We analyze tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors. Also tunneling of Cooper pairs across two capacitively coupled Cooper-pair boxes is considered, when the capacitive coupling and Cooper pair tunneling are provided by a small Josephson junction between the islands. The theoretical analysis is done at subgap voltages, where the current-voltage characteristics depend strongly on the macroscopic eigenstates of the island(s) and their coupling to the dissipative environment. As the environment we use an impedance which satisfies \(\text{Re}[Z(\omega)] \ll R_Q \) and a few LC-oscillators in series with \(Z(\omega) \). The numerically calculated \(I - V \) curves are compared with experiments where the quantum states of mesoscopic SQUIDs are probed with inelastic Cooper pair tunneling. The main features of the observed \(I - V \) data are reproduced. Especially, we find traces of band structure in the higher excited states of the Cooper-pair boxes as well as traces of multiphoton processes between two Cooper-pair boxes in the regime of large Josephson coupling \(E_J \gg E_C \).

PACS numbers: 74.50.+r, 73.23.Hk

I. INTRODUCTION

A voltage biased small Josephson junction (JJ) has been shown to be a good probe of mesoscopic physics. In recent years it has been used, for example, in the detection of resonances in the electromagnetic environment\(^{1,2}\) and noise spectroscopy\(^{3,4}\). The theory of inelastic tunneling, known as the \(P(E) \)-theory, describes \(I - V \) characteristics resulting from incoherent tunneling of Cooper pairs, quasiparticles, across the small JJ and simultaneous energy exchange between the tunneling particle and its electromagnetic environment, which is described by a set of \(LC \)-oscillators. The standard \(P(E) \)-theory cannot, however, be used in the case of a non-Gaussian or anharmonic environment. In this paper, a suitable model will be constructed to account for the anharmonicity of the environment.

This paper gives a quantum description for a system which is designed to probe the excited states of a Cooper-pair box (CPB), or coupled boxes, by a small JJ. We model the quantum evolution of a voltage biased asymmetric single-Cooper-pair transistor (SCPT) or a circuit consisting of three JJs in series with a small middle JJ. The idea is, as in the \(P(E) \)-theory, that the small JJ is probing the eigenstates of the CPBs, which are then seen as current peaks at certain voltages. This is possible since under the voltage bias well above the supercurrent peak, but still at subgap region, the tunneling of a single Cooper pair across the small JJ is possible (nonvirtually) only if the environment is able to absorb the energy \(2eV \) released in the tunneling.

The environment of the small JJ consist of a CPB and a continuous spectrum of \(LC \)-oscillators describing dissipative quantum mechanics induced by high frequency resistive properties of the leads and possible spurious resonators in the transmission line or materials nearby the island. In resonant situations the dynamics involve both excitation and relaxation of the CPB eigenstates and one is, in principle, able to get information of both the energies as well as the relaxation times of the excited states.

Experimentally, the spectroscopy of the eigenstates using a small JJ as a probe have been done by Lindell \textit{et al.} and the results are reported in Refs. 5,6,7. In this set of experiments, traces of excited states, their anharmonicity and expected band structure were found from the measured \(I - V \) characteristics. However, several unexplained phenomena seen there were the main motivations for writing this more detailed description for the system. We show that indeed the main features of the \(I - V \) data can be explained by the quantum mechanics of asymmetric SCPTs or coupled CPBs. The model explains, for example, the widening of the \(I - V \) resonances as result of a band structure of (coupled) CPBs and non-constant peak splitting in the experiment of Ref. 5 as a result of multiphoton transitions between eigenstates of two CPBs.

The paper is organized as follows. In section \(\ref{sec:theory} \) we build a theory describing inelastic tunneling across the small JJ when it has an anharmonic element, i.e. a CPB, in its environment. In section \(\ref{sec:results} \) we discuss effects caused by slow relaxation and section \(\ref{sec:discussion} \) is devoted to a quantitative discussion of the \(I - V \) characteristics in the case of a two CPB environment. Comparison between numerical calculations and experiments is presented in section \(\ref{sec:comparison} \) and conclusions are given in section \(\ref{sec:conclusions} \).

II. INCOHERENT TUNNELING OF COOPER PAIRS ACROSS ASYMMETRIC SCPT

We model an asymmetric single-Cooper-pair transistor by taking the Josephson coupling across the probe...
The charging energy of the island, defined as \(E_{8,9} \), is taken into account as a perturbation), the Hamiltonian \(H_{\text{BM}} \) of the probe can be described by a transformation \(V \to V + V_f \) in Eq. (4), where \(V_f \) describes fluctuations from the average value \(V \). Therefore one can use an effective Hamiltonian for the CPB

\[
H_{\text{BM}} = H_{\text{CPB}} - Q_{\text{int}} V_f,
\]

where \(Q_{\text{int}} = C_2 Q / C_\Sigma \) (we have assumed that \(C_0 \ll C_\Sigma \)).

