GAUGED HETEROTIC SIGMA-MODELS

C. M. HULL

Physics Department, Queen Mary and Westfield College,
Mile End Road, London E1 4NS, United Kingdom.

ABSTRACT

The gauging of isometries in general sigma-models which include fermionic terms which represent the interaction of strings with background Yang-Mills fields is considered. Gauging is possible only if certain obstructions are absent. The quantum gauge anomaly is discussed, and the (1,0) supersymmetric generalisation of the gauged action given.
Non-linear sigma-models are important two-dimensional field theories and those that are conformally invariant describe the propagation of a string in a curved space-time [1]. Gauging such sigma-models can give a construction of new conformal field theories, and gauged Wess-Zumino-Witten models provide a lagrangian formulation of the coset construction [2]. More recently, duality symmetry in string theory has been formulated in terms of gauged sigma-models [3], and this has led to the proposal of non-abelian generalisations of duality symmetry [4]. Supersymmetric gauged sigma-models have also been used to construct (p,q) supersymmetric integrable models [5]. In [6,7,8], the gauging of general non-linear sigma-models with Wess-Zumino terms was shown to be possible only if certain obstructions were absent, and the gauged action was given. The (p,q) supersymmetric generalisations of these sigma-models were constructed in [9]. The purpose of this paper is to extend these results to the case of sigma-models with fermionic terms, representing the interaction of strings with background Yang-Mills fields C_i^{AB}, in addition to the metric g_{ij}, anti-symmetric tensor gauge field b_{ij} and dilaton Φ. In particular, the (1,0) supersymmetric version of such terms describes the propagation of heterotic strings in backgrounds with non-trivial gauge fields [10] and the gauged version can be used to formulate the effect of duality transformations on Yang-Mills fields [12].

The action for a bosonic two dimensional sigma-model with Wess-Zumino term and Fradkin-Tseytlin term is

$$S_0 = \frac{1}{2} \int d^2x \sqrt{h} \left(g_{ij} \partial^\mu \phi^i \partial^\nu \phi^j + \epsilon^{\mu\nu\sigma} b_{ij} \partial^\mu \phi^i \partial^\nu \phi^j + \Phi R \right)$$

(1)

where the D-dimensional target space M has metric $g_{ij}(\phi)$, coordinates ϕ^i ($i = 1, ... D$) and torsion three-form H given in terms of a potential b_{ij} by $H_{ijk} = \frac{3}{2} \partial^i [b_{jk}]$. It is invariant under the transformation

$$\delta \phi^i = e \lambda^a \xi^i_a$$

(2)

where λ^a ($a = 1, ... n$) are infinitesimal constant parameters, e is a constant and ξ^i_a
are a set of vector fields on M provided the Lie derivative with respect to ξ_a of g_{ij}, Φ and H_{ijk} vanish, which will be the case if

$$\nabla_{(i\xi_j)a} = 0$$

(3)

(where $\xi_{ia} = g_{ij} \xi^j_a$)

$$\xi^i_a \partial_i \Phi = 0$$

(4)

and $\xi^i_a H_{ijk}$ is an exact two-form, i.e. there is some (globally defined) set of Lie-algebra-valued one-forms v_a, defined up to the addition of a closed form, with components v_{ia} such that

$$\xi^i_a H_{ijk} = \partial_j v_{k|a}$$

(5)

Then ξ_a^i are Killing vectors which can be taken to generate some n-dimensional isometry group G satisfying

$$[\xi_a, \xi_b] \equiv L_a \xi_b = f^{abc} \xi_c$$

(6)

where f^{abc} are the structure constants of G and L_a denotes the Lie derivative with respect to ξ_a.

