Secretion of IFN-γ by transgenic mammary epithelial cells in vitro reduced mastitis infection risk in goats

CURRENT STATUS: UNDER REVIEW

BMC Veterinary Research BMC Series

Ying Liu
Shandong Agricultural University

Hongyan Zhang
Shandong Agricultural University

Shasha Dong
Taishan Medical University

Boyu Li
Shandong Agricultural University

Weiming Ma
Shandong Agricultural University

Lijiang Ge
Shandong Agricultural University

Zhiyong Hu
Shandong Agricultural University

Feng Su
Shandong Agricultural University

suf@sdu.edu.cn Corresponding Author
ORCiD: https://orcid.org/0000-0001-8722-9606

DOI:
10.21203/rs.2.21650/v2

SUBJECT AREAS
Large Animal Medicine

KEYWORDS
IFN-γ, mastitis, gene-editing, anti-mastitis activity
Abstract

Background: Mastitis results in great economic loss to the dairy goat industry. Many approaches have attempted to decrease the morbidity associated with this disease, and among these, transgenic strategy have been recognized as a potential approach. A previous mammalian study reports that interferon-gamma (IFN-γ) has potential anti-bacterial bioactivity against infection in vitro; however, its capacity in vivo is ambiguous.

Results: In this study, we first constructed targeting and homologous recombination vectors (containing the IFN-γ gene) and then transferred the vectors into goat mammary gland epithelial cells (GMECs). Enzyme digestion and sequencing analysis indicated that the vectors used in this study were built correctly. Subsequently, monoclonal cells were selected using puromycin and the polymerase chain reaction (PCR) test indicated that IFN-γ was correctly inserted downstream of the casein promoter. Monoclonal cells were then assessed for reducible expression, and reverse transcriptase-PCR (RT-PCR) and Western blot tests confirmed that monoclonal cells could express IFN-γ. Finally, anti-bacterial capacity was evaluated using bacterial counts and flow cytometry analysis. Decreased bacterial counts and cell apoptosis rates in transgenic GMECs demonstrated that the secretion of IFN-γ could inhibit bacterial proliferation and reduce the risk of mammary infection in goats.

Conclusions: IFN-γ gene transfection in goat mammary epithelial cells could inhibit bacterial proliferation and reduce the risk of mammary infection in goats.

1. Background

Mastitis is a complex disease caused by Staphylococcus (S. aureus), Streptococcus (S. agalactiae), and Escherichia coli (E. coli) infection; it results in great losses to the dairy goat industry. There has been extensive research into this condition, including dietary selection [1, 2], induction of immunity [3], and clinical treatment. However, none of these treatments have significantly decreased the incidence of mastitis. Recently, the development of transgenic animal strategies has supplied an effective way to reduce mastitis morbidity[4]. Using this approach, Yu et al. [5] and Liu et al. [6] produced anti-mastitis cattle by expand the HBD3 gene. Liu et al. also produced transgenic cattle with
resistance to mastitis by transfer human lysozyme gene [7]. Jun et al. developed mastitis resistant transgenic dairy goats and evaluated the levels of HBD3 secreted in the milk [8]. All of these animals exhibited an environmentally friendly impact [9]. During these studies, one important step was to evaluate the anti-mastitis capacity of potential genes that could be manipulated during breeding, especially in host cells.

As a remarkable small molecule that participates in immune responses, interferon-gamma (IFN-γ) is widely used for infection resistance and clinical treatment[10]. For mastitis, IFN-γ could reduce the level of infection caused by different pathogenic bacteria, it also has immunotherapeutic value in the control of bovine mastitis [11]. In Staphylococcus infection, IFN-γ is generated from the capsular polysaccharide simulated T cells and obviously boosts the injurious effects of resistant staphylococcus [9]. In Streptococcal mammary infection, proliferative Streptococcus is inhibited by the highly-expressed IFN-γ that is simulated by the Streptococcus [12]. During E. coli infection, IFN-γ was first used for control the acute mastitis in bovine during the periparturient period [13]. Application of IFN-γ could elicit functional changes on other lymphocytes and phagocytic cells in the mammary gland which finally reduced the mastitis [14]. To be precise, milk secretion from mammary cells is decreased and the phagocytic capacity of macrophages is increased; together, these reduce mastitis morbidity. Thus, IFN-γ is recognized as a pivotal target site for developing mastitis resistant goats. However, the anti-bacterial capacity of secreted IFN-γ in mammary gland epithelial cells has not been evaluated.

