Anatomical Studies of the Foliar Epidermis and Petiole of some *Lannea* Species in Jos, Plateau State, Nigeria

Ogochukwu E. Okanume**, Lynda C. Ebelebe¹ and O. A. Oso²

¹Department of Plant Science and Biotechnology, University of Jos, Plateau State, PMB 2084, Jos, Nigeria.
²Departments of Botany, University of Ibadan, Ibadan Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author OEO designed the study, participated in the bench work and wrote the first draft of the manuscripts. Author LCE carried out field work, bench work, performed the statistical analysis. Author OAO reviewed the manuscripts. The three authors read and approved the final manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/APRJ/2021/v8i2/30174

Editor(s):
(1) Dr. Shiamala Devi Ramaiya, Universiti Putra Malaysia, Malaysia.

Reviewers:
(1) María Gretel Michel Barba, Margrey Industrial S. A de C.V, Mexico.
(2) Geovana Carla Girondi Delaqua, State University of Northern Rio de Janeiro, Brazil.

Complete Peer review History: https://www.sdiarticle4.com/review-history/73543

Received 28 June 2021
Accepted 08 September 2021
Published 15 September 2021

ABSTRACT

Aims: Leaf epidermal morphology and petiole anatomy of seven *Lannea* species namely; *Lannea velutina*, *Lannea kerstingii*, *Lannea egregia*, *Lannea schimperii*, *Lannea acida*, *Lannea microcarpa*, and *Lannea edulis* in Nigeria were investigated to provide new taxonomic characters that could help in proper identification and delimitation of the taxa.

Place and Duration of Study: The study was carried out in the Department of Plant Science and Biotechnology, University of Jos, Nigeria between August 2020 and March 2021.

Methodology: Transverse sections of petioles were cut using a rotary microtome and epidermal peels were made. Staining was done using Safranin and slides observed using a light microscope.

Results: Stomatal distribution was hypostomatic except for *L. velutina* and *L. edulis* with amphistomatic distribution. Three stomata types are found; paracytic occurring in *L. velutina*, *L. edulis* and *L. egregia*, cyclocytic in *L. schimperii* and *L. microcarpa* and anomocytic in *L. kerstingii*.

Corresponding author: E-mail: okanumeogochukwu@gmail.com
and *L. acida*. Stomata index vary among taxa with *L. egregia* and *L. acida* having the highest (22.43%) and lowest (12.17%) respectively. The epidermal cell shape was polygonal in all the species and anticinal wall patterns were straight to slightly curved. Unicellular/multicellular uniseriate trichomes were observed in *L. schimperi*, *L. egregia* and *L. kerstingii* distinguishing them from other species. Petiole outlines were circular to oval, epidermis was uniseriate and vascular bundles are collateral. Presence of continuous sclerenchyma rings surrounding the vascular bundles in *L. kerstingii* and *L. microcarpa* serve as a distinguishing character. Other distinguishing characters are presence of crystals, druses and phenolic idioblasts. A taxonomic key was produced using the anatomical character as an aid to the identification of the species.

Conclusion: Variations observed in the stomata types, petiole outline, petiole vasculature type, trichome type and stomata index could be employed for species identification and delimitation.

Keywords: Collateral; stomata; idioblasts; epidermis; trichome; delimitation.

1. INTRODUCTION

Anatomical data are of taxonomic value to researchers and have proven to be useful in the identification of small scraps of plants [1]. The foliar epidermis offers important taxonomic features and many taxonomic decisions have been made based on them. The epidermal characters of systematic value are stomata features, trichome types and epidermal cell complex [2]. These characters have aided in the proper understanding of the relationship among different taxa [3, 4]. The importance of petiole anatomy in understanding the relatedness within a plant group has been studied extensively and noted to be a region of consistency within the plant in which the median portion can be comparatively observed studied. Its usefulness as a complementary tool in plant taxonomy and systematics has increased recently and the petiole structures have been reported to exhibit differences within and between genera and species [5, 6].

