POSITIVE HALF OF THE WITT ALGEBRA ACTS ON TRIPLY GRADED LINK HOMOLOGY

MIKHAIL KHOVANOV AND LEV ROZANSKY

Abstract. The positive half of the Witt algebra is the Lie algebra spanned by vector fields $x^{m+1}{\frac {d}{dx}}$ acting as differentiations on the polynomial algebra $\mathbb{Q}[x]$ upon which the Soergel bimodule construction of triply graded link homology is based. We show that this action of Witt algebra can be extended to the link homology.

CONTENTS

1. Introduction 1
2. Preliminaries 14
3. Categorification of the braid word semi-group by \mathcal{W}^+-equivariant Soergel bimodules 20
4. \mathcal{W}^+-equivariant categorification of the braid group 22
5. Link invariant as an object of the derived category of \mathcal{W}_λ^+-modules 33
References 44

1. INTRODUCTION

1.1. Motivation. Stable cohomological operations on cohomology of topological spaces exhibit the deepest structure, that of the Steenrod algebra, when the ring of coefficients is \mathbb{Z}/p for a prime p, while nontrivial operations don’t even exist when the coefficient ring is \mathbb{Q}. The work of Lipshitz and Sarkar [14][15], see also Kriz, Kriz, and Po [13], shows that the Steenrod algebra acts, in the homological direction, on Khovanov $\mathfrak{sl}(2)$ link homology with coefficients in \mathbb{Z}/p, and this action is already highly nontrivial when $p = 2$ for the subalgebra generated by Sq^1, Sq^2, see [15][19].

Gorsky [6] and Gorsky, Oblomkov, Rasmussen [7] conjectured that large algebras related to affine Lie algebras act on $\mathfrak{sl}(2)$ homology and triply graded homology of torus knots.
this conjecture the ground ring is \mathbb{Z} rather than torsion. One wonders what part of this structure will act on cohomology groups of arbitrary links.

A variety of spectral sequences acting between various link and 3-manifold homologies, including Ozsvath-Szabo 3-manifold homology, Ozsvath-Rasmussen-Szabo link homology and $\mathfrak{sl}(k)$ homology indicates the existence of a rich structure of cohomological operations in these theories. Baston-Seed spectral sequence [2] from $\mathfrak{sl}(2)$ homology of a link to tensor product of homology groups of its components comes from one family of such operations.

Reduced Khovanov homology of alternating and quasi-alternating knots lies on one diagonal in the bigrading plane; for general knots this diagonal direction is the preferred one for the growth of homology group ranks. It would be strange if the groups living on the same diagonal were completely unrelated, and we conjecture the existence of cohomological operations acting along this direction. The knot Floer homology case is similar, and such homological operations, if found, might help to prove the Fox conjecture that coefficients of the Alexander polynomial of an alternating knot constitute a trapezoidal sequence.

Categorifications of quantum groups at roots of unity of prime order p over a field k of characteristic p, investigated in [5,11], use derivation $\partial = x^2 \partial/\partial x$ acting first on the polynomial algebra $k[x]$ in one variable x, then on $k[x_1,\ldots,x_n]$, and later on suitable endomorphism algebras of these polynomial spaces, including the nilHecke algebras, KLR and Webster algebras. Characteristic p is needed to make ∂ nilpotent, $\partial^p = 0$, and work in the hopfological setting, over the base monoidal triangulated category of stable graded modules over the Hopf algebra $k[\partial]/(\partial^p)$, generalizing homotopy category of complexes.

This fails in characteristic zero, but one can at least study the symmetries $L_m = x^{m+1} \partial/\partial x$, $m \geq 0$, acting on $k[x]$. Symmetries L_m span the positive half W^+ of the Witt Lie algebra, and their action induces an action of W^+ on nilHecke, KLR, and other algebras categorifying quantum groups and their representations. One might hope that the entire Webster’s categorification of Reshetikhin-Turaev link invariants for arbitrary simple Lie algebras and their representations [22,23] can be done W^+-equivariantly, leading to an action of the latter on all these link homology theories.

In finite characteristic one can expect an action of a larger algebra. Recent papers of Beliakov, Cooper [3] and Kitchloo [12] exhibit a Steenrod algebra action on the nil-Hecke algebra. If this action extends naturally to Webster algebras, associated bimodules, and link homology in an invariant way, there will be a Steenrod algebra action on bigraded link homology groups. Curiously, the direction of that action (if it exists) in the bigrading plane will not match that of the Lipshitz-Sarkar Steenrod algebra action [14,15]. Overall, we expect the existence of very large algebras of cohomological operations on link homology for various homology theories and coefficient rings.
In this paper we work in the simplest instance of the categorified Schur-Weyl dual set-up. Instead of looking at the action of \mathfrak{W}^+ on rings categorifying quantum groups, we consider an action of \mathfrak{W}^+ on Soergel bimodules serving as building blocks for the Soergel category, which categorifies the Hecke algebra of the symmetric group. We make this action compatible with the Rouquier braid group action [17,18] via complexes of Soergel bimodules and with the Hochschild homology description of triply-graded categorification of the HOMFLYPT polynomial, resulting in an action of \mathfrak{W}^+ (and its universal enveloping algebra) on the triply-graded link homology of [9,10].

1.2. Notations and definitions. Throughout the paper we use notation $a = a_1, a_2, \ldots$ for a finite or infinite sequence of elements of a set \mathfrak{A} and $|a|$ for the length of a. We also use a shortcut $a \in \mathfrak{A}$ for $a_i \in \mathfrak{A}$, $i \geq 1$. In particular, $\mathbf{x} = x_1, \ldots, x_n$ is a sequence of variables with $|\mathbf{x}| = n$.

All modules in this paper are \mathbb{Z}-graded; we refer to this grading as q-grading and denote it \deg_q. The q-degree of all main variables such as \mathbf{x}, \mathbf{a} and $\mathbf{\lambda}$ is 2. We work over the base field \mathbb{Q} of rational numbers. The positive half \mathfrak{W}^+ of the Witt algebra is a q-graded Lie algebra with generators L_m, $m \geq 0$, $\deg_q L_m = 2m$, and relations

$$[L_m, L_n] = (n - m)L_{m+n}. \quad (1.1)$$

This algebra acts by differentiations on the polynomial algebra $\mathbb{Q}[x]$: $\hat{L}_m = x^{m+1}\partial_x$. More generally, it acts on the algebra $\mathbb{Q}[\mathbf{x}]$, $|\mathbf{x}| = k$, as $\hat{L}_m = \sum_{i=1}^k x_i^{m+1}\partial_{x_i}$. We refer to this action as the standard action.

Let \mathcal{W}^+ denote the universal enveloping algebra of \mathfrak{W}^+. The standard action of \mathcal{W}^+ on $\mathbb{Q}[\mathbf{x}]$ allows us to define a semi-direct product $\mathcal{W}^+_\mathbf{x} = \mathbb{Q}[\mathbf{x}] \times \mathcal{W}^+$ with the multiplication

$$(p \otimes L_m)(q \otimes L_n) = pq \otimes L_m L_n + p(\hat{L}_m q) \otimes L_n, \quad (1.2)$$

where $p, q \in \mathbb{Q}[\mathbf{x}]$. For two sequences of variables \mathbf{a} and \mathbf{x} we also use notation

$$\alpha \mathcal{W}^+_\mathbf{x} = \mathcal{W}^+_{\alpha, \mathbf{x}} = \mathbb{Q}[\mathbf{x}, \mathbf{a}] \times \mathcal{W}^+, \quad (1.3)$$

if we want to separate α from \mathbf{x} in order to emphasize that the variables α are treated differently from \mathbf{x}. Note that \mathcal{W}^+ acts on both \mathbf{x} and α.

We use a subscript \mathbf{x}, as in $M_{\mathbf{x}}$, to denote a $\mathcal{W}^+_\mathbf{x}$-module. Then for another sequence of variables \mathbf{y}, $|\mathbf{y}| = |\mathbf{x}|$, $M_{\mathbf{y}}$ denotes the corresponding module over $\mathcal{W}^+_\mathbf{y}$. Similarly, we use notation $\alpha M_{\mathbf{x}}$ for a $\alpha \mathcal{W}^+_\mathbf{x}$-module. We denote by $\mathbb{Q}_\mathbf{x}$ the algebra $\mathbb{Q}[\mathbf{x}]$ considered as a $\mathcal{W}^+_\mathbf{x}$-module with the standard action of \mathcal{W}^+.
Define the curvature of an infinite sequence of polynomials \(a = a_0, a_1, \ldots \in \mathbb{Q}[x]\) as a double sequence
\[
F_{m,n}[a] = \hat{L}_m a_n - \hat{L}_n a_m - (n - m) a_{m+n}.
\]
(1.3)
A sequence \(a\) is called \(\mathcal{W}^+\)-flat if its curvature is zero:
\[
F_{m,n}[a] = 0, \quad m, n \geq 0.
\]
(1.4)
For example, the sequence
\[
\pi'(x) \in \mathbb{Q}[x], \quad \pi'_m(x) = (m + 1)x^m,
\]
(1.5)
is obviously \(\mathcal{W}^+\)-flat.

A \(\mathcal{W}^+\)-flat sequence determines an automorphism of \(\mathcal{W}^+_x\):
\[
p \otimes L_m \mapsto p \otimes (L_m + a_m).
\]
(1.6)
This automorphism, in turn, determines an invertible endo-functor \(\langle a \rangle\) of the category \(\mathcal{W}^+_x - \text{gm}\) of graded left \(\mathcal{W}^+_x\)-modules and its derived category \(D(\mathcal{W}^+_x - \text{gm})\): the action of \(\mathcal{W}^+_x\) on a module \(M_x \langle a \rangle\) is the action on \(M_x\) modified by the automorphism \((1.6)\).

1.3. Nested derived categories. In this paper we consider only small categories. Let \(\text{Ad}\) be an additive category. Following the notations of Weibel’s book [24], \(\text{Ch}(\text{Ad})\) denotes the chain category, whose objects are complexes over \(\text{Ad}\), its morphisms being chain maps, while \(\text{K}(\text{Ad})\) denotes the homotopy category, its morphisms being chain maps modulo null-homotopies.

Since old and new constructions of triply graded link homology involve ‘nested’ homotopy and derived categories, we will use the following shortcut notations for derived categories of graded modules over algebras:
\[
\mathcal{Q}_x = D(\mathcal{Q}[x] - \text{gm}), \quad \mathcal{W}^+_x = D(\mathcal{W}^+_x - \text{gm}), \quad \alpha \mathcal{W}^+_x = D(\alpha \mathcal{W}^+_x - \text{gm}).
\]
(1.7)
The categories \((1.7)\) are additive, hence we may use the categories of complexes and homotopy categories over them, such as \(\text{Ch}(\mathcal{W}^+_x)\) and \(\text{K}(\mathcal{W}^+_x)\). We call these categories ‘nested’.

In addition to outer chain and homotopy categories, we also use ‘relative’ nested derived categories \(D_t(\mathcal{W}^+_x)\) and \(D_t(\alpha \mathcal{W}^+_x)\). First, consider a general setup. Suppose that two additive categories \(A\) and \(B\) are related by an additive ‘forgetful’ functor \(F: A \to B\) which is extended to the chain categories: \(F: \text{Ch}(A) \to \text{Ch}(B)\).

Definition 1.1. A morphism \(f \in \text{Hom}_{\text{Ch}(A)}(A_\bullet, B_\bullet)\) between two complexes in \(\text{Ch}(A)\) is called a \(F\)-isomorphism if \(F(f): F(A_\bullet) \to F(B_\bullet)\) is an isomorphism in \(\text{K}(B)\).
If \(f, g : A_\bullet \to B_\bullet \) are homotopic and \(f \) is a \(\mathcal{F} \)-isomorphism, then \(g \) is also a \(\mathcal{F} \)-isomorphism, hence the notion of \(\mathcal{F} \)-isomorphism extends to the homotopy category \(K(A) \).

The collection of \(\mathcal{F} \)-isomorphisms in \(K(A) \) is a saturated localizing system compatible with triangulation. Denote by \(D_r(A) \) the localization of \(K(A) \) relative to \(\mathcal{F} \)-isomorphisms (the index \(r \) means "relative"). It is a triangulated category and the localization functor \(\mathcal{Q} : K(A) \to D_r(A) \) is exact (see Lemma 5.3 and Proposition 5.5 in [1, Section 5]). The image \(\mathcal{Q}(A_\bullet) \) of an object \(A_\bullet \) in \(K(A) \) is isomorphic to the zero object in \(D_r(A) \) iff \(0 \to A_\bullet \) is a \(\mathcal{F} \)-isomorphism. This is also equivalent to the existence of a distinguished triangle

\[
A'_\bullet \xrightarrow{f} A''_\bullet \to A_\bullet \to A'_\bullet[1]
\]

in \(K(A) \) such that \(f : A'_\bullet \to A''_\bullet \) is a \(\mathcal{F} \)-isomorphism ([1, Lemma 6.7]).

The chain, homotopy, and relative derived category are related by functors:

\[
\begin{commutative_diagram}
\text{Ch}(A) & \longrightarrow & K(A) & \longrightarrow & D_r(A),
\end{commutative_diagram}
\]

where we denote by \(\mathcal{F}_\circ \) the composition of the quotient functor and the localization functor \(\mathcal{Q} \).

The definition of \(D_r(A) \) as the localization relative to \(\mathcal{F} \)-isomorphisms specializes to the definition of the derived category in two familiar cases. The first case is when \(A \) is the category of modules over an algebra \(A \) (over \(\mathbb{Q} \)), \(B \) is the category of \(\mathbb{Q} \)-vector spaces and \(\mathcal{F} \) forgets the \(A \)-module structure. Then \(D_r(A) \) is the derived category of \(A \)-modules. The second case is when \(A \) is again the category of modules over \(A \), \(B \) is the category of modules over its subalgebra \(B \subset A \) and \(\mathcal{F} : A \mod \to B \mod \) is the restriction functor. Then \(D_r(A) \) is the relative derived category \(D((A, B) \mod) \).

In this paper we use the ‘nested’ version of the second example. We set \(A = D(A \mod \text{gm}) \), \(B = D(B \mod \text{gm}) \) (algebras \(A, B \) are now graded), and \(\mathcal{F} \) is the restriction functor extended to these derived categories. The result is the nested relative derived category \(D_r(D(A \mod \text{gm})) \).

Note that its objects are triply graded: the first grading comes from \(A \), the second is the homological grading of \(D \) and the third is the homological grading of \(D_r \).

More specifically, we take \(A = \alpha \mathcal{W}_x^+ \), \(B = \mathbb{Q}[x] \), and \(\mathcal{F} \) restricts \(\alpha \mathcal{W}_x^+ \)-modules to \(\mathbb{Q}[x] \)-modules. Then we get the nested relative derived category \(D_r(\alpha \mathcal{W}_x^+) \). Overall, there is a
chain of functors

\[
\begin{array}{ccc}
\alpha W^+_x - \text{gm} & \xrightarrow{\text{abelian}} & \alpha W^+_x - \text{gm} = D(\alpha W^+_x - \text{gm}) \\
\downarrow & & \downarrow \\
\text{Ch}(\alpha W^+_x) & \longrightarrow & \text{K}(\alpha W^+_x) \longrightarrow \text{D}_t(\alpha W^+_x) \\
\text{derived} & & \text{nested}
\end{array}
\]

The category \(\text{D}_t(\alpha W^+_x)\) is a particular case of \(\text{D}_t(\alpha W^+_x)\) when the sequence \(\alpha\) is empty. Often we use a combined sequence of variables \(x, y\) instead of \(x\), thus getting the categories \(\text{D}_t(\alpha W^+_{x,y})\) and \(\text{D}_t(W^+_{x,y})\).

Since objects in nested categories are ‘complexes of complexes’, we have to distinguish between homotopy equivalences in the inner and outer categories. Hence we use notations \(\sim\) and \(\simeq\) for homotopy equivalence and quasi-isomorphism in the inner category, such as \(\text{Ch}(\alpha W^+_x - \text{gm})\), and \(\sim, \simeq\) for homotopy equivalence and \(\mathcal{F}\)-isomorphism in the outer category, such as \(\text{Ch}(\alpha W^+_x)\). When we need to distinguish between complexes in the inner and outer categories, we use a square bracket notation \([\ldots \rightarrow M_i \rightarrow M_{i+1} \rightarrow \ldots]\) for a complex in the inner category and a boxed notation \(\boxed{\ldots \rightarrow M_i \rightarrow M_{i+1} \rightarrow \ldots}\) for a complex in the outer category, with each \(M_i\) itself a complex.

1.4. **Derived partial tensor products.** In this paper we use two versions of the partial tensor product:

\[
(W^+_{x,y} - \text{gm}) \times (W^+_{y,z} - \text{gm})
\]

\[
\begin{array}{ccc}
W^+_{x,y,z} - \text{gm} & \xleftarrow{\otimes_y} & W^+_{x,z} - \text{gm} \\
& \otimes_y & \otimes_y
\end{array}
\]

Both versions correspond to the usual tensor product \(\otimes_{\mathbb{Q}[y]}\), while the action of the \(\mathbb{W}^+\) generators \(L_m\) is defined by the Leibnitz rule: \(L_m\) acts on a tensor product \(M_{x,y} \otimes_{\mathbb{Q}[y]} N_{y,z}\) of \(W^+\)-modules as \(L_m \otimes 1 + 1 \otimes L_m\). The difference between \(\otimes_y\) and \(\otimes_y\) is that the former remembers the \(\mathbb{Q}[y]\)-module structure, while the latter forgets it. In other words, the functor \(\otimes_y\) is the composition of \(\otimes_y\) and the functor of forgetting the \(\mathbb{Q}[y]\)-module structure. The following properties are shared by both products \(\otimes_y\) and \(\otimes_y\), and we will formulate them mostly for \(\otimes_y\).

