Chronic alcohol abuse affects the clinical course and outcome of community-acquired bacterial meningitis

Marcin Paciorek1 · Agnieszka Bednarska1 · Dominika Krogulec1 · Michał Makowiecki1 · Justyna D Kowalska1 · Dominik Bursa1 · Anna Świderska2 · Joanna Puła1 · Joanna Racyńska1 · Agata Skrzat-Klapaczyńska1 · Magdalena Zielenkiewicz3 · Marek Radkowski4 · Tomasz Laskus1 · Andrzej Horban1

Received: 16 May 2019 / Accepted: 23 July 2019 / Published online: 7 August 2019 © The Author(s) 2019

Abstract
The aim of the study was to determine the effect of chronic alcohol abuse on the course and outcome of bacterial meningitis (BM). We analyzed records of patients with BM who were hospitalized between January 2010 and December 2017 in the largest neuroinfection center in Poland. Out of 340 analyzed patients, 45 (13.2%) were alcoholics. Compared with non-alcoholics, alcoholics were more likely to present with seizures (p < 0.001), scored higher on the Sequential Organ Failure Assessment (SOFA) (p = 0.002) and lower on the Glasgow Coma Scale (GCS) (p < 0.001), and had worse outcome as measured by the Glasgow Outcome Score (GOS) (p < 0.001). Furthermore, alcoholics were less likely to complain of headache (p < 0.001) and nausea/vomiting (p = 0.005) and had lower concentration of glucose in cerebrospinal fluid (CSF) (p = 0.025). In the multiple logistic regression analysis, alcoholism was associated with lower GCS (p = 0.036), presence of seizures (p = 0.041), male gender (p = 0.042), and absence of nausea/vomiting (p = 0.040). Furthermore, alcoholism (p = 0.031), lower GCS score (p = 0.001), and higher blood urea concentration (p = 0.018) were independently associated with worse outcome measured by GOS. Compared with non-alcoholics, chronic alcohol abusers are more likely to present with seizures, altered mental status, and higher SOFA score and have an increased risk of unfavorable outcome. In multivariate analysis, seizures and low GCS were independently associated with alcoholism, while alcoholism was independently associated with worse outcome.

Keywords Bacterial meningitis · Alcoholism · Outcome · SOFA

Introduction
In Poland, where the registration of bacterial meningitis (BM) cases is mandatory, the annual incidence of BM in the years 2010–2017 ranged between 1.97/100,000 and 2.5/100,000 [1–3] which is higher than in some other European countries such as Finland (0.7/100,000), Netherlands (0.94/100,000), or England and Wales (1.44/100,000) [4–6]. Alcohol per capita consumption (in liters of pure alcohol) for population ≥ 15 years old was 11.4 in 2010 and 11.6 in 2016 which is similar to many other European countries [7]. Alcoholics are more susceptible to bacterial infections and these infections carry a worse prognosis. There is evidence that the relative risk of bacterial pneumonia correlates with the level of alcohol intake [8]. While this may be in part a consequence of lifestyle and malnutrition, there is evidence that chronic alcohol abuse itself may impair various host immune responses [9, 10]. The aim of our study was to determine whether chronic alcohol abuse has any impact on clinical manifestations, etiologic factors, and outcome in BM. Such an analysis is rare in the literature and was confined so far to two studies from Netherlands [11, 12].
Materials and methods

We evaluated records of adult (≥ 18 years old) patients with community-acquired BM who were admitted to the Hospital for Infectious Diseases in Warsaw from January 1, 2010, to December 31, 2017. The diagnosis of BM was based on fulfilling at least one of the following criteria: positive cerebrospinal fluid (CSF) culture, positive CSF Gram staining, and typical CSF findings (pleocytosis ≥ 100 cells/μL with ≥ 90% neutrophils and decrease of CSF glucose level < 2.2 mmol/L). Patients with CSF findings typical for BM but negative blood and CSF culture and negative microscopic CSF examination were considered to have BM of unknown etiology. Diagnosis of tuberculous meningitis was based on at least one of the following: positive culture, positive nucleic acid amplification, and positive Ehrlich-Ziehl-Neelsen staining of CSF. Glasgow Coma Scale (GCS) and Sequential Organ Failure Assessment (SOFA) scores were calculated at admission, while Glasgow Outcome Score (GOS) was assessed at the time of discharge from hospital.

