INFINITE RANK OF ELLIPTIC CURVES OVER \mathbb{Q}^{ab}

BO-HAE IM AND MICHAEL LARSEN

Abstract. If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then $E(\mathbb{Q}^{ab})$ has infinite rank. If E is an elliptic curve in Legendre form, $y^2 = x(x - 1)(x - \lambda)$, where $\mathbb{Q}(\lambda)$ is a cubic field, then $E(\mathbb{K}^{ab})$ has infinite rank. If $\lambda \in K$ has a minimal polynomial $P(x)$ of degree 4 and $v^2 = P(u)$ is an elliptic curve of positive rank over \mathbb{Q}, we prove that $y^2 = x(x - 1)(x - \lambda)$ has infinite rank over \mathbb{K}^{ab}.

1. Introduction

In [2], G. Frey and M. Jarden proved that every elliptic curve E/\mathbb{Q} has infinite rank over \mathbb{Q}^{ab} and asked whether the same is true for all abelian varieties. For a general number field K (not necessarily contained in \mathbb{Q}^{ab}), the question would be whether every abelian variety A over K is of infinite rank over \mathbb{K}^{ab}. An affirmative answer to this question would follow from an affirmative answer to the original question, since every \mathbb{Q}^{ab}-point of the Weil restriction of scalars $\text{Res}_{K/\mathbb{Q}} A$ gives a \mathbb{K}^{ab}-point of A. We specialize the question to dimension 1.

Question 1. If E is an elliptic curve over a number field K, must E have infinite rank over \mathbb{K}^{ab}?

Specializing further to the case that K is abelian over \mathbb{Q}, the question can be reformulated as:

Question 2. Does every elliptic curve over \mathbb{Q}^{ab} have infinite rank over \mathbb{Q}^{ab}?

In a recent paper [6], E. Kobayashi considered Question 2 when $[K : \mathbb{Q}]$ is odd. In this setting, she gave an affirmative answer, conditional on the Birch-Swinnerton-Dyer conjecture.

We give an affirmative answer to Question 1 when E is defined over a field K of degree ≤ 4 over \mathbb{Q} and satisfies some auxiliary condition.

Date: February 8, 2012.

2000 Mathematics Subject Classification. 11G05.

Bo-Hae Im was supported by the National Research Foundation of Korea Grant funded by the Korean Government(MEST) (NRF-2011-0015557). Michael Larsen was partially supported by NSF grants DMS-0800705 and DMS-1101424.
In all of our results, we can replace \mathbb{Q}^{ab} by $\mathbb{Q}(2)$, the compositum of all quadratic extensions of \mathbb{Q}. Our strategy for finding points over $\mathbb{Q}(2)$ entails looking for \mathbb{Q}-points on the Kummer variety $\text{Res}_{K/\mathbb{Q}}E/(\pm 1)$ by looking for curves of genus ≤ 1 on that variety. When K is a quadratic field, $\text{Res}_{K/\mathbb{Q}}E$ is an abelian surface isomorphic, over \mathbb{C}, to a product of two elliptic curves. Our construction of a curve on the Kummer surface $\text{Res}_{K/\mathbb{Q}}E/(\pm 1)$ is modelled on the construction of a rational curve on $(E_1 \times E_2)/(\pm 1)$ due to J-F. Mestre [7] and to M. Kuwata and L. Wang [5]. For $[K : \mathbb{Q}] = 3$, our proof depends on an analogous construction of a rational curve on $(E_1 \times E_2 \times E_3)/(\pm 1)$ which is presented in [4]. We do not know of any rational curve on $(E_1 \times E_2 \times E_3 \times E_4)/(\pm 1)$ for generic choices of the E_i, but [4] constructs a curve of genus 1 in this variety.

2. A Geometric Construction

We now recall a geometric construction of a curve in

$$(E_1 \times \cdots \times E_n)/(\pm 1),$$

where (± 1) acts diagonally on the product.

Lemma 3. Let \bar{K} be a separably closed field with $\text{char}(\bar{K}) \neq 2$ and for an integer $n \geq 2$, let E_1, \ldots, E_n be pairwise non-isomorphic elliptic curves over \bar{K}. Then $E_1 \times \cdots \times E_n)/(\pm 1)$ contains a curve X whose normalizer has genus

$$g_n := 2^n - 3(n - 4) + 1.$$

In particular, $g_2 = g_3 = 0$ and $g_4 = 1$.

