Synchronized oscillations in swarms of nematode Turbatrix aceti

Anton Peshkov,∗ Sonia McGaffigan, and Alice C. Quillen
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work.

INTRODUCTION

Collections of biological organisms can be considered active materials [1] as energy is continuously dispersed through their motion. Two kinds of collective behavior can be distinguished for such organisms. On one hand, the self-propulsion of the organisms can lead to collectively moving states such as “turbulence” in bacterial suspensions [2], flocking of birds [3] or schools of fishes [4]. On the other hand, some organisms performing periodic actions can synchronize their oscillations, such as the synchronous flashing of bugs [5], crowd synchrony of pedestrians walking on a bridge [6] or flagella of microorganisms that beat in phase with one another [7]. The latter example is particularly interesting as it can lead not only to “in-phase” synchronization but also to “moving phase” or traveling motion known as metachronal waves [8–10].

A model that combines these two types of collective motion into particles that at the same time self-propel and synchronize their oscillations have recently been proposed in the form of swarmalators studied in [11]. In this model, the position of the particles and the state of the oscillator are interdependent, which distinguish it from previous studies where these two quantities were assumed to be independent. This model has since been complemented by more analytical and numerical investigations [12–15], which found states with locally synchronized oscillations and particles traveling in waves. However, none of these studied models have shown a traveling wave state. A possible experimental realization of swarmalators has been proposed and numerically studied in [16] in the form of undulating synthetic active flexible sheets, reminiscent of our nematodes. However, no experimental realization of collectively moving and oscillating particles has been demonstrated until this time.

In this study we report on collective behavior in a system of undulating nematodes Turbatrix aceti (T. aceti) commonly known as vinegar eels. The vinegar eels are widely used in aquaculture as food for young fishes and crustaceans. Therefore, they can be easily sourced from aquarium supplies stores and their culture methods are straightforward. The nematodes need to undulate to self-propel, and as we show in this paper, the synchronization of these oscillations leads to the formation of a collective metachronal wave. While these waves are similar to the one observed in cilia, the vinegar eels are not affixed to the wall, and can exit and enter the wave which slowly moves along the border.

The collective behavior of mobile particles can be sensitive to the number of spatial dimensions in which they evolve [17, 18], as well as to confinement and container geometry due to interactions with a boundary [19–22]. We show that the formation of the metachronal wave by T. aceti in a three-dimensional space is induced by confinement, in our case that of a contact angle of the droplet in which they swim. The the confinement geometry not only controls the location of the collective state, but also the number of nematodes involved in collective beating and therefore the strength of the produced flow.

Past experimental investigation using bacterial suspensions have been able to displace objects[23, 24], extract energy[25] or produce controlled organized flows[26]. However, extraction of energy and flow productions has only been achieved by trapping individual bacteria in special cells and using their outside sticking flagella as motors [25, 26]. While cilia are well known to produce fluid flows, they are attached to the surface, and external control has only been achieved for synthetic variants [27]. We show that the force produced by the collective motion of T. aceti is substantial and sufficient to change the evaporation mode of a droplet in which they swim. This let us anticipate the possibility of designing channels with controlled flows as well as objects pushed by the nematodes.

* apeshkov@ur.rochester.edu
CHARACTERIZATION OF THE COLLECTIVE STATE

We grow and study *T. aceti* in a 1:1 solution of water and apple cider vinegar. To investigate the collective motion, we put droplets of high density solution of nematodes \(d \geq 10 \text{ n/µl} \) on glass slides whose surface was treated with a hydrophobic PDMS compound. Most experiments were done with 100 µl droplets, though we verified that similar behavior can be observed in droplets up to 1000 µl and down to 50µl. Additional information on the preparation and experiments is available in the supplemental material SII.

Initially the motion of nematodes in the droplet is random as can be seen in Figure 1 a) and supplemental movie SM1 (movies are available at[28]). After the deposition on glass, the nematodes start to concentrate on the border of the drop due to bordertaxis [29]. Individual nematodes that approach the border continue moving along the border as expected for active particles. After a variable period of time, depending on the droplet volume and evaporation conditions, the oscillation of groups of nematodes on the border becomes locally synchronized. If the concentration of nematodes in the initial droplet is large enough, with number of organisms per unit volume \(d_{\text{wave}} \geq 10-20\text{ n/µl} \), the locally synchronized swarms will grow in size until finally percolating into a metachronal wave that spans the whole border of the droplet, as represented on Figure 1 b) and supplemental movie SM2. The number of nematodes participating in the wave and the degree of synchronization increase in time until reaching a maximum wave strength as illustrated in Figure 1 c) and supplemental movie SM3. To the best of our knowledge, this is the first report of such collective motion in this or any other species of nematodes. The existence of this, both swarming and oscillating, state is the first major finding of this manuscript.

Observing this collective wave under a microscope (Figure 1 and supplemental movie SM4), we can see that the nematodes orient their head toward the border and synchronously oscillate at an angle from 0 to 90°. While nematodes of different ages and sizes are present in the solution, only similarly sized adult ones participate in the wave. Smaller nematodes are expelled to the center of the drop. We were able to observe wave frequencies \(f_{\text{wave}} \) in the range of 4-8 Hz, consistent with that of individual nematodes. Though the majority of experiments produced waves with lower frequencies in the 4-5 Hz range. While the mechanism of selection of beating frequency needs to be elucidated, once the wave is formed, the frequency remains constant for the lifetime of the wave. In addition to their oscillations, the nematodes slowly move along the border with a typical velocity of \(v_{\text{border}} \approx 0.1\text{ mm/s} \). This velocity is lower than that of freely swimming nematodes \(v_{\text{swim}} \approx 0.4\text{ mm/s} \) and an order of magnitude smaller than the velocity of the phase of the metachronal wave \(v_{\text{wave}} \approx 4-6\text{ mm/s} \). Note that in this state, the position and the velocity of the nematodes is controlled by the oscillations of the nearby nematodes. In that sense, this state is a realization of swarmalotors.

