Large spin-orbit splitting and weakly-anisotropic superconductivity revealed with single-crystalline noncentrosymmetric CaIrSi$_3$

G. Eguchi1, H. Wadati2, T. Sugiyama3, E. Ikenaga4, S. Yonezawa1, and Y. Maeno1

1Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Hongo, Tokyo 113-8656, Japan
3Research Center for Synchrotron Light Applications, Kyushu University, Kasuga 816-8580, Japan
4Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Kouto, Mikazuki 679-5198, Japan

(Dated: August 22, 2012)

We report normal and superconducting properties of the Rashba-type noncentrosymmetric compound CaIrSi$_3$, using single crystalline samples with nearly 100% superconducting volume fraction. The electronic density of states revealed by the hard x-ray photoemission spectroscopy can be well explained by the relativistic first-principle band calculation. This indicates that strong spin-orbit interaction indeed affects the electronic states of this compound. The obtained $H - T$ phase diagram exhibits only approximately 10% anisotropy, indicating that the superconducting properties are almost three dimensional. Nevertheless, strongly anisotropic vortex pinning is observed.

PACS numbers: 74.25.-q, 81.10.Dn, 79.60.-i, 71.20.Be

I. INTRODUCTION

Superconductivity in the absence of inversion symmetry has been attracting much attention for its potential exotic superconducting phenomena [1, 2]. In bulk materials, such superconductivity is realized in crystals without inversion centers, namely in the so-called noncentrosymmetric superconductors (NCSCs) [3]. The lack of inversion symmetry results in two important features. Firstly, the superconducting state cannot be classified either as a pure spin-singlet or a pure spin-triplet mixed pairing, but is a singlet-triplet mixed pairing. Then, the superconducting gap function is generally expressed as $\Delta = \{\Delta_1 \psi(k) + \Delta_2 d(k) \cdot \hat{\sigma}\}i\hat{\sigma}_y$. Here, $\psi(k)$ and $d(k)$ are the normalized scalar superconducting gap function for the spin-singlet component and the normalized vector gap function for the spin-triplet component, respectively; Δ_1 and Δ_2 are the gap magnitudes, including $\Delta_2 = 0$ (spin-singlet state) or $\Delta_1 = 0$ (spin-triplet state) as special cases; and $\hat{\sigma}$ is the Pauli matrices.

Secondly, the lack of inversion symmetry results in electronic energy-band splitting due to the antisymmetric spin-orbit interaction (ASOI). The ASOI term in the Hamiltonian is given by the inner product of the dimensionless g-vector $g(k)$ and the k-dependent electron spin $\sigma(k)$: $H_{\text{ASOI}} = \alpha \Sigma g(k) \cdot \sigma(k)$. Here α characterizes the strength of the ASOI. The ASOI leads to an energy shift of $\pm \alpha |g(k)|$, which can be interpreted as an effective k-dependent Zeeman splitting of the electron spins [3]. It has been revealed that $d(k) \parallel g(k)$ is energetically favored for $\alpha \gg |\Delta k|$. Furthermore, $\psi(k)$ and $d(k)$ belong to the same irreducible representation of the crystalline point group, and $d(k)$ is expressed as $d(k) = \psi(k)g(k)$ [5, 6]. This indicates that the superconducting energy gap $\Delta_{k \pm}$ takes the form $\Delta_{k \pm} = \psi(k)\{\Delta_1 \pm \Delta_2 |g(k)| \}$ on each split energy band.

One of the typical and well-studied ASOIs is of the Rashba-type, whose g-vector has the form $g(k) \propto (k_y, -k_x, 0)$ [2]. Because of this simple form, NCSCs having the Rashba-type ASOI are favorable for the investigation of the novel superconducting state. In fact, a number of unusual superconducting phenomena originating from the parity mixing or the ASOI have been proposed: e.g., helical vortex state and novel magneto electric effect [4, 7]. For observation of any of such phenomena, single crystalline sample is crucially important, because the novel effects are likely to be canceled out in polycrystals.

