Development of a method to extract protozoan DNA from black soil

Kanako Yamanouchi *, Masahiro Takeuchi, Hiroaki Arima, Takakiyo Tsujiguchi

Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan

ARTICLE INFO

Article info

Article history:
Received 10 September 2018
Received in revised form 14 December 2018
Accepted 17 December 2018

Keywords:
Soil
DNA
Protozoan
PCR inhibitor
Allophane
Epidemiological survey

ABSTRACT

Objectives: Microorganisms in environmental samples are identified by sequential screening, isolation, and culture steps, followed by the verification of physiological characteristics and morphological classification. Isolation and purification of Amoebae from soil samples is extremely complex, laborious, and time-consuming and require considerable expertise for morphological evaluation. PCR testing of soil DNA seems to be an effective means for protozoa habitat screening. In this study, we added Acanthamoeba sp. (MK strain) to soil and developed a method of extracting protozoan DNA from the soil.

Methods: Soil allophane is a known DNA adsorbing substance that inhibits the PCR reaction. After comparing the soil properties and allophane contents of 7 soil samples, we attempted to combine multiple cell disruption and DNA purification methods to design an optimal soil DNA extraction method that can be used for downstream PCR analysis.

Results: We compared five different crushing/refining methods. Amplification of the gene was confirmed by Acanthamoeba specific PCR in protocol V where the concentration of Acanthamoeba in soil (1.0×10^2 g$^{-1}$) was the detection limit of PCR.

Conclusion: The soil DNA extraction method following protocol V allows DNA amplification of protozoa, including Amoeba, which is difficult to cultivate, thus simplifying the investigation of protozoa habitats and genetic analyses.

© 2018 Published by Elsevier Ltd on behalf of World Federation of Parasitologists. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Microorganisms in environmental samples are identified by sequential screening, isolation, and culture steps, followed by verification of their physiological characteristics and morphological classification (Garland and Mills, 1991; Shi-Ying et al., 2018; Yamanouchi et al., 2018a; Dahal et al., 2018). Isolation of the unicellular protozoan, Amoeba, from soil is particularly challenging, time-consuming, labor-intensive, and requires complex culture purification techniques and significant expertise for morphological evaluation (Denet et al., 2017; Shokri et al., 2016; Yamanouchi et al., 2018b). Some soil amoebae are pathogenic to humans (Yamanouchi et al., 2018b; Pinna et al., 2017), and their isolation by culture methods is necessary for evaluation of their habitat and ecology. However, the generation time of amoeba is much longer than that of bacteria, and it is very difficult to avoid bacterial or fungal contamination in isolates using such methods (Yamanouchi et al., 2018b; Niyyati et al., 2016). Additionally, off-

* Corresponding author.
E-mail addresses: kanako.8@hirosaki-u.ac.jp (K. Yamanouchi), bb55417001@ms.nagasaki-u.ac.jp (H. Arima), r.tsuji@hirosaki-u.ac.jp (T. Tsujiguchi).

https://doi.org/10.1016/j.parepi.2018.e00081
2405-6731 © 2018 Published by Elsevier Ltd on behalf of World Federation of Parasitologists. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
target events may occur frequently when amoeba isolated from soil is selected based on morphology and used for species-specific PCR identification (Yamanouchi et al., 2018b; Niyati et al., 2016; Saburi et al., 2017). In this study, we collected DNA of soil amoebae and attempted to design a DNA extraction method for soil screening.

In recent years, DNA extraction from soil and comprehensive analysis of soil microbial environment by next generation sequence analysis has been actively researched and utilized in agricultural, ecological, and environmental studies (Shokralla et al., 2012; Rodrigues et al., 2013; Jacobsen and Hjelmsæ, 2014). As a result, extracting environmental DNA (eDNA), particularly in bacteriological studies, has gained special focus and a large number of kits for extracting soil DNA are offered by manufacturers worldwide. Soil DNA extraction methods using such kits are classified into direct and indirect extraction methods (Gabor et al., 2003; Delmont et al., 2011; Courtois et al., 2001). The indirect method consists of recovering microbial fractions from soil followed by DNA extraction unlike the direct method that, as the name suggests, involves extracting DNA directly from the soil. The indirect extraction methods typically have lower soil contamination but also reduced yield of extractable DNA. In contrast, the direct extraction method has a higher yield of DNA but with significant soil contaminants. Although several physical, enzymatic, and chemical strategies have been adopted for cell disruption, issues such as DNA yield, length, and purity need to be resolved. Furthermore, soil in Japan contains rare volcanic ash (Aomine and Yoshinaga, 1955). Volcanic ash black soil has a global distribution of less than 1%. In contrast, more than 40% of the fields in Japan contain volcanic ash black soil (Takahashi and Shoji, 2001). Studies show that black soil contains large amounts of activated aluminum (allophane) (Zhang et al., 2017; Parfitt and Kimble, 1988), which adsorbs the extracted DNA, making it difficult to collect DNA and use in an experimental system such as PCR (Saeki et al., 2011; Yu-Tuan et al., 2014).

