Impact of Pulse Pressure Reserve on Prediabetics with Typical Chest Pain and Normal Coronary Angiography

Abstract

Aim: To evaluate the association of reserve-pulse pressure (reserve-PP) with coronary flow reserve and diastolic function in prediabetics subjects. (Reseveve PP= Exercise pulse pressure minus rest pulse pressure).

Methods: Out of 159 patients without known CAD who were referred for coronary angiography due to typical chest pain and had normal coronary on coronary angiography, we studied 92 patients (mean age 53 ± 14 years after exclusion of patients with overt diabetes mellitus. All studied patients were subjected to echo-Doppler assessment, transthoracic assessment of coronary flow reserve (CFR) and analysis of the exercise stress test.

Results: Reserve-PP was significantly lower in prediabetic compared to nondiabetic subjects (P<0.001). In addition the recovery heart rate was significantly higher in prediabetics. Prediabetic subjects had a significantly lower CFR than nondiabetic subjects (P<0.001). Reserve-PP was significantly correlated with CFR (r=0.612; P<0.0001) and inversely correlated with E/E’ (r= -0.445; P<0.001). ROC analysis showed that a cut-off value of <4.5 mmHg for reserve-PP had a sensitivity of 93% and specificity of 72% (AUC was 0.864; P<0.001) in prediction of impaired CFR prediabetic patients.

Conclusion: We have shown that pulse pressure reserve was blunted and associated with significant impairment in CFR and diastolic dysfunction in prediabetics. Reserve-PP might be considered a simple, non-invasive surrogate marker for subclinical atherosclerosis and diastolic dysfunction in patients with risk for coronary artery disease.

Keywords: Reserve pulse pressure; Normal coronary arteries; Prediabetes

Introduction

Several studies reported that prediabetic subjects have unfavorable clinical outcomes [1,2]. The 10 years survival, only about 50% of those subjects [3]. In the early phase of atherosclerosis or in the presence of intensive CAD risk factors, vasodilatation capacity of coronary resistance arterioles to pharmacological and physical stress usually disturbed before development of angiographic atherosclerotic disease [4].

Tominaga et al. [5] reported that postprandial glucose level is an independent risk factor for CVD, while impaired glucose tolerance is not. Furthermore, in these patients postprandial hyperglycemia is more strongly related to the progression of atherosclerosis than is fasting hyperglycemia [6] it is conceivable that pulse pressure response of the arteries to exercise, could offer critical information about vascular health. We aimed to evaluate the impact of changes in pulse pressure from resting to peak exercise (reserve pulse pressure) on coronary flow reserve and diastolic function in prediabetics.

Subjects and Methods

Out of 159 patients referred for coronary angiography for typical chest pain. We selected 92 patients (54% male) with normal coronary angiography. The mean age of them was (53.5 ± 14 years). The remaining 67 patients were exuded as they had overt diabetes mellitus (DM) Patients were classified into two groups: group I (included 33 subjects with a fasting plasma glucose level <5.6 mmol/L); and group II (prediabetic) (included 59 with as a fasting glucose level ≥ 5.6 mmol/L and <7.0 mmol/L). Diabetic patients with a fasting plasma glucose level ≥7.0 mmol/L or using antidiabetic medications, either oral antidiabetics or subcutaneous insulin, regardless of their plasma glucose levels [7]. Exclusion criteria were: previously diagnosed cardiovascular disease, renal disease, inflammatory diseases, obesity (body mass index, BMI ≥ 30 kg/m²), and/or exercise capacity. Furthermore, participants who were on regular cardioprotective medications or were acutely ill were not eligible to participate in this study. Written consent was obtained from all subjects and the study was approved from the local faculty scientific and ethical committee.

Echocardiography

With a Vivid 3 PRO ultrasound imager (General Electric, Milwaukee, WI, USA) equipped with a 2.5-5 MHz (harmonics) phased-array transducer all transthoracic echocardiographic assessment was performed and left ventricular mass was calculated with the method of Devereux et al. and normalized for body surface area [10]. Left ventricular diastolic function was assessed using and Tissue Doppler parameters as previously described [10].
Evaluation of coronary flow reserve

Noninvasive assessment of coronary flow reserve of was performed with pulsed wave Doppler recordings of the mid-to-distal LAD. With utilizing intra-venous adenosine (0.14 mg/kg/min), hyperemia was induced by the and peak diastolic velocities were measured at baseline and at hyperemia. The average the three highest peak diastolic velocities was calculated CFR equals hyperemic to baseline peak diastolic velocities ratio [11].

