A study to assess the knowledge regarding rabies prevention among general population of community residing at Pratap Nagar, Jodhpur, Rajasthan

Vandna Pandey1, Nancy Kurien1, Sangeeta Ghintala2, Sharda Saini2, Shivani Chauhan3, Shweta Sharma2, Sonali Sharma4, Suman Kachhawaha2, Suman Gurjar5, Suman Bhatiya2

INTRODUCTION

Rabies, also known as hydrophobia, is an acute viral disease that affects central nervous system, causing acute encephalitis in warm blooded animals including mammals. The virus responsible for rabies is Lyssavirus type I (which is derived from the Greek word lyssa meaning ‘madness’). Rabies is estimated to cause 59,000 human deaths annually in over 150 countries, with 95% of cases occurring in the Asia and Africa regions. In Asia estimated human deaths due to rabies are 35,172 per year. India accounts for 59.9% of rabies death in Asia and 35% of...
The present study was carried out to assess the knowledge regarding rabies prevention in community, Pratap Nagar, Jodhpur, Rajasthan. In this study, quantitative research approach was used to assess the knowledge regarding rabies prevention in community, Pratap Nagar, Jodhpur, Rajasthan. The population was general population under age group 18 to 60 years of age residing in urban area of Pratap Nagar, Jodhpur, Rajasthan. Non-Probability Convenient sampling technique was adopted for this study. The self-structured questionnaire method was adopted for data collection. Self-structured knowledge questionnaire was prepared for assessing the knowledge of general population regarding prevention of rabies based on the review of research and non-research literature and opinion of experts.

The data was collected using self-structured questionnaire consisting of two parts: (a) Part A-items of demographic variables like age, gender, education, economic status; and (b) Part B- self-administered questionnaire on knowledge regarding prevention of rabies. Self-administered questionnaire had 30 questions for assessing the knowledge regarding rabies prevention, every correct answer was given a score of 1, and incorrect answer was given score of zero. Unanswered response was marked as 0. The domains of the questionnaire were- general awareness about rabies, primary prevention, secondary prevention and tertiary prevention. Table 1 shows the weightage of questions in self-administered questionnaire with regard to domains.

Table 1: Domain wise weightage of self-administered questionnaire.

Domains	Weightage (%)
General awareness	40
Primary prevention	16.67
Secondary prevention	36.67
Tertiary prevention	6.66

Validity of the tool was established by opinion of panel of experts. Suggestion of the experts was incorporated and tools were modified accordingly. The reliability of the tool was tested through Kuder-Richardson formula 20. The reliability for the self-structured tool was found to be 0.68. Thus, tool was found to be reliable.

RESULTS

The analysis of data is presented in the following section. For analysis and interpretation of the collected data, descriptive and inferential statistics were used. The statistical analysis was done by SPSS 23 version. The data were summarized as mean, frequency, percentage and standard deviation. The Chi square test was used to test the association.
Findings related to demographic variables of general population residing at Pratap Nagar, Jodhpur, Rajasthan

Table 2 depicts that 46.66% of subjects were male and 53.33% were female. 40% subjects were in age group of 18-28 years, whereas 15% were in age group of 29-39 years, 16.66% were in the age group of 40-50 years and 28.33% were in age group of 51-60 years.

As regard to family income, 70% subjects had family income less than rupees 10000, 18.33% subjects had family income between rupees 10000 to 35000, 8.33% subjects had family income between rupees 36000-60000 and 3.33% subjects had family income more than rupees 60000 per month.

Educational status- 13.33% had no formal education, 15% had primary education, 28.33% had secondary and senior secondary education and 43.33% had graduation degree and above.

Table 2: Frequency and percentage distribution of demographic variables.

Variables	Frequency	Percentage (%)
Age (years)		
18 to 28	24	40
29 to 39	9	15
40 to 50	10	16.66
51 to 60	17	28.33
Gender		
Male	28	46.66
Female	32	53.33
Education		
No formal education	8	13.33
Primary education	9	15
Secondary and senior	17	28.33
secondary education		
Graduation and above	26	43.33
Economic status (Rs.)		
Less than 10,000	42	70
10,000 to 35,000	11	18.33
36,000 to 60,000	5	8.33
More than 60,000	2	3.33

Findings related to knowledge of the general population residing at Pratap Nagar, Jodhpur, Rajasthan

Knowledge regarding prevention of rabies was assessed by self-structured interview schedule consisting of 30 questions. After obtaining data of 60 samples, the grading of the score was done out of the total score of 30.

Scoring

Correct response is scored as 1, incorrect response is marked as 0 and unanswered response is marked as 0.

