ON \mathbb{Q}-FANO THREEFOLDS OF FANO INDEX 2

YURI PROKHOROV AND MILES REID

To Shigefumi Mori in friendship and admiration

1. Introduction

1.1. Recall that a projective threefold X is a \mathbb{Q}-Fano threefold if it has only terminal singularities and its anticanonical divisor $-K_X$ is ample. Here we assume also that X is \mathbb{Q}-factorial and has rank 1, that is, Pic $X \simeq \mathbb{Z}$ or equivalently, Cl $X \otimes \mathbb{Q} \simeq \mathbb{Q}$. In this situation we define the Fano–Weil and \mathbb{Q}-Fano index of X as follows:

$$q_W(X) := \max \{ q \in \mathbb{Z} \mid -K_X \sim qA, \ A \text{ is a Weil divisor} \},$$

$$q_Q(X) := \max \{ q \in \mathbb{Z} \mid -K_X \sim_q qA, \ A \text{ is a Weil divisor} \},$$

where \sim (resp. \sim_q) is linear equivalence (resp. \mathbb{Q}-linear equivalence). Clearly, $q_W(X)$ divides $q_Q(X)$, and $q_W(X) = q_Q(X)$ unless $K_X + qA$ is a nontrivial torsion element of Cl X. Another important invariant of a Fano variety X is its genus $g(X) := \dim |-K_X| - 1$.

It is known that

$$q_Q(X) \in \{1, \ldots, 11, 13, 17, 19\}$$

(see [Suz04], [Pro10b, Lemma 3.3]). Moreover, we have the following results.

1.2. Theorem ([Pro10b]). Let X be a \mathbb{Q}-Fano threefold with $q := q_Q(X) \geq 9$. Then Cl $X \simeq \mathbb{Z}$.

(i) If $q = 19$, then $X \simeq \mathbb{P}(3, 4, 5, 7)$.

(ii) If $q = 17$, then $X \simeq \mathbb{P}(2, 3, 5, 7)$.

(iii) If $q = 13$ and $g(X) > 4$, then $X \simeq \mathbb{P}(1, 3, 4, 5)$.

(iv) If $q = 11$ and $g(X) > 10$, then $X \simeq \mathbb{P}(1, 2, 3, 5)$.

(v) $q \neq 10$.

1.3. Theorem ([Pro10c]). Let X be a \mathbb{Q}-Fano threefold and set $q := q_Q(X)$ for its \mathbb{Q}-Fano index.

Y.P. acknowledges partial support from RFBR grants No. 11-01-92613-KO_a, 11-01-00336-a, the grant of Leading Scientific Schools No. 4713.2010.1, and AG Laboratory SU-HSE, RF government grant ag. 11.G34.31.0023.

M.R. is partially funded by Korean Government WCU Grant R33-2008-000-10101-0.
(i) If \(q = 9 \) and \(g(X) > 4 \) then \(X \cong X_6 \subset \mathbb{P}(1,2,3,4,5) \).
(ii) If \(q = 8 \) and \(g(X) > 10 \) then \(X \cong X_6 \subset \mathbb{P}(1,2,3,5) \) or \(X_{10} \subset \mathbb{P}(1,2,3,5,7) \).
(iii) If \(q = 7 \) and \(g(X) > 17 \) then \(X \cong \mathbb{P}(1^2,2,3) \).
(iv) If \(q = 6 \) and \(g(X) > 15 \) then \(X \cong X_6 \subset \mathbb{P}(1^2,2,3,5) \).
(v) If \(q = 5 \) and \(g(X) > 18 \) then \(X \cong \mathbb{P}(1^3,2) \) or \(X_4 \subset \mathbb{P}(1^2,2^2,3) \).
(vi) If \(q = 4 \) and \(g(X) > 21 \) then \(X \cong \mathbb{P}^3 \) or \(X_4 \subset \mathbb{P}(1^3,2,3) \).
(vii) If \(q = 3 \) and \(g(X) > 20 \) then \(X \cong X_2 \subset \mathbb{P}^4 \) or \(X_3 \subset \mathbb{P}(1^4,2) \).

In this paper we study \(Q \)-Fano threefolds with \(q(Q(X)) = 2 \).

1.4. Theorem ([BS07b]). There are at most 1492 power series that are numerical candidates for the Hilbert series of a \(Q \)-Fano threefold with \(q = q(Q(X)) = q(W(X)) = 2 \).

Our main result is the following.

1.5. Theorem. Let \(X \) be a \(Q \)-Fano threefold of rank 1 such that \(q(Q(X)) = q(W(X)) = 2 \), and assume \(K_X \) is not Cartier. Let \(A \) be a Weil divisor on \(X \) such that \(-K_X = 2A\).

Then \(\dim |A| \leq 4 \). Moreover, if \(\dim |A| = 4 \), then \(X \) belongs to the single irreducible family described in Section 3.

1.5.1. Corollary. Let \(X \) be a \(Q \)-Fano threefold with \(q(Q(X)) = q(W(X)) = 2 \) and \(K_X \) not Cartier. Then \(g(X) \leq 16 \).

1.5.2. Remark. Gorenstein \(Q \)-Fano threefolds \(X \) with \(q(W(X)) = 2 \) are particular cases of so-called del Pezzo varieties [Fuj90]. The bound \(\dim |A| \leq 4 \) does not hold for them. More precisely, there are two further cases with \(\dim |A| = 5 \) and 6:

(i) the complete intersection of two quadrics \(X = X_{2,2} \subset \mathbb{P}^5 \)
(ii) \(X = X_5 \subset \mathbb{P}^6 \), a smooth [Pro10a, Cor. 5.3] section of the Grassmanian \(\text{Gr}(2,5) \subset \mathbb{P}^9 \) by a subspace of codimension 3.

1.6. Background. In the study of \(Q \)-Fanos, the two main methods are the biregular and birational approaches. The biregular methods work in terms of projective embedding by multiples of \(A \), or more precisely, by the study of Gorenstein rings \(R(X,A) \). This is effective when this model has small codimension, especially when \(R(X,A) \) is a hypersurface or codimension 2 complete intersection etc. In contrast, the birational methods are effective when the linear system \(|A| \) is large, since then the canonical threshold is low, giving scope for imposing noncanonical singularities on \(|A| \) and studying \(X \) birationally in terms of the resulting Sarkisov links, aiming for either a birational construction or nonexistence results. The main interest of this paper is that this is a point where the two methods meet.
A surface section $F \in |A|$ of a \mathbb{Q}-Fano threefold X of index 2 is a del Pezzo surface. In a small number of cases where F has the simplest quotient singularities such as $\frac{1}{3}(2, 2)$ or $\frac{1}{5}(2, 4)$, the paper [RS03] studied such surfaces by means of projections from nonsingular points; this study foreshadows the constructions of our main example in Section 3 and hints at other possible examples; it would be interesting to study other cases of X with $\dim |A| \geq 2$.

2. Preliminaries

2.1. Notation. We work throughout over the complex numbers \mathbb{C}.

$\text{Cl} X$ denotes the Weil divisor class group;
$\mathbb{P}(a_1, \ldots, a_n)$ is weighted projective space;
$X_d \subset \mathbb{P}(a_1, \ldots, a_n)$ is a hypersurface of weight d.

2.2. Construction [Ale94]. Let \mathcal{M} be a mobile linear system without fixed components and $c := \text{ct}(X, \mathcal{M})$ the canonical threshold of (X, \mathcal{M}). Thus the pair $(X, c\mathcal{M})$ is canonical but not terminal. Assume that $-(K_X + c\mathcal{M})$ is ample. Let $f: \tilde{X} \to X$ be a $(K + c\mathcal{M})$-crepant blowup in the Mori category so that \tilde{X} has only terminal \mathbb{Q}-factorial singularities, $\rho(\tilde{X}/X) = 1$, and

$$K_{\tilde{X}} + c\tilde{\mathcal{M}} = f^*(K_X + c\mathcal{M}).$$

The exceptional locus $E \subset \tilde{X}$ is an irreducible divisor. As in [Ale94], run a $(K+c\mathcal{M})$-MMP on \tilde{X}. We get the following diagram (a Sarkisov link of type I or II)

$$\begin{array}{ccc}
\tilde{X} & \xrightarrow{f} & X \\
\downarrow & & \downarrow \bar{f} \\
\tilde{X} & &
\end{array}$$

where \tilde{X} and \bar{X} have only \mathbb{Q}-factorial terminal singularities, $\rho(\tilde{X}) = \rho(\bar{X}) = 2$, f is a Mori extremal divisorial contraction, $\tilde{X} \dashrightarrow \bar{X}$ a chain of log flips, and \bar{f} a Mori extremal contraction, which is either a divisorial contraction to a \mathbb{Q}-Fano 3-fold \hat{X} or a Mori fibre space over a curve or surface \tilde{X}. In either case, $\rho(\hat{X}) = 1$.

In what follows, for a divisor or linear system D on X, we write \tilde{D} and \bar{D} respectively for the birational transform of D on \tilde{X} and \bar{X}.

Assume that $K_X + \lambda\mathcal{M} + \Xi \sim_\mathbb{Q} 0$ for some $\lambda > c$ and an effective \mathbb{Q}-divisor Ξ. We can write

$$K_{\tilde{X}} + \lambda\tilde{\mathcal{M}} + \tilde{\Xi} + aE \sim_\mathbb{Q} f^*(K_X + \lambda\mathcal{M} + \Xi) \sim_\mathbb{Q} 0,$$
where $a > 0$ is the log discrepancy of f. Note that if $K_X + \lambda M + \Xi \sim 0$ then it is a Cartier divisor and λM and Ξ are integral Weil divisors, so that a is an integer.

2.2.4. Assume that \overline{f} is not birational. Then \hat{X} is either a smooth rational curve or a del Pezzo surface with at worst Du Val singularities and $\rho(\hat{X}) = 1$ [MP08]. We also have $\overline{f}(E) = \hat{X}$, because no multiple nE of the exceptional divisor E of f moves on \hat{X}. In this case we write \overline{f} for a general fiber of \overline{f}. Let Θ be an ample Weil divisor on \hat{X} whose class generates $\text{Cl}\hat{X}/\text{Tors}$. If \hat{X} is a surface with $K^2_{\hat{X}} = 1$, we take $\Theta = -K_{\hat{X}}$.