Initial antimicrobial treatment followed current guidelines [13]. Patients with meningitis secondary to head trauma, neurosurgical procedures, and hospital-acquired infections were excluded from analysis.

Alcoholism was diagnosed according to the World Health Organization (WHO) criteria [14]. Questions about potential

Table 1 Demographic, clinical, and etiological data in alcoholic and non-alcoholic patients with bacterial meningitis

Patient characteristics before and on admission*	Alcoholics n = 45	Non-alcoholics n = 295	p value
Age (years)	53 (44–59)	58 (39–70)	0.124
Male (%)	39/45 (86.7)	172/295 (58.3)	<0.001
Headache (%)	10/43 (23.3)	146/279 (52.3)	<0.001
Fever ≥ 37.8 °C (%)	31/45 (68.9)	235/285 (82.4)	0.052
Glasgow Coma Scale score	10 (7–12)	12 (9–14)	<0.001
Neck stiffness (%)	38/45 (84.4)	221/283 (78.1)	0.597
Nausea/vomiting (%)	5/44 (11.4)	97/289 (33.6)	0.005
Seizures (%)	15/45 (33.3)	37/294 (12.6)	<0.001
Ataxia (%)	2/43 (4.4)	13/289 (4.5)	0.974
Aphasia (%)	4/41 (8.9)	25/286 (8.7)	
Cranial nerve paralysis (%)	2/45 (4.4)	20/293 (6.8)	0.547
Hemiparesis (%)	9/45 (20)	31/293 (10.6)	0.069
Vertebral pain/back pain (%)	5/44 (11.4)	29/281 (10.3)	0.834
Skin rash (%)	2/45 (4.4)	21/285 (7.4)	0.474
Disease severity/outcome			
SOFA score on admission	3 (2–6)	2 (1–5)	0.002
Requiring ICU admission (%)	22/45 (48.9)	111/295 (37.6)	0.154
Glasgow Outcome Score	3 (1–5)	5 (3–5)	<0.001
Mortality (%)	11/45 (24.4)	45/292 (15.4)	0.130
Identified pathogen (%)			
Streptococcus pneumoniae	8/45 (17.8)	58/295 (19.7)	0.766
Staphylococcus	4/45 (8.9)	37/295 (12.5)	0.483
Neisseria meningitidis	5/45 (11.1)	25/295 (8.5)	0.561
Listeria monocytogenes	0/45 (0)	24/295 (8.14)	0.094
Mycobacterium tuberculosis	3/45 (6.7)	17/295 (5.8)	0.810
Other Gram-positive	6/45 (13.3)	17/295 (5.8)	0.060
Other Gram-negative	1/45 (2.2)	11/295 (3.7)	0.610
Haemophilus influenzae	0/45 (0)	4/295 (1.4)	0.432
Unknown	18/45 (40)	102/295 (34.6)	0.478
Diagnostic LP after antibiotic treatment initiation	26/39 (66.7)	134/245 (54.7)	0.161

*Data are presented as median (interquartile range) or n/N (%). p values < 0.05 are italicized

LP lumbar puncture, SOFA Sequential Organ Failure Assessment score, ICU intensive care unit
alcohol abuse were a standard part of medical interview, and information was obtained from patients and/or their relatives.

The Mann-Whitney U test was used to compare continuous variables, and the chi-square test was used to evaluate nominal variables. Logistic regression was used to calculate adjusted odds ratios and to determine variables independently associated with alcoholism and those independently influencing outcome reflected by GOS. Since GOS is not a nominal but continuous variable, we used the general linear model to calculate the coefficients for this analysis. Statistical analyses were performed using program R version 3.5.2 [15].

