Electroacupuncture upregulated platelet derived growth factor expression in spared dorsal root ganglion of cats

Xifeng Wang¹, Lianshuang Zhang², Xiaobo Xu³, Wei Zhao², Guixiang Liu²

¹ Intensive Care Unit of Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, China
² Department of Histology and Embryology, Binzhou Medical College, Yantai 264003, Shandong Province, China
³ Neuroscience Department, University of Southern California, CA 90007, USA

Abstract
A bilateral spared dorsal root ganglion model was established in healthy adult cats by bilateral resection of \(L_1\)–\(L_5\) and \(L_7\)–\(S_2\) dorsal root ganglia. \(L_6\) dorsal root ganglia were spared. Zusanli (ST36) and Xuanzhong (BL39) or Futu (ST32) and Sanyinjiao (SP6) were alternatively electro-stimulated on the right leg. Immunohistochemical staining of anti-serum platelet-derived growth factor demonstrated that the number of total neurons and medium-small sized platelet-derived growth factor positive neurons was significantly decreased on the 7th day following injury. After 7 days of acupuncture, the total number of positive and large neurons staining for platelet-derived growth factor on the acupuncture side significantly increased compared to the non-acupuncture side. After acupuncture for 14 days, the total positive and medium-small sized neurons significantly increased compared with the non-acupuncture side. Results indicate that acupuncture promoted the synthesis of platelet-derived growth factor in spared dorsal root ganglia.

Key Words
platelet-derived growth factor; acupuncture; dorsal root ganglion; immunohistochemistry; cat; traditional Chinese medicine; neural morphology; neural regeneration

Research Highlights
(1) A bilateral spared dorsal root ganglion model was successfully established by bilateral resection of \(L_1\)–\(L_5\) and \(L_7\)–\(S_2\) dorsal root ganglia and reserving bilateral \(L_6\) dorsal root ganglia in healthy adult cats.
(2) After alternate electroacupuncture at Zusanli (ST36) and Xuanzhong (BL39) or Futu (ST32) and Sanyinjiao (SP6) on the right leg, platelet-derived growth factor was expressed in spared dorsal root ganglion on the acupuncture side. The number of large and small-medium sized neurons was also significantly increased on this side.

Abbreviations
DRG, dorsal root ganglion; PDGF, platelet-derived growth factor

INTRODUCTION
Studies have shown that the expression of neurotrophic factors changes after nervous system injury\(^1\)–\(^4\). Changes have been found in spared dorsal root ganglia after partial dorsal root rhizotomy, which is related to a spinal cord central process of collateral sprouting and repair of spinal cord injuries\(^5\)–\(^16\). The pioneering work showed that removal of adjacent dorsal root ganglion
(DRG) could trigger sprouting of central processes from spared DRG neurons to the denervated territory within the dorsal horn\cite{11-14}. Subsequent studies revealed that acupuncture could enhance intraspinal sprouting of the spared afferents. Adult mammalian spinal cord is known to be plastic, and this plasticity can be promoted by electroacupuncture\cite{15-20}. Recent studies indicate that electroacupuncture promotes the expression of nerve growth factor, neurotrophin, and epidermal growth factor in dorsal roots after partial dorsal root rhizotomy or the application of acupuncture. The present study investigated the expression of PDGF in spared DRG after partial dorsal root rhizotomy and acupuncture. The present study tested 7 cats as a comparison. The electroacupuncture group was subjected to bilateral L₄–S₃ dorsal root rhizotomy, followed by Xuanzhong (BL39) or Futu (ST32) and Sanyinjiao (SP6) electroacupuncture on the right leg until immunostaining. Left sided L₄ electroacupuncture on the right leg until L₄ Quantitative analysis of experimental animals RESULTS application of acupuncture in cats. after partial dorsal root rhizotomy and subsequent investigation the expression of PDGF in spared DRG after partial dorsal root rhizotomy or the application of acupuncture. Platelet-derived growth factor (PDGF) is a member of the neurotrophic factor family. PDGF has been shown to play a neuroprotective role in nervous system injury\cite{21-23}. However, few studies have reported expression of PDGF in dorsal roots after partial dorsal root rhizotomy and acupuncture could enhance intraspinal sprouting of the spared afferents. Adult mammalian spinal cord is known to be plastic, and this plasticity can be promoted by electroacupuncture\cite{24-26}. PDGF expression in L₄ DRG after bilateral dorsal root rhizotomy PDGF was mainly expressed in small-to medium-sized neurons in L₄ DRG in each group. Expression was also noted in large neurons. PDGF positive immunoreactive products were present mainly in the cytoplasm, and in the partial fibers, without pronounced satellite cell staining (Figure 1, Table 1).

