Kinetic equations of free-radical nonbranched-chain processes of addition to alkenes, formaldehyde, and oxygen

Michael M. Silaev[a]

Keywords: Low-reactive radical, autoinhibitor, competing reaction, nonbranched-chain addition, thermochemical data.

The aim of this study was to devise simple kinetic equations to describe ab initio initiated nonbranched-chain processes of addition of saturated free-radical to double bonds of unsaturated molecules in binary reaction systems of saturated and unsaturated components. In these processes the formation rate of the molecular addition products (1:1 adducts) as a function of concentration of the unsaturated component reaches a limiting value. Five reaction schemes are suggested for the addition processes. The proposed schemes include the reaction competing with chain propagation reactions through a reactive free radical. The chain evolution stage in these schemes involves three or four types of free radicals. One of them is relatively low-reactive and inhibits the chain process by shortening of the kinetic chain length. Based on the suggested schemes, nine rate equations are deduced using quasi-steady-state treatment. These equations provide good fits for the non-monotonic (peaking) dependences of the formation rates of the molecular products (1:1 adducts) on the concentration of the unsaturated component in the binary systems. The unsaturated compound in these systems is both a reactant and an autoinhibitor generating low-reactive free radicals. A similar kinetic description is applicable to the nonbranched-chain process of the free-radical hydrogen oxidation, in which the oxygen with the increase of its concentration begins to act as an oxidation autoinhibitor (or an antioxidant). The energetics of the key radical-molecule reactions are considered.

Introduction

A free radical may be low-reactive if its unpaired p-electron is delocalized, e.g., over conjugated bonds as in the case of allyl radical CH$_2$=CHCH$_2$ or along a double bond from carbon to the more electronegative oxygen as in the case of formyl radical HĊ=O. The activity of a free radical is also connected to the heat of reaction in which it participates. In nonbranched-chain processes of addition of reactive free radical (addendum) to double bonds of molecules, the formation of rather low-reactive free radicals in reactions, which are parallel to or competing with propagation via a reactive radicals, lead to chain termination, because these low-reactive radicals do not participate in further chain propagation and because they decay when colliding with each other or with chain-carrier reactive radicals thus resulting in inefficient expenditure of the latter and process inhibition.

In similar processes involving the addendum and inhibitor radicals in diffusion controlled bimolecular chain-termination reactions of three types, the dependences of the rate of molecular 1:1 adduct formation on the concentration of the unsaturated component (which is the source of low-reactive free radicals in a binary system of saturated and unsaturated components) have a maximum, usually in the region of small (optimal) concentrations. The progressive inhibition of nonbranched chain processes upon exceeding this optimal concentration may be an element of self-regulation of the natural processes returning them to a steady state condition.

Here, addition reactions of reactive free radicals to multiple bonds of alkene, formaldehyde, and oxygen molecules to give 1:1 adduct radicals are taken as examples to consider the role of low-reactive free radicals as inhibitors of the nonbranched chain processes at moderate temperatures. In the case of oxidation, there are tetraoxyl 1:2 adduct radical arising upon addition of a peroxy 1:1 adduct radical to molecular oxygen at high enough concentrations of the latter.

The 1:1 adduct radical (which is the heaviest and the largest among the free radicals that result from the addition of one addendum radical to the double bond of the molecule) may have an increased energy owing to the energy liberated in the transformation of a double bond to an ordinary bond (30-130 kJ mol$^{-1}$ for the gas phase under standard conditions$^{1-4}$). Therefore, it can decompose or react with one of the surrounding molecules in the place of its formation without diffusing in the solution and, hence, without participating in radical-radical chain termination reactions. Which of the two reactions of the adduct radical, the reaction with the saturated component or the reaction with the unsaturated component, dominates the kinetics of the process will depend on the reactivity and concentration ratios of the components in the binary system.

Earlier5,6 there were attempts to describe such peaking dependences fragmentarily, assuming that the saturated or unsaturated component is in excess, in terms of the direct and inverse proportionality, respectively, that result from the simplification of a particular case of the kinetic equation set up by the quasi-steady-state treatment of binary copolymerization involving fairly long chains.3 This specific equation is based on an irrational function, whose plot is a monotonic curve representing the dependence of the product formation rate on the concentration of the unsaturated component. This curve comes out of the origin of
coordinates, is convex upward, and has an asymptote parallel to the abscissa axis. Replacing the component concentrations with the corresponding mole fractions generates a peak in this irrational function and thereby makes it suitable to describe the experimental data. However, this circumstance cannot serve as a sufficient validation criterion for the mechanism examined, because the new property imparted to the function by the above artificial transformation does not follow from the solution of the set of algebraic equations that are set up for the reaction scheme accepted for the process in a closed system and express the equality of the steady-state formation and disappearance rates of the reactive intermediates.

This publication presents a comprehensive review of the nonbranched-chain kinetic models developed for particular types of additions of saturated free radicals to multiple bonds. It covers free radical additions to alkenes, their derivatives, formaldehyde, and molecular oxygen (which can add an unsaturated radical as well) yielding various 1:1 molecular adducts, whose formation rates as a function of the unsaturated compound concentration pass through a maximum (free radical chain additions to the C≡N bond have not been studied adequately). In the kinetic description of these nontelomerization chain processes, the reaction between the 1:1 adduct radical and the unsaturated molecule, which is in competition with chain propagation through a reactive free radical (PCl$_2$, C$_2$H$_5$CHOH, etc.), is included for the first time in the chain propagation stage. This reaction yields a low-reactive radical (such as CH$_2=$C(CH$_3$)$_2$CH$_2$ or HC≡O) and thus leads to chain termination because this radical does not continue the chain and thereby inhibits the chain process. We will consider kinetic variants for the case of comparable component concentrations with an excess of the saturated component and the case of an overwhelming excess of the saturated component over the unsaturated component. Based on the reaction schemes suggested for the kinetic description of the addition process, we have derived kinetic equations with one to three parameters to be determined directly.

Reducing the number of unknown parameters in a kinetic equation will allow one to decrease the narrowness of the correlation of these parameters and to avoid a sharp build-up of the statistical error in the nonlinear estimation of these parameters in the case of a limited number of experimental data points. The rate constant of the addition of a free radical to the double bond of the unsaturated molecule, estimated as a kinetic parameter, can be compared to its reference value if the latter is known. This provides a clear criterion to validate the mathematical description against experimental data.

The kinetic equations were set up using the quasi-steady-state treatment. This method is the most suitable for processes that include eight to ten or more reactions and four to six different free radicals and are described by curves based on no more than three to seven experimental points. In order to reduce the exponent of the 2k_2[R*_1]2 term in the differential equation to unity, we used the following condition for the early stages of the process: $k_6 = \sqrt{2k_2}2k_7$ and, hence, $V_1 = V_5 + 2V_6 + V_7 = (\sqrt{2k_2} [R^*_1] + \sqrt{2k_7} [R^*_2] [R^*_3][R^*_4] [R^*_5])^{1/2}$. Here, [R*_1] and [R*_2] are the concentrations of the addendum radical and the low-reactive (inhibitor) radical, respectively; V_i is the initiation rate; V_5, $2V_6$, and V_7 are the rates of the three types of diffusion-controlled quadratic-law chain termination reactions: $2k_2$ and $2k_7$ are the rate constants of the loss of identical free radicals via the reactions $R^*_1 + R^*_2$ and $R^*_2 + R^*_3$, respectively; k_6 is the rate constant of the loss of different free radicals via the $R^*_1 + R^*_2$ reaction (Schemes 1–5). The kinetic equations thus obtained fit the peaking rate curves well throughout the range of unsaturated component concentrations in the binary systems. Our mathematical simulation was based on experimental data obtained for γ-radiation-induced addition reactions for which the initiation rate V_i is known. The analysis of stable liquid-phase products was carried out by the gas chromatographic method.

Addition to the C=C bond of alkenes and their derivatives

When reacting with alkenes not inclined to free-radical polymerization, the free radicals originating from inefficient saturated telogens, such as alcohols, aldehydes, and amines, usually add to the least substituted carbon atom at the double bond, primarily yielding a free 1:1 adduct radical. This radical accumulates an energy of 90–130 kJ mol$^{-1}$, which is released upon the transformation of the C≡C bond to an ordinary bond (according to the data reported for the addition of nonbranched C$_1$–C$_3$ alkyl radicals to propane and of similar C$_1$ and C$_2$ radicals to 1-butenes in the gas phase under standard conditions14,46). Such adduct radicals, which do not decompose readily for structural reasons, can abstract the most labile atom from a neighbouring molecule of the saturated or unsaturated component of the binary reaction system, thus turning into a 1:1 adduct molecule.

The consecutive and parallel reactions involved in this free-radical nonbranched-chain addition process are presented below (Scheme 1). In the case of comparable component concentrations with a non-overwhelming excess of the saturated component, extra reaction (1b) ($k_{th} \neq 0$) is included in the initiation stage. In the case of an overwhelming excess of the saturated component reaction (1b) is ignored ($k_{th} = 0$). A comparative study of the concentrations in the binary systems. Our mathematical simulation was based on experimental data obtained for γ-radiation-induced addition reactions for which the initiation rate V_i is known. The analysis of stable liquid-phase products was carried out by the gas chromatographic method.

Comparative kinetic descriptions

In this scheme, I is an initiator (e.g., a peroxide5,12,13), R*_1 is a reactive (initiating) radical, A and B are hydrogen or halogen atoms,2,5,17 R*_2 is \cdotPCl$_2$, \cdotCCl$_3$, alkyl2,5 1-hydroxyalkyl$^{5,6,17–22}$ or a similar functionalized reactive addendum radical,3 R*_3 is an alkyl2,5,17,24 1-hydroxyalkenyl5,17 or a similar functionalized low-reactive (inhibitor).1,18,23,24 R*_3 is a saturated reactive 1:1 adduct radical, R$_n$A, R$_n$B, and R$_n$A are saturated molecules, R$_n$B is an unsaturated molecule (alkene or its derivative) and R$_n$A and R$_n$B are 1:1 adduct molecules. Prod designates the molecular products resulting from the dimerization or disproportionation of free radicals. The chain evolution (propagation and inhibition) stage of Scheme 1 includes consecutive reactions 2 and 3, parallel...
The rates of the formation (V, mol dm\(^{-3}\) s\(^{-1}\)) of the 1:1 adducts R\(_3\)A (via a chain mechanism) and R\(_3\)B (via a nonchain mechanism) in reactions 3 and 4 are given by the eqns. (1) and (2) where \(V\) is the rate of the initiation reaction 1; \(I = [R_1; A]\) and \(x = [R_2; B]\) are the molar concentrations of the initial components, with \(I > x; k_2\) is the rate constant of the addition of the \(R_1^*\) radical from the saturated component R\(_1\)A to the unsaturated molecule R\(_2\)B (reaction 2) and \(\gamma = k_{21}/k_{12}\) and \(\alpha = k_{2b}/k_{1b}\) are the rate constant ratios for competing (parallel) reactions (\(\alpha\) is the first chain-transfer constant for the free-radical telomerization process\(^3\)). The rate ratio for the competing reactions is \(V_3/V_4 = \alpha/d\), and the chain length is \(\nu = V_3/V_1\).

The number of unknown kinetic parameters to be determined directly (\(k_2, \alpha, \gamma\) and \(\gamma\)) can be reduced by introducing the condition \(\gamma \equiv \alpha\), which is suggested by the chemical analogy between the competing reactions pairs 1a-1b and 3-4. For example, the ratios of the rate constants of the reactions of ‘OH, CH\(_3\)O’, ‘CH\(_3\)I, NO\(_2\)’ and H\(_2\)PO\(_4\) with methanol to the rate constants of the reactions of the same radicals with ethanol in aqueous solution at room temperature are 0.4–0.5,5,26

For the same purpose, the rate constant of reaction 2 in the kinetic equation can be replaced with its analytical expression \(k_2 = \alpha l_m \sqrt{2k_1V_1/x_m}\), which is obtained by solving the quadratic equation following from the reaction rate extremum condition \(\partial V_{3,4}/\partial \lambda = 0\), where \(\lambda = (1:1\text{Adduct})/\lambda_0\) is the concentration of the 1:1 adduct.

