ChemBioChem

Supporting Information

Evaluation of an E. coli Cell Extract Prepared by Lysozyme-Assisted Sonication via Gene Expression, Phage Assembly and Proteomics

Elisabeth Falgenhauer, Sophie von Schönberg, Chen Meng, Andrea Mückl, Kilian Vogele, Quirin Emslander, Christina Ludwig, and Friedrich C. Simmel*
Experimental Section

Chemicals. Unless otherwise noted all chemicals were ordered from Sigma Aldrich (exceptions are listed in Table S1). The composition of 2x YTP medium, S30A and S30B buffer was adopted from Sun et al.[1] The TXTL buffer containing amino acids, nucleotides, tRNAs and other ingredients was also prepared according to Sun et al. and screening experiments for Mg-glutamate, K-glutamate, PEG and DTT concentrations were performed (see Figure S2).

Cloning of plasmids. All plasmids were cloned using a standard restriction/ligation protocol. Linear DNA fragments were ordered from IDT and cloned into the target vector (pSB1A3). The final plasmid sequences are listed in Tables S6-S9. Primers were ordered from Eurofins Genomics. Plasmids were sequenced by GATC Services/Eurofins Genomics.

Bacterial strains and culture conditions. Figure 1 gives a quick and Figure S1 a detailed overview over the cell extract preparation workflow. Bacterial cell extracts were prepared from *E.coli* Rosetta 2 (DE3) cells. Cells from glycerol stocks were grown overnight in an incubator shaker (Innova44, New Brunswick) in 2x YT+P medium containing selective antibiotic (Chloramphenicol, Cm) at 37 °C and 250 rpm. 2x YT medium is very common for this purpose and is often supplemented with phosphate and also with glucose,[1-2] which avoids phosphatase induction and results in reduced ATP hydrolysis activity.[2a] On the following day, cells were diluted 1:100 in 2x YTP+Cm medium and cultivated either in eight shaking flasks (666 mL each, 37 °C, and 250 rpm) or in a 2 L bioreactor.

Cultivation of bacteria in a bioreactor. Cells were cultured in a 2 L lab scale bioreactor (Minifors 2, Infors) with pO2 monitoring and pH control. Initially, the culture was agitated at 500 rpm and aerated with pressurized air at a rate of 2 L/min. To keep the oxygen saturation over 14%, we regulated the aeration rate stepwise up to 4 L/min and increased the stirrer speed up to 1000 rpm. We used a constant feeding with a glucose solution at a rate of 0.85 g/(L h) during the entire cultivation time. As we grow the bacteria in 2x YT medium supplemented with potassium phosphate (monobasic and dibasic), the medium is buffered and the external pH control during the cultivation is not obligatory. Due to the favorable growth conditions in the bioreactor, the exponential growth phase was prolonged and we were thus able to harvest the cells in an OD range from 5-6. A linear fit in a semi-logarithmic plot revealed that the bacteria were still in the exponential growth phase at this point (see Figure S3). Growth in a bioreactor allowed us to increase the biomass yield (wet pellet) to 10 g per liter culture volume compared to shaking flask cultivation, which typically yielded only 2-2.5 g/L.
Cell harvest and washing. Cells were harvested at OD 1.8-2.0 when cultivated in shaking flasks, or at OD 5-6 when grown in a bioreactor. After harvesting, we distributed the cell suspension to four bottles (750 mL each) for centrifugation (15 min, 4 °C, max. speed 4600 rcf, Rotanta 460R, Hettich). In the case of shaking flask cultivation, a second round of cell harvesting was necessary. The supernatant was decanted and cells were resuspended in S30A buffer (300 mL per centrifuge bottle). Centrifugation and washing (2 bottles were pooled, washing with 2x 350 ml) was repeated. Afterwards, we resuspended the cell pellets in 2x 40 mL S30A buffer and transferred the suspension into two 50 mL falcon tubes. Cells were centrifuged at 3000 rcf at 4 °C for 10 min. The supernatant was decanted and the pellet was again centrifuged at 3000 rcf at 4 °C for 3 min. The supernatant was then removed using a pipette. After determination of the wet pellet mass (typical 20 g from bioreactor cultivation), the pellets were flash frozen in liquid nitrogen and stored at -80 °C.

Preparation of cell extract. Cell pellets obtained in the previous step were thawed on ice and resuspended in S30A buffer (1 mL buffer per gram pellet mass) by vortexing. The cell suspension was then split into 4 mL aliquots and up to 1 mg/mL lysozyme (Lysozyme from chicken egg, >40,000 units/mg, Sigma Aldrich) was added. After mixing by pipetting up and down the cell suspension was incubated on ice for 15 min to allow the lysozyme to degrade the peptidoglycan layer. The incubation on ice should prevent a loss in activity due to a proteolytic degradation of released proteins. Cells were sonicated on ice using a SONOPULS mini20 (Bandelin) with a working frequency of 30 kHz at 10% amplitude. We applied 0-20 pulse cycles with durations of 10 sec each. Tubes were sonicated in series, so the cooling time between different rounds is 10 sec times the number of tubes. Thus, our typical pausing time between sonication pulses was 80-100 sec (for 8-10 samples) per tube. Since throughput with sonication is limited, we recommend to not to prepare larger volumes than 40 mL cell suspension at a time (at a constant sample volume of 4 mL per tube). After every second cycle, samples were mixed by pipetting up and down using a 5 mL pipette with the tip cut off. After lysis, samples were transferred into 2 mL tubes and centrifuged at 20,000 rcf for 30 min - 60 min at 4 °C until a sufficiently stable pellet had formed. Pellet-free supernatant was transferred into 2 mL screw cap tubes (1-1.5 mL volume per tube), leaving the caps unscrewed. The open tube containing the cell extract was inserted in a 15 mL Falcon tube as described by Sun et al. \(^1\) and incubated at 37 °C and 250 rpm for 80 min in an Innvova44 shaker for a run-off reaction. Afterwards, samples were transferred into individual reaction tubes and centrifuged at 12,000 rcf for 10 min at 4 °C. Pellet-free supernatant was transferred into 10 kDa MWCO dialysis tubing and dialyzed against S30B buffer at 4 °C for 3 h. Cell extract was then extracted from the tubing, distributed into 1.5 mL centrifugation tubes and centrifuged at 12,000 rcf for 10 min at 4 °C. Cell extract was finally...
aliquoted into the desired aliquot size (usually 30 µl), flash frozen in liquid nitrogen and stored at -80 °C.

