A fully-kinetic model for orphan gamma-ray flares in blazars

Emanuele Sobacchi1*, Joonas Nättilä2,3, Lorenzo Sironi1

1 Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street New York, NY 10027, USA
2 Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
3 Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

ABSTRACT
Blazars emit a highly-variable non-thermal spectrum. It is usually assumed that the same non-thermal electrons are responsible for the IR-optical-UV emission (via synchrotron) and the gamma-ray emission (via inverse Compton). Hence, the light curves in the two bands should be correlated. Orphan gamma-ray flares (i.e., lacking a luminous low-frequency counterpart) challenge our theoretical understanding of blazars. By means of large-scale two-dimensional radiative particle-in-cell simulations, we show that orphan gamma-ray flares may be a self-consistent by-product of particle energization in turbulent magnetically-dominated pair plasmas. The energized particles produce the gamma-ray flare by inverse Compton scattering an external radiation field, while the synchrotron luminosity is heavily suppressed since the particles are accelerated nearly along the direction of the local magnetic field. The ratio of inverse Compton to synchrotron luminosity is sensitive to the initial strength of turbulent fluctuations (a larger degree of turbulent fluctuations weakens the anisotropy of the energized particles, thus increasing the synchrotron luminosity). Our results show that the anisotropy of the non-thermal particle population is key to modeling the blazar emission.

Key words: galaxies: jets – gamma-rays: galaxies – radiation mechanisms: non-thermal – plasmas – turbulence
In magnetically-dominated AGN jets, internal shocks are weak. Then viable non-thermal particle acceleration mechanisms are reconnection and turbulence. Since there is a huge separation of scales between the transverse size of the jet, which is the energy-carrying scale, and the particle Larmor radius, which is the scale where dissipation happens, we argue that dissipation proceeds through a turbulent cascade. Recently, fully-kinetic particle-in-cell (PIC) simulations have reached the maturity to simulate the energization of non-thermal particles in turbulent magnetically-dominated plasmas from first principles (e.g. Zhdankin et al. 2017, 2018, 2020; Comisso & Sironi 2018, 2019; Näättilä 2019; Comisso et al. 2020). Using highly-magnetized uncooled PIC simulations, Comisso & Sironi (2018, 2019) have shown that (i) particles are first energized due to strong non-ideal electric fields in large-scale reconnecting current sheets. Since the reconnection electric field is nearly aligned with the local magnetic field, the distribution of the reconnection-accelerated particles is strongly anisotropic, with particles preferentially moving along the magnetic field; (ii) particles are further accelerated by scattering off turbulent magnetic fluctuations. The distribution of the scattered particles becomes increasingly isotropic at higher energies.

Comparing the gamma-ray luminosity with the extended emission from the radio lobes suggests that blazars are extremely radiative efficient (e.g. Nemmen et al. 2012). Then turbulence should develop in the fast cooling regime, i.e. reconnection-accelerated particles should radiate most of their energy within the light crossing time of the system (otherwise, adiabatic losses become dominant and the jet is radiatively inefficient). Here we use large-scale two-dimensional PIC simulations to study radiative turbulence in the fast cooling regime. We show that (i) the local anisotropy of the reconnection-accelerated particles may suppress the synchrotron luminosity by orders of magnitude with respect to the IC luminosity; (ii) further energization due to scattering is inhibited since it operates on a longer timescale than cooling (see also Näättilä & Beloborodov 2020; Zhdankin et al. 2020). Hence, we argue that orphan gamma-ray flares can be a self-consistent by-product of particle energization in magnetically-dominated plasmas with fast cooling.

The paper is organized as follows. In Section 2 we present our model. In Section 3 we validate our model using radiative fully-kinetic simulations of turbulent magnetically-dominated pair plasmas. Finally, in Section 4 we conclude.

2 PHYSICAL MODEL

Let us consider a blob filled with a turbulent plasma. In the proper frame of the blob, the characteristic physical parameters of the plasma are (i) \(l \), the turbulence energy-carrying scale, which we assume to be comparable to the size of the emitting blob; (ii) \(B \), the intensity of the magnetic field. We assume the turbulent component of the magnetic field to be \(B \sim B \); (iii) \(n_0 \), the electron number density. The available magnetic energy per electron exceeds the rest mass, i.e. the initial plasma magnetization is \(\gamma_0 \equiv B^2 / 4\pi n_0 m_c^2 \gg 1 \), where \(m_e \) is the electron mass. If the plasma has a significant proton component, we assume that a large fraction (i.e., \(\gtrsim 50\% \)) of the turbulent energy heats the plasma electrons.