In this study, we transferred the IFN-γ gene into goat mammary epithelial cells using the CRISPR/Cas 9 system and assessed the secretory ability of resultant positive cells. Subsequently, anti-bacterial capacity was evaluated by using bacterial resistance assays.

2. Methods

2.1 Ethics Statement

The lactating dairy goats used in this study were bought from Zhengda Company from China (Taian, China) and accommodated in appropriate livestock housing and fed ad libitum. Laoshan dairy goats were anesthesia by an injection of sodium barbital, then the mammary tissues were obtained by
minimally invasive surgery. All this process was operated in a Sterile environment. All procedures involving animals were approved by the Animal Care and Use Committee of Shandong Agricultural University.

2.2 Vector Construction

The gene target LentiCRISPRv2 (Cat: 52961) vector and homologous recombination vector (pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro) were both purchased from Addgene. The sgRNAs were designed from the website http://crispr.mit.edu/ and then inserted into the LentiCRISPRv2 vector after the vector was digested by BsmBI. The casein promoter (LA: long arm) was amplified into the PMD-18T vector, then the IFN-γ gene, synthesized by the Shanghai Shenggong Company (Shanghai, China), was inserted behind the casein promoter by overlap polymerase chain reaction (PCR). The LA-IFN-γ sequence was inserted into the homologous recombination vector after double digestion by the SpeI and EcoRI enzymes. Subsequently, the short arm was amplified and inserted into the recombination vector after digestion by the KpnI enzyme.

2.3 Preparation of goat mammary epithelial cells (GMECs)

Mammary epithelial tissue was collected from the Laoshan dairy goats. Tissues were washed thrice with PBS, and then minced into several pieces of around 1 mm³. Tissue blocks were placed into 60 mm petri dishes with Dulbecco’s Modified Eagle Medium (DMEM)/F12 [containing 10% fetal bovine serum (FBS) and 10 ng/mL epidermal growth factor (EGF)] in a cell incubator at 37°C and 5% CO₂. The medium was refreshed every 2 days.

2.4 Virus package, cell transfection, and single clone cell selection

The recombination vectors and target vectors were packaged separately using human 293T cells. The steps were as follows. Human 293T cells were cultured into 100-mm cell culture dishes, then the target vector (LentiCRISPRv2, 7.5 µg), homologous recombination vector (7.5 µg), with package vectors psPAX2 (6 µg, Addgene, #12260) and pCMV-VSV-G (6 µg, Addgene, #8454) were co-transfected into human 293T cells to produce lentiviral particles. Cell media were collected after co-infection with 293T cells at 24 h and 48 h and then filtered with a 0.45 µm filter (Millex®-HV). The
concentrated virus was obtained after mixing with PEG8000 reagent overnight followed by centrifugation. The virus was then resuspended with fresh DMEM/F12 medium and used to infect the isolated GMECs. The cells were selected using puromycin (1 μg/ml) for 3 weeks and monoclonal cells were exhibited. Then the monoclonal cells were separated and individually transferred into a new dish to proliferate for future assays.

2.5 PCR and RT-PCR assays

The monoclonal cells were proliferated in a 60-mm dish in a cell incubator at 37°C and 5% CO₂. Subsequently, the cells were divided into three aliquots, one of which was frozen, one used for DNA extraction, and the third for RNA extraction and inverse transcription. The primers that were used for insert site detection were designed at both sides of the IFN-γ expression cassette. PCR assay was used to assess IFN-γ insertion after the DNA was extracted using a DNA extraction kit (DNAzol Reagent, Cat: 10503027). Reverse transcriptase-PCR (RT-PCR) primers were used to assess IFN-γ expression in transgenic GMECs. All the primers used in this study are listed in Table 1.

2.6 Inducible expression

The primary cells (non-transgenic GMECs) and monoclonal cells (transgenic GMECs) were separately cultured into 90-mm dishes. When the cells reached 80% confluence, the inducive medium (Opti-MEM with 10 ng/mL EGF, 1% ITS Liquid Media Supplement, 5 ng/mL prolactin (Sigma, cat:L6520), and 1 mg/mL hydrocortisone) was used to replace the previous medium. The supernatants were then collected at 24 h and concentrated for Western blot analysis.

