A Probabilistic proof of the breakdown of Besov regularity in L-shaped domains

Victoria Knopova and René L. Schilling

Abstract We provide a probabilistic approach in order to investigate the smoothness of the solution to the Poisson and Dirichlet problems in L-shaped domains. In particular, we obtain (probabilistic) integral representations (9), (12)–(14) for the solution. We also recover Grisvard’s classic result on the angle-dependent breakdown of the regularity of the solution measured in a Besov scale.

Key Words. Brownian Motion; Dirichlet Problem; Poisson Equation; Conformal Mapping; Stochastic Representation; Besov Regularity.

MSC 2010. 60J65; 35C15; 35J05; 35J25; 46E35.

1 Introduction

Let us consider the (homogeneous) Dirichlet problem

\[\Delta f = 0 \quad \text{in} \ G, \]
\[f|_{\partial G} = h \quad \text{on} \ \partial G, \]

where \(G \subset \mathbb{R}^d \) is a domain with Lipschitz boundary \(\partial G \) and \(\Delta \) denotes the Laplace operator, i.e. \(\Delta = \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} \). In order to show that there exists a solution to (1) which belongs to some subspace of \(L_p(G) \), say, to the Besov space \(B^{\sigma}_{pp}(G) \), \(\sigma > 0 \), it is necessary that \(h \) is an element of the trace space of \(B^{\sigma}_{pp}(G) \) on \(\partial G \); it is well known that the trace space is given by \(B_{pp}^{\sigma - 1/p}(\partial G) \), see Jerison & Kenig [11, Theorem 3.1],

Victoria Knopova
Institut für Mathematische Stochastik, Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany. e-mail: viktoriya.knopova@tu-dresden.de

René L. Schilling
Institut für Mathematische Stochastik, Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany. e-mail: rene.schilling@tu-dresden.de
a more general version can be found in Jonsson & Wallin [12, Chapter VII], and for domains with C^∞-boundary a good reference is Triebel [18, Sections 3.3.3–4]. The smoothness of the solution f, expressed by the parameter σ in $B^\sigma_{pp}(G)$, is, however, not only determined by the smoothness of h, but also by the geometry of G. It seems that Grisvard [10] is the first author to quantify this in the case when G is a non-convex polygon. Subsequently, partly due to its relevance in scientific computing, this problem attracted a lot of attention; for instance, it was studied by Jerison & Kenig [11], by Dahlke & DeVore [7] in connection with wavelet representations of Besov functions, by Mitrea & Mitrea [13] and Mitrea, Mitrea & Yan [14] in Hölder spaces, to mention but a few references.

In this note we use a probabilistic approach to the problem and we obtain a probabilistic interpretation in the special case when G is an L-shaped domain of the form $L := \mathbb{R}^2 \setminus \{(x, y) : x, y \geq 0\}$, see Figure 1, and in an L_2-setting. This is the

![Fig. 1 The L-shaped model domain $L \subset \mathbb{R}^2$.](image-url)

model problem for all non-convex domains with an obtuse interior angle. In this case the Besov space $B^\sigma_{22}(L)$ coincides with the Sobolev–Slobodetskij space $W^\sigma_2(L)$. In particular, we

• give a probabilistic interpretation of the solution to (1) with $G = L$;

• provide a different proof of the fact that the critical order of smoothness of f is $\sigma < \pi/3\pi = \frac{2}{3}$, i.e. even for $h \in C^0(\partial L)$ we may have

$$f \in W^{1,2^\sigma}_{2,\text{loc}}(L), \quad \sigma < \frac{2}{3}, \quad \text{and} \quad f \notin W^{1+\sigma}_{2}(L), \quad \sigma \geq \frac{2}{3}; \quad (2)$$

• apply the “breakdown of regularity” result to the Poisson (or inhomogeneous Dirichlet) problem.

It is clear that this result holds in a more general setting, if we replace the obtuse angle $3\pi/2$ by some $\theta \in (\pi, 2\pi)$.

Results of this type were proved for polygons and in a Hölder space setting by Mitrea & Mitrea [13]. Technically, our proof is close (but different) to that given in [13]—yet our starring idea is different. Dahlke & DeVore [7] proved this regularity result analytically using a wavelet basis for L_p-Besov spaces.
Problem (1) is closely related to the Poisson (or nonhomogeneous Dirichlet) problem
\[
\Delta F = g \quad \text{on } G,
\]
\[
F|_{\partial G} = 0 \quad \text{on } \partial G.
\]
(3)

If \(G \) is bounded and has a \(C^\infty \)-boundary, the problems (1) and (3) are equivalent. Indeed, in this case for every right-hand side \(g \in L_2(G) \) of (3) there exists a unique solution \(F \in W^{3/2}_2(G) \), see Triebel [18, Theorem 4.3.3]. Denote by \(N \) the Newtonian potential on \(\mathbb{R}^d \) and define \(w := g * N \); clearly, \(\Delta w = g \) on \(G \) and \(w \in W^{3/2}_2(G) \). Since the boundary is smooth, there is a continuous linear trace operator \(\text{Tr} : W^{3/2}_2(G) \to W^{3/2}_2(\partial G) \) as well as a continuous linear extension operator \(\text{Ex} : W^{3/2}_2(\partial G) \to W^{3/2}_2(G) \), such that \(\text{Tr} \circ \text{Ex} = \text{id} \), cf. Triebel [18]. Hence, the function \(f := w - F \) solves the inhomogeneous Dirichlet problem (1) with \(h = \text{Tr} w \) on \(\partial G \). On the other hand, let \(f \) be the (unique) solution to (1). Since there exists a continuous linear extension operator from \(W^{3/2}_2(\partial G) \) to \(W^{3/2}_2(G) \) given by \(\tilde{h} = \text{Ex} h \), we see that the function \(F := f - \tilde{h} \) satisfies (3) with \(g = \Delta \tilde{h} \).