PDGF expression in spared DRG after partial dorsal root rhizotomy and acupuncture PDGF was expressed in neurons in spared DRG. These neurons were small-to-medium (13–56 μm) and large (57–100 μm) in size, as previously classified\cite{27}. The changing trends in electroacupuncture and non-electroacupuncture sides were the same after partial dorsal root rhizotomy, but the control group remained unchanged over the 2 weeks. The number of PDGF positive neurons and small-to-medium-sized neurons on both sides of the model group decreased significantly as compared with that in control DRG at 7 days ($P < 0.05$).

![Figure 1 Platelet-derived growth factor in L₄ dorsal root ganglion following immunohistochemical staining (× 100).](image)

Type of positive neurons	Side of spinal cord	Electroacupuncture group after acupuncture (day)
	Control group	7
	Electroacupuncture group	14
Total	Left	21.55±3.41
	Right	12.80±2.19
Large	Left	22.65±3.17
	Right	14.71±3.12
Medium-small	Left	4.36±0.79
	Right	4.68±0.83
Small	Left	18.07±3.02
	Right	16.80±3.36
Total		20.19±1.78

Electroacupuncture group was electro-stimulated on the right side. Data are expressed as the mean ± SEM, and evaluated by one-way analysis of variance and least significant different-t test with post-hoc statistical analysis.

a$P < 0.05$, vs. left side (non-acupuncture side); b$P < 0.05$, vs. control group.

On the 14th day, there were few differences between

Table 1 Number of platelet-derived growth factor positive neurons (×100-fold field of view) in normal and acupuncture groups
number in the spared DRG after partial dorsal root rhizotomy and in the normal DRG. The number of positive large neurons remained unchanged in each period. After the application of acupuncture, however, there were overall more PDGF positive neurons, particularly large neurons, than those on the non-electroacupuncture side on the 7th day ($P < 0.05$). Furthermore, there were more PDGF positive neurons and small-to-medium-sized neurons than those on the non-electroacupuncture side on the 14th day ($P < 0.05$).

DISCUSSION

Significance of PDGF expression in normal DRG

The present study illustrated that there were PDGF positive neurons in L6 DRG in healthy adult cats, suggesting that adult cat DRG express PDGF, which is most likely related to the survival of DRG neurons. Fruttiger et al. have reported that PDGF is produced by neuronal cell bodies via axoplasmic transport. This observation reveals that the produced PDGF does not have a nutritional function in DRG neurons, but plays an important role in spinal cord trough axoplasmic transport. In the same way, the positive reaction of partial fibers observed in this study also supports the transportation of PDGF in neuritis.

Significance of PDGF expression in spared DRG after partial dorsal root rhizotomy and acupuncture

