Short- and long-term recurrence of early-stage invasive ductal carcinoma in middle-aged and old women with different treatments: A nationwide population-based cohort study

Ying-Jhen Wu
Kaohsiung Medical University

Yuan Kao
Chi Mei Medical Center

Chien-Chin Hsu
Chi Mei Medical Center

Hung-Jung Lin
Chi Mei Medical Center

Jhi-Joung Wang
Chi Mei Medical Center

Shih-Feng Weng
Kaohsiung Medical University

Chien-Cheng Huang (chienchenghuang@yahoo.com.tw)
Chi Mei Medical Center https://orcid.org/0000-0003-3595-2952

Research article

Keywords: breast cancer, breast conserving therapy, invasive ductal carcinoma, mastectomy, middle-aged, old, radiation, recurrence, SEER, women

DOI: https://doi.org/10.21203/rs.3.rs-80598/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Most new cases and the highest mortality rates of breast cancer occur among middle-aged and old women. The recurrence rate of early-stage invasive ductal carcinoma (IDC) among women aged ≥ 50 years and receiving different treatments remains unclear.

Methods

Therefore, this study was conducted to determine these rates. We used Surveillance, Epidemiology, and End Results (SEER) data for this nationwide population-based cohort study. All women aged ≥ 50 years and diagnosed with early-stage IDC between 2000 and 2015 were identified and divided into three treatment groups, namely, breast conservation therapy (BCT), mastectomy alone (MAS), and mastectomy with radiation therapy (MAS + RT). The recurrence rates of IDC among these groups were then compared.

Results

The BCT group had a lower short-term recurrence risk than the MAS and MAS + RT groups (hazard ratio [HR]: 1.00 vs. 2.90 [95% CI: 1.36–2.66] vs. 2.07 [95% CI: 0.97–4.44]); however, the BCT group also had a higher long-term recurrence risk than MAS and MAS + RT groups (HR: 1.00 vs. 0.30 [95% CI: 0.26–0.35] vs. 0.43 [95% CI: 0.30–0.63]). The high long-term recurrence rate of the BCT group was especially prominent at the 10- and 15-year follow-ups.

Conclusion

The results provide valuable evidence of the most reliable treatment strategy for this population. Further studies including more variables and validation in other countries are warranted to confirm our findings.

1. Background

Breast cancer presents a great burden to public health and an important threat to women. According to breast cancer statistics in the United States, approximately 12% of all American women will develop invasive breast cancer in their lifetime [1]. Indeed, 276,480 new cases of female invasive breast cancer and 42,170 deaths from this disease are expected to occur in the country in 2020 [1]. Second only to that of lung cancer, the mortality rate of breast cancer is higher than the mortality rates of other types of cancer [1]. In Taiwan, breast cancer is the most common female cancer, and this cancer was third leading cause of female cancer-related deaths in 2019 [2]. The incidence rate of breast cancer is approximately 188–194 per 100,000 women [2].
Breast cancer is more common in middle-aged and old women than in younger women, and most deaths are recorded in women aged ≥ 65 years [3]. In 2017, women aged > 50 years made up 81% of all new female cases of invasive breast cancer in the United States [4]. In Taiwan, 66.6% of the women diagnosed with breast cancer in 2017 were aged > 50 years [5]. Invasive ductal carcinoma (IDC) is the most common type of invasive breast cancer (80%); invasive lobular carcinoma (7–15%) ranks a distant second in terms of invasiveness [6]. According to statistics in Taiwan, IDC comprises approximately 85.7% of all newly diagnosed breast cancer cases [5]. Therefore, the development of suitable treatment strategies, especially for early-stage IDC, is an important issue for the female population. Common treatments for early-stage IDC include (1) breast conservation therapy (BCT), which involves breast-conserving surgery (BCS) plus postsurgical radiation, (2) mastectomy alone (MAS), and (3) mastectomy with radiation therapy (MAS + RT) [7].

A previous nationwide population-based study by the Surveillance, Epidemiology, and End Results (SEER) database revealed that women with early-stage IDC receiving BCT have better 5- and 10-year survival rates than those receiving MAS or MAS + RT [7]. However, this study included women aged ≥ 18 years, and the characteristics of this population may differ from those of middle-aged and old women. Few studies on recurrence rates following different treatments in middle-aged and old women with early-stage IDC have been published. Local recurrence is important to overall survival because local failure predicts distant metastasis in the future [8]. We conducted this nationwide population-based cohort study to assess the short- and long-term recurrence rates of early-stage IDC in middle-aged and old women following different treatments. Our hypothesis is that women receiving BCT will have a lower recurrence rate than those receiving MAS or MAS + RT.

