Chromosome-level reference genome assembly for the American pika (Ochotona princeps)

Bryson M. F. Sjodin¹, Kurt E. Galbreath², Hayley C. Lanier³, Michael A. Russello¹*

¹ Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7
² Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855
³ Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK 73019

* Corresponding author: michael.russello@ubc.ca
ABSTRACT

The American pika (*Ochotona princeps*) is an alpine lagomorph found throughout western North America. Primarily inhabiting talus slopes at higher elevations (>2,000 m), American pikas are well-adapted to cold, montane environments. Warming climates on both historical and contemporary scales have contributed to population declines in American pikas, positioning them as a focal mammalian species for investigating the ecological effects of climate change. To support and expand on-going research efforts, here we present a highly contiguous and annotated reference genome assembly for the American pika (OchPri4.0). This assembly was produced using Dovetail *de novo* proximity ligation methods and annotated through the NCBI Eukaryotic Genome Annotation pipeline. The resulting assembly was chromosome-scale, with a total length of 2.23 Gb across 9,350 scaffolds and a scaffold N50 of 75.8 Mb. The vast majority (>97%) of the total assembly length was found within 36 large scaffolds; 33 of these scaffolds correlated to whole autosomes, while the X chromosome was covered by three large scaffolds. Additionally, we identified 17 enriched gene ontology terms among American pika-specific genes putatively related to adaptation to high elevation environments. This high-quality genome assembly will serve as a springboard for exploring the evolutionary underpinnings of behavioral, ecological, and taxonomic diversification in pikas, as well as broader-scale eco-evolutionary questions pertaining to cold-adapted species in general.

Keywords: pikas, Lagomorpha, climate change, hypoxia, cold tolerance, adaptation
INTRODUCTION

The American pika (*Ochotona princeps*) is a small, alpine lagomorph found along mountain ranges in western North America, with a distribution that stretches from central California in the Sierra Nevadas, to the Southern Rockies of Colorado and New Mexico in the United States of America, and north to British Columbia and Alberta in the Cascades and Northern Rockies of Canada (Hafner & Smith, 2010; Smith & Weston, 1990). Although detected across a wide range of elevations (0-4,000 m), American pikas are primarily found at higher elevations (>2,000 m), especially at more southerly points of the range (Millar & Westfall, 2010; Smith & Weston, 1990). American pikas are a typical rock-dwelling pika species, primarily inhabiting talus slopes, though they can be found along river banks and log piles at lower elevations and in cooler climates (Smith & Beever, 2016). American pikas are habitat specialists and are well-adapted to cold, montane environments (Smith & Weston, 1990); however, these adaptations can leave the species vulnerable to warmer temperatures (MacArthur & Wang, 1974). In fact, warming climates across both historical and contemporary timeframes have been implicated in range contractions, population declines, and local extirpations (Beever et al., 2003, 2010, 2011; Wilkening et al., 2011; but see Smith, 2020). Likewise, numerous niche models predict precipitous declines in the range of America pikas in response to climate change projections (Galbreath et al., 2009; Schwalm et al., 2016; Stewart et al., 2015). American pikas are also poor dispersers, particularly in warmer climates, further exacerbating the potential impacts of rapidly changing environments (Henry & Russello, 2013; Henry et al., 2012; Peacock, 1997; Robson et al., 2016; Smith & Beever, 2016; Tapper, 1973). This thermal sensitivity and limited dispersal ability have led many to consider the American pika as a sentinel mammalian species for the ecological effects of climate change (Beever et al., 2003; Wilkening & Ray, 2016); a high-quality reference genome assembly would provide a fundamental resource for informing studies of pika ecology, evolution and conservation moving forward.

Modern sequencing approaches, such as massively parallel sequencing, have led to an expansion of genomic resources across taxa, including non-model organisms (Muir et al., 2016). These resources include an ever-increasing number of annotated reference genomes; in fact, there are currently over 1000 annotated reference or representative vertebrate genomes available in the NCBI RefSeq database alone (O’Leary et al., 2016). Beyond quantity, the quality of reference genomes being produced is also increasing with the introduction of new genome sequencing and assembly methods (Whibley et al., 2021). Whereas previous methods that largely relied on whole genome shotgun sequencing often resulted in highly fragmented assemblies, modern techniques, including proximity ligation methods and single molecule sequencing (Belton et al., 2012; Lu et al., 2016; Rhoads & Au, 2015), are producing chromosome-level assemblies at substantially lower costs than previously possible (Giani et al., 2020). Reduction in reference genome fragmentation often leads to better annotation and can provide new insights such as the discovery of novel genomic structures (Tørresen et al., 2017), enhanced characterization of coding and non-coding regions including improved gene models (Satou et al., 2008), and identification of previously unknown gene regions and biochemical pathways (Rice et al., 2017). These improvements can lead to more robust studies in ecology and evolution (Holt et al., 2018), biomedicine and agriculture (Warr et al., 2020), and conservation management (Macqueen et al., 2017).

Here, we present a chromosome-level reference genome assembly for the American pika. We assessed the quality of the new assembly relative to the previously available version and investigated
synteny, orthology and gene ontology in comparisons with the most closely related model organisms for which annotated reference genomes are available, including the European rabbit (Oryctolagus cuniculus) and house mouse (Mus musculus). In the process, we explored functional enrichment and identified genes that may be promising targets for investigating American pika adaptation to high elevation environments.

Methods

Status of American pika genomic resources

The current published reference genome for the American pika (OchPri3.0; GenBank assembly accession: GCA_000292845.1) available on NCBI is fragmented (10,420 scaffolds, scaffold N50 = 26.9 Mb, largest scaffold = 83.7 Mb; Table 1) and not assembled to chromosomes (O. princeps 2N = 68; Stock, 1976). Genome annotation of this assembly through the NCBI Eukaryotic Genome Annotation Pipeline (O’Leary et al., 2016; Pruitt et al., 2014) also has fewer gene alignments (17,952 gene alignments with a target sequence coverage ≥50%; NCBI Annotation Release 101) to curated databases (e.g., UniProt, SwissProt) than other chromosomal assemblies such as Oryctolagus cuniculus (18,830 gene alignments; NCBI Annotation Release 102) and Mus musculus (20,905 gene alignments; NCBI Annotation Release 109).

