Mitochondrial genomes of *Anopheles arabiensis*, *An. gambiae* and *An. coluzzii* show no clear species division [version 2; peer review: 2 approved]

Mark J. Hanemaaijer, Parker D. Houston, Travis C. Collier, Laura C. Norris, Abdrahamane Fofana, Gregory C. Lanzaro, Anthony J. Cornel, Yoosook Lee

1 Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
2 Malaria Research and Training Center, University of Bamako, Bamako, E2528, Mali
3 Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California Davis, Davis, CA, 93648, USA

Abstract
Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following *Anopheles* species and chromosomal forms: *An. arabiensis*, *An. coluzzii* (The Forest and Mopti chromosomal forms) and *An. gambiae* (The Bamako and Savannah chromosomal forms). The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among *An. arabiensis*, *An. coluzzii* and *An. gambiae* or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.

Keywords
Mitogenome, species identification, Africa, malaria vector, mosquitoes, *Anopheles*, single nucleotide polymorphisms, phylogenomics
Corresponding author: Yoosook Lee (yoslee@ucdavis.edu)

Author roles: Hanemaaijer MJ: Conceptualization, Formal Analysis, Writing – Original Draft Preparation, Writing – Review & Editing; Houston PD: Writing – Original Draft Preparation; Collier TC: Data Curation, Software; Norris LC: Investigation; Fofana A: Investigation; Lanzaro GC: Writing – Review & Editing; Cornel AJ: Investigation, Writing – Review & Editing; Lee Y: Conceptualization, Data Curation, Formal Analysis, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: We thank University of California - Irvine, Malaria Initiatives (UCIMI) for their support.

Copyright: © 2019 Hanemaaijer MJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Hanemaaijer MJ, Houston PD, Collier TC et al. Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division [version 2; peer review: 2 approved] F1000Research 2019, 7:347 (https://doi.org/10.12688/f1000research.13807.2)

First published: 21 Mar 2018, 7:347 (https://doi.org/10.12688/f1000research.13807.1)
The main difference between this version and the previous one is the analysis performed to construct the phylogenetic tree. The newly created tree is shown in Figure 1. This approach is more in line with what previous studies that looked at mitogenomes in Anopheles specimens have done. This did not change the conclusion of the paper. We also added a new table (Table 1) where we list the chromosomal inversion of each specimen, as was suggested by one of the reviewers. Furthermore, we added Supplementary Table S1 with all the detected SNPs on the mitogenome for the different Anopheles species and chromosomal forms. We also addressed most of the comments the reviewers had and clarified where needed.

See referee reports

Introduction

Historically, mtDNA sequence has been used in taxonomy as a source of species diagnostic markers (Cronin et al. (1991); De Barba et al. (2014); Pegg et al. (2006)) or in population genetics and evolutionary studies (Fu et al. (2013); Harrison (1989); Llamas et al. (2016)). One advantage of using mitochondrial over nuclear DNA for such studies is that the mutation rate of mtDNA is about 10 times faster than nuclear DNA (Brown et al. (1979); Haag-Liautard et al. (2008)), hence amplifying the evolutionary trajectory of populations and species. In addition, mtDNA is easy to amplify, because there are more copies of mitochondrial DNA relative to nuclear DNA. Also, universal primers can be applied to a wide range of species. Widely used universal primers target the cytochrome b and cytochrome oxidase 1 genes (Tahir et al. (2016)), because both have conserved and highly variable regions. In addition to these, other genes as described in De Mandal et al. (2014), can also be used as markers. However, phylogenetic trees based on mtDNA can deviate from the ones that are derived from nuclear DNA (Phillips et al. (2013); Shaw (2002); Sota & Vogler, 2001).

The Anopheles gambiae species complex consists of eight morphologically identical species that can only be distinguished with molecular markers (Scott et al. (1993); Coetzee et al., 2013) or, for some of the species, by cytological examination of polytene chromosomes (Green, 1972; Pombi et al., 2008). The currently used molecular markers to distinguish between An. coluzzii and An. gambiae (Lee et al., 2014) are located within genomic islands of divergence located proximal to the centromeres (Turner et al. (2005)). Monitoring additional species-specific markers on mitochondrial DNA (mtDNA) could increase the ease of application and accuracy of species detection assays. In addition, mtDNA markers could enhance our understanding of divergence times among taxa within the complex.

