Quantitative analysis of signaling responses during mouse primordial germ cell specification

Sophie M. Morgani*‡ and Anna-Katerina Hadjantonakis‡

ABSTRACT

During early mammalian development, the pluripotent cells of the embryo are exposed to a combination of signals that drive exit from pluripotency and germ layer differentiation. At the same time, a small population of pluripotent cells give rise to the primordial germ cells (PGCs), the precursors of the sperm and egg, which pass on heritable genetic information to the next generation. Despite the importance of PGCs, it remains unclear how they are first segregated from the soma, and if this involves distinct responses to their signaling environment. To investigate this question, we mapped BMP, MAPK and WNT signaling responses over time in PGCs and their surrounding niche in vitro and in vivo at single-cell resolution. We showed that, in the mouse embryo, early PGCs exhibit lower BMP and MAPK responses compared to neighboring extraembryonic mesoderm cells, suggesting the emergence of distinct signaling regulatory mechanisms in the germline versus soma. In contrast, PGCs and somatic cells responded comparably to WNT, indicating that this signal alone is not sufficient to promote somatic differentiation. Finally, we investigated the requirement of a BMP response for these cell fate decisions. We found that cell lines with a mutation in the BMP receptor (Bmpr1a+/−), which exhibit an impaired BMP signaling response, can efficiently generate PGC-like cells revealing that canonical BMP signaling is not cell autonomously required to direct PGC-like differentiation.

KEY WORDS: BMP, MAPK, WNT, Mouse embryo, Primordial germ cell

INTRODUCTION

Primordial germ cells (PGCs) are the embryonic precursors of the sperm and egg, required to pass on heritable genetic information to the next generation. Defects in PGC production result in infertility while transformed or incorrectly positioned PGCs may give rise to germ cell tumors (Pierce et al., 2018; Stevens, 1967; 1980; Giuliano et al., 2006). Thus, delineating the mechanisms that control PGC formation is essential to understand both development and disease.

In mouse, PGCs arise during early development when the pluripotent epiblast of the embryo is exposed to a myriad of signals (Morgani and Hadjantonakis, 2020) that direct most cells to adopt a somatic fate and only around 40 cells to become PGCs (Magnusdottir et al., 2013; Ohinata et al., 2005; Grable et al., 2013). While many of the signals that regulate PGC specification have been elucidated (Ohinata et al., 2009; Saitou and Yamaji, 2010; Senft et al., 2019), it is unclear how germline and soma identities emerge within a common signaling environment, how PGCs and their niche respond to these signals, and how signaling responses change over time.

To address this, we quantitatively analyzed the response of individual presumptive PGCs within the allantois and surrounding non-PGCs to key signals present within the embryo. We showed that PGCs displayed significantly lower Bone Morphogenetic Protein (BMP) and Mitogen-Activated Protein Kinase (MAPK) responses compared to non-PGCs, indicating cell type-specific modes of pathway regulation. In contrast, PGCs and non-PGCs responded comparably to WNT, demonstrating that PGCs are not refractory to all signals. Finally, we showed that embryonic stem cells (ESCs) defective in their canonical BMP signaling response efficiently generated PGC-like cells (PGCLCs). Hence, a canonical BMP response is not cell autonomously or non-cell autonomously required for PGCLC differentiation in vitro.

RESULTS AND DISCUSSION

Quantitative analysis of signaling responses during mouse PGCLC specification

Under defined in vitro conditions (Fig. 1A) (Hayashi et al., 2011), mouse ESCs generate PGCLCs that give rise to functional germ cells (Hayashi et al., 2011; 2012; Hikabe et al., 2016; Ishikura et al., 2016). We generated PGCLCs, as described (Hayashi et al., 2011), and identified by the co-expression of SOX2 and AP2γ (Fig. 1B), and cell surface markers SSEA-1 and CD61 (Fig. 1C,D) (Hayashi and Saitou, 2013). PGCLC aggregates displayed widespread SOX2 expression while AP2γ was expressed in only a subset of cells (Fig. 1B). Thus, we analyzed signaling responses in SOX2+ AP2γ+ cells, considered to be PGCLCs, as well as surrounding AP2γ− non-PGCLCs.

