Studies of the linkage relationship of beta-2-microglobulin in man-mouse somatic cell hybrids

BY MOYRA SMITH, P. GOLD, S. O. FREEDMAN AND J. SHUSTER

Division of Clinical Immunology and Allergy, the Montreal General Hospital, and the McGill University Medical Clinic of The Montreal General Hospital Research Institute, Montreal, Quebec, Canada

The polymorphic human HL-A histocompatibility antigens, found both on cell surfaces and in the circulation, are associated in a bi-molecular non-covalent fashion with the beta-2-microglobulin molecule (β2μ) (Nakamuro, Tanigaki & Pressman, 1973). Although the function of β2μ is unknown, it represents a chemically constant and well-defined portion of the known HL-A moieties (Nakamuro et al. 1973; Grey et al. 1973).

Family studies have revealed that variations seen in HL-A antigens are determined by multiple alleles at three structural gene loci (Thorsby, 1974) and that the human HL-A gene complex segregates in close association with the locus for the enzyme phosphoglucomutase (PGM3) (Lamm, Svejaard & Kissmeyer-Nielsen, 1971). Studies in man-Chinese hamster somatic cell hybrids by Van Someren et al. (1974) indicate that the PGM3 locus is syntenic with the loci for cytoplasmic malic enzyme (ME1) and tetrameric indophenol oxidase (IPO6). The loci for these three enzymes and thus for the HL-A gene complex, were shown by these workers to be on chromosome 6. Considerable difficulty was encountered in determining the HL-A phenotypes in hybrid cells (Van Someren et al. 1974). HL-A expression has been shown to be altered in fibroblasts cultured for prolonged periods (Goldstein, 1972).

Polymorphism of β2μ has not yet been described, hence conventional family studies cannot be used to determine the linkage relationships of this molecule. Fortunately β2μ is produced by most human cells even after prolonged periods of culture, and also by freshly isolated lymphocytes (Evrin & Nilsson, 1974). It was, therefore, possible for us to perform a study of the genetic linkage relationships of β2μ in man-mouse somatic cell hybrids.

MATERIALS AND METHODS

Cell types studied. In this investigation four human cell types were used. These were Chang cells, a long-term fibroblastic line, normal peripheral lymphocytes separated from the blood of a healthy donor on Ficoll-Hypaque (Böyum, 1967) and the established lymphoid culture lines ODY and EB4. These human cells were fused with RAG cells, a hypoxanthine-guanine-phosphoribosyl transferase-deficient mutant mouse cell line isolated by Ruddle et al. (1970). The Chang cells and the RAG cells were maintained in McCoy's 5a medium supplemented with 10% foetal calf serum. Lymphoid lines were maintained in RPMI 1625 medium with 10% foetal calf serum.

Cell fusion. Cell fusions were carried out in suspension at pH 7.8 as described by Croce, Koprowski & Eagle (1972), using Sendai virus that had been inactivated by exposure to ultraviolet light according to the method of Harris & Watkins (1965). In the RAG Chang fusions, the
ratio of RAG cells to Chang cells was 100 to 1. In the RAG lymphocyte fusions, equal numbers of the two cell types were used. Equal numbers of cells were used in lymphoid fusions.

After fusion, cells were grown in the supplemented McCoy’s 5a medium described above, but containing $10^{-4}$ M hypoxanthine, $10^{-5}$ M aminopterin, $4 	imes 10^{-5}$ M thymidine and $10^{-5}$ M glycine; this is the HAT selective medium described by Littlefield (1966). In the HAT selective medium, RAG cells and RAG–RAG fused cells were progressively eliminated. Normal peripheral lymphocytes and the lymphoid cell lines were non-adherent cells and were completely discarded during sequential changes of the selective culture medium. Thus, in the RAG cell–lymphocyte fusions and in RAG cell–lymphoid line fusions only hybrid cells grew in the selective HAT medium and adhered to the vessel surface. However, in the RAG-Chang fusions, hybrid cells had to be separated from parental Chang cells by means of cloning. All hybrid cells were cloned using the method described by Ham & Puck (1962).

Radioimmunoassay for $\beta 2\mu$. The concentrations of human $\beta 2\mu$ in spent culture media and in cell lysates were determined by means of a radioimmunoassay employing $^{125}$I-$\beta 2\mu$ and a double antibody technique for the separation of antibody-bound from free $^{125}$I-$\beta 2\mu$ (Hunter, 1973). Purified human $\beta 2\mu$ and rabbit anti-human-$\beta 2\mu$ antiserum were kindly provided by Dr M. D. Poulik.

Cell lysates for $\beta 2\mu$ assay were prepared by washing cultured cells in four changes of Dulbecco’s phosphate-buffered saline (pH 7.2) and then subjecting them to three cycles of freezing and thawing. The lysates were centrifuged at 200 g and the supernatants were assayed for $\beta 2\mu$.

