Phosphoinositide-specific phospholipase C (PI-PLC) in health and disease

Lucio Cocco¹,a,*; Matilde Y. Follo¹,a; Lucia Manzoli¹; Pann-Ghill Suh²

¹Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy; ²Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea

¹These authors equally contributed to this work

*Corresponding Author: Dr. Lucio Cocco, Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy. Phone: +39-0512091639; Fax: +39-051251735; Email: lucio.cocco@unibo.it

Running Title: PI-PLC isozymes in physiology and pathology

Abbreviations: PLC: Phospholipase C; PC-PLC: Phosphatidylcholine-specific phospholipase C; PI-PLC: Phosphoinositide-specific phospholipase C; PIP2: Phosphatidylinositol-4,5-bisphosphate; DAG: Diacylglycerol; IP3: Inositol-1,4,5-triphosphate; PKC: Protein kinase C; PH: Pleckstrin homology; TIM: Triose phosphate isomerase; PIP3: Phosphatidylinositol-3,4,5-trisphosphate, PI3K: Phosphoinositide 3-kinase; SH: Src homology; TRPC: Transient receptor potential cation channel; GPCRs: G-protein coupled receptors; RTK: Receptor tyrosine kinase; GAP: GTPase activating protein; MAPK: Mitogen-activated protein kinase; IPMK: Inositol polyphosphate multikinase; EGFR: Epidermal growth factor receptor; PDGFR: Platelet-derived growth factor receptor; LPA: Lipoprotein A; NLS: Nuclear localization sequence; NES: Nuclear export sequence; UTR: Untranslated region; MPN: Myeloproliferative neoplasm; HSCs: Hematopoietic stem cells; MDS: Myelodysplastic syndromes
Abstract

Phospholipases are widely occurring and can be found in several different organisms, including bacteria, yeast, plants, animals and viruses. Phospholipase C (PLC) is a class of phospholipases that cleaves phospholipids on the diacylglycerol side of the phosphodiester bond producing diacylglycerols and phosphomonoesters. Among PLCs, phosphoinositide-specific PLC (PI-PLC) constitute an important step in the inositide signalling pathways. The structures of PI-PLC isoymes show conserved domains as well as regulatory specific domains. This is important, as most PI-PLCs share a common mechanism, but each of them has a peculiar role and can have a specific cell distribution that is linked to a specific function. More importantly, the regulation of PLC isoymes is fundamental in health and disease, as there are several PLC-dependent molecular mechanisms that are associated with the activation or inhibition of important physiopathological processes. Moreover, PI-PLC alternative splicing variants can play important roles in complex signalling networks, not only in cancer but also in other diseases. That is why PI-PLC isoymes are now considered as important molecules that are essential for better understanding the molecular mechanisms underlying both physiology and pathogenesis, and are also potential molecular targets useful for the development of innovative therapeutic strategies.

Keywords: Phospholipase C, Signal transduction, Enzyme regulation, Phosphoinositides, Function, Disease
Introduction

Phospholipases are quite common enzymes that are present in a broad range of organisms, including bacteria, yeast, plants, animals and viruses. Phospholipase C (PLC) constitutes a class of enzymes that cleave phospholipids on the diacylglycerol side of the phosphodiester bond. In plants, a phosphatidylcholine-specific PLC (PC-PLC) has been recently identified that acts preferentially on phosphatidylcholine, even though it can also act upon other lipids, such as phosphatidyethanolamine, therefore giving rise to a class of non-specific PLCs (1, 2). PC-PLC isoforms are responsible for phosphatidylcholine hydrolysis producing phosphocholine and DAG, and they have been isolated but not yet cloned from mammalian sources. However, accruing evidence points to multiple implications of these enzymes in cell signaling through MAPK and oncogene-activated protein kinase pathways, as well as programmed cell death, activation of immune cells, and stem cell differentiation (3). On the other hand, phosphoinositide-specific phospholipase C (PI-PLC) enzymes utilize phosphoinositides as a specific substrate and their metabolism is implicated in a large series of signal transduction pathways.

This review is devoted to highlighting PI-PLC, that in mammals plays an important role in cell physiology and particularly in signal transduction pathways. Thirteen kinds of mammalian PI-PLCs are classified into six isotypes (β, γ, δ, ε, ζ, η), according to their structure. Here, we shall point at the molecular features, function, regulation and splicing variants of these enzymes, and discuss their role in disease.

Molecular features of PI-PLC

PI-PLC hydrolyzes PIP2 to produce DAG and IP3 (Fig. 1) which, in turn, activate PKC and induce the release of calcium ions from intracellular stores, respectively (4, 5). Since the first report of PI-PLC existence (6), 13 mammal PI-PLC isoforms have been identified and, at a molecular level, they can be divided into six subgroups: PI-PLC-β(1–4), γ(1,2), δ(1,3,4), ε, ζ and η (1,2). Interestingly, the structure of these PI-PLC isoforms show highly conserved domains as well as peculiar characteristics (Fig. 2). In fact, the X and Y domains are two highly conserved regions, whereas the C2 domain, the EF-hand motif and the PH domain are regulatory domains that are mingled in a specific manner in PI-PLC subtypes (7). Therefore,
each PI-PLC isozyme shows a unique combination of X-Y and regulatory domains, so that each PI-PLC isozyme can have a different regulation, function and tissue distribution (8).

The X and Y domains are usually located between the EF-hand motif and the C2 domain, and are composed of α-helices alternated to β-strands, with a structure that is similar to an incomplete TIM α/β-barrel (9).

