ON THE SET OF PRINCIPAL CONGRUENCES IN A DISTRIBUTIVE CONGRUENCE LATTICE OF AN ALGEBRA

GÁBOR CZÉDLI

Abstract. Let Q be a subset of a finite distributive lattice D. An algebra A represents the inclusion $Q \subseteq D$ by principal congruences if the congruence lattice of A is isomorphic to D and the ordered set of principal congruences of A corresponds to Q under this isomorphism. If there is such an algebra for every subset Q containing 0, 1, and all join-irreducible elements of D, then D is said to be fully $(A1)$-representable. We prove that every fully $(A1)$-representable finite distributive lattice is planar and it has at most one join-reducible coatom. Conversely, we prove that every finite planar distributive lattice with at most one join-reducible coatom is fully chain-representable in the sense of a recent paper of G. Grätzer. Combining the results of this paper with another paper by the present author, it follows that every fully $(A1)$-representable finite distributive lattice is “fully representable” even by principal congruences of finite lattices. Finally, we prove that every chain-representable inclusion $Q \subseteq D$ can be represented by the principal congruences of a finite (and quite small) algebra.

1. Introduction and results

Grätzer [11, Probl. 12] and [12, Probl. 22.1] raised the problem of characterizing lattices and their subsets that can be represented simultaneously as congruence lattices and the sets of principal congruences, respectively, of algebras or lattices. The first steps in this direction were made by Grätzer [14] and Grätzer and Lakser [18]; here we continue their investigations. For a finite lattice L, $J(L)$ denotes the ordered set of nonzero join-irreducible elements of L, $J_0(L)$ stands for $J(L) \cup \{0\}$, and we let $J^+(L) = J(L) \cup \{0,1\}$. For an algebra A, let $\text{Con}(A)$ be the congruence lattice of A, while $\text{Princ}(A)$ will stand for the ordered set of principal congruences of A. The algebra A can be infinite but we always assume that $\text{Con}(A)$ is finite. Then every congruence of A is the join of finitely many principal congruences, whereby

\begin{equation}
J_0(\text{Con}(A)) \subseteq \text{Princ}(A) \subseteq \text{Con}(A).
\end{equation}

For a subset Q of a finite lattice D, an algebra A represents the inclusion $Q \subseteq D$ by principal congruences if there exists an isomorphism $\varphi: \text{Con}(A) \to D$ such that $Q = \varphi(\text{Princ}(A))$. In this case, we also say that the inclusion $Q \subseteq D$ is represented by the principal congruences of A. Mostly, we consider only the case where D is distributive. Our first aim is to prove the following statement; condition (1.2) in it is motivated by (1.1). Note that this section does not contain proofs; they are given in the subsequent sections.

1991 Mathematics Subject Classification. 06B10

Key words and phrases. Distributive lattice, principal lattice congruence, congruence lattice, chain-representability.

This research was supported by NFSR of Hungary (OTKA), grant number K 115518.
Proposition 1.1. Let D be a finite distributive lattice. Then the following two conditions are equivalent.

(a) For every set Q such that

\[(1.2) \quad J_0(D) \subseteq Q \subseteq D,\]

the inclusion $Q \subseteq D$ is represented by the principal congruences of some algebra A. (This condition will be called full (A)-representability.)

(b) The lattice D is a planar and $1_D \in J_0(D)$, that is, $|D| = 1$ or D has exactly one coatom.

In connection with this statement, see also Corollary 1.7 later.

A finite lattice D will be called fully (A)-representable if it satisfies condition (a) from Proposition 1.1. The notation (A) comes from “algebra”.

Corollary 1.2. Let $V = \{0, \alpha, \beta\}$ be the “V-shaped” three-element ordered set with smallest element 0 and maximal elements α and β. Then $\text{Princ}(A) \cong V$ holds for no algebra A.

It has previously been known that V cannot be represented as $\text{Princ}(L)$ of a lattice L, since we know from Grätzer [11], see also (1.1) in Czédli [2], that $\text{Princ}(L)$ is always a directed ordered set but V is not. Corollary 1.2 indicates why it would be difficult to extend the results of Czédli [1], [2], [3], [4], [6] and Grätzer [11], [15], and [19] from the representability of ordered sets by principal lattice congruences to that by arbitrary principal congruences.

Using (1.1) and that $\text{Princ}(L)$ is a directed ordered set, if $\text{Con}(L)$ is finite, then $J_0(\text{Con}(L))$ has an upper bound in $\text{Princ}(L)$. This upper bound is necessarily the top element of $\text{Con}(L)$. Hence, for every lattice L such that $\text{Con}(L)$ is finite,

\[(1.3) \quad J^+(\text{Con}(L)) \subseteq \text{Princ}(L) \subseteq \text{Con}(L).\]

Our main goal is to prove the following theorem; (1.4) is motivated by (1.3).

Theorem 1.3. Let D be a finite distributive lattice, and consider the following three conditions on D.

(i) For every Q satisfying

\[(1.4) \quad J^+(D) \subseteq Q \subseteq D,\]

the inclusion $Q \subseteq D$ is represented by the principal congruences of some algebra A; if this condition holds then D is said to be fully (A_1)-representable.

(ii) For every Q satisfying (1.4), the inclusion $Q \subseteq D$ is represented by the principal congruences of some finite lattice L; if this condition holds then D is said to be fully (fL)-representable.

(iii) D is planar and it has at most one join-reducible coatom.

Then (i) implies (iii) and the trivial implication (iii) \Rightarrow (i) also holds.

The notation (A_1) in Theorem 1.3 comes from algebra and $1 \in J^+(D) \subseteq Q$, while (fL) comes from finite lattice. The concept of full (fL)-representability and, more generally, the representability of just one subset Q of D by principal congruences of a finite lattice L are taken from Grätzer [14] and Grätzer and Lakser [18].
Remark 1.4. Czédli [7] gave a long proof for the implication (iii) \(\Rightarrow \) (ii). Hence, for a finite distributive lattice \(D \), (i), (ii), and (iii) in Theorem 1.3 are equivalent conditions. In particular, (i) \(\Rightarrow \) (ii), which seems to be a surprise.

Next, we need the following concept, introduced in Grätzer [14].

Definition 1.5. Let \(D \) be a finite distributive lattice.

(i) By a \(J(D) \)-colored chain we mean a triplet \(\langle C, \text{col}, D \rangle \) such that \(C \) is a finite chain, \(D \) is a finite distributive lattice, and \(\text{col}: \text{Prime}(C) \to J(D) \) is a surjective map from the set \(\text{Prime}(C) \) of all prime intervals of \(C \) onto \(J(D) \). If \(p \in \text{Prime}(C) \), then \(\text{col}(p) \) is the color of the edge \(p \).

