Modeling and Projecting Population for Muslim of Urban Area in Bangladesh

Rafiqul Islam

Dept. of Population Science and Human Resource Development, University of Rajshahi, Rajshahi, 6205, Bangladesh

Abstract In this paper, the population for Muslim of Urban region in Bangladesh is projected by using the exponential growth rate method. For this connection, the information of data for Urban Muslim population for male and female of Bangladesh is obtained from 1991 and 2001 censuses. The projections are computed in three stage procedures. In the first stage, the predictions are computed using negative exponential growth model estimated by the Quasi-Newton method using STATISTICA for the years 1991 and 2001. Using the cross validation predictive power (CVPP) criterion and \(R^2 \), the shrinkage coefficient (\(\lambda \)) is constructed. The shrinkage coefficient determines the adequacy of the first phase prediction. In the second stage, these predicted values are used to estimate the growth rate, for different age groups, by using the exponential growth rate method. In the third stage, that is, finally considering the observed population for Muslim of Urban region in Bangladesh for the Census year 2001 as the base population and using the estimated exponential growth rate, at different age groups, of the second stage estimation, the projections for the population of Muslim of Urban region are estimated for the years 2002 through to 2021 employing exponential growth rate method.

Keywords Urban Muslim Population of Bangladesh, Exponential Model, Cross- Validity Prediction Power (CVPP), Exponential Growth Rate Method, T-Test, F-Test

1. Introduction

Bangladesh is Muslim dominant country and approximately 90% population of Bangladesh is Muslim. The Muslim population was enlarged 10.9% in 1911 over 1901. On the other hand, comparatively lesser increasing trends have been found of 6.8% and 9.2% in 1921 and 1931 respectively in accordance with high mortality, floods, droughts, epidemic, plague, pandemic and others various catastrophic diseases. And, it was risen 26.9% in 1961 over 1951 and 49.3% in 1974 over 1961. It is the cause that the emigrated number of Hindus after independence of 1947 was comparatively larger than the immigrated number of Muslims from India. And, it was increased approximately 18.3% in 2001 census [1].

Population census usually carried out at ten year interval of time is the most important source of data on size, structure and distribution of population by religion or any other demographic and socio-economic characteristics in Bangladesh. The Government and Non-government organizations do require the up-to-the-minute information on population. Consequently, one can easily use to make reasonable plans for development for the present and future time. The Government and demographers are not only the users of population but also trade unions, social organizations, university and other social research institutes and centres, market research analysis, housing developers and business communities frequently do need these estimates for their individual purposes. Moreover, population or population by religion (Muslim), age and sex serves as the denominator for the estimation of socio-demographic, health and development related indicators.

Furthermore, projected population is important and needed for sustainable development in the up to minute nuclear-technology, modernization and industrialization era. Indeed, population projections provide a signal to the planners as how the economy is to be adjusted according to the population and also how the population should be adjusted in accordance with the economy. Population projections can point up the probable population intensification and structural consequences of such presumed development. It was observed that age configuration for population of both sexes in Bangladesh follows negative exponential model[2]. It was investigated that the age structure for male, female and both sexes population of Bangladesh followed either negative exponential model or modified negative exponential model [3,4]. Islam et al.[5] observed that age construction for male population of Bangladesh in 1991 census follows modified negative exponential model. It was showed that proportion of married women of Bangladesh in the reproductive time-span follow cubic polynomial model[6].

Therefore, the fundamental aims and objectives of this study are given below:
i to build up mathematical models for the Urban Muslim population for male and female by age group in years for the census years of 1991 and 2001 and to apply CVPP to test the adequacy of the model, and

ii then to project Urban Muslim population for male and female by ages in Bangladesh by employing exponential growth rate method at different ages.

This paper is structured as follows. Introduction is included in the first section. Data and data sources of this study are presented in section 2. Section 3 describes the methods and methodological issues in which smoothing of age data by free hand curve method, model fitting, model accuracy test, F-test and exponential growth rate method. Application of model and discussion of results of this paper are reported in section 4. Finally, section 5 concludes the conclusion and concluding remarks of the manuscript.

