The subdwarf B star SB 290 – A fast rotator on the extreme horizontal branch

S. Geier
t S. J. O’Toole
1. Introduction

Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. In order to form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red giant branch. In close binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well and their formation is unclear since decades. The merger of helium white dwarfs leading to an ignition of core helium-burning or the merger of a helium core and a low mass star during the common envelope phase have been proposed. Here we report the discovery of SB 290 as the first apparently single fast rotating sdB star located on the extreme horizontal branch indicating that those stars may form from mergers.

Key words. binaries: spectroscopic – subdwarfs – stars: rotation

1. Introduction

Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with thin hydrogen envelopes situated at the extreme end of the blue horizontal branch (Heber 2009). Horizontal branch stars are normally formed after the ignition of core helium-burning in the red-giant phase. However, the hydrogen envelopes of sdBs are extremely thin and large mass-loss just at the tip of the red-giant branch is necessary to form them.

Ejection of a common envelope can be held responsible for the strong mass loss to form sdB stars in close binaries, which make up for half of the sdB population. While stable Roche lobe overflow explains the formation of sdB stars with main sequence companions in wider orbits, the existence of single sdB stars still remains a riddle. The most popular scenario invokes mergers of helium-core white dwarfs (Webbink 1984). Iben & Tutukov (1984), Graham & Slettebak (1973) classified the spectrum of SB 290 as sdB. Its atmospheric parameters were derived from optical spectroscopy (Geier et al. 2010; Geier et al. 2011a; Geier & Heber 2012; Geier 2013), the sdB star SB 290 caught our attention because of its unusual line shapes.

SB 290 (CD−38 222) was discovered as a B-type star in the objective prism survey of the south Galactic pole region by Slettebak & Brundage (1971). Graham & Slettebak (1973) classified the spectrum of SB 290 as sdB. Its atmospheric parameters were derived from the spectral energy distribution including IUE UV spectrophotometric data and optical spectra (Heber et al. 1984). The results ($T_\text{eff} = 28200 \pm 1300$ K, log $g = 5.5 \pm 0.2$ and helium abundance log $y = −2.4$) place SB 290 on the EHB, as expected for a prototypical, that is core-helium burning, sdB star.

First indication that SB 290 is not as typical as it seemed at first glance came from high-resolution optical spectra revealing a helium isotopic anomaly. Isotopic line shifts were found indicating that the 4He isotope in the atmosphere is almost completely replaced by 3He due to gravitational settling (Heber 1987). Eventually, SB 290 became the prototype of a small class of sdBs showing this anomaly (Edelmann et al. 2001; Geier et al. 2012).

Kügler (1991) noted significant broadening of the Balmer line cores of SB 290. O’Toole (2004) analysed high-resolution
2. Possible line broadening mechanisms

Following the discussion in Geier et al. (2011a), there are different mechanisms that may cause such a broadening. High magnetic fields that may cause a Zeeman-splitting of the lines as observed in magnetic white dwarfs can be excluded. Most recently, Mathys et al. (2012) measured the magnetic field of SB 290 using the FORS2 instrument at ESO-VLT in spectropolarimetric mode. Although they report a marginal detection of a few hundred kG, this field strength is much too small to cause the observed line broadening.

A plausible explanation would be a close companion to SB 290. Hot subdwarfs with high measured projected rotational velocities ($\nu_{\text{rot}} \sin i > 100\text{ km s}^{-1}$) mostly reside in very close binary systems with orbital periods of $\approx 0.1\text{ d}$. Those sdBs were spun up by the tidal influence of their close companions and their rotation became synchronised to their orbital motion (e.g. Geier et al. 2011c).