(ii) Given a \(J(D) \)-colored chain \(\langle C, \text{col}, D \rangle \), we define a map denoted by \(\text{erep} \) from the set \(\text{Intv}(C) \) of all intervals of \(C \) onto \(D \) as follows: for \(I \in \text{Intv}(C) \), let

\[
\text{erep}(I) := \bigvee_{p \in \text{Prime}(I)} \text{col}(p);
\]

the join is taken in \(D \) and \(\text{erep}(I) \) is called the element represented by \(I \).

(iii) The set \(\text{SRep}(C, \text{col}, D) := \{ \text{erep}(I) : I \in \text{Intv}(C) \} \) will be called the set represented by the \(J(D) \)-colored chain \(\langle C, \text{col}, D \rangle \). Clearly, by the surjectivity of \(\text{col} \), \(Q := \text{SRep}(C, \text{col}, D) \) satisfies (1.4) in this case.

(iv) For a subset \(Q \) of \(D \), the inclusion \(Q \subseteq D \) is chain-representable if there exists a \(J(D) \)-colored chain \(\langle C, \text{col}, D \rangle \) such that \(Q = \text{SRep}(C, \text{col}, D) \). Note that \(C \) need not be a subchain of \(D \).

(v) Finally, a finite distributive lattice \(D \) is fully chain-representable if for every \(Q \) satisfying (1.4), the inclusion \(Q \subseteq D \) is chain-representable.

Armed with this definition, we formulate the following statement.

Proposition 1.6. Let \(D \) be a finite distributive lattice. Then \(D \) is fully chain-representable if and only if it is planar and it has at most one join-reducible coatom.

Although Proposition 1.6 is now a consequence of the conjunction of Czédli [7] and Grätzer [14], both [7] and [14] contain long proofs. In the present paper, we give a direct and short proof of Proposition 1.6.

The following corollary will easily be concluded from the previous statements.

Corollary 1.7. If a finite distributive lattice is fully \((A)\)-representable, then it is fully \((fL)\)-representable.

Next, we collect some known facts; most of them will be needed in our proofs.

Theorem 1.8 (Summarizing known facts). Let \(D \) be finite distributive lattice and assume that \(Q \subseteq D \) satisfies (1.4). Then the following five statements hold.

(i) (Grätzer and Lakser [15]) If \(D \) is fully \((fL)\)-representable, then it is planar.

(ii) (G. Grätzer, personal communication) If \(D \) is fully chain-representable, then it is planar.

(iii) (Grätzer [14]) If the inclusion \(Q \subseteq D \) is principal congruence representable by a finite lattice, then it is chain-representable.

1 After https://arxiv.org/abs/1705.10833v1, the first version of the present paper. While [7] is mainly for some specialists of lattice theory, the present paper is written for a wider readership.

2 Since I am mentioned in the addendum of [15], let me note that only some optimization of G. Grätzer and H. Lakser’s original proof of this fact is due to me.
(iv) (Grätzer [14]) If D is fully (fL)-representable, then it is fully chain-representable.

(v) (Grätzer [14]) If the inclusion $Q \subseteq D$ is chain-representable and $1_D \in J(D)$, then this inclusion is principal congruence representable by a finite lattice.

Note that (iv) is a particular case of (iii), (v) is very deep, and the proof of (iii) is similar to that of (i). Note also that there are several results on the representability of an ordered set Q as $\mathrm{Princ}(L)$ (without taking care of D), see Czédli [1], [2], [3], [4], and [6] and Grätzer [11], [13], [15], and [16]. For more about full principal congruence representability, see Grätzer [14] and Grätzer and Lakser [18].

While Theorem 1.3 and Remark 1.4 give a satisfactory description of full representability, we know much less on the representability of a single inclusion $Q \subseteq D$. Theorem 1.8(iii) and (v), taken from Grätzer [14], reduces the problem to chain-representability, provided that $1_D \in Q$. If $1_D \in Q$ is not assumed then we can prove only the following statement.

Proposition 1.9. If Q is a subset of a finite distributive lattice D such that the inclusion $Q \subseteq D$ is chain-representable, then this inclusion is principal congruence representable by a finite algebra A. Furthermore, if $Q \subseteq D$ is represented by a $J(D)$-colored chain $\langle C, \text{col}, D \rangle$, then A can be chosen so that $|A| = |C|$.

Note that, in the $1_D \in Q$ case, the finite lattice constructed in Grätzer [14] to represent $Q \subseteq D$ has much more elements than $|C|$.

Outline of the rest of the paper. We recall or prove some technical and mostly folklore statements on planar distributive lattices in Section 2. Section 3 contains the proof of Proposition 1.6. In Section 4 we deal with congruences of arbitrary algebras and, with the exception of Proposition 5, prove the rest of our statements formulated in the present section. Finally, Section 5 is devoted to the proof of Proposition 5.
2. Properties of planar distributive lattices

In this section, we recall some known facts about planar distributive lattices. For concepts not defined here, see Czédli and Grätzer [8] and see also the monographs Grätzer [10] and [12]. As far as distributive lattices are considered, many of the facts below belong to the folklore. Interestingly, a lot of them are valid not only for distributive lattices. In the whole section, unless otherwise stated, D denotes a planar distributive lattice. Note that a planar lattice is finite by definition. It belongs to the folklore, see also Grätzer and Knapp [17], that each element of D has at most two covers and at most two lower covers.

As usual, we fix a planar diagram of D; adjectives like “left” and “right” are understood modulo this diagram. Assume that

\[(2.1)\] each element of D has at most two covers and at most two lower covers.

The following auxiliary statement is a transcript of Czédli [5, Lemma 4.4].

Lemma 2.1. Let D be a finite distributive lattice satisfying \[(2.2)\] and \[(2.3)\] follows from the inclusion

\[(2.4)\]

see Czédli and Schmidt [9, Lemma 6] or Czédli and Grätzer [8]. The following lemma is illustrated by the first part of Figure 1.