Table 3 depicts that 13.33% people had poor knowledge (12 or <12 i.e.; <40%), 36.66% had average knowledge (13 to 18 i.e.; 41-60%), 46.66% had good knowledge (19 to 24 i.e.; 61-80%) and 3.33% had excellent knowledge (25 to 30 i.e.; 81-100%).

Table 3: Mean percentage score of various domains of self-administered questionnaire.

Domains	Mean (%)	SD
General awareness	64.58	1.8651578
Primary prevention	53.6	1.2952543
Secondary prevention	60.27	2.0908734
Tertiary prevention	63	0.8206378

Table 4 shows the mean percentage score of questions related to various domains of self-administered questionnaire. Mean percentage score of general awareness is 64.58% with SD of 1.86.

Mean percentage score of questions regarding primary prevention is 53.6% with SD of 1.29, whereas mean percentage score of domains related to secondary and tertiary prevention were 60.27% and 63% with SD of 2.090 and 0.820 respectively.

Findings related to association between knowledge score and demographic variables

To determine the significant association between knowledge score of subjects with selected demographic variables, following research variables were selected: age, gender, education and economic status.

Table 5 depicts that no personal variable was found to be associated with level of knowledge at p<0.05 level of significance.

Major findings

(a) Gender: 46.66% of subjects were male and 53.33% were female; (b) Educational status: 13.33% had no formal education, 15% had primary education, 28.33% had secondary and senior secondary education and 43.33% had graduation degree and above; (c) Age: 40% subjects were in age group of 18-28 years, whereas 15% were in age group of 29-39 years, 16.66% were in the age group of 40-50 years and 28.33% were in age group of 51-60 years; (d) Family income: 70% subjects had family income less than rupees 10000, 18.33% had family income between rupees 10000 to 35000, 8.33% subjects had family income more than rupees 60000 per month; (e) Level of knowledge - 13.33% people had poor knowledge (12 or <12 i.e.; <40%), 36.66% had average knowledge (13 to 18 i.e.; 41-60%), 46.66% had good knowledge (19 to 24 i.e.; 61-80%) and 3.33% had excellent knowledge (25 to
Table 4: Criteria to assess knowledge level, frequency, percentage, mean and standard deviation of findings.

Criteria to assess knowledge level	Frequency	Percentage (%)	Mean	SD
Excellent (25-30 i.e.; 81-100%)	2	3.33	18.33	4.1739
Good (19 to 24 i.e.; 61-80%)	28	46.66		
Average (13 to 18 i.e.; 41-60%)	22	36.66		
Poor (12 or less than 12 i.e.; <40%)	8	13.33		

DISCUSSION

This study was conducted to assess the knowledge regarding rabies prevention among general population of Pratap Nagar, Jodhpur, Rajasthan. The study reveals that 13.33% people had poor knowledge and 36.66% only had average knowledge regarding rabies prevention. The current results were supported by study conducted by Herbert et al (2010). The study was conducted on community perception regarding rabies prevention. The study results show that 74.1% of the participants had heard about rabies and 54.1% knew that rabies is a fatal disease. Only 33.5% of the interviewers felt that people in community had a role to play in controlling the stray dog population. Approximately one half of the residents did not know about the correct first aid after an animal bite. Similar results were found by Prakash et al (2011). A cross sectional study was conducted to assess knowledge, attitude, and practice about rabies and control among the population of urban slums area of Pune. Among 200 respondents only 23% had knowledge about rabies transmission. Laishram J et al (2013-2014) carried a cross-sectional study on knowledge and practice on rabies among the adult residents in an urban community of Imphal, Manipur, India. A total of 350 respondents participated in study. Among those, 97.1% had ever heard of rabies, and only 8.6% knew that it was caused by virus. More than half of the respondents 51.5% had inadequate knowledge related to rabies. Limitations

The study was confined to a small number of 60 samples which limit the generalization of the findings. The study was confined to urban community of Jodhpur.

Table 5: Association of level of knowledge score and selected socio-demographic variables.

Variables	Knowledge level	E	G	A	P	Chi square	Degree of freedom	Significant/ non-significant
Age (years)								
18 to 28	1	7	12	4		8.35	9	Non-significant
29 to 39	1	5	2	1		1.87	3	Non-significant
40 to 50	0	7	2	1		1.87	3	Non-significant
51 to 60	0	9	6	2		11.83	9	Non-significant
Gender								
Male	1	14	8	5		11.83	9	Non-significant
Female	1	14	14	3		5.04	9	Non-significant
Education								
No formal education	0	3	4	1		11.83	9	Non-significant
Primary education	0	5	5	1		5.04	9	Non-significant
Secondary and senior secondary education	0	6	6	5				
Graduation and above	2	16	7	1		5.04	9	Non-significant
Economic status (Rs.)								
Less than 10,000	2	17	17	6	11.83	16.92	9	Non-significant
10,000 to 35,000	0	6	3	2		5.04	9	Non-significant
36,000 to 60,000	0	3	2	0		5.04	9	Non-significant
More than 60,000	0	2	0	0		5.04	9	Non-significant

E-excellent, G-good, A-average, P-poor.
CONCLUSION

The study findings revealed that there existed deficiency in knowledge of subjects regarding prevention of rabies. Awareness regarding rabies prevention in community need to be increased by undertaking IEC activities and targeted awareness campaigns.