The autocorrelation function of the fluctuating voltage is related to the dissipative properties of the impedance \(Z(\omega) \) via the quantum fluctuation-dissipation theorem

\[
\langle V_f(t)V_f(0) \rangle_\omega = \int_{-\infty}^{\infty} dt e^{i\omega t} \langle V_f(t)V_f(0) \rangle = \frac{2\text{Re}[Z(\omega)]}{\hbar \omega} \frac{\hbar}{1 - \exp(-\hbar \omega/k_B T)}.
\]

Since fluctuations are only a small perturbation to the CPB, their effect is to induce transitions between the unperturbed states, i.e. the eigenstates of the CPB. The transition rate between the eigenstates \(|i\rangle \) and \(|f\rangle \) is obtained by the golden rule calculation

\[
\gamma_{f\to i} = \frac{2\text{Re}[Z(\omega)]}{\hbar} |\langle f|Q_{\text{int}}|i\rangle|^2 \frac{E_{if}}{1 - \exp(-E_{if}/k_B T)},
\]

where \(E_{if} = E_i - E_f = \hbar \omega \) is the difference between the corresponding eigenenergies.

We proceed by noting that the rates \(\gamma_{f\to i} \) define the lifetimes, and therefore also the linewidths, of the energy levels in the Cooper-pair box. The full width at half maximum (FWHM) \(\Delta_\alpha \) of the state \(|\alpha\rangle \) is then

\[
\Delta_\alpha = \hbar \sum_f \gamma_{f\to \alpha},
\]

and the density of the excited states broadens from the sum of delta-functions to sum of Lorentzians, i.e. the density of states changes as

\[
\sum_\alpha \delta(E - E_\alpha) \to \sum_\alpha \frac{2}{\pi} \frac{\Delta_\alpha}{(E_\alpha - E)^2 + \Delta_\alpha^2}.
\]

Finally, we include the Josephson coupling \(E_{J2} \cos(\varphi_2) \) describing tunneling of Cooper pairs across the probe junction and simultaneous excitations of its environment as (another) perturbation. Using \(\varphi_\Sigma = \varphi_1 + \varphi_2 + \varphi_Z = 2eVt / \hbar \) for the phase difference across the impedance, one finds the time dependent perturbations for the positive and negative direction tunneling \(M_\pm = E_{J2} \exp(\pm i (\varphi_1 + \varphi_2 - 2eVt / \hbar)) / 2 \).

The transition rates due to perturbations \(M_\pm \) between the eigenstates of the \(H_{\text{env}} \) are effectively described by transition rates between the states \(|\alpha\rangle |\text{env}\rangle \), which consist of two independent parts: broadened CPB states \(|\alpha\rangle \) and continuous distribution of the environmental LC-oscillators, whose free evolution is described by \(H_{\text{EE}} \).
(Born approximation). The LC-environment can be traced out similarly as in the \(P(E)\)-theory and the golden rule transition rates between the CPB states \(|i\rangle\) and \(|f\rangle\) become then
\[
\Gamma_{f \rightarrow i}^{\pm} = \frac{E_{2}^{2}}{2} \int_{-\infty}^{+\infty} dE' P(\pm 2eV - E') \langle f|e^{\pm i\varphi_{1}}|i\rangle^{2} \times \frac{\Delta_{i} + \Delta_{f}}{4(E_{f} - E_{i} - E')^{2} + (\Delta_{i} + \Delta_{f})^{2}},
\]
where \(P(E)\)-function is the same as for a system consisting of a probe junction with a capacitance \(C_{12} = (1/C_{1} + 1/C_{2})^{-1}\) in series with the impedance \(Z(\omega)\). If \(Z(\omega)\) is a constant \(R \ll R_{Q}\), the main contribution of the \(P(E)\)-function becomes from low energies where it is approximately a Lorentzian with a linewidth \(\Delta_{\text{env}} = 4\pi k_{B} T R/R_{Q}\) centered at \(E = 0\). Therefore it convolutes the original transition rates \(8\) to
\[
\Gamma_{f \rightarrow i}^{\pm} = \frac{E_{2}^{2}}{2} \int_{-\infty}^{+\infty} dE' P(\pm 2eV - E') \langle f|e^{\pm i\varphi_{1}}|i\rangle^{2} \times \frac{\Delta_{f}^{\text{total}}}{4(E_{f} - E_{i} + 2eV)^{2} + (\Delta_{f}^{\text{total}})^{2}},
\]
where \(\Delta_{f}^{\text{total}} = \Delta_{i} + \Delta_{f} + \Delta_{\text{env}}\). We see that there are two sources of broadening of the resonances: widening due to finite lifetimes of the CPB-eigenstates \((\Delta_{\alpha}:s)\) and widening due to low frequency fluctuations of the LC-environment \((\Delta_{\text{env}})\). The separation of the CPB and its environment holds also for the case where the environment has several modes which are nondegenerate with the CPB eigenstates. The degeneration, or almost degeneration, would lead to similar splitting of the states as described in section IV.

