Machine Unlearning: Linear Filtration for Logit-based Classifiers

Thomas Baumhauer 1 Pascal Schöttle 2 Matthias Zeppelzauer 1

Abstract

Recently enacted legislation grants individuals certain rights to decide in what fashion their personal data may be used and in particular a “right to be forgotten”. This poses a challenge to machine learning: how to proceed when an individual retracts permission to use data which has been part of the training process of a model? From this question emerges the field of machine unlearning, which could be broadly described as the investigation of how to “delete training data from models”. Our work complements this direction of research for the specific setting of class-wide deletion requests for classification models (e.g. deep neural networks). As a first step, we propose linear filtration as a computationally efficient sanitization method. Our experiments demonstrate benefits in an adversarial setting over naive deletion schemes.

1. Introduction

Recently enacted legislation, such as the European Unions General Data Protection Regulation (GDPR) (Council of European Union, 2016), previously its “right to be forgotten” (Council of European Union, 2012), and the California Consumer Privacy Act (State of California, 2018) grant individuals certain rights to decide in what fashion their personal data may be used, and in particular the right to ask for personal data collected about them to be deleted.

At present the implementation of such rights in the context of machine learning models trained on personal data is largely an open problem. In (Villaronga et al., 2018) the authors even conclude that “it may be impossible to fulfill the legal aims of the Right to be Forgotten in artificial intelligence environments”.

Indeed, machine learning models may unintentionally memorize (part of) their training data, leading to privacy issues in many applications, e.g. image classification (Yeom et al., 2018; Sablayrolles et al., 2019) or natural language processing (Carlini et al., 2019), and potentially enabling an adversary to extract sensitive information from a trained model by so-called model inversion (Veale et al., 2018).

Informally, deletion of part of the training data from a machine learning model can be understood as removal of its influence on the model parameters, in order to obtain a model that “looks as if it has never seen that part of the data”. We refer to this process as unlearning. Clearly, the problem of unlearning can be solved in a trivial fashion, by simply retraining the model without using the part of the data we wish to unlearn. For large, real-world models, retraining from scratch may incur significant computational costs, and may thus be practically infeasible, if deletion requests are expected to arrive at any time. We therefore wish to find more efficient unlearning algorithms, which is notoriously difficult, owing to the fact that for many popular learning algorithms every training data point potentially affects every model parameter.

First approaches towards directed unlearning were introduced in (Cao & Yang, 2015), and more recently in (Ginart et al., 2019; Bourtoule et al., 2019). In our work we consider the problem of unlearning in the setting of classification models for which, in contrast to previous work, we assume that single individuals own all training data associated with a particular class, as may be the case e.g. in biometric applications.

In this setting, we consider classifiers that predict logits, i.e. (rescaled) logarithmic probabilities that a data point belongs to certain classes. For such classifiers we propose a novel...
sanitization method that applies a linear transformation to these predictions. For an appropriate hypothesis class this transformation can be absorbed into the original classifier. The computation of the transformation requires barely more than computing predictions by the original classifier for a (small) number of data points per class. We call this method linear filtration.

In summary, the main contributions of our work are:

1) We develop linear filtration, a novel algorithm for the sanitization of classification models that predict logits, after class-wide deletion requests.

2) On the theoretical side, we add to the definition of unlearning in the sense of (Ginart et al., 2019), by proposing a weakened, “black-box” variant of the definition, which may serve as a more realistic goal in practice.

3) As practical methodology, we suggest that the quality of an empirical unlearning operation may be evaluated in an adversarial setting, i.e. by testing how well it prevents certain privacy attacks on machine learning models.

2. Related Work

Machine unlearning Not much work has been done in the emerging field of machine unlearning. The term machine unlearning first appears in (Cao & Yang, 2015). There the authors consider unlearning the framework of statistical query learning (Kearns, 1998). This allows them to unlearn data points for learning algorithms where all queries to the data are decided upfront. However, many popular learning algorithms (such as gradient descent) query data adaptively. In the adaptive setting the approach of (Cao & Yang, 2015) does not give any bounds and quickly falls apart if the number of queries is large, as is the case for neural networks.

Ginart et al. (2019) features a discussion of the problem of efficient unlearning of training data points from models, establishes several engineering principles, and on the practical side proposes unlearning algorithms for k-means clustering. In particular, they recognize that given the stochastic nature of many learning algorithms a probabilistic definition of unlearning (there “deletion”) is necessary. We adopt this view in our work.

Bourtoule et al. (2019) propose a framework they refer to as SISA (sharded, isolated, sliced, and aggregated training), which can be thought of as bookkeeping method seeking to limit and keep track of the influence of training data points on model parameters, thus reducing the amount of retraining necessary upon receiving a deletion request. This approach comes at the cost of a large storage overhead.

