syndrome is associated with linear deposition of immunoglobulin and complement on the alveolar surface. Clin Microbiol Infect. 2010; 16(6):593–9. https://doi.org/10.1111/j.1469-0691.2009.02916.x PMID: 19778300

69. De Brito T, Aiello VD, da Silva LFF, da Silva AMG, da Silva WLF, Castelli JB, et al. Human hemorhagic pulmonary leptospirosis: pathological findings and pathophysiological correlations. PLoS one. 2013; 8(8):e71743. https://doi.org/10.1371/journal.pone.0071743 PMID: 23951234

70. Silva JJ, Dalston MO, Carvalho JE, Setubal S, Oliveira JM, Pereira MM. Clinicopathological and immunohistochemical features of the severe pulmonary form of leptospirosis. Rev Soc Bras Med Trop. 2002; 35(4):395–9. https://doi.org/10.1590/s0037-86822002000400017 PMID: 12170336

71. Evangelista K, Franco R, Schwab A, Coburn J. Leptospira interrogans binds to cadherins. PLoS Negl Trop Dis. 2014; 8(1):e2672. https://doi.org/10.1371/journal.pntd.0002672 PMID: 24498454

72. Evangelista KV, Hahn B, Wunder EA Jr, Ko AI, Haaake DA, Coburn J. Identification of cell-binding adhesins of Leptospira interrogans. PLoS Negl Trop Dis. 2014; 8(10):e3215. https://doi.org/10.1371/journal.pntd.0003215 PMID: 25275630

73. Martinez-Lopez DG, Fahey M, Coburn J. Responses of human endothelial cells to pathogenic and non-pathogenic Leptospira species. PLoS Negl Trop Dis. 2010; 4(12):e918. https://doi.org/10.1371/journal.pntd.0000918 PMID: 21179504

74. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol. 2018; 175(8):1279–92. https://doi.org/10.1111/bph.13828 PMID: 28430357

75. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011; 11(8):519–31. https://doi.org/10.1038/nri3024 PMID: 21785456

76. Finder J, Stark WW Jr, Nakayama DK, Geller D, Wasserloos K, Pitt BR, et al. TGF-beta regulates pro-

77. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011; 11(8):519–31. https://doi.org/10.1038/nri3024 PMID: 21785456

78. Lowenstein CJ, Padalko E. iNOS (NOS2) at a glance. J Cell Sci. 2004; 117(14):2865–7. https://doi.org/10.1242/jcs.01166 PMID: 15197240

79. d’Andon MF, Quellard N, Fernandez B, Ratet G, Lacroix-Lamande S, Vandewalle A, et al. Leptospira interrogans induces fibrosis in the mouse kidney through NOS-dependent, TLR-and NLR-independent signaling pathways. Plos Negl Trop Dis. 2014; 8(1):e2664. https://doi.org/10.1371/journal.pntd.0002664 PMID: 24498450

80. Pretre G, Olivera N, Cedola M, Haase S, Alberdi L, Brihuega B, et al. Role of inducible nitric oxide synthase in the pathogenesis of experimental leptospirosis. Microb Pathog. 2011; 51(3):203–8. https://doi.org/10.1016/j.micpath.2011.03.011 PMID: 21497651
85. Avdeeva MG, Bondarenko IN, Peredirii IR. Clinical significance of the activity of nitric oxide synthase in patients with leptospirosis. Klin Lab Diagn. 2008; 1:40–3. PMID: 18314776

86. Cordonin C, Turpin M, Bascands JL, Delliag K, Mavingui P, Tortosa P, et al. Three *Leptospira* strains from western Indian ocean wildlife show highly distinct virulence phenotypes through hamster experimental infection. Front Microbiol. 2019; 10:382. https://doi.org/10.3389/fmicb.2019.00382 PMID: 30915044

87. MacNee W. ABC of chronic obstructive pulmonary disease: Pathology, pathogenesis, and pathophysiology. BMJ. 2006; 332(7551):1202–1204.

