Mitochondrial redox signalling at a glance
Yvonne Collins, Edward T. Chouchani, Andrew M. James, Katja E. Menger, Helena M. Cochemé and Michael P. Murphy

Journal of Cell Science 125, 1837
© 2012. Published by The Company of Biologists Ltd
doi: 10.1242/jcs.110486

There was an error published in J. Cell Sci. 125, 801-806.
The URL that links to the accompanying poster panels is incorrect.
The correct link is as follows:
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.098475/-/DC1
We apologise for this error.
Mitochondrial redox signalling at a glance

Yvonne Collins, Edward T. Chouchani, Andrew M. James, Katja E. Menger, Helena M. Cochemé and Michael P. Murphy*

MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
*Author for correspondence (mpm@mrc-mbu.cam.ac.uk)

Journal of Cell Science 125, 801–806
© 2012. Published by The Company of Biologists Ltd
doi:10.1242/jcs.098475

This article is part of a Minifocus on Mitochondria. For further reading, please see related articles: ‘PINK1 and Parkin-mediated mitophagy at a glance’ by Seok M. Jin and Richard J. Youle (J. Cell Sci. 125, 795-799) and ‘Mitochondria and cell signalling’ by Stephen Tait and Douglas Green (J. Cell Sci. 125, 807-815).

Redox signalling occurs when a biological system alters in response to a change in the level of a particular reactive oxygen species (ROS) or the shift in redox state of a responsive group such as a dithiol–disulphide couple (D’Autreaux and Toledano, 2007; Finkel, 2011; Fourquet et al., 2008; Janssen-Heininger et al., 2008; Rhee, 2006). Although ROS are best known as damaging agents in pathology, a more nuanced view has developed. It is now clear that some ROS, such as hydrogen peroxide (H₂O₂), can act as messengers both in the extracellular environment and within cells (D’Autreaux and Toledano, 2007; Fourquet et al., 2008; Janssen-Heininger et al., 2008; Rhee, 2006). Mitochondria seem to be an important redox signalling node, partly because of the flux of the ROS superoxide (O₂⁻) generated by the respiratory chain and other core metabolic machineries within mitochondria (Balaban et al., 2005; Finkel, 2011; Murphy, 2009a). In addition, the mitochondrial matrix is central to metabolism, as oxidative phosphorylation, the citric acid cycle, fatty acid oxidation, the urea cycle and the biosynthesis of iron sulphur centres and haem take place there. Furthermore, mitochondria have key roles in apoptosis, calcium homeostasis and oxygen sensing (Duchen, 2004; Murphy, 2009a; Murphy, 2009b). Consequently, mitochondria are at the core of many biological processes, and redox signals to and from this organelle help to integrate mitochondrial function with that of the cell and organism. In this Cell Science at a Glance article we outline how mitochondrial redox signals are produced and modulated, the mechanisms by which redox signals can alter mitochondrial function and the experimental procedures available to assess this.

Production and modulation of redox signals to and from mitochondria

The initial ROS formed within mitochondria is O₂⁻, which is generated by the respiratory chain and other enzymatic components within the mitochondrion (Finkel, 2011; Murphy, 2009a).
Mitochondrial O_2^- generation provides an indication of functional status because its production is altered by many cellular factors. These include the membrane potential, the reduction state of electron carriers and post-translational modification or damage to the respiratory chain (Murphy, 2009a). However, O_2^- itself is not the main ROS signal within mitochondria because it is mostly converted to H_2O_2 by manganese superoxide dismutase (MnSOD), which reacts very rapidly with O_2^- and is present at a high concentration within the matrix (Balaban et al., 2005; Chance et al., 1979; Finkel, 2005; Murphy, 2009a). As H_2O_2 can pass easily through mitochondrial membranes, it can act as a redox signal from mitochondria to the rest of the cell and vice versa (Balaban et al., 2005; D’Autreaux and Toledano, 2007; Droge, 2002; Fourquet et al., 2008; Janssen-Heininger et al., 2008; Murphy, 2009a).

