On the exterior Dirichlet-Neumann problem for the Biharmonic equation and its application in mechanics

Hovik A Matevossian 1,2

1 Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, 40, Vavilov str., 119333, Moscow, Russia
2 Moscow Aviation Institute (National Research University), 4, Volokolomskoe Shosse, 125993, Moscow Russia

E-mail: hmatevossian@graduate.org

Abstract. We study the unique solvability of the mixed Dirichlet-Neumann biharmonic problem in the exterior of a compact set under the assumption that generalized solutions of this problem has a bounded Dirichlet (energy) integral with weight $|x|^a$. Using the variational principle and depending on the value of the parameter a, we obtained uniqueness (non-uniqueness) theorems of the Dirichlet-Neumann problem or present exact formulas for the dimension of the space of solutions. The results of this paper are used in the study of mathematical problems in mechanical models, in particular, in transport models and procedures.

1. Introduction

Let Ω be an unbounded domain in \mathbb{R}^n, $n \geq 2$, $\Omega = \mathbb{R}^n \setminus \overline{G}$ with the boundary $\partial \Omega \in C^2$, where G is a bounded simply connected domain (or a union of finitely many such domains) in \mathbb{R}^n, $0 \in G, \overline{\Omega} = \Omega \cup \partial \Omega$ is the closure of Ω, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, and $|x| = \sqrt{x_1^2 + \cdots + x_n^2}$.

In Ω we consider the following problem for the biharmonic equation

$$\Delta^2 u = 0 \quad (1)$$

with the Dirichlet-Neumann boundary conditions

$$u|_{\Gamma_1} = \frac{\partial u}{\partial v}|_{\Gamma_1} = 0, \quad \Delta u|_{\Gamma_2} = \frac{\partial \Delta u}{\partial v}|_{\Gamma_2} = 0, \quad (2)$$

where $\Gamma_1 \cup \Gamma_2 = \partial \Omega$, $\Gamma_1 \cap \Gamma_2 = \emptyset$, $\text{mes}_{n-1}(\Gamma_1) \neq 0$, $v = (v_1, ..., v_n)$ is the outer unit normal vector to $\partial \Omega$.

As is well known, if Ω is an unbounded domain, one should additionally characterize the behavior of the solution at infinity. As a rule, to this end, one usually poses either the condition that the Dirichlet (energy) integral is finite or a condition on the character of vanishing of the modulus of the solution as $|x| \to \infty$. Such conditions at infinity are natural and were studied by several authors e.g. [8 - 10].

The behavior of solutions of the Dirichlet problem for the biharmonic equation as $|x| \to \infty$ was considered in [5, 6], where estimates for $|u(x)|$ and $|\nabla u(x)|$ as $|x| \to \infty$ were obtained under certain geometric conditions on the domain boundary.
The standard elliptic regularity results are available in [4]. The monograph covers higher order linear and nonlinear elliptic boundary value problems, mainly with the biharmonic or polyharmonic operator as leading principal part. The underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and L^p and Schauder estimates, the focus is on positivity. The required kernel estimates are also presented in detail.

In [3], the boundary value problems for the biharmonic equation and the Stokes system are studied in a half space, and, using the Schwartz reflection principle in weighted L^q-space, the uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

We also point out [1, 2], in which using the methods of complex analysis the Dirichlet and Neumann problems for the polyharmonic equation are explicitly solved in the unit disc of the complex plane. The solution is obtained by modifying the related Cauchy-Pompeiu representation with the help of the polyharmonic Green function.

In the present note, this condition is the boundedness of the weighted Dirichlet integral:

$$D_\alpha (u; \Omega) \equiv \int_\Omega |x|^{2\alpha} \sum_{|\alpha|=2} |\partial^\alpha u|^2 \, dx < \infty, \ a \in \mathbb{R}.$$

In various classes of unbounded domains with finite weighted Dirichlet (energy) integral, the author [12-27] studied uniqueness (non-uniqueness) problem and found the dimensions of the spaces of solutions of boundary value problems for the elasticity system and the biharmonic (polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities [8, 9], in the present note, we obtain a uniqueness (non-uniqueness) criterion for a solution of the mixed Dirichlet–Neumann problem for the biharmonic equation.

