Pseudoprevotella muciniphila gen. nov., sp. nov., a mucin-degrading bacterium attached to the bovine rumen epithelium

Sang Weon Na\(^1\), Byung Hee Chun\(^2\), Seok-Hyoon Beak\(^1\), Shehzad Abid Khan\(^2\), Md. Najmul Haque\(^1\), Jae Sung Lee\(^1\), Che Ok Jeon\(^2\), Sang-Suk Lee\(^3\), Myunggi Baik\(^1\)*

\(^1\) Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea, \(^2\) Department of Life Science, Chung-Ang University, Seoul, Republic of Korea, \(^3\) Department of Animal Science & Technology, Sunchon National University, Sunchon, Republic of Korea

*mgbaik@snu.ac.kr

Abstract

A Gram-negative, strictly anaerobic mucin-degrading bacterium, which we designated strain E39\(^T\), was isolated from the rumen epithelium of Korean cattle. The cells were non-motile and had a coccus morphology. Growth of strain E39\(^T\) was observed at 30–45°C (optimum, 39°C), pH 6.5–8.5 (optimum, pH 7.5), and in the presence of 0.0–1.0% (w/v) NaCl (optimum, 0.0–0.5%). Strain E39\(^T\) contained C\(_{16:0}\), C\(_{18:0}\), C\(_{18:1}\) \(\omega_9\)c, iso-C\(_{15:0}\), and anteiso-C\(_{15:0}\) as the major fatty acids. The major polar lipids were phosphatidylethanolamine, unidentified aminophospholipid, and unidentified lipids. The major respiratory isoprenoid quinones were MK-8 and MK-9. The major fermented end-products of mucin were acetate and succinate. The G+C content of the genomic DNA was 46.4 mol%. Strain E39\(^T\) was most closely related to Alloprevotella rava 81/4-12\(^T\) with an 87.3% 16S rRNA gene sequence similarity. On the basis of phenotypic, chemotaxonomic, and molecular properties, strain E39\(^T\) represents a novel genus of the family Prevotellaceae; as such, the name *Pseudoprevotella muciniphila* gen. nov., sp. nov. is proposed. A functional annotation of the whole genome sequences of *P. muciniphila* E39\(^T\) revealed that this bacterium has a putative mucin-degrading pathway and biosynthetic pathways of extracellular polymeric substances and virulence factors which enable bacteria to adhere to the epithelial cells and avoid the host’s immune responses.

Introduction

Rumen, a forestomach of ruminants, is a complex symbiotic ecosystem. In the rumen, various types of microorganisms (archaea, bacteria, protozoa, fungi, and virus) exist and they are known as the rumen microbiota. The rumen microbiota provides nutrients for the host ruminants by digestion of feed particles, especially indigestive fibrous material, and biosynthesis of metabolites like amino acids, lipids, and vitamins [1]. The nutrients including volatile fatty acids, minerals, and other metabolites are absorbed and transported into the host’s blood.
vessels through the rumen epithelium [2]. Only small portion of rumen microbiota attaches to
the rumen epithelium. Several rumen epithelial bacteria (epimural bacteria) and their func-
tions in urea digestion, tissue recycling, and oxygen scavenging have been identified since
1960s [3, 4]. Recent studies showed the composition and expressed genes of the epimural com-
munity in response to subacute rumen acidosis challenges using meta-omics technologies [5,
6]. Although these culture-independent methods provide expansive information about the epi-
mural community, culture-dependent studies about yet uncultured epimural bacteria are
essential to understand their functions in more depth.

Mucin is a host-derived glycoprotein composed of protein backbones and various oligosac-
charides. Intestinal epithelial cells produce two types of mucins (secreted mucin and cell mem-
brane-associated mucin). They have a role as barriers to prevent pathogens from penetrating
the epithelial tissues [7]. Mucin-degrading bacteria can degrade mucin and utilize it as an
energy source. Some of them penetrate into the host epithelial cells with their mucin-degrad-
ing ability and show pathogenicity, others play roles as commensal bacteria [8]. Studies on
Akkermansia muciniphila, a commensal mucin-degrading bacterium, revealed that this bacte-
rium improved the host metabolic disorders, such as obesity and insulin resistance, by control-
lung gut barrier permeability and inflammation [9, 10].

In the bovine rumen, there are salivary mucin secreted from salivary glands and cell-mem-
brane associated mucins expressed on rumen epithelial cells [11]. In the 1960s, Fina et al. iso-
lated five uncultured mucin-degrading rumen bacteria from rumen fluid and Mishra et al.
determined mucin-degrading activity of several species of rumen bacteria (Butyrivibrio fibri-
solvens, Selenomonas ruminantium, Streptococcus bovis, Peptostreptococcus elsdenii, and Bac-
teroides ruminicola) [12–14]. They focused on mucin-degrading bacteria floating in the rumen
fluid and their roles in bloat syndrome. Subsequently, there has been few studies on mucin-
degrading bacteria floating in the rumen fluid nor them attached to the rumen epithelium.

In this study, we used mucin as a novel carbon source to enrich previously uncultured
mucin-degrading bacteria from the rumen epithelium of Korean cattle. We isolated a novel
mucin-degrading bacterium, called strain E39T. Then, we performed phylogenetic analysis,
phenotypic and chemotaxonomic characterization, and genome analysis. On the basis of phe-
notypic, chemotaxonomic, and molecular properties, strain E39T represents a novel genus of
the family Prevotellaceae, for which we propose the designation *Pseudoprevotella muciniphila*
gen. nov., sp. nov., strain E39T.

Materials and methods

Ethical statement

All experimental procedures were performed in accordance with the Animal Experimental
Guidelines provided by the Seoul National University Institutional Animal Use and Care
Committee, Republic of Korea. The experimental protocol was approved by the Seoul National
University Institutional Animal Use and Care Committee (SNU-170626-1).

