Supplementary Information

Intact living-cell electrolaunching ionization mass spectrometry for single-cell metabolomics

Yunlong Shao, a Yingyan Zhou, a Yuanxing Liu, a Wenmei Zhang, a Guizhen Zhu, a Yaoyao Zhao, a Qi Zhang, a Huan Yao, b Hansen Zhao, b Guangsheng Guo, a,c Sichun Zhang, b Xinrong Zhang, b Xiayan Wang,* a

a Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China
b Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
c Minzu University of China, Beijing 100081, P. R. China

*Corresponding authors:

E-mail addresses: zhaoyaoyao@bjut.edu.cn (Y. Y. Zhao), xiayanwang@bjut.edu.cn (X. Y. Wang)
Contents

1. Experimental Section ... 3
2. Supplementary Figures .. 7
3. Supplementary Videos ... 23
4. Supplementary Tables .. 25
5. References ... 46
1. Experimental Section

Cell lines, reagents and materials. A549, HEK-293, KB, B104, and CPXTNA-2 cells were obtained from the Cell Resource Center of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. Dulbecco’s modified Eagle medium (DMEM), trypsin-ethylenediaminetetraacetic acid (0.25%, trypsin-EDTA), penicillin-streptomycin (100 U·mL$^{-1}$), dimethyl sulfoxide (99.5%, DMSO), fetal bovine serum (FBS), and phosphate-buffered saline (PBS) were purchased from Thermo Fisher Gibco. DNase I and collagenase D were purchased from R&D Novus Tocris MerckMillipore Inc. ACK lysis buffer was purchased from Gen-View Scientific Inc. DiO [DiOC18(3), a green fluorescent probe for the cell membrane] was purchased from Shanghai Yesen Biotechnology Co. Ltd. Liposomes were donated by FluidicLab (https://www.fluidiclab.com/). All other reagents were purchased from Thermo Fisher Scientific. Fused silica capillaries were purchased from Yongnian Ruifeng Chromatographic Device Co. The MinuteTM plasma membrane protein isolation kit SM-005 was acquired from Invent Biotechnologies, Inc. The long-distance microscope objective lens (50×, 0.42 NA) was manufactured by Mitutoyo. The high-performance, high-speed camera (MEMRECAM ACS-3) was manufactured by NAC Image Technology Inc.

Fabrication of narrow-bore capillaries. A 30-cm-long capillary was cut, and one end was etched using the wet etching protocols established previously by our research group to obtain a tip$^{[1,2]}$. Then, the capillary tip was stored in an airtight, dust-free environment for future use.

Preparation of cell suspensions. Cells were trypsinized using trypsin-EDTA (0.25%) when grown to a coverage of 80–90%. The trypsinization process was terminated using a fresh culture medium. Then, the trypsin-EDTA-containing residual culture medium was removed by centrifugation (1200 rpm, 3 min), and the obtained cells were resuspended in a DMEM culture medium. Appropriate volumes of cell suspensions were centrifuged at 1200 rpm for 3 min to remove the culture medium and cleaned with 150 mmol/L ammonium formate (pH = 7.4). Finally, the cells were resuspended in 40 mmol/L ammonium formate aqueous solution.

Build an online ILCEI-MS visualization platform. The platform comprised a self-designed and self-manufactured MS ion source and a microscopic high-speed camera system composed of a long-distance microscope objective lens (50×, 0.42 NA) X and a high-performance, high-speed camera (MEMRECAM ACS-3). The operation of the ILCEI-MS system was visually recorded using this platform.

Numerical simulation of hydrodynamics in cell motion process at the exit of the narrow capillary emitter with a constant-inner-diameter

Model settings. To simulate the flow of particles in a multiphase system flow, the Eulerian model was used along with the dynamic mesh method for the dynamic simulation of particle motion. A velocity distribution diagram of the particle at the exit of the emitter was obtained. The Dynamic Mesh Zones software was used for the calculation.
(2) **Border conditions.** The liquid phase system is comprised of water. The flow rate was 1 μL/min, and the I.D.s of the emitters were 16, 50, and 100 μm. At the pressure exit, a 15-μm-diameter rigid particle with a density of 1552 kg/m³, the same as the cell density, was present. No voltage was applied to the simulation system. Opening the gravity tab and a comprehensive motion trajectory was obtained. The changes in the cell’s exit velocity and shear stress received on the cell surface were simulated by computer with increasing capillary diameter.

Verification of cell integrity using DiO. A549 cells in the logarithmic growth phase were collected, the medium was removed, and the cells were rinsed with PBS 3 times. A total of 5 mL of 10 μmol/L DiO working solution (dissolved in DMEM supplemented with 10% FBS) was added to the culture flask, which was then incubated at 37°C for 15 min, rinsed with PBS 3 times, and trypsinized to prepare a cell suspension. These cells were injected using ILCEI-MS and collected at the ion inlet of the mass spectrometer. Then, their morphology was characterized by a microscopic imaging method.

Verification of cell viability using CCK8. A549 cells were selected after subculture for 2 days for the experiment. A549 cells that passed the ILCEI-MS sampling device in front of the ion inlet of the mass spectrometer were selected as the experimental group (using a centrifuge tube containing culture medium to receive the cells). The cells that had undergone the ILCEI-MS sample preparation process were collected as the control group (the cells were immediately centrifuged and resuspended in the medium after the sample preparation process was completed), and the cells without any treatment were used as the blank group. Next, 5000 cells/well were inoculated on a 96-well culture plate. Each sample was prepared with triplicate wells, to which 10 μL of the CCK8 reaction solution was directly added after inoculation, and the cells were incubated for 30 min at 37 °C in the dark. A microplate reader (SpectraMax M4, AD, USA) was used to measure the absorbance at a wavelength of 450 nm.

Preparation of cell lysis solution. The cell suspension (1 mL) with a density of 1×10⁷ cells/mL was centrifuged at 1000 rpm for 5 min at room temperature. After the supernatant was removed, the cells were resuspended in 200 μL of 80% (v/v) methanol aqueous solution at -80°C and sonicated in an ice bath for 5 min. After incubating at -20°C for 30 min, the solution was sonicated in an ice bath for 5 min, followed by centrifugation for 20 min (4°C, 17,000 g). Finally, the supernatant was taken for MS detection.

Establishment of mouse tumor-bearing models of metastatic lung cancer. A single-cell suspension with a density of 1×10⁷ cells/mL was prepared after the A549 cell culture. Nine C57/BL6 male mice aged 6–8 weeks were randomly divided into an experimental group (five mice) and a control group (four mice). The mice were fixed in a mouse fixator, and the tails were wiped with a 75% alcohol cotton ball to disinfect and dilate the blood vessels; the experimental group and the control group were injected with 0.10 mL cell suspension and physiological saline, respectively. The flow rate was controlled during cell injection to prevent embolism. Mouse rearing and experiments were carried out in an SPF laboratory animal room for 20 days.

Preparation of single-cell suspension of mouse tissues. Preparation of Liberase/DNase digestive
solution: The required amount of digestive solution was prepared according to the ratio of 965 μL of 1640 basal medium, 25 μL of 40× collagenase D and 10 μL of 100× DNase I per mL. Mice were killed by cervical dislocation, and their lung, liver and heart organs were harvested. Digestive juice was injected into the tissues by the perfusion method. The tissues were then completely immersed in digestive juice and incubated at 37°C for 30–45 min. The tissue was placed on a 40 μm filter and gently ground to isolate as many tissue cells as possible. The cells were rinsed several times with PBS/EDTA solution until all isolated cells were collected. After centrifugation at 1000 rpm for 5 min, the supernatant was discarded. ACK lysis buffer was added to the cell precipitate at a volume 3-5 times that of the cells, and the cells were gently resuspended. The red blood cells were lysed at room temperature for 2–3 min and centrifuged at 1000 rpm for 5 min, and the supernatant was removed. The appropriate amount of PBS was used to wash the cells twice, and the cells were detected using ILCEI-MS.

It should be noted that to prevent residual cell clumps in the cell suspension from affecting the detection; the cells were filtered again with a 40 μm filter before mass spectrometric detection.

We complied with all relevant ethical regulations, and the animal experiment was approved by the Ethics Committee of Beijing University of Technology, China. The approval number is HS202103001.

Quality control during single-cell detection. (1) We tested a blank sample (cell-free mobile phase) under the same experimental conditions before each cell sample test. Quality control of the detection system was achieved by controlling the intensity and stability of the ion signal in the blank sample, which was seen as the background and was subtracted from the cell detection data during subsequent data processing. (2) We decrease the cell density in the injection capillary by reducing the cell density in the cell suspension; In addition, we use the narrow capillary (the I.D. was slightly smaller than the cell’s diameter) for single-cell separation and injection. Due to the confinement effect of narrow inner diameter capillaries, single-cells were adequately isolated with the expanded distance between single-cells in the injection capillary. Finally, we achieved suitable injection flow rates by controlling the injection pressure. Through the above three points, the time interval between single-cells involved in ionization was optimized, which ensured that multiple cell ionization does not occur within one scan time of the mass spectrometer. In order to further improve the controllability of the experiments, we constructed the ILCEI-MS on-line visualization platform, via a large number of on-line visualization characterization data to prove that the electro-launching images of multiple single-cells match the detection signals of mass spectrometry. Based on the above efforts, it is basically guaranteed that each signal peak in total ion chromatogram (TIC) from the ILCEI-MS system corresponds to a single-cell; they are not produced by the superposition of signals from multiple cells.

Single-cell mass spectrometry. All mass spectral data were acquired on an LTQ Orbitrap XL mass spectrometer (Thermo Scientific, San Jose, CA, USA). The MS parameters were set as follows: The voltage was controlled at ~1.4 kV, and the spray current was controlled at 0.2–0.7 μA, although slight differences were observed according to specific experimental conditions. The following conditions were used: inlet temperature, 350 °C; resolution, 30000; maximum injection time, 50 ms; AGC target, 1×10^5; and scanning range, m/z 100–1000 or 300–1000. The MS-ddMS2 parameters were set as follows: voltage, 2.3 kV; ion inlet temperature, 350°C; resolution, 30000;
maximum injection time, 500 ms; AGC target, 2×10^5; and scanning range, m/z 100–1000. In vitro cultured cells were analyzed using 15 μm inner diameter (I.D.) capillaries. The single-cells obtained from the liver and heart were larger in volume through microscopic observation, therefore, in this part of the experiment, a 25 μm I.D. capillary was used to complete the separation, transport and electroemission ionization mass spectrometry detection of the single-cells.

Data analysis and metabolite identification. A single-cell signal peak must be selected with an intensity greater than 10% of the median intensity of the top 30 peaks in the TIC. Raw data processing was performed on a metabolite data analysis platform developed by our group [3]. The source code of the MATLAB software used is https://github.com/HansenZhao/PeakPicker. The S/N ratio calculation method of single-cell peaks in TIC of ILCEI-MS that refers to the Wei's work [4]. The S/N ratio of single-cell peaks to evaluate the detection sensitivity of ILCEI-MS. Ions of mass spectra with an S/N ratio of >5 and an occurrence frequency of >10% in all cell events were considered as detected signals. Lipid metabolites are the major constituents of cell membranes, and hence, they could be used as a reliable reference for the differentiation of cell profiles and the electrolaunching ionization of sensitive substances. Nonlinear reduction of complex metabolic data sets using a machine learning method is based on t-SNE, which can qualitatively discriminate subtle groups and visualize the difference in the two-dimensional plane. A scatter plot displays the statistics of the difference in the content of a certain metabolite in all the single-cells among each group of samples.