The colours of SB 290 ($J - K_S = 0.06$, 2MASS, Skrutskie et al. 2006) do not show any signs of a cool companion (Stark & Wade 2003). A putative close companion, which is also not visible in the optical spectra, must therefore be either a low-mass main sequence star (with spectral type later than about M2), a compact object like a white dwarf or a substellar object. While a close white dwarf or M-star companion would cause RV variations of the order of tens or hundreds of km s$^{-1}$, any cool companion with a size similar to the sdB primary, no matter if it would be stellar or substellar, would be detectable in the light curve. Close sdB+dM or BD systems are often eclipsing, but also show sinusoidal variations due to light originating from the irradiated surface of the cool companion (e.g. Geier et al. 2011c).

Furthermore, it can be premature to conclude that line broadening is due to rotation, since many sdB stars show multi-periodic pulsations with short periods ($2 - 10\text{ min}$), which can result in line broadening as high as 34 km s$^{-1}$ in time-integrated spectra and extreme cases (Kuassivi et al. 2005).

Therefore we extracted photometric measurements from the SuperWASP archive and searched for short-period light variations. If the broadening were indeed due to rotation we would expect that SB 290 has been spun up by tidal interaction with a close companion. Assuming spin-orbit synchronisation, we would expect an orbital period of $\approx 0.2\text{ d}$. Therefore, we also obtained time-resolved spectroscopy to verify the existence of a nearby companion.

3. Observations, light curve and radial velocity curve

3.1. Photometry

Due to its brightness, SB 290 has been monitored by planetary transit surveys. An excellent white light curve taken from May 2006 to December 2007 was downloaded from the SuperWASP Public archive1 (Pollacco et al. 2006). The light curve consists of no less than 10192 single measurements.

In order to search for periodic variations in the SuperWASP light curve, we performed a Fourier-analysis using the FAMIAS routine developed by Zima (2008). No significant light variations have been detected (see Fig. 1 lower panel). A cool low-mass stellar or substellar companion in close orbit can therefore be excluded. Although the uneven sampling of the light curve does not allow to perform a proper search for pulsations, strong variations causing significant line broadening can be excluded as well.

3.2. Time resolved spectroscopy

Time-resolved medium-resolution spectroscopy ($R \approx 4000$, $\lambda = 3500 - 5100\text{ Å}$) was obtained in the course of the MUCHFUSS project (Geier et al. 2011b). One dataset consisting of 19 spectra was taken with the ISIS spectrograph mounted at the WHT in August 2009. Reduction was done with standard IRAF procedures. Another set of 20 single spectra ($R \approx 2200, \lambda = 4450 - 5110\text{ Å}$) was obtained with the EFOSC2 spectrograph mounted at the ESO-NTT in November 2009. Reduction was done with standard MIDAS procedures. Finally, 34 high resolution spectra ($R \approx 70000, \lambda = 3900 - 5270\text{ Å}$) were obtained with the UCLES spectrograph equipped with the CYCLOPS fibre foc2 and mounted at the AAT in July 2010.

Radial velocities were measured by fitting a set of mathematical functions (polynomial, Lorentzian and Gaussian) to the Balmer and suitable helium lines of the spectra using the FITSB2 routine (Napiwotzki et al. 2004). No significant RV variations

1 http://www.wasp.le.ac.uk/public/lc/index.php
2 For some details on this instrument see http://www.phys.unsw.edu.au/~cgt/CYCLOPS/CYCLOPS Classic.html
Solution spectra were taken in 2002 with the FEROS spectrograph mounted at the ESO 3.6m telescope at La Silla. Two high resolution grids of synthetic spectra, calculated from line-blanketed, solar-metallicity LTE model atmospheres (Heber et al. 2000), to the hydrogen Balmer (H$_\beta$-H$_\gamma$) and helium lines (He14026, 4472, 4713, 4922, 5016 Å) of the coadded ISIS spectrum using the SPAS routine developed by H. Hirsch (e.g. Geier et al. 2011). Statistical errors are determined with a bootstrapping algorithm.