In more than 70% of the experiments that we have performed, the wave rotates in the counter-clockwise direction. We do not have an explanation for this symmetry breaking. A similar symmetry breakage was observed in colonies of rotating magnetotactic bacteria under the influence of a magnetic field [30]. It was speculated that this absence of symmetry could be due to the helicity of the bacteria. Therefore, this skewness of rotational direction of the wave that we observe could indicate a possible asymmetry in the motion of individual swimming nematodes, though we were not able to observe it in practice [31].

In addition to the metachronal wave, we often observe the formation of a compact cluster of nematodes in the vicinity of the center of the droplet and a strong reduction in the density of nematodes in the space between the border and the dense cluster at the center (see Figure 1b and c)). When observed under the microscope, the cluster presents itself as a knot of highly entangled nematodes similar to the ones recently observed for *C. elegans* on solid surfaces [32] as well as *T. tubifex* [33] and *L. variegatus* [34] in liquid. This cluster is not stable in time and can grow and shrink during the experiment. The dynamics of these clusters is out of the scope of this article and will be presented in future works.

When the wave is formed, it is generally stable until the end of its life. However, instabilities can be observed for large droplet sizes (>500 µl) and in droplets with low contact angles (< 30°). A temporal increase in size of the central cluster can lead to the depletion of nematodes at the border and the disappearance of the wave. More information on instabilities is provided in supplemental part IV.

If the contact angle of the drop is low enough, a strong deformation of the border of the drop will occur, as can be seen in the supplemental movie SM5. This indicates the existence of strong currents produced by this collective state. Indeed we were often able to observe a rotational motion of the free swimming and clustered nematodes, which were not part of the wave, as well as of tracer particles, in the center of the droplet, as illustrated by the supplemental movie SM6. In the mentioned movie, we measured the rotational velocity in the center of the drop to be around 1.3 rpm. Given that the fixed quantity is the above-mentioned metachronal wave travel velocity \(v_{\text{wave}} \), the rotational velocity will decrease in larger droplets and will increase in smaller ones.

CONDITIONS FOR THE COLLECTIVE STATE

We are interested in identifying parameters that control the appearance of the metachronal wave during the evaporation of the droplet. One hypothesis would be that the metachronal wave appears when the density of nematodes reaches a threshold value. However, as mentioned
before, we see the appearance of metachronal wave for all the droplets as soon as the initial concentration of nematodes is sufficiently large \(\geq 10 - 20n/\mu l \). Neither the time nor the size of the droplet is a determining factor as we show below. We have discovered that the control parameter for the formation of the metachronal wave is the drop contact angle.

Figure 2 a) shows the contact angle of several selected droplets as a function of time. We selected several representative droplets of different densities, volumes, initial contact angles and evaporation rates. We indicate with a vertical bar, on each curve, the time at which the metachronal wave spanning the whole drop perimeter appears. We can see that time is not a determinant parameter for the formation of the collective state, with times ranging from several seconds to several hours. However, the metachronal wave appears for all the droplets at approximately the same contact angle. We have measured the critical angle for the percolation of the metachronal wave to be \(\theta_c = 68.5 \pm 1^\circ \).

This phase transition to the collective state at a particular angle is confirmed by analyzing the number of oscillating nematodes at the border of the droplet \(d_b \) (Figure 2 b). For droplet contact angles superior to \(\theta_c \), the density of nematodes at the border is mostly independent of the angle and is directly proportional to the density of nematodes in the initial solution (Figure 2 c). However, past the critical angle the density of nematodes start to increase. In the case of an initial density insufficient to form a full wave, we see only a small increase in density up to an angle of around 60°, and staying constant afterwards. In contrast, for droplets in which a collective wave appears, the density at the border grows until reaching a maximum at an angle close to 35°. The maximum density at the border seems to be independent of the initial concentration of the solution. This can be easily explained, as the maximum instantaneous density that we were able to observe was 29.9 n/mm. Given that the typical width of a single nematode participating in the wave is 29(5) \(\mu m \), this allows us to estimate the densest “close-packing” at 34.5 (6.0) n/mm, for nematodes perpendicular to the surface. However the nematodes bodies are oscillating at a tilt of \(\sim 20^\circ \) [31], which limits the maximum density to \(\sim 32.4n/mm \), slightly higher than

Figure 1. Top: a-c) Photos of evaporation of a 250 µl droplet at different moments in time. Initial density of nematodes in the droplet was \(d = 30.7 \pm 3.3n/\mu l \). Scale bar is 5 mm. a) t=1 min, random motion. b) t=20 min, percolation of the metachronal wave at the border. c) t=60 min, fully developed metachronal wave. d) A view of the metachronal wave similar to that in c) under a microscope with 4x magnification. Scale bar is 0.5 mm.
the value we measured. For droplet contact angles inferior to 30°, we observe a sharp decrease in the number of the nematodes on the border and a disappearance of the collective wave. This can be explained by the space constraint which does not allow the nematodes to effectively fit into the fluid volume near the border. The dependence of the location and strength of the metachronal wave on the contact angle of the droplet is the second major finding of this manuscript.

A natural question is why the formation of the wave would depend on the contact angle. Our hypothesis is represented in Figure 2 d). In [31] we suggested that the synchronization of nematodes is facilitated by steric interactions between them. If the contact angle of the droplet is high, the probability that two nematodes oscillating at the border and located nearby one another will touch is relatively low, as they will in most cases oscillate at different angles to the surface, making synchronization less likely. In the opposite case, if the contact angle of the droplet is low and the drop is very shallow, two nematodes oscillating nearby will almost certainly touch each other and strongly interact and synchronize their motion. Note that the synchronization of the motion of nematodes, will “free-up” the space at the border, as they can be closer to one another. This explains the increase in concentration near the border as the angle of the droplet decreases, and the wave becomes more synchronized. It is also important to remark that, the concentration of nematodes at the border is dependent on the contact angle, but not the “history” of achieving this angle as illustrated by the droplet that started at an angle of 70° on Figure 2 a). Thus the bordertaxis is not due to any outward flows due to droplet evaporation like in the “coffee-ring” effect, as opposed to for example the motion of microalgae Chlamydomonas reinhardtii inside droplets [35].