Membership inference It is an open problem to find a suitable measure for the quality of unlearning, when employing a heuristic unlearning operation with no or weak theoretical guarantees, i.e. to quantify the remaining influence of “deleted” training data on a model’s parameters. In our experiments we thus take ideas from membership inference. The goal of membership inference is to determine whether a given data point has been used in the training process of a given model. A few recent works on membership inference include (Shokri et al., 2017; Yeom et al., 2018; Hayes et al., 2019; Sablayrolles et al., 2019). In particular, our adversarial setup in section 5.1 draws a large amount of inspiration from (Shokri et al., 2017), where a binary classifier is trained on the outputs of so-called shadow models to decide membership.

Model inversion Broadly, model inversion may be defined as drawing inferences about private training data from the outputs of a model trained on this data. The term was introduced in (Fredrikson et al., 2014). Fredrikson et al. (2015) reconstruct human-recognizable images of individuals from neural networks trained for face recognition, using gradient ascend on the input space.

We remark that model inversion is at its core the result of a correlation between input and output space that is simply captured by the model (and may exist independently of the model), and thus does not necessarily constitute a privacy breach. McSherry (2016) features a highly recommended elaboration of this point in much detail.

Shokri et al. (2017) conclude their discussion of model inversion with the statement that “model inversion produces the average of the features that at best can characterize an entire output class.” Thus, model inversion is of some interest in the specific context of our paper, which focuses on class-wide unlearning (and hence implicitly makes the assumption that a single individual owns all data for an entire output class). We experiment with model inversion in section 5.5, see also figure 1.

3. Problem Definition

In this section we formalize our notion of unlearning.

Notation For a vector $v \in \mathbb{R}^k$ we use indices ranging from 0 to $(k-1)$ to denote its entries, i.e. $v = (v_0, v_1, \ldots, v_{k-1})^\top$. One dimensional vector are always column vectors.

For a vector of logits $\ell \in \mathbb{R}^k$ let

$$
\sigma_{i^*}(\ell) = \frac{\exp(\ell_{i^*})}{\sum_{i<k} \exp(\ell_i)} \in [0, 1], \quad \text{for all } i^* < k
$$

and $\sigma(\ell) = (\sigma_0(\ell), \sigma_1(\ell), \ldots, \sigma_{k-1}(\ell))$. We call σ the softmax function.
We use uppercase, boldface letters for random variables. If \(R \) is a random variable \(P(R) \) denotes its distribution.

Classification We consider a multiclass classification problem: Let \(X \) be a random variable taking values in some input space \(\mathcal{X} \) (e.g. \(\mathcal{X} = \mathbb{R}^{28 \times 28} \)), and let \(Y \) be a random variable representing class labels taking values in \(Y = \{0, 1, \ldots, k - 1\} \) for some natural number \(k > 2 \), with some joint distribution \(P(X, Y) \).

Given \(x \in \mathcal{X} \), a classifier \(h : \mathcal{X} \to \mathbb{R}^k \) for this classification problem attempts to estimate logits \(\ell = h(x) \) such that \(\sigma(\ell) \approx P(Y | X = x) \).

Hypothesis class In this paper we consider the class \(\mathcal{H} \) of all classifiers \(h \) of the form

\[
 h = \text{logistic regression} \circ \text{feature extraction},
\]

i.e. classifiers that can be decomposed into a (potentially non-linear) feature extraction followed by a multinomial logistic regression.

More formally any \(h \in \mathcal{H} \) can be expressed as

\[
 h : x \mapsto W : f(x) \tag{1}
\]

where \(f : \mathcal{X} \to \mathbb{R}^p \) denotes the feature extraction, \(p \) denotes the dimension of the feature space, \(W \) is a \((k \times p)\)-matrix representing a linear transformation \(\mathbb{R}^p \to \mathbb{R}^k \), and \(\sigma \) denotes the softmax function. Figure 2 shows a schematic representation of the elements of \(\mathcal{H} \).

Observe that in particular all deep neural networks for which the output is a densely connected layer with softmax activations fit into the schema discussed in this section.

Learning algorithms For a finite training set \(D \subseteq \mathcal{X} \times \mathcal{Y} \), a learning algorithm \(A \) calculates a classifier

\[
 h = A(D) \in \mathcal{H}.
\]

Note that if \(A \) is non-deterministic \(A(D) \) can be considered a random variable taking values in \(\mathcal{H} \).

Unlearning of classes Let \(C \subseteq \mathcal{Y} \) be a set of classes, which we want to unlearn. Consider the multiclass classification problem for the distribution \(P(X, Y | Y \not\in C) \), i.e. the original problem with the classes \(C \) removed. We denote the hypothesis class \(\mathcal{H}_{-C} \) for this problem similarly to \(\mathcal{H} \), i.e. \(h \in \mathcal{H}_{-C} \) is of form (1) with \(W \) a \((k - |C|) \times p)\)-Matrix. For \(D \subseteq \mathcal{X} \times \mathcal{Y} \) let \(D_{-C} = \{(x,y) \in D : y \not\in C\} \) and let \(A_{-C}(D_{-C}) \in \mathcal{H}_{-C} \) denote a classifier calculated by some learning algorithm \(A_{-C} \).

