Signal acquisition and analysis of ambulatory electromyographic recordings for the assessment of sleep bruxism: A scoping review

Magdalini Thymi1 | Frank Lobbezoo1 | Ghizlane Aarab1 | Jari Ahlberg2 | Kazuyoshi Baba3 | Maria Clotilde Carra4 | Luigi M. Gallo5 | Antoon De Laat6,7,8 | Daniele Manfredini9 | Gilles Lavigne10,11 | Peter Svensson12,13

1Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
3Department of Prosthodontics, Showa University School of Dentistry, Ohta-ku, Japan
4UFR of Odontology Garanciere, Université de Paris and Service of Odontology, Rothschild Hospital (AP-HP), Paris, France
5Clinic of Masticatory Disorders, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
6Department of Oral Health Sciences, Leuven, Belgium
7Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
8Department of Dentistry, University Hospital, Leuven, Belgium
9Department of Biomedical Technologies, School of Dentistry, University of Siena, Siena, Italy
10Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada
11CIUSSS Nord Île de Montreal, Center for Advance Research in Sleep Medicine & Stomatology, CHUM, Montreal, QC, Canada
12Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus Universitet Tandlæge skolen, Aarhus, Denmark
13Faculty of Odontology, Malmö University, Malmö, Sweden

Abstract

Background: Ambulatory electromyographic (EMG) devices are increasingly being used in sleep bruxism studies. EMG signal acquisition, analysis and scoring methods vary between studies. This may impact comparability of studies and the assessment of sleep bruxism in patients.

Objectives: (a) To provide an overview of EMG signal acquisition and analysis methods of recordings from limited-channel ambulatory EMG devices for the assessment of sleep bruxism; and (b) to provide an overview of outcome measures used in sleep bruxism literature utilising such devices.

Method: A scoping review of the literature was performed. Online databases PubMed and Semantics Scholar were searched for studies published in English until 7 October 2020. Data on five categories were extracted: recording hardware, recording logistics, signal acquisition, signal analysis, and sleep bruxism outcomes.

Results: Seventy-eight studies were included, published between 1977 and 2020. Recording hardware was generally well described. Reports of participant instructions in device handling and of dealing with failed recordings were often lacking. Basic elements of signal acquisition, for example amplification factors, impedance and bandpass settings, and signal analysis, for example rectification, signal processing and additional filtering, were underreported. Extensive variability was found for thresholds used to characterise sleep bruxism events. Sleep bruxism outcomes varied, but typically represented frequency, duration and/or intensity of masticatory muscle activity (MMA).

Conclusion: Adequate and standardised reporting of recording procedures is highly recommended. In future studies utilising ambulatory EMG devices, the focus may need to shift from the concept of scoring sleep bruxism events to that of scoring the whole spectrum of MMA.
1 INTRODUCTION

Sleep bruxism is accompanied by masticatory muscle activity (MMA) during sleep, and its definition has received much attention over the years.1 The most recent definition states that sleep bruxism is a masticatory muscle activity that is characterised as rhythmic (phasic) or non-rhythmic (tonic) muscle contractions.2 The term ‘rhythmic’ has extensively been used in the past to indicate MMA during sleep that is characterised by a repetitive pattern.3-6 Rhythmic masticatory muscle activity (RMMA) has been considered the cardinal feature of sleep bruxism on electromyographic (EMG) traces derived from polysomnographic audio-video (PSG-AV) sleep laboratory studies.3-5 In such studies, RMMA is distinguished from other types of MMA, more specifically from oro-facial activities (OFA; ie MMAs without characteristic patterns, such as swallowing, yawning and coughing) and from oro-motor activities (OMA; ie MMAs that are part of major movements, including head, neck or body movements).3,7,8 Currently, sleep bruxism research is shifting towards adopting the more general term MMA, instead of RMMA.9,10 This shift is driven by technical advancements and accumulating evidence in the field of ambulatory EMG devices that are increasingly being used in sleep bruxism studies (eg11-15). Their development is evolving, for example in terms of reduced size14,15 and compatibility with other technologies, such as smartphone applications.15 They allow for assessment in the whole spectrum of MMA, but are less able to discriminate between RMMA, OMA and OFA, compared to PSG-AV.3 Indeed, ambulatory EMG devices are known to overestimate sleep bruxism activity, compared to the gold standard, viz. PSG-AV recordings.16 However, they have obvious benefits compared to PSG-AV, regarding costs and simplicity, and are therefore more pragmatic and important alternatives for the study of sleep bruxism on a larger scale.17 Most importantly though, the shift towards assessment of the whole spectrum of MMA, instead of the more restricted RMMA, is driven by its clinical relevance.9 It is plausible that clinical health outcomes, for example masticatory muscle pain, are related to EMG outcomes including, but not limited to, RMMA. Features of MMA, such as background EMG activity,18 intensity and timing,19,20 amplitude of activity21 and variability of activity over time,22 have been studied in relation to musculoskeletal signs and symptoms (for a comprehensive overview, see23). The importance of addressing the continuum of MMA in order to understand its relation to specific clinical outcomes has been discussed extensively in previous publications.2,9,10,24,25

Instrumental, assessment of MMA with the use of EMG, with or without positive self-report and/or positive clinical inspection is needed to establish a ‘definite’ sleep bruxism diagnosis, according to the current bruxism diagnostic grading system.2,10 The choice of criteria to score sleep bruxism on EMG recordings is a matter of ongoing discussion and research.2,9

EMG recordings can be derived from attended or unattended (ie type 1 or type 2), PSG recordings, as well as limited-channel, portable (ie type 3 and 4) EMG recordings26-28 (Table 1). Once acquired, the EMG signal is scored to provide outcomes of MMA.

EMG bursts are widely used as the basic elements of sleep bruxism outcome measures.29 Various thresholds above which EMG activity is defined as a bruxism-related burst have been used in literature, such as percentages of the maximum voluntary contraction (MVC) level,11,29-32 multiplications of the baseline EMG activity31-36 and recognition of a specific EMG pattern.27 It is conceivable that the use of different thresholds for the assessment of the same EMG recording will lead to differences in the scoring of sleep bruxism outcomes, thus rendering comparison of studies difficult, if not impossible. Moreover, it may be hypothesised that the assessment of sleep bruxism in the clinic is

Type	Description26,27	Examplesa
Type 1	Full attended polysomnography (≥7 channels) in a laboratory setting	Bruxoff (3 channels: 2 for bilateral masseter, 1 for ECG) TEAC-HR-10 J (3 channels: 1 for masseter, 1 respiratory, 1 for ECG) Myomonitor (4 channels: 2 for bilateral masseter, 2 for bilateral temporalis)
Type 2	Full unattended polysomnography (≥7 channels)	
Type 3	Limited-channel devices (usually 4–7 channels)	Pro-comp INFINITI (2 channels: 1 for masseter, 1 for ECG) EMG-021/025, KTR2302B (2 channels for bilateral masseter) Grindcare (1 channel for temporalis)
Type 4	1–2 channels	

Abbreviation: ECG, electrocardiography.

aExamples of electromyographic recorders included in this review.
impacted, since a patient may receive a different sleep bruxism diagnosis, depending on the threshold used to score an EMG recording. After being scored, EMG bursts may be used to construct other measures of sleep bruxism events, such as sleep bruxism episodes. To this end, the criteria from Reding, which were adapted by Ware and Rugh, and proposed as sleep bruxism criteria by Lavigne et al (hereafter referred to as SB/research criteria) are currently widely used to define three types of episodes: phasic, tonic and mixed. These criteria are based on EMG recordings as a part of PSG-AV sleep laboratory assessments and have been transferred and used for the scoring of ambulatory EMG signals (eg), despite concerns regarding the validity of using these criteria in the absence of audiovisual recordings. Furthermore, indices consisting of the number of EMG bursts or episodes per hour of sleep are commonly calculated. These criteria are not always the case. To this end, it has been recommended that studies adequately report the technical aspects of EMG recordings, and the technical aspects of these studies are lacking. Ideally, ambulatory EMG devices should allow for an accurate and uniform way to acquire EMG recordings and score EMG features of sleep bruxism in the natural environment of individuals. As a first step towards this goal, this paper was designed: (a) to provide an overview of EMG signal acquisition and analysis methods of recordings from type 4 ambulatory EMG devices for the assessment of sleep bruxism; and (b) to provide an overview of outcome measures used so far in sleep bruxism literature utilising such ambulatory EMG devices. The ultimate goal of this study is to provide information that can facilitate further development of a standardised tool for the assessment of sleep bruxism, including protocols for recording, data acquisition and scoring that should be ideally applicable to all devices eventually used to study sleep bruxism. This would facilitate comparability of studies in the research setting, and the development and application of proper devices for use in clinical settings.

2 MATERIALS AND METHODS

A scoping review of the literature was performed. Scoping reviews are specific types of reviews that allow structured mapping of evidence on a broad research question, and identification of gaps in existing literature. They can also be used to identify the potential scope of a subsequent systematic review. Scoping reviews differ from systematic reviews mainly in that they provide an overview of all existing literature on a particular topic, without quality assessment of the data. To be suitable for inclusion in this scoping review, a study should fulfil the following criteria: (1) clinical study with the use of an ambulatory type 3 or 4 EMG recorder for the assessment of sleep bruxism, and (2) reports sleep bruxism outcomes. Only studies that reported data were included, viz. publications of study protocols, were excluded. Studies with type 1 or 2 devices were also excluded. Online databases PubMed and Semantics Scholar were searched for studies published in English
until 7 October 2020. Search terms and the inclusion flowchart are presented in Figure 1. Risk of bias assessment was not applicable for this review, since the aim was to provide a comprehensive overview of all signal acquisition and scoring methods in the sleep bruxism literature. Data from the included studies were extracted into a worksheet. Table 2 provides an overview of the assessed variables. The search and inclusion procedures as well as data extraction were performed by one author (MT). When authors

Table 2: Extracted variables from included studies

Category	Variable	Description of what was assessed
General study information	First author, year, journal	First author, year, journal
	Study type	For example, cross-sectional, case-control
Population		Adults/children
Recording hardware	Description of EMG device	Authors’ description of type of EMG device
	Commercial name of EMG device	Commercial name, description and/or manufacturer of EMG device
	Electrode type	Description of electrode
	Wireless electrode	Yes/no
	Number of channels	Number and site of channels
	Muscles	Which masticatory muscles were used for signal acquisition
	Picture of device	Present in publication; yes/no
	Use of additional instrumental methods to assess bruxism	For example, electrocardiographic activity, audiovisual recordings
	Number of recording nights (not including the adaptation night)	Total number and, if applicable, number of recording sets (eg within 3 weeks, 3 sets of 4 recording nights)
	Adaptation night before scoring	Yes/no
	Setting	Home/sleep laboratory
	Participant instructions device and electrode handling	How were participants instructed on using the device and handling the electrode
	Participant instructions device set-up	If applicable, how were participants instructed to set-up the device (eg performing MVC)
	Electrode placement	By participant of investigator
	How are failures dealt with	Which action followed if acquisition of the recording failed
Signal acquisition	Amplification factor	How many times was the signal amplified
	Impedance measurement	What data are provided on amplifier input and/or skin impedance
	Bandpass settings	What was the frequency range of the signal acquisition
	Notch filter	Frequency of additional notch filter
	A/D resolution	What was the resolution of the A/D converter
	Sampling rate	At which frequency was the signal sampled
Signal analysis	Device output	Raw EMG signal/scored activity (viz. activity which was scored after automatic analysis of the EMG signal inside the EMG device)
	Definition of analysis time	Which part of the signal was analysed
	EMG scoring software	Commercial name
	Rectification	Was the signal rectified
	Processing	Was the signal further processed, if yes, how
	Additional filtering	Was there any additional filtering performed in the analysis process
	Threshold for EMG scoring	Which threshold was used to score EMG events
	Definition of event	How was an event defined
Sleep bruxism outcomes	Use of RMMA term as outcome variable	Yes/no
	Diagnosis of ‘sleep bruxer’ through cut-off criteria	Were cut-off criteria used to define a bruxer, and if so, which
	Reported outcomes	Which sleep bruxism outcomes are reported

Abbreviations: A/D, analog-to-digital; EMG, electromyographic; MVC, maximum voluntary contraction.
referred to another study, and the relevant information could indeed be found in the other study, it is reported as ‘refers to other’. It was not the purpose of the review to provide a thorough description of all technical specifications of EMG recordings, but rather, to limit itself to the reported items of the International Society of Electrophysiology and Kinesiology (ISEK).45

3 RESULTS

3.1 General study information

Seventy-eight studies were included in this review (Figure 1). They were published between 1977 and 2020, with almost half (56%) having been published from the year 2013 on. Seventy-six studies included adult populations. Study type characteristics are presented in Table 3.

3.2 Recording hardware

Various terms were used to describe the ambulatory EMG recorders, the most common being ‘portable EMG device’ 32,37,52-57 (n = 8; 10%), followed by ‘portable EMG recorder’ 58-61 and ‘portable single-channel EMG device’ 33,62-64 (for each n = 4; 5%). All but two 59,65 studies provided a description of the devices’ components and/or information on their commercial names and/or manufacturers. Devices used more commonly were the ‘Grindcare’ in different versions 22,31,37,52,56,57,61-64,66-70 (n = 15; 19%), followed by the ‘Bitestrip’ 13,71-81 (n = 12; 15%), and the ‘Bruxoff’ 20,82-89 (n = 9; 12%) device (see online Appendix for overview). Pictures of devices were provided in 18 (23%) of the studies.11,12,14,19,37,55,58,59,66-80,90-94

Eleven studies used additional instrumental methods to assess sleep bruxism, viz. audio recordings 54 (n = 1), video recordings 75 (n = 1), audiovisual recordings 56,97 (n = 2) and electrocardiographic (ECG) activity 82-87,92,98 (n = 8, 10%).