Whole-genome sequencing and assembly

We obtained a liver tissue sample from an adult, male pika collected in Beaverhead-Deerlodge National Forest, Montana, USA accessioned at the University of Alaska Museum (UAM:Mamm:113957). High molecular weight DNA was extracted and sent to Dovetail Genomics, who performed all subsequent library construction, sequencing, assembly, and scaffolding. Briefly, three Chicago™ libraries were constructed following the methods described by Putnam et al. (2016) and sequenced using the Illumina HiSeq X (PE150bp) platform yielding 402 million 2 × 151 bp total read pairs. These libraries were then assembled and scaffolded using the Dovetail HiRise™ software pipeline following Putnam et al. (2016) using the OchPri3.0 genome as the input assembly. Shotgun reads from the Chicago library were mapped to the input assembly and a custom statistical model was generated for evaluating the assembly. The assembly was scanned for errors, breaking misjoins where appropriate. Candidate scaffold arrangements were evaluated over multiple iterations until maximum support for the scaffold arrangements was achieved. Three Hi-C libraries were subsequently prepared according to the manufacturer’s protocol. Chromatin was fixed in place with formaldehyde in the nucleus and then extracted. Fixed chromatin was digested with DpnII, the 5’ overhangs filled in with biotinylated nucleotides, and then free blunt ends were ligated. After ligation, crosslinks were reversed, and the DNA purified from proteins. Purified DNA was treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared to ~350 bp mean fragment size and a sequencing library was generated using Illumina-compatible adapters. Biotin-containing fragments were isolated using streptavidin beads before PCR enrichment of the library. The library was sequenced on an Illumina HiSeq
X (PE150bp) platform to generate 342 million 2 × 151 bp read pairs. Hi-C sequence reads were then assembled and scaffolded using the Dovetail HiRise™ software pipeline using the above methods with the Chicago™ assembly as an input.

Alignment and identification of putative chromosomes

The Dovetail assembly (hereafter “OchPri4.0”) produced 37 large scaffolds (>5 Mb) covering >97% of the total assembly length (Figure S1), putatively representative of chromosomes (see Results). To evaluate this possibility, we aligned the 37 largest scaffolds to the European rabbit (Oryctolagus cuniculus) reference genome (OryCun2.0; GenBank assembly accession: GCA_000003625.1), which is the closest related organism with a chromosomal assembly. The European rabbit does have both a larger genome size (~2.7 Gb) and fewer chromosomes (2N = 44) than the American pika; however, Ye et al. (2011) found evidence of significant homology between Forrest’s pika (O. forresti; 2N = 54) and European rabbit using cross-species chromosome painting. We used the k-mer alignment algorithm implemented by the nucmer program in MUMmer v4.0.0.0beta2 (Kurtz et al., 2004). This program compares two genomes by finding highly similar regions between two sequences or genomes in both the forward and reverse-complemented orientation and can also identify structural rearrangements. For this analysis, only assembled European rabbit chromosome sequences were used. Only alignments that uniquely matched to both the American pika and European rabbit genomes were considered to minimize misalignments. Alignments were visualized using Dot (https://github.com/dnanexus/dot). Scaffolds were considered chromosomes if most of the sequence aligns to at least one rabbit chromosome and did not overlap with any other scaffold alignments following Marques et al. (2020). The resulting American pika putative chromosomes were evaluated for their coverage across the rabbit genome. To further validate chromosomal designations, assembled scaffold lengths were sorted by size and plotted against chromosome size estimates of American pika autosomes following Rhie et al. (2021) and Ba et al. (2020). Size estimates were obtained from a karyotype image (Wurster et al., 1971) using a custom python script (see Supplemental Materials in Rhie et al., 2020).

Assembly annotation

Following putative chromosome identification, the reference genome was processed and annotated through the NCBI Eukaryotic Genome Annotation Pipeline, part of the NCBI RefSeq database (O’Leary et al., 2016; Pruitt et al., 2014). This automated pipeline performs all steps of the annotation process, including repeat identification and masking via WindowMasker (Morgulis et al., 2006), transcript (including transcriptome, where available) and protein alignment, ab initio and model-based gene prediction, and mapping of curated gene products. All annotation steps were performed de novo for the new assembly making use of previously generated American pika transcriptome data (Lemay et al., 2013). The final annotated assembly was evaluated for completeness using BUSCO v3.0.2 (Simão et al., 2015). This software aligns a curated database of single copy orthologs to a draft genome assembly and identifies complete, duplicated, fragmented, and missing genes within the assembly.
Analysis of synteny and gene orthology

We identified sequence homology and gene order between the American pika genome and those of two model organisms, European rabbit and house mouse, using synteny analysis as implemented in Satsuma v2.0 (Grabherr et al., 2010). We chose these species based on the availability of a chromosome-level genome assembly as well as their phylogenetic relationships to American pika. This analysis can identify chromosomal rearrangements, as indicated by split alignments (Taylor et al., 2018), and can also assist in identifying chromosomes within a draft assembly (Roodgar et al., 2020). Results of the synteny analysis were visualized using Circos v0.69-8 (Krzywinski et al., 2009).

We further identified orthologous gene sets between the American pika, European rabbit, and house mouse. To begin, we assigned functional annotations to all American pika sequences using BLASTP v2.9.0 (Camacho et al., 2009) with an E-value cut-off of $1e^{-5}$ against the protein databases NR (non-redundant proteins from NCBI) and SwissProt (Boeckmann et al., 2003). We then mapped associated gene ontology (GO) terms for BLAST hits using Blast2GO v5.2.5 (Götz et al., 2008). We mapped GO terms to motifs and domains using InterProScan v5.50-84.0 (Cock et al., 2013; Jones et al., 2016) using default settings, and GO terms were merged with those from BLAST in Blast2GO (Götz et al., 2008).

