3-6-2015

Structural Distortion-Induced Magnetoelastic Locking in Sr$_2$IrO$_4$
Revealed through Nonlinear Optical Harmonic Generation

D. H. Torchinsky
California Institute of Technology

H. Chu
California Institute of Technology

L. Zhao
California Institute of Technology

N. B. Perkins
University of Minnesota

Y. Sizyuk
University of Minnesota

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Torchinsky, D. H.; Chu, H.; Zhao, L.; Perkins, N. B.; Sizyuk, Y.; Qi, T.; Cao, Gang; and Hsieh, D., "Structural Distortion-Induced Magnetoelastic Locking in Sr$_2$IrO$_4$ Revealed through Nonlinear Optical Harmonic Generation" (2015). *Physics and Astronomy Faculty Publications*. 337.
https://uknowledge.uky.edu/physastron_facpub/337

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Structural Distortion-Induced Magnetoelastic Locking in Sr$_2$IrO$_4$ Revealed through Nonlinear Optical Harmonic Generation

Digital Object Identifier (DOI)
http://dx.doi.org/10.1103/PhysRevLett.114.096404

Notes/Citation Information
Published in Physical Review Letters, v. 114, no. 9, article 096404, p. 1-5.
©2015 American Physical Society
The copyright holder has granted permission for posting the article here.

Authors
D. H. Torchinsky, H. Chu, L. Zhao, N. B. Perkins, Y. Sizyuk, T. Qi, Gang Cao, and D. Hsieh
Structural Distortion-Induced Magnetoelastic Locking in Sr$_2$IrO$_4$ Revealed through Nonlinear Optical Harmonic Generation

D. H. Torchinsky, H. Chu, L. Zhao, N. B. Perkins, Y. Sizyuk, T. Qi, G. Cao, and D. Hsieh

Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55116, USA
Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

We report a global structural distortion in Sr$_2$IrO$_4$ using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an $I4_1/acd$ to $I4_1/a$ space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr$_2$IrO$_4$.

DOI: 10.1103/PhysRevLett.114.096404

PACS numbers: 71.27.+a, 42.65.An, 61.05.-a, 75.10.Dg

Iridium oxides are predicted to realize a variety of exotic quantum phases [1–9] that emerge from a rare combination of strong electron-electron repulsion, spin-orbit coupling (SOC), and crystalline electric field (CEF) splitting. One of the most intensively studied iridates is Sr$_2$IrO$_4$, owing to its novel $J_{\text{eff}} = 1/2$ Mott insulating ground state [10,11] and the similarity of its crystallographic, electronic, and magnetic structures to the parent compound La$_2$CuO$_4$ of the high-T_c cuprates. However, despite predictions of unconventional superconductivity in Sr$_2$IrO$_4$ upon chemical doping [12–15] and the observation of Fermi arcs with a pseudogap behavior [16], it is unclear why no signatures of superconductivity are detected. Recent experiments suggest that the structural and magnetic properties of Sr$_2$IrO$_4$ are in fact not completely understood. In particular, neutron diffraction studies report new Bragg peaks [17,18] that challenge its long accepted crystal structure [11,19,20], while resonant x-ray diffraction studies report a near perfect locking of the magnetic moment canting and oxygen octahedra rotation angles [11,21] that cannot be fully explained by existing theoretical models [2,22].

In this Letter, we report a global bulk structural distortion in Sr$_2$IrO$_4$ observed using a combination of spatially resolved optical second harmonic generation (SHG) and third harmonic generation (THG) experiments. Our technique is highly sensitive to small changes in bulk symmetry and is able to probe micron sized areas of a crystal [Fig. 1(a)], thus providing complementary information to neutron and x-ray diffraction. By studying an effective superexchange Hamiltonian, we show that these new found broken symmetries introduce modifications to the $J_{\text{eff}} = 1/2$ model that naturally explain the robust locking of the moment canting and oxygen octahedra rotation angles.