The emitting blob moves with a velocity \(\beta \) and a Lorentz factor \(\Gamma \equiv 1 / \sqrt{1 - \beta^2} \) with respect to the observer. If the viewing angle is \(\theta \ll 1 / \Gamma \), the Doppler factor of the blob is \(\delta \equiv 1 / [\Gamma(1 - \beta \cos \theta)] \sim \Gamma \). Throughout this paper we take a fiducial value of \(\delta \sim \Gamma \sim 20 \). For the physical parameters of blazars, such Lorentz factor typically guarantees that the gamma-rays do not annihilate with lower energy photons within the emitting blob (e.g. Donoli & Ghisellini 1995).

The blob is immersed in an external radiation field of frequency \(\nu_0 \sim 10^{15} \) Hz and energy density \(U_{\text{rad}} \sim 0.01 \) erg cm\(^{-3} \) (which in the blob frame are Lorentz-boosted to \(\nu_0' \sim \nu_0 \), and \(U_{\text{rad}}' \sim \Gamma^4 U_{\text{rad}} \)), as may be produced by the Broad Line Region in FSRQ (e.g. Sikora et al. 1994, 2003; Ghisellini & Tavecchio 2009). Due to IC losses, within a dynamical time \(t_{\text{dyn}} \), particles cool down to a Lorentz factor \(\gamma_{\text{cool}} \sim \max \left[1, 3 m_e / 4 \sigma c U_{\text{rad}}' t_{\text{dyn}} \right] \), where \(\sigma c \) is the Thomson cross section.

The turbulent component of the magnetic field dissipates on a timescale \(t_{\text{dyn}} \sim l / c \) (e.g. Comisso & Sironi 2018, 2019; Näättilä & Beloborodov 2020). We assume that (i) reconnection injects particles of Lorentz factor \(\gamma \sim \gamma_0 \) at a constant rate over a dynamical time, until the turbulent energy is dissipated; (ii) reconnection-accelerated particles cool efficiently within a dynamical time by IC scattering the external radiation field (i.e., as discussed in Section 2.1 we consider the fast cooling regime \(\gamma_{\text{cool}} \ll \gamma_0 \), which produces a gamma-ray flare. If the magnetic field within the emitting blob is tangled, the particle distribution is isotropic on the global scale of the blob (for example, the emitting blob may contain multiple turbulent cells, each having a random direction of the mean field). Then the IC emission is the same as the standard isotropic case. In contrast, as we discuss below, the local particle distribution is strongly anisotropic in pitch angle. The anisotropy heavily suppresses the synchrotron emission.

We estimate the properties of the emitting plasma by considering a typical flare with isotropic equivalent luminosity \(L_{\text{obs}} \sim 10^{48} \) erg s\(^{-1} \), duration \(t_{\text{obs}} \sim 1 \) day, and peaking at a frequency \(\nu_{\text{obs}} \sim 10^{21} \) Hz (e.g. Böttcher 2019). The duration of the flare in the observer’s frame is \(t_{\text{obs}} \sim t_{\text{dyn}} / \Gamma \), which gives

\[
1 \sim 5 \times 10^{16} \left(\frac{\Gamma}{20} \right) \left(\frac{t_{\text{obs}}}{1 \text{ day}} \right) \text{ cm}.
\]

(1)

The corresponding distance from the central engine may be estimated as \(r \sim \Gamma l \sim 10^{18} \) cm. The isotropic equivalent of the flare luminosity is \(\dot{L}_{\text{obs}} \sim (8 \delta B^2 / 8 \pi)^{1/2} \Gamma^4 / t_{\text{dyn}} \), which gives

\[
\delta B \sim 1.4 \left(\frac{\Gamma}{20} \right)^{-3} \left(\frac{t_{\text{obs}}}{1 \text{ day}} \right)^{-1} \left(\frac{L_{\text{obs}}}{10^{48} \text{ erg s}^{-1}} \right)^{1/2} \text{ G}.
\]