The results of this paper are used in the study of mathematical problems in mechanical models, in particular, in transport models and procedures.

Notation: $C^\infty_0 (\Omega)$ is the space of infinitely differentiable functions in Ω with compact support in Ω. We denote by $H^m (\Omega, \Gamma), \ \Gamma \subset \overline{\Omega}$, the Sobolev space of functions in Ω obtained by the completion of $C^\infty_0 (\Omega)$ vanishing in a neighborhood of Γ with respect to the norm

$$\|u; H^m (\Omega, \Gamma)\| = \left(\int_\Omega \sum_{|\alpha|=m} |\partial^\alpha u|^2 \, dx \right)^{1/2}, \ m = 1, 2,$$

where $\partial^\alpha = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}, \ \alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index, $\alpha_i \geq 0$ are integers, and $|\alpha| = \alpha_1 + \cdots + \alpha_n$; if $\Gamma = \emptyset$, we denote $H (\Omega, \Gamma)$ by $H (\Omega)$.

$H^m (\Omega)$ is the space obtained by the completion of $C^\infty_0 (\Omega)$ with respect to the norm $\|u; H^m (\Omega)\|$;

$H^m_{\text{loc}} (\Omega)$ is the space obtained by the completion of $C^\infty_0 (\Omega)$ with respect to the family of semi-norms

$$\|u; H^m (\Omega \cap B_0 (R))\| = \left(\int_{\Omega \cap B_0 (R)} \sum_{|\alpha|=m} |\partial^\alpha u|^2 \, dx \right)^{1/2}$$

for all open balls $B_0 (R) := \{x : |x| < R\} \subset \mathbb{R}^n$ for which $\Omega \cap B_0 (R) \neq \emptyset$.

Let $\binom{n}{k}$ be the (n, k)-binomial coefficient, $\binom{n}{k} = 0$ for $k > n$.

2. **Definitions and auxiliary statements**

Definition 2.1. A solution of the homogenous biharmonic equation (1) in Ω is a function $u \in H^2_{\text{loc}} (\Omega)$ such that, for every function $\varphi \in C^\infty_0 (\Omega)$, the following integral identity holds:
Lemma 2.2. Let \(u \) be a solution of equation (1) in \(\Omega \) such that \(D_u(u,\Omega) < \infty \). Then

\[
\int_{\Omega} \Delta u \Delta \varphi \, dx = 0.
\]

where \(P(x) \) is a polynomial, \(\text{ord} P(x) = \max \{ 2, 2 - n/2 - a/2 \} \), \(\beta_0 = 2 - n/2 + a/2 \), \(\Gamma(x) \) is the fundamental solution of equation (1), \(C_\alpha = \text{const} \), \(\beta \geq 0 \) is an integer, and the function \(u^\beta \) satisfies the estimate:

\[
| \partial^\gamma u^\beta(x) | \leq C_{\gamma \beta} |x|^{3-n-\beta-|\gamma|}, \quad C_{\gamma \beta} = \text{const},
\]

for every multi-index \(\gamma \).

Remark 2.3. As is known [30], the fundamental solution \(\Gamma(x) \) of the biharmonic equation has the form

\[
\Gamma(x) = \begin{cases}
C|x|^{4-n}, & \text{if } 4-n < 0 \text{ or } n \text{ is odd,} \\
C|x|^{4-n} \ln |x|, & \text{if } 4-n \geq 0 \text{ and } n \text{ is even.}
\end{cases}
\]

Proof of Lemma 2.2. Consider the function \(v(x) = \theta_n(x) u(x) \), where \(\theta_n(x) = \Theta \left(\frac{|x|}{N} \right) \), \(\Theta \in C^\infty(\mathbb{R}^n), 0 \leq \theta \leq 1, \theta(s) = 0 \text{ for } s \leq 1, \theta(s) = 1 \text{ for } s \geq 2, \text{ while } N \gg 1 \text{ and } G \subset \{ x : |x| < N \} \).

We extend \(v \) to \(\mathbb{R}^n \) by setting \(v = 0 \) on \(G = \mathbb{R}^n \setminus \Omega \).

