Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at $\sqrt{s} = 13$ TeV

CMS Collaboration

CERN, 1211 Geneva 23, Switzerland

Received: 10 April 2021 / Accepted: 20 July 2021 / Published online: 11 August 2021
© CERN for the benefit of the CMS collaboration 2021

Abstract A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton–proton collisions at $\sqrt{s} = 13$ TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 GeV. The results are interpreted in the context of the Georgi–Machacek model.

1 Introduction

The discovery [1–3] of a Higgs boson [4–9] at the CERN LHC marks an important milestone in the exploration of the electroweak (EW) sector of the standard model (SM) of particle physics. Measurements of vector boson scattering (VBS) processes at the LHC may reveal hints for extensions of the SM. In particular, extended Higgs sectors with additional SU(2) doublets [10–13] or triplets [14–19] introduce couplings of gauge bosons to heavy neutral or charged Higgs bosons with specific signatures like singly or doubly charged Higgs boson decays to WZ boson pairs or same-sign W boson pairs, respectively.

At the LHC, interactions from VBS are characterized by the presence of two gauge bosons in association with two forward jets with a large pseudorapidity separation ($|\Delta \eta_{jj}|$) and a large dijet invariant mass (m_{jj}). An excess of events with respect to the SM predictions could indicate the presence of new resonances, such as singly or doubly charged Higgs bosons. Extended Higgs sectors with additional SU(2) isotriplet scalars give rise to charged Higgs bosons with couplings to W and Z bosons at the tree-level [19]. Specifically, the Georgi–Machacek (GM) model [18,20], with both real and complex triplets, preserves a global symmetry SU(2)$_L$ × SU(2)$_R$, which is broken by the Higgs vacuum expectation value to the diagonal subgroup SU(2)$_{L+R}$. Thus, the tree-level ratio of the W and Z boson masses is protected against large radiative corrections. In this model, singly (doubly) charged Higgs bosons that decay to W and Z bosons (same-sign W boson pairs) are produced via vector boson fusion (VBF).

The charged Higgs bosons H^\pm and $H^{\pm\pm}$ in the GM model are degenerate in mass (denoted as m_{H_5}) at tree level and transform as a quintuplet under the SU(2)$_{L+R}$ symmetry. The H^\pm and $H^{\pm\pm}$ bosons are also collectively referred to as H_5 in the context of the GM model. Production and decays of the H_5 states depend on the two parameters m_{H_5} and s_2^H, where s_2^H characterizes the fraction of the W boson mass squared generated by the vacuum expectation value of the triplet fields. The H_5 states are fermiophobic and are assumed to decay to vector boson pairs with branching fraction of 100% [21]. Figure 1 shows representative Feynman diagrams for the production and decay of the charged Higgs bosons. There are additional charged Higgs bosons H^\pm predicted in the GM model that transform as a triplet under the SU(2)$_{L+R}$ symmetry. These H^\pm bosons have only fermionic couplings and are not considered here.

This paper presents a search for H^\pm and $H^{\pm\pm}$ that are produced via VBF and decay to WZ and $W^\pm W^\pm$ boson pairs, respectively, using proton–proton (pp) collisions at $\sqrt{s} = 13$ TeV. The data sample corresponds to an integrated luminosity of 137 ± 2 fb$^{-1}$ [22–24], collected with the CMS detector [25] in three separate LHC operating periods during 2016, 2017, and 2018. The three data sets are analyzed independently, with appropriate calibrations and corrections, to account for the various LHC running conditions and the performance of the CMS detector.
The $W^±W^±$ and WZ channels are simultaneously studied by performing a binned maximum-likelihood fit of distributions sensitive to these processes, following the methods described in Ref. [26]. The searches for $H^±$ and $H^{±±}$ are performed in the leptonic decay modes $W^±Z → ℓ^±\nu\ell'^±\nu'$ and $W^±W^± → ℓ^±\nu\ell'^±\nu'$, where $\ell, \ell' = e, \mu$. Candidate events contain either two identified leptons of the same charge or three identified charged leptons with the total charge of ±1, moderate missing transverse momentum (p_miss^T), and two jets with large values of $|\Delta n_{jj}|$ and m_{jj}.

Model independent upper limits at 95% confidence level (CL) are reported on the product of the cross section and branching fraction for vector boson fusion production of the $H^±$ and $H^{±±}$ bosons individually. The results are also interpreted in the context of the GM model including the simultaneous contributions of the $H^±$ and $H^{±±}$ bosons. Searches for charged Higgs bosons in these topologies have been performed by the CMS Collaboration at 13 TeV using the data sample collected during 2016 [27–29]. The ATLAS and CMS Collaborations have also set constraints on the GM model by performing searches for charged Higgs bosons in semileptonic final states at 8 TeV [30] and 13 TeV [31], respectively.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the hadron calorimeter, each composed of a barrel and two end-cap units. The barrel and endcap detectors up to $|\eta| < 5$. Muons are detected in gas-ionization chambers embedded in the steel magnetic flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system and the relevant kinematic variables, is reported in Ref. [25]. Events of interest are selected using a two-tiered trigger system [32]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of 4 μs. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage.

3 Signal and background simulation

Processes characterized by the presence of two gauge bosons in association with two forward jets are important to background contribution. The processes contributing to diboson plus two jets production that proceeds via the EW interaction are referred to as EW-induced diboson production, leading to tree-level contributions at $O(\alpha^4)$, where α is the EW coupling. Figure 2 shows representative Feynman diagrams of EW-induced diboson production involving quartic vertices. An additional contribution to the diboson plus two jets production arises via quantum chromodynamics (QCD) radiation, leading to tree-level contributions at $O(\alpha^2 \alpha_s^3)$, where α_s is the strong coupling. This class of processes is referred to as QCD-induced diboson production. Figure 3 shows representative Feynman diagrams of the QCD-induced production. The associated production of a Z boson and a single top quark, referred to as tZq production, is also an important background contribution. Additional background contributions arise from the $t\bar{t}$, tW, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}\gamma$, triple vector boson ($VVV, V = W, Z$), and double parton scattering processes.

