HOW TO CONSTRUCT ALL METRIC f-K-CONTACT MANIFOLDS

OLIVER GOERTSCHES AND EUGENIA LOIUDICE

Abstract. We show that any compact metric f-K-contact, respectively S-manifold is obtained from a compact K-contact, respectively Sasakian manifold by an iteration of constructions of mapping tori, rotations, and type II deformations.

1. Introduction

The class of metric f-K-contact manifolds generalizes the class of (K)-contact manifolds. They are f-manifolds (namely smooth manifolds together with a $(1,1)$-tensor f of constant rank and such that $f^3 + f = 0$, \cite{8}) endowed with a Riemannian metric, s (Killing) vector fields ξ_i and s one-forms dual to the ξ_i's, satisfying some compatibility conditions (see Section 2).

In addition to generalizing almost complex and almost contact manifolds (which we have in case the f-structure f has maximal rank and the dimension of the manifold is even or respectively odd), f-manifolds appear naturally when studying the hypersurfaces of almost contact manifolds, see \cite{8} for details.

In the present paper we look at metric f-contact manifolds from a dual perspective: motivated by the unusual property of metric f-(K-)contact and S-manifolds that their geometric structure is inherited by mapping tori with respect to automorphisms of the structure (see \cite{4}), we ask whether a given metric f-K-contact or S-manifold is the mapping torus of a lower-dimensional such manifold. The main result of this paper reads:

Theorem 1.1. Any compact connected metric f-K-contact (resp. S-)manifold is obtained from a compact K-contact (resp. Sasakian) manifold by a finite iteration of the following operations:

1. construction of the mapping torus with respect to an automorphism
2. rotation
3. type II deformation

We will recall the mapping torus construction and introduce (anti-)rotation and type II deformation of a metric f-(K-)contact or S-manifold in Section \cite{8} As in the Sasakian setting \cite{4}, type II deformation does not

\textit{Key words and phrases.} metric f-K-contact manifolds, S-manifolds, mapping torus, deformations, basic cohomology, foliations.
modify the characteristic vector fields, while it changes the one-forms of the structure by the addition of other one-forms. Rotation and anti-rotation do not have an analogue in the contact setting: they are a type of deformation in which one applies an appropriate (constant) base change to the characteristic vector fields.

2. Preliminaries

Let us review the notion of a metric f-contact manifold. We assume that we are given linearly independent one-forms η_1, \ldots, η_s on a smooth manifold M^{2n+s}, as well as vector fields ξ_1, \ldots, ξ_s satisfying $\eta_i(\xi_j) = \delta_{ij}$. In this setting the tangent bundle TM decomposes as the sum of the parallelizable subbundle given by the span of the ξ_i, and the intersection of the kernels of the one-forms η_i. In addition, let f be a $(1,1)$-tensor on M satisfying

$$f(\xi_i) = 0, \quad \text{Im } f = \bigcap_{i=1}^s \ker(\eta_i), \quad f^2|_{\text{Im } f} = -\text{id}|_{\text{Im } f}.$$

Note that f is then of constant rank and satisfies $f^3 + f = 0$, i.e., it defines an f-structure in the sense of Yano [8]. For $s = 0$ one recovers the notion of an almost complex, and for $s = 1$ that of an almost contact manifold.

A Riemannian metric g on M satisfying

$$g(fX, fY) = g(X, Y) - \sum_{i=1}^s \eta_i(X)\eta_i(Y)$$

is called compatible with the f-structure, and in this situation one speaks of a metric f-manifold (M, f, η_i, ξ_i, g). The fundamental 2-form of the metric f-manifold M is given by

$$\omega(X, Y) = g(X, fY),$$

for $X, Y \in TM$. One calls M a metric f-contact manifold if

$$d\eta_i = \omega$$

for all i.

Let (M, f, ξ_i, η_i, g) be a metric f-contact manifold. We will refer to the vector fields ξ_i as the characteristic vector fields of the structure, and denote by \mathcal{F} the characteristic foliation, i.e., the foliation spanned by the characteristic vector fields. We recall that by [5 Equation (2.4)], the characteristic vector fields commute, i.e.,

$$[\xi_i, \xi_j] = 0. \quad (2.1)$$

By [5 Theorem 2.6], ξ_i is Killing if and only if

$$\mathcal{L}_{\xi_i} f = 0. \quad (2.2)$$

We call M a metric f-K-contact manifold if all characteristic vector fields are Killing vector fields.
A metric f-contact manifold satisfying the normality condition

$$[f, f] + 2 \sum_{\alpha=1}^{s} d\eta_\alpha \otimes \xi_\alpha = 0,$$

is called an S-manifold; here $[f, f]$ denotes the Nijenhuis torsion of f, i.e.,

$$[f, f](X, Y) = f^2[X, Y] + [fX, fY] - f[fX, Y] - f[X, fY],$$

where X, Y are arbitrary vector fields on M. By [2, Theorem 1.1], the characteristic vector fields of an S-manifold are Killing, i.e., S-manifolds are metric f-K-contact.