Conversely, the PH domain, although being a membrane-phospholipid binding region along with the C2 domain, has other specific functions according to the different isozymes. For instance, in PI-PLCδ1, the PH domain binds PIP2 and contributes to the access of PI-PLCδ1 onto the membrane surface (10). On the other hand, the PH domain specifically binds the heterotrimeric Gβγ subunit in PI-PLCβ2 and PI-PLCβ3 isozymes (11), and mediates interactions with PIP3 in PI-PLCγ1, where it is required for inducing a PI3K-dependent translocation and activation (12). As for this latter, it is worthwhile to note that PI-PLCγ1 and PI-PLCγ2 isozymes contain an additional PH domain, which is split by two tandem SH2 and SH3 domains, in order to interact directly with the TRPC3 calcium channel, thereby providing a direct coupling mechanism between PI-PLCγ and agonist-induced calcium entry (13).

Finally, the C2 and EF-hand motifs are important for the regulation of calcium: the EF-hand motifs, in particular, are helix-turn-helix structural domains that bind calcium ions in order to enhance the PI-PLC enzymatic activity (14, 15).

As described above, the PI-PLC isozymes have peculiar molecular features, with common conserved domains and specific regulatory domains. Interestingly, among the PI-PLC isoenzymes, PI-PLCβ subtypes distinguish themselves also by the presence of an elongated C-terminus, consisting of about 450 residues, which contains many of the determinants for the interaction with Gq as well as for other functions, such as membrane binding and nuclear localization (16-18).

Function and regulation

The activation and regulation of PI-PLC isozymes differ in their subtype. For instance, PI-PLCβ enzymes are usually activated by GPCRs through several mechanisms, whilst PI-PLCγ subtypes are commonly activated by RTK, via SH2 domain-phospho-tyrosine interaction (8).
Indeed, the regulation of PI-PLCβ isozymes is peculiar. Most of them may have a high GAP activity, but not PI-PLCβ1, that can also be regulated by a distinct binding region to phosphatidic acid or is specifically activated by MAPK, therefore playing important roles in cell metabolism (19-23). Upon PI-PLCβ1 activation in the nucleus, IP3 generation occurs (Fig. 3). IP3 acts as a substrate for IPMK, which is located in the nucleus and gives rise to higher inositol phosphates (24).

Moreover, except for PI-PLCβ4, PI-PLCβ isozymes can also be activated by Gβγ dimers (25-28), and the relative sensitivity of PI-PLCβ isozymes to Gβγ subunits differs from that to Gqα subunits, with PI-PLCβ1 being the least sensitive to Gβγ (25, 26).

Although not fully understood, PI-PLCγ1 regulatory mechanisms involve polypeptide growth factor receptors that bind to RTKs, such as the EGFR and the PDGFR. Beside this, the SH2 domains of PI-PLCγ1 can also mediate the binding to auto-phosphorylated tyrosine residues within the intracellular region of the receptor (29). Moreover, it is remarkable that PI-PLCγ1 can also be activated downstream of a series of receptors that lack intrinsic tyrosine kinase activity, including the angiotensin II and bradykinin receptors, cytokine receptors and the T cell receptor (30-33). This is also the case for PI-PLCγ2, that can be activated downstream of immunoglobulin and adhesion receptors on immune cells, such as B-cells, platelets and mast cells, by non-receptor tyrosine kinases interacting with other membrane-localised molecular signalling pathways (34-36).

Interestingly, PI-PLCε isoenzymes can be activated by both GPCR and RTK systems, with distinct activation mechanisms (37). Indeed, several GPCR ligands, such as LPA, thrombin and endothelin, can activate PI-PLCε, but PI-PLCε also associates with Rap and translocates to the perinuclear area, where it interacts with activated RTKs (38).

As for PI-PLCδ1 and PI-PLCη1, they are activated via GPCR-mediated calcium mobilization. In particular, PI-PLCδ1 isozyme is one of the most sensitive enzymes to calcium, suggesting that its activity is directly regulated by calcium (39, 40), whereas PI-PLCη1 specifically acts as a calcium sensor during the formation and maintenance of the neuronal network in the postnatal brain (41). Moreover, both PI-PLCδ1 and PI-PLCη1 subtypes are involved in the positive feedback signal amplification of PI-PLC (39, 42). Indeed, the overall PI-PLC activity may be amplified and sustained by both intracellular calcium
mobilization and extracellular calcium entry, through either a negative or a positive feedback amplification of PI-PLC signaling (43-46).

All in all, it has been suggested that PI-PLCβ and PI-PLCγ isoenzymes (primary PI-PLCs) are primarily activated by extracellular stimuli. On the contrary, secondary PI-PLCs, such as PI-PLCε, are activated by Rho and Ras GTPases, whilst the activation of other secondary PI-PLCs (mainly PI-PLCδ1 and PI-PLCη1) might be enhanced by intracellular calcium mobilization, that amplifies the PI-PLCs activity. As for PI-PLCζ, its activation and nuclear translocation mechanisms remain unknown (Fig. 3).

Splicing variants of PI-PLC

Alternative splicing variants have been reported for several of PI-PLC isozymes, including human and rat PI-PLCβ1, human PI-PLCβ2, rat PI-PLCβ4, rat PI-PLCδ4, and human PI-PLCε (47-52).

Indeed, two splicing variants of the PI-PLCβ1 isozyme have been identified both in rat and mouse, and they differ in their C-terminal sequences (48). As for human PI-PLCβ1 gene, also in this case there are two alternative splicing variants, with PI-PLCβ1a containing putative NLS and NES regions and PI-PLCβ1b showing only a putative NLS. Therefore, these variants of PI-PLCβ1 may differ in their cellular localization, suggesting that the transit in and out of the nucleus is finely regulated, and possibly hinting at a different role for these two splicing variants (47).

Also human PI-PLCβ2 shows two splicing variants: PI-PLCβ2a and PI-PLCβ2b, differing in 15 amino acid residues at the C-terminal region, so that the second transcript variant results in a shorter protein (49, 53).