Enrichment and isolation of mucin-degrading bacteria

Strain E39T was isolated from the rumen epithelium of Korean cattle. Rumen epithelium tissue
samples were excised from the ventral sacs of rumens immediately after slaughter at the abat-
toir in Bucheon (37°31‘48.4”N 126°45‘46.3”E), South Korea in 2017 and transported in a sterile
container with rumen fluid. On arrival at the laboratory, the samples were moved into an
anaerobic chamber and washed several times with anaerobic dilution solution (ADS; 3 g
K\textsubscript{2}HPO\textsubscript{4}, 6 g NaCl, 3 g KH\textsubscript{2}PO\textsubscript{4}, 0.6 g CaCl\textsubscript{2}, 2H\textsubscript{2}O, 0.6 g MgSO\textsubscript{4}•7H\textsubscript{2}O, 6 g (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, 0.5 g
cysteine-HCl, 0.5 g Na\textsubscript{2}S•9H\textsubscript{2}O, 0.625 g NaOH, and 1 mg resazurin per liter) to remove the
rumen contents and non-adherent bacteria [15, 16]. Five grams of epithelial samples that were stripped from the muscle layer were homogenized in 30 ml of ADS and serially diluted (10-fold). Each 0.3 ml of dilution was inoculated into 30 ml of basal mucin medium in a butyl rubber stopped serum bottle and incubated at 39˚C in an anaerobic atmosphere (95% CO₂, 5% H₂) for 24 h for enrichment. The basal mucin medium was prepared by modifying medium 10 [17] and consisted of 2 g peptone, 0.5 g yeast extract, 2.5 g hog gastric mucin (Type III; Sigma), 50 ml mineral solution 1 (6 g K₂HPO₄ per liter), 50 ml mineral solution 2 (12 g NaCl, 6 g KH₂PO₄, 1.2 g CaCl₂·2H₂O, 1.2 g MgSO₄·7H₂O, and 12 g (NH₄)₂SO₄ per liter), 10 ml Pfennig’s solution (0.5 g EDTA, 0.1 g ZnSO₄·7H₂O, 0.03 g MnCl₂·4H₂O, 0.03 g H₃BO₃, 0.2 g CoCl₂·6H₂O, 0.01 g CuCl₂·2H₂O, 1.5 g FeCl₂·4H₂O, 0.02 g NiCl₂·6H₂O, 0.03 g Na₂MoO₄·2H₂O, and 0.01 g Na₂SeO₃ per liter), 10 ml volatile fatty acid solution (700 ml 0.2 N NaOH, 17 ml acetic acid, 6 ml propionic acid, 4 ml butyric acid, 1 ml iso-butyric acid, 1 ml 2-methylbutyric acid, 1 ml valeric acid, and 1 ml isovaleric acid, pH 7.5 per liter), 1 ml hemin solution (0.5 g hemin and 10 ml 1N NaOH per liter), 1 ml resazurin (0.1%, w/v), 20 ml cysteine sulfide solution (6.25 g NaOH, 25 g cysteine-HCl, and 25 g Na₂S·9H₂O per liter), and 4 g NaHCO₃ per liter. The enrichments were serially diluted with ADS, streaked onto basal mucin agar medium, and incubated at 39˚C for 4 days under anaerobic conditions. Each colony was picked, inoculated into 5 ml of basal mucin medium in a Hungate tube, and incubated at 39˚C for 24–48 h. Streaking, colony picking, and incubation were repeated until an isolate was pure. The isolates were preserved with 15% (v/v) glycerol stock solution and stored at −80˚C.

Bacterial growth and genomic DNA extraction

Cells of strain E39T were grown in 250 ml basal mucin medium at 39˚C for 24 h and harvested by centrifugation (10,000 rpm for 5 min). The genomic DNA of the cells was extracted, according to standard procedures, including phenol-chloroform extraction and ethanol precipitation [18].

16S rRNA gene based phylogeny

The 16S rRNA gene of strain E39T was amplified with PCR using the universal primers 10F (5′-AGT TTG ATC ATG GCT CAG ATT G-3′) and 1507R (5′-TAC CTT GTT ACT TCA CCC CAG-3′) [19] and the resulting amplicons were sequenced using the universal primers 340F (5′-CCT ACG GGA GGC AGC AG-3′), 518R (5′-ATT GCC AGG GCT GGT G-3′), and 805F (5′-GAT TAG ATA CCC TGG TAG TCC-3′). The sequencing quality was checked, and the sequences were assembled using the Geneious program (ver. 11.0.4). The almost complete 16S rRNA gene sequence (1,476 nucleotides) of strain E39T was compared with that of all validated type strains using the Nucleotide Similarity Search program in the EzBioCloud server (http://www.ezbiocloud.net/identify/) [20]. Phylogenetic trees were constructed with MEGA (ver. 7.0.26) using the neighbor-joining (NJ), maximum-parsimony (MP), and maximum-likelihood (ML) methods [21]. The complete 16S rRNA gene sequence (1,540 nucleotides) from the genome sequence of strain E39T was used to construct the phylogenetic trees.

Phenotypic and chemotaxonomic characterization

The cell morphology of cells grown on basal mucin agar medium at 39˚C for 3 days was investigated using phase-contrast microscopy and transmission electron microscopy (Talos L120C; FEI) at 120 kV. Gram staining was performed using a Sigma Gram staining kit following the manufacturer’s protocol. The growth of strain E39T, as determined from the optical density (OD) at a wavelength of 600 nm, was evaluated by culturing the cells in basal mucin medium,
brain heart infusion (BHI) broth (BD), trypticase soy broth (TSB; BD), Columbia broth (Acumedia), and anaerobe basal broth (Oxoid) at 39˚C for 48 h. The optimum temperature, pH, and NaCl concentration for growth were determined by culturing the cells on basal mucin medium for 48 h at different temperatures (5–45˚C, at 5˚C intervals), pH (5.0–9.0 at 0.5 pH unit intervals), and NaCl concentrations (0.0–2.0% at 0.5% intervals). To determine the optimum pH, different pH buffers were used in the appropriate pH range (Na₂HPO₄-NaH₂PO₄ buffer at pH 5.0–7.5; Tris-HCl buffer at pH 8.0–9.0) and the pH values were adjusted before and after autoclaving (121˚C, 15 min) [22]. Oxygen tolerance was investigated by measuring growth (OD at 600 nm) in the absence of a reducing agent (cysteine sulfide solution) or in the aerobic condition on basal mucin medium.

A. tannerae ATCC 51259 T, A. rava 81/4-12 T, Paraprevotella clara YIT 11840 T and Prevotella melaninogenica ATCC 25845 T, which is the type species of the genus Prevotella, were used as reference strains to compare enzyme profiles and cellular fatty acid composition. The enzyme profiles were determined using an API Rapid ID 32A identification kit (bioMérieux) following the manufacturer’s instructions. Analysis of cellular fatty acids was performed according to a standard MIDI protocol. All of the strains were cultivated in peptone-yeast extract-glucose (PYG) broth, except strain E39 T, which was cultivated in basal mucin medium. Cells were harvested at the late exponential phase and cellular fatty acids were extracted from the cells following four steps (saponification, methylation, extraction, and base wash). Fatty acid methyl esters were analyzed by gas chromatography (Hewlett Packard 6890) and identified using the RTSBa6 database of the Microbial Identification System (Sherlock ver. 6.0B) [23]. The polar lipid profiles were analyzed by thin-layer chromatography following the Minnikin et al. method [24]. The following reagents were used to detect different types of polar lipids: 10% ethanolic molybdophosphoric acid (for total lipids), ninhydrin (for aminolipids), Dittmer-Lester reagent (for phospholipids), and α-naphthol (for glycolipids). The isoprenoid quinones of strain E39 T, A. tannerae ATCC 51259 T, A. rava 81/4-12 T, P. clara YIT 11840 T, and P. melaninogenica ATCC 25845 T were extracted from their exponentially grown cells according to the procedure described by Jeon et al. [25] and analyzed at 40˚C using an Agilent infinity 1290 UHPLC equipped with a photodiode array detector (PAD) and an Agilent 6550 ifunnel Q-TOF MS (Agilent Technologies, USA). Briefly, 2 μl of quinone samples were injected into an Agilent Eclipse Plus C-18 column (2.1 mm × 100 mm, 2.1 μm) and eluted at 40˚C using water (A) and acetonitrile (B) containing 0.1% formic acid as a mobile phases with the following gradient: 0 min, 85% B; 30 min, 100% B; 40 min; and flow rate, 0.4 ml/min. Isoprenoid quinone peaks in the chromatograms were identified by their UV spectra generated by PAD and their molecular masses were assessed using Q-TOF MS. The mass spectrometry was performed under the following conditions: polarity, positive; gas temp, 250˚C; nebulizer, 35 psi; capillary, (+) 4,000 V; MS range, 100–1,500 m/z.

