Cross-layer design of distributed sensing-estimation with quality feedback, Part I: Optimal schemes

Nicolò Michelusi and Urbashi Mitra

Abstract—This two-part paper presents a feedback-based cross-layer framework for distributed sensing and estimation of a dynamical process in a wireless sensor network (WSN) in which the sensor nodes (SNs) communicate their measurements to a fusion center (FC) via B orthogonal wireless channels. Cross-layer factors such as packet collisions and the sensing-transmission costs are accounted for. Each SN adapts its sensing-transmission action based on its own local observation quality and the estimation quality feedback from the FC. The sensing-transmission strategy is optimized, with the overall objective to minimize the mean squared estimation error (MSE) at the FC, under cost constraints for each SN. In this first part, the high optimization complexity, typical of multi-agent systems, is reduced by exploiting the statistical symmetry and large network approximation of the WSN. Structural properties of the optimal policy are derived for a coordinated scheme, where the FC schedules each SN, and a decentralized one, where each SN performs a local sensing-transmission decision. It is proved that a dense WSN provides sensing diversity, i.e., only a few SNs with the best local observation quality suffice to sense-transmit accurately, with no degradation in the MSE, despite the fluctuations in the observation quality experienced across the WSN. The optimal policy dictates that, when the estimation quality is poor, only the best SNs activate, otherwise all SNs remain idle to preserve energy. The costs of coordination and feedback are evaluated, revealing the scalability of the decentralized scheme to large WSNs, at the cost of an MSE degradation. Simulation results demonstrate that adaptive schemes designed in this way yield cost savings from 30% to 70% over non-adaptive ones, and significant performance gains with respect to an estimator proposed in the literature, which does not consider these cross-layer factors.

I. INTRODUCTION

Wireless sensor networks (WSNs) enable the monitoring of large areas via many low powered sensor nodes (SNs) with data acquisition, processing and communication capabilities [2]. However, WSN design is challenged by the high optimization complexity typical of multi-agent systems [2], necessitating decentralized SN operation based on local information and limited feedback, and needs to explicitly consider the resource constraints of SNs.

In this two part paper, we present a feedback-based cross-layer framework for distributed sensing and estimation of a time-correlated random process at a fusion center (FC), based on noisy measurements collected from nearby SNs, which accounts for cross-layer factors such as the shared wireless channel, resulting in collisions among SNs, the sensing and transmission costs, and the local state and local view of the SNs. In order to cope with the uncertainties and stochastic dynamics introduced by these cross-layer components, the FC broadcasts feedback information to the SNs, based on the estimation quality achieved, thus enabling adaptation of their sensing-transmission action. We design joint sensing-transmission policies with the goal to minimize the mean squared estimation error (MSE) at the FC, under a constraint on the sensing-transmission cost incurred by each SN. The optimal policy dictates that, when the estimation quality is poor, only the SNs with the best quality activate to improve the estimation quality at the FC, otherwise all SNs remain idle to preserve energy, at the cost of estimation quality degradation.

This first part provides a theoretical foundation for the reduction of the system complexity, arising from the local asymmetries due to the decentralized operation of SNs, their local state and local view, and the multi-agent nature of the system, whereas Part II [12], informed by this theory, investigates the design of practical schemes with low complexity. If one had to optimize and operate the system under these asymmetries, the complexity would be enormous, i.e., exponential in the number of SNs, since a policy would need to be defined for each SN, and jointly optimized based on the specific local statistical properties of each SN.

We achieve complexity reduction and derive structural properties of the optimal policy by exploiting the statistical symmetry and the large network approximation. Statistical symmetry consists in the fact that, despite the fluctuations in the local state of the SNs and the resulting asymmetries across the WSN, all SNs locally experience, in the long-term, the same statistical view of the system. The design implication is policy symmetry, i.e., all SNs can employ a common policy to map their local state to a sensing-transmission action, thus significantly reducing the policy space and the optimization complexity.

An example of statistical symmetry arises in a target tracking application: SNs closer to the target can estimate its position more accurately, whereas SNs farther away estimate it with poor accuracy; statistical symmetry implies that, as the target moves around within the sensing area, the subset of SNs close to the target varies over time but, in the long-term, the statistic of the distance to the target experienced by each SN is the same for all SNs. On the other hand, the large network approximation implies that a large number of SNs are deployed, so that a sufficiently large (with respect to the channel/energy resource constraints of the system) pool of SNs can sense the underlying process with high accuracy in each slot, despite the temporal and spatial fluctuations in the local accuracy state experienced across the WSN. Equivalently, in the target tracking application, there is a sufficiently large...
pool of SNs close to the target, which can thus estimate its position accurately. The design implication is sensing diversity, i.e., due to the constraints resulting from cross-layer factors such as the limited channel shared among SNs and the finite transmission resources available to the SNs, only a few SNs with the best accuracy state need to be activated, so that the local accuracy fluctuations can be neglected, with a consequent reduction of the state space and of the optimization complexity. We analytically and numerically show that this approximation performs well in small-medium sized WSNs as well.

Despite the complexity reduction, the DP algorithms developed in Part I still have high complexity. Therefore, the aim of Part II is to design myopic policies based on the structural properties derived in Part I, which can be implemented with lower complexity and achieve near-optimal performance (no performance degradation with respect to the DP policies has been observed in our numerical evaluations). We consider a coordinated scheme where the FC centrally activates each SN, and a decentralized scheme, where the SNs activate in a decentralized fashion, based on the feedback information and on their local accuracy state. Our analysis and numerical comparison against a technique proposed in [16], which does not include these cross-layer factors, reveal the importance of a cross-layer approach in the design of WSNs, and of adaptation to cope with the consequent uncertainties and stochastic dynamics, enabled by FC feedback.

The problem of decentralized estimation and detection has seen a vast research effort in the last decade, especially in the design of optimal schemes for parameter estimation [25], [27], [28], hypothesis testing [4], [19], [26], tracking [6], [18] and random field estimation [7]. Distributed estimation in bandwidth-energy constrained environments has been considered in [10], [11], [16], [20], for a static setting. Estimation and detection problems exploiting feedback information from the FC have been investigated in [5], [8], [9], [24], e.g., enabling adaptation of the SNs’ quantizers in the estimation of a finite state Markov chain [8]. A consensus based approach for distributed multi-hypothesis testing has been studied in [22].

Differently from these works, we employ a cross-layer perspective, i.e., we jointly consider and optimize the resource constraints typical of WSNs, such as the shared wireless channel, resulting in collisions among SNs, the time-varying sensing capability of the SNs, their decentralized decisions, and the cost of sensing and data transmission, and propose a feedback mechanism from the FC to enable adaptation and cope with the random fluctuations in the overall measurement quality collected at the FC, induced by these cross-layer factors. This is in contrast to, e.g., [8], where adaptation serves to cope with the distortion introduced by quantization. We do not consider the problem of quantizer design, and focus instead on a censoring approach [1], [16], i.e., quantization is fixed and sufficiently fine-grained, so that the measurements received at the FC can be approximated as Gaussian. In fact, in light of our cross-layer design perspective, quantization may be less relevant due to the overhead required to perform essential tasks such as synchronization and channel estimation [1].

Distributed Kalman filtering for WSNs has been proposed in [17], using a consensus approach and local Kalman filters at each SN. In this paper, Kalman filtering is employed only at the FC, which collects unfiltered observations from the SNs. In fact, due to the poor estimation capability of SNs and their energy constraints, which force them to remain idle most of the time, the performance gain achievable by exploiting the time-correlation via local Kalman filtering may be small.

This paper is organized as follows. In Sec. II we motivate our approach and summarize the main results. In Sec. III we present the system model and the optimization problem. In Sec. IV we present the analysis of the coordinated and decentralized schemes. In Sec. V we provide numerical results. Sec. VI concludes the paper. The analytical proofs are provided in the Appendix.

II. MOTIVATION AND MAIN RESULTS
Consider a WSN, depicted in Fig. 1, with one FC, whose goal is to track a stationary Markov process \(\{X_k, k \geq 0\} \), based on measurements collected by \(N \) nearby SNs. The probability density function (if \(X_k \) is continuous, or probability mass function, if \(X_k \) is discrete) of \(X_{k+1} \) given \(X_k \) is denoted as \(p_X(X_{k+1}|X_k) \). In this paper, we consider the scalar linear Gaussian state space model

\[
X_{k+1} = \sqrt{\alpha}X_k + Z_k, \tag{1}
\]

where \(k \in \mathbb{N} \equiv \{0,1,2,\ldots\} \) is the slot index, \(\alpha \in [0,1) \) is the time-correlation parameter and \(Z_k \sim \mathcal{N}(0,\sigma_Z^2) \), so that \(X_{k+1}|X_k \sim \mathcal{N}(\sqrt{\alpha}X_k,\sigma_Z^2) \). This model arises, for instance, in temperature tracking applications, where \(X_k \) represents the temperature fluctuations around its mean [23]. We denote the statistical power of \(X_k \) as \(\sigma_X^2 = \frac{\sigma_Z^2}{1-\alpha} \), and assume \(\sigma_X^2 = 1 \), since any other value can be obtained by scaling.

Remark 1 The following analysis can also be extended to other time-correlated signals, e.g., the two states Markov chain

\[
X_{k+1} = X_k \oplus Z_k, X_k, Z_k \in \{0,1\}, \tag{2}
\]

where \(\oplus \) denotes the sum modulo 2, and \(Z_k \) has distribution \(p_{Z|X}(z|x) \equiv \mathbb{P}(Z_k = z|X_k = x) \), \(z, x \in \{0,1\} \). This model arises, for instance, in spectrum sensing applications [15], where \(X_k \) denotes the channel occupancy state (\(X_k = 0 \) if idle,
Each SN incurs transmission cost c_{TX} to report its measurement to the FC. The N_S SNs share a set of $B \leq N_S$ orthogonal single-hop wireless channels to report their measurements to the FC. We employ the collision channel model, i.e., the transmission on a given channel is successful if and only if one SN transmits in that channel. This model is commonly employed in the analysis of multi-access communication schemes, and lends itself to analysis.\footnote{Other channel models can be accommodated by defining, more generally, a probability mass function (PMF) $p_{R_k}(r|\theta) \equiv P(R_k = r|T_X = \emptyset)$, $r \in \{0, 1, \ldots, L\}$, where T_X and R_k are the number of SNs that transmit and of packets successfully received at the FC, respectively.}

Referring to the model (1), assume for simplicity $B=1$ and that each SN measures X_k noisily (the noisy case with $B \geq 1$ is considered in the rest of the paper). Let $O_{n,k}$ be the transmission outcome for SN n, i.e., $O_{n,k}=1$ if and only if its transmission is successful. Then, if at least one measurement is successfully received $\prod_{n}(1-O_{n,k})=0$, the MSE is 0. On the other hand, if no measurements are successfully received $\prod_{n}(1-O_{n,k})=1$, X_k is estimated via prediction. Therefore, if the transmission has been successful in slot $k-\bar{J}_k-1$, for some $\bar{J}_k \geq 0$, so that $X_k-\bar{J}_k-1$ is perfectly known at the FC, but transmission failures or no transmission attempts occurred in slots $k-\bar{J}_k, k-\bar{J}_k+1, \ldots, k$, then X_k is estimated as $\hat{X}_k = \sqrt{n^{\bar{J}_k+1}}X_{k-\bar{J}_k-1}$ and the MSE at the end of slot k is $(1-\alpha^{\bar{J}_k+1})$. Due to the decentralized sensing-transmission decision of SNs and the shared wireless channel, which may result in collisions among SNs, random and unpredictable fluctuations in the transmission outcome $O_{n,k}$ may occur at the FC, so that the MSE evolves randomly over time. In order to control the uncertainty and system dynamics introduced by these cross-layer factors, we thus propose a feedback-based adaptive scheme where the SNs adapt their activation strategy over time, i.e., whether to sense-transmit their measurement with cost c_{TX} (denoted as $A_{n,k}=1$) or remain idle with no cost (denoted as $A_{n,k}=0$), based on quality feedback from the FC, captured by the state variable J_k. The goal is to design the activation policy so as to minimize the expected MSE $\bar{M} = \mathbb{E}[\sum_{n}(1-O_{n})(1-\alpha^{J+1})]$ at the FC\footnote{The slot index k is removed for simplicity to denote steady-state regime.} under SN sensing-transmission cost constraints, $\bar{C}_n = \mathbb{E}[A_n c_{TX}] \leq \epsilon/N_S$, $\forall n$. We consider the following schemes.

