Latest Results from T2K and Hyper-Kamiokande Perspectives

To cite this article: Francesca Di Lodovico 2014 J. Phys.: Conf. Ser. 556 012061

View the article online for updates and enhancements.
Latest Results from T2K and Hyper-Kamiokande Perspectives

Francesca Di Lodovico 1
Queen Mary, University of London
E-mail: f.di.lodovico@qmul.ac.uk

Abstract. We present a review of the latest results on the oscillation mixing parameters obtained by the T2K collaboration and foreseen for the Hyper-Kamiokande experiment by the Hyper-Kamiokande Working Group.

1. Introduction
Neutrino oscillations are governed by the 3×3 Pontecorvo-Maki-Nakagawa-Sakata [1], [2] mixing matrix and parameterized by two mass-squared differences, Δm_{21}^2 and Δm_{32}^2; three mixing angles, θ_{12}, θ_{23}, and θ_{13}; and a complex CP-violating phase, δ_{CP}. In recent years, the mass-squared differences and the mixing angles have all been measured to be non-zero [3]. All the parameters except for δ_{CP}, the θ_{23} octant (maximal or non-maximal) and the mass hierarchy have been previously measured as summarized in Reference [3]. The mass hierarchy, MH, is defined normal mass hierarchy (NH) if $\Delta m_{31}^2 > 0$ and inverted mass hierarchy (IH) if $\Delta m_{31}^2 < 0$.

Both the T2K [4] and Hyper-Kamiokande (Hyper-K) [5] experiments aim to measure θ_{23} and $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ precisely via ν_μ disappearance. The T2K and Hyper-K experiments can also measure ν_μ to ν_e appearance that is sensitive to θ_{13} and can explore δ_{CP}, especially through the CP-odd term, in the oscillation probability equation. Hyper-K is specifically designed to measure the CP violation in the neutrino sector, thanks to the increased beam power with respect to T2K and a much larger far detector.

In proceeding, the latest results from T2K and the foreseen sensitivity of Hyper-K for the measurement of the oscillation parameters is presented.

2. The T2K Experiment
An intense and high purity ν_μ beam is produced at J-PARC by colliding a 30 GeV proton beam with a graphite target, then focusing the resulting charged hadrons by magnetic horns prior to decay into neutrinos. The far detector, Super-Kamiokande (SK), is situated 2.5° off-axis from the neutrino beam resulting in a narrow-band energy spectrum peaked at 0.6 GeV, which maximizes the ν_e appearance probability at a baseline of $L = 295$ km and minimizes high energy backgrounds. This baseline corresponds to a matter effect correction of $|x| \approx 5\%$ [6].

The near detector complex, 280 m from the average neutrino production point, consists of an on-axis (INGRID) detector to constrain the beam direction and an off-axis (ND280) detector to constrain the neutrino flux and cross sections.

1 Partially supported by the grant ERC-207282.
The flux prediction is based on simulations tuned and constrained by hadron production data from the NA61/SHINE experiment and in-situ proton beam monitoring. The NEUT simulation package is used for the neutrino interaction model, with prior constraints based on external neutrino, pion and nucleon scattering cross section measurements.

The SK analysis uses a single-ring sample, which enhances charged current (CC) quasi-elastic (QE) events, separated into μ-like (νμ) and e-like (νe) sub-samples. The ND280 analysis selects charged current (CC) νμ interactions and separates the sample based on the number of reconstructed pions and decay electrons: CC0π, CC1π and CC Other. These topologies provide a strong constraint on the flux and interaction model governing CCQE scattering and resonant pion production, the signal and main background to the SK analysis, respectively. The reduction in the uncertainty on the SK predicted event rates due to the ND280 data is shown in Table 1. The SK and ND280 detector errors are constrained by calibration data and control samples such as cosmic rays and atmospheric neutrinos. More details of the SK and ND280 analyses can be found in previous T2K publications e.g. [7], [8] and the references therein.

Table 1. Summary of the effect of the systematic errors on the SK νe and νμ candidate total event rates. The prior uncertainties in () brackets do not include the ND280 data.