Metabolite analysis using ¹H NMR spectroscopy

Metabolic compounds including amino acids, monosaccharides, and organic acids in cultured broth of strain E39 T were analyzed using ¹H NMR spectroscopy, as described previously [26]. Briefly, the basal mucin medium (2.5 g hog gastric mucin per liter; no glucose), glucose medium (5 g glucose per liter; no hog gastric mucin), and mucin-glucose medium (2.5 g hog gastric mucin and 5 g glucose per liter) were prepared based on the basal mucin medium to investigate mucin and glucose utilization by strain E39 T and their fermentation products. Strain E39 T was cultured in 5 ml of each broth at 39˚C for 0, 9, 18, 27, 36, and 54 h. The growth of the cells was monitored by measuring OD at 600 nm. The culture broths were centrifuged, filtered with a 0.45 μm syringe filter, and 0.3 ml of filtrate was mixed with 0.3 ml of D₂O (Sigma-Aldrich, USA) containing 5 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS,
97%; Sigma-Aldrich). The mixtures were transferred into NMR tubes and their ^1H NMR spectra were measured on Varian Inova 600-MHz NMR spectrometer (Varian, USA). Metabolic compounds were identified and quantified using the Chenomx NMR Suite program (ver. 6.1; Chenomx, Canada).

Genome sequencing and analysis

De novo genome sequencing was performed using a Pacific Biosciences (PacBio) RSII platform at Macrogen (Seoul, Korea; http://www.macrogen.com). A library was prepared using PacBio DNA Template Prep Kit 1.0. After sequencing, reads were trimmed to obtain high quality region and then assembled using RS hierarchical genome assembly process (HGAP ver. 3.0) [27]. The complete genome was annotated using a software tool Prokka with default parameter (ver. 1.12) [28].

For the bacterial core genes-based phylogenetic analysis, 92 up-to-date bacterial core genes were extracted from the genomes of strains in the family *Prevotellaceae* and multiple-aligned, and a phylogenetic tree was constructed using the up-to-date bacterial core gene (UBCG) tool ver. 3 (https://www.ezbiocloud.net/tools/ubcg) [29]. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the genomes of strain E39T and reference strains were calculated using a stand-alone software (http://www.ezbiocloud.net/sw/oat) [30] and the Genome-to-Genome Distance Calculator (GGDC) ver. 2.1 (http://ggdc.dsmz.de/distcalc2.php) [31], respectively. Functional annotation of predicted proteins was performed using BlastKOALA tool of Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.kegg.jp/blastkoala/) [32].

To predict putative mucin-degrading enzymes and carbohydrate active enzymes (CAZymes), the genome sequences of strain E39T and reference strains were submitted to a meta server for automated carbohydrate-active enzyme annotation (dbCAN2) (http://cys.bios.niu.edu/dbCAN2/) [33]. VRprofile (http://bioinfo-mml.sjtu.edu.cn/VRprofile) was used for the prediction of virulence and antibiotic resistant genes [34].

Nucleotide sequence accession number

The 16S rRNA gene and genome sequence of strain E39T were deposited in GenBank under MG763147 and CP033459, respectively. The genome data of reference strains: *A. tamirae ATCC 51259T* (GenBank acc. no., ACJJ00000000), *A. rava 81/4-12T* (GenBank acc. no., ACZK00000000), *P. clara YIT 11840T* (GenBank acc. no., AFFY00000000), *P. melaninogenica ATCC 25845T* (GenBank acc. no., CP002122-3), and *Bacteroides thetaiotaomicron VPI 5482T* (GenBank acc. No., AE015928) were obtained from GenBank for comparative analysis.

Results and discussion

16S rRNA gene and genome based phylogeny

Comparative analysis of the 16S rRNA gene sequences revealed that strain E39T was closely related to the genera *Alloprevotella*, *Paraprevotella*, *Prevotella*, and *Bacteroides*. *Alloprevotella rava 81/4-12T*, *Paraprevotella clara YIT 11840T*, *Paraprevotella xylanophila YIT 11841T*, and *Bacteroides gallinarum JCM 13658T* were most closely related to strain E39T with 87.3%, 86.6%, 86.3%, and 85.9% 16S rRNA gene sequence similarities, respectively. The phylogenetic trees based on the ML algorithm and 92 bacterial core genes showed that strain E39T was affiliated with the family *Prevotellaceae* and close to the genera *Alloprevotella* and *Paraprevotella* (Fig 1) [35–37]. Similarly, the phylogenetic trees based on the NJ and MP algorithms also showed that strain E39T was affiliated with the family *Prevotellaceae* (S1 and S2 Figs).
However, all of the phylogenetic trees showed that strain E39T formed a distinct phylogenetic lineage from the other genera. These molecular and phylogenetic analyses suggest that strain E39T represents a novel genus of the family Prevotellaceae.

For additional conformation, ANI and dDDH were done with the genomes of strain E39T and 4 reference strains. As a result, strain E39T had lower ANI and dDDH values with \textit{A. tannaerae} (67.4%; 12.7%), \textit{A. rava} (68.3%; 12.8%), \textit{P. clara} (67.4%; 12.6%), and \textit{P. melaninogenica} (66.7%; 12.7%) than single species thresholds (95–96% and 70%, respectively) [38].
Phenotypic and chemotaxonomic characterization

The transmission electron microscopic analyses showed that the cells of strain E39T were coc-cus in morphology (680–820 nm in diameter), and lacking in flagella (Fig 2). In addition, fila-
mentous structures were observed from the cell surface. Among the various types of media, in-
cluding BHI broth, TSB, Columbia broth, and anaerobe basal broth, strain E39T could only
grow on basal mucin medium. Cells grew at temperatures between 30 and 45°C, pH between
6.5 and 8.5, and in NaCl concentration between 0.0 and 1.0%. When the headspaces were filled
with anaerobic gas, growth was observed in the absence of a reducing agent, but at a lower rate
than in its presence. Cells did not grow in an aerobic atmosphere regardless of whether a
reducing agent was present or not. These results demonstrate that strain E39T prefers obligate
anaerobic conditions but tolerates a trace amount of oxygen (S3 Fig).

In the API Rapid ID 32A panel, strain E39T had positive activities of mucin-degrading
enzymes including β-galactosidase, N-acetyl-β-glucosaminidase, and α-fucosidase [8]. Lack of
urease activity suggest that strain E39T may not attend to the digestion of urea, which is one of
the roles of epimural bacteria. In particular, strain E39T was distinguished from the reference
taxa by a positive activity of arginine dihydrolase (Table 1). The major cellular fatty acids

Fig 2. A transmission electron micrograph showing the general morphology of negatively stained cells of strain
E39T. Cells were grown on basal mucin agar medium at 39°C for 3 days. Bar, 200 nm. Filamentous structures were
observed from the cell surface.

https://doi.org/10.1371/journal.pone.0251791.g002
5% of the total fatty acids) of strain E39T were C_{16:0}, C_{18:0}, C_{18:1} \alpha_{9c}, iso-C_{15:0}, and anteiso-C_{15:0}. Among strain E39T and the reference taxa of the family Prevotellaceae, iso-C_{15:0} and anteiso-C_{15:0} were commonly detected as major cellular fatty acids. Especially, strain E39T had higher portion of C_{16:0} and C_{18:0} compared with the reference taxa (Table 2).

