ORIGINAL ARTICLE

Short-term outcomes of patients with chronic liver disease hospitalised with COVID-19

Ivica Grgurevic 1,2,3 Marko Lucijanić 1,2,4 Fran Pastrovic 1, Ida Tjesic Drinkovic 1, Marko Zelenika 1, Marko Milosevic 1, Barbara Medic 1, Dusko Kardum 1, Tomislav Bokun 1,3 Ivica Luksic 2,5 Nevenka Piskac Zivkovic 6 Tatjana Keres 7 Vlatko Grabovac 7,8 Jasmina Persec 9,10 and Bruno Barsic 2,7

Departments of 1Gastroenterology, Hepatology and Clinical Nutrition, 4Hematology, 5Maxillofacial Surgery, 6Pulmonology, 7Unit, Department of Internal Medicine, 8Emergency Medicine, and 9Unit, Department of Anesthesiology, Renalology and Intensive Care, University Hospital Dubrava, and School of 2Medicine, 3Faculty of Pharmacy and Biochemistry, and 10Dental Medicine, University of Zagreb, Zagreb, Croatia

Key words
COVID-19, chronic liver disease, liver cirrhosis, prognosis, mortality.

Correspondence
Ivica Grgurevic, School of Medicine, University of Zagreb, University Hospital Dubrava, Avenija Gojka Suska 6, 10000 Zagreb, Croatia.
Email: ivica.grgurevic@zg.htnet.hr

Received 19 October 2021; accepted 2 May 2022.

Abstract

Background: Patients with chronic liver disease (CLD) might have an aggravated course after acquisition of coronavirus disease 2019 (COVID-19).

Aims: To analyse the outcomes of patients with CLD who were hospitalised due to COVID-19.

Methods: The medical records of 4014 patients hospitalised because of COVID-19 in a regional referral hospital over a 12-month period were analysed. Patients with CLD were identified based on discharge diagnoses according to the International Classification of Diseases-10th Revision. Patients were followed for 30 days from admission and their outcomes (intensive care unit (ICU) admission, mechanical ventilation (MV) or death) were analysed.

Results: Of the 4014 patients, 110 (2.7%) had CLD and 49 (1.2%) had cirrhosis. The median age of CLD patients was 67.5 years, 79 (71.8%) were males, 224 (23.5%) were obese, 56 (50.9%) reported alcohol abuse, 24 (21.8%) had non-alcoholic fatty liver disease, 11 (10%) had viral hepatitis and 98 (89.1%) had pneumonia. The median length of hospitalisation was 12 days; 32 (29.1%) patients required ICU admission and 23 (20.9%) patients required MV, while 43 (39.1%) died. In univariate analysis, patients with cirrhosis (45% vs 73%, hazard ratio (HR) = 2.95; P < 0.001), but not those with non-cirrhotic CLD (74% vs 73%; P > 0.05), experienced worse 30-day survival when compared with age, sex and COVID-19 duration-matched cohorts. In a logistic regression analysis conducted on the overall and matched cohorts, liver cirrhosis, but not CLD, predicted inferior survival independently of age, comorbidities and severity of COVID-19, with a fourfold higher adjusted risk of 30-day mortality.

Conclusion: Cirrhosis is independently associated with higher 30-day mortality of hospitalised patients with COVID-19.

Introduction

The involvement of the liver with coronavirus disease 2019 (COVID-19) has attracted a great amount of scientific interest, with somewhat conflicting results reported in terms of their pathogenetic interplay and influence on clinical outcomes.1

Liver transaminases are frequently elevated in patients with COVID-19, but whether they result from a direct cytopathic effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or as a part of the systemic
Inflammatory response to infection remains a matter of debate.\(^2\)\(^{-4}\) In a proportion of patients, they might also be elevated as a result of a drug-induced liver injury. However, elevated liver transaminases, especially aspartate aminotransferase (AST), have been associated with worse clinical outcomes, including the need for intensive care unit (ICU) admission, mechanical ventilation (MV) and death.\(^2\)\(^{-4}\) The clinical behaviour and outcomes of patients with existing chronic liver disease (CLD) when they acquire COVID-19 are a completely different issue. Several studies observed a worse outcome in patients with CLD, including cirrhosis, whereas others more specifically noted worse outcomes only among patients with decompensated cirrhosis.\(^5\)\(^{-9}\) In contrast, those with compensated cirrhosis who acquire COVID-19 have a high chance of experiencing decompensation, leading to a worse overall survival rate.\(^9\) Although multicentric, these investigations are not without limitations, as they were heterogenous in terms of the aetiology of CLD and the prevalence of cirrhosis (especially decompensated), and they have not included many racial/ethnic groups. Therefore, the conclusions provided from these reports might not be generalisable to all ethnic groups and geographical regions without additional research.