Bicinchoninic acid (BCA) assay. Each cell extract batch was subjected to a Bicinchoninic acid (BCA) assay (Pierce BCA Protein Assay Kit, Reducing Agent Compatible Thermo Fisher Scientific) according to the manufacturer’s protocol to determine the total protein content of the prepared cell extracts. The results displayed in Figure 2A and C show the mean protein contents of three biological replicates, Figure S4 shows the protein content for each single extract.

Transcription-translation of fluorescent proteins (TXTL test). High copy number plasmids (iGEM part pSB1A3) containing a constitutive promoter (iGEM part J23106), an RBS (iGEM part B0034), the coding sequence for mScarlet-I (RFP), mVenus (YFP), GFPmut3 (iGEM part E0040) or mTurquoise-2 (CFP) and a Terminator (iGEM part B0015) were purified using a Qiagen Plasmid Midi Kit and afterwards phenol chloroform precipitated. Whereas Takahashi et al recommended to use a protein content of 10 mg/mL in the final cell-free protein expression reaction,[3] we used the same dilution factor for all tests independently of the protein content. Our samples contained 33.3% cell extract, 41.7% buffer solution and 25% plasmid mix or water for blank samples. The final plasmid concentration in each sample was 3 nM and the TXTL buffer composition resulted in sample concentrations of 4 mM Mg-glutamate, 60 mM K-glutamate, 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA and 2.5% (w/v) PEG-8000.

Fluorescence acquisition. Transcription-translation of fluorescent proteins was monitored with a plate reader (FLUOstar Omega, BMG Lab Tech) at a temperature of 29 °C. Fluorescence measurements were performed every 3-6 min using the corresponding filter sets for RFP, YFP, GFP or CFP. Time traces were background corrected with blank values and molar concentrations were calculated using calibration curves for each of the four fluorescent proteins. To compare the fluorescence time traces, their maximum slopes (maximum protein expression rate) and end levels were determined. The mean end levels (mean of 3 biological replicates) are shown for the YFP reporter in Figure 2 as bar graphs for the single lysis settings. The data for RFP, GFP and CFP and the mean maximum protein expression rates (mean of 3 biological replicates) are shown in Figure S6.

Phage assembly. Phage assembly was performed according to the protocol of Rustad et al. [4] with the following adjustments: Phage DNA was mixed with cell extract, an energy solution and an amino acid solution as described in Sun et al. [1] using the same TXTL buffer composition as described in the TXTL test section.[5] For 6 reactions (of 13 µL volume
each), 2.5 µL PEG 8000 (36% w/v), 4 µL dNTPs (25 mM), 0.8 µL ATP (500 mM), 37.5 µL TXTL buffer, 2 µL GamS (150 µM), 28.5 µL cell extract and 1.6 µL DNA (10 nM) were mixed with nuclease-free water to a final volume of 80 µL. All constituents were mixed (except DNA) on ice and incubated for 5 min, followed by the addition of DNA. This 13-µL assembly mix was incubated for 4 h at 29 °C to express the bacteriophages.

Plaque assay. The plaque-assay was performed with the top-agar method, with 0.5% agarose in NZCYM (Carl Roth), a standard medium for *E. coli* cultures and bacteriophages.[6] The agar was melted and stored before use in a water bath at 48 °C. Separately, phage dilutions of 10^2-10^8-fold in phage buffer (1x PBS, 1mM MgCl$_2$, 1mM MgSO$_4$) were prepared. 100 µL of each dilution was mixed with an equal volume of an overnight culture of the corresponding host bacterium. This mixture was added to the 0.5% agarose NZCYM medium aliquots and poured on a 1% NZCYM agar plate. After solidified at room temperature, the plates were incubated at 37 °C until plaques became visible.

Sample preparation for mass spectrometry. All cell extracts were dried to completeness using a centrifugal evaporator (Centrivap Cold Trap -50, Labconco, US). The resulting pellets were dissolved in lysis buffer (8 M Urea, 5 mM EDTA, 100 mM NH$_4$HCO$_3$) to a final concentration of 1 mg/mL. Next, 45 µg of each sample was reduced with 10 mM dithiothreitol (DTT) (30 min at 30 °C) and alkylated with 55 mM 2-chloroacetamide (CAA) (30 min in the dark at 25 °C). The samples were diluted 1:4 in 50 mM NH$_4$HCO$_3$ and double-digested with trypsin (1 h and 13 h at 30 °C, Trypsin gold Mass Spectrometry Grade, Promega), which was added twice at a ratio of trypsin:protein = 1:100 (by mass). The reaction was stopped with 1% formic acid (FA) and the resulting peptides were purified. For that in-house built C18 tips (5 disks of Sep-Pak Vac C18 material, Waters, US) were equilibrated with 250 µl 100% acetonitrile (ACN), 250 µl elution solution (40% ACN, 0.1% FA) and 250 µl washing solution (2% ACN, 0.1% FA) at 1500 g. The samples were loaded into the tips (centrifugation for 2 min at 500 g) and washed three times with washing solution for 2 min at 1500 rcf. Finally, the peptides were eluted with 100 µl elution solution for 2 min at 500g. The samples were dried to completeness and resuspended in washing solution 45 µl right before the MS measurement.

Proteomics data acquisition. Generated peptides were analyzed on an Dionex Ultimate 3000 RSLCnano system coupled to an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo Fisher Scientific, Bremen, GER). For each analysis an injection amount of = 0.1 µg of peptides was delivered to a trap column (ReproSil-pur C18-AQ, 5 µm, Dr. Maisch, 20 mm x 75 µm, self-packed) at a flow rate of 5 µL/min in 100% solvent A (0.1% formic acid in HPLC grade water). After 10 min of loading, peptides were transferred to an analytical column (ReproSil Gold C18-AQ, 3 µm, Dr. Maisch, 400 mm x 75 µm, self-packed)
and separated using a 50 min gradient from 4% to 32% of solvent B (0.1% formic acid in acetonitrile and 5% (v/v) DMSO) at 300 nL/min flow rate. Both nanoLC solvents contained 5% (v/v) DMSO. The Fusion Lumos Tribrid Mass Spectrometer was operated in data dependent acquisition and positive ionization mode. MS1 spectra (360–1300 m/z) were recorded at a resolution of 60,000 using an automatic gain control (AGC) target value of 4×10^5 and maximum injection time (maxIT) of 50 ms. After peptide fragmentation using higher energy collision induced dissociation (HCD), MS2 spectra of up to 20 precursor peptides were acquired at a resolution of 15,000 with an automatic gain control (AGC) target value of 5×10^4 and maximum injection time (maxIT) of 22 ms. The precursor isolation window width was set to 1.3 m/z and normalized collision energy to 30%. Dynamic exclusion was enabled with 20 s exclusion time (mass tolerance +/-10 ppm). MS/MS spectra of species that were singly-charged, unassigned or with charge states > 6+ were excluded.