The vanishing of the Lie derivative of H_{ijk} implies that

$$L_a b_{ij} = \partial_{[i} \Lambda_{j]a}$$

(7)

for some Λ_{ia} so that the variation of b_{ij} can be cancelled by an anti-symmetric tensor gauge transformation, or equivalently, the variation of the b-term in (1) is a total derivative. If $\Lambda_{ia} = 0$, then the symmetry can be gauged by minimal coupling, i.e. by replacing the derivatives ∂_{μ} in (1) by gauge-covariant derivatives
\[D_\mu, \text{ where} \]
\[D_\mu \phi^i = \partial_\mu \phi^i - e A^a_\mu \xi^i_a \] (8)

and the gauge field \(A^a_\mu \) transforms as
\[\delta A^a_\mu = \partial_\mu \lambda^a + e f^a_{bc} A^b_\mu \lambda^c \] (9)

In the case in which \(\Lambda_{ia} \neq 0 \), minimal coupling is not sufficient and the gauging is as given in [6,7,8]. The gauging can in principle be given in terms of the \(\Lambda_{ia} \) given in (7), but these are not vector fields in general since the \(b_{ij} \) are not tensors but are connections, and it is more convenient to work in terms of the covariant \(v_{ia} \).

Gauging of the isometry symmetry (2) is possible only if [6,7,8] (i) the \(v_{ia} \) can be chosen to be equivariant, \(i.e. \) chosen so that
\[\mathcal{L}_a v_{ib} = f_{ab}^c v_{ic} \] (10)

and (ii) if
\[c_{(ab)} = 0 \] (11)

where
\[c_{ab} = v_{ia} \xi^i_b, \] (12)

If these two conditions are satisfied, then the gauged action is
\[S_G = \frac{1}{2} \int d^2 x \sqrt{h} \left\{ g_{ij} D_\mu \phi^i D^\mu \phi^j + \Phi R \right\} \]
\[+ \frac{1}{2} \int d^2 x \sqrt{h} \epsilon^{\mu \nu} \left(b_{ij} \partial_\mu \phi^i \partial_\nu \phi^j + 2e A^a_\mu v_{ia} \partial_\nu \phi^i - e^2 c_{[ab]}(\phi) A^a_\mu A^b_\nu \right) \] (13)

This can be rewritten as [6,8]
\[S_G = \frac{1}{2} \int d^2 x \sqrt{h} \left\{ g_{ij} D_\mu \phi^i D^\mu \phi^j + \Phi R \right\} \]
\[+ \int \left[\frac{1}{3} H_{ijk} D_\phi^i D_\phi^j D_\phi^k + \frac{e}{2} v_{ia} D_\phi^i F^a \right] \] (14)

where \(Y \) is a three-manifold whose boundary is the world-sheet \(X \) and the field
strength two-form is $F^a = dA^a - \frac{1}{2} ef_{bc}^a A^b A^c$. As usual, the fields ϕ^i, A^a_{μ} on X are extended to fields on Y in the second term in (14). If (10) is satisfied but (11) is not, then the action (13) is not gauge-invariant, but satisfies

$$\delta S = e^2 \int d^2 x \sqrt{h} \epsilon^{\mu \nu} c_{(ab)} A^a_{\mu} (\partial_{\nu} \lambda^b)$$

which is proportional to the consistent chiral anomaly in two dimensions.

Suppose now that one adds a fermionic term of the form [10]

$$S_f = \frac{i}{2} \int d^2 x \sqrt{h} \psi_A (\nabla_+ \psi)_A$$

where ψ_A are chiral Majorana world-sheet spinor fields that are also sections of an $O(N)$ vector bundle over M with connection $C_i^{AB}(\phi), C_i^{AB} = -C_i^{BA}$, and fibre metric δ_{AB}, which is used to raise and lower the $O(N)$ vector indices $A, B, \ldots = 1, \ldots, N$. The covariant derivative is

$$(\nabla_\mu \psi)_A = \partial_\mu \psi_A - \frac{1}{2} \omega_\mu \psi_A - \partial_\mu \phi^j C_i^{AB} \psi_B$$