In the present study, we aimed to analyse the clinical outcomes of a cohort of patients with CLD who were hospitalised due to COVID-19 in University Hospital Dubrava, Zagreb, the largest regional referral centre in Croatia, representing a Caucasian population of Central-Eastern European ancestry with a prevailing alcoholic aetiology of liver disease.

Patients and methods

Patients

We retrospectively analysed data from a large single-institution registry of hospitalised COVID-19 patients. The study included 4014 patients who were hospitalised during the period March 2020 to March 2021 in the regional referral hospital University Hospital Dubrava, Zagreb, which was completely repurposed for the treatment of COVID-19 patients. All patients had a positive polymerase chain reaction (PCR) or antigen COVID-19 test prior to hospital admission. The patients were treated according to the contemporary guidelines, with varying exposure to low-molecular-weight heparin (LMWH), corticosteroids and remdesivir. The data on the clinical characteristics, laboratory parameters on admission and clinical outcomes during hospitalisation were taken from the hospital registry.

Methods

Patients with CLD were identified based on the International Classification of Diseases-10th Revision (ICD-10) codes of the discharge diagnoses. Data on the aetiology and stage of CLD were retrieved from the medical records of these patients. The presence of decompensated cirrhosis was defined by any of the following signs: ascites, bleeding from gastroesophageal varices, portal encephalopathy and/or icterus (serum bilirubin ≥50 μmol/L). Patients with transplanted livers were included in the general analyses due to documented pre-COVID-19 clinical and laboratory signs of liver disease. The severity of COVID-19 at admission was classified according to the World Health Organization (WHO) clinical management guidance adopted by the national guidelines for the treatment of COVID-19, version 2, issued on 19 November 2020 by the Ministry of Health.\(^10\)\(^{-11}\) Patients presenting with severe pneumonia that required oxygen supplementation or a modified early warning score (MEWS) 3–4\(^12\) were deemed to have severe COVID-19. Those with acute respiratory distress syndrome (ARDS) or MEWS ≥ 5, or the need for ICU treatment or MV were considered to have a critical level of illness. Obesity was defined as a body mass index (BMI) above 30 kg/m\(^2\). Comorbidities were evaluated as individual entities and were summarised using the Charlson comorbidity index.\(^13\) COVID-19 is associated with an increased incidence of thromboembolic events. As the presence of cirrhosis is also considered a prothrombotic condition, but at the same time is accompanied by higher bleeding risks due to portal hypertension and thrombocytopenia, thrombotic events and major bleeding episodes were analysed as well.\(^14\)\(^{-16}\) Venous and arterial thrombotic events were considered if documented by objective imaging or laboratory methods. Computed tomography angiography or a colour Doppler ultrasound of deep veins in the lower extremity was used to assess venous thromboembolic events. Both these methods in addition to laboratory derangements compatible with clinical presentation were used to examine arterial thrombotic events. More detailed information on thrombotic events from our database has been published previously.\(^17\) Bacterial sepsis was determined if positive blood cultures were noted. Clinically relevant bleeding was recognised if documented in medical records. The outcomes analysed included 30-day mortality assessed from the date of admission to hospital, as well as a need for ICU treatment and/or MV.

Statistical methods

Patients with and without CLD were compared overall as well as cohorts matched according to age, sex and day
Chronic liver disease and COVID-19

of disease at presentation. Matching was performed using the automated procedure provided by the MedCalc statistical programme, controlling for sex and allowing for a difference of 2 years in age and 1 day in the day of disease on admission. The two obtained groups were well balanced regarding specific comorbidities and matched parameters, as shown later in the paper. The normality of the distribution was tested using the Shapiro-Wilks test. The numerical variables were non-normally distributed and were presented as the median and interquartile range (IQR). They were compared between groups using the Mann–Whitney U-test. Categorical variables were presented as frequencies and percentages and were compared between groups using the \(\chi^2 \) test. Survival analyses were based on the Kaplan–Meier method. Survival curves were univariately compared using the Cox–Mantel version of the log-rank test. Initial data screening was performed using a custom-made MS Excel workbook. Multivariate analyses were performed using a logistic regression. P-values <0.05 were considered statistically significant. All presented analyses were performed using the MedCalc statistical software version 20 (MedCalc Software Ltd, Ostend, Belgium).

Ethical issues

This study was conducted in accordance with the World Medical Association Declaration of Helsinki and the protocol was approved by the Institutional Ethics Committee, No. 2020/1012-10. Due to the retrospective design, the requirement for signed informed consent was waived by the Ethics Committee.