Each transition will occur simultaneously with a transfer of \(2e\) of charge across the system and the current is therefore
\[
I = 2e \sum_{f,i} P_{i} (\Gamma_{f \rightarrow i}^{+} - \Gamma_{f \rightarrow i}^{-}),
\]
where the probabilities \(P_{i}\) for occupancies of the CPB eigenstates are given by the canonical equilibrium distribution. If \(k_{B} T \ll E_{1} - E_{0}\) and \(Z(\omega) = R\) then
\[
I(V) = 2e \sum_{f} \Gamma_{f \rightarrow 0}^{+} = \sum_{f} \frac{2eE_{2}^{2}}{h} \langle |f|e^{i\varphi_{1}}|0\rangle^{2} \times \frac{\Delta_{f}^{\text{total}}}{4(E_{f} - E_{0} - 2eV)^{2} + (\Delta_{f}^{\text{total}})^{2}}.
\]
One sees that \(I - V\) peaks can be identified with energy levels of the environment, which in this case is the Cooper-pair box.

We have verified that the \(I - V\) characteristics obtained from Eq. (11) reduce to the ones obtained from the \(P(E)\)-theory, if the larger JJ is described as an LC-oscillator. However, Eq. (11) is also valid for JJ-environment with evident anharmonicity or band structure, and therefore is not limited to the harmonic approximation.

III. EFFECTS DUE TO SLOW RELAXATION

For the expression (11) to hold, it is vital that the system relaxes rapidly to the ground state, since the golden rule calculation is justified only if the excitation rates of the CPB-eigenstates, induced by the probe, are smaller than the relaxation times, caused by the CPB’s coupling to the dissipative environment. The irreversible interaction with the dissipative environment has to "cut" the evolution to the excited state quickly, otherwise the tunneling across the probe would turn from incoherent to coherent. On the other hand, in the opposite case of very slow relaxation, one would obtain Rabi oscillations between the CPB-eigenstates \(|0\rangle\) and \(|\alpha\rangle\) when initially starting from the state \(|0\rangle\) with \(2eV = E_{\alpha} - E_{0}\). This limit can also be analyzed in the Born-Markov approximation, but generally the problem needs an analysis of the time evolution of the whole density matrix and Markovian approximation cannot be used.

To obtain approximative results in all regions, we use the model derived in section III with modified probabilities for occupations. We redefine the diagonal elements of the density matrix by the ones obtained from the equilibrium master equation
\[
\sum_{f \neq i} [P_{f} (\Gamma_{i \rightarrow f} + \gamma_{i \rightarrow f}) - P_{i} (\Gamma_{f \rightarrow i} + \gamma_{f \rightarrow i})] = 0,
\]
for each \(i\). The \(\gamma_{s}\) are the relaxation rates caused by the fluctuating voltage across the CPB, Eq. (15), whereas the \(\Gamma_{s}\) are the rates induced by Cooper pair tunneling across the probe, Eq. (16). The method assumes that all the sequential transitions are independent of each other, which is not always true. However, the method reduces to the one considered in section III when the relaxation dominates the excitation and, according to our numerical calculations, gives similar results for the first order tunneling processes (single Cooper pair tunnels across the probe with simultaneous excitation of the CPB) even in the regime of very slow relaxation, as long as the SCPT is highly asymmetric. Therefore it is safe to assume that the first order processes are well approximated by Eq. (16) with the equilibrium probabilities obtained from Eqs. (12). Also, there is no experimental evidence of higher order resonances, which might be due to their weak nature to be washed out by the so called Zeno-effect.

IV. TWO CAPACITIVELY COUPLED CPBS

To generalize the treatment of the preceding sections, we do a perturbative treatment for three JJs in series, where the middle one acts as a probe. The configuration can be seen to consist of two capacitively coupled Cooper pair boxes, where the capacitive coupling is in parallel with a small tunneling element. Since we use similar models for analyzing the experiments in section...
we concentrate on the characteristics of this model a bit deeper. We also note that one of the larger JJs could as well be an LC-oscillator describing spurious resonance at frequency \(\omega_s = 1/\sqrt{LC} \) in the environment. If the energy quantum \(h\omega_s \) is almost the same as any excitation energy \(E_L - E_m \) between two relevant eigenstates of the CPB, or the state is long living, it cannot be modelled by the \(P(E) \)-function in Eq. (3), but the following treatment is valid.

The system in consideration consists of three JJs in series connection with the voltage source and the smallest capacitance of the gate in the middle, Fig. 2. Following the steps done in section III we first neglect the Josephson coupling of the probe and write down the Hamiltonian of two capacitively coupled Cooper pair boxes

\[
H_{2\text{CPB}} = \frac{(Q_L + Q_0)^2}{2C_L} + \frac{(Q_R + Q_0')^2}{2C_R} - E_J \cos(\varphi_1) - E_J \cos(\varphi_3) + \frac{C_{123}Q_L Q_R}{C_1 C_3},
\]