Protein sequences for all species were downloaded from NCBI, and proteins with multiple isoforms within each species were filtered such that only the longest isoform was retained. Additionally, sequences shorter than 50 amino acids were removed. Orthologous protein sequences were detected and grouped into gene sets using a Markov Clustering algorithm (MCL) as implemented in a custom version of OrthoMC v2.0.9 (Fischer et al., 2011; www.github.com/apetkau/orthomclsoftware-custom) and automated with the orthomcl-pipeline using default settings (www.github.com/apetkau/orthomcl-pipeline). We found over-represented pika specific genes (i.e., genes that could not be clustered into any gene family and could only be found in a single species) using a hypergeometric test using BiNGO v3.0.4 (Maere et al., 2005) as implemented in Cytoscape v3.8.2 (Smoot et al., 2011). We used the entire pika GO annotations as the reference set and corrected all p-values using the Benjamin-Hochberg false discovery rate (FDR) with a corrected significance threshold of $\alpha = 0.05$.

RESULTS

Genome assembly

The initial Chicago™ assembly made 1,312 breaks in the input assembly (OchPri3.0) as well as 1,585 joins, reducing the overall scaffold count to 10,147. Five misassemblies were identified following Hi-C proximity ligation, while an additional 802 joins were introduced, resulting in a final genome assembly of total length 2.23 Gb across 9,350 scaffolds with 37 scaffolds >5 Mb (Table 1; Figure S1). The OchPri4.0 assembly offered a substantial improvement over the input assembly (OchPri3.0), with approximately one thousand fewer scaffolds and improved contiguity (scaffold L50/N50 = 11 scaffolds/75.8 Mb; Table 1). Additionally, nearly the entire assembly (>97%) was covered by the 37 largest scaffolds (Figure S1), whereas the input assembly was considerably more fragmented (>95% coverage over 136 scaffolds).
Each assembly had similar numbers of gaps (OchPri3.0: 12.82% of the genome; OchPri4.0: 12.88%) as well as similar BUSCO scores using the eukaryota odb9 database (Table 1).

Chromosome identification

Thirty-six of the 37 scaffolds >5 Mb aligned to a single rabbit chromosome, none of which overlapped in alignment (Figure S2). Only one scaffold (CM25742.1; chromosome 22) had partial alignment to two separate rabbit chromosomes (7 and 15). Of the remaining 36 scaffolds, 33 covered putative autosomes, while three separate scaffolds covered the putative X-chromosome (none of which overlapped). Furthermore, these scaffold alignments covered the majority of the European rabbit genome, though with significant rearrangement between the two genomes (Figure S2). The 33 putative autosomes also significantly correlated with chromosome size estimates taken from the American pika karyotype (Pearson’s $r = 0.985$; $df = 31$; $t = 32.34$; $p < 0.0001$; Figure S3).

Genome annotation

Annotation produced 21,186 genes and 32,187 RNA transcripts, both improvements over the previous reference genome, though still fewer than for the model organisms (European rabbit and house mouse; Table 2). Repeat masking resulted in 26.22% of the genome masked, similar to the previous assembly (26.24%); this value is lower than for the other species, likely reflective of better characterization of repeats in the model organisms (Table 2).

Synteny analysis and gene orthology

We found substantial synteny with relatively few split alignments between the American pika and European rabbit (Figure 1a), providing further support for chromosomal designations. In contrast, we detected significant genomic rearrangements between the American pika and the more distantly related house mouse (Figure 1b). We did find substantial synteny between the three American pika X-scaffolds and the house mouse X-chromosome (Figure 1b). Moreover, several other house mouse chromosomes (e.g., chromosome 10; Figure 1b) seem to be covered by a small number of American pika chromosomes and could be indicative of Robertsonian translocations, as break points between each American pika chromosome-alignment appear in centromeric locations.

We found that 94.1% of filtered American pika genes clustered into 14,813 gene families, with 75 genes across 33 families and 1,112 unclustered genes unique to the species (Table S1). Of these unclustered genes, 1,069 could be annotated with GO terms. Among these annotated American pika-specific genes, we detected significant over-representation for 152 GO terms following correction for multiple testing (Table S2). We found four enriched GO terms (cytochrome-c oxidase activity [GO:0004129]; heme-copper terminal oxidase activity [GO:0015002]; oxidoreductase activity [GO:0016675, GO:0016676]; Table 3) that have been previously linked to hypoxia response (Li et al., 2018; Qiu et al., 2012). Additionally, ten enriched GO terms related to mitochondrial development and
activity could be indicative of increased metabolic activity in American pikas (Table 3), two of which (mitochondrion [GO:0005739]; mitochondrial inner membrane [GO:0005743]) were consistent with up-regulated genes in high-elevation Himalayan pikas (O. royeli; Solari et al., 2018). We also found one GO term associated with DNA double-strand break processing (GO:0000729) and two terms for regulation of DNA repair (GO:0045739; GO:0006282), which could have implications for cellular response to UV damage (Table 3; Yang et al., 2015).

DISCUSSION

Improvements to the American pika genome

Improving reference genome assemblies often can lead to novel discoveries. For example, improvements to the Atlantic cod (*Gadus morhua*) reference genome uncovered a high density of tandem repeats, with many associated with gaps in the previous assembly (Tørresen et al., 2017). A more contiguous American alligator (*Alligator mississippiensis*) genome led to the discovery of significantly enriched estrogen-responsive genes critical for sex determination (Rice et al., 2017). Moreover, an improved reference genome for rainbow trout (*Oncorhynchus mykiss*) identified novel structural variants between two separate lineages and featured a scaffolded sex-determination gene (*sdY*) in the Y chromosome sequence (Gao et al., 2021). Likewise, improvements to the desert poplar (*Populus euphratica*) assembly identified previously undescribed gene family expansions and unique structural variants likely involved with adaptation to xeric environments (Zhang et al., 2020), while an improved large yellow croaker (*Larimichthys crocea*) reference genome led to the discovery of numerous adaptations to diverse environmental conditions (Mu et al., 2018). With greater numbers of high-quality reference genomes being produced, novel discoveries will continue to provide unprecedented insights into species evolution.

