Heat Transfer and Fluid Flow Analysis on Microchannel Heat Sink with Varying Plenum Size

Naveen Bansal, Satbir Singh Sehgal, Manpreet Singh

Abstract: Computational fluid analysis study has been carried out to find a better prospect of perfect design, shape and plenum size microchannel heat sink (MCHS). Distinctive structure parameters were chosen to plan microchannel heat sink with shifting channel planum sizes of 10 mm, 20 mm and 30 mm. The material taken of circle type heat sink is taken as copper. The liquid taken is plane fluid. Amid liquid stream distinctive speed stream states of significant worth 0.25 lpm, 0.50 lpm and 0.75 lpm were chosen. In computational liquid examination changing weight, temperature and speed conditions impacts were additionally contemplated. Huge weight drop is recorded in the speed rating of 0.25 lpm. Speed readings were recorded high en 30 mm plenum estimate with 0.75 lpm speed stream. Investigation gives thought of an ideal structure fit as a fiddle with stream of liquid at 0.75 speed stream. The stream space were understood utilizing ANSYS programming as economically accessible for CFD examination. A special plan is set up from the examination which can exchange extensive measure of warmth in the state of microchannel heat sinks with microchannel length of 48 mm long and with other chose structure parameters. To accomplish more warmth expulsion from the MCHS the microchannel estimate upgrade is done computationally. For ordinary convective warmth trade coefficient, outlet temperature, grinding and weight drop, siphoning power and warm impedance have been plotted against Nusselt number qualities for various stream conditions. By settling the correct control of the liquid stream and warmth exchange propensity of a 3-dimensional MCHS has been accomplished computationally.

KEYWORDS: Microchannel heat sinks (MCHS), Nusselt number, Aspect ratio.

I. INTRODUCTION

The electronic components and computers are required to do work at a faster speed, so high powered integrated circuits were manufactured. All the fast circuits and gadgets produce heat motions which dependably acuse the circuits with high temperatures. Research is going on since 1981 by Pease and Tuckerman [1] in which microchannel heat sink work in straightforward way. Microchannels are machine processed on back of aluminium or other metal plates of electronic parts in facilitated circuits. Whatever the warmth is created by the electronic segment or circuit is exchanged to the coolant by constrained convection. The micron size of microchannels cause a reduction in thickness of warm limit layer which diminishes the convective résistance to warm exchange which produces high cooling rates. Tuckerman proposes that laminar stream is wanted stream rate for warmth expelling with mean of microchannels. With a created improved method to foresee the best angle proportion of microchannel Tuckerman accomplishes high warmth exchange.

He utilized water as a coolant in investigations. While looking at stream contact there found a high head misfortune. A short writing audit is given to advance of the investigation of warmth exchange and liquid stream in microchannel heat sinks. Z.-Y. Guo [28] had investigated the heat transfer in a rectangular stream channel. They are utilizing gas as coolant and found the impacts of heat exchange loss up to 38%, 40%. They tended to that low pumping force portrays the microchannels as great heat exchangers and higher surface to volume proportion of heat sinks.

P. Naphon [36] has mortally researched that Non-Darcy limit layer stream of non-coordinating genuine fluid. They changed over the present overseeing mostly differential conditions into nonlinear traditional differential conditions by closeness change. They deduced that the skin grating coefficient increments and Nusselt number depreciats with addition in ferro magnetic parameter. The examination was passed on with attractive ferro particles over a permeable directly expanding surface considering the Ohmic dissipating close by mixed convective warmth trade. Smaller scale channels are progressively significant for satisfactory warmth expulsion in microelectronic gadgets. The need to empty broad measure of warmth created from microelectronic devices for adequate limit was first looked into by Pease and Tuckerman [1]. They had inquired about the execution of microchannels as warmth exchanger, using water as coolant and proposed the use of high perspective microchannels to diminish heat block.

Fedorov and Visakanta [13] Modeling of transport in miniaturized scale directs can be partitioned in to two classifications. In the primary, technique utilized for full scale channels are legitimately executed to assess the execution of smaller scale channel heat sinks.