The major polar lipids of strain E39T were phosphatidylethanolamine (PE), unidentified aminophospholipid (APL), and three unidentified lipids (L) (S4 Fig). Strain E39T and the reference taxa of the family Prevotellaceae commonly contained PE and APL (except \textit{P. melaninogenica}) (Table 1). Menaquinone (MK)-8 and MK-9 were identified from strain E39T as major respiratory quinones. However, MK-9 was identified from \textit{A. tannare} and \textit{A. rava}, the most closely related strains, as the sole respiratory quinones, while MK-10 and 11 and MK-7 and 11 were identified from \textit{P. clara} and \textit{P. melaninogenica}, respectively (Table 1).

Table 1. Comparison of phenotype characteristics of strain E39T and closely related taxa.

Characteristic	1	2	3	4	5
Morphology	Coccus	Rod	Rod	Rod	Rod
Optimal temper.	39	ND	35	37	37
Optimal pH	7.5	ND	7.0	ND	ND
Enzyme activity					
Arginine	–	–	–	–	+
β-galactoside	–	–	–	w	–
α-arabinosidase	–	–	–	+	–
α-glicosidase	+	–	w	–	–
Mannose fermentation	–	–	+	+	+
Raffinose fermentation	–	–	+	+	+
β-galactosidase 6 phosphate	w	–	w	–	+
Arginine dihydrolase	+	–	–	–	–
α-galactosidase	+	–	+	–	–
N-acetyl-β-gluconaminidase	+	–	+	–	+
α-fucosidase	+	+	–	–	+
Leucyl glycin a arylamidase	+	+	–	–	+
Glutamyl glutamic acid arylamidase	+	+	–	–	+
Glutamic acid decarboxylase	+	+	–	w	w
Polar lipids†	PE, APL, L PE, APL PE, APL, PL, L PE, APL, L PE, L				
Major quinones*	MK-8, MK-9 MK-9 MK-9 MK-10, MK-11 MK-7, MK-11				
DNA G+C content (mol%)‡	46.4	46.6	45.5	48.2	40.9

*Data were obtained from this study.
†PE, phosphatidylethanolamine; APL, unidentified aminophospholipid; PL, unidentified phospholipid; L, unidentified lipid.
‡The DNA G+C contents were calculated from the genome sequence.

Taxa: 1, strain E39T [this study]; 2, \textit{Alloprevotella tannare} ATCC 51259T [36]; 3, \textit{Alloprevotella rava} 81/4-12T [35]; 4, \textit{Paraprevotella clara} JCM 14859T [37]; 5, \textit{Prevotella melaninogenica} ATCC 25845T [45]. All strains are positive for the following characteristics: activity of β-galactosidase, alkaline phosphatase and alanine arylamidase. All strains are negative for the following characteristics: activity of urease, β-glucosidase, proline arylamidase, phenylalanine arylamidase, leucine arylamidase, pyroglyutamic acid arylamidase, tyrosine arylamidase, glycine arylamidase, histidine arylamidase and serine arylamidase, reduction of nitrates, and indole production. Symbols: +, positive; –, negative; w, weak; ND, not determined.

https://doi.org/10.1371/journal.pone.0251791.t001

> 5% of the total fatty acids) of strain E39T were C_{16:0}, C_{18:0}, C_{18:1} \alpha_{9c}, iso-C_{15:0}, and anteiso-C_{15:0}. Among strain E39T and the reference taxa of the family \textit{Prevotellaceae}, iso-C_{15:0} and anteiso-C_{15:0} were commonly detected as major cellular fatty acids. Especially, strain E39T had higher portion of C_{16:0} and C_{18:0} compared with the reference taxa (Table 2). The major polar lipids of strain E39T were phosphatidylethanolamine (PE), unidentified aminophospholipid (APL), and three unidentified lipids (L) (S4 Fig). Strain E39T and the reference taxa of the family \textit{Prevotellaceae} commonly contained PE and APL (except \textit{P. melaninogenica}) (Table 1). Menaquinone (MK)-8 and MK-9 were identified from strain E39T as major respiratory quinones. However, MK-9 was identified from \textit{A. tannare} and \textit{A. rava}, the most closely related strains, as the sole respiratory quinones, while MK-10 and 11 and MK-7 and 11 were identified from \textit{P. clara} and \textit{P. melaninogenica}, respectively (Table 1). It has been reported that members of the family \textit{Prevotellaceae} contain MK of between 10 to 13 as isoprenoid numbers [37]. However, MK-9 was identified from strain E39T and \textit{Alloprevotella} members and MK-8 was identified from only strain E39T (Table 1), which differentiated strain E39T from other genera of the family \textit{Prevotellaceae}.
In conclusion, 16S rRNA gene and genome based analysis clearly supported identification of strain E39T as a novel genus of the family Prevotellaceae. On top of that, strain E39T was distinguished from the reference taxa by several traits, including coccus shape, growth only on media containing mucin, a positive activity for arginine dihydrolase, high portion of saturated fatty acids (C\textsubscript{16:0} and C\textsubscript{18:0}), and typical polar lipids (unidentified lipids), and MK-8 and MK-9 as major respiratory quinones (Table 3). Taken together, strain E39T is considered to represent

Fatty acid	1	2	3	4	5
Saturated:					
C\textsubscript{12:0}	0.9	tr	tr	tr	tr
C\textsubscript{13:0}	0.9	-	-	-	-
C\textsubscript{14:0}	4.5	3.0	3.2	11.6	1.9
C\textsubscript{15:0}	-	-	-	-	-
C\textsubscript{16:0}	24.9	4.9	14.5	9.0	8.7
C\textsubscript{17:0}	1.2	tr	1.7	-	tr
C\textsubscript{18:0}	18.3	1.3	6.7	0.8	0.9
C\textsubscript{20:0}	0.8	tr	0.6	tr	tr
Unsaturated:					
C\textsubscript{13:3} at 12–13	0.6	tr	2.2	1.5	2.2
C\textsubscript{18:1} \textomega\textsubscript{9c}	10.3	0.9	6.7	23.2	23.1
Hydroxy:					
C\textsubscript{15:0} 3-OH	0.9	tr	tr	tr	tr
C\textsubscript{16:0} 3-OH	3.7	2.0	0.8	8.0	3.5
C\textsubscript{17:0} 2-OH	tr	tr	0.7	tr	tr
iso-C\textsubscript{17:0} 3-OH	2.1	9.4	13.3	0.6	3.6
Branched:					
iso-C\textsubscript{13:0}	1.6	3.5	1.0	tr	0.8
iso-C\textsubscript{14:0}	-	8.8	-	1.5	12.2
iso-C\textsubscript{15:0}	9.0	26.6	8.4	11.0	5.6
iso-C\textsubscript{16:0}	0.5	2.2	2.4	tr	1.0
iso-C\textsubscript{17:0}	3.0	4.2	6.7	tr	1.4
iso-C\textsubscript{18:0}	-	tr	1.0	-	tr
iso-C\textsubscript{19:0}	-	tr	1.1	-	0.8
anteiso-C\textsubscript{13:0}	tr	0.8	tr	tr	tr
anteiso-C\textsubscript{15:0}	5.4	25.2	15.5	21.1	21.7
anteiso-C\textsubscript{17:0}	0.9	1.9	2.4	tr	1.4
Summed feature*:					
3	0.9	tr	1.0	3.1	3.1
5	2.7	tr	-	-	-
8	3.5	tr	2.6	3.2	3.4