Multiple Monte Carlo (MC) event generators are used to simulate the signal and background contributions. The signal and background processes are produced with on-shell particles. Three sets of simulated events for each process are needed to match the data taking conditions in the three years. The charged Higgs boson signal samples are simulated using MadGraph5_aMC@NLO 2.4.2 [33,34] at leading order (LO) accuracy. The predicted signal cross sections are taken at next-to-next-to-LO (NNLO) accuracy from the GM model [21].

The SM EW $W^±W^±$ and WZ processes, where both bosons decay leptonically, are simulated using MadGraph5_aMC@NLO at LO accuracy with six EW ($O(\alpha^6)$) and zero QCD vertices. The same generator is also
used to simulate the QCD-induced $W^\pm W^\pm$ process with four EW and two QCD vertices. Contributions with an initial-state b quark are excluded from the EW WZ simulation because they are considered part of the tZq background process. Triboson processes, where the WZ boson pair is accompanied by a third vector boson that decays into jets, are included in the EW WZ simulation. The QCD-induced WZ process is simulated at LO with up to three additional partons in the matrix element calculations using the MadGraph5_aMC@NLO generator with at least one QCD vertex at tree level. The different jet multiplicities are merged using the MLM scheme \[35\] to match matrix element and parton shower jets, and the inclusive contribution is normalized to NNLO predictions \[36\]. The interference between the EW and QCD diagrams is also accounted for with MadGraph5_aMC@NLO.

A complete set of NLO QCD and EW corrections for the leptonic $W^\pm W^\pm$ scattering process has been computed \[37,38\] and they reduce the LO cross section of the EW $W^\pm W^\pm$ process by 10–15%, with the correction increasing in magnitude with increasing dilepton and dijet invariant masses. Similarly, the NLO QCD and EW corrections for the leptonic WZ scattering process have been computed at the orders of $O(\alpha_S^6)$ and $O(\alpha^7)$ \[39\], reducing the cross sections for the EW WZ process by 10%. The SM EW $W^\pm W^\pm$ and WZ processes are normalized by applying these $O(\alpha_S^6)$ and $O(\alpha^7)$ corrections to MadGraph5_aMC@NLO LO cross sections.

The POWHEG v2 \[40–44\] generator is used to simulate the $t\bar{t}$, tW, ZZ, and $W^\pm W^\mp$ processes at NLO accuracy in QCD. Production of $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}\gamma$, and VVV events is simulated at NLO accuracy in QCD using the MadGraph5_aMC@NLO 2.2.2 (2.4.2) generator for the 2016 (2017 and 2018) samples. The tZq process is simulated in the four-flavor scheme using MadGraph5_aMC@NLO 2.3.3 at next-to-LO (NLO). Events in which two hard parton-parton interactions occur within a single pp collision, referred to as double parton scattering $W^\pm W^\pm$ production, are generated at LO using PYTHIA 8.226 (8.230) \[45\] for the 2016 (2017 and 2018) samples.

The NNPDF 2.3 LO \[46\] (NNPDF 3.1 NNLO \[47\]) PDFs are used for generating 2016 (2017 and 2018) signal samples. The NNPDF 3.0- NLO \[48\] (NNPDF 3.1 NNLO) PDFs are used for generating all 2016 (2017 and 2018) background samples. For all processes, the parton showering and hadronization are simulated using PYTHIA 8.226 (8.230) for 2016 (2017 and 2018). The modeling of the underlying event is done using the CUETP8M1 \[49,50\] (CPS \[51\]) tune for simulated samples corresponding to the 2016 (2017 and 2018) data.
All MC generated events are processed through a simulation of the CMS detector based on GEANT4 [52] and are reconstructed with the same algorithms used for data. The simulated samples include additional interactions in the same and neighboring bunch crossings, referred to as pileup. The additional inelastic events are generated using PYTHIA with the same underlying event tune as the main interaction and superimposed on the hard-scattering events. The distribution of the number of pileup interactions in the simulation is adjusted to match the one observed in the data. The average number of interactions per bunch crossing was 23 (32) in 2016 (2017 and 2018) corresponding to an inelastic pp cross-section of 69.2 mb.

4 Event reconstruction

The primary vertex (PV) is defined as the vertex with the largest value of summed physics-object p_T^2. The physics objects are the jets, clustered using the jet finding algorithm [53,54] with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the p_T of those jets.

The CMS particle-flow (PF) algorithm [55] is used to combine the information from the tracker, calorimeters, and muon systems to reconstruct and identify charged and neutral hadrons, photons, muons, and electrons (PF candidates). The missing transverse momentum vector p_T^{miss} is defined as the projection onto the plane perpendicular to the beam axis of the negative vector momentum sum of all reconstructed PF candidates in an event. Its magnitude is referred to as p_T^{miss}.

Jets are reconstructed by clustering PF candidates using the anti-k_T algorithm [53] with a distance parameter of 0.4. Additional proton–proton interactions within the same or nearby bunch crossings can contribute additional tracks and calorimetric energy depositions, increasing the apparent jet momentum. To mitigate this effect, tracks identified to be originating from pileup vertices are discarded and an off-set correction is applied to correct for remaining contributions [56]. Jet energy corrections are derived from simulation studies so that the average measured energy of jets becomes identical to that of particle level jets. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to determine any residual differences between the jet energy scale in data and in simulation, and appropriate corrections are made [57]. Corrections to jet energies to account for the detector response are propagated to p_T^{miss} [58]. Jets with transverse momentum $p_T > 30$ GeV and $|\eta| < 4.7$ are included in the analysis.

Events with at least one jet with $p_T > 20$ GeV and $|\eta| < 2.4$ that is consistent with the fragmentation of a bottom quark are rejected to reduce the number of top quark background events. The DEEPCSV btagging algorithm [59] is used for this selection. For the chosen working point, the efficiency of the algorithm to select bquark jets is about 72% and the rate for incorrectly tagging jets originating from the hadronization of gluons or u, d, s quarks is about 1%. The rate for incorrectly tagging jets originating from the hadronization of c quarks is about 10%.

