Glipizide Induced Hepatotoxicity: A Case Report and Review of Literature

Palwasha Kamal* and Ruchi Bhabhra
Department of Internal Medicine, Endocrinology, Diabetes and Metabolism, University of Cincinnati, Ohio, USA

Abstract

Introduction
Sulfonylureas are known to have multiple side effects including weight gain, hypoglycemia and cardiovascular toxicity. Hepatotoxicity has been sparsely described in literature. We present a case of Glipizide induced hepatotoxicity which has not been previously reported in literature.

Case
71 year old female with uncontrolled DM2 presented for evaluation to the endocrine clinic. Type 2 DM was diagnosed during evaluation of polyuria and polydipsia, Hba1c 7.1%. When her Hba1c worsened, Metformin 500 mg BID was initiated. Metformin was maximized to 1000 mg BID as Hba1c increased to 14%. Patient declined insulin. She was started on glipizide 5 mg BID in addition to metformin 1000 mg BID. Four weeks later her routine labs showed elevation of AST to 89 µ/l and ALT to 255 µ/l which were normal previously. Patient was asymptomatic. Labs in four days showed further elevation of AST and ALT to 311 µ/l and 446 µ/l, respectively. Glipizide was stopped and repeat labs showed improvement in liver enzymes within three days and normalization within a week of stopping the medication. Extensive evaluation including CMV IgM, HBsAg, Hbc IgM, EBV DNA, HCV PCR. Patient denied previous exposure to any new medications. Repeat labs within four days showed further elevation of AST and ALT to 89 µ/l and 255 µ/l which were previously normal. Patient denied any yellowish discoloration of skin, weight changes, appetite changes, fatigue, nausea, vomiting or abdominal pain. No change in the color of stool or urine. She declined using any new medications. Repeat labs within four days showed further elevation of AST and ALT to 311 µ/l and 446 µ/l, respectively. Glipizide was discontinued. Liver enzymes showed improvement in three days and normalized within a week of stopping the medication. Other etiologies of acute hepatitis were tested, fasting C peptide level was 3.5 ng/ml, Glucose 162 and GAD65Ab was negative. Glipizide 5 mg BID was started in addition to metformin 1000 mg BID. Four weeks later her routine labs showed elevation of AST to 89 µ/l and ALT to 255 µ/l which were previously normal. Patient denied any yellowish discoloration of skin, weight changes, appetite changes, fatigue, nausea, vomiting or abdominal pain. No change in the color of stool or urine. She declined using any new medications. Repeat labs within four days showed further elevation of AST and ALT to 311 µ/l and 446 µ/l, respectively. Glipizide was discontinued. Liver enzymes showed improvement in three days and normalized within a week of stopping the medication. Other etiologies of acute hepatitis were tested, were normal - CMV IgM, HBsAg, Hbc IgM, EBV DNA, HCV PCR. Patient denied previous history of biliary tract disease, alcohol use, herbal supplements or any other non-prescription medications. No pertinent family history. Physical examination was normal. Patient was diagnosed with acute hepatitis in hepatocellular pattern by Gastroenterology. In the setting of significant improvement in liver enzymes after medication cessation. Patient declined a rechallenge.

Discussion
Hepatotoxicity is a rarely reported side effect for sulfonylureas. Previously, liver injury secondary to Glimepiride and Glyburide have been described in case reports. However, this is the first case to our knowledge with glipizide induced hepatotoxicity.

*Corresponding author: Palwasha Kamal, Department of Internal Medicine, Endocrinology, Diabetes and Metabolism, University of Cincinnati, Ohio, USA. Telephone: +1 9139568936; E-mail: palwasha_kamal@hotmail.com

Citation: Kamal P, Bhabhra R (2019) Glipizide Induced Hepatotoxicity: A Case Report and Review of Literature. J Diabetes Metab Disord 6: 028.

Received: August 14, 2019; Accepted: August 22, 2019; Published: August 29, 2019

Copyright: © 2019 Kamal P and Bhabhra R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Liver injury secondary to Glimeperide, Glyburide and Gliclazide have been described in case reports [3,4]. We present Glipizide induced hepatotoxicity which has not been previously reported to our knowledge. Roussel Uclaf Causality Assessment Model score was 8 for our patient which represents a probable likelihood of Glipizide causing hepatotoxicity. Most cases with sulfonylureas induced liver toxicity present with reversible liver injury but fatal incidents have also been reported [4,9]. In most of these studies causality was established by excluding other etiologies of liver injury, the pattern of liver enzyme elevation and their normalization after cessation of sulfonylurea use. Pathophysiology behind acute liver injury remains unclear. Hypersensitivity may be a key feature in sulfonylurea induced hepatotoxicity [10].

The onset of hepatotoxicity with Glimeperide varied from a week to five months. Liver enzymes normalized within three days to eight weeks after stopping the medication [3,5]. Liver biopsy report predominantly showed a cholestasis pattern however hepatic necrosis was also noted [3]. With Glyburide and Gliclazide, liver enzyme elevation were commonly seen after two to nine weeks of introduction [3,5]. With Glyburide and Gliclazide, liver enzyme elevation and their normalization after cessation of sulfonylurea use. Pathophysiology behind acute liver injury remains unclear. Hypersensitivity may be a key feature in sulfonylurea induced hepatotoxicity [10].

