Towards a complete treatment of the cosmological recombination problem

J. Chluba1,2* and R. M. Thomas1†

1 Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8, Canada
2 Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 Garching, Germany

Received 2010 October 18; Accepted 2010 October 27

1 INTRODUCTION

The Planck Surveyor is currently observing the temperature and polarization anisotropies of the cosmic microwave background (CMB), and scientists all over the world eagerly await its first data release, scheduled for early 2011. With Planck data sets cosmologists will be able to determine key cosmological parameters with unprecedented precision, making it possible to distinguish between the various models of inflation (e.g. see Komatsu et al. 2010, for recent constraints).

Over the past 5 years, various groups (e.g. see Dubrovich & Grachev 2005; Chluba & Sunyaev 2006b; Khlopenco & Ivanchik 2006; Switzer & Hirata 2008; Wong & Scott 2007; Rubio-Martín et al. 2008; Karshenboim & Ivanov 2008; Hirata 2008; Chluba & Sunyaev 2008; Jentschura 2009; Labyzovsky et al. 2009; Grin & Hirata 2010; Ali-Haïmoud & Hirata 2010) have realized that the uncertainties in the theoretical treatment of the cosmological recombination process could have important consequences for the analysis of the CMB data from the Planck Surveyor. It was shown that in particular our ability to measure the precise value of the spectral index of scalar perturbations, n_s, and the baryon content of our Universe will be compromised if modifications to the recombination model by eCfast (Seager et al. 1999, 2000) are neglected (Rubio-Martín et al. 2010).

To ensure that uncertainties in the cosmological recombination model do not undermine the science return of the Planck satellite, it is crucial to incorporate all important processes leading to changes in the free electron fraction close to the maxima of the Thomson visibility function (Sunyaev & Zeldovich 1970) by more than ~ 0.1% into one recombination module. The main obstacle towards accomplishing this so far was that detailed recombination calculations took too long to allow accounting for the full cosmological dependence of the recombination corrections on a model-by-model basis. This led to the introduction of improved fudge factors to eCfast (Wong & Scott 2007; Wong et al. 2008) or multi-dimensional interpolation schemes (Fendt et al. 2009; Rubio-Martín et al. 2010), that allow fast but approximate representation of the full recombination code.

Although it was already argued that for the stringent error-bars of today’s cosmological parameters such approaches should be sufficient (Rubio-Martín et al. 2010), from a physical standpoint it would be much more satisfying to have a full representation of the recombination problem, that does not suffer from the limitations mentioned above, while capturing all the important physical processes simultaneously. Furthermore, such a recombination module...
increases the flexibility, and allows us to provide extensions, e.g., to account for the effect of dark matter annihilation, energy injection by decaying particles (e.g. see Chen & Kamionkowski 2004; Padmanabhan & Finkbeiner 2005; Chluba 2010), or the variation of fundamental constants (Kaplinghat et al 1999; Galli et al 2003; Scócola et al 2009), while treating all processes simultaneously.

In this paper, we describe our new approach to the recombination problem, which enables us to fulfill this ambition by overcoming the problems mentioned above. Our code, called CosmoReRec2, runs in 1–2 minutes for a given set of cosmological parameters as it stands and can be optimized further to run well below a minute, eliminating the need for fudge factors to solve the recombination problem. One of the key ingredients that facilitates this increase in speed is the effective multi-level approach, which was proposed recently by Ali-Haïmoud & Hirata 2010.

We also extend our previous analysis on the effects of two-photon processes during the cosmological recombination epoch of hydrogen (Chluba & Sunyaev 2008, 2010b) to account for ns-1s and nd-1s Raman scattering and two-photon transitions from levels with $n \geq 2$. The radiative transfer equation for the Lyman-series photons during hydrogen recombination is solved in detail using a PDE solver that we developed for this purpose and can accommodate non-uniform grids (see Appendix A for more details). Our results for the effect of Raman scattering on the recombination dynamics are in good agreement with earlier computations (Hirata 2008). Furthermore, we show that two-photon decays from levels with $n \geq 4–5$ can be neglected and Raman scattering is only important for the first few shells.

The main difficulty with two-photon and Raman processes during the recombination epoch is the presence of resonances in the interaction cross-sections related to normal 1+1 photon transitions that are already included into the multi-level recombination code (Hirata & Switzer 2008; Chluba & Sunyaev 2008, 2010b; Chluba & Sunyaev 2010b). Unlike for the 2s-1s two-photon decay, all the higher ns-1s and nd-1s two-photon channels include '1+1' photon sequences via energetically lower Lyman-series resonances, i.e., $ns/d \leftrightarrow kp \leftrightarrow 1s$ with $k < n$. Similarly, for ns-1s and nd-1s Raman-scattering events all higher Lyman-series resonances, i.e., $ns/d \leftrightarrow kp \leftrightarrow 1s$ with $k > n$, appear. Therefore, special care has to be taken to avoid double-counting of these resonances in the rate equations of the multi-level atom, as we explain in § 3.4.3 § 3.5.3 and § 3.5.4.

In § 2 we outline our principle approach to the recombination problem. The terms for the radiative transfer equation that allow us to take all important recombination corrections into account are derived in § 3. We then solve the evolution equation for the high frequency photon field during the recombination epoch, and illustrate the different changes in § 4. In § 5 we discuss the different corrections to the ionization history, and we present our conclusions and outlook in § 6.

2 PERTURBATIVE APPROACH TO SOLVING THE FULL RECOMBINATION PROBLEM

2.1 General aspects of the standard recombination problem

The cosmological recombination problem consists of determining an accurate estimate of the free electron fraction, $X_e = N_e/N_{HI}$, as a function of redshift. Because of particle conservation, and the number of electrons in excited states of H1 and H1 being negligible, one may write:

$$N_e \approx N_{H} [1 - X_{1s}^H] + N_{H} [f_{H} - X_{1s}^H].$$

(1)

where N_H denotes the number density of hydrogen nuclei, and $f_{H} = N_{H}/N_{HI}$ is the fraction of helium nuclei. The populations of the different levels are given by $X_i = N_i/N_H$, where ‘i’ indicates the atomic species. Furthermore, $X_i \equiv X_i^H$ for convenience.

Equation (1) implies that the recombination problem reduces to finding solutions to X_i^H. For hydrogen, the standard rate equation describing the evolution of the ground-state population has the form (see also; Seager et al 1999, 2000)

$$\frac{dX_{1s}^H}{dt} = \Delta R_{2s1s}^{H} + \sum_k \Delta R_{2p1s}^{H},$$

(2a)

$$\Delta R_{2s1s}^{H} = A_{2s1s} [\chi_{2s} - \chi_{1s} e^{-k_{2s}/kT}],$$

(2b)

$$\Delta R_{2p1s}^{H} = A_{2p1s} (1 + n_{H}^{p1s}) \left[X_{1s}^H - 3 X_{1s}^H n_{H}^{p1s} \right].$$

(2c)

Here n_{H}^{p1s} is the mean photon occupation number over the Lyman-k line profile, A_i the atomic rate coefficients for spontaneous emission, and n_{H}^{p1s} is the occupation number of the CMB blackbody photons at the Lyman-k transition frequency $\nu_{1s} \equiv \nu_{p1s}$.

The solution of Eq. (2) depends on the level populations of the 2s- and kp-states. In addition, the photon distribution in the vicinity of every Lyman-resonance has to be known, to define n_{H}^{p1s}, ν_{p1s} is often estimated by the Sobolev approximation, which, however, breaks down during recombination, leading to non-negligible corrections to the recombination dynamics (e.g. see Chluba & Sunyaev 2009a, 2010a, 2009d). The rate equations for the 2s- and kp-states themselves can, in principle, be explicitly given. But here it is only important to realize that these lead to a large network of rate equations which depends on the populations of all other excited levels. To complicate matters further the electron temperature, T_e, enters the whole problem via recombination coefficients, $\alpha_i(T_e, T_r)$, to each level i, where T_r is the photon temperature.

The evolution of T_e is described by one simple differential equation, which accounts for the cooling of electrons caused by the Hubble-expansion, and the energy exchange with CMB photons via Compton scattering. Other processes, e.g., such as Bremsstrahlung cooling, are subdominant (Seager et al. 2000).

2.1.1 The effective multi-level approach

Recently, Ali-Haïmoud & Hirata 2010 suggested to simplify the recombination problem to a subset of levels that need to be followed explicitly. Here we shall call the members of this subset ‘resolved’ levels. This approach enables us to account for the effect of recombinations due to highly excited states ($n > 100$), without actually solving for all these level populations explicitly. The rationale being that except for the optically thick Lyman-series transitions, all other rates are mediated by the CMB blackbody photons, and hence only depend on the photon and electron temperatures.

The downside of this simplification entails the need to tabulate effective rate coefficients as a function of T_e and T_r prior to the computation. This however needs to be done only once, we assume to be at redshifts $z \ll 6000$, well after doubly ionized helium recombines.

This code will be available at www.Chluba.de/CosmoRec.
and given that the number of resolved states necessary for converging solutions is small, this effective multi-level approach results in tremendous speed-ups for recombination calculations (see Ali-Haimoud & Hirata (2010) for more details). For this work we also implemented such an effective rate approach. The rate coefficients for an effective 400-shell hydrogen atom were computed using our most recent recombination code (Chluba et al. 2010), while helium is described with a multi-level treatment (Chluba & Sunyaev 2010). Within this framework the choice of the number of resolved states depends on the extra physics that one intends to include. For example, in a minimal model for the hydrogen recombination problem one should explicitly solve for the 1s, 2s, and 2p level populations in tandem with the electron temperature, T_e.

This minimal choice already allows us to include processes that affect the net rates in the 2s-1s two-photon channel and the 2p-1s Lyman-α resonance, e.g. the effect of stimulated 2s-1s two-photon decay (Chluba & Sunyaev 2006a), or the feedback of Lyman-α photons on the 1s-2s rate (Kholopenko & Ivaˇnčič 2006). However, since we restricted ourselves to the 1s, 2s and 2p states, corrections due to Lyman-β or higher resonance feedback cannot be modelled as these would require resolving n-states with $n > 2$ (Chluba & Sunyaev 2007). We will return to these points in § 2.2.3.

2.1.2 Sobolev approximation for \bar{n}_{pp1s}

In a multi-level approach the Sobolev approximation is invoked to obtain a solution for the photon-field around every resonance appearing in Eq. (3). The photon occupation number around each line is then given by

$$\Delta n_i = \Delta n_i^c \left[1 - e^{-\tau_i^c[1 + 1]} \right],$$

where $\Delta n_i^c \approx n_i^c - n_{pp1s}^c$, τ_i^c is the Sobolev optical depth in the Lyman-k resonance, and Δn_i^c is the Voigt profile corresponding to a resonance, and the line occupation number, n_i^c, is defined as:

$$n_i^c = \frac{N_{pp}}{N_{1s}}.$$

Consequently, a simple approximation for the mean occupation number is

$$\bar{n}_{pp1s} = \langle n_i^c \rangle = \bar{n}_{1s} - P_{5}^k \Delta n_i^c,$$

with $P_{5}^k \approx [1 - e^{-\tau_5^c}] / \tau_5^c$ being the Sobolev escape probability.

For the Lyman-α resonance Eq. (4) results in a photon distribution that is rather unphysical (e.g. see discussion in Chluba & Sunyaev 2009). This is primarily due to the assumption that every interaction with the resonance leads to a complete redistribution of photons over the whole line profile, which for typical values of τ_5 during recombination couples the photon distribution from the line center up to frequencies in the Lyman-continuum. For conditions present in our Universe, photon redistribution over frequency is much less effective, most notably in the distant wings. Thus, it is important to distinguish between scattering, real emission and absorption events, as we will discuss in § 3.

4 Because the 2s and 2p states are usually close to full statistical equilibrium, one could also eliminate either of these states using $X_{2p} = 3X_{2s}$, and, as a result, closely resemble the normal DREC code, now without requiring a fudge factor.

5 We assumed that as $v \to \infty$ the distortion $\Delta n_{pp} \to 0$, and that (as usual) the factor $(v_{1s}/v_i)^2 \sim 1$.

2.2 Beyond the standard rate equation for 1s

As mentioned in § 2.1.1 within the effective multi-level approach the choice for the resolved states depends on the physics to be modelled in detail. For example, in order to include the full effect of Lyman-series feedback, say up to $n = 8$, the minimal model that follows 1s, 2s, and 2p would at least have to be extended by all ℓp-states up to 6p.

