Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Enhancing hygiene/antimicrobial properties of polyolefins

Mohammad Badrossamay and Gang Sun
University of California, Davis, CA, United States

8.1 Introduction

Among all synthetic polymers, olefin polymers such as isotactic polypropylene (PP) and polyethylene (PE) are the most popular thermoplastic polymers which are widely applied in textiles, medical devices, food packaging, automobiles, and many other products [1]. The unique characteristics of polyolefins such as superior chemical resistance and robust mechanical properties, as well as low costs, make them the best candidates in single use healthcare products, medical textiles, and water filters. For example, PP has found applications in medical syringes, lab-ware applications, diagnostic devices, and Petri dishes [1]. These medical devices are usually sterilized by using sterilizing agent of irradiation before use. Thus, resistance to various chemical agents as well as to UV and other irradiation sources is necessary for medical devices. PP is the most popular polymer used in making materials for medical use such as nonwoven fabrics which are employed in liquid proofing disposable surgical and isolation gowns, drapes, central supply room sterilization wraps, face masks, and pharmaceutical filter media [2].

Most medical textiles and polymeric materials used in hospitals and hotels are conductive to cross-transmission of diseases since most microorganisms can survive on fibrous materials for several hours to several months [3,4]. Thus, polymeric surfaces and textile materials may be responsible for disease transmission and the spread of new strains of diseases from hospitals to elsewhere. In the last two decades there has been a growing concern on the emerging super infections such as methicillin-resistant Staphylococcus aureus (MRSA) and severe acute respiratory syndrome (SARS) which can easily spread through physical contact and aerosol transmission. Moreover, healthcare-associated infections (nosocomial effects) in hospitals are increasing, causing about 2 million cases and ranking as the fourth most common cause of death in the United States. This number accounts for up to 5% of hospitalized patients and results in $4.5 billion extra healthcare costs [5].

Use of medical devices with antimicrobial functions has been considered as a major avenue to fight against the nosocomial effects.

In addition, food products undergo several physical, chemical, and microbial changes during storage. The stability of foods is a function of changes occurring in the food components, such as food proteins, lipids, carbohydrates, and water, due to environmental and processing factors. The use of plastics in the packaging of foods as a protective coating or barrier to contaminants not only retards
unfavorable deterioration of food but may also enhance its quality [6]. Suitable packaging can slow the deterioration rate, and hence, extend the shelf-life of food. Such approaches, designed to perform some desirable function other than providing an inert barrier, have led to the concept of incorporating antimicrobial agents directly into package films, which is called active packaging. The active packaging may delay or even prevent the growth of microorganisms on the food surface and, hence, lead to an extension of the shelf-life and/or the improved safety of the food product [7].

8.2 Antimicrobial functions

Antimicrobial function in general is the ability to inhibit growth of a broad spectrum of microbes such as bacteria, molds, fungi, viruses, and yeasts, which includes antibacterial, antibiotic, germicide, antiviral, and antifungal or antimycotic functions. Antimicrobial agents have different activities which affect microorganisms differently. Antimicrobial materials can be categorized into two groups, biocidal and biostatic materials, according to their functions [8]. Biostatic functions refer to inhibiting growth of microorganisms on materials, and biostatic agents inhibit further growth of microorganisms without completely killing them. As long as the microorganism is exposed to the biostatic agent, the microorganism will not be able to reproduce rapidly. Biostatic agents can prevent the materials from biodegradation. Biocidal materials are able to kill microorganisms completely, thus eliminating their growth and possibly protecting users from biological contamination and transmission. If a biocidal agent cannot completely eradicate microorganisms because there is a limited amount, then it will only provide a biostatic effect.

Antimicrobial functions of polymeric materials can be attained by physically or chemically incorporating biocides into the polymers. In a physical method, the antimicrobial agent could be blended with, coated or sprayed on polymeric surfaces. The physical processes are relatively simple, easy, and inexpensive to implement, but are also limited in providing desired durability and stability. Chemical approaches are able to incorporate durable and permanent antimicrobial functions to polymers by covalently linking biocides to polymer backbones. This incorporation can be carried out by copolymerization or surface grafting polymerization of biocidal structures to the polymers [9].

Antimicrobial materials usually consume biocides in the polymers or biocidal structures on surfaces when providing the biocidal function. Generally speaking, to provide antimicrobial functions for a certain period of time the materials should release sufficient amount of biocides during this period. Thus, controlled release of the biocides from the materials is a method of providing durable antimicrobial functions. In recent years, the authors’ research group has developed a regenerable process by incorporating precursor structures of biocides onto polymers and activating the biocidal function using certain chemicals such as chlorine or oxygen bleaches [10–16]. Here, precursors or precursor structures of biocides are incorporated onto
polymers with covalent bond connections. The precursor structures can be converted to biocidal sites after activation with chlorine or oxygen bleaches. The biocidal functions of the materials are regenerable after repeated usages, which is particularly important and useful for textiles.

The antimicrobial agents include antibiotics, alcohol, formaldehyde, heavy metal ions (silver, copper), cationic surfactants (quaternary ammonium salts with long hydrocarbon chains), and phenols; the oxidizing agents include chlorine, chloramines, hydrogen peroxide, iodine, and ozone. These antimicrobial agents have different activities against microorganisms. Some antimicrobials, such as alcohols and quaternary ammonium compounds, act directly on microbial cells to dissolve them. Others may penetrate the cells and cause the release of amino acids, nuclear material, and other important chemical constituents. Some compounds penetrate microbial cell walls and inactivate essential membrane transport systems, so that the cells can no longer obtain the nutrients necessary for them to survive and reproduce. Others coagulate certain vital materials in cells, thereby destroying the microorganisms. A few agents disrupt the metabolism of the cells, so that they can no longer assimilate nutrients; as a result, the cells starve and die. However, all of them have limitations when applied onto polymeric materials such as textiles and consumer products [8].