(2)

4 Orphan flares with a variability timescale of a few hours were recently reported by Patel et al. 2020. Variability on short timescales (i.e., \(\ll 1 \) day) may be produced by plasma clumps moving relativistically within the emitting region, as in the so-called “jet-in-a-jet” models (e.g. Giannios et al. 2003; Giannios 2013).
Orphan gamma-ray flares in blazars

Figure 1. 2D structure of turbulence from a simulation with \(\sigma_0 = 160 \), \(\delta B_{\text{turb}}/B_0 = 0.5 \), and \(L/d_0 = 13,300 \) (with \(l = L/4 \)), at time \(t/L = 7 \) (near the peak of the lightcurves, see Figure 2). We focus on a portion of the simulation domain to emphasize small-scale structures (the overall box is \(4L \times 4L \)). Top: out-of-plane current density \(J_z \) (normalized to \(J_0 = e\rho V_0 \)) indicating the presence of current sheets and reconnection plasmoids. Bottom: mean kinetic energy per particle (in units of \(mc^2 \)), showing that high-energy particles are preferentially located at reconnecting current sheets.

Since IC scattering occurs in the Thomson regime, the peak frequency of the IC radiation is \(\nu_{\text{obs}} \sim \Gamma^2 \sigma_0^2 \nu_0 \sim \Gamma^2 \sigma_0^2 V_0 \), which gives a magnetization \(\sigma_0 \approx 500 \left(\frac{\Gamma}{20} \right)^{-1} \left(\frac{\nu_{\text{obs}}}{10^{23} \text{ Hz}} \right)^{1/2} \left(\frac{V_0}{10^{15} \text{ Hz}} \right)^{-1/2} \). (3)

The IC emission extends down to a frequency \(\nu \sim \Gamma^2 \sigma_0 V_0 \ll \nu_{\text{obs}} \) with a typical spectrum \(\nu F_\nu \propto \nu^{1/2} \). From Eqs. (2) and (3), one may estimate the particle number density, \(n_0 \sim \delta B^2/(4\pi \sigma_0 mc^2) \sim 10^{27} \text{ cm}^{-3} \).

2.1 Effect of the anisotropy

Uncooled PIC simulations of magnetically-dominated pair plasma turbulence (e.g. Comisso & Sironi 2018, 2019; Näätäinen 2013) have shown that (i) particles are injected at Lorentz factors \(\gamma \sim \sigma_0 \) due to strong non-ideal electric fields (\(\nu_{\text{rec}} \sim \eta_{\text{rec}} \delta B/\eta_{\text{rec}} \sim 0.1 \)) in large-scale reconnecting current sheets. The injection time is \(t_{\text{inj}} \sim \sigma_0 mc/e\nu_{\text{rec}} \), and typically \(t_{\text{inj}} \ll \tau_{\text{dyn}} \).

Since the reconnection electric field is nearly aligned with the local magnetic field, reconnection-accelerated particles have a strong anisotropy; (ii) particles may be further accelerated (up to \(\gamma \gg \sigma_0 \)) by scattering off turbulent magnetic fluctuations. Scattering operates on a longer timescale, \(\tau_{\text{scat}} \sim \tau_{\text{dyn}} \).

For the properties of the emitting plasma estimated above, one finds that \(\gamma_{\text{cool}} \sim 3mc/(4\sigma_0 \nu_{\text{rad}}) \sim 4 \). The ratio of the injection to the cooling time for particles with \(\gamma \sim \sigma_0 \) is \(t_{\text{inj}}/t_{\text{cool}} \approx (\sigma_0/\gamma_{\text{cr}})^{3} \sim 10^{-8} \), where \(\gamma_{\text{cr}} \) is defined by the condition that IC losses balance the acceleration by the reconnection electric field, i.e. \(e\nu_{\text{rec}} \sim 4\sigma_0 \nu_{\text{rad}}/3 \). Since \(t_{\text{inj}} \ll t_{\text{cool}} \), particle injection in large-scale current sheet is practically unaffected by cooling (e.g. Näätäinen & Beloborodov 2020; Sironi & Beloborodov 2020; Zhdankin et al. 2020). Effectively, in a fast cooling system, turbulence is only able to inject particles with \(\gamma \sim \sigma_0 \) via reconnection. Particles move nearly along the local magnetic field, and cool down to \(\gamma \sim \sigma_0 \) via IC scattering within a dynamical time. Then most of the particle energy is converted into radiation.