Lemma 2.1. Let D be a finite distributive lattice satisfying \[(2.2)\] and \[(2.3)\] follows from the inclusion

\[(2.4)\] $J(D) \subseteq \text{Bnd}_{\text{left}}(D) \cup \text{Bnd}_{\text{right}}(D)$;

For $x \in D$, the largest element of $\text{Bnd}_{\text{left}}(D) \cap J_0(D) \cap \downarrow x$ is the left join support of x; it is denoted by $\text{ljs}(x)$. The right join support $\text{rjs}(x)$ of x is the largest element of $\text{Bnd}_{\text{right}}(D) \cap J_0(D) \cap \downarrow x$. Both $\text{ljs}(x)$ and $\text{rjs}(x)$ are join-irreducible elements (by definition) and we have that $x = \text{ljs}(x) \lor \text{rjs}(x)$;

see the second part of Figure 1. For the slim semimodular case, the equality in

\[(2.5)\] follows from the inclusion

\[(2.6)\]

We claim that $d_\ell \neq e$. Suppose to the contrary that $d_\ell = e$. Then, since $c_\ell \notin J(D)$ and $e = d_\ell$ belongs to $\text{Bnd}_{\text{left}}(D)$, we obtain that c_ℓ has a lower cover u strictly to the right of e. By Kelly and Rival [19, Proposition 1.6], e is strictly on the left and c_ℓ is strictly on the right of a maximal chain through $\{u, c_\ell\}$. This contradicts

\[3\] This concept, introduced in Grätzer and Knapp [17] and surveyed in Czédli and Grätzer [8], is not needed here; it suffices to know that every planar distributive lattice is slim and semimodular.
Kelly and Rival [19, Lemma 1.2] since \(e \prec c_r \). Hence, \(d_\ell \neq e \) and \(e \) is strictly to the right of \(d_\ell \). Thus, since \(c_t \in Bnd_{left}(D) \) has a lower cover belonging to \(Bnd_{left}(D) \) and it has at most two lower covers by (2.1), it follows that

\[
(2.7) \quad \text{e is strictly to the right of } d_\ell \text{ and } d_\ell \in Bnd_{left}(D). \quad \text{Similarly,}
\]

e is strictly to the left of \(d_r \) and \(d_r \in Bnd_{right}(D) \);

see the first part of Figure 1. Next, observe that \(ljs(d_\ell) > ljs(e) \) and \(rjs(d_r) > rjs(e) \) by (2.5). So, by the definition of left and right join supports,

\[
(2.8) \quad ljs(d_\ell) \not\leq e \quad \text{and} \quad rjs(d_r) \not\leq e.
\]

Hence \(e < ljs(d_\ell) \lor e \leq d_\ell \lor e \leq c_t \), whereby (2.6) gives that \(ljs(d_\ell) \lor e = c_\ell \). Similarly, \(rjs(d_r) \lor e = c_r \). Using the equality from (2.3) and the facts mentioned in the present paragraph, we obtain that

\[
(2.9) \quad (u \in J(D) \text{ and } u \leq v_0 \lor \ldots \lor v_{m-1}) \implies (\exists i < m)(u \leq v_i).
\]

Next, we state and prove a technical lemma.

Lemma 2.2. Let \(D \) be a finite distributive lattice satisfying (2.2). Then the following four assertions hold.

(i) \(J(D) \setminus \downarrow e = \{ljs(c_t), rjs(c_r)\} \) and \(ljs(c_\ell) \neq rjs(c_r) \).

(ii) \(\{ljs(c_t), rjs(c_r)\} \) is the set of maximal elements of \(J(D) \) and \(ljs(c_\ell) \parallel rjs(c_r) \).

(iii) \(ljs(c_t) \not\leq e \lor rjs(c_r) \) and \(rjs(c_r) \not\leq ljs(c_t) \).

(iv) \(e \not\leq ljs(c_t) \) and \(e \not\leq rjs(c_r) \).

Proof. We use the notation from (2.2) to (2.3). By (2.2), \(c_\ell \not\in J_0(D) \). Hence, \(d_\ell < c_\ell \) yields that \(Bnd_{left}(D) \cap J_0(D) \setminus \downarrow c_\ell = Bnd_{left}(D) \cap J_0(D) \setminus d_\ell \). Thus,

\[
(2.10) \quad ljs(c_t) = ljs(d_\ell). \quad \text{We obtain similarly that} \quad rjs(c_r) = rjs(d_r). \quad \tag{2.10}
\]

Lemma 2.1 and (2.10) gives that \(1 = ljs(c_t) \lor rjs(c_r) \), whereby \(ljs(c_t) \parallel rjs(c_r) \). So, since \(J(D) \subseteq \downarrow 1 \subseteq \downarrow (ljs(c_t) \lor rjs(c_r)) \), (2.9) implies (2.11). If we had that \(e \leq ljs(c_t) \), then (2.10) and \(ljs(d_\ell) \leq d_\ell \) would lead to \(e \leq d_\ell \), contradicting (2.7). Hence, \(e \not\leq ljs(c_t) \) and, similarly, \(e \not\leq rjs(c_r) \). This proves (2.2)[iv]. For the sake of contradiction, suppose that (2.2)[ii] fails. Let, say, \(ljs(c_t) \leq e \lor rjs(c_r) \). Thus, since \(ljs(c_\ell) = ljs(d_\ell) \not\leq e \) by (2.8) and (2.10), we obtain by (2.9) and (2.10) that \(ljs(d_\ell) = ljs(c_\ell) \leq rjs(c_r) = rjs(d_r) \), contradicting Lemma 2.1. Hence, (2.2)[ii] holds. Finally, (2.2)[iii] and (2.2)[v] give that \(e \parallel ljs(c_t) \), whereby \(e \leq e \lor ljs(c_t) \leq c_t \). So (2.6) gives that \(c_t < c_{\ell} = e \lor ljs(c_t) \). By distributivity (in fact, by lower semimodularity), \(g_t := e \land ljs(c_t) \prec ljs(c_t) \). Similarly, \(g_r := e \land rjs(c_r) \prec rjs(c_r) \). Combining these covering relations with (2.2)[ii], we obtain that

\[
(2.11) \quad \text{With the exception of } ljs(c_t), \text{ all join-irreducible elements of } Bnd_{left}(D) \text{ are in } \downarrow 1. \quad \text{Similarly for } rjs(c_r) \text{ and } Bnd_{right}(D).
\]

Clearly, (2.2)[i] follows from (2.4) and (2.11).
3. Chain-representability

The first paragraph in the following proof is based on G. Grätzer’s idea; see Theorem 1.8[3].

