Dynamical study of viscous modified Chaplygin gas and confrontation with recent observational data

N. Mebarki and D. Aberkane
Laboratoire de Physique Mathématique et Subatomique, Frères Mentouri University, Constantine 1, Algeria

nnmebarki@yahoo.fr

Abstract. A cosmological Model of viscous modified Chaplygin gas in classical and loop quantum cosmology (LQC) is proposed and a dynamical stability study is investigated. It is shown that the model is consistent with the recent observational data and gives good predictions for the deceleration and state parameters. The model can also predict the time crossing and gives a solution to the coincidence problem. Furthermore, in LQC background, the big bang singularity found in classical cosmology cease to exist and is replaced by a bounce when the Hubble parameter vanishes at the LQC critical energy density.

1. Introduction
Recently, Type Ia Supernovae observational data[1–3] with cosmic microwave background anisotropies [4–6] and large galaxy surveys [7,8] have shown that the universe is undergoing an accelerated expansion phase. The existence of an exotic kind of energy, called dark energy, with negative pressure that drives the universe to expand was proposed.

a) a vacuum energy
b) a theory of a modified Newtonian dynamic (MOND) that can solve the problem of the velocity anomalies without the need of a concept of dark matter or dark energy,
c) f(R) theory
d) signature of extra-dimensions
e) exotic kind of energy called dark energy with negative pressure that drives the universe to expand and is modeled by several candidates: The cosmological constant where the dark energy is a perfect fluid and a dynamical dark energy with a Chaplygin gas models (CG) namely,

i) the ordinary CG which has as an equation of state (EoS) \( p = -\frac{B}{\rho} \) and it turns out that it does not fit with the observational data,

ii) the generalized CG with an EoS \( p = -\frac{B}{\rho^\alpha} \) suffering from perturbative instabilities

iii) the modified CG denoted by MCG which is considered as one of the successful dark energy candidate model with an EoS of the form \( p = A\rho - B/\rho^\alpha \) where \( A, B \) and \( \alpha \) are real constant parameters. It is a combined model that unifies both dark energy and dark matter and gives a suitable negative pressure that drives the acceleration of the universe. The MCG EoS parameters were constrained using different observational data. [10–12] and it is preferred because of its small minimum chi square(\( \chi^2 \)) value[9].
The goal of this paper is to make a dynamical study of VMCG and confrontations with recent observational data. In section 2, we give a brief review on the viscous modified Chaplygin gas (VMCG) model and solve analytically the conservation equation, check the behavior of the solutions at early, present and late time dominated universe. In section 3, we show how the model is constrained using the $\chi^2$ method and recent observational data with the help of Mathematica to calculate the best fit values of EoS parameters and draw the contour plots of some confidence levels. We derive the cosmological parameters taking into account these best fit values. The behavior of the model is then probed at small and present scale using the time evolution of cosmological parameters. In section 4, and in the loop quantum cosmology (LQC) framework, a dynamical analysis of our VMCG is conducted. Finally, in section 5, we draw our conclusions.

2. Classical VMCG model

The VMCG is a generalization of the modified Chaplygin gas model with an EoS of the form [13]

$$p_{\text{eff}} = A\rho_{\text{MCG}} - \frac{B}{\rho_{\text{MCG}}^r} - 3\xi_0 H^{1/2}$$

(1)

where $\rho_{\text{MCG}}$ is the energy density of MCG, $A$ and $B$ are constants, $\alpha$ is a positive constant, $\xi_0$ a positive bulk viscosity coefficient, and $H = \dot{a}/a$ is the Hubble expansion parameter. The dot stands for the cosmic time derivative. This model was investigated in Ref. [14] and it assumes that the expansion process is a collection of states out of thermal equilibrium that gives rise to a bulk viscosity. The interest in the VMCG comes from the fact that: First of all, MCG was preferred among other models according to its concordance with the observational data and because of its negative pressure that derives the universe acceleration at late time as well as its effective coupling which unifies dark energy and dark matter fluids. Second, the universe is filled with imperfect fluid (Bulk viscosity). In what follows, we consider a flat space Friedmann–Robertson–Walker (FRW) universe filled with VMCG, the conservation equation and the Friedmann equation are given by

$$\dot{\rho}_{\text{MCG}} + 3(\rho_{\text{MCG}} + p_{\text{eff}}) = 0, \quad H^2 = \frac{\rho_{\text{MCG}}}{3}$$