The resulting effective temperature $T_{\text{eff}} = 26300 \pm 100$ K, surface gravity log $g = 5.31 \pm 0.01$ and helium abundance log $y = -2.52 \pm 0.08$ are characteristic for sdB stars.

In order to measure the projected rotational velocity, we used the coadded high-resolution FEROS spectrum, which is very well suited for this purpose (see Geier et al. 2010; Geier & Heber 2012). The atmospheric parameters have been fixed to the values derived from the ISIS spectrum and only the $v_{\text{rot}} \sin i$ has been fitted. As can be seen in Fig. 3 the helium lines are significantly broadened. In order to fit these lines as well as the Balmer line cores, a broadening of 58 ± 1 km s$^{-1}$ is necessary. After excluding all alternative scenarios we conclude that this broadening is caused by rotation.

In addition to Balmer and helium lines, the spectrum shows several metal lines. The C n lines at 4267 Å as well as the Si iii lines at 4552, 4572, 5739 Å are strong enough to measure both the abundances and the rotational broadening in the way described in Geier (2013). The $v_{\text{rot}} \sin i = 48 \pm 2$ km s$^{-1}$ measured from those lines is somewhat smaller than the one measured from the Balmer and helium lines.

Geier (2013) reported the discovery of C n and Si iii lines with peculiar shapes in sdB stars, which also show the 4He anomaly. The observed lines appeared narrower than the synthetic line profiles, even without any rotational broadening. Vertical stratification in the atmosphere may be responsible. Since SB 290 is the prototype for the 4He-sdBs, it might also be affected. However, due to the high line broadening, the effect might be less obvious and only lead to an underestimate of $v_{\text{rot}} \sin i$. In this special case, we therefore regard the rotational velocity derived from the Balmer and helium lines to be more reliable. The abundances of carbon ($\log \epsilon_C = 7.10 \pm 0.30$) and
Fig. 4. $T_{\text{eff}} - \log g$ diagram. The grey circles mark sdBs from the SPY project (Lisker et al. 2003). The helium main sequence (HeMS) is plotted and evolutionary tracks have been calculated by Han et al. (2002) for EHB masses of 0.7 M_\odot (dotted lines), 0.6 M_\odot (short-dashed lines) and 0.5 M_\odot (long-dashed lines). The tracks to the lower left mark models without hydrogen envelope, the tracks in the middle models with 0.001 M_\odot envelope mass and the tracks to the upper right models with 0.005 M_\odot envelope mass.

Silicon ($\log e_{\text{Si}} = 7.28 \pm 0.15$) are typical for sdBs in this temperature range (Geier 2013).

Adopting typical systematic uncertainties of ± 500 K in T_{eff} and ± 0.05 dex in $\log g$, these results are also roughly consistent with the previous determination by Heber et al. (1993), although the effective temperature determined here is somewhat lower.

5. Discussion

The fact that SB 290 is a fast rotating sdB star might be an indication for a merger origin, although empirical evidence grows that the bulk of the known single sdB stars was not formed by merger events (e.g. Fontaine et al. 2012). The fast rotator EC 22081$-$1916 on the other hand, might be the outcome of a rare common envelope merger proposed by Politano et al. (2008). Since the outcome of a He-WD merger should have no hydrogen envelope at all, while the atmosphere of SB 290 is hydrogen rich, the common envelope merger might be a possible formation channel for SB 290 as well.

Hot subdwarf stars formed by a merger event are predicted to have a broad mass distribution with possible masses of up to $\approx 0.7 M_\odot$. Han et al. (2002) calculated evolutionary tracks for EHB stars with different stellar and envelope masses. SB 290 is situated close to the terminal-age EHB if its mass should be close to the canonical value (Fig. 3). Looking at Fig. 3 one can see that the tracks for an EHB mass of 0.7 M_\odot hardly match the position of SB 290 in the $T_{\text{eff}} - \log g$-diagram. With a mass of 0.6 M_\odot SB 290 would on the other be situated close to the zero-age EHB.