After these transformations, the overall formation rate equation for the 1:1 adducts R\(_3\)A and R\(_3\)B (which may be identical, as in the case of R\(_3\)H\(^8,9,12,13,18-21\)) appears as eqns. (3) and (3a) where \(l_m\) and \(x_m\) are the component concentrations \(l\) and \(x\) at the points of maximum of the function. Provided that \(V_1\) is known, the only parameter in eqn. (3a) to be determined directly is \(\alpha\). If \(V_1\) is known only for the saturated component R\(_1\)A, then, for the binary system containing comparable R\(_1\)A and R\(_2\)B concentrations, it is
better to use the quantity $\lambda V \gamma$, where $\lambda = l(l + x)$ is the mole fraction of R_1A, in place of V_γ in eqns. (3) and (3a).

$$V_{3,4}(1:1 \text{ Adduct}) = \frac{V_{4a}k_{x}x}{k_{x}x^2 + (a + l)x}\sqrt{2k_3V_1}$$

(3)

$$= \frac{V_{4a}lx}{x^2 + (a + l)x\sqrt{a}\alpha\chi},$$

(3a)

The two variable concentrations in the kinetic eqn. (3), l and χ, can be reduced to one variable by replacing them with the corresponding mole fractions. Substituting the expression $k_2 = \{\alpha(1/\chi_m) - 1\}/\sqrt{2k_3V_1/(l_m + x_m)}$, derived from the rate extremum condition, into this transformed equation for the binary system containing comparable component concentrations, we obtain eqn. (3b) where $1 - \chi = l(l + x)$ and $\chi = x(l + x)$ are the mole fractions of the components R_1A and R_2B ($0 < \chi < 1$), respectively, and x_m is the χ value at the point of maximum.

$$V_{3,4}(\text{Adduct} 1:1) = \frac{V_{4a}(1 - \chi)x}{x^2 + [\alpha(1 - \chi) + \chi]\{\alpha(1/\chi_m) - 1\} - 1}$$

(3b)

The overall formation rate of the 1:1 adducts R_1A and R_2B is a sophisticated function of the formation and disappearance rates of the radicals R_1^* and R_2^* i.e., $v(R_1A, R_2B) = (V_{1a} + V_{3a} - V_3 - V_4 - V_4 - V_5)$. The application of the above rate equations to particular single nonbranched-chain additions is illustrated in Figure 1. Curve I represents the results of simulation in terms of eqn. (3b) for the observed 1:1 adduct formation rate as a function of the mole fraction of the unsaturated component in the phosphorus trichloride–methylpropene reaction system at 303 K. In an earlier work, the methylpropene concentration in this system was overvalued by a factor of 1.7 when it was derived from the mole fractions given in.

In this simulation, the 60Co γ-radiation dose rate was set at $P = 0.01$ Gy s$^{-1}$ and the initiation yield was taken to be $G(\text{PCl}_3) = 2.8$ particles per 100 eV (1.60 × 10$^{-17}$ J) of the energy absorbed by the solution. The product of reaction 3 is $\text{Cl}_2\text{PCH}_2\text{C}(\text{Cl})\text{CH}_2\text{CH}_3$ (two isomers), $V_1 = 4.65 \times 10^{-9}$ mol dm$^{-3}$ s$^{-1}$ at $\chi = 0$, and $2k_3 = 3.2 \times 10^{8}$ dm3 mol$^{-1}$ s$^{-1}$, which leads to $a = (2.5 \pm 0.4) \times 10^4$, and the rate constant of reaction 2 derived from this a value is $k_2 = (1.1 \pm 0.2) \times 10^4$ dm3 mol$^{-1}$ s$^{-1}$.

Note that, if the R_2B bond dissociation energy for the unsaturated component of the binary system is approximately equal to or above, not below, the R_1A bond dissociation energy for the saturated component, then the rate of reaction 4 relative to the rate of the parallel reaction 3 (chain propagation through the reactive free radical R_1^*) will be sufficiently high for adequate description of R_1A and R_2B adduct formation in terms of eqns. (1)-(3b) only at high temperatures. In the phosphorus trichloride–propene system, the difference between the R_2B (B = H) and R_1A (A = Hal) bond dissociation energies in the gas phase under standard conditions [1] is as small as 5 kJ mol$^{-1}$, while in the tetrachloromethane–methylpropene (or cyclohexene) and bromoethane–methyl-2-butene systems, this difference is 20.9 (37.7) and \sim24 kJ mol$^{-1}$, respectively.

Figure 1. Reconstruction of the functional dependences (curves) of the product formation rates $V_{3,4}(1, \gamma)$ on the mole fraction of the unsaturated component (γ) from empirical data (symbols) using Eqn. (3b) (model optimization with respect to the parameter a) for the phosphorus trichloride–methylpropene reaction system at 303 K19 (standard deviation of $\gamma_r = 2.38 \times 10^{-7}$) and (2, \circ) on the concentration of the unsaturated component (x) from empirical data (symbols) using Eqn. (4a) (model optimization with respect to V_{1a}, x_m, and a) for the 2-propanol–2-propan-1-ol system at 433 K23 ($\gamma_r = 5.91 \times 10^{-7}$).

Excess of the saturated component

If the concentration of the saturated component exceeds the concentration of the unsaturated component in the binary system, reaction 1b can be neglected. If this is the case ($k_{1b} = 0$), then, in the numerators of the rate equations for reactions 3 and 4 (eqns. (1) and (2)), $d/l(l + x)$ = 1 and the overall rate equation for the formation of the 1:1 adducts R_1A and R_2B will appear as

$$V_{3,4}(1:1 \text{ Adduct}) = \frac{V_{4a}(a + l)x}{k_{x}x^2 + (a + l)x}\sqrt{2k_3V_1}$$

(4)

$$= \frac{V_{4a}x}{x^2 + (a + l)x\sqrt{a}\alpha\chi}$$

(4a)

where the parameters are designated in the same way as in eqns. (1)-(3a), $l > x$, and χ is determined from the condition $\partial V_{3,4}(1:1 \text{ Adduct})/\partial \chi = 0$.

Eur. Chem. Bull., 2018, 7(3), 123-142

DOI: 10.17628/ecb.2018.7.123-142

126
The rate equations for the chain termination reactions 5–7 (Scheme 1, $k_{1b} = 0$) are identical to eqns. (12)-(14) (see below) with $\beta = 0$.

If it is necessary to supplement Scheme 1 for $k_{1b} = 0$ with the formation of R$_1$B via the possible nonchain reaction 2a, the parameter k_{2a} should be included in the denominator of eqn. (4) to obtain $k_2 x^2 + (a + x)(k_{2a} x + \sqrt{2k_3 V_1})$. The analytical expression for k_2 in the case of $k_{2a} \neq 0$ is identical to the expression for k_2 in eqn. (4). The equation for the rate $V_{2b}(R/B)$ can be derived by replacing k_2 with k_{2a} in the numerator of eqn. (4) containing k_{2a} in its denominator.

Curve 2 in Figure 1 illustrates the good fit between eqn. (4a) and the observed 1:1 adduction rate as a function of the concentration of the unsaturated component in the reaction system 2-propanol–2-propen-1-ol at 433 K. In this description, we used a 60Co γ-radiation dose rate of $P = 4.47$ Gy s$^{-1}$. The product of reactions 3 and 4 is $\text{CH}_3\text{CH}=(\text{CH}_2)\text{O}\text{CH}_2\text{CH}_2\text{OH}$, and $2k_2 = 1.0 \times 10^{10}$ dm3 mol$^{-1}$ s$^{-1}$. The following parameters were obtained: $V_1 = (3.18 \pm 0.4) \times 10^6$ mol dm$^{-3}$ s$^{-1}$, $x_m = (3.9 \pm 0.5) \times 10^{-2}$ mol dm$^{-3}$, and $\alpha = (6.8 \pm 0.8) \times 10^{-2}$. The rate constant of reaction 2 derived from this α is $k_2 = (1.0 \pm 0.14) \times 10^9$ mol$^{-1}$ s$^{-1}$.

Addition to the C=O bond of formaldehyde

Free radicals add to the carbon atom at the double bond of the carbonyl group of dissolved free (unsolvated, monomer) formaldehyde. The concentration of free formaldehyde in the solution at room temperature is a fraction of a percent of the total formaldehyde concentration, which includes formaldehyde chemically bound to the solvent. The concentration of free formaldehyde exponentially increases with increasing temperature. The energy released as a result of this addition, when the C=O bond is converted into an ordinary bond, is 50 to 60 kJ mol$^{-1}$ (according to the data on the addition of C$_2$–C$_3$ alkyl radicals in the gas phase under standard conditions)$. The resulting free 1:1 adduct radicals can both abstract hydrogen atoms from the nearest-neighbour molecules of the solvent or unsolvated formaldehyde and, due to its structure, decompose by a monomolecular mechanism including isomerization

Addition of Free 1-Hydroxyalkyl Radicals with Two or More Carbon Atoms

Free 1-hydroxyalkyl radicals, which result from the abstraction of a hydrogen atom from the carbon atom bonded to the hydroxyl group in molecules of saturated aliphatic alcohols except methanol under the action of chemical initiators9,30 light17,31 or ionizing radiation32,33 add at the double bond of free formaldehyde dissolved in the alcohol, forming 1,2-alkanediols$^{8,9,12,29-36}$ carbonyl compounds, and methanol8,33 via the chain mechanism. The yields of the latter two products in the temperature range of 303 to 448 K are one order of magnitude lower. In these processes, the rate determining role in the reactivity of the alcohols can be due to desolvation of formaldehyde in alcohol–formaldehyde solutions, which depends both on the temperature and on the polarity of the solvent28,33.

For the γ-radiolysis of 1(or 2)-propanol–formaldehyde system at a constant temperature, the dependences of the radiation-chemical yields of 1,2-alkanediols and carbonyl compounds as a function of the formaldehyde concentration show maxima and are symmetric8,32. For a constant total formaldehyde concentration of 1 mol dm$^{-3}$, the dependence of the 1,2-alkanediol yields as a function of temperature for 303–473 K shows a maximum, whereas the yields of carbonyl compounds and methanol increase monotonically33 along with the concentration of free formaldehyde. In addition to the above products, the nonchain mechanism in the γ-radiolysis of the solutions of formaldehyde in ethanol and 1- and 2-propanol gives ethanediol, carbon monoxide, and hydrogen in low radiation-chemical yields, which, however, exceed the yields of the same products in the γ-radiolysis of individual alcohols8,9,33. The available experimental data can be described in terms of Scheme 2.

Chain initiation

1. $1 \rightarrow 2R';$

2. $R'O + \text{ROH} \rightarrow R' + \text{ROH}.$

Chain propagation

2. $R'(\cdot \text{H})\text{O} + \text{CH}_2\text{O} \rightarrow R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O};$

3. $R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O} + \text{ROH} \rightarrow R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O} + R'\cdot \text{OH};$

3a. $R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O} \rightarrow R'\cdot \text{CH}_2\text{OH} + \cdot \text{CH}_2\text{OH};$

3b. $\cdot \text{CH}_2\text{OH} + \text{ROH} \rightarrow \cdot \text{CH}_2\text{OH} + R'\cdot \text{H}O.$

Inhibition

4. $R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O}' + \text{CH}_2\text{O} \rightarrow R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O} + \cdot \text{CHO}.$

Chain termination

5. $2R'(\cdot \text{H})\text{O} \rightarrow 2R'(\cdot \text{H})(\cdot \text{O})\text{CH}_2\text{O}$(or: $\text{ROH} + R'\cdot \text{H}O + R'\cdot \text{R}'\cdot \text{CO});$

6. $R'(\cdot \text{H})\text{O} + \cdot \text{CHO} \rightarrow R'(\cdot \text{H})(\cdot \text{O})\text{CHO}$ (or: $R'(\cdot \text{H})\text{O} + \text{CH}_2\text{O},$

$R'\cdot \text{R}'\cdot \text{CO} + \text{CH}_2\text{O},$ $\text{ROH} + \text{CO});$

7. $2\cdot \text{CHO} \rightarrow \text{HCOCHO}$ (or: $\text{CH}_2\text{O} + \text{CO}, 2\text{CO} + \text{H}_2).$

Scheme 2. Addition of free 1-hydroxyalkyl radicals to formaldehyde.