Results

Demographic data and clinical characteristics of the patients

There were 110 hospitalised COVID-19 patients with CLD identified, amounting to 110/4014 (2.7%) of the total cohort. The median age of the CLD patients was 67.5 years, with an IQR of 57.3–75, 79/110 (71.8%) males, and the median disease duration before hospital admission had a 3-day IQR. The most common aetiologies of liver disease were alcoholic liver disease in 52/110 (47.3%), non-alcoholic fatty liver disease in 24/110 (21.8%), viral hepatitis in 11/110 (10%), autoimmune liver disease in 4/110 (3.6%), toxic liver disease in 3/110 (2.7%) and other aetiologies in 16/110 (14.5%). Four patients had transplanted livers. A total of 49/110 (44.5%) patients presented with liver cirrhosis, among whom 7/49 (14.3%) had a Child-Pugh A score, 23/49 (46.9%) Child-Pugh B and 19/49 (38.8%) Child-Pugh C. Considering the total CLD cohort, 61/110 (55.5%) patients had CLD without cirrhosis, 12/110 (10.9%) had compensated cirrhosis and 37/110 (33.6%) had decompensated liver cirrhosis, with a median Model for End-Stage Liver Disease (MELD) score of 7, 9.5 and 20 points, respectively (\(P < 0.001 \)).

Since the CLD patients were significantly younger (median 67.5 vs 74 years; \(P < 0.001 \)), more likely to be males (71.8% vs 55.8%; \(P < 0.001 \)) and presented earlier in the disease course (median 3 vs 5 days; \(P < 0.001 \)) in comparison with other hospitalised patients in the overall cohort, a case–control matching procedure based on age, sex and disease duration before admission was performed to account for these differences. A total of 110 CLD patients and 110 matched controls was selected, and their clinical characteristics are presented in Table 1.

In comparison with the matched patients, CLD patients had pneumonia and a severe form of COVID-19 at admission more often (\(P < 0.05 \) for both analyses), whereas there were no significant differences in these parameters between patients with CLD without cirrhosis and those with compensated and decompensated liver cirrhosis (\(P > 0.05 \) for both analyses). Patients with CLD also more frequently reported drinking alcohol, had a higher Charlson comorbidity index, a lower haemoglobin level, lower platelets, higher D-dimers, higher AST, higher gamma glutamyl transferase, higher alkaline phosphatase, higher total bilirubin, lower albumin and lower prothrombin time (\(P < 0.05 \) for all analyses). There were no significant differences in the other analysed parameters. The length of hospitalisation and a profile of the specific therapies (use of LMWH, corticosteroids and remdesivir) did not significantly differ between patients with and without CLD (\(P > 0.05 \) for all analyses).

Outcomes

Rates of ICU admission, need for high-flow oxygen therapy and MV, arterial and venous thromboses, bleeding, major bleeding and bacterial sepsis rates did not significantly differ between patients with and without CLD either overall, or in the matched cohorts of patients. The same was observed when mutually comparing patients with CLD without cirrhosis and those with compensated and decompensated liver cirrhosis (\(P > 0.05 \) for all comparisons).

In terms of 30-day mortality, 43 (39.1%) patients with CLD died. Among the CLD patients without cirrhosis, 15 died from respiratory complications related to COVID-19, one from end-stage gastric cancer and one from massive cerebrovascular insult. Among the patients
Table 1 Patients’ characteristics stratified according to the chronic liver disease status