The genus *Lannea* A.Rich, a member of the family Anacardiaceae contains about 40 species majorly trees, shrubs and under-shrubs. They are widely distributed in tropical Africa with three species extending into tropical Arabia and one species in southern Asia eastwards to China. Some *Lannea* species are used in indigenous medicine practice; the roots and bark of *Lannea* are used in the treatment of rachitic children, strained muscles and diarrhea. In Mali, *L. velutina* is used in treating chest pain, wounds, skin disease, respiratory tract diseases and gastric ulcer. The bark and root decoction of *L. schimperi* is used against chest pains, colds, diarrhea and dysentery in Malawi and Tanzania [7]. In Nigeria, the barks of *L. acida* is used in the treatment of hemorrhoids, dysentery and malnutrition [8]. In Ghana, the leaves of *L. acida* are mixed with those of *Mangifera indica* L. and *Azadirachta indica* A. Juss. for the treatment of malaria [9]. The plant decoction of *L. egregia* is used for treating diarrhea, epilepsy, rheumatism and gastric pains [10]. The bark, leaf and root decoction are used as ethno-veterinary medicine for blackleg, diarrhea, dysentery and fever in Ethiopia and Nigeria [11, 12]. The fruits of *L. acida* have a slightly acidic resinous, pleasant taste and are eaten raw or made into jam, juice and puddings [13]. *Lannea* species also provide timber that is used locally.

Previously, attempt has been done on the taxonomy of some species of the genus *Lannea*. AbdulRahaman [2] focused on the foliar epidermis of the species specifically the stomata complex, trichome type and epidermal cell complex while Elamin [14] focused on the wood anatomy of the genus and observed some wood anatomical characters that separated the species. Unfortunately, petiole anatomical study of the genus *Lannea* is still insufficient despite it been a morphologically diverse taxonomic group. This study therefore describes the leaf and petiole anatomy of seven *Lannea* species some of which have not been previously reported with the aim of providing additional data of taxonomic significance and using these characters for species identification and delimitation.

2. MATERIALS AND METHODS

2.1 Sample Collection

Samples of the seven *Lannea* species were collected from various locations within Jos, Plateau State. The plants were identified, authenticated and voucher specimens deposited at the Herbarium of the Federal College of Forestry, Jos, Plateau state Nigeria (Table 1).
Table 1. Voucher specimens of the studied *Lannea* species

Species name	Locality	Collection date	GPS coordinates	Voucher numbers
Lannea velutina A. Rich	Shere hills, Jos	25/08/2019	N09.93335° / E008.93505°	FHJ276
			1339 m	
Lannea acida A. Rich	Shere hills, Jos	25/08/2019	N09.93414° / E008.93465°	FHJ280
			1348 m	
Lannea egregia Engl. & K. Krause	Shere hills, Jos	25/08/2019	N09.92826° / E008.93186°	FHJ283
			1231 m	
Lannea kerstingii Engl. & K. Krause	Shere hills, Jos	25/08/2019	N09.92664° / E008.93448°	FHJ278
			1266 m	
Lannea microcarpa Engl. & K. Krause	Shere hills, Jos	25/08/2019	N09.93208° / E008.93509°	FHJ279
			1308 m	
Lannea edulis (Sond.) Engl.	Shere hills, Jos	25/08/2019	N09.93405° / E008.93489°	FHJ281
			1332 m	
Lannea shimperii (Hochst. Ex A. Rich.) Engl.	Dang-kang, LGA Plateau state	16/09/2019	N09.08989° / E009.76665°	FHJ284
			506 m	
2.2 Sample Preparation and Analysis

The epidermal peels of both the adaxial and abaxial surfaces of the leaves of each plant were made. The leaf materials were cut (2-5 cm) and soaked in concentrated trioxonitrate (v) acid (HNO₃) in a glass petri dish, covered and allowed to stand for 3 hours. The epidermises were separated with forceps, rinsed in distilled water and stained in Safranin solution. The epidermises were transferred into 50 % ethanol for 1-2 minute(s) to remove excess stains, afterwards mounted in 25 % diluted glycerine [15]. The parameters observed include; stomatal distribution, stomata type, epidermal cell shape, Anticlinal wall pattern, trichome type while the quantitative character measured are stomata length, stomata width, epidermal length and width. Stomata index was calculated using the formula of Stace [16].

\[\text{Stomata Index (S.I) = } \frac{S}{E+S} \times 100 \]

Where,

\[S = \text{Stomata number per unit area} \]
\[E = \text{Epidermal cell number per unit area} \]

For the study of the petiole anatomy of the species, transverse sections of 5-10 µm thickness from the median regions for each of the species were obtained using a rotary microtome. The sections were stained in 10 % aqueous Safranin solution, counter stained in lactophenol and mounted in diluted glycerine [17]. Specimen slides were observed using light microscopy and photomicrographs were captured under magnification of X400 and X100 using Olympus microscope with attached celestron digital camera. Petiole characters observed include petiole outline, cortex layers, vascular bundle type, petiolar vasculature type and cell inclusions (druses, crystals and phenolic idioblast). The identification and description of tissue and cell followed Fahn [18].

