Pleural effusion revealing a malignant rhabdoid tumor of the chest wall in an infant: A case report and literature review

Daoud Ali Mohamed, H Essaber, Amarkak A Waiss, Fabrice Diekouadio, S El Haddad, A Fekkar, N Lamalmi

ABSTRACT

Introduction: The rhabdoid tumor (RT) is a malignant tumor, rare and aggressive, with a poor prognosis. It affects the young children, especially the infants. Described for the first time in 1978 by Beckwith and Palmer, it develops mainly in the kidney but other localizations like cerebral and extra-cerebral have been described. The mediastinal and pulmonary localizations remain rare. Case Report: We report a case of RT of an 18-month-old male infant admitted for pleural effusion syndrome, without any past medical history. The chest X-ray revealed a large opacity of the left hemithorax compressing heart and the mediastinum structures to the right. It was associated with a lysis of the sixth rib. Thoracic computed tomography (CT*) showed a large lobulated heterogeneously parietal mass delimiting liquid hypodense area with pleural effusion. The mass compressed the homolateral lung with reduction of left lobar bronchus and mediastinal structures to the right. It was associated with a lysis of the fifth and sixth ribs with soft tissue extension. Histopathological examination revealed richly vascularized fibrous tissue composed of large cell ranges with reduced cytoplasm and oval nuclei with vesicular chromatin, and cell ranges with eccentric nuclei and deep eosinophilic cytoplasmic inclusion. On immunohistochemistry, integrase interactor 1 (INI-1) protein labeling was negative. The diagnosis of the RT was retained. A chemotherapy was started, but despite chemotherapy the patient's condition was deteriorated on the respiratory with dependence on oxygen therapy. The patient died after 2 months and 10 days of diagnosis. Conclusion: The RT is a rare entity occurring usually in young children very frequently in infants. It develops mainly in the kidney but other localizations have been described including the mediastinal and pulmonary localizations which are very rare. It is extremely aggressive in nature and quickly progresses. The imaging does not provide pathognomonic diagnostic signs. The histopathological and immunohistochemical study with immunolabeling makes it possible to clarify the diagnosis by the absence of labeling of the protein integrase interactor. Generally, the prognosis remains very poor despite the chemotherapy and radiotherapy until now.

Keywords: Chest wall, Extra-renal tumor, INI-1, Malignant rhabdoid tumor

How to cite this article

Mohamed DA, Essaber H, Waiss AA, Diekouadio F, El Haddad S, Fekkar A, Lamalmi N. Pleural effusion revealing a malignant rhabdoid tumor of the chest wall in an infant: A case report and literature review. Int J Case Rep Images 2020;11:101125Z01DM2020. Article ID: 101125Z01DM2020

doi: 10.5348/101125Z01DM2020CR
INTRODUCTION

The rhabdoid tumor is a malignant tumor, rare and aggressive, with a poor prognosis. It affects the young children, especially the infants [1, 2]. Described for the first time in 1978 by Beckwith and Palmer, it develops mainly in the kidney but other localizations like cerebral and extra-cerebral have been described [3–8]. The tumor of central nervous system was called the atypical teratoid/rhabdoid tumors (AT/RTs). The mediastinal and pulmonary localizations remain rare [5, 6]. Here, we describe a case of malignant RT of the chest wall in an infant.

CASE REPORT

We report the case of an 18-month-old male infant, without past medicals history. The beginning of the symptomatology returned to three weeks of its admission by a dry cough, polypnea, and fever without improvement despite empiric antibiotic therapy. The chest radiography was practiced and showed a left pleural effusion with lysis of sixth rib and the patient was admitted in the pediatric unit.

On admission the patient was in good general condition, reactive, with cutaneo-mucous pallor, and respiratory distress (polypnea, decrease vesicular murmur of the lower 2/3 of the left lung), however he was hemodynamically stable. The patient had a left thoracic parietal swelling adhering to the wall estimated at 4 cm. The rest of the exam was featureless.

Biological: hemoglobin was at 9.4 g/dL, leukocyte at 18,140/mm, renal function and ionogram were normal.

In imaging, the chest X-ray revealed a large opacity of the left hemithorax compressing heart and the mediastinum structures to the right. It was associated with a lysis of the sixth rib (Figure 1).

