Fibonacci connection between Huffman codes
and Wythoff array

Alex Vinokur
Holon, Israel
alexvn@barak-online.net
alex.vinokur@gmail.com
Home Page: http://alexvn.freeservers.com/

Abstract. A non-decreasing sequence of positive integer weights \(P = \{ p_1, \ldots, p_2, p_n \} \) is called \(k \)-ordered if an intermediate sequence of weights produced by Huffman algorithm for initial sequence \(P \) on \(i \)-th step satisfies the following conditions: \(p_2^{(i)} = p_3^{(i)}, \) \(i = 0, k; \) \(p_2^{(i)} < p_3^{(i)}, \) \(i = k + 1, n - 3 \). Let \(T \) be a binary tree of size \(n \) and \(M = M(T) \) be a set of such sequences of positive integer weights that the tree \(T \) is the Huffman tree of \(P \) (\(|P| = n \)). A sequence \(P_{\text{min}} \) of \(n \) positive integer weights is called a minimizing sequence of the binary tree \(T \) in class \(M(P_{\text{min}} \in M) \) if \(P_{\text{min}} \) produces the minimal Huffman cost of the tree \(T \) over all sequences from \(M \), i.e., \(E(T, P_{\text{min}}) \leq E(T, P) \) \(\forall P \in M \).

Fibonacci related connection between minimizing \(k \)-ordered sequences of the maximum height Huffman tree and the Wythoff array \([\text{Sloane, A035513}]\) has been proved. Let \(M_{n,k} \) denote the set of all \(k \)-ordered sequences of size \(n \) for which the Huffman tree has maximum height. Let \(F(i) \) denote \(i \)-th Fibonacci number. **Theorem:** A minimizing \(k \)-ordered sequence of the maximum height Huffman tree in class \(M_{n,k} \) is \(P_{\text{min}}_{n,k} = \{ \bar{p}_1, \bar{p}_2, \ldots, \bar{p}_n \} \), where \(\bar{p}_1 = 1, \) \(\bar{p}_2 = F(1), \ldots, \) \(\bar{p}_{k+2} = F(k + 1), \) \(\bar{p}_{k+3} = F(k + 2), \) \(\bar{p}_{k+4} = w_{F(k+2),0}, \) \(\bar{p}_{k+5} = w_{F(k+2),2}, \ldots, \) \(\bar{p}_n = w_{F(k+2),n-k-3}; \) \(w_{i,j} \) is \((i,j)\)-th element of the Wythoff array.

The cost of Huffman trees for those sequences has been computed. Several examples of minimizing ordered sequences for Huffman codes are shown.

1 Main Conceptions and Terminology

1.1 Binary Trees

A (strictly) binary tree is an oriented ordered tree where each nonleaf node has exactly two children (siblings). A binary tree is called elongated if at least one of any two sibling nodes is a leaf. An elongated binary tree of size \(n \) has maximum height among all binary trees of size \(n \). An elongated binary tree is called left-sided if the right node in each pair of sibling nodes is a leaf.

A binary tree is called labeled if a certain positive integer (weight) is set in correspondence with each leaf.
1. Main Conceptions and Terminology

Size of a tree is the total number of leaves of this tree.

Definition. Let T be a binary tree with positive weights $P = \{p_1, p_2, \ldots, p_n\}$ at its leaf nodes. The weighted external path length of T is

$$E(T, P) = \sum_{i=1}^{n} l_i \cdot p_i,$$

where l_i is the length of the path from the root to leaf i.

1.2 Huffman Algorithm

Problem definition. Given a sequence of n positive weights $P = \{p_1, \ldots, p_n\}$. The problem is to find binary tree T_{\min} with n leaves labeled p_1, p_2, \ldots, p_n that has minimum weighted external path length over all possible binary trees of size n with the same sequence of leaf weights. T_{\min} is called the Huffman tree of the sequence P; $E(T, T_{\min})$ is called the Huffman cost of the tree T.

