Cross-sections of multibrot sets

Line Baribeau · Thomas Ransford

Dedicated to David Minda on the occasion of his retirement

Received: date / Accepted: date

Abstract We identify the intersection of the multibrot set of $z^d + c$ with the rays $\mathbb{R}^+\omega$, where $\omega^{d-1} = \pm 1$.

Keywords Mandelbrot set · Multibrot set

Mathematics Subject Classification (2010) 37F45

1 Introduction

Let d be an integer with $d \geq 2$. Given $c \in \mathbb{C}$, we define

$$p_c(z) := z^d + c \quad \text{and} \quad p_c^n := p_c \circ \cdots \circ p_c \quad (n \text{ times}).$$

The corresponding generalized Mandelbrot set, or multibrot set, is defined by

$$M_d := \left\{ c \in \mathbb{C} : \sup_{n \geq 0} |p_c^n(0)| < \infty \right\}.$$

Of course M_2 is just the classical Mandelbrot set. Computer-generated images of M_3 and M_4 are pictured in Figure 1. Multibrot sets have been extensively studied in the literature. Schleicher’s article [5] contains a wealth of background material on them.

TR supported by grants from NSERC and the Canada research chairs program

Line Baribeau
Département de mathématiques et de statistique, Université Laval, 1045 avenue de la Médecine, Québec (QC), Canada G1V 0A6
E-mail: line.baribeau@mat.ulaval.ca

Thomas Ransford
Département de mathématiques et de statistique, Université Laval, 1045 avenue de la Médecine, Québec (QC), Canada G1V 0A6
Tel.: +14186562131 ext 2738
Fax: +14186565902
E-mail: thomas.ransford@mat.ulaval.ca
We mention here some elementary properties of multibrot sets. First of all, they exhibit \((d-1)\)-fold rotational invariance, namely
\[
M_d = \omega M_d \quad (\omega \in \mathbb{C}, \, \omega^{d-1} = 1).
\]
Indeed, for these \(\omega\), writing \(\phi(z) := \omega z\), we have \(\phi^{-1} \circ p_c \circ \phi = p_c / \omega\), so \(p_c^n(0)\) remains bounded if and only if \(p_c^n(0)\) does. (In fact, the rotations in (1) are the only rotational symmetries of \(M_d\). The paper of Lau and Schleicher [1] contains an elementary proof of this fact.)

Also, writing \(D(0, r)\) for the closed disk with center 0 and radius \(r\), we have the inclusions
\[
D(0, \alpha(d)) \subset M_d \subset D(0, \beta(d)),
\]
where
\[
\alpha(d) := (d-1)d^{-d/(d-1)} \quad \text{and} \quad \beta(d) := 2^{1/(d-1)}.
\]
The first inclusion follows from the fact that, if \(|c| \leq \alpha(d)\), then the closed disk \(D(0, d^{-1/(d-1)})\) is mapped into itself by \(p_c\), and consequently the sequence \(p_c^n(0)\) is bounded. For the second inclusion, we observe that, if \(|c| > \beta(d)\), then by induction \(|p_c^n(0)| \geq (2d)^n(|c|^{d-2}|c|)\) for all \(n \geq 0\), and the right-hand side of this inequality tends to infinity with \(n\).

When \(d\) is odd, we have
\[
M_d \cap \mathbb{R} = [-\alpha(d), \alpha(d)]. \tag{2}
\]
This equality was conjectured by Parisé and Rochon in [3], and proved by them in [4]. Also, when \(d\) is even, we have
\[
M_d \cap \mathbb{R} = [-\beta(d), \alpha(d)]. \tag{3}
\]
This equality was also conjectured in [3], and subsequently proved in [2]. When \(d = 2\), it reduces to the well-known equality \(M_2 \cap \mathbb{R} = [-2, \frac{1}{4}]\).
By virtue of the rotation-invariance property (1), the equalities (2) and (3) yield information about the intersection of M_d with certain rays emanating from zero. Indeed, if $\omega d^{-1} = 1$, then

$$M_d \cap \mathbb{R}^+ \omega = \{ t \omega : 0 \leq t \leq \alpha(d) \},$$

and if $\omega d^{-1} = -1$ and d is even, then

$$M_d \cap \mathbb{R}^+ \omega = \{ t \omega : 0 \leq t \leq \beta(d) \}.$$

This leaves open the case when $\omega d^{-1} = -1$ and d is odd. The purpose of this note is to fill the gap. The following theorem is our main result.