L. Jiang [22] numerically recreated a constrained convection heat move happening in silicon based smaller scale channel heat sinks has been led utilizing a disentangled three-dimensional conjugate warmth exchange model.

X. F. Peng [8] directed a comparable kind examination by building up a completely express two dimensional incompressible laminar Navier-Stokes solver in crude variable definition utilizing a Cartesian amased matrix.

T.C. Hung [30] researched the MCHS execution using nanofluid as a coolant is examined. Two sorts of Nano fluids, Cu– H2O and CNT– H2O are used in this examination. The MCHS structure is shown as the penetrable medium and two-condition model was used to delineate the fluid and warmth move in the MCHS.

II. CFD ANALYSIS

Computational analysis has been done with ansys engineering simulation and 3D design software in which a copper plate of size 110 mm diameter is taken for the
experimentation. The microchannel wall is assumed of diameter 2.5 mm given on the outer edge then the two plenum inlet & outlet plenum were drawn which were connected with the microchannels whose length has been kept fixed at 35 mm. A Heat flux of 50 watt per sq. cm. was given at the centre of the plate.

An simulation of flow type is made to run in which base liquid is taken as water. Fluid is made to enter from the centre/inlet plenum which is of diameter 10 mm, 20 mm, 30 mm. Various fluid flow rates were taken in simulation as 0.25 lpm, 0.5 lpm, 0.75 lpm.

During simulation as shown in fig.1.1 study was done on the pressure, temperature and velocity components. Reynold numbers were also calculated from the middle of the channel. Nusselt number was also calculated to check the heat transfer between the two surfaces. The flow diagrams of velocity temperature and pressure are attached along with.

Observations are taken out through the simulation. The work has been done on the different inlet plenum sizes 10mm, 20mm & 30 mm. In accordance with the size of the outer plenum has also changed which can be visualized from the flow diagrams.

III. OBSERVATIONS
Computational fluid analysis of microchannel heat sink is done in ansys software. Examination is done on a copper plate with width 110 mm. Two plenum were made as gulf and delta for stream of the fluid that were associated with 35 mm long microchannels. With three stream appraisals 0.25 lpm, 0.5 lpm, 0.75 lpm. The table 1 is inferred with stream rate readings with distance across of channel as 10 mm, 20 mm, 30 mm. The Copper heat exchange coefficient results between 350 w/m-k to 594 w/m-k. The estimation of warm conductivity is inferred as 0.6 w/m-k. Distinctive nature of liquid is assessed from the examination with impact of Nusselt number variety.

Table 1. Nusselt no. for different fluid flow

| S.No. | Flow Rate (LPM) | Dia.Inlet (m) | C.H.T.C (w/m²-k) | T.C. (w/m²-k) | Nu |
|-------|-----------------|---------------|------------------|---------------|----|
| 1     | 0.25            | 0.01          | 192              | 0.6           | 2  |
| 2     | 0.5             | 0.01          | 502              | 0.6           | 4  |
| 3     | 0.75            | 0.01          | 227              | 0.6           | 2  |
| 4     | 0.25            | 0.02          | 87               | 0.6           | 1  |
| 5     | 0.5             | 0.02          | 300              | 0.6           | 3  |
| 6     | 0.75            | 0.02          | 223              | 0.6           | 2  |
| 7     | 0.25            | 0.03          | 150              | 0.6           | 1  |
| 8     | 0.5             | 0.03          | 167              | 0.6           | 1  |
| 9     | 0.75            | 0.03          | 200              | 0.6           | 2  |
The figure 1.2 demonstrates the examination of the warmth exchange by microchannel heat sink amid the cfd investigation for various stream rates openings at plenum. The fig. 1.3 demonstrates the examination done on nusselt number variety amid different perceptions of liquid streams at stream evaluations 0.25 lpm, 0.50 lpm, 0.75 lpm.