DROPLET EVAPORATION

The physics of drop evaporation is relatively complex and depends on the properties of the liquid, the surrounding gas and the surface on which the drop resides [36]. The process of drop evaporation is generally divided into two or three main stages [37]. In the following we will focus on the first stage of evaporation, neglecting the later stages of very sharp reduction in the droplets contact angle or diameter. There exist two different modes [38] of this phase of drop evaporation as shown in Figure 3 a). The first, and most common case, notably for water on glass, is a constant contact surface area, when the drop evaporates through the decrease of the contact angle. For simplicity we will refer to this mode as the one at a constant diameter, as diameter is the parameter that we measure. This mode of evaporation will appear if the wetting contact forces to the surface are greater than the surface tension forces. For most common fluids, such as water, the initial contact angle of the drop will be less than 90° [39]. However, on some hydrophobic
surfaces, the wetting force will be less than the surface tension force. In that second case, the drop will reduce its surface area while maintaining a constant contact angle during evaporation, and the drop diameter will decrease. Examples of such surfaces for water are polytetrafluoroethylene (PTFE, commonly known as Teflon) and the PDMS that coat our glass slides [39]. For most fluids, including water, the initial contact angle on such surface will be typically equal or greater than 90° [39].

In the absence of external forces, a droplet will achieve a state in which the horizontal force is balanced by the wetting force. The horizontal force is a function of the surface tension and gravity: $F_{horizontal} = \gamma_s g \cos \theta$.

However, in the presence of nematodes, the horizontal force can be modified: $F_{horizontal} = \gamma_s g \cos \theta + F_{nematode}$. The nematode force can be expressed as $F_{nematode} = \gamma_{n} l_{n}$, where γ_{n} is the nematode surface tension and l_{n} is the length of the nematode in contact with the droplet.

The total horizontal force $F_{total} = F_{horizontal} + F_{wetting} = \gamma_s g \cos \theta + F_{nematode} + F_{wetting}$.

The condition for a constant contact angle is $F_{surface} > F_{wetting}$, and for a constant diameter is $F_{surface} < F_{wetting}$.

Concentration	Contact Angle	Diameter
0%	Constant	D = 0%
25%	Constant	D = 25%
50%	Constant	D = 50%
100%	Constant	D = 100%

Figure 3 a) Diagram of two different possible modes of drop evaporation depending on the force balance between the fluid and the surface. b) Side view of four 100 µL droplets with different nematode concentrations during evaporation. The concentrations of nematodes are from left to right 0%, 25%, 50%, 100%, with the rightmost drop taken as a reference density. Vertical yellow lines show initial borders of the 0% and 100% concentration droplets.

Since our slides were covered with hydrophobic PDMS, we will expect the contact angle to remain constant during evaporation. However we have seen in the previous section that this was actually not the case for our droplets with the nematodes. To confirm these, we perform an experiment with four droplets of different concentrations, prepared from the same initial dense solution. Because vinegar and other suspended particles in the grow solution will inevitably affect the droplet evaporation, for this experiment we transfer the nematodes into distilled water as described in the methods section. While such a transfer present a risk of nematodes swallowing and bursting due to osmosis [40], we have not observed a change of their behavior in the short time span of up to four hours of these experiments.

Figure 3 b) shows the side view of four droplets at different moments of time for four different concentrations of nematodes: 0%, 25% (d = 22.5 n/µL), 50% (d = 45.1 n/µL) and 100% (d = 90.2 ± 5.3 n/µL). As expected for water, the 0% density droplet evaporates by reducing the diameter. On the contrary, the droplets with the nematodes initially evaporate with a constant diameter and decreasing angle. Figure 4 shows the extracted contact angles and diameters of these droplets. The d=0% droplet evaporates with a constant contact angle and a continuously decreasing diameter until reaching the second phase of evaporation when the contact angle starts to rapidly decrease. For the droplets with the nematodes, we observe a reduction in contact angle until it reaches a transition angle θ_t, which is different for each droplet. After reaching θ_t, the droplets transition from the constant diameter mode of evaporation to the constant contact angle mode. Finally, at even later times, the second stage of evaporation with a sharp decrease in contact angle is observed. Surprisingly, the diameter of the droplets with the nematodes slightly increase at the beginning, an observation made by us in many experiments. This maybe explained by the facilitation of the contact point hysteresis by the random motion of the nematodes near the border. That the collective motion of nematodes can affect the physics of droplet evaporation is the third major finding of this work.

FORCE PRODUCED BY THE NEMATODES

To explain the existence of the transition angle θ_t, let us go back to the physics of droplets evaporation. The balance between the different forces acting on a droplet in contact with a flat solid surface is given by the Young’s relation

$$\gamma_{sg} = \gamma_{sl} + \gamma_{lg} \cos \theta.$$ \hspace{1cm} (1)

Here $\gamma_{sg}, \gamma_{sl}, \gamma_{lg}$ are the surface tensions of solid/gas, solid/liquid and liquid/gas interfaces and θ is the contact angle as explained in the inset of Figure 5. In simple words, γ_{lg} measures how much the liquid and ambient air molecules repel one another; γ_{sl} how much the liquid molecules repel the solid ones; and γ_{sg} how much the solid molecules repel the surrounding gas. Therefore, γ_{lg} and γ_{sl} tend to decrease the diameter of the droplet (assuming $\theta < 90^\circ$), while γ_{sg} tend to increase it. In addition to these forces, the nematodes could exert and outward horizontal force γ_n on the boundary. We modify Young’s relation to include this force per unit length giving

$$\gamma_{sg} + \gamma_n = \gamma_{sl} + \gamma_{lg} \cos \theta.$$ \hspace{1cm} (2)

Note that as the angle θ will decrease, the horizontal force on the contact point coming from the surface tension contribution γ_{lg} will become stronger. Thus at some critical angle, the force from the nematodes γ_n would not
Figure 4. Contact angles (a) and diameters (b) of the droplets from Figure 3 as a function of time. The estimated standard deviation is 1° for the angle and 0.1 mm for the diameter.

be able any longer to oppose the surface tension force, and the mode of evaporation will change from that at constant diameter to the one at a constant contact angle. To verify this hypothesis let us assume that the force exerted by the nematodes is proportional to the density of the nematodes at the border that we have previously measured. Our Young’s relation at the transition of the droplet diameter by contact line pinning [44].

