SHARP DE RHAM REALIZATION
LUCA BARBIERI-VIALE AND ALESSANDRA BERTAPELLE

Abstract. We introduce the sharp (universal) extension of a 1-motive (with additive factors and torsion) over a field of characteristic zero. We define the sharp de Rham realization $T_\#$ by passing to the Lie-algebra. Over the complex numbers we then show a (sharp de Rham) comparison theorem in the category of formal Hodge structures. For a free 1-motive along with its Cartier dual we get a canonical connection on their sharp extensions yielding a perfect pairing on sharp realizations. We thus provide one-dimensional sharp de Rham cohomology $H^1_\#_{\text{dR}}$ of algebraic varieties.

Introduction

Grothendieck’s idea of \natural-extensions has been largely employed and exploited to various extents. In Deligne’s construction (see [8], 10.1.7, cf. [13]) for any Deligne 1-motive M over a field k, one obtains a universal \mathbb{G}_a-extension M^\natural of M by the vector group $\text{Ext}(M, \mathbb{G}_a)^\vee$. This M^\natural is a complex of k-group schemes which is no more a Deligne 1-motive. Passing to Lie algebras Deligne defined in loc. cit. the de Rham realization T_dR according with Grothendieck’s description of one-dimensional de Rham cohomology of abelian varieties in characteristic zero and crystalline cohomology in positive characteristics. Actually, pushing these techniques much further, we can describe H^1_{dR} of any (arbitrarily singular) algebraic scheme, as well as the (de Jong) H^1_{cris} in positive characteristics, by means of universal \mathbb{G}_a-extensions of certain Picard 1-motives (and more, e.g., see [1] for the full picture).

0.1. Results. We here deal with a sharp \mathbb{G}_a-extension, based on the named universal \mathbb{G}_a-extension but including \mathbb{G}_a-factors, i.e., for Laumon 1-motives, and we show a “new H^1” out of it. We actually work in the abelian category \mathcal{M}_1^a of 1-motives with torsion and additive factors, containing the category of Laumon 1-motives $\mathcal{M}_1^{a,\text{fr}}$ as the Quillen exact subcategory of free objects (see §1 below for the definition, cf. [13], §5 and [4], §1).

Firstly, we get the sharp \mathbb{G}_a-extension $M^\natural = [F \xrightarrow{u} G]$ of a (effective Laumon) k-1-motive $M = [F \xrightarrow{u} G]$, over a field k of characteristic zero, roughly as follows. We show that (see 2.1.7 and 2.2.7 below) as soon as $\text{Hom}(M, \mathbb{G}_a) = 0$ the universal \mathbb{G}_a-extension M^\natural exists. Denote by M_\times the quotient of M by the (maximal) \mathbb{G}_a-factor $V(G)$, cf. (2.1.2). The universal \mathbb{G}_a-extension $M_\times^\natural = [F \to G_\times^\natural]$ of M_\times exists, see 2.2.3 and we have that if M admits a universal \mathbb{G}_a-extension then $M^\natural = M_\times^\natural$. Note that, if M is free and $M^* = [F' \to G']$ is the Cartier
dual, then the Lie algebra $\text{Lie} F^0$ of the connected formal group is dual to the underlying k-vector space $V(G)$. Moreover, if M admits a universal extension then $M^\sharp = M^\sharp_\times$ is the Cartier dual of $[F'_{\text{et}} \times \widehat{G'} \to G']$ where F'_{et} denotes the étale quotient and $\widehat{G'}$ the formal completion at the origin, see §22.10. Thus set M^\sharp to be the Cartier dual of $M^* := [F' \times \widehat{G} \to G']$ and obtain M^\sharp as an extension of M by $\text{Ext}(M_\times, G_a)^\vee$, see (3.1.3): this M^\sharp is just the pull-back of M^\sharp_\times along $M \to M_\times$ (see (4) for details).

Secondly via M^\sharp we obtain T^\sharp_0 passing to the Lie algebra, i.e., see §3.2 define the sharp de Rham realization $T^\sharp_0(M) := \text{Lie}(G^\sharp)$ in such a way that T^\sharp_1 can be extended to an exact functor from the abelian category M^\sharp_1 to filtered k-vector spaces. We also show that T^\sharp_0 is compatible with Cartier duality, see §5. In fact, for M free with Cartier dual M' and $P \in \text{Biext}(M, M^*; G_m)$ the Poincaré biextension, we get a canonical connection ∇^\sharp on the pull-back $P^\sharp \in \text{Biext}(M^*, M'^*; G_m)$ of P yielding a perfect pairing $T^\sharp_0(M) \otimes T^\sharp_0(M^*) \to k$, see §3.3.5. Over $k = \mathbb{C}$ we then show a (de Rham) comparison theorem, see 4.4.8, saying that $T^\sharp_0(M)$ is the underlying \mathbb{C}-vector space of a formal Hodge structure associated to the z-extension, i.e., we provide a general formula $T^\sharp_0(M^\sharp) \cong T^\sharp_0(M)^\sharp$, by making the sharp construction working in the category of formal Hodge structures FHS_1 and applying a suitable Hodge realization T^\sharp_0 (see §4 below and cf. [2]).

Thirdly and finally, see §6, the resulting H^1’s of an algebraic k-scheme X can be visualized via a Laumon 1-motive $\text{Pic}_a^+(X)$ and, dually, the H^1’s by its Cartier dual $\text{Alb}_a^-(X)$, see [14] for details. For $k = \mathbb{C}$ we get the $H^1_{\text{z-sing}}(X) := T^\sharp_0(\text{Pic}_a^+(X))$. For k of characteristic zero we now can set $H^1_{\text{z-dR}}(X) := T^\sharp_0(\text{Pic}_a^+(X))$. Note that here we have set $\text{Pic}_a^+(X) := [0 \to \text{Pic}^0(X)]$ for X proper over k. If X is not proper, say smooth for simplicity, $\text{Pic}_a^+(X)$ is given by $[F \to \text{Pic}^0(X)]$ where X is a suitable compactification, $X = \overline{X} - Y$, the étale part F_{et} of the formal group F is given by algebraically equivalent to zero divisors on \overline{X} supported on Y and F^0 has Lie algebra $H^1_G(\overline{X}, \mathcal{O}_{\overline{X}})$ modulo the image of $H^0(X, \mathcal{O}_X)$: note that the Cartier dual $\text{Alb}_a^-(X)$ is the maximal Faltings-Wüstholz [9] additive extension of the Serre’s Albanese semi-abelian variety of X. Over $k = \mathbb{C}$, in §6.2 we also link $H^1_{\text{z-dR}}(X)$ to the enriched Hodge structures of Bloch and Srinivas [7].

0.2. Perspectives. First of all we expect that a similar construction holds in positive characteristics providing a T^\sharp_0 and $H^1_{\text{z-crys}}(X) := T^\sharp_0(\text{Pic}_a^+(X))$ will be the sharp crystalline cohomology. For $k = \mathbb{C}$, the general plan is to associate to an algebraic \mathbb{C}-scheme X a formal Hodge structure called “sharp” singular cohomology $H^*_\text{z-sing}(X)$ which contains, in the underlying algebraic structure, a formal group which is an extension of ordinary singular cohomology, i.e., $H^*_{\text{z-sing}}(X)_{\text{et}} = H^*(X_{\text{an}}, \mathbb{Z})$. There will be “sharp” versions of de Rham and crystalline as well as comparison theorems between them. Moreover, the largest 1-motivic part of $H^1_{\text{z-crys}}(X)$, $H^1_{\text{z-dR}}(X)$, etc. should be exactly that obtained by applying T^\sharp_0, T^\sharp_1, etc. to an algebraically defined (effective Laumon) 1-motive.
Pic\(^+_i\)(X, i) for i ≥ 0 (generalizing Deligne’s conjectures to 1-motives with additive factors, cf. [11]). The main goal of this paper is the first step in drawing such a picture for \(H^1\)'s of these forthcoming “sharp” cohomologies in zero characteristic.

0.3. Notations. \(k\) is a field of characteristic 0 and \(\overline{k}\) is an algebraic closure. \(\text{Aff}/k\) is the category of affine \(k\)-schemes endowed with the fppf topology. \(\text{Ab}/k\) is the category of sheaves of abelian groups on \(\text{Aff}/k\). Given a free \(k\)-module \(E\) we denote by \(E^\vee\) the dual \(\text{Hom}(E, k)\). For a \(k\)-vector group \(V\) we sometimes denote by \(V\) also its Lie algebra. Given an algebraic \(k\)-group \(G\) we denote by \(\omega_G\) the \(k\)-module of invariant differentials on \(G\) and by \(\omega_{G}^*\) the associated sheaf as well as the associated \(k\)-vector group. \(\hat{G}\) will denote the formal completion at the origin of \(G\) and \(ι: \hat{G} \hookrightarrow G\) the inclusion. Given a formal \(k\)-group \(F\) we denote by \(F^*\) its Cartier dual.

1. LAUMON 1-MOTIVES

1.1. Free 1-motives. Recall that a Laumon \(k\)-1-motive or a free \(k\)-1-motive \(M = [u: F \to G]\) is a two terms complex (in degree -1, 0) where \(F\) is a formal \(k\)-group without torsion, \(G\) is a connected algebraic \(k\)-group and \(u\) is a morphism in \(\text{Ab}/k\) (cf. [13], 5.1.1). It is known that any formal \(k\)-group \(F\) splits canonically as product \(F^0 × F_\text{ét}\) where \(F^0\) is the identity component of \(F\) and is a connected formal \(k\)-group, and \(F_\text{ét} = F/F^0\) is étale. Moreover, \(F_\text{ét}\) admits a maximal subgroup scheme \(F_\text{tor},\) étale and finite, such that the quotient \(F_\text{ét}/F_\text{tor} = F_\text{fr}\) is constant of the type \(\mathbb{Z}'\) over \(\overline{k}\). One says that \(F\) is without torsion if \(F_\text{tor} = 0\). The group \(G\) is extension of an abelian variety \(A\) by a linear \(k\)-group \(L\) that is product of its maximal torus \(T\) with a vector \(k\)-group \(V(G)\).

Morphisms of Laumon \(k\)-1-motives are morphisms as complexes. We will denote by \(\mathcal{M}^{\text{a,fr}}_1\) the category of Laumon \(k\)-1-motives.

1.1.1. Proposition. The canonical functor \(\mathcal{M}^{\text{a,fr}}_1 \to D^b(\text{Ab}/k)\) is a full embedding into the derived category of bounded complexes of sheaves for the fppf topology on \(\text{Aff}/k\).

Proof. The proof of this fact for Deligne 1-motives in [16], 2.3.1, works also for Laumon 1-motives. Indeed the vanishings \(\text{Hom}(G, F) = 0 = \text{Ext}_{\text{Ab}/k}(G, F)\) still hold because of [A.4.4] & [A.4.55].

1.2. Cartier duality. We recall here the definition of the Cartier dual of a free 1-motive \(M = [u: F \to G]\). See also [13], 5.2.2. Denote by \(M_A := M/L\) the 1-motive \([\overline{u}: F \to A]\) induced by \(M\) via the projection \(G \twoheadrightarrow A\). The Cartier dual of \(M\) is the 1-motive \(M^* := [u': F' \to G']\) where

- \(F'\) is the formal \(k\)-group Cartier dual of the affine algebraic \(k\)-group \(L\).
- \(G'\) is the algebraic \(k\)-group that represents the sheaf on \(\text{Ab}/k\)

\[\text{Ext}(M_A, \mathbb{G}_m) : S \rightsquigarrow \text{Ext}_{C^{(-1, 0)}(\text{Ab}/k)}(M_A, \mathbb{G}_m) = \text{Hom}_{D^b(\text{Ab}/k)}(M_A, \mathbb{G}_m[1])\]
• \(u' : \text{Hom}(L, \mathbb{G}_m) \to \text{Ext}(M_A, \mathbb{G}_m) \) is the push-out morphism for the sequence

\[
0 \to L \to M \to M_A \to 0.
\]

We spend some words on the representability of \(\text{Ext}(M_A, \mathbb{G}_m) \). Consider the sequence of Ext sheaves associated to

\[
0 \to A \to M_A \to F[1] \to 0.
\]

It provides

\[
0 \to \text{Hom}(F, \mathbb{G}_m) \to \text{Ext}(M_A, \mathbb{G}_m) \to A' \rho \to \text{Ext}(F, \mathbb{G}_m)
\]

where \(A' = \text{Ext}(A, \mathbb{G}_m) \) is the dual abelian variety of \(A \). From Lemma A.4.6 \(\rho = 0 \), the sheaf \(\text{Ext}(M_A, \mathbb{G}_m) \) is extension of \(A' \) by an affine algebraic \(k \)-group and hence representable by an algebraic \(k \)-group.