3. RESULTS AND DISCUSSION

Detailed foliar epidermal and petiole anatomy of the seven species studied are presented below. The qualitative and quantitative features of the epidermises and petioles are presented in Tables 2-4, accompanying photomicrographs in Plates (1-7).

3.1 Lannea Velutina

3.1.1 Foliar epidermis

The leaf is amphistomatic, with more stomata on the adaxial than the abaxial surface. On the abaxial surface, the stomata type is paracytic, stomata index 15.74 %, mean length and width of stomata up to 1.50 µm and 0.92 µm respectively. Epidermal cells are polygonal and anticlinial walls are straight to slightly curve, mean length and width of cells up to 3.96 µm and 2.88 µm respectively (Plate 1A). However, on the adaxial surface (Plate 1B), stomata type is paracytic, stomata index 14.99 %, mean stomata number 23, mean length and width of stomata up to 1.44 µm and 0.86 µm respectively. epidermal cells are polygonal with straight to slightly curve anticlinal walls, mean length and width of cells up 4.62 µm and 2.98 µm respectively.

3.1.2 Petiole anatomy

Petiole outline is oval and epidermis is uniseriate. Collenchyma cells are oval, 13-20 layers below the epidermis and parenchyma cells are oval, 8-12 layers. Vascular bundle is collateral, 14 in number and surrounded by 3 layers of discontinuous sclerenchyma rings. The median bundle has 4 strands of xylem. Petiolar vasculature type is closed. Phenolic idioblasts are randomly distributed on the cortex and vascular bundles (Plates 1C-D).

3.2 Lannea Acida

3.2.1 Foliar epidermis

The leaf is hypostomatic, with stomata on the abaxial surface only. On the abaxial surface, the stomata type is anomocytic, stomata index 12.17 %, mean length and width of stomata up to 2.80 µm and 1.90 µm respectively. Epidermal cells are polygonal and anticlinial walls are slightly curve, mean length and width of cells up to 7.50 µm and 4.30 µm respectively (Plate 2A). However, on the adaxial surface (Plate 2B), epidermal cells are polygonal with slightly curve anticlinal walls, mean length and width of cells up 7.68 µm and 3.90 µm respectively.

3.2.2 Petiole anatomy

Petiole outline is circular and epidermis is uniseriate. Collenchyma cells are oval, 11-15 layers below the epidermis and parenchyma cells are oval to circular, 12-14 layers. Vascular bundle is collateral, 7 in number and surrounded by 2 layers of discontinuous sclerenchyma rings. The median bundle has 5 strands of xylem.
Petiolar vasculature type is closed. Druses are randomly distributed on the cortex (Plates 2C-D).

3.3 Lannea Schimperii

3.3.1 Foliar epidermis

The leaf is hypostomatic, with stomata on the abaxial surface only. On the abaxial surface, the stomata type is cyclocytic, stomata index 15.68 %, mean length and width of stomata up to 2.56 μm and 0.96 μm respectively. Unicellular uniseriate trichomes present, mean trichome length and width 21.92 μm and 1.08 μm respectively. Epidermal cells are polygonal and anticlinal walls are straight, mean length and width of cells up to 4.02 μm and 5.20 μm respectively. Phenolic idioblasts and crystals are randomly distributed on the cortex and vascular bundles (Plates 3C-D).

3.3.2 Petiole anatomy

Petiole outline is oval and epidermis is uniseriate, having unicellular uniseriate trichomes. Collenchyma cells are angular, 7-8 layers below the epidermis and parenchyma cells are angular, 12-16 layers. Vascular bundle is collateral, 10 in number and surrounded by 2 layers of discontinuous sclerenchyma rings. The median bundle has 5 strands of xylem. Petiolar vasculature type is closed. Druses are randomly distributed on the cortex (Plates 3C-D).

3.4 Lannea Egregia

3.4.1 Foliar epidermis

The leaf is amphistomatic, with stomata on both abaxial and adaxial surfaces. On the abaxial surface, the stomata type is paracytic, stomata index 17.59 %, mean length and width of stomata up to 1.90 μm and 0.88 μm respectively. Epidermal cells are polygonal and anticlinal walls are slightly curve, mean length and width of cells up to 7.06 μm and 2.38 μm respectively. Phenolic idioblasts and crystals are randomly distributed on the cortex and vascular bundles (Plates 5C-D).