3. Deformation of metric f-K-contact manifolds

In this section we describe four ways to construct new metric f-K-contact manifolds out of old ones. We explain how the well-known type II deformation generalizes from the Sasakian setting to metric f-K-contact manifolds, introduce new constructions called rotation and anti-rotation that do not exist for Sasakian manifolds, and recall the construction of the mapping torus of a metric f-K-contact manifold from [6].

We begin with rotation and anti-rotation. In these deformations, the characteristic foliation \mathcal{F} and the $(1,1)$-tensor f remain the same; essentially, one applies an appropriate (constant) base change to the characteristic vector fields ξ_i.

Lemma 3.1. Let $(M, f, \xi_1, \ldots, \xi_s, \eta_1, \ldots, \eta_s, g)$ be a metric f-$(K\cdot)$contact manifold (resp. an S-manifold), and $A = (a_{ij}) \in O(s)$ an orthogonal $s \times s$ matrix, such that $e_i := \sum_{j=1}^{s} a_{ij} \neq 0$ for every $i \in \{1, \ldots, s\}$. Then, the tensor fields

$$\eta'_i := \sum_{t=1}^{s} a_{ti} c_t \eta_t, \quad \xi'_i := \sum_{t=1}^{s} \frac{1}{c_t} a_{ti} \xi_t, \quad i \in \{1, \ldots, s\},$$

together with

$$g' := g - \sum_{\alpha=1}^{s} \eta_\alpha \otimes \eta_\alpha + \sum_{\alpha=1}^{s} \eta'_\alpha \otimes \eta'_\alpha, \quad f' := f,$$

(3.1)

determine a new metric f-$(K\cdot)$contact structure (resp. an S-structure) on M, that we call a rotation of (f, ξ_i, η_i, g).

The tensor fields

$$\tilde{\eta}_i := \frac{1}{c_i} \sum_{t=1}^{s} a_{it} \eta_t, \quad \tilde{\xi}_i := c_i \sum_{t=1}^{s} a_{it} \xi_t, \quad i \in \{1, \ldots, s\},$$

(3.2)

determine a new metric f-$(K\cdot)$contact structure (resp. an S-structure) on M, that we call an anti-rotation of (f, ξ_i, η_i, g).
Proof. We prove only the statements for the rotation; the result for the anti-rotation is entirely analogous. From (3.1) it follows that the fundamental 2-form ω' of $(f', \xi'_i, \eta'_i, g')$ coincides with the fundamental 2-form ω of (f, ξ_i, η_i, g), and that

$$g'(f'X, f'Y) = g(fX, fY) = g(X, Y) - \sum_{\alpha=1}^{s} \eta_{\alpha}(X)\eta_{\alpha}(Y)$$

$$= g'(X, Y) - \sum_{\alpha=1}^{s} \eta'_{\alpha}(X)\eta'_{\alpha}(Y)$$

for all vector fields X, Y on M. Moreover, for all $i, k \in \{1, \ldots, s\}$,

$$\eta'_i(\xi'_j) = \sum_{t,k=1}^{s} a_{kj}a_{ti} c_{t} \delta_{tk} = \delta_{ij}, \quad d\eta'_i = \sum_{t,j=1}^{s} a_{ti} a_{tj} d\eta_j = \sum_{j=1}^{s} \delta_{ij} d\eta_j = \omega',$$

$$g'(\xi'_i, \xi'_j) = g(\xi'_i, \xi'_j) - \sum_{\alpha=1}^{s} \eta_{\alpha}(\xi'_i)\eta_{\alpha}(\xi'_j) + \delta_{ij}$$

$$= \sum_{t,k=1}^{s} \frac{a_{ti}a_{kj}}{c_{t} c_{k}} \delta_{tk} - \sum_{\alpha=1}^{s} \frac{a_{\alpha i}a_{\alpha j}}{c_{\alpha}^{2}} + \delta_{ij} = \delta_{ij},$$

and

$$- id + \sum_{\alpha=1}^{s} \eta'_\alpha \otimes \xi'_\alpha = - id + \sum_{\alpha=1}^{s} \left(\sum_{t=1}^{s} a_{t\alpha}c_{t} \eta_t \right) \otimes \left(\sum_{j=1}^{s} \frac{1}{c_{j}}a_{j\alpha} \xi_j \right)$$

$$= - id + \sum_{t,j=1}^{s} \frac{c_{t}}{c_{j}} \left(\sum_{\alpha=1}^{s} a_{t\alpha}a_{j\alpha} \right) \eta_t \otimes \xi_j$$

$$= - id + \sum_{t,j=1}^{s} \delta_{tj} \eta_t \otimes \xi_j = - id + \sum_{j=1}^{s} \eta_j \otimes \xi_j = f^2 = f'^2.$$

hence $(f', \xi'_i, \eta'_i, g')$ is a metric f-contact structure. Moreover, since for every $i \in \{1, \ldots, s\}$,

$$\mathcal{L}_{\xi'_i}f' = \sum_{t=1}^{s} \frac{1}{c_{t}} a_{ti} \mathcal{L}_{\xi_t}f,$$

and, because of $d\eta'_\alpha = \omega = d\eta_\alpha$ and $\sum_{i=1}^{s} \xi'_i = \sum_{i=1}^{s} \xi_i$,

$$[f', f'] + 2 \sum_{\alpha=1}^{s} d\eta'_\alpha \otimes \xi'_\alpha = [f, f] + 2 \sum_{j=1}^{s} d\eta_j \otimes \xi_j,$$

the rotation $(f', \xi'_i, \eta'_i, g')$ of a metric f-K-contact or of an S-structure on M are metric f-contact structures of the same type. \qed