In the frame of the emitting blob, the magnetic energy density is \(U_B \equiv \delta B^2/(8\pi) \sim 0.08 \text{ erg cm}^{-3} \), and the radiation energy density is \(U_{\text{rad}} \sim 4 \times 10^{56} \text{ erg s}^{-1} \). However, the synchrotron luminosity is suppressed by a factor \(\sin^2 \alpha \), where \(\alpha \ll 1 \) is the pitch angle between the particle velocity and the local magnetic field (e.g. Comisso & Sironi 2019; Comisso et al. 2020). In the next section we demonstrate that this effect can suppress the synchrotron luminosity by orders of magnitude, making the low-energy counterpart of the gamma-ray flare practically undetectable.

Since we are considering IC scattering off an external radiation field, our model adequately describes orphan gamma-ray flares from FSRQ. In case of BL Lacs, the seed photons are instead produced within the jet itself via synchrotron emission (e.g. Maraschi et al. 1992). We argue that our proposed mechanism can explain orphan gamma-ray flares also in BL Lacs. Let us consider a fast cooling system, and neglect Klein-Nishina effects on IC scattering. The ratio of the synchrotron to IC power is \(P_{\text{sync}}/P_{\text{IC}} \sim (U_B/U_{\text{sync}}) \sin^2 \alpha \), where \(U_{\text{sync}} \) is the comoving energy density of the synchrotron radiation. Since only a fraction \(P_{\text{sync}}/P_{\text{IC}} \lesssim 1 \) of the available magnetic energy is converted to synchrotron radiation when \(\alpha \ll 1 \), one finds that \(U_{\text{sync}} \sim (P_{\text{sync}}/P_{\text{IC}})U_B \), and therefore \(P_{\text{sync}}/P_{\text{IC}} \sim \sin \alpha \ll 1 \).

Numerical simulations of this process are more challenging since the radiation field should be modeled self-consistently, and are left for future work.

3 PARTICLE-IN-CELL SIMULATIONS

3.1 Numerical method and setup

We perform ab initio PIC simulations employing the PIC codes TRISTAN-MP (Buneman 1993; Spitkovsky 2003) and RUNKO (Näätäinen 2013). Simulations were performed with both the codes, finding consistent results. We conduct large-scale two-dimensional...
Our previous studies have demonstrated that the particle energy distribution and anisotropy are nearly the same between 2D and 3D for uncooled systems (Comisso & Sironi 2018; Comisso et al. 2020). In uncooled systems, particles are first energized by reconnection, and then by scattering off turbulent magnetic fluctuations. Energization due to scattering is arguably sensitive to 3D effects since turbulent fluctuations are anisotropic. Then we expect 3D effects to be minor in fast cooling systems, since energetic due to scattering becomes ineffective.

We vary the level of turbulent fluctuations δB/Bo between 0.5 (our fiducial case) and 2. This plays a significant role on the pitch angle distribution of accelerated particles, and so on the resulting synchrotron emission.

The large size of our computational domain (with L = 40,000 cells) allows to achieve asymptotically-converged results. We resolve the initial plasma skin depth dco = c/ωp0 = √mc2/4πn0e2 with 3 cells, and we employ 4 computational particles per cell. The simulation time step is controlled by the numerical speed of light of 0.45 cells per time step. Our earlier studies (Comisso & Sironi 2018, 2019) have demonstrated convergence with respect to these parameters.

We implement IC cooling as a Compton drag term in the particle equation of motion (e.g. Werner et al. 2019; Nättilä & Beloborodov 2020; Sironi & Beloborodov 2020; Zhdankin et al. 2020), assuming that the radiation is isotropic in the simulation frame and that Compton scattering happens in the Thomson regime. We parameterize the strength of IC cooling by defining the Lorentz factor γrec at which IC losses would prohibit further acceleration by the reconnection electric field Erec = ηrecδB/Bo (ηrec ∼ 0.1), i.e. Erec = 4σTrecγ2rec/3. We choose a reference value of γrec = 80, which is larger than the mean Lorentz factor γ ∼ 40 at which particles are accelerated by reconnection. The Lorentz factor of the cooled particles may be written as γcool ∼ max[1, (γ2rec/ηrecδB/Bo)(dco/σTrec)].

