Identification and Measurement of Neighbor Dependent Nucleotide Substitution Processes

Peter F. Arndt1* and Terence Hwa2

1 Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
2 Center for Theoretical Biological Physics, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0374

* To whom correspondence should be addressed.

February 9, 2008

Abstract

Motivation: The presence of neighbor dependencies generated a specific pattern of dinucleotide frequencies in all organisms. Especially, the CpG-methylation-deamination process is the predominant substitution process in vertebrates and needs to be incorporated into a more realistic model for nucleotide substitutions.

Results: Based on a general framework of nucleotide substitutions we develop a method that is able to identify the most relevant neighbor dependent substitution processes, measure their strength, and judge their importance to be included into the modeling. Starting from a model for neighbor independent nucleotide substitution we successively add neighbor dependent substitution processes in the order of their ability to increase the likelihood of the model describing given data. The analysis of neighbor dependent nucleotide substitutions in human, zebrafish and fruit fly is presented.

Availability: A web server to perform the presented analysis is publicly available at: http://evogen.molgen.mpg.de/server/substitution-analysis .

Contact: arndt@molgen.mpg.de

1 Introduction

The identity of the neighboring nucleotide can have a drastic influence on the mutation rates of a nucleotide. A well-known and studied example of this fact is the increased mutation of cytosine to thymine in CpG dinucleotides in vertebrates (Coulondre et al., 1978; Razin and Riggs, 1980). This process is triggered by
the methylation of cytosine in CpG followed by deamination, and mutation from CpG to TpG or CpA (on the reverse strand). Due to this process the number of CpG is decreased while the number of TpG and CpA is larger than expected from independently evolving nucleotides. Most of the deviant dinucleotide odds ratios (dinucleotide frequencies normalized for the base composition) in the human genome can be explained by the presence of the CpG methylation deamination process (Arndt et al., 2002). Biochemical studies in the 1970s already compared these odds ratios for different genomes and different fractions of genomic DNA (Russell et al., 1976; Russell and Subak-Sharpe, 1977) and concluded that these ratios are a remarkably stable property of genomes. In the following Karlin and coworkers (Karlin and Burge, 1995; Karlin and Mrázek, 1997; Karlin et al., 1997) elaborated and expanded these observations, showing that the pattern of dinucleotide abundance constitutes a genomic signature in the sense that it stable across different parts of a genome and generally similar between related organisms. Since this signature is also present in non-coding and intergenic DNA it is very promising to study neighbor dependent mutation and fixation processes (we refer to the effective process as the substitution process) to understand the evolution of neutral DNA. However, to pursue on this track new models for nucleotide substitutions that extends those which only capture neighbor independent nucleotide substitutions (see (Lio and Goldman, 1998) for a review) have to be formulated (see also Arndt et al., 2002; Siepel and Haussler, 2004; Lunter and Hein, 2004).

Recently a framework to include such neighbor dependent processes has been introduced (Arndt et al., 2002). The framework itself is capable to include any type of neighbor dependent process and was already successfully applied to model the CpG methylation deamination process in vertebrates (Arndt et al., 2003). Although these models are mathematically more complicated they however allow a quantitative analysis of neighbor dependent processes and to make reliable estimations on other properties e.g. the stationary GC-content. Here we will extend this framework and discuss the inclusion of more neighbor dependent substitutions and how one can infer their relevance without prior knowledge on the underlying biochemical processes. In vertebrates the CpG methylation deamination process is the predominant nucleotide substitution process. Its rate is about 40 times higher than this of a transversion and its history can actually reconstructed for the last 250 Myr (Arndt et al., 2003). One reason for this substitution frequency being so high is that in vertebrates CpG methylation is also used in gene regulation, as methylated regions of the genome are not transcribed. Consequently, CpG’s in these regions often mutate. We know already that also other vertebrates use methylation in the same way but do not know about the quantitative extent their genomes are methylated. The situation is still rather unclear in other kingdoms of life. Although we clearly see signatures of neighbor dependent substitution processes, we do not know the responsible processes and their rates.