2. Methods

2.1 Data sources

We used SEER data reported by the National Cancer Institute for this study [9]. The SEER is a national population-based report of the most recent cancer incidence, prevalence, demographic characteristics, diagnosis time, tumor characteristics, surgery, RT, mortality, survival, and lifetime risk statistics in the United States [10]. It is published annually by the Surveillance Research Program of the National Cancer Institute in an effort to reduce the cancer burden among the United States population [10]. In the initial phase of the survey, seven registries (SEER 7) with epidemiologically significant population subgroups of racial and ethnic minorities were published. Since then, the database has been incrementally expanded to include 18 cancer registries (SEER 18) [11]. The SEER data can be applied for the analyses online.

2.2 Study design, setting, and participants

We used the SEER 18 database to conduct a nationwide population-based cohort study. Initially, all patients diagnosed with breast cancer as the primary cancer between 2000 and 2015 were identified (Fig. 1). The exclusion criteria were as follows: (1) male; (2) aged < 50 years; (3) ductal carcinoma in situ; (4) American Joint Committee on Cancer (AJCC) cancer staging was not T1-2, N0-1, or M0; (5) diagnosis
was made only by autopsy or death certification; (6) survival < 1 month; (7) incomplete data (race, cancer stage, estrogen receptor [ER], progesterone receptor [PR], and marital status); (8) did not receive RT after BCS and did not receive MAS. Finally, middle-aged and old women (age ≥ 50 years) diagnosed with early-stage IDC as the primary cancer between 2000 and 2015 were identified for the analyses. According to the AJCC, the definitions of early-stage IDC are as follows: (1) cancer stage: T1-2, N0-1, or M0; (2) positive lymph nodes ≤ 3 (patients with > 4 positive lymph nodes were excluded because RT is almost suggested in these patients); (3) tumor size < 5 cm [12]. Patients were divided into three treatment groups as follows: (1) BCT (BCS + RT), (2) MAS, and (3) MAS + RT.

2.3 Definitions of variables and outcomes

Age was divided into the following subgroups: (1) 50–59 years, (2) 60–69 years, (3) 70–79 years, (4) 80–89 years, and (5) ≥ 90 years (Table 1). Race was classified as white, black, and others. Marital status was classified as married, never married, widowed, and others. Tumor size was classified as ≤ 2 cm, 2–3 cm, 3–4 cm, and 4–5 cm. Tumor grade was classified as I, II, III, and IV on the basis of histological findings. Positive lymph node(s) was classified as 0, 1, 2, and 3. ER and PR status were classified as positive and negative.
Table 1
Comparison of demographic and clinical characteristics among female patients with early-stage IDC receiving different treatments

Overall	BCT	MAS	MAS + RT	p-value	
n = 184,964	**n = 132,510**	**n = 46,580**	**n = 5,874**		
100%	**71.6%**	**25.2%**	**3.2%**		
Age					
64.9 ± 9.5	64.0 ± 9.0	67.7 ± 10.5	63.4 ± 9.4	< 0.001	
Age subgroup					
50–59	62,403 (33.7)	47,651 (36.0)	12,389 (26.6)	2,363 (40.2)	< 0.001
60–69	64,780 (35.0)	48,859 (36.9)	13,954 (30.0)	1,967 (33.5)	
70–79	42,638 (23.1)	28,456 (21.5)	13,032 (28.0)	1,150 (19.6)	
80–89	14,424 (7.1)	7,364 (5.6)	6,681 (14.3)	379 (4.5)	
≥ 90	719 (0.4)	180 (0.1)	524 (1.1)	15 (0.3)	
Race				< 0.001	
White	152,979 (82.7)	111,883 (84.4)	36,664 (78.7)	4,432 (75.5)	
Black	15,951 (8.6)	10,801 (8.2)	4,385 (9.4)	765 (13.0)	
Others	16,034 (8.7)	9,826 (7.4)	5,531 (11.9)	677 (11.5)	
Marital Status				< 0.001	
Married	109,911 (59.4)	82,327 (62.1)	24,264 (52.1)	3,320 (56.5)	
Never married	22,629 (12.2)	16,641 (12.6)	5,184 (11.1)	804 (13.7)	
Widowed	32,113 (17.4)	19,368 (14.6)	11,735 (25.2)	1,010 (17.2)	
Others	20,311 (11.0)	14,174 (10.7)	5,397 (11.6)	740 (12.6)	
Tumor size				< 0.001	
≤ 2 cm	138,102 (74.7)	107,296 (80.8)	28,560 (61.3)	2,246 (38.2)	
2–3 cm	32,386 (17.5)	19,123 (14.4)	11,515 (24.7)	1,748 (29.8)	
3–4 cm	10,439 (5.6)	4,679 (3.5)	4,685 (10.1)	1,075 (18.3)	
4–5 cm	4,037 (2.2)	1,412 (1.1)	1,820 (3.9)	805 (13.7)	
Tumor grade				< 0.001	