Then the function \(v(x) \) belongs to \(C^\infty(\mathbb{R}^n) \) and satisfies the equation

\[
\Delta^2 v(x) = f,
\]

where \(f \in C^\infty(\mathbb{R}^n) \) and \(\text{supp } f \subset \{ x : |x| < 2N \} \). It is easy to see that \(D(v,\mathbb{R}^n) < \infty \).

We can now use Theorem 1 of [8] since it is based on Lemma 2 of [8], which imposes no constraint on the sign of \(\sigma \). Hence, the expansion

\[
v(x) = P(x) + \sum_{\beta_0 < |\alpha| \leq \beta} \partial^\alpha \Gamma(x) C_\alpha + v^\beta(x),
\]

holds for each \(\alpha \), where \(P(x) \) is a polynomial of order \(\text{ord} P(x) < m_0 = \max \{ 2, 2-n/2-a/2 \} \), \(\beta_0 = 2 - n/2 + a/2 \), \(C_\alpha = \text{const} \) and

\[
| \partial^\gamma v^\beta | \leq C_{\gamma \beta} |x|^{3-n-\beta-|\gamma|}, \quad C_{\gamma \beta} = \text{const}.
\]

Therefore, by the definition of \(v \), we obtain (3). The proof of Lemma 2.2 is complete.

Definition 2.4. A function \(u \) is a solution of the mixed Dirichlet-Neumann problem (1), (2), if \(u \in \tilde{H}^1_{\text{loc}}(\Omega, \Gamma_1) \) such that for every function \(\varphi \in C^\infty_0(\mathbb{R}^n) \), \(\varphi = 0 \) in the neighborhood of \(\Gamma_1 \), the following integral identity holds:

\[
\int_{\Omega} \Delta u \Delta \varphi \, dx = 0. \tag{4}
\]

3. Main Results

Theorem 3.1. The mixed Dirichlet-Neumann problem (1), (2) with the condition \(D(u,\Omega) < \infty \) has \(n+1 \) linearly independent solutions.

Proof. For any nonzero vector \(A \) in \(\mathbb{R}^n \), we construct a generalized solution \(u_A \) of the biharmonic equation (1) with the boundary conditions
\[
\frac{\partial u(x)}{\partial v} \bigg|_{\Gamma_1} = \frac{\partial (Ax)}{\partial v} \bigg|_{\Gamma_1}, \quad \Delta u_A \bigg|_{\Gamma_2} = \frac{\partial^2 u_A}{\partial v^2} \bigg|_{\Gamma_2} = 0, \quad (5)
\]

and the condition
\[
\chi(u_A, \Omega) \equiv \begin{cases}
\int_{\Omega} \left(\frac{|u_A(x)|^2}{|x|^4} + \frac{|v_A(x)|^2}{|x|^2} + |\nabla u_A(x)|^2 \right) dx < \infty & \text{for } n > 4, \\
\int_{\Omega} \left(\frac{|u_A(x)|^2}{|x|^2 \ln |x|} + \frac{|v_A(x)|^2}{|x| \ln |x|} + |\nabla u_A(x)|^2 \right) dx < \infty & \text{for } 2 \leq n \leq 4,
\end{cases} \quad (6)
\]

for \(A, x \in \mathbb{R}^n \), where \(Ax \) denotes the standard scalar product of \(A \) and \(x \).

Such a solution of problem (1), (5) can be constructed by the variational method \([30]\), minimizing the functional
\[
\Phi(v) = \frac{1}{2} \int_{\Omega} |\Delta v|^2 \, dx
\]
in the class of admissible functions
\[
\left\{ v: v \in H^2(\Omega), v(x) \big|_{\Gamma_1} = (Ax) \big|_{\Gamma_1}, \frac{\partial v(x)}{\partial v} \bigg|_{\Gamma_1} = \frac{\partial (Ax)}{\partial v} \bigg|_{\Gamma_1}, \ v \text{ is compactly supported in } \Omega \right\}.
\]
The validity of condition (6) as a consequence of the Hardy inequality follows from the results in \([9, 10]\).