Here, we produced a substantially improved reference genome assembly for the American pika. Our assembly offers considerable gains in contiguity, with >97% of the genome accounted for in 36 large scaffolds (Table 1; Figure S1); the previous assembly required 178 scaffolds to reach this same threshold. We found that 33 of the new large scaffolds putatively represented autosomal chromosomes, while the X chromosome was covered by three separate scaffolds (Figure S2). These chromosome-scale scaffolds strongly correlated with physical chromosome measurements, providing further evidence for chromosomal designations; thus, this assembly represents the first chromosome-level reference genome assembly for the American pika. We also found substantial improvements in annotation products, with 2,210 genes, 5,755 transcripts, 4,023 CDSs, and 2,531 introns and 3,025 exons additional annotations. Of the genes and transcripts annotated, 17,116 were identical between OchPri3.0 and OchPri4.0, with minor and major changes made to 13,437 and 1,537 transcripts, respectively (see the NCBI *Ochotona princeps* Annotation Release 102 for a description of changes). There were 2,988 newly annotated features in OchPri4.0, while 509 annotated features from OchPri3.0 were deprecated. Furthermore, we detected large scale synteny between the American pika and European rabbit genomes, a finding which had been previously undescribed.
Putative signatures of adaptation in the American pika genome

High elevation habitats often have extreme environmental conditions such as low atmospheric oxygen (i.e., hypoxia) and low ambient temperatures (Sun et al., 2018). Hypoxic conditions can lead to reduced oxygen supply to tissues, limiting both aerobic metabolism and hindering thermogenesis in endotherms, exacerbating the effects of low ambient temperatures (Cheviron & Brumfield, 2012). Species must adapt to these unique challenges in order to survive life at high elevations, often at a genomic level (Cheviron & Brumfield, 2012; Qu et al., 2020). We found significant GO enrichment for genes putatively associated with adaptation to high elevation environments in the American pika (Table 3). These included genes related to mitochondria development and structure (Solari et al., 2018), DNA repair (Yang et al., 2015), and response to hypoxic stress (Li et al., 2018; Qiu et al., 2012; Solari et al., 2018). American pikas have a high basal metabolic rate, which results in a very high mean body temperature (~40°C; MacArthur & Wang, 1974). This elevated metabolic rate likely evolved to support higher levels of thermogenesis in response to cold climates. Previous studies have also found evidence for putative adaptation by the American pika to hypoxic and cold conditions (Lemay et al., 2013; Rankin et al., 2017; Wang et al., 2020; Waterhouse et al., 2018), as well as some evidence for adaptation to increased UV radiation (Wang et al., 2020). Further investigation will be necessary, however, to demonstrate links between genomic enrichment and phenotypic change in this species.

Limitations and future directions

The assembly produced here can be improved further. While we were able to produce and identify chromosome-level scaffolds, most scaffolds (9,314) remain unlocalized to a particular chromosome. While these unplaced scaffolds do represent a minority of the genome (<3% of the total assembly length) and are generally quite short (mean length 7,150 bp; range 1,000 bp – 7.26 Mb), placement within chromosome scaffolds could help with gap-filling and reduce the overall proportion of the genome found in gaps, which remains high even in the current assembly (Table 1). Many of these gaps are the result of long, repetitive sequences that cannot be spanned using short-read sequencing (English et al., 2012; Tørresen et al., 2017). One approach for gap-filling and reducing the overall number of scaffolds is to incorporate sequencing from long-read technologies such as those offered from Oxford Nanopore (ONT) and Pacific Biosciences. These long-read sequencing platforms provide substantially longer read lengths than short-read platforms (typically <500 bp reads), producing read lengths in the tens of thousands to hundreds of thousands and even millions of base pairs (longest read from ONT was >2Mb; Payne et al., 2019; Whibley et al., 2021). Long-reads may span the entire length of a repeat region, which can be used to increase contiguity and resolve uncertainties in the assembly, often resulting in much higher quality genome assemblies than those produced by short-read sequencing alone (Whibley et al., 2021).

We were able to identify three large scaffolds covering the American pika X-chromosome, though we were unable to resolve the order and orientation of these scaffolds into a single molecule. This problem of incompletely assembled sex-chromosomes is not unique to American pikas; the mammalian X and Y chromosomes contain many highly repetitive regions that often cannot be assembled using just short-read sequencing (Tomaszkiewicz et al., 2017). The mammalian Y-
chromosome can be particularly challenging to assemble, as this chromosome is primarily composed of repetitive sequences. One method to identify Y chromosome scaffolds is to compare candidate scaffolds from a draft assembly to annotated Y chromosome assemblies of a related species using BLAST, though these rely heavily on Y-linked genes, which may not be present on all Y scaffolds (Ba et al., 2020). Long-read sequencing can again be used to help resolve these difficult to assemble sex chromosomes and have been recently employed to produce the first gapless, telomere-to-telomere assembly of the human X chromosome (Miga et al., 2020). Future incorporation of long-read sequencing into the American pika reference assembly could help resolve both the X and Y chromosome into single, representative scaffolds, and in general, improve contiguity and completeness across this assembly.

Conclusions

Here we generated the first chromosome-level reference genome assembly for the American pika. This assembly offers significant improvements over the previously published genome in terms of contiguity and annotation quality, and exhibited large-scale synteny with the European rabbit genome. Moreover, we detected significant GO enrichment that may provide targets for future studies related to the genetic basis of adaptation to high elevation environments, including investigations into gene family expansions and contractions, and identification of genes undergoing positive selection. These types of analyses have been fruitful in detecting putative signatures of adaptation in similar, high-elevation systems (Li et al., 2018; Qiu et al., 2012; Shao et al., 2015; Sun et al., 2018). The inclusion of long-read sequencing could provide further improvements to this assembly and should be explored in the future.

Moving forward, this reference genome will serve as a vital resource for research on the American pika and other mammals that occupy similar environments. Given that ecological disruption due to ongoing climate warming disproportionately affects species associated with high elevations and high latitudes (e.g., Cardillo et al., 2006; Moritz et al., 2008), enhancing capacity for genome-enabled investigations in these systems is a priority (Colella et al., 2020; Theodoridis et al., 2021). Such genomic perspectives hold great promise for addressing challenging questions regarding the relative roles of climate, landscape complexity, and interspecific interactions in the assembly of biotic communities (e.g., for North American pikas see Galbreath et al., 2020, Lanier & Olson, 2009). Furthermore, across Asia and North America, most pika species are closely tied to sensitive high-elevation environments, yet they exhibit diverse ecologies and behaviors (Smith et al., 2018). Thus, the high-quality genome assembly presented here will serve as a springboard for exploring the evolutionary underpinnings of behavioral, ecological, and taxonomic diversification in pikas, as well as broader-scale eco-evolutionary questions pertaining to cold-adapted species in general.
FUNDING

This work was funded by a Dovetail Genomics Research Impact Award (MAR, HCL) and Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant # RGPIN-2019-04621 (MAR).