(2)

Using Eqs. (1)–(2) we obtain the energy density in terms of the scale factor $a$ that is:

$$\rho_{\text{MCG}} = \left(\frac{K}{\alpha^{\frac{3}{2}(\alpha+1)(1+\alpha-\sqrt{3}\xi_0)}} + \frac{B}{1+\alpha-\sqrt{3}\xi_0}\right)^{-\frac{1}{1+\alpha}}$$

(3)

where $K$ is an integration constant. As the energy density varies with its parameters, we use the bifurcation theorem in studying the behavior of the solution of the VMCG conservation equation knowing that the dynamics of Eq. (2) depends on its equilibrium and stability. In fact, the equilibrium point reads:

$$\rho_{(\text{MCG})\text{eq}} = \left(\frac{B}{1+\alpha-\sqrt{3}\xi_0}\right)^{-\frac{1}{1+\alpha}}$$

(4)

This result indicates that at large scale ($a \to \infty$), the energy density is only stable if $\alpha > -1$, $1 + A - \sqrt{3}\xi_0 > 0$ and $B > 0$ corresponding to a dark energy dominated universe. The effective state, deceleration and adiabatic sound speed parameters have as expressions (in terms of the redshift):

$$\omega_{\text{eff}} = A - \frac{B}{\rho_{\text{MCG}}^{1/2}} - 3\xi_0 H(z)\rho_{\text{MCG}}^{-1/2}, \quad q(z) = -1 + \frac{1}{2}\left(3 + \frac{\rho_{\text{MCG}}\omega_{\text{eff}}}{H(z)^2}\right)$$

and

$$c^2 = A + \alpha\frac{B}{\rho_{\text{MCG}}^{1/2}} - \frac{1}{2}\xi_0\frac{\rho_{\text{MCG}}^{1/2}}{H(z)} - \frac{3}{2}\xi_0 H(z)\rho_{\text{MCG}}^{-1/2}$$

(5)

The conservation equation in Eq. (2) can be rewritten as
\( (1 + z) \frac{d\Omega_{MCG}(z)}{dz} = 3 \left\{ (1 + A) \Omega_{MCG}(z) - B' \Omega_{MCG} - \sqrt{3} \xi_0 \Omega_{MCG} \right\} \left( (1 + z)^3 \Omega_0 + \Omega_{MCG}(z) \right)^{1/2} \) 

with 
\[ \Omega_{MCG}(z) = \frac{\rho_{MCG}}{3H_0^2} \]

where \( \Omega_0 \) is the present value of the baryonic matter density, \( z \) is the redshift parameter, \( H_0 \) is the present Hubble parameter and \( B' = \frac{B}{(3H_0^2)^{\alpha+1}} \). The Hubble parameter \( H(z) \) has as an expression in terms of the redshift parameter:
\[ H(z) = H_0 \left( (1 + z)^3 \Omega_0 + \Omega_{MCG}(z) \right)^{1/2} \]

### 3. Constraining VMCG and best fit values of the EoS and Cosmological parameters

We constrain the EoS parameters \( \{H_0, A, B, \alpha, \xi_0\} \) of the VMCG model using the Supernovae Type Ia observational data that consists of 580 data points and belong to Union 2.1 (2012) data. The best fit values of the parameters are obtained by the minimization of the \( \chi^2 \) function of the distance modulus \( \mu \). To reduce the number of the free parameters of the model, we marginalize assuming a constant prior over \( H_0 \) by constructing a probability density function for the parameters. As the number of the free parameters is still large, we first fix the viscous coefficient that is assumed to be positive, and then we constrain the EoS parameters \( A, B, \alpha \). We find that only small values of \( \xi_0 \) corresponding to \( \omega \approx -1 \) are consistent with the observational data. The best fit values of the EoS parameters are listed in Table 1, where \( B \) and \( \alpha \) have approximately the same values for different choices of \( \xi_0 \). The contour plots of the confidence levels 68.27%, 90% and 95.45% for both \( A \) and \( B \) are shown in fig. 1.