Naively speaking, the Rashba-type ASOI is expected to be realized in crystals in which inversion symmetry is broken only along one direction. To our knowledge, only seven Rashba-type NCSCs with single crystals are reported up until today: RPt$_3$Si (R=La, Ce) [8, 9], RRhSi$_3$ (R=La, Ce) [10, 11], and CeCoGe$_3$ [12]. The four Ce-based NCSCs indeed exhibit exotic superconducting behavior. However, they also exhibit antiferromagnetic ordering in the vicinity of the superconducting phase. Thus, it is difficult to distinguish effects originating from the ASOI from effects resulting from active f-electrons. In contrast, the other three La-based NCSCs exhibit conventional metallic behavior in their normal states and weak-coupling full-gap behavior in their superconducting states. This fact may suggest importance of the active f-electrons for realization of the novel phenomena. However, a few NCSCs having different crystal structures indeed exhibit novel superconducting phenomena, even though active f-electrons are not present [13]. Thus, further investigations of nonmagnetic, f-electron-free Rashba-type NCSCs are important.

Here, we report our success in growing single crystals of the Ca-based NCSC CaIrSi$_3$, which has the

*goguchi@scphys.kyoto-u.ac.jp
same crystal structure as RlrSi₃ (R=La, Ce). CaIrSi₃ exhibits superconductivity below the critical temperature \(T_c = 3.6 \) K \(^{16}\), which is the highest \(T_c \) among the known Rashba-type NCSCs. We previously reported that CaIrSi₃ is a non-magnetic, fully-gapped superconductor based on studies with polycrystalline samples \(^{17,18}\). Single crystalline samples allow examinations of various predicted exotic phenomena as well as investigation of basic information of superconductivity, such as the gap anisotropy and the mixing ratio of the singlet and triplet components. In this paper, we describe the synthesis of single crystalline CaIrSi₃, and its normal and superconducting properties. We also present the electronic density of states (DOS) near the Fermi energy \(E_F \) revealed by bulk sensitive hard x-ray photoemission spectroscopy (HAXPS), and by relativistic first-principle calculations \(^{19}\). By comparing the results of HAXPS and the band calculations, we revealed existence of strong SOI in this material. The compound can be a model material having strong SOI with 5\(d \) orbital characters.

II. SINGLE CRYSTAL GROWTH

Single crystalline CaIrSi₃ is synthesized by a combination of the arc melting \(^{17}\) and self-flux methods. Firstly, polycrystalline CaIrSi₃ was obtained by the arc melting of a pellet made of a powder mixture of CaSi (99.9%), Ir (99.99%), and Si (99.999%) with the molar ratio Ca:Ir:Si = 3:1:4.7. Secondly, small single crystalline grains of CaIrSi₃ were isolated by dissolving a by-product CaIr₃Si into 3% hydrochloric acid. Thirdly, these grains were mixed with a sufficient amount, typically twenty times of the Ir-molar mass of the grains, of the CaSi, Ir, and Si powders with the molar ratio Ca:Ir:Si = 3:1:4.7 in Ar atmosphere, then pressed into a pellet. The pellet was put into an alumina crucible, which was then capsulated into a stainless steel container in an Ar atmosphere \(^{21}\). The container was heated up to 1340°C, cooled to 800°C by 2°C/h, then quenched. Many pieces of single crystalline CaIrSi₃ with the size 0.2-1.4 mm are obtained along with a slight amount of by-product CaIr₃Si₇.

A powder x-ray diffraction spectrum (Bruker AXS D8 ADVANCE) of crushed single crystals is presented in Fig. 1. The obtained spectrum well agrees with the simulation. An optical microscope picture of a crystal with the typical size of 0.5 × 0.5 × 0.5 mm\(^3\) is presented in the upper-right inset. A backscattered Laue photograph of the presented crystal is also shown. This photograph was taken with an apparatus (RIGAKU RASCO-BLII) in which a charge-coupled-device (CCD) camera takes the image of a Laue pattern projected onto a fluorescent screen. The clear four-fold symmetry in the Laue picture indicates that the surface shown corresponds to the basal \(ab \) plane.