Now, for any arbitrary number \(e \neq 0 \), we construct a generalized solution \(u_e \) of equation (1) with the boundary conditions
\[
u_e \big|_{\Gamma_1} = e, \quad \frac{\partial u_e}{\partial v} \bigg|_{\Gamma_1} = 0, \quad \Delta u_e \bigg|_{\Gamma_2} = \frac{\partial^2 u_e}{\partial v^2} \bigg|_{\Gamma_2} = 0, \quad (7)
\]
and the condition
\[
\chi(u_A, \Omega) \equiv \begin{cases}
\int_{\Omega} \left(\frac{|u_e(x)|^2}{|x|^4} + \frac{|v(x)|^2}{|x|^2} + |\nabla u_e(x)|^2 \right) dx < \infty & \text{for } n > 4, \\
\int_{\Omega} \left(\frac{|u_e(x)|^2}{|x|^2 \ln |x|} + \frac{|v(x)|^2}{|x| \ln |x|} + |\nabla u_e(x)|^2 \right) dx < \infty & \text{for } 2 \leq n \leq 4.
\end{cases} \quad (8)
\]
The solution of problem (1), (7) also is constructed by the variational method with the minimization of the corresponding functional in the class of admissible functions
\[
\left\{ v: v \in H^2(\Omega), v \big|_{\Gamma_1} = e, \frac{\partial v}{\partial v} \bigg|_{\Gamma_1} = 0, \ v \text{ is compactly supported in } \Omega \right\}.
\]
The condition (8) as a consequence of the Hardy inequality follows from the results in \([9, 10]\).

Consider the function \(v(x) = (u_A(x) - Ax) - (u_e - e) \). Obviously, \(v \) is a solution of problem (1), (2):
\[
\Delta^2 v = 0, \quad x \in \Omega, \quad v \big|_{\Gamma_1} = \frac{\partial v}{\partial v} \bigg|_{\Gamma_1} = 0, \quad \Delta v \bigg|_{\Gamma_2} = \frac{\partial^2 v}{\partial v^2} \bigg|_{\Gamma_2} = 0.
\]
One can easily see that \(v \neq 0 \) and \(D(v, \Omega) < \infty \).

To each nonzero vector \(A = (A_0, A_1, \ldots, A_n) \) in \(\mathbb{R}^{n+1} \), there corresponds a nonzero solution \(v_A = (v_{A_0}, v_{A_1}, \ldots, v_{A_n}) \) of problem (1), (2) with the condition \(D(v_A, \Omega) < \infty \), and moreover,
\[
v_A(x) = u_A(x) - u_e - Ax + e.
\]
Let \(A_0, A_1, \ldots, A_n \) be a basis in \(\mathbb{R}^{n+1} \). Let us prove that the corresponding solutions \(v_{A_0}, v_{A_1}, \ldots, v_{A_n} \) are linearly independent. Let
\[\sum_{i=0}^{n} C_i v_{A_i} \equiv 0, \quad C_i = \text{const.} \]

Set \(W(x) = \sum_{i=1}^{n} C_i A_i x - C_0 e \). We have \(W(x) = \sum_{i=1}^{n} C_i u_{A_i} x - C_0 u_0 \),

\[\int_{\Omega} |x|^{-2} |\nabla W|^2 \, dx < \infty, \quad n > 4, \int_{\Omega} \left| |x| \ln |x| \right|^{-2} |\nabla W|^2 \, dx < \infty, \quad 2 \leq n \leq 4. \]

Let us show that

\[W(x) \equiv \sum_{i=1}^{n} C_i A_i x - C_0 e \equiv 0. \]

Let \(T = \sum_{i=0}^{n} C_i A_i = (t_0, \ldots, t_n) \), where \(A_0 = -e \). Then

\[\int_{\Omega} |x|^{-2} |\nabla W|^2 \, dx = \int_{\Omega} |x|^{-2}(t_1^2 + \cdots + t_n^2) \, dx = \infty, \quad n > 4, \]

\[\int_{\Omega} \left| |x| \ln |x| \right|^{-2} |\nabla W|^2 \, dx = \int_{\Omega} \left| |x| \ln |x| \right|^{-2} (t_1^2 + \cdots + t_n^2) \, dx = \infty, \quad 2 \leq n \leq 4, \text{if } T \neq 0. \]

Consequently, \(T = \sum_{i=0}^{n} C_i A_i = 0 \), and since the vectors \(A_0, A_1, \ldots, A_n \) are linearly independent, we obtain \(C_i = 0, i = 0, 1, \ldots, n \).