A. Coordinated scheme

In this scheme, the FC centrally schedules the activation $A_{n,k}$ of each SN. One design approach to optimize the MSE is to maximize the number of measurements collected at the FC in each slot, under the cost constraint for each SN. This is denoted as max aggregate SNR scheme (MAX-SNR) in the rest of the paper. If $\epsilon \geq c_{TX}$, the optimal strategy dictates to activate randomly one and only one SN in each slot, resulting in a successful transmission, hence the MSE is 0 in each slot.\footnote{Unfortunately, the coordinated scheme is not scalable to large WSNs, due to the centralized scheduling performed by the FC. Therefore, a decentralized approach, where the SNs make local decisions, leveraging only local information and minimal feedback information, is more practical. We thus devise a decentralized scheme, where each SN activates with common probability q_k in slot k. Following the same design principle of optimizing the expected number of measurements collected at the FC (MAX-SNR scheme), we define a non-adaptive (NA) scheme where each SN activates with probability $q_k = \zeta/N_S$ in each slot, where we have defined the normalized transmission probability per channel $\zeta \in [0, N_S]$. In this case, $\{J_k\}$ is a Markov chain. Using the large network approximation $N_S \gg 1$ with fixed ζ, its transition probabilities are $P(J_{k+1}=j+1|J_k=j) \approx 1-\zeta \epsilon^{-\zeta}$, $P(J_{k+1}=0|J_k=j) \approx \zeta \epsilon^{-\zeta}$, and the steady-state probability of $J_k=j$ is given by $\pi_j(j) \approx \zeta \epsilon^{-\zeta} (1-\zeta \epsilon^{-\zeta})^\lambda$, $j \geq 0$. By averaging over $\pi_j(j)$, the average SN cost and MSE are $\bar{C}_n(NA) = \zeta/N_S c_{TX}$, $\bar{M}(NA) = \frac{(1-\alpha)(1-\epsilon^{-\zeta})}{1-\alpha + \alpha \epsilon^{-\zeta}}$.\footnote{We thus have $\bar{M} = 0$, $\bar{C}_n = \frac{c_{TX}}{N_S} \leq \frac{\zeta}{N_S}$, hence a non-adaptive scheme is optimal in this case.}

Unfortunately, this design approach fails to achieve good performance in general, since the decentralized SN activation and the collisions among SNs result in random fluctuations in the number of measurements collected at the FC (which may be zero in case of collisions), hence high uncertainty and poor MSE performance. In order to control the uncertainty in the system, we propose an adaptive scheme where the activation probability q_k is adapted over time by the FC, based on the current quality state J_k. Such adaptive policy is denoted as $q(\cdot) = \zeta(\cdot)/N_S$. The value of the activation probability $q_k = q(J_k) = \zeta(J_k)/N_S$ is broadcasted by the FC at the beginning of each slot. In particular, consider the myopic policy (MP), which determines $q_k = q_{MP}(j)=\lambda N_S J_k/N_S$ in state $J_k=j$ so as to optimize a trade-off between the instantaneous expected MSE and the cost for each SN, $\zeta_{MP}(j) = \arg \min_{\zeta} (1-\zeta \epsilon^{-\zeta}) (1-\alpha^{J+1}) + \lambda \zeta$, $\forall j$.\footnote{Other channel models can be accommodated by defining, more generally, a probability mass function (PMF) $p_{R_k}(r|\theta) \equiv P(R_k = r|T_X = \emptyset)$, $r \in \{0, 1, \ldots, L\}$, where T_X and R_k are the number of SNs that transmit and of packets successfully received at the FC, respectively.}

The AMP $\zeta_{AMP}(j)$ is an increasing function of j, i.e., the higher the uncertainty (the larger $J_k=j$), the higher the activation probability, which approaches $[1-\lambda j]^+$ for $j \to \infty$. Hence, AMP has the desirable property that, the more the SNs are
Table I

\(N_n\)	random process to be tracked	\(S_A\)	local ambient SNR	\(V_{n,k}\)	measurement of SN \(n\) in slot \(k\)	\(\gamma_{n,k}\)	accuracy state with s.d. \(\pi_{\gamma}(\gamma)\)
\(\alpha\)	time-correlation parameter	\(S_{M,n,k}\)	local measurement SNR	\(A_{n,k}\)	activation of SN \(n\), slot \(k\)	\(B_{n,k}\)	channel ID for SN \(n\), slot \(k\)
\(\Lambda_k\)	aggregate SN at FC	\(\phi_{S,M,n,k}\)	sensing cost	\(c_{TX}\)	transmission cost	\(B\)	# channels available
\(V_k\)	prior variance	\(V_{\theta}\)	posterior variance	\(q\)	SN activation probability	\(N_2\)	# of SNs
\(\#\)	normalized unitary sensing cost	\(M_{k}\)	average MSE	\(C_{\theta}^\theta\)	average sensing-transmission cost of SN \(n\)		

III. System Model and Optimization Problem

In this section, we present the system model. The main parameters are listed in Table I. Each slot includes three phases:

1. **FC instruction** \(D_k\), broadcasted by the FC (Sec. III-C).
2. **Sensing and transmission to FC**: given \(D_k\), each SN selects its sensing-transmission action (Sec. III-A).
3. **Kalman filtering at FC**: given the measurements collected, the FC estimates \(X_k\) via Kalman filtering (Sec. III-B).

\[\hat{x}_{n,k} = \gamma_{n,k} x_k + W_{A,n,k} + W_{M,n,k}, \quad (7)\]

where \(W_{A,n,k} \sim \mathcal{N}(0, 1/S_A)\) is the ambient noise, and \(W_{M,n,k} \sim \mathcal{N}(0, 1/S_{M,n,k})\) is the measurement noise introduced by the sensing apparatus, independent of each other, over time and across SNs, \(S_A\) is the local ambient SNR, and \(S_{M,n,k}\) is the local measurement SNR, controlled by the nth SN, resulting in the sensing cost \(\phi_{S,M,n,k}\), for some \(\phi \geq 0\). Note that this assumption is practical. For instance, SN \(n\) may compute an average from a controlled number \(M_{n,k}\) of independent measurements, each with fixed ambient noise and i.i.d. measurement noise with variance \(\sigma_M^2\) and cost \(c_S\), resulting in the local measurement SNR \(S_{M,n,k} = M_{n,k}/\sigma_M^2\) and in the overall sensing cost \(c_S M_{n,k} = (c_S \sigma_M^2) S_{M,n,k}\).

We assume that a fixed quantization scheme is employed, i.e., a fixed number of bits is transmitted to the FC. Moreover, each SN is unaware of its own distance to the FC, hence it transmits with constant power \(P_{\text{max}}\), so as to provide a given coverage requirement, resulting in the overall transmission cost \(c_{TX}\), common to all SNs. The FC is assumed to be within the coverage area of each SN. A varying \(c_{TX}\) can be easily incorporated with increased book-keeping. We define the *normalized unitary sensing cost* \(\theta \triangleq \frac{\phi}{c_{TX}}\). No cost is incurred if the SN remains idle. The overall sensing-transmission cost is thus \(c_{SN}(A_{n,k}, S_{M,n,k}) \triangleq A_{n,k}(c_{TX} + \phi_{S,M,n,k})\). We define

\[\phi_{S,M,n,k}\] therefore, the ambient SNR \(S_A\) and noise \(W_{A,n,k}\) can also be interpreted, respectively, as the quantization SNR floor and the Gaussian approximation of the quantization error.
the sample average sensing-transmission cost for SN n over a time horizon of length $T + 1$ as

$$C_n^T(A_{n,0}^T, S_{M,n,0}^T) = \frac{1}{T + 1} \sum_{k=0}^{T} c_{SN}(A_{n,k}, S_{M,n,k}).$$

(8)

The accuracy state $\gamma_{n,k}$, taking values in the finite set Γ, models the ability of SN n to accurately measure X_k. We model it as a Markov chain with transition probability $\mathbb{P}(\gamma_{n,k+1} = \gamma_2 | \gamma_{n,k} = \gamma_1) = P_2(\gamma_1; \gamma_2)$ and steady-state distribution $\pi_\gamma(\gamma)$, i.i.d. across SNs, and we let $\gamma_k = (\gamma_1, k, \gamma_2, \ldots, \gamma_{N_{SN}}, k)$. Such a model arises, e.g., in a target tracking application, where the power of the received signal diminishes with the distance, which evolves following Markov dynamics as a function of the relative motion of the SN and the target [26]. The Markov assumption on $\gamma_{n,k}$ is used for analytical tractability, but the following analysis requires only the existence of the steady-state distribution $\pi_\gamma(\gamma)$, and therefore it applies to non-Markov dynamics as well. In practice, $\gamma_{n,k}$ varies slowly over time, e.g., as a function of the SN position with respect to the source of the process X_k, and therefore it can be tracked accurately from the sample mean and sample variance estimates of the measurement noise. We denote the best accuracy state as $\gamma_{\max} = \max(\Gamma)$, and, without loss of generality, we assume $\gamma_{\max} = 1$ and $\pi_\gamma(\gamma_{\max}) > 0$. We denote the general scenario where $\gamma_{n,k}$ follows a Markov chain as Markov-γ scenario, and the special cases where $\gamma_{n,k} = \gamma_{\max}$, $\forall n, k$, deterministically and $\gamma_{n,k}$ is i.i.d. over time as best-γ and i.i.d.-γ scenarios, respectively.

Remark 2 Note that the local accuracy state may vary significantly over both time and space, yielding instantaneous asymmetries in the WSN. Typically, design of asymmetric systems suffers from the curse of dimensionality. Herein, we assume that statistical symmetry holds, in the sense that, in the long term, the SNs have the same statistical view of the system, despite the local temporal and spatial fluctuations of the state. As a consequence, we assume policy symmetry, i.e., all SNs employ the same policy to map their local state to a sensing-transmission action, thus significantly reducing the policy space and the optimization complexity.