Studies of cell-surface-associated $\beta 2\mu$. The presence of $\beta 2\mu$ on the surfaces of viable cells was sought by means of an indirect immunofluorescence technique (Thomson & Alexander, 1973). Monolayers of cell clones were trypsinized, and the resulting single cell suspensions were incubated at 37° C in unsupplemented McCoy’s 5a medium for 2–4 hr. The cells were then incubated with a 1:10 dilution of rabbit anti-human $\beta 2\mu$ for 30 min., washed, and finally exposed to fluorescein-conjugated goat anti-rabbit IgG. In control experiments, cells were incubated with normal rabbit serum, washed and then exposed to fluorescein-conjugated goat anti-rabbit IgG. After washing, the cells were examined for surface fluorescence employing a Reichert fluorescence microscope with an incident light source as described by Thomson & Alexander (1973).

Enzyme analyses. The presence of 15 murine, human, and hybrid enzyme phenotypes was sought in cell lysates from individual clones by means of starch-gel electrophoresis. The enzyme markers in question are distributed on 12 of the human chromosomes. In preparing lysates for enzyme studies, cells were washed in Dulbecco’s phosphate-buffered saline buffer (pH 7.2) and were then subjected to 1 or 2 cycles of freezing and thawing. The enzymes studied are listed, and the methods employed in their detection are referenced in Tables 1–3. For the enzymes selected for study, the human enzyme phenotypes differed clearly in electrophoretic mobility from those of the mouse.

Karyotype analyses For karyotype analyses, cell cultures were treated with colchicine, at a final concentration of 2-5 µg./ml. for 90 min. The cell monolayers were then trypsinized and subjected to hypotonic treatment for 15 min. in 0.075 M KCl at 37° C. The resulting preparations were fixed in a solution consisting of 3 parts of methyl alcohol and 1 part of acetic acid for at least 2 hr. Air-dried drop preparations were made. and these chromosomes were then banded using a modification of the trypsin–Giemsa banding technique of Seabright (1971). Slides were placed in a 60° C. oven overnight. They were then cooled and immersed in a solution of 0.1 %
Table 1. Assessment of human enzyme phenotypes and human β2μ in 33 primary clones of man–mouse somatic cell hybrids

(Hybrid cells were initially selected in HAT medium. Thereafter cloning was carried out in McCoy's medium with 20% fetal calf serum.)