In this study, we attempted to design an optimal protocol for extracting large protozoan DNA in soil habitats using ISOIL (Nippon Gene, Japan), a DNA collection kit suitable for black soil typical to Japan.

2. Material and methods

2.1. Soil collection and soil specific gravity measurement

Six soil specimens were collected in Japan from fields, nature park and 7 specimens including 1 commercially available soil for gardening were included in the experiment. In the soil, 100 ml (Vt) of soil was collected by removing the vegetation and dead leaves of the surface layer. The collected samples were thoroughly dried at 60 °C, overnight, followed by measurement of the mass (Ms), and the dry bulk density (\(\frac{\rho_d}{ml} \)) was calculated as\(\frac{Ms}{Vt} \). The dry bulk density of volcanic ash soil (black soil) is smaller than 1/ml, because of the high organic matter content (Soane, 1990).

2.2. Determination of soil properties based on feel

Soil properties were determined using 7 categories of international classification method based on soil texture and feel (Table 1) (Gabor et al., 2003).

2.3. Measurement of allophane degree of soil specimens

Allophane test is a method for measuring active aluminum (allophane), and it is often used for characterizing black soil (Japanese Society of Pedology, 2010; Bracewell et al., 1970). A small amount of soil was rubbed vigorously with the fingertips on a phenolphthalein paper and a sodium fluoride solution was added dropwise and observed for color change.

2.4. Construction of DNA extraction protocol

Soil sample #7 was used for designing the protocol. A mixture of Acanthamoeba MK strain with 1.0 × 10^5/g was added to the sample followed by DNA extraction. Protocols I and II involved removal of DNA adsorption factor by skimmed milk and protocols III and IV involved the use of glass beads (\(\Phi 0.35 \) mm) to increase DNA yield by the indirect extraction method. Protocol V was created from the results of protocols I–IV.

In protocol V, physical disintegration with glass beads (\(\Phi 0.35 \) mm) was attempted in addition to SDS Lysis Buffer for the chemical lysis of cells in the direct DNA extraction method. For DNA precipitation method, polyethylene glycol (PEG) and isopropanol,

Table 1
Soil seven taxonomy by soil plasticity.
Soil classification (international law)
Sand: s
Sandy loam: SL
Loam: L
Silt loam: Sl
Clay loam: Cl
Light clay: LiC
Heavy clay: HC
Table 2

Protocol list for soil DNA extraction.