**Table 1.** Summary of the best estimates of the EoS parameters for the VMCG and their 1σ error using Union 2.1 SNe Ia data, and d.o.f denotes the degrees of freedom.

| EoS parameter | \( \xi_0 \) | \( \alpha \) | \( A \) | \( B \) | \( \chi^2 \) | \( \chi^2 / \text{d.o.f} \) |
|---------------|-------------|-------------|------|------|----------|-----------------|
| Best          | 0.01        | 0.551 \(^{+0.283}_{-0.218} \) | \(-0.167^{+0.175}_{-0.191} \) | 0.543 \(^{+0.214}_{-0.232} \) | 562.191 | 0.974          |
| Fit           | 0.02        | 0.548 \(^{+0.285}_{-0.219} \) | \(-0.149^{+0.188}_{-0.168} \) | 0.543 \(^{+0.215}_{-0.232} \) | 562.191 | 0.974          |
| Values        | 0.0001      | 0.549 \(^{+0.283}_{-0.218} \) | \(-0.186^{+0.199}_{-0.218} \) | 0.543 \(^{+0.214}_{-0.232} \) | 562.191 | 0.974          |

**Figure 1.** Contour plot of 68.27% CL (black), 90% CL (dashed) and 95.45% CL (gray) regions for VMCG parameters \( A \) and \( B' \) when (a) \( \xi_0 = 0.01 \), (b) \( \xi_0 = 0.02 \) and (c) \( \xi_0 = 0.0001 \)

In fig. 2, the sound speed is plotted in terms of the redshift parameter \( z \) using the best fit data listed in Table 1. In the early universe, the sound speed has negative values introducing a fast exponential growth of instabilities that can be explained by the fact that VMCG is an effective coupled dark energy/dark matter fluid and in such models instabilities can occur when the coupling strength is...
strong enough compared with the gravitational one.[15]. Moreover, when the coupling becomes moderate in the transition from a matter to a dark energy dominated universe, the sound speed $c^2$ changes the sign to take positive values and the perturbations grow much slower until the universe is dominated by dark energy. At large scale, the sound speed takes a positive value near zero leading to stable oscillating perturbations and structure predictions consistent with observations. Fig.3 shows respectively the variation of the effective state parameter $\omega_{\text{eff}}$ and the deceleration parameter $q$ with respect to the redshift $z$ at the best fit values of Table 1. It is obvious that the current value of $\omega_{\text{eff}}$

\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{The sound speed $c^2$ as a function of the redshift $z$ at best fit values of Table 1 for $\xi_0 = 0.01$ (gray line), $\xi_0 = 0.02$ (solid black line) and $\xi_0 = 0.0001$ (dashed line).}
\end{figure}

varies between $-0.76$ and $-0.74$ for different values of $\xi_0$ admitting an accelerated universe. At matter dominated era, $\omega_{\text{eff}}$ takes values in the range $\omega_{\text{eff}} > -1/3$ allowing a deceleration phase. When the deceleration parameter crosses the zero to negative values, $\omega_{\text{eff}}$ takes values less than $-0.33$ and the VMCG behaves like quintessence scalar field. Notice that, for all best values of Table 1, the current deceleration parameter varies between $-0.60$ and $-0.57$, which is consistent with $q_0 \in [-0.7, -0.4]$

\begin{figure}[h!]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{The evolution of the effective state parameter $\omega_{\text{eff}}$ and deceleration parameter $q$ at best fit values of Table 1 for $\xi_0 = 0.01$ (gray line), $\xi_0 = 0.02$ (solid black line) and $\xi_0 = 0.0001$ (dashed line).}
\end{figure}
Figure 4. The evolution of the curvature scalar at best fit values of Table 1 for $\xi_0=0.01$ (gray line), $\xi_0=0.02$ (solid black line) and $\xi_0=0.0001$ (dashed line).

given by the standard $\Lambda$CDM cosmology. Moreover, a transition from a decelerated $q<1/2$ to an accelerated $q<0$ universe is realized when $q$ crosses the zero, and thus the universe passes from matter to dark-energy-dominated universe where $\rho_{DE}\approx \rho_{matter}$ and undergoes an accelerated phase. The crossing happened at approximately $z=0.75$ for both $\xi_0=0.01$ and $\xi_0=0.0001$ and at $z=0.65$ for $\xi_0=0.02$. To probe the behavior of the model in the early universe, where $a\rightarrow 0$, we calculate the scalar curvature $R$ in a flat universe, and get:

$$R = H(z)^2 - p_{MCG} + 3\xi_0H(z)\rho_{MCG}^{1/2}$$

In Fig. 4, the scalar curvature evolution is plotted in terms of the redshift parameter $z$ at the best values of Table 1. As $t\rightarrow 0$, $R \rightarrow \infty$ which indicates the presence of a Big Bang singularity.