2.2.5. For \hat{X} a surface, one of the following holds:

(i) $-K_{\hat{X}} \cdot \Theta = 3$, $-K_{\hat{X}} \sim 3\Theta$, $\hat{X} \simeq \mathbb{P}^2$ and $\dim |\Theta| = 2$;
(ii) $-K_{\hat{X}} \cdot \Theta = 2$, $-K_{\hat{X}} \sim 4\Theta$, $\hat{X} \simeq \mathbb{F}(1,1,2)$ and $\dim |\Theta| = 1$;
(iii) $-K_{\hat{X}} \cdot \Theta = 1$, $-K_{\hat{X}} \sim d\Theta$, where $d := K^2_{\hat{X}} \leq 6$, and the minimal resolution of \hat{X} is a blowup of \mathbb{P}^2 at $9 - d$ points in almost general position. In this case, $\dim |\Theta| \leq 1$. Moreover, by Kawamata–Viehweg vanishing and orbifold Riemann–Roch [Rei87], for an ample Weil divisor $B \sim t\Theta$ we have

$$\dim |B| \leq \frac{t(t+d)}{2d}.$$

2.2.6. Assume that the contraction \overline{f} is birational. In this case, \hat{X} is a \mathbb{Q}-Fano threefold and \overline{f} contracts a unique exceptional divisor \overline{E}. Write $\overline{F} \subset \hat{X}$ and $F := f(\overline{F})$ for its birational transform. Set $\hat{q} := q(\hat{X})$. For a divisor \overline{D} on \overline{X}, we put $\hat{D} := \overline{f}_* \overline{D}$. One sees that $\overline{E} \neq \overline{F}$ (for otherwise $X \dashrightarrow \hat{X}$ would be an isomorphism in codimension one).

2.3. Computer search for \mathbb{Q}-Fano threefolds. All \mathbb{Q}-Fano threefolds lie in a finite number of algebraic families [Kaw92]. In fact, Kawamata’s proof gives a method of listing all possible “candidate” \mathbb{Q}-Fano threefolds, although the volume of computations makes a computer search appropriate. This method was used in [Suz04], [BS07a, BS07b], [Pro07], [Pro10b], [Pro10c]. See [BZ] for the database of candidates for the numerical types of graded rings. We now outline the algorithm, starting with a useful remark.

2.3.1. Remark. The local Weil divisor class group of a threefold \mathbb{Q}-factorial terminal point $P \in X$ is cyclic $\text{Cl}(X,P) \simeq \mathbb{Z}_r$, generated by the canonical divisor K_X [Kaw88 Lemma 5.1]. In particular, if X is a \mathbb{Q}-Fano threefold X, its local Gorenstein index r at every terminal point is coprime to the \mathbb{Q}-Fano index $q = qW(X)$.

4
2.3.2. Let X be a Q-Fano threefold. For simplicity we assume that $q := qQ(X) = qW(X) \geq 3$ (the only case we need). Let A be a Weil divisor such that $-K_X \sim qA$ and $B(X) = \{(r_P, b_P)\}$ the basket of orbifold points of X [Rei87].

Step 1. We have the equality

$$-K_X \cdot c_2(X) + \sum_{P \in B} \frac{r_P - 1}{r_P} = 24,$$

where $-K_X \cdot c_2(X) > 0$ [Kaw92]. Hence there is only a finite (but huge) number of possibilities for the basket $B(X)$ and $-K_X \cdot c_2(X)$. Let $r := \text{lcm}\{r_P\}$ be the Gorenstein index of X.

Step 2. (1.1.1) says that $q \in \{3, \ldots, 11, 13, 17, 19\}$. Remark 2.3.1 implies that gcd(q, r) = 1, which eliminates some possibilities.

Step 3. In each case we compute A^3 by the formula

$$A^3 = \frac{12}{(q - 1)(q - 2)} \left(1 - \frac{A \cdot c_2}{12} + \sum_{P \in B} c_P(-A)\right),$$

(see [Suz04]), where c_P is the correction term in the orbifold Riemann–Roch formula [Rei87]. The number rA^3 must be an integer [Suz04, Lemma 1.2].

Step 4. Next, the Bogomolov–Miyaoka inequality (see [Kaw92]) implies that

$$(4q^2 - 3q) A^3 \leq -4K_X \cdot c_2(X)$$

[Suz04 Prop. 2.2].

Step 5. Finally, by the Kawamata–Viehweg vanishing theorem we have $\chi(tA) = h^0(tA) = 0$ for $-q < t < 0$. We check this condition by using orbifold Riemann–Roch [Rei87].

See [B^+] for lists.

3. An Example

3.1. **Overview.** This section treats the exceptional family of Q-Fano threefolds X mentioned in Theorem 1.5. More precisely, it gives two independent constructions of two families of index 2 Fano 3-folds X and Y, each having a single orbifold point of type $\frac{1}{3}(1, 2, 2)$, and satisfying

$$-K_X^3 = \frac{8}{3}, \quad \dim|-\frac{1}{2}K_X| = 4, \quad \text{and} \quad -K_Y^3 = \frac{5}{3}, \quad \dim|-\frac{1}{2}K_Y| = 3.$$

For a general nonsingular point $P \in X$, there is a birational projection $\psi_P : X \dasharrow Y'$ that blows P up to a plane in $\mathbb{P}^2 \subset Y'$. Here Y' is a special member of the family of Y, obtained by imposing a
plane \mathbb{P}^2 on Y'. This projection $X \dasharrow Y'$ is analogous to the familiar “internal” projections between del Pezzo varieties $\psi_P: V_d \dasharrow V_{d-1}$.

Later in this section, we use this to give our second construction of X by unprojection from Y', written as a 5×5 Pfaffian variety specialised to contain \mathbb{P}^2 by a Jerry format [BKR10]. An interesting point is that there is also a Tom construction, but that it gives rise to a \mathbb{Q}-Fano threefold of Picard rank 2.

At the same time, X and Y have Sarkisov links $X \dasharrow Q \subset \mathbb{P}^4$ and $Y \dasharrow \mathbb{P}^3$ initiated by the Kawamata blowup [CPR00, 3.4.2] of their respective $\frac{1}{3}(1,2,2)$ orbifold points. The aforementioned birational maps all fit together into a commutative diagram

\[
\begin{array}{ccc}
P \in X & \xrightarrow{\psi_P} & Q \ni P \\
\downarrow & \searrow & \downarrow \\
Y' & \xrightarrow{\pi_P} & \mathbb{P}^3
\end{array}
\]

where $\pi_P: Q \dasharrow \mathbb{P}^3$ is the usual linear projection from P of the smooth quadric $Q \subset \mathbb{P}^4$.

3.2. Construction of $Q \dasharrow X$ and $\mathbb{P}^3 \dasharrow Y$. Our first construction of X and Y works via the inverse map $Q \dasharrow X$ and $\mathbb{P}^3 \dasharrow Y$. Both of these blow up a curve $\Gamma \subset Q$ (resp. $\Gamma \subset \mathbb{P}^3$) where Γ is a rational quintic curve having (in general) a triple point with distinct tangent directions. In (3.1.1), the blown up curve Γ is the same up to isomorphism in the two cases. In either case, $\Gamma \subset S$ is contained in a quadric cone $S = T_{Q,P_0} \cap Q$ (the tangent plane at $P_0 \in Q$) resp. $S \subset \mathbb{P}^3$. We identify S with $\mathbb{P}(1,1,2)_{(u_1,u_2,v)}$, and $\Gamma \subset \mathbb{P}(1,1,2)$ is the quintic curve given by $vu_3(u_1, u_2) + b_5(u_1, u_2) = 0$.

Since the two constructions are very similar, and our second construction gives Y directly, we concentrate on the case $Q \dasharrow X$. More precisely, we prove the following.

3.3. Theorem. There exists a Sarkisov link

\[
\begin{array}{ccc}
\overline{Q} & \xrightarrow{\overline{f}} & X \\
\downarrow & \searrow & \downarrow \\
Q & \xrightarrow{f} & X
\end{array}
\]

where $Q \subset \mathbb{P}^4$ is the smooth quadric, and \overline{f} and f are extremal divisorial contractions in the Mori category with respective exceptional
divisors $\mathcal{F}, \mathcal{S} \subset \mathcal{Q}$. The endpoint X is a \mathcal{Q}-Fano threefold with

$$\text{Cl} X \simeq \mathbb{Z}, \quad q\mathcal{Q}(X) = 2, \quad A^\mathcal{Q} = 10/3, \quad \dim |A| = 4, \quad g(X) = 14;$$

having as its only singularity a terminal cyclic quotient point of type $\frac{1}{3}(1,1,2)$ at $P_3 = f(\mathcal{S})$. The map f is the Kawamata blowup of P_3, with exceptional divisor $\mathcal{S} \simeq \mathbb{P}(1,1,2)$. The contraction \tilde{f} maps \mathcal{S} isomorphically to the section $S = Q \cap T_{P_0,Q}$ of Q by the tangent hypersection at a point P_0; it blows up a rational quintic curve $\Gamma \subset S$ as specified below.

3.4. Notation. Let $S = Q \cap T_{P_0,Q}$ be a singular hyperplane section of Q, a quadratic cone with vertex $P_0 \in S$. We identify S with the weighted projective plane $\mathbb{P}(1,1,2)$ with homogeneous coordinates u_1, u_2, v. Let $\Gamma \subset S$ be an irreducible quintic curve given by the equation $va_3(u_1,u_2) + b_5(u_1,u_2) = 0$, where a_3 and b_5 are homogeneous polynomials of the indicated degrees with no common factor. One sees that Γ is smooth outside P and has a triple point at P with (in general) three linearly independent tangent branches.

We first construct the birational extraction \tilde{f}. According to [KM92, Th. 4.9] such an extraction, if it exists, is unique up to isomorphism over Q.

