The Unknown Subgroup of $\text{Aut}(E_8)$

Majid Butler, Sandernisha Claiborne, Tomme Denney, De’Janeke Johnson and Tianna Robinson

McDonogh 35 High School

The authors were supported by the Student Research Fellowship program at McDonogh 35 High School in New Orleans.

We give several descriptions of the maximal subgroup $2A_9 < \text{Aut}(E_8)$, the simplest of which is: $2A_9$ permutes nine scale copies of E_8 generated by the $9 \cdot 240 = 2160$ norm 4 vectors.

August 10, 2017

1 INTRODUCTION

In the 150 years since it was shown to exist, the E_8 lattice has been one of the most studied objects in mathematics. Despite this scrutiny a significant gap in our knowledge of E_8 remains; the subgroup $2A_9$, maximal in $\text{Aut}(E_8)$, has defied simple description. In fact the ATLAS characterizes every maximal subgroup of the simple group $O_8^+(2)$, save one: only $2A_9$ exhibits blank entries across the page. The purpose of our brief paper is to illuminate this one final group.

Our results can be summarized in three ways, based on the following three perspectives: looking at E_8 modulo 2; looking at the lattice’s norm 2 vectors; and looking at the norm 4 vectors. These perspectives reveal $2A_9$ as:

(i) the automorphisms of E_8 that stabilize a partition of the 135 isotropic points of $E_8/2E_8$ into nine disjoint isotropic 4-spaces of 15 points each

(ii) the automorphisms of E_8 that stabilize a 9 x 15 array of coordinate frames such that

1The subgroup that fixes one of the nine 4-spaces permutes the other eight 4-spaces while it permutes the 15 points of the fixed space, so the isomorphism $A_8 \cong L_4(2)$ is visible within E_8.

1
a) each of the 120 root vectors of E_8 appears once in each row, as one of eight vectors in one of 15 coordinate frames, while

b) each pair of orthogonal root vectors appear together in exactly one of the 135 frames; or

(iii) the automorphisms of E_8 that stabilize a partition of the lattice’s 2160 norm 4 vectors into nine sets of 240, where each set generates a scale copy of the E_8 lattice itself.

2 MODULO 2

We begin by showing that the 135 isotropic points in an 8-space over \mathbb{F}_2 (which admits a quadratic form of Witt defect 0) can be arranged into nine disjoint isotropic 4-spaces that are permuted by a subgroup $A_9 < O_8^+(2)$.

There are 270 isotropic 4-spaces in the 8-space, and $O_8^+(2).2$ permutes them transitively while the subgroup $O_8^+(2)$ of index 2 permutes them in two orbits of 135 each, with stabilizer $\text{Stab}(V_1) \cong 2^6A_8$. This stabilizer acts on the other 134 4-spaces \(^2\) in orbits of size 64 (which have trivial intersection with V_1) and 70 (which intersect V_1 in a 2-space.) If V_2 is a 4-space in the 64-orbit then $\text{Stab}(V_1) \cap \text{Stab}(V_2)$ is a subgroup isomorphic to A_8 that permutes the remaining 133 4-spaces in orbits of sizes $28 + 35 + 35 + 35$ (which intersect $\{V_1, V_2\}$ in spaces of dimension $\{0, 0\}, \{0, 2\}, \{2, 0\}$ and $\{2, 2\}$, respectively.)

The 28 4-spaces disjoint from both V_1 and V_2 can be labeled by the duads of eight letters. The subgroups $A_7 < A_8$ permute the seven 4-spaces $(V_{a*}) = \{V_{ab}, V_{ac}, \ldots, V_{ah}\}$ that share a letter, and the subgroups $A_6 < A_8$ stabilize two 7-sets $A = (V_{a*})$ and $B = (V_{b*})$, so that each A_6 also fixes a unique third 4-space V_{ab} while permuting the six other 4-spaces in A and in B.

We use this simple fact to construct A_9. We begin with two disjoint 4-spaces V_1 and V_2 (whose pointwise stabilizer is A_8) and we choose a subgroup $A_6 < A_8$ that permutes six 4-spaces $\{V_{ac}, \ldots, V_{ah}\}$ and fixes a unique 4-space V_{ab}; note that A_6 extends to an $A_7 < A_8$ that permutes the seven 4-spaces $\{V_{ab}, V_{ac}, \ldots, V_{ah}\}$. But since V_1, V_2 and V_{ab} are mutually disjoint, we can start instead with the A_8 that fixes V_1 and V_{ab}; since this group contains the above A_6 (which fixes V_1, V_2 and V_{ab} and permutes the six 4-spaces $\{V_{ac}, \ldots, V_{ah}\}$) we can extend A_6 to an A_7 subgroup that still fixes V_1 and V_{ab} but now permutes the seven 4-spaces $\{V_2, V_{ac}, \ldots, V_{ah}\}$. Or, if we can start with the A_8 that fixes V_2 and V_{ab} to obtain an A_7 subgroup that permutes the seven 4-spaces $\{V_1, V_{ac}, \ldots, V_{ah}\}$. These three A_7 subgroups together generate a subgroup of $O_8^+(2)$ that stabilizes the nine 4-spaces $\{V_1, V_2, V_{ab}, V_{ac}, \ldots, V_{ah}\}$ and projects onto A_9; in fact this subgroup cannot be any larger than A_9 since otherwise its one-point stabilizer would be larger than A_8, which is already maximal in $\text{Stab}(V_1)$.