Extraction steps	Protocols I	Protocols II	Protocols III	Protocols IV	Protocols V
1	10 g of soil was placed in a 50 ml conical tube, *Acanthamoeba* MK strain (1.0 × 10^6 amoeba) was added, physiological saline was added and well agitated.	10 g of soil was placed in a 50 ml conical tube, *Acanthamoeba* MK strain (1.0 × 10^6 amoeba) was added, and then 400 mg of skim milk and 4 g of glass beads were added.	Soil solution was allowed to stand for 5 min, and 30 ml of supernatant was recovered.	Soil solution was allowed to stand for 5 min, and 30 ml of supernatant was recovered.	Soil solution was allowed to stand for 5 min, and 30 ml of supernatant was recovered.
2	The soil solution was filtered with 2 pieces of gauze and centrifuged at 2300 g rpm for 10 min at room temperature.	The soil solution was filtered with 2 pieces of gauze and centrifuged at 2300 g rpm for 10 min at room temperature.	The soil sediment was taken in medicine packaging paper and dried for about 2 h.	Soil sediment 0.5 g + Skim milk 20 mg	Soil sediment 0.5 g + Skim milk 20 mg + Glass beads 20 mg
3	The supernatant was centrifuged at 2300 g rpm for 5 min, and the precipitate was recovered. The precipitate was dried for 2 h.	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg + Glass beads 20 mg
4	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg + Glass beads 20 mg
5	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg	Soil dried sediment 0.5 g + Skim milk 20 mg + Glass beads 20 mg
6	The supernatant was centrifuged at 9000 g rpm for 20 min, room temperature.	The supernatant was centrifuged at 9000 g rpm for 20 min, room temperature.	The supernatant was transferred to a new 50 ml conical tube, 1/2 amount of 30% PEG-1.6 M NaCl was added and the mixture was vortexed and then allowed to stand overnight at room temperature.	The supernatant was transferred to a new 50 ml conical tube, 1/2 amount of 30% PEG-1.6 M NaCl was added and the mixture was vortexed and then allowed to stand overnight at room temperature.	The supernatant was transferred to a new 50 ml conical tube, 1/2 amount of 30% PEG-1.6 M NaCl was added and the mixture was vortexed and then allowed to stand overnight at room temperature.
7	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini
8	DNA extraction with ISOIL				
9	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini	DNA extraction (dissolved in 600 μl of pH 8.0 TE Buffer) with QIAamp DNA Mini
10	DNA extraction with ISOIL				
11	DNA extraction with ISOIL				
which are reported to have a lower coprecipitation rate of allophane than ethanol, were used. Protocols I–V are described in Table 2. The extracted DNA was used for *Acanthamoeba*-specific-PCR.

2.5. Qualitative and quantitative evaluation of extracted DNA using protocol (I–V)

DNA quantity for each protocol was measured using a NanoDrop® 1000 (Thermo Fisher Scientific, USA), and agarose gel (1.2%) electrophoresis. The purity was determined using the 260/230 and 260/280 absorbance ratios.

2.6. Investigation of the usefulness of protocol V to Japanese soil

We investigated whether the DNA, extracted using protocol V was compatible with PCR. *Acanthamoeba* MK strain with 10×10^5/g was added to the 7 soil samples, followed by DNA extracted using protocol V. Subsequently, the extracted DNA was used for *Acanthamoeba* specific PCR.

2.7. Detection sensitivity of DNA extracted with protocol V

A spike sample containing 1.0×10^1 to 10^5 with *Acanthamoeba* MK Strain added to soil No. 7 (10 g) was prepared. DNA extraction was performed using protocol V for spike samples followed by *Acanthamoeba*-specific-PCR.

2.8. Conditions for *Acanthamoeba*-specific-PCR

JDP1/JDP2 primer sets and AmpliTaq Gold DNA Polymerase with Buffer II (Thermo Fisher Scientific, USA) were used for *Acanthamoeba*-specific-PCR in this study. PCR conditions were as follows: 35 cycles of thermal denaturation at 95 °C for 10 s; annealing at 55 °C for 30 s; and elongation at 72 °C for 60 s (Dyková et al., 1999). PCR products were identified with gel electrophoresis on a 1.2% agarose gel (Takara Bio, Japan) performed with 5 μl of the reaction solution.

3. Results

3.1. Determination of soil property and allophane degree

Table 3 shows result of the soil temporary specific gravity, soil property and allophane measurement. Allophane detection was high in No. 2 and No. 5 soil.

Sample No.	Soil property (plasticity)	Allophane test	dry bulk density (g/ml)
1	Loam	+	1.09
2	Sandy Loam	++	1.23
3	Sandy Loam	±	1.13
4	Silt Loam	+	0.82
5	Silt Loam	++	0.76
6	Light Clay	±	0.89
7	Clay Loam	±	NA

±: After a while it is weakly colored. +: Immediate coloring, but its extent is weak. ++: Color immediately and vividly. +++: Instantly color very clearly. NA: Not Available.

Table 3

Results of judgment of soil property, soil type and allophane degree.