Also, the inclusion of two-photon processes from higher levels and Raman-scattering, requires us to re-write equation (2) in a more generalized form,

$$\frac{dX_i^H}{dr}_{\text{mod}} = \sum_j [X_i^H R_{i \leftarrow j} - X_j^H R_{j \leftarrow i}],$$

where $R_{i \leftarrow j}$ are the rates between the levels i and j. These rates depend on atomic physics, the CMB blackbody, the electron temperature, and the solution for the Lyman-series spectral distortion introduced by the recombination process.

To include two-photon corrections to the Lyman-series up to $n = n_{\text{max}}$, the important levels to follow are all the n and n-states with $2 \leq n \leq n_{\text{max}}$. The corresponding partial rates to the np-states drop out of the equations, and the Lyman-series emission and absorption profiles, usually given by a Voigt function, will be replaced by the two-photon profiles for the $ns \leftrightarrow 1s$ and $nd \leftrightarrow 1s$ processes, and similarly for the Raman process. We will specify these corrections more precisely in the following sections.

2.2.1 Accounting for corrections from radiative transfer effects

Changes in the level populations, electron temperature and free electron fraction remain small ($\sim 1\%$), when different physical processes, which were neglected in earlier treatments (e.g. see Rubino-Martín et al. 2010, for overview) are included. This justifies treating corrections to T_e and the populations of resolved levels, X_i, as small perturbations. On the other hand, it has been shown that the changes in the photon field caused by time-dependence (Chluba & Sunyaev 2009a), line scattering (Chluba & Sunyaev 2009b), or two-photon corrections (Hirata & Forbes 2009), are non-perturbative.

In (3) we derive in detail the different correction terms for the photon diffusion equation and provide modifications to the net rates of the effective multi-level atom. The idea is to first solve the recombination history using the effective multi-level approach in the '1 + 1' photon description, i.e. equate $R_{i \leftarrow j} = R_{i \leftarrow j}^{1+1}$ in Eq. (6), and then compute the solution to the photon field using the radiative transfer equation. This then leads to corrections in the net rates, which are used in computing changes to the recombination dynamics, and hence modify Eq. (6). These corrections being small, demand only one iteration to converge. Detailed descriptions to the notations in the following sections and part of the methods used can be also found in Chluba & Sunyaev (2009a, 2010b, 2009c, 2009d).

3 EQUATION FOR THE PHOTON FIELD EVOLUTION AND CORRECTIONS TO THE EFFECTIVE MULTI-LEVEL ATOM

To account for all corrections to the cosmological recombination problem, it is important to follow the evolution of non-thermal photons in the Lyman-series, which are produced during recombination. These photons interact strongly with neutral hydrogen atoms.
throughout the entire epoch of recombination, and their rate of escape from the Lyman-resonances is one of the key ingredients in accurately solving the recombination problem.

The partial differential equation governing the evolution of the photon field has the form (see Chluba & Sunyaev 2009a for a detailed discussion)

$$\frac{1}{c} \frac{\partial \Delta n_e}{\partial t} - H\nu \frac{\partial \Delta n_e}{\partial x} = C[\Delta n_e]_{\text{em/abs}} + C[\Delta n_e]_{\text{iscat}},$$

(7)

where $\Delta n_e = \frac{\dot{\gamma}}{\nu}$ is the distortion in the photon occupation number, and a distinction is made between the collision terms leading to emission and absorption, $C[\Delta n_e]_{\text{em/abs}}$, and scattering, $C[\Delta n_e]_{\text{iscat}}$. As an example, the first term on the right hand side of the equation can account for two-photon corrections to the line profiles, while the second term, electron and/or resonance scattering.

The second term on the left hand side describes the redshifting of photons due to Hubble expansion, and plays a crucial role in the escape of photons from the optically thick Lyman-series resonances.

In Eq. (7) the CMB blackbody has been subtracted, i.e., $\Delta n_e = n_e - m_0^4$, where $m_0^4 = (e^{\hbar/2kT} - 1)^{-1}$ is the blackbody occupation number, because the left hand side directly vanishes for a blackbody with temperature $T_e(z) = (1 + z)$. Also, spectral distortions created by Compton scattering off electrons with $T_e \neq T_B$ will be extremely small for conditions in our Universe at least if there is no additional energy release.

By changing the time-variable to redshift z using $dz/dt = -H(1+z)$, and scaling to dimensionless frequency $x = \nu/\nu_21$, Eq. (7) reads

$$\frac{\partial \Delta n_e}{\partial z} = -x \frac{\partial \Delta n_e}{\partial x} - \Lambda_c [C[\Delta n_e]_{\text{em/abs}} + C[\Delta n_e]_{\text{iscat}}],$$

(8)

where $\Delta n_e = \nu_21 \Delta \nu_e$ and $\Lambda_c = \frac{\sigma_{T, \text{em}}}{\nu_21}$. We will now discuss the terms describing the resonance and electron scattering. In §3.1 we specify the different emission and absorption terms, which then in §4 and §5 are used to compute the corrections to the Lyman-series distortion and ionization history.

3.1 Inclusion of partial redistribution by resonance and electron scattering

Here we provide the terms for the Boltzmann equation describing the effect of (partial) photon redistribution by resonance and electron scattering. The form of the collision term for these cases within a Fokker-Planck formulation was discussed earlier (e.g. Zeldovich & Sunyaev 1969; Baskos 1978; Rybicki & dell’Antonio 1994; Sazonov & Sunyaev 2000; Rybicki 2006; Chluba & Sunyaev 2009a). Since we are only following the evolution of the distortion from a blackbody, and since it is clear that induced effects are negligible, one can readily write

$$\Lambda_c [C[\Delta n_e]_{\text{iscat}}] \approx \frac{1}{x^2} \frac{\partial}{\partial x} D(x) \left[\frac{\partial}{\partial x} \Delta n_e + \xi(z) \Delta n_e \right],$$

(9)

6 The cooling of CMB photons by losing energy to keep electrons at $T_e \sim T_B$ should lead to a y-distortion with y-parameter $\gamma \sim 10^{-10} - 10^{-9}$. The dissipation of energy by acoustic waves should lead to $\gamma \sim 10^{-8}$. These can be neglected for our purpose.

7 Eliminating the dominant term of the CMB blackbody leaves us with a term that is tiny because we are always in the distant Wien tail of the CMB at all times during recombination.

where x is the dimensionless frequency and $\xi(z) = \frac{\nu_21}{\nu_21} \approx 40 \frac{\text{cm}}{\text{s}}$. The first term on the right hand side describes photon diffusion and the second accounts for the recoil effect.

3.1.1 Electron scattering

The diffusion coefficient in the case of electron scattering is (e.g. see Zeldovich & Sunyaev 1969; Sazonov & Sunyaev 2000)

$$D_e(x) = \frac{\sigma_T N_e c}{H[1 + z]} \left[\frac{kT_e}{m_e c^2} \right] x^2,$$

(10)

where $\sigma_T \approx 6.65 \times 10^{-25} \text{cm}^2$ is the Thomson cross section. Chluba & Sunyaev (2009a) pointed out that electron scattering has an effect only at the early stages of recombination ($z \gtrsim 1400$). However it is easy to include, and also has the advantage of stabilizing the numerical treatment by damping small scale fluctuations of the photon occupation number caused by numerical errors, even in places where line scattering is already negligible.

As can be seen from the form of the diffusion coefficient in Eq. (10), the efficiency of electron scattering to a large extent is achromatic. This is in stark contrast to the case of resonance scattering, which is most efficient only in a very narrow range around the line center (see next paragraph). Furthermore, the number of free electrons drops rapidly towards the end of recombination, such that the Fokker-Planck approximation is expected to break down (Chluba & Sunyaev 2009a). Nevertheless, the diffusion approximation remains sufficient for computations of the free electron fraction (see Ali-Ha¨ımoud et al. 2010).

3.1.2 Resonance scattering

For resonance scattering by a Lyman-k line the diffusion coefficient is (e.g. see Baskos 1978; Rybicki 2006; Chluba & Sunyaev 2009a, and reference therein)

$$D_k(x) \approx \rho_{\text{ic}} \frac{\sigma^{\text{em}}_{1s} N_e c}{H[1 + z]} \left[\frac{kT_e}{m_e c^2} \right] \frac{V^{1s}}{V^{21}} x^2 \rho^{\text{em}}_{1s}(x),$$

(11)

where $\sigma^{\text{em}}_{1s} = \frac{3 \pi \xi_0^2}{4\pi \sigma_T}$ and Λ_{D}^{1s} denote the resonant-scattering cross section and the Doppler width of the Lyman-k resonance, respectively. For the Lyman-α line $\sigma^{\text{em}}_{1s} \approx 1.91 \times 10^{-15} \text{cm}^2$ and $\Lambda_{\text{D}}^{1s} \approx 2.35 \times 10^{-5} \nu_21$ at $z \approx 1100$. The Voigt profile $\rho^{\text{em}}_{1s}(x) = \rho^{\text{em}}_{1s}(x) \Delta \nu_1^{\text{em}}$ is normalized as $\int_0^{\nu_21} \rho^{\text{em}}_{1s}(x) dx \Delta \nu_1^{\text{em}} = \int_0^{V^{1s}} \rho^{\text{em}}_{1s}(x) dx = 1$. Where $\Delta \nu_1^{\text{em}} = [\nu - \nu_{1s}] / \Delta \nu_1^{\text{em}}$ is the distance to the line center in units of the Doppler width.

The scattering probability of the Lyman-k resonance, $p_{\text{ic}}^{\text{em}}$, is determined by a weighted count of all possible ways out of the k-state, $R_{\text{ic}}(T_e)$, excluding the Lyman-series resonance being considered, and then writing the branching ratio as

$$p_{\text{ic}}^{\text{em}} = \frac{A_{\text{ic}}}{A_{\text{ic}} + R_{\text{ic}}},$$

(12)

yielding the probability for re-injection into the Lyman-k resonance. The rates $R_{\text{ic}}(T_e)$ and the scattering probabilities, $p_{\text{ic}}^{\text{em}}(T_e)$, can be pre-computed, independent of the solutions obtained from the multi-level code. We detail the procedure below.

Following Rybicki & dell’Antonio (1994), the diffusion coefficient is $D \approx \rho^{\text{em}}_{1s}(x)$. We neglect corrections due to non-resonant

8 Stimulated emission for the Lyman-series has been neglected.

© 000 RAS, MNRAS 000, 000–000
contributions (e.g. see [Lee 2008]) in calculating the scattering cross section, which would lead to a different frequency dependence far away from the resonance (e.g. Rayleigh scattering in the distant red wing, [Jackson 1998]). However, because it turns out that resonance scattering is only important in the vicinity of the Lyman-α resonance, this approximation suffices.

It is also worth mentioning that Eq. (13) together with Eq. (11), in the limit of large optical depth provides a viable description for the redistribution of photon over frequency. Unlike the case of complete redistribution (in which the reemission after each scattering event occurs over the whole Voigt profile), in the recombination epoch photons are only partially redistributed as a result of the Doppler motions of the hydrogen atoms, so-called type-II redistribution as defined in [Hummel 1962].

3.1.3 Equilibrium solution for the scattering term

Independent of the type of scattering, the equilibrium distribution with respect to the scattering term Eq. (15) is given by

$$\Delta n_{\text{sc}} = \Delta n_{\text{to}}(z) e^{-G(z;\alpha_{\text{em}})}.$$ \hspace{1cm} (13)

This is the expected Wien spectrum with the temperature defined by the emission and absorption process.

The optical depth to line scattering being extremely large inside the Doppler cores of the Lyman-resonances ($\tau_{\text{sc}} \sim 10^6 - 10^8$ during H recombination) causes the photon distribution within the Doppler core to remain extremely close to equilibrium, Δn_{sc}.