Most studies (n = 44; 57%) utilised a single-channel assembly,13,14,22,31,37,39,52,56,57,60-64,66-81,90,91,95-97 and two and three channels were utilised in 13 (17%) 11,12,32,33,52,59-92,94-108 and 15 (19%) 19,30,82-88,98,112-116 studies, respectively, while two 53,117 studies used a four-channel assembly (see online appendix for specifications of channel assemblies). The most prevalent recording site was the masseter muscle in 45 (58%) studies, 11-14,30,32,33,39,54,65,72-88,90-92,94,98-111,117-118 followed by the temporalis muscle in 21 (27%) studies, 15,22,31,37,52,56,57-60,64,66,67-69,71,93,95-97 and both muscles in 10 studies.19,30,53,59,112-117 One study 119 did not provide details on the recording site, but referred to another publication instead.

Electrodes connected to the devices through wires were used in 52 (67%) studies, 11,12,19,22,30-33,39,53,54,56,57,59-70,82-88,92-100,102,105-112,117,118 while 17 (22%) studies 13,14,37,52,55,71-76,78-81,90,91 utilised wireless electrodes (see online appendix for overview of electrode descriptions). Four studies 101,113,116,119 did not describe the type of electrode, but referred the reader to another publication with description.

Study type	n	First author & year
Algorithm development/cross-sectional	2	Čadová 2014, Ikeda 1996
Before-after interventional	9	Castro Mattia 2018, Clark 1981, Kardachi 1977, Manfredini 2018, Needham 2013, Raphael 2013, Rugh 1981, Saueressig 2010, Zhou 2016
Case-control	18	Ahlberg 2008, Camara-Souza 2018, Iwasaki 2015, Jonsgar 2015, Kato 2018, Minakuchi 2014, Miyawaki 2003, Mude 2017, Nitschke 2011, Ohlmann 2018, Ono 2008, Palinkas 2019, Schmitter 2015, Shedden Mora 2012, Suganuma 2007, Wei 2017, Yachida 2012
Controlled interventional	2	Rugh 1984 & 1989
Cross-sectional	19	Baba 2005, Clarke 1984 & 1984, Hammoudi 2019, Khawaja 2015, Manfredini 2011, 2016 & 2019, Matsuda 2016, Minakuchi 2016, Miyawaki 2004, Mizumori 2013, Murakami 2014, Nagamatsu-Sakaguchi 2017, Ohlmann 2020, Po 2013, Takaoka 2017, Thymi 2019, Yamaguchi 2012
Device development/case report	1	Yamaguchi 2018
Device development/cross-sectional	2	Haketa 2003, Stock 1983
Device development/case-control	1	Sakagami 2002
Diagnostic validity	7	Castroflorio 2014 & 2015, Gallo 1997, Maeta 2019, Mainieri 2012, Shochat 2007, Stuginski-Parbosa 2015
Epidemiological	2	Gallo 1999, Minakuchi 2012
Prospective cohort	1	Thymi 2020
Randomised controlled trial	13	Abekura 2008, Baad-Hansen 2007, Carvalho Bortoletto 2016, Conti 2014, Harada 2006, Jadidi 2008 & 2013, Lee 2010, Matsumoto 2015, Mohamed 1997, Saito-Murakami 2020, Shedden Mora 2013, Shimada 2019
Reliability	1	Deregibus 2014

Abbreviation: n, number of studies.
3.3 | Recording logistics

Twenty-five (32%) studies\(^{12,14,19,23,33,54,56,73,78-80,82,83,85,88,90-92,94,96,97,99,100,105,108,117}\) based their analyses on single-night recordings, and two studies did not clearly describe the number of recordings,\(^{76,115}\) while all other studies (n = 51; 65%)\(^{11,13,15,19,22,31,32,37,39,52,53,57,59-67,69-72,74,75,77,84,86,87,89,93,95,98,101-104,106,107,109-114,116,118,119}\) performed multiple night recordings, with a maximum of 70 recordings per participant\(^{67}\) (see online appendix for overview of the number of recording nights per study). An adaptation night prior to scoring, that is a recording night which allowed participants to get accustomed to the recording procedure, the data of which were not used for further analyses, was performed in 17 (22%) of the studies.\(^{9,11,30,32,39,54,92,93,95,99,107}\) In the vast majority (n = 63; 82%) of studies, recordings were performed at the home setting.\(^{11-14,19,22,30-32,37,39,52-54,56,57,59-64,66-70,72-77,79,82-88,91,94,96-98,100-102,106-110,117,119}\) With four studies situated in a laboratory,\(^{33,78,80,90}\) and 11 studies not clearly describing the setting.\(^{71,81,89,95,99,105,111-114,116}\) Placement of the electrode on the skin was performed by participants themselves in almost half of studies (n = 40; 52%)\(^{11-14,19,22,31,37,59,60,63-66,69-71,73-76,82,84,88-92,94,96-102,104,106,109,118}\) in one study on children, the electrode was placed by the caregiver,\(^{73}\) while in six studies the procedure was performed by the study investigators.\(^{72,94,100,101,110,117}\) The description of who placed the electrode was unclear for 29 (37%) studies,\(^{30,32,61,62,72,77,81,83-85,87,89,91,95,99,108,111-116}\) while two studies referred to another publication for a description.\(^{9,119}\)

Over half of the studies (n = 44; 56%)\(^{11-14,19,22,30,31,37,39,52,53,56,59,60,63-66,69-71,73-76,80,82,84,87,92-95,102,105,107,109,110,114,117,119}\) reported that instructions were given to participants on how to handle the device and/or its components. Reports varied from brief statements, for example ‘subjects received instruction on how to handle the device as well as the placement of the electrodes’,\(^{39}\) to more detailed descriptions, for example ‘participants were … instructed in its usage in a home environment using a mirror and an instructor manual over 15 min by two trained instructors’.\(^{76}\) Thirty-two studies (41%)\(^{30,32,57,61,62,67,72,77-81,83,85-87,89-91,95,99,103,104,106,108,111,115}\) did not describe whether participants were given instructions on device handling, while for five studies\(^{33,54,100,110,117}\) this information was not applicable, since the devices were mounted by the study investigators. As for set-up procedures, for example performing an MVC at the start of the recording, these were described for 37 (47%) of the studies.\(^{11,14,22,30,31,37,39,52-54,56,61,62,67,69,73,77,78,80-84,90,91,95,96,98,100,101,107,111,117}\) while the remaining 41 (53%) studies did not describe such procedures.

Certain actions were reported in case a recording failed; that is, recorded data were partially or completely insufficient for analysis. Additional instructions were given to participants in two studies,\(^{11,109}\) while nine studies reported repeating failed recordings.\(^{32,29,69,73,77,101,109,110,114}\) Nine studies\(^{11,37,39,52,92,93,95,99,107}\) reported removing artefacts, for example arising from high noise levels, from the raw EMG signal prior to signal analysis. Recordings were completely discarded from further analysis in case of failure in 15 (19%) studies.\(^{22,54,56,57,62-64,68,70,76,79,102,110,117,119}\) ‘Noisy signals were identified and excluded’ in one study, without further specification of the term ‘noisy signals’, that is reference to artefact or complete recording.\(^{59}\) One study\(^{14}\) reported evaluating signal quality and not finding artefacts, while another study\(^{108}\) reported evaluating the signal for artefact, but without mentioning how these were dealt with. The remaining 45 (58%) studies did not report how failures were evaluated and/or dealt with.

3.4 | Signal acquisition

The amplification factor of the signal during acquisition was described in only 19 (24%) studies\(^{14,19,22,30,31,33,59-61,70,83,84,90,91,104,108,112}\) (Table 4). Different amplification factors were used for different devices, ranging from 250\(^{90,115}\) to 50 000 times.\(^{93}\)

Reports on impedance conditions were scarcer (Table 4). Five studies reported an amplifier input impedance of 10 kΩ,\(^{115,>2\times10^6}\) and 250 MΩ,\(^{19,59,60}\) Another five studies reported on skin impedance measurements, that is <2\(^{99,110}\) and <10 kΩ.\(^{37,52,69}\)

The frequency range of signal sampling, that is bandpass settings, was described in 27 studies (35%)\(^{14,19,22,30-33,37,52,54,59-61,67,70,83,84,90,93,95,100,102,106,108,110,111,115}\) (Table 4). Similar to the amplification factor, bandpass settings varied between different devices. As for additional notch filtering, two studies reported a 50 Hz notch filter,\(^{95,102}\) while another three studies reported a 60 Hz notch filter during analysis of the signal\(^{54,100,106}\) (Table 4).

The resolution of the analog voltageto digital (A/D) signal converter was reported in 13 (17%) studies\(^{11,14,30,33,67,83,84,90,99,108,110,117}\) and ranged between 8 bit\(^{83,84,99,115}\) and 16 bit (Table 4). Data on sampling rates were provided in 31 (40%) studies\(^{11,14,19,30,32,33,37,39,52-54,59,67,83,84,90,91-99,97,100,105,107,112,115,117}\) (Table 4). Frequencies varied between 10 Hz\(^{102}\) and 22050 Hz,\(^{54}\) with the majority of studies utilising frequencies of approximately 1000\(^{14,33,53,91,92,96,97,99,107,110,112,117}\) and 2000 Hz\(^{19,32,37,52,59,67,108,109,111}\) (n = 12 and 9, respectively).

3.5 | Signal analysis

Analysis of the acquired signal was performed either automatically by the EMG device, or as a separate step, after EMG data were transferred from the device to a computer. In the first case, built-in software analysed and scored the signal, and thus, the output of the EMG device was scored activity, which was reported in 30 (38%) studies.\(^{13,22,31,56,61,62,64-67,69-71,81,88,93,103,104,113-116}\) In 30 (38%) studies\(^{19,30,33,39,53,54,57,59,60,68,70,83,84,90,92,96-98,100-102,107-109,111,117-119}\) the output of the EMG device was raw EMG activity. In seven studies, the signal was stored in the device after undergoing some form of processing, for example rectification,\(^{32,95,99,110,112}\) or if certain conditions were met, for example only recording EMG activity with an amplitude >5 μV.\(^{11}\) Studies performing analysis of
TABLE 4 EMG signal acquisition characteristics

Amplification factor	n	First author & year
250x	2	Maeda, 2019, Stock 1983
256x	1	Yamaguchi 2018
500x	2	Matsuda, 2016, Yamaguchi 2012
800x	4	Stuginski-Barbosa 2015, Thymi 2019, Yachida 2012, Zhou 2016
2000x	1	Mohamed 1997
3590x	1	Gallo 1999
4300x	3	Castroflorio 2014 & 2015, Deregibus 2014
5000x	3	Iwasaki 2015, Khawaja 2015, Wei 2017
8692x	1	Po 2013
50 000x	1	Sakagami 2002
Amplified signal, factor not described	13	Abekura 2008, Baad-Hansen 2007, Baba 2005, Čadová 2014, Haketa 2003, Ikeda 1996, Karakoulaki 2015, Lee 2010, Manfredini 2011, Minakuchi 2012 & 2014, Nagamatsu-Sakaguchi 2017, Shedden Mora 2012
Refers to other publication	12	Clarke 1984 & 1984, Gallo 1997, Kardachi 1977, Kato 2018, Manfredini 2016, 2018 & 2019, Nitschke 2011, Rugh 1989, Shedden Mora 2012, Thymi 2020
Not described	34	Ahlberg 2008, Camara-Souza 2018, Carvalho Bortoletto 2016, Castro Mattia 2018, Clark 1981, Conti 2014, Harada 2006, Hammond 2019, Jadi 2008 & 2013, Jonsgar 2015, Mainieri 2012, Matsumoto 2015, Minakuchi 2016, Miyawaki 2003 & 2004, Mizumori 2013, Mude 2017, Murakami 2014, Needham 2013, Ohlmann 2018 & 2020, Ono 2008, Palinkas 2019, Raphael 2013, Rugh 1981 & 1984, Saito-Murakami 2020, Saueressig 2010, Schmitter 2015, Shimada 2019, Shochet 2007, Sugaruna 2007, Takaoka 2017

