Influence of lactic acid and cellulolytic bacteria on the physicochemical parameters of alfalfa silage

A Bogdanova, A Payuta, A Alekseev, A Konovalov

Federal Williams Research Center of Forage Production & Agroecology, Yaroslavl Scientific Research Institute of livestock breeding and forage production, Department of Livestock Technology, 150517, Lenin street, 1, Mikhailovsky settlement, Yaroslavl region, Russia

E-mail: bogdanova.ale@gmail.com

Abstract. The study is aimed at studying the effect of a microbiological preparation consisting of lactic acid bacteria, thermophilic streptococci and cellulolytic bacteria on the quality of alfalfa silage with different dry matter content. Determined pH, content of organic acids, dry matter and nutrients, including carbohydrates. Inoculant application increased crude protein, crude fat and crude fiber and reduced water-soluble carbohydrates in silage. The preservation of nutrients in the test samples was higher than that of the control. pH corresponded to optimal values; however, lactic acid fermentation proceeded more intensively in the sample with an increased dry matter content.

Keywords: silage, alfalfa, silage additive, acidity, silage quality

1. Introduction

As a fodder crop, alfalfa is widely distributed in the world grass growing, occupying the largest areas [1]. The crop is characterized by high yields and hay yields, resistance to drought and pests, young plants successfully resist the spread of weeds. Its ability to fix atmospheric nitrogen makes it superior to other crops in quality and quantity of protein and essential amino acids. Alfalfa protein is well digested and assimilated by all kinds of animals, including highly productive dairy cows [2, 3]. Therefore, methods of preserving alfalfa fodder for year-round use are of great importance, one of which is ensilaging. It is an anaerobic preservation method that preserves nutrients and improves the palatability of green fodder. Silage is one of the traditional bulk feeds used for animals in the world [4-6].

During silage, lactic acid bacteria break down water-soluble carbohydrates and produce lactic acid, which lowers the pH of the feed, which helps to suppress putrefactive microflora. They also inhibit the growth of undesirable epiphytic microorganisms by competing for nutrients and synthesizing antimicrobial and antifungal metabolites [7]. However, the high buffer capacity of alfalfa, the low number of epiphytic lactic acid bacteria populations and insufficient sugars for the development of beneficial microflora can complicate the fermentation process [8].

Bacterial preparations are used to obtain good quality silage from alfalfa, to minimize nutrient losses and to enhance fermentative processes [2, 9]. It is also believed that the fermentation of silage is influenced by the amount of dry matter in the raw material [10]. Objective: to study the quality of finished alfalfa silage with different dry matter content and the use of microbiological preparation.
2. Materials and methods.
Lucerne variegated (Medicago x varia T. Martyn) of the Blagodat variety, collected in the phase of budding, with a dry matter content of 25.76% and 37.14% were ground and treated with a microbiological preparation consisting of lactic acid bacteria (Lactobacillus rhamnosus, Lactobacillus paracasei, Lactococcus helveticus), bifidobacteria (Bifidobacterium animalis), thermophilic streptococci (Streptococcus thermophilus) and cellulolytic bacteria. The total number of microorganisms was 15*10^8 CFU/cm³. Alfalfa was placed in 0.5 l laboratory containers for silage. After 40 days of fermentation, physico-chemical parameters of the silage were determined according to standard methods.

3. Results and discussion
The pH values in alfalfa silages with different dry matter content prepared with the microbiological preparation corresponded to the optimal values (pH 3.9-4.3) (Table 1). This may be due to the acidifying effect resulting from the use of lactic acid and cellulolytic bacteria [11]. Application of the studied additive had the effect of statistically significant increase in the total amount of acids in alfalfa silage samples with a dry matter (DM) content of 37.14% by 0.43% compared with the index in the control (P ≤ 0.05). The increase in this parameter was due to an increase in lactic acid by 0.45% (P ≤ 0.05), which is important in the process of silage acidification and contributes to a decrease in pH. Our results are consistent with previously published data [12, 13]. The decrease in pH can be attributed to the use of cellulolytic bacteria. They improve the decomposition of plant fibers and contribute to an increase in water-soluble carbohydrates, the nutrient medium of lactic acid bacteria. This stimulates the fermentation process, resulting in lower pH and improved preservation of silage [13, 14].

Table 1. Content of organic acids in silage (n = 3, mean ± SE)

Silage variant	pH	Ratio of acids in the natural substance, %			
		total	lactic	vinegar	butyric
Alfalfa (DM 25.76%)	Control 4.17±0.01	2.80±0.19	2.33±0.25	0.37±0.05	0.11±0.01
	Experiment 4.08±0.02	2.51±0.36	2.10±0.35	0.33±0.01	0.08±0.02
Alfalfa (DM 37.14%)	Control 4.86±0.12	2.27±0.07	1.89±0.07	0.27±0.05	0.12±0.06
	Experiment 4.10±0.04	2.70±0.08	2.34±0.08*	0.22±0.02	0.15±0.02

Control - silage prepared without microbiological preparation, experiment - silage prepared with microbiological preparation; DM - dry matter; * - reliability of difference in comparison with control P ≤ 0.05

The content of butyric acid, which is an indicator of clostridia activity, in silage with the addition of microbial inoculum was quite low and did not differ significantly from the same indicator in the control samples. The data we obtained may indicate the effective suppression of butter-acid bacteria as a result of rapid accumulation of lactic acid and low silage pH [15, 16].