Tensor products \(\otimes_y\) and \(\otimes_y\) extend in left-derived form to derived categories, *e.g.*

\[
W^+_{x,y} \times W^+_{y,z} \xrightarrow{\otimes_y} W^+_{x,z}
\]
and, further, to the chain and homotopy categories built over them:

\[K(W_{x,y}^+) \times K(W_{y,z}^+) \xrightarrow{\otimes_y} K(W_{x,z}^+) \]

(1.11)

Theorem 2.6 says that the latter tensor product descends directly to the nested relative derived categories such as \(D_r(W_{x,y}^+) \) without the need for any additional derivation:

\[D_r(W_{x,y}^+) \times D_r(W_{y,z}^+) \xrightarrow{\otimes_y} D_r(W_{x,z}^+) \]

(1.12)

When extra variables \(\alpha \) are present, we use the ‘left’ version of the tensor product (1.10):

\[\alpha W_{x,y}^+ \times \beta W_{y,z}^+ \xrightarrow{\otimes_y} \alpha W_{x,z}^+ \]

(1.13)

The name ‘left’ has nothing to do with derivation. It stems from the fact that the product \(\otimes_y \) keeps the \(\mathbb{Q}[\alpha]\)-module structure, while forgetting the \(\mathbb{Q}[\beta]\)-module structure. This tensor product also extends to nested relative derived categories

\[D_r(\alpha W_{x,y}^+) \times D_r(\beta W_{y,z}^+) \xrightarrow{\otimes_y} D_r(\alpha W_{x,z}^+) \].

extends to the homotopy category \(K(\alpha W_{x,y}^+) \) and to the derived category \(D_r(\alpha W_{x,y}^+) \).

For two finite sequences of variables \(x, y \) of the same length we use notation

\((y - x) = (y_1 - x_1, \ldots, y_n - x_n) \)

for the ideal in \(\mathbb{Q}[x,y] \) generated by the pairwise differences of corresponding variables. We introduce a special ‘diagonal’ \(\mathcal{W}_{x,y}^+ \)-module

\[\Delta_{x,y} = \mathbb{Q}_{x,y}/(y - x), \]

which has an obvious property: for any \(\mathcal{W}_{x,y}^+ \)-module \(M_x \) there is an isomorphism \(M_x \otimes_y \Delta_{x,y} \cong M_y \). This property persists at the derived level:

\[M_x \xrightarrow{L} \Delta_{x,y} \cong M_y. \]

Recall that \(L_m 1 = 0 \), where 1 is the unit element of \(\mathbb{Q}_{x,y} \).

1.5. Gradings. For an algebra \(\mathcal{A} \), let \(\mathcal{A}-\text{gm}_i \) denote the category of \(\mathbb{Z}^i \)-graded \(\mathcal{A} \)-modules. If \(\mathcal{A} \) is graded, then one grading matches the grading of \(\mathcal{A} \), while others have external origin. Sometimes we drop \(i \) and use notation \(\mathcal{A}-\text{gm} \).
The triply graded link homology construction involves three gradings called q-, a- and t-gradings. The corresponding degrees are denoted \deg_q, \deg_a and \deg_t, and the degree shifting functors are denoted q, a and t (e.g. q^2 is the functor that shifts the q-degree up by two).

We have already introduced the q-degree. The algebras $\mathbb{Q}[x]$ and $\alpha \mathcal{W}_x^+$ and their modules are q-graded:

$$\deg_q x = \deg_q \alpha = 2, \quad \deg_q L_m = 2m.$$ \hspace{1cm} (1.14)

Within the nested categories such as $\text{Ch}(\mathcal{W}_x^+)$ and $\text{Dr}(\mathcal{W}_x^+)$ the a-degree is the homological degree in the inner category, while the t-degree is the homological degree in the outer category. The a-degree and the t-degree may simultaneously take half-integer values, however, the total homological degree is their sum, hence all sign factors associated with homological parity are well-defined.

In order to avoid overloading the formulas, we will ignore the gradings everywhere, except in most important formulas defining the categorification of elementary braids (3.16) and the application of Hochschild homology (1.20) and (1.25) which define our construction.

1.6. **Outline of the homology construction.** For a set \mathfrak{A} and a small category \mathcal{C} notation $f : \mathfrak{A} \to \mathcal{C}$ means a map from the set \mathfrak{A} to the set of isomorphism classes of objects of \mathcal{C}. If \mathfrak{A} is a semi-group and \mathcal{C} has a monoidal structure, then we assume that f is a homomorphism: it intertwines the product in \mathfrak{A} with the product on the set of isomorphism classes induced by the monoidal structure.

For a topological object (a braid word, a braid or a link) τ we use notation $\llbracket \tau \rrbracket$ for the associated object or complex constructed though categorification of an algebraic invariant such as the HOMFLY-PT polynomial [8, 16]. The upper-left ‘check’ decoration $\check{\llbracket \tau \rrbracket}$ indicates that this is the original categorification of [9]. The upper-right dot $\dot{\llbracket \tau \rrbracket}$ indicates that a map $\llbracket - \rrbracket : \Xi \to \mathcal{C}$ from a set of topological objects Ξ to the (isomorphism classes of) objects of a category \mathcal{C} has a built-in invariance: there is an equivalence relation within Ξ and an equivalence relation between the objects of \mathcal{C}, so that if $\tau_1 \sim \tau_2$, then $\llbracket \tau_1 \rrbracket \sim \llbracket \tau_2 \rrbracket$, and as a result there is an unmarked bracket map $\llbracket - \rrbracket$ between the two quotient sets Ξ/\sim and \mathcal{C}/\sim.
1.6.1. **Original construction.** The following commutative diagram summarizes the Soergel bimodule \([20, 21]\) construction of the triply graded homology in \([9]\):

$$
\begin{array}{ccccccccc}
\mathcal{B}_n & \xrightarrow{\text{br}} & \mathcal{B}_n & \xrightarrow{\text{cl}} & \mathcal{L} \\
\downarrow \mathcal{B}_n \otimes \mathcal{B}_n & & \downarrow \mathcal{B}_n \otimes \mathcal{B}_n & & \downarrow \mathcal{L} \\
\text{Ch}(Q_{x,y}) & \xrightarrow{\text{HH}} & K(Q_{x,y}) & \xrightarrow{\text{HH}} & K(Q-\text{gm}_2) & \xrightarrow{\text{H}} & Q-\text{gm}_3
\end{array}
$$

(1.15)

where the category \(Q_{x,y} = D(Q[x]-\text{gm})\), see also formula (1.7).

The top row of the diagram is purely topological. \(\mathcal{B}_n\) is the semigroup of \(n\)-strand braid words, that is, a semigroup freely generated by the elements \(\sigma_i\) and \(\sigma_i^{-1}\), \(1 \leq i \leq n-1\). \(\mathcal{B}_n\) is the braid group and the map \(\text{br}\) turns \(\sigma_i\) and \(\sigma_i^{-1}\) into a braid group generator \(\sigma_i\) and its inverse \(\sigma_i^{-1}\). \(\mathcal{L}\) is the set of framed oriented links and the map \(\text{cl}\) performs the circular closure of a braid.

Sequences \(x\) and \(y\) appearing in \(Q_{x,y}\) contain \(n\) variables each, one per braid strand position: \(|x| = |y| = n\). The bracket \(\mathcal{B}_n\otimes \mathcal{B}_n\) maps braid words into Rouquier complexes \([17]\) of Soergel bimodules. The category \(Q_{x,y}\) has a monoidal structure coming from the derived tensor product over intermediate variables:

\[
Q_{x,y} \otimes Q_{y,z} \xrightarrow{b \otimes Q_{y,z}} Q_{x,z},
\]

(1.16)

and this structure extends to the chain category \(\text{Ch}(Q_{x,y})\). The bracket \(\mathcal{B}_n\) turns the product in \(\mathcal{B}_n\) into the tensor product (1.16), hence it is determined by its value on generators \(\sigma_i\) and \(\sigma_i^{-1}\).

In order to prove the existence of the map \(\mathcal{B}_n\) taking braids to isomorphism classes of objects in \(K(Q_{x,y})\) one has to verify that if two braid words \(w_1\) and \(w_2\) represent the same braid, \(\text{br}(w_1) = \text{br}(w_2)\), then their complexes are homotopy equivalent: \(\mathcal{B}_n[w_1] \sim \mathcal{B}_n[w_2]\).

The bracket \(\mathcal{B}_n\) has a ‘variable sliding’ property. Let \(b \in S_n\) be the symmetric group element corresponding to a braid \(b\), so that \(x_i\) and \(y_{b(i)}\) are variables at opposite ends of the same braid strand. Then endomorphisms \(\hat{x}_i, \hat{y}_{b(i)} \in \text{End}_{\text{Ch}(Q_{x,y})}(\mathcal{B}_n[x,y])\) of multiplication by \(x_i\) and \(y_{b(i)}\) are homotopic to each other:

\[
\hat{x}_i \sim \hat{y}_{b(i)}.
\]

(1.17)

Hochschild homology is a functor \(\text{HH}: Q_{x,y} \to Q-\text{gm}_2\), and the functor \(\text{HH}\) in the diagram is its extension to the homotopy categories over \(Q_{x,y}\) and \(Q-\text{gm}_2\). Finally, homology functor \(\text{H}(___)\) establishes an equivalence between categories \(K(Q-\text{gm}_2)\) and \(Q-\text{gm}_3\), so there is no additional benefit in introducing a dashed arrow mapping links into complexes of \(Q\)-vector
spaces. In order to prove the existence of the homology map $\mathcal{H}(-)$, one has to verify that if the closures of two braids β_1 and β_2 represent isotopic framed oriented links, then their homologies are isomorphic: $H(\HH(\beta_1, x, y)) \cong H(\HH(\beta_2, x, y))$.

Property (1.17) allows one to endow the link homology $\mathcal{H}(L)$ of a m-component link with the structure of a $\mathbb{Q}[\lambda]$-module, where the variables λ, $|\lambda| = m$ are assigned bijectively to link components. Since $\HH(-)$ and $H(-)$ are functors, there is a map

$$\text{End}_{\mathbb{K}(\mathbb{Q}_{x,y})}(\mathbb{K}_{x,y}) \rightarrow \text{End}_{\mathbb{Q}_{x,y}}(\mathcal{H}(L)),$$

where $L = \text{cl}(b)$. This map turns \hat{x}_i and \hat{y}_i into linear operators acting on $\mathcal{H}(L)$. For each link component L_k, $1 \leq k \leq m$ we choose a strand in the braid b which is a part of this component and define the action of λ_k either as \hat{x}_i or as $y_{b(i)}$, the variables x_i and $y_{b(i)}$ corresponding to the endpoints of that strand. Equation (1.17) guarantees that the action of λ does not depend on the choice of strands which represent link components.

1.6.2. New construction. The following commutative diagram outlines our modification of the previous triply graded homology construction:

$$\begin{array}{cccccccc}
\mathcal{B}_n & \xrightarrow{br} & \mathcal{B}_n & \xrightarrow{cl} & \mathcal{B}_n^{(s)} & \xrightarrow{H} & W^+_{\lambda} - \text{gm}_3 \\
\text{Ch}(W_{x,y}^+) & \xrightarrow{\mathcal{F}_x} & \mathcal{D}_1(W_{x,y}^+) & \xrightarrow{\mathcal{H}H_{x,y}} & W^+_{x} & \xrightarrow{\mathcal{F}_x} & W^+_{\lambda} \\
\text{Ch}(\alpha W_{x,y}^+) & \xrightarrow{\mathcal{F}_x} & \mathcal{D}_1(\alpha W_{x,y}^+) & \xrightarrow{\mathcal{H}H_{x,y}} & W^+_{\alpha} \\
\end{array}$$

(1.18)

The relative complexity of this diagram is due to the appearance of extra variables α, $|\alpha| = n$, associated with braid strands and variables λ, $|\lambda| = m$, associated with link components.

All categories in the diagram (1.18) have q-, a- and t-gradings. The grading of nested categories is described in subsection 1.5 t-grading is also the homological grading of derived categories and W^+_x, W^+_λ and W^+_α, while their modules have q-grading coming from (1.14) as well as a-grading.

The top line in the diagram (1.18) is almost the same as in the diagram (1.15), except that in the middle we had to restrict the braid group \mathcal{B}_n to the subset of braids $\mathcal{B}_n^{(s)} \subset \mathcal{B}_n$ which correspond to a permutation $s \in S_n$. This restriction is convenient, because the permutation s determines the replacement of variables x and braid strand variables α by link component
variables λ performed by the functors $F_{x;\lambda}^{(k)}$ and $F_{\alpha;\lambda}^{(k)}$. L_m is the set of m-component framed oriented links.

The bracket $[[\quad]]_{x,y}$ is essentially the same as $[[\quad]]_{x,y}$ in the previous diagram (1.15): it turns a braid word into a complex of Soergel bimodules (with the differential acting in the second homological direction) representing an object of the category $\text{Ch}(W_x^+, W_x^-, W_{x,y}^+, W_{x,y}^-)$, while intertwining the products of braid words and braids with the tensor products (1.11) and (1.12)

$$[[w_1 w_2]_{x,z}] \cong [[w_1]_{x,y}] \otimes_y [[w_2]_{y,z}]$$

(1.19)

(according to Remark 3.1, the ordinary tensor product in the r.h.s. is F-isomorphic to the derived one with respect to $W_{x,y}^+$). However, this time Soergel bimodules are endowed with the $W_{x,y}$-module structure coming from the standard action of W^+ on x and y. As a result of this additional structure, the map $[[\quad]]_{x,y}$ preserves the braid relation only up to F-isomorphism, hence the definition of the map $[[\quad]]_{x,y}$ requires taking a quotient over F-isomorphisms performed by the functor $F_{x;\lambda}$.

The functor $\mathcal{HH}_{x,y}$ in the diagram is a modified Hochschild homology. The Hochschild homology specialized to our case is the functor

$$W_{x,y}^+ \xrightarrow{\mathcal{HH}_{x,y}} W_x^+ - gm_2,$$

$$\mathcal{HH}_{x,y}(-) = (at^{-1})^\frac{1}{2^m} H(- \otimes_{x,y} \Delta_{x,y}),$$

(1.20)

where the bar over x indicates that we remember the action of the whole W_x^+, including $Q[x]$, on the Hochschild homology. This functor extends to the functor from nested relative derived category to an ordinary relative derived category:

$$D_r(W_{x,y}^+) \xrightarrow{\mathcal{HH}_{x,y}} D((W_x^+, Q[x]) - gm_2).$$

The functor $\mathcal{HH}_{x,y}$ is the composition of the latter functor with the standard forgetful functor from the relative to the absolute derived category:

$$D_r(W_{x,y}^+) \xrightarrow{\mathcal{HH}_{x,y}} D((W_x^+, Q[x]) - gm_2) \xrightarrow{\mathcal{HH}_{x,y}} W_x^+.$$

(1.21)

Keeping the $Q[x]$-module structure within the Hochschild homology might violate its trace-like property important for ensuring the invariance under the first Markov move. However, we will show that this problem disappears for Soergel bimodules after the application of the renaming functor $F_{x;\lambda}^{(s)}$. The permutation $s \in S_n$ corresponding to a braid determines the split of initial strand positions $\{1, \ldots, n\}$ into cycle subsets:

$$\{1, \ldots, n\} = \bigcup_{i=1}^{m} c_i,$$
each subset corresponding to a component of the link constructed by the cyclic closure of the braid. We choose an element $k_i \in \mathcal{C}_i$ in each cycle subset thus forming a sequence k_i, $|k| = m$. The functor $\mathcal{F}^{(k)}_{x,\lambda}$ renames variables x_{k_i} into λ_i, while forgetting the action of all other variables $\{x \} \setminus \{x_{k_1}, \ldots, x_{k_m}\}$. We will show that the application of this functor to the Hochschild homology (1.21) of the bracket of a braid

$$\mathcal{F}^{(k)}_{x,\lambda}(\widehat{\text{HH}}_{x,y}(\llcorner \llcorner_{x,y}))$$

(1.22)
does not depend on the choice of the representatives k_i within each cycle.

1.6.3. **Braid strand variables.** We introduce auxiliary variables α, $|\alpha| = n$, into the categorification construction. They help to prove that the composition of maps (1.22) does not depend on the choice of cycle representatives in the definition of $\mathcal{F}^{(s)}_{x,\lambda}$. In addition, we will use them to capitalize on the property (1.17) of the original categorification complex $\llcorner b \llcorner_{x,y}$.