Events with at least one reconstructed hadronic decay of a τ lepton, denoted as τ_h, with $p_T > 18$ GeV and $|\eta| < 2.3$, are rejected to reduce the contribution of diboson processes with τ_h decays. The τ_h decays are reconstructed using the hadrons-plus-strips algorithm [60].

Electrons and muons are reconstructed by associating a track reconstructed in the tracking detectors with either a cluster of energy deposits in the ECAL [61,62] or a track in the muon system [63]. Electrons (muons) must pass loose identification criteria with $p_T > 10$ GeV and $|\eta| < 2.5$ (2.4) to be selected for the analysis. At the final stage of the lepton selection, tight working points, following the definitions provided in Refs. [61–63], are chosen for the identification criteria, including requirements on the impact parameter of the candidates with respect to the PV and their isolation with respect to other particles in the event [64]. For electrons, the background contribution arising from charge misidentification is not negligible. The sign mismeasurement is evaluated using three observables that measure the electron curvature applying different methods as discussed in Ref. [61]. Requiring all three charge evaluations to agree reduces this background contribution by a factor of four (six) with an efficiency of about 97 (90)% in the barrel (endcap) region. The sign mismeasurement is negligible for muons [65,66].

5 Event selection

Collision events are collected using single-electron and single-muon triggers that require the presence of an isolated lepton with $p_T > 27$ and 24 GeV, respectively [67]. In addition, a set of dilepton triggers with lower p_T thresholds is used, ensuring a trigger efficiency above 99% for events that satisfy the subsequent offline selection [67].

Several selection requirements are used to isolate the $W^\pm W^\pm$ and WZ topologies defining the signal regions (SRs), while reducing the contributions from background processes [26]. Candidate events must contain exactly two isolated same-sign charged leptons or exactly three isolated charged leptons with $p_T > 10$ GeV, and at least two jets with $|\eta| < 4.7$ and the leading jet $p_T^{\text{jet1}} > 50$ GeV. To exclude the selected electrons and muons from the jet sample, the jets are required to be separated from the identified leptons by $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4$, where ϕ is the azimuthal angle in radians.
For the WZ candidate events, one of the oppositely charged same-flavor leptons from the Z boson candidate is required to have $p_T > 25 \text{ GeV}$ and the other $p_T > 10 \text{ GeV}$ with the invariant mass of the dilepton pair $m_{\ell \ell}$ satisfying $|m_{\ell \ell} - m_Z| < 15 \text{ GeV}$. For candidate events with three same-flavor leptons, the oppositely charged lepton pair with the invariant mass closest to the world-average Z boson mass m_Z [68] is selected as the Z boson candidate. The third lepton associated with the W boson is required to have $p_T > 20 \text{ GeV}$. In addition, the trilepton invariant mass $m_{\ell \ell \ell}$ is required to exceed 100 GeV to exclude a region where production of Z bosons with final-state photon radiation is expected to contribute.

One of the leptons in the same-sign $W^\pm W^\pm$ candidate events is required to have $p_T > 25 \text{ GeV}$ and the other $p_T > 20 \text{ GeV}$. The value of $m_{\ell \ell}$ must be greater than 20 GeV. Candidate events in the dielectron final state with $|m_{\ell \ell} - m_Z| < 15 \text{ GeV}$ are rejected to reduce the number of Z boson background events where the sign of one of the electron candidates is misidentified.

The VBF topology is targeted by requiring the two highest $p_T \ell \ell$ jets to have a mass $m_{jj} > 500 \text{ GeV}$ and a pseudorapidity separation $|\Delta \eta_{jj}| > 2.5$. The W and Z bosons in the VBF topologies are mostly produced in the central rapidity region with respect to the two selected jets. The candidate $W^\pm W^\pm$ (WZ) events are required to satisfy $\max(z_\ell^* < 0.75(1.0)$, where $z_\ell^* = |\eta^* - (\eta^1 + \eta^2)/2|/|\Delta \eta_{jj}|$ is the Zeppenfeld variable [69] for one of the selected leptons. Here η^* is the pseudorapidity of the lepton, and η^1 and η^2 are the pseudorapidities of the two candidates VBF jets.

The p_T^{miss} is required to exceed 30 GeV for both SRs. The selection requirements used to define the same-sign $W^\pm W^\pm$ and WZ SRs are summarized in Table 1.

Table 1

Variable	W$^\pm W^\pm$	WZ		
Leptons	2 leptons, $p_T > 25/20 \text{ GeV}$	3 leptons, $p_T > 25/10 \text{ GeV}$		
p_T^{ℓ}	>50/30 GeV	>50/30 GeV		
$	m_{\ell \ell} - m_Z	> 15 \text{ GeV}$	(ee)	<15 GeV
$m_{\ell \ell}$	>20 GeV	-		
m_{jj}	>500 GeV	>500 GeV		
$	\Delta \eta_{jj}	> 2.5$		2.5

The yield in this sample is extrapolated to the signal region using the efficiencies for such loosely identified leptons to pass the standard lepton selection criteria. This efficiency is calculated in a sample of events dominated by dijet production. An uncertainty of 20% is assigned for the nonprompt lepton background normalization to include possible differences in the composition of jets between the data sample used to derive these efficiencies and the data samples in the $W^\pm W^\pm$ and WZ SRs [64].

The background contribution from the electron sign mismeasurement is estimated from the simulation by applying a data-to-simulation efficiency correction due to electrons with sign mismeasurement. These corrections are determined using $Z \rightarrow ee$ events in the Z boson peak region that were recorded with independent triggers. These corrections amount to 40% for data collected in 2017 and 2018, while they are negligible for 2016 data. The electron sign mismeasurement rate is about 0.01 (0.3)% in the barrel (endcap) region [61, 62].

