Anisotropic electronic properties of a-axis-oriented Sr$_2$IrO$_4$ epitaxial thin-films

J. Nichols, O. B. Korneta, J. Terzic, L. E. De Long, G. Cao, J. W. Brill, and S. S. A. Seoa)
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA

Abstract

We have investigated the transport and optical properties along the c-axis of a-axis-oriented Sr$_2$IrO$_4$ epitaxial thin-films grown on LaSrGaO$_4$ (100) substrates. The c-axis resistivity is approximately one order of magnitude larger than that of the ab-plane. Optical absorption spectra with $E \perp c$ polarization show both Ir 5d intersite transitions and charge-transfer transitions (O 2p to Ir 5d), while $E//c$ spectra show only the latter. The structural anisotropy created by biaxial strain in a-axis-oriented thin-films also changes the electronic structure and gap energy. These a-axis-oriented, epitaxial thin-films provide a powerful tool to investigate the highly anisotropic electronic properties of Sr$_2$IrO$_4$.

PACS: 71.70.Ej, 68.60.Bs, 68.55.-a, 73.61.-r, 78.20.-e

a) E-mail: a.seo@uky.edu
A layered iridate compound, Sr_2IrO_4, which is an antiferromagnetic insulator ($T_N \sim 240 \text{ K}$),1,2 has recently attracted substantial interest due to its exotic electronic state. Coexisting electronic correlations and strong spin-orbit coupling of $5d$ electrons has led to the formation of the $J_{\text{eff}} = 1/2$ Mott state in Sr_2IrO_4 (SIO-214).3 Even though debate continues concerning its ground state (i.e., Mott insulator vs. Slater insulator4,5), this compound has unprecedented potential for electronic device applications. For example, unconventional superconductivity is theoretically predicted in doped SIO-2146 and the strong spin-orbit interaction is expected to result in novel electronic states such as topological insulators7 and Weyl semimetals.8,9 Recently, SIO-214 thin films have been grown and characterized,10-12 resulting in a better understanding of the underlying physics of SIO-214 and providing impetus for developing device applications. However, only c-axis-oriented SIO-214 thin films have been synthesized thus far, which limits experimental access primarily to in-plane (ab-plane) properties. Hence, thin film studies of SIO-214 have produced results that are quite similar to those obtained for bulk SIO-214 crystals, whose naturally cleaved surfaces are also ab-planes. Since characterization of the c-axis of a number of layered oxides have revealed important physical information (e.g., the pseudo-gap energies in high-T_c cuprates13), the fabrication of SIO-214 thin films with large ac-planes (or bc-planes) will permit investigations of important physical properties that are not readily accessible in typical bulk crystals and c-axis-oriented thin films.

In this Letter, we report the structural, transport, and optical properties of a-axis-oriented SIO-214 thin films, whose large surfaces ($5 \times 5 \text{ mm}^2$) are bc-planes (or ac-planes). We have grown a-axis-oriented SIO-214 epitaxial thin films on LaSrGaO$_4$ (100) single-crystal substrates, where the [100]-direction is the surface-normal direction. In a similar study of layered $3d$ transition-metal oxides, a-axis-oriented thin films were grown on LaSrAlO$_4$ (100),14 which has
the same K_2NiF_4-structure as LaSrGaO$_4$ (LSGO). Due to differences in the tetragonal lattice parameters for SIO-214 (5.4979 Å and 25.798 Å)15 and LSGO (3.852 Å and 12.68 Å)16, the [110] and [110] directions of the SIO-214 thin films are parallel to the [100] and [010] directions of LSGO, respectively, and the thin film’s c-axis lies parallel to the [001]-axis of the substrate, as schematically illustrated in Fig. 1. The [100], [010], and [001]-directions of the LSGO substrate are labeled as a, b, and c, respectively, and we use this notation in the following paragraphs.