Data are presented as n (%) or mean ± standard deviation. IDC, invasive ductal carcinoma; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.
	Overall n = 184,964	BCT n = 132,510	MAS n = 46,580	MAS + RT n = 5,874	\(p \)-value
	100%	71.6%	25.2%	3.2%	
I	45,683 (24.7)	36,498 (27.5)	8,544 (18.3)	641 (10.9)	
II	81,341 (44.0)	58,677 (44.3)	20,332 (43.7)	2,332 (39.7)	
III	56,782 (30.7)	36,658 (27.7)	17,281 (37.1)	2,843 (48.4)	
IV	1,158 (0.6)	677 (0.5)	423 (0.9)	58 (1.0)	
Positive lymph node(s)	< 0.001				
0	145,221 (78.5)	109,718 (82.8)	33,462 (71.8)	2,041 (34.8)	
1	25,385 (13.7)	15,748 (11.9)	7,969 (17.1)	1,668 (28.4)	
2	9,594 (5.2)	4,917 (3.7)	3,496 (7.5)	1,181 (20.1)	
3	4,764 (2.6)	2,127 (1.6)	1,653 (3.6)	984 (16.8)	
ER status	< 0.001				
Positive	152,001 (82.2)	111,717 (84.3)	35,938 (77.2)	4,346 (74.0)	
Negative	32,963 (17.8)	20,793 (15.7)	10,642 (22.9)	1,528 (26.0)	
PR status	< 0.001				
Positive	131,403 (71.0)	97,549 (73.6)	30,259 (65.0)	3,595 (61.2)	
Negative	53,561 (29.0)	34,961 (26.4)	16,321 (35.0)	2,279 (38.8)	

Data are presented as n (%) or mean ± standard deviation. IDC, invasive ductal carcinoma; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.

The primary outcomes were short-term recurrence rate (< 1 year) and long-term recurrence rate (≥ 1 year). Recurrence times were tracked beginning on the day breast cancer was first diagnosed. Recurrence was defined as local tumor recurrence in the breast (after BCT), chest wall (after MAS), ipsilateral/parasternal/infra- or supraclavicular lymph nodes, and skin of the chest wall (not breast) [13].

2.4 Ethics statement

This study protocol was approved by the Institutional Review Board of Kaohsiung Medical University (Approval No. KMUHIRB-EXEMPT(II)-20190018). Informed consent was waived because we used deidentified secondary data from the SEER. The waiver does not affect the rights and welfare of the patients.

2.5 Statistical analysis
For descriptive statistics, we used frequencies and percentages to represent categorical variables and means with standard deviations (SDs) to represent continuous variables. For inferential statistics, we used the chi-squared test to investigate associations between the three treatment groups and categorical variables in the demographic and clinical characteristics. One-way ANOVA (analysis of variance) was used to investigate associations between the three treatment groups and continuous variables in the demographic characteristics. Kaplan–Meier analysis and log-rank tests were used to compare differences in the recurrence curves of the three treatment groups. The Cox proportional hazard model was used to investigate predictors for recurrence. We used SAS9.4 to obtain descriptive and inferential statistics and STATA SE13.0 to draw the recurrence curves. The significance level was set to 0.05 (two-tailed).

3. Results

Overall, 184,964 patients were included in this study (Table 1). The BCT group included 132,510 patients (71.6%), the MAS group included 46,580 patients (25.2%), and the MAS + RT group included 5,874 patients (3.2%). The mean age was 64.9 years, more patients were in the 60–69-year subgroup than in other subgroups, and patients in the MAS group tended to be older than those in other groups. Most patients were white (82.7%). Most of the patients were married (59.4%) or widowed (17.4%). The most common tumor size was \(\leq 2 \) cm (74.7%), and most patients in the BCT group had tumors of this size (80.8%). In terms of tumor grade, grade II tumors were the most common (44.0%), followed by grade III tumors (30.7%). In terms of lymph node involvement, zero positive lymph nodes (78.5%) was the most common, especially in the BCT group (82.8%). The MAS + RT group had a higher percentage of three positive lymph nodes than the BCT and MAS groups. ER- and PR-positive tumors were present in 82.2% and 71.0%, respectively, of the total population and more common in the BCT group than in other groups. The BCT group had a lower short-term recurrence rate than the MAS and MAS + RT groups (0.07% vs. 0.14% vs. 0.14%; Table 2). Multivariate Cox regression analysis also showed that the BCT group has a lower short-term recurrence risk than the MAS and MAS + RT groups (hazard ratio [HR]: 1.00 vs. 2.90 [95% CI: 1.36–2.66] vs. 2.07 [95% CI: 0.97–4.44]; Table 3 and Fig. 2). By contrast, the BCT group had a higher long-term recurrence rate than the MAS and MAS + RT groups (1.2% vs. 0.4% vs. 0.5%) (Table 2). Multivariate Cox regression analysis showed that the BCT group has a higher long-term recurrence risk than the MAS and MAS + RT groups (HR: 1.00 vs. 0.30 [95% CI: 0.26–0.35] vs. 0.43 [95% CI: 0.30–0.63]; Table 4 and Fig. 2). In addition, in the short-term recurrence analysis, only age 80–89 years was an independent predictor of recurrence (Table 3). Age \(\geq 90 \) years, black race, tumor grade II, and PR-negative tumors reasonably predicted long-term recurrence (Table 4).
Table 2
Comparison of short-term and long-term recurrence rates among treatments and demographic characteristics in female patients with early-stage IDC