Remark 3.2. Given a metric f-contact manifold (M, f, ξ_i, η_i, g), the operations of rotation and anti-rotation with respect to an orthogonal matrix A as in Lemma 3.1 are inverse to each other.
We define now type II deformations in the context of metric f-contact manifolds. The following definition generalizes the corresponding definition from the Sasakian setting, see [4], p. 240.

Lemma 3.3. Let $(M^{2n+s}, f, \xi_1, \ldots, \xi_s, \eta_1, \ldots, \eta_s, g)$ be a metric f-(K-)contact (resp. S-) manifold. Let $\theta_1, \ldots, \theta_s$ be closed, \mathcal{F}-basic one-forms on M. Then, the one-forms

$$\bar{\eta}_i := \eta_i + \theta_i, \quad i \in \{1, \ldots, s\},$$

together with the tensors

$$\xi_1, \ldots, \xi_s, \quad \bar{g} := g + \sum_{i=1}^{s} \eta_i \otimes \theta_i + \theta_i \otimes \bar{\eta}_i, \quad \bar{f} = f - \sum_{i=1}^{s} (\theta_i \circ f) \otimes \xi_i,$$

determine a new metric f-K-contact (resp. S-)structure on M, that we call a type II deformation of $(f, \xi_1, \ldots, \xi_s, \eta_1, \ldots, \eta_s, g)$.

Proof. Since the 1-forms $\theta_1, \ldots, \theta_s$ are closed and \mathcal{F}-basic,

$$\bar{\eta}_i(\xi_j) = \delta_{ij}, \quad d\bar{\eta}_i = d\eta_i =: \omega, \quad i, j \in \{1, \ldots, s\}.$$

The kernel of the endomorphism \bar{f} equals that of f, i.e., the span of the vector fields ξ_i, and

$$\bar{f}^2 X = f(\bar{f}X) - \sum_{i=1}^{s} (\theta_i \circ f)(\bar{f}X)\xi_i = f^2 X - \sum_{i=1}^{s} (\theta_i \circ f)(fX)\xi_i$$

$$=- X + \sum_{i=1}^{s} \eta_i(X)\xi_i + \sum_{i=1}^{s} \theta_i(X)\xi_i = - X + \sum_{i=1}^{s} \bar{\eta}_i(X)\xi_i$$

for every vector field X on M. Moreover, for vector fields X, Y on M, we compute

$$\bar{g}(X, \bar{f}Y) = g(X, \bar{f}Y) + \sum_{i=1}^{s} \left(\bar{\eta}_i(X)\theta_i(\bar{f}Y) + \theta_i(X)\bar{\eta}_i(\bar{f}Y) \right)$$

$$= g(X, fY) - \sum_{j=1}^{s} \theta_j(fY)g(X, \xi_j) + \sum_{i=1}^{s} \eta_i(X)\theta_i(fY)$$

$$= g(X, fY) = \omega(X, Y) = d\bar{\eta}_i(X, Y)$$
and

\[\bar{g}(\bar{f}X, \bar{f}Y) = g(\bar{f}X, fY) = g(fX - \sum_{i=1}^{s} \theta_i(fX)\xi_i, fY) = g(fX, fY) = g(X, Y) - \sum_{i=1}^{s} \eta_i(X)\eta_i(Y) = \bar{g}(X, Y) - \sum_{i=1}^{s} \eta_i(X)\eta_i(Y) = \bar{g}(X, Y) - \sum_{i=1}^{s} \bar{\eta}_i(X)\bar{\eta}_i(Y), \]

and hence \((\bar{f}, \xi_i, \bar{\eta}_i, \bar{g})\) is a metric \(f\)-contact structure on \(M\). By definition of \(\bar{f}\) we obtain

\[(3.3) \quad \mathcal{L}_{\xi_j}\bar{f} = \mathcal{L}_{\xi_j}f - \sum_{i=1}^{s} \mathcal{L}_{\xi_j}((\theta_i \circ f) \otimes \xi_i) = \mathcal{L}_{\xi_j}f - \sum_{i=1}^{s} (\mathcal{L}_{\xi_j}(\theta_i \circ f)) \otimes \xi_i. \]