\(^2\) Unless otherwise noted, throughout the remainder of this paper the term “4-space” will mean one of the 135 isotropic 4-spaces within the orbit in question.

\(^3\) A_9 acts on the 28 duads of an 8-letter set in orbits of sizes $1+6+6+15$ and acts on the 35 bisections in orbits of sizes $15+20$, so $\{V_{ac}, \ldots, V_{ah}\}$, an orbit of size 6, must lie in the 28-orbit for $A_8 \cong \text{Stab}(V_1) \cap \text{Stab}(V_{ab})$, $i = \{1,2\}$.

2
Finally, since V_1 and V_2 are disjoint and since A_9 is multiply transitive on the nine 4-spaces, these nine 4-spaces are pairwise disjoint and therefore exhaust the $9 \cdot 15 = 135$ isotropic vectors.

3 NORM 2

This arrangement of the 135 isotropic vectors into nine isotropic 4-spaces partitions the 120 root vectors of E_8 into nine sets of 15 coordinate frames each, with properties (ii)(a) and (ii)(b) above.

Let V be one of the nine 4-spaces and consider a 3-space $W \subset V$. The space W^\perp is 5-dimensional and contains W, so W^\perp/W is a 2-space with three non-zero vectors. One of these vectors completes W into V (and so is isotropic) and at least one of the other two vectors is non-isotropic, since W^\perp cannot be a totally isotropic 5-space. If r is a non-isotropic vector then the eight non-isotropic vectors \{ $r + w, w \in W$ \} lift to eight different root vectors \{ r_1, \ldots, r_8 \} of E_8. Since the sum $r_i + r_j$ of any two of these root vectors projects to an (isotropic) vector of W, this E_8 vector has norm 4, so that r_i and r_j are orthogonal. In other words, these eight root vectors form a coordinate frame.

Furthermore, no non-isotropic vector r can lie in W_1^\perp and W_2^\perp for distinct 3-spaces W_1, W_2 of V since otherwise $r \in W_1^\perp \cap W_2^\perp = V$. Thus the 15 3-spaces of V yield 15 frames in which each of the 120 root vectors appears only once.

The nine different 4-spaces \{ V_1, \ldots, V_9 \} therefore give us nine different partitions of the 120 root vectors into 15 coordinate frames. No pair of root vectors \{ r_a, r_b \} may lie in two of these 135 coordinate frames (for 4-spaces V_i and V_j, say) since then $r_a + r_b$ would project to a vector in $V_i \cap V_j = \{0\}$. But since there are $120 \cdot 63/2 = 3780$ pairs \{ r_a, r_b \} of orthogonal root vectors, and since the 135 8-vector frames yield $135 \cdot (8 \choose 2) = 3780$ such pairs, each pair appears in exactly one coordinate frame. Note also that since a pair \{ r_a, r_b \} of orthogonal root vectors gives rise to four norm 4 vectors \{ $\pm r_a \pm r_b$ \}, each norm 4 vector is derived from two root vectors in $3780 \cdot 4/2160 = 7$ different ways.

4 NORM 4

Suppose we begin with the “norm 2” viewpoint: we have a 9 x 15 array of coordinate frames in which the 15 frames in each row were obtained from the 15 3-spaces of a 4-space. We use this array to partition the 2160 norm 4 vectors into nine scale copies of E_8, as follows.

Each coordinate frame of eight vectors \{ r_1, \ldots, r_8 \} yields ± 56 norm 4 vectors \{ $\pm r_i \pm r_j$ \}, and a row’s 15 frames therefore yield $\pm 56 \cdot 15/7 = \pm 120$ norm 4 vectors. But since a row was obtained from an isotropic 4-space its norm 4 vectors have even inner product with each other, so we can divide the natural

\[\cong 2^9 A_9. \]
inner product by 2 to obtain an integral rank 8 lattice generated by ± 120 norm 2 vectors. If we fix one of the 15 coordinate frames in this row then the half-scale inner product turns this frame’s eight root vectors $\{r_i\}$ into an orthonormal basis, in which case the ± 56 vectors $\{\pm r_i, \pm r_j\}$ generate a D_8 lattice. The remaining ± 64 vectors in the other 14 frames are norm 2 elements of D_8^*, any one of which extends D_8 to E_8. And since each row contains 240 of the 2160 norm 4 vectors, the nine rows partition the norm 4 vectors into nine scale copies of E_8.

Finally, if the 2160 norm 4 vectors of E_8 are partitioned into nine double-scale copies of E_8, then the 240 vectors in each copy have even inner products and so form a totally isotropic subspace in $E_8/2E_8$. Hence these 240 vectors project onto at most 15 points in $E_8/2E_8$—an isotropic space cannot be larger— and all nine copies of E_8 project onto no more than 135 non-zero points. So equality must hold: the nine scale copies of E_8 generate a partition of the 135 isotropic vectors into nine disjoint 4-spaces of 15 points each, which is exactly our original perspective.

Contacts: majidhbutler54@gmail.com, nisha.claiborne@gmail.com, tomme.denney32@gmail.com, jdejaneke@yahoo.com, and tiannarobinson71401@gmail.com

References

[1] J.H. Conway, R.T. Curtis, S.P Norton, R.A. Parker, and R.A. Wilson. An Atlas of Finite Groups. Oxford University Pressy, 198 Madison Avenue New York, NY 10016, 1985.