2.7 Western blot analysis

The concentrated proteins were used for Western blot analysis following a standard protocol. Briefly, the proteins were transfer onto a polyvinylidene-fluoride membrane after separation by SDS-PAGE electrophoresis. The membrane was then incubated with IFN-γ antibody (LMAI Bio, Shanghai, China) at a 1:1000 dilution after blocking with blocking buffer for 4 h. Subsequently, the membrane was incubated with HRP goat anti-rabbit IgG (Beyotime Institute of Biotechnology, Shanghai, China) at a 1:2000 dilution for 2 h. The membrane was then exposed after being treated with a chemiluminescence substrate according to the manufacturer’s instructions.
2.8 Bacterial infection assay

All bacteria used in this assay were purchased from the Chinese Institute of Veterinary Drug Control (Beijing, China) and preserved in the lab. *E. coli* (ATCC25922), *S. aureus* (ATCC25923), and *S. agalactiae* (ATCC12386) were cultured in 37 °C in 100 mL trypticase soy broth medium until the optical density value (OD 600) is equal or greater than 1. Subsequently, the bacterial were centrifuged at 3000 g for 5 min then washed and resuspended three times in phosphate buffered saline (PBS) to 1×10^7 colony forming units (CFU)/mL. GMECs were counted and cultured in 12-well dishes, then cultured in DMEM/F12 overnight. After inducible expression of IFN-γ as mentioned above, the cells were then infected with these bacteria separately at a multiplicity of infection (MOI) of 10:1. Cells and their supernatant were separately collected at 2 h and then used for other experiments. Cells were used for flow cytometry analysis and bacterial count evaluation at 6h. The risk of antibacterial infection was evaluated by the bacteria colony-forming unit (CFU) counts in GMECs[15].

2.9 Flow cytometry

The infected cells were then stained using Annexin V PE/7-AAD (Qiagen, Valencia, CA, USA). Cell apoptosis and death rates were then evaluated by the flow cytometry instruments.

2.10 Statistical analysis

Data from the CFU count assay were analyzed using SPSS software (SPSS, Chicago, IL, USA). The CFU data are means ± SD and were compared using one-way ANOVA followed by the Newman-Keuls test. P values <0.05 were considered statistically significant.

3. Results

3.1 Inducible secretion of IFN-γ from GMECs was controlled by a transgenic strategy

Transgenic GMECs were processed using the CRISPR/Cas 9 system; the detailed scheme is shown in Figure 1. From the scheme, one of the target sites was chosen in the 2nd exon of the casein (CSN2) gene, upstream of the signal peptide of the gene. The other one was located upstream of the 8th exon. The homologous arm (long arm: LA) of the recombination vector was designed containing the CSN2 signal peptide and used for the determination of IFN-γ secretion.

3.2 Targeted and homologous combination vector construction
Gene targeted vectors were built based on the Lenti-CRISPR V2 system; the single guide RNAs (sgRNAs) were designed on the 2nd and the 8th exon, separately (Figure 2A). Accuracy of sgRNA nucleotides were evaluated by sequencing; the sequence, shown in Figure 2B, shows that the target vectors were built correctly. Subsequently, the digestion efficiency of sgRNAs was assessed by PCR assays after the DNA was cut by the T7E1 enzyme. Shearing efficiency of Sg2-3 and Sg8-3 is higher than for other sgRNAs; this is shown in Figure 2C. Figure 2D-2G shows the homologous recombination vector construction process. Figure 2D shows the homologous arm amplification. The bands in lane 1 and lane 2 represent the long and the short arm lengths, separately. Subsequently, the IFN-γ was synthesized and inserted downstream of the long arm by overlap PCR, which was about 1358 bp in length (Figure 2E). Figure 2F shows the long arm inserting test, two bands in lanes 1 and 2 show that the long arm with IFN-γ is completely attached to the homologous vector. Finally, the short arm was correctly inserted into the recombination vector after sequencing (Figure 2G).