| Clones   | β2μ | G-6-PD | LDH A | LDH B | Pep B | PHI | ME 1 | IPO B | IPO A | ADA | NP | Pep A | MPI | MDH(S) | ICD(S) | EST D |
|----------|-----|--------|-------|-------|-------|-----|------|-------|-------|-----|----|-------|-----|--------|--------|-------|
| RC Aₐ    | +   | -      | -     | +     | +     | -   | NT   | NT    | NT    | -   | +  | -     | -   | +      | NT     | NT    |
| RC A     | +   | +      | -     | +     | +     | -   | NT   | +     | NT    | -   | +  | +     | +   | -      | +      | +     |
| RC D     | +   | -      | -     | +     | +     | -   | +    | +     | -     | +   | -  | -     | -   | +      | +      | -     |
| RC K     | +   | -      | +     | -     | +     | +   | -    | +     | -     | +   | -  | +     | +   | -      | +      | +     |
| RC L     | +   | +      | +     | -     | +     | -   | +    | -     | +     | -   | -  | NT    | NT  | -      | +      | +     |
| RC N     | +   | -      | -     | +     | -     | +   | +    | NT    | -     | +   | -  | -     | -   | +      | +      | -     |
| RC O     | +   | -      | -     | +     | -     | +   | +    | NT    | NT    | -   | -  | NT    | NT  | -      | NT     | +     |
| RC P₂    | +   | +      | -     | -     | -     | +   | +    | NT    | -     | +   | +  | +     | NT  | -      | NT     | +     |
| RC Q     | +   | -      | +     | -     | +     | +   | +    | NT    | NT    | -   | -  | -     | -   | +      | +      | +     |
| RC Q₂    | +   | NT     | -     | +     | NT    | -   | +    | +     | NT    | +   | -  | NT    | NT  | -      | NT     | +     |
| RC R     | +   | +      | -     | +     | +     | -   | -    | +     | NT    | +   | -  | NT    | NT  | -      | NT     | +     |
| RC S     | +   | -      | -     | +     | NT    | +   | +    | -     | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| RC Y     | +   | -      | -     | +     | NT    | +   | +    | -     | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| RC Dₐ    | +   | +      | -     | +     | NT    | -   | +    | NT    | NT    | +   | -  | NT    | NT  | -      | NT     | +     |
| RC C₂    | +   | -      | -     | +     | NT    | NT  | NT   | NT    | NT    | +   | -  | NT    | NT  | -      | NT     | -     |
| RC Tb    | -   | -      | -     | +     | +     | -   | +    | -     | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| RLy A    | +   | +      | -     | +     | NT    | -   | -    | NT    | NT    | -   | +  | NT    | NT  | -      | NT     | +     |
| RLy C    | +   | +      | -     | +     | +     | +   | -    | -     | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| RLy E    | +   | +      | -     | +     | NT    | +   | +    | -     | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| RLy F    | +   | -      | +     | -     | +     | +   | -    | NT    | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| RLy G    | +   | +      | +     | -     | +     | -   | +    | +     | -     | +   | -  | -     | -   | +      | +      | -     |
| RLy EB   | +   | NT     | NT    | NT    | +     | NT  | -    | NT    | NT    | +   | +  | NT    | NT  | -      | NT     | +     |
| RLy J    | +   | NT     | +     | -     | NT    | +   | NT   | +     | NT    | -   | -  | NT    | NT  | -      | NT     | +     |
| RLy M    | +   | -      | NT    | +     | NT    | +   | NT   | NT    | NT    | -   | -  | NT    | NT  | -      | NT     | +     |
| RLy B    | +   | -      | -     | -     | NT    | -   | -    | +     | NT    | +   | -  | -     | -   | +      | +      | +     |
| RLy H    | -   | -      | +     | -     | -     | -   | -    | NT    | +     | -   | -  | NT    | NT  | -      | NT     | -     |
| REBₐ Bb  | -   | NT     | NT    | NT    | NT    | NT  | NT   | NT    | NT    | NT  | -  | NT    | NT  | -      | NT     | +     |
| REBₐ Be  | +   | -      | NT    | NT    | NT    | NT  | NT   | NT    | NT    | NT  | -  | NT    | NT  | -      | NT     | +     |
| REBₐ Cb  | +   | NT     | NT    | NT    | NT    | NT  | NT   | NT    | NT    | +   | -  | NT    | NT  | -      | NT     | -     |
| REBₐ Ce  | +   | +      | +     | NT    | NT    | NT  | NT   | NT    | +     | NT  | +  | NT    | NT  | -      | NT     | +     |
| RODy C    | +   | +      | +     | NT    | +     | +   | +    | -     | +     | -   | +  | NT    | NT  | -      | NT     | +     |
| RODy H    | +   | NT     | +     | NT    | NT    | +   | NT   | NT    | +     | NT  | +  | NT    | NT  | -      | NT     | -     |
| RODy Lb   | +   | NT     | NT    | NT    | NT    | +   | NT   | NT    | NT    | +   | +  | NT    | NT  | -      | NT     | -     |

**ABBREVIATIONS:** β2μ, Beta-2-microglobulin; G-6-PD, Glucose-6-phosphate dehydrogenase; LDH A, LDH B, lactate dehydrogenases A and B; Pep A, Pep B, peptidases A and B; PHI, phosphohexose isomerase; ME, malic enzyme (soluble); IPO A, IPO B, indophenol oxidas A and B; MDH(S), soluble NAD malate-dehydrogenase; ICD(S), soluble isocitrate dehydrogenase; EST D, esterase D; NT, not tested.
trypsin in Hanks Balanced Salt Solution (HBSS) at pH 7.0 at 4°C for 30–40 sec. The slides were then rinsed twice in HBSS at 4°C. Only the first rinse contained 1% foetal calf serum. Such preparations were finally stained in 4% Harleco Giemsa stain in Gurr’s buffer, at pH 6.8 for 4 min., and then rinsed in the same buffer.

RESULTS

Classification of the hybrid cells by radioimmunoassay for β2μ in spent culture media. The cells of hybrid clones were classified as β2μ-positive or β2μ-negative on the basis of whether or not β2μ was detectable, by radioimmunoassay, in their spent culture media. Depending upon the age of the 125I-β2μ, the radiolabelled product used in the assay, the lower limit of sensitivity of the radioimmunoassay for β2μ ranged from 1 ng./ml. to 6 ng./ml. Fresh McCoy’s 5a medium supplemented with 10% foetal calf serum which had been in contact with 10⁶ RAG cells for 48 hr., and medium from RAG cells that had been exposed to the full fusion procedure in the absence of human cells, always gave assay values below the level of sensitivity of the procedure. Spent culture media which had been exposed to 10⁶ Chang cells for 48 hr. gave β2μ values of 100–200 ng./ml.

Man–mouse hybrid clones were considered to be β2μ-positive if medium exposed to 10⁶ cells for 48 hr. gave assay values for human β2μ that were greater than 10 ng./ml. Man–mouse hybrid clones were classified as β2μ-negative if the assay values for β2μ were the same as, or less than, those obtained with medium exposed to RAG cells alone. On the basis of these criteria, 27 of the 33 primary hybrid clones studied were classified as β2μ-positive, while 6 of the 33 primary clones examined were classified as β2μ-negative (see Table 1 and Appendix). Of the 26 secondary RAG-lymphocyte hybrid clones, 17 were β2μ-positive while 9 were β2μ-negative (Table 2).