8.3 Antimicrobial Polyolefins

Antimicrobial polyolefins have been extensively investigated and developed. Two common processes of producing antimicrobial polyolefins are as follows: direct incorporation of antimicrobial agents into polyolefins such as blending into polymers and coating or adsorbing antimicrobial agents onto polyolefin surfaces; and chemical incorporation using copolymerization grafting to immobilize or impart antimicrobial agents into or onto polyolefin by ionic or covalent linkages.

Physical incorporation of main additives such as quaternary ammonium salt, inorganic metals, and inherently antimicrobial polymers has been widely presented. Many antimicrobials are not easily incorporated into or not homogenously distributed in polyolefins [17]. The antimicrobial activity of polyolefins produced using this method relies on a slow releasing mechanism. It means first, the biocides from polymer body gradually migrate toward the surface and provide antimicrobial functions when they are in contact with germs. The rate of release and migration has a direct effect on the antimicrobial efficacy. Too fast release produces short-term biocidal activity but poor durability. For instance, in the case of antimicrobial textiles, laundering and cleaning are the common procedures in the maintenance of textile materials. Therefore, washing durability is an extremely important property for antimicrobial textile products. So, enhanced interactions between biocides and fibres to provide controlled release of the biocides are the key to sustain biocidal activities. In addition, incorporation of excessive amount of biocides into textile materials could also provide prolonged usage. However, the biocidal function eventually will
be worn out without rejuvenation of the biocides. To prepare durable protective antimicrobial polymers, regenerable biocides and novel approaches should be explored.

In the following sections, antimicrobial polyolefins will be summarized based on processes that were studied to incorporate biocides onto the polymers. These processes include blending, coating, and chemical modifications.

8.3.1 Blending biocides into polyolefins

8.3.1.1 Heavy metals

Among many biocides that can be blended with polyolefins, silver is the most popular one, as it is known to have strong antimicrobial effects against a broad spectrum of microorganisms, is stable and easy to apply, as well as being nontoxic to the human body [18–21]. Metallic silver does not release the ion easily, compared with copper, and so its antimicrobial activity is not quite as strong as its metallic state. In fact, silver nitrate that forms silver ions, Ag\(^+\), in water solution has strong antimicrobial activity [22]. Polyolefins have poor miscibility with silver ions, thus use of micro- or nano-sized metal particles would increase miscibility of the metal in polymers. In fact, nano-sized silver particles have been introduced into polyolefins during the extrusion process [18–21]. Accessibility of the silver particles inside the materials to microorganisms and low homogenous dispersion of silver nanosized particles are the main challenges in applications of this technique [18,21]. Moreover, the formation of Ag\(^+\) requires water uptake, so only hygroscopic polymers are good candidates in this context. Thus, addition of certain additives as a carrier for silver ions or a modifier to increase hydrophilicity of polyolefins has been proposed [23,24]. Silver-substituted zeolites are the most widely used additives in this context for food packaging applications [7]. Based on this technology, DuPont has introduced MicroFree brand silver salt antimicrobial powders to impart antimicrobial activity to plastic resin systems.

Another heavy metal ion, copper ion, also can destroy microorganisms and viruses, and is proven safe to humans [25]. Gavia and co-workers introduced copper oxide into the PP by adding a cupric oxide powder to the polymer during the master-batch preparation stage. Spun-bonded nonwoven fabrics made of melt-blended polymer and copper presented excellent biocidal activities [26]. However, copper ion is more toxic to the aquatic environment, which is a limitation of the applications of copper ion.

Again, heavy metal biocides can be easily incorporated into polyolefins during extrusion processes and could provide good antimicrobial functions on the materials with a contact time of a few hours (Table 8.1). Silver is the most popular one, being widely employed in many polymeric materials including textiles, household plastics, and medical devices, because of its safety to humans. But due to relatively slow functions, the products containing the ions may have limited power to provide complete and quick kill against most pathogens. In addition, all heavy ions are toxic to aquatic life, which is a major concern in the use of heavy metal ions.
Macromolecular antimicrobial agents

Poly(2-tert-butylaminoethyl) methacrylate, PTBAEMA (Fig. 8.1), is a typical representative water-insoluble biocide which can be blended with polyolefins to provide surface modification [28] (Table 8.2). The major role of PTBAEMA is believed to be the displacement of Ca$^{2+}$ and/or Mg$^{2+}$ ions from the outer membrane of the bacteria, which is accordingly disorganized and finally disrupted.

Physical entrapment of PTBAEMA into LLDPE by blending and film casting provides moderate antimicrobial activity for long contact time [28]. Since the physical trapping of the antimicrobial macromolecule is the only binding mechanism to improve miscibility of these two polymers, Lenoir and co-workers have developed a block copolymer that combines a short polyolefin block miscible with LDPE and a PTBAEMA block which has been synthesized by controlled atom transfer radical polymerization (ATRP) [29]. This diblock copolymer was synthesized by ATRP of TBAEMA onto poly(ethylene-co-butylene) (PEB) oligomer which has activated bromide as a macroinitiator. Morphological changes of Escherichia coli bacteria in contact with melt-blended film indicated that the diblock copolymer is bactericidie rather than bacteriostatic [29]. A reasonable explanation for this claim is that