Respiratory complex III can also release O_2^- into the intermembrane space (St-Pierre et al., 2002; Muller et al., 2004; Han et al., 2001). The intermembrane space enzyme p66Shc (the 66 kDa isoform of the growth factor adapter Shc) can also generate O_2^-, which can regulate apoptotic cell death (Giorgio et al., 2005). The O_2^- can diffuse from the intermembrane space to the cytosol or be converted to H_2O_2 by an intermembrane space Cu,Zn-SOD (Okado-Matsumoto and Fridovich, 2001). The Mia40p and Ets1p system of the intermembrane space, which inserts disulphide bonds into intermembrane space proteins during import, also generates H_2O_2 (Koehler et al., 2006), but the potential of this for redox signalling is unclear.

Matrix H_2O_2 concentration is further regulated by degradation through peroxiredoxin 3 and 5 (Prx3 and Prx5, respectively) and glutathione peroxidase 1 (Gpx1), with Prx3 being the most significant because of its relative abundance and reactivity (Cox et al., 2010). Prx proteins degrade H_2O_2 using the mitochondrial thioredoxin 2 (Trx2) system as a reducing source, whereas Gpx1 uses the mitochondrial glutathione (GSH) pool (Cox et al., 2010). During its reaction cycle, dimeric Prx3 forms an inter-subunit disulphide that is reduced back to the dithiol form by Trx2 (Rhee, 2006; Rhee et al., 2001). Exposure to H_2O_2 can lead to a significant fraction of Prx3 being in the disulphide form at any given time, thereby affecting H_2O_2 release from mitochondria (Cox et al., 2009; Cox et al., 2008). The activity of Prx3 might also be affected by post-translational modification or by the extent of its oligomerisation (Rhee et al., 2001; Rhee et al., 2005b; Cox et al., 2010). The extent of this H_2O_2 signal can be modulated both by its production, which is highly responsive to mitochondrial status (Murphy, 2009a), and by the rate of its degradation by matrix peroxidases – predominantly Prx3 – and diffusion into and out of the organelle.

The H_2O_2 that is produced by one mitochondrion can diffuse to another, coordinating or relaying signals between the organelles (Murphy, 2009a). Additionally, H_2O_2 can diffuse to mitochondria from the cell surface through the activation of NADPH oxidase (NOX) enzymes by growth factors (Janssen-Heininger et al., 2008; Rhee et al., 2005a; Rhee et al. 2005b).

The main ROS involved in redox signalling to and from mitochondria seems to be H_2O_2; however, other forms of ROS can also contribute. Nitric oxide (NO) is generated by NO synthases, and can diffuse into mitochondria and modulate mitochondrial function by competing with O_2 at respiratory complex IV – thereby slowing respiration – and by the S-nitrosation of mitochondrial thiol groups (Moncada and Erusalimsky, 2002). Iron sulphur centres in proteins such as aconitase can react rapidly with O_2^- (D’Autreaux and Toledano, 2007), thereby modifying activity independently of H_2O_2. In addition, O_2^- can diffuse from the intermembrane space through the outer membrane voltage-dependent anion channel to the cytosol, where it can act as a redox signal (Zhou et al., 2010). However, as O_2^- is shorter lived and less diffusible than H_2O_2, its signalling roles are thought to be more limited. A number of other redox signals might also be produced within mitochondria, including peroxynitrite (ONOO–) and the products of mitochondrial lipid peroxidation, such as prostaglandin-like molecules and 4-hydroxyxynonenal (HNE) (Levonen et al., 2004). These compounds can modify mitochondrial protein thioles and, thereby, affect their activity; however, the metabolic significance of these interactions is unclear.