where \(\varphi_1 \) and \(Q_L \) are conjugated variables and similarly for \(\varphi_3 \) and \(Q_R \). The capacitances of the islands are (assuming that \(C_{gi} \ll C_i \) where \(C_{gi} \) is the capacitance of the gate \(i \) \(C_L = C_1 + C_2 + C_{23} = (1/C_2 + 1/C_3)^{-1}, C_R = C_3 + C_{12} \) and \(C_{123} = (1/C_1 + 1/C_2 + 1/C_3)^{-1} \). The quasicharges become then \(Q_0 \approx C_{gi} U_{gi} + C_{gi} U_{gi} C_2/C_R - C_2 V \) and \(Q_0' \approx -C_{gi} U_{gi} - C_{gi} U_{gi} C_2/C_L - C_2 V \). One sees that the Hamiltonian consist of two CPB Hamiltonians, which are then coupled by the last term in Eq. (13). Similarly as in section III we first calculate the linewidths of the eigenstates of the coupled system (but now \(Q_{\text{int}} = Q_L C_2/C_L + Q_R C_2/C_R \)), then use the fact that the phase difference \(\varphi_2 \) is a classical variable and take the tunneling across the probe into account perturbatively by considering the broadened states of the coupled CPBs and the environmental states separately. The current is obtained from Eq. (15), similarly as before.

The behaviour of the eigenstates and energies of the Hamiltonian (13) can be analyzed analytically in the limit \(E_J, E_{J3} \gg \sqrt{2C_L}, \sqrt{2C_R} \). For simplicity let us assume that \(E_{J1} = E_{J3} = E_J \) and \(C_L = C_R \approx C_L = C \). Two “splitting” effects contribute to the final energy level structure of the coupled CPBs. First, in the harmonic approximation of Eq. (13) the CPB’s behave as LC-oscillators. The degeneracy of the identical LC-oscillators is removed by the interaction term \(C_{123} Q_L Q_R/C_1 C_3 \approx C_{123} Q_L Q_R/C^2 \) (assuming that \(C < C \)), and diagonalising the quadratic Hamiltonian one sees that the system behaves as it would consist of two independent oscillators with the original inductances but with capacitances \(C_{\pm} = C^2/(C \pm C_2) \). For small \(C_2/C \) this leads to mode frequencies \(\omega_\pm \approx \omega_0 C_2/C \). Secondly, if one takes into account the first nonharmonic terms \(-E_J \varphi_1^4/4! \) in the Hamiltonian (13) and sets \(C_2 Q_L Q_R/C^2 = 0 \), one obtains also energy level splitting effects due to combined energy levels of two anharmonic oscillators. The energy levels of single CPBs become \(E_1 = \hbar \omega_p - EC, \) \(E_2 = 2\hbar \omega_p - 3EC, \) \(E_3 = 3\hbar \omega_p - 6EC \ldots \). New levels appear due to simultaneous excited states of the boxes

\[
|2^*\rangle = |1\rangle + |2\rangle \quad |3^*\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |2\rangle)
\]

with the corresponding eigenenergies \(E_{2^*} = 2\hbar \omega_p - 2EC \) and \(E_{3^*} = 3\hbar \omega_p - 4EC \). The energy level \(2\hbar \omega_p \), therefore “splits” into two nearby energy levels \(E_2 \) and \(E_{2^*} \).

When both of the above effects are included, more mixing of the states is obtained. The \(n \)th excited state splits into \(n + 1 \) states and, for example, the state \(|1\rangle \) splits into states (using the first order perturbation theory)

\[
|1s\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |0\rangle),
\]

\[
|1a\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |0\rangle)
\]

with the eigenenergies \(E_{1s} = \hbar \omega_p - z - EC \) and \(E_{1a} = \hbar \omega_p + z - EC \), where \(z = C_2 \hbar \omega_p/2C \). Similarly for the state \(|2\rangle\)

\[
|2s\rangle = c_2 (|2\rangle + |0\rangle),
\]

\[
|2a\rangle = \frac{1}{\sqrt{2}} (|2\rangle - |0\rangle)
\]

\[
|2^*\rangle = c_2 (|2\rangle + |0\rangle) + c_1^* (|1\rangle + |0\rangle),
\]

where \(E_{2s} = 2\hbar \omega_p - 5EC - z + 2z' \), \(E_{2a} = 2\hbar \omega_p - 3EC \), \(E_{2^*} = 2\hbar \omega_p - 5EC + z + 2z' \). \(c_{\pm}\) and \(c_i\) are normalizing factors. These states give both behaviours discussed in the preceding paragraph as the limiting cases of \(E_C \to 0 \) and \(z \to 0 \), respectively. The states \(|1a\rangle\) and \(|2a\rangle\) do not lead to current peaks since they contain antisymmetric combination of the states and therefore the elements \(|f\rangle \langle f| \exp(\pm i(\varphi_2 + \varphi_R))|0\rangle \) vanish. We still pick up the energies of the states \(E_{3s} = 3\hbar \omega_p - 5EC - z + 2\hbar \omega_p + 4z^2 - 2ECz \) and \(E_{3^*} = 3\hbar \omega_p - 5EC - z + \sqrt{E^2 + 4z^2 - 2ECz} \).