The braid strand variables α are introduced through the functors

$$\mathcal{W}^+_{x,y} - \text{gm} \xrightarrow{\text{g}_{\alpha=x}} \alpha \mathcal{W}^+_{x,y} - \text{gm},$$

(1.23)

which turn a $\mathcal{W}^+_{x,y}$-module $M_{x,y}$ into a $\alpha \mathcal{W}^+_{x,y}$-module $\alpha M_{x,y} = M_{x,y}$ by making generators α act as x. This functor $\text{g}_{\alpha=x}(-) = - \otimes x \Delta x$ essentially doubles variables x to variables x, α. We will also use a similarly defined functor $\text{g}_{\alpha=y}$ which doubles variables y. Functors $\text{g}_{\alpha=x}$ appearing in the diagram (1.18) are the extensions of the original functor (1.23) to the nested categories.

The new feature of α is that these variables can ‘slide’ along braid strands. Let \bar{b} be a permutation associated with a braid b and let $\bar{b}(\alpha)$ denote the variables α permuted by \bar{b}. In subsection [5.1] we prove the following theorem:

Theorem 1.2. The result of doubling the action of x on $\llcorner b \llcorner_{x,y}$ with α is \mathcal{F}-isomorphic (in the outer category Ch) to the doubling of y with $\bar{b}(\alpha)$:

$$\text{g}_{\alpha=x}(\llcorner b \llcorner_{x,y}) \simeq \text{g}_{\bar{b}(\alpha)=y}(\llcorner b \llcorner_{x,y}).$$

(1.24)

Monoidal structure within the categories $\text{Ch}(\alpha \mathcal{W}^+_{x,y})$ and $D_i(\alpha \mathcal{W}^+_{x,y})$ is defined by the left tensor product \otimes^L_Y of the diagram (1.13). Since this tensor product does not impact the action of α, the doubling functor $\text{g}_{\alpha=x}$ intertwines the tensor products \otimes_Y and \otimes^L_Y: for any two modules $M_{x,y}$ and $N_{x,y}$,

$$\text{g}_{\alpha=x}(M_{x,y}) \otimes^L_Y \text{g}_{\beta=y}(N_{x,y}) \simeq \text{g}_{\alpha=x}(M_{x,y} \otimes_Y N_{x,y}).$$

As a consequence, the composite brackets

$$\alpha \llcorner \llcorner_{x,y} = \text{g}_{\alpha=x}(\llcorner \llcorner_{x,y}), \quad \alpha \llcorner \llcorner_{x,y} = \text{g}_{\alpha=x}(\llcorner \llcorner_{x,y})$$
intertwine the products within \mathfrak{B}_n and \mathfrak{B}_n with $\frac{1}{i} \otimes \gamma$.

The Hochschild homology in the presence of braid strand variables is a functor
\[
\alpha W^+_{x,y} \xrightarrow{\text{HH}_{x,y}} W^+_\alpha - \text{gm}, \quad \text{HH}_{x,y}(-) = (at^{-1})^\frac{1}{2} n H(- \otimes_{x,y} \Delta_{x,y}), \quad (1.25)
\]
extended to derived categories:
\[
\begin{array}{ccc}
D_i(\alpha W^+_{x,y}) & \xrightarrow{\text{HH}_{x,y}} & D_i(W^+_\alpha) \\
& \text{HH}_{x,y} & \text{HH}_{x,y}
\end{array}
\xrightarrow{(at^{-1})^\frac{1}{2} n H_{W^+}} W^+_\alpha, \quad (1.26)
\]
where H_{W^+} is the homology taken with respect to the differential of the inner category W^+_α in the nested category $D_i(W^+_\alpha)$.

Note that the diagonal module $\Delta_{x,y}$ has no α action. The functor $\mathcal{F}_{x \to \alpha}$ renames the variables x into α, and the commutativity of the subdiagram
\[
\begin{array}{ccc}
D_i(W^+_{x,y}) & \xrightarrow{\text{HH}_{x,y}} & W^+_x \\
\varphi_{\alpha \to x} & \text{HH}_{x,y} & \varphi_{\alpha \to x}
\end{array}
\xrightarrow{\mathcal{F}_{x \to \alpha}} W^+_\lambda
\]
of the diagram (1.18) is obvious.

The trace-like property of this Hochschild homology:
\[
\text{HH}_{x,z}(\alpha \otimes b_1 \otimes b_2) \simeq \text{HH}_{x,z}(\varphi_{1(\alpha)} \otimes b_2 \otimes b_1),
\]
is established with the help of the sliding property (1.24). The sliding property also leads to the following theorem proved in subsection 5.2:

Theorem 1.3. The action of the renaming functor $\mathcal{F}_{\alpha;\lambda}^{(k)}$ on the Hochschild homology of the braid bracket does not depend on the choice of braid strands k_i representing link components: for two sequences of strands k and k' there is a \mathcal{F}-isomorphism
\[
\mathcal{F}_{\alpha;\lambda}^{(k)}(\text{HH}_{x,y}(\alpha \otimes b_1 \otimes b_2)) \simeq \mathcal{F}_{\alpha;\lambda}^{(k')}(\text{HH}_{x,y}(\alpha \otimes b_1 \otimes b_2)),
\]
Corollary 1.4. The object \(\mathcal{F}^{(k)}_{\alpha, \lambda}(\mathcal{H}^x_y(\alpha \llbracket b \rrbracket_{x, y})) \) of \(W_\alpha^+ \) is determined up to isomorphism only by the braid \(b \), so there exists a map \(\lambda \llbracket - \rrbracket \) which makes the following diagram commutative:

\[
\begin{array}{c}
\mathcal{B}_n \xrightarrow{\alpha \llbracket - \rrbracket_{x, y}} \mathcal{B}_n^{(s)} \\
\downarrow \downarrow \downarrow \\
\mathcal{D}_r(\alpha W_{x, y}^+) \rightarrow W_\alpha^+ \rightarrow W_\lambda^+
\end{array}
\]

Finally, we show in subsection 5.3 that the bracket \(\lambda \llbracket - \rrbracket \) is invariant under Markov moves up to a connection shift \(\langle \pi'(\lambda_i) \rangle \), where \(\pi'(x) \) is defined by (1.5), caused by the change in framing of the \(i \)-th link component, so this bracket is an invariant of the framed link \(L \) constructed by closing the braid \(b \).

1.7. Results. Our main results are Theorems 4.1 and 5.6 which state the existence and uniqueness of the maps

\[
\mathcal{B}_n \xrightarrow{\alpha \llbracket - \rrbracket_{x, y}} \mathcal{D}_r(\alpha W_{x, y}^+) \quad \mathcal{D}_m \xrightarrow{\llbracket - \rrbracket} W_\lambda^+
\]

in the diagram (1.18) after we define properly the map

\[
\tilde{\mathcal{B}}_n \xrightarrow{\alpha \llbracket - \rrbracket_{x, y}} \text{Ch}(\alpha W_{x, y}^+) \quad \text{(1.27)}
\]

Moreover, we show that if a framed link \(L' \) is obtained from a link \(L \) by increasing the framing of its \(i \)-th component by one, then \(\llbracket L' \rrbracket \simeq \llbracket L \rrbracket \langle -\pi'(\lambda_i) \rangle \).

2. Preliminaries

2.1. Simplifying objects in a relative derived category. Consider a general definition of a relative derived category \(\mathcal{D}_r(A) \) described in subsection 1.3: \(A \) and \(B \) are additive categories related by an additive functor \(F: A \rightarrow B \).

Theorem 2.1. Suppose that for three complexes \(A_\bullet, B_\bullet \) and \(C_\bullet \) of \(\text{Ch}(A) \) there exists a sequence of chain maps

\[
B_\bullet \xrightarrow{f} A_\bullet \xrightarrow{g} C_\bullet
\]
such that after the application of \mathcal{F} it splits:

\[
\begin{array}{c}
\mathcal{F}(B_\ast) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(A_\ast) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(C_\ast) \\
\mathcal{F}(B_\ast) \oplus \mathcal{F}(C_\ast) \xrightarrow{(1,0)} \mathcal{F}(B_\ast) \oplus \mathcal{F}(C_\ast) \xrightarrow{(0,1)} \mathcal{F}(B_\ast) \oplus \mathcal{F}(C_\ast)
\end{array}
\]

Then

\[
A_\ast \simeq \begin{cases}
C_\ast & \text{if } \mathcal{F}(B_\ast) \text{ is contractible,} \\
B_\ast & \text{if } \mathcal{F}(C_\ast) \text{ is contractible,}
\end{cases}
\tag{2.1}
\]

where \simeq denotes a \mathcal{F}-isomorphism in $\text{Ch}(A)$.

Proof. If $\mathcal{F}(C_\ast)$ is contractible, then $\mathcal{F}(f)$ is a homotopy equivalence in $\text{Ch}(B)$, hence f is a \mathcal{F}-isomorphism by definition.

If $\mathcal{F}(B_\ast)$ is contractible, then $\mathcal{F}(g)$ is a homotopy equivalence in $\text{Ch}(B)$, hence g is a \mathcal{F}-isomorphism by definition. \qed

2.2. Derived partial tensor product.

2.2.1. Equivariant resolutions. The derived partial tensor product (1.10) can be computed with the help of a projective resolution. It is sufficient to resolve one factor: for example,

\[
M_{x,y} \overset{1}{\otimes_y} N_{y,z} \simeq \mathcal{P}^\ast(M_{x,y}) \otimes_y N_{y,z},
\]

the resolution complex $\mathcal{P}^\ast(M_{x,y})$ consisting of projective $W^+_{x,y}$-modules.

Definition 2.2. Consider a semi-direct product $A \rtimes \mathfrak{g}$, where $\mathfrak{g} \subseteq \text{Der}(A)$ is a Lie algebra acting on an algebra A by derivations. A \mathfrak{g}-equivariant A-projective resolution of an $A \rtimes \mathfrak{g}$-module M is a complex in $\text{Ch}(A \rtimes \mathfrak{g} \mod)$ which is a projective resolution of M in $\text{Ch}(A - \mod)$.

Theorem 2.3. If $\mathcal{P}^\ast_{W^+}(M_{x,y})$ is a W^+-equivariant $\mathbb{Q}[x,y]$-projective resolution of $M_{x,y}$, then

\[
M_{x,y} \overset{1}{\otimes_y} N_{y,z} \simeq \mathcal{P}^\ast_{W^+}(M_{x,y}) \otimes_y N_{y,z}.
\]

In other words, a W^+-equivariant resolution is sufficient for the computation of the derived partial tensor product $\overset{1}{\otimes_y}$.

Proof. If C_\ast is the Chevalley-Eilenberg resolution of the trivial W^+-module, then the tensor product $C_\ast \otimes \mathcal{P}^\ast_{W^+}(M_{x,y})$ (with W^+ acting on this tensor product by the Leibnitz rule) is a
\(\mathcal{W}_{x,y}^+ \)-projective resolution of \(M_{x,y} \), hence
\[
M_{x,y} \overset{L}{\otimes}_y N_{y,z} \simeq (C \otimes P_{W^+}(M_{x,y})) \otimes_y N_{y,z} \simeq C \otimes (P_{W^+}(M_{x,y}) \otimes_y N_{y,z}) \simeq P_{W^+}(M_{x,y}) \otimes_y N_{y,z}.
\]

2.2.2. Partial tensor products of semi-free modules.

A \(\mathcal{W}_{x,y}^+ \)-module \(M_{x,y} \) is called semi-free if it is free as a \(\mathbb{Q}[x] \)-module and as a \(\mathbb{Q}[y] \)-module. All elementary Soergel bimodules introduced in subsection 3.1 are semi-free, and their partial derived tensor products can be replaced by the ordinary ones in view of the following corollary of Theorem 2.3:

Corollary 2.4. If modules \(M_{x,y} \) and \(N_{x,y} \) are semi-free then
\[
M_{x,y} \overset{L}{\otimes}_y N_{y,z} \simeq M_{x,y} \otimes_y N_{y,z},
\]
and this tensor product is also semi-free as a \(\mathcal{W}_{x,z}^+ \)-module.

By definition, a free finitely generated \(q \)-graded \(\mathbb{Q}[x] \)-module \(M \) has a presentation
\[
M = \bigoplus_{i \in \mathbb{Z}} m_i q^i \mathbb{Q}[x],
\]
where \(q \) is the \(q \)-degree shift functor and \(m_i \in \mathbb{Z} \) are the multiplicities. We define the \(q \)-rank of \(M \) as a Laurent polynomial
\[
\text{rank}_q M = \sum_{i \in \mathbb{Z}} m_i q^i. \tag{2.2}
\]

Let \(\text{rank}_{x,q} M_{x,y} \) denote the \(\mathbb{Q}[x] \) \(q \)-rank of a semi-free module \(M_{x,y} \). The following is obvious:

Proposition 2.5. If modules \(M_{x,y} \) and \(N_{x,y} \) are semi-free then
\[
\text{rank}_{x,q}(M_{x,y} \otimes_y N_{y,z}) = (\text{rank}_{x,q} M_{x,y})(\text{rank}_{y,q} N_{y,z}).
\]

2.2.3. Partial tensor product in nested derived categories.

Theorem 2.6. There exists a unique (up to isomorphism) functor (1.12) which makes the following diagram commutative:

\[
\begin{array}{ccc}
\text{Ch}(\mathcal{W}_{x,y}^+) \times \text{Ch}(\mathcal{W}_{y,z}^+) & \overset{\otimes}{\longrightarrow} & \text{Ch}(\mathcal{W}_{x,z}^+) \\
\downarrow \scriptstyle{\mathcal{F}_{\otimes}} & & \downarrow \scriptstyle{\mathcal{F}_{\otimes}} \\
\text{D}_{t}(\mathcal{W}_{x,y}^+) \times \text{D}_{t}(\mathcal{W}_{y,z}^+) & \overset{\otimes}{\longrightarrow} & \text{D}_{t}(\mathcal{W}_{x,z}^+)
\end{array}
\]

This theorem is a particular case of the following lemma:
Lemma 2.7. Suppose that we have two pairs of additive categories related by additive functors: \(A_1 \xrightarrow{\mathcal{F}_1} B_1 \) and \(A_2 \xrightarrow{\mathcal{F}_2} B_2 \). If for a functor \(A_1 \xrightarrow{\mathcal{F}_A} A_2 \) there exists a functor \(B_1 \xrightarrow{\mathcal{F}_B} B_2 \) such that the following square is commutative:

\[
\begin{array}{ccc}
A_1 & \xrightarrow{\mathcal{F}_A} & A_2 \\
\downarrow{\mathcal{F}_1} & & \downarrow{\mathcal{F}_2} \\
B_1 & \xrightarrow{\mathcal{F}_B} & B_2
\end{array}
\]
(2.3)

(functors \(\mathcal{F}_2 \circ \mathcal{F}_A \) and \(\mathcal{F}_B \circ \mathcal{F}_1 \) are isomorphic), then the functor \(\mathcal{F}_A \) extends to the derived categories:

\[
\mathcal{D}_{\mathcal{F}_1}(A_1) \xrightarrow{\mathcal{F}_A} \mathcal{D}_{\mathcal{F}_2}(A_2).
\]

Proof. It is sufficient to show that if there is a \(\mathcal{F}_1 \)-isomorphism \(A_\bullet \xrightarrow{f} A'_\bullet \) between the objects of \(\text{Ch}(A_1) \), then its image \(\mathcal{F}_A(A_\bullet) \xrightarrow{\mathcal{F}_A(f)} \mathcal{F}_A(A'_\bullet) \) is a \(\mathcal{F}_2 \)-isomorphism. Indeed, by Definition \(1.1 \) \(\mathcal{F}_1(f) \) is an isomorphism in \(K(B_1) \), hence \(\mathcal{F}_B \circ \mathcal{F}_1(f) \) is an isomorphism in \(K(B_2) \). Commutativity of the square (2.3) means that \(\mathcal{F}_2 \circ \mathcal{F}_A(f) = \mathcal{F}_B \circ \mathcal{F}_1(f) \), hence \(\mathcal{F}_2 \circ \mathcal{F}_A(f) \) is an isomorphism in \(K(B_2) \) and by Definition \(1.1 \) \(\mathcal{F}_A(f) \) is a \(\mathcal{F}_1 \)-isomorphism in \(\mathcal{D}_{\mathcal{F}_2}(A_2) \).

Proof of Theorem 2.6. The theorem follows from the previous lemma when we observe that the original derived tensor product (1.16) plays the role of the functor \(\mathcal{F}_B \). □

2.3. \(\mathcal{W}_x^+ \)-modules and \(\mathfrak{M}^+ \)-connections.

2.3.1. Notations for connections. If two \(\mathcal{W}_x^+ \)-modules \(M \) and \(N \) have finite numbers of generators as \(\mathbb{Q}[x] \)-modules, then we describe the homomorphisms between them by matrices relative to these generators: \(M \xrightarrow{A} N \), where \(A \) is a matrix with polynomial entries

If a \(\mathcal{W}_x^+ \)-module \(M \) has a finite number of generators \(v = v_1, \ldots, v_k \in M \) as a \(\mathbb{Q}[x] \)-module, then the action of \(\mathfrak{M}^+ \) on \(M \) can be described by a sequence of \(k \times k \) matrices with polynomial entries \(A = A_0, A_1, \ldots, A_m = \|a_{m;ij}\| \) giving the action of derivations \(\nabla_m \), representing the algebra generators \(L_m \), on module generators \(v \):

\[
\nabla_m v_i = \sum_{j=1}^{k} a_{m;ij} v_j.
\]

We refer to the sequence \(A \) as connection and use notation \((M, A) \) for this \(\mathcal{W}_x^+ \)-module, reserving a simple notation \(M \) for the case when all matrices \(A \) are zero. If \(M \) has a single generator \(v \), that is, \(M \cong \mathbb{Q}[x]/I \), where \(I \) is a \(\mathfrak{M}^+ \)-invariant \(\mathbb{Q}[x] \)-ideal, then the connection matrices \(A \) are reduced to numbers \(a \) such that \(L_m v = a_m v \), and the notation for the module becomes \((M, a) \).
Proposition 2.8. A \(\mathbb{Q}[x] \)-homomorphism between two \(\mathcal{W}_x^+ \)-modules with single generators

\[
f: (M, a) \xrightarrow{p} (M', a')
\]
is a \(\mathcal{W}_x^+ \)-homomorphism iff the polynomial \(p \in \mathbb{Q}[x] \) satisfies the condition

\[
\hat{L}_m p = (a_m - a'_m) p \mod I',
\]
where \(I' \subset \mathbb{Q}[x] \) is the ideal such that \(M' \cong \mathbb{Q}[x]/I' \).