Blood test results*	Alcoholics	Non-alcoholics	p value
CRP (mg/L)	208.5 (76.5–327)	218.5 (68–328)	0.750
Lactic acid (mmol/L)	1.91 (1.45–2.86)	2.00 (1.58–2.93)	0.822
WBC (1000 cells/μL)	14.5 (10.1–19.1)	14.3 (10.1–20.0)	0.827
PLT (1000 cells/μL)	188 (91–287)	189 (138–247)	0.986
PCT (ng/mL)	3.20 (0.46–8.88)	3.33 (0.39–13.2)	0.958
D-dimers (μg/L)	3273 (1751–5817)	2241 (1159–4626)	0.013
Creatinine (μmol/L)	63 (55–91)	68 (55–85)	0.533
Urea (mmol/L)	6.02 (4.47–9.72)	6.14 (4.40–10.29)	0.840

CSF test results	Alcoholics	Non-alcoholics	p value
Cytosis (cells/μL)	539 (259–4480)	1110 (243–3880)	0.846
Granulocytes (%)	88.5 (54–95)	87.5 (70–95)	0.838
Protein (g/L)	3.67 (1.81–7.28)	2.83 (1.33–6.36)	0.178
Glucose (mmol/L)	0.58 (0–2.3)	1.97 (0.11–3.40)	0.025
Lactic acid (mmol/L)	7.2 (5.6–12.2)	5.5 (3.0–10.7)	0.118
Chlorides (mmol/L)	112 (109–122)	117 (113–121)	0.101

*Data are presented as median (interquartile range), p values < 0.05 are italicized

CRP C-reactive protein, WBC white blood cells, PLT platelets, PCT procalcitonin, CSF cerebrospinal fluid

Variable*	p value	OR	95% CI
GCS	0.036	0.716	0.523–0.980
GOS	0.780	0.933	0.575–1.515
SOFA	0.075	0.814	0.649–1.021
CSF glucose	0.335	0.850	0.611–1.183
Male gender	0.042	4.617	1.060–20.113
Headache	0.316	0.535	0.157–1.819
Nausea/vomiting	0.040	0.205	0.045–0.930
Seizures	0.041	4.580	1.065–19.706

*Results are presented as odds ratio (OR) and confidence interval (CI), p values < 0.05 are italicized

GCS Glasgow Coma Scale, GOS Glasgow Outcome Scale, SOFA Sepsis-related Organ Failure Assessment score, CSF glucose concentration of glucose in cerebrospinal fluid

Results

The final analysis included 340 patients with bacterial meningitis (211 men and 129 women, median age 57, interquartile range [IQR] 41–69). Among this group, 45 (13.2%) patients were considered alcoholics (39 men and 6 women, median age 53, IQR 44–59).

At admission, alcoholic patients were more likely to present with seizures (33.3% vs 12.6%, p < 0.001) (Table 1) but were less likely to complain of headache (23.3% vs 52.3%, p = 0.001) and nausea/vomiting (11.4% vs 33.6%, p = 0.005). Furthermore, they scored higher on the SOFA (median 3 [IQR 2–6] vs median 2 [IQR 1–5], p = 0.002) and lower on the GCS (median 10 [IQR 7–12] vs median 12 [IQR 9–14], p < 0.001).

Alcoholic patients were also more likely to require intensive care unit (ICU) admission (48.9% vs 37.6%), and their mortality was higher (24.4% vs 15.4%), but these differences did not reach statistical significance. The clinical outcome reflected by the GOS was significantly worse among alcoholics (median 3 [IQR 1–5] vs median 5 [IQR 3–5], p < 0.001; Table 1).

Analysis of laboratory parameters (Table 2) revealed that alcoholic patients had significantly higher serum concentration of d-dimers (median 3273 μg/L [IQR 1751–5817] vs median 2241 μg/L [IQR 1159–4626], p = 0.013) and lower concentration of glucose in CSF (median 0.58 mmol/L [IQR 0–2.3] vs median 1.97 [IQR 0.11–3.40], p = 0.025; Table 2).