If \((f, \xi_i, \eta_i, g)\) is a metric \(f\)-\(K\)-contact structure, then \(\mathcal{L}_{\xi_j}f = 0\) for every \(j \in \{1, \ldots, s\}\) by Equation (2.1), and Equation (3.3) becomes

\[(\mathcal{L}_{\xi_j}\bar{f})X = -\sum_{i=1}^{s} (\mathcal{L}_{\xi_j}(\theta_i \circ f))(X)\xi_i = \sum_{i=1}^{s} (-\mathcal{L}_{\xi_j}(\theta_i(fX)) + \theta_i(f\xi_j, X))\xi_i = \sum_{i=1}^{s} (-\mathcal{L}_{\xi_j}(\theta_i(fX)) + \theta_i([\xi_j, fX])\xi_i = -\sum_{i=1}^{s} (\mathcal{L}_{\xi_j}\theta_i)(fX)\xi_i = 0, \]

where \(X\) is any vector field on \(M\). Then, by [3] Theorem 2.6, \((\bar{f}, \xi_i, \bar{\eta}_i, \bar{g})\) is a metric \(f\)-\(K\)-contact structure on \(M\).

By straightforward computations using Equation (2.1) and the fact that the \(\theta_i\)'s are basic and closed, we obtain

\[[\bar{f}, f](X, Y) = [f, f](X, Y) - \sum_{i=1}^{s} \theta_i([f, f](X, Y))\xi_i - \sum_{i=1}^{s} \theta_i(fX)(\mathcal{L}_{\xi_j}f)Y + \sum_{i=1}^{s} \theta_i(fY)(\mathcal{L}_{\xi_j}f)X. \]

(3.4)

So if we assume that \((f, \xi_i, \eta_i, g)\) is an \(S\)-structure on \(M\), then \(\mathcal{L}_{\xi_j}f = 0\) (see Section 2), and from (3.4) we get

\[[\bar{f}, f](X, Y) + 2 \sum_{i=1}^{s} d\bar{\eta}_i(X, Y)\xi_i = [f, f](X, Y) - \sum_{i=1}^{s} \theta_i([f, f](X, Y))\xi_i + 2 \sum_{i=1}^{s} d\eta_i(X, Y)\xi_i = 0; \]

hence \((\bar{f}, \xi_i, \bar{\eta}_i, \bar{g})\) is again an \(S\)-structure on \(M\). \qed
Remark 3.4. Type II deformation, rotation and anti-rotation do not change the characteristic foliation F of a metric f-contact manifold.

Rotations and type II deformations commute with each other in the sense of the following lemma.

Lemma 3.5. Let $(M, f, \xi_1, \ldots, \xi_s, \eta_1, \ldots, \eta_s, g)$ be a metric f-contact manifold. Let $\theta_i, i = 1, \ldots, s$, be closed, F-basic, one-forms on M, $A = (a_{ij}) \in \text{O}(s)$, and $\theta_i := \frac{1}{c_i} \sum_{k=1}^{s} a_{ik} \theta_k$, with $c_i := \sum_{j=i}^{s} a_{ij} \neq 0, i \in \{1, \ldots, s\}$.

The operations in (1) and (2) lead to the same metric f-contact structure on M:

1. Rotation of (f, ξ_i, η_i, g) with respect to A and then type II deformation with respect to $\theta_1, \ldots, \theta_s$.
2. Type II deformation of (f, ξ_i, η_i, g) with respect to $\tilde{\theta}_1, \ldots, \tilde{\theta}_s$ and then rotation with respect to A.

Proof. We denote by $(f', \xi_i', \eta_i', g')$ and by $(\tilde{f}, \xi_i', \tilde{\eta}_i, \tilde{g})$ the metric f-contact structures on M obtained from (f, ξ_i, η_i, g) after performing a rotation with respect to A, respectively a type II deformation with respect to $\tilde{\theta}_i$. A type II deformation of $(f', \xi_i', \eta_i', g')$ with respect to $\theta_1, \ldots, \theta_s$ gives a new metric f-contact structure with the following structure tensors:

$$\hat{\eta}_i = \eta_i' + \theta_i, \quad \hat{\xi}_i = \xi_i', \quad \hat{f} = f - \sum_{i=1}^{s} (\theta_i \circ f) \otimes \xi_i,$$

$$\hat{g} = g' + \sum_{i=1}^{s} \eta_i' \otimes \theta_i + \theta_i \otimes \hat{\eta}_i = g - \sum_{i=1}^{s} \eta_i \otimes \eta_i + \sum_{i=1}^{s} \eta_i' \otimes \eta_i' + \sum_{i=1}^{s} \eta_i \otimes \theta_i + \sum_{i=1}^{s} \theta_i \otimes (\eta_i' + \theta_i) = g - \sum_{i=1}^{s} \eta_i \otimes \eta_i + \sum_{i=1}^{s} \hat{\eta}_i \otimes \hat{\eta}_i.$$

