Cleaning up the ‘Bigmessidae’: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae

Danwei Huang1,2*, Wilfredo Y Licuanan3, Andrew H Baird4, Hironobu Fukami5

Abstract

Background: Molecular phylogenetic studies on scleractinian corals have shown that most taxa are not reflective of their evolutionary histories. Based principally on gross morphology, traditional taxonomy suffers from the lack of well-defined and homologous characters that can sufficiently describe scleractinian diversity. One of the most challenging clades recovered by recent analyses is ‘Bigmessidae’, an informal grouping that comprises four conventional coral families, Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae, interspersed among one another with no apparent systematic pattern. There is an urgent need for taxonomic revisions in this clade, but it is vital to first establish phylogenetic relationships within the group. In this study, we reconstruct the evolutionary history of ‘Bigmessidae’ based on five DNA sequence markers gathered from 76 of the 132 currently recognized species collected from five reef regions in the central Indo-Pacific and the Atlantic.

Results: We present a robust molecular phylogeny of ‘Bigmessidae’ based on the combined five-gene data, achieving a higher degree of resolution compared to previous analyses. Two Pacific species presumed to be in ‘Bigmessidae’ are more closely related to outgroup clades, suggesting that other unsampled taxa have unforeseen affinities. As expected, nested within ‘Bigmessidae’ are four conventional families as listed above, and relationships among them generally corroborate previous molecular analyses. Our more resolved phylogeny supports a close association of Hydnophora (Merulinidae) with Favites + Montastraea (Faviidae), rather than with the rest of Merulinidae, i.e., Merulina and Scaphophyllia. Montastraea annularis, the only Atlantic ‘Bigmessidae’ is sister to Cyphastrea, a grouping that can be reconciled by their septothecal walls, a microstructural feature of the skeleton determined by recent morphological work. Characters at the subcorallite scale appear to be appropriate synapomorphies for other subclades, which cannot be explained using macromorphology. Indeed, wide geographic sampling here has revealed more instances of possible cryptic taxa confused by evolutionary convergence of gross coral morphology.

Conclusions: Numerous examples of cryptic taxa determined in this study support the assertion that diversity estimates of scleractinian corals are erroneous. Fortunately, the recovery of most ‘Bigmessidae’ genera with only minor degrees of paraphyly offers some hope for impending taxonomic amendments. Subclades are well defined and supported by subcorallite morphological features, providing a robust framework for further systematic work.

Background

For the last two decades, coral systematists have been untangling the complex evolutionary relationships among scleractinian species using DNA sequence data. Seminal molecular phylogenetic work by Romano and Palumbi [1,2] divided the Scleractinia into two major clades, the robust and complex groups, and indicated many problems with traditional taxonomy based on morphology (see also [3]). For instance, Leptastrea was recovered within a Fungiina clade rather than the suborder Faviina, where morphological studies had placed it (e.g., [4,5]). Gradually, using more genetic loci, further evidence was uncovered to show that non-monophyly of coral taxa is widespread in Scleractinia (e.g., [6-11]).
This culminated in a comprehensive survey of the entire taxon by Fukami et al. [12], which showed that while Scleractinia is monophyletic, most taxonomic groups within it are not. In fact, a staggering 11 of 16 conventional families are polyphyletic.

Undoubtedly, one of the most challenging clades that have been recovered by recent analyses is a group of robust corals in clade XVII [12]. The disarray within the clade is epitomized by its informal name ‘Bigmessidae’ [13,14]. This clade contains species from four traditional coral families, Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae, interspersed among one another in the tree based on mitochondrial cytochrome oxidase I (COI) and cytochrome b gene sequences [12]. With the exception of the Montastraea annularis complex, all members of this clade are from the Indo-Pacific. Families with all species included within clade XVII are Trachyphylliidae (monospecific) and Merulinidae, the latter being polyphyletic, while Faviidae and Pectiniidae have representatives present within and outside clade XVII. Although the clade has not been examined in detail, Huang et al. [15] showed that representatives from other families (Merulinidae and Mussidae) are also nested within it, and several genera are not monophyletic (i.e., Echinopora, Favia, Favites, Goniatrea and Montastraea). In addition, Fukami et al. [12] found paraphyly in Leptoria, Oulophyllia and Platygyra for at least one marker.

Clearly, there exists an urgent need for taxonomic revisions in this clade, amidst the ongoing disarray in the Scleractinia. But in order to begin any form of revision for clade XVII, it is first necessary to determine which subclades are problematic, using as complete a morphological and genetic coverage as possible. Up to this point, the largest number of markers used for analysis of this group has been derived from Fukami et al. [12], who used the aforementioned mitochondrial genes, as well as the nuclear β-tubulin and 28S rDNA separately. However, only 33 species represented by 38 terminals were analyzed for clade XVII, and several subclades were not resolved due to their short branches. Resolution was improved in Huang et al. [15], which included 85 terminals from 43 species, but that study used only COI and a noncoding intergenic mitochondrial region (IGR).

In this study, we present data for five molecular markers—two mitochondrial and three nuclear loci—from 76 of the 132 currently recognized species in clade XVII [12]. We also included seven species from other robust corals as outgroups. Corals were sequenced from five reef regions—the central and northern Great Barrier Reef in Australia, Wakayama in Japan, Batangas in the Philippines, Singapore and the Caribbean. We reconstruct the evolutionary history of clade XVII and identify subclade placement of species that have not been studied in a molecular phylogenetic context. As some species were sampled from multiple locations, we also test if these corals were as widespread as previously recorded.

Methods
Specimen collection and DNA extraction
Specimens were collected from coral reefs in five regions—Singapore, Wakayama (Japan), Queensland (Australia), Batangas (The Philippines), and the Caribbean. To ensure consistency in identifications among localities, each coral was sampled by at least two authors, based on morphological features that can be recognized in the field. The identity was later confirmed in the laboratory after examining skeletal traits [5,16-21]. In total, 124 specimens from 83 species in clades XIV-XXI have been included in the present analysis (Table 1; see Additional file 1). We photographed each colony in the field and collected between 10 and 100 cm² of coral from each colony using a hammer and chisel, with ~2 cm² of tissue preserved in 100% ethanol.

