Caveolin-1 Protects B6129 Mice against *Helicobacter pylori* Gastritis

Ivana Hitkova1, Gang Yuan2, Florian Anderl3, Markus Gerhard3,4, Thomas Kirchner5, Simone Reu5, Christoph Roècken6, Claus Schäfer7, Roland M. Schmid8, Roger Vogelmann1, Matthias P. A. Ebert1, Elke Burgermeister1*

1 Department of Medicine II, Universitätssmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 2 Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China, 3 Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany, 4 German Centre for Infection Research (DFZI), München, Germany, 5 Institute of Pathology, Klinikum der Universität München, München, Germany, 6 Department of Pathology, Christian-Albrechts Universität, Kiel, Germany, 7 Department of Medicine II, Klinikum der Universität München, München, Germany, 8 Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany

Abstract

Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by *Helicobacter pylori* (*H. pylori*) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in *H. pylori* infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient *H. pylori* strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient *H. pylori* strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS+Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGAP/DLC1 to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, *H. pylori* down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, *H. pylori* activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against *H. pylori*-induced inflammation and tissue damage. We propose that *H. pylori* exploits down-regulation of Cav1 to subvert the host’s immune response and to promote signalling of its virulence factors in host cells.

Citation: Hitkova I, Yuan G, Anderl F, Gerhard M, Kirchner T, et al. (2013) Caveolin-1 Protects B6129 Mice against *Helicobacter pylori* Gastritis. PLoS Pathog 9(4): e1003251. doi:10.1371/journal.ppat.1003251

Editor: Steven R. Blanke, University of Illinois, United States of America

Received May 23, 2012; **Accepted** February 4, 2013; **Published** April 11, 2013

Copyright: © 2013 Hitkova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants to EB and MPfE from the Deutsche Krebshilfe (108287) and DFG (BU-2285). MPfE is also supported by grants from the Deutsche Krebshilfe (107885), DFG (SFB 824, TP B1), Else Kröner Stiftung (Ng 1140/07/A104/06) and BMBF (Mobimed 01EZ0802; KMU-innovativ No 0315116B. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: elke.burgermeister@medma.uni-heidelberg.de

Introduction

Helicobacter pylori (*H. pylori*) is a Gram-negative bacterium which colonizes stomachs of approx. 50% of the world’s population and increases the risk for development of chronic gastritis, peptic ulcer disease, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mucosal atrophy and gastric cancer (GC) [1-2]. Based on this etiology, *H. pylori* has been classified as a class I carcinogen by the World Health Organisation (WHO) in 1994 [3].

The two major *H. pylori* toxins [4], CagA and VacA, are internalized into gastric epithelial cells by injection via the bacterial type IV secretion system (CagA) [5] or by direct insertion into lipid rafts (VacA) [6,7]. Lipid rafts are cholesterol and sphingolipid-rich microdomains of the plasma membrane [8,9] which are exploited by many pathogens, including viruses, parasites and bacteria, to facilitate uptake of whole organisms and/or internalisation of toxins into host cells [10,11,12]. For example, *Neisseria spe*c. uses lipid rafts and Rho-mediated signaling of the actin cytoskeleton to gain access to the cytosol [13]. *Pseudomonas aeruginosa* exploits lipid raft-associated toll-like receptor 2 for infection of lung epithelial cells [14].

Caveolin-1 (Cav1) is the 21–24 kDa major and essential structural protein of caveolae, a specialized form of lipid raft microdomains. Caveolae are 50–100 nm flask/tube-shaped invaginations of the plasma membrane abundant in macrophages, endothelial and smooth muscle cells, type I pneumocytes and adipoctyes, where they participate in cellular transport processes including endocytosis, cholesterol efflux and membrane traffic [15,16]. In this context, Cav1 can also act as an inhibitor of clathrin-independent endocytosis and block pathogen/toxin uptake [17,18]. Through binding to its scaffolding domain, Cav1 directly inhibits a plethora of receptors and enzymes including tyrosine kinases of the Src and Ras family, G-proteins and nitric oxide synthases [15]. In addition to a role in membrane traffic,
Caveolin-1 and Helicobacter pylori

Author Summary

Infection with the bacterium Helicobacter pylori (H. pylori) mainly affects children in the developing countries who are at risk to progress to gastric cancer (GC) as adults after many years of persistent infection, especially with strains which are positive for the oncogenic virulence factor CagA. Eradication of H. pylori by antibiotics is a treatment of choice but may also alter the susceptibility to allergies and other tumor types. Thus, novel diagnostic or prognostic markers are needed which detect early molecular changes in the stomach mucosa during the transition of chronic inflammation to cancer. In our study, we found that the tumor suppressor caveolin-1 (Cav1) is reduced upon infection with H. pylori, and CagA was sufficient but not necessary for this down-regulation. Loss of Cav1 was caused by H. pylori-dependent activation of sterol-responsive element-binding protein-1 (SREBP1), and this event abolished the interaction of Cav1 with p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1), a second bona fide tumor suppressor in gastric tissue. Conclusively, Cav1 and DLC1 may constitute novel molecular markers in the H. pylori-infected gastric mucosa before neoplastic transformation of the epithelium.

Materials and Methods

Ethics statement

Animal studies were conducted in agreement with the ethical guidelines of the Technische Universität München (German Animal Welfare Act, Deutsches Tierschutzgesetz) and had been approved (#35.2-1-54-2531-74-08) by the government of Bavaria (Regierung von Obb., Munich, Germany).

Reagents

Infection with Helicobacter pylori (H. pylori) strains G27 and SS1 was performed by oral gavage as described [31]. The average time mice from different genetic backgrounds (C57BL/6, B6129, BALB/c) take to progress to chronic gastritis and beyond (gastric atrophy, hyperplasia, dysplasia) [32] ranges between 10 and 15 month upon infection with the standardized reference strain SS1 [28,33,34,35]. We therefore decided to perform our analysis within this time frame.

Cell culture

Human embryonic kidney (HEK293), Madin-Darby canine kidney (MDCK), parental human GC cell lines (AGS, MKN45, N87) (all from the American Type Culture Collection, Rockville, MD) and stably transfected clones generated thereof were maintained as described previously [37]. Infection of cells with the cell-adapted CagA-delivery proficient H. pylori strain G27 was performed as before [36].

DNA-constructs

The expression plasmid pEGFP-CagA was mentioned elsewhere [38]. The ~800 bp fragment of the proximal human Cav1 promoter (AF019742, position 69 to 859) [24] was amplified by PCR from the genomic DNA of human normal liver and cloned into the KpnI/HindIII sites of pGL3-basic luciferase reporter plasmid (Promega GmbH, Mannheim, Germany). Isoform 4 of the human DLC1 mRNA [39] (DLC1v4, NM_001164271.1) was amplified from human hepatoma HepG2 cells and inserted in the BamHI/NotI sites of the expression vector pTarget (pT, Promega GmbH). Transient transfection and luciferase assays were performed as before [37].
Bacterial culture

H. pylori SS1 and G27 bacteria were recovered from −80°C glycerol stocks and grown on Wilkins-Chalgren (WC) blood agar plates under microaerobic conditions (10% CO2, 5% O2, 85% N2; 37°C) for 2–3 days. The mouse-adapted *H. pylori* SS1 was harvested from agar plates for *in vivo* infections as published previously [31]. The SS1 strain was PCR-positive for the cagA gene and mRNA but did not inject functional CagA protein [40] as evident by the absence of the “humming bird’ phenotype in infected AGS cells (data not shown). The cell-adapted *H. pylori* bacteria CagA-delivery proficient G27 wt and the CagA-deletion mutant G27 Delta cagA were harvested from agar plates and subsequently grown in continuous coculture with MDCK cells as described [36].