We check that the metric f-contact structure $(f'', \xi_i'', \eta_i'', g'')$ obtained from a rotation of $(\tilde{f}, \xi_i', \tilde{\eta}_i, \tilde{g})$ with respect to A coincides with $(\hat{f}, \xi_i', \hat{\eta}_i, \hat{g})$:

$$\eta_i'' = \sum_{i=1}^{s} c_i a_{ii} \tilde{\eta}_i = \eta_i' + \sum_{i=1}^{s} a_{ii} a_{ik} \theta_k = \eta'_i + \theta_i = \hat{\eta}_i, \quad \xi_i'' = \hat{\xi}_i,$$

$$f'' = \tilde{f} = f - \sum_{i=1}^{s} (\tilde{\theta}_i \circ f) \otimes \xi_i = f - \sum_{i=1}^{s} (\theta_k \circ f) \otimes \sum_{i=1}^{s} \frac{1}{c_i} a_{ik} \xi_i = \hat{f},$$

$$g'' = \tilde{g} - \sum_{i=1}^{s} \tilde{\eta}_i \otimes \tilde{\eta}_i + \sum_{i=1}^{s} \eta_i'' \otimes \eta_i'' = g + \sum_{i=1}^{s} \eta_i \otimes \tilde{\theta}_i + \sum_{i=1}^{s} \tilde{\theta}_i \otimes \tilde{\eta}_i - \sum_{i=1}^{s} \tilde{\eta}_i \otimes \tilde{\eta}_i + \sum_{i=1}^{s} \hat{\eta}_i \otimes \hat{\eta}_i = \hat{g}.$$
Remark 3.6. The metric f-K-contact structure obtained from (f, ξ_i, η_i, g) after a type II deformation with respect to $\theta_i + \theta'_i$ coincides with the metric f-K contact structure obtained performing first a type II deformation with respect to θ of (f, ξ, η, g) and then a type II deformation with respect to θ'_i. In particular, the inverse operation of a type II deformation with respect to θ_i is a type II deformation with respect to $-\theta_i$.

Remark 3.7. As the inverse operation of a rotation is an anti-rotation, cf. Remark 3.2, and the inverse operation of a type II deformation is again a type II deformation, anti-rotations and type II deformations commute in a similar way as in Lemma 3.5.

We recall from [6, Section 3] how a metric f-structure induces in a natural way the same structure on the mapping torus of an automorphism. Let (M, f, ξ_i, η_i, g) be a metric f-contact manifold and $\phi: M \to M$ an automorphism of the structure. The tensors (f, ξ_i, η_i, g) on M induce the following natural metric f-contact structure on $M \times \mathbb{R}$:

\[
\bar{f}(X) = f(X), \quad \bar{f}\left(\frac{d}{dt}\right) = 0, \quad \bar{\eta}_\alpha(X) = \eta_\alpha(X), \quad \bar{\eta}_\alpha\left(\frac{d}{dt}\right) = 0,
\]

\[
\bar{\eta}_{s+1}(X) = \frac{1}{s}(\eta_1(X) + \cdots + \eta_s(X)), \quad \bar{\eta}_{s+1}\left(\frac{d}{dt}\right) = 1,
\]

\[
\bar{\xi}_{s+1} := \frac{d}{dt}, \quad \bar{\xi}_\alpha := \xi_\alpha - \frac{1}{s}\frac{d}{dt}, \quad \alpha = 1, \ldots, s,
\]

for each $X \in TM$ and where $\frac{d}{dt}$ denotes the standard coordinate vector field on \mathbb{R},

\[
\bar{g}(X,Y) = g(X,Y), \quad \bar{g}(X,\bar{\xi}_\alpha) = 0, \quad \bar{g}(\bar{\xi}_\alpha, \bar{\xi}_\beta) = \delta_\alpha^\beta,
\]

for each $X,Y \in \text{im}(f)$ and $\alpha, \beta \in \{1, \ldots, s+1\}$. This structure is invariant under the \mathbb{Z}-action on $M \times \mathbb{R}$ determined by ϕ:

\[
m \cdot (p, t) \mapsto (\phi^m(p), t + mt_0),
\]

where $t_0 \in \mathbb{R}$, $t_0 \neq 0$, and descends to the quotient of the \mathbb{Z}-action, i.e., the mapping torus M_ϕ of (M, ϕ), making it a metric f-contact manifold. In [6] we also computed that M_ϕ is a metric f-K-contact (resp. an S-)manifold if and only if M is.

4. Main result

In this section we prove our main result, which states that any compact metric f-K-contact manifold is obtained from a compact K-contact manifold by successively applying rotations, type II deformations, and constructions of mapping tori. The main idea of the proof is to apply our cohomological splitting theorem for compact metric f-K-contact manifolds from [6] in order to find a suitable deformation (i.e., type II deformation, combined with anti-rotation) whose characteristic foliation has closed leaves, and then exhibit this deformed structure as a mapping torus.
Lemma 4.1. Let M^{2n+s} be a compact connected metric f-K-contact manifold. Then

$$H^1(M) = \text{span}_\mathbb{R}\{[\eta_1 - \eta_s], \ldots, [\eta_{s-1} - \eta_s]\} \oplus H^1(M, \mathcal{F}).$$

Proof. By [6, Theorem 4.5] we have an isomorphism

$$H^s(M) \cong \Lambda(\mathbb{R}^{s-1}) \otimes H^s(M, \mathcal{F}_{s-1}),$$

where $\Lambda(\mathbb{R}^{s-1})$ embeds in $H^s(M)$ as the exterior algebra over the cohomology classes $[\eta_i - \eta_s]$. We thus obtain

$$H^1(M) = \text{span}_\mathbb{R}\{[\eta_1 - \eta_s], \ldots, [\eta_{s-1} - \eta_s]\} \oplus H^1(M, \mathcal{F}_{s-1})$$

and are left with showing $H^1(M, \mathcal{F}_{s-1}) = H^1(M, \mathcal{F})$.