3.3 Inducible secreted IFN-γ in gene-edited GMECs

Transgenic GMECs were obtained after co-infected target and homologous recombination vectors. Homologous and target vectors were all packaged in 293T cells. Expression of green fluorescent protein (GFP) in 293T cells confirmed that the infection rate of these vectors was efficient for the packaged virus (Figure 3A). Then the monoclonal GMECs were obtained after selection with puromycin (Figure 3B). Integrated IFN-γ expression cassettes were then evaluated by PCR tests. Inserted site detection indicated that the expression cassette was correctly integrated into the genome of GMECs (Figure 3C, 3D). Subsequently, all the monoclonal cells were induced and IFN-γ mRNA proteins were evaluated by RT-PCR and Western blot, respectively. RT-PCR assays in GEMCs indicated that the 11th monoclonal cells could express IFN-γ mRNA (Figure 3E). Finally, Western blot analysis of IFN-γ indicated that the gene-edited GMECs could secrete IFN-γ protein as expected (Figure 3F).

3.4 Gene-edited GMECs displayed strong bacterial resistance

Bacterial challenge of transgenic GMECs was performed to assess the anti-bacterial capacity of IFN-γ.
Transgenic GMECs showed much stronger *Staphylococcus* and *E. coli* resistance activity than the non-transgenic ones (P<0.01), but no obvious differences in anti-*Streptococcus* effects (Figure 4A, 4B, 4C). GMECs survival rate in different bacteria-treated cells showed that the transgenic GMECs had an obvious increased survival rate over non-transgenic ones (Figure 4D, 4E).

4. Discussion
Mastitis causes great losses to the dairy goat industry. Many approaches have been investigated to decrease potential mastitis morbidity, with the transgenic strategy being recognized as a crucial development. A previous study reports that IFN-γ has potential bacterial resistance activity against mammalian infection in vitro. However, the anti-bacterial capacity of IFN-γ in vivo is still ambiguous [12, 14]. In this study, we first constructed the gene targeting and homologous recombination vectors and then transferred these vectors into GMECs cells. Enzyme digestion and sequencing analysis indicated that the vectors used in this study were built correctly. Subsequently, the monoclonal cells were selected by puromycin and the PCR test indicated that IFN-γ is correctly inserted downstream of the casein promoter. The monoclonal cells were then used for reducible expression; RT-PCR and Western blot tests confirmed that the monoclonal cells could express IFN-γ. Finally, anti-bacterial ability was evaluated by bacteria counts and flow cytometry analysis. The decreased bacterial counts and cell apoptosis ratio in transgenic GMECs demonstrated that the secretion of IFN-γ could inhibit bacterial proliferation and decrease the risk of mammary infection.

Accurate nucleotide editing technology has been recognized as an effective method for decreasing the morbidity of animal diseases [16]. Regarding bovine mastitis, Liu et al. generated anti-mastitis cows via zinc-finger nickase-mediated insertion of the HBD3 (human-beta-defensin 3) gene [6] and lysostaphin [7]. All transgenic cows exhibited anti-bacterial capacity and mastitis resistance. In his studies, casein (CSN2) promoter was used to drive HBD3/ lysostaphin expression and the signal peptide of CSN2 was used to guide protein secretion [7]. In current study, expression and secretion of IFN-γ was also driven by the CSN2 promoter, as previously reported. The difference between these studies is mainly focused on the cut points. Liu’s study used one cut point in the CSN2 promoter while the current study used two main points, one of which was located upstream of the signal peptide and
the other one located in exon 8 of the CSN2 gene. The existence of exon 2 and exon 8 in CSN2 may contribute to the stable secretion of IFN-γ.

Target rates of sgRNAs were evaluated by DNA-cleaving rates. The target rate was not as high as previously reported; this may be attributed to species difference [17] as Zhang’s laboratory used human cells as targets [18] while this study only used goat cells.

Transgenic GMECs were selected and the expression of IFN-γ was assessed by Western blot analysis. Expression of the GFP protein indicated that the monoclonal cells that were screened had a high purity, as previously reported [9]. Homologous arm detection confirmed that the integration of IFN-γ was correct. Subsequently, inducible expression of IFN-γ was evaluated and only the 11th monoclonal cells presented any expression activity. The main reason for this appearance maybe relevant to the methylation effect of the CSN2 promoter [19].