Definition 3.1 (Unlearning). We say that a map

\[
 \mathcal{D} : \mathcal{H} \to \mathcal{H}_{-C}
\]

“unlearns \(C \) from \(\mathcal{H} \) with respect to \(A, A_{-C}, D^* \)” if the random variables \(\mathcal{D}(A(D)) \) and \(A_{-C}(D_{-C}) \) have the same distribution over \(\mathcal{H}_{-C} \). We call \(\mathcal{D} \) an unlearning operation (for \(C \)).

Weak unlearning of classes A good choice of \(\mathcal{D} \) will of course depend on the learning algorithm \(A \). We mostly concern ourselves with the case where \(A \) trains a neural network with a densely connected output layer with softmax activations. Unfortunately our understanding of how neural network represent knowledge internally remains unsatisfactory (Emmert-Streib et al., 2020), hence unlearning as defined above may currently be out of reach. We therefore propose a weakening of the above definition.

Definition 3.2 (Weak unlearning). As before let \(\mathcal{D} \) be a map \(\mathcal{H} \to \mathcal{H}_{C} \) and consider the random variables

\[
 L_{\text{seen}} = h(X), \quad \text{where} \quad h = \mathcal{D}(A(D))
\]

\[
 L_{\text{seen}} = h(X), \quad \text{where} \quad h = A_{-C}(D_{-C})
\]

i.e. the logit outputs of the respective classifiers, taking values in \(\mathbb{R}^{k - |C|} \). We say that “\(\mathcal{D} \) weakly unlearns \(C \) from \(\mathcal{H} \) with respect to \(A, A_{-C}, D^* \)” if \(L_{\text{seen}} \) and \(L_{\text{seen}} \) have the same distribution over \(\mathbb{R}^{k - |C|} \). We call \(\mathcal{D} \) a weak unlearning operation (for \(C \)).

Fact 3.3. If \(\mathcal{D} \) is an unlearning operation, then \(\mathcal{D} \) is a weak unlearning operation.

Discussion Definition 3.1 demands that the distributions over the hypothesis class (i.e. in practical terms the parameter space) are the same, while 3.2 relaxes this to the
distributions over the output space being the same. We may therefore consider unlearning (in the strong sense) to be a white-box variant and unlearning in the weak sense to be black-box variant of the definition of unlearning. See section 6 for further discussion.

Abusing the terminology introduced in this section we refer to maps \mathcal{D} that roughly fit definitions 3.1 and 3.2, respectively in the sense that they make the relevant distributions similar in an appropriate divergence measure, as “good”, “satisfactorily performing”, etc. unlearning operations.

4. Method

In this section we propose a weak unlearning operation \mathcal{D} for classes, exploiting the special structure of elements of \mathcal{H}. In our experiments in section 5 we demonstrate that \mathcal{D} performs satisfactorily for neural networks.

4.1. Definition of weak unlearning operation \mathcal{D}_z

For simplicity of notation let $C = \{0\}$, i.e. we are going to unlearn class 0. However our method easily generalizes to arbitrary C. Let $h = W \circ f \in \mathcal{H}$ be a classifier. For $j < k$ let
\[a_j = \mathbb{E}[h(X) \mid Y = j] \in \mathbb{R}^k \]
be the expected prediction for class j, and let
\[A = (a_0 \mid a_1 \mid \cdots \mid a_{k-1}) \in \mathbb{R}^{k \times k}. \]

In practice, we may estimate a_j from the training data. Next, define a map π such that for $v = (v_0, v_1, \ldots, v_{k-1}) \in \mathbb{R}^k$ we have $\pi(v) = (v_1, v_2, \ldots, v_{k-1})^\top$. For arbitrary $z \in \mathbb{R}^{(n-1)}$ let
\[B_z = \left(z \mid \pi(a_1) \mid \pi(a_2) \mid \cdots \mid \pi(a_{k-1}) \right) \in \mathbb{R}^{(k-1) \times k}. \]

Let $F_z = B_z A^{-1}$ and note that F_z represents the linear transformation which maps the j-th row of A to the j-th row of B_z. We call F_z a filtration matrix. Let
\[W_z = F_z W \in \mathbb{R}^{(k-1) \times p}. \]

Finally, we define a new classifier
\[h_z : x \mapsto W_z \cdot f(x). \]

Our unlearning operation is thus
\[\mathcal{D}_z : \mathcal{H} \to \mathcal{H}_{-C}, h \mapsto h_z. \]

We call \mathcal{D}_z a linear filtration.

Note that \mathcal{D}_z replaces W by $W_z = F_z W$, hence after applying \mathcal{D}_z we may delete W. This means that, even though our unlearning operation essentially filters the outputs of the original classifier, the linearity of the filtering operations allows us to absorb the filter into the classifier. This is an important feature in a situation were it may longer be permissible to store the original classifier.