Input and/or skin impedance	Amplifier 10 kΩ	1	Stock 1983
Amplifier >2 MΩ	1	Mohamed 1997	
Amplifier 250 MΩ	3	Iwasaki 2015, Khawaja 2015, Wei 2017	
Skin <2 kΩ	2	Gallo, 1997 & 1999	
Skin <10 kΩ	3	Jadidi 2008 & 2013, Takaoka 2017	
Refers to other publication	5	Clarke 1984 & 1984, Kardachi 1977, Nitschke 2011, Rugh 1989	
Not described	63	Abekura 2008, Ahlberg 2008, Baad-Hansen 2007, Baba 2005, Čadová 2014, Camara-Souza 2018, Carvalho Bortoletto 2016, Castro Mattia 2018, Castroflorio 2014 & 2015, Clark 1981, Conti 2014, Deregibus 2014, Haketa 2003, Hammond 2019, Harada 2006, Ikeda 1996, Jonsgar 2015, Karakoulaki 2015, Kato 2018, Lee 2010, Maeda 2019, Mainieri 2012, Manfredini 2011, 2016, 2018 & 2019, Matsuda 2016, Matsumoto 2015, Minakuchi 2012, 2014 & 2016, Miyawaki 2003 & 2004, Mizumori 2013, Mude 2017, Murakami 2014, Nagamatsu-Sakaguchi 2017, Needham 2013, Ohlmann 2018 & 2020, Ono 2008, Palinkas 2019, Po 2013, Raphael 2013, Rugh 1981 & 1984, Saito-Murakami 2020, Sakagami 2010, Saueressig 2010, Schmitter 2015, Shedden Mora 2012 & 2013, Shimada 2019, Shochet 2007, Stuginski-Barbosa 2015, Sugaruna 2007, Thymi 2019 & 2020, Yachida 2012, Yamaguchi 2012 & 2018, Zhou 2016	
Bandpass settings	5–500 Hz	1	Maeda 2019
5.3–450 Hz	1	Saito-Murakami 2020	
10–400 Hz	3	Castroflorio 2014 & 2015, Deregibus 2014	
10–500 Hz	3	Shedden Mora 2012, Stock 1983, Yamaguchi 2012	
10–1000 Hz	2	Mude 2017, Kato 2018	
20–? Hz	1	Yamaguchi 2018	
20–500 Hz	1	Baad-Hansen 2007	
20–600 Hz	2	Jadidi 2008 & 2013	
20–1000 Hz	3	Iwasaki 2015, Khawaja 2015, Wei 2017	

(Continues)
Outcome	n	First author & year	
50–500 Hz	2	Čadová 2014, Gallo 1999	
70–500 Hz	1	Po 2013	
100–200 Hz	1	Sakagami 2010	
100–310 Hz	1	Mohamed 1997	
250–600 Hz	1	Raphael 2013	
250–610 Hz	3	Stuginski-Barbosa 2015, Thymi 2019, Yachida 2012	
251–610 Hz	1	Zhou 2016	
Refers to other publication	9	Clarke 1984 & 1984, Kardachi 1977, Manfredini 2016, 2018 & 2019, Nitschke 2011, Rugh 1989, Shedden Mora 2013, Thymi 2020	
Not described	42	Abekura 2008, Ahlberg 2008, Baba 2005, Camara-Souza 2018, Carvalho Bortoletto 2016, Castro Mattia 2018, Clark 1981, Conti 2014, Gallo 1997, Haketa 2003, Hammoudi 1999, Harada 2006, Ikeda 1996, Jonsgar 2015, Karakoulaki 2015, Lee 2010., Mainieri 2012, Manfredini 2011, Matsuda 2016, Matsumoto 2015, Minakuchi 2012, 2014 & 2016, Miyawaki 2003 & 2004, Mizumori 2013, Murakami 2014, Nagamatsu-Sakaguchi 2017, Needham 2013, Ohlmann 2018 & 2020, Ono 2008, Palinkas 2019, Rugh 1981 & 1984, Saueressig 2010, Schmitter 2015, Shimada 2019, Shochat 2007, Suganuma 2007, Takaoka 2017	
Notch filter	50 Hz	2	Saito-Murakami 2020, Shedden Mora 2012
Notch filter	60 Hz	3	Kato 2018, Mohamed 1997, Mude 2017
Refers to other publication	4	Manfredini 2016 & 2018, Rugh 1989, Shedden Mora 2013	
A/D converter resolution	8 bit	7	Castroflorio 2014 & 2015, Deregibus 2014, Gallo 1997 & 1999, Stock 1983, Yamaguchi 2012
A/D converter resolution	10 bit	2	Po 2013, Raphael 2013
A/D converter resolution	12 bit	2	Maeda 2019, Yamaguchi 2018
A/D converter resolution	14 bit	1	Haketa 2003
A/D converter resolution	16 bit	1	Manfredini 2011
Refers to other publication	7	Clarke 1984 & 1984, Kato 2018, Manfredini 2016, 2018 & 2019, Nitschke 2011	
Not described	58	Abekura 2008, Ahlberg 2008, Baad-Hansen 2007, Baba 2005, Čadová 2014, Camara-Souza 2018, Carvalho Bortoletto 2016, Castro Mattia 2018, Clark 1981, Conti 2014, Gallo 1997, Haketa 2003, Hammoudi 1999, Harada 2006, Ikeda 1996, Iwasaki 2015, Jadi 2008 & 2013, Jonsgar 2015, Karakoulaki 2015, Kardachi 1977, Khawaja 2015, Lee 2010, Maeda 2019, Mainieri 2012, Manfredini 2011, & 2019, Matsuda 2016, Matsumoto 2015, Minakuchi 2012, 2014 & 2016, Miyawaki 2003 & 2004, Mizumori 2013, Murakami 2014, Nagamatsu-Sakaguchi 2017, Needham 2013, Nitschke 2011, Ohlmann 2018 & 2020, Ono 2008, Palinkas 2019, Po 2013, Raphael 2013, Rugh 1981 & 1984, Sakagami 2010, Saueressig 2010, Schmitter 2015, Shimada 2019, Shochat 2007, Stock 1983, Stuginski-Barbosa 2015, Suganuma 2007, Takaoka 2017, Thymi 2019 & 2020, Wei 2017, Yachida 2012, Yamaguchi 2012 & 2018, Zhou 2016	
Sampling rate	10 Hz	1	Shedden Mora 2012
Sampling rate	16 Hz	1	Saito-Murakami 2020
Sampling rate	128 Hz	1	Murakami 2014

(Continues)
TABLE 4 (Continued)

Outcome	n	First author & year
200 Hz	2	Baba 2005, Haketa 2003
800 Hz	3	Castroflorio 2014 & 2015, Deregibus 2014
1000 Hz	9	Abekura 2008, Gallo 1997 & 1999, Harada 2006, Manfredini 2011, Matsuda 2016, Miyawaki 2003, Yamaguchi 2012 & 2018
1001 Hz	1	Miyawaki 2004
1002 Hz	1	Mizumori 2013
1024 Hz	1	Lee 2010
2000 Hz	7	Baad-Hansen 2007, Čadová 2014, Iwasaki 2015, Jadidi 2008, Khawaja 2015, Po 2013, Raphael 2013
2001 Hz	1	Jadidi 2013
2048 Hz	1	Matsumoto 2015
4000 Hz	1	Stock 1983
22 050 Hz	1	Mude 2017
Refers to other publication	9	Clarke 1984 & 1984, Kato 2018, Manfredini 2016, 2018 & 2019, Nitschke 2011, Rugh 1989, Shedden Mora 2013

Not described | 38 | Ahlberg 2008, Camara-Souza 2018, Carvalho Bortoletto 2016, Castro Mattia 2018, Clark 1981, Conti 2014, Hammoudi 2019, Ikeda 1996, Jonsgar 2015, Karakoulaki 2015, Kardachi 1977, Maeda 2016, Mainieri 2012, Minakuchi 2012, 2014 & 2016, Mohamed 1997, Nagamatsu-Sakaguchi 2017, Needham 2013, Ohlmann 2018 & 2020, Ono 2008, Palinkas 2019, Rugh 1981 & 1984, Sakagami 2010, Saueressig 2010, Schmitter 2015, Shimada 2019, Shochat 2007, Stuginski-Barbosa 2015, Sugasawa 2007, Takaoa 2017, Thymi 2019 & 2020, Wei 2017, Yachida 2012, Zhou 2016 |

Abbreviation: n, number of studies.

raw EMG data reported the use of 10 different software programs, viz. the Bruxmeter software, 30,82-84,87 the Myomonitor software, 53 the Bruxism analysing software MTS50011,96,97 Sound Engine software, 54 Chart 5,91 SmartAnalyzer, 111 Biograph Infinity, 109 custom-made algorithms in the MatLab software, 19,57,59,60,70,108,111 LabVIEW 102,119 and Jaws. 32 Six studies reported the use of a custom software without further specification. 11,39,95,98,107,110 Twenty-five different thresholds were used for scoring of events, the most common being a percentage of the MVC (Table 6). Forty-two studies (54%) 11,12,14,22,30-32,39,53,56,61,62,64,67-69,71,73,7 5-84,86-88,91,95-98,100,105,107,109,111 used a percentage of the MVC, ranging from 3% to 50%, 11 with six of these studies using a 20% of 60% MVC threshold. 22,31,56,61,62,67 Six studies used a multiplication of the background EMG activity, viz. two times, 22,54,91 three times, 70 three standard deviations 92 and four standard deviations. 60 One study 90 used a combination of the above, that is >2 times baseline amplitude, and amongst those, bursts that exceeded 5%, 10% and 20% MVC. Fourteen studies 19,59,65,99,102-104,106,108,110,115-117,119 used other thresholds, that is 1%, 10%, 20%, 100 μV, 20% of the highest occurring bursts, 99 percentages of 20 N bite-force thresholds, 99,99 the maximum amplitude of the signal of stimulated artefacts, 110 the average root mean square of muscle activity during three swallowing movements, 117 an A/D converter-related threshold 115 and a spectrogram-based frequency and power threshold. 108 Three studies 37,52,112 did not utilise a threshold for EMG scoring. Integrated EMG values per hour of sleep were used as outcome variables in one study 112 and recognition of pre-sampled EMG patterns in the other two. 77,52 (Table 6).

Bruxism events were defined in various ways (see online appendix for a complete overview). Out of the 78 included studies, only nine (12%) 32,63,66,74,75,89,113,114,116 did not provide a description of how bruxism events were defined. Another five studies 14,61,68,85,100 referred to other publications for a description. Two studies did not utilise events, but integrated EMG values per hour of sleep, 112 and cumulative EMG activity divided by the duration of sleep 106 as measures of muscle activity. The remaining 62 (79%) studies provided descriptions of bruxism event definitions.
Outcome	n	First author & year	
Rectification	yes	Abekura 2008, Baad-Hansen 2007, Baba 2005, Gallo 1997 & 1999, Haketa 2003, Jadidi 2008 & 2013, Kato 2018, Manfredini 2011, Miyawaki 2003 & 2004, Mizumori 2013, Mohamed 1997, Rugh 1989, Saito-Murakami 2020, Sakagami 2010	
Rectification	Refers to other publication	Nitschke 2011	
Rectification	Not described	Ahlberg 2008, Čadová 2014, Camara-Souza 2018, Carvalho Bortoletto 2016, Castro Mattia 2018, Castroflorio 2014 & 2015, Clark 1981, Clarke 1984 & 1984, Conti 2014, Deregibus 2014, Hammoudi 2019, Harada 2006, Ikeda 1996, Iwasaki 2015, Jonsgar 2015, Karakoulaki 2015, Kardachi 1977, Khawaja 2015, Lee 2010, Maeda 2019, Mainieri 2012, Manfredini 2016, 2018 & 2019, Matsuda 2016, Matsumoto 2015, Minakuchi 2012, 2014 & 2016, Mude 2017, Murakami 2014, Nagamatsu-Sakaguchi 2017, Needham 2013, Ohlmann 2018 & 2020, Ono 2008, Palinks 2019, Po 2013, Raphael 2013, Rugh 1981 & 1984, Sauressig 2010, Schmitter 2015, Shedden Mora 2012 & 2013, Shimada 2019, Shocat 2007, Stock 1983, Stuginski-Barbosa 2015, Suganuma 2007, Takaoka 2017, Thymi 2019 & 2020, Wei 2017, Yachida 2012, Yamaguchi 2012 & 2018, Zhou 2016	
Processing	Averaged signal	2	Gallo 1997, Harada 2006
Processing	Averaged at 16 Hz	1	Matsumoto 2015
Processing	Averaged with moving interval of 1 ms and window time of 19 ms	2	Miyawaki 2003 & 2004
Processing	Converted to absolute value and smoothed with a width of 15 sampling points	1	Matsuda 2016
Processing	Converted to absolute values and smoothed by a width of 101 points (.1 s)	1	Maeda 2019
Processing	Root mean square	5	Baad-Hansen 2007, Ikeda 1996, Manfredini 2011, Raphael 2013, Saito-Murakami 2020
Processing	Root mean square amplitude values calculated over 125-ms contiguous rectangular windows	1	Po 2013
Processing	Root mean square conversion in 0.125-sec segments, and 0.0625-sec overlap of time segments	1	Lee 2010
Processing	Root mean square conversion in 128-ms time-windows	1	Iwasaki 2015
Processing	Root mean square conversion with integration time of 10 ms	1	Kato 2018
Processing	Root mean square with average factor of 100 ms	1	Shedden Mora 2012
Processing	Integrated signal, integration time 0.5 s	1	Gallo 1999
Processing	Integrated signal, integration time was the entire duration of sleep	1	Mohamed 1997
Processing	Integrated signal, but method not described	2	Čadová 2014, Mizumori 2013
Processing	Performed, but method not described	2	Baba 2005, Haketa 2003
Processing	Refers to other publication	3	Nitschke 2011, Rugh 1989, Shedden Mora 2013

(Continues)
Of those, five \(^{29}\) used the SB/research criteria to score EMG events. Another eight studies \(^{29}\) used these criteria to score types of bruxism episodes, but based on a different threshold than the 20% MVC of the 1996 publication. The remaining 49 (63%) studies used a variety of ways to define a bruxism event \(^{11,13,19,22,30,31,33,37,52,53,59,60,62,65,67,69-73,76-83,86,87,90-93,95,98,101,103-105,107-112,115,117,118}\) (see Appendix S1). Definitions of events were based on criteria of EMG thresholds, duration of EMG activity above the threshold and interval between subsequent supra-threshold activity. With the exception of two studies, \(^{37,52}\) all above-mentioned studies with descriptions of bruxism event definitions \((n = 60)\) included a threshold in their description of the event. Of these, 41 (53%) reported an additional duration criterion for the definition of an event \(^{11,13,19,22,30,31,33,39,53,54,56,57,59,60,64,65,67,69,70,73,78,79,90-93,95,98,101,103-105,107-112,115,117,118}\) and 22 reported a threshold, duration and interval criterion. \(^{11,12,33,39,52,54,56,64,65,67,78,79,90,91,95-99,102,105,107-111,115,118,119}\) Eight studies used outcomes related to cardiac activity in the definition of a bruxism event. \(^{30,82,84,86-88,98}\) Two studies \(^{37,52}\) used a pattern recognition algorithm for the definition of events.