Previous studies showed that there is a high amount of interspecific gene flow in mtDNA between An. coluzzii, An. gambiae and An. arabiensis specimens (Besansky et al., 2003; Besansky et al., 1997; Donnelly et al., 2004). Although these data suggested no evidence for clear species division among the various species, the studies only focused on the ND5 loci (Besansky et al., 2003; Donnelly et al., 2004) or included also cytochrome b and ND1 loci (Besansky et al., 1997). In our study we use the complete mitogenome for comparison, which would make the analysis more robust. In addition, we specifically included the different chromosomal forms in our analysis. These chromosomal forms are genetically diverged from each other and display strong assortative mating in the An. gambiae chromosomal forms (Touré et al., 1998). The An. coluzzii chromosomal forms differ from each other in their ecology: An. coluzzii-Mopti is found in dry areas whereas the An. coluzzii-Forest restrict themselves to a wet climate (Lee et al., 2009).

In this study we wished to identify species-specific markers within the mtDNA for Anopheles arabiensis, An. coluzzii and An. gambiae, including among the chromosomal forms currently subsumed under the designations An. gambiae and An. coluzzii, with the goal of adding these to our existing Anopheles species detection assay (Lee et al. (2014)). We sequenced the whole mitogenomes of 70 individual mosquito specimens collected throughout Sub-Saharan Africa. The raw Illumina sequencing reads were mapped to the AgamP4 reference sequence, which included both nuclear and mitochondrial sequences. We explore the relationship among An. arabiensis, An. coluzzii, An. gambiae and four of the sub-specific chromosomal form mitogenome sequences.

Methods

Sample collection

Anopheles arabiensis raw Illumina sequencing reads were obtained from our previous study (Marsden et al. (2014)). These included 20 female An. arabiensis mosquitoes which were collected indoors in houses using mouth aspirators from three villages in Tanzania in 2012 (Lupiro (-8.38000°N, 36.66912°W), Sagamaganga (-8.06781°N, 36.80207°W), and Minepa (-8.25700°N, 36.68163°W) in the Kilombero Valley) and 4 samples from Cameroon collected in 2005 (9.09957°N, 13.72292°W). The DNA was extracted from the head and thorax of each mosquito species and An. arabiensis mosquitoes were identified using Scott primers (Scott et al., 1993)). The adult An. gambiae and An. coluzzii samples were collected indoors using mouth aspirators in Kela, Mali (11.88683°N, -8.44744°W) in 2012 and Mutengene, Cameroon (4.09944°N, 9.3081°W) in 2011. We subdivided the An. coluzzii specimen into the Forest and Mopti chromosomal forms. Similarly, we did this for the An. gambiae Savannah and Bamako chromosomal forms. We examined the polytene chromosome to characterize the chromosomal forms as in Lanzaro & Lee, 2013 and used the same definitions. The results of chromosome determination are listed in Table 1. The An. quadriannulatus mosquito, used as an outgroup for the phylogenetic analysis, was collected as larvae in the Shingwidi area (23.1160°S 31.3752°E) in South Africa in 2015 and was reared to adult.

Genome sequencing

Sequencing methods for An. arabiensis samples are as described in Marsden et al. (2014). In short, individually barcoded Illumina paired-end sequencing libraries, with insert sizes of 320-400 bases (bp) using NEXFlex Sequencing kits (NOVA-5144) and barcodes (NOVA-514102)(Bio Scientific, Austin, TX, USA), were sequenced on an Illumina HiSeq2000 (Illumina, San Diego, CA, USA) with 100-bp paired-end
Table 1. List of detected chromosomal inversions to detect chromosomal forms of *An. coluzzii* and *An. gambiae* according Touré and co-workers (Touré et al., 1998). '2' represents homozygous for the inversion, '1' heterozygous for the inversion and '-' for homozygous for the standard arrangement.