So how do we choose $z \in \mathbb{R}^{k-1}$?

- Naive unlearning $z = \pi(a_0)$. This gives $F_z = (0 \mid I_{k-1})$, i.e. $F_z = \pi$. Intuitively, we may think of this choice as simply cutting the output unit associated with C out off the classifier. We call this unlearning operation the na"{i}ve method and will use it as a baseline to measure the improvements other methods provide.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{The probability distribution predicted for class “airplane” after its unlearning by either normalization or randomization from models trained on CIFAR-10, compared to models retrained without class “airplane”. The bars are centered around the mean and have length of the standard deviation, over 100 models.}
\end{figure}

- Normalization

$z = \pi(a_0) - \frac{1}{k-1} \sum_{1 \leq i < k} (a_0)_i + \frac{1}{(k-1)^2} \sum_{1 \leq i, j < k} (a_j)_i$.

This means we shift $\pi(a_0)$ such that its mean becomes the mean of the remaining rows of B_z. The intuition behind this choice of z is that we would like inputs of the class in C to be misclassified in a “natural” way. We base this method on the assumption that the values in $\pi(a_0)$ encode a natural distribution for predictions of the class in C. However, we expect the values in $\pi(a_0)$ to be unnaturally low (absolutely speaking), hence we shift them. We refer to this method as normalization or normalizing filtration. It is the main method we propose. Figure 3 agrees with the intuition described above: the bars for normalization line up nicely with the bars of the retrained models, while the bars of randomization do not.

For comparison we define two more methods.
Randomization $z \sim \mathcal{N}(0, I_{k-1})$. We sample z from a multivariate normal distribution. We refer to this method as randomization.

Zeroing $z = 0$. We refer to this method as zeroing.

4.2. Computational Complexity of \mathcal{D}_z

To find \mathcal{D}_z, we need to compute the following: 1) A, i.e. the expected predictions for all k classes; 2) A^{-1}, the inversion of a $(k \times k)$-Matrix; 3) z, in case z has a non-trivial definition (e.g. computing a sample of \mathcal{N}); 4) F_z, the multiplication of a $((k - 1) \times k)$ with a $(k \times k)$-Matrix; 5) W_z, the multiplication of a $((k - 1) \times k)$ with a $(k \times p)$-Matrix.

In practice 1) will incur the majority of the computational costs, while 2)-5) will be negligible. Thus, if we estimate A by predicting ℓ samples per class the computational complexity of finding $\mathcal{D}_z(h)$ is $\ell \cdot k$ times the complexity of computing a prediction of h. We find that \mathcal{D}_z is robust in respect to the quality of the estimation of A, hence a small amount of sample points per class suffice, see section 5.4.

5. Experiments

5.1. Evaluation method

By definition 3.2 the quality of a weak unlearning operation depends on the similarity of the resulting distributions $P(L_{\text{seen}})$ and $P(L_{\text{not seen}})$. We begin by defining a divergence measure for distributions based on the Bayes error rate. This then motivates us to empirically evaluate the performance of the unlearning operations proposed in section 4 by training binary classifiers on the pre-softmax outputs of our models.

Bayes advantage Let B be a Bernoulli random variable uniformly taking values in $\{0, 1\}$. Let

$$U = L_{\text{seen}} \cdot (1 - B) + L_{\text{not seen}} \cdot B$$

be the mixture of L_{seen} and $L_{\text{not seen}}$. Let

$$b^* : u \mapsto \arg \max_{i < 2} P(B = i \mid U = u)$$

be the Bayes optimal classifier for $P(U, B)$ and define

$$\alpha_{b^*} = 2 \left(\mathbb{E}[P(B = b^*(U) \mid U)] - \frac{1}{2} \right) \in [0, 1]. \quad (2)$$

We call α_{b^*} the Bayes advantage. The value of α_{b^*} is a measure for the difference between $P(L_{\text{seen}})$ and $P(L_{\text{not seen}})$ based on how much better the Bayes optimal classifier b^* performs than random guessing. A value of α_{b^*} close to 0 indicates that $P(L_{\text{seen}})$ and $P(L_{\text{not seen}})$ are similar.

Experimental setup Assume that b^* can be approximated sufficiently well by a classifier b derived via a state-of-the-art binary classification algorithm. Then α_b approximates α_{b^*}, hence we consider a low value of α_b to be evidence for the similarity of the distributions of L_{seen} and $L_{\text{not seen}}$. Note that even if we do not believe that b approximates b^* well, we may still use α_b as a relative performance measure for different unlearning operations.