Three CRs are used to select nonprompt lepton, $t\bar{t}q$, and ZZ background-enriched events to further estimate the normalization of these background processes from data. The nonprompt lepton CR is defined by requiring the same selection as for the $W^\pm W^\pm$ SR, but with the bjet veto requirement inverted. The selected events are enriched in the nonprompt lepton background coming mostly from semileptonic $t\bar{t}$ events. Similarly, the $t\bar{t}q$ CR is defined by requiring the same selection as for the WZ SR, but with the bjet veto requirement inverted. The selected events are dominated by the $t\bar{t}q$ background process. Finally, the ZZ CR selects events with two opposite-sign same-flavor lepton pairs with the same VBS-like requirements. The three CRs are used
Fig. 4 The m_{jj} distributions after requiring the same selection as for the WW (upper) and WZ (lower) SRs, but with a requirement of $200 < m_{jj} < 500$ GeV. The predicted yields are shown with their best fit normalizations from the simultaneous fit (described in Sect. 7) for the background-only hypothesis i.e., assuming no contributions from the H$^\pm$ and H$^{\pm\pm}$ processes. Vertical bars on data points represent the statistical uncertainty in the data. The histograms for tVx backgrounds include the contributions from t\bar{t}V and tZq processes. The histograms for other backgrounds include the contributions from double parton scattering, VVV, and from oppositely charged dilepton final states from t\bar{t}, tW, W$^+$W$^-$, and Drell–Yan processes. The overflow is included in the last bin. The lower panels show the ratio of the number of events observed in data to that of the total SM prediction. The hatched gray bands represent the uncertainties in the predicted yields. The solid lines show the signal predictions for values of s_{H^\pm} = 1.0 and m_{H^\pm} = 500 GeV in the GM model.

7 Signal extraction

A binned maximum-likelihood fit is performed using the W$^\pm$W$^\pm$ and WZ SRs, and the nonprompt lepton, tZq, and ZZ CRs to discriminate between the signal and the remaining backgrounds. Signal contributions with electrons and muons produced in the decay of a τ lepton are included. The normalization factors for the tZq and ZZ background processes, affecting both the SRs and CRs, are included as free parameters in the maximum-likelihood fit together with the signal strength. The SM W$^\pm$W$^\pm$ (WZ) contribution is obtained from the sum of the EW W$^\pm$W$^\pm$ (WZ), QCD W$^\pm$W$^\pm$ (WZ), and the interference contributions according to the SM predictions [26] and allowed to vary within the uncertainties.

The diboson transverse mass (m_{VV}^T) is constructed from the four-momentum of the selected charged leptons and the p_T^{miss}. The four-momentum of the neutrino system is defined using the p_T^{miss}, assuming that the values of the longitudinal component of the momentum and the mass are zero. The value of m_{VV}^T, defined as

$$m_{VV}^T = \sqrt{\left(\sum_i E_i \right)^2 - \left(\sum_i p_{z,i} \right)^2},$$

where E_i and $p_{z,i}$ are the energies and longitudinal components of the momenta of the leptons and neutrino system from the decay of the gauge bosons in the event, is effective in discriminating between the resonant signal and nonresonant background processes. The value of m_{jj}^T is effective in discriminating between all non-VBS processes and the signal (plus EW VV) processes because VBF and VBS topologies typically exhibit large values for the dijet mass. A two-dimensional distribution is used in the fit for the W$^\pm$W$^\pm$ SR with 8 bins in m_{VV}^T ([0, 250, 350, 450, 550, 650, 850, 1050, ∞] GeV) and 4 bins in m_{jj}^T ([500, 800, 1200, 1800, ∞] GeV).
Similarly, a two-dimensional distribution is used in the fit for the WZ SR with 7 bins in $m_T^{\ell\ell}$ ([0, 325, 450, 550, 650, 850, 1350, ∞] GeV) and 2 bins in m_ℓ ([500, 1500, ∞] GeV). The m_ℓ distribution is used for the CRs in the fit with 4 bins ([500, 800, 1200, 1800, ∞] GeV).

A profile likelihood technique is used where systematic uncertainties are represented by nuisance parameters [71]. For each individual bin, a Poisson likelihood term describes the fluctuation of the data around the expected central value, which is given by the sum of the contributions from signal and background processes. The systematic uncertainties are treated as nuisance parameters and are profiled with the shape and normalization of each distribution varying within the respective uncertainties in the fit. The normalization uncertainties are treated as log-normal nuisance parameters. Correlation across bins is taken into account. The uncertainties affecting the shapes of the distributions are modeled in the fit as nuisance parameters with external Gaussian constraints. The dominant nuisance parameters are not significantly constrained by the data, i.e., the normalized nuisance parameter uncertainties are close to unity.

8 Systematic uncertainties

Several sources of systematic uncertainty are taken into account in the signal extraction procedure. For each source of uncertainty, the effects on the signal and background distributions are considered to be correlated.

The total Run 2 (2016–2018) integrated luminosity has an uncertainty of 1.8%, the improvement in precision relative to Refs. [22–24] reflecting the (uncorrelated) time evolution uncertainty of 1.8%, the improvement in precision relative to the data, i.e., assuming no contributions from the H and H^{++} processes, and including a charged Higgs boson signal for values of $s_H = 1.0$ and $m_H = 500$ GeV in the GM model. The impacts shown result from a fit to two simulated samples: background-only (first column, expected $\mu = 0$) and signal-plus-background (second column, expected $\mu = 1$) processes.

Source of uncertainty	$\Delta \mu_{\text{Background-only}}$	$\Delta \mu_{s_H = 1.0 \text{ and } m_H = 500 \text{ GeV}}$
Integrated luminosity	0.002	0.019
Pileup	0.001	0.001
Lepton measurement	0.003	0.033
Trigger	0.001	0.007
JES and JER	0.003	0.006
btagging	0.001	0.006
Nonprompt rate	0.002	0.002
W$^+$/W$^-/WZ$ rate	0.014	0.015
Other prompt background rate	0.002	0.015
Signal rate	–	0.064
Limited sample size	0.005	0.005
Total systematic	0.016	0.078
Statistical uncertainty	0.021	0.044
Total uncertainty	0.027	0.090