Post-translational protein modification by H_2O_2 and NO

To act as effective biological messengers, molecules such as H_2O_2 and NO have to bring about a reversible change in the activity of a protein. Generally, this involves modification of a thiol group on a cysteine residue that mediates redox signalling (Eatont 2006; Gilbert, 1990; Gilbert, 1995; Schafer and Buettner, 2001). For example, when H_2O_2 acts as a redox signal it oxidises the thiol group on the target protein to a disulphide group, thereby changing the function of the protein; once the level of H_2O_2 has returned to basal levels the alteration is reversed and the activity of the protein reverts to its initial level (Beltran et al., 2000; D’Autreaux and Toledano, 2007; Hess et al., 2001; Jacob et al., 2003; Janssen-Heininger et al., 2008; Ziegler, 1985). If the modification is to an active-site thiol, for example oxidation of the crucial thiol in tyrosine phosphatases (Boivin et al., 2010), then the impact on the protein is a clear loss of function. However, thiol oxidation can alter proteins and, thereby, mediate the redox signal in other ways, such as by changing binding affinity to another protein, altering its action as a transcription factor, or by modifying the activity of a transporter or channel (Balaban et al., 2005; D’Autreaux and Toledano, 2007; Droge, 2002; Fourquet et al., 2008; Murphy, 2009a; Rhee, 2006; Rhee et al., 2000).

Generally, in response to H_2O_2, protein thiol groups will initially form a sulphenic acid (–SOH) (Brennan et al., 2004; Charles et al., 2007; Cotgreave and Gerdes, 1998; Fratelli et al., 2004; Leonard et al., 2009; Seres et al., 1996; Ziegler, 1985; Dalle-Donne et al., 2008; Dalle-Donne et al., 2009), which can occur by direct reaction of H_2O_2 with the thiolate (–S–). This reaction is dependent on the local environment of the thiol and also its pKa, which can lead to certain thiols being particularly sensitive to oxidation. Once formed, the sulphenic acid can itself be a relevant post-translational modification, or it can form other post-translational modifications by reacting with a GSH to form a glutathionylated protein, with an adjacent thiol to form a disulphide (Brennan et al., 2004; Charles et al., 2007; Dalle-Donne et al., 2009; Delaunay et al., 2002; Hurd et al., 2008), or with amides within the protein to form a sulphenyl amide (Sivaramakrishnan et al., 2010). An alternative route to thiol oxidation during redox signalling is the single-electron oxidation of a thiol to a thiyl radical (–·S), which can then react to form disulphide bonds with GSH or with another protein thiol (Woodman and Von Sonntag, 1995; Winterbourn, 1993).

NO metabolism can also modify a protein thiol group into an S-nitrosothiol group (SNO) in a process known as S-nitrosation or S-nitrosylation (Beltran et al., 2000; Hess et al., 2001; Hogg, 2002; Stamler, 1994; Stamler and Hausladen, 1998). The mechanism of SNO formation in vivo is obscure (Hogg, 2002) but, once generated, the SNO can be passed between thiols by transnitrosation, with the formation and stability of the SNO determined by protein sequence motifs that surround the modified cysteine residue (Benhar et al., 2009; Doulias et al., 2010; Hou et al., 1996; Marino and Gladyshev, 2010; Nikitovic and Holmgren, 1996). In addition, an initial SNO on a protein can be modified into other thiol-based groups, such as disulphide, sulphenic acid or into a glutathionylated protein (Nikitovic and Holmgren, 1996; Stamler et al., 1992).
Biologically important mitochondrial redox signals