To present our method we study neighbor dependent substitutions in human (Homo sapiens), zebrafish (Danio rerio) and fruit fly (Drosophila melanogaster). In all these studies we first try to model the observed nucleotide substitutions
with a model which does not include any neighbor dependent nucleotide substitutions (12 free rate parameters) and then ask the question which neighbor dependent substitution process one would have to include to describe the observed data best. The idea is to capture the most of the observed substitutions by single nucleotide substitutions independent of the neighboring bases and then to include neighbor dependent substitutions one by one to generate a better model with the least number of parameters. Processes are added in the order of their ability to describe the observed data better. Naturally, the addition of any further process (together with one rate parameter) into a model will increase the likelihood of this model to describe the observed data. In order not to over-fit the data we use a likelihood ratio test to judge whether the addition of further process is justified. The strength of our approach is to come up with a model with fewer parameters that still captures the essential neighbor dependent nucleotide substitution processes. This prevents over-fitting the model to given data and eases the quantitative estimation of a smaller number of parameters.

The rest of the paper organizes as follows. In the next section we will describe details of our method. There is no need to implement the described procedure for readers who want to analyze their own sequences, since we are running a public web server at http://evogen.molgen.mpg.de/server/substitution-analysis. At this site one is able to upload sequence data and perform the presented analysis. First applications of such an analysis will be presented in the results section.

2 Method

2.1 The substitution model

In total there are 12 distinct neighbor independent substitution processes of a single nucleotides by another; four of them are so-called transitions that interchange a purine with a purine or a pyrimidine with a pyrimidine. The remaining eight processes are the so-called transversions that interchange a purine with a pyrimidine and vice versa. The rates of these processes, $\alpha \rightarrow \beta$, will be denoted $r_{\alpha\beta}$, where $\alpha, \beta \in \{A, C, G, T\}$ denote a nucleotide. On top of these 12 processes we want to consider also neighbor dependent processes of the kind $\kappa \lambda \rightarrow \kappa \sigma$ and $\kappa \lambda \rightarrow \sigma \lambda$ where the right or left base of a di-nucleotide changes, respectively. There might be several of those processes present in our model, their rates will be denoted by $r_{\kappa\lambda\kappa\sigma}$ or $r_{\kappa\lambda\sigma\lambda}$. We do not consider processes where both nucleotides of a dinucleotide change at the same time. In vertebrates, the most important neighbor dependent process to consider is the substitution of cytosine in CpG resulting in TpG or CpA. Its rate is about 40 times higher than this of a transversion (Arndt et al., 2003). This process is triggered by the methylation and subsequent deamination of cytosine in CpG pairs. It is commonly (and erroneously) assumed that this process only affects CpG dinucleotides. However, this is not the case as it has been shown (Arndt et al., 2002).

The model is parameterized by the substitution rates and the length of the
time span, dt, the respective substitution processes acted upon the sequence, which would in our case be the time between the observation of an ancestral sequence and its daughter sequence, T. We have the freedom to rescale time and measure it in units of T. In this case, the time span is $dt = 1$ and with this choice the substitution rates are equal to the substitution frequencies giving the number of nucleotide substitutions per bp. In the simplest case our model includes neighbor independent processes only and is parameterized by 12 substitution frequencies. For each additional neighbor dependent process we gain one additional parameter. The set of all these substitution frequencies will be denoted by $\{r\}$. The number of parameters can actually be reduced by a factor of two when one considers substitutions along neutrally evolving DNA. In this case we cannot distinguish the two strands of the DNA and therefore the substitution rates are reverse complement symmetric, e.g. the rate for the substitution $C \rightarrow A$ is equal to the rate for the substitution $G \rightarrow T$ (in the following we will denote this process by $C:G \rightarrow A:T$, for the rates we have $r_{CA} = r_{GT}$).

In order to facilitate the subsequent maximum likelihood analysis we need to compute the probability, $P(\{r\} | \alpha_1 \alpha_2 \alpha_3)$, that the base α_2 flanked by α_1 to the left and by α_3 to the right, changes into the base β for given substitution frequencies $\{r\}$. This probability can easily calculated by numerically solving the time evolution of the probability to find three bases $p(\alpha \beta \gamma; t)$ at time t, which is given by the Master equation and can be written as the following set of differential equations:

$$\frac{\partial}{\partial t} p(\alpha \beta \gamma; t) = \sum_{\epsilon \in \{A,C,G,T\}} [r_{\alpha \epsilon} p(\epsilon \beta \gamma; t) + r_{\epsilon \beta} p(\alpha \epsilon \gamma; t) + r_{\epsilon \gamma} p(\alpha \beta \epsilon; t)]$$