ACKNOWLEDGEMENTS

We are grateful to Link Olson and the University of Alaska Museum of the North for providing the tissue sample used in this study.

DATA AVAILABILITY

The reference genome assembly generated in this study is available in the NCBI BioProject repository under the accession PRNJNA649356.
REFERENCES

Ba, H., Cai, Z., Gao, H., Qin, T., Liu, W., Xie, L., … Li, C. (2020). Chromosome-level genome assembly of Tarim red deer, Cervus elaphus yarkandensis. Scientific Data, 7(1), 187. https://doi.org/10.1038/s41597-020-0537-0

Beever, E. A., Brussard, P. F., & Berger, J. (2003). Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. Journal of Mammalogy, 84(1), 37–54. https://doi.org/10.1644/1545-1542(2003)084<0037:POAEAI>2.0.CO;2

Beever, E. A., Ray, C., Mote, P. W., & Wilkening, J. L. (2010). Testing alternative models of climate-mediated extirpations. Ecological Applications, 20(1), 164–178. https://doi.org/10.1890/08-1011.1

Beever, E. A., Ray, C., Wilkening, J. L., Brussard, P. F., & Mote, P. W. (2011). Contemporary climate change alters the pace and drivers of extinction. Global Change Biology, 17(6), 2054–2070. https://doi.org/10.1111/j.1365-2486.2010.02389.x

Belton, J.-M., McCord, R. P., Gibcus, J. H., Naumova, N., Zhan, Y., & Dekker, J. (2012). Hi-C: A comprehensive technique to capture the conformation of genomes. Methods (San Diego, Calif.), 58(3), 268–276. https://doi.org/10.1016/j.ymeth.2012.05.001

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., … Schneider, M. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31(1), 365–370. https://doi.org/10.1093/nar/gkg095

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421

Cardillo, M., Mace, G. M., Gittleman, J. L., & Purvis, A. (2006). Latent extinction risk and the future battlegrounds of mammal conservation. Proceedings of the National Academy of Sciences, 103(11), 4157–4161. https://doi.org/10.1073/pnas.0510541103
Cheviron, Z. A., & Brumfield, R. T. (2012). Genomic insights into adaptation to high-altitude environments. *Heredity, 108*(4), 354–361. https://doi.org/10.1038/hdy.2011.85

Cock, P. J. A., Grüning, B. A., Paszkiewicz, K., & Pritchard, L. (2013). Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. *PeerJ, 1*, e167. https://doi.org/10.7717/peerj.167

Colella, J. P., Talbot, S. L., Brochmann, C., Taylor, E. B., Hoberg, E. P., & Cook, J. A. (2020). Conservation genomics in a changing Arctic. *Trends in Ecology & Evolution, 35*(2), 149–162. https://doi.org/10.1016/j.tree.2019.09.008

English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., … Gibbs, R. A. (2012). Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. *PLOS ONE, 7*(11), e47768. https://doi.org/10.1371/journal.pone.0047768

Fischer, S., Brunk, B. P., Chen, F., Gao, X., Harb, O. S., Iodice, J. B., … Stoeckert, C. J. (2011). Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. *Current Protocols in Bioinformatics, Chapter 6, Unit 6.12.1-19*. https://doi.org/10.1002/0471250953.bi0612s35

Galbreath, K. E., Hafner, D. J., & Zamudio, K. R. (2009). When cold is better: Climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, *Ochotona princeps*). *Evolution, 63*(11), 2848–2863. https://doi.org/10.1111/j.1558-5646.2009.00803.x

Galbreath, K. E., Toman, H. M., Li, C., & Hoberg, E. P. (2020). When parasites persist: Tapeworms survive host extinction and reveal waves of dispersal across Beringia. *Proceedings of the Royal Society B: Biological Sciences, 287*(1941), 20201825. https://doi.org/10.1098/rspb.2020.1825

Gao, G., Magadan, S., Waldbieser, G. C., Youngblood, R. C., Wheeler, P. A., Scheffler, B. E., … Palti, Y. (2021). A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. *G3 Genes|Genomes|Genetics, (jkab052)*. https://doi.org/10.1093/g3journal/jkab052
Giani, A. M., Gallo, G. R., Gianfranceschi, L., & Formenti, G. (2020). Long walk to genomics: History and current approaches to genome sequencing and assembly. *Computational and Structural Biotechnology Journal, 18*, 9–19. https://doi.org/10.1016/j.csbj.2019.11.002

Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., … Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Research, 36*(10), 3420–3435. https://doi.org/10.1093/nar/gkn176

Grabherr, M. G., Russell, P., Meyer, M., Mauceli, E., Alföldi, J., Di Palma, F., & Lindblad-Toh, K. (2010). Genome-wide syntenry through highly sensitive sequence alignment: Satsuma. *Bioinformatics, 26*(9), 1145–1151. https://doi.org/10.1093/bioinformatics/btq102

Hafner, D. J., & Smith, A. T. (2010). Revision of the subspecies of the American pika, *Ochotona princeps* (Lagomorpha: Ochotonidae). *Journal of Mammalogy, 91*(2), 401–417. https://doi.org/10.1644/09-MAMM-A-277.1

Henry, P., & Russello, M. A. (2013). Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. *Ecology and Evolution, 3*(11), 3906–3917. https://doi.org/10.1002/ece3.776

Henry, P., Sim, Z., & Russello, M. A. (2012). Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: The American pika. *PLOS ONE, 7*(6), e39077. https://doi.org/10.1371/journal.pone.0039077

Holt, C., Campbell, M., Keays, D. A., Edelman, N., Kapusta, A., Maclary, E., … Shapiro, M. D. (2018). Improved genome assembly and annotation for the rock pigeon (*Columba livia*). *G3: Genes, Genomes, Genetics, 8*(5), 1391–1398. https://doi.org/10.1534/g3.117.300443

Jones, H. P., Holmes, N. D., Butchart, S. H. M., Tershy, B. R., Kappes, P. J., Corkery, I., … Croll, D. A. (2016). Invasive mammal eradication on islands results in substantial conservation gains. *Proceedings of the National Academy of Sciences, 113*(15), 4033–4038. https://doi.org/10.1073/pnas.1521179113

