Integration of IgA and IgG Autoantigens Improves Performance of Biomarker Panels for Early Diagnosis of Lung Cancer

Authors
Jianbo Pan, Lili Yu, Qingwei Wu, Xiaqing Lin, Shuang Liu, Shaohui Hu, Christian Rosa, Daniel Eichinger, Ignacio Pino, Heng Zhu, Jiang Qian, and Yi Huang

Correspondence
hyi8070@126.com; ignacio.pino@cdi-lab.com

In Brief
Lung cancer (LC) remains the leading cause of mortality from malignant tumors worldwide. To identify biomarkers for early detection of LC, we employed the HuProt array platform and ELISA tests to identify and validate for IgA-bound autoantigens, which were then combined with the previously validated IgG autoantigens for the identification and validation of integrated IgA/IgG biomarker panels. We discovered and validated an integrated biomarker panel, with the best performance of 73.5% sensitivity at 85% specificity for early LC diagnosis.

Highlights
- HuProt array-based identification of autoantigens in serum of early lung cancer.
- Independent validation of early lung cancer biomarker candidates with ELISA.
- Bioinformatics-aided identification of a biomarker panel.
- Independent verification of the panel with ELISA and immunohistochemistry.
Integration of IgA and IgG Autoantigens Improves Performance of Biomarker Panels for Early Diagnosis of Lung Cancer*

Jianbo Pan†||, Lili Yu§¶¶, Qingwei Wu§¶¶, Xiaoqing Lin§¶¶, Shuang Liu||, Shaohui Hu**+, Christian Rosa**, Daniel Eichinger**, Ignacio Pino***‡‡‡, © Heng Zhu&&, Jiang Qian‡‡, and © Yi Huang§¶¶§§§§

Lung cancer (LC) remains the leading cause of mortality from malignant tumors worldwide. In our previous study, we surveyed both IgG and IgM-bound serological biomarkers and validated a panel of IgG-bound autoantigens for early LC diagnosis with 50% sensitivity at 90% specificity. To further improve the performance of these serological biomarkers, we surveyed HuProt arrays, comprised of 20,240 human proteins, for IgA-bound autoantigens because IgAs are a major immunoglobulin isotype in the lung. Integrating with IgG-bound autoantigens, we discovered and validated a combined biomarker panel using ELISA-format tests. Specifically, in Phase I, we obtained IgA-based autoimmune profiles of 69 early stage LC patients, 30 healthy subjects and 25 patients with lung benign lesions (LBL) on HuProt arrays and identified 28 proteins as candidate autoantigens that were significantly associated with early stage LC. In Phase II, we re-purified the autoantigens and converted them into an ELISA-format testing to profile an additional large cohort, comprised of 136 early stage LC patients, 58 healthy individuals, and 29 LBL patients. Integration of IgG autoimmune profiles allowed us to identify and validate a biomarker panel of three IgA autoantigens (i.e. BCL7A, and TRIM33 and MTERF4) and three IgG autoantigens (i.e. CTAG1A, DDX4 and MAGEC2) for diagnosis of early stage LC with 73.5% sensitivity at >85% specificity. In Phase III, the performance of this biomarker panel was confirmed with an independent cohort, comprised of 88 early stage LC patients, 18 LBL patients, and 36 healthy subjects. Finally, a blind test on 178 serum samples was conducted to confirm the performance of the biomarker panel. In summary, this study demonstrates for the first time that an integrated panel of IgA/IgG autoantigens can serve as valuable biomarkers to further improve the performance of early diagnosis of LC.

© 2020 Pan et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
nobilting, and IgA, rather than IgG, autoantibodies against DLD were shown to be a potential serological biomarker as evidenced by markedly elevated levels of IgA autoantibodies in patient sera (20). As compared with other organs, lung has the largest mucosal surface where IgA plays an important role in mucosal immunity and protects the lung against invading pathogens (21, 22). It is conceivable that IgA antibodies could recognize a different repertoire of TAAs from IgG antibodies because of cross-reactivity and/or differences in the immune responses in the lung. Therefore, we expected the integration of IgA and IgG autoimmune profiles would yield combined marker panels with improved performance.

In a recent study, our team employed a human proteome array (i.e., HuProt-based approach and identified a panel of biomarkers, comprised of three IgG autoantigens, namely p53, HRas, and ETIE1, with 50% sensitivity at 90% specificity for early stage LC diagnosis (10). Here, we employed the same HuProt array platform to survey for IgA-bound autoantigens, followed by use of standard ELISA tests for biomarker validation (23). The validated IgA autoantigens were then combined with the previously validated IgG autoantigens for the identification and validation of integrated IgA/IgG biomarker panels. We discovered and validated an integrated biomarker panel, comprised of three IgA autoantigens (i.e., BCL7A, TRIM33, and METRF4) and three IgG autoantigens (i.e., CTAG1A, DDX4, and MAGEC2), with the best performance of 73.5% sensitivity at 85% specificity for LC diagnosis at early stages.

