Source of Sustained Voltage Difference between the Xylem of a Potted Ficus benjamina Tree and Its Soil

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Love, Christopher J., Shuguang Zhang, and Andreas Mershin. “Source of Sustained Voltage Difference between the Xylem of a Potted Ficus benjamina Tree and Its Soil.” PLoS ONE 3.8 (2008): e2963. ©2008 Love et al.
As Published	http://dx.doi.org/10.1371/journal.pone.0002963
Publisher	Public Library of Science
Version	Final published version
Citable link	http://hdl.handle.net/1721.1/55376
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Introduction

We were intrigued by Internet circulated reports of sustained voltage differences of around 1 V between aluminum nails inserted into tree trunks and copper electrodes planted into the adjacent soil [1]. We immediately suspected a dissimilar-metal redox reaction was taking place with the tree-soil system acting as a giant electrolyte reservoir (similar to a Galvanic “potato” battery), so we carried out our measurements using identical platinum electrodes at both ends. Even so, we continued to measure between 50 and 200 mV of sustained voltage several hours and days after electrode insertion.

Upon closer examination of the relevant literature it became apparent that an electrical potential difference (voltage) between parts of trees, including phloem [2], xylem [3], and leaves [4] and between such parts and the adjacent soil had been routinely observed and reported for decades but the origin of this voltage remains controversial and a subject of considerable debate [5–7].

These voltage differences have been used in attempts to monitor plant activity and have been hypothesized to be due to various sources, most prominent of which appears to be the “streaming potential” mechanism [7], which is itself related to transpiration and sap flow.

Here we postulate a simpler hypothesis: the sustained voltage difference routinely observed between parts of trees and soil is mainly due to a difference in pH between the two. Specifically, the tree-root-soil system acts as a concentration pH cell, sometimes actively maintained by the tree’s homeostasis mechanisms. The potential from such a concentration cell is the Nernst potential, which only depends on a concentration gradient. At equilibrium (no net ionic flux across the interface), the Nernst potential is equal to the diffusion potential that results from charge separation across a permeable interface by diffusion down a concentration gradient [8].

Results

We tested this hypothesis by systematically measuring the voltages between the xylem of a potted Ficus benjamina tree and soils of various pH that showed a clear correlation closely following the Nernst equation. We controlled for possible external sources of voltage such as radio-frequency noise pickup, telluric (ground) currents [9], and dissimilar-metal redox reactions at the electrodes. Additionally, we calculated that no more than 20% and likely less than 1% of the magnitude of the voltages measured can be attributed to a streaming potential mechanism.

Fig. 1A shows the voltage differences between the xylem and the soil of an indoor potted Ficus benjamina tree measured at one-minute intervals over a ten-hour period. To exclude the possibility of radio-frequency noise pickup, we placed the tree and apparatus in a Faraday cage but we soon determined that the voltages measured outside the cage were within experimental error to the voltages recorded inside, leading us to conclude that whatever environmental electromagnetic noise present in our laboratory would not significantly affect our measurements. The instantaneous current under short circuit conditions was found to be less than 1 μA, depended weakly on soil water content and was most likely regulated by electrode-soil interfacial resistance.

We observed no significant change in the electrical potential difference between the xylem of the trunk region of the tree and soil with changing height or cardinal orientation of electrode...
placement around the tree (Fig. 1B, and consistent with previous reports [5]). We determined that variations in sap flow also played no detectable role in the magnitude or polarity of the sustained voltage since we mechanically stopped all flow in one experiment by inserting razor blades above and below the length of the electrode and by using severed branches in other experiments. Furthermore, transpiration and sap flow in our potted *Ficus benjamina* was minimal because the tree was placed indoors and exposed to regular sunlight through a glass window, not a sunlamp. Therefore, the bulk of the voltage could not be due to ions flowing past the electrode (which is the mechanism behind "streaming potential" -depicted in Fig. 1C) and thus not directly related to transpiration.