Theorem 1.1. If $\omega d^{-1} = -1$ and d is odd, then

$$M_d \cap \mathbb{R}^+ \omega = \{ t \omega : 0 \leq t \leq \gamma(d) \},$$

where

$$\gamma(d) := d^{-d/(d-1)} \left(\sinh(d \xi_d) + d \sinh(\xi_d) \right), \quad (4)$$

and ξ_d is the unique positive root of the equation $\cosh(d \xi_d) = d \cosh(\xi_d)$.

When $d = 3$, one can use the relation $\cosh(3x) = 4 \cosh^3 x - 3 \cosh x$ to derive the exact formula $\gamma(3) = \sqrt{32/27}$, which yields

Corollary 1.2. $M_3 \cap i\mathbb{R} = \{ iy : |y| \leq \sqrt{32/27} \}$.

In comparison, note that (2) gives $M_3 \cap \mathbb{R} = \{ x : |x| \leq 2/\sqrt{27} \}$. See Figure 1.

The first few values of $\alpha(d), \beta(d), \gamma(d)$ are tabulated in Table 1 for comparison.

d	$\alpha(d)$	$\beta(d)$	$\gamma(d)$
2	0.2500000000	2.000000000	1.100917369
3	0.384900179	1.414213562	1.088662108
4	0.472470394	1.259921050	1.078336651
5	0.534992244	1.189207115	1.069984489
6	0.582355932	1.148698355	1.063192242
7	0.619731451	1.122462048	1.057591279
8	0.650122502	1.104089514	1.052904317
9	0.675409498	1.090507733	1.048928539
10	0.696837314	1.080059739	1.045514971
11	0.715266766	1.071734363	1.042552690
12	0.731314279	1.065041089	1.039957793

It can be shown that $\gamma(d) > 1$ for all d, and that

$$\gamma(d) = 2^{1/d - O((\log d)^2/d^2)} \quad \text{as} \quad d \to \infty.$$

These statements will be justified later.
2 Proof of Theorem 1.1

In this section we suppose that d is an odd integer with $d \geq 3$. If $\omega^{d-1} = -1$, then, writing $\phi(z) := \omega z$, we have $\phi^{-1} \circ p_c \circ \phi = q_c / \omega$, where

$$q_c(z) := -z^d + c.$$

Thus $M_d \cap \mathbb{R}^+ = \omega(N_d \cap \mathbb{R}^+)$, where

$$N_d := \left\{ c \in \mathbb{C} : \sup_{n \geq 0} |q_c^n(0)| < \infty \right\}.$$

We now seek to identify $N_d \cap \mathbb{R}^+$. We shall do this in two stages.

Lemma 2.1. Let d be an odd integer with $d \geq 3$. Then

$$N_d \cap \mathbb{R}^+ = [0, \mu(d)],$$

where

$$\mu(d) := \max \left\{ a - b^d : a, b \geq 0, a^d + b^d = a + b \right\}.$$

Proof. Consider first the case $c \in [0, 1]$. In this case we have $q_c(0) = c$ and $q_c(c) = -c^d + c \geq 0$. Since q_c is a decreasing function, it follows that $q_c([0, c]) \subset [0, c]$, and in particular that $q_c^{[n]}(0)$ is bounded. Hence $c \in N_d$ for all $c \in [0, 1]$.