3.5. Proposition. In the above notation there exists a divisorial extraction $\tilde{f}: \widetilde{Q} \rightarrow Q$ in the Mori category whose exceptional divisor \mathcal{F} is contracted to Γ. The only singular point $P \in Q$ is a terminal cyclic quotient point of type $\frac{1}{3}(1,1,1)$ and the divisor $-K\widetilde{Q}$ is ample, that is, \widetilde{Q} is a \mathbb{Q}-Fano 3-fold.

Proof. Let $\sigma: \tilde{Q} \rightarrow Q$ be the blowup of P. The proper transform $\tilde{S} \subset \tilde{Q}$ of S is isomorphic to the Hirzebruch surface \mathbb{F}_2. The proper transform $\tilde{\Gamma} \subset \tilde{S}$ of Γ is a smooth rational curve $\tilde{\Gamma} \simeq \Sigma + 5\Upsilon$, where Σ and Υ are the negative section and fiber of \mathbb{F}_2. Denote $S^* := \sigma^* S$ and let D be the σ-exceptional divisor. Then

$$\tilde{S} \sim S^* - 2D, \quad -K\tilde{Q} \sim 3S^* - 2D \sim \tilde{S} + 2S^*, \quad \tilde{S} \cap D = \Sigma.$$

Since $|S^* - D|$ is a free linear system, $-K\tilde{Q}$ is ample, that is, \tilde{Q} is a \mathbb{Q}-Fano threefold. By Kodaira vanishing $H^1(\tilde{Q}, \mathcal{O}_{\tilde{Q}}(-K\tilde{Q} - \tilde{S})) = 0$. From the exact sequence

$$0 \rightarrow \mathcal{O}_{\tilde{Q}}(-K\tilde{Q} - \tilde{S}) \rightarrow \mathcal{O}_{\tilde{Q}}(-K\tilde{Q}) \rightarrow \mathcal{O}_{\tilde{S}}(-K\tilde{Q}) \rightarrow 0$$

we get surjectivity of the restriction map

$$H^0(\tilde{Q}, \mathcal{O}_{\tilde{Q}}(-K\tilde{Q})) \rightarrow H^0(\tilde{S}, \mathcal{O}_{\tilde{S}}(-K\tilde{Q})).$$
Note that
\[-K_{\tilde{Q}}|_{\tilde{S}} \sim 3S^*|_{\tilde{S}} - 2D|_{\tilde{S}} \sim 3(\Sigma + 2\Upsilon) - 2\Sigma = \Sigma + 6\Upsilon.\]

This implies that the linear system \(|-K_{\tilde{Q}}|_{\tilde{S}} - \tilde{\Gamma} |\) is free on \(\tilde{S} \) and \(\tilde{\Gamma} \) is a scheme theoretic intersection of members of \(|-K_{\tilde{Q}}| \).

Now let \(\sigma': Q' \to \tilde{Q} \) be the blowup of \(\tilde{\Gamma} \) and let \(F' \subset Q' \) be the \(\sigma' \)-exceptional divisor. Let \(S' \subset Q' \) (resp. \(D' \subset Q' \)) be the proper transform of \(\tilde{S} \) (resp. \(D \)) and let \(S^{**} := \sigma^*(S^*) \). Clearly, \(S' \sim \tilde{S} \sim \mathbb{F}_2 \). Since \(\tilde{\Gamma} \) is a scheme-theoretic intersection of members of \(|-K_{\tilde{Q}}| \), the linear system \(|-K_{Q'}| = |\sigma^*(\tilde{\Gamma}) - F'| \) is base point free. In particular, \(-K_{Q'} \) is nef. For the normal bundle of \(\tilde{\Gamma} \) we have \(c_1(N_{\tilde{\Gamma}/\tilde{Q}}) = 2g(\tilde{\Gamma}) - 2 - K_{\tilde{Q}} \cdot \tilde{\Gamma} = 7 \). Hence,
\[
(3.5.1) \quad -K_{Q'}^3 = -K_{\tilde{Q}}^3 - 3(-K_{\tilde{Q}}) \cdot \tilde{\Gamma} + c_1(N_{\tilde{\Gamma}/\tilde{Q}}) = 26
\]
and so \(-K_{Q'}\) is big, that is, \(Q' \) is a weak Fano threefold. Since \(D \cdot \tilde{\Gamma} = (\Sigma \cdot \tilde{\Gamma})_{\tilde{S}} = 3 \), there is a 2-secant (or tangent) line \(l \subset D \simeq \mathbb{P}^2 \) to \(\tilde{\Gamma} \). For its proper transform \(l' \subset D' \) we have \(-K_{Q'} \cdot l' = -K_{\tilde{Q}} \cdot l - F' \cdot l' \leq 0 \). Since \(-K_{Q'}\) is nef, \(-K_{Q'} \cdot l' = 0 \) and \(l' \) generates an extremal ray \(R \) of the Mori cone \(\overline{NE}(Q'/Q) \). Clearly, \(\text{Supp}(R) \subset F' \cup D' \). Since
\[
(-K_{Q'})^2 \cdot D' = (\sigma^*(-K_{\tilde{Q}}) - F')^2 \cdot \sigma^*D = (-K_{\tilde{Q}})^2 \cdot D - D \cdot \tilde{\Gamma} = 1,
\]
we have \(\text{Supp}(R) \neq D' \). Similarly, \(\text{Supp}(R) \neq F' \). Therefore, \(R \) is a flopping extremal ray. Consider the corresponding flop \(\chi: Q' \dashrightarrow Q^+ \). We have \(\rho(Q^+/Q) = 2 \), \(Q^+ \) is nonsingular, and \(-K_{Q^+}\) is nef. Running the MMP over \(Q \) gives the diagram
\[
\begin{array}{ccc}
Q' & \xrightarrow{\chi} & Q^+ \\
\downarrow{\sigma'} & & \downarrow{\varphi} \\
\tilde{Q} & \xrightarrow{\sigma} & \overline{Q} \\
\end{array}
\]
Here \(\varphi \) is a divisorial contraction. Since \(Q \) is smooth, \(K_{\tilde{Q}} \) cannot be nef over \(Q \). Therefore, \(\overline{Q} \) is also a divisorial extremal contraction.

If \(\varphi \) contracts \(F^+ \), the proper transform of \(F^+ \), then \(\tilde{Q} \) and \(\overline{Q} \) are isomorphic in codimension one over \(Q \). Since \(\rho(\tilde{Q}/Q) = \rho(\overline{Q}/Q) = 1 \), they must be isomorphic over \(Q \). Then \(Q' \) and \(Q^+ \) also must be isomorphic over \(Q \). On the other hand, \(F' \) is ample with respect to the flopping extremal ray \(R \). Hence, its proper transform \(F^+ \) must be anti-ample with respect to the corresponding extremal ray, a contradiction.
Therefore, \(\varphi \) contracts \(D^+ \), the proper transform of \(D' \), and \(\mathcal{F} \) contracts \(F := \varphi(F^+) \). Moreover, \(\mathcal{F}(\mathcal{F}) = \Gamma \) and \(\mathcal{F} := \varphi(D^+) \) is a point. Since \(\Gamma \) is not a locally complete intersection, the divisor \(K_{\mathcal{Q}} \) is not Cartier [Cut88]. By [Mors2] there is only one possibility: \(D^+ \simeq \mathbb{P}^2 \), \(\mathcal{O}_{D^+}(D^+) \simeq \mathcal{O}_{\mathbb{P}^2}(-2) \), and \(\mathcal{F} \in \mathcal{Q} \) is a cyclic quotient singularity of index 2. Finally, \(-K_{Q^+} \) is nef. Since the \(\varphi \)-exceptional divisor \(D^+ \) is contracted to a point and meets flopped curves, the divisor \(-K_{\mathcal{Q}} \) is ample.

3.5.2. Corollary. In the above notation the following holds.

(i) \(-K_{\mathcal{Q}} \sim 3F \sim 2F + S\);

(ii) \(-K_{Q^+}^3 = 53/2\);

(iii) for the proper transform \(\mathcal{S} \subset \mathcal{Q} \) of \(S \), the restriction \(\mathcal{F}|_{\mathcal{S}} : \mathcal{S} \to S \) is an isomorphism and \(\text{Sing}(\mathcal{S}) = \text{Sing}(Q) = \{\mathcal{F}\}\);

(iv) \(\mathcal{O}_{\mathcal{S}}(-K_{\mathcal{Q}}) \simeq \mathcal{O}_{\mathbb{P}(1,1,2)}(1), \mathcal{O}_{\mathcal{S}}(S) \simeq \mathcal{O}_{\mathbb{P}(1,1,2)}(-3). \)

Proof. Since outside of \(P \) the map \(\mathcal{F} \) is just the blowup of \(\Gamma \), we have \(\square \)

By (3.5.1) we have

\[-K_{Q^+}^3 = -K_{Q^+}^3 = 26, \quad -K_{Q}^3 = -K_{Q^+}^3 + \frac{1}{2} = \frac{53}{2}.\]

This proves (ii).

Let \(l' \subset Q^+ \) be a flopping curve. We have

\[-K_{Q^+} \cdot D' \cdot S' = -K_{Q^+} \cdot D \cdot \Sigma + \sigma^* D \cdot F'^2 = 1.\]

The contradiction shows that \(S' \cap l' = \emptyset \), that is, \(\chi \) is an isomorphism near \(S' \) and so \(S^+ \simeq S' \simeq \mathbb{P}^2 \). Thus \(S^+ \) intersects \(D^+ \) along a smooth rational curve, the negative section of \(S^+ \simeq \mathbb{P}^2 \) and so \(S := \varphi(S^+) \simeq \mathbb{P}(1,1,2) \), \(\varphi(D^+) = \text{Sing}(S) = \text{Sing}(Q) \). This proves (iii).

By (3.5.3) we have \(\mathcal{O}_{S^+}(-K_{Q^+}) \simeq \mathcal{O}_{\mathbb{P}^2}(\mathcal{Y}) \) and so \(\mathcal{O}_{\mathcal{S}}(-K_{\mathcal{Q}}) \simeq \mathcal{O}_{\mathbb{P}(1,1,2)}(1) \).