BMP signaling plays a critical role in germ cell specification. Mutations in genes encoding Bmp4, Bmp8, and Bmp2, and the downstream signaling effectors, Smad1 and Smad5, result in a loss or significant reduction in PGC number (Chang and Matzuk, 2001; Hayashi et al., 2002; Lawson et al., 1999; Tremblay et al., 2001; Ying et al., 2000; Ying and Zhao, 2001). However, these mutants also display defects in allantois formation and hence, in the absence of PGC-specific Cre drivers to generate conditional knockouts, it has been difficult to tease apart the requirement of BMP signaling for extraembryonic mesoderm versus PGC specification. Moreover, neither PGCLCs in vitro nor PGCs in vivo exhibit a canonical BMP signaling response (Senft et al., 2019; Dudley et al., 2007), further confounding this issue. Nevertheless, BMP responses have not been quantitatively analyzed at single-cell resolution hence it is unclear whether a fraction of PGCs may respond or if an earlier, transient
response occurs. To investigate this, we quantified protein levels of the downstream effector of BMP signaling, phosphorylated (p) SMAD1/5/9, in individual nuclei at days 2, 4, and 6 of PGCLC differentiation. SOX2+ AP2γ+ PGCLCs displayed significantly lower nuclear pSMAD1/5/9 than AP2γ− non-PGCLCs (Fig. 1E,F). Indeed, we did not identify any PGCLCs with clear nuclear-localized pSMAD1/5/9 (Fig. 1E,F). Furthermore, while the BMP signaling response increased in non-PGCLCs over time, it remained...
Quantitative analysis of signaling responses during PGC specification in vivo

The combination, dynamics, and dose of factors provided during PGCCLC differentiation in vitro, may not precisely recapitulate the signaling environment within the mouse embryo. Moreover, as the majority of AP2γ− non-PGCLCs expressed SOX2 (Fig. 1B), they likely represent a pluripotent EpiLC or earlier PGCCLC state, and thus do not mirror the in vivo PGC niche that comprises extraembryonic mesoderm. Therefore, we sought to investigate signaling responses in PGCs and their niche in the embryo. Presumptive SOX2+ AP2γ+ PGCs emerge within a posteriorly-localized extraembryonic structure known as the allantosts at around embryonic day 7.25 (Fig. 2A) (Ginsburg et al., 1990). While a dearth of cell type-specific markers for this population has impeded genetic lineage tracing experiments, live imaging revealed that the vast majority of these SOX2+ cells migrate along the hindgut toward the gonads (McDole et al., 2018). We isolated and analyzed mouse embryos at embryonic day E7.25, when SOX2+ AP2γ+ arise within the allantosts, and at E7.75, when they begin to migrate.

In contrast to PGCCLC aggregates, where only a subset of SOX2+ cells expressed AP2γ, SOX2 and AP2γ expression fully overlapped at these stages in vivo (Fig. 2A). As AP2γ immunofluorescence resulted in high levels of non-specific staining in the endoderm on the embryo’s surface (Fig. 2A), we used SOX2 to accurately identify this population. We isolated wild-type embryos, which we immunostained for pSMAD1/5/9, as well as Spry4H2B-Venus and TCF/Lef:H2B-GFP reporter embryos and measured signaling responses in SOX2+ PGCs, and SOX2− non-PGCs that were adjacent to PGCs (categorized as ‘Neighbors’), or non-adjacent (categorized as ‘Other’) in transverse cryosections of the allantosts (Fig. 2A–C). As in PGCCLCs, PGCs at E7.25 and E7.75 showed significantly lower levels of nuclear-localized pSMAD1/5/9 than both neighboring and non-neighboring SOX2− cells (Fig. 2D,E). Together these data suggest that a robust canonical BMP signaling response is not required cell autonomously in specified PGCs.