3.2 Normal Lyman-κ emission and absorption terms

In the normal $1 + 1$ photon picture, the emission profile for each Lyman-series resonance is given by a Voigt-profile, $\varphi_{\nu_{\text{em}}}$, with Voigt-parameter $\delta_{\nu_{\text{em}}}$. Given the rate, $R_{p}^{\text{em}}(T, T_{\nu})$ at which free electrons reach the p-state, and the probability of photon injection into the Lyman-κ resonance, $p_{p_{\text{em}}} \equiv \rho_{p_{\text{em}}}$, the Lyman-κ line-emission and absorption term are (e.g. see [Chluba & Sunyaev 2010b]);

$$\frac{\partial \Delta n_{\text{em}}}{\partial t_{\text{em}}} = -p_{p_{\text{em}}} R_{p}^{\text{em}} N_{\text{em}} c \sqrt{\frac{\pi \delta_{\nu_{\text{em}}}}{2}} \int_{\nu_{\text{em}}} \Delta n_{\text{em}} - f_{p}^{\text{em}} \Delta n_{\ell}.$$ \hspace{1cm} (14)

The factor $1/x^2$ accounts for the translation of photon number to the occupation number because $\Delta N_{\ell} \propto x^2 \Delta n_{\ell}$, for which the Voigt-profile is defined. Also, $p_{p_{\text{em}}} = 1 - p_{p_{\text{em}}}$ is the death or the real absorption probability in the k_{ν} Lyman-series resonance, and Δn_{em} and f_{p}^{em} are given by

$$\Delta n_{\text{em}}^{k_{\nu}} = \frac{g_{1s}}{g_{p}} R_{p}^{\text{em}} N_{\text{em}} - e^{-\alpha_{\nu_{1s}}/k T_{\nu}}$$ \hspace{1cm} (15a)

$$f_{p}^{\text{em}} = \exp \left[\alpha_{\nu_{1s}}/k T_{\nu} \right],$$ \hspace{1cm} (15b)

where g_{1s}/g_{p} is the ratio of the statistical weights of the initial and final states. The function $\Delta n_{\text{em}}^{k_{\nu}}(T, T_{\nu})$ can in principle be precoputed using the solution for the populations of the levels from the initial run of the effective multi-level recombination code. However, the simplest way to define the ratio R_{p}^{em}/R_{p} is to use the quasi-stationary approximation for the $n_{p_{\text{em}}}$-population (see details below). We note that in full thermodynamic equilibrium $\Delta n_{\text{em}}^{k_{\nu}} = 0$, so that no distortion is created ($\Delta n_{\ell} = 0$).

Physically, Eq. (15) includes two important aspects, which are not considered in the standard recombination calculation. Firstly, it allows for a distinction between scattering events on one side, and real emission and absorption events on the other. Secondly, it ensures conservation of blackbody spectrum in full thermodynamic equilibrium, even in the very distant wings of the lines. Refer [Chluba & Sunyaev 2010b] for a detailed explanation of the latter point, and on how this leads to one of the largest corrections in the case of Lyman-α transport.

3.2.1 Computing $\Delta n_{\text{em}}^{k_{\nu}}$

To solve the evolution of the photon field, one has to know at which rate photons are produced by the Lyman-resonance. This rate depends on $\Delta n_{\text{em}}^{k_{\nu}}$ as defined in Eq. (15).

The rate equation for the evolution of the population in the k_{ν}-level has the form (see Appendix B [Chluba & Sunyaev 2010b])

$$\frac{dX_{p_{\nu}}}{dt} = \frac{dX_{p_{\nu}}}{dt_{\text{eq}}} + R_{p_{\nu}} - R_{p_{\nu}} X_{p_{\nu}}$$ \hspace{1cm} (16a)

$$\frac{dX_{p_{\nu}}}{dt_{\text{eq}}} = \frac{g_{1s}}{g_{p}} A_{p_{\nu} 1s} X_{1s} I_{p_{\nu}} - A_{p_{\nu} 1s} X_{p_{\nu}} I_{2_{p_{\nu}}}$$ \hspace{1cm} (16b)

$$I_{1}^{k_{\nu}} = \int \varphi_{\nu_{\text{em}}} (\nu) \left[e^{
u/\nu_{1s}} (1/k T_{\nu}) - 1 \right] \frac{1}{n_{\nu}} d\nu$$ \hspace{1cm} (16c)

$$I_{2}^{k_{\nu}} = \int \varphi_{\nu_{\text{em}}} (\nu) [1 + n_{\nu}] d\nu \approx 1 + n_{\nu}^{\text{th}}(\nu_{1s}) \approx 1.$$ \hspace{1cm} (16d)

In this picture the emission, absorption and resonance scattering terms are all treated simultaneously. In addition, the asymmetry between the emission and absorption profile in the Lyman-κ resonance, as required by detailed balance, has been incorporated.

Under quasi-stationarity, and using the definition of the death probability, $p_{p_{\text{em}}}^{k_{\nu}}$, Eq. (15) yields

$$\frac{g_{1s}}{g_{p}} R_{p_{\nu}} X_{1s} - \frac{1}{p_{p_{\text{em}}}^{k_{\nu}}} \frac{g_{1s}}{g_{p}} X_{1s} - I_{1}^{k_{\nu}} + I_{2}^{k_{\nu}}.$$ \hspace{1cm} (17)

such that with Eq. (15)

$$\Delta n_{\text{em}}^{k_{\nu}} = \frac{1}{p_{p_{\text{em}}}^{k_{\nu}}} \left[\frac{g_{1s}}{g_{p}} X_{1s} - I_{1}^{k_{\nu}} + I_{2}^{k_{\nu}} - e^{-\alpha_{\nu_{1s}}/k T_{\nu}} \right].$$ \hspace{1cm} (18a)

In the second step we used the normal Sobolev approximation, for which $I_{1}^{k_{\nu}} \approx n_{\nu_{1s}} - P_{p_{\nu}}^{k_{\nu}} n_{\nu_{1s}} + P_{p_{\nu}}^{k_{\nu}}$ (for the case of Lyman-α compare also with Eq. (41) in [Chluba & Sunyaev 2009b]).

From Eq. (18b) we have $\Delta n_{\text{em}}^{k_{\nu}} \approx \Delta n_{\ell}^{k_{\nu}}$, since for all Lyman-series resonances the second term in brackets is very small. Nevertheless, for the total normalization of the line intensity close to the line center, this small correction is important ([Chluba & Sunyaev 2009b]), in particular for the Lyman-α resonance.

Also we would like to mention that for the Voigt parameter of the Lyman-κ profiles, $\delta_{\nu_{\text{em}}} = A_{\text{em}}^{k_{\nu}}/[4 \pi \Delta n_{\text{em}}^{k_{\nu}}]$, the total width of the line is used, where transitions induced by the CMB blackbody (e.g. to higher levels) are included. Numerically, it is possible to compute the total width for the Lyman-κ resonance with $A_{\text{em}}^{k_{\nu}} \approx A_{p_{\nu}} 1s / p_{p_{\text{em}}}^{k_{\nu}}$.

© 0000 RAS, MNRAS 000, 000–000
3.3 The 2s-1s two-photon channel

The 2s-1s two-photon channel provides the pathway for about 60% of all electrons in hydrogen to settle into the ground state (Chluba & Sunyaev 2006a). It therefore provides the most important channel in the cosmological recombination process. Here we treat the case of 2s-1s separately to illustrate the important approximations in the two-photon picture. The derivation outlined in this section is then used to obtain the corresponding terms for the two-photon processes from excited states with $n > 2$ (see §3.4).

The net change of the number density of electrons in the 2s level via the 2s-1s two-photon channel is given by

$$\frac{dX_{2s}}{dt} = A_{2s1s}^{2γ} X_{2s} \int \varphi_{2s}^2(n) n'(v_{2s} - v) \, dv - A_{2s1s}^{1γ} X_{2s} \int \varphi_{2s}^2[1 + n(v)][1 + n(v_{2s} - v)] \, dv, \quad (19)$$

where $A_{2s1s}^{2γ} = 8.2206 \, s^{-1}$ (Labzowsky et al. 2003) is the vacuum 2s-1s two-photon decay rate, and φ_{2s}^2 denotes the 2s-1s two-photon decay profile normalized as $\int \varphi_{2s}^2 dv = 1$. Including all possible ways in and out of the 2s-level the net change of the number density of electrons in the 2s-state can be written as

$$\frac{dX_{2s}}{dt} = \frac{dX_{2s}}{dt}_{1s} + R_{2s} - R_{2s} X_{2s}. \quad (20)$$

Here R_{2s} and R_{2s} include the effect of all transitions to bound states with $n > 2$ and the continuum.

In order to simplify the notation we now introduce

$$\langle f(v) \rangle_{1s}^{2s} = \int_0^{v_{1s}} \varphi_{2s}^2 f(v) \, dv, \quad (21a)$$

$$G_1^* = \langle n n' \rangle_{1s}^{2s}, \quad (21b)$$

$$G_2^* = \langle 1 + n(v) [1 + n(v_{1s} - v)] \rangle_{1s}^{2s}, \quad (21c)$$

where $f(v)$ is some arbitrary function of frequency and $n = n(v)$ and $n' = n(v')$ with $v' = v_{1s} - v$.

Then, under quasi-stationarity the solution for the population of the 2s-state is given by

$$X_{2s}^{qs} = R_{2s}^{-1} + A_{2s1s}^{2γ} X_{2s} \frac{G_1^*}{R_{2s} + A_{2s1s}^{2γ} G_2^*} \quad (22)$$

In the multi-level approach the effect of stimulated two-photon emission is neglected leading to $G_2^* \approx 1$. Also any CMB spectral distortion that is introduced by the recombination process (e.g., because of Lyman-α emission) is omitted, implying $G_2^* \approx \langle n^n \rangle_{1s}^{2s} = \exp(-h_{2s}/kT_r)$. In this approximation, the result from Eq. (22) becomes identical to the one obtained using Eq. (20) in the standard multi-level approach.

However, in the recombination problem corrections to both G_1^* and G_2^* are important. For the stimulated two-photon emission only the occupation number given by the undistorted CMB blackbody has to be considered and thus,

$$G_2^{2\text{ph}} \approx \langle 1 + n^n \rangle_{1s}^{2s} \varphi_{2s}^2[1 + n(v_{1s} - v)], \quad (23)$$

which can be precomputed as a function of temperature. Typically, $G_2^{2\text{ph}}$ exceeds unity by a few percent (Chluba & Sunyaev 2006a).

For G_2^* one can make use of the fact that the distortions at either v or v' are very small, so that

$$n n' \approx n^n \varphi_{2s} + n^{n'} \varphi_{1s} \Delta n + n^n \Delta n'. \quad (24)$$

Hence Eq. (19) can be re-written as,

$$\frac{dX_{2s}}{dt}_{1s} = A_{2s1s}^{2γ} \left[X_{1s} e^{-h_{2s}/kT_r} - X_{2s} \right] + A_{2s1s}^{2γ} X_{1s} \Delta G_2^{2\text{ph}} \quad (25a)$$

$$\Delta G_2^{2\text{ph}} = \int \varphi_{2s}^2 [n^n \varphi_{2s} + n^{n'} \varphi_{1s}] \, dv = 2 \int \varphi_{2s}^2 n^n \varphi_{2s} \, dv, \quad (25b)$$

where we defined the stimulated 2s-1s two-photon decay rate within the CMB ambient radiation field as $A_{2s1s}^{2γ} = A_{2s1s}^{2γ} G_2^{2\text{ph}}$ (cf. Chluba & Sunyaev 2006b). Also Eq. (25b) reflects the symmetry of the two-photon profile around $v = v_{1s}/2$.

Note that for $G_2^{2\text{ph}}$ only the CMB blackbody spectrum is important and therefore can, in principle, be precomputed as a function of photon temperature, T_r. This also emphasizes the difference in the origin of the two terms of Eq. (25a), $G_2^{2\text{ph}}$ being the thermal contribution, while $\Delta G_2^{2\text{ph}}$ arises solely because of non-thermal photons created in the recombination process.

By comparing Eq. (25) with Eq. (20) one can write down the correction to the 2s-1s net two-photon rate

$$\Delta G_{2s1s}^{2\text{ph}} = A_{2s1s}^{2γ} \Delta G_2^{2\text{ph}} \left[X_{1s} e^{-h_{2s}/kT_r} - X_{2s} \right] + A_{2s1s}^{2γ} X_{1s} \Delta G_2^{2\text{ph}}. \quad (26)$$

Here we introduced $\Delta G_2^{2\text{ph}} = G_2^{2\text{ph}} - 1$, which during recombination is of order $\sim 1%$. In Equation (26) the integral $\Delta G_2^{2\text{ph}}$ depends on the spectral distortion introduced by the recombination process in the Wien’s tail of the CMB blackbody. Including only the Lyman-α distortion provides a manner in which to take its feedback effect into account (cf. Kholupenko & Ivanchik 2006).