Single-cell metabolites were identified by matching ddMS2 spectra obtained from population cells with the standard spectra using mzCloud (https://www.mzcloud.org/), Human Metabolome Database 5.0 (HMDB) (http://www.hmdb.ca/) and MassBank Database 2.1.8 (http://www.massbank.jp/Index). More information about single-cell metabolite matching could be obtained by referring to various databases available online, including the Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://www.genome.jp/kegg/). Metabolic pathway analysis was performed on MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/).
2. Supplementary Figures

Figure S1. Comparison of single-cell separation effects with different I.D. (a) 16 μm I.D. capillary, (b) 50 μm I.D. capillary.

Observations on the transport of cell suspensions (A549 cells, diameter ~20 μm) in capillaries with different I.D.s show that single intact cells exist independently and are separated completely in a 16 μm I.D. capillary, whereas obvious cell stacking occurs in a 50 μm I.D. capillary, leading to poor separation. This is due to the more obvious spatial confinement of the narrow-bore capillary. These results suggest that a narrow capillary with an I.D. close to the diameter of a cell is a prerequisite for the separation of single-cells.
Figure S2. Effect of the presence or absence of a tip on the detection of KB cells by mass spectrometry. (a) The photo of two kinds of emitters; (b) Total ion chromatogram (TIC) of MS by capillary emitter I with a tip (the end outer diameter (O.D.) of 20 μm); (c) TIC of MS by capillary emitter II without a tip (the end O.D. of 340 μm).

The results show that a single-cell MS signal cannot be generated by a capillary without a tip, whereas an intense signal can be generated using a capillary with a tip. This result confirms that a capillary wall thinned by etching is necessary to generate a single-cell MS detection signal.
Figure S3. Comparison of the durability of the pulled and the etched tips. (a) Microscopic image of the emitters before infusion of cell suspension; (b) Microscopic image of the emitters after continuous infusion of cell suspension for 3 minutes.

The pulled tip (I) was prepared by a puller and broken under a microscope to obtain an open I.D. of ~16 μm. The constant-I.D. tip (II) was fabricated by the method developed by our group1-2; the I.D. of the tip was 16 μm. A549 cell suspension (the cell density is 5×10^5 mL) was used for the experiment, and the flow rate was 1 μL/min. After running for 3 minutes, emitter I became plugged (see the red circle), whereas emitter II remained unobstructed. This experimental result confirmed that the tip with a constant-I.D. has a low risk of fluidic clogging, enabling a stable flow rate and long operating life, which are important for high-throughput detection of complex biological samples.
Figure S4. The photo of the ILCEI-MS on-line visualization platform. The platform comprised a self-designed and self-built ILCEI-MS ion source and a microscopic high-speed camera system composed of a long-distance microscope objective lens (50×, 0.42 NA, Mitutoyo, Japan) and a high-performance, high-speed camera (MEMRECAM ACS-3, NAC, Japan). The electrolaunching process of the tip during single-cell detection was visually recorded using this platform.

Figure S5. Single-cell participated in the electrolaunching process and the data collected synchronously by mass spectrometry.
Figure S6. Mass spectrometry of cell membrane debris sample and intact living cell sample.
(a) Comparison of TIC between the cell membrane debris sample (black line) and the intact living cell sample (red line); (b) Comparison of the mass spectra between the cell membrane debris sample (top) and the intact living cell sample (bottom). We used a Minute™ plasma membrane protein isolation kit to extract cell membranes in the bulk solution and mixed them with 40 mmol/L ammonium formate aqueous solution to prepare a sample of cell membrane debris. Mass spectrometry detection was performed under the same conditions for the cell suspension, and the difference of the mass spectrometric signals of the two samples was compared. It can be seen from a that there is no obvious spike in the TIC of the cell membrane debris sample, demonstrating that the ionization of cell membrane debris cannot cause the violent fluctuations of mass spectrometry signals like intact cells. As shown in b, the peak shape and ion intensity of the mass spectrum of the cell membrane debris sample are very different from the mass spectrometry signal of intact living single-cells. The ion intensity of the cell membrane debris sample is one order of magnitude lower than that of intact living single-cells. Even if large cell debris occasionally causes a signal peak similar to the signal peak appearing at 0.09 min in the TIC of the cell membrane debris sample. We set a threshold for single-cell data extraction, that is, only extracting peaks with a signal-to-noise ratio of more than 3.0 in the MS TIC. The extraction will further remove the influence of cell debris on the analysis results, ensuring that our subsequent analysis data come from intact single-cells.
Figure S7. MS’s TIC of the perfusion injection of three kinds of samples. From top to bottom are 40 mmol/L ammonium formate aqueous solution (black line), the cell lysate of lung cancer cells (red line, the collected supernatant after the centrifugation at 17,000 g), the liposome suspension with an average diameter of 200 nm (green line). There is no obvious spike in TICs of the three kinds of samples.

Figure S8. The relative standard deviation (RSD) of 1000 scans of the mass spectrum signal. (a) 40 mmol/L ammonium formate aqueous solution; (b) Signal of the cell lysate of lung cancer cells; (c) Signal of the liposome suspension with an average diameter of 200 nm. The red dotted line represents the average RSD. The RSD data come from the built-in function of the LTQ-Orbitrap XL mass spectrometer, which is used to evaluate the stability of the ion source before the instrument is calibrated. Technical specifications require that the average RSD value of 100 scans is less than 15% for mass spectrometer calibration. We collected 1000 scans, and the average RSD value is less than 7%, reaching the signal stability level that can be used for mass spectrometer calibration, which proves that the system stability of this method is reliable.
Figure S9. Comparison of cells status before and after electrolaunching. (a) Cells suspended in 40 mmol/L ammonium formate aqueous solution before electrolaunching; (b) Cells collected at the inlet of the mass spectrometer (bright-field imaging); (c) Cells collected at the inlet of the mass spectrometer (fluorescence imaging, by DiO cell membrane green fluorescent probe stained). It can be seen that all the fluorescence signals come from the intact cells, and no luminous cell debris is seen. It means that most of the cells still maintained a complete structure.

Figure S10. Cell viability verification by CCK8. CG (control group): The cells that underwent the sample preparation process from ILCEI-MS. EG (experimental group): The cells collected near the mass spectrometry ion entrance. Cells without any treatment were used as the blank group, of which cell viability is considered to be 100%. The data show that most cells still maintained an alive status.
Figure S11. Comparison of the mass spectrometry injection status of different solutions under the same conditions. (a1, b1, and c1) High-speed camera screenshots of the liquid cones. (a2, b2, and c2) High-speed screenshots of the plume morphology. (a1, a2) The electrospray status with a methanol aqueous solution (70% v/v); (b1, b2) The electrospray status with an aqueous solution; (c1, c2) The electrolaunching status with a suspension of A549 cells suspension. A constant-I.D. emitter of 16/20 μm (I.D./O.D.) with a thin-wall tip was used; the injection current was approximately 0.3 μA to ensure that the initial droplets carried an equal amount of charge per unit time, and the distance between the emitter and ion inlet was 3 mm.

To further investigate the ionization characteristic of ILCEI, we observed the plume morphology. The three liquids produced hydraulic cones of different shapes at the same launching/spray current (approximately 30 μA to ensure that the initial droplets carried an equal amount of charge per unit time); this phenomenon intuitively proves that the plume morphology of the three liquids is different. But the more important difference was that the initial droplets of the three liquids produced diverse fragmentation in the air flight zone (a2, b2 and c2). According to the Rayleigh limit theory [5], the net charge Q_R of a charged droplet should satisfy the equation:

$$Q_R = 8\pi(\varepsilon_0\gamma r_0^3)^{1/2}$$

where ε_0 is the vacuum permittivity, γ is the surface tension, and r_0 is the radius of the droplet. With the same net charge, droplets formed with a high proportion of methanol solution had a low surface
tension and were more likely to reach the Rayleigh limit and split. Therefore, a_2 spray plume was larger than b_2. The results shown in b_2 and c_2 were obtained under the same liquid mobile phase conditions and should, in theory, have roughly the same liquid surface tension. However, the A549 cell suspension exhibited less droplet splitting (c_2) because of the presence of whole cells in the initial droplets of the cell suspension for electrolaunching, which hindered droplet shrinkage. The maintained large surface area avoided reaching the Rayleigh limit and thus prevented the droplets from splitting. Because droplet splitting was accompanied by a random distribution of net charge, decreased droplet splitting would result in more charge remaining on the surface of the mother droplet. In addition, very few mobile phases mean very few impurity molecules in the mother liquid droplets. Thus, cell components retained in the mother droplet will have a greater chance of gaining charge and thus achieve more adequate ionization. All cell components enter the entrance of the mass spectrometer, thus avoiding the loss of the sample in the atmospheric path and improving the sample collection rate. For a homogeneous solution, the sample molecules are always accompanied by a large number of solvent molecules during the multiple splitting process of charged droplets, so there is fierce competition for charges between a large number of impurities and a small number of samples. Coupled with the dilution and annihilation of sample ions in the atmosphere, and the very low ion acquisition ratio at the MS inlet, these have led to a serious decrease in the detection sensitivity of the sample.

Figure S12. Violin plots of ions per cell in ILCEI-MS dataset of living A549 cells. Each dot represents a single-cell. (a) 306 living A549 cells were detected in positive ion mode, and the average detected coverage is about 800 ions/cell; (b) 376 living A549 cells were detected in negative ion mode, and the average detected coverage is about 745 ions/cell.
Figure S13. Single-cell mass spectra of five different types of cells (A549, KB, HEK-293, B104, and CTXTNA-2).
Figure S14. Photographs of the liver, heart, and lung (from left to right) of the dissected mice. (a) Healthy mouse; (b) Lung cancer mouse. The lung masses (the white dotted circle indicated by the arrow) of the lung cancer mouse were obvious, and the liver was enlarged and hard, indicating that the mouse had shown obvious symptoms.

Figure S15. The cell suspensions of visceral digestion from a healthy mouse. Suspensions of heart, liver, and lung cells are shown from left to right successively.

Figure S16. The cell suspensions of visceral digestion from a lung cancer mouse. Suspensions of heart, liver, and lung cells are shown from left to right successively.

It was found that the single-cells obtained from the heart and liver were larger in volume through microscopic observation; therefore, in this part of the experiment, a 25 μm I.D. capillary was used to complete the separation, transport, and electron-emission ionization mass spectrometry detection of the single-cells.
Figure S17. ILCEI-MS data of cell suspension digested from the heart of a healthy mouse. From top to bottom are TIC and EIC, respectively. EIC extracted based on m/z 806.40–806.60, which acts as the reference of single-cell data.