Our simulations maintain the correct ordering of the relevant timescales (tscat < tcool < tcat ∼ tdyn), as it is expected for blazar conditions (see Section 2.1). However, reproducing the correct separation between these timescales would require an impossibly large simulation box. Then our numerical results demonstrate that IC emission may have a negligible synchrotron counterpart as an effect of small pitch angles, but are not meant to reproduce the exact properties (e.g., peak frequency and luminosity) of blazar flares.

3.2 Results

In our simulations, turbulence develops from the initial unbalanced state, and the magnetic energy decays over time since we do not impose any continuous external driving. As shown in Figure 6 (top panel), the turbulent cascade leads to the formation of intense current layers. Several layers become prone to fast magnetic reconnection due to the plasmoid instability (e.g. Comisso et al. 2016; Uzdensky & Loureiro 2016). Magnetic reconnection plays a crucial role in extracting particles from the thermal pool and injecting them into the acceleration process (e.g. Comisso & Sironi 2018, 2019). In the absence of cooling, particles energized by reconnection would be accelerated to even higher energies by scattering off the turbulent fluctuations. However, the rate of stochastic acceleration is slower than the IC cooling rate, so particle acceleration to γ > γ0 is inhibited. Rather, at any given time the highest en-
energy particles in the simulation are still experiencing significant reconnection-powered acceleration. In fact, the locations of high-energy particles (see the mean kinetic energy per particle in the bottom panel of Figure 1) are well correlated with reconnection layers (compare top and bottom panels).

In Figure 2(a), we show the time evolution of the particle spectrum $dN/d\log(\gamma)$ at $t=1$. As a result of field dissipation, the spectrum shifts to energies much larger than the initial thermal energy. At late times the spectral peak is at $\gamma \sim 2$, and it is populated by cooled particles (in fact, $\gamma_{\text{cool}} \sim 1$ for our simulation). The maximum energy of the spectrum (at $\gamma \gtrsim 16$, beyond the vertical dashed line) builds up at early times, reaches the highest normalization at $5 \lesssim ct/l \lesssim 10$, and is depleted at later times. The depletion at late times is due to the fact that in our simulation the magnetic energy decays over time (Figure 2b), so turbulence-induced reconnection progressively becomes less efficient. The resulting decrease in magnetization is associated with an analogous drop in the high-energy spectral cutoff of the Lorentz factor of reconnection-accelerated particles, whose Lorentz factor is $\gamma \sim \sigma_0/4 = 40$, as seen in Figure 2(a).

In order to compare the IC and synchrotron lightcurves, we only consider particles with Lorentz factors $\gamma \gtrsim 16 = \sigma_0/10$ (i.e., to the right of the vertical dashed line in Figure 2a), which dominate the emission. For each particle, we compute the IC power as $P_{\text{IC}} \propto \gamma^2 U_{\text{rad}}$, whereas the synchrotron power is $P_{\text{sync}} \propto \gamma^4 U_B \sin^2 \theta_{\text{d}}$. For the particle, the Lorentz factor γ, the magnetic energy density U_B and the pitch angle θ_{d} are all computed in the local $E \times B$ frame (i.e., the frame moving with the local $E \times B$ speed). The resulting lightcurves are presented in Figure 2c), assuming equipartition of the magnetic field in the simulation frame at the initial time (i.e., $U_{\text{rad}} = U_0 = B_0^2/8\pi$; note that the magnetic energy is dominated by the mean field for our reference case with $\delta B_{\text{rms}}/B_0 = 0.5$). Both lightcurves peak at $ct/l \sim 7$, and display significant emission in the time interval $5 \lesssim ct/l \lesssim 10$. However, as indicated in the legend, the synchrotron emission (black line) is suppressed by three orders of magnitude, as compared to the IC emission (red curve). This follows from the small pitch angles of particles accelerated by reconnection. In fact, given that we assume $U_{\text{rad}} = U_0$, the ratio of synchrotron to IC emission is expected to be approximately equal to the mean value of $\sin^2 \theta_{\text{d}}$, which we indeed measure to be $\sim 10^{-3}$. In summary, the small pitch angle of reconnection-accelerated particles is responsible for a significant suppression of the synchrotron luminosity.