3.6 Sleep bruxism outcomes

The term RMMA was used in the context of sleep bruxism outcome variables in nine studies. \(^{33,57,83,84,91,96,97,108}\) Twenty-four studies (31\%) \(^{12,13,30,31,54,56,69,73-77,79-82,85,87,89,90,94,105}\) used cut-off criteria to define sleep bruxers. Of those, 13 studies used criteria to grade the severity of bruxism \(^{1,3,71-77,79-81,87,89,90}\) (Table 7).

There were three main groups of sleep bruxism outcome variables: frequency, duration and intensity of masticatory muscle activity. Frequency variables were most commonly assessed, with 71 (91\%) studies \(^{11-14,22,30,33,37,52,54,56,57,60,89,92-99,101-105,107-111,113-119}\) reporting at least one frequency variable, followed by duration and intensity variables, which were reported in 28 (36\%) \(^{11,19,32,39,56,59,60,63,68,77,91-93,96,98,100-102,107-111,113,115,117-119}\) and 20 (26\%) \(^{11,19,32,39,56,59,61,63,65,91,98,101,106,107,109-113,115,117}\) studies, respectively. Forty-six (59\%) studies \(^{12-14,22,30,33,37,52,54,57,62,65,67,69,76,78,90,94,95,97,99,103-105,114,116,118}\) reported on frequency variables only, while three studies \(^{19,39,100}\) reported on only duration measures, and two \(^{106,112}\) solely on...
TABLE 6 Thresholds for scoring EMG events

Outcome	n	First author & year	
% MVC	1	Baad-Hansen 2007	
5% MVC	1	Čadová 2014	
10% MVC	11	Camara-Souza 2018, Castroflorio 2014 & 2015, Deregibus 2014, Harada 2006, Manfredini 2011 & 2018, Matsumoto 2015, Miyawaki 2003 & 2004, Ohlmann 2018	
10% MVC (selected amongst 3%, 10% and 20% MVC)	1	Ikeda 1996	
10% and 20% MVC	3	Lee 2010, Matsuda 2016, Takaoka 2017	
20% MVC	7	Baba 2005, Jonsgar 2015, Kato 2018, Ono 2008, Saito-Murakami 2020, Thymi 2020, Yamaguchi 2018	
20% of 60% MVC	6	Conti 2014, Raphael 2013, Schmitter 2015, Stuginski-Barbosa 2015, Yachida 2012, Zhou 2016	
20% & 50% MVC	1	Haketa 2003	
30% MVC	11	Ahlberg 2008, Carvalho-Bortoleto 2016, Castro Mattia 2018, Karakouliaki 2015, Mainieri 2012, Minakuchi 2014, Murakami 2014, Nagamatsu-Sakaguchi 2017, Palinkas 2019, Saueressig 2010, Shochat 2007	
Multiplication of background activity	> 2x baseline EMG activity during resting	1	Matsuda 2016
	2x baseline activity	1	Yamaguchi 2012
	2x baseline noise level during resting conditions of the mandible at the beginning of the recording	1	Mude 2017
	>3x amplitude of background noise	1	Thymi 2019
	>3x resting state standard deviations	1	Mizumori 2013
	4x standard deviation of background EMG activity while awake	1	Wei 2017
	>2x baseline amplitude, and amongst those 5%, 10% and 20% MVC	1	Maeda 2019
Other thresholds	1 μV	1	Mohamed 1997
	10 μV	2	Shedden Mora 2012 & 2013
	20 μV	3	Rugh 1981, 1984 & 1989
	100 μV	1	Clark 1981
	20% of highest occurring bursts	1	Gallo 1997
	5–9, 10–24, 25–49, 50–79 and ≥80% of 20 N force in each 128 ms time-window	1	Iwasaki 2015
	4 magnitude thresholds (10%, 25%, 50% and 20% of 20 N bite force) and 6 duration points (1, 2, 5, 10, 15 and 20 s)	1	Khawaja 2015
	Maximum amplitude of the signals of the stimulated artefacts	1	Gallo 1999
	Average RMS of muscle activity during three swallowing movements	1	Manfredini 2011
	Whenever the fourth least significant bit of the analogue-to-digital converter was active, a bruxing episode was occurring	1	Stock 1983
	0.625 Hz peak frequency and 2% relative power	1	Po 2013
Not applicable	Signal recognition algorithm	3	Jadidi 2008 & 2013, Takaoka 2017
	Integrated EMG values of each analysed period	1	Abekura 2008

(Continues)
TABLE 6 (Continued)

Outcome	n	First author & year
Refers to other publication	3	Manfredini 2016, Nitschke 2011, Shimada 2019
Not described	10	Clarke 1984 & 1984, Hammoudi 2019, Kardachi 1977, Minakuchi 2012 & 2016, Needham 2013, Ohlman 2020, Sakagami 2002, Suganuma 2007

Abbreviations: MVC, maximum voluntary contraction; n, number of studies; RMS, root mean square.

intensity. Twenty-two studies reported on the combination of two or more variables of frequency, duration and intensity. An overview of reported outcomes is provided in Table 8.

4 | DISCUSSION

This scoping review provided a comprehensive overview of type 3 and 4 ambulatory EMG signal acquisition and analysis methods, and outcome measures used to date in sleep bruxism literature. Results showed a growing number of studies using ambulatory EMG devices for the assessment of sleep bruxism, especially in the past decade. This finding may reflect technological developments and an overall compliance with the recommendations given by an international group of experts to establish a definitive assessment of sleep bruxism through instrumental methods.1,2

4.1 | Recording hardware

Hardware was generally well described in all but two studies.59,65 It is a quite straightforward recommendation that ambulatory EMG devices should have a simple design, with a minimum number of components and wires, for compliance and uncomplicated use in the home setting. For example, cable motion artefacts in the EMG signal can occur as a result of using wired electrodes.43 Besides, wired and/or voluminous devices may be considered uncomfortable to wear during sleep, especially in the case of multiple night recordings. New, wireless type 4 devices that allow for whole night recordings have been introduced,14,15 and their further development and validation against standardised PSG-AV assessments is recommended. Future developments may even include wireless type 2 and 3 recording devices,121 allowing for concomitant assessments of, for example, electroencephalographic (EEG) and breathing. The masseter muscle was the site of preference in 58% of included studies.11-14,30,32,33,39,54,65,72-88,90-92,94,98-111,117,118

TABLE 7 Cut-off values and grading criteria for defining sleep bruxers

Outcome	n	First author & year
Cut-off		
>2 episodes/h	1	Camara-Souza 2018
≥2 episodes/h	2	Murakami 2014, Schmitter 2015
>4 episodes/h	3	Castroflorio 2015, Manfredini 2016, Mude 2017
>25 events/h	1	Takaoka 2017
SB/research criteria	2	Ono 2008, Suganuma 2007
5.5 EMG-episode/h, 32.2 EMG-burst-all/h and 26.4 EMG-burst-5%/h	1	Maeda 2007
18 EMG/h or higher in three consecutive nights and 19 EMG/h or higher in five consecutive nights	1	Stuginski-Barbosa 2015
Cut-off and grading		
>2 episodes/h for moderate and >4 episodes/h for intense/severe sleep bruxism	2	Ohlman 2018 & 2020
0 = <40 events; 1 = 40–74 events; 2 = 75–124 events; and 3 = ≥125 events (0–2: non-severe SB, score 3: severe SB)	1	Nagamatsu-Sakaguchi 2017
0 = <40 events; 1 = 40–74 events; 2 = 75–124 events; and 3 = ≥125 events	2	Saueressig 2010
0 = <30 events, 1 = 31–60 events, 2 = 61-100 events and 3 = ≥100 events	3	Carvalho Bortolletto 2016, Karakoulaki 205, Minakuchi 2012
0 = <30 events, 1 = 31–60 events, 2 = 61-100 events and 3 = ≥100 events (0-1 normal controls, 2-3 severe SB)	1	Minakuchi 2014
0 = no bruxism (≥39 episodes), 1 = mild bruxism (40–74 episodes), 2 = moderate bruxism (75–124 episodes) and 3 = severe bruxism (≥125 episodes)	3	Ahlberg 2008, Mainieri 2012, Palinkas 2019
SB frequency score in four grades (0, 1, 2 and 3)	1	Minakuchi 2016

Abbreviations: EMG, electromyographic, h, hour, n, number of studies, SB, sleep bruxism.
Table 8: Types of sleep bruxism outcome variables based on frequency, duration and intensity of masticatory muscle activity

First author & year	Frequency	Duration	Intensity	
Abekura 2008	Score based on events/recording	Integrated EMG values/h (μV*s)		
Ahlberg 2008	Score based on events/recording			
Baad-Hansen 2007	Events/h	EMG duration/h	EMG AUC/h	
Baba 2005	Total duration of muscle activity/h, averaged across the 5-night study period			
Čadová 2014	Activity/h	Duration of activity (s)	Mean amplitude of contraction episode (%MVC)	
Camara-Souza 2018	Episodes/h		Max amplitude of contraction episode (%MVC)	
Carvalho Bortoletto 2016	Score based on events/recording		Integral under the signal curve of contraction episode (%MVC) (%MVC’s)	
Castro Mattia 2018	Score based on events/recording			
Castroflorio 2014	Episodes/h			
Castroflorio 2015	Episodes/h			
Clark 1981	Activity/h			
Clarke 1984	Episodes/night			
Clark 1984	Events/night	Duration of events	Intensity of bruxing as a factor of force and duration	
Conti 2014	EMG events/h			
Deregibus 2014	Episodes/h			
Gallo 1997	Number of episodes			
Gallo 1999	Episodes/h	Duration of episodes	Mean amplitudes of episodes	
Gallo 1999	episodes/night	Intervals between episodes	Maximum amplitudes of episodes	
Haketa 2003	Events/h	Event duration/h		
Hammoudi 2019	EMG grinds/hour	EMG burst duration	Intensity	
Gallo 1999	EMG episodes/h			
Harada 2006	Events/h	% event duration/night	total EMG activity	
Ikeda 1996	Events/h	Mean EMG duration/ event	mean peak EMG level (%MVC)	
Iwasaki 2015	Duty factor, that is the amount of time each muscle was activated at specific magnitudes during a given time, %			
Jadidi 2008	SRA events			
First author & year	Frequency	Duration	Intensity	
---------------------	-----------	----------	-----------	
Jadidi 2013	SRA events			
Jonsgar 2015	Episodes/h		Mean burst duration	
	Episodes total n			
	Grinds/h			
	Grinds total n			
	Bursts/h			
	Bursts total n			
Karakoulaki 2015	Score based on events/recording			
Kardachi 2017	n of bruxing units			
Kato 2018	Cumulative duration of each episode			
	Cumulative duration of episodes/h			
Khawaja 2015	Duty factor for duration of muscle activity threshold	Duty factor for magnitude of muscle activity threshold		
Lee 2010	Events/h			
Maeda 2019	Episodes/h			
Mainieri 2012	Score based on events/recording			
Manfredini 2011	Events/recording	Total MMA duration (s)/recording		
	Total MMA duration (s)/hour	Integrated EMG signal (μV x s)/recording		
Manfredini 2016	Episodes/h			
Manfredini 2018	Episodes/h	Phasic sleep-time masticatory muscle activity/h		
	Tonic sleep-time masticatory muscle activity/h			
	Mixed sleep-time masticatory muscle activity/h			
	Sleep-time masticatory muscle activity total number			
Manfredini 2019	Episodes/h	Phasic sMMA events/h		
	Tonic sMMA events/h			
	Mixed sMMA events/h			
	Total sMMA events/night			
Matsuda 2016	Coefficient of variation of interval duration	n-IEMG (integral values normalised by individual MVC)		
	Coefficient of variation of burst duration	n-RMS (root mean square normalised by individual MVC)		
	Coefficient of variation of cycle time			
	Interval duration			
	Burst duration			
Matsumoto 2015	Events/h	% event duration/night	total EMG activity	
Minakuchi 2012	Score based on events/recording			
Minakuchi 2014	Score based on events/recording			
Minakuchi 2016	Score based on events/recording			
First author & year	Frequency	Duration	Intensity	
---------------------	-----------	----------	-----------	
Miyawaki 2003	Episodes/h	Episode duration		
Miyawaki 2004	RMMA episodes/h			
	Short-burst episode/h			
	Clenching episode/h			
	Other EMG episodes/h			
Mizumori 2013	Events/h	Event duration		
	Events/night			
	Bursts/event			
Mohamed 1997	Cumulative EMG activity (μV.s) divided by the duration of sleep (min)			
Mude 2017	Phasic episodes/h			
	Tonic episodes/h			
	Mixed episodes/h			
Murakami 2014	Events/h			
	Events/night			
Nagamatsu-Sakaguchi 2017	Score based on events/recording			
Needham 2013	Number of clenching/grinding episodes/week			
Nitschke 2011	Activity periods/h	Activity periods duration	Mean amplitudes (%MVC)	
	Activity periods/night		Max amplitudes (%MVC)	
			Time integral (%MVC)	
Ohlmann 2018	Episodes/h			
Ohlmann 2020	Episodes/h			
Ono 2008	Episodes/h			
	Episodes/night			
	Burst/episode			
	Bruxism/h			
Palinkas 2019	Score based on events/recording			
Po 2013	RMMA episode frequency (Hz)	Pooled RMMA episodes duration		
	episodes/night			
Raphael 2013	Events/ min			
Rugh 1981	Mean number of events	Mean duration of events		
Rugh 1984	EMG units			
Rugh 1989	μV/sec			
Saito-Murakami 2020	Events/recording			
Sakagami 2002	episodes/h	Total bruxism time/h	Bruxism lasting time	
Saueressig 2010	Score based on events/recording			
Schmitter 2015	Episodes/h	Burst duration	Intensity	
	Bursts/h			
Shedden Mora 2012	Rhythmic NMMA episodes/h	rhythmic NMMA episode duration/h		
	EMG bursts/h	EMG bursts duration/h		
	Burst/episode			
Shedden Mora 2013	Bursts/h	Durations of bursts/h		(Continues)
The choice of recording site, that is temporalis or masseter muscle, can be guided by practical aspects, such as the presence of facial hair. It can be argued that both sites can provide valid data in terms of masticatory muscle activity during sleep, as long as appropriate impedance levels are assured122 and recordings undergo thorough quality control for signal-to-noise ratios.