Ex vivo quantification of colony forming units (CFUs)

Whole stomachs were excised from mice, and colony formation was determined essentially as described [31]. An antral strip of the stomach was weighed, placed into 5 ml of Brucella broth and vortexed for 10 min. Dilutions of 1:10, 1:100 and 1:1000 were prepared, and 100 μl of each dilution were plated onto *H. pylori*-selective WC blood agar plates. The number of bacterial colonies was determined after 5 days and normalised to the weight of the corresponding stomach pieces.

Processing of mouse gastric tissue

The remaining stomach was washed with sterile water. An antral strip was cut, frozen in liquid nitrogen and stored at −80°C until RNA extraction. The rest of the stomach was placed into 3 ml of 4% (w/v) paraformaldehyde (PFA) in phosphate buffered saline (PBS) and incubated for 24 h at 4°C. Then, the stomach was cut along the greater and small curvature into two halves, followed by dehydration and embedding into paraffin for histological analysis.

Gentamycin protection assay

Cells were infected with the *H. pylori* G27 strain for 2 to 24 h at a multiplicity of infection (MOI) of 500:1. Thereafter, cells were washed three times with PBS to remove residual bacteria and were additionally incubated for 2 h at 37°C in a humidified atmosphere in DMEM/F12 (10% FCS, 10% Brucella broth) supplemented with gentamycin (200 μg/ml), penicillin/streptomycin (100 μg/ml) and chloramphenicol (100 μg/ml). Absence of extracellular bacteria was confirmed under the microscope, and the cells were subsequently lysed for detection of intracellular CagA by Western blot (WB).

Coimmunoprecipitation (CoIP) and Western blot (WB)

Detection of immunoprecipitated proteins by SDS-PAGE and WB was performed as before [41]. Matrix-assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS) was described in detail in [29].

Immunofluorescence

The staining was performed in triple-color mode visualizing 4,6-diamidino-2-phenylindole (DAPI), Alexa-488 and -594 using a digital camera-connected (Axiovision, release 4.4) fluorescence microscope (Axiovert 200M, Carl Zeiss MicroImaging GmbH, Hallbergmoos, Germany). Confocal microscopy (Axiovert 40, Zeiss) and 3D-reconstruction of *H. pylori*-infected cells with LSM510 (Zeiss) and Volocity (Improvision, Tubingen, Germany) was done as before [37].

Histopathological evaluation and immunohistochemistry (IHC)

Chronic active gastritis was defined by the simultaneous presence of both neutrophilic polymorphnuclear (PMN) and mononuclear cells (lymphocytes and plasma cells) within the gastric mucosa. Active (PMN) and chronic (mononuclear) infiltrate was assessed as follows: Paraffin-embedded gastric tissue was cut into 3 μm sections using a semi-automatie microtome (Leica Microsystems GmbH, Wetzlar, Germany). The sections were then stained using Hematoxylin & Eosin (H&E) solutions. The histopathological analysis was carried out by three pathologists (CR, SR, TK) blinded to the study setup. Morphological alterations in the gastric mucosa were classified according to the updated Sydney system [32,42]. The grade of gastritis was scored based on the density of intramucosal inflammatory infiltrates from mononuclear and PMN cells as published before [43]: none (0), mild (1+), moderate (2+) and severe (3+). In addition, hyperplastic or regenerative epithelial alterations, loss of parietal cells and the frequency of lymphoid follicles or lymphoid aggregates were noted. The intensity of *H. pylori* colonization in the gastric mucosa was recorded as mild (few and single bacteria in a random distribution), moderate (single and clustered bacteria in a discontinuous distribution) and severe (dense bacterial clusters covering the gastric mucosa in continuous layers). Multiple scores of different regions of the stomach were determined. Immunohistochemistry (IHC) was performed on paraffin sections as described before [44].

Electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), reverse transcription PCR (RT-PCR) and quantitative PCR (qPCR)

ChIp (Kit from Upstate, Millipore GmbH, Schwalbach, Germany) and all other methods were performed as described previously [45]. Oligonucleotides are listed in Table S1.

Cellular assays

Viability of adherent cells was measured by 1-(4,5-dimethylthiazo-ol-2-yl)/3,5-diphenyl-formazan (MTT) assay (Roche Diagnostics GmbH, Mannheim, Germany) as recommended by the manufacturer. To determine cell adhesion, 1×10^5 cells were seeded into 6 cm cell culture dishes for 1 to 6 h followed by repetitive washing with PBS. The remaining adherent cells were fixed with 4% (w/v) PFA in PBS, stained with crystal violet and subsequently counted using ImageJ (NIH, Bethesda, MD). Wound healing assays were performed essentially as described in [46]. Briefly, cells were grown to confluence in 6 cm dishes, and a 5 mm scratch was introduced into the monolayer using an inverted blue tip followed by incubation of the cell culture plates for additional 24, 48 and 72 h. Wound closure was monitored upon fixation and staining of cells with crystal violet using bright field microscopy (Axiointer 200M, Carl Zeiss MicroImaging GmbH).

Statistics

Results are means ± S.E. from at least 5 animals per genotype or 3 independent experiments from different cell passages. The software GraphPad Prism (version 4.0, La Jolla, CA) was used to analyze the data. P-values (*p<0.05) were calculated using Student’s t and Fisher Exact tests.

Accession numbers

Human: Cav1: NM_001753.4, Q03135; b2M: NM_004048.2, P61769; IL8: NM_000584.3, P10145; DCL1 v1: NM_182643.2, Q96QB1; DCL1 v4: NM_001164271.1, Q96QB1; ACS:
mice developed active chronic gastritis accompanied by infiltration of stomach tissue; *p = 0.0141; n = 15 per genotype) (Fig. 1A). Instead, the gastritis was markedly enhanced in Cav1-KO mice had no intramucosal inflammation (data not shown).

YP_002266135.1, B5Z6S0; UreB: YP_626814.1, Q1CV82. Cav1-deficiency promotes recruitment of macrophages in infection with CagA-delivery incompetent H. pylori. Cav1-deficient mice display enhanced gastritis upon infection with CagA-delivery incompetent H. pylori strain SS1. The mice were euthanized 11 months later, and Cav1.KO stomachs (*p = 0.0161, WT versus KO, n = 9 per genotype) was more severe versus WT mice (7.3 ± 2.4 WT versus 1.6 ± 0.5 KO ×10³ CFU/mg stomach tissue; *p = 0.0141; n = 15 per genotype) (Table 1). Histopathological analysis revealed that both WT and Cav1-KO mice developed active chronic gastritis accompanied by infiltration of mononuclear and polymorphonuclear (PMN) cells into the gastric mucosa (Fig. 1B). In contrast, uninfected WT and Cav1-KO mice had no intramucosal inflammation (data not shown).

Cav1-deficient mice display enhanced gastritis upon infection with CagA-delivery incompetent H. pylori SS1

To assess the histological changes induced in gastric tissue upon H. pylori infection, B6129 WT and Cav1-KO mice were infected with the mouse-adapted and CagA-delivery deficient H. pylori strain SS1. The mice were euthanized 11 months later, and H. pylori was isolated from resected stomach tissue [31]. Cav1-KO mice showed less bacterial colonisation of the gastric mucosa than WT mice (7.3 ± 2.4 WT versus 1.6 ± 0.5 KO ×10³ CFU/mg stomach tissue; *p = 0.0141; n = 15 per genotype) (Fig. 1A). Histopathological analysis revealed that both WT and Cav1-KO mice developed active chronic gastritis accompanied by infiltration of mononuclear and polymorphonuclear (PMN) cells into the gastric mucosa (Fig. 1B). In contrast, uninfected WT and Cav1-KO mice had no intramucosal inflammation (data not shown).