For each colony from Singapore, Japan and the Caribbean, DNA was extracted from ~2 cm² of tissue digested in twice their volume of CHAOS solution (not an acronym; 4 M guanidine thiocyanate, 0.1% N-lauroyl sarcosine sodium, 10 mM Tris pH 8, 0.1 M 2-mercaptoethanol) for at least three days at room temperature before DNA extraction using a phenol-chloroform based method with a phenol extraction buffer (100 mM TrisCl pH 8, 10 mM EDTA, 0.1% SDS) [15,22-24]. For specimens from Australia and the Philippines, genomic DNA was extracted from the tissues preserved in ethanol using the Qiagen DNeasy kit, following the manufacturer’s instructions.

The rest of the colony was sprayed with a powerful water jet to remove as much tissue as possible before being bleached in 5-10% sodium hypochlorite solution. The skeletons were rinsed in fresh water, dried, and deposited in the Raffles Museum of Biodiversity Research (Singapore), Seto Marine Biological Laboratory (Wakayama, Japan), Museum of Tropical Queensland (Australia), and De La Salle University (Manila, The Philippines) (Table 1).

PCR amplification and sequencing
A total of five molecular markers were amplified for a majority of the samples (Tables 1 and 2). They consist of three nuclear and two mitochondrial loci: (1) 28S rDNA D1 and D2 fragments; (2) histone H3; (3) internal transcribed spacers 1 and 2, including 5.8S rDNA (ITS in short); (4) cytochrome oxidase subunit I (COI); and (5) noncoding intergenic region situated between COI and the formylmethionine transfer RNA gene (IGR short) [8,23,25-27].
No.	Species	Voucher	28S rDNA	histone H3	ITS rDNA	mt COI	mt IGR
1	Acanthastrea echinata (XX; Mussidae)	S031	HQ203399	HQ203520	HQ203308	EU371658	
2	Barabattoia amicorum	S047	HQ203400	HQ203521	HQ203309	FJ345412	FJ345480
3	Caulastrea echinulata	S041	HQ203401	HQ203522		FJ345414	FJ345496
4	Caulastrea furcata	P108	HQ203402	HQ203523		HQ203248	FJ345639
5	Caulastrea tumida	G61875	HQ203403	HQ203524	HQ203310	HQ203249	HQ203640
6	Cyphastrea chalcidicum	G61902	HQ203404	HQ203525	HQ203311	HQ203250	
7	Cyphastrea chalcidicum	S103	HQ203405	HQ203526	HQ203312	FJ345415	
8	Cyphastrea microphthalmum	S069	HQ203406	HQ203527		FJ345416	
9	Cyphastrea serailia	G61889	HQ203407	HQ203528	HQ203313	HQ203251	
10	Cyphastrea serailia	P108	HQ203408	HQ203529	HQ203314	EU371659	
11	Cyphastrea serailia	P120	HQ203409	HQ203530		HQ203252	
12	Diploastrea heliopora (XX)	S048	HQ203410	HQ203531	HQ203315	EU371660	
13	Echinopora gemmacea	S120	HQ203411	HQ203532	HQ203316	FJ345418	FJ345457
14	Echinopora horrida	G61907	HQ203412	HQ203533	HQ203317	HQ203253	HQ203641
15	Echinopora lamellosa	S109	HQ203413	HQ203534	HQ203318	FJ345419	FJ345458
16	Echinopora mamiliformis	G61884	HQ203414	HQ203535	HQ203319	HQ203254	HQ203642
17	Echinopora pacificus	S110	HQ203415	HQ203536	HQ203320	FJ345420	FJ345459
18	Favia danae	G61885	HQ203416	HQ203537	HQ203321	HQ203643	
19	Favia danae	G61880	HQ203418	HQ203539	HQ203322	HQ203644	
20	Favia favus	G61915	HQ203419	HQ203540	HQ203323	HQ203656	
21	Favia favus	S003	HQ203420	HQ203541	HQ203324	EU371710	FJ345511
22	Favia favus	S025	HQ203421	HQ203542		EU371664	FJ345465
23	Favia favus	S040	HQ203422	HQ203543	HQ203325	EU371665	FJ345466
24	Favia favus	P105	HQ203423	HQ203544		HQ203257	HQ203646
25	Favia favus	P136	HQ203424	HQ203545		Kerala	
26	Favia fragum (XXI)	S013	HQ203426	HQ203538		FJ34576	
27	Favia cf. laxa	S014	HQ203427	HQ203539		FJ34576	
28	Favia cf. laxa	G61872	HQ203428	HQ203540		FJ34576	
29	Favia luzardensis	S072	HQ203429	HQ203541		FJ34576	
30	Favia luzardensis	P136	HQ203430	HQ203542		FJ34576	
31	Favia luzardensis	G61912	HQ203431	HQ203550		FJ34576	
32	Favia cf. martitima	G61881	HQ203432	HQ203551		FJ34576	
33	Favia matthiisi	G61883	HQ203433	HQ203552		FJ34576	
34	Favia matthiisi	S005	HQ203434	HQ203553		FJ34576	
35	Favia matthiisi	S029	HQ203435	HQ203554		FJ34576	
36	Favia maxima	S052	HQ203436	HQ203555		FJ34576	
37	Favia maxima	P142	HQ203437	HQ203556		FJ34576	
38	Favia cf. maxima	P134	HQ203438	HQ203557		FJ34576	
39	Favia pallida	G61898	HQ203439	HQ203558		FJ34576	
40	Favia pallida	S036	HQ203440	HQ203559		FJ34576	
41	Favia pallida	G61911	HQ203441	HQ203560		FJ34576	
42	Favia rosaria	S068	HQ203442	HQ203561		FJ34576	
43	Favia rotundata	G61874	HQ203443	HQ203562		FJ34576	
44	Favia rotundata	P132	HQ203444	HQ203563		FJ34576	
45	Favia speciosa	S001	HQ203445	HQ203564		FJ34576	
46	Favia speciosa	S026	HQ203446	HQ203565		FJ34576	
47	Favia speciosa	P103	HQ203447	HQ203566		FJ34576	
48	Favia stelligera	P141	HQ203448	HQ203567		FJ34576	
49	Favia truncatus	G61897	HQ203449	HQ203568		FJ34576	
50	Favia truncatus	S002	HQ203450	HQ203569		FJ34576	

Huang et al. BMC Evolutionary Biology 2011, 11:37
http://www.biomedcentral.com/1471-2148/11/37
Table 1 Species and DNA sequences examined in this study (Continued)