\subsection*{4.2 Recording logistics}

Sleep bruxism has a time-variant nature41,42, which obviously requires multiple recordings to capture this particular feature. Multiple night recordings were performed in the majority of included studies11,13,15,19,22,31,32,37,39,52,53,57,59-67,69-72,74,75,77,84,86,87,89,93,95,98,101-104,106,107,109-114,116,118,119 showing that ambulatory EMG devices are well suited for such assessments.

Proper instructions to participants for handling an EMG device and/or its components are important to enable its flawless functioning and were given in 57\% of included studies11-14,19,22,30,31,37,39,52,53,56,59,60,63-66,69-71,73-76,80,82,84,87,92-95,102,105,107,109,110,114,117,119. Correct placement of the device is crucial in order to obtain good recordings and prevention of artefacts due to, for example, improper skin cleaning that could result in high skin-electrode impedance43. Therefore, it is recommended that the use of the device is trained with participants, either face-to-face or through tele-medicine, and written and/or recorded instructions are provided for reference at home.

Set-up procedures, that is performance of grimaces, MVCs, etc., for reference purposes were applicable for 47\%
of included studies. Such procedures may be source of variability and can complicate study protocols. In line with the recommendation of the use of simple devices, it can be suggested that only simple and sufficiently standardised set-up procedures should be preferred, if not avoided altogether.

Finally, on the topic of recording logistics, it is notable that 58% of the studies did not report on how failures were dealt with. Failures in ambulatory EMG recordings can be divided in two categories. The first is quite straightforward, namely the failure of performance of a part or the entire recording due to detachment or improper placement of the electrode. The second is the presence of artefacts in the EMG signal as a result of high noise levels. Failures can be prevented by adequate device handling and tackled with pre-set quality criteria, which should include a minimal number of recording nights, and a minimal number of recording hours with acceptable signal-to-noise ratio. Ideally, ambulatory EMG recorders should have built-in features for automatic quality checks of proper placement and connection of the electrode, good functioning of the device, impedance measurements and signal-to-noise ratio. Smartphone technologies can be developed to facilitate these functions.

It is recommended that future studies employ and report quality criteria based on which recordings are considered failures, in line with similar recommendations given by the American Academy of Sleep Medicine (AASM) for the performance of Out of Centre Sleep Testing (OCST). The OCST standards are an excellent example of comprehensive quality reporting of ambulatory sleep recordings. Similar standards for ambulatory EMG recordings of masticatory muscle activity would be a valuable development in the field.

4.3 | Signal acquisition

Adequate reporting on signal acquisition features in EMG studies is recommended by the International Society of Electrophysiology and Kinesiology (ISEK). It allows the reader to identify whether the signal was acquired in a correct way, and facilitates comparison between different studies. Results of the present study show that basic elements of signal acquisition, that is amplifications factors, impedance, bandpass settings, notch filtering, A/D converter resolution and sampling rates, were largely underreported. Underreporting of methodology in EMG studies of masticatory muscles has been described previously. In their systematic review of EMG studies published in 2004, Armijo-Olivo et al. found that less than 50% of the items proposed by ISEK were reported in approximately 91% of assessed studies. As the authors of this review state, maximum word counts and editorial limitations may contribute to underreporting, and online appendices may help overcome this issue. Moreover, it may be hypothesised that authors’ (lack of) knowledge of the recording processes may affect the way these are reported in a publication.

In addition, quite some variability was encountered amongst studies for certain signal acquisition variables. It is beyond the scope of this review to recommend the ideal features of signal acquisition from the masticatory muscles. The reader is referred to other publications, for example. Here, some brief comments will be made. Surface EMG measures very small amplitudes, that is microvolt to millivolt, and appropriate amplification is needed, in order to allow proper processing and recording of the signal. Furthermore, external interfering signals with a so-called ‘common mode’, that is equal in phase and amplitude, need to be eliminated during the amplification process in order to reduce noise in the EMG signal. Amplification factors of at least 500 and 1000, with a high common mode rejection ratio, that is >95 dB, have been recommended. In the present review, only three studies reported amplification factors smaller than the recommended 500. Furthermore, bandpass settings starting from 5–10 Hz (high pass) to 400–500 Hz (low pass) have been recommended for surface EMG. In the present review, bandpass settings ranging from 5–500 Hz to 251–610 Hz were encountered. In a number of studies, the high pass filter may have been too high, with a possible consequence of amplitude loss and introduction of artefacts. Moreover, as per the Nyquist theorem, the signal sampling rate should be at least twice the highest frequency cut-off of the bandpass filter, and even higher sampling rates are preferred. Consequently, for surface EMG, sampling rates of at least 1000 Hz are advised, though up to 5000 Hz sampling has also been recommended. Sampling rates in studies included in the present review were mainly around 1000. The OCST standards are an excellent example of comprehensive quality reporting of ambulatory sleep recordings. Similar standards for ambulatory EMG recordings of masticatory muscle activity would be a valuable development in the field.

4.4 | Signal analysis

There was an equal number of studies in which EMG devices produced raw EMG signal vs devices in which activity was automatically scored (38%). Adequate reporting on signal acquisition features in EMG studies is recommended by the International Society of Electrophysiology and Kinesiology (ISEK). It allows the reader to identify whether the signal was acquired in a correct way, and facilitates comparison between different studies. Results of the present study show that basic elements of signal acquisition, that is amplifications factors, impedance, bandpass settings, notch filtering, A/D converter resolution and sampling rates, were largely underreported. Underreporting of methodology in EMG studies of masticatory muscles has been described previously. In their systematic review of EMG studies published in 2004, Armijo-Olivo et al. found that less than 50% of the items proposed by ISEK were reported in approximately 91% of assessed studies. As the authors of this review state, maximum word counts and editorial limitations may contribute to underreporting, and online appendices may help overcome this issue. Moreover, it may be hypothesised that authors’ (lack of) knowledge of the recording processes may affect the way these are reported in a publication.

In addition, quite some variability was encountered amongst studies for certain signal acquisition variables. It is beyond the scope of this review to recommend the ideal features of signal acquisition from the masticatory muscles. The reader is referred to other publications, for example. Here, some brief comments will be made. Surface EMG measures very small amplitudes, that is microvolt to millivolt, and appropriate amplification is needed, in order to allow proper processing and recording of the signal. Furthermore, external interfering signals with a so-called ‘common mode’, that is equal in phase and amplitude, need to be eliminated during the amplification process in order to reduce noise in the EMG signal. Amplification factors of at least 500 and 1000, with a high common mode rejection ratio, that is >95 dB, have been recommended. In the present review, only three studies reported amplification factors smaller than the recommended 500. Furthermore, bandpass settings starting from 5–10 Hz (high pass) to 400–500 Hz (low pass) have been recommended for surface EMG. In the present review, bandpass settings ranging from 5–500 Hz to 251–610 Hz were encountered. In a number of studies, the high pass filter may have been too high, with a possible consequence of amplitude loss and introduction of artefacts. Moreover, as per the Nyquist theorem, the signal sampling rate should be at least twice the highest frequency cut-off of the bandpass filter, and even higher sampling rates are preferred. Consequently, for surface EMG, sampling rates of at least 1000 Hz are advised, though up to 5000 Hz sampling has also been recommended. Sampling rates in studies included in the present review were mainly around 1000. The OCST standards are an excellent example of comprehensive quality reporting of ambulatory sleep recordings. Similar standards for ambulatory EMG recordings of masticatory muscle activity would be a valuable development in the field.

4.4 | Signal analysis

There was an equal number of studies in which EMG devices produced raw EMG signal vs devices in which activity was automatically scored (38%). Adequate reporting on signal acquisition features in EMG studies is recommended by the International Society of Electrophysiology and Kinesiology (ISEK). It allows the reader to identify whether the signal was acquired in a correct way, and facilitates comparison between different studies. Results of the present study show that basic elements of signal acquisition, that is amplifications factors, impedance, bandpass settings, notch filtering, A/D converter resolution and sampling rates, were largely underreported. Underreporting of methodology in EMG studies of masticatory muscles has been described previously. In their systematic review of EMG studies published in 2004, Armijo-Olivo et al. found that less than 50% of the items proposed by ISEK were reported in approximately 91% of assessed studies. As the authors of this review state, maximum word counts and editorial limitations may contribute to underreporting, and online appendices may help overcome this issue. Moreover, it may be hypothesised that authors’ (lack of) knowledge of the recording processes may affect the way these are reported in a publication.

In addition, quite some variability was encountered amongst studies for certain signal acquisition variables. It is beyond the scope of this review to recommend the ideal features of signal acquisition from the masticatory muscles. The reader is referred to other publications, for example. Here, some brief comments will be made. Surface EMG measures very small amplitudes, that is microvolt to millivolt, and appropriate amplification is needed, in order to allow proper processing and recording of the signal. Furthermore, external interfering signals with a so-called ‘common mode’, that is equal in phase and amplitude, need to be eliminated during the amplification process in order to reduce noise in the EMG signal. Amplification factors of at least 500 and 1000, with a high common mode rejection ratio, that is >95 dB, have been recommended. In the present review, only three studies reported amplification factors smaller than the recommended 500. Furthermore, bandpass settings starting from 5–10 Hz (high pass) to 400–500 Hz (low pass) have been recommended for surface EMG. In the present review, bandpass settings ranging from 5–500 Hz to 251–610 Hz were encountered. In a number of studies, the high pass filter may have been too high, with a possible consequence of amplitude loss and introduction of artefacts. Moreover, as per the Nyquist theorem, the signal sampling rate should be at least twice the highest frequency cut-off of the bandpass filter, and even higher sampling rates are preferred. Consequently, for surface EMG, sampling rates of at least 1000 Hz are advised, though up to 5000 Hz sampling has also been recommended. Sampling rates in studies included in the present review were mainly around 1000. The OCST standards are an excellent example of comprehensive quality reporting of ambulatory sleep recordings. Similar standards for ambulatory EMG recordings of masticatory muscle activity would be a valuable development in the field.
for only a set amount of time,13,72,74,76,77,80,81,95,117 and subjective
sleep diaries.1,19,60,101,102,110 Having different criteria for choosing
the length of the recording to be analysed can be an important source
of variation amongst different studies. Alongside, abovementioned
methods have their limitations, such as excluding actual sleep time for
the first two methods, and biased subjective reports and/or forget-
ting to fill out diaries for the third. Future investigations may consider
the use of evolving technologies of wrist-worn personal health mon-
itoring devices127,128 to define sleep time and overcome these issues.
Alternatively, it is advised that studies at least include a description
of analysis time in their publications. Other interesting developments
are found in the field of portable PSG devices, that is self-applicable
electrode sets that allow for electroencephalographic (EEG) record-
ings, based on which sleep-wake states can be discriminated more ac-
curately.121,129 As the authors of these publications suggest, further
development and simplifications of these devices and electrodes may
prove extremely useful for the field of at-home assessments of sleep
bruxism, and possible also other sleep disorders.121,129

