A note on Todorov surfaces
Carlos Rito

Abstract

Let S be a Todorov surface, i.e., a minimal smooth surface of general type with $q = 0$ and $p_g = 1$ having an involution i such that S/i is birational to a $K3$ surface and such that the bicanonical map of S is composed with i.

The main result of this paper is that, if P is the minimal smooth model of S/i, then P is the minimal desingularization of a double cover of P^2 ramified over two cubics. Furthermore it is also shown that, given a Todorov surface S, it is possible to construct Todorov surfaces S_j with $K^2_{S_j} = 1, \ldots, K^2_{S_j} - 1$ and such that P is also the smooth minimal model of S_j/i_j, where i_j is the involution of S_j. Some examples are also given, namely an example different from the examples presented by Todorov in [To2].

2000 Mathematics Classification: 14J29, 14J28.

1 Introduction

An involution of a surface S is an automorphism of S of order 2. We say that a map is composed with an involution i of S if it factors through the double cover $S \rightarrow S/i$. Involutions appear in many contexts in the study of algebraic surfaces. For instance in most cases the bicanonical map of a surface of general type is non-birational only if it is composed with an involution.

Assume that S is a smooth minimal surface of general type with $q = 0$ and $p_g \neq 0$ having bicanonical map ϕ_2 composed with an involution i of S such that S/i is non-ruled. Then, according to [Xi] Theorem 3, $p_g(S) = 1$, $K^2_S \leq 8$ and S/i is birational to a $K3$ surface (Theorem 3 of [Xi] contains the assumption $\deg(\phi_2) = 2$, but the result is still valid assuming only that ϕ_2 is composed with an involution).

Todorov ([To2]) was the first to give examples of such surfaces. His construction is as follows. Consider a Kummer surface Q in P^3, i.e., a quartic having as only singularities 16 nodes a_i. The double cover of Q ramified over the intersection of Q with a general quadric and over the 16 nodes of Q is a surface of general type with $q = 0$, $p_g = 1$ and $K^2 = 8$. Then, choose a_1, \ldots, a_6 in general position and let G be the intersection of Q with a general quadric through j of the nodes a_1, \ldots, a_6. The double cover of Q ramified over $Q \cap G$ and over the remaining $16 - j$ nodes of Q is a surface of general type with $q = 0$, $p_g = 1$ and $K^2 = 8 - j$.

Imposing the passage of the branch curve by a 7-th node, one can obtain a surface with $K^2 = p_g = 1$ and $q = 0$. This is the so-called Kunev surface. Todorov ([To1]) has shown that the Kunev surface is a bidouble cover of P^2 ramified over two cubics and a line.
I refer to [Mo] for an explicit description of the moduli spaces of Todorov surfaces.

We call Todorov surfaces smooth surfaces \(S \) of general type with \(p_g = 1 \) and \(q = 0 \) having bicanonical map composed with an involution \(i \) of \(S \) such that \(S/i \) is birational to a K3 surface.

In this paper we prove the following:

Theorem 1 Let \(S \) be a Todorov surface with involution \(i \) and \(P \) be the smooth minimal model of \(S/i \). Then:

a) there exists a generically finite degree 2 morphism \(P \to \mathbb{P}^2 \) ramified over two cubics;

b) for each \(j \in \{1, \ldots, K_2^2 - 1\} \), there is a Todorov surface \(S_j \), with involution \(i_j \), such that \(K_2^2 S_j = j \) and \(P \) is the smooth minimal model of \(S_j/i_j \).

The idea of the proof is the following. First we verify that the evenness of the branch locus \(B' + \sum A_i \subset P \) implies that each nodal curve \(A_i \) can only be contained in a Dynkin graph \(G \) of type \(A_{2n+1} \) or \(D_n \). Then we use a Saint-Donat result to show that \(A_i \) can be chosen such that the linear system \(|B' - G| \) is free. This implies b). Finally we conclude that there is a free linear system \(|B'_0| \) with \(B'_0^2 = 2 \), which gives a).