where $\omega_{\mu} = \frac{1}{2} \epsilon_{ab} \omega_{\mu}^{ab}, \omega_{ab}^{ab}$ is the world-sheet spin-connection and $\nabla_\pm = e^\mu_{\pm} \nabla_\mu$ where $e_a^\mu (a = \pm)$ are zweibeins, with $e_{\pm}^\mu = \pm \epsilon_{\mu \nu} e^\nu_{\pm}$. This is formally invariant under the $O(N)$ gauge transformations

$$\delta \psi_A = M_A^B \psi_B, \quad \delta C_i = \partial_i M - [C_i, M]$$

with parameter $M_A^B(\phi)$. Under an arbitrary variation of the fields, the action (16) changes by

$$\delta S_f = i \int d^2 x \sqrt{h} \left\{ (\Delta \psi_A)(\nabla_+ \psi)_A - \frac{1}{2} \delta \phi^i \partial_+ \phi^j G_{ij}^{AB} \psi_A \psi_B \right\}$$

where the field strength is

$$G_{ij} = \partial_i C_j - \partial_j C_i - [C_i, C_j]$$
and the covariant variation is defined by

$$\Delta \psi_A = \delta \psi_A - \delta \phi^i C_i^{AB} \psi_B$$ \hfill (21)

The transformation (2) for constant \(\lambda \) will lead to a symmetry of the action \(S_f \) if the connection \(C_i \) is invariant up to a gauge transformation:

$$\mathcal{L}_\alpha C_i = \nabla_i \kappa_a$$ \hfill (22)

for some \(\kappa_a^{AB}(\phi) \), as the variation of the action can then be cancelled by an \(O(N) \) transformation of \(\psi_A \), \(\delta \psi_A = \lambda^a \kappa_a^{AB} \psi_B \). This condition has been discussed in [11], where particular attention is paid to global aspects. It can be reformulated covariantly as follows. The condition for there to be an isometry symmetry is that the field strength satisfy

$$\xi^i_a G^{AB}_{ij} = \nabla_i \mu_a^{AB}$$ \hfill (23)

for some \(\mu_a^{AB}(\phi) \). This is equivalent to (22) with

$$\mu_a = \kappa_a - \xi^i_a C_i$$ \hfill (24)

The \(\kappa_a \) are not \(O(N) \)-covariant (they transform as a connection), and it is more convenient to work with the \(\mu_a^{AB} \) defined by (23), which transform covariantly under \(O(N) \) transformations

$$\delta \mu_a = [M, \mu_a]$$ \hfill (25)

just as for the Wess-Zumino term it was better to work with the \(v_{ia} \) rather than the \(\Lambda_{ia} \). If (23) is satisfied, then the action (16) is invariant under the rigid transformations given by (2) and

$$\Delta \psi_A = e \lambda^a \mu_a^{AB} \psi_B$$ \hfill (26)

Under the transformations given by (2),(26), with local \(\lambda(x) \), the action \(S_f \)
varies by

\[\delta S_f = e \int d^2 x \sqrt{h} \partial_+ \lambda^a J_{a_-} \]

(27)

where \(J_{a_-} \) is the Noether current

\[J_{a_-} = \frac{i}{2} (\psi_A \mu^A_B \psi_B) \]

(28)

This variation can be cancelled by adding the Noether coupling \(-eA_+J_-\) to obtain

\[S_g = \frac{i}{2} \int d^2 x \sqrt{h} \left(\psi_A (\nabla_+ \psi)_A - eA^a_+ (\psi \mu_a \psi) \right) \]

(29)

where

\[(\nabla_+ \psi)_A = (\nabla_+ \psi)_A - eA^a_+ \mu^A_B \psi_B = \partial_+ \psi_A - A^{AB}_+ \psi_B, \]

\[A^{AB}_\mu = eA^a_\mu \mu^A_B + C_i^{AB} \partial_\mu \phi^i \]

(30)