Antimicrobial agent/polymer fabrication method	Antimicrobial activity	Minimum concentration contact time (method)	Remarks	Ref.
Silver nano-sized particle/PP Melt blending & film casting	> 0.1 wt% 24 h (AATCC 100) 99.9% (Staphylococcus aureus)	Show activity for micro-sized when Conc. > 0.5%	[18,19]	
Silver nano-sized particle/PP Melt blending & sheath/core fibre spinning	0.3 wt% (0.026 vol%) in sheath NR (AATCC 100) 99.9% (S. aureus and Klebsiella pneumoniae)	No activity when silver was in core	[20,21]	
Elementary silver/PP Melt blending & film casting	0.8 wt% 28 days (shake flask) 90% (S. aureus and Escherichia coli)	Adding carrier improve activities	[24]	
Copper oxide/PPMelt blending, fibre spinning & making spun-bonded fabric	3 wt% 4 h (AATCC 100) 99.9% (S. aureus and E. coli) 98.7% (Candida albicans)	No difference due to layer thickness	[27]	

Table 8.1 Incorporation of heavy metals into polyolefins

8.3.2 Macromolecular antimicrobial agents

Enhancing hygiene/antimicrobial properties of polyolefins 269
some fibrous and granular material, most probably cell content, is released after 60 minutes contact time with modified LDPE which serves as evidence of the destruction of the bacteria membrane. Also, no bacteria have been observed sticking on the active surface of LDPE, which indicates that the bacteria were killed by contact and released to the aqueous environment.

The same idea was employed in making antimicrobial PP recently (Table 8.2). To overcome the deleterious effects of immiscibility of two polymers, Thomassin and co-workers grafted PTBAEMA onto PP backbone by reactive blending of polypropylene-g-maleic anhydride (PP-g-MAH) with a primary amine-end-capped poly((2-tert-butylamino) ethyl methacrylate) [30]. The antimicrobial activity of

Table 8.2 Incorporation of high molecular weight cationic antimicrobial agents into polyolefins

Antimicrobial agent/ polymer fabrication method	Antimicrobial activity	Remarks	Ref.
PTBAEMA/LLDPE melt blending and film casting	1.5–5.0 wt% 24 h (JISZ 2801) 100% *(Staphylococcus aureus* with 1.5 wt% and *Escherichia coli* with 5.0 wt%)		[28]
PTBAEMA/LDPE synthesize PEB-*b*-PTBAEMA, melt blending with PE, and film casting	1.67 mmol 2 h (shake flask) 100% (*E. coli*)	Diblock copolymer is a biocidal	[29]
PTBAEMA/PP synthesize PP-*g*-MAH-PTBAEMA through ATRP and melt blending with PP then fibre spinning	12.5% 1 h (shake flask) 100% (*E. coli*)	No activity for PTBAEMA without amino end group	[30]

Figure 8.1 Structure of poly (2-ferf-butylaminoethyl) methacrylate (PTBAEMA).
functional fibres showed that the functional PP fibres were able to provide lasting antibacterial activity because the PTBAEMA biocides anchored onto PP chains prevent themselves from being released from the surface of the fibres. Such incorporated biocides in polymers behave similar to chemically incorporated ones, which could provide more durable functions.

8.3.3 Other antimicrobial agents

N-halamine antimicrobial agents have been employed in polyolefins by incorporating hindered amine light stabilizers (HALSs) as N-halamine precursor [31,32] (Fig. 8.2). HALSs are one of the most important light/thermal stabilizing agents of polymeric materials (Table 8.3).

The researchers found HALSs could be readily transformed into N-chloro-hindered amine (NCHAs) in diluted sodium hypochlorite bleach solution. Although they were able to fabricate PP by solvent casting, the solvent cast film showed excellent antimicrobial activities against \textit{E. coli} and \textit{S. aureus}. Also, they claimed strong storage stability of functional polymer as well as durability and rechargeability of this functionality.

Using miscellaneous antimicrobial agents such as nisin or simple antifungal agents such as propionic, benzoic, and sorbic acids (in the form of anhydride for increased compatibility) to polymers such as LDPE to produce active packaging for food has been studied (Table 8.3). These materials may have limited washing durability since they are mostly soluble in water [33,34].

8.3.4 Coating antimicrobial agents onto surfaces

Antimicrobial agents that cannot survive elevated processing temperatures can be coated onto polyolefins [35]. In this case, a processed polyolefin material such as non-woven fabric or polymeric film is impregnated in a solution of antimicrobial agent, padded and dried for removal of water by heat treatment, and finally cured if necessary. Thus, only surface properties of the materials are changed while the bulk

![Figure 8.2 Structure of bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate (BTMP) and N-chlorine-BTMP.](image-url)
properties of the substrate are intact. Good mechanical properties of the coating and good adhesion to the substrate are critical points in the treatment of the polyolefins. In comparison to melt blending, functional coating has several advantages. For instance, after the melt blending process, most antimicrobial agents such as metal nano-sized particles may not stay on the surface and are unable to contribute to antimicrobial effects. If the agents and polyolefins are immiscible the products may not have acceptable transparency. For instance, silver nanoparticles and copper have been coated on the surface of polymer films or fabrics. To overcome low durability of the antimicrobial functions, plasma treatment with or without gas implantation was employed in coating of copper ions onto polyolefins (Table 8.4) [38,39,46].

In the case of silver nano-sized particles chemical vapor deposition (CVD), sol–gel technique or magnetron sputter coating was used to prepare nanostructured silver films [18,36,37]. Sol–gel provides a simple technological approach, but such a coating was not uniform and compact. Also, weak bonding forces between film and polymer substrate may cause low durability of the coating. CVD does not pollute the environment, and sputter coating is quite expensive and not applicable to large and/or complex item geometries (Table 8.4).