Nonlinear optical harmonic generation is a process by which light of frequency ω is converted into higher harmonics $n\omega$ ($n = 2, 3, 4, \ldots$) through its nonlinear interaction with a material [26]. By Neumann’s principle, the nonlinear optical susceptibility tensors that relate the incident electric field \vec{E} to induced electric dipole $P_i(n\omega) = \chi^{(1)}_{EED}$, magnetic dipole $M_i(n\omega) = \chi^{(1)}_{MD}$, and electric quadrupole $Q_{ij}(n\omega) = \chi^{(1)}_{EQ}$, can be measured through ratio-
To examine the possibility of local symmetry variations, we performed scanning THG-RA measurements with \(\sim 20 \mu m \) spatial resolution on (001) cleaved surfaces of \(\text{Sr}_2\text{IrO}_4 \) [Fig. 1(a)], which is sensitive to the local bulk crystal symmetry as we will discuss later. We observed no changes in the magnitude or symmetry of the THG-RA patterns across the entire surfaces of several crystals [Fig. 1(d)], which suggests that the entire crystal likely belongs to a lower symmetry subgroup of \(4/mmm \). In order to determine the subgroup we performed SHG-RA measurements, which are particularly well suited to distinguishing between centrosymmetric and noncentrosymmetric point groups because the usually dominant \(\chi_{ijk}^{E(3)} \) (odd rank) contribution to SHG vanishes under inversion symmetry [26,32].

Figures 2(a)–2(d) show SHG-RA patterns collected under all four distinct linear polarization combinations and Figs. 2(e)–2(h) show best fits to bulk electric dipole induced SHG calculated using the three noncentrosymmetric subgroups that have been proposed in the literature [17,18]: orthorhombic \(mm2 \) (space group \(Pmn2 \)), orthorhombic 222 (space group \(I2_12_12_1 \)), and tetragonal 422 (space group \(I4_122 \)). Results using the noncentrosymmetric monoclinic subgroup \(m \) are also plotted for comparison. It is clear that the data cannot be described by any of these noncentrosymmetric subgroups. A centrosymmetric tetragonal subgroup \(4/m \) (space group \(I4_{1}/a \)) has also been proposed [17]; however, like the case for \(4/mmm \), bulk electric dipole induced SHG is forbidden. Rather a bulk electric quadrupole induced SHG process must be responsible [33] in these cases and fits to both \(4/m \) and \(4/mmm \) are overlayed in Figs. 2(a)–2(d). Overall the data are clearly better described by a \(4/m \) rather than a \(4/mmm \) point group or any of the other noncentrosymmetric subgroups. Most importantly, the rotation of the peaks and valleys of all patterns away from the high symmetry directions of the crystal indicates an absence of mirror symmetry about the \(ac \), \(bc \) or the diagonal planes, which is consistent with a \(4/m \) but not with a \(4/mmm \) point group. Furthermore, the mathematical expressions for the bulk electric quadrupole induced \(P \) and \(S \) patterns derived using a \(4/mmm \) point group, which are both proportional to \(\sin(4\psi) \), yield an eightfold rotational symmetric pattern that cannot explain the clear modulations observed in the lobe amplitudes [Figs. 2(a) and 2(b)]. On the other hand, the corresponding expressions derived using a \(4/m \) point group, which are both proportional to \(|n_1 + n_2 \cos(4\psi) + n_3 \sin(4\psi)|^2 \), where \(n_{1,2,3} \) are linear combinations of \(\chi_{ijk}^{E(3)} \) that components [33], do allow for such modulations.

Although the SHG-RA data are most consistent with a \(4/m \) point group out of all point groups proposed by diffraction based studies, we cannot completely rule out the possibility that the SHG-RA patterns arise from a coherent sum of bulk electric quadrupole and bulk magnetic dipole or surface electric dipole contributions to SHG, which can be comparable in magnitude [26]. On the other hand, THG-RA...
measurements are established bulk sensitive probes of centrosymmetric crystals [34,35] because the bulk electric dipole contribution $\chi^{(1)}_{ijkl}$ (even rank) is allowed. Figure 3 shows THG-RA patterns with best fits to bulk electric dipole induced THG from a 4/m point group overlaid. Similar to the SHG data (Fig. 2), the peaks and valleys of the THG-RA patterns are rotated away from the high symmetry directions of the crystal, which cannot be reproduced by fits to a 4/mmm point group [33]. Moreover, there is a modulation of the lobe amplitudes in the PS and SP geometry data that can only be described using a 4/m point group. The mathematical expression for the PS and SP patterns derived using a 4/mmm point group, which is proportional to $|\sin(4\psi)|^2$, cannot account for these features [33].