3.3.1 The 2s-1s two-photon emission and absorption term

In contrast to the Lyman-series channels, the terms for the photon radiative transfer equation in the case of the 2s-1s channel can be directly obtained from the net rate between the 2s and 1s state as in Eq. (19), resulting in

$$\frac{1}{c} \frac{\partial N_{2s1s}^{2s1s}}{\partial t} = A_{2s1s}^{2γ} N_{2s1s} \varphi_{2s}^2 [1 + n(v_{1s} - v)] - A_{2s1s}^{2γ} N_{2s1s} \varphi_{2s}^2 [1 + n(v_{2s} - v)]. \quad (27)$$

Here we defined $\varphi_{2s}^2 = \varphi_{2s}^2$, where the factor of two results from two photons being added to the photon field, and the 4π converts the units to per steradian.

The reason for this simple connection to the net rate equation is related to the fact that every transition from the 1s state to the 2s level is expected to lead to a complete redistribution over the 2s-1s two-photon profile. The main reason behind this assumption of redistribution is that the probability of coherent 1s-2s scattering event is tiny because the 2s-1s decay rate is extremely small compared to the time it takes to excite a 2s-electron to higher levels or the continuum.

However, some additional simplifications are possible. First, we can again replace the factors, $[1 + n][1 + n']$, accounting for stimulated two-photon emission with those from the undistorted CMB blackbody. Furthermore, from Eq. (23),

$$n n' \approx e^{-h_{2s}/kT_r} [1 + n^n] [1 + n^{n'}] \left[1 + \frac{\Delta n}{n^n} + \frac{\Delta n'}{n^{n'}} \right]. \quad (28)$$

Also, since the spectral distortions at very low frequencies are never important, one of the two terms in Eq. (28) (say the one related to
$\Delta n'$ can always be omitted. Therefore we can rewrite Eq. (27) as

$$\frac{1}{c} \frac{\partial N_{1s}}{\partial t} \bigg|_{l_2} = A^{2s}_{21s} N_{1s} \tilde{\varphi}^{2s*} \left[\Delta n_{21s} - f^{2s}_{1s} \Delta n_{2s} \right]$$

where $\tilde{\varphi}^{2s*} \equiv \tilde{\varphi}^{2s*}[1 + n_{\nu}][1 + n_{\nu}^*]$ and

$$\Delta n_{21s} = \frac{X_{2s}}{X_{1s}} - e^{-h \nu_{21s}/kT_\gamma}$$

$$f^{2s}_{1s} = e^{-h \nu_{21s}/kT_\gamma} n_{\nu}^* \approx \exp \left[h(\nu - \nu_{21s})/kT_\gamma \right].$$

(29)

(30a)

(30b)

If the term $\Delta n'$ is non-negligible, as might be the case at very low redshifts ($z \lesssim 400$), where the Lyman-α photons emitted at $z \sim 1400$ redshifts into the 2s-1s absorption channel, one in addition has to subtract the term $f^{2s}_{1s} \Delta n_{2s}$ within the brackets of Eq. (29). In terms of $x = \nu/\nu_{21}$, and Δn_1, the photon occupation number now evolves as,

$$\frac{\partial \Delta n_1}{\partial z} \bigg|_{l_2} = -\frac{\sigma^{2s}_{21s} N_{1s} c \tilde{\varphi}^{2s*} x^2}{\bar{H}[1 + z]} \left[-\nu_{21} \Delta n_{21s} - f^{2s}_{1s} \Delta n_{2s} \right].$$

(31)

Here the 2s-1s cross section is given by $\sigma^{2s}_{21s} = \frac{4 \pi}{\nu_{21}^2} \phi^{2s*}_{2s}$.

Eq. (31) bears a striking resemblance to the emission and absorption in the Lyman-series channels as in Eq. (28) because one of the two photons that are involved in the 2s-1s two-photon process is drawn from the undistorted CMB blackbody spectrum, so that the evolution equation essentially becomes a one-photon equation. The difference is the absence of a death probability since practically every electron that is excited to the 2s state will take a detour to higher levels or the continuum as $p^{2s} \approx 1$.

3.4 Two-Photon Emission and Absorption Terms from Excited Levels with $n > 2$

One of the most interesting modifications to the solution for the photon field is related to the deviations of the profiles for the different two-photon emission and absorption channels from the Lorentzian shape $\tilde{\varphi}^{2s*}$. For the recombinaton problem only those one-photon sequences involving a Lyman-series resonance (e.g. 4d \leftrightarrow 2p \leftrightarrow 1s) are important. In this section we shall replace the standard '1 + 1' photon terms for these channels with the full two-photon description that takes into account the coherent nature of the process [9].

We generalize the approach detailed in Chluba & Sunyaev (2010) for emission of photons close to the Lyman-β and higher resonances.

11 All the other two-photon emission and absorption channel (e.g. 4d \leftrightarrow 2p \leftrightarrow 1s) can be treated within a blackbody ambient radiation field, so that their net rate can be directly computed. Without deviations from the blackbody shape these will be extremely close to the normal '1 + 1' photon rates. Also they can only affect the net recombination rate as a 'correction to correction', because they only act on the electron 'feeding rates' into the main channels towards the ground state. A similar argument holds for Raman scattering events that do not directly connect to the ground state.

12 Conditions present in the Universe at the recombination epoch makes collisions negligible, maintaining the coherence of the two-photon decay (e.g. see Chluba & Sunyaev (2002), Hirata, 2008).

3.4.1 Net rates for two-photon transitions from excited s- and d-states

The net change of the number density of electrons in the level $j \in \{ns, nd\}$ via the j-1s two-photon channel is given by

$$\frac{dX_j^{2s}}{d\nu} \bigg|_{l_1} = \frac{g_{j1s}}{g_{1s}} A^{j1s}_{j} X_1 \int \varphi_j^{2s}(\nu) n(\nu) n(\nu_{j1} - \nu) d\nu - A^{2s}_{j1s} X_j \int \varphi_j^{2s}(\nu) [1 + n(\nu)][1 + n(\nu_{j1} - \nu)] d\nu.$$

(32)

Here φ_j^{2s} denotes the profile for the j-1s two-photon decay, which can be computed as explained in Appendix A and is normalized [3] as $\int \varphi_j^{2s} d\nu = 1$. The (vacuum) two-photon decay rate is given by

$$A^{2s}_{j1s} = \sum_{k=2}^{n_j-1} A^{k1s}_{j} p^{k}_{em}.$$

(33)

The ratio of the statistical weights is $g_j/g_{1s} = 1$ for the ns-states, and $g_j/g_{1s} = 5$ for nd-states. Equation (33) simply reflects the one-photon decay rates and branching ratios of all the '1 + 1' photon routes $j \rightarrow np \rightarrow 1s$ via intermediate p-states with $n < n_j$. Stimulated emission induced by the CMB photons is not included in the definition of A^{j1s}_{j}, since it is taken into account differentially by the integrals in Eq. (34).

With notations defined in Eq. (21), and following the procedure to derive Eq. (25), we can re-write Eq. (32) as

$$\frac{dX_j^{2s}}{d\nu} \bigg|_{l_1} = A^{j1s}_{j} X_1 \frac{g_j}{g_{1s}} \int \varphi_j^{1s}(\nu) e^{-h \nu_{j1}/kT_\gamma} - X_j \int \varphi_j^{2s}(\nu) n(\nu) n(\nu_{j1} - \nu) d\nu + g_j \frac{A^{2s}_{j1s}}{g_{1s}} X_j \Delta G_j^{1s}.$$

(34a)

$$\Delta G_j^{1s} = 2 \int_{\nu_{j1}/2}^{\nu_{j1}} \varphi_j^{2s}(\nu) h^2 \Delta n \nu d\nu.$$

(34b)

where we defined the stimulated j-1s two-photon decay rate within the CMB ambient radiation field as $A^{2s}_{j1s} = A^{j1s}_{j} \Delta G_j^{1s}$.

The ΔG_j^{1s} depends crucially only on the CMB blackbody spectrum and thus can be precomputed as a function of photon temperature, T_γ. On the other hand, like for the 2s-1s two-photon process (see Eq. (25)), ΔG_j^{1s} arises due to non-thermal photons, and hence depends directly on the solution for the photon field.

In the normal '1 + 1' photon picture, the two-photon profiles can be considered as a sum of δ-functions and therefore

$$A^{2s}_{j1s} = \sum_{k=2}^{n_j-1} A^{k1s}_{j} p^{k}_{em}.$$

(35)

Here $A^{k1s}_{j} = A^{j1s}_{j} + 1 + 1(\nu_{j1})$, and the stimulated effect close to the Lyman-series resonances has been neglected, i.e. $1 + n^*(\nu_{j1}) \approx 1$.

3.4.2 Two-Photon Emission and Absorption for excited s- and d-states

The two-photon emission and absorption terms are obtained following the steps in the derivation of Eq. (31). For the j-1s two-photon channel one therefore obtains

$$\frac{\partial \Delta n_j}{\partial z} \bigg|_{l_2} = -\frac{\sigma^{j1s}_{j1s} N_{1s} c \tilde{\varphi}^{j1s*} x^2}{\bar{H}[1 + z]} \left[-\nu_{21} \Delta n_{21s} - f^{j1s}_{1s} \Delta n_{2s} \right].$$

(36)

13 Small correction to the normalization due to the two-photon description are neglected.
The \(j \)-1s two-photon cross section is given by \(\sigma_{j/1s}^{2\gamma} = \frac{\phi_{j/1s}^{2\gamma}}{\lambda_{1s}} \) and \(\phi_{j/1s}^{2\gamma} = 4\pi v_j \Psi_j^{2\gamma}(v)[1 + n_0^p(v)] \Lambda_{j/1s}^p \), where, because of energy conservation, \(\nu = v_{1s} - v \). Also,

\[
\Delta n_{em} = \frac{g_{1s} X_j}{g_{1s} X_{1s}} \exp\left(-\frac{h\nu - h v_j}{kT} \right), \tag{37a}
\]

\[
f_j = \frac{\exp\left(-\frac{h\nu - h v_j}{kT} \right)}{1 + n_0^p(v)} \approx \exp\left(\frac{h\nu - h v_j}{kT} \right), \tag{37b}
\]

Again we emphasize the resemblance of the equation above to that of the one-photon equation for the Lyman-series emission and absorption channels as in Eq. (14).

3.4.3 Correcting the Lyman-series emission and absorption terms in the radiative transfer equation

Two-photon decays from a given initial state \(j \in \{n, n_d\} \) involve Lyman-series resonances with \(k < n \). For example, a 4d-1s two-photon emission event includes the effect of the Lyman-\(\alpha \) and \(\beta \) resonance. In the Lyman-series emission and absorption terms as in Eq. (14), these are already accounted for as \('1 + 1' \) photon terms, when the profile is given by the normal Voigt function.

To avoid the double counting of these transitions in the radiative transfer equation, two modifications are necessary: (i) all death probabilities, \(p_d^k \), have to be reduced to account only for those channels that are not included in the two-photon description, and (ii) the Lyman-series emission rate terms have to be reduced for the same reason. This approach was also explained in Chluba & Sunyaev (2010) for the 3s-1s and 3d-1s two-photon process. Including only the \(j \)-1s two-photon process (say for 3d-1s), the modified death probability and \(\Delta n_{em} \) for the Lyman-\(k \)-resonance becomes,

\[
p_d^{2\gamma} = p_d - p_d^{2\gamma} \tag{38a}
\]

\[
\Delta n_{em} = \frac{1}{3 X_{1s}} \left(R_{p_1} - R_{p_2} \right) \exp\left(-\frac{h\nu - h v_j}{kT} \right), \tag{38b}
\]

where the partial death probability, \(p_d^{2\gamma} \), is given by

\[
p_d^{2\gamma} = \frac{R_{p_1}^{2\gamma}}{A_{p_1}^{2\gamma}} = \frac{p_{2p}^{2\gamma} A_{p_1}^{2\gamma}}{p_{2p}^{2\gamma}} \tag{38c}
\]

The partial rates in and out of the \(k \)-state are

\[
R_{p_1}^{2\gamma} = A_{p_1}^{2\gamma} \left[1 + n_0^p(v_{p_1}) \right] X_j \tag{38d}
\]

\[
R_{p_2}^{2\gamma} = \frac{g_j}{g_{1s}} A_{j/1s} n_0^p(v_{p_2}) \tag{38e}
\]

such that \(\frac{R_{p_2}^{2\gamma}}{R_{p_1}^{2\gamma}} = n_0^p(v_{p_2})/n_0^p(v_{p_1}) \) with \(n_0^p(v) = \frac{\lambda_{1s} X_{1s}}{\lambda_{1s}} \).

