Mobile Phone Sales Forecast Based on Support Vector Machine

Zekun Duan1,2, Yanqiu Liu1 and Kunyuan Huang1
1 College of Computer Science, Inner Mongolia University, Hohhot 010021, China
2 E-mail: 18603582530@163.com

Abstract: In this paper, we select price, wear resistance, resistance to fall, charging interval, battery life, communication stability, photo effect, appearance design, memory size and whether to buy again as input variables, take different mobile phone sales foreground grade as output variables based on the survey data of all kinds of mobile phone users in the current Chinese market, using support vector machine regression algorithm (SVMR)、BP Neural Network Algorithms and K-Nearest Neighbor Algorithms to establish models and predict the sales prospects of various kinds of mobile phones in China. The prediction results show that the predicted value of the mobile phone sales prediction model constructed by SVMR is basically consistent with the actual sales of all kinds of mobile phones in the market, which can provide some guidance for the manufacture and sale of various of mobile phones.

1. Introduction

With the improvement of science and technology and the rapid development of information technology in countries of the world, communication (mobile phone) industry has become an important part of national economic development[1]. China alone sold 455.93 million smartphones in 2017, up 1.1% from 2016, according to “Analysis Data”. China's smartphone sales are expected to be around 437.99 million units by 2020, indicating that the mobile phone industry has a huge market value[2]. The broad market prospect and billions of mobile phone users have made mobile phone R&D, manufacturing and sales a strategic high ground for all the major handset manufacturers to compete with each other[3]. Once there is a problem in a certain link, it may affect the sales of the whole brand and even the sustainable development of the whole enterprise. Selling is not only selling products, but also contacting the market while selling, understanding the development trends of various mobile phone brands in the market, and the general needs of the vast number of users in the market. So as to provide reference suggestions and guidance for mobile phone R&D, and promote the new generation of products to have a broader market and sales prospects[4]. Therefore, through the research of users' feedback on the use of all kinds of mobile phones, we can predict the market prospects of all kinds of mobile phones, which have important practical significance for the strategic deployment and product upgrading of products.

In recent years, artificial intelligence and big data mining technology have been widely used in various prediction models, such as mathematical statistics, grey theory, linear regression, neural network, genetic algorithm and support vector machine. Many scholars have also used this method to study the current situation and development trend of various kinds of products, and obtained a lot of research results[5-8]. The examples based on mathematical statistics and linear regression algorithm
are the most among these research results, including the annual forecast of all kinds of mobile phone sales by major media. However, most of these predictions are based on the manufacturer's sales volume and related information to judge the next year's sales volume, and don't fully consider the subjective judgment and specific usage of users.

Support Vector Machine (SVM) [9-12] was first proposed by Corinna Cortes and Vapnik in 1995. This algorithm is a sample data processing method based on statistical theory, referring to kernel function and following the principle of structural risk minimization, especially has many unique advantages in solving the small sample, nonlinear and high-dimensional pattern recognition, can effectively improve the accuracy of model prediction, avoid the problems such as BP neural network local optimum and long convergence time, etc.

In view of these conditions, we based on support vector machine (SVM) to predict the sales prospects of all kinds of mobile phones in this paper.

2. Data Processing and Research Ideas

2.1 Data Acquisition
We take all kinds of mobile phone users in the current market as the research object, collects more than 50,000 comment data from JD.COM by using Octopus Collector. At the same time, the python compiler is used to de-duplicate and delete redundant data. Besides, the mobile phone comment features are extracted to use in this paper. Finally, the 10 dimensions of market price, wear resistance, fall resistance, charging time, battery life time, communication stability, photographic effect, appearance design, memory size and whether to buy again are used for statistics, and we get more than 5000 valid data. Among them, 1026 items were randomly selected as the experimental data in this paper.

For achieving the unified operation of the data, this experiment take data in the Excel table for processing, then imported into the MySQL5.5 database for processing. After completing the above operations, in order to improve operational efficiency, we used Heidi SQL 9.5 (a software of management database by graphical approach), we can make data processing is achieved by Standardized and integrated approach.

2.2 Data Transformation
In the setting of the comments, most of the data answer are determined by the user's subjective judgment, so in the subsequent processing, it is necessary to quantify the corresponding different contents, for meeting the requirement of further experiments. For example, the battery life of mobile phone is divided into five levels, which are set as I={1,2,3,4,5}. Individually: 3 hours should be grade 1, 6 hours should be grade 2, 9 hours should be grade 3, 12 hours should be grade 4, 12 hours or more should be grade 5.