The concept of redox signalling in biology initially emerged from studies on ROS production from NOXs and on the interactions of NO with biological systems (reviewed by, Finkel, 2011; Rhee, 2006; Janssen-Heininger et al., 2008). Since then, mitochondria have emerged as an important node of redox signalling in numerous biologically important areas. Among the most intriguing is the role of mitochondrial ROS in O2 sensing, especially during hypoxia (Guzy and Schumacker, 2006; Guzy et al., 2008; Patten et al., 2010; Brunelle et al., 2005). In this process, it seems that the production of O2·− by the respiratory chain increases under conditions of low O2 levels (Chandel et al., 1998; Chandel et al., 2000; Guzy et al., 2005). The site of the O2·− production is thought to be respiratory complex III, but the mechanism is unclear (Chandel et al., 2000; Guzy et al., 2005). The elevated mitochondrial O2·− is converted to H2O2 in the mitochondrial matrix, followed by diffusion into the cytosol where it stabilises hypoxia-inducible factor-1α (HIF-1α), thus leading to the transcription of genes that enable the cell to respond to hypoxia (Sanjuán-Pla et al., 2005). Redox signalling by mitochondrial ROS is now implicated in a disparate range of biologically important areas, including as a determinant of chronological lifespan (the time cells in a stationary phase culture remain viable) in yeast (Bonawitz et al., 2007; Pan et al., 2011; Bell et al., 2007), a factor controlling lifespan in Caenorhabditis elegans (Lee et al., 2010; Yang and Hekimi, 2010; Schulz et al., 2007; Hekimi et al., 2011), in the regulation of the immune system (West et al., 2011; Zhou et al., 2011; Wang et al., 2010), in angiotensin II signalling (Dai et al., 2011), in insulin secretion (Leloup et al., 2009) and mitochondrial homeostasis (St-Pierre et al., 2006).

How to investigate redox signalling pathways

Although there is considerable evidence indicating the importance of mitochondrial redox signalling, changes in ROS concentration or a thiol modification also occur during pathologies. Consequently, it is imperative not to assume that such events are necessarily evidence of a redox signal, and to show that changes in the levels of a particular ROS and the subsequent modification of target proteins correlate with and are sufficient to explain the biological modification. However, assessing changes in ROS and protein redox modifications in biological systems is technically demanding and requires an understanding of the underlying chemistry (Murphy et al., 2011). Despite this, considerable evidence demonstrates the presence of protein thiols within mitochondria that can be modified by H2O2 and S-nitrosating agents (Chouchani et al., 2010; Hurd et al., 2005a; Hurd et al., 2005b; Hurd et al., 2007; Prime et al., 2009; Sun et al., 2007). There are now a variety of methods that can be used to assess the levels of particular ROS within mitochondria, and these include mitochondria-targeted small-molecule fluorescence probes (Dickinson et al., 2010a; Dickinson et al., 2010b; Robinson et al., 2006), the use of mitochondria-targeted proteins derived from green fluorescent protein – whose fluorescence is redox sensitive (Meyer and Dick, 2010), and mitochondria-targeted mass spectrometry probes that enable mitochondrial ROS levels to be estimated in vivo (Cochemé et al., 2011). The proteins modified and the nature of the thiol modification can also be determined by using a number of redox proteomic techniques (Chouchani et al., 2010; Dahm et al., 2006; Danielson et al., 2011; Taylor et al., 2003; Held et al., 2010; Hurd et al., 2007).

Once the involved cysteine residues have been determined it is vital to quantify the extent of the modification to ensure that it correlates with a change in protein activity that is sufficient to account for the phenotypic change (Murphy et al., 2011). Mass spectrometric techniques to assess this are now available (Danielson et al., 2011; Held et al., 2010). Proteomic approaches have also been extended to in-vivo models and a range of mitochondrial proteins have been identified that have reversible modifications (Burwell et al., 2006; Doulias et al., 2010; Charles et al., 2007; Fratelli et al., 2003; Murray et al., 2011; Schroder and Eaton, 2008; Sun and Murphy, 2010; Nadtochiy et al., 2007). Without such measurements it might be that the changes in the level of the putative signalling ROS and in the protein redox modification merely correlate with the change in activity, rather than cause it.
Glutaredoxin 2 catalyzes the reversible oxidation and glutathiolation of mitochondrial membrane thiol proteins: Implications for mitochondrial Redox regulation and antioxidant defense. J. Biol. Chem. 279, 47939-47951.

Brenn, J. K., Bell, E. L., Quesada, N. M., Vercauteren, M., Wenger, R. H., Penicaud, L. and Casteilla, L. (2003). Glutaredoxin 2 catalyzes the reversible oxidation and glutathiolation of proteins in cells. Br. J. Pharmacol. 129, 953-960.

Benhar, D., Forrester, M. T. and Stamler, J. S. (2000). Protein dienmythionyl: enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 1, 265-277.