Species	Accession Numbers	DNA Sequences	Comments			
Favites chinensis	S084	HQ203449	HQ203570	HQ203346	HQ203268	
Favites complanata	S007	HQ203450	HQ203571	HQ203347	EU371689	
Favites flexuosa	P116	HQ203451	HQ203572	HQ203348	HQ203269	
Favites halicora	S115	HQ203452	HQ203573	HQ203349	HQ203270	
Favites parafflexuosa	S100	HQ203453	HQ203574	HQ203350	EU371694	FJ345521
Favites pentagona	S086	HQ203454	HQ203575	HQ203351	EU371695	
Favites pentagona	P111	HQ203455	HQ203576		HQ203271	
Favites russelli	G61895	HQ203456	HQ203577	HQ203352	HQ203272	HQ203658
Favites styllifera	P128	HQ203457	HQ203578	HQ203353	HQ203273	HQ203659
Goniatrea aspera	S107	HQ203458	HQ203579	HQ203354	FJ345430	FJ345487
Goniatrea australensis	G61876	HQ203459	HQ203580	HQ203355	HQ203274	HQ203660
Goniatrea australis	S088	HQ203460	HQ203581	HQ203356	FJ345431	FJ345490
Goniatrea australis	S098	HQ203461	HQ203582		EU371696	FJ345491
Goniatrea edwardsi	G61877	HQ203462	HQ203583	HQ203357	EU371697	FJ345492
Goniatrea edwardsi	S117	HQ203463	HQ203584		FJ345432	FJ345493
Goniatrea favulus	S022	HQ203465	HQ203586		EU371698	FJ345494
Goniatrea favulus	S021	HQ203466	HQ203587	HQ203359	EU371699	FJ345488
Goniatrea pectinata	G61879	HQ203467	HQ203588	HQ203360		HQ203662
Goniatrea pectinata	S043	HQ203468	HQ203589		FJ345434	FJ345489
Goniatrea pectinata	P110	HQ203469	HQ203590			HQ203663
Goniatrea retiformis	S083	HQ203470	HQ203591	HQ203361	EU371700	FJ345527
Goniatrea retiformis	P119	HQ203471	HQ203592		HQ203275	HQ203664
Hydnophora exesa (Merulinidae)	P127	HQ203472	HQ203593	HQ203362	HQ203276	HQ203665
Hydnophora microconas (Merulinidae)	P121	HQ203473	HQ203594	HQ203363	HQ203277	HQ203666
Hydnophora pilosa (Merulinidae)	P138	HQ203474	HQ203595	HQ203364	HQ203278	HQ203667
Leptonia irregularis	P133	HQ203475	HQ203596		HQ203279	HQ203668
Leptonia phylgia	S081	HQ203476	HQ203597	HQ203365	EU371705	FJ345529
Lobophyllia corymbosa (XIX; Mussidae)	A005	HQ203480	HQ203601	HQ203368	HQ203283	
Merulina ampliata (Merulinidae)	P106	HQ203477	HQ203598		HQ203280	HQ203669
Merulina scabricula (Merulinidae)	P114	HQ203478	HQ203599	HQ203366	HQ203281	HQ203670
Montastraea annularis	A622	HQ203479	HQ203600	HQ203367	HQ203282	
Montastraea cf. annuligera	P117	HQ203481	HQ203602	HQ203369		HQ203671
Montastraea cavernosa (XVI)	A005	HQ203480	HQ203601	HQ203368	HQ203283	
Montastraea colemani	P118	HQ203482	HQ203603		HQ203284	
Montastraea curta	G61882	HQ203483	HQ203604	HQ203370	HQ203285	
Montastraea curta	P122	HQ203484	HQ203605		HQ203286	
Montastraea magnistellata	G61896	HQ203485	HQ203606	HQ203371	HQ203287	
Montastraea magnistellata	P109	HQ203486	HQ203607		HQ203288	
Montastraea multipunctata	P131	HQ203487	HQ203608	HQ203372	HQ203289	
Montastraea salebrosa	P139	HQ203488	HQ203609	HQ203373	HQ203290	HQ203672
Montastraea valenciennesii	G61904	HQ203489	HQ203610		HQ203291	HQ203673
Montastraea valenciennesii	S006	HQ203490	HQ203611	HQ203374	EU371713	FJ345514
Montastraea valenciennesii	S008	HQ203491	HQ203612		EU371714	FJ345515
Montastraea valenciennesii	P102	HQ203492	HQ203613	HQ203375	HQ203292	
Moseleya fatisellata	G61909	HQ203493	HQ203614	HQ203376	HQ203293	HQ203674
Mussa angulosa (XXI; Mussidae)	AF549237				AB117241	
Mycedium elephantotus (Pectiniidae)	S121	HQ203494	HQ203615	HQ203377	HQ203294	HQ203675
Mycedium robustk (Pectiniidae)	S126	HQ203495	HQ203616	HQ203378	HQ203295	HQ203676
Oulophyllia bennettae	G61873	HQ203496	HQ203617		HQ203296	HQ203677
Oulophyllia bennettae	S033	HQ203497	HQ203618	HQ203379	FJ345436	FJ345497
Oulophyllia aff. bennettae	P140	HQ203498	HQ203619	HQ203380	HQ203297	
The mitochondrial intergenic region (IGR) was too variable to be aligned across the entire clade, so only alignable sequences were included in the analysis. ITS comprises multiple copies in the nuclear genome, but the primers we used have shown high fidelity for a single copy, precluding the need to clone the amplicons [27-33]. Nevertheless, in the unlikely case that paralogs were sequenced, our analyses could be confused by incomplete lineage sorting [7]. We therefore sequenced the ITS locus from at most one representative of each species, unless analyses of the other four markers did not recover its sequences as a clade. In the latter case, sequences may actually belong to separate cryptic species that have been obscured by gross morphological similarities. For COI, not all specimens of each species were necessarily sequenced since intraspecific variation of this gene is limited [15,24].

PCR products were purified with ExoSAP-IT (GE Healthcare, Uppsala, Sweden) and sequencing was performed by Advanced Studies in Genomics, Proteomics and Bioinformatics (ASGPB) at the University of Hawaii at Manoa using the Applied Biosystems BigDye Terminator kit and an ABI 3730XL sequencer. New sequences were deposited in GenBank under accession numbers HQ203246-HQ203689 (Table 1).