In vitro, FGF/MAPK signaling drives the reprogramming of PGCs to an earlier state of pluripotency (Chang et al., 2020). Conversely, MAPK inhibition supports PGC differentiation (Kimura et al., 2014). Thus, FGF/MAPK signaling activity is negatively correlated with a PGC identity. In keeping with this, at E7.25, PGCs displayed a significantly lower MAPK response than non-PGCs (Fig. 2F,G). By E7.75 this difference was no longer significant (Fig. 2G), suggesting that FGF/MAPK signaling does not destabilize PGC identity at later stages of development. Endoderm-localized migratory PGCs displayed a higher MAPK response than PGCs remaining within the allantost (Fig. 2G). The MAPK response was also higher in endoderm versus allantost (extraembryonic mesoderm) cells (Fig. 2G). Therefore, as PGCs migrate towards the gonads, they are exposed to an environment that promotes elevated MAPK signaling activity, consistent with studies.
showing that FGF regulates germ cell migration (Chang et al., 2020; Takeuchi et al., 2005). Nevertheless, this is at odds with reports that migrating PGCs are devoid of phosphorylated ERK, a component of the MAPK pathway (Grabole et al., 2013) and hence Spry4H2B-Venus expression may be affected by additional signaling inputs, such as WNT (Katoh and Katoh, 2006).

PGCs are specified in a signaling-rich environment that instructs the majority of cells to adopt a somatic non-PGC identity. One way
that PGCs might maintain their unique identity is via mechanisms that prevent them from detecting or responding to these signals. Nevertheless, while PGCs displayed reduced BMP and MAPK responses, they did respond to WNT. We previously showed that there was no difference in the WNT response in PGCLCs versus non-PGCLCs in vitro (Fig. 1L). However, E7.25 PGCs in vivo expressed higher levels of TCF/Lef:H2B-GFP than non-adjacent extraembryonic mesoderm cells (Fig. 2H). The significant differences in MAPK and WNT signaling responses in embryonic PGCs versus non-PGCs but not in PGCLC aggregates is presumably due to differences in the identity of non-PGC populations in vitro versus in vivo, highlighting the importance of these comparisons. At E7.75, migrating PGCs also exhibited a stronger WNT response than non-adjacent endoderm. Therefore, PGCs exhibited the strongest WNT response, followed by immediate neighbors, while non-neighboring, non-PGCs were least responsive. These data suggest that PGCs might be a source of WNT that activates autocrine and paracrine signaling in adjacent, but not more distant cells. Furthermore, these data indicate that, in the absence of robust BMP and MAPK responses, WNT signaling response does not drive somatic differentiation in BMP-fated cells.