The absence of β2μ from the spent culture media of β2μ-negative clones may have been due to any of the following causes: (a) cessation of β2μ synthesis by the cells in question; (b) continued synthesis of β2μ by the cells in question with incorporation into the cell membrane, but failure of the material to be secreted into the culture medium; or (c) continued synthesis of β2μ but with failure of the material to be either secreted into the culture medium or incorporated into the cell membrane. These possibilities were evaluated in the studies of cell lysates and in the immunofluorescence investigations of the hybrid cell clones under consideration.

Radioimmunoassay for β2μ in cell lysates. The lysates of 2.5–5.0 x 10⁶ RAG cells showed no evidence of β2μ content. Similar results were obtained with the lysates derived from hybrid cell clones classified as β2μ-negative. On the other hand, lysates derived from the same numbers of cells from hybrid clones which had been classified as β2μ-positive gave assay values for β2μ of 9–17.3 ng./ml.

Immunofluorescence studies. Immunofluorescence studies of viable cells derived from primary hybrid clones classified as β2μ-positive demonstrated specific surface staining for β2μ. Cells of β2μ-negative primary hybrid clones showed no such evidence for β2μ on their surfaces.

Studies of enzyme phenotypes in hybrid clones. The 33 primary clones and the 26 secondary clones were examined for the expression of 15 different enzyme phenotypes. The presence or absence of the human enzyme phenotypes in each clone are shown in Tables 1 and 2; the segregation analyses of human β2μ and the 15 human enzyme markers examined in the 33 primary clones are summarized in Table 3.
Table 2. Assessment of human enzyme phenotypes and human β2μ in 26 secondary Rag-lymphocyte clones

| Clones   | β2μ | G-6-PD | LDH A | LDH B | Pep B | ME 1 | IPO B | IPO A | ADA | NP | Pep A | MPI | MDH(S) | ICD(S) | EST D |
|----------|-----|--------|-------|-------|-------|------|-------|-------|-----|----|-------|-----|--------|--------|-------|
| RLY C₁   | +   | NT     | NT    | NT    | NT    | NT   | +     | NT    | NT  | +  | NT    | NT  | NT     | +      |       |
| RLY C₂   | -   | +      | NT    | NT    | NT    | NT   | -     | +     | NT  | +  | +     | -   | NT     | NT     |       |
| RLY C₃   | -   | NT     | NT    | NT    | NT    | NT   | -     | -     | NT  | NT | +     | -   | -      | -      | NT    |
| RLY C₄   | -   | +      | NT    | NT    | NT    | NT   | -     | +     | NT  | +  | -     | -   | NT     |       |       |
| RLY C₅   | -   | NT     | -     | +     | +     | +    | +     | NT    | +   | +  | +     | -   | NT     |       |
| RLY C₆   | -   | +      | -     | +     | -     | NT   | NT    | +     | NT  | +  | -     | NT  | NT     |       |       |
| RLY C₇   | +   | +      | -     | -     | -     | NT   | NT    | -     | +   | -  | NT    | NT  | NT     |       |       |
| RLY C₈   | -   | NT     | NT    | NT    | +     | -    | NT    | NT    | NT  | -  | NT    | NT  | +      |       |
| RLY C₉   | -   | NT     | -     | -     | +    | +    | NT    | NT    | NT  | +  | +     | NT  | NT     |       |
| RLY C₁₀  | -   | NT     | -     | +     | +    | NT   | NT    | +     | +   | -  | NT    | NT  | NT     |       |       |
| RLY C₁₁  | -   | NT     | NT    | NT    | -    | -    | NT    | NT    | -   | -  | NT    | NT  | NT     |       |       |
| RLY A₁   | +   | NT     | NT    | NT    | -    | NT   | NT    | +     | +   | +  | +     | +   | NT     | NT     |       |
| RLY A₂   | +   | +      | NT    | NT    | +    | NT   | NT    | NT    | NT  | -  | +     | NT  | NT     | NT     |       |
| RLY A₃   | +   | NT     | -     | +     | -    | -    | NT    | +     | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₄   | +   | NT     | NT    | NT    | NT    | NT   | NT    | NT    | NT  | -  | NT    | NT  | NT     | NT     |       |
| RLY A₅   | +   | -      | +     | -     | NT    | NT   | NT    | +     | NT  | -  | NT    | NT  | NT     | NT     |       |
| RLY A₆   | +   | NT     | -     | +     | -    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₇   | +   | -      | +     | -     | NT    | NT   | NT    | +     | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₈   | +   | NT     | -     | +     | -    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₉   | +   | NT     | NT    | NT    | +    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₀  | +   | NT     | NT    | NT    | +    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₁  | +   | -      | +     | NT    | NT    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₂  | +   | NT     | NT    | NT    | NT    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₃  | +   | NT     | NT    | NT    | NT    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₄  | +   | -      | NT    | NT    | NT    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₅  | +   | NT     | NT    | NT    | NT    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
| RLY A₁₆  | +   | -      | -     | -     | -    | NT   | NT    | NT    | NT  | +  | NT    | NT  | NT     | NT     |       |
**Table 3. Segregation analyses of β2μ and 15 enzymes in 33 primary clones of man–mouse hybrids**