Phylogenetic analyses

Sequences were organized into five separate data matrices using Mesquite 2.72 [34], and each aligned with the accurate alignment option (E-INS-i) in MAFFT.
6.7 [35-37] under default parameters. Substitution saturation of protein-coding genes was assessed via DAMBE [38,39], where we found histone H3 and COI to be unsaturated at the third codon positions for tree inference. Consequently, we concatenated the five gene matrices into a single partitioned matrix consisting of 4600 characters, 1467 of which were parsimony informative. This was analyzed using maximum parsimony, Bayesian likelihood, and maximum likelihood methods. We also carried out these analyses on a four-gene dataset omitting the ITS partition to determine if the phylogenetic reconstruction was sensitive to the ITS sampling strategy.

Under a maximum parsimony framework, we utilized new search technologies [40,41] in the software TNT 1.1 [42,43]. Tree searches consisted of 50000 random addition sequence replicates under the default sectorial, ratchet, drift and tree fusing parameters. Gaps were treated as missing data and clade stability was inferred using 1000 bootstrap replicates each employing 100 random addition sequences.

For maximum likelihood, neighbor-joining and Bayesian analyses, we determined the most suitable model of molecular evolution for each gene partition and the concatenated matrix using jModelTest 0.1.1 [44,45] to test for a total of 24 models, following the Akaike Information Criterion (AIC). The maximum likelihood tree for each partition and the combined dataset was inferred using RAxML 7.2.3 [46,47] at the Cyberinfrastructure for Phylogenetic Research (CIPRES; http://www.phylo.org), employing the GTRGAMMA model. The proportion of invariable sites and gamma distribution shape parameter for variable sites were estimated during the maximum likelihood analysis. Multiparametric bootstrap analysis was carried out using 1000 bootstrap replicates. Maximum likelihood analysis was also carried out with PhyML 3.0 [45] on the combined data, utilizing the AIC-chosen model (GTR+I+Γ), and generating 1000 bootstrap replicates. The neighbor-joining tree of the combined data was calculated in PAUP*4.0b10 [48] with 1000 bootstrap replicates, employing the evolutionary model selected above.

Bayesian inference was carried out in MrBayes 3.1.2 [49,50], using the resources of the Computational Biology Service Unit from Cornell University, with each partition modeled (Table 2) but unlinked for separate parameter estimations. Four Markov chains of 10 million generations were implemented in twelve runs, saving a tree every 100th generation. MCMC convergence among the runs was monitored using Tracer 1.5 [51], where we ascertained that only four of the twelve runs converged on the shortest trees (only two runs converged for the four-gene analysis; see [52-54]), and the first 40001 trees were to be discarded as burn-in.

Additionally, compensatory base changes because of the secondary structure of the ITS rDNA loci may lead to non-independence and increased homoplasy of characters [55-57]. Hence, analysis of the secondary structure of this region may result in a more rigorous phylogeny [58-61]. Using the ITS2 segment of each ITS sequence, secondary structure was predicted by searching the ITS2 database [62] for the best match template and then modeling its structure based on free energy minimization. The ITS2 sequences and their associated structural information were aligned using 4SALE 1.5 [63,64], and then exported for analysis in ProfDistS 0.9.8 [65-68]. The profile neighbor-joining algorithm was executed with 10000 bootstrap replicates on the RNA structural alignment, using the GTR model and rate matrix ‘Q_ITS2.txt’ for distance correction. ITS2 could not be amplified from Hydnophora microconos, H. pilosa and Merulina scabricula. Consequently these species were excluded from the analysis.

Results and Discussion

In this study, the evolutionary history of the ‘Bigmessidae’ corals was robustly reconstructed using five genes. Relations among other clade representatives chosen as outgroups were also inferred. The maximum likelihood reconstructions carried out by RAxML 7.2.3 and PhyML 3.0 had log likelihood values of -36224.67 and -36995.48, respectively. As they were identical when considering nodes with bootstrap values ≥50, we present the RAxML tree that garnered a higher likelihood score (Figures 1 and 2). A total of 182 most parsimonious trees (tree length = 6178) were obtained. No conflicts between tree optimization procedures (including Bayesian inference and the neighbor-joining algorithm) were apparent when considering only the supported nodes (bootstrap ≥50 and posterior probability ≥0.9) (see Additional file 2). Analyses excluding the ITS partition also gave congruent results. Several clades were consistent and well supported among maximum likelihood, parsimony and Bayesian inferences. We named some of these groups within clade XVII, with clade XVII from A to I, consistent with the classification in Budd and Stolarski [69]. On the other hand, the neighbor-joining method generated a relatively unresolved tree—subclades A, C, F and I did not achieve bootstrap values of ≥50 (see Additional file 2).

The combined five-gene data yielded the most resolved phylogeny hitherto of clade XVII, with most branches garnering high support values. However, most partitions gave fairly unresolved trees when analyzed individually (see Additional file 3). By examining the support of subclades among trees obtained via different partitions, we found that nuclear markers contributed a greater extent to the final tree topology (Table 3). Histone H3, for instance, supported all higher-level
groupings and all subclades except D/E (Figure 1). The 28S and ITS rDNA gene trees had moderate resolution within clade XVII, with only two unresolved subclades each. Surprisingly, the tree based on ITS2 rDNA secondary structure had less resolution than the primary sequence alignment. Indeed, the former has demonstrated potential for resolving intrageneric phylogenies in other anthozoans [70,71], but it is less informative for relationships at higher taxonomic levels [72,73]. Evidently, the COI tree was poorly resolved, with ≥50 bootstrap support for few relationships among major clades and only one subclade. The slow evolution of the mitochondrial COI gene among anthozoans is certainly the reason behind this [24,74,75]. While the intergenic marker (IGR) adjacent to COI on the mitochondrial genome has shown promise for phylogenetic reconstruction among Faviidae and Mussidae [15,23,76], it cannot be unambiguously aligned between the major clades. We urge the development of more nuclear phylogenetic markers that can be reliably applied across diverse scleractinian clades.