The SHG-RA and THG-RA patterns together show that Sr$_2$IrO$_4$ exhibits a globally reduced bulk structural symmetry that is best described by the I$_4_1$/a space group. This implies that the c- and d-glide planes previously thought to exist in the I4_1/acd description are actually absent, which can only occur if the tetragonal distortions of the oxygen octahedra on the two sublattices are inequivalent [Figs. 4(a) and 4(b)] [33]. Owing to the strong magnetoelastic coupling in Sr$_2$IrO$_4$ [36–38], this staggered tetragonal distortion, which is present in our data both above and below the Néel temperature $T_N = 240$ K (Fig. 3) [33], will likely influence how the magnetic moments couple to the octahedral rotations.

The most widely used model [2] for understanding the relationship between the moment canting angle ϕ and the octahedral rotation angle α [Fig. 4(a)] was developed by...
the local magnetic degrees of freedom are derived from a CEF splitting, respectively. A perfect magnetoelastic locking and θ parameter however, is incompatible with recent neutron and resonant tetragonal distortion ([Fig. 4(c)]). However, if the sign of the tetragonal distortion is staggered between sublattices (Δ₁ = −Δ₂ ≡ Δ), which is consistent with an I4₁/a space group, then φ/α becomes remarkably insensitive to both λ and Δ [Fig. 4(d)]. This shows that the magnitude of φ/α is more strongly influenced by the spatially averaged value of the tetragonal distortion rather than its local value on an individual oxygen octahedron, which allows the existence of a large local tetragonal distortion to be reconciled with the observation of perfect magnetoelastic locking.

Although we currently cannot obtain a quantitative measure of Δ₁ and Δ₂, we propose that a staggering of the sign of tetragonal CEF splitting naturally explains the observations of perfect magnetoelastic locking in the presence of noncubic structural distortions. Quantitative measures of Δ₁ and Δ₂ using other techniques will be important for understanding the detailed spin and orbital composition of the ground state doublet [41,42] and the robustness of a J̃eff = 1/2 description to these lattice distortions [43]. More generally, we have demonstrated a technique to perform symmetry refinement on micron length scales that can be highly complementary to diffraction based probes especially for the study of 5d transition metal oxides.

We acknowledge useful discussions with Feng Ye, Bryan Chakoumakos, Stephen Lovesey, Dmitry Khalyavin, Jackeli and Khalilullin (JK) assuming an I4₁/acd space group, which only allows for a uniform tetragonal distortion. In the JK model, the ratio φ/α depends only on a parameter θ defined by tan(2θ) = 2√2λ/(λ − 2Δ), where λ and Δ are the strengths of SOC and uniform tetragonal CEF splitting, respectively. A perfect magnetoelastic locking (φ/α = 1) is predicted in the cubic limit (Δ = 0) where the local magnetic degrees of freedom are derived from a J̃eff = 1/2 Kramers doublet. Any mixing between the J̃eff = 1/2 and J̃eff = 3/2 states introduced through tetragonal distortion causes φ/α to be either smaller or larger than 1 depending on whether the oxygen octahedra are elongated (Δ > 0) or compressed (Δ < 0). Using commonly accepted [2,10,22,39,40] values of λ (~400 meV) and Δ (~140 meV) or their experimentally derived ratio (Δ/λ ~ 0.34) [38] in Sr₂IrO₄, the JK model predicts that φ/α ≈ 0.7. This, however, is incompatible with recent neutron and resonant x-ray diffraction studies that report values of φ = 13(1)° [17] and 12.2(8)° [21] and α = 11.8(1)° [17], which indicate a nearly perfect magnetoelastic locking.