B. MMSE estimator at the FC via Kalman filtering

The weighted average measurement

$$\hat{Y}_k \triangleq \sum_n O_{n,k} S_{n,k} X_{n,k} / \sum_n O_{n,k} S_{n,k}$$

(9)

is a sufficient statistic for X_k, where $S_{n,k}$ is the local SNR for SN n, defined as

$$S_{n,k} = \frac{\mathbb{E}[(\gamma_{n,k} X_k)^2 | \gamma_{n,k}]}{\mathbb{E}[(W_{A,n,k} + W_{M,n,k})^2]} = \gamma_{n,k}^2 S_A S_{M,n,k}.$$

(10)

Given the transmission outcome and X_k, Y_k is a Gaussian random variable with mean X_k and variance Λ_k^{-1}, where we have defined the aggregate SNR collected at the FC as

$$\Lambda_k \triangleq \sum_{n=1}^{N_S} O_{n,k} S_{n,k}.$$

(11)

Let \hat{X}_{k-1} and \hat{V}_{k-1} be the posterior mean (i.e., the MMSE estimate) and variance of X_{k-1} at the FC at the end of slot $k - 1$, i.e., $X_{k-1} \sim \mathcal{N}(\hat{X}_{k-1}, \hat{V}_{k-1})$ is the belief of X_{k-1} at the FC. Before collecting the measurements from the SNs in slot k, using [1], the belief of X_k is $X_k \sim \mathcal{N}(\sqrt{\Lambda_k} \hat{X}_{k-1}, V_k)$, where V_k is the prior variance of X_k, defined recursively as

$$V_k = \alpha \hat{V}_{k-1} + \sigma_Z^2 = 1 - \alpha (1 - \hat{V}_{k-1}) \triangleq \nu(\hat{V}_{k-1}).$$

(12)

Then, upon collecting the weighted average measurement \bar{Y}_k [9] with aggregate SNR Λ_k at the FC updates the posterior variance V_k and mean \hat{X}_k of X_k as

$$\begin{cases}
\hat{V}_k = \frac{\bar{V}_k}{1 + \bar{V}_k \Lambda_k} \triangleq \nu(\hat{V}_k, \Lambda_k), \\
\hat{X}_k = \sqrt{\Lambda_k} \hat{X}_{k-1} + \alpha \hat{V}_k \left(\bar{Y}_k - \sqrt{\Lambda_k} \hat{X}_{k-1}\right).
\end{cases}$$

(13)

The function $\nu(\hat{V}_{k-1})$ determines the prior variance of X_k, given the posterior variance of X_{k-1}, whereas $\nu(\hat{V}_k, \Lambda_k)$ determines the posterior variance of X_k, given its prior variance V_k, as a function of the aggregate SNR Λ_k collected at the FC. The MSE in slot k is thus

$$\mathbb{E} \left[(\hat{X}_k - X_k)^2 | V_k, \Lambda_k \right] = \nu(\hat{V}_k, \Lambda_k).$$

(14)

We define recursively $\bar{\nu}(V_0; \Lambda_0)$ and, for $k > 0$,

$$\bar{\nu}^k(V_0; \Lambda_0^k) \triangleq \nu \left(\bar{\nu}^{k-1}(V_0; \Lambda_0^{k-1}), \Lambda_k \right),$$

(15)

where $\Lambda_0^k = (\Lambda_0, \Lambda_1, \ldots, \Lambda_k)$ is the aggregate SNR sequence collected at the FC from slot 0 to slot k. Then, we can write $\hat{V}_k = \bar{\nu}_k^k(V_0; \Lambda_0^k)$. We define the sample average MSE under Λ_0^T over a time horizon of length $T + 1$ as

$$R_T(V_0; \Lambda_0^T) \triangleq \frac{1}{T + 1} \sum_{k=0}^{T} \bar{\nu}^k(V_0; \Lambda_0^k).$$

(16)

Note that the prior and posterior variances V_k and \hat{V}_k take value between $[0, 1]$, where the extreme values 0 and 1 correspond, respectively, to minimum (X_k perfectly known) and maximum (X_k is completely unknown) uncertainty. Therefore, $R_T(V_0; \Lambda_0^T) \in [0, 1]$, $\forall T, V_0, \Lambda_0^T$, and the system is stable.

C. FC instruction policy

At the beginning of each slot k, the FC broadcasts an instruction $D_k \in \mathcal{D}$, which, together with the local accuracy state $\gamma_{n,k}$, is employed by SN n to select $(A_{n,k}, S_{M,n,k}, B_{n,k})$, as explained in Sec. III-A. We consider the following schemes, summarized in Table II.

Scheme	Activity $A_{n,k}$	Local measurement SNR $S_{M,n,k}$	Channel ID $B_{n,k}$
Coordinated	Centralized, @ FC	Centralized, @ FC	Centralized, @ FC
Decentralized	Local, w.p. $q_{\eta_k}(w_{m,k})$ given by FC	Local, w.p. $S_{M,n,k}(w_{m,k})$ given by FC	Local, random

We assume that each active SN, in addition to $Y_{n,k}$, also provides to the FC the value of $\gamma_{n,k}$ and $S_{n,k}$, which is employed in the Kalman filter.
1) Coordinated scheme: In the coordinated scheme, given \(V_k \) and \(\gamma_k \), the FC schedules the sensing-transmission action \(d_{n,k}=(A_{n,k},S_{M,n,k},B_{n,k}) \) of each SN, so that \(D_k=(d_{1,k},d_{2,k},\ldots,d_{N_S,k}) \). Note that each SN is required to report its accuracy state to the FC, whenever its value changes, so that \(\gamma_k \) is perfectly known at the FC at the beginning of slot \(k \). Letting \(\pi_k \) be the belief of \(\gamma_k \) at the FC, we have that \(\pi_{\gamma_k,k}(\gamma_k) = 1, \pi_{\gamma_k,k}(\gamma) = 0, \forall \gamma \neq \gamma_k \). Finally, given \(\delta_k \) we will analyze the cost of communication overhead to keep such state information at the FC. The value \(D_k \) is selected according to some (possibly, non-stationary) instruction policy \(\delta_k \) and is independent of the past. Finally, given (12), the instruction policy \(\delta_k \) is chosen uniformly from the set of channels \(A \) as \(\delta_k \), and the local measurement SNR functions employed by each SN to select their sensing-transmission strategy in a decentralized manner, as a function of the local accuracy state \(\gamma_{n,k} \). Therefore, \(D_k \) takes value in the set \(D \equiv \{0,1\}^T \times \mathbb{R}^{T^2} \), and is generated according to some (possibly, non-stationary) policy \(\delta_k \) in \(D_k \). The belief of the state accuracy vector \(\gamma_k \), given the history of observations collected up to time \(k \) at the FC, \(\mathcal{H}_k \). Given \(D_k \), and the local accuracy state \(\gamma_{n,k} \), \(\pi_k \) chooses its action \(A_{n,k},S_{M,n,k},B_{n,k} \) as \(\pi_{\gamma_k,k}(\gamma_k) = \mathbb{P}(\gamma_k|D_k) \). \(\gamma_{n,k} \) is generated according to some (possibly, non-stationary) policy \(\delta_k \) in \(D_k \). If \(A_{n,k}=1 \), then \(S_{M,n,k}=S_{M,n,k}(\gamma_{n,k}) \) and \(B_{n,k} \) is chosen uniformly from the set of channels \(\{1,2,\ldots,B\} \) (if \(A_{n,k}=0 \), then \(S_{M,n,k}=B_{n,k}=0 \)). Due to the randomized channel accesses, this scheme may result in collisions among SNs.

Remark 3 The choice of a randomized uniform channel access decision by the SNs is due to their decentralized operation and lack of coordination between them. However, other channel access schemes can be accommodated by defining, more generally, the PMF \(P_{\pi_k}(r) \), \(r \in \{0,1,\ldots,t\} \).

For both schemes, given the instruction policy \(\delta \), the sequence \(\{(V_k,\pi_{\gamma_k}),k \geq 0\} \) is a Markov process. In fact, the instruction \(D_k \) is chosen according to \(\delta_k \) in \(D_k \). Each SN decides its action \((A_{n,k},S_{M,n,k},B_{n,k}) \) based on \(D_k \) and \(\gamma_{n,k} \), so that the aggregate SNR collected at the FC, \(\Lambda_k \), is a random variable which only depends on \(D_k \) and \(\gamma_{n,k} \) and is independent of the past. Finally, let \(\Lambda_k \), from (12) and (13) the next prior variance state is \(V_{k+1}=\nu(\hat{\nu}(V_k,\Lambda_k)) \), and \(\gamma_{k+1} \) only depends on \(\gamma_k \), whose distribution is \(\pi_{\gamma_k} \), and is independent of other past events, so that the Markov property holds. For the decentralized scheme, the belief state \(\pi_{\gamma_{k+1}} \) can be computed as a function of \(\pi_{\gamma_k} \) the measurements collected in slot \(k \), and channel collisions. On the other hand, for the coordinated scheme, \(\pi_{\gamma_{k+1}} \) is a function of \(\gamma_{k+1} \), whose value is fed back by the SNs.

Remark 4 If \(\alpha=0 \), the process \(X_k \) is i.i.d., hence \(V_k=1, \forall k \). In this case, both schemes do not adapt to the quality feedback \(V_k \), but only to the belief on the accuracy state \(\pi_{\gamma_k} \). On the other hand, in the time-correlated case \(\alpha \in (0,1) \), adaptation to the quality state \(V_k \) may be necessary to achieve optimality, e.g., by instructing the SNs to remain idle if the quality of the estimate is good enough.

D. Performance metrics and optimization problem
Given the initial prior variance value \(V_0 \), the initial distribution \(\pi_{\gamma_0} \), and the instruction policy \(\delta \), we define the average MSE and sensing-transmission cost of SN \(n \) over a finite horizon of length \(T+1 \) as

\[
\hat{M}_k^T(\pi_{\gamma_0},\pi_{\gamma_0}) = E \left[R_T(V_0;L_T^*) \left| V_0, \pi_{\gamma_0} \right. \right],
\]

\[
C_k^T(n,\pi_{\gamma_0}) = E \left[C^T(n,\pi_{\gamma_0}) \mid V_0, \pi_{\gamma_0} \right],
\]

where \(R_T(V_0;\lambda_T^*) \) is the sample average MSE given by (16), and \(C_k^T(n,\pi_{\gamma_0}) \) is the sample average sensing-transmission cost for SN \(n \), given by (8). The expectation is computed with respect to the activation, local measurement SNR, accuracy state and medium access processes \(\{D_k,A_{n,k},S_{M,n,k},\gamma_{n,k},O_{n,k},n \in \{1,2,\ldots,N_S\},k \in \mathbb{N}\} \), induced by policy \(\delta \). The goal is to determine \(\delta^* \) such that

\[
\delta^* = \arg \min_{\delta} \hat{M}_k^T(\pi_{\gamma_0},\pi_{\gamma_0}), \text{s.t. } \hat{C}_k^T(n,\pi_{\gamma_0}) \leq \epsilon/N_S, \forall n, \tag{19}
\]

where \(\epsilon > 0 \) is the maximum network cost constraint. Alternatively, we consider the Lagrangian formulation

\[
\delta^* = \arg \min_{\delta} \hat{M}_k^T(\pi_{\gamma_0},\pi_{\gamma_0}) + \lambda \frac{N_S}{c_{TX}} \sum_{n=1}^{N_S} \hat{C}_k^T(n,\pi_{\gamma_0}), \tag{20}
\]

where \(\lambda > 0 \) is the Lagrange multiplier, which trades off MSE and sensing-transmission cost. In particular, we are interested in the infinite horizon \(T \to \infty \) (average long-term) and \(V_0=1 \), so that we will drop the dependence on \(T \) and \(V_0 \) in the following treatment, whenever possible. By varying \(\epsilon \) in (15) and (20), we obtain different operational cost-MSE points \(\hat{C}_k^T(\pi_{\gamma_0},\pi_{\gamma_0}) \).

Remark 5 Note that the posterior variance process \(\{V_k,k \geq 0\} \) may exhibit significant fluctuations over time, which may be undesirable. These fluctuations can be reduced by imposing a constraint on the frequency that a given MSE threshold \(\hat{v}_{th} \) is overcome, defined by the outage event \(V_k \geq \hat{v}_{th} \), and by the time average expected outage

\[
\hat{O}_k^T(V_0,\pi_{\gamma_0}) = \frac{1}{T+1} E \left[\sum_{k=0}^{T} \chi(V_k \geq \hat{v}_{th}) \right] V_0, \pi_{\gamma_0}, \tag{21}
\]

where \(\chi(\cdot) \) is the indicator function. The constraint \(\hat{O}_k^T(V_0,\pi_{\gamma_0}) \leq \sigma \) can then be added to the optimization problem (19), or the Lagrangian term \(\mu \hat{O}_k^T(V_0,\pi_{\gamma_0}) \) to (20).

The following DP algorithm (22) can be straightforwardly extended to this case. Its analysis is left for future work.