Most relationships among clades XV to XXI obtained in this study corroborate results of Fukami et al. [12] (Figure 1). The only difference occurs in the sister grouping of Diploria heliopora (XV) and Montastraea cavernosa (XVI) (supported by all analyses except Bayesian likelihood) that form a grade in Fukami et al. [12]. The monophyly of the clade XVI+XIX+XX (Pacific faviids and mussels) is recovered but not well supported. Montastraea multipunctata and Moseleya

![Figure 1 Maximum likelihood tree of the combined molecular data](image-url)
latistellata are Pacific faviids, and therefore presumably in clade XVII. But as a result of superficial similarities, they have historically been associated with the Pacific mussels Blastomussa merleti (clade XIV) [77] and Acanthastrea hillae (clade XVIII) [5,18], respectively. Here, we find them to be more closely related to clades XIX and XX instead, revealing a taxonomic situation more closely related to the results of Fukami et al. [12], although here we also show with reasonable support that Oulophyllia is monophyletic, and Caulastrea is an outgroup rather than nested within Oulophyllia (XVII-D). Merulinidae is represented by Hydnophora, Merulina and Scaphophyllia. Hydnophora is more closely related to Favites and Pacific Montastraea spp. than Merulina and Scaphophyllia, which form a grade within the clade dominated by Goniatrea. The monospecific Trachyphyllididae is nested within the clade consisting primarily of Favia spp., and is sister to Favia lizardensis and F. truncatus (Figure 2). Work is ongoing to redescribe clade XVII by incorporating the above families and applying a new taxonomic name since the type species of Favidae, Favia fragum (Esper, 1797), belongs to clade XXI [12].

The genetic affiliation of Hydnophora and Trachyphyllia with Favidae has previously been proposed by Fukami et al. [8,12]. However, this is not exclusively a
molecular hypothesis. Based on a combination of colony, coralite and subcorallite characters (e.g., polyp budding; wall, septal and columellar structures), Vaughan and molecular hypothesis. Based on a combination of colony, coralite and subcorallite characters (e.g., polyp budding; wall, septal and columellar structures), Vaughan and Wells, 1943 [78], placed the two taxa within Faviidae. But later, Chevalier, 1975 [79], attempted to distinguish Trachyphyllia from Faviidae based on minor differences in wall and septal structures by elevating it to the rank of family. Correspondingly, Veron, 1985 [17], moved Hydnophora into Merulinidae because of Hydnophora species’ macromorphological similarities (i.e., colony growth form and polyp structure) with Merulina ampliata and Scaphophyllia cylindrica, which are genetically in the same lineage (subclade A) as several Gonias-

| Table 3 Clades supported by maximum likelihood analysis for each partition |
|----------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Clade | Nuclear DNA | mt DNA | 28S rDNA | histone H3 | ITS sequence | ITS structure | mt COI | mt IGR |
| XV to XXI | √√ | √√ | √√ | √√ | √√ | √√ | √√ | √√ |
| XV+XVI | √√ | | √√ | √√ | √√ | √√ | √√ | |
| XVII to XXI | √√ | √√ | √√ | √√ | √√ | √√ | √√ | √√ |
| XXI | √√ | √√ | √ | √√ | √√ | √√ | √√ | √√ |
| XIX+XX1 | √√ | √√ | √√ | √ | √√ | √√ | √√ | √√ |
| XVII-C | √√ | XX | √ | √ | √√ | √√ | X | |
| XVII-D/E | √√ | XX | X | X | √√ | √√ | XX | √√ |
| XVII-F | √√ | X | √ | √√ | √√ | √√ | X | XX |
| XVII-G | √√ | √√ | √ | √ | √√ | √√ | X | |
| XVII-H | √√ | X | √ | √ | √√ | √√ | √ | √√ |
| XVII-2 | √√ | X | √ | √ | √√ | √√ | X | |

1Montastrea multipunctata and Moseleya latistellata are herein considered as part of clade XIX+XX.
2Subclade I is expanded to include Montastrea salebrosa.
3'√': clade present with ≥50 bootstrap support; 'X': clade present but not supported (<50 bootstrap); 'XX': contradicted clade with ≥50 bootstrap support; and 'X': contradicted clade not supported. Empty cells indicate insufficient data.

Both are members of the species complex (M. faveolata and M. franksi) are the only Atlantic species in clade XVII (see also [8,12]). Most significantly here, M. annularis is sister to Cyp tasartrrea, forming clade XVII-C (Figure 1). This placement may seem bizarre in the context of traditional macromorphological characters used to classify scleractinians (e.g., [4,78]). However, recent work at the microstructural scale (centers of rapid accretion and thickening deposits) has suggested that their septothecal walls (formed by fusion of outer margins of septa) may unite the two taxa [69] (see also [80]). These subcorallite features appear to be appropriate synapomorphies for other subclades. For instance, clade XVII-A consists of Merulina, Scaphophyllia, Goniatrea A and Favia stelligera (Figure 2). At the coralite level, these coral cores cannot be reconciled within the same taxon, since Favia stelligera coralites have single centers with separate walls (polychroid) and may form valleys (meandroid), while Merulina and Scaphophyllia are composed predominantly of elon gated valleys (see Additional file 1). On the other hand, they share the apomorphy of having septothecal walls with abortive septa (thin bands between normal septa with their own centers of rapid accretion).

The use of macromorphology for identifying ‘Bigmes- sidae’ species is known for being problematic as most of these characters are homoplasious [15,80,81]. The ability to distinguish clades based on microstructural features is encouraging for scleractinian systematics. Micromorphology, at the scale of septal teeth and granules, has also exhibited promise as phylogenetic characters [25,80,82-85]. Interestingly, in light of recent molecular hypotheses, other biological traits, in particular, sexuality and to a lesser extent, breeding mode appear highly conserved and could be further developed as phyloge netic markers [86,87].

Prior to the use of molecular data to build evolution ary trees, it was a great challenge to determine which morphological characters could be useful for classification, given their intraspecific variability [32,88] and phenotypic plasticity [89-94]. Indeed, the general anthozoan body plan is relatively simple, and scleractinians in particular have few discrete morphological characters that are known to be phylogenetically informative at the polyp level [4,95-97]. As a result of the recent disarray in coral systematics, morphological taxonomies of scleractinians have been heavily criticized (e.g., [8,12,98,99]). Molecular characters, which are much more numerous
and arguably neutrally evolving, can certainly aid our understanding of evolutionary relationships. However, morphological evidence supporting various molecular clades in the present analysis suggests that morphology at novel scales will play an essential role in the taxonomy of ‘Bigmessidae’ [80].