When more than one two-photon channel is included, then for every Lyman-resonance the following needs to be computed:

\[
p_d^{2\gamma} = \sum_j p_d^{2\gamma} \tag{39a}
\]

\[
\Delta n_{em} = \frac{1}{3 X_{1s}} \left(R_{p_1} - \sum_j R_{p_2} \right) \exp\left(-\frac{h\nu - h v_j}{kT} \right), \tag{39b}
\]

where the sums run over all involved initial levels \(j \).

3.4.4 Correcting the net rates in the multi-level atom

Equation (32) relates the population of level \(j \) with the ground state. The corresponding net two-photon transition rate includes the effect of all \('1 + 1' \) photon processes, \(j \leftrightarrow np \leftrightarrow 1s \), via Lyman-series resonances with \(n < n_j \). Double-counting can again be avoided by subtracting the corresponding \('1 + 1' \) photon terms from the full \(j \)-1s two-photon rate. The remaining corrections can then be added to the effective multi-level code as additional rates which directly connects level \(j \) to the ground state.

In the standard multi-level description of all \(j \leftrightarrow np \leftrightarrow 1s \) sequences \((n > n)\), the contributions to the two-photon net rate as in Eq. (32), take the form (see also Chluba & Sunyaev 2010b)

\[
\frac{dX_j}{dt}_{\text{1s},np} = \frac{g_j}{g_{1s}} X_j A_{j/1s} p_{2p}^{2\gamma} \Delta n_{1s}^{2\gamma} - X_j A_{j/1s}^{2\gamma} p_{2p}^{2\gamma} \tag{40a}
\]

\[
\frac{dX_j}{dt}_{\text{1s},np} = \frac{g_j}{g_{1s}} X_j A_{j/1s} p_{2p}^{2\gamma} n_0^p(v_{p_2}) \Delta n_{1s}^{2\gamma} - X_j A_{j/1s}^{2\gamma} p_{2p}^{2\gamma} \tag{40b}
\]

\[
\frac{dX_j}{dt}_{\text{1s},np} = \sum_{k=2}^{n_j-1} \frac{dX_j}{dt}_{\text{2s},(k+1),(k+2)} \tag{40c}
\]

Equation (40b) is interpreted as electrons exiting level \(j \) via the route \(j \rightarrow np \rightarrow 1s \) at a rate \(A_{j/1s}^{2\gamma} \) times the probability, \(p_{2p}^{2\gamma} \) (second term). Similarly, electrons reach state \(j \) from the ground state via the route \(1s \rightarrow np \rightarrow j \), with the Lyman-\(k \)-excitation rate, \(\frac{\lambda_{1s} X_{1s}}{\lambda_{1s}} A_{j/1s} n_0^p(v_{p_2}) \), times the probability, \(p_{2p}^{2\gamma} \), to then make the transition \(kp \rightarrow j \) (first term). Using Eqs. (38c) and (39c) leads to Eq. (40b).

Equation (40b) helps make the connection of the full two-photon net rate and the \('1 + 1' \) photon terms because Eq. (40b) can be directly derived from Eq. (32), assuming that the two-photon profile is given by independent (non-interacting) resonances, where the line shapes are given by the normal Voigt-profiles.

Substituting \(\Delta n_{1s}^{2\gamma} = n_0^p(v_{p_2}) + \Delta n_{1s}^{2\gamma} \) and using the relation \(e^{2\gamma/\nu_T} = [1 + n_0^p(\nu)]/n_0^p(\nu) \), Eq. (40b) simplifies to

\[
\frac{dX_j}{dt}_{\text{1s},np} = A_{j/1s}^{2\gamma} p_{2p}^{2\gamma} \frac{g_j}{g_{1s}} X_j e^{-2\gamma/\nu_T} - X_j \tag{41}
\]

such that upon summing over the intermediate \(kp \) resonances we have,

\[
\frac{dX_j}{dt}_{\text{1s},np} = A_{j/1s}^{2\gamma} \left[\frac{g_j}{g_{1s}} X_j e^{-2\gamma/\nu_T} - X_j \right] \tag{42}
\]

The above with Eq. (24) reveals the correction term for the rate equations as:

\[
\Delta R_{j=1s}^{2\gamma} = A_{j/1s}^{2\gamma} \left[\frac{g_j}{g_{1s}} X_j e^{-2\gamma/\nu_T} - X_j \right] \tag{43}
\]

Here we define \(\Delta G_{j/1s}^{2\gamma} = \frac{g_j}{g_{1s}} X_j e^{-2\gamma/\nu_T} - X_j \),

Similar to the 2s-1s two-photon channel, the correction to the rate equations here has two contributions. The first is related to \(\Delta G_{j/1s}^{2\gamma} \), which is independent of the solution to the photon distribution and therefore can be pre-calculated, and the second arising from the

14 Chluba & Sunyaev (2010b) proposed a varied treatment in which the \('1 + 1' \) photon terms were first taken out of the standard network of rate equations and then the full two-photon rate between level \(j \) and 1s added, which at the end, is completely equivalent.
integral ΔG^2. However, in contrast to the 2s-1s two-photon channel, in the normal rate equations, part of the latter term is already included. Thus the ‘1 + 1’ photon term has to be subtracted (last term in brackets), where this term is calculated using the Sobolev approximation for ΔR_{1s1s}.

ΔG^2, in principle also arises in the normal ‘1 + 1’ picture, when differentially accounting for the effect of stimulated emission in the CMB blackbody. However, the shape of the two-photon emission profile is crucial, since with the normal sum of Lorentzians the integrand in Eq. (21a) would diverge for $v \rightarrow v_{1s}$ and $v \rightarrow 0$ (Chluba & Sunyaev 2010b). Furthermore, the latter two terms in Eq. (43) account for both, modifications in the shape of the full two-photon profiles, and differences in the solution of the photon field in comparison with the standard Sobolev approximation.

The problem is numerical because two large terms are being subtracted. One way to achieve stable results is to split the range of integration into intervals where the mean occupation number in the standard Sobolev approximation is represented by (compare Chluba & Sunyaev 2009b)

$$\Delta n_{1s1s} = \Delta n_{1s}^p \int_0^\infty \varphi_N^p(v') \left[1 - e^{-\sigma_N(v')} \right] \ dv'$$

$$= \Delta n_{1s}^p \left[\chi_0^p - e^{-\sigma_0^p(1-n_{1s}^p)} \right] = \Delta n_{1s}^p \left[1 - \rho_{1s}^p \right],$$

with $\chi_0^p = \int_0^\infty \varphi_N^p \ dv'$. Outside the resonances one can simply compute each term in Eq. (43) separately, since there the contributions are small. For those intervals containing a resonance k on the other hand, one should compute both contributions in one integral, so that the main terms cancel. Clearly, the choice of the intervals is only motivated by the numerical precision that needs to be achieved. Since the Voigt-profiles have their main support inside the Doppler core, it is sufficient to define regions of a few Doppler width around the resonances. This approach suffices for our purpose.

Alternatively, one can directly integrate the net two-photon production rate, Eq. (43), over frequency and then subtract the ‘1 + 1’ photon rate to obtain the correction. We confirmed that both approaches lead to the same answer.

To capture part of the dependence of ΔR_{1s1s} on the solution for the populations, in numerical computations we tabulate the function $\mathcal{R}^2_{1s1s}(X_1, \Delta n_{1s})$ as a function of redshift, once we computed the solution for the photon field using the results for the populations of the levels obtained from a run of our effective multi-level recombination code.

3.5 Raman-scattering

In our previous works (Chluba & Sunyaev 2010b, 2009b) we did not consider the effect of Raman-scattering on the ionization history. However, correction due to this process reaches $\Delta N_i/\langle N_i \rangle \sim 0.9\%$ at $z \sim 900$ (Hirata 2008), and hence demands careful consideration. The matrix element for this process is directly related to the one for the two-photon emission process by crossing-symmetry. In Appendix A we explain how to compute the Raman-scattering profiles, $\varphi_N^p(v)$, for the 1s-1s Raman process. Additional details can also be found in Hirata (2008), where the importance of this effect during recombination was shown for the first time.

3.5.1 Net rates for ns-1s and nd-1s Raman-scattering

The net change in the number density of electrons in the level $j \in \{ns, nd\}$ caused by j-s Raman scatterings is given by

$$\frac{dX^R_{ns}}{dz} = \frac{g_j}{g_{1s}} A^R_{jn} X_{1s} \int_{v_{js}}^{\infty} \varphi^R_{n}(v-v_{js}) n(v) \left[1 + n(v-v_{js}) \right] dv$$

$$- \frac{g_{j}}{g_{1s}} X_{1s} \int_{0}^{\infty} \varphi^R_{n}(v) n(v) \left[1 + n(v-v_{js}) + v \right] dv$$

$$\equiv \frac{g_j}{g_{1s}} A^R_{jn} X_{1s} \int_{v_{js}}^{\infty} \varphi^R_{n}(v-v_{js}) n(v) \left[1 + n(v-v_{js}) \right] dv$$

$$- \frac{g_{j}}{g_{1s}} X_{1s} \int_{0}^{\infty} \varphi^R_{n}(v) n(v) \left[1 + n(v-v_{js}) + v \right] dv$$

where Eq. (45b) was simply obtained from Eq. (45a) by transforming the frequency range of the second integral.

In Eq. (45), φ^R_{n} denotes the j-1s Raman-scattering profile, and the Raman-scattering coefficient is given by

$$A^R_{jn} = \sum_{k=m_{j+1}}^{n_{max}} g_{k} g_{1s} \rho_{nk}^p \rho_{kn}^p.$$

The ratio of the statistical weights is $g_{np}/g_{1s} = 3$ for the ns-states, and $g_{np}/g_{1s} = 3/5$ for nd-states. Equation (46) simply reflects the one-photon terms and branching ratios of all the ‘1 + 1’ photon routes $j \rightarrow np \rightarrow 1s$ via intermediate p-states with $n > j$.

A rigorous treatment of Eq. (45) would include the integral over continuum states. However, any electron reaching the continuum would forget its history because of fast Coulomb interactions resulting in decoherence of the Raman process in the continuum. Furthermore, as mentioned above, the Lyman-continuum is extremely optically thick such that these channels will always cancel out (see also Hirata 2008). Also, in numerical computations we only follow the evolution of the photon field up to some maximal frequency, ν_{max}. Therefore, in our description we are not accounting for the full Raman-process connected with transitions involving photons with $\nu > \nu_{max}$. This approximation is fully justified as the higher Lyman-series contribute negligible amounts to the total recombination rate. Thus the sum over intermediate p-states become finite, without significant loss of precision.

To simplify Eq. (45) we define the following quantities:

$$\langle f(v) \rangle^R = \int_{v_{js}}^{\nu_{max}} \varphi^R_{n}(v-v_{js}) f(v) \ dv$$

$$\mathcal{R}_1^R = \langle n[1+n'] \rangle^R$$

$$\mathcal{R}_2^R = \langle n'[1+n] \rangle^R$$

with $n' = n(v-v_{js})$.

In the spirit of the two-photon emission and absorption process, we can now write

$$\mathcal{R}_1^R \approx \left(\frac{g_{np}}{g_{1s}} \right)^R \mathcal{R}_1^R \approx \left(\frac{\Delta \nu}{\nu} \right)^R \mathcal{R}_1^R \approx \mathcal{R}_1^R e^{-\nu/v_{1s}}$$

$$\mathcal{R}_2^R \approx \left(\frac{g_{np}}{g_{1s}} \right)^R \mathcal{R}_2^R \approx \left(\frac{\Delta \nu}{\nu} \right)^R \mathcal{R}_2^R \approx \mathcal{R}_2^R e^{-\nu/v_{1s}}$$

15 We call A^R_{jn} ‘coefficient’ since in vacuum there is no Raman-process.

16 Formally, the upper limit of the integral over the Raman-profiles should go to infinity. However, since we are following the spectrum in a finite range of frequencies, this introduces an upper limit, $\nu_{max} \leq \nu_{1sc}$.