1.3. Exact sequences.

We will say that a sequence of two terms complexes of fppf-sheaves, e.g., of free \(k \)-1-motives

\[
0 \to M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \to 0
\]

is strongly exact if it is exact as sequence of complexes, i.e., for \(k \)-1-motives, if the sequence of algebraic \(k \)-groups

\[
0 \to G_1 \xrightarrow{f_1} G_2 \xrightarrow{g_2} G_3 \to 0
\]

is exact as well as the sequence of formal \(k \)-groups

\[
0 \to F_1 \to F_2 \to F_3 \to 0.
\]

One can check that Cartier duality does not preserve in general strongly exact sequences. This is pointed out in \cite{3} for Deligne 1-motives. For example, consider a non-trivial \(l \)-torsion point \(a \) of an abelian variety \(A \) for \(l \) a prime number. It corresponds to a \(\mathbb{G}_m \)-extension \(G' \) of \(A' \). Moreover \(G' \) is also extension

\[
0 \to B' \to G' \xrightarrow{g} \mathbb{G}_m \to 0
\]

where \(B' \) is an abelian variety isogenous to \(A' \) and the composition of \(g \) with the inclusion \(\mathbb{G}_m \to G' \) is the \(l \)-multiplication. It is immediate to see that the dual sequence of (1.3.2) is not strongly exact (cf. \cite{3}, §1.8).

1.3.3. Proposition.

Let \(0 \to M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \to 0 \) be a strongly exact sequence of free \(k \)-1-motives. Are equivalent:

\begin{enumerate}
 \item[i)] the dual sequence is strongly exact;
 \item[ii)] the complex \(\eta_L : 0 \to L_1 \xrightarrow{f_1} L_2 \xrightarrow{g_2} L_3 \to 0 \) is exact;
 \item[iii)] the complex \(\eta_A : 0 \to A_1 \xrightarrow{f_4} A_2 \xrightarrow{g_4} A_3 \to 0 \) is exact.
\end{enumerate}

Proof. Expand (1.3.1) writing a diagram having the \(0 \to L_i \to G_i \to A_i \to 0 \) as vertical sequences. The exactness of \(\eta_L \), (resp. \(\eta_A \)) may fail only at \(L_2 \) (resp. at \(A_1 \)). Indeed the cokernel of \(g_L \) is a linear \(k \)-group. It is trivial, because quotient of the kernel of \(g_A \). This implies also the exactness of \(\eta_A \) at \(A_2 \). Now, it is immediate to check that the exactness of \(\eta_L \) at \(L_2 \) is equivalent to the exactness of \(\eta_A \) at \(A_1 \). Hence ii) \(\iff \) iii). Furthermore i) \(\iff \) ii) because the dual sequence

\footnote{This is the definition of exact sequences in \cite{13}.}
of η_L is the sequence of formal groups. Conversely, $iii)$ implies that the induced complex $0 \to M_{A_1} \to M_{A_2} \to M_{A_3} \to 0$ is strongly exact and hence, passing to duals, we get an exact sequence of algebraic k-groups $0 \to G'_1 \to G'_2 \to G'_3 \to 0$; the complex of formal k-groups F'_i is exact because of ii).

1.3.4. Remark. If M_1 is a linear k-group or if $G_3 = 0$, the dual sequence is always strongly exact.

1.4. 1-motives with torsion. The previous section motivates the introduction of 1-motives with torsion as done in [4] for Deligne 1-motives.

1.4.1. Definition. An effective (Laumon) k-1-motive M is a two terms complex (in degree $-1,0$) $[u: F \to G]$ where F is a formal k-group, G is a connected algebraic k-group and u is a morphism in Ab/k. An effective morphism

$$f = (f_F, f_G): [F_1 \xrightarrow{u_1} G_1] \to [F_2 \xrightarrow{u_2} G_2]$$

is a morphism of complexes. The corresponding category is denoted by $\mathcal{M}^{a,\text{eff}}$. An effective 1-motive M is said to be étale (resp. connected, resp. special) if $F^0 = 0 = V(G)$ (resp. $F = F^0$ and $A = 0 = T$, resp. F^0 maps to $V(G)$ via u). Étale (resp. connected, resp. special) 1-motives are regarded as a full subcategory of $\mathcal{M}^{a,\text{eff}}$.

Note that since the base field k is assumed of zero characteristic we always have that $F_{\text{tor}} \times_G V(G) = 0$. In particular, if u is an isomorphism then $M = 0$.

Further, an effective map f is a quasi-isomorphism, i.e., $\text{Ker}(u_1) \cong \text{Ker}(u_2)$ and $\text{Coker}(u_1) \cong \text{Coker}(u_2)$, if and only if f_G is an isogeny and $F_1 \cong G_1 \times_{G_2} F_2$; see [4] for the more classical étale case. Note that, since char$(k) = 0$, we have that the isogeny $f_G : G_1 \to G_2$ is given by pulling back isogenies between their semi-abelian quotients; in fact, it is an isomorphism when restricted to the vector groups $V(G_1) \xrightarrow{\sim} V(G_2)$.

For an effective 1-motive M let

$$F_{\text{tor}} \cap \text{Ker}(u) := F_{\text{tor}} \times_F \text{Ker}(u) \quad \text{and} \quad u(F_{\text{tor}}) := F_{\text{tor}}/F_{\text{tor}} \cap \text{Ker}(u) \subseteq G.$$

We denote

- $M_{\text{tor}} := [F_{\text{tor}} \cap \text{Ker}(u) \to 0]$, the torsion part of M;
- $M_{\text{fr}} := [F/F_{\text{tor}} \to G/u(F_{\text{tor}})]$, the free part of M;
- $M_{\text{tf}} := [F/F_{\text{tor}} \cap \text{Ker}(u) \to G]$ the torsion free part.

Note that all these operations leave untouched F^0 and $V(G)$. One says that M is torsion free if $M_{\text{tor}} = 0$; this does not imply that F is torsion free! Note that $M \to M_{\text{fr}}$ factors as

$$M \xrightarrow{\psi} M_{\text{tf}} \xrightarrow{\phi} M_{\text{fr}}$$

where ϕ is a quasi-isomorphism and we always have a strongly exact sequence

$$0 \to M_{\text{tor}} \to M \xrightarrow{\psi} M_{\text{tf}} \to 0$$
where ψ is a strict epi-morphism. Recall that here, similarly to \cite{4}, §1, we say that an effective morphism f is strict if f_G has connected kernel.

1.4.2. **Lemma** (cf. \cite{4}, Prop. 1.3). Let $f = (f_F, f_G) : M_1 \to M_2$ be an effective morphism. Then f can be factored as follows

\begin{equation}
\begin{array}{cccc}
M_1 & \xrightarrow{f} & M_2 \\
\text{tilde{f}} & \downarrow & \\
\tilde{M}_2
\end{array}
\end{equation}

where $\text{tilde{f}}$ is a strict morphism and $\tilde{M}_2 \to M_2$ is a quasi-isomorphism.

Proof. It follows from *loc. cit.* by pulling back the corresponding isogeny of the semi-abelian scheme quotients. \hfill \Box

Furthermore the class of quasi-isomorphisms admits calculus of right fractions (cf. \cite{4}, Prop. 1.2, and \cite{3}, Appendix C). Define morphisms of 1-motives by inverting quasi-isomorphisms from the right, i.e., a morphism is represented by fg^{-1} where f is effective and g is a quasi-isomorphism.

1.4.4. **Definition.** Denote by M^a_1 (resp. M^s_1) the category of 1-motives with torsion obtained localizing the category of effective Laumon (resp. special) 1-motives at the multiplicative class of quasi-isomorphisms.

1.4.5. **Proposition.** M^a_1 is an abelian category. $M^{a,fr}_1 \subset M^a_1$ is a Quillen exact sub-category such that $M \hookrightarrow M_{fr}$ is a left-adjoint to the embedding.

Proof. Since \eqref{1.4.3} is granted the proof is similar to \cite{4}, §1, and the more detailed Appendix C in \cite{3}. \hfill \Box

Note that $M^{a,fr}_1 \subset M^a_1$ is providing $M^{a,fr}_1$ of an exact structure in such a way that the dual of \eqref{1.3.2} is exact. More generally, Cartier duality is exact but we won’t make use of this fact so that we omit the proof. (One reduces itself easily to the étale case and cf. \cite{4}, §1.8.)

In the following we denote by M_1 the category of étale 1-motives with torsion regarded as a full abelian sub-category of M^a_1 (remark that being étale is preserved by quasi-isomorphisms). Deligne 1-motives M^{fr}_1 are free étale 1-motives. Similarly $M^s_1 \subset M^a_1$ is the full abelian sub-category of 1-motives with torsion that are special.

1.5. **Linearized 1-motives.** For the sake of exposition we introduce a category M^{eff}_1 which is equivalent to M^s_1 but where connected formal groups are replaced by k-vector spaces, since $\text{char}(k) = 0$.

1.5.1. **Definition.** Let M^{eff}_1 be the category whose objects are pairs $(u_\text{et} : F_\text{et} \to G, u_a : F_a \to \text{Lie}(G))$ with G a connected algebraic k-group, F_et an étale formal k-group, u_et a morphism in Ab/k and u_a a homomorphism of finite dimensional k-vector spaces. Effective morphisms are triples

$$(f_\text{et} : F_\text{et} \to F'_\text{et}, f : G \to G', f_a : F_a \to F'_a)$$
with \(f_\text{ét}, f \) morphisms in \(\text{Ab}/k \) and \(f_a \) a homomorphism of vector spaces such that the obvious squares commute. Let \(M_1^a \) be the category obtained by localizing from the right \(M_1^\text{ét,eff} \) at the multiplicative class of quasi-isomorphisms on the first component (and isomorphisms on the second).

1.5.2. **Proposition.** Let \([u: F \to G] \) be a 1-motive. The functor

\[M_1^a \to M_1^\text{ét}, \quad [u: F \to G] \mapsto (u_\text{ét}: F_\text{ét} \to G, u_a: \text{Lie}(F^0) \overset{\text{Lie}(u^0)}{\to} \text{Lie}(G)) \]

is an equivalence of categories.

Proof. Given a pair \((u_\text{ét}: F_\text{ét} \to G, u_a: F_a \to \text{Lie}(G))\) as above we get a connected formal \(k\)-group \(F^0\) as the formal completion at the origin of the vector group \(\text{Spec}(k[F_a^\vee])\). Moreover, as \(\hat{G}\) is isomorphic to the formal completion at the origin of \(\text{Spec}(k[\text{Lie}(G)^\vee])\) (cf. \[A3\]) the homomorphism \(u_a\) provides a morphism of formal \(k\)-groups \(F^0 \to \hat{G}\) and hence a morphism \(F^0 \to G\) in \(\text{Ab}/k\). □

The category \(M_1^\text{ét}\) is somewhat meaningful in order to construct objects in \(M_1^a\) from geometric invariants associated to algebraic schemes (see \[9\] and \[14\]).

2. **Universal extensions of 1-motives**

Let \(M = [u: F \to G]\) be an effective \(k\)-1-motive.

2.1. **Some notations.** For \(M = [F \overset{u}{\to} G]\) over \(k\) let \(V(G) \subseteq G\) be the maximal vector subgroup of \(G\) so that \(G\) can be represented as follows

\[0 \to V(G) \to G \to G_\times \to 0 \]

where \(G_\times\) is the semi-abelian quotient and \(V(G) \cong G^n_a\) for some \(n\). Denote \(u_\times\) the composition of \(u\) and the projection \(G \to G_\times\). Set

- \(M_\times := [u_\times : F \to G_\times]\)

in such a way that we have a short exact sequence of complexes

\[0 \to V(G)[0] \to M \to M_\times \to 0. \]

Moreover, recalling that \(F = F^0 \times_k F_\text{ét}\) canonically, we denote by \(u_\text{ét}\) the composition of \(F_\text{ét} \to F\) and \(u_\times\). Set

- \(M_\text{ét} := [u_\text{ét} : F_\text{ét} \to G_\times]\).

It is an étale 1-motive; if \(F_\text{ét}\) is free, \(M_\text{ét}\) is a Deligne 1-motive. We further get a functor \(M \rightsquigarrow M_\text{ét} : M_1^a \to M_1\), left inverse to the inclusion of étale 1-motives. We always have a strongly exact sequence

\[0 \to M_\text{ét} \to M_\times \to F^0[1] \to 0. \]

Given a connected algebraic \(k\)-group \(G\) denote \(\hat{G} := [\hat{G} \overset{i}{\to} G]\) the induced 1-motive. Set moreover

- \(\hat{M} := [\hat{u}: F \times \hat{G} \to G]\)
obtained as push-out of M with respect to $G \rightarrow \tilde{G}$. We also have the restriction of \tilde{M} to $V(\tilde{G})$, i.e., $[F \times V(\tilde{G}) \rightarrow G]$ which is also an extension of M_\times by $V(G)$. If M is special, we can further set $M^0 := [F^0 \rightarrow V(\tilde{G})]$, and then get
\begin{equation}
(2.1.4) \quad 0 \rightarrow M^0 \rightarrow M \rightarrow M_{\text{et}} \rightarrow 0
\end{equation}
so that $M \sim M_{\text{et}} : M_1^0 \rightarrow M_1$ is left adjoint to the inclusion $M_1 \hookrightarrow M_1^0$ (cf. [2 §2]).

2.1.5. **Definition.** Let M be an effective k-1-motive such that $\text{Hom}(M, W) = 0$ for any k-vector group W. We say that M admits a *universal G_a-extension* if it exists a k-vector group $V(M)$ and an extension M^2 of M by $V(M)$ such that the push-out homomorphism
\begin{equation}
(2.1.6) \quad \text{Hom}(V(M), W) \rightarrow \text{Ext}(M, W)
\end{equation}
is an isomorphism for any k-vector group W. It is immediate to check that $V(M)$ has to be then the vector group associated to $\text{Ext}(M, G_a)^\vee$.