Widespread sampling in this study has shown that corals thought to belong to the same species across the central Indo-Pacific are actually from distinct lineages. Consider Goniastrea australensis (Milne Edwards and Haime, 1857), which occurs in two clades (Figures 1 and 2; see also Additional file 1). Since this species was first described from Australia, the Australian specimen that clustered with Favites russelli and Montastraea curta should be considered G. australensis, while the two specimens from Singapore (S088 and S098, subclade A) probably represent new species yet to be described. This is certainly not an isolated case. A similar situation is revealed for Montastraea valenciennesi. Specimens from Australia (G61904) and Singapore (S006 and S008) are in subclade B of mostly Favia spp., while the representative from the Philippines (P102) is in subclade F, a distant clade comprising mainly Favia species. Interestingly, two reproducitively isolated morphotypes of M. valenciennesi were recently found to co-occur in Wakayama (Japan), distinguished by the degree of wall fusion among corallites [100]. Chevalier, 1971 [101], upon examination of the holotype, placed the species in Favia on the basis of corallites possessing separate walls and budding intratentacularly (see also [102-108]). This suggests that the name Favia valenciennesi (Milne Edwards and Haime, 1848) could be applied to the Australian and Singaporean specimens in subclade B, while P102 (subclade F) is a new species.

Less extensive issues occur among Goniastrea and Favia species. For instance, G. pectinata (subclade A), collected from three locations, is clearly paraplyetic, with G. australensis and G. favus nested within them (Figure 2). For Favia (subclade B), of six F. favus specimens collected from three locations, only three of these form a supported clade while the rest are dispersed within clade XVII-B with no apparent biogeographical pattern. The nesting of Barabatattoa amicorum among Favia spp. has been consistently recovered in recent molecular phylogenies [12,15], but this affinity was in fact the dominant hypothesis [5,107-109] until Veron, 1986 [18], included the species in its current genus. Conversely, Favia rotundata clusters with Favites spp. rather than its congeners, but it was indeed originally described as Favites rotundata Veron, Pichon and Wijsman-Best, 1977 [5] (see also [109,110]).

The polyphyly of most ‘Bigmessidae’ genera seems to confer a bleak outlook for revisionary work. However, as we have shown in Figure 1, several genera can be clearly grouped as clades with limited name changes. For instance, subclade F is composed of species from Favites Link, 1807, Montastraea de Blainville, 1830, and Favia Ehrenberg, 1834 (Figure 2). While the remaining Favites spp. (i.e., F. pentagona, F. russelli, and F. stylifera) are not included within this subclade, the type species of this genus is Favites abdita (Ellis and Solander, 1786, type locality ‘Probablement les mers des Grandes-Indes’, Lamarck, 1816 [111]). The representative of the latter we used falls well within subclade F. Since no other type species were recovered and with Favites Link, 1807, being the oldest valid genus in the subclade, Favites should be expanded to include the other species, while F. pentagona, F. russelli and F. stylifera will have to be subsumed within other genera. Several other multi-species genera in fact appear stable: Caulastraea, Cyphastrea, Echinopora, Hydnophora, Leptoria, Merulina and Oulophyllia. Name changes are certainly not necessary for Favites and Platygyra, since they host their respective type species in the subclades shown in Figure 2.

Conclusions
Numerous instances of cryptic diversity determined in this study support the assertion that coral diversity estimates have been fraught with errors [8]. Traits relating to the gross skeletal morphology of corals are unreliable for species description and identification because of their potential for intraspecific variability [32,88] and environment-induced plasticity [89-94]. Yet, these characters have served as the foundation for scleractinian taxonomy (e.g., [4,5]). Fortunately, using molecular data, the recovery of most genera within the ‘Bigmessidae’ with only minor degrees of paraphyly spells hope for impending taxonomic amendments. Our results show that most genera only require slight revisions, and most major changes are necessary only at the level of the major clades described in Fukami et al. [12]. Certainly, broad taxonomic sampling within Faviidae has revealed more species with unexpected affinities, such as Moseleya latistellata and Montastraea multipunctata. Clade XVII may consequently have to be redefined to exclude them.

Nevertheless, ‘Bigmessidae’ subclades are well defined and will no doubt provide a robust framework for taxonomic revisions. The fact that microstructural features support ‘Bigmessidae’ subclades also offers hope for the morphological approach. Evolutionary relationships among subclades are still provisional due to insufficient statistical support, but they can be clarified with further sampling of nuclear sequences. Eventually, a well-resolved tree of a redescribed clade XVII will be available to reconstruct the morphological evolution of ‘Bigmessidae’ at various scales.
Additional material

Additional file 1: ‘Bigmessidae’ corals Photographs of most coral specimens sequenced in this study. More photographs are available from the authors.

Additional file 2: Maximum likelihood tree topology of the combined molecular data. Numbers above branches are maximum likelihood bootstrap ≥50 and Bayesian posterior probability ≥0.9, while numbers below denote maximum parsimony bootstrap ≥50 and neighbor-joining bootstrap ≥50. Family classification follows definitions given for Figure 1.

Additional file 3: Maximum likelihood tree topology of each partition. Numbers adjacent to branches are bootstrap support values ≥50. Definitions for family classification follow Figure 1.

Acknowledgements

We thank all who helped with the field collections, including Zeehan Jaafar, Ywee Chieh Tay, Katrina Luzon, Nonevill Espana, Eznaaria-Heung Narida and Monica Orquieza. Flavia Nunes kindly provided the Atlantic Scleractinia of Eastern Australia.

Author details
1Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA. 2Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore. 3Br. Alfred Shields Marine Station and Biology Department, De La Salle University, Manila 1004, The Philippines. 4ARC Center of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. 5Department of Marine Biology and Environmental Science, University of Miyazaki, Miyazaki 889-2192, Japan.

Authors’ contributions
DH obtained the DNA sequences in the laboratory, performed the phylogenetic analyses, and had a major role in writing the manuscript. All authors collected the specimens examined, contributed to and approved the final manuscript.