IV. ANALYSIS
For the finite horizon \(T < \infty \), for both the coordinated and decentralized schemes, the optimal instruction policy \(\delta^* \),
which is the solution of (22), can be found via DP [3], by solving recursively, backward in time from \(k = T \) to \(k = 0 \),
\[
W^{T-k}(V_k, \pi_{\gamma,k}) = \min_{\delta_k(\cdot)} \mathbb{E}\left[\hat{\nu}(V_k, A_k) | \delta_k \right]
\]
\[
+ \mathbb{E}\left[\sum_{c \in \mathcal{TX}} \sum_{n=1}^{N_S} c_{SN}(A_{n,k}, S_{M,n,k}) + W^{T-k-1}(V_{k+1}, \pi_{\gamma,k+1}) | \delta_k \right],
\]
where \(V_{k+1} = \nu(\hat{\nu}(V_k, A_k)) \) and \(W^{-1}(V_{T+1}, \pi_{\gamma,T+1}) = 0 \). The minimizer is the optimal instruction policy \(\delta_k(\cdot) \) in slot \(k \), and \(W^T(V_0, \pi_{\gamma,0})/(T+1) \) yields the optimal cost function for the Lagrangian problem (20). The infinite horizon scenario \(T \to \infty \) can be approximated by choosing \(T \) sufficiently large.

In general, (22) has high complexity, due to the large action space, non-convex nature, and the dependence on the accuracy state belief \(\pi_{\gamma,k} \). In particular, in the coordinated scheme, the optimization is over the joint action \((A_{n,k}, S_{M,n,k}, B_{n,k}) \) of each SN, as a function of \(V_k \) and \(\gamma_k \) and time \(k \). On the other hand, in the decentralized scheme, the optimization is over functions \(q_k : \Gamma \mapsto [0,1] \) and \(S_{M,k} : \Gamma \mapsto [0,\infty) \). To overcome these dimensionality issues, in Secs. IV-A and IV-B we derive structural properties of the optimal policy and of the cost function by exploiting the statistical symmetry of the WSN and the network approximation \(N_S \gg 1 \), which can achieve a near-optimal solution of (22). In Part II, we will further reduce the complexity by proposing nearly-optimal myopic policies. Theorem 1 lower bounds the optimal MSE under any scheme.

Theorem 1 If \(T = \infty \), we have \(\hat{M}_S \geq \hat{\nu}^*(\hat{A}^*) \), where
\[
\hat{\nu}^*(x) \triangleq \frac{(1-\alpha)2(1+x^2)+2(1-\alpha^2)x-(1-\alpha)(1+x)}{2ax},
\]
\[
\hat{A}^* = \max_{\delta} \mathbb{E}[\Lambda_k | \delta], s.t. \mathbb{E}[c_{SN}(A_{n,k}, S_{M,n,k}) | \delta] \leq \frac{\epsilon}{N_S}, \forall n.(24)
\]

Proof: The proof follows from the fact that \(R_T(1; \Lambda^*_T) \) is a convex function of \(\Lambda^*_T \) (Lemma 8 in App. B), hence \(M^*_T \geq R_T(1; \mathbb{E}[\Lambda^*_T | \delta^*]) \). Moreover, letting \(\hat{\Lambda} = \frac{1}{T} \sum \mathbb{E}[\Lambda_k | \delta^*] \) be the average aggregate SNR, we have \(R_T(1; \mathbb{E}[\Lambda^*_T | \delta^*]) \geq R_T(\hat{\Lambda}) \), where \(R_T(\hat{\Lambda}) \) is defined in 47. Since \(R_T^*(x) \) is a decreasing function of \(x \) (Theorem 2 in App. B) and \(\Lambda \leq \hat{\Lambda}^* \), we also have \(R_T^*(\hat{\Lambda}) \geq R_T^*(\hat{\Lambda}^*) \). Finally, in the limit \(T \to \infty \), using Corollary 2 in App. B we obtain \(\hat{M}_S \geq \lim_{T \to \infty} R_T^*(\hat{\Lambda}^*) = \hat{\nu}^*(\hat{\Lambda}^*) \), proving the lemma. □

The policy solving the optimization problem (24) is denoted as the max aggregate SNR scheme (MAX-SNR). In each slot, it maximizes the expected aggregate SNR collected at the FC, under the cost constraint for the SNs. MAX-SNR is non-adaptive, since it is independent of \(V_k \). The lower bound in Theorem 1 can be achieved only if the aggregate SNR \(\Lambda_k = \hat{\Lambda}^* \) is collected deterministically in each slot (Corollary 2 in App. B). However, this lower bound is, in general, not achievable, since the cross-layer factors introduce uncertainties and random fluctuations of the aggregate SNR \(\Lambda_k \) around its mean, thus degrading the MSE performance. Hence, MAX-SNR may achieve poor performance in general, as shown in Sec. V. We now analyze both schemes.

A. Coordinated scheme

In the coordinated scheme, collisions can be avoided by scheduling at most one SN to transmit in each channel. Without loss of optimality, the SNs are scheduled to transmit, in order, in the channels with ID \(1, 2, \ldots, B \). Therefore, if \(A_{n,k} = 1 \), we let \(B_{n,k} = \sum_{m=1}^{N_S} A_{m,k} \). This channel scheduling is optimal, since the \(B \) orthogonal channels are symmetric and interchangeable. We proceed as follows. We first derive structural properties of the optimal policy and of the DP algorithm by exploiting the statistical symmetry of the WSN for the best-\(\gamma \) scenario, yielding a lower bound to the MSE achievable under the Markov-\(\gamma \) scenario. Based on that, we then design low-complexity policies for the Markov-\(\gamma \) scenario, which are shown to be near-optimal for large WSNs.

1. **Best-\(\gamma \) scenario**: In this case, the belief \(\pi_{\gamma,k} \) is constant and can be neglected. Lemma 1 states the optimality of policy symmetry, i.e., due to the statistical symmetry of the WSN, it is optimal for the FC to schedule actions uniformly randomly across SNs. In other words, the SNs incur the same sensing-transmission cost and have the same sensing capabilities, hence there is no preference of one SN over another. Let \(\mathcal{D}^{(0)} \equiv \{ \mathcal{D} \in \mathcal{D} : A_n \geq A_{n+1}, \forall n, S_{M,n} \geq S_{M,n+1}, \forall n \} \) be an ordered subset of instructions. We have that any instruction \(\mathcal{D} \in \mathcal{D}^{(0)} \) can be obtained by permutation of some \(\mathcal{D}^{(O)} \in \mathcal{D}^{(O)} \). Moreover, let \(\mathcal{D}(\mathcal{D}^{(0)}) \) be the subset of instructions in \(\mathcal{D} \) obtained by permutation of the entries of \(\mathcal{D}^{(0)} \), so that \(\mathcal{D} \equiv \cup_{\mathcal{D}^{(O)} \in \mathcal{D}^{(O)} \subseteq \mathcal{D}} \mathcal{D}(\mathcal{D}^{(0)}) \).

Lemma 1 In the best-\(\gamma \) scenario, one optimal instruction policy \(\delta^* \) for (19) or (20) satisfies, \(\forall V_k \),
\[
\delta_k^*(\mathcal{D}(V_k)) = \delta_k^*(\mathcal{D}^{(O)}(V_k)), \forall \mathcal{D} \in \mathcal{D}(\mathcal{D}^{(0)}), \forall \mathcal{D}^{(0)} \in \mathcal{D}^{(0)}.
\]

Proof: See App. A □

We denote an instruction policy satisfying the hypothesis of Lemma 1 as a symmetric instruction policy. Such a policy is symmetric with respect to the SN scheduling, and induces the same expected cost for each SN, so that the superscript \(n \) in (18) can be neglected. To generate a symmetric instruction policy, the FC first selects one ordered instruction \(\mathcal{D}^{(O)} \) from the lower-dimensional set \(\mathcal{D}^{(O)} \), and then assigns, in order, each component of \(\mathcal{D}^{(O)} = (d_1^{(O)}, d_2^{(O)}, \ldots, d_{N_S}^{(O)}) \) to a random SN, until all of them have been scheduled. The following lemma demonstrates the optimality of allocating the same local measurement SNR to all active SNs.

Lemma 2 In the best-\(\gamma \) scenario, the optimal \(\delta^* \) allocates \(S_{M,n,k} = S_{M,k} \) for all \(n \) such that \(A_{n,k} = 1 \).

Proof: See App. A □

This result follows from the concavity of the aggregate SNR with respect to the SNR allocation of the SNs. Under the resource constraints, it is thus optimal for the SNs to employ the same SNR, in order to maximize the aggregate SNR collected at the FC. From Lemmas 1 and 2 it follows that, in the best-\(\gamma \) scenario, it is sufficient for the FC to choose, in each slot \(k \), the number of SNs to activate \(t_k \in \{0, 1, \ldots, B\} \), and their common local measurement SNR \(S_{M,k} \). The \(t_k \)
active SNs are then chosen uniformly from the set of SNs. For a given pair \((t_k, S_{M,k})\), the aggregate SNR collected at the FC is thus \(\Lambda_k = B\frac{A_{S_{M,k}}}{S_{M,k}}\). The MSE performance is governed by the aggregate SNR \(\Lambda_k\) at the FC. Since the FC can control \((t_k, S_{M,k})\), we can optimize these two quantities to minimize the sensing-transmission cost in order to collect the target aggregate SNR \(\Lambda_k\) at the FC, denoted as \(t^*(\Lambda_k), S^*_M(\Lambda_k)\), yielding Lemma 3.

Lemma 3 Let \(\Lambda < B S_A\) be the target aggregate SNR collected at the FC. In the best-\(\gamma\) scenario, if \(\Lambda = 0\), then \(t^*(0) = 0\) and \(S^*_M(0) = 0\). Otherwise (\(\Lambda > 0\)), let

\[
\Lambda_{th}(t) = \frac{2S_A(t + 1)}{\sqrt{1 + 4S_A\theta(t + 1) + 2t + 1}};
\]

then \(t^*(\Lambda) = \min\{t, B\}\) and \(S^*_M(\Lambda) = \frac{S_A\Lambda}{t^*(\Lambda)\Lambda - A}\), where \(t \geq 1\) is the unique value such that \(\Lambda \in [\Lambda_{th}(t - 1), \Lambda_{th}(t)]\).

Proof: See App. A. ■

From Lemma 3, it follows that it is sufficient for the FC to determine, in each slot \(k\), the target aggregate SNR \(\Lambda_k\). The number of SNs activated is then given by \(t_k = t^*(\Lambda_k)\), and the common local measurement SNR is \(S_{M,n,k} = S^*_M(\Lambda_k)\).

Note that \(\Lambda_{th}(t)\) is an increasing function of \(t\), implying that an increasing number of SNs need to be activated as the aggregate SNR requirement \(\Lambda_k\) increases. Moreover, \(\Lambda_{th}(t)\) is an increasing function of \(S_A\) and decreasing function of the normalized unitary sensing cost \(\theta\), so that, as \(S_A\) grows or \(\theta\) diminishes, less SNs need to be activated. In fact, \(S_A\) determines the error floor in the measurement collected by each SN. Therefore, as \(S_A\) increases and the ambient noise becomes less relevant, it is sufficient to activate a smaller number of SNs with higher SNR, in order to reduce the transmission cost. Similarly, as \(\theta\) grows, the transmission cost becomes less and less relevant with respect to the sensing cost, hence more SNs can be activated. We thus obtain:

COORD-DP: DP algorithm for the coordinated scheme, best-\(\gamma\) scenario. For \(k = T, T - 1, \ldots, 0\), solve

\[
\bar{W}^{T-k}=\min_{\Lambda_k \in [0, BS_A]} \bar{W}^{T-k-1}\left(\nu(\hat{\nu}(V_k, \Lambda_k)) + \hat{\nu}(V_k, \Lambda_k)\right) + \frac{\lambda}{c_{\text{TX}}} t^*(\Lambda_k) e_{SN}(1, S^*_M(\Lambda_k)), \forall V_k \in [1 - \alpha, 1],
\]

where \(\bar{W}^0(V_{T+1}) = 0\). The optimizer, \(\Lambda^*_k(V_k)\), is the optimal aggregate SNR collected at the FC in slot \(k\).

Note that, by exploiting the statistical symmetry of the WSN, we have enabled a significant complexity reduction with respect to (22), since the optimization is only over the aggregate SNR sequence, rather than the joint action \((A_{n,k}, S_{M,n,k}, B_{n,k})\) of each SN.

