Moth (Lepidoptera: Heterocera) diversity of Bhubaneswar, Odisha, India: a preliminary study

Nivedita PATTANAIK¹, Aryjit SATAPATHY¹, Devi PRIYADARSHINI²*

¹Buxi Jagabandhu Bidyadhar Autonomous College, BJB Nagar, Bhubaneswar 751014, Odisha, India; nivedita.p22@gmail.com; aryjit89@gmail.com
²Regional Museum of Natural History, PO-RRL, Acharya Vihar, Bhubaneswar 751013, Odisha, India; devi.wildlife@gmail.com (*corresponding author)

Abstract

A preliminary checklist has been compiled to study the moth diversity of Bhubaneswar, Odisha, an eastern state of India. The present study has recorded a total of 154 species belonging to 129 genera and 19 families. The highest diversity of moths was recorded in the family Crambidae (48 species, 38 genera), followed by the families Erebidae (42 species, 37 genera), Geometridae (15 species, 12 genera), Noctuidae (13 species, 11 genera) and others. The study was conducted over a period of 18 months from May 2019 to October 2020. Here we present an illustrated checklist of 154 moth species from Bhubaneswar which improves our insight into the lesser-known lepidopterans from the state of Odisha. This shall further help us strengthen our knowledge about the importance of moths in our environment and contribute towards its conservation at large.

Keywords: checklist; conservation; documentation; Khordha; moth species; urban habitat

Introduction

Moths are biologically, economically (Sharma and Bisen, 2013) and aesthetically a very important group of insects (Devoto et al., 2011; Le Croy et al., 2013; Dey et al., 2015). They are one of the most heterogeneous groups of insects (Soggard, 2009) consisting of around 1,27,000 species identified around the world as estimated by Hamlyn in 1969 (Alfred et al., 1998) and around 12,000 species reported from India alone (Chandra and Nema, 2007).

India lies in the Indo-Malayan biogeographic realm of the world and is listed amongst the 17 mega biodiversity hotspots which indicates the uniqueness of its flora and fauna. It shelters around 6.5% of the species known across the globe on 2.4% of the world’s total area (Faunal Diversity of India, 2020; http://www.zsienvis.nic.in/).

Odisha is unique in its geographic location with major part of the state falling in the Deccan Peninsula including Chhota Nagpur Province and Eastern Highlands while it is guarded by a 480 kms long coastline on its east. Since a considerable part of the Eastern Ghats falls within the territory of Odisha, it is speculated that the diversity of moths will be unique and interesting to investigate. In Odisha, the earliest works on moths have
been contributed by Hampson (1892, 1894, 1895, 1896) in the Fauna of British India. The State Fauna of Odisha (Part-III) by ZSI (Mandal and Maulik, 1991) reported 87 species under 3 families. There have been several records of moths as pest insects from various studies done in the crop fields. Of these some prominent works are those of paddy (Arora, 2000; Rath et al., 2020), brinjal (Kar et al., 2020), tomato (Sridhar and Srinivas, 2019) and teak (Tripathy et al., 2018); but no compiled work on the diversity of moths has yet been done in the present study area from the capital city of Odisha. However, in a recent work, Jena et al. (2018) reported 30 species from Gupteswar of Koraput district. In the present study, we have investigated the moth diversity primarily of Bhubaneswar city and adjoining urban areas under Khordha district, Odisha, India. A preliminary checklist containing 154 species under 19 families is presented here from the survey of ten study sites over a period of 18 months from May 2019 to October 2020.

Materials and Methods

The biodiversity documentation of moths has been primarily done in the urban areas of Bhubaneswar (20.2961°N, 85.8245°E), and its outskirts from May 2019 to October 2020 (Figure 1). The state lies in the tropical region and experiences a tropical savanna climate. It witnesses an average annual rainfall of about 1451.2mm (Envis Centre of Odisha, 2020; http://www.orienvis.nic.in/). The district of Khordha has mostly open forests with some moderately dense forests and scrub vegetation. Bhubaneswar is enveloped on one side by Chandaka with semi-evergreen forests and surrounded mostly by dry deciduous forests on its other boundaries. The selected sites for the study were namely, Acharya Vihar (S1), Jaydev Vihar (S2), BJB Nagar (S3), Saheed Nagar (S4), Khandagiri (S5), Pokhariput (S6), Ghangapatna (S7), Dhauli (S8), Dalua (S9) and Raghunathpur (S10) as detailed with GPS locations in Table 1, Figure 2. The regions prominently have urban habitat with fragmented vegetation. Khordha district has a geographical area of 2813 sq. km. of which 456 sq. km. has forest cover (Envis Centre of Odisha, 2020; http://www.orienvis.nic.in/).

Table 1. Coordinates of study sites in Bhubaneswar

Study site	Name of the study site	Coordinates
S1	Acharya Vihar	20.2994°N, 85.8319°E
S2	Jaydev Vihar	20.2977°N, 85.8173°E
S3	BJB Nagar	20.2506°N, 85.8448°E
S4	Saheed Nagar	20.2910°N, 85.8456°E
S5	Khandagiri	20.2569°N, 85.7792°E
S6	Pokhariput	20.2408°N, 85.8064°E
S7	Ghangapatna	20.3088°N, 85.7308°E
S8	Dhauli	20.1882°N, 85.8448°E
S9	Dalua	20.3634°N, 85.7176°E
S10	Raghunathpur	20.3782°N, 85.8278°E
Figure 1. Map of Study Area: A. India, B. Odisha State, C. Khordha District, D. Bhubaneswar Block with site locations

Figure 2. Study sites photographs (S1-S10)
The moths have been found by random sampling, opportunistic sightings and by setting up of light traps in some of the mentioned locations. The study areas have been searched extensively in the morning (6:00 hrs-8:00hrs) and evening (16:00hrs-19:00 hrs). Net sweeping was done with a standard-sized butterfly net for the day-flying moths and during the evenings for suitable photography from closer angles. Each study site was visited for around 20 days in every season. The light traps had been set in selective study sites using 100-Watt bulbs, which were placed in front of a 15ft × 5ft white cloth supported by the wall, for about 15 nights in every season (Figure 3). Standard tungsten bulbs were used for moth trapping. Efforts were made to create the least disturbance for the creatures in their natural environment while resting, feeding etc. except for instances when it was required to be caught for photography.