88. Lappalainen U, Whitsett JA, Wert SE, Ticelaar JW, Bly K. Interleukin-1beta causes pulmonary inflammation, emphyema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005; 32(4):311–8. https://doi.org/10.1165/rccm.2004-0309OC PMID: 15668323

89. Churg A, Zhou S, Wang X, Wang R, Wright JL. The role of interleukin-1beta in murine cigarette smoke-induced emphyema and small airway remodeling. Am J Respir Cell Mol Biol. 2009; 40 (4):482–90. https://doi.org/10.1165/rccm.2008-0308OC PMID: 18931327

90. Couillin I, Vasseur V, Charron S, Gasse P, Tavernier M, Guillet J, et al. Severity of cytokine storm and the use of steroids. Trop Doct. 2021; 51(1):128–30. https://doi.org/10.1177/0049475520971425 PMID: 3326692

91. Bennett MR, Devarajan P. Proteomic analysis of acute kidney injury: biomarkers to mechanisms. Proteomics Clin Appl. 2011; 5(1–2):67–77. https://doi.org/10.1002/prca.201000066 PMID: 21280238

92. Pauwels NS, Bracke KR, Dupont LL, Pottelberge GRV, Provoost S, Berghve T, et al. Role of IL-1alpha and the Nlrp3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur Respir J. 2011; 38(5):1019–28. https://doi.org/10.1183/09031936.0158110 PMID: 21622588

93. Maurer M, von Stebut E. Macrophage inflammatory protein-1alpha and the Nlrp3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur Respir J. 2019; 53(3):718–26. https://doi.org/10.1183/13993003.00103119 PMID: 20408868

94. Neville LF, Mathiak G, Bagasra O. The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): a novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev. 1997; 8(3):207–19. https://doi.org/10.1016/s1359-6101(97)00015-4 PMID: 9462486

95. Bhavsar I, Miller CS, Al-Sabbagh M. Macrophage inflammatory protein-1 alpha (MIP-1 alpha)/CCL3: as a biomarker. In: Preedy VR, Patel VB, editors. General methods in biomarker research and their applications. Switzerland: Springer Nature; 2015. pp. 230–49.

96. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012; 76(1):16–32. https://doi.org/10.1128/MMBR.05187-11 PMID: 22390970

97. Zhao HQ, Li WM, Lu ZQ, Sheng ZY, Yao YM. The growing spectrum of anti-inflammatory interleukins higher perception of dyspnea mimicking asthma in obese subjects. J Interferon Cytokine Res. 2015; 35(4):242–51. https://doi.org/10.2147/COPD.S131877 PMID: 28490868

98. Zou Y, Chen X, Liu J, Zhou DB, Kuang X, Xiao J, et al. Serum IL-1beta and IL-17 levels in patients with COPD: associations with clinical parameters. Int J Chron Obstruct Pulmon Dis. 2017; 12:1247–54. https://doi.org/10.2147/COPD.S131877 PMID: 28490868

99. Vazirinejad R, Ahmadi Z, Arababadi MK, Hassanshahi G, Kennedy D. The biological functions, structure and sources of CXCL10 and its outstanding part in the pathophisiology of multiple sclerosis. Neuroimmunomodulation. 2014; 21(6):322–30. https://doi.org/10.1159/000357780 PMID: 24642726

100. Tian Y, Song H, Liu R, Wang X, Jiang J, et al. IL-10/IL-17 ratio and its relationship to disease severity and survival in patients with leptospirosis. Braz J Infect Dis. 2017; 21(1):71–7. https://doi.org/10.1016/j.bjid.2016.09.001 PMID: 28159724
106. Chirathaworn C, Supputamongkol Y, Lertmaharit S, Poovorawan Y. Cytokine levels as biomarkers for leptospirosis patients. Cytokine. 2016; 85:80–2. https://doi.org/10.1016/j.cyto.2016.06.007 PMID: 27295614