Data Article

Living cell imaging and Rac1-GTP levels of CXCL12-treated migrating neural progenitor cells in stripe assay

Min Zhanga,1, Aihong Songa,1, Siqiang Laia,1, Lisha Qiua, Yunlong Huanga,b,c, Qiang Chena, Bing Zhua, Dongsheng Xua,b,c,*, Jialin C. Zhenga,b,c,*

a Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
b Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
c Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 8 September 2015
Received in revised form 25 September 2015
Accepted 28 September 2015
Available online 28 October 2015

\textbf{A B S T R A C T}

This data article contains three figures and three videos related to the research article entitled “Applications of Stripe Assay in the Study of CXCL12-mediated Neural Progenitor Cell Migration and Polarization” Zhang et al. (2015) [1], which uses stripe assay to study mouse neural progenitor cell (NPC) migration and polarization. The current article describes the neurosphere method used to culture NPCs. NPCs in neurospheres and monolayer were characterized using immunocytochemistry method with antibodies against two classic NPC markers: nestin and SOX2. The article also describes method to obtain sufficient protein lysates from NPCs in the stripe assay. When protein lysates were subjected to Rac1 affinity precipitation, Rac1-GTP was detected in the pull-down samples. In addition, the articles provides live cell imaging data to better understand CXCL12-mediated cellular migration and polarization.

\& 2015 Published by Elsevier Inc.

\textbf{Data in Brief 5 (2015) 712–716}

\textbf{DOI of original article: http://dx.doi.org/10.1016/j.biomaterials.2015.08.052}
* Corresponding authors at: Shanghai Tenth People’s Hospital School of Medicine, Shanghai 200072, China and University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
\textit{E-mail addresses: dxu0927@sina.cn (D. Xu), jzheng@unmc.edu (J.C. Zheng).}
1 Author contribution: Min Zhang, Aihong Song and Siqiang Lai contribute equally to the manuscript.
1. The NPCs express both nestin and SOX2. The data can be referenced when identifying NPCs in the cultures.

2. Rac1 is an important signaling intermediate for migration and polarization. Sufficient amount of protein lysates can be acquired from stripe assay for Rac1-GTP pull-down. Detection of Rac1-GTP in the pull-down samples will be a valuable benchmark for future studies aiming to identify cell signaling during migration and polarization.

3. Stripe assay can be used to observe NPCs' migration and polarization toward CXCL12 stripes by live cell imaging. This data significantly extends the applications of stripe assay in cell biology.

1. Data

To better understand functional impacts of CXCL12 on NPC biology, NPCs were isolated from E13.5 mouse forebrains and enriched through neurosphere cultures [1]. A majority of mouse NPCs in neurospheres and monolayer (adherent) cultures expressed both nestin and SOX2 (Fig. 1). Because Nestin and SOX2 are markers for NPCs [2,3], the positive staining of nestin and SOX2 in our cultures suggests that these cells are indeed NPCs. Number of living cells are critical to study mechanisms of cellular migration and polarization. Stripe assay could obtain directional migrating cells for protein analysis. Levels of Rac1-GTP increased at 2 min by CXCL12 in the stripe assay (Fig. 2), suggesting that Rac1 is activated in the NPCs by CXCL12 stripes in the assay. Migration and polarization of cells are integrated processes of cell movement. In live cell imaging, NPCs were recorded in stripe assays migrating to CXCL12 stripes in 5 h (Video 1). More importantly, NPCs polarization was also recorded through live cell imaging in stripe assays (Video 2), but not control BSA stripes (Video 3), induced NPC polarization (Fig. 3).

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.dib.2015.09.048.

2. Experimental design, materials and methods

2.1. Characterization of mouse NPCs

Mouse NPCs were fixed using 4% paraformaldehyde (PFA), and permeabilized with 0.4% triton-X in PBS. After blocked by 1% BSA in PBS, mNPCs were incubated with primary antibodies (mouse anti-nestin, 1:200, Millipore; rabbit anti-SOX2, 1:500, Cell Signal Technology) overnight. Cultures were then washed
and incubated with secondary antibodies (Alexa Fluor 568 goat anti-mouse IgG, 1:500, Invitrogen; Alexa Fluor 488 goat anti-rabbit IgG, 1:500, Invitrogen) for one hour at room temperature. Nuclear DNA was labeled with 4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for 2 min after the secondary antibody at room temperature. Cover slips were mounted on glass slides with mounting medium (Sigma-Aldrich). Triple immunostaining was examined by a Zeiss 710 confocal microscope.

2.2. Pull-down assay

Active Rac1 pull-down and detection kit (Thermo scientific) was utilized for the detection of Rac1-GTP level. The assay was performed according to the manufacturer’s instruction. The kit provides a GST-fusion protein containing the p21-binding domain (PBD) of human p21-activated protein kinase 1 (Pak1) along with...
glutathione agarose resin to specifically pull down active Rac1. Briefly, the cell lysates were incubated with the GST-Pak1 beads. Levels of bead-bound GTP-Rac1 and total Rac1 proteins were analyzed by immunoblot using an anti-Rac1 antibody (1:1000; Thermo scientific) and β-actin (Sigma) was as internal reference.

2.3. Living imaging experiment

After transfection of LiveAct-RFP and nuclear DNA stained with Hoechst33342, NPCs were dissociated with accutase (Gibco) into single cells. The stripe-coated dishes were seeded with dissociated NPCs to study living cell migration or polarization. Images were taken by times-series of Zeiss Live cell Imaging System.

Acknowledgments

This work was supported by Grants from National Key Basic Research Program of China (973 Program Grant no. 2014CB965000, Project 1 no. 2014CB965001 and Project 3 No. 2014CB965003) and National Natural Science Foundation of China (81271420 and 81471936 to DX, 31271139 to AS), Innovative Research Groups of the National Natural Science Foundation of China (81221001 to JZ), and Joint Research Fund for Overseas Chinese, Hong Kong and Macao Young Scientists of the National Natural Science Foundation of China (81329002 to JZ); National Institutes of Health: R01 NS 41858-01, 2R56NS041858-15A1 (JZ), and R03 NS094071-01 (YH).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2015.09.048.

References

[1] M. Zhang, A.H. Song, S.Q. Lai, L.S. Qiu, Y.L. Huang, Q. Chen, et al., Applications of stripe assay in the study of CXCL12-mediated neural progenitor cell migration and polarization, Biomaterials 72 (2015) 163–171.

[2] U. Lendahl, L.B. Zimmerman, R.D. McKay, CNS stem cells express a new class of intermediate filament protein, Cell 60 (4) (1990) 585–595.

[3] C.A. Messam, J. Hou, J.W. Berman, E.O. Major, Analysis of the temporal expression of nestin in human fetal brain derived neuronal and glial progenitor cells, Brain Res Dev Brain Res 134 (1–2) (2002) 87–92.