Krzywinski, M. I., Schein, J. E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., … Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. *Genome Research*. https://doi.org/10.1101/gr.092759.109
Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. *Genome Biology, 5*(2), R12. https://doi.org/10.1186/gb-2004-5-2-r12

Lanier, H. C., & Olson, L. E. (2009). Inferring divergence times within pikas (*Ochotona* spp.) using mtDNA and relaxed molecular dating techniques. *Molecular Phylogenetics and Evolution, 53*(1), 1–12. https://doi.org/10.1016/j.ympev.2009.05.035

Lemay, M. A., Henry, P., Lamb, C. T., Robson, K. M., & Russello, M. A. (2013). Novel genomic resources for a climate change sensitive mammal: Characterization of the American pika transcriptome. *BMC Genomics, 14*(1), 311. https://doi.org/10.1186/1471-2164-14-311

Li, J.-T., Gao, Y.-D., Xie, L., Deng, C., Shi, P., Guan, M.-L., … Zhang, Y.-P. (2018). Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. *Proceedings of the National Academy of Sciences, 115*(33), 8406–8411. https://doi.org/10.1073/pnas.1805348115

Lu, H., Giordano, F., & Ning, Z. (2016). Oxford Nanopore MinION sequencing and genome assembly. *Genomics, Proteomics & Bioinformatics, 14*(5), 265–279. https://doi.org/10.1016/j.gpb.2016.05.004

MacArthur, R. A., & Wang, L. C. H. (1974). Behavioral thermoregulation in the pika *Ochotona princeps*: A field study using radiotelemetry. *Canadian Journal of Zoology, 52*(3), 353–358. https://doi.org/10.1139/z74-042

Macqueen, D. J., Primmer, C. R., Houston, R. D., Nowak, B. F., Bernatchez, L., Bergseth, S., … The FAASG Consortium. (2017). Functional annotation of all salmonid genomes (FAASG): An international initiative supporting future salmonid research, conservation and aquaculture. *BMC Genomics, 18*(1), 484. https://doi.org/10.1186/s12864-017-3862-8

Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics, 21*(16), 3448–3449. https://doi.org/10.1093/bioinformatics/bti551

Marques, J. P., Seixas, F. A., Farelo, L., Callahan, C. M., Good, J. M., Montgomery, W. I., … Melo-Ferreira, J. (2020). An annotated draft genome of the mountain hare (*Lepus...
timidus). *Genome Biology and Evolution, 12*(1), 3656–3662. https://doi.org/10.1093/gbe/evz273

Miga, K. H., Koren, S., Rhie, A., Vollger, M. R., Gershman, A., Bzikadze, A., … Phillippy, A. M. (2020). Telomere-to-telomere assembly of a complete human X chromosome. *Nature, 585*(7823), 79–84. https://doi.org/10.1038/s41586-020-2547-7

Millar, C. I., & Westfall, R. D. (2010). Distribution and climatic relationships of the American pika (*Ochotona princeps*) in the Sierra Nevada and Western Great Basin, U.S.A.; periglacial landforms as refugia in warming climates. *Arctic, Antarctic, and Alpine Research, 42*(1), 76–88. https://doi.org/10.1657/1938-4246-42.1.76

Morgulis, A., Gertz, E. M., Schäffer, A. A., & Agarwala, R. (2006). WindowMasker: Window-based masker for sequenced genomes. *Bioinformatics (Oxford, England), 22*(2), 134–141. https://doi.org/10.1093/bioinformatics/bti774

Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C., & Beissinger, S. R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. *Science, 322*(5899), 261–264. https://doi.org/10.1126/science.1163428

Mu, Y., Huo, J., Guan, Y., Fan, D., Xiao, X., Wei, J., … Chen, X. (2018). An improved genome assembly for *Larimichthys crocea* reveals hepcidin gene expansion with diversified regulation and function. *Communications Biology, 1*(1), 1–12. https://doi.org/10.1038/s42003-018-0207-3

Muir, P., Li, S., Lou, S., Wang, D., Spakowicz, D. J., Salichos, L., … Gerstein, M. (2016). The real cost of sequencing: Scaling computation to keep pace with data generation. *Genome Biology, 17*(1), 53. https://doi.org/10.1186/s13059-016-0917-0

O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., … Pruitt, K. D. (2016). Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. *Nucleic Acids Research, 44*(D1), D733-745. https://doi.org/10.1093/nar/gkv1189
Payne, A., Holmes, N., Rakyan, V., & Loose, M. (2019). BulkVis: A graphical viewer for Oxford nanopore bulk FAST5 files. *Bioinformatics, 35*(13), 2193–2198. https://doi.org/10.1093/bioinformatics/bty841

Peacock, M. M. (1997). Determining natal dispersal patterns in a population of North American pikas (*Ochotona princeps*) using direct mark-resight and indirect genetic methods. *Behavioral Ecology, 8*(3), 340–350. https://doi.org/10.1093/beheco/8.3.340

Pruitt, K. D., Brown, G. R., Hiatt, S. M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, O., … Ostell, J. M. (2014). RefSeq: An update on mammalian reference sequences. *Nucleic Acids Research, 42*(Database issue), D756-763. https://doi.org/10.1093/nar/gkt1114

Putnam, N. H., O’Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., … Green, R. E. (2016). Chromosome-scale shotgun assembly using an *in vitro* method for long-range linkage. *Genome Research, 26*(3), 342–350. https://doi.org/10.1101/gr.193474.115

Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., … Liu, J. (2012). The yak genome and adaptation to life at high altitude. *Nature Genetics, 44*(8), 946–949. https://doi.org/10.1038/ng.2343

Qu, Y., Chen, C., Xiong, Y., She, H., Zhang, Y. E., Cheng, Y., … Lei, F. (2020). Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in Eurasian tree sparrows. *National Science Review, 7*(1), 113–127. https://doi.org/10.1093/nsr/nwz138

Rankin, A. M., Galbreath, K. E., & Teeter, K. C. (2017). Signatures of adaptive molecular evolution in American pikas (*Ochotona princeps*). *Journal of Mammalogy, 98*(4), 1156–1167. https://doi.org/10.1093/jmammal/gyx059