In multiple logistic regression analysis (Table 3), alcoholism was independently associated with a lower GCS score (OR 0.716, 95% CI 0.523–0.980, p = 0.036), male gender...
(OR 4.617, 95% CI 1.060–20.113, p = 0.042), the presence of seizures (OR 4.580, 95% CI 1.065–19.706, p = 0.041), and the absence of nausea/vomiting (OR 0.205, 95% CI 0.045–0.930, p = 0.040). Furthermore, alcoholism, lower GCS score, and higher urea blood concentration were independently associated with worse prognosis as assessed by GOS (Table 4).

An etiological factor was identified only in 60% of alcoholics and 65% of non-alcoholics (Table 1). However, in 67% of alcoholics and in 55% of non-alcoholics, antibiotic treatment initiation preceded diagnostic spinal tap.

Discussion

According to national survey data [16], alcoholics constitute approximately 2% of the Polish general adult population, but among our patients with BM, this proportion was 13% which might be a direct consequence of impaired immune response to bacterial pathogens related to chronic alcohol abuse [17–20]. In the nationwide cohort study conducted in the Netherlands, the proportion of alcoholics in BM patients was also higher than in general population [7, 11].

Compared with non-alcoholics, alcohol abusers were less likely to present with fever, headache, and nausea. The absence of such typical symptoms of BM [21] might cause diagnostic problems and in effect result in the delay of treatment initiation. Another difference in the clinical presentation was higher incidence of seizures among alcoholic patients (33% vs 13%, p < 0.001). While high incidence of seizures among alcohol abusers presenting with BM is a well-known phenomenon, the numbers in previous reports were lower and ranged from 13 to 18% [11, 12]. Furthermore, in our multivariate analysis, the presence of seizures was independently associated with alcoholism but not with outcome.

The presence of seizures and other signs and symptoms associated with the alcohol withdrawal syndrome or even alcohol intoxication itself could also negatively affect consciousness level: in our study, alcoholic patients scored significantly lower on the GCS scale at admission compared with non-alcoholics. These findings are compatible with previous studies of van Veen et al. [11] and Weisfelt et al. [12].

While alcohol abuse was not an independent predictor for mortality in multivariate analysis, it was associated with worse outcome as measured by the GOS. These results are similar to those reported by Wiesfelt et al. [22] who also found that alcoholism is associated with unfavorable outcome but not with higher mortality.

In addition to alcohol, low GCS score and high blood urea levels were independently associated with worse outcome (Table 4). The influence of GCS on outcome is not surprising and was previously reported by others [23, 24], while increased urea might identify a subset of patients with multiple organ failure. With the exception of blood D-dimer levels and CSF glucose levels, no differences were found in the results of routine tests between alcoholic and non-alcoholic patients. High blood D-dimer levels are common in chronic alcohol abusers and could be the effect of hemostatic system activation related to oxidative stress [25]. Interestingly, low concentration of glucose in the CSF was previously correlated with adverse clinical outcomes in patients with BM [26].

Streptococcus pneumoniae was the most common causative microorganism (19.4%) in our patients (Table 1), but its

Variable	Regression coefficient	95% CI	p value
Alcoholism	−0.636	−1.209−0.063	0.031
Seizures	0.180	0.037−0.728	0.521
Etiology unknown	0.100	−0.353−0.552	0.667
Streptococcus pneumoniae	−0.010	−0.669−0.470	0.732
Neisseria meningitidis	0.512	0.244−1.267	0.186
Age	−0.009	−0.021−0.003	0.161
GCS	0.144	0.061−0.226	0.001
SOFA	−0.068	−0.160−0.025	0.154
CRP	0.001	−0.001−0.002	0.841
PLT	0.001	−0.001−0.002	0.633
PCT	−0.001	−0.008−0.005	0.665
Urea	−0.052	−0.095−0.009	0.018
CSF protein	−0.007	−0.040−0.025	0.656
CSF glucose	0.034	−0.061−0.129	0.484

CI confidence interval, GCS Glasgow Coma Scale, SOFA Sepsis-related Organ Failure Assessment score, PLT platelet level, PCT concentration of procalcitonin in blood, CSF protein concentration of protein in cerebrospinal fluid, CSF glucose concentration of glucose in cerebrospinal fluid, p values < 0.05 are italicized.
prevalence was not as high as in some other European studies [27–29]. Such relatively low prevalence of Streptococcus pneumoniae is not a local phenomenon confined to our center, as it accounted for only 22% of BM cases registered in Poland [2].