MATERIALS AND METHODS

Co-hort Description—All serum samples involved in this study were collected at Fujian Provincial Hospital, in Fujian Province, China, between 2015 and 2018. This cohort was comprised of 667 serum samples collected from 171 healthy persons, 400 resident patients diagnosed with early stage LC, and 96 resident patients diagnosed with lung benign lesions (LBL). The 124 healthy persons were recruited during annual physical examinations, including chest X-ray, abdominal ultrasonography, routine urinalysis, stool occult blood test, complete blood count, blood chemistries, and tumor antigen tests, with lung benign lesions (LBL). The 124 healthy persons were recruited after histopathological confirmation of LC tumors. The TNM classification was used for evaluation of NSCLC staging and the VA recruited during annual physical examinations, including chest X-ray, abdominal ultrasonography, routine urinalysis, stool occult blood test, complete blood count, blood chemistries, and tumor antigen tests, such as carcinoembryonic antigen (CEA), CA199, and alphafetoprotein (AFP), to name a few. None of them showed any evidence of malignancy in all the tests. The 293 early stage LC patients were recruited after histopathological confirmation of LC tumors. The TMN classification was used for evaluation of NSCLC staging and the VA scheme was used to classify SCLC into limited- and extensive-stage. The 72 LBL patients, including 31 pneumonia, 16 chronic obstructive pulmonary disease (COPD), and 25 pulmonary tuberculosis (TB), were recruited after accurate clinical assessment. Detailed information of each subject of this cohort is listed in supplemental Table S1. This study was approved by the Ethics Committee (i.e. IRB) of Fujian Provincial Hospital.

HuProt Arrays and Serum Profiling Assays—HuProt arrays were manufactured by CDI Laboratories, Inc. Each HuProt array v3.0 is comprised of 20,240 unique human full-length proteins, covering ~75% of the human proteome. Each serum sample was diluted 1000-fold in PBS and profiled on HuProt arrays using a standard protocol as described previously (24–27). Briefly speaking, the 150 μl diluted serum sample was added in a blocking buffer (3% BSA in PBS buffer with 0.1% Tween 20)-incubated HuProt array, and then incubated at 37 °C for 1h. After 3 × 10 min washes with PBST, the microarray was incubated with 150 μl of 1:1000 diluted Alexa Fluor 532-conjugated goat anti-human IgA (the Jackson Laboratory, Bar Harbor, ME) at 37 °C for 1h in dark. Finally, after 3 × 10 min PBST washes, the microarray was rinsed with double-distilled H2O and dried. The microarray was scanned with the GenePix 4000B Microarray Scanner (Molecular Devices, Sunnyvale, CA) and analyzed using GenePix Pro 6.0 software (Molecular Devices).

Data Analysis for Assays Performed on HuProt—First, the median values of the foreground (F) and background (B) intensity at a given protein spot (i,j) on the HuProt arrays were extracted. The signal intensity (R_i) of each protein spot was defined as F_i/B_j. Because each protein is printed in duplicate on an array, R_i was averaged for each protein as R_i.

Z-score of each protein on HuProt arrays was calculated using a method similar to the one described in our previous studies (24). A cutoff value of Z ≥ 3 was used to determine the positives in this study. The sensitivity and specificity were calculated for each protein. For each comparison (LC versus negative controls), the biomarker candidates were selected with the highest discriminant ability (28), which is defined as:

Discriminant ability = \frac{\text{Sensitivity} + \text{Specificity}}{2}

p values obtained from the t test were calculated and adjusted as false discovery rates (29). The optimal cutoff value for each candidate
was evaluated with two criteria: (1) at least 90% specificity and (2) the highest discriminant ability.

ELISA Assay—To develop ELISA-format tests, candidate proteins were purified from yeast as described previously (30). After 50 ng of each purified protein was coated onto individual wells of an ELISA plate, each serum sample, diluted either 100-fold for IgA biomarkers or 500-fold for IgG biomarkers, was added to the wells to carry out the standard ELISA tests as described previously (30). The immunoreactivity signals were measured by reading the A₄₅₀.

Discovery and Validation of Biomarker Panels—After signals of the ELISA assays were obtained and normalized using serum samples of the discovery cohort, areas under the receiver operating characteristic (ROC) curves (AUCs) were calculated to assess the performance of each candidate biomarker. The optimal cut-off values were obtained to determine the sensitivity and specificity for the six proteins in the validation cohort (10). The performances for all possible combinations between two and six proteins were evaluated to identify combinatorial biomarker panels with better performance as following. First, the actual signal intensity of each protein was converted to either 1 or 0 such that 1 represented the signal intensity greater than the optimal cutoff value, and 0 otherwise. Next, for a given combination of n proteins, the sum of the binary scores of the n proteins was assigned to each serum sample as a summary score. If the summary score of n, the sample was called positive. All the tissues used in IHC staining were acquired from the archives at the Department of Pathology of Fujian Provincial Hospital in agreement with the ethics committee of Fujian provincial hospital.

RESULTS

Overall Study Design—To identify IgA-autoantigens as diagnostic biomarkers for early stage LC, we employed the two-phase strategy reported previously (10) to identify novel biomarkers for early LC (e.g. stages 1 and 2) diagnosis (Fig. 1). Briefly, in Phase I, 124 serum samples collected from 69 early LC patients, 30 healthy individuals and 25 LBL patients, were individually profiled on HuProt arrays for the presence of IgA-bound autoantigens (Table I). A total of 28 human proteins were identified as candidate autoantigens (Table II). In Phase II, a much larger cohort, comprised of serum samples collected from 136 early stage LC, 58 healthy subjects and 29 LBL (Table III), was assembled and tested against the candidate IgA autoantigens and some previously identified IgG autoantigens using ELISA. A combinatorial IgA/IgG autoantigen panel was identified with much improved performance and was further validated using an independent cohort (Table IV).