Notation and conventions

We work over the complex numbers; all varieties are assumed to be projective algebraic. For a projective smooth surface \(S \), the canonical class is denoted by \(K \), the geometric genus by \(p_g := h^0(S, \mathcal{O}_S(K)) \), the irregularity by \(q := h^1(S, \mathcal{O}_S(K)) \) and the Euler characteristic by \(\chi = \chi(\mathcal{O}_S) = 1 + p_g - q \).

A \((-2)\)-curve or nodal curve on a surface is a curve isomorphic to \(\mathbb{P}^1 \) such that \(C^2 = -2 \). We say that a curve singularity is negligible if it is either a double point or a triple point which resolves to at most a double point after one blow-up.

The rest of the notation is standard in algebraic geometry.

Acknowledgements

The author is a collaborator of the Center for Mathematical Analysis, Geometry and Dynamical Systems of Instituto Superior Técnico, University of Trás-os-Montes e Alto Douro. This research was partially supported by FCT (Portugal) through Project POCTI/MAT/44068/2002.

2 Preliminaries

The next result follows from [Sti] (4.1), Theorem 5.2, Propositions 5.6 and 5.7.

Theorem 2 ([Sti]) Let \(|D| \) be a complete linear system on a smooth K3 surface \(F \), without fixed components and such that \(D^2 \geq 4 \). Denote by \(\varphi_D \) the map given by \(|D| \). If \(\varphi_D \) is non-birational and the surface \(\varphi_D(F) \) is singular then there exists an elliptic pencil \(|E| \) such that \(ED = 2 \) and one of these cases occur:
(i) $D = O_F(4E + 2\Gamma)$ where Γ is a smooth rational irreducible curve such that $\Gamma E = 1$. In this case $\varphi_D(F)$ is a cone over a rational normal twisted quartic in \mathbb{P}^4;

(ii) $D = O_F(3E + 2\Gamma_0 + \Gamma_1)$, where Γ_0 and Γ_1 are smooth rational irreducible curves such that $\Gamma_0 E = 1$, $\Gamma_1 E = 0$ and $\Gamma_0 \Gamma_1 = 1$. In this case $\varphi_D(F)$ is a cone over a rational normal twisted cubic in \mathbb{P}^3;

(iii) a) $D = O_F(2E + \Gamma_0 + \Gamma_1)$, where Γ_0 and Γ_1 are smooth rational irreducible curves such that $\Gamma_0 E = \Gamma_1 E = 1$ and $\Gamma_0 \Gamma_1 = 0$;

b) $D = O_F(2E + \Delta)$, with $\Delta = 2\Gamma_0 + \cdots + 2\Gamma_N + \Gamma_{N+1} + \Gamma_{N+2}$ ($N \geq 0$), where the curves Γ_i are irreducible rational curves as in Figure 1.

In both cases $\varphi_D(F)$ is a quadric cone in \mathbb{P}^3.

Moreover in all the cases above the pencil $|E|$ corresponds under the map φ_D to the system of generatrices of $\varphi_D(F)$.

3 Proof of Theorem 1

We say that a curve D is nef and big if $DC \geq 0$ for every curve C and $D^2 > 0$. In order to prove Theorem 1 we show the following:

Proposition 3 Let P be a smooth K3 surface with a reduced curve B satisfying:

(i) $B = B' + \sum_{t \in \{9, \ldots, 16\}} A_t$, where B' is a nef and big curve with at most negligible singularities, the curves A_t are disjoint (-2)-curves also disjoint from B' and $B \equiv 2L$, $L^2 = -4$, for some $L \in \text{Pic}(P)$.