IV. RESULTS

1. Result observations from Pressure
   a. Withdiameter 10 mm

   [Graph showing pressure and fluid flow values for various stream rates]

   At flow rate 0.25 lpm
   Figure 1.4 shows the microchannel heat sink computational analysis values of pressure (Pa) that goes from 1 Pa to 180 Pa with the value of the fluid flow is evolved between 1 m/s to 20 m/s. As seen in the graphical analysis the pressure is denoted by blue colour section named as series 1. The fluid flow value is denoted by brown colour as series 2. As the flow rises with stream line is derived between 3m/s to 172 m/s. An increase in pressure is shown by a straight line evolving from 172 m/s flow to 436 m/s onwards flow at a pressure value 1155 Pa.

   At flow rate 0.5 lpm
   Figure 1.5 shows the microchannel heat sink computational analysis values of pressure (Pa) goes from 0 Pa to 1200 Pa with the value of the fluid flow is evolved between 1 m/s to 421 m/s. As seen in the graphical analysis the pressure is denoted by blue colour section named as series 1. The fluid flow value is denoted by brown colour as series 2. As the flow rises a stream line is derived between 3m/s to 169.6 m/s. An increase in pressure is shown by a straight line evolving from 170 m/s flow to 421 onwards flow at a pressure value 1155 Pa.

   At flow rate 0.75 lpm
   Figure 1.6 shows the microchannel heat sink computational analysis values of pressure (Pa) goes from 508 Pa to 2530 Pa with the value of the fluid flow goes from 169 m/s to 360 m/s. As seen in the graphical analysis the pressure is denoted by blue colour section named as series 1. As the flow rises astream line evolves. An increase in pressure achieves shown by straight line at outlet plenum evolving from 562 Pa flow to 2570 pa onwards.

Colour contours at 0.75 LPM:

   [Graph showing colour contours at different stream rates]

   Fig.1.8 At 0.75 lpm colour contours
   Fig.1.9 At 0.5 lpm colour contours
Heat Transfer and Fluid Flow Analysis on Microchannel Heat Sink with Varying Plenum Size

The pressure colour contours at different lpm’s shows a negative in pressure and velocity drop at 0.5 lpm. A record in pressure rise is recorded at 0.75 lpm.

2. Pressure observation results for diameter 20mm

Fluid Flow 0.25 LPM
The figure 1.11 shows the microchannel heat sink computational analysis values of pressure (Pa) goes from 0 Pa to 120 Pa at fluid flow 80 m/s. As seen in the graphical analysis the pressure is denoted by blue colour section named as series 1. As the flow rises a stream line is achieved from flow 120 m/s to 290 m/s. An increase in pressure is shown by a straight line evolving from 190 Pa to 1140 Pa onwards.

At Fluid Flow 0.5 LPM
The figure 1.12 shows the microchannel heat sink computational analysis values of pressure (Pa) from 70 Pa to 500 Pa at fluid flow 18 m/s streamline to 80 m/s. With a drop in pressure is recorded as seen in the graphical analysis from 80 Pa to 0 Pa. The pressure is denoted by blue colour section named as series 1. As the flow rises again from 0 Pa to 510 Pa stream line is achieved from flow 510 Pa to 2600 Pa.

At Fluid Flow 0.75 LPM
The figure 1.13 shows the microchannel heat sink computational analysis values of pressure (Pa) from 0 Pa to 990 Pa at fluid flow 90 m/s streamlined to 280 m/s. The pressure is denoted by blue colour section named as series 1. The flow rises from 280 Pa to 3990 Pa. Colour Contours from CFD analysis With dia. 20mm

Fluid Flow 0.25 LPM

Fig. 1.10 At 0.75 lpm colour Contours

Fig. 1.11 Fluid Flow 0.25 lpm

Fig.1.12 Fluid Flow (m/s) at 0.50 lpm

Fig.1.13 Flow Rate 0.75 lpm

Fluid Flow 0.5 LPM

Fig.1.14 Flow Rate 0.25 lpm colour contours

Fig. 1.15 Flow rate 0.5 lpm colour contours

Fig. 1.16 Flow rate 0.75 lpm colour contours

Pressure observation result with Diameter 30 mm
At Flow Rate 0.25 m/s
With microchannel Diameter 30mm heat sink the figure 1.17 shows the heat sink computational analysis values of pressure (Pa) from 260 Pa to 0 Pa at fluid flow 10 m/s streamline to 40 m/s. With a drop in pressure was recorded as seen in the graphical analysis. The pressure is denoted by blue colour section named as series 1. The flow rises again from 260 Pa to 1160 Pa.

