Conformational Variability of the Glycine Receptor M2 Domain in Response to Activation by Different Agonists*

Stephan A. Pless1,2, Mohammed I. Dibas3,2, Henry A. Lester9, and Joseph W. Lynch1,3

From the 1 School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia and the 2 Division of Biology, California Institute of Technology, Pasadena, California 91125

Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric α1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by ~20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and β-alanine were weak partial agonists at the α1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or β-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists.

Glycine receptor (GlyR)4 chloride channels mediate inhibitory neurotransmission in the central nervous system (1). They comprise an assembly of five subunits that are each composed of a large N-terminal extracellular ligand-binding domain and four transmembrane α-helices (M1–M4). Cryo-electron microscopy images of the homologous Torpedo electroplex nicotinic acetylcholine receptor (nAChR) transmembrane region reveals that the pore-lining M2 domains are kinked radially inward to form a central constriction at the membrane midpoint (2). There is currently a great deal of interest in understanding how M2 domains move to open the channel. Although the original model proposed a drastic rotation of M2 domains about their long axes (3), more recent evidence suggests that there is little if any rotation during receptor activation (4–6). The precise nature of the structural change remains a matter for debate.

The central pore kink is likely to introduce a degree of structural discontinuity because the hydrogen bonds responsible for maintaining α-helix rigidity are most likely broken. The kink may therefore act as a swivel enabling the outer half of M2 to move asynchronously with the inner half, where the gate is most likely positioned. Indeed, several lines of evidence suggest gating is mediated by a backbone rearrangement at this midpoint (7–10). In addition, a rate equilibrium free energy state analysis shows that the M2–M3 domain is positioned midway along the agonist-induced “conformational wave” that extends from the ligand binding domain to the gate (11). These considerations imply that the outer part of M2 should be an informative place to investigate the structural basis of receptor activation, as the movements in this region should not reflect those occurring at the ligand binding site or the activation gate. Thus, in this study we probe conformational changes at the 19' and 22' residues, near the external end of M2.

Current models of Cys loop receptor activation consider only structural changes associated with transitions from the resting closed state to the agonist-induced open state (5, 6, 12, 13). Relatively little attention has been given to the possibility that different agonists and pharmacological modulators may promote different structural conformational changes in the pore region. However, it has been suggested on the basis of substituted cysteine accessibility studies that the pore blocker, picrotoxin, can change the conformation of the outer GlyR pore region suggesting in turn that it may interact allosterically with agonist-induced conformational changes (14). Our aim is to investigate the conformational changes induced by agonists, antagonists, and allosteric modulators by covalently labeling different residues near the extracellular M2 boundary with the sulfhydryl-reactive fluorophores, methanethiosulfonate-rhodamine (MTSR) and tetramethylrhodamine-maleimide (TMRM), and...
Conformational Changes of the GlyR M2 Segment

A

Gly (µM)

5 µA

Gly (mM)

5 µA

5 µA

0.3 µA

0.3 µA

FIGURE 1. Effects of MTSR labeling on α1WT and α1R19C GlyRs. A, glycine-evoked currents recorded from oocytes injected with α1WT (upper panel) and α1R19C (lower panel) after labeling with MTSR. B, glycine-evoked currents recorded from oocytes injected with α1WT (upper panel) or α1R19C (lower panel) before (left panel) and after (right panel) labeling with MTSR. C, glycine dose-response relations for α1WT and α1R19C before and after labeling with MTSR. Black horizontal bars indicate duration of glycine application. All concentrations are in mM.

D

Red, oxygen; dark blue, carbon; light blue, sulfur; yellow, oxygen; dark blue, nitrogen; and yellow, sulfur.

Concurrently measuring current changes and fluorescence changes (15, 16). This approach has been employed so far only a few studies on Cys loop receptors (15, 17, 18). A particular advantage of the GlyR is that it displays little or no desensitization thereby facilitating the quantitation of ligand-induced fluorescence spectral shifts.

EXPERIMENTAL PROCEDURES

Chemicals—Glycine, CaCl₂, MgCl₂, KCl, NaCl, and glycerol were all purchased from Ajax Finechem (Seven Hills, New South Wales, Australia). HEPES was purchased from Amresco (Solon, OH). Sulforhodamine methanethiosulfonate (MTSR, Toronto Research Chemicals, North York, Ontario, Canada) and tetramethylrhodamine-5-maleimide (TMRM, Invitrogen) were dissolved in dimethyl sulfoxide (Me₂SO) and stored at −20 °C. Picrotoxin (Sigma), ginkgolide C (Tauto Biotech Co., Shanghai, China), and ivermectin (Sigma) were dissolved in dimethyl sulfoxide (Me₂SO) and stored at −20 °C. Propofol (2,6-diisopropylphenol) was purchased from Sigma and stored at 4 °C. Strycnine (Sigma) was dissolved in water and stored at −20 °C. Taurine (Sigma) and β-alanine (Sigma) were also dissolved in water and stored at 4 °C.

Molecular Biology—The human GlyR α1 subunit cDNA was subcloned into the pGEMHE vector. All constructs used in this study contained the functionally silent C41A mutation, which eliminated the sole uncross-linked extracellular sulphhydryl group (19). Site-directed mutagenesis to generate the R19C, S21C, and L22C mutants was performed with the QuickChange mutagenesis kit (Stratagene, La Jolla, CA). Successful incorporation of the mutations was confirmed through automated sequencing of the entire cDNA coding region. The mMessage mMachine kit (Ambion, Austin, TX) was used to generate capped mRNA for oocyte injection. mRNA concentrations were adjusted to 200 pg/µl and aliquots stored at −70 °C.

Oocyte Preparation, Injection, and Labeling—Female Xenopus laevis (Xenopus Express, France) frogs were anesthetized, and stage VI oocytes were removed from ovaries and washed thoroughly in OR-2 (2.5 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 5 mM HEPES, pH 7.4). The oocytes were incubated in collagenase (Sigma) in OR-2 for 2 h at room temperature, rinsed, and stored at 18 °C.