\[
F_n d_b = \gamma_{sl} - \gamma_{sg} + \gamma_{tg} \cos \theta_t.
\]

The three values of the transition angle in Figure 4 a) are \(\theta_t (25\%) = 63^\circ \pm 0.15 \), \(\theta_t (50\%) = 56^\circ \pm 0.25 \) and \(\theta_t (100\%) = 53^\circ \pm 0.27 \). The densities at the border for the two smallest density droplets can be directly taken from Figure 2 c) with \(d_b (25\%) = 9\pm0.5 \) n/mm and \(d_b (50\%) = 16\pm0.7 \) n/mm. While we have not directly measured the border density of droplets at such a high concentration as of our 100% droplet, we can reasonably assume that because of the final possible packing, this density will be approximately the same that the one that we measured for our highest concentration droplet on Figure 2 c. By linearly interpolating between two points, we therefore obtain \(d_b (100\%) = 19 \pm 1.1 \) n/mm. Plotting \(d_b \) versus \(\cos \theta_t \) we obtain a perfect straight line as predicted by our theory (Figure 5).

The value of \(\gamma_{tg} = 72.59 (0.36) \mu N/mm \) [41] for water in contact with air at 21°C temperature is well known and allows us to extract from the fit the force exerted by an individual nematode on the border \(F_n = 1.08 (0.11) \mu N \). This in turn allow us to compute \(\gamma_{sl} - \gamma_{sg} = 19.9 (5.0) \mu N/mm \). While we do not know exactly the composition of the PDMS coating that we used, the numerically and experimentally estimated values at room temperature of different varieties of PDMS in contact with vapor are \(\gamma_{sg} \approx 20 - 23 \mu N/mm \) and PDMS in contact with water \(\gamma_{sl} \approx 40 - 42 \mu N/mm \) [42]. This gives \(\gamma_{sl} - \gamma_{sg} \approx 17 - 22 \mu N/mm \), in excellent agreement with our measurements, which further validate our theory and hypothesis.

Contrary to the nematodes in water, no transition to a constant contact angle evaporation can be observed on Figure 2 a) for the nematodes in the growth solution. Indeed, the surface tension of a mixture of acetic acid and water at 5% concentration and 21°C temperature is \(\gamma_{vinegar} = 51.8 (0.5) \mu N/mm \) [43], smaller than that of water. This alone would have changed the transition angles above to \(\theta_t (25\%) = 55.1^\circ \), \(\theta_t (50\%) = 44.1^\circ \) and \(\theta_t (100\%) = 38.7^\circ \). Additionally, the suspended particles in the growth medium should further oppose the reduction of the droplet diameter by contact line pinning [44]. Both of this reasons explain, why a transition to a different mode of evaporation is generally not observed for droplets of the initial growth solution.

Is the measured force of approximately 1 \(\mu N \) per nematode reasonable? Forces where directly measured on
the similarly sized *C. elegans* by observing the deviation of micropillars when pushed by the nematodes bodies and gave values in the range of 5 to 30 μN [45]. An almost order of magnitude difference can be explained by two considerations. First, the nematode is not oriented perfectly perpendicular to the surface, but at an angle of \(\approx 20^\circ\), using a part of it’s force to move along the wall. However, such a small angle will provide only a very small decrease in the force (\(\cos(20) \approx 0.94\)). Second, if one looks at Figure 1 d), we can see that only a small proportion of nematodes touch the border at a given time, which should further reduce the average force exerted over time. Finally, we expect that the force associated with forward motion that we measured, is only a small fraction of that exerted by the entire nematode on the fluid when swimming. Indeed, we have seen in the first part of the manuscript, that the motion of the nematodes is capable of deforming the droplet surface. Such deformation is directly proportional to the force exerted by the undulating nematode body on the droplet surface. The force needed to produce this curvature of the surface can be easily computed as described in the supplemental material SV, and give an estimated value of \(F_{\text{undulation}} = 11 \mu N\), in good agreement with the forces produced by *C. elegans*.

Note, that such a good accuracy of the hypothesis that the force exerted by the nematodes is proportional to their density is actually surprising. We would expect that due to hydrodynamic interactions between the closely spaced nematodes, the force that they produce will depend on the spacing between them. Indeed, the measurement of produced flow, both in experiments on artificial cilia [46] and simulations of straight paddles moving with metachronal wave motion [47], shows that it depend on the spacing between the beating organisms. The border density of \(d_b \approx 10 - 20 \text{ n/mm}\) lead to a spacing between the nematodes of \(s_n \approx 0.05 - 0.1 \text{ mm}\). Given the typical length of the nematodes is \(L_n \approx 1 \text{ mm}\), this provide a relative spacing of \(s_n/L_n \approx 0.05 - 1\), at which we would expect a noticeable decrease in efficiency with the reduction of spacing according to the simulations of straight paddles [47] (assuming \(Re = 0.4\) as explained in the next section). However, the applicability of a simplistic model of straight paddles to the much more complex shape of nematodes is questionable.

DISCUSSION AND CONCLUSIONS

We have studied the collective motion of the nematode *T. aceti* inside droplets deposited on a flat surface. We have shown that if the concentration of cells is high enough, a metachronal wave will form on the edge when the contact angle of the droplet is below a critical value of \(\theta_c = 68.5^\circ\). This collective state is an experimental illustration of *swarmalators*, particles that at the same time align their motion and their oscillations. We propose that the dependence of the collective wave on the contact angle of the drop is due to the increased probability of interactions between the nematodes bodies at low contact angle. The number of nematodes participating in the metachronal wave increase as the contact angle of the drop decreases, which can be explained by the fact that synchronization will increase the free space available at the border. We also show that the collective motion of the nematodes can change the physics of drop evaporation. Initial evaporation of droplets containing synchronously moving nematodes occurs mostly at constant diameter rather than at constant contact angle. This allows us to estimate the magnitude of the force exerted by self propulsion of the nematode on the border at \(F_n = 1.08 \mu N\). This is the force of interest for possible use of nematodes for displacing objects. Conversely, the force produced by the undulation of the nematodes bodies can be estimated from the deformation of the drop surface and is \(F_{\text{undulation}} = 11 \mu N\), in good agreement with direct measurements of the force produced by the specie *C. elegans*.