The variables rectification, signal processing and additional
filtering of the EMG signal were largely left undescribed in the in-
cluded studies. As discussed for the topic of signal acquisition vari-
bles, it is recommended that publications include descriptions of
these procedures.45,46

Twenty-five different thresholds were used for scoring the
sleep bruxism events, with a percentage of the MVC being the most
common. The lack of unanimous thresholds to score sleep bruxism
events is a topic that has been discussed for over two decades in the
field.10,98 The %MVC method started to be used for scoring sleep
bruxism events in PSG studies in the mid-80 s by Phillips et al.130 These
authors, as well as Okeson et al. in 1990,131 used a 40% MVC
threshold to score bruxism events, based on the belief that a smaller
threshold would be confused with swallowing.130,131 A 20% MVC
criterion was used in the widely implemented scoring criteria pro-
posed in 1996 by Lavigne et al.29 As the authors of this PSG study
state, this threshold ‘was the most frequently associated, when con-
trolled with audio-video signals, to the beginning of a bruxism epi-
sode.’29 However, in the same year, Ikeda et al. argued that, based on
the results of their EMG-ECG study on the development of criteria
to score bruxism events, a 10% MVC threshold should be used, with
20% and 40% MVC thresholds being too high.98 Despite these
findings, thresholds of both 10% MVC34 and 20% MVC42 were ad-
opted in future publications, and, as seen from the results of the
present study, also other values have been used over the years in
EMG studies, for example 30% MVC,71 and 20% of 60% MVC.62 The
use of the multiplication of baseline EMG activity was introduced
by the AASM in 2007,132 with the recommendation to use a thresh-
old of at least two times the baseline amplitude of background EMG
of chin EMG activity. This recommendation was kept in subsequent
versions of the AASM scoring manual.133 Raphael et al. used twice
the amplitude of relaxed EMG levels while awake in their PSG study,
published in 2012,134 and further work.135 A few other authors used
multiplications of baseline activity in their studies in the following
years, for example Mizumori et al.92 and Maluly et al.136

Thus, so far, it can be concluded that %MVC thresholds are
widely implemented in sleep bruxism research, and that little con-
sensus exists amongst research groups as for the ideal MVC thresh-
old for scoring sleep bruxism events. Furthermore, multiplications of
baseline EMG activity have been recommended and implemented
to a lesser extent than the %MVC threshold, perhaps due to the
fact that this approach is relatively novel as compared to the %MVC
method.

Ideally, a single threshold should exist to be used amongst re-
search groups, and future studies are encouraged to focus on es-
tablishing this. Here, several issues that affect the choice of such a
threshold will be discussed. An ideal threshold should be valid, that
is adequately distinguish events from non-events. In PSG-AV record-
ings, this means distinguishing MMAs related to sleep bruxism, from
other muscle activities, that is OFAs and OMs.3,7,8 Limited availability
of PSG facilities and growing use of ambulatory EMG recorders
has led to a thorough revision of concepts regarding how mastic-
atory muscle activity should be assessed within the construct of
bruxism.9 Registrations performed by ambulatory EMG recorders in
general assess only MMA, with some exceptions with simultaneous
audio recordings (eg96), and assessment of cardiac activity (eg64).
Therefore, they do not allow for relating MMAs to grinding sounds,
microarousals or other activities such as swallowing, yawning and/or
other body movements, as is the case for PSG-AV recordings.
Subsequently, strictly taken, OFAs and OMs cannot yet be scored
based on ambulatory EMG recordings. Even so, ambulatory EMG re-
corders allow for recording the full spectrum of masticatory muscle
activity during sleep, and, as argued in the Background section, are
very potent alternatives for PSG-AV for large-scale studies and/or
multiple night recordings. Given the above, it seems reasonable to
suggest the use of a different scoring strategy for PSG- and EMG-
derived recordings. This follows the line of reasoning by Manfredini
et al.9 who suggested that a clear distinction should be made be-
tween sleep bruxism scored on PSG-AV recordings, that is PSG/SB,
and masticatory muscle activity scored on ambulatory EMG record-
ings, that is EMG/MMA. As pointed out in the same publication,9
the definition of a sleep bruxism event may need to shift from the
concept of events being related to microarousals as an exclusive
association,137 to events being a part of a spectrum of MMA in broader
sense, that is unrelated to other sleep variables, such as microarous-
als.9 Instead, EMG/MMA events, and the thresholds used to score
them, may need to be defined based on which clinical outcome is
investigated, for example tooth wear and pain.9,10 This topic will be
elaborated in the next section of this discussion.

Alongside with the issue of threshold validity, one should be
mindful of factors which may influence its reliable acquisition. An
overview of such factors will be given here, in order to assist the
ongoing discussion on the choice of an ideal threshold. Using the
MVC as a reference value to normalise EMG data is a common and
practical way in EMG analysis to overcome the issue of variability
in amplitudes between and within individuals.122,125,138 It allows
for the expression of the magnitudes of EMG tasks as percentages
of a reference value, instead of µV or mV.139 In the dental field, an
MVC is relatively easy to perform, for example by having the participant clench in the maximal intercuspal occlusion, or on materials such as rubber tubing, wax or cotton rolls. Differences in acquisition methods may affect the magnitude of the MVC. Mapelli et al. showed that clenching on an arch-shaped wax pad of 2 mm thickness produces MVCs of significantly higher amplitude and with better test–retest repeatability than clenching on cotton rolls of 10 mm thickness. Moreover, the lack of appropriate training and instruction of participants in performing maximal contractions have an important influence on the MVC and will most likely lead to submaximal contractions, and consequently to an overestimation of sleep bruxism events. Encouragement of study participants and visual feedback of provoked EMG activity can lead to achieving actual MVCs in healthy, pain-free individuals. In the home setting, such encouragement and feedback are not readily available, and investigators have little control on whether MVCs are performed correctly. In fact, it has been shown that MVCs can altogether be forgotten to be performed by a substantial number of study participants, resulting in not scorable recordings and subsequent data loss. New technologies, such as smartphone apps and online platforms, can prove extremely useful in this context, through providing reminders and instruction videos for performing the MVCs, and even real-time feedback regarding the EMG/MVC level.

Pain is another important factor that can influence the acquisition of an MVC. It is recommended that the MVC normalisation method is used in healthy individuals without pain and/or injuries, since these conditions will most likely lead to the performance of submaximal contractions. This is unfortunate for sleep bruxism studies, in which individuals with pain in the masticatory system are often investigated. It has been shown that the force, measured in N, which is exerted during maximal contraction on force transducers, is decreased in individuals with pain in the masticatory system, compared to pain-free controls. In addition, Manfredini et al. found that in individuals with myofascial pain the level of EMG activity of masticatory muscles was significantly lower compared to pain-free controls, during maximum clenching on cotton rolls. On the other hand, Lobbezoo et al. found that even though the EMG amplitude of a MVC in maximal intercuspal occlusion and on biting on a bilateral bite-force was lower in individuals with pain in the masticatory muscles compared to pain-free controls, this difference was not statistically significant. The authors do mention, however, that this lack of statistical significance may be related to the small sample size. Furthermore, Giannakopoulos et al. found an increase in maximum biting EMG activity in intercuspation after pain-reduction following treatment of non-dysfunctional myofascial TMD pain. Thus, it remains plausible that the MVC in masticatory muscles is affected by the presence of pain and that subsequently, a sleep bruxism scoring threshold that relies on MVC is not ideal in samples with pain. More research on the exact differences between the overall MVC levels of patients with pain as compared to pain-free individuals might allow the use of an ‘adjusted’ MVC threshold, that is an MVC threshold that is adjusted depending on the presence of pain. As another alternative, the use of submaximal EMG levels can be considered and has indeed been used in a number of studies included in this review. However, this method too can be sensitive for errors and will require careful training of study participants, as well as close monitoring of correct performance through, for example, real-time feedback practices, as discussed above.

On the other hand, the multiplication of the amplitude of background EMG has the advantage of being less demanding for the participant, hereby overcoming the issues of submaximal ‘maximal’ contractions, forgetting to perform MVCs, and influences of different MVC acquisition methods. In this sense, it may be an interesting threshold to be used in cases where cooperation is challenging, such as paediatric populations and individuals with developmental disabilities. This method has been recommended by the AASM for scoring sleep bruxism activity in PSG-AV recordings and seems a promising alternative for the %MVC methods. However, EMG activity of masticatory muscles is found to be higher during wakefulness, compared to sleep. What is more, the levels of background activity have been associated with the presence of chronic pain both during sleep, as well as wakefulness. More specifically, Raphael et al. showed in a PSG study a small, but statistically significant elevation of background EMG activity of masticatory muscles during sleep in patients with myofascial TMD pain, compared to controls. Moreover, the AASM guidelines recommend a period of at least 3 s of stable background EMG before a sleep bruxism event can be scored. However, variation of background EMG activity over the course of a night may occur, as a result of sweat, secretions of sebaceous glands and changes in conductance, with possible influences on scoring of events. As for muscle activity during wakefulness, Bodéré et al. found increased masticatory muscle EMG activity at rest for individuals with different types of oro-facial pain, that is myofascial and neuropathic, compared to controls. On the other hand, other studies have not found differences in EMG activity of masticatory muscles at rest in individuals with TMD pain or headache, compared to pain-free controls, nor between the EMG activity of masticatory muscles on the painful and non-painful sites in patients with unilateral myofascial pain. Thus, it is possible that the presence of pain is positively associated with differences in background EMG activity in sleep and awake states, and if so, using it as a threshold to score sleep bruxism events will lead to underdiagnosing sleep bruxism in individuals with pain.

Other thresholds, such as specific EMG amplitudes (μV), percentages of the highest occurring bursts, or bite-force thresholds, and the mean amplitude of swelling movements were encountered in included studies. EMG amplitude data are known to be influenced by a number of factors and can greatly vary between and within individuals; therefore, thresholds based on absolute amplitude values, such as 10 μV, are discouraged. The use of swelling movements, percentages of highest occurring bursts, as well as percentages of bite-force with corresponding EMG values deserve further research. The latter may be interesting specifically in the field of investigating clinical outcomes such as tooth wear and other dental complications, in which the degree of force applied to the dental tissues and/or materials is relevant for the occurrence of complications.
Taken together, based on the above discussion on factors with impact on MVC and background EMG activity values, it can be suggested that the MVC method is suitable for normalising EMG data, and as such a good threshold candidate. On the other hand, it has the drawbacks that its acquisition is influenced by participant cooperation and the presence of pain. A multiplication of background EMG activity is less depending on participant compliance, but may also be influenced by wake–sleep state, as well as the presence of pain. Alternatives include, amongst others, percentages of highest occurring bursts, swallowing, etc. Clearly, more research is needed before broad consensus can be reached on this topic.

4.5 | Sleep bruxism outcomes

The results of this review showed that sleep bruxism outcome variables fell into three categories, viz. representing frequency, duration and intensity of MMA, or a combination of two or more categories. Current visions on sleep bruxism assessment support that different sleep bruxism variables, representing different expressions of muscle work, could be related to different clinical outcomes. As a speculative example, it may be plausible that when investigating pain as a health outcome, frequency and duration of MMA are important predictor variables, whereas duration and intensity could be more relevant in a study on tooth wear or failures of dental restorations. In the latter case, the duration and type of tooth contact would also be interesting predictor variables. A pivotal first step for further development of this concept is the choice of an appropriate threshold for scoring activity on the EMG signal. Next steps could include the classification of EMG devices according to the type of MMA outcomes they are able to assess, in a way similar to the classification of obstructive sleep apnoea devices for out-of-centre testing.

Furthermore, it was found that the RMMA term was used as a sleep bruxism outcome variable in nine studies. As discussed above, defining only RMMA’s based on ambulatory EMG devices while ignoring other forms of MMA may not be a representative approach. Instead, clearly defined criteria for scoring EMG/MMA may be more relevant for future studies on the association between sleep bruxism (and sleep MMA in the broader sense) and health outcomes.

Taken together, and in line with previous publications, it is emphasised that in the field of research with ambulatory EMG recordings a) the focus may need to shift from the concept of scoring sleep bruxism, to that of scoring the whole spectrum of masticatory muscle activity, and b) masticatory muscle activity variables should carefully be selected, based on the assessed health outcome.

4.6 | Strengths and limitations

This scoping review has several strengths, the most important of which is its relevance for revealing the evolution of sleep bruxism research. It is the first review that provided a comprehensive and structured overview of signal acquisition and analysis methods used in sleep bruxism studies utilising ambulatory EMG recorders in the past five decades. As such, its results can form a reference point for the rapidly evolving research field of sleep bruxism and can assist researchers, and the industry, in the design and conduct of high-quality future studies, and in the further development of ambulatory EMG recorders. Furthermore, the results of the study also highlighted the diversity in sleep bruxism outcomes, the importance of scoring the whole spectrum of masticatory muscle activity during sleep and the subsequent need for working towards clearly defined scoring criteria.

Limitations need to be acknowledged as well. The most important is that relevant articles that did assess masticatory muscle activity during sleep but did not use the term ‘bruxism’ may possibly have been missed by our search strategy. This is a limitation that needs to be accepted, since the starting point and main aim of the review was to address the topic of sleep bruxism. The issue of assessing sleep bruxism activity vs. the whole spectrum of masticatory muscle activity was extensively addressed in the discussion of this review, arguing that indeed, in the field of ambulatory EMG recordings, it may be more fruitful and clinically relevant to shift the focus towards a standardised assessment of the whole spectrum of MMA.