Instead, we found that the voltage between xylem and soil is approximately constant up, down, and around the tree, consistent with a mechanism depending on the approximately constant pH (around 6) throughout the xylem in the measured areas. We carefully calibrated our apparatus using in vitro pH differences in soil and 1 M KCl solutions, and we compared these to values measured between a fresh tree branch and soil at manipulated pH values. Fig. 2A shows a clear trend of increasing voltage between the xylem and an ionic liquid of increasing pH.
values. Fig. 2B indicates that the ionic composition does not significantly affect the voltage observed as long as the pH difference is kept constant. In both cases, the voltage magnitudes and polarities are consistent with a voltage generation mechanism dependent on unequal concentration of ions given by the Nernst equation (Fig 3).

Discussion

Mechanism behind sustained voltage

A large portion of the relevant literature incorrectly assumes the origin of voltage differences between xylem and soil are the result of a "streaming potential" (Fig 1C) due to the flow of ion-
containing sap past the electrode [8,10–12]. We have shown that eliminating sap flow does not appreciably change the voltage difference observed, meaning its bulk must originate elsewhere. The streaming potential, V_{stream}, is given by:

$$V_{\text{stream}} = \frac{\Delta \rho \zeta}{\eta} \Delta P \sim 1–10 \text{ mV}$$

where ζ is the dielectric constant of xylem (ca. 80); σ is its typical conductivity ($\sim 0.01 \text{ S/m}$); and η is the viscosity ($\sim 10^{-3} \text{ Pa s}$). ΔP is the pressure difference ($\sim 1 \text{ MPa}$) and ζ the “Zeta potential” (0.01 V) due to the difference in mobility between liquid and pore wall atoms.

The order-of-magnitude estimate for the streaming potential for conditions typical of trees as above yields a value between 1 mV and 10 mV, which does not account for the entire 50–200 mV we routinely observed. In addition, the streaming potential mechanism for voltage difference generation is such that faster flow makes for larger voltage differences—which is inconsistent with published observations that show an exactly opposite relationship [12], where it is clear that the highest voltages are recorded during the least transpirational activity (and therefore slowest flow) and vice versa. In addition to correctly predicting the trends and magnitudes of the measured voltages between xylem and soil, our proposed mechanism accounts for the variability of voltage between different soils and tree types as well as the observed differences between the same tree type growing in different pH soils. The small alternating fluctuations with periods in the 12 hour range as reported by other groups [5,12,13] may still be related to transpiration effects but are unlikely to be due to a streaming potential related mechanism because of the exactly negative correlation they exhibit in some of these reports [12,13]. According to our measurements, the bulk of the voltage follows a difference in pH rather than any more intricate effects.

We have determined that in contrast to a streaming potential mechanism, the Nernst equation, governing a pH concentration cell voltage generation mechanism closely predicts our observed measurements (Fig 3): $V = V^* - \frac{RT}{nF} [\Delta \rho \zeta] \sim 50 \text{ mV} [\Delta \rho \zeta]$ where R is the universal gas constant $= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, T is the temperature in degrees Kelvin, F is the electronic charge times Avogadro’s number (Faraday’s constant) $= 9.648 \times 10^4 \text{ C mol}^{-1}$ and $[\Delta \rho \zeta]$ is the difference in pH between two reservoirs. While there is active discussion on the validity of Kleiber’s metabolic-rate h to mass M scaling “law” [14] in plants [15] it still stands as the lower limit [16] so we can estimate the minimum metabolic rate h of our Ficus tree (of mass $M \sim 5 \text{ kg}$) to be 200 kcal per day (a power output of about 10 W). The voltages recorded, multiplied by an estimated average short circuit current $I \sim 0.1–1 \mu A$ indicate a drawn electrical power ($P = IV$) of between 5 and 200 nW that is, our circuitry parasitically harvested no more than 2×10^{-6}% of the tree’s power and its presence is unlikely to be developmentally detrimental at least from a purely metabolic standpoint.

The form of the Nernst equation used above is representative of an electronegative force when there is no current flow and V^*, the cell membrane potential, is assumed near zero because the xylem tissue is mainly composed of dead cells and, our electrode due to its large size relative to cell dimensions, pierces many cellular walls and essentially averages any residual membrane potentials.

Negligible current was drawn by the measurement circuit through the electrode–xylem, electrode–soil, and root–soil interfaces meaning that the voltage values we report include the over-potential needed to drive actual electron flow up from the soil to the xylem. Lowering the impedance (as, for instance, to use the xylem-soil potential difference to drive a load resistor, charge a battery, etc) will necessarily lower the available voltage by the value equal to the over-potential (in favor of a small current I).