Then:

a) Let $\pi : V \to P$ be a double cover with branch locus B and S be the smooth minimal model of V. Then $q(S) = 0$, $p_g(S) = 1$, $K_S^2 = t - 8$ and the bicanonical map of S is composed with the involution i of S induced by π;

b) If $t \geq 10$, then P contains a smooth curve B_0' and (-2)-curves A'_1, \ldots, A'_{t-1} such that $B_0'^2 = B'^2 - 2$ and $B_0 := B'_0 + \sum_{i=1}^{t-1} A'_i$ also satisfies condition (i).
Proof:

a) Let \(L \equiv \frac{1}{2}B \) be the line bundle which determines \(\pi \). From the double cover formulas (see e.g. \[BPV\]) and the Riemann Roch theorem,
\[
q(S) = h^1(P, \mathcal{O}_P(L)),
p_g(S) = 1 + h^0(P, \mathcal{O}_P(L)),
\]
\[
h^0(P, \mathcal{O}_P(L)) + h^0(P, \mathcal{O}_P(-L)) = h^1(P, \mathcal{O}_P(L)).
\]
Since \(2L - \sum A_i \) is nef and big, the Kawamata-Viehweg’s vanishing Theorem (see e.g. \[EV\] Corollary 5.12, c)) implies \(h^1(P, \mathcal{O}_P(-L)) = 0 \).
Hence
\[
h^1(P, \mathcal{O}_P(L)) = h^1(P, \mathcal{O}_P(K_P - L)) = h^1(P, \mathcal{O}_P(-L)) = 0
\]
and then \(q(S) = 0 \) and \(p_g(S) = 1 \).
As
\[
h^0(P, \mathcal{O}_P(2K_P + L)) = h^0(P, \mathcal{O}_P(L)) = 0,
\]
the bicanonical map of \(S \) is composed with \(i \) (see \[CM\] Proposition 6.1]).
The \((-2)\)-curves \(A_1, \ldots, A_t \) give rise to \((-1)\)-curves in \(V \), therefore
\[
K^2_S = K^2_V + t = 2(K_P + L)^2 + t = 2L^2 + t = t - 8.
\]

b) Denote by \(\xi \subset P \) the set of irreducible curves which do not intersect \(B' \) and denote by \(\xi_i, \ i \geq 1 \), the connected components of \(\xi \). Since \(B'^2 \geq 2 \), the Hodge-index Theorem implies that the intersection matrix of the components of \(\xi \) is negative definite. Therefore, following \[BPV\] Lemma I.2.12, the \(\xi_i \)'s have one of the five configurations: the support of \(A_n, D_n, E_6, E_7 \) or \(E_8 \) (see e.g. \[BPV\] III.3 for the description of these graphs).

Claim 1: Each nodal curve \(A_i \) can only be contained in a graph of type \(A_{2n+1} \) or \(D_n \).

Proof: Suppose that there exists an \(A_i \) which is contained in a graph of type \(E_6 \). Denote the components of \(E_6 \) as in Figure 2

![Figure 2: E6](image)

If \(A_i = a_3 \) or \(A_i = a_6 \), then \(a_6 B = a_6 a_3 = 1 \) or \(a_3 B = 1 \), contradicting \(B \equiv 2L \).
If \(A_i = a_1 \) or \(A_i = a_2 \), then \(a_2 B = 1 \) or \(a_1 B = 1 \), the same contradiction. By the same reason, \(A_i \neq a_4 \) and \(A_i \neq a_5 \).
Analogously one can verify that each A_i can not be in a graph of type A_{2n}, E_7 or E_8. ♦

The possible configurations for the curves A_i in the graphs are shown in Figure 3. Fix one of the curves A_i and denote by G the graph containing it.

Figure 3: The numbers represent the multiplicity and the dotted curve represents a general element B'_0 in $|B' - G|$.

Claim 2: We can choose A_i such that the linear system $|B' - G|$ has no fixed components (and thus no base points, from [SU, Theorem 3.1]).

Proof: Denote by $\varphi_{|B'|}$ the map given by the linear system $|B'|$. We know that $\varphi_{|B'|}$ is birational or it is of degree 2 (see [SU, Section 4]). If $\varphi_{|B'|}$ is birational or the point $\varphi_{|B'|}(G)$ is a smooth point of $\varphi_{|B'|}(P)$, the result is clear, since $|B' - G|$ is the pullback of the linear system of the hyperplanes containing $\varphi_{|B'|}(G)$ and $\varphi_{|B'|}(\varphi_{|B'|}(G)) = G$ (see [BPV] Theorems III 7.1 and 7.3).