Protocol no.	DNA yield (ng/μl)	A260/280	A260/230
I	99.78	2.17	0.21
II	122.2	2.04	0.25
III	23.93	NA	0.05
IV	26.12	NA	0.06
V	110.9	1.92	1.63

NA: Not Available.
3.2. Comparison of DNA quantity and purity by soil DNA extraction protocol

The amount of DNA for each extraction protocol was shown in Table 2. We observed an increase in DNA yield in protocols I and II using the direct extraction method, compared to indirect extraction methods used in protocols III and IV. DNA yield in protocol II, to which skimmed milk was added, was greater than that in protocol I. Protocol IV, using glass beads increased the DNA yield moderately compared to III (Table 4). Although DNA yield could be increased by skimmed milk and glass beads, amplification of *Acanthamoeba* gene was impossible in protocols I–IV. In protocol V, DNA was extracted by direct extraction method where skimmed milk and glass beads were also added. PEG and isopropanol were used to precipitate DNA. DNA yield in protocol V showed an improved A_{260/230} ratio. The peak absorbance was at 260 nm in protocol V in contrast with protocols I to IV where the absorbance peaked at 230 nm, implying higher purity of DNA extracted in protocol V (Fig. 1).

3.3. PCR results of DNA extraction protocol (I–V)

DNA extracted in protocols I, II and IV failed to produce any PCR signal. In protocol III, we observed a thin band. In protocol V, we were able to confirm the amplification of the gene most clearly (Fig. 2-A).

![Fig. 1. Comparison of DNA quantity and purity of soil DNA extraction protocol by Nono drop 1000.](image1)

![Fig. 2. Agarose electrophoresis of *Acanthamoeba*-specific-PCR.](image2)

(A) PCR of extracted DNA with protocol I–V. Lane 1) 100 bp ladder (Nippon gene, Japan), Lane 2) Protocol I, Lane 3) Protocol II, Lane 4) Protocol III, Lane 5) Protocol IV, Lane 6) Protocol V. (B) PCR of spike sample DNA extracted with protocol V. Lane 1) 100 bp ladder (Nippon gene, Japan), Lane 2) 1.0 × 10^5 amebas/10 g soil, Lane 3) 1.0 × 10^4 amebas/10 g soil, Lane 4) 1.0 × 10^3 amebas/10 g soil, Lane 5) 1.0 × 10^2 amebas/10 g soil, Lane 6) 1.0 × 10 amebas/10 g soil. (C) PCR of soil No. 1-7 DNA extracted with protocol V. Lane 1) 100 bp ladder (Nippon gene, Japan), Lane 2) No. 1, Lane 3) No. 2, Lane 4) 1 No. 3, Lane 5) No. 4, Lane 6) No. 5, Lane 7) No. 6, Lane 8) No. 7.)
Gene amplification was confirmed in all spiked samples (soil # 7 to which Acanthamoeba MK strain was added). However, the band was difficult to identify when the added amount was less than 1.0×10^3/g (Fig. 2-B).

We examined the effectiveness of protocol V in soil with varying properties and allophane content. In soil # 1 through 7, Acanthamoeba MK strain was added at 1.0×10^3/g and soil DNA was extracted with protocol V. Acanthamoeba gene amplification was confirmed in DNA from all seven soil samples (Fig. 2-C).

4. Discussion

In this study, we extracted PCR-compatible DNA using protocol V from all 7 soil specimens. To create protocol V, we first verified protocols I–IV individually for the yield and purity of DNA. Between protocols I and II, an increase in DNA yield was observed with protocol II supplemented with skimmed milk. Although the mechanism is unknown, skimmed milk is adsorbed as a substitute by the DNA adsorbing substance contained in the soil resulting in increased DNA yield (Takada and Matsumoto, 2005; Volossiouk et al., 1995). In both protocols I and II, the absorbance of the DNA solution showed a value of $A_{260/280}$ (standard value: 1.8 or more) of 2.0 or greater indicating that the samples did not contain any significant protein impurities. However, we did not observe any gene amplification signal from the soil DNA of protocols I and II using the JDP 1/2 primer set. This may be due to low $A_{260/230}$ (reference value: 1.8 or more) ratios of the samples implying the presence of contaminants such as phenols and allophane that could have inhibited PCR in the DNA obtained with protocols I and II (Labarca and Paigen, 1980). This result emphasized on the requirement of a new protocol to remove contaminants. Therefore, in order to increase the degree of DNA purification, we created protocol III consisting of a two-step purification strategy using QIAamp DNA Mini kit and ISOIL. Amplification of DNA was observed in protocol III, but since the yield of extracted DNA was low, protocol IV was conducted to perform a strong disruption with glass beads. In protocol IV, DNA yield increased but the PCR amplification was negative. Our results from protocols III and IV suggested that although glass bead-based disruption is an effective strategy to increase DNA yield, indirect extraction using soil sediment or a two-step purification method using two kits reduces DNA yield and increases costs. This may not be feasible in epidemiological research where typically larger number of samples require to be tested.