	Chronic liver disease	Controls	P-value
No. patients	110	110	—
Age (years)	67.5 (57.25–75)	67 (58–74)	0.991
Male sex	79/110 (71.8%)	79/110 (71.8%)	1.000
Body mass index (kg/m²)	26.1 (24.4–30)	27.7 (25.3–32)	0.166
Arterial hypertension	67/110 (60.9%)	72/110 (65.5%)	0.485
Diabetes mellitus	32/110 (29.1%)	27/110 (24.5%)	0.447
Hyperlipoproteinaemia	20/110 (18.2%)	27/110 (24.5%)	0.250
Obesity	24/102 (23.5%)	25/104 (24%)	0.932
Congenital heart failure	16/110 (14.5%)	11/110 (10%)	0.304
Coronary artery disease	12/110 (10.9%)	15/110 (13.6%)	0.538
Previous CVI	8/110 (7.3%)	12/110 (10.9%)	0.348
Previous myocardial infarction	4/110 (3.6%)	12/110 (10.9%)	0.038
Chronic kidney disease	18/110 (16.4%)	13/110 (11.8%)	0.333
GERD/peptic ulcer disease	36/110 (32.7%)	19/110 (17.3%)	0.008*
COPD	11/110 (10%)	4/110 (3.6%)	0.061
Active malignancy	13/110 (11.8%)	19/110 (17.3%)	0.251
History of malignancy	20/110 (18.2%)	31/110 (28.2%)	0.079
Charlson comorbidity index	5 (4–7)	4 (2–6)	<0.001*
Alcohol use	56/110 (50.9%)	6/110 (5.5%)	<0.001*
Smoking	15/110 (13.6%)	9/110 (8.2%)	0.194
No. drugs in chronic therapy	6 (3–8)	5 (2–7)	0.066
WBC count (×10¹⁰/L)	7.2 (4.7–10.1)	8 (5.6–11)	0.193
Haemoglobin (g/L)	119 (101.25–136)	130.5 (107.75–144)	0.012*
Platelets (×10⁹/L)	176 (111.25–296.25)	218 (180.25–307.75)	<0.001*
CRP (mg/L)	56.1 (29.83–110.8)	71.7 (27.3–137.2)	0.392
Ferritin (μg/L)	704.5 (422.25–1440.5)	614 (344–1138)	0.203
D-dimers (mg/L FEU)	2 (1.17–4.24)	1.6 (0.74–3.7)	0.049*
Creatinine (mmol/L)	75.5 (61.25–109.5)	80 (66–111)	0.225
LDH (IU/L)	276 (214.25–400)	299.5 (230.75–434.75)	0.348
AST (IU/L)	57 (29–106)	37 (27.25–58)	<0.001*
ALT (IU/L)	34 (19–58)	32 (18–48)	0.538
GGT (IU/L)	67 (36–166)	43 (27–77)	<0.001*
ALP (IU/L)	91.5 (63.5–151.25)	74 (57–94)	0.003*
Total bilirubin (μmol/L)	19.1 (12–44.13)	11 (7.6–15.95)	<0.001*
Total proteins (g/L)	61 (56–66)	62 (56–65.25)	0.849
Albumin (g/L)	28 (25–32)	31 (28–35)	0.003*
PT (%)	94 (83.75–102.25)	101 (94–112)	<0.001*
Other infection on admission	20/110 (18.2%)	11/110 (10%)	0.081
Day of disease on admission	2.5 (1–7)	2 (0–7)	0.939
ECOG status	3 (1.25–4)	2 (1–3)	0.092
Pneumonia	98/110 (89.1%)	84/110 (76.4%)	0.013*
Oxygen therapy	89/110 (80.9%)	77/110 (70%)	0.060
MEWS severity	Overall	P = 0.008*	
Mild	10/110 (9.1%)	26/110 (23.6%)	0.004*
Moderate	8/110 (7.3%)	5/110 (4.5%)	0.391
Severe	84/110 (76.4%)	65/110 (59.1%)	0.006*
Critical	8/110 (7.3%)	14/110 (12.7%)	0.178
LMWH thromboprophylaxis	93/110 (84.5%)	94/110 (85.5%)	0.850
Steroid therapy	76/110 (69.1%)	79/110 (71.8%)	0.658
Remdesivir	6/110 (5.5%)	13/110 (11.8%)	0.093
Length of hospitalisation	12 (7–21)	10 (7–16)	0.136
Intensive care unit	32/110 (29.1%)	25/110 (22.7%)	0.281
High-flow oxygen therapy	17/110 (15.5%)	19/110 (17.3%)	0.715
Mechanical ventilation	23/110 (20.9%)	20/110 (18.2%)	0.610
Venous thrombosis	6/110 (5.5%)	4/110 (3.6%)	0.748
Arterial thrombosis	5/110 (4.5%)	8/110 (7.3%)	0.391
with compensated cirrhosis, 10 died from respiratory complications related to COVID-19, and one who had severe pneumonia developed liver decompensation and died. Of those who presented with decompensated cirrhosis at admission, 10 died from liver failure and five from respiratory complications.

Univariate analysis demonstrated the worse survival of CLD patients with cirrhosis in comparison with both non-cirrhotic CLD (survival rates 45% vs 74%; HR = 2.46; P = 0.004) and control patients (survival rates 45% vs 66%; HR = 2.04; P = 0.005 compared with overall, and survival rates 45% vs 73%; HR = 2.95; P < 0.001 compared with matched controls). However, there were no significant differences in the survival of non-cirrhotic CLD patients in comparison with the overall and matched controls (survival rates 74% vs 66% vs 73%, respectively; P > 0.05 for both analyses; Fig. 1).

Among the patients with liver cirrhosis, there were no statistically significant differences in any of the complications assessed. The only statistically significant differences were in the survival of CLD patients with cirrhosis compared with both non-cirrhotic CLD and controls.

Table 1

	Chronic liver disease	Controls	P-value
Bleeding	10/110 (9.1%)	11/110 (10%)	0.819
Major bleeding	4/110 (3.6%)	2/110 (1.8%)	0.409
Bacterial sepsis	17/110 (15.5%)	10/110 (9.1%)	0.153
30-day mortality	43/110 (39.1%)	30/110 (27.3%)	0.063

*Statistically significant at level P < 0.05. Numerical variables are presented as median and interquartile range (IQR).

ALP, alkaline phosphatase; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; CVI, cerebrovascular insult; ECOG, Eastern Cooperative Oncology Group; GERD, gastroesophageal reflux disease; GGT, Gamma glutamyl transferase; LDH, lactate dehydrogenase; LMWH, light molecular weight heparin; MEWS, modified early warning score; PT, prothrombin time (quick; %); WBC, white blood cell.