The community people can be counselled regarding nature of provocative behavior of animals, immediate washing of wound with soap and running water for at least 15-20 minutes as soon as possible, early initiation of medical treatment and resolve any myths regarding dog bite. Community with improved knowledge about rabies and its prevention will result in healthier attitudes and beliefs and ultimately in safer practice.

Recommendations

On the basis of findings of study, it is recommended that the study can be replicated on a large sample for generalization. A similar study can be conducted with experimental research approach.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Park K. Park’s Textbook of Preventive and Social Medicine. 24th ed. Jabalpur: Bhanot publishers; 2017: 294-299.
2. Zuckerman AJ. In: Bantval JE, Griffiths P, Schoub B, eds. Principles and Practice of Clinical Virology. 6th ed. UK: John Wiley and Sons; 2009: 778.
3. WHO. Epidemiology and burden of disease, 2018. Available at: https://www.who.rabies/epidemiology/en/. Accessed on 1 May 2021.
4. WHO. Human rabies in India: a problem needs more attention, 2019. Available at: https://www.who.int/bulletin/volumes/92/ Accessed on 1 May 2021.
5. Menezes R. Rabies in India. CMAJ. 2008;178(5):564–6.
6. Singh US, Choudhary SK. Knowledge, Attitude, Behavior and Practice Study on Dog-Bites and Its Management in the Context of Prevention of Rabies in a Rural Community of Gujarat. Indian J Community Med. 2005;30:81-3.
7. Sharma S. Vaccine preventable rabies is India’s most fatal infection, 2018. Available at: https://www.hindustantimes.com/health/vaccinepreventable-rabies-is-indias-most-fatal-infection/story-le3H2DE4wSZPk1EqXR6WmJ.html. Accessed on 1 May 2021.
8. Wikipedia. Rabies vaccine, 2018. Available at: https://en.m.wikipedia.org/wrabiesvaccine. Accessed on 1 May 2021.
9. WHO. The disease: Prevention, 2019. Available at: https://www.who.int/rabies/about/homeprevention/en/. Accessed on 1 May 2021.
10. WHO. Rabies: Recommended PEP, 2018. Available at: https://www.who.int/news-room/factsheets/detail/rabies. Accessed on 1 May 2021.
11. Global Alliance for Rabies Control. Rabies: Share the message. Save a life, 2018. Available at: https://rabiesalliance.org/world-rabies-day. Accessed on 1 May 2021.
12. Herbert M, Riyaz BS, Thangaraj S. Community perception regarding rabies prevention and stray dog control in urban slums in India. J Infect Public Health. 2012;5(6):374-80.
13. Prakash M, Bhatti VK, Venkatesh G. Rabies menace and control - An insight into knowledge, attitude and practices. Med J Armed Forces India. 2013;69(1):57-60.
14. Laishram J. Knowledge and Practice on rabies in an urban community of Manipur, India. J Evaluation Med Dent Sci. 2016;5(37):2234-7.
15. Sancheti PV, Mangulikar SK. An interventional study to assess knowledge regarding rabies in secondary school students. Int J Community Med Public Health. 2016;3:180-3.
16. Singh M, Upadhyha SK, Bhansali S, Saini JP. Animal bite cases in Western Rajasthan, India: A Retrospective study. SAJB. 2016;4(6):483-7.
17. Lavania D. District hospital out of anti-rabies vaccine stock since last month, 2018. Available at: https://m.timesofindia.com/city/agra/districthospital-out-of-anti-rabies-vaccine-stockmonth/articleshow. Accessed on 1 May 2021.
18. Times of India. Denied anti-rabies vaccine, ambulance at govt hospital 12 year old student dies. Times of India, 2019. Available at: https://m.timesofindia.com/city/bareilly-ant-rabies-vaccineambulance-govt12-year-old-student-dies/articleshow. Accessed on 1 May 2021.
19. Totton SC, Wandelner AI, Zinsstag J, Bauch CT, Ribble CS, Rosatte RC, et al. Stray dog population demographics in Jodhpur, India following a population control/rabies vaccination program. Prev Vet Med. 2010;97(1):51-7.
20. Mishra N. Every year 6 thousand people bitten by dog. Patrika, 2018. Available at: http://m.partika.com/jodhpur-news/everythousand-people-bitten-by-dog-in-jodhpur-2326589. Accessed on 1 May 2021.
21. Polit DF, Beck CT. Essentials of nursing research: appraising evidence for nursing practice. 8th ed. New Delhi: Wolter Kluwer; 2015: 52.
22. Tiwari A. Assessment of Knowledge regarding Rabies and its prevention among the medical students of government medical college Rajnand gaon, Chhattisgarh, India. Int J Community Med Public Health. 2018;5(4):1397–401.
23. Tandan S, Kotwal SK, Malik MA, Singh M, Kumar D, Shaqif M, et al. A community based survey on
24. Tripathy RM, Satapathy SP, Karmee N. Assessment of knowledge, attitude and practice regarding rabies and its prevention among construction workers: a cross-sectional study in Berhampur, Odisha. Int J Res Med Sci. 2017;5:3970-5.