The problem was solved by Huffman algorithm [1]. That algorithm builds T_{\min} in which each leaf (weight) is associated with a (prefix free) codeword in alphabet $\{0, 1\}$.

Note. A code is called a prefix (free) code if no codeword is a prefix of another one.

Algorithm description (in the reference to the discussed issue).

Algorithm input. A non-decreasing sequence of positive weights $P = \{p_1, p_2, \ldots, p_n\}$ ($p_k \leq p_{k+1}$; $k = 1, n-1$).

Algorithm output. The sum of all the weights.

The algorithm is performed in $n-1$ steps. i-th step ($i = 1, n-1$) is as follows:

- **i-th step input.** A non-decreasing sequence of weights of size $n-i+1$.
 $$P^{(i-1)} = \{p_1^{(i-1)}, p_2^{(i-1)}, \ldots, p_{n-i+1}^{(i-1)}\} (p_k^{(i-1)} \leq p_{k+1}^{(i-1)}; k = 1, n-i).$$

- **i-th step method.** Build a sequence $\{p_1^{(i)}, p_2^{(i)}, p_3^{(i)}, \ldots, p_{n-i+1}^{(i)}\}$ and sort its.

- **i-th step output.** A non-decreasing sequence of weights of size $n-i$.
 $$P^{(i)} = \{p_1^{(i)}, p_2^{(i)}, \ldots, p_{n-i}^{(i)}\} (p_k^{(i)} \leq p_{k+1}^{(i)}; k = 1, n-i-1).$$

Note 1. $P^{(0)}$ is an input of Huffman algorithm, i.e.,

$$p_k^{(0)} = p_k \ (k = 1, n). \quad (1)$$

Note 2. If an input sequence on i-th step(s) of the algorithm satisfies condition

$$p_2^{(i)} = p_3^{(i)} \ (0 \leq i \leq n-3).$$
then several Huffman trees can result from initial sequence P of weights, but the weighted external path length is the same in all these trees.

Let $P = \{p_1, p_2, \ldots, p_n\}$ be a sequence of size n for which the binary Huffman tree is elongated. Then according to Huffman algorithm

$$p^{(i)}_1 + p^{(i)}_2 \leq p^{(i)}_4 \quad (i = 0, n - 3).$$

1.3 Wythoff Array

The Wythoff array is shown below. It has many interesting properties \[2\], \[3\], \[4\].

Row number	1	2	3	4	5	6	7	8	9	10	11	12	Note
Wythoff array													
Fib[2]	1	3	4	7	11	18	29	47	76	123	199	322	Fibonacci seq
Fib[3]	2	4	6	10	16	26	42	68	110	178	288	466	Lucas seq
Fib[4]	3	6	9	15	24	39	63	102	165	267	432	699	
Fib[5]	5	9	14	23	37	60	97	157	254	411	665	1076	1741
Fib[6]	8	13	21	34	55	89	144	233	383	617	990	1607	2597
Fib[7]	13	22	35	57	92	149	241	390	631	1021	1652	2673	
Generalized Wythoff array													

The two columns to the left of the Wythoff array consist respectively of the nonnegative integers n, and the lower Wythoff sequence whose n-th term is $\lfloor (n + 1) \cdot \phi \rfloor$, where $\phi = (1 + \sqrt{5})/2$ (Golden Ratio). The rows are then filled in by the Fibonacci rule that each term is the sum of the two previous terms. The entry n in the first column is the index of that row.

Note. The Wythoff array description above has been taken from [2]. Let $w_{i,j}$ denote an (i, j)-th element of the generalized Wythoff array (row number $i \geq 0$, column number $j \geq 0$).