	Short-term recurrence		Long-term recurrence			
	Recurrence	Non-recurrence	p-value	Recurrence	Non-recurrence	p-value
	n = 168	n = 184,796		n = 1,822	n = 183,142	
Treatment						
BCT	95 (0.07)	132,415 (99.93)	< 0.001	1,619 (1.2)	130,891 (98.8)	< 0.001
MAS	65 (0.14)	46,515 (99.86)		174 (0.4)	46,406 (99.6)	
MAS + RT	8 (0.14)	5,866 (99.86)		29 (0.5)	5,845 (99.5)	
Age subgroup			0.002			
50–59	40 (0.1)	62,363 (99.9)		756 (1.2)	61,647 (98.8)	
60–69	61 (0.1)	64,719 (99.9)		624 (1.0)	64,156 (99.0)	
70–79	41 (0.1)	42,597 (99.9)		360 (0.8)	42,278 (99.2)	
80–89	24 (0.2)	14400 (99.8)		75 (0.5)	14349 (99.5)	
≥ 90	2 (0.3)	717 (99.7)		7 (1.0)	712 (99.0)	
Race			0.267			
White	146 (0.1)	152,833 (99.9)		1,533 (1.0)	151,446 (99.0)	
Black	13 (0.1)	15,938 (99.9)		187 (1.2)	15,764 (98.8)	
Others	9 (0.1)	16,025 (99.9)		102 (0.6)	15,932 (99.4)	
Marital Status			0.043		0.009	
Married	92 (0.08)	109,818 (99.9)		1,145 (1.04)	108,765 (98.96)	
Never married	20 (0.09)	22,609 (99.91)		224 (0.99)	22,405 (99.01)	
Widowed	37 (0.12)	32,076 (99.88)		276 (0.86)	31,837 (99.14)	
Others	19 (0.09)	20,292 (99.91)		177 (0.87)	20,134 (99.13)	

Data are presented as n (%). IDC, invasive ductal carcinoma; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.
	Short-term recurrence		Long-term recurrence			
	Recurrence	Non-recurrence	p-value	Recurrence	Non-recurrence	p-value
n = 168	n = 184,796			n = 1,822	n = 183,142	
Tumor size						
≤ 2 cm	126 (0.1)	137,976 (99.9)	0.533	1486 (1.1)	136,616 (98.9)	< 0.001
2–3 cm	32 (0.1)	32,354 (99.9)		255 (0.8)	32,131 (99.2)	
3–4 cm	9 (0.1)	10,430 (99.9)		64 (0.6)	10,375 (99.4)	
4–5 cm	1 (0.02)	4036 (99.98)		17 (0.4)	4,020 (99.6)	
Tumor grade			0.966			< 0.001
I	41 (0.1)	45,642 (99.9)		394 (0.9)	45,289 (99.1)	
II	77 (0.1)	81,264 (99.9)		850 (1.0)	80,491 (99.0)	
III	49 (0.1)	56,733 (99.9)		556 (1.0)	56,226 (99.0)	
IV	1 (0.1)	1,157 (99.9)		22 (1.9)	1,136 (98.1)	
Positive lymph node(s)	0.376	0.307				
0	124 (0.1)	145,097 (99.9)		1,459 (1.0)	143,762 (99.0)	
1	26 (0.1)	25,359 (99.9)		241 (1.0)	25,144 (99.1)	
2	11 (0.1)	9,583 (99.9)		81 (0.8)	9,513 (99.2)	
3	7 (0.2)	4,757 (99.9)		41 (0.9)	4,723 (99.1)	
ER status	0.07	0.07	< 0.001			
Positive	147 (0.1)	151,854 (99.9)		1,416 (0.9)	150,585 (99.1)	
Negative	21 (0.1)	32,942 (99.9)		406 (1.2)	32,557 (98.8)	
PR status	0.652	0.652	< 0.001			
Positive	122 (0.1)	131,281 (99.9)		1,175 (0.9)	130,228 (99.1)	
Negative	46 (0.1)	53,515 (99.9)		647 (1.2)	52,914 (98.8)	