Thoracic computed tomography (CT*) showed a large lobulated heterogeneously parietal mass delimiting liquid hypodense areas with pleural effusion measuring 90 × 67 × 86 mm. The mass compressed the homolateral lung with reduction of left lobar bronchus and mediastinal structures to the right. It was associated with a lysis of the fifth and sixth ribs with soft tissue extension (Figure 2).

The histological samples were taken on the left thoracic parietal swelling, the site of the tumoral extension. Histopathological examination revealed richly vascularized fibrous tissue composed of large cell ranges with reduced cytoplasm and oval nuclei with vesicular chromatin, and cell ranges with nuclei often eccentric with abundant eosinophilic cytoplasmic inclusion concluding to a malignant tumor process difficult to classify (Figure 3).

On immunohistochemistry, cytokeratin staining, vimentin, epithelial membrane antigen, smooth muscle actin, and CD99 were positive. Labeling with LCA-CD3–CD20-ALK-CD30, MPO-CD34-CD68, CD1, desmin–myogenin were negative. Also, INI-1 protein labeling was negative.

With the quickly evolving clinical picture and the histopathological result in particular the absence of labeling of the protein INI-1, the diagnosis of the RT was retained two weeks after his hospitalization.

Figure 1: Opacity of the left hemithorax compressing heart and the mediastinum structures to the right. It was associated with a lysis of the sixth rib.

Figure 2: (A) Axial CT without injection showing a discretely hyperdense left parietal process compressed homolateral lung and mediastinum structures to the right with bone lysis. (B) and (C) Axial and coronal CT with injection showing a heterogeneous mass delimiting liquid hypodense areas with pleural effusion. The mass compressed the homolateral lung with reduction of left lobar bronchus and mediastinal structures to the right. It was associated with a lysis of the fifth and sixth ribs with soft tissue extension. (D) 3D bone reconstruction showing bone lysis of the sixth left rib.
A chemotherapy treatment was started with associated vincristine, actinomycin, cyclophosphamide, then with cyclophosphamide/Adria and VP16/carboplatin alternately.

Despite chemotherapy the patient’s conditions was deteriorated on the respiratory with dependence on oxygen therapy. He was also suffering from severe anemia which it was transfused by a red blood cell. The patient was died after 2 months and 10 days of diagnosis.

DISCUSSION

The RT was described for the first time in 1978 by Beckwith and Palmer as a “rhabdomyosarcomatoid variant of Wilms tumor” with high grade of malignancy and affecting the infant [3]. It is a rare tumor, extremely aggressive with poor prognosis [1, 2]. It usually occurs in young children very frequently in infants under two years old. The median age at the time of diagnosis is ranging from 10 to 24 months depending on the series [9].

The incidence is 5 per 1,000,000 in the first year of life and decreased by age to 0, 6 per 1,000,000 at age 1–4 years, 0, 1 per 1,000,000 at age 5–9 years. The sex ratio is equal at 1, 08/1, however AT/RT predominated in boys [10, 11].

This tumor develops usually in the kidney [3]. However, extra renal localizations such as the nervous system, liver, and soft tissues of digestive tract, lung, and mediastinum have been described [3–8, 12]. The tumor of central nervous system was called the AT/RT. About less than 34 cases of mediastinal localization have been reported to date, from which 9 cases are related to children less than 18 years [6]. Less than 40 cases of pulmonary primitive localization of all ages were reported [5, 13, 14].

Clinically, the mode of revelation is very polymorphic and depends on the localization of the tumor. The RT of kidney revealed by hematuria in 80% of cases and associated with hypocalcemia in 20% of cases. In the nervous system tumor is revealed by intracranial hypertension or cerebellar syndrome and in the thoracic level it manifested by chest pain, dyspnea, cough, or respiratory distress [6, 15–17].

The imaging does not provide pathognomonic diagnostic signs. Some authors describe the heterogeneous nature of the lesion with intense contrast enhancement often multilobulated with some areas of necrosis or intra-tumor calcification [6, 14, 18, 19].