Proof of Proposition 1.6. In order to prove the necessity of the condition formulated in the proposition, assume that D is fully chain-representable. For the sake of contradiction, suppose that D is not planar. It is well known from, say, Lemma 3.4.1 and the paragraph preceding it in Czédli and Grätzer[2] that

\[\text{(3.1) every non-planar finite distributive lattice contains a three-element antichain that consists of join-irreducible elements.}\]

Thus, we can pick a three-element antichain $\{p_0, p_1, p_2\} \subseteq J(D)$. Let $p = p_0 \lor p_1 \lor p_2$ and $Q = J^+(D) \cup \{p\}$. Since D is fully chain-representable, we can take a $J(D)$-colored chain $\langle C, \text{col}, D \rangle$ such that $Q = \text{SRep}(C, \text{col}, D)$. Take a maximal interval $[x, y] = \{x = x_0 < x_1 < \cdots < x_n = y\}$ in C such that $\text{erep}([x, y]) = p$. Letting $r_i := \text{col}([x_i, x_{i+1}]) \in J(D)$, we have that $\bigvee_{i<n} r_i = p = p_0 \lor p_1 \lor p_2$. By (2.9), each of $p_0, p_1,$ and p_2 is less than or equal to some of the $r_i, i < n$. By the same reason, each of the $r_i, i < n,$ is less than or equal to some of $p_0, p_1,$ and p_2. Therefore, since $\{p_0, p_1, p_2\}$ is an antichain, each of $p_0, p_1,$ and p_2 occurs among the $r_i, i < n$. Without loss of generality, we can assume that p_0 or p_2 occurs before p_1. Take a maximal subinterval $[x_i, x_j]$ of $[x, y]$ such that $\text{erep}([x_i, x_j]) = p_1$; we have that $0 < i$ since p_0 or p_2 occurs before p_1. Then $r_{i-1} = \text{col}([x_{i-1}, x_i]) \leq p_1$, whereby

$p_1 < r_{i-1} \lor p_1 = \text{erep}([r_{i-1}, x_j]) \in \text{SRep}(C, \varphi) = Q$.

Since r_{i-1} is less than or equal to some of $p_0, p_1,$ and p_2 but $r_{i-1} \notin p_1$, we can assume that $r_{i-1} \leq p_0$. Thus, since $\{p_0, p_1, p_2\}$ is an antichain, $r_{i-1} \neq r_{i-1} \lor p_1$. Hence, $r_{i-1} \lor p_1$ is join-reducible, and the choice of Q gives that $r_{i-1} \lor p_1 \in \{p, 1\}$. So $p_2 \leq r_{i-1} \lor p_1$, and (2.9) yields that $p_2 \leq p_1$ or $p_2 \leq r_{i-1} \leq p_0$, which contradicts the fact that $\{p_0, p_1, p_2\}$ is an antichain. This proves that D is planar.

Next, striving for a contradiction, suppose that (2.2) holds. With the notation given from (2.2) to (2.3), let $Q := J^+(D) \cup \{e\}$; this need not be the same Q as above. Since there are two coatoms, $1_D \notin J(D)$. Since D is fully chain-representable, there is a $J(D)$-colored chain $\langle C, \text{col}, D \rangle$ such that $Q = \text{SRep}(C, \text{col}, D)$. Since $e \in Q$, there is a maximal interval $[x, y]$ in C such that $e = \text{erep}([x, y])$. Since $e \neq 1_D = \text{erep}(C)$, either $0_C < x$, or $y < 1_C$; by duality, we can assume that $y < 1_C$. Let z be the cover of y in C, and let $p := \text{col}([y, z]) \in J(D)$. By the maximality of $[x, y]$, we have that $e < e \lor p$. Since there are only three elements, $1 = c_t \lor c_r, c_t = d_t \lor e,$ and $c_r = d_r \lor e$ strictly above e and they are join-reducible, $e \lor p \notin J(D)$. Thus, since $e \lor p = \text{erep}([x, z]) \in \text{SRep}(C, \text{col}, D) = Q$, it follows that $e \lor p = 1$. Hence, $\text{ij}(d_t) \leq e \lor p$, whereby (2.8) and (2.9) give that $\text{ije}(d_t) \leq p$. Since $\text{ije}(d_t) \leq p$ follows similarly, Lemma 2.1 gives that $1_D = p \in J(D)$. This is a contradiction, proving the necessity part of Proposition 1.6

In order to prove the sufficiency part, assume that D is planar and it has at most one join-reducible coatom. Let $Q \subseteq D$ such that (1.4) holds. We need to find a $J(D)$-colored chain that represents Q. We can assume that $|D| \geq 2$ since otherwise the one-element $J(D)$-colored chain represents Q.
If $1 \in J(D)$, then we let $c := 1$; then the principal filter $\uparrow c = \{ x \in D : c \leq x \}$ is clearly a subset of Q. If $1 \not\in J_0(D)$, then there are exactly two coatoms by (2.1) and at least one of them is join-irreducible by our assumption; in this case, let c represent any of the join-irreducible coatoms and we still have that $\uparrow c \subseteq Q$.

Let u_1, u_2, \ldots, u_m be a repetition-free list of all elements of $J(D)$. Similarly, let x_1, x_2, \ldots, x_k be a repetition-free list of all elements of $Q \setminus J(D)$; this list can be empty. Define $\langle C, \text{col} \rangle$ such that $\text{length}(C) = 2m + 3k − 1$ and the colors of the edges, from bottom to top, are as follows:

$$
\begin{align*}
\text{ljs}(x_3), & \text{rjs}(x_4), \text{c}, \text{ljs}(x_4), \text{rjs}(x_4), \text{c}, \ldots, \text{ljs}(x_k), \text{rjs}(x_k);
\end{align*}
$$

see the third part of Figure 1 where the map col is given by labeling. The equation in (2.3) makes it clear that $Q \subseteq \text{SRep}(C, \text{col}, D)$. In order to see the converse inclusion, take an arbitrary element of $\text{SRep}(C, \text{col}, D)$, that is, take an arbitrary $I \in \text{Intv}(C)$ and consider $\text{erep}(I)$; we need to show that $\text{erep}(I) \in Q$. This is clear if $\text{length}(I) \leq 1$. For $\text{length}(I) \geq 2$, either $\text{erep}(I)$ is in the filter $\uparrow c$, which is a subset of Q, or $\text{erep}(I) = \text{ljs}(x_i) \lor \text{rjs}(x_i)$ and (2.3) gives that $\text{erep}(I) = x_i \in Q$. Therefore, $Q = \text{SRep}(C, \text{col}, D)$, as required. This completes the proof of Proposition 1.6. □

4. DEALING WITH CONGRUENCES OF AN ALGEBRA

Lemma 4.1. Every fully (A1)-representable finite distributive lattice is planar.