If the boundary \(\partial G \) is Lipschitz the situation is different. It is known, see for example Jerison & Kenig [11, Theorem B]) that, in general, on a Lipschitz domain \(G \) and for \(g \in L_2(G) \) one can only expect that the solution \(F \) to (3) belongs to \(W^{3/2}_2(G) \); there are counterexamples of domains, for which \(F \) cannot be in \(W^{3/2}_2(G) \) for any \(\alpha > 3/2 \). Thus, the above procedure does not work in a straightforward way. However, by our strategy we can recover the negative result for this concrete domain, cf. Theorem 2: If \(g \in H_1(\mathbb{R}^2) \cap W^{1}_2(\mathbb{L}) \), then the solution \(F \) to (3) is not in \(W^{1+\sigma}_2(\mathbb{L}) \) for any \(\sigma \geq 2/3 \). Here \(H_1(\mathbb{R}^2) \subset L_1(\mathbb{R}^2) \) is the Hardy space, cf. Stein [17].

If \(G \) is unbounded, the solution to (1) might be not unique and, in general, it is only in the local space \(W^{2,\text{loc}}_2(G) \) even if \(\partial G \) is smooth, cf. Gilbarg & Trudinger [9, Chapter 8]. On the other hand, if the complement \(G^c \) is non-empty, if no component of \(G \) reduces to a single point, and if the boundary value \(h \) is bounded and continuous on \(\partial G \), then there exists a unique bounded solution to (1) given by the convolution with the Poisson kernel, see Port & Stone [16, Theorem IV.2.13].

A strong motivation for this type of results comes from numerical analysis and approximation theory, because the exact Besov smoothness of \(u \) is very important for computing \(u \) and the feasibility of adaptive computational schemes, see Dahlke & DeVore [7], Dahlke, Dahmen & DeVore [6], DeVore [8], Cohen, Dahmen & DeVore [5], Cohen [4]; an application to SPDEs is in Cioicka et. al. [2, 3]. More precisely—using the set-up and the notation of [5]—let \(\{ \psi_\lambda, \lambda \in \Lambda \} \) be a basis of wavelets on \(G \) and assume that the index set \(\Lambda \) is of the form \(\Lambda = \bigcup_{i \geq 0} \Lambda_i \) with (usually hierarchical) sets \(\Lambda_i \) of cardinality \(N_i \). By \(u_{\Lambda_i} \) we denote the Galerkin approximation of \(u \) in terms of the wavelets \(\{ \psi_\lambda \}_{\lambda \in \Lambda_i} \) (this amounts to solving a system of linear equations), and by \(e_{\Lambda_i}(u) := \| u - u_{\Lambda_i} \|_p \) the approximation error in this scheme. Then it is known, cf. [5, (4.2) and (2.35)], that
\[
u \in W^{\sigma \ell}_p(G) \implies e_{\Lambda_i}(u) \leq C N_i^{-\sigma/d}, \quad i \geq 1.
\]
(4)
There is also an adaptive algorithm for choosing the index sets \((\Lambda_t)_{t \geq 1}\). Starting with an initial set \(\Lambda_0\), this algorithm adaptively generates a sequence of nested sets \((\Lambda_t)_{t \geq 1}\): roughly speaking, in each iteration step we choose the next set \(\Lambda_{t+1}\) by partitioning the domain of those wavelets \(\psi_\lambda, \lambda \in \Lambda_t\) (i.e. selectively refining the approximation by considering the next generation of wavelets), whose coefficients \(u_\lambda\) make, in an appropriate sense, the largest contribution to the sum \(u = \sum_{\lambda \in \Lambda_t} u_\lambda \psi_\lambda\).

Notation. Most of our notation is standard. By \((r, \theta) \in (0, \infty) \times (0, 2\pi]\) we denote polar coordinates in \(\mathbb{R}^2\), and \(\mathbb{H}\) is the lower half-plane in \(\mathbb{R}^2\). We write \(f \approx g\) to say that \(cf(t) \leq g(t) \leq Cf(t)\) for all \(t\) and some fixed constants.

2 Setting and the main result

Let \(B = (B_t^x)_{t \geq 0}\) be a Brownian motion started at a point \(x \in G\). Suppose that there exists a conformal mapping \(\varphi : G \to \mathbb{H}\), where \(\mathbb{H} := \{(x_1, x_2) \in \mathbb{R}^2, x_2 \leq 0\}\) is the lower half-plane in \(\mathbb{R}^2\). Using the conformal invariance of Brownian motion, see e.g. Mörters & Peres [15, p. 202], we can describe the distribution of the Brownian motion inside \(G\) in terms of some Brownian motion \(W\) in \(\mathbb{H}\), which is much easier to handle. Conformal invariance of Brownian motion means that there exists a planar Brownian motion \(W = (W_t^y)_{t \geq 0}\) with starting point \(y \in \mathbb{H}\) such that, under the conformal map \(\varphi : G \to \mathbb{H}\) with boundary identification,

\[
(\varphi(B_t^x))_{0 \leq t \leq \tau_G} \quad \text{has the same law as} \quad (W_{\varphi(x)}^\xi(s))_{0 \leq s \leq \tau_{\mathbb{H}}}, \tag{5}
\]

the time-change \(\xi\) is given by \(\xi(t) := \int_0^t |\varphi'(B_s^x)|^2 \, ds\); in particular, \(\xi(\tau_G) = \tau_{\mathbb{H}}\), where \(\tau_G = \inf\{t > 0 : B_t^x \in \partial G\}\) and \(\tau_{\mathbb{H}} := \inf\{t > 0 : W_t^{\varphi(x)} \in \partial \mathbb{H}\}\) are the first exit times from \(G\) and \(\mathbb{H}\), respectively.