$$+ \sum_{\epsilon \epsilon'} r_{\epsilon \epsilon'} p(\epsilon \epsilon' \gamma; t) + \sum_{\epsilon \epsilon'} r_{\epsilon \epsilon'} p(\alpha \epsilon \epsilon'; t), \quad (1)$$

where the rate parameters with the equal initial and final state, $r_{\alpha \alpha}$ and $r_{\alpha \beta \alpha \beta}$, are defined by

$$r_{\alpha \alpha} = - \sum_{\epsilon \neq \alpha} r_{\alpha \epsilon}, \quad r_{\alpha \beta \alpha \beta} = - \sum_{(\epsilon \epsilon') \neq (\alpha \beta)} r_{\alpha \beta \epsilon \epsilon'}, \quad (2)$$

and rates of neighbor dependent substitution processes not included into the model are take to be zero. The above definitions guarantee the conservation of the total probability, $\sum_{\alpha \beta \gamma} \frac{\partial}{\partial t} p(\alpha \beta \gamma; t) = 0$, since the total influx is balanced by an appropriate outflux of probability. The first three terms on the r.h.s. in Eq. (1) describe single nucleotide substitutions on the three sites whereas the last two sums (which are summed over all pairs of nucleotides) represent the neighbor dependent processes at the sites $(1,2)$ and $(2,3)$, respectively. To describe the evolution of three nucleotides $\alpha_1 \alpha_2 \alpha_3$, these differential equations have to be solved for initial conditions of the form

$$p(\alpha \beta \gamma; t = 0) = \begin{cases} 1 & \text{if } (\alpha \beta \gamma) = (\alpha_1 \alpha_2 \alpha_3) \\ 0 & \text{otherwise.} \end{cases} \quad (3)$$
After numerically iterating the above differential equations using the Runge-Kutta algorithm \cite{Press92} we get the above transition probability as

\[P_r(\cdot | \alpha_1 \alpha_2 \alpha_3) = \sum_{ \beta_1 \beta_2 } p(\beta_1 \beta_2 \beta_3 ; t = 1) . \] \hspace{1cm} (4)

The above iteration has to be carried out 64 times for all possible combinations of initial bases \(\alpha_1 \alpha_2 \alpha_3 \). After each iteration 4 of the transition probabilities \(P_r(\cdot | \alpha_1 \alpha_2 \alpha_3) \) with \(\beta = A, C, G, \) or \(T \) can be computed. Note, that the above set of differential equations can easily extended to describe systems of length \(N > 3 \). In this case one has to solve for \(4^N \) functions \(p(\alpha_1 \alpha_2 \ldots \alpha_N ; t) \).

2.2 Estimation of substitution frequencies

One can estimate all the above mentioned substitution frequencies from real sequence data by comparing a pair of ancestral \(\vec{\alpha} = \alpha_1 \alpha_2 \ldots \alpha_N \) and daughter sequence \(\vec{\beta} = \beta_1 \beta_2 \ldots \beta_N \), where the daughter sequence represents the state of the ancestral sequence after the substitution processes acted upon it for some time.

Note that we do not assume any other properties regarding to the nucleotide or dinucleotide distributions of the sequences. Especially, the two sequences do not need to be in their stationary state with respect to the substitution model. In practice, these pairs of ancestral and daughter sequences can be obtained in various ways. One very fruitful approach is to take alignments of repetitive sequences, which can be found in various genomes due to the activity of retroviruses. Such repetitive elements have entered these genomes during short periods in evolution. Hence all copies of such elements in a genome have been subject to nucleotide substitutions for the same time and accumulated corresponding amounts of changes. Various such repetitive elements and their respective alignment to the once active master (which is taken to be the ancestral sequence \cite{Arndt03}) can be identified using the RepeatMasker, \url{http://www.repeatmasker.org}.