Interestingly, several alternative splicing variants of PI-PLCβ4 gene have been reported: two alternative splicing variants were identified from rat and bovine brain (50, 54), whilst the third splicing variant of rat PI-PLCβ4 has an additional 37 nucleotide exon at the C-terminal region (55). Also in humans there are three alternative splicing variants of PI-PLCβ4 gene, so that the variant 1 lacks an internal segment and has a longer and distinct C-terminus, the variant 2 lacks an alternate in-frame exon in the central coding region, and the variant 3 represents the longest transcript (55).
Altogether, all PI-PLCβ genes have at least two alternative splicing variants, which differ mostly in their C-terminal sequences and potentially play different roles in cellular processes.

Also human PI-PLCγ1 gene has two alternative splicing variants that differ in their C-terminal sequences, but in this case the precise function of the two alternative splicing variants is still unknown (56).

Alternative splicing variants of PI-PLCδ isozymes show several different patterns of splicing variants. Indeed, mouse PI-PLCδ1b differs from PI-PLCδ1a by 274 amino acid residues that extend from the catalytic Y domain to the stop sequence, which are replaced with 21 distinct amino acid residues. Moreover, mouse PI-PLCδ1b has a truncated catalytic Y domain, which implies that this variant may have no enzymatic activity. Also human PI-PLCδ1 gene has two splicing variants, and the second variant contains an alternate 5′-terminal exon that results in a shorter isoform and a different N-terminus, as compared with the wild-type sequence (57).

As for PI-PLCδ4 gene, only the mouse gene shows alternative splicing variants. Two splicing variants have been well characterized and seem to be functional, whereas the third showed no catalytic activity. In particular, the second variant is slightly different from the wild-type isoform in the 5′-UTR but includes an alternate in-frame exon in the coding region, thus resulting in a longer protein that, however, has the same N- and C-termini as compared with the wild-type isoform. As for the third isoform, it lacks the linker region between X and Y domains, and instead, contains 32 additional amino acids, so that this isoform shows no catalytic activity (58).

Three splicing variants of human PI-PLCε1 gene have been reported, with the second variant showing a different N-terminal region, and the third variant using an alternate in-frame splice site in the coding region that results in a shorter protein (52).

As for PI-PLCζ gene, in this case an alternative splicing variant, named s-PI-PLCζ, has been recently reported (59): structurally, it contains two internal stop codons at the N-terminus and lacks one and a half of the EF-hand motifs; functionally, this splicing variant does not affect calcium oscillations.

Finally, three splicing variants of PI-PLCη1 gene have been reported in both human and mouse (60), whereas five alternative splicing variants of PI-PLCη2 gene are reported in humans, and in mouse there are three of them (61).
PI-PLC in disease

Given their peculiar roles and their fine regulation in physiology, alterations affecting PI-PLC isozymes have been associated with several diseases, that can target different tissues and organs (62-65). For instance, PI-PLCβ1 plays an important role in brain function and is thus associated with brain disorders (66). In fact, it is highly expressed in the cerebral cortex, hippocampus, amygdala, lateral septum and olfactory bulb (67, 68), where it regulates both cortical development and synaptic plasticity by specifically modulating hippocampal muscarinic acetylcholine receptor signalling. Moreover, a PI-PLCβ1 gene deletion was observed in orbito-frontal cortex samples from human patients with schizophrenia and bipolar disorders (69-71), and patients with this disease also showed an abnormal expression pattern of PI-PLCβ1 in specific brain areas (66).

PI-PLCβ isozymes also participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems (72). In particular, loss of both PI-PLCβ2 and PI-PLCβ3 isozymes is associated with an impaired T-cell migration that is caused by an inability to increase the intracellular calcium. Interestingly, human T-cells from elderly people show a reduced expression of PI-PLCβ2, suggesting that a specific impairment of this enzyme in aged T lymphocytes might contribute to the immune suppression mechanisms in this group of people (72, 73). Moreover, PI-PLCβ2 down-regulation plays an important role in M1-M2 macrophage differentiation, whereas PI-PLCβ3 activity is essential for promoting macrophage survival, especially in atherosclerotic plaques, so that PI-PLCβ3 could be a potential specific molecular target for the treatment of atherosclerosis (74).

PI-PLCβ3 deficiency is also linked to the development of MPN in mice. In fact, aged PI-PLCβ3 null mice typically have increased numbers of HSCs and myeloid progenitors in bone marrow and spleen, and their HSCs show an increased proliferation and a reduced apoptosis that have been molecularly associated with Stat5 inhibition (75).

Within the hematological field, not only PI-PLCβ3, but also other PI-PLCβ isozymes have been demonstrated to play a role in the pathophysiology of hematologic diseases (76-79). Indeed, PI-PLCβ1 gene has been associated with MDS, not only because its lack is linked to MDS progression towards acute myeloid leukemia (80, 81), but also because its expression is regulated by epigenetic mechanisms (82-85).
Moreover, PI-PLCβ enzymes have also been implicated in leukemias, and in particular the molecular interaction between PI-PLCβ enzymes and G proteins, that induces PI-PLCβ to localize in the cytosol or at the nuclear level, has been demonstrated to be determined by the intervention of a binding partner, that is TRAX, i.e. a nuclease and part of the machinery involved in RNA interference processes (86).

Among the PI-PLC isozymes, PI-PLCγ is important because it can play a specific key role in cell migration and invasion, therefore contributing to carcinogenesis. Indeed, PI-PLCγ is an important enzyme that regulates cell metabolism, so that at first its molecular targeting has been considered as a possible new therapeutic strategy. However, it has been difficult to find specific PI-PLCγ inhibitors that can be effective in cancer treatment. That is why scientists are now trying to identify new specific interacting partners that could become new therapeutic targets for cancer therapy (87). On the other hand, other PI-PLC isozymes have also been demonstrated to play important roles in cancer. This is the case for PI-PLCe, that is specifically linked to tumor suppression (88, 89), mainly in colorectal cancer, where its reduction is associated with a more aggressive disease (90).