By (i) and because \(\mathcal{O}_{\mathcal{S}}(\mathcal{F}) = \mathcal{O}_{\mathbb{P}(1,1,2)}(2) \) we have \(\mathcal{O}_{\mathcal{S}}(S) \simeq \mathcal{O}_{\mathbb{P}(1,1,2)}(-3) \). This proves (iv).

3.5.4. Remark. If the polynomial \(a_3(u_1, u_2) \) in (3.4) has distinct roots, we can make our construction more explicit. In this case the intersection \(\tilde{\Gamma} \cap D \) consists of three points \(P_1, P_2, P_3 \) in general position on \(D \simeq \mathbb{P}^2 \). Thus \(D' \) is a smooth del Pezzo surface of degree 6. For \(1 \leq i < j \leq 3 \), let \(l_{i,j} \) be the line of \(D \simeq \mathbb{P}^2 \) through points \(P_i \) and \(P_j \), and set \(l'_{i,j} \subset D' \) for its proper transform. Let \(m_k := \sigma^{-1}(P_k) \cap D' \).
Clearly, m_k is a -1-curve on D'. Thus the six -1-curves $m_1, l_{1,2}', m_2, l_{2,3}, m_3, l_{1,3}'$, form a hexagon on D'. Moreover, they generate the Mori cone $\overline{\text{NE}}(D')$. One sees that $-K_{Q'} \cdot l_{i,j}' = 0$ and $-K_{Q'} \cdot m_k = 1$.

This shows that the curves $l_{i,j}'$ generate a flopping extremal ray $R \subset \overline{\text{NE}}(Q'/Q)$. Since the normal bundle $N_{l_{i,j}'/Q'}$ has a subbundle $N_{l_{i,j}'/D'} \cong \mathcal{O}_{\mathbb{P}^1}(-1)$, we have $N_{l_{i,j}'/Q'} \cong \mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1)$ [Rei83, Remark 5.2]. Hence χ is the simplest Atiyah–Kulikov flop along each $l_{i,j}'$.

The restriction $\chi|_{D'}$ extends to a morphism $\chi|_{D'}: D' \to D^+$ which is a contraction of the -1-curves $l_{i,j}'$ [Rei83, Remark 5.13]. Hence $D^+ \cong \mathbb{P}^2$ and the composition map $\mathbb{P}^2 \to D^+$ is just the classical Cremona quadratic involution.

Proof of Theorem 3.3. By (iv) of Corollary 3.5.2 the curves in S generate a K-negative extremal ray. Moreover, the divisor S satisfies the contractibility criterion [Kaw96]. Hence there is a Mori contraction $f: Q \to X$ such that $f(S)$ is a point of type $\frac{1}{3}(1,1,2)$. By (i) $qQ(X) = 2$ and $\text{Cl}X \cong \mathbb{Z}$ (because the class of S is a primitive element of $\text{Cl}(Q)$). Finally,

$$-K^3_X = -K^3_Q + \frac{1}{6} = \frac{80}{3}$$

and by the orbifold Riemann–Roch $\dim |A| = 4$. □

3.9. Second construction via unprojection.

The codimension 3 model $Y \subset \mathbb{P}(1,1,1,1,2,2,3)_{(x_1,x_2,x_3,x_4,y_1,y_2,z)}$ is given by the maximal Pfaffians of a general 5×5 skew matrix M of degrees

$$
\begin{pmatrix}
1 & 1 & 2 & 2 \\
1 & 2 & 2 \\
2 & 2 \\
3
\end{pmatrix}
$$

(3.9.1)

see [CR02] and [BKR10] for conventions and background. As in [CR02], this variety is a regular pullback from a weighted Grassmann variety $\text{wGr}(2,5)$, and the general Y is a quasismooth Q-Fano threefold with a single $\frac{1}{3}(1,2,2)$ point at P_z. Indeed, the three Pfaffians partners of $m_{45} = z$ are $z x_i = \cdots$ for $i = 1, 2, 3$, so the point $P_z \in Y$ is the orbifold point $\frac{1}{3}(1,2,2)_{(x_4,y_1,y_2)}$. Smoothness outside P_z comes from Bertini’s theorem or explicit computation. One reads the Hilbert series

$$
\frac{1 - 2t^3 - 3t^4 + 3t^5 + 2t^6 - t^8}{\prod_{a \in [1,1,1,1,2,3]}(1 - t^a)}
$$

(3.9.2)

directly from the Pfaffian format.
The birational map $Y' \rightarrow X$ that we use to construct X contracts an unprojection divisor, the plane $\mathbb{P}^2 \subset Y'$. We impose \mathbb{P}^2 on Y' by specializing the entries of the matrix M, moving the general Y to a special Y' containing $D = \mathbb{P}^2_{(x_1,x_2,x_3)}$. The key point of [BKR10] is that there are several different formats that arrange for Y' to contain D, and they lead to topologically different X. Our construction of X is a routine but interesting exercise in these techniques.

The ideal of D is the complete intersection ideal $I_D = (x_4, y_1, y_2, z)$. We construct Y' using Jerry 45: we require the 7 entries in the 4th and 5th column of M' to be in I_D. A simple case is

$$M' = \begin{pmatrix} x_3 & -x_2 & y_1 & n_2x_4 \\ x_1 & y_2 & y_1 & z \\ n_1x_4 & y_2 \\ z \end{pmatrix}$$

where n_1 and n_2 are linear forms (for example, $n_2 = x_4 - x_1$ and $n_1 = x_4 - \lambda x_3$ with $\lambda \neq 1$). The methods of [BKR10] 6.1 give that Y' defined by the Pfaffians of M' is smooth except for the $1/3$ orbifold point at P_2 and ordinary nodes at 5 points of D. This constructs Y' containing $D = \mathbb{P}^2$, and hence its unprojections X. The map $Y' \rightarrow X$ blows up the ideal of D in Y' to make it a Cartier divisor (introducing flopping $(-1,-1)$-curves over the 5 nodes); this makes D into a copy of \mathbb{P}^2 with normal bundle $O(-1)$, which contracts to a smooth point of X.

3.10. Diagram (3.1.1) in equations. The existence of X is now established. However, it is interesting to expand on how the maps of (3.1.1) come out in coordinates. As in 2.2 above, we start from the general rational quintic curve $\Gamma \subset \mathbb{P}^3$ with a triple point. It is contained in the quadric cone $S : (x_1x_3 = x_2^2)$; we identify S with $\mathbb{P}(1,1,2)_{(u_1,u_2,v)}$ by setting

$$x_1 = u_1^2, \quad x_2 = u_1u_2, \quad x_3 = u_2^2, \quad x_4 = v.$$

and take $\Gamma : (v a_3(u_1,u_2) + b_5(u_1,u_2) = 0)$. Every term in a_3 is divisible by u_1 or u_2, and every term in b_5 is divisible by u_1^3 or u_2^3, so we write

$$a_3 = u_1m_2 - u_2m_1 \quad \text{and} \quad b_5 = u_1^3n_2 - u_2^3n_1$$

with m_i, n_i linear in x_1, x_2, x_3. Then $\Gamma \subset \mathbb{P}^3$ has equations

$$\bigwedge^2 N = 0, \quad \text{where} \quad N = \begin{pmatrix} x_1 & x_2 & x_3n_1 + x_4m_1 \\ x_2 & x_3 & x_1n_2 + x_4m_2 \end{pmatrix}.$$
The rational map \(\mathbb{P}^3 \longrightarrow Y \) adjoins \(y_1, y_2, z \) subject to the equations \(\text{Pf} \, M = 0 \) with

\[
M = \begin{pmatrix}
x_3 & -x_2 & y_1 + \mu_{11}x_4^2 & x_4n_2 + \mu_{21}x_4^2 \\
x_1 & y_2 + \mu_{12}x_4^2 & y_1 + \mu_{22}x_4^2 \\
x_4n_1 + \mu_{13}x_4^2 & y_2 + \mu_{23}x_4^2 \\
\end{pmatrix},
\]

where \(m_1 = \mu_{11}x_1 + \mu_{12}x_2 + \mu_{13}x_3 \) and \(m_2 = \mu_{21}x_1 + \mu_{22}x_2 + \mu_{23}x_3 \).

Each entry of the last two columns of \(M \) is in \(I_D = (x_4, y_1, y_2, z) \), where \(D \) corresponds to the plane \(\mathbb{P}^2 \subset \mathbb{P}^3 \) given by \(x_4 = 0 \). Thus our description of \(Y' \) as the blowup of \(\mathbb{P}^3 \) along \(\Gamma \subset S \), together with our choice of coordinates, puts it directly in Jerry 45 format, containing the plane \(x_4 = 0 \), and with 5 nodes corresponding to the locus \(v = b_5 = 0 \) in \(S \).

In (3.10.2), the two Pfaffians without \(z \) give \(y_1, y_2 \) as the solutions of

\[
N \begin{pmatrix} y_1 \\ y_2 \\ x_4 \end{pmatrix} = 0
\]

(with denominator \(x_1x_3 - x_2^2 \)) and the three Pfaffians involving \(z \) are

\[
z \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \bigwedge^2 \begin{pmatrix} y_1 + \mu_{11}x_4^2 & x_4n_2 + \mu_{21}x_4^2 \\ y_2 + \mu_{12}x_4^2 & y_1 + \mu_{22}x_4^2 \\ x_4n_1 + \mu_{13}x_4^2 & y_2 + \mu_{23}x_4^2 \end{pmatrix}.
\]

Compare the “Double Jerry” format of [BKR10, 9.2].