Observe that thanks to A.4.1 & A.4.2 the notation $\text{Ext}(M, W)$ is not ambiguous.

2.1.7. **Remark.** Following [15], I, 1.7, one can see that M admits a universal extension M^\natural if and only if
\begin{itemize}
 \item[a)] $\text{Hom}(M, G_a) = 0$,
 \item[b)] $\text{Ext}(M, G_a)$ is a k-vector space of finite dimension.
\end{itemize}
If M^2 exists, then $\text{Hom}(M^2, G_a) = 0 = \text{Ext}(M^2, G_a)$ and $M^{2\natural} = M^\natural$.

2.1.8. **Examples.** We have the following paradigmatic cases:
\begin{itemize}
 \item G_a does not admit universal extension.
 \item $T^2 = T$ for any k-torus T.
 \item For any abelian variety A the universal extension A^2 exists (cf. [15]). As observed in [15], 5.2.5, A^2 is the Cartier dual of the 1-motive $\tilde{A} = [\tilde{A} \rightarrow A']$.
 \item Any Deligne 1-motive $M_{\text{et}} = [u_{\text{et}} : F_{\text{et}} \rightarrow G_\times] (F_{\text{et}}$ free) admits a universal G_a-extension $M_{\text{et}}^\natural = [u_{\text{et}}^\natural : F_{\text{et}} \rightarrow G_{\text{et}}^2]$ (see [3]).
\end{itemize}

2.2. **Existence results.** We start showing that we can reduce to work with free 1-motives.

2.2.1. **Proposition.** An effective 1-motive M admits universal extension if and only if M_{tf} does.

Proof. Set $K := F_{\text{tor}} \cap \ker(u)$ and consider the sequence
\begin{equation}
(2.2.2) \quad 0 \rightarrow K[1] = M_{\text{tor}} \rightarrow M \rightarrow M_{\text{tf}} \rightarrow 0.
\end{equation}
As $\text{Hom}(M_{\text{tor}}, G_a) = 0 = \text{Ext}(M_{\text{tor}}, G_a)$, conditions in [2.1.7] holds for M if and only if they hold for M_{tf}. Moreover, if $M_{\text{tf}} = [F/K \rightarrow G^2]$ is the universal extension of M_{tf}, the universal extension of M is $[F \rightarrow G^3]$ obtained via composition of v with the canonical $F \rightarrow F/K$. As M_{tf} and M_{tf} are quasi-isomorphic, conditions
in 2.1.7 hold for both or none of them. Moreover if the universal extensions M^\sharp_{tf} and M^\sharp_{fr} exist, they are quasi-isomorphic and M^\sharp_{tf} is obtained via pull-back of M^\sharp_{fr} along $M_{\text{tf}} \to M_{\text{fr}}$. □

We will see that for effective 1-motives, condition $a)$ in 2.1.7 implies condition $b)$. We start with the case $M = M_\times$.

2.2.3. Proposition. Let M be an effective 1-motive. The universal \mathbb{G}_a-extension

$$M^\sharp_\times = [u_\times : F \to G^\sharp_\times]$$

of M_\times exists.

Proof. By 2.2.1 we may suppose F torsion free. As G_\times is semi-abelian, M_\times satisfies condition $a)$ in 2.1.7; moreover, from (2.1.3), A.4.1 & A.4.6 we get

$$0 \to \text{Hom}(F^0, \mathbb{G}_a) \to \text{Ext}(M_\times, \mathbb{G}_a) \to \text{Ext}(M_{\text{et}}, \mathbb{G}_a) \to \text{Ext}(F^0, \mathbb{G}_a) = 0.$$

Now, M_{et} is a Deligne 1-motive and hence M_{et} satisfies condition $b)$ (cf. 2.1.8). As $\text{Hom}(F^0, \mathbb{G}_a)$ is a free k-module (cf. A.4.3) also M_\times satisfies condition $b)$ and we are done. □

As for Deligne 1-motives, we have the following description of $\text{Ext}(M_\times, \mathbb{G}_a)^\vee$ in terms of invariant differentials:

2.2.4. Lemma. Let $M^* = [u' : F' \to G']$ be the Cartier dual of M free. Then

$$(2.2.5) \quad \text{Ext}(M_\times, \mathbb{G}_a)^\vee = \text{Lie}(G')^\vee = \omega_{G'}.$$

Moreover, G^\sharp_\times is the push-out of A^2 with respect to the canonical homomorphism

$$\text{Ext}(A', \mathbb{G}_a)^\vee = \omega_{A'} \longrightarrow \omega_{G'} = \text{Ext}(M_\times, \mathbb{G}_a)^\vee = \text{Ext}(M_{A}, \mathbb{G}_a)^\vee.$$

Proof. The arguments in [3], 2.6, work also for the effective 1-motive M_\times. The second assertion can be checked as for Deligne 1-motives (cf. [3]). □

As M is extension of M_\times by the vector group $V(G)$, we may view M as the push-out of the universal extension M^\sharp_\times of M_\times with respect to a unique v_M:

$$(2.2.6) \quad \begin{array}{ccccccc}
0 & \longrightarrow & \text{Ext}(M_\times, \mathbb{G}_a)^\vee & \longrightarrow & M^\sharp_\times & \longrightarrow & M_\times & \longrightarrow & 0 \\
& & v_M \downarrow & & v^\sharp_M \downarrow & & || \downarrow & & || \downarrow \\
0 & \longrightarrow & V(G) & \longrightarrow & M & \longrightarrow & M_\times & \longrightarrow & 0
\end{array}$$

2.2.7. Proposition. Let $M = [u : F \to G]$ be an effective 1-motive. Are equivalent:

i) M admits a universal \mathbb{G}_a-extension,

ii) $\text{Hom}(M, \mathbb{G}_a) = 0$,

iii) v_M is surjective.

Moreover, if M admits a universal extension then $M^\sharp = M^\sharp_\times$.

Moreover and 2.2.3 we get that $\text{Ext}(M, \partial)$ coincides with the space. Hence M is injective and this last is equivalent to the surjectivity of v_M. Furthermore, ∂ coincides with the G_a-dual map v_M^\vee and hence we get the exact sequence

$$0 \to \text{Ext}(M, G_a)^\vee \to \text{Ext}(M_\times, G_a)^\vee \xrightarrow{\nu_M} V(G) \to 0.$$

Moreover $i \Rightarrow ii$ by definition.

Suppose now that v_M is surjective (an hence $\text{Hom}(M, G_a) = 0$). From (2.2.8) and (2.2.9) we get that $\text{Ext}(M, G_a)^\vee = \text{Ker}(v_M)$ is a finite-dimensional k-vector space. Hence M clearly satisfies condition $b)$ and it admits a universal extension.

For the last assertion, note that $\text{Ker}(v_M) = \text{Ker}(\nu_M^2)$ (cf. (2.2.6) and (2.2.8)); it is immediate to check that

$$0 \to \text{Ext}(M, G_a)^\vee \to M^\times_\times \xrightarrow{\nu_M^2} M \to 0$$

satisfies the universal property.

2.2.9. Examples. a) $\hat{G}_a := [\iota: \hat{G}_a \to G_a]$, with ι the inclusion, is the universal extension of $G_a[1]$. Note that the Cartier dual $\hat{G}_a[1]^* = G_a$ does not admit a universal extension. More generally, let F' be a connected formal k-group. The universal extension of $F[1]$ is the 1-motive $\text{Lie}(F') = [F \xrightarrow{\iota} \text{Lie}(F)]$. To show this fact, one uses

$$\text{Ext}(F[1], G_a)^\vee = \text{Hom}(F, G_a)^\vee = \text{Hom}(\text{Lie}(F), G_a)^\vee = \text{Lie}(F).$$

b) Let F be a torsion formal k-group. Then $F[1] = F[1]^2$.

By making use of Laumon 1-motives one can give an interpretation of universal extensions in terms of dual 1-motives.

2.2.10. Proposition. Let $M = [u: F \to G]$ be a free 1-motive and $M^* = [u': F' \to G']$ its Cartier dual. If M admits a universal extension $M^2 = [F \to G^2]$ then $M^2 = M^\times_\times$ is the Cartier dual of $[\iota: F_\text{et} \times \hat{G}' \to G']$ where

$$(u', \iota)(x, y) := u'(x) + \iota(y).$$

Proof. We have already seen that $M^2 = M^\times_\times$. Hence we may reduce to the case $M = M_\times$. We start with the case $M = M_A = [F \to A]$. Let

$$0 \to \omega_{G'} \to E \to M_A \to 0$$

be the Cartier dual of $\hat{G}' = [\hat{G}' \xrightarrow{\iota} G']$ (cf. (2.3.1)). Suppose given an extension N of M_A by a k-vector group W. The Cartier dual of N is an extension of $W^* = \text{Hom}(W, G_m)[1]$ by G' (cf. (2.3.3)), hence it corresponds to a morphism
h: Hom(W, G_m) → G'. As Hom(W, G_m) is a connected formal k-group, h factors through a unique morphism \(\tilde{h}: \text{Hom}(W, G_m) \to \hat{G}' \) and hence \(N \) is the push-out of \(E \) via the dual morphism \(h^*: \omega_{G'} \to W \). In particular, \(E \) is the universal \(\mathbb{G}_a \)-extension of \(M_A \).

In the case \(T \) is not trivial, \(M_x \) is extension of \(M_A \) by \(T \). Its universal extension is the pull-back of \(M^\natural_x \) along \(M_x \to M_A \). Hence the Cartier dual of \(M^\natural_x \) is the push-out of \(\hat{G}' \) along \(G' \to [u': F'_\text{ét} \to G'] = (M^\natural_x)^* \) and this last is the 1-motive \([\langle u', i \rangle: F'_\text{ét} \times \hat{G}' \to G']\). □

2.3. Exact sequences. It follows from 2.2.7 that given a strongly exact sequence of 1-motives

\[
0 \to M_1 \to M \to M_2 \to 0
\]

(2.3.1)

if \(M \) admits universal extension, then the same does \(M_2 \) while \(M_1 \) may not admit universal extension. For example, consider the sequence

\[
0 \to \mathbb{G}_a \to \hat{G}_a \to \mathbb{G}_a[1] \to 0.
\]

Moreover, we have:

2.3.2. Lemma. If \(M_1, M_2 \) admit universal extensions also \(M \) admits universal extension and

\[
0 \to M^\natural_1 \to M \to M^\natural_2 \to 0
\]

is strongly exact.

Proof. This fact follows immediately from 2.2.10 if the dual of (2.3.1) is still strongly exact. In the general case one has to check that given an isogeny of abelian varieties \(\varphi: A \to B \), a free formal \(k \)-group \(F \) and a morphism \(u: F \to A \), the universal extension of \([u: F \to A]\) is the pull-back via \(\varphi \) of the universal extension of \([\varphi \circ u: F \to B]\). □

2.3.3. Remark. In particular, the sequence 2.1.3 provides an exact sequence

\[
0 \to M^\natural_\text{ét} \to M^\natural_x \to \text{Lie}(F^0) \to 0.
\]

3. Sharp de Rham realization of 1-motives

3.1. Sharp (universal) extension. Proposition 2.2.10 shows that the universal extension, when it exists, forgets the contribution of the \(k \)-vector group \(V(G) \), i.e., of the connected formal group \(F^0 \) of the dual. We introduce then a more general object.

3.1.1. Definition. Let \(M = [F \xrightarrow{u} G] \) be a free 1-motive and \(M^* = [F' \xrightarrow{u'} G'] \) its Cartier dual. The sharp \(\mathbb{G}_a \)-extension \(M^\sharp := [u^*: F \to G'] \) of \(M \) is the Cartier dual of the 1-motive \(\tilde{M}^\sharp = [(u', i): F' \times \hat{G}' \to G'] \).
3.1.2. Lemma. The free 1-motive M^\sharp fits in the following pull-back diagram

\[
\begin{array}{cccccc}
0 & \to & (\hat{G}')^* = \text{Ext}(M_\times, G_a)^\vee & \to & M^\sharp & \to & M & \to & 0 \\
0 & \to & \text{Ext}(M_\times, G_a)^\vee & \to & M^\sharp_\times & \to & M_\times & \to & 0 \\
\end{array}
\]

Moreover, the homomorphism $v_M^\sharp: M^\sharp_\times \to M$ of (2.2.6) provides a splitting of the vertical sequence in the middle.

Proof. As \hat{M}^* fits in the following (strongly exact) sequence

\[
0 \to M^* \to \hat{M}^* \to \hat{G}'[1] \to 0,
\]

passing to duals, one gets the horizontal sequence in the middle of (3.1.3). The map $M^\sharp \to M^\sharp_\times$ is the dual of the canonical morphism $[F'_\text{ét} \times \hat{G}' \to G'] \to \hat{M}^*$. The last assertion is immediate. \hfill \Box

3.1.4. Lemma. The algebraic k-group G^\sharp fits in the following diagram

\[
\begin{array}{cccccc}
0 & \to & \text{Ext}([F'_\text{ét} \to A], G_a)^\vee = \omega_{A'} & \to & A^\sharp \times_A G & \to & G & \to & 0 \\
0 & \to & \text{Ext}(M_\times, G_a)^\vee = \omega_{G'} & \to & G^\sharp & \to & G & \to & 0 \\
\end{array}
\]

that generalizes the one in [5] for Deligne 1-motives.

