COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY

Commuting difference operators of rank two

G. S. Mauleshova and A. E. Mironov

In this note we investigate one-point commuting difference operators of rank two which correspond to hyperelliptic spectral curves.

If two difference operators $L_k = \sum_{j=N}^{N_+} u_j(n)T^j$ and $L_s = \sum_{j=M_+}^{M_+} v_j(n)T^j$, $n \in \mathbb{Z}$, of orders $k = N_+ + N_-$ and $s = M_+ + M_-$, respectively, commute, where T is the shift operator, then there exists a non-zero polynomial $F(z, w)$ such that $F(L_k, L_s) = 0$ [1]. This polynomial F defines the spectral curve $\Gamma = \{(z, w) \in \mathbb{C}^2 \mid F(z, w) = 0\}$ of the pair L_k, L_s. The spectral curve parametrizes the eigenvalues in the following sense: if $L_k\psi = z\psi$ and $L_s\psi = w\psi$, then $(z, w) \in \Gamma$. The rank l of the pair L_k, L_s is defined to be the dimension $l = \dim\{\psi : L_k\psi = z\psi, L_s\psi = w\psi\}$ of the space of common eigenfunctions for fixed eigenvalues, where it is assumed that the point (z, w) is in general position on Γ. The maximal commutative ring of difference operators that contains L_k and L_s is isomorphic to the ring of meromorphic functions on the spectral curve which have poles at some distinguished points q_1, \ldots, q_m (see [2]). Such operators are called m-point operators. Difference operators of rank one were found in [1] and [3]. The problem of classifying m-point difference operators of rank l was solved in [2], but nevertheless, finding such operators for $l > 1$ is an open problem. One-point operators of rank two that correspond to elliptic spectral curves were found in [2], and operators in this class with polynomial coefficients were found in [4].

Here we take one-point operators $L_4 = \sum_{i=-2}^{2} u_i(n)T^i$ and $L_{4g+2} = \sum_{i=-(2g+1)}^{2g+1} v_i(n)T^i$ of rank two with $u_2 = v_{2g+1} = 1$ which correspond to a hyperelliptic spectral curve Γ of genus g given by the equation

$$w^2 = F_g(z) = z^{2g+1} + c_{2g}z^{2g} + \cdots + c_0,$$

and $L_4\psi = z\psi$ and $L_{4g+2}\psi = w\psi$ for $\psi = \psi(n, P)$, where $P = (z, w) \in \Gamma$. The common eigenfunctions of L_4 and L_{4g+2} satisfy the equation

$$\psi(n+1, P) = \chi_1(n, P)\psi(n-1, P) + \chi_2(n, P)\psi(n, P)$$

(see [2]), where the functions $\chi_1(n, P)$ and $\chi_2(n, P)$ are rational on Γ and have $2g$ simple poles which depend on n. The function $\chi_2(n, P)$ has, in addition, a simple pole at the point at infinity. Let σ be the involution $\sigma(z, w) = (z, -w)$ on Γ. The main results of this note are Theorems 1–4.

Theorem 1. If $\chi_1(n, P) = \chi_1(n, \sigma(P))$ and $\chi_2(n, P) = -\chi_2(n, \sigma(P))$, then L_4 has the form

$$L_4 = (T + V_nT^{-1})^2 + W_n,$$

This research was carried out with the support of a Russian Government grant for state support of scientific investigations (agr. no. 14.B25.31.0029).

AMS 2010 Mathematics Subject Classification. Primary 34A30, 37K10.

DOI 10.1070/RM2015v070n03ABEH004954.

© 2015 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
and furthermore, \(\chi_1 = -V_n Q_{n+1}/Q_n \) and \(\chi_2 = w/Q_n \), where the functions \(V_n, W_n \), and \(Q_n \) satisfy the equation

\[
F_g(z) = Q_{n-1} Q_{n+1} V_n + Q_n (Q_{n+2} V_{n+1} + Q_{n+1} (z - V_n - V_{n+1} - W_n)).
\]

Remarkably, equation (1) can be linearized. Namely, if in (1) we replace \(n \) by \(n + 1 \) and subtract (1) from the equation obtained, then the result is divisible by \(Q_{n+1} (z) \). In the end we arrive at a linear equation with respect to \(Q_n (z) \).