PI-PLC isozymes are not only associated with cancer, but their deregulation is also implicated in other diseases and disorders. Another important role for a PI-PLC isozyme has indeed been recently discovered in infertility, where PI-PLCζ, a sperm-specific protein, has been specifically connected with the molecular activation of oocytes following fertilisation (91). In fact, the earliest event subsequent to gamete fusion is the onset of a series of intracellular calcium oscillations within the oocyte, which modulate several molecular processes that are known as “oocyte activation”, and together, they represent a fundamental mechanism for the early embryonic development. Importantly, all of these processes are initiated and controlled by calcium release from ooplasmic sources during zigotic interphase in response to PI-PLCζ activity, via the IP3 pathway, thus activating nuclear transport receptors. That is why a correlation between certain types of male infertility and the aberrant expression, localization, structure and function of PI-PLCζ in human sperm has been determined. The potential therapeutic role of PI-PLCζ could therefore be linked to the identification of male patients that are deficient in PI-PLCζ, and for them an alternative therapeutic approach, based on assisted reproductive technology, could be useful for rescuing the impaired oocyte activation (92).
As for the other PI-PLC isozymes, PI-PLCδ enzymes are a peculiar example of enzymes playing several roles in different tissues and organs. Indeed, PI-PLCδ1 and PI-PLCδ3 share a high sequence homology, so that they can play redundant roles in various tissues. In fact, PI-PLCδ1 is required for the maintenance of homeostasis in skin and metabolic tissues, while PI-PLCδ3 specifically regulates microvilli formation in enterocytes and the radial migration of neurons in the cerebral cortex of the developing brain. Furthermore, it has been shown that the simultaneous loss of PI-PLCδ1 and PI-PLCδ3 in mice causes placental vascular defects, thus leading to embryonic lethality (93).

Conclusions

PI-PLC isozymes play essential roles in cell metabolism, by regulating calcium and other intracellular signalling pathways that are important for cell proliferation and differentiation. This means that these enzymes have the capability to influence normal and pathological conditions. This is particularly important, because the regulation of PI-PLCs or PI-PLC-dependent signalling pathways can be important for understanding both the normal cellular physiology or the pathogenesis of important diseases, possibly leading to the development of innovative therapeutic strategies or the comprehension of new molecular processes.
References

1. Nakamura, Y., K. Awai, T. Masuda, Y. Yoshioka, K. Takamiya, and H. Ohta. 2005. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280: 7469-7476.

2. Peters, C., M. Li, R. Narasimhan, M. Roth, R. Welti, and X. Wang. 2010. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22: 2642-2659.

3. Abalsamo, L., F. Spadaro, G. Bozzuto, L. Paris, S. Cecchetti, L. Lugini, E. Iorio, A. Molinari, C. Ramoni, and F. Podo. 2012. Inhibition of phosphatidylcholine-specific phospholipase C results in loss of mesenchymal traits in metastatic breast cancer cells. Breast Cancer Res 14: R50.

4. Poli, A., S. Mongiorgi, L. Cocco, and M. Y. Follo. 2014. Protein kinase C involvement in cell cycle modulation. Biochem Soc Trans 42: 1471-1476.

5. Follo, M. Y., L. Manzoli, A. Poli, J. A. McCubrey, and L. Cocco. 2015. PLC and PI3K/Akt/mTOR signalling in disease and cancer. Adv Biol Regul 57C: 10-16.

6. Hokin, L. E., and M. R. Hokin. 1953. The incorporation of 32P into the nucleotides of ribonucleic acid in pigeon pancreas slices. Biochim Biophys Acta 11: 591-592.

7. Yang, Y. R., M. Y. Follo, L. Cocco, and P. G. Suh. 2013. The physiological roles of primary phospholipase C. Adv Biol Regul 53: 232-241.

8. Rhee, S. G. 2001. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70: 281-312.

9. Essen, L. O., O. Perisic, R. Cheung, M. Katan, and R. L. Williams. 1996. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380: 595-602.

10. Paterson, H. F., J. W. Savopoulos, O. Perisic, R. Cheung, M. V. Ellis, R. L. Williams, and M. Katan. 1995. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem J 312 (Pt 3): 661-666.
11. Wang, T., L. Dowal, M. R. El-Maghrabi, M. Rebecchi, and S. Scarlata. 2000. The pleckstrin
homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic
core. *J Biol Chem* **275**: 7466-7469.

12. Falasca, M., S. K. Logan, V. P. Lehto, G. Baccante, M. A. Lemmon, and J. Schlessinger. 1998.
Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting.
EMBO J **17**: 414-422.

13. Wen, W., J. Yan, and M. Zhang. 2006. Structural characterization of the split pleckstrin homology
domain in phospholipase C-gamma1 and its interaction with TRPC3. *J Biol Chem* **281**: 12060-12068.

14. Nakashima, S., Y. Banno, T. Watanabe, Y. Nakamura, T. Mizutani, H. Sakai, Y. Zhao, Y. Sugimoto,
and Y. Nozawa. 1995. Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta
1: effects on its activity. *Biochem Biophys Res Commun* **211**: 365-369.

15. Otterhag, L., M. Sommarin, and C. Pical. 2001. N-terminal EF-hand-like domain is required for
phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana. *FEBS Lett* **497**: 165-170.