Received: 15 June 2010 Accepted: 7 February 2011
Published: 7 February 2011

References
1. Romano SL, Palumbi SR. Evolution of scleractinian corals inferred from molecular systematics. Science 1996, 271:640-642.
2. Romano SL, Palumbi SR. Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 1997, 45:397-411.
3. Chen CA, Wallace CC, Wolstenholme JK. Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Mol Phylogenet Evol 2002, 23:137-149.
4. Wells JW. Scleractinia. In Treatise on Invertebrate Paleontology Part F: Coelenterata. Edited by: Moore RC, Lawrence KS. University of Kansas Press, 1956:F328-F444.
5. Veron JEN, Pichon M, Wijman-Best M. Scleractinia of Eastern Australia. Part II. Families Faviidae, Trachyphylliidae. Australian Institute of Marine Science Monograph Series 1977, 1-235.
6. Romano SL, Cairns SD. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 2000, 67:1043-1068.
7. van Oppen MHJ, McDonald BJ, Willis BL, Miller DJ. The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 2001, 18:1315-1329.
8. Fukami H, Budd AF, Paulay G, Sole-Cava AM, Chen CA, Iwao K, Knowlton N: Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 2004, 427:852-855.
9. Le Goff-Vitry MC, Rogers AD, Baglow D: A deep-sea slant on the molecular phylogeny of the Scleractinia. Mol Phylogenet Evol 2004, 30:167-177.
10. Kerr AM: Molecular and morphological supertree of stony corals (Anthozoa: Scleractinia) using matrix representation parsimony. Biol Rev 2005, 80:543-558.
11. Benzioni F, Stefani F, Stolanki J, Pichon M, Mitta G, Galli P: Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 2007, 76:35-54.
12. Fukami H, Chen CA, Budd AF, Collins A, Wallace CC, Chuang YY, Dai CF, Iwao K, Sheppard CRC, Knowlton N: Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS ONE 2008, 3:e222.
13. Knowlton N, Fukami H, Chen CA, Budd AF. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (abstract). 11th Int Coral Reef Symp 2008, 251.
14. Budd AF: Systematics and evolution of scleractinian corals. Encyclopedia of Life Synthesis Meeting Report Smithsonian Institution, National Museum of Natural History; 2009.
15. Huang D, Meier R, Todd PA, Choi LM: More evidence for pervasive paraphyly in scleractinian corals: Systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Mol Phylogenet Evol 2009, 50:102-116.
16. Veron JEN, Pichon M: Scleractinia of Eastern Australia. Part III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Menuliniidae, Mussiidae, Pectiniidae, Caryophylliidae, Dendrophylliidae. Australian Institute of Marine Science Monograph Series 1983, 1-422.
17. Veron JEN: New Scleractinia from Australian coral reefs. Rec West Aust Mus 1985, 12:147-183.
18. Veron JEN: Corals of Australia and the Indo-Pacific Townsville: Australian Institute of Marine Science; 1986.
19. Veron JEN: New Scleractinia from Japan and other Indo-West Pacific countries. Galapagos 1990, 9:95-173.
20. Veron JEN: Corals of the World Townsville: Australian Institute of Marine Science, 2000.
21. Veron JEN: New species described in Corals of the World. Australian Institute of Marine Science Monograph Series 2002, 1-209.
22. Sargent TD, Jamrich M, Dawid IB: Cell interactions and the control of gene activity during early development of Xenopus laevis. Dev Biol 1986, 114:238-246.
23. Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N: Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 2004, 58:324-337.
24. Huang D, Meier R, Todd PA, Choi LM: Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 2008, 66:167-174.
25. Cuff JP, Lecontre G, Perrin C, Tiller A, Tiller S. Patterns of sepal biomimeralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 2003, 32:459-473.
26. Colgan DJ, McNaughton A, Wilson GDF, Livingston SP, Edgecombe GD, Macarans J, Cassis G, Gray MR: Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust J Zool 1998, 46:419-437.
27. Takabayashi M, Carter DA, Loh WWY, Hoegh-Guldberg O: A coral-specific primer for PCR amplification of the internal transcribed spacer region in ribosomal DNA. Mol Ecol 1998, 7:928-930.
28. Takabayashi M, Carter DA, Ward S, Hoegh-Guldberg O: Inter- and intra-specific variability in ribosomal DNA sequence in the internal transcribed spacer region of corals. Proc Aust Coral Reef Soc 75th Ann Conf 1998, 241-248.
29. Takabayashi M, Carter DA, Lopez JV, Hoegh-Guldberg O: Genetic variation of the scleractinian coral *Stylophora pistillata*, from western Pacific reefs. *Coral Reefs* 2003, 22:17-22.

30. van Oppen MJ, Wörheide G, Takabayashi M: Nuclear markers in evolutionary and population genetic studies of scleractinian corals and sponges. Proc 9th Int Coral Reef Symp 2000, 1:131-138.

31. Lam KY, Morton B: Morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence distinctions between two species *Playtygyra* (Cnidaria: Scleractinia) from Hong Kong. *Mar Biotechnol* 2003, 5:555-567.

32. Mangubhai S, Souter P, O'Shannessy T: Phenotypic variation in the coral *Playtygyra daddii* in Kenya: morphometry and genetics. *Mar Ecol-Prog Ser* 2007, 345:105-115.

33. Knittweis L, Krammer WE, Timmers J, Kochzius M: Genetic structure of *Heliafungia actiniformis* (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. *Conserv Genet* 2009, 10:241-249.

34. Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.72. http://mesquiteproject.org.

35. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res* 2002, 30:3059-3066.

36. Katoh K, Asimov G, Toh H: Multiple alignment of DNA sequences with MAFFT. *Bioinformatics* DNA Sequence Analysis Conference 2009, 59:49.

37. Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. *Brief Bioinform* 2008, 9:286-298.

38. Xia X: Data analysis in molecular biology and evolution. Boston: Kluwer Academic Publishers; 2001.

39. Xia X, Zhai Z: DAMBE: Data analysis in molecular biology and evolution. *J Hered* 2001, 92:371-373.

40. Goloboff PA: Analyzing large data sets in reasonable times: Solutions for composite optima. *Cladistics* 1995, 11:415-428.

41. Nixon KC: The Parsimony Ratchet, a new method for rapid parsimony analysis. *Cladistics* 1999, 15:407-414.

42. Goloboff PA, Farris JS, Nixon KC: *Tree Analysis Using New Technology*. Sunderland, Massachusetts: Sinauer Associates; 2003.

43. Albert BCH, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference. *Syst Biol* 2003, 52:69-70.

44. Ronquist F, Huelsenbeck JP: *MrBayes*: Bayesian inference of phylogenetic trees. *Bioinformatics* 2003, 19:754-755.

45. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 2003, 19:1572-1574.

46. Rambaut A, Drummond AJ: MrTracer. Version 1.5. http://beast.bio.ed.ac.uk/Tracer.

47. Brown JM, Hedrick SM, Lemmon AR, Lemmon EM: When trees grow too long: Investigating the causes of highly inaccurate Bayesian branch-length estimates. *Syst Biol* 2010, 59:145-161.