Figure S18. ILCEI-MS data of cell suspension digested from the liver of a healthy mouse. From top to bottom are TIC and EIC, respectively. EIC extracted based on m/z 874.60–874.90, which acts as the reference of single-cell data.
Figure S19. ILCEI-MS data of cell suspension digested from the lung of a healthy mouse. From top to bottom are TIC and EIC, respectively. EIC extracted based on m/z 760.40–760.70, which acts as the reference of single-cell data.

Figure S20. ILCEI-MS data of cell suspension digested from the heart of a lung cancer mouse. From top to bottom are TIC and EIC, respectively. EIC extracted based on m/z 806.40–806.60, which acts as the reference of single-cell data.
Figure S21. ILCEI-MS data of cell suspension digested from the liver of a lung cancer mouse. From top to bottom are TIC and EIC, respectively. EIC extracted based on m/z 874.60–874.90, which acts as the reference of single-cell data.

Figure S22. ILCEI-MS data of cell suspension digested from the lung of a lung cancer mouse. From top to bottom are TIC and EIC, respectively. EIC extracted based on m/z 760.40–760.70, which acts as the reference of single-cell data.
Figure S23. Violin plots of ions per cell in ILCEI-MS dataset of lung tissue cells of lung cancer model mice and healthy mice. Each dot represents a single-cell. (a) 1438 cells were detected from the lung tissue of lung cancer model mice, and the average detected coverage is about 773 ions/cell; (b) 930 cells were detected from the lung tissue of healthy mice, and the average detected coverage is about 787 ions/cell.
3. Supplementary Videos

Video S1. At a shooting speed of 10000 frames/s and a magnification of 500x, the motion of an A549 cell in a 16 μm I.D. capillary.

Individual A549 cells can be seen in the narrow capillary being squeezed into an oval shape and moving towards the capillary outlet. This vivid scene strongly proves the excellent single-cell separation and transportation capacity of the narrow-bore capillary.

Video S2. At a shooting speed of 10000 frames/s and a magnification of 200x, the motion of multiple A549 single-cells moves independently and orderly in a 16 μm I.D. capillary.

It further fully demonstrates the excellent single-cell separation and transportation capability of the narrow-bore capillary. The scale bar in the video is 100 μm.

Video S3. At a shooting speed of 50000 frames/s and a magnification of 500x, the whole A549 single-cell droplets producing process by narrow capillary emitter with constant-I.D. throughout the column.

In negative ion mode, the electrolaunching voltage is 1.36 kV, the I.D./O.D. of the emitter is 16/20 μm, the liquid phase is 40 mmol/L ammonium formate aqueous solution, and the flow rate is 1 μL/min. The video material clearly shows the formation of single-cell droplets. We can clearly see that most of the volume of the droplets is occupied by an integrate single A549 cell, and only an ultra-thin layer liquid film on the periphery is composed of the liquid phase. This fully proves the conclusion that the single-cell droplet hardly introduces the sample dilution.

Video S4. Video recording of the working scene of ILCEI-MS characterized by high-speed camera online visualization.

It can be seen that the high-speed camera and mass spectrometry data acquisition are synchronized according to the video.

Video S5. The integrated video of high-speed camera acquired in supplementary video S4 and synchronous acquired mass spectrometry data.

It can be found that the interval generated by three successive single-cell droplets and the interval of retention time of three independent signal peaks collected by the mass spectrum are perfectly matched. Those prove that each signal peak in the total ion chromatograms obtained by ILCEI-MS is from one single-cell.

Video S6. At a shooting speed of 50000 frames/s and a magnification of 200x, the integrated video of three videos of single-cell droplets generating, flying in the atmosphere, and entering into the MS inlet.

From the video, we can clearly see that pulsed droplets with uniform diameter are produced by the novel single-cell droplet electrolaunching mode and these droplets do not split obviously during the flight in the atmosphere and enter into the MS inlet in the form of an intact structure, which vividly demonstrates features of the new electrolaunching technology proposed in this work. It also strongly proves our conclusion that an in-source ionization occurs by single-cell droplets. The scale
Video S7. Comparison of electrolaunching / spray images of cell suspensions by using constant-I.D. narrow capillary emitters with different outer diameters under the same voltage parameter.

By comparison of emitters with 16 μm I.D. and different outer diameters, we find that the emitter with 20 μm O.D. can produce single-cell droplets with almost zero dilution, while the cells are stuck in the emitter cone of the 80 μm O.D. emitter stays and are difficult to eject. This data illustrates that the single-cell electrolaunching mode proposed in this work needs to be based on thin-wall emitters. The scale bar in the video is 100 μm.

Video S8. The difference between the ionization states of ILCEI and ESI.

The video file includes three columns. From left to right are event A of 40 mmol/L ammonium formate in methanol (v/v: 70/30) solution, event B of 40 mmol/L ammonium formate solution, and event C of A549 cells suspended in 40 mmol/L ammonium formate aqueous solution. Each event contains two kinds of characterization results of the same scene captured by a high-speed microscope camera (top) and a commercial Nano-ESI camera under laser irradiation (bottom). From the video, it can be seen that cell suspension C has the shortest electrolaunching cone length; the formed droplets fly through the atmosphere into the ion transfer tube along a very thin straight line. The difference between B and C illustrates the difference between single-cell droplets and ordinary charged droplets in the ionization process. That is, single-cell droplets do not undergo a droplet splitting in the atmosphere (charged droplet splitting is a prerequisite for ionization in ESI theory). This set of data intuitively shows that the ILCEI is indeed a new mode different from the ESI, and also supports the inference that single-cell droplets are ionized within the inlet of the mass spectrometer.
4. Supplementary Table.

Table S1. The velocity of the single-cell and average shear stress of wall surface on the single-cell at the outlet of capillary emitters with different I.D..

Emitter I.D. (μm)	Exit velocity (m/s)	Average shear stress (Pa)
16	0.083	0.04
50	0.0085	0.0006
100	0.00212	0.00016
Table S2. 368 cellular metabolites were identified for A549 cells, 249 and 119 in positive and negative ion modes, respectively (scan range m/z 100–1000). For the detection of metabolite extract from population cells, ddMS\(^2\) mode with higher energy collisional dissociation (HCD) was used. The metabolites extracted from population cells were initially identified by searching mzCloud Advanced Mass Spectral Database (https://www.mzcloud.org/) with MS/MS fragments. Selected top five candidates were further verified through matching the Human Metabolome Database 5.0 (HMDB) (http://www.hmdb.ca/) and MassBank Database 2.1.8 (http://www.massbank.jp/Index). The metabolites with the same molecular weight could not be separated by existing methods. Therefore, the metabolite would remain if characteristic product ions were contained in the MS/MS fragments. If the intensities of all characteristic product ions of the metabolite were less than 10%, the metabolite would be ignored. Non-endogenous components are not excluded from the list.

