Łukasz Dudziński, M.A.a)*; Piotr Konrad Leszczyński, Ph.D.b)

\textsuperscript{a) District Headquarters of the State Fire Service in Lublin / Komenda Miejska Państwowej Straży Pożarnej w Lublinie
\textsuperscript{b) Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities
Wydział Nauk Medycznych i Nauk o Zdrowiu, Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
\textsuperscript{* Corresponding author / Autor korespondencyjny: lukasz_dudzinski@o2.pl

Analysis of Data on Inhalation Poisoning using the Example of the Łuków County in the years 2015–2017

Analiza danych dotyczących zatruć wziewnych na przykładzie powiatu łukowskiego w latach 2015–2017

ABSTRACT

Aim: This article presents an original analysis of inhalation poisoning data using the example of the Łuków County in 2015-2017. The data was obtained from cases to which Emergency Medical Services were dispatched. Most of such exposures were accidental or caused by negligence, and could be avoided by applying appropriate prevention and safety rules.

Introduction: Inhalation poisonings represent a small percentage of all poisonings. They are mainly associated with the heating season and carbon monoxide. The number of inhalation poisonings is much smaller than that of food poisonings, alcohol poisonings or drug overdoses but they also constitute a significant health risk for the public.

Methodology: The study was based on an analysis of medical documentation of the emergency medical services station in Łuków. The research material was composed of the information contained in the dispatch documentation of EMS teams, i.e. ambulance call records and medical rescue records for events related to inhalation poisoning. The selection of events from all those that occurred during the audited period was made on the basis of:

– information provided by the reporting person to the emergency number 999 or 112,
– ICD-10 code in the medical emergency record, i.e. diagnosis of the cause of the illness or event.

The analysed factors included age, sex, place of intoxication, seasonality and circadian variation of poisoning. The analysis also considered environmental conditions and the influence of stimulants.

Results: In the analysed period there were 80 events related to inhalation poisoning. There were 89 people exposed in 80 events (65% – men, 35% – women). Over 90% were cases of accidental poisoning. 60% of the events occurred at 7 am – 7 pm and 40% of the events occurred at 7 pm – 7 am. Of all exposures, 90% were single poisonings and the remaining 10% were multiple. Most poisonings (78%) occurred at the place of residence. Among all the victims, 56% were hospitalized in the county hospital in Łuków, 38% of patients remained at home (including due to death – 20% or lack of symptoms requiring hospital treatment – 18%), and almost 6% required immediate specialist treatment. Most incidents related to inhalation poisoning in the Łuków County occurred in rural areas – 56 out of 80. Most inhalation poisonings were caused by CO.

Keywords: inhalation poisoning, carbon monoxide, pesticides, respiratory tract, emergency response team

Type of article: case study

ABSTRAKT

Cel: W niniejszym artykule przedstawiono autorską analizę danych dotyczących zatruć wziewnych powiatu łukowskiego w latach 2015–2017, do których dysponowano były zespoły ratownictwa medycznego.

Wprowadzenie: Zatracia wziewne stanowią niewielki odsetek wszystkich zatruć. Główne kojarzy się je z okresem grzewczym i tlenkiem węgla. Ekspozycje te najczęściej są przypadkowe, dochodzi do nich również z zaniedbania. W większości można ich uniknąć, stosując odpowiednią profilaktykę i zasady bezpieczeństwa.

Metodologia: Badanie miało charakter analizy dokumentacji medycznej Stacji Ratownictwa Medycznego w Łukowie. Materiał pracy stanowiły informacje zawarte w dokumentacji wyjazdowej zespołów ratownictwa medycznego tj. kart zlecenia wyjazdu oraz kart medycznych czynności ratunkowych w zdarzeniach związanych z zatruciem wziewnym.

Received: 18.01.2019; Reviewed: 06.05.2019; Accepted: 30.06.2019;
Authors ORCID IDs: Ł. Dudziński – 0000-0002-8255-7608; P. K. Leszczyński – 0000-0002-3408-3591;
Percentage contribution: Ł. Dudziński – 70%; P. K. Leszczyński – 30%;
Please cite as: SFT Vol. 53 Issue 1, 2019, pp. 174–187, https://doi.org/10.12845/sft.51.3.2019.11;
This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).
Introduction

Inhalation poisonings in the adult population, most of which are accidental, represent a significant threat to the health and life of people. Alongside trauma, they are the third major cause of death, frequent medical services intervention and hospitalisation in Poland [1]. Poison can enter the body through the digestive tract, respiratory system and, less frequently, through the skin or be administered parenterally, intramuscularly, subcutaneously or intravenously. In the context of toxicology, the most significant pathways are by digestion and inhalation. Absorption by the respiratory tract is highly efficient due to the large surface area of this tract and the permeability of the air-blood barrier.

The respiratory pathway plays a significant role in occupational and accidental poisoning [2].

The most common, and also the best-known, medium of exposure is carbon monoxide, an odourless, colourless gas formed as a result of the incomplete combustion of carbon compounds where there is not enough oxygen in the combustion process. When the room ventilation or flue liners are obstructed, during gas or solid-fuel heating, this gas concentrates inside rooms, leading to dangerous poisoning [3].

However, cases of inhalation poisoning occur throughout the year and many of those are unrelated to the heating season or carbon monoxide. These are poisonings related to agriculture (during crop spraying, work with silage in silos [4]), deliberate spraying of gas or leaks in public places with large numbers of people present (school, workplace, mass event, such as a sporting occasion or concert). These causes are extremely rare in Poland, as well as in other European countries [5, 6, 7]. We should

Wprowadzenie

Zatrucia wziewne w populacji dorosłych, głównie niezamienione, stanowią istotny problem zagrażający zdrowiu i życiu. Są wraz z urazami trzecią przyczyną zgonów w Polsce, a także częstszymi interwencjami służb medycznych i hospitalizacją [1]. Trudno może dostać się do organizmu przez układ pokarmowy, oddechowy, rzadziej przez jarny ciała (donosowo, doodbytniczo, dopochwowo). Może wniknąć przez skórę lub też zostać podana pozajelitowo, domniemościno, podskórno lub dożylnie. Z punktu widzenia toksykologii największe znaczenie mają drogi pokarmowe oraz wziewna. Wchłanianie przez układ oddechowy przebiega z wysoką wydajnością ze względu na dużą powierzchnię dróg oddechowych oraz przepuszczalność bariery powietrzno – krew. Droga wziewna odgrywa znaczącą rolę w zatruciach zawodowych oraz przypadkowych [2].