To investigate how perfect magnetoelastic locking can remain robust even under substantial departure from cubic symmetry, we developed an extension of the JK model that accounts for a staggered tetragonal distortion. The starting point of our model is a microscopic single-ion Hamiltonian that includes both SOC and tetragonal CEF distortion [22]. Its ground state is a Kramers doublet whose orbital and spin composition is determined by the relative strengths of SOC and tetragonal splitting, which will depart from a J̃eff = 1/2 description for any nonzero value of the tetragonal splitting. By allowing for unequal tetragonal splitting (Δ₁ and Δ₂) on the two sublattices, the doublets on each sublattice will in general possess different spin and orbital compositions. We treat the resulting doublets as pseudospin-1/2 degrees of freedom (S) that interact via the following superexchange Hamiltonian derived in Ref. [22]:

\[
H = J_n \mathbf{S}_n \cdot \mathbf{S}_{n'} - D (S_n^z S_{n'}^z - S_n^x S_{n'}^x)
\]

\[
+ \delta J_{xy} S_n^x S_{n'}^y + \delta J_{zx} (S_n \cdot r_{n,n'}) (S_{n'} \cdot r_{n,n'}),
\]

where the isotropic exchange J, exchange anisotropies δJ_x and δJ_y, and Dzyaloshinsky-Moriya interaction D are functions of the microscopic parameters λ, Δ₁, Δ₂, Coulomb interaction, and Hund's coupling. The x and y axes point along the a and b directions, respectively, and r_{n,n'} is the unit vector along the n,n' bond. Classical minimization of the superexchange Hamiltonian is employed to calculate the moment canting angles. These methods are fully described in Ref. [22].
Peter Woelfle and Stephen Wilson. D. H. acknowledges support by the U.S. Army Research Office under Grant No. W911NF-13-1-0059. Instrumentation for the NHG-RA setup was partially supported by a U.S. Army Research Office DURIP Award under Grant No. W911NF-13-1-0293. D. H. acknowledges funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (PHY-1125565) with support of the Gordon and Betty Moore Foundation through Grant No. GBMF1250. N. P. and Y. S. acknowledge NSF support via Grants DMR-1255444 and DMR-1005932. G. C. acknowledges NSF support via Grant No. DMR-1265162.