Let us recall some properties of a planar Brownian motion in \(\mathbb{H}\) killed upon exiting at the boundary \(\partial \mathbb{H} = \{(w_1, w_2) : w_2 = 0\}\). The distribution of the exit position \(W_{\tau_{\mathbb{H}}}^w\) has the transition probability density

\[
u \mapsto p_{\tau_{\mathbb{H}}}^w(\nu, u) = \frac{1}{\pi} \frac{|w_2|}{|\nu - w_1|^2 + w_2^2}, \quad \nu = (w_1, w_2) \in \mathbb{H}, \tag{6}
\]

cf. Bass [1, p. 91]. Recall that a random variable \(X\) with values in \(\mathbb{R}\) has a Cauchy distribution, \(X \sim C(m, b), m \in \mathbb{R}, b > 0\), if it has a transition probability density of the form

\[
p(u) = \frac{b}{\pi (u - m)^2 + b^2}, \quad u \in \mathbb{R};
\]

if \(X \sim C(m, b)\), then \(Z := (X - m)/b \sim C(0, 1)\). Thus, the probabilistic interpretation of \(W_{\tau_{\mathbb{H}}}^w\) is
Breakdown of Besov regularity in \(L\)-shaped domains

\[
W_{\tau G}^w \sim Z^w \sim C(w_1, |w_2|) \quad \text{or} \quad W_{\tau G}^w \sim \frac{Z - w_1}{|w_2|} \quad \text{where} \quad Z \sim C(0,1). \quad (7)
\]

This observation allows us to simplify the calculation of functionals \(\Theta\) of a Brownian motion \(B\) on \(G\), killed upon exiting from \(G\), in the following sense:

\[
E \Theta(B_{\tau G}^x) = E (\Theta \circ \varphi^{-1}) (\varphi(B_{\tau G}^x)) = E (\Theta \circ \varphi^{-1}) (W_{\tau G}^{\varphi(x)})
\]

\[
= E (\Theta \circ \varphi^{-1}) \left(\frac{Z - \varphi_1(x)}{|\varphi_2(x)|} \right). \quad (8)
\]

In particular, the formula (8) provides us with a probabilistic representation for the solution \(f\) to the Dirichlet problem (1):

\[
f(x) = E h(B_{\tau G}^x) = E (h \circ \varphi^{-1}) (W_{\tau G}^{\varphi(x)}). \quad (9)
\]

Remark 1. The formulae in (8) are very helpful for the numerical calculation of the values \(E \Theta(B_{\tau G}^x)\). In fact, in order to simulate \(\Theta(B_{\tau G}^x)\), it is enough to simulate the Cauchy distribution \(Z \sim C(0,1)\) and then evaluate (8) using the Monte Carlo method.

We will now consider the \(L\)-shaped domain \(\mathbb{L}\). It is easy to see that the conformal mapping of \(\mathbb{L}\) to \(\mathbb{H}\) is given by

\[
\varphi(z) = e^{i \frac{2\pi}{3} z^{2/3}} = r^{2/3} \exp \left(\frac{2i}{3} (\theta + \pi) \right) = \varphi_1(r, \theta) + i \varphi_2(r, \theta), \quad (10)
\]

cf. Figure 2, where \(\theta = \arg z \in (0, 2\pi]\).

Fig. 2 Conformal mapping from \(\mathbb{L}\) to \(\mathbb{H}\) and its behaviour at the boundaries.

The following lemma uses the conformal mapping \(\varphi: \mathbb{L} \to \mathbb{H}\) and the conformal invariance of Brownian motion to obtain the distribution of \(B_{\tau G}^{\varphi(x)}\).

Lemma 1. Let \(\mathbb{L}\) be an \(L\)-shaped domain as shown in Fig. 1. The exit position \(B_{\tau G}^x\) of Brownian motion from \(\mathbb{L}\) is a random variable on \(\partial \mathbb{L} = \{0\} \times [0, \infty) \cup [0, \infty) \times \{0\}\) which has the following probability distribution:
Theorem 1. Consider the (homogeneous) Dirichlet problem (1) with a boundary term \(f_0 \), given by (17), and let \(f \) denote the solution to (1).

a. If \(f_0 \in W_2^2(\mathbb{R}) \cap W_2^2(\mathbb{R}) \) satisfies

\[
\liminf_{\varepsilon \to 0} \int_{|x|>\varepsilon} f_0(x) \frac{dx}{x} \neq 0,
\]

then \(f \notin W_2^{1+\sigma}(\mathbb{L}) \), even \(f \notin W_2^{1+\sigma}_{\text{loc}}(\mathbb{L}) \), for any \(\sigma \geq 2/3 \).
b. If \(f_0 \in W^2_p(\mathbb{R}) \cap W^1_p(\mathbb{R}) \), where \(p > \max\{2, \frac{2}{2-3\sigma}\} \), then \(f \in W^{1+\sigma}_{2,\text{loc}}(\mathbb{L}) \) for all \(\sigma \in (0, 2/3) \).

Remark 2. By the Sobolev embedding theorem we have \(W^2_p(\mathbb{R}) \cap W^1_p(\mathbb{R}) \subset C_b(\mathbb{R}) \) and \(W^2_p(\mathbb{R}) \cap W^1_p(\mathbb{R}) \subset C_b(\mathbb{R}) \) if \(p > \max\{2, \frac{2}{2-3\sigma}\} \). Hence, the function \(f \) given by (14) is the unique bounded solution to (1).

The idea of the proof of Theorem 1 makes essential use of the results by Jerison & Kenig [11] combined with the observation that it is, in fact, enough to show the claim for \(\mathbb{L} := \mathbb{L} \cap B(0,1) \), where \(B(0,1) := \{ x \in \mathbb{R}^2 : |x| < 1 \} \).

Theorem 1 allows us to prove the negative result for the solution to the Poisson problem, which improves [11, Theorem B]. Recall that \(H_1(\mathbb{R}^2) \subset L_1(\mathbb{R}^2) \) is the usual Hardy space, cf. Stein [17].

Theorem 2. Consider the Poisson (inhomogeneous Dirichlet) problem (3) with right-hand side \(g \in H_1(\mathbb{R}^2) \cap W^1_2(\mathbb{L}) \) such that \(f_0(x) := ((\text{Tr}g * N) \circ \varphi^{-1})(x) \) satisfies (17), where \(N(x) := (2\pi)^{-1} \log|x| \) is the Newton kernel. Then the solution \(F \notin W^{1+\sigma}_{2,\text{loc}}(\mathbb{L}) \), even \(F \notin W^{1+\sigma}_{2,\text{loc}}(\mathbb{L}) \), for any \(\sigma \geq 2/3 \).

The proofs of Theorem 1 and 2 are deferred to the next section.