Anti-microbial capacity was assessed by bacterial counts and target cell apoptosis rates. Decreased Staphylococcus and E. coli counts in IFN-γ secreted transgenic GMECs indicated that IFN-γ could inhibit Staphylococcus and E. coli proliferation by killing bacteria directly or indirectly, which agrees with reports in previous studies [9]. The survival rates of Staphylococcus and E. coli infected transgenic GMECs also support this finding. In Streptococcus infected transgenic GMECs, secretion of IFN-γ is insufficient to inhibit streptococcal proliferation [20], though the survival rates of transgenic GMECs were obviously higher than non-transgenic ones [12]. The main reason for this difference may be attributed to the potential immune function. On the one hand, inducible expressed IFN-γ could activate GMECs immune reaction to defend against Streptococcal infection which finally decreased the Streptococcus count. However, the GMECs were the main epithelial cells that protected against bacterial invasion rather than immune cells. Immune reaction was unable to activated by Streptococcus because deficiency of CD4+ receptor in GMECs. Previous study reported B group Streptococcus (Contain Streptococcus agalactiae) could produce IFN-γ in CD4+ T cells in vivo or vitro model [21]. A deficiency of CD4+ receptor in GMECs is the main reason for lacks of IFN-γ and ineffective inhibition of Streptococcal duplication. On the other hand is the bacterial susceptibility of
GMECs. Juliane Günther’s study revealed that *Streptococcus uberis* failed to activate an immune reaction in mammary epithelial cells [22]. Ariffin’s assays reported *Streptococcus agalactiae* was isolated from the dairy goat’s milk [23] but there are still no direct evidence confirmed the infection capacity of this bacteria. In addition, the T cells in uberis maybe the main factor that simulated the immune reaction in vitro.

In conclusion, this study initially constructed the gene target and homologous recombination vectors and then transferred the IFN-γ into GMECs cells. The transgenic GMECs were then selected and the monoclonal GMECs were used for inducible secretion of IFN-γ. Expression of IFN-γ in transgenic GMECs exhibited a strong anti-bacterial capacity; in particular, it decreased *Staphylococcus* and *E. coli* counts. Cell survival rates in transgenic GMECs confirmed that secreted IFN-γ in transgenic GMECs obviously reduced its apoptosis, which decreased the risk of mastitis. IFN-γ maybe a good prevented treatment that decrease the dairy goat’ mastitis, it is also can be used for gene-editing goat’s generation.

5. Declarations

5.1 Ethics approval and consent to participate

The lactating dairy goats used in this study were bought from Zhengda Company from China (Taian, China) and accommodated in appropriate livestock housing and fed ad libitum. Laoshan dairy goats were anesthesia by an injection of sodium barbital, then the mammary tissues were obtained by minimally invasive surgery. All this process was operated in a Sterile environment. All procedures involving animals were approved by the Animal Care and Use Committee of Shandong Agricultural University.

5.2 Consent for publication

We confirmed all the listed authors have consented to the submission.

5.3 Competing interests

None of the authors have any potential financial conflicts of interest related to this manuscript.

5.4 Availability of data and materials

Not applicable
5.5 Funding

This research was financially supported by two grants from Shandong Natural Science Foundation (Grant Numbers: ZR2016CQ25 and ZR2016CQ29). We are grateful to Mr. Zhang Kang and Mr. Wang Dong for their consistent kind and very valuable support.

5.6 Authors' contributions

YL and FS designed the experiment and drafted the manuscript. HZ, YL, and SD carried out the animal care, samples collection, and performed the experiments. BL and LG performed the data processing and biological information analysis. FS, WM interpretation of data; ZH, and FS conceived the study and writing the manuscript. All authors read and approved the final manuscript.

5.7 Acknowledgements

This research was also obtained the help for Kang Zhang and Dong Wang, we expressed our appreciation in this study.

5.8 Abbreviations

IFN-γ: interferon-gamma; GMECs: goat mammary gland epithelial cells; S. aureus: Staphylococcus; S. agalactiae Streptococcus; E. coli: Escherichia coli

References

1. Moyes KM, Drackley JK, Salak-Johnson JL, Morin DE, Hope JC, Loor JJ: Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation. Journal of Dairy Science 2009, 92(9):4301-4316.

2. Scaletti RW, Trammell DS, Smith BA, Harmon RJ: Role of Dietary Copper in Enhancing Resistance to Escherichia coli Mastitis. Journal of Dairy Science, 86(4):1240-1249.

3. Cullor JS: The control, treatment, and prevention of the various types of bovine mastitis. Veterinary Medicine 1993, 88(6):571-579.

4. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N,
Hawk HW: **Genetically enhanced cows resist intramammary Staphylococcus aureus infection.** *Nature biotechnology* 2005, **23**(4):445.

5. Yuan Y, Yongsheng W, Qi T, Xu L, Feng S, Fusheng Q, Zekun G, Yong Z: **A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle.** *Plos One* 2013, **8**(5):e62457.

6. Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y: **Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows.** *Nature Communications* 2013, **4**(Pt 9):2565.

7. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z: **Generation of mastitis resistance in cows by targeting human lysozyme gene to ï²-casein locus using zinc-finger nucleases.** *Proc Biol Sci* 2014, **281**(1780):20133368.

8. Jun L, Yan L, Hengtao G, Chengquan H, Hui Z, Yongsheng W, Jianmin S, Fusheng Q, Mingqing G, Yong Z: **Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.** *Plos One* 2013, **8**(6):e65379.

9. Gao MQ, Zhang R, Yang Y, Luo Y, Jiang M, Zhang Y, et al. A subchronic feeding safety evaluation of transgenic milk containing human β-defensin 3 on reproductive system of C57BL/6J mouse. *Food & Chemical Toxicology.* 2018; 115 (2018): 198-204.

10. Gozalbo D, Gil ML: **IFN-γ in Candida albicans infections** *Frontiers in Bioscience* 2009, **14**:1970-1978.

11. Babiuk LA, Sordillo LM, Campos M, Hughes HPA, Rossi-Campos A, Harland R: **Application of Interferons in the Control of Infectious Diseases of Cattle.** *Journal of Dairy Science, 74*(12):4385-4398.

12. Denis M, Lacy-Hulbert SJ, Buddle BM, Williamson JH, Wedlock DN: **Streptococcus uberis-specific T cells are present in mammary gland secretions of cows and**
can be activated to kill S. uberis. Veterinary research communications 2011, 35(3):145-156.

13. Sordillo LM, Babiuk LA: Controlling acute Escherichia coli mastitis during the periparturient period with recombinant bovine interferon gamma. Veterinary Microbiology 1991, 28(2):189-198.

14. Sordillo LM: Factors affecting mammary gland immunity and mastitis susceptibility. Livestock Production Science 2005, 98(1-2):89-99.

15. Ru K, Su F, Zheng Y, Zhang Y, Luo Y, Guo Z, He X, Liu X, Zhang J, Liu J: Inducible expression of enhanced green fluorescent protein by interleukin-1α, interleukin-1β and Toll-like receptor 2 promoters in goat mammary epithelial cells in response to bacterial challenges. The Veterinary Journal 2015, 203(1):85-91.

16. Su F, Wang Y, Liu G, Ru K, Liu X, Yu Y, Liu J, Wu Y, Quan F, Guo Z: Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection. The FEBS journal 2016, 283(5):776-790.

17. Tycko J, Myer VE, Hsu PD: Methods for optimizing CRISPR-Cas9 genome editing specificity. Molecular Cell 2016, 63(3):355-370.

18. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343(6166):84-87.

19. Nguyen M, Boutinaud M, Pétridou B, Gabory A, Pannetier M, Chat S, Bouet S, Jouneau L, Jaffrezic F, Laloë D: DNA methylation and transcription in a distal region upstream from the bovine AlphaS1 casein gene after once or twice daily milking. Plos One 2014, 9(11):e111556.
20. Oviedo-Boyso J, Valdez-Alarcón JJ, Cajero-Juárez M, Ochoa-Zarzosa A, López-Meza JE, Bravo-Patino A, Baizabal-Aguirre VM: *Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis*. *Journal of infection* 2007, **54**(4):399-409.

21. Clarke D, Letendre C, Lecours M-P, Lemire P, Galbas T, Thibodeau J, Segura M: *Group B Streptococcus Induces a Robust IFN-γ Response by CD4*. *Journal of immunology research* 2016, **2016**.

22. Günther J, Czabanska A, Bauer I, Leigh JA, Holst O, Seyfert H-M: *Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages*. *Veterinary Research* 2016, **47**(1):13.

23. Ariffin S, Hasmadi N, Syawari N, Sukiman M, Faiq T, Chai M, Ghazali M: *Prevalence and antibiotic susceptibility pattern of Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli in dairy goats with clinical and subclinical mastitis*. *J Anim Health Prod* 2019, **7**(1):32-37.