![Figure 1](https://example.com/figure1.png)

Figure 1 Thirty-day survival of COVID-19 patients according to the presence of chronic liver disease (CLD) and liver cirrhosis in (A) an overall cohort and (B) age-, sex- and duration of the disease at admission-matched cohort. ◼️ Controls; ◼️, CLD without cirrhosis; ◼️, CLD with cirrhosis.

![Figure 2](https://example.com/figure2.png)

Figure 2 Thirty-day survival of COVID-19 patients with chronic liver disease stratified according to the aetiology. Aetiology of liver disease: ◼️, alcohol; ◼️, NAFLD; ◼️, viral; ◼️, autoimmune; ◼️, toxic; ◼️, other.
significant differences in the 30-day survival rate between those with compensated (n = 12) and decompensated (n = 37) liver disease (P = 0.627), nor regarding the Child-Pugh grade (0.773). CLD patients with a MELD score >7 experienced significantly shorter 30-day survival rates (HR = 2.49; P = 0.005). No significant difference in 30-day survival was observed among the patients with different aetiologies of CLD (P = 0.372), although those with an alcohol-related aetiology of liver disease had a tendency towards worse survival rates (Fig. 2). Among the four patients with transplanted livers, two died. Of the four, one had decompensated cirrhosis due to chronic hepatitis B and C coinfection, and was receiving entecavir at the time of admission (died); one had decompensated cirrhosis due to obstruction at biliary anastomosis and was successfully treated by endoscopic dilatation (survived); one had non-alcoholic fatty liver disease of the graft (survived), and one patient acquired COVID-19 in the early post-transplant period (at Day 11), developed left liver lobe necrosis due to arterial thrombosis, as well as gastric perforation, and died 39 days after liver transplantation.

We further analysed the associations between CLD and liver cirrhosis with 30-day mortality in a series of logistic regression models adjusted for age, sex, MEWS score and particular comorbidities in both the overall and matched cohorts. The models are shown in Table 2. In both the overall and matched cohorts of patients, liver cirrhosis, but not CLD per se, predicted inferior survival rates independently of age, particular comorbidities and severity of COVID-19 clinical presentation with an approximately fourfold higher-adjusted risk of 30-day mortality.

Table 2 Logistic regression models for overall and matched patient cohorts for 30-day mortality prediction

Covariate	Overall cohort	Matched cohort				
	P-value	OR	95% CI for OR	P-value	OR	95% CI for OR
Age	<0.001*	1.075	1.066–1.084	0.001*	1.064	1.025–1.105
Sex	0.001*	1.308	1.112–1.539	0.529	0.776	0.351–1.712
MEWS score	<0.001*	1.614	1.540–1.691	<0.001*	1.641	1.307–2.059
Chronic liver disease	0.383	1.335	0.697–2.558	0.996	1.002	0.423–2.369
Liver cirrhosis	0.006*	3.712	1.447–9.525	0.003*	4.660	1.671–12.993
Arterial hypertension	0.563	0.944	0.777–1.147	0.547	1.309	0.544–3.151
Diabetes mellitus	0.065	1.179	0.989–1.406	0.765	1.142	0.475–2.746
Hyperlipoproteinaemia	0.937	0.992	0.819–1.202	0.762	1.155	0.452–2.945
Obesity	0.478	1.067	0.891–1.278	0.752	1.151	0.481–2.756
Chronic obstructive pulmonary disease	0.379	0.8777	0.656–1.173	0.701	0.764	0.195–2.999
Chronic kidney disease	<0.001*	1.618	1.282–2.043	0.781	1.173	0.378–3.637
Chronic heart failure	<0.001*	1.688	1.366–2.086	0.015*	4.154	1.317–13.097
Active malignancy	<0.001*	2.311	1.800–2.966	0.639	1.271	0.466–3.461

*Statistically significant at level P < 0.05.
CI, confidence interval; MEWS, modified early warning score; OR, odds ratio.

Discussion

In this cohort of patients with CLD mostly of an alcoholic aetiology, who were hospitalised due to COVID-19, the presence of liver cirrhosis was associated with the fourfold higher risk of 30-day mortality when compared to the cohort without CLD matched according to age, sex and COVID-19 duration. This association was independent of the age, sex, comorbidity burden and severity of COVID-19 at initial presentation and could not be observed across all stages of CLD, except for cirrhosis.