Proof. Let E_i be written in Legendre form: for $i = 1, 2, \ldots, n$,

$$E_i : y_i^2 = x_i(x_i - 1)(x_i - \lambda_i), \ \lambda_i \in \bar{K}.$$

Since the E_i are non-isomorphic over \bar{K}, the λ_i are distinct.

Considering $E_1 \times \cdots \times E_n$ as a $(\mathbb{Z}/2\mathbb{Z})^n$-cover of

$$E_1/(\pm 1) \times \cdots \times E_n/(\pm 1) \cong (\mathbb{P}^1)^n,$$

we examine the inverse image in (1) of \mathbb{P}^1 embedded diagonally in $(\mathbb{P}^1)^n$.

An affine open set of the resulting curve has coordinate ring

$$\begin{cases}
 z_{12}^2 = x^2(x - 1)^2(x - \lambda_1)(x - \lambda_2) \\
 \vdots \\
 z_{1n}^2 = x^2(x - 1)^2(x - \lambda_1)(x - \lambda_n),
\end{cases}$$
with \(z_{i2} = y_1 y_2, \ldots, z_{in} = y_1 y_n \) fixed under the action of \((\pm 1)\). A projective non-singular model is given in homogeneous coordinates by

\[
C_n : \begin{cases}
u^2 = (v - \lambda_1 t)(v - \lambda_2 t), \\
\vdots \\
u_{n-1}^2 = (v - \lambda_1 t)(v - \lambda_n t).
\end{cases}
\]

Then by the Riemann-Hurwitz formula, the genus \(g_n \) of \(C_n \) is given by

\[
2g_n - 2 = 2n - 2\gamma + n2^{n-2}.
\]

If \(n = 2 \) or \(n = 3 \), then \(g_n = 0 \) and if \(n = 4 \), then \(g_n = 1 \). This completes the proof.

It is difficult to tell when this construction produces a curve with infinitely many rational points over \(\mathbb{Q} \). We do not use Lemma 3 directly in what follows, but it motivates the apparently \textit{ad hoc}, explicit constructions of the remainder of the paper. Each of the following sections deals with them and the quadratic case in Section 3 shows a concrete construction which motivates other cases.

3. The Quadratic Case

We begin with a lemma.

Lemma 4. Let \(k \) be a non-negative integer and \(Q(u, v) \in \mathbb{Q}[u, v] \) a homogeneous polynomial of degree \(2(2k + 1) \) satisfying the functional equation

\[
Q(mu, v) = m^{2k+1}Q(v, u)
\]

for a fixed squarefree integer \(m \neq 1 \). Then \(Q(u, v) \) cannot be a perfect square in \(\mathbb{C}[u, v] \).

Proof. Let \(i \) be the largest integer such that \(v^i \) divides \(Q(u, v) \). If \(i \) is odd, \(Q(u, v) \) cannot be a perfect square in \(\mathbb{C}[u, v] \). We therefore assume that \(i = 2j \). Without loss of generality, we may assume that the \(u^{4k+2-2j}v^{2j} \) coefficient is 1. If \(q(u, v) \) is a square root of \(Q(u, v) \) over \(\mathbb{C} \), then the \(u^{2k+1-j}v^j \)-coefficient of \(q(u, v) \) is \(\pm 1 \). Every automorphism \(\sigma \) of the complex numbers sends \(q(u, v) \) to \(\pm q(u, v) \). However, \(\sigma \) fixes the \(u^{2k+1-j}v^j \) coefficient of \(q(u, v) \), so \(\sigma \) fixes \(q(u, v) \), which means \(q(u, v) \in \mathbb{Q}[u, v] \). From the given functional relation, \(q(u, v) \) satisfies

\[
q(mu, v) = \pm \sqrt{m}(m^k q(v, u)),
\]

which gives a contradiction since \(\sqrt{m} \not\in \mathbb{Q} \). \(\square \)

Theorem 5. Let \(E : y^2 = P(x) := x^3 + \alpha x + \beta \) be an elliptic curve defined over a quadratic extension \(K \) of \(\mathbb{Q} \). If the \(j \)-invariant of \(E \) is not 0 or 1728, then \(E(\mathbb{Q}^{ab}) \) has infinite rank.
Proof. Let \(K = \mathbb{Q}(\sqrt{m}) \), where \(m \in \mathbb{Z} \) is a square-free integer, and \(E : y^2 = P(x) := x^3 + \alpha x + \beta \) an elliptic curve defined over \(K \). By the hypothesis on the \(j \)-invariant, \(\alpha \neq 0 \) and \(\beta \neq 0 \). Replacing \(\alpha \) and \(\beta \) by \(\lambda^4 \alpha \) and \(\lambda^6 \beta \) for suitable \(\lambda \in K \), we may assume without loss of generality that \(\alpha, \beta \not\in \mathbb{Q} \).