At Fluid Flow 0.5 m/s
With Diameter 30mm of microchannel heat sink the figure 1.18 shows the microchannel heat sink computational analysis values of pressure (Pa) from 0 Pa to 1000 Pa at fluid flow 70 m/s streamline from 40 m/s. With a drop in pressure was recorded as seen in the graphical analysis. The pressure is denoted by blue colour section named as series 1. The flow rises again from 1230 Pa to 2640 Pa.

Fluid Flow 0.75 m/s
With Microchannel heat sink diameter 30mm the figure 1.19 shows the microchannel heat sink computational analysis values of pressure (Pa) rises from 40 Pa to 1870 Pa with fluid flow streamlined. The pressure is denoted by blue colour section named as series 1. The flow rises again from 1870 Pa to 4370 Pa.
Heat Transfer and Fluid Flow Analysis on Microchannel Heat Sink with Varying Plenum Size

At Flow Rate 0.25 lpm
The figure 1.23 shows the microchannel heat sink computational analysis values of temperature (K) from 300.4 K to 300.5 K with a downstream flow variation in pressure recorded till 300 Pa. at outlet fluid flow. The temperature is denoted by blue colour section named as series 1. The fluid flow variation is shown by a streamline from 1 m/s to 481 m/s.

Flow Rate 0.5 LPM
Figure 1.24 shows heat sink microchannel with diameter 30mm. Temperature (K) from 300.4 Pa to 1000 Pa at fluid flow 70 m/s streamline from 40 m/s. With a drop in pressure was recorded as seen in the graphical analysis. The pressure is denoted by blue colour section named as series 1. The flow rises again from 1230 Pa to 2640 Pa.

At Flow Rate 0.75 LPM
Figure 1.25 shows heat sink microchannel with diameter 10mm. Temperature (K) rises to 300.7 Pa. At fluid flow 0 m/s to 420 m/s. A drop in pressure was recorded as seen in the graphical analysis to 300 k.

With Diameter 10 mm

4. Result observations with microchannel heat sink Diameter 20mm

Temperature Observations

Fig.1.24 Fluid Flow (m/s) at 0.50 lpm

Fig.1.25 Flow Rate 0.75 lpm

Fig.1.26 Flow Rate 0.25 lpm

Fig.1.27 Flow Rate .5 lpm

Fig.1.28 Flow Rate .75 lpm

Fig.1.29 Flow Rate 0.25lpm

Fig.1.30 Flow Rate .5 lpm
At Flow Rate 0.25 LPM
The figure 1.29 shows the values of temperature (K) from 300.269 k to 300 k with a downstream flow variation in pressure recorded till 300.02 Pa at outlet fluid flow. The temperature is denoted by blue colour section named as series 1.

Flow Rate 0.5 LPM

Figure 1.30 shows heat sink microchannel with diameter 30mm. Temperature (K) from 300.4 Pa to 1000 Pa at fluid flow 70 m/s downstream from 300.08k to 300.0 k. With a drop in pressure was recorded as seen in the graphical analysis. The pressure is denoted by blue colour section named as series 1.

At Flow Rate 0.75 LPM

Figure 131 shows heat sink microchannel with diameter 10mm. Temperature (K) rises to 300.7 Pa. At fluid flow 0 m/s to 420 m/s. A drop in pressure was recorded as seen in the graphical analysis to 300 k. The pressure is denoted by blue colour section named as series 1.