Najczęstszym – jednocześnie najbardziej znanym – medium ekspozycji jest tnęk węgla: bezwonnny, bezbarwny gaz powstający w wyniku niecałkowitego spalania się związków węgla przy niedostatecznym udziale tlenu w procesie spalania. W przypadku niedrożnej wentylacji pomieszczeń lub przewodów kominowych, podczas ogrzewania gazowego lub paliwem stałym gaz ten koncentruje się w pomieszczeniach, wywołując groźne w skutkach zatrucia [3].

Jednak w skali roku obserwuje się występowanie zatruc ziewnych związanych ani z okresem grzewczym, ani z tlenkiem węgla. Są to zatrucia w obszarze rolnictwa (podczas prowadzenia oprysków, prac przy silosach z kiszönką [4]), celowe rozpylenie gazu lub rozszerzanie się instalacji w miejscach publicznych, gdzie przebywa duża liczba osób (szkoła, zakład pracy, impreza masowa typu wydarzenie sportowe, koncert). W Polsce wymie-
also mention designer drugs, which are available in a variety of forms, including inhaled. In the group of intentional self-poisonings caused by designer drugs, most involve teenagers from 13 to 18 years of age, the majority of which are boys [8, 9, 10, 11].

This paper discusses the causes, frequency, location and seasonality of the inhalation poisonings which occurred in the Łuków County, i.e. the operating area of the Emergency Medical Services Station (SRM) in Łuków, over a period of three years. The scale of the problem of inhalation poisoning is demonstrated by the frequency of dispatches based on data from the SRM Łuków Log, which every year results in a three-year total of approx. 25 thousand calls.

SRM Łuków is a unit subject to the County Hospital in Łuków, which is dispatched to 7–8 thousand interventions every year, which results in a three-year total of approx. 25 thousand calls. SRM Łuków is a unit subject to the County Hospital in Łuków. We obtained the Director's consent to access the documentation. The analysed data (regarding victims, EMS team call signs and composition, and cooperating services) are anonymous.

The Log also features the basic statistical, address and medical data on the patients and cooperating services (EMS) teams at SRM Łuków in the Lubelskie Province. The research data was obtained from the medical documentation of the dispatch teams of SRM Łuków. The analysis covered selected parameters increasing the risk of poisoning, such as season, time of day, exposure site, age, sex and other factors, e.g. the influence of alcohol and the number of exposures resulting in death.

Material and methods

The study involved data from three years of activity of SRM in Łuków, which is dispatched to 7–8 thousand interventions every year, which results in a three-year total of approx. 25 thousand calls. The study involved data from three years of activity of SRM in Łuków, which is dispatched to 7–8 thousand interventions every year, which results in a three-year total of approx. 25 thousand calls.

SRM Łuków is a unit subject to the County Hospital in Łuków. We obtained the Director’s consent to access the documentation. The analysed data (regarding victims, EMS team call signs and composition, and cooperating services) are anonymous.

Dispatches based on data from the SRM Łuków Log, which lists every departure chronologically, were qualified to the study. The Log also features the basic statistical, address and medical data, information on the dispatcher’s decision regarding the urgency of departure and information on handling the patient. By analysing the information contained in the Log, we were able to select those interventions which fulfilled the criteria adopted for this paper. We qualified events for analysis on the basis of the following criteria: 1) reason for the call, i.e. data provided to the ECC dispatcher by the caller (e.g. chest pain, lower limb trauma, high body temperature, vomiting). We also searched for a number of expressions potentially characteristic of inhalation poisoning: vision disturbances following the use of gas, unconscious in the bathroom, collapsed in the bathroom, smell of gas inside the house, feeling unwell, was in a fire, feeling unwell, feeling dizzy in the garage, headache after working with crop protection products, feeling nauseous after painting, designer drug poisoning, difficult to communicate with, suspected CO poisoning, exposure to smoke, feeling unwell, being poisoned by an unspecified substance.

Material i metody

Do badania włączone trzy lata działalności SRM w Łukowie, która rocznie realizuje 7–8 tys. interwencji, co w ciągu trzech lat daje liczbę ok. 25 tysięcy wezwań. SRM Łuków jest jednostką podlegającą pod Szpital Powiatowy w Łukowie. Uzyskano zgodę Dyrektora na dostęp do dokumentacji. Analizowane dane (poszukowano, kryptonimy i skład osobowe ZRM oraz służby współpracujące) są anonimowe.

Do badania kwalifikowano zlecenia na podstawie danych zawartych w Dzienniku SRM, w którym każdy wyjazd jest wpisan w chronologicznie w kolejności realizacji. Są tam również ujęte najważniejsze dane statystyczne, adresowe i medyczne, decyzja dysozytora co do pilności wyjazdu i postępowanie z pacjentem. Analiza zawartych tam informacji pozwoliła na selekcję interwencji spełniających kryteria tematu artykułu. Zdarzenia kwalifikujące się do analizy typowano na podstawie poniższych kryteriów: 1) przyczyny wezwania, czyli danych które przekazał dyspozytorowi w CPR wzywający (np. ból w klatce piersiowej, uraz kończyny dolnej, wysoka temperatura, wymioty). Dokładnie zwracano uwagę na użyte w wezwaniu określenie potencjalne dla zatruc wzbudzonych:

- zaburzenia widzenia po użyciu gazu,
- niepokój w łazience,
- zasłabił w łazience,
- zapach gazu w domu, złe samopoczucie,
- uczestnik pożaru, złe samopoczucie,
- zawroty głowy w garażu,
- ból głowy po pracy przy środkach ochrony roślin,
- nudności, po malowaniu,
- zatrucie dopalaczą,
- utrudniony kontakt podejrzanie zatrucia CO,
- ekspozycja na dym,
- złe samopoczucie zatrucie nieznaną substancją,
2) ICD-10 code, i.e. medical diagnosis according to the International Classification of Diseases and Related Health Problems, entered by the EMS team leader. The leader of the basic team (P) is a medical rescuer or emergency medical services nurse, and in the specialised team (S) – an emergency medical services physician.