1.4 Fibonacci Numbers and Auxiliary Relations

Let $F(i)$ denote i-th Fibonacci number, i.e., $F(0) = 0, F(1) = 1, F(i) = F(i - 1) + F(i - 2)$ when $i > 1$, $L(i)$ denote i-th Lucas number, i.e. $L(1) = 1, L(2) = 3, L(i) = L(i - 1) + L(i - 1)$ when $i > 2$. Note some property of the Wythoff array that is related to the discussed issue:

$$w_{F(i),j} = F(i + j) + F(j), \quad i \geq 2, j \geq 0.$$ (3)
2. Main Results

Note also the following property of Fibonacci numbers

\[1 + \sum_{j=1}^{i} F(j) = F(i + 2). \] \hspace{1cm} (4)

2 Main Results

Let \(T \) be a binary tree of size \(n \) and \(M = M(T) \) be a set of such sequences of positive integer weights that the tree \(T \) is the Huffman tree of \(P(|P| = n) \).

Definition. A sequence \(P_{\min} \) of \(n \) positive integer weights is called a minimizing sequence of the binary tree \(T \) in class \(M(P_{\min} \in M) \) if \(P_{\min} \) produces the minimal Huffman cost of the tree \(T \) over all sequences from \(M \), i.e.,

\[E(T, P_{\min}) \leq E(T, P) \forall P \in M. \]

Definition. A non-decreasing sequence of positive integer weights \(P = \{p_1, p_2, \ldots, p_n\} \) is called absolutely ordered if the intermediate sequences of weights produced by Huffman algorithm for initial sequence \(P \) satisfy the following conditions

\[p^{(i)}_2 < p^{(i)}_3, \quad i = 0, n-3. \]

Theorem 1 ([5]). A minimizing absolutely ordered sequence of the elongated binary tree is

\[P_{\min_{\text{abs}}} = \{F(1), F(2), \ldots, F(n)\}, \]

where \(F(i) \) is \(i \)-th Fibonacci number. The weighted external path length of elongated binary tree \(T \) of size \(n \) for the minimizing absolutely ordered sequence \(P_{\min_{\text{abs}}} \) is

\[E(T, P_{\min_{\text{abs}}}) = F(n + 4) - (n + 4). \]

Proof. The proof of Theorem 1 of [5]. \(\square \)

Definition. A non-decreasing sequence of positive integer weights \(P^{(i)} = \{p^{(i)}_1, p^{(i)}_2, \ldots, p^{(i)}_{n-1}\} \) is called \(k \)-ordered if the intermediate sequences of weights produced by Huffman algorithm for initial sequence \(P \) satisfy the following conditions

\[p^{(i)}_2 = p^{(i)}_3, \quad i = 0, k; \] \hspace{1cm} (5)

\[p^{(i)}_2 < p^{(i)}_3, \quad i = k + 1, n-3. \] \hspace{1cm} (6)

Let \(M_{n,k}(k = 0, n-3) \) denote the set of all \(k \)-ordered sequences of size \(n \) for which the binary Huffman tree is elongated, i.e. an elongated binary tree of size \(n \) is the Huffman tree of \(P \).
Theorem 2. A minimizing k-ordered sequence of the elongated binary tree in class $M_{n,k}(k=0,n-3)$ is

$$
p_1 = 1,
$$

$$
p_i = F(i-1), \ i = 2,k+2,
$$

$$
p_{k+3} = F(k+2) = w_{F(k+2),0},
$$

$$
p_i = w_{F(k+2),i-k-3}, \ i = k+4,n,
$$

where $w_{i,j}$ is the (i,j)-th element of the Wythoff array.

Proof. Because $P_{\text{min}}_{n,k} = \{p_1,p_2,\ldots,p_n\}$ is minimizing sequence of positive integer values, p_1 and p_2 should have minimal positive integer values, i.e.,

$$
p_1 = p_2 = 1.
$$

(7)

$P_{\text{min}}_{n,k}$ is k-ordered ($k \geq 0$) sequence, so according to (5)

$$
p_2 = p_3 = 1,
$$

therefore according to (1) and (7)

$$
p_3 = 1.
$$

Thus

$$
p_1 = 1, \ p_2 = F(1), \ p_3 = F(2).
$$

(8)

Further, taking into account (2) and (6) we obtain the following Huffman algorithm steps for k-ordered ($k \geq 0$) sequence of the elongated (left-sided) binary tree.