NO.	Metabolites	Formula	m/z	Mass	Ions	CAS_ID	HMDB_ID	KEGG_ID	MS/MS fragments
1	2-Piperidinone	C\(_5\)H\(_9\)NO	100.0750	99.1311	M+H	675-20-7	HMDB0011749	—	81.68;71.80
2	2,3-Dihydrobenzofuran	C\(_8\)H\(_8\)O	103.0500	120.0575	M+H-H\(_2\)O	496-16-2	HMDB0013815	—	77.0382;53.0382;51.801
3	Pentanoic acid	C\(_5\)H\(_10\)O\(_2\)	103.0750	102.0681	M+H	109-52-4	HMDB0000892	C00803	50.666;70.9794;54.6772
4	N-Methylalanine	C\(_4\)H\(_9\)NO	104.0700	103.0633	M+H	3913-67-5	HMDB0094692	—	72.3887
5	Gamma-Butyrolactone	C\(_4\)H\(_6\)O\(_2\)	104.0700	86.0368	M+NH\(_4\)	96-48-0	HMDB0000549	C01770	66.0566;86.096
6	4-Aminobutanoic acid	C\(_4\)H\(_9\)NO\(_2\)	104.0700	103.0633	M+H	—	HMDB0000112	C00334	84.0792;86.0961
7	Choline	C\(_3\)H\(_14\)NO	104.1071	104.1075	M+	62-49-7	HMDB00097	C00114	60.1
8	2-Phenylethanol	C\(_8\)H\(_10\)O	105.0540	122.0732	M+H-H\(_2\)O	1960/12/8	HMDB0033944	C05853	79.0538;77.0382;66.0567
9	Ethylbenzene	C\(_8\)H\(_10\)	107.0856	106.0777	M+H	100-41-4	HMDB59905	C07111	75.0229;91.0542
10	O-Toluidine	C\(_6\)H\(_8\)N	108.0441	107.1531	M+H	95-53-4	HMDB0041965	C14403	107.83;92.76;91.03
11	2,5-Dimethylpyrazine	C\(_6\)H\(_12\)N\(_2\)	109.0764	108.1411	M+H	123-32-0	HMDB0035289	—	80.89;66.81
12	Glycerol	C\(_3\)H\(_8\)O\(_3\)	110.0816	92.0473	M+NH\(_4\)	56-81-5	HMDB00131	C00116	75.0441
	Name	Chemical Formula	m/z Values	Charge	HMDB ID	Purity Values			
----	---	------------------	------------	--------	----------	---------------			
13	5-Methyl-2-furancarboxaldehyde	C₆H₆O₂	110.0441	M+H	620-02-0	83.0491;93.0335			
14	L-(Aminomethyl)phosphonic acid	CH₆NO₃P	112.0010	M+H	1066-51-9	78.4077			
15	Dimethyl sulfone	C₃H₆O₂S	112.0420	M+NH₄	97-71-0	64.0805;78.4075;70.0649			
16	Cytosine	C₄H₅NO₃	111.0427	M+H	71-30-7	69.0453;95.0245			
17	Methyl-L-proline	C₆H₁₁NO₂	112.0750	M+H-H₂O	6078-09-1	84.0805;70.0649			
18	Pipelic acid	C₄H₇NO₂	130.0483	M+H	129.1570	69.0335			
19	Epsilon-caprolactam	C₆H₁₁NO	114.0901	M+H	105-60-2	86.0598			
20	Methylsuccinic acid	C₅H₈O₄	115.0360	M+H-H₂O	498-21-5	66.0568			
21	Cis-Acetylacrylate	C₅H₈O₃	115.0392	M+H	—	60.0335			
22	Proline	C₅H₉NO₂	116.0700	M+H	147-85-3	70.0647			
23	3-Phenylpropanal	C₅H₁₀O	117.0540	M+H-H₂O	104-53-0	71.0681;91.0539;66.0568			
24	Dihydrocarvone	C₁₀H₁₆O	117.1020	M+H+2H₂O	5524-05-0	91.0539;66.0568			
25	Betaine	C₅H₁₃NO₂	118.0860	M+H	107-43-7	72.0804;92.0572			
26	Pyrrolidine	C₅H₉N	118.0860	M+H	71-0735	72.0805			
27	4-Propylphenol	C₅H₁₂O	119.0700	M+H	123-75-1	91.0539;104.0617			
28	3-Hydroxy-3-methylbutanoic acid	C₂₅H₃₆O₉	119.0706	M+H-H₂O	645-56-7	91.0542			
29	Pralidoxime	C₅H₉N₂O	120.0650	M+H-H₂O	154-97-2	103.0539;91.0539;77.0383			
30	Homoserine	C₄H₉NO₃	120.0658	M+H	572-15-1	102.091			
		C₂H₆NO₃	256.1390	2M+NH₄	—	102.091;88.0754;70.0648			
No.	Name	Molecular Formula	m/z Data	HMDB ID	Common Name	Other Data			
-----	---	-------------------	------------------------	---------------------	-----------------------------	-----------------------------			
31	2-Hydroxyphenethylamine	C₈H₁₁NO	120.0805	137.0841	M+H-H₂O 7568-93-6	C02735 103.0539;91.0539;77.0382			
32	Tyramine	C₈H₁₁NO	120.0808	137.0841	M+H-H₂O 51-67-2	C00483 105.0444;91.0539;77.0382			
33	2-Hydroxynicotinic acid	C₆H₅NO₂	122.0270	139.0269	M+H-H₂O 609-71-2	— 66.0566;92.0571			
34	Ethylaniline	C₈H₁₁N	122.0960	121.0891	M+H 103-69-5	C14455 81.0444;66.0565;72.3884			
35	Hydroxyurea	CH₂N₂O₂	123.0300	76.0273	M+HCOO+2H 127-07-1	C07044 77.0382			
36	Nicotinamide (Vitamin B3)	C₆H₆N₂O	123.0440	122.0732	M+H 589-18-4	C00153 80.0491;105.0444;77.0383			
37	4-Methylbenzenemethanol	C₈H₁₀O	123.0800	122.0732	M+H 589-18-4	C06757 80.0491;105.0444;77.0383			
38	Tyrosine	C₄H₆O	124.9995	86.0368	M+K 503-64-0	— 69.0335			
39	Pimelic acid	C₅H₈N₂O₂	125.0590	160.0736	M+H-2H₂O 111-16-0	C02656 98.9839;80.9733			
40	2-Aminoethylphosphonate	C₇H₁₂NO₃P	126.0160	125.0242	M+H 2041-14-7	C03557 98.9839;92.9697			
41	Taurine	C₇H₁₂NO₃S	126.0233	125.0147	M+H 107-35-7	C00047 107.92			
42	Pyruvate	C₇H₁₅N₂O₂	127.0503	126.0424	M+H 65-71-4	C00178 109.0402			
43	5-Hydroxymethyl-2-furancarboxaldehyde	C₅H₄O₃	127.0520	126.1100	M+H 67-47-0	— 109.02;81.01			
44	Dihydrothymine	C₅H₄N₂O₂	129.0540	128.0586	M+H 696-04-8	C00906 112.1117;84.0805			
45	Lysine	C₆H₁₄N₂O₂	129.0910	146.1055	M+H-H₂O 56-87-1	C00047 84.0805;70.0648			
46	5-Oxoproline	C₅H₇NO₃	130.0490	129.0426	M+H —	— 101879 84.0441;113.1151			
47	Indole-3-carbinol	C₅H₆NO	130.0490	147.0684	M+H-H₂O 700-06-1	— 103.0538			
48	L-aminocyclopentanecarboxylic acid	C₆H₁₁NO₂	130.0860	129.0790	M+H 52-52-8	C03969 85.0837;113.115			
49	Hydroxyproline	C₃H₆NO₃	132.0650	131.0582	M+H 13504-85-3	C01157 86.0961			
	Name	Formula	M+H	M+HCOO+2H	HMDB ID	C00 No	M+HCOO+2H 1-6		
---	-------------------------------------	---------------	---------	-----------	------------------	--------	------------------		
50	Beta-Guanidinopropionic acid	C₆H₇N₃O₂	132.0650	131.0695	HMDB0013222	C03065	86.0961;115.054		
51	Acetyl-L-alanine	C₅H₉NO₃	132.0650	131.0582	HMDB0000766		86.0961;90.0462		
52	5-Aminolevulinic acid	C₄H₉N₃O₂	149.0930	131.0582	HMDB0001149	C00430	86.0961;115.0539;90.0462		
53	Creatine	C₄H₇N₃O₂	132.0650	131.0695	HMDB0000064	C00500	86.0961;115.054;90.0461		
54	2-Pyrrolidinone	C₅H₉NO	132.0650	85.0528	HMDB0002039	C11118	86.0961		
55	Isoleucine	C₆H₁₃NO₂	132.1010	131.0946					
56	Piperidine	C₅H₁₅N	132.1010	85.0891	HMDB003401	C01746	86.0961;66.0566		
57	Gamma-Caprolactone	C₄H₁₀O₂	132.1010	114.0681	HMDB0003843		86.0961;66.0565;115.0539		
58	Delta-Hexalactone	C₆H₁₀O₂	132.1010	114.0681	HMDB0000453		86.0961;66.0565;115.0539		
59	Leucine	C₆H₁₃NO₂	132.1017	131.0941	HMDB000687	C00123	86.0961;66.0566;115.054		
60	4-Vinylguaiacol	C₈H₁₀O₂	133.0490	150.0681	HMDB0013744	C17883	91.0539;105.0444		
61	Cinnamaldehyde	C₉H₁₂O	133.0634	132.1592	HMDB0003441	C00500	132.83;114.91;104.80;90.85		
62	Ornithine	C₅H₁₂N₂O₂	133.0976	132.0894	HMDB000214	C00077	115.0534		
63	Ortho-Hydroxyphenylacetic acid	C₈H₈O₃	135.0440	152.0473	HMDB000669	C05852	105.0444;77.0382		
64	4-Hydroxy-3-methylbenzoic acid	C₆H₈O₃	135.0440	152.0473	HMDB0004815	C14103	107.0852;91.0539		
65	Cinnamyl alcohol	C₉H₁₀O	135.0650	134.0732	HMDB0029698	C02394	91.0539;105.0695;119.06		
66	2-Methylacetophenone	C₆H₁₀O	135.0807	134.0726	HMDB32386		93.0699;117.0699		
67	2,4-Dimethylbenzaldehyde	C₈H₁₀O	135.0825	134.1751	HMDB0032142		107.0855		
68	Piperitone	C₁₀H₁₀O	135.1010	152.1201	HMDB0034975		109.0102		
	Name	Molecular Formula	M+H or M+H2O	HMDB ID	C0000	Mass Difference			
---	--	-------------------	-------------------	-----------------	--------	-----------------			
69	Pulegone	C10H10O	135.1010	89-2-7	HMDB0035604	105.0444, 92.0254, 109.0104			
70	Benzothiazole	C6H5NS	136.0219	95-16-9	HMDB0032930	135.92, 107.87			
71	Acetylarylamine	C8H10NO	136.0610	103-84-4	HMDB0001250	91.0539, 107.0488, 109.0103			
72	Erythro-1,4-lactone	C4H4O4	136.0610	15667-21-7	HMDB0000349	119.0349, 91.0539			
73	Tetrahydro-2-methylthiophen-3-ol	C4H10OS	136.0610	149834-43-5	HMDB0035244	119.0349, 91.0539			
74	2-Phenylacetamide	C8H9NO	136.0610	103-81-1	HMDB0010715	91.0539			
75	Ethyl carbamate	C3H7NO2	136.0610	51-79-6	HMDB0031219	119.0349, 91.0539			
76	4,6-Diamino-5-formamidopyrimidine	C6H2N2O	136.0750	1758-80-1	HMDB0004816	119.0349, 92.024, 109.0104			
77	2,4-diaminobutyric acid	C6H10N2O2	136.0960	1758-80-1	HMDB0006284	119.0349, 92.024			
78	Amphetamine	C9H13N	136.0960	6960-22-9	HMDB0014328	119.0348, 91.0539			
79	3-Phenylpropylamine	C9H13N	136.0960	682-22-9	HMDB0245973	119.0349, 91.0539, 107.0488			
80	4-Fluoroamphetamine	C6H2FN	136.0960	1626-71-7	HMDB0246424	91.0539, 109.0103			
81	5-Methylnicotinamide	C7H8N2O	137.0590	6960-22-1	HMDB0013704	92.0492, 78.0335, 96.0441			
82	Benzamideoxide	C7H8N2O	137.0707	613-92-3	HMDB0248971	78.0335			
83	2-Methoxybenzaldehyde	C8H8O2	137.0707	135-02-4	HMDB0033766	94.0648, 92.0492, 78.0335			
84	Phenyl isocyanate	C6H6NO	137.0707	103-71-9	HMDB0062270	94.0648, 92.0492			
85	2,3-Butanediol	C5H10O2	137.0708	513-85-9	HMDB0003156	92.0491			
86	2-Aminobenzamide	C7H8N2O	137.0708	88-68-6	HMDB0033947	94.0648, 119.0349			
87	3-Aminobenzamide	C7H8N2O	137.0710	3544-24-9	HMDB0245814	94.0648, 92.0492, 78.0335			
	Name	Chemical Formula	Molecular Mass	Adducts	Database ID	Concentration			
---	-------------------------------	------------------	----------------	-------------------	--------------	-------------------			
88	Geraniol	C₁₀H₁₉O	137.1320	M+H₂O	HMDB0035155	C01500			
89	Aniline	C₆H₁₃N	138.0310	M+H+2Na	C00292	95.0682;93.0525;66.0565			
90	Trigonelline	C₃H₇NO₂	138.0520	M+H	HMDB0000875	C01004			
91	2-Hydroxypropyridine	C₄H₇NO	142.0470	M+HCO₂+2H	HMDB0013751	C02502			
92	Clomethiazole	C₆H₈ClNS	144.0050	M+H-H₂O	—	66.0565;96.0442			
93	Stachydrine	C₇H₁₃NO₂	144.1010	M+H	HMDB004827	C10172			
94	Methyl aminolevulinate	C₆H₁₁NO₃	144.0810	M+H	HMDB0015127	D08204			
95	Spermidine	C₆H₁₉N₃	146.1650	M+H	—	117.057;72.0805;84.0805			
96	Vigabatrin	C₄H₁₁NO₂	147.1010	M+NH₄	HMDB0015212	C07500			
97	Cis-Jasmone	C₁₁H₁₉O	147.1010	M+H₂O	HMDB0035601	C08490			
98	Ethylglycine	C₆H₁₀NO₂	148.0790	M+H+2Na	HMDB0041945	—			
99	N,N-Dimethylhistidine	C₈H₁₃N₂O₂	148.0960	M+H₂H₂O	—	121.0393;66.0564			
100	3,4-Dihydroxymandelic acid	C₆H₆O₃	149.0230	M+H+2H₂O	HMDB0001866	C05580			
101	Ethylparaben	C₆H₁₀O₃	149.0440	M+H₂O	HMDB0032573	D01647			
102	Dihydrojasmine	C₁₁H₁₉O	149.1320	M+H₂O	HMDB0031565	—			
103	Methionine	C₅H₁₁NO₂S	150.0589	M+H	HMDB0000696	C00073			
104	(−)-Carvone	C₁₀H₁₆O	151.0960	M+H	HMDB0035089	C01767			
105	10-Hydroxy-2-decenolic acid	C₁₀H₁₈O₅	151.0960	M+H₂H₂O	HMDB00244269	—			
106	2-Furoylglycine	C₅H₇NO₄	152.0230	M+H₂O	HMDB0000439	—			
107	Guanine	C₅H₉O₃	152.0568	M+H	HMDB0000132	C00242			
	Name	Formula	M+H	Comments	HMDB ID	C0506			
---	-------------------------------	----------	-------	--------------	-------------	---------			
108	2-(Methylamino)benzoic acid	C_8H_9NO_2	152.0700	M+H	119-68-6	HMDB0032609	C03005		
109	Diethyl phosphate	C_4H_10O_2P	155.1060	M+H	598-02-7	HMDB0012209	C06608		
110	Histidine	C_6H_9N_2O_2	156.0760	M+H	71-00-1	HMDB0000177	C00135		
111	4,6-Dioxoheptanoic acid	C_7H_10O_4	159.0650	M+H	51568-18-4	HMDB0000635	—		
112	2-Phenyl-4-pentenal	C_7H_10O	161.0964	M+H	24401-36-3	HMDB0035207	—		
113	Bethanechol	C_6H_10N_2O_2	161.1170	M+H	574-38-4	HMDB0015154	C06850		
114	2-Amino-2-deoxymannose	C_9H_13NO_5	162.0760	M+H-H_2O	14307-02-9	C03570	103.0386;85.0281;66.0561		
115	Carnitine	C_8H_16NO_3	162.1121	M+H	541-15-1	HMDB000062	C00318		
116	Cassiastearoptene	C_10H_16O_2	163.0750	M+H	1504-74-1	HMDB0033830	—		
117	N,N-Dimethylaniline	C_8H_11N	163.1070	M+CH_CN+H	121-69-7	HMDB0001020	C02846	105.0443;77.0382;92.0253	
118	4-Guanidinobutyric acid	C_10H_16N_2O_2	163.1320	M+NH_4	13890-14-7	HMDB0003464	C01035	70.0649;62.9288;80.0492	
119	Benzeneebutanoic acid	C_10H_14O_2	165.0903	M+H	1821-12-1	HMDB0000543	—	146.93;136.92;122.88	
120	Ethenzamide	C_9H_11NO_2	166.0710	M+H	938-73-8	D01466	120.0804;103.0539;107.0488		
121	Pholedrine	C_10H_12NO	166.1230	M+H	370-14-9	D08370	120.0804;107.0488;93.0695		
122	Hordenine	C_10H_12NO	166.1230	M+H	539-15-1	HMDB0004366	C06199	103.0539;93.0696;91.0539	
123	Erythrose	C_4H_8O_4	167.0550	M+HCOO+2H	1758-51-6	HMDB0250746	—	121.0281	
124	3-Methylxanthine	C_9H_14N_2O_2	167.0550	M+H	1076-22-8	HMDB001886	C16357	121.0394;148.9594	
125	4-Hydroxymandelonitrile	C_8H_14NO_2	167.0890	M+NH_4	—	C00650	104.0572;64.9269;121.0394		
126	Phthalic acid	C_8H_4O_4	167.1430	M+H	88-99-3	HMDB0002107	C01606	121.0394	