Discovery of Candidate IgA Autoantigens As Serological Biomarkers in LC—In Phase I, we assembled a cohort of 124
TABLE II

Performance of 28 IgA biomarkers in Phase I

Gene symbol	Sensitivity	Specificity	Discriminative ability	Rank
SS18	30.4%	96.4%	63.4%	1
YP021	27.5%	96.4%	61.9%	2
APH1A	27.5%	96.4%	61.9%	3
TOM1L2	27.5%	96.4%	61.9%	4
PIP4K2C	26.1%	94.5%	60.3%	5
NUMBL	29.0%	90.9%	59.9%	6
NUDT14	23.2%	96.4%	59.8%	7
RALGDS	24.6%	94.5%	59.6%	8
SPN	18.8%	100.0%	59.4%	9
RPLP1	24.6%	90.9%	57.8%	12
DCLK1	23.2%	90.9%	57.0%	15
SULT2B1	18.8%	94.5%	56.7%	17
C14orf37	18.8%	94.5%	56.7%	18
MAGEA8	18.8%	94.5%	56.7%	19
DX4	13.0%	100.0%	56.5%	20
BCL7A	20.3%	92.7%	56.5%	24
NOL3	21.7%	90.9%	56.3%	26
SSBP4	17.4%	94.5%	56.0%	28
TXNDC2	17.4%	94.5%	56.0%	29
FIGN2	17.4%	94.5%	56.0%	30
JAKMIP2	18.8%	92.7%	55.8%	34
KCNRG	18.8%	92.7%	55.8%	35
N4BP1	21.7%	89.1%	55.4%	43
ACPP	17.4%	92.7%	55.1%	50
TRIM33	17.4%	92.7%	55.1%	51
MTERF4	14.5%	94.5%	54.5%	61
TTC1	17.4%	90.9%	54.2%	88
MAGEC2	17.4%	89.1%	53.2%	89

TABLE III

Characteristics of the samples used in Phase II

Variable	Early LC (n = 136)	Healthy (n = 58)	LBL (n = 29)	P						
	No.	Mean	%	No.	Mean	%	No.	Mean	%	
Age (years)										0.065
Mean		59.8			56.2			59.6		
Standard deviation		10.4			9.9			8.7		
Sex										0.101
Male		98	72.1		40	69		19	65.5	
Female		38	27.9		28	31		10	34.5	
Smoking history (pack-years)										0.371
0		38	27.9		15	25.9		8	27.6	
<20		21	15.4		14	24.1		4	13.8	
≥20		77	56.6		29	50		17	58.6	

To obtain anti-human IgA autoimmune profiles, each serum sample was diluted 1000-fold and individually incubated on a HuProt array, followed by the detection of autoantigens using Cy5-labeled anti-human IgA secondary antibodies. Anti-IgA signals were acquired, normalized, and quantified for each assay, based on which standard deviation (S.D.) was calculated (24). Using a cutoff value of Z score ≥ 3, IgA-bound target proteins were determined for each serum sample. For example, BCL7A and MTERF4 were preferentially recognized by human IgAs in the LC patients, but much less so in healthy subjects and LBLs (Fig. 2A). Sensitivity and specificity values were calculated for each serum-positive protein, based on
which the discriminative ability values were calculated as described previously (see Methods; (10, 28)).

To determine which of the IgA-bound autoantigens would be subjected to Phase II validation using standard ELISA-format testing, we first selected those with specificity values >85% and then ranked them according to their discriminative ability values (see Methods). Of the 72 candidate IgA autoantigens, we selected the top 20 candidates, and eight additional ones that were either highly expressed in lung cancer on the basis of tissue pathology (e.g. TPM3 and TTC1) or functionally relevant in tumorigenesis (e.g. MAGEC2 and BCL7A) (Table II) (32).

Validation of IgA Autoantigens as Biomarkers for Early Stage LC Diagnosis with ELISA—We collected serum samples from 136 patients diagnosed with early stage LC, including 24 limited stage SCLC, 64 stage I/II adenocarcinoma, and 48 stage I/II squamous-cell carcinoma. Negative controls included 58 healthy subjects and 29 LBL patients. Statistical analysis did not find any significant differences in age, gender

Variable	Early LC (n = 88)	Healthy (n = 36)	LBL (n = 18)	P
Age (years)	No. Mean %	No. Mean %	No. Mean %	
Mean	59.6 54.8	58.6 9.95	58.6 9.95	0.051
Standard deviation				
Male	55 64.7	22 61.1	12 66.7	0.543
Female	30 35.3	14 38.9	6 33.3	
Smoking history (pack-years)	0 26 29.5	13 36.1	6 33.3	0.110
≤20	12 13.6	5 13.9	3 16.7	
≥20	50 56.8	18 50.0	9 50	
Type				
Small Cell Lung Cancer	16 18.2			
Adenocarcinoma	48 54.5			
Squamous Cell Carcinoma	24 27.3			