The theoretical uncertainties associated with the choice of the renormalization and factorization scales are estimated...
Fig. 5 The m_{jj} (upper left) and m_{WW}^T (upper right) distributions in the WW SR, and the m_{jj} (lower left) and m_{WZ}^T (lower right) distributions in the WZ SR for signal, backgrounds, and data. The predicted yields are shown with their best fit normalizations from the simultaneous fit for the background-only hypothesis, i.e., assuming no contributions from the $H^±$ and $H^{±±}$ processes. Vertical bars on data points represent the statistical uncertainty in the data. The histograms for tVx backgrounds include the contributions from $t\bar{t}V$ and tZq processes. The histograms for other backgrounds include the contributions from double parton scattering, VVV, and from oppositely charged dilepton final states from $t\bar{t}$, tW, W^+W^-, and Drell–Yan processes. The overflow is included in the last bin. The lower panels show the ratio of the number of events observed in data to that of the total SM prediction. The hatched gray bands represent the uncertainties in the predicted yields. The solid lines show the signal predictions for values of $s_{H^0} = 1.0$ and $m_{H^0} = 500$ GeV in the GM model by varying these scales independently up and down by a factor of two from their nominal values. The envelope of the resulting distributions, excluding the two extreme variations where one scale is varied up and the other one down, is taken as the uncertainty [76,77]. The variations of the PDF set and α_S are used to estimate the corresponding uncertainties in the yields of the signal and background processes, following Refs. [48,78]. The uncertainty in the yields due to missing higher-order EW corrections in the GM model is estimated to be 7% [21]. These theoretical uncertainties may affect both the estimated signal and background rates. The statistical uncertainties that are associated with the limited number of simulated events and data events used to estimate the non-prompt lepton background are also considered as systematic uncertainties.

A summary of the impact of the systematic uncertainties on the signal strength, μ, defined as the ratio of the observed charged Higgs signal yield to the expected yield,
is shown in Table 2 for the case of a background-only simulated data set, i.e., assuming no contributions from the H^\pm and $H^{\pm\pm}$ processes. Table 2 also shows systematic uncertainties including a charged Higgs boson signal for values of $s_H = 1.0$ and $m_H = 500$ GeV in the GM model. The impacts shown in Table 2 result from a fit to two simulated samples: background-only (first column, expected $\mu = 0$) and signal-plus-background (second column, expected $\mu = 1$). They differ from the impacts in percent on the expected signal and background yields given above, which are estimated before the fit. The total systematic uncertainty is smaller for the background-only simulated data set because the uncertainties partially cancel out between the SRs and the CRs for the background processes.

9 Results

The distributions of m_{jj} and m_T^{VV} in the WW and WZ SRs are shown in Fig. 5. The m_{jj} distributions in the WW and WZ SRs are shown with finer binning compared to the binning used in the two-dimensional distribution in the fit. Distributions for signal, backgrounds, and data for the bins used in the simultaneous fit are shown in Fig. 6. The data yields, together with the background expectations with the best fit normalizations for the background-only hypothesis, i.e., assuming no contributions from the H^\pm and $H^{\pm\pm}$ processes, are shown in Table 3. The product of kinematic acceptance and selection efficiency within the fiducial region for the $H^{\pm\pm} \to W^\pm W^\pm \to 2\ell 2\nu$ and $H^\pm \to WZ \to 3\ell \nu$ processes, as a function of $m_{H_{1s}}$, is shown in Fig. 7. The drop of selection efficiency for the $H^\pm \to WZ \to 3\ell \nu$ process for masses above 1000 GeV is coming from the lepton isolation requirement as the leptons from high-momentum Z boson decay are produced with a small angular separation.
The product of acceptance and selection efficiency within the fiducial region for the VBF \(H^{±±} \to W^±W^± \to 2ℓ2ν \) and \(H^± \to W^±Z \to 3ℓν \) processes, as a function of \(m_{H^±} \). The combination of the statistical and systematic uncertainties is shown. The theoretical uncertainties in the acceptance are also included.

No significant excess of events above the expectation from the SM background predictions is found. The 95% CL upper limits on the charged Higgs production cross sections are calculated using the modified frequentist approach with the CLs criterion [79,80] and asymptotic method for the test statistic [71,81].

Constraints on resonant charged Higgs boson production are derived. The exclusion limits on the product of the doubly charged Higgs boson cross section and branching fraction \(σ_{VBF}(H^{±±}) B(H^{±±} \to W^±W^±) \) at 95% CL as a function of \(m_{H^{±±}} \) are shown in Fig. 8 (upper left). The exclusion limits on the product of the charged Higgs boson cross section and branching fraction \(σ_{VBF}(H^±) B(H^± \to W^±Z) \) at 95% CL as a function of \(m_{H^±} \) are shown in Fig. 8 (upper right). The contributions of the \(H^± \) and \(H^{±±} \) boson signals are set to zero for the derivation of the individual exclusion limits on \(σ_{VBF}(H^{±±}) B(H^{±±} \to W^±W^±) \) and \(σ_{VBF}(H^±) B(H^± \to W^±Z) \), respectively. The results assume that the intrinsic width of the \(H^± \) (\(H^{±±} \)) boson is \(\lesssim 0.05 m_{H^±} \) (\(0.05 m_{H^{±±}} \)), which is below the experimental resolution in the phase space considered. The results are also interpreted in the context of the GM model including the simultaneous contributions of the \(H^± \) and \(H^{±±} \) bosons. The predicted cross sections of the \(H^± \) and \(H^{±±} \) bosons at NNLO accuracy in