3.4.2 Petiole anatomy

Petiole outline is circular and epidermis is uniseriate, having unicellular uniseriate trichomes. Collenchyma cells are angular, 13-14 layers below the epidermis and parenchyma cells are angular, 6-7 layers. Vascular bundle is collateral, 15 in number and surrounded by 3 layers of discontinuous sclerenchyma rings. The median bundle has 4 strands of xylem. Petiolar vasculature type is closed. Druses are randomly distributed on the cortex (Plates 5C-D).

3.5 Lannea Edulis

3.5.1 Foliar epidermis

The leaf is hypostomatic, with stomata on the abaxial surface only. On the abaxial surface, the stomata type is paracytic, stomata index 17.09 %, mean length and width of stomata up to 2.14 μm and 0.78 μm respectively. Epidermal cells are polygonal and anticlinal walls are straight to slightly curve, mean length and width of cells up to 7.22 μm and 4.78 μm respectively (Plate 6A). However, on the adaxial surface (Plate 6B), epidermal cells are polygonal with straight anticlinal walls, mean length and width of cells up 10.40 μm and 7.56 μm respectively.

3.6 Lannea Microcarpa

3.6.1 Foliar epidermis

The leaf is hypostomatic, with stomata on the abaxial surface only. On the abaxial surface, the stomata type is cyclocytic, stomata index 17.09 %, mean length and width of stomata up to 2.14 μm and 0.78 μm respectively. Epidermal cells are polygonal and anticlinal walls are straight to slightly curve, mean length and width of cells up to 7.22 μm and 4.66 μm respectively (Plate 6A). However, on the adaxial surface (Plate 6B), epidermal cells are polygonal with straight to slightly curve anticlinal walls, mean length and width of cells up 10.40 μm and 7.56 μm respectively.
Table 2. Stomatal features in the studied *Lannea* species

Taxa	Stomata length	Stomata width	Stomata index	Stomata type				
	Adaxial	Abaxial	Adaxial	Abaxial				
Lannea velutina	1.44±0.09^a	1.50±0.48^a	0.86±0.06^a	0.92±0.07^b	14.99^a	15.74^c	Paracytic	Paracytic
Lannea acida	-	2.80±0.28^c	-	1.90±0.12^d	-	12.17^a	-	Anomocytic
Lannea schimperii	-	2.56±0.29^a	-	0.96±0.09^b	-	15.68^c	-	Cyclocytic
Lannea eggeria	-	2.00±0.09^c	-	0.76±0.14^a	-	22.43^g	-	Paracytic
Lannea edulis	2.22±0.23^b	1.90±0.12^b	1.02±0.11^b	0.88±0.09^b	17.52^o	17.59^d	Paracytic	Paracytic
Lannea microcarpa	-	2.14±0.16^c	-	0.78±0.08^a	-	17.09^c	-	Cyclocytic
Lannea kerstingii	-	1.76±0.08^a	-	1.16±0.07^c	-	13.29^b	-	Anomocytic

^Measurements= Mean±SE
Mean values with the same letter(s) in a column are not significantly different at p < 0.05.

Table 3. Epidermal and trichome features in the studied *Lannea* species

Taxa	Epidermal cell shape	Anticlinal wall pattern	Trichome type	
	Adaxial	Abaxial		
Lannea velutina	Polygonal	Polygonal	Straight/slightly curve	Absent
Lannea acida	Polygonal	Polygonal	slightly curve	Absent
Lannea schimperii	Polygonal	Polygonal	Straight	Unicellular
				uniciseriate
Lannea eggeria	Polygonal	Polygonal	Straight	Absent
Lannea edulis	Polygonal	Polygonal	slightly curve	Absent
Lannea microcarpa	Polygonal	Polygonal	Straight/slightly curve	Absent
Lannea kerstingii	Polygonal	Polygonal	Straight/slightly curve	Absent
				Multicellular
				uniciseriate
Table 4. Qualitative Anatomical Characters of the petioles of the *Lannea* species