Proof. By construction G^\sharp_\times is the push-out of A^\sharp with respect to $\omega_{A'} \to \omega_{G'}$ (see (2.2.4)) and G^\sharp is the pull-back via $G \to A$ of G^\sharp_\times. The previous diagram says that we can take first the pull-back and then the push-out. \hfill \Box

Lemma 3.1.2 provides an alternative definition of M^\sharp for free 1-motives that can be extended to effective 1-motives.

3.1.5. Definition. Let M be an effective 1-motive. Denote by $M^\sharp := [F \to G^\sharp]$ the pull-back of M^\sharp_\times along $M \to M_\times$ and call it sharp G_a-extension of M. In particular (3.1.3) holds.

By definition, $(M_\times)^\sharp = M^\sharp_\times$. However this equality does not hold for a general M that admits universal extension. For example, $\bar{G}_a^2 = G_a$ while $\bar{G}_a^2 = [\hat{G}_a \to G_a^2]$ with the diagonal embedding as morphism.
3.1.6. **Lemma.** The functor $(\)^\sharp: \mathcal{M}^a_1 \to \mathcal{M}^a_1$ is exact.

Proof. Suppose given a quasi-isomorphism $f: M_1 \to M_2$ of effective 1-motives. It induces a quasi-isomorphism $f_\times: M_1^\times \to M_2^\times$ and then a quasi-isomorphism $M_1^\sharp \to M_2^\sharp$. In particular, $f^\sharp: M_1^\sharp \to M_2^\sharp$ is a quasi-isomorphism. Any short exact sequence in \mathcal{M}^a_1 is isomorphic to a strongly exact sequence of effective 1-motives. Hence we may restrict to work with strongly exact sequences of effective 1-motives as in 2.3.1. Arguments used in the proof of 1.3.3 say that the complex of linear k-subgroups is exact (not necessarily strongly) and it is fixed by the $(\)^\sharp$ functor. Moreover

\[
0 \to M_{1,A_1} \to M_A \to M_{2,A_2} \to 0
\]

is exact. We are then reduced to see that $(\)^\sharp$ applied to (3.1.7) preserves exactness. Thanks to the horizontal sequence in the middle of (3.1.3), it is sufficient to check that

\[
0 \to \operatorname{Ext}(M_1,A_1,G_a)^\vee \to \operatorname{Ext}(M_A,G_a)^\vee \to \operatorname{Ext}(M_{2,A_2},G_a)^\vee \to 0
\]

is exact. Let B be the kernel of $A \to A_2$; it is an abelian variety isogenous to A_1. From A.4.2 and the isomorphism $\operatorname{Ext}([F_1 \to B], G_a) = \operatorname{Ext}(M_1,A_1,G_a)$, we get the result. \qed

3.2. **Sharp de Rham.** We now can set the following:

3.2.1. **Definition.** Let M be an effective 1-motive. Its **sharp de Rham realization** is

\[
T^\sharp(M) := \operatorname{Lie}(G^\sharp).
\]

Observe that $\operatorname{Lie}(G^\sharp)$ contains $V(G)$ and $\operatorname{Ext}(M_x,G_a)^\vee$ in such a way that $\operatorname{Ext}(M_{x},G_a)^\vee \subseteq \operatorname{Ext}(M_x,G_a)^\vee$ with quotient $\operatorname{Hom}(F^0,G_a)^\vee$ and we clearly have that $\operatorname{Ext}(M_x,G_a)^\vee \cap V(G) = 0$. The diagram of Lie algebras of (3.1.3) yields

0	0			
_	_			
_	_			
$V(G)$	$V(G)$			
_	_			
0	$\operatorname{Ext}(M_x,G_a)^\vee$	$\operatorname{Lie}(G^\sharp)$	$\operatorname{Lie}(G)$	0
_	_	_	_	_
_	_	_	_	_
0	$\operatorname{Ext}(M_x,G_a)^\vee$	$\operatorname{Lie}(G^\sharp_x)$	$\operatorname{Lie}(G_x)$	0
_	_	_	_	_
_	_	_	_	_
_	_	_	_	_
0	0	0	0	0

and provides for a free 1-motive M

\[
0 \to T_{dR}(M_{\text{et}}) \to T^\sharp(M)/V(G) \to \operatorname{Hom}(F^0,G_a)^\vee \to 0
\]
that is
\[0 \to T^\sharp_-(M_{\text{\acute{e}t}}) \to T^\sharp_-(M_X) \to T^\sharp_-(F^0[1]) \to 0. \]

Sharp de Rham realization is compatible with \((2.1.2) \) and \((2.1.3) \).

3.2.2. **Proposition.** The functor \(T^\sharp_\ast \) behaves well passing to localization on quasi-isomorphisms and it provides an exact functor from \(\mathcal{M}^\ast \) to the category of (filtered) \(k \)-vector spaces
\[T^\sharp_\ast : \mathcal{M}^\ast \to V_k. \]

Proof. We have already seen in \(3.1.6 \) that \((\)^\sharp \) is an exact functor. Moreover, any quasi-isomorphism \(M_1 \to M_2 \) induces an isomorphism \(\text{Lie}(G_1) \to \text{Lie}(G_2) \). The conclusion follows recalling that any exact sequence is represented by an effective exact sequence. \(\square \)

3.2.3. **Remark.** It follows from the proof of \(2.2.1 \) that \(M^\sharp \) is the pull-back of \(M^\sharp_{\text{fr}} \) along the canonical morphism \(M \to M_{\text{fr}} \) and \(T^\sharp(M) \cong T^\sharp_\ast(M_{\text{fr}}) \).

4. **Hodge theory**

In this section \(k = \mathbb{C} \). Also assume that the mixed Hodge structures are graded polarizable and denote by \(\text{MHS}_1 \) the category of those structures with possibly non-zero Hodge numbers in the set \(\{(0,0), (-1,0), (0,-1), (-1,-1)\} \), i.e., of level \(\leq 1 \). The key point in what follows (cf. \(A.1.1 \) and \(1.5.2 \)) is that working with a connected formal \(\mathbb{C} \)-group \(F_0 \) we can think of \(F_0 \) as \(\text{Lie}(F_0) \), the associated \(\mathbb{C} \)-vector group \(\text{Spec}(\mathbb{C}[\text{Lie}(F_0)^\vee]) \) or just the underlying \(\mathbb{C} \)-vector space.

4.1. **Formal Hodge structures.** This section is based on [2]. A formal Hodge structure (of level \(\leq 1 \)) is: (i) a formal \(\mathbb{C} \)-group \(H = H^0 \times H_Z \) such that \(H_Z \) admits a mixed Hodge structure \(H_{\text{\acute{e}t}} = (H_Z, W_\ast, F^\ast_{\text{Hodge}}) \in \text{MHS}_1 \), (ii) a \(\mathbb{C} \)-vector space \(V \) with a sub-space \(V^0 \subseteq V \), (iii) a “group homomorphism” \(v : H \to V \), (i.e., a homomorphism of \(\mathbb{C} \)-vector spaces \(v^0 : \text{Lie}(H^0) \to V \) and a homomorphism of abelian groups \(v_Z : H_Z \to V \)) (iv) a \(\mathbb{C} \)-isomorphism \(\sigma : H_{\mathbb{C}}/F^0_{\text{Hodge}} \cong V/V^0 \).

Moreover if \(c : H_Z \to H_{\mathbb{C}}/F^0_{\text{Hodge}} \) is the canonical map and \(pr : V \to V/V^0 \) is the projection, we assume that the following square
\[
\begin{array}{ccc}
H_Z & \xrightarrow{v_Z} & V \\
\downarrow c & & \downarrow \text{pr} \\
H_{\mathbb{C}}/F^0_{\text{Hodge}} & \xrightarrow{\sigma} & V/V^0
\end{array}
\]

(4.1.1)

commutes.

We denote by \(V^1 \) the sub-space of \(V \) that is the pull-back of \(\sigma(W_{-2}H_{\mathbb{C}}) \) via \(V \to V/V^0 \). It holds \(V^0 \subseteq V^1 \subseteq V \). We denote by \(v_{\mathbb{C}} \) the \(\mathbb{C} \)-linear map \(H_{\mathbb{C}} \to V \) induced by \(v_{Z} \).
Denote by \((H,V)\) for short a formal Hodge structure. A morphism between \((H,V)\) and \((H',V')\) is a morphism of formal groups \(h: H \to H'\) and a \(\mathbb{C}\)-homomorphism \(g: V \to V'\) that respects the above structures and conditions. Denote by \(\text{FHS}_1\) the category of formal Hodge structures and by \(\text{FHS}_1^s\) the full subcategory given by \((H,V)\) with \(H\) free. A formal Hodge structure \((H,V) \in \text{FHS}_1\) is said to be special (resp. connected) if \(v(H^0)\) lies in \(V^0\) (resp. \(H_Z = 0\)). Denote by \(\text{FHS}_1^c\) the full subcategory of special structures and by \(\text{FHS}_1^c\) the full subcategory of connected structures. Set

\[
(4.1.2) \quad \overline{(H,V)} := (H \times \hat{V}, V) \quad \text{and} \quad \overline{(H,V)}_0 := (H \times \hat{V}_0, V)
\]

where the filtration on \(V\) remains the same and the morphism \(\hat{v}: H \times \hat{V} \to V\) is induced by \(v: H \to V\) and \(V \xrightarrow{id} V\) (or the inclusion \(V_0 \subset V\)).

4.2. Enriched Hodge structures. Recall that an enriched Hodge structure (of level \(\leq 1\)) is a pair \((H_{\text{et}},U \xrightarrow{\nu} V)\) where \(H_{\text{et}} = (H_Z,W_*,F^*_{\text{Hodge}}) \in \text{MHS}_1\), \(u\) is a \(\mathbb{C}\)-linear map of \(\mathbb{C}\)-vector spaces and there exists a commutative diagram

\[
(4.2.1) \quad H_\mathbb{C} \xrightarrow{\rho} U \xrightarrow{\pi} H_\mathbb{C} \\
\downarrow u \quad \quad \downarrow \pi_0 \downarrow c \\
V \xrightarrow{\pi_0} H_\mathbb{C}/F^0_{\text{Hodge}}
\]

where the composition of the upper arrows is the identity (cf. [7]). The category of such enriched Hodge structures is denoted by \(\text{EHS}_1\). It is clear that we have a functor

\[
(4.2.2) \quad \text{EHS}_1 \to \text{FHS}_1, \quad (H_{\text{et}},U \xrightarrow{\nu} V) \mapsto (H_Z \times \hat{\text{Ker}(\pi)}, V)
\]

where \(\nu: \hat{\text{Ker}(\pi)} \hookrightarrow \text{Ker}(\pi)\) is the completion at the origin and \(v: H_Z \times \hat{\text{Ker}(\pi)} \to V\) is obtained via \(u\) by composition with the maps \(H_Z \to H_\mathbb{C} \to U\) and \(\text{Ker}(\pi) \to U\). The sub-space \(V^0\) of \(V\) is defined as the kernel of \(\pi_0\); hence we get an isomorphism \(\sigma: H_\mathbb{C}/F^0_{\text{Hodge}} \to V/V^0\) and the diagram commutes by construction. Furthermore, by construction \(v(\text{Ker}(\pi))\) lies in \(V^0\); hence \((H_Z \times \hat{\text{Ker}(\pi)}, V)\) is special. We actually obtain:

4.2.3. Proposition. \(\text{EHS}_1\) is equivalent to the full subcategory \(\text{FHS}_1^s\) of \(\text{FHS}_1\).

Proof. Let \((H,V)\) in \(\text{FHS}_1\). Note that giving the map \(v: H \to V\) is equivalent to give a map \(u: \text{Lie}(H^0) \oplus H_\mathbb{C} \to V\) of \(\mathbb{C}\)-vector spaces. If \((H,V)\) is special then \(\text{Lie}(H^0)\) is mapped to \(V^0\) and \((H_{\text{et}},H_\mathbb{C} \oplus \text{Lie}(H^0) \xrightarrow{\nu} V) \in \text{EHS}_1\) since via \(4.1.1\) the following

\[
(4.2.4) \quad H_\mathbb{C} \xrightarrow{\rho} H_\mathbb{C} \oplus \text{Lie}(H^0) \xrightarrow{\pi} H_\mathbb{C} \\
\downarrow u \quad \quad \downarrow \pi_0 \downarrow c \\
V \xrightarrow{\pi_0} H_\mathbb{C}/F^0_{\text{Hodge}}
\]
commutes. The functor form $\mathcal{F}_{1, M}^G_1$ to $\mathcal{E}_{1, M}^G$ just defined and the one in [10, Prop. 4.3.1] are clearly mutually quasi-inverse. □

4.3. Hodge realization. Deligne’s Hodge realization in [5] provides an equivalence $\mathcal{T}_{H}^1 : \mathcal{M}_{1, M}^{\mathrm{fr}} \sim \mathcal{MHS}_{1, M}^{\mathrm{fr}}$ between the category of Deligne 1-motives and the category of torsion free objects in $\mathcal{MHS}_{1, M}$. This equivalence has been generalized in [4] to an equivalence $\mathcal{M}_{1, M}^{\mathrm{fr}} \sim \mathcal{MHS}_{1, M}$ including torsion and in [2] to an equivalence $\mathcal{M}_{1, M}^{\mathrm{a,fr}} \sim \mathcal{FHS}_{1, M}$ including additive factors. We can now further extend both equivalences to our context (see 1.4.4 for notations).