Drawing i.i.d. samples from $P(L_{\text{seen}})$ and $P(L_{\text{not seen}})$ is computationally expensive as it requires us to run the algorithms $A(D)$ respectively $A_{\text{not seen}}(D_{\text{not seen}})$ for every sample point. In our experiments we thus take a pragmatic approach. We train 100 models which get to see the full training data and 100 models which get to see the training data with C removed, i.e. models that unlearned by retraining from scratch. We then apply our unlearning operation to each of the models that got to see the full training data. For every single model we then calculate the predictions for the full test data by that model, without applying the softmax activations of the output layer. We label the predictions made by models that originally got to see the full training data with “seen” and predictions made by models which never got to see the training data for C as “not seen”.

Finally, we train a binary classifier b that given a prediction attempts to predict its label “seen” or “not seen”. For this purpose we use the predictions of 70 models of either category as training data and the predictions of the remaining 30 models of either category as test data. Figure 4 shows a schematic representation of our setup. In practice, we train a separate binary classifier on the predictions of each class.

Note the subtle difference of our setup to the shadow model setup of (Shokri et al., 2017), where the authors ask their binary classifier (there “attack model”): “Do these outputs look like they come from a member of the training set?”, and hope for an accurate answer, such that their membership inference attack succeeds. We ask our binary classifier: “Do these outputs look like they come from a model that has seen C?”, and hope for an inaccurate answer, as we hope that our unlearning operation prevents the attack.

5.2. Data

MNIST The MNIST dataset (Lecun et al., 1998) contains 70,000 28×28 images of handwritten digits in 10 classes, with 7,000 images per class, split into 60,000 training and 10,000 test images.

CIFAR-10 The CIFAR-10 dataset (Krizhevsky, 2009) contains 60,000 $32 \times 32 \times 3$ images in 10 classes, with 6,000 images per class, split into 50,000 training and 10,000 test images.

AT&T Faces The AT&T Laboratories Cambridge Database of Faces (AT&T Laboratories Cambridge, 1994)
Machine Unlearning: Linear Filtration for Logit-based Classifiers

Figure 4. Experimental setup: On the full training data we train 100 models by \(A = \text{train}() \). To these models we then apply an unlearning operation \(D = \text{unlearn}() \). We then \(\text{predict}() \) our test data for each of these models and label these predictions “seen”. On the training data with \(C \) removed we train 100 models by \(A \neg C = \text{train}() \). We then \(\text{predict}() \) our test data for each of these models and label these predictions “not seen”. Finally, we use all labeled predictions as the training/test data of a binary classifier \(b \). We interpret low test accuracy of \(b \) as evidence for good performance of a weak unlearning operation.

contains 400 92×112 images of 40 subjects, with 10 images per subject.

5.3. Network Architectures

MLP For the MNIST dataset, we evaluate our unlearning method on a multilayer perceptron (MLP), with one hidden layer of 50 units.

CNN For the CIFAR-10 dataset, we evaluate our unlearning method on convolutional neural networks (CNNs). Our networks consist of two convolutional (with 16 respectively 32 3×3 filters) and two max-pooling layers, followed by a fully connected layer with \(p \) units with rectified linear activations and a softmax output layer. We experiment with \(p \in \{64, 256, 1024\} \). Note that our unlearning operation works by manipulating \(W \in \mathbb{R}^{k \times p} \), thus we want to investigate how the size of \(W \) affects unlearning performance.

ResNet For the AT&T faces dataset we evaluate our unlearning method on a residual neural network architecture (He et al., 2016). We use a convolutional layer (with 8 5×5 filters), followed by 5 downsampling residual blocks (with \(2^{i+3} 3 \times 3 \) filters in the \(i \)-th block), followed by global max-pooling and a softmax output layer.

5.4. Results

We experiment with the following classification algorithms: nearest neighbors (NN), random forests (RF), and AdaBoost (AB). For the models trained on MNIST and CIFAR-10 we unlearn the first class (of 10) in the dataset (the digit “zero” and the class “airplane”, respectively). For the models trained on AT&T Faces we unlearn the first 4 individuals (of 40) in the dataset.

Table 1 shows classifier advantages (remember formula (2)) for the MLPs trained on MNIST. We observe a significant decrease of advantage when unlearning by normalization compared to the naive method for the unlearned class, and similar advantage for the remaining classes. Table 2 shows classifier advantages for the CNNs trained on CIFAR-10 (with \(p = 256 \)). We observe a vast decrease of advantage when unlearning by normalization compared to the naive method for the unlearned class, while randomization and zeroing do not provide such benefits. Table 3 shows classifier advantages for the residual networks trained on AT&T Faces. We observe a slight decrease of advantage when unlearning by normalization compared to the naive method for the unlearned classes, and similar advantage for the remaining classes.

Classifiers	NN	RF	AB
Unlearned	0.593	0.609	0.641
Naive	0.327	0.362	0.438
Remaining	0.048	0.090	0.098
Naive	0.041	0.089	0.095

Effect of sample size We investigate the effect of sample size for estimating the matrix of mean predictions \(A \) (recall
Table 2. Classifier advantage for 1 unlearned and 9 remaining classes, for CNNs trained on CIFAR-10, with $p = 256$.