Species	Petiole outline	Epidermis ring type	Sclerenchyma ring type	Vascular bundle	PVT	Trichome type	Druses	Crystals	Phenolic idioblasts	
L.microcarpa	Oval	Uniseriate	Continuous	Collateral	Closed	Absent	Present	Present	Absent	
L.schimperii	Oval	Uniseriate	Discontinuous	Collateral	Closed	Multicellular uniseriate	Absent	Present	Present	
L.edulis	Circular	Uniseriate	Discontinuous	Collateral	Closed	Absent	Present	Absent	Absent	
L.egregia	Circular	Uniseriate	Discontinuous	Collateral	Closed	Open	Unicellular uniseriate	Absent	Absent	Absent
L.acida	Circular	Uniseriate	Discontinuous	Collateral	Closed	Absent	Absent	Absent	Absent	
L.velutina	Oval	Uniseriate	Discontinuous	Collateral	Closed	Absent	Absent	Absent	Present	
L.kerstingii	Circular	Uniseriate	Continuous	Collateral	Closed	Multicellular uniseriate	Absent	Absent	Present	

PVT=Petiolar vasculature type
Plate 1. (A-D)-Epidermal and petiole of anatomical features *Lannea velutina*: PS-paracytic stomata, CO-collenchyma, PA-parenchyma, VB-vascular bundle, DR-druses, XY-xylem, PH-phloem, SC-sclerenchyma

Plate 2. (A-D)-Epidermal and petiole of anatomical features *Lannea acida*: ANS-anomocytic stomata, PG-polgonal cell, CO-collenchyma, PA-parenchyma, VB-vascular bundle, DR-druses, XY-xylem, SC-sclerenchyma
Plate 3. (A-D)-Epidermal and petiole of anatomical features *Lannea schimperii*: CY-cyclocytic stomata, Unicellular trichome, EP-epidemis, PHI-phenolic idioplast, CO-collenchyma, PA-parenchyma, VB-vascular bundle, XY-xylem

Plate 4. (A-D)-Epidermal and petiole of anatomical features *Lannea egregia*: PS-paracytic stomata, UT-Unicellular trichome, PA-parenchyma, VB-vascular bundle, SC-sclerenchyma
Plate 5. (A-D)-Epidermal and petiole of anatomical features *Lannea edulis*: PS-paracytic stomata, ST-straight cell wall, PG-polygonal cell, CO-collenchyma, PA-parenchyma, VB-vascular bundle, DR-druces, SU-slightly curve, SC-sclerenchyma

Plate 6. (A-D)-Epidermal and petiole of anatomical features *Lannea microcarpa*: CY-cyclocytic stomata, PG-polygonal cell, CO-collenchyma, PA-parenchyma, VB-vascular bundle, XY-xylem, PH-phloem
3.6.2 Petiole anatomy

Petiole outline is oval and epidermis is uniseriate. Collenchyma cells are oval to angular, 9-11 layers below the epidermis and parenchyma cells are oval to angular, 9-16 layers. Vascular bundle is collateral, 16 in number and surrounded by 2 layers of continuous sclerenchyma rings. The median bundle has 6 strands of xylem. Petiolar vasculature type is closed. Druses and crystals are randomly distributed on the cortex and pith (Plates 6C-D).

3.7 Lannea Kerstingii

3.7.1 Foliar epidermis

The leaf is hypostomatic, with stomata on the abaxial surface only. On the abaxial surface, the stomata type is anomocytic, stomata index 13.29%, mean length and width of stomata up to 1.70 μm and 1.16 μm respectively. Multicellular uniseriate trichomes present, mean trichome length and width 6.46 μm and 1.04 μm respectively. Epidermal cells are polygonal and anticlinal walls are straight to slightly curve, mean length and width of cells up to 2.96 μm and 1.60 μm respectively (Plate 7A). However, on the adaxial surface (Plate 7B), epidermal cells are polygonal with straight to slightly curve anticlinal walls, mean length and width of cells up 3.18 μm and 1.52 μm respectively.

3.7.2 Petiole anatomy

Petiole outline is circular and epidermis is uniseriate, having multicellular uniseriate trichomes. Collenchyma cells are oval, 6-8 layers below the epidermis and parenchyma cells are oval, 5-6 layers. Vascular bundle is collateral, 7 in number and surrounded by 2 layers of continuous sclerenchyma rings. The median bundle has 4 strands of xylem. Petiolar vasculature type is closed. Phenolic idioblasts randomly distributed on the cortex (Plates 7C-D).

Anatomical data has long been recognized in plant systematics and are used as taxonomic tool since variation among taxa is usually reflected in anatomical characters [19]. Many researchers including Aworinde et al. [20], Akinnubi et al. [6], Chukwuma et al. [21] opined that leaf epidermal characters such as stomata type, distribution and size, epidermal cell, presence or absence of trichomes and other cell inclusions are useful tools and have provided supplementary data of
taxonomic importance. Also, Nurui-Aimi et al. [22], Santos et al. [23] and Noraimi et al. [24] opined that petiole anatomical characters such as number, shape and arrangement of vascular bundles and petiole outline are consistent in angiosperms and could be used in plant identification and classification.