Anatomo-pathological examination is very variable, often marked by the presence of rhabdoid cells, composed of a nucleus with a large single nucleolus and a decompacted chromatin seat of an intracytoplasmic eosinophilic inclusion, within an undifferentiated stroma making the diagnosis difficult [14, 20, 21]. The immunohistochemical study with immunolabeling eliminates the differential diagnosis and suggests the diagnosis of the RT. Indeed, the absence of labeling of the protein INI-1 which is the result of the loss of the function of the suppressor gene SMARCB1 makes it possible to specify the diagnosis [14, 20–22].

The treatment of RT is based on radical surgery. Hilden et al. have been reported that the patients who underwent radical surgery had a higher survival than those who underwent partial surgery. But this radical surgery could not be realized because at the time of diagnosis the tumor was too large [23, 24]. Some authors have been reported the beneficial role of chemotherapy and radiotherapy [25–27]. There is no consensual therapeutic protocol for chemotherapy or radiotherapy. Some authors and European Commission recommend intensify (high dose) chemotherapy and radiotherapy over 18 years and the results seem promising [26, 28, 29].

Despite all these treatments, the prognosis of these tumors remains very poor. The average survival varies according to studies from 11 to 17 months [1, 2, 6].

CONCLUSION

The RT is a rare entity occurring usually in young children very frequently in infants. It develops mainly in the kidney but other localizations have been described including the mediastinal and pulmonary localizations which are very rare. It is extremely aggressive in nature and quickly progresses. The imaging does not provide pathognomonic diagnostic signs. The histopathological and immunohistochemical study with immunolabeling makes it possible to clarify the diagnosis by the absence of labeling of the protein INI-1 which is the result of the loss of the function of the suppressor gene SMARCB1 makes it possible to specify the diagnosis [14, 20–22].
REFERENCES

1. Reinhard H, Reinert J, Beier R, et al. Rhabdoid tumors in children: Prognostic factors in 70 patients diagnosed in Germany. Oncol Rep 2008;19(3):819–23.

2. Brennan B, De Salvo GL, Orbach D, et al. Outcome of extracranial malignant rhabdoid tumours in children registered in the European Paediatric Soft Tissue Sarcoma Study Group Non-Rhabdomyosarcoma Soft Tissue Sarcoma 2005 Study-EpSSG NRSTS 2005. Eur J Cancer 2016;60:69–82.

3. Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: Results from the First National Wilms’ Tumor Study. Cancer 1978;41(5):1937–48.

4. Fanburg-Smith JC, Hengge M, Hengge UR, Smith JS Jr, Miettinen M. Extrarenal rhabdoid tumors of soft tissue: A clinicopathologic and immunohistochemical study of 18 cases. Ann Diagn Pathol 1998;2(6):351–62.

5. Saini G, Kumar M, Julka PK, Puri T, Sharma M, Rath GK. Rhabdoid variant of lung cancer: Clinicopathological details of a case and a review of literature. J Cancer Res Ther 2009;5(1):54–7.

6. Ng WK, Toe BP, Lau HY. Malignant rhabdoid tumor of the mediastinum: A case report and literature review. J Clin Imaging Sci 2019;9:7.

7. Lee IH, Yoo SY, Kim JH, et al. Atypical teratoid/rhabdoid tumors of the central nervous system in infancy. Pediatr Radiol 2016;33(9):7641–5.

8. Perlman EJ, Ali SZ, Robinson R, Lindato R, Griffin CA. Infantile extrarenal rhabdoid tumor. Pediatr Dev Pathol 1998;1(2):149–52.

9. Zysman M, Clement-Duchene C, Bastien C, Vaillant P, Martinet Y. Malignant rhabdoid tumor of the lung. [Article in French]. Rev Mal Respir 2016;33(9):808–11.

10. Garcia-Malagón EF, Leung R, Sebire NJ, McHugh K. Extrarenal rhabdoid tumours outside the central nervous system in infancy. Pediatr Radiol 2009;39(8):817–22.

11. Gurrurangan S, Bowman LC, Parham DM, et al. Primary extracranial rhabdoid tumors. Clinicopathologic features and response to ifosfamide. Cancer 1993;71(8):2653–9.