In analysing medical diagnoses, we took into account the disease codes potentially associated with inhalation poisoning.

Example ICD10 codes relevant to this study:
– T29 – (Thermal and chemical) Burns of multiple regions,
– T41 – Poisoning: inhaled anaesthetics,
– T58 – Toxic effect of carbon monoxide,
– T59 – Toxic effect of other gases, fumes and vapours,
– T60 – Toxic effect of pesticides,
– T65 – Toxic effect of other and unspecified substances,
– T67 – Effects of heat and light,
– X00 – Exposure to uncontrolled fire in building or structure,
– X08 – Exposure to other specified smoke, fire and flames,
– X47 – Accidental poisoning by and exposure to other gases and vapours,
– X67 – Intentional self-poisoning by and exposure to other gases and vapours,
– Y26 – Exposure to smoke, fire and flames, undetermined intent,
– R98 – Unattended death,
– W40 – Explosion of other materials.

Results

The research material was composed of 80 ambulance call records of the EMS from 2015–2017. Table 1 presents the numbers of departures in each year, cases qualified for analysis and people exposed.

The data presented in table 1 demonstrates that the total number of EMS team departures is increasing every year. The largest number of inhalation poisoning cases were recorded in 2015 (29), the lowest number – in 2017 (24). Eighteen cases were fatal. Six cases are multiple poisonings (usually involving

Table 1. Summary of the number of EMS team departures in the years 2015–2017
Tabela 1. Zestawienie liczby wyjazdów ZRM w latach 2015–2017

Year	All EMS team departures	The number of poisonings	The number of people exposed
2015	5782	29 (0.5%)	32
2016	7830	27 (0.34%)	30
2017	7890	24 (0.3%)	27
2017	1.3	2.3	2.3

Source: Own elaboration.

Wyniki

Materiał badawczy stanowiło 80 kart wyjazdowych ZRM z lat 2015–2017. Liczba wyjazdów w każdym roku, przypadków zakwalifikowanych do analizy oraz osób poddanych ekspozycji obrazuje tabela 1.

Z danych zawartych z tabeli 1 wynika, że z każdym kolejnym rokiem wzrasta ogólna liczba wyjazdów ZRM. Najwięcej przypadków zatruć wczesnych odnotowano w roku 2015 (29), najmniej – w 2017 (24). Osiemnaście przypadków było fatalnych. Sześć przypadków to zatrucia mnogie
relatives, when the issue concerned faulty ventilation or a fire at home in a garage or in a utility building). In each of the studied years, cases connected with the subject of this paper constituted no more than 0.5% of all interventions by SRM Łuków.

Seasonal and monthly variability in the number of poisonings

In the analysed years the number of interventions connected with inhalation exposure remained at a similar level (26.6 exposures per year on average). Figure 1 shows the number of interventions per month in the analysed three-year period. The month with the highest number of events covered by the analysis was January 2016 — 9 events. There were no interventions covered by this analysis in July and August 2016 and in July and November 2017 (figure 1).

Figure 1. Number of exposures in each month of the three-year analysis period

Source: Own elaboration.

Exposure site

Most events in the analysed period occurred in rural areas (70%).

Several factors might be involved:
- residents of rural areas are the majority of the county’s population (the total population of the county’s three towns is less than 40 thousand, which is illustrated in Figure 2),
- many work establishments (cold store buildings and food processing plants, mushroom farms, welding shops, (najczęściej osoby spokrewnione, gdy problem dotyczył wadliwej wentylacji lub pożaru w domu, w garażu, w pomieszczeniach gospodarczych). W każdym badanym roku przypadki związane z tematem badań stanowiły nie więcej niż 0.5% wszystkich interwencji SRM Łuków.

Zmienność liczby zatruć w ujęciu sezonowym i miesięcznym

W analizowanych latach liczba interwencji związanych z ekspozycją wziewną utrzymywała się na podobnym poziomie (ze średnią 26,6 ekspozycji na rok). Liczba interwencji przypadająca na każdy z miesięcy w analizowanym trzyletnim okresie obrazuje rycina 1. Miesiącem z największą liczbą zdarzeń objętych analizą jest styczeń 2016 r. — 9 zdarzeń. Natomiast lipiec i sierpień 2016 oraz lipiec i listopad 2017 to miesiące bez interwencji objętych analizą (ryc. 1).

Rycina 1. Liczba ekspozycji w każdym miesiącu trzyletniego okresu analizy

Source: Own elaboration.

Miejsce ekspozycji

Większość zdarzeń w analizowanym okresie dotyczy terenów wiejskich (70%). Może na to wpływać kilka czynników:
- mieszkańcy terenów wiejskich stanowią większość mieszkańców powiatu (w trzech miastach na terenie powiatu mieszka mniej niż 40 tys. mieszkańców, co graficznie przedstawione jest na rycinie 2),
- wiele zakładów pracy (chłodnie i przetwórnie owoców, pieczarkarne, zakłady spawalnicze, stacje obsługi po-
vehicle service centres, craft workshops) are located in rural areas in the outskirts of towns,
- agricultural land and agriculture-related work (crop spraying, work with internal combustion engine equipment),
- residents of towns and cities live in blocks of flats equipped with central heating installations and do not need to use their own boiler rooms.

The location of the EMS was dictated by the largest population concentrations in the county:
- the town of Łuków – two teams, S and P,
- the town of Stoczek Łukowski – one P team,
- the town of Adamów – one S team.

Figure 3 presents the base locations of dispatch teams of SRM Łuków.

S – specialised team composed of: a physician, a medical rescuer, a medical rescuer-driver, with the physician being the leader of the EMS team.

P – basic team (without a physician) composed of: a medical rescuer / an EMS nurse, a medical rescuer / an EMS nurse, driver. In a P team one of the medical rescuers or EMS nurses is the leader [14].

The number of departures per EMS team in the analysed material:
- basic team Łuków (P) – 18 events; independent operation, additionally three multiple events (cooperation with Łuków’s S team),
- specialised team Łuków (S) – 19 events; independent operation, additionally three multiple events (cooperation with Łuków’s P team),
- basic team Stoczek Łukowski – 14 events,
- specialised team Adamów – 26 events.