2. Data and Data Sources of this Study

To fulfill the aforesaid objectives, the data on Urban Muslim population by sex and age groups in Bangladesh is taken from of the censuses of 1991[7] and 2001[1]. These have been utilized as raw resources of the present study and exposed in Table 1 and Table 2 for the censuses of 1991 and 2001 respectively.

3. Methods and Methodological Issues

3.1. Smoothing of Age Data by Free Hand Curve Method

It is observed that there is some sort of unexpected distortions in the data aggregate if the Urban Muslim population by age group is to be placed on graph paper. Therefore, an adjustment is needed to diminish these unpredicted distortions before going to fit the models to the data. As a result, a modification is made, that is, quinquennial age wise data is smoothened in the current study by Free Hand Curve Method. After that, the smoothed data have been used to fit mathematical model and these smoothed data for male and female Muslim population of the censuses of 1991 and 2001 are launched in Table 1 and Table 2 respectively.

3.2. Model Fitting

Using the scattered plot of smoothed age structure for Urban for male and female Muslim population by ages in years, it appears that this age wise population is negative exponentially distributed. Therefore, a modified negative exponential model is considered for the first stage prediction and the mathematical form of this model is given by

$$ y = c + e^{(-ax+b)} + u $$

Here, x represents the middle value of the age group; y represents the Urban Muslim population; a, b and c are unknown parameters and u is the stochastic disturbance term of the model. These models are constructed by handling the software STATISTICA.

3.3. Model Accuracy Test

In this paper, to assess the accuracy and reliability of these models, the CVPP, is applied. The mathematical formula for CVPP is specified by

$$ \rho^2_{cv} = 1 - \frac{(a-1)(a-2)\cdots(a+1)}{n(n-k)(a-k-2)} (1 - R^2) $$

In which, n is the number of classes, k is the number of regressors in the fitted model and the cross-validated R is the correlation between observed and predicted values of the predictand variable [8]. The shrinkage and contraction of the model is the positive value of $\rho^2_{cv} - R^2$; where ρ^2_{cv} is CVPP & R2 is the coefficient of determination of the model. 1-shrinkage is the stability of R^2 of the model. The estimated CVPP related to their R^2 and information on model fittings are presented in Table 3. Note that CVPP was also employed as model validation or accuracy test by Islam [3, 4] and Islam et al. [2, 5]

3.4. F-test

To find out the measure of overall significance of the fitted models as well as the significance of R^2, the F-test is employed here[9].

3.5. Exponential Growth Rate Method

For the estimation of growth rate and projection of population, exponential growth rate method is considered in this study and the mathematical form of this method is given by

$$ P_{t_2}^{a-a+5} = P_{t_1}^{a-a+5} \exp \{r^{a-a+5}(t_2-t_1)\} $$

Where, $P_{t_1}^{a-a+5}$ is a predicted initial population at time t_1 in the age group a to a+5, $P_{t_2}^{a-a+5}$ is the predicted terminal population at time t_2 in the age group a to a+5, r^{a-a+5} is the intercensal annual growth rate in the age group a to a+5 and (t_2-t_1) is the time interval between intercensal period.

For the second phase procedure, the estimation of r^{a-a+5} is computed for different age groups from (2) as follows.

$$ r^{a-a+5} = \frac{1}{(t_2-t_1)} \ln \left(\frac{P_{t_2}^{a-a+5}}{P_{t_1}^{a-a+5}} \right) $$

Years 1991 and 2001 are considered as the initial and the terminal populations respectively in estimating the intercensal annual age specific growth rates by using equation (3).

Finally, that is, for the third phase in view of projecting purpose, 2001 census Urban Muslim observed population for male and female by age group is considered as base population and intercensal annual growth rate by age groups during 1991 – 2001 obtained in the second phase is used in this study assuming fertility and mortality remaining unaltered during the projected period. Actually, age wise projected population of Urban Muslim is obtained from equation (2) using age specific growth rates estimated of the second phase and observed initial population of 2001 census running equation (2) successively 20 times.
4. Application of Model and Discussion of Results