16. Rhee, S. G. 2013. Reflections on the days of phospholipase C. *Adv Biol Regul* **53**: 223-231.

17. Rebecchi, M. J., and S. N. Pentyala. 2000. Structure, function, and control of phosphoinositide-
specific phospholipase C. *Physiol Rev* **80**: 1291-1335.

18. Drin, G., and S. Scarlata. 2007. Stimulation of phospholipase Cbeta by membrane interactions,
interdomain movement, and G protein binding--how many ways can you activate an enzyme? *Cell Signal* **19**: 1383-1392.

19. Ross, E. M., D. Mateu, A. V. Gomes, C. Arana, T. Tran, and I. Litosch. 2006. Structural
determinants for phosphatidic acid regulation of phospholipase C-beta1. *J Biol Chem* **281**: 33087-33094.

20. Cockcroft, S., and K. Garner. 2013. Potential role for phosphatidylinositol transfer protein (PITP)
family in lipid transfer during phospholipase C signalling. *Adv Biol Regul* **53**: 280-291.

21. Sanchez-Fernandez, G., S. Cabezudo, C. Garcia-Hoz, C. Beninca, A. M. Aragay, F. Mayor, Jr., and
C. Ribas. 2014. Galphaq signalling: the new and the old. *Cell Signal* **26**: 833-848.
22. Faenza, I., A. M. Billi, M. Y. Follo, R. Fiume, A. M. Martelli, L. Cocco, and L. Manzoli. 2005. Nuclear phospholipase C signaling through type 1 IGF receptor and its involvement in cell growth and differentiation. *Anticancer Res* **25**: 2039-2041.

23. Martelli, A. M., R. Fiume, I. Faenza, G. Tabellini, C. Evangelista, R. Bortul, M. Y. Follo, F. Fala, and L. Cocco. 2005. Nuclear phosphoinositide specific phospholipase C (PI-PLC)-beta 1: a central intermediary in nuclear lipid-dependent signal transduction. *Histol Histopathol* **20**: 1251-1260.

24. Blind, R. D. 2014. Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes. *Adv Biol Regul* **54**: 25-38.

25. Park, D., D. Y. Jhon, C. W. Lee, S. H. Ryu, and S. G. Rhee. 1993. Removal of the carboxyl-terminal region of phospholipase C-beta 1 by calpain abolishes activation by G alpha q. *J Biol Chem* **268**: 3710-3714.

26. Smrcka, A. V., and P. C. Sternweis. 1993. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. *J Biol Chem* **268**: 9667-9674.

27. Camps, M., A. Carozzi, P. Schnabel, A. Scheer, P. J. Parker, and P. Gierschik. 1992. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. *Nature* **360**: 684-686.

28. Lee, C. W., K. H. Lee, S. B. Lee, D. Park, and S. G. Rhee. 1994. Regulation of phospholipase C-beta 4 by ribonucleotides and the alpha subunit of Gq. *J Biol Chem* **269**: 25335-25338.

29. Kamat, A., and G. Carpenter. 1997. Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. *Cytokine Growth Factor Rev* **8**: 109-117.

30. Marrero, M. B., W. G. Paxton, B. Schieffer, B. N. Ling, and K. E. Bernstein. 1996. Angiotensin II signalling events mediated by tyrosine phosphorylation. *Cell Signal* **8**: 21-26.

31. Venema, V. J., H. Ju, J. Sun, D. C. Eaton, M. B. Marrero, and R. C. Venema. 1998. Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase C gamma 1 in vascular endothelial cells. *Biochem Biophys Res Commun* **246**: 70-75.

32. Sozzani, P., L. Hasan, M. H. Seguelas, D. Caput, P. Ferrara, B. Pipy, and C. Cambon. 1998. IL-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production. *Biochem Biophys Res Commun* **244**: 665-670.
33. Espagnolle, N., D. Depoil, R. Zaru, C. Demeur, E. Champagne, M. Guiraud, and S. Valitutti. 2007. CD2 and TCR synergize for the activation of phospholipase Cgamma1/calcium pathway at the immunological synapse. *Int Immunol* **19**: 239-248.

34. Kurosaki, T., A. Maeda, M. Ishiai, A. Hashimoto, K. Inabe, and M. Takata. 2000. Regulation of the phospholipase C-gamma2 pathway in B cells. *Immunol Rev* **176**: 19-29.

35. Watson, S. P., J. M. Auger, O. J. McCarty, and A. C. Pearce. 2005. GPVI and integrin alphaIIb beta3 signaling in platelets. *J Thromb Haemost* **3**: 1752-1762.

36. Wen, R., S. T. Jou, Y. Chen, A. Hoffmeyer, and D. Wang. 2002. Phospholipase C gamma 2 is essential for specific functions of Fc epsilon R and Fc gamma R. *J Immunol* **169**: 6743-6752.

37. Smrcka, A. V., J. H. Brown, and G. G. Holz. 2012. Role of phospholipase Cepsilon in physiological phosphoinositide signaling networks. *Cell Signal* **24**: 1333-1343.

38. Jin, T. G., T. Satoh, Y. Liao, C. Song, X. Gao, K. Kariya, C. D. Hu, and T. Kataoka. 2001. Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. *J Biol Chem* **276**: 30301-30307.

39. Kim, Y. H., T. J. Park, Y. H. Lee, K. J. Baek, P. G. Suh, S. H. Ryu, and K. T. Kim. 1999. Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. *J Biol Chem* **274**: 26127-26134.

40. Allen, V., P. Swigart, R. Cheung, S. Cockcroft, and M. Katan. 1997. Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. *Biochem J* **327 (Pt 2)**: 545-552.

41. Cockcroft, S. 2006. The latest phospholipase C, PLCeta, is implicated in neuronal function. *Trends Biochem Sci* **31**: 4-7.