Consider now the case $c \in [1, \infty)$. Then $q_c(0) = c$ and $q_c^{[2]}(0) = -c^d + c \leq 0$. As q_c is a decreasing function, it follows that $q_c^{[2n]}(0)$ is a decreasing sequence and $q_c^{[2n+1]}(0)$ is an increasing sequence. If, further, $c \in N_d$, then $q_c^{[n]}(0)$ is bounded, and both of these subsequences converge, say $q_c^{[2n+1]}(0) \to a$ and $q_c^{[2n]}(0) \to -b$, where $a, b \geq 0$. We then have $q_c(-b) = a$ and $q_c(a) = -b$, in other words $b^d + c = a$ and $a^d + c = b$. Adding these equations gives $a^d + b^d = a + b$. Summarizing what we have proved: if $c \in N_d \cap [1, \infty)$, then $c = a - b^d$, where $a, b \geq 0$ and $a^d + b^d = a + b$. Conversely, if c is of this form, then $q_c(-b) = a$ and $q_c(a) = -b$, so $[-b, a]$ is a q_c-invariant interval containing 0, which implies that $q_c^{[n]}(0)$ remains bounded, and hence $c \in N_d$. Combining these remarks, we have shown that

$$N_d \cap [1, \infty) = \{ a - b^d : a, b \geq 0, a^d + b^d = a + b \} \cap [1, \infty].$$

The condition that $a^d + b^d = a + b$ can be re-written as $h(a) = -h(b)$, where $h(x) := x^d - x$. Viewed this way, it is more or less clear that the right-hand side of (5) is a closed interval containing 1, so $N_d \cap [1, \infty) = [1, \mu(d)]$, where $\mu(d)$ is as defined in the statement of the lemma.

Finally, putting all of this together, we have shown that $N_d \cap \mathbb{R}^+ = [0, \mu(d)]$.

Next we identify $\mu(d)$ more explicitly.

Lemma 2.2. $\mu(d) = \gamma(d)$.

Proof. We reformulate the maximization problem defining $\mu(d)$. Set
\[
S := \{(a, b) \in \mathbb{R}^2 : a, b \geq 0\},
\]
\[
f(a, b) := a - b^d,
\]
\[
g(a, b) := d^d + b^d - a - b.
\]
We are seeking to maximize f over $S \cap \{g = 0\}$. The set $S \cap \{g = 0\}$ is compact and f is continuous, so the maximum is certainly attained, say at (a_0, b_0). Notice also that $\nabla g \neq 0$ at every point of $S \cap \{g = 0\}$. There are two cases to consider.

Case 1: $(a_0, b_0) \in \partial S$. The condition that $g(a_0, b_0) = 0$ then implies that
\[
(a_0, b_0) = (0, 0), (0, 1) \text{ or } (1, 0).
\]
The corresponding values of $f(a_0, b_0)$ are $0, -1, 1$ respectively. Clearly we can eliminate the first two points from consideration. As for the third, we remark that the directional derivative of f at $(1, 0)$ along $\{g = 0\}$ in the direction pointing into S is equal to $1/\sqrt{1 + (d - 1)^2}$, which is strictly positive. So $(1, 0)$ cannot be a maximum of f either.

Case 2: $(a_0, b_0) \in \text{int}(S)$. In this case, by the standard Lagrange multiplier argument, we must have $\nabla f(a_0, b_0) = \lambda \nabla g(a_0, b_0)$ for some $\lambda \in \mathbb{R}$. Writing this out explicitly, we get
\[
1 = \lambda \left(d a_0^{d-1} - 1\right),
\]
\[
- d b_0^{d-1} = \lambda \left(d b_0^{d-1} - 1\right).
\]
Dividing the second equation by the first and then simplifying, we obtain
\[
a_0 b_0 = d^{-2/(d-1)}.
\]
Thus $a_0 = d^{-1/(d-1)}e^{\xi}$ and $b_0 = d^{-1/(d-1)}e^{-\xi}$ for some $\xi \in \mathbb{R}$. With this notation, the constraint $g(a_0, b_0) = 0$ translates to $\cosh(d\xi) = d \cosh(\xi)$, and the value of f at (a_0, b_0) is
\[
f(a_0, b_0) = a_0 - b_0^d = \frac{a_0 - b_0}{2} + \frac{a_0^d - b_0^d}{2} = d^{-d/(d-1)}(d \sinh(\xi) + \sinh(d\xi)).
\]
There are precisely two roots of $\cosh(d\xi) = d \cosh(\xi)$, one positive and one negative. Necessarily the positive root gives rise to the maximum value of f, thereby showing that $\mu(d) = \gamma(d)$. \hfill \Box

Remark. Clearly $f(1, 0) = 1$. The treatment of Case 1 above shows that f does not attain its maximum over $S \cap \{g = 0\}$ at $(1, 0)$, and so $\mu(d) > 1$. This shows that $\gamma(d) > 1$, thereby justifying a statement made in the introduction.