	NN	RF	AB
Naive	0.609	0.457	0.590
Normalization	0.146	0.110	0.093
Randomization	0.634	0.579	0.582
Zeroing	0.642	0.566	0.575

	NN	RF	AB
Naive	0.115	0.080	0.109
Normalization	0.148	0.097	0.118
Randomization	0.416	0.279	0.230
Zeroing	0.421	0.276	0.219

Table 3. Classifier advantage for 4 unlearned and 36 remaining classes, for residual networks trained on AT&T faces.

	NN	RF	AB
Naive	0.467	0.573	0.574
Normalization	0.381	0.454	0.462

	NN	RF	AB
Naive	0.149	0.266	0.245
Normalization	0.152	0.263	0.246

Table 4. Classifier advantage for CNNs trained on CIFAR-10, for different sample size s per class, with $p = 256$.

	NN	RF	AB	
Naive	-	0.609	0.457	0.590
Normalization	10	0.193	0.114	0.122
Normalization	100	0.156	0.095	0.111
Normalization	1000	0.146	0.110	0.093

	NN	RF	AB	
Naive	-	0.115	0.080	0.109
Normalization	10	0.205	0.142	0.171
Normalization	100	0.169	0.108	0.136
Normalization	1000	0.148	0.097	0.118

Table 5. Classifier advantage, for CNNs trained on CIFAR-10, for different numbers p of units in the fully connected layer.

	NN	RF	AB	
Naive	64	0.290	0.321	0.380
Normalization	64	0.086	0.106	0.119
Naive	256	0.609	0.457	0.590
Normalization	256	0.146	0.110	0.093
Naive	1024	0.627	0.485	0.603
Normalization	1024	0.174	0.138	0.138

	NN	RF	AB	
Naive	64	0.040	0.043	0.044
Normalization	64	0.044	0.040	0.045
Naive	256	0.115	0.080	0.109
Normalization	256	0.148	0.097	0.118
Naive	1024	0.129	0.090	0.115
Normalization	1024	0.174	0.104	0.129

Summary of experimental results Normalization 1) decreased classifier advantage on the unlearned classes in all three experiments 2) showed robustness with regards to sample size for parameter estimation 3) performed well for different dimensions of the feature space, and 4) did not negatively affect classification accuracy.

5.5. Model inversion

Figure 1 and figure 5 show the results of a “model inversion attack”, i.e. gradient ascend on the input space for a model trained on AT&T Database of Faces. We use a neural network consisting of two fully connected layers with 1000 and 300 units respectively with sigmoid activations and a softmax output layer.

Visually, naive unlearning barely affects the quality of the reconstruction for any of the classes (in particular not the unlearned class). On the other hand the normalization method...
Table 6. The amount of labels changed in percent, when compared to the naive method, for 100 models trained on CIFAR-10, and \(p = 256 \). The “all”-column reports the value for predictions of the entire test set, the “unl.”-column for predictions of images of the unlearned class, and the “cor.”-column for predictions of images of the remaining classes that are correctly predicted by the naive method. The “acc.”-column shows the mean classification accuracy.

Deletion method	ALL	UNL	COR	ACC
Naive	-	-	-	69.2
Normalization	0.0	0.0	0.0	69.2
Randomization	20.1	48.8	11.8	64.8
Zeroing	18.3	45.4	10.3	65.7

greatly disturbs the reconstruction of the unlearned class, while barely affecting the remaining classes. In accordance with our discussion of model inversion in section 2, we thus interpret figure 1 as visual evidence suggesting a desirable effect of our normalization method on the correlation between input and output space represented by our model. We leave a more detailed investigation of this phenomenon for future work.

6. Discussion

In section 3 we made a didactic choice to introduce the special hypothesis class \(\mathcal{H} \) (which permitted absorption of the filtration operation) before defining unlearning. It should however be clear how definitions 3.1 and 3.2 are applicable to any class of classifiers, and in the somewhat more common setting of deletion requests of single data points. We would like to emphasize our belief that in the light of the non-deterministic nature of many learning algorithms a probabilistic definition of unlearning, such as chosen in (Ginart et al., 2019) (there “deletion”) and our work, is necessary.

For contrast let us consider the definition of unlearning in (Bourtoule et al., 2019) that asks to find a model that “could have been obtained” without looking at the deleted training data. Since all models on discrete digital systems necessarily have a finite parameter space we very much could obtain any model without looking at any data by guessing its parameters. What happened here? Guessing a model’s parameters can be considered drawing a sample from a uniform distribution over the parameter space. On the other hand a probabilistic definition such as 3.1 requires the distribution over the parameter space to be the same as if we had run the original learning algorithm without using the deleted data, which for reasonable learning algorithms is certainly not uniform. If we would like to stick to an informal definition we should therefore say that a model “could have been obtained, with reasonable likelihood”.