Another novelty of our system stems from the relatively large length of our nematodes, \(L_n \sim 1 \text{ mm}\), which combined with a typical swim velocity \(v_{\text{swim}} \approx 0.4 \text{ mm/s}\) [31] leads to a characteristic Reynolds number of \(Re = 0.4\). This places our system in the intermediate Reynolds number regime [48] in contrast to the low Reynolds number regime in which most microorganisms, which exhibit collective or synchronous motion, reside [49–52]. This means that the inertia in the motion of the nematodes cannot be neglected. The full Navier-Stokes equations should be used to describe such systems, which become non-linear and time dependent, and thus can lead to many interesting new states [53].

To better understand what drives the formation of the collective state it could be interesting to be able to genetically choose the properties of the nematodes such as sensitivity to light or touch, in the same way as it is done for the much more studied *C. elegans*. While it is in theory possible to apply the same genetic toolkit to *T. aceti*, this will certainly be a major undertaking. For this reason, we tried to reproduce the collective states of *T. aceti* in suspensions of *C. elegans*. However, as described in supplemental material part VI, we were unable to observe any synchronization of oscillations of *C. elegans* for the various densities and droplet shapes that we tried. This absence of synchronization may be explained by the shorter bodies of *C. elegans*.

We believe that *T. aceti* is an extremely promising organism both for exploring the behavior of *swarmalators* and the states of active matter at intermediate Reynolds numbers. Much of the physics of this nematode remains to be explored; the nature of the phase transition to collective motion, the formation of clusters, its behavior in liquids of different viscosity or inside confined spaces. Given that the theoretical exploration of the motion of the nematode will require the study of the full Navier-Stokes equations, this could lead to new developments in numerical and theoretical approaches. As we have shown
in this article, the collective motion of the nematode produces strong fluid flows. As we have an external control parameter for the collective motion, in the form of the contact angle, we may in the future produce on-demand flows using specially designed channels. *T. aceti* combine ease of culture and experimentation with extremely interesting physics. We hope that this article will start a new thriving direction of research in the field of active matter.

DATA ACCESSIBILITY

The original data for this manuscript is available at [28].

AUTHORS’ CONTRIBUTIONS

A.P. designed the experiments and drafted the manuscript. A.P. and S.M. performed the experiments and analyzed the data. A.P. and A.Q. conceived the study, performed analytical computations and edited the manuscript. All authors discussed the results and gave final approval for publication.

FUNDING

This work was supported by NASA grants 80NSSC17K0771 and 80NSSC21K0143; and National Science Foundation grants No. PHY-1757062 and No. DMR-1809318.

COMPETING INTERESTS

The authors have no competing interests to declare.

ACKNOWLEDGMENTS

We thank Myron W. Culver for giving us access to a wet lab. We thank William Houlihan for lending us an inverted microscope. We thank Nick Reilly for help procuring a centrifuge. We thank Doug Portman for helpful discussions on *C. elegans*. We thank Keith Nehrke, Sanjib K. Guha, Yunki Im and other members of Nehrke’s lab for helping us explore *C. elegans*, and giving us materials and starting cultures to study *C. elegans*. We thank Steve Teitel and Hugues Chaté for their careful reading and critique of the earlier versions of this manuscript. We thank Sanjib K. Guha, Keith Nehrke and Randal C. Nelson for helpful suggestions and discussions.

[1] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Reviews of Modern Physics 85, 1143 (2013).

[2] A. Sokolov, R. Goldstein, F. Feldchtein, and I. Aranson, Physical Review E 80, 031903 (2009).

[3] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic, Proceedings of the National Academy of Sciences 105, 1232 (2008).

[4] D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G. Theraulaz, New Journal of Physics 16, 015026 (2014).

[5] J. Buck and E. Buck, Nature 211, 562 (1966).

[6] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, Nature 438, 43 (2005).

[7] G. L. Taylor, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 209, 447 (1951).

[8] T. Niedermaier, B. Eckhardt, and P. Lenz, Chaos: An Interdisciplinary Journal of Nonlinear Science 18, 037128 (2008).

[9] D. R. Brumley, M. Polin, T. J. Pedley, and R. E. Goldstein, Physics Review Letters 109, 268102 (2012).

[10] J. Elgeti and G. Gompper, PNAS: Proceedings of the National Academy of Sciences 110, 4470 (2013).

[11] K. P. O’Keeffe, H. Hong, and S. H. Strogatz, Nature Communications 8, 1504 (2017).

[12] N. Kruk, Y. Maistrenko, and H. Koeppl, Phys. Rev. E 98, 032219 (2018).

[13] D. Levis, I. Pagonabarraga, and B. Liebchen, Phys. Rev. Research 1, 023026 (2019).

[14] F. Jimenez-Morales, Phys. Rev. E 101, 062202 (2020).

[15] N. Kruk, J. Carrillo, and H. Koeppl, Phys. Rev. E 102, 022604 (2020).

[16] R. Manna, O. Shklyaev, and A. Balazs, Proc Natl Acad Sci USA 118, e2022987118 (2021).

[17] N. H. P. Nguyen, E. Jankowski, and S. C. Glotzer, Phys. Rev. E 86, 011136 (2012).

[18] Y.-L. Chuang, T. Chou, and M. R. D’Orsogna, Phys. Rev. E 93 (2016).

[19] J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham, Physical Review Letters 95, 204501 (2005).

[20] A. Bricard, J.-B. Caussin, D. Das, C. Savoie, V. Chikkadi, K. Shitara, O. Chepizhko, F. Peruani, D. Saintillan, and D. Bartolo, Nature Communications 6, 7470 (2015).

[21] E. Lushi, H. Wioland, and R. E. Goldstein, Proceedings of the National Academy of Sciences 111, 9733 (2014).