Eur. Chem. Bull., 2018, 7(3), 123-142

DOI: 10.17628/ecb.2018.7.123-142

127
In these reactions, I is an initiator, e.g., a peroxide; R, a reactive radical (initiator radical); R an alkyl group; ROH, a saturated aliphatic alcohol, either primary or secondary, beginning from ethanol; CHOH, the hydroxymethyl fragment radical; R-OH, the reactive 1-hydroxyalkyl addendum radical, beginning from 1-hydroxyethanol; R-h(OH)CH(OH)O', the reactive hydroxyalkoxyl 1:1 adduct radical; CHOH, the low-reactive formyl radical (inhibitor radical); R-H, the molecular product; R-OH(OH)CH(OH)O, 1,2-alkanediol; R-(C=O)OH, an aldehyde in the case of a primary alcohol and an R'R''CO ketone in the case of a secondary alcohol; R-(C=O)OH, a vicinal alkanediol and R-(C=O)CHO, a hydroxylaldehyde. The chain evolution stage of Scheme 2 includes consecutive reaction pairs 2–3, 2–4, and 3a–3b, parallel (competing) reaction pairs 3–3a, 3–3b, 3–4, and 3a–4 and consecutive–parallel reactions 2 and 4.

Scheme 2 does not include the same types of radical–molecule reactions as were considered for Scheme 1. In addition, it seems unlikely that free adduct radicals will add to formaldehyde at higher temperatures. An addition reaction is unlikely because this would result in an ether bond. The addition of hydroxymethyl radicals to formaldehyde, which is in competition with reaction 3b, is not included as well, because there is no chain formation of ethanediol at 303-448 K.33 At the same time, small amounts of ethanediol can form via the dimerization of a small fraction of hydroxymethyl radicals, but this cannot have any appreciable effect on the kinetics of the overall process. The addition of free formyl radicals to formaldehyde cannot proceed at a significant rate, indicated by the lack of formation of glycol aldehyde in the systems examined.33

The mechanism of the decomposition of the free adduct radical via reaction 3a, which includes the formation of an intramolecular H–O bond and isomerization, can be represented as follows:8,9,12

\[R_1-H + CH_2 = CH-CH_2 + \rightarrow R_2\text{CH}_2\text{HO} + CHOH. \]

Scheme 2. Possible mechanism of reaction 3a.

The probability of the occurrence of reaction 3a should increase with increasing temperature. This is indicated by experimental data presented above.8,9,12 The decomposition of the hydroxyalkoxyl radical. R-(O)(OH)CH(OH)O' (reaction 3a) is likely to be endothermic. The endothermic nature of reaction 3a is indirectly indicated by the fact that the decomposition of simple C2–C4 alkoxy radicals RO' in the gas phase is accompanied by heat absorption (\(\Delta H^f_{298} = 30–90 \text{ kJ mol}^{-1} \)). Reaction 3b, subsequent to reaction 3a, is exothermic, and its heat for C2–C4 alcohols in the gas phase is \(\Delta H^f_{298} = -40 \text{ to } -60 \text{ kJ mol}^{-1} \). As follows from the above scheme of the process, reactions 3a and 3b, in which the formation and consumption of the highly reactive free radical hydroxymethyl take place (at equal rates under steady-state conditions), can be represented as a single bimolecular reaction 3a, b occurring in a "cage" of solvent molecules.

The free formyl radical resulting from reaction 4, which is in competition with reactions 3 and 3a, is comparatively low-reactive because its spin density can be partially delocalized from the carbon atom via the double bond toward the oxygen atom, which possesses a higher electron affinity.1 For example, in contrast to the methyl and alkoxyl \(\pi \)-radicals, the formyl \(\sigma \)-radical can be stabilized in glassy alcohols at 77 K.34 In gas phase, the dissociation energy of the C–H bond in formyl radicals is half that for acetyl radicals and is about 5 times lower than the dissociation energy of the C=C–H bond in saturated C1–C3 alcohols.1

As distinct from reactions 3 and 3a, b, reaction 4 leads to an inefficient consumption of hydroxyalkoxyl adduct radicals, without regenerating the initial 1-hydroxyalkyl addendum radicals. Reaction 4 together with reaction 6 (mutual annihilation of free formyl and chain-carrier 1-hydroxyalkyl radicals) causes the inhibition of the nonbranched-chain process. For the disproportionation of the free radicals, the heats of reactions 5–7 for C1–C3 alcohols in the gas phase vary in the range of \(\Delta H^f_{298} = -135 \text{ to } -385 \text{ kJ mol}^{-1} \).1,4

The rates of the chain formation of 1,2-alkanediols in reaction 3 (and their nonchain formation in reaction 4), carbonyl compounds in reaction 3a, and methanol in reaction 3b are given by the following equations, where \(V_i \) is the initiation rate, \(l \) is the molar concentration of the saturated alcohol at a given total concentration of formaldehyde dissolved in it, \(x \) is the molar concentration of free formaldehyde (\(l \gg x \)), \(k_2 \) is the rate constant of reaction 2 (addition of 1-hydroxyalkyl free radical to free formaldehyde), and \(\alpha = k_l/k_4 \) and \(\beta = k_3/k_4 \) (mol dm\(^{-3}\)) are the ratios of the rate constants of the competing (parallel) reactions. The alcohol concentration in alcohol–formaldehyde solutions at any temperature can be estimated by the method suggested in.38,39 The data necessary for estimating the concentration of free formaldehyde using the total formaldehyde concentration in the solution are reported by Silaev et al.28,29

\[V_{3a}(R_{4}4(OH)(CH_{2}OH)) = \frac{V_l(\alpha l + x)k_2x}{k_2x^2 + (\alpha l + \beta + x)\sqrt{2k_4V_l}}, \quad (5) \]

\[V_{3b}(R_{2}2(H)O) = V_{3a}(CH_{2}OH) = \frac{V_l\beta k_2x}{k_2x^2 + (\alpha l + \beta + x)\sqrt{2k_4V_l}}, \quad (6) \]

Estimates of 2ks were reported by Silaev et al.39,40 From the extremum condition for the reaction 3a rate function, \(\partial V_{3a}/\partial x = 0 \), we derived the following analytical expression:

\[k_2 = (\alpha l_m + \beta)\sqrt{2k_4V_l}/x_m^2. \]

The overall process rate is a complicated function of the
formation and disappearance rates of the \(\text{R}_1\text{t}_{10}\text{OH} \) and \(\text{CHO} \)
free radicals: \(\nu(\text{R}_1\text{t}_{10}\text{OH})\text{CH}_2\text{OH}, \text{R}_218\text{HO}, \text{CH}_2\text{OH} = V_{1a} + V_3 + V_{3b} - V_4 + V_5 + V_5 \). The ratios of the rates of the competing reactions are \(V_5/V_4 = \alpha/\beta \) and \(V_{3a}/V_3 = \beta/\alpha \), and the chain length is \(\nu = (V_5 + V_{3a})/V_4 \). The ratio of the rates of formation of 1,2-alkanediol and the carbonyl compound is a simple linear function of \(x \):

\[
V_{3a}(\text{R}_1\text{t}_{10}\text{OH})\text{CH}_2\text{OH}/V_{3a}(\text{R}_218\text{HO}) = (k_3/k_{3a})x + (k_3/k_{3a})l.
\]

The equations for the rates of chain-termination reactions 5–7 are identical to eqns. (12)-(14).

Neutral formaldehyde solutions in alcohols at room temperature primarily consist of a mixture of formaldehyde polymer solvates reversibly bound to alcohols. These polymer solvates differ in molecular mass and have the general formula \(\text{RO} \left(\text{CH}_2\text{OH}\right)_n\text{H} \), where \(n = 1-4 \). The concentration of formaldehyde that occurs in solution as a free, unsolvated active species chemically unbound to the solvent (this species is capable of scavenging free radicals) at room temperature is lower than 1% of the total formaldehyde concentration. The concentration \(x \) of the free formaldehyde species in solutions was determined by high-temperature UV spectrophotometry in the range 335–438 K at the total formaldehyde concentration \(c_0 \) (free and bound species including the concentration of polymer solvates) of 1.08.4 mol dm\(^{-3}\) in water, ethanediol, methanol, ethanol, 1-propanol, 2-propanol, and 2-methyl-2-propanol (see Table of the Appendix). This concentration increases with temperature according to an exponential law, and it can be as high as a few percent of the total concentration in solution under the test conditions, up to 19.3% in the case of 2-methyl-2-propanol at a total concentration of 1.0 mol dm\(^{-3}\) and a temperature of 398 K. The following empirical equation relating the concentration \(x \) (mol dm\(^{-3}\)) of free formaldehyde to temperature \(T \) (K) and the total concentration \(c_0 \) in the solution (measured at room temperature), was developed by the treatment of 101 data points, where the coefficients \(a \) and \(b \) were calculated as the parameters of a straight-line equation by the least-squares technique from the dependence of \(\log x \) on \(1/T \) at \(c_0 = 1.0 \) mol dm\(^{-3}\) for various solvents, and the coefficient \(h \) was obtained as the average value of the slopes of \(\log x \) as linear functions of \(\log c_0 \) at various series of fixed temperatures.

Table 1. Coefficients of eqn. (7) for the estimation of the concentration \(x \) of free formaldehyde in polar solvent–formaldehyde systems.

Solvent	Coefficient	Coefficient	Coefficient
	\(a \)	\(b \)	\(h \)
Water	2.36	4.45	0.80
Ethanol	1.83	2.60	1.28
Methanol	3.11	5.58	0.22 \(c_0/\log c_0 \)
Ethanol	3.10	5.92	1.10 (\(10^3/T \) – 1.44)
Propanol	2.42	4.47	0.10
2-Propanol	2.42	4.64	1.05
2-Methyl-2-propanol	3.19	7.31	0.96

\[
\log x = -a \left(10^3/T\right) + b + h \log c_0, \quad (7)
\]

The coefficients for each solvent are summarized in Table 1. As regards the experimental data, the error in the calculations of the concentration \(x \) of free formaldehyde made by eqn. (7) in the specified temperature range was no higher than 25%.

On the assumption that the dependence of the density of a given solution on the concentration of formaldehyde is similar to the analogous linear dependence found for aqueous formaldehyde solutions (0–14 mol dm\(^{-3}\), 291 K), the concentrations \(h \) (mol dm\(^{-3}\)) of alcohols–formaldehyde solutions at a certain temperature can be estimated by eqn. (8), where \(c_0 \) is the total formaldehyde concentration (mol dm\(^{-3}\)); \(M \) is the molecular mass (g mol\(^{-1}\)) of the solvent; \(d \) and \(dt \) are the solvent densities (g cm\(^{-3}\)) at room and given temperatures, respectively; the coefficients 8.4 \(\times \) 10\(^{-3}\) and 21.6 have the units of 10^\(^{-7}\) g mol\(^{-1}\) and g mol\(^{-1}\), respectively.

\[
I_T = \frac{(10^3d - 21.6c_0)dt}{(d + 10^3c_0)M}, \quad (8)
\]

Earlier, it was found that the concentration \(x \) of the free formaldehyde species decreased with the solvent permittivity \(D_{298} \) at a constant temperature. Water is an exception. Although water is more polar than alcohols, the concentration \(x \) of free formaldehyde in an aqueous solution is anomalously high and reaches the level of its concentration in 2-propanol, all other factors being the same (Figure 2). This can be due to the specific instability of hydrated formaldehyde species and the ease of their conversion into free formaldehyde with increasing temperature.