Data are presented as n (%). IDC, invasive ductal carcinoma; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.
Table 3
Comparison of short-term recurrence rates using univariate and multivariate analyses among treatment and demographic characteristics in patients with breast cancer

Variable	Univariate analysis	Multivariate analysis		
	HR (95% CI)	p-value	HR (95% CI)	p-value
Treatment				
BCT	1.00 (reference)		1.00 (reference)	
MAS	1.95 (1.42–2.67)	< 0.001	1.90 (1.36–2.66)	< 0.001
MAS + RT	1.89 (0.92–3.90)	0.083	2.07 (0.97–4.44)	0.061
Age group				
50–59	1.00 (reference)		1.00 (reference)	
60–69	1.47 (0.99–2.20)	0.057	1.43 (0.96–2.14)	0.081
70–79	1.50 (0.97–2.32)	0.067	1.36 (0.87–2.15)	0.180
80–89	2.60 (1.57–4.32)	< 0.001	2.15 (1.24–3.75)	0.007
≥ 90	4.40 (1.06–18.19)	0.041	3.31 (0.77–14.25)	0.108
Race				
White	1.00 (reference)		1.00 (reference)	
Black	0.86 (0.49–1.51)	0.592	0.89 (0.50–1.59)	0.691
Others	0.59 (0.30–1.16)	0.126	0.58 (0.30–1.14)	0.113
Marital Status				
Married	1.00 (reference)		1.00 (reference)	
Never married	1.06 (0.65–1.71)	0.823	1.05 (0.65–1.71)	0.843
Widowed	1.38 (0.94–2.02)	0.101	1.01 (0.66–1.54)	0.970
Others	1.12 (0.69–1.84)	0.648	1.13 (0.68–1.85)	0.643
Tumor size				
≤ 2 cm	1.00 (reference)		1.00 (reference)	
2–3 cm	1.09 (0.74–1.60)	0.680	0.91 (0.60–1.37)	0.653
3–4 cm	0.95 (0.48–1.86)	0.876	0.71 (0.35–1.44)	0.347
4–5 cm	0.27 (0.04–1.95)	0.196	0.19 (0.03–1.40)	0.103

HR, hazard ratio; CI, confidence interval; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.
Variable	Univariate analysis	Multivariate analysis		
	HR (95% CI)	p-value	HR (95% CI)	p-value
Tumor grade				
I	1.00 (reference)		1.00 (reference)	
II	1.05 (0.72–1.54)	0.790	1.02 (0.70–1.50)	0.902
III	0.96 (0.63–1.45)	0.841	1.07 (0.67–1.69)	0.780
IV	0.95 (0.13–6.90)	0.958	1.02 (0.14–7.52)	0.982
Positive lymph node(s)				
0	1.00 (reference)		1.00 (reference)	
1	1.20 (0.79–1.83)	0.400	1.14 (0.74–1.75)	0.565
2	1.34 (0.72–2.49)	0.351	1.23 (0.65–2.32)	0.524
3	1.71 (0.80–3.67)	0.166	1.55 (0.70–3.43)	0.275
ER status				
Positive	1.00 (reference)		1.00 (reference)	
Negative	0.66 (0.42–1.04)	0.071	0.56 (0.32–1.00)	0.051
PR status				
Positive	1.00 (reference)		1.00 (reference)	
Negative	0.92 (0.66–1.29)	0.638	1.19 (0.78–1.81)	0.417

HR, hazard ratio; CI, confidence interval; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.
Table 4
Comparison of long-term recurrence rates by using univariate and multivariate analyses among treatment and demographic characteristics in patients with breast cancer

Variable	Univariate analysis		Multivariate analysis	
	HR (95% CI)	p-value	HR (95% CI)	p-value
Treatment				
BCT	1.00 (reference)		1.00 (reference)	
MAS	0.30 (0.26–0.35)	< 0.001	0.30 (0.26–0.35)	< 0.001
MAS + RT	0.43 (0.30–0.63)	< 0.001	0.43 (0.30–0.63)	< 0.001
Age group				
50–59	1.00 (reference)		1.00 (reference)	
60–69	0.93 (0.84–1.03)	0.178	0.96 (0.86–1.06)	0.400
70–79	0.85 (0.75–0.97)	0.012	0.93 (0.82–1.06)	0.285
80–89	0.69 (0.54–0.87)	0.002	0.85 (0.67–1.09)	0.209
≥ 90	2.27 (1.08–4.78)	0.031	3.42 (1.61–7.24)	< 0.001
Race				
White	1.00 (reference)		1.00 (reference)	
Black	1.44 (1.23–1.67)	< 0.001	1.42 (1.22–1.66)	< 0.001
Others	0.69 (0.56–0.84)	< 0.001	0.75 (0.62–0.92)	0.006
Marital Status				
Married	1.00 (reference)		1.00 (reference)	
Never married	1.03 (0.89–1.19)	0.694	0.99 (0.85–1.14)	0.857
Widowed	0.93 (0.81–1.06)	0.258	1.04 (0.90–1.19)	0.634
Others	0.99 (0.85–1.16)	0.924	0.98 (0.84–1.15)	0.811
Tumor size				
≤ 2 cm	1.00 (reference)		1.00 (reference)	
2–3 cm	0.84 (0.73–0.96)	0.009	0.91 (0.79–1.04)	0.171
3–4 cm	0.72 (0.56–0.92)	0.009	0.85 (0.66–1.10)	0.217
4–5 cm	0.53 (0.33–0.85)	0.009	0.68 (0.42–1.10)	0.116