3 Proofs

Proof (Proof of Lemma 1). We calculate the characteristic function of \(B^x_\mathbb{L} \). As before, let \(y = (y_1, y_2) \), \(x = (x_1, x_2) \) and \(\varphi(x) = (\varphi_1(x), \varphi_2(x)) \). We have

\[
\mathbb{E}e^{i\xi \cdot B^x_\mathbb{L}} = \mathbb{E}e^{i\xi \cdot \varphi^{-1}(W^\varphi_{\mathbb{R}^2}^{(x)})}
\]

\[
= \int_{\mathbb{R}^2} e^{i\xi \varphi^{-1}(y_1,0)} \|W^\varphi_{\mathbb{R}^2}^{(x)} \| \, dy
\]

\[
= \frac{1}{\pi} \int_{\mathbb{R}} e^{i\xi \varphi^{-1}(y_1,0)} \left| \frac{\varphi_2(x)}{\varphi_1(x) - y_1^2 + |\varphi_2(x)|^2} \right| \, dy_1
\]

\[
= \frac{1}{\pi} \int_{-\infty}^{0} e^{-i\xi u} \left| \frac{\varphi_2(x)}{\varphi_1(x) - u^2 + |\varphi_2(x)|^2} \right| \, du
\]

\[
+ \frac{1}{\pi} \int_{0}^{\infty} e^{i\xi u} \left| \frac{\varphi_2(x)}{\varphi_1(x) - u^2 + |\varphi_2(x)|^2} \right| \, du. \quad \square
\]

For the proof of Theorem 1 we need some preparations. In order to keep the presentation self-contained, we quote the classical result by Jerison & Kenig [11, Theorem 4.1].

Theorem 3 (Jerison & Kenig). Let \(\sigma \in (0, 1) \), \(k \in \mathbb{N}_0 \) and \(p \in [1, \infty] \). For any function \(u \) which is harmonic on a bounded domain \(\Omega \), the following assertions are equivalent:

a. \(f \in B^{k+\sigma}_{pp}(\Omega) \):
b. \(\text{dist}(x, \partial \Omega)^{1-\sigma} \mid \nabla^k f \mid + \mid \nabla^k f \mid + |f| \in L_p(\Omega) \).

We will also need the following technical lemma. Recall that \(\hat{\mathbb{L}} = \mathbb{L} \cap B(0, 1) \).

Lemma 2. Suppose that \(f_0 \in W^p_2(\mathbb{R}) \) for some \(p > 2 \). Then \(f \in W^1_2(\hat{\mathbb{L}}) \).

Proof. Using the representation (16), the H"older inequality and a change of variables, we get

\[
\frac{3}{2\pi^2} \int_{\pi/2}^{\pi/2} \int_0^1 \frac{1}{|f(r, \theta)|^2} r \, dr \, d\theta = \frac{3}{2\pi^2} \int_{\pi/2}^{\pi/2} \int_0^1 \rho^2 \left[\left(\int_{\mathbb{R}} |f_0(w)|^p \, dw \right)^{1/p} \left(\int_{\mathbb{R}} \left(\frac{1}{\rho^2 + |\rho \sin \Phi_0|^2} \right)^q \, dw \right)^{1/q} \right] \, d\rho \, d\theta
\]

\[
\leq C_1 \int_{\pi/2}^{\pi/2} \int_0^1 \rho^2 \left[\left(\int_{\mathbb{R}} |f_0(v)|^p \, dv \right)^{1/p} \left(\int_{\mathbb{R}} \frac{1}{v^2 + 1} \, dv \right)^{2/q} \right] \, d\rho \, d\theta
\]

\[
\leq C_2 \int_{\pi/2}^{\pi/2} \int_0^1 \rho^2 |\rho \sin \Phi_0|^{-2+2/q} \left(\int_{\mathbb{R}} \frac{1}{v^2 + 1} \, dv \right)^{2/q} \, d\rho \, d\theta
\]

\[
= C_3 \int_{\pi/2}^{\pi/2} \int_0^1 \rho^2 |\rho \sin \Phi_0|^{-2+2/q} \, d\rho \, d\theta,
\]

where \(p^{-1} + q^{-1} = 1 \). Because of \(p > 2 \) we have \(-2+2/q > -1 \), hence \(q < 2 \). Note that the inequalities \(2x/\pi \leq \sin x \leq x \) for \(x \in [0, \pi/2] \), imply

\[
\int_{\pi/2}^{\pi/2} |\sin \Phi_0|^{-1+\epsilon} \, d\theta = \int_0^\pi |\sin \varphi|^{-1+\epsilon} \, d\varphi = 2 \int_0^{\pi/2} |\sin \varphi|^{-1+\epsilon} \, d\varphi < \infty.
\]

This shows that \(f \in L_2(\hat{\mathbb{L}}) \).

Recall that the partial derivatives of the polar coordinates are

\[
\frac{\partial}{\partial x_1} r = \cos \theta, \quad \frac{\partial}{\partial x_1} \theta = -\frac{\sin \theta}{r}, \quad \frac{\partial}{\partial x_1} \Phi_0 = \frac{2}{3} \frac{\partial}{\partial x_1} \theta = -\frac{2 \sin \theta}{3r}.
\]

(18)

Therefore, we have for \(\theta \in (\pi/2, 2\pi) \)

\[
\frac{\partial}{\partial x_1} f(r, \theta) = \frac{1}{\pi} \int_{\mathbb{R}} f'(r^{1/3} \cos \Phi_0 - vr^{2/3} \sin \Phi_0) \frac{1}{v^2 + 1} \times
\]

\[
\times \left[\frac{2\cos \theta}{3r^{1/3}} \left(\cos \Phi_0 - v \sin \Phi_0 \right) \right.
\]

\[
+ \frac{r^{2/3}}{3} \left(-\frac{2 \sin \theta}{3r} \right) \left(-v \cos \Phi_0 - \sin \Phi_0 \right) \, dv
\]

\[
= \frac{2}{3\pi r^{1/3}} \int_{\mathbb{R}} f'(r^{1/3} \cos \Phi_0 - vr^{2/3} \sin \Phi_0) \frac{1}{v^2 + 1} \times
\]

\[
\times \left[(\cos \Phi_0 - v \sin \Phi_0) \cos \theta + (v \cos \Phi_0 + \sin \Phi_0) \sin \theta \right] \, dv
\]