The next theorem characterizes regimes of \(\epsilon\) where the optimal policy is the MAX-SNR scheme.

Theorem 2 In the best-\(\gamma\) scenario with \(T \to \infty\),

(i) if \(\epsilon = c_{\text{TX}}(1 + \sqrt{BS_A})\), for some \(t = 1, 2, \ldots, B\), \(\delta^*\) is the MAX-SNR scheme, with \(t_k^* = t, S_{M,k}^* = \sqrt{\frac{S_A}{\theta}}\), \forall k; (ii) if \(\epsilon > c_{\text{TX}}(1 + \sqrt{BS_A})\), \(\delta^*\) is the MAX-SNR scheme, with \(t_k^* = B, S_{M,k}^* = \sqrt{\frac{S_A}{\theta}}(1 - \frac{1}{B} - k), \forall k; (iii) in both cases, \(M_{\gamma^*} = \nu^*\left(t_k^* S_{M,k}^* + \nu^*(\Lambda_k T + S_{M,k}^*)\right)\), where \(\nu^*\) is given by (23) and \(C_{\delta^*} = \frac{\epsilon}{N S}\).

Proof: See App. B. ■

Theorem 2 follows from the fact that, in the best-\(\gamma\) scenario, the FC can deterministically control the quality of the measurements collected in each slot (aggregate SNR \(\Lambda_k\), i.e., there are no uncertainties. If the condition on \(\epsilon\) given by Theorem 2 is satisfied, the FC can thus schedule each SN so as to collect a constant aggregate SNR (the highest possible, under the resource constraints, as dictated by the MAX-SNR scheme), thus achieving the lower bound in Theorem 1 (see comments therein). On the other hand, if the condition on \(\epsilon\) is not satisfied, the FC may need to resort to time-sharing in order to best exploit all available resources. The policy in this case can be obtained via the DP in (25).

Note that, in case (i), the local measurement SNR \(S_{M,k}^*\) depends only on \(S_A\) and \(\theta\). In particular, it is an increasing function of \(S_A\) and decreasing function of \(\theta\). In fact, if \(S_A\) increases, the error floor represented by the ambient noise diminishes, hence more accurate measurements can be collected; similarly, if \(\theta\) increases, sensing becomes more costly, hence \(S_{M,k}^*\) diminishes. On the other hand, in case (ii), sensing-transmission resources are abundant to SNs, hence \(B\) SNs are activated in order to saturate all \(B\) channels. \(S_{M,k}^*\) in this case is selected in such a way as to use up all available resources.

2) Markov-\(\gamma\) scenario: In this case, \(\gamma_{n,k}\) fluctuates over time, thus causing random fluctuations in the aggregate SNR collected at the FC. The optimal policy is difficult to characterize, due to the high dimensionality of the problem. Herein, we define a sub-optimal policy, based on the optimal DP policy derived in the previous section. To this end, let \(r(\cdot; \gamma_k) : \{1, 2, \ldots, N_S\} \to \{1, 2, \ldots, N_S\}\) be a ranking of SNs indexed by \(\gamma_k\), such that \(r(m; \gamma_k)\) is the label of the SN with the \(m\)th highest accuracy rate, i.e., \(\gamma(r(1; \gamma_k)) \geq \gamma(r(2; \gamma_k)) \geq \cdots \geq \gamma(r(N_S; \gamma_k))\). Let \(\delta^*\) be the optimal policy solving (19) or (20) for the best-\(\gamma\) scenario, \(S_{M,k}^*, \Lambda_{k}^*, k \geq 0\) be the sequence of number of active SNs, local measurement and aggregate SNRs generated by such policy, and denote the optimal MSE and cost in the best-\(\gamma\) scenario as \(\bar{M}_{\gamma^*}^{\text{max}}\) and \(C_{\delta^*}^{\text{max}}\), respectively. Let \(\{V_k, k \geq 0\}\) be a virtual prior variance process, obtained as if all measurements were collected with the best accuracy state \(\gamma_{\max}\). Starting from \(V_0 = V_0\), this can be generated recursively as \(V_{k+1} = \nu(\hat{\nu}(V_k, \Lambda_k))\). We define the sub-optimal coordinated DP policy (SCDP) as follows:

SCDP: Given \((V_k, \gamma_k)\), SCDP allocates the \(t_k^*\) SNs with the best accuracy state, with local measurement SNR \(S_{M,k}^*\),

\[
\begin{align*}
A_{r(m; \gamma_k), k}^* &= 1, S_{M,r(m; \gamma_k), k}^* = S_{M,k}^*, \forall m = 1, 2, \ldots, t_k^*; \\
A_{r(m; \gamma_k), k}^* &= 0, \forall m > t_k^*.
\end{align*}
\]

We have the following theorem.

Theorem 3 In the Markov-\(\gamma\) scenario, if \(N_S \geq \frac{B - 1}{\pi(\gamma_{\max})^2}\), under SCDP, \(C_{\delta^*} = C_{\delta^*}^{\text{max}}\) and

\[
0 \leq \bar{M}_{\delta^*} - \bar{M}_{\gamma^*}^{\text{max}} \leq \frac{1}{1 - \alpha} \exp\left\{-\frac{(N_S \pi(\gamma_{\max}) - B + 1)^2}{2N_S \pi(\gamma_{\max})}\right\},
\]

(26)
Theorem 3 states that SCDP achieves the same sensing-transmission cost as the optimal policy in the best-γ scenario. This is by construction and due to the statistical symmetry property, since all SNs experience the same steady-state distribution of their local accuracy state, hence each of them belongs to the set of i^k best SNs with the same frequency. On the other hand, the MSE gap with respect to the lower bound represented by the optimal policy in the best-γ scenario decreases exponentially with the network size N_S. Therefore, SCDP is nearly optimal for N_S sufficiently large. Alternatively, a densely deployed WSN provides sensing diversity, i.e., in each slot, a sufficiently large pool of SNs can sense X_k with high accuracy, despite the fluctuations in the local accuracy state of each SN. SCDP can be optimized efficiently via the DP in (25) for the best-γ scenario, and is given by Theorem 2 if the condition on ϵ holds.

B. Decentralized scheme

In this section, we analyze the decentralized scheme. By adapting the DP in (22) to this case, we obtain

$$
W^{T-k}(V_k, \pi_{\gamma,k}) = \min_{q(S_M)} \mathbb{E} \left[\hat{\nu}(V_k, \Lambda_k) \mid q, S_M \right] + \frac{\lambda}{c_{TX}} \sum_{\gamma \in [0,1]} \pi_{\gamma,k}(\gamma) \sum_{n=1}^{N_S} q(\gamma_n) c_{SN}(1, S_M(\gamma_n)) + \mathbb{E} \left[W^{T-k-1} \left(\nu(\hat{\nu}(V_k, \Lambda_k), \pi_{\gamma,k+1}) \mid q, S_M \right) \right],
$$

(27)

where $\Lambda_k = \sum_{n} O_{n,k} \gamma_n^2 S_A S_M(\gamma_n)/(S_A + S_M(\gamma_n))$, whose distribution depends on $q(.)$ and $S_M(.)$ via ($O_{n,k}, \gamma_n, \forall n$). As in the coordinated scheme, we first study the best-γ scenario, and then extend our analysis to the Markov-γ scenario.

1) Best-γ scenario: Letting $\gamma_n=1, \forall n$, we obtain $\Lambda_k = \frac{1}{2} S_A S_M$, where $R_k = \sum_{n=1}^{N_S} O_{n,k}$ is the number of packets successfully received at the FC, with PMF $p_R(R_k; q)$.

Lemma 4 If $N_S \geq B$,

$$
p_R(r; q) = \begin{cases}
\frac{B}{(N_S-k)!} \left(\frac{1}{N_S-k} \right)^r \left(\frac{q}{B} \right)^k \left(1 - \frac{q}{B} \right)^{N_S-k-k} & \text{if } r \leq N_S-k \\
0 & \text{otherwise}
\end{cases}
$$

Proof: See App. D

We employ the large network approximation $N_S \gg 1$ to approximate $p_R(r; q)$. We define the normalized activation probability per channel, $\zeta = q N_S / B$, and let $N_S \to \infty$ with ζ fixed. We thus obtain the following corollary of Lemma 4.

Corollary 1 When $N_S \to \infty$, R_k has binomial distribution with B trials and success probability $\zeta e^{-\zeta}$ in each channel, denoted as $p_R(R_k; \zeta)$.

The implication is that the successes/collisions are independent across channels, each Bernoulli distributed. This is not true for finite N_S, since the transmissions are coupled (each active SN transmits on a unique channel), hence the successes/collisions are correlated across channels, but it enables a good tractable approximation for finite N_S. Using the large network approximation, DP is given as follows.

DEC-DP: DP algorithm for the decentralized scheme, best-γ scenario. For $k = T, T-1, \ldots, 0$, solve

$$
W^{T-k}(V_k) = \min_{\zeta, S_M} \sum_{r=0}^{B} p_R(r; \zeta) \hat{\nu}(V_k, r) \frac{S_A S_M}{S_A + S_M} + \frac{\lambda}{c_{TX}} c_{SN}(1, S_M) + \sum_{r=0}^{B} p_R(r; \zeta) W^{T-k-1} \left(\nu \left(\hat{\nu}(V_k, r) \frac{S_A S_M}{S_A + S_M} \right) \right),
$$

(28)

where $W^{-1}(V_{T+1}) = 0$. The optimizer, $(\zeta^*, S_M^*, (V_k))$, is the optimal normalized activation probability and local measurement SNR pair in slot k.

The activation probability when $N_S < \infty$ can then be approximated by $q_k^*(V_k) \approx \zeta^*(V_k) B / N_S$. Due to the shared wireless channel, the transmission probability of the SNs should be bounded, as stated in the following lemma.

Lemma 5 When $N_S \to \infty$, the normalized transmission probability per channel satisfies $\zeta_k^*(V_k) \leq 1$.

Proof: See App. D

Remark 6 Note that, if $B = 1$, the success rate $N_S q(1-q)^{N_S-1}$ is maximized by $q = 1/N_S$, i.e., $\gamma = 1$. Any $q > 1/N_S$ (or $\zeta > 0$) incurs higher cost and collision probability, hence worse MSE performance, and is thus sub-optimal. Therefore, Lemma 5 holds trivially for $B = 1, \forall N_S$. For $B > 1$, this result holds for $N_S \to \infty$, since channel outcomes are decoupled in this case (Corollary 2).

From Lemma 5 the minimization in the DP stage (28) can be confined to $\zeta \in [0, 1]$, thus reducing the search space.

2) Markov-γ scenario: The optimal policy for this case is difficult to characterize, due to the high dimensionality of the problem. As for the coordinated scheme, we define the following sub-optimal decentralized DP policy (SDDP). To this end, let $(\zeta^*_k(V_k), S^*_k(M,k)(V_k))$ be the optimal policy under the best-γ scenario, obtained via (28).

SDDP: Given (V_k, γ_n, k), SN n activates with probability

$$
q_k(V_k, \gamma) = \begin{cases}
\frac{\mu}{N_S} \frac{\zeta^*_k(V_k) - \gamma_n}{\gamma_n} \pi_{\gamma_n}(\gamma) & \gamma > \gamma_{th}, \\
0 & \gamma < \gamma_{th},
\end{cases}
$$

(29)

and local measurement SNR $S_{M,n,k} = S^*_k(M,k)(V_k)$, where $\gamma_{th} \in \Gamma$ uniquely solves

$$
\sum_{\gamma \geq \gamma_{th}} \pi_{\gamma}(\gamma) = \beta_2 C^2(V_k) / N_S \gg \sum_{\gamma \leq \gamma_{th}} \pi_{\gamma}(\gamma),
$$

Note that, under SDDP, $\sum_{\gamma \leq \gamma_{th}} \pi_{\gamma}(\gamma) S_{N,S}/B = \zeta^*_k(V_k)$, i.e., each SN activates with marginal normalized probability $\zeta^*_k(V_k)$, with respect to the steady-state distribution of γ_n, k.