The log likelihood that a sequence \(\vec{\beta} \) evolved from a master sequence \(\vec{\alpha} \) under a given substitution model parameterized by the substitution frequencies \(\{r\} \) is given by

\[\log L_{\{r\}} = \log P_{\{r\}}(\vec{\beta}|\vec{\alpha}) \]

\[\approx \log \prod_{i=2}^{L-1} P_{\{r\}}(\cdot | \alpha_{i-1} \alpha_i \alpha_{i+1}) \]

\[= \sum_{\alpha_1 \alpha_2 \alpha_3 \beta_2} N(\alpha_1 \alpha_2 \alpha_3 \rightarrow \cdot \beta_2 ; \cdot | \alpha_1 \alpha_2 \alpha_3) \log P_{\{r\}}(\cdot | \alpha_1 \alpha_2 \alpha_3) . \] \hspace{1cm} (5)

where \(P_{\{r\}}(\vec{\beta}|\vec{\alpha}) \) is the probability of the evolution of the sequence \(\vec{\alpha} \) into \(\vec{\beta} \). This probability can very well be approximated by the product in the second line. This is due to the fact that the correlations induced by the substitutional processes are very short ranged \cite{Arndt02}. We therefore take into
account the identities of bases and the dynamics on the nearest neighbors to the left and to the right, and neglect those on the next nearest neighbors and beyond. For most applications this approximation turns out to be sufficient since estimated substitution frequencies deviate less than 1% from their actual values (see below). Note that this approximation is even exact in the absence of neighbor dependent substitution processes. The numbers \(N(\alpha_1 \alpha_2 \alpha_3 \rightarrow \beta_2 \cdot) \) denotes the counts of observations of a base substitution from \(\alpha_2 \) (flanked by \(\alpha_1 \) to the left and \(\alpha_3 \) to the right) to \(\beta_2 \).

To estimate the substitution frequencies \(\{r^*\} \) for a given pair of \(\vec{\alpha} \) and \(\vec{\beta} \) or given numbers \(N(\alpha_1 \alpha_2 \alpha_3 \rightarrow \beta_2 \cdot) \) we have to maximize the above likelihood by adjusting the substitution frequencies. This can easily be done using Powell's method (Press et al. 1992) while taking care of boundary conditions (Box 1966), i.e. the positivity of the substitution frequencies.

Figure 1: Plot of the estimated frequencies and their standard deviation (from 500 measurements) for randomly drawn sequences of various length. The daughter sequences have been synthetically aged using the following processes (with frequency as indicated by the dotted lines): transversions (0.01), \(A:T \rightarrow G:C \) (0.03), \(G:C \rightarrow A:T \) (0.05), and \(C:pG \rightarrow C:pA/T:pG \) (0.4). The stationary GC-content for this model is 0.3474.

2.3 Uncertainty of estimates for finite sequence length

Due to the stochastic nature of the substitution process and due to the fact that always only a finite amount of sequence data is available to estimate the substitution frequencies \(\{r^*\} \), estimated frequencies will show deviations from the real
substitution frequencies. In general we do not know or cannot infer these real frequencies otherwise. In order to be able to analyze the uncertainty of frequency estimates from finite sequences we synthetically (in silico) generate pairs of ancestral and daughter sequences using known substitution processes and rates \{\hat{r}\}. In the following section we include just one neighbor dependent substitution process, namely the CpG-methylation deamination process, \(\text{CpG} \rightarrow \text{CpA/TpG}\), which plays a predominant role in the analysis of nucleotide substitutions in vertebrates. The nucleotides of the ancestral sequences \(\vec{\alpha}\) (of length \(N\)) have been chosen randomly with equal probability from the 4 nucleotides. Subsequently, the ancestral sequence was synthetically aged and we applied substitutions using a Monte Carlo algorithm as described in Arndt et al. (2002) yielding the sequence \(\vec{\beta}\). The resulting pair of sequences is then analyzed using the above procedure to get estimates of the rates \{\hat{r}\}. We repeated this experiment 500 times and got estimates for the means \{\bar{r}\} and standard deviation \{\Delta r\} of these measurements. In addition we computed the stationary GC-content from each set of substitution frequencies Arndt et al. (2002). Results of this analysis are presented in Figure 1 where we show the mean and standard deviation of estimated rates for different length of sequences \(N\). The transversion frequencies were chosen to be 0.01, the frequency of the \(A:T \rightarrow G:C\) transition to be 0.03, that of the \(G:C \rightarrow A:T\) transition to be 0.05, and that of the \(\text{CpG} \rightarrow \text{CpA/TpG}\) transition.
Figure 3: A plot of the estimated frequencies for various degrees of sequence divergence. The dotted lines give expected values of the frequencies. The sequence length has been chosen to be $N = 10^7$.

The choice of frequencies mimics the relative strength of the substitution process as they are observed in the human genome. As can be seen the uncertainty of observed substitution frequencies correlates positively with the substitution frequencies and negatively with the length of the sequences.