(19)
where
\[K(\theta, v) := \cos \omega_\theta - v \sin \omega_\theta, \quad (20) \]
and
\[\omega_\theta = \frac{1}{3} (2\pi - \theta). \quad (21) \]

Note that \(\Phi_{\pi/2} = \pi \) and \(\omega_{\pi/2} = \pi/2. \)

Let us show that the first partial derivatives of \(f \) belong to \(L_2(\hat{\mathbb{L}}). \) Because of the symmetry of \(\hat{\mathbb{L}}, \) it is enough to check this for \(\frac{\partial}{\partial x_1} f. \)

Using the estimate \(|K(\theta, v)| (1 + v^2)^{-1} \leq C(1 + |v|)^{-1}, \) a change of variables and the Hölder inequality, we get

\[
\int_0^1 \int_{\pi/2}^{2\pi} \left| \frac{\partial}{\partial x_1} f(r, \theta) \right|^2 r \, d\theta \, dr
= \int_0^1 \int_{\pi/2}^{2\pi} \left| \frac{2}{3\pi r^{1/3}} f_0 \left(r^{2/3} \cos \Phi_\theta - vr^{2/3} \sin \Phi_\theta \right) \frac{K(\theta, v)}{1 + v^2} \right|^2 r \, d\theta \, dr
= \frac{2}{3\pi^2} \int_0^1 \int_{\pi/2}^{2\pi} \rho \left| \int_{\mathbb{R}} f_0(r \cos \Phi_\theta - v \rho \sin \Phi_\theta) \frac{K(\theta, v)}{1 + v^2} \, dw \right|^2 d\theta \, d\rho
\leq C_1 \int_0^1 \int_{\pi/2}^{2\pi} \rho \left(\int_{\mathbb{R}} \left| \frac{f_0'(w)}{\rho \sin \Phi_\theta + |w - \rho \cos \Phi_\theta|} \right| \, dw \right)^2 d\theta \, d\rho
\leq C_2 \left(\int_{\mathbb{R}} |f_0'(w)|^p \, dw \right)^{2/p} \left(\int_{\mathbb{R}} \left| \frac{1}{1 + |w|} \right|^q \, dw \right)^{2/q} \times
\int_{\pi/2}^{2\pi} \int_0^1 \rho \left(|\sin \Phi_\theta|^{-1+1/q} \right)^2 d\rho \, d\theta
= C_3 \int_{\pi/2}^{2\pi} \int_0^1 |\sin \Phi_\theta|^{-2+2/q} \rho^{-1+2/q} d\rho \, d\theta < \infty;
\]
in the last line we use again that \(-2 + 2/q > -1.\)

Proof (Proof of Theorem 1). It is enough to consider the set \(\hat{\mathbb{L}}. \) We verify that condition b of Theorem 3 holds true. We check whether

\[
\text{dist}(0,.)^{1-\sigma} \left| \frac{\partial^2}{\partial x_1^2} f \right| + \left| \frac{\partial}{\partial x_1} f \right| + |f| \quad \text{is in } L_2(\hat{\mathbb{L}}) \text{ or not.}
\]

From Lemma 2 we already know that \(\left| \frac{\partial}{\partial x_1} f \right| + |f| \in L_2(\hat{\mathbb{L}}). \) Let us check when

\[
\text{dist}(0,.)^{1-\sigma} \left| \frac{\partial^2}{\partial x_1^2} f \right| \in L_2(\hat{\mathbb{L}}).
\]
We will only work out the term $\frac{\partial^2}{\partial x_1^2} f(r, \theta)$ since the calculations for $\frac{\partial^2}{\partial x_2^2} f(r, \theta)$ are similar. We have

$$\frac{\partial}{\partial x_1} K(\theta, v) = \frac{\sin \theta}{3r} (-v \cos \omega_0 - \sin \omega_0) =: \frac{\sin \theta}{3r} K^*(\theta, v),$$

where use that $\frac{\partial}{\partial x_1} \omega_0 = -\frac{1}{3} \frac{\partial}{\partial x_1} \theta = \frac{\sin \theta}{3r}$ and set

$$K^*(\theta, v) := -v \cos \omega_0 - \sin \omega_0. \quad (22)$$

Therefore, differentiating $\frac{\partial}{\partial x_1} f$—we use the representation (19)—with respect to x_1 gives

$$\frac{\partial^2}{\partial x_1^2} f(r, \theta) = -\frac{2 \cos \theta}{9 \pi r^{5/3}} \int_B f'_0 \left(r^{2/3} (\cos \Phi \theta - v \sin \Phi \theta) \right) \frac{K(\theta, v)}{1 + v^2} \, dv$$

$$+ \frac{4}{9 \pi r^{5/3}} \int_B f'_0 \left(r^{2/3} (\cos \Phi \theta - v \sin \Phi \theta) \right) \frac{K^2(\theta, v)}{1 + v^2} \, dv$$

$$+ \frac{2 \sin \theta}{9 \pi r^{5/3}} \int_B f'_0 \left(r^{2/3} (\cos \Phi \theta - v \sin \Phi \theta) \right) \frac{K^*(\theta, v)}{1 + v^2} \, dv.$$

Note that

$$\int_{\mathbb{L}} \text{dist}(x, \partial \mathbb{L})^{2-2\alpha} \left| \frac{\partial^2}{\partial x_1^2} f(x) \right|^2 \, dx$$

$$= \int_{0}^{1} \int_{\pi/2}^{2\pi} \text{dist}((r, \theta), \partial \mathbb{L})^{2-2\alpha} \left| \frac{\partial^2}{\partial x_1^2} f(r, \theta) \right|^2 r \, d\theta \, dr \quad (23)$$

Since only the values near the boundary $\Gamma := \partial \mathbb{L} \cap \partial \mathbb{L}$ determine the convergence of the integral, it is enough to check that

$$I = \int_{0}^{1} \int_{\pi/2}^{2\pi} \text{dist}((r, \theta), \Gamma)^{2-2\alpha} \left| \frac{\partial^2}{\partial x_1^2} f(r, \theta) \right|^2 r \, d\theta \, dr \quad (24)$$

is infinite if $\sigma \geq 2/3$ and finite if $\sigma < 2/3$.