Proteomics data analysis. Peptide identification and quantification was performed using the software MaxQuant (version 1.6.3.4) with its built-in search engine Andromeda.[7] MS2 spectra were searched against the *E. coli* (strain B / BL21-DE3) reference proteome from Uniprot (UP000002032, 4156 protein entries), supplemented with common contaminants (built-in option in MaxQuant). Trypsin/P was specified as proteolytic enzyme. Precursor tolerance was set to 4.5 ppm, and fragment ion tolerance to 20 ppm. Results were adjusted to 1% false discovery rate (FDR) on peptide spectrum match (PSM) level and protein level employing a target-decoy approach using reversed protein sequences. The minimal peptide length was defined as 7 amino acids, the "match-between-run" function was disabled. For full proteome analyses carbamidomethylated cysteine was set as fixed modification and oxidation of methionine and N-terminal protein acetylation as variable modifications.

Proteins were quantified using Label Free Quantification (maxLFQ).[8] The maxLFQ intensity was log transformed before downstream analysis. T-tests were used in the differential analysis (using R version 3.6.3). The false discovery rates (FDRs) were calculated from the p-value using the Benjamini-Hochberg method.[9] Proteins with FDR < 0.05 and unique proteins (proteins which were present in all three replicates of one sample, but not present in one of the three replicates of the other sample) were selected as significantly differentially expressed proteins and passed to the DAVID functional annotation[10] for enrichment analysis. To simplify the presentation, proteins in GO terms with FDR below 0.05 were roughly classified according to keywords using the UniProt database[11] related to protein expression and energy regeneration and their influence on gene expression was interpreted accordingly.
Figure S1: Detailed flow chart of the cell extract preparation protocol. See methods part in main text for more information.
Figure S2: Cell extract buffer screening experiments. Mg-glutamate, K-glutamate, PEG and DTT concentration was screened for 3 different cell extract batches prepared using the S16/L0.8 lysis setting. The fluorescence end levels for 2 different reporter plasmids (CFP and YFP) are shown. 4 mM Mg-glutamate, 60 mm K-glutamate, 2.5% PEG and 0 mM DTT were chosen.
Figure S3: Growth curves for cultivation in shaking flasks and in a bioreactor. (A) pO2-saturation plot. We fed glucose with a constant rate of 0.85 g/(l*h) and kept the oxygen level above 14% during the whole batch time by regulating the stirrer speed (500-1000 rpm) and the aeration rate (2-4 l/min) up. (B) OD was measured about every 30 min. Batches BR2 and BR3 show an elongated lag phase at the beginning. The desired OD was reached after about 200 min for batch BR1 and after about 280-300 min for batches BR2 and BR3. (C) Semi-logarithmic plot. The bacteria have doubling times between 32 and 38 min. (D) Growth curve for two different shaking flasks, cells are usually harvested between OD 1.8 and 2. (E) Semi-logarithmic plot. Bacteria were harvested in the late-log growth phase.
Figure S4: (A) For the shaking flask replicates lysozyme incubation had a higher impact on cell lysis than sonication cycles. The protein content was generally higher in samples without sonication cycles (S0/L0.5 and S0/L1) than in samples not incubated with lysozyme (S5/L0 and S15/L0). Samples which were treated with a combination of lysozyme incubation and sonication cycles showed a high protein content. (B) In contrast to the shaking flask replicates, the bioreactor replicates showed a higher deviation in protein content among the biological replicates than among the different lysis settings.
Figure S5: Expressed protein end level against maximum protein expression rates. The maximum expression rates correlates well with the expressed protein end levels.
Figure S6: End levels of expressed proteins and maximum protein expression rates. (A) Shaking flask samples, which were not treated with lysozyme but with 5 or 15 sonication cycles, show the lowest fluorescence end levels in a cell-free test for all tested reporter proteins. Samples which were lysed without sonication cycles show higher signals, so lysozyme has no negative effect on the protein synthesis. The fluorescence intensities of samples with nonzero lysis conditions are the highest, a signal decrease can be observed for 15 sonication cycles. (B) The maximum protein expression rates show the same trends. (C) For both lysozyme concentrations an increase of sonication cycles results in an increased fluorescence signal in the bioreactor samples. Independent of the lysozyme concentration, 12-16 sonication cycles appear optimal, while 20 cycles result in reduced signals. (D) Mean of bioreactor replicates BR1, BR2 and BR3. The maximum expression rate correlates with the expressed protein end levels.
Figure S7: Comparison of the best shaking flask replicates with the best bioreactor replicates, a bead beating batch and a commercial cell extract. (A) Normalized fluorescence data for all tested reporters. The commercial extract shows low levels for all reporter plasmids except the p70 control plasmid. (B) Not normalized fluorescence data for the YFP plasmid and the GFP control plasmid. The levels are very different, but these levels depend not just on protein concentration but also on quantum yield, brightness and other parameters. (C) p70-GFP control plasmid in commercial cell extract. We purified the p70-GFP control plasmid using our standard technique and performed a TXTL test. The commercial plasmid has a high signal whereas our self-purified one has almost no signal. The commercial cell extracts seems to be sensitive to residual chemicals in our plasmid.

