Geminivirus-Encoded Proteins: Not All Positional Homologs Are Made Equal

Ana P. Luna* and Rosa Lozano-Durán**

*Correspondence:
Ana P. Luna
analuna@uma.es
Rosa Lozano-Durán
lozano-duran@sibs.ac.cn

Keywords: geminivirus, viral protein, positional homolog, silencing suppressor, C2/AC2, V2/AV2, C4/AC4

THE PLANT GEMINIVIRUSES

Geminiviruses are insect-transmitted plant viruses with circular, single-stranded (ss)DNA genomes that cause devastating diseases in major crops worldwide. The family Geminiviridae comprises more than 450 species divided in nine genera, based on genome organization, host range, and insect vector: Begomovirus, Mastrevirus, Curtovirus, Becurtovirus, Topocuvirus, Turncurtovirus, Capulavirus, Gablovirus, and Eragrovirus (Zerbini et al., 2017). The most diverse genus in this family is Begomovirus, which to date includes 409 different species (reviewed in Zhao et al., 2019). Begomoviruses can be further subdivided in monopartite, with one-molecule genomes, and bipartite, with two-molecule genomes (Figure 1A). Regardless of whether they are mono- or bi-partite, the size of each genomic DNA molecule is ~3 kb.

Apart from the obvious economic and practical interest propelling the study of geminiviruses, this virus family is an excellent model system to gain insight into plant processes. Geminiviruses replicate their DNA genomes in the nucleus by using the plant DNA replication machinery; the geminivirus genome forms minichromosomes that are subjected to epigenetic modifications; geminiviruses are both activators and suppressors of plant defense responses, and modulate plant developmental processes (reviewed in Hanley-Bowdoin et al., 2013). Therefore, geminiviruses can be used as probes to deepen our understanding not only of plant-virus interactions, but also of different aspects of plant biology.

GEMINIVIRUS-ENCODED PROTEINS

As intracellular parasites, geminiviruses have to effectively manipulate plant cell functions to replicate, suppress anti-viral defense, and move throughout the plant, ultimately establishing a systemic infection; their evolved capacity to co-opt and modulate processes in a given host plant will determine the outcome of the plant-virus interaction. In order to hijack the host cell molecular machinery, geminiviruses produce a limited number (between 4 and 8) of small, fast-evolving, multifunctional proteins, encoded by bidirectional and partially overlapping open reading frames (ORFs) (Figure 1A). Monopartite begomoviruses encode six proteins, namely C1/Rep, C2/TrAP, C3/REN, C4, V2, and V1/CP. Homologs are encoded in one of the genomic component of bipartite begomoviruses, DNA A (in this case, named AC1/Rep, AC2/TrAP, AC3/REN, AC4, AV2, and AV1/CP); the other component in bipartite species, termed DNA B, encodes two additional proteins: the nuclear shuttle protein (NSP) and the movement protein (MP) (Figure 1A). Curiously, monopartite begomoviruses are often found in nature associated with satellite molecules, known as α- and β-satellites, which contribute to or even enable viral pathogenicity through the action of their encoded proteins (α-Rep and β-C1, respectively) (reviewed in Zhou, 2013).
In view of the fast pace of evolution of geminivirus genomes (reviewed in Zhao et al., 2019), it is expected that all proteins therein encoded are essential for the viral infection—since otherwise their coding sequence would be eventually lost. This idea is supported by the results obtained in the laboratory with artificially mutated viruses, which generally present a dramatically decreased virulence in their natural hosts and a high rate of reversion. Our current knowledge of the specific molecular function of individual geminivirus-encoded proteins derives from an ever-growing body of work, carried out by multiple research groups worldwide during the past few decades and resulting from the combination of molecular biology, cell biology, virology, and biochemistry.

Considering the biological properties and life cycle of geminiviruses and plant viruses in general, a series of functions that are conditio sine qua non for a successful viral infection can be inferred: these include manipulation of the cell cycle, DNA replication, intra- and inter-cellular movement, and suppression of gene silencing and other anti-viral defenses, such as the response to defense-related hormones. Virus-encoded proteins exerting these functions have indeed been identified in different geminivirus species, although in some cases the exact underlying molecular mechanisms remain to be unraveled (reviewed in Hanley-Bowdoin et al., 2013; Yang et al., 2016).