We split \mathbb{L} into three parts. For $\delta > 0$ small enough we define, see Figure 3,

$$K_1 := \{(r, \theta) : 0 < r < 1, \frac{\pi}{2} + \delta < \theta < 2\pi - \delta\},$$

$$K_2 := \{(r, \theta) : 0 < r < 1, \frac{\pi}{2} \leq \theta < \frac{\pi}{2} + \delta\},$$

$$K_3 := \{(r, \theta) : 0 < r < 1, 2\pi - \delta < \theta \leq 2\pi\}.$$

Splitting the integral accordingly, we get

$$I = \left(\int_{K_1} + \int_{K_2} + \int_{K_3} \right) \text{dist}((r, \theta), \Gamma)^{2-2\alpha} \left| \frac{\partial^2}{\partial x_1^2} f(r, \theta) \right|^2 r \, d\theta \, dr;$$
in order to show that I is infinite if $\sigma \geq 2/3$, it is enough to see that the integral over K_1 is infinite. Noting that in K_1 we have $\text{dist}((r, \theta), \Gamma) \approx r$, we get

\[
\begin{align*}
\int_{K_1} \left| r^{1-\sigma} \frac{\partial^2 f(r, \theta)}{\partial r^2} \right|^2 r \, d\theta \, dr &= \int_{K_1} r \left| r^{1-\sigma} \frac{2}{9\pi r^{4/3}} \right|^2 \times \left| \int_{R} f_0' \left(r^{2/3} (\cos \Phi - v \sin \Phi) \right) \frac{K^*(\theta,v) \sin \theta - K(\theta,v) \cos \theta}{1+v^2} \, dv \right|^2 \times \int_{R} f_0'' \left(r^{2/3} (\cos \Phi - v \sin \Phi) \right) \frac{K^*(\theta,v) \sin \theta - K(\theta,v) \cos \theta}{1+v^2} \, dv \\
&= \frac{4}{81\pi^2} \int_{K_1} r^{1/3-2\sigma} \left| \int_{R} f_0' \left(r^{2/3} (\cos \Phi - v \sin \Phi) \right) \frac{K^*(\theta,v) \sin \theta - K(\theta,v) \cos \theta}{1+v^2} \, dv \right|^2 \, dr \, d\theta \\
&= \frac{4}{81\pi^2} \int_{K_1} r^{1/3-2\sigma} \left| J(r^{2/3}, \theta) + I(r^{2/3}, \theta) \right|^2 \, dr \, d\theta \\
&= \frac{2}{27\pi^2} \int_{K_1} \rho^{1-3\sigma} \left| J(\rho, \theta) + I(\rho, \theta) \right|^2 \, d\rho \, d\theta,
\end{align*}
\]

where we use the following shorthand notation
\[
K^{**}(\theta,v) := K^*(\theta,v) \sin \theta - K(\theta,v) \cos \theta = -v \sin(\theta - \omega_0) - \cos(\theta - \omega_0),
\]
\[
J(\rho, \theta) := \int_{R} f_0' \left(\rho (\cos \Phi - v \sin \Phi) \right) \frac{K^{**}(\theta,v)}{1+v^2} \, dv,
\]
\[
I(\rho, \theta) := 2\rho \int_{R} f_0'' \left(\rho (\cos \Phi - v \sin \Phi) \right) \frac{K^2(\theta,v)}{1+v^2} \, dv.
\]

Observe that $\theta - \omega_0 \in (0, 2\pi)$ for $\theta \in (\frac{\pi}{2}, 2\pi)$, and $\theta - \omega_0 \in (\frac{4\pi}{3}, 2\pi - \frac{4\pi}{3})$ whenever $\theta \in (\frac{\pi}{2} + \delta, 2\pi - \delta)$.
Without loss of generality we may assume that \(J(\rho, \theta) + I(\rho, \theta) \neq 0 \) on \(K_1 \). Let us show that \(\lim_{\rho \to 0} |J(\rho, \theta) + I(\rho, \theta)| = C(f_0, \theta) > 0 \). This guarantees that we can choose some \(K_{11} \subset K_1 \) such that

\[
|J(\rho, \theta) + I(\rho, \theta)| \geq C(f_0) > 0 \quad \text{on } K_{11}.
\]

Using the change of variables \(x = \rho \theta \) we get, using dominated convergence,

\[
I(\rho, \theta) = 2 \int_{\mathbb{R}} f_0''(\rho \cos \Phi_\theta - x \sin \Phi_\theta) \frac{(\rho \cos \omega_\theta - x \sin \omega_\theta)^2}{\rho^2 + x^2} \, dx
\]

\[
\xrightarrow{\rho \to 0} 2 \sin^2 \omega_\theta \int_{\mathbb{R}} f_0''(-x \sin \Phi_\theta) \, dx = \frac{2 \sin^2 \omega_\theta}{\sin \Phi_\theta} \int_{\mathbb{R}} f_0''(x) \, dx = 0,
\]

since we assume that \(f_0 \in W^1_2(\mathbb{R}) \).