CFD colour contours with Diameter 20
Heat Transfer and Fluid Flow Analysis on Microchannel Heat Sink with Varying Plenum Size

At Flow Rate 0.25 lpm
The figure 1.35 shows the microchannel heat sink computational analysis values of temperature (K) at 298.38 K with a downstream flow variation in temperature recorded till 298.1 Pa. at outlet fluid flow. The temperature is denoted by blue colour section named as series 1. The fluid flow variation is shown by a streamline drop from 298.2 m/s to 298.4 m/s.

Flow Rate 0.5 LPM
Figure 1.36 shows heat sink microchannel with diameter 30mm. Temperature (K) stands at 298.34 Pa. With a drop in pressure was recorded as seen in the graphical analysis. The pressure is denoted by blue colour section named as series 1.

At Flow Rate 0.75 LPM
Figure 1.37 shows heat sink microchannel with diameter 30mm. Temperature (K) retains at 298.28 K at fluid flow 0.75 m/s. A drop in pressure was recorded as seen in the graphical analysis upto 298.12 K. The pressure is denoted by blue colour section named as series 1.

With Diameter 30mm

At Flow Rate 0.25 lpm
The figure 1.41 shows the microchannel heat sink computational analysis values velocity range from from 0.2 m/s to 0.3 m/s with a downstream flow variation in velocity is recorded till 0.2 m/s at outlet fluid flow. The temperature is denoted by blue colour section named as series 1. The fluid flow variation is shown by a streamline from 0.2 m/s to 0.3 m/s.
Flow Rate 0.5 LPM

Figure 1.42 shows heat sink microchannel with diameter 30mm. Velocity from 0.3 m/s to 0.5 m/s fluid flow streamlines from 0.4 m/s. With a drop in velocity was recorded as seen in the graphical analysis. The velocity is denoted by blue colour section named as series 1.

At Flow Rate 0.75 LPM

Figure 1.43 shows heat sink microchannel with diameter 10mm. Velocity rises to 0.8m/s fluid flow. A drop in velocity was recorded as seen in the graphical analysis to 0.58 m/s. The velocity is denoted by blue colour section named as series 1.

Velocity colour contours with diameter 10

Flow Rate 0.25 lpm

Fig. 1.47 Flow Rate 0.25 lpm

7. Result observation analysis with Diameter 20 mm

Flow Rate 0.5 LPM

The figure 1.47 shows the microchannel heat sink computational analysis gives values of velocity range from 0.25 m/s to 0.3 m/s with a downstream flow variation in velocity till 0.2 m/s flow at outlet fluid flow. The velocity denoted by blue colour section named as series 1. The fluid flow variation is shown by a streamline from 0.2 m/s to 0.25 m/s.

Flow Rate 0.5 LPM

Figure 1.48 shows heat sink microchannel with diameter 30mm. Velocity ranges from 0.1 m/s to 0.5 m/s flow range. With a drop in pressure was recorded as seen in the graphical analysis. The velocity is denoted by blue colour section named as series 1. The flow rises again from 0.4 m/s to 0.5 m/s.

At Flow Rate 0.75 LPM

Figure 1.49 shows heat sink microchannel with diameter 20mm. Velocity rises to 0.8 m/s. At fluid flow 0.58 m/s to 0.7 m/s. A drop in pressure was recorded as seen in the graphical analysis up to 0.6 m/s. The velocity denoted by blue colour section named as series 1.

Colour contour observations with Diameter 20 mm
8. Result observations of velocity with diameter 30mm

At Flow Rate 0.25 lpm
The figure 1.53 shows the values of velocity (m/s) from 0.025 m/s to 0.25 m/s with straight flow line. At outlet fluid flow. The velocity denoted by blue colour section named as velocity.

Flow Rate 0.5 LPM
Figure 1.54 shows heat sink microchannel with diameter 30mm. velocity 0.045 m/s to 0.467 m/s. The velocity is denoted by blue colour section named as series 1. The flow streamlines between 0.4 m/s to 0.5 m/s.