Fig. 8: Expected and exclusion limits at 95% CL for \(σ_{VBF}(H^{±±}) B(H^{±±} \to W^±W^±) \) as functions of \(m_{H^{±±}} \) (upper left), for \(σ_{VBF}(H^±) B(H^± \to W^±Z) \) as functions of \(m_{H^±} \) (upper right), and for \(s_H \) as functions of \(m_{H^±} \) in the GM model (lower). The contribution of the \(H^± \) (\(H^{±±} \)) boson signal is set to zero for the derivation of the exclusion limits on the \(σ_{VBF}(H^{±±}) B(H^{±±} \to W^±W^±) \) (\(σ_{VBF}(H^±) B(H^± \to W^±Z) \)). The exclusion limits for \(s_H \) are shown up to \(m_{H^±} = 2000 \, \text{GeV} \), given the low sensitivity in the GM model for values above that mass. Values above the curves are excluded.
the GM model [21] are used for given GM parameter values of s_H and m_{H^0}. The excluded s_H values as a function of m_{H^0} are shown in Fig. 8 (lower). The blue shaded region shows the parameter space for which the H^0 total width exceeds 10% of $m(H^0)$, where the model is not applicable because of perturbativity and vacuum stability requirements [21]. For the probed parameter space and m_{T}^{VV} distribution used for signal extraction, the varying width as a function of s_H is assumed to have negligible effect on the result. The observed limit excludes s_H values greater than 0.20–0.35 for the m_{H^0} range from 200 to 1500 GeV. The limit improves the sensitivity of the previous CMS results at 13 TeV, where s_H values greater than about 0.4 and 0.5 are excluded using the lepton decay mode of the $\sigma_{VV}(H^\pm)B(H^{\pm}\rightarrow W^\pm W^\pm)$ [28] and $\sigma_{VV}(H^0)B(H^{0}\rightarrow WZ)$ [29] processes, respectively, for the m_{H^0} range from 200 to 1000 GeV. Tabulated results are available in the HepData database [82].

10 Summary

A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton–proton collisions at $\sqrt{s} = 13$ TeV at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector between 2016 and 2018. The search is performed in the leptonic decay modes $W^\pm W^\pm \rightarrow \ell^\pm \ell'^\pm \nu_\ell$ and $W^\pm Z \rightarrow \ell^\pm \ell'^\pm \nu_\ell \ell'^\mp$, where $\ell, \ell' = e, \mu$. The $W^\pm W^\pm$ and WZ channels are simultaneously studied by performing a binned maximum-likelihood fit using the transverse mass m_T distribution used for signal extraction, the varying width as a function of s_H is assumed to have negligible effect on the result. The observed limit excludes s_H values greater than 0.20–0.35 for the mass range from 200 to 1500 GeV. The results are interpreted in the Georgi-Machacek (GM) model for which the most stringent limits to date are derived. The observed 95% confidence level limits exclude GM s_H parameter values greater than 0.20–0.35 for the mass range from 200 to 1500 GeV.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centres for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Larus); LASI (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); MES (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (UK); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 765740, 724704, 752730, 765710 and 824093 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” be.h project n. 308201817; the Beijing Municipal Science and Technology Commission, No. Z1911000072191010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy EXC 2121 “Quantum Universe” – 390833006, and under project number 4001/0256 - GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Ministry of Science and Higher Education and the National Science Center, contract Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 0723-2020-0041 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDN-2015-509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advance Project (Thailand); the Kavlivi Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as written in its document “CMS data preservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2).]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
References

1. ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020. arXiv:1207.7214

2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012), https://doi.org/10.1016/j.physletb.2012.08.021. arXiv:1207.7235

3. CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at √s = 7 and 8 TeV. JHEP 06, 081 (2013). https://doi.org/10.1007/JHEP06(2013)081. arXiv:1303.4571

4. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964). https://doi.org/10.1103/PhysRevLett.13.321

5. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964). https://doi.org/10.1016/0031-9163(64)9136-9

6. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964). https://doi.org/10.1103/PhysRevLett.13.508

7. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964). https://doi.org/10.1103/PhysRevLett.13.585

8. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966). https://doi.org/10.1103/PhysRev.145.1156

9. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554 (1967). https://doi.org/10.1103/PhysRev.155.1554

10. T.D. Lee, A theory of spontaneous T violation. Phys. Rev. D 8, 1226 (1973). https://doi.org/10.1103/PhysRevD.8.1226

11. P. Fayet, A gauge theory of weak and electromagnetic interactions. Phys. Rev. D 22, 2860 (1980). https://doi.org/10.1103/PhysRevD.22.2860

12. N. Craig, S. Thomas, Exclusive signals of an extended Higgs sector. Phys. Rev. D 87, 095014 (2013). https://doi.org/10.1103/PhysRevD.87.095014. arXiv:1302.6505

13. N. Craig, S. Thomas, Exclusive signals of an extended Higgs sector. Phys. Rev. D 88, 035024 (2013). https://doi.org/10.1103/PhysRevD.88.035024. arXiv:1306.6228

14. C. Englert, E. Re, M. Spannowsky, Pinning down Higgs triplets at the LHC. Phys. Rev. D 88, 035024 (2013). https://doi.org/10.1103/PhysRevD.88.035024. arXiv:1306.6228

15. M. Zaro, H. Logan, Recommendations for the interpretation of LHC searches for H0, H±, and H±± in vector boson fusion with decays to vector boson pairs. CERN Report LHCHXSWG-2015-001 (2015)

16. T.P. Cheng, L.-F. Li, Neutrino masses, mixings, and oscillations in the seesaw mechanism. Phys. Rev. D 22, 2226 (1980). https://doi.org/10.1103/PhysRevD.22.2226

17. J. Schechter, J.W.F. Valle, Neutrino masses in SU(2)×SU(1) models of electroweak interactions. Phys. Rev. D 22, 2226 (1980). https://doi.org/10.1103/PhysRevD.22.2227

18. C. Englert, E. Re, M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC. Phys. Rev. D 87, 095014 (2013). https://doi.org/10.1103/PhysRevD.87.095014. arXiv:1302.6505

19. C. Englert, E. Re, M. Spannowsky, Pinning down Higgs triplets at the LHC. Phys. Rev. D 88, 035024 (2013). https://doi.org/10.1103/PhysRevD.88.035024. arXiv:1306.6228

20. H. Georgi, M. Machacek, Doubly charged Higgs bosons. Nucl. Phys. B 262, 463 (1985). https://doi.org/10.1016/0550-3213(85)90325-6

21. M. Grazzini, S. Kallweit, D. Rathlev, M. Wiesemann, W±Z production at hadron colliders in NNLO QCD. Phys. Lett. B

Funded by SCOAP3

For use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/
72. CMS Collaboration, Measurement of the inelastic proton-proton cross section at \(\sqrt{s} = 13 \) TeV. JHEP 07, 161 (2018). https://doi.org/10.1007/JHEP07(2018)161. arXiv:1802.02613