Exercise testing

All the subjects underwent exercise stress test according to the modified Bruce protocol (Quinton Treadmill system, Quinton, Inc., Bothell, WA, USA). The formula of maximal exercise heart rate divided by (220 minus age) was used to calculate the percentage of age-predicted maximum heart rate achieved during exercise. During each exercise stage and at every minute within three minutes after recovery, blood pressure, heart rate, and cardiac rhythm were recorded. Following peak exercise, the subjects were asked to walk for a 2-minute cool-down period at 1.5 mph on a 2.5% grade. The maximal SBP was the highest value achieved during the testing.

Blood pressure calculation

Pulse pressure (PP) = Systolic blood pressure minus diastolic blood pressure. Mean arterial pressure equals the diastolic pressure plus 1/3(PP) Pulse pressure with exercise = Maximal SBP - maximal DBP. Reserve pulse pressure (Reserve-PP) = Maximum exercise-PP minus Rest-PP.

Statistical analysis

SPSS 15.0 (SPSS Science, Chicago, IL, USA) for Windows was used for statistical analysis. Univariate and multivariate regression analysis was used to test the relation of the studied patients are summarized in (Table 1), among both groups, except E’ and E/E’ were significantly different among both groups (P<0.02 and P<0.001 respectively, otherwise, all echocardiographic parameters were comparable (Table 2).

Maximum heart rate was significantly higher in non-diabetic compared to both prediabetics (P=0.03), while heart rate recovery was significantly higher in the prediabetics (P<0.01) (Table 3). Pulse pressure was found to be comparable among both groups at rest (P > 0.05), while it was significantly higher in nondiabetics during exercise (P < 0.001), when compared with prediabetics (Table 3).

With respect to CFR, the results demonstrated that it was significantly lower in prediabetics compared to nondiabetics (P<0.01). Correlation analysis revealed that reserve-PP was significantly correlated with coronary flow reserve, (r=0.612; P<0.0001), and inversely correlated with E/E’ ratio (r=-0.445; P<0.0001) in prediabetic patients (Figures 1 & 2). Meanwhile, PPR was significantly correlated with the heart rate recovery in prediabetics. Regression analysis showed that reserve-PP (β=0.399, p<0.001), fasting glucose (β=-0.221, p<0.05) and waist circumference (β=-0.237, p<0.05) were independently association with impaired CFR (Table 5). The results showed that that reserve-PP (β= -0.268, p<0.001), and left ventricular mass index (β=0.198, p<0.05) have an independent association with increased E/E’ (Table 6). ROC curve analysis showed that the best cut-off value of reserve-PP in prediction of impaired CFR was <4.5 mmHg with a sensitivity of 93% and a specificity of 72%. AUC was 0.864 (P<0.001), (Figure 3).

| Table 1: Demographic data of both groups. |
|----------------|----------------|----------------|
| | Non-Diabetics | Prediabetics | P-Value |
| Age, (years) | 52.2±10.3 | 53.1±9.2 | >0.05 |
| Hypertension, n (%) | 47 (56.1) | 49 (54.0) | >0.05 |
| Smoking, n (%) | 38 (41.4) | 41 (46.3) | >0.05 |
| BMI, kg/m² | 25.4±4.5 | 25.9±4.3 | >0.05 |
| Total Cholesterol, mmol/L | 5.11±1.12 | 5.21±1.06 | >0.05 |
| Triglycerides, mmol/L | 1.54±0.85 | 1.55±0.9 | >0.05 |
| Glucose, mmol/L | 4.9±0.42 | 6.0±0.45 | <0.001 |
| Serum Creatinine, μmol/L | 76.2±9.7 | 78.0±10.5 | >0.05 |
| SBP (mmHg) | 129.2±10 | 13.5±10 | >0.05 |
| DBP (mmHg) | 77.5±9 | 81.4±10 | >0.05 |
| Resting PP (mmHg) | 52.4±8.3 | 52±10.5 | >0.05 |

Table 2: Echocardiographic parameters of prediabetics versus controls.