POSITIONAL HOMOLOGS IN GEMINIVIRUSES

Genome structure is conserved among geminiviral species within the same genus, and in some cases even among species.
The C2/AC2 proteins from begomoviruses act as suppressors of TGS by interfering with the methyl cycle through inhibition of adenosine kinase (ADK) (Buchmann et al., 2009; Jackel et al., 2015). TGS suppression by inactivating the H3K9 histone methyltransferase SUVH4/KYP (Castillo-González et al., 2015; Sun et al., 2015) allows the C2/AC2 proteins to create a cellular environment permissive to DNA replication (Caracuel et al., 2012; Lozano-Duran et al., 2012).

On the other hand, examples of geminiviral positional homologs with proven partial functional homology are available in the literature. Perhaps the most illustrative case to date is that of the C2/AC2 proteins: in begomoviruses and curtoviruses, C2/AC2 proteins have a conserved zinc-finger motif, despite showing only limited similarity in the overall amino acid sequence; but while AC2, but perhaps not C2, from begomoviruses acts as a transcriptional activator for viral and some plant host genes (Sunter and Bisaro, 1992, 1997; Trinks et al., 2005), C2 from curtoviruses lacks an obvious transcriptional activation domain and transcriptional activation activity (Sunter et al., 1994; Baliji et al., 2007). At least in two species, C2/AC2 interacts with and inactivates SNF1-related kinase (also known as Arabidopsis protein kinase 11 [AKIN11]), a global regulator of metabolism (Hao et al., 2003; Wang et al., 2003). Some C2/AC2 proteins are suppressors of PTGS (Voïnet et al., 1999; Vanitharani et al., 2004; Wang et al., 2005; Luna et al., 2012), but not others (Vanitharani et al., 2004; Luna et al., 2012). C2/AC2 has also been shown to suppress TGS by interfering with the methyl cycle in several species, but through at least two different mechanisms, namely the inhibition of adenosine kinase (ADK) (Buchmann et al., 2009; Jackel et al., 2015) and the attenuation of the proteasome-mediated degradation of S-adenosyl-methionine decarboxylase 1 (SAMDC1) (Zhang et al., 2011). Therefore, at this point, whether functional homology among Rep or V2 proteins is complete or only partial is unclear.

Table 1: Different C2/AC2 functions described in several geminiviral species.

Virus	Function	References
Tomato golden mosaic mosaic virus (TGMV); Mungbean yellow mosaic mosaic virus (MYMV)	Transcriptional activator for viral and some plant host genes	Sunter and Bisaro, 1992, 1997; Trinks et al., 2005
Tomato golden mosaic mosaic virus (TGMV) and Beet curly top virus (BCTV)	Inactivation of SNF1-related kinase (Arabidopsis protein kinase 11 [AKIN11])	Hao et al., 2003; Wang et al., 2003
African cassava mosaic mosaic virus (ACMV); Tomato yellow leaf curl virus (TYLCV); Tomato golden mosaic mosaic virus (TGMV); Beet curly top virus (BCTV); Indian cassava mosaic mosaic virus (ICMV) and East African cassava mosaic Cameroon mosaic virus (EACMCV)	Posttranscriptional gene silencing (PTGS) suppression	Voinnet et al., 1999; Vanitharani et al., 2004; Wang et al., 2005; Luna et al., 2012
Tomato golden mosaic mosaic virus (TGMV); Cabbage leaf curl virus (CaLCuV), and Beet curly top virus (BCTV)	Transcriptional gene silencing (TGS) suppression by interfering with the methyl cycle through inhibition of adenosine kinase (ADK)	Buchmann et al., 2009; Jackel et al., 2015
Beet severe curly top virus (BSCTV)	TGS suppression by interfering with the methyl cycle through attenuation of the proteasome-mediated degradation of S-adenosyl-methionine decarboxylase 1 (SAMDC1)	Zhang et al., 2011
Tomato golden mosaic mosaic virus (TGMV); Cabbage leaf curl virus (CaLCuV) and Indian cassava mosaic mosaic virus (strains: ICMV-Dha and ICMV-SG)	TGS suppression by inhibiting the H3K9 histone methyltransferase SUVH4/KYP	Castillo-González et al., 2015; Sun et al., 2015
Beet curly top virus (BCTV)	Creation of a cellular environment permissive to DNA replication	Caracuel et al., 2012; Lozano-Duran et al., 2012

Table 1: Different C2/AC2 functions described in several geminiviral species.