Figure S8: Plaque assays for the shaking flask and bioreactor replicates. For all self-made cell extracts except for the S12/L0.8 samples comparable phage titers were measured. For the commercial kit one order of magnitude less phages could be assembled and the bead beating batch performed much worse, just 500 phages could be counted in one replicate, no plaques could be counted for the second replicate.
Figure S9: Comparing proteomes of extracts from shaking flask and bioreactor. (A) Volcano plot of shaking flask samples S5/L0.5 against bioreactor samples S5/L0.5. No protein had a FDR smaller than 0.05, but some unique proteins were found and used for enrichment analysis. (B) Summary of protein numbers. Compared to the bioreactor samples (S5/L0.5) the shaking flask extracts (S5/L0.5) contain 11 unique proteins, which were subjected to an enrichment analysis. (C) Result of enrichment analysis. For the shaking flask samples just 3 proteins were found in GO terms with GO FDR < 0.05. These proteins can be assigned to anaerobic growth conditions. In summary shaking flask extracts and bioreactor extracts, which were treated with the same lysis conditions show no differences in their proteome except for abundance of proteins related to anaerobic growth. This is an expected result as we in contrast to bioreactor cultivation did not provide additional oxygen in shaking flask cultivation.
Figure S10: Comparison of the proteomes of extracts prepared from bioreactor and shaking flask cultures and a commercial kit. (A) Volcano plot of shaking flask samples S0/L1 against S15/L1. The t-test of S0/L1 against S15/L1 extracts gives 1 and 6 proteins with FDR < 0.05 (i.e., –log10(FDR) > 1.3). In addition, 3 (S0/L1) and 47 (S15/L1) unique proteins could be found and were also subjected to an enrichment analysis. (B) Enrichment analysis derived from the comparison of S0/L1 against S5/L1 and from the comparison shown in (A). No GO terms with FDR<0.05 could be found for the S0/L1 extracts in both comparisons but in total 7 (S0/L1 against S5/L1) and 21 (S0/L1 against S15/L1) proteins were found in GO terms with FDR < 0.05 for the S5/L1 and S15/L1 samples respectively. For both cases these could be assigned to keywords related to DNA replication, relaxation, repair or recombination or were transcriptional regulators. (C) Volcano plot of bioreactor samples S5/L0.5 against the commercial kit. The commercial and bioreactor extracts differ in abundance of just 8 and 5 proteins with FDR
< 0.05 (i.e., \(-\log_{10}(FDR) > 1.3\)), but had 30 and 121 unique proteins, which were subjected to an enrichment analysis. (D) Enrichment analysis derived from the comparison shown in (C). GO terms with FDR < 0.05 included in total 11 proteins in the bioreactor samples, which were related in amino-acid biosynthesis, a nuclease or not relevant for cell-free gene expression. (E) Volcano plot of shaking flask samples S5/L0.5 against the commercial kit. The commercial and shaking flask extracts differ in abundance of 309 versus 356 proteins with FDR < 0.05 (i.e., \(-\log_{10}(FDR) > 1.3\)). Proteins with an FDR below 0.05 and proteins exclusively found only in shaking flask preparations or in commercial extract were subjected to an enrichment analysis. Proteins which were assigned to GO terms with an FDR below 0.05 are highlighted in the plot. (F) Fraction of proteins with FDR < 0.05 against fold change and fraction of proteins found in GO terms with FDR < 0.05 against fold change (unique proteins are not considered, as no fold change can be calculated). 27% of the proteins are less than 1.5 fold enriched, 67% less than 2 fold and 90% less than 3 fold.
Proteomic differences between our shaking flask replicates SF1, SF2 and SF3 with lysis setting S5/L0.5 and the commercial extract

The proteomics analysis revealed the greatest differences between our shaking flask batches S5/L0.5 and the commercial kit. The differences can be a result of differences in the culture conditions, the lysis procedure and other cell extract processing steps. Even though we had no detailed information about the preparation procedure of the commercial kit, we compared the two extracts, as the GFP expression yield was comparable. We found in total 172 (commercial extract, thereof were 15 unique proteins) and 31 (shaking flask batches, thereof were no unique proteins) proteins in GO terms with FDR<0.05, thereof were 90% of the proteins less than 3 fold enriched (67% less than 2 fold and 27% less than 1.5 fold enriched, see Figure S10F). The potential role of the single proteins is discussed in the following:

Energy metabolism. Compared to commercial extract, in our home-made batches 9 out of 10 enzymes from the glycolysis pathway were enriched, including glucokinase, which converts cytosolic glucose into glucose-6-phosphate (triosephosphate isomerase was the only enzyme that was not present at a higher abundance). Further, we found enzymes such as adenylate kinase or guanylate kinase enriched in our self-made batches, which potentially play a role in ATP and GTP regeneration in vitro. On the other hand, we detected higher abundance of the subunits IIB and IIC of *E. coli’s* major transmembrane carbohydrate transport system (the Pst system) in the commercial extract. This indicates that the lysis conditions used for the commercial extract might cause a higher fragmentation of the membrane and thus a more efficient release of trans-membrane proteins. In contrast to glycolysis, enzymes of the TCA cycle were enriched in the commercial extract. In shaking flask batches, we also detected an increased amount of dehydrogenases encoded by the *glpABC* operon, which belongs to the glycerol kinase pathway and is responsible for anaerobic energy generation. No differences were detected in the pentose phosphate pathway.

Transcription/translation. Together with core RNA polymerase, sigma factor RpoD (σ^70) dominates the transcription in exponentially growing cells. We found RpoD more highly abundant in the commercial extract. Furthermore, during envelope stress several sigma factors are upregulated in *E. coli*, including sigma factor RpoE (σ^24), which was also found more abundant in the commercial extract. Other stress factors such as translational regulator CsrA (envelope/periplasmic stress) and nitrogen-limitation factor RpoN (σ^54) were enriched in the commercial cell-free system, as well as the ribosomal subunit S22, which is associated with stationary bacterial growth. Apart from these stress indicators, a variety of other transcription regulators such as LacI, MarR, GntR, DeoR or LysR were enriched compared to our home-made shaking flask batches.

In addition, also translational capacity appeared to be enriched in the commercial system. In particular, we found 20 out of the 22 ribosomal proteins of the 30S subunit at higher abundance in the commercial extract, including S22 (see above) and the essential ribosomal protein S12, which takes part in both tRNA and ribosomal subunit interactions. In case of the 50S subunit, we found 24 out of 33 ribosomal proteins more abundant in the commercial extract, including the small ribosomal protein L34 (5.3 kDa). Also other translation-related proteins showed higher abundance in the commercial
extract such as initiation (IF-2, IF-3) and elongation (EF-4, EF-Tu, SelB) factors, but also the ribosomal silencing factor (RsfS) which inhibits ribosome association and prevents translation.

Degradation of nucleic acids and proteins. We also found notable differences between the cell extracts in degradation pathways. In the commercial extract ribonuclease 2 and E were enriched (p-value 0.05), which are mainly involved in mRNA degradation. Other ribonucleases participating in RNA maturation and processing (RNAse 3, G, PH and R) were also more abundant in the commercial extract. On the other hand, endoribonuclease L-PSP, also acting on mRNA, was found more highly concentrated in self-made batches. We also investigated the presence of proteases in the cell extracts. We found both subunits HslV and HslU (annotation at the transcript level) of the proteasome-like degradation complex HslVU (ClpQY) enriched in the commercial extract, which unfolds proteins under ATP consumption.