Corollary 1. The functions \(Q_n (z) \), \(V_n \), and \(W_n \) satisfy the equation

\[
Q_{n-1} V_n + Q_n (z - V_n - V_{n+1} - W_n) - Q_{n+2} (z - V_{n+1} - V_{n+2} - W_{n+1}) - Q_{n+3} V_{n+2} = 0.
\]

For \(g = 1 \) equation (1) makes it possible to express \(V_n \) and \(W_n \) in terms of an arbitrary functional parameter \(\gamma_n \).

Corollary 2. The operator \(L_4 = (T + V_n T^{-1})^2 + W_n \), where

\[
V_n = \frac{F_1(\gamma_n)}{(\gamma_n - \gamma_n-1)(\gamma_n - \gamma_{n+1})}, \quad W_n = -c_2 - \gamma_n - \gamma_{n+1},
\]

and \(F_1(z) = z^3 + c_2 z^2 + c_1 z + c_0 \), commutes with the operator

\[
L_6 = T^3 + (V_n + V_{n+1} + V_{n+2} + W_n - \gamma_{n+2})T
+ V_n (V_{n-1} + V_n + V_{n+1} + W_n - \gamma_{n-1}) T^{-1} + V_{n-2} V_{n-1} V_n T^{-3}.
\]

The spectral curve of the pair \(L_4, L_6 \) is given by \(u^2 = F_1(z) \).

Using Theorem 1, we can effectively construct examples of commuting operators.

Theorem 2. The operator \(L_4 = (T + (r_3 n^3 + r_2 n^2 + r_1 n + r_0) T^{-1})^2 + g(g+1) r_3 n, r_3 \neq 0, \) commutes with the corresponding difference operator \(L_{4g+2} \).

Theorems 1 and 2 resemble in appearance some similar results for differential operators in [5], but we could not deduce them directly from [5].

Theorem 3. The operator \(L_4 = (T + (r_1 a^n + r_0) T^{-1})^2 + r_1 (a^{2g+1} - a^{g+1} - a^g + 1) a^{n-g}, \) where \(r_1 \neq 0, a \neq 0, \) and \(a^{2g+1} - a^{g+1} - a^g + 1 \neq 0 \), commutes with the corresponding difference operator \(L_{4g+2} \).

Theorem 4. The operator

\[
L_4 = (T + (r_1 \cos n + r_0) T^{-1})^2 - 4 r_1 \sin \frac{g}{2} \sin \left(\frac{g+1}{2} \right) \cos \left(n + \frac{1}{2} \right), \quad r_1 \neq 0,
\]

commutes with the corresponding difference operator \(L_{4g+2} \).

Bibliography

[1] И. М. Кричевер, *УМН* 33:4(202) (1978), 215–216; English transl., I. M. Krichever, *Russian Math. Surveys* 33:4 (1978), 255–256.

[2] И. М. Кричевер, С. П. Новиков, *УМН* 58:3(351) (2003), 51–88; English transl., I. M. Krichever and S. P. Novikov, *Russian Math. Surveys* 58:3 (2003), 473–510.

[3] D. Mumford, *Proceedings of the International Symposium on Algebraic Geometry* (Kyoto Univ., Kyoto 1977), Kinokuniya Book Store, Tokyo 1978, pp. 115–153.
Gulnara S. Mauleshova
Novosibirsk State University
E-mail: mauleshova_gs@mail.ru

Andrei E. Mironov
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences;
Bogolyubov Laboratory of Geometric Methods in Mathematical Physics, Moscow State University
E-mail: mironov@math.nsc.ru

Presented by V. M. Buchstaber
Accepted 03/SEP/14
Translated by N. KRUZHLIN