Figure 3. Moth light trap: A. During evening; B. During night

Moths were photographed using DSLR cameras (Nikon D5300, 18-55mm and 70-300mm lens; and Canon EOS 80D, Tamron 90mm lens) and smartphone cameras. Identification was done by referring to the available literature (Hampson, 1892-1896; Bell and Scott, 1937; Holloway, 1985-2011; Shubhalaxmi et al., 2011; Kononenko and Pinratana, 2013; Dey et al., 2018). Some online sources like Moths of India database (Sondhi et al. 2021; http://www.mothsofindia.org/); India Biodiversity Portal database (Vattakaven et al., 2016; https://indiabiodiversity.org/), Natural History Museum database (HOSTS, 2020; https://www.nhm.ac.uk/), National Bureau of Agricultural Insect Resources database (Insect Pests, 2020; https://databases.nbair.res.in/) and iNaturalist database (iNaturalist, 2020; https://www.inaturalist.org/), were quite helpful in the process of identification apart from the published references. Museum collections in Lepidoptera section from Regional Museum of Natural History, Bhubaneswar were also referred for identification of some of the macrolepidoptera moths. For the present study, none of the moths was collected or killed and therefore live photography of the moths was done as presented in the image plates. Due to several constraints, the identification was primarily done based on external morphological characters and no sophisticated methods such as genitalia dissection, DNA barcoding etc. were used to identify the moth species.

The system of classification detailed by Van Nieukerken et al. (2011) has been followed for identifying moths to the families. This method mostly follows the classification by Kristensen (1999), Kristensen et al. (2007) as well as the recent developments by Zahiri et al. (2010, 2011). A few of the moths have been assigned only to the genus as the morphological identification was not enough for many individuals to designate them to species level. There have been repetitive observations of the same moth species in different survey sites. In such cases, only one observation has been taken into consideration. The map has been created in ArcGIS, using reference from NIC (Khordha Web Portal, 2021; https://khordha.nic.in/).
Results and Discussion

We examined major studies on moths from the eastern region of India in the post-Victorian era. Saha and Raychaudhuri (1998) reported about 31 moths from West Bengal while Gurule and Nikam (2013) reported that Ghosh in 2003 documented 260 moths only in the family Geometridae from the same state. Further, Sanyal et al. (2012) also compiled 707 moths from West Bengal. Chandra and Nema (2007) reported 142 moths from Madhya Pradesh and Chhattisgarh. Singh and Ranjan (2016) added 23 new species from the superfamily Noctuoidea to the list of 138 moths from Dalma wildlife sanctuary. Singh et al. (2018) have reported 140 species of moths from Koderma, Jharkhand. From the information available about the moth fauna of Odisha state, it is understood that scanty studies have been done and few species reported till date about non-pest moths from the state. Studies done by (Mandal and Maulik, 1991) reports 87 species of moths in the Fauna of Orissa (Part-III) by ZSI out of which only six moth species were found in the present study. Seven moths found in this study were also reported by Jena et al. (2018). Although the moth Glyphodes bicolor has been reported by Jena et al. (2018), it appears to be a case of misidentification, which as per the pictures provided in the paper, suggest the same to be Glyphodes bivitralis Guenée, 1854. This was identified from various online resources like Moths of India database (Sondhi et al., 2021; http://www.mothsofindia.org/), iNaturalist database (iNaturalist, 2020; https://www.inaturalist.org/) and confirmed from other available literature.

Although there have been some scattered works on the pest moths of various crops from the state, the present study is an attempt to come up with a compiled checklist to enlist the diversity of moth fauna from Bhubaneswar. In the present study, a total of 154 moths have been identified out of the several individuals recorded, belonging to 19 families and 12 superfamilies from surveys in ten different study sites across Bhubaneswar city and its outskirts as presented in Table 2, Plates 1- 5. All the photographs have been contributed by the authors unless credited otherwise.

Sl. No.	Subfamily	Scientific name	Common name	Author and year of description	Survey site
1	Acrolophinae	Acrolophus sp.		S1	
2	Attevinae	Atteva sp.		S3	
3	Lecithocerinae	Lecithocera sp.	(Walker, 1864)	S2	
4	Scythridinae	Eretmocera impactella		S1	
5	Tortricinae	Adoxophyes fascicularis	(Walker, 1866)	S4	
6	Torricinae	Archips micaceana	(Walker, 1863)	S4	
7	Limacodinae	Aphendala tripartita	Moore, 1884	S3	
8	Limacodinae	Parasa sp.		S2	

Table 2. Preliminary checklist of moths recorded during the study at various study sites
Family Thyrididae			
9	Striglininae	Banisia sp.	S3

Superfamily Hyblaeoidea

Family Hyblaeidae		
10	Hyblaea sp.	S3

Superfamily Pyraloidea

Family Pyralidae			
11	Pyralinae	Endotricha mesenterialis (Walker, 1859)	S3
12	Pyralinae	Endotricha repandalis Fabricius, 1794	S4
13	Pyralinae	Hypsopygia sp.	S3
14	Pyralinae	Pyralis manihotalis Tropical Meal Moth Guenée, 1854	S3
15	Pyralinae	Pyralis pictalis Painted Meal Moth (Curtis, 1834)	S3
16	Pyralinae	Sacada sp.	S2
17	Pyralinae	Zitha toeridis (Lederer, 1863)	S8