BMP signaling response is not required for PGCLC specification

While BMP is required for PGC specification (Chang and Matzuk, 2001; Hayashi et al., 2002; Lawson et al., 1999; Tremblay et al., 2001; Ying et al., 2000; Ying and Zhao, 2001), and BMP4 and BMP8a (500 ng/µL) are exogenously provided during PGCLC differentiation (Hayashi et al., 2011), we and others showed that neither PGCLCs nor PGCs exhibit discernable nuclear-localized pSMAD1/5/9 (Fig. 1E,F and Fig. 2C,D) (Senft et al., 2019; Dudley et al., 2007). Thus, the requirement of BMP in germ cell differentiation is still unclear. Here we leveraged Bmpr1a−/− ESCs (Di-Gregorio et al., 2007) to ask whether a BMP signaling response is necessary for PGCLC differentiation. Bmpr1a is the most broadly and highly expressed BMP receptor within the pluripotent epiblast (Pijuan-Sala et al., 2019) and Bmpr1a−/− embryos exhibit little or no nuclear pSMAD1/5/9 (Mishina et al., 1995). As previously demonstrated (Di-Gregorio et al., 2007), in contrast to wild-type ESCs, Bmpr1a−/− ESCs did not display nuclear-localized pSMAD1/5/9 under standard serum/LIF culture conditions (Fig. 3A) or when treated with BMP4 for 2 h (Fig. 3B). Comparable observations were made with Bmpr1a−/− EpiLCs (Fig. 3C). We then exposed Bmpr1a−/− EpiLCs to PGCLC induction medium and showed that, likewise, Bmpr1a−/− PGCLC aggregates did not exhibit nuclear-localized pSMAD1/5/9 (Fig. 3D,E). Despite this, cells were formed that expressed AP2γ, SSEA-1 and CD61 (Fig. 3D,F,G), suggestive of a PGCLC identity. Bmpr1a−/− EpiLCs showed a higher percentage of SSEA-1+ CD61+ cells than wild-type EpiLCs prior to exposure to PGCLC medium, and accordingly displayed an earlier peak in this population during differentiation (Fig. 3G). Hence, we hypothesize that cells with a low BMP response may be predisposed towards a PGCLC fate. Consistent with this, we also noted an inverse correlation between the expression of the BMP pathway target Inhibitor of differentiation 1 (ID1) and the PGC marker AP2γ in wild-type ESCs (Fig. 3H).

Together, our data show that specified PGCs do not exhibit a canonical BMP signaling response (Fig. 1F and Fig. 2E) (Senft et al., 2019; Dudley et al., 2007) and early PGCLC precursors exhibit only minimal BMP signaling activity (Fig. 1G). Combined with our finding that BMP signaling defective (Bmpr1a−/−) ESCs efficiently generate PGCLCs, this suggests that either low-level BMP signaling activity is sufficient for PGC specification or alternatively that BMP signaling is not required cell autonomously for this process. As Bmpr1a−/− PGCLC differentiation occurred in the absence of wild-type cells, the requirement for BMP is also not via paracrine interactions with BMP-responsive cells within the niche and may instead be through non-canonical SMAD-independent downstream pathways (Derynick and Zhang, 2003; Zhang, 2009). Alternatively, as perturbation of BMP signaling in vivo causes the epiblast to prematurely adopt a neural identity (Di-Gregorio et al., 2007), BMP may be required to initially maintain the epiblast in a PGC competent state rather than being directly involved in PGC differentiation. This role could be masked in vitro where ESCs are forcibly maintained in a self-renewing state using LIF or 2i small molecule inhibitors (Hayashi et al., 2011).

Here, we have shown that PGC-specific signaling responses exist for a number of pathways. However, the important question remains as to how these distinct PGCs and soma responses are regulated. To date, single-cell transcriptomic studies of mouse embryos contain only a small number of PGCs with no spatial information, prohibiting clear conclusions about the relative expression levels of signaling pathway components within PGCs and their niche. Future PGC-enriched single-cell spatial transcriptomic studies may shed light on this. Still, as signaling responses are largely regulated at a post-transcriptional level, advances in single-cell proteomic techniques or the use of quantitative time and space resolved reporters as dynamic signaling readouts may be necessary to fully address these questions.

MATERIALS AND METHODS

Cell culture and PGCLC in vitro differentiation

Cells were maintained at 37°C, at 5% CO2 and 90% humidity. ESC lines were routinely cultured in serum/LIF medium [Dulbecco’s modified Eagle’s medium (DMEM)] (Gibco, Gaithersburg, MD, USA) containing 0.1 mM
non-essential amino-acids (NEAA), 2 mM glutamine and 1 mM sodium pyruvate, 100 U/ml Penicillin, 100 μg/ml Streptomycin (all from Life Technologies, Carlsbad, CA, USA), 0.1 mM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA), and 10% Fetal Calf Serum (FCS, F2442, Sigma-Aldrich) and 1000 U/ml LIF on plates coated with 0.1% gelatin, as described (Morgani et al., 2018b). The following cell lines were used in this study: E14 (129/Ola background) (Hooper et al., 1987), TCF/Lef:H2B-GFP (Ferrer-Vaquer et al., 2010), Spry4 H2B-Venus (Morgani et al., 2018a), and Bmpr1a−/− (Di-Gregorio et al., 2007).