| Enzyme       | Reference for enzyme detection | Reference for chromosome assignment | RAG-Chang hybrids | RAG-lymphocyte hybrids | RAG-lymphoid line hybrids | Cumulative data |
|--------------|--------------------------------|-------------------------------------|-------------------|------------------------|---------------------------|-----------------|
| G-6-PD       | Ruddle & Nichols (1971)        | Nabholz et al. (1969)               | 5                 | 10                     | 5                         | 12              |
| LDH A        | Ruddle & Nichols (1971)        | Boone et al. (1972)                 | 1                 | 15                     | 4                         | 5               |
| LDH B        | Ruddle & Nichols (1971)        | Santachiara et al. (1970)           | 15                | 1                      | 6                         | 24              |
| Pep B        | Lewis & Harris (1967)          | Santachiara et al. (1970)           | 8                 | 1                      | 9                         | 18              |
| PHI          | Detter et al. (1968)           | McMorris et al. (1973)              | 4                 | 8                      | 5                         | 12              |
| ME I         | Ruddle & Nichols (1971)        | Van Someren et al. (1974)           | 12                | 2                      | 8                         | 25              |
| IPO B        | Brewer (1967)                  | Van Someren et al. (1974)           | 11                | 2                      | 7                         | 3               |
| IPO A        | Brewer (1967)                  | Tan et al. (1973)                   | 10                | 4                      | 6                         | 19              |
| ADA          | Spencer et al. (1968)          | Ruddle (1974)                       | 1                 | 8                      | 0                         | 3               |
| NP           | Edwards et al. (1971)          | Ruddle (1974)                       | 15                | 1                      | 5                         | 25              |
| Pep A        | Lewis & Harris (1967)          | Ruddle (1974)                       | 3                 | 6                      | 9                         | 13              |
| MPI          | Nichols et al. (1973)          | Van Heyningen et al. (1975)         | 4                 | 8                      | 9                         | 20              |
| MDH(S)       | Shows (1970)                   | Shows (1970)                        | 7                 | 8                      | 5                         | 12              |
| ICD(S)       | Shows (1970)                   | Shows (1970)                        | 4                 | 8                      | 5                         | 9               |
| EST D        | Hopkinson et al. (1973)        | Van Heyningen et al. (1975)         | 12                | 1                      | 10                        | 24              |
From the results obtained on examination of primary clones it was not possible to exclude linkage of human $\beta 2\mu$ to the following chromosomes: 6, 12, 14, and 13. Furthermore, although the discordance rates between $\beta 2\mu$ and both MPI (determined by chromosome 15) and Pep A (determined by chromosome 18) were high in the RAG–Chang hybrids, the discordance rates for $\beta 2\mu$ and these enzymes were low in the RAG-lymphocyte hybrids. In the RAG–lymphoid line hybrids a high degree of concordance was observed in the occurrence of human $\beta 2\mu$ and MPI. It is possible that the observed discrepancies between human $\beta 2\mu$ and MPI occurrence in the RAG-Chang hybrids could be due to chromosomal rearrangements in the long-term Chang cell line. For this reason, 26 secondary RAG-lymphocyte clones were examined. Segregation analyses of human $\beta 2\mu$ and the human phenotypes of the enzymes MPI, ME 1, Est D, NP, Pep A and Pep B in the secondary clones are summarized in Table 4. From this table it will be seen that a high degree of concordance was observed only between $\beta 2\mu$ and MPI.

Studies of hybrid clone karyotypes. Results of these studies are summarized in Table 5. Karyotypic analyses in the primary hybrid clones revealed a high degree of discordance between $\beta 2\mu$ production and the occurrence of chromosomes 1, 3, 4, 5, 7, 8, 9 and 10 for which no enzyme markers were examined. In 1 of the $\beta 2\mu$-negative primary clones and in 4 of the $\beta 2\mu$-negative secondary clones, chromosome 6 could be clearly demonstrated. Karyotypic studies have so far been done on 5 of the secondary RAG-lymphocyte clones; results support the enzyme studies in suggesting linkage of the gene determining $\beta 2\mu$ production to chromosome 15.