Family Crambidae

Acentropinae						
18	Acentropinae	Parapoynx fluctuosalis (Meyrick, 1899)	S6			
19	Acentropinae	Parapoynx stagnalis (Zeller, 1852)	S3			
20	Crambinae	Ancylolomia sp.	S3			
21	Glaphyriinae	Noorda blitealis Walker, 1859	S3			
22	Pyraustinae	Isocentris filalis (Guenée, 1854)	S1			
23	Pyraustinae	Pagvula salvalis Walker, 1859	S3			
24	Pyraustinae	Paliga sp.	S1			
25	Schoebiinae	Scirpophaga incertulas Yellow Stem Borer Moth (Walker, 1863)	S3			
26	Schoebiinae	Scirpophaga nivea (Fabricius, 1794)	S3			
27	Spilomelinae	Arthroschista hilaris Walker, 1859	S3			
28	Spilomelinae	Bradina admistalis Walker, 1859	S4			
29	Spilomelinae	Chalcidoptera appensalis Snellen, [1884]	S3			
30	Spilomelinae	Cnaphalocrocis medinalis (Guenée, 1854)	S3			
31	Spilomelinae	Cnaphalocrocis ruralis (Walker, 1859)	S3			
32	Spilomelinae	Conogethes sp.	S1			
33	Spilomelinae	Cydalima laticostalis (Guenée, 1854)	S10			
34	Spilomelinae	Diaphania indica Cucumber Moth (Saunders, 1851)	S1			
35	Spilomelinae	Dysallacta negatalis Karanj Leaf Borer Moth (Walker, 1859)	S1			
36	Spilomelinae	Eophila difflualis Snellen, [1880]	S3			
37	Spilomelinae	Endocrossis flavibasalis (Moore, 1867)	S8			
38	Spilomelinae	Eurhythrapodes tricoloralis (Zeller, 1852)	S1			
39	Spilomelinae	Glyphodes acontractalis Walker, 1859	S1			
40	Spilomelinae	Glyphodes bicolor (Swainson, 1821)	S3			
	Family	Genus	Species	Common Name	(Author, Year)	Superfamily
----	------------------	------------------------	---------------------------	--	---------------	-------------
41	Spilomelinae	*Glyphodes*	*caesalis*	Jack Fruit Borer Moth	(Walker, 1859)	Lasiocampoidea
42	Spilomelinae	*Glyphodes*	*canthusalis*		Walker, 1859	Bombycoidea
43	Spilomelinae	*Haritalodes*	*derogata*		(Fabricius, 1775)	Bombycoidea
44	Spilomelinae	*Herpetogramma*	*basalis*		(Walker, 1866)	Bombycoidea
45	Spilomelinae	*Herpetogramma*	*phaeopteralis*	Tropical Sod Webworm Moth	(Guenée, 1854)	Bombycoidea
46	Spilomelinae	*Herpetogramma*	*rudis*		(Warren, 1892)	Bombycoidea
47	Spilomelinae	*Hydriris*	*ornatalis*	Ornate Hydriris Moth	(Duponchel, 1832)	Bombycoidea
48	Spilomelinae	*Leucinodes*	*orbitalis*	Eggplant Fruit and Shoot Borer Moth	Guenée, 1854	Bombycoidea
49	Spilomelinae	*Mabra*	*eryxalis*		(Walker, 1859)	Bombycoidea
50	Spilomelinae	*Maruca*	*vitrata*	Maruca Pod Borer Moth	(Fabricius, 1787)	Bombycoidea
51	Spilomelinae	*Meroeca*	*foedalis*		Guenée, 1854	Bombycoidea
52	Spilomelinae	*Nausinoe*	*geometralis*		Guenée, 1854	Bombycoidea
53	Spilomelinae	*Nausinoe*	*perspectata*		(Fabricius, 1775)	Bombycoidea
54	Spilomelinae	*Nosophora*	sp.			Bombycoidea
55	Spilomelinae	*Omiodes*	*indicata*		(Fabricius, 1775)	Bombycoidea
56	Spilomelinae	*Pachynoa*	sp.			Bombycoidea
57	Spilomelinae	*Parotis*	sp.			Bombycoidea
58	Spilomelinae	*Pycnarmon*	*cribrata*	Leaf Folder Moth	(Fabricius, 1794)	Bombycoidea
59	Spilomelinae	*Pycnarmon*	*virgatalis*		Moore, 1867	Bombycoidea
60	Spilomelinae	*Pygospila*	*tyres*	Spotted Grass Moth	(Cramer, [1780])	Bombycoidea
61	Spilomelinae	*Sameodes*	*cancellalis*		(Zeller, 1852)	Bombycoidea
62	Spilomelinae	*Spoladea*	*recuvalis*	Beet Webworm Moth	(Fabricius, 1775)	Bombycoidea
63	Spilomelinae	*Synclera*	*traducalis*		(Zeller, 1852)	Bombycoidea
64	Spilomelinae	*Syngamia*	*fatimarginalis*		(Walker, 1859)	Bombycoidea
65	Spilomelinae	*Tarobotys*	*bianulalis*		(Walker, 1866)	Bombycoidea
66	Lasiocampinae	*Trabala*	*vishnou*	Rose Myrtle Lappet Moth	(Lefèbvre, 1827)	Bombycoidea
67	Eupterotinae	*Eupterote*	*bitasciata*		Kishida, 1994	Bombycoidea
68	Eupterotinae	*Eupterote*	*undata*		Blanchard, [1844]	Bombycoidea
69	Bombycinae	*Trilocha*	*variens*		(Walker, 1855)	Bombycoidea
Family Sphingidae