Suppose now that $\varphi_{|B'|}$ is non-birational and that $\varphi_{|B'|}(G)$ is a singular point of $\varphi_{|B'|}(P)$. Then B' is linearly equivalent to a curve with one of the configurations described in Theorem 2. Except for the last configuration, G contains at most two (-2)-curves. But $t \geq 9$, thus in these cases there exists another graph G' containing a curve A_j such that $\varphi_{|B'|}(G')$ is a non-singular point of $\varphi_{|B'|}(P)$ (notice that Theorem 2 implies that $\varphi_{|B'|}(P)$ contains only one singular point).

So we can suppose that B' is equivalent to a curve with a configuration as in Theorem 2 (iii, b). None of the curves $\Gamma_0, \ldots, \Gamma_n$ can be one of the curves A_j. For this note that: if $\Gamma_0 = A_j$, then $EB = E(B' + \sum A_i) = 2 + 3 = 3 \not\equiv 0$ (mod 2); if $\Gamma_1 = A_j$, then $\Gamma_0B = \Gamma_0\Gamma_1 = 1 \not\equiv 0$ (mod 2); etc. Again this configuration can contain at most two curves A_j, the components $\Gamma_{N+1}, \Gamma_{N+2}$. ♦
Let B'_0 be a smooth curve in $|B' - G|$. If G is an A_{2n+1} graph, then, using the notation of Figure 3,

$$B'_0 + \sum_{i=1}^{n} E_i + \sum_{i=1}^{t} A_i \equiv \left(B' - \sum_{i=1}^{n+1} A_i \right) + \sum_{i=1}^{t} A_i \equiv \equiv B' + \sum_{i=1}^{t} A_i - 2 \sum_{i=1}^{n+1} A_i \equiv 0 \pmod{2}.$$

Therefore the curve $B_0 := B'_0 + \sum_{i=1}^{n} E_i + \sum_{i=1}^{t} A_i$ satisfies condition (i).

The case where G is a D_m graph is analogous. \hfill \Box

Proof of Theorem 1 : Let $V \to S$ be the blow-up at the isolated fixed points of the involution i and W be the minimal resolution of S/i. We have a commutative diagram

$$\begin{array}{ccc}
V & \longrightarrow & S \\
\downarrow \pi & & \downarrow \\
W & \longrightarrow & S/i.
\end{array}$$

The branch locus of π is a smooth curve $B = B' + \sum_{i} A_i$, where the curves A_i are $(−2)$-curves which contract to the nodes of S/i. Let P be the minimal model of W and $B \subset P$ be the projection of B. Let $L \equiv \frac{1}{2}B$ be the line bundle which determines π.

First we verify that B satisfies condition (i) of Proposition 3: from [CM, Proposition 6.1], $\chi(O_W) - \chi(O_S) = K_W(K_W + L)$, hence $K_W(K_W + L) = 0$, which implies that B has at most negligible singularities; now from [Mo, Theorem 5.2] we get $K_S^2 = \frac{1}{2}B^2 + 1 = p_g(S) = \frac{1}{2}(K_S^2 - t) + 3$, thus $t = K_S^2 + 8$ and $B^2 = B^2 - 2t = 2K_S^2 - 2t = -16$, which gives $(B/2)^2 = -4$ and $B^2 \geq 2$; finally B is nef because, on a $K3$ surface, an irreducible curve with negative self intersection must be a $(−2)$-curve.

Now using Proposition 3, b) and a) we obtain statement b). In particular we get also that P contains a curve B'_0 and $(−2)$-curves A'_i, $i = 1, \ldots, 9$, such that $B_0 := B'_0 + \sum_{i} A'_i$ is smooth and divisible by 2 in the Picard group. Moreover, the complete linear system $|B'_0|$ has no fixed component nor base points and $B'_0^2 = 2$. Therefore, from [St], $|B'_0|$ defines a generically finite degree 2 morphism

$$\varphi := \varphi|_{B'_0} : P \to \mathbb{P}^2.$$

Since $g(B'_0) = 2$, this map is ramified over a sextic curve β. The singularities of β are negligible because P is a $K3$ surface.