Notes:
- **HMDB ID**: HMDB (Human Metabolome Database) identifier.
- **C0506**: Compound ID in the NIST Mass Spectral Database.
| ID | Chemical Name | Molecular Formula | m/z | Adduct | PubChem CID | HMDB CID | Accuracy | | |
|---|---|---|---|---|---|---|---|---|---|
| 127 | Norepinephrine | C10H11NO3 | 170.0810 | M+H | 51-41-2 | HMDB0037685 | C00547 | 64.9269;134.0597;72.3879 |
| 128 | Camphor | C10H16O | 170.1540 | M+NH4 | 76-22-2 | HMDB0059838 | C18369 | 66.0553 |
| 129 | Juglone | C10H12O3 | 175.0360 | M+H | 481-39-0 | HMDB0030773 | C03840 | 91.0539;66.0561;105.0696 |
| 130 | Arginine | C4H14N4O2 | 175.1193 | M+H | 74-79-3 | HMDB0000517 | C00062 | 70.0664;116.0718;130.0991 |
| 131 | Acetyl-L-aspartic acid | C4H9NO5 | 176.0550 | M+H | 997-55-7 | HMDB000812 | C01042 | 70.0648;133.0646 |
| 132 | High Proline | C4H11NO3 | 176.0910 | M+HCOO2H | 56879-46-0 | HMDB29444 | — | 66.0561;70.0648 |
| 133 | 4,6,8-Megastigmatriene | C13H20 | 177.1642 | M+H | 51468-86-1 | HMDB0035180 | — | 81.0699;93.0699;107.0855 |
| 134 | Norleucine | C4H13NO2 | 178.1070 | M+HCOO2H | 139-82-0 | HMDB01645 | C01933 | 120.9818;109.9658;86.0961 |
| 135 | 6-Deoxyfagomine | C4H13NO2 | 178.1070 | M+HCOO2H | 197449-09-5 | HMDB0036382 | — | 86.0961 |
| 136 | Alpha-Terpineol acetate | C12H20O2 | 179.1430 | M+H-H2O | 80-26-2 | HMDB0032051 | C12300 | 66.0564 |
| 137 | Beta-D-Glucosamine | C4H13NO3 | 180.0860 | M+H | 14257-69-3 | HMDB0030091 | C08349 | 107.0726;120.0805 |
| 138 | Mexiletine | C11H17NO | 180.1380 | M+H | 180966-61-4 | HMDB0014523 | C07220 | 120.0806;107.0727 |
| 139 | Methylephedrine | C11H15NO | 180.1380 | M+H | 552-79-4 | HMDB0041932 | — | 107.0726 |
| 140 | Picolinoylglycine | C4H9N2O3 | 181.0620 | M+H | 516-29-5 | HMDB0059766 | — | 153.0694;66.0564;107.06 |
| 141 | P-Mentha-1,3,8-triene | C10H14 | 181.1220 | M+HCOO2H | 18368-95-1 | HMDB0037013 | — | 66.0564;135.0549;107.06 |
| 142 | 5-Hydroxymethyluracil | C4H8N2O3 | 184.0730 | M+H-2H2O+2H | 4433-40-3 | HMDB0000469 | C03088 | 124.9995;98.9839 |
| 143 | 5-Methylmercaptopurine | C4H9NS | 184.0730 | M+NH4 | 133762-85-3 | HMDB0060412 | C16614 | 124.9995;71.0726;98.9839 |
| 144 | Phosphorylcholine | C9H2NO5P | 184.0736 | M+H | 3616-04-4 | HMDB0001565 | C00588 | 60.0808;86.0972;98.9791 |
| 145 | Methyprylon | C10H17NO2 | 184.1330 | M+H | 125-64-4 | HMDB0015239 | D01150 | 124.9995;86.0962;98.9839 |
| 146 | Val-Cys | C4H9N2O3S | 185.0940 | M+H-H2O | — | HMDB0029124 | — | 105.1099 |
| No. | Chemical Name | Formula | MW (g/mol) | Exact MW | Charge | HMDB ID | CAS No. | HMDB ID |
|-----|---------------------------------------|---------------|------------|------------|-----------|-----------|---------------|------------|
| 147 | Triethylenetetramine | C₆H₁₄N₄ | 185.1170 | 146.1531 | M+K 112-24-3 | C07166 | 87.0994;98.9838 |
| 148 | Acetylcysteine | C₇H₁₇NO₃S | 186.0800 | 163.0303 | M+Na 616-91-1 | C06809 | 140.0015;86.0961;66.0564 |
| 149 | 5-Hydroxycytosine | C₆H₁₄N₃O | 186.0160 | 139.0269 | M⁺HCOO⁺2H 15864-85-4 | HMDB002658 | C01020 | 140.0015;86.0961;66.0565 |
| 150 | 4-Hydroxycyclohexylcarboxylic acid | C₅H₁₃O₃ | 186.1120 | 144.0786 | M+CH₃CN+H 3685-26-5 | HMDB001988 | — | 127.0037;66.0564;144.3115 |
| 151 | 5-(2-Hydroxyethyl)-4-methylthiazole | C₆H₁₅N₃S | 188.0140 | 143.0405 | M⁻H+2Na 137-00-8 | HMDB002985 | C04294 | 144.0804 |
| 152 | 5-Methoxyindole-3-acetic acid | C₁₁H₁₄NO₃ | 188.0680 | 205.0739 | M⁻H⁺H₂O 3471-31-6 | HMDB0004096 | C05660 | 118.0648;146.0597;144.0804 |
| 153 | NS-Acetylsermidine | C₉H₁₆N₄O | 188.1640 | 189.1841 | M+H 34450-15-2 | HMDB002189 | C01029 | 146.0596;144.0804 |
| 154 | Diaminopimelic acid | C₅H₁₄N₂O₄ | 191.1040 | 190.0954 | M⁺H 583-93-7 | HMDB0001370 | — | 116.9507 |
| 155 | Megastigmatrienone | C₁₃H₁₈O₅ | 191.1270 | 190.1358 | M⁺H — | HMDB0059906 | — | 160.018;149.0132;109.966 |
| 156 | Spermine | C₁₀H₂₀N₄ | 203.2230 | 202.2157 | M⁺H 71-44-3 | HMDB0001256 | C00750 | 84.0805;112.1119 |
| 157 | Acetylcarnitine | C₉H₁₈N₄O | 204.1239 | 203.1158 | M⁺H 3040-38-8 | HMDB000201 | C00750 | 84.0805;112.1119 |
| 158 | Tetrahydro-L-biopterin | C₁₃H₁₈N₄O₃ | 206.1000 | 241.1175 | M⁺H⁻₂H₂O 69056-38-8 | HMDB000027 | C00272 | 96.0805;62.9288;109.9659 |
| 159 | Betamicine | C₉H₁₃N₃O | 206.1000 | 159.0895 | M⁺HCOO⁺2H 515-25-3 | HMDB0029412 | C08269 | 96.0805;83.0601;91.9554 |
| 160 | Pregabalin | C₈H₁₆N₂O₂ | 206.1380 | 159.1259 | M⁺HCOO⁺2H 14855-50-8 | HMDB0014375 | D02716 | 96.0805;83.0601 |
| 161 | 1-Methylguanine | C₄H₉N₂O₂ | 207.0980 | 165.0651 | M⁺HCH₃CN+H 938-85-2 | HMDB0003282 | C04152 | 137.0081 |
| 162 | 3-Amino-2-methylpropanoic acid | C₄H₉N₂O₂ | 207.1350 | 103.0633 | 2M⁺H 144-90-1 | HMDB0003911 | C05145 | 75.0258 |
| 163 | Phosphoserine | C₆H₁₈O₅P | 207.9980 | 185.0089 | M⁺Na 1446756-47-3 | HMDB0000272 | C01005 | 64.927;109.966;96.0806 |
| 164 | Aminocaproic acid | C₆H₁₃NO₂ | 207.9980 | 131.0946 | M⁺H⁻₂K 60-32-2 | HMDB0001901 | C02378 | 64.927;96.0806;70.0649 |
| 165 | Genipin | C₁₁H₁₄O₅ | 209.0770 | 226.0841 | M⁺H⁻₂H₂O 6902-77-8 | HMDB0035830 | C09780 | 64.9269;97.0837;138.9873 |
| | Name | Molecular Formula | MW | Exact Mass (ppm) | Monoisotopic Mass (ppm) | HMDB ID | PubChem ID | Exact Mass (ppm) |
|---|----------------------|-------------------|----|------------------|-------------------------|----------------|------------|------------------|
|166| Kynurenine | C_{10}H_{7}N_{2}O_{3} | 209.0770 | 208.0848 | M+H | 2922-83-0 | HMDB0000684 | C00328 | 64.927;135.9815;165.0698 |
|167| Jasmonic acid | C_{14}H_{10}O_{3} | 211.1330 | 210.1256 | M+H | 6894-38-8 | HMDB0032797 | C08491 | 192.9801;152.0129 |
|168| Isoprenaline | C_{11}H_{14}NO_{2} | 212.1280 | 211.1208 | M+H | 7683-59-2 | HMDB0015197 | C07056 | 165.9746;137.98;135.9817 |
|169| Gabapentin | C_{4}H_{12}NO_{2} | 218.1380 | 171.1259 | M+HCOO+2H | 360-70-3 | HMDB0005015 | C07018 | 171.9928 |
|170| Allocystathionine | C_{6}H_{13}NO_{2}S| 223.0630 | 222.0674 | M+H | 535-34-2 | HMDB0000455 | C00328 | 64.927;135.9815;165.0698 |
|171| Gly-Phe | C_{11}H_{14}NO_{2} | 223.0960 | 222.1004 | M+H | 3321/3/7 | HMDB0028848 | — | 207.0321;178.0304 |
|172| Canavanine | C_{6}H_{12}N_{2}O_{3} | 223.0630 | 176.0909 | M+HCOO+2H | 543-38-4 | HMDB0000455 | C00328 | 178.0307 |