Proof. For the sake of contradiction, suppose that D is a non-planar fully (A1)-representable finite distributive lattice. Pick a three-element antichain $\{\alpha, \beta, \gamma\} \subseteq J(D)$; see [3.1]. Let $\mu = \alpha \lor \beta \lor \gamma$ and $Q = J^{+}(D) \cup \{\mu\}$. By the full (A1)-representability of D, we can assume that $D = \text{Con}(A)$ and $Q = \text{Princ}(A)$ for an algebra A. Then μ is a principal congruence of A, whereby we can pick elements $a, b \in A$ such that $\text{con}(a, b)$, the principal congruence generated by the pair $\{a, b\}$, is μ; in notation, $\mu = \text{con}(a, b)$. Using that $\mu = \alpha \lor \beta \lor \gamma$, we can pick a shortest sequence $a = x_0, x_1, \ldots, x_{n-1}, x_n = b$ of elements of A such that $\langle x_i, x_{i+1} \rangle$ belongs to $\alpha \lor \beta \lor \gamma$ for all (non-negative) $i < n$. That is, for all $i < n$,

$$
\text{con}(x_i, x_{i+1}) \leq \alpha, \quad \text{con}(x_i, x_{i+1}) \leq \beta, \quad \text{or} \quad \text{con}(x_i, x_{i+1}) \leq \gamma.
$$

We claim that

$$
\text{(4.2) each of } \alpha, \beta, \text{ and } \gamma \text{ occurs in } [4.1] \text{ for some } i < n.
$$

Suppose to the contrary that, say, γ does not occur. Then $\gamma \leq \mu = \alpha \lor \beta$ and (2.9) give that $\gamma \leq \alpha$ or $\gamma \leq \beta$, which is impossible since $\{\alpha, \beta, \gamma\}$ is an antichain. This shows the validity of (4.2), and shows also that $\alpha \lor \beta < \mu$.

Our sequence yields that $\text{con}(a, b) \leq \bigvee_{i < n} \text{con}(x_i, x_{i+1})$. Thus, $\alpha \leq \mu = \text{con}(a, b) \leq \bigvee_{i < n} \text{con}(x_i, x_{i+1})$. Hence, (2.9) gives an $i_{\alpha} < n$ such that $\alpha \leq \text{con}(x_{i_{\alpha}}, x_{i_{\alpha}+1})$. Combining this inequality with (4.1) and taking into account that $\{\alpha, \beta, \gamma\}$ is an antichain, we obtain that $\alpha = \text{con}(x_{i_{\alpha}}, x_{i_{\alpha}+1})$. Similarly, $\beta = \text{con}(x_{i_{\beta}}, x_{i_{\beta}+1})$ and $\gamma = \text{con}(x_{i_{\gamma}}, x_{i_{\gamma}+1})$ for some $i_{\beta} < n$ and $i_{\gamma} < n$. Since α, β, and γ play a symmetric role, we can assume that i_{α} is between i_{β} and i_{γ}. Let j denote the smallest non-negative number such that $j \leq i_{\alpha}$ and $\text{con}(x_j, x_{j+1}) \leq \alpha$ for all $s \in [j, i_{\alpha}] := \{ j, j + 1, \ldots, i_{\alpha} \}$. By $\text{con}(x_{i_{\alpha}}, x_{i_{\alpha}+1}) = \alpha$, this j exists. Since $\text{con}(x_{i_{\beta}}, x_{i_{\beta}+1}) = \beta \not\leq \alpha$, $\text{con}(x_{i_{\gamma}}, x_{i_{\gamma}+1}) = \gamma \not\leq \alpha$, and i_{α} is between i_{β} and i_{γ}, it follows that $j > 0$. So we can consider $\text{con}(x_{j-1}, x_j)$, which is not in...
\[\downarrow \alpha := \{\xi \in D : \xi \leq \alpha\}.\] By (4.1) and since the role of \(\beta\) and \(\gamma\) is symmetric, we can assume that \(\text{con}(x_{j-1}, x_j) \leq \beta\). The minimality of the length \(n\) of our sequence implies that \(x_{j-1} \neq x_{j+1}\). Hence
\[
0 < \text{con}(x_{j-1}, x_{j+1}) \leq \text{con}(x_{j-1}, x_j) \lor \text{con}(x_j, x_{j+1}) \leq \beta \lor \alpha < \mu
\]
and the choice of \(Q = \text{Princ}(A)\) imply that the principal congruence \(\text{con}(x_{j-1}, x_{j+1})\) is join-irreducible. Hence, applying (2.9) to (4.3), we obtain that \(\varnothing\).

Next, we claim that
\[
\text{for every block } U \text{ of } \varepsilon, \text{ we have that } U^2 \subseteq \alpha \text{ or } U^2 \subseteq \beta.
\]
Since this is evident for a singleton \(U\), assume that \(|U| > 1\). However, \(U \neq A\) since \(\varepsilon \neq 1_p = 1_{\text{Con}(A)}\). So we an pick an element \(x \in A \setminus U\) and another element \(y \in U\).

By (4.4), there is a finite sequence of elements from \(x\) to \(y\) such that any two consecutives elements in this sequence generate a join-irreducible congruence. This sequence begins outside \(U\) and terminates in \(U\), whereby there are two consecutive elements in the sequence such that first is outside \(U\) but the second is in \(U\). Changing the notation if necessary, we can assume that these two elements are \(x\) and \(y\). Thus, \(x \in A \setminus U\)
and \(y \in U \) are chosen so that \(\text{con}(x, y) \in J(D) \). It follows from Lemma 2.2.ii that \(\text{con}(x, y) \leq \alpha \) or \(\text{con}(x, y) \leq \beta \). Since the role of \(\alpha \) and \(\beta \) is symmetric, we can assume that \(\text{con}(x, y) \leq \alpha \). Now let \(z \) be an arbitrary element of \(U \). Since \(\text{con}(x, z) \) is a principal congruence, the choice of \(Q = \text{Princ}(A) \) and \(x \neq z \) give that \(\text{con}(x, z) \in \{1_D, \varepsilon\} \cup J(D) \). If we had that \(\text{con}(x, z) = 1_D = \text{Con}(A) \), then \(\beta \leq 1_D = \text{con}(x, z) \leq \text{con}(x, y) \lor \text{con}(y, z) \leq \alpha \lor \varepsilon \), which would contradict Lemma 2.2.iii. Since \(z \) is in \(U \) but \(x \) is not, \(\text{con}(x, z) \notin \varepsilon \). In particular, \(\text{con}(x, z) \notin \varepsilon \) and we obtain that \(\text{con}(x, z) \in J(D) \). In fact, \(\text{con}(x, z) \in J(D) \setminus \downarrow \varepsilon \), and it follows from Lemma 2.2.ii that \(\text{con}(x, y) \) is \(\alpha \) or \(\beta \). If we had that \(\text{con}(x, z) = \beta \), then \(\beta = \text{con}(x, z) \leq \text{con}(x, y) \lor \text{con}(y, z) \leq \alpha \lor \varepsilon \) would contradict Lemma 2.2.iii. Hence, \(\text{con}(x, z) = \alpha \) and \(\langle y, z \rangle \in \text{con}(y, x) \lor \text{con}(x, z) = \text{con}(x, y) \lor \alpha = \alpha \). Since \(z \) was an arbitrary element of \(U \), the required inclusion \(U^2 \subseteq \alpha \) follows by the transitivity of \(\alpha \). This proves (4.5).