Based on the results from protocols I–IV, we created a new protocol V, in which skimmed milk and glass beads were added to the soil and the final refining was done with ISOIL. In addition, isopropanol and PEG are reported to be superior to alcohols because they do not coprecipitate allophane (Takada and Matsumoto, 2005). Protocols I–IV use indirect extraction with filtered soil sediment. And when comparing protocols I and II with III and IV, the purification step increased to two stages, in III and IV and approximately 90% of the DNA was lost. In protocol V with a three-step DNA precipitation, it was predicted that the DNA loss would be even higher. Therefore, we decided to adopt a direct extraction method using all soil components. As a result, although the DNA yield in protocol V was inferior to that obtained in protocols I and II, we managed to obtain highly purified DNA with $A_{260/280}$ of 1.92 and $A_{260/230}$ of 1.63. Furthermore, by applying this protocol V, DNA, extracted from all seven soil samples yielded positive signal from Acanthamoeba-specific-PCR. The variable allophane content and soil properties implied that it is possible to acquire PCR-compatible DNA purification and yield from multiple soil sources using protocol V. Although this protocol uses a DNA extraction kit suitable for Japanese domestic soil, it is possible that other kits can be applied. In this report, we do not investigate soil microorganisms using protocol V. However, we have already successfully applied this protocol to the habitat survey of Balamuthia mandrillaris, a microorganism reported to be present in the soil (Yamanouchi et al., 2018b). Thus, we believe that the DNA collected by this method can be used for biological surveys in multiple soil types. Also, this protocol does not require high-speed centrifugation steps at the production stage using the 10 g soil prior to using the kit, and thus can be easily used for epidemiological research in developing countries where facilities are not sufficient.

Acknowledgements

This work was supported by a Grant-in-aid for Scientific Research for Young Scientists (JSPS KAKENHI Grant Number 18K17349) and Interdisciplinary Collaborative Research Grant for Young Scientists, Hirosaki University.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Aomine, S., Yoshinaga, N., 1955. Clay minerals of some well-drained volcanic ash soils in Japan. Soil Sci. 79 (5), 349–358.

Bracewell, J.M., Campbell, A.S., Mitchell, B.D., 1970. An assessment of some thermal and chemical techniques used in the study of the poorly-ordered aluminosilicates in soil clays. Clay Miner. 8 (3), 325–335.

Courtois, S., Frostegård, A., Göransson, P., Depret, G., Jeannin, P., Simonet, P., 2001. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ. Microbiol. 3 (7), 431–439.

Dahal, R.H., Chaudhary, D.K., Kim, J., 2018. Rhodanobacter hydrolyticus sp. nov., a novel DNA– and tyrosine-hydrolysing gammaproteobacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 68 (8), 2580–2586. https://doi.org/10.1099/ijs.0.002881.

Delmont, T.O., Robe, P., Clark, I., Simonet, P., Vogel, T.M., 2011. Metagenomic comparison of direct and indirect soil DNA extraction approaches. J. Microbiol. Methods 86 (3), 397–400. https://doi.org/10.1016/j.mimet.2011.06.013.
Denet, E., Coupat-Goutaland, B., Nazaret, S., Pelandakis, M., Favre-Bonté, S., 2017. Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol. Res. 116 (11), 3151–3162. https://doi.org/10.1007/s00436-017-5632-6.

Dyková, I., Lom, J., Schroeder-Diedrich, J.M., Booton, G.C., Byers, T.J., 1999. Acanthamoeba strains isolated from organs of freshwater fishes. J. Parasitol. 85 (6), 1106–1113.

Gabor, E.M., de Vries, E.J., Janssen, D.B., 2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol. Ecol. 44 (2), 153–163. https://doi.org/10.1016/S0168-6496(02)00462-2.