*Summed features represent groups of two fatty acids that cannot be separated by GLC with the MIDI system. Summed feature 3, C\textsubscript{16:1} \textomega\textsubscript{7c} and/or C\textsubscript{16:1} \textomega\textsubscript{6c}; summed feature 5, C\textsubscript{18:0} ante and/or C\textsubscript{18:2} \textomega\textsubscript{6,9c}; summed feature 8, C\textsubscript{18:1} \textomega\textsubscript{7c} and/or C\textsubscript{18:1} \textomega\textsubscript{6c.}

Taxa: 1, strain E39T; 2, Alloprevotella tannerae ATCC 51259T; 3, Alloprevotella rava 81/4-12T; 4, Paraprevotella clara YIT 11840T; 5, Prevotella melaninogenica ATCC 25845T. All data were obtained from this study. Data are expressed as percentages of total fatty acids. In all strains, fatty acids that account for less than 0.5% are not shown. Major components (> 5.0%) are in bold. tr, trace amount (< 0.5%); --, not detected.

https://doi.org/10.1371/journal.pone.0251791.t002

In conclusion, 16S rRNA gene and genome based analysis clearly supported identification of strain E39T as a novel genus of the family Prevotellaceae. On top of that, strain E39T was distinguished from the reference taxa by several traits, including coccus shape, growth only on media containing mucin, a positive activity for arginine dihydrolase, high portion of saturated fatty acids (C\textsubscript{16:0} and C\textsubscript{18:0}), and typical polar lipids (unidentified lipids), and MK-8 and MK-9 as major respiratory quinones (Table 3). Taken together, strain E39T is considered to represent
a new genus within the family Prevotellaceae, for which the name *Pseudoprevotella muciniphila* gen. nov., sp. nov. is proposed.

Metabolite changes during mucin and glucose fermentation

The growth of strain E39^T was observed in the basal mucin medium and mucin-glucose medium, but not in glucose medium (Fig 3A). Strain E39^T grew in the mucin-glucose medium better than in the basal mucin medium. Metabolites including free sugars, organic acids, and amino acids were analyzed by ¹H NMR spectroscopy. The concentration of acetate and succinate increased continuously in the both media (Fig 3B). The concentration of mannose and N-acetylglucosamine which are sugar residues of mucin structure, increased in both media during the early fermentation (0–9 h), and then decreased after 9 h (S5 Fig). Alanine, glycine, and valine were detected as the major amino acids during the fermentation in the both media (S6 Table 3. Comparison of characteristics between *Pseudoprevotella* gen. nov. and closely related genera within the family Prevotellaceae.

Characteristic	1	2	3	4
Habitat	Rumen epithelium	Human oral cavity	Gut intestinal tract of mammals	Rumen, gut intestinal tract, and vagina of mammals
Metabolic end products from glucose	Acetate, succinate[†]	Acetate, succinate	Acetate, succinate	Acetate, succinate
Major cellular fatty acids	C_{16:0}, C_{18:0}	anteiso-C_{15:0}, iso-C_{15:0}, C_{18:1ω9c}	anteiso-C_{15:0}, iso-C_{15:0}, C_{18:1ω9c}	anteiso-C_{15:0}
Major quinones	MK-8, MK-9[‡]	MK-9[‡]	MK-10, MK-11	MK-10–MK-13
DNA G+C content (mol%)	46.4	45–47	48–49	40–52

[†]Data were obtained from this study.

[‡]Metabolic end-products from mucin or mucin plus glucose.

Genera: 1, *Pseudoprevotella* gen. nov.; 2, *Alloprevotella* [35]; 3, *Paraprevotella* [37]; 4, *Prevotella* [45].

https://doi.org/10.1371/journal.pone.0251791.t003

Fig 3. Growth of strain E39^T in the basal mucin (M), glucose (G), and mucin-glucose (M+G) media (A) and profiles of glucose, acetate, and succinate in the basal (M) and mucin-glucose (M+G) media during fermentation (B). Data are presented as mean ± standard error from triplicates.

https://doi.org/10.1371/journal.pone.0251791.g003
Strain E39^T was not able to grow in media without mucin, and the growth of strain E39^T was promoted by the addition of glucose. These results suggest that mucin is an essential growth nutrient for strain E39^T and it can utilize glucose as an energy source only under the presence of mucin. Furthermore, it was shown that strain E39^T might utilize mucin as an energy source during the early fermentation and produce acetate, succinate, and several amino acids as major fermented end-products.

Genomic features of the complete genome of *Pseudoprevotella muciniphila* E39^T

Annotation analysis revealed that the genome of strain E39^T comprised 2,920,169 bases, 2,458 genes, 2,396 coding sequences (CDSs), 52 tRNA, 1 transfer-messenger RNA (tmRNA), and 9 rRNA (Table 4).

(1) **Mucin degradation and utilization.** Mucin is host-derived glycoprotein composed of a protein backbone, lots of O-glycan, and a small number of N-glycan. N-acetylgalactosamine (GalNAc) is O-glycosylated to proline-threonine-serine (PTS) domain of a protein backbone and addition of galactose or N-acetylgalcosamine (GlcNAc) forms 8 types of O-glycan core structures. Addition of extended core (galactose and GlcNAc) and terminal residues (sialic acid and fucose) makes mucin structure more complex [39]. To utilize mucin as an energy source, bacteria need to have series of enzymes to degrade complex mucin structure. Several glycoside hydrolases (GHs) were known as enzymes involved in mucin degradation such as sialidases (GH33), α-fucosidases (GH29, GH95), exo- and endo-β-N-acetylgalactosaminidases (GH84, GH85), β-galactosidases (GH2, GH20, GH42), α-N-acetylgalactosaminidases (GH89), endo-β1,4-galactosidases (GH98), and α-N-acetylgalactosaminidases (GH101, GH129) [39, 40]. In this study, the result of CAZyme annotation using dbCAN2 tool showed that *P. muciniphila* E39^T had 64 GHs, 5 carbohydrate-binding modules, 49 glycosyltransferases, 10 carbohydrate esterases, and no polysaccharide lyases (Table 4, S1 Dataset). Among 64 GHs, 28 GHs were putative enzymes involved in mucin degradation (Table 5). Compared to a Gram-negative mucin-degrading bacterium, *B. thetaiotaomicron*, *P. muciniphila* E39^T had fewer but similar kinds of mucin-degrading GHs. *Bacteroides thetaiotaomicron* has Sus-like systems for...
utilization of mucin glycan [41]. Glycan binding proteins on the cell surface bind polysaccharide and GHs partially degrade glycan. And then, two outer membrane proteins, homologs of SusD and SusC, import oligosaccharide into periplasm. After transportation of glycan from extracellular place to periplasm, glycan is degraded into monosaccharides by GHs and transferred to cytoplasm through inner membrane transporters [40, 41]. We confirmed that P. muciniphila E39T also had homologs of SusC and SusD through a BlastP search against the genome of P. muciniphila E39T (S1 Dataset). Based on a KEGG pathway analysis and BlastP analysis, we constructed putative mucin degrading pathway of P. muciniphila E39T. There were genes associated with metabolism of carbon sources including galactose, sialic acid (Neu5Ac), fucose, GlcNAc, and mannose on the results of KEGG pathway analysis (Fig 4). However, the proposed metabolic pathway was incomplete because of the absence of two genes (galactose 1-phosphate uridyltransferase, EC 2.7.7.12; N-acetylglucosamine kinase, EC 2.7.1.59) involved in galactose and GlcNAc metabolisms, respectively. In addition, P. muciniphila E39T was negative in the mannose fermentation activity despite it harbored a mannose metabolic pathway. Further studies on mucin degrading pathway like monosaccharide transporting systems are needed to explain and understand mucin metabolic features of the P. muciniphila E39T.