2.3 Research Ideas
In general, The sales prospects of mobile phones are the result of the interaction and synergy of various factors about the market. The relationship of mobile phones is complex and has multidimensional non-linear characteristics. At the same time, there is also a typical non-linear relationship between the sales prospects of mobile phones and their various influencing factors. So, Support vector machine can map related data to the high-latitude feature space through non-linear manner, and constructs linear regression in the high-latitude feature space, so as to obtain the non-linear regression effect in the low-dimensional space. After consulting the relevant literature, I found there is only one class of samples in support vector machine regression (SVMR) model. The optimal plane to be sought is to minimize the "total deviation" of all sample points from the hyperplane, and the sample points are between two boundaries, which is equivalent to Find the problem of maximum separation. The model consists of three parts: input layer of dependent variable, intermediate processing layer and final output layer. The specific model is shown in Figure 1.
In the above model, where x_1-x_n are low-dimensional input vectors, $X_i=(x_1, x_2, ... x_n)$; $K(x_i, x_j) = <\psi(x_i) \cdot \psi(x_j)>$ is a kernel function, β_i is a support vector, ψ is a function of high-latitude space mapping. The linear combination function $f(x)$ is obtained by concatenating the input vector and the kernel function by the Lagrangian coefficients ($\beta_1, \beta_2, ..., \beta_n$) of the corresponding support vectors[13-16].

$$f(x) = \text{sgn}\left(\sum_{i=1}^{n} \beta_i K(x_i, x) + b\right)$$ \hspace{1cm} (1)

At present, the kernel functions referenced in the support vector machine regression model mainly include linear kernel function, polynomial kernel function, Sigmoid kernel function, RBF kernel function, etc. In this study, we consider the different performance and computational convenience of different kernels. So, we mainly use grid search to select the optimal parameters.

3. SVMR Prediction Model Contrast Test

3.1 Parameter Selection

After investigation, I finally fully consider the sales of various types of mobile phones in the market and the actual value of users’ attention. So this paper from the market price of various types of mobile phones, wear resistance, drop resistance, charging time, battery life, communication stability, photo effects, design, memory size, and purchase again, total Ten dimensions.

Then, I decided quantitative statistical analysis about 1218 valid data obtained, for example, according to the strong degree, take whether to purchase again of the user's wishes classification by rank: will definitely buy is 5, will buy is 4, may buy is 3, uncertain is 2, no purchase is 1;Besides, for wear resistance, resistance, design, communication stability, etc. according to special satisfaction, satisfaction, satisfactory, okay, unsatisfied are divided into: 5, 4, 3, 2, 1 it’s five levels.

3.2 Sample determination

After we preprocess the effective data, the normalized new matrix is used as the input data of SVMR, and the sales prospects of mobile phones are sorted according to quantitative analysis, which is divided into 10 grades, the output data corresponding to SVMR. In this paper, a one-to-one classification method is used to form a two-classification problem. That is to say, if there are N classes, we need to train $n*(n-1)/2$ classifiers and use each classifier to verify the samples, so that we can get the corresponding prediction results.

In the experiment, three different machine learning methods, Support Vector Machine Regression (SVMR), Back Propagation Neural Network (BP Neural Network) and K-Nearest Neighbor (K-Nearest Neighbor) algorithm, are compared on the platform of Matlab R2017a.
After many experiments, it is found that 10% data is better for training. At the same time, 3 fold cross validation method is used to compare the results. The results are shown in Figure 2 and Figure 3.

![Figure 2. Effect diagram of BP neural network](image1)

![Figure 3. K-Nearest Neighbor Model Effect Chart](image2)

After that, the effect of support vector machine using RBF kernel function is obviously better than the other two methods. Finally, when the Sigma value is 10, the effect is the best, which can reach 84.97%. The results are shown in Figure 4.

![Figure 4. Support Vector Machine Model Effectiveness Diagram](image3)

The other corresponding parameters are default values, and take the originally data training set and verification set into the above prediction model, and take the output values are denormalized, to obtain the sales prospect level corresponding to different product names, and combine them with the select data, and the proportion of users of different brands, through various factors predicted to be the proportion of the brand in the market. The specific forecast results, the market ratio and actual value of
various types of mobile phone sales in the world from 2014 to 2016, and compared with the predicted values of the SVMR model as shown in Table 1, Table 2 and Figure 5 below:

Table 1. Experiments predict sales prospects of 10 brands of mobile phones

Sales Prospect Level	brand	Occupancy rate	Sales Prospect Level	brand	Occupancy rate
1	Apple	21.63%	6	OPPO	6.82%
2	HUAWEI	19.76%	7	LG	5.34%
3	VIVO	15.47%	8	Lenovo	4.78%
4	xiaomi	14.96%	9	TCL	2.72%
5	Samsung	7.32%	10	ZTE	1.20%

Table 2. Ratio of Actual Global Sales of Mobile Phones in 2015-2017

Ranking	2015 Market share	2016 Market share	2017 Market share
1	Samsung 24.70%	Samsung 22.60%	Samsung 20.90%
2	Apple 18.20%	Apple 15.60%	Apple 14.53%
3	HUAWEI 8.30%	HUAWEI 11.10%	HUAWEI 13.71%
4	Lenovo 5.40%	OPPO 8.50%	OPPO 9.21%
5	LG 5.20%	VIVO 7.10%	VIVO 7.92%
6	xiaomi 5.20%	LG 5.50%	xiaomi 5.43%
7	OPPO 3.80%	xiaomi 3.80%	LG 5.21%
8	TCL 3.70%	Lenovo 3.80%	Lenovo 3.11%
9	VIVO 3.60%	TCL 3.20%	TCL 2.87%
10	ZTE 3.40%	ZTE 3.30%	ZTE 2.63%
- other		other 15.50%	other 14.48%

Figure 5. Comparison of the actual value with the predicted value of SVMR model

By comparing tables 1 and 2, we can find that SVM is helpful to establish the forecasting model of mobile phone sales prospects, and the forecasting value is basically consistent with the actual sales value announced by mobile phone manufacturers. Altogether, it is expected that the sales rankings of
major manufacturers will not change dramatically in recent years, but Huawei is catching up with Apple step by step, while Xiaomi and Vivo are also developing rapidly.

4. Summary
This article is based on the current market price of various mobile phones, their wear resistance, drop resistance, charging time, battery life, communication stability, camera effect, design, memory size, whether to buy again as dependent variables, they are, input variables. The sales forecast levels of different mobile phones are the output variables in this article. This article also applies SVM to establish the forecasting model of various mobile phone sales prospects. The predicted value is basically consistent with the actual sales value announced by each mobile phone manufacturer. This model can provide guidance for product configuration and sales for various mobile phone manufacturers, which has certain practical value.

References
[1] S Y Lei 2018 Research on Precision Marketing of OPPO Mobile Phone under the Background of Big Data(Hubei University of Technology).
[2] 2018 The global smartphone market is saturated with Huawei's millet against the surge(Screen printing industry) p60.
[3] H Si and Y J Jiang 2018 Bank Personal Credit Evaluation Based on SVM Optimization Algorithm (Industry and Technology Forum) pp 70-71.
[4] B WWu 2018 Application of grey forecasting in hand sales(Shandong Industrial Technology)p240.
[5] L He 2018 Huawei's mobile phone business marketing strategy research(Jilin University).
[6] B. Trafalis 2008 Short term forecasting with support vector machines and application to stock price prediction(International Journal of General Systems).
[7] Kyoung-jae 2003 Kim Financial time series forecasting using support vector machines(Neurocomputing).
[8] X J Ma 2018 Price Forecast Based on Support Vector Regression Model(Zhengzhou University).
[9] Machine Learning 1995 Support-Vector Networks(Corinna Cortes, Vladimir Vapnik)
[10] Christopher J.C. Burges 1998 A Tutorial on Support Vector Machines for Pattern Recognition(Data Mining and Knowledge Discovery).
[11] Z X Lu and Y D Li 1999 Interactive Support Vector Machine Learning Algorithm and Its Application (Journal of Tsinghua University (Natural Science Edition)).
[12] X G Zhang 2000 About statistical learning theory and support vector machine(Journal of Automation)pp36-46.
[13] X B Da N Wang and Y Liu 2018 A BGP anomaly detection method based on improved Gaussian kernel function(computer engineering)pp1-10.
[14] 2004 Experimentally optimal V in support vector regression for different noise models and parameter settings(Athanassia Chalimourda. Neural Networks).
[15] Li X Z Su R G Zhang C S and Shi X Y 2019 Prediction model of chlorophyll a concentration in the Yangtze River estuary and its adjacent waters based on support vector machine(Journal of Ocean University of China (Natural Science Edition))pp69-76.
[16] Zhang Y Z and Jia L X 2014 SVR-based house price forecasting model based on grid--taking Zhengzhou City as an example(Henan Science)pp1659-1663.