At Flow Rate 0.75 LPM
Figure 1.55 shows velocity flow in microchannel heat sink with diameter 10mm. velocity rises between 0.6 m/s to 0.7 m/s. A drop in pressure was recorded as seen in the graphical analysis to 300 k. The pressure is denoted by blue colour section named as series 1.

colour contours result observations of Velocity with diameter 30 mm
CONCLUSIONS

1. CFD investigation of the microchannel heat sink Surface unpleasantness inside the microchannel appears to significantly affect stream conduct at the micro scale. Stream progress from laminar stream to violent stream at the infinitesimal dimension has been come about at 0.75lpms might be precise estimation of Reynolds number where change happens for all divider roughnesses.

2. Microchannel heat sinks have 80% of the all-out warmth transition connected to the last 50% of the channel. The 30 mm breadth round plan is sufficiently powerful to improve microchannel heat sink execution.

3. The weight drop of MCHS with distance across 20 mm at .25 lpms and 0.5 lpms were recorded higher than different MCHS structures with 10mm, 0r 30 mm .4 lpms speed MCHS with Diameter 30 mm at .50 lpms qualities higher warmth exchange.

4. Thinking about the distinctive working parameters, for instance, weight drop, Nusselt number, temperature with separation crosswise over 30 mm is favored since it could clear more warmth keeping various parameters at perfect dimension from various cases investigated.

5. Notwithstanding the way that the Nusselt number in MCHS recognitions with width 0.75 stream speed is higher than the other two kinds of stream rates 0.25 lpms and 0.5 lpms.

REFERENCES

1. D.B. Tuckerman, R.F. Pease, High-performance heat sinking for VLSI, IEEE Electr. Device Lett. 2 (5) (1981) 126–129.

2. D. B. Tuckerman, Heat-Transfer Microstructures for Integrated Circuits, Ph.D. thesis, Stanford University, 1984.

3. M.E. Steinke, S.G. Kandlikar, Single-phase liquid friction factors in microchannels, ASME 3rd International Conference on Microchannels and Minichannels, vol. 1, American Society of Mechanical Engineers, 2005, pp. 291–302.

4. R. Rathanasamy, K. Kalaiyanan, Experimental investigation of forced convective heat transfer in rectangular micro-channels, ARPN J. Eng. Appl. Sci. 5 (5) (2010) 21–26.

5. M. Iyengar, S. Garimella, Design and optimization of microchannel cooling systems, Thermal and Thermomechanical Phenomena in Electronics Systems, 2006. ITHERM'06. The Tenth Intersociety Conference on 2006 May 30, IEEE, 2006, pp. 54–62.

6. W.H. Wong, N.M. Ghazali, Numerical simulation of a microchannel for microelectronic cooling, J. Teknologi 46 (1) (2012) 1–6.

7. R. Riehl, P. Seleghim, Jr., and J. M. Ochterbeck, Comparison of Heat Transfer Correlation for Single- and Two-Phase Microchannel Flows for Microelectronics Cooling, Proc. Intersociety Conference on Thermomechanical Phenomena in Electronic Systems, ITHERM, pp. 409–416, 1998.

8. X. F. Peng and B. X. Wang, Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing through Microchannels, International Journal of Heat and Mass Transfer, vol. 36, no. 14, pp. 3421–3427, 1993.

9. B. X. Wang and X. F. Peng, Experimental Investigation on Liquid Forced-Convective Heat Transfer through Microchannels, International Journal of Heat and Mass Transfer, vol. 37, no. 1, pp. 73–82, 1994.

10. X. F. Peng and G. P. Peterson, The Effect of Thermofluid and Geometrical Parameters on Convection of Liquids through Rectangular Microchannels, International Journal of Heat Mass Transfer, vol. 38, no. 4, pp. 755–758, 1995.

11. X. F. Peng and G. P. Peterson, Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures, International Journal of Heat and Mass Transfer, vol. 39, no. 12, pp. 2599–2608, 1996.