For the i.i.d.-γ scenario, we have the following lemma.

Lemma 6 SDDP is optimal in the i.i.d.-γ scenario, if $N_S \geq \frac{B}{\pi_{\gamma}(\gamma_{max})}$.

As in the coordinated scheme, this result is a consequence of the fact that a densely deployed WSN provides sensing diversity, i.e., in each slot, a sufficiently large pool of SNs can sense the underlying process with high accuracy, despite the fluctuations in the local accuracy state of each.
SN. In particular, if \(N_S \geq B / \pi_\gamma(\gamma_{\max}) \), then SDDP yields \(q_k(V_k, \gamma_{\max}) = B_{\pi_\gamma(V_k)} N_S / N_{\gamma_{\max}} \). Hence, if only the SNs with the best accuracy state may activate, and no loss is incurred with respect to the best-\(\gamma \) scenario. On the other hand, if \(N_S < B / \pi_\gamma(\gamma_{\max}) \), the FC may resort to the SNs with lower accuracy to sense and report their measurement. The DP (27) for the general case has high complexity, due to the high-dimensional action space (the activation probability and local measurement SNR are functions of the accuracy state) and state space (the belief \(\pi_{\gamma,k} \) is part of the state). Moreover, the optimal DP policy in the Markov-\(\gamma \) scenario is cumbersome to operate, since the FC needs to track the belief \(\pi_{\gamma,k} \). In contrast, SDDP has lower optimization and operational complexity, since it is optimized for the best-\(\gamma \) scenario and it does not require the FC to track \(\pi_{\gamma,k} \).

C. Cost of communication overhead

In this section, we evaluate the communication overhead required to implement the two schemes, assuming the suboptimal DP policy is used in the Markov-\(\gamma \) scenario. In the uplink channel (SNs to FC), each SN incurs the cost \(c_\gamma \) to report its accuracy state to the FC. On the other hand, in the downlink channel (FC to SNs), the FC incurs the cost \(c_{\gamma} \) to feed back the quality state \(V_k \) and \(c_{\text{SC}} \) to schedule each SN to activate. The mapping of \(V_k \) to the corresponding sensing-transmission action is stored in each SN in a look-up table.

1) Coordinated scheme: In this scheme, the SNs need to report their accuracy state, whenever it changes. Therefore, the average long-term uplink communication overhead of the network is \(\bar{C}_{UOH} = N_{SC} c_\gamma \sum_{\gamma \in \Gamma} \pi_\gamma(\gamma)(1-P_\gamma(\gamma; \gamma)) \), which grows with the WSN size. In particular, \(\bar{C}_{UOH} = 0 \) in the best-\(\gamma \) scenario and \(\bar{C}_{UOH} = N_{SC} 1 - \sum_{\gamma \in \Gamma} \pi_\gamma(\gamma) \) in the i.i.d.-\(\gamma \) scenario; in the general Markov-\(\gamma \) scenario, \(\bar{C}_{UOH} \) is small if \(P_\gamma(\gamma; \gamma) \approx 1, \forall \gamma, \) i.e., the accuracy state varies slowly over time. In the downlink channel, the FC schedules each SN individually, hence the downlink communication overhead is \(t_k c_{\text{SC}} \) in slot \(k \), since \(t_k \) are scheduled to activate. Since \(t_k \leq B \), the average long-term downlink communication overhead satisfies \(\bar{C}_{DOH} \leq B c_{\text{SC}} \).

2) Decentralized scheme: In this scheme, the SNs do not report their local accuracy state to the FC, hence \(\bar{C}_{UOH} = 0 \). On the other hand, in the downlink channel, the FC feeds back the quality state \(V_k \) in each slot, hence \(\bar{C}_{DOH} = c_V \).

Note that, unlike the coordinated scheme, the decentralized one incurs no uplink communication overhead cost. Moreover, if \(B c_{\text{SC}} > c_V \), it incurs also a smaller downlink communication overhead cost. Therefore, overall, the decentralized scheme is more scalable to large WSNs. As we will see in the next section, this improved scalability and lower communication overhead come at the cost of MSE degradation.

V. Numerical Results

In this section, we provide numerical results. Unless otherwise stated, we consider a WSN of size \(N_S \in \{20, 100\} \) (small and large WSN, respectively). We model \(\{\gamma_{n,k}\} \) as a Markov chain taking values in the set \(\Gamma = \{1,2, \ldots, 10\} \) with transition probabilities \(P_\gamma(\gamma; \gamma) \). For \(\pi_{\gamma,k} \), we let \(\gamma_{\max} = 96 \) and \(\alpha = 0.96 \), and \(B = 5 \). We consider the following schemes for the best-\(\gamma \) scenario:

- **COORD-DP**: coordinated scheme, obtained via DP or given by Lemma 2 if the condition on \(\epsilon \) holds;
- **DEC-DP**: the decentralized scheme considered in Sec. [IV-B] obtained via the DP in (27);
- **COORD-SNR**: MAX-SNR policy for the coordinated scheme (see [35]), determined in the proof of Theorem 2 in App. [B];
- **DEC-SNR**: MAX-SNR policy for the decentralized scheme, \((\zeta^*, S_M^*) = \arg \max_{\zeta, S_M} \frac{E[R_k|\zeta]}{S_A + S_M} \) s.t. \(B \zeta + \phi S_M \leq \epsilon \),

where, from Lemma 1, \(E[R_k|\zeta] = B \zeta e^{-\zeta} \).

The DP policies are obtained after \(T_{DP} = 100 \) DP iterations, and are evaluated in both Markov-\(\gamma \) and best-\(\gamma \) scenarios, using Monte-Carlo simulation over \(T = 10^6 \) slots. The above policies in the Markov-\(\gamma \) scenario are defined similarly to SCOPD (Sec. [V-A]) and SDDP (Sec. [V-B]). Note that COORD-SNR and DEC-SNR are non-adaptive. On the other hand, COORD-DP and DEC-DP adapt to the quality state \(V_k \) fed back by the FC.

In Figs. [3] and [4], we plot the MSE (17) as a function of the network cost (18) for \(N_S = 20 \) and \(N_S = 100 \), respectively, obtained by varying the parameters \(\epsilon \) and \(\lambda \). We plot also the lower bound for COORD-DP, given by Theorem 1 for the best-\(\gamma \) scenario, which is computed in the proof of Theorem 2 in App. [B]. We notice that, in the large WSN scenario, both COORD-DP and DEC-DP in the Markov-\(\gamma \) scenario (SCDP and SDDP, respectively) approach the lower bound given by the best-\(\gamma \) scenario. Therefore, SCDP and SDDP perform well at a fraction of the complexity with respect to the globally optimal policy derived via DP in the Markov-\(\gamma \) scenario. This is a result of sensing diversity, i.e., in each slot, a sufficiently large pool of SNs can sense the underlying process with high accuracy, despite the fluctuations in the local accuracy state of each SN. On the other hand, DEC-DP in the Markov-\(\gamma \) scenario (SDDP) incurs a small performance degradation in the small network scenario with respect to the best-\(\gamma \) scenario, since, in this case, also the SNs with lower accuracy state activate. Interestingly, COORD-DP yields good performance also in the small network scenario. In fact, despite the fluctuations in the accuracy state of each SN, COORD-DP always activates the best SNs, whereas the selection is randomized and decentralized for DEC-DP. Moreover, COORD-DP closely approaches the lower bound given by Theorem 1 and, in some cases, achieves the bound (see Theorem 2). In contrast, we have verified that the lower bound of Theorem 1 for the decentralized scheme (not plotted in the figure) is loose. This is because the lower bound of Theorem 1 can be achieved only if the FC collects deterministically a constant aggregate SNR.

5 Note that the choice \(c_{\text{TX}} = 1 \) is without loss of generality, since, by scaling \(c_{\text{TX}} \) and \(\phi \) by the same value, while keeping the normalized unitary sensing cost \(\theta \) constant, the long-term sensing-transmission cost scales accordingly, without changing the form of the optimal policy, and without providing any further insights.
sequence, as dictated by the MAX-SNR scheme: such constant SNR sequence can be closely replicated in the coordinated scheme, by scheduling individually each SN and avoiding collisions; on the other hand, in the decentralized scheme, the activation decisions of the SNs are randomized and collisions occur, so that the FC experiences wide random fluctuations of the aggregate SNR sequence around its mean. Finally, we note that, by adapting the sensing-transmission strategy to the quality state V_k, COORD-DP and DEC-DP can achieve significant cost-savings with respect to the respective non-adaptive schemes COORD-SNR and DEC-SNR, up to 74% (for $N_S = 20$) and 20% (for $N_S = 100$) for the decentralized scheme, and up to 35% for the coordinated one. Therefore, the maximization of the average aggregate SNR collected at the FC, initially proposed in Sec. [1] is not a good design criterion, since it does not effectively cope with the fluctuations and the stochastic dynamics induced by cross-layer factors such as the time-varying accuracy states, the decentralized sensing-transmission decisions of the SNs, and the channel collisions.

In Fig. [5] we plot the structure of DEC-DP as a function of the prior variance V_k. We note that, as V_k increases, i.e., the estimate of X_k is less accurate, both $\hat{\zeta}^*(V_k)$ and $S_M(V_k)$ increase, in order to achieve a higher estimation accuracy ($S_M(V_k)$ exhibits fluctuations due to the numerical optimization). On the other hand, when the estimation accuracy is good ($V_k < 0.2$) the activation probability is zero, so that the SNs can save energy. This result is in line with the myopic policy, studied in Part II. Finally, note that $\hat{\zeta}^*(V_k) < 1, \forall V_k$ (Lemma 5).

Finally, we compare our proposed decentralized technique to a technique proposed in [16]. Therein, the estimation of a random static parameter is considered, and decentralized censoring is employed to minimize the transmission cost of the SNs, based on the informativeness of the measurements collected, similar to [1] for a static detection problem. Note that (i) [16] assumes error-free transmissions; (ii) it does not model the sensing cost and the ability of the SNs to tune the local measurement SNR $S_{M,n,k}$, e.g., by controlling the number of samples collected; (iii) it assumes a static scenario, i.e., a single slot is considered and the parameter to be estimated does not vary over time. In our framework, in contrast, (i) transmissions are prone to collisions; (ii) $S_{M,n,k}$ is a control parameter, with cost $\phi S_{M,n,k}$; (iii) the process to be tracked is time-correlated, and the SNs have an internal accuracy state evolving as a Markov chain. Our proposed feedback loop enables adaptation of the sensing-transmission strategy in order to cope with the dynamics induced by these cross-layer factors. Since [16]does not consider our model exactly, we have extended it to accommodate our cross-layer dynamic setting as follows. We denote this scheme as modified-[16] (Mod-[16]). Given the prior variance V_k and mean $\sqrt{\alpha X_{k-1}}$ of X_k at the beginning of slot k, all SNs perform a measurement with common measurement SNR S_M. Then, SN n censors its measurement (denoted as $C_{n,k}=1$) if

$$\left|Y_{n,k} - \gamma_{n,k}\sqrt{\alpha X_{k-1}}\right| < \tau \sqrt{\gamma_{n,k}^2 V_k + S_A^{-1} + S_M^{-1}}$$