The present study observed that the total number of PDGF positive neurons, specifically small-to-medium-sized neurons, significantly decreased compared with that in normal DRG on the 7th day post injury. The number of neurons then returned to normal on day 14. This observation most probably resulted from two reasons: early spinal injury induced by partial dorsal root rhizotomy inhibits the function of spared DRG; in addition, PDGF synthesis is spared in DRG, but its expression is reduced when it is transported to the spinal cord where it participates in early spinal injury neuroprotection, in a similar way to brain-derived neurotrophic factor, neurotrophin-3 and glial cell-derived neurotrophic factor. This occurred in favor of the spinal cord central process collateral sprouting for compensation of the removal of partial afferent nerve fibers, and in addition to partial PDGF transportation to the spinal cord for early spinal injury neuroprotection. Results from the present study revealed that there were, in total, more PDGF positive neurons, particularly large neurons on the electro-acupuncture side on day 7 compared to the non-electro-acupuncture side. The total number of PDGF positive neurons continued to be greater on the electro-acupuncture side on day 14 when compared to the control side, however small-to-medium-sized neurons were more abundant at this time point. This observation suggests that the application of acupuncture promoted expression of large neurons on the 7th day and small-to-medium-sized neurons on the 14th day. Considering the projection arrangement disparity between the large neurons and the small-to-medium-sized neurons, the need for spinal cord central process collateral sprouting and PDGF after spinal injury may not be the same. Alternatively, acupuncture may have played a different role in PDGF expression in different neurons. The present study concluded that acupuncture has great importance in spinal plasticity by promoting spared DRG to synthesize more PDGF. The specific mechanism of how this occurs still remains to be investigated in further studies. Nevertheless, PDGF expression was involved in promoting plastic changes in L6 DRG and associated deafferented spinal cord following electroacupuncture.

MATERIALS AND METHODS

Design

A randomized, controlled, animal study.

Time and setting

This experiment was performed at the Kunming Medical College Institute of Neuroscience, China from 2007 to 2008.

Materials

A total of 15 adult male cats, weighing 3–3.5 kg, 12–18 months old, were provided by the Medical Animal Experimental Center of Kunming, China.

Methods

Establishment of a bilateral spared dorsal root model

Animals (10 cats) were anesthetized by intraperitoneal injection of 3.5% pentobarbital sodium (1.3 mL/kg) for the surgical removal of DRG. The L1–5 and L7–S2 DRG were removed at the respective intervertebral foramina on the left side, sparing the L6 DRG. Another five cats were subjected to sham surgery, i.e. DRG was exposed but not subjected to rhizotomy. After the operation, the cats were individually housed under standard conditions of humidity and temperature with 12-hour light/dark cycles and allowed free access to food and water.

Electroacupuncture procedure

Electroacupuncture was performed immediately after
model establishment. Acupuncture points were selected according to results of our previous study\(^\text{[31]}\). Zusanli (1.5 cm below the anterior portion of the fibula head)/ Xuanzhong (1.5 cm above the anterior portion of the lateral malleolus) and Futu (2–3 cm above the lower edge of the patella)/Sanyinjiao (1.5 cm above the posterior edge of the medial malleolus).

Electroacupuncture was performed daily with a HB-EDT-type II electronic acupuncture instrument (Yuehua Medical Factory of Guangdong, Shantou, China). Two needles were placed into each alternate group of two points as positive and negative electrodes, respectively, on a daily basis in the right leg at a frequency of 98 Hz for 30 minutes. This study was a self-controlled experiment, and acupuncture was only performed on the right side.

Sampling

Cats were anesthetized intraperitoneally with 3.5% pentobarbital sodium (1.3 g/kg), and perfused with 4% paraformaldehyde for fixation. Both sides of the L6 DRG were obtained by dissection, fixed, immersed overnight in 0.1 M PBS containing 20% sucrose, frozen and then cut into 20 μm thick slices in a cryostat (Leica, Wetzlar, Germany). Five slices were obtained discontinuously in each ganglion in each sample.

Immunohistochemistry for PDGF expression in spared DRG

Left L6 DRG in the control and model groups was obtained by dissection. These specimens were postfixed for 12 hours, immersed overnight in 0.1 M PBS containing 20% sucrose, frozen and cut into 20 μm thick sections in a cryostat. After rinses with 0.05 M PBS and soaking in PBS containing 3% H\(_2\)O\(_2\) for 30 minutes at room temperature to quench the endogenous peroxidase activity, sections were immersed in PBS containing 5% goat serum and 0.3% Triton at room temperature for 30 minutes. Sections were then incubated with rabbit anti-PDGF polyclonal antibody (1:200) for 2 hours, and avidin-biotinylated peroxidase complexes (1:100) for 30 minutes at room temperature to quench the endogenous NT-3 from adult cat spared dorsal root ganglion on ganglionic neurons. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(2):245-247.