#	Subfamily	Genus	Species	Common Name	Author	Catalog
70	Macroglossinae	*Daphnis nerii*	Oleander Hawkmoth	(Linnaeus, 1758)	S3	
71	Macroglossinae	*Hippotion celerio*	Silver-Striped Hawkmoth	(Linnaeus, 1758)	S3	
72	Macroglossinae	*Macroglossum sp.*			S1	
73	Macroglossinae	*Theretra lucasii*	Lucas’s Hawkmoth	(Walker, 1856)	S1	
74	Macroglossinae	*Theretra oldenlandiae*	White-Banded Hunter Hawkmoth	(Fabricius, 1775)	S1	
75	Sphinginae	*Acherontia styx*	Lesser Death’s Head Hawkmoth	(Westwood, 1847)	S4	
76	Sphinginae	*Psiologramma sp.*			S1	

Superfamily Geometroidea

Family Uraniidae

| # | Subfamily | Genus | Species | Common Name | Author | Catalog | |
|----|---------------|------------------------|--|---------------------------------|-------------------|---------|
| 77 | Epipleminae | *Phazaca theclata* | Cotton Leaf Roller Moth | (Guenée, 1857) | S3 |
| 78 | Microniinae | *Micronia aculeata* | | Guenée, 1857 | S7 |

Family Geometridae

| # | Subfamily | Genus | Species | Common Name | Author | Catalog | |
|----|---------------|------------------------|--|---------------------------------|-------------------|---------|
| 79 | Desmobarthinae| *Eumelea ludovicata* | | Guenée, [1858] | S4 |
| 80 | Ennominae | *Chiasmia emersaria* | | (Walker, 1861) | S8 |
| 81 | Ennominae | *Chiasmia sp.* | | | S3 |
| 82 | Ennominae | *Hypertyra lutea* | | (Stoll, [1781]) | S3 |
| 83 | Ennominae | *Cleora alienaria* | | (Walker, 1860) | S3 |
| 84 | Geometrinae | *Agathia laetata* | | (Fabricius, 1794) | S1 |
| 85 | Geometrinae | *Agathia lycaenaria* | | (Kollar, 1848) | S1 |
| 86 | Geometrinae | *Comibaena sp.* | | | S3 |
| 87 | Geometrinae | *Dysphania militaris* | | (Linnaeus, 1758) | S1 |
| 88 | Geometrinae | *Pingasa sp.* | | | S7 |
| 89 | Geometrinae | *Thalassodes sp.* | | | S3 |
| 90 | Sterrhinae | *Chrysocraspeda figanaria* | | Guenée, [1858] | S3 |
| 91 | Sterrhinae | *Scopula emissaria* | | (Walker, 1861) | S3 |
| 92 | Sterrhinae | *Scopula sp.* | | | S1 |
| 93 | Sterrhinae | *Traminda aventiaria* | Cross-Line Wave Moth | (Guenée, [1858]) | S2 |

Superfamily Noctuoidea

Family Erebidae

| # | Subfamily | Genus | Species | Common Name | Author | Catalog | |
|----|---------------|------------------------|--|---------------------------------|-------------------|---------|
| 94 | Aganainae | *Asota caricae* | | (Fabricius, 1775) | S3 |
| 95 | Arctiinae | *Aloa lactinea* | Red Costate Tiger Moth | (Cramer, [1777]) | S5 |
| 96 | Arctiinae | *Amata passalis* | | (Fabricius, 1781) | S3 |
| 97 | Arctiinae | *Amerila astreus* | | (Drury, 1773) | S3 |
	Taxon	Species/Species Complex	Page(s)
98	Arctiinae	Creatonotos gangis-interrupta complex	S8
99	Arctiinae	Creatonotos transiens	S3
100	Arctiinae	Katha sp.	S4
101	Arctiinae	Micaloia lineola	S3
102	Arctiinae	Miltochrista sp.	S1
103	Arctiinae	Olepa ricini	Fabricius, 1775
104	Arctiinae	Utetheisa sp.	S3
105	Boletobiinae	Eublemma accedens	(Felder & Rogenhofer, 1874)
106	Boletobiinae	Zurobata vacillans	(Walker, 1864)
107	Calpinae	Calyptra sp.	S2
108	Calpinae	Eudocimma hypermnestra	(Cramer, 1780)
109	Calpinae	Eudocima materna	Dot Underwing Moth
110	Eulepidotinae	Anticarsia irrorata	(Fabricius, 1781)
111	Erebiniae	Achaea janata	(Linnaeus, 1758)
112	Erebiniae	Basilla simulima	(Guénée, 1852)
113	Erebiniae	Chalkiope mygdon	(Cramer, [1777])
114	Erebiniae	Dysgonia angularis	(Boisduval, 1833)
115	Erebiniae	Dysgonia torrida	Jigsaw Moth
116	Erebiniae	Ereheia sp.	S3
117	Erebiniae	Erebus hieroglyphica	(Drury, 1773)
118	Erebiniae	Grammodes geometrica	(Fabricius, 1775)
119	Erebiniae	Hulodes sp.	S3
120	Erebiniae	Mocis frugalis	Sugarcane Looper Moth
121	Erebiniae	Mocis undata	Brown-Striped Semi-Looper
122	Erebiniae	Pericyma cruegeri	Poinciana Looper Moth
123	Erebiniae	Serrodes partita	Catapult Moth
124	Erebiniae	Spirama sp.	S1
125	Erebiniae	ThYES coronata	Yellow Underwing Moth
126	Lymantriinae	Arctornis cygna	(Moore, 1879)
127	Lymantriinae	Arctornis sp.	S8
128	Lymantriinae	Artaxa digramma	(Boisduval, 1844)
129	Lymantriinae	Euproctis sp.	S3
	Subfamily	Species	Common Name
---	-----------	-------------	--------------------------------------
130	Lymantriinae	*Lymantria ampla*	Brown Tussock Moth
131	Lymantriinae	*Olene mendosa*	Brown Tussock Moth
132	Lymantriinae	*Orvasca subnotata*	Banyan Tussock Moth
133	Lymantriinae	*Perina nuda*	Banyan Tussock Moth
134	Pangraptinae	*Egnasia ephyrodalis*	Cotton Looper Moth
135	Scoliopteryginae	*Anomis flava*	Cotton Looper Moth