![Figure 2](image-url)
The addition of a free radical or an atom to one of the two multiply bonded atoms of the oxygen molecule yields a peroxyl free radical and thus initiates oxidation, which is the basic process of chemical evolution. The peroxyl free radical then abstracts the most labile atom from a molecule of the compound being oxidized or decomposes to turn into a molecule of an oxidation product. The only reaction that can compete with these two reactions at the chain evolution stage is the addition of the peroxyl radical to the oxygen molecule (provided that the oxygen concentration is sufficiently high). This reaction yields a secondary, tetraoxylalkyl, 1:2 adduct radical, which is the heaviest and the largest among the reactants. It is less reactive than the primary, 1:1 peroxyl adduct radical and, as a consequence, does not participate in further chain propagation. At moderate temperatures, the reaction proceeds via a nonbranched-chain mechanism.

Addition of hydroxymethyl radicals

The addition of hydroxymethyl radicals to the carbon atom at the double bond of free formaldehyde molecules in methanol, initiated by the free-radical mechanism, results in the chain formation of ethanediol.

Addition to Oxygen

Usually, the convex curve of the hydrocarbon (RH) autooxidation rate as a function of the partial pressure of oxygen ascends up to some limit and then flattens out. When this is the case, the oxidation kinetics is satisfactorily describable in terms of the conventional reaction scheme, which involves two types of free radicals. These are the hydrocarbon radical R’ (addendum radical) and the addition product RO2’ (1:1 adduct radical). However, the existing mechanisms are inapplicable to the cases in which the rate of initiated oxidation as a function of the oxygen concentration has a maximum (Figures. 4, 5). Such dependences can be described in terms of the competition kinetics of free-radical chain addition, whose reaction scheme involves not only the above two types of free radicals, but also the RO2’ radical (1:2 adduct) inhibiting the chain process.

Addition of hydrocarbon free radicals

Chain initiation

1. \(1 \xrightarrow{2k_1} 2R'_0 \);
2. \(R'_0 + RH \xrightarrow{k_{1a}} R'_0H + R' \).

Chain propagation

2. \(R' + O_2 \xrightarrow{k_{2a}} RO_2' \);
3. \(RO_2' + RH \xrightarrow{k_{3a}} ROH + R'O \) (or \(RO + RO' \));
4. \(RO_2' \xrightarrow{k_{3a}} R' + ROH + R'O \) (or \(RO_2 + HO + HO' \)).
3b. $R''O'\left(R'O\right) + RH \xrightarrow{k_{3b}} R''OH\left(ROH\right) + R'$

(or $'OH + RH \xrightarrow{k_{3b}} H_2O + R'$).

Inhibition

4. $RO_2^+ + O_2 \xrightarrow{k_i} RO_4^-$.

Chain termination

5. $2R' \xrightarrow{2k_5} RR$

(or $R_{c-21}H + RH$);

6. $R' + RO_4^+ \xrightarrow{k_{6b}} RH + R_{c-21}HO + O_3$

(or: ROH + R_{c-21}HO + O_2)

$\xrightarrow{ROR + O_3; RO_2R + O_3};$

7. $2RO_4^- \xrightarrow{2k_7} RO_2R + 2O_3$.

Scheme 3. Kinetic model of oxidation.

The only difference between the kinetic model of oxidation represented by Scheme 3 and the kinetic model of the chain addition of 1-hydroxyalkyl radicals to the free (unsolvated) form of formaldehyde in nonmethanolic alcohol–formaldehyde systems#8 (Scheme 2) is that in the former does not include the formation of the molecular 1:1 adduct via reaction 4.

The decomposition of the initiator I in reaction 1 yields a reactive R_0^+ radical, which turns into the ultimate product R_0H via reaction 1a, generating an alkyl radical R', which participates in chain propagation. In reaction 2, the addition of the free radical R' to the oxygen molecule yields a reactive alkylperoxyl 1:1 adduct radical RO_2^-, which possesses increased energy owing to the energy released upon the conversion of the $O=O$ bond into the ordinary bond $RO−O^-$ (for addition in the gas phase under standard conditions, this energy is 115-130 kJ mol$^{-1}$ for C_1-C_4 alkyl radicals1,2,4 and 73 kJ mol$^{-1}$ for the allyl radical5). Because of this, the adduct radical can decompose (reaction 3a) or react with some neighboring molecule (reaction 3 or 4) on the spot, without diffusing in the solution and, accordingly, without entering into any chain termination reaction. In reaction 3, the interaction between the radical adduct RO_2^- and the hydrocarbon molecule RH yields, via a chain mechanism, the alkyl hydroperoxide ROH (this reaction regenerates the chain carrier R' and, under certain conditions, can be viewed as being reversible6) or the alcohol ROH (this is followed by the regeneration of R' via reaction 3b). The latter (alternative) pathway of reaction 3 consists of four steps, namely, the breaking of old bonds and the formation of two new bonds in the reacting structures. In reaction 3a, the isomerization and decomposition of the alkylperoxyl radical adduct RO_2^- with O-O and C-O or C-H bond breaking take place,6,44 yielding the carbonyl compound $R(\cdot H)\text{HO}$ or $R_{c-21}\text{HO}$. Reaction 3b produces the alcohol $R''\text{OH}$ or water and regenerates the free radical R' (here, R' and R'' are radicals having a smaller number of carbon atoms than R). As follows from the above scheme of the process, consecutive reactions 3a and 3b (whose rates are equal within the quasi-steady-state treatment), in which the highly reactive fragment, oxyl radical $R'O^-$ (or $'OH$) forms and then disappears, respectively, can be represented as a single, combined bimolecular reaction 3a, b occurring in a "cage" of solvent molecules. Likewise, the alternative (parenthesized) pathways of reactions 3 and 3b, which involve the alkoxy radical RO', can formally be treated as having equal rates. For simple alkyl C_1-C_4 radicals R, the pathway of reaction 3 leading to the alkyl hydroperoxide RO_2H is endothermic ($\Delta H_{298} = 30\text{-}80\text{ kJ mol}^{-1}$) and the alternative pathway yielding the alcohol ROH is exothermic ($\Delta H_{298} = -120\text{ to }-190\text{ kJ mol}^{-1}$), while the parallel reaction 3a, which yields a carbonyl compound and the alkoxy radical $R'O^-$ or the hydroxyl radical $'OH$, is exothermic in both cases ($\Delta H_{298} = -80\text{ to }-130\text{ kJ mol}^{-1}$), as also is reaction 3b ($\Delta H_{298} = -10\text{ to }-120\text{ kJ mol}^{-1}$), consecutive to reaction 3a, according to thermochemical data for the gas phase.2,4 In reaction 4, which is competing with (parallel to) reactions 3a and 3b (chain propagation through the reactive radical R'), the resulting low-reactive radical that does not participate in further chain propagation and inhibits the chain process is supposed to be the alkyltetraoxyl 1:2 radical adduct RO'_4^-, which has the largest weight and size. This radical is possibly stabilized by a weak intramolecular $H\cdots-O$ hydrogen bond44 shaping it into a six-membered cyclic structure (seven-membered cyclic structure in the case of aromatic and certain branched acyclic hydrocarbons.56,57

4. $RO_2^+ + O_2 \xrightarrow{k_i} \equiv \left[RO\left(\cdot H\right)\text{HO}_4\right]^*$.

Scheme 3. Possible mechanism of reaction 4.

It has been hypothesized that raising the oxygen concentration in the α-xylene–oxygen system can lead to the formation of the $[ROO\cdots-O_2]$ intermediate complex45 similar to the $[ROO\cdots(\pi\text{-bond})RH]$ complex between the alkylperoxyl 1:1 adduct radical and an unsaturated hydrocarbon suggested in this work. The electronic structure of the π-complexes is considered elsewhere.48 thermochemical data are available for some polyol free radicals (the enthalpy of formation of the methyltetraoxyl radical without the energy of the possible intramolecular OH bond12) and the hydroxyl radical $'OH$, is exothermic in both cases ($\Delta H_{298} = -80\text{ to }-130\text{ kJ mol}^{-1}$), as also is reaction 3b ($\Delta H_{298} = -10\text{ to }-120\text{ kJ mol}^{-1}$), consecutive to reaction 3a, according to thermochemical data for the gas phase.2,4 In reaction 4, which is competing with (parallel to) reactions 3a and 3b (chain propagation through the reactive radical R'), the resulting low-reactive radical that does not participate in further chain propagation and inhibits the chain process is supposed to be the alkyltetraoxyl 1:2 radical adduct RO'_4^-, which has the largest weight and size. This radical is possibly stabilized by a weak intramolecular $H\cdots-O$ hydrogen bond44 shaping it into a six-membered cyclic structure (seven-membered cyclic structure in the case of aromatic and certain branched acyclic hydrocarbons.56,57

Thermochemical data are available for some polyol free radicals (the enthalpy of formation of the methyltetraoxyl radical without the energy of the possible intramolecular hydrogen bond $H\cdots-O$ taken into account is $\Delta H_{298}(CH\text{O}_4\cdot) = 121.3\pm 15.3\text{ kJ mol}^{-1}$) and polyoxides ($\Delta H_{298}(CH\text{O}_4OH) = -210.0$ \pm 9 kJ mol$^{-1}$).49 These data were obtained using the group contribution approach. Some physicochemical and geometric parameters were calculated for the methyl hydrotetroxide molecule as a model compound.50,52 The IR spectra of dimethyl tetroxide with isotopically labeled groups in Ar–O$_2$ matrices are also reported.53 For reliable determination of the number of oxygen atoms in an oxygen-containing species, it is necessary to use IR and EPR spectroscopy in combination with the isotope tracer method.53
Note that the \(R_1\cdot \text{H} \cdots \text{O(O)}_3 \) ring consisting of the same six atoms (C, H, and 4O), presumably with a hydrogen bond, also forms in the transition state of the dimerization of primary and secondary alkylperoxy radicals \(RO_2^* \) via the Russell mechanism.

Reaction 4 in the case of the methylperoxy radical \(\text{CH}_3\text{O}_2^* \), addition to the oxygen molecule to yield the methyltetroxyl radical \(\text{CH}_3\text{O}_2^* \), takes place in the gas phase, with heat absorption equal to \(110.0 \pm 18.6 \) kJ mol\(^{-1}\) (without the energy of the possible formation of a hydrogen bond taken into account).\(^{49}\) The exothermic reactions 6 and 7, in which the radical \(R' \) or \(RO_2^* \) undergoes disproportionation, include the isomerization and decomposition of the \(RO_2^* \) radical (taking into account the principle of detailed balance for the various pathways of formation of products, whose numbers in the elementary reaction should not exceed three for possible involvement in the triple collisions in the case of the reverse reaction, since the probability of simultaneous interaction of four particles is negligible). The latter process is likely accompanied by chemiluminescence typical of hydrocarbon oxidation.\(^{52}\) It may be noted that the alkylperoxy radicals \(RO_2^* \) are effective quenchers of singlet oxygen \(O_2(\alpha \Delta_0) \).\(^{58}\) These reactions regenerate oxygen as \(O_2 \) molecules, including singlet oxygen,\(^{52,59}\) and partially, as \(O_3 \) molecules and yield the carbonyl compound \(\text{RC}_2\text{H}_2\text{HO} \), possibly in the triplet excited state.\(^{53}\) Depending on the decomposition pathway, the other possible products are alcohol ROH, ether ROR, and alkyl peroxy RO2-R. It is likely that the isomerization and decomposition of the \(RO_2^* \) radical \(\text{via} \) reactions 6 and 7 can take place through the breaking of a C-C bond to yield carbonyl compounds, alcohols, ethers, and organic peroxides containing fewer carbon atoms than the initial hydrocarbon, as in the case of the alkylperoxy radical \(RO_2^* \) in reaction 3a. At later stages of oxidation and at sufficiently high temperatures, the resulting aldehydes can be further oxidized into respective carboxylic acids. They can also react with molecular oxygen so that a C-H bond in the aldehyde molecule breaks to yield two free radicals (\(\text{HO} \) and \(\text{R'} \)) or \(\text{R}_2\text{O}_2\text{HO} \). This process, like possible ozone decomposition yielding an ‘O’ atom or peroxy decomposition with \(O=O \) bond breaking, leads to degenerate chain branching.\(^{6}\)

The equations describing the rates of formation of molecular products at the chain propagation and termination stages of the above reaction scheme, using the quasi-steady-state treatment, appear as follows, where \(V_1 \) is the initiation rate, \(\alpha = [\text{RH}] \) and \(x = [\text{O}_2] \) are the molar concentrations of the starting components \(\alpha = k_{d1}k_4 \) and \(\beta = k_{s1}k_4 \) (mol dm\(^{-3}\)) are the ratios of the rate constants of the competing (parallel) reactions, \(k_4 = (\alpha d_1 + \beta \sqrt{2k_2V_i} \sqrt{x} \) is the rate constant of the addition of the alkyl radical \(\text{R}^* \) to the oxygen molecule (reaction 2) as determined by solving the quadratic equation following from the rate function extremum condition \(\text{df}_{V_3, 3a}/d\alpha = 0 \), \(\alpha_m \) and \(\alpha_0 \) are the values of \(\alpha \) and \(x \) at the maximum point of the function,

\[
\begin{align*}
 f &= k_3x^2 + (\alpha d + \beta + \chi)\sqrt{2k_2V_i}, \\
 f_m &= x^2 + (\alpha d + \beta + \chi)x_m^{1/2}(\alpha d + \beta) \end{align*}
\]

The ratios of the rates of the competing reactions are \(V_3/V_4 = \alpha d/\beta \) and \(V_3/V_6 = \beta/\alpha \), and the chain length is \(\nu = (V_3 + V_{3a})/V_1 \), eqn. (11) is identical to eqn. (6). Eqsns. (10a) and (10a) were obtained by replacing the rate constant \(k_1 \) in eqns. (10) and (11) with its analytical expression (for reducing the number of unknown parameters to be determined directly).