Fig. 2. Examples of IgA-bound autoantigens identified on HuProt arrays in Phase I. A, Anti-human IgA images of BCL7A and MTERF4 obtained with serum samples collected from a LC patient, healthy subject, and LBL patient. IgA-bound autoantibodies were visualized with a Cy3-labeled anti-human IgA secondary antibody on HuProt arrays. In both cases, BCL7A and MTERF4 were specifically recognized by IgA antibodies of a LC patient; no detectable signals were observed with a healthy or LBL serum. B, Box plot analysis of HuProt array profiling of BCL7A (upper panel) and MTERF4 (lower panel) in LC, healthy and LBL.
or smoking history between the LC group and the control groups (Table III; supplemental Table S1). All the 28 selected candidate IgA autoantigens were successfully purified as recombinant proteins from yeast and the quantity and quality of the purified proteins were examined with Coomassie stain as previously described (33).

To carry out ELISA-format testing, each candidate autoantigen was coated onto individual wells of an ELISA plate, and incubated with serum samples diluted either 100-fold for IgA biomarkers or 500-fold for IgG biomarkers (30). To investigate the reproducibility, two proteins, IgA-based TRIM33 and IgG-based CTAG1A, were chosen to be repeatedly measured in two samples, respectively. For each protein in each sample, ten repeats were done in one batch, and the other ten repeats were done for 10 consecutive days. Repeatability in the same batch and batch-to-batch reproducibility were investigated by calculating the standard deviation and correlations of the repeat signals across batches (supplemental Fig. S1). The CVs in the same batch range from 4.7% to 10.0%, whereas CVs across batches range from 13.4% to 21.4%. The intensity between two samples across batches are correlated. The results indicate there is some batch effect, although the repeatability in the same batch is good. Therefore, the positive hits were firstly identified batch by batch, and then combined for further analysis. Then ELISA testing on the new cohort was performed. After the ELISA signals were acquired and normalized to the negative controls, we performed box plot analysis, obtained the receiver operating characteristic (ROC) curves, and calculated area under the curve (AUC) values to access the performance of each candidate (Fig. 3). The AUC values ranged from 0.503 to 0.673 for the 28 candidates, and their sensitivity values were found between 6.6% and 32.4% at a specificity value > 90% (Table V). The analysis of the ELISA data with this new cohort validated most of the candidate biomarker proteins identified with the HuProt array approach.

Fig. 3. Examples of validated IgA autoantigens using ELISA tests in Phase II. Left: Box plot analysis of ELISA results obtained with BCL7A and MTERF4 in Phase II validation. The results clearly showed that the signal intensities of the two proteins are significantly higher in the early LC group than those obtained in the control groups. Right: ROC analysis of BCL7A (upper panel) and MTERF4 (lower panel). Values of AUC and sensitivity and specificity obtained at the optimal cut off value for each protein are also shown.

Discovery and Validation of An Integrated IgA/IgG Biomarker Panel— We noticed that the sensitivity value of each...
newly validated IgA biomarker was not very high, like what we observed with individual IgG biomarkers in our previous studies. Therefore, we hypothesized that integration of IgA and IgG biomarkers would yield combined marker panels with improved performance.

To test this hypothesis, we tested the IgG seroreactivity of the same validation cohort used above against the eight top IgG biomarkers described in our previous studies (10), as well as TRIM33, MAGEC2, DDX4, RALGDS, BCL7A, SULT2B1, DCLK1, and NOL3, which are validated IgA autoantigens known to be involved in cell proliferation (34–41). As expected, the performance of the previously identified eight IgG biomarkers recapitulated our previous studies, and the additional eight candidates also showed comparable performance at specificity >90% (Table VI).

To identify the optimal combination of IgA/IgG biomarker panels, we exhaustively evaluated the performance for all possible combinations between two and six proteins (= 8,295,001 combinations). Using the same computational approach described previously, we identified the best combination, which was comprised of three IgA autoantigens (i.e. BCL7A, and TRIM33 and MTERF4) and three IgG autoantigens (i.e. CTAG1A, DDX4 and MAGEC2) (10). This panel achieved 73.5% sensitivity at 85.1% specificity with a k value of 1. In other words, a serum sample would be scored positive when at least one (i.e. k = 1) of the six proteins showed signal intensity greater than the corresponding optimal cutoff value (Fig. 4).

To validate this integrated biomarker panel, we tested these six autoantigens on 142 serum samples collected from 88 early stage LC, 36 healthy, and 18 LBLs. Using the same method as described above, 68.2% of samples in the early stages of LC were scored as positives, and only 8.3% and 22.2% of healthy and LBL samples were respectively scored as false positives. Therefore, this biomarker panel showed 68.2% sensitivity at 87.0% specificity for early LC diagnosis in the validation (Fig. 4).

The remaining 178 serum samples, as a blind test set, were analyzed to test the biomarker panel. Because the sample information was unknown before data analysis, the positive hits for each autoantigen were identified using the approach described in the method part of the HuProt array analysis. After combination of six autoantigens, 79 samples were identified as positive samples. The sample annotation were informed at this stage to evaluate the performance. The biomarker panel result in blind test were shown with the performance of 62.6% sensitivity at 83.1% specificity (Fig. 4).

For all those three measurements, the biomarker panel shows no significant difference between smokers and non-smokers (p value>0.05, chi-square test). The results indicate the diagnostic of the panel have no preference with smokers and non-smokers.