All oocytes were injected with 10 ng of mRNA into the cytosol. To achieve the high levels of expression required for the detection of the fluorescent signal over the background (because of oocyte autofluorescence and nonspecific binding of the dye), the oocytes were incubated for 3–10 days after injection at 18 °C. The incubation solution contained 96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 5 mM HEPES, 0.6 mM theophylline, 2.5 mM pyruvic acid, 50 µg/ml gentamycin (Cambrex Corp., East Rutherford, NJ), 5% horse serum (Hyclone, Logan, UT), pH 7.4.

To maximize surface expression of receptors prior to labeling, oocytes were incubated at room temperature for 2 h. The oocytes were then transferred into ND96 (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂, 5 mM HEPES, pH 7.4) and stored on ice. For labeling, oocytes were transferred into the labeling solution containing 10 µM MTSR in ND96 for 25 s or 10 µM TMRM in ND96 for 60 min. The oocytes were then washed and stored in ND96 for up to 6 h before recording. All labeling steps were performed on ice.

Voltage Clamp Fluorometry (VCF)—For VCF experiments, an inverted Nikon Eclipse TE300 microscope (Nikon Instru-
A Lambda LS 175-watt xenon arc lamp served as a light source through a Lambda 10-2 unit (Sutter Instruments, Novato, CA). including a shutter and an emission filter wheel were controlled by a PhotoMax 200 photodiode (Molecular Devices). The fluoresce intensity signal was further digitally filtered at 1–2 Hz with an eight-pole Bessel filter for analysis and display. The base line was corrected for bleaching where appropriate. All values for changes in fluorescence indicate an increase in fluorescence, unless stated otherwise. The empirical Hill equation, fitted with a nonlinear least squares algorithm (SigmaPlot 9.0, Systat Software, Point Richmond, CA), was used to obtain half-maximal concentrations (EC$_{50}$ or IC$_{50}$) and Hill coefficient (n$_H$) values for ligand-induced activation and inhibition. All results are expressed as means ± S.E. of the mean of five or more independent experiments.

Spectral Analysis—For spectral analysis a MicroSpec 2150i (Acton Research Corp., Acton, MA) coupled to an ORCA-ER CCD camera (Hamamatsu, Hamamatsu City, Japan) replaced the photodiode detection system on the side port of the microscope via a liquid light guide (Sutter Instruments, Novato, CA). The design of the custom-made recording chamber is described in Ref. 15. An automated perfusion system operated by a Valvebank 8 module (AutoMate Scientific, San Francisco, CA) was used for perfusion of the recording chamber. Electrodes for two-electrode voltage clamp recordings were filled with 3 M CsCl and moved by automated ROE-200 micromanipulators coupled to an MPC-200 controller (Sutter Instruments, Novato, CA). Cells were voltage-clamped at a holding potential of −40 mV in all experiments, and currents were recorded using a Gene Clamp 500B amplifier (Molecular Devices). Current and fluorescence traces were acquired at 200 Hz via a Digidata 1322A interface and Clampex 9.2 software (Molecular Devices). The fluorescence signal was further digitally filtered at 1–2 Hz with an eight-pole Bessel filter for analysis and display. The base line was corrected for bleaching where appropriate. All values for changes in fluorescence indicate an increase in fluorescence, unless stated otherwise. The empirical Hill equation, fitted with a nonlinear least squares algorithm (SigmaPlot 9.0, Systat Software, Point Richmond, CA), was used to obtain half-maximal concentrations (EC$_{50}$ or IC$_{50}$) and Hill coefficient (n$_H$) values for ligand-induced activation and inhibition. All results are expressed as means ± S.E. of the mean of five or more independent experiments.

Spectral Analysis—For spectral analysis a MicroSpec 2150i (Acton Research Corp., Acton, MA) coupled to an ORCA-ER CCD camera (Hamamatsu, Hamamatsu City, Japan) replaced the photodiode detection system on the side port of the microscope via a liquid light guide (Sutter Instruments, Novato, CA). The design of the custom-made recording chamber is described in Ref. 15. An automated perfusion system operated by a Valvebank 8 module (AutoMate Scientific, San Francisco, CA) was used for perfusion of the recording chamber. Electrodes for two-electrode voltage clamp recordings were filled with 3 M CsCl and moved by automated ROE-200 micromanipulators coupled to an MPC-200 controller (Sutter Instruments, Novato, CA). Cells were voltage-clamped at a holding potential of −40 mV in all experiments, and currents were recorded using a Gene Clamp 500B amplifier (Molecular Devices). Current and fluorescence traces were acquired at 200 Hz via a Digidata 1322A interface and Clampex 9.2 software (Molecular Devices). The fluorescence signal was further digitally filtered at 1–2 Hz with an eight-pole Bessel filter for analysis and display. The base line was corrected for bleaching where appropriate. All values for changes in fluorescence indicate an increase in fluorescence, unless stated otherwise. The empirical Hill equation, fitted with a nonlinear least squares algorithm (SigmaPlot 9.0, Systat Software, Point Richmond, CA), was used to obtain half-maximal concentrations (EC$_{50}$ or IC$_{50}$) and Hill coefficient (n$_H$) values for ligand-induced activation and inhibition. All results are expressed as means ± S.E. of the mean of five or more independent experiments.

Figure 2. Close coupling of current and fluorescence changes and spectral analysis of MTSR-labeled α1R19 C oocytes. A, glycine-evoked current (upper panel) and fluorescence (lower panel) recordings from MTSR-labeled α1R19 C oocytes. B, glycine dose-response relation for current and fluorescence in MTSR-labeled α1R19 C oocytes. Spectra recorded in the absence of glycine were subtracted from spectra recorded in the presence of glycine (average of five cells).

Table 1. Summary of results for glycine-evoked current and fluorescence recordings. Displayed are the values for half-maximal activation (EC$_{50}$), Hill coefficient (n$_H$), number of experiments (n), and maximal current and fluorescence responses (I$_{max}$ and ΔF$_{max}$, respectively). NA indicates not applicable. All results for fluorescence are shown in boldface.