To further quantify these uncertainties and discuss their dependence on various quantities we plotted the deviations $\{\hat{r}^* - \tilde{r}\}$ and the standard deviations $\{\Delta r^*\}$ as a function of the sequence length N in Figure 2. The standard deviations decrease with $1/\sqrt{N}$. In the absence of neighbor dependent substitutions and for ancestral sequences with equally probable nucleotides the standard deviation for reverse complement symmetric frequencies can actually be calculated to be

$$\Delta r^*_{\alpha\beta} = \left(\frac{2r_{\alpha\beta}}{N}\right)^{1/2}$$

as long as all frequencies $r \ll 1$. Corresponding lines are presented also in Figure 2 and fit the observed deviations well. The deviation for neighbor dependent processes such as the process CPG\rightarrowCpA/TpG can be computed to be of the order of:

$$\Delta r^*_{\alpha\beta\gamma\delta} = \left(\frac{8r_{\alpha\beta\gamma\delta}}{N}\right)^{1/2}$$

Note, that for $r \ll 1$ these errors stem only from the stochastic nature of the underlying substitutional process and are not due to approximations used during
our maximum likelihood analysis of the sequence pairs \(\vec{\alpha} \) and \(\vec{\beta} \) as described in the previous section.

The deviations of the observed from the real frequencies \(\{ |\bar{r}^* - \hat{r}| \} \) (see Figure 2) also decrease with \(1/\sqrt{N} \) and are always bounded from above by \(\{ \Delta r^* \} \).

Note, that the estimates of substitution frequencies are very precise, although we used an approximation when deriving the likelihood in Eq. (5). This property does not hold true for neighbor dependent processes in general. For instance, we observe small (below 1%, data not shown) but systematic deviations of the estimated substitution frequencies if we include the process \(\text{ApA/TpT} \rightarrow \text{CpA/TpG} \).

In this case, one should also take into account the identity and dynamics of nucleotides on next nearest neighbor sites and the associated neighbor dependent processes. One would have to introduce higher order corrections in Eq. (5). This is true because of overlapping initial states of the neighbor dependent process, i.e. two \(\text{ApA} \)'s in a triplet \(\text{AAA} \). However, such corrections do not have to be considered for the \(\text{CpG} \rightarrow \text{CpA/TpG} \) process. For a given \(\text{CpG} \), the next nearest neighbor dependent process might only occur on a neighboring \(\text{CpG} \), which in contrast to \(\text{ApA} \)'s cannot overlap with the given \(\text{CpG} \). Hence correlations to the next \(\text{CpG} \) are even smaller, which makes the estimation of substitution frequencies neglecting such correlations very precise. In the absence of any neighbor dependent process there is no approximation involved to compute the likelihood in Eq. (5) and therefore estimates will be asymptotically exact for \(N \rightarrow \infty \).

The above formulas for the standard deviation, Eqs. (6) and (7), lose their validity if any one of the frequencies is of the order of one. However, the standard deviations are still decreasing with increasing sequence length. In Figure 3 we present estimated frequencies from sequences of various degrees of divergence. The substitution rates have been chosen in the ratios 1:3:5:40 for the transversions, the \(\text{A:T} \rightarrow \text{G:C} \) transition, the \(\text{G:C} \rightarrow \text{A:T} \) transition, and the \(\text{CpG} \rightarrow \text{CpA/TpG} \) process. On the horizontal axis we plot the length of the time interval the ancestral sequenced (of length \(N = 10^7 \)) has been aged. The dotted lines give the real substitution frequencies, which are the products of the corresponding rates and the length of the time interval. As long as not all substitution frequencies are greater than one (to the left of the dashed vertical line in Figure 3) the substitution frequencies can faithfully estimated, even if single frequencies exceed one (the dashed horizontal line). If all substitution frequencies are of the order of or larger than one, the estimation of substitution frequencies is not possible anymore (to the right of the dashed vertical line). In this case, more or less all nucleotides underwent one or more substitution processes making it impossible to estimate the frequencies of the underlying processes.