Banked ID	Chromosomal Form	2La	2Rb	2Rc	2Rd	2Rj	2Ru
11MUTE470	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE472	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE476	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE477	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE479	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE480	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE483	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE487	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE490	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE491	*An. coluzzii*-Forest	-	-	-	-	-	-
11MUTE493	*An. coluzzii*-Forest	-	-	-	-	-	-
2012KELA022	*An. coluzzii*-Mopti	1	1	1	-	-	-
2012KELA024	*An. coluzzii*-Mopti	2	1	1	-	-	-
2012KELA046	*An. coluzzii*-Mopti	2	1	1	-	-	-
2012KELA085	*An. coluzzii*-Mopti	2	2	2	-	-	-
2012KELA087	*An. coluzzii*-Mopti	1	2	2	-	-	-
2012KELA088	*An. coluzzii*-Mopti	2	-	-	-	-	1
2012KELA099	*An. coluzzii*-Mopti	2	-	-	-	-	1
2012KELA112	*An. coluzzii*-Mopti	2	2	2	-	-	-
2012KELA161	*An. coluzzii*-Mopti	2	-	-	-	-	1
2012KELA210	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA214	*An. gambiae*-Bamako	2	-	2	-	2	2
2012KELA219	*An. gambiae*-Bamako	2	-	2	-	2	2
2012KELA228	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA233	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA234	*An. gambiae*-Savannah	1	2	-	-	-	-
2012KELA239	*An. gambiae*-Bamako	2	1	2	-	2	2
2012KELA240	*An. gambiae*-Bamako	2	1	2	-	2	2
2012KELA244	*An. gambiae*-Bamako	2	-	2	-	2	2
2012KELA285	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA321	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA334	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA348	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA367	*An. gambiae*-Bamako	2	1	2	-	2	2
2012KELA400	*An. coluzzii*-Mopti	2	-	-	-	-	2
2012KELA406	*An. gambiae*-Bamako	2	-	2	-	2	2
2012KELA409	*An. gambiae*-Savannah	2	2	-	-	-	-
2012KELA420	*An. coluzzii*-Mopti	2	-	-	-	-	-
2012KELA443	*An. gambiae*-Bamako	2	1	2	-	2	2
2012KELA457	*An. gambiae*-Bamako	2	-	2	-	2	2
2012KELA458	*An. coluzzii*-Mopti	2	-	-	-	-	2
2012KELA467	*An. gambiae*-Bamako	2	-	2	-	2	2
2012KELA468	*An. gambiae*-Savannah	2	1	-	-	-	-
2012KELA481	*An. gambiae*-Bamako	2	2	2	-	2	2
2012KELA496	*An. coluzzii*-Mopti	2	1	-	-	-	-
2012KELA651	*An. gambiae*-Bamako	2	2	2	-	2	2
2012KELA812	*An. gambiae*-Savannah	2	1	-	-	-	-
reads using twelve samples per lane. For the An. coluzzii and An. gambiae samples we used the same methods as described in Norris et al. (2015) and Main et al. (2015). For the latter species, libraries were created using the Nextera DNA Sample Preparation Kit (FC-121-1031) and TruSeq dual indexing barcodes (FC-121-103)(Illumina) and the samples were sequenced on an Illumina HiSeq2500 with 100-bp paired end reads. We sequenced the whole genome, but only mapped the raw sequences to the NC_002084 reference mitogenome sequence.

Data analysis
De-multiplexed raw reads were trimmed using Trimmomatic (Bolger et al. (2014)) version 0.36 and mapped to the mitogenome reference sequence of An. gambiae (Genbank accession number = NC_002084 (Beard et al. (1993))). Freebayes (v1.0.1) (Garrison & Marth, 2013) was used for mitochondrial variant calling assuming single ploidy and without population prior. Mapping statistics were calculated using qualimap version 2.2 (Okonechnikov et al. (2016)) and the data is represented in Table 2. Following the recommendation of Crawford and Lazzaro (Crawford & Lazzaro, 2012), we used a minimum depth of 8 to call variants for each individual. Between positions 1-13,470bp of the mitogenome, we obtained consistently high quality reads for all samples, which were used for further analysis. An AT-rich region located between 13,471 and 15,388 suffers from low or zero coverage for sequences generated with the Nextera library preparation kit. Therefore, we excluded these regions from further analysis. The Vcf2fast program (Danecek et al. (2011)) was used to extract mitogenome sequences from vcf file to fasta format. Geneious version 10.1.3 was used for mitogenome

Table 2. List of samples that are used for the study. Mapped reads indicates the reads that are mapped to the reference genome. Mean coverage indicates the average depth of reads on the mitochondrial DNA and standard deviation indicates the coverage deviation across the mitochondrial DNA.