HR, hazard ratio; CI, confidence interval; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy; ER, estrogen receptor; PR, progesterone receptor.
Subgroup analysis of short-term recurrence showed that the BCT group has a lower recurrence rate at 6 months (Supplementary Table 1 and Supplementary Fig. 1) than the other groups. Long-term recurrence analysis showed that the BCT group has a higher recurrence rate than the MAS and MAS + RT groups at the 10- and 15-year follow-ups (Supplementary Table 2 and Supplementary Fig. 2). Competing risk analysis with adjustment for demographic and clinical characteristics revealed that the BCT group (reference) has a lower short-term recurrence risk than the MAS (HR: 1.90, \(p < 0.001 \)) and MAS + RT (HR: 2.08, \(p = 0.048 \)) groups. Moreover, the BCT group (reference) had a higher long-term recurrence risk than the MAS (HR: 0.28, \(p < 0.001 \)) and MAS + RT (HR: 0.42, \(p < 0.001 \)) groups.

4. Discussion

The present study showed that most breast cancer patients receive BCT, followed by MAS and MAS + RT. Patients who received BCT were more likely to be of white race and have a smaller tumor size, lower
tumor grade, fewer positive lymph nodes, and larger number of ER- and PR-positive tumors than patients in other groups. Compared with the MAS and MAS + RT groups, the BCT group had a lower short-term recurrence risk but a higher long-term recurrence risk, especially at the 10 and 15-year follow-ups. Age \geq 90 years, black race, tumor grade II, and PR-negative tumors were independent predictors for long-term recurrence.

We confirmed that the BCT group has a higher long-term recurrence risk than the MAS and MAS + RT groups; this result sheds some light on what has been a long-disputed issue in the literature. A large observational study in Germany between 1998 and 2014 reported that BCT allows better local control (HR: 1.52; 95% CI: 1.09–2.11) than MAS [14]. In addition, the BCT cohort had a lower 10-year cumulative incidence of lymph node recurrence (2.0% vs. 5.8%, $p < 0.001$), lower 10-year distant-metastasis-free survival (85.5% vs. 89.4%, $p = 0.013$), and better 10-year overall survival (85.3% vs. 79.3%, $p < 0.001$) than the MAS cohort [14]. A retrospective study in China between 1999 and 2014 reported that BCT has locoregional recurrence-free survival rates similar to that of MAS but better distant metastasis-free survival and overall survival rates [15]. A prospective Swedish multicenter cohort study carried out between 2000 and 2004 reported that local recurrence rates do not differ between BCT and MAS in patients with clinically node-negative breast cancer [16]. A randomized study with a 20-year follow-up in Italy in 2002 reported that the cumulative incidence of local recurrence in women with early breast cancer receiving BCT is 8.8%, which is higher than that in women receiving MAS (2.3%) [17]. However, the above studies included patients of all ages, and the characteristics of the populations studied may differ from those of patients aged \geq 50 years, as in the present study. In addition, because these previous studies included all types of breast cancer, their results may be different when compared with a study specific to IDC, such as the present work. Therefore, further studies specific to middle-aged and old women and early-stage IDC are needed to confirm our findings.

Risk of recurrence has a great influence on patients with breast cancer because this risk causes patients to live with a constant fear of death [18]. The reasons behind local recurrence remain largely unknown [18], but the possible mechanisms include the existence of cancer stem cells and transformation of cancer cells into a relatively aggressive phenotype [18]. Cancer stem cells and transformed cancer cells are highly metastatic and resistant to conventional therapies [18]. A high percentage of aggressive cells is a feature of recurrent breast cancers [18]. Many clinical predictors for recurrence, including ER-negative, PR-negative, human epidermal growth factor receptor 2 (HER-2)-positive, triple-negative breast cancers, age, race, menopausal status, smoking, mammographic features, tumor morphology, tumor size, tumor stage, lymph node metastases, and gene expression profiling, have been proposed [18, 19].