42. Cho, J. H., M. S. Yoon, J. B. Koo, Y. S. Kim, K. S. Lee, J. H. Lee, and J. S. Han. 2011. The progesterone receptor as a transcription factor regulates phospholipase D1 expression through independent activation of protein kinase A and Ras during 8-Br-cAMP-induced decidualization in human endometrial stromal cells. *Biochem J* **436**: 181-191.
43. Okubo, Y., S. Kakizawa, K. Hirose, and M. Iino. 2001. Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells. Neuron 32: 113-122.

44. Thore, S., O. Dyachok, E. Gylfe, and A. Tengholm. 2005. Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting beta-cells. J Cell Sci 118: 4463-4471.

45. Thore, S., O. Dyachok, and A. Tengholm. 2004. Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells. J Biol Chem 279: 19396-19400.

46. Young, K. W., M. S. Nash, R. A. Challiss, and S. R. Nahorski. 2003. Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by G-protein-coupled receptors. J Biol Chem 278: 20753-20760.

47. Peruzzi, D., M. Aluigi, L. Manzoli, A. M. Billi, F. P. Di Giorgio, M. Morleo, A. M. Martelli, and L. Cocco. 2002. Molecular characterization of the human PLC beta1 gene. Biochim Biophys Acta 1584: 46-54.

48. Bahk, Y. Y., H. Song, S. H. Baek, B. Y. Park, H. Kim, S. H. Ryu, and P. G. Suh. 1998. Localization of two forms of phospholipase C-beta1, a and b, in C6Bu-1 cells. Biochim Biophys Acta 1389: 76-80.

49. Mao, G. F., S. P. Kunapuli, and A. Koneti Rao. 2000. Evidence for two alternatively spliced forms of phospholipase C-beta2 in haematopoietic cells. Br J Haematol 110: 402-408.

50. Kim, M. J., D. S. Min, S. H. Ryu, and P. G. Suh. 1998. A cytosolic, galphaq- and betagamma-insensitive splice variant of phospholipase C-beta4. J Biol Chem 273: 3618-3624.

51. Lee, S. B., and S. G. Rhee. 1996. Molecular cloning, splice variants, expression, and purification of phospholipase C-delta 4. J Biol Chem 271: 25-31.

52. Sorli, S. C., T. D. Bunney, P. H. Sugden, H. F. Paterson, and M. Katan. 2005. Signaling properties and expression in normal and tumor tissues of two phospholipase C epsilon splice variants. Oncogene 24: 90-100.

53. Sun, L., G. Mao, S. P. Kunapuli, D. N. Dhanasekaran, and A. K. Rao. 2007. Alternative splice variants of phospholipase C-beta2 are expressed in platelets: effect on Galphaq-dependent activation and localization. Platelets 18: 217-223.
Min, D. S., D. M. Kim, Y. H. Lee, J. Seo, P. G. Suh, and S. H. Ryu. 1993. Purification of a novel phospholipase C isozyme from bovine cerebellum. *J Biol Chem* **268**: 12207-12212.

Adamski, F. M., K. M. Timms, and B. H. Shieh. 1999. A unique isofrom of phospholipase Cbeta4 highly expressed in the cerebellum and eye. *Biochim Biophys Acta* **1444**: 55-60.

Upshaw, J. L., R. A. Schoon, C. J. Dick, D. D. Billadeau, and P. J. Leibson. 2005. The isoforms of phospholipase C-gamma are differentially used by distinct human NK activating receptors. *J Immunol* **175**: 213-218.

Ishikawa, S., T. Takahashi, M. Ogawa, and Y. Nakamura. 1997. Genomic structure of the human PLCD1 (phospholipase C delta 1) locus on 3p22-->p21.3. *Cytogenet Cell Genet* **78**: 58-60.

Fukami, K., T. Inoue, M. Kurokawa, R. A. Fissore, K. Nakao, K. Nagano, Y. Nakamura, K. Takenaka, N. Yoshida, K. Mikoshiba, and T. Takenawa. 2003. Phospholipase Cdelta4: from genome structure to physiological function. *Adv Enzyme Regul* **43**: 87-106.

Kouchi, Z., K. Fukami, T. Shikano, S. Oda, Y. Nakamura, T. Takenawa, and S. Miyazaki. 2004. Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. *J Biol Chem* **279**: 10408-10412.

Hwang, J. I., Y. S. Oh, K. J. Shin, H. Kim, S. H. Ryu, and P. G. Suh. 2005. Molecular cloning and characterization of a novel phospholipase C, PLC-eta. *Biochem J* **389**: 181-186.

Zhou, Y., M. R. Wing, J. Sondek, and T. K. Harden. 2005. Molecular cloning and characterization of PLC-eta2. *Biochem J* **391**: 667-676.

Ramazzotti, G., I. Faenza, M. Y. Follo, R. Fiume, M. Piazzio, R. Giardino, M. Fini, and L. Cocco. 2011. Nuclear phospholipase C in biological control and cancer. *Crit Rev Eukaryot Gene Expr* **21**: 291-301.

Follo, M. Y., I. Faenza, R. Fiume, G. Ramazzotti, J. A. McCubrey, A. M. Martelli, F. A. Manzoli, and L. Cocco. 2012. Revisiting nuclear phospholipase C signalling in MDS. *Adv Biol Regul* **52**: 2-6.

Follo, M. Y., S. Marmiroli, I. Faenza, R. Fiume, G. Ramazzotti, A. M. Martelli, P. Gobbi, J. A. McCubrey, C. Finelli, F. A. Manzoli, and L. Cocco. 2013. Nuclear phospholipase C beta1 signaling, epigenetics and treatments in MDS. *Adv Biol Regul* **53**: 2-7.
65. Follo, M. Y., I. Faenza, M. Piazzii, W. L. Blalock, L. Manzoli, J. A. McCubrey, and L. Cocco. 2014. Nuclear PI-PLCbeta1: an appraisal on targets and pathology. *Adv Biol Regul* **54**: 2-11.