(30)

where the term within the square root is the variance of $Y_{n,k}$, given $(\sqrt{\alpha X_{k-1}},V_k,\gamma_{n,k})$, and transmits it otherwise ($C_{n,k}=0$). In other words, $Y_{n,k}$ is transmitted if and only if it significantly deviates from its expected value $\sqrt{\alpha X_{k-1}}$ [16]. The threshold τ, common to all SNs, determines the transmission probability q of the SNs. From the censoring rule (30), $q = 2(1 - Q(\tau))$, where $Q(x)$ is the normal Gaussian cumulative distribution function. Note that, in this scheme, all SNs sense in each slot, so that a fixed sensing cost ϕS_M is incurred, as opposed to our scheme, where each SN either activates by sensing and transmitting or remains idle. On the other hand, transmissions occur with probability...
Unfortunately for this scheme, the optimal estimator is not the linear Kalman filter. In fact, censored measurements provide indirect feedback to the FC, which can be exploited to infer \(X_k \). The optimal approach is then for the FC to compute a posterior belief of \(X_k \), involving cumbersome numerical integration, given the measurements collected and the indirect feedback signal, based on which an MMSE estimate of \(X_k \) can be obtained. However, note that, in our setting, the FC cannot differentiate between a censored measurement (which can be obtained. However, note that, in our setting, the FC cannot differentiate between a censored measurement (which provides the indirect feedback signal \(C_{n,k} = 1 \) given by \(\gamma_{n,k} \)) or a collision (uncensored but lost, thus providing the indirect feedback signal \(C_{n,k} = 0 \)), so that the computation of the posterior belief requires a cumbersome marginalization over these events, and over the value of the accuracy state \(\gamma_{n,k} \) in \(C_{n,k} \). In order to overcome this difficulty, we use the idealized assumption that the FC is genie-aided, \(i.e., \) it knows which SN censored its measurement, as well as the accuracy state \(\gamma_{n,k} \) of each SN. This information is not available to the decentralized scheme proposed in this paper, thus yielding a lower-bound to the cost-MSE trade-off achievable by \(\text{Mod-[16]} \). The posterior distribution of \(X_k \), given the observations collected at the FC, the collision outcome, the censoring outcome and accuracy state of each SN, is evaluated numerically. Based on it, the MMSE estimate of \(X_k \) (posterior mean) and its posterior variance \(\hat{V}_k \) are computed. Finally, the Gaussian approximation is employed, so that the next prior belief is given by \(X_k+1 \sim N(\sqrt{\alpha} \hat{X}_k, \nu(\hat{V}_k)) \). This scheme is then repeated in each slot. In Fig. 6 we evaluate the trade-off between network cost and MSE under \(\text{Mod-[16]} \) and DEC-DP, via Monte-Carlo simulation over 3000 slots. We notice that \(\text{Mod-[16]} \) incurs a significant performance degradation with respect to DEC-DP, despite the idealized assumption that the censoring and collision outcomes, as well as the accuracy state of each SN, are known to the FC under \(\text{Mod-[16]} \) (such information is not available to DEC-DP). In fact, \(\text{Mod-[16]} \) does not employ a cross-layer perspective, \(i.e., \) it neglects the cost of sensing (each SN senses in each slot), and the shared wireless channel, which results in collisions and uncertainty in the number of measurements collected at the FC. This is also confirmed by the more frequent collisions incurred by \(\text{Mod-[16]} \) with respect to DEC-DP, as shown numerically in Fig. 7. Moreover, it is not designed to cope with the time-correlated dynamics considered in our model.

VI. CONCLUSIONS

In this paper, we have proposed a cross-layer distributed sensing-estimation framework for WSNs, which exploits the quality feedback information from the FC. Our cross-layer design approach allows one to model the time-varying capability of the SNs to accurately sense the underlying process, the scarce channel access resources shared by the SNs, as well as sensing-transmission costs. We have proposed a coordinated scheme, where the FC schedules the action of each SN, and a more scalable decentralized scheme, where each SN performs a local decision to sense-transmit or remain idle, based on the FC quality feedback and the local observation quality. Despite the curse of dimensionality typical of the design of WSNs and multi-agent systems in asymmetric environments, we have exploited the statistical symmetry of the network and a large WSN approximation to derive structural properties of the optimal policy, which enable a more efficient optimization via DP. We have shown that a dense WSN provides sensing diversity, \(i.e., \) only a few SNs suffice to sense accurately and transmit, with no degradation in the MSE, despite the local fluctuations in the observation quality. Our analysis and numerical results show that the proposed schemes achieve near-optimal performance also for small-medium sized WSNs, and outperform non-adaptive schemes that do not exploit the quality feedback from the FC, and a technique proposed in the literature. We have evaluated the communication overhead of both schemes, proving that the decentralized one meets both goals of energy efficiency and scalability, requiring no coordination and minimal feedback information.
APPENDIX A

Proof of Lemma 3: We refer to the optimization problem only. In fact, for any \(\lambda > 0 \), there exists \(\epsilon > 0 \) such that the optimal policy for the problem is also optimal for the problem (19). Let \(\delta U \) be an optimal instruction policy for (19). Let \(\delta V \) be a new policy defined as, \(\forall D(0) \),

\[
\delta_k(D|V_k) = \frac{1}{|D(D_0)|} \sum_{D \in D(D_0)} \delta_k(D|V_k), \quad \forall D \in D(D_0).
\]

Proof of Theorem 2: Consider two ordered instructions \(D(0) = (d_1^{(0)}, d_2^{(0)}, \ldots, d_N^{(0)}) \), \(D(0) = (\bar{d}_1^{(0)}, \bar{d}_2^{(0)}, \ldots, \bar{d}_N^{(0)}) \) \(D(0) \) is assigned to slot \(k \), then the actions \(d_1^{(0)} \) (resp., \(\bar{d}_1^{(0)} \)) are chosen in slot \(k \). Similarly, \(C(T + n)(0) = \frac{1}{N} \sum_{n=1}^{N} C(T + n)(0) \leq \frac{1}{N^2} \), \(\forall n \), hence \(\delta V \) is also optimal.

Proof of Lemma 2: Let \(S_\theta = \arg\max \sum_{n=1}^{N} p_n(x) \). Since \(\Delta_\theta \leq \Delta_\theta^{(0)} \) and \(\Delta_\theta^{(0)} \) is a decreasing sequence, we have \(\Delta_\theta \leq \Delta_\theta^{(0)} \). Optimizing with respect to \(S_\theta \), we obtain \(S_\theta^{*} = \frac{1}{\sum_{n=1}^{N} p_n(x)} \). Finally, optimizing over \(\theta \),

\[
\Lambda^* = \max_{\theta \in [0, \theta_{max}]} \frac{mS_\theta(\epsilon - cTX)}{m(\phi - cTX + \epsilon)}. \quad (34)
\]

Lemma 7: Let \(V_0 = 1 \) and \(\Lambda_T^* = \Lambda_1T+1 \) be a constant SNR sequence, where \(T \) is the T-dimensional vector of ones. Then,

\[
\lim_{T \to \infty} R_T(1; \Lambda_{1T}+1) = \nu^*(\Lambda).
\]

Proof: Due to space constraints, a proof outline is provided. Note that \(\nu^*(\Lambda) \) is a fixed point of \(V_k = \nu(\nu(V_k-1), \Lambda) \) for some \(\Lambda \), since \(\nu(\nu(V), \Lambda) \) is increasing in \(V \), we have \(\nu^*(\Lambda) \). First, we show by induction that \(\nu(k, k) \geq 0 \) is a strictly decreasing sequence and \(\nu(k, k) \). In fact, let \(V_k \in (\nu^*(\Lambda), 1) \) (this is true for \(k = 0 \), since \(V_0 = 1 \). Since \(\nu^*(\Lambda) \) is a decreasing function of \(\Lambda \), there exists a unique \(\Lambda \) such that \(\nu(k, k) \).\(\nu(k, k) \), where we have used the fact that \(\sum_{n=1}^{N} p_n(x) \) is an increasing function of \(S_\theta \), hence \(\sum_{n=1}^{N} p_n(x) \) is increasing in \(S_\theta \). We conclude that a lower cost is incurred by the ordered instruction \(D(0) \), while achieving the same MSE accuracy as \(D(0) \). The lemma is thus proved.

Proof of Lemma 3: The target aggregate SNR \(\Lambda_k \) can be collected at the FC by scheduling \(t_k > \Lambda_k/S_\theta \) SNs to sense with local measurement SNR \(S_\theta = \frac{S_\theta}{t_k} \) and to transmit. The MSE and the next state \(V_{k+1} \) is a function of the state \(V_k \) and aggregate SNR \(\Lambda_k \). Hence, given \(\Lambda_k \), \(t_k \) can be uniquely chosen to minimize the expected cost in slot \(k \), \(t^*(\Lambda) = \arg\min_{t} \frac{1}{t} \sum_{n=1}^{N} c_{SN}(1, \bar{A}) \). Its solution yields Lemma 3 but is omitted due to space constraints.

APPENDIX B

Proof of Theorem 2: From Theorem 1 \(\bar{M}_U \geq \nu^*(\Lambda^*) \), where

\[
\Lambda^* = \max_{p, S_\theta} \frac{\sum_{t=1}^{T} p(t) S_\theta S_\theta(t)}{S_\theta + S_\theta(t)} \leq \epsilon. \quad (33)
\]

Using the Lagrangian method to optimize over \(S_\theta(\cdot) \), we have

\[
S_\theta^*(\cdot) = \arg\max_{S_\theta} \sum_{t=1}^{T} p(t) \left[\frac{S_\theta S_\theta(t)}{S_\theta + S_\theta(t)} - \mu(\epsilon/c + \phi S_\theta(t)) \right].
\]

Proof of Theorem 3: The equality \(C_{\delta, \theta}^{\text{max}} = C_{\delta, \theta}^{\text{max}} \) is trivial, since the sequence \(\{t_k, \Lambda_T^* \} \geq 0 \) is common to the best-\(\gamma \) and Markov-\(\gamma \) scenario. Let \(\Lambda_T^* \) be the realization of the aggregate SNR sequence collected at the FC in the Markov-\(\gamma \) and best-\(\gamma \) scenario, respectively, when \(\{t_k, \Lambda_T^* \} \geq 0 \) is scheduled. Let \(Q_k = \chi(\text{less than B SNs have accuracy } \gamma_{n,k} = \gamma_{\text{max}}) \). Therefore, we have the inequality \((1-Q_k) \Lambda_k \leq \Lambda_k \leq \Lambda_k^* \), \(\forall k \). In fact, if \(Q_k = 0 \), then at least B SNs have the best accuracy state, and the FC will schedule \(t_k^* \leq B \) of these SNs to activate, so that \(\Lambda_k = \Lambda_k^* \). Let \(V_k \) and \(V_k^* \),
\(\hat{V}_k \) be the prior and posterior variances in slot \(k \) in the Markov and best-\(\gamma \) scenarios, respectively, so that \(\bar{M}_k^T = \frac{1}{\pi_k} E \left[\sum_{k=0}^{T} \hat{V}_k | V_0 \right] \) and \(\bar{M}_{k,m}^T = \frac{1}{\pi_k} \sum_{k=0}^{T} \hat{V}_k^m \). Note that, since \(\Lambda_k \leq \Lambda_k^* \) \(\forall k \), then \(\hat{V}_k \geq \hat{V}_k^* \) \(\forall k \), from which the left-hand inequality in Theorem 3 follows. Let \(\tilde{k} \) be a slot index such that \(\hat{Q}_{\tilde{k}} = 1 \) and \(\hat{Q}_j = 0 \), \(\forall j \neq \tilde{k}, \tilde{k}+1, \ldots, \tilde{k}+J-1 \), for some \(J > 0 \). Since \(\Lambda_k = \Lambda_k^* \) when \(Q_k = 0 \), we have

\[
\sum_{k=0}^{\tilde{k}+J-1} \hat{V}_k = \sum_{k=0}^{\tilde{k}+J-1} \hat{V}_k^* \hat{V}_k \geq \hat{V}_k^* \hat{V}_k^*.
\]

Since \(\hat{V}_k \) is an increasing concave function of \(\hat{V}_k^* \), and \(1 \geq \hat{V}_k \geq \hat{V}_k^* \geq 1 - \alpha \), we obtain

\[
\sum_{k=0}^{\tilde{k}+J-1} \hat{V}_k \leq \sum_{k=0}^{\tilde{k}+J-1} \left[\hat{V}_k^* + \frac{d\hat{V}_k}{d\hat{V}_k^*} \right] (V_k - \hat{V}_k^*)
\]

\[
\sum_{k=0}^{\tilde{k}+J-1} \left[\hat{V}_k^* + \frac{d\hat{V}_k}{d\hat{V}_k^*} \right] (V_k - \hat{V}_k^*) \leq \sum_{k=0}^{\tilde{k}+J-1} \hat{V}_k^* + \alpha (1 - \hat{V}_k^* - \hat{V}_k^*). \]