Biosynthesis. Interestingly, many proteins involved in amino acid biosynthesis were more abundant in our self-made CF system compared to the commercial extract, suggesting their potential use for amino acid production inside the extract starting from inexpensive precursors. Finally, the chaperone cofactor GroES was more highly expressed in the commercial batch, but not its chaperone complex GroEL, even though it is encoded by the same operon.
Table S1: List of chemicals which were not ordered from Sigma Aldrich.

Chemical	Supplier
2-Chloroacetamide (CAA)	Merck (GER)
Acetonitrile (ACN)	Merck (GER)
CTP	Carl Roth (GER)
GamS	Arbor Bioscience (US)
Glycerol	Carl Roth (GER)
GTP	Carl Roth (GER)
IPTG	Carl Roth (GER)
Nuclease-free water	Carl Roth (GER)
Phosphate buffered saline (PBS)	VWR Life Science (GER)
RTS Amino Acid Sampler	Biozym Scientific (GER)
Tris	Carl Roth (GER)
Trypsin	Roche (CH)
UTP	Carl Roth (GER)

Table S2: All buffer and media compositions were adapted from Sun et al. [1]. Anyway the composition of the growth medium and the buffers needed for cell washing and cell extract dialysis are listed below. A detailed protocol for the TXTL buffer preparation is shown in the protocol of Sun et al.[1].

a) 2xYTP medium

Component	Concentration
2xYT	31 g/l
K2HPO4	40 mM
KH2PO4	22 mM

b) S30A (cell washing, 2l are needed)

Component	Concentration
Potassium glutamate	60 mM
Magnesium glutamate	14 mM
Tris	50 mM

To reach pH 7.7, titrate with acetic acid. Add DTT to 2mM final concentration just before use. Store at 4 °C.

c) S30B (cell extract dialysis, 2l are needed)

Component	Concentration
Potassium glutamate	60 mM
Magnesium glutamate	14 mM
Tris	5 mM

To reach pH 8.2, titrate with 2 M Tris. Add DTT to 1 mM final concentration just before use. Store at 4 °C.
Table S3: Characteristics of reporter proteins. Codon adaption indices for mScarlet, mVenus, GFP and mTurquoise calculated by CAIcal.[12] The codon usage table of Escherichia coli B and of Shigella flex. 2a were used for the calculation. The second one is more related to MRE600, which is the origin strain of the purified tRNA used for the TXTL buffer. The translation rate was predicted using an RBS calculator.[13]

Protein	mScarlet	mVenus	GFP mut3	mTurquoise 2	p70-GFP (deGFP3)
Ex. Max (nm)	569	515	500	434	508
Em. Max (nm)	593	527	513	474	518
QY	0.54	0.64	0.39	0.93	0.19
Brightness	56.16	66.56	34.87	27.9	5.07
maturation time (min)	36	17.6	4.1	33.5	
pKa	5.4	5.5			6.9

additional mutations

- CAI E. coli B: 0.636
- CAI Shigella flex. 2a: 0.765
- GC content full mRNA: 49.31
- GC content CDS: 49.5

Predicted translation rate

- 3052
- 905
- 746
- 357
- 9373

ΔG total

- -2.01
- 0.69
- 1.12
- 2.76
- -4.51

ΔG mRNA-rRNA

- -7.53
- -7.53
- -9.42
- -10.08
- -10.1

ΔG spacing

- 0.67
- 0.67
- 0.67
- 0.67
- 0.29

ΔG stacking

- 0
- 0
- 0
- 0
- 0

ΔG standby

- 4.9
- 4.9
- 4.9
- 4.9
- 0.01

ΔG start

- -2.76
- -2.76
- -2.76
- -2.76
- -2.76

ΔG mRNA

- -2.79
- -5.49
- -7.81
- -10.11
- -8.33
Table S4: T-test for TXTL data. We aimed to proof our hypothesis, that our data show an optimum in the number of sonication cycles. The data shown in Figure 2 B and D were split in two sets with fixed lysozyme concentration and different sonication cycles: For shaking flask cell extracts these were 0, 5, and 15 sonication cycles in combination with a lysozyme concentration of 0.5 or 1 mg/ml respectively (data set 1 and 2; samples S5/L0 and S15/L0 were excluded from the t-test). For the bioreactor extracts these were 4, 8, 12, 16, and 20 sonication cycles in combination with a lysozyme concentration of 0.5 or 0.8 mg/ml respectively (data set 4 and 5). As we observe the same trend in the data independent on the lysozyme concentration, we also introduced combined data sets (data set 3 and 6). A parabola \(y = a \cdot x^2 + b \cdot x + c \) with \(x \) being the number of sonication cycles and \(y \) being the TXTL end level of the YFP reporter was fitted to the data sets. The fit parameter \(a \) was tested against the hypothesis ‘Fit parameter \(a \) is zero’ and the according p-value was calculated. We could reject the null hypothesis for all data sets (p-value < 0.05) except for data set 4, which has a p-value of 0.06. So the observed optima in the TXTL data are statistically significant.

Culture method	Lysozyme (mg/ml)	Data set	p-value
Shaking flask	0.5	1	1.32·10^{-5}
	1	2	1.20·10^{-3}
	0.5 and 1 combined	3	1.60·10^{-4}
Bioreactor	0.5	4	6.43·10^{-2}
	0.8	5	4.46·10^{-2}
	0.5 and 0.8 combined	6	8.30·10^{-3}
Table S5: Comparison of different cell extract preparation protocols.