The health consequences following exposure are affected by the distance from the National Medical Emergency Services station and the units of the National Firefighting and Rescue System, as it translates into the time of starting the intervention and implementing the rescue procedures. In the case of NFRS jazdów, zakłady rzemieślnicze) zlokalizowanych jest na terenach wiejskich na obrzeżach miast,
- tereny rolnicze i związane z rolnictwem prace (opryski, prace ze sprzętem spalinowym),
- mieszkańcy miast w blokach posiadają ogrzewanie centralne, nie muszą palić w kotłowniach.

Lokalizacja ZRM związana jest z największymi skupiskami ludności w powiecie:
- miasto Łuków – stacjonują dwa zespoły S i P,
- miasto Stoczek Łukowski – stacjonuje jeden zespół P,
- miasto Adamów – stacjonuje jeden zespół S.

Lokalizację zespołów wyjazdowych SRM Łuków obrazuje rycina 3.

S – zespół specjalistyczny w składzie: lekarz, ratownik medyczny, ratownik medyczny – kierowca, w którym lekarz pełni rolę kierownika ZRM

P – zespół podstawowy (tzw. bez lekarza) w składzie: ratownik medyczny / pielęgniarka systemu, ratownik medyczny / pielęgniarka systemu, kierowca. Z zespole P jeden z ratowników medycznych lub pielęgniarek systemu pełni rolę kierownika (lidera) ZRM [14].

Liczba wyjazdów przypadająca na każdy ZRM w analizowanym materiale:
- zespół podstawowy Łuków – osiemnaście zdarzeń; działanie samodzielne, dodatkowo trzy zdarzenia mnożne (współdziałanie z zespołem S z Łukowa),
- zespół specjalistyczny Łuków – dwiewiętnastce zdarzeń; działanie samodzielne, dodatkowo trzy zdarzenia mnożne (współdziałanie z zespołem P z Łukowa),
- zespół podstawowy Stoczek Łukowski – czternaście zdarzeń,
- zespół specjalistyczny Adamów – dwadzieścia sześć zdarzeń.

Na konsekwencje zdrowotne po wystąpieniu ekspozycji wpływa odległość od miejsca stacjonowania zespołów Państwowego Ratownictwa Medycznego oraz jednostek Krajowego Systemu
one should take into account the State Fire Service units, as well as some of the Voluntary Fire Service units, which, due to better equipment, training and response time is included in the NFRS.

When the poisoning happened, the victims were at home, work, school or in an agricultural holding (which does not correspond to the statistics for the place of residence). This location was determined by their professional activity, education or everyday matters. Table 2 shows numbers of events by site of exposure.
mine the patient’s age. The dispatch team can determine the age on the basis of the patient’s documents (identity card, discharge summaries from previous treatment), through interviews with the patient’s family or with police assistance. In both discussed cases it was not possible to determine the exact age. The medical emergency records (MER) suggest that the estimated age was around 70 and around 50 years of age.

Table 2. List of events by site of exposure

No.	Site of exposure / Miejsce ekspozycji	The number of events / Liczba zdarzeń	Percentage / Udział [%]
1	household	63	78.8%
2	agriculture, work in agriculture	6	7.6%
3	job, workplace	3	3.7%
4	school	3	3.7%
5	public place	3	3.7%
6	no data	2	2.5%

Source: Own elaboration.
Zródło: Opracowanie własne.

Causes of poisoning

In the analysis, we tried to determine the causes of poisoning and compared the findings with the later medical diagnosis. The stated reason for the call is often different than actually found and determined by the EMS at the event site. The data provided during the call tend to be inaccurate, incoherent and chaotic, as the calls are often made by random individuals.

The caller acts under the influence of strong emotions, speaking fast or indistinctly. Sometimes the calls are made from sites where there is poor transmission quality. Callers may be under-age or intoxicated by alcohol. On some occasions, it is the victim who calls the EMS, which might present communication difficulties due to the injuries suffered. When calling for help, witnesses and members of the public use colloquial language ("he's lying down", "he fell", "I can't get through to him"). On arrival, the EMS team makes the medical diagnosis, classifying the patient as either unconscious, subject to sudden cardiac arrest or affected by syncope. In every incident, the patient’s condition, place of call, number of people involved and reason for the call are verified by the team and the medical diagnosis is determined on the basis of the actual situation, often differing from the information established from the call. Tables 3 and 4 show the differences between the information contained in the EMS call and the medical diagnosis and their percentage share.

The most frequent reason for ambulance calls – unconscious – loss of consciousness – occurred in nine cases (table 3). The most common diagnosis – R96 Death – was declared in eighteen of the analysed ambulance calls (table 4).

Przyczyny zatruć

W analizie podjęto próbę zbadania przyczyn zatruć oraz zestawiono wnioski z późniejszym rozpoznaniem medycznym. Podawana przyczyna wezwania często jest niezgodna z tym, co ZRM zastanie i rozpozna na miejscu zdarzenia. Dane podawane przy wezwaniu mogą być często nieprecyzyjne, niespójne i chaotyczne, ponieważ zgłoszenia dokonuje często osoba przypadkowa.

Wzywający ZRM działa pod wpływem znacznych emocji, mówiąc szybko lub niewyraźnie. Może kontaktować się także z miejsca, które nie gwarantuje dobrej jakości przekazu. Wezwanie zespołu może dokonać osoba niepełnoletnia lub osoba pod wpływem alkoholu. Wzywającym może być osoba poszkodowana, z którą kontakt może być utrudniony z powodu doznanych urazów. Świadkowie zdarzenia i osoby postronne wzywające pomoc używają słownictwa potocznego (np. leży, upadł, bez kontaktu). Przybyły na miejsce ZRM ustala rozpoznanie medyczne jako: nieprzytomny, nagłe zatrzymanie krążenia, omdlenie. W każdym incydencie stan pacjenta, miejsce wezwania, liczba osób i przyczyna wezwania jest weryfikowana przez zespół i zgodnie ze stanem faktycznym ustalone zostaje rozpoznanie medyczne sklasyfikowane inaczej niż w wezwaniu. Różnice między informacją zawartą w wezwaniu ZRM a rozpoznaniem medycznym oraz ich udział procentowy w analizie obrazują tabele 3 i 4.