In vitro PGCLC differentiation was performed as described (Hayashi et al., 2011). Briefly, ESCs were converted to an epiblast-like (EpiLC) state by 48-h culture in N2B27 medium containing 12 ng/ml FGF2 (233-FB-025, R&D Systems) and 20 ng/mL ACTIVIN A (120-14P, Peprotech, Rocky Hills, NJ, USA) on dishes coated with 16.7 μg/mL fibronectin (FC010, Millipore). Following EpiLC conversion, cells were trypsinized to a single cell suspension and 10,000 cells/mL were resuspended in PGCLC medium, comprising GMEM (Gibco), 0.1 mM NEAA, 2 mM glutamine and 1 mM sodium pyruvate, 100 U/mL Penicillin, 100 μg/mL Streptomycin, 0.1 mM 2-mercaptoethanol, 1000 U/mL LIF, 15% Knockout serum replacement, with 500 ng/mL BMP4, 500 ng/ml BMP8α, 100 ng/mL SCF, and 50 ng/mL EGF (all from R&D Systems) and 100 μL added per well of a low adherence round bottom 96-well plate in order to form floating cell aggregates.

Fig. 3. Canonical BMP signaling is not necessary for PGCLC differentiation. (A) Confocal optical sections of wild-type (Bmpr1a+/+) and Bmpr1a−/− ESCs immunostained for pSMAD1/5/9 (pS1/5/9) after culture under standard conditions or after a 2-h treatment with 50 ng/ml BMP4. (B,C) Quantification of pSMAD1/5/9 levels in wild-type and Bmpr1a−/− ESCs and epiblast-like cells (EpiLCs) from five distinct fields of view. Each point represents a single cell. Data represented as median and interquartile range. Student’s t-test was performed on average fluorescence level in each field. n=2 replicates. (D) Confocal MIP of wild-type and Bmpr1a−/− PGCLC aggregates. Each point represents a single cell. Data represented as median and interquartile range. Student’s t-test was performed on average fluorescence level per aggregate (n=3 aggregates). (E) Flow cytometry of wild-type and Bmpr1a−/− aggregates at Day 2 of PGCLC differentiation. SSEA-1+ CD61+ cells represent PGCLCs. (G) Percentage of SSEA-1+ CD61+ PGCLCs during wild-type and Bmpr1a−/− PGCLC differentiation. Each point represents an independent experiment (n=3). Data represented as median and interquartile range. (H) Left panel: confocal optical section of ESCs, cultured in serum and LIF, immunostained for the BMP pathway target, ID1 and the PGC marker AP2γ. Scale bar: 25 μm. Right panel: quantification of ID1 and AP2γ levels in individual cells. Quantification performed on images from five randomly selected regions. Linear regression and correlation coefficient analysis were performed (P<0.0001). Correlation coefficient indicated on graph. (I) Wild-type and Bmpr1a−/− EpiLCs cells, lineage-labelled with a constitutive GFP, were mixed in equal ratios to form PGCLC aggregates. Confocal MIPs of PGCLC aggregates at day 2, 4, and 6 of differentiation. Scale bar: 100 μm.
Samples were collected for analysis at day 0 (EpiLC state), 2, 4 and 6 of differentiation. To note, as we had previously observed no difference in the efficiency of EpiLC conversion from ESCs cultured in serum/LIF compared to 2i/LIF (data not shown), our starting ESC cultures were from serum/LIF rather than 2i/LIF as previously described (Hayashi et al., 2011).