The modified negative exponential model is chosen to fit the models for Urban Muslim population, Bangladesh for the census years 1991 and 2001 and the fitted models are described below:

\[y = -364.015 + \exp(-0.01995x + 7.5745) \]
for male of 1991 census \hfill (1)

\[y = -471.36 + \exp(-0.01901x + 7.5742) \]
for female of 1991 census \hfill (2)

\[y = -1479.78 + \exp(-0.00909x + 8.1059) \]
for male of 2001 census \hfill (3)

\[y = -570.695 + \exp(-0.01824x + 7.7979) \]
for female of 2001 census \hfill (4)

The results on model fittings and estimated CVPP alike to their R² of these models are revealed in Table 3. From this table it appears that all the fitted models (1), (2), (3) and (4) are highly cross-validated and their corresponding shrinkage coefficients (\(\lambda \)) are 0.00327, 0.001547, 0.00117 and 0.00076. These imply that the fitted models (1), (2), (3) and (4) will be stable more than 98%, 99%, 99% and 99% respectively. As well, it is found that the parameters of the fitted models (1)-(4) are highly statistically significant with proportion of variance is explained more than 98%. The stability for R² of these models is more than 99%.

The enumerated values of F statistic for these models are shown in the 9th columns of Table 3 while the analogous tabulated values of these models are demonstrated in the last column of the same table at 1% level of significance. These results are indicated that these models and their corresponding R² are highly statistically significant and hence, these are well fitted to the data. The graph of observed, smoothed and predicted Urban Muslim population by age group in years for 1991 and 2001 census years of Bangladesh are depicted in Figure 1, Figure 2, Figure 3 and Figure 4 respectively.

It is to be noted that other models, i.e., linear, log linear, semi-log linear and polynomial model were also tried to employ here but seems to be worse fitted with respect to their coefficient of determination and shrinkage coefficients (\(\lambda \)). For that reason, the outcomes of those models were not publicized here.

For the second phase estimation, age specific intercensal annual growth rates during 1991-2001 are estimated by applying exponential growth rate method at each age group using the predicted values obtained by first phase procedure and these growth rates are demonstrated in Table 4 and displayed in Figure 5. From the table it is found that growth rate for male and female populations are positive that indicating that population are increasing during the intercensal period 1991-2001. Moreover, it is seen from the figure that these rates are showing increasing trends in accordance with ages.

Projected Urban Muslim population for male and female by age group are estimated employing exponential growth rate method using predicted values of the fitted models and presented in Table 4 and Table 5 respectively. It is found that the pattern of male and female Urban Muslim population at each year is downward due to ages. But the trend of these is increasing, i.e., upward with passing of time all over the period 1991-2021.

It is noted that projected Urban Muslim population for both sexes by age group is easily obtained by adding the projected male and female Urban Muslim population by age group in years.

Age Group	Male	Female				
	Observed	Smoothed	Predicted	Observed	Smoothed	Predicted
0-4	1292	1459	1478	1246	1357	1385
5-9	1371	1317	1310	1294	1224	1217
10-14	1217	1157	1157	1121	1089	1064
15-19	922	1047	1017	857	889	925
20-24	982	879	890	916	843	798
25-29	978	787	773	854	714	683
30-34	762	658	667	569	619	578
35-39	714	589	569	443	443	483
40-44	530	473	481	325	386	397
45-49	367	407	400	224	313	318
50-54	289	289	326	204	204	246
55-59	169	234	258	109	131	181
60-64	185	185	196	139	119	122
65-69	87	142	140	58	78	68
70+	174	127	88	126	76	19
Total	10041	9750	9750	8485	8485	8485
Table 2. Observed, Smoothed and Predicted Muslim Population by Age Group for Male and Female of Urban Area in Bangladesh in 2001 Census

Age Group	Male			Female		
	Observed	Smoothed	Predicted	Observed	Smoothed	Predicted
0-4	1467	1720	1760	1332	1700	1756
5-9	1530	1587	1616	1380	1580	1553
10-14	1730	1539	1478	1548	1400	1368
15-19	1532	1390	1347	1390	1218	1199
20-24	1439	1220	1221	1436	1055	1045
25-29	1372	1100	1101	1284	940	904
30-34	1133	1012	987	934	764	776
35-39	1013	870	772	776	645	658
40-44	816	778	732	732	532	551
45-49	585	619	672	672	436	453
50-54	460	557	577	577	327	364
55-59	251	460	485	485	260	283
60-64	269	400	398	398	200	208
65-69	137	300	315	315	150	140
70+	281	291	235	235	130	78
Total	14015	13843	13843	11953	11337	11337