In Figure 3 we present the dependence of the IC (solid) and synchrotron (dashed) lightcurves on the level of turbulent fluctuations $\delta B_{\text{rms}}/B_0$, by comparing our reference case $\delta B_{\text{rms}}/B_0 = 0.5$ (red) with two cases with stronger fluctuations: $\delta B_{\text{rms}}/B_0 = 1$ (green) and $\delta B_{\text{rms}}/B_0 = 2$ (blue). All curves are normalized to the peak IC luminosity of our reference case and they assume $U_{\text{rad}} = U_0$. The figure shows that the ratio of IC to synchrotron luminosity is a strong function of $\delta B_{\text{rms}}/B_0$. For larger fluctuations, the particles accelerated by reconnection have larger pitch angles (as also found in the uncooled simulations of Comisso et al. 2021), and so they are more efficient synchrotron emitters. In fact, the synchrotron luminosity increases by nearly two orders of magnitude from $\delta B_{\text{rms}}/B_0 = 0.5$ to $\delta B_{\text{rms}}/B_0 = 1$, whereas the IC luminosity is nearly unchanged. The modest increase in IC luminosity with $\delta B_{\text{rms}}/B_0$ is in agreement with results of uncooled simulations, where higher $\delta B_{\text{rms}}/B_0$ yielded harder particle spectra, and so more efficient particle acceleration to high energies (e.g., Comisso & Sironi 2018).

We have checked that the anisotropy and energy spectrum of high-energy particles are independent of the box size if σ_0 and $\gamma_{\text{cool}}(d_0/l)$ are kept constant. Since also $\gamma_{\text{cool}} \lesssim \max(1, [\gamma_{\text{e}}/(\tilde{\eta}_{\text{rec}}\sqrt{\gamma_0})](d_0/c_\text{ph}))$ remains constant, our results are applicable to asymptotically large astrophysical systems in the fast cooling regime.

4 CONCLUSIONS

In this work, we show that orphan gamma-ray flares can be a self-consistent by-product of the particle acceleration physics in magnetically-dominated pair plasmas. We mostly focus on orphan GeV flares from Flat Spectrum Radio Quasars. Particles energized by the decaying turbulence cool down on a dynamical time by IC scattering an external photon field (e.g. the photons emitted by the Broad Line Region), thus producing the gamma-ray flare. The flare has a faint low-energy counterpart since the particles are accelerated nearly along the local magnetic field, and then the synchrotron emission is suppressed.

Even though our numerical results are based on simulations of magnetically-dominated plasma turbulence, we argue that our conclusions hold more generally, for any system where particle injection is governed by reconnection in the strong guide field regime, and where fast cooling prevents further particle energization. This may happen in the non-linear stages of, e.g., the kink instability (Davelaar et al. 2021) and the Kelvin-Helmholtz instability (Sironi et al. 2020).

The majority of blazar gamma-ray flares have a luminous low-energy counterpart. Our results show that the ratio of inverse Compton to synchrotron luminosity may be regulated by the initial strength of the turbulent fluctuations (the anisotropy of the accelerated particles is weaker for a larger degree of fluctuations, and the synchrotron luminosity increases). A complementary possibility, yet to be tested with PIC simulations, is that kinetic instabilities reduce the anisotropy if the rest mass energy density of the plasma is dominated by the ions (Sobacchi & Lyubarsky 2019).

Our numerical results rely on 2D simulations. Our previous studies have demonstrated that the particle energy distribution and anisotropy are nearly the same between 2D and 3D for uncooled systems (Comisso & Sironi 2018, 2019, Comisso et al. 2020).
vestigating 3D effects in fast cooling systems is a worthwhile direction for future investigation.