Cav1-deficiency promotes recruitment of macrophages into the infected gastric mucosa

To assess the identity of immune cells which contribute to H. pylori-related inflammation in Cav1-KO mice, RT-qPCR analysis of selected cytokines, surface markers and chemokines was performed (Fig. 2A). Consistent with the observed inflammation, H. pylori SS1 induced expression of TNFalpha and IFN gamma in the gastric mucosa of both WT and KO mice. In addition, we stated an increased mRNA expression of CD19 (B-cells) (1.6 ± 0.3 WT versus 3.5 ± 0.9 KO; p = 0.0512; n = 15 per genotype) and RANTES (CCL5) (1.3 ± 0.2 WT versus 2.1 ± 0.6 KO; p = 0.0449; n = 15 per genotype) in gastric tissue of H. pylori-infected Cav1-KO mice compared with infected WT mice. In contrast, mRNA levels of CD4 (T-helper cells), CD25 (T-regulatory cells) and CD86 (antigen-presenting cells) were suppressed by H. pylori independently of the Cav1 status. Immunohistochemistry (IHC) detected a marked increase of intramucosal F4/80-positive macrophages in gastric tissue of infected Cav1-KO mice compared with WT littermates (Fig. 2B). CD3-positive lymphocytes were located around and within intramucosal follicles (data not shown).

Similar results were obtained from experiments introducing rapid gastric injury in mice by injection of indomethacin [50] (Fig.S1). Consistent with the enhanced tissue damage in Cav1-KO stomachs (*p = 0.0161, WT versus KO, n = 9 per genotype), characterized by inflammation, erosion and ulceration, Cav1-deficient mice also expressed higher amounts of mRNAs encoding for the ulcer healing proteins trefoil factor-2 (TFF2) (0.6 ± 0.2 WT versus 2.5 ± 0.5 KO; *p = 0.0008; n = 9 per genotype). In sum, these data indicated that loss of Cav1 enhances the susceptibility of mice to gastric inflammation and tissue damage.

Cav1 neither alters adhesion of H. pylori strains to nor survival of human GC cells

To assess the function of Cav1 during H. pylori infection in vitro, the human gastric epithelial cell line AGS was used which had been stably transfected with Cav1 expression plasmid (AGS/Cav1) or empty vector (AGS/EV) [37]. First, we examined whether Cav1 influences cell survival upon H. pylori infection (Fig. 3A). AGS clones with and without Cav1 were infected for 48 h with the cell-adapted Cav1-delivery competent H. pylori strain G27 at different multiplicities of infection (MOI) ranging from 1:100 to 1:2000. Colorimetric MTT assays revealed that Cav1 had no effect on overall survival of AGS cells upon H. pylori infection. Similar results were obtained with Cavag-delivery incompetent H. pylori SS1 and by Western blot (WB) analysis detecting the expression and phosphorylation of survival kinases (AKT/PKB, ERK1/2, p38MAPK) (data not shown). Since both H. pylori and Cav1 interact within lipid rafts, we asked whether adhesion of bacteria to cells depends on the presence of Cav1. AGS/Cav1 and AGS/EV cells were infected (MOI = 10) with G27 (Fig. 3B, C) or SS1 (data not shown) bacteria for 30 min, followed by washing and subsequent incubation in fresh medium for 2 h. Thereafter, cells were stained for immunofluorescence microscopy, and the number of bacteria which adhered to Cav1-expressing or empty vector-transfected cells were counted (Fig. 3B, C). No differences in adhesion were observed between AGS/Cav1 and AGS/EV cells, suggesting that Cav1 does not influence adhesion of H. pylori bacteria to host cells.

Cav1 protects human GC cells against CagA-induced rearrangement of the cytoskeleton

The formation of needle-like projections (“humming bird”) is a typical morphological phenotype of AGS cells in response to infection with Cavag-delivery proficient H. pylori strains and translocation of CagA into the cytosol [47]. To examine the role of Cav1 in this stress-induced rearrangement of the actin cytoskeleton, AGS/Cav1 and AGS/EV were infected for 16 h with H. pylori G27 wt or the isogenic mutant Delta cag a (MOI = 100). Infected cells were stained as described above, and the numbers of elongated AGS cells were determined (Fig. 4A, B). Cav1-deficient AGS cells showed considerably more elongated morphologies than Cav1-expressing cells (11 ± 0.3 % AGS/EV versus 4 ± 0.8 % AGS/Cav1; *p = 1.1 × 10⁻⁴; n = 3 per clone). As expected, no “humming bird” phenotype was obtained in cells infected with the Cavag-delivery deficient SS1 or the CagA-deletion mutant G27 Delta cag a strains which are both unable to inject functional CagA protein into the host cells (data not shown).

AGS/EV cells also produced more IL8 mRNA upon H. pylori G27 infection than AGS/Cav1 cells (6.4 ± 19 EV versus 19 ± 6 Cav1; *p = 0.0176; n = 3 per clone) (Fig. 4C). These data indicated that Cav1 protects against CagA-related cell stress.
In support of these findings, cell adhesion and wound closure rates were more pronounced in AGS/Cav1 compared with AGS/EV cells (Fig. S2). Consistent with its function as a target protein of CagA and component of focal adhesions [48], WB analyses (Fig. 4D) also detected higher levels (0.4 ± 0.1 AGS/EV versus 1.4 ± 0.1 AGS/Cav1, \(*p = 0.0012; n = 3 \) per clone) of phosphor-

Figure 1. Cav1-deficient mice show enhanced gastritis upon infection with H. pylori SS1. B6129 WT and Cav1-KO mice (n = 15 per group) were infected with the mouse-adapted CagA-delivery incompetent H. pylori SS1 strain for 11 month. (A) Stomachs of Cav1-KO mice were less colonized by SS1 bacteria than those of WT mice. Ex vivo quantification of colony forming units (CFUs) per mg of resected stomach tissue. The data are presented as mean ± S.E. (n = 15 per group); \(*p = 0.0141 \) KO versus WT. (B–C) Hematoxylin & Eosin (H&E) and Warthin-Starry silver (WS) stainings from paraffin sections of mouse gastric tissue were evaluated for signs of histopathology and results were scored for individual mice (0+ no, 1+ mild, 2+ moderate, 3+ severe gastritis). Data are presented as in (A) (n = 15 per group); \(*p = 0.0002 \) KO versus WT. Cav1-KO mice show active chronic gastritis with intramucosal lymphocyte follicles, foveolar hyperplasia and loss of parietal cells. Quantitative analyses (B) are shown together with representative histology (C); magnifications 100×, 200×.

doi:10.1371/journal.ppat.1003251.g001
Caveolin-1 and Helicobacter pylori

CagA-delivery competent *H. pylori* G27 triggers binding of p120RhoGAP/DLC1 to Cav1 in human GC cells

Cav1 has been shown to be phosphorylated by cytosolic tyrosine kinases [Src, Abl] at tyrosine 14 [49], and phosphorylated Cav1 and Src both activate the small GTPases Rho/Rac/Cdc42 which regulate cytoskeletal functions [13,50]. To identify the underlying molecular mechanism how Cav1 protects against CagA-related cell stress, we assessed the signalling pathways initiated by CagA-delivery proficient *H. pylori* G27. Infection of AGS cells evoked a rapid phosphorylation of Cav1 in AGS/Cav1 cells and of Src in both AGS/Cav1 and AGS/EV cells. This result indicated that Cav1 acts downstream of CagA-dependent Src activation but upstream of the activation of the small GTPases (Fig. 5A,B). Consistent with this conclusion, protein levels of phosphorylated JNK, which resides below of Src, were higher in AGS/EV cells compared with AGS/Cav1 cells.