4.3.1. Proposition. There is an equivalence of categories

$$T_f : \mathcal{M}_{1, M}^{\mathrm{a,fr}} \sim \mathcal{HHS}_{1, M} \quad M := [u : E \rightarrow G] \mapsto T_f(M) := (T_f(F), \operatorname{Lie}(G))$$

where $T_f(M)_{\mathrm{et}} = T_{\mathrm{H}}(M)_{\mathrm{et}}$ and such that it induces an equivalence of categories

$$T_f^2 : \mathcal{M}_{1, M}^{\mathrm{a,fr}} \sim \mathcal{EHS}_{1, M} \quad [u : E \rightarrow G] \mapsto (T_f(M)_{\mathrm{et}}, T_C(F)_{\mathrm{et}} \oplus \operatorname{Lie}(F) \rightarrow \operatorname{Lie}(G))$$

and further restricts to the equivalence

$$T_{\mathrm{H}} : \mathcal{M}_{1, M} \sim \mathcal{MHS}_{1, M} \quad M \mapsto T_{\mathrm{H}}(M).$$

Proof. The functor T_f on $\mathcal{M}_{1, M}^{\mathrm{a,fr}}$ is constructed in [2]. Recall that for F free, the formal k-group $T_f(F)$ is the product $F^0 \times T_f(F)_{\mathrm{et}}$ where the étale quotient $T_f(F)_{\mathrm{et}}$ is the pull-back of $F_{\mathrm{et}} \rightarrow G$ along $\exp : \operatorname{Lie}(G) \rightarrow G$. Hence $T_f(F)_{\mathrm{et}}$ is a free abelian group extension of F_{et} by $H_1(G)$. The morphism $v : T_f(F) \rightarrow \operatorname{Lie}(G)$ is then taken as $\operatorname{Lie}(u^0) : \operatorname{Lie}(F^0) \rightarrow \operatorname{Lie}(G)$ on the identity component and the homomorphism obtained via the pull-back construction on $T_f(F)_{\mathrm{et}}$. The above definition of $T_f(F)$ makes sense also when F is not free. One proceed then as done in [3]. Prop. 1.5; in fact, one can check that $T_f(F)$ and $\operatorname{Lie}(G)$ are independent of the representative of M, i.e., that a quasi-isomorphism $M_1 \rightarrow M_2$ induces an isomorphism $T_f(M_1) \cong T_f(M_2)$. □

4.4. Sharp envelope. The sharp G_a-extension of (effective) 1-motives, has its counterpart in the category of formal Hodge structures. Define the functor

\[(4.4.1) (\cdot)^\sharp : \mathcal{FHS}_{1, M} \rightarrow \mathcal{EHS}_{1, M} \quad (H, V) \mapsto (H, V^\sharp)\]

as follows. Let $H = H_Z \times H^0 \xrightarrow{\nu} V$. Denote $\overline{V} : H \rightarrow V/V^0$, $c : H_Z \rightarrow H_C$, $\iota : H^0 \rightarrow \operatorname{Lie}(H^0)$ the identity map on Lie algebras, $\overline{V}_C : H_C \rightarrow V/V^0$ and $\overline{V}^0 : H^0 \rightarrow V/V^0$. Define first

- $(V/V^0)^\sharp := H_C \oplus \operatorname{Lie}(H^0)$;
- $\overline{V}^\sharp := (c, \iota) : H_Z \times H^0 \rightarrow (V/V^0)^\sharp$;
- $(V/V^0)^{20} := \operatorname{Ker}(\overline{V}_C, \overline{V}^0)$.
Hence we have a diagram:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & F^0_{\text{Hodge}} & \rightarrow & H_C & \rightarrow & V/V^0 & \rightarrow & 0 \\
& & \downarrow & \uparrow \pi_C & & \uparrow \pi_C & & \downarrow & \\
0 & \rightarrow & (V/V^0)^{\sharp} & \rightarrow & (V/V^0)^{\sharp} & \rightarrow & V/V^0 & \rightarrow & 0 \\
& & \downarrow & \uparrow \pi^{\sharp} & & \uparrow \pi & & \downarrow & \\
\text{Lie}(H^0) & \rightarrow & \text{Lie}(H^0) & & \rightarrow & & & & \\
\end{array}
\]

where the vertical sequence in the middle is canonically split by \(\pi^{\sharp} := (\text{id} \oplus 0)\).

Define now \(V^\sharp\) by pull-back as follows:

- \(V^\sharp := V \times_{V/V^0} (V/V^0)^{\sharp}\);
- \(v^\sharp := (v^0_Z, v^0): H_Z \times H^0 \rightarrow V^\sharp\) induced by \(\pi^\sharp\) and \(v\);
- \(V^{\sharp 0} := \text{Ker}(V^\sharp \rightarrow (V/V^0)^{\sharp} \rightarrow V/V^0)\).

Actually \(V^\sharp\) fits in the following diagram of \(\mathbb{C}\)-vector spaces:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & F^0_{\text{Hodge}} & \rightarrow & H_C \times_{V/V^0} V & \rightarrow & V & \rightarrow & 0 \\
& & \downarrow & \uparrow \alpha & & \uparrow \alpha & & \downarrow & \\
0 & \rightarrow & (V/V^0)^{\sharp} & \rightarrow & V^\sharp & \rightarrow & V & \rightarrow & 0 \\
& & \downarrow & \uparrow v^{\sharp 0} & & \uparrow v^0 & & \downarrow & \\
\text{Lie}(H^0) & \rightarrow & \text{Lie}(H^0) & & \rightarrow & & & & \\
\end{array}
\]

with the canonical splitting \(v^{\sharp 0}\) of the vertical sequence in the middle. Note that the morphism \(v^0_Z: H^0 \rightarrow V^\sharp\) is the composition of \((c,v^0_Z): H_Z \rightarrow H_C \times_{V/V^0} V\) with \(\alpha\) and the commutativity of [111] holds by construction.

4.4.3. **Remark.** Note that, for \((H,V) \in \text{FHS}_1\), the sharp envelope \((H,V)^\sharp \in \text{FHS}_1\) is such that the canonical map \(v^\sharp_C: H_C \rightarrow V^\sharp\) induced by \(v^\sharp_C\) has a splitting \(\pi: V^\sharp \rightarrow H_C\) induced by \(v^{\sharp 0}\). Observe that if \((H,V)\) is étale, i.e., \(H^0 = V^0 = 0\), we then have \((H,V) \cong (H_Z,H_C/F^0_{\text{Hodge}})\) is determined by the mixed Hodge structure (cf. [2]). We moreover get \((H,V)^\sharp \cong (H_Z,H_C/F^0_{\text{Hodge}})^\sharp = (H_Z,H_C)\).

4.4.4. **Lemma.** \((H,V) \in \text{FHS}_1^\delta\) if and only if \((H,V/V^0)^\sharp \in \text{FHS}_1^\delta\) if and only if the splitting \(\pi^{\sharp 0}\) induces a splitting of the left most vertical sequence in (4.4.2).

Proof. By diagram (4.4.2) chase, i.e., \(\pi^0 : H^0 \rightarrow V/V^0\) if and only if \(\pi^{\sharp 0}(H^0) \subseteq (V/V^0)^{\sharp 0}\). \(\square\)
4.4.5. Remark. Since the sharp envelope of a special formal Hodge structure is still special, we can consider \(\text{via} \ (4.2.3) \) the sharp envelope on the category of enriched Hodge structures (see \(\text{§} 4.2 \)): it is the functor
\[
\left(\right)^\sharp: \text{EHS}_1 \to \text{EHS}_1, \quad (H_{\text{et}}, U \to V) \mapsto (H_{\text{et}}, U \to V^\sharp).
\]
Here \(H_{\text{et}} \) and \(U = H_{\mathbb{C}} \times \text{Lie}(H^0) \) correspond to \((H, V) \in \text{FHS}^s_1 \).

We further obtain a more sophisticated functor
\[
(4.4.6) \quad (\)^\sharp_s: \text{FHS}_s^1 \to \text{EHS}_1^s \quad (H, V) \mapsto (H, V)^\sharp_s := (H_{\text{et}}, V^\sharp \to V)
\]
where \((H, V)^\sharp_s \) is the enriched Hodge structure associated to \((H, V)^0 \) in \((4.1.2) \).

In fact, given a special structure along with its sharp envelope we are just left to get the splitting \(\pi \) fitting in a commutative diagram
\[
\begin{array}{ccc}
H_{\mathbb{C}} & \xrightarrow{v_{\mathbb{C}}^0} & V^\sharp \\
\downarrow u & & \downarrow \pi \\
V & \xrightarrow{\pi_0} & H_{\mathbb{C}}/F_{\text{Hodge}}^0
\end{array}
\]
where \(u: V^\sharp \to V \) is the canonical projection and \(\pi_0 \) is the projection induced by \(\sigma^{-1}: V/V^0 \cong H_{\mathbb{C}}/F_{\text{Hodge}}^0 \). Note that by \(4.4.4 \) and the construction of \(V^\sharp \) we then get a natural splitting of all extensions as follows
\[
\begin{array}{ccc}
0 & \xrightarrow{H_{\mathbb{C}} \times_{V/V^0} V} & V^\sharp \\
\downarrow & & \downarrow \\
0 & \xrightarrow{H_{\mathbb{C}}} & (V/V^0)^0 \\
\downarrow & & \downarrow \\
0 & \xrightarrow{F_{\text{Hodge}}^0} & (V/V^0)^{\sharp 0}
\end{array}
\]

We obtain the claimed commutativity by diagram chase just considering that all these splittings are compatible.

4.4.7. Remark. Fix \(H_{\text{et}} = (H_{\mathbb{Z}}, W_*, F_{\text{Hodge}}^0) \in \text{MHS}_1 \) and \(\pi_0: V \to H_{\mathbb{C}}/F_{\text{Hodge}}^0 \).

Then any \((H_{\text{et}}, U \to V) \in \text{EHS}_1 \) is clearly mapped to \((H_{\text{et}}, H_{\mathbb{C}}^\sharp \to V) \) where \(H_{\mathbb{C}}^\sharp \) is just the pull-back of \(H_{\mathbb{C}} \) along \(\pi_0 \). Actually, for any \((H_{\text{et}} \times H^0, V) \in \text{FHS}_1 \) with \(V^0 = \text{Ker}(\pi_0) \), we have that \((H_{\text{et}}, H_{\mathbb{C}}^\sharp) \) is the sharp envelope of \((H_{\text{et}}, V) \) since \(H_{\mathbb{C}}^\sharp \cong H_{\mathbb{C}} \times_{V/V^0} V \) and \(H_{\mathbb{C}}^\sharp \to V^\sharp \) (in particular, any \(U \to V \) as above lifts to \(V^\sharp \)).

Now, in \(3.2 \) we associated to any effective 1-motive \(M \) the sharp extension \(M^\sharp \) and the sharp de Rham realization \(T_f^e(M) = \text{Lie}(G^f) \). Moreover, we can apply...
T_f to M^\sharp so that we have a diagram

$$
\begin{array}{c}
\mathcal{M}_1^{\text{a}}
\downarrow \phi
\rightarrow
FHS_1
\\
\mathcal{M}_1^{\text{a}}
\downarrow \phi
\rightarrow
FHS_1
\end{array}
$$

4.4.8. Theorem. Let $M = [u: F \rightarrow G]$ be a \mathbb{C}-1-motive. The diagram above commutes (up to isomorphisms) so that

$$T_f(M)^\sharp \cong T_f(M^\sharp) = (T_f(F), T_f(M)).$$

Proof. It is sufficient to prove the commutativity on the categories $\mathcal{M}_1^{\text{a,fr}}$ and FHS_1^{fr}. Let then $M = [F \rightarrow G]$ be a Laumon 1-motive. We may assume $V(G) = 0 = V^0$. Indeed M^\sharp is obtained via pull-back from $(M_\times)^\sharp = M^\sharp_\times$ (cf. 4.4.2) and $(H, V)^\sharp$ is defined as the pull-back of $(H, V/V^0)^\sharp$. Let then $M = M_\times = [F \rightarrow G_\times]$ and $M^\sharp = [F \rightarrow G^\sharp_\times]$ its universal extension. We have

$$T_f(M) = (H, V) = (F^0 \times T_f(F_\text{ét}), \text{Lie}(G_\times)) \text{ with } V^0 = 0,$n$$

$$T_f(M^\sharp) = (F^0 \times T_f(F_\text{ét}), \text{Lie}(G^\sharp_\times))$$

and $T_f(F_\text{ét}) \rightarrow \text{Lie}(G_\times)$ that factors through $\text{Lie}(G^\sharp_\times)$ because G^\sharp_\times is extension of G_\times by a vector group. Denote by $[F_\text{ét} \rightarrow G^\sharp_\text{ét}]$ the universal extension of $M_\text{ét}$. From 2.3.3 we get a push-out diagram

$$
\begin{array}{cccccccccc}
0 & \rightarrow & \text{Ext}(M_\text{ét}, \mathbb{G}_a)^\vee & \rightarrow & G^\sharp_\text{ét} & \rightarrow & G_\times & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & \text{Ext}(M_\times, \mathbb{G}_a)^\vee & \rightarrow & G^\sharp_\times & \rightarrow & G_\times & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{Lie}(F^0) & \rightarrow & \text{Lie}(F^0) & \rightarrow & \text{Lie}(F^0) & \rightarrow & \text{Lie}(F^0) & \rightarrow & \text{Lie}(F^0)
\end{array}
$$

Consider the associated diagram of Lie algebras and compare it with 1.3.2. Recalling that $\text{Lie}(G^\sharp_\text{ét}) \cong H_\mathbb{C}$, $V = \text{Lie}(G_\times)$, $V^0 = 0$, $\text{Lie}(H^0) = \text{Lie}(F^0)$ we deduce that $V^\sharp \cong \text{Lie}(G^\sharp_\times) = T_f(M_\times)$. □

4.4.9. Remark. The previous theorem generalizes to (effective) Laumon \mathbb{C}-1-motives the fact that $T_{\text{dR}}(M) \cong T_{\mathbb{Z}}(M) \otimes_{\mathbb{Z}} \mathbb{C}$ for Deligne 1-motives.