This study shows a number of important anatomical characters on the leaf surfaces and petiole sections of Lannea species. Although, new characters not previously reported were observed especially in the petiole anatomy, however, the foliar epidermis agreed with previous studies. Ogunkunle and Oladele [25] and AbdulRahaman and Oladele [26] reported that epidermal characters represent genetic variations and have been used to solve some taxonomic problems in some plant groups.

The presence of hypostomatic stomatal distribution on the leaf surfaces of five Lannea species studied is in agreement with AbdulRahaman et al. [2] who also observed hypostomatic stomatal distribution in the Lannea species studied. The presence of anomocytic and cycloctic stomata types in the Lannea species corroborates the report of AbdulRahaman et al. [2], however, the presence of paracyclic stomata in L. velutina and L. edulis contradicts the work of AbdulRahaman et al. [2] who observed only cycloctic and anomocytic stomata types in the Lannea species studied. Davies and Heywood [27] opined that stomatal size was too variable as a diagnostic feature, however, Adedeji and Jewoola [28] and Essiett and Akpabilo [29] implied that stomatal size can occasionally be used as a distinguishing character because it shows a wider range in some species than in others and have documented its systematic relevance. Stomatal size was lowest and highest in L. velutina and L. acida respectively. Furthermore, the lowest and highest stomata indices were observed in L. acida and L. egregia respectively. This study corroborates the report of Adedeji and Jewoola [28] and Essiett and Akpabilo [29] indicating that stomata sizes vary and could serve as distinguishing character among the species.

The appearance of the stomata on the leaf surfaces and stomata types varied among the studied species and these could serve as distinguishing factors. Based on the stomatal complex, the studied species can be separate into four groups; L. velutina and L. edulis with amphistomatic leaf surface and paracyclic stomata type differ from other species. Also, L. Kerstingii and L. acida with hypostomatic surface and anomocytic stomata type can be easily distinguished from other species studied. Similarly, L. schimperii and L. microcarpa are hypostomatic with cycloctic stomata type are separated from other species. However, L. egregia is hypostomatic with paracyclic stomata distinguishing it from other members of this genus.

The presence of polygonal epidermal cell shape in the Lannea species studied corroborates the reports of AbdulRahaman et al. [2] who also observed polygonal cell shape in the Lannea species, however, the presence of slightly curved anticlinal walls contradicts their observation of round anticlinal walls.

Huan-Fang et al. [30] reported that the type, presence or absence, size and distribution of trichomes are important diagnostic characters in plant identification and classification. Similarly, the presence and absence of trichomes can be used in characterizing the studied Lannea species. The presence of unicellular and/or multicellular uniserate trichomes on the leaf surfaces of L. Kerstingii, L. schimperii and L. egregia distinguished them from L. velutina, L. edulis, L. microcarpa, and L. acida with no trichomes.

Petiole anatomy has been utilized for solving taxonomic problems and characters such as petiole outline, layers of collenchyma, sclerenchyma and parenchyma cells, arrangements and types of vascular bundles and trichome distributions have been reported by some researchers including Ogundipe and Olatunji [31] and Adedeji and Illoh [32] as useful tools in the identification and delimitation of plant taxa.

The presence of oval to circular petiole outline, one layered epidermis, parenchymatous cortex and closed to open petiolar vasculature system in the studied species is in agreement with Sharma et al. [33] and Cahyanto et al. [34] who observed these characters in the Anacardiaceae species studied.

The presence of trichome on the petioles of L. Kerstingii, L. schimperii and L. egregia distinguished them from the other species without trichomes. Furthermore, the presence of layers of continuous sclerenchyma rings surrounding the vascular bundles in L. microcarpa and L. Kerstingii, separate them from
the other species with discontinuous sclerenchyma rings surrounding the vascular bundles. Similarly, the presence of phenolic idioblasts on the parenchyma cells of *L. velutina*, *L. schimperii* and *L. kerstingii* distinguished them from other species.

An artificial key to the studied *Lannea* species using leaf epidermal and petiole anatomical characters is provided for easy species identification.