73. CMS Collaboration, Measurements of differential Z boson production cross sections in proton–proton collisions at \(\sqrt{s} = 13 \) TeV. JHEP 12, 061 (2019). https://doi.org/10.1007/JHEP12(2019)061. arXiv:1909.04113

74. CMS Collaboration, Performance of the CMS Level-1 trigger in proton–proton collisions at \(\sqrt{s} = 13 \) TeV. JINST 15, P10017 (2020). https://doi.org/10.1088/1748-0221/15/10/P10017. arXiv:2006.10165

CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. M. Sirunyan†, A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam (1), J. W. Andrejekovic, T. Bergauer, S. Chatterjee, M. Dragicic (2), A. Escalante Del Valle (1), R. Frühwirth (1), M. Jeitler (1), N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F. M. Pitters, J. Schieck (1), R. Schöfbeck (1), M. Spanring, S. Templ, W. Waltenberger (1), C.-E. Wulz (1)

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

University of Antwerp, Antwerp, Belgium
M. R. Darwish (2), E. A. De Wolf, X. Janssen (1), T. Kello (1), A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte, N. Van Remortel (1)

Vrije Universiteit Brussel, Brussels, Belgium
F. Blekman (2), E. S. Bols (2), J. D’Hondt (2), J. De Clercq (2), M. Delcourt, H. El Faham, S. Lowette (2), S. Moortgat (1), A. Morton (1), D. Müller (1), A. R. Sahasransu (1), S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Brussels, Belgium
D. Beghin, B. Bilin (2), B. Clerbaux (2), G. De Lentdecker, L. Favart (2), A. Grebenyuk, A. K. Kalsi (1), K. Lee, M. Mahdavikhorrami, I. Makarenko (1), L. Moureaux, L. Pétré, A. Popov (1), N. Postiau, E. Starling (1), L. Thomas (2), M. Vanden Bemden, C. Vander Velde (1), P. Vanlaer (1), D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis (2), D. Dobur, J. Knolle (1), L. Lambrecht, G. Mestdach, M. Niedziela, C. Roskas, A. Samalan, K. Skovpen (2), M. Tytgat (1), W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Bethani (2), G. Bruno, F. Bury, C. Caputo (1), P. David (1), C. Delaere (2), I. S. Donertas, A. Giammanco (1), K. Jaffel, S. Jain (2), V. Lemaître, K. Mondal, J. Prisciandaro, A. Talierno (1), M. Teklishyn, T. T. Tran, P. Vischia (1), S. Wertz (2), S. Wuyckens

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G. A. Alves (1), C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. L. Aldá Júnior (2), M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandao Malbouisson, W. Carvalho (2),
Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, S. Bhattacharya, A. A. Bin Anuar, K. Borras, V. Botta, D. Brunner, A. Campbell, A. Cardini, C. Cheng, F. Colombina, S. Consuegra Rodríguez, G. Correia Silva, V. Danilov, L. Didukh, G. Eckerlin, D. Eckstein, L. I. Esteve Baton, O. Filatov, E. Gallo, A. Geiser, A. Giraldi, A. Grohsejahn, M. Guthoff, A. Jafari, N. Z. Jomhari, H. Jung, A. Kasem, M. Kasemann, H. Kaveh, C. Kleinwort, D. Krücker, W. Lange, J. Lidrych, K. Lipka, W. Lohmann, R. Mankel, J. Metwally, A. B. Meyer, M. Meyer, J. Mnich, A. Mussgiller, Y. Otarid, D. Pérez Adán, D. Pitzl, A. Raspereza, B. Ribeiro Lopes, J. Rübenach, A. Saggio, A. Saibel, M. Savitskyi, M. Scham, V. Schuehrer, C. Schwanenberg, A. Singh, R. E. Sosa Ricardo, D. Stafford, N. Tonon, O. Turkot, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, L. Wiens, C. Wissing, S. Wuchterl

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Albrecht, S. Bein, L. Benato, A. Benecke, P. Connor, K. De Leo, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmann, G. Kasieczka, R. Klanner, R. Kogler, T. Kramer, V. Kutzner, J. Lange, T. Lange, A. Lobanov, A. Malara, A. Nigamova, K. J. Pena Rodriguez, O. Rieger, P. Schleper, M. Schröder, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, A. Tews, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, R. El Mosabir, N. Faltermann, M. Giffels, J. O. Gosewisch, A. Gottmann, F. Hartmann, C. Heidecker, U. Husemann, I. Katkov, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, T. Müller, M. Neukum, A. Nürnberg, G. Quast, K. Rabbertz, J. Rauser, D. Savoiu, M. Schnepf, D. Seith, I. Shvetsov, H. J. Simonis, R. Ulrich, J. Van Der Linden, R. F. Von Cube, M. Wassmer, M. Weber, S. Wieland, R. Wolf, S. Wozniowski, S. Wunsch

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C. K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, E. Tziaferi, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouri, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, T. Geralis, A. Kyriakis, D. Loukas, A. Stakia

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, K. Farkas, M. M. A. Gadallah, S. Lökös, P. Major, K. Mandal, A. Mehta, G. Pasztor, A. J. Rédl, O. Surányi, G. I. Veres

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z. L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
J. R. Komaragiri, D. Kumar, L. Panwar, P. C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D. Dash, C. Kar, P. Mal, T. Mishra, V. K. Muraleedharan Nair Bindhu, A. Nayak, P. Saha, N. Sur, S. K. Swain, D. Vals

Springer
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D. H. Moon

Hanyang University, Seoul, Korea
B. Francois, T. J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, B. Hong, K. Lee, K. S. Lee, J. Lim, J. Park, S. K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H. S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J. H. Bhyn, J. Choi, S. Jeon, J. Kim, J. S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B. H. Oh, M. Oh, S. B. Oh, H. Seo, U. K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D. Jeon, D. Y. Kang, Y. Kang, J. H. Kim, S. Kim, B. Ko, J. S. H. Lee, Y. Lee, I. C. Park, Y. Roh, M. S. Ryu, D. Song, I. J. Watson, S. Yang