Family Nolidae

	Chloephorinae	*Carea angulata*	(Fabricius, 1793)	S1	
	Eariadinae	*Earias lutecolaria*	Hampson, 1891	S8	
	Eariadinae	*Earias vittella*	Spotted Bollworm Moth	Fabricius, 1794	S3
	Eligminae	*Selepa celtis*	Moore, [1858]	S2	
	Nolinae	*Nola sp.*		S3	
	Risobinae	*Risoba repugnans*	(Walker, 1865)	S8	

Family Noctuidae

	Acontiinae	*Acontia lucida*	Pale Shoulder Moth	(Hufnagel, 1766)	S1
	Acontiinae	*Acontia marmoralis*	(Fabricius, 1794)	S1	
	Acontiinae	*Naranga aenescens*	Moore, 1881	S3	
	Agaristinae	*Episteme sp.*		S1	
	Catocalinae	*Gesonia obeditalis*	Walker, [1859]	S6	
	Condicinae	*Condica illecta*	(Walker, 1865)	S3	
	Eriopinae	*Callopistria sp.*		S3	
	Hadeninae	*Mythimna separata*	(Walker, 1865)	S1	
	Hadeninae	*Mythimna sp.*		S2	
	Heliothinae	*Helicoverpa armigera*	(Hübner, [1808])	S3	
	Noctuinae	*Polytela gloriosae*	Lily Moth	(Fabricius, 1781)	S9
	Noctuinae	*Spodoptera litura*	Tobacco Cutworm Moth	(Fabricius, 1775)	S10
	Plusiinae	*Chrysodeixis crisoma*			S3

S1 to S10 Study Sites: [S1- Acharya Vihar, S2- Jaydev Vihar, S3- BJB Nagar, S4- Saheed Nagar, S5- Khandagiri, S6- Pokhariput, S7- Ghangapatna, S8- Dhauli, S9- Dalua, S10- Raghunathpur]
Plate 1. 1- Acrolophus sp.; 2- Atteva sp.; 3- Lecithocera sp.; 4- Eretnocera impactella; 5- Adoxophyes fasciculana; 6- Archips micaceana; 7- Aphendula tripartita; 8- Paras sp.; 9- Banisia sp.; 10- Hyblaea sp.; 11- Endotricha mesenterialis; 12- Endotricha repandalis; 13- Hypsopygia sp.; 14- Pyralis manihotalis; 15- Pyralis pictalis; 16- Sacada sp.; 17- Zitha torridalis; 18- Parapoynx fluctuosalis; 19- Parapoynx stagnalis; 20- Ancylolepidia sp.; 21- Noorda blitealis; 22- Isocentris filalis; 23- Pagyda salivalis; 24- Paliga sp.; 25- Scirpophaga incertulas; 26- Scirpophaga nivella; 27- Arthroschista hilaralis; 28- Bradina admixtalis; 29- Chalecoptera appensalis; 30- Cnaphalocrocis medinalis; 31- Cnaphalocrocis ruralis; 32- Conogethes sp.; 33- Cydalima lactostalis; 34- Diaphania indica; 35- Dysallacta negatalis
Plate 2. 36- *Elophila diffusalis*; 37- *Endocrossis flavibasalis*; 38- *Eurrhyparodes tricoloralis*; 39- *Glyphodes actorionalis*; 40- *Glyphodes bicolor*; 41- *Glyphodes caesalis*; 42- *Glyphodes canthusalis*; 43- *Haritalodes derogata*; 44- *Herpetogramma basalis*; 45- *Herpetogramma phaeopteralis*; 46- *Herpetogramma rudis*; 47- *Hydriris ornatalis*; 48- *Leucinodes orbonalis*; 49- *Mabra cryxalis*; 50- *Maruca vitrata*; 51- *Metoeca foedalis*; 52- *Nausinoe geometralis*; 53- *Nausinoe perspectata*; 54- *Nosophora sp.*; 55- *Omiodes indicata*; 56- *Pachynoa sp.*; 57- *Parotis sp.*; 58- *Pycnarmon cribrata*; 59- *Pycnarmon virgatalis*; 60- *Pygospila tyres*; 61- *Sameodes cancellalis*; 62- *Spoladea recurvalis*; 63- *Synclera traducalis*; 64- *Syngamia latimarginalis*; 65- *Tatobotys biannulalis*; 66- *Trabula vishnou*; 67- *Eupterote bifasciata*; 68- *Eupterote undata*; 69- *Trilocha varians*; 70- *Daphnis nerii*

*Picture Credits: B. Swarup Kumar Subudhi; * Picture Credits: Ananya Kashyap
Plate 3. 71- Hippotion celerio; 72- Macroglossum sp.; 73- Theretra lucasii; 74- Theretra oldenlandiae; 75- Acherontia styx; 76- Psilogramma sp.; 77- Phazaca theclata; 78- Micronia aculeata; 79- Eumelea ludovicata; 80- Chiasmia emersaria; 81- Chiasmia sp.; 82- Hyperpyra lutea; 83- Cleora alienaria; 84- Agathia laetata; 85- Agathia lycaenaria; 86- Comibaena sp.; 87- Dysphania militaris; 88- Pingasa sp.; 89- Thalassodes sp.; 90- Chrysocraspeda faganaria; 91- Scopula emissaria; 92- Scopula sp.; 93- Traminda aventaria; 94- Asota caricae; 95- Aloa lactinea; 96- Amata passalis; 97- Amerila astreus; 98- Creatonotos gangis-interupta complex; 99- Creatonotos transiens; 100- Katha sp.; 101- Micraloa lineola; 102- Miltochrista sp.; 103- Olepa ricini; 104- Utetheisa sp.; 105- Eublemma accedens