We further conclude that it is an important consideration whether a definition of unlearning makes sense when not read in a benevolent way (e.g., by a party whose interest in unlearning stems from of legal obligation). In fact our definition of weak unlearning 3.2, i.e. unlearning in a black-box sense, suffers from a similar issue. A malicious way to define a weak unlearning operation \(\mathcal{D} \) is the following: for any classifier \(h \), simply train a new classifier \(h' \) without using the deleted data, then define \(\mathcal{D}(h) = h'' = (h, h') \), where \(h''(x) = h'(x) \). The outputs of \(\mathcal{D}(h) \) look exactly like those of \(h' \), thus \(\mathcal{D} \) is indeed an unlearning operation in the black-box sense, however we never actually deleted \(h \). Let us thus emphasize that the weak definition of unlearning is only applicable when acting in good faith.

7. Conclusion

We considered the problem of unlearning in a class-wide setting, for classifiers predicting logits. We developed normalizing filtration as an unlearning method, with good experimental results with regard to our proposed definition of weak unlearning. While our filtration can be absorbed into the final layer of a classifier (for the hypothesis class considered), our approach remains somewhat unsatisfactory with regards to its shallowness. In future work we hope to find methods that allow for deeper absorption, thus hopefully leading to stronger privacy guarantees. Nevertheless, if our approach is adequate in a legal sense is for legal scholars to decide.
References

AT&T Laboratories Cambridge. The database of faces, 1994.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N. Machine unlearning. arXiv preprint arXiv:1912.03817, 2019.

Cao, Y. and Yang, J. Towards making systems forget with machine unlearning. In 2015 IEEE Symposium on Security and Privacy, 2015.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D. The secret sharer: Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security Symposium (USENIX Security 19), 2019.

Council of European Union. Regulation (eu) 2012/0011, 2012. URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0011. Accessed: February 10, 2020.

Council of European Union. Regulation (eu) 2016/679, 2016. URL https://eur-lex.europa.eu/eli/reg/2016/679/oj. Accessed: February 10, 2020.

Emmert-Streib, F., Yli-Harja, O., and Dehmer, M. Explainable artificial intelligence and machine learning: A reality rooted perspective. arXiv preprint arXiv:2001.09464, 2020.

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., and Ristenpart, T. Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In Proceedings of the 23rd USENIX Conference on Security Symposium, 2014.

Fredrikson, M., Jha, S., and Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai forget you: Data deletion in machine learning. In Advances in Neural Information Processing Systems 32. 2019.

Hayes, J., Melis, L., Danezis, G., and De Cristofaro, E. Logan: membership inference attacks against generative models. PoPETs, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Kearns, M. Efficient noise-tolerant learning from statistical queries. J. ACM, 1998.

Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.

McSherry, F. Statistical inference considered harmful, 2016. URL https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md. Accessed: February 10, 2020.

Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., and Jegou, H. White-box vs black-box: Bayes optimal strategies for membership inference. In International Conference on Machine Learning, 2019.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), 2017.

State of California. California Consumer Privacy Act, 2018. URL https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375. Accessed: February 10, 2020.

Veale, M., Binns, R., and Edwards, L. Algorithms that remember: model inversion attacks and data protection law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018.

Villaronga, E. F., Kieseberg, P., and Li, T. J. Humans forget, machines remember: Artificial intelligence and the right to be forgotten. Computer Law & Security Review, 2018.

Yeom, S., Giacomelli, I., Fredrikson, M., and Jha, S. Privacy risk in machine learning: Analyzing the connection to overfitting. 2018 IEEE 31st Computer Security Foundations Symposium (CSF), 2018.
A. Figures

Model inversion for a toy model trained on the AT&T Faces dataset with 4 classes. On the left side we show results for naive unlearning, on the right side for normalizing filtration. On either side: The top row shows one training image of each class, the second row reconstructions of classes by model inversion, the \((i + 2)\)-th row shows the reconstructions after unlearning the class in the \(i\)-th column by the respective unlearning operation.
B. Tables

More complete versions of tables from section 5.

B.1. MNIST – MLP experiment

Table 7. Accuracy (in percent) and cross-entropy loss, mean ± standard deviation, for 100 MLPs trained on MNIST.

Unlearned	NN	RF	AB
Naive	0.593	0.609	0.641
Normalization	0.327	0.362	0.438
Randomization	0.910	0.869	0.902
Zeroing	0.919	0.886	0.909

Remaining	NN	RF	AB
Naive	0.048	0.090	0.098
Normalization	0.041	0.089	0.095
Randomization	0.116	0.132	0.133
Zeroing	0.119	0.129	0.132

Table 8. Classifier advantage for 1 unlearned and 9 remaining classes, for MLPs trained on MNIST.