Preparatory gold coating for SEM imaging was used as antimicrobial coating on mesh grafts of PP [47]. The coated materials showed antimicrobial effects, with the gold–palladium coated ones exhibiting better functions than the gold coated ones at a contact time of 24 hours. In in vivo tests of the samples for 8 days after

Table 8.3 Incorporation of other antimicrobial agents into polyolefins

Antimicrobial agent/polymer fabrication method	Antimicrobial activity	Remarks	Ref.
Nisin/PE melt blending & film casting	NR	Adding polyethylene oxide or EDTA significantly improves activity	[33]
BTMP/PP synthesize Cl- BTMP and solvent casting	> 0.1 wt% > 15 min (AATCC 100) 100% (E. coli and S. aureus)	Ability to recharge and durable	[31,32]
Benzoic anhydride/ LDPE Solvent casting	2%	Released benzoic acid is active compound	[34]

Table 8.3 Incorporation of other antimicrobial agents into polyolefins

Antimicrobial agent/polymer fabrication method	Antimicrobial activity	Remarks	Ref.
Nisin/PE melt blending & film casting	NR	Adding polyethylene oxide or EDTA significantly improves activity	[33]
BTMP/PP synthesize Cl- BTMP and solvent casting	> 0.1 wt% > 15 min (AATCC 100) 100% (E. coli and S. aureus)	Ability to recharge and durable	[31,32]
Benzoic anhydride/ LDPE Solvent casting	2%	Released benzoic acid is active compound	[34]
Table 8.4 Coating common antimicrobial agents onto polyolefin surfaces

Antimicrobial agent/substrate	Antimicrobial activity	Remarks	Ref.
Nano-particle silver/spun-bonded PP	2 nm thick 1 h (shake flask) 100% (*Escherichia coli*)	Usage of magnetron sputter coating	[36]
Silver-doped organic-inorganic hybrid/LDPE thin film	5% 6 h (80:20 IOR:OR) or 24 h (50:50 IOR:OR) (shake flask) 100% for both samples (*E. coli* and *Staphylococcus aureus*)	Sol–gel coating of PE–PEG–Si/silica hybrid	[37]
Nano-sized silver colloid/PE–PP spun-bonded nonwoven	20 ppm 24 h (AATCC 100) 99.9% (*S. aureus*) and 19.4% (*Klebsiella pneumoniae*)	Ethanol-based colloid with (without) sulfur composite show 99.9% reduction for both bacteria	[18]
Copper/PE film	3% 24 h (AATCC under high humid condition) 96.2% (*E. coli*) and 86.1% (*S. aureus*)	Using plasma immersion ion implantation technique (PIII) Gas co-implantation can regulate the copper release rate	[38]
Gold or Gold–palladium (60–40)/PP mesh graft	5 nm 24 h 95.7% Au coated (*S. epidermidis*) and 99.1% Au–Pd coated	Zero and 30% infection for in vivo Au–Pd and Au samples	[40]
MHPA and MDHP/PP fabric	0.16%–0.58% active oxygen NR (AATCC 100) 99.4% (*S. aureus*) and 99.3% (*K. pneumoniae*)	No change after five times laundering	[41]
Chitosan oligomer/PP nonwoven	0.01%–0.05% add-on chitosan level Not reported (shake flask) 90% (*Proteus vulgaris*) with 0.01% add-on chitosan level whereas 0.05% add-on level (*E. coli* and *S. aureus*)	30% reduction (*K. pneumoniae* and *Pseudomonas aeruginosa*) for more than 1.0% add-on chitosan level	[42]
inoculation, the wound infection rate was 0% for gold–palladium coated PP grafts and 30% for gold coated PP grafts, whereas virgin PP grafts demonstrated 100% growth rate (Table 8.4).

In addition, magnesium hydroperoxyacetate (MHPA) and magnesium dihydroperoxide (MDHP) as antibacterial agents were applied onto PP fabrics through pad-dry cure, and the products exhibited good antibacterial activity (>99% reduction of growth) after zero and five launderings [41]. Coating other antimicrobial agents such as triclosan (2,4,4P-trichloro-2P-hydroxydiphenylether) [43], bronopol (2-bromo-2-nitropropane-1,3-diol) on plasma-modified PE [44], water-soluble chitosan oligomer [42], a deacetylated product of chitin, onto PP nonwoven, Reputex, with polyhexamethylene biguanide hydrochloride (PHBM) as an active ingredient, onto spun-bonded—melt-blown—spun-bonded (SMS) PP nonwoven fabrics has been proposed [45] (Table 8.4).

Recently, Han and co-workers used polyamide as a coating medium to incorporate active compounds on surfaces of LDPE film [48,49]. The polyamide resin was dissolved in alcohol and then various antimicrobial agents, such as sorbic acid, cymophenol, thymol, rosemary oleoresin, and trans-cinnamaldehyde, were added to the prepared solution. Afterward, the prepared coating medium was coated on LDPE film and irradiated with electron beams to increase covalent binding between the coating and the polymer film.

Coating processes, serving as an optional process to incorporate antimicrobial agents to polyolefins, have been successfully employed in different products. Since

Antimicrobial agent/substrate	Antimicrobial activity	Remarks	Ref.
Triclosan/PE film	Not reported 24 h (AATCC under high humid condition) 99.1%—99.8% *S. aureus* and 99.7%—99.9% (*E. coli*)	No antimicrobial activity when bacteria conc. is 10⁸ CFU/ml	[43]
Bronopol/PE film	Not reported 24 h (AATCC under high humid condition) 60.4%—96.2% (*S. aureus*) and 20.3%—94.7% (*E. coli*)	No antimicrobial activity when bacteria conc. is 10⁸ CFU/ml	[44]
Polyhexamethylene biguanide hydrochloride/SMS nonwoven PP	0.75% add-on level 24 h (AATCC 147) Pass (*S. aureus*)	No change in activity due to applying fluorochemical repellent finishing	[45]
biocides on surfaces can be removed rapidly during usage, different polymeric binders, chemically or physically enhanced interactions between the biocide and polyolefins, were adopted to increase durability of the antimicrobial functions. These methods do work for various products that may not be repeatedly used and cleaned. For certain polyolefin materials such as reusable textiles chemical incorporation of biocides onto polyolefins might be a better option.