25. Chopra D. Assessment of awareness about rabies and the animal bites among the staff nurses in medical institute in Lucknow. Int J Community Med Public Health. 2017;4(6):2046-51.

26. Balakrishnan S. Knowledge level and attitude on rabies and dog bite management among rural people in orathanalu, Tamil Nadu. JEZS. 2017;6(2):1963-7.

27. Mali A, Solanki SL. An Assessment of prevention and management of rabies in second year MBBS students of American International Institute of Medical Sciences, Udaipur. IJCR. 2018;10(6):2231-96.

28. Muthunuwan JT, Ganheva AG, Perera HD, Hishaam M, Bandara WM, Gunashekere HA. Preliminary survey on knowledge, attitudes and practices regarding rabies. 2017;7(1):38-46.

29. Chandan N, Kotrabasappa K. Awareness of animal bite and rabies among agricultural workers in rural Dharwad, Karnataka, India. Int J Community Med Public Health. 2016;3:1851-5.

30. Dabuma T, Kabeta T, Mengist HM. Assessment of Basic Knowledge, Attitude and Practice of Community on Rabies and Retrospective Survey in and around Ambo Town, West Shoa Zone of Ethiopia. J Med Microb Diagn. 2017;6:263.

31. Singh R. Knowledge, Attitude and Practice assessment in health workers regarding rabies disease and its prevention in district Dehradun, Uttarakhand. Indian J Comm Health. 2015;27(2):381-5.

32. Mishra N, Solanki SL. Assessment of knowledge about rabies in interns of Geetanjali medical college, Udaipur. Int J Community Med Public Health. 2015;2(2):121-3.

33. Chouhan P, Saini G. Study of profile of animal bite victims attending anti-rabies clinic at Jodhpur. Int J Med Sci Public Health. 2013; 2(4):1088-91.

34. Shah SF, Jawed M, Nooruddin S, Afzal S, Sajid F, Majeed S, Naveed M, et al. Knowledge and practices among the general practitioners of Karachi regarding dog bite management. J Pak Med Assoc. 2009;59(12):861-4.

35. Ichhpujani RL, Chhabra M, Mittal V, Bhattacharya D, Singh J, Lal S. Knowledge, attitude and practices about animal bites and rabies in general community—a multi-centric study. J Commun Dis. 2006;38(4):355-61.

36. Digafe RT, Kifelew LG, Mechesso AF. Knowledge, attitudes and practices towards rabies: questionnaire survey in rural household heads of Gondar Zuria District, Ethiopia. BMC Res Notes. 2015;8:400.

37. Shen J, Li S, Xiang H, Pang S, Xu G, Schwebel DC. A multi-site study on knowledge, attitudes, beliefs and practice of child-dog interactions in rural China. Int J Environ Res Public Health. 2013;10(3):950-62.

38. Sarkar A, Sudip B, Chintan B, Goel A, Naresh M, Parmar D. An Assessment of knowledge of prevention and management of Rabies in interns and final year students of Shri M. P. Shah Government Medical College, Jamnagar, Gujarat. J Res Med Den Sci. 2013;1(2):62-6.

39. Tenzin, Dhand NK, Rai BD, Changlo, Tenzin S, Tsheten K, Ugyen P, et al. Community-based study on knowledge, attitudes and perception of rabies in Gelephu, south-central Bhutan. Int Health. 2012;4(3):210-9.

40. Kotnis SD, Deshmukh SC. Knowledge and Practice Regarding Prevention and Management of Rabies among Allopathic and AYUSH private practitioners in Urban Maharashtra: A Comparison Study. Natl J Community Med. 2017;8(4):164-8.

Cite this article as: Pandey V, Kurien N, Ghintala S, Saini S, Chauhan S, Sharma S, et al. A study to assess the knowledge regarding rabies prevention among general population of community residing at Pratap Nagar, Jodhpur, Rajasthan. Int J Community Med Public Health 2021;8:3424-9.