Finally, since \(\varepsilon \in Q = \text{Princ}(A) \), we can pick \(a, b \in A \) such that \(\varepsilon = \text{con}(a, b) \). Clearly, the \(\varepsilon \)-block of \(a \) contains \(b \). Applying (4.5) to this block, it follows that \(\langle a, b \rangle \in \alpha \) or \(\langle a, b \rangle \in \beta \). Thus, \(\varepsilon = \text{con}(a, b) \leq \alpha \) or \(\varepsilon \leq \beta \), which contradicts Lemma 2.2.iv. This completes the proof of Lemma 4.2. \(\square \)

Now, we are in the position to prove our main theorem.

Proof of Theorem 1.3. We need to prove only that (1.3.ii) implies (1.3.iii): this follows from Lemmas 1.1 and 4.2. \(\square \)

The following proof relies heavily on Grätzer [14].

Proof of Proposition 1.1. Let \(D \) be finite distributive lattice; we can assume that \(|D| > 1 \). In order to prove that (a) implies (b), assume that \(D \) is fully (A)-representable. Then it is fully (A1)-representable, and it follows from Theorem 1.3 that \(D \) is planar. We obtain from (2.1) that \(D \) has at most two coatoms, and we need to exclude the possibility that \(D \) has exactly two coatoms.

Suppose to the contrary that \(D \) has two coatoms, \(\alpha \) an \(\beta \), and let \(Q = D \setminus \{1_D\} \).

We can assume that \(D = \text{Con}(A) \) and \(Q = \text{Princ}(A) \) for some algebra \(A \), since \(D \) is fully (A)-representable. We claim that

\[
1_{\text{Con}(A)} = \alpha \cup \beta.
\]

In order to see this, let \(\langle x, y \rangle \in A^2 \). Since \(1_{\text{Con}(A)} \notin \text{Princ}(A) \), we have that \(\text{con}(x, y) \neq 1_{\text{Con}(A)} = 1_D \). Since \(D \) has only two coatoms, \(\text{con}(x, y) \leq \alpha \) or \(\text{con}(x, y) \leq \beta \). This means that \(\langle x, y \rangle \in \alpha \lor \langle x, y \rangle \in \beta \), implying (4.7).

Next, let \(U \) be arbitrary \(\alpha \)-block. Since \(\alpha \neq 1_D = 1_{\text{Con}(A)} \), we can pick an element \(x \in A \setminus U \). For every \(y \in U \), we have that \(\langle x, y \rangle \notin \alpha \) since \(x \) is outside the \(\alpha \)-block of \(y \). Hence, (4.7) gives that \(\langle x, y \rangle \in \beta \) for all \(y \in U \). So \(U^2 \subseteq \beta \) by transitivity, and we conclude that \(\alpha \leq \beta \). This is a contradiction since \(\alpha \) and \(\beta \) are distinct coatoms. Consequently, (a) implies (b).

Next, in order to prove that (b) implies (a), assume that \(D \) has exactly one coatom. Let \(Q \) be a subset of \(D \) satisfying (2.1). Since \(1_D \notin J(D) \), we have that \(J_0(D) = J^+(D) \), whereby \(Q \) satisfies (1.4). Hence, Proposition 1.6 implies that the inclusion \(Q \subseteq D \) is chain-representable. Thus, Grätzer [14, Theorem 3], which has been recalled in Theorem 1.8[v], gives that the inclusion in question is
represented by the principal congruences of a finite lattice. Consequently, \(D \) is fully \((A)\)-representable and condition 1.1(a) holds, as required.

Proof of Corollary 1.2. For the sake of contradiction, suppose that \(A \) is an algebra such that \(\text{Princ}(A) = V \). Every congruence \(\gamma \in \text{Con}(\mathcal{A}) \) is the join of all principal congruences in \(\downarrow \gamma \), whereby \(D := \text{Con}(\mathcal{A}) \) is the four-element boolean lattice. Thus, \(A \) represents the inclusion \(V := Q \subseteq D \). By (1.6), this is a contradiction.

Proof of Corollary 1.7. Assume that \(D \) is fully \((A)\)-representable. We can also assume that \(|D| > 1\). By Proposition 1.1, \(D \) is planar and \(1_D \in J(D) \). Proposition 1.6 gives that \(D \) is fully chain-representable. Hence, \(D \) is fully \((\mathcal{IL})\)-representable by Theorem 1.8(v).

5. Representing a single inclusion by a finite algebra

The aim of this section is to prove Proposition 1.9.

Figure 2. From a \(J(D) \)-colored chain to an algebra

Proof of Proposition 1.9. Assume that \(D \) is a finite distributive lattice and a (finite) \(J(D) \)-colored chain \(\langle C, \text{col}, D \rangle \) represents an inclusion \(Q \subseteq D \). An example is given in Figure 2, where \(\langle C, \text{col}, D \rangle \) is drawn thrice. In order to indicate generality, \(|C| = 7\) in the figure; note however that a five-element chain whose edges are colored with \(c, b, d, a \), in this order, would also represent \(Q \subseteq D \). In the figure, the colors are given by the labels \(a, \ldots, d \), and the edges of \(C \), that is, the members of \(\text{Prime}(C) \), are \(p_1, \ldots, p_6 \). In order to turn \(C \) into an algebra, we are going to define two kinds of unary operations on \(C \). First, for \(u < v \in C \), we define a so-called contraction operation \(g_{uv} : C \to C \) by the rule

\[
g_{uv}(x) := \begin{cases}
 v, & \text{if } x \geq v, \\
 x, & \text{if } u \leq x \leq v, \\
 u, & \text{if } x \leq u;
\end{cases}
\]
see on the right of Figure 2. The name "contraction" comes from the straightforward fact that

\[(5.1) \quad \text{if } w < z \in C \text{ and } g_{uv}(w) \neq g_{uv}(z), \text{ then } w \leq g_{uv}(w) < g_{uv}(z) \leq z.\]

Second, let \(p, h \in \text{Prime}(C) \) be distinct edges of \(C \). We define the interior set \(I(p, h) \) and the exterior set \(E(p, h) \) as follows; see Figure 2 for \(\langle p, h \rangle \in \{ \langle q, r \rangle, \langle r, s \rangle \}. \)

\[
I(p, h) := \begin{cases} [1_p, 0_h] & \text{if } 1_p \leq 0_h, \\
[1_h, 0_p] & \text{if } 1_h \leq 0_p
\end{cases} \quad \text{and} \quad E(p, h) := C \setminus I(p, h).
\]

We also need to define the interior and the exterior target elements \(i(p, h) \) and \(e(p, h) \), respectively, as follows; see again the figure for \(\langle p, h \rangle \in \{ \langle q, r \rangle, \langle r, s \rangle \}. \)

\[
i(p, h) := \begin{cases} 0_h & \text{if } 1_p \leq 0_h, \\
1_h & \text{if } 1_h \leq 0_p
\end{cases} \quad \text{and} \quad e(p, h) := \begin{cases} 1_h & \text{if } 1_p \leq 0_h, \\
0_h & \text{if } 1_h \leq 0_p.
\end{cases}
\]