4. VMCG in LQG

we study the VMCG dynamical behavior when coupled to the baryonic matter in the framework of loop quantum cosmology (LQC), [16–19]. The latter is a non perturbative and background-independent type of quantization of gravity [20,21] used to probe some cosmological problems. In addition to predicting an inflationary phase of the early universe[22–25]and late time cosmic acceleration,[26]. LQC is proved to be very successful in avoiding Big Bang and Big Rip singularities[27] and the semi-classical approximation in LQC formalism can be validly used at late time and at large scale[28]. The modified Friedman equation reads:

$$H^2 = \frac{\rho}{3}\left(1 - \frac{\rho}{\rho_c}\right)$$

where $\rho$ is the total energy density, $\rho_c = \frac{\sqrt{3}}{16\pi\gamma^2\hbar^2}$ is the critical density in LQC and $\gamma$ is the dimensionless Barbero–Immirzi parameter. It is worth to mention that the quantum correction is negligible when $\rho \ll \rho_c$, $\rho_P$ (the energy density at the Planck scale), but it dominates the dynamics when $\rho \sim \rho_c$. In what follows, we assume a universe filled with VMCG and baryonic matter. To make the dynamical analysis, we introduce the following dimensionless variables:

$$x = \frac{\rho_{MCG}}{3H^2}, \quad y = \frac{p_{MCG}}{3H^2}, \quad z = \frac{\rho}{\rho_c}$$

where the phase space is bounded by $0 \leq x \leq 1$, $0 \leq z \leq 1$ and a negative $y$ (a negative pressure is needed to generate an accelerated expansion). The modified Friedman equation and the effective state parameter can be expressed in terms of the dimensionless variables as

$$x' = 3[x(1-2z) - 1](y - \sqrt{3}\xi_0x^{1/2}) - 3x\left(z - 1 \right)$$

$$y' = -3[A(\alpha + 1)x - \alpha y] - 3[A(1 + \alpha) - y(1-2z + \alpha x)](y - \sqrt{3}\xi_0x^{1/2}) + 3y\left(1 - \frac{2z}{1-z}\right)$$

$$z' = -3z - 3(1-z)(y - \sqrt{3}\xi_0x^{1/2})$$

where the prime denotes the derivative with respect to the e-folding number $N = \ln a$. Notice that this autonomous system does not depend on the EoS parameter $B$, and its critical points $(x_c, y_c, z_c)$ are found numerically at the best values of Table 1. Their properties are determined by the sign and nature of the eigenvalues $\lambda_i$, $i = 1, 3$ of the Jacobian matrix. When we fix the values of both $\xi_0$ and $A$, the critical points are the same and independent of the choice of $\alpha$ as listed in Table 2. For $(\xi_0=0.01, A=-0.167, \alpha = 0.551)$ and $(\xi_0=0.02, A=-0.149, \alpha = 0.548)$ the only physical and stable critical points...
Table 2. The eigenvalues of the Jacobian matrix around critical points $P_i$ for the autonomous system Eq. (33).

| Critical points | Eigenvalues | $\omega_{eff}$ |
|-----------------|-------------|----------------|
| $\xi_0 = 0.01, A=-167$ | $P_1(1,-0.98,0)$ | (-2.99,-2.43(1+$\alpha$),-0.008) | -0.184 |
| $\xi_0 = 0.01, A=-167$ | $P_2(1,-0.167,0)$ | (-0.55,-2.44(1+$\alpha$),-2.44) | -1 |
| $\xi_0 = 0.02, A=-149$ | $P_1(1,-0.96,0)$ | (-2.98,-2.36(1+$\alpha$),-0.016) | -0.184 |
| $\xi_0 = 0.02, A=-149$ | $P_2(1,-0.149,0)$ | (-0.55,-2.5(1+$\alpha$),-2.44) | -1 |
| $\xi_0 = 0.01, A=1$ | $P_1(1,0.0003,0)$ | (-3,-3(1+$\alpha$),-1.5) | 0 |
| $\xi_0 = 0.01, A=1$ | $P_2(1,1,0)$ | (-2.49,5.94(1+$\alpha$),-5.94) | 0.99 |

$P_i$ with negative eigenvalues describing an accelerated VMCG-dominated universe with $\omega_{eff} \approx -1$ exactly as predicted in the classical case. Moreover, the values of the critical points corresponding to an accelerated-VMCG-dominated universe change only with $\xi_0$.