[22] A. C. Quillen, J. P. Smucker, and A. Peshkov, Phys. Rev. E 101, 052618 (2020).
[23] A. Sokolov, M. Apodaca, B. Grzybowski, and I. Aranson, Proceedings of the National Academy of Sciences 107, 969 (2010).
[24] R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M. Conte, F. Mecarini, F. De Angelis, and E. Di Fabrizio, Proc Natl Acad Sci USA 107, 9541 LP (2010).
[25] G. Vizsnyiczai, G. Frangipane, C. Maggi, F. Saglimbeni, S. Bianchi, and R. Di Leonardo, Nature Communications 8, 15974 (2017).
[26] Z. Gao, H. Li, X. Chen, and H. Zhang, Lab Chip 15, 4555 (2015).
[27] T. Masuda, A. Akimoto, K. Nagase, T. Okano, and R. Yoshida, Sci Adv 2, e1600902 (2016).
[28] A. Peshkov, S. McGaffigan, and A. Quillen, https://doi.org/10.6084/m9.figshare.c.5476659 (2021).
[29] J. Yuan, D. M. Raizen, and H. H. Bau, J. R. Soc. Interface 12, 20150227 (2015).
[30] B. Vincenti, G. Ramos, M. Cordero, C. Douarche, R. Soto, and E. Clement, Nature Communications 10, 5082 (2019).
[31] A. Quillen, A. Peshkov, E. Wright, and S. McGaffigan, PRE 104, 014412 (2021).
[32] E. Demir, Y. Yaman, M. Basaran, and A. Kocabas, eLife 9, e52781 C1 (2020).
[33] A. Deblais, A. Maggs, D. Bonn, and S. Woutersen, PRL 124, 260806 (2020).
[34] Y. Ozkan-Aydin, D. Goldman, and M. Bhamla, Proc Natl Acad Sci USA 118, e2010542118 (2021).
[35] M. Bittermann, D. Bonn, S. Woutersen, and A. Deblais, Soft Matter 17, 6536 (2021).
[36] H. Hu and R. Larson, The Journal of Physical Chemistry B 106, 1334 (2002), doi: 10.1021/jp0118322.
[37] C. Bourges-Monnier and M. Shanahan, Langmuir 11, 2820 (1995).
[38] R. Picknett and R. Bexon, Journal of Colloid and Interface Science 61, 336 (1977).
[39] K. Birdi and D. Vu, Journal of Adhesion Science and Technology 7, 485 (1993), doi: 10.1163/156856193X00808.
[40] M. Kisiel, J. Castillo, L. Zuckerman, B. Zuckerman, and S. Himmelhoch, Mechanisms of Ageing and Development 4, 81 (1975).
[41] N. Vargaftik, B. Volkov, and L. Voljak, Journal of Physical and Chemical Reference Data 12, 817 (1983), doi: 10.1063/1.555688.
[42] A. Ismail, G. Grest, D. Heine, M. Stevens, and M. Tsige, Macromolecules 42, 3186 (2009), doi: 10.1021/ma802805y.
[43] E. Alvarez, G. Vazquez, M. Sanchez-Vilas, B. Sanjurjo, and J. Navaza, J. Chem. Eng. Data 42, 957 (1997), doi: 10.1021/je970025m.
[44] F. Parisse and C. Allain, Journal de Physique II 6, 1111 (1996).
[45] A. Ghanbari, V. Nock, W. Wang, R. Blaikie, J. Chase, X. Chen, and C. Hann, in 2008 15th International Conference on Mechatronics and Machine Vision in Practice, edited by anonymous (2008) pp. 634–639.
[46] D. Xiaoguang, L. Zhan, H. Wenyi, Z. Rongjing, X. Ziyu, O. R., and S. Metin, Science Advances 6, 9323 (2020), doi: 10.1126/sciadv.abc9323.
[47] S. Granzer-Nakajima, R. Guy, and C. Zhang-Molina, Fluids 5 (2020).
[48] D. Klotsa, Soft Matter 15, 8946 (2019).
[49] E. Purcell, American Journal of Physics 45, 3 (1977), doi: 10.1119/1.109003 DO - 10.1119/1.10903.
[50] S. Gueron and K. Levit-Gurevich, Biophysical Journal 74, 1658 (1998).
[51] E. Vilfan and F. Jülicher, Physical Review Letters 96, 10.1103/physrevlett.96.058102 (2006).
[52] N. Uchida and R. Golestanian, Phys. Rev. Lett. 106, 058104 (2011).
[53] R. Chatterjee, N. Rana, R. Simha, P. Perlekar, and S. Ramaswamy, arXiv preprint arXiv:1907.03492 (2019).
Synchronized oscillations in swarms of nematode *Turbatrix aceti*

Supplemental material

Anton Peshkov, Sonia McGaffigan, and Alice C. Quillen

Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

I. NOTATIONS

Following the customary convention, we use throughout the article and the supplemental material the *mean ± se* notation to indicate the standard mean error and the *mean*(sd) notation to indicate the standard deviation.

II. EXPERIMENTAL METHODS

We obtained the starter cultures of *T. aceti* from two different aquarium supplies stores, to verify that the observed behavior wasn’t particular to a specific strain. We grow these populations in a 1:1 solution of water and food grade apple cider vinegar at ∼5% acidity in which we put slices of apples as a food source. The population of nematodes in the culture reaches a peak density after one to two months, and stays relatively constant afterward. We have observed that *T. aceti* can successfully survive for many days with limited access to food and oxygen. The reproduction cycle of *T. aceti* takes many days and they can have a lifespan of up to two months [1]. Neither the motility nor the number of nematodes significantly varies for the duration of our experiments of a few hours.

We do not perform any generation control, which mean that nematodes at different stages of development, and therefore size, are present in the studied solutions.

For each experiment, 7-14 ml of nematode culture at peak density, is centrifuged for 3-5 minutes at an acceleration of 1700-4700 g. The concentrated blob of nematodes at the bottom of the tube is extracted and mechanically separated with a pipette to obtain a homogeneous high-density solution of nematodes. The studied densities d in the initial droplet ranged from 10 to 80 nematodes per μl. We study these high density droplets by depositing them on a glass slide with volumes in the range of 50-1000 μl. Below the smallest 50 μl volume, the droplet radius is similar to the length of a single nematode. Therefore the number N of nematodes in each droplet is in the range of 1-100 thousand organisms. For experiments in distiled water, the blob of nematodes from the first centrifugation was transfered to a tube with distiled water and centrifuged again. Therefore we estimate the concentration of vineager in this solution to be of the order of 0.1 − 0.2%.