|173| Acetyl-L-tyrosine | C_{11}H_{13}NO_{2} | 224.0919 | 223.0845 | M+H | 537-55-3 | HMDB0000866 | C01657 | 165.0552;206.0817 |
|174| 2-Amino-2-methyl-1,3-propanediol | C_{4}H_{13}NO_{2} | 228.1950 | 105.0790 | 2M+NH_{4} | 115-69-5 | — | C11260 | 88.0754 |
|175| Ergothioneine | C_{6}H_{13}NO_{2}S| 230.1030 | 229.0885 | M+H | 497-30-3 | HMDB0003045 | C00542 | 85.1009;66.0549 |
|176| Benzaldehyde | C_{6}H_{14}O | 230.1030 | 106.0419 | 2M+NH_{4} | 100-52-7 | HMDB0006115 | C00193 | 66.0549 |
|177| Pyridoxal phosphate | C_{6}H_{13}NO_{5}P| 230.1380 | 247.0246 | M+H+H_{2}O | 54-47-7 | HMDB001491 | C00018 | 66.0549 |
|178| Diethyl phthalic acid| C_{12}H_{14}O_{4} | 245.0760 | 222.0892 | M+Na | 88988-18-1 | HMDB0094660 | C14175 | 151.0114;163.0288 |
|179| Carnitine 2-methyl-C4 | C_{12}H_{25}NO_{4} | 246.1690 | 245.1627 | M+H | 31023-25-3 | HMDB000378 | — | 85.0281 |
|180| Myristic acid | C_{14}H_{26}O_{2} | 246.2430 | 228.2089 | M+NH_{4} | 544-63-8 | HMDB0000806 | C06424 | 229.2168 |
|181| Ser-Lys | C_{13}H_{19}N_{3}O_{4} | 256.1210 | 233.1376 | M+Na | 22677-61-8 | HMDB0029044 | — | 102.091;88.0754;70.0648 |
|182| Hexadecanamide/Palmitic amide | C_{16}H_{33}NO_{2} | 256.2609 | 255.4393 | M+H | 629-54-9 | HMDB0012273 | — | 101.92;87.89 |
|183| Glu-Gln | C_{6}H_{13}NO_{3} | 258.1000 | 275.1117 | M+H+H_{2}O | — | HMDB0011738 | C05283 | 102.0911;184.0731 |
|184| Benzamidine | C_{7}H_{25}N_{2} | 258.1690 | 120.0687 | 2M+NH_{4} | 618-39-3 | HMDB024970 | C01784 | 104.1067 |
|185| Pantothenate | C_{6}H_{17}NO_{5} | 264.0790 | 219.1107 | M+H+2Na | 79-83-4 | HMDB0000210 | C00864 | 66.0541;189.0447;92.9736 |
| No. | Compound | Formula | MW (calc) | MW (exp) | Tolerance (ppm) | HMDB ID | CID | Exact Mass (ppm) |
|-----|----------------------------------|---------------|-----------|----------|-----------------|---------------------|----------|-----------------|
| 186 | Thiamine | C_{12}H_{17}N_{4}O_{5}S | 265.1109 | 265.1123 | 70-16-6 | HMDB0000235 | C00378 | 144.0483 |
| 187 | Acetyl-N-formyl-5-methoxykynurenamin | C_{14}H_{15}N_{2}O_{4} | 265.1110 | 264.1110 | M+H 52450-38-1 | HMDB0004259 | C05642 | 232.0867;189.0446 |
| 188 | Glycerophosphocholine | C_{14}H_{36}N_{4}O_{3} | 280.0910 | 257.1028 | M+Na — | HMDB0000086 | — | 104.1068;86.0962 |
| 189 | Alloisoleucine | C_{16}H_{13}NO_{2} | 280.2270 | 131.0946 | 2M+NH_{4} 1509-34-8 | HMDB0000557 | C21096 | 104.1068;73.0466 |
| 190 | Oleamide | C_{16}H_{19}NO | 282.2796 | 281.2719 | M+H 301-02-0 | HMDB02117 | C19670 | 83.0855;97.1012 |
| 191 | Alanyllysine | C_{18}H_{19}N_{2}O_{3} | 284.0980 | 217.1426 | M-2H+3Na 6366-77-4 | HMDB0028692 | — | 102.0912;88.0755 |
| 192 | Prolyl-Tryptophan | C_{16}H_{14}N_{3}O_{3} | 284.1330 | 301.1426 | M+H-H 2457-80-9 | HMDB0029028 | — | 102.0911;66.0538;70.0648 |
| 193 | Vitamin A | C_{20}H_{16}O | 287.2375 | 286.2297 | M+H 68-26-8 | HMDB0000305 | D0069 | 269.2264 |
| 194 | Muramic acid | C_{16}H_{17}NO_{7} | 296.0665 | 251.1005 | M-H+2Na 1114-41-6 | HMDB0028692 | — | 105.1101; |
| 195 | 5'-Methylthioadenosine | C_{11}H_{12}N_{2}O_{5}S | 298.0965 | 297.0896 | M+H 2457-80-9 | HMDB0001173 | C00170 | 136.0616;104.1068;75.0261 |
| 196 | Methyylimidazoleacetic acid | C_{16}H_{12}N_{2}O_{2} | 298.1490 | 140.0586 | 2M+NH_{4} 2625-49-2 | HMDB0002820 | C05828 | 75.0261;97.0282 |
| 197 | Sphingosine | C_{18}H_{14}NO_{3} | 300.2885 | 299.4919 | M+H 123-78-4 | HMDB0000252 | C00319 | 282.22;256.21;238.27;212.21 |
| 198 | Palmitoyl ethanolamide | C_{18}H_{34}NO_{2} | 300.2901 | 299.2824 | M+H 544-31-0 | HMDB0002100 | C16512 | 239.2369;282.2791 |
| 199 | Sphinganine | C_{18}H_{16}N_{2}O_{2} | 302.3059 | 301.2981 | M+H 764-22-7 | HMDB000269 | C00836 | 284.2973 |
| 200 | 11,12-EET | C_{20}H_{34}O_{2} | 303.2306 | 320.4730 | M+H-H_{2}O — | HMDB0244445 | C14770 | 166.84;149.00 |
| 201 | Oleoyl ethanolamide | C_{20}H_{34}NO_{2} | 308.2957 | 325.2981 | M+H-H_{2}O 111-58-0 | HMDB0002088 | C20792 | 265.2526 |
| 202 | MG(16:0) | C_{16}H_{36}O_{4} | 313.2743 | 330.2770 | M+H-H_{2}O — | HMDB0011564 | — | 81.0522 |
| 203 | Phytosphingosine | C_{18}H_{34}NO_{3} | 318.3007 | 317.2930 | M+H 554-62-1 | HMDB0004610 | C12144 | 282.2797;300.2903 |
| 204 | Guanosine | C_{10}H_{13}N_{5}O_{5} | 322.0551 | 283.0917 | M+K 118-00-3 | HMDB0000133 | — | 151.0489 |
| ID | Name | Formula | MRM | MRM | MRM | MRM | MRM |
|-----|--|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 205 | MG(0:0/15:0/0:0) | C_{11}H_{20}O_{4} | 334.2957 | 316.2614 | M+NH_{4} | -- | -- |
| 206 | 3-Methyl-5-pentyl-2-furanundecanoate | C_{21}H_{40}O_{4} | 337.2737 | 336.2664 | M+H | 5781-37-8 | -- |
| 207 | Adenosine 2'-phosphate | C_{10}H_{14}N_{5}O_{7}P | 348.0712 | 347.0631 | M+H | 130-49-4 | HMDB0011617 |
| 208 | MG(0:0/i-17:0/0:0) | C_{20}H_{40}O_{4} | 362.3271 | 344.2927 | M+NH_{4} | -- | -- |
| 209 | Lithocholic acid | C_{24}H_{40}O_{3} | 415.2602 | 376.2977 | M+K | 434-13-9 | HMDB0000761 |
| 210 | Lysope 16:0 | C_{24}H_{50}NO_{7}P | 496.3390 | 495.3325 | M+H | 17364-16-8 | HMDB0010382 |
| 211 | LPC(16:0) | C_{24}H_{50}NO_{7}P | 496.3401 | 495.3325 | M+H | -- | -- |
| 212 | LPC(18:1) | C_{26}H_{52}NO_{7}P | 522.3555 | 521.3481 | M+H | -- | -- |
| 213 | LPC(18:0) | C_{26}H_{52}NO_{7}P | 524.3720 | 523.3638 | M+H | -- | -- |
| 214 | DG(32:1) | C_{35}H_{66}O_{5} | 549.4890 | 566.4910 | M+H-H_{2}O | -- | HMDB0007211 |
| 215 | Ceramide | C_{42}H_{81}NO_{3}P | 648.6310 | 647.6216 | M+H | -- | HMDB0004953 |
| 216 | PC(28:0) | C_{36}H_{72}NO_{8}P | 678.5078 | 677.4996 | M+H | -- | HMDB0007866 |
| 217 | PC(29:1) | C_{37}H_{74}NO_{8}P | 690.5071 | 689.4996 | M+H | -- | -- |
| 218 | PC(29:0) | C_{36}H_{72}NO_{8}P | 692.5236 | 691.5152 | M+H | -- | -- |
| 219 | PC(30:1) | C_{37}H_{74}NO_{8}P | 704.5239 | 703.5152 | M+H | -- | -- |
| 220 | PC(30:0) | C_{37}H_{74}NO_{8}P | 706.5397 | 705.5309 | M+H | -- | -- |
| 221 | PC(31:1) | C_{38}H_{76}NO_{8}P | 718.5396 | 717.5309 | M+H | -- | -- |
| 222 | DG(44:9) | C_{44}H_{82}O_{7} | 718.5758 | 718.5536 | M+NH_{3}H_{2}O | -- | -- |
| 223 | PC(31:0) | C_{39}H_{78}NO_{8}P | 720.5561 | 719.5465 | M+H | -- | -- |
| 224 | PC(32:1) | C_{40}H_{80}NO_{8}P | 732.5553 | 731.5465 | M+H | -- | -- |