For higher anharmonicity (\(E_J \sim EC \)), where the band structure will become evident for the eigenstates and
the perturbative treatment of the cosine-potential is no longer valid, we have to resort to numerical solution. We calculate the eigenstates by diagonalising the Hamiltonian in a product basis of two noninteracting CPBs, for given values of gate voltages (quasicharges). The lowest eigenstates can be obtained quite accurately from an economical sized matrix equation, since the eigenstates are usually close to the states of this basis (due to small capacitive coupling), justifying also the “product state labelling” of the final states. After the Hamiltonian is diagonalized (and the transition rates have been calculated) one has to solve Eqs. 10 and 12 for each value of V to obtain the $I – V$ characteristics for given U_{g1}.

In section V B we model experiments using a similar circuit but including also two extra LC-oscillators in series with the three JJ system. The previous $I – V$ characteristics of the coupled CPBs are still preserved but multiphoton transitions with the external LC-oscillators are also obtained, which is the motivation for this procedure. In practice, the extra LC-oscillators can be modelled as JJs and the Hamiltonian of the system can be written as

$$H = \sum_{k,l} \frac{1}{2} (C^{-1})_{kl} q_k q_l - \sum_i E_{Ji} \cos(\varphi_i)$$

where $q_k = Q_k – Q_{k+1}$. Q_k is the charge gone through the k:th JJ, a conjugate variable to φ_i, C is a capacitance matrix. This Hamiltonian fully determines the energy bands, i.e. the ranges where peaks can occur in $I – V$ characteristics. In order to determine further details such as the peak positions for given gate voltages, one has to complete the Hamiltonian with linear terms in charge. Such terms result from voltage sources and can be deduced from single tunneling events. However, it turns out that in the experiments to be analyzed, the quasicharge is averaged over all values and the resonance positions become immune to these terms.

The relaxation rates due to photon emission to the electromagnetic environment $Z(\omega)$ are also determined by linear terms, through the fluctuating operator $Q_{\text{vac}} V_j = \sum_i a_i Q_i V_j$. For the LC-oscillators this relaxation channel does not lead to observed rates and must be enhanced by introducing resistors in parallel with L and C. An analogous procedure is to take the coefficients a_{LC} as fitting parameters and use the operator $\sum_i a_{LC} Q_{LC} V_{LC}$ as a perturbation, where the fluctuations V_{LC} are uncorrelated but have the original properties. For the large JJs a_i’s are theoretically defined by the ratios $C_2/C_{L/R}$, as was seen in the beginning of this section. The ratios are locked when fitting the observed energy level structure of the coupled system. But in real systems the capacitive coupling of CPBs can be effectively reduced by decoherence effects, for example by thermal fluctuations or dissipation, leading to a decrease in the “observed” C_2. Also effects related to materials nearby the CPB islands seem to be able to increase relaxation. Therefore in modelling the relaxation rates of coupled CPBs, one is forced to take the corresponding coefficients a_i as independent fitting parameters.

V. COMPARISON TO EXPERIMENTS

The $I – V$ characteristics of similar systems as discussed above were measured experimentally by Lindell et. al. and reported in Refs. 5,6,7. In these experiments, different kind of environments for the probe junction, consisting of one or several SQUIDs and two or four leads, were used under different magnetic fields and gate voltages. Using SQUIDs as the large JJs, the system could be studied in situ from the harmonic behaviour ($E_{J1} \gg E_C$) to the region where the anharmonicity and band structure become crucial ($E_{J1} \sim E_C$), by applying magnetic flux to the SQUID loops. This property also helped in the analysis of the data, since resonances coming from the spurious environment did not react to the applied magnetic field, at least not in the same way as the resonances coming from the CPBs.

The probe junction current as a function of voltage and external flux is shown in Fig 3 as a 2D-surface plot. The dominant current peaks show periodicity as a function of the flux Φ through the SQUID loop with the period of the flux quantum $\Phi_0 = h/2e$. This clearly points that they are originating from the SQUIDs and allows the identification of the different SQUID excitation states from the more complicated $I – V$ structure due to the rest of the electromagnetic environment. In addition to the periodic structures due to the SQUID environment, one can see additional states with longer and non-constant periods. It is likely that these are due to large, additional, Josephson junctions that are created in the two-angle evaporation technique used to fabricate the sample. The patterns have the Fraunhofer/Airy behavior as expected for a large Josephson junction that is penetrated by a magnetic field.

A. The 1-SQUID Experiment

We begin by studying the sample that has the configuration of the asymmetric SCPT (Fig. 1). The first thing in the fitting procedure is to identify which of the resonances in the $I – V$ characteristics are coming from the CPB eigenstates, which from spurious fluctuators and which from simultaneous excitations of both. The $I – V$ peaks in this ”1-SQUID experiment” consist of a set of flux dependent double peaks and several static resonances, from which the most important is at $V_{LC} \approx 13 \mu V$, i.e. $\omega_0/2\pi \approx 6.3$ GHz, see Fig. 4. Its second excited state is seen at $2V_{LC} \approx 26 \mu V$ (not shown in Fig. 4) and therefore it is not a 2-state fluctuator. The resonance is important since it explains the double structure of the first two flux-dependent double peaks: the lower resonance of each double peak is due to tunneling of a Cooper pair across the probe and simultaneous excitation of the CPB and the higher resonance of each double peak is due to tunneling and simultaneous excitations of the CPB and the LC-resonance (a multiphoton transition). Two observations support this idea. First, the peak split-
The resonances originating from the SQUIDs show Φ₀-periodicity. The figure also shows resonances of Fraunhofer/Airy type with weaker dependence on Φ, and multiphoton transitions. The $I - V$ characteristics of this 4-SQUID sample are analyzed more quantitatively in section V B.