Flow cytometry
Between 8-12 PGCLC aggregates per cell line/condition were pooled and then dissociated by incubation in TrPeLSTM Select Enzyme (Thermo Fisher Scientific) at 37°C for approximately 2 min. Following vigorous pipetting to form a single-cell suspension, the enzyme was neutralized with an equal volume of PGCLC medium without cytokines added. Cells were pelleted by centrifugation and then resuspended in 100 μL FACS buffer (PBS with 10% FCS) with PE-conjugated anti-CD61 (RRID:AB_313084, Biolegend, 104307, 1:200) and Alexa Fluor 647-conjugated anti-SSEA1 (RRID: AB_1210551, Thermo Fisher Scientific, 51-8813-73, 1:50) for 15 min on ice. Cells were then washed in 1 ml FACS buffer and resuspended in 200 μL FACS buffer containing 5 μg/ml Hoechst. Samples were analyzed using a BD LSR Fortessa™. Flow cytometry analysis was performed using FlowJo software (BD Biosciences). Cells were first separated from debris and cell doublets removed by gating on forward (FSC) and side scatter (SSC). Subsequently, dead cells were identified based on strong Hoechst fluorescence and cell doublets removed by gating on forward (FSC) and side scatter (SSC). The following primary antibodies were used in this study: AP2γ (RRID:AB_667770, Santa Cruz Biotechnology, sc-12762, 1:100), phosphorylated SMAD1/5/9 (a gift from Dr. Edward Laufer, University of Utah School of Medicine, USA), Sox2 (RRID:AB_11219471, Thermo Fisher Scientific, 14-9811-82, 1:200).

Immunostaining
Cell lines were immunostained as previously described (Morgani et al., 2018b). Post-implantation embryos were washed in phosphate-buffered saline (PBS), then fixed in 4% paraformaldehyde (PFA) for 15 min at room temperature (RT). Embryos were washed in PBS plus 0.1% Triton-X (PBST-T) followed by permeabilization for 30 min in PBS with 0.5% Triton-X. Embryos were then washed in PBST-T and blocked overnight at 4°C in PBS-T with 1% bovine serum albumin (BSA, Sigma-Aldrich) and 5% donkey serum (Sigma-Aldrich). The following day, embryos were transferred to the primary antibody solution (PBS with appropriate concentration of antibody) and incubated overnight at 4°C. The following day, embryos were washed 3×10 min in PBST-T and transferred to blocking solution at RT for a minimum of 5 h. Embryos were transferred to secondary antibody solution (PBS-T with 1:500 dilution of appropriate secondary conjugated antibody and 5 μg/ml Hoechst) overnight at 4°C. Embryos were washed 3×10 min in PBST-T.

The following primary antibodies were used in this study: AP2γ (RRID:AB_667770, Santa Cruz Biotechnology, sc-12762, 1:100), phosphorylated SMAD1/5/9 (a gift from Dr. Edward Laufer, University of Utah School of Medicine, USA), Sox2 (RRID:AB_11219471, Thermo Fisher Scientific, 14-9811-82, 1:200).

Cryosectioning
Following wholemount immunostaining and imaging, embryos were oriented as desired and embedded in Tissue-Tek® OCT (Sakura Finetek, Japan). Samples were frozen on dry ice for approximately 30 min and then maintained for short periods at −80°C followed by cryosectioning using a Leica CM3050S cryostat. Transverse cryosections of 10 μm thickness were cut with a Leica CM3050S cryostat and mounted on Colorfrost Plus® microscope slides (Thermo Fisher Scientific) using Fluoromount G (RRID: SCR_015961, Southern Biotech, Birmingham, AL, USA). Cryosections were then imaged using a confocal microscope as described.