This action is then fully gauge-invariant provided the \(\mu_a \) are equivariant, \(i.e. \) they satisfy

\[\hat{\mathcal{L}}_{a} \mu_b - [\mu_a, \mu_b] = f_{ab}^c \mu_c \]

(31)

where \(\hat{\mathcal{L}}_a \) is the gauge-covariant Lie derivative, which for tensors \(T_{ij...}^{AB} \) transforming according to the adjoint of \(O(N) \) is given by

\[\hat{\mathcal{L}}_a T_{ij...}^{AB} = \mathcal{L}_a T_{ij...}^{AB} - \hat{\xi}_a[T_{ij...}]^{AB} \]

(32)

This is the analogue of the equivariance condition (10).

To summarise, the action (16) is invariant under rigid isometries provided that the field-strength satisfies (23) for some \(\mu_a \), and this can be promoted to a local
symmetry provided the μ_a satisfy the equivariance condition (31), in which case the gauged action is (29). Note that (23) is equivalent to the condition that

$$\mathcal{L}_a G_{ij} = [\mu_a, G_{ij}]$$

for some μ_a, so that the gauge-covariant Lie derivative of the field-strength vanishes up to a gauge transformation. The action (29) is also invariant under the $O(N)$ transformations (18),(25).

As an example, consider the case in which the vector bundle is the tangent bundle and C^{AB}_i is the torsion-free spin-connection, where A, B are now tangent space indices with respect to a target space vielbein E^A_A. Then $G^{AB}_{ij} = R_{ijAB}$ where R_{ijAB} is the curvature tensor and (23) is automatically satisfied with μ^{AB}_a proportional to $E^A_A E^B_B \nabla_i \xi^j$.

The gauge variation of the connection \mathcal{A}_+ defined by (30) is

$$\delta \mathcal{A}^{AB}_+ = \partial_+ \lambda^{AB} - [\mathcal{A}, \lambda]^{AB}, \quad \lambda^{AB} \equiv \lambda^a \kappa^{AB}_a$$

so that the action (29) is manifestly invariant under the transformations (34) and $\delta \psi_A = -e \lambda^{AB} \psi_B$, which is equivalent to (26). Quantum mechanically, the gauge symmetry of the chiral fermion action (29) is anomalous, with the variation of the effective action proportional to

$$\Delta = \int d^2 x \sqrt{h} \mathcal{A}^{AB}_+ \partial_\lambda^{AB}$$

Adding a counterterm proportional to $\text{Tr} (\mathcal{A}_+ \mathcal{A}_-)$, the anomaly becomes proportional to

$$\Delta = \int \mathcal{A}^{AB} d\lambda^{AB}$$

where $\mathcal{A}^{AB} = \mathcal{A}^{AB}_\mu dx^\mu$. When rewritten in terms of A^a and λ^a, this contains $d\phi$ and $d\phi d\phi$ terms.
It is straightforward to extend these results to the (1,0) supersymmetric sigma-model. For a flat world-sheet with $h_{\mu\nu} = \eta_{\mu\nu}$, flat (1,0) superspace has coordinates x^+, x^- and θ and flat superspace derivative D with $D^2 = i\partial_+$. The (1,0) supersymmetric generalisation of (1) is given by [10]

$$S = -i \left[\int d^2 x \, d\theta \, g_{ij} D\phi^i \partial_- \phi^j + \int d^2 x \, dt \, d\theta \, H_{ijk} \partial_t \phi^i D\phi^j \partial_- \phi^k \right],$$