Indications of the band structure of the CPBs (shaded), and the resonances due to the band edges are highlighted due to van-Hove-like singularities. The observed splitting indeed follows the resonances obtained from band edges, as seen in Fig. 3. Still, the physical reason for the "escape" of the quasicharge is unknown. No gate dependence for the positions of the $I - V$ peaks is seen when $E_{J1} > E_c$, supporting the idea of the "running" polarization charge. It is, interestingly, returned in the limit $E_{J1} < E_c$ at higher voltages as charging effects, when the gate-dependence of the ground state energy becomes observable.

Indications of the band structure of $|2, 0\rangle$ and even $|1, 0\rangle$ excitations are seen in the experiment for $\Phi > 0.3\Phi_0$ and $\Phi > 0.4\Phi_0$, respectively, but instead of clear splitting the resonances widen and become fluctuating. This broadening is also expected theoretically, as shown in Fig. 3 and looks like to be caused by random quasicharge fluctuations. Unfortunately the noise induced by the environment exceeds these current peaks for $\Phi > 0.35\Phi_0$ and therefore no clear evidence of these bands is obtained.

Finally, we note that the linewidths of the resonances are similar for the lowest resonances $\sim 8 \mu V$, which can be fitted using the values $R_0 = 100 \Omega$ and $T = 0.4$ K (leading to $\Delta_{min}/2e \sim 3.5 \mu V$) and the independently measured value $E_{J2} = 8.5 \mu eV$. The effective temperature is quite high since the temperature of the environment was ~ 0.1 K. The model indicates that the lowest resonances are in the slow relaxation regime, which is consistent with the observation that the maximum current of the $|1, 0\rangle$ resonance decreases when the magnetic flux is increased, see Fig. 4.
frequency environment. A resonance occurs nearby
when the states
≈ $v |_{0}$
are coupled, the latter having a faster relaxation to its ground state. The current between
(1 : 0.4) differ essentially from the ones observed for the first double peak, 1 : 0.13. Instead, a better explanation for the second double peak is the energy level structure of two coupled CPBs in the anharmonic region (section IV); the peak splitting occurs due to resonances of the $|2, 0, 0)$ and $|2^*, 0, 0)$ excitations, and using the parameters given in table VI one obtains a peak splitting $8.5 \mu V$ and an area ratio 1 : 0.25. The resonances corresponding to the multiphoton transitions $|2, 1, 0)$ and $|2^*, 1, 0)$ are also seen as weak peaks in agreement with the model. The third double peak splitting is then automatically explained as excitations to the states $|3, 0, 0)$ and $|3^*, 0, 0)$, giving the peak splitting $13.2 \mu V$ and area ratio 1 : 1. The experimental values are $15.0 \mu V$ and 1 : 1. Note, that in this sample the band structure of the state $|3, 0, 0)$ is negligible at $Φ = 0$, and therefore it does not explain the third double peak. The multiexcitation $|1, 0, 1)$ is also seen in Figs. 3 and 7 justifying generally the multiphoton interpretation.

We conclude that the area ratio and the peak splitting of the first double peak can be fitted by changing the properties of the external LC-oscillator but at the same time the resonance at $V = V_{LC}$ has to be fitted also, whereas the other splittings and areas are determined by the charging energy E_C of the island(s) and the capacitance of the probe junction C_2 (section IV). Also adding a slight asymmetry between the two SQUIDs can “fine tune” these values and we have used here a 1% difference. From Fig. 5 one can see that, not only the calculated positions of the resonance peaks, but also the corresponding areas are quite similar for the model and experiment for this choice of fitting parameters.

It is interesting to study the effect of band structure in this experiment. Again, a change in the gate voltage did not result in a change of the resonance positions, even in the region $E_{J1} \sim E_C$. Instead, the resonances originating from SQUIDs widened and changed from smooth

![FIG. 5: The maximum current of the resonance $|1, 0)$ in the 1-SQUID experiment (triangles) compared with that resulting from the model of a SQUID and an LC-oscillator in series with the probe junction. Different from Fig. 4 the LC-oscillator (“$LC2$” in table IV) describes a small $I – V$ peak seen at a voltage $\approx 90 \mu V$ (not shown in Fig. 4). In the region $Φ > 0.3Φ_0$ the state $|1, 0)$ suffers from a slow relaxation and the current is determined by the photon emission to the ohmic low frequency environment. A resonance occurs nearby $\approx 0.2Φ_0$ when the states $|1, 0)$ and $|0, 1)$ are coupled, the latter having a faster relaxation to its ground state. The current between $Φ = 0$ and $Φ = 0.1Φ_0$ seems also to be enhanced, probably due to further entanglement with the environment. In the calculation of the relaxation rates we have used a perturbation $(C_2/C_1)Q_{SQUID}V_f + 0.2Q_{LC}V_f$, (section IV).