Proof. It is sufficient to verify \(\mathcal{W}_x^+ \)-equivariance of the action of \(f \) on the generator \(v \) of \(M \):

\[
\nabla'_m f(v) - f(\nabla_m v) = (\hat{L}_m p) v' + p a_m' v' - p a_m v' = (\hat{L}_m p - p(a_m - a'_m)) v',
\]
where \(v' \) is the generator of \(M' \). \(\square \)

2.3.2. Flat sequences. As we explained in the introduction, a sequence of polynomials \(a \in \mathbb{Q}[x] \) is called flat if it satisfies the property (1.4). A flat sequence \(a \) determines an automorphism (1.6) of \(\mathcal{W}_x^+ \) and, consequently, an endo-functor \(\langle a \rangle \). Obviously, \((M, A) \langle a \rangle = (M, A + a \mathbf{1}) \), where \(\mathbf{1} \) is the \(k \times k \) identity matrix.

We have two examples of flat sequences. The first one is described in the introduction: it is \(\pi'(x) \in \mathbb{Q}[x] \), where \(\pi_m'(x) = (m+1)x^m \), and its flatness is verified by a direct calculation.

The second example originates from a ‘gauge transformation’.

Theorem 2.9. If for a polynomial \(p \in \mathbb{Q}[x] \) there exists a sequence of polynomials \(a \in \mathbb{Q}[x] \) such that

\[
\hat{L}_m p = a_m p
\]
for all \(m \geq 0 \), then the sequence \(a \) is flat.

Proof. Consider the action of \(\mathcal{W}_x^+ \) on the field of fractions of \(\mathbb{Q}[x] \). Then the modified generators \(L'_m = L_m + a_m \) are the result of ‘conjugation of \(L_m \) by \(p \):

\[
\hat{L}_m' = p^{-1} \circ \hat{L}_m \circ \hat{p},
\]
where \(\hat{p} \) denotes the operator of multiplication by \(p \). Hence the commutation relations between the generators \(L'_m \) are the same as those between \(L_m \). \(\square \)

The polynomial \(y - x \in \mathbb{Q}[x, y] \) satisfies the condition (2.5):

\[
\hat{L}_m (y - x) = \pi_m(x, y) (y - x),
\]
where

\[
\pi_m(x, y) = \frac{y^{m+1} - x^{m+1}}{y - x} = \sum_{i=0}^{m} x^i y^{m-1}, \tag{2.6}
\]
hence $\pi(x, y)$ is a flat sequence.

Note that flat sequences for $Q[x]$ form a Q-vector space, since a linear combination of flat sequences is flat.

2.3.3. Connections in Koszul complexes. For a sequence of polynomials $p \in Q[x]$, $|x| = n$, $|p| = k$, consider the quotient $Q[x]$-module $M = Q[x]/(p)$. This module has a single generator v, which represents $1 \in Q[x]$.

Suppose that the ideal (p) is invariant under the standard action of W^+ on $Q[x]$, that is, there exist $k \times k$ matrices $A = A_0, A_1, \ldots$ with polynomial entries: $A_m = ||a_{m;ij}||$, $a_{m;ij} \in Q[x]$, $m \geq 0$, $1 \leq i, j \leq k$, which satisfy the relation

$$\hat{L}_m \vec{p} = A_m \vec{p}, \quad \vec{p} = \begin{pmatrix} p_1 \\ \vdots \\ p_k \end{pmatrix}, \quad \vec{p} \in Q[x]^k. \quad (2.7)$$

Then (p) is invariant under the full action of W_\times^+ and M has a structure of W_\times^+-module with trivial connection: $\nabla_m v = 0$.

As a $Q[x]$-module, $M = Q[x]/(p)$ has an associated Koszul complex $P^\bullet(M) = Q[x, \theta]$, where θ, $|\theta| = k$, are odd variables ($\theta_i \theta_j + \theta_j \theta_i = 0$, $\theta_i^2 = 0$) of homological degree -1 and the differential is

$$d = \sum_{i=1}^n p_i \hat{c}_{\theta_i}, \quad (2.8)$$

where $\hat{c}_{\theta_i} \theta_j = \delta_{ij}$. In order to endow $P^\bullet(M)$ with a W^+-equivariant structure, we define an action of the generators L_m on $P^\bullet(M)$ by the formula

$$\nabla_m = \hat{L}_m + \hat{A}_m, \quad \hat{A}_m = \sum_{i,j=1}^k a_{m;ij} \theta_j \hat{c}_{\theta_i}. \quad (2.9)$$

Proposition 2.10. The derivations (2.9) commute with the differential d: $[d, \nabla_m] = 0$.

Proof. The proposition is proved by a direct calculation:

$$-[d, \hat{L}_m] = [d, \hat{A}_m] = \sum_{i,j=1}^k a_{m;ij} p_j \hat{c}_{\theta_i}. \quad \square$$

Define the curvature of a sequence A of $k \times k$ matrices with polynomial entries as a double sequence of matrices

$$F_{m,n}[A] = \hat{L}_m A_n - \hat{L}_n A_m + [A_n, A_m] - (n - m) A_{m+n}$$

(cf. eq. (1.3)).
Theorem 2.11. The Koszul complex $\mathcal{P}^*(M) = \mathbb{Q}[x, \theta]$ with the differential (2.8) and the action of \mathcal{W}^+ given by the derivations (2.9) is \mathcal{W}^+-equivariant if the matrices A satisfy the relation

$$F_{m,n}[A] = 0, \quad m, n \geq 0.$$ \hfill (2.10)

Proof. It is easy to check that the relation (2.10) is equivalent to the condition $[\nabla_m, \nabla_n] = (n - m)\nabla_{m+n}$, the latter guaranteeing that derivations ∇_m represent the algebra \mathcal{W}^+. \square

Remark 2.12. The condition (2.7) does not define the matrices A_m uniquely.

Remark 2.13. Combining the structure relations (1.1) with relations (2.7) we find that the matrices A_m satisfy the relations

$$F_{m,n}[A] \bar{p} = 0.$$ \hfill (2.11)

This relation is weaker than the condition (2.10) for the Koszul complex $\mathcal{P}^*(M)$ to be \mathcal{W}^+-equivariant.

3. Categorification of the braid word semi-group by \mathcal{W}^+-equivariant Soergel bimodules

3.1. Elementary \mathcal{W}^+-equivariant Soergel bimodules. For a positive integer m, the elementary \mathcal{W}^+-equivariant Soergel bimodule $\mathcal{S}_m = \mathcal{S}_{m;x,y}$ is a $\mathcal{W}_{x,y}^+$-module

$$\mathcal{S}_m = \mathbb{Q}_{x,y}/I_{S_m}, \quad I_{S_m} = (e_1(y) - e_1(x), \ldots, e_m(y) - e_m(x)),$$

where $|x| = |y| = m$ and the $\mathbb{Q}[x,y]$-ideal I_{S_m} is generated by the differences of elementary symmetric polynomials $e_k(x) = \sum_{1 \leq i_1 < \ldots < i_k \leq m} x_{i_1} \cdots x_{i_k}$. $L_n e_i(x)$ is also a symmetric polynomial, hence $L_n (e_i(y) - e_i(x)) \in I_{S_m}$, and \mathcal{S}_m has a $\mathcal{W}_{x,y}^+$-module structure.

For $|x| = |y| = n$ an extended elementary Soergel bimodule $\mathcal{S}^i_{m;x,y}$ ($i + m \leq n + 1$) is a $\mathcal{W}_{x,y}^+$-module defined as the following tensor product:

$$\mathcal{S}^i_{m;x,y} = \Delta_{x',y'} \otimes \mathcal{S}_{m;x'',y''} \otimes \Delta_{x'',y''},$$ \hfill (3.1)

where $x' = x_1, \ldots, x_{i-1}$, $x'' = x_i, \ldots, x_{i+m-1}$, $x''' = x_{i+m}, \ldots, x_n$ and y', y'' and y''' are defined analogously.

Remark 3.1. All extended elementary Soergel bimodules are semi-free with q-ranks

$$\text{rank}_{x,q} \mathcal{S}^i_{m;x,y} = \text{rank}_{y,q} \mathcal{S}^i_{m;x,y} = [m]_q!,$$

where

$$[m]_q = \frac{q^m - 1}{q^2 - 1}, \quad [m]_q! = \prod_{i=1}^{m} [i]_q.$$
According to Corollary 2.4, all other Soergel bimodules defined as their partial tensor products, are also semi-free, their derived partial tensor products are quasi-isomorphic to the ordinary ones and their ranks are determined by Proposition 2.5.

First three \mathfrak{W}^+-equivariant elementary Soergel bimodules are especially important and we denote them as

$$M_i = \mathcal{J}_1, \quad M_x = \mathcal{J}_2, \quad M_y = \mathcal{J}_3. \quad (3.3)$$

The bimodule $M_i = \Delta_{x,y} = \mathbb{Q}_{x,y}/(y - x)$ represents the identity endo-functor acting on the category of \mathcal{W}_x^+-modules: for any such module M_x there is a canonical isomorphism

$$M_y \cong M_x \otimes_{\mathbb{Q}[x]} M_{i;xy}.$$

Now we set $n = 2$, that is, $x = x_1, x_2$ and $y = y_1, y_2$, and consider two $\mathcal{W}_{x,y}^+$-modules:

$$M_i = \Delta_{x,y} = \mathbb{Q}_{x,y}/I_i, \quad I_i = (y_1 - x_1, y_2 - x_2),$$

$$M_x = \mathcal{J}_2 = \mathbb{Q}_{x,y}/I_x, \quad I_x = (\rho, y_1 y_2 - x_1 x_2), \quad (3.4)$$

where $\rho = y_1 + y_2 - x_1 - x_2$. Sometimes it is convenient to choose an ‘asymmetric’ set of generators for the ideals:

$$I_i = (\rho, y_2 - x_2), \quad I_x = (\rho, (y_2 - x_2)(y_2 - x_1)). \quad (3.5)$$

For brevity, we use notation $\pi = \pi(x_1, x_2)$, where $\pi = \pi_0, \pi_1, \ldots$. Note the relations between various polynomials π as they act on these bimodules:

$$\pi = \pi(x_1, x_2) = \pi(y_1, y_2) \quad \text{mod } I_x, \quad (3.6)$$

$$\pi = \pi(x_1, x_2) = \pi(y_1, y_2) = \pi(x_1, y_2) \quad \text{mod } I_i. \quad (3.7)$$

There are two important homomorphisms between the $\mathcal{W}_{x,y}^+$-modules M_i and M_x:

$$\chi_- : M_x \xrightarrow{1} M_i, \quad \chi_+ : M_i \xrightarrow{\frac{1}{2}(y_2 - y_1 + x_2 - x_1)} (M_x, -\pi). \quad (3.8)$$

Sometimes it is convenient to describe the second homomorphism equivalently as

$$\chi_+ : M_i \xrightarrow{y_2 - x_1} (M_x, -\pi). \quad (3.9)$$

Obviously χ_- commutes with derivations of \mathfrak{W}^+. The same is true for χ_+: condition (3.4) is satisfied in view of the following chain of equalities (the first one is modulo I_x):

$$\frac{1}{2}(y_2 - y_1 + x_2 - x_1) \pi_m(x_1, x_2) = \frac{1}{2}(y_2 - y_1) \pi_m(y_1, y_2) + \frac{1}{2}(x_2 - x_1) \pi_m(x_1, x_2)$$

$$= \frac{1}{2}(y_2^{m+1} - y_1^{m+1} + x_2^{m+1} - x_1^{m+1}) = \frac{1}{2}I_m(y_2 - y_1 + x_2 - x_1) \quad \text{mod } I_x. \quad (3.10)$$
3.2. **Categorification bracket.** In order to define the map $\llbracket - \rrbracket_{x,y} : \widehat{B}_n \to \text{Ch}(\mathcal{W}_{x,y}^+)$ which categorifies braid words, we introduce extended versions of bimodules M_n and M_x as $\mathcal{W}_{x,y}^+$-modules with $|x| = |y| = n$ for any $n \geq 2$.

First, we define the bimodule

$$M_{\cdot, i} = \Delta_{x,y} = \bigotimes_{j=1}^{n} M_{i(x_j,y_j)}.$$

which determines the identity endo-functor in the category of \mathcal{W}_x^+-equivariant $\mathbb{Q}[x]$-modules: for any module M_x there is a canonical isomorphism

$$M_y \cong M_x \otimes_{\mathbb{Q}[x]} M_{\cdot, i(x,y)}.$$ (3.11)

Second, we define the bimodule

$$M_i = \Delta_{x',y'} \otimes M_{\cdot, x'',y''} \otimes \Delta_{x'',y''}.$$ (3.12)

(cf. the general definition (3.1)). Note that $M_{\cdot, i}$ has a similar presentation $M_{\cdot, i} \otimes M_{\cdot, x''} \otimes \Delta_{x'',y''}$. (3.13)

Finally, we define the \mathcal{W}_x^+-invariant homomorphisms

$$\chi_{i,-} : M_i^i \rightarrow M_{\cdot, i}, \quad \chi_{i,-} = \mathbb{1}' \otimes \chi_+ \otimes \mathbb{1}''.$$ (3.14)

$$\chi_{i,+} : M_{\cdot, i} \rightarrow (M_i^i, -\pi^i), \quad \chi_{i,+} = \mathbb{1}' \otimes \chi_+ \otimes \mathbb{1}''.$$ (3.15)

where $\pi^i = \pi(x_i, x_{i+1})$, $\mathbb{1}'$ and $\mathbb{1}''$ are the identity endomorphism of $\Delta_{x',y'}$ and $\Delta_{x'',y''}$ and the formulas for $\chi_{i,-}$ and $\chi_{i,+}$ are written relative to the presentations (3.12) and (3.13).

Now to elementary braid words σ_i and σ_i^{-1} we associate cones in the category Ch of the homomorphisms (3.14) and (3.15):

$$\llbracket \sigma_i \rrbracket = (at)^{-\frac{1}{2}}q^2 M_i \xrightarrow{\chi_{i,+}} q^{-2} t (M_i^i, -\pi^i),$$ (3.16)

$$\llbracket \sigma_i^{-1} \rrbracket = (at)^{\frac{1}{2}}q^{-2} t^{-1} M_i \xrightarrow{\chi_{i,-}} M_i.$$

The action of the map $\llbracket - \rrbracket$ on other elements of \widehat{B}_n is defined by the relation (1.19).

4. **\mathcal{W}_x^+-EQUIVARIANT CATEGORIZATION OF THE BRAID GROUP**

Throughout the paper, by generators of a $\mathcal{W}_{x,y}^+$-module $M_{x,y}$ we mean the generators of $M_{x,y}$ as a $\mathbb{Q}[x,y]$-module.
4.1. Main theorem.

Theorem 4.1. There exists a unique homomorphism \([[-]]_{x,y} : \mathfrak{B}_n \to D_t(W^+_{x,y})\) which makes the following diagram commutative:

\[
\begin{array}{ccc}
\tilde{\mathfrak{B}}_n & \xrightarrow{br} & \mathfrak{B}_n \\
\downarrow{[-]}_{x,y} & & \downarrow{[-]}_{x,y} \\
\text{Ch}(W^+_{x,y}) & \xrightarrow{F^\otimes} & D_t(W^+_{x,y})
\end{array}
\]

Proof. The uniqueness of \([[-]]_{x,y}\) follows from the surjectivity of the map \(br\). In order to establish its existence we have to prove that the complex \([\sigma_1]\) is the inverse of the complex \([\sigma_1^{-1}]\) with respect to the monoidal structure of \(K(W^+_{x,y})\), and that the map \([[-]]\) respects the braid relations. For obvious reasons we will refer to these properties as second and third Reidemeister moves invariance. The factorization of bimodules \((3.12)\) and \((3.13)\) and the local nature of the homomorphisms \((3.14), (3.15)\) implies that it is sufficient to prove the second Reidemeister move invariance for the 2-strand braid and the third Reidemeister move for the 3-strand braid. This will be done in the next two subsections. \(\square\)

4.2. Second Reidemeister move invariance. Let \(x = x_1, x_2\), \(y = y_1, y_2\) and \(z = z_1, z_2\). Recall that by the definition of the map \([[-]]_{x,y}\) the complex associated to the product of elementary braid words \(\sigma_1 \sigma_1^{(-1)}\) is the tensor product of elementary complexes over the intermediate algebra:

\[
[[\sigma_1 \sigma_1^{(-1)}]]_{x,z} = [[\sigma_1]]_{x,y} \otimes_y [[\sigma_1^{(-1)}]]_{y,z}
\] (4.1)

Theorem 4.2. There is a homotopy equivalence of complexes

\[
[[\sigma_1 \sigma_1^{(-1)}]]_{x,z} \sim M_{x,z}
\] (4.2)

within the category \(\text{Ch}(W^+_{x,y})\).