To show this we make use of one of the exact sequences from [6, Proposition 4.4]:

$$0 \rightarrow H^1(M, \mathcal{F}) \rightarrow H^1(M, \mathcal{F}_{s-1}) \rightarrow H^0(M, \mathcal{F}) \xrightarrow{\delta} H^2(M, \mathcal{F}) \rightarrow \cdots,$$

where the connecting homomorphism δ is given by $\delta([\sigma]) = [\omega \wedge \sigma]$. Since the fundamental 2-form ω is a non-zero element of $H^2(M, \mathcal{F})$ [6, Lemma 6.3], the map $\delta : H^0(M, \mathcal{F}) \rightarrow H^2(M, \mathcal{F})$ is injective and thus $H^1(M, \mathcal{F}) \cong H^1(M, \mathcal{F}_{s-1})$. \hfill \square

Lemma 4.2. Let $(M, f, \xi_1, \ldots, \xi_s, \eta_1, \ldots, \eta_s, g)$ be a compact connected metric f-K-contact manifold, where $s \geq 2$. Then there exists an anti-rotation $(\tilde{f}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ of (f, ξ_i, η_i, g) and a closed, \mathcal{F}-basic, 1-form θ on M, such that the cohomology class $[\tilde{\eta}]$, where

$$\eta := \tilde{\eta}_s - \frac{1}{s-1}(\tilde{\eta}_1 + \cdots + \tilde{\eta}_{s-1}) + \theta,$$

is a real multiple of an integer class.

Moreover, the closed 1-form η is nowhere vanishing and determines a codimension-one foliation $\mathcal{F}_\eta := \ker \eta$ with compact leaves.

Proof. We consider the open set

$$U := \{A = (a_{ij}) \in \text{O}(s) \mid \sum_{t=1}^s a_{it} \neq 0, i = 1, \ldots, s\}$$

of $\text{O}(s)$, and the map $h : U \rightarrow \mathbb{R}^s$, defined by

$$h(A) = A^t \begin{pmatrix} \frac{1}{c_1(A)} & 0 & \cdots & 0 \\ 0 & \frac{1}{c_2(A)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{c_s(A)} \end{pmatrix} \begin{pmatrix} \frac{1}{s-1} \\ \vdots \\ \frac{1}{s-1} \\ 1 \end{pmatrix},$$

where A^t is the transpose of the matrix A, and

$$c_k : U \rightarrow \mathbb{R}; \ (a_{ij}) \mapsto \sum_{j=1}^s a_{kj},$$

HOW TO CONSTRUCT ALL METRIC f-K-CONTACT MANIFOLDS
for every $k \in \{1, \ldots, s\}$. Observe that $h(A)$ gives the coordinates of the vector
\[
\eta := \bar{\eta}_s - \frac{1}{s-1} (\bar{\eta}_1 + \cdots + \bar{\eta}_{s-1}) \in \text{span}_\mathbb{R} \{\eta_1, \ldots, \eta_s\},
\]
with respect to the basis $\{\eta_1, \ldots, \eta_s\}$, where $\bar{\eta}_i = \frac{1}{c_i(A)} \sum_{t=1}^s a_{it} \eta_t$ are the one-forms on M obtained from (f, ξ_i, η_i, g) after an anti-rotation with respect to A. Moreover, h maps to the codimension-one subspace of \mathbb{R}^s,
\[
V := \{(u_1, \ldots, u_s) \mid \sum_{i=1}^s u_i = 0\} \simeq \text{span}_\mathbb{R} \{\eta_1 - \eta_s, \ldots, \eta_{s-1} - \eta_s\}.
\]

To prove the first part of this lemma, by Lemma 4.1, it suffices to show that $\text{im} \ h$ contains an open neighborhood of η in V. For this purpose, we show that the image of the differential $(dh)_I : \mathfrak{o}(s) \to \mathbb{R}^s$ contains V. A direct computation shows that, for every $X \in \mathfrak{o}(s)$,
\[
(dh)_I (X) = X^t \begin{pmatrix}
\frac{1}{s-1} & c_1(X) & 0 & \cdots & 0 \\
0 & c_2(X) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & c_s(X) \\
\frac{1}{s-1} & 0 & \cdots & 1
\end{pmatrix}
\]
In particular, for every element of the orthogonal Lie algebra $\mathfrak{o}(s)$ of type
\[
\bar{X} = \begin{pmatrix}
a_1 & \cdots & a_{s-1} \\
a_1 & \cdots & a_{s-1} \\
-1 & \cdots & -a_{s-1} \\
0 & \cdots & 0
\end{pmatrix},
\]
we have that
\[
(dh)_I (\bar{X}) = \left(\frac{1}{s-1} - 1\right) \begin{pmatrix}
a_1 \\
\vdots \\
a_{s-1} \\
-\sum_{i=1}^{s-1} a_i
\end{pmatrix}.
\]
Then, $\text{im} (dh)_I \supset V$.