For \(\alpha d \gg \beta \) \((V_3 \gg V_{3a}) \), the total yield of alkyl hydroperoxides and alcohols having the same number of carbon atoms as the initial compound far exceeds the yield of carbonyl compounds, as in the case of the oxidation of some hydrocarbons, the parameter \(\beta \) in eqns. (10) and (10a) can be neglected \((\beta = 0) \) and these equations become identical to eqns. (3) and (3a) with the corresponding analytical expression for \(k_1 \).

In the alternative kinetic model of oxidation, whose chain termination stage involves, in place of \(R' \) (Scheme 4), \(RO_2^* \) radicals reacting with one another and with \(RO_2^* \) radicals, the dependences of the chain formation rates of the products on the oxygen concentration \(x \) derived by the same method have no maximum: \(V_3 = V_3k_{d1}/(k_{s1} + \sqrt{2k_2V_i}) \) and \(V_{3a} = V_3k_{s1}/(k_{s1} + \sqrt{2k_2V_i}) \).

In the kinetic model of oxidation that does not include the competing reaction 4 \((k_4 = 0) \) and involves the radicals \(R^* \) and \(RO_2^* \) (the latter instead of \(RO_2^* \) in Scheme 3) in reactions 5–7, the reaction rate functions \(V_3 \) and \(V_{3a} \) obtained in the same way are fractional rational functions in the form of \(a_0d/(b_0x + c_0) \), where \(a_0, b_0, \) and \(c_0 \) are coefficients having no extremum. For a similar kinetic model in which reactions 3a, b and 4 appearing in the above scheme are missing \((k_{3a} = k_{3b} = 0) \), Walling,\(^3\) using the quasi-steady-state treatment in the long kinetic chain approximation, when it can be assumed that \(V_2 = V_3 \), without using the substitution\(^{16,16}\) \(k_d = \sqrt{2k_52k_i} \) (as distinct from this work), found that \(V_2 = V_3 \) is an irrational function of \(x: \alpha x/\sqrt{b_0x^2 + c_0x + d_0} \) where \(\alpha, b_0, c_0, \) and \(d_0 \) are coefficients. Again, this function has no maximum with respect to the concentration of any of the two components.
Thus, of the three kinetic models of oxidation mathematically analyzed above, which involve the radicals $R\cdot$ and $RO_2\cdot$ in three types of quadratic-law chain termination reactions (reactions 5-7) and are variants of the conventional model,2,5,6,16,44,45 the last two lead to an oxidation rate versus oxygen concentration curve that emanates from the origin of coordinates, is convex upward and has an asymptote parallel to the abscissa axis. Such monotonic dependencies are observed when the oxygen solubility in the liquid is limited under given experimental conditions and the oxygen concentration attained is $[O_2]_{\text{top}} \lesssim x_m.$ The oxygen concentration attained in the liquid may be below the thermodynamically equilibrium oxygen concentration because of diffusion limitations hampering the establishment of the gas–liquid saturated solution equilibrium under given experimental conditions (for example, when the gas is bubbled through the liquid) or because the Henry law is violated for the given gas–liquid system under real conditions.

Unlike the conventional model, the above kinetic model of free-radical nonbranched-chain oxidation, which includes the pairs of competing reactions 3-4 and 3a-4 (Scheme 4), allows us to describe the nonmonotonic (peaking) dependence of the oxidation rate on the oxygen concentration (Figure 4).

![Figure 4](image)

Figure 4. (1, ○) Reconstruction of the functional dependence of the 2-methylbenzyl hydroperoxide formation rate $V_3(RO_2H)$ on the dissolved oxygen concentration x. (2, □) Reconstruction of the functional dependence of the total hydrogen peroxide formation rate $V_3(\cdotH_2O_2)$ on the dissolved oxygen concentration x from empirical data (symbols) using eqns. (3a) and (14a) with $\beta = 0$ (model optimization with respect to the parameter a) for the γ-radiolysis of water saturated with hydrogen and containing different amounts of oxygen at 296 K53 ($S_T = 1.13 \times 10^{18}$). The dashed curve described $V_3(H_2O_2)$ as a function of the oxygen concentration x based on eqn. (3a) (model optimization with respect to a) and the experimental data of curve 2 ($S_T = 1.73 \times 10^{18}$).

In this oxidation model, as the oxygen concentration in the binary system is increased, oxygen begins to act as an oxidation autoinhibitor or an antioxidant via the further oxidation of the alkylperoxy 1:1 adduct radical $RO_2\cdot$ into the low-reactive 1:2 adduct radical $RO_3\cdot$ (reactions 4 and 6 lead to inefficient consumption of the free radicals $RO_2\cdot$ and $R\cdot$ and cause shortening of the kinetic chains).

The optimum oxygen concentration x_{opt}, at which the oxidation rate is the highest, can be calculated using kinetic equations (10a) and (11a) and eqn. (3a) with $\beta = 0$ or the corresponding analytical expression for $k_5.$ Semenov60 has noted that raising the oxygen concentration when it is already sufficient usually slows down the oxidation process by shortening the chains. The existence of the upper (second) ignition limit in oxidation is due to chain termination in the bulk through termolecular collisions between an active species of the chain reaction and two oxygen molecules (at sufficiently high oxygen partial pressures). In the gas phase at atmospheric pressure, the number of termolecular collisions is roughly estimated to be 10^3 times smaller than the number of binary collisions and the probability of a reaction taking place depends on the specificity of the action of the third particle.60 In case of a gas-phase oxidation of hydrogen at low pressures of 25-77 Pa and a temperature of 77 K25 when termolecular collisions are unlikely, the dependence of the rate of formation of hydrogen peroxide on oxygen concentration also has a pronounced maximum (see curves 3 and 4 in figure 5) that indicates a chemical mechanism providing the appearance of a maximum (see reaction 4 of Scheme 3).

![Figure 5](image)

Figure 5. (1, 2) Quantum yields of (1, ●) hydrogen peroxide and (2, ○) water resulting from the photochemical oxidation of hydrogen in the hydrogen–oxygen system as a function of the oxygen concentration x (light wavelength of 171.9–172.5 nm, total pressure of 103 Pa, room temperature49). (3, 4) Hydrogen peroxide formation rate $V(H_2O_2)$ (dashed curves) as a function of the rate $V(O_2)$ at which molecular oxygen is passed through a gas-discharge tube filled with (3, ▲) atomic and (4, ○) molecular hydrogen. The symbols represent experimental data.
Curve 1 in figure 4 illustrates the fit between eqn. (3a) at $al >> \beta$ and experimental data for the radiation-induced oxidation of o-xylene in the liquid phase at 373 K where 2-methylbenzyl hydroperoxide is formed much more rapidly than o-tolualdehyde ($V_3 >> V_5$, and $al >> \beta$). The oxygen concentration limit in o-xylene is reached at an oxygen concentration of $[O_2]_{lim} > x_m$, which corresponds to the third experimental point.46

The oxygen concentration was calculated from the oxygen solubility in liquid xylene at 373 K.61

The following quantities were used in this mathematical description.60 $^{18}Co \gamma$-radiation dose rate of $P = 2.18 \text{ Gy s}^{-1}$ and total initiation yield of $G(o-\text{CH}_2\text{C}_6\text{H}_4\text{H}_2) = 2.6$ particles per 100 eV of the energy absorbed by the solution;46 $V_1 = 4.73 \times 10^{-7} \text{ mol dm}^{-3} \text{ s}^{-1}$ and $2k_5 = 1.15 \times 10^{10} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. The resulting value of the parameter α is $(9.0 \pm 1.8) \times 10^{-4}$; hence, $k_4 = (3.2 \pm 0.8) \times 10^{12} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. From the earlier data,60 it was estimated that $k_4 = k_3/\alpha = (5.2 \pm 1.2) \times 10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$.

Addition of the hydrogen atom

A number of experimental findings concerning the autoinhibiting effect of an increasing oxygen concentration at modest temperatures on the oxidation of hydrogen both in the liquid phase63 (Figure 4, curve 2) and in the gas phase47,64,65 (Figure 5), considered in our earlier work,13,56,57,66 can also be explained in terms of the competition kinetics of free radical addition.14,67 From Figure 5 it is apparent that the quantum yields of hydrogen peroxide and water (products of photochemical oxidation of hydrogen at atmospheric pressure and room temperature) are maximum in the region of small concentrations of oxygen in the hydrogen–oxygen system (curves 1 and 2, respectively).64

Nonbranched-chain oxidation of hydrogen and changes in enthalpy (ΔH_{298}, kJ mol$^{-1}$) for elementary reactions are given in the following reaction Scheme 4.

Chain termination

5. $2\text{H}^+(\text{M}) \rightarrow \text{H}_2(\text{M})$, $\Delta H^*_{298} = -436.0 \pm 0.0$;

6. $\text{H}^+ + \text{HO}_4^* \rightarrow \text{HO}_2\text{O}_2 + \text{O}_2$, $\Delta H^*_{298} = -476.6 \pm 13.7$

(or: $\text{H}_2 + \text{O}_3$, $\Delta H^*_{298} = -439.3 \pm 15.4$,

$\text{H}_2 + 2\text{O}_2$, $\Delta H^*_{298} = -340.6 \pm 13.7$;

7. $2\text{HO}_4^* \rightarrow \text{H}_2\text{O}_2 + 2\text{O}_3$, $\Delta H^*_{298} = -95.0 \pm 30.8$.

Scheme 4. Nonbranched-chain oxidation of hydrogen.