**DISCUSSION**

Results of our studies in RAG-lymphocyte and in RAG-lymphoid line hybrids show synteny of $\beta 2\mu$ and MPI. The gene determining human MPI production has been mapped to chromosome 15 (Van Heyningen et al. 1974). Chromosome studies in our hybrids support the results of enzyme studies and indicate localization of the genes determining $\beta 2\mu$ and MPI production to
Table 5. *Human chromosomes*

| Clones | 1 | 2 | 3 | 4* | 5* | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21† | 22† | X | Y | Abnormal chromosomes |
|--------|---|---|---|----|----|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Primary cell clones |
| RC R   | . | . | . | . | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Abnormal small metacentric |
| RC K   | + | + | . | . | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY G  | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY F  | . | . | + | + | + | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY E  | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY J  | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY EB | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY M  | . | . | . | . | . | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY B  | . | . | . | . | . | + | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RC Tb  | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Abnormal small metacentric |
| Secondary cell clones |
| RLY C2 | . | + | + | + | + | . | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY C3 | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY C4 | . | . | . | + | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY C5 | . | . | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY C6 | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| RLY C7 | . | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |

Minimum of 10 cells examined. Positive indicates at least 50% of cells carry the chromosome in question.

In parental Chang cells 60–70 chromosomes were present. At least six abnormal chromosomes were present; the origin of these abnormal chromosomes was not clear.

* Chromosomes 4 and 5 could not easily be distinguished from each other.
† Chromosomes 21 and 22 could not easily be distinguished from each other.
Linkage relationship of beta-2-microglobulin

chromosome 15. Our findings are therefore in agreement with those of Goodfellow et al. (1975), who recently assigned the β2μ gene to chromosome 15. These workers used a cytotoxicity assay to determine the presence of human β2μ in man–mouse somatic cell hybrids.

In RAG-Chang hybrids MPI and β2μ apparently segregated independently. It is well known that chromosomal rearrangements occur in long-term fibroblast lines and this probably limits the usefulness of these lines in mapping studies. Chromosomal rearrangements apparently occur less frequently in lymphoid cell lines (Povey et al. 1973).

It is interesting to note that the clone RLY C was initially classified as β2μ-positive, MPI negative. Two of the 11 secondary clones derived from this clone were β2μ-positive, MPI positive, while 9 were β2μ-negative, MPI negative. This indicates that the level of β2μ production in these cells exceeds that of the MPI production, or that the detection system for human β2μ is much more sensitive than the MPI detection system. Therefore, clones in which a low percentage of cells are positive for chromosome 15 could be positive for β2μ and apparently negative for MPI.

The fact that the primary hybrid clones classified, during this study, as β2μ-negative had lost the capacity to synthesize, rather than the ability to transport β2μ was demonstrated by both the immunofluorescence studies and by radioimmunoassays performed on cell lysates. Cells of the β2μ-negative clones failed to show the β2μ molecule either in their membranes or in the supernatants of their lysates. Thus, the β2μ-negative clones described here appear to lack the structural and/or the regulator gene for β2μ production.

Discordant segregation of β2μ and chromosome 6 was clearly demonstrated. If the assignment of the gene determining HL-A alloantigens to chromosome 6 is correct, our findings indicate that the gene responsible for β2μ production is not syntenic with the gene responsible for HL-A alloantigen production.

SUMMARY

Beta-2-microglobulin (β2μ) production has been studied in 33 primary man–mouse hybrid clones and in 26 secondary man–mouse hybrid clones. These clones have also been examined for the presence of 15 human enzyme phenotypes. Karyotypic analyses have been carried out on clones. From these studies the following conclusions can be drawn:

(1) Gene(s) determining human β2μ production in humans are apparently syntenic with the MPI gene on chromosome 15.

(2) Long-term fibroblast lines may be of limited use in mapping studies as chromosomal rearrangements frequently occur in these lines.

(3) The gene(s) determining β2μ production in humans segregate independently of chromosome 6. If the assignment of the genes determining HL-A alloantigens to chromosome 6 is correct, our results imply that β2μ and HL-A alloantigens are determined by genes carried on different chromosomes, despite the fact that β2μ forms an integral part of the HL-A molecule.

We wish to acknowledge the excellent technical assistance of Mrs Lorna Katz and Miss Marthe Fauconnet, and the photographic assistance of Mr P. Rippstein. We thank Dr Jan Schulz for assistance with the radioimmunoassay studies, Dr C. M. Steel (MRC Cytogenetics Unit, Edinburgh) and Dr B. Watson for donating the lymphoid cell lines, and Dr Susan Povey for helpful discussions.

This research was supported by a grant from the National Cancer Institute of Canada.
REFERENCES

Boone, C. M., Chen, T. R., Ruddle, F. H. (1972). Assignment of three human genes to chromosomes. LDH A to 11, TK to 17, IDH to 20 and evidence for translocation between human and mouse chromosomes in somatic cell hybrids. Proc. Natn. Acad. Sci. U.S.A. 69, 510.

Böyum, A. (1967). Separation of leukocytes from blood and bone-marrow. Scand. J. Clin. Lab. Invest. 21 (suppl. 97), 77.