Construct	EC$_{50}$	n$_H$	n	I$_{max}$	ΔF$_{max}$	n
αWT unlabeled	21.5 ± 0.1	2.9 ± 0.1	5	10.0 ± 0.6	NA	9
αWT labeled	19.1 ± 0.1	3.0 ± 0.1	6	8.7 ± 0.6	NA	6
α521 C unlabeled	21.1 ± 0.1	1.9 ± 0.1	5	6.8 ± 0.3	NA	5
α521 C labeled	24.3 ± 0.6	1.9 ± 0.1	3	6.2 ± 0.4	NA	3
α522 C unlabeled	781.0 ± 7.2	1.2 ± 0.1	7	7.3 ± 0.8	NA	7
α522 C labeled	215.7 ± 0.2	1.9 ± 0.1	6	7.7 ± 0.4	NA	6
αR19 C unlabeled	4450 ± 190	1.7 ± 0.1	7	9.3 ± 1.6	NA	5
αR19 C labeled	994 ± 14	1.7 ± 0.1	7	8.3 ± 0.6	NA	19
αR19 C ΔF	1074 ± 46	1.5 ± 0.1	7	NA	21.4 ± 1.9	19
Conformational Changes of the GlyR M2 Segment

FIGURE 3. Effects of ivermectin, taurine, and β-alanine on current and fluorescence from MTSR-labeled α1R19’C oocytes. A, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during glycine (gly) and ivermectin (ivm) application. The fluorescence recording was interrupted to minimize photobleaching. B, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during glycine, ivermectin, and simultaneous ivermectin and strychnine (str) application. C and D, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocytes during consecutive saturating glycine (gly) and taurine (tau) (A) or glycine and β-alanine (β-al) (D) applications. Horizontal bars indicate duration of applications. E, current and fluorescence dose-response relations for glycine, taurine, and β-alanine in MTSR-labeled α1R19’C oocytes. F, difference emission spectra from MTSR-labeled α1R19’C oocytes recorded during application of saturating [glycine] and [taurine]. Red and black traces are shown normalized in the inset, along with the spectrum recorded in the absence of glycine (gray trace, normalized to the trace obtained with 1 mM glycine). Difference emission spectra were calculated as described in Fig. 2D.

The spectrometer was operated using SpectraPro monochromator software (Acton Research Corp., Acton, MA). For excitation, a HQ535/×50 filter was used in combination with a Q565LP dichroic mirror (Chroma Technology, Rockingham, VT); no emission filter was used. Prior to the experiment, the spectrometer was calibrated using the 434, 546, and 577 nm lines of a mercury lamp spectrum.

To analyze spectra, the image of the region of interest to be monitored was aligned with the slit of the spectrometer. Fluorescence from the region of interest was reflected onto the grating (300 g/mm; 500 nm blaze), and the extracted spectrum was imaged on the ORCA-ER CCD (chip size 1344 × 1024 pixels) using MetaMorph 6.2 (Universal Imaging Corp., Downingtown, PA). The x axis of the resulting “spectral image” represents the wavelength dimension, whereas the y axis represents the one-dimensional spatial dimension of the slit. The wavelength coverage for this combination of grating and camera was 170 nm. Adjacent averaging (15 points) was used to smooth recorded spectra (ORIGIN 6.0, Microcal Software Inc., Northampton, MA).

RESULTS

Specific MTSR Labeling of the α1R19’C GlyR—Fig. 1A shows examples of glycine-evoked currents recorded from oocytes injected with α1WT RNA (upper panel) or mutant α1R19’C RNA (lower panel). The averaged glycine dose-response curves are shown in Fig. 1C. In this and all subsequent figures displaying dose-response curves, the continuous lines represent fits of the Hill equation to the averaged points. Table 1 shows the mean EC50 and nH values, determined by averaging the parameters determined from curve fits to individual dose responses. Table 1 also shows the mean Imax values. As reported previously (20), the α1R19’C mutation results in a dramatically decreased glycine sensitivity. The mean Imax was not significantly different in α1R19’C relative to α1WT receptors (9.3 ± 1.6 µA, n = 5, versus 10.0 ± 0.6 µA, n = 9). The effect of MTSR labeling on glycine-evoked currents was also studied. As shown in the example in Fig. 1B (upper panel), our standard MTSR labeling protocol produced no significant change (+1.7 ± 8.1%, n = 8) in the magnitude of currents activated by EC10 (5 µM) glycine in α1WT GlyRs (Fig. 1B, upper panel). However, EC10 (1 mM) glycine currents were strongly potentiated in α1R19’C GlyRs following MTSR labeling with a mean current increase of 471 ± 68% (n = 6) (e.g. Fig. 1B, lower panel). As shown in Fig. 1C, this was caused by a leftward shift in the α1R19’C GlyR glycine EC50 value,
although the n_H remained unchanged (Table 1). As expected, the mean glycine EC$_{50}$ of the $\alpha1WT$ GlyR was not significantly changed by the MTSR labeling procedure (Fig. 1C and Table 1). Fig. 1D shows a model of three nAChR M2 helices (based on Protein Data Bank code 2BG9), one of which shows the approximate relative locations of the labeled rhodamine5 and the 9′ leucine residue thought to be part of the channel gate.

Glycine-evoked Changes in Fluorescence Intensity at R19′C— MTSR treatment of oocytes injected with $\alpha1R19′C$ mRNA resulted in an ~3.5-fold increase in resting fluorescence compared with that observed in identically treated un.injected oocytes or oocytes injected with $\alpha1WT$ mRNA (data not shown). VCF experiments showed that glycine application produced changes in fluorescence intensity (ΔF) in $\alpha1R19′C$-injected oocytes that were coincident in time with the activated chloride current (ΔI) (Fig. 2A), with relative changes in fluorescence ($\Delta F/I$) regularly reaching 20% at saturating glycine concentrations. In contrast, no significant ΔF was ever observed with un injected or $\alpha1WT$-injected oocytes. When normalized, the ΔI and ΔF glycine dose responses are virtually superimposed (Fig. 2B and Table 1), strongly suggesting a tight coupling between conformational changes at the 19′ residue and at the channel gate during glycine-induced activation.