LV Mass Index (g m⁻²)	Non-Diabetics (n=33)	Prediabetics (n=59)	P Value
Relative Wall Thickness	0.41±0.04	0.43±0.05	>0.05
E (ms)	0.79±0.12	0.69±0.11	>0.05
A (ms)	0.61±0.10	0.71±0.14	>0.05
E/A	1.16±0.19	0.87±0.17	>0.05
Isovolumic Relaxation time (ms)	95.2±21.03	102.6±29	>0.05
Deceleration Time (ms)	269.2±39	268.2±42	>0.05
E’ (cm s)	12.2±1.9	6.4±1.3	<0.02
A’ (cm s)	9.3±1.4	11.2±1.7	>0.05
E/E’	6.6±1.2	10.7±1.3	<0.001

Citation: Mahfouz RA, Gad M, Mohammed E, Amin (2016) Impact of Pulse Pressure Reserve on Prediabetics with Typical Chest Pain and Normal Coronary Angiography. J Cardiol Curr Res 6(3): 00208. DOI: 10.15406/jccr.2016.06.00208
Table 3: Resting and post-exercise hemodynamic parameter among the three groups.

	Non-Diabetics (n=33)	Prediabetics (n=59)	P Value
HR - Resting	65±9.0	69±9.0	>0.05
HR - Peak	188±22.0	175±22.0	<0.03
HR - HRR	71±11.0	86±15.0	<0.01
PP - Resting	24.5±5.3	25.0±4.5	>0.05
PP - Peak	35.5±4.5	29.2±4.6	<0.05
PP - Recovery	25.6±4.9	26.0±3.6	>0.05
PP - Reserve-PP	9.6±0.08	4.6±0.08	<0.001
MAP - Resting	82.5±7.3	84.2±8.6	>0.05
MAP - Peak	83.2±7.0	87.4±6.3	>0.05
MAP - Recovery	82.0±6.4	86.5±9.1	

Discussion

The data of our study demonstrated that the reserve pulse pressure was significantly lower in prediabetics compared to control subjects. Meanwhile the CFR and diastolic dysfunction were significantly impaired in prediabetics. The vascular reserve was significantly correlated with CFR and left diastolic dysfunction in prediabetics.

It was observed that impaired glucose tolerance significantly associated with endothelial dysfunction and peripheral arterial dysfunction12-14 that is commonly related to the production derived free radicals and activation of protein kinase C [15-18]. Studies showed that coronary flow reserve was significantly reduced in patients with DM even without significant CAD, usually related to coronary microcirculatory dysfunction [19,20]. Reduced CFR has also been shown even in patients with prediabetes, those with impaired fasting glucose and those with glucose intolerance [21]. Several studies demonstrated that vasodilatation abnormalities assessed invasively was significantly related to these metabolic abnormalities and contribute significantly on the clinical outcomes in these subjects [22,23]. Microvascular dysfunction is usually caused by impaired endothelial function. In fact the endothelial dysfunction usually starts early in life. Several years before overt atherosclerosis specially in individuals with cardiovascular risk factors accompanied by insulin resistance [24-26].

The current study showed that the left ventricular function was significantly impaired in prediabetics. Meanwhile The E/E’ was significantly correlated with reserve-PP in prediabetics. Moreover, CFR in prediabetics was significantly correlated with reserve pulse pressure and may be the cause of left ventricular diastolic dysfunction. Another important observation in the study was found, as the heart rate during recovery was significantly higher in prediabetics compared to non-diabetics. For now the heart rate during recovery was significantly correlated to reverse pulse pressure. Thereby blunted reserve PP could reflect an early autonomic dysfunction prediabetes.

Figure 1: Correlation between reserve pulse pressure and coronary flow reserve in prediabetic patients (r = 0.612; P<0.0001).

Figure 2: Correlation between reserve pulse pressure and left ventricular diastolic function (E/E’ ratio) in prediabetic patients (r = -0.445; P<0.0001).