We claim that β is the union of two cubics. Let $p_i \in \beta$ be the singular point corresponding to A'_i, $i = 1, \ldots, 9$. Notice that the p_i's are possibly infinitely near.
Let $C \subset \mathbb{P}^2$ be a cubic curve passing through p_i, $i = 1, \ldots, 9$. As $C + \varphi_*(B'_0)$ is a plane quartic, we have

$$\left(\varphi^*(C) - \sum_{i=1}^{9} A'_i\right) + B'_0 + \sum_{i=1}^{9} A'_i \equiv \varphi^*(C + \varphi_*(B'_0)) \equiv 0 \pmod{2},$$

hence also $\varphi^*(C) - \sum_{i=1}^{9} A'_i \equiv 0 \pmod{2}$, i.e. there exists a divisor J such that

$$2J \equiv \varphi^*(C) - \sum_{i=1}^{9} A'_i.$$

Since P is a K_3 surface, the Riemann Roch theorem implies that J is effective. From $J A'_i = 1$, $i = 1, \ldots, 9$, we obtain that the plane curve $\varphi_*(J)$ passes with multiplicity 1 through the nine singular points p_i of β. This immediately implies that $\varphi_*(J)$ is not a line nor a conic, because β is a reduced sextic. Therefore $\varphi_*(J)$ is a reduced cubic. So $\varphi_*(J) \equiv C$ and then

$$\varphi^*(\varphi_*(J)) \equiv 2J + \sum_{i=1}^{9} A'_i.$$

This implies that $\varphi_*(J)$ is contained in the branch locus β, which finishes the proof of a).

4 Examples

Todorov gave examples of surfaces S with bicanonical image $\phi_2(S)$ birational to a Kummer surface having only ordinary double points as singularities. The next sections contain an example with $\phi_2(S)$ non-birational to a Kummer surface and an example with $\phi_2(S)$ having an A_{17} double point.

4.1 S/i non-birational to a Kummer surface

Here we construct smooth surfaces S of general type with $K^2 = 2,3$, $p_g = 1$ and $q = 0$ having bicanonical map of degree 2 onto a K_3 surface which is not birational to a Kummer surface.

It is known since [Hu] that there exist special sets of 6 nodes, called Weber hexads, in the Kummer surface $Q \in \mathbb{P}^3$ such that the surface which is the blow-up of Q at these nodes can be embedded in \mathbb{P}^3 as a quartic with 10 nodes. This quartic is the Hessian of a smooth cubic surface.

The space of all smooth cubic surfaces has dimension 4 while the space of Kummer surfaces has dimension 3. Thus it is natural to ask if there exist Hessian "non-Kummer" surfaces, i.e. which are not the embedding of a Kummer surface blown-up at 6 points. This is studied in [Ro], where the existence of "non-Kummer" quartic Hessians H in \mathbb{P}^3 is shown. These are surfaces with 10 nodes a_i such that the projection from one node a_1 to \mathbb{P}^2 is a generically 2 : 1 cover of \mathbb{P}^2 with branch locus $a_1 + a_2$ satisfying: a_1, a_2 are smooth cubics.
tangent to a nondegenerate conic C at 3 distinct points. We use this in the following construction.

Let α_1, α_2 and C be as above. Take the morphism $\pi : W \to \mathbb{P}^2$ given by the canonical resolution of the double cover of \mathbb{P}^2 with branch locus $\alpha_1 + \alpha_2$. The strict transform of C gives rise to the union of two disjoint (-2)-curves $A_1, A_2 \subset W$ (one of these correspond to the node α_1 from which we have projected).