© 0000 RAS, MNRAS 000, 000–000
The total $j \rightarrow 1s \ '1 + 1'$ Raman-scattering rate in the CMB blackbody ambient radiation field is

$$A_{j1s}^{R(1+1)} = \sum_{k=0}^{n_{\text{max}}(k)} \frac{g_1}{g_j} A_{k,j} / n^R(v_{jk}) p^R_{\text{em}},$$

(49)

This then leads to

$$\frac{dN_j}{dt} = A_{j1s}^R g_j X_{1s} e^{-\nu_{j1s}/kT_j} - X_j + A_{j1s}^R g_j X_{1s} \Delta R_j^T$$

$$\Delta R_j^T = \int_{\nu_{j1s}}^{\nu_{\text{max}}} \nu^R(v-n_{j1s}) [1 + n^R(v)] \Delta n(v) \, dv.$$

(50a)

Here A_{j1s}^R and ΔR_j^T are important in defining the correction to the rate equations (see §5.5.4). Again A_{j1s}^R is the thermal contribution, while ΔR_j^T arises from non-thermal photons.

3.5.2 Terms in the radiative transfer equation for Raman-scattering

From Eq. (45) the terms in the radiative transfer equation for the photon field can be obtained. However, one aspect is important to keep in mind: a photon that Raman-scatters off an electron in the j^th-state is removed from frequencies $0 \leq \nu \leq \nu_{j\nu}$. However, the scattered photon appears in the frequency range $\nu_{j\nu} < \nu' \leq \nu_{j1s}$, and vice versa for the inverse process. This description assumes complete redistribution of photons over the full Raman-scattering profile during each scattering event. Therefore, the terms for the radiative transfer equation read

$$\frac{dN_j}{dt} = A_{j1s}^R g_j X_{1s} \int_{\nu_{j1s}}^{\nu_{\text{max}}} \nu^R(v-n_{j1s}) [1 + n^R(v)] \Delta n(v) \, dv.$$

(51a)

$$\frac{dN_j}{dt} = A_{j1s}^R g_j X_{1s} \int_{\nu_{j1s}}^{\nu_{\text{max}}} \nu^R(v-n_{j1s}) [1 + n^R(v)] \Delta n(v) \, dv.$$

(51b)

where $\Phi^R(v) = \Phi^R(\nu/4\pi)$. It is clear that the total integral over frequency vanishes, when adding the above two terms, showing that the Raman-process conserves photon number. However, the number density of electrons in the $1s$ and j-state is altered after each Raman-scattering event, according to Eq. (45).

With regards to the recombination dynamics we are not interested in the changes to the photon spectrum at low frequencies. Therefore, we only consider Eq. (51a). For stimulated terms, the distortions can be neglected. Furthermore, one can define $\Phi^R(\nu) \equiv \Phi^R(v) n^R(v) [1 + n^R(v)] \approx \Phi^R(v) n^R(v)$, and neglect the distortions at low frequencies, such that

$$\frac{dN_j}{dt} \approx A_{j1s}^R g_j X_{1s} \int_{\nu_{j1s}}^{\nu_{\text{max}}} \nu^R(v-n_{j1s}) \Phi^R(\nu) \, dv.$$

(52)

where f_j is defined by Eq. (37b). In terms of the photon occupation number this equation becomes,

$$\frac{dN_j}{dt} \approx A_{j1s}^R g_j X_{1s} e^{-\nu_{j1s}/kT_j} - X_j + A_{j1s}^R g_j X_{1s} e^{-\nu_{j1s}/kT_j} \left[v_{j1s} \Delta n_{\text{em}} - f_j \Delta n_{1s} \right],$$

(53)

where Δn_{em} is defined as in Eq. (37b). The j-1s Raman-scattering cross section is given by $\sigma_{j1s}^R = \frac{e_{jk}^R}{\kappa_{jk}^R}$ and we set $\Phi^R(\nu) = 4 \pi \nu_{j1s} e^{-\nu_{j1s}/kT_j}$. Note the close similarity of this equation to the one-photon equation for the Lyman-series emission and absorption channels in Eq. (12). Photons scattering from frequencies $0 \leq \nu \leq \nu_{j\nu}$ into the range $\nu_{j1s} \leq \nu$ appear as a source term. This is related to the fact the photons are drawn from the CMB blackbody.

3.5.3 Correcting the Lyman-series emission and absorption terms in the radiative transfer equation

Like in the case of two-photon emission and absorption, the resonant part of the Raman-process is already part of the ‘1 + 1’ photon Lyman-series transfer in Eq. (13). To avoid double-counting we simply have to correct the death probability and Δn_{em} of the Lyman-k resonance for terms that are included in the Raman-scattering process. For example, when using the terms for the 2s-1s Raman-scattering process in the radiative transfer equation, p^R_{em} and Δn_{em} for Lyman-β, γ, δ, and higher will have to be corrected.

The modified death probability can be obtained by adding appropriate terms to the sums of Eq. (39). However, for each included Raman-channels one now has $R^R_{\text{em}} = A_{p,j}^R [1 + n^p(v/p)]$, and $R^R_{\text{em}} = \frac{g_j}{g_j} A_{p,j}^R n^p(v/p) X_j \approx R^R_{\text{em}} = \frac{g_j}{g_j} X_j e^{-\nu_{j1s}/kT_j}$.

3.5.4 Correcting the net rates in the multi-level atom

Like in the case of two-photon emission and absorption events, corrections to the net rates in the multi-level atom have to be defined to avoid double-counting. In the standard multi-level description of all $j \leftrightarrow np \leftrightarrow 1s$ sequences ($n_1 < n$), the contributions to the Raman-scattering net rate, Eq. (45), takes the form

$$\frac{dX_j}{dt} = \frac{g_j}{g_{1s}} X_{1s} A_{1s1p} p^R_{\text{em}} \Delta n_{\text{em}} - \frac{g_j}{g_{1s}} X_j A_{kp} n^p(v_k)p^R_{\text{em}}$$

(54a)

$$\equiv \frac{g_j}{g_{1s}} X_{1s} A_{1s1p} p^R_{\text{em}} \Delta n_{\text{em}} - \frac{g_j}{g_{1s}} X_j A_{kp} n^p(v_k)p^R_{\text{em}}$$

(54b)

$$\frac{dX_j}{dt} = \sum_{k=n_1+1}^{n_{\text{max}}} \frac{dX_j}{dt} = \sum_{k=n_1+1}^{n_{\text{max}}} A_{1s1p} p^R_{\text{em}} \Delta n_{\text{em}}.$$

(54c)

As mentioned above, n_{max} is a consequence of the finite computational domain. The terms in Eq. (54a) is interpreted as in the case of two-photon emission and absorption (see §3.4.4).

Inserting $\Delta n_{\text{em}} = n^p(v_{j1s}) + \Delta n_{\text{em}}$, and using the relation $e^{\nu_{j1s}/kT_j} = [1 + n^R(v)]/n^R(v)$, Eq. (54b) simplifies to,

$$\frac{dX_j}{dt} = \frac{g_j}{g_{1s}} X_{1s} A_{1s1p} p^R_{\text{em}} \Delta n_{\text{em}}$$

(55)

17 We neglect corrections caused by partial redistribution in Raman-scattering events, but like in the case of two-photon transitions these should be very small.
such that summing over the intermediate kp resonances leads to,

\[
\frac{dX_1}{dt}_{1s} = A_{ji}^{R_{1s}} \left(\frac{g_i}{g_s} X_1 e^{-h\nu_i/\kappa T_s} - X_1 \right) + X_1 \sum_{k \neq j} \max
\]

Using Eq. (50) it is clear that the correction term for the rate equations are,

\[
\Delta R_{ji}^{R} = A_{ji}^{R} \int \frac{g_i}{g_s} X_1 e^{-h\nu_i/\kappa T_s} - X_1 \right) + A_{ji}^{R} \frac{g_i}{g_s} X_1 \left(\Delta R_i - \sum_{k \neq j} \max \frac{g_k}{g_s} A_{ki}^{R} P_{em}^{A} \Delta n_{kp1s} \right), \tag{57}
\]

where we define \(\Delta R_i^j = R_i^j - A_{ji}^{R_{1s}R} / A_{ji}^{R_{1s}} \). Like for the two-photon channels (see Eq. (53), \(\Delta R_i^j \) in principle also arises in the normal ‘1 + 1’ picture, where the shape of the Raman-profile ensure that the integrand remains finite, this time in the limit of \(\nu \rightarrow \nu_{ji} \) (see Appendix A3). Furthermore, the latter two terms in Eq. (57) account for both, modifications in the shape of the Raman profiles with respect to the normal sum of Lorentzians, and differences in the solution of the photon field with respect to the Sobolev approximation.

Again one can compute the integrals over frequency by splitting the range of integration and using Eq. (44) to model the “Sobolev part”. In numerical calculations, we tabulate \(\mathcal{T}_{ji}^{R_{1s}1s} = \Delta R_{ji}^{R_{1s}1s}/(X_1, \Delta n_{ji}) \) versus redshift, to include the correction into the effective multi-level recombination code, and then use this to correct the rate equations.

\section{Changes in the Lyman-Series Distortion for Different Physical Processes}

In Sec. we discuss the changes to the free electron fraction due to the various physical processes under consideration. However, in order to understand the source of these corrections it is illustrative to first look at the modifications in the Lyman-series spectral distortion.

In Fig. 1 we present the spectral distortion at two different redshifts, one before the maximum of the Lyman-series emission (which happens at \(z \sim 1300 - 1400 \), and one just before the maximum of the Thomson visibility function. We include Lyman-resonances up to \(n = 8 \) for these computations. The solutions to the populations of the hydrogen levels were obtained from our implementation of the effective 40-shell recombination code.

The solid black line in all panels, shows our reference case, for which the Lyman-series is modelled using Voigt-profiles. This case already includes the effect of resonance scattering (for all Lyman-series resonances), electron scattering, the full time-dependence \cite{Chluba & Sunyaev 2009b} of the emission and absorption process, and the thermodynamic correction factor for each resonance \cite{Chluba & Sunyaev 2010b}, capturing a large part of the corrections with respect to the Sobolev treatment. In particular, the distinction between scattering and emission/absorption events (by introducing the death probability) is important for the photon distribution on the blue side of the Lyman-\(\alpha \) resonance (see discussion in \cite{Chluba & Sunyaev 2009b}). Furthermore, time-dependence and the thermodynamic correction factor lead to a large modification of the photon distribution with respect to the standard Sobolev case.

We will now discuss the effect of the different processes on the shape of the Lyman-series distortion separately.

\section{Effect of Lyman-series scattering}

In Fig. 1 the dotted curve shows the case for which we “switched off” the terms for Lyman-series scattering. This line is only visible in the upper panels, since at high frequencies above the Lyman-\(\alpha \) line it coincides with the reference case. The figure illustrates that partial redistribution by Lyman-series scattering is only important close to the Lyman-\(\alpha \) resonance, and on its red wing. We could, in principle, neglect the correction due to resonance scattering for Lyman-\(n \) with \(n > 2 \), however, with our efficient PDE solver it is straightforward to take them into account.

The physical reason for this behaviour is that the scattering probability in the Lyman-\(\alpha \) line is very close to unity (\(p_{2p}^\alpha \sim 0.999 - 0.9999 \)), such that only in the vicinity of the Doppler core can real emission and absorption terms act efficiently, strongly redistributing photons over frequency. Outside the Doppler-core, however, redistribution is much slower making the effect of Doppler redistribution visible.

For the higher Lyman-series resonance, on the other hand, the death probability is only about an order of magnitude smaller than the scattering probability, implying that far out in the wings of the resonance photons can be efficiently redistributed by emission and absorption processes. In this case, resonance scattering leads to a small correction (see also arguments in \cite{Ali-Haimoud et al. 2010}).

\subsection{Two-photon emission and absorption from the excited states with \(n \geq 3 \)}

Next we include the corrections due to the shapes of the ns-1s and nd-1s two-photon profiles (Fig. 1 red/dashed line). By shape we also address modifications caused by the presence of CMB blackbody photons.