By using the inequality \(\hat{V}_k \leq 1 \) when \(Q_k = 1 \), we obtain

\[
\sum_{k=0}^{T} \hat{V}_k \leq (1 - \hat{Q}_0) \hat{V}_0 + \sum_{k=0}^{T} (1 - \hat{Q}_k)(1 - \hat{Q}_{k-1}) \hat{V}_k^* + \hat{Q}_k
\]

\[
+ Q_0 + \sum_{k=0}^{T} (1 - \hat{Q}_k)Q_k - (1 - \hat{V}_k^*) \sum_{k=0}^{T} \hat{V}_k^* + \hat{Q}_0 (1 - \hat{V}_k^*)
\]

\[
+ \sum_{k=0}^{T} \left[\alpha (1 - \hat{Q}_k)Q_k - (1 - \alpha) (1 - \hat{V}_k^*) \right] \leq \sum_{k=0}^{T} \left(\hat{V}_k^* + \hat{Q}_k \right)
\]

Assuming \(\gamma_k \) is at steady-state, and letting

\[Q \triangleq \mathbb{P}(Q_k = 1) = \sum_{i=0}^{B-1} \binom{N_S}{i} \pi_i \gamma(\gamma_{\text{max}})^i (1 - \pi_i \gamma(\gamma_{\text{max}}))^{N_S - i}, \]

we obtain \(\bar{M}_k^T = \mathbb{E}[R(T; V_0); A_T^i] | V_0 \leq \bar{M}_k^T \gamma_{\text{max}} + Q \). Finally, (26) follows from \(\bar{Q} \leq \text{exp} \left\{ \frac{(N_S \pi \gamma(\gamma_{\text{max}}) - B + 1)^2}{2 N_S \pi \gamma(\gamma_{\text{max}})} \right\} \) (Chernoff’s inequality) when \(N_S \pi \gamma(\gamma_{\text{max}}) \geq B - 1 \).

APPENDIX D

Proof of Lemma 4. Let \(U(t, b) \) be the number of combinations of \(t \) transmissions over \(b \) channels, all unsuccessful. We have \(U(t, 1) = 1 - \chi(1) = 1 \), since the transmission is successful if and only if \(t = 1 \). For \(b > 1 \),

\[U(t, b) = \sum_{n=0, n \neq 1}^{t} \binom{t}{n} U(t - n, b - 1), \]

i.e., \(n \) SNs transmit in the first channel (where \(n \neq 1 \), otherwise a successful transmission occurs), and the remaining \(t - n \) SNs in the remaining \(b - 1 \) channels. By induction, it can be proved that, for \(t \geq 0, b \geq 1 \),

\[U(t, b) = \min_{t \geq 0, b \geq 1} \sum_{k=0}^{t} (-1)^k \binom{b}{k} (b - k)^{t-k} + b \chi(t = b) (b - 1)^b, \]

hence \(p_{R|T}(r|t) = \binom{B}{r} \frac{U(t - r, B - r)}{B^r} \).
Theorem 4 Let $A > 0$, and let $m \geq 0$ uniquely solve
\[
\Lambda_{0,m}^* = \left(T - m - 1 \right)^+ \Lambda_{1,m}^* \leq \Lambda_{0,m-1} + \left(T - m - 1 \right) \Lambda_{1,m-1}.
\]
Then, if $m \geq T$, and omitting the dependence of $\Lambda_{0,m}^*$ on Λ, $A = (T + 1) \Lambda$, $\Lambda_{0} = (T + 1) \Lambda \in [\Lambda_{0,m}^*, \Lambda_{0,m-1}]$, $\Lambda_{0} = 0$, $k > 0$;
\[
R_T^*(\Lambda) = 1 - \frac{1 - \alpha^{m+1}}{T + 1} - \frac{T + 1}{1 - \alpha} \Lambda + (T + 1) A.
\]
we must necessarily have \(\hat{V}_1 = \hat{V}_{t-1} = \hat{V}_0, \forall i = 1, 2, \ldots, T - m \), and therefore \(\Lambda_i = \Lambda_1, \forall i = 1, 2, \ldots, T - m - 1 \) and \(\hat{V}_i = \hat{v}^*(\Lambda_1), \forall i = 0, 1, \ldots, T - m - 1 \). It follows that, for a given \(\Lambda_0 = (\Lambda_{0,m}, \Lambda_{0,m-1}) \) with \(m < T - 1 \) and \(V_0 = 1 \), we have \(\hat{V}_0 = 1/(1 + \Lambda_0) \). Then, \[57\] implies
\[
\hat{V}_i = \hat{v}(\nu(\hat{V}_{i-1}), \Lambda_i) = \hat{v}(\nu(\hat{V}_0), \Lambda_1) = \hat{V}_0, \forall i \leq T - m - 1,
\]
yielding the optimality of \[51\] for \(i \leq T - m - 1 \). Finally, using \[56\] and the fact that \(\hat{V}_{T-m-1} = \hat{V}_0 \), we have
\[
\hat{V}_{T-m}^2 = 1 - \frac{\alpha^m+1}{1 - \alpha} = \frac{V_0^2}{1 - \frac{(1 - \hat{V}_0^2)^2}{1 - \alpha}},
\]
yielding \[51\]. To obtain a feasible solution, we must have \(\Lambda_{T-m} \geq 0, \text{ i.e. } \Lambda_0 \geq (\Lambda_{0,m})^2 \), which holds by assumption. Therefore, we need to prove the inequality for \(i \geq (T - m) + 1 \). We have that \(Z_i \) is a continuous function of \(\Lambda_0 \). Now, let \(m \geq 0 \) and assume that \(Z_i \leq Z_{(T-m)+}, \forall i \geq 0 \). We show that this implies that \(Z_i \leq Z_{(T-m)+} \) and \(\Lambda_0 \geq (\Lambda_{0,m})^2 \). for \(i \geq (T - m) + 1 \), using the fact that \(\Lambda_0 = 0 \). We have that \(\hat{V}_0 = \Lambda_{m}^0 \), as proved in the first part of the proof.

\[51\] follows from Theorem \[4\] and Lemma \[7\] in App. \[8\]

Corollary 2 \(R^\infty_1(\Lambda) \triangleq \lim_{T \to \infty} R^T_1(\Lambda) = \hat{v}^*(\Lambda) \), achievable by the constant aggregate SNR sequence \(\Lambda_k = \Lambda, \forall k \).

REFERENCES

[1] S. Appadwedula, V. Veeravalli, and D. Jones, “Decentralized Detection With Censoring Sensors,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1362–1373, 2008.

[2] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The Complexity of Decentralized Control of Markov Decision Processes,” Math. Oper. Res., vol. 27, no. 4, pp. 819–840, Nov. 2002. [Online]. Available: http://dx.doi.org/10.1287/moor.27.4.819.297

[3] D. Bertsekas, Dynamic programming and optimal control. Athena Scientific, Belmont, Massachusetts, 2005.

[4] I-F. Chamberland and V. Veeravalli, “Decentralized detection in sensor networks,” IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 407–416, 2003.

[5] A. Dogandzic and K. Qiu, “Decentralized Random-Field Estimation for Sensor Networks Using Quantized Spatially Correlated Data and Fusion-Center Feedback,” IEEE Transactions on Signal Processing, vol. 56, no. 12, pp. 6069–6085, 2008.

[6] M. Epstein, L. Shi, A. Tiwari, and R. M. Murray, “Probabilistic performance of state estimation across a lossy network,” Automatica, vol. 44, no. 12, pp. 3056–3053, Dec. 2008. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2008.05.026

[7] J. Fang and H. Li, “Decentralized Estimation of Gauss–Markov Random Fields With One-Bit Quantized Data,” IEEE Signal Processing Letters, vol. 17, no. 3, pp. 449–452, 2010.

[8] E. Huang and S. Dey, “Distributed Quantizer Design for Hidden Markov State Estimation Via Multiple Sensors With Fusion Center Feedback,” IEEE Transactions on Signal Processing, vol. 54, no. 8, pp. 2887–2896, 2006.

[9] O. Kreidl, J. Tisitsiklis, and S. Zoumpoulis, “On Decentralized Detection With Partial Information Sharing Among Sensors,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1759–1765, 2011.

[10] E. Huang and S. Dey, “Distributed Estimation in Energy-Constrained Wireless Sensor Networks,” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp. 3746–3758, 2009.

[11] J.-C. Liu and C.-D. Chung, “Distributed Estimation in a Wireless Sensor Network Using Hybrid MAC,” IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3424–3435, Sept 2011.

[12] W. Michailidis and U. Mitra, “Cross-layer design of distributed sensing-estimation with quality feedback, Part II: Myopic schemes,” submitted to IEEE Transactions on Signal Processing, 2014.

[13] ——, “Distributed estimation in sensor networks with quality feedback: A general framework,” in IEEE GlobalSIP Symposium on New Sensing and Statistical Inference Methods, Dec. 2013.

[14] ——, “Fusion Center Feedback for Quasi-Decentralized Estimation in Sensor Networks,” in 51th Annual Allerton Conference on Communication, Control, and Computing, Sept 2013.

[15] ——, “A Cross-Layer Framework for Joint Control and Distributed Sensing in Agile Wireless Networks,” in IEEE International Symposium on Information Theory (ISIT), June 2014.

[16] E. Mscelu and G. Giannakis, “Sensor-Centric Data Reduction for Estimation With WSNs Via Censoring and Quantization,” IEEE Transactions on Signal Processing, vol. 60, no. 1, pp. 400–414, Jan 2012.

[17] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in 46th IEEE Conference on Decision and Control, 2007, pp. 5492–5498.

[18] R. Olfati-Saber and P. Jalalkamali, “Coupled Distributed Estimation and Control for Mobile Sensor Networks,” IEEE Transactions on Automatic Control, vol. 57, no. 10, pp. 2699–2714, 2012.

[19] P. Ray and P. K. Varshney, “Distributed Detection in Wireless Sensor Networks Using Dynamic Sensor Thresholds,” International Journal of Distributed Sensor Networks, vol. 4, no. 1, pp. 5–12, Jan. 2008. [Online]. Available: http://dx.doi.org/10.1080/1550128X.2007.953786

[20] A. Ribeiro and G. Giannakis, “Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case,” IEEE Transactions on Signal Processing, vol. 54, no. 3, pp. 1131–1143, March 2006.

[21] K. Romer and F. Mattern, “The design space of wireless sensor networks,” IEEE Wireless Communications, vol. 11, no. 6, pp. 54–61, 2004.

[22] V. Saligrama, M. Alanyali, and O. Savas, “Distributed Detection in Sensor Networks With Packet Losses and Finite Capacity Links,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4118–4132, 2006.

[23] P. Tandao, P. Ailiot, and E. Autret, “Linear Gaussian space-state model with irregular sampling: application to sea surface temperature,” Stochastic Environmental Research and Risk Assessment, vol. 25, no. 6, pp. 793–804, 2011.

[24] P. C. Tay, “The Value of Feedback in Decentralized Detection,” IEEE Transactions on Information Theory, vol. 58, no. 12, pp. 7226–7239, 2012.

[25] G. Thate and U. Mitra, “Sensor Selection and Power Allocation for Distributed Estimation in Sensor Networks: Beyond the Star Topology,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 2649–2661, 2008.

[26] J. N. Tsitsiklis, “Decentralized detection,” in Advances in Statistical Signal Processing. JAI Press, 1993, pp. 297–344.

[27] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. Goldsmith, “Power scheduling of universal decentralized estimation in sensor networks,” IEEE Transactions on Signal Processing, vol. 54, no. 2, pp. 413–422, 2006.

[28] J.-J. Xiao, A. Ribeiro, Z.-Q. Luo, and G. Giannakis, “Distributed compression-estimation using wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 27–41, 2006.