TABLE VI

Protein	Sensitivity	Specificity	Discriminative ability	AUC
TRIM33	32.4%	94.3%	63.3%	0.673
BCL7A	30.9%	95.4%	63.1%	0.613
ACPP	31.6%	93.1%	62.4%	0.644
NUDT14	25.7%	96.6%	61.1%	0.617
DDX4	25.0%	96.6%	60.8%	0.617
MAGEA8	24.3%	96.6%	60.4%	0.666
APH1A	24.3%	96.6%	60.4%	0.544
DCLK1	27.2%	93.1%	60.2%	0.647
MTERF4	23.5%	96.6%	60.0%	0.644
KCNRG	24.3%	95.4%	59.8%	0.589
YPO21	22.8%	96.6%	59.7%	0.597
RPLP1	22.1%	96.6%	59.3%	0.590
N4BP1	21.3%	96.6%	58.9%	0.648
MAGEC2	22.1%	94.3%	58.2%	0.637
SS18	19.1%	95.4%	57.3%	0.528
TOM1L2	17.6%	96.6%	57.1%	0.559
SSBP4	15.4%	97.7%	56.6%	0.646
C14orf37	17.6%	94.3%	55.9%	0.615
SULT2B1	14.0%	97.7%	55.8%	0.610
TTC1	18.4%	93.1%	55.7%	0.503
JAKMIP2	16.9%	94.3%	55.6%	0.581
NUMBL	13.2%	97.7%	55.5%	0.551
TXDNC2	15.4%	95.4%	55.4%	0.601
FIGNL2	11.0%	98.9%	54.9%	0.598
PIP4K2C	14.0%	95.4%	54.7%	0.512
SPN	13.2%	95.4%	54.3%	0.584
RALGDS	8.8%	97.7%	53.3%	0.553
NOL3	6.6%	95.4%	51.0%	0.599
Expressions of 6 Autoantigens in LC Tissues—IHC staining showed BCL7A protein was expressed in cell nucleus, MTERF4, CTAG1A and DDX4 proteins were expressed in cytoplasm, and TRIM33 and MAGEC2 proteins were expressed in both cell nucleus and cytoplasm. All 6 autoantigens showed highly expressed in LC tissues, whereas low expressed in paracancerous tissues, of which, the IHC positive rates of BCL7A, TRIM33, MTERF4, CTAG1A, DDX4, and MAGEC2 in LC tissues were 66.7%, 61.6%, 58.3%, 58.3%, 26.6% and 36.7%, respectively, and were significantly higher than 10.0%, 3.3%, 8.3%, 3.3%, and 0% in paracancerous tissues ($p < 0.01$, chi-square test) (Fig. 5).

disCUSSION

In early studies, humoral IgA antibodies targeting Epstein-Barr virus (EBV)-encoded viral antigens, such as VCA, EA and HCMV-G, were shown to be associated with LC. However, the diagnostic performance of IgA antibodies against viral antigens was suboptimal, with sensitivity and specificity ranging from 70.5% to 84.8% and 76.0% to 95.0%, respectively (18). These results suggest that there may be additional autoantigens in LC tissues that are not detected by immunohistochemistry with viral antigens. The identification of these new autoantigens could potentially improve the diagnostic accuracy of LC and provide new therapeutic targets for the treatment of this disease.

TABLE VI
Performance of 16 IgG biomarkers in the validation stage of Phase II

Protein	Sensitivity	Specificity	Discriminative ability	AUC
TP53-G	33.1%	93.1%	63.1%	0.643
MAGEC2-G	27.9%	95.4%	61.7%	0.594
DDX4-G	25.0%	96.6%	60.8%	0.542
CTAG1A-G	23.5%	97.7%	60.6%	0.647
HRS-G	19.1%	97.7%	58.4%	0.548
NSG1-G	20.6%	95.4%	58.0%	0.595
TEX264-G	21.3%	93.1%	57.2%	0.602
ETH1-G	22.1%	92.0%	57.0%	0.553
C1QTNF1-G	16.2%	97.7%	56.9%	0.522
RALGDS-G	18.4%	95.4%	56.9%	0.566
TRIM33-G	16.9%	95.4%	56.2%	0.503
CLDN2-G	15.4%	95.4%	55.4%	0.548
BCL7A-G	17.6%	93.1%	55.4%	0.606
SULT2B1-G	14.7%	94.3%	54.5%	0.535
DCLK1-G	8.8%	97.7%	53.3%	0.578
NOL3-G	6.6%	98.9%	52.7%	0.485

Fig. 4. Performance of an integrated IgA/IgG biomarker panel in the discovery and validation stages in Phase II. A, Performance of the identified biomarker panel in early LC, healthy, and LBL groups in discover and validation stages. The orange and light blue bars represent the positive and negative signals of each individual biomarker (in rows) scored in each serum sample (in columns), respectively. IgA and IgG autoantigens are indicated with “-A” and “-G”, respectively. B, Tabulation of the performance and positive rate of each category of the biomarker panel are shown at the bottom.
EBNA were found to serve as surrogate biomarkers for prognosis of nasopharyngeal carcinoma (42–45). In recent studies, IgA autoantibodies against calreticulin and IgA autoantibodies against a mitochondrial protein DLD, were reported as biomarkers for endometrial cancer (20, 46). Interestingly, no significant signals of the IgG autoantibodies targeting the same autoantigens were found in either cancer. These results implied that IgA and IgG autoimmune responses can be quite different from each other in cancer patients and, therefore, integrated detection of IgA and IgG autoantibodies might further improve the power of a biomarker panel in early diagnosis of cancer.