66. Koh, H. Y. 2013. Phospholipase C-beta1 and schizophrenia-related behaviors. *Adv Biol Regul* **53**: 242-248.

67. Fukaya, M., M. Uchigashima, S. Nomura, Y. Hasegawa, H. Kikuchi, and M. Watanabe. 2008. Predominant expression of phospholipase Cbeta1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. *Eur J Neurosci* **28**: 1744-1759.

68. Watanabe, M., M. Nakamura, K. Sato, M. Kano, M. I. Simon, and Y. Inoue. 1998. Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cbeta in mouse brain. *Eur J Neurosci* **10**: 2016-2025.

69. Lin, X. H., N. Kitamura, T. Hashimoto, O. Shirakawa, and K. Maeda. 1999. Opposite changes in phosphoinositide-specific phospholipase C immunoreactivity in the left prefrontal and superior temporal cortex of patients with chronic schizophrenia. *Biol Psychiatry* **46**: 1665-1671.

70. Shirakawa, O., N. Kitamura, X. H. Lin, T. Hashimoto, and K. Maeda. 2001. Abnormal neurochemical asymmetry in the temporal lobe of schizophrenia. *Prog Neuropsychopharmacol Biol Psychiatry* **25**: 867-877.

71. Lo Vasco, V. R., L. Longo, and P. Polonia. 2013. Phosphoinositide-specific Phospholipase C beta1 gene deletion in bipolar disorder affected patient. *J Cell Commun Signal* **7**: 25-29.

72. Kawakami, T., and W. Xiao. 2013. Phospholipase C-beta in immune cells. *Adv Biol Regul* **53**: 249-257.

73. Li, Z., H. Jiang, W. Xie, Z. Zhang, A. V. Smrcka, and D. Wu. 2000. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. *Science* **287**: 1046-1049.

74. Wang, Z., B. Liu, P. Wang, X. Dong, C. Fernandez-Hernando, Z. Li, T. Hla, K. Claffey, J. D. Smith, and D. Wu. 2008. Phospholipase C beta3 deficiency leads to macrophage hypersensitivity to apoptotic induction and reduction of atherosclerosis in mice. *J Clin Invest* **118**: 195-204.
75. Xiao, W., H. Hong, Y. Kawakami, Y. Kato, D. Wu, H. Yasudo, A. Kimura, H. Kubagawa, L. F. Bertoli, R. S. Davis, L. A. Chau, J. Madrenas, C. C. Hsia, A. Xenocostas, T. J. Kipps, L. Hennighausen, A. Iwama, H. Nakauchi, and T. Kawakami. 2009. Tumor suppression by phospholipase C-beta3 via SHP-1-mediated dephosphorylation of Stat5. *Cancer Cell* **16**: 161-171.

76. Follo, M. Y., S. Mongiorgi, C. Finelli, M. Piazzi, I. Faenza, G. Ramazzotti, P. Santi, J. A. McCubrey, A. M. Martelli, and L. Cocco. 2012. Nuclear PI-PLCbeta1 and myelodysplastic syndromes: genetics and epigenetics. *Curr Pharm Des* **18**: 1751-1754.

77. Cocco, L., I. Faenza, M. Y. Follo, G. Ramazzotti, G. C. Gaboardi, A. M. Billi, A. M. Martelli, and L. Manzoli. 2008. Inositide signaling: Nuclear targets and involvement in myelodysplastic syndromes. *Adv Enzyme Regul* **48**: 2-9.

78. Mongiorgi, S., M. Y. Follo, C. Clissa, R. Giardino, M. Fini, L. Manzoli, G. Ramazzotti, R. Fiume, C. Finelli, and L. Cocco. 2012. Nuclear PI-PLC beta1 and Myelodysplastic syndromes: from bench to clinics. *Curr Top Microbiol Immunol* **362**: 235-245.

79. Ramazzotti, G., I. Faenza, R. Fiume, A. Matteucci, M. Piazzi, M. Y. Follo, and L. Cocco. 2011. The physiology and pathology of inositide signaling in the nucleus. *J Cell Physiol* **226**: 14-20.

80. Follo, M. Y., C. Finelli, C. Clissa, S. Mongiorgi, C. Bosi, G. Martinelli, M. Baccarani, L. Manzoli, A. M. Martelli, and L. Cocco. 2009. Phosphoinositide-phospholipase C beta1 mono-allelic deletion is associated with myelodysplastic syndromes evolution into acute myeloid leukemia. *J Clin Oncol* **27**: 782-790.

81. Follo, M. Y., S. Mongiorgi, C. Finelli, C. Clissa, G. Ramazzotti, R. Fiume, I. Faenza, L. Manzoli, A. M. Martelli, and L. Cocco. 2010. Nuclear inositide signaling in myelodysplastic syndromes. *J Cell Biochem* **109**: 1065-1071.

82. Manzoli, L., S. Mongiorgi, C. Clissa, C. Finelli, A. M. Billi, A. Poli, M. Quaranta, L. Cocco, and M. Y. Follo. 2014. Strategic Role of Nuclear Inositide Signalling in Myelodysplastic Syndromes Therapy. *Mini Rev Med Chem*.

83. Follo, M. Y., C. Finelli, S. Mongiorgi, C. Clissa, C. Bosi, N. Testoni, F. Chiarini, G. Ramazzotti, M. Baccarani, A. M. Martelli, L. Manzoli, G. Martinelli, and L. Cocco. 2009. Reduction of phosphoinositide-
phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. *Proc Natl Acad Sci U S A* **106**: 16811-16816.