One can see that in comparison to the reference case this slightly decreases the spectral distortion between all Lyman-resonances, indicating that the emission/absorption opacity has decreased. The largest effect is seen between the Lyman-\(\alpha \) and Lyman-\(\beta \) lines, as a result of the 3s-1s and 3d-1s two-photon emission and absorption process. This result is in agreement with our earlier treatment \cite{Chluba & Sunyaev 2010a}, where it was demonstrated that the shape of the 3s-1s and 3d-1s two-photon profiles leads to a slight acceleration of recombination, which however, is less important than the corrections arising from the thermodynamic correction factor and time-dependence, individually.

We tried to identify the main source of the modifications above the Lyman-\(\beta \) resonance in more detail. In the full two-photon picture, the 3s-1s and 3d-1s two-photon emission and absorption channels only act on photons with \(\nu \leq \nu_{3s} \). However, when neglecting the modifications to the shapes of the two-photon profiles, a large part of the opacity above the Lyman-\(\beta \) line (incorrectly) comes from the 3s-1s and 3d-1s ‘1 + 1’ photon channel, which includes the Lyman-\(\alpha \) resonance and is modelled by a normal Voigt profile. It turns out that only for the 3s-1s and 3d-1s two-photon process does the exact shape of the two-photon profile really matter. Above the Lyman-\(\beta \) line the small correction with respect to the solid line is practically captured by truncating the Voigt profiles (in particular the one for Lyman-\(\alpha \)), such that the energy is conserved (e.g. photons emitted or absorbed in a 3s-1s and 3d-1s ‘1 + 1’ photon process can only have energies \(\nu \leq \nu_{3s} \), and so on). This illustrates how important the shape of the line profiles is when going far into the damping wings of the resonances.
4.3 Importance of Raman scattering

In addition to the two-photon corrections, we ran cases that also include the full Raman scattering treatment (Fig. [1] blue/dash-dotted line). One can see that the Raman process led to an enhancement of the spectral distortion between the Lyman-α and Lyman-β resonance, while in all the other cases the spectral distortion decreases between the resonances. Thus one expects an increased blue-wing feedback correction and hence a delay of hydrogen recombination from Lyman-α. On the other hand, these additional red-wing Lyman-β photons were created in a 2s-1s Raman event, such that at earlier times an acceleration is expected. This simple picture is in agreement with earlier discussions of this process (Hirata 2008).

In the case considered, the main source of the difference in the Lyman-series distortion comes from the 2s-1s Raman treatment. Neglecting the Raman-corrections to the higher ns-1s and nδ-1s channels does no affect the shape of the distortion noticeably. This is one of the reasons why the Raman process need to be included only for the first few levels.

Since in the case of Raman scattering, the 2s → 1s scattering profile is given by $\phi_{2s-1s}^\delta(v) \approx \phi_2^\delta(v) n^\delta(v)$ (see Sect. 3.3), one expects two sources of corrections: (i) due to the difference of $\phi_2^\delta(v)$ with respect to a sum of Voigt profiles with appropriate weights, and (ii) the factor $n^\delta(v)$. In the normal "1 + 1" photon picture this factor would not appear differentially, but instead directly for each resonance frequency. It turns out that both part of the correction are important for the 2s-1s Raman treatment.

We note, that the spectral distortion at $z = 1190$ in the full treatment looks very similar to the curve given in Hirata (2008). However, in Hirata (2008) also the CMB blackbody spectrum was added, and n_e instead of $x^3 \Delta n_e$ was plotted, which makes a direct comparison more difficult.

5 CHANGES TO THE FREE ELECTRON FRACTION FOR DIFFERENT PHYSICAL PROCESSES

In this section we present our analysis of the different corrections to the standard recombination calculation. We focus on hydrogen, and model the helium recombination dynamics using the description given in Chluba & Sunyaev (2010), including the first five shells with full feedback. With the current version of our effective multi-level recombination code we are able to account for all important corrections to the recombination dynamics of hydrogen. We show a direct comparison with previous results and find very good agreement. All figures in which we compared the output of our recombination code with Recfast we used Recfast v1.4.2 (Wong & Scott 2007), but excluded the corrections to the helium recombination history in Recfast and removed the switches in the Recfast ODE.
system (see Fendt et al. 2009, for details). The cumulative effect on the ionization history is presented in Fig. 6.

5.1 Results from our effective multi-level code

In Fig. 2 we show the changes in the recombination dynamics with the number of shells that were included into the computation of the effective rates. This figure confirms that our implementation of the effective multi-level approach yields corrections that are in agreement with our earlier computations Chluba et al. 2010. We find that the correction converges down to \(z \sim 200 \) when including \(\sim 300 - 400 \) shells, as already explained in Chluba et al. 2010. We also directly compared with our full multi-level recombination code and found the difference to be smaller than \(\Delta N_e/N_e \sim 10^{-5} \).

Collisional processes are still able to change the low redshift behaviour at the \(\sim 0.1\% \) level in this redshift range Chluba et al. 2010, however, we defer a detailed analysis on the importance of this effect to a future work.

5.2 The reference case

In Fig. 3 we present a compilation of different processes. We computed the solution to the photon transfer problem including the Lyman-series up to \(n = 8 \), with Lyman-\(\theta \) (\(n = 9 \)) on the upper boundary of the frequency grid. In the Lyman-series transfer we did not include the corrections to the profiles of the emission and absorption processes arising from two-photon and Raman events, i.e. we described Lyman-\(k \) emission and absorption using Eq. (2). However, in our full reference case, Lyman-\(k \) resonance and electron scattering, as well as 2s-1s two-photon emission and absorption were included (see Sect. 4 for additional comments).

To account for all the corrections to the rate equations in the effective multi-level recombination code, we ran the obtained solution for the photon distribution through the modules that also allow us to take the two-photon and Raman scattering corrections into account (see explanations in Sect. 3). However, we replaced the full profiles of the channels with the normal Voigt-profiles.

The cumulative difference with respect to the output of our effective multi-level recombination code which does not include any of the radiative transfer corrections is shown in Fig. 3. In total we find a delay in recombination by \(\Delta N_e/N_e \sim 0.4\% \) at \(z \sim 930 \), and an early acceleration by \(\Delta N_e/N_e \sim -1.0\% \) at \(z \sim 1270 \). The reference case therefore captures a significant part of the total correction with respect to Recfast (see Sect. 5.5 for details).

5.2.1 The 2s-1s two-photon correction

Figure 3 shows the total correction due to changes in the 2s-1s two-photon channel. We only modified the 2s-1s two-photon and Ly-\(\alpha \) net rate in our effective multi-level recombination code using Eq. (26), but did not alter any of the other rates. Also we switched off line-diffusion.

We find a delay of recombination by \(\Delta N_e/N_e \sim 0.83\% \) at \(z \sim 990 \), which is slightly (by \(\Delta N_e/N_e \sim 0.18\% \)) larger than in earlier computations of this process (e.g. Fendt et al. 2009).

There are two main reasons for this difference; (i) because in the reference case we include the emission and absorption in the 2s-1s two-photon channel, the self-feedback of photons emitted by 2s-1s transitions on the 1s-2s two-photon channel is accounted for, which leads to an additional delay of \(\Delta N_e/N_e \sim 0.08\% \) and (ii) the remaining deceleration by \(\Delta N_e/N_e \sim 0.1\% \) is just caused by normal absorption of 2s-1s photons by Lyman-\(\alpha \) (without the aid of line-diffusion).

5.2.2 Feedback to Lyman-\(\alpha \) and the diffusion correction

We now considered the feedback correction to Ly-\(\alpha \). Like in our earlier treatment (Chluba & Sunyaev 2007) we find \(\Delta N_e/N_e \sim 0.21\% \) at \(z \sim 1100 \). We computed this correction from our radiative transfer code by modifying the Lyman-\(\alpha \) escape probability, with resonance scattering switched off. We also left the rate equations for the higher Lyman-series resonances unaffected, in order to not reflect the full Lyman-series feedback correction, which amounts to \(\Delta N_e/N_e \sim 0.26\% \) at \(z \sim 1100 \) Chluba & Sunyaev 2010a).

In Figure 3 the correction due to Lyman-\(\alpha \) diffusion alone is depicted. Again this was computed as a correction to the Lyman-\(\alpha \) resonance only. We find an acceleration by \(\Delta N_e/N_e \sim -0.44\% \) at \(z \sim 900 \). This is slightly smaller than in our earlier computation Chluba & Sunyaev 2009a. The reason is simply that there we only
5.2.3 The correction due to time-dependence and thermodynamic factor

The final correction that is taken into account by the computations in the reference case is caused by the time-dependence of the Lyman-α emission process and the thermodynamic correction factor (see Fig. 3). The origin of these terms was first explained in detail by Chluba and Sunyaev (2009a) and Chluba and Sunyaev (2010b). The net effect is an acceleration in recombination by $\Delta N_e/N_e \sim -1.28\%$ at $z \sim 1200$. This result is in excellent agreement with the curves presented in Chluba and Sunyaev (2010b), Fig. 18 therein. Note that in the Figure of Chluba and Sunyaev (2010b), the 3s-1s and 3d-1s two-photon profile correction was included.

5.2.4 Correction from the higher Lyman-n

For the solid black line in Fig. 3, all Lyman-series corrections were included. However, so far we have just discussed the corrections to the 2s-1s two-photon and Lyman-α channel. We found a cumulative acceleration by $\Delta N_e/N_e \sim -0.06\%$ at $z \sim 1210$ as result of the higher Lyman-series. This correction includes all feedback corrections among the higher levels, time-dependence, and the thermodynamic factors. Since the additional modification is small, this shows that just a detailed treatment of 2s-1s two-photon and Lyman-α corrections already gives a very good approximation to the total correction in the reference case.

5.3 Two-photon corrections from levels with $n > 2$

In this Section, we discuss the correction caused by the modifications in the emission and absorption profiles of the ns-1s and nd-1s two-photon channels. These corrections are due: (i) quantum-mechanical modifications to the shapes of the line-profiles, and (ii) stimulated two-photon emission in the CMB blackbody radiation field. For two-photon processes from ns and nd-states with $n > 2$ the former dominates.

In Fig. 4, we present the changes to the free electron fraction when the two-photon corrections up to the 8s-1s and 8d-1s two-photon channel are included. Two-photon processes lead to a total acceleration of recombination by $\Delta N_e/N_e \sim -0.46\%$ at $z \sim 1120$. The main contribution comes from the 3s-1s and 3d-1s two-photon process, while the higher levels only add $\Delta N_e/N_e \sim -0.08\%$ at $z \sim 1200$. The correction practically converge when accounting for the two-photon terms up to 5s-1s and 5d-1s. Also the result for the 3s-1s and 3d-1s two-photon process compares extremely well with our earlier computation (Chluba & Sunyaev 2010b). We conclude that for practical purposes it is sufficient to include the two-photon corrections for all ns and nd states up to $n \sim 4 - 5$.

5.4 Corrections caused by Raman processes

The final process we discuss is the effect of Raman scattering, which was investigated also by Hirata (2008). The result of our computation is shown in Fig. 5, confirming that Raman scattering leads to a delay of recombination by $\Delta N_e/N_e \sim 0.9\%$ at $z \sim 920$. This result is in very good agreement with the analysis of Hirata (2008). We found that the correction is dominated by the 2s-1s Raman process. Higher level Raman scattering lead to a small additional modification, which for practical purposes could be neglected. We recommend including the Raman-corrections for the first three shells.

As mentioned above, the Raman correction has two separate contributions: one from the feedback of Lyman-β photons on the Lyman-α resonance, which leads to a delay of recombination a low redshifts, and a second arising because of the accelerated 2s-1s scattering. The delay and acceleration need to be out-of-phase in redshift to create a net effect. We find that their individual contributions have amplitudes comparable to $\sim 2\%$, however, partial cancelation makes them smaller.

5.5 Total correction with respect to RECFAST

In Fig. 6, we show the cumulative correction to the ionization history caused by all the processes included into our present recombination code. The changes during hydrogen recombination found here are very similar to those presented in Rubiño-Martín et al.
The final step will be to perform a detailed code comparison, and to optimize the implementation of the recombination code, so that runtimes of seconds can be accomplished, incorporating all the important physical processes without requiring any fudge factors. Our final version of CosmoRec will be available at www.Chluba.de/CosmoRec.