Species	Banked_id	Year	Country	Village	Mapped bases	Mean coverage	Standard deviation
An. coluzzii-Forest	11MUTE470	2011	Cameroon	Mutengene	4265836	277.7	144.5
An. coluzzii-Forest	11MUTE472	2011	Cameroon	Mutengene	1862892	121.3	23
An. coluzzii-Forest	11MUTE476	2011	Cameroon	Mutengene	2130531	138.7	50.5
An. coluzzii-Forest	11MUTE477	2011	Cameroon	Mutengene	806611	52.5	16.7
An. coluzzii-Forest	11MUTE480	2011	Cameroon	Mutengene	804015	52.3	21
An. coluzzii-Forest	11MUTE483	2011	Cameroon	Mutengene	1702247	110.8	42.9
An. coluzzii-Forest	11MUTE487	2011	Cameroon	Mutengene	812839	52.9	21.2
An. coluzzii-Forest	11MUTE490	2011	Cameroon	Mutengene	1882088	122.5	52.4
An. coluzzii-Forest	11MUTE491	2011	Cameroon	Mutengene	1422997	92.6	46.6
An. coluzzii-Forest	11MUTE493	2011	Cameroon	Mutengene	627590	40.9	17.3
An. coluzzii-Mopti	12KELA022	2012	Mali	Kela	3695920	240.6	64.4
An. coluzzii-Mopti	12KELA024	2012	Mali	Kela	574282	37.4	30.8
An. coluzzii-Mopti	12KELA046	2012	Mali	Kela	4152520	270.3	87.2
An. coluzzii-Mopti	12KELA085	2012	Mali	Kela	10883282	708.4	345
An. coluzzii-Mopti	12KELA087	2012	Mali	Kela	3351158	218.1	79.8
An. coluzzii-Mopti	12KELA088	2012	Mali	Kela	1704283	110.9	91.3
An. coluzzii-Mopti	12KELA099	2012	Mali	Kela	349531	22.8	11
An. coluzzii-Mopti	12KELA112	2012	Mali	Kela	8550102	556.5	198.2
An. coluzzii-Mopti	12KELA161	2012	Mali	Kela	33794208	2199.7	629.3
An. gambiae-Savannah	12KELA210	2012	Mali	Kela	3007375	195.8	53.3
An. gambiae-Bamako	12KELA214	2012	Mali	Kela	26441050	1721.1	566.4
An. gambiae-Bamako	12KELA219	2012	Mali	Kela	3617355	235.5	130.2
An. gambiae-Savannah	12KELA228	2012	Mali	Kela	7783776	506.7	262.8
An. gambiae-Savannah	12KELA233	2012	Mali	Kela	7827363	509.5	138.6
An. gambiae-Savannah	12KELA234	2012	Mali	Kela	6721204	437.5	205.9
An. gambiae-Bamako	12KELA239	2012	Mali	Kela	6683521	435	126.4
Species	Banked_id	Year	Country	Village	Mapped bases	Mean coverage	Standard deviation
-----------------------------	------------	------	----------	---------	--------------	---------------	--------------------
An. gambiae-Bamako	12KELA240	2012	Mali	Kela	15131480	984.9	270.8
An. gambiae-Bamako	12KELA244	2012	Mali	Kela	12851754	836.5	306.5
An. gambiae-Bamako	12KELA285	2012	Mali	Kela	407888	26.6	119.8
An. gambiae-Bamako	12KELA321	2012	Mali	Kela	1034014	67.3	43.8
An. gambiae-Savannah	12KELA334	2012	Mali	Kela	20949015	1363.6	400.4
An. gambiae-Savannah	12KELA348	2012	Mali	Kela	12053890	784.6	280.9
An. gambiae-Bamako	12KELA367	2012	Mali	Kela	12109235	788.2	240.1
An. coluzzii-Mopti	12KELA400	2012	Mali	Kela	13707820	892.3	398.2
An. gambiae-Bamako	12KELA406	2012	Mali	Kela	17605437	1146	463.2
An. gambiae-Savannah	12KELA409	2012	Mali	Kela	10526480	685.2	259.1
An. coluzzii-Mopti	12KELA420	2012	Mali	Kela	31785953	2069	845.5