	Accuracy	Loss
Before Unlearning	97.1 ± 0.19	0.10 ± 0.01
Baseline Model	97.1 ± 0.18	0.09 ± 0.01
Naive	97.1 ± 0.20	0.10 ± 0.01
Normalization	97.1 ± 0.20	0.10 ± 0.01
Randomization	96.7 ± 0.33	0.11 ± 0.01
Zeroing	96.7 ± 0.30	0.11 ± 0.01
B.2. CIFAR10 – CNN experiment

Table 9. Classifier advantage for 1 unlearned and 9 remaining classes, for CNNs trained on CIFAR-10. \(p \) is the number of units in the fully connected layer, i.e. the dimension of the feature space. \(s \) is the sample size per class, used to estimate the mean predictions.

Unlearned	\(p \)	\(s \)	NN	RF	AB
Naive	64	-	0.290	0.331	0.380
Normalization	64	10	0.113	0.135	0.137
Normalization	64	100	0.089	0.105	0.129
Normalization	64	-	0.086	0.106	0.119
Randomization	64	-	0.547	0.487	0.528
Zeroing	64	-	0.599	0.534	0.560
Naive	256	-	0.609	0.457	0.590
Normalization	256	10	0.193	0.114	0.122
Normalization	256	100	0.156	0.095	0.111
Normalization	256	-	0.146	0.110	0.093
Randomization	256	-	0.634	0.579	0.582
Zeroing	256	-	0.642	0.566	0.575
Naive	1024	-	0.627	0.485	0.603
Normalization	1024	10	0.230	0.164	0.179
Normalization	1024	100	0.216	0.157	0.172
Normalization	1024	-	0.174	0.138	0.138
Randomization	1024	-	0.741	0.637	0.682
Zeroing	1024	-	0.746	0.642	0.680
Remaining	\(p \)	\(s \)	NN	RF	AB
Naive	64	-	0.040	0.043	0.044
Normalization	64	10	0.072	0.075	0.080
Normalization	64	100	0.047	0.044	0.047
Normalization	64	-	0.044	0.040	0.045
Randomization	64	-	0.240	0.203	0.174
Zeroing	64	-	0.246	0.204	0.163
Naive	256	-	0.115	0.080	0.109
Normalization	256	10	0.205	0.142	0.171
Normalization	256	100	0.169	0.108	0.136
Normalization	256	-	0.148	0.097	0.118
Randomization	256	-	0.416	0.279	0.230
Zeroing	256	-	0.421	0.276	0.219
Naive	1024	-	0.129	0.090	0.115
Normalization	1024	10	0.242	0.149	0.182
Normalization	1024	100	0.217	0.128	0.146
Normalization	1024	-	0.174	0.097	0.118
Randomization	1024	-	0.506	0.309	0.249
Zeroing	1024	-	0.508	0.310	0.251
Table 10. Accuracy (in percent) and cross-entropy loss, mean ± standard deviation, for 100 CNNs trained on CIFAR10. \(p \) is the number of units in the fully connected layer, i.e. the dimension of the feature space. \(s \) is the sample size per class, used to estimate the mean predictions.

	\(p \)	\(s \)	ACCURACY	LOSS
BEFORE UNLEARNING	64	-	65.1 ± 1.01	1.01 ± 0.03
RETRAINING	64	-	66.0 ± 1.06	0.96 ± 0.03
NAIVE	64	-	66.4 ± 1.04	0.95 ± 0.03
NORMALIZATION	64	10	66.4 ± 1.04	0.95 ± 0.03
NORMALIZATION	64	100	66.4 ± 1.04	0.95 ± 0.03
NORMALIZATION	64	-	66.4 ± 1.04	0.95 ± 0.03
RANDOMIZATION	64	-	61.1 ± 2.08	1.17 ± 0.10
ZEROING	64	-	62.3 ± 1.76	1.12 ± 0.09
BEFORE UNLEARNING	256	-	68.1 ± 0.85	0.93 ± 0.02
RETRAINING	256	-	69.2 ± 0.80	0.89 ± 0.02
NAIVE	256	-	69.2 ± 0.83	0.88 ± 0.02
NORMALIZATION	256	10	69.2 ± 0.83	0.88 ± 0.02
NORMALIZATION	256	100	69.2 ± 0.83	0.88 ± 0.02
NORMALIZATION	256	-	69.2 ± 0.83	0.88 ± 0.02
RANDOMIZATION	256	-	64.9 ± 1.76	1.07 ± 0.08
ZEROING	256	-	65.7 ± 1.40	1.03 ± 0.06
BEFORE UNLEARNING	1024	-	69.7 ± 0.81	0.93 ± 0.03
RETRAINING	1024	-	70.5 ± 0.82	0.88 ± 0.03
NAIVE	1024	-	70.7 ± 0.82	0.88 ± 0.03
NORMALIZATION	1024	10	70.7 ± 0.82	0.88 ± 0.03
NORMALIZATION	1024	100	70.7 ± 0.82	0.88 ± 0.03
NORMALIZATION	1024	-	70.7 ± 0.82	0.88 ± 0.03
RANDOMIZATION	1024	-	67.1 ± 1.55	1.06 ± 0.08
ZEROING	1024	-	67.6 ± 1.16	1.03 ± 0.05