8.3.5 Chemical incorporation of biocides to polyolefins

Various chemical modification methods have been developed, including ionic or covalent linkage, cross-linking, and graft copolymerization. Antimicrobial agents have been linked as side substitutes to polymer backbone by means of cleavable bonds. Release of the active agents occurs without significantly affecting properties of the original polymer. Therefore, durability of antimicrobial functions is much higher than with physical incorporation techniques, though cleavage of immobilized antimicrobial agent is the most critical point. This method of obtaining antimicrobial polymers requires the presence of suitable functional groups on both the antimicrobial and the polymer. Peptides, enzymes, and polyamines are the functional-bearing antimicrobial agents. Few examples of immobilization of antimicrobial onto unmodified polyolefins have been published because of nonavailability of suitable functional groups on the polyolefin polymers. Therefore, most research efforts have focused on introducing functional groups onto the polymers.

8.3.6 Cationic substances

Chitosan is a good polymeric biocide and can be immobilized onto PP films or fabrics. In order to provide proper functional groups on polyolefins that are interactive with NH₂ groups in chitosan, carboxylic groups have been suggested to be grafted onto PP. In this case, acrylic acid (AA), glycidal methacrylate (GMA), or methacrylic acid (MA) can be grafted onto polymer surfaces by using plasma or irradiation, and afterward immobilization of chitosan is carried out [50–54]. PP surfaces can be modified with amino groups by plasma treatment and glutaraldehyde can be used as a cross-linker to link both the polymer and chitosan (Scheme 8.1). The mechanism with glutaraldehyde is based on the formation of imine bonds between aldehyde groups of glutaraldehyde and amino groups of enzyme and amino plasma activated PP [50]:

Other nonleaching antimicrobial agents such as poly 2-dimethylaminoethyl methacrylate (PDMAEMA) have been immobilized on the surface of PP, and the modified product also showed powerful biocidal activity [55] (Table 8.5). Leachable antimicrobial activity could also be achieved by applying a hydrolyzable ester linkage between the biocide and the polymer (Scheme 8.2). The gradually hydrolyzed ester bonds will provide slow release of the antimicrobial agents [57,59].

\[
\text{PP-NH}_2 + \text{NH}_2\text{chitosan} \xrightarrow{\text{glutaraldehyde}} \text{PP-N} \equiv \text{CH}-(\text{CH}_2)_3-\text{CH}==\text{N-chitosan}
\]

Scheme 8.1 Schematic diagram of immobilization of chitosan onto amino-activated PP films.
Table 8.5 Chemical incorporation of cationic antimicrobial agents into polyolefins

Antimicrobial agent/substrate fabrication method	Antimicrobial activity	Remarks	Ref.
HTCC/PP nonwoven grafting GMA onto plasma-treated PP followed by immobilization	29.7% GMA/2.6% HTCC 3 h (AATCC 100) 1.4 log (Escherichia coli), 1 log (Lactobacillus plantarum) and 1.3 log (Staphylococcus aureus)		[51]
β-cyclodextrin (CD)/PP nonwoven Same as above	20.62% GMA/1% CD 3 h (AATCC 100) 1.1 log (E. coli), 0.4 log (L. plantarum) and 1.1 log (S. aureus)	Higher GMA/CD conc. show inverse effect on activities	[51]
Chitosan/PP nonwoven Solution grafting with AA followed by immobilization in presence of collagen and glutaraldehyde	43% (11% AA grafting and 33:67 collagen:chitosan) Not reported (AATCC 100) 100% (S. aureus)	Water uptake and diffusion coefficient decrease at higher immobilization percentage	[52]
Chitosan/PP film amino and carboxyl-plasma activation of PP followed by immobilization	1.75 g/m² 24 h (drop test under humid condition) 2 log (E. coli) and 4 log (Bacillus subtilis)	> 95% reduction in oxygen permeability, using glutaraldehyde as coupling agent	[50]
Chitosan/PP nonwoven AA grafting under γ-ray irradiation followed by immobilization in presence of EDAC	17% (6% AA grafting) 18 h (direct contact) 99.6% (Pseudomonas aeruginosa)	Higher water content after treatment	[53]
Quaternary ammonium salt/PP fabric	15% MA grafting plus	Same activity even without quaternization	[56]
MA γ-irradiation grafting followed by quaternization with amine hydrochloride—epichlorhydrin condensate	35% quaternization extent 24 h (XPG39-010) > 99% (S. aureus and Klebsiella pneumonia)		

(Continued)
8.3.6.1 Metallic complexation

Several monomers such as AA [60], sulfonated styrene [61], and 2N-morpholine ethyl methacrylate (MEMA) [56] have been grafted onto PP substrates and their metallic salt complexes showed antimicrobial properties. Among all applied metallic elements silver-complexed polymer showed a strong biocidal activity against all bacteria. Since the target site of the cationic biocides is the cytoplasmic membranes of bacteria, adsorption of metallic salt onto the bacterial cell surface is the first step for their action. It is expected that adsorption can be enhanced with increasing charge density of the cationic biocides (Table 8.6).
Among the currently investigated antimicrobial agents, only N-halamines have shown the capability of providing fast and total kill against a wide range of microorganisms without causing resistance from the microorganisms. An N-halamine is a compound in which one halogen atom is attached to nitrogen and is formed by the halogenation of imide, amide, amino-azine, or amino groups. N-halamine compounds provide the most durable and rechargeable biocidal properties compared to other antimicrobial agents. Several efforts have been devoted to incorporating them into polymeric materials in the last 10 years [10,11,12,13,62–66]. Blending an N-halamine agent with polymeric material and grafting on polymer backbone are the most common ways to introduce N-halamine agents into polymeric structures. The former one has been discussed before whereas the second method, somehow, is difficult to control, but seems to be the most facile approach.