(2) Extracellular polymeric substances biosynthesis. Bacteria produce biofilms for various purposes. Biofilms are composed of extracellular polymeric substances including nucleic acids, lipids, proteins, and exopolysaccharides and this complex compounds have a wide range of roles in adhesion to other bacterial cells or host cells, protection from stresses such as antibiotic substances or harmful chemicals, and provision of structure for stratification against rapid environmental changes [42]. In the Wzx/Wzy-dependent pathway, one of exopolysaccharides biosynthesis pathways, glycosyltransferases assemble repeating units and a flippase (Wzx protein) translocates the units into the periplasmic place. The repeating units are elongated by a polymerase (Wzy protein) and transported across the outer membrane through a polysaccharide export protein [43]. P. muciniphila E39T also produced branch-shaped extracellular structures (Fig 2) and these structures are predicted to contribute to adhesion to mucin or host cells. We identified that P. muciniphila E39T had 1 putative extracellular polysaccharide synthesis locus (L_02166 – L_02195) through a BlastP search against the genome of P. muciniphila E39T (S1 Dataset). There were 8 putative glycosyltransferases (L_02166, L_02169, L_02175, L_02179, L_02180, L_02181, L_02183, L_02184), 1 polymerase (L_02174), 1 flippase (L_02189), 1 serine acetyltransferase (L_02182), 1 N-acetyltransferase (L_02182), 1 aminotransferase (L_02188), 1 polysaccharide pyruvyl transferase (L_02191), and 1 polysaccharide export protein (L_02193).

(3) Virulence factors. Bacterial virulence factors allow bacteria to survive in the host, participating in adhesion, colonization, invasion, evasion or inhibition of immune responses, etc [44]. P. muciniphila E39T had 17 putative virulence factors and they involved in adherence (KpsF, htpB, glf, hasB), antiphagocytosis (cps4I, cps4K, cps4L, hasB), immune evasion (tviC), stress reaction (clpC, clpP), O-antigen (galE, fcl), lipopolysaccharide (gmd), and metabolic adaptation (panD) (S1 Dataset). The virulence factors encoded in these genes may enable P. muciniphila E39T to survive on the rumen wall, a place which host’s defense mechanism is most active in the rumen, by attaching to epithelial cells and avoiding the host’s immune responses. The absence of genes encoding exotoxin and involved in invasion suggests that P. muciniphila E39T may have low pathogenicity. However, we cannot ignore the possibility that P. muciniphila E39T is a potential pathogen because of its endotoxin (lipopolysaccharide) and mucinolytic ability. Further researches at molecular level or in vivo studies are required to determine the pathogenicity of P. muciniphila E39T.
Conclusions

The genetic, physiological, and chemotaxonomic features support that strain E39T represents a novel genus of the family Prevotellaceae. As such, the name \textit{Pseudoprevotella muciniphila} gen. nov., sp. nov. is proposed. \textit{Pseudoprevotella muciniphila} E39T was isolated from the bovine rumen epithelium and this bacterium utilized mucin as a sole carbon source. The functional annotation of the complete genome of \textit{P. muciniphila} E39T supported that \textit{P. muciniphila} E39T possess a series of mucin degrading enzymes and putative mucin-degrading pathway. In addition, \textit{P. muciniphila} E39T is predicted to have putative metabolisms to synthesize extracellular polymeric substances and virulence factors for adhering to rumen epithelial cells and evading the host’s immune responses. In short, this study contributes to discovery of a novel mucin-degrading bacterium which has a potential ability to significantly affect host’s physiology and

Table 5. List of predicted mucin degrading enzymes in the complete genome of strain E39T.

Mucin degrading enzymes	Glycoside hydrolases (GHs)	Locus ID*	KEGG ID	Prokka annotation
β-galactosidases	GH2	L_00290	K01190 (β-galactosidase)	β-galactosidase
		L_01043	K01190 (β-galactosidase)	β-galactosidase
		L_01673	K01190 (β-galactosidase)	Evolved β-galactosidase subunit α
GH20		L_00323	K12373 (hexosaminidase)	β-hexosaminidase
		L_00864		β-N-acetylhexosaminidase
		L_00865		β-N-acetylhexosaminidase
		L_01112	K12373 (hexosaminidase)	β-hexosaminidase
		L_01187	K12373 (hexosaminidase)	β-hexosaminidase
		L_01443	K12373 (hexosaminidase)	β-hexosaminidase
		L_01556	K12373 (hexosaminidase)	β-hexosaminidase
		L_01824	K12373 (hexosaminidase)	β-hexosaminidase
GH42				
Endo-β1,4-galactosidases	GH98			
α-N-acetylgalactosaminidases	GH101			
Exo- and endo-β-N-acetylglucosaminidases	GH84	L_00360	K01197 (hyaluronoglucosaminidase)	Hyaluronoglucosaminidase
		L_01917	K01197 (hyaluronoglucosaminidase)	O-GlcNAcase
		L_00833		Hypothetical protein
		L_01606		Hypothetical protein
α-N-acetylglucosaminidases	GH89	L_01212	K01205 (α-N-acetylglucosaminidase)	Hypothetical protein
		L_01965	K01205 (α-N-acetylglucosaminidase)	Hypothetical protein
Sialidas	GH33	L_00875		Hypothetical protein
		L_01672	K01186 (sialidase-1)	Sialidase
		L_02283		Sialidase
Fucosidases	GH29	L_00284	K01206 (α-L-fucosidase)	Hypothetical protein
		L_00599	K01206 (α-L-fucosidase)	Hypothetical protein
		L_00887	K01206 (α-L-fucosidase)	Hypothetical protein
		L_00979	K01206 (α-L-fucosidase)	Hypothetical protein
		L_01701	K01206 (α-L-fucosidase)	Hypothetical protein
		L_00982	K15923 (α-L-fucosidase 2)	Hypothetical protein
		L_01250	K15923 (α-L-fucosidase 2)	Hypothetical protein
		L_02348	K15923 (α-L-fucosidase 2)	Hypothetical protein

*Locus IDs are the results of CAZyme annotation using dbCAN2 tool.

https://doi.org/10.1371/journal.pone.0251791.t005

Conclusions

The genetic, physiological, and chemotaxonomic features support that strain E39T represents a novel genus of the family Prevotellaceae. As such, the name \textit{Pseudoprevotella muciniphila} gen. nov., sp. nov. is proposed. \textit{Pseudoprevotella muciniphila} E39T was isolated from the bovine rumen epithelium and this bacterium utilized mucin as a sole carbon source. The functional annotation of the complete genome of \textit{P. muciniphila} E39T supported that \textit{P. muciniphila} E39T possess a series of mucin degrading enzymes and putative mucin-degrading pathway. In addition, \textit{P. muciniphila} E39T is predicted to have putative metabolisms to synthesize extracellular polymeric substances and virulence factors for adhering to rumen epithelial cells and evading the host’s immune responses. In short, this study contributes to discovery of a novel mucin-degrading bacterium which has a potential ability to significantly affect host’s physiology and
its putative metabolic pathways which can assist to predict its function in epimural community.