Brewer, G. J. (1967). Achromatic regions of tetrazolium stained starch gels. Am. J. Hum. Genet. 19, 674.

Croce, C. M., Koprowski, H. & Eagle, H. (1972). Effect of environmental pH on the efficiency of cellular hybridization. Proc. Natl. Acad. Sci. U.S.A. 69, 1953.

Detter, J. C., Ways, P. O., Gilett, E., Baughan, M. A., Hopkinson, D. A., Povey, S., & Harris, H. (1968). Inherited variations in human phosphohexose isomerase. Ann. Hum. Genet., Lond. 31, 329.

Edwards, Y. H., Hopkinson, D. A. & Harris, H. (1971). Inherited variants of nucleoside phosphorylase. Ann. Hum. Genet., Lond. 34, 305.

Evrin, P. E. & Nilsson, K. (1974). Beta-2-microglobulin production in vitro by human hematopoetic, mesenchymal and epithelial cells. J. Immunol. 112, 137.

Goldstein, S. (1972). Loss of reactivity of HL-A antigens in clonal populations of cultured human fibroblasts during aging in vitro. Expl Cell Res. 75, 278.

Goodfellow, P. N., Jones, E. A., Van Heyningen, V., Solomon, E., Bobrow, M., Miggiiano, V., Bodmer, W. F. (1975). The beta-2-microglobulin gene is on chromosome 15 and not in the HL-A region. Nature, Lond. 253, 267.

Grey, H. M., Kubo, R. T., Colon, S. M., Poulak, M. D., Cresswell, P. M., Springer, T., Turner, M. J. & Strominger, J. L. (1973). The small sub-unit of HL-A antigens is beta-2-microglobulin. J. Exp. Med. 138, 1608.

Ham, R. T. & FucK, T. T. (1962). Quantitative colonial growth of mammalian cells. Meth. Enzym. 5, 90.

Harris, H. & Watkins, J. F. (1968). Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature, Lond. 205, 640.

Hopkinson, D. A., MestriNer, M. A., CorteNer, J. & Harris, H. (1973). Esterase D: a new human polymorphism. Ann. Hum. Genet., Lond. 37, 119.

Hunter, W. M. (1973). Radioimmunoassay. In Handbook in Experimental Immunology (ed. D. M. Weir), vol. 17, p. 14. Philadelphia: Lippincott.

Lamm, L. U., SvejaaNd, A. & Kissmeyer-Nielsen, F. (1971). PGm:HL-A is another linkage in man. Nature, New Biol. 213, 109.

Lewis, W. H. P. & Harris, H. (1967). Human red cell peptidases. Nature, Lond. 215, 351.

Littlefield, J. W. (1966). The use of drug resistant markers to study the hybridization of mouse fibroblasts. Expl Cell Res. 41, 190.

McMorris, F. A., Chen, T. R., Ricciuti, F., Tischfield, J., Creagan, R. & Ruddle, F. (1973). Chromosome assignments in man of the genes for two hexose phosphate isomerases. Science, N.Y. 179, 1129.

Nabholz, M., Miggiiano, V., Bodmer, W. F. (1969). Genetic analysis with human–mouse somatic cell hybrids. Nature, Lond. 223, 358.

Nakamura, K., Tanigaki, N. & Pressman, D. (1973). Multiple common properties of human beta-2-microglobulin and the common portion fragment derived from HL-A molecules. Proc. Natn. Acad. Sci. U.S.A. 70, 2863.

Nicholls, E. A., Chapman, V. M. & Ruddle, F. H. (1973). Polymorphism and linkage for mannose phosphate isomerase in Mus musculus. Biochem. Genet. 8, 47.

Povey, S., Gardner, S. E., Watson, B., Mowbray, S., Harris, H., Arthur, E., Steel, C. M., Blenkinsop, C. & Evans, H. J. (1973). Genetic studies on human lymphoblastoid cells. Ann. Hum. Genet., Lond. 36, 247.

Ruddle, F. H., Chapman, V. M., Chen, T. R. & Klebb, R. J. (1970). Linkage between human lactate dehydrogenase A and B and peptidase B. Nature, Lond. 227, 251.

Ruddle, F. H. & Nichols, E. A. (1971). Starch gel electrophoretic phenotypes of mouse x human somatic cell hybrids and mouse isozyme polymorphisms. In Vitro 7, 120.

Ruddle, F. H. (1974). Genetic linkage and gene mapping. In Somatic Cell Hybridization, vol. 1 (ed. R. L. Davidson and F. de la Cruz), p. 1. New York: Raven Press.

Santachiara, A. S., Nabholz, M., Miggiiano, V., Darlington, A. J. & Bodmer, W. F. (1970). Genetic analysis with man–mouse somatic cell hybrids: linkage between human lactate dehydrogenase B and peptidase B genes. Nature, Lond. 227, 248.