5. Duality on sharp de Rham realizations

Let M be a Laumon 1-motive, M^* its dual and $\mathcal{P} \in \text{Biext}(M, M^*; \mathbb{G}_m)$ the Poincaré biextension. We look for a canonical duality between $T_f(M)$ and $T_f(M^*)$ that generalizes Deligne’s construction in 10.2.7.3. In order to do this we need
to introduce a “canonical” connection on the biextension \mathcal{P}^\sharp of M^2 and M'^2 by \mathbb{G}_m given by the pull-back of \mathcal{P}.

5.1. ξ-structures. Let $N = [F \rightarrow E]$ be an extension of M by an algebraic k-group H. A ξ-structure on N is a ξ-structure on E as in [\S], 10.2.7.1. A strong ξ-structure on N is a ξ-structure on E such that its pull-back to F is trivial; if $F = F_{\xi}$ any ξ-structure is strong. We can characterize G^\sharp as follows:

5.1.1. Proposition. Let M be a Laumon 1-motive. Then G^\sharp is the group scheme that represents the pre-sheaf for the flat site on k

$$\mathcal{F}: S/k \rightsquigarrow \left\{ (g, \nabla), \quad g \in G(S), \nabla \text{ a } \xi\text{-structure on the extension } \mathcal{P}_g \text{ of } M' \text{ by } \mathbb{G}_{m,S} \text{ induced by } g \right\}.$$

Proof. By (5.1.4) we know that G^\sharp is extension of ω_L by $A^\sharp \times_A G$ and one proceeds as in [\S] 3.10. \hfill \Box

5.2. The canonical connection. The identity on G^\sharp provides via the functor \mathcal{F} a pair (ρ, ∇_2^\sharp) where $\rho: G^\sharp \rightarrow G$ is the usual projection and ∇_2^\sharp is a ξ-structure on \mathcal{P}_ρ the pull-back of \mathcal{P} to $G^2 \times G'$ viewed as \mathbb{G}_m-extension of G^\sharp over G'. The same the identity on G'^\sharp provides a pair (ρ', ∇_1^\sharp) where ∇_1^\sharp is a a ξ-structure on $\mathcal{P}_{\rho'}$. As \mathcal{P}^\sharp is the pull-back of \mathcal{P}_ρ via ρ' as well as the pull-back of $\mathcal{P}_{\rho'}$ via ρ we define the canonical connection ∇^\sharp on \mathcal{P}^\sharp as the sum of the (pull-back) of the connections ∇_i^\sharp. If M is a Deligne 1-motive, ∇^\sharp is the unique ξ-structure on $\mathcal{P}^\sharp = P^\sharp$ in [\S] 10.2.7.4.

5.2.1. Example. Let $F^0 = \text{Spf}(k[[x]])$, $M = F^0[1]$, $M^* = F^0*$ = Spec$(k[y])$ and \mathcal{P} the Poincaré biextension. It is the trivial \mathbb{G}_m-torsor on F^0* together with the trivialization $\sigma: F^0 \otimes F^0* \rightarrow \mathbb{G}_m$ induced by Cartier duality. The pull-back \mathcal{P}^\sharp of \mathcal{P} to $(F^0 \rightarrow \omega_{F^0*}, F^0*)$ is the trivial biextension on (ω_{F^0*}, F^0*) together with the trivialization σ. The connection ∇_2^\sharp of the trivial \mathbb{G}_m-extension of F^0* over ω_{F^0*} is given by the invariant differential of F^0* over ω_{F^0*} associated to the identity map on ω_{F^0*}; hence xdy. The connection ∇_1^\sharp is associated to an invariant differentials of the 0 group over F^0* hence is trivial. In particular ∇^\sharp is associated to xdy on $\omega_{F^0*} \times_k F^0*$.

Observe that also $xdy + ydx$ provides a bi-invariant connection on \mathcal{P}^\sharp different from the canonical one. Hence we can not expect a uniqueness result as in [\S], 10.2.7.4, for the (weak) ξ-structures.

5.3. Deligne’s pairing. Consider the canonical connection ∇^\sharp on \mathcal{P}^\sharp defined in 5.2. Its curvature is an invariant 2-form on $G^\sharp \times G'^\sharp$; hence it gives an alternating pairing R on

$$\text{Lie} (G^\sharp \times G'^\sharp) = \text{Lie} (G^\sharp) \oplus \text{Lie} (G'^\sharp) = T_1(M) \oplus T_1(M'^\star)$$

with values in k. As the restrictions of R to Lie (G^\sharp) and Lie (G'^\sharp) are trivial it holds

$$R(g_1 + g_2, g'_1 + g'_2) = \Phi(g_1, g'_2) - \Phi(g_2, g'_1)$$
with
\[\Phi: T^*_2(M) \otimes T^*_2(M^*) \to k. \]

If \(M \) is a Deligne 1-motive, the pairing above coincides with the one in [5], 10.2.7.

We will see that \(\Phi \) is perfect following the proof in [6], §4, for the classical case of Deligne 1-motives.

Recall the extensions in (3.1.3) for \(M \) and \(M^* \):
\[(5.3.2) 0 \to \omega_{G'} \to M^z \rho \to M^* \to 0, \quad 0 \to \omega_{G} \to M^z \rho' \to M^* \to 0, \]

We denoted by \((P_\rho, \nabla^z)\) the \(^\natural \)-extension of \(M \) by the multiplicative group over \(G^z \) that corresponds to the identity map on \(G^z \) via the functor \(F \) in 5.1.1. Similarly for \((P_\rho', \nabla^z_1)\).

5.3.3 Lemma. Let \(\alpha_G \) be the invariant differential of \(G' \) over \(\omega_{G'} \) that corresponds to the identity map on \(\omega_{G'} \). The restriction of \((P_\rho, \nabla^z)\) to \(\omega_{G'} \) via \(i: \omega_{G'} \to G^z \) in (5.3.3) is isomorphic to the trivial extension of \(M^* \) by the multiplicative group over \(\omega_{G'} \) equipped with the connection associated to \(\alpha_G \).

Proof. See [6], 4.1.

Changing the role of \(M \) and \(M^* \), denote by \(\alpha_G \) the invariant differential of \(G \) over \(\omega_G \) that corresponds to the identity map on \(\omega_G \). The restriction of \((P_\rho', \nabla^z_1)\) to \(\omega_G \) is isomorphic to the trivial extension of \(M^* \) by the multiplicative group over \(\omega_G \) equipped with the connection associated to \(\alpha_G \). From [6], 4.2, we know that

5.3.4 Lemma. The curvature of \(\alpha_G \) provides a perfect pairing
\[d\alpha_G: \omega_G \otimes \text{Lie}(G) \to k \]
that is the usual duality.

Hence the proof of Theorem 4.3 in loc. cit. works the same and we get

5.3.5 Theorem. Let \(M \) be a free \(k \)-1-motive. The pairing \(\Phi \) in (5.3.1) is perfect. Moreover it fits in a diagram
\[\begin{CD}
\omega_{G'} @\otimes\ @ \text{Lie}(G') @>>> k \\
@AAA \qquad \quad \quad \quad @AAA \\
\text{Lie}(G') @\otimes\ @ \text{Lie}(G') @>>> k \\
\Phi: \text{Lie}(G^z) @\otimes\ @ \omega_G @>>> k \\
@Vg VV \quad \quad \quad @Vg' VV \\
\text{Lie}(G) @\otimes\ @ \omega_G @>>> k
\end{CD} \]

where the vertical homomorphisms come from (5.3.2) and the upper (resp. lower) pairing is the usual duality between the Lie algebra of \(G' \) (resp. \(G \)) and the \(k \)-vector space of invariant differentials of \(G' \) (resp. \(G \)).
6. Sharp de Rham cohomology

We describe $H^1_{\dR}(X) := T^1_{\ast}(\Pic^+_X(X))$ in some meaningful cases, i.e., when X is proper or is a smooth algebraic k-scheme. Here $\Pic^+_a(X)$ and its Cartier dual $\Alb_a^-(X)$ are the Laumon 1-motives of the algebraic k-scheme X constructed in [14], whence $\Pic^+_a(X)_{\et} = \Pic^+(X)$ and $\Alb_a^-(X)_{\et} = \Alb^-(X)$ were introduced in [5]. By construction, see 3.2, we then have that $H^1_{\dR}(X)$ is sitting in an extension

$$0 \to H^1_{\dR}(X) \to H^1_{\dR}(X)/V(\Pic) \to V(\Alb) \to 0$$

where we have set for $\Pic^+_a(X) = [F \to G]$

- $V(\Pic) :=$ the additive part, i.e., (the Lie algebra of) the vector group $V(G)$ given by the maximal additive subgroup of $\Pic^0(\overline{X})$ for a suitable (singular) compactification \overline{X} of X
- $V(\Alb) :=$ the infinitesimal part, i.e., the Lie algebra $\Lie F^0$ that is just the dual of the corresponding Faltings-Wüstholz vector group in the Albanese $\Alb_a^-(X)$.

Here $V(\Pic) = 0$ if X is smooth and $V(\Alb) = 0$ if X is proper over k. Moreover, for X smooth we have that $F_{\et} = \Div^0_\et(\overline{X})$ where \overline{X} is a smooth proper compactification, $Y = \overline{X} - X$ is a normal crossing divisor, and $\Lie F^0$ is the k-vector space $\Ker(H^1(\overline{X}, \mathcal{O}_{\overline{X}}) \to H^1(X, \mathcal{O}_X))$, i.e., is $\Gamma(X, \Omega^1_X|_{\overline{X}} \text{closed}/d(\Gamma(X, \mathcal{O}_X))$ divided out by $\Gamma(\overline{X}, \Omega^1_{\overline{X}}(\log Y))$. For X proper over k it holds $F = 0$ and $G = \Pic^0(X)$ is the connected algebraic group given by the identity component of the representable fppf-sheaf $\Pic_{X/k}^+(X)$ (see [14] for more details).

6.1. Sharp extension of $\Pic^+_a(X)$. We compute the sharp \mathbb{G}_a-extension of $\Pic^+_a(X)$ for X proper or smooth.

For X proper and $X \to X$ a smooth proper hypercovering we obtain the semi-abelian quotient $\Pic^0(X)/V(\Pic) = \Pic^0(X, \alpha)$ by [5], Lemma 5.1.2. In loc. cit. we also introduced the algebraic group $\Pic^\sharp(X, \alpha)$ given by isomorphism classes of triples $(\mathcal{L}, \nabla, \alpha)$ consisting of an invertible sheaf \mathcal{L} on X_0, with an integrable connection ∇, and an isomorphism $\alpha : d\log(\mathcal{L}, \nabla) \xrightarrow{\sim} d\log(\mathcal{L}, \nabla)$ satisfying the cocycle condition (here $d_0, d_1 : X_1 \to X_0$ are the face maps). There is a functorial isomorphism

$$(\ref{6.1.1}) \quad \Pic^\sharp(X, \alpha) \cong H^1(X_\alpha, \Omega^1_{X_\alpha}|_{\overline{X}} \to \Omega^1_{X_\alpha})$$

Define the group scheme $\Pic^\sharp(X) := \Pic^\sharp(X, \alpha) \times_{\Pic(X)} \Pic(X)$ by pull-back.

