Recovering Metallicity in A₄C₆₀: The Case of Monomeric Li₄C₆₀

M. Riccò, M. Belli, D. Pontiroli, M. Mazzani, and T. Shiroka

Dipartimento di Fisica and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università di Parma, Via G. Usberti 7/a, 43100 Parma, Italy

D. Arčon and A. Zorko

Solid State Physics Department, Jozef Stefan Institute, Jana nova 39, SI-1000, Ljubljana, Slovenia

S. Margadonna

School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, UK

G. Ruani

ISMN-CNR, Via P. Gobetti 101, 40129 Bologna, Italy

(Dated: October 28, 2018)

The restoration of metallicity in the high-temperature, cubic phase of Li₄C₆₀ represents a remarkable feature for a member of the A₄C₆₀ family (A = alkali metal), invariably found to be insulators. Structural and resonance technique investigations on Li₄C₆₀ at T ≥ 600 K, show that its fcc structure is associated with a complete (4e⁻) charge transfer to C₆₀ and a sparsely populated Fermi level. These findings not only emphasize the crucial role played by lattice symmetry in fulleride transport properties, but also re-dimension the role of Jahn-Teller effects in bond structure determination.

PACS numbers: 61.48.+c, 76.30.Pk, 76.60.Cq, 78.30.Na

In recent years the competition between Coulomb repulsion, kinetic energy, Jahn-Teller effect, and Hund’s coupling rules has been subject of intensive research in the domain of alkali-doped fullerenes. Apparently, most of the phenomena, including high-Tc superconductivity in A₃C₆₀, seem to be relatively well understood. Nevertheless, the reason why A₄C₆₀ are in general nonmagnetic insulators is still puzzling and remains subject of strong controversy. The situation is made even more complex as, differently from fcc A₃C₆₀, the A₄C₆₀ arising from large-size alkali metals (A = K, Rb, Cs) adopt a bct structure. Hence, the natural suggestion that the difference in lattice structure favors the metallicity in the former and an insulating behavior in the latter, with the coupling to H₉ Jahn-Teller phonons accounting for the lack of magnetic ordering in A₄C₆₀.

Doping the C₆₀ with the significantly smaller Li⁺ and Na⁺ alkali ions leads to interesting deviations from the standard behavior. Indeed, Li₄C₆₀ can easily form compounds with x > 6, whereas in Na₄C₆₀ the fullerene molecules form a 2D planar polymer, with the molecular units linked by four single C–C bonds. As commonly observed in singly bonded C₆₀ polymers, the latter system too was reported to be metallic. Li₄C₆₀, though, represents a different situation. At normal conditions, it is a 2D polymer displaying a novel architecture based on the coexistence of single and double bonds oriented along two perpendicular directions within the polymer plane. Although the presence of single bonds could suggest a metallic behavior, NMR, Raman and ESR spectroscopy show beyond doubt the diamagnetic and insulating character of this polymer. Important questions hence arise both regarding the role of structure, as well as of polymerization in depressing the electron delocalization and destroying the expected metallicity.

In this article we try to answer these questions by a thorough investigation of the high temperature monomeric Li₄C₆₀ phase, obtained by thermally induced depolymerization which takes place above 590K. First we show that, in spite of its stoichiometry, the Li₄C₆₀ monomeric phase retains a closed packed (fcc) cubic structure, and therefore can be directly compared to other, well known A₃C₆₀ fcc systems. Subsequently, as revealed from the ESR lineshape, ⁷Li and ¹³C NMR Knight shift and Raman bandwidth, we demonstrate the metallicity of the monomeric Li₄C₆₀. Finally, a full charge transfer of four electrons to C₆₀ is clearly evidenced by the Raman A_s(2) mode shift. These results not only challenge established theories on alkali intercalated fullerenes, but also stimulate a re-consideration of the relative importance of the many competing mechanisms present in these systems.