Systematic Error Source	Relative Uncertainty (%)	νμ Candidates	νe Candidates
Flux & Xsec. ND280 Constrained (Prior)	2.7 (21.7)	3.1 (26.0)	
Xsec. ND280 Independent	5.0	4.7	
Pion Hadronic Interactions	3.5	2.3	
SK Detector	3.6	2.9	
Total ND280 Constrained (Prior)	7.6 (23.4)	6.8 (26.8)	

We estimate oscillation parameters using an unbinned maximum likelihood fit to the SK spectrum for the parameters sin²(θ23) and either Δm²23 or Δm²31 for the normal and inverted mass hierarchies respectively, and all 45 systematic parameters. The fit uses 73 unequal-width energy bins, and interpolates the spectrum between bins. Oscillation probabilities are calculated using the full three-flavor oscillation framework. Matter effects are included with an Earth density of ρ = 2.6 g/cm³ [6], δCP is unconstrained in the range [−π, π], and other oscillation parameters are fit with constraints sin²(θ13) = 0.0251 ± 0.0035, sin²(θ12) = 0.312 ± 0.016, and Δm²21 = (7.50 ± 0.20) × 10⁻³ eV²/c⁴ [3]. Two-dimensional confidence regions in the oscillation parameters are constructed using the Feldman-Cousins method [9], with systematics incorporated using the Cousins-Highland method [10]. Figure 1 shows 68% and 90% confidence regions for the oscillation parameters for both normal and inverted hierarchies.

We calculate one-dimensional (1D) limits using a new method inspired by Feldman-Cousins [9] and Cousins-Highland [10] that marginalizes over the second oscillation parameter. The 1D 68% confidence intervals are sin²(θ23) = 0.514±0.055 (0.511 ± 0.055) and Δm²23 = 2.51 ± 0.10 (Δm²31 = 2.48 ± 0.10) × 10⁻³ eV²/c⁴ for the NH (IH). The best fit corresponds to the maximal possible disappearance probability for the three-flavor formula.

To measure δCP, we use a frequentist-based analysis. The best fits for the oscillation parameters after minimizing over all parameters are shown in Table 2 for the NH and IH assumptions. The errors are based on the 1D constant-Δχ² profile for each parameter. Allowed intervals for δCP with the reactor constraint are shown in Figure 2 for the frequentist-based analysis including a Feldman-Cousins (FC) critical Δχ² correction (Δχ² c) and the Bayesian analysis using the posterior probability and Confidence Intervals. δCP ≈ −π/2 is preferred since the T2K data alone prefers a larger θ13 compared to the reactor data.

The errors are based on the 1D constant-Δχ² profile for each parameter.
Figure 1. Contours comparing T2K Run 1-4 result with Super-K [11] and MINOS [12] for the Normal (Inverted) Hierarchy in the left (right) plot. The Super-K is a 3-flavor analysis of the atmospheric neutrino data using SK Runs I-IV. The MINOS result is a 3-flavor analysis using both of their ν_μ-disappearance and ν_e-appearance beam neutrino samples along with their atmospheric neutrino sample. For the MINOS contour, both the normal and inverted hierarchy contours are made with respect to a common minimum that is located in the inverted hierarchy parameter space.

Table 2. Best-fits and 1D constant-$\Delta \chi^2$ 68% confidence intervals (errors) for the oscillation parameters assuming each MH with and without the reactor constraint. Δm^2_{32} (Δm^2_{13}) is used for the NH (IH) assumption. The errors are not shown for δ_{CP} in the T2K-only case since there is no strong constraint. The errors for the other parameters in the reactor-constrained case are not yet calculated and will be shown in a future publication, while the exclusion region for δ_{CP} is shown in Figure 2.

| MH | $|\Delta m^2_{32,13}| \times 10^{-3} \text{ eV}^2|$ | $\sin^2 \theta_{23}$ | $\sin^2 \theta_{13}$ | δ_{CP} (rad) |
|---------|---------------------------------|----------------|----------------|-----------------|
| T2K-only | | | | |
| NH | $2.51^{+0.11}_{-0.12}$ | $0.524^{+0.011}_{-0.010}$ | $0.042^{+0.015}_{-0.012}$ | 1.9 |
| IH | 2.49 ± 0.12 | $0.523^{+0.010}_{-0.011}$ | $0.049^{+0.014}_{-0.011}$ | 1.0 |
| Reactor-constrained | | | | |
| NH | 2.51 | 0.527 | 0.0248 | -1.55 |
| IH | 2.48 | 0.533 | 0.0252 | -1.56 |