Since the lattice mismatches between the substrate and the SIO-214 thin films are calculated as –0.92 % and –1.73 % along the b- and c-axes (Table 1), there is biaxial compressive strain along the b- and c- axes of the thin films. We have measured the transport and optical properties along the ab-plane and the c-axis of the SIO-214 thin films, which clearly show its anisotropic insulating nature. In particular, the c-axis optical spectrum has no absorption peaks except for the charge-transfer transition peak (from O 2p to Ir 5d) above 2 eV. Our observation confirms that the low-energy optical transitions that exist near 0.5 eV and 1.0 eV in SIO-214 are due to inter-site optical transitions between Ir 5d orbitals that lie in the ab-plane.

We have grown a-axis-oriented, epitaxial SIO-214 thin films using a custom-built pulsed laser deposition system with in-situ reflection high-energy electron diffraction (RHEED) and in-situ optical spectroscopic ellipsometry.17 Optimal growth parameters are oxygen partial pressure (P_{O_2}) of 10 mTorr, substrate temperature of 700 °C, and laser (KrF excimer, $\lambda = 248$ nm) fluence of 1.2 J/cm2. We have monitored the thin film growth using RHEED, which shows a “layer-by-layer + island” growth mode, presumably due to the large surface energy of the film. A total film thickness of about 20 nm has been estimated by using 4 to 5 oscillations of the RHEED specular spot intensity during the initial growth.
The structure of these a-axis-oriented, epitaxial SIO-214 thin films has been identified using X-ray diffraction. The (220) and (440) thin-film peaks are only visible very near to the (200) and (400) substrate peaks in the $\theta-2\theta$ scan in Fig. 2 (a), ensuring that the films have an a-axis orientation. The FWHM of the rocking curves of the thin-film diffraction peaks are less than 0.07° (data not shown) suggesting that the samples have good crystallinity. In addition, the bc-plane epitaxy has been confirmed by pole figures and ϕ-scans (data not shown). In order to obtain lattice-strain information, X-ray reciprocal space maps have been measured near the (310) and (303)-reflections of the LSGO substrate for the ab- and ac-planes, respectively, as shown in Fig. 1(b) and 1(c). Note that there is biaxial compressive strain in the bc-plane resulting in the elongated a-axis of the SIO-214 thin film, even though strain relaxation easily occurs along the b-axis. The lattice parameters, lattice strain, and the Poison ratio are summarized in Table 1. It is noteworthy that artificial ab-plane anisotropy has been created by biaxial lattice stain in this sample geometry, i.e. the a-axis lattice parameter is longer than the b-axis. Therefore, the a-axis-oriented, epitaxial SIO-214 thin films have orthorhombic rather than tetragonal structure.

Figure 3 shows the electrical resistivity of the SIO-214 thin films for two current orientations: Samples were sliced and patterned into bar shapes to measure the temperature-dependent resistivity along the b-axis (ρ_{ab}) and c-axis (ρ_c) using conventional four-probe methods. Insulating behavior is clearly evident in both directions; however, the c-axis resistivity is about an order of magnitude larger than the b-axis resistivity. This anisotropy is also present in the Arrhenius plot shown in Fig. 3(b), where the dashed lines are fits to $\rho (T) = \rho_0 \exp (\Delta/2k_BT)$, where ρ, ρ_0, Δ, and k_B are the resistivity, proportionality constant, gap energy, and Boltzmann constant, respectively. Note that the values of Δ are estimated to be 97 meV (77 meV) at high temperature and 27 meV (24 meV) at low temperature for current applied along the c-axis (b-
axis). A similar temperature-dependent behavior has been reported for bulk SIO-214 crystals, where the temperature dependence of the gap is primarily attributed to additional magnetic ordering below the magnetic transition temperature.\(^{18}\)