In conclusion, we found that alcoholic patients with BM, when compared with their non-alcoholic counterparts, are more likely to present with seizures and more severely altered mental status and have an increased risk for unfavorable outcome.

Funding Marcin Paciorek was supported by The Research Development Foundation of the Hospital for Infectious Diseases (FRN 004/2019).

Magdalena Zielenkiewicz was supported by The Research Development Foundation of the Hospital for Infectious Diseases (FRN 004/2019).

Tomasz Laskus was supported by The National Science Center (2017/25/B/NZ6/01463).

Compliance with ethical standards

Funding institutions did not play any role in the study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Ethical approval This study was approved by the Warsaw Medical University Ethics Committee (approval number 3452M4/2019). Since all data were analyzed anonymously and retrospectively informed consent was not obtained.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Paradowska-Stankiewicz I, Piotrowska A (2016) Meningitis and encephalitis in Poland in 2014. Przegl Epidemiol 70(3):349–357
2. Paradowska-Stankiewicz I, Piotrowska A (2017) Meningitis and encephalitis in Poland in 2015. Przegl Epidemiol 71(4):493–500
3. http://www.www.pzh.gov.pl/oldpage/epimeld/2017/Ch_2017_wstepne_dane.pdf
4. Polkowska A, Toropainen J, Ollgren J, Lyytikainen O, Nuorti JP (2017) Bacterial meningitis and encephalitis in Finland, 1995-2014: a population-based observational study. BMJ Open 7(5):e015080. https://doi. org/10.1136/bmjopen-2016-015080
5. Bijlsma MW, Brouwer MC, Kasamontelal EB, Kloek AT, Lucas MJ, Tanck MW, van der Ende A, van de Beek D (2016) Community-acquired bacterial meningitis in adults in the Netherlands, 2006-14: a prospective cohort study. Lancet Infect Dis 16(3):339–347. https://doi.org/10.1016/s1473-3099(15)00430-2
6. Okie IO, Ribeiro S, Ramsay ME, Heath PT, Sharland M, Ladhani SN (2014) Trends in bacterial, mycobacterial, and fungal meningitis in England and Wales 2004-11: an observational study. Lancet Infect Dis 14(4):301–307. https://doi.org/10.1016/s1473-3099(13)70332-3
7. https://apps.who.int/iris/bitstream/handle/10665/274603/9789241565639-eng.pdf
8. Samokhvalov AV, Irving HM, Rehm J (2010) Alcohol consumption as a risk factor for pneumonia: a systematic review and meta-analysis. Epidemiol Infect 138(12):1789–1795. https://doi.org/10.1017/ s0950268810000774
9. Brown LA, Harris FL, Ping XD, Gauthier TW (2004) Chronic ethanol ingestion and the risk of acute lung injury: a role for glutathione availability? Alcohol (Fayetteville, NY) 33(3):191–197. https://doi.org/10.1016/j.alcohol.2004.08.002
10. Sachs CW, Christensen RH, Pratt PC, Lynn WS (1990) Neutrophil elastase activity and superoxide production are diminished in neutrophils of alcoholics. Am Rev Respir Dis 141(5 Pt 1):1249–1255. https://doi.org/10.1164/ajrccm/141.5_Pt.1.1249
11. van Veen KE, Brouwer MC, van der Ende A, van de Beek D (2017) Bacterial meningitis in alcoholic patients: a population-based prospective study. J Infect 74(4):352–357. https://doi.org/10.1016/j.jinf.2017.01.001
12. Weisfelt M, de Gans J, van der Ende A, van de Beek D (2010) Community-acquired bacterial meningitis in alcoholic patients. PLoS One 5(2):e9102. https://doi.org/10.1371/journal.pone.0099102