Figure 2. Left: The $\Delta \chi^2$ profile for δ_{CP}, showing the 90% CL regions based on the FC $\Delta \chi^2$ for NH and IH. Right: The posterior probability and 68% and 90% Confidence Intervals for δ_{CP}, marginalized over all the other parameters including the MH with priors $\pi(\text{NH}) = \pi(\text{IH}) = 0.5$.
Table 3. The expected number of ν_e and ν_μ candidate events for the appearance and disappearance final states, respectively. NH, $\sin^2 2\theta_{13} = 0.1$ and $\delta_{CP} = 0$ are assumed. Background is categorized by the flavor before oscillation.

Appearance	$\nu_\mu \rightarrow \nu_e$	$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$	Total
ν mode	3016	28	1172
$\bar{\nu}$ mode	396	2110	13397

Disappearance	$\nu_\mu \rightarrow \nu_\mu$	$\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$	Total
ν mode	17225	1088	19372
$\bar{\nu}$ mode	10066	15597	26964

3. The Hyper-Kamiokande Experiment
The Hyper-Kamiokande experiment [5] is the next generation flagship experiment for the study of neutrino oscillations, nucleon decays, and astrophysical neutrinos. The detector is a third generation underground water Cherenkov (WC) detector situated in Kamioka, Japan. It consists of a 1 million tonne water target which is about 20 times larger than that of the existing Super-Kamiokande detector. It will serve as the far detector for a long baseline neutrino oscillation experiment planned for the upgraded J-PARC beam. It will also serve as a detector capable of observing proton decays, atmospheric neutrinos, and neutrinos from astronomical origins enabling measurements that far exceed the current world best measurements. Hyper-K has a sensitivity to the mass hierarchy through the atmospheric neutrino measurements and will be able to make a definitive measurement. A recent update of the previous sensitivity studies presented in 2011 [5] is based on the latest value of θ_{13} (it was not known at that time) and more generally the latest knowledge of the oscillation parameters. It uses a framework for the oscillation analysis developed by T2K and reported in [13], and the latest systematic errors based on the experience and prospects of the T2K experiment. The document, that contains an update on the R&D of the experiment as well, was submitted in April 2014 to the J-PARC PAC. An integrated beam power of 7.5 MW × 10^7 sec is assumed in this study. It corresponds to 1.56×10^{22} protons on target (POT) with 30 GeV J-PARC beam. The ratio of neutrino and anti-neutrino running time is assumed to be 1:3. The oscillation parameters used for the sensitivity analysis are: $\sin^2 2\theta_{13}$ (0.1, fitted), δ_{CP} (0, fitted), $\sin^2 \theta_{23}$ (0.5, fitted), Δm_{32}^2 (2.4 × 10^{-3} eV^2, fitted), mass hierarchy (normal, fitted), $\sin^2 2\theta_{12}$ (0.8704, fixed) and Δm_{12}^2 (7.6 × 10^{-5} eV^2, fixed), where in parenthesis the nominal values used in the fits and the treatment used in the fits are indicated. The criteria to select ν_e and ν_μ candidate events are based on those developed for and established with the SK and T2K experiments, and the corresponding number of expected events is shown in Table 3. Figure 3 shows the expected significance to exclude $\sin \delta_{CP} = 0$ (the CP conserved case). The significance is calculated as $\sqrt{\Delta \chi^2}$, where $\Delta \chi^2$ is the difference of χ^2 for the trial value of δ_{CP} and for $\delta_{CP} = 0^\circ$ or 180° (the smaller value of difference is taken). We have also studied the case with a reactor constraint but the result changes only slightly. Figure 3 (left) shows the fraction of δ_{CP} for which $\sin \delta_{CP} = 0$ is excluded with 3σ and 5σ of significance as a function of the integrated beam power. The normal mass hierarchy is assumed. The results for the inverted hierarchy is almost the same. CP violation in the lepton sector can be observed with 3(5)σ significance for 76(58)% of the possible values of δ_{CP}.

Figure 3 (right) shows the 1σ uncertainty of δ_{CP} as a function of the integrated beam power.
Figure 3. Upper row: expected significance to exclude $\sin \delta_{CP} = 0$. Left: normal hierarchy case. Right: inverted hierarchy case. Bottom row: fraction of δ_{CP} for which $\sin \delta_{CP} = 0$ can be excluded with 3σ (red solid line) and 5σ (blue dashed line) significance as a function of the integrated beam power (NH). Right plot: expected 1σ uncertainty of δ_{CP} as a function of integrated beam power.