To test this hypothesis, we decided to employ HuProt arrays to carry out an unbiased, comprehensive survey for IgA-bound autoantigens for early diagnosis of LC. In Phase I, 72 candidate IgA autoantigens were identified, 28 of which were selected for validation using ELISA in Phase II. The AUC values ranged from 0.503 to 0.673 for the 28 candidates and their sensitivity values were found between 6.6% and 32.4% at 90% specificity. To discover integrated biomarker panels comprised of IgA and IgG autoantigens, we re-tested the IgG autoimmune profiles and identified and validated a biomarker panel of three IgA autoantigens (i.e., BCL7A, TRIM33 and MTERF4) and three IgG autoantigens (i.e., CTAG1A, DDX4 and MAGEC2) for diagnosis of early stage LC with 73.5% sensitivity at >85% specificity.

Our study design possessed and displayed several strengths (47). First, we employed the most comprehensive

Fig. 5. Immunohistochemical analysis of BCL7A, TRIM33, MTERF4, CTAG1A, DDX4 and MAGEC2 in LC and paracancerous tissues. A, C, E, G, I, K, BCL7A, TRIM33, MTERF4, CTAG1A, DDX4 and MAGEC2 in LC tissues, respectively B, D, F, H, J, L, BCL7A, TRIM33, MTERF4, CTAG1A, DDX4 and MAGEC2 in paracancerous tissues, respectively. M, the positive rate of the proteins in cancer and paracancerous tissues.
human proteome (HuProt) arrays, with >75% coverage of the human proteome, to improve the likelihood of finding potential biomarkers. Second, we recruited 293 LC patients who were diagnosed with three LC subtypes at early stages, with the aim of finding robust LC biomarkers. Third, we combined the LBL samples with healthy subjects as negative control groups to enable better discrimination of malignant from benign lesions. Finally, ELISA was used as an independent platform to validate the newly discovered biomarkers and to identify integrated IgA/IgG biomarker panels.

Among the six autoantigens in the biomarker panel, antigenicity of TRIM33, CTAG1A, DDX4, MAGEC2 were reported in diseases and cancers (34, 48–51). We further investigated the protein expression in lung cancer and corresponding paracancerous tissues collected from 60 patients by immunohistochemical (IHC) analysis. The total IHC score was the sum of the intensity of staining and the proportion of positive cells, with 0–3 as negative IHC and 4–6 as positive IHC. For all those six proteins, tumors show significantly higher IHC positive rates than that in normal adjacent tissues.

A limitation of this study is that only serum samples collected in China were employed, raising a possibility, though remote, that there could exist some ethnicity bias. Therefore, further validation studies with serum samples collected from other ethnic groups are necessary to confirm the performance of this biomarker panel.

In summary, we performed a comprehensive autoantibody-based survey for the discovery and validation of serum biomarkers for early LC diagnosis. It is important to note that because the serum samples were collected from patients at diagnosis, the biomarkers identified in this study were not identified in a LC screening cohort. Therefore, it would be important in the future to examine the performance of the biomarker panel with serum samples collected before a person shows any LC-relevant pulmonary symptoms. Furthermore, because some genes are known to be mutated in LC cancer, we believe that inclusion of mutated proteins on the protein arrays may further improve accuracy of LC diagnosis and reduce false positive rates.

* This work was supported in part by the National Natural Science Foundation Emergency Management Project (No. 81541063 to Y.H.), Joint Fund of Science and Technology Innovation of Fujian province (No. 2017Y9069 to Y.H.), Scientific Joint Fund of High Level Hospital Construction of Fujian provincial Hospital (No. 2017HJ04 to Y.H.), the NIH (U24 CA160036-01 to H.Z.), and CDI Laboratories Inc. This study was partially funded by CDI Laboratories. I.P., D.E., C.R., and S.H. are full-time CDI employees. H.Z. is a co-founder of CDI. J.Q. and H.Z. are CDI consultants.

††† To whom correspondence may be addressed. Tel.: +86-591-8821-7895; Fax: +86-591-8753-2356; E-mail: hyi8070@126.com.

‡‡‡ To whom correspondence may be addressed. E-mail: ignacio.pino@cdi-lab.com.

Jianbo Pan, Lili Yu and Qingwei Wu contributed equally to this work.

Author contributions: J.P. contributed new reagents/analytic tools; J.P., H.Z., and J.Q. analyzed data; J.P., D.J.E., H.Z., J.Q., and Y.H. wrote the paper; L.Y., Q.W., X.L., S.L., S.H., C.R., D.J.E., and Y.H. performed research; I.P., H.Z., J.Q., and Y.H. designed research.