Lemma 4.3. The following tensor product splits as a \(W^+_{x,z}\)-module:

\[
M_{x:y,z} \cong M_{x:y,z} \oplus (M_{x:x,z} \otimes \pi).
\] (4.3)

The generators of the modules \(M_{x:y,z}\) in the r.h.s. may be chosen as \(v_1 = v_{x,y} \otimes v_{y,z}\) and \(v_2 = (y_2 - y_1)v_1\), where \(v_{x:y}\) and \(v_{x:y,z}\) are the generators of \(M_{x:y}\) and \(M_{x:y, z}\) respectively.
The following diagram is commutative:

\[\begin{array}{ccc}
M_{x,y,z} & \xrightarrow{\chi \otimes 1} & (M_{x,y} \otimes y) M_{x,y,z}, \pi^{-1} \\
\cong & \cong & \cong \\
M_{x,y,z} & \xrightarrow{\frac{1}{2}(x_2-x_1,1)} & (M_{x,y,z}, -\pi) \oplus M_{x,y,z} (1,z_2-z_1) \\
& & (M_{x,y,z}, -\pi)
\end{array} \] \tag{4.4}

Proof. It is easy to establish the isomorphism (4.3) in the category of \(\mathbb{Q}[x,z] \)-modules, the \textit{r.h.s.} ones having generators \(v_1 \) and \(v_2 \). Indeed, the tensor product in the \textit{l.h.s.} can be presented as the quotient \(\mathbb{Q}[x,y,z] \)-module

\[M_{x,y} \otimes \mathbb{Q}[y] M_{x,y,z} \cong \mathbb{Q}[x,y,z]/I_{x,y,z}, \]

where

\[I_{x,y,z} = \begin{pmatrix}
e_1(y) - e_1(x) \\
e_2(y) - e_2(x) \\
e_1(z) - e_1(y) \\
e_2(z) - e_2(y)
\end{pmatrix} = \begin{pmatrix}
e_1(z) - e_1(x) \\
e_2(z) - e_2(x) \\
e_1(y) - e_1(x) \\
e_2(y) - e_2(x)
\end{pmatrix}, \]

while \(e_1 \) and \(e_2 \) are elementary symmetric polynomials of degrees one and two. The second choice of generators of the ideal \(I_{x,y,z} \) implies the isomorphism of \(\mathbb{Q}[x,z] \)-modules:

\[M_{x,y} \otimes \mathbb{Q}[y] M_{x,y,z} \cong M_{x,z} \otimes \mathbb{Q}[x] M_{x,y} \] \tag{4.5}

At the same time, there is an isomorphism of \(\mathbb{Q}[x] \)-modules

\[M_{x,y} \cong \mathbb{Q}[x] \oplus \mathbb{Q}[x] \] \tag{4.6}

and the generators of the latter modules \(\mathbb{Q}[x] \) can be chosen as \(v'_1 = v_{x,y} \) and \(v'_2 = (y_2 - y_1)v_{x,y} \), where \(v_{x,y} \) is the generator of \(M_{x,y} \).

The action of a \(\mathfrak{M}^+ \) generator \(L_m \) on the generator \(v'_2 \) of the second module in the \textit{r.h.s.} of eq. (4.6) is

\[\nabla v'_2 = (L_m (y_2 - y_1)) v_{x,y} = \pi_m(y_1, y_2) v'_2 = \pi_m(x_1, x_2) v'_2, \]

hence the splitting (4.6) is \(\mathfrak{M}^+ \)-equivariant if we add connection \(\pi \) to the second summand in its \textit{r.h.s.}:

\[M_{x,y} \cong \mathbb{Q}_x \oplus (\mathbb{Q}_x, \pi). \]

Combining this splitting with the isomorphism (4.5) we get the splitting (4.3).
In order to verify the commutativity of the diagram (4.4) we check the action of the upper horizontal homomorphisms on the generators of modules:

\[(\chi_+ \otimes 1) (\psi_{x,y} \otimes \psi_{y,z}) = \frac{1}{2} (x_2 - x_1 + y_2 - y_1) \psi_{x,y} \otimes \psi_{y,z} = \frac{1}{2} (x_2 - x_1) \psi_1 + \frac{1}{2} \psi_2,\]

\[(1 \otimes \chi_-) (\psi_1) = (1 \otimes \chi_-) (\psi_{x,y} \otimes \psi_{y,z}) = \psi_{x,z},\]

\[(1 \otimes \chi_-) (\psi_2) = (1 \otimes \chi_-) ((\psi_2 - \psi_1) \psi_{x,y} \otimes \psi_{y,z}) = (\psi_2 - \psi_1) \psi_{x,y} \otimes \psi_{y,z} = (z_2 - z_1) \psi_{x,y} \otimes \psi_{y,z}.\]

\[\square\]

Proof of Theorem 4.2 We prove the theorem by a sequence of isomorphisms and homotopy equivalences:

\[
\left[\sigma_1 \sigma_1^{-1}\right]_{x,z} = \left[\sigma_1\right]_{x,y} \otimes \left[\sigma_1^{-1}\right]_{y,z}
\]

Here the first isomorphism is the definition (4.1), the second isomorphism is the definition of the tensor product of complexes (3.16) and the third isomorphism comes from Lemma 4.3.
The last two homotopy equivalences are contractions of a part of a cone within the homotopy category:

\[A \rightarrow B \sim \begin{cases} A[1], & \text{if } B \text{ is contractible}, \\ B, & \text{if } A \text{ is contractible.} \end{cases} \]

\[\square \]

4.3. Third Reidemeister move invariance. Let \(x = x_1, x_2, x_3, \ y = y_1, y_2, y_3, \ z = z_1, z_2, z_3 \) and \(w = w_1, w_2, w_3 \). Recall that by definition of the map \([-]\) the categorification of the triple products of braid words appearing at both sides of the third Reidemeister move takes the form

\[\[\sigma_1 \sigma_2 \sigma_3 \]_{x,w} = \[\sigma_1 \]_{x} \otimes_y \[\sigma_2 \]_{y,z} \otimes \[\sigma_3 \]_{z,w}. \]

Theorem 4.4. The following complexes are \(\mathcal{F} \)-isomorphic in the category \(\text{Ch}(W^+_{x,w}) \):

\[\[\sigma_1 \sigma_2 \sigma_1 \]_{x,w} \simeq \[\sigma_2 \sigma_1 \sigma_2 \]_{x,w}. (4.7) \]

The algebra \(\mathbb{Q}[x, y] \) has an automorphism \(f^{(13)} \) which swaps simultaneously \(x_1 \) with \(x_3 \) and \(y_1 \) with \(y_3 \): \(f^{(13)}(x_1) = x_3, \ f^{(13)}(x_2) = x_2, \ f^{(13)}(x_3) = x_1 \) and the same for \(y_1, y_2 \) and \(y_3 \). This automorphism generates an involutive endo-functor \(\mathcal{F}^{(13)}_{x,y} \) of the category \(\text{Ch}(W^+_{x,y}) \). The obvious isomorphism of bimodule complexes \(\mathcal{F}^{(13)}_{x,y} ([\sigma_1]_{x,y}) \simeq [\sigma_2]_{x,y} \) and the commutativity of a diagram

\[
\begin{array}{ccc}
D_t(W^+_{x,y}) \times D_t(W^+_{y,z}) & \xrightarrow{\mathcal{F}^{(13)}_{x,y}} & D_t(W^+_{x,z}) \\
\mathcal{F}^{(13)}_{x,y} \times \mathcal{F}^{(13)}_{y,z} & & D_t(W^+_{x,y}) \times D_t(W^+_{y,z}) \xrightarrow{\mathcal{F}^{(13)}_{x,z}} & D_t(W^+_{x,z})
\end{array}
\]

imply the isomorphism of complexes \([\sigma_2 \sigma_1 \sigma_2]_{x,w} \simeq \mathcal{F}^{(13)}_{x,y} ([\sigma_1 \sigma_2 \sigma_1]_{x,w}) \), hence the homotopy equivalence \((4.7)\) follows from the homotopy equivalence

\[[\sigma_1 \sigma_2 \sigma_1]_{x,w} \simeq \mathcal{F}^{(13)}_{x,y} ([\sigma_1 \sigma_2 \sigma_1]_{x,w}). (4.8) \]

In other words, it is sufficient to show that the \(r.h.s. \) of eq. \((4.7)\) is symmetric under the transposition of indices 1 and 3 of the variables.

Before proceeding with the proof of eq. \((4.8)\) we introduce new notations and establish decomposition of some bimodules appearing in the complex \([\sigma_1 \sigma_2 \sigma_1]_{x,w}\). The simplest
bimodules are
\[M_{\|;x,w} = M_{\|;x,w} = \Delta_{x,w}, \]
\[M_{x;w} = M_{x;w}^{1}, \]
\[M_{x;w} = M_{x;w}^{2}, \]
and the Soergel bimodule \(M_{\ast;w} \) of eq. (3.3). The action of the transposition endo-functor \(\mathcal{F}^{(13)} \) on these bimodules is obvious:
\[\mathcal{F}_{x,w}^{(13)}(M_{\|;x,w}) \cong M_{\|;x,w}, \quad \mathcal{F}_{x,w}^{(13)}(M_{x;w}) \cong M_{x;w}, \quad \mathcal{F}_{x,w}^{(13)}(M_{\ast;w}) \cong M_{\ast;w}. \]

Lemma 4.5. The \(\mathcal{W}_{x,w}^{+} \)-module
\[M_{\|;x,w} = M_{x;w} \otimes y M_{y,z} \otimes z M_{x;w} \]
has a single generator \(v_{\|;x,w} = v_{x;w} \otimes v_{y,z} \otimes v_{x;w} \) and it can be presented as a quotient \(M_{\|;x,w} \cong \mathbb{Q}_{x,w}/I_{\|;x,w}, \) where
\[I_{\|;x,w} = (w_1 + w_2 + w_3 - (x_1 + x_2 + x_3), (w_1 - x_1)(w_1 - x_2), (w_3 - x_3)(w_3 - x_2)). \]

The proof is obvious and we omit it. The bimodule \(M_{\|;x,w} \cong \mathcal{F}_{x,w}^{(13)}(M_{\|;x,w}) \) has a similar property.

Consider three \(\mathcal{W}_{x,w}^{+} \)-modules defined as tensor products
\[M_{x;w}^{d} = M_{x;w} \otimes y M_{y,z} \otimes z M_{x;w}, \] (4.9)
\[M_{x;w}^{n} = M_{x;w} \otimes y M_{y,z} \otimes z M_{x;w}, \] (4.10)
\[M_{\|;x,w} = M_{x;w} \otimes y M_{y,z} \otimes z M_{x;w}, \] (4.11)
and the homomorphisms
\[M_{x;w}^{d} \xrightarrow{\chi \otimes 1 \otimes 1} M_{\|;x,w} \xrightarrow{1 \otimes 1 \otimes \chi} M_{x;w}^{n} \] (4.12)

Canonical isomorphisms
\[M_{x;w}^{d} \cong M_{x;w}^{n} \cong M_{x;w} \]
imply that \(M_{x;w}^{d} \) and \(M_{x;w}^{n} \) have single generators \(v_{x;w}^{u} \) and \(v_{x;w}^{d} \), which are tensor products of the generators of factor modules in the tensor products (4.9).

Lemma 4.6. The \(\mathcal{W}_{x,w}^{+} \)-module \(M_{\|;x,w} \) splits:
\[M_{\|;x,w} \cong M_{x;w}^{1} \oplus (M_{x;w}^{2}, \pi_{12}), \] (4.13)
where \(M_{x;w}^{1} \cong M_{x;w}^{2} \cong M_{x;w} \) as \(\mathbb{Q}[x, w] \)-modules, while the connection \(\pi_{12} \) of \(M_{x;w}^{2} \) is
\[\pi_{12} = \pi(x_1, x_2) = \pi(w_1, w_2) \mod I_{\times}. \] (4.14)
The generators of the modules $M_{x; y, w}$ and $M_{x; z, w}$ may be chosen as
\[v_1 = v_{x, y} \otimes v_{y, z} \otimes v_{z, w}, \quad v_2 = (y_2 - y_1)v_1 = (z_2 - z_1)v_1, \]
where $v_{x, y}$ and $v_{x, y, z}$ are the generators of $M_{x; y, w}$, $M_{y, z}$ and $M_{x; z, w}$ respectively. The homomorphisms (4.12) are presented by matrices
\[\chi_{-} \otimes 1 \otimes 1 = (1 \quad w_2 - w_1), \quad 1 \otimes 1 \otimes \chi_{-} = (1 \quad x_2 - x_1) \]
relative to the generators v_1, v_2 of the middle module and $v_{x; y, w}^d$, $v_{x; z, w}^u$ of the target modules.

Proof. This lemma follows easily from Lemma 4.3 if we tensor multiply its formulas by the bimodules M, over the polynomial algebras of variables with index 3. \qed

Consider the $\mathcal{W}_{x, w}^{\pm}$-module
\[M_{\star; x, w} = M_{x; y, w} \otimes_y M_{x; y, z} \otimes_z M_{x; z, w}. \]
and the homomorphism
\[M_{\star; x, w} \xrightarrow{1 \otimes \chi_{-} \otimes 1} M_{\emptyset; x, w}. \]

Lemma 4.7. There is an exact sequence of $\mathcal{W}_{x, w}^{\pm}$-modules
\[0 \longrightarrow M_{\star; x, w} \longrightarrow M_{\star; x, w} \longrightarrow (M_{x; x, w}, \pi_{12}) \longrightarrow 0, \]
which splits in the category of $\mathbb{Q}[x, w]$-modules:
\[M_{\star; x, w} \perp M_{\emptyset; x, w} \perp M_{x; x, w}. \]
The generators of the modules in the r.h.s. may be chosen as
\[v_{\emptyset; x, w} = v_{x, y} \otimes v_{y, z} \otimes v_{z, w}, \quad v_{x; x, w} = yv_{\star; x, w}, \]
where
\[y = 2(z_3 - y_2) = y_1 - y_2 - x_1 - x_2 + 2w_3, \]
while $v_{x, y}$, $v_{y, z}$ and $v_{z, w}$ are generators of the bimodules $M_{x; y, w}$, $M_{x; y, z}$ and $M_{x; z, w}$ respectively. The homomorphism (4.16) is described by the matrix
\[1 \otimes \chi_{-} \otimes 1 = \begin{pmatrix} 1 & -x_1 - x_2 + 2w_3 \\ 0 & 1 \end{pmatrix} \]
relative to the generators (4.19) of $M_{\star; x, w}$ and generators (4.15) of $M_{\emptyset; x, w}$.

Proof. The splitting (4.18) and the generators (4.19) are well-known in the theory of Soergel bimodules, but we will derive these results here for completeness. The rest of the lemma is an easy corollary: the matrix presentation (4.21) and the connections in the submodule and
quotient module in the exact sequence (4.17) follow from the action of the homomorphism \(1 \otimes \chi_\ast \otimes 1\) and the generators \(L_m \in \mathfrak{W}^+\) on the module generators (4.19).

If we use the asymmetric formulas (3.5), then it is easy to see that the tensor product in the \(l.h.s.\) of eq. (4.18) has the following presentation as a \(\mathbb{Q}[x, w]\)-module:

\[
M_{\ast;x,w} \cong \mathbb{Q}[x, w, y_1, y_2, z_2]/I_1,
\]

where

\[
I_1 = \left(\begin{array}{c} y_2 - (x_1 + x_2 - y_1) \\ (y_1 - x_1)(y_1 - x_2) \\ z_2 - (w_1 + w_2 - y_1) \\ (y_1 - w_1)(y_1 - w_2) \\ z_2 + w_3 - (y_2 + x_3) \\ z_2w_3 - y_2x_3 \end{array} \right),
\]

and elements (4.19) become

\[
v_{\ast;x,w} = 1, \quad v_{x;x,w} = y.
\]

After eliminating the variables \(y_2\) and \(z_2\) with the help of the first and third lines and replacing \(y_1\) with \(y\) in accordance with (4.20) we find the following presentation for the tensor product:

\[
M_{\ast;x,w} \cong \mathbb{Q}[x, w, y]/I_2,
\]

where

\[
I_2 = \left(\begin{array}{c} e_1(w) - e_1(x) \\ e_2(w) - e_2(x) \\ \bar{x}_3 \end{array} \right), \quad p_1 = \bar{x}_3y, \quad p_2 = y^2 + 2(\bar{x}_1 + \bar{x}_2)y + 4\bar{x}_1\bar{x}_2,
\]

and we used shortcut notations \(\bar{x}_i = x_i - w_3, i = 1, 2, 3\). The other two modules of the sequence (4.17) have similar presentations:

\[
M_{\ast;x,w} \cong \mathbb{Q}[x, w]/I_\ast, \quad M_{x;x,w} \cong \mathbb{Q}[x, w]/I_{x;},
\]

where

\[
I_\ast = \left(\begin{array}{c} e_1(w) - e_1(x) \\ e_2(w) - e_2(x) \\ \bar{x}_1\bar{x}_2\bar{x}_3 \end{array} \right), \quad I_{x;} = \left(\begin{array}{c} e_1(w) - e_1(x) \\ e_2(w) - e_2(x) \\ \bar{x}_3 \end{array} \right)
\]

and we used an asymmetric choice for the generators of \(I_\ast\) (cf. eq. (3.5)).