Quantitative image analysis
Embryos were imaged on a Zeiss LSM880 laser scanning confocal microscope. Confocal z stacks of cells or embryo cryosections were generated. Raw data was then processed in ImageJ open source image processing software (version: 2.0.0-rc-49/1.51d). Individual PGCLCs, identified by AP2γ expression, PGCs identified by SOX2 expression, or their surrounding AP2γ− SOX2− cells were randomly chosen and, using Fiji (ImageJ) software, selected by manually drawing a boundary around the nucleus. The mean fluorescence intensity of pSMAD1/5/9 immunostaining, Spry4H2B-Venus, or TCF/LefH2B-GFP reporter expression was then measured in arbitrary units. Fluorescence decay along the z-axis was corrected for each channel and sample by fitting a linear regression model to the logarithm of fluorescence values as a function of the z-value, and correcting the models’ slopes using an empirical Bayes approach, as previously described (Saiz et al., 2016). For all quantification, statistical analysis of significance was assessed using a one-way ANOVA followed by unpaired t-tests to compare particular groups (GraphPad Prism, GraphPad Software, Inc., Version 7.0a). For analysis performed on embryos, all PGCs were selected from three different cryosections through the allantois of three distinct embryos. Fluorescence values were then calculated relative to the average mean fluorescence of non-neighboring (‘Other’) AP2γ− SOX2− nuclei cells within each individual section in order to normalize for differences in immunostaining that may arise due to differences in permeability within different embryonic regions or different stages of development. Statistics were carried out on average fluorescence levels per embryo, rather than on a per cell basis.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: S.M.M., A.-K.H.; Methodology: S.M.M., A.-K.H.; Validation: S.M.M.; Formal analysis: S.M.M.; Investigation: S.M.M.; Resources: A.-K.H. Writing - original draft: S.M.M.; Writing - review & editing: S.M.M., A.-K.H.; Visualization: S.M.M.; Supervision: A.-K.H.; Project administration: A.-K.H.; Funding acquisition: S.M.M., A.-K.H.

Funding
S.M.M. was supported by a Wellcome Trust Sir Henry Wellcome postdoctoral fellowship under the supervision of A.-K.H. and Jennifer Nichols (University of Cambridge, UK). Work in the Hadjantonakis lab was supported by grants from the National Institutes of Health (NIH) (R01-HD094886, R01-DK127821 and P30-CA08748). Additionally, we thank Tristan Rodriguez (Imperial College London) for providing the Brmp1α−/− ESCs.

References
Aramaki, S., Hayashi, K., Kurimoto, K., Ohta, H., Yabuta, Y., Iwanari, H., Mochizuki, Y., Hamakubo, T., Kato, Y., Shirahige, K., et al. (2013). A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Developmental Cell, 27, 516–529. doi:10.1016/j.devcel. 2013.11.001
Barrow, J. R., Howell, W. D., Rule, M., Hayashi, S., Thomas, K. R., Capecchi, M. R. and McMahon, A. P. (2007). Wnt3 signaling in the epiblast is required for mechanistic development. Developmental Biology, 312, 320–320. doi:10.1016/j.ydbio.2007.09.030
Chang, C. T., Lee, Y.-H., HuangFu, W.-C. and Liu, I.-H. (2020). Cell-intrinsic Fgf signaling contributes to primordial germ cell homing in zebrafish. Theriogenology, 158, 424–431. doi:10.1016/j.theriogenology.2020.09.037
Ciruna, B. and Rossant, J. (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Developmental Cell, 1, 37-49. doi:10.1016/S1534-5807(01)00017-X

Deng, C. X., Wynshaw-Boris, A., Shen, M. M., Daugherty, C., Ornitz, D. M. and Lee, P. (1994). Murine Fgf-1 is required for early postimplantation growth and axial organization. Genes & Development, 8, 3045-3057. doi:10.1101/gad.8.24.3045

Derynick, R. and Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425, 577-584. doi:10.1038/nature02071

Di-Gregorio, A., Sancho, M., Stuckey, D. W., Crompton, L. A., Godwin, J., Dudley, B. M., Runyan, C., Takeuchi, Y., Schaible, K. and Molyneaux, K. (2007). BMP signalling inhibits premature neural differentiation in the mouse embryo. Development, 134, 3399-3409. doi:10.1242/dev.005967