REFERENCES

1. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E395–E386

2. Siegel, R., Naishadham, D., and Jemal, A. (2013) Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30

3. Cancer. Fact Sheet [Internet] Geneva: World Health Organization; 2017. [cited 2018 Aug 4]. Available from: http://www.who.int/en/news-room/fact-sheets/detail/cancer

4. Chen, W., Zheng, R., Zuo, T., Zeng, H., Zhang, S., and He, J. (2016) National cancer incidence and mortality in china, 2012. Chin. J. Cancer Res. 28, 1–11

5. Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacchiero, D., Mehra, R., Montie, J. E., Plante, K. J., Sanda, M. G., Kantoff, P. W., Rubin, M. A., Wei, T. J., Ghosh, D., and Chinnaiyan, A. M. (2005) Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353, 1224–1235

6. Zhong, L., Hidalgo, G. E., Stromberg, A. J., Khattar, N. H., Jett, J. R., and Hirschowitz, E. A. (2005) Using protein microarray as a diagnostic assay for non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 172, 1308–1314

7. Ludwig, N., Keller, A., Heisel, S., Leidinger, P., Klein, V., Rheinheimer, S., Andres, C. U., Stephan, B., Steudel, W. I., Graf, N. M., Burghet, B., Weikert, J., Lenhof, H. P., and Meese, E. (2009) Improving serumactivity-based detection of glioma. Neoplasia 11, 1383–1389

8. Babel, I., Barderas, R., Diaz-Urriarte, R., Martinez-Torrecuadrada, J. L., Sanchez-Carbajo, M., and Casal, J. I. (2009) Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol. Cell Proteomics 8, 2382–2395

9. Yang, L., Wang, J., Li, J., Zhang, H., Guo, S., Yan, M., Zhu, Z., Lan, B., Ding, Y., Xu, M., Li, W., Gu, X., Qi, C., Zhu, H., Shao, Z., Liu, B., and Tao, S. C. (2016) Identification of serum biomarkers for gastric cancer diagnosis using a human proteome microarray. Mol. Cell Proteomics 15, 614–623

10. Pan, J., Song, G., Chen, D., Li, Y., Liu, S., Hu, S., Rosa, C., Eichinger, D., Pino, I., Zhu, H., Qian, J., and Huang, Y. (2017) Identification of serological biomarkers for early diagnosis of lung cancer using a protein array-based approach. Mol. Cell Proteomics 16, 2069–2078

11. Katchman, B. A., Chowell, D., Wallstrom, G., Vitoris, A. F., LaBaer, J., Cramer, D. W., and Anderson, K. S. (2017) Autoantibody biomarkers for the detection of serous ovarian cancer. Gynecol. Oncol. 146, 129–136

12. Fernandez Madrid, F., Tang, N., Alansari, H., Karvonken, R. L., and Tomkiew, J. E. (2005) Improved approach to identify cancer-associated autoantigens. Autoimmun. Rev. 4, 230–235

13. Desmetz, C., Mange, A., Maudelonde, T., and Solassol, J. (2011) Autoantibody signatures: Progress and perspectives for early cancer detection. J. Cell Mol. Med. 15, 2033–2042

14. Doseeva, V., Colpitts, T., Gao, G., Woodcock, J., and Knezevic, V. (2015) Performance of a multiplexed dual analyte immunoassay for the detection of non-small cell lung cancer. J. Transl. Med. 13, 55, 015–0419-y

15. Mack, U., Ukena, D., Montenarch, M., and Sybrecht, G. W. (2000) Serum anti-p53 antibodies in patients with lung cancer. Oncol. Rep. 7, 669–674

16. Ma, L., Yue, W., Teng, Y., Zhang, L., Gu, M., and Wang, Y. (2013) Serum anti-CCNY autoantibody is an independent prognosis indicator for post-operative patients with early-stage nonsmall-cell lung carcinoma. Dis. Markers 35, 317–325

17. Yagihashi, A., Asanuma, K., Kobayashi, D., Tsuji, N., Shijubo, Y., Abe, S., Hirohashi, Y., Torigoe, T., Sato, N., and Watanabe, N. (2005) Detection of autoantibodies to livin and survivin in sera from lung cancer patients. Lung Cancer 48, 217–221

18. Chen, G., Wang, X., Yu, J., Varambally, S., Yu, J., Thomas, D. G., Lin, M. Y., Vishnu, P., Wang, Z., Wang, R., Fielhauer, J., Ghosh, D., Giordano, T. J., Giacchiero, D., Chang, A. C., Orringer, M. B., El-Hefnawy, T., Bigbee, W. L., Beer, D. G., and Chinnaiyan, A. M. (2007) Autoantibody profiles
Integrate IgA/IgG Biomarker Panel for LC

reveal ubiquilin 1 as a humoral immune response target in lung adenocarcinoma. Cancer Res. 67, 3461–3467

19. Eric-Nikolic, A., Milovanovic, Z., Sanchez, D., Pekarikova, A., Dzordic, R., Matic, I. Z., Tuckova, L., Jevric, M., Buta, M., Raskovic, S., and Juranic, Z. (2012) Overexpression of calreticulin in malignant and benign breast tumors: Relationship with humoral immunity. Oncology 82, 48–55

20. Yoneyama, K., Shibata, R., Igarashi, A., Kohjima, S., Kodani, Y., Nagata, K., Kurase, K., Kawase, T., and Hattori, S. (2014) Proteomic identification of dihydropyrimidinase dehydrogenase as a target of autoimmunobodies in patients with endometrial cancer. Anticancer Res. 34, 5021–5027