Figure 3: ROC curve analysis showed a reserve-PP of <25 mmHg had a sensitivity of 93% and a specificity of 72% in prediction of impaired CFR. AUC =0.864; P<0.001.)
Impact of Pulse Pressure Reserve on Prediabetics with Typical Chest Pain and Normal Coronary Angiography

Table 4: Coronary flow reserve of the three groups.

Groups	Baseline APV	Peak APV	CFR	P value	Group 1 versus group 2	Group 1 versus group 3	Group 2 versus group 3
Nondiabetics	27.2±1.5	72.5±9.4	3.23±0.29	<0.03	<0.03	<0.01	>0.05
Prediabetics	25.6±1.7	62.9±17.2	1.8±0.21	<0.03	<0.03	<0.001	<0.001
Diabetics	24.8±1.8	62.9±17.2	1.8±0.21	<0.001	<0.001	<0.001	>0.05

Table 5: Multiple linear regression analysis: Adjustment for continuous variables.

Dependent variable	Covariate	B Coefficient	P value
Coronary Flow Reserve	Age	0.114	>0.05
	Waist circumference	-0.237	<0.05
	Systolic blood pressure	0.109	>0.05
	Diastolic blood pressure	0.095	>0.05
	Fasting glucose	-0.221	<0.05
	Triglycerides	0.082	>0.05
	LVMI	0.122	>0.05
	Reserve -PP	0.399	<0.001

LVMI: Left Ventricular Mass Index; Reverse-PP: Reserve Pulse Pressure.

Table 6: Multiple linear regression analysis: Adjustment for continuous variables.

Dependent variable	Covariate	B Coefficient	P value
E/E’ ratio	Age	0.095	>0.05
	Waist circumference	-0.11	>0.05
	Systolic blood pressure	0.077	>0.05
	Diastolic blood pressure	0.071	>0.05
	Fasting glucose	0.102	>0.05
	Triglycerides	0.041	>0.05
	LVMI	0.198	<0.05
	Reserve -PP	-0.268	<0.001

LVMI: Left Ventricular Mass Index; Reverse-PP: Reserve Pulse Pressure.

The resting pulse pressure in healthy adults, sitting position, is about 30-40 mmHg. The pulse pressure increases with exercise due to increased stroke volume, healthy values being up to pulse pressures of about 100 mmHg, simultaneously as total peripheral resistance drops during exercise. In healthy individuals the pulse pressure will typically return to normal in 10 minutes. Stroke volume significantly increases with increase in pulse pressure in young individuals. Pulse pressure usually increased with increasing age with middle-aged and elderly. The increase in the pulse pressures usually a marker of increased peripheral arterial rigidity. Also elevated PP associated with arterial stiffness that is correlated to higher systolic BP that could promote left ventricular hypertrophy and signify higher risk of stroke. Of note the diastolic blood pressure is concomitantly decreased, thereby compromising coronary blood flow that, in turn, might increase the risk of myocardial perfusion and diastolic dysfunction [27-29]. PP can be considered a surrogate for stroke volume [32,31]. Sharman et al. [32] demonstrated that PP amplification during exercise is reduced with age and hypercholesterolemia.

Clinical Implication

The data of our study showed that PPR might be a stronger predictor of early, Microvascular dysfunction and alteration of diastolic characteristics of the heart in patients with risk factors for coronary CAD.

Conclusion

We found that pulse pressure reserve was blunted and associated with significant impairment in CFR and diastolic dysfunction in Prediabetics.