Thus, the Dirichlet–Neumann problem (1), (2) with the condition \(D(u, \Omega) < \infty \) has at least \(n + 1 \) linearly independent solutions.

Let us prove that each solution \(u \) of problem (1), (2) with the condition \(D(u, \Omega) < \infty \) can be represented as a linear combination of the functions \(v_{A_0}, v_{A_1}, \ldots, v_{A_n} \), i.e.

\[u = \sum_{i=0}^{n} C_i v_{A_i}, \quad C_i = \text{const.} \]

Since \(A_0, A_1, \ldots, A_n \) is a basis in \(\mathbb{R}^{n+1} \), it follows that there exists constants \(C_0, C_1, \ldots, C_n \) such that

\[A = \sum_{i=0}^{n} C_i A_i. \]

We set

\[u_0 \equiv u - \sum_{i=0}^{n} C_i v_{A_i}. \]

Obviously, the function \(u_0 \) is a solution of problem (1), (2), and \(D(u_0, \Omega) < \infty, \chi(u_0, \Omega) < \infty. \)

Let us show that \(u_0 \equiv 0, x \in \Omega \). To this end, we substitute the function \(\varphi(x) = u_0(x)\theta_{N}(x) \) into the integral identity (4) for the function \(u_0 \), where \(\theta_{N}(x) = \theta \left(\frac{|x|}{N} \right), \theta \in C^\infty(\mathbb{R}), 0 \leq \theta \leq 1, \theta(s) = 0 \) for \(s \geq 2 \) and \(\theta(s) = 1 \) for \(s \leq 1 \); then we obtain

\[\int_{\Omega} (\Delta u_0)^2 \theta_{N}(x) \, dx = -J_1(u_0) - J_2(u_0), \]

where

\[J_1(u_0) = 2 \int_{\Omega} \Delta u_0 \nabla u_0 \nabla \theta_{N}(x) \, dx, \quad J_2(u_0) = \int_{\Omega} u_0 \Delta u_0 \Delta \theta_{N}(x) \, dx. \]
By applying the Cauchy–Schwartz inequality and by taking into account the conditions $D(u_0, \Omega) < \infty$ and $\chi(u_0, \Omega) < \infty$, one can easily show that $I_1(u_0) \to 0$ and $I_2(u_0) \to 0$ as $N \to \infty$. Consequently, by passing to the limit as $N \to \infty$ in (9), we obtain

$$\int_{\Omega} (\Delta u_0)^2 \, dx = 0.$$

Therefore, we have

$$\Delta u_0 = 0, \quad x \in \Omega,$$

$$u_0|_{\Gamma_1} = \frac{\partial u_0}{\partial \nu}|_{\Gamma_1} = 0, \quad \Delta u_0|_{\Gamma_2} = \frac{\partial^2 u_0}{\partial \nu^2}|_{\Gamma_2} = 0.$$

Hence, it follows [5, Ch.2] that $u_0 \equiv 0$ in Ω. The proof of the theorem is complete.

Theorem 3.2. The mixed Dirichlet-Neumann problem (1), (2) with the condition $D a(u, \Omega) < \infty$ has:

the trivial solution for $n - 2 \leq a < \infty, n > 4$;

n linearly independent solutions for $n - 4 \leq a < n - 2, n > 4$;

$n + 1$ linearly independent solutions for $-n \leq a < n - 4, n > 4$;

$k(r, n)$ linearly independent solutions for $-2r + 2 - n \leq a < -2r + 4 - n, r > 1, n > 4$, where

$$k(r, n) = \binom{r + n}{n} - \binom{r + n - 4}{n}.$$

The proof of Theorem 3.2 is based on Lemma 2.2 about the asymptotic expansion of the solution of the biharmonic equation and the Hardy type inequalities for unbounded domains [9, 10]. In case (iv), we need to determine the number of linearly independent solutions of the biharmonic equation (1), the degree of which not exceed the fixed number.