Seabright, M. (1971). The use of proteolytic enzymes for mapping structural rearrangements in chromosomes in man. Lancet ii, 971.

Shows, T. B. (1970). Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse. Biochem. Genet. 4, 707.
Linkage relationship of beta-2-microglobulin

SPENCER, N., HOPKINSON, D. A. & HARRIS, H. (1968). Adenosine deaminase polymorphism in man. *Ann. Hum. Genet., Lond.* 32, 9.

TAN, Y. H., TISCHFIELD, J. & RUDDLE, F. H. (1973). The linkage of genes for the human interferon induced anti-viral protein and indophenol oxidase A traits. *J. Exp. Med.* 137, 317.

THOMSON, D. M. P. & ALEXANDER, P. (1973). A cross-reacting embryonic antigen in the membrane of rat sarcoma cells which is immunogenic in the syngeneic host. *Brit. J. Cane.* 27, 35.

THORSBY, E. (1974). The human major histocompatibility system. *Trans. Rev.* 18, 51.

VAN HEYNINGEN, V., BOBROW, M., BODMER, W. F., GARDINER, S. E., POVEY, S., HOPKINSON, D. A. (1974). Chromosome assignment of some human enzyme loci: mitochondrial malate dehydrogenase to 7, mannose phosphate isomerase and pyruvate kinase to 15 and probably, esterase D to 13. *Ann. Hum. Genet., Lond.* 38, 295.

VAN SOMEREN, H., WESTERVELD, A., HAGEMEIJER, A., MEES, J. R., MEERA KHAN, P. & ZAAALBERG, O. B. (1974). Human antigen and enzyme markers in man–Chinese hamster somatic cell hybrids: Evidence for synteny between HL-A, PGM, ME 1 and IPO B loci. *Proc. Natn. Acad. Sci. U.S.A.* 71, 982.

**APPENDIX**

*Concentration of Beta-2-microglobulin in spent culture medium*

| Cell types | Concentration (ng./ml.) | Cell types | Concentration (ng./ml.) |
|------------|--------------------------|------------|--------------------------|
| RAG        |                          | RAG-lymphoid primary clones |
| Chang      | ND†                      | RODY C     | 100-0                    |
| RC A2      | 28.5                     | RODY H     | 38.0                     |
| RC C2      | 27.0                     | RODY Lb    | 94.0                     |
| RC D       | 26.8                     | REB4 Cc    | 62.0                     |
| RC D2      | 100-0                    | REB4 Cb    | 25.0                     |
| RC F       | 23.4                     | REB4 Bb    | ND                       |
| RC K       | 18.2                     | REB4 Bc    | ND                       |
| RC L       | 72.0                     | RAG-lymphocyte secondary clones |
| RC N       | 14.4                     | RLY C1     | 25.0                     |
| RC O       | 12.0                     | RLY C2     | ND                       |
| RC P2      | 27.6                     | RLY C3     | ND                       |
| RC Q2      | 100-0                    | RLY C4     | ND                       |
| RC Q       | 32.0                     | RLY C5     | ND                       |
| RC R       | 23.8                     | RLY C6     | ND                       |
| RC S       | 12.8                     | RLY C7     | 20.0                     |
| RC T       | 30.0                     | RLY C8     | ND                       |
| RC Tb      | ND                       | RLY C9     | ND                       |
|            |                          | RLY C11    | ND                       |
|            |                          | RLY C12    | ND                       |
|            |                          | RLY A1     | 100-0                    |
|            |                          | RLY A2     | ND                       |
|            |                          | RLY A3     | 100-0                    |
|            |                          | RLY A4     | 100-0                    |
|            |                          | RLY A5     | 35.5                     |
|            |                          | RLY A6     | 33.5                     |
|            |                          | RLY A7     | 100-0                    |
|            |                          | RLY A8     | 57.0                     |
|            |                          | RLY A9     | 26.0                     |
|            |                          | RLY A10    | 100-0                    |
|            |                          | RLY A11    | 40.0                     |
|            |                          | RLY A12    | 90.0                     |
|            |                          | RLY A13    | 67.0                     |
|            |                          | RLY A14    | 31.0                     |
|            |                          | RLY A15    | 20.0                     |
|            |                          | RLY A16    | 100-0                    |
| RAG-lymphocyte primary clones |
| RLY A      | 44.2                     |  |
| RLY C      | 28.4                     |  |
| RLY E      | 92.0                     |  |
| RLY F      | 100-0                    |  |
| RLY G      | 71.0                     |  |
| RLY J      | 49.0                     |  |
| RLY EB     | 11.7                     |  |
| RLY-lymphocyte primary clones |
| RLY B      | ND                       |  |
| RLY M      | ND                       |  |
| RLY H      | ND                       |  |

* Medium exposed to approximately $1 \times 10^8$ cells for 48 hr.

† ND: Not detectable values below level of sensitivity of assay.