It was found that the DM content in the forages prepared with the microbiological preparation was lower compared to the control values (Table 2). In the experimental sample of alfalfa silage with a CB content of 37.14%, this index had a statistically significant difference and was lower by 11.55% compared with the value in the control (P ≤ 0.05). Previously published studies have shown that a significant increase in DM in the silage green matter leads to a reduction in total acid formation, which affects the quality of silage harvested [17, 18]. This is consistent with the data obtained in our study (Table 1). Nevertheless, in the feeds preserved with the microbial inoculum, there was no loss of DM relative to its content in the original raw material. This indicates that lactic acid bacteria mainly produce only lactic acid without by-products and inhibit the development of putrefactive microorganisms [19].
IOP Conf. Series: Earth and Environmental Science 901 (2021) 012036 doi:10.1088/1755-1315/901/1/012036

Table 2. Biochemical composition of green mass and obtained silage (n = 3, mean ± SE)

Silage variant	DM, %	Contained in DM, %				
	Crude Protein	Crude Cellulose	Crude Fat	Sugar	Starch	
Alfalfa (DM 25.76%)						
Green mass	25.76±4.81	22.02±0.65	23.29±1.09	2.91±0.08	8.48±0.26	2.20±0.35
Control	31.63±0.53	22.71±0.10	25.07±0.18	3.59±0.21	3.97±0.08	1.13±0.01
Preservation of nutrients, %	122.79	103.13	107.64	123.37	46.82	51.37
Experiment	31.07±1.04	22.74±0.62	25.24±0.23	3.83±0.04	0.90±0.07	0.99±0.01
Preservation of nutrients, %	120.61	103.27	108.37	131.62	10.61	45.00
Alfalfa (DM 37.14%)						
Green mass	37.14±2.21	22.03±1.12	22.42±2.25	3.14±0.22	8.71±0.89	2.29±0.37
Control	50.70±0.87	19.03±0.34	24.29±2.03	1.72±0.14	3.74±0.01	0.88±0.13
Preservation of nutrients, %	136.51	86.38	108.34	54.78	42.79	38.43
Experiment	39.15±0.24*	21.56±0.14*	24.85±0.24	3.08±0.71*	0.90±0.07*	0.76±0.01*
Preservation of nutrients, %	105.41	97.87	111.02	98.09	10.33	33.19

Control - silage prepared without microbiological preparation; experiment - silage prepared with microbiological preparation; * - reliability of difference in comparison with control P ≤ 0.05.

It should be noted the better preservation of crude protein (CP) in silage with the use of microbiological preparation compared with similar data in the control. In the experimental sample of dried alfalfa silage CP content was statistically significantly higher by 2.53% compared with the control sample (P ≤ 0.05) (Table 2). The decrease in SP indicator during fermentation may be due to its decomposition, which leads to an increase in ammonia nitrogen production, which leads to a deterioration in silage quality [20, 21].

An increase in crude fat content (CF) in the experimental silages was found, with a significant excess of 1.26% in the alfalfa sample with a DM of 37.14% (P ≤ 0.05) over that of the control. This may indicate better preservation of this component in the experimental samples, which agrees with the works of other authors [21, 22].

As noted earlier, the addition of cellulolytic bacteria potentially increases the availability of nutrient components for lactic acid bacteria [23]. Therefore, the significant reduction in sugar in silage samples harvested with the microbial preparation appears to be due to the active reproduction of lactic acid bacteria, which used sugar in the process of life activity [13, 24].

The study revealed that silage prepared using microbiological preparation from alfalfa with different moisture content differed slightly in nutrient content, but the lactic acid fermentation process was more intense in the sample with higher DM content. This is indicated by the higher amount of lactic acid in alfalfa silage with a DM content of 37.14%. Scientists have noted an increase in epiphytic lactic acid bacteria on alfalfa during wilting, which enhances lactic acid fermentation [25].

It is worth noting that quality silage was obtained from alfalfa with a DM content of 25.76% without the use of inoculant. This may be due to optimal laboratory conditions and the possible presence of beneficial epiphytic microflora in the green matter before silage.

4. Conclusion

Thus, a microbiological preparation consisting of lactic acid bacteria (Lactobacillus rhamnosus, Lactobacillus paracasei Lactococcus helveticus), bifidobacteria (Bifidobacterium animalis), thermophilic streptococci (Streptococcus thermophilus) and cellulolytic bacteria showed potential for
use as a preservative supplement for green alfalfa. Improvement of fermentation processes was found when using the inoculum, as indicated by a lower pH value and increased amount of lactic acid in the experimental silage samples. In the forages prepared with the use of microbiological preparation, the preservation and content of nutrients were higher than in the control samples. These indicators indicate that better quality silage was obtained. Lactic acid fermentation was more intense in the experimental silage made from dried alfalfa. Nevertheless, further more detailed studies are needed to confirm the effectiveness of the used microbiological preparation for silage harvesting.