The Li₄C₆₀ samples were prepared following intercalation procedures described in detail elsewhere. High-resolution synchrotron X-ray powder diffraction data on Li₄C₆₀ were collected on the ID31 beamline at the ESRF facility (Grenoble) at 773 K (λ = 0.85055 Å), well above the depolymerization temperature (Tdep ~ 590 K) (Fig. 1). The rebinned data were then analyzed using the Fullprof suite of Rietveld analysis programs.

All the peaks of the powder diffraction profile were indexed with a face centered cubic cell, except for an evident shoulder at 2θ ~ 6° on the leftmost peak, present also in pristine cubic C₆₀ and generally associated to...
stacking faults among the (111) planes.

Starting with a face centered cubic structure (space group $Fm\bar{3}m$), data analysis using the Le Bail pattern decomposition technique proceeded smoothly, resulting in a lattice parameter $a = 14.122$ Å (agreement factors: $R_{wp} = 3.33\%$, $R_{exp} = 2.44\%$). It is worth noting that the ~9.97 Å inter-ball distance between two nearest C$_{60}$ units, although slightly smaller than in pristine C$_{60}$ (due to positive electrostatic pressure), is fully compatible with that in monomeric fullerenes.

To account for the orientational disorder in the high temperature phase, during Rietveld refinement the fullerene units were modeled with quasi-spherical shells centered at 4a (0,0,0) sites. Their scattering density was described in terms of symmetry-adapted spherical harmonics (SASH) which, compatibly with the symmetry of the system, comprise only $K_{l,j}(\theta, \phi)$ terms with $l = 0$, 6, 10. The respective coefficients $c_{l,j}$, treated as free refinement parameters, have fitted values $c_{0,1} = 0.035(3)$ and $c_{10,1} = -0.156(13)$. The latter is indicative of an excess electronic density along the [111] directions, where smaller alkali metals give rise to lower shift values.

While three of the intercalated lithium ions were easily localized in the octahedral (4b) and the two tetrahedral (8c) sites, the location of the fourth excess Li$^+$ proved a more difficult task. A difference Fourier analysis revealed the existence of scattered intensity in the vicinity of the 32f sites (x,x,x, with $x \sim 0.375$), which define a cube centered at the $(1/2, 1/2, 1/2)$ cell position. Subsequent Rietveld refinements, repeated after introducing the missing Li$^+$ ion in these sites and allowing for its occupation number to vary, indicated that the excess alkali ion is randomly distributed over the corners of the cube with $1/8$ occupancy.

The proposed structure (see inset in Fig. 1) shows deep analogies with another cubic fulleride, Li$_3$CsC$_{60}$ [12], which presents similar stoichiometry, but only a partial charge transfer of 3 electrons [14]. The accurate evaluation of Li$^+$–C contact distances (~2.4 Å) confirmed once more their weak mutual interactions, strongly suggesting an almost complete charge transfer from the intercalated metal to the C$_{60}$ units. Hence, the structural analysis not only shows that the high-temperature treatment of the 2D polymeric Li$_4$C$_{60}$ leads to a fcc monomorphic phase, analogous to those observed in A$_3$C$_{60}$, but it gives also precise, though indirect, hints about the electronic properties, whose direct investigation is described in detail below.

A straightforward evidence about the metallic character of the Li$_4$C$_{60}$ monomer is given by the presence of a Knight shift in Nuclear Magnetic Resonance (NMR) spectra of both 13C and 7Li nuclei. The room temperature 13C NMR spectrum of the as-prepared Li$_4$C$_{60}$ polymer confirms the insulating nature of the compound [10], whereas heating the sample to high temperatures introduces significant spectral changes. The nearly structureless spectrum measured at $T = 673$ K (Fig. 2), well above the depolymerization transition, is fully compatible with freely rotating C$_{60}$ molecules, as expected in a monomeric phase. What we find really surprising is the considerable positive shift of the 13C NMR line, $\delta\nu = 195$ ppm, much larger than typical values reported for metallic A$_3$C$_{60}$ fullerides [15]. This fact clearly suggests an increased value of the isotropic Knight shift and could be rationalized in the same framework of the ESR results (vide infra) by a substantial increase of the isotropic hyperfine coupling for the C$_{60}^-$ state, as compared to the one measured for C$_{60}^+$.