The modules (4.25) are both generated by \(1 \in \mathbb{Q}[x, w]\). The relation \(p_2 = 0\) appearing at the bottom of \(I_2\) expresses \(y^2\) in terms of lower powers of \(y\), hence \(M_{\ast;x,w}\) is generated as a \(\mathbb{Q}[x, w]\)-module by its elements (4.24) and the action of the homomorphism (4.16) is
described by the matrix (4.21) relative to these generators and the target module generators (4.15).

Consider two special homomorphisms defined by their action on module generators:

\[
\begin{align*}
M^{\#;x,w} \xrightarrow{f_-(q)} M^{\star; x,w} \xrightarrow{f_+(0 \, 1)} M^{\#; x,w}
\end{align*}
\]

The homomorphism \(f_- \) is well-defined because \(yI_x \subset I_2 \). The homomorphism \(f_+ \) is well-defined, because, in view of the matrix presentation (4.21), it can be expressed as a composition

\[
M^{\#;x,w} \xrightarrow{1 \otimes \chi_- \otimes 1} M^{\delta; x,w} \xrightarrow{P_2} M^{\#; x,w},
\]

where \(P_2 \) is the projection on the second module in the decomposition (4.13). Since \(f_- \circ f_+ = 1 \), the \(\mathbb{Q}[x,w] \)-module \(M^{\#; x,w} \) decomposes:

\[
M^{\#;x,w} = \text{im} \, f_- \oplus \ker f_+
\] (4.26)

Also it follows that \(f_- \) is injective, hence

\[
M^{\#; x,w} \cong \text{im} \, f_- = (y) \subset M^{\#; x,w},
\]

where \((y) \subset M^{\#; x,w}\) is the \(\mathbb{Q}[x,w] \)-submodule generated by \(y \).

The matrix form of \(f_+ \) indicates that \(f_+(1) = 0 \), hence \((1) \subset \ker f_+ \). At the same time, \(1 \) and \(y \) generate \(M^{\#; x,w} \), hence \((1) + (y) = M^{\#; x,w} \). Then it follows from the decomposition (4.26) that \(\ker f_+ = (1) \), so (4.26) becomes

\[
M^{\#;x,w} = (1) \oplus (y).
\] (4.27)

We have already established the isomorphism \((y) \cong M^{\#; x,w} \), so it remains to show that

\[
(1) \cong M^{\#; x,w}.
\] (4.28)

We will use dimension counting arguments. For a \(q \)-graded module \(M = \bigoplus_{i \in \mathbb{Z}} M_i \) whose grading components \(M_i \) have finite dimension as \(\mathbb{Q} \)-vector spaces, define \(q \)-dimension as

\[
\dim_q M = \sum_{i \in \mathbb{Z}} q^i \dim M_i.
\]

If \(M \) is a free \(q \)-graded \(\mathbb{Q}[x] \)-module then \(\dim_q M = d(q) \, \text{rank}_q M \), where \(\text{rank}_q M \) is \(q \)-rank defined by (2.2), while \(d(q) = (1 - q^2)^{-3} \), because \(|x| = 3\) and \(\deg_q x = 2 \).

According to Remark 3.1, the following \(\mathbb{Q}[x,w] \)-modules are free as \(\mathbb{Q}[x] \)-modules with ranks

\[
\text{rank} \, M^{\delta; x,w} = [3]_q!, \quad \text{rank} \, M^{\#; x,w} = [2]^3_q, \quad \text{rank} \, M^{\#; x,w} = [2]_q.
\]
In view of the decomposition (4.27), this means that
\[\dim_q(1) = d(q)([2]_q^3 - q^2[2]_q) = d(q)[3]_q!, \]
the factor \(q^2 \) in \([2]_q^3 \) being due to the fact that \(\deg_q y = 2 \) in accordance with (1.14). Hence
\[\dim_q(1) = \dim_q M_{\#;x,w}. \]

A homomorphism
\[
M_{\#;x,w} \xrightarrow{g=(1)} M_{\#;x,w} \tag{4.29}
\]
is well-defined, because \(g(I_2) \subset I_2 \) in view of relation \(x_1x_2x_3 = x_3p_2 - (y + x_1 + x_2)p_1 \). A composition of \(g \) with the projection of \(M_{\#;x,w} \) on (1) is a surjective homomorphism
\[
M_{\#;x,w} \longrightarrow (1)
\]
Since \(M_{\#;x,w} \) and (1) have equal \(q \)-dimensions, it follows that this is an isomorphism, and this proves (4.28).

Thus we established the splitting (4.18) with generators (4.19). Now we check the action of a \(\mathfrak{M}^+ \) generator \(L_m \) on these generators within the module \(M_{\#;x,w} \) in presentation (4.22). The module (4.22) has zero connection, hence \(\nabla_m v_{\#;x,w} = \hat{L}_m 1 = 0 \) and the module \(M_{\#;x,w} \) with zero connection is a submodule of \(M_{\#;x,w} \) as a \(\mathcal{W}^+_{x,w} \)-module, the quotient module being \(M_{x;:x,w} \).

In order to find the connection of \(M_{x;:x,w} \), we compute the action of \(L_m \) on its generator \(y \) defined by eq. (4.20) as \(y = y_1 - y_2 + q \), where \(q = -x_1 - x_2 + 2w_3 \in \mathbb{Q}[x,w] \):
\[
\nabla_m v_{\#;x,w} = \hat{L}_m y = \hat{L}_m ((y_1 - y_2) + q) = \pi_m (y_1, y_2)(y_1 - y_2) + \hat{L}_m q
\]
\[= \pi_m (x_1, x_2)(y_1 - y_2) + \hat{L}_m q = \pi_m (x_1, x_2) y + \tilde{q} = \pi_m (x_1, x_2)v_{\#;x,w} + \tilde{q}, \tag{4.30} \]
where
\[\tilde{q} = -\pi_m (x_1, x_2) q + \hat{L}_m q \in M_{\#;x,w} \subset M_{\#;x,w}. \]
In deriving the formula (4.30) we used the relation
\[\pi_m (y_1, y_2) = \pi_m (x_1, x_2) \pmod{I_1}, \]
which is due to the first two rows in the presentation (1.23) of \(I_1 \) establishing the equality between symmetric polynomials in \(x_1, x_2 \) and in \(y_1, y_2 \). Since \(\tilde{q} \in M_{\#;x,w} \subset M_{\#;x,w} \), the formula (4.30) shows that \(\nabla_m v_{\#;x,w} = \pi_m (x_1, x_2)v_{\#;x,w} \) within the quotient module \(M_{x;:x,w} \simeq M_{\#;x,w}/M_{\#;x,w} \), hence this quotient has a connection \(\pi_{12} \) defined by eq. (4.14).
Proof of Theorem 4.4. As we have observed, the \mathcal{F}-isomorphism (4.7) is equivalent to (4.8). In fact, it is easier to prove the same relation for the inverse generators:

$$[[\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-1}]_{x,w}] \simeq \mathcal{F}^{(12)}_{x,w}([[\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-1}]_{x,w}]).$$

(4.31)

The l.h.s. of this relation is presented by a complex of \mathfrak{su}^t-equivariant $\mathbb{Q}[x,w]$-modules:

\[
\begin{array}{c}
M_{\oplus|x,w} \rightarrow M_{\star|x,w} \rightarrow M_{\bigcap|x,w} \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
M_{\ominus|x,w} \rightarrow M_{\ominus|x,w} \rightarrow M_{\ominus|x,w}
\end{array}
\]

(4.32)

where $M_{\ominus|x,w} = M_{\oplus|x,w} \otimes_y M_{\star|x,w} \otimes_z M_{\ominus|x,w}$. All modules in this complex are tensor products of elementary Soergel bimodules over the intermediate algebras $\mathbb{Q}[y]$ and $\mathbb{Q}[z]$ and, in accordance with definitions (3.16), (3.14) and (3.8), all arrows represent either the homomorphisms $1 \otimes 1 \otimes 1$ (unmarked arrows) or $-1 \otimes 1 \otimes 1$ (arrows marked by -1).

According to lemmas 4.7 and 4.8 there are chain maps

$$B_* \rightarrow [[\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-1}]_{x,w}] \rightarrow C_*,$$

(4.33)

where

\[
\begin{array}{c}
M_{\oplus|x,w} \rightarrow M_{\star|x,w} \rightarrow M_{\bigcap|x,w} \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
M_{\ominus|x,w} \rightarrow M_{\ominus|x,w} \rightarrow M_{\ominus|x,w}
\end{array}
\]

(4.34)

all unmarked arrows representing homomorphisms 1, and

$$C_* = \begin{pmatrix} M_{\times|x,w} & \pi_{12} \end{pmatrix} \xrightarrow{1} \begin{pmatrix} M_{\times|x,w} & \pi_{12} \end{pmatrix},$$

(4.33)
such that after the application of the forgetful functor \mathcal{F}_\oplus the sequence (4.33) becomes a part of an exact triangle. Since the complex C_\bullet is obviously contractible, by Theorem 2.1 there is a \mathcal{F}-isomorphism $\left[\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-1}\right]_{x,w} \sim B_\bullet$.

An obvious change of generators in the sum of modules $M_{x;x,w} \oplus M_{x;x,w}$ appearing in the third column of the complex (4.34) allows us to present it in the following form:

![Diagram]

This complex has a cone presentation: $B_\bullet \cong \left[D_\bullet \rightarrow E_\bullet\right]$ where

![Diagram]

while

$$E_\bullet = \begin{array}{c} M_{x;x,w} \\ \downarrow 1 \\ M_{x;x,w} \end{array}.$$

Since E_\bullet is contractible, there is a homotopy equivalence $B_\bullet \sim D_\bullet$, hence

$$\left[\sigma_1^{-1}\sigma_2^{-1}\sigma_1^{-1}\right]_{x,w} \cong C_\bullet.$$ (4.36)

It is easy to verify that the complex (4.35) is symmetric under the transposition of indices $1 \leftrightarrow 3$ in the variables x and w, that is, $\mathcal{F}_{x,w}^{(13)}(C_\bullet) \cong C_\bullet$, hence the \mathcal{F}-isomorphism (4.31) follows from eq. (4.36).

5. Link invariant as an object of the derived category of \mathcal{W}_λ^\pm-modules

5.1. Categorification of the braid group with strand variables. Our immediate goal is to prove the \mathcal{F}-isomorphism (1.24) and its analogs. We begin by studying the sliding
properties of a single braid strand variable α. Consider the functor

$$W^+_x \xrightarrow{\mathcal{G}_{\alpha=x_i}} \alpha W^+_x,$$

which defines the action of α on a W^+_x-module M_x as being equal to that of x_i. In other words,

$$\mathcal{G}_{\alpha=x_i} = - \otimes_{\mathcal{E}_i} \Delta_{\alpha-x_i}. \quad (5.1)$$

The functor $\mathcal{G}_{\alpha=x_i}$ extends along the chain of categories (1.9) to functors

$$W^+_x \xrightarrow{\mathcal{G}_{\alpha=x_i}} \alpha W^+_x, \quad \text{Ch}(W^+_x) \xrightarrow{\mathcal{G}_{\alpha=x_i}} \text{Ch}(\alpha W^+_x), \quad \text{Dr}(W^+_x) \xrightarrow{\mathcal{G}_{\alpha=x_i}} \text{Dr}(\alpha W^+_x).$$

Theorem 5.1. For any braid \mathfrak{b} there is an isomorphism in the category $\text{Dr}(\alpha W^+_x)$

$$\mathcal{G}_{\alpha=x_1}(\llbracket \mathfrak{b} \rrbracket_{x,y}) \simeq \mathcal{G}_{\alpha=y_{\hat{b}(1)}}(\llbracket \mathfrak{b} \rrbracket_{x,y}), \quad (5.2)$$

where $\hat{b} \in S_n$ is the permutation associated with \mathfrak{b}.

We will prove this theorem by establishing \mathcal{F}-isomorphism (5.2) for elementary braids σ^{-1}_i in the category $\text{Ch}(\alpha W^+_{x,y})$ and then use multiplicativity property (1.19) in order to extend it to all braids.

Lemma 5.2. The \mathcal{F}-isomorphism (5.2) holds for the elementary braid σ^{-1}_1.

Proof. We will prove the \mathcal{F}-isomorphism for a 2-strand elementary braid $\mathfrak{b} = \sigma^{-1}$, so that $|x| = |y| = 2$. The locality of the formulas (3.16) extends this result to the general case of n-strand elementary braid σ^{-1}_i. Thus we want to establish a \mathcal{F}-isomorphism

$$\mathcal{G}_{\alpha=x_1}(\llbracket \sigma^{-1} \rrbracket_{x,y}) \simeq \mathcal{G}_{\alpha=y_1}(\llbracket \sigma^{-1} \rrbracket_{x,y}), \quad (5.3)$$

where

$$\llbracket \sigma^{-1} \rrbracket_{x,y} = M_{x:y} \xrightarrow{\chi} M_{x:y}.$$

The case of $\alpha = x_2$ versus $\alpha = y_1$ is treated similarly.

The \mathcal{F}-isomorphism (5.3) is established by the diagram of Fig. 11 in which we denote $\alpha M_{x,y} = M_{x,y} \otimes \mathbb{Q}[\alpha]$. Each row in this diagram represents a complex in $\text{Ch}(\alpha W^+_{x,y})$ (the rows have to be ‘boxed’ in our notations) and we used the following abbreviations for \mathfrak{W}^+ connections: $a = \pi(\alpha, x_1), a = \pi(\alpha, x_1), a = \pi(\alpha, y_2), a = \pi(\alpha, x_1)$.

That $f_{AB;}$ is an isomorphism in $\text{Ch}(\alpha W^+_{x,y})$ is established by inspection. That $f_{A;}$ and $f_{B;}$ are \mathcal{F}-isomorphisms can be established similarly, but it is easier to observe this by explaining the origin of complexes A_* and B_*.

There is an obvious F-isomorphism $K(\alpha - x) \simeq \Delta_{\alpha,x}$ within the category $\text{Ch}(\alpha \mathcal{W}_x^+)$ between a Koszul complex

$$K(\alpha - x) = \left[\begin{array}{c} \mathbb{Q}_{\alpha,x} \otimes \mathbb{Q}\pi(\alpha, x) \\ \alpha \end{array} \right]$$

and the diagonal bimodule $\Delta_{\alpha,x} = \mathbb{Q}_{\alpha,x}/(\alpha - x)$, where, as usual, $\mathbb{Q}_{\alpha,x}$ is $\mathbb{Q}[\alpha, x]$ viewed as a module over $\alpha \mathcal{W}_x^+$. The complex A_\bullet is the Koszul resolution of the relation $a = x_1$ in the complex $\mathcal{G}_{\alpha=x_1}(\mathbb{K}^{-1})_{x,y}$:

$$A_\bullet = \left[\begin{array}{c} \mathbb{K}^{-1}_{x,y} \otimes x_1 K(\alpha - x_1) \\ A_\bullet \simeq \mathcal{G}_{\alpha=x_1}(\mathbb{K}^{-1})_{x,y} \end{array} \right].$$

A similar F-isomorphism holds between $\mathcal{G}_{\alpha=y_2}(\mathbb{K}^{-1})_{x,y}$ and $\tilde{B}_\bullet = \left[\begin{array}{c} \mathbb{K}^{-1}_{x,y} \otimes y_2 K(\alpha - y_2) \\ \tilde{B}_\bullet \end{array} \right]$. However, \tilde{B}_\bullet is not isomorphic to A_\bullet as a complex of $\alpha \mathcal{W}_{x,y}^+$-modules, unless we ‘tweak’ the \mathfrak{m}^+-connection in \tilde{B}_\bullet. This tweaking transforms \tilde{B}_\bullet into B_\bullet, while keeping it F-isomorphic to $\mathcal{G}_{\alpha=y_2}(\mathbb{K}^{-1})_{x,y}$.

Lemma 5.3. F-isomorphism (5.2) holds for the elementary braid σ_i.