^Picture Credits: Sabindra Kumar Samal; *Picture Credits: B. Swarup Kumar Subudhi
Plate 4. 106- Zurobata vacillans; 107- Calyptra sp.; 108- Eudocima hypermnestra; 109- Eudocima materna; 110- Anticarsia irrorata; 111- Achaea janata; 112- Bastilla similima; 113- Chalciope mygdon; 114- Dygonia angularis; 115- Dygonia torrida; 116- Ercheia sp.; 117- Erebus hieroglyphica; 118- Grammodes geometrica; 119- Hulodes sp.; 120- Mocis frugalis; 121- Mocis undata; 122- Pericyma cruegeri; 123- Serrodes parita; 124- Spirama sp.; 125- Thyas coronata; 126- Arctornis cygna; 127- Arctornis sp.; 128- Artaxa digramma; 129- Euproctis sp.; 130- Lymantria ampla; 131- Olene mendoza; 132- Orvasca subnotata; 133- Perina nuda; 134- Egnasia ephyrodalis; 135- Anomis flava; 136- Carea angulata; 137- Earias luteolaria; 138- Earias vittella; 139- Selepa celtis; 140- Nola sp.
*Picture Credits: B. Swarup Kumar Subudhi
Here in this study, we have recorded 19 moth families being reported from the state of Odisha which includes 154 species under 129 genera. Out of these, 34 moths have been identified only up to the genus level, while the rest have been identified up to species level as indicated in Table 2. In the study, family Crambidae dominated in species diversity, composing 31.2% of the total species (48 species, 38 genera), followed by Erebidae composing 27.3% (42 species, 37 genera), Geometridae making up for 9.7% (15 species, 12 genera) and Noctuidae at 8.4% (13 species, 11 genera). The other families found in less numbers were in the following order of species diversity namely, Sphingidae with seven species in six genera (4.5%), Pyralidae with seven species in five genera (4.5%) and Nolidae with six species in five genera (3.9%). Further, the families Limacodidae, Tortricidae and Uraniidae were represented by two species in two genera each while, Eupterotidae had one genus with two species and the rest eight families (Tineidae, Scythrididae Lasiocampidae, Attevidae, Thyrididae, Bombycidae, Hyblaeidae and Lecithoceridae) were found with a single species in each (Figure 4).
The study reveals a specific pattern of presence of moth families across various months in a year. Moths from the family Crambidae were found all throughout the year, followed by Erebidae and Geometridae which were recorded in around ten months across the year. Noctuidae, Pyralidae and Sphingidae were observed in seven different months of the year. Nolidae and Bombycidae moths were seen in around four to six months in different seasons. The families of moths which were less found were reported in one or two months in the whole year. These were Uraniidae, Eupterotidae, Lasiocampidae, Scythrididae, Lecithoceridae, Thyrididae, Tineidae, Hyblaeidae, Attevidae, Limacodidae and Tortricidae (Table 3). While most moths that have been found were crepuscular in their time of activity and presence, day-flying moths like *Episteme sp.* and *Dysphania militaris* were also recorded amongst macrolepidoptera.

Table 3. Presence of different moth families across different months

Superfamily	Family	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Tineoidea	Tineida						+						
Yponomeutoidea	Arctiida												
Gelechioidea	Lecithocerida						+						
	Scythridida						+						
Tortricoidea	Tortricida					+	+						
Zygaoidea	Limacodida	+											
Thyridoidea	Thyridida							+					
Hyblacoidea	Hyblaeida							+					
Pyraloidea	Pyralida	+	+	+	+	+	+						
	Crambida									+	+	+	+
Lasiocampoidea	Lasiocampida							+					
Bombycoidea	Eupterotida								+	+			
	Bombycida	+							+	+			
	Sphingida	+							+	+			
Geometroidea	Uranida										+	+	
	Geometridae												
Noctuoidea	Erebida												+
	Nolida	+											+
	Noctuidae												+
The month of August recorded the highest diversity of moths from 11 different families out of all 19 families reported in the study. July and October recorded a considerably higher number of moths with ten families reported in each month. Moths from families Crambidae, Geometridae and Erebidae were found across most seasons while others like Limacodidae, Thyrididae and Lecithoceridae were only seen during autumn and winters. The families represented by a greater number of moth species were mostly found around monsoon (Figure 5). Hence from the study, it can be said that the diversity of moths is quite rich in Odisha. Since the present inventory relied mostly on opportunistic findings and seasonal surveys of 18 months yet reports a diversity of 19 families with 154 species from a single district of Khordha, it is contemplated that further studies in detail with intensive light trapping sessions can reveal the actual diversity of the eastern state of Odisha.

Figure 5. Seasonal distribution of recorded moth species

Conclusions

The study compiles a preliminary moth diversity of the city of Bhubaneswar and adjoining outskirts, recording a total of 154 moths in 19 families. It can be said that the presence of various moth species in any particular landscape is related to the different types of vegetation of a region, cropping seasons, the flowering of plants and various other factors controlling their diversity and abundance. Hence, this suggests that the moth diversity of the state is quite rich as evident from a preliminary survey in a single district and needs to be extensively studied, to gather more information about their present status for further conservation. Many species found in the study could be keyed only till the genus level while many other unidentified moths await proper taxonomic studies and documentation. As the state of Odisha is rich in forest cover and has diverse biogeographic zones from the East Coast to Deccan Peninsula including tropical dry deciduous and semi-evergreen forest types, therefore it can be easily speculated that the moth fauna of the state is unique and rich as found from the present sample study of one district.