For all the experiments we have coated the glass slide with a hydrophobic solution of Rain-X which contains polydimethylsiloxane (PDMS) as the main active ingredient. First, this allows the drops to have an initial contact angle around 90°. This enables study of the whole range of possible contact angles during evaporation. Secondly, the shape of the droplet on a hydrophobic surface is very close to circular, facilitating measurement of the drop diameter and contact angle. In contrast, the contact line can be irregularly shaped on wettable surfaces.

The experiments were performed in a room with a controlled temperature of 21(1) °C and humidity 15(5)%.

However, the temperature in the vicinity of the droplet, and therefore evaporation rate, is mostly dependent on the used illumination. For the Figure 1 of the main article, the droplet was illuminated from the bottom for better contrast and homogeneity of the image. However, for experiments where the determination of the droplet contact angle was important, the droplet was illuminated from top/side, to clearly delimit the border. While it is known that nematodes such as *C. elegans* are sensitive to light [2], we did not observe any dependence of the results presented in this article to the intensity or placement of the light source except for cases of extremely bright and close light sources. In the latter case, we observed the concentration of nematodes on the side opposite to the light source. However we believe that the nematodes avoided heat rather than light.

III. DATA ANALYSIS

A. Drop shape determination

The relatively large size of our droplets implies that the gravity force deforms the droplet surface. A spherical approximation for the drop shape for the contact angle determination is not accurate. Instead we adopt an ellipse approximation to measure the contact angle for the smaller (≤ 100μl) droplets, using the ImageJ “Contact angle”
plugin, and B-splines fitting [3] for droplets of all sizes, using the ImageJ “DropSnake” plugin. In theory, the axisymmetric drop shape analysis (ADSA) method[4] should give the best results for our droplets as it fits an analytical equation to the data. In practice the built-in artificial limitations on acceptable parameters in the ImageJ “LB-ADSA” plugin[5] were preventing us to obtain a correct fitting in a lot of cases. We were sometime successful in obtaining good results with the DropUI program[6] which is also based on the ADSA method. However, the impossibility of manually defining the droplet surface, and the regular failure of the automatic algorithm to detect it correctly, precluded us from using this program for analysis of the majority of our droplets.

Figure 1 presents a comparison of the extracted contact angles for the 150μm droplet from Figure 2. b) in the main text, using the three approaches described above. We can see that the elliptical approximation slightly overestimate the contact angle as compared to the two other approaches. This can be explained by the relatively large drop size, where the elliptical approximation is less accurate. Nevertheless, the angle obtained by the different methods are in reasonable agreement. While spline fitting give the “noisiest” results, it’s the method that worked for all of our droplets and therefore the one we used most frequently. We note that measuring angles below ∼ 20°, is very error-prone, being highly dependent on the allignment of the camera. However, such small angles are mostly outside of our interest in this article.

![Figure 1. Contact angle of a 150 μl initial volume evaporating droplet as a function of time as extracted with three different measurement methods. Red circles, elliptical approximation using the ImageJ “Contact angle” plugin. Yellow squares, B-spline fitting using the ImageJ “DropSnake” plugin. Blue triangles, ADSA method using the DropUI program.](image)

From Figure 1 we estimate a standard deviation of 4.2° and a standard mean error of 1.2° for the extracted contact angles in the main article taking into account the most error-prone elliptical approximation. This uncertainty does not affect our results or conclusions. Note that the angle extraction for the third part of the article was done using exclusively the ImageJ “LB-ADSA” plugin, for which we estimate a much smaller standard deviation of 1°. The diameter of the droplets were obtained from the droplet surface approximation by the B-spline fitting of the DropSnake plugin or the ADSA fitting of LB-ADSA plugin. We estimate a small standard deviation of 0.1 mm for the diameter.

B. Nematode Density determination

To determine the initial density of nematodes, we diluted the dense nematode suspension 10-50 times in a 50:1 solution of water and glycerol to prevent droplet diameter shrinkage during evaporation. 10 μl droplets of the diluted solution were placed on a glass slide and evaporated. The number of nematodes in each droplet was then manually counted under a microscope. This provides the mean and the error estimate for the initial density.

The number of nematodes per unit length oscillating near the border in Figure 2. b) was obtained by manually counting the number of oscillating nematodes near the border in 5-7 frames separated by 5 second intervals in the vicinity of each contact angle providing the mean and error estimate.
IV. INSTABILITIES AND MULTIPLE WAVES

A. Wave stability

In the smaller droplets (<500 μl), the metachronal wave, once formed, appears to be stable until its disappearance, when the drop completely evaporates. In rare cases we observed a temporal dramatic increase in the size of the central cluster, which leads to the depletion of the nematodes on the border and a temporal disappearance of the metachronal wave.

In larger droplets (>500 μl), we observed that the metachronal wave can sometimes split into several parts with opposite rotating directions (see supplemental video SM7) and even fully reverse the direction of rotation along the whole border. Two possible explanations can be given to that phenomenon. First, that above some instability length \(L_i \approx 50 \text{mm} \), the wave becomes unstable due to an instability in the process of synchronization. Another explanation may be due to external properties of the droplet. The droplet slightly shrinks during evaporation, and given the non-perfect nature of the substrate, this shrinkage is not equivalent in all radial directions. This would lead to the deformation of the border and a potential nucleation of a “defect” in the wave. For larger droplets, the probability of a substantial deformation of the border is naturally higher.

B. Multiple waves

Note that since the amplitude of oscillation for an individual nematode is approximately 0.1 mm, the nematodes cannot oscillate in the plane perpendicular to the bottom surface of the drop. Therefore, the oscillations will be increasingly confined to the bottom surface plane as the contact angle decreases. This is indeed what we experimentally observe. If the contact angle of the droplet becomes really small, one may wonder if the confinement can induce the metachronal wave more distant from the droplet border. Indeed, for very small contact angles, we sometimes observed the creation of a secondary wave in the inner radius as can be seen in the supplemental movie SM8. This wave is always counter-rotating as compared to the border wave. This is easy to understand, if the nematodes rotated in the same direction, they will just penetrate inside the border wave, the only way for such wave to exist is to rotate in the opposite direction. However, such double waves are relatively short living, inevitably leading to the perturbation of the outer wave, and even sometimes to the reversal of the direction of the latter.