Chemical incorporation of halamine structures to various polymers has experienced great development over the past decade but it has been applied more onto hydrophilic polymers. N-halamine structures were grafted onto PP fabrics by a conventional pad-dry-cure finishing process [67]. This technique provided powerful, durable, and rechargeable biocidal activities on several synthetic polymers, but is limited to surface modification.

Scheme 8.2 Conversion of the grafted carboxylic acid to the quaternary salt.
Recently, chemical incorporation of N-halamine precursor structure into polyolefins during melt extrusion was explored [68]. By using a reactive extrusion process and radical graft polymerization reaction, several cyclic and acyclic halamine precursor structures were successfully grafted onto PP. The chlorinated grafted polymers provided fast, durable, and rechargeable biocidal activity against bacteria and are prone to be applied in melt-blown nonwoven systems. Such an approach of chemical modification of polyolefins opens up new avenues of making antimicrobial polymers.

In addition, grafting of polyvinylpyrrolidone–iodine (PVP-I) complex onto PP films to achieve antimicrobial activity has been proposed [69]. The activated surfaces showed total kill after a minimum of 4 hours contact time without propensity to recharge or refresh (Table 8.7).

Table 8.6 Chemical incorporation of heavy metals into polyolefins

Antimicrobial agent/substrate fabrication method	Antimicrobial activity	Remarks	Ref.
Metallic salt/PP fabric AA γ-irradiation grafting followed by metallic complexation	6.94 mM COOH/g reacted, Ag (0.1), Fe (0.28), Zn (1.96), and Cu (0.37) mmol/g Direct contact 6 log *Escherichia coli* Ag (5 min), 6 log *Staphylococcus aureus*, Ag (5 min), Cu (30 min), Zn (3 h), 6 log *Pseudomonas aeruginosa*, Ag (2 h), Fe (4 h)	No activity for Ni-complexed fabric	[60]
Metallic salt/PP fabric Styrene γ-irradiation grafting followed by sulfonation and then metallic complexation	3.95 mM SO$_3$H/g reacted, Ag (0.61), Fe (1.56), Zn (1.50) and Cu (1.69) mmol/g Direct contact 6 log *E. coli* Ag (30 min), Fe (2 h), Cu (4 h) 6 log *S. aureus*, Ag (30 min), Cu (3 h), Zn (4 h), Ni (3 h), Co (5 h) 6 log *P. aeruginosa*, Ag (30 min), Fe (30 min), Cu (1 h), Zn (4 h), Ni (5 h)		[61]
Metallic salt/PP fabric Morpholine ethyl methacrylate (MEMA) E-beam irradiation grafting followed by quaternization	0.091 mg/g Cu$^{2+}$ 3 h (AATCC 100) 6 log (*E. coli*)	Total kill even without using alkylating agent	[56]

Enhancing hygiene/antimicrobial properties of polyolefins

279
Current antimicrobial polyolefin products could provide actions against a broad spectrum of pathogens and have found applications in many areas. Undoubtedly, the use of antimicrobial polymers in hygienic products and medical devices can protect human health and improve quality of life. The range of applications of the polymers has been extended to many fields including artificial organs, drugs, healthcare products, implants, bone replacement and other prostheses, wound-healing, food, textile industry, and water treatment.

The antimicrobial polymers are on the verge of rapid expansion, which is evidenced by emerging new classes of antimicrobial products in the past few years [9]. However, current antimicrobial products still need several hours of contact time to provide substantial reductions of pathogens, which is still far below expectation. Furthermore, many current structural modifications on polyolefins could adversely affect their original properties, thus making the polymer lack antimicrobial applications. However, modification of polyolefins and their fibrous products with more powerful biocidal properties as well as with improved porosity, wettability, and biocompatibility could lead to applications in implants and biomedical devices as well as biological protective materials.

Table 8.7 Chemical incorporation of haloamine or halogen antimicrobial agents into polyolefins

Antimicrobial agent/substrate fabrication method	Antimicrobial activity	Remarks	Ref.
Polyvinylpyrrolidone–iodine (PVP-I) complex/PP film UV grafting of NVP followed by iodine complexation	Not reported except 2.1% PVP grafting 5 h (shake flask) 99.999% (Escherichia coli, Staphylococcus aureus, Candida albicans)		[69]
N-halamine/PP fabric pad-dry cure of hydantoin derivative followed by chlorine activation	3.9% 20 min (AATCC 100) 99.9% (E. coli) High durable and ability to recharge		[67]
N-halamine/PP polymer melt-induced grafting melamine derivatives followed by fibre formation and chlorine activation	60 mol/million part PP 30 min (AATCC 100) 100% (E. coli) Rechargeable and durable activity		[68]
References