Figure 4(a) shows optical absorption spectra of the SIO-214 thin films, which also exhibit anisotropy. The optical absorption coefficients are measured at room temperature with a Fourier-transform infrared spectrometer for energies in the range of 0.05 – 0.6 eV, and a grating-type spectrometer for energies in the range of 0.5 – 6 eV, using polarized incident light with E\(_{\perp c}\) or E\(_{\parallel c}\). A schematic illustration of the measurement setup is presented in the inset of Fig. 4(a), where LSGO and SIO-214 are blue and red, respectively. Two absorption peaks at around 0.5 eV (\(\alpha\)) and 1.0 eV (\(\beta\)) are clearly visible in the E\(_{\perp c}\) spectra, while no absorption peak is present at these energies in the E\(_{\parallel c}\) spectra. The \(\alpha\) and \(\beta\) peaks have been already observed in the \(ab\)-plane of SIO-214 bulk crystals\(^{19}\) and \(c\)-axis-oriented thin films\(^{12}\). They are interpreted as Ir 5\(d\) optical transitions between \(J_{\text{eff}} = 1/2\) and \(J_{\text{eff}} = 3/2\) states,\(^3,^{20}\) as schematically illustrated in Fig. 4(b). Note that the Ir 5\(d\) optical transitions reflect electron hopping between Ir sites in the \(ab\)-plane. The absence of the \(\alpha\) and \(\beta\) peaks in the E\(_{\parallel c}\) optical spectrum confirms that inter-site optical transitions are forbidden in the E\(_{\parallel c}\) polarization (Fig. 4(c)). However, both the E\(_{\perp c}\) and E\(_{\parallel c}\) spectra exhibit a relatively isotropic feature at around 3 eV (A) due to charge-transfer optical transitions from O 2\(p\) states to Ir 5\(d\) states.

Note that the optical peak widths of the \(\alpha\) and \(\beta\) transitions in the E\(_{\perp c}\) spectrum are quite similar to those of SIO-214 thin films under isotropic \(ab\)-plane tensile strain with a compressed \(c\)-axis lattice. In the recent study of \(c\)-axis-oriented SIO-214 thin films (i.e., SIO-214 \(c\)-axis
normal to substrate surface) deposited on various substrates with both \(ab\)-plane tensile and compressive strain,\(^{12}\) the optical peak widths and positions exhibit a systematic dependence on lattice strain. The \(E_{\perp c}\) optical spectrum (Fig. 4(a)) is similar to that for \(c\)-axis-oriented SIO-214 thin films grown on SrTiO\(_3\) (100) and GdScO\(_3\) (110) substrates, which are under isotropic tensile strain in the \(ab\)-plane with a decreased \(c\)-axis lattice parameter. Since there is \(ab\)-plane anisotropy in the \(a\)-axis oriented thin films discussed in this letter (Table 1), it is hard to draw a concrete conclusion concerning these data. However, the similarity of these two spectra suggests that changes in the \(c\)-axis lattice parameter (involving elongation or flattening of IO\(_6\) octahedra) play an important role in changing the electronic structure of SIO-214. It is also noteworthy that an optical gap energy (\(\Delta_{op}\)) of about 0.2 eV is estimated from the onset of the \(E_{\perp c}\) optical absorption spectrum, which is approximately two-thirds of the values obtained in Refs.\(^{12}\) and \(^{19}\). This optical gap suppression, which is not observed in \(c\)-axis-oriented SIO-214 thin films, might be related to the \(ab\)-plane anisotropy in \(a\)-axis-oriented SIO-214 thin films. Since it is not clear how the artificial \(ab\)-plane anisotropy, i.e., strain-induced, different \(a\)- and \(b\)-axes lattice parameters, distorts the IrO\(_6\) octahedra in \(a\)-axis-oriented thin films, microscopic characterizations such as scanning transmission electron microscopy\(^{21,22}\) and resonant X-ray diffraction\(^{23,24}\) will provide additional important information.

In summary, we have synthesized \(a\)-axis-oriented, epitaxial SIO-214 thin films with artificial \(ab\)-plane anisotropy and a flattened \(c\)-axis lattice on LSGO (100) substrates. We have observed that these thin films are insulating along both the \(b\)- and \(c\)-axes, but the \(c\)-axis resistivity is an order of magnitude larger than the \(b\)-axis resistivity. We have observed optical absorption spectra where the two optical peaks at 0.5 eV and 1.0 eV are only observed for \(E_{\perp c}\), which
supports the view that these peaks originate from inter-site Ir 5d transitions. Since the large surface area (bc-plane) of these samples is orthogonal to the naturally cleaved surface of this compound, our sample geometry provides an important way to investigate the in-plane anisotropy and c-axis properties, which are not easily accessible in bulk crystals.