	This study	Sun et al. [1]	Kwon and Jewett [2b]	Fujiwara and Doi [19]
Strain	Rosetta 2 (DE3)	Rosetta 2 (DE3)	BL21 star (DE3)	BL21(DE3) codon plus (RIL)
Culture method	Shaking flask or bioreactor	Shaking flask	Shaking flask or bioreactor	Shaking flask
Culture medium	2xYTP shaking flask; 2xYTGP bioreactor	2xYTP	2xYTGP	LB
IPTG induction	No	No	Tested, but usually not used	Yes
Lysis method	Lysozyme incubation + sonication	Bead beating	Sonication	Lysozyme incubation + osmotic shock + freeze thaw cycles
Cell extract processing steps (after lysis)	In total 3 centrifugation steps; run off reaction; dialysis	In total 3 centrifugation steps; run off reaction; dialysis	1 centrifugation step; (run-off reaction and second centrifugation step was also tested)	1 centrifugation step (buffer exchange was also tested)
Total protein content (mg/ml)	15	30	40	20-30
Expressed protein (mg/ml)	0.6	0.75	1	0.25-0.5
TXTL test conditions	J23106 promoter; 9 nM corresponds to 17 µg/ml plasmid concentration	Lamda promoter or T7 promoter	Addition of T7 polymerase; T7 promoter (13.3 µg/ml plasmid concentration)	T7 promoter (1,5 nM template concentration) or OR2OR1 (10nM plasmid concentration)

Figure S11: Plasmid maps for TXTL tests. A mScarlet, mVenus, E0040 GFP or mTurquoise reporter was cloned in a pSB1A3 backbone containing a J23106 promoter, a B0034 ribosome binding site (RBS) and a B0015 terminator.
Table S6: pSB1A3-J23106-2003-mScarlet-B0015

ccccctggaagctcctcgtgcctctctcgtccacccgcgtccacctgatactctccgcttttcgcttctactcacttgacagcttggtggccttttcgtcatcacttactgtttttaaatagggagctgcggtttttaaatggtt
cgAggatcatgtcgacaggtgggtgtcggtttagtgtatggtcctactcttcgcgcgctacgcgtgaagcggataaacttcgacacagtcttttaagctgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcgtggttggttcgtcgcggagttgctcgcgtggagcgtggtgatgttgcagtaaacttcg
Accession	Description
A0A14ONZ10_ECOBD	SelB translation factor
A0A14ON500_ECOBD	Multidrug efflux transporter ErmAB...
A0A14ON5K0_ECOBD	2-octaprenyl-6-methoxyphenyl hydrox...
A0A14ON763_ECOBD	RNA binding S1 domain protein
A0A14ON7F9_ECOBD	Biotin carboxylase
A0A14ON7L1_ECOBD	Amidohydrolase
A0A14ON843_ECOBD	FAD-dependent 2-octaprenylphosphyl hydrol...
A0A14ON8E5_ECOBD	[ProGluGln synthetase I], SpoTRelA
A0A14ON9K8_ECOBD	SuA5(Y/e)/YrdC/YwcC family protein
A0A14ONBW1_ECOBD	Signal peptidease I
A0A14ONBY0_ECOBD	Fumarate hydratase class I enzyme
A0A14ON919_ECOBD	Ancillary SecYEG translocase subunit...
A0A14ON9K0_ECOBD	Amidohydrolase
A0A14ON9T6_ECOBD	Ubiquinone biosynthesis O-methyltransferase...
A0A14ON9Z7_ECOBD	NADH-quinone oxidoreductase subunitIII
A0A14ONA7O_ECOBD	Cytochrome d ubiquinol oxidase subunitIII
A0A14ONB8_ECOBD	Misassigned aminoacyl-tRNA deacylase
A0A14ONBb6_ECOBD	Protease 4
A0A14ONC78_ECOBD	PTS N-acetyl glucosamine transporter...
A0A14ONCR0_ECOBD	Ribonuclease R
A0A14OND9_ECOBD	3-methyl-2-oxobutanoate hydroxymethyltransferase...
A0A14ONEb0_ECOBD	2-octaprenyl-3-methyl-6-hydroxy-2-
A0A14ONEV1_ECOBD	Probable cytosol aminopeptidase
A0A14ONF24_ECOBD	DNA-binding protein HU-alpha
A0A14ONF90_ECOBD	DNA-binding protein HU-beta
A0A14ONFX6_ECOBD	Membrane protein insertion YidC
A0A14ONHC7_ECOBD	GTP-binding protein TypeA
A0A14ONH8_ECOBD	ATP-dependent protease subunit HslV
A0A14OS221_ECOBD	2355 RNA (guanosine-2'-O-)-
methyltransferase...	
A0A14OSA6_ECOBD	Xaa-Pro dipeptidase
A0A14OSF40_ECOBD	RNA/tnRNA (uracil-C(5))-methyltransferase...
TRMA_ECOBD	10 kDa chaperonin
A0A14OEN65_ECOBD	ATP-dependent protease ATPase subunit...
A0A14ONF6E_ECOBD	ATP-dependent protease ATPase subunit...
A0A14ONZS3_ECOBD	505 ribosomal protein L22
A0A14ONZT1_ECOBD	505 ribosomal protein L6
A0A14ONZ92_ECOBD	305 ribosomal protein S9
A0A14ON340_ECOBD	305 ribosomal protein L27
A0A14ON3G7_ECOBD	505 ribosomal protein L3
A0A14ON4H4_ECOBD	505 ribosomal protein L14
A0A14ON3L9_ECOBD	505 ribosomal protein L8
A0A14ON4K1_ECOBD	305 ribosomal protein S3
A0A14ON4M3_ECOBD	505 ribosomal protein L17
A0A14ON5s28_ECOBD	305 ribosomal protein S19
Ribosomal RNA small subunit methyltransferase...
Phenylalanine-tRNA ligase alpha subunit...
Pseudouridylate synthase
Ribosome maturation factor RimM
Ribonuclease G
Pseudouridylate synthase
Phenylalanine-tRNA ligase beta subunit...
Pseudouridylase
Translational regulator CsrA
RNA polymerase beta subunit...
DNA-directed RNA polymerase subunit...
Exoribonuclease 2
Ribonuclease E
RNA chaperone ProQ
Serine-tRNA ligase
Ribonuclease S
Pseudouridylase
Queueine tRNA-ribosyltransferase
Poly(A) polymerase I
ATP-dependent RNA helicase RhlB
ATP-dependent RNA helicase DeaD
Catalase-peroxidase
LexA repressor
DNA-directed RNA polymerase subunit...
Catabolite activator protein
RNA polymerase sigma factor RpoD
ATP-binding transcriptional regulator
Transcription elongation factor Gre...
DNA-binding protein
RNA polymerase sigma factor
HTH-type transcriptional repressor...
Transcriptional regulator PhoB
Transcription termination/anti-termination...
RNA polymerase sigma factor-54 factor
DNA-binding transcriptional regulator...
Transcriptional regulator, TetR family...
DNA-binding protein
Transcription-repair-coupling factor
Transcription termination factor Rh...
Transcriptional regulator MraZ
HTH-type transcriptional regulator...
DNA-directed RNA polymerase subunit...
Transcription termination/anti-termination...
Table S11: Proteins enriched in the shaking flask extracts S5/L0.5 (derived from the comparison of the commercial extract and the shaking flask batches S5/L0.5)