Boutil, B., Yang, M. and Tonks, N. K. (2010). Reversing the oxidatively damaged protein tyrosine phosphatase superfamily. Sci. Signal. 3, p2.

Bonwitz, N. D., Chatenay-Lapointe, M., Pan, Y. and Shadel, G. S. (2009). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313-325.

D’Autreux, B. and Tolledano, M. B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813-824.

Dahm, C. C., Moore, K. and Murphy, M. P. (2006). Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: Implications for the interaction of nitric oxide with mitochondria. J. Biol. Chem. 281, 10005-10006.

Dai, D. F., Johnson, S. C., Villarin, J. J., Chin, M. N., Nievas-Cintrón, M., Chen, T., Marcinek, D. J., Dorn, G. W., Kang, Y. J., Prolla, T. A. et al. (2011). Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and CdG overexpression-induced heart failure. Circ. Res. 108, 837-846.

Dalle-Donne, I., Milzani, A., Gagliano, N., Coitombo, R., Giustarini, D. and Rossi, R. (2008). Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal. 10, 445-473.

Dall’Omo, S. R., Held, J. M., Oo, M., Riley, R., Gibson, B. W. and Andersen, J. K. (2011). Quantitative mapping of reversible mitochondrial complex I cysteine oxidation in a mitochondrial disease mouse model. J. Biol. Chem. 286, 7601-7608.

Delanauy, A., Pfieger, D., Barraut, M. B., Vinh, J. and Toledano, M. B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471-481.

Dickinson, B. C., Huyhn, C. and Chang, C. J. (2010a). A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906-5915.

Dickinson, B. C., Srikun, D. and Chang, C. J. (2010b). Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14, 50-56.

Dixon, P. T., Greene, J. L., Green, T. M., Tenpontoulou, M., Secherhol, S. H., Dunbrack, R. L. and Ischiropoulos, H. (2010). Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that are consistent with a role for these modified cysteines in a thiol S-nitrosylation. Proc. Natl. Acad. Sci. USA 107, 16958-16963.

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95.

Duchen, M. R. (2004). Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Mol. Aspects Med. 25, 365-451.

Eaton, P. (2006). Protein thiol oxidation in health and disease: techniques for measuring disulfides and related redox modification in complex protein mixtures. Free Radic. Biol. Med. 40, 1889-1899.

Finkel, T. (2005). Opinion: Radical medicine: treating age to curing disease. Nat. Rev. Mol. Cell Biol. 6, 971-976.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

References

Bahman, R. S., Nemoto, S. and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495.

Beer, S. M., Taylor, E. R., Brown, S. E., Dahn, C. C., Costa, N. J., Ruuswijk, M. J. and Murphy, M. P. (2004).
Electrophoresis: Implications for mitochondrial Redox signaling.

Hurt, T. R., Requejo, R., Filipovska, A., Brown, S., Prime, T. A., Robinson, A. J., Fearney, I. M. and Murphy, M. P. (2008). Complex I within oxidatively stressed cardiomyocytes is glutathionylated on Cys-551 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 283, 24801-24815.

Jacob, C., Gillett, N. M. and Sies, H. (2003). Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. Engl. 42, 4724-4758.

Jansen-Jheingher, Y. M., Mosemon, B. T., Heinze, N. H., Hanauske, H. J., Kalyanaraman, B., Finkel, T. Stamer, J. R., Rhee, S. G. and van der Vliet, A. (2008). Redox-based regulation of signal transduction: principles, pitfalls, and promises. Proc. Natl. Acad. Sci. USA 105, 22040-22051.

Kobayashi, M. and Yamamoto, M. (2006). Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46, 113-147.

Klebe, C. M., Meyer, K. N. and Leverich, E. P. (2006). Redox pathways of the cell. Antioxid. Redox Signal. 8, 813-822.

Lee, S. J., Hwang, A. B. and Kenyon, C. (2010). Inhibition of respiratory chain complex I extends Caenorhabditis elegans life span via reactive oxygen species that increase I-hf1 activity. Curr. Biol. 20, 2131-2136.