The unprojection \(Y' \longrightarrow X \) is defined by adjoining \(x_5 \) to the homogeneous coordinate ring of \(Y' \). The equations involving \(x_5 \) are

\[
(3.10.4) \quad x_5 \begin{pmatrix} y_1 \\ y_2 \\ x_4 \end{pmatrix} = \bigwedge N,
\]

There is also an equation for \(x_5z \) that exists by the Kustin–Miller unprojection theorem, but we do not know any neat derivation of it. In the general setting, it is a “long equation”, with the right hand side having 144 terms [BKR10, 9.2]. In the “fairly typical” case (3.9.3), a little game of syzygies gives that \(x_1(x_5z + n_1x_3y_1 + n_2x_1y_2 + n_1n_2x_2x_4) \) is in the ideal generated by the Pfaffians of \(M' \) and (3.10.4), so that the \(x_5z \) equation is

\[
(3.10.5) \quad x_5z + n_1x_3y_1 + n_2x_1y_2 + n_1n_2x_2x_4 = 0.
\]
3.11. **The Tom1 case.** In cases such as these, our experience is that there is usually a different method of imposing the plane \(\mathbb{P}^2_{(x_1,x_2,x_3)} \) on \(Y \): namely Tom1 requires that all the entries except those in Row 1 are in the ideal \(I_D = (x_4,y_1,y_2,y_3) \). The nonsingularity calculation of [BKR10] shows that a general Tom1 matrix defines \(Y' \) that is quasi-smooth except for 4 nodes on \(P^2 \). As before, its unprojection is a \(\mathbb{Q} \)-Fano threefold \(X \) of index 2 with a single \(\frac{1}{3}(1,2,2) \) quotient singularity and \(\dim |A| = 4 \). However, one checks that it is a regular pullback of a weighted form of \(\mathbb{P}^2 \times \mathbb{P}^2 \), and has Picard rank 2. The point is that one can use row and column operations to put the matrix in the normal form

\[
M_0 = \begin{pmatrix}
x_1 & x_2 & q_1 & q_2 \\
x_4 & y_1 & 0 & y_2 \\
0 & y_2 & z
\end{pmatrix}
\]

where \(x_3 \) appears only in the quadratic terms \(q_1, q_2 \) (we omit the details). The zeros imply that several of the Pfaffians are monomial equations, so \(X \) has rank > 1.

The Pfaffians of \(M_0 \) are the \(2 \times 2 \) minors of the \(3 \times 3 \) array

\[
M_0 = \begin{pmatrix}
* & x_1 & q_2 \\
x_2 & x_4 & y_2 \\
q_1 & y_1 & z
\end{pmatrix},
\]

and the unprojection just puts the unprojection variable \(x_5 \) of degree 1 in place of the *. The result is the Segre embedding of the product of two copies of the weighted projective plane \(\mathbb{P}^2(\frac{1}{2},\frac{1}{2},\frac{3}{2}) \). Taking a regular pullback by setting \(q_1, q_2 \) to be forms of degree 2 in \(x_i, y_j \) gives \(X \).

From the point of view of diagram (3.1.1), the mechanism seems to be that the blowup of a general quintic curve in the quadric cone \(S \cong \mathbb{P}(1,1,2) \) (a curve of genus 2) initiates a Sarkisov link to a general codimension 3 Pfaffian \(Y \subset \mathbb{P}(1,1,1,2,2,3) \). The Jerry45 and specialization to \(Y' \) containing a plane \(\mathbb{P}^2 \) corresponds to \(\Gamma \) acquiring a triple point at the cone point of \(S \), as discussed above. The Tom1 specialization presumably corresponds to \(\Gamma \) breaking up as a line plus an elliptic quartic.

4. **On Fano threefolds of large Fano index**

4.1. Recall that a *polarized variety* is a pair \((X, S)\) consisting of a projective algebraic variety \(X \) and an ample Cartier divisor \(S \) on \(X \). The *\(\Delta \)-genus* of \((X, S)\) is defined as follows [Fuj90]:

\[
\Delta(X, S) = \dim X + S^{\dim X} - \dim H^0(X, \mathcal{O}_X(S)).
\]
It is known that $\Delta(X, S) \geq 0$ and polarized varieties of small Δ-genera are classified [Fuj90]. The following easy consequence of Fujita’s classification is very useful for us.

4.2. Lemma. Let X be a \mathbb{Q}-Fano threefold and S an ample Weil divisor on X such that $\dim |S| > 0$, $|S|$ has no fixed components, and $-K_X \sim_q \lambda S$ with $\lambda \geq 2$. Assume that the pair $(X, |S|)$ is terminal. Then one of the following holds:

(i) $X \cong \mathbb{P}^3$, $\lambda = 4$, $\dim |S| = 3$;
(ii) $X \cong \mathbb{P}^3$, $\lambda = 2$, $\dim |S| = 9$;
(iii) $X \cong X_2 \subset \mathbb{P}^4$ is a smooth quadric, $\lambda = 3$, $\dim |S| = 4$;
(iv) X is a del Pezzo threefold of degree $1 \leq d \leq 5$, $\lambda = 2$, $\dim |S| = d + 1$;
(v) $X \cong \mathbb{P}(1^3, 2)$, $\lambda = 5/2$, $\dim |S| = 6$.

Proof. Replace S with a general member of $|S|$. Since $(X, |S|)$ is terminal, the surface S is smooth and contained in the smooth locus of X [Ale94, 1.22]. By the adjunction formula we have $-K_S \sim (\lambda - 1)|S|$. Hence S is a (smooth) del Pezzo surface and $(\lambda - 1)^2S^3 = K_S^2$. Since $H^i(X, \mathcal{O}_X) = 0$ and $H^i(S, \mathcal{O}_S(S)) = 0$ for $i > 0$, by Riemann–Roch we have

$$\dim H^0(X, \mathcal{O}_X(S)) = \dim H^0(S, \mathcal{O}_S(S)) + 1 = \frac{\lambda}{2}S^3 + 2.$$

Therefore,

$$\Delta(X, S) = 3 + S^3 - \frac{\lambda}{2}S^3 - 2 = 1 + \frac{(2 - \lambda)S^3}{2} = 1 + \frac{(2 - \lambda)K_S^2}{2(\lambda - 1)^2}.$$

If $S \cong \mathbb{P}^2$, then $\mathcal{O}_S(S) = \mathcal{O}_{\mathbb{P}^2}(l)$, where $3 = (\lambda - 1)l \geq l$. Then $\Delta(X, S) = 0$ and [Fuj90, Th. 5.10 and 5.15] gives cases (i) and (v).

If $S \cong \mathbb{P}^1 \times \mathbb{P}^1$, then $\mathcal{O}_S(S) = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(k, k)$, where $k(\lambda - 1) = 2$. So, $\lambda = 2$ or 3, $\Delta(X, S) = 0$, and [Fuj90, Th. 5.10 and 5.15] gives cases (ii) or (iii).

Finally, if $S \not\cong \mathbb{P}^2$, $\mathbb{P}^1 \times \mathbb{P}^1$, then K_S is a primitive element of Pic S. Hence $\lambda = 2$ and $\Delta(X, S) = 1$. Then we have case (iv) [Fuj90, Ch. 1, §9].

4.3. Lemma (cf. [Pro10b, Th. 1.4 (vii)]). Let X be a Fano threefold with terminal singularities and with $q := qQ(X) \geq 5$. Let A be a Weil divisor such that $-K_X \sim_q qA$. If $\dim |A| \geq 2$, then $X \cong \mathbb{P}(1^3, 2)$.

Proof. We first consider the case rank $Cl X = 1$ and $qQ(X) = qW(X)$ (in particular, X is a \mathbb{Q}-Fano threefold and $-K_X \sim qA$). Running the computer search [2.3] we get $-K_X^3 \geq 125/2$. Then by [Pro07] we have $X \cong \mathbb{P}(1^3, 2)$.

Next consider the case $Cl X \cong \mathbb{Z}^r$ with $r > 1$ (in particular, $Cl X$ is torsion free). We get a contradiction in this case. Run the MMP. At
the end we get a \mathbb{Q}-Fano threefold with $q\mathbb{Q}(X) = q \geq 5$ and $\dim |A| \geq 2$, where $-K_X \sim qA$. By the above $X \simeq \mathbb{P}(1^3, 2)$ and $\dim |A| = \dim |A| = 2$. Let $P \in X$ be the point of type $1/2(1, 1, 1)$. Consider the final step $g: \tilde{X} \to X$ of the MMP, a divisorial contraction, and let $E \subset \tilde{X}$ be its exceptional divisor. There are the following possibilities:

(a) $g(\tilde{E}) = P$. Then $K_{\tilde{X}} \sim q^*K_X + \frac{1}{2}\tilde{E}$, $\tilde{E} \simeq \mathbb{P}^2$, and $\mathcal{O}_{\tilde{E}}(\tilde{E}) \simeq \mathcal{O}_{\mathbb{P}^2}(-2)$ [Kaw96]. Hence, $\mathcal{O}_{\tilde{E}}(-K_{\tilde{X}}) \simeq \mathcal{O}_{\mathbb{P}^2}(1)$. We get a contradiction because $-K_{\tilde{X}}$ is divisible by $q \geq 5$.

(b) $g(\tilde{E})$ is either a smooth point or a curve. In this case $g(\tilde{E}) \not\subset \text{Bs}|A| = \{P\}$. On the other hand, g is a $K_{\tilde{X}}$-negative contraction, a contradiction.

Finally assume that $\text{Cl}X$ has a torsion element $\xi \in \text{Cl}X$ of order $n \geq 2$, defining a μ_n-cover $\pi: X' \to X$ that is étale in codimension 2. By the above, $X' \simeq \mathbb{P}(1^3, 2)$. Since $\dim H^0(X', \pi^*A) = \dim H^0(X, A) = 3$, the action of μ_n on $H^0(X', \pi^*A) = H^0(\mathcal{O}_{\mathbb{P}(1^3, 2)}(1))$ is trivial. On the other hand, we can take independent sections $x_1, x_2, x_3 \in H^0(\mathcal{O}_{\mathbb{P}(1^3, 2)}(1))$ as orbit representatives at the $1/2(1, 1, 1)$-point $P' \in X'$. This contradicts that the point $(X', P')/\mu_n$ is terminal.

\[\square\]

Similar to Lemma 4.3 one can prove the following.