Whereas elevated liver blood tests (LBT) are frequently observed in those with COVID-19, these patients very rarely develop significant liver injury, including liver failure.1–4 Acute liver failure in this setting usually develops as a part of severe sepsis, septic shock and/or multiorgan failure. Nevertheless, elevated LBT, especially AST, have been associated with worse clinical outcomes of COVID-19, probably reflecting the higher degree of systemic inflammatory response to SARS-CoV-2 infection.2 The precise mechanisms of liver affection by COVID-19 are still a matter of debate. Both hepatocytes and cholangiocytes were shown to allow for viral entry into the cells through angiotensin-converting enzyme 2 (ACE2) receptors and for complete viral replication in vitro.19 Yet reliable evidence of such replication and cellular injury in vivo is lacking. In situ hybridisation demonstrated the presence of SARS-CoV-2 in 68% of samples in microthrombi and sinusoidal endothelial cells, but another study using deep proteomics failed to establish reliable evidence for viral replication within the liver.20,21 Additionally, an investigation that compared the clinical features of patients suffering from COVID-19
and seasonal influenza found no significant differences in terms of deranged liver biochemistry. Therefore, it seems that liver injury results from the immune-mediated generalised response to SARS-CoV-2 infection, rather than being a direct cytopathic effect of the virus itself. Liver histopathology might provide better insights, but comprehensive histopathological data are lacking. The largest examination, comprising 48 wedged liver biopsy samples obtained during post-mortem autopsies from patients who died from a severe respiratory form of COVID-19, revealed lesions, including microthrombi within the small portal branches, endothelial lesions, fatty transformed hepatocytes (probably at least in part due to pre-existing non-alcoholic fatty liver disease), the derangement of mitochondrial function, mild inflammatory infiltrate and fibrosis in portal tracts, and no biliary injury. Based on these data, and considering the impaired respiratory function and procoagulant features of COVID-19, it seems that the derangement of hepatic blood flow, mitochondrial injury and systemic hypoxia represent a background for liver injury in typical cases of COVID-19. In patients without pre-existing CLD, this kind of liver injury is obviously not sufficient to result in a severe liver impairment that dominates the clinical presentation.

However, a different development could be expected among those with pre-existing CLD, especially in the advanced stages. Patients with CLD have an increased expression of ACE2 receptors, and thus might be more susceptible to SARS-CoV-2 infection, but this was not observed in the large populational studies. In fact, those with CLD are underrepresented among COVID-19 patients. It might be assumed that patients with CLD are better aware of the risks of acquiring infection, and therefore avoid social contact, rather than being somehow protected by the presence of liver disease. In any case, upon the acquisition of COVID-19, an incremental decline in the 30-day survival rates of patients with a worsening clinical stage of cirrhosis was reported in previous research. Patients with cirrhosis, especially of an alcoholic aetiology, have elevated serum levels of inflammatory cytokines, due to increased gut permeability and a higher influx of bacterial endotoxins into the liver through the portal circulation, which in turn activate the immunological compartment residing in the liver. In these circumstances, an additional microbial stimulus, such as infection by SARS-CoV-2, causes an excessive overall immune response that may result in a cytokine storm, which, together with the histological changes as described above, predispose cirrhotic patients to adverse clinical outcomes. This observation is supported by our data as well, demonstrating diminished 30-day survival rates in patients with cirrhosis, irrespective of age, sex, comorbidity burden and severity of COVID-19 at the initial presentation. As opposed to this, the risk of dying from COVID-19 was similar among patients with non-cirrhotic CLD and those without CLD, as shown by our results and some other investigations.

Further dissection of the cirrhotic population led some authors to conclude that mortality is only increased in compensated patients. In a multinational investigation (covering 29 countries and five continents) which included 745 CLD patients (386 cirrhosis), the overall mortality was 20% in the total CLD cohort, 8% in patients without and 32% in those with cirrhosis (19%, 35% and 51% with Child-Pugh A, B and C respectively). This was also confirmed in a multicentric study from the United States (n = 867 patients with CLD, of whom 134 had compensated and 93 decompensated cirrhosis) that found 2.9 times higher risk of death in decompensated patients as compared to those with compensated cirrhosis and non-cirrhotic CLD. Interestingly, the observed mortality from COVID-19 is similar to that from bacterial infections as previously recorded in cirrhosis, and they likely share similar pathways in causing liver damage. Hence, after contracting COVID-19 cirrhotic patients are at risk of becoming decompensated, with a high mortality as noted. According to a report from Asia, approximately 20% of patients with cirrhosis develop decomposition on the contraction of COVID-19, with a higher mortality among patients with a baseline Child-Turcotte-Pugh score ≥8. Therefore, patients with compensated cirrhosis and a worse functional stage of liver disease should be closely followed for the signs of decompensation and treated accordingly.