With the notation given above, we define a unary forcing operation

\[
f_{ph} : C \to C \quad \text{by} \quad x \mapsto f_{ph}(x) := \begin{cases} i(p, h) & \text{if } x \in I(p, h), \\
e(p, h) & \text{if } x \in E(p, h).
\end{cases}
\]

The name "forcing" is motivated by the fact that the presence of this operation "forces" the inequality \(\text{con}(0_p, 1_p) \geq \text{con}(0_h, 1_h) \). For \(\langle p, h \rangle \in \{ \langle q, r \rangle, \langle r, s \rangle \} \), the forcing operation is given in the middle part of Figure 2. The unary \(\mathfrak{A} \) algebra we need is defined by

\[
\mathfrak{A} = \langle C; \{ g_{uv} : u < v \in C \} \cup \{ f_{ph} : p \neq h \in \text{Prime}(C) \}
\text{ \ and } \text{col}(p) \geq \text{col}(h) \text{ holds in } D \rangle.
\]

Although \(\mathfrak{A} \) does not have a lattice reduct, we will frequently refer to the ordering of the chain \(C \); for example, when speaking of intervals and edges. For \(u, v \in C \), the symmetrized interval \([u \wedge v, u \vee v] \) will be denoted by \([u, v]^* \). We claim that the map

\[
\varphi : D \to \text{Con}(\mathfrak{A}), \quad \text{defined by} \quad x \mapsto \{ \langle u, v \rangle : \text{col}(p) \leq x \text{ for all } p \in \text{Prime}([u, v]^*) \},
\]

is a lattice isomorphism.

First, let \(x \in D \); we need to show that \(\varphi(x) \) is a congruence of \(\mathfrak{A} \). Since we use a symmetrized interval in \(\{ 5, 3 \} \), \(\varphi(x) \) is reflexive and symmetric. The transitivity of \(\varphi(x) \) follows from the rule \([u, w]^* \subseteq [u, v]^* \cup [v, w]^*\). It is clear from \(\{ 5, 1 \} \) that every contraction operation preserves \(\varphi(x) \). Let \(f_{ph} \) be a forcing operation of \(\mathfrak{A} \); this means that \(p \neq h \in \text{Prime}(C) \) and \(\text{col}(p) \geq \text{col}(h) \) in \(D \). In order to show that \(f_{ph} \) preserves \(\varphi(x) \), assume that \(\langle u, v \rangle \in \varphi(x) \) and \(f_{ph}(u) \neq f_{ph}(v) \). Then \(\{ f_{ph}(u), f_{ph}(v) \} = \{ 0_h, 1_h \} \), whereby \([f_{ph}(u), f_{ph}(v)]^* = h \). Hence, to show that \(\langle f_{ph}(u), f_{ph}(v) \rangle \in \varphi(x) \), we need to show that \(\text{col}(h) \leq x \). Since \(f_{ph}(u) \neq f_{ph}(v) \), one of \(u \) and \(v \) is in \(E(p, h) \) while the other one is in \(I(p, h) \). Hence, \(u \) and \(v \) in the chain \(C \) are "separated" by at least one of the edges \(p \) and \(h \). If they are separated by \(h \), then \(\text{col}(h) \leq x \) by the definition of \(\varphi(x) \), as required. So we can assume that \(u \) and \(v \) are separated by \(p \). Then \(\text{col}(p) \leq x \) and, by \(\{ 5, 2 \} \), \(\text{col}(p) \geq \text{col}(h) \). By transitivity, we obtain again that \(\text{col}(h) \leq x \). This proves that \(\varphi(x) \in \text{Con}(\mathfrak{A}) \), whereby \(\{ 5, 3 \} \) really defines a map from \(D \) to \(\text{Con}(\mathfrak{A}) \).
Next, to prove the surjectivity of φ, let $\Theta \in \text{Con}(A)$. Define $x = \psi(\Theta) \in D$ by
\[
(5.4) \quad x = \psi(\Theta) := \bigvee \{ \text{col}(p) : p \in \text{Prime}(C) \text{ and } \langle 0_p, 1_p \rangle \in \Theta \};
\]
we are going to show that $\varphi(x) = \Theta$. In order to do so, assume that $\langle w, z \rangle \in \Theta$. Since both Θ and $\psi(x)$ are congruences of A, we can also assume that $w < z$. If $p \in \text{Prime}([w, z])$, then $\langle 0_p, 1_p \rangle = \langle g_{0_p, 1_p}(w), g_{0_p, 1_p}(z) \rangle \in \Theta$, whereby $\text{col}(p) \leq x$. Since this holds for all $p \in \text{Prime}([w, z]^*) = \text{Prime}([w, z])$, we obtain by (5.3) that $\langle w, z \rangle \in \varphi(x)$. Thus, $\Theta \leq \varphi(x)$ holds in $\text{Con}(A)$. Conversely, assume that $\langle w, z \rangle \in \varphi(x)$ and $w < z$. Since $w < z$,
\[
(5.5) \quad \text{there are unique elements } t_i \in C \text{ such that } w = t_0 < t_1 < \cdots < t_k = z.
\]
By (5.3), $\text{col}(t_i, t_{i+1}) \leq x$ for all $i < k$. Thus, combining (2.9) and (5.4), we obtain an edge $p_i \in \text{Prime}(C)$ such that $\text{col}(t_i, t_{i+1}) \leq \text{col}(p_i)$ and $\langle 0_p, 1_p \rangle \in \Theta$, for every $i < k$. Applying the forcing operation $f_{p_i, t_i, t_{i+1}}$ componentwise to the pair $\langle 0_p, 1_p \rangle$, we obtain $\langle t_i, t_{i+1} \rangle$. Since this operation preserves Θ, we obtain that
\[
(5.6) \quad \langle t_i, t_{i+1} \rangle \in \Theta, \quad \text{for all } i < k;
\]
whereby $\langle w, z \rangle = \langle t_0, t_k \rangle \in \Theta$ by the transitivity of Θ. Hence, $\varphi(x) \leq \Theta$. Thus,
\[
(5.7) \quad \text{for } x = \psi(\Theta) \text{ defined in } (5.4), \quad \varphi(x) = \Theta.
\]
This proves the surjectivity of φ.