Spectral analysis of the fluorescence signal from MTSR-labeled $\alpha1R19′C$ GlyRs revealed that the fluorescence increase was accompanied by an ~10 nm blue shift ($n = 6$) in the MTSR emission peak during full receptor activation (Fig. 2, C and D). The magnitude of this shift was concentration-dependent, with EC$_{50}$ (1 mM) glycine producing roughly half of the shift produced by a saturating (20 mM) glycine concentration (Fig. 2, C and D). The blue shift in the MTSR emission peak is characteristic of an increase in hydrophobicity in the fluorophore environment, most likely reflecting a movement of the fluorophore to a more hydrophobic environment in the open state (15). As expected, MTSR-incubated oocytes expressing $\alpha1WT$ GlyRs did not show ΔF or spectral shifts (Fig. 2D).

Effects of Other Agonists on R19′C Fluorescence Changes— The anti-helminthic compound, ivermectin, binds to an as yet unidentified binding site and activates the GlyR in an irreversible manner (21). To confirm the previous conclusion that it activates the GlyR via a different mechanism from glycine (21), we sought to compare the relationship between ΔI and ΔF produced by ivermectin with that produced by glycine. In MTSR-labeled $\alpha1R19′C$ GlyRs, 10 μM ivermectin evoked slowly developing currents that were roughly double the size of those produced by 1 mM glycine (203 ± 30%, $n = 10$). Despite this large current, no significant increase in the fluorescence intensity was ever observed (e.g. Fig. 3A). Indeed, the mean fluorescence change in eight oocytes showing robust glycine currents, the ΔF response was only 0.5 ± 0.1%. As observed previously (21), the currents evoked by 10 μM ivermectin were only weakly sensitive to strychnine, with 10 μM strychnine reducing current magnitude by 18.9 ± 0.7% ($n = 4$, Fig. 3B). No ivermectin-gated currents were observed in un injected oocytes ($n = 3$). Taken together, these results confirm that ivermectin activates GlyRs by a mechanism different from glycine.

Taurine and β-alanine are low efficacy agonists of $\alpha1WT$ GlyRs, with taurine having a lower efficacy than β-alanine (22). Both compounds are converted into antagonists by a variety of R19′ mutations, including R19′C (20, 23, 24). These actions suggest that taurine and β-alanine bind to the $\alpha1R19′C$ GlyR without activating the receptor and thereby they act as classical competitive antagonists of glycine binding. If this hypothesis is

5 H. A. Lester and M. I. Dibas, manuscript in preparation.
Conformational Changes of the GlyR M2 Segment
correct, their binding should not produce significant ΔF. We sought to investigate whether these ligands produced a significant ΔF change upon receptor binding and, if so, whether this was spectrally similar to that produced by glycine. As expected, a 50 mM concentration of taurine did not produce a significant ΔI, although small, nA-sized currents were regularly recorded. Nevertheless, 50 mM taurine produced large changes in ΔF, with a mean value near 35% that evoked by a saturating glycine concentration (Fig. 3C). Both ΔF and ΔF stimulated by taurine were completely blocked by 10 μM strychnine (data not shown). Similar results were obtained with β-alanine. A 50 mM concentration of β-alanine evoked only a very small current (~4% that produced by saturating glycine in the same oocyte), but it evoked a large ΔF that was roughly 60% that produced by a saturating glycine concentration (Fig. 3D). Again, both ΔI and ΔF stimulated by β-alanine were potently blocked by 10 μM strychnine (data not shown).

The taurine-activated current was too small to be fitted with confidence to the Hill equation (n = 8). However, Hill equation fits to taurine ΔF dose responses (Fig. 3E) from the same eight oocytes yielded a mean EC₅₀ of 2.4 ± 0.4 mM and n₅₀ of 0.9 ± 0.1. Applications of increasing β-alanine concentrations revealed a close relationship between ΔF and ΔI with no significant differences in their EC₅₀ and n₅₀ values (Fig. 3E). The ΔF dose response was fitted with a mean EC₅₀ of 2.02 ± 0.34 mM and an n₅₀ of 0.8 ± 0.1, whereas the ΔI dose response was fitted with an EC₅₀ of 2.61 ± 0.93 mM and an n₅₀ of 1.1 ± 0.4 (n = 6 for each). To facilitate comparison with glycine-mediated responses, Fig. 3E also shows the ΔI and ΔF dose response relationships for glycine activation. The fluorescence and current maxima for taurine and β-alanine were both normalized to those produced by glycine in the same oocyte.

Given that the relationship between ΔI and ΔF produced by glycine activation was not preserved during receptor activation by taurine or β-alanine, we hypothesized that these compounds produced different conformational changes at the 19’ residue. We investigated this by measuring the spectral changes produced by both compounds. As shown in Fig. 3F, taurine binding produced no detectable spectral shift, whereas the spectral shift produced by β-alanine (~5 nm) was much smaller than that produced by gly-
Conformational Changes of the GlyR M2 Segment

Fluorescence Responses of Other Labeled Residues in the Extracellular M2 Region—As the R19’C mutation impacts severely on receptor function, we assessed whether other cysteine mutants in the extracellular M2 region with less impact on receptor function show a similar pattern of differential responses to different agonists. A previous study (20) showed that cysteine substitutions at the 21’ and 22’ positions disrupt receptor function to a lesser degree than the R19’C mutation. Thus, we focused on these two residues. When injected into oocytes, the α1S21’C GlyR exhibited a WT-like glycine EC50, although the nH was significantly reduced (Table 1). The α1S21’C-injected oocytes showed no evidence of labeling by either MTSR or TMRM. Incubation with MTSR or TMRM in the presence or absence of 100 μM glycine produced no significant ΔF in response to saturating (3 mM) glycine applications (n = 3 each; data not shown), and fluorophore labeling produced no change in α1S21’C GlyR electrophysiological properties (Table 1). We conclude that α1S21’C is either not labeled by these fluorophores or that it experiences no change in micro-environment during receptor activation.