4.4. Lemma (cf. Pro10b Th. 1.4 (vi)). Let X be a Fano threefold with terminal singularities and with $q := \mathbb{Q}(X) \geq 7$. Let A be a Weil divisor such that $-K_X \sim qA$. If $\dim |A| \geq 1$, then $X \simeq \mathbb{P}(1^2, 2, 3)$.

4.5. Proposition. Let X be a \mathbb{Q}-Fano threefold and let $q := \mathbb{Q}(X)$. Let \mathcal{M} be a linear system on X such that $\dim \mathcal{M} \geq 4$ and $-K_X \sim 2\mathcal{M} + \Xi$, where Ξ is an effective Weil divisor, $\Xi \neq 0$. Then $\text{Cl}X \simeq \mathbb{Z}$, the class of Ξ generates $\text{Cl}X$, $q = 2n + 1$ is odd, and $\mathcal{M} \sim n\Xi$. Moreover, one of the following holds:

(i) $q = 13$, $X \simeq \mathbb{P}(1, 3, 4, 5)$;
(ii) $q = 11$, $X \simeq \mathbb{P}(1, 2, 3, 5)$;
(iii) $q = 9$, $X \simeq X_6 \subset \mathbb{P}(1, 2, 3, 4, 5)$;
(iv) $q = 7$, $X \simeq \mathbb{P}(1^2, 2, 3)$;
(v) $q = 5$, $X \simeq X_4 \subset \mathbb{P}(1^2, 2^2, 3)$;
(vi) $q = 5$, $X \simeq \mathbb{P}(1^3, 2)$;
(vii) $q = 3$, $X \simeq X_2 \subset \mathbb{P}^4$.

Proof. By our assumption $q \geq 3$. If $q \geq 9$, then the assertion follows by Pro10b Prop. 3.6] and Theorem 4.3(i). So we assume that $3 \leq q \leq 8$.

Let A be a Weil divisor such that $-K_X \sim qA$ and let n be the integer such that $\mathcal{M} \sim qnA$. If $\text{Cl}X$ is torsion free, we can run the computer search for $q := \mathbb{Q}(X) = q \geq 4$ and $g(\tilde{X}) \geq 21$. Then by Theorem 4.3 we
get one of cases \((\text{iv})\) \((\text{vii})\). Thus from now on we assume that \(\text{Cl} \, X\) contains a nontrivial torsion element.

We may assume that \(\mathcal{M}\) has no fixed components. If the pair \((X, \mathcal{M})\) is terminal, then \(X\) is as in \((\text{vi})\) or \((\text{vii})\) by Lemma 4.2. Assume that the pair \((X, \mathcal{M})\) is not terminal. Apply construction 2.2 to \((X, \mathcal{M})\). We can write

\[
K_{\tilde{X}} + 2\tilde{M} + \tilde{\Xi} + a\tilde{E} \sim f^*(K_X + 2\mathcal{M} + \Xi) \sim 0,
\]

where \(a \in \mathbb{Z}_{>0}\). Hence,

\[
(4.5.1) \quad K_{\tilde{X}} + 2\tilde{M} + \tilde{\Xi} + a\tilde{E} \sim 0.
\]

First, we consider the case where \(f\) is not birational. Then we are in the situation of 2.2.4. In particular, \(\tilde{X}\) is either \(\mathbb{P}^1\) or a del Pezzo surface as in 2.2.5.

Assume that \(\mathcal{M}\) is \(f\)-horizontal. Restricting the relation \((4.5.1)\) to a general fiber \(F\) of \(f\) we get

\[
-K_{\tilde{X}} \sim_q 2\tilde{M}|_F + \tilde{\Xi}|_F + a\tilde{E}|_F,
\]

where the divisors \(\tilde{M}|_F\) and \(\tilde{E}|_F\) are ample. This is possible only if \(F \simeq \mathbb{P}^2\), \(\tilde{X} \simeq \mathbb{P}^1\), \(O_F(\tilde{M}) \simeq O_F(\tilde{E}) \simeq O_{\mathbb{P}^2}(1)\), and \(a = 1\). From the exact sequence

\[
0 \rightarrow O_{\mathbb{P}^2}(\tilde{M} - F) \rightarrow O_{\mathbb{P}^2}(\tilde{M}) \rightarrow O_{\mathbb{P}^2}(\tilde{M}) \rightarrow 0
\]

we get

\[
\dim H^0(O_{\mathbb{P}^2}(\tilde{M} - F)) \geq \dim H^0(O_{\mathbb{P}^2}(\tilde{M})) - \dim H^0(O_{\mathbb{P}^2}(\tilde{M})) \geq 2.
\]

Thus \(\tilde{M} \geq F + L\), where \(L \in |M - F|\) is a moveable divisor. Hence there is a decomposition \(-K_X \sim 2F + 2L + \Xi\). In particular, \(q \geq 5\) and \(F \sim_{q} L \sim_{q} A\). This implies that \(f\) has no multiple fibers. So, the group \(\text{Cl} \, \tilde{X}\) is torsion free. Since \(O_{\mathbb{P}^2}(\tilde{E}) \simeq O_{\mathbb{P}^2}(1)\), the class of \(\tilde{E}\) is not divisible in \(\text{Cl} \, \tilde{X}\). Hence \(\text{Cl} \, X\) is also torsion free, a contradiction.

Therefore, \(\tilde{M}\) is \(f\)-vertical. Then \(\tilde{M} = \tilde{f}^*B\), where \(B\) is a linear system of Weil divisors on \(\tilde{X}\) with \(\dim B \geq 4\). We use the notation of 2.2.4. Let \(G = \tilde{f}^*\Theta\). We can write \(B \sim_{q} t\Theta\) for some \(t \in \mathbb{Z}_{>0}\). Then

\[
-K_{\tilde{X}} \sim_{q} 2t\tilde{C} + \tilde{\Xi} + a\tilde{E},
\]

so \(8 \geq q \geq 2t + 1\) and \(t \leq 3\). If \(\tilde{X} \simeq \mathbb{P}^1\), we obviously have \(\dim B \leq 2\). Therefore, \(\tilde{X}\) is a surface. Now we use 2.2.5.

If \(t = 1\), then \(\dim B \leq 2\), a contradiction. Consider the case \(t = 2\). Then \(\dim B \geq 4\) only in the case \(\tilde{X} \simeq \mathbb{P}^2\). Then \(q \geq 5\), \(G \sim_{q} A\), and \(m = 2\). Since \(\dim |G| \geq 2\), by Lemma 1.3 we have \(X \simeq \mathbb{P}(1^5, 2)\). Consider the case \(t = 3\). Then \(q \geq 7\) and \(G \sim_{q} A\). Since \(\dim B \geq 4\), we have either \(\tilde{X} \simeq \mathbb{P}^2\), \(\tilde{X} \simeq \mathbb{P}(1, 1, 2)\), or \(K_{\tilde{X}}^2 = 1\). In either case
dim |G| ≥ 1 (recall that if $K_X^2 = 1$, we take $\Theta = -K_X$). By Lemma 4.4 we get $X \simeq \mathbb{P}(1^2, 2, 3)$.

Now assume that \overline{f} is birational. We have

$$-K_X \sim 2\hat{M} + \hat{\Xi} + a\hat{E},$$

where $\dim \hat{M} \geq \dim M$. If (\hat{X}, \hat{M}) is not terminal, we can repeat the procedure 2.2 and continue. Thus we may assume that (\hat{X}, \hat{M}) is as in (i)–(vii). In particular, $\text{Cl} \hat{X}$ is torsion free and $\hat{\Xi} + a\hat{E} \sim \hat{\Theta}$, where $\hat{\Theta}$ is the ample generator of $\text{Cl} \hat{X}$. So, $\hat{\Xi} = 0$, $a = 1$, and $\hat{E} \sim \hat{\Theta}$. In particular, the class of \hat{E} is a primitive element of $\text{Cl} \hat{X} \simeq \mathbb{Z} \oplus \mathbb{Z}$. In this case, $\text{Cl} X$ is also torsion free. □

5. Proof of Theorem 1.5

5.1. Let X be a \mathbb{Q}-Fano threefold such that $-K_X \sim 2A$ for a primitive element $A \in \text{Cl} X$. Assume that K_X is not Cartier and $\dim |A| \geq 4$. Apply Construction 2.2 with $M := |A|$ and $\Xi = 0$. By Lemma 4.2 the pair (X, M) is not terminal. Hence in the notation of (2.2.3), the discrepancy $a > 0$. On the other hand, a is an integer. Therefore, $a \geq 1$.

5.2. Lemma. The map \overline{f} in (2.2.2) is birational.

Proof. Suppose that \overline{f} is not birational. Let \overline{F} be a general fiber of \overline{f}. If \overline{M} is \overline{f}-vertical, then $\overline{M} = \overline{f}^*\hat{B}$, where \hat{B} is a linear system on \hat{X} whose class generates $\text{Cl} \hat{X}/\text{Tors}$. But then $\dim \overline{M} = \dim \hat{B} \leq 2$ by 2.2.5 contradicting our assumption.

Thus \overline{M} is \overline{f}-horizontal. Then $-K_{\overline{F}} = 2\overline{M}|_{\overline{F}} + a\overline{E}|_{\overline{F}}$. This implies that $\overline{F} \simeq \mathbb{P}^2$, that is, \overline{f} is a generically \mathbb{P}^2-bundle and $\mathcal{O}_{\overline{F}}(\overline{M}) \simeq \mathcal{O}_{\mathbb{P}^2}(1)$. From the exact sequence

$$0 \rightarrow \mathcal{O}_{\overline{X}}(\overline{M} - \overline{F}) \rightarrow \mathcal{O}_{\overline{X}}(\overline{M}) \rightarrow \mathcal{O}_{\overline{F}}(\overline{M}) \rightarrow 0$$

we get

$$\dim H^0(\mathcal{O}_{\overline{X}}(\overline{M} - \overline{F})) \geq 2.$$

Therefore, $\overline{M} \ni \overline{F} + \overline{T}$, where \overline{F} and \overline{T} are moveable divisors. This contradicts $q \mathbb{Q}(X) = 2$. □

5.3. Thus \overline{f} is birational. In this case, \hat{X} is a \mathbb{Q}-Fano and

$$(5.3.1) \quad -K_{\hat{X}} \sim 2\hat{M} + a\hat{E} \quad \text{with} \quad a > 0, \ \dim \hat{M} \geq 4.$$

By Proposition 4.5 the class of \hat{E} is the ample generator of $\text{Cl} \hat{X} \simeq \mathbb{Z}$, $\hat{q} = 2n + 1$, and $\hat{M} \subset |n\hat{E}|$. Moreover, \hat{X} belongs to one of the possibilities listed in Proposition 4.5.
Assume first that \(q > 3 \). The case \(q = 3 \) will be considered in the next section. We make frequent use of the following easy observation.