5 | CONCLUSION

The main conclusions of this scoping review per topic are as follows:

1. Recording hardware: Recording hardware was generally well described, and it is recommended that future studies continue to do so. Further development of simple, and if possible, wireless devices is encouraged.
2. Recording logistics: Ambulatory EMG devices are well suited for multiple night recordings. Reports of participant instructions in device handling and dealing with failed recordings were often lacking. Proper reporting hereof is recommended.
3. Signal acquisition: Basic elements of signal acquisition, for example amplifications factors, impedance and bandpass settings, were generally underreported. It is recommended that studies follow established surface EMG signal acquisition guidelines, and adequately report on those, or refer to a paper describing these.
4. Signal analysis: The part of the signal that was analysed, and rectification, signal processing and additional filtering of the signal were often underreported. Here too, adequate reporting it is highly recommended. Extensive variability was found for thresholds used to define sleep bruxism events, and further research on the topic that takes into consideration the limitations of each type of threshold is highly recommended.
5. Sleep bruxism outcomes: Outcomes represented frequency, duration and intensity of masticatory muscle activity, or a combination of two or more categories. Future studies need to take into consideration that variables scored on a signal acquired by an
ambulatory EMG device are different entities than those scored by PSG recordings. Finally, it is recommended that the focus may need to shift from the concept of scoring sleep bruxism events to that of scoring the whole spectrum of MMA.

ACKNOWLEDGEMENTS
This review is in part based on a closed meeting about the development of EMG standards and criteria for the assessment of bruxism, held in Bordeaux, France, on 17 March 2018 hosted by Sunstar Suisse SA. The authors want to thank Bart Bervoets, technician at the Academic Centre for Dentistry Amsterdam (ACTA), for his valuable and critical input on this manuscript.

CONFLICT OF INTEREST
Dr. Aarab reports grants from Sunstar Suisse SA and TKI Health Holland related to this work, and grants from SomnoMed-Goedegebuure and Vivisol BV outside of this work. Dr. Ahlberg has nothing to disclose. Dr. Baba has nothing to disclose. Dr. Carra has nothing to disclose. Dr. De Laat has nothing to disclose. Dr. Gallo has nothing to disclose. Dr. Lavigne reports free access to recording devices without any financial link. Dr. Lobbezoo reports grants from Sunstar Suisse SA, SomnoMed-Goedegebuure, Airway Management and Vivisol BV outside of this work. Dr. Manfredini has nothing to disclose. Dr. Svenvsson reports personal fees from Sunstar Suisse SA outside of this work. Dr. Thymi reports grants from Sunstar Suisse SA and TKI Health Holland related to this work.

AUTHOR CONTRIBUTIONS
All co-authors actively took part in the conceptualisation and preparation of this manuscript. MT performed the analysis of data and drafted a first version of the manuscript. FL, GA, JA, KB, MCC, LG, AL, DM, GL and PS revised the manuscript.

PEER REVIEW
The peer review history for this article is available at https://publon.com/publon/10.1111/joor.13170.

DATA AVAILABILITY STATEMENT
The data that were used for the synthesis of results in this manuscript are available as an online appendix.

REFERENCES
1. Lobbezoo F, Ahlberg J, Glaros AG, et al. Bruxism defined and graded: an international consensus. J Oral Rehabil. 2013;40(1):2-4.
2. Lobbezoo F, Ahlberg J, Raphael KG, et al. International consensus on the assessment of bruxism: report of a work in progress. J Oral Rehabil. 2018;45:837-844.
3. Carra MC, Huyhn N, Lavigne G. Sleep bruxism: a comprehensive overview for the dental clinician interested in sleep medicine. Dent Clin North Am. 2012;56(2):387-413.
4. Carra MC, Huyhn N, Lavigne G. Diagnostic accuracy of sleep bruxism scoring in absence of audio-video recording: a pilot study. Sleep Breath. 2015;19(1):183-190.
5. Lavigne GJ, Rompre PH, Poirier G, Huard H, Kato T, Montplaisir JY. Rhythmic masticatory muscle activity during sleep in humans. J Dent Res. 2001:80(2):443-448.
6. Reding GR, Zepelin H, Robinson JE Jr, Zimmerman SO, Smith VH. Nocturnal teeth-grinding: all-night psychophysiologic studies. J Dent Res. 1968;47(5):786-797.
7. Kato T, Thie NMR, Montplaisir JY, Lavigne G. Bruxism and orofacial movements during sleep. Dent Clin North Am. 2001;45(4):657-684.
8. Dutra KM, Pereira F Jr, Rompre PH, Huyhn N, Fleming N, Lavigne GJ. Oro-facial activities in sleep bruxism patients and in normal subjects: a controlled polygraphic and audio-video study. J Oral Rehabil. 2009;36(2):86-92.
9. Manfredini D, Ahlberg J, Wetselaar P, Svenvssson P, Lobbezoo F. The bruxism construct: from cut-off points to a continuum spectrum. J Oral Rehabil. 2019;46:991-997.
10. Manfredini D, Ahlberg J, Aarab G, et al. Towards a Standardized Tool for the Assessment of Bruxism (STAB)—overview and general remarks of a multidimensional bruxism evaluation system. J Oral Rehabil. 2020;47:549-556.
11. Haketa T, Baba K, Akishige S, Fueki K, Kino K, Ohyama T. Utility and validity of a new EMG-based bruxism detection system. Int J Prosthodont. 2003;16:422-428.
12. Ono Y, Suganuma T, Shinya A, Furuya R, Baba K. Effects of sleep bruxism on periodontal sensation and tooth displacement in the molar region. Cranio. 2008;26(4):282-286.
13. Minakuchi H, Sogawa C, Hara ES, et al. Comparison of platelet serotonin transporter activity in subjects with severe sleep bruxism and control. J Prosthodont Res. 2014;58(4):217-222.
14. Yamaguchi T, Mikami S, Saito M, Okada K, Gotouda A. A newly developed ultraminiature wearable electromyogram system useful for analyses of maseteric activity during the whole day. J Prosthodont Res. 2018;62(1):110-115.
15. Thymi M, Verhoeft M, Visscher C, Lobbezoo F. Patient-based experiences with the use of an ambulatory electromyographic device for the assessment of masticatory muscle activity during sleep. J Oral Rehabil. 2020;47:557-566.
16. Casett E, Réus JC, Stuginski-Barbosa J, et al. Validity of different tools to assess sleep bruxism: a meta-analysis. J Oral Rehabil. 2017;44(9):722-734.
17. Carra MC, Huyhn NT, El-Khatib H, Remise C, Lavigne G. Sleep bruxism, snoring, and headaches in adolescents: short-term effects of a mandibular advancement appliance. Sleep Med. 2013;14:656-661.
18. Raphael K, Janal MN, Siros D, et al. Masticatory muscle sleep background EMG activity is elevated in myofascial TMD patients. J Oral Rehabil. 2013;40(12):883-891.
19. Iwasaki LR, Gonzalez YM, Liu H, Marx DB, Gallo LM, Nickel JC. A pilot study of ambulatory masticatory muscle activities in temporomandibular joint disorders diagnostic groups. Orthod Craniofac Res. 2015;18(Suppl. 1):146-155.
20. Muzalev K, Lobbezoo F, Janal MN, Raphael KG. Inter-episode sleep bruxism intervals and myofascial face pain. Sleep. 2017;40(8): zsx-078. https://doi.org/10.1093.sleep/zsx078.
21. Camparis CM, Formigoni G, Teixeira MJ, Bittencourt LR, Tufik S, de Siqueira JT. Sleep bruxism and temporomandibular
disorder: clinical and polysomnographic evaluation. Arch Oral Biol. 2006;51(9):721-728.

22. Yachida W, Castrillon EE, Baad-Hansen L, et al. Craniofacial pain and jaw-muscle activity during sleep. J Dent Res. 2012;91(6):562-567.

23. Baad-Hansen L, Thymi M, Lobbezoo F, Svensson P. To what extent is bruxism associated with musculoskeletal signs and symptoms? A systematic review. J Oral Rehabil. 2019;46(9):845-861.

24. Raphael KG, Santiago V, Lobbezoo F. Is bruxism a disorder or a behaviour? Rethinking the international consensus on defining and grading of bruxism. J Oral Rehabil. 2016;43(10):791-798.

25. Raphael KG, Santiago V, Lobbezoo F. Bruxism is a continuously distributed behaviour, but disorder decisions are dichotomous (Response to letter by Manfredini, De Laat, Winocur, & Ahlberg (2016)). J Oral Rehabil. 2016;43(10):802-803.

26. Association ASD. ASDA standards of practice: portable recording in the assessment of obstructive sleep apnea. Sleep. 1994;17(4):372-377.

27. Collop NA, Anderson WM, Boehlecke B, et al. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable Monitoring Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2007;3(7):737-747.

28. Koyano K, Tsukiyama Y, Ichiki R, Kuwata T. Assessment of bruxism in the clinic. J Oral Rehabil. 2008;35(7):495-508.

29. Lavigne GJ, Rompre PH, Montplaisir JY. Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study. J Dent Res. 1996;75(1):546-552.

30. Castrorollo T, Bargellini A, Rossini G, Cugliari G, Deregibus A, Schmitter M, Kares-Vrincianu A, Kares H, Bermejo JL, Schindler HJ. Sleep- associated aspects of myofascial pain in the orofacial area among Temporomandibular Disorder patients and controls. J Oral Rehabil. 2015;42(10):721-728.

31. Stuginski-Barbosa J, Porporatti AL, Costa YM, Svensson P, Conti PC. Diagnostic validity of the use of a portable single-channel electromyography device for sleep bruxism. Sleep. 2016;20(2):695-702.

32. Baad-Hansen L, Jadidi F, Castrillon EE, Thomsen PB, Svensson P. Effect of a nociceptive trigeminal inhibitory split on electromyographic activity in jaw closing muscles during sleep. J Oral Rehabil. 2007;34(2):105-111.

33. Yamaguchi T, Abe S, Rompre PH, Manzini C, Lavigne GJ. Comparison of ambulatory and polysomnographic recording of jaw muscle activity during sleep in normal subjects. J Oral Rehabil. 2012;39(1):2-10.

34. Lavigne GJ, Rompre PH, Poirier G, Huard H, Kato T, Montplaisir JY. Rhythmic masticatory muscle activity during sleep in humans. J Dent Res. 2001;80(2):443-448.

35. Saito M, Yamaguchi T, Mikami S, et al. Weak association between sleep bruxism and obstructive sleep apnea. A sleep laboratory study. Sleep Breath. 2015;20(2):703-709.

36. Muzalev K, Visscher CM, Koutris M, Lobbezoo F. Long-term variability of sleep bruxism and psychological stress in patients with jaw-muscle pain: report of two longitudinal clinical cases. J Oral Rehabil. 2018;45(2):104-109.

37. Jadidi F, Castrillon EE, Svensson P. Effect of conditioning electrical stimuli on temporals electromyographic activity during sleep. J Oral Rehabil. 2008;35(3):171-183.

38. Ware JC, Rugh JD. Destructive bruxism: sleep stage relationship. Sleep. 1988;11(2):172-181.

39. Baba K, Hakea T, Sasaki Y, Ohyama T, Clark GT. Association between masseter muscle activity levels recorded during sleep and signs and symptoms of temporomandibular. J Orofac Pain. 2005;19(3):226-231.

40. Miettinen T, Myllymaa K, Muraja-Murro A, et al. Polysomnographic scoring of sleep bruxism events is accurate even in the absence of video recording but unreliable with EMG-only setups. Sleep Breath. 2020;24(3):893-904.

41. Van Der Zaag J, Lobbezoo F, Visscher CM, Hamburger HL, Naeije M. Time-variant nature of sleep bruxism outcome variables using ambulatory polysomnography: implications for recognition and therapy evaluation. J Oral Rehabil. 2008;35(8):577-584.

42. Lavigne GJ, Guitard F, Rompre PH, Montplaisir JY. Variability in sleep bruxism activity over time. J Sleep Res. 2001;10:237-244.

43. Tankisi H, Burke D, Cui L, et al. Standards of instrumentation of EMG. Clin Neurophysiol. 2020;131:243-258.

44. Hugger A, Hugger S, Schindler HJ. Surface electromyography of the masticatory muscles for application in dental practice. Current evidence and future developments. Int J Comput Dentistry. 2008;11:81-106.

45. Merletti R. Standards for reporting EMG data. J Electromyogr Kinesiol. 1999;9(1):III-IV.

46. Armijo-Olivo S, Gadotti I, Kornerup M, Lagravere M, Flores-Mir C. Quality of reporting masticatory muscle electromyography in 2004: a systematic review. J Oral Rehabil. 2007;34:397-405.

47. Lobbezoo F, Aarab G, Ahlers MO, et al. Consensus-based clinical guidelines for ambulatory electromyography and contingent electrical stimulation in sleep bruxism. J Oral Rehabil. 2020;47(2):164-169.

48. Manfredini D, Ahlberg J, Castrorollo T, Poggio CE, Guarda-Nardini L, Lobbezoo F. Diagnostic accuracy of portable instrumental devices to measure sleep bruxism: a systematic literature review of polysomnographic studies. J Oral Rehabil. 2014;41(11):836-842.