Age \geq 90 years, which has not been fully studied in the literature, was identified to be an independent predictor for long-term recurrence in the present study. A large population-based study in the Netherlands in 2020 reported that patients aged 75–79 years were at higher risk of distant recurrence than patients aged 70–74 years (subdistribution HR: 1.25; 95% CI: 1.11–1.41); however, age \geq 80 years did not show this higher risk [20]. The authors attributed their findings to several reasons: (1) patients in the aged 75–79 years were undertreated, (2) the risk of death without recurrence increases with age, and (3) patients
with a high competing mortality risk were overtreated [20]. Another population-based study in Germany in 2019 revealed that patients aged < 70 years have higher 5- and 10-year locoregional recurrence and distant metastasis rates than those aged ≥ 70 years (17% vs. 13%) [21]. More evidence is needed to clarify this finding. Black race was a risk factor for cancer recurrence in the present study, consistent with findings in previous studies [19]. Racial disparities may be due to socioeconomic factors and a more aggressive tumor biology among African-Americans [19]. Tumor grade was also associated with poor outcomes [19]. The present study revealed that tumor grade II is associated with long-term recurrence. While patients with tumor grades III and IV were at higher risk for long-term recurrence than those with tumor grade I, the difference between grades was not significant. PR-negative is a predictor for recurrence, and the results between the present and previous studies are consistent [19]. In general, breast cancers that are single hormone receptor-positive appear to have a poorer prognosis than those that are both ER- and PR-positive [19]. The present study also revealed a higher long-term recurrence risk in patients with ER-negative breast cancer than in those with ER-positive breast cancer; however, the difference was not significant (HR: 1.13; 95% CI: 0.97–1.33).

The major strengths of the present study include its nationwide population-based design, large sample size, and clear delineation of the knowledge gap in research on the recurrence rate of early-stage IDC in women aged ≥ 50 years. The limitations are as follows. First, the data were obtained from various institutions and may have bias in terms of treatment and quality. Second, because the present study conducts a secondary analysis of data, the results can only suggest associations between variables rather than causal relationships. Third, some variables, including genetic data, lymphovascular invasion, size of metastatic lymph nodes, resection margins, adjuvant therapies (e.g., chemotherapy and endocrine therapy), and HER2, were not considered in the present study because data on these variables were made available only after 2010. Fourth, because the data used for our analyses are from the United States, their generalization to other countries requires further validation.

5. Conclusion

This nationwide population-based cohort study revealed that, among middle-aged and old women with early-stage IDC, the BCT group has a lower short-term recurrence risk but a higher long-term recurrence risk than the MAS and MAS + RT groups, especially at the 10- and 15-year follow-ups. The results fill the knowledge gap in research on the long- and short-term recurrence rates of IDC and provide valuable evidence of the most reliable treatment strategy for this population. Further studies, including more variables and validation in other countries, are warranted to confirm our findings.

Abbreviations

IDC
invasive ductal carcinoma
BCT
breast conservation therapy
BCS
breast-conserving surgery
MAS
mastectomy
RT
radiation therapy
SEER
Surveillance, Epidemiology, and End Results
AJCC
American Joint Committee on Cancer
ER
estrogen receptor
PR
progesterone receptor
SD
standard deviation
Analysis of variance
ANOVA
HR
hazard ratio
CI
confidence interval
HER-2
human epidermal growth factor receptor 2

Declarations

Ethics approval and consent to participate

This study protocol was approved by the Institutional Review Board of Kaohsiung Medical University (Approval No. KMUHIRB-EXEMPT(II)-20190018). Informed consent was waived because we used deidentified secondary data from the SEER. The waiver does not affect the rights and welfare of the participants.

Consent to publish

Not applicable.

Availability of data and materials

The data of SEER are publicly available.
Competing interests

The authors declare no competing interests.

Funding

This study was supported by Chi Mei Medical Center (Grant No. 108CM-KMU-05 from). The funding agency was not involved in any aspect of the study design, including data collection, data interpretation, or manuscript preparation.

Authors’ contributions

YJW, KY, CC Huang, and SFW designed the study and wrote the manuscript. SFW performed the data analysis and wrote the manuscript. CC Hsu, HJL, and JJW provided clinical experience and wrote the manuscript. CC Huang and SFW supervised the entire study. All authors read and approved the final manuscript.

Acknowledgments

We thank Enago for their English revision of our manuscript.