5.3.2. Remark. Assume that in the notation of 5.3 there is a member \(\hat{M} \in \mathcal{M} \) such that \(\hat{M} = \hat{L}_1 + \hat{L}_2 \), where \(\hat{L}_1 \) and \(\hat{L}_2 \) are effective ample Weil divisors. Then either \(\text{Supp} \hat{L}_1 = \hat{E} \) or \(\text{Supp} \hat{L}_2 = \hat{E} \). Indeed, we can write

\[
\mathcal{M} \sim q \mathcal{T}_1 + \mathcal{T}_2 + \gamma \mathcal{F},
\]

where \(\mathcal{T}_i \) is the proper transform of \(\hat{L}_i \) and \(\gamma \geq 0 \). Therefore,

\[
\mathcal{M} \sim f_\ast \chi_\ast^{-1} \mathcal{M} \sim q f_\ast \chi_\ast^{-1} \mathcal{T}_1 + f_\ast \chi_\ast^{-1} \mathcal{T}_2 + \gamma \mathcal{F}.
\]

Since the class of \(A \) is a primitive element of \(\text{Cl} \ X \), we have either \(f_\ast \chi_\ast^{-1} \mathcal{T}_1 = 0 \) or \(f_\ast \chi_\ast^{-1} \mathcal{T}_2 = 0 \) (and \(\gamma = 0 \)).

5.3.3. Corollary. Assume that in the notation of 5.3 we have \(\dim |n \hat{E}| = 4 \). Then for any partition \(n = n_1 + n_2 \), \(n_i \in \mathbb{Z} \) either \(\dim |n_1 \hat{E}| \leq 0 \) or \(\dim |n_2 \hat{E}| \leq 0 \).

Proof. In this case \(\mathcal{M} = |n \hat{E}| \) is a complete linear system. Hence, one can take \(\hat{L}_i \in |n_i \hat{E}| \).

We consider the cases of Proposition 4.5 separately.

5.3.4. Cases [i], [iii] and [v]. Then \(\dim |n \hat{E}| = 4 \) and \(n \) is even. Apply Corollary 5.3.3 with \(n_1 = n_2 = n/2 \). We get a contradiction because \(\dim |n_i \hat{E}| > 0 \).

5.3.5. Case [ii], that is, \(\hat{X} \simeq \mathbb{P}(1,2,3,5) \). Then \(n = 5 \) and \(\dim |n \hat{E}| = 5 \). Thus \(\mathcal{M} \subset |5 \hat{E}| \) is a subsystem of codimension \(\leq 1 \). Since \(\dim 2 \hat{E} = 1 \), we can take \(\hat{L}_1 \in |2 \hat{E}| \) so that \(\hat{L}_1 \neq 2 \hat{E} \). Since \(\dim |3 \hat{E}| = 2 \), there exists a one-dimensional family of divisors \(\hat{L}_2 \in |3 \hat{E}| \) such that \(\hat{L}_1 + \hat{L}_2 \in \mathcal{M} \). So we may assume that \(\hat{L}_2 \neq 3 \hat{E} \). By Remark 5.3.2 we get a contradiction.

5.3.6. Case [iv], that is, \(\hat{X} \simeq \mathbb{P}(1^2,2,3) \). Then \(n = 3 \) and \(\dim |n \hat{E}| = 6 \). Thus \(\mathcal{M} \subset |3 \hat{E}| \) is a subsystem of codimension \(\leq 2 \). Since \(\dim |2 \hat{E}| = 1 \), we can take \(\hat{L}_1 \in |2 \hat{E}| \) so that \(\hat{L}_1 \neq 2 \hat{E} \). Since \(\dim |2 \hat{E}| = 3 \), there exists a one-dimensional family of divisors \(\hat{L}_2 \in |2 \hat{E}| \) such that \(\hat{L}_1 + \hat{L}_2 \in \mathcal{M} \). So we may assume that \(\hat{L}_2 \neq 2 \hat{E} \). By Remark 5.3.2 we get a contradiction.

5.3.7. Case [vi], that is, \(\hat{X} \simeq \mathbb{P}(1^3,2) \). Then \(n = 2 \) and \(\dim |n \hat{E}| = 6 \). Thus \(\mathcal{M} \subset |2 \hat{E}| \) is a subsystem of codimension \(\leq 2 \).

Assume that \(\mathcal{O}(\hat{F}) \) is a curve. Then

\[
K_{\hat{X}} = \mathcal{T}^* K_{\hat{X}} + \mathcal{F}, \quad \mathcal{E} = \mathcal{T}^* \hat{E} - \gamma \mathcal{F}.
\]
Since any member of $|\hat{E}|$ is smooth in codimension one, $\gamma \leq 1$. Moreover, since $n\hat{E}$ is not moveable for any n, we have $\gamma > 0$. Hence, $\gamma = 1$. So,

$$K_{\hat{X}} + 5\hat{E} + 4\hat{F} = \hat{f}'(K_{\hat{X}} + 5\hat{E}) \sim 0.$$

This implies that $-K_X$ is divisible by 4, a contradiction.

Hence $\hat{f}(\hat{F}) \in \hat{X}$ is a point, say \hat{P}. If $\hat{P} \in \hat{X}$ is the points of index 2, then \hat{f} is the blowup of the maximal ideal [Kaw90]. In this case \hat{X} has exactly two the extremal contractions: \hat{f} and the \mathbb{P}^1-bundle induced by the projection $\mathbb{P}(1^3, 2) \to \mathbb{P}^2$. On the other hand, since the second contraction must be birational, a contradiction. Hence $\hat{P} \in \hat{X}$ is a smooth point.

Let $\hat{L} := |\hat{E}|$. Take a general member $\hat{L}_1 \in \hat{L}$. Dimension count shows that there exists $\hat{L}_2 \in \hat{L}$ such that $\hat{L}_1 + \hat{L}_2 \in \hat{M}$. If $\hat{L}_2 \neq \hat{E}$, we get a contradiction by Remark 5.3.2. Thus $\hat{L}_2 = \hat{E}$ for any choice of $\hat{L}_1 \in \hat{L}$. Therefore, $\hat{E} + \hat{L} \subset \hat{M}$ and we can write $\hat{M} \sim_{\hat{q}} \hat{L} + \hat{E} + \gamma \hat{F}$, where $\gamma \geq 0$. Then

$$0 \sim K_{\hat{X}} + 2\hat{M} + \hat{E} \sim_{\hat{q}} K_{\hat{X}} + 2\hat{L} + 3\hat{E} + 2\gamma \hat{F}.$$

Note that the only base point of \hat{L} is the point of index 2. Hence, $\hat{L} \sim_{\hat{q}} \hat{f}' \hat{L}$. Let $\hat{L}' \subset \hat{L}$ be the subsystem consisting of elements passing through \hat{P}. Then we can write

$$\hat{L} \sim_{\hat{q}} \hat{f}' \hat{L}' - \delta \hat{F} \sim_{\hat{q}} \hat{L} - \delta \hat{F}, \quad \delta > 0.$$

Therefore,

$$0 \sim_{\hat{q}} K_{\hat{X}} + 2\hat{L} + 3\hat{E} + 2\gamma \hat{F} \sim_{\hat{q}} K_{\hat{X}} + 2\hat{L}' + 3\hat{E} + 2(\delta + \gamma)\hat{F}.$$

This gives us $-K_X \sim_{\hat{q}} 2\hat{L}' + 2(\delta + \gamma)\hat{F}$ which contradicts $q\mathbb{Q}(X) = 2$.

6. Proof of Theorem 1.5 (continued)

6.1. In this section we consider the case [vii] that is, we assume that $\hat{X} = Q \subset \mathbb{P}^4$ is a smooth quadric. Then $\hat{M} = |\mathcal{O}_Q(1)|$ is a complete linear system. In particular, \hat{M} is base point free. Hence, $\hat{M} \sim_{\hat{q}} \hat{f}' \hat{M}$. We also have $\hat{E} \in |\mathcal{O}_Q(1)|$ and $\hat{f}(\hat{F}) \subset \hat{E}$.