Immunoreactive cells, photographs of DRG were collected experimental data. Wei Zhao and Guixiang Liu provided technical instruction.

Statistical analysis

Data were expressed as mean ± SEM, and evaluated by one-way analysis of variance and least significant different t-test with post-hoc statistical analysis using SPSS 12.0 (SPSS, Chicago, IL, USA). A value of \(P < 0.05\) was considered statistically significant.

Funding: This study was supported by the Natural Science Foundation of Shandong Province, No. ZR2011HQ048.

Author contributions: Xifeng Wang was responsible for study design, assessment, manuscript authorization and the funding process. Lianshuang Zhang conducted the experiments and statistical analysis. Xiaobo Xu wrote the manuscript and collected experimental data. Wei Zhao and Guixiang Liu provided technical instruction.

Conflicts of interest: None declared.

Ethical approval: All experimental protocols were approved by the Institutional Animal Care and Use Committee of Kunming Medical College, China.

REFERENCES

1. Hawryluk GW, Mothe A, Wang J, et al. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. in press.
2. He XY, Chen ZZ, Cai YQ, et al. Expression of cytokines in rat brain with focal cerebral ischemia after grafting with bone marrow stromal cells and endothelial progenitor cells. Cytotherapy. 2011;13(1):46-53.
3. Satar B, Hidir Y, Serdar MA, et al. Protein profiling of anastomosed facial nerve treated with mesenchymal stromal cells. Cytotherapy. 2012;14(5):522-528.
4. Kernt M, Liegl RG, Rueping J, et al. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factors. 2010;28(3):211-220.
5. Yuan Y, Wang T, Yang Z, et al. Expression of GDNF in dorsal root ganglion after partial dorsal root rhizotomy and acupunture in spared root. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(2):245-247.
6. Zhang W, Zhou X, Wang TH, et al. The neurotrophic effect of endogenous NT-3 from adult cat spared dorsal root ganglion on ganglionic neurons. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004;35(1):25-28.
7. Qin HL, Zhou X, Zhang W, et al. Expression change of nitric oxide synthases in dorsal root ganglia of cats after selective dorsal rhizotomy. Sichuan Da Xue Xue Bao Yi Xue Ban. 2004;35(1):29-31.
[8] Ke Q, Wang T, Li L, et al. c-jun expression in spared dorsal root ganglion following partial dorsal root rhizotomy and acupuncture. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(2):248-250.

[9] Liu F, Wang T, Li M, et al. Expression of NGF, BDNF and NT-3 in satellite cells of dorsal root ganglion. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(1):38-39.

[10] Ke Q, Wang T, Li L, et al. c-jun expression in spared dorsal root ganglion following partial dorsal root rhizotomy and acupuncture. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(2):248-250.

[11] Morgan JM, Curran T. Immediate-early genes: ten years on. Trends Neurosci. 1995;18(2):66-67.

[12] Goldberger ME, Murray M. Patterns of sprouting and implications for recovery of function. Adv Neurol. 1988;47:361-385.

[13] Zhang B, Goldberger ME, Murray M. Proliferation of SP- and 5HT-containing terminals in lamina II of rat spinal cord following dorsal rhizotomy: quantitative EM-immunocytochemical studies. Exp Neurol. 1993;123(1):51-63.

[14] Polistina DC, Murray M, Goldberger ME. Plasticity of dorsal root and ascending serotoninergic projections after partial deafferentation of the adult rat spinal cord. J Comp Neurol. 1990;299(3):349-363.

[15] Wang TH, Wu LF, Liao DY, et al. The effect of acupuncture on the expression of BDNF in the process of spinal plasticity. Shenjing Jiepouxue Zazhi. 1994;10(1):6-10.

[16] Wang TH, Wang XY, Li XL, et al. Effect of electroacupuncture on neurotrophin expression in cat spinal cord after partial dorsal rhizotomy. Neurochem Res. 2007;32(8):1415-1422.

[17] Norrbrink C, Lundeberg T. Acupuncture and massage therapy for neuropathic pain following spinal cord injury: an exploratory study. Acupunct Med. 2011;29(2):108-115.