We appreciate Emily Bittle for her help with the FT-IR measurements. This research was supported by the NSF through Grant Nos. EPS-0814194 (the Center for Advanced Materials), DMR-1262261 (JWB), DMR-0856234 (GC), DMR-1265162 (GC), by U.S. DoE through Grant No. DE-FG02-97ER45653 (LED), and by the Kentucky Science and Engineering Foundation with the Kentucky Science and Technology Corporation through Grant Agreement No. KSEF-148-502-12-303 (SSAS).
Table 1. Lattice parameters and strain of \(\alpha \)-axis-oriented epitaxial thin films of Sr\(_2\)IrO\(_4\) (SIO-214).

Crystallographic direction	LSGO lattice parameters (Å)	SIO-214 film pseudo-cubic lattice parameters (Å)	Lattice mismatch (%)*	Lattice strain (%)**
\(a \) [100]\(_{\text{sub}} \) // [110]\(_{\text{film}} \)	3.852	3.91	—	+ 0.65
\(b \) [010]\(_{\text{sub}} \) // [1\(\bar{1} \)0]\(_{\text{film}} \)	3.852	3.88	– 0.92	– 0.1
\(c \) [001]\(_{\text{sub}} \) // [001]\(_{\text{film}} \)	12.68	12.7	– 1.73	– 1.4

* Lattice mismatch is calculated from the pseudo-cubic lattice parameters of bulk SIO-214 \((d_{\text{bulk}}) \) and substrates \((d_{\text{sub}}) \) by \((d_{\text{sub}} - d_{\text{bulk}}) / d_{\text{sub}} \times 100 \) (%).

** Lattice strain is estimated by using \(\varepsilon = (d_{\text{film}} - d_{\text{bulk}}) / d_{\text{bulk}} \times 100 \) (%).

Poisson’s ratio, \(v = \varepsilon_a / (\varepsilon_a - \varepsilon_b - \varepsilon_c) = 0.30 \).
Figure Captions

FIG. 1 Schematic diagram of the sample geometry with the a-axis-oriented SIO-214 thin-film grown on the LSGO (100) substrate, where the IrO$_6$ octahedra are red and the Sr atoms are blue. The [110], [1$ar{1}$0], and [001] directions of the SIO-214 thin film are parallel to the a: [100], b: [010], and c: [001] directions of LSGO, respectively. The large colored arrows represent the direction of crystal strain: compressive (green) along the b- and c-axes and tensile (orange) along the a-axis.

FIG. 2 X-ray diffraction data for SIO-214 thin-films on LSGO: (a) θ-2θ scan of a thin film for which the ($l00$) film peaks are clearly visible and confirm the a-axis orientation of the film. Reciprocal space maps of (b) the SIO-214 (420) film peak (black \times) near the LSGO (310) substrate peak (white cross), and (c) the SIO-214 (336) film peak (black \times) near the LSGO (303) substrate peak (white cross).

FIG. 3 (a) Temperature dependence of the electrical resistivity of a SIO-214 thin-film on LSGO for current applied along the b-axis (red) and c-axis (blue). (b) Arrhenius plot of the resistivity data, where the dashed lines are fits to $\rho(T) = \rho_0 \exp(\Delta/2k_BT)$ for two distinct temperature regions.