Step	Input sequence	Relation
0	$p_1, p_2, p_3, p_4, p_5, p_6, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n$;	$p_2 = p_3$
1	$p_3, \sum_{i=1}^{2} p_i, p_4, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n$;	$\sum_{i=1}^{2} p_i = p_4$
2	$p_4, \sum_{i=1}^{3} p_i, p_5, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n$;	$\sum_{i=1}^{3} p_i = p_5$
3	$p_5, \sum_{i=1}^{4} p_i, p_6, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n$;	$\sum_{i=1}^{4} p_i = p_6$
...		
$k-1$	$p_{k+1}, \sum_{i=1}^{k} p_i, p_{k+2}, \ldots, p_{n-1}, p_n$;	$\sum_{i=1}^{k} p_i = p_{k+2}$
k	$p_{k+2}, \sum_{i=1}^{k+1} p_i, p_{k+3}, \ldots, p_{n-1}, p_n$;	$\sum_{i=1}^{k+1} p_i = p_{k+3}$
2. Main Results

Steps \((k + 1) - (n - 3)\)	Input sequence	Relation
\(k+1\)	\(p_{k+3} + \sum_{i=1}^{k+2} p_i, p_{k+4}, \ldots, p_{n-1}, p_n;\)	\(\sum_{i=1}^{k+2} p_i < p_{k+4}\)
\(k+2\)	\(p_{k+4} + \sum_{i=1}^{k+3} p_i, p_{k+5}, \ldots, p_{n-1}, p_n;\)	\(\sum_{i=1}^{k+3} p_i < p_{k+5}\)
\(\ldots\)	\(\ldots\)	\(\ldots\)
\(n-4\)	\(p_{n-2} + \sum_{i=1}^{n-3} p_i, p_{n-1}, p_n;\)	\(\sum_{i=1}^{n-3} p_i < p_{n-1}\)
\(n-3\)	\(p_{n-1} + \sum_{i=1}^{n-2} p_i, p_n;\)	\(\sum_{i=1}^{n-2} p_i < p_n\)

Consider two cases.

Case 1. Steps \(0 - k\).

It follows from relations for steps \(0 - k\) that

\[
p_i = \sum_{j=1}^{i-2} p_j, \quad i = 4, k + 3.
\]

Thus,

\[
p_i - p_{i-1} = \sum_{j=1}^{i-2} p_j - \sum_{j=1}^{i-3} p_j = p_{i-2}, \quad i = 4, k + 3.
\]

So, we have

\[
p_i = p_{i-1} + p_{i-2}, \quad i = 4, k + 3.
\]

Taking into account (8), we obtain

\[
p_i = F(i - 1).
\] \(9\)

In particular,

\[
p_{k+3} = F(k + 2) = F(k + 2) + F(0).
\] \(10\)

Case 2. Steps \((k + 1) - (n - 3)\).
Because $P_{\min,n,k} = \{p_1, p_2, \ldots, p_n\}$ is lineminimizing sequence of positive integer values, inequalities for steps $(k+1) - (n-3)$ are transformed to the following equalities:

Step	Input sequence	Relation
$k+1$	$p_{k+3}, \sum_{i=1}^{k+2} p_i, p_{k+4}, p_{k+3}, \ldots, p_{n-1}, p_n,$; $\sum_{i=1}^{k+2} p_i = p_{k+4} + 1$	$k+2$
$k+2$	$p_{k+4}, \sum_{i=1}^{k+3} p_i, p_{k+5}, \ldots, p_n,$; $\sum_{i=1}^{k+3} p_i = p_{k+5} + 1$	\ldots
\ldots	\ldots	\ldots
$n-4$	$p_{n-2}, \sum_{i=1}^{n-3} p_i, p_{n-1}, p_n,$; $\sum_{i=1}^{n-3} p_i = p_{n-1} + 1$	$n-3$
$n-3$	$p_{n-1}, \sum_{i=1}^{n-2} p_i, p_n,$; $\sum_{i=1}^{n-2} p_i = p_n + 1$	\ldots