We were unable to detect a direct interaction or quantitative colocalization of CagA protein or *H. pylori* G27 bacteria with Cav1 in CoIP or immunofluorescence experiments (Fig. 6A,B). Genta-mycin protection assays revealed that the total amount of injected

Table 1. Histopathology of *H. pylori* gastritis.

Score	Cav1 −/−	Cav1 +/+
0	0/15	8/15
1	4/15	4/15
2+	11/15	3/15

86129 WT and Cav1-KO mice (n = 15 per genotype) were infected with *H. pylori* SS1 for 11 months. Histopathological scores of gastritis were evaluated in H&E stainings of sections from paraffin-embedded stomach tissue. Score 0 = no, 1 = mild, 2+ = moderate, 3+ = severe gastritis. Fisher Exact p = 0.001 (score 0 versus score 2+); Fisher Exact p = 0.002 (score 0 versus scores 1+,2+).

doi:10.1371/journal.ppat.1003251.t001

Figure 2. Loss of Cav1 promotes recruitment of macrophages to stomachs infected with *H. pylori* SS1. (A) Differential expression of mRNAs in mouse gastric tissue upon an 11-month infection with *H. pylori* strain SS1. CT-values from RT-qPCRs on total RNA extracted from resected stomachs were normalized to beta-2-microglobulin (b2M) and are presented as mean ± S.E. (n = 15 per group); *p*<0.05 as indicated by brackets and asterisks. Changes in mRNA levels were dependent on *H. pylori*-infection or genotype, respectively. (B) Cav1-KO mice infected with *H. pylori* SS1 for 11 month had pronounced infiltration of intramucosal macrophages. Immunohistochemistry (IHC) of F4/80-positive mononuclear cells. Representative images are shown.

doi:10.1371/journal.ppat.1003251.g002
intracellular CagA was also independent of Cav1’s presence (Fig. 6C). Thus, Cav1 neither inhibited adhesion of \textit{H. pylori} bacteria to nor injection of CagA into the host cell, but rather reduced the down-stream effects of CagA on intracellular signalling.

To identify a candidate protein which confers protection against CagA in a Cav1-dependent manner, a protein interaction screen based on MALDI-MS was performed (Fig. 7A). AGS/Cav1 cells were infected for 16 h with \textit{H. pylori} G27 (MOI = 100) followed by lysis of the cells at room temperature in MES-buffered 1% (v/v) Triton-X100. Protein bands precipitated by Cav1 antiserum were visualized by silver staining, and peptides were identified by MALDI-MS as published previously [29]. A protein fragment of \(\approx 95 \) kDa contained peptides corresponding to variant 4 of p120 Rho GTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) [51,52], a tumor suppressor associated with focal adhesions and caveolae/lipid rafts [53]. DLC1 variant 4 (DLC1v4) has a predicted size of \(\approx 110 \) kDa and was enriched in samples from cells that had been infected with \textit{H. pylori} G27 compared to uninfected cells (Table S2). These results were confirmed by CoIP of Cav1 and endogenous DLC1 protein in AGS/Cav1 cells (Fig. 7B), indicating that \textit{H. pylori} G27 evoked a specific recruitment of DLC1 to Cav1 in infected human gastric epithelial cells.

This result prompted us to amplify the cDNA of variant 4 of human DLC1 [39] from human hepatoma HepG2 cells (Fig. 7C). The cDNA was inserted into the expression vector pTarget (pTDLC1v4) followed by transient transfection into parental AGS or HEK293 cells for 24 h. WB analyses detected expression of a \(\approx 110 \) kDa protein, consistent with the predicted size of DLC1v4 [39]. Transiently transfected AGS cells were then infected with \textit{H. pylori} G27 (MOI = 100) for additional 16 h. Immunofluorescence staining revealed that DLC1 per se did not inhibit formation of the CagA-induced “humming bird” phenotype (19\% AGS/DLC1 versus 19\% AGS/EV; \(n = 3 \) per clone) compared with empty vector-transfected cells (Fig. 8A,B). Instead, DLC1 promoted cell spreading (20\% AGS/DLC1 versus 11\% AGS/EV; \(*p = 0.0067; n = 3 \) per clone) consistent with its role in regulation of focal adhesions [54,55,56] (Fig. 8A,C). Pull-down assays which detected the activity of the small GTPases Rho/Rac/Cdc42 corroborated previous findings [56,57,58] that the CagA-proficient \textit{H. pylori} G27 strain was a weak activator of these GTPases (data not shown). In sum, this data proposed that Cav1 inhibited CagA-induced cytoskeletal changes through alterations in the assembly or disassembly of focal adhesions via FAK rather than via the small GTPase pathways.

\textit{H. pylori} strains inhibit expression of Cav1 mRNA in vivo and in vitro independently of CagA

We showed previously that Cav1 is frequently down-regulated in human GC [37]. We therefore asked whether \textit{H. pylori} infection contributes to repression of the Cav1 gene. RT-qPCR analyses of total RNA isolated from stomach tissue of uninfected mice and mice infected with CagA-delivery incompetent \textit{H. pylori} SS1 (for 11 month) were performed. Infected WT mice showed a significantly reduced expression of Cav1 mRNA (13\% WT+\textit{H. pylori} versus

Figure 3. Cav1 has no effect on adhesion of \textit{H. pylori} to or on viability of human GC cells. (A) Proliferation. AGS/Cav1 and AGS/EV cells ("AGS clones") were infected with the cell-adapted CagA-delivery proficient \textit{H. pylori} strain G27 strain for 48 h at MOI ratios of 1:100 to 1:2000. O.D. values from colorimetric MTT assays were calculated as % survival + S.E. (\(n = 3 \)); n.s. Cav1 versus EV. (B–C) Adhesion. AGS clones were infected with G27 (MOI = 10) for 30 min, washed, and additionally incubated in fresh medium for 2 h before staining for immunofluorescence microscopy; green = \textit{H. pylori}, red = Cav1, blue = nuclei. Magnification \(\times 630 \). Representative images (C) are shown together with a quantitative analysis (B). Adherent bacteria per Cav1-positive and Cav1-negative cells were counted (>10 cells per field, total of 5 fields, \(n = 3 \) experiments) and presented as mean + S.E.; n.s. Cav1 versus EV.

doi:10.1371/journal.ppat.1003251.g003
38 ± 9 WT mock; *p = 0.0081; n = 15 per group) as compared to the uninfected WT mice (Fig. 9A).

Similar results were obtained from in vitro studies. Two different human GC cell lines with endogenous Cav1 expression, N87 and MKN45, and MDCK cells were infected for 3 days with CagA-delivery incompetent SS1 (Fig. 9B) or CagA-proficient G27 (Fig. 9C), H. pylori strains. In all cell lines, a robust reduction of Cav1 mRNA expression (by 62 to 85%; H. pylori versus mock;
CagA-proficient \textit{H. pylori} was shown to down-regulate the Cav1 gene independently of CagA. Recent reports on Cav1-deficient mice revealed a general depression of lipid raft-dependent endocytosis and the bacterial type IV secretion system have been thoroughly validated using \textit{in vitro} systems, including the human gastric epithelial cell line AGS [4,7]. However, the role of Cav1 in \textit{H. pylori} infection \textit{in vitro} and \textit{in vivo} remained unknown.

Discussion

In this study, we describe a novel role for Cav1 in \textit{H. pylori}-mediated gastritis and cell damage. Since many years, lipid rafts have been shown to mediate uptake of pathogens (virus, bacteria, parasites) and their toxins into host cells [8,10,11]. Internalization of the two major toxins of \textit{H. pylori}, VacA and CagA, via clathrin-independent lipid raft-dependent endocytosis and the bacterial type IV secretion system have been thoroughly validated using \textit{in vitro} systems, including the human gastric epithelial cell line AGS [4,7]. However, the role of Cav1 in \textit{H. pylori} infection \textit{in vitro} and \textit{in vivo} remained unknown.