*Corresponding author. dhsieh@caltech.edu

[1] W. Witzczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Ann. Rev. Condens. Mater. Phys. 5, 57 (2014).
[2] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).
[3] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
[4] Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Nature (London) 463, 210 (2010).
[5] M. J. Lawler, H.-Y. Kee, Y. B. Kim, and A. Vishwanath, Phys. Rev. Lett. 100, 227201 (2008).
[6] H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev. B 83, 245104 (2011).
[7] D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010).
[8] B.-J. Yang and Y. B. Kim, Phys. Rev. B 82, 085111 (2010).
[9] J. Maciejko, V. Chua, and G. A. Fiete, Phys. Rev. Lett. 112, 016404 (2014).
[10] B. J. Kim et al., Phys. Rev. Lett. 101, 076402 (2008).
[11] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009).
[12] F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).
[13] C. Martins, M. Aichhorn, L. Vaugier, and S. Biermann, Phys. Rev. Lett. 107, 266404 (2011).
[14] H. Watanabe, T. Shirakawa, and S. Yunoki, Phys. Rev. Lett. 110, 027002 (2013).
[15] Z.-Y. Meng, Y. B. Kim, and H.-Y. Kee, Phys. Rev. Lett. 113, 177003 (2014).
[16] Y. K. Kim, O. Krupin, J. D. Denlinger, A. Bostwick, E. Rotenberg, Q. Zhao, J. F. Mitchell, J. W. Allen, and B. J. Kim, Science 345, 187 (2014).
[17] F. Ye, S. Chi, B. C. Chakoumakos, J. A. Fernandez-Baca, T. Qi, and G. Cao, Phys. Rev. B 87, 140406 (2013).
[18] C. Dhital, T. Hogan, Z. Yamani, C. de la Cruz, X. Chen, S. Khadka, Z. Ren, and S. Wilson, Phys. Rev. B 87, 144405 (2013).
[19] M. K. Crawford, Phys. Rev. B 49, 9198 (1994).
[20] Q. Huang, J. L. Soubeyroux, O. Chmaissem, I. Natali Sora, A. Santoro, R. J. Cava, J. J. Krajewski, and W. F. Peck, J. Solid State Chem. 112, 355 (1994).
[21] S. Boseggia, H. C. Walker, J. Vale, R. Springell, Z. Feng, R. S. Perry, M. Moretti Sala, H. M. Ronnow, S. P. Collins, and D. F. McMorrow, J. Phys. Condens. Matter 25, 422202 (2013).
[22] N. B. Perkins, Y. Sizyuk, and P. Wölfle, Phys. Rev. B 89, 035143 (2014).
[23] S. Boseggia, R. Springell, H. C. Walker, A. T. Boothroyd, D. Prabhakaran, D. Wermeille, L. Bouchenoire, S. P. Collins, and D. F. McMorrow, Phys. Rev. B 85, 184432 (2012).
[24] J. P. Clancy, A. Lupascu, H. Gretarsson, Z. Islam, Y. F. Hu, D. Casa, C. S. Nelson, S. C. LaMarra, G. Cao, and Y.-J. Kim, Phys. Rev. B 89, 054409 (2014).
[25] D. H. Torchinsky, H. Chu, T. Qi, G. Cao, and D. Hsieh, Rev. Sci. Instrum. 85, 083102 (2014).
[26] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 2003).
[27] R. R. Birss, Symmetry and Magnetism (North-Holland Publishing Company, Amsterdam, 1966).
[28] H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51, 1983 (1983).
[29] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Phys. Rev. Lett. 54, 63 (1985).
[30] M. Nyvlt, F. Bisio, and J. Kirschner, Phys. Rev. B 77, 014435 (2008).
[31] D. Hsieh, J. W. McIver, D. H. Torchinsky, D. R. Gardner, Y. S. Lee, and N. Gedik, Phys. Rev. Lett. 106, 057401 (2011).
[32] Y. Hirata et al., Phys. Rev. Lett. 110, 187402 (2013).
[33] See Supplemental Material http://link.aps.org/supplemental/10.1103/PhysRevLett.114.096404 for further details of the experimental method and symmetry analysis.
[34] J. E. Sipe, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987).
[35] M. Lefrentz, D. Brunne, B. Kaminski, V. V. Pavlov, R. V. Pisarev, A. B. Henriques, D. R. Yakovlev, G. Springholz, G. Bauer, and M. Bayer, Phys. Rev. B 85, 035206 (2012).
[36] S. Chikara, O. Korneta, W. Crummett, L. DeLong, P. Scholtzmann, and G. Cao, Phys. Rev. B 80, 140407(R) (2009).
[37] M. Ge, T. F. Qi, O. B. Korneta, D. E. De Long, P. Scholtzmann, W. P. Crummett, and G. Cao, Phys. Rev. B 84, 100402(R) (2011).
[38] D. Haskel, G. Fabbrii, M. Zherchenkov, P. P. Kong, C. Q. Jin, G. Cao, and M. van Veenendaal, Phys. Rev. Lett. 109, 027204 (2012).
[39] H. Jin, H. Jeong, T. Ozaki, and J. Yu, Phys. Rev. B 80, 075112 (2009).
[40] H. Zhang, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 111, 246402 (2013).
[41] L. C. Chapon and S. W. Lovesey, J. Phys. Condens. Matter 23, 252201 (2011).
[42] M. Moretti Sala, S. Boseggia, D. F. McMorrow, and G. Monaco, Phys. Rev. Lett. 112, 026403 (2014).
[43] S. Boseggia, R. Springell, H. Walker, H. Ronnow, Ch. Rüegg, H. Okabe, M. Isobe, R. Perry, S. Collins, and D. McMorrow, Phys. Rev. Lett. 110, 117207 (2013).