Garland, J.L., Mills, A.L., 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57 (8), 2351–2359.

Jacobsen, C.S., Hjelmsø, M.H., 2014. Agricultural soils, pesticides and microbial diversity. Curr. Opin. Biotechnol. 27, 15–20. https://doi.org/10.1016/j.copbio.2013.09.003.

Japanese Society of Pedology, 2010. Soil Survey Handbook. Hakubunkan Shinsha Publishers (Chapter 4).

Labarca, C., Paigen, K., 1980. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102 (2), 344–352.

Niyyati, M., Karami, S.A., Morales, J.L., Lasjerdi, Z., 2016. Isolation of Balamuthia mandrillaris from soil samples in North-Western Iran. Parasitol. Res. 115 (2), 541–545.

Parfitt, R.L., Kimble, J.M., 1988. Conditions for formation of allophane in soils. Soil Sci. Soc. Am. J. 53 (3), 971–977. https://doi.org/10.2136/sssaj1989.03615995005300030057x.

Pinna, A., Porcu, T., Boscia, F., Cano, A., Erre, G., Mattana, A., 2017. Free-living amoebae keratitis. Cornea 36 (7), 785–790. https://doi.org/10.1097/ICO.0000000000001226.

Rodrigues, J.L., Pellizari, V.H., Mueller, R., Baek, K., Jesus, J.E., Paula, F.S., Mirza, B., Hamaoui, G.S., Feigl, B., Tiedje, J.M., Bohannan, B.J., Nüsslein, K., 2013. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 110 (3), 988–993. https://doi.org/10.1073/pnas.1220608110.

Saburi, E., Rajaii, T., Behdari, A., Kohansal, M.H., Vazini, H., 2017. Free-living amoebae in the water resources of Iran: a systematic review. J. Parasit. Dis. 41 (4), 919–928. https://doi.org/10.1007/s12639-017-0950-2.

Saeki, K., Kunito, T., Sakai, M., 2011. Effect of Tris-HCl buffer on DNA adsorption by a variety of soil constituents. Microbes Environ. 26 (1), 88–91.

Shi-Ying, Z., Cong, F., Yong-Xia, W., Yun-Sheng, X., Wei, X., Xiao-Long, C., 2018. Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Can. J. Microbiol. (27) https://doi.org/10.1139/cjm-2017-0571.

Soane, B.D., 1990. The role of organic matter in soil compactibility: a review of some practical aspects. Soil Tillage Res. 16 (1), 179–201.

Takada, Y., Matsumoto, N., 2005. Skim milk drastically improves the efficacy of DNA extraction from andisol, a volcanic ash soil. Agric. Environ. 39 (4), 247–252.

Takahashi, T., Shoji, S., 2001. Distribution and classification of volcanic ash soil. Glob. Environ. Res. 10, 83–95.

Volossiouk, T., Robb, E.J., Nazar, R.N., 1995. Direct DNA extraction for PCR-mediated assays of soil organisms. Appl. Environ. Microbiol. 61 (11), 3972–3976.

Yamanouchi, K., Arima, H., Sakamoto, Y., Kanto, K., Kasai, K., Ito, K., Inaba, T., 2018b. First report of the isolation of Balamuthia mandrillaris in the northern region of Japan. Parasitol. Res. 117 (9), 2895–2900. https://doi.org/10.1007/s00436-018-5980-x.

Yamanouchi, K., Sakamoto, Y., Fujoka, M., Kasai, K., Tsuguchi, T., Kimura, T., Shimazu, M., Kato, A., Ito, K., 2018a. The effects of Pantoea and Kosakonia isolated from buckwheat sprouts on obese mice. Appl. Microbiol.: Open Access 4 (1). https://doi.org/10.4172/2471-9315.1000146.

Yuan, L., David, J.L., Churchman, G.J., Schipper, A., Louis, Rawlence, Nicolas J., Cooper, Alan, 2014. Carbon storage and DNA adsorption in allophanic soils and paleosols. Soil Carbon, 163–172 https://doi.org/10.1007/978-3-319-04084-4_17.

Zhang, J., Xiao, J., Li, S., Ran, W., 2017. Manure amendment increases the content of nanomineral allophane in an acid arable soil. Sci. Rep. 7 (1), 14256. https://doi.org/10.1038/s41598-017-14445-2.