Applications

Measurements of plant tissue pH using traditional methods such as Litmus paper or electronic pH meters are inaccurate, difficult, and sometimes destructive as they involve the extrusion of large amounts of sap or excision of tissue. Our work suggests that measuring the voltage difference between parts of plants and parts of plants and known-pH solutions using minimally destructive microelectrodes can be used to monitor changes in pH inside plant tissue and therefore many metabolic and other pH-sensitive processes.

We found it difficult to resist speculating that there may be possible practical applications of these findings beyond monitoring pH changes such as a wide variety of trickle chargers for niche, low-power, pulsed, off-grid distributed systems including forest fire detectors; environmental sensors; and “smart dust” or mesh-networked devices drastically decreasing the need for in-the-field battery changes. Interestingly, ionic flows through microfluidic circuits have already been investigated as viable sources of microwatt level electrical power [18] via the streaming potential effect (in the case of trees and other plants we can expect between 1–10 mV from sap flow alone as discussed above). If a method for easily inserting low-impedance microelectrodes in high-flow areas was developed the sap flow could be converted into electrical power. In addition, the voltage generated by the mismatch in pH between xylem and soil can also be harvested by such circuits that would act as a low-impact “parasite” on the tree drawing on its metabolism, assuming the homeostatic mechanisms would continue supplying the puncture site with redox-mediating molecules.

Such devices must necessarily draw some current, deplete redox mediators at the positive-electrode site, and lead to some negative-electrode degeneration over long times. However, it is possible, by correctly choosing a bio-friendly positive-electrode plating material (e.g. graphite, platinum, gold etc.), to harness large plants’ metabolic power and drive tiny load resistors.

Materials and Methods

Noise control

The Faraday cage was a vibration-isolated basement room surrounded on all sides, including floor and ceiling, by solid sheet copper, designed to eliminate all electromagnetic interference (such as cosmic radiation, radio waves, lightning and power line noise) from high fidelity scanning tunneling microscopy experiments. Our potted Ficus was placed on insulating foam and all equipment was properly grounded. All measurements were carried out using platinum electrodes connected to a high input impedance ($Z \geq 10^6 \Omega$) data-logging multimeter (Keithley 2000, Keithley Instruments Inc., Cleveland, Ohio). A custom-made holder ensured reproducible placement and minimal movement of the electrodes during experimentation (Fig. 1A). The negative terminal of the voltmeter was attached to the varying pH soil, ion solution, or 1 M KCl varying pH solution, and the positive terminal to the tree’s xylem or a reference ionic solution (Fig. 1A, Fig. 2C, Fig. 3).

Electrodes and voltage measurements

Electrodes were made of pure platinum (0.5 mm diameter, ESP, Ashland, Oregon). We note that platinum electrodes are not ideal for this type of voltage measurement because of the semiliquid phase of the xylem and soil, but the alternatives (calomel and Ag-AgCl), were impractical in our case due to their large size and form factors. Before each set of experiments, the platinum electrodes were polished with nylon pads containing ~50 nm alumina micropolish (Buchler, Lake Bluff, IL), rinsed...
with deionized water, and thoroughly wiped with a Kimwipe after each individual experiment. The electrode surface area in contact with the active volume was constant at both sites at approximately 15 mm². Phloem was removed from all measurement sites to avoid averaging effects due to possibly dissimilar pH and/or sap flow direction.

Solutions and pH measurements

All ionic and soil solutions were based on doubly-filtered water from a Millipore Simplicity (model SIMS 60000). Standardized soil samples of identical water content were prepared by adding 2 g of potting soil (Fafard, Agawam, MA) to 20 ml of water, mixing thoroughly, and adjusting the pH with KOH or HCl. To standardize ionic solutions at a particular pH, 1 M KCl was used to increase the availability of diffusible current carriers, increase the solution’s conductivity and avoid unpoised electrodes [18] (except in the case of Fig. 2B where we specifically used other ions to test for any redox chemistry effects). The pH of the ionic solutions in Fig. 2B was again adjusted with KOH or HCl. We determined xylem pH by measuring liquid exudates collected with a needle from the stem of a branch whose leaves were subjected to high pressure in a pressure bomb. Enough liquid was collected to record a pH value of approximately 6 on a pH strip (Corning, MA), and the value was calibrated against a glass-electrode pH meter (Orion Model 310, Thermo Scientific, Waltham, MA). To obtain a value for our standard pH calibration graph (Fig 3), 20 ml of a 1 M KCl solution at a particular pH was added to a Petri dish. A second Petri dish contained 20 ml of a 1 M KCl solution at the reference pH 7 and these were connected by a salt bridge consisting of 1 M KCl in agar gel.