It is evident that with further intensive studies in the other parts of the state, the moth diversity can be explored in greater detail in relation to the biogeographic regions and vegetation types across the state. The results of the present survey indicate a diverse population of moths present in the landscape of Odisha with 19 families reported, characterized majorly by Crambidae, Erebidae, Geometridae and Noctuidae. The presence
of families less encountered like, Tineidae, Artevidae, Lecithoceridae and Hyblaeidae also indicate that moths can be easily considered as bioindicators for particular regions when correlated to their presence in particular forest types or habitat. We also suggest that since inventoring is necessary for conservation of a taxon, more biodiversity assessments need to be done on these largely nocturnal lepidopterans. Along with natural history documentation, scientific records of the same can also reveal more information about interactions with plants and their vital role which they play in the ecosystem as indicators, pollinators and pests, other than the usual importance given to few silk moths for economic benefits. It would be further interesting to compare the diversity from urban areas like the present study locations with forested areas which stand unaffected by the city light pollution, which affects moths and their natural navigation in a huge way.

Authors' Contributions

The study was supervised by DP. AS has majorly contributed towards photography of the moths while NP identified the species and drew maps and figures. AS and NP put together the data into tables and charts. All authors contributed together for fieldwork and preparation of the manuscript, while review and editing were done by DP.

All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

For the present study, none of the moths were collected or killed and therefore live photography of the moths was done as presented in the image plates.

Acknowledgements

The authors would like to thank the Scientist-in Charge, Regional Museum of Natural History, Bhubaneswar for necessary permissions to carry out baseline observations. Thanks are due to HOD, Zoology Department, B.J.B. (Autonomous) College, Bhubaneswar for kind permissions to conduct studies along with the regular curriculum. We also thank Mr. B. Swarup Kumar Subudhi for his generous help in contributing moth photographs from various places across the city and accompanying in several field trips with much enthusiasm. Acknowledgments are also due to the staff of RMNH, Bhubaneswar who helped us to set up the light traps and arrange for other facilities during the study. We would extend our heartfelt thanks to various scientists, researchers working in this discipline and enthusiasts on various social platforms, who have helped us in identification and friends & family who encouraged us to put up the work together. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Alfred JRB, Das AK, Sanyal AK (1998). Faunal Diversity in India. ENVIS Centre Zoological Survey of India, Kolkata pp 311-318.
Arora GS (2000). Studies on some Indian Pyralid species of Economic Importance. Part I. Crambinae, Schoenobiinae, Nymphulinae, Phycitinae and Galleriinae (Lepidoptera: Pyralidae). Records of Zoological Survey of India, Zoological Survey of India, Calcutta. Occasional Paper No. 181, i-vii, 1-169.

Bell TRD, Scott FB (1937). Fauna of British India, including Ceylon and Burma. Moths-Volume 5, Sphingidae. Taylor and Francis, London.

Chandra K, Nema DK (2007). Fauna of Madhya Pradesh (including Chhattisgarh) Part-I, State Fauna Series, Zoological Survey of India, Kolkata.

Devoto M, Bailey S, Memmott J (2011). The night shift: nocturnal pollen-transport networks in a boreal pine forest. Ecological Entomology 36:25-35. https://doi.org/10.1111/i.1365-2311.2010.01247.x

Dey P, Joshi K, Uniyal VP (2018). Common Moths of WII. Wildlife Institute of India, Dehradun.

Dey P, Uniyal VP, Sanyal AK (2015). Moth Assemblages (Lepidoptera: Heterocera) as a potential conservation tool for biodiversity monitoring - Study in Western Himalayan protected areas. Indian Forester 141(9):985-992.

Envis Centre of Odisha (2020). ENVIS Centre of Odisha’s State of Environment. Retrieved 2021 February 2 from http://www.orienvis.nic.in/

Faunal Diversity of India (2020). ENVIS Centre on Faunal Diversity. Retrieved 2021 February 2 from http://www.zsienvis.nic.in/

Gurule S, Nikam S (2013). The moths (Lepidoptera: Heterocera) of northern Maharashtra: a preliminary checklist. Journal of Threatened Taxa 5(12):4693-4713. http://dx.doi.org/10.11609/JoTT.o2555.4693-713

Hampson GF (1892). The Fauna of British India including Ceylon and Burma, Moths. Taylor and Francis (Volume 1), London.

Hampson GF (1894). The Fauna of British India including Ceylon and Burma, Moths. Taylor and Francis (Volume 2), London.

Hampson GF (1895). The Fauna of British India including Ceylon and Burma, Moths. Taylor and Francis (Volume 3), London.

Hampson GF (1896). The Fauna of British India including Ceylon and Burma, Moths. Taylor and Francis (Volume 4), London.

Holloway JD (1985). The Moths of Borneo (Part 14) - Noctuidae: Euteliinae, Stictopterinae, Plusiinae, Pantheinae. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1986). The Moths of Borneo (Part 1) - Key to Families: Cossidae, Metarbelidae, Ratardidae, Dudgeoneidae, Epipyropidae and Limacodidae. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1987). The Moths of Borneo (Part 3) - Lasiocampidae, Eupterotidae, Bombycidae, Brahmaeidae, Saturniidae, Sphingidae. Malaysian Nature Society, Kuala Lumpur.

Holloway JD (1988). The Moths of Borneo (Part 6) - Arctiidae: Syntominae, Euchomiinae, Arctiinae, Aganainae (to Noctuidae). Malaysian Nature Society, Kuala Lumpur.

Holloway JD (1989). The Moths of Borneo (Part 12) - Noctuidae: Noctuinae, Heliothinae, Hadeninae, Acroiciniae, Amphipyrinae, Agaristinae. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1993). The Moths of Borneo (Part 11) - Geometridae: Ennominae. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1996). The Moths of Borneo (Part 9) - Geometridae (Incl. Orthostichini): Oenochrominae, Desmobathrinae, Geometrinae, Ennominae addenda. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1997). The Moths of Borneo (Part 10) - Geometridae: Sterrhinae, Larentiinae, Addenda to other subfamilies. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1998). The Moths of Borneo (Part 8) - Castniidae, Callicoriniidae, Drepanidae, Uraniidae. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (1999). The Moths of Borneo (Part 5) - Lymantriidae. Southdene Sdn Bhd, Kuala Lumpur.