Let \(\alpha = a + c\sqrt{m} \) and \(\beta = b + d\sqrt{m} \) for \(a, b, c, d \in \mathbb{Q}, c, d \neq 0 \). Then for \(x_1 := -\frac{d}{c} \in \mathbb{Q} \), we have \(P(x_1) \in \mathbb{Q} \), and
\[
\left(x_1, \sqrt{P(x_1)} \right) \in E \left(\mathbb{Q}(\sqrt{P(x_1)}) \right) \subseteq E \left(\mathbb{Q}^{ab} \right).
\]

Now by substituting \(\alpha \) by \(\gamma^4 \alpha \) and \(\beta \) by \(\gamma^6 \beta \) for \(\gamma \in K \) such that \(\gamma^4 \alpha, \gamma^6 \beta \not\in \mathbb{Q} \), we get an isomorphism over \(K \) between \(E \) and the elliptic curve
\[
E_\gamma : y^2 = P_\gamma(x) := x^3 + \gamma^4 \alpha x + \gamma^6 \beta.
\]

For each such \(\gamma = u + v\sqrt{m} \) for \(u, v \in \mathbb{Q} \), we get a point
\[
\left(\gamma^{-2} x_\gamma, \gamma^{-3} \sqrt{P_\gamma(x_\gamma)} \right) \in E \left(K(\sqrt{P(x_\gamma)}) \right) \subseteq E \left(\mathbb{Q}^{ab} \right),
\]
where \(x_\gamma \in \mathbb{Q} \) and \(P_\gamma(x_\gamma) \in \mathbb{Q} \).

Now we show that there are infinitely many quadratic fields \(L \) such that \(\mathbb{Q}(\sqrt{P(x_\gamma)}) = L \) for some \(\gamma \in K \).

For \(x \in \mathbb{Q} \), we expand \(P_\gamma(x) \) as \(R + I\sqrt{m} \) where \(R, I \in \mathbb{Q}[u, v, x] \) and we get
\[
I = xT_1(u, v) + S_1(u, v) \quad \text{and} \quad R = x^3 + xT_2(u, v) + S_2(u, v),
\]
where \(T_i \) and \(S_i \) are homogeneous polynomials in \(u \) and \(v \) over \(\mathbb{Q} \) of degree 4 and 6 respectively satisfying relations:
\[
T_i(mu, v) = m^2T_i(v, u), \quad S_i(mu, v) = m^3S_i(v, u).
\]

We solve the equation \(I = xT_1(u, v) + S_1(u, v) = 0 \) for \(x \) and get
\[
x_\gamma = -\frac{S_1(u, v)}{T_1(u, v)}.
\]

We then substitute this value of \(x \) into the rational part \(R \) of \(P_\gamma(x) \), and after clearing the denominator by multiplying by the square \((T_1(u, v))^4 \), we obtain the polynomial
\[
-T_1(u, v)(S_1(u, v))^3 + S_1(u, v)T_1(u, v)^2T_2(u, v) - S_2(u, v)T_1(u, v)^3,
\]
which we denote \(Q \). Thus, \(Q \) is homogeneous of degree 22 over \(\mathbb{Q} \) and from the relation (3), it satisfies

\[Q(mu, v) = m^{11}Q(v, u). \]

Note that by direct computation, the coefficients of the \(u^{22} \)-term and \(u^{21}v \)-term in \(Q(u, v) \) are respectively,

\[A_0 = c(-d^3 - ade^2 + bcd), \quad A_1 = 2(-6a^2 de^2 - 2ade^3 + 5abc^3 + mc^4d - 9cd^2b). \]

If \(Q(u, v) = 0 \), then \(A_0 = A_1 = 0 \). Since \(c \neq 0 \) and \(d \neq 0 \), we solve \(A_0 = 0 \) for \(a \) and substitute

\[a = \frac{bc^3 - d^3}{c^2d} \]

into \(A_1 = 0 \). Then we get

\[-b^2c^6 - 4c^3d^3b - 4d^6 + mc^6d^2 = 0, \]

whose discriminant in \(b \) is \(mc^{12}d^2 \) which is not a square in \(\mathbb{Q} \). Hence \(A_1 \neq 0 \). This shows that \(Q(u, v) \) cannot be identically zero. By Lemma 4, \(Q(u, v) \) cannot be a perfect square in \(\mathbb{C}[u, v] \).