Proof of Theorem 1.1 Combining the various results already obtained in this section, we have
\[
M_d \cap \mathbb{R}^+ \omega = \omega(N_\omega \cap \mathbb{R}^+) = \omega[0, \mu(d)] = \omega[0, \gamma(d)].
\]
This concludes the proof of Theorem 1.1. \hfill \Box
3 An asymptotic formula for $\gamma(d)$.

Our aim is to justify the following statement made in the introduction.

Proposition 3.1. If γ is defined as in (4), then

$$\gamma(d) = 2^{1/d + O((\log d)^2/d^2)} \quad \text{as } d \to \infty. \quad (6)$$

There is no need to suppose that d is an integer here.

Proof. We begin by deriving an asymptotic formula for ξ_d as $d \to \infty$. On the one hand, since

$$e^{d \xi} \geq \cosh(d \xi) = d \cosh(\xi) \geq d,$$

we certainly have $\xi_d \geq (\log d)/d$. On the other hand, since the unimodal function $(\cosh x)/x$ takes the same values at ξ_d and $d \xi$, we must have $\xi_d \leq \eta \leq d \xi$, where η is the point at which $(\cosh x)/x$ assumes its minimum. Thus

$$e^{d \xi} \leq \cosh(d \xi) = d \cosh(\xi) \leq d \cosh \eta,$$

whence

$$\xi_d = \log \frac{d}{d} + O\left(\frac{1}{d}\right).$$

This is not yet precise enough. Substituting into the equation $\cosh(d \xi) = d \cosh(\xi_d)$, we obtain

$$e^{d \xi} = d + O\left(\frac{(\log d)^2}{d}\right),$$

whence

$$\xi_d = \frac{\log(2d)}{d} + O\left(\frac{(\log d)^2}{d^3}\right).$$

This is good enough for our needs.

We now estimate $\gamma(d)$ as $d \to \infty$. First of all, we have

$$d \sinh(\xi_d) = d \xi_d + O(d \xi_d) = \log(2d) + O\left(\frac{(\log d)^3}{d^3}\right).$$

Also

$$\sinh(d \xi_d) = \sinh\left(\log(2d) + O\left(\frac{(\log d)^2}{d^2}\right)\right) = d + O\left(\frac{(\log d)^2}{d}\right).$$

Hence

$$\log \gamma(d) = \log \left(\frac{d \sinh(\xi_d) + \sinh(d \xi_d)}{d - 1}\right) = \frac{d}{d - 1} \log d$$

$$= \log d + \log(2d) + O\left(\frac{(\log d)^2}{d}\right) = \log d + \frac{\log(2d)}{d} + O\left(\frac{(\log d)^2}{d^2}\right)$$

$$= \log d + \frac{\log(2d)}{d} + O\left(\frac{(\log d)^2}{d^2}\right).$$

Finally, taking exponentials of both sides, we get (6). \qed
Acknowledgements. The first author thanks the organizers of the Conference on Modern Aspects of Complex Geometry, held at the University of Cincinnati in honor of Taft Professor David Minda, for their kind hospitality and financial support.

References

1. Lau, E., Schleicher, D.: Symmetries of fractals revisited. Math. Intelligencer 18(1), 45–51 (1996)
2. Parisé, P.O., Ransford, T., Rochon, D.: Tricomplex dynamical systems generated by polynomials of odd degree. Preprint (2016)
3. Parisé, P.O., Rochon, D.: A study of dynamics of the tricomplex polynomial \(\eta^p + c \). Nonlinear Dynam. 82(1-2), 157–171 (2015)
4. Parisé, P.O., Rochon, D.: Tricomplex dynamical systems generated by polynomials of odd degree. Preprint (2015)
5. Schleicher, D.: On fibers and local connectivity of Mandelbrot and Multibrot sets. In: Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, pp. 477–517. Amer. Math. Soc., Providence, RI (2004)