49. Yamaguchi T, Mikami S, Maeda M, et al. Portable and wearable electromyographic devices for the assessment of sleep bruxism and awake bruxism: a literature review. Cranio. 2020;1-9.

50. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J. 2009;26(2):91-108.

51. Armstrong R, Hall BJ, Doyle J, Waters E. Cochrane update. ‘Scoping the scope’ of a cochrane review. J Public Health. 2011;33(1):147-150.

52. Jadidi F, Castrillon EE, Nielsen P, Baad-Hansen L, Svensson P. Effect of contingent electrical stimulation on jaw muscle activity during sleep: a pilot study with a randomized controlled trial design. Acta Odontol Scand. 2013;71(5):1050-1062.

53. Lee SJ, McCall WD Jr, Kim YK, Chung SC, Chung JW. Effect of botulinum toxin injection on nocturnal bruxism: a randomized controlled trial. Am J Phys Med Rehabil. 2010;89(1):16-23.

54. Mude AH, Kawakami S, Kato S, Minagi S. Properties of tonic episodes of masseter muscle activity during waking hours and sleep in subjects with and without history of orofacial pain. J Prosthodont Res. 2018;62(2):234-238.

55. Saueressing AC, Mainieri VC, Grossi PK, et al. Analysis of the influence of a mandibular advancement device on sleep and sleep bruxism scores by means of the BiteStrip and the Sleep Assessment Questionnaire. Int J Prosthodont. 2010;23(3):204-213.

56. Schmitter M, Kares-Vrincianu A, Kares H, Bermejo JL, Schindler HJ. Sleep-associated aspects of myofascial pain in the orofacial area among Temporomandibular Disorder patients and controls. Sleep Med. 2015;16(9):1056-1061.

57. Shimada A, Castrillon EE, Svensson P. Revisited relationships between probable sleep bruxism and clinical muscle symptoms. J Dent. 2019;50300-5712(19):30022-30023.

58. Abekura H, Yokomura M, Sadamori S, Hamada T. The initial effects of occlusal splint vertical thickness on the nocturnal EMG activities of masticatory muscles in subjects with a bruxism habit. Int J Prosthodont. 2008;21(2):116-120.

59. Khawaja SN, McCall W, Dunford R, et al. Infield masticatory muscle activity in subjects with pain-related temporomandibular disorders diagnosed. Orthod Craniofac Res. 2015;18(Suppl. 1):137-145.

60. Wei F, Van Horn MH, Coombs MC, et al. A pilot study of nocturnal temporalis muscle activity in TMD diagnostic groups of women. J Oral Rehabil. 2017;44(7):517-525.

61. Zhou W-N, Fu H-Y, Du Y-F, et al. Short-term effects of repetitive transcranial magnetic stimulation on sleep bruxism - a pilot study. Int J Oral Sci. 2016;8(1):61-65.
62. Conti PC, Stuginski-Barbosa J, Bonjardim LR, Soares S, Svensson P. Contingent electrical stimulation inhibits jaw muscle activity during sleep but not pain intensity or masticatory muscle pressure pain threshold in self-reported bruxers: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(1):45-52.

63. Hammoudi W, Trulsson M, Smedberg JI, Svensson P. Phenotypes of patients with extensive tooth wear—a novel approach using cluster analysis. J Dent. 2019;82:22-29.

64. Jonsgar C, Hordvik PA, Berge ME, Johansson AK, Svensson P, Johansson A. Sleep bruxism in individuals with and without attrition-type tooth wear: an exploratory matched case-control electromyographic study. J Dent. 2015;43(12):1504-1510.

65. Clark GT, Beemsterboer P, Rugh JD. The treatment of nocturnal bruxism using contingent EMG feedback with an arousal task. Behav Res Ther. 1981;19:451-455.

66. Needham R, Davies SJ. Use of the Grindcare(R) device in the management of nocturnal bruxism: a pilot study. Br J Dent. 2013;215(1):E1.

67. Raphael KG, Janal MN, Sirois DA, Svensson P. Effect of contingent electrical stimulation on masticatory muscle activity and pain in patients with a myofascial temporomandibular disorder and sleep bruxism. J Orofac Pain. 2013;27(1):21-31.

68. Thymi M, Visscher CM, Wismeijer D, Lobbezoo F. Associations learned from a clinical study. BDJ Open. 2020;6(1): https://doi.org/10.1038/s41405-020-0028-6.

69. Takaoka R, Ishigaki S, Yatani H, Ogata S, Hayakawa K. Evaluation of genetic factors involved in nocturnal electromyographic activity of masticatory muscles in twins. Clin Oral Investig. 2017;21(1):319-325.

70. Thymi M, Shimada A, Lobbezoo F, Svensson P. Clinical jaw-muscle symptoms in a group of probable sleep brusers. J Dent. 2019;85:81-87.

71. Carvalho Bortoletto C, da Silva C, FdCCS M, et al. Evaluation of electromyographic signals in children with bruxism before and after therapy with Melissa Officinalis L—a randomized controlled clinical trial. J Phys Ther Sci. 2016;28:738-742.

72. Castro Mattia PR, Panitz Selaimen CM, Teixeira ER, Fagondes SC, Grossi ML. The effects of sleeping with or without prostheses on sleep quality, sleep bruxism, and signs of obstructive sleep apnea syndrome: a pilot study. Int J Prosthodont. 2018;31(3):197-205.

73. Karakoulaki S, Tortopidis D, Andreadis D, Koidis P. Relationship between sleep bruxism and temporomandibular disorders in children with bruxism before and tooth wear: an electromyographic study. J Oral Facial Pain Headache. 2019;33(2):199-204.

74. Manfredini D, Lombardo L, Visentin A, Arreghini A, Siciliani G. Correlation between sleep-time masseter muscle activity and tooth wear: an electromyographic study. J Oral Facial Pain Headache. 2019;33(2):199-204.

75. Ohlmann B, Waldecker M, Leckel M, et al. Correlations between sleep bruxism and temporomandibular disorders. J Clin Med. 2020;9(2):611.

76. Matsuda S, Yamaguchi T, Mikami S, Okada K, Gotouda A, Sano K. Effect of invisible orthodontic retainers on masticatory muscles and periodontal sensation in the molar region: a pilot study. J Oral Med Oral Pathol Oral Radiol. 2019;85:81-87.

77. Miyawaki S, Tanimoto Y, Araki Y, Katayama A, Imai M, Takano-Shimizu M. Prediction of sleep bruxism: comparison between an electromyographic and electrocardiographic analysis. 2014;41(3):163-169.

78. Deregibus A, Castroflorio T, Bargellini A, Debernardi C, Manfredini D. Detection of sleep bruxism: comparison between an electromyographic and electrocardiographic portable holter and polysomnography. J Oral Rehabil. 2014;41(3):163-169.

79. Deregibus A, Castroflorio T, Bargellini A, Debernardi C. Reliability of a portable device for the detection of sleep bruxism. Clin Oral Investig. 2014;18(8):2037-2043.

80. Manfredini D, Arreghini A, Lombardo L, et al. Assessment of anxiety and coping features in bruxers: a portable electromyographic and electrocardiographic study. J Oral Facial Pain Headache. 2016;80(3):249-254.

81. Manfredini D, Lombardo L, Vigiani L, Arreghini A, Siciliani G. Effects of invisible orthodontic retainers on masticatory muscles during sleep: a controlled trial. Prog Orthod. 2018;19(1):24.

82. Minakuchi H, Sogawa C, Miki H, et al. Stress determined by saliva biomarkers and tooth wear: an exploratory matched case-control study. J Oral Med Oral Pathol Oral Radiol. 2012;113(5):612-617.

83. Palinkas M, Seidel Coscarella L, Hiromo Hotta T, et al. Influence of sleep bruxism severity on masticatory efficiency: electromyographic analysis. Arch Ital Biol. 2019;157(2-3):59-65.

84. Camara-Souza MB, de Figueredo OMC, Rodrigues Garcia RCM. Association of sleep bruxism with oral health-related quality of life and sleep quality. Clin Oral Investig. 2019;23(1):245-251.

85. Deregibus A, Castroflorio T, Bargellini A, Debernardi C. Relationship between sleep bruxism and mandibular advancement device use on sleep and sleep bruxism. J Clin Med. 2019;8:2037-2043.

86. Deregibus A, Bargellini A, Debernardi C, Manfredini D. Detection of sleep bruxism: comparison between an electromyographic and electrocardiographic portable holter and polysomnography. J Oral Rehabil. 2014;41(3):163-169.

87. Saueressig AC, Grossi PK, et al. Analysis of the influence of a mandibular advancement device on masticatory muscle activity during sleep: a controlled trial. Prog Orthod. 2018;19(1):24.

88. Mizumori T, Sumiya M, Kobayashi Y, Rammelsberg P, Schmitter M. Are there associations between sleep bruxism, chronic stress, and sleep quality? J Dent. 2018;74:101-106.

89. Matsuda S, Yamaguchi T, Mikami S, Okada K, Gotouda A, Sano K. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers - comparison with gum chewing. Cranio. 2016;34(4):234-241.

90. Suganuma T, Uno Y, Shinoya A, Furuya R. The effect of bruxism on periodontal sensibility in the molar region: a pilot study. J Prosthetic Dentistry. 2007;98(1):30-35.

91. Saito-Murakami K, Sato M, Otsuka H, Miura H, Terada N, Fujisawa M. Daytime masticatory muscle electromyography biofeedback regulates the phasic component of sleep bruxism. J Oral Rehabil. 2020;47(7):827-833.

92. Miyawaki S, Tanimoto Y, Araki Y, Katayama A, Fujii A, Takano-Yamamoto T. Association between nocturnal bruxism and gastro-esophageal reflux. Sleep. 2003;26(7):888-892.

93. Miyawaki S, Tanimoto Y, Araki Y, Katayama A, Imai M, Takano-Yamamoto T. Associations between sleep time masseter muscle activity and sleep positions. Am J Orthod Dentofacial Orthop. 2004;126(5):615-619.

94. Ikeda T, Nishigawa K, Kondo K, Takeuchi H, Clark GT. Criteria for the detection of sleep-associated bruxism in humans. J Orofac Pain. 1996;10:270-282.
140. Mapelli A, Tartaglia GM, Connelly ST, Ferrario VF, De Felicio CM, Sforza C. Normalizing surface electromyographic measures of the masticatory muscles: comparison of two different methods for clinical purpose. J Electromyogr Kinesiol. 2016;30:238-242.
141. Prasad S, Paulin M, Cannon RD, Palla S, Farella M. Smartphone-assisted monitoring of masticatory muscle activity in freely moving individuals. Clin Oral Investig. 2019;23:3601–3611.
142. Testa M, Geri T, Pitance L, et al. Alterations in jaw clenching force control in people with myogenic temporomandibular disorders. J Electromyogr Kinesiol. 2018;43:111-117.
143. Kogawa EM, Calderon PS, Lauris JR, Araujo CR, Conti PC. Evaluation of maximal bite force in temporomandibular disorders patients. J Oral Rehabil. 2006;33(8):559-565.
144. Manfredini D, Cocilovo F, Favero L, Ferronato G, Tonello S, Guarda-Nardini L. Surface electromyography of jaw muscles and kinesiographic recordings: diagnostic accuracy for myofascial pain. J Oral Rehabil. 2011;38(11):791-799.
145. Lobbezoo F, van der Glas H, van der Bilt A, Buchner R, Bosman F. Sensitivity of the jaw-jerk reflex in patients with myogenous temporomandibular disorder. Arch Oral Biol. 1996;41(6):553-563.
146. Giannakopoulos NN, Rauer AK, Hellmann D, Hugger S, Schmitter M, Hugger A. Comparison of device-supported sensorimotor training and splint intervention for myofascial temporomandibular disorder pain patients. J Oral Rehabil. 2018;45(9):669-676.
147. Okura K, Kato T, Montplaisir JY, Sessle BJ, Lavigne GJ. Quantitative analysis of surface EMG activity of cranial and leg muscles across sleep stages in human. Clin Neurophysiol. 2006;117(2):269-278.
148. Bodere C, Tea SH, Giroux-Metges MA, Woda A. Activity of masticatory muscles in subjects with different orofacial pain conditions. Pain. 2005;116(1–2):33-41.
149. Nicholson RA, Townsend DR, Gramling SA. Influence of a scheduled-waiting task on EMG reactivity and oral habits among facial pain patients and no-pain controls. Appl Psychophysiol Biofeedback. 2000;25(4):203-219.
150. Ong JC, Nicholson RA, Gramling SA. EMG reactivity and oral habits among young adult headache sufferers and painfree controls in a scheduled-waiting task. Appl Psychophysiol Biofeedback. 2003;28(4):255-265.
151. Manfredini D, Cocilovo F, Stellini E, Favero L, Guarda-Nardini L. Surface electromyography findings in unilateral myofascial pain patients: comparison of painful vs non pain. Pain Med. 2013;14:1848-1853.
152. Collop NA, Tracy SL, Kapur V, et al. Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation. J Clin Sleep Med. 2011;7(5):531-548.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Thymi M, Lobbezoo F, Aarab G, et al. Signal acquisition and analysis of ambulatory electromyographic recordings for the assessment of sleep bruxism: A scoping review. J Oral Rehabil. 2021;48:846–871. https://doi.org/10.1111/joor.13170