Leloup, C., Tsuroll-Cuzin, C., Magman, C., Karaca, M. Castell, J., Carreiro, L., Colonna, A. L., Kitter, K., Castella, L. and Penicud, L. (2009). Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58, 673-681.

Leonard, S. E. and Carroll, K. S. (2001). Chemical 'omics' approaches for understanding protein cysteine oxidation in biology. Curr. Opin. Chem. Biol. 15, 88-102.

Leonard, S. E., Reddie, K. G. and Carroll, K. S. (2009). Mining the thiol probe for sulfuric acid modifications reveals new targets for oxidation in cells. ACS Chem. Biol. 4, 783-799.

Levonen, A. L., Landar, A., Ramachandran, A., Ceaser, E. K., Dickinson, D. A., Zanoni, G., Morrow, J. D. and Darley-Usmar, V. M. (2004). Cellular mechanisms of redox cell signaling: role of cysteine modifications in controlling antioxidant defenses in response to reactive lipid oxidation products. Biochem. J. 378, 373-382.

Malinska, D., Kudin, A. P., Bejtka, M. and Kunz, W. S. (2012). Changes in mitochondrial reactive oxygen species synthesis during differentiation of skeletal muscle cells. Mitochondrion 12, 144-148.

Malins, R. L., Poland, B. W., Chatterjee, T. K., Fisher, R. A., Darmawan, S., Honatzko, R. B. and Thomas, J. A. (2000). Chemical composition of the mitochondrial electron transport chain. Curr. Opin. Chem. Biol. 4, 237-241.

Marino, S. M. and Gladyshev, V. N. (2010). Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J. Mol. Biol. 395, 844-859.

Mayer, A. J. and Dick, T. P. (2010). Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621-650.

Moncada, S. and Erusalimsky, J. D. (2002). Does nitric oxide mediate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell. Biol. 3, 214-220.

Muller, F. L., Liu, Y. and Van Remmen, H. (2008). Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 283, 49064-49073.

Murphy, M. P. (2009a). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13.

Murphy, M. P. (2009b). Mitochondrial reactive oxygen species as endogenous mediators. J. Biol. Chem. 284, 1191-1212.

Murphy, M. P., Holmgren, A., Larsson, N. G., Halliwell, B., Chappell, J. A., Harris, M. A., Holmen, H., Bharucha, S., Tong, Y. and Van Eyk, J. E. (2009). Mitochondria–a neglected drug target. Curr. Opin. Pharmacol. 9, 183-191.

Nikitovic, D. and Holmgren, A. (2003). Changes in mitochondrial reactive oxygen species during hypoxia. Cell 122, 213-222.

Nikolic, D. and Holmgren, A. (2003). Mitochondria produce reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 231-242.

Okado-Matsumoto, A. and Fridovich, I. (2001). Subcellular distribution of superoxide dismutases (SOD) in rat liver. Cu,Zn-SOD in mitochondria. J. Biol. Chem. 276, 38238-38293.

Pan, Y., Schroeder, E. A., Ocampo, A., Barrientos, A. and Shadel, G. S. (2011). Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Mol. Biol. Cell 22, 1813-1822.

Patten, D. A., Lafleur, V. N., Robitaille, G. A., Chan, D. A., Giacca, A. J. and Richard, D. E. (2010). Hypoxia-inducible factor activation in normoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol. Biol. Cell. 21, 3247-3257.

Prime, T. A., Blaklie, F. H., Evans, C., Nadtochy, S. M., James, A. M., Dahn, C. C., Vitturi, D. A., Patel, R. P., Hiley, C. R., Abubakova, I. et al. (2009). A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 106, 10764-10769.

Rhee, S. G. (2006). Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 807-812.

Rhee, S. G., Bae, Y. S., Lee, S. R. and Kwon, J. (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 2000, pe1.

Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W. and Kim, S. Y. (2005). Peroxiredoxins, a novel family of peroxidases. JUBMB Life 52, 35-41.