Figure 5. The evolution of the total energy density $\varrho$ with time. Parameters are set at the best fit values of Table 1 for $\xi_0=0.01$ with $\varrho_c = 10$.

However, those describing a decelerated matter-dominated universe and a decelerated VMCG dominated universe depend on both $(\xi_0, A)$. For $(\xi_0 = 0.01, A = 1)$ the critical points are $P_1(1, -0.98, 0)$ a stable critical point because it has negative eigenvalues as $\alpha$ is a positive constant and it corresponds to an accelerated-VMCG-dominated universe and $P_2(0.0003, 0.0003, 0)$ and $P_3(1, 1, 0)$ unstable saddle points due to the opposite signs of their eigenvalues corresponding respectively to a decelerated matter-dominated universe and a decelerated-VMCG dominated universe.

Figure 6. The evolution of the Hubble parameter $H$ with time. Parameters are set at the best fit values of Table 1 for $\xi_0=0.01$ with $\varrho_c = 10$ and $\varrho_{0MCG} + \varrho_{0M} = 10$.

From fig. 6 the universe undergoes an accelerated expansion till a final de Sitter universe. In classical cosmology, the model suffers from the Big Bang singularity. This problem does not occur in the loop quantum cosmology scenario. From Fig. (5) and (6), when $\varrho_{tot} \approx 12\varrho_c$, the Hubble parameter takes a maximum value and when $\varrho_{tot}$ takes its maximum value $\varrho_c$, the Hubble parameter vanishes, thus the universe undergoes a contraction then enters the bounce.
5. Main results and conclusions

We have considered a model of VMCG where we have shown that the observational data of Union 2.1 constrain the viscous coefficient $\xi_0$ to values much smaller than one, otherwise the perturbation instabilities at the present time will grow exponentially leading to a non-consistent model. In fact, with small values of $\xi_0$, the model is found to be suitable to describe the current universe and gives good predictions at the present time for both state and deceleration parameters $\omega_{\text{eff}} \approx -0.76, -0.74$ and $q_0 = 0.71 \pm 0.03$ given by Ref. [32] and $q_0 = 0.74 \pm 0.05$ given by Ref. [11]. The present value of the effective state parameter of VMCG is also consistent with $\omega_0 = -1.04(+0.72)(-0.69)$ at (95% C.L.; Planck+WP+BAO) for a dynamical state parameter estimated in Ref. [31] and $\omega_0 = -0.91(+0.16)(-0.20)$ (SNLS3 team) of Refs. [32-33].

The perturbation instabilities, at the matter-dominated era are dropped down in present and late time as the coupling between dark energy and dark matter is decreasing. At large scale, the VMCG has no future singularities and its equation of state is nearly equivalent to the cosmological constant with $\omega_{\text{eff}} = -1$, while the sound speed parameter takes a constant value different from zero as a difference between a dynamical fluid model and an inert cosmological constant model. Thus, the VMCG discussed here reproduces the main results of the standard model without assuming a priori the existence of a cosmological constant[13]. Moreover, the problems related to fine-tuning and coincidence problem are solved and the value of the redshift where ($\rho_{\text{DE}} \approx \rho_{\text{matter}}$) for both $\xi_0 = 0.01$ and $\xi_0 = 0.0001$ is $z \approx 0.75$. This value is in agreement with $z = 0.64(+0.13)(-0.07)$ given by Ref. [29] for models with the final de Sitter phase, $\xi = 0.71 \pm 0.03$ of the $\Lambda$CDM model of Ref. [11], $z = 0.74 \pm 0.05$ given by Ref. [34] and $z$ at (more than 68% C.L.; SN Ia + BAO/CMB(WMAP9)+H(z)+uniform prior with $q_f = -1$) of Ref. [30].

At LQC background and at small scale the Big Bang singularity problem is solved and replaced by a bounce. At a large scale the stability of the model does not depend on the EoS parameter $B$ and VMCG solutions depend only on $\xi_0$.

Acknowledgments

We are very grateful to the Algerian Ministry of education and research and DGRSDT for the financial support.