According to Francisco and Williams49, the enthalpy of formation (ΔH_{298}) in the gas phase of H^+, HO_4^*, HO_4^*, HO_4^* (the latter without the possible intramolecular hydrogen bond taken into account), O_3, H_2O_2, H_2O_2, and H_2O_2 is 218.0 ± 0.0, 39.0 ± 1.2, 12.6 ± 1.7, 122.6 ± 13.7, $143.1. \pm 1.7$, -241.8 ± 0.0, -136.0 ± 0.0, and $-26.0 \pm 9 \text{ kJ mol}^{-1}$, respectively. Calculations for the HO_4^* radical with a helical structure were carried out using the G2(MP2) method.68 The stabilization energies of HO_4^*, HO_4^*, and HO_4^* were calculated in the same work to be 64.5 ± 0.1, 69.5 ± 0.8, and $88.5 \pm 0.8 \text{ kJ mol}^{-1}$, respectively. The types of O_4 molecular dimers, their IR spectra, and higher oxygen oligomers were reported.69,70 The structure and IR spectrum of the hypothetical cyclotetraoxymolecule O_4, a species with a high- energy density, were calculated by the CCSD method, and its enthalpy of formation was estimated.71 The photochemical properties of O_4 and the van der Waals nature of the O_2O_2 bond have investigated.72,73 The most stable geometry of the dimer is two O_4 molecules parallel to one another. The O_4 molecule was identified by NR mass spectrometry.74

The hydroperoxyl free radical75-78 HO_4^*, resulting from reaction 2, possesses an increased energy due to the energy released on the conversion of the $\text{O}–\text{O}$ multiple bond into the $\text{HO}–\text{O}^*$ ordinary bond. Therefore, before its possible decomposition, it can interact with a hydrogen or oxygen molecule as the third body via parallel (competing) reactions 3 and 4, respectively. The hydroxyl radical HO^* that appears and disappears in consecutive parallel reactions 3 (first variant) and 3' possesses additional energy owing to the exothermicity of the first variant of reaction 3, whose heat is distributed between the two products. As a consequence, this radical has a sufficiently high reactivity not to accumulate in the system during these reactions, whose rates are equal ($V_3 = V_3'$) under quasi-steady-state conditions, according to the above scheme. Parallel reactions 3 (second, parentheses variant) and 3' regenerate hydrogen atoms. It is assumed66 that the hydrotetroxyl radical HO_4^* (first reported in Refs.79,80) resulting from endothermic reaction 4, which is responsible for the peak in the experimental rate curve (Figure 4, curve 2), is a five-membered $[\text{O}–\text{H}^{\ddagger}\text{O}^{\ddagger}\text{O}^\cdot]$ cycle due to weak intramolecular hydrogen bonding.58,81 This structure imparts additional stability to this radical and makes it least reactive.

The HO_4^* radical was discovered by Staehelin et al.82 in a pulsed radiolysis study of ozone degradation in water; its
UV spectrum with an absorption maximum at 260 nm \((\varepsilon(\text{HO}_2^\cdot))_{260\text{nm}} = 320 \pm 15 \text{ m}^2 \text{ mol}^{-1}\) was reported. The spectrum of the HO\(_2^\cdot\) radical is similar to that of ozone, but the molar absorption coefficient \((\varepsilon(\text{HO}_2^\cdot))_{260\text{nm}}\) of the former is almost two times larger.\(^{52}\) The assumption about the cyclic structure of the HO\(_2^\cdot\) radical may be due to its mean lifetime in water at 294 K, which is \(36.4 \pm 0.4 \times 10^{-5}\ s\), as estimated\(^{66}\) from the value of \(1/k\) for the reaction\(^{82}\) \(\text{HO}_2^\cdot \rightarrow \text{HO}_2 + \text{O}_2\), estimated in the same way\(^{66}\) for the same conditions,\(^{84}\) 9.1 \pm 0.9 \times 10^{-6} s. MP2/6-311+G\(^*\) calculations using the Gaussian-98 program confirmed that the cyclic structure\(^{85}\) of HO\(_2^\cdot\) is energetically more favorable than the helical structure.\(^{69}\) The difference in energy is 4.8–7.3 kJ mol\(^{-1}\), depending on the computational method and the basis set.\(^{86}\) For example, with the MP2(full)/6-31G(d) method, the difference between the full energies of the cyclic and acyclic HO\(_2^\cdot\) conformers with their zero-point energies (ZPE) values taken into account (which reduces the energy difference by 1.1 kJ mol\(^{-1}\)) is –5.1 kJ mol\(^{-1}\) and the entropy of the acyclic-to-cyclic HO\(_2^\cdot\) transition is \(\Delta S_{298} = -1.6 \text{ kJ mol}^{-1} \text{ K}^{-1}\). Therefore, under standard conditions, HO\(_2^\cdot\) can exist in both forms, but the cyclic structure is obviously dominant (87 %, \(K_{eq} = 6.5\)).\(^{85}\)

Note that there were calculations for the two conformers (cis and trans) of the HO\(_2^\cdot\) radical\(^{86}\) using large scale \textit{ab initio} methods and density functional techniques with extended basis sets. Both conformers have a nearly planar geometry with respect to the four oxygen atoms and present an unusually long central O–O bond. The most stable conformer of HO\(_2\) radical is the cis one, which is computed to be endothermic with respect to HO\(_2\)(X\(\Sigma^+\)) + O\(_2\)(X\(\Sigma_g^+\)) at 0 K.

Reaction 4 and, to a much lesser degree, reaction 6 inhibit the chain process, because they lead to inefficient consumption of its main participants – HO\(_2\) and H\(_2\).

The hydrogen molecule that results from reaction 5 in the gas bulk possesses an excess energy, and, to acquire stability within the approximation used in this work, it should have time for deactivation via collision with a particle M capable of accepting the excess energy.\(^{87}\) To simplify the form of the kinetic equations, it was assumed that the rate of the bimolecular deactivation of the molecule substantially exceeds the rate of its monomolecular decomposition, which is the reverse of reaction 5.\(^{2}\)

Reactions 6 and 7 (taking into account the principle of detailed balance for the various pathways) regenerate hydrogen and oxygen (in the form of O\(_2\)(X\(\Sigma_g^+\)) molecules, including the singlet states\(^{49,70}\) with \(\Delta H_{298}^\circ\) (O\(_2\), \(\Delta \Lambda_g\)) = 94.3 kJ mol\(^{-1}\) and \(\Delta H_{298}^\circ\) (O\(_2\), \(b \Sigma_g^+\)) = 161.4 kJ mol\(^{-1}\), which are deactivated by collisions, and in the form of O\(_2\)) and yield hydrogen peroxide or water via a nonchain mechanism, presumably through the formation of an unstable intermediate hydrogen tetroxide molecule H\(_2\)O\(_4\).\(^{88}\) The energy of planar, six-atom, cyclic, hydrogen-bonded dimer (HO\(_2\))\(_2\) was calculated using B3LYP DFT.\(^{88}\) The hydrogen bond energy is 47.7 and 49.4 kJ mol\(^{-1}\) at 298 K for the triplet and singlet states of the dimer, respectively. Oxygen does not interact with molecular hydrogen. At moderate temperatures, it decomposes fairly slowly, particularly in the presence of O\(_2\)(X\(\Sigma_g^+\)).\(^{39}\) The reaction of ozone with H\(_2\) atoms, which is not impossible, results in their replacement with HO\(_2\) radicals. The relative contributions from reactions 6 and 7 to the process kinetics can be roughly estimated from the corresponding enthalpy increments (Scheme 4).

When there is no excess hydrogen in the hydrogen–oxygen system and the homomolecular dimer O\(_2\)\(^{71,72,89-90}\) which exists at low concentrations (depending on the pressure and temperature) in equilibrium with O\(_2\),\(^{70}\) can directly capture the H\(_2\) atom to yield the heteronuclear cluster HO\(_2\)\(_2\), which is more stable than O\(_2\) and cannot abstract a hydrogen atom from the hydrogen molecule.\(^{70}\) Nonchain hydrogen oxidation will occur to give molecular oxidation products via the disproportionation of free radicals. It may be mentioned that it is impossible to make a sharp distinction between the two-step bimolecular interaction of three species \textit{via} the equilibrium formation of the labile intermediate O\(_4\) and the elementary trinomolecular reaction O\(_2\) + O\(_2\) + H\(_2\) \rightarrow HO\(_2\)\(_4\).

The low-reactive hydrotetraoxyl radical HO\(_2\)\(_4\)\(^{82}\) which presumably has a high-energy density,\(^{71}\) may be an intermediate in the efficient absorption and conversion of biologically hazardous UV radiation energy in the upper atmosphere of the earth. The potential energy surface for the atmospheric reaction HO\(_2\) + O\(_2\), in which the adduct HO\(_2\)\(_2\)(\(A\)) was considered as an intermediate, was calculated by the DMBE method.\(^{91}\) From this standpoint, the following reactions\(^{80,82,91-92}\) are possible in the upper troposphere, as well as in the lower and middle stratosphere, where most of the ozone layer is situated (altitude of 16–30 km, temperature of 217–227 K, pressure of \(1.0 \times 10^{-1}–1.2 \times 10^{2}\) Pa),\(^{80}\) the corresponding \(\Delta H_{298}\) reaction values\(^{89}\) are given in kJ mol\(^{-1}\).

8. \(\text{H}_2\text{O(vapor)} + h\nu \rightarrow \text{H}^+ + \text{HO}^\cdot\)

9. \(\text{HO}^\cdot + \text{O}_2 \rightarrow \text{HO}_2^\cdot\)
\(\Delta H_{298}^\circ = -59.5\)

10. \(\text{HO}_2^\cdot \rightarrow \text{HO}_2^\cdot + \text{O}_2\)\((X^\Sigma_g^-)\)
\(\Delta H_{298}^\circ = -110.0\)
\((\text{or } \text{HO}_2^\cdot + \text{O}_2\)\((b \Sigma_g^+)\))
\(\Delta H_{298}^\circ = -15.7\)

The HO\(_2\)\(_2\) radical can disappear \textit{via} disproportionation with a molecule, free radical, or atom in addition to dissociation. Emission from O\(_2\)\((a \Delta_g)\) and O\(_2\)\((b \Sigma_g^+)\) is observed at altitudes of 30–80 and 40–130 km, respectively.\(^{93}\)

Staehelin \textit{et al.}\(^{92}\) pointed out that, in natural systems in which the concentrations of intermediates are often very low, kinetic chains in chain reactions can be very long in the absence of scavengers since the rates of the chain termination reactions decrease with decreasing concentrations of the intermediates according to a quadratic
law, whereas the rates of the chain propagation reactions decrease according to a linear law.

The kinetic description of the noncatalytic oxidation of hydrogen, including in an inert medium, in terms of the simplified scheme of free-radical nonbranched-chain reactions (Scheme 4), which considers only quadratic-law chain termination and ignores the surface effects, at moderate temperatures and pressures, in the absence of transitions to unsteady-state critical regimes, and at a substantial excess of the hydrogen concentration over the oxygen concentration was obtained by means of quasi-steady-state treatment, as in the previous studies on the kinetics of the branched-chain free-radical oxidation of hydrogen, even though the applicability of this method in the latter case under unsteady states conditions was insufficiently substantiated. The method was used with the condition that \(k_0 = \sqrt{2k_2k_2} \) (see Introduction). For example, the ratio of the rate constants of the bimolecular disproportionation and dimerization of free radicals at room temperature is \(k(\text{HO} + \text{HO})/2k(2\text{HO}^\cdot)^{[2]} = 2.8 \) in the atmosphere and \(k(\text{H}^\cdot + \text{HO})/2k(2\text{HO}^\cdot)^{[2]} = 1.5 \) in water.

The equation for the rate of the chain formation of hydrogen peroxide and water, \(V_0(\text{H}_2\text{O}_2; \text{H}_2\text{O}) = V_0(\text{H}_2\text{O}) \), via reactions 3 and 3' is identical to eqn. (3, 3a) with the respective analytical expression for \(k_2 \). The ratio of the rates of the competing reactions is \(V/V_0 = a\beta x \), and the chain length is \(n = V/V_0 \). The rates of nonchain formation of hydrogen peroxide and water via reactions (6) and (7), the quadratic-law chain termination, are identical to eqns. (13) and (14) provided that \(\beta = 0 \). In these equations, \(l \) and \(x \) are the molar concentrations of hydrogen and oxygen \((l \gg x) \), \(l_n \) and \(x_n \) are the respective concentrations at the maximum point of the function, \(V \) is the rate of initiation (reaction 1), \(\alpha = k_3/k_4 \), the reaction constant \(k_{3\alpha} = \alpha l_n/2k_1V_0/x_n \) is derived from eqns. 3a and 14, \(k_2 \) is the rate constant of reaction 5 (hydrogen atom recombination), which is considered as bimolecular within the given approximation.