The 7Li NMR spectrum of the monomer phase of Li$_4$C$_{60}$, reported in Fig. 2(b), shows two partially merged peaks centered at +28 and +48 ppm relative to LiCl. They comprise all of the transitions of the 7Li nucleus ($I = 3/2$), as confirmed by mutation angle analysis. The upshift can easily be attributed to a metallic behavior, since typical shifts in other, insulating lithium fullerides would fall in the few ppm range [9, 10, 16]. It seems to follow quite well the common trend of metallic fullerenes, where smaller alkali metals give rise to lower shift values [17].

Even though the non-negligible temperature dependence of the relative intensities prevented us from a detailed analysis, we may still attribute the more shifted peak to the disordered lithium ions in the 32f sites, as a higher electronic density is expected at these asymmetric positions, due to a theoretically predicted enhancement.

![Graphical representation of the Li4C60 structure](image-url)
of the fullerene–alkali metal electronic hopping. Further evidence on the metallic ground state of the high-temperature phase comes from ESR experiments. At room temperature, the as-prepared polymeric Li$_4$C$_{60}$ displays an extremely narrow X-band ESR signal ($\Delta H_{pp} = 0.27(3) \text{ G}$), described quite well by a simple Lorentzian lineshape. The calibrated ESR signal intensity corresponds to a small spin susceptibility, $\chi_{S} < 10^{-5}$ emu/mol, and to a g-factor insignificantly larger than 2. As the sample is heated, the ESR signal undergoes dramatic changes. Indeed, already at 370 K, the lineshape becomes slightly anisotropic, whereas for temperatures above 520 K the anisotropy becomes extremely pronounced (see inset in Fig. 2). The lineshapes closely resembles a Dysonian function, providing a clearcut indication of the metallic character of the monomer.

In parallel with lineshape evolution, signal intensity shows a sudden increase by nearly an order of magnitude and, at $T = 620$ K, the ESR spin susceptibility reaches $\chi_{S} = 1.3(2) \times 10^{-4}$ emu/mol, a value comparable with those measured in monomeric metallic A_{3}C$_{60}$. We would like to stress that, despite the increase, this value remains nevertheless smaller than any other known spin susceptibility in metallic C_{60} phases. In fact, the measured Pauli susceptibility χ_{S} implies a density of states at the Fermi level $N(E_F) \sim 5$ states/eV, to be compared with $N(E_F) \sim 14$ states/eV obtained in a typical A_{3}C$_{60}$ compound with similar lattice parameter.

This reduction in the density of states could arise either from an increased bandwidth W, or from strong spin correlation effects. An increase in bandwidth up to 40% of the fullerene–alkali metal electronic hopping is already expected in bct A_{4}C$_{60}$ systems, due to the presence of alkali ions in non-symmetric positions. In our case, the same effect could arise from the Li ions located in the 32f sites. If this were the case, not only the Pauli susceptibility would be reduced, but also the effective ESR g-factor would be affected. As a comparison, typical g-factor values in Rb$_3$C$_{60}$ and K$_3$C$_{60}$ are 1.9945 and 2.0033 respectively, whereas in the high-temperature fcc phase of Li$_4$C$_{60}$ we find $g = 2.0036(5)$, a value strikingly different from the others. Such an anomalously high g-factor could reflect either an enhanced C$_{60}$–Li electron hopping mechanism or continuous changes in the spin-orbit scattering due to lithium disorder in Li$_4$C$_{60}$.

TABLE I: Fitted parameters for Li$_4$C$_{60}$ and pristine C$_{60}$ Raman spectra taken at 648 K. The line shifts ω_0 and widths Γ are expressed in cm$^{-1}$, the Fano parameter q is adimensional.