References

1. Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events: A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22(2): 233-240.
2. Barr EI, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, et al. (2007) Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: The Australian Diabetes, obesity, and lifestyle study (AusDiab) Circulation 116(2): 151-157.
3. Stratton IM, Adler AI, Neil HA (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study BMJ 321(7258): 405-412.
4. Rim SJ, Leong-Poi H, Lindner JR, Wei K, Fisher NG, et al. (2001) Decrease in coronary blood flow reserve during hyperlipidemia is secondary to an increase in blood viscosity. Circulation 104(22): 2704.
5. Tominaga M, Igarashi K, Eguchi H, Kato C, Manaka H, et al. (1999) Impaired glucose tolerance is a risk factor for cardiovascular
diseases, but not impaired fasting glucose: the Funagata Diabetes Study. Diabetes Care 22(6): 920-924.
6. Hanefeld M, Kehler C, Henkel E, Fuecker K, Schaper F, et al (2000) Post-challenge hyperglycemia relates more strongly than fasting hyperglycemia with carotid-intima-media thickness: the RIAD study. Diabet Med 17(12): 835-840.
7. American Diabetes Association (2008) Diagnosis and classification of diabetes mellitus. Diabetes Care 31(Suppl 1): S55-S60.
8. Lang RM, Bierig M, Devereux RB (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12): 1440-1463.
9. Devereux RB, Alonso DR, Lutas EM (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6): 450-458.
10. Tsioufis C, Chatzis D, Dimitriadis K (2005) Left ventricular diastolic dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach. J Hypertens 23(9): 1745-1750.
11. Korcarz CE, Stein JH (2004) Noninvasive assessment of coronary flow reserve by echocardiography: technical considerations. J Am Soc Echocardiogr 17(6): 704-707.
12. Caballero AE, Amra S, Saouaf R (1999) Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 48(9): 1856-1862.
13. Anastassiou E, Lekakis JP, Alevizaki M, Papamichael CM, Megas J, et al. (1998) Impaired endothelium dependent vasodilation in women with previous gestational diabetes. Diabetes Care 21: 2111-2115.
14. Vehkavaara S, Seppala-Lindroos A, Westerbacka J, Groop PH, Yki-Jarvinen H (1999) In vivo endothelial dysfunction characterizes patients with impaired glucose tolerance. Diabetes Care 22: 2055-2060.
15. Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, et al. (1998) Vitamin C improves endothelium dependent vasodilation in patients with insulin dependent diabetes mellitus. J Am Coll Cardiol 31(3): 552-557.
16. Sobrevia L, Mann GE (1997) Dysfunction of the endothelial nitric oxide signaling pathway in diabetes and hyperglycemia. Exp Physiol 82: 423-452.
17. Nishikawa T, Edelstein D, Du XL (2004) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404(6779): 787-790.
18. Mugge A, Elwell JH, Peterson TE, Harrison DG (1991) Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol 260(2 pt1): C219-225.
19. Feigl EO (1983) Coronary physiology. Physiol Rev 63(1): 1-205.
20. Nitzenberg A, Valensi P, Sachs R, Dali M, Aptecar E, et al. (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 12: 1017-1025.
21. Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 12: 635-640.
22. Erdogan D, Yucel H, Uysal BA, Ersoy IH, Icli A, et al. (2013) Effect of prediabetes and diabetes on left ventricular and coronary microvascular functions. Metabolism 62(3): 1123-1130.
23. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 12: 1899-1906.
24. Harrison DG (1993) Endothelial dysfunction in the coronary microcirculation: A new clinical entity or an experimental finding? J Clin Invest 91(1): 1-2.
25. Cosentino F, Luscher TF (1998) Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 132(Suppl 3): S54-S61.
26. Arcaro G, Zamboni M, Rossi L (1999) Body fat distribution predicts the degree of endothelial dysfunction in uncomplicated obesity. Int J Obes Relat Metab Disord 23(23): 936-942.
27. Stehouwer CDA, Henry RMA, Ferrein I (2008) Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia 51(4): 527-539.
28. Safar ME, London GM (2000) For the Clinical Committee of Arterial Structure and Function, on behalf of the Working Group on Vascular Structure Function of the European Society of Hypertension Therapeutic studies and arterial stiffness in hypertension: recommendations of the European Society of Hypertension J Hypertens 18(11): 1527-1535.
29. Schiffrin EL (2004) Vascular stiffness and arterial compliance. Implications for Systolic Blood Pressure Am J Hypertens 17(12 pt 2): 398-408.
30. Michael F, Chemla D, Richard C, Wysocki M, Pinsky MR (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159(3): 935-939.
31. Michael F, Boussat S, Chemla D, Anguel N, Mercat A, et al. (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162(1): 134-138.
32. Sharman JE, McEniery CM, Dhakam ZR, Goombes JS, Wilkinson IB, et al. (2007) Pulse pressure amplification during exercise is significantly reduced with age and hypercholesterolemia. J Hypertens 25(6): 1249-1254.