Holloway JD (2003). The Moths of Borneo (Part 18) - Nolidae. Malaysian Nature Society, Kuala Lumpur.

Holloway JD (2011). The Moths of Borneo (Part 2) - Phauidae, Himantopteridae and Zygaenidae; revised and annotated checklist. Southdene Sdn Bhd, Kuala Lumpur.

HOSTS (2020). HOSTS - a Database of the World’s Lepidopteran Hostplants. Natural History Museum. Retrieved 2021 February 2 from https://www.nhm.ac.uk/

iNaturalist (2020). iNaturalist. Retrieved 2021 February 2 from https://www.inaturalist.org/

Insect Pests (2020). Insects in Indian Agroecosystems. National Bureau of Agricultural Insect Resources. Retrieved 2021 February 2 from https://databases.nbair.res.in/
Jena SK, Singh AP, De K (2018). Diversity of moths (Insecta: Lepidoptera) in the Gupatopar proposed reserve forest of the Eastern Ghat Hill, Koraput, Odisha, India: A preliminary study. Egyptian Academic Journal of Biological Sciences 11(3):11-17. https://dx.doi.org/10.21608/eqab.2018.11677

Kar D, Kuanar A, Ray A, Gaur M, Pattanaik B, Mishra B (2020). Genetic diversity of Brinjal fruit and shoot borer (BSFB) population of Odisha, India. Iranian Journal of Science and Technology, Transactions A: Science 45:135-144. https://doi.org/10.1007/s40995-020-00997-y

Khordha Web Portal (2021). Map of district. Retrieved 2021 February 2 from https://khordha.nic.in/

Kononenko SV, Pinaratana A (2013). Moths of Thailand Vol. 3, Part 2. Noctuoidea. An Illustrated Catalogue of Erebidae, Nolidae, Euteliidae, and Noctuidae (Insecta: Lepidoptera) in Thailand. Brothers of Saint Gabriel, Thailand.

Kristensen NP (1999). Lepidoptera, Moths and Butterflies. Vol. 1: Evolution, Systematics, and Biogeography. In: M. Fischer, Handbook of Zoology 4. Arthropoda: Insecta, part 35. Walter de Gruyter, Berlin & New York pp 491.

Kristensen NP, Scoble MJ, Karsholt O (2007). Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. In: Zhang Z-Q, Shear W (Eds). Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa 16:681-766. https://doi.org/10.11646/zootaxa.1688.1.30

Le Croy KA, Shew HW, Van Zandt PA (2013). Pollen presence on nocturnal moths in the Ketona Dolomite glades of Bibb County, Alabama. Southern Lepidopterists’ News 35:136-142.

Mandal DK, Maulik DR (1991). Insecta: Lepidoptera: Heterocera: Noctuidae, Sphingidae and Geometridae pp 209-234. In: Fauna of Orissa (Part 3), State Fauna Series - 1, published by the Director, Zoological Survey of India, Kolkata.

Rath PC, Bose L, Subudhi H, Lenka S, Jambhulkar N (2020). Biodiversity of Pests of Rice in Odisha. International Journal of Current Microbiology and Applied Sciences 9(3):566-569. https://doi.org/10.20564/ijcmas.2020.903.066

Saha S, Raychaudhuri D (1998). Moths of Buxa Tiger Reserve, Jalpaiguri, West Bengal. Zoos’ Print pp 24.

Sanyal AK, Alfred JRB, Venkataraman K, Tiwari SK, Mitra S (2012). Status of Biodiversity of West Bengal. Zoological Survey of India, Kolkata.

Sharma AK, Bisen UK (2013). Taxonomic documentation of insect pest fauna of vegetable ecosystem collected in light trap. International Journal of Environmental Science: Development and Monitoring 4(3):1-8.

Shubhalaxmi V, Kendrick RC, Vaidya A, Kalagi N, Bhagwat A (2011). Inventory of moth fauna (Lepidoptera: Heterocera) of the northern Western Ghats, Maharashtra, India. Journal of the Bombay Natural History Society 108(3):183-205.

Singh N, Ahmad J, Joshi R (2018). Moths (Lepidoptera) diversity of district Koderma, Jharkhand. Journal of Entomology and Zoology Studies 6(2):1253-1263.

Singh N, Ranjan R (2016). Additions to the moth fauna of Dalma Wildlife Sanctuary, Jharkhand (India). Records of Zoological Survey of India 116(4):323-336.

Soggard J (2009). Moths and caterpillars of the North Woods. Kollath-Stensaas Publishing, Duluth.

Sondhi S, Sondhi Y, Roy P, Kunte K (2021). Moths of India. v. 2.52. Indian Foundation for Butterflies. Retrieved 2021 February 2 from http://www.mothsofindia.org/

Sridhar V, Srinivas P (2019). Report of South American tomato moth, Tuta absoluta (Meyrick) from Odisha. Pest Management in Horticultural Ecosystems 25(1):119-120.

Tripathy MK, Rout M, Tripathy A (2018). Population dynamics of teak defoliator, Hyblaea puera Cramer at coastal Odisha, India. Journal of Entomology and Zoology Studies 6(5):2378-2387.

Vattakaven T, George R, Balasubramanian D, Réjou-Méchain M, Muthusankar G, Ramesh B, Prabhakar R (2016). India Biodiversity Portal: An integrated, interactive and participatory biodiversity informatics platform. Retrieved 2021 February 2 from https://indabiodiversity.org/

Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, Wahlberg N (2010). A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zoologica Scripta 40(2):158-173. http://www.dx.doi.org/10.1111/j.1463-6409.2010.00459.x

Zahiri R, Holloway JD, Kitching IJ, Lafontaine D, Mutanen M, Wahlberg N (2011). Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea), Systematic Entomology 37(1):102-124. https://doi.org/10.1111/j.1365-3113.2011.00607.x
The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in *Notulae Scientia Biologicae* are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.