References
[1] Zheng M, Niu D, Zuo S, Mao P, Meng L, Xu C 2018 The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage Italian Journal of Animal Science 17(2) 336–346
[2] Schmidt R J, Hu W, Mills J A, Kung Jr L 2009 The development of lactic acid bacteria and Lactobacillus buchneri and their effects on the fermentation of alfalfa silage Journal of dairy science 92(10) 5005–5010
[3] Lazarev N N, Kukharenkova O V, Kurenkova E M 2019 Alfalfa - for stable forage production Kormoproizvodstvo 4 18–25
[4] Zhang S J, Chaudhry A S, Ramdani D, Osman A, Guo X F, Edwards G R, Cheng L 2016 Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China Journal of Integrative Agriculture 15(3) 175–182
[5] Muck R E, Nadeau E M G, McAllister T A, Contreras-Govea F E, Santos M C, Kung Jr L 2018 Silage review: Recent advances and future uses of silage additives Journal of dairy science 101(5) 3980–4000
[6] Daniel J L P, Bernardes T F, Jobim C C, Schmidt P, Nussio L G 2019 Production and utilization of silages in tropical areas with focus on Brazil Grass and Forage Science 74(2) 188–200
[7] Zieleńska K, Fabiszewska A, Stefańska I 2015 Different aspects of Lactobacillus inoculants on the improvement of quality and safety of alfalfa silage Chilean journal of agricultural research 75(3) 298–306
[8] Li D X, Ni K K, Zhang Y C, Lin Y L, Yang F Y 2018 Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality Journal of Integrative Agriculture 17(12) 2768–2782.
[9] Auerbach H, Nadeau E 2020 Effects of Additive Type on Fermentation and Aerobic Stability and Its Interaction with Air Exposure on Silage Nutritive Value Agronomy 10(9) 1229.
[10] Muck R E 1987 Dry matter level effects on alfalfa silage quality I. Nitrogen transformations. Transactions of the ASAE 30(1) 7–14.
[11] Pauly T, Tham W 2003 Survival of Listeria monocytogenes in Wilted and Additive-Treated Grass Silage. Acta Vet Scand 44(2) 1–14
[12] Kung Jr L, Taylor C C, Lynch M P, Neylon J M 2003 The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value of lactating dairy cows Journal of dairy science 86(1) 336–343.
[13] Khota W, Pholsen S, Higgs D, Cai Y 2016 Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant Journal of dairy science 99(12) 9768–9781.
[14] Hou M, Gentu G, Liu T, Jia Y, Cai Y 2016 Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe Asian-Australasian Journal of Animal Sciences 30(6) 788–796.
[15] Chen S W, Chang Y Y, Huang H Y, Kuo S M, Wang H T 2020 Application of condensed molasses fermentation solubles and lactic acid bacteria in corn silage production Journal of the Science of Food and Agriculture 100(6) 2722–2731.
[16] Huo W, Wang X, Wei Z, Zhang H, Liu Q, Zhang S, Cong W, Lei Ch, Qingfang X, Guo G 2021 Effect of lactic acid bacteria on the ensiling characteristics and in vitro ruminal fermentation parameters of alfalfa silage Italian Journal of Animal Science 20(1) 623–631.

[17] Santos M C, Kung L 2016 Short communication: The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage Journal of Dairy Science 99 5466–5469.

[18] Hartinger T, Gresner N, Südekum K H 2019 Effect of wilting intensity, dry matter content and sugar addition on nitrogen fractions in lucerne silages Agriculture 9(1) 1–17.

[19] Santos E M, Pereira O G., Garcia R, Ferreira C L L F, Oliveira J S, Silva, T. C 2014 Effect of regrowth interval and a microbial inoculant on the fermentation profile and dry matter recovery of guinea grass silages Journal of Dairy Science 97(7) 4423–4432.

[20] Wang J, Wang J Q, Zhou H, Feng T 2009 Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage Animal Feed Science and Technology 151(3-4) 280–290.

[21] Silva V P, Pereira O G, Leandro E S, Da Silva T C, Ribeiro K G, Mantovani H C, Santos S A 2016. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions Journal of dairy science 99(3) 1895–1902.

[22] Driehuis F, Oude Elferink S J W H, Van Wikselaar P G 2001 Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria Grass and Forage Science 56(4) 330–343.

[23] Li J, Yuan X, Desta S T, Dong Z, Mugabe W, Shao T 2018 Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresource Technology 257 76–83.

[24] Lübeck M, Lübeck P S 2019 Application of lactic acid bacteria in green biorefineries FEMS Microbiology Letters 366 1–8.

[25] Lin C, Bolsen K K, Brent B E, Hart R A, Dickerson J T, Feyerherm A M, Aimutis W R 1992 Epiphytic microflora on alfalfa and whole-plant corn Journal of Dairy Science 75(9) 2484–2493.