Uniprot ID	Fold change	-log10(FDR)	Protein name	Gene name	Keyword
A0A14ON4Y5_ECOBD	1.629766172	1.629766172	Aspartate-semialdehyde dehydrogenase...	asd ECBD_0309	amino-acid related
A0A14NS27_ECOBD	1.975462238	1.975462238	S-adenosylmethionine synthase	matK ECBD_0798, HO396_14190	amino-acid related
A0A14N770_ECOBD	2.503832349	2.503832349	4-hydroxy-...	dapA ECBD_1211, HO396_12065	amino-acid related
A0A14N7T1_ECOBD	1.651582735	1.651582735	Succinyl-diaminopimelate desuccinyl...	dapE ECBD_1218, HO396_12030	amino-acid related
A0A14N9W6_ECOBD	2.165393138	2.165393138	2,3,4,5-tetrahydrodipicolinate re...	dapD ECBD_3453, HO396_00830	amino-acid related
A0A14N8EB2_ECOBD	1.671048798	1.671048798	4-hydroxy-...	dapB ECBD_3585, HO396_00160	amino-acid related
A0A14N7B3_ECOBD	2.505331739	2.505331739	Glyceroldehyde-3-phosphate dehydro...	gapA ECBD_1855, HO396_08975	carbohydrate metabolism and respiration
A0A14N8B59_ECOBD	2.004735299	2.004735299	Phosphofructokinase	pfkB ECBD_1922, HO396_08695	glycolytic process
A0A14N8A0_ECOBD	2.233174935	2.233174935	2,3-bisphosphoglycerate-independent...	pgml pgmM, pgml ECBD_0113, HO396_17735	glycolytic process
A0A14N5G0_ECOBD	1.995921991	1.995921991	Enolase	eno ECBD_0950, HO396_13405	glycolytic process
A0A14N8B11_ECOBD	2.123646427	2.123646427	Fructose-bisphosphate aldolase	frbA ECBD_0813, HO396_14115	glycolytic process
A0A14N8E11_ECOBD	2.672314268	2.672314268	Phosphoglycerate kinase	pgk ECBD_0812, HO396_14120	glycolytic process
A0A14N9C3_ECOBD	2.488257014	2.488257014	Glucokinase	gkh ECBD_1284, HO396_11975	glycolytic process
A0A14N9D9_ECOBD	1.935051911	1.935051911	2,3-bisphosphoglycerate-dependent p...	pgmA ECBD_2912, HO396_03615	glycolytic process
A0A14N9V8_ECOBD	2.631339246	2.631339246	Pyruvate kinase	pkyK ECBD_1969, HO396_08460	glycolytic process
A0A14NCD7_ECOBD	2.715709578	2.715709578	Glucose-6-phosphate isomerase	pgI ECBD_4012, HO396_25000	glycolytic process
A0A14NDL0_ECOBD	1.660343405	1.660343405	Pyruvate dehydrogenase E1 component	ECBD_3505	glycolytic process
Protein name	Gene name	GO (biological process)	Keyword		
--------------	-----------	-------------------------	---------		
Acetyltransferase component of pyruvate kinase	aceF	ECBD_3504, HO396_00565	glycolytic process		
Probable phosphoglycerate mutase Gp	ispG	gpcE, ECBD_1171, HO396_12260	glycolytic process		
4-hydroxy-3-methylbut-2-en-1-yl diphytanyl glyceryl ether synthase	ispH	spg, ECBD_3587, HO396_00150	other		
Glycerol-3-Phosphate dehydrogenase	gpmB	ECBD_3625, HO396_21960	other		
Probable phosphoglycerate mutase	gpmB	ECBD_3625, HO396_21960	other		
4-hydroxy-3-methylbut-2-enyl diphytanyl glyceryl ether synthase	ispH	spg, ECBD_3587, HO396_00150	other		
Dihydropteroate synthase	folP	ECBD_0565, HO396_15515	other		
tdtP-4-dehydrorhamnose reductase	tdtP	ECBD_1615, HO396_10030	other		
Adenylate kinase	adk	ECBD_3182, HO396_02190	other		
Thymidine kinase	tmk	ECBD_2503, HO396_05690	other		
Methionine synthase	metH	ECBD_4018, HO396_19970	other		
4-hydroxy-3-methylbut-2-enyl diphytanyl glyceryl ether synthase	ispH	spg, ECBD_3587, HO396_00150	other		

Table S12: Enriched proteins derived from the comparison of S0/L1 vs. S5/L1, S0/L1 vs. S15/L1 and of bioreactor S5/L1 against the commercial extract

S0/L1 vs. S5/L1

Entry name	Protein name	Gene name	GO (biological process)	Keyword
A0A140NAS5_ECOBD	Transcriptional regulator, AsnC family	ECBD_2, 708	Transcriptional regulator	
A0A140N57_ECOBD	Nucleoid-associated protein YjK	ECBD_1, 471	DNA relaxation	
A0A140N231_ECOBD	Transcriptional regulator, IclR family	ECBD_0, 160	Transcriptional regulator	

S0/L1 proteins in GO terms with GO FDR < 0.05

Entry name	Protein name	Gene name	GO (biological process)	Keyword
none				

S0/L1 vs. S15/L1

Entry name	Protein name	Gene name	GO (biological process)	Keyword
A0A140N231_ECOBD	Transcriptional regulator, IclR family	ECBD_0, 160	regulation of transcription, DNA-templated	
A0A140N3Y5_ECOBD	Transcriptional regulator, LysR family	ECBD_0, 633	regulation of transcription, DNA-TEMPLATED	