6.2. Lemma. $\Gamma := \hat{f}(\hat{F})$ is a curve.

Proof. Assume that $\hat{f}(\hat{F})$ is a point. Let $\hat{M}' \subset \hat{M}$ be the subsystem consisting of elements passing through $\hat{f}(\hat{F})$. Then we can write

$$\hat{M}' \sim_{\hat{q}} \hat{f}' \hat{M}' - \delta \hat{F} \sim_{\hat{q}} \hat{M} - \delta \hat{F}, \quad \delta > 0.$$
Therefore,

\[0 \sim_\mathbb{Q} \mathcal{I} \left(K_{\tilde{X}} + 2\mathcal{M}' + \tilde{E} \right) \sim_\mathbb{Q} \mathcal{I} \left(K_{\tilde{X}} + 2\mathcal{M} + \tilde{E} \right) \sim_\mathbb{Q} K_{\tilde{X}} + 2\mathcal{M} + \tilde{E} \sim_\mathbb{Q} K_{\tilde{X}} + 2\mathcal{M}' + \tilde{E} + 2\delta \mathcal{F}. \]

This gives us \(-K_X \sim_\mathbb{Q} 2\mathcal{M}' + 2\delta \mathcal{F}\) which contradicts \(\mathbb{Q}(X) = 2\). \(\square\)

6.3. Lemma. \(\mathcal{E} \simeq \mathbb{P}(1, 1, 2), \mathbb{F}_2, \text{ or } \mathbb{P}^1 \times \mathbb{P}^1.\)

Proof. Clearly, \(\tilde{\mathcal{E}} \simeq \mathbb{P}(1, 1, 2)\) or \(\mathbb{P}^1 \times \mathbb{P}^1.\) In particular, the pair \((\tilde{X}, \tilde{S})\) is plt. Since \(K_{\tilde{X}} \sim_\mathbb{Q} \mathcal{I} K_{\tilde{X}} + \mathcal{F}\) and \(\tilde{S}\) is smooth at the generic point of \(\Gamma\), we have

\[(6.3.1) \quad K_{\tilde{X}} + \tilde{S} \sim_\mathbb{Q} \mathcal{I} \left(K_{\tilde{X}} + \tilde{S} \right). \]

Hence the pair \((\tilde{X}, \tilde{S})\) is plt and the divisor \(K_{\tilde{X}} + \tilde{S}\) is Cartier. By the adjunction, the surface \(\tilde{S}\) has at worst Du Val singularities. Moreover, \(K_{\tilde{S}} = \mathcal{I} \left(K_{\tilde{S}} \right)\), that is, the restriction \(\mathcal{I} \tilde{S}\) is either an isomorphism or the minimal resolution of \(\tilde{S}\). \(\square\)

6.4. Lemma. \(-K_{\overline{X}}\) is nef.

Proof. Recall that by our construction \(\overline{X}\) has exactly two extremal rays. Denote them by \(R_1\) and \(R_2\). One of them, say \(R_1\), is generated by nontrivial fibers of \(\mathcal{I}\). Let \(C\) be an extremal curve on \(X\) that generates \(R_2\). Assume that \(-K_{\overline{X}}\) is not nef. Then \(K_{\overline{X}} \cdot C > 0\) and \(C\) must be a flipped curve (because a divisorial contraction must be \(K\)-negative in our situation). Since \(-K_{\overline{X}} \sim_\mathbb{Q} \tilde{S} + 2\mathcal{I} \tilde{S}\), we have \(\overline{S} \cdot C < 0\). In particular, \(C \subset \overline{S}\). Since \(C\) is a flipped curve, it cannot be moveable on \(\overline{S}\), that is, \(\dim |C| = 0\). By Lemma 6.3, the only possibility is \(\mathcal{E} \simeq \mathbb{F}_2\) and \(C\) is the negative section of \(\mathbb{F}_2\). But in this case \(C\) is contracted by \(\mathcal{I}\) to a point, that is, the class of \(C\) lies in \(R_1\), a contradiction. \(\square\)

6.5. Lemma. \(K_{\overline{X}}\) is not Cartier at some point of \(\overline{S}\).

Proof. By (6.3.1) the divisor \(K_{\overline{X}}\) is Cartier outside of \(\overline{S}\). Assume that \(K_{\overline{X}}\) is Cartier near \(\overline{S}\). Since \(-K_{\overline{X}}\) is nef, the map \(\overline{X} \dashrightarrow \tilde{X}\) is either an isomorphism or a flop. In both cases \(\tilde{X}\) has the same type of singularities as \(X\), that is, \(K_{\tilde{X}}\) is Cartier. By the classification of extremal contractions of Gorenstein terminal treefolds [Cut88] the divisor \(2K_{\tilde{X}}\) is Cartier. This contradicts the following remark. \(\square\)

6.5.1. Corollary. The singularities of \(\Gamma\) are worse than locally complete intersection points.

Proof. Indeed otherwise by [KM92, Prop. 4.10.1] the map \(\overline{f}\) is the blowup of \(\Gamma\) and \(K_{\overline{X}}\) is Cartier. \(\square\)
6.5.2. Corollary. \(\hat{E} \simeq \mathbb{P}(1,1,2) \), the curve \(\Gamma \) is not a Cartier divisor on \(\hat{E} \), and \(\Gamma \) is singular at the vertex of \(\mathbb{P}(1,1,2) \).

6.6. Lemma. \(\deg \Gamma = 5 \).

Proof. Let \(\hat{C} \subset \hat{E} \) be a general hyperplane section. Since \(-K_X \) is nef,
\[
0 \leq -K_X \cdot \hat{C} = -K_X \cdot \hat{C} - (\Gamma \cdot \hat{C})_{\hat{E}} = 6 - \deg \Gamma.
\]
Since \(\Gamma \) is not a Cartier divisor on \(\hat{E} \), its degree should be odd. If \(\deg \Gamma \neq 5 \), then \(\Gamma \) is either a line or a twisted cubic. In particular, it is smooth, a contradiction. \(\square \)

6.7. Thus \(\deg \Gamma = 5 \) and \(\Gamma \) is singular. Then the curve \(\Gamma \) can be given, in some coordinate system \(x_1, x_1', x_2 \) in \(S \simeq \mathbb{P}(1,1,2) \), by the equation \(x_2\phi_3 + \phi_5 \), where \(\phi_k = \phi_k(x_1, x_1') \) is a homogeneous polynomial of degree \(k \). So, \(P \) is a triple point of \(\Gamma \) and \(\Gamma \) has no singular points other than \(P \). Thus \(\Gamma \) is as in Theorem 3.3. According to \[\text{KM92 \ Th. 4.9} \] the extraction \(\overline{f} : X \rightarrow Q = \hat{X} \) is unique up to isomorphism over \(Q \). Since \(\rho(\overline{X}/Q) = 2 \), the Sarkisov link \(Q \leftarrow \overline{X} \rightarrow \hat{X} \rightarrow X \) is uniquely determined. This completes the proof of Theorem 3.3.

References

[Al94] Valery Alexeev. General elephants of \(\mathbb{Q} \)-Fano 3-folds. Compositio Math., 91(1):91–116, 1994.

[B\+\] Gavin Brown et al. Graded ring database.

[BKR10] G. Brown, M. Kerber, and M. Reid. Fano 3-folds in codimension 4, Tom and Jerry, Part I. ArXiv e-print, 1009.4313, 2010. to appear in Comp. Math.

[BS07a] Gavin Brown and Kaori Suzuki. Computing certain Fano 3-folds. Japan J. Indust. Appl. Math., 24(3):241–250, 2007.

[BS07b] Gavin Brown and Kaori Suzuki. Fano 3-folds with divisible anticanonical class. Manuscripta Math., 123(1):37–51, 2007.

[CPR00] Alessio Corti, Aleksandr Pukhlikov, and Miles Reid. Fano 3-fold hypersurfaces. In Explicit birational geometry of 3-folds, volume 281 of London Math. Soc. Lecture Note Ser., pages 175–258. Cambridge Univ. Press, Cambridge, 2000.

[CR02] Alessio Corti and Miles Reid. Weighted Grassmannians. In Algebraic geometry, pages 141–163. de Gruyter, Berlin, 2002.

[Cut88] Steven Cutkosky. Elementary contractions of Gorenstein threefolds. Math. Ann., 280(3):521–525, 1988.

[Fuj90] Takao Fujita. Classification theories of polarized varieties, volume 155 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.

[Kaw88] Yujiro Kawamata. Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces. Ann. of Math. (2), 127(1):93–163, 1988.
[Kaw92] Yujiro Kawamata. Boundedness of \mathbb{Q}-Fano threefolds. In *Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989)*, volume 131 of *Contemp. Math.*, pages 439–445, Providence, RI, 1992. Amer. Math. Soc.

[Kaw96] Yujiro Kawamata. Divisorial contractions to 3-dimensional terminal quotient singularities. In *Higher-dimensional complex varieties (Trento, 1994)*, pages 241–246. de Gruyter, Berlin, 1996.

[KM92] János Kollár and Shigefumi Mori. Classification of three-dimensional flips. *J. Amer. Math. Soc.*, 5(3):533–703, 1992.

[Mor82] S. Mori. Threefolds whose canonical bundles are not numerically effective. *Ann. Math.*, 115:133–176, 1982.

[MP08] Shigefumi Mori and Yuri Prokhorov. On \mathbb{Q}-conic bundles. *Publ. Res. Inst. Math. Sci.*, 44(2):315–369, 2008.

[Pro07] Yu. Prokhorov. The degree of \mathbb{Q}-Fano threefolds. *Russian Acad. Sci. Sb. Math.*, 198(11):1683–1702, 2007.

[Pro10a] Yu. Prokhorov. G-Fano threefolds, I. *ArXiv e-print*, 1012.4959, 2010. to appear in Advances in Geometry.

[Pro10b] Yuri Prokhorov. \mathbb{Q}-Fano threefolds of large Fano index. I. *Doc. Math.*, J. DMV, 15:843–872, 2010.

[Pro10c] Yuri Prokhorov. \mathbb{Q}-Fano threefolds of large Fano index, II. *ArXiv e-print*, 1010.3404, 2010.

[Rei83] Miles Reid. Minimal models of canonical 3-folds. In *Algebraic varieties and analytic varieties (Tokyo, 1981)*, volume 1 of *Adv. Stud. Pure Math.*, pages 131–180. North-Holland, Amsterdam, 1983.

[Rei87] Miles Reid. Young person’s guide to canonical singularities. In *Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985)*, volume 46 of *Proc. Sympos. Pure Math.*, pages 345–414. Amer. Math. Soc., Providence, RI, 1987.

[RS03] Miles Reid and Kaori Suzuki. Cascades of projections from log del Pezzo surfaces. In *Number theory and algebraic geometry*, volume 303 of *London Math. Soc. Lecture Note Ser.*, pages 227–249. Cambridge Univ. Press, Cambridge, 2003.

[Suz04] Kaori Suzuki. On Fano indices of \mathbb{Q}-Fano 3-folds. *Manuscripta Math.*, 114(2):229–246, 2004.

Department of Algebra, Faculty of Mathematics, Moscow State University, Moscow 117234, Russia
Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Str., Moscow 117312, Russia

E-mail address: prokhor@gmail.com

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

E-mail address: Miles.Reid@warwick.ac.uk