21. Corbey, B. (2013) Multi-faceted functions of secretory IgA molecules at mucosal surfaces. Front. Immunol. 4, 185

22. Martin, T. R., and Frevert, C. W. (2005) Innate immunity in the lungs. Proc. Am. Thorac. Soc. 2, 403–411

23. Jeong, J. S., Jiang, L., Albino, E., Marrero, J., Rho, H. S., Hu, J., Hu, S., Song, H., Qian, J., and Zhu, H. (2013) DNA methylation presents distinct biomarkers for behcet disease diagnosis using HuProt array approach. Mol. Cell Proteomics 12, O111.016253

24. Hu, S., Sun, J., Su, Y., Song, Q., Zeng, Y., Nguyen, H. N., Shin, J., Cox, E., Rho, H. S., Woodard, C., Xia, S., Liu, S., Lyu, H., Ming, G. L., Wade, H., Song, H., Qian, J., and Zhu, H. (2013) DNA methylation presents distinct binding sites for human transcription factors. Elife 2, e00726

25. Hu, C. J., Pan, J. B., Song, G., Wen, X. T., Wu, Z. Y., Chen, S., Mo, W. X., Zhang, F. C., Qian, J., Zhu, H., and Li, Y. Z. (2016) Identification of novel biomarkers for rheumatoid disease diagnosis using HuProt array approach. Mol. Cell Proteomics 16, 614–623

26. Yang, L., Wang, J., Li, J., Zhang, H., Guo, S., Yan, M., Zhu, Z., Lan, B., Ding, Y., Xu, M., Li, W., Guo, Q., C., Zhu, H., Shao, Z., Liu, B., and Tao, S. C. (2016) Identification of serum biomarkers for gastric cancer diagnosis using a human proteome microarray. Mol. Cell Proteomics 15, 814–823

27. Syed, P., Gupta, S., Choudhary, S., Pandala, N. G., Atak, A., Richaria, A., K. P. M., Zhu, H., Epari, S., Noronha, S. B., Molyadi, A., and Srivastava, S. (2015) Autoantibody profiling of glioma serum samples to identify biomarkers using human proteome arrays. Sci. Rep. 5, 13895

28. Riegelman, R. K. (2012) Studying A study & testing A test: Reading evidence-based health research 6th. Sixth edition ed. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, Pennsylvania

29. Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., and Mesirov, J. P. (2006) GenePattern 2.0. Nat. Genet. 38, 500–501

30. Song, G., Hu, C., Zhu, H., Wang, L., Zhang, F., Li, Y., and Wu, L. (2013) New centromere autoantigens identified in systemic sclerosis using centromere protein microarrays. J. Rheumatol. 40, 461–468

31. Fagerberg, L., Hallstrom, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Hubak, M., Tammelaesoopor, S., Danielsson, A., Edlund, K., Assarsson, A., Jostedt, E., Lundberg, E., Sigzzyarto, C. A., Skog, M., Takenan, J. O., Berling, H., Tege, H., Mulder, J., Nilsson, P., Schwenk, J. M., Lindskog, C., Danielsson, F., Mardinglon, A., Sivertsson, A., von Fellitzen, K., Forsberg, M., Zawhaln, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F., and Uhlén, M. (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics 13, 397–406

32. Uhlen, M., Lagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinglon, A., Sivertsson, A., Kampf, C., Jostedt, E., Asplund, K., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Sigzzyarto, C. A., Odeberg, J., Djureinovic, D., Takenan, J. O., Hober, S., Alm, T., Edquist, P. H., Berling, H., Tege, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J. M., Hamsten, M., von Fellitzen, K., Forsberg, M., Persson, L., Johansson, F., Zawhaln, M., von Hejne, G., Nielsen, J., and Ponten, F. (2015) Proteomics. Tissue-based map of the human proteome. Science 347, 1260419

33. Zhu, H., Bilgim, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M., and Snyder, M. (2001) Global analysis of protein expression by using two-color antibody arrays. Science 293, 2103–2105

34. Guo, J., Qin, W., Xing, Q., Mao, M., Wei, F., Song, Z., Chen, L., Lin, Y., Gao, X., and Lin, Z. (2017) TRIM33 is essential for osteoblast proliferation and differentiation via BMP pathway. J. Cell Physiol. 232, 3158–3169

35. Lajmi, N., Lais, T., Yousef, S., Temer, J., Cao, Y., Hildebrandt, Y., Pan, J., Zheng, Q. Z., Li, Y. L., Wu, Q. W., Zheng, J. Y., Pan, X. J., Xie, B. S., Wu, Y. A., Qian, J., Zhu, H., and Huang, Y. (2019) Discovery and validation of a serologic autoantibody panel for early diagnosis of esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev. 28, 1454–1460

36. Wu, S. H., Sigdel, T. K., Ding, V. T., Mu, T. M., Sarwal, M. M., and Lafayette, R. A. (2015) Mapping novel immunogenic epitopes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 10, 372–381

37. Ma, W., Germeau, C., Vigneron, N., Maernoudt, A. S., Morel, S., Boon, T., Laiho, S., and Vigneron, N. (2014) Two new tumor-specific antigen peptides encoded by gene MAGE-C2 and presented to cytolytic T lymphocytes by HLA-A2. Int. J. Cancer 139, 698–702