Virus	Function	References
Tomato golden mosaic mosaic virus (TGMV); Mungbean yellow mosaic mosaic virus (MYMV)	Transcriptional activator for viral and some plant host genes	Sunter and Bisaro, 1992, 1997; Trinks et al., 2005
Tomato golden mosaic mosaic virus (TGMV) and Beet curly top virus (BCTV)	Inactivation of SNF1-related kinase (Arabidopsis protein kinase 11 [AKIN11])	Hao et al., 2003; Wang et al., 2003
African cassava mosaic mosaic virus (ACMV); Tomato yellow leaf curl virus (TYLCV); Tomato golden mosaic mosaic virus (TGMV); Beet curly top virus (BCTV); Indian cassava mosaic mosaic virus (ICMV) and East African cassava mosaic Cameroon mosaic virus (EACMCV)	Posttranscriptional gene silencing (PTGS) suppression	Voinnet et al., 1999; Vanitharani et al., 2004; Wang et al., 2005; Luna et al., 2012
Tomato golden mosaic mosaic virus (TGMV); Cabbage leaf curl virus (CaLCuV), and Beet curly top virus (BCTV)	Transcriptional gene silencing (TGS) suppression by interfering with the methyl cycle through inhibition of adenosine kinase (ADK)	Buchmann et al., 2009; Jackel et al., 2015
Beet severe curly top virus (BSCTV)	TGS suppression by interfering with the methyl cycle through attenuation of the proteasome-mediated degradation of S-adenosyl-methionine decarboxylase 1 (SAMDC1)	Zhang et al., 2011
Tomato golden mosaic mosaic virus (TGMV); Cabbage leaf curl virus (CaLCuV) and Indian cassava mosaic mosaic virus (strains: ICMV-Dha and ICMV-SG)	TGS suppression by inhibiting the H3K9 histone methyltransferase SUVH4/KYP	Castillo-González et al., 2015; Sun et al., 2015
Beet curly top virus (BCTV)	Creation of a cellular environment permissive to DNA replication	Caracuel et al., 2012; Lozano-Duran et al., 2012
by a curtovirus creates a cellular environment permissive to DNA replication, but this function is not shared by the protein encoded by the position homologue in begomoviruses (Caracuel et al., 2012; Lozano-Duran et al., 2012) (Table 1).

The functions of the geminivirus-encoded C4/AC4 could be at least as varied in different species as those of C2/AC2. Several independent functions have been ascribed to C4/AC4 to date (e.g., Piroux et al., 2007; Teng et al., 2010; Luna et al., 2012; Sunitha et al., 2013; Ismayil et al., 2018; Li et al., 2018; Mei et al., 2018, 2020; Rosas-Diaz et al., 2018), and transgenic Arabidopsis thaliana plants expressing C4/AC4 from different geminiviruses display distinct developmental phenotypes (Mills-Lujan and Deom, 2010; Luna et al., 2012). Perhaps even more importantly, the C4/AC4 proteins encoded by different geminivirus species can have non-perfectly overlapping subcellular localizations, depending on specific targeting signals, namely acylation sites and a chloroplast transit peptide (e.g., Fondong et al., 2007; Carluccio et al., 2018; Mei et al., 2018; Rosas-Diaz et al., 2018; Zhan et al., 2018; Medina-Puche et al., 2019) (Figure 1B). These differences in subcellular distribution of different C4/AC4 proteins, which can be found associated to membranes, in the cytoplasm, in the nucleus, or in chloroplasts, will in all likelihood have a strong impact on their functionality during infection. Interestingly, C4 is seemingly under positive selection, in stark contrast to other geminiviral proteins (Sanz et al., 1999; Melgarejo et al., 2013; Yang et al., 2014).