Najczęstsza przyczyna wezwań – nieprzytomny / utrata przytomności – pojawia się w dziewięciu przypadkach (tab. 3). Najczęstsze rozpoznanie – R96 zgon – zapadło przy osiemnastu analizowanych wezwaniach (tab. 4).
Table 3. The most frequently reported reasons of ambulance calls

No.	Site of exposure / Miejsce ekspozycji	The number of events / Liczba zdarzeń	Percentage / Udział [%]
1	unconscious, loss of consciousness / nieprzytomny, utrata przytomności	9	11.25%
2	zawirotę głowy / dizziness	7	8.75%
3	fainting / zasłabnięcie	5	6.25%
4	fire / pożar	5	6.25%
5	person lying on the ground / leży człowiek	4	5%
6	nausea / nudności	4	5%
7	vomiting / wymioty	3	3.75%
8	behavioral disorders / zaburzenia zachowania	3	3.75%
9	dyspnoea / duszność	3	3.75%
10	headache / ból głowy	3	3.75%
11	weakness / osłabienie	3	3.75%
12	poisoning / zatrucie	3	3.75%
13	carbon monoxide / poisoning zatrucie czadem	3	3.75%
14	other reasons of ambulance call / inna przyczyna wezwania	25	31.25%

Source: Own elaboration.

Table 4. Most frequently entered medical diagnoses for the analysed events

No.	Medical diagnoses / rozpoznanie medyczne	Quantity / Liczba	Percentage / Udział [%]
1	R96 – other sudden death, cause unknown / R96 – zgon, przyczyna nieznana	18	22.50%
2	R55 – Syncope and collapse / R55 – omdlenie i zapaść	8	10%
3	X47 – accidental poisoning by and exposure to other gases and vapours / X47 – przypadkowe zatrucie przez gazy i pary	6	7.50%
4	X49 – accidental poisoning by chemicals / X49 – przypadkowe zatrucie przez środki chemiczne	4	5%
5	T65 – toxic effect of unspecified substance / T65 – efekt toksyczny nieokreślonych substancji	3	3.75%
6	T59 – toxic effect of other gases, fumes and vapours / T59 – efekt toksyczny gazów, dymów, par	3	3.75%
7	X69 – intentional self-poisoning by chemicals / X69 – zamierzone zatrucie przez środki chem.	3	3.75%
8	other medical diagnoses / inne rozpoznania medyczne	35	43.75%

Source: Own elaboration.

Summary: The table shows the most frequently reported reasons and medical diagnoses for ambulance calls. The data is based on the analysis of events where medical services were requested, with a focus on identifying and categorizing the causes of such requests. The analysis reveals a variety of reasons and medical conditions, each occurring with specific frequencies.
A comparison of data from Table 3 item 1 and Table 4 item 1 highlights a frequent situation occurring when calling EMS. The person calling the ambulance sees a person lying on the ground who is not moving or responding to verbal prompts. As the caller did not witness the person falling and does not know how long the person has been lying, he or she reports that the person is unconscious. In eighteen cases patients were found dead on arrival by the EMS.

The gender of exposed individuals

Most exposures in the analysed documentation involve men (65%) and the remaining 35% are women (this division includes minors). This proportion is caused by several factors. Men are more likely to work in agriculture, in central heating boiler rooms in houses or use internal combustion engines in machines (repair shops, production halls). Alcohol abuse is a factor increasing the risk of fire and inhalation poisoning. The risk level for men and women is similar when the exposure is caused by a random event such as a fire or inadequate ventilation during sleeping hours.

Summary

Statistical data shows that inhalation poisoning occurs mainly during the winter (heating) season, as most of them are caused by exposure to carbon monoxide and other noxious substances produced in the combustion process. During the winter season there are fires in boiler rooms, soot fires in chimney ducts, leaks in heating systems, smoke rollback events and even cases of deliberate obstruction of ventilation openings (with the intention of keeping the heat inside the house) [15]. The seasonality of carbon monoxide poisonings according to statistics (KG PSP for 2015) is presented in figure 4. In annual terms, there are between 3,600 and 4,500 such seasonal CO poisonings, which include hospitalisations and deaths (around 8–10%) [16, 17]. The average monthly numbers of poisonings for the winter months (November – March) are nearly five times higher than for the remaining months (April – October). An analysis for the individual months demonstrates that the presence of poisoning cases depends on outside air temperature – more incidents are recorded when the temperature falls, particularly when average monthly temperatures are below 10°C.

Figure 4 covers events occurring throughout Poland and Figure 5 presents the local situation (within the county as the area of operation of SRM Łuków). According to our analysis (figure 5), the data regarding the seasonality of inhalation poisonings are quite different from those presented in figure 4.

While inhalation poisoning is commonly associated with the heating season and carbon monoxide, our analysis demonstrated that the distribution of events throughout the year is roughly even in all months. In winter exposures are related to heating and in the summer – with agriculture (crop spraying – crop misting – orchard spraying). Deterioration of weather conditions is a frequent situation occurring when calling EMS. The person has been lying, he or she reports that the person is unconscious. But often eight people who did not witness the person falling and does not know how long the person has been lying, he or she reports that the person is unconscious. Such a situation is a frequent situation occurring when calling the EMS.

Zestawienie danych z tab. 3 poz. 1 i tab. 4 poz. 1 obrazuje częstą sytuację podczas wzywania ZRM. Wzywający widzi osoby, której leży, nie porusza się, nie ma z nią kontaktu słownego. Ponieważ nie był świadkiem tego, jak upadła i nie wie, jak dłu- go leży w zastanym miejscu, traktuje ją jak osobę nieprzytomną i taki stan zgłasza pod numerem alarmowym. Osiemiaście przypadków zakończyło się zgremium osoby poszkodowanej przed przybyciem ZRM.

Płeć narażonych osób

Większość ekspozycji w analizowanej dokumentacji dotyczy mężczyzn (65%), pozostałe 35% ekspozycji odnosi się do kobiet (w pod- dziale uwzględniono osoby niepełnoletnie). Na powyższe proporcje wpływa kilka czynników. Mężczyźni częściej prowadzą prace w rolnictwie, w przydomowej kotłowni centralnego ogrzewania pracują z użyciem silników spalinowych w maszynach (warsztaty samo- chodowe, hale produkcyjne). Nadużywanie alkoholu jest czynnikiem zwiększającym ryzyko pożaru i zatruć wizualnych. Porównywalne ryzyko ekspozycji zarówno dla mężczyzn, jak i kobiet występuje, gdy przyczyną zdarzenia jest zjawisko losowe: pożar, niewłaściwa wentylacja domu podczas nocnego odpoczynku.