It is clear from (5.3) that φ is order-preserving, that is, $x \leq y \in D$ implies that $\varphi(x) \leq \varphi(y)$. To show that φ is injective, assume that $x \neq y \in D$. Since $x = \bigvee (J(D) \cap \downarrow x)$ and similarly for y, there exists an $a \in J(D)$ such that $a \leq x$ and $a \nleq y$, or conversely. So, we can assume that $a \leq x$ and $a \nleq y$. Since $\text{col}: \text{Prime}(C) \to J(D)$ is a surjective map by Definition 1.5, there exists an edge $p \in \text{Prime}(C)$ such that $\text{col}(p) = a$. Then $\langle 0_p, 1_p \rangle$ is in $\varphi(x)$ but not in $\varphi(y)$. This proves the injectivity of φ.

Now that we know that φ is a bijection, its clear by (5.4) and (5.7) that the map
\[
(5.8) \quad \psi: \text{Con}(A) \to D, \text{ defined by } \Theta \mapsto x \text{ in } (5.4), \text{ is the inverse of } \varphi.
\]
It is obvious by (5.4) that ψ is order-preserving. Consequently, ψ is an order isomorphism and, thus, a lattice isomorphism.

We claim that,
\[
(5.9) \quad \text{for every } p \in \text{Prime}(C), \quad \text{col}(p) = \psi(\text{con}(0_p, 1_p)).
\]
Since $\text{con}(0_p, 1_p)$ obviously collapses $\langle 0_p, 1_p \rangle$, we obtain from (5.4) and (5.8) that $\text{col}(p) \leq \psi(\text{con}(0_p, 1_p))$. Conversely, with the notation $a := \text{col}(p)$, it is clear by (5.3) that $\varphi(a) \ni \langle 0_p, 1_p \rangle$. Hence, $\varphi(a) \geq \text{con}(0_p, 1_p)$. Using that ψ is order-preserving, we obtain that $\text{col}(p) = a = \psi(\varphi(a)) \geq \psi(\text{con}(0_p, 1_p))$, proving (5.9).

Next, let $w < z$ in C, and assume that $\langle w, z \rangle \in \Theta = \varphi(x)$ for some $x \in D$. Since (5.6) holds for the elements t_i, see (5.5), $\text{con}(t_i, t_{i+1}) \leq \Theta$ for all $i < k$. This also holds for $\Theta := \text{con}(w, z)$, whereby we obtain easily that
\[
(5.10) \quad \text{if } w < z \in C, \text{ then } \text{con}(w, z) = \bigvee_{i<k} \text{con}(t_i, t_{i+1}).
\]
Now, we are in the position to show that $\varphi(Q) = \text{Princ}(A)$. Assume that $x \in Q$. Since $Q = \text{SRep}(C, \text{col}, D)$, there are $w < z$ such that for the elements defined in
\((5.4) \),
\[
x = \text{erep}([w, z]) \bigcup_{i<k} \text{col}([t_i, t_{i+1}]).
\]

It follows from (5.9) that \(\psi \), which is a lattice isomorphism, maps the right-hand side of (5.10) to that of (5.11). Hence, \(\psi(\text{con}(w, z)) = x \), which gives that \(\varphi(x) = \text{con}(w, z) \in \text{Princ}(\mathfrak{A}) \). Consequently, \(\varphi(Q) \subseteq \text{Princ}(\mathfrak{A}) \).

Finally, we need to exclude that this inclusion is proper. Suppose to the contrary that \(\varphi(Q) \subset \text{Princ}(\mathfrak{A}) \), and pick a principal congruence from \(\text{Princ}(\mathfrak{A}) \setminus \varphi(Q) \). Since \(\varphi : D \to \text{Con}(\mathfrak{A}) \) is surjective, this congruence is of the form \(\varphi(x) \) where \(x \notin Q \). Since \(\varphi(x) \) is a principal congruence, there are \(w < z \in C \) such that \(\varphi(x) \) is of the form \(\text{con}(w, z) \), described in (5.10). Taking the \(\psi \)-images of both sides of the equation in (5.10) and using (5.9) in the same way as before, we obtain the validity of (5.11). Hence, \(x = \text{erep}([w, z]) \in \text{SRep}(C, \text{col}, D) = Q \), contradicting the choice of \(x \). This proves the equality \(\varphi(Q) = \text{Princ}(\mathfrak{A}) \) and completes the proof of Proposition 1.9. \(\square \)

References

[1] G. Czédli: Representing a monotone map by principal lattice congruences. Acta Mathematica Hungarica 147 (2015), 12–18
[2] G. Czédli: The ordered set of principal congruences of a countable lattice, Algebra Universalis 75 (2016), 351–380
[3] G. Czédli: An independence theorem for ordered sets of principal congruences and automorphism groups of bounded lattices, Acta Sci. Math. (Szeged) 82 (2016), 3–18
[4] G. Czédli: Representing some families of monotone maps by principal lattice congruences. Algebra Universalis 77 (2017), 51–77
[5] G. Czédli: Diagrams and rectangular extensions of planar semimodular lattices. Algebra Universalis, online from March 31, 2017, DOI 10.1007/s00012-017-0437-0
[6] G. Czédli: Cometic functors and representing order-preserving maps by principal lattice congruences. Algebra Universalis, submitted
[7] G. Czédli: Characterizing fully principal congruence representable distributive lattices. http://arxiv.org/abs/1706.03401
[8] Czédli, G.; Grätzer, G.: Planar semimodular lattices and their diagrams. Chapter 3 in: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications. Birkhäuser Verlag, Basel (2014)
[9] Czédli, G. and Schmidt, E. T.: Slim semimodular lattices. I. A visual approach, Order 29, 481–497 (2012)
[10] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser Verlag, Basel (2011)
[11] Grätzer, G.: The order of principal congruences of a bounded lattice. Algebra Universalis 70, 95–105 (2013)
[12] Grätzer, G.: The Congruences of a Finite Lattice, A Proof-by-Picture Approach, second edition. Birkhäuser, 2016
[13] Grätzer, G.: Homomorphisms and principal congruences of bounded lattices I. Isotone maps of principal congruences. Acta Sci. Math. 82 (2016) 353–360
[14] G. Grätzer: Characterizing representability by principal congruences for finite distributive lattices with a join-irreducible unit element. Acta Sci. Math. (Szeged), Available from ResearchGate
[15] Grätzer, G.: Homomorphisms and principal congruences of bounded lattices. II. Sketching the proof for sublattices. Available from ResearchGate
[16] Grätzer, G.: Homomorphisms and principal congruences of bounded lattices. III. The Independence Theorem. Available from ResearchGate
[17] Grätzer, G. and Knapp, E.: Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73, 445–462 (2007)
[18] Grätzer, G. and Lakser, H.: Some preliminary results on the set of principal congruences of a finite lattice. Algebra Universalis, to appear.

[19] Kelly, D., Rival, I.: Planar lattices. Canad. J. Math. 27, 636–665 (1975)

E-mail address: czedli@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~czedli/

University of Szeged, Bolyai Institute, Szeged, Aradi véreránúk tere 1, Hungary 6720