In summary, a growing body of experimental data supports the idea that, although positional homologs have a common origin and frequently share functions, this functional overlap is not necessarily complete, since novel roles will have most likely been acquired during evolution. At the same time, not all geminiviral ORFs have positional counterparts (e.g., those in the DNA-B of bipartite geminiviruses), and therefore the essential virulence functions provided by the proteins they encode must be fulfilled by other, non-homologous geminiviral proteins. Hence, caution must be taken when extrapolating functional information to positional homologs, and uncovering the roles of each geminivirus-encoded protein in individual species will in all cases require experimental assessment.

AUTHOR CONTRIBUTIONS

AL and RL-D conceived the idea and prepared the manuscript.

FUNDING

Work in the Lozano-Duran lab is supported by the Shanghai Center for Plant Stress Biology from the Chinese Academy of Sciences, the National Science Foundation China (NSFC grants 31671994 and 31870250), and the Chinese Academy of Sciences Strategic Pilot Science and Technology Special (B) funding (grant No. XDB27040206).

ACKNOWLEDGMENTS

The authors would like to thank Alberto P. Macho for critical reading of the manuscript, Laura Medina-Puche for her invaluable help in the preparation of Figure 1B, and Eduardo R. Bejarano, the authors’ PhD supervisor, for nurturing their critical thinking abilities in their scientific infancy.

REFERENCES

Amin, I., Hussain, K., Akbergenov, R., Yadav, J. S., Qazi, J., Mansoor, S., et al. (2011). Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betatasseltite complex. *Mol. Plant Microbe. Interact.* 24, 973–983. doi: 10.1094/MPMI-01-11-0001

Baljii, S., Sunter, J., and Sunter, G. (2007). Transcriptional analysis of complementary sense genes of *Spinach* curly top virus and functional role of C2 in pathogenesis. *Mol. Plant Microbe. Interact.* 20, 194–206. doi: 10.1094/MPMI-20-2-0194

Bar-Ziv, A., Levy, Y., Citovsky, V., and Gafni, Y. (2015). The Tomato Yellow Leaf Curl Virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. *Biochem. Biophys. Res. Commun.* 460, 525–529. doi: 10.1016/j.bbrc.2015.03.063

Buchmann, R. C., Asad, S., Wolf, J. N., Mohannath, G., and Bisaro, D. M. (2009). Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. *J. Virol.* 83, 5005–5013. doi: 10.1128/jvi.01771-08

Carluccio, Z., Lozano-Durán, R., Huguet, S., Arroyo-Mateos, M., Rodríguez-Negrete, E. A., and Bejarano, E. R. (2012). C2 from Burt curly top virus promotes a cell environment suitable for efficient replication of geminiviruses, providing a novel mechanism of viral synergism. *New Phytol.* 194, 846–858. doi: 10.1111/j.1469-8137.2012.0 4800.x

Carluccio, A. V., Prigigallo, L. M., Rosas-Diaz, T., Lozano-Duran, R., and Stavolone, L. (2018). S-acylation mediates mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression. *PLoS Pathog.* 14:e1007207. doi: 10.1371/journal.ppat.1007207

Castillo-González, C., Liu, X., Huang, C., Zhao, C., Ma, Z., Hu, T., et al. (2015). Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUV4/KYP to counter host defense. *Elife* 4:e06671. doi: 10.7554/eLife.06671

Fondong, V. N., Reddy, R. V. C., Lu, C., Hankoua, B., Felton, C., Czymmek, K., et al. (2007). The consensus N-myristoylation motif of a geminivirus AC4 protein is required for membrane binding and pathogenicity. *Mol. Plant Microbe. Interact.* 20, 380–391. doi: 10.1094/MPMI-20-4-0380

Hanley-Bowdoin, L., Bejarano, E. R., Robertson, D., and Mansoor, S. (2013). Geminiviruses: masters at redirecting and reprogramming plant processes. *Nat. Rev. Microbiol.* 11, 777–788. doi: 10.1038/nrmicro3117