![FIG. 6: Left: Schematic drawing of the 4-SQUID experiment. The SQUIDs are drawn as JJs. In this situation, the two SQUIDs (at the same side) behave as a single JJ, but with double the coupling energy E_J and capacitance C compared to the individual SQUIDs. Right: The resulting theoretical model of the system.

B. The 4-SQUID Experiment

The second sample to be studied consists of four leads, four SQUIDs and a probe junction, see left side of Fig. 6. Since the two SQUIDs on the same side of the probe

behave as a SCPT and the phase difference $θ$ across this component relaxes to the minimum energy value $θ = 0$ (its classical dynamics is highly damped and no bias is present), the two SQUIDs behave as a single JJ and one arrives at an equivalent circuit of two JJs and a probe in series connection; the model discussed in section IV.

Also for this sample, the $I – V$ characteristics consist of flux dependent double peaks and a few static resonances. The noise of the environment in the limit $E_{J1} \sim E_C$ is, however, much smaller than in the 1-SQUID sample and therefore a more detailed analysis can be done. Again, the first static resonance is seen at $V_{LC} \approx 11 \mu V$ i.e. $ω_0/2π \approx 5.3$ GHz, see Fig. 7 and its second excited state is seen at $2V_{LC}$ (not shown in Fig. 7). We include also a resonance seen at $V_R \approx 123 \mu V$ to the model as another LC-oscillator. The first flux dependent double peak can again be explained a as a plain excitation of the CPB, and a multiexcitation of the CPB and the (smaller frequency) LC-oscillator. The second double peak, however, is not consistent with this assumption since the peak splitting is much smaller than V_{LC}, $8.5 \mu V$, and the relative areas of the peaks, 1 : 0.4, differ essentially from the ones observed for the first double peak, 1 : 0.13. Instead, a better explanation for the second double peak is the energy level structure of two coupled CPBs in the anharmonic region (section IV); the peak splitting occurs due to resonances of the $|2, 0, 0)$ and $|2^*, 0, 0)$ excitations, and using the parameters given in table IV one obtains a peak splitting $8.5 \mu V$ and an area ratio 1 : 0.25. The resonances corresponding to the multiphoton transitions $|2, 1, 0)$ and $|2^*, 1, 0)$ are also seen as weak peaks in agreement with the model. The third double peak splitting is then automatically explained as excitations to the states $|3, 0, 0)$ and $|3^*, 0, 0)$, giving the peak splitting $13.2 \mu V$ and area ratio 1 : 1. The experimental values are $15.0 \mu V$ and 1 : 1. Note, that in this sample the band structure of the state $|3, 0, 0)$ is negligible at $Φ = 0$, and therefore it does not explain the third double peak. The multiexcitation $|1, 0, 1)$ is also seen in Figs. 3 and 7 justifying generally the multiphoton interpretation.

We conclude that the area ratio and the peak splitting of the first double peak can be fitted by changing the properties of the external LC-oscillator but at the same time the resonance at $V = V_{LC}$ has to be fitted also, whereas the other splittings and areas are determined by the charging energy E_C of the island(s) and the capacitance of the probe junction C_2 (section IV). Also adding a slight asymmetry between the two SQUIDs can “fine tune” these values and we have used here a 1% difference. From Fig. 5 one can see that, not only the calculated positions of the resonance peaks, but also the corresponding areas are quite similar for the model and experiment for this choice of fitting parameters.

It is interesting to study the effect of band structure in this experiment. Again, a change in the gate voltage did not result in a change of the resonance positions, even in the region $E_{J1} \sim E_C$. Instead, the resonances originating from SQUIDs widened and changed from smooth
FIG. 7: The positions of the resonances in the 4-SQUID experiment (data points) compared with the edges of the energy bands (lines) and the band structure (shaded) calculated from the model of two SQUIDs and two LC-oscillators in series with the probe junction. The experimental data is based on \(I - V \) curves of which two examples are shown in Fig. 8. Also shown is a schematic diagram of the model circuit and the code used for labelling the states. The parameters in the numerical model are summarized in Table I.

![Diagram](image)

TABLE I: Parameter values used to fit the experimental \(I - V \) curves. The values resulting from independent measurements are given in parentheses. We note that the experimental value for \(E_{J1} \) in the 1-SQUID experiment, obtained via a normal state resistance measurement, is unreliable because it was obtained after the probe was accidentally broken. When modelling the 1-SQUID sample, we used an asymmetry factor \(d = 0.12 \) for \(E_{J1} \), i.e., the Josephson coupling energies of the two JJs inside a SQUID satisfy \(|E_{JJ1} - E_{JJ2}|/E_{JJ1} = 0.12|\), Lorentzians to fluctuating lines. Therefore, we again assume that the measured \(I - V \) curves are a result of some kind of averaging over the quasicharge space, which now is two-dimensional because of two quasicharges \(Q_0 \) and \(Q'_0 \). The theoretical and experimental \(I - V \) curves are compared at \(\Phi = 0.45\Phi_0 \) in the inset of Fig. 8. One can see that they compare fairly well, even though the peak heights for show little disagreement. In this sample the band structure does not lead to strong peak splitting in contrast to the 1-SQUID sample. The reason for this is that the van Hove singularities in two dimensional quasicharge space are weaker than in one dimension. This is not the case for single excitations \(|1,0,0\rangle, |2,0,0\rangle \) and \(|3,0,0\rangle \), and indeed the band edges of the latter two are seen as separate peaks in the theoretical \(I - V \) curve. We have used uniform quasicharge distribution, which is the simplest guess as the physics of the average processing are unknown.