FIG. 4 (a) The optical absorption coefficient for SIO-214 thin films on LSGO where the incident light is polarized such that $E_{\perp c}$ (red) and $E//c$ (blue). Schematic band structure and optical transitions (arrows) for (b) the $E_{\perp c}$ polarization and (c) the $E//c$ polarization. The dotted lines indicate the Fermi energy.
References

1. G. Cao, J. Bolivar, S. McCall, J. E. Crow, and R. P. Guertin, Phys. Rev. B 57, R11039 (1998).
2. B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009).
3. B. J. Kim, H. Jin, S. J. Moon, J. Y. Kim, B. G. Park, C. S. Leem, J. Yu, T. W. Noh, C. Kim, S. J. Oh, J. H. Park, V. Durairaj, G. Cao, and E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008).
4. R. Arita, J. Kunéš, A. V. Kozhevnikov, A. G. Eguiluz, and M. Imada, Phys. Rev. Lett. 108, 086403 (2012).
5. D. Hsieh, F. Mahmood, D. H. Torchinsky, G. Cao, and N. Gedik, Phys. Rev. B 86, 035128 (2012).
6. F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).
7. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
8. D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010).
9. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
10. J. S. Lee, Y. Krockenberger, K. S. Takahashi, M. Kawasaki, and Y. Tokura, Phys. Rev. B 85, 035101 (2012).
11. C. Rayan Serrao, J. Liu, J. T. Heron, G. Singh-Bhalla, A. Yadav, S. J. Suresha, R. J. Paull, D. Yi, J. H. Chu, M. Trassin, A. Vishwanath, E. Arenholz, C. Frontera, J. Železný, T. Jungwirth, X. Marti, and R. Ramesh, Phys. Rev. B 87, 085121 (2013).
12. J. Nichols, J. Terzic, E. G. Bittle, O. B. Korneta, L. E. De Long, J. W. Brill, G. Cao, and S. S. A. Seo, Appl. Phys. Lett. 102, 141908 (2013).
13. C. C. Homes, T. Timusk, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. Lett. 71, 1645 (1993).
14. J. Matsuno, Y. Okimoto, M. Kawasaki, and Y. Tokura, Phys. Rev. Lett. 95, 176404 (2005).
15. M. K. Crawford, M. A. Subramanian, R. L. Harlow, J. A. Fernandez-Baca, Z. R. Wang, and D. C. Johnston, Phys. Rev. B 49, 9198 (1994).
16. I. Rüter and H. Müller-Buschbaum, Zeitschrift für anorganische und allgemeine Chemie 584, 119 (1990).
17. J. H. Gruenewald, J. Nichols, and S. S. A. Seo, Rev. Sci. Instrum. 84, 043902 (2013).
18. M. Ge, T. F. Qi, O. B. Korneta, D. E. De Long, P. Schlottmann, W. P. Crummett, and G. Cao, Phys. Rev. B 84, 100402 (2011).
19. S. J. Moon, H. Jin, W. S. Choi, J. S. Lee, S. S. A. Seo, J. Yu, G. Cao, T. W. Noh, and Y. S. Lee, Phys. Rev. B 80, 195110 (2009).
20. S. J. Moon, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. W. Noh, Phys. Rev. Lett. 101, 226402 (2008).
21. J. M. LeBeau, S. D. Findlay, L. J. Allen, and S. Stemmer, Ultramicroscopy 110, 118 (2010).
22. J. Hwang, J. Y. Zhang, J. Son, and S. Stemmer, Appl. Phys. Lett. 100, 191909 (2012).
23. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99, 155502 (2007).
D. P. Kumah, A. Riposan, C. N. Cionca, N. S. Husseini, R. Clarke, J. Y. Lee, J. M. Millunchick, Y. Yacoby, C. M. Schlepütz, M. Björck, and P. R. Willmott, Appl. Phys. Lett. 93, 081910 (2008).
Figure 1
Nichols et al.
Figure 2
Nichols et al.
ρ_c and ρ_{ab} as functions of temperature T.

$\Delta_{c1} = 97$ meV, $\Delta_{c2} = 27$ meV, $\Delta_{ab1} = 77$ meV, $\Delta_{ab2} = 24$ meV.

$\rho = \rho_0 \exp(\Delta/2k_B T)$.

Figure 3
Nichols et al.
Figure 4
Nichols et al.