84. Follo, M. Y., C. Finelli, S. Mongiorgi, C. Clissa, F. Chiarini, G. Ramazzotti, S. Paolini, G. Martinelli, A. M. Martelli, and L. Cocco. 2011. Synergistic induction of PI-PLCbeta1 signaling by azacitidine and valproic acid in high-risk myelodysplastic syndromes. *Leukemia* **25**: 271-280.

85. Follo, M. Y., D. Russo, C. Finelli, S. Mongiorgi, C. Clissa, C. Fili, C. Colombi, M. Gobbi, L. Manzoli, M. Piazz, A. M. Martelli, and L. Cocco. 2012. Epigenetic regulation of nuclear PI-PLCbeta1 signaling pathway in low-risk MDS patients during azacitidine treatment. *Leukemia* **26**: 943-950.

86. Philip, F., S. Sahu, G. Caso, and S. Scarlata. 2013. Role of phospholipase C-beta in RNA interference. *Adv Biol Regul* **53**: 319-330.

87. Lattanzio, R., M. Piantelli, and M. Falasca. 2013. Role of phospholipase C in cell invasion and metastasis. *Adv Biol Regul* **53**: 309-318.

88. Chan, J. J., and M. Katan. 2013. PLCvarepsilon and the RASSF family in tumour suppression and other functions. *Adv Biol Regul* **53**: 258-279.

89. Chan, J. J., D. Flatters, F. Rodrigues-Lima, J. Yan, K. Thalassinos, and M. Katan. 2013. Comparative analysis of interactions of RASSF1-10. *Adv Biol Regul* **53**: 190-201.

90. Wang, X., C. Zhou, G. Qiu, Y. Yang, D. Yan, T. Xing, J. Fan, H. Tang, and Z. Peng. 2012. Phospholipase C epsilon plays a suppressive role in incidence of colorectal cancer. *Med Oncol* **29**: 1051-1058.

91. Nomikos, M., J. Kashir, K. Swann, and F. A. Lai. 2013. Sperm PLCzeta: from structure to Ca2+ oscillations, egg activation and therapeutic potential. *FEBS Lett* **587**: 3609-3616.

92. Amdani, S. N., C. Jones, and K. Coward. 2013. Phospholipase C zeta (PLCzeta): oocyte activation and clinical links to male factor infertility. *Adv Biol Regul* **53**: 292-308.

93. Nakamura, Y., K. Kanemarum, and K. Fukami. 2013. Physiological functions of phospholipase Cdelta1 and phospholipase Cdelta3. *Adv Biol Regul* **53**: 356-362.
Figure Legends

Figure 1. PI-PLC-mediated enzymatic reaction. PIP2, which is located within the plasma membrane, is cleaved by PI-PLC enzymes, generating the two well-known second messengers DAG and IP3. DAG remains bound to the plasma membrane, whereas IP3 is located within the cytosol, but both of them can act as second messengers and activate downstream targets.

Figure 2. Molecular structure of PI-PLC isozymes. Each PI-PLC subfamily is characterized by a different pattern and function of PH, EF, X, Y and C2 domains. In particular, the PH domain of PI-PLCbeta enzymes is bound to G-proteins, whereas the same PH domain in PI-PLCgamma and PI-PLCdelta enzymes interacts with PIP3, in order to activate PI3K or favour the membrane binding, respectively. Moreover, the region between the X and Y domains is important for Calcium regulation: in PI-PLCzeta and PI-PLCeta enzymes this region is important for calcium release and sensitivity, whilst in PI-PLCgamma enzymes there are additional specific domains that are important for calcium interaction. As for PI-PLCepsilon enzymes, there are additional RA domains that interact with RAS and modulate both enzyme translocation and inhibition.

Figure 3. Function and regulation of PI-PLC isozymes. Most of the PI-PLC isozymes play a role at the plasma membrane. PI-PLCβ enzymes are usually activated by GPCRs through several mechanisms, whilst PI-PLCγ subtypes are commonly activated by RTK, via SH2 domain-phospho-tyrosine interaction. It is important to note that a specific PI-PLCβ enzyme, that is PI-PLCβ1, can be activated by MAPK and translocate to the nucleus, where it is involved in specific signalling pathways involving IPMK and gene promoter regulation. On the other hand, PI-PLCε isoenzymes can be activated by both GPCR and RTK systems, with distinct activation mechanisms, whereas both PI-PLCδ1 and PI-PLCη1 are activated via a GPCR-mediated calcium mobilization. As for PI-PLCζ, its activation and nuclear translocation mechanisms remain unknown, but it has been described as a sperm-specific protein that, at the nuclear level, has been specifically connected with the molecular activation of oocytes following fertilisation, in zygotic interphase.
Figure 1. PI-PLC-mediated enzymatic reaction
Figure 2. Molecular structure of PI-PLC isozymes

- **PI-PLCbeta**
 - PH
 - EF
 - X
 - Y
 - C2
 - G-Protein
 - PIP3 → P13K

- **PI-PLCgamma**
 - PH
 - EF
 - X
 - PIP3 → P13K
 - SH2
 - SH2
 - SH3
 - PI3K
 - Y
 - C2

- **PI-PLCdelta**
 - PH
 - EF
 - X
 - Y
 - C2
 - PIP3 → Membrane Binding

- **PI-PLCepsilon**
 - RAS
 - PH
 - EF
 - X
 - Y
 - C2
 - RA1
 - RA2
 - Translocation and Inhibition

- **PI-PLCzeta**
 - EF
 - X
 - Y
 - C2
 - Calcium Release

- **PI-PLCeta**
 - PH
 - EF
 - X
 - Y
 - C2
 - Calcium Sensitivity
 - PDZ binding motif
Figure 3. Function and regulation of PI-PLC isozymes