Dudley, B. M., Runyan, C., Takeuchi, Y., Schaible, K. and Molyneaux, K. (2007). BMP signaling regulates PGC numbers and motility in organ culture. Mechanisms of Development, 124, 68-77. doi:10.1016/j.mod.2006.09.005

Ferrer-Vaquer, A., Piliszek, A., Tian, G., Aho, R. J., Du福特, D. and Hadjantonakis, A.-K. (2010). A sensitive and bright single-cell resolution live imaging reporter of Vntll/catenin signaling in the mouse. BMC Dev Biol, 10, 121. doi:10.1186/1471-235X-12-10

Ginsburg, M., Snow, M. H. L. and McLaren, A. (1990). Primordial germ-cells in the mouse embryo during gastrulation. Development, 110, 521.

Giuliano, C. J., Freemantle, S. J. and Spinella, M. J. (2006). Testicular germ cell tumors: a paradigm for the successful treatment of solid tumor stem cells. Curr Cancer Ther Rev, 2, 255-270. doi:10.2174/1573394067739463

Grabole, N., Tischler, J., Hackett, J. A., Kim, S., Tang, F., Leitch, H. G., Magnusdottir, É. and Surani, M. A. (2013). Prdm14 promotes germine fate and naïve pluripotency by repressing FGF signaling and DNA methylation. EMBO Rep, 14, 629-637. doi:10.1038/embor.2013.67

Haegele, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K. and Klemm, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development, 121, 3529-3537.

Hayashi, K. and Saitou, M. (2013). Stepwise differentiation from naive state pluripotent stem cells to functional primordial germ cells through an epithelial-Like state. Embryonic Stem Cells: Methods and Protocols, 1074, 175-183. doi:10.1007/978-1-62703-628-3_13

Hayashi, K., Kobayashi, T., Umino, T., Goisuka, R., Matsui, Y. and Kitamura, D. (2002). SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mechanisms of Development, 118, 99-109. doi:10.1016/S0925-4773(02)00237-X

Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. and Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 146, 519-532. doi:10.1016/j.cell.2011.06.052

Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H. and Saitou, M. (2012). Offspring from oocytes derived from embryonic germ cell lineages. Nat. Cell Biol, 14, 529-539. doi:10.1038/nature10014

Hooper, M., Handy, K., Handyside, A., Hunter, S. and Monk, M. (1987). HPRT-deficient lethality in mouse embryos derived from germ-line colonized by cultured cells. Nature, 326, 292-295. doi:10.1038/326292a0

Hikabe, O., Hamazaki, N., Nagamatsu, G., Obata, Y., Hirao, Y., Hamada, N., Shimamoto, S., Imanura, T., Nakashima, K., Saitou, M. et al. (2016). Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 539, 299-303. doi:10.1038/nature20104

Ishikura, Y., Yabuta, Y., Ohta, H., Hayashi, K., Nakamura, T., Okamoto, I., Yamamoto, T., Kurimoto, K., Shirane, K., Sasaki, H. et al. (2016). In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Rep, 17, 2789-2804. doi:10.1016/j.celrep.2016.11.026

Katoh, Y. and Katoh, M. (2006). FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells. International Journal of Molecular Medicine, 17, 529-532.

Kelly, O. G., Pinson, K. I. and Skarnes, W. C. (2004). The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development, 131, 2803-2815. doi:10.1242/dev.001137

Kimura, T., Kaga, Y., Ohta, H., Odamoto, M., Sekita, Y., Li, K., Yamano, N., Fujikawa, K., Isotani, S., Motoki, N. et al. (2014). Induction of primordial germ cell-like cells from mouse embryonic stem cells by ERK signal inhibition. Stem Cells, 32, 2669-2681. doi:10.1002/stem.1781

Lawson, K. A., Dunn, N. R., Roelen, B. A. J., Zeinstra, L. M., Davis, A. M., Wright, C. V. E., Korving, J. P. W. F. M. and Hogan, B. L. M. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes & Development. 13, 424-436. doi:10.1101/gad.13.4.424