The α1L22’C GlyR showed robust expression with electrophysiological properties intermediate between those of α1WT and α1R19’C (Table 1). Importantly, taurine and β-alanine acted as strong partial agonists (see below), as at α1WT receptors. When receptors were labeled with MTSR, no change in ΔF could be detected, even at saturating (3 mM) glycine concentrations (n = 4) (Fig. 4A). However, following labeling by TMRM, α1L22’C-injected oocytes showed a small but significant ΔF (1.5 ± 0.3%, n = 13) at saturating glycine concentrations (Fig. 4A). TMRM labeling also produced a significant increase in the glycine sensitivity of α1L22’C GlyRIs (Table 1 and Fig. 4B). The small size of these signals precluded quantitation or spectral analysis of the ΔF response. In contrast to the effect of glycine, application of saturating (10 mM) concentrations of taurine or β-alanine evoked a significant decrease in ΔF (Fig. 4, C and D). Taurine induced a maximal current of 1.7 ± 0.4 μA and a ΔF of −1.1 ± 0.2% (n = 8). β-Alanine induced a maximal current of 3.1 ± 0.3 μA and a ΔF of −1.1 ± 0.3% (n = 7). We then tested whether the sign of the fluorescence change simply depended on the size of the current or was indeed agonist-specific. Application of a low (100 μM) glycine concentration evoked currents of 1.6 ± 0.3 μA (n = 7), a value not significantly different from those evoked by 10 mM taurine (1.7 ± 0.4 μA). However, this concentration of glycine produced no significant ΔF (0.0 ± 0.1% compared with −1.1 ± 0.2%) (n = 7). A similar result was obtained for β-alanine, where currents induced by 300 μM glycine were not significantly different from those evoked by 10 mM β-alanine (3.8 ± 0.6 μA and 3.1 ± 0.3 μA, respectively), but the respective fluorescence changes were significantly different in size and sign (0.3 ± 0.2% compared with −1.1 ± 0.3%; both n = 7). Together these results demonstrate that glycine produces a different conformational change at L22’C relative to those produced by taurine and β-alanine.

Effects of GlyR Inhibitors on R19’C Fluorescence Changes—We next sought to compare the effects on the relationship between ΔΔ and ΔF of a putative classical competitive antagonist, strychnine, an allosteric inhibitor, picrotoxin, and a putative classical channel blocker, ginkgolide C. The molecular pharmacology of each of these compounds at the GlyR has been reviewed recently (25). When applied alone, strychnine did not evoke significant ΔΔ or ΔF changes, even at a concentration of 10 μM (Fig. 5A). However, when co-applied with 1 mM glycine, 10 μM strychnine simultaneously decreased ΔΔ and ΔF values (Fig. 5B). As shown in Fig. 5C, the sensitivities of ΔΔ and ΔF to strychnine were very similar. Analysis of the strychnine ΔΔ dose-response relationships yielded IC50 and nH values of 114.2 ± 9.4 nM and 1.4 ± 0.1 (n = 5), whereas the ΔF dose responses were fitted by IC50 and nH values of 142.5 ± 14.4 nM and 1.3 ± 0.2 (n = 5). Thus, strychnine itself cannot induce conformational changes that are detectable with a fluorophore attached to α1R19’C, although it can antagonize glycine-induced conformational changes. This response profile is expected for a classical competitive antagonist.

On the basis of a substituted cysteine accessibility analysis, it was recently proposed that picrotoxin can induce a conformational change in the M2–M3 loop that is not produced by glycine (14). We thus hypothesized that picrotoxin may produce a different relationship between ΔΔ and ΔF than was produced by glycine. Application of picrotoxin alone did not produce any changes in ΔΔ or ΔF, even at a concentration of 50 μM (Fig. 5D). Although co-application of 50 μM picrotoxin with 1 mM glycine potently blocked the current, the ΔF remained intact (Fig. 5E). Dose-response analysis of ΔΔ yielded an IC50 of 626.1 ± 11.4 μM and an nH of 1.0 ± 0.2 (both n = 6). However, in the same six oocytes, ΔF showed full amplitude over a broad range of picrotoxin concentrations (Fig. 5F). This response profile is expected for a classical open state blocker that plugs the pore without

FIGURE 5. Effects of GlyR Inhibitors on current and fluorescence recordings from MTSR-labeled α1R19’C oocytes. A, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during consecutive, saturating [strychnine (str)] and [glycine (gly)] applications as indicated by horizontal bars. B, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during co-application of EC50 [glycine] with saturating [strychnine]. C, current and fluorescence dose-response relations for the inhibition by strychnine when co-applied with 1 mM glycine. D, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during consecutive, saturating [picrotoxin (PTX)] and [glycine] applications as indicated by horizontal bars. E, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during co-application of EC50 [glycine] with saturating [picrotoxin]. F, current and fluorescence dose-response relations for the inhibition by picrotoxin when co-applied with 1 mM glycine. G, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during consecutive, saturating [ginkgolide C (G)] and [glycine] applications as indicated by horizontal bars. H, current (upper panel) and fluorescence (lower panel) traces of MTSR-labeled α1R19’C oocyte during co-application of EC50 [glycine] with saturating [ginkgolide C]. I, current and fluorescence dose-response relations for the inhibition by ginkgolide C when co-applied with 1 mM glycine. Horizontal scale bars, 20 s; vertical scale bars (upper panels), 2 μA; vertical scale bars (lower panels), 5% ΔF. J, spectral emission from MTSR-labeled α1R19’C oocytes before, after, and during the application of 1 mM glycine and 1 mM glycine + 100 μM ginkgolide C (average of five cells each). K, difference emission spectra from MTSR-labeled α1R19’C oocytes recorded during application of glycine and glycine + ginkgolide C, respectively. Both the gray trace (spectral emission before application of agonist) and the blue trace are normalized to the 1 mM glycine emission peak. Difference emission spectra were calculated as described in Fig. 2D.
Conformational Changes of the GlyR M2 Segment

altering the normal open state conformation. Although it provides no evidence to support the previous conclusion for picrotoxin imposing a distinct conformational change in the M2–M3 loop (14), we cannot eliminate the possibility that such a conformational change may occur without a change in hydrophobicity at R19'C.