III. HARD X-RAY PHOTOEMISSION SPECTRUM

A photoemission spectrum around \(E_F \) revealed by the bulk sensitive HAXPS is presented in Fig. 2(a). The measurement was performed at the beamline BL47XU at SPring-8 (Japan) \(^{22}\). The setup of the measurement is depicted in the inset: incident photons with an energy of 7.9399 keV have their polarization plane perpendicular to the sample surface. The DOS deduced from the full potential linearize augmented plane wave (FLAPW) calculation performed by WIEN2k package with/without SOI are presented in Fig. 2(b) together with the partial DOS for each atom. Our calculation well reproduces the previous calculation in Ref. \(^{23}\). From the DOS, we simulate the HAXPS spectrum by assuming a Lorentzian-type lifetime broadening with the energy-dependent line width \((\text{FWHM}=0.2|E-E_F|)\) \(^{24}\), and compared it in Fig. 2(c) with the background-subtracted experimental spectrum. The calculation with the SOI explains the experimental result better than that without the SOI: In particular, the shoulder-like structure at approximately 3 eV for the latter is absent in the experimental spectrum. The fact indicates that strong SOI indeed affects the electronic state of CaIrSi₃.

The calculated band dispersions with/without the SOI are shown in Fig. 2(d). The four-fold degeneracy at the symmetric \(\Gamma \) point is split into two by \(\sim 0.42 \) eV due to the SOI. Note that this energy split at the \(\Gamma \) point \((k=0)\) is caused by the symmetric SOI, which...
can be finite regardless of the crystal symmetry. The value of the Γ-point splitting is consistent with a previous study [23]. The value is also comparable to that of CeIrSi₃: 0.4 eV [23], in which Ce 4f orbitals dominantly contribute to the electronic conduction. The remaining two-fold spin degeneracy is split by ~0.05-0.3 eV at less symmetric k points due to the ASOI. The band splitting results in approximately 10% DOS difference (δN ~ 0.1) between the ASOI-split Fermi surfaces. As presented in Figs. 2(b),(c), the Ir-5d orbital contributes by 20-50% to the total DOS near E₆. Thus, the influence of the strong SOI discussed above is attributed to the Ir orbitals.

IV. NORMAL-STATE AND SUPERCONDUCTING PROPERTIES

The temperature dependence of the resistivity ρ is presented in Fig. 3(a), while the low temperature ρ and specific heat cₚ of the same sample are presented in Fig. 3(b). The measurements were performed with a commercial apparatus (Quantum Design PPMS) down to 0.35 K with a ⁴He refrigerator. For the specific heat measurements, three crystals from the same batch were added to achieve sufficient experimental resolution (total: 7.301 mg). Their crystal axes were determined individually by the Laue photography. The onset temperature of the specific-heat jump in zero field is 3.55 K, which is consistent with the results for polycrystalline samples [17]. The thermodynamic Tc determined by the entropy conservation criteria, is 3.3 K. The superconductivity is suppressed by a field of 1 T (H || a) both the specific heat and resistivity in the normal state are magnetic-field independent within the experimental resolutions. The residual resistivity ratio RRR = ρ(300 K)/ρ(5 K) is 2.6. Both ρ₀ and RRR are comparable to that of polycrystalline samples [17].

The normal state cₚ below 5 K is well described by the conventional Debye-Sommerfeld model: cₚ = γT + βT³, where γ is the electronic specific heat coefficient and β is the phononic specific heat coefficient. We obtain γ = 6.6 mJ/molK² and β = 0.31 mJ/mol K³ from the fitting to the normal state data between 0.35 and 5 K. The Debye temperature Θ_D calculated
from $\beta = (12/5)\pi^4 N_A N_{\text{el},u} k_B / \Theta_D^3$ is 314 K. Here, N_A is the Avogadro number, $N_{\text{el},u} = 5$ is the number of atoms per formula unit, and k_B is the Boltzmann constant. We obtain the electron-phonon coupling constant λ_{el-ph} as 0.56 from the McMillan’s formula $T_c = (\Theta_D / 1.45) \exp[-1.04(1 + \lambda_{el-ph}) / \{\lambda_{el-ph} - \mu^* (1 + 0.62\lambda_{el-ph})\}]$ \cite{20} with $\Theta_D = 314$ K and the Coulomb pseudo potential $\mu^* = 0.13$. The obtained small value of λ_{el-ph} indicates that a weak-coupling superconductivity is realized in this compound, being consistent with the specific heat described below. The DOS from our calculation provides $\gamma_0 = 2.3$ mJ/molK2, yielding the electronic mass-enhancement factor $\gamma/\gamma_0 = 2.9$. This value is larger than that of pure Ir metal: 1.3 \cite{27, 28}.

