A Novel Indicator for HDL Functionality

Yasuhiro Irino¹, Ryuji Toh¹ and Tatsuro Ishida²

¹Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
²Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Although several epidemiological studies have revealed that high-density lipoprotein (HDL) cholesterol (HDL-C) is a negative risk factor for coronary artery disease (CAD), clinical trials on increased HDL-C levels have failed to show the beneficial effects of HDL-C as an anti-atherosclerotic factor¹. These results prompt us to determine whether the anti-atherosclerotic effects of HDL depend on its quality.

While the anti-atherosclerotic action of HDL is principally attributable to the reverse cholesterol transport (RCT) from peripheral cells to the liver, HDL has multiple anti-inflammatory and anti-oxidative actions. Therefore, functional assays for determining its role have garnered interest². Several metrics have been developed for the assessment of specific functions of HDL³ (Table 1). Among them, assessment of cholesterol efflux capacity (CEC), which is related to the initiation of RCT, is a common method to examine the anti-atherosclerotic effects of HDL. In fact, Rohatgi et al.⁴ have reported in a large cohort study that CEC is an inverse predictor of CAD, independent of HDL-C levels. However, the quantification of CEC is not yet suitable in clinical settings because the procedure not only requires cultured cells but also is time-consuming. This problem has been much overcome recently by the establishment of a cell-free assay system for cholesterol uptake capacity (CUC) of HDL. In fact, Navab et al.⁹ have developed a cell-free assay to assess the anti-oxidative activity of HDL, which helps prevent the formation of oxidized phospholipids. Moreover, nuclear magnetic resonance (NMR) spectroscopy enables determining the size and number of HDL particles based on its physical properties¹⁰. NMR analysis is a simple assay, which does not require sample preparation but requires expensive and specialized equipment.

In an issue of Journal of Atherosclerosis and Thrombosis, Kakino et al.¹¹ have reported developing a new system that determines the functional activity of HDL depending on its binding affinity to low-density lipoprotein receptor-1 (LOX-1). They have defined the LOX-1 ligand containing ApoA-1 (LAA) as an indicator of HDL function and reported that LAA is associated with HDL oxidation, leading to a decrease in the CEC and PON1 activities in HDL. Because of the heterogeneity of HDL subpopulations, there is a need for evaluating the whole dysfunctional activity of HDL. In this regard, and in addition to a high reproducibility, the LAA methodology may be superior to other conventional methods. Even if LAA is a surrogate marker of HDL functionality, the findings reported by Kakino et al.¹¹ have expanded our understanding and repertory of the HDL functional-

Key words: High-density lipoprotein, Low-density lipoprotein receptor-1, HDL functionality
Table 1. HDL functional assay

Method	Advantages	Limitations
Cholesterol efflux capacity	Gold standard	Low throughput
	Inversely associated with CAD	Require culture cells
Cholesterol uptake capacity	Rapid, reproducible and automated	Lack evidence in a large clinical trial to predict CAD events
MPO and PON1 assay	Rapid and reproducible	Lack evidence in a large clinical trial to predict CAD events
Anti-oxidant capacity assay	Cell-free assay	Lack validation in large-scale clinical samples
NMR spectroscopy	No sample preparation	Require specialized equipment
	Directly estimate particle size and number	

MPO: myeloperoxidase; PON1: paraoxonase 1; NMR: nuclear magnetic resonance

ity assays. Molecular mechanisms through which the binding affinity of HDL to LOX-1 modulates HDL functions, as well as the precise HDL function related directly to LAA, need to be determined in the near future. Because this paper implies the relationship between HDL function and the binding affinity of HDL to proteins such as LOX-1, proteome study for exploring binding proteins with impaired HDL can help find a clue to the understanding of physiological and pathological activities of dysfunctional HDL.

With the recent emergence of new methodologies such as CUC and LAA assays, HDL function assays have gained greater potential to be applied into clinical practice. The significance of HDL functionality should be further validated in large-scale clinical trials to determine its utility to predict CAD, which could eventually replace HDL-C as a routine cardiovascular risk biomarker.

Conflict of Interest

The Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, was established by an endowment fund from the Sysmex Corporation. T.I. obtained honoraria from MSD, Kowa, and Bayer Yakuhin.

References

1) Armitage J, Holmes MV and Preiss D: Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events: JACC Review Topic of the Week. J Am Coll Cardiol, 2019; 73: 477-487
2) Karathanasis SK, Freeman LA, Gordon SM and Remaley AT: The Changing Face of HDL and the Best Way to Measure It. Clin Chem, 2017; 63: 196-210
3) Hafiane A and Genest J: High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBÂ Clin, 2015; 3: 175-188
4) Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neelard JI, Yuhanna IS, Rader DR, de Lemos JA and Shaul PW: HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med, 2014; 371: 2383-2393
5) Harada A, Toh R, Murakami K, Kiriyama M, Yoshikawa K, Miwa K, Kubo T, Irino Y, Morii K, Tanaka N, Nishimura K, Ishida T and Hirata K: Cholesterol Uptake Capacity: A New Measure of HDL Functionality for Coronary Risk Assessment. The Journal of Applied Laboratory Medicine, 2017; 2: 186-200
6) Toh R: Assessment of HDL Cholesterol Removal Capacity: Toward Clinical Application. J Atheroscler Thromb, 2019; 26: 111-120
7) Huang Y, Wu Z, Riwanto M, Gao S, Levison BS, Gu X, Fu X, Wagner MA, Besler C, Gerstenecker G, Zhang R, Li XM, DiDonato AJ, Gogonea V, Tang WH, Smith JD, Plow EF, Fox PL, Shih DM, Lusis AJ, Fisher EA, DiDonato JA, Landmesser U and Hazen SL: Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest, 2013; 123: 3815-3828
8) Haraguchi Y, Toh R, Hasokawa M, Nakajima H, Honjo T, Otsui K, Mori K, Miyamoto-Sasaki M, Shinohara M, Nishimura K, Ishida T and Hirata K: Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional HDL and risk stratification in coronary artery disease. Atherosclerosis, 2014; 234: 288-294
9) Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST and Fogelman AM: A cell-free assay for detecting HDL that is dysfunctional in preventing oxidized phospholipids. J Lipid Res, 2001; 42: 1308-1317
10) Lounila J, Ala-Korpela M, Jokisaari J, Savolainen MJ and Kesaniemi YA: Effects of orientational order and particle size on the NMR line positions of lipoproteins. Phys Rev Lett, 1994; 72: 4049-4052
11) Kakino A, Usami Y, Horiiuchi S, Fujita Y, Kotani K, Chen CH, Okamura T, Sawamura T: A Novel Cell-Free, Non-Fluorescent Method to Measure Lox-1 Binding Activity Corresponding to The Functional Activity of HDL. J Atheroscler Thromb, 2019; 26: 947-958