However, it might still be premature to exclude a high mass right away. An object closely related to SB 290 might be the strong sdB pulsator PG 1605$+$072, which is known to be a single star with substantial line broadening ($v_{\text{rot}} \sin i = 39 \text{ km s}^{-1}$, Heber 1999). Although this broadening is most likely caused by unresolved pulsations rather than substantial rotation (Langfellner et al. 2012), asteroseismic analyses indicate a high mass of more than 0.7 M_\odot (van Spaandonk et al. 2008; van Grootel et al. 2010). These results are still under debate, but the tracks for stellar masses of 0.7 M_\odot and different masses of the hydrogen envelope are more or less consistent with the position of PG 1605$+$072 in the $T_{\text{eff}} - \log g$-diagram.

The confirmation of a companion in a wide orbit might complicate the situation since it would require the progenitor to have been in a hierarchical triple system before. On the other hand, if SB 290 would have originated from such a triple system, the putative outer companion may have accelerated the merger process by orbit shrinkage through Kozai cycles (Fabrycky & Tremaine 2007).

Acknowledgements. S. G. was supported by the Deutsche Forschungsgemeinschaft under grant He 1354/49-1. The authors thank L. Morales-Rueda for providing her data and Z. Han for providing his evolutionary tracks. We would also like to thank P. Butler for help with us using the reduction of the CYCLOPS data. Furthermore, we thank the referee P. Bergeron. Based on observations at the La Silla Observatory of the European Southern Observatory (for programmes number 077.D-0515(A) and 084.D-0348(A). Based on observations with the William Herschel Telescope operated by the Isaac Newton Group at the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias on the island of La Palma, Spain.

References

Edelmann, H., Heber, U., & Napiwotzki, R. 2001, AN, 322, 401
Fabrycky, D., & Tremaine, S. 2007, ApJ, 669, 1298
Fontaine, G., Brassard, P., Charpinet, S., et al. 2012, A&A, 539, 12
Geier, S. 2013, A&A, 549, 110
Geier, S., & Heber, U. 2012, A&A, 543, 149
Geier, S., Nesslinger, S., Heber, U., Przybilla, N., Napiwotzki, R., & Kudritzki, R. P. 2007, A&A, 464, 299
Geier, S., Heber, U., Podsiadlowski, Ph., et al. 2010, A&A, 519, 25
Geier, S., Classen, L., & Heber, U. 2011a, ApJ, 733, L13
Geier, S., Hirschi, R., Tillilich, A., et al. 2011b, A&A, 530, 28
Geier, S., Schaffenroth, V., Drechsel, H., et al. 2011c, ApJ, 731, L22
Geier, S., Heber, U., Edelmann, H., et al. 2012, ASP Conf. Ser., 452, 57
Graham, J. A., & Sletbak, A. 1973, AJ, 81, 78, 295
Han, Z., Podsiadlowski, Ph., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, MNRAS, 336, 449
Han, Z., Podsiadlowski, Ph., Maxted, P. F. L., & Marsh, T. R. 2003, MNRAS, 341, 669
Heber, U. 1987, MitAG, 70, 79
Heber, U. 2009, ARA&A, 47, 211
Heber, U., Hunger, K., Jonas, G., & Kudritzki, R. P. 1984, A&A, 130, 119
Heber, U., Reid, I. N., & Werner, K. 1999, A&A, 348, 25
Heber, U., Reid, I. N., & Werner, K. 2000, A&A, 363, 198
Heber, U., Edelmann, H., Lisker, T., Napiwotzki, R., & Ivanova, N. 2003, A&A, 411, 477
Iben, I., & Tutukov, A. V. 1984, ApJS, 54, 335
Kilkenny, D., van Wyk, F., Roberts, G., Marang, F., & Cooper, D. 1998, MNRAS, 294, 93
Kuassivi, Bonanno, A., & Ferlet, R. 2005, A&A, 442, 1015
Kügel, L. 1991, Diploma thesis, Christian Albrechts Universität Kiel
Langfellner, J., Schuh, S., et al. 2012, ASP Conf. Ser., 452, 203
Lisker, T., Heber, U., Napiwotzki, R., et al. 2005, A&A, 430, 223
Mathys, G., Hubrig, S., Mason, E., et al. 2012, AN, 333, 30
Napiwotzki, R., Yungelson, L., Nelemans, G., et al. 2004, ASP Conf. Ser., 318, 402
O'Toole, S. J. 2004, A&A, 423, 25
Politano, M., Taam, R. E., van der Sluys, M., & Willems, B. 2008, ApJL, 687, 99
Pollacco, D. L., Skillen, I., Collier Cameron, A., et al. 2006, PASP, 118, 1407
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Sletbak, A., & Brundage, R. K. 1971, AJ, 76, 338
Stark, M. A., & Wade, R. 2003, AJ, 126, 1455
van Grootel, V., Charpinet, S., Fontaine, G., & Brassard, P. 2010, Ap&SS, 329, 217
van Spaandonk, L., Fontaine, G., Brassard, P., & Aerts, C. 2008, ASP Conf. Ser., 392, 387
Webbink, R. F. 1984, ApJ, 277, 355
Zima, W. 2008, CoAst, 157, 387
Table 1. Radial velocities of SB 290