6.1.2. Lemma. If X is proper then $\Pic^+_a(X)^\sharp = [0 \to \Pic^0(X)]$.

Proof. Since X, is smooth and proper over k, the semi-abelian variety $\Pic^0(X)$ is mapped to zero in $H^1(X, \Omega^1_X)$ via (6.1.1). We then have that $\Pic^0(X, \alpha)$ is an extension of $\Pic^0(X)$ by $H^0(X, \Omega^1_{X})$, i.e., is the pull back of the inclusion $\Pic^0 \hookrightarrow \Pic$. This extension is the universal \mathbb{G}_a-extension of the semi-abelian scheme.
\[\mathbb{Pic}^0(X) \text{ by } [3], \text{ Lemma 4.5.2.} \] Since \(V(\text{Pic}) = \text{Ker}(\text{Pic}^{\leq 0}(X) \to \mathbb{Pic}^{\leq 0}(X)) \), we then get the following pullback diagram which, by (3.1.3), proves the assertion

\[
\begin{array}{cccccc}
0 & \longrightarrow & \mathbb{H}^0(X, \Omega^1_X) & \longrightarrow & \text{Pic}^{\leq 0}(X) & \longrightarrow & \mathbb{Pic}^{0}(X) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \longrightarrow & \mathbb{H}^0(X, \Omega^1_{\mathcal{S}}) & \longrightarrow & \text{Pic}^{\leq 0}(\mathcal{S}) & \longrightarrow & \mathbb{Pic}^{0}(\mathcal{S}) & \longrightarrow & 0
\end{array}
\]

For \(X \) smooth recall the algebraic group \(\text{Pic}^{\leq \log}(X) \) given by isomorphism classes of pairs \((\mathcal{L}, \nabla^{\log})\) where \(\mathcal{L} \) is a line bundle on \(X \) and \(\nabla^{\log} \) is an integrable connection on \(\mathcal{L} \) with log poles along \(Y \). In [5], Lemma 2.6.2, we have seen that \(\text{Pic}^{+}(X) \) exists (cf. the remark 2.3.3):

6.1.4. Lemma. If \(X \) is smooth then \(\text{Pic}^{+}(X) = [F \to \text{Pic}^{\leq \log, 0}(X) + \text{Lie } F^0] \).

6.2. Sharp de Rham over \(\mathbb{C} \). For \(X \) over \(\mathbb{C} \) we also have

\[H^1_{\log, \text{DR}}(X) = T^0_{dR}(\text{Pic}^0(X)) \]

by 4.4.8. Let \(X \) be a proper \(\mathbb{C} \)-scheme and \(X \), a smooth proper hypercovering as above. In this case, passing to the Lie algebra \(\text{Lie} \text{Pic}^{0}(X) = H^1_{\text{DR}}(X) \cong \mathbb{H}^1(X, \mathbb{C}) \cong H^1(X, \mathbb{C}) \) by the (simplicial) de Rham theorem and cohomological descent for the analytic topology, cf. [5], remark 2.6.3. We then obtain, cf. 4.4.6 an enriched Hodge structure via the following diagram of the Lie algebras of

\[
\begin{array}{cccccc}
0 & \longrightarrow & \mathbb{H}^0(X, \Omega^1_X) & \longrightarrow & H^1_{\log, \text{DR}}(X) & \longrightarrow & H^1(X, \mathcal{O}_X) & \longrightarrow & 0 \\
\downarrow & & \downarrow \pi & & \downarrow u & & \downarrow \pi_0 & & \downarrow c \\
0 & \longrightarrow & \mathbb{H}^0(X, \Omega^1_{\mathcal{S}}) & \longrightarrow & H^1(X, \mathbb{C}) & \longrightarrow & H^1(X, \mathcal{O}_X) & \longrightarrow & 0
\end{array}
\]

where \(H^1(X, \mathbb{C}) / F^1_{\text{Hodge}} = H^1(X, \mathcal{O}_X) \), \(\mathbb{H}^0(X, \Omega^1_X) = F^1_{\text{Hodge}} \) and \(V(\text{Pic}) = \text{Ker}(H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_X)) \). If \(X \) is smooth we have \(\text{LiePic}^{\leq \log, 0}(X) = H^1(X, \mathbb{C}) \) by [3], 2.6.4. We then obtain:

6.2.2. Proposition. For \(X \) over \(\mathbb{C} \) we have \(H^1_{\log, \text{DR}}(X) \cong H^1(X, \mathbb{C}) \oplus V \) where \(V = V(\text{Pic}) \) if \(X \) is proper and \(V = V(\text{Alb}) \) if \(X \) is smooth.

Proof. It follows from the previous lemmas in 6.1 and the above discussion. \(\square \)

6.2.3. Corollary. If \(X \) is a proper \(\mathbb{C} \)-scheme and \(H^1(X, \mathbb{Z}) = 0 \) then \(H^1_{\log, \text{DR}}(X) = H^1(X, \mathcal{O}_X) \).
Let X be now a proper (reduced) variety over \mathbb{C} and consider, following [7], the naive analytic de Rham complex Ω^*_X on X itself. The resulting cohomology $H^n(X, \Omega^*_X)$ is considered in [7] as part of one possible enriched Hodge structure associated to X and n. Actually for $\Omega^*_X := \Omega^*_X / F^{\dim(X)+1} \Omega^*_X$ and $\Omega^*_X := \Omega^*_X / \text{tors}$ we have $\Omega^*_X \mapsto \Omega^*_X \mapsto \Omega^*_X$. Moreover

$$H^n(X, \Omega^*_X) \rightarrow H^n(X, \Omega^*_X) \rightarrow H^n(X, \Omega^*_X) \rightarrow H^n(X, \Omega^*_X) \cong H^n(X, \mathbb{C})$$

yields three different enriched Hodge structures associated to X. For example, if we take the curve considered in 2.3 of [7] then ρ serves that the top exact sequence in the latter continues on the right with the mentioned boundary map.

Proof. Comparing the diagram (6.2.1) and the decorated version of (6.2.4) observe that the top exact sequence in the latter continues on the right with the mentioned boundary map.

6.2.5. Proposition. Let ρ^\dagger denote any comparison map ρ, ρ' or ρ'' corresponding to Ω^*_X which denotes Ω^*_X, Ω^*_X and Ω^*_X respectively. The decorated comparison map ρ^\dagger is

(i) surjective if and only if the boundary map $H^1(X, \mathcal{O}_X) \rightarrow H^1(X, \Omega^*_X)$ is zero and $H^0(X, \Omega^*_X) \rightarrow H^0(X, \Omega^*_X)$ is surjective;

(ii) injective if and only if the map $H^0(X, \Omega^*_X) \rightarrow H^0(X, \Omega^*_X)$ is an inclusion.

The map ρ^\dagger is then an isomorphism if and only if both conditions hold.

Proof. Comparing the diagram (6.2.1) and the decorated version of (6.2.4) observe that the top exact sequence in the latter continues on the right with the mentioned boundary map.

6.2.6. Remark. If $\pi_1(X) = 0$ then $\rho^\dagger : H^1(X, \Omega^*_X) \rightarrow H^1(X, \mathcal{O}_X) = H^1_{\text{dR}}(X)$. For example, if we take the curve considered in 2.3 of [7] then ρ'' is an isomorphism. Note that it seems puzzling to study the geometric meaning of these
conditions. In general, we just have that
\[H^0(X_*, \Omega^1_{X,*}) = \ker H^0(X_0, \Omega^1_{X_0}) \xrightarrow{d_0 - d_1} H^0(X_1, \Omega^1_{X_1}) \]
for the components \(X_0, X_1\) of \(X\), while
\[H^0(X, \Omega^{\geq 1}_X) = \ker H^0(X, \Omega^1_X) \to H^0(X, \Omega^2_X) \]
For \(\dim(X) = 1\), by choosing \(X\) in such a way that \(X_0\) is the normalization of \(X\) and \(X_1\) is 0-dimensional, we have \(H^0(X_0, \Omega^1_{X_0}) = H^0(X_0, \Omega^1_{X_0})\), \(H^0(X, \Omega^{\geq 1}_X) = H^0(X, \Omega^1_X)\) and further \(H^0(X, ^\sim \Omega^{\geq 1}_X) = H^0(X, \Omega^1_X/\text{tors})\), e.g., the injectivity of \(\rho'\) means that \(H^0(X, \Omega^1_X)\) injects into \(H^0(X_0, \Omega^1_{X_0})\).

Appendix A.

In this section we recall some facts and results on (formal) \(k\)-groups needed in the paper. The characteristic of the field \(k\) is zero.

A.1. **Vector groups.** Let \(E\) be a free \(k\)-module and \(E^\vee = \text{Hom}(E, k)\) its dual. Denote by \(E = \text{Spec}(k[[E^\vee]])\) the \(k\)-vector group associated to \(E\) where
\[k[[E^\vee]] = \text{Sym}(E^\vee) = k \oplus E^\vee \oplus S^2(E^\vee) \oplus \ldots \]
Its completion at the origin is \(\widehat{E} = \text{Spf}(k[[E^\vee]])\) where \(k[[E^\vee]]\) means the infinite product
\[k \times E^\vee \times S^2(E^\vee) \times S^3(E^\vee) \times \ldots \]
with the multiplication induced by that of \(\text{Sym}(E^\vee)\).

A.1.1. **Remark.** Starting with \(\widehat{E}\) we can recover \(E\) via \(E = \text{Lie}(\widehat{E})\) (cf. \[11\], VII 3.3).

A.2. **On Cartier duals.** Let \(F = \text{Spf}(A)\) be a connected formal \(k\)-group. Its Cartier dual\(^2\) \(F^*\) is defined as \(\text{Spec}(A^*)\) with \(A^* := \text{Hom}_{\text{cont}}(A, k)\) where \(k\) is endowed with the discrete topology. For example, if \(A = k[[x]]\), any continuous \(k\)-linear map \(f: A \to k\) factors through \(k[[x]]/(x^n)\) because \(f^{-1}(0)\) has to be open in \(A\). Set \(f(1) = a_0, f(x^i) = a_i\); then \(f\) is uniquely determined by the polynomial \(\sum a_i(x^i)\). Hence \(A^* = k[x^*]\). Observe that \(x^*\) corresponds to the \(k\)-linear map sending \(1 \mapsto 0, x \mapsto 1\) and \(x^i \mapsto 0\) for \(i > 1\). Similarly \(k[[x_1, \ldots, x_n]]^* = k[[x_1^*, \ldots, x_n^*]]\).

The duality between \(F^0\) and \(F^{0*}\) provides also a duality on \(k\)-algebras.

A.2.1. **Lemma.** Let \(F = \text{Spf}(k[[x_1, \ldots, x_n]])\) be a connected formal \(k\)-group and \(F^* = \text{Spec}(k[[x_1, \ldots, x_n]^*])\) its Cartier dual. There is a canonical duality between \(\text{Lie}(F)\) and \(\text{Lie}(F^*)\).

\(^2\)It is denoted by \(\mathbb{D}(F)\) in \[10\].
Proof. The Lie algebra of F corresponds to the k-linear maps
\[k[[x_1, \cdots, x_n]] \to k[[\epsilon]]/(\epsilon^2) \]
such that $a \mapsto a$ for $a \in k$, $x_i \mapsto b_i \epsilon$ with $b_i \in k$ and $x_i x_j \mapsto 0$, hence to the k-linear polynomial $\sum_{i=1}^n b_i x_i^*$. Recall now that
\[F^* = \text{Spec}(k[[x_1, \cdots, x_n]]) = \text{Spec}(k[x_1^*, \cdots, x_n^*]). \]
The Lie algebra of F^* is the k-module of k-linear polynomials in the n-variables x_i^*. Hence there is a canonical pairing $\text{Lie}(F) \otimes \text{Lie}(F^*) \to k$ sending $x_i^* \otimes x_j^*$ to δ_{ij} that does not depend on the choice of the basis x_i. \hfill \Box

A.3. Formal completion at the origin. Let G be a connected algebraic k-group. The connected formal k-group associated to $\text{Lie}(G)$ is canonically isomorphic to the formal completion at the origin of G. Indeed, let x_1, \cdots, x_g be free generators of $\text{Lie}(G)^\vee$ over k. The associated formal k-group is $\text{Spf}(k[[x_1, \cdots, x_g]])$; moreover, as $\text{Lie}(G)^\vee$ is canonically isomorphic to the k-module of invariant differentials on G and hence to m/m^2 with m the maximal ideal of $\mathcal{O}_{G, e}$, we could think $\{x_i\}_i$ as a basis of the k-module m/m^2. Now, the formal completion at the origin of G is the formal spectrum of
\[\lim_{\longleftarrow} \mathcal{O}_{G, e}/m^n = k \times m/m^2 \times m^2/m^3 \times \cdots = k[[x_1, \cdots, x_g]]. \]
As a consequence of A.2.1 we get then

A.3.1. Lemma. Let G be an algebraic k-group. The Cartier dual of its formal completion \hat{G} is canonically isomorphic to $\omega_G = \text{Spec}(k[\text{Lie}(G)])$.

A.4. Homomorphisms and extensions. We defined “strongly exact” sequences in $\mathcal{M}_1^{\text{eff}}$ as exact sequences of complexes in \mathbf{Ab}/k. It is immediate to prove the following:

A.4.1. Lemma. If M is an effective k-1-motive and E is any sheaf in \mathbf{Ab}/k the morphism
\[\text{Ext}_{C[-1,0]}(\mathbf{Ab}/k)(M, E) \to \text{Hom}_{D^b(\mathbf{Ab}/k)}(M, E[1]) \]
is an isomorphism.

Now, $\mathcal{M}_1^\text{a,eff}$ is an exact subcategory of \mathcal{M}_1^a and strongly exact sequences of effective 1-motives are exact in \mathcal{M}_1^a. The converse is not true in general. However, any exact sequence in \mathcal{M}_1^a can be represented by a strongly exact sequence (cf. [3] for the classical case). Furthermore, \mathbb{G}_a-extensions of 1-motives are isomorphic to strongly exact extensions.