ACKNOWLEDGEMENTS

The authors thank the anonymous referee for comments on the manuscript, which helped improve the paper. JC wishes to thanks Chris Hirata, Yacine All-Haimoud and Dan Grin for useful and stimulating discussion about recombination processes. Furthermore, JC is very grateful for additional financial support from the Beatrice D. Tremaine fellowship 2010. Also, the authors acknowledge the use of the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto.

APPENDIX A: COMPUTING THE TWO-PHOTON EMISSION AND RAMAN PROFILES

A1 Two-photon emission profiles

We compute the two-photon decay profiles according to Chluba & Sunyaev (2009b) and Chluba & Sunyaev (2010b). In their treatment the infinite sum over intermediate np-states is split up into levels with principal quantum numbers $n > n_i$ and $n \leq n_i$, where n_i is the principal quantum number of the initial state. This makes the sum over resonances (in the case of 3s and 3d only one) finite and allows to use interpolation or fitting formulae for the remaining contributions to the total matrix element from the infinite sum.

We tabulate the non-resonant parts of the two-photon matrix elements prior to the computation. The resonances are analytically added afterwards. As explained in Chluba & Sunyaev (2010b), close to the resonances, the motion of the atoms becomes important, leading to a broadening of the two-photon profiles.

To include the effect of motion on the shape of the lines close to the Doppler core, we take the ratio, $\rho_{n_i}^{\gamma} = \varphi_{n_i}^{\gamma} / \varphi_{n_i}^{B}$, of the vacuum two-photon profiles to the sum of Lorentzians, and tabulate it on the computational grid in frequency. For every evaluation in time, we first compute the Voigt-profiles for the resonances of interest and then sum these with their respective weights to obtain the total Voigt-profile of the resonance. These are then multiplied by $\rho_{n_i}^{\gamma}$ to obtain an approximation for the two-photon profile in the lab frame.

This procedure also allow us to include the changes in the total width, $\Gamma_{\gamma, n}$, of the resonances with redshift. In vacuum this width is related to the total decay rate, however, with the CMB this rate can change at the level of $\sim 10\%$ for the Lyman-\textit{n} line when $n > 2$.

A2 Raman profiles

A ns-1s and nd-1s Raman process has form $H^+ + \gamma \rightarrow H + \gamma'$, where H^+ denotes a neutral hydrogen atom in an excited ns/nd-state. In contrast to the two-photon emission process, $H^+ \rightarrow H + \gamma + \gamma'$, the Raman process only works when photons are available. In vacuum no Raman scattering events occur. The ns-1s and nd-1s Raman scattering matrix elements are related to the ns-1s and nd-1s two-photon matrix elements by crossing-symmetry. The energies of

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
n & Ω_{n} & γ_{n} & ρ_{n}^{γ} & $\Gamma_{\gamma, n}$ & $\Gamma_{\gamma, n}$ \\
\hline
1 & 0.9 & 2.1 & 0.8 & 1.2 & 1.3 \\
2 & 0.8 & 2.0 & 0.7 & 1.1 & 1.2 \\
3 & 0.7 & 1.9 & 0.6 & 1.0 & 1.1 \\
4 & 0.6 & 1.8 & 0.5 & 0.9 & 1.0 \\
5 & 0.5 & 1.7 & 0.4 & 0.8 & 0.9 \\
\hline
\end{tabular}
\caption{Table of Raman scattering matrix elements.}
\end{table}
the incoming photon, γ, and the outgoing photon, γ', are given by $\nu + \nu_{j_{1}s} = \nu'$, where $\nu_{j_{1}s}$ is the excitation energy of the initial state with respect to the ground state.

Raman scattering profiles can be derived using the formulae given in Chluba & Sunyaev (2010b). The main difference are: (i) in the functions $f_\nu(y)$ and $h_\nu(y)$ (see Eq. (8c) and (10d) in their paper) $y = \nu/\nu_{j_{1}s}$ has to be replaced with $-y$; (ii) the pre-factor $y^3(1 - y)^3$ needs to be substituted by $y^3(1 + y)^3$; and (iii) the resonances now appear for intermediate np-states with $n > n_j$, where n_j is the principle quantum number of the initial state.

For a given computational frequency grid only a finite number of resonances appear, say for $n_j < n \leq n_{res}$. Like in computations of the two-photon emission profiles, one can therefore split the infinite sum over intermediate p-states (including the continuum), into resonant and non-resonant contributions. The non-resonant contributions come from $n < n_j$ and $n_{res} < n$, where the non-resonant matrix element scales like $1/y$ for $y \rightarrow 0$ and $(1/[n^2 - 1] - y)^{-1}$ towards the ionization threshold, $y \rightarrow y_{c}$. One can therefore tabulate $M_{\nu y}[1/[n^2 - 1] - y]$ on a grid and add the finite number of remaining resonances analytically. The pole displacements arising from the finite lifetime of the intermediate p-state, as mentioned in Chluba & Sunyaev (2010b), has to be included.

In Fig. A1 and A2 we present some examples of Raman scattering profiles. The electron is assumed to be in the excited state, so that a low frequency photon can Raman scatter off the atom. In the recombination problem, these photons will be drawn from the CMB blackbody, as spectral distortions below the Balmer continuum can be neglected. Figures A1 and A2 also show the ratios of the Raman profiles with respect to the sum of Lorentzians. Close to the resonances all these ratios are extremely close to unity, as expected. We use this ratio to include the effect of motion of the atom on the shape of the resonances close to the Doppler core, as explained in the previous section.

APPENDIX B: PDE-SOLVER

For this work we implement our own partial differential equation (PDE) solver in order to fine tune performance and precision. Comparing with previous results obtained using the NAG library confirms the precision of our own implementation.

The PDE describing the radiative transfer problem during recombination is of the parabolic type. It is desirable to use an implicit or semi-implicit numerical scheme, to avoid strong limitation on the step size imposed by stability. Several numerical algorithms for this type of problems have been discussed, e.g. Crank-Nicolson method (see Antia 2002).

For the recombination problem it is beneficial to use a non-uniform grid in frequency as in the vicinity of the resonances one needs a resolution of $\Delta \nu/\nu \sim 10^{-7} - 10^{-5}$, while a much coarser grid can be introduced outside this zone. However, this implies that the spatial discretization that is normally used in the Crank-Nicolson method is only accurate to first order in the grid spacing. We therefore decided to implement a second order scheme in which the first and second derivatives of the occupation number n_i with respect to
frequency can be written as
\[
\frac{\partial n_i}{\partial x} = \sum_j \kappa(x) n_i
\]
(B1)
\[
\frac{\partial^2 n_i}{\partial x^2} = \sum_j \Lambda(x) n_i
\]
(B2)
where the sums run over five grid-points in the neighbourhood of \(x\). The coefficients \(\kappa(x)\) and \(\Lambda(x)\) can be easily derived using Lagrange interpolation formulae (e.g. see [Abramowitz & Stegun 1972]). These coefficients can then be precomputed and stored once the grid is chosen. The PDE appearing in the diffusion problem can thus be written as matrix equation,
\[
B_Q n_{ij} = b_i,
\]
(B3)
where the matrix, \(B_Q\), is banded with four off-diagonals. Such system can be easily solved with \(O(M)\) operations, where \(M\) denotes the number of grid-points.

For each resonance we typically needed \(\sim 10^7\) points in frequency. Increasing this number to \(\sim 10^8\) per resonance did not make a notable difference for the final correction to the ionization history. Our typical step size in redshift was \(\Delta z \sim 1\), but we also tried a ten times smaller time-step, without finding any significant modification in the solution. Our tests also showed that even \(\Delta z \sim 10\) should be sufficient for detailed computations of the ionization history.

Furthermore, we tried fully implicit and semi-implicit schemes (\(\theta\)-method with \(\theta > 0.5\)), finding good performance for \(\theta \sim 0.6\). We also experimented with the distribution of grid points, and found that it is important to sample the Doppler core well.

REFERENCES

Abramowitz M., Stegun I. A., 1972, Handbook of Mathematical Functions. Dover Press
Ali-Haimoud Y., Grin D., Hirata C. M., 2010, ArXiv e-prints
Ali-Haimoud Y., Hirata C. M., 2010, Phys.Rev.D, 82, 063521
Antia H. M., 2002, Numerical Methods for Scientists and Engineers. Birkhäuser Verlag
Basko M. M., 1978a, Soviet Physics (JETP), 48, 644
Basko M. M., 1978b, Zhurnal Eksperimental noi i Teoreticheskoi Fiziki, 75, 1278
Chen X., Kamionkowski M., 2004, Phys.Rev.D, 70, 043502
Chluba J., 2010, MNRAS, 402, 1195
Chluba J., Sunyaev R. A., 2006a, A&A, 458, L29
Chluba J., Sunyaev R. A., 2006b, A&A, 446, 39
Chluba J., Sunyaev R. A., 2007, A&A, 475, 109
Chluba J., Sunyaev R. A., 2008, A&A, 480, 629
Chluba J., Sunyaev R. A., 2009a, A&A, 503, 345
Chluba J., Sunyaev R. A., 2009b, A&A, 496, 619
Chluba J., Sunyaev R. A., 2010a, MNRAS, 402, 1221
Chluba J., Sunyaev R. A., 2010b, A&A, 512, A53+
Chluba J., Vasil G. M., Dursi L. J., 2010, MNRAS, 407, 599
Dubrovich V. K., Grachev S. I., 2005, Astronomy Letters, 31, 359
Fendt W. A., Chluba J., Rubiño-Martín J. A., Wandelt B. D., 2009, ApJS, 181, 627
Galli S., Melchiorri A., Smoot G. F., Zahn O., 2009, Phys.Rev.D, 80, 023508

Grin D., Hirata C. M., 2010, Phys.Rev.D, 81, 083005
Hirata C. M., 2008, Phys.Rev.D, 78, 023001
Hirata C. M., Forbes J., 2009, Phys.Rev.D, 80, 023001
Hirata C. M., Switzer E. R., 2008, Phys.Rev.D, 77, 083007
Hummer D. G., 1962, MNRAS, 125, 21
Jackson J. D., 1998, Classical Electrodynamics, 3rd Edition. Wiley-VCH
Jentschura U. D., 2009, Phys.Rev.A, 79, 022510
Kaplinghat M., Scherrer R. J., Turner M. S., 1999, Phys.Rev.D, 60, 023516
Karshenboim S. G., Ivanov V. G., 2008, Astronomy Letters, 34, 289
Kholupenko E. E., Ivanchik A. V., 2006, Astronomy Letters, 32, 795
Komatsu E., Smith K. M., Dunkley J., Bennett C. L., Gold B., Hinshaw G., Jarosik N., Larson D., Nolta M. R., Page L., Spergel D. N., Halpern M., 2010, ArXiv e-prints
Labzowsky L., Solovyev D., Plunien G., 2009, Phys.Rev.A, 80, 062514
Labzowsky L. N., Shonin A. V., Solovyev D. A., 2005, Journal of Physics B Atomic Molecular Physics, 38, 265
Lee H.-W., 2005, MNRAS, 358, 1472
Padmanabhan N., Finkbeiner D. P., 2005, Phys.Rev.D, 72, 023508
Rubiño-Martín J. A., Chluba J., Fendt W. A., Wandelt B. D., 2010, MNRAS, 403, 439
Rubiño-Martín J. A., Chluba J., Sunyaev R. A., 2008, A&A, 485, 377
Rybicki G. B., 2006, ApJ, 647, 709
Rybicki G. B., dell’Antonio I. P., 1994, ApJ, 427, 603
Sazonov S. Y., Sunyaev R. A., 2000, ApJ, 543, 28
Scóccola C. G., Landau S. J., Vucetich H., 2009, Memorie della Societ Astronomica Italiana, 80, 814
Seager S., Sasselov D. D., Scott D., 1999, ApJL, 523, L1
Seager S., Sasselov D. D., Scott D., 2000, ApJS, 128, 407
Sunyaev R. A., Zeldovich Y. B., 1970, Astrophysics and Space Science, 7, 3
Switzer E. R., Hirata C. M., 2008, Phys.Rev.D, 77, 083006
Wong W. Y., Moss A., Scott D., 2008, MNRAS, 386, 1023
Wong W. Y., Scott D., 2007, MNRAS, 375, 1441
Zeldovich Y. B., Sunyaev R. A., 1969, Astrophysics and Space Science, 4, 301

\(^{18}\) At the boundary the matrix is not perfectly banded, but this does not pose a big problem.