SSDL: Self-Supervised Domain Learning for Improved Face Recognition
Samadhi Wickrama Arachchilage & Ebroul Izquierdo
Queen Mary University of London

Problem Statement

Face recognition in unconstrained environments is challenging due to variations in illumination, quality of sensing, motion blur and etc. An individual's face appearance can vary drastically under different conditions creating a gap between train (source) and varying test (target) data. To this end, we propose a self-supervised domain learning (SSDL) scheme that trains on triplets mined from unlabelled data.

Challenges:
1. How to generate reliable triplets from unlabelled data?
2. How to address data scarcity in network training?

Performance Evaluation

System	YTC (%)	System	YTF (%)
MMDML	78.5	DeepFace-single	91.40
DRM-PWV	72.55	Sohn et al. (UDA)	95.38
Fast FR	72.1	FaceNet	95.12
GJRNPa	81.3	NAN	95.72
ClusterFace	91.06	TBE-CNN	94.96
Baseline	88.43	Baseline	93.92
SSDL cycle 1	94.75	SSDL cycle 1	95.01
SSDL cycle 2	94.75	SSDL cycle 2	95.66

JBJ-A verification (TAR)

System	FAR=0.001	FAR=0.01	FAR=0.1
DCNNmanual-metric (*)	-	78.7	94.7
DCNN-fusion (*)	-	83.8	97.8
NAN	88.1	94.1	97.8
Template	83.6	93.9	97.9
Triplet Emb (BTAS16) (*)	81.3	91	96.4
Contrastive	63.91	84.01	95.31
Sohn et al. (UDA)	64.9	86.4	97.0
ClusterFace	86.60	94.23	98.30
Baseline	63.84	84.82	96.24
SSDL cycle 1	77.98	92.09	97.83
SSDL cycle 2	88.77	94.73	98.11

Table: System evaluation on benchmarks

System	V2-V1	V3-V1	V3-V2	V1-V2	V1-V3	V2-V3
Baseline	91.07	87.49	84.79	91.84	82.27	79.44
SSDL cycle 1	90.14	92.31	94.44	87.48	87.0	91.06
SSDL cycle 2	96.41	96.01	95.82	93.07	95.17	

Discussion

- SSDL adapts to domain data in all four benchmarks.
- SSDL cycle 2 achieves better adaptation than SSDL cycle 1.
- SSDL achieves highly competitive results compared to state-of-the-art outperforming systems that perform supervised fine-tuning on benchmark specific train data.

Acknowledgements

The research activities leading to this publication has been partly funded by the European Union Horizon 2020 Research and Innovation program under grant agreement No. 786629 (MAGNETO RIA project).

Figure: Image sources: Train data: VGGFace2 train database, Test data: YTF benchmark (top), IJB-A benchmark (middle) and YTC benchmark (bottom).

SSDL cycle
- Hierarchical clustering algorithm to group unlabelled domain data into identity clusters
- Select the critical training samples through strict margins to avoid overfitting.
- Once trained repeat SSDL cycle for better clustering result and more informative triplets.