Rhee, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., … Jarvis, E. D. (2021). Towards complete and error-free genome assemblies of all vertebrate species. *Nature, 592*(7856), 737–746. https://doi.org/10.1038/s41586-021-03451-0

Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications. *Genomics, Proteomics & Bioinformatics, 13*(5), 278–289. https://doi.org/10.1016/j.gpb.2015.08.002

Rice, E. S., Kohno, S., John, J. S., Pham, S., Howard, J., Lareau, L. F., … Green, R. E. (2017). Improved genome assembly of American alligator genome reveals conserved architecture
of estrogen signaling. *Genome Research, 27*(5), 686–696. https://doi.org/10.1101/gr.213595.116

Robson, K. M., Lamb, C. T., & Russello, M. A. (2016). Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment. *Journal of Mammalogy, 97*(2), 464–472. https://doi.org/10.1093/jmammal/gyv191

Roodgar, M., Babveyh, A., Nguyen, L. H., Zhou, W., Sinha, R., Lee, H., … Snyder, M. P. (2020). Chromosome-level *de novo* assembly of the pig-tailed macaque genome using linked-read sequencing and HiC proximity scaffolding. *GigaScience, 9*(7). https://doi.org/10.1093/gigascience/giaa069

Satou, Y., Mineta, K., Ogasawara, M., Sasakura, Y., Shoguchi, E., Ueno, K., … Inaba, K. (2008). Improved genome assembly and evidence-based global gene model set for the chordate *Ciona intestinalis*: New insight into intron and operon populations. *Genome Biology, 9*(10), R152. https://doi.org/10.1186/gb-2008-9-10-r152

Schwalm, D., Epps, C. W., Rodhouse, T. J., Monahan, W. B., Castillo, J. A., Ray, C., & Jeffress, M. R. (2016). Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: A place-based approach. *Global Change Biology, 22*(4), 1572–1584. https://doi.org/10.1111/gcb.13189

Shao, Y., Li, J.-X., Ge, R.-L., Zhong, L., Irwin, D. M., Murphy, R. W., & Zhang, Y.-P. (2015). Genetic adaptations of the plateau zokor in high-elevation burrows. *Scientific Reports, 5*(1), 17262. https://doi.org/10.1038/srep17262

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics, 31*(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351

Smith, A., & Beever, E. (2016). IUCN Red List of Threatened Species: *Ochotona princeps*. *IUCN Red List of Threatened Species*. Retrieved from https://www.iucnredlist.org/en

Smith, A. T. (2020). Conservation status of American pikas (*Ochotona princeps*). *Journal of Mammalogy, 101*(6), 1466–1488. https://doi.org/10.1093/jmammal/gyaa110
Smith, A. T., Johnston, C. H., Alves, P. C., & Hackländer, K. (2018). *Lagomorphs: Pikas, Rabbits, and Hares of the World*. Baltimore: Johns Hopkins University Press. https://doi.org/10.1353/book.57193

Smith, A. T., & Weston, M. L. (1990). *Ochotona princeps*. *Mammalian Species*, (352), 1. https://doi.org/10.2307/3504319

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2011). Cytoscape 2.8: New features for data integration and network visualization. *Bioinformatics*, 27(3), 431–432. https://doi.org/10.1093/bioinformatics/btq675

Solari, K. A., Ramakrishnan, U., & Hadly, E. A. (2018). Gene expression is implicated in the ability of pikas to occupy Himalayan elevational gradient. *PLOS ONE*, 13(12), e0207936. https://doi.org/10.1371/journal.pone.0207936

Stewart, J. A. E., Perrine, J. D., Nichols, L. B., Thorne, J. H., Millar, C. I., Goehring, K. E., … Wright, D. H. (2015). Revisiting the past to foretell the future: Summer temperature and habitat area predict pika extirpations in California. *Journal of Biogeography*, 42(5), 880–890. https://doi.org/10.1111/jbi.12466

Stock, A. D. (1976). Chromosome banding pattern relationships of hares, rabbits, and pikas (order Lagomorpha). A phyletic interpretation. *Cytogenetics and Cell Genetics*, 17(2), 78.

Sun, Y.-B., Fu, T.-T., Jin, J.-Q., Murphy, R. W., Hillis, D. M., Zhang, Y.-P., & Che, J. (2018). Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. *Proceedings of the National Academy of Sciences*, 115(45), E10634–E10641. https://doi.org/10.1073/pnas.1813593115

Tapper, S. C. (1973). *The spatial organisation of pikas (Ochotona) and its effect on population recruitment* (Ph.D.). University of Alberta (Canada), Canada. Retrieved from https://search.proquest.com/docview/250072010/citation/EBDFBA58DE1B4007PQ/1

Taylor, G. A., Kirk, H., Coombe, L., Jackman, S. D., Chu, J., Tse, K., … Jones, S. J. M. (2018). The genome of the North American brown bear or grizzly: *Ursus arctos ssp. horribilis*. *Genes*, 9(12), 598. https://doi.org/10.3390/genes9120598
Theodoridis, S., Rahbek, C., & Nogues-Bravo, D. (2021). Exposure of mammal genetic diversity to mid-21st century global change. *Ecography, n/a(n/a)*. https://doi.org/10.1111/ecog.05588

Tomaszkiewicz, M., Medvedev, P., & Makova, K. D. (2017). Y and W chromosome assemblies: Approaches and discoveries. *Trends in Genetics, 33*(4), 266–282. https://doi.org/10.1016/j.tig.2017.01.008

Tørresen, O. K., Star, B., Jentoft, S., Reinar, W. B., Grove, H., Miller, J. R., … Nederbragt, A. J. (2017). An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. *BMC Genomics, 18*(1), 95. https://doi.org/10.1186/s12864-016-3448-x

Wang, X., Liang, D., Jin, W., Tang, M., Shalayiwu, Liu, S., & Zhang, P. (2020). Out of Tibet: Genomic perspectives on the evolutionary history of extant pikas. *Molecular Biology and Evolution, 37*(6), 1577–1592. https://doi.org/10.1093/molbev/msaa026