We next investigated the effects of the GlyR pore blocker ginkgolide C. As with strychnine and picrotoxin, high concentrations (100 μM) of ginkgolide C applied alone did not evoke detectable ΔF or ΔF (Fig. 5G). When co-applied with 1 mM glycine, ginkgolide C decreased ΔF but dramatically increased ΔF (Fig. 5H). Dose responses averaged from six oocytes revealed an averaged IC50 of 4.6 ± 2.4 μM and an nH of 0.5 ± 0.1 and an averaged EC50 of 19.6 ± 4.1 μM and an nH of 1.0 ± 0.1 (Fig. 5I). Spectral analysis revealed that the effect of ginkgolide C on the MTSR emission spectrum was similar to that produced by saturating glycine concentrations (compare Fig. 5K with Fig. 2D, inset). An exception is the ginkgolide C-induced hump near 625 nm for which we have no explanation. Overall, the results indicate that pore block by ginkgolide C induces a conformational change in M2–M3 similar to that produced by saturating concentrations of glycine.

Analysis of the Effects of the GlyR Potentiating Agent, Propofol—Propofol is an intravenous anesthetic that potentiates GlyRs by binding to the alcohol and anesthetic binding site located between TM2 and TM3 (26, 27). Its potentiation, particularly of taurine- and β-alanine-gated currents, is facilitated by mutations to R19' in α1 GlyRs (28). As propofol is hydrophobic and its putative binding site lies in close proximity to the 19'-labeled MTSR, it may directly affect fluorescence by modulating the hydrophobicity of the environment surrounding the fluorophore. However, there was no significant change in the basal fluorescence level when MTSR-labeled α1R19'C GlyRs were incubated with 500 μM propofol for 2 min. Similarly, preincubation with propofol and subsequent MTSR labeling in the presence of propofol (500 μM each) did not change ΔF or the resting fluorescence intensity (data not shown). Following a 2-min incubation with 500 μM propofol, MTSR-labeled α1R19'C GlyRs retained the ability to produce
robust current and fluorescence changes in response to increasing glycine concentrations (Fig. 6A). Propofol pretreatment significantly increased the ΔI_{max} but not the ΔF_{max} value and significantly reduced the mean glycine EC_{50} values for both ΔI and ΔF (Fig. 6B and Table 2).

The same propofol pretreatment drastically increased the taurine- and β-alanine-mediated ΔI responses although their ΔF values were less affected (Fig. 6, C and D). The effects of propofol on averaged ΔI and ΔF dose responses for taurine and β-alanine are summarized in Fig. 6, E and F, respectively, with mean parameters of best fit to the dose-response curves summarized in Table 2. As with glycine-mediated responses, the taurine- and β-alanine-mediated $\Delta F_{\text{EC}_{50}}$ values were shifted to significantly lower values. The ΔF_{max} value for taurine was significantly increased by propofol, whereas the corresponding value for β-alanine was not. The ΔI_{max} values for both taurine and β-alanine were also significantly increased by propofol. Considering that propofol converted β-alanine and taurine into highly efficacious agonists, we tested whether their ΔF characteristics may have changed to more closely resemble those produced by glycine. Surprisingly, however, propofol had no effect on the spectral maxima of the ΔF increases induced by either β-alanine or taurine (Fig. 6, G and H).

DISCUSSION

Structural Basis for Fluorescence Change—Given the distance of R19' and L22' from the glycine-binding site (12) and their position midway along the conformational wave that extends from the binding site to the activation gate upon agonist binding (11), we propose that fluorescence signals arising from rhodamine-labeled R19' and L22' are not likely to simply reflect ligand binding. They are more likely to result from a rotation or tilting of the M2 helix during the conformational change that ultimately leads to channel opening. During this global conformational rearrangement, the MTSR fluorophore at the 19' position may move to a more hydrophilic environment. TMRM attached to L22' moves into a more hydrophobic environment when activated by glycine, but it moves into a more hydrophilic environment when activated by taurine or β-alanine. However, we cannot rule out the possibility that a quenching group moving toward or away from the fluorophores may contribute to the observed fluorescence changes. Our experiments do not allow us to discriminate among the existing structural models of Cys loop receptor activation, although they do permit us to compare M2 domain conformational changes produced by different ligands.

Agonist-induced Conformational Changes—Perhaps our most dramatic result is that ivermectin activates the pore without producing a significant ΔF in the 19'-attached MTSR. Although it has been suggested previously that ivermectin and glycine activate the GlyR pore via structurally different mechanisms (21), the present result provides a much stronger case for this conclusion. The Cys loop receptor ivermectin-binding site is yet to be identified. Being lipophilic, it is possible that ivermectin binds either to a transmembrane or an intracellular site. Regardless of where it binds or how it activates the receptor, it is surprising that ivermectin opens the pore with no detectable change in the conformation at the top of M2. This raises the intriguing possibility that ivermectin produces conformational changes at the internal part of the M2 domain only, perhaps via an interaction with the M1–M2 linker.

Taurine and β-alanine are low efficacy glycineergic agonists that are converted into antagonists by R19' mutations (20, 23, 24). Although their efficacy at activating GlyR currents was very weak, both ligands evoked large ΔF responses that were not accompanied by blue shifts in the spectral emission peak (Fig. 3, F and G). This response profile differs drastically from that produced by glycine, which was characterized by a close coupling between ΔI and ΔF and a substantial blue shift in the emission spectral peak. Thus, the conformational change at R19' produced by these ligands is distinct from that produced by glycine. This is not surprising because it was already evident from their low efficacy that taurine and β-alanine must produce

TABLE 2

Summary of results for glycine-, taurine-, and β-alanine-evoked current and fluorescence recordings from MTSR-labeled $\alpha1R19'$ oocytes.