Compound	ω_0	Γ	q
Li$_4$C$_{60}$	279.5(7)	21.1(5)	5.8(5)
pristine C$_{60}$	275.9(1)	5.8(5)	3.5(3)

a is already expected in bct A_{4}C$_{60}$ systems, due to the presence of alkali ions in non-symmetric positions. In our case, the same effect could arise from the Li ions located in the 32f sites. If this were the case, not only the Pauli susceptibility would be reduced, but also the effective ESR g-factor would be affected. As a comparison, typical g-factor values in Rb$_3$C$_{60}$ and K$_3$C$_{60}$ are 1.9945 and 2.0033 respectively, whereas in the high-temperature fcc phase of Li$_4$C$_{60}$ we find $g = 2.0036(5)$, a value strikingly different from the others. Such an anomalously high g-factor could reflect either an enhanced C$_{60}$–Li electron hopping mechanism or continuous changes in the spin-orbit scattering due to lithium disorder in Li$_4$C$_{60}$.

Raman spectra were recorded in a back-scattering geometry from room temperature up to 648 K. A relatively low laser intensity (200 W/cm2) helped us to avoid the photo-damage of the investigated samples. The room temperature Raman scattering is characterized by a large number of narrow lines, typical of an insulating, low-symmetry polymer. On the other hand, at high temperatures most of the peaks disappear and only four of them (Fig. 2), attributed to the A_{1g}, E_{g}, A_{g}, and A_{2g} modes, could be observed. While the A_{g} modes are symmetric and could be fitted to Lorentzian peaks, the A_{2g} modes display an asymmetric shape and were thus analyzed in terms of Breit-Wigner-Fano (BWF) resonances: the best fit values are reported in Tab. I. The spectrum is very similar to the one observed in A_{3}C$_{60}$ ($A = K, Rb$) and refs. therein, once more confirming the metallic nature of the compound.

To determine the charge transfer towards C$_{60}$ we use the well known fact that $A_{g}(2)$ mode energy shifts are proportional to the number of transferred electrons (6–7 cm$^{-1}$/electron). However, to discriminate purely thermal effects from alkali doping, we perform (at the same temperature) a comparative Raman scattering in undoped C$_{60}$, whose modes could be fitted with Lorentzian curves (see Tab. I).

The doping-related energy shift of the $A_{g}(2)$ mode, 27.8 cm$^{-1}$, is consistent with a charge transfer of four electrons per C$_{60}$ (6.9 cm$^{-1}$/electron). Finally, the presence of BWF line shapes indicates an interaction of the H_{g} modes with free electrons in the t_{1u}-derived state of...
estimate the electron-phonon coupling constants
modes is completely negligible.
full width at half maximum Γ λ
and N density of states at the Fermi level
where Rb there are already some indications that A
in Tab. I, we obtain the relatively high λ_{Rb}
C AC fullerides (dots) taken at 648 K with a 1.96 eV excitation. Only four
Raman modes, associated to A_g and H_g cage vibrations, are clearly detected and respectively fitted to Lorentzian and BWF curves (solid lines). The H_g resonances appear broadened and asymmetric, in agreement with the metallic nature of the compound. Inset: The anisotropic Dysonian lineshape of the ESR signal at 620 K also supports the sample’s metallicity.

C$_{60}$ molecule. From the phonon frequency ω_i and the full width at half maximum Γ_i of the i^{th} mode, one can estimate the electron-phonon coupling constants λ_i ([25] and refs. therein):

$$\lambda_i = \frac{d_i \Gamma_i}{\pi \omega_i^2 N(E_F)},$$

where d_i is the degeneracy of the mode. By assuming a density of states at the Fermi level $N(E_F) \sim 5$ states/eV, as deduced from ESR, and using the fitted parameters in Tab. I we obtain the relatively high $\lambda_{H_g(1)} = 1.4$ and $\lambda_{H_g(2)} = 0.6$, whereas the contribution from the A_g modes is completely negligible.