Warr, A., Affara, N., Aken, B., Beiki, H., Bickhart, D. M., Billis, K., … Archibald, A. L. (2020). An improved pig reference genome sequence to enable pig genetics and genomics research. *GigaScience, 9*(giaa051). https://doi.org/10.1093/gigascience/giaa051

Waterhouse, M. D., Erb, L. P., Beever, E. A., & Russello, M. A. (2018). Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. *Molecular Ecology, 27*(11), 2512–2528. https://doi.org/10.1111/mec.14701

Whibley, A., Kelley, J. L., & Narum, S. R. (2021). The changing face of genome assemblies: Guidance on achieving high-quality reference genomes. *Molecular Ecology Resources, 21*(3), 641–652. https://doi.org/10.1111/1755-0998.13312

Wilkening, J. L., & Ray, C. (2016). Characterizing predictors of survival in the American pika (*Ochotona princeps*). *Journal of Mammalogy, 97*(5), 1366–1375. https://doi.org/10.1093/jmammal/gyw097

Wilkening, J. L., Ray, C., Beever, E. A., & Brussard, P. F. (2011). Modeling contemporary range retraction in Great Basin pikas (*Ochotona princeps*) using data on microclimate and microhabitat. *Quaternary International, 235*(1), 77–88. https://doi.org/10.1016/j.quaint.2010.05.004
Wurster, D. H., Snapper, J. R., & Benirschke, K. (1971). Unusually large sex chromosomes: New methods of measuring and description of karyotypes of six rodents (Myomorpha and Hystricomorpha) and one lagomorph (Ochotonidae). *Cytogenetic and Genome Research, 10*(3), 153–176. https://doi.org/10.1159/000130136

Yang, Y., Wang, L., Han, J., Tang, X., Ma, M., Wang, K., … Qiu, Q. (2015). Comparative transcriptomic analysis revealed adaptation mechanism of *Phrynocephalus erythrurus*, the highest altitude lizard living in the Qinghai-Tibet Plateau. *BMC Evolutionary Biology, 15*(1), 101. https://doi.org/10.1186/s12862-015-0371-8

Ye, J., Nie, W., Wang, J., Su, W., Jing, M., Graphodatsky, A. S., & Yang, F. (2011). Genome-wide comparative chromosome map between human and the Forrest’s pika (*Ochotona forresti*) established by cross-species chromosome painting: Further support for the Glires hypothesis. *Cytogenetic and Genome Research, 132*(1–2), 41–46. https://doi.org/10.1159/000317082

Zhang, Z., Chen, Y., Zhang, J., Ma, X., Li, Y., Li, M., … Ma, T. (2020). Improved genome assembly provides new insights into genome evolution in a desert poplar (*Populus euphratica*). *Molecular Ecology Resources, 20*(3), 781–794. https://doi.org/10.1111/1755-0998.13142
Table 1. Comparison of summary statistics for two American pika (*Ochotona princeps*) genome assemblies.

Measure	OchPri4.0	OchPri3.0
Total Length	2.231 Gb	2.230 Gb
Number of Scaffolds	9,350	10,420
Scaffold L50/N50	11 scaffolds; 75.8 Mb	26 scaffolds; 26.8 Mb
Scaffold L90/N90	29 scaffolds; 27.1 Mb	97 scaffolds; 4.18 Mb
Longest scaffold	153.7 Mb	83.7 Mb
Contig N50	42.1 kb	42.4 kb
Number of gaps	124,941	122,542
Percent of genome in gaps	12.88%	12.82%
BUSCO completeness:		
Single copy	255	259
Duplicated	10	9
Fragmented	15	12
Missing	23	23
Total	303	303
Table 2. Summary of annotated features for two American pika genomes (OchPri4.0, NCBI Annotation Release 102; OchPri3.0, NCBI Annotation Release 101), the European rabbit reference genome (OryCun2.0, NCBI Annotation Release 102), and the house mouse reference genome (GRCm39, NCBI Annotation Release 109). All genomes were annotated with the NCBI Eukaryotic Genome Annotation Pipeline (O’Leary et al., 2016; Pruitt et al., 2014).

Feature	OchPri4.0	OchPri3.0	OryCun2.0	GRCm39
Genes	21,186	18,976	24,120	39,728
Transcripts:				
mRNA	29,688	25,678	38,445	92,486
tRNA	340	330	485	422
lncRNA	335	328	4,291	23,611
rRNA	4	0	1	64
CDSs	29,701	25,678	38,445	92,499
Exons	199,586	196,561	223,017	352,138
Introns	178,616	176,085	195,269	291,708
% masked	26.22%	26.24%	37.77%	44.29%*

*Repeat masking was performed with RepeatMasker; all other genomes masked with WindowMasker
Table 3. Enriched gene ontology (GO) terms of American pika (*Ochotona princeps*) putatively linked to high elevation adaptation. White rows are linked to response to hypoxia, light shaded rows are linked to mitochondria development and function, and dark shaded rows are linked to DNA repair. Enriched GO terms were detected from species-specific American pika genes using a hypergeometric test with FDR correction for multiple testing.

GO ID	Type	Description
GO:0004129	MF	cytochrome-c oxidase activity
GO:0015002	MF	heme-copper terminal oxidase activity
GO:0016675	MF	oxidoreductase activity, acting on heme group of donors
GO:0016676	MF	oxidoreductase activity, acting on heme group of donors, oxygen as acceptor
GO:0015078	MF	hydrogen ion transmembrane transporter activity
GO:0005740	CC	mitochondrial envelope
GO:0005743	CC	mitochondrial inner membrane
GO:0031966	CC	mitochondrial membrane
GO:0044455	CC	mitochondrial membrane part
GO:0005742	CC	mitochondrial outer membrane translocase complex
GO:0044429	CC	mitochondrial part
GO:0005746	CC	mitochondrial respiratory chain
GO:0005739	CC	mitochondrion
GO:0070469	CC	respiratory chain
GO:0000729	BP	DNA double-strand break processing
GO:0045739	BP	positive regulation of DNA repair
GO:0006282	BP	regulation of DNA repair

MF = molecular function; CC = cellular component; BP = biological process
Figure 1. Synteny analysis and structural differences between American pika (Opri) and a) European rabbit (Ocun) and b) house mouse (Mmus) chromosomes. Only alignments > 1kb in length are shown for clarity.