[18] Huang SF, Ding Y, Ruan JW, et al. An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide. Neurosci Res. 2011;70(3):294-304.

[19] Choi YG, Yeo S, Hong YM, et al. Changes of gene expression profiles in the cervical spinal cord by acupuncture in an MPTP-intoxicated mouse model: microarray analysis. Gene. 2011;481(1):7-16.

[20] Li WJ, Pan SQ, Zeng YS, et al. Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res. 2010;67(4):307-316.

[21] Shen HM, Wu LF, Bao TR, et al. The effects of acupuncture on NGF and NGF mRNA in spinal cord and dorsal root ganglion of partial rhizotomy cats. Shenjing Jiepouxue Zazhi. 2000;16(4):311-315.

[22] Wang T, Wu L, Liao D, et al. Effect of acupuncture on the expression of NT3 in the process of spinal plasticity. Hua Xi Yi Ke Da Xue Xue Bao. 2002;33(1):46-49.

[23] Zhang LS, Wang XF, Yin YJ, et al. The effects of acupuncture on expression of epidermal growth factor in spared dorsal root ganglions. Jiepouxue Zazhi. 2006;29(4):508-510.

[24] Arimura K, Ago T, Kamouchi M, et al. PDGF receptor β signaling in pericytes following ischemic brain injury. Curr Neurovasc Res. 2012;9(1):1-9.

[25] Tang Z, Arjunan P, Lee C, et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation. J Exp Med. 2010;207(4):867-880.

[26] Gok J, Mazurek P, Reichert P, et al. The possibilities of using a non-degradable materials as conduits in peripheral nerve reconstructions. Polim Med. 2010;40(1):3-8.

[27] Kawamura Y, Dyck PJ. Evidence for three populations by size in L5 spinal ganglion in man. J Neuropathol Exp Neurol. 1978;37(3):269-272.

[28] Fruttiger M, Calver AR, Richardson WD. Platelet-derived growth factor is constitutively secreted from neuronal cell bodies but not from axons. Curr Biol. 2000;10(20):1283-1286.

[29] Long SL, Li YM, Yuan Y, et al. Partial dorsal root rhizotomy increases the anterograde transportation of neurotrophic factors in primary sensory neuron. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005;36(3):325-327.

[30] Sun WW, Liu J, Wang XY, et al. Changes in PDGF expression in spared dorsal root ganglia and associated spinal dorsal horns in cats subjected to partial dorsal root ganglionectomy. Neurosci Lett. 2008;431(2):112-117.

[31] Zhou HL, Zhang LS, Kang Y, et al. Effects of electro-acupuncture on CNTF expression in spared dorsal root ganglion and the associated spinal lamina II and nucleus dorsalis following adjacent dorsal root ganglionectomies in cats. Neuropeptides. 2008;42(1):95-106.

[32] Zhou X, Wu L, Chen H, et al. The spatiotemporal change of neurotrophin family and their mRNA expression in spinal cord of cats after partial rhizotomy. Hua Xi Yi Ke Da Xue Xue Bao. 2002;33(2):165-168,191.

[33] Wang TW, Wang TH, Zhou X, et al. The effect of acupuncture and endogenous c-Fos, c-Jun on regeneration of neuronal dendrite of spared DRG following partial ganglionectomy. Sichuan Da Xue Xue Bao Yi Xue Ban. 2007;38(5):792-794,835.

[34] Wang T, Ke Q, Wu L, et al. The trkC expression in spared dorsal root ganglion following acupuncture. Sichuan Da Xue Xue Bao Yi Xue Ban. 2003;34(1):40-42.

[35] Wang TW, Wang TH, Zhou X, et al. Effect of partial ganglionectomy and acupuncture on culturing spared DRG in vitro. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005;36(5):630-633.

[36] Wang TH, Wu LF, Liao DY, et al. The Morphological evidence on the various subpopulations of neurons in L6 DRG of adult cat by criterion of size. Kunming Yixueyuan Xuebao. 2000;21(1):47-49.

(Edited by Yi SX/Su LL/Wang L)