Liver injury secondary to Glimeperide, Glyburide and Gliclazide have been described in case reports [3,4]. We present Glipizide induced hepatotoxicity which has not been previously reported to our knowledge. Roussel Uclaf Causality Assessment Model score was 8 for our patient which represents a probable likelihood of Glipizide causing hepatotoxicity. Most cases with sulfonylureas induced liver toxicity present with reversible liver injury but fatal incidents have also been reported [4,9]. In most of these studies causality was established by excluding other etiologies of liver injury, the pattern of liver enzyme elevation and their normalization after cessation of sulfonylurea use. Pathophysiology behind acute liver injury remains unclear. Hypersensitivity may be a key feature in sulfonylurea induced hepatotoxicity [10].

The onset of hepatotoxicity with Glimeperide varied from a week to five months. Liver enzymes normalized within three days to eight weeks after stopping the medication [3,5]. Liver biopsy report predominantly showed a cholestasis pattern however hepatic necrosis was also noted [3]. With Glyburide and Gliclazide, liver enzyme elevation were commonly seen after two to nine weeks of introduction [6,10]. Rarely, late onset hepatotoxicity has also been described in literature. Adolfo and his team reported a case of a 63 year old male who presented with cholestasis. He had been on Glyburide for three years [11]. Wongpaitoon et al described a case of intrahepatic cholestasis and cutaneous bullae after five months of using Glyburide [12]. In these case reports, liver enzymes normalized between one to two weeks after the medication was discontinued.

Two cases of fatal liver disease have been reported with the use of Glyburide. Clark and associates described a case of severe generalized hypersensitivity reaction with toxic erythema, eosinophilia, visceral arteritis and cholestatic jaundice in a 67 year old male who was taking high dose of Glyburide (30 mg/day) for four weeks [9]. Van Basten and coworkers report a fatal case of a 69 year old woman who developed icterus and pruritus after three weeks of using Glyburide 5 mg BID. Despite discontinuation of Glyburide, patient progressed to liver failure precipitated by bacterial peritonitis and did not survive [4]. In contrast to previous reports, our patient was asymptomatic and was found to have liver enzyme abnormalities consistent with hepatocellular pattern on routine monitoring. In agreement with previous literature, her liver enzymes peaked at four weeks and normalized after a week of discontinuation.

Conclusion

Hepatotoxicity has been described as a rare side effect of sulfonylurea therapy. We present a case of asymptomatic acute liver toxicity from Glipizide which resolved with discontinuation of the medicine. This case emphasizes the importance of monitoring liver function closely once sulfonylureas are initiated. It also highlights the significance of considering sulfonylureas in the differential diagnosis of acute hepatitis.

References

1. Sola D, Rossi L, Schiana GP, Maffioli P, Bigliocca M, et al. (2015) Sulfonylureas and their use in clinical practice. Arch Med Sci 11: 840-848.
2. Termism, Mazzola S, Nissa (2015) Review of Safety Considerations in the Elderly Using Sulfonylureas. The Consultant Pharmacist 30: 116-119.
3. Chounta A, Zouridakis S, Ellinas C, Tsiodras S, Zoumpouli C, et al (2005) Cholestatic liver injury after glimepiride therapy. Journal of Hepatology 42: 944-946.
4. Van Basten JP, van Hoek B, Zeijen R, Stockbrügger R (1992) Glyburide-induced cholestatic hepatitis and liver failure. Case-report and review of the literature. Netherlands Journal of Medicine 40: 305-307.
5. Omar H, Kolla J, Mangar D, Camporesi E (2009) Glimepiride-induced cholestasis in a man with diabetes mellitus: A case report. Journal of Medical Case Reports 3: 9251.
6. Goodman RC, Dean PJ, Radparvar A, Kitabchi AE (1987) Glyburide-induced hepatitis. Annals of Internal Medicine 106: 837-839.
7. Haque T, Sasatomi E, Paul H (2016) Drug-Induced Liver Injury: Pattern Recognition and Future Directions. Gut Liver 10: 27-36.
8. Saw D, Pitman E, Maung M, Savasatit P, Wasserman D (1996) Granulomatous hepatitis associated with glyburide. Dig Dis Sci 41: 322-325.
9. Clarke BF, Campbell JW, Ewing DJ, Beveridge GW, MacDonald MK (1974) Generalized hypersensitivity reaction and visceral arteritis with fatal outcome during glibenclamide therapy. Diabetes 23: 739-742.
10. Chitturi S, Le V, Kench J, Loh C, George J (2002) Gliclazide-Induced Acute Hepatitis with Hypersensitivity Features. Digestive Diseases and Sciences 47: 1107-1110.
11. Del-Val A, Vicente Garrigues V, Ponce J, Benages R (1991) Glibenclamide-induced cholestasis. Journal of Hepatology 13: 375.
12. Wongpaitoon V, Mills PR, Russell RI, Patrick RS (1981) Intrahepatic cholestasis and cutaneous bullae associated with glibenclamide therapy. Postgrad Med J 57: 244-246.