Recent reports on Cav1-deficient mice revealed a general enhanced susceptibility to disease provoked by local or systemic infection through certain pathogens including bacteria (\textit{Salmonella typhimurium}, \textit{Pseudomonas aeruginosa}) or parasites (\textit{Trypanosoma cruzi})
Cav1-KO mice succumb to systemic infection earlier and suffer from a more severe disease phenotype than WT littermates. This sensitivity is presumably caused by certain defects in either the innate or the adaptive immune system. Since the predominant cell types with Cav1 expression are macrophages [68] and endothelial cells [69], recruitment and maturation of leukocytes (e.g. of regulatory T-cells [70]) may be impaired in absence of Cav1. Loss of Cav1 in macrophages results in defective phagocytosis [68,71] and altered release of nitric oxide [72] and pro-inflammatory cytokines (TNFalpha, IL1beta) [64,65]. Bacterial lipopolysaccharide has been reported to up-regulate Cav1 expression in B-cells [23], and Cav1 was shown to be associated with molecules of the synapse between T-cells [21,73] and antigen-presenting cells. Thus, systemic absence of Caveolin-1 and Helicobacter pylori

Figure 6. Cav1 does not interact with CagA but inhibits downstream effects of CagA. (A) Cav1 does not quantitatively colocalize with H. pylori or CagA. AGS/Cav1, MDCK and MKN45 cells were infected with CagA-delivery proficient H. pylori G27 (MOI = 10) or were transiently transfected with GFP-CagA expression plasmid, followed by staining for confocal immunofluorescence microscopy; green = H. pylori/GFP-CagA, red = Cav1, blue = nuclei. Magnification ×630. Occasional colocalizations appear in yellow. (B) Cav1 does not directly interact with CagA. Cells were infected as in (A) for 16 h (MOI = 100), and cell lysates were incubated with rabbit polyclonal CagA and Cav1 antisera. Precipitated proteins were detected by WB. Representative CoIP experiments are shown. (C) Gentamycin protection assay. Cav1 has no impact on injection of CagA into the host cell. AGS clones were infected with H. pylori G27 (MOI = 500) for 2 to 24 h, extensively washed with antibiotics, and intracellular CagA was determined by WB. Representative results are shown next to the quantitative analyses. O.D. values from bands in gels were calculated as mean ± S.E. (n = 3 independent experiments); n.s. AGS/Cav1 versus AGS/EV.
doi:10.1371/journal.ppat.1003251.g006
Cav1 may impair immune responses to pathogens at multiple levels. Consistent with these reports, we found that Cav1-deficient mice responded with an enhanced active chronic gastritis and tissue damage to infection with the CagA-delivery deficient *H. pylori* SS1 strain compared with WT littermates. This response was accompanied by loss of parietal cells and foveolar hyperplasia. A bias towards a T helper 1 immune response is expected to facilitate the elimination of *H. pylori* bacteria from infected stomachs, however, at the expense of a more severe gastritis in humans and mice [74,75]. Consistent with this concept, we showed that Cav1-KO animals had a reduced bacterial burden but an augmented local infiltration of macrophages, marked formation of intramucosal lymph follicles and production of chemokines (e.g. RANTES/CCL5) in the infected gastric tissue. In line with the known immunomodulatory effects of *H. pylori* [76,77,78], the expression of CD-markers related to T helper (CD4/GATA4) and regulatory T cells (CD25/FOXP3) was suppressed upon a 11-month infection with *H. pylori* SS1, and this phenomenon was most pronounced in Cav1-KO mice. Although more detailed studies have to characterize the gastric milieu and the immune defects of Cav1-KO mice, one may conclude that loss of Cav1 enhances the susceptibility to pathogen-related disease by defects in the

Figure 7. Cav1 binds p120RhoGAP/DLC1 upon infection of human GC cells with *H. pylori* G27. (A) Cav1 interacts with p120RhoGAP/DLC1, a tumor suppressor and inhibitor of small GTPases associated with focal adhesions and caveolae/lipid rafts. AGS/Cav1 cells were infected with CagA-delivery competent *H. pylori* G27 (MOI = 100) for 16 h. Total cell lysates were subjected to CoIP with rabbit polyclonal Cav1-antiserum. Gels were silver stained, and peptides within a band (~95 kDa) enriched in infected cells were analysed by MALDI-MS (see also Table S2). (B) Validation of MALDI-MS. Cells were infected as (A), and total cell lysates were subjected to CoIP using antibodies against Cav1 and DLC1, respectively. Representative WBs show the ~110 kDa DLC1 protein variant 4 (DLC1v4). (C) DLC1 mRNA and protein expression. Top panel: RT-PCR gels detecting DLC1 mRNA variant 1 (full length according to [39]) in HEK293 cells, whereas DLC1v4 (short form according to [39]) was expressed in all human cancer cell lines tested. Bottom panel: Cells were transiently transfected with the expression vector pTarget-DLC1v4 (pT-DLC1v4). Representative RT-PCR and WB gels visualizing the transfected DLC1v4 mRNA and the ~110 kDa DLC1v4 protein are shown. doi:10.1371/journal.ppat.1003251.g007

Figure 8. DLC1 rescues human GC cells from CagA-related adhesion defects. (A) AGS/EV cells were transiently transfected with pT-DLC1v4 plasmid for 24 h, followed by infection with CagA-delivery competent *H. pylori* G27 for additional 16 h and staining for immunofluorescence microscopy; green = actin (phalloidin), blue = nuclei. Magnification ×630. (B–C) Representative immunofluorescence images (A) are presented together with quantitative analyses of “humming bird” (B) and cell spreading (C) morphologies. Cell phenotypes were counted for at least 10 cells per field (total of 10 fields) and calculated as % ± S.E. (n = 3 experiments) of total cells; *p* = 0.0067 AGS/EV versus AGS/DLC1. doi:10.1371/journal.ppat.1003251.g008
generation of a pathogen-directed adaptive T-cell immune response.

H. pylori has developed many strategies to evade the host’s immune system [78]. It has been described that *H. pylori* is auxotrophic for cholesterol and extracts cholesterol from the host cell membrane to actively inhibit phagocytosis and modify the generation of adaptive T-cell responses [26,79]. Depletion of host cell membranes from cholesterol inhibits CagA-dependent effects on cell elongation and IL8 production in vitro [27,80]. These observations led us to the hypothesis that *H. pylori* may create a cholesterol-deficient microenvironment in/around infected cells which activates the cholesterol deficiency sensor SREBP1. Indeed, we demonstrated that SREBP1 was activated by *H. pylori* to down-regulate Cav1 gene expression in vitro and in vivo independently of CagA, but was strain-specific, because it was not observed upon infection with other *Helicobacter* species such as *H. hepaticus* (unpublished observation).