12. Falconieri G, Moran CA, Pizzolitto S, Zidar A, Angione V, Wakely PE Jr. Intrathoracic rhabdoid carcinoma: A clinicopathological, immunohistochemical, and ultrastructural study of 6 cases. Ann Diagn Pathol 2005;9(5):279–83.

13. Marty L, Cuinet A, Routjeau T, et al. Infant rhabdoid tumors: A diagnostic emergency. [Article in French]. Arch Pediatr 2014;21(11):1246–9.

14. Abdulla H, Patel Y, Lewis TJ, Elsamaloty H, Strobel S. Extranodal malignant rhabdoid tumors: Radiologic findings with histopathologic correlation. Cancer Imaging 2010;10(1):97–101.

15. Agrons GA, Kingsman KD, Wagner BJ, Sotedo-Avila C. Malignant rhabdoid tumor of the kidney in children: A comparative study of 21 cases. AJR Am J Roentgenol 1997;168(2):447–51.

16. Judkins AR, Eberhart CG, Wesseling P. Atypical teratoid/rhabdoid tumour. In: Leis US, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO Classification of Tumours of the Central Nervous System. Lyon: IARC Press; 2007. p. 147–9.

17. Roberts CWM, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther 2009;8(5):412–6.

18. Sigauke E, Rakheja D, Maddox DL, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: An immunohistochemical study with implications for diagnosis. Mod Pathol 2006;19(5):717–25.

19. Hilden JM, Meerbaum S, Burger P, et al. Central nervous system atypical teratoid/rhabdoid tumor: Results of therapy in children enrolled in a registry. J Clin Oncol 2004;22(14):2877–84.

20. Hoshi H, Iehara T, Tsuchiya K, et al. Continuous remission in an infant with chest wall malignant rhabdoid tumor after relapse. J Pediatr Surg 2007;42(10):E9–12.

21. Farber BA, Shukla N, Lim IP, Murphy JM, La Quaglia MP. Prognostic factors and survival in non-central nervous system rhabdoid tumors. J Pediatr Surg 2010;45(4):647–8.

22. Puriri DR, Meyers PA, Kraus DH, et al. Radiotherapy in the multimodal treatment of extrarenal extracranial malignant rhabdoid tumors. Pediatr Blood Cancer 2008;50(1):167–9.

23. Sultan I, Qaddoumi I, Rodriguez-Galindo C, Nasser AA, Ghandour K, Al-Hussaini M. Age, stage, and radiotherapy, but not primary tumor site, affects the outcome of patients with malignant rhabdoid tumors. Pediatr Blood Cancer 2010;54(4):647–8.

24. Garre ML, Tekautz T. Role of high-dose chemotherapy (HDCT) in treatment of atypical teratoid/rhabdoid tumors (AT/RTs). Pediatr Blood Cancer 2007;50(1):E9–12.

25. Seeringer A, Bartelheim K, Kerl K, et al. Feasibility of high-dose chemotherapy in treatment of extracranial malignant rhabdoid tumors: A diagnostic emergency. [Article in French]. Arch Pediatr 2014;21(11):1246–9.

26. Seeringer A, Bartelheim K, Kerl K, et al. Feasibility of intensive multimodal therapy in infants affected by rhabdoid tumors – experience of the EU-RHAB registry. Klin Padiatr 2014;226(3):143–8.

Author Contributions

Daoud Ali Mohamed – Conception of the work, Design of the work, Acquisition of data, Analysis of data, Drafting the work, Revising the work critically for important
intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

H Essaber – Conception of the work, Design of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Amarkak A Waiss – Conception of the work, Design of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Fabrice Diekouadio – Conception of the work, Design of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

S El Haddad – Conception of the work, Design of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

A Fekkar – Conception of the work, Design of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

N Lamalmi – Conception of the work, Design of the work, Drafting the work, Revising the work critically for important intellectual content, Final approval of the version to be published, Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Guarantor of Submission
The corresponding author is the guarantor of submission.

Source of Support
None.

Consent Statement
Written informed consent was obtained from the patient for publication of this article.

Conflict of Interest
Authors declare no conflict of interest.

Data Availability
All relevant data are within the paper and its Supporting Information files.

Copyright
© 2020 Daoud Ali Mohamed et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.
Submit your manuscripts at
www.edoriumjournals.com