Rhee, S. G., Kang, S. W., Jeong, W., Chang, T. S., Yang, K. S. and Woo, H. A. (2005a). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17, 183-189.

Rhee, S. G., Yang, K. S., Kang, S. W., Woo, H. A. and Chang, T. S. (2005b). Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal. 7, 619-626.

Robinson, K. M., Janes, M. S., Pehr, M., Monette, J. S., Ross, M. F., Hagen, T. M., Murphy, M. P. and Beckman, J. S. (2006). Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. USA 103, 15038-15043.

Sanjuan-Pla, A., Cervera, A. M., Apostolova, N., Garcia-Bou, R., Victor, V. M., Murphy, M. P. and McCready, K. J. (2005). A targeted antioxidant reverses the importance of mitochondrial reactive oxygen species in the hypothesis of aging. Free Radic. Biol. Med. 39, 1191-1212.

Schroeder, E. and Eaton, P. (2008). Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Curr. Pharm. Pharmacol. 3, 153-158.

Schult, T. J., Zarse, K., Voigt, A., Urban, N., Birringer, M. and Ristow, M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280-293.

Seres, T., Ravichandran, V., Morihuchi, T., Rokutan, K., Thomas, J. A. and Johnston, R. B., Jr (1996). Protein thiols are titrated during the respiratory burst in human monocytes. Reversible post-translational modification with potential for buffering the effects of oxidative stress. J. Immunol. 156, 1973-1980.

SivaRamanakrishnan, S., Cummings, A. H. and Gates, K. S. (2010). Protection of a single-cysteine protein from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B. Bioorg. Med. Chem. Lett. 20, 444-447.

St-Pierre, J., Buckingham, J. A., Roebuck, S. J. and Brand, M. D. (2002). Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 44784-44790.
St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., Handschin, C., Zheng, K., Lin, J., Yang, W. et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397-408.

Stamler, J. S. (1994). Redox signalling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931-936.

Stamler, J. S. and Hausladen, A. (1998). Oxidative modifications in nitrosative stress. Nat. Struct. Biol. 5, 247-249.

Stamler, J. S., Singel, D. J. and Loscalzo, J. (1992). Biochemistry of nitric oxide and its redox activated forms. Science 258, 1898-1902.

Sun, J. and Murphy, E. (2010). Protein S-nitrosylation and cardioprotection. Circ. Res. 106, 285-296.

Sun, J., Morgan, M., Shen, R. F., Steenbergen, C. and Murphy, E. (2007). Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ. Res. 101, 1155-1163.

Taylor, E. R., Hurrell, F., Shannon, R. J., Lin, T. K., Hirst, J. and Murphy, M. P. (2003). Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278, 19603-19610.

Tormos, K. V., Anso, E., Hamanaka, R. B., Eisenbart, J., Joseph, J., Kalyanaraman, B. and Chandel, N. S. (2011). Mitochondrial Complex III ROS Regulate Adipocyte Differentiation. Cell Metab. 14, 537-544.

Wang, D., Malo, D. and Hekimi, S. (2010). Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/− mouse mutants. J. Immunol. 184, 582-590.

Wardman, P. and Von Sonntag, C. (1995). Kinetic factors that control the fate of thyl radicals in cells. Methods Enzymol. 251, 31-45.

West, A. P., Brodsky, I. E., Rahner, C., Woo, D. K., Erdjument-Bromage, H., Tempst, P., Walsh, M. C., Choi, Y., Shadel, G. S. and Ghosh, S. (2011). TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476-480.

Winterbourn, C. C. (1993). Superoxide as an intracellular radical sink. Free Radic. Biol. Med. 14, 85-90.

Yang, W. and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556.

Zheng, M., Aslund, F. and Storz, G. (1998). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718-1721.

Zhou, L., Aon, M. A., Almas, T., Cortassa, S., Winslow, R. L. and O’Rourke, B. (2010). A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput. Biol. 6, e1000657.

Zhou, R., Yazdi, A. S., Menu, P. and Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature 460, 221-225.

Ziegler, D. M. (1985). Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu. Rev. Biochem. 54, 305-329.