Hao, L., Wang, H., Sunter, G., and Bisaro, D. M. (2003). Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. *Plant Cell.* 15, 1034–1048. doi: 10.1105/tpc.009530

Ismayil, A., Haxim, Y., Wang, Y., Li, H., Qian, L., Han, T., et al. (2018). Cotton leaf curl multivirion C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. *PLoS Pathog.* 14:e1007282. doi: 10.1371/journal.ppat.1007282

Jackel, J. N., Buchmann, R. C., Singhal, U., and Bisaro, D. M. (2015). Analysis of geminivirus AL2 and L2 proteins reveals a novel AL2 silencing suppressor activity. *J. Virol.* 89, 3176–3187. doi: 10.1128/jvi.02625-14

Kushwaha, N. K., Bhardwaj, M., and Chakraborty, S. (2017). The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. *PLoS Pathog.* 13:e1006587. doi: 10.1371/journal.ppat.10 06587

Li, H., Zeng, R., Chen, Z., Liu, X., Cao, Z., Xie, Q., et al. (2018). S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway
in symptom determination. J. Exp. Bot. 69, 4459–4468. doi: 10.1093/jxb/ery228
Liu, Y., Jin, W., Wang, L., and Wang, X. (2014). Replication-associated proteins encoded by Wheat dwarf virus act as RNA silencing suppressors. Virus Res. 190, 34–39. doi: 10.1016/j.virusres.2014.06.014
Lozano-Durán, R., Caracuel, Z., and Bejarano, E. R. (2012). C2 from beet curly top virus meddles with the cell cycle: a novel function for an old pathogenicity factor. Plant Signal. Behav. 7, 1705–1708. doi: 10.4161/psb.21200
Luna, A. P., Morilla, G., Voinnet, O., and Bejarano, E. R. (2012). Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. Mol. Plant. Microbe. Interact. 25, 1294–1306. doi: 10.1094/MPMI-04-12-0094-R
Luna, A. P., Rodríguez-Negrete, E. A., Morilla, G., Wang, L., Lozano-Durán, R., Castillo, A. G., et al. (2017). V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. J. Gen. Virol. 98, 2607–2614. doi: 10.1099/jgv.0.000933
Medina-Puche, L., Tan, H., Dogra, V., Wu, M., Rosas-Diaz, T., Wang, L., et al. (2019). A novel pathway linking plasma membrane and chloroplasts is co-opted by pathogens to suppress salicylic acid-dependent defenses. bioRxiv 837955. doi: 10.1101/837955
Mei, Y., Ma, Z., Wang, Y., and Zhou, X. (2020). Geminivirus C4 antagonsizes the HIR1-mediated hypersensitive response by inhibiting the HIR1 self-interaction and promoting degradation of the protein. New PhytoL 225, 1311–1326. doi: 10.1111/nph.16208
Mei, Y., Wang, Y., Hu, T., Yang, X., Lozano-Duran, R., Sunter, G., et al. (2018). Nucleopolytropic shuttling of geminivirus C4 protein mediated by phosphorylation and myristoylation is critical for viral pathogenicity. Mol. Plant 11, 1466–1481. doi: 10.1016/j.molp.2018.10.004
Melgarejo, T. A., Kon, T., Rojas, M. R., Paz-Carrasco, L., Zerbini, F. M., and Gilbertson, R. L. (2013). Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J. Virol. 87, 5397–5413. doi: 10.1128/JVI.00234-13
Mills-Lujan, K., and Deom, C. M. (2010). Geminivirus C4 protein alters arabidopsis development. Protoplasma 239, 95–110. doi: 10.1007/s00709-009-0086-z
Mubin, M., Briddon, R. W., and Mansoor, S. (2019). The V2 protein encoded by a monopartite begomovirus is a suppressor of both post-transcriptional and transcriptional gene silencing activity. Gene 686, 43–48. doi: 10.1016/j.gene.2018.11.002
Piroux, N., Saunders, K., Page, A., and Stanley, J. (2007). Geminivirus AL2 protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. J. Gen. Virol. 88, 4752–4761. doi: 10.1099/vir.0.09183-0