Podsumowanie

Według danych statystycznych zatrucia wizualne występują głównie w okresie zimowym (grzewczym), ponieważ wśród nich przeważa narażenie na tlenuk węgla i substancje szkodliwe wy- stopszające podczas procesów spalania. W trakcie sezonu grzew- czego dochodzi do pożarów w kotłowniach, pożarów sadzy w układzie kominowym, nieszczelności w układzie grzewczym, cofania się dymu lub wręcz celowego zatykania wentylacji (po- zorne utrzymanie ciepła w domu) [15]. Sezonowość zatruć tlenni- kiem węgla wg statystyki (KG PSP za 2015) pokazuje rycina 4. Rocznie to między 3600 a 4500 przypadków zatruć CO, w tym zawierają się hospitalizacje i zgony (ok. 8–10%) [16, 17]. Średnie miesięczne liczby zatruć dla miesięcy zimowych (listopad – marzec) blisko pięciokrotnie przewyższają liczbę takich zdarzeń dla pozostałych miesięcy (kwiecień – październik). Analiza dla poszczególnych miesięcy pokazuje zależność występowania zatruć od temperatury powietrza – odnotowanych incydentów jest więcej wraz ze spadkiem temperatury, szczególnie przy średnich temperaturach miesięcznych poniżej 10°C.

Rycina 4 dotyczy zdarzeń występujących w całym kraju a rycina 5 sytuacji lokalnej (zasięg, o zasięgu powiatowym jako rejonie działania SRM Łuków). W przeprowadzonej analizie (rycina 5) dane dotyczące sezonowości zatruć wizualnych nieco odbiega- ją od danych zawartych w rycinie 4.

Zatrucia wizualne kojarzą się głównie z okresem zimowym i tlenikiem węgla. W przeprowadzonej analizie rozkład zdarzeń w szko- liku roku utrzymuje się na podobnym poziomie we wszystkich mie- siącach. W okresie zimowym są to ekspozycje związane z ogrze- waniem, a w okresie letnim z rolnictwem (oprysi – środek ochrony roślin). Dla zatruć wizualnych celowych, przypadko-
protection products). For intentional self-poisonings, as well as accidental and occupational poisonings, there is no significant dependence on the season or month. Still, these cases are an important diagnostic and therapeutical issue for EMS [18, 19].

Every year, the National Headquarters of the State Fire Service website publishes statistics of firefighter interventions in a variety of events, including the numbers of injuries and fatalities. In the available data for the 2015/16 and 2016/17 winter seasons the numbers of fatalities caused by carbon monoxide poisoning were 50 and 61, respectively, and the number of poisoned individuals taken to hospital in both seasons exceeded 2,200 [16].

In our study for the 2015/16 and 2016/17 heating seasons (assuming that the season covers the period from the beginning of September until the end of March), the numbers of victims of events involving carbon monoxide were 25 (including 4 deaths) (2015/16) and 18 (including 3 deaths) (2016/17). The numbers of injuries and deaths in the discussed period are included in the State Fire Service statistics for the whole country. PSP prepares its statistics on the basis of its dispatches and information obtained from EMS and MAR teams, as well as hospitals.

Smoke restricts visibility in a fire, makes breathing difficult, carries toxic compounds and increases egress time. The scale of risk associated with smoke is evidenced in the statistics: in the case of smoke inhalation, 23% of deaths result from exposure to both smoke and fire and secondary trauma. When a fire breaks out in a living space, it consumes numerous items made of plastic, which produce not only carbon monoxide, but also dangerous cyanide compounds. The effect of hydrogen cyanide and its derivatives inhibits cytochrome oxidase, preventing the cells from absorbing oxygen. The data contained in the statistics suggest that if there is a severe fire, then the people present inside are wych w zatrucie tlenu przez komórki. Dane zawarte w statystykach oznaczały istotne znaczenie. Stanowią one jednak ważny problem diagnostyczno-terapeutyczny na poziomie ZRM [18, 19].

Komenda Główna Państwowej Straży Pożarnej corocznie publikuje na swojej stronie statystyki dotyczące interwencji strażaków w różnych zdarzeniach, uwzględniając w tym również poszkodowanych i ofiar śmiertelnych. W dostępnych danych za sezon zimowy 2015/16 i 2016/17 liczba ofiar śmiertelnych spowodowanych zatruiciem tlenu wynosiła odpowiednio 50 i 61 osób, zaś liczba osób poszkodowanych podtrutych przewiezionych do szpitala w obydwu sezonach przekraczała 2200 osób [16].

W badaniach własnych w sezonie grzewczym 2015/16 i 2016/17 (przyjmując za sezon grzewczy okres od początku września do końca marca) liczba osób poszkodowanych w zdarzeniach związanych z tlenkiem węgla wynosiła odpowiednio 2015/16 – 25 osób (w tym 4 osoby zgon), i 2016/17 – 18 osób (w tym 3 osoby zgon). Zarówno liczba osób poszkodowanych, jak i ofiar śmiertelnych z omawianego okresu badań własnych wchodzi w skład statystyk PSP dla całego kraju. PSP do w/w statystyk uzyskuje informacje zarówno ze swoich wyjazdów, jak również ZRM i LPR, oraz leczenia szpitalnego.

Dym podczas pożaru zmniejsza widoczność, utrudnia oddychanie, zawiera toksyczne składniki i wydłuża czas ewakuacji. O skali zagrożenia, jakie stanowi, świadczą statystyki: w wyniku populacji w pożarach ginie tylko 25% wszystkich ofiar, aż 51% zgonów spowodowanych jest działaniem wyłącznie toksycznych produktów spalania i rozkładu, a 23% osób umiera z powodu działania zarówno dymu, jak i ognia oraz urazów wtórczych. Podczas pożarów w pomieszczeniach mieszkalnych znajduje się dużo przedmiotów z tworzyw sztucznych. Te paląc się, wydzielają nie tylkoafen węgla, ale również groźne związki cyjanowe. Działanie kwasu cyjanowodorowego i jego pochodnych hamuje układ enzymatycznych oksydazy cytochromowej, przez co uniemożliwia wyrównanie tlenu przez komórki. Dane zawarte w statystykach ozna-
more likely to die from inhalation poisoning than from the direct impact of temperature [20, 21].