From the equality for step $(k+1)$, (9), (7) and (4) results

$$p_{k+4} = F(k+3) + 1 = F(k+3) + F(1).$$ \hfill (11)

Further, it follows from relations with equalities for steps $(k+1) - (n-3)$ that

$$p_i = 1 + \sum_{j=1}^{i-2} p_j, \quad i = k + 5, n.$$ \hfill (12)

Thus,

$$p_i - p_{i-1} = (1 + \sum_{j=1}^{i-2} p_j) - (1 + \sum_{j=1}^{i-3} p_j) = p_{i-2}, \quad i = k + 5, n.$$ \hfill (13)

So, we have

$$p_i = p_{i-1} + p_{i-2}.$$ \hfill (14)

Therefore, taking into account (14) and (11), we have

$$p_i = F(i-1) + F(i-k-3).$$ \hfill (15)

From this and (15) it follows that

$$p_i = w_{F(k+2), i-k-3}.$$ \hfill (16)

where $w_{i,j}$ is (i, j)-th element of the Wythoff array.

The statement of the theorem follows from (7), (9) and (12). \hfill □
2. Main Results

Corollary 1. A minimizing 0-ordered sequence of size n for the elongated binary tree in $M_{n,0}$ is the Lucas sequence shifted two places right, i.e.

$$\{1, 1, L(1), L(2), \ldots, L(n-2)\},$$

where $L(i)$ is i-th Lucas number.

Corollary 2. A minimizing $(n-3)$-ordered sequence of size n for the elongated binary tree in $M_{n,n-3}$ is the Fibonacci sequence shifted one place right, i.e.

$$\{1, F(1), F(2), \ldots, F(n-1)\},$$

where $F(i)$ is i-th Fibonacci number.

Note that normalized $(n-3)$-ordered sequence of size n

$$\{1/F(n+1), F(1)/F(n+1), F(2)/F(n+1), \ldots, F(n-1)/F(n+1)\}$$

has maximum weighted external path length over all possible normalized sequences of size n for which Huffman tree is elongated [6].

Theorem 3. The weighted external path length of the elongated binary tree T of size n for the minimizing k-ordered sequence $P_{\min_{n,k}}$ is

$$E(T, P_{\min_{n,k}}) = F(n + 3) + F(n - k + 1) - (n - k + 3).$$

Proof. Let $P_{\min_{n,k}} = \{p_1, p_2, \ldots, p_n\}$ be the minimizing k-ordered sequence of the elongated binary tree T of size n.

According to Theorem 2 $P_{\min_{n,k}} = \{1, F(1), \ldots, F(k+2), F(k+3) + F(1), \ldots, F(n-1) + F(n-k-3)\}$.

Weighted external path length $E(T, P_{\min_{n,k}})$ is

$$E(T, P_{\min_{n,k}}) = \sum_{i=1}^{n} l_i \cdot p_i,$$

where l_i is the length of the path from the root to leaf i.

T is the elongated binary tree, therefore $l_1 = n - 1, l_i = n - i + 1 (i = 2, n)$.
Thus, taking into account (4), we obtain

\[E(T, P_{\min_{n,k}}) = \sum_{i=1}^{n} i \cdot p_i = (n - 1) \cdot p_1 + \sum_{i=2}^{n} (n - i + 1) \cdot p_i = \]

\[(n - 1) + \sum_{i=2}^{k+3} (n - i + 1) \cdot F(i - 1) + \]

\[\sum_{i=k+4}^{n} (n - i + 1) \cdot (F(i - 1) + F(i - k - 3)) = \]

\[(n - 1) + \sum_{i=1}^{n} (n - i) \cdot F(i) + \sum_{i=k+3}^{n-1} (n - i) \cdot (F(i) + F(i - k - 2)) = \]

\[(n - 1) + \sum_{i=1}^{n-1} (n - i) \cdot F(i) + \sum_{i=k+3}^{n-3} (n - k - i - 2) \cdot F(i) = \]

\[(n - 1) + \sum_{i=1}^{n-1} F(i) + \sum_{i=1}^{n-k-3} \sum_{j=1}^{n-k-3} F(i) = \]