[1] Pasquini N. Polypropylene—the business. In: Pasquini N, editor. Polypropylene handbook. Munich: Hanser; 2005. p. 491–569.
[2] Sen K. Polypropylene fibers. In: Gupta VB, Kothari VK, editors. Manufactured fiber Technology. London: Chapman & Hall; 1997. p. 457–79.
[3] Burke JP. Infection control—a problem for patient safety source. New Engl J Med 2003;348(7):651.
[4] Zerr DM, Garrison MM, Allpress AL, Heath J, Christakis DA. Infection control policies and hospital-associated infections among surgical patients: variability and associations in a multicenter pediatric setting. Pediatrics 2005;115(4):e387.
[5] Isakow W, Morrow LE, Kollef MH. Probiotics for preventing and treating nosocomial infections, review of current evidence and recommendations. Chest J 2007;132(1):286.
[6] Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 2007;32(7):698.
[7] Brody AL, Strupinsky ER, Kline LR. Active packaging for food applications. New York: CRC Press; 2001. p. 131–94.
[8] Sun G, Worley SD. Chemistry of durable and regenerable biocidal textiles. J Chem Educ 2005;82(1):60.
[9] Kenawy E, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art. Biomacromolecules 2007;8(5):1359.
[10] Liu S, Sun G. Durable and regenerable biocidal polymers: acyclic N-halamine cotton cellulose. Ind Eng Chem Res 2006;45(19):6477.
[11] Sun, G., 2001. Durable and regenerable antimicrobial textiles. In: Edwards JV, Vigo TL, editors. Bioactive fibers and polymers. Symposium series no. 792. American Chemical Society, Washington. p. 243–52.
[12] Sun G, Xu X. Durable and regenerable antibacterial finishing of fabrics. Text Chem Color 1998;30(6):26.
[13] Sun Y, Sun G. Novel regenerable N-halamine polymeric biocides I: synthesis, characterization and antimicrobial activity of hydantoin-containing polymers. J Appl Polym Sci 2001;80(13):2460.
[14] Sun Y, Sun G. Novel regenerable N-halamine polymeric biocides II: grafting hydantoin-containing monomers onto cotton cellulose. J Appl Polym Sci 2001;81(3):617.
[15] Sun Y, Sun G. Novel regenerable N-halamine polymeric biocides III: grafting hydantoin-containing monomers onto synthetic fabrics. J Appl Polym Sci 2001;81(6):1517.
[16] Sun Y, Sun G. Durable and refreshable polymeric N-halamine biocides containing 3-(4-vinylbenzyl)-5,5-dimethylhydantoin. J Polym Sci Polym Chem 2001;39(19):3348.
[17] Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 2002;3(2):113.
[18] Jeong SH, Yeo SY, Yi SC. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 2005;40(20):5407.
[19] Jeong SH, Hwang YH, Yi SC. Antibacterial properties of padded PP/PE non-woven incorporating nano-sized silver colloids. J Mater Sci 2005;40(20):5413.
[20] Yeo SY, Jeong SH. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym Int 2003;52(7):1053.
[21] Yeo SY, Lee HJ, Jeong SH. Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 2003;38(10):2143.
Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on *Escherichia coli*, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 2005;71(11):7589.

Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2004;26(14):2081.

Radheshkumar C, Münstedt H. Antimicrobial polymers from polypropylene/silver composites—Ag + release measured by anode stripping voltammetry. React Funct Polym 2006;66(7):780.

Borkow G, Gabbay J. Copper as a biocidal tool. Curr Med Chem 2005;12(18):2163.

Gavia J, Borkow G, Mishal J, Magen E, Zatcoff R. Copper oxide impregnated textiles with potent biocidal activities. J Ind Text 2006;35(4):323.

Gabbay J, Borkow G, Mishal J, Magan E, Zatcoff R, Sheme-Avni Y. Copper oxide impregnated textiles with potent biocidal activities. J Ind Text 2006;35(4):323.

Seyfriedsberger G, Rametsteiner K, Kern W. Polyethylene compounds with antimicrobial surface properties. Eur Polym J 2006;42(12):3383.

Lenoir S, Pagnoulle C, Galleni M, Compère P, Jérôme P, Detrembleur C. Polyolefin matrixes with permanent antibacterial activity: preparation, antibacterial activity, and action mode of the active species. Biomacromolecules 2006;7(8):2291.

Thomassin JM, Lenoir S, Riga J, Jérôme R, Detrembleur C. Grafting of poly[2-(tert-butylamino) ethyl methacrylate] onto polypropylene by reactive blending and antibacterial activity of the copolymer. Biomacromolecules 2007;8:1171.

Chen Z, Sun Y. Antimicrobial polymers containing melamine derivatives. II. Biocidal polymers derived from 2-vinyl-4,6-diamino-1,3,5-triazine. J Polym Sci Part A: Polym Chem 2005;43:4089.

Chen Z, Sun Y. *N*-Chloro-hindered amines as multifunctional polymer additives. Macromolecules 2005;38:8116.

Cutter CN, Willett JL, Siragusa GR. Improved antimicrobial activity of Nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett Appl Microbiol 2001;33(4):325.

Weng YH, Hotchkiss JH. Anhydrides as antymycotic agents added to polyethylene films for food packaging. Packag Technol Sci 1993;6(3):123.

Zhang Y, Jiang J, Chen Y. Migration of antimicrobial agents in the polypropylene fibers. Polym-Plast Technol Eng 2000;39:223.

Wang H, Wang J, Hong J, Wei Q, Gao W, Zhu Z. Preparation and characterization of silver nanocomposite textile. J Coat Technol Res 2007;4(1):101.

Marini M, Niederhausern SD, Iseppi R, Bondi M, Sabia C, Toselli M, et al. Antibacterial activity of plastics coated with silver-doped organic—inorganic hybrid coatings prepared by sol—gel processes. Biomacromolecules 2007;8(4):1246.

Zhang W, Zhang YH, Ji JH, Zhao J, Yan W, Chu PK. Antimicrobial properties of copper plasma-modified polyethylene. Polymer 2006;47(21):7441.

Zhang W, Zhang Y, Ji J, Yan Q, Huang A, Chu PK. Antimicrobial polyethylene with controlled copper release. Biomed Mat Res A 2007;83(3):838.

Saygun O, Avalar C, Aydinuraz K, Agalar F, Daphan C, Saygun M, et al. Gold and gold—palladium coated polypropylene grafts in a *S. epidermidis* wound infection model. J Surg Res 2006;131(1):73.

Vigo TL, Danna GF. Magnesium hydroperoxyacetate (MHPA) and magnesium dihydroperoxide (MDHP): new antibacterial agents for fibrous substrates. Polym Adv Technol 1995;7(1):17.
Enhancing hygiene/antimicrobial properties of polyolefins

[42] Shin Y, Yoo DI, Min K. Antimicrobial finishing of polypropylene non-woven fabric by treatment with chitosan oligomer. J Appl Polym Sci 1999;74(12):2911.