V. ESTIMATION OF THE FORCE EXERTED BY THE NEMATODE ON THE DROP SURFACE

We have seen that the force produced by the nematodes is sufficient to deform the surface of the droplet. We can estimate the force on the surface based on the pressure required for surface deformation with the wavelength of the metachronal wave. The metachronal wave has a typical wavelength \(\lambda_w \sim 1 \text{ mm} \) and amplitude \(A_w \sim 0.1 \text{ mm} \) (Figure 2). We describe the surface with a height away from the mean \(\xi = A_w \cos k_w x \) where \(x \) is a distance along the surface and wave vector \(k_w = 2\pi/\lambda_w \). The pressure difference can be estimated from the curvature of the surface

\[
\Delta p \sim \gamma_l \frac{d^2 \xi}{dx^2} = \gamma_l A_w k_w^2
\]

(1)

\[
\approx 287 \mu \text{N/mm}^2
\]

(2)

Figure 2. Diagram of the wave wavelength \(\lambda_w \) and amplitude \(A_w \).

To estimate force per nematode we need to estimate the number of them per unit area near the surface. If we adopt \(\delta_{\text{nematodes}} \sim 25 \text{ mm}^{-2} \), the highest mean density which is present for the contact angle at which we observe surface
deformation, the force per nematode is then given by

\[
F_{\text{nematode}} \sim \frac{\Delta p}{s_{\text{nematodes}}} \sim 11 \mu N.
\]

The two force estimates are similar and consistent with forces measurements of 5 to 30 µN exerted by individual \textit{C. elegans} nematodes that were made using an array of pillars that can bend when pushed by the nematodes [7].

VI. \textbf{C. ELEGANS}

We sourced the strain \textit{N2} of \textit{C. elegans} grown on agar plates. We followed the same procedures as described above for \textit{T. aceti} to try to obtain a collectively oscillating state. We observed that \textit{C. elegans} exhibit bordertaxis, as already reported in [8], and that individual nematodes oscillate with their heads oriented to the border in a manner similar to \textit{T. aceti}. However, we never saw a synchronization of motion between the nematodes, whatever the nematode concentration and droplet shape and size we tried. An example is shown in supplemental movie SM9 and Figure 3. There are two possible explanations. First, \textit{C. elegans} generally live in soil, and so there may be no evolutionary advantage in collectively driven fluid flows. Secondly, the wider and shorter \textit{C. elegans} has less than a full-wavelength oscillation along the body, and this differs from \textit{T. aceti} which is longer and more slender. It is known [9] that \textit{C. elegans} grown in a liquid medium, as opposed to those grown on agar, are longer and thinner, opening up possibilities for synchronization. However, given the widespread use of \textit{C. elegans} in medical research, it is likely that if a metachronal wave state existed for them, it would have already been noticed and reported.

![Figure 3. C. elegans does exhibit bordertaxis and individual nematodes oscillate at the border. However, no wave is observed.](image)

VII. \textbf{SUPPLEMENTAL MOVIES DESCRIPTION}

The movies are available at [10]. All movies are in real time, except movie 6.

\textbf{Movies}: 1-3: 250 µl droplet at different moments of evaporation. Initial density of nematodes \(d = 30.7 \pm 3.3n/\mu l \).

1. Droplet at time \(t=1 \) min. The motion of the nematodes is totally random. Corresponds to figure 1.a) in the main text.
2. Droplet at time \(t=20 \) min. Percolation of the metachronal wave. Corresponds to figure 1.b) in the main text.
3. Droplet at time \(t=60 \) min. A fully developed metachronal wave move along all the border. Corresponds to figure 1.c) in the main text.

\textbf{Movie}: 4: Metachronal wave observed under a microscope with 4x magnification. Corresponds to figure 1.d) in the main text.

\textbf{Movie}: 5: A shallow droplet with a formed metachronal wave is observed from the side. The deformation of the surface of the droplet can be seen.
Movie: 6: Rotation of fluorescent particles in the central part of the droplet from the flow formed by the nematodes participating in the metachronal wave. The video is accelerated ten times.

Movie: 7: Two "defects" in the metachronal wave can be observed which lead to the formation of two counter-rotating metachronal waves. A 750 µl droplet at initial density of nematodes $d = 15$ n/µl.

Movie: 8: Two counter-rotating waves in consecutive diameters. A 250 µl droplet at initial density of nematodes $d = 31$ n/µl.

Movie: 9: *C. elegans* observed under a microscope at the border of a droplet. Individual nematodes oscillate at the border, but no synchronization was ever detected.

[1] M. Kisiel, J. Castillo, L. Zuckerman, B. Zuckerman, and S. Himmelhoch, Mechanisms of Ageing and Development **4**, 81 (1975).
[2] A. Burr, Photochemistry and Photobiology **41**, 577 (1985), doi: 10.1111/j.1751-1097.1985.tb03529.x.
[3] A. Stalder, G. Kulik, D. Sage, L. Barbieri, and P. Hoffmann, Colloids and surfaces A: physicochemical and engineering aspects **286**, 92 (2006).
[4] D. Li, P. Cheng, and A. Neumann, Advances in Colloid and Interface Science **39**, 347 (1992).
[5] A. Stalder, T. Melchior, M. MÅŒller, D. Sage, T. Blu, and M. Unser, Colloids and Surfaces A: Physicochemical and Engineering Aspects **364**, 72 (2010).
[6] B. Favier, N. Chamakos, and A. Papathanasiou, Measurement Science and Technology **28**, 125302 (2017).
[7] A. Ghanbari, V. Nock, W. Wang, R. Blaikie, J. Chase, X. Chen, and C. Hann, in *2008 15th International Conference on Mechatronics and Machine Vision in Practice*, edited by anonymous (2008) pp. 634–639.
[8] J. Yuan, D. Raizen, and H. Bau, Journal of The Royal Society Interface **12**, 20150227 (2015).
[9] T. Stiernagle, Maintenance of *c. elegans* (WormBook, 2006) maintenance of *C. elegans*.
[10] A. Peshkov, S. McGaffigan, and A. Quillen, https://doi.org/10.6084/m9.figshare.c.5476659 (2021).