Thus, taking into account (4), we obtain

\[E(T, P_{\min_{n,k}}) = (n - 1) + \sum_{j=1}^{n-1} (F(j + 2) - 1) + \sum_{j=1}^{n-k-3} (F(j + 2) - 1) = \]

\[\sum_{j=3}^{n+1} F(j) + \sum_{j=3}^{n-k-1} F(j) - (n - k - 3) = \]

\[\sum_{j=1}^{n+1} F(j) - (F(2) - F(1)) + (\sum_{j=1}^{n-k-1} F(j) - (F(2) - F(1))) - (n - k - 3) = \]

\[= (F(n + 3) - 1 - F(3)) + (F(n - k + 1) - 1 - F(3)) - (n - k - 3) = \]

\[(F(n + 3) - 3) + (F(n - k + 1) - 3) - (n - k - 3) = \]

\[F(n + 3) + F(n - k + 1) - (n - k + 3). \]

The statement of the theorem proved. \(\square \)

Corollary 3. The weighted external path length of the elongated binary tree \(T \) of size \(n \) for the minimizing 0-ordered sequence \(P_{\min_{n,0}} \) (the Lucas sequence shifted two places right) is

\[E(T, P_{\min_{n,0}}) = F(n + 3) + F(n + 1) - (n + 3). \]
3. Examples

Corollary 4. The weighted external path length of the elongated binary tree T of size n for the minimizing $(n - 3)$-ordered sequence $P_{\text{min}_{n,n-3}}$ (the Fibonacci sequence shifted one place right) is

$$E(T, P_{\text{min}_{n,n-3}}) = F(n + 3) + F(n - (n - 3) + 1) - (n - (n - 3) + 3) = F(n + 3) + F(4) - 6 = F(n + 3) - 3.$$

3 Examples

Several examples of minimizing ordered sequences for Huffman codes are shown below. An underlined integer in the tables means a nonleaf node cost obtained as a result of merging two leaf nodes on the previous step of the Huffman algorithm.

Example 1. Absolutely minimizing ordered sequence $P_{\text{min}_{10}}$ of size 10

Step	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}
0	0	1	1	2	3	5	8	13	21	34
1	1	1	2	3	5	8	13	21	34	55
2	2	2	3	5	8	13	21	34	55	
3	3	4	5	8	13	21	34	55		
4	5	7	8	13	21	34	55			
5	8	12	13	21	34	55				
6	13	20	21	34	55					
7	21	33	34	55						
8	34	54	55							
9	55	88								

$\{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}\} = \{1, 1, 2, 3, 5, 8, 13, 21, 34, 55\}$ - Fibonacci sequence of size 10.

Example 2. Minimizing 0-ordered sequence $P_{\text{min}_{0,0}}$

Step	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}
0	0	1	1	3	4	7	11	18	29	47
1	1	2	3	4	7	11	18	29	47	
2	2	3	4	7	11	18	29	47		
3	3	6	7	11	18	29	47			
4	4	10	11	18	29	47				
5	6	11	17	18	29	47				
6	10	18	28	29	47					
7	18	28	46	47						
8	28	47	72							
9	47	72								

$\{p_2, p_3\} = \{1, 1\} = \{F(1), F(2)\}$ - Fibonacci sequence of size 2;

$\{p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}\} = \{1, 3, 4, 7, 11, 18, 29, 47\}$ -
3. Examples

Wythoff array row-1 (row-$F(2)$) sequence of size 8 (the Lucas sequence).