1a. Amphistomatic stomatal distribution, oval petiole outline…………………………………………..2
2a. Stomata length 1.44-1.50 µm, stomata width 0.86-0.92 µm, phenolic idioblast present……………………*L. velutina*
2b. Stomata length 1.90-2.22 µm, stomata width 0.88-1.02 µm, phenolic idioblast absent……………………*L. edulis*
1b. Hypostomatic stomatal distribution, circular petiole outline………………………………………….3
3a. Trichome present on foliar epidermis, collenchyma cells 5-8 layers……………………………………4
4a. Multicellular trichome present, trichome length 5.6-7.4 µm, trichome width 0.60-1.60 µm……………………*L. kerstingii*
4b. Unicellular trichome present, trichome length 4.00-30.00 µm, trichome width 0.60-5.00 µm …………………5
5a. Stomata type paracytic, petiolar vasculature open, sclerenchyma 8-9 layers…………………………*L. egregia*
5b. Stomata type cyclocytic, petiolar vasculature closed, sclerenchyma 2 layers ……………………………*L. schimperii*
3b. Trichome absent on foliar epidermis, collenchyma cells 9-15 layers………………………………………...6
6a. Sclerenchyma ring continuous, stomata type cyclocytic, crystals present……………………………..*L. microcarpa*
6b. Sclerenchyma ring discontinuous, stomata type anomocytic, crystals absent ……………………………*L. acida*

4. CONCLUSION

Understanding the high-value taxonomic characters of the *Lannea* leaves is an important systematic consideration in studying the group. The leaf epidermal and petiole anatomical features are said to be taxonomically significant because of the differences that occur among the studied species. The diagnostic features used for species delimitation and identification include stomata type, stomata index, stomata size, trichome type, petiole outline, petiole vasculature type, type of sclerenchyma rings and presence of phenolic idioblasts. These characters have not been considered wholistically in the grouping of the *Lannea* species, and we believe our results have revealed them to be strong enough to provide useful insights on infrageneric relationship within the group.