Ruhel, R., and Chakraborty, S. (2019). Multifunctional roles of geminivirus encoded replication initiator protein. VirusDisease 30, 66–73. doi: 10.1007/s13337-018-0458-0
Sanz, A. I., Fraile, A., Gallego, J. M., Malpica, J. M., and Garcia-Arenal, F. (1999). Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J. Mol. Evol. 9, 672–81. doi: 10.1007/PL00006588
Sharma, P., and Ikegami, M. (2010). Tomato leaf curl virus V2 protein is a determinant of virulence, hypersensitive response and suppression of posttranscriptional gene silencing. Virusology 396, 85–93. doi: 10.1016/j.viro.2009.10.012
Sun, Y.-W., Tee, C.-S., Ma, Y.-H., Wang, G., Yao, X.-M., and Ye, J. (2015). Attenuation of Henne Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus. Sci. Rep. 5:16476. doi: 10.1038/srep16476
Sunitha, S., Shanmugapriya, G., Balamani, V., and Veluthambi, K. (2013). Mungbean yellow mosaic virus (MYMV) AC4 suppresses post-transcriptional silencing and an AC4 hairpin RNA gene reduces MYMV DNA accumulation in transgenic tobacco. Viruses Genes 46, 496–504. doi: 10.1128/JVI.00036-18
Wang, H., Buckley, K. J., Yang, X., Buchmann, R. C., and Bisaro, D. M. (2005). Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418. doi: 10.1128/JVI.79.12.7410-7418.2005
Wang, H., Hao, L., Shung, C.-Y., Sunter, G., and Bisaro, D. M. (2003). Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15, 3020–3032. doi: 10.1105/tpc.015180
Yang, X.-L., Zhou, M.-N., Qian, Y.-J., Xie, Y., and Zhou, X. (2018). Identification of the potential virulence factors and RNA silencing suppressors of mulberry mosaic dwarf-associated geminivirus. Virus Genes 10:472. doi: 10.3390/v10090472
Yang, X., Wang, L., Li, F., Yang, Q., and Zhou, X. (2016). “Research Advances in Geminiviruses,” in Current Research Topics in Plant Virology, eds A. Wang and X. Zhou (Cham: Springer International Publishing), 251–269. doi: 10.1007/978-3-319-32919-2_11
Yang, X.-L., Zhou, M.-N., Qian, Y.-J., Xie, Y., and Zhou, X. (2014). Molecular variability and evolution of a natural population of Tomato yellow leaf curl virus in Shanghali, China. J. Zhejiang Univ. Sci. B 15, 133–142. doi: 10.1631/jzus.B1300110
Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., et al. (2017). ICTV virus taxonomy profile: geminiviridae. J. Gen. Virol. 98, 131–133. doi: 10.1099/jgv.0.000738
Zhan, B., Zhao, W., Li, S., Yang, X., and Zhou, X. (2018). Functional scanning of apple geminivirus proteins as symptom determinants and suppressors of post-transcriptional gene silencing. Viruses 10:488. doi: 10.3390/v10090488
Zhang, Z., Chen, H., Huang, X., Xia, R., Zhao, Q., Lai, J., et al. (2011). BSCTV C2 attenuates the degradation of SAMDC1 to Suppress DNA
methylolation-mediated gene silencing in Arabidopsis. *Plant Cell* 23, 273–288. doi: 10.1105/tpc.110.081695
Zhao, L., Rosario, K., Breitbart, M., and Duffy, S. (2019). Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. *Adv. Virus Res.* 103, 71–133. doi: 10.1016/bs.aivir.2018.10.001
Zhou, X. (2013). Advances in understanding begomovirus satellites. *Annu. Rev. Phytopathol.* 51, 357–381. doi: 10.1146/annurev-phyto-082712-102234
Zrachya, A., Glick, E., Levy, Y., Arazi, T., Citovsky, V., and Gafni, Y. (2007). Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. *Virology* 358, 159–165. doi: 10.1016/j.virol.2006.08.016

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Luna and Lozano-Durán. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.