Table 3. The Results of CVPP and Information on Model Fittings

Models	n	K	R²	ρ^2	Shrinkage Coefficient (λ)	Parameters	P-value	Cal. F (with (2, 12) d.f.)	Tab. F (at 1% level)
1	15	1	0.98661	0.98337	0.00327	a 0.00	b 0.0000	442.10	6.93
2	15	1	0.99367	0.992123	0.001547	b 0.0000	c 0.0000	941.87	6.93
3	15	1	0.99521	0.994039	0.00117	b 0.0000	c 0.0000	1246.61	6.93
4	15	1	0.99691	0.996155	0.00076	b 0.0000	c 0.0000	1935.75	6.93

Table 4. Estimated Growth Rate for Male and Female Population at each Age Group

Age Group	Growth Rate for Male	Growth Rate for Female
0-4	0.017462399	0.023733836
5-9	0.020992682	0.024379973
10-14	0.024485937	0.025131443
15-19	0.028102278	0.025949492
20-24	0.031620401	0.026966357
25-29	0.035369509	0.028033450
30-34	0.039187999	0.029457865
35-39	0.043262656	0.030918828
40-44	0.047311728	0.032779853
45-49	0.051879379	0.035384074
50-54	0.057094489	0.039182233
55-59	0.063118931	0.044694987
60-64	0.0698033735	0.053351703
65-69	0.081093022	0.072213472
70+	0.098224870	0.141226985
Total	0.035036792	0.028980147
Table 5. Projected Male Muslim Population by Age Group of Urban Area in Bangladesh during 2002-2021 (in thousands)

Age Group	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
0-4	1791	1823	1855	1887	1921	1954	1989	2024	2060	2096
5-9	1650	1685	1721	1758	1795	1833	1872	1912	1952	1993
10-14	1515	1552	1591	1630	1670	1712	1754	1798	1842	1888
15-19	1385	1425	1465	1507	1550	1594	1640	1687	1735	1784
20-24	1260	1301	1342	1386	1436	1486	1524	1572	1623	1675
25-29	1141	1182	1224	1268	1314	1361	1410	1461	1514	1568
30-34	1026	1067	1110	1154	1201	1249	1299	1350	1404	1461
35-39	916	956	999	1043	1089	1137	1187	1240	1294	1352
40-44	809	849	890	933	978	1025	1075	1127	1182	1239
45-49	708	745	785	827	871	917	966	1018	1072	1129
50-54	611	647	685	725	768	813	860	911	965	1021
55-59	517	550	586	624	665	708	754	804	856	912
60-64	427	459	492	528	567	609	653	701	753	808
65-69	342	370	402	436	473	512	556	603	654	709
70+	259	286	316	348	384	424	467	516	569	628
Total	14357	14897	15463	16055	16675	17325	18007	18723	19474	20262

Table 6. Projected Female Muslim Population by Age Group of Urban Area in Bangladesh during 2002-2021 (in thousands)

Age Group	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
0-4	1983	1986	1987	1989	2002	2005	2007	2010	2014	2017
5-9	1899	1887	1877	1867	1853	1839	1823	1807	1791	1775
10-14	1831	1814	1797	1780	1763	1744	1724	1704	1682	1660
15-19	1750	1727	1705	1682	1659	1636	1613	1588	1563	1539
20-24	1671	1643	1614	1583	1554	1524	1494	1462	1430	1397
25-29	1583	1543	1503	1460	1416	1370	1322	1271	1219	1162
30-34	1487	1443	1401	1359	1313	1265	1214	1163	1113	1062
35-39	1367	1324	1283	1241	1199	1157	1113	1070	1026	982
40-44	1252	1203	1153	1103	1053	1003	953	903	853	803
45-49	1133	1084	1035	987	939	893	849	805	761	717
50-54	1012	964	917	875	833	793	752	713	674	639
55-59	899	851	806	765	727	691	657	626	596	569
60-64	792	744	700	660	625	592	563	536	511	487
65-69	680	634	591	551	514	482	455	430	407	385
70+	593	550	509	471	437	406	377	350	326	304
Total	11677	12395	12775	13168	13576	14000	14441	14900	15379	15937
Figure 1. Observed, Smoothed and Predicted Muslim Population by Age Group for Male of Urban area in Bangladesh in 1991 Census. X axis represents Age Group and Y axis represents Male Population