The second part of the lemma follows directly from [1, Lemma 3.5].

Proposition 4.3. Let M be a compact, connected, metric f-K-contact (resp. S-) manifold. Then, there exists a compact, metric f-K-contact (resp. S-) manifold N, so that M is isomorphic to the mapping torus of N with respect to an automorphism of the structure, up to a rotation and a type II deformation.

Proof. Let $(f, \xi_1, \ldots, \xi_{s+1}, \eta_1, \ldots, \eta_{s+1}, g)$ be the metric f-K-contact structure on M, and consider the 1-form
\[
\eta := \eta_{s+1} - \frac{1}{s} (\eta_1 + \cdots + \eta_s),
\]
which is nowhere vanishing and closed, since $\eta(\xi_{s+1}) = 1$ and $d\eta_1 = \cdots = d\eta_s$. By Lemma 4.2 up to performing an anti-rotation and a type II
deformation of the structure, we can assume that \([\eta]\) is a real multiple of an integer class, and the leaves of the foliation \(\mathcal{F}_\eta\) defined by \(\ker \eta\) are compact. We will show that in this situation \(M\) is isomorphic to the mapping torus of a compact metric \(f\)-\(K\)-contact manifold \(N\) with respect to an automorphism of \(N\); as rotation and anti-rotation are inverse to each other by Remark 3.2, this will imply the proposition.

We observe that, for every \(X \in \text{im} f\),
\[
0 = 2d\eta(\xi_{s+1}, X) = \xi_{s+1}(\eta(X)) - X\eta(\xi_{s+1}) - \eta[\xi_{s+1}, X];
\]
thus \([\xi_{s+1}, X] \in TF_\eta\) and, as the \(\xi_i\) commute with each other, we obtain \([\xi_{s+1}, TF_\eta] \subset TF_\eta\). Then, by Proposition 2.2 of [7], the flow \(\phi\) of \(\xi_{s+1}\) leaves \(\mathcal{F}_\eta\) invariant, namely it carries leaves of \(\mathcal{F}_\eta\) to leaves.

Let \(N\) be any leaf of \(\mathcal{F}_\eta\). We observe that there exists \(t_0 \in \mathbb{R}\) such that \(\varphi := \phi_{t_0}\) maps \(N\) to itself: the map
\[
N \times \mathbb{R} \to M; \ (p, t) \mapsto \phi(p, t),
\]
is a local diffeomorphism and hence in particular \(\phi(N \times \mathbb{R}) \subset M\) is an open, \(\mathcal{F}_\eta\)-saturated subset. This implies that \(\phi|_{N \times \mathbb{R}} : N \times \mathbb{R} \to M\) is surjective (otherwise \(M \setminus \phi(N \times \mathbb{R}) \neq \emptyset\) would be an open, \(\mathcal{F}_\eta\)-saturated set, contradicting the fact that \(M\) is connected). Thus, by the compactness of \(M\), \(\phi|_{N \times \mathbb{R}} : N \times \mathbb{R} \to M\) is not injective. Let \((p, t), (q, s) \in N \times \mathbb{R}\) such that \((p, t) \neq (q, s)\) and \(\phi(p, t) = \phi(q, s)\). Since \(\phi\) maps leaves to leaves and \(\phi_{t-s}(p) = q\), we have that the map \(\phi_{t-s}\) maps \(N\) to \(N\).

We construct on \(N\) a metric \(f\)-\(K\)-contact structure such that \(\varphi : N \to N\) is an automorphism of that structure. For every \(i = 1, \ldots, s\), we denote by \(\tilde{\eta}_i\) the pullback one-form of \(\eta_i\) on \(N\), via the immersion \(j : N \hookrightarrow M\), and by \(\xi_i\) the vector field on \(N\), \(j\)-related to the vector field \(\xi_i + \frac{1}{s}\xi_{s+1}\) on \(M\) tangent to \(\mathcal{F}_\eta\) (observe that \(\eta\left(\xi_i + \frac{1}{s}\xi_{s+1}\right) = 0\)). We define moreover a Riemannian metric \(\tilde{g}\) and a \((1, 1)\)-tensor \(\tilde{f}\) on \(N\) by:
\[
\tilde{g}(X, Y) = g(X, Y), \quad \tilde{g}(X, \xi_i) = 0, \quad \tilde{g}(\xi_i, \xi_j) = \delta_{ij},
\]
\[
\tilde{f}(\xi_i) = 0, \quad \tilde{f}(X) = f(X),
\]
for every \(i = 1, \ldots, s\), and \(X, Y \in \ker(\tilde{\eta}_1)_p \cap \cdots \cap \ker(\tilde{\eta}_s)_p = (\text{im} \tilde{f})_p = (\text{im} f)_p\), \(p \in N\). It is easy to check that \((\tilde{f}, \xi_i, \tilde{\eta}_i, \tilde{g})\) is a metric \(f\)-\(K\)-contact structure on \(N\), and the diffeomorphism \(\varphi : N \to N\) preserves the tensors \(\xi_i, \tilde{\eta}_i, \tilde{g}, \tilde{f}\). If \((f, \xi_1, \ldots, \xi_{s+1}, \eta_1, \ldots, \eta_{s+1}, g)\) is an \(S\)-structure on \(M\), then for all local vector fields \(X, Y\) on \(M\) tangent to \(\mathcal{F}_\eta\),
\[
([\tilde{f}, \tilde{f}] + 2 \sum_{\alpha=1}^s d\tilde{\eta}_\alpha \otimes \xi_\alpha)(X, Y) = [f, f](X, Y) + 2 \sum_{\alpha=1}^s d\eta_\alpha (X, Y) \left(\xi_\alpha + \frac{1}{s}\xi_{s+1}\right)
\]
\[
= [f, f](X, Y) + 2 \sum_{\alpha=1}^{s+1} d\eta_\alpha (X, Y) \xi_\alpha = 0,
\]
and hence \((N, \tilde{f}, \tilde{\xi}_i, \tilde{\eta}_i, \tilde{g})\) is an \(S\)-manifold.