Description of *Pseudoprevotella muciniphila* gen. nov., sp. nov.

Pseudoprevotella (Pseu.do.pre.vo.tel’la. Gr. adj. *pseudès* false; N.L. n. fem. n. *Prevotella* a bacterial generic name; N.L. fem. n. *Pseudoprevotella* false *Prevotella*).

The cells are strictly anaerobic, non-motile, Gram-negative and coccus in shape. The major cellular fatty acids are C_{16:0}, C_{18:0}, C_{18:1} \omega 9c, iso-C_{15:0}, and anteiso-C_{15:0}. The main polar lipids

![Diagram of mucin degrading and utilizing pathways of the P. muciniphila E39^T](https://doi.org/10.1371/journal.pone.0251791.g004)

Fig 4. Proposed mucin degrading and utilizing pathways of the *P. muciniphila* E39^T. These putative pathways were constructed based on CAZyme annotation, KEGG pathway analysis and BlastP analysis. Mucin is initially degraded into oligo- or monosaccharides by mucin degrading glycoside hydrolases (GHs) followed by transportation into periplasm by Sus-like outer membrane proteins. Additional degradation is occurred by periplasmic glycoside hydrolases and mucin-derived monosaccharides are imported through unidentified transporters and utilized as carbon sources. Metabolic pathways that are present in the *P. muciniphila* E39^T are depicted in gray, and metabolic pathways that are not present in the *P. muciniphila* E39^T are depicted in red. GlcNAc: N-acetylglucosamine, GalNAc: N-acetylgalactosamine, Neu5Ac: sialic acid, ManNAc: N-acetylmannosamine.
are phosphatidylethanolamine (PE), unidentified aminophospholipid (APL), and three unidentified lipids. The major respiratory quinones are MK-8 and MK-9. The major fermented end-products of mucin are acetate and succinate. The genus is a member of the family *Prevotellaceae* of the phylum *Bacteroidetes*. The type species is *Pseudoprevotella muciniphila*.

Description of *Pseudoprevotella muciniphila* sp. nov.

Pseudoprevotella muciniphila (mu.ci.ni’phi.la. N.L. neut. n. mucinum mucin; Gr. adj. philos loving; N.L. fem. adj. muciniphila mucin-loving).

In addition to the characteristics provided in the genus description above, this species grows at 30–45°C (optimum, 39°C), at pH 6.5–8.5 (optimum, pH 7.5), and in the presence of 0.0–1.0% (w/v) NaCl (optimum, 0.0–0.5%). This species had arginine dihydrolase, α-galactosidase, β-galactosidase, β-galactosidase-6-phosphate, N-acetyl-β-glucosaminidase, glutamic acid decarboxylase, α-fucosidase, alkaline phosphatase, leucyl glycine arylamidase, alanine arylamidase, and glutamyl glutamic acid arylamidase activity, but lacked urease, α-glucosidase, β-gluconidase, α-arabinosidase, β-glucuronidase, mannos fermentation, raffinose fermentation, reduction of nitrates, indole production, arginine arylamidase, proline arylamidase, phenylalanine arylamidase, leucine arylamidase, pyroglutamic acid arylamidase, tyrosine arylamidase, glycine arylamidase, histidine arylamidase, and serine arylamidase activity. This species has a DNA G+C content of 46.4 mol%. The type strain is E39^T (KCTC 15717^T = JCM 32621^T), and it was isolated from the rumen epithelium of Korean cattle.

Supporting information

S1 Fig. Neighbor-joining tree showing the phylogenetic relationship between strain E39^T and closely related strains within the order *Bacteroidales*, based on 16S rRNA gene sequences. Bootstrap values over 70% are shown on the nodes as percentages of 2,000 replicates. *Sphingobacterium spiritivorum* ATCC 33861^T (EF090267) was used as an outgroup. Bar indicates 0.02 changes per nucleotide position. (DOCX)

S2 Fig. Maximum-parsimony tree showing the phylogenetic relationship between strain E39^T and closely related strains within the order *Bacteroidales*, based on 16S rRNA gene sequences. Bootstrap values over 70% are shown on the nodes as percentages of 2,000 replicates. *Sphingobacterium spiritivorum* ATCC 33861^T (EF090267) was used as an outgroup. Bar indicates 50 changes per nucleotide position. (DOCX)

S3 Fig. Growth of strain E39^T in the absence of a reducing agent or in the aerobic condition. NROX: No reducing agent and aerobic headspace, NRAN: No reducing agent and anaerobic headspace, PROX: presence of reducing agent and aerobic headspace, PRAN: presence of reducing agent and anaerobic headspace. Data are presented as mean ± standard error from triplicates. (DOCX)

S4 Fig. Total polar lipid profiles of strain E39^T and closely related strains within the family *Prevotellaceae*. Solvent systems: (I) chloroform–methanol–water (65:25:4, v/v/v); (II) chloroform–acetic acid–methanol–water (80:15:12:4, v/v/v/v). The TLC plates were sprayed with 10% ethanolic molybdatophosphoric acid. (A) strain E39^T, (B) *Alloprevotella tannerae*, (C) *Alloprevotella rava*, (D) *Paraprevotella clara*, (E) *Prevotella melaninogenica*. PE, phosphatidylethanolamine; APL, unidentified aminophospholipids; PL, unidentified phospholipids; L,
unidentified polar lipids.

(S5 Fig.) Profiles of galactose, N-acetylglucosamine, and mannose in the mucin-glucose (A) and basal mucin (B) media during fermentation. Data are presented as mean ± standard error from triplicates.

(S6 Fig.) Profile of major amino acids in the mucin-glucose (A) and basal mucin (B) media during fermentation. Data are presented as mean ± standard error from triplicates.

(S1 Dataset.) Genome features of *Pseudoprevotella muciniphila* E39^T.

Author Contributions

Conceptualization: Sang Weon Na, Che Ok Jeon, Myunggi Baik.

Data curation: Sang Weon Na, Myunggi Baik.

Formal analysis: Sang Weon Na.

Funding acquisition: Sang Weon Na, Myunggi Baik.

Investigation: Sang Weon Na, Byung Hee Chun, Seok-Hyeon Beak, Shehzad Abid Khan, Md. Najmul Haque, Jae Sung Lee.

Methodology: Che Ok Jeon.

Project administration: Myunggi Baik.

Resources: Che Ok Jeon, Myunggi Baik.

Supervision: Che Ok Jeon, Myunggi Baik.

Validation: Che Ok Jeon, Myunggi Baik.

Writing – original draft: Sang Weon Na, Myunggi Baik.

Writing – review & editing: Sang Weon Na, Che Ok Jeon, Sang-Suk Lee, Myunggi Baik.

References

1. Puniya AK, Singh R, Kamra DN. Rumen microbiology: an overview. In: Choudhury PK, Salem AZM, Jena R, Kumar S, Singh R, Puniya AK, editors. Rumen Microbiology: From Evolution to Revolution. New Delhi: Springer; 2015. pp. 3–47.