Hence \(y^2 - Q(u, v) \) is irreducible over \(\mathbb{C} \).

Let \(f(t) \in \mathbb{Q}[t] \) be the polynomial of degree 22 in the variable \(t = u/v \) obtained by replacing \(Q(u, v) \) by \(Q(u, v)v^{-22} \). For a finite extension \(L \) of \(K \), we let

\[H(f, L) := \{ t' \in \mathbb{Q} : f(t') - y^2 \text{ is irreducible over } L \} \]

the intersection of \(\mathbb{Q} \) with the Hilbert set of \(f \) over \(L \). By the Hilbert irreducibility theorem ([3, Chapter 12]), such an intersection is non-empty.

Hence there exists \(\gamma_0 = u_0 + v_0\sqrt{m} \in K \) such that

\[L_0 := \mathbb{Q}\left(\sqrt{P_{70}(x_{70})}\right) = \mathbb{Q}\left(\sqrt{Q(u_{70}, v_{70})}\right) \]

is a quadratic field not contained in \(L \). Inductively, we get an infinite sequence of \(\gamma_k = u_k + v_k\sqrt{m} \) such that the fields

\[L_k = \mathbb{Q}\left(\sqrt{P_{\gamma_k}(x_{\gamma_k})}\right) = \mathbb{Q}\left(\sqrt{Q(u_{\gamma_k}, v_{\gamma_k})}\right) \]

are all linearly disjoint.

Let \(V \) be the set

\[V := \left\{ \left(\gamma_k^{-2}x_{\gamma_k}, \gamma_k^{-3}\sqrt{P_{\gamma_k}(x_{\gamma_k})}\right) \in E(K\left(\sqrt{P(x_{\gamma_k})}\right)) \right\}_{k=0}^{\infty}. \]

By [8, Lemma], the set \(\bigcup_{\left[L:K\right] \leq d} E(L)_{tor} \) is a finite set, where the union runs all over finite extensions \(L \) of \(K \) whose degree over \(K \) is less
than or equal to d. Therefore, V contains only finitely many torsion points. Then by linear disjointness of KL_i over K, non-torsion points $(\gamma_k^{-2}x, \gamma_k^{-3}\sqrt{P_\gamma(x)}) \in V$ are linearly independent in $E(K \mathbb{Q}^{ab})$. Therefore the rank of $E(K \mathbb{Q}(2))$ is infinite, therefore, the rank of $E(\mathbb{Q}^{ab}) \subseteq E(\mathbb{Q}^{ab})$ is infinite. \hfill \Box

4. THE CUBIC CASE

Theorem 6. Let λ denote an element of a cubic extension K of \mathbb{Q}. Then $E: y^2 = x(x - 1)(x - \lambda)$ has infinite rank over $K \mathbb{Q}^{ab}$.

Proof. If $\lambda \in \mathbb{Q}$, then we are done, so we assume that $\mathbb{Q}(\lambda) = K$.

Let

$$L(t) := t^3 - at^2 + bt - c$$

denote the minimal polynomial of λ. Expanding, we have

$$\left(\frac{b - t^2}{2} + (t - a)\lambda + \lambda^2\right)^2 = M(t) - L(t)\lambda,$$

where

$$M(t) := \frac{t^4 - 2bt^2 + 8ct + b^2 - 4ac}{4}.$$

Let

$$N(t) := L(t)M(t)(M(t) - L(t)).$$

Defining

$$x := \frac{M(t)}{L(t)},$$

$$y := \frac{\left(\frac{b - t^2}{2} + (t - a)\lambda + \lambda^2\right)}{L(t)^2} \sqrt{N(t)},$$

we verify by computation that $(x, y) \in K(t, \sqrt{N(t)})^2$ lies on E, i.e., belongs to $E(K(t, \sqrt{N(t)})$. Note that $\deg N = 11$, so $w^2 - N(t)$ is irreducible in $\mathbb{C}[w, t]$. Specializing t in \mathbb{Q}, and applying Hilbert irreducibility, as before, we obtain points of $E(KL_i)$ for an infinite sequence of quadratic fields L_i/\mathbb{Q}. It follows that E has infinite rank over $K \mathbb{Q}(2)$ and therefore over $K \mathbb{Q}^{ab}$. \hfill \Box
5. The Quartic Case

Theorem 7. Let λ denote an element generating a quartic extension K of \mathbb{Q}. Let $P(x)$ be the (monic) minimal polynomial of λ over \mathbb{Q}. If the genus 1 curve
\begin{equation}
 v^2 = P(u) := u^4 + pu^3 + qu^2 + ru + s
\end{equation}
is an elliptic curve of positive rank over \mathbb{Q}, then $E : y^2 = x(x-1)(x-\lambda)$ has infinite rank over $K\mathbb{Q}^{ab}$.