Acknowledgments

We thank the MIT UROP office and Stella Karavas and Chris Lagadinos for their support throughout this project. We also thank Prof. Eric Hudson of the MIT Physics Department for the use of his Faraday cage, Rhys Hiltner for his help with circuitry and Prof. Alan Grodzinsky of the MIT Center for Biomedical Engineering for his thoughtful comments on this manuscript. We were greatly stimulated by discussions with Prof. Michelle Holbrook and Dr. Maciej Zwieniecki of the Department of Organismic and Evolutionary Biology, Harvard University.

Author Contributions

Conceived and designed the experiments: CJL SZ AM. Performed the experiments: CJL AM. Analyzed the data: CJL AM. Wrote the paper: CJL SZ AM.

References

1. Calnan C (2006) Plugged in: Startup hopes to tap electricity from trees. Mass High Tech: The Journal of New England Technology.
2. Wright JP, Fisher DB (1981) Measurement of Sieve Tube Membrane Potential. Plant Physiology 67: 845–848.
3. Wegner LH, Zimmerman U (1998) Simultaneous recording of xylem pressure and trans-root potential in roots of intact gymophytes using a novel xylem pressure probe technique. Plant, Cell and Environment 21: 849–865.
4. Kszczelak O, Petrova S, Kolodyazhny M (2004) Electrical Properties of Plant Tissues: Resistance of a Maize Leaf. Bulgarian Journal of Plant Physiology 30: 61–67.
5. Gilbert D, Mouel JLL, Lambi L, Nicollin F, Perrier F (2006) Sap Flow and Daily Electrical Potential Variations in a Tree Trunk. Plant Science 171: 572–584.
6. Gender W, Yan T (1986) Investigation of the Causative Reactant of the Apoplast Electropotentials of Plants. Journal of the Electrochemical Society: Electrochemical Science and Technology 135: 2991–2995.
7. Labady AJ, Thomas DJ, Shvetsova T, Volkov AG (2002) Plant bioelectrochemistry: effects of CCCP on electrical signaling in soybean. Bioelectrochemistry 57: 47–53.
8. Nobel PS (2005) Physicochemical and Environmental Plant Physiology 3rd ed. Elsevier Acad. Press. pp 106–123.
9. Gregori G, Lanzonetti L (1980) Telluric Currents: The Natural Environment and Interactions with Man-made Systems. The Earth’s Electrical Environment. Washington, D.C.: National Academy Press. pp 232–258.
10. Fensom DS (1963) The bioelectric potentials of plants and their functional significance: v. some daily and seasonal changes in the electrical potential and resistance of living trees. Canadian Journal of Botany 41: 831–831.
11. Morat P, Mouel JLL, Granier A (1994) Electrical potential on a tree. A measurement of sap flow? CR Acad Sci Paris, Science de la vie 317: 98–101.
12. Koppan A, Fenyvesi A, Szarka L, Wesztergom V (2002) Measurement of electric potential difference on trees. Acta Biologica Szegediensis 46: 37–38.
13. Koppan A, Szarka L, Wesztergom V (2000) Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. CR Acad Sci Paris, Science de la vie Life Sciences 323: 559–563.
14. Kolesch M (1947) Body size and metabolic rate. Physiol Rev 27: 511–541.
15. Niklas KJ, Enquist BJ (2000) Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences Vol 98 No 5: 2922–2927.
16. Reich PB, Twizerk MG, Machado J-L, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439: 457–561.
17. Yang J, Lu F, Kostink LW, Kowk DY (2003) Electrokineti microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics and Microengineering 13: 963–970.
18. Grodzinsky AJ (2005) Fields, Forces and Flows in Biological Systems. http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-430JFall-2004/LectureNotes/index.htm.