13. koroun.edu.pl/wp-content/uploads/2017/10/Rekomendacje-ukl-nierwowy_2011.pdf
14. http://www.who.int/substance_abuse/terminology/who_lexicon/en/
15. https://www.r-project.org
16. http://www.parpa.pl/index.php/33-analizy-badania-raporty/132-0665/274603/
17. Bhatty M, Puett SB, Eriato E, Nanduri B (2011) Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol (Fayetteville, NY) 45(6):523–539. https://doi.org/10.1016/j.alcohol.2011.02.305
18. Jerrells TR, Sliukin I, Sibley D, Fuseler J (1994) Increased susceptibility of experimental animals to infectious organisms as a consequence of ethanol consumption. Alcohol Alcohol (Oxford, Oxfordshire) Supplement 2:425–430
19. Gandhi JA, Ekhari VV, Asplund MB, Abdulkarear AF, Ahmad M, Coelho C, Martinez LR (2014) Alcohol enhances Acinetobacter baumannii-associated pneumonia and systemic dissemination by impairing neutrophil antimicrobial activity in a murine model of infection. PLoS One 9(4):e95707. https://doi.org/10.1371/journal. pone.0095707
20. Karavitis J, Kovacs EJ (2011) Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol 90(6):1065–1078. https://doi.org/10.1189/jlb.0311114
21. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351(18):1849–1859. https://doi.org/10.1056/NEJMoa0408485
22. Taylor AN, Tio DL, Heng NS, Yirmiya R (2002) Alcohol consumption attenuates febrile responses to lipopolysaccharide and interleukin-1 beta in male rats. Alcohol Clin Exp Res 26(1):44–52
23. Jordan I, Calzada Y, Monfort L, Vila-Perez D, Felipe A, Ortiz J, Cambra FJ, Munoz-Almagro C (2016) Clinical, biochemical and microbiological factors associated with the prognosis of pneumococcal meningitis in children. Enferm Infec Microbiol Clin 34(2):101–107. https://doi.org/10.1016/j.eimc.2015.03.004
24. Pietraszek-Grzypawczewska I, Bernas S, Lojko P, Piechota A, Piechota M (2016) Predictive value of the APACHE II, SAPS II, SOFA and GCS scoring systems in patients with severe purulent bacterial meningitis. Anaesthesiol Intensive Ther 48(3):175–179. https://doi.org/10.5603/AIT.a2016.0030
25. Trotti R, Carratelli M, Barbieri M, Micieli G, Bosone D, Rondanelli M, Bo P (2001) Oxidative stress and a thrombophilic condition in alcoholics without severe liver disease. Haematologica 86(1):85–91

26. Shrikanth V, Salazar L, Khoury N, Wootton S, Hasbun R (2015) Hypoglycorrhachia in adults with community-acquired meningitis: etiologies and prognostic significance. Int J Infect Dis : IJID : official publication of the International Society for Infectious Diseases 39:39–43. https://doi.org/10.1016/j.ijid.2015.08.001

27. NR Netherlands Reference Laboratory for Bacterial Meningitis (AMC/ RIVM) (2011) Bacterial meningitis in the Netherlands annual report 2010. University of Amsterdam, Amsterdam

28. Bodilsen J, Dalager-Pedersen M, Schonheyder HC, Nielsen H (2014) Dexamethasone treatment and prognostic factors in community-acquired bacterial meningitis: a Danish retrospective population-based cohort study. Scand J Infect Dis 46(6):418–425. https://doi.org/10.3109/00365548.2014.887223

29. Gjini AB, Stuart JM, Lawlor DA, Cartwright KA, Christensen H, Ramsay M, Heyderman RS (2006) Changing epidemiology of bacterial meningitis among adults in England and Wales 1991-2002. Epidemiol Infect 134(3):567–569. https://doi.org/10.1017/s0950268805005595

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.