To explore one of the in vitro mechanisms how Cav1 protects against *H. pylori*-related cell damage, we demonstrated that Cav1 neither interfered with adhesion of *H. pylori* SS1 or G27 bacteria to human gastric epithelial cells nor with injection of G27-derived CagA protein into the cytosol. Instead, Cav1 inhibited the downstream effects of intracellular CagA on the rearrangement of the actin cytoskeleton and on the production of IL8. This in vivo

![Figure 9. *H. pylori* strains down-regulate Cav1 gene expression in vitro and in vivo independently of CagA.](doi:10.1371/journal.ppat.1003251.g009)
phenomenon of spike-like cell elongation (“humming bird”) is supposed to resemble, at least in part, an in vivo event which facilitates access of live *H. pylori* into favourable niches of the gastric epithelium for successful persistence of the microorganism within the host organ [78]. We found that Cav1 did not directly interact with CagA. Instead, Src kinase was phosphorylated on specific tyrosine residues upon infection with *H. pylori* G27 independently of Cav1. Cav1 altered the activation status of two

Figure 10. *H. pylori* strains down-regulate Cav1 promoter activity via activation of SREBP1. (A) *H. pylori* enhances binding of SREBP1 to one of the three sterol-responsive elements (SRE3) [24,62] in the proximal human Cav1 promoter. ChIP: MKN45 cells were infected with *H. pylori* G27 (MOI = 100) for 16 h, and IP was performed in total cell lysates with rabbit polyclonal acetyl-H4-histone, SREBP1 or control IgG. CT-values from qPCR of IP-ed DNA were normalized to the CT-values of input DNA and were calculated as mean ± S.E. (n=3) of protein-DNA complex pull-down by *H. pylori* compared to empty bead and uninfected controls; *p=0.0093 for SREBP1 and p=0.0478 for acetyl-H4-histone, *H. pylori* versus mock. Insert: Representative WBs of nuclear extracts showing mature 68 kDa SREBP1 in the nucleus of *H. pylori* G27-infected MKN45 cells. (B) EMSA: MKN45 cells were infected with *H. pylori* G27 for 16 h, and nuclear extracts were incubated with biotin (BIO)-labelled oligonucleotide (SRE3) [62] from the human Cav1 promoter and an excess of unlabelled competitor oligonucleotides (SRE3-WT = wild-type; SRE3-MUT = mutant). Insert: Representative WBs of whole cell lysates showing accumulation of active 68 kDa SREBP1 in *H. pylori* G27-infected MKN45 cells. (C) *H. pylori* also regulates mRNA expression of other cognate SREBP1 target genes. CT-values from RT-qPCRs on total RNA extracted from cells infected with CagA-delivery competent G27 wt, CagA-deleted G27 ΔcagA or CagA-delivery deficient SS1 *H. pylori* strains were normalized to b2M and presented as % ± S.E. (n=15 per group); *p=0.0137 to 0.0196, *H. pylori* versus mock. doi:10.1371/journal.ppat.1003251.g010
kinases downstream of Src, it reduced phosphorylation of JNK but enhanced that of FAK, proposing that Cav1 blunts stress-related CagA-signalling downstream of active Src but promotes cell adhesion.

Mechanistically, we evinced that the CagA-proficient *H. pylori* G27 evoked the recruitment of p120RhoGAP/DLC1 to Cav1. DLC1 has been initially described as an inhibitor of small GTPases which localizes to focal adhesions and lipid raft/caveola membrane microdomains [53,54,55,82]. Cav1 may thus promote the function/activity of DLC1 as a tumor suppressor via direct interaction through a bona fide Cav1-binding motif [53] identified in DLC1. Unexpectedly, DLC1 did not inhibit the formation of fiber-like elongations in cells infected with CagA-delivery competent *H. pylori* G27 which have been attributed to activation of the small GTPases RhoA/Rac1/Cdc42 by CagA. This result may be explained by previous reports [56,57,58] showing that the G27 strain is only a weak activator of those GTPases. Instead, DLC1 promoted cell adhesion and spreading. This phenotype was presumably caused by changes in the assembly and/or disassembly of focal adhesions, since FAK is a direct target of *H. pylori*’s CagA [48] and, together with other components of focal adhesions, such as talin and tensins, directly interacts with DLC1 [53,54,55]. Conclusively, Cav1 seems to exert its protective effect against intracellular CagA effector functions on the actin cytoskeleton via DLC1. Cav1 did not require direct interaction with CagA to exert its pro-adhesive effects. Hence, the Cav1/DLC1 complex may also protect cells against CagA-delivery deficient *H. pylori* strains, including SS1, which have been used in our *in vivo* study. However, future experiments have to explore this assumption.

Cav1 is a ubiquitous adapter molecule in many immune receptor signalling pathways. One may thus speculate that *H. pylori* exploits down-regulation of Cav1 to subvert the host immune system or to enhance the signalling efficiency of its virulence factors in gastric epithelial cells. In case of clinical isolates from infected individuals, the pre-mouse Sydney strain-1 (PMSS1) or G27 [32,77] those virulence factors may comprise CagA and VacA in case of SS1, other yet unknown bacterial proteins could be involved.

Loss of Cav1, in its function as a tumor suppressor and inhibitor of growth factor receptor signalling which stabilizes cell-cell and cell-matrix contacts, is a hallmark of many human cancers including GC [19]. Absence of Cav1 in primary tumors promotes cell proliferation and enables clonal expansion [15,19]. Similar to Cav1, DLC1 is a tumor suppressor silenced or deleted in many human cancer entities including GC, e.g. by gene methylation [39,51]. Thus, down-regulation of Cav1 by *H. pylori* in stomach tissue *in vivo* may be part of an early molecular sequence of events in the transition of inflammation to GC also in humans.

We would like to emphasize that the aim of the current work was not the identification of novel virulence factors in the SS1 *H. pylori* strain, which are unknown since 15 years, but rather to clarify the role of Cav1 in *H. pylori*-induced gastric pathology by directly comparing the lesions obtained in the Cav1-KO mice to the results of other researchers who used SS1 *H. pylori* strain in other mouse genotypes or backgrounds [C57BL/6, B6129, BALB/c] [28,33,34,83]. The Cav1-KO mice did not progress to gastric neoplasia with CagA-delivery incompetent SS1. We therefore additionally investigated the molecular mechanisms of Cav1 on CagA-delivery proficient G27 strain signalling in gastric epithelial cell lines, in order to strengthen the relevance of our findings to the situation in humans, where CagA-injection competent strains are associated with development of GC [1,3,5]. In the future, we shall infect Cav1-KO mice with PMSS1, an *H. pylori* strain which injects functionally active CagA protein into the host gastric epithelium [77,84,85].

Our study describes two different aspects of Cav1’s role in stomach disease: (i) first, an *in vivo* protective role against *H. pylori*-induced inflammation which was independent of CagA/VacA, and (ii) second, an *in vitro* protective role against *H. pylori*-induced cytoskeletal rearrangement which was dependent on CagA and DLC1. These data comprise two separate aspects of *H. pylori* biology which are not easily reconciled. Nevertheless, our major objective was to present a first description of a beneficial role for Cav1 in *H. pylori*-related diseases, against gastritis *in vivo* and cytoskeletal stress *in vitro*, rather than to elaborate on the potential virulence mechanisms of SS1. To our knowledge, this novel role of Cav1 in *H. pylori* biology was previously unknown and may thus provide the initial basis for further detailed *in vivo* and *in vitro* studies.

We have been well aware of the fact that *H. pylori* strain SS1 is incapable of exerting CagA and VacA-dependent effector functions [81,83,96,87]. Over the years, a consensus has been reached that SS1 expresses CagA mRNA but does not inject functional CagA protein into the host cells via the type IV secretion system [40]. Similarly, SS1 is devoid of VacA-dependent vacuolating cytotoxicity and induction of IL8 [81]. Nevertheless, SS1 is still able to induce severe gastric pathology in *in vivo* independently of these two important virulence factors, especially after chronic infection and persistent colonization [35,59]. The SS1 virulence factors responsible for gastric inflammation, tissue damage and carcinogenesis have remained unknown since the introduction of the strain as a standardized reference model in 1997 [92].