In our cohort, we could not find a difference in survival between compensated and decompensated patients, but this was probably the result of the very small group (n = 12) of those with compensated cirrhosis, which was insufficient to reach statistical power. In fact, the poor 30-day survival rate observed in the overall cohort of patients with cirrhosis must have been substantially influenced by its unbalanced structure, as decompensation was present in 75% of the analysed patients. Therefore, our data are important as they specifically reflect the biological behaviour of advanced cirrhosis in Caucasian patients of Central-Eastern European ancestry infected by COVID-19, with a prevailing alcoholic aetiology (in 47% of patients) of CLD. Both an alcoholic aetiology and the presence of decompensated cirrhosis were previously reported as being associated with a higher risk of mortality. Hence, it was not surprising to observe a high overall mortality of 39% among patients with CLD in general, and 55% among a subset of CLD patients with liver cirrhosis in our cohort.
COVID-19 pandemic. Increased mortality has also been noted during the COVID-19 pandemic, as patients with other significant non-COVID-19 diseases, such as cancer, have experienced increased mortality. This might subsequently warrant better access to healthcare for patients with non-COVID-19 CLD (as for patients with other significant non-COVID-10 diseases, such as cancer), as their increased mortality has also been noted during the COVID-19 pandemic.29,30

We have not observed an increased risk of thrombotic incidents nor major bleeding among patients with CLD in comparison to the overall cohort and matched controls, although this observation might be biased by the retrospective nature of this investigation, as imaging studies for thromboembolic complications were not part of the regular protocol in patients without the clinical suspicion of a thrombotic event. However, prophylaxis with LMWH was almost universal and our data confirm its safety even in patients with decompensated cirrhosis.

Interestingly, the only difference in terms of comorbidities between CLD and the matched cohort of patients with a higher prevalence of gastroesophageal reflux disease (GERD)/peptic ulcer disease (PUD) among the patients with CLD, which is in keeping with previous observations of a higher incidence and prevalence of PUD among patients with liver cirrhosis, probably due to the impaired gastric mucosal defence mechanisms.31

This study has limitations, such as in being retrospective, and including only a limited number of patients with CLD, who were all hospitalised in the tertiary referral centre, thus not covering the entire spectrum of patients with liver disease and varying severity of COVID-19. The proportion of vaccinated patients was very low (25 out of 4014 in the whole dataset, with no vaccinated patients in the CLD subgroup) due to the fact that vaccination had only just started in our country at the time of inquiry. Hence, no meaningful analyses considering vaccination status could be performed. In addition, the number of patients with bacterial sepsis might have been underestimated, as it was defined by the positive blood culture for the purpose of this investigation. Nevertheless, the research included consecutive patients who tested positive for COVID-19 whose medical condition demanded hospital admission, all of whom underwent standardised diagnostic and therapeutic protocols and were followed for the defined period of 30 days from hospital admission. Moreover, the control population was a huge cohort of over 4000 patients hospitalised in the same hospital due to COVID-19, representative of the Caucasian population of Central-Eastern European ancestry, providing the robust background data. More specifically, our data provide good insight into the course of patients with decompensated cirrhosis and COVID-19, most of whom had an alcoholic aetiology of liver disease.

Conclusion

We have demonstrated the diminished survival of cirrhotic patients with COVID-19 in a cohort of Caucasian patients with Central-Eastern European ancestry with a prevailing alcoholic aetiology and decompensated stage of cirrhosis. Patients with non-cirrhotic CLD share the same prospects as other patients suffering COVID-19, but without CLD.

Acknowledgements

This manuscript is a part of the project ‘Registry of hospitalised patients in University Hospital Dubrava Respiratory centre’.

References

1. Marjot T, Webb GJ, Barratt AS 4th, Moon AM, Stamatakis Z, Wong VW et al. COVID-19 and liver disease: mechanistic and clinical perspectives. Nat Rev Gastroenterol Hepatol 2021; 18: 348–64.
2. Bloom PP, Meyerowitz EA, Reinus Z, Daidone M, Gustafson J, Kim AY et al. Liver biochemistries in hospitalized patients with COVID-19. Hepatology 2021; 73: 890–900.
3. Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y et al. COVID-19: abnormal liver function tests. J Hepatol 2020; 73: 366–74.
4. Hundt MA, Deng Y, Ciarleglio MM, Nathanson MH, Lim JK. Abnormal liver tests in COVID-19: a retrospective observational cohort study of 1,827 patients in a major U.S. hospital network. Hepatology 2020; 72: 1169–76.
5. Phillips CA, Ahamed R, Augustine P. SARS-CoV-2 related liver impairment – perception may not be the reality. J Hepatol 2020; 73: 991–2.
6. Kim D, Adeniji N, Latt N, Kumar S, Bloom PP, Aby ES et al. Predictors of outcomes of COVID-19 in patients with chronic liver disease: US multi-center study. Clin Gastroenterol Hepatol 2021; 19: 1469–1479 e19.
7. Singh S, Khan A. Clinical characteristics and outcomes of coronavirus disease 2019 among patients with preexisting liver disease in the United States: a multicenter research network study. Gastroenterology 2020; 159: 768–771 e3.
8. Marjot T, Moon AM, Cook JA, Abd-Elilalam S, Aloman C, Armstrong MJ et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol 2021; 74: 567–77.
Chronic liver disease and COVID-19

9 Sarin SK, Choudhury A, Lau GK, Zheng MH, Ji D, Abd-Elsalam S et al. Pre-existing liver disease is associated with poor outcome in patients with SARS-CoV2 infection; the APCOLIS Study. *Hepatol Int* 2020; 14: 690–700.