An. gambiae-Bamako	12KELA443	2012	Mali	Kela	25740781	1675.5	669.1
An. gambiae-Bamako	12KELA457	2012	Mali	Kela	1360654	88.6	36.6
An. coluzzii-Mopti	12KELA458	2012	Mali	Kela	153686	10	10.4
An. gambiae-Bamako	12KELA467	2012	Mali	Kela	10499093	683.4	249.1
An. gambiae-Bamako	12KELA468	2012	Mali	Kela	10315033	671.4	197.1
An. gambiae-Bamako	12KELA481	2012	Mali	Kela	20308589	1321.9	307.6
An. coluzzii-Mopti	12KELA496	2012	Mali	Kela	2975297	193.7	162.9
An. gambiae-Bamako	12KELA651	2012	Mali	Kela	376689	24.5	11.3
An. gambiae-Savannah	12KELA812	2012	Mali	Kela	790071	52	29.3
An. arabiensis	12LUPI001	2012	Tanzania	Lupiro	2843317	185.1	34.9
An. arabiensis	12LUPI007	2012	Tanzania	Lupiro	6288802	409.3	40
An. arabiensis	12LUPI024	2012	Tanzania	Lupiro	6328898	412	78.5
An. arabiensis	12LUPI056	2012	Tanzania	Lupiro	5440256	354.1	39.2
An. arabiensis	12LUPI059	2012	Tanzania	Lupiro	39721262	2585.5	801.8
An. arabiensis	12LUPI071	2012	Tanzania	Lupiro	3433158	223.5	59.2
An. arabiensis	12LUPI074	2012	Tanzania	Lupiro	10096062	657.2	100.5
An. arabiensis	12LUPI082	2012	Tanzania	Lupiro	5732773	373.2	69.6
An. arabiensis	12MINE001	2012	Tanzania	Minepa	7768923	505.7	66.9
An. arabiensis	12MINE040	2012	Tanzania	Minepa	2784428	181.2	54.9
An. arabiensis	12MINE100	2012	Tanzania	Minepa	10753877	700	93.9
An. arabiensis	12MINE105	2012	Tanzania	Minepa	5684230	370	41.9
An. arabiensis	12MINE111	2012	Tanzania	Minepa	1526829	99.4	32.8
An. arabiensis	12SAGA066	2012	Tanzania	Sagamaganga	12745079	829.6	142.3
An. arabiensis	12SAGA107	2012	Tanzania	Sagamaganga	14460217	941.2	259.2
An. arabiensis	12SAGA131	2012	Tanzania	Sagamaganga	15333239	998.1	282.9
An. arabiensis	12SAGA133	2012	Tanzania	Sagamaganga	3792945	246.9	62.5
An. arabiensis	12SAGA134	2012	Tanzania	Sagamaganga	2439101	158.8	34.5
An. arabiensis	12SAGA141	2012	Tanzania	Sagamaganga	3130504	203.8	33.3
An. arabiensis	05OKJ017	2005	Cameroon	Ourodoukoudje	9041052	588.5	78.8
An. arabiensis	05OKJ042	2005	Cameroon	Ourodoukoudje	148752684	9682.5	785.7
An. arabiensis	05OKJ045	2005	Cameroon	Ourodoukoudje	35514980	2311.7	262.8
An. arabiensis	05OKJ070	2005	Cameroon	Ourodoukoudje	22847478	1487.2	400.5
alignments. The phylogenetic tree was generated using PhyloBayes MPI (Lartillot et al., 2013) using the CAT-GTR model on the genomic sequences, which is shown to give similar results compared to amino acid sequences (Foster et al., 2017). We ran the program twice for over 30000 iterations. Max difference between the two runs was 0.045 and minimum effective size was > 100 and created a consensus tree that we visualized in Geneious version 10.1.3. We used scikit-allel (v1.1.9), a software package for Python (Miles & Harding (2017)), to identify species specific markers.