In reality however, the nucleotides in the ancestral sequence will not be randomly distributed with equal probability from the 4 nucleotides (as assumed above). On top of that genomic sequences will show non-trivial dinucleotide distributions, i.e. neighboring bases are not independent and the dinucleotide frequencies \(f_{\alpha \beta} \) will deviate from the product of nucleotide frequencies \(f_{\alpha} f_{\beta} \) (Karlin and Burge, 1995). Both these factors will influence the deviations between the observed and the real substitution frequencies and in those cases the above formulas (6) and (7) do not hold anymore. We also expect additional
errors due to the presence of unaccounted neighbor dependent processes. Depending on the magnitude of the rates for such processes the errors can get quite significant as discussed below. To exclude the latter type of errors one actually has to try to incorporate additional neighbor dependent processes and judge whether their inclusion is actually relevant (as discussed in the next subsection).

For genomic applications, it is further not possible to repeat the measurements of substitution frequencies for different sets of sequences to get an estimate of the typical errors. However, one can still get estimates on the expected standard deviation from bootstrapping the available data. One has to resample the available data drawing randomly and with replacement N pairs of aligned ancestral and daughter nucleotides (keeping the information of the ancestral base identity to the left and to the right) and generate a list of counts $N(\alpha_1\alpha_2\alpha_3 \rightarrow \beta_2)$ which then will be used to maximize the likelihood and estimate the substitution frequencies as described above. One repeats this resampling procedure M times and from the M estimates of the substitution frequencies and stationary GC-content calculates their standard deviation, which gives the statistical error due to the limited amount of sequence data. We found that $M = 500$ samples are sufficient to estimate those errors (data not shown).

2.4 Extending the model to include additional processes

Next we address how one can extend a given substitution model and include additional neighbor dependent processes to maximize the potential of such a model to describe the observed data. With the inclusion of additional neighbor dependent processes the likelihood of a model $\{r'\}$ will in any case be greater than the one of the original model $\{r\}$. This is true because the models are nested and one has one more free parameter to explain the given data. To test whether the inclusion of a new parameter is justified we employ the likelihood ratio test for nested models. Let $\lambda = L_{\{r\}} / L_{\{r'\}}$ be the likelihood ratio, then $-2 \log \lambda$ has an asymptotic chi-square distribution with degrees of freedom equal to the difference in the numbers of free parameters of the two models, which in our case is one (Ewens and Grant, 2001).

In practice we extend a given substitution model in turn by one out of the $4 \times 4 \times 3 \times 2 = 96$ possible neighbor dependent processes. Out of those extended models we choose the best one, i.e. the one with the highest likelihood $L_{\{r'\}}$. Since the best is chosen out of a finite set of possibilities, we have to account for multiple testing and use a Bonferroni correction. Hence we require that $-2 \log \lambda > 15$ to have significance on the 5% level. We confirmed this conservative threshold also by simulations using sequences that have been synthetically mutated according to a known model.
Substitution	6 parameter model	7 parameter model	8 parameter model	9 parameter model
A:T→C:G	0.012	0.012	0.011	0.007
A:T→T:A	0.010	0.011	0.011	0.011
C:G→G:C	0.016	0.016	0.012	0.012
C:G→A:T	0.015	0.014	0.014	0.014
A:T→G:C	0.036	0.036	0.036	0.036
C:G→T:A	0.158	0.059	0.060	0.060
CpG→CpA/TpG	0.618	0.627	0.624	
CpG→CpC/GpC		0.029	0.029	
TpT/ApA→TpG/CpA			0.013	
stationary GC-content	0.213	0.341	0.340	0.339
−2 log λ	7.7·10^6	1.3·10^6	9.6·10^4	

Table 1: Estimates for substitution frequencies for nested models of nucleotide substitution in human AluSx repeats. Given are the substitution frequencies per bp in the time span after the insertion of the AluSx repeats into the human genome. In the last row we note the −2 log λ where λ is the likelihood ratio of the model and the one with one less parameter in the column to the left.