2. Rémond D, Meschy F, Boivin R. Metabolites, water and mineral exchanges across the rumen wall: mechanisms and regulation. Ann Zootechn. 1996; 45: 97–119.

3. Sadet S, Martin C, Meunier B, Morgavi DP. PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal. 2007; 1: 939–944. https://doi.org/10.1017/S1751731107000304 PMID: 22444795

4. Cheng KJ, McCowan RP, Costerton JW. Adherent epithelial bacteria in ruminants and their roles in digestive tract function. Am J Clin Nutr. 1979; 32: 139–148. https://doi.org/10.1093/ajcn/32.1.139 PMID: 367141

5. Wetzels SU, Mann E, Pourazad P, Qumar M, Pinior B, Metzler-Zebeli BU, et al. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. J Dairy Sci. 2017; 100: 1829–1844. https://doi.org/10.3168/jds.2016-11620 PMID: 28041738
6. Mann E, Wetzels SU, Wagner M, Zebeli Q, Schmitz-Esser S. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front Microbiol. 2018; 9: 43. https://doi.org/10.3389/fmicb.2018.00043 PMID: 29410661

7. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011; 9: 265–278. https://doi.org/10.1038/nrmicro2538 PMID: 21407243

8. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper R, de Vos W, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010; 1: 254–268. https://doi.org/10.4161/gmic.1.4.12778 PMID: 21327032

9. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004; 54: 1469–1476. https://doi.org/10.1099/ijs.0.02873-0 PMID: 15388697

10. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013; 110: 9066–9071. https://doi.org/10.1073/pnas.1219451110 PMID: 23671105

11. Hoorens PR, Rinaldi M, Li RW, Goddeeris B, Claerebout E, Vercruysse J, et al. Genome wide analysis of the bovine mucin genes and their gastrointestinal transcription profile. BMC Genomics. 2011; 12: 140. https://doi.org/10.1186/1471-2164-12-140 PMID: 21385362

12. Fina LR, Hay CA, Bartley EE, Mishra B. Bloat in cattle. V. The role of rumen mucinolytic bacteria. J Anim Sci. 1961; 20: 654–658.

13. Mishra BD, Fina LR, Bartley EE, Claydon TJ. Bloat in cattle. XI. The role of rumen aerobic (facultative) mucinolytic bacteria. J Anim Sci. 1967; 26: 606–612. https://doi.org/10.2527/jas1967.263606x PMID: 6039802

14. Mishra BD, Bartley EE, Fina LR, Bryant MP. Bloat in cattle. XIV. Mucinolytic activity of several anaerobic rumen bacteria. J Anim Sci. 1968; 27: 1651–1656. https://doi.org/10.2527/jas1968.2761651x PMID: 5754400

15. Mead LJ, Jones GA. Isolation and presumptive identification of adherent epithelial bacteria ("Epimural" bacteria) from the ovine rumen wall. Appl Environ Microbiol. 1981; 41: 1020–1028. https://doi.org/10.1128/AEM.41.4.1020-1028.1981 PMID: 7195191

16. Muller RE, Iannotti EL, Asplund JM. Isolation and identification of adherent epimural bacteria during succession in young lambs. Appl Environ Microbiol. 1984; 47: 724–730. https://doi.org/10.1128/AEM.47.4.724-730.1984 PMID: 6721489

17. Caldwell DR, Bryant MP. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966; 14: 794–801. PMID: 5970467

18. Sambrook J, Russell DW. Molecular cloning: A laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.

19. Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons; 1991. pp. 115–175.

20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol. 2017; 67: 1613–1617. https://doi.org/10.1099/ijsem.0.01755 PMID: 28005526

21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33: 1870–1874. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

22. Gomon G. Preparation of buffers for use in enzyme studies. Methods Enzymol. 1955; 1: 138–146.

23. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark: MIDI Inc; 1990.

24. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol. 1977; 27:104–107.

25. Jeon CO, Lee DS, Park JM. Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor. Water Res. 2003; 37: 2195–2205. https://doi.org/10.1016/S0043-1354(02)00587-0 PMID: 12691905

26. Han DM, Chun BH, Feng T, Kim HM, Jeon CO. Dynamics of microbial communities and metabolites in gajang, a traditional Korean fermented soy sauce, during fermentation. Food Microbiol. 2020; 92: 103591. https://doi.org/10.1016/j.fm.2020.103591 PMID: 32950133

27. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013; 10: 563–569. https://doi.org/10.1038/nmeth.2474 PMID: 23644548
28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30: 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063

29. Na S, Kim YO, Yoon SH, Ha SM, Baek I, Chun J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol. 2018; 56: 280–285. https://doi.org/10.1007/s12275-018-8014-6 PMID: 29492869

30. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016; 66: 1100–1103. https://doi.org/10.1099/ijsem.0.000760 PMID: 26585518

31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf. 2013; 14: 60. https://doi.org/10.1186/1471-2105-14-60 PMID: 23432962

32. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016; 428: 726–731. https://doi.org/10.1016/j.jmb.2015.11.006 PMID: 26585406

33. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018; 46: W95–W101. https://doi.org/10.1093/nar/gky418 PMID: 29771380

34. Li J, Tai C, Deng Z, Zhong W, He Y, Ou HY. VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. Brief Bioinform. 2018; 19: 566–574. https://doi.org/10.1093/bib/bby141 PMID: 28077405

35. Downes J, Dewhirst FE, Tanner ACR, Wade WG. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol. 2013; 63: 1214–1218. https://doi.org/10.1099/ijs.0.041376-0 PMID: 22753527

36. Moore LV, Johnson JL, Moore WE. Descriptions of Prevotella tannerae sp. nov. and Prevotella enoeca sp. nov. from the human gingival crevice and emendation of the description of Prevotella zoogloaeformans. Int J Syst Bacteriol. 1994; 44: 599–602. https://doi.org/10.1099/00207713-44-4-599 PMID: 7981091

37. Morotomi M, Nagai F, Sakon H, Tanaka R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family 'Prevotellaceae' isolated from human faeces. Int J Syst Bacteriol. 2009; 59: 1895–1900. https://doi.org/10.1099/ijs.0.008169-0 PMID: 19567577

38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009; 106: 19126–19131. https://doi.org/10.1073/pnas.0906412106 PMID: 19852737

39. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015; 6: 81–98. https://doi.org/10.3389/fgene.2015.00061 PMID: 25852737

40. Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev. 2018; 42: 146–164. https://doi.org/10.1093/femsre/fuy002 PMID: 29325042

41. Martens EC, Chiang HC, Gordon JL. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008; 4: 447–457. https://doi.org/10.1016/j.chom.2008.09.007 PMID: 18996345

42. Limoli DH, Jones CJ, Wozniak DJ. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 2015; 3. https://doi.org/10.1128/microbiolspec.MB-0011-2014 PMID: 26185074

43. Schmidt J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 2015; 6: 496. https://doi.org/10.3389/fmicb.2015.00496 PMID: 26074894

44. Bakour S, Sankar SA, Rathored J, Biagini P, Raoult D, Fournier PE. Identification of virulence factors and antibiotic resistance markers using bacterial genomics. Future Microbiol. 2016; 11: 455–466. https://doi.org/10.2217/fmb.15.149 PMID: 26974504

45. Shah HN, Collins DM. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Evol Microbiol. 1990; 40: 205–208. https://doi.org/10.1099/00207713-40-2-205 PMID: 223812