S15/L1 proteins in GO terms with GO FDR < 0.05
Bioreactor vs. Commercial extract

Bioreactor proteins with GO FDR < 0.05

Entry name	Protein name	Gene name	GO (biological process)	Keyword
A0A140N479_ECOBD	2-amino-3-ketobutyrate coenzyme A L-3-ketothiolase	kbl	biosynthetic process; L-threonine catabolic process to glyoxylate	Amino acid related
A0A140N487_ECOBD	Endoribonuclease L-PSL	ECBD_0	108	Nuclease
A0A140N655_ECOBD	Selenide, water dikinase	selD	selenocysteine biosynthetic process	Other
A0A140N651_ECOBD	Amino-acid acetyltransferase	argA	arginine biosynthetic process	Amino acid related
A0A140N725_ECOBD	Phosphoanodenedine phosphosulfate reductase	cySH	hydrogen sulfide biosynthetic process; sulfate assimilation, phosphoanodenedine-sulfate reduction by phosphoanodenedine-sulfate reductase (thioredoxin)	Other
A0A140N770_ECOBD	4-hydroxy-3,5-dihydroxypropionate	dapA	diaminopimelate biosynthetic process; lysine biosynthetic process via diaminopimelate	Amino acid related
Table S13: Summary of protein numbers for each comparison: total number of proteins found in the extracts, number of unique proteins, number of proteins with FDR<0.05 and numbers of proteins in GO terms with GO FDR<0.05

Shaking flask vs. bioreactor
same lysis setting (S5/L1), different culture conditions

	SF S5/L0.5	BR S5/L0.5
total number of proteins	1480	1536
unique proteins	65	0
thereof n=3 n=0	11	0
Proteins with FDR <0.05	0	8
Proteins in GO with FDR <0.05	3	0
thereof n=3 n=0	3	0

S0/L1 vs S5/L1
same lysozyme concentration, but 0 vs 5 sonication cycles

	S0/L1	S5/L1
total number of proteins	1426	1469
unique proteins	42	85
thereof n=3 n=0	2	27
Proteins with FDR <0.05	0	0
Proteins in GO with FDR <0.05	0	7
thereof n=3 n=0	0	7

S0/L1 vs S15/L1
same lysozyme concentration, but 0 vs. 15 sonication cycles

	S0/L1	S15/L1		
total number of proteins	1426	1469		
	unique proteins	thereof n=3 n=0	Proteins with FDR <0.05	thereof n=3 n=0
---------------------------	-----------------	----------------	-------------------------	----------------
commercial extract vs. Bioreactor S5/L0.5	57	3	1	0
	120	47	6	19
commercial versus shaking flask S5/L0.5	215	121	5	0
	185	30	8	5
	309	116	356	172
	356	53	310	31

	thereof n=3 n=0	thereof n=3 n=0
commercial extract vs. Bioreactor S5/L0.5	121	30
commercial versus shaking flask S5/L0.5	116	53
Supporting References

[1] Z. Z. Sun, C. A. Hayes, J. Shin, F. Caschera, R. M. Murray, V. Noireaux, J. Vis. Exp. 2013, e50762.
[2] a) T. W. Kim, J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, D. M. Kim, J. Biotechnol. 2006, 126, 554-561; b) Y. C. Kwon, M. C. Jewett, Sci. Rep. 2015, 5, 8663.
[3] M. K. Takahashi, J. Chappell, C. A. Hayes, Z. Z. Sun, J. Kim, V. Singhal, S. Al-Khabouri, C. P. Fall, V. Noireaux, R. M. Murray, J. B. Lucke, ACS Synth. Biol. 2015, 4, 503-515.
[4] M. Rustad, A. Eastund, R. Marshall, P. Jardine, V. Noireaux, J. Vis. Exp. 2017, 1 - 9.
[5] J. Garamella, R. Marshall, M. Rustad, V. Noireaux, ACS Synth. Biol. 2016, 5, 344-355.
[6] F. R. Blatter, B. G. Williams, A. E. Blechli, K. Denniston-Thompson, H. E. Faber, L. Furlong, D. J. Grunwald, D. O. Kieber, D. M. Schumm, E. L. Sheldon, O. Smithies, Science 1977, 196, 161 - 169.
[7] a) J. r. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen, M. Mann, J. Proteome Res. 2011, 10, 1794-1805; b) Y. C. Kwon, M. C. Jewett, Sci. Rep. 2015, 5, 8663.
[8] [107x761]a) T. W. Kim, J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, D. M. Kim, J. Biotechnol. 2006, 126, 554-561; b) Y. C. Kwon, M. C. Jewett, Sci. Rep. 2015, 5, 8663.
[9] Y. Benjamini, Y. Hochberg, J. Roy. Stat. Soc. B 1995, 57, 289-300.
[10] D. W. Huang, B. T. Sherman, R. A. Lempicki, Nat. Protocols 2008, 4, 44-57.
[11] A. Bateman, M. J. Martin, S. Orchard, M. Magrane, R. Agivetova, S. Ahmad, E. Alpi, E. H. Bowler-Barnett, R. Britto, B. Burton, G. H. C. de Castro, K. C. Echioukh, E. Coudert, B. Cuche, M. Dornier, A. Estreicher, M. L. Famiglietti, M. Feuermann, E. Gasteiger, S. Gehant, V. Gerritsen, A. Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, N. Hyka-Nouspikel, F. Jungo, G. Keller, A. Kerhornou, V. Lara, P. Le Mercier, D. Lieberherr, T. Lombardot, X. Martin, P. Masson, Nucleic Acids Res. 2021, 49, D480-D489.
[12] P. Puigbo, I. G. Bravo, S. Garcia-Valle, Biol. Direct 2008, 3, 38.
[13] A. E. Borujeni, A. S. Channarasappa, H. M. Salis, Nucleic Acids Res. 2014, 42, 2646-2659.
[14] D. S. Bindels, L. Haarbosch, L. van Weeren, M. Postma, K. E. Wiese, M. Mastop, S. Amonier, G. Gotthard, A. Royant, M. A. Hink, T. W. Gadella, Jr., Nat. Methods 2017, 14, 53-56.
[15] G. J. Kremers, J. Goedhart, E. B. van Munster, T. W. Gadella, Jr., Biochemistry 2006, 45, 6570-6580.
[16] B. P. Cormack, R. H. Valdivia, S. Falkow, Gene 1996, 173, 33-38.
[17] J. Goedhart, D. von Stetten, M. Noirelcer-Savoye, M. Lelimalous, L. Joosen, M. A. Hink, L. van Weeren, T. W. Gadella, Jr., A. Royant, Nat. Commun. 2012, 3, 751.
[18] G. T. Hanson, T. B. McAnaney, E. S. Park, M. E. Rendell, D. K. Yarbrough, S. Chu, L. Xi, S. G. Boxer, M. H. Montrose, S. J. Remington, Biochemistry 2002, 41, 15477-15488.
[19] K. Fujiwara, N. Doi, Plos One 2016, 11, e0154614.