A.4.2. Proposition. Let M be an effective k-1-motive and W a k-vector group. Any isomorphism class of extensions of M by W in \mathcal{M}_1^a contains a strongly exact extension of M by W and the canonical map
\[\text{Ext}_{C[-1,0]}(\mathbf{Ab}/k)(M, W) \to \text{Ext}_{\mathcal{M}_1^\text{a}}(M, W) \]
is an isomorphism.
Proof. The injectivity follows immediately from the fact that any q.i. between 1-motives $[F \to G_i]$, $i = 1, 2$, is an isomorphism. For the surjectivity, let $\overline{G} \to [F_1 \to G_1] \to M$ be effective morphisms that provide an extension in \mathcal{M}_1^a. It means that $\iota: \overline{G} \to G_1$ is a monomorphism and f induces epimorphisms $f_F: F_1 \to F$ on the formal groups and $f_G: G_1 \to G$ on the algebraic k-groups. Moreover, $\text{Ker}(f_F) = \text{Ker}(f_G)/\text{Im}(\iota)$. If now G is a vector group W, one deduces easily that W is the kernel of the restriction of f to $V(G_1)$ and that any extension $[F_1 \to G_1]$ of M by W in \mathcal{M}_1^a is isomorphic to the extension $[F \to G_1/\text{Ker}(f_F)]$ of M by W in $\mathcal{M}_1^{a,\text{eff}}$. \hfill \Box

A.4.3. Lemma. Let F be a formal k-group. Then $\text{Hom}(F, \mathbb{G}_a)$ is a free k-module of finite rank.

Proof. For the connected part, it is sufficient to consider the case $F^0 = \widehat{\mathbb{G}}_a$. Now, $\text{Hom}(\widehat{\mathbb{G}}, \mathbb{G}) = \text{Hom}(\widehat{\mathbb{G}}, \mathbb{G}) = k$. For F étale and free, $\text{Hom}(F, \mathbb{G}) = \text{Lie}(T')$ where T' is the Cartier dual of F. For F_{tor} one has $\text{Hom}(F_{\text{tor}}, \mathbb{G}) = 0$. \hfill \Box

A.4.4. Lemma. Let G be a connected algebraic k-group and F a formal k-group. Then $\text{Hom}(G, F) = 0$.

Proof. As G is connected, $\text{Hom}(G, F_{\text{et}}) = 0$. It remains to prove that $\text{Hom}(G, \widehat{\mathbb{G}}_a) = 0$. Any morphism $f: L \to \widehat{\mathbb{G}}_a$, with L a linear k-group, is trivial because L is reduced. Suppose then $G = A$ an abelian variety and let $f: A \to \widehat{\mathbb{G}}_a$ be a morphism. The induced morphism $A \to \mathbb{G}_a$ is trivial. Moreover for any k-algebra C, $\widehat{\mathbb{G}}_a(C) = \text{Nil}(C)$ injects into $\mathbb{G}_a(C) = C$. Hence also f is trivial. \hfill \Box

A.4.5. Lemma. Let F be a formal k-group without torsion and G an algebraic connected k-group. Then $\text{Ext}_{\mathbb{A}^1/k}(G, F) = 0$.

Proof. For $F = F_{\text{et}}$ see [16], 2.3.2. For $F = F^0$ we reduce to the case $F = \widehat{\mathbb{G}}_a$. Observe that

$$\text{Ext}_{\mathbb{A}^1/k}(G, \widehat{\mathbb{G}}_a) = \text{Ext}_{\mathbb{A}^1/k}(G, \text{Hom}(\mathbb{G}_a, \mathbb{G}_m)) = \text{Biext}^1(G, \mathbb{G}_a; \mathbb{G}_m)$$

where we use Cartier duality for the first isomorphism and the exact sequence

$$\text{Ext}_{\mathbb{A}^1/k}(P, \text{Hom}(Q, \mathbb{G}_m)) \to \text{Biext}^1(P, Q; \mathbb{G}_m) \to \text{Hom}(P, \text{Ext}(Q, \mathbb{G}_m))$$

(cf. [12], VIII, 1.1.4) with $P = G$, $Q = \mathbb{G}_a$ for the second. Moreover

$$\text{Biext}^1(G, \mathbb{G}_a; \mathbb{G}_m) = \text{Biext}^1(\mathbb{G}_a, G; \mathbb{G}_m) = 0$$

because of [12], VII, 3.6.5 & VIII, 4.6. \hfill \Box

A.4.6. Lemma. Let F be a connected formal k-group. Then $\text{Ext}_{\mathbb{A}^1/k}(F, \mathbb{G}_a) = 0$ for any k-algebra C and $\text{Ext}(F, \mathbb{G}_m) = 0$.

Proof. We reduce to the case \(F = \hat{\mathbb{G}}_a \). Suppose given an extension
\[
0 \to \mathbb{G}_a \to H \to \hat{\mathbb{G}}_a \to 0
\]
over \(k \). We show that it is trivial. Denote by \(H_n \) the pull-back of \(H \) to the \(n \)-infinitesimal neighborhood \(\mathbb{G}_{a,n} = \text{Spec}(k[x]/(x^{n+1})) \) of \(\hat{\mathbb{G}}_a \). The scheme \(H_n \) is an \(\mathbb{G}_a \)-torsor over \(\mathbb{G}_{a,n} \) and hence trivial. In particular \(H_n \) is smooth over \(\mathbb{G}_{a,n} \). Recalling now that \(\mathbb{G}_{a,n-1} \to \mathbb{G}_{a,n} \) is a closed immersion with square zero ideal, the lifting property of smooth morphisms permits to construct a tower of compatible sections \(s_n: \mathbb{G}_{a,n} \to H_n \to H \) and hence compatible “factor sets” \(\gamma_n: \mathbb{G}_{a,n}^2 \to \mathbb{G}_a \) defined as
\[
\gamma_n(a,b) := s_{2n}(a + b) - s_n(a) - s_n(b).
\]
We may suppose that \(\gamma \) is normalized, i.e., \(s_n(0) = 0 \in \mathbb{G}_a(k) \). We may summarize this fact saying that we have a morphism \(\gamma: \hat{\mathbb{G}}_a \to \mathbb{G}_a \) as contravariant functor from \(\text{Aff}/k \) to the category of sets satisfying the usual properties of a factor set. Let \(P = \sum a_{ij} x_i^1 x_j^2 \) be the associated power series in \(k[[x_1,x_2]] \). As \(\gamma_n(0,b) = \gamma_n(a,0) = s_n(0) = 0 \) the polynomial \(\gamma_n(x) \) (that is \(P \) truncated at the \(n \)-th powers) is divisible by \(x_1 x_2 \) and \(\gamma_n \) factors through \(\mathbb{G}_{a,n} \). It provides then a “factor set” \(\hat{\gamma}: \hat{\mathbb{G}}_a^2 \to \mathbb{G}_a \) and \(H \) is the push-out along \(\hat{\mathbb{G}}_a \to \mathbb{G}_a \) of an extension \(E \) of \(\hat{\mathbb{G}}_a \) by itself. As any extension of connected formal \(k \)-groups is trivial, \(E \) is trivial and hence the same is \(H \).

Let now \(C \) be a \(k \)-algebra and \(H \) an extension of \(\hat{\mathbb{G}}_a \) by \(\mathbb{G}_a \) over \(C \). We can repeat the above construction getting “factor sets” \(\gamma_n \) over \(C \) determined by a power series \(P = \sum a_{ij} x_i^1 x_j^2 \) in \(C[[t]] \). In order to see that \(H \) is trivial, one is reduced to see that \(P \) can be written as \(h(x_1 + x_2) - h(x_1) - h(x_2) \) for a suitable power series \(h(t) = \sum b_n t^n \) with coefficients in \(C \). This is possible if
\[
(A.4.7) \quad \frac{a_{ij}}{(i+j)} = \frac{a_{mn}}{(m+n)} \quad \text{whenever} \quad i + j = m + n.
\]
This fact can be deduced comparing
\[
\sum a_{ij} x_i^1 x_j^2 \quad \text{and} \quad \sum b_n (x_1 + x_2)^n - \sum b_n x_1^n - \sum b_n x_2^n.
\]
Using now the property of factor sets
\[
\gamma(a,b) - \gamma(a,b+c) = \gamma(b,c) - \gamma(a+b,c)
\]
we get
\[
\sum a_{ij} x_i^1 y^j - \sum a_{ij} x_i^1 (y + z)^j = \sum a_{ij} y^i z^j - \sum a_{ij} (x + y)^i z^j, \quad \text{or}
\]
\[
(A.4.8) \quad \sum a_{ij} x_i^1 [y^j - (y + z)^j] = \sum a_{ij} [y^j - (x + y)^i] z^j.
\]
Now \(a_{ij} \binom{j}{k} \) is the coefficient of the term \(-x^i y^j z^k \) while \(a_{mn} \binom{m}{q} \) is the coefficient of the term \(-x^m q y^d z^n \). Observe that a monomial \(x^a y^b z^c \) occurs once on the left for \(i = a \) and \(j = b + c \) and on the right for \(m = a + b \) and \(n = c \). Considering
the same monomial on the right and on the left, the indices sat isfy the following
relations: \(i + j = m + n, s = n \) and \(q = j - n \). The A.4.8 implies that
\[
a_{ij} \binom{j}{n} = a_{mn} \binom{m}{j - n}.
\]
As
\[
\binom{j}{n} (i + j) = \binom{m}{j - n} (m + n)
\]
condition A.4.7 is satisfies.

Let now \(H \) be an extension of \(\hat{G}_a \) by \(\mathbb{G}_m = \text{Spec}(k[z, z^{-1}]) \) over a \(k \)-algebra \(C \). Let \(H_n \) be the pull-back of \(H \) to \(G_{a,n} \). Étale locally on \(C \), \(H_n \) is a triv-
ial \(\mathbb{G}_m \)-torsor. We may suppose that it is trivial on \(C \). Proceed then as above
constructing sections \(s_n: G_{a,n} \to H \) and normalized “factor sets” \(\gamma_n \) such that
\(\gamma_n^*(z - 1) \) is divisible by \(x_1 x_2 \). Hence \(\gamma_n \) factors through \(\text{Spec}(C[z, z^{-1}]/(z - 1)^n) \)
and we get a factor set \(\gamma: \hat{G}_a^2 \to \hat{G}_m \) over \(C \). As \(\hat{G}_m \) is isomorphic to \(\hat{G}_a \), we
proceed as done for \(\hat{G}_a \), showing that \(\gamma \) is equivalent to the trivial factor set. □

References
[1] L. Barbieri-Viale: On the theory of 1-motives, to appear in the Proceedings of the Workshop “Algebraic Cycles and Motives” on the occasion of the 75th birthday of J.P. Murre (2004, Lorentz Center, Leiden). Preprint [http://arxiv.org/abs/math.AG/0502476]
[2] L. Barbieri-Viale: Formal Hodge theory, preprint [http://arxiv.org/abs/math.AG/0511560]
[3] L. Barbieri-Viale and B. Kahn: On the derived category of 1-motives, in preparation (preliminary on line version available at authors home pages, 2006)
[4] L. Barbieri-Viale, A. Rosenschon and M. Saito: Deligne Conjecture on 1-motives, Annals of Math. 158 N. 2 (2003) 593-633.
[5] L. Barbieri-Viale and V. Srinivas: Albanese and Picard 1-motives, Vol. 87 Société Mathématique de France, 2001.
[6] A. Bertapelle: Deligne’s duality for de Rham realizations of 1-motives, preprint [http://arxiv.org/abs/math.AG/0506344]
[7] S. Bloch and V. Srinivas: Enriched Hodge Structures, in “Algebra, arithmetic and geometry. Part I, II.” Papers from the International Colloquium held in Mumbai, January 4–12, 2000. Edited by R. Parimala. Tata Institute of Fundamental Research Studies in Mathematics, 16, 171-184.
[8] P. Deligne: Théorie de Hodge III Publ. Math. IHES 44 (1974) 5–78.
[9] G. Faltings and G. Wüstholz: Einbettungen kommutativer algebraischer Gruppen und einige ihrer Eigenschaften, J. Reine Angew. Math. 354 (1984) 175–205.
[10] J.-M. Fontaine: Groupes \(p \)-divisibles sur les corps locaux, Astérisque 47-48 Société Mathématique de France, Paris, 1977.
[11] P. Gabriel: Exposé VII: Étude infinitésimale des Schémas en Groupes, in SGA3 Schémas en Groupes I, Springer LNM 151, 1970.
[12] A. Grothendieck: Exposé VII: Biextensions des faisceaux de groupes - Exposé VIII: Compléments sur les biextensions, propriétés générales des biextensions des schémas en groupes, in SGA7 - Groupes de monodromie en géométrie algébrique (1967-68), Springer LNM 288, 1972-73.
[13] G. Laumon: Transformation de Fourier généralisée, http://arxiv.org/abs/alg-geom/9603004 - Preprint IHES (Transformation de Fourier géométrique, IHES/85/M/52) 47 pages.
[14] S. Lekaus: Albanese and Picard 1-motives with \mathbb{G}_a-factors, in preparation.
[15] B. Mazur and W. Messing: Universal extensions and one dimensional crystalline cohomology, Springer LNM 370, 1974.
[16] M. Raynaud: 1-motifs et monodromie géométrique. Astérisque 223, 295-319 (1994)

Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova, Via G. Belzoni, 7, Padova – I-35131, Italy
E-mail address: barbieri@math.unipd.it
E-mail address: bertapel@math.unipd.it