Figure 1. Sliding of a strand variable

\[
\begin{array}{c}
\mathcal{G}_{\alpha=x_1}(\mathbb{K}^{-1})_{x,y} \\
\mathcal{G}_{\alpha=x_1}(M_{x;xy}) \\
\mathcal{G}_{\alpha=x_1}(M_{x;xy})
\end{array}
\]

\[
\begin{array}{c}
\mathcal{G}_{\alpha=y_2}(\mathbb{K}^{-1})_{x,y} \\
\mathcal{G}_{\alpha=y_2}(M_{x;xy}) \\
\mathcal{G}_{\alpha=y_2}(M_{x;xy})
\end{array}
\]

There is an obvious F-isomorphism $K(\alpha - x) \simeq \Delta_{\alpha,x}$ within the category $\text{Ch}(\alpha \mathcal{W}_x^+)$ between a Koszul complex

$$K(\alpha - x) = \left[\begin{array}{c} \mathbb{Q}_{\alpha,x} \otimes \mathbb{Q}\pi(\alpha, x) \\ \alpha \end{array} \right]$$

and the diagonal bimodule $\Delta_{\alpha,x} = \mathbb{Q}_{\alpha,x}/(\alpha - x)$, where, as usual, $\mathbb{Q}_{\alpha,x}$ is $\mathbb{Q}[\alpha, x]$ viewed as a module over $\alpha \mathcal{W}_x^+$. The complex A_\bullet is the Koszul resolution of the relation $a = x_1$ in the complex $\mathcal{G}_{\alpha=x_1}(\mathbb{K}^{-1})_{x,y}$:

$$A_\bullet = \left[\begin{array}{c} \mathbb{K}^{-1}_{x,y} \otimes x_1 K(\alpha - x_1) \\ A_\bullet \simeq \mathcal{G}_{\alpha=x_1}(\mathbb{K}^{-1})_{x,y} \end{array} \right].$$

A similar F-isomorphism holds between $\mathcal{G}_{\alpha=y_2}(\mathbb{K}^{-1})_{x,y}$ and $\tilde{B}_\bullet = \left[\begin{array}{c} \mathbb{K}^{-1}_{x,y} \otimes y_2 K(\alpha - y_2) \\ \tilde{B}_\bullet \end{array} \right]$. However, \tilde{B}_\bullet is not isomorphic to A_\bullet as a complex of $\alpha \mathcal{W}_{x,y}^+$-modules, unless we ‘tweak’ the \mathfrak{m}^+-connection in \tilde{B}_\bullet. This tweaking transforms \tilde{B}_\bullet into B_\bullet, while keeping it F-isomorphic to $\mathcal{G}_{\alpha=y_2}(\mathbb{K}^{-1})_{x,y}$.

Lemma 5.3. F-isomorphism (5.2) holds for the elementary braid σ_i.

Figure 1. Sliding of a strand variable

\[
\begin{array}{c}
\mathcal{G}_{\alpha=x_1}(\mathbb{K}^{-1})_{x,y} \\
\mathcal{G}_{\alpha=x_1}(M_{x;xy}) \\
\mathcal{G}_{\alpha=x_1}(M_{x;xy})
\end{array}
\]

\[
\begin{array}{c}
\mathcal{G}_{\alpha=y_2}(\mathbb{K}^{-1})_{x,y} \\
\mathcal{G}_{\alpha=y_2}(M_{x;xy}) \\
\mathcal{G}_{\alpha=y_2}(M_{x;xy})
\end{array}
\]
Proof. Again, it is sufficient to prove the lemma for the 2-strand braid generator σ. Consider the sequence of \mathcal{F}-isomorphisms:

$$
\mathcal{G}_{\alpha=x_1}([\sigma]_{x,y}) \otimes_y [\sigma^{-1}]_{y,z} \simeq \mathcal{G}_{\alpha=x_1} \Delta_{x,z} \simeq \mathcal{G}_{\alpha=x_2} \Delta_{y,z} \simeq [\sigma]_{x,y} \otimes_y \mathcal{G}_{\alpha=x_1}([\sigma^{-1}]_{y,z}) \quad \simeq [\sigma]_{x,y} \otimes_y \mathcal{G}_{\alpha=x_2}([\sigma^{-1}]_{y,z}) \simeq (\mathcal{G}_{\alpha=x_2}[\sigma]_{x,y}) \otimes_y [\sigma^{-1}]_{y,z}.
$$

Finally, we apply the tensor multiplication $- \otimes_z [\sigma]_{z,w}$ to the first and last complex in this chain and use the \mathcal{F}-isomorphism $[\sigma^{-1}]_{y,z} \otimes_y [\sigma]_{z,w} \simeq \Delta_{y,w}$ as well as $- \otimes_y \Delta_{y,w}$ being the identity functor.

Proof of Theorem 5.1. We prove the theorem by induction over the length of the minimal braid word presentation of a braid. Lemmas 5.2 and 5.3 prove \mathcal{F}-isomorphism (5.2) for elementary braids. Suppose that the theorem holds for braids of minimal length k. If a braid b has minimal length $k+1$ then it can be presented as a composition of a length k braid b_1 and an elementary braid b_2. Thus we have a sequence of isomorphisms and \mathcal{F}-isomorphisms:

$$
\mathcal{G}_{\alpha=x_1}([b]_{x,y}) \simeq \mathcal{G}_{\alpha=x_1}([b_1 b_2]_{x,y}) \simeq \mathcal{G}_{\alpha=x_1}([b_1]_{x,y}) \otimes_y [b_2]_{y,z} \simeq (\mathcal{G}_{\alpha=y_{b_1}(i)}[b_1]_{x,y}) \otimes_y [b_2]_{y,z} \simeq [b_1]_{x,y} \otimes_y (\mathcal{G}_{\alpha=y_{b_1}(i)}[b_2]_{y,z}) \simeq \mathcal{G}_{\alpha=z_{y_{b_1}(i)}}([b]_{x,y}).
$$

Theorem 1.2 is an obvious corollary of Theorem 5.1.

5.2. Proof of Theorem 1.3. Theorem 1.3 is an obvious corollary of the following theorem:

Theorem 5.4. Suppose that i-th and j-th strands of a braid b belong to the same component of the link constructed by circular closure. Then there is a \mathcal{F}-isomorphism in the category $\mathcal{D}_i(W^+_{\alpha})$:

$$
(\mathcal{G}_{\alpha=x_1}[b]_{x,y}) \otimes_{x,y} \Delta_{x,y} \simeq (\mathcal{G}_{\alpha=x_j}[b]_{x,y}) \otimes_{x,y} \Delta_{x,y}
$$

(5.4)

Indeed, this theorem means that a strand variable can slide around the closed braid, thus moving between all strands belonging to the same link component.

We prove Theorem 5.4 with the help of the following lemma:

Lemma 5.5. For any object $M_{x,y}$ of $W^+_{x,y}$ and any object $N_{y,z}$ of $W^+_{y,z}$ there is a \mathcal{F}-isomorphism

$$
(\mathcal{G}_{\alpha=y_i} M_{x,y}) \otimes_y N_{y,z} \simeq M_{x,y} \otimes_y (\mathcal{G}_{\alpha=y_i} N_{y,z}).
$$
Proof. Let $\mathcal{P}^*(M_{x,y})$ be a resolution of $M_{x,y}$ which is a chain complex of $\mathcal{W}_{x,y}^+$-modules, each of which is projective as a $\mathbb{Q}[y]$-module. Then $G_{a=y_j}P^*(M_{x,y})$ is a similar resolution of $G_{a=y_j}M_{x,y}$, and there is a sequence of \mathcal{F}-isomorphisms, which proves the lemma:

$$
(G_{a=y_j}M_{x,y})^L \otimes_y N_{y,z} \cong G_{a=y_j}P^*(M_{x,y}) \otimes_y N_{y,z} \\
\cong P^*(M_{x,y}) \otimes_y G_{a=y_j}N_{y,z} \cong M_{x,y} \otimes_y G_{a=y_j}N_{y,z}.
$$

\hfill \Box

Proof of Theorem 5.4. Since \mathfrak{b} performs a cyclic permutation of strand indices corresponding to the same link component, it is sufficient to prove the \mathcal{F}-isomorphism (5.4) in the case when $j = \mathfrak{b}(i)$. The latter is proved by the following sequence of \mathcal{F}-isomorphisms:

$$
(G_{a=x_i}[b]_{x,y})^L \otimes_{x,y} \Delta_{x,y} \cong (G_{a=y_{\mathfrak{b}(i)}}[b]_{x,y})^L \otimes_{x,y} \Delta_{x,y} \cong (G_{a=y_{\mathfrak{b}(i)}}[b]_{x,y})^L \otimes_{x,y} \Delta_{x,y}
$$

\hfill \Box

5.3. Markov move invariance.

Theorem 5.6. There exists a unique map $\lambda[-]$ which makes the upper right triangle in the following diagram commutative:

$$
\begin{array}{ccc}
\mathcal{B}_n & \xrightarrow{\mathcal{B}_n^{(c)}} & \mathcal{L}_m \\
\alpha[-]_{x,y} \downarrow & & \lambda[-] \downarrow \\
D_t(\alpha W^+_{x,y}) & \xrightarrow{H_{x,y}(-)} & W^+_{\alpha} \\
\end{array}
\quad \lambda[-]_{x,y}
$$

(5.5)

Moreover, if a framed link L' is isotopic to a framed link L, except that the i-th component of L' has an extra unit of framing, then their brackets are related by the connection shift endofunctor:

$$
[l'] \cong [L]\langle \pi'(\lambda_i) \rangle,
$$

where $\pi'(x)$ is defined in (1.5).

Proof. The claim of this theorem follows from the invariance of $\lambda[-]$ under Markov moves up to the connection shift functor. We prove this invariance in the next two subsections. \hfill \Box
5.3.1. **First Markov move.**

Theorem 5.7. For two n-strand braids b_1 and b_2 there is an isomorphism in W^+_λ:

$$\lambda[[b_1 b_2]] \cong \lambda[[b_2 b_1]]. \tag{5.6}$$

This theorem follows easily from the next lemma. Consider the functor $- \otimes_{x,y} \Delta_{x,y}$ in the diagram (1.26).

Lemma 5.8. There is a \mathcal{F}-isomorphism in the category $\text{Ch}(W^+_\alpha)$:

$$\mathcal{G}_{\alpha=x}[[b_1 b_2]]_{x,y} \otimes_{x,y} \Delta_{x,y} \simeq \mathcal{G}_{b_1(\alpha)=x}[[b_2 b_1]]_{x,y} \otimes_{x,y} \Delta_{x,y}. \tag{5.7}$$

Proof. Consider a sequence of \mathcal{F}-isomorphisms:

$$\mathcal{G}_{b_1(\alpha)=z}[[b_1 b_2]]_{z,y} \cong (\mathcal{G}_{b_1(\alpha)=z}[[b_2]]_{z,w} \otimes_w [[b_1]]_{w,y}$$

$$\cong (\mathcal{G}_{b_1(\alpha)=z}[[b_2]]_{z,w} \otimes [[b_1]]_{x,y}) \otimes_{x,w} \Delta_{x:w}.$$

We substitute this \mathcal{F}-isomorphism into the r.h.s. of eq. (5.7) and rename some variables:

$$\mathcal{G}_{b_1(\alpha)=z}[[b_2 b_1]]_{z,y} \otimes_{x,y,z} \Delta_{x:y} \cong (\mathcal{G}_{b_1(\alpha)=z}[[b_2]]_{z,w} \otimes [[b_1]]_{x,y}) \otimes_{x,y,z,w} \Delta_{x:w} \otimes \Delta_{y:x}. \tag{5.8}$$

Next consider the following sequence of \mathcal{F}-isomorphisms

$$\mathcal{G}_{\alpha=x}[[b_1 b_2]]_{x,w} \cong (\mathcal{G}_{\alpha=x}[[b_1]]_{x,z} \otimes_z [[b_2]]_{z,w} \cong (\mathcal{G}_{b_1(\alpha)=z}[[b_1]]_{x,z} \otimes_z [[b_2]]_{z,w})$$

$$\cong [[b_1]]_{x,z} \otimes_z (\mathcal{G}_{b_1(\alpha)=z}[[b_2]]_{z,w}) \cong (\mathcal{G}_{b_1(\alpha)=z}[[b_1]]_{x,y} \otimes_z (\mathcal{G}_{b_1(\alpha)=z}[[b_2]]_{z,w}) \otimes_{y,z} \Delta_{y:x}. \tag{5.9}$$

We substitute it into the l.h.s. of eq. (5.7) and rename some variables:

$$\mathcal{G}_{\alpha=x}[[b_1 b_2]]_{x,w} \otimes_{x,w} \Delta_{x:y} \cong (\mathcal{G}_{b_1(\alpha)=z}[[b_2]]_{z,w}) \otimes_{x,y,z,w} \Delta_{x:w} \otimes \Delta_{y:x}. \tag{5.9}$$

Comparing the r.h.s. of equations (5.8) and (5.9), we come to eq. (5.7).

Proof of Theorem 5.7. Applying the inner homology $\text{HH}_{W^+_\alpha}$ of diagram (1.26) to both sides of (5.7) we get the quasi-isomorphism of Hochschild homologies

$$\text{HH}_{x,y}(\mathcal{G}_{\alpha=x}[[b_1 b_2]]_{x,y}) \sim \text{HH}_{x,y}(\mathcal{G}_{b_1(\alpha)=x}[[b_2 b_1]]_{x,y})$$

in W^+_α. Applying the relabelling functor $\mathcal{F}_{\alpha,\lambda}$ to both sides we get the isomorphism (5.6).

\Box
5.3.2. Second Markov move. For a n_1-strand braid b_1 and a n_2-strand braid b_2 let $b_1 \sqcup b_2$ denote the $(n_1 + n_2)$-strand braid constructed by placing b_1 and b_2 side by side. In other words, $b_1 \sqcup b_2$ is the result of applying the injection $\mathfrak{B}_{n_1} \times \mathfrak{B}_{n_2} \hookrightarrow \mathfrak{B}_{n_1+n_2}$ to the pair (b_1, b_2).

Let \parallel_b denote the n-strand identity braid. The second Markov move relates an n-strand braid b with two $(n+1)$-strand braids $b_\pm = (\sigma^\pm \sqcup \parallel_b)((\parallel_b \sqcup b))$, where σ is the elementary 2-strand braid and σ^{-1} is its inverse. The cyclic closures of all three braids are isotopic links, and the first strand of b as well as the first two strands of b_\pm belong to the same link component. We refer to it as the first component, so that its component variable is λ_1. The framing of the first link component in the closure of b_\pm differs by ± 1 from the one within the closure of b.

Theorem 5.9. For any n-strand braid b there is a quasi-isomorphism in the category W_α: $\lambda[[b_\pm]] \simeq \lambda[[b]] \langle \mp \pi'(\lambda_i) \rangle$.

The proof of this theorem is based on the local version of the second Markov move:

Lemma 5.10. Let $|x| = |y| = 2$. There is a \mathcal{F}-isomorphism in the category $\text{Ch}(W^+_{x_2,y_2})$ $[[\sigma^\pm]]_{x,y} \overset{L}{\otimes} \Delta_{x_1,y_1} \simeq \Delta_{x_2,y_2} \langle \mp \pi'(x_2) \rangle$ (5.11)

Proof of Theorem 5.9. In this case it is convenient to employ the presentation of the bracket $\lambda[-]$ which does not use strand variables:

$$\lambda[-] = \mathcal{F}^{(k)}_{x,\lambda} \left(H_{x,y} \left([[-]]_{x,y} \right) \right) = \mathcal{F}^{(k)}_{x,\lambda} \left(H_{W^+_x} \left([[-]]_{x,y} \overset{L}{\otimes} \Delta_{x,y} \right) \right).$$

(5.12)

The first two strands of the closure of b_\pm are parts of the same link component, so we can assume that the choice k of braid strands representing link components does not include the first strand. Hence applying the formula (5.12) to b_\pm we may forget x_1 immediately after taking the derived tensor product:

$$\lambda[[b_\pm]] = \mathcal{F}^{(k)}_{x,\lambda} \left(H_{W^+_x} \left([[b]]_{x,y} \overset{L}{\otimes} \Delta_{x,y} \right) \right),$$

(5.13)

where $x' = x_2, \ldots, x_{n+1}$.