3 Results

As a first test, we applied the described method to identify and measure neighbor dependent substitution processes to human genomic data. We took the copies of the AluSx SINEs that have been found in a genome-wide search of the human genome (release v20.34c.1 at ensembl.org from April 1st, 2004). These elements are assumed to have evolved neutrally and therefore the substitution process is reverse complement symmetric. Results are presented in Table 1. In the first column of data we give estimations for the 6 neighbor independent single nucleotide substitutions. We subsequently tested 48 possible extension of this simple substitution model by one additional neighbor dependent substitution process together with its reverse complement symmetric process (Note that in this case only 48 extensions have to be considered). As expected (and shown in the second column in Table 1) the CpG methylation deamination process (CpG→CpA/TpG) turns out give the best improvement with −2 log λ = 7.7·10^6, which is clearly above the threshold of 15. The substitution frequency of this process is about 45 times higher than that of a transversion. Extending the model from 6 to 7 parameters and including the CpG→CpA/TpG process, mostly affects the estimate for the G:C→A:T transition, which decreases about a factor three. Please also note that subsequently the estimation of the stationary GC-content from those rates rises from 21% for the 6 parameter model to 34% for the 7 parameter model. This reveals that estimates of substitution frequencies and the stationary nucleotide composition are very much affected by the underlying substitution model. Substantial deviations can be observed when the substitution model does not include all relevant process, as it the case for the 6 parameter model for nucleotide substitutions in the human lineage. In principle

1Note that \(\int_0^{15} \chi^2_1(x) \, dx = 0.99989 > 1 - 0.05/96 \)
there can be even more neighbor dependent processes, which we have to account for. We therefore try to incorporate an additional process besides the already found one.

The second process that needs to be included to improve the model is the substitution of $\text{CpG} \rightarrow \text{CpC/GpG}$ ($-2 \log \lambda = 1.3 \cdot 10^5$). This is another CpG based process and probably also triggered by the methylation of cytosine. However, the substitution frequency is about 30 times smaller than this of the $\text{CpG} \rightarrow \text{CpA/TpG}$ process. The third process is then the substitution $\text{TpT/ApA} \rightarrow \text{TpG/CpA}$ ($-2 \log \lambda = 9.6 \cdot 10^4$). The instability of the TpT dinucleotide does not come as a surprise here, since two consecutive thymine nucleotides tend to form a thymine photodimer $T<>T$. This process is one of the major lesions formed in DNA during exposure to UV light (Douki et al., 1997).

Next we turn to the analysis of the DANA repeats in zebrafish ($Danio rerio$). Results are presented in Table 2. Again we start with a model just comprising single nucleotide transversions and transitions. As observed in human the transitions occur more often than transversions and there is a strong $A:T$ bias in the single nucleotide substitutions. Zebrafish being a vertebrate also utilizes methylation as an additional process to regulate gene expression. As a consequence we observe a higher mutability of the CpG dinucleotide due to the deamination process also in zebrafish. However the substitution frequency for the $\text{CpG} \rightarrow \text{CpA/TpG}$ process is in zebrafish only about 8 times higher than this of a transversion suggesting that the degree of methylation is generally lower than in human.

Parameter	6 parameter model	7 parameter model	8 parameter model	9 parameter model
$A:T \rightarrow C:G$	0.024	0.025	0.026	0.026
$A:T \rightarrow T:A$	0.041	0.041	0.041	0.041
$C:G \rightarrow G:C$	0.037	0.036	0.036	0.023
$C:G \rightarrow A:T$	0.029	0.029	0.028	0.028
$A:T \rightarrow G:G$	0.073	0.074	0.046	0.046
$C:G \rightarrow T:A$	0.151	0.111	0.105	0.107
$\text{CpG} \rightarrow \text{CpA/TpG}$	0.274	0.101	0.101	0.328
$\text{CpA/TpG} \rightarrow \text{CpG}$	0.100	0.097	0.097	
$\text{CpG} \rightarrow \text{CpC/GpG}$	0.096			
Stationary GC-content	0.349	0.374	0.335	0.337
$-2 \log \lambda$	$2.9 \cdot 10^5$	$1.6 \cdot 10^5$	$1.1 \cdot 10^5$	

Table 2: Estimates for substitution frequencies for nested models of nucleotide substitution in DANA repeats from $Danio rerio$.

We also investigated non-vertebrate sequence data. As an example we present here the analysis of the DNAREP1,DM repeat in $Drosophila melanogaster$ (Table 3). The case to include neighbor dependent process is in this clearly not as strong as for vertebrate genomes. The values of $-2 \log \lambda$ are 3 orders of magnitude smaller but still above threshold for the first 3 processes which are chosen by our procedure to be included into a model for nucleotide substitutions in fly. The first such process is the substitution $\text{TpA} \rightarrow \text{TpT/ApA}$. Although
the corresponding substitution frequency is lower than all the single nucleotide transitions and transversions, the dinucleotide frequencies in the stationary state deviate up to 10% from their neutral expectation under a neighbor independent substitution model (data not shown). Therefore even processes with a small contribution to the overall substitutions have a large influence on the observed patterns of dinucleotide frequencies or genomic signatures and therefore may very well be solely responsible for the generation of such pattern in different species.