The inset is the whole magnetic shielding occurs below ± 0.20 T for both field directions. The loops exhibit typical behavior of type-II superconductivity with weak vortex pinning. As presented in the figure, the irreversible field is 0.12 T for $H \parallel a$, and 0.023 T for $H \parallel c$. This anisotropic behavior indicates that vortex pinning for $H \parallel a$ is stronger than that for $H \parallel c$. Such anisotropic pinning was reproducibly observed in other measurements with a single piece of a crystal from the same batch and with several pieces of crystals from another batch. The negative slope of M vs. H in the normal state shown in the inset of Fig. 4(c) indicates that CaIrSi$_3$ is a diamagnet. No anisotropy in the normal state was observed within the experimental resolution. The normal-state dc susceptibility $\chi_{dc} = M / H$, which is determined by another measurement with many single crystals without alignment of the crystal direction, is -1.1×10^{-4} emu/mol. This value was almost invariant within the ranges ± 7 T and 2-300 K. The Pauli paramagnetic susceptibility of CaIrSi$_3$ estimated from the band calculations is $\chi_P = 0.61 \times 10^{-4}$ emu/mol. The observed diamagnetism is attributable to the dominance of the core diamagnetism.

The temperature dependence of the electronic specific heat divided by temperature $c_{el}/T = \gamma_0 / T - \beta T^2$ in several fields are presented in Fig. 4(a). The measurements for $H \parallel a$ and $H \parallel c$ were performed using the same crystals. At 0 T, the residual term of c_{el}/T for $T \rightarrow 0$ is almost absent, indicating that the superconducting volume fraction is nearly 100% for these samples. The thermodynamic critical field $\mu_0 H_c(0)$ evaluated from the relation $\mu_0 H_c^2(0)/2 = \gamma T_c^2 / 2 + \int_0^{T_c} c_{el}(T) dT = 0.028$ T. The theoretical c_{el}/T based on the weak-coupling BCS model \cite{29} presented in the figure well reproduces the observed temperature dependence below 2.7 K. The agreement indicates that the superconducting gap is finite on the entire Fermi surface. The deviation of the experimental data from the BCS curve above 2.7 K seems to be attributed to a T_c distribution within the samples. However, we will point out two tendencies opposite to the ordinary behavior. As presented in the lower inset of Fig. 4(a), the transition in 0 T is broader than that in 0.1 T. This is observed with another measurement with single crystalline samples from different batch (not shown). In addition, the specific-heat jump for the single crystals in 0 T is broader than that for polycrystals, as shown in the comparison of normalized $\Delta c_{el}/\gamma T$ between the single crystal and the polycrystals in the inset of Fig. 4(b). These features will be discussed again in the next section. Note that the sharpening of the specific-heat jump in 0.1 T is not observed in polycrystals, probably due to the presence of the grain boundaries in polycrystals.

As presented in the upper inset of Fig. 4(a), the specific-heat jump is visible in 0.35 T but not in 0.41 T for both field directions. The lower limit of the Ginsburg-Landau parameter κ_{GL} estimated from $\mu_0 H_c^2(0) = 0.375$ T is 9.4, using the relation $\kappa = H_c^2(0) / (\sqrt{2} \epsilon_0)$. This lower limit is consistent with that of the polycrystals \cite{17}.

The $H - T$ phase diagram deduced from the thermodynamic T_c for each field direction is presented in Fig. 4(b). For comparison, the thermodynamic T_c of polycrystals evaluated from the data reported in Ref. 17.
are also presented. The conventional Werthamer-Helfand-Hohenberg (WHH) curve for the upper critical field \(H_{c2}(T) \) in the dirty limit, giving \(\mu_0H_{c2}^{WHH}(0) = -0.693T_c[d(\mu_0H_{c2})/dT]|_{T=T_c} = 0.35 \text{ T} \), is also presented [30]. The WHH curve well agrees with the experimental result for \(H \parallel c \) above 2 K. However, the observed \(H_{c2} \) becomes substantially larger than \(\mu_0H_{c2}^{WHH}(T) \) at lower temperatures for both field directions. In addition, \(H_{c2} \) for the \(c \) direction is higher than that for the \(a \) direction. This is also evident in the specific-heat data [31]. Such twin boundaries would indicate an anisotropic distribution of lattice imperfections, or one from a finite state. In fact, the observed \(H_{c2} \) enhancement in low temperatures is possibly related to properties of the helical vortex state at \(H \ll H_P \). As well as the sample improvement, further investigation especially in the lower temperature region is necessary.