[43] Zhang W, Chu PK, Ji J, Zhang Y, Fu RKY, Yan Q. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer 2006;47(3):931.

[44] Zhang W, Chu PK, Ji J, Zhang Y, Ng SC, Yan Q. Surface antibacterial characteristics of plasma-modified polyethylene. Biopolymers 2006;83(1):62.

[45] Huang W, Leonas KK. Evaluating a one-bath process for imparting antimicrobial activity and repellency to non-woven surgical gown fabrics. Text Res J 2000;70(9):774.

[46] Zhang W, Ji J, Zhang Y, Yan Q, Kurmaev EZ, Moewes A, et al. Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Appl Surf Sci 2007;253(22):8981.

[47] Agalar F, Daphan C, Saygun M, Ceken S, Akkus A. Gold and gold—palladium coated polypropylene grafts in a S. epidermidis wound infection model. J Surg Res 2006;131(1):73.

[48] Han J, Castell-Perez ME, Moreira RG. The influence of electron beam irradiation on the effectiveness of trans-cinnamaldehyde-coated LDPE/polyamide films. J Food Sci 2006;71(5):E245.

[49] Han J, Castell-Perez ME, Moreira RG. The influence of electron beam irradiation of antimicrobial-coated LDPE/polyamide films on antimicrobial activity and film properties. LWT—Food Sci Technol 2007;40(9):1545.

[50] Vartiainen J, Rättö M, Tapper U, Paulusseni S, Hurme E. Surface modification of atmospheric plasma activated BOPP by immobilizing chitosan. Polym Bull 2005;54(4—5):343.

[51] Wafa DM, Breidt F, Gawish SM, Matthews SR, Donohue KV, Roe RM, et al. Atmospheric plasma-aided biocidal finishes for non-woven polypropylene fabrics. II. Functionality of synthesized fabrics. J Appl Polym Sci 2007;103(3):1911.

[52] Wang CC, Chen CC. Antibacterial and swelling properties of acrylic acid grafted and collagen/chitosan immobilized polypropylene non-woven fabrics. J Appl Polym Sci 2005;98(1):391.

[53] Yang JM, Lin HT, Wu TH, Chen CC. Wettability and antibacterial assessment of chitosan containing radiation-induced graft non-woven fabric of polypropylene-g-acrylic acid. J Appl Polym Sci 2003;90(5):1331.

[54] Chen KS, Ku YU, Lee CH, Lin HR, Lin FH, Chen TH. Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP non-woven composites surfaces. Mater Sci Eng C 2005;25(4):472.

[55] Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 2007;8(5):1396.

[56] Mosleh S, Gawish SM, Sun Y. Characteristic properties of polypropylene cationic fabrics and their derivatives. J Appl Polym Sci 2003;89(11):2917.

[57] McCubbin PJ, Forbes E, Gow MM, Gorham SD. Novel self-disinfecting surface. J Appl Polym Sci 2006;100(1):381.

[58] Tan S, Li G, Shen J, Liu Y, Zong M. Study of modified polypropylene non-woven cloth. II. Antibacterial activity of modified polypropylene non-woven cloths. J Appl Polym Sci 2000;77:1869.

[59] McCubbin PJ, Forbes E, Gow MM, Gorham SD. Covalent attachment of quaternary ammonium compounds to a polyethylene surface via a hydrolysable ester linkage: basis for a controlled-release system of antiseptics from an inert surface. J Appl Polym Sci 2006;100(1):538.
[60] Park JS, Kim JH, Nho YC, Kwon OH. Antibacterial activities of acrylic acid-grafted polypropylene fabric and its metallic salt. J Appl Polym Sci 1998;69(11):2213.
[61] Nho YC, Park JS, Jin JH, Kwon OH. Antibacterial activity of sulfonated styrene-grafted polypropylene fabric and its metallic salt. J Macromol Sci Part A: Pure Appl Chem 1999;A36:731.
[62] Sun G, Xu X. Durable and regenerable antibacterial finishing of fabrics: chemical structure. Text Chem Color 1999;31(5):31.
[63] Sun G, Xu X. Durable and regenerable antibacterial finishing of fabrics: fabric properties. TextChem Color 1999;31(1):21.
[64] Sun Y, Sun G. Synthesis, characterization and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization. Macromolecules 2002;35:8909.
[65] Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: grafting hydantoin-containing monomers onto high-performance fibers by a continuous process. J Appl Polym Sci 2003;88(4):1032.
[66] Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Ind Eng Chem Res 2004;43:5015.
[67] Sun Y, Sun G. Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process. J Appl Polym Sci 2002;84(8):1592.
[68] Badrossamay MR, Sun G. Rechargeable biocidal polypropylene prepared by melt radical grafting of polypropylene with diallyl-amino triazine. Eur Polym J 2008;44:733.
[69] Xing CM, Deng JP, Yang WT. Synthesis of antibacterial polypropylene film with surface immobilized polyvinylpyrrolidone—iodine complex. J Appl Polym Sci 2005;97 (5):2026.

Further reading

Mosleh S, Gawish SM, Khalil FH, Bieniek RF. Properties and application of novel amphoteric polypropylene fabrics. J Appl Polym Sci 2005;98(6):2373.
Sun G, Xu X, Bickett JR, Williams JF. Durable and regenerable antimicrobial finishing of fabrics with a new hydantoin derivative. Ind Eng Chem Res 2001;41:1016.
Sun Y, Chen TY, Worley SD, Sun G. Novel refreshable N-halamine polymeric biocides-containing imidazolidin-4-one derivatives. J Polym Sci Polym Chem 2001;39(18):3073.