In addition, carbon monoxide inhalation causes muscle contractions which prevent the still-conscious person from leaving the room [22].

The analysed material contains 12 cases connected with fires in flats, houses or business premises, which occurred when people were inside. Three cases ended in the death of the person being inside and 9 events (involving 11 people) ended in inhalation poisoning or burns. These patients were taken to hospital and most of them were admitted to the nearest ED. Some patients required treatment in a specialised toxicology treatment centre or in a hyperbaric chamber. Oxygen therapy combined with the elevated pressure in the chamber accelerates the process of eliminating carbon monoxide from the body [23, 24].

The studied material contained 18 cases of deaths of victims at the event site (Table 6), which constitute 20% of all victims. The causes of death could not be established at the EMS intervention stage, so it is difficult to confirm the statistics cited in the literature pointing that 51% of deaths in fires are caused by poisoning due to exposure to toxic combustion products [25]. EMS teams carry out a general examination of the body, which is not sufficient to determine the cause of death [26]. Autopsy reports were not included in the analysed material.

W analizowanym materiale wystąpiło 12 przypadków związa-nych z pożarem mieszkania, domu lub lokalu użytkowego, w której podczas pożaru znajdowały się osoby. Trzy przypadki zakończyły się zgonem osoby będącej wewnątrz, a 9 zdarzeń (w tym 11 osób) zakończyło się zatruciem wziewnym lub poparzeniem. Osoby te przetransportowane do szpitala, większość na najbliższy SOR. Część osób wymagała leczenia w ośrodku specjalistycznym toksykologicznym bądź w komorze hiperbarycznej. Tlenoterapia przy zwiększonym ciśnieniu panującym w komorze przyspiesza czas eliminacji tlenku węgla z organizmu [23, 24].

W analizowanym materiale wystąpiło 12 przypadków związan-nych z pożarem mieszkania, domu lub lokalu użytkowego, w którym podczas pożaru znajdowały się osoby. Trzy przypadki zakończyły się zgonem osoby będącej wewnątrz, a 9 zdarzeń (w tym 11 osób) zakończyło się zatruciem wziewnym lub poparzeniem. Osoby te były przetransportowane do szpitala, większość na najbliższy SOR. Część osób wymagała leczenia w ośrodku specjalistycznym toksykologicznym bądź w komorze hiperbarycznej. Tlenoterapia przy zwiększonym ciśnieniu panującym w komorze przyspiesza czas eliminacji tlenku węgla z organizmu [23, 24].

W badanym materiale wystąpiło 18 przypadków zgonów osób poszkodowanych w miejscu wezwania (tabela 6), które stanowią 20% wszystkich poszkodowanych. Przyczyny zgonów nie były możliwe do określenia na etapie ZRM, dlatego trudno potwierdzić dostępne w literaturze statystyki wskazujące 51% ofiar pożarów umierających wskutek toksycznych produk- tami spalani [25]. ZRM w miejscu wezwania dokonuje ogól-nych oględzin ciała, na podstawie których nie jest możliwa do ustalenia przyczyny zgonu[26]. W analizowanym materiale nie udostępniono wyników sekcji zwłok.

Conclusions

1. Most incidents related to inhalation poisoning in the Łuków County occur in rural areas.
2. Carbon monoxide is the most common cause of inhalation-related incidents.

Wnioski

1. W powiecie łukowskim większość zdarzeń związanych z zatruciami wziewnymi występuje na terenach wiejskich.
2. Większość zdarzeń związanych z zatruciami wziewnymi powodowana jest przez tlenek węgla.
3. The age group with the most exposure to inhalation poisonings in the operating area of SRM Łuków is 40–60 years (45%).

4. Most inhalation poisoning events involve men (65%).

5. Any person present during a fire may suffer from carbon monoxide poisoning.

6. The distance between the event site and the emergency medical services station is a factor determining the successful implementation of medical procedures and affecting prognosis in cases of more acute poisoning.

7. The distance between the event site and the emergency medical services station has no significant effect on prognosis in cases of light exposure where the victim managed to avoid exposure by himself/herself and the worrying symptoms occurred after several hours.

8. In the case of large employers – due to the procedures, instructions, escape routes and protection measures in place, cases of inhalation poisoning are rare in relation to the number of potentially affected people.

9. The heating season is not a significant factor increasing the number of inhalation poisonings.

3. Najbardziej narażona na zatrucia wziewne grupa wiekowa w rejonie działania SRM Łuków mieści się w przedziale 40–60 lat (45%).

4. Na zatrucie wziewne bardziej narażeni są mężczyźni (65%).

5. Każdy uczestnik pożaru jest potencjalnie narażony na zatrucie tlenkiem węgla.

6. Odległość miejsca zdarzenia od miejsca stacjonowania służb ratowniczych ma wpływ na wdrożenie procedur medycznych i dalsze rokowania dla poszkodowanego w przypadku cięższych zatruć.

7. Odległość miejsca zdarzenia od miejsca stacjonowania służb ratowniczych nie ma większego wpływu na dalsze rokowania dla poszkodowanych w przypadku lekkich ekspozycji, gdzie poszkodowany sam przerwał ekspozycję, a objawy niepokojące pojawiły się po kilku, kilkunastu godzinach.

8. W dużych zakładach pracy – ze względu na procedury, instrukcje, drogi ewakuacyjne i zabezpieczenia – liczba zatruć wziewnych jest niewielka w stosunku do liczby potencjalnie zagrożonych osób.