ACKNOWLEDGEMENTS

We thank the anonymous referee for constructive comments and suggestions that improved the paper. We are grateful to Luca Comisso for insightful discussions. LS acknowledges support from the Sloan Fellowship, the Cottrell Scholar Award, DoE DE-SC0021254, NASA ATP 80NSSC18K1104, and NSF PHY-1903412. The simulations have been performed at Columbia (Habanero and Terremoto), and with NERSC (Cori) and NASA (Pleiades) resources.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433
Blazéjowski M. et al., 2005, ApJ, 630, 130
Böttcher M., 2019, Galaxies, 7, 20
Böttcher M., Baring M. G., 2019, ApJ, 887, 133
Buneman O., 1993, in “Computer Space Plasma Physics”, Terra Scientific, Tokyo, 67
Christie I. M., Petropoulou M., Sironi L., Giannios D., 2019, MNRAS, 482, 65
Comisso L., Lingam M., Huang Y.-M., Bhattacharjee A., 2016, Physics of Plasmas, 23, 100702
Comisso L., Sironi L., 2018, Physical Review Letters, 121, 255101
Comisso L., Sironi L., 2019, ApJ, 886, 122
Comisso L., Sobacchi E., Sironi L., 2020, ApJ, 895, L40
Davelaar J., Philippov A. A., Bromberg O., Singh C. B., 2020, ApJ, 896, L31
Dondi L., Ghisellini G., 1995, MNRAS, 273, 583
Ghisellini G., Tavecchio F., 2009, MNRAS, 397, 985
Giannios D., 2013, MNRAS, 431, 355
Giannios D., Uzdensky D. A., Begelman M. C., 2009, MNRAS, 395, L29
Hayashida M. et al., 2015, ApJ, 807, 79
Komissarov S. S., Barkov M. V., Vlahakis N., Königl A., 2007, MNRAS, 380, 51
Krawczynski H. et al., 2004, ApJ, 601, 151
Kusunose M., Takahara F., 2006, ApJ, 651, 113
Lewis T. R., Finke J. D., Becker P. A., 2019, ApJ, 884, 116
MacDonald N. R., Jorstad S. G., Marscher A. P., 2017, ApJ, 850, 87
MacDonald N. R., Marscher A. P., Jorstad S. G., Joshi M., 2015, ApJ, 804, 111
Maraschi L., Ghisellini G., Celotti A., 1992, ApJ, 397, L5
Nättilä J., 2019, arXiv e-prints, arXiv:1906.06306
Nättilä J., Beloborodov A. M., 2020, arXiv e-prints, arXiv:2012.03043
Nemmen R. S., Georganopoulos M., Guiriec S., Meyer E. T., Gehrels N., Sambruna R. M., 2012, Science, 338, 1445
Patel S. R., Bose D., Gupta N., Zuberi M., 2020, arXiv e-prints, arXiv:2012.10291
Petropoulou M., Giannios D., Sironi L., 2016, MNRAS, 462, 3325
Sikora M., Begelman M. C., Rees M. J., 1994, ApJ, 421, 153
Sikora M., Stawarz L., Moderksi R., Nalewajko K., Madejski G. M., 2009, ApJ, 704, 38
Sironi L., Beloborodov A. M., 2020, ApJ, 899, 52
Sironi L., Rowan M. E., Narayan R., 2020, arXiv e-prints, arXiv:2009.11877
Sobacchi E., Lyubarsky Y. E., 2019, MNRAS, 484, 1192
Sobacchi E., Lyubarsky Y. E., 2020, MNRAS, 491, 3900
Spitkovsky A., 2005, in AIP Conf. Ser., Vol. 801, Astrophysical Sources of High Energy Particles and Radiation, T. Bulik, B. Rudak, & G. Madejski, ed., p. 345
Tavani M., Vittorini V., Cavaliere A., 2015, ApJ, 814, 51
Tchekhovskoy A., Narayan R., McKinney J. C., 2011, MNRAS, 418, L79
Uzdensky D. A., Loureiro N. F., 2016, Physical Review Letters, 116, 105003
Weidinger M., Spanier F., 2015, A&A, 573, A7
Werner G. R., Philippov A. A., Uzdensky D. A., 2019, MNRAS, 482, L60
Wong K., Zhdankin V., Uzdensky D. A., Werner G. R., Begelman M. C., 2020, ApJ, 893, L7
Zhdankin V., Uzdensky D. A., Werner G. R., Begelman M. C., 2018, ApJ, 867, L18
Zhdankin V., Uzdensky D. A., Werner G. R., Begelman M. C., 2020, MNRAS, 493, 603
Zhdankin V., Werner G. R., Uzdensky D. A., Begelman M. C., 2017, Physical Review Letters, 118, 055103