12. E. Y. K. Ng, C. P. Tso, Z. M. Wen, and K. F. Choo, Numerical Simulation of Flow and Conjugate Heat Transfer in a Microchannel for Electronics Cooling, Journal of Electronics Manufacturing, vol. 9, no. 2, pp. 141–153, 1999.

13. G. Fedorov and R. Viskanta, Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging, International Journal of Heat and Mass Transfer, vol. 43, no. 3, pp. 399–415, 2000.

14. Perret, J. Boussy, C. Schaeffer, and M. Coyaud, Analytic Modeling, Optimization, and Realization of Cooling Devices in Silicon Technology, IEEE Transactions on Components and Packaging Technologies, vol. 23, no. 4, pp. 665–672, 2000.

15. Z.-Y. Guo and X. B. Wu, Compressibility Effect on the Gas flow and Heat Transfer in a Microtube, International Journal of Heat and Mass Transfer, vol. 40, pp. 3251–3254, 1997.

16. Z.-Y. Guo and X. B. Wu, Further Study on the Compressibility Effect on the Gas Flow and Heat Transfer in a Microtube, Microscale Thermophysics Engineering, vol. 2, pp. 111–120, 1998.

17. M. J. Marongiu, Compressibility Effects in the Design of Gas-Cooled Microchannel Heat Sinks, Proc. 5th Intersociety Conference on Thermal Phenomena in Electronic Systems, pp. 124–129, 1996.

18. M. J. Marongiu, B. Kusha, and G. S. Fallon, Compressible Gas-Cooled Micro-Channel Heat Sink Board (Substrates), Proc. 1998 International Symposium on Microelectronics, vol. 3582, pp. 856–861, 1998.

19. G. Karniadakis and A. Beskok, Micro Flows: Fundamentals and Simulation, Springer-Verlag, New York, 2002.

20. J. Baker and M. E. Calvert, Effect of Variable Viscosity on Coupled Heat and Momentum Transfer in Microchannel Flows, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, vol. 237, no. 2, pp. 391–397, 1996.

21. L. Jiang, M. Wong, and Y. Zohar, Phase Change in Microchannel Heat Sinks with Integrated Temperature Sensors, Journal of Microelectromechanical Systems, vol. 8, no. 4, pp. 358–365, 1999.

22. L. Jiang, M. Wong, and Y. Zohar, Forced Convection Boiling in a Microchannel Heat Sink, Journal of Microelectromechanical Systems, vol. 10, no. 1, pp. 80–87, 2001.

23. S. T. Poh and E. Y. K. Ng, Heat Transfer and Flow Issues in Manifold Microchannel Heat Sinks: A CFD Approach, Proc. Electronic Packaging Technology Conference, EPTC, pp. 246–250, 1998.
Heat Transfer and Fluid Flow Analysis on Microchannel Heat Sink with Varying Plenum Size

24. K. Kawano, K. Minakami, H. Iwasaki, and M. Ishizuka, Microchannel Heat Exchanger for Cooling Electrical Equipment, Proc. ASME Heat Transfer Division, vol. 3, pp. 173–180, 1998.

25. R. Zeighami, D. Laster, P. Zhou, M. Ashgehi, S. Devasenathipathy, T. Kenny, J. Santiago, and K. Goodson, Experimental Investigation of Flow Transition in Microchannels Using Micron-Resolution Particle Image Velocimetry, Proc. 7th International Conference on Thermomechanical Phenomena in Electronic Systems, ITERM, vol. 2, pp. 148–153, 2000.

26. M. M. Rahman, Measurements of Heat Transfer in Microchannel Heat Sinks, International Communications in Heat and Mass Transfer, vol. 27, no. 4, pp. 495–506, 2000.

27. Z.-X. Li, D. X. Du, and Z.-Y. Guo, Experimental Study on Flow Characteristics of Liquid in Circular Microtubes, Proc. International Conference on Heat Transfer and Transport Phenomena in Microscale, pp. 162–167, 2000.

28. Z.-Y. Guo and Z.-X. Li, Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale, International Journal of Heat and Fluid Flow, vol. 24, pp. 284–297, 2003.