Department of Physics, Yonsei University, Seoul, Korea
S. Ha, H. D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, Y. Jeong, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
V. Veckals

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, W. A. T. Wan Abdullah, M. N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J. F. Benitez, A. Castaneda Hernandez, M. Leon Coello, J. A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C. A. Mondragon Herrera, D. A. Perez Navarro, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H. A. Salazar Ibarra, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P. H. Butler
Fermi National Accelerator Laboratory, Batavia, USA
M. Albrow, M. Alyari, G. Apollinari, A. Apyan, S. Banerjee, L. A. T. Bauerdick, D. Berry, J. Berryhill, P. C. Bhat, K. Burkett, J. N. Butler, A. Canepa, G. B. Cerati, H. W. K. Cheung, F. Chlebana, M. Cremonesi, K. F. Di Pietrillo, V. D. Elvira, Y. Feng, J. Freeman, Z. Gece, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R. M. Harris, R. Heller, T. C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Jothi, T. Klijnsma, B. Klima, K. H. M. Kwok, S. Lammel, D. Lincoln, R. Lipton, T. Liu, C. Madrid, K. Maeshima, C. Mantilla, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W. J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, H. A. Weber

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R. D. Field, D. Guerreroro, B. M. Joshi, M. Kim, E. Koenig, J. Konigsberg, A. Korytov, K. H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, A. Muthirakalayil Madhu, N. Rawal, D. Rosenzweig, S. Rosenzweig, K. Shi, J. Sturdy, J. Wang, E. Yigitbasi, X. Zuo

Florida State University, Tallahassee, USA
T. Adams, A. Askew, R. Habibullah, V. Hagopian, K. F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M. M. Baarmand, S. Butalla, T. Elkahrawy, M. Hohlmann, R. Kumar Verma, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M. R. Adams, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C. E. Gerber, D. A. Hangal, D. J. Hofman, A. H. Merrit, C. Mills, G. Oh, T. Roy, S. Rudrabhatla, M. B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu, Z. Ye

The University of Iowa, Iowa City, USA
M. Alhusseini, K. Dilsiz, R. P. Gandrakula, O. K. Köseyan, J.-P. Merlo, A. Mestvirishvili, J. Nachtman, H. Ogul, Y. Onel, A. Penzo, C. Snyder, E. Tiras

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, J. Davis, M. Eminizer, A. V. Gritsan, S. Kyriacou, P. Maksimovic, J. Roskes, M. Swartz, T. Á. Vámi

The University of Kansas, Lawrence, USA
A. Abreu, J. Anguiano, C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Lazarovits, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickell, C. Rogan, C. Royon, R. Salvatico, S. Sanders, E. Schmitz, C. Smith, J. D. Tapia Takaki, Q. Wang, Z. Warner, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S. C. Eno, N. J. Hadley, S. Jabeen, R. G. Kellogg, T. Koeth, A. C. Mignerey, S. Nabili, M. Seidel, A. Skuja, L. Wang, K. Wong
23: Also at Brandenburg University of Technology, Cottbus, Germany
24: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
25: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
26: Also at Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
27: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
28: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
29: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
30: Also at Wigner Research Centre for Physics, Budapest, Hungary
31: Also at IIT Bhubaneswar, Bhubaneswar, India
32: Also at Institute of Physics, Bhubaneswar, India
33: Also at G.H.G. Khalsa College, Punjab, India
34: Also at Shoolini University, Solan, India
35: Also at University of Hyderabad, Hyderabad, India
36: Also at University of Visva-Bharati, Santiniketan, India
37: Also at Indian Institute of Technology (IIT), Mumbai, India
38: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
39: Also at Sharif University of Technology, Tehran, Iran
40: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
41: Now at INFN Sezione di Baria, Università di Barib, Politecnico di Baric, Bari, Italy
42: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
43: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
44: Also at Università di Napoli ‘Federico II’, Naples, Italy
45: Also at Riga Technical University, Riga, Latvia
46: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
47: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
48: Also at Institute for Nuclear Research, Moscow, Russia
49: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
50: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
51: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
52: Also at University of Florida, Gainesville, USA
53: Also at Imperial College, London, UK
54: Also at Moscow Institute of Physics and Technology, Moscow, Russia
55: Also at P.N. Lebedev Physical Institute, Moscow, Russia
56: Also at California Institute of Technology, Pasadena, USA
57: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
58: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
59: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
60: Also at INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy
61: Also at National and Kapodistrian University of Athens, Athens, Greece
62: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
63: Also at Universität Zürich, Zurich, Switzerland
64: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
65: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
66: Also at Şırnak University, Şırnak, Turkey
67: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
68: Also at Konya Technical University, Konya, Turkey
69: Also at Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
70: Also at Piri Reis University, Istanbul, Turkey
71: Also at Adiyaman University, Adiyaman, Turkey
72: Also at Ozyegin University, Istanbul, Turkey
73: Also at Izmir Institute of Technology, Izmir, Turkey
74: Also at Necmettin Erbakan University, Konya, Turkey
75: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
76: Also at Marmara University, Istanbul, Turkey
77: Also at Milli Savunma University, Istanbul, Turkey
78: Also at Kafkas University, Kars, Turkey
79: Also at Istanbul Bilgi University, Istanbul, Turkey
80: Also at Hacettepe University, Ankara, Turkey
81: Also at Vrije Universiteit Brussel, Brussels, Belgium
82: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
83: Also at IPPP Durham University, Durham, UK
84: Also at Faculty of Science, Monash University, Clayton, Australia
85: Also at Università di Torino, Turin, Italy
86: Also at Bethel University, St. Paul, Minneapolis, USA
87: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
88: Also at Ain Shams University, Cairo, Egypt
89: Also at Bingol University, Bingol, Turkey
90: Also at Georgian Technical University, Tbilisi, Georgia
91: Also at Sinop University, Sinop, Turkey
92: Also at Erciyes University, Kayseri, Turkey
93: Also at Texas A&M University at Qatar, Doha, Qatar
94: Also at Kyungpook National University, Daegu, Korea