Results and Discussion

We identified a total of 783 single nucleotide polymorphisms (SNPs) over the entire mitogenome. The majority of these (58.7%) were singletons (found on one of the 70 mitogenomes). We did not identify any SNPs unique to the species or chromosomal forms (Supplementary Table S1) and therefore conclude that mtDNA is not suitable for *Anopheles gambiae* complex species identification.

The lack of species-specific markers is also reflected in the phylogenetic tree (Figure 1). *An. arabiensis*, *An. coluzzii* and *An. gambiae* did not cluster separately, which is consistent with previous reports that compared mitochondrial genome sequence data from specimens originating from Kenya, Senegal.
and South Africa (Besansky et al. (1997)) and Burkina Faso, Cameroon, Kenya, Mali, South Africa, Tanzania and Zimbabwe (Fontaine et al. (2015), Supplemental material).

Our data may indicate that there is no divergent selection in mitogenome among An. gambiae complex. Since mitochondrial genomes have a higher (1–10 times) substitution rate than nuclear genomes (Havird & Sloan, 2016; Lynch & Walsh, 2007), one might expect some level of divergence in the mitogenome in the absence of selection if the taxa have been separated by reproductive barrier even if they are in sympatry just as people have observed in nuclear genome. Therefore, our data showing lack of any species-specific markers on the mitogenome may due to the results of episodic hybridizations occurred between two species. Of note, 36 of the samples that we used in our study originated from Kela (Mali). Kela is located near the village of Selinkenyi, where previous studies have shown a history of hybridization and introgression between An. gambiae and An. coluzzii (Lee et al. (2013); Main et al. (2015); Norris et al. (2015)), which may have resulted in shared polymorphisms in their mitochondrial genomes. Shared polymorphisms in their mitochondrial genomes, where history has not been reported, also appeared to have occurred in Mutengene (Cameroon), where both An. gambiae and An. coluzzii occur sympatrically. Hybridization between either An. coluzzii or An. gambiae with An. arabiensis yields sterile males (Slotman et al. (2004)), but phylogenomic analysis of these species show patterns of introgression between all of them (Fontaine et al. (2015)), which could be the reason that we do not find any species-specific markers on the mitogenome. Our mitochondrial genome study does not provide conclusive evidence for hybridization and introgression among the taxa under study. However, our data suggest that this is a possibility and it would be consistent with results reported by (Fontaine et al., 2015) and (Besansky et al., 1997). Future modeling work may illuminate the likely contribution of different evolutionary forces that shapes mitogenome and nuclear genome evolution.

Data availability

Aligned sequences were submitted to the National Center for Biotechnology Information (NCBI) Accession number: MG930826 - MG930896

Dataset 1. Aligned FASTA file of mitogenome samples 10.5256/f1000research.13807.d192892 (Hanemaaier et al., 2018)

Grant information

We thank University of California - Irvine, Malaria Initiatives (UCIMI) for their support.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

We thank Michelle Sanford for her assistance in the field collection in Cameroon in 2011. We thank Clare Marsden for providing the raw data of An. arabiensis samples.

Supplementary material

Supplementary Table S1. List of SNP variants in the different Anopheles species and chromosomal forms.

Click here to access the data

References

Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014; 30(15): 2114–2120.

Brown WM, George M Jr, Wilson AC: Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979; 76(4): 1967–1971.

Cronin MA, Palmisciano DA, Vyse ER, et al: Mitochondrial DNA in wildlife forensic science: species identification of tissues. Wildlife Soc B (1973-2006). 1991; 19(1): 94–105.

Reference Source
Open Peer Review

Current Referee Status: ✔ ✔

Version 2

Referee Report 29 April 2019

https://doi.org/10.5256/f1000research.20094.r45747

Maria Anice Mureb Sallum
Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, Brazil

The revised version is suitable for publication and previously mentioned concerns have been clarified. The mitogenome annotation was well done, and the phylogenetic analyses were adequate. The writing is clear and correct. This work is an important contribution to our knowledge of the mitochondrial genome of the Anophelinae species complexes.

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Referee Report 14 May 2018

https://doi.org/10.5256/f1000research.15009.r33371

Maria Anice Mureb Sallum
Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, Brazil

General comment
Phylogenetic analysis need to be improved, and the choice for NJ methods and JC model, justified in the article. There are several programs that have been largely employed for phylogenetic analysis, including for mitogenome data. The paper authored by Foster et al.¹ contains useful information about analyses that have been carried out for inferring phylogenetic relationships within Anophelinae mosquitoes. I strongly suggest authors to verify how analyses were done.

Sample collection
Authors - “The An. gambiae and An. coluzzii samples were collected as resting adults using mouth aspirators in Kela, Mali (11.88683°N, -8.44744°W) in 2012 and Mutengene, Cameroon (4.0994°N, 9.3081°W) in 2011.”