It is well known that the dimension of the space of all polynomials in \mathbb{R}^n of degree $\leq r$ is equal $\binom{r + 4}{n}$ [29]. Then the dimension of the space of all biharmonic polynomials in \mathbb{R}^n of degree $\leq r$ is equal to

$$\binom{r + n}{n} - \binom{r + n - 4}{n},$$

since the biharmonic equation is the vanishing of some polynomial of degree $r - 4$ in \mathbb{R}^n. If we denote by $k(r, n)$ the number of linearly independent polynomial solutions of equation (1) whose degree do not exceed r and by $l(r, n)$ the number of linearly independent homogeneous polynomials of degree r, that are solutions of equation (1), then

$$k(r, n) = \sum_{s=0}^{r} l(s, n), \text{ where } l(s, n) = \binom{s + n - 5}{n - 1} - \binom{s + n - 1}{n - 1}, \quad s > 0.$$

Further, we prove that the mixed Dirichlet-Neumann problem (1), (2) with the condition $D a(u, \Omega) < \infty$ for $-2r + 2 - n \leq a < -2r + 4 - n$ has equally $k(r, n)$ of linearly independent solutions.

Acknowledgements

The results of the article were presented at the International Scientific Siberian Transport Forum (ISSTF2020: May 25–29, 2020, Novosibirsk, Russia).

References

[1] Begehr H 2005 General Math. 13 65
[2] Begehr H, Vu T N H, Zhang Z-X 2006 Proc. Steklov. Math. Inst. 255 13
[3] Farwig R 1994 Acta Appl. Math. 34 41
[4] Gazzola F, Grunau H.-Ch and Sweers G 2010 *Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Lecture Notes Math.* 1991 (Springer-Verlag)

[5] Gilbarg D and Trudinger N 1977 *Elliptic Partial Differential Equations of Second Order* (Berlin: Springer-Verlag)

[6] Kondratiev V A, Kopacek I and Oleinik O A 1981 *Diff. Equations* 17(10) 1886

[7] Kondratiev V A and Oleinik O A 1983 *Proc. Royal Soc. Edinburgh* 93A(3–4) 327

[8] Kondratiev V A and Oleinik O A 1987 *Arch. Rational Mech. Anal.* 99(1) 75

[9] Kondrat’ev V A and Oleinik O A 1988 *Russian Math. Surveys* 43(5) 65

[10] Kondratiev V A and Oleinik O A 1990 Rend. Mat. Appl., Serie VII 10(3) 641

[11] Matevosyan O A 1998 *Diff. Equations. 34*(6) 803

[12] Matevosyan O A 2001 *Math. Notes* 70(3) 363

[13] Matevosyan O A 2001 *Sbornik Math.* 192(12) 1763

[14] Matevosian H A 2003 *Izvestiya Math.* 67(5) 895

[15] Matevosian H A 2015 *P-Adic Numbers, Ultrametric Analysis, and Appl.* 7(1) 74

[16] Matevosyan O A 2015 *Diff. Equations* 51(4) 487

[17] Matevosyan O A 2015 *Math. Notes* 98 990

[18] Matevosyan O A 2016 *Russ. J. Math. Phys.* 23(1) 135

[19] Matevosyan O A 2016 *Diff. Equations* 52:10 1379

[20] Matevosyan H A 2017 *Russ. J. Math. Phys.* 24:1 134

[21] Matevosian H A 2017 *P-Adic Numbers, Ultrametric Analysis and Appl.* 9(2) 151

[22] Matevosian H A 2018 *Russ. J. Math. Phys.* 25:2 271

[23] Matevosian O A 2018 *J. Math. Sci. (N.Y.)* 234:4 440

[24] Matevosian H A 2019 *Complex Variables & Elliptic Equations* 64:1 1

[25] Matevosian Hovik 2019 *Math. Comput. Appl.* 24:1(25) 1

[26] Matevosian Hovik 2019 *Math. Comput. Appl.* 24:2(58) 1

[27] Matevosian Hovik 2019 *IOP Conf. Ser.: Mater. Sci. Eng.* 683(1) 012016

[28] Matevosyan H A 2020 *Russ. J. Math. Phys.* 27:2 272

[29] Miklín S G 1977 *Linear Partial Differential Equations* (Moscow: Vyssaya Shkola)

[30] Sobolev S L 1988 *Some Applications of Functional Analysis in Mathematical Physics 3th ed* (Moscow: Nauka)