ACKNOWLEDGEMENTS

We like to acknowledge Mr Agyeno Otuwese of Plant Science and Biotechnology Department, University of Jos, Nigeria, for his help in the identification of the plants used in the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Essiett UA, Illoh HC, Udoh UE. Leaf epidermal studies of three Euphorbia species in Akwa Ibom state. Advanced Applied Science Research. 2012;3(4): 2481-2491.
2. AbdulRahaman AA, Kolawole OS, Oladele FA. Leaf epidermal features as taxonomic characters in some *Lannea* species (Anacardiaceae) from Nigeria. Phytologia Balcanica. 2014;20(2-3):227-231.
3. Olowokudejo JD, Ayodele AE. The diversity of leaf epidermal features in the genus Hyptis Jacq. (Labiatae) in West Africa. Bio-Science Research Bulletin. 2007;23(2):141-158.
4. Kadiri AB, Oboh B, Oha C. systematic value of foliar epidermal morphology in some taxa of the tribes: Urticeae and Parietariae of the West African Urticaceae. Thaiszia Journal of Botany, Kosice. 2011; 21:73-83.
5. Olowokudejo JD. 1987. Taxonomic value of petiole anatomy in the genus Biscutella L. (Cruciferae). Bulletin du Jardin Botanique National de Belgique. 1987;57: 307-320
6. Akinnubi FM, Akinloye AJ, Oladipo OT. Petiole anatomy of some species of Asteraceae in Southwest Nigeria. African Journal of Plant Science. 2013;7(12):608-612.
7. Chhabra SC, Uiso FC, Mshiu EN. Phytochemical screening of Tanzanian
medicinal plants. International Journal of Ethnopharmacology. 1987;11:157-179.
8. Ellenberg H, Weber HE, Du R, Wirth V, Werner W, Paulissen D. Ecological investigation in forest island in the Gambia. Vol. 2. Gambia: Gambia Press; 1998.
9. Asase A, Oteng-Yeboah AA, Odamten GT, Simmonds MS. Ethnobotanical study of some Ghanaian anti-malarial plants. Journal of Ethnopharmacology. 2005;99:273-279.
10. Rafiu BO, Sonibare AM, Adesanya EO. Phytochemical screening, antimicrobial and antioxidant studies of Lannea egregia Engl. and K. Krause (Anacardiaceae) stem bark. Journal of Medicinal Plants Economic Development. 2019;3(1):2-9.
11. Faleyimu Ol. Indigenous uses of medicinal plants for the treatment of farm animals in Rafi Local Government Area, Niger state, Nigeria. Journal of Sustainable Development in Africa. 2015;17:1-11.
12. Djoueche CM, azebaze AB, Dongmo AB. Investigation of plants used for the ethnoveterinary control of gastrointestinal parasites in Benoue region, Cameroon. Tropiculture. 2011;29:205-211.
13. Burkill HM. The useful plants of West Tropical Africa. Kew: Royal Botanic Gardens; 1995.
14. Elamin EE. Anatomical structure of three species of Lannea. Acta Scientific Agriculture. 2018;21(4):2-4.
15. Metcalfe CR, Chalk L. Anatomy of the Dicotyledons: Systematic Anatomy of Leaf and Stem, with a Brief History of the Subject. 2nd Edition. Oxford: Clarendon Press; 1979.
16. Stace CA. Cuticular studies as an aid to plant taxonomy. Bulletin of British Museum (Natural History) Botany. 1965;4:3-78.
17. Johansen DA. Plant microtechnique. New York: McGraw-Hill; 1940.
18. Fahn A. Plant Anatomy. 2nd edition. Oxford: Pergamon Press; 1997.
19. Soladoye MO. Leaf epidermal studies in the African genus Baphia Lodd., and related genera (Papilionoideae-Sophoreae). Bulletin du Jardin Botanique National de Belgique. 1982;52:415-437
20. Aworinde DO, Ogundairo BO, Osuntoyinbo KF, Olanloye OA. Foliar epidermal characters of some Sterculiaceae species in Nigeria. Bayero Journal of Pure and Applied Sciences. 2012;5(1):48-56.
21. Chukwuma EC, Soyewo LT, Okenlawon TF, Ugbofu OA. Foliar and petiole anatomy of Pterygota (Sterculioideae; Malvaceae) species and their distribution in Nigeria. Anales de Biologia. 2017;39:103-109.
22. Nurul-Aini CAC, Noraini T, Latiff A, Chung RCK, Nurhanim MN, Ruzi M. Systematic significance of petiole anatomical characteristics in Microcos L. (Malvaceae: Grewioideae). Malayan Nature Journal. 2013;65:145-170.
23. Santos RF, Nunes BM, Sa RD, Soares LAL, Randau KP. Morpho-anatomical study of Ageratum conyzoides. Revista Brasileira de Farmacognosia. 2016;26:679-687.
24. Noraini T, Ruzi AR, Ismai BS, Ummu-Hani IB, Salwa S, Azizi-Azeyanty J. Petiole vascular bundles and its taxonomic value in the tribe dipterocarpeae (Dipterocarpaceae). Sains Malaysiana. 2016;45:247-253.
25. Ogunkunle ATJ, Oladele FA. Leaf epidermal studies in some Nigerian species of Ficus L. (Moraceae). Plant Systematic Evolution. 2008;274:209-221.
26. AbdulRahaman AA, Oladele FA. Leaf micromorphology of some Amaranthus species. Nigerian Journal of Pure and Applied Science. 2010;23:2136-2143.
27. Davis PA, Heywood VH. Principle of angiosperm taxonomy. Edinburgh: Oliver and Boyd; 1963.
28. Adedeji O, Jewoola DA. Importance of leaf epidermal characters in the Asteraceae family. Notulae Botanicae Horti, Agrobotanic cluj-Napoca. 2008;36(2):7-16.
29. Essiett UA, Akpabio KE. The comparative anatomy of Talinum triangulare and Talinum portulacifolium in Nigeria. Anales de Biologia. 2004;31:147-180.
30. Huan-Fang L, Yun-Fei D, Jing-Ping L. Foliar trichomes of Croton L. (Euphorbiaceae: Crotonoideae) from China and its taxonomic implications. Bangladesh Journal of Plants Taxon. 2013;20(1):85-94.
31. Ogundipe OT, Olutunji K. Vegetative anatomy of Brachiaria obtussiflora. Feddes Report. 1991;102:159-165.
32. Adedeji O, Illoh HC. Comparative foliar anatomy of ten species in the genus Hibiscus Linn. in Nigeria. New Botanist. 2004;31:147-180.
33. Sharma BG, Albert S, Dhaduk HK. Petiolar anatomy as an aid to the identification of Mangifera indica L. Varieties. Notulae Scientia Biologicae. 2012;4(1):44-47.
34. Cahyanto T, Sopian A, Efendi M, Kinasih I. The diversity of Mangifera indica cultivars in Sabang West Java based on morphological and anatomical characteristics. Biosaintifika. 2017;9(1):156-167.