Agonist	Construct	EC_{50} ΔI μS	EC_{50} ΔF μS	n	I_{max} μA	ΔF_{max} %	n
Glycine	$\alpha19'$	994 ± 14	1070 ± 46	7	8.3 ± 0.6	21.4 ± 1.9	19
	$\alpha19' + PRO$	419 ± 34	718 ± 108	6	10.5 ± 1.2	229 ± 2.7	8
β-Alanine	$\alpha19'$	2610 ± 927	2030 ± 344	6	0.19 ± 0.03	132 ± 1.7	7
	$\alpha19' + PRO$	219 ± 4	381 ± 26	6	7.1 ± 0.4	171 ± 1.1	14
Taurine	$\alpha19'$	NA	2350 ± 443	8	0.04 ± 0.01	7.6 ± 0.7	8
	$\alpha19' + PRO$	749 ± 53	479 ± 49	5	3.3 ± 0.6	10.1 ± 0.6	13

FIGURE 6. Propofol effects on glycine-, taurine-, and β-alanine-evoked currents in MTSR-labeled $\alpha1R19'$ oocytes. A, glycine-evoked current (upper panel) and fluorescence (lower panel) recordings from MTSR-labeled $\alpha1R19'$ oocytes after a 2-min preincubation with 500 μM propofol (+ PRO). B, glycine dose-response relation for current and fluorescence in MTSR-labeled $\alpha1R19'$ oocytes and without a 2-min preincubation with 500 μM propofol (+ PRO). C, fluorescence (lower panel) recordings from MTSR-labeled $\alpha1R19'$ oocytes during the application of 30 mM glycine (black arrows), 50 mM taurine (blue arrows), and 50 mM β-alanine (red arrows). D, black horizontal bars indicate application of 500 μM propofol. E, taurine-evoked dose-response relation for current and fluorescence in MTSR-labeled $\alpha1R19'$ oocytes with and without a 2-min preincubation with 500 μM propofol (+ PRO). F, β-alanine-evoked dose-response relation for current and fluorescence in MTSR-labeled $\alpha1R19'$ oocytes with and without a 2-min preincubation with 500 μM propofol (+ PRO). Dashed lines indicate interrupted illumination to prevent photobleaching between applications. G and H, difference emission spectra from MTSR-labeled $\alpha1R19'$ oocytes recorded during application of saturating (taurine) (G) and (beta-alanine) (H) before and after a 2-min preincubation with 500 μM propofol (+ PRO), respectively. Emission peaks after propofol treatment were normalized to those recorded before propofol treatment. Difference emission spectra were calculated as described in Fig. 2D.
Conformational Changes of the GlyR M2 Segment

different conformational changes to glycine. However, propofol, which drastically increased the efficacy with which taurine- and β-alanine were able to activate ΔI, had no effect on the spectral properties of the concomitant ΔF (Fig. 6, G and H). This result is more significant as it shows that taurine and β-alanine produce no ΔF spectral change even when they strongly activate the GlyR. This provides a stronger case for taurine and β-alanine activating the GlyR pore via a different conformational change to glycine. However, a weakness in this argument is that the R19′C mutation may have altered structure and function to the extent that the results may not apply to the WT GlyR.

For this reason, we compared the agonist-specific conformational changes experienced by a TMRM attached to the nearby L22′C residue. Again, we found that glycine produced a different ΔF response to that elicited by taurine and β-alanine (Fig. 4, C and D). This shows that the agonist-specific conformational changes do not pertain only to the functionally impaired α1R19′C GlyRs but also to a nearby mutant with functional characteristics that more closely resemble the αWT GlyR.

Together, these results lead us to conclude that different agonists activate the GlyR by producing different conformational changes to the external region of the M2 domain. Thus, the top of M2 seems to display a conformational mobility that is not necessarily coupled to movements of the channel gate. Conversely, opening of the channel gate does not necessarily propagate back to the top of M2.

Antagonists—Strychnine has long been considered a classical competitive antagonist of the GlyR (1). Our finding that strychnine exhibits very similar inhibitory dose response profiles for ΔI and ΔF is consistent with this notion. By displacing glycine from its site, strychnine prevents glycine from binding and hence from inducing its ΔF change.

Picrotoxin is thought to bind in the GlyR pore and to produce inhibition via an allosteric mechanism (25). We recently concluded on the basis of a substituted cysteine accessibility study that it changes the M2–M3 loop conformation in a manner that cannot be achieved by glycine (14). If so, then picrotoxin might be expected to alter ΔF in a way that cannot be achieved by altering glycine concentration alone. However, we found that ΔF produced by picrotoxin plus glycine equals that produced by glycine alone (Fig. 5, D–F). This response profile is expected for a classical pore blocker that blocks current flow without altering the open state receptor conformation. However, we cannot rule out the possibility that picrotoxin changes the conformation of the M2–M3 loop in a way that does not involve a ΔF change.

Several lines of evidence suggest that ginkgolides bind in the GlyR pore (29–31), but there is no evidence to date that they produce a conformational change upon binding. Ginkgolides thus bind close to the covalently linked fluorophore. The results of Fig. 5, G–K, demonstrate that ginkgolide C-induced inhibition is accompanied by both an increase in ΔF and a blue shift in the emission spectra maxima. Unexpectedly, ginkgolide C affects ΔF at higher concentrations than those affecting ΔI (Fig. 5I). This is difficult to reconcile with a model that assumes only one ginkgolide molecule binding per receptor. We propose that the ΔF changes are mediated by ginkgolide C binding to a discrete, lower affinity site distinct from the well characterized pore blocker site at the 6′ level. In support of this, a molecular docking study identified a putative ginkgolide-binding site near the M2–M3 loop (31). An alternate explanation is that the relatively large size of ginkgolides may force the pore to become stabilized in the activated state. However, the observed discrepancy between the ΔF and ΔI ginkgolide dose responses is not readily explainable by this model.