Comment - Can you please give more details the micro environment where your specimens of An.
gambiae and An. coluzzii were resting?

Authors - “Similarly, we did this for the An. gambiae Savannah and Bamako chromosomal forms. We used the same definitions and methods to characterize the chromosomal forms as in Lanzaro & Lee, 2013.”

Comment - It is not clear to me if you examined the polytene chromosome of each specimen you identified as the Savannah, Bamako, Forest and Mopti forms. Please clarify.

Genome sequencing

Authors - “For the An. coluzzii and An. gambiae samples we used the same methods as described in Norris et al. (2015) and Main et al. (2015). For the latter species, libraries were created using the Nextera DNA Sample Preparation Kit (FC-121-1031) and TruSeq dual indexing barcodes (FC-121-103) (Illumina) and the samples were sequenced on an Illumina HiSeq2500 with 100-bp paired end reads.”

Comment - Please add a short sentence to clarify if you sequenced the whole genome and from the full sequence data you obtained the positions 1-13,470 of the mitogenome.

Data analysis

Authors - “The phylogenetic tree was generated using the Jukes-Cantor genetic distance model and Neighbor-Joining tree methods available in Geneious version 10.1.3.”

Comment - Authors should clarify their choice for sequence analysis. The Geneious software has been developed for editing and aligning DNA / amino acid sequences. There are several softwares, which have been largely used to infer phylogenetic relationships. I suggest authors to refining and improving the phylogenetic analysis using appropriate programs and models that have been chosen for the mitogenome data you have at hand.

References

1. Foster PG, de Oliveira TMP, Bergo ES, Conn JE, Sant'Ana DC, Nagaki SS, Nihei S, Lamas CE, González C, Moreira CC, Sallum MAM: Phylogeny of Anophelinae using mitochondrial protein coding genes. *R Soc Open Sci*. 2017; 4 (11): 170758 PubMed Abstract I Publisher Full Text
No

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Referee Report 30 April 2018
https://doi.org/10.5256/f1000research.15009.r32266

Beniamino Caputo 1, **Verena Pichler** 2

1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
2 Department of Public Health & Infectious Diseases, Sapienza University of Rome, Rome, Italy

General comments

The present research note entitled: "Mitochondrial genomes of *Anopheles arabiensis*, *An. gambiae* and *An. coluzzii* show no clear species division" is well analysed, reported and written. As already reported in previous study the submitted manuscript suggested the absence of any species-specific differences in the mitogenome of the three species examined. Although the manuscript is not innovative and the research is not based on any previous evidence, the present note confirms previous suggestions by examining the whole mitogenome of 70 specimens from field specimens and find the lack of species or chromosomal form specific markers.

Title and abstract

Title and abstract are appropriate and summarize well the content of the article.

Introduction

The introduction gives a good description of the aims of the present study, although I would have added
some references to previous studies performed on mtDNA of the examined species (for example Besansky 1997) and why you expected to obtain different results compared to previous studies.

Please revise also:
“morphologically identical species that can only be distinguished with molecular markers” (Scott et al., 1993; Coetzee et al., 2013)

The currently used molecular markers are located within genomic islands of divergence located proximal to the centromeres (Lee et al. (2014); Turner et al. (2005)) please rephrase the citation and refer it only to detect genomic differences between An.gambiae e and An.coluzzii.

Please insert a sentence about chromosomal forms of An.gambiae.

Methods
Please specified the method for collecting An. arabiensis as you already described for An.gambiae (e.g. indoor specimens, mouth aspirators, PSC collections).

Please insert a table with inversion polymorphism of chromosomal forms analyzed.

Please add the source of the An. quadriannulatus specimens you included in the phylogenetic analysis.

Results
Study design is well explained and results are given concisely.

Please add in Table 2 also the number of specimens you included for each species in the analysis.

Please add in Figure two an explanation of what “lineage” means for An. arabiensis specimens.

Please give results (also without table or figure) for each country separately.

Discussion
Discussion is very concise but deals with most major points of interest. We would just suggest to explain better the conclusion on possible introgression (the more plausible hypothesis) between taxa and to evaluate other possible explanations for the absence of fixed differences between species (e.g. absence for divergent selection, or evolutionary characeristic of mitogenomes).

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com