Figure 2. Observed, Smoothed and Predicted Muslim Population by Age Group for Female of Urban area in Bangladesh in 1991 Census. X axis represents Age and Y axis represents Female Population

Figure 3. Observed, Smoothed and Predicted Muslim Population by Age Group for Male of Urban area in Bangladesh in 2001 Census. X axis represents Age Group and Y axis represents Male Population

Figure 4. Observed, Smoothed and Predicted Muslim Population by Age Group for Female of Urban area in Bangladesh in 2001 Census. X axis represents Age and Y axis represents Female Population

Figure 5. Age Specific Growth Rates for Male and Female for Muslim of Urban Region of Bangladesh. X axis represents Age Group and Y axis represents Growth Rate

5. Conclusions

It is observed that the age pattern of Urban Muslim population for the censuses of 1991 and 2001 follow three parameters modified negative exponential model. It is hoped that one can use this predicted Urban Muslim population by age group for further advanced study as more smoothened data than observed. It is expected that these projected Urban Muslim population for the duration of the period 2002 – 2021 might be more used for higher developed research as well as it can be used in the planning of government and NGOs to boost up the socio-economic, demographic, and health related characteristics and other social indicators at the same time as most of the cases the population is normally used as denominator for the estimation of various socio-economic, demographic, health related and development indicators.

Moreover, population projections are required and used for setting employment target, for manpower planning, for planning how to increase productivity, for opening schools, for teachers training, for planning expansion of hospitals, for supply of goods and services of various types, for providing inputs to agriculture and industry, for calculating food requirements, for planning allotment system, for looking after dietary needs, for planning housing creation programs, for planning transportation requirements, for planning energy supply needs, for developing mining, for planning information and communication technology to strengthen the knowledge in this sector to vie the competitive global market, for conducting and scheduling elections, for planning the institute of law and order mechanism, etc. Further research may be done using world population data or Asian data.

REFERENCES

[1] BBS (2003). Bangladesh Population Census 2001, National Report, Government of the People’s Republic of Bangladesh, Dhaka.

[2] Islam, Md. Rafiqul, Islam, Md. Nurul, Ali, M. Korban &
Mondal, Md. Nazrul Islam (2005). Indirect Estimation and Mathematical Modeling of Some Demographic Parameters of Bangladesh, The Oriental Anthropologist, Vol. 5(2), Page 163 - 171.

[3] Islam, Md. Rafiqul (2003). Modeling of Demographic Parameters of Bangladesh-An Empirical Forecasting, Unpublished Ph.D. Thesis, Rajshahi University.

[4] Islam, Md. Rafiqul (2005). Construction of Female Life Table from Male Widowed Information of Bangladesh, Pakistan J. of Statistics, Vol. 21(3), Page 275-284.

[5] Islam, Md. Rafiqul, Islam, Md. Nurul, Ali, Md. Ayub & Mostofa, Md. Golam (2003). Construction of Male Life Table from Female Widowed Information of Bangladesh, International J. of Statistical Sciences, Vol. 2, Dept. of Statistics, University of Rajshahi, Bangladesh, Page 69-82.

[6] Islam, Md. Rafiqul (2004). Indirect Estimation of fertility Parameters of Bangladesh, J. of Indian Anthropological Society, Vol. 39 (2), Page 195-202.

[7] BBS (1994). Bangladesh Population Census 1991, Vol. 1, National Series, Government of the People’s Republic of Bangladesh, Dhaka.

[8] Stevens, J. (1996). Applied Multivariate Statistics for the Social Sciences, Third Edition, Lawrence Erlbaum Associates, Inc., Publishers, New Jersey.

[9] Gujarati, Damodar N. (1998). Basic Econometrics, Third Edition, McGraw Hill, Inc., New York.

[10] Shryock, H. S, J. S. Siegel and Associates (1975). The Methods and Materials of Demography, Vol. I & II, U.S. Government Printing Office, Washington.