Proof. If (u, v) satisfies (5), then setting
\begin{align*}
 A(u, v) &= (2u^4 + pu^3 - ru - 2s)v \\
 &= 8u^6 + 8pu^5 + (p^2 + 4q)u^4 - (8s + 2pr)u^2 - 8psu + r^2 - 4qs \quad \text{and} \\
 B(u, v) &= (4u^3 + 3pu^2 + 2qu + r)v \\
 &= 4u^5 + 5pu^4 + (p^2 + 4q)u^3 + (4r + pq)u^2 + (4s + rp)u + ps, \\
 C(u, v) &= \frac{-2uv - 2u^3 - pu^2 + r}{2} + (v + u^2 + pu + q)\lambda + (u + p)\lambda^2 + \lambda^3,
\end{align*}
we have
\[C(u, v)^2 = A(u, v) - B(u, v)\lambda \]
by explicit computation. Thus, if $(u, v) \in \mathbb{Q}^2$, we have
\begin{equation}
 P_{(u, v)} := \frac{A(u, v)}{B(u, v)} C(u, v) \sqrt{\frac{A(u, v)(A(u, v) - B(u, v))}{B(u, v)^3}} \\
 \in E \left(K\mathbb{Q} \left(\sqrt{D(u, v)} \right) \right),
\end{equation}
where
\[D(u, v) := A(u, v)B(u, v)(A(u, v) - B(u, v)) \in \mathbb{Q}[u, v]. \]

We embed the function field F of (5) in the field of Laurent series $F_\infty := \mathbb{C}((t))$ by mapping u to $1/t$ and v to the square root of $P(u)$ in $\mathbb{C}((t))$ with principal term $1/t^2$. We choose the correct square root of $P(u)$ so that this defines a discrete valuation on F with respect to which $A(u, v)$, $B(u, v)$ and $A(u, v) - B(u, v)$ have value 6, 5, and 6 respectively. It follows that $F_\infty(\sqrt{D(u, v)}) = \mathbb{C}((t^{1/2}))$. This implies that $\sqrt{D(u, v)}$ does not lie in F. Therefore, $\sqrt{D(u, v)} \not\in F$. Let X denote the projective non-singular curve over \mathbb{C} with function field $F[z]/(z^2 - D(u, v))$. Then there exists a morphism from X to the projective non-singular curve with function field F, which is ramified.
at F_{∞}. It follows that the genus of X is at least 2. By Faltings’ theorem [1], $X(\mathbb{Q}(\sqrt{D}))$ is finite for all $D \in \mathbb{Q}$. If there are infinitely many \mathbb{Q}-points $\{Q_k := (u_k, v_k)\}_{k=1}^{\infty}$ on (5), their inverse images generate infinitely many different quadratic extensions of \mathbb{Q}, and so the points $\{P_{(u_k, v_k)}\}_{k=1}^{\infty}$ of E in (6) are defined over different quadratic extensions $K\mathbb{Q}(\sqrt{D(u_k, v_k)})$ of \mathbb{Q}. By [8, Lemma] again, it follows that $E(K\mathbb{Q}(2))$ has infinite rank. □

References

[1] Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366.
[2] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. (3) 28, 112–128 (1974).
[3] M. D. Fried and M. Jarden, Field arithmetic. Third edition. Revised by Jarden. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 11 (Springer-Verlag, Berlin), 2008.
[4] Bo-Hae Im, Positive Rank Quadratic Twists of Four Elliptic Curves, preprint, 2011.
[5] M. Kuwata and L. Wang, Topology of rational points on isotrivial elliptic surfaces, Int. Math. Res. Notices. 1993, No.4, 113–123.
[6] E. Kobayashi, A remark on the Mordell-Weil rank of elliptic curves over the maximal abelian extension of the rational number field, Tokyo J. Math. V.29, No. 2, 295–300 (2006).
[7] J.-F. Mestre, Rang de courbes elliptiques d’invariant donné. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 12, 919–922.
[8] J. H. Silverman, Integer points on curves of genus 1, J. London Math. Soc. (2) 28, (1983), 1–7.