In conclusion, we have shown that an A_4C_{60} fulleride which assumes an fcc structure is metallic. Although there are already some indications that A_4C_{60} fullerides are on the verge of a metal-to-insulator transition (MIT) (Rb_4C_{60} at high pressure [26], tetragonal Na_4C_{60} [27]), the metallicity is not a direct consequence of the lattice contraction due to the small dimension of the intercalated ions. Indeed, K_4C_{60} presents the same inter-ball distance as Li_4C_{60}, but it is an insulator. This indicates that lattice symmetry plays a dominant role [4], unlike molecular effects such as Jahn-Teller distortions, which tend to stabilize an insulator [28]. Compared to superconducting A_3C_{60}, this system has a broader bandwidth (probably related to the presence of asymmetric Li ions), but a relatively stronger electron-phonon coupling. This suggests that a moderate lattice expansion (achieved, for example, by the co-intercalation of small molecules like ammonia [29]) would preserve the metallic state, while inhibiting the formation of a polymer at low temperatures. Such a new material is very likely to show high-T_c superconductivity.

We thank Irene Margiolaki at ESRF for technical assistance and acknowledge financial support from the EC FP6-NEST “Ferrocarbon” project.

* Electronic address: Mauro.Ricco@fis.unipr.it
[1] D. Murphy, M. Rosseinsky, and R. Fleming, J. Phys. Chem. Solids 53, 1321 (1992).
[2] I. Lukyanchuk, N. Kirova, and F. Rachdi, Phys. Rev. B 51, 3978 (1995).
[3] R. Fleming et al., Nature 352, 701 (1991).
[4] J. Han, E. Koch, and O. Gunnarsson, Phys. Rev. Lett. 84, 1276 (2000).
[5] M. Tomasselli et al., J. Chem. Phys. 115, 472 (2001).
[6] G. Oszlanyi, G. Baumgartner, and G. Faigel, Phys. Rev. Lett. 78, 4438 (1997).
[7] G. Bendele et al., Phys. Rev. Lett. 80, 736 (1998).
[8] A. Rezzoun et al., Physica E 15, 107 (2002).
[9] S. Margadonna et al., J. Am. Chem. Soc. 126, 15032 (2004).
[10] M. Riccò et al., Phys. Rev. B 72, 155437 (2005).
[11] R. Moret et al., J. Phys. I France 2, 511 (1992).
[12] S. Margadonna et al., Int. J. Inorg. Mater. 1, 157 (1999).
[13] S. Margadonna et al., Chem. Mater. 11, 2960 (1999).
[14] M. Kosaka et al., Phys. Rev. B 59, R6628 (1999).
[15] Y. Maniwa et al., Phys. Rev. B 54, R6861 (1996).
[16] L. Cristofolini, M. Riccò, and R. De Renzi, Phys. Rev. B 59, 8343 (1999).
[17] C. H. Pennington and V. A. Stenger, Rev. Mod. Phys. 68, 855 (1996).
[18] O. Gunnarsson et al., Phys. Rev. B 57, 2159 (1998).
[19] F. Dyson, Phys. Rev. 98, 349 (1955).
[20] K. Tanigaki et al., Chem. Phys. Lett. 240, 627 (1995).
[21] A. P. Ramirez et al., Phys. Rev. Lett. 69, 1687 (1992).
[22] P. Zhou et al., Phys. Rev. B 48, 8412 (1993).
[23] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, J. Raman Spectr. 27, 351 (1996).
[24] T. Wågberg and B. Sundqvist, Phys. Rev. B 65, 155421 (2002).
[25] J. Winter and H. Kuzmany, Phys. Rev. B 53, 655 (1996).
[26] R. Kerkoud et al., J. Phys. Chem. Solids 57, 143 (1996).
[27] G. Oszlanyi et al., Phys. Rev. B 58, 5 (1998).
[28] M. Capone et al., Phys. Rev. B 62, 7619 (2000).
[29] M. Riccò et al., Physica B 374-375, 255 (2006).