VI. SUMMARY

We revealed the existence of strong SOI on CaIrSi₃ by HAXPES, and the nearly three-dimensional, fully gapped superconducting nature with anisotropic vortex pinning, using single crystalline samples. The physical properties evaluated in this study is summarized in the Table [1]. We emphasize that CaIrSi₃ is one of the simplest Rashba-type NCSC having strong SOI without active \(j \)-electrons. It is expected that the single crystalline samples would provide unique opportunities for investigations of novel superconducting phenomena related to the lack of the inversion symmetry.

ACKNOWLEDGMENTS

We thank T. Matsuda, H. Ikeda, Y. Yanase, S. Fujimoto, D.C. Peets, M. Kriener, F. Kneidinger, and E. Bauer for fruitful discussions. This work is supported by a Grant-in-Aid for the Global COE program “The
Four values are obtained from the relativistic first principle calculations.

Table I. Physical properties of \(\text{CaIrSi}_3 \) obtained by this study. Here \(\gamma \) is the electronic specific heat coefficient, \(\Theta_D \) is the Debye temperature, \(T_c \) is the thermodynamic superconducting transition temperature, \(\mu_0 H_c(0) \) is the thermodynamic critical field, \(\lambda_{\text{el-ph}} \) is the electron-phonon coupling constant, \(\chi_{\text{dc}} \) is the dc magnetic susceptibility, \(E_F \) is the Fermi energy, \(N(E_F) \) is the density of states, \(\chi_P \) is the Pauli paramagnetic susceptibility, and \(n \) is the carrier density. The latter four values are obtained from the relativistic first principle calculations.

Property	Value
\(\gamma \)	6.6 mJ/mol K\(^2\)
\(\Theta_D \)	314 K
\(T_c \)	3.3 K
\(\mu_0 H_c(0) \)	0.028 T
\(\lambda_{\text{el-ph}} \)	0.56
\(\chi_{\text{dc}} \)	\(-1.1 \times 10^{-4}\) emu/mol
\(\mu_0 H_c(0) \) (at 0.9 K)	0.375 T
\(\kappa_{\text{GL}} \) (at 0.9 K)	9.4
\(E_F \)	8.26 eV
\(N(E_F) \)	1.93 states/eV
\(\chi_P \)	\(0.61 \times 10^{-4}\) emu/mol
\(n \)	\(1.6 \times 10^{23}\) /cm\(^3\)

Next Generation of Physics, Spun from Universal and Emergence” from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, and by the “Topological Quantum Phenomena” Grant-in-Aid for Scientific Research on Innovative Areas from MEXT of Japan, and by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World Leading Innovative R&D on Science and Technology (FIRST Program)”, initiated by the Council for Science and Technology Policy (CSTP). The synchrotron radiation experiments at SPring-8 were performed under the approvals of the Japan Synchrotron Radiation Research Institute (2011B1710 and 2012A1624). G.E. is also supported by JSPS.
[27] D. U. Gubser and R. J. Soulen, J. Low Temp. Phys. 13, 211 (1973).
[28] J. Noffke and L. Fritsche, J. Phys. F – Metal Physics 12, 921 (1982).
[29] B. Mühlschlegel, Z. Physik. 155, 313 (1959).
[30] E. Helfand, N. R. Werthamer, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
[31] H. Mukuda, S. Nishide, A. Harada, K. Iwasaki, M. Yogi, M. Yashima, Y. Kitaoka, M. Tsujino, T. Takeuchi, R. Settai, Y. Onuki, E. Bauer, K. M. Itoh, and E. E. Haller, J. Phys. Soc. Jpn. 78, 014705 (2009).
[32] C. Iniotakis, S. Fujimoto, and M. Sigrist, J. Phys. Soc. Jpn. 77, 083701 (2008).
[33] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[34] Y. Matsunaga, N. Hiasa, and R. Ikeda, Phys. Rev. B 78, 220508 (2008).