Example 3. Minimizing 1-ordered sequence $P_{\min_{10}}$

Step	$P(0)$	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}
0	$P(0)$	1	1	2	4	6	10	16	26	42	
1	$P(1)$	1	2	2	4	6	10	16	26	42	
2	$P(2)$	2	2	4	6	10	16	26	42		
3	$P(3)$	4	2	4	6	10	16	26	42		
4	$P(4)$	6	2	6	10	16	26	42			
5	$P(5)$	10	15	16	26	42					
6	$P(6)$	16	25	26	42						
7	$P(7)$	26	41	42							
8	$P(8)$	42	67								
9	$P(9)$	109									

$\{p_2, p_3, p_4\} = \{1, 1, 2\} = \{F(1), F(2), F(3)\}$ \(- \text{Fibonacci sequence of size 3;}

$\{p_4, p_5, p_6, p_7, p_8, p_9, p_{10}\} = \{2, 4, 6, 10, 16, 26, 42\} \text{- Wythoff array row-2 (row-F(3)) sequence of size 7.}$

Example 4. Minimizing 4-ordered sequence $P_{\min_{10}}$

Step	$P(0)$	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9	p_{10}
0	$P(0)$	1	1	2	3	5	8	14	22	36	
1	$P(1)$	1	2	2	3	5	8	14	22	36	
2	$P(2)$	2	2	3	5	8	14	22	36		
3	$P(3)$	3	2	3	5	8	14	22	36		
4	$P(4)$	5	8	8	14	22	36				
5	$P(5)$	8	13	14	22	36					
6	$P(6)$	14	21	22	36						
7	$P(7)$	22	35	36							
8	$P(8)$	36	57								
9	$P(9)$	57									

$\{p_2, p_3, p_4, p_5, p_6, p_7\} = \{1, 1, 2, 3, 5, 8\} = \{F(1), F(2), F(3), F(4), F(5), F(6)\}$ \(- \text{Fibonacci sequence of size 6;}

$\{p_7, p_8, p_9, p_{10}\} = \{8, 14, 22, 36\} \text{- Wythoff array row-8 (row-F(6)) sequence of size 4.}$
3. Examples

Example 5. Minimizing 7-ordered sequence $P_{\min_{10,7}}$

Step	$P_{(0)}$	$P_{(1)}$	$P_{(2)}$	$P_{(3)}$	$P_{(4)}$	$P_{(5)}$	$P_{(6)}$	$P_{(7)}$	$P_{(8)}$	$P_{(9)}$	$P_{(10)}$
0	1	1	1	2	3	5	8	13	21	34	
1	1	2	2	3	5	8	13	21	34		
2	2	3	3	5	8	13	21	34			
3	3	5	5	8	13	21	34				
4	5	8	8	13	21	34					
5	8	13	13	21	34						
6	13	21	21	34							
7	21	34	34								
8	34	55									
9	55	89									

$\{p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}\} = \{1, 1, 2, 3, 5, 8, 13, 21, 34\} = \{F(1), F(2), F(3), F(4), F(5), F(6), F(7), F(8), F(9)\}$ - Fibonacci sequence of size 9;

$\{p_{10}\} = \{34\}$ - Wythoff array row-34 (row-F(9)) sequence of size 1.

References

1. Huffman D., A method for the construction of minimum redundancy codes. Proc. of the IRE 40 (1952) 1098–1101
2. Sloane N.J.A., Classic Sequences In The On-Line Encyclopedia of Integer Sequences: The Wythoff Array and The Para-Fibonacci Sequence. Published electronically at http://wwww.research.att.com/~njas/sequences/classic.html
3. Sloane N.J.A., My Favorite Integer Sequences. Published electronically at http://wwww.research.att.com/~njas/doc/sg.pdf
4. Fraenkel A., Kimberling C., Generalized Wythoff arrays, shuffles and interspersions. Discrete Math. 126 (1994) 137–149
5. Vinokur A.B., Huffman trees and Fibonacci numbers. Kibernetika Issue 6 (1986) 9-12 (in Russian), English translation in Cybernetics 22 Issue 6 (1986) 692-696; http://springerlink.metapress.com/link.asp?ID=W32X70520K3J617
6. Vinokur A.B., Huffman codes and maximizing properties of Fibonacci numbers. Kibernetika i Systemnyi Analiz Issue 3 (1992) 10-15 (in Russian), English translation in Cybernetics and Systems Analysis 28 Issue 3 (1993) 329–334; http://springerlink.metapress.com/link.asp?ID=NJ5073781H237182