48. Marshall DC: Cryptic failure of partitioned Bayesian phylogenetic analyses: Lost in the land of long trees. *Syst Biol* 2010, 59:108-117.

49. Schwartz RS, Muller RL: Branch length estimation and divergence dating: estimates of error in Bayesian and maximum likelihood frameworks. *BMC Evol Biol* 2010, 10:5.

50. Dixon MT, Hills MI: Ribosomal RNA secondary structure: Compensatory mutations and implications for phylogenetic analysis. *Mol Biol Evol* 1993, 10:256-273.

51. Baldwin BG, Sanderson MJ, Porter JM, Wojcieszowski MF, Campbell CS, Donoghue MJ: The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. *Ann Missouri Bot Gard* 1995, 82:247-277.

52. Álvarez I, Wendel JF: Ribosomal ITS sequences and plant phylogenetic inference. *Mol Phylogenet Evol* 2003, 29:417-434.
82. Stolarski J, Roniewicz E: Towards a new synthesis of evolutionary relationships and classification of Scleractinia. J Paleontol 2001, 75:1090-1108.
83. Stolarski J, Rusko A: Microstructural diversity of the stylophyllid (Scleractinia) skeleton. Acta Palaeontol Pol 2002, 47:651-666.
84. Stolarski J, Vertina A: First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 2007, 53:67-78.
85. Zlatarski VN: Need for a more integrative approach to scleractinian taxonomy. Proc 11th Int Coral Reef Symp 2008, 1406-1410.
86. Baird AH, Guest JR, Willis BL: Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 2009, 40:551-571.
87. Kerr AM, Baird AH, Hughes TP: Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proc R Soc B Biol Sci 2011, 278:75-81.
88. Budd AF: Longterm patterns of morphological variation within and among species of reef-corals and their relationship to sexual reproduction. Sytax Bot 1990, 15:150-165.
89. Budd AF: Phenotypic plasticity in the reef corals Montastrea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J Exp Mar Biol Ecol 1979, 39:25-54.
90. Budd AF: Large-scale evolutionary patterns in the reef-coral Montastrea: the role of phenotypic plasticity. Proc 6th Int Coral Reef Symp 1988, 3:393-398.
91. Todd PA, Ladle RJ, Lewin-Koh NJ, Chou LM: Flesh or bone? Quantifying small-scale coral morphology using with-tissue and without-tissue techniques. Mar Biol 2004, 145:323-328.
92. Todd PA, Ladle RJ, Lewin-Koh NJ, Chou LM: Genotype × environment interactions in transplanted clones of the massive corals Favia speciosa and Diplastrea heliopora. Mar Ecol-Prog Ser 2004, 271:167-182.
93. Todd PA, Sidle RC, Lewin-Koh NJ: An aquarium experiment for identifying the physical factors inducing morphological change in two massive scleractinian corals. J Exp Mar Biol Ecol 2004, 299:97-113.
94. Todd PA: Morphological plasticity in scleractinian corals. Biol Rev 2008, 83:315-337.
95. Budd AF, Johnson KG, Potts DC: Recognizing morphospecies in colonial reef corals: I. Landmark-based methods. Paleobiology 1994, 20:484-505.
96. Wallace CC, Willis BL: Systematics of the coral genus Acropora: implications of new biological findings for species concepts. Annu Rev Ecol Syst 1994, 25:237-262.
97. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL, Stake JL: The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zoosyst 2001, 168:127-182.
98. Veron JEN, Odarco DM, Chen CA, Miller DJ: Reassessing evolutionary relationships of scleractinian corals. Coral Reefs 1996, 15:1-9.
99. Knowlton N, Budd AF: Recognizing coral species past and present. In Evolutionary Patterns: Growth, Form, and Tempo in the Fossil Record. Edited by: Jackson JBC, Lidgard S, McKinney, FK. Chicago: University of Chicago Press; 2001:97-119.
100. Fukami H, Morura K: Existence of a cryptic species of Montastrea volcancesensis (Milk Edwards and Haime, 1848) in Wakayama, southern Honshu, Japan (in Japanese). J Jpn Coral Reef Soc 2009, 11:25-31.
101. Chevalier JP: Les scléactinaires de la Mélanésie Française (Nouvelle-Calédonie, Îles Chesterfield, Îles Loyauté, Nouvelles Hébrides). Première partie, Expéd Française récifs coralliens Nouvelle Calédonie 1971, 5:1-307.
102. Matthai G: A revision of the Recent colonial Astariae possessing distinct coralites. Trans Linn Soc Lond 1914, 17:1-140.
103. Matthai G: Report of the madreporian corals in the collection of the Indian Museum, Calcutta. Mem Indian Mus 1924, 21:B-59.
104. Crossland C: Madreporia, Hydrocorallinae, Heliopora and Tubipora. Great Barrier Reef Exp (1928-1929) Sci Rep 1952, 6:85-257.
105. Wells JW: Recent corals of the Marshall Islands. Geol Surv Prof Pap 1954, 260:683-486.
106. Nemenzo F: Systematic studies on Philippine shallow water scleractinians. II. Suborder Faviida. Nat Appl Sci Bull 1959, 16:7:3-135.
107. Wijmser-Most M: Systematics and ecology of New Caledonian Faviinae (Coelenterata - Scleractinia). Contrib Zool 1972, 42:3-90.
108. Wijmsen-Most M: Biological results of the Snellius Expedition. XXV Faviidae collected by the Snellius Expedition. I. The genus Favia. Zool Meded Leiden 1974, 48:249-261.
109. Scheer G, Pillai CSG: Report on the stony corals from the Red Sea. Zoologica 1983, 131:1-198.
110. Nemenzo F: Studies on the systematics of scleractinian corals in the Philippines. Proc 4th Int Coral Reef Symp 1981, 1:25-32.
111. Lamarch IJP: Histoire Naturelle des Animaux sans Vertébres (Tome Second) Paris: Verdière; 1816.

Cite this article as: Huang et al: Cleaning up the ‘Bigmessiae’: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachypylliidae. BMC Evolutionary Biology 2011 11:37

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Visit bio-medcentral.com/submit

http://www.biomedcentral.com/1471-2148/11/37

doi:10.1186/1471-2148-11-37

Submit your manuscript at

www.biomedcentral.com/submit

BioMed Central