References

[1] Perlmutter S J et al 1999 Measurements of Omega and Lambda from 42 High-Redshift Supernovae Astrophys. J. 517(1999)565
[2] Riess A G et al 1998 Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant Astron. J. 116(1998)1009.
[3] Riess A G et al 2004 Type Ia Supernova Discoveries at $z > 1$ from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution Astron. J. 607 (2004) 665.
[4] Bennett C L et al 2003 First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results Astrophys. J. Suppl. Ser. 148(2003)1.
[5] Spergel D N et al 2007 Three-Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Implications for Cosmology Astrophys. J. Suppl. Ser. 170(2007)377.
[6] Masi S et al 2002 The BOOMERanG experiment and the curvature of the universe Prog. Part. Nucl. Phys. 48 243.
[7] Tegmark M et al 2004 Cosmological parameters from SDSS and WMAP Phys. Rev. D 69 103501.
[8] Scranton R et al 2003 Physical Evidence for Dark Energy arXiv:astro-ph/0307335v2 [astro-ph]
[9] Lu J B et al 2008 Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models Phys. Lett. B 662(2008)87.
[10] Paul B C and Thakur P 2013 Observational constraints on modified Chaplygin gas from cosmic
growth.  

[11] Lu J B et al 2015 Reduced modified Chaplygin gas cosmology  

  J. High Energy Phys. JHEP02 (2015) 071

[12] Chakraborty S et al 2012 Observational constraints of modified Chaplygin gas in loop quantum cosmology Eur. Phys. J. EPJC72(2012)2101.

[13] Aberkane D, Mebarki N, Benchikh S 2017 Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology Chinese Phys. Lett.34 069801.

[14] Benaoum H B 2012 Modified Chaplygin gas cosmology Adv. High Energy Phys.2012 (2012) 357802

[15] Bean R et al 2008 Adiabatic instability in coupled dark energy-dark matter models Phys. Rev. D 78 023009

[16] Bojowald M 2005 Loop Quantum Cosmology Living Rev. Relativ. 8(2005)11.

[17] Benchikh S, Mebarki N and Aberkane D 2016 Dynamical Study of a Constant Viscous Dark Energy Model in Classical and Loop Quantum Cosmology Chin. Phys. Lett.33 (2016)059501.

[18] Ashtekar A 2009 Singularity resolution in loop quantum cosmology: A brief overview J. Phys.: Conf. Ser. 189(2009)012003

[19] Singh P 2008 Understanding big bang in loop quantum cosmology: Recent advances J. Phys. Conf. Ser. 140(2008)012005

[20] Ashtekar A et al 2003 Mathematical structure of loop quantum cosmology Adv. Theor. Math. Phys. 7(2003)233

[21] Thiemann T 2003 Lectures on Loop Quantum Gravity Lect. Notes Phys. 631(2003)41.

[22] Bojowald M 2002 Inflation from Quantum Geometry Phys. Rev. Lett.89 261301

[23] Bojowald M and Vandersloot K 2003 Loop quantum cosmology, boundary proposals, and inflation Phys. Rev. D 67 124023

[24] Tsujikawa S et al 2004 Loop quantum gravity effects on inflation and the CMB Class. Quantum Grav. 21 5767.

[25] Bojowald M and Kagan M 2006 Loop cosmological implications of a nonminimally coupled scalar field Phys. Rev. D 74 124023

[26] Gorgi M A 2016 Late time cosmic acceleration from natural infrared cutoff? Phys. Lett. B 760(2016)769

[27] Sami M et al 2006 Avoidance of future singularities in loop quantum cosmology Phys. Rev. D74 043514

[28] Bojowald M 2001 The semiclassical limit of loop quantum cosmology Class. Quantum Grav. 18 L109

[29] Ishida E.E.O et al 2012 When did cosmic acceleration start? How fast was the transition? J. Cosmol. Astropart. Phys. JCAP1203(2012)027

[30] Vargas dos S M et al 2016 Constraining cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data J. Cosmol. Astropart. Phys. JCAP02(2016)066

[31] Plank Collaboration 2014 Planck 2013 results. XVI. Cosmological parameters Astron. Astrophys. 571(2014)A16

[32] Conley A et al 2011 Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey Astrophys. J. Supp. ApJS192(2011), 1

[33] Sullivan M et al 2011 SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three Year Data with Other Probes Astrophys. J. 737 102

[34] Farooq O and Ratra B 2013 Hubble parameter measurement constraints on the cosmological deceleration-acceleration transition redshift Astrophys. J. Lett. 766(2013) L7