Several alternative mechanisms of virulence have been described for SS1. For example, SS1 up-regulates matrix-metalloproteinases (MMPs) inducing inflammation and tissue damage independently of CagA [86]. Moreover, SS1 *per se* evokes mutations and genotoxic stress in mice, a pathology which may contribute to pre-neoplastic alterations in the gastric mucosa [33,80]. Interestingly, the CagA-delivery competent PMSS1 strain promotes genotoxic stress as well independently of its common virulence factors CagA and VacA [89]. Instead, bacterial adhesion factors were necessary to achieve the mutagenic effect [99]. Nevertheless, SS1 bacteria deficient in certain adhesion factors still evoked severe gastric pathology *in vivo* (here in gerbils) [90], and the presence of CagA or VacA had no effect on the ability of HP strains to adhere or invade gastric epithelial cells *in vitro* [97]. Thus, the quest for pathogenic virulence mechanisms of SS1 is still ongoing.

These reports demonstrated, that single major virulence factors like CagA or VacA are not the exclusive responsible agents for the observed gastric histopathology induced by SS1, but rather a combination of so far unknown bacterial factors and last but not least the host immune response. Relating to the latter, *H. pylori*-induced changes in cholesterol content at host cell membranes and the well-described immunomodulating effect of *H. pylori* may be of higher importance for pathogenicity than the action of single cytotoxins/oncoproteins. Confirming this assumption, we showed that SS1 (CagA+/VacA−) and G27 (CagA+/VacA+) strains both down-regulated SREBP1 mediated Cav1 gene expression independently of CagA/VacA, constituting a potential novel pathogenic mechanism of *H. pylori* which acts independently of classical virulence factors.
Supporting Information

Figure S1 Cav1 protects against gastric injury in vivo. (A–B) Cav1-KO mice are susceptible to indomethacin-mediated gastric injury. C57BL/6 WT and B6129 Cav1-KO mice received an i.p. injection of 35 mg/kg indomethacin (n = 9 per genotype) or NaCl (n = 3 per genotype) for 24 h, respectively. H&E stainings from paraffin sections of gastric tissue were evaluated for damage scores [30,91]: 0+ no inflammation, 1+ superficial erosive gastritis, 2+ moderate discrete erosive gastritis, 3+ severe gastritis with elongated erosions and ulcerations. Representative H&E stainings (A) and damage scores (B) for individual mice are presented; *p = 0.0161 WT versus KO; magnifications 100×. (C) Cav1-KO mice express higher levels of gastric mRNAs (Pparγ, Tjp2) involved in mucosa regeneration. The CT-values from RT-qPCRs on total RNA extracted from resected stomach tissue were normalized to b2M and presented as mean ± S.E. (n = 9 per group); *p = 0.0008 for Pparγ and 0.0048 for Tjp2, WT versus KO. (D) Cav1-KO and WT mice produce similar levels of systemic pro-inflammatory cytokines. Serum cytokines were measured by ELISA and values were calculated as pg/ml ± S.E. (n = 9 per group).

Figure S2 Cav1 promotes cell adhesion and wound closure in vitro. (A) Cell adhesion. AGS/Cav1 and AGS/EV cells were seeded on tissue culture dishes for 6 h. The number of adherent cells was counted as mean ± S.E. (n = 3); *p = 0.0394, Cav1 versus EV. (B) Wound closure. Confluent AGS/Cav1 and AGS/EV cell monolayers were injured by a 5 mm wide scratch. Wound closure by cell migration was measured after 24 h in micrometer and calculated as % ± S.E. (n = 3); *p = 0.0061, Cav1 versus EV.

Table S1 Oligonucleotides. DNA-sequences of 5′-(forward) and 3′-(reverse) primers for detection of human, mouse and H. pylori genes by RT-qPCR are listed. Oligonucleotide sequences from the human CAV1 gene promoter containing SREs were used for performance of EMSA and ChIP assays.

Table S2 DLC1 peptides identified by MALDI-MS. The amino acid sequence and the localization of peptides precipitated in CoIP experiments using Cav1 as a bait are presented. Peptides overlapped with both variant 1 and variant 4 of the human DLC1 protein. * Mascot total ion score by GPS Explorer 2 software; # Location of peptides identified by MALDI-MS in the coding sequence (CDS) of human DLC1 protein variants.

Acknowledgments
We want to thank Silvia Steininger for technical help in confocal microscopy.

Author Contributions
Conceived and designed the experiments: EB IH. Performed the experiments: EB IH GY FA. Analyzed the data: EB IH TK SR CR. Contributed reagents/materials/analysis tools: FA MG CS RV. Wrote the paper: EB IH.

References
1. Ashertun JC (2006) The pathogenesis of Helicobacter pylori-induced gastrointestinal diseases. Annu Rev Physiol 1: 63–96.
2. Makola D, Peura DA, Crowe SE (2007) Helicobacter pylori infection and related gastrointestinal diseases. J Clin Gastroenterol 41: 548–558.
3. Forman D (1996) Helicobacter pylori and gastric cancer. Scand J Gastroenterol Suppl 215: 48–51.
4. Yamaoka Y (2010) Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 7: 629–641.
5. Hatakeyama M (2004) Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4: 688–694.
6. Hansen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveosomes. Ann Med 37: 394–403.
7. Pietiainen VM, Marjomaki V, Heino J, Hyypia T (2005) Viral entry, lipid rafts and caveolae. Trends Cell Biol 20: 177–186.
8. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11: 688–699.
9. Bist A, Fielding PE, Fielding CJ (1997) Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci U S A 94: 10693–10698.
10. Burgemeister E, Friedrich T, Hikutka I, Regel I, Einwachter H, et al. (2011) The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor gamma through spatial relocalization at bHLH 7 of its ligand-binding domain. Mol Cell Biol 31: 3497–3510.
11. Gargalovic P, Dory I (2003) Caveolins and macrophage lipid metabolism. J Lipid Res 44: 11–21.
12. Lajoie P, Krjej LD, Shim S, Li L, Deranis JW, et al. (2009) Caveolin-1 regulation of dynamin-dependent, raft-mediated endocytosis of cholera toxin-B sub-unit occurs independently of caveolae. J Cell Mol Med 13: 3218–3225.
13. Williams TM, Li, S, Baj, A, G, et al. (2006) CD26 and its molecular mechanisms in T cell function. Trends Immunol 29: 295–301.
14. Soong G, Reddy B, Sokol S, Adamo R, Prince A (2004) TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Immunol 172: 4652–4658.
15. Kuo CH, Wang WC (2003) Binding and internalization of Helicobacter pylori VacA via cellular lipid rafts in epithelial cells. Biochem Biophys Res Commun 303: 640–644.
16. Schrauws P, Li Y, McClain MS, van der Goet FG, Cover TL (2002) Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem 277: 34642–34650.
17. Hanssen CG, Nichols BJ (2010) Exploring the caves: cavins, caveolins and caveosomes. Trends Cell Biol 20: 177–186.
18. Soo P, Hoki, IC, Nishimura G, et al. (2006) Helicobacter pylori infection and related gastrointestinal diseases. Annu Rev Physiol 1: 63–96.
32. Lee A, O'Rourke J, De Unger MC, Robertson B, Daskalopoulos G, et al. (1997) A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 112: 1386–1397.

33. Touati E, Michel V, Thierry JM, Wiescher N, Huere M, et al. (2003) Chronic Helicobacter pylori infections induce gastric mutations in mice. Gastroenterology 124: 1408–1418.

34. Thompson LJ, Danon SJ, Wilson JE, O'Rourke JL, Salama NR, et al. (2004) Chronic Helicobacter pylori infection with Sydney strain 1 and a newly identified mouse-adapted strain (Sydney strain 2000) in C57BL/6 and BALB/c mice. Infect Immun 72: 4660–4679.

35. Fox JG, Rogers AB, Whary MT, Ge Z, Ohtani M, et al. (2007) Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2−/− C57Bl/6S12 Helicobacter pylori-infected mice. Am J Pathol 171: 1520–1528.

36. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, et al. (2003) Disruption of the epithelial apical-functional complex by Helicobacter pylori. Nat Cell Biol 5: 1483–1494.

37. Bureggermeister E, Xing X, Rocken C, Juhasz M, Chen J, et al. (2007) Differential expression and function of cavin-1 in human gastric cancer progression. Cancer Res 67: 8159–8166.

38. Pelz C, Steininger S, Weiss C, Coscia F, Vogelmann R. (2011) A novel inhibitory domain of Helicobacter pylori protein CagA reduces CagA effects on host cell biology. J Biol Chem 286: 9999–9008.

39. Low JS, Tao Q, Ng KM, Geh HK, Shu XS, et al. (2011) A novel isoform of the IGFRI tumor suppressor gene DLEC1 suppresses tumor growth and is frequently silenced in multiple common cancers. Oncogene 30: 2193–2195.

40. Crabtree JE, Ferrero RL, Kusters JG (2002) The mouse colonizing Helicobacter pylori strain SS1 may lack a functional cag pathogenicity island. Helicobacter 7: 138–140, author reply 140–141.

41. Bureggermeister E, Chudler D, Hanoch T, Meyer M, Liscovitch M, et al. (2007) Interaction between MEK causes nuclear export and downregulation of p42/p44 mitogen-activated protein kinase activity by Helicobacter pylori. Mol Cell Biol 27: 803–817.

42. D'Elios MM, Manghetti M, De Carli M, Costa F, Baldari CT, et al. (1997) T cell-mediated apoptosis in caveolin-1 deficient mice. Cell 91: 1599–1607.

43. Xing X, Burgermeister E, Geisler F, Einwachter H, Fan L, et al. (2009) Deficiency of regulatory T cells facilitates Helicobacter pylori infection. J Clin Invest 119: 1528.

44. Engel D, Beckers L, Wijnands E, Seijkens T, Lievens D, et al. (2011) Caveolin-1 deficiency decreases atherosclerosis by hampering leukocyte infiltration into the arterial wall and generating a regulatory T-cell response. J Exp Med 29: 3581–3598.

45. Low JS, Tao Q, Ng KM, Geh HK, Shu XS, et al. (2011) A novel isoform of the IGFRI tumor suppressor gene DLEC1 suppresses tumor growth and is frequently silenced in multiple common cancers. Oncogene 30: 2193–2195.

46. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, et al. (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66: 10439–10448.

47. Moese S, Selbach M, Kwok T, Brinkmann V, Konig W, et al. (2004) Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-κB tissue. J Biol Chem 279: 1001–1008.

48. Touati E, Michel V, Thiberge JM, Wuscher N, Huerre M, et al. (2003) Chronic Helicobacter pylori infection with Sydney strain 1 and a newly identified mouse-adapted strain (Sydney strain 2000) in C57BL/6 and BALB/c mice. Infect Immun 72: 4660–4679.

49. Fujiwara J, Hiramatsu K, Nakai K, Hori K, Fukuda Y, et al. (2007) Role of bacterial strain diversity of Helicobacter pylori in gastric carcinogenesis induced by N-methyl-N-nitrosourea in Mongolian gerbils. Helicobacter 12: 213–223.

50. Minami Y,Maeda S, Yoshida H, Hirata Y, Ogura K, et al. (2002) Helicobacter pylori activates the protocadence-ε gene through SRE transcription. Biochem Biophys Res Commun 291: 868–874.

51. Regel I, Mielke L, Friedrich T, Bureggermeister E, Zimmermann W, et al. Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to cytostatics via induction of autophagy. Gastroenterology 143: 99–109 e1110.

52. Prade E, Tobiasch H, Hinkova I, Schaffer I, Lian F, et al. (2012) Bile Acids Down-Regulate Caveolin-1 in Esophageal Epithelial Cells through Sterol Responsive Element-Binding Protein. Mol Endocrinol 26: 819–828.

53. Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Lopez E, et al. (2012) Recent developments in the interactions between caveolin and pathogens. Adv Exp Med Biol 729: 65–82.

54. Medina FA, Cohen AW, de Almeida CJ, Nagni yothi F, Braunstein VL, et al. (2007) Immune dysfunction in caveolin-1 null mice following infection with Trypanosoma cruzi (Tulahuen strain). Microbes Infect 9: 325–333.

55. Millan J, Hewlett L, Glyn M, Toomre D, Clark P, et al. (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial CDAM-1 to caveolae, and F-Arcin-chromes. J Biol Chem 281: 115–123.

56. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, et al. (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of interleukin-12 in the lung and generation of a regulatory T-cell response. J Exp Med 209: 819–828.

57. Arnold IC, Lee JY, Amieva MR, Roers A, Flavell RA, et al. (2011) Tolerance rather than resistance is protected from Helicobacter pylori-infected gastric premalignancy. Gastroenterology 140: 199–209.

58. Muller A, Oertl M, Arnold IC (2011) H pylori exploits and manipulates innate and adaptive immune cell signalling pathways to establish persistent infection. Cell Commum Signal 9: 25.

59. Burton ML, Kaparakis-Liakos M, Turner L, Cardona A, Korkov T, et al. (2010) Helicobacter pylori exploits cholesterol-rich membrane domains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun 78: 4523–4531.

60. Lai CH, Wang HJ, Chang YC, Hsieh WC, Lin HJ, et al. (2011) Helicobacter pylori CagA-mediated IL-1β induction in gastric epithelial cells is cholesterol dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett 323: 155–163.

61. Day AS, Jones NL, Polcova Z, Jennings HA, Yan EK, et al. (2001) Characterization of virulence-adapted Helicobacter pylori strain SS1 and effects on gastric hydrophobicity. Dig Dis Sci 46: 1943–1951.

62. Yamaoka M, Sekinati M, Fujii M, Kawasaki K, Katuma H, et al. (2004) A PLoS: Helicobacter pylori and Helicobacter pylori

63. Yamaga M, Sekinati M, Fujii M, Kawasaki K, Katuma H, et al. (2004) A PLoS: Helicobacter pylori and Helicobacter pylori

64. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, et al. (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest 121: 3088–3093.
85. Arnold IC, Hitzler I, Engler D, Oertli M, Agger EM, et al. (2011) The C-terminally encoded, MHC class II-restricted T cell antigenicity of the Helicobacter pylori virulence factor CagA promotes gastric preneoplasia. J Immunol 186: 6165–6172.

86. Kundu P, Mukhopadhyay AK, Patra R, Banejjee A, Berg DE, et al. (2006) Cag pathogenicity island-independent up-regulation of matrix metalloproteinases-9 and -2 secretion and expression in mice by Helicobacter pylori infection. J Biol Chem 281: 34651–34662.

87. Zhang MJ, Meng FL, Ji XY, He LH, Zhang JZ (2007) Adherence and invasion of mouse-adapted H pylori in different epithelial cell lines. World J Gastroenterol 13: 845–850.

88. Touati E, Michel V, Thibierge JM, Ave P, Huerre M, et al. (2006) Deficiency in OGG1 protects against inflammation and mutagenic effects associated with H. pylori infection in mice. Helicobacter 11: 494–505.

89. Toller IM, Neelsen KJ, Stenger M, Hartung ML, Hottiger MO, et al. (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108: 14944–14949.

90. Senkovich OA, Yin J, Ekhemyan V, Conant C, Traylor J, et al. (2011) Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun 79: 3106–3116.

91. Ebert MP, Schafer C, Chen J, Hoffmann J, Gu P, et al. (2005) Protective role of heat shock protein 27 in gastric mucosal injury. J Pathol 207: 177–184.