Figure 4. 90\% CL allowed regions in the $\sin^2 \theta_{23} - \Delta m^2_{32}$ plane. The true values are $\sin^2 \theta_{23} = 0.45$ and $\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2$. Effect of systematic uncertainties is included. Left plot: Hyper-K only. Right plot: With reactor constraint.

With 7.5 MW\times10^7\text{ sec} of exposure (1.56\times10^{22} \text{ POT}), the value of δ_{CP} can be determined to better than 19$^\circ$ for all values of δ_{CP}.

The use of ν_μ sample in addition to ν_e enables us to also measure $\sin^2 \theta_{23}$ and Δm^2_{32} and Hyper-K will be able to provide a precise measurement of $\sin^2 \theta_{23}$ and Δm^2_{32}. Figure 4 shows the 90\% CL allowed regions on the $\sin^2 \theta_{23} - \Delta m^2_{32}$ plane, for the true values of $\sin^2 \theta_{23} = 0.45$ and $\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2$. With a constraint on $\sin^2 2\theta_{13}$ from the reactor experiments, the
Figure 5. Atmospheric neutrino sensitivities for a ten year exposure of Hyper-K assuming the mass hierarchy is normal. Left: the $\Delta \chi^2$ discrimination of the wrong hierarchy hypothesis as a function of the assumed true value of $\sin^2 \theta_{23}$. Right: the discrimination between the wrong octant for each value of $\sin^2 \theta_{23}$. The uncertainty from δ_{CP} is given by the thickness of the band.

octant degeneracy is resolved and θ_{23} can be precisely measured.

Atmospheric neutrinos can provide an independent and complementary information to the accelerator beam program on the study of neutrino oscillation. Assuming a 10 year exposure, Hyper-K’s sensitivity to the mass hierarchy and the octant of θ_{23} by atmospheric neutrino data are shown in Figure 5. Depending upon the true value of θ_{23} the sensitivity changes considerably, but for all currently allowed values of this parameter the mass hierarchy sensitivity exceeds 3σ independent of the assumed hierarchy. If θ_{23} is non-maximal, the atmospheric neutrino data can be used to discriminate the octant at 3σ if $\sin^2 2\theta_{23} < 0.99$.

4. Conclusion and Outlook
The first T2K combined ν_{μ} disappearance and ν_e appearance analysis based on 0.657×10^{21} POT is presented. T2K is producing the leading measurement on θ_{23} and, combined with reactor neutrino data, non-trivial exclusion intervals in δ_{CP}. Hyper-Kamiokande is the next generation long baseline neutrino experiments. It will be able to measure δ_{CP} with $3(5) \sigma$ significance for $76(58)\%$ of the possible values of δ_{CP} to better than 19° for all values of δ_{CP}.

References
[1] Maki Z, Nakagawa M and S. Sakata 1962 Prog. Theor. Phys. 28 870.
[2] Pontecorvo B 1968 Sov. Phys. JETP 26 984.
[3] Beringer J et al. (Particle Data Group) 2012 Phys. Rev. D 86 010001.
[4] Abe K et al. (T2K Collaboration) 2011 Nucl. Instrum. Methods A 659 106.
[5] Abe K et al. (Hyper-Kamiokande Working Group) 2011 arXiv:1109.3262 [hep-ex].
[6] Hagiwara K, Okamura N and Senda K 2011 JHEP 1109 082.
[7] Abe K et al. (T2K Collaboration) 2014 Phys. Rev. Lett. 112.
[8] Abe K et al. T2K Collaboration) 2014 Phys. Rev. Lett. 112 181801.
[9] Feldman G and Cousins R D 1998 Phys. Rev. D 57 3873.
[10] R. D. Cousins and V. Highland, Nucl. Instrum. Methods A 320, 331 (1992).
[11] Himmel A 2014 AIP Conf. Proc. 1604 345.
[12] Adamson P et al. (MINOS Collaboration) 2014 arXiv:1403.0867 [hep-ex].
[13] Abe K et al. (T2K Collaboration) 2014 arXiv:1409.7469 [hep-ex].