The formula (5.10) for b_\pm implies the tensor product presentation of its bracket:

$$[[b_\pm]]_{x,y} \simeq [[\sigma^\pm]]_{x_1,x_2,y_1,z} \overset{L}{\otimes} [[b]]_{z,x',y'};$$
where \(x' = x_3, \ldots, x_{n+1} \) and \(y' = y_2, \ldots, y_{n+1} \). Therefore,

\[
[b_{\pm 1}]_{x,y} \otimes_{x',y'} \Delta_{x,y} \simeq \left(\left([\sigma^{\pm 1}]_{x_1,x_2,y_1,z} \otimes_{x',y'} \Delta_{x,y} \right) \otimes_{x',y'} \Delta_{x',y'} \right)
\]

According to Lemma 5.10

\[
[b_{\pm 1}]_{x_1,x_2,y_1,z} \Delta_{x_1,y_1} \simeq \Delta_{x_2;z} \langle \pm \pi'(x_2) \rangle,
\]

while \(\Delta_{x_2;z} \otimes_{z} [b]_{x',y'} \simeq [b]_{x',y'} \), hence

\[
[b_{\pm 1}]_{x,y} \otimes_{x',y'} \Delta_{x,y} \simeq \left([b]_{x',y'} \otimes_{x',y'} \Delta_{x',y'} \right) \langle \pm \pi'(x_2) \rangle.
\]

Substituting this relation to eq. (5.13) we find

\[
\lambda [b_{\pm 1}] \simeq F^{k}_{x} \left(H_{W_{x}}^{+} \left([b]_{x',y'} \otimes_{x',y'} \Delta_{x',y'} \right) \langle \pm \pi'(x_2) \rangle \right)
\]

\[
\simeq F^{k}_{x} \left(H_{W_{x}}^{+} \left([b]_{x',y'} \otimes_{x',y'} \Delta_{x',y'} \right) \langle \pm \pi'(\lambda_{1}) \rangle \right) \simeq \lambda [b] \langle \pm \pi'(x_2) \rangle.
\]

5.3.3. **Proof of Lemma 5.10** According to Theorem 2.3 in order to calculate the derived tensor product in the l.h.s. of eq. (5.11) we can use a \(W^+ \)-equivariant \(Q[x_1,y_1] \)-projective Koszul resolution of the \(W_{x_1,y_1}^+ \)-module \(\Delta_{x_1,y_1}^+ \):

\[
P^\ast(\Delta_{x_1,y_1}) = \left[(Q_{x_1,y_1}, \pi(x_1,y_1)) \xrightarrow{y_1-x_1} Q_{x_1,y_1} \right] \quad (5.14)
\]

For any \(W_{x,y}^+ \)-module \(M \) the tensor product \(M \otimes_{x_1,y_1} (Q[x_1,y_1], a), a \in Q[x,y] \) is isomorphic to \(M(a) \) considered as a \(W_{x_2,y_2}^+ \)-module, that is, the tensor product functor

\[
W_{x,y}^+ \xrightarrow{-\otimes_{x_1,y_1}(Q_{x_1,y_1},a)} W_{x_2,y_2}^+
\]

is isomorphic to the functor of shifting the \(W^+ \) connection by \(a \) and forgetting the \(Q[x_1,y_1] \)-module structure. It is convenient to replace the forgotten variables \(x_1 \) and \(y_1 \) with new variables

\[
z = y_1 - x_2, \quad w = y_1 - x_1.
\]

We present \(W_{x,y}^+ \)-modules \(M_{\rho} \) and \(M_{\lambda} \) as quotients

\[
M_{\rho} \cong Q_{x_2,y_2,z,w}/(\rho, w), \quad M_{\lambda} \cong Q_{x_2,y_2,z,w}/(\rho, zw),
\]

where \(\rho = w + y_2 - x_2 \). Taking the quotient over \(\rho \) in these expressions implies that when \(Q[w] \)-module structure is forgotten, the variable \(w \) can be eliminated from module generators.
with the help of the relation \(w = x_2 - y_2 \) in the quotient. Hence

\[
M_\circ \otimes_{x_1, y_1} \mathbb{Q}_{x_1, y_1} \cong \mathbb{Q}_{x_2, y_2, z}/(y_2 - x_2) \cong \Delta_{x_2, y_2}[z],
\]

\[
M_\times \otimes_{x_1, y_1} \mathbb{Q}_{x_1, y_1} \cong \tilde{\mathbb{Q}}_{x_2, y_2, z},
\]

where we used shortcut notations

\[
\tilde{\mathbb{Q}}_{x_2, y_2, z} = \mathbb{Q}_{x_2, y_2, z}/((y_2 - x_2)z), \quad \Delta_{x_2, y_2}[z] = \Delta_{x_2, y_2} \otimes \mathbb{Q}[z]
\]

and generators \(L_m \) of \(\mathcal{W}^+ \) have the standard action on \(x_2 \) and \(y_2 \), while

\[
L_m \ z = a_z \ z, \quad a_z = \pi(x_2, y_1) = \pi(x_2, x_2 + z).
\]

(5.16)

\(\mathbb{Q}[z] \) splits as a \(\mathbb{Q} \)-vector space: \(\mathbb{Q}[z] = \mathbb{Q} \oplus z\mathbb{Q}[z] \), and there is a canonical isomorphism of \(\mathbb{Q}[z] \)-modules \(z\mathbb{Q}[z] \cong \mathbb{Q}[z] \). The \(\mathcal{W}^+_{x_2, y_2} \)-modules (5.15) split accordingly:

\[
M_\circ \otimes_{x_1, y_1} \mathbb{Q}_{x_1, y_1} \cong \Delta_{x_2, y_2}[z] \cong \Delta_{x_2, y_2} \oplus (\Delta_{x_2, y_2}[z], a_z),
\]

\[
M_\times \otimes_{x_1, y_1} \mathbb{Q}_{x_1, y_1} \cong \tilde{\mathbb{Q}}_{x_2, y_2, z} \cong \mathbb{Q}_{x_2, y_2} \oplus (\Delta_{x_2, y_2}[z], a_z),
\]

the presence of connection \(a_z \) being due to (5.16). If the \(\mathcal{W}^+ \) action on the l.h.s. modules is modified by a connection \(a \), whose elements \(a_m \) depend on \(z \), then the splitting remains only at the level of \(\mathbb{Q}[x_2, y_2] \)-modules, while \(\mathcal{W}^+_{x_2, y_2} \)-modules form non-split exact sequences

\[
0 \longrightarrow (\Delta_{x_2, y_2}[z], a + a_z) \xrightarrow{z} (\Delta_{x_2, y_2}[z], a) \xrightarrow{1} (\Delta_{x_2, y_2}[z], a|_{z=0}) \longrightarrow 0, \quad (5.17)
\]

\[
0 \longrightarrow (\Delta_{x_2, y_2}[z], a + a_z) \xrightarrow{z} (\tilde{\mathbb{Q}}_{x_2, y_2, z}, a) \xrightarrow{1} (\mathbb{Q}_{x_2, y_2}, a|_{z=0}) \longrightarrow 0. \quad (5.18)
\]

Consider tensor products of the modules \(M_\circ \) and \(M_\times \) with the Koszul resolution (5.14). We use shortcut notations

\[
\pi = \pi(x_1, x_2) = \pi(x_2, y_2 + z),
\]

\[
a'' = \pi(y_1, y_1) = \pi'(x_2 + z),
\]

\[
a^x = \pi(x_1, y_1) = \pi(x_2 + z, y_2 + z),
\]

\[
a' = \pi(x_2, y_2).
\]

Since

\[
y_1 - x_1 = 0, \quad a^x = a' \mod (\rho, w),
\]

\[
y_1 - x_1 = x_2 - y_2 \mod \rho,
\]
then in view of presentations (5.15) we find

\[M_i \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1}) \cong \left[\left(\Delta_{x_2:y_2}[z], a^i \right) \xrightarrow{0} \Delta_{x_2:y_2}[z] \right], \quad (5.19) \]

\[M_x \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1}) \cong \left[\left(\tilde{\mathcal{Q}}_{x_2,y_2,z}, a^x \right) \xrightarrow{y_2-x_2} \tilde{\mathcal{Q}}_{x_2,y_2,z} \right]. \quad (5.20) \]

Now we are ready to establish the \(\mathcal{F} \)-isomorphisms (5.11).

Proof of \(\mathcal{F} \)-isomorphism (5.11) for \(\sigma \). Exact sequence (5.18) of \(\mathcal{W}^+_{x_2,y_2} \)-modules implies short exact sequence in the category of chain complexes \(\text{Ch}(\mathcal{W}^+_{x_2,y_2} - \text{gm}) \) represented by the first column of the diagram (we omitted zeroes at the top and bottom):

\[
\begin{array}{c}
(M_i \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1})) \langle a_z \rangle \\
\downarrow \chi_+ \otimes 1 = z \\
M_x \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1}) \\
\downarrow f \\
A_*
\end{array} \cong \left[(\mathcal{Q}_{x_2,y_2}, a) \xrightarrow{y_2-x_2} \mathcal{Q}_{x_2,y_2}\right], \quad (5.21)
\]

where \(A_* \) denotes the complex at the bottom right, \(f \) is a quotient homomorphism and we used the relation \(a^x|_{z=0} = a \) in the middle of the bottom row.

According to definition (5.16) and due to relation

\[\pi = a_z \mod y_1 - x_1, \]

the complex in the l.h.s. of the \(\mathcal{F} \)-isomorphism (5.11) corresponding to \(\sigma \) has a presentation as the cone of the morphism \(\chi_+ \otimes 1 \) in the category \(\text{D}_r(\mathcal{W}^+_{x_2,y_2}) \):

\[
[[\sigma]]_{x,y} \otimes_{x_1,y_1} \Delta_{x_1:y_1} \cong \left(M_i \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1}) \right) \langle a_z \rangle \xrightarrow{\chi_+ \otimes 1} M_x \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1}) \langle -\pi \rangle.
\]

Since \(f \circ (\chi_+ \otimes 1) = 0 \) in the diagram (5.21), and due to relation \(\pi|_{z=0} = a^i \) there is a morphism in \(\text{Ch}(\mathcal{W}^+_{x_2,y_2}) \):

\[
\begin{array}{c}
(M_i \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1})) \langle a_z \rangle \xrightarrow{\chi_+ \otimes 1} M_x \otimes_{x_1,y_1} \mathcal{P}^*(\Delta_{x_1:y_1}) \langle -\pi \rangle \\
\downarrow f \\
A_* \langle -a^i \rangle
\end{array} \quad (5.22)
\]
The exact sequence (5.21) splits if we forget the \mathcal{W}^+-module structure, that is, it splits in the category $\text{Ch}(\mathbb{Q}[x_2, y_2] - \text{gm})$. Hence the morphism (5.22) is a homotopy equivalence in $\text{Ch}(\mathbb{Q}[x_2, y_2] - \text{gm})$ and, as a consequence, it is a \mathcal{F}-isomorphism in $\text{Ch}(\mathbb{Q}[x_2, y_2] - \text{gm})$, so there is an \mathcal{F}-isomorphism

$$[[\sigma]]_{x,y} \cong A_\ast \langle -a \rangle.$$

Now the \mathcal{F}-isomorphism (5.11) follows from the quasi-isomorphism in $\text{Ch}(\mathbb{Q}[x_2, y_2] - \text{gm})$ which is similar to (5.14).

Proof of \mathcal{F}-isomorphism (5.11) for σ^{-1}. The exact sequence (5.17) of $\mathcal{W}^+_{x_2,y_2}$-modules leads to a short exact sequence in the category of chain complexes $\text{Ch}(\mathcal{W}^+_{x_2,y_2} - \text{gm})$ which is similar to (5.21):

$$
\begin{array}{ccc}
(M_n \otimes_{x_1,y_1} \mathcal{P}^\ast(\Delta_{x_1,y_1}))\langle a_z \rangle & \cong & \left[(\Delta_{x_2,y_2}[z], a^w + a_z) \right]
\
\downarrow & & \downarrow
\
M_n \otimes_{x_1,y_1} \mathcal{P}^\ast(\Delta_{x_1,y_1}) & \cong & \left[(\Delta_{x_2,y_2}[z], a^w) \right]
\
\downarrow & & \downarrow
\
B_\ast & = & \left[(\Delta_{x_2,y_2}, \pi'(x_2)) \right]
\end{array}
\quad (5.23)
$$

where B_\ast denotes the complex at the bottom right, g is a quotient homomorphism and we used a relation $a^w|_{z=0} = \pi'(x_2)$. Combining short exact sequences (5.21) and (5.23) we construct a chain of morphisms in the category $\text{Ch}(\mathcal{W}^+_{x_2,y_2})$:

$$
\begin{array}{ccc}
(M_n \otimes_{x_1,y_1} \mathcal{P}^\ast(\Delta_{x_1,y_1}))\langle a_z \rangle & \xrightarrow{z} & M_n \otimes_{x_1,y_1} \mathcal{P}^\ast(\Delta_{x_1,y_1})
\
\downarrow 1 & & \downarrow 1
\
(M_n \otimes_{x_1,y_1} \mathcal{P}^\ast(\Delta_{x_1,y_1}))\langle a_z \rangle & \xrightarrow{z} & M_n \otimes_{x_1,y_1} \mathcal{P}^\ast(\Delta_{x_1,y_1})
\end{array}
\quad (5.24)

where the chain map h is defined by the diagram

$$
\begin{array}{ccc}
A_\ast & = & \left[(\mathbb{Q}[x_2, y_2], a) \xrightarrow{y_2 - x_2} \mathbb{Q}[x_2, y_2] \right]
\
\downarrow h & & \downarrow 1
\
B_\ast & = & \left[(\Delta_{x_2,y_2}, \pi'(x_2)) \xrightarrow{0} \Delta_{x_2,y_2} \right]
\end{array}
\quad (5.25)
$$
Exact sequences of modules in the rows of the diagram (5.24) split if we forget the W^+-module structure, and the complex in the first column is contractible. Hence, according to Theorem 2.1, the second and third columns are F-isomorphic in $\text{Ch}(W^+_{x_2,y_2})$. Since the second column is isomorphic to $[\sigma^{\pm 1}]_{x,y} \otimes_{x_1,y_1} \Delta_{x_1:y_1}$, we have a F-isomorphism

$$[\sigma^{\pm 1}]_{x,y} \otimes_{x_1,y_1} \Delta_{x_1:y_1} \cong A \xrightarrow{h} B.$$ \hspace{1cm} (5.26)

Diagram (5.25) shows that the complex in the r.h.s. of F-isomorphism (5.26) can be presented as a cone in $\text{Ch}(W^+_{x_2,y_2})$:

$$A \xrightarrow{h} B \cong D \xrightarrow{} (\Delta_{x_2:y_2}, \pi'(x_2)), \hspace{1cm} (5.27)$$

where

$$D = \begin{array}{c}
(\mathbb{Q}[x_2,y_2], a) \\
\xrightarrow{y_2-x_2} \mathbb{Q}[x_2,y_2] \\
\xrightarrow{1} \Delta_{x_2:y_2}
\end{array}$$

The latter complex is contractible, because its upper row is quasi-isomorphic to $\Delta_{x_2:y_2}$ in $W^+_{x_2,y_2}$, so

$$D \cong \Delta_{x_2:y_2} \xrightarrow{1} \Delta_{x_2:y_2}.$$

Hence the complex in the r.h.s. of (5.27) is F-isomorphic to $(\Delta_{x_2:y_2}, \pi'(x_2))$ and together with (5.26) this proves the F-isomorphism (5.11) for σ^{-1}.

\[\square\]

References

[1] Stacks Project, Chapter 11, \url{http://stacks.math.columbia.edu}.
[2] J. Batson and C. Seed, A link splitting spectral sequence in Khovanov homology, available at \url{arXiv:math.QA/1303.6240}.
[3] A. Beliakova and B. Cooper, Steenrod structures on categorified quantum groups, available at \url{arXiv:math.QA/1304.7152}.
[4] N. M. Dunfield, S. Gukov, and J. Rasmussen, The superpolynomial for knot homologies, Experimental Mathematics 15 (2006), no. 2, 129-160, available at \url{arXiv:math.GT/0505662}.
[5] B. Elias and Y. Qi, An approach to categorification of some small quantum groups II, available at \url{arXiv:math.QA/1302.5478}.
[6] E. Gorsky, q, t-Catalan numbers and knot homology (2010), available at \url{arXiv:math.Ag/1003.0916}.
[7] E. Gorsky, A. Oblomkov, and J. Rasmussen, On stable Khovanov homology of torus knots, available at \url{arXiv:math.GT/1206.2226}.
[8] P. Freyd, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, and D. Yetter, *A new polynomial invariant of knots and links*, Bulletin of the American Mathematical Society **12** (1985), 239-246.

[9] M. Khovanov, *Triply-graded link homology and Hochschild homology of Soergel bimodules*, International journal of mathematics **18** (2007), no. 8, 869-885, available at arXiv:math.GT/0510265.

[10] M. Khovanov and L. Rozansky, *Matrix factorizations and link homology II*, Geometry and Topology **12** (2008), no. 3, 1387-1425, available at arXiv:math.QA/0605056.

[11] M. Khovanov and Y. Qi, *An approach to categorification of some small quantum groups*, available at arXiv:math.QA/1208.0616.

[12] N. Kitchloo, *Cohomology operations and the nil-Hecke algebra* (preprint 2013), http://www.math.jhu.edu/~nitu/papers/NH.pdf.

[13] D. Kriz, I. Kriz, and P. Hu, *Field theories, stable homotopy theory and Khovanov homology*, available at arXiv:math.GT/1203.4773.

[14] R. Lipshitz and S. Sarkar, *A Khovanov homotopy type*, available at arXiv:math.GT/1112.3932.

[15] ______, *A Steenrod square on Khovanov homology*, available at arXiv:math.GT/1204.5776.

[16] J. H. Przytycki and P. Traczyk, *Conway algebras and skein equivalence of links*, Proceedings of the American Mathematical Society **100** (1987), 744-748.

[17] R. Rouquier, *Categorification of the braid group*, available at arXiv:math.RT/0409593.

[18] ______, *Categorification of sl_2 and braid groups*, Trends in representation theory of algebras and related topics, Contemporary Mathematics, vol. 406, American Mathematical Society, Providence, RI, 2006.

[19] C. Seed, *Computations of the Lipshitz-Sarkar Steenrod square on Khovanov homology*, available at arXiv:0707.1772.

[20] W. Soergel, *The combinatorics of Harish-Chandra bimodules*, Journal für die reine und angewandte Mathematik **429** (1992), 49-74.

[21] ______, *Grading on representation categories*, Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 1,2, Birkhäuser, Basel, 1995.

[22] B. Webster, *Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products*, available at arXiv:math.GT/1001.2020.

[23] ______, *Knot invariants and higher representation theory II: the categorification of quantum knot invariants*, available at arXiv:math.GT/1005.4559.

[24] C. Weibel, *An introduction to homological algebra*, Cambridge studies in advanced mathematics, vol. 38, Cambridge university press, UK, 1994.

M. KHOVANOV, MATHEMATICS DEPARTMENT, COLUMBIA UNIVERSITY, 2990 BROADWAY, NEW YORK, NY 10027

E-mail address: khovanov@math.columbia.edu

L. ROZANSKY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, CB # 3250, PHILLIPS HALL, CHAPEL HILL, NC 27599

E-mail address: rozansky@math.unc.edu