9. Okres grzewczy nie wpływa znacząco na wzrost zatruć wziewnych.

Abbreviations

Abbreviation	Description
AFA	advanced first aid
ALS	advanced life support
AR	admission room
BLS	basic life support
CH	chest
CNS	central nervous system
CO	carbon monoxide
CO₂	carbon dioxide
CTH	Children’s Teaching Hospital
ECC	Emergency Communications Centre
ED	Hospital Emergency Department
ED Ł	the Hospital Emergency Department in Łuków at the SP ZOZ
EMS	Emergency Medical Services
EMS team	Emergency Medical Services Team
KG PSP	the National Headquarters of the State Fire Service
KZW	dispatch order form
left	patient left at the site
MAR	Medical Air Rescue
MER	medical emergency report
NFRS	the National Firefighting and Rescue System
MEA	medical emergency actions
MSWiA	Ministry of the Interior and Administration
ND	no data
NEMS	National Emergency Medical Services
NFZ	National Health Fund
NPL	after hours medical centre
P1	basic dispatch team (rescue)
PPM	parts per million
S1	specialised dispatch team (with a physician)

Abbreviations

Abbreviation	Description
ALS	advanced life support (ang. zaawansowane zabiegi ratunkowe-przyrządowe)
B.D.	brak danych
BLS	basic life support (ang. podstawowe zabiegi ratunkowe bez przyrządowe)
CO	tlenek węgla
CO₂	dwutlenek węgla
CPR	Centrum Powiadomiania Ratunkowego
DSK	dziecięcy szpital kliniczny
IP	izba przyjęć
KLP	Komenda Główna Państwowej Straży Pożarnej
KMC	karta medycznych czynności ratunkowych
KPP	kwalifikowana pierwsza pomoc
KSRG	krajowy system ratowniczo gaśniczy
KZW	karta zalecenia wyjazdu
LPR	Lotnicze Pogotowie Ratunkowe
MSWiA	Ministerstwo Spraw Wewnętrznych i Administracji
MCR	medyczne czynności ratunkowe
NFZ	Narodowy Fundusz Zdrowia
NPL	Nocna pomoc lekarska
NZK	nagle zatrzymanie krążenia
OUN	ośrodkowy układ nerwowy
R.Z.	rok życia
SRM	Stacja Ratownictwa Medycznego
SOR	Szpitalny oddział ratunkowy
SOR Ł	szpitalny oddział ratunkowy w Łukowie przy SP ZOZ
S1	zespół wyjazdowy specjalistyczny (lekarski)
RM	Ratownictwo Medyczne
Literature / Literatura

[1] Dane otwarte Główny Urząd Statystyczny. www.stat.gov.pl [2.2018].
[2] Nadlewska A, Ładny J, R, Wojewódzka-Żelezniakowicz M i in., Trucizny – definicja, rodzaje, mechanizm działania, „Postępy Nauk Medycznych” 2010, 9, 704–708.
[3] Gopczyk G, Konieczynski J, Tlenek węgla w pomieszczeniach jako efekt eksploatacji kuchni gazowych, Problemy jakości powietrza wewnętrznego w Polsce 2001, Wydawnictwa Instytutu Ogrzewnictwa i Wentylacji Politechniki Warszawskiej, Warszawa 2002, 251–258.
[4] Wojewódzka-Żelezniakowicz M, Czaban S, L, Poniatowski B, Ładny J, R, Zatracia – epidemiologia, diagnostyka i leczenie w oddziale ratunkowym, „Postępy Nauk Medycznych” 2009, 6, 480–484.
[5] Trzos A, Zabezpieczenie medyczne imprez masowych, Kraków 2001.
[6] Mackway Jones K, Marsden J, Windle J, Triage, M, Kaliszan R., Biofarmacja, Elsevier Urban&Partner, Wrocław 2013.
[7] Slavica V, Dubravko B, Milan J, Acute organophosphate poisoning: 17 years of experience of the National Poison Control Center in Serbia, „Toxicology”, 2018, 409, 73–79.
[8] Buciński A, Kaliszan R., Właściwości fizykochemiczne substancji leczniczych o znaczeniu biofarmaceutycznym – rozpuszczalność, lipofilność i współczynnik dyfuzyjny, w: Biofarmacja, M. Sznitowska, R. Kaliszan (red.), Elsevier Urban & Partner, Wrocław 2014.
[9] M. Kaliszan R, Biofarmacja, Elsevier Urban&Partner, Wrocław 2013, 33–59. Ciep K, Stefanowska J, Metody zwiększania przenikania substancji leczniczych przez skórę, „Farmacja Polska” 2010, 66(7), 514–520.
[10] Kapka-Skrzyczczak L, Cynarka M, Kępia P, Skrzyczczak M, Wojtyła A, Dopalacz – stan aktualny i wytyczne na przyszłość, „Medycyna Ogólna i Nauki o Zdrowiu” 2011, 17(4), 206–211.
[11] Okulicz-Kozaryn K, Gozdarek A, Kocosi K, Przyjmowanie leków psychoaktywnych a używanie innych substancji odurzających przez młodzież, „Alkoholizm i Narkomania” 2006, 19(1), 35–52.
[12] GUS:12.2016, Powierzchnia i demografia powiatu łukowskiego [2.2018].
[13] www.polskawliczbach.pl/lukow [2.2018].

SJA – sudden cardiac arrest
SP ZOZ – Independent Public Healthcare Unit
SRM – Emergency Medical Services Station
y.o. – years old

P1 – Zespół wyjazdowy podstawowy (ratowniczy)
Pozost. – pozostawiony/a w miejscu wezwania
PPM – (ang. parts per million) cząstek na milion
PRM – państwowe ratownictwo medyczne
SP ZOZ – samodzielny publiczny zakład opieki zdrowotnej
ZRM – Zespół Ratownictwa Medycznego

LUKASZ DUDZIŃSKI, M.A. – an officer of the State Fire Service, he serves in District Headquarters of the State Fire Service in Lublin. He is a medical rescue instructor and a medical rescue worker in the Independent Public Health Care Institution in Łuków.

PIOTR KONRAD LESZCZYŃSKI, PH.D. – assistant professor at Nursing and Medical Rescue Department at Siedleck University of Natural Sciences and Humanities.

MGR LUKASZ DUDZIŃSKI – funkcjonariusz Państwowej Straży Pożarnej, pełni służbę w Komendzie Miejskiej PSP w Lublinie. Jest instruktorem ratownictwa medycznego oraz ratownikiem medycznym w Samodzielnym Publicznym Zakładzie Opieki Zdrowotnej w Łukowie.

DR PIOTR KONRAD LESZCZYŃSKI – adiunkt w Zakładzie Pielęgniarstwa i Ratownictwa Medycznego na Uniwersytecie Przyrodniczo-Humanistycznym w Siedlcach.