10 World Health Organization. Clinical management of COVID-19: interim guidance, 27 May 2020. Geneva, Switzerland: World Health Organization; 2020. Report No.: WHO/2019-nCoV/ clinical/2020.5.

11 The Ministry of Health of the Republic of Croatia. Guidelines for treatment of patients with COVID-19, Version 2. 2020 Nov 19. Available from URL: https://zdravljec.gov.hr/UserDocsImages//2020:521:94–95.pdf

12 Subbe CP, Kruger M, Rutherford P et al. Validation of a modified early warning score in medical admissions. *QJM* 2001; 94: 521–6.

13 Charlson ME, Pompei P, Alex KL, Mackenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis* 1987; 40: 373–83.

14 Flores B, Trivedi HD, Robson SC, Bonder A. Hemostasis, bleeding and thrombosis in liver disease. *J Transl Sci* 2017; 3: e3085–e3094.

15 Triposi A, Anstee QM, Sogaard KK, Primignani M, Valla DC. Hypercoagulability in cirrhosis: causes and consequences. *J Thromb Haemost* 2011; 9: 1713–23.

16 Saleh T, Matta F, Alali F, Stein PD. Venous thromboembolism with chronic liver disease. *Am J Med* 2011; 124: 64–8.

17 Jurin I, Lucijanić M, Piskač Živković N, Lalčić K, Zrilić Vrklija A, Malnar Janeš I. Incidence and risk factors for venous and arterial thromboses in hospitalized patients with coronavirus disease 2019: data on 4014 patients from a tertiary center registry. *Croat Med J* 2022; 63: 16–26.

18 Lucijanić M. Survival analysis in clinical practice: analyze your own data using an Excel workbook. *Croat Med J* 2016; 57: 77–9.

19 Prola CJ, Sookolian S. SARS-CoV-2 virus and liver expression of host receptors: putative mechanisms of liver involvement in COVID-19. *Liver Int* 2020; 40: 2038–40.

20 Sonzogni A, Prevaldi G, Seghezzi M, Grazia Alessio M, Gianatti A, Licini I et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. *Liver Int* 2020; 40: 2110–16.

21 Nie X, Qian L, Sun R, Huang B, Dong X, Xiao Q et al. Multi-organ proteomic landscape of COVID-19 autopsies. *Cell* 2021; 184: 775–791.e14.

22 Shafran NH, Issachar A, Shochat T, Shafran IH, Bursztyn M, Shlomai A. Abnormal liver tests in patients with SARS-CoV-2 or influenza – prognostic similarities and temporal disparities. *JHEP Rep* 2021; 3: 100258.

23 Fondevila MF, Mercado-Gómez M, Rodríguez A, Gonzalez-Rellan MJ, Iruzubieta P, Valenti V et al. Obese patients with NASH have increased hepatic expression of SARS-CoV-2 critical entry points. *J Hepatol* 2021; 74: 469–71.

24 Fan VS, Dominitz JA, Eastment MC, Locke E, Green P, Berry K et al. Risk factors for testing positive for SARS-CoV-2 in a national US healthcare system. *Clin Infect Dis* 2020; 73: iaaw41624.

25 Ioannou GN, Liang PS, Locke E, Green P, Berry K, O’Hare AM et al. Cirrhosis and severe acute respiratory syndrome Coronavirus 2 infection in US veterans: risk of infection, hospitalization, ventilation, and mortality. *Hepatology* 2021; 74: 322–35.

26 Arvaniti V, D’Amico G, Fede G, Manousou P, Tsochatzis E, Pleguezuelo M et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. *Gastroenterology* 2010; 139: 1246–56, 1256.e1-5.

27 Grgurević I, Trkulja V, Bozin T, Madir A, Miletic M, Murusic S et al. Infection as a predictor of mortality in decompensated liver cirrhosis: exploring the relationship to severity of liver failure. *Eur J Gastroenterol Hepatol* 2020; 32: 1458–65.

28 Trebicka J, Fernandez J, Papp M, Caraceni P, Laleman W, Gambino C et al. PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis. *J Hepatol* 2021; 74: 1097–108.

29 Tapper EB, Asrani SK. The COVID-19 pandemic will have a long-lasting impact on the quality of cirrhosis care. *J Hepatol* 2020; 73: 441–5.

30 Skladany L, Koller T, Adamcova Selcanova S, Vencakova J, Janeckova D, Durajova V et al. Challenging management of severe chronic disorders in acute pandemic situation: chronic liver disease under COVID-19 pandemic as the proof-of-principle model to orchestrate the measures in 3PM context. *EPMA J* 2021; 12: 1–14.

31 Sirino S, Burroughs AK, Bolondi L, Muia A, Di Felbo G, Miglioli M et al. Peptic ulcer and its course in cirrhosis: an endoscopic and clinical prospective study. *J Hepatol* 1995; 22: 633–41.