References

1. U.S. Breast Cancer Statistics [https://www.breastcancer.org/symptoms/understand_bc/statistics]
2. 2019 Taiwan death statistics [https://dep.mohw.gov.tw/DOS/cp-4927-54466-113.html]
3. Shachar SS, Hurria A, Muss HB: Breast Cancer in Women Older Than 80 Years. J Oncol Pract 2016, 12(2):123-132.
4. Breast Cancer Facts & Figures [https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html]
5. 2017 Cancer registry report [https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=12235]
6. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma KK: Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 2010, 1(2):109-126.
7. Agarwal S, Pappas L, Neumayer L, Kokeny K, Agarwal J: Effect of breast conservation therapy vs mastectomy on disease-specific survival for early-stage breast cancer. JAMA Surg 2014, 149(3):267-274.
8. Belkacemi Y, Hanna NE, Besnard C, Majdoul S, Gligorov J: Local and Regional Breast Cancer Recurrences: Salvage Therapy Options in the New Era of Molecular Subtypes. Front Oncol 2018, 8:112.
9. SEER Cancer Statistics Review, 1975-2014, National Cancer Institute [https://seer.cancer.gov/archive/csr/1975_2014/]
10. SEER Cancer Statistics Review, 1975-2017, National Cancer Institute [https://seer.cancer.gov/csr/1975_2017/]
11. Duggan MA, Anderson WF, Altekruse S, Penberthy L, Sherman ME: The Surveillance, Epidemiology, and End Results (SEER) Program and Pathology: Toward Strengthening the Critical Relationship. Am J Surg Pathol 2016, 40(12):e94-e102.
12. Breast Cancer Staging [https://cancerstaging.org/references-tools/quickreferences/Pages/default.aspx]
13. Wapnir IL, Anderson SJ, Mamounas EP, Geyer CE, Jr., Jeong JH, Tan-Chiu E, Fisher B, Wolmark N: Prognosis after ipsilateral breast tumor recurrence and locoregional recurrences in five National Surgical Adjuvant Breast and Bowel Project node-positive adjuvant breast cancer trials. J Clin Oncol 2006, 24(13):2028-2037.
14. Corradini S, Reitz D, Pazos M, Schonecker S, Braun M, Harbeck N, Matuschek C, Bolke E, Ganswindt U, Alongi F et al: Mastectomy or Breast-Conserving Therapy for Early Breast Cancer in Real-Life Clinical Practice: Outcome Comparison of 7565 Cases. Cancers (Basel) 2019, 11(2).
15. Wang J, Wang S, Tang Y, Jing H, Sun G, Jin J, Liu Y, Song Y, Wang W, Fang H et al: Comparison of Treatment Outcomes With Breast-conserving Surgery Plus Radiotherapy Versus Mastectomy for Patients With Stage I Breast Cancer: A Propensity Score-matched Analysis. Clin Breast Cancer 2018, 18(5):e975-e984.
16. de Boniface J, Frisell J, Bergkvist L, Andersson Y: Breast-conserving surgery followed by whole-breast irradiation offers survival benefits over mastectomy without irradiation. Br J Surg 2018, 105(12):1607-1614.
17. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 2002, 347(16):1227-1232.
18. Ahmad A: Pathways to Breast Cancer Recurrence. ISRN Oncology 2013, 2013:290568.
19. Prognostic and predictive factors in early, non-metastatic breast cancer [https://www-uptodate-com.lib.chimei.org.tw/contents/prognostic-and-predictive-factors-in-early-non-metastatic-breast-cancer?search=early%20breast%20cancer&topicRef=737&source=see_link#H1390695845]
20. de Boer AZ, van der Hulst HC, de Glas NA, Marang-van de Mheen PJ, Siesling S, de Munck L, de Ligt KM, Portielje JEA, Bastiaannet E, Lifvers GJ: Impact of Older Age and Comorbidity on Locoregional and Distant Breast Cancer Recurrence: A Large Population-Based Study. Oncologist 2020, 25(1):e24-e30.
21. Holleczek B, Stegmaier C, Radosa JC, Solomayer EF, Brenner H: Risk of loco-regional recurrence and distant metastases of patients with invasive breast cancer up to ten years after diagnosis - results from a registry-based study from Germany. BMC Cancer 2019, 19(1):520.
Figure 1

Flowchart of this study. SEER, Surveillance, Epidemiology, and End Results; IDC, invasive ductal carcinoma; AJCC, American Joint Committee on Cancer; ER, estrogen receptor; PR, progesterone receptor; RT, radiotherapy; BCS, breast conservative surgery; BCT, breast conservative treatment (BCS+RT); MAS, mastectomy alone.
Figure 2

Comparison of short- and long-term recurrence rates among female patients with early-stage IDC receiving different treatments. IDC, invasive ductal carcinoma; HR, hazard ratio; CI, confidence interval; BCT, breast conservative treatment; MAS, mastectomy; RT, radiotherapy.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 3SupplementaryTablesandFiguresrecurrenceinBC.docx