This rate constant in the case of the pulsed radiolysis of ammonia−oxygen (+ argon) gaseous mixtures at a total pressure of \(10^5 \) Pa and a temperature of 349 K was calculated to be \(1.6 \times 10^8 \) dm\(^3\) mol\(^{-1}\) s\(^{-1}\) (a similar value of this constant for the gas phase was reported in an earlier publication). Pagsberg et al. found that the dependence of the yield of the intermediate \(\text{HO}^\cdot \) on the oxygen concentration has a maximum close to \(5 \times 10^{-4} \) mol dm\(^{-3}\). In the computer simulation of the process, they considered the strongly exothermic reaction \(\text{HO}_2^\cdot + \text{NH}_3 \rightarrow \text{H}_2\text{O} + \text{NH}_2\text{O} \), which is similar to reaction 3 in Scheme 4, whereas the competing reaction 4 was not taken into account.

In the case of nonchain hydrogen oxidation via the above addition reaction \(\text{H}^\cdot + \text{O}_4 \rightarrow \text{HO}_4 \), the formation rates of the molecular oxidation products in reactions 6 and 7 (Scheme 4, \(k_2 = k_3 = k_4 = 0 \)) are defined by modified eqns. (13) and (14) in which \(\beta = 0 \), \((a\alpha + x) \) is replaced with \(1 \), and \(k_2 \) is replaced with \(k_{\text{add}}k_{\text{eq}} \) \(k_{\text{add}}k_{\text{eq}} \) is the effective rate constant of \(\text{H}^\cdot \) addition to the \(\text{O}_4 \) dimer, \(k_{\text{eq}} = k/k' \) is the equilibrium constant of the reversible reaction \(2\text{O}_2 \rightleftharpoons \text{O}_4 \) with \(k' > > k_{\text{add}}(\text{H}^\cdot) \). The formation rates of the stable products of nonchain oxidation \((k_0 = 0) \), provided that either reactions (2) and (4) or reaction (2) alone \((k_0 = 0) \) occurs (Scheme 4, in the latter case, reactions 6 and 7 involve the \(\text{HO}_4^\cdot \) radical rather than \(\text{HO}_4^\cdot \)), are given by modified eqns. (13) and (14) with \(\beta = 0 \), \((a\alpha + x) \) replaced with \(1 \), and \(x^2 \) replaced with \(x \).

If in Scheme 4 chain initiation via reaction 1 is due to the interaction between molecular hydrogen and molecular oxygen yielding the hydroxyl radical \(\text{HO}^\cdot \) instead of \(\text{H}^\cdot \) atoms and if this radical reacts with an oxygen molecule (reaction 4) to form the hydrotrioxyl radical \(\text{HO}_3^\cdot \) (which was obtained in the gas phase by neutralization reionization (NR) mass spectrometry and has a lifetime of \(>10^4 \) s at 298 K) and chain termination takes place via reactions 5-7 involving the \(\text{HO}^\cdot \) and \(\text{HO}_3^\cdot \) radicals, respectively, the expressions for the water chain formation rates derived in the same way will appear as a rational function of the oxygen concentration \(x \) without a maximum: \(V_2(\text{H}_2\text{O}) = V_2k_2l/\left(k_4x + \sqrt{2k_3V_2}\right) \).

Curve 2 in Figure 4 describes, in terms of the overall equation \(V_{3,7} = V_1x(a\alpha l_n + x^2)/f_1 f_1 \) for the rates of reactions 3 and 7 (which was derived from eqns. 3a and 14, respectively, the latter in the form of \(V_2 = V_1x^2/f_1 f_1 \) in which \(k_2 \) is replaced with its analytical expression derived from eqn. (10) with \(\beta = 0 \) everywhere), the dependence of the hydrogen peroxide formation rate (minus the rate \(V_{\text{H}_2\text{O}_2} = 5.19 \times 10^{-4} \) mol dm\(^{-3}\)s\(^{-1}\) of the primary formation of hydrogen peroxide after completion of the reactions in spurs) on the concentration of dissolved oxygen during the \(\gamma \)-radiolysis of water saturated with hydrogen (at the initial concentration \(7 \times 10^{-4} \) mol dm\(^{-3}\) at 296 K). These data were calculated in the present work from the initial slopes of hydrogen peroxide buildup versus dose curves for a \(^{60}\text{Co} \) \(\gamma \)-radiation dose rate of \(P = 0.67 \) Gy s\(^{-1}\) and absorbed doses of \(D \geq 22.5-304.0 \) Gy. The values of the primary radiation-chemical yield \(G \) (species per 100 eV of energy absorbed) for water \(\gamma \)-radiolysis products in the bulk of solution at pH 4-9 and room temperature were used (taking into account that \(V = GP \) and \(V_1 = G\text{H}_2\text{O}_2 \)) to obtain \(G_{\text{H}_2\text{O}_2} = 0.75 \) and \(G_{\text{H}_2\text{O}} = 0.6 \) (initiation yield; see below). \(V_1 = 4.15 \times 10^{-4} \) mol dm\(^{-3}\) s\(^{-1}\) and \(k_2 = 2.0 \times 10^{-10} \) dm\(^3\) mol\(^{-1}\) s\(^{-1}\) estimated earlier.

As that is apparent from Figure 4, the best description of the data with an increase in the oxygen concentration in water is attained when the rate \(V_2 \) of the formation of hydrogen peroxide via the nonchain mechanism in the chain termination reaction 7 (curve 1, \(\alpha = (8.5 \pm 2) \times 10^{-2} \)) is taken into account in addition to the rate \(V_3 \) of the chain formation of this product via the propagation reaction 3 (dashed curve 2, \(\alpha = 0.11 \pm 0.026 \)). The rate constant, \(k_2 = 1.34 \times 10^7 \), of addition reaction 2 determined from \(\alpha \) is substantially lower than \(2.0 \times 10^{10} \) dm\(^3\) mol\(^{-1}\) s\(^{-1}\) estimated earlier. The difference can be due to the fact that the radiation-chemical
specifics of the process were not considered in the kinetic description of the experimental data. These include oxygen consumption via reactions that are not involved in the hydrogen oxidation scheme \(\text{H}_2 + \text{O}_2 \rightarrow \text{H}_2\text{O} + \text{O} \), reverse reactions resulting in the decomposition of hydrogen peroxide by intermediate products of water radiolysis (e.g., \(\text{H}^\cdot \), \(\text{H}_2\text{O}_2 \)), with the major role played by the hydrated electron.\(^{94}\)

General scheme of the addition of free radicals to molecules of alkenes, formaldehyde, and oxygen

The general scheme of the nonbranched-chain addition of a free radical from a saturated compound to an alkene (and its functionalized derivative), formaldehyde, or dioxygen (which can add an unsaturated radical as well) in liquid homogeneous binary systems of these components includes the following reactions (Scheme 5).\(^{31,97,98}\)

Initiation

1. \(\text{I} \xrightarrow{2k_1} 2\text{R}^+_0 \)

1a. \(\text{R}^+_0 + \text{R}_4 \text{A} \xrightarrow{k_{1b}} \text{R}_0 \text{A} + \text{R}^+_1 \)

for addition to an alkene at comparable component concentrations,

1b. \(\text{R}^+_0 + \text{R}_2 \text{B} \xrightarrow{k_{1b}} \text{R}_0 \text{B} + \text{R}^+_2 \)

Chain propagation

2. \(\text{R}^+_1 + \text{R}_2 \text{B} \xrightarrow{k_{2b}} \text{R}^+_2 \)

3. \(\text{R}^+_1 + \text{R}_4 \text{A} \xrightarrow{k_{1b}} \text{R}_1 \text{A} + \text{R}^+_1 \)

for addition to \(\text{O}_2 \) and the 1-hydroxyalkyl radical to \(\text{CH}_2\text{O} \),

3a. \(\text{R}^+_1 \xrightarrow{k_{3b}} \text{R}^+ \text{R}''\text{CO} + \text{R}^+_4 \)

3b. \(\text{R}^+_1 + \text{R}_4 \text{A} \xrightarrow{k_{3b}} \text{R}_1 \text{A} + \text{R}^+_1 \)

Inhibition

For addition to an alkene or \(\text{CH}_2\text{O} \),

4. \(\text{R}^+_1 + \text{R}_2 \text{B} \xrightarrow{k_{2b}} \text{R}_3 \text{B} + \text{R}^+_2 \)

for addition to \(\text{O}_2 \),

4a. \(\text{R}^+_1 + \text{R}_2 \text{B} \xrightarrow{k_{ad}} \text{R}^+_3 \text{B} \)

Chain termination

5. \(2\text{R}^+_1 \xrightarrow{2k_5} \text{Prod} \)

6. \(\text{R}^+_1 + \text{R}^+_2 \xrightarrow{k_{2a}} \xrightarrow{2k_2} \text{Prod} \)

7. \(\text{R}^+_2 \xrightarrow{k_{2a}} \xrightarrow{2k_2} \text{Prod} \)

Scheme 5. General scheme of addition of free radicals to molecules of alkenes, formaldehyde, and oxygen.

In this scheme, \(I \) is the initiator, for example, a peroxide,\(^{3,17,18,29,30}\) \(\text{R}^+_0 \) is any reactive radical (initiator); \(A \) is an atom of hydrogen,\(^{2,5,6,17,18,22-24,29-32}\) or halogen;\(^{2,5,19-21}\) \(\text{B} \) is an atom of hydrogen,\(^{2,3,17-21,23-24,29-32,30}\) halogen,\(^{2,22}\) or oxygen\(^{2,5,6,16,44-46}\) (in oxidation); \(\text{R}^+_1 \) is a radical such as \(\text{PCl}_3 \), \(\text{CCl}_4 \), an alkyl,\(^{2,5,6,21}\) a 1-hydroxyalkyl,\(^{5,6,17,22-24,29-32}\) or a similar functionalized radical addendum;\(^{3}\) \(\text{R}^+_2 \) is the formyl,\(^{8,9,29}\) propenyl or higher alkylen,\(^{2,5,7-22}\) a 1-hydroxyalkenyl,\(^{2,5,17,18,23,24}\) or a similar functionalized low-reactive radical inhibitor;\(^{5,10}\) or the oxygen atom\(^{5,6,13,14,16-18,44,46,56,57,96-98}\) (in oxidation); \(\text{R}^+_2 \) is the low-reactive alkyl-ether group \(2:2 \) adduct inhibitor radical;\(^{11,13,14,56,57,96-98} \) \(\text{RO}^+_1 \), \(\text{R}^+_1 \) is the active 1:1 adduct radical; \(\text{R}^+_2 \) is an active fragment radical, such as hydroxymethyl,\(^{8,9,12,29,32}\) an alkoxyl radical, or hydroxyalkyl;\(^{2,5,6,13,14,16-18,44,46,56,57,96-98} \) (in oxidation); \(\text{R}''\text{CO} \) is a carbonyl compound \(\text{viz.} \), an alkene,\(^{2,5,11,17-22}\) formaldehyde,\(^{8,9,12,29-32}\) or dioxygen,\(^{2,5,6,13,14,16-18,44,46,56,57,96-98} \) (in oxidation); \(\text{R}''\text{CO} \) is a carboxylic acid \(\text{viz.} \), aldehyde,\(^{6,8,9,12,14,29,32,44}\) or ketone,\(^{2,6,14,29,32,44}\); \(\text{R}_0 \text{A} \) and \(\text{R}_2 \text{B} \) are molecular products (1:1 adducts), and \(\text{Prod} \) stands for molecular products of the dimerization and disproportionation of free radicals.

The chain evolution stage of Scheme 5 includes consecutive reactions 2, 3; 2, 3a; and 3a, 3b; parallel (competitive) reactions 3, 3a; 3, 3b; 3, 4 (or 4a); and 3a, 4 (or 4a); and consecutive-parallel reactions 2 and 4 (or 4a). Addition to alkenes is described by reactions 1–3, 4, and 5–7 and the corresponding rate eqns. (1)–(4a). Addition to the carbonyl carbon atom of the free (unsolvated) form of formaldehyde is represented by reactions 1, 1a, 2–4 (the main products are a 1,2-alkanediol, a carbonyl compound, and methanol), and 5–7 and is described by eqns. (5) and (6). In the case of hydroxymethyl addition, the process includes reactions 1, 1a, 2, 3, 5a, 4 (the main product is ethanediol), and 5–7 and is described by eqn. (9). If the nonchain formation of ethanediol in reaction 5 is ignored, the process can be described by eqn. (5). Addition to the oxygen molecule is described by reactions 1, 1a, 2–3b, 4a (the main products are an alkyl hydroperoxide, alcohols, carbonyl compounds, and water), and 5–7 and eqns. (10) and (11).