Let $T \in \mathbb{P}^2$ be a general line. Let $A_3, \ldots, A_{11} \subset W$ be the disjoint (-2)-curves contained in $\pi^*(\alpha_1 + \alpha_2)$. We have $\pi^*(T + \alpha_1) \equiv 0 \pmod{2}$, hence, since α_1 is in the branch locus, also

$$\pi^*(T) + \sum_{i=3}^{11} A_i \equiv 0 \pmod{2}.$$

The linear systems $|\pi^*(T) + A_2|$ and $|\pi^*(T) + A_1 + A_2|$ have no fixed components nor base points (see [St, (2.7.3) and Corollary 3.2]). The surface S is the minimal model of the double cover of W ramified over a general element in

$$|\pi^*(T) + A_2| + \sum_{i=2}^{11} A_i \quad \text{or} \quad |\pi^*(T) + A_1 + A_2| + \sum_{i=1}^{11} A_i.$$

4.2 $\phi_2(S)$ with A_{17} and A_1 singularities

This section contains a brief description of a construction of a surface S of general type having bicanonical image $\phi_2(S) \subset \mathbb{P}^3$ a quartic $K3$ surface with A_{17} and A_1 singularities. I omit the details, which were verified using the Computational Algebra System Magma.

Let C_1 be a nodal cubic, p an inflection point of C_1 and T the tangent line to C_1 at p. The pencil generated by C_1 and $3T$ contains another nodal cubic C_2, smooth at p. The curves C_1 and C_2 intersect at p with multiplicity 9.

Let $\rho : X \to \mathbb{P}^2$ be the resolution of $C_1 + C_2$ and $\pi : W \to X$ be the double cover with branch locus the strict transform of $C_1 + C_2$. Denote by \tilde{T} the line containing the nodes of C_1 and C_2 and by $l \subset W$ the pullback of the strict transform of T. The map given by $(\rho \circ \pi)^* l$ is birational onto a quartic Q in \mathbb{P}^3 with an A_1 and A_{17} singularities (notice that l is a (-2)-curve and $((\rho \circ \pi)^* l + l = 0$).

Let $B' \in |(\rho \circ \pi)^* l + l|$ be a smooth element and A_1, \ldots, A_9 be the disjoint (-2)-curves contained in $(\rho \circ \pi)^* p$. Let S be the minimal model of the double cover of W with branch locus $B' + \sum_{i=1}^{9} A_i + l$. The surface Q is the image of the bicanonical map of S and $p_g(S) = 1$, $q(S) = 0$, $K_S^2 = 2$.

References

[BPV] W. Barth, C. Peters and A. Van de Ven, *Compact complex surfaces*, vol. 4, Springer-Verlag, Berlin (1984).

[CM] C. Ciliberto and M. Mendes Lopes, *On surfaces with $p_g = q = 2$ and non-birational bicanonical map*, Adv. Geom., 2 (2002), no. 3, 281–300.
[EV] H. Esnault and E. Viehweg, *Lectures on vanishing theorems*, vol. 20, DMV-Seminar, Birkhäuser (1992).

[Hu] J. Hutchinson, *The Hessian of the cubic surface*, Bull. Amer. Math. Soc., 5 (1898), 282–292.

[Mo] D. Morrison, *On the moduli of Todorov surfaces*, Algebraic geometry and commutative algebra, Vol. I, 313-355 (1988).

[Ro] J. Rosenberg, *Hessian quartic surfaces that are Kummer surfaces*, math. AG/9903037.

[St] B. Saint-Donat, *Projective models of K3 surfaces*, Amer. J. Math., 96 (1974), no. 4, 602–639.

[To1] A. Todorov, *Surfaces of general type with $p_g = 1$ and $(K, K) = 1*, Ann. Ec. Norm. Sup., 13 (1980), 1–21.

[To2] A. Todorov, *A construction of surfaces with $p_g = 1$, $q = 0$ and $2 \leq K^2 \leq 8$. Counter examples of the global Torelli theorem*, Invent. Math., 63 (1981), 287–304.

[Xi] G. Xiao, *Degree of the bicanonical map of a surface of general type*, Amer. J. Math., 112 (1990), no. 5, 713–736.

Carlos Rito
Departamento de Matemática
Universidade de Trás-os-Montes e Alto Douro
5000-911 Vila Real
Portugal

e-mail: crito@utad.pt