For \(J(\rho, \theta) \) we have, using the same change of variables,

\[
J(\rho, \theta) = - \int_{\mathbb{R}} f_0'(\rho \cos \Phi_\theta - \rho \sin \Phi_\theta) \frac{\cos(\theta - \omega_\theta) + \rho \sin(\theta - \omega_\theta)}{1 + \rho^2} \, dv
\]

\[
= - \int_{\mathbb{R}} f_0'(\rho \cos \Phi_\theta - x \sin \Phi_\theta) \frac{\rho \cos(\theta - \omega_\theta) + x \sin(\theta - \omega_\theta)}{\rho^2 + x^2} \, dx
\]

\[
= - \left(\int_{|x| > \varepsilon} + \int_{|x| \leq \varepsilon} \right) \cdots \, dx.
\]

The first integral can be treated with the dominated convergence theorem because we have \(f_0' \in L_1(\mathbb{R}) \) and \(\rho(\rho^2 + x^2)^{-1} \leq x^{-2}, x(\rho^2 + x^2)^{-1} \leq x^{-1} \) are bounded for \(|x| > \varepsilon \). Therefore,

\[
\lim_{\rho \to 0} \left[- \int_{|x| > \varepsilon} \cdots \, dx \right] = - \sin(\theta - \omega_\theta) \int_{|x| > \varepsilon} \frac{f_0'(-x \sin \Phi_\theta)}{x} \, dx.
\]

Now we estimate the two parts of the second integral. For

\[
- \int_{|x| \leq \varepsilon} f_0'(\rho \cos \Phi_\theta - x \sin \Phi_\theta) \frac{\rho \cos(\theta - \omega_\theta)}{\rho^2 + x^2} \, dx
\]

we have \(\rho(\rho^2 + x^2)^{-1} \leq \varepsilon^{-1} \rho x(\rho^2 + x^2)^{-1} \leq \varepsilon^{-1} \), so this term tends to 0 by the dominated convergence theorem. For the second term in this integral we have using a change of variables and the Cauchy–Schwarz inequality,

\[
|\sin(\theta - \omega_\theta)| \cdot \left| \int_{|x| \leq \varepsilon} f_0'(\rho \cos \Phi_\theta - x \sin \Phi_\theta) \frac{x}{x^2 + \rho^2} \, dx \right|
\]

\[
\leq \left| \int_{|w| \leq \varepsilon} \left(f_0'(\rho \cos \Phi_\theta - w \sin \Phi_\theta) - f_0'(\rho \cos \Phi_\theta) \right) \frac{w}{\rho^2 + w^2} \, dw \right|
\]

\[
\leq \int_{|w| \leq \varepsilon} \int_{0}^{1} \left| f_0''(\rho \cos \Phi_\theta - rw \sin \Phi_\theta) \right| \, dr \, dw
\]
Altogether we have upon letting $\rho \to 0$ and then $\varepsilon \to 0$, that
\[
\lim_{\rho \to 0} I(\rho, \theta) = 0,
\]
(27)
\[
\liminf_{\rho \to 0} \liminf_{\varepsilon \to 0} J(\rho, \theta) = \sin(\omega_\theta - \theta) \liminf_{\varepsilon \to 0} \int_{|x|>\varepsilon} \frac{f_0'(x)}{x} \, dx.
\]
(28)
If the “lim inf” diverges, it is clear that (26) holds, if it converges but is still not equal to 0, we can choose K_{11} in such a way that $\sin(\omega_\theta - \theta) \neq 0$. Thus, the integral over K_1 blows up as $\int_0^1 \rho^{1-3\sigma} \, d\rho = \infty$ for any $\sigma \geq 2/3$.

To show the convergence result, we have to estimate I and J from above. Write
\[
J(\rho, \theta) = -\int_\mathbb{R} f_0'(\rho (\cos \Phi_\theta - v \sin \Phi_\theta)) \frac{v \sin(\theta - \omega_\theta)}{1 + v^2} \, dv
- \int_\mathbb{R} f_0'(\rho (\cos \Phi_\theta - v \sin \Phi_\theta)) \frac{\cos(\theta - \omega_\theta)}{1 + v^2} \, dv =: J_1(\rho, \theta) + J_2(\rho, \theta).
\]
Since $f_0 \in W^1_p(\mathbb{R})$, using the H"older inequality and a change of variables give
\[
|J_1(\rho, \theta)| \leq \left(\int_\mathbb{R} |f_0'(\rho (\cos \Phi_\theta - v \sin \Phi_\theta))|^p \, dv \right)^{\frac{1}{p}} \left(\int_\mathbb{R} \left(\frac{v}{1 + v^2} \right)^q \, dv \right)^{\frac{1}{q}}
\]
(29)
\[
\leq c |\rho \sin \Phi_\theta|^{-1/p}
\]
for all $\theta \in [\pi/2, 2\pi]$ and $\rho > 0$. An even simpler calculation yields
\[
|J_2(\rho, \theta)| \leq c |\rho \sin \Phi_\theta|^{-1/p}
\]
(30)
for all $\theta \in [\pi/2, 2\pi]$ and $\rho > 0$. Now we estimate $I(\rho, \theta)$. Note that for every $\theta \in [\pi/2, 2\pi]$ we have $K^2(\theta, v)/(1 + v^2) \leq C$. By a change of variables we get
\[
|I(\rho, \theta)| \leq \frac{C_1}{|\sin \Phi_\theta|} \int_\mathbb{R} |f_0''(w + \rho \cos \Phi_\theta)| \, dw \leq \frac{C_2}{|\sin \Phi_\theta|}
\]
(31)
for all $\theta \in [\pi/2, 2\pi]$ and $\rho > 0$. Note that for $\Phi_\theta \in [\pi/2 + \delta, 2\pi - \delta]$ it holds that $|\sin \Phi_\theta| > 0$. Thus, on K_1 we have
\[
|I(\rho, \theta) + J(\rho, \theta)| \leq C \rho^{-1/p}, \quad \theta \in [\pi/2 + \delta, 2\pi - \delta], \quad \rho > 0,
\]
(32)
implying
\[
\int_{K_1} \left| \frac{r^{1-\sigma}}{\rho \sin \theta} \frac{\partial^2}{\partial x_1^2} f(r, \theta) \right|^2 \, r \, d\theta \, dr \leq C \int_0^1 \rho^{1-3\sigma-2/p} \, d\rho.
\]
The last integral converges if $\sigma \in (0, 2/3)$ and $p > \frac{2}{3-\sigma}$.

In order to complete the proof of the convergence part, let us show that the integrals over K_2 and K_3 are convergent for all $\sigma \in (0, 1)$.