| 37 |
		C_{a}H_{b}NO_{c}P													
225	PC(32:0)		734.5710	733.5621	M+H				184.0728						
226	PC(33:3)		742.5402	741.5308	M+H				184.0731						
227	PC(33:2)		744.5554	743.5465	M+H				184.0728						
228	PC(34:0)		744.5920	761.5934	M+H-H_{2}O				184.0728						
229	PC(33:1)		746.5713	745.5622	M+H				184.0729						
230	PC(34:1)		760.5862	759.5778	M+H				184.0729						
231	PC(35:5)		766.5391	765.5309	M+H				184.0728						
232	PC(36:4)		768.5908	767.5465	M+H				184.0729						
233	PC(35:3)		770.5714	769.5621	M+H				184.0731						
234	PC(35:2)		772.5867	771.5778	M+H				184.0729						
235	PC(35:1)		774.6024	773.5935	M+H				184.0728						
236	PC(36:5)		780.5547	779.5465	M+H				184.0731						
237	PC(36:3)		784.5870	783.5778	M+H				184.0727						
238	PC(36:2)		786.6021	785.5935	M+H				184.0730						
239	PC(34:2)		796.5260	795.5622	M+K				184.0733						
240	PC(37:2)		800.6172	799.6091	M+H				184.0729						
241	PC(38:7)		804.5530	803.5465	M+H				184.0729						
242	PC(38:6)		806.5719	805.5622	M+H				184.0728						
243	PC(38:5)		808.5868	807.5778	M+H				184.0729						
244	PC(36:1)		810.6027	787.6091	M+Na				627.5323;751.5248						
NO.	Metabolites	Formula (CAS_ID)	Precursor (M+H)	Mass (Observed)	Ions	CAS_ID	HMDB_ID	KEGG_ID	MS/MS fragments						
-----	----------------------	------------------	-----------------	----------------	------	--------------	---------------	---------	-----------------						
245	PC(38:3)	C_{27}H_{44}O_{3}	812.6190	811.6091	M+H	—	—	—	—						
246	PC(38:2)	C_{26}H_{40}NO_{2}P	814.6330	813.6248	M+H	—	—	—	—						
247	PC(40:7)	C_{26}H_{40}NO_{3}P	832.5866	831.5778	M+H	—	—	—	—						
248	PC(40:6)	C_{26}H_{40}NO_{3}P	834.6016	833.5935	M+H	—	—	—	—						
249	PC(40:5)	C_{26}H_{40}NO_{3}P	836.6206	835.6091	M+H	—	—	—	—						
	Negative ion mode														
250	2-Oxobutanoic acid	C_{4}H_{6}O_{3}	101.0245	102.0317	M-H	600-18-0	HMDB0000005	C00109	83.0139						
251	Serine	C_{3}H_{7}NO_{3}	104.0360	105.0426	M-H	302-84-1	HMDB0000187	C00065	74.0248;58.8439						
252	P-Cresol	C_{7}H_{8}O	107.0500	108.0575	M-H	106-44-5	HMDB0001858	C01468	79.9574;66.0735;92.9932						
253	Butyric acid	C_{4}H_{8}O_{2}	109.0300	88.0524	M+Na-2H	107-92-6	HMDB0000039	C00246	60.9470;81.9534;53.9918						
254	Pyrrole-2-carboxylic acid	C_{5}H_{8}NO_{2}	110.0250	111.0320	M-H	634-97-9	HMDB0004230	C05942	66.0734;80.0381						
255	3-Furancarboxylic acid	C_{5}H_{8}O_{2}	111.0090	112.0160	M-H	488-93-7	HMDB0004444	C00106	78.9592;66.0734;72.4084						
256	2,4-Hexadienoic acid	C_{5}H_{8}O_{2}	111.0450	112.0524	M-H	110-44-1	HMDB0029581	D05892	66.0734;94.6238						
257	Creatinine	C_{4}H_{5}N_{2}O	112.0410	113.0589	M-H	60-27-5	HMDB0000562	C00791	68.1633						
258	Glutaric acid	C_{5}H_{9}O_{4}	113.0250	132.0423	M-H_{2}O-H	110-94-1	HMDB0000661	C00849	68.9959;79.9563						
259	2-Methyl-3-pentenoic acid	C_{6}H_{10}O_{2}	113.0610	114.0681	M-H	1879-03-4	—	—	68.9959;66.0734;						
260	Iminodiacetic acid	C_{4}H_{7}NO_{4}	114.0200	133.0375	M-H_{2}O-H	142-73-4	HMDB0011753	C19911	68.7729;71.7443;58.8481						
261	Malic acid	C_{4}H_{6}O_{3}	115.0040	134.0215	M-H_{2}O-H	6915-15-7	HMDB0000744	C00711	72.4083						
	Name	Molecular Formula	Mass (m/z)	Formula	Database Code	Accession	Molar Mass								
---	-----------------------	-------------------	--------------	---------	---------------	-----------	------------								
262	2,3-Dihydroxy-isovalerate	C₅H₁₀O₄	115.0400	M-H₂O-H	HMDB0012141	C04039	194.51-56.0								
263	Hexanoic acid	C₆H₁₂O₂	115.0770	M-H		C01585	116.0837								
264	Methylmalonic acid	C₅H₉NO₂	117.0200	M-H	HMDB000202	C02170	156.05-2								
265	Salicylamide	C₇H₇NO₂	118.0300	M-H₂O-H	HMDB0015687	D01811	65.075-90.0350.0								
266	Allo-threonine	C₄H₉NO₃	118.0510	M-H		C05519	119.0582								
267	Trehonine	C₄H₉NO₃	118.0510	M-H	HMDB0000167	C00188	130.955-55.1								
268	4-Methylbenzaldehyde	C₆H₇O	119.0500	M-H	HMDB0029638	C06758	104.087-0								
269	4-hydroxystyrene	C₆H₇O	119.0500	M-H	HMDB0004072	C05627	262.8-17-3								
270	Benzoic acid	C₇H₆O₂	121.0300	M-H	HMDB0001870	C00180	122.0368								
271	3-Hydroxybenzaldehyde	C₇H₆O₂	121.0300	M-H	HMDB0000167	C00188	122.0368								
272	Maltol	C₆H₉O₂	125.0250	M-H	HMDB0030776	C11918	118.071-8								
273	1H-Imidazol-1-ylacetic acid	C₅H₇N₂O₂	125.0250	M-H	HMDB0029736	C06758	228.8-40.10-2								
274	1,2,3-Trihydroxybenzene	C₅H₇O₃	125.0250	M-H	HMDB0013674	C01108	87.066-1								
275	2-methyl-1,3-Cyclohexanedione	C₇H₁₀O₂	125.0610	M-H	HMDB0034080	C06104	119.055-1								
276	Adipic acid	C₄H₁₀O₄	127.0400	M-H₂O-H	HMDB0000448	C06104	146.0579								
277	Cyclohexanecarboxylic acid	C₆H₁₂O₂	127.0770	M-H	HMDB0031342	C09822	128.0837								
278	Pyroglutamic acid	C₄H₇NO₃	128.0354	M-H	HMDB000805	C01585	129.0426								
279	Hydroxyisocaproic acid	C₄H₁₂O₃	131.0720	M-H	HMDB0000746	C02170	132.0786								
280	2-Ethyl-2-Hydroxybutyric acid	C₄H₁₂O₃	131.0720	M-H	HMDB0001975	C02170	132.0786								
281	Maleic acid	C₄H₆O₄	132.0300	M-H₂O⁻₂H	HMDB000176	C01384	116.0110								
Line	Compound	Chemical formula	Unimolecular mass (m/z)	M+H (Da)	HMDB ID	Compound mass (m/z)	HMDB ID	Compound mass (m/z)	HMDB ID	Compound mass (m/z)	HMDB ID				
------	-----------------------------	------------------	-------------------------	----------	-------------	---------------------	-------------	---------------------	-------------	---------------------	-------------				
282	Adenine	C$_5$H$_5$N$_3$	134.0470	135.0545	134434-49-4	C00147	107.0363	92.0254							
283	4-Oxopentanoate	C$_5$H$_6$O$_3$	135.0450	116.0473	123-76-2	HMDB0000720	75.0088	72.4078;60.9468							
284	4-Hydroxybenzoic acid	C$_5$H$_6$O$_3$	137.0240	138.0317	99-96-7	HMDB000500	93.0458	78.9590							
285	2,5-Dihydroxybenzaldehyde	C$_5$H$_6$O$_3$	137.0240	138.0317	1194-98-5	HMDB0004062	66.0733	78.9591;96.8327							
286	2-(4-Hydroxyphenyl)ethanol	C$_5$H$_9$O$_2$	137.0610	138.0681	2380-91-8	C13638	66.0732	93.0346							
287	4-Nitrophenol	C$_6$H$_5$NO$_3$	138.0200	139.0269	100-02-7	HMDB001232	108.0455	66.0732;94.0299							
288	2-Aminoethyl dihydrogen phosphate	C$_5$H$_9$NO$_3$P	140.0120	141.0191	1071-23-4	HMDB000224	C00346	78.9591							
289	Daminozide	C$_6$H$_12$N$_2$O$_3$	141.0560	160.0848	1596-84-5	C10996	58.7564	100.8584;108.0046							
290	Ectoine	C$_6$H$_9$O$_2$	141.0560	142.0742	96702-03-3	C06231	84.1901	75.3660;102.1730							
291	4-Hydroxyvalproic acid	C$_6$H$_9$O$_3$	141.0920	160.1099	60113-82-8	HMDB0013900	C16649	66.0732;114.5427							
292	Trimethadione	C$_6$H$_7$N$_2$O	142.0510	143.0582	M-H	HMDB001491	D00392	60.9468							
293	Indole-3-carboxaldehyde	C$_6$H$_7$NO	144.0460	145.0528	487-89-8	HMDB0029737	C08493	66.0732;51.0292;60.9468							
294	4-Hydroxyquinoline	C$_6$H$_7$NO	144.0460	145.0528	611-36-9	C06343	66.0732	72.4076;95.3761							
295	Glutamine	C$_6$H$_10$N$_2$O$_3$	145.0510	146.0691	56-85-9	HMDB000641	C00064	66.0733;84.0454;127.0511							
296	2-Methylglutaric acid	C$_6$H$_7$O$_4$	145.0510	146.0579	617-62-9	HMDB000422	84.0454	74.0248							
297	Isatin	C$_6$H$_7$NO$_2$	146.0250	147.0320	91-56-5	HMDB0061933	C11129	66.0732;92.9935;69.6941							
298	Glutamic acid	C$_6$H$_7$NO$_4$	146.0460	147.0532	M-H	HMDB0000148	C00025	119.0502;101.0244;85.0295							
299	Tartaric acid	C$_6$H$_7$O$_8$	149.0100	150.0164	M-H	HMDB0029878	C02107	72.4077							