The main molecular products of the chain process i.e., \(\text{R}_0 \text{A} \), \(\text{R}''\text{CO} \), and \(\text{R}_2 \text{B} \) result from chain propagation reactions 3, 3a, and 3b through the reactive free radical \(\text{R}^+_1 \) or \(\text{R}^+_2 \), \(\text{R}''\text{CO} \). The competing reaction 4, which opposes this chain propagation, yields the by-product \(\text{R}_0 \text{B} \) a nonchain mechanism. The rate of formation of the products is a complicated function of the formation rates \(V_i \) and the disappearance rates of the free radicals \(\text{R}^+_1 \) and \(\text{R}^+_2 \) (eqn. (3a)) in competition with the 2,2-addition reaction \(\text{R}^+_1 + \text{R}_2 \text{B} \rightarrow V_{2b} \). The rates of reactions 5–7 at \(k_{ib} \neq 0 \) are [\([\text{R} \text{B}] \) is given by eqns. (12)–(14)]. The rate of the competing reactions of the by-products \(V_{1a} \) and \(V_{2a} \) is expressed in terms of the molar concentrations of the reactants \(\text{R}_0 \text{A} \) and \(\text{R}_2 \text{B} \), respectively, and the chain length is \(\nu = V_i + V_{2a} \). Unlike the dependences of the rates of reactions 4a (or 4 at \(k_{ib} = 0 \), with \(V_{2a} \leq V_i \), 5, and 7 for the last two — eqns. (12) and (14)), the dependences of the rates \(V \) of reactions 3, 3a, 4 (at \(k_{ib} \neq 0 \), and 6 (eqns. (1), (3)–(6), (10), (11), and (13)) on \(x \) have a maximum. Reaction 1b, which competes with reaction 1a, gives rise to a maximum in the dependence described by eqn. (2), whereas reaction 4 or 4a, competing with reactions 3 and
Kinetics of free-radical nonbranched-chain processes in addition reactions

3a,b, is responsible for the maxima in the dependences defined by eqns. (1), (3)–(6) or (10) and (11). The low-reactive radicals \(R_2 \) and \(R_{2a} \), resulting from reactions 4 and 4a, inhibit the nonbranched-chain addition of \(R_1^+ \) to alkenes (or formaldehyde) and dioxygen, respectively. The stabilization energy of the low-reactive free radicals \(CH_3 \left(CH_2 \right)_n CH_2 \), \(CH_2 \left(CHCHO \right) \), and \(HC=O \) in the standard state in the gas phase is \(-52.0, -42.1, \) and \(-24.3 \) kJ mol\(^{-1}\), respectively.\(^{499}\) Reaction 4a leads to non-productive loss of \(R_2^+ \) adduct radicals.

For approximate estimation of the parameters of the kinetic equations (3), (4), (10), and (11), eqn. (4) under the conditions (a) \(k_3 x^2 \ll (a + x) \sqrt{2k_3 V_1} \) (ascending branch of a peaked curve) and (b) \(k_3 x^2 > (a + x) \sqrt{2k_3 V_1} \) (descending branch) is transformed into simple functions (direct and inverse proportionality, respectively) of the concentration \(x \) of the unsaturated compound. These functions allow tentative estimates of the parameters \(k_3 \) and \(a \) to be derived from the experimental product formation rate \(V \) provided that \(V_1 \) and \(2k_3 \) are known:

\[
V_{3,4} = \sqrt{V_1 k_3 x / \phi_2 / 2k_3}, \quad (15)
\]

\[
V_{3,4} = (V_1 / \phi) (a dx / x) + 1, \quad (16)
\]

where \(\phi = 1 \) under conditions (a) and (b) and \(\phi = 2 \) at the point of maximum (where \(k_3 x^2 \simeq (a + x) \sqrt{2k_3 V_1} \)). Equations (10) and (11) under the condition \(k_3 x^2 > (a + \beta + x) \sqrt{2k_3 V_1} \) (descending branch of a peaked curve) can be transformed into eqns. (17) and (18), respectively, which express the simple, inversely proportional dependences of reaction rates on \(x \) and provide tentative estimates of \(\alpha \) and \(\beta \):

\[
V_3 = V_0 a / \phi_2, \quad (17)
\]

\[
V_{3a} = V_0 \beta / \phi_2, \quad (18)
\]

where \(\phi = 2 \) at the point of maximum (where \(k_3 x^2 \simeq (a + \beta + x) \sqrt{2k_3 V_1} \)) and \(\phi = 1 \) for the descending branch of the curve. Equation (3) for \(V_{3,4} \) under condition (b) transforms into eqn. (17).

For radiation-chemical processes, the rates \(V \) in the kinetic equations should be replaced with radiation-chemical yields \(G \) using the necessary unit conversion factors and the relationships \(V = GP \) and \(V_1 = G(R_1^+)P \), where \(P \) is the dose rate, \(\varepsilon_1 \) is the electron fraction of the saturated component \(R_1A \) in the reaction system,\(^{100}\) and \(G(R_1^+) \) is the initial yield of the chain-carrier free radicals (addendums) – initiation yield.\(^{39,94}\)

Conclusions

In summary, the material on the kinetics of nonbranched-chain addition of free saturated radicals to multiple bonds of alkene (and its derivative), formaldehyde, or oxygen molecules makes it possible to describe, using rate eqns. (1)–(6), (9)–(11) obtained by quasi-steady-state treatment, experimental dependences with a maximum of the formation rates of molecular 1:1 adducts on the concentration of an unsaturated compound over the entire region of its change in binary reaction systems consisting of saturated and unsaturated components (Figures 1, 3, 4).

The proposed addition mechanism involves the reaction of a free 1:1 adduct radical with an unsaturated molecule yielding a low-reactive free radical (the reaction 4 competing with the chain propagation reactions in Schemes 1–5). In such reaction systems, the unsaturated compound is both a reactant and an autoinhibitor, specifically, a source of low-reactive free radicals shortening kinetic chains. The progressive inhibition of the nonbranched-chain processes, which takes place as the concentration of the unsaturated compound is raised (after the maximum process rate is reached), can be an element of the self-regulation of the natural processes that returns them to the stable steady state.

A similar description is applicable to the nonbranched-chain free-radical hydrogen oxidation in water at \(296 \) K\(^{63}\) (Figure 4, curve 2). Using the hydrogen oxidation mechanism considered here, it has been demonstrated that, in the Earth’s upper atmosphere, the decomposition of \(O_3 \) in its reaction with the \(HO^+ \) radical can occur via the addition of the latter to the ozone molecule, yielding the \(HO_2^+ \) radical, which is capable of efficiently absorbing UV radiation.\(^{82}\)

The optimum concentration \(x_0 \) of unsaturated component in the binary system at which the process rate is maximal can be derived with the help of obtained kinetic equations (3a), (4a), (10a), and (11a) or from the corresponding analytical expressions for \(k_2 \) if other parameters are known. This opens a way to intensification of some technological processes that are based on the addition of free radicals to the double bonds of unsaturated molecules and occur via a nonbranched-chain mechanism through the formation of 1:1 adducts.

References

1. Gurvich, L. V., Karachevtsev, G. V., Kondrat’ev, V. N., Lebedev, Yu. A., Medvedev, V. A., Potapov, V. K., and Khodoev, Yu. S., “Energii razryva khimicheskikh svyaizei. Potentsialnye ionizatsii i srodstvo k elektronu” (“Bond Dissociation Energies, Ionization Potentials, and Electron Affinity”), Kondrat’ev, V. N., Editor, Nauka, Moscow, 1974.

2. Benson, S. W., “Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters”, 2nd Edition, Wiley, New York, 1976.

3. Pedley, J. B., Naylor, R. D., and Kirby, S. P., “Thermochemical Data of Organic Compounds”, 2nd Edition, Chapman & Hall, London, 1986. https://doi.org/10.1007/978-94-009-4099-4

4. Orlov, Yu. D., Lebedev, Yu. A., and Saifullin, I. Sh., “Termokhimiya organicheskikh svobodnykh radikalov” (“Thermochemistry of Organic Free Radicals”), A. M. Kutepov, Editor, Nauka, Moscow, 2001.

5. Walling, Ch., “Free Radicals in Solution”, Wiley, New York, 1956.

6. Emanuel, N. M., Denisov, E. T., and Maizus, Z. K., “Tseplye reaktsii okisleniya uglevodorodov v zhidkoi faze” (“Chain Oxidation Reactions of Hydrocarbons in the Liquid Phase”), Nauka, Moscow, 1965.
Appendix

The experimental concentrations \(x \) (mol dm\(^{-3}\)) of free formaldehyde at different temperatures \(T \) (K) and total formaldehyde concentrations \(c_0 \) (mol dm\(^{-3}\)) in various solvents.

Solvent	\(T \)	\(10^2x \)	\(c_0 \)	\(T \)	\(10^2x \)	\(c_0 \)	\(T \)	\(10^2x \)	\(c_0 \)	\(T \)	\(10^2x \)
Water	4.44	389	5.20	4.0	381	5.00	1.8	371	2.08		
1.0	358	0.78	4.44	405	7.50	4.0	397	8.80	1.8	393	6.00
1.0	387	2.22	4.44	418	10.0	4.0	409	12.00	1.8	418	12.20
1.0	393	3.23	Methanol	6.2	347	2.80	1.8	438	16.70		
1.0	407	4.55	1.0	375	0.33	6.2	376	7.80	3.0	343	1.25
2.0	353	1.44	1.0	395	1.00	6.2	393	12.50	3.0	375	5.40
2.0	387	4.70	1.0	423	2.90	1.0	403	3.0	403	15.80	
2.0	397	6.60	2.5	373	0.60	1.0	371	0.83	3.0	413	19.40
2.0	407	8.55	2.5	385	1.15	1.0	393	2.10	5.6	343	2.80
4.0	343	0.78	2.5	398	1.80	1.0	413	4.30	5.6	358	3.35
4.0	363	2.33	5.4	351	0.78	1.0	435	7.65	5.6	363	5.80
4.0	385	6.45	5.4	383	3.70	1.9	353	0.70	5.6	371	6.50
4.0	403	8.90	5.4	398	6.80	1.9	383	3.06	5.6	383	12.10
4.0	413	11.10	7.0	365	4.70	1.9	405	7.65	2-Methyl-2-propanol		
6.0	351	2.22	7.0	383	12.50	1.9	417	11.70	1.0	347	1.20
6.0	375	6.70	7.0	391	16.00	4.0	349	1.67	1.0	367	4.50
6.0	389	10.70	Ethanol	4.0	373	6.10	1.0	387	11.00		
6.0	398	14.10	1.0	367	0.33	4.0	393	13.30	1.0	398	19.30
8.4	364	5.50	1.0	387	0.67	6.0	338	1.39	2.0	335	1.10
8.4	376	8.32	1.0	397	1.45	6.0	357	5.00	2.0	357	4.30
8.4	388	10.97	1.0	413	2.70	6.0	377	11.70	2.0	375	13.00
Ethanol	1.0	423	4.00	6.0	389	18.30	2.0	383	18.50		
1.0	409	1.30	2.0	373	1.10	7.8	343	3.06	3.0	338	1.70
1.0	418	1.80	2.0	394	2.90	7.8	358	6.25	3.0	353	4.70
1.0	435	2.45	2.0	409	5.80	7.8	377	16.90	3.0	365	9.60
3.33	358	1.20	2.0	419	8.20	2-Propanol	3.0	373	15.50		
3.33	387	3.30	3.0	361	1.20	1.0	365	0.98	6.0	345	6.90
3.33	401	5.10	3.0	387	3.70	1.0	393	3.05	6.0	351	9.00
3.33	415	7.20	3.0	409	7.80	1.0	411	6.00	6.0	361	13.40
4.44	338	1.00	4.0	355	2.30	1.0	433	10.40	6.0	365	18.30