mid−HJD −2 400 000	RV [km s\(^{-1}\)]	Instrument
40539.50\(^1\)	−52.3 ± 7.5	Graham & Slettebak [1973]
46724.57	−15.9 ± 3.2	CASPEC
52495.66123	−40.4 ± 3.4	FEROS
52495.70637	−39.5 ± 4.5	
53953.84358	−4.1 ± 0.6	
53974.88413	−12.0 ± 0.7	
55144.62633	−6.4 ± 3.1	EFOSC2
55144.66202	−12.0 ± 5.0	
55145.62589	−8.5 ± 5.4	
55145.62803	−11.9 ± 5.2	
55145.63016	−9.1 ± 5.8	
55145.63229	−9.7 ± 5.8	
55145.63443	−11.0 ± 5.3	
55145.63656	−8.0 ± 5.6	
55145.66389	−8.3 ± 6.1	
55145.66602	−9.8 ± 4.7	
55145.66815	−10.8 ± 6.0	
55145.72750	−5.5 ± 7.7	
55145.72998	−21.7 ± 7.6	
55145.73247	−26.0 ± 9.4	
55146.59354	−6.1 ± 5.5	
55146.59602	−3.0 ± 6.0	
55146.59851	−8.4 ± 5.0	
55146.62859	−10.8 ± 4.3	
55146.65136	−9.8 ± 5.7	
55146.67425	−7.5 ± 5.3	
55393.22067	−26 ± 5	CYCLOPS\(^2\)
55393.25356	−24 ± 5	
55393.28933	−35 ± 5	
55394.17695	−28 ± 5	
55394.26083	−27 ± 5	
55394.26853	−23 ± 5	
55394.28797	−24 ± 5	
55394.28749	−25 ± 5	
55395.33581	−25 ± 5	
55395.22288	−25 ± 5	
55395.23057	−24 ± 5	
55395.23918	−25 ± 5	
55395.24687	−22 ± 5	
55395.32561	−23 ± 5	
55395.33330	−20 ± 5	
55395.34099	−26 ± 5	
55396.16408	−21 ± 5	
55396.17177	−17 ± 5	
55396.18130	−26 ± 5	
55396.21822	−30 ± 5	

(1) The observing time could only be reconstructed to within this night. (2) Due to the highly variable S/N-ratio of the single spectra, consecutive spectra have been coadded until the quality was sufficient to measure the RV to within about the given uncertainty. In this way, 20 RV epochs have been obtained.