In the regions K_2 and K_3 we have $\text{dist}((r, \theta), \Gamma) \leq r|\cos \theta|$ and $\text{dist}((r, \theta), \Gamma) \leq r|\sin \theta|$, respectively. We will discuss only K_2 since K_3 can be treated in a similar way. We need to show that

$$
\int_{K_2} \left| r \cos \theta \right|^{1-\sigma} \frac{\partial^2}{\partial x_1^2} f(r, \theta) \right| r \ d\theta < \infty \quad \text{for all } \sigma \in (0, 1). \quad (33)
$$

From (29), (30) and (31) we derive that for all $(\rho, \theta) \in \hat{\Gamma}$

$$
|J(\rho, \theta) + I(\rho, \theta)| \leq C\rho^{-\frac{1}{2}} \left(|\sin \Phi_0|^{-1} + |\sin \Phi_0|^{-\frac{2}{3}} \right) \leq C'\rho^{-\frac{1}{2}} |\sin \Phi_0|^{-1}. \quad (34)
$$

Now we can use a calculation similar to (25) for K_1 to show that (33) is finite and, therefore, it is enough to show that

$$
\int_{\frac{\pi}{2}}^{\frac{\pi}{2} + \delta} \left(\frac{|\cos \theta|^{1-\sigma}}{\sin \Phi_0} \right)^2 \ d\theta < \infty. \quad (35)
$$

Observe that $\lim_{\theta \to \frac{\pi}{2}} \cos \frac{1}{3}(\pi + \theta)/\cos \theta = \frac{1}{3}$, implying

$$
\frac{|\cos \theta|^{1-\sigma}}{\sin \Phi_0} = \frac{|\cos \theta|^{1-\sigma}}{2\sin \frac{1}{3}(\pi + \theta) \cos \frac{1}{3}(\pi + \theta)} \sim |\cos \theta|^{-\sigma} \quad \text{as } \theta \to \frac{\pi}{2}.
$$

Therefore, it is sufficient to note that for any $\sigma \in (0, 1)$

$$
\int_{\frac{\pi}{2}}^{\frac{\pi}{2} + \delta} |\cos \theta|^{-2\sigma} \ d\theta \asymp \int_{0}^{1} \frac{dx}{(1-x^2)^\sigma} = \int_{0}^{1} \frac{dx}{(1-x)\sigma(1+x)^\sigma} < \infty.
$$

Summing up, we have shown that

$$
\text{dist}(0, \cdot)^{1-\sigma} \left. \frac{\partial^2}{\partial x_1^2} f \right| \in L_2(\hat{\Gamma}) \quad \text{resp. } \notin L_2(\hat{\Gamma}),
$$

according to $\sigma \in (0, 2/3)$ or $\sigma \in [2/3, 1)$.

Proof (Proof of Theorem 2). Let F be the solution to (3) on \mathbb{L} with source function g, and define $w = g * N$ for the Newtonian potential N on \mathbb{R}^2. As we have already mentioned in the introduction, $f := w - F$ is the solution to (1) on \mathbb{L} with the boundary condition $h := \text{Tr} w$ on ∂L. Note that under the condition $g \in H_1(\mathbb{R}^2) \cap W^2_2(\mathbb{L})$ we have $\Delta w = g$ (cf. Stein [17, Theorem III.3.3, p. 114]), which implies $w \in W^2_2(\mathbb{R}^2) \cap W^4_4(\mathbb{L})$. By the trace theorem we have $h \in W^2_2(\partial \mathbb{L}) \cap W^4_4(\partial \mathbb{L})$, which in terms of f_0 means $f_0 \in W^2_2(\mathbb{R}) \cap W^4_4(\mathbb{R})$. The explosion result of Theorem 1 requires $f_0 \in W^2_2(\mathbb{R}) \cap W^4_4(\mathbb{R})$ and (17). The latter is guaranteed by the assumption
on the trace in the statement of the theorem. Hence, $f \notin W^{1+\sigma}_{2,\text{loc}}(\mathbb{L})$, $\sigma \geq 2/3$. Since $w \in W^2_{2,\text{loc}}(\mathbb{L})$, this implies that $F \notin W^{1+\sigma}_{2,\text{loc}}(\mathbb{L})$, $\sigma \geq 2/3$. \hfill \Box

Acknowledgement

We thank S. Dahlke (Marburg) who pointed out the reference [11], N. Jacob (Swansea) for his suggestions on the representation of Sobolev–Slobodetskij spaces, and A. Bendikov (Wrocław) who told us about the papers [13], [14]. We are grateful to B. Böttcher for drawing the illustrations and commenting on the first draft of this paper. Financial support from NCN grant 2014/14/M/ST1/00600 (Wrocław) for V. Knopova is gratefully acknowledged.

References

1. Bass, R.: Probabilistic techniques in analysis. Springer, New York, 1995.
2. Cioica, P., Dahlke, S., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz domains. Studia Mathematica 207 (2011) 197–234.
3. Cioica, P., Dahlke, S., Döhring, N., Friedrich, U., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: On the convergence analysis of spatially adaptive Rothe methods. Foundations of Computational Mathematics 14 (2014) 863–912.
4. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam, 2003.
5. Cohen, A., Dahmen, W., DeVore, R.A.: Adaptive wavelet methods for elliptic operator equations: Convergence rates. Mathematics of Computation 70 (2001) 27–75.
6. Dahlke, S., Dahmen, W., DeVore, R.A.: Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Analysis and Its Applications 6 (1997) 237–283.
7. Dahlke, S., DeVore R.A.: Besov regularity for elliptic boundary value problems. Communications in Partial Differential Equations 22 (1997) 1–16.
8. DeVore, R.A.: Nonlinear Approximation. Acta Numerica 7 (1998) 51–150.
9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1998.
10. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston 1985.
11. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. Journal of Functional Analysis 130 (1995) 161–219.
12. Jonsson, A., Wallin, H: Function Spaces on Subsets of \mathbb{R}^n. Harwood Academic, New York, 1984.
13. Mitrea, D., Mitrea I.: On the Besov regularity of conformal maps and layer potentials on nonsmooth domains. Journal of Functional Analysis 201 (2003) 380–429.
14. Mitrea, D., Mitrea, M., Yan, L: Boundary value problems for the Laplacian in convex and semiconvex domains. Journal of Functional Analysis 258 (2010) 2507–2585.
15. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge, 2010.
16. Port, S., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978.
17. Stein, E.M.: Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (NJ) 1993.
18. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel, 1983.