Table
Table 1. The primers that used in this study

Name	Sequence (5'-3')	Length (bp)	Annealing temperature(℃)	Application
SA-F	AGCAGGTACCGTCTAAGAGGATTTC	729	52	Short Arm
SA-R	TGCAGGTACCTAATCTCTCTATCTCAC			
LA-I-F	ATCACTAGTGTTGGGACTGGGCAAGAGAA	926	60	Long Arm
LA-I-R	TACATATGGGTCCCTGTGCATGGCCAGAGCCACCAGCAGGCA			
A-IFN-F	TGTTGGCTCTGGCCATTGCACAGGACCCCATATGTAAAAAGA	1358	60	Arm+
A-IFN-R	GACCGAATTCTTACTGGGATGCTCTTTCG			
KY1-F	TGCAATAATATCCTCCCT	1652	56	Integration site
KY1-R	CGACAGTTCAGCCATCAC			
KY2-F	AAATCCTGGTTGCTGTCT	1603	54	Integration site
KY2-R	GCCTAAGGGTTAATTTATTG			
hx2-F	ACCTTGCCATATGATAAGCTTGTTGCTGCTG	600	55	Digestion e
hx2-R	TCTTGTGGTCTGTGCTGCTGCT			
hx8-F	AGAAGAAACTTATTTGGGA	600	54	Digestion e
hx8-R	AAATCTGTCAACACCATA			

Figures
The entire homologous integration scheme of this research in the strategy, one target site was chosen in the 2nd exon of the casein (CSN2) gene, upstream of the signal peptide of the gene. The other site was located upstream of the 8th exon. The homologous arm (long arm: LA) of the recombination vector was designed containing the CSN2 signal peptide and used for guiding interferon-gamma (IFN-γ) secretion.

Figure 1
Construction of gene-targeted and homologous integration vectors

A: Location of single guide RNAs (sgRNAs) that were used in this study. B: Sequencing of the target vector; the sgRNAs were inserted into the Lenti-CRISPR V2 vector followed by sequencing. C: Digestion efficiency analysis of sgRNAs. D-G: Homologous recombination vector construction process. D: The homologous arm was amplified and assessed by polymerase chain reaction (PCR) assay. The bands in line 1 and lane 2 independently represent the long and the short arm length. E: Interferon-gamma (IFN-γ) was synthesized and inserted downstream of the long arm by overlap PCR, which was about 1358bp in length. F: Long arm inserting assay, the vector was double digested by Spe I and EcoR I enzymes. Two bands in lane 1 and 2 showed that the long arm with IFN-γ was completely inserted into the homologous vector. G: Enzyme identification of the entire combination vector. The short arm was digested from the recombination vector by Kpn I.
Transgenic monoclonal goat mammary gland epithelial cells (GMECs) screening and evaluation

A: Lentivirus plasmids were packaged in 293T cells. Homologous and target vectors were all packaged in 293T cells. Expression of green fluorescent protein (GFP) in 293T cells confirmed that the infection rate of homologous vectors was sufficient for the virus concentration.

B: The monoclonal GMECs that were obtained after puromycin selection.

C-D: Integrated interferon-gamma (IFN-γ) expression cassettes were evaluated by PCR assays. Inserted site detection indicated the expression cassettes were correctly integrated into the genome of GMECs. Middle lane (D) in the figure is the KY2 PCR product, the right lane (D) is KY1 PCR product.

E: Detection of IFN-γ mRNA in the monoclonal cells by RT-PCR after inducible expression. F: Western blot analysis of inducible IFN-γ. Analysis of IFN-γ indicated that the gene-edited GMECs could secrete IFN-γ protein as expected.
Anti-bacterial capacity of transgenic monoclonal goat mammary gland epithelial cells (GMECs) that expressed and secreted interferon-gamma (IFN-γ) protein A-C: Bacterial challenge of transgenic GMECs was performed to assess the anti-bacterial capacity of IFN-γ. Transgenic GMECs showed much stronger Staphylococcus and Escherichia coli resistant activity than the non-transgenic ones (P<0.01), but no obvious differences in anti-Streptococcus effects. D-E: Survival rate of GMECs in different bacteria-treated cells at 6h; transgenic GMECs obviously increased the survival rate over non-transgenic ones (P<0.05).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download. NC3RsARRIVEGuidelinesChecklistfillable.pdf