The experimental and theoretical peak broadening are compared in Fig. 8 for three of the transitions. The theoretical width is obtained by summing up the peak width at \(\Phi = 0 \), which for this choice of parameters is \(\approx 10 \mu\text{eV} \), and the increase due to broadening of the bands. There is good agreement between the theory and experiment. For example, the \(|2,0,0\rangle \)-resonance broadens faster than the \(|2^*,0,0\rangle \)-resonance which is consistent with the theoretical model. The width of the \(|3,0,0\rangle \)-resonance is not analyzed since it rapidly becomes unobservable due to strong broadening.

VI. CONCLUSION

We have carried out a theoretical study of Cooper pair tunneling across a voltage biased asymmetric SCPT and a system consisting of three JJs in series, where the mid-

![Graph](image)

\[
\begin{array}{cccccc}
\text{Sample} & E_{J1} (\mu\text{eV}) & E_{J2} (\mu\text{eV}) & C_1 (\text{fF}) & C_2 (\text{fF}) & T (\text{K}) \\
1\text{-SQUID} & 390 (188) & 8.5 (8.5) & 4.6 (5.7) & 0.7 (0.8) & 0.4(0.1) \\
4\text{-SQUID} & 483 (544) & 3.6 (3.6) & 6.45 (0.5) & 0.2(0.1) \\
\end{array}
\]

![Table](image)
dle one acts as a probe, and applied the models in analyzing the experimental findings of Ref. [5]. The treatment of the problem was done in the weak coupling regime, where the Cooper pairs tunnel incoherently across the probe, and was based on the idea of extending the well known \(P(E) \)-theory into the regime where the anharmonicity and band structure are taken into account. We pointed out, that the nature of the tunneling across the probe turns from incoherent to coherent when the golden rule tunneling times exceed the relaxation times induced by the dissipative environment. Furthermore, we discussed that a simple master equation correction to the population of the eigenstates in the incoherent calculation leads to a good approximation for the current for arbitrary values of the voltage and for different flux values.

In the last part of this paper we showed that a detailed theoretical understanding of experimental data can be achieved. In particular, the multiphoton processes between different mesoscopic elements and spurious LC-resonators as well as the band structure of the Josephson junction can be probed by a small Josephson junction coupled to SQUID(s). Especially, the detection of energy bands of higher excited states is confirmed by the fact that the observed widening of the resonances was in good accordance with the linewidths obtained from the model.

Acknowledgments

This work was financially supported by the National Graduate School in Material Physics, Finnish Academy of Science and Letters (Vilho, Yrjö and Kalle Väisälä Foundation) and the Academy of Finland (National Center of Excellence Programme).

1. G.-L. Ingold and Y. V. Nazarov, Single Charge Tunneling, ed. H. Grabert and M. H. Devoret (Plenum, New York, 1992).
2. G. L. Ingold, H. Grabert, and V. Eberhardt, Phys. Rev. B 50, 395 (1994).
3. E. B. Sonin, Phys. Rev. B 70, 140506 (2004).
4. R. K. Lindell, J. Delahaye, M. A. Sillanpää, T. T. Heikkilä, E. B. Sonin, and P. Hakonen, Phys. Rev. Lett. 93, 197002 (2004).
5. R. Lindell, J. Penttilä, M. Sillanpää, and P. Hakonen, Phys. Rev. B 68, 052506 (2003).
6. R. Lindell, J. Penttilä, M. Paalanen, and P. Hakonen, Physica E 18, 13 (2003).
7. R. Lindell Ph.d. thesis, Helsinki University of Technology, (2005).
8. D. V. Averin, A. B. Zorin, and K. K. Likharev, Sov. Phys. JETP. 61, 407 (1985).
9. K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985).
10. U. Weiss, Quantum Dissipative Systems, 2nd ed. (World Sci., Singapore, 1999).
11. A. M. v. d. Brink, A. A. Odintsov, P. A. Bobbert, and G. Schön, Z. Phys. B 85, 459 (1991).
12. A. M. v. d. Brink, G. Schön, and L. J. Geerligs, Phys. Rev. Lett. 67, 3030 (1991).
13. T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 73, 3455 (1994).
14. J. Leppäkangas and E. Thuneberg, to be published in AIP proceedings of LT-24.
15. A. Shnirman and Yu. Makhlin, JETP. Lett. 78, 447 (2003).
16. Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature 421, 823 (2003).
17. O. Astafiev, Yu. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, Phys. Rev. Lett. 93, 267007 (2004).
18. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).