	6 parameter model	7 parameter model	8 parameter model	9 parameter model
A:T → C:G	0.038	0.038	0.038	0.038
A:T → T:A	0.052	0.045	0.045	0.045
C:G → G:C	0.034	0.034	0.034	0.034
C:G → A:T	0.074	0.074	0.074	0.074
A:T → G:C	0.052	0.052	0.052	0.047
C:G → T:A	0.108	0.108	0.098	0.098
TpA→TpT/ApA	0.029	0.029	0.028	0.028
TpC/GpA→TpT/ApA		0.036	0.035	0.021
GpT/ApC→GpC				
stationary GC-content	0.330	0.330	0.328	0.326
−2 log λ	853	592	40	

Table 3: Estimates for substitution frequencies for nested models of nucleotide substitution in DNAREP1_DM transposable element from Drosophila melanogaster.

4 Conclusion

We presented a framework to identify the existence and measure the rates of neighbor dependent nucleotide substitution processes. We discussed the extension of models of nucleotide substitutions in human and included more neighbor dependent processes besides the well-known CpG methylation deamination process [Arndt et al., 2002]. We could also show that the CpG methylation deamination is the predominant substitution process in zebrafish, while it does not play a role in fruit fly. We exemplified our method using sequence data from one particular subfamily of repeats from these three organisms. In the case of the human genome a much more thorough analysis on various families of repeats have been presented in [Arndt et al., 2003]. A similar study, which also would have to include also neighbor dependent substitutions, for other species will further broaden our knowledge about the molecular processes that are responsible for nucleotide mutations and their fixation.

Acknowledgments We thank Nadia Singh and Dmitri Petrov (Stanford) for kindly providing sequence data on the DNAREP1_DM repeat in Drosophila melanogaster.
References

Arndt, P. F., Burge, C. B. and Hwa, T. (2002). DNA Sequence Evolution with Neighbor-Dependent Mutation. 6th Annual International Conference on Computational Biology RECOMB2002, Washington DC, ACM Press, KK.

Arndt, P. F., Petrov, D. A. and Hwa, T. (2003). Distinct changes of genomic biases in nucleotide substitution at the time of Mammalian radiation. Mol Biol Evol 20(11): 1887-96.

Box, M. J. (1966). A Comparison of Several Current Optimization Methods and Use of Transformations in Constrained Problems. Computer Journal 9(1): 67-77.

Coulondre, C., Miller, J. H., Farabaugh, P. J., et al. (1978). Molecular basis of base substitution hotspots in Escherichia coli. Nature 274(5673): 775-80.

Douki, T., Zalizniak, T. and Cadet, J. (1997). Far-UV-induced dimeric photoproducts in short oligonucleotides: sequence effects. Photochem Photobiol 66(2): 171-9.

Ewens, W. J. and Grant, G. (2001). Statistical methods in bioinformatics : an introduction. New York, Springer.

Karlin, S. and Burge, C. (1995). Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11(7): 283-90.

Karlin, S. and Mrázek, J. (1997). Compositional differences within and between eukaryotic genomes. Proc Natl Acad Sci U S A 94(19): 10227-32.

Karlin, S., Mrázek, J. and Campbell, A. M. (1997). Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179(12): 3899-913.

Lio, P. and Goldman, N. (1998). Models of molecular evolution and phylogeny. Genome Res., 8, 1233-1244.

Lunter, G. and Hein, J. (2004). A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics 20 Suppl 1:i216-i223.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., et al. (1992). Numerical Recipes in C, The art of scientific computing. Cambridge, Cambridge University Press.

Razin, A. and Riggs, A. D. (1980). DNA methylation and gene function. Science 210(4470): 604-10.

Russell, G. J., Walker, P. M., Elton, R. A., et al. (1976). Doublet frequency analysis of fractionated vertebrate nuclear DNA. J Mol Biol 108(1): 1-23.
Russell, G. J. and Subak-Sharpe, J. H. (1977). Similarity of the general designs of protochordates and invertebrates. *Nature* **266**(5602): 533-6.

Siepel, A. and Haussler, D. (2004). Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. *Mol Biol Evol.* **21**(3):468-88.