S. No.	Name	Chemical Formula	M.Wt	M-H M.Wt	HMDB No.	CID No.	Other M.Wt								
--------	---	------------------	------	----------	----------------	---------	------------								
300	4-Coumaryl alcohol	C₉H₁₀O₂	149.0610	150.0681	3690/5/9	HMDB03654	102.7635;51.3836								
301	3-Hydroxyanthranilic acid	C₇H₆NO₃	152.0350	153.0426	548-93-6	HMDB0001476	C00632 108.0454								
302	3-Amino-4-Hydroxybenzoic acid	C₇H₆NO₃	152.0350	153.0426	570-23-0	HMDB0001972	— 66.0732;79.9575								
303	Linalool	C₁₀H₁₄O	153.1290	154.1358	126-90-9	HMDB0036101	C11389 66.0732;97.0407;81.0459								
304	2-Deoxy-D-ribose	C₅H₁₀O₄	155.0350	134.0579	333-67-5	HMDB0245099	— 94.0492								
305	Shiikimic acid	C₇H₆O₃	157.0250	158.0328	5988-19-2	HMDB0003349	114.9887								
306	Dihydroorotic acid	C₅H₆N₂O₄	157.0250	340.0577	13184-27-5	HMDB0000828	89.0245;114.9887								
307	Salicylic acid	C₇H₆O₃	157.0250	138.0317	69-72-7	HMDB0001895	C00805 113.0094								
308	Ureidosuccinic acid	C₁₀H₉N₂O₄S	157.0250	340.0577	13184-27-5	HMDB0000828	89.0245;114.9887								
309	3,3-Dimethylglutaric acid	C₇H₁₂O₄	159.0660	160.0736	4839-46-7	HMDB0002441	— 114.9887;78.9592;66.0733								
310	5-Hydroxyvalproic acid	C₉H₁₀O₃	159.1030	160.1099	53660-23-4	HMDB0013898	C16650 130.9836;114.9887								
311	Carboxymethyl-L-cysteine	C₅H₉NO₄S	160.0700	179.0252	638-23-3	HMDB0029415	D06393 86.9911;74.0249;116.0175								
312	3-Hydroxy-3-methylglutaric acid	C₉H₁₀O₃	161.0460	162.0528	503-49-1	HMDB0000355	C03761 144.3546;129.0362;75.3499								
313	Phenylalanine	C₉H₁₁NO₂	164.0715	165.0790	149597-92-2	HMDB0000159	C0079 147.0449;103.0553;72.0092								
314	Homogentisic acid	C₈H₈O₄	167.0350	168.0423	451-13-8	HMDB0000130	C00544 123.0564;109.0490;66.0733								
315	4-Ipomeanol	C₉H₁₂O₅	171.0710	168.0786	55659-41-1	HMDB0030472	— 66.0733								
316	Glycerophosphoric acid	C₈H₁₂O₅P	171.0600	172.0137	17181-54-3	HMDB0002520	C02979 78.9591;96.9695								
317	Carglumic acid	C₆H₁₀N₂O₃	171.0410	190.0590	1188-38-1	HMDB0015673	C05829 128.0352;142.9662								
318	Phenoxyacetic acid	C₃H₄O₃	171.0410	152.0473	122-59-8	HMDB0031609	C02181 78.9591;66.0733								
319	Decanoic acid	C₁₀H₂₀O₂	171.1390	172.1463	334-48-5	HMDB0000511	C01571 78.9591;66.0733;96.9697								
No.	Name	Chemical Formula	M/Charge	MZ	HMDB ID	C08278	C01419	C00082	C00392	C01507	C00279	C10906	C07207	C06890	C01546
-----	-------------------------------------	--------------------	---------------	-------------	--------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
320	Suberic acid	C₈H₁₄O₄	173.0820	174.0892	M-H	505-48-6	131.0825	93.0346	66.0733						
321	Cysteinylglycine	C₇H₁₆N₂O₅S	177.0340	178.0412	M-H	19246-18-5	74.0248	131.0463	99.0564						
322	Acetylthreonine	C₅H₁₁NO₄	177.0920	161.0688	M+NH₄-2H	17093-74-2		74.0248	99.0563						
323	Nicotinuric acid	C₃H₂NO₃	179.0460	180.0535	M-H	583-08-4	109.0407	135.0562							
324	1,7-Dimethylxanthine	C₂H₆N₂O₂	179.0710	180.0647	M-H	611-59-6									
325	3-Hydroxycaprylic acid	C₉H₁₆O₃	180.0660	181.0739	M-H	55520-40-6	109.0407	135.0563							
326	Tyrosine	C₉H₁₀O₃	181.0715	182.0790	M-H	69-65-8									
327	D-P-Coumaric acid	C₇H₈O₃	180.0660	164.0473	M+NH₄-2H	501-98-4	119.0501	163.0397	93.0346						
328	2-Hydroxycinnamic acid	C₈H₆O₃	180.0660	164.0473	M+NH₄-2H	614-60-8	119.0502	93.0347	66.0734						
329	Mannitol	C₆H₁₄O₆	181.0715	182.0790	M-H	69-65-8	101.0244	71.0140	89.0244						
330	Iditol	C₆H₁₄O₆	181.0715	182.0790	M-H	488-45-9	101.0244	71.0140	89.0245						
331	Asp-Ala	C₆H₁₂N₂O₅	185.0570	204.0746	M-H₂O-H	13433-02-8									
332	1-Hydroxy-2-Naphthoate	C₁₁H₈O₃	187.0418	188.0473	M-H	86-48-6		115.0208	157.0312	66.0733					
333	2-Amino-3-methylimidazo[4,5-f]quinoline	C₁₁H₁₀N₄	197.0820	198.0905	M-H	76180-96-6		169.0159	66.0734						
334	Erythrose-4-phosphate	C₄H₆O₃P	198.9970	200.0086	M-H	585-18-2									
335	Fructose	C₆H₁₂O₆	201.0377	180.0634	M+Na-2H	57-48-7									
336	Zalcitabine	C₃H₁₃N₂O₃	210.0880	211.0957	M-H	7481-89-2									
337	4-Aminohippuric acid	C₄H₁₀N₂O₃	210.0890	194.0691	M+NH₄-2H	61-78-9									
338	2-Furanoic acid	C₃H₆O₃	223.0280	112.0160	2M-H	88-14-2									
	Name	Chemical Formula	Mass Accuracy	Charge	HMDB ID	MHDB ID									
---	---	------------------	----------------	--------	-----------------	----------									
339	Thymidine	C10H14N3O5	223.0760	M-H2O-H	50-89-5	C00214									
340	Umbelliferone	C9H14O3	213.1540	M-H	93-35-6	C09315									
341	Glycyltyrosine	C15H16N2O4	237.0910	M-H	658-79-7	—									
342	Tyr-Gly	C15H16N2O4	237.0911	M-H	673-08-5	—									
343	5(R)-hydroperoxy-EPE	C18H20N2O3S	237.0915	M-H	7365-45-9	—									
344	Uridine	C9H14N3O6	243.0620	M-H	58-96-8	C00299									
345	2-cis-Hexadecenoic acid	C16H30O2	253.2170	M-H	2825-68-5	—									
346	Gamma-Glutamylglutamic acid	C10H20N3O7	257.0751	M-H2O-H	1116-22-9	C05282									
347	Myo-Inositol 6-phosphate	C4H15O3P	259.0220	M-H	15421-51-9	C01177									
348	14-Methylhexadecanoic acid	C17H34O2	269.2480	M-H	5918-29-6	C0031067									
349	Zidovudine	C10H13N5O4	288.0660	M+Na2H	30516-87-1	C07210									
350	Embelin	C17H20O4	293.1760	M-H	550-24-3	C10342									
351	Acetylgalactosamine 1-Phosphate	C10H16N2O5P	300.0480	M-H	6866-69-9	C04256									
352	Glutathione	C10H17N3O8S	306.0737	M-H	70-18-8	C00051									
353	13-HpODE	C11H13O4	311.2220	M-H	23017-93-8	—									
354	Ethyl stearate	C20H40O2	311.2950	M-H	111-61-5	C0034156									
355	Acetylcytosine	C11H16N3O4	320.0880	M+NH4-2H	3106-85-2	C12270									
356	Cytidine monophosphate	C9H14N3O6P	322.0409	M-H	63-37-6	C00055									
357	Uridine 5-Monophosphate	C11H16N3O6P	323.0290	M-H	58-97-9	C00105									
358	Docosahexaenoic acid	C22H32O2	327.2170	M-H	25377-50-8	C06429									
	Name	Formula	MW1	MW2	Charge	HMDB	CID	Purity							
-----	--	---------------	-----	------	--------	-------	-------	---------							
359	Fructose-2,6-diphosphate	C9H14O12P2	338.9890	339.9961	M-H	HMDB0001047	C00665	96.96							
360	Quercetin	C15H10O7	338.9890	302.0427	M+K-2H	HMDB0005794	C00389	283.8553;302.7115							
361	Heneicosaonic acid	C21H42O2	339.3260	326.3185	M-H	HMDB0002345	—	283.8548							
362	Penicillin v	C16H18N2O5S	371.0650	350.0936	M+Na-2H	HMDB014561	C08126	93.0344							
363	Cysteine-glutathione disulfide	C11H22N4O8S2	442.1120	426.0879	M+NHa-2H	13081-14-6	—	381.4482;158.9249							
364	5'-DGTP	C10H18N3O8P3	505.9880	506.9957	M-H	HMDB0001440	C00286	158.9254							
365	UDP-D-galactose	C12H22N2O13P2	565.0470	566.0550	M-H	HMDB0000302	C00052	323.0275;384.9829;241.0111							
366	UDP-glucose	C12H22N2O13P2	565.0470	566.0550	M-H	HMDB0000935	C00167	402.9937							
367	Uridine diphosphate glucuronic acid	C12H22N2O13P2	579.0270	580.0343	M-H	HMDB0000290	C00043	158.9251;272.9564;282.0376							
5. References

[1] R. N. Li, Y. L. Shao, Y. M. Yu, X. Y. Wang, G. S. Guo, *Chem. Commun.* **2017**, *53*, 4104−4107.

[2] X. Y. Wang, Y. L. Shao, L. Wang, G. S. Guo, ZL201610125665.4, **2016**.

[3] R. H. Wang, H. S. Zhao, X. C. Zhang, X. Zhao, Z. Song, J. Ouyang, *Anal. Chem.* **2019**, *91*, 3667−3674.

[4] Z. W. Wei, S. Han, X. Y. Gong, Y. Y. Zhao, C. D. Yang, S. C. Zhang, X. R. Zhang, *Angew. Chem. Int. Ed.* 2013, **52**, 11025 –11028.

[5] L. Rayleigh, *Philos. Mag.* **1882**, *14*, 184–186.