By [6, Section 3], and as recalled in Section 3, the metric \(f\)-\(K\)-contact (resp. \(S\)-)structure on \(N\) determines a metric \(f\)-\(K\)-contact (resp. \(S\)-)structure \((\tilde{f}, \tilde{\xi}_i, \tilde{\eta}_i, \tilde{g})\) on the mapping torus \(N_{\varphi^{-1}}\). Finally, observe that the map

\[
\Psi : N_{\varphi^{-1}} \to M; \quad [(p, t)] \mapsto \phi(p, t),
\]
is well defined, injective and a local diffeomorphism. Moreover, since \(N_{\varphi^{-1}}\) and \(M\) are compact, \(\Psi\) is a diffeomorphism, which by construction preserves the given structure tensors: for every \(X, Y \in \text{im} f\), and \(\alpha \in \{1, \ldots, s\},
\[
(d\phi)_{(p, t)} \tilde{\xi}_\alpha = (d\phi_p)_p (\xi_\alpha + \frac{1}{s} \xi_{s+1}) - \frac{1}{s} (d\phi_p)_t \frac{dt}{dt} \Big|_{t=\xi_\alpha} = \xi_\alpha,
\]
\[
(d\phi)_{(p, t)} \tilde{\xi}_{s+1} = (d\phi_p)_t \frac{dt}{dt} \Big|_{t=\xi_{s+1}} = \xi_{s+1},
\]
\[
\tilde{g}(X, Y) = \tilde{g}(X, Y) = g(X, Y) = g((d\phi_t)_p X, (d\phi_t)_p Y) = (\phi^* g)(X, Y),
\]
\[
g((d\phi_t)_p X, (d\phi_t)_p \tilde{\xi}_i) = g((d\phi_t)_p X, \tilde{\xi}_i) = g(X, (d\phi_{-t})_p \tilde{\xi}_i) = 0 = \tilde{g}(X, \tilde{\xi}_i),
\]
\[
f((d\phi_t)_p X) = f(X) = \tilde{f}(X) = f(X).
\]
\[\square\]

Theorem 4.4. Any compact connected metric \(f\)-\(K\)-contact (resp. \(S\)-) manifold is obtained from a compact \(K\)-contact (resp. Sasakian) manifold by a finite iteration of the following operations:

1. construction of the mapping torus with respect to an automorphism
2. rotation
3. type II deformation

Proof. This follows directly by applying Proposition 4.3 inductively, as in each step the dimension of the manifold decreases by one. \(\square\)

References

[1] G. Bazzoni and O. Goertsches. Toric actions in cosymplectic geometry. *Forum Math.* 31 (2019), no. 4, 907–915.
[2] D. E. Blair. Geometry of manifolds with structural group \(U(n) \times O(s)\). *J. Differential Geometry* 4 (1970), 155–167.
[3] D. E. Blair and Ludden, G. D. Hypersurfaces in almost contact manifolds. *Tohoku Math. J.* 2 (1969), 354–362.
[4] C. Boyer and K. Galicki, *Sasakian geometry*, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008.
[5] J. Cabrerizo, L. M. Fernández and M. Fernández. The curvature tensor fields on \(f\)-manifolds with complemented frames. *An. Ştiinţ Univ. Al. I. Cuza Iaşi Sect. I a Mat.* 36 (1990), 151–161.
[6] O. Goertsches and E. Loiudice. On the topology of metric \(f\)-\(K\)-contact manifolds. *Monatsh. Math.* 192 (2020), 355–370.
[7] P. Molino. *Riemannian foliations*, Progress in Mathematics, 73. Birkhäuser, Boston, 1988.
[8] K. Yano. On a structure defined by a tensor field \(f\) of type \((1, 1)\) satisfying \(f^3 + f = 0\). *Tensor (N.S.)* 14 (1963), 99–109.