(37)

where ϕ is now a superfield, i.e. a map from the (1,0) superspace into M. The transformations (2), now involving superfields, are rigid symmetries of the action (37) provided that the vector fields ξ^i_α satisfy the same conditions as in the bosonic case. To promote these rigid symmetries to local ones, it is necessary to introduce a (1,0) super Yang-Mills multiplet. This is described by gauge superfields $A(x, \theta), A_+(x, \theta), A_-(x, \theta)$ which can be used to define gauge-covariant derivatives $\nabla, \nabla_-, \nabla_+$. These are taken to satisfy the constraints [13]

$$[\nabla, \nabla] = 2i\nabla_+, \quad [\nabla, \nabla_-] = W, \quad [\nabla_+, \nabla_-] = F, \quad (38)$$

with all other super-commutators equal to zero. In equation (38), the field strength W^a is an unconstrained superfield while the Bianchi identities imply that F^a is proportional to DW. Acting on sigma-model fields, these become (setting $e = -1$)

$$\nabla \phi^i = D\phi^i + A^a \xi^i_\alpha(\phi), \quad [\nabla, \nabla_-] \phi^i = W^a \xi^i_\alpha(\phi)$$

(39)

etc. Gauging is possible if and only if it is possible for the corresponding bosonic model, in which case the action for the gauged (1,0) sigma model is

$$S = -i \int d^2 x \, d\theta \left[g_{ij} \nabla \phi^i \nabla_- \phi^j + b_{ij} D\phi^i \partial_- \phi^j - A^a u_{ia} \partial_- \phi^i + A_+^a u_{ia} D\phi^i + A_+^a A_-^b c_{[ab]} \right],$$

(40)

The (1,0) supersymmetric generalisation of (16) is [10]

$$S = \frac{1}{2} \int d^2 x \, d\theta \psi_A \tilde{D}\psi_A$$

(41)
where

\[\tilde{D}\psi_A = D\psi_A - D\phi^i C_i^{AB} \psi_B \]

(42)

and \(\psi_A \) are now fermionic superfields. Again, this is invariant under rigid isometry symmetries if and only if the connection \(C_i(\phi) \) satisfies (23) for some \(\mu_a \), and the rigid symmetry can be gauged if \(\mu_a \) is equivariant (31), in which case the gauged action is the \((1,0) \) supersymmetrisation of (29), given by

\[S = \frac{1}{2} \int d^2x d\theta \psi_A \tilde{D}\psi_A \]

(43)

where

\[\tilde{D}\psi_A = \tilde{D}\psi_A + A^a \mu_a^{AB} \psi_B \]

(44)

REFERENCES

1. A. Sen, Phys. Rev. D3 (1985) 2162; Phys Rev Lett 55 (1985) 1846; C. Callan, D. Friedan, E. Martinec and M.J. Perry, Nucl. Phys.262 (1985 593.

2. K. Bardacki, E. Rabinovici and B. Säring, Nucl. Phys.299 (1988) 157; H.J. Schnitzer, Nucl. Phys.324 (1989) 412; D. Karabali and H.J. Schnitzer, Nucl. Phys.329 (1990) 649; K. Gawędzki and A. Kupiainen, Phys. Lett. 215B (1988) 119, Nucl. Phys. B320(FS) (1989) 625.

3. M. Roček and E. Verlinde, Nucl. Phys. B373 (1992), 630.

4. X.C. de la Ossa and F. Quevedo, Nucl. Phys. B403 (1993), 377.

5. C.M. Hull, G. Papadopoulos and P.K. Townsend, Potentials for \((p,0) \) and \((1,1) \) supersymmetric sigma-models with torsion, preprint DAMTP/R-93/8.

6. C.M. Hull and B. Spence, Phys. Lett. B232 (1989), 204.

7. I. Jack, D.R.T. Jones, N. Mohammedi and H. Osborn, Nucl. Phys. B332 (1990), 359.
8. C.M. Hull and B. Spence, Nucl. Phys. B353 (1991), 379.

9. C.M. Hull, G. Papadopoulos and B. Spence, Nucl. Phys. B363 (1991) 593.

10. C. M. Hull and E. Witten, Phys. Lett. 160B (1985) 398.

11. G. Papadopoulos, Phys. Lett. B238 (1990), 75.

12. C.M. Hull, in preparation.

13. R. Brooks, F. Muhammad and S.J. Gates, Jr., Nucl. Phys. 268 (1986) 599.