Comparison with Previous VCF Studies—Chang and Weiss (17) employed VCF to investigate molecular rearrangements at three positions in and around the recombinant ρ1 γ-aminobutyric acid type A receptor ligand binding pocket. They found that two GABAergic (where GABA is γ-aminobutyric acid) agonists produced a similar pattern of ΔF responses at the three labeled positions. Competitive antagonists prevented these ΔF changes but also produced distinct ΔF responses in the absence of agonist. Perhaps most interestingly, picrotoxin produced a large ΔF at one of the labeled positions, providing strong evidence that by binding in the pore it produces global conformational change (17). A more recent study on α1β2 γ-aminobutyric acid type A receptors showed that the ΔF magnitude monitored at two binding domain residues exhibited subunit dependence (18). The results from these two studies provide strong evidence for ligand- and subunit-specific conformational changes in the ligand binding domain. However, they provide no information about whether these differential movements translate into different movements at the pore.

Finally, Dahan et al. (15) investigated acetylcholine- and epi-batidine-mediated ΔF and ΔI changes at muscle (αβγδ) nACHRs via a rhodamine label attached to the β subunit 19′ position. They concluded that ΔF reported a conformational change at the αδ subunit interface. The ΔF signal was also modulated by the receptor desensitization status. Together with the present study, these results indicate that the M2 conformation reflects a wide variety of influences, including the identity of the bound agonist, the molecular identity of the labeled subunit, and the desensitization status of the receptor.

Conclusion—VCF recordings reveal that the GlyR agonists, glycine, taurine, and ivermectin, produce different ΔF changes at fluorescently labeled 19′ and 22′ residues. The inhibitors, strychnine and picrotoxin, produced ΔF and ΔI changes as expected for a competitive antagonist and a channel blocker, respectively. On the other hand, the putative channel blocker, ginkgolide C, produced an increase in ΔF that may have signaled a direct interaction between MTSR and a low affinity ginkgolide site. Taken together, our results suggest that the GlyR M2 domain responds with distinct conformational changes to the binding of different agonists.

Acknowledgment—We thank Dr. Tim Webb for helpful discussions.

REFERENCES
1. Lynch, J. W. (2004) Physiol. Rev. 84, 1051–1095
2. Miyazawa, A., Fujiyoshi, Y., and Unwin, N. (2003) Nature 424, 949–955
3. Unwin, N. (1995) Nature 373, 37–43
4. Wilson, G. G., and Karlin, A. (1998) Neuron 20, 1269–1281
5. Cymes, G. D., Ni, Y., and Grosman, C. (2005) Nature 438, 975–980
6. Paas, Y., Gibor, G., Grailhe, R., Savatier-Duclert, N., Dufresne, V.,...
Conformational Changes of the GlyR M2 Segment

Sunesen, M., de Carvalho, L. P., Changeux, J. P., and Attali, B. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 15877–15882

7. Akabas, M. H., Kaufmann, C., Archdeacon, P., and Karlin, A. (1994) Neuron 13, 919–927

8. England, P. M., Zhang, Y., Dougherty, D. A., and Lester, H. A. (1999) Cell 96, 89–98

9. Law, R. J., Forrest, L. R., Ranatunga, K. M., La Rocca, P., Tieleman, D. P., and Sansom, M. S. (2000) Proteins 39, 47–55

10. Cymes, G. D., Grosman, C., and Auerbach, A. (2002) Biochemistry 41, 5548–5555

11. Grosman, C., Zhou, M., and Auerbach, A. (2000) Nature 403, 773–776

12. Unwin, N. (2005) J. Mol. Biol. 346, 967–989

13. Lee, W. Y., and Sine, S. M. (2005) Nature 438, 243–247

14. Hawthorne, R., and Lynch, J. W. (2005) J. Biol. Chem. 280, 35836–35843

15. Dahan, D. S., Dibas, M. I., Petersson, E. J., Auyeung, V. C., Chanda, B., Bezanilla, F., Dougherty, D. A., and Lester, H. A. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 10195–10200

16. Gandhi, C. S., and Isacoff, E. Y. (2005) Trends Neurosci. 28, 472–479

17. Chang, Y., and Weiss, D. S. (2002) Nat. Neurosci. 5, 1163–1168

18. Muroi, Y., Czajkowski, C., and Jackson, M. B. (2006) Biochemistry 45, 7013–7022

19. Lynch, J. W., Han, N. L., Haddrill, J., Pierce, K. D., and Schofield, P. R. (2001) J. Neurosci. 21, 2589–2599

20. Han, N. L., Clements, J. D., and Lynch, J. W. (2004) J. Biol. Chem. 279, 19559–19565

21. Shan, Q., Haddrill, J. L., and Lynch, J. W. (2001) J. Biol. Chem. 276, 12556–12564

22. Lewis, T. M., Schofield, P. R., and McClellan, A. M. (2003) J. Physiol. (Lond.) 549, 361–374

23. Rajendra, S., Lynch, J. W., Pierce, K. D., French, C. R., Barry, P. H., and Schofield, P. R. (1995) Neuron 14, 169–175

24. Lynch, J. W., Rajendra, S., Pierce, K. D., Handford, C. A., Barry, P. H., and Schofield, P. R. (1997) EMBO J. 16, 110–120

25. Webb, T. I., and Lynch, J. W. (2007) Curr. Pharm. Des. 13, 2350–2367

26. Lobo, I. A., Mascia, M. P., Trudell, J. R., and Harris, R. A. (2004) J. Biol. Chem. 279, 33919–33927

27. Hemmings, H. C., Akabas, M. H., Goldstein, P. A., Trudell, J. R., Orser, B., and Harrison, N. L. (2005) Trends Pharmacol. Sci. 26, 503–510

28. O’Shea, S. M., Becker, L., Weiher, H., Betz, H., and Laube, B. (2004) J. Neurosci. 24, 2322–2327

29. Kondratskaya, E. L., Lishko, P. V., Chatterjee, S. S., and Krishtal, O. A. (2002) Neurochem. Int. 40, 647–653

30. Kondratskaya, E. L., Betz, H., Krishtal, O. A., and Laube, B. (2005) Neurapharmacology 49, 945–951

31. Hawthorne, R., Cromer, B. A., Ng, H. L., Parker, M. W., and Lynch, J. W. (2006) J. Neurochem. 98, 395–407