29. P. Gao, S. Le Person, and M. Favre-Marinet, Scale Effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels, International Journal of Thermal Sciences, vol. 41, pp. 1017–1027, 2002.

30. T.C. Hung, Y.X. Huang, W.M. Yan, Thermal performance analysis of porous-microchannel heat sinks with different configuration designs, Int. J. Heat Mass Transf. 66 (2013) 235–243.

31. L. Lin, Y.Y. Chen, X.X. Zhang, X.D. Wang. Optimization of geometry and flow rate distribution for double-layer microchannel heat sink, Int. J. Therm. Sci. 78 (2014) 158–168.

32. N. Naphon, O. Khonseur, Study on the convective heat transfer and pressure drop in the microchannel heat sink, Int. Commun. Heat Mass Transf. 36 (1) (2009) 39–44.

33. M.J. Khan, M.R. Hasan, M.A. Mannun, Flow behavior and temperature distribution in micro-channels for constant wall heat flux, Procedia Eng. 56 (2013) 350–356.

34. P.M. Khameneh, I. Mirtaie, N. Pournahmoud, M. Rahimi, S. Majidifar, A numerical study of single-phase forced convective heat transfer in tube in tube heat exchangers, World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mechatronic Manuf. Eng. 4 (10) (2010) 958–963.

35. D.R. Raghuraman, P.K. Nagarajan, S. Suresh, Thermal performance of higher aspect ratio microchannels using TiO2.

36. Water nanofluids, J. Nanosci. Nanotechnol. 13 (4) (2013) 2842–2846.

37. N.I. Amanifard, A.K. Hagh, Numerical analysis of fluid flow and heat transfer in microchannels, Int. J. Heat Technol. 25 (1) (2007) 103–110.

38. W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Int. J. Heat Mass Transf. 45 (12) (2002) 2549–2565.

39. Y. Mishan, A. Mosyak, E. Pogrebnyak, G. Hetsroni, Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink, Int. J. Heat Mass Transf. 50 (15) (2007) 3100–3114.

40. Y. Mishan, A. Mosyak, E. Pogrebnyak, G. Hetsroni, Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink, Int. J. Heat Mass Transf. 50 (15) (2007) 3100–3114.

41. M.R. Salimpour, M. Shariﬁhasan, E. Shirani, Constructive optimization of microchannel heat sinks with noncircular cross sections, Heat Transf. Eng. 34 (10) (2013) 863–874.

42. V.V. Dhariaiya, S.G. Kandlikar, Numerical investigation of heat transfer in rectangular microchannels under H2 boundary condition during developing and fully developed laminar flow, J. Heat Transf. 134 (2) (2012) 020911.

43. X.L. Xie, Z.J. Liu, Y.L. He, W.Q. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Appl. Therm. Eng. 29 (1) (2009) 64–74.

44. G. Xie, F. Zhang, B. Sunde’ n, W. Zhang, Construct design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow, Appl. Therm. Eng. 62 (2) (2014) 791–802.

45. Fedorov and R. Viskanta, Analysis of Conjugate Heat Transfer in a Three-Dimensional Microchannel Heat Sink for Cooling of Electronic Components, Proc. ASME Heat Transfer Division, vol. 364–363, pp. 89–98, 1999.

46. Beskok and G. Karniadakis, A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales, Microscale Thermophysical Engineering, vol. 3, no. 1, pp. 43–77, 1999.

AUTHORS PROFILE

Author: Naveen Bansal is Research Scholar in M.E at Chandigarh University, Gharuan, India. He has done P.G in Mech Engg. from GNDEC Ludhiana and U.G from GEC, Bathinda. (PB) India

Author: Satbir Singh Sehgal is Eminent Professor in Mech. Engg. Deptt. at Chandigarh University, Gharuan, India. He is highly expertise in Heat Sinks and Microchannels Research.

Author: Manpreet Singh is Director at Fluids Engineering, India. He has done MSc in Aeronautical Engineering. He has experience in heat sink research.