Bifunctional sulfilimines enable synthesis of multiple N-heterocycles from alkenes

Qiang Cheng1, Zibo Bai1, Srija Tewari1,2 and Tobias Ritter1,2✉

Intramolecular cyclization of nitrogen-containing molecules onto pendant alkenes is an efficient strategy for the construction of N-heterocycles, which are of paramount importance in, for example, pharmaceuticals and materials. Similar intermolecular cyclization reactions, however, are scarcer for nitrogen building blocks, including N-centred radicals, and divergent and modular versions are not established. Here we report the use of sulfilimines as bifunctional N-radical precursors for cyclization reactions with alkenes to produce N-unprotected heterocycles in a single step through photoredox catalysis. Structurally diverse sulfilimines can be synthesized in a single step, and subsequently engage with alkenes to afford synthetically valuable five-, six- and seven-membered heterocycles. The broad and diverse scope is achievable by a radical-polar crossover annulation enabled by the bifunctional character of the reagents, which distinguishes itself from all other N-centred-radical-based reactions. The modular synthesis of the sulfilimines allows for larger structural diversity of N-heterocycle products than is currently achievable with other single cyclization methods.

Results and discussion

Our goal was to generate a stable reagent that could be transformed into an electrophilic NCR under conditions that would tolerate the presence and reactivity of a pendant nucleophile for subsequent ring closure. While, a priori, several NCR precursors could meet such a goal, one reason why such a compound class has not yet been disclosed may be the synthetic challenge to make these reagents due to undesired cross-reactivity of the pendant nucleophile or undesired reactivity of the nitrogen-activating group. For example, the chloride released upon NCR formation from N-chloroanion salts may outcompete a pendant hydroxyl group for addition. Here we report the use of sulfilimines, a substrate class that has previously been used in other transformations, to address this synthetic challenge. The bifunctional sulfilimine 1 was obtained directly from commercially available reagents in a reaction of aminoethanol and dibenzothiophene-S-oxide activated by triflic anhydride (Fig. 2a). Irradiation of a photoredox catalyst in the presence of sulfilimine 1 for ammonia)20, NCRs can function as reactive species for intramolecular hydrogen-atom transfer, for example to generate pyrrolidine derivatives, as in the Hofmann–Löffler–Freytag reaction. NCRs can also function as electrophilic radicals, adding to electron-rich π systems in alkenes or arenes to form alkyl or aryl amines. Synthetic applications of such reactivity have resulted in successful hydroamination, aminooxygenation, aminofluorination, carboamination and aminoazidation, all of which introduce two different functional groups to an alkene in a single step. Despite the advance and scope of difunctionalization reactions with NCRs, intermolecular cyclization reactions to furnish N-heterocycles are still challenging because most nitrogen-radical precursors contain sulfonyl or similar groups on the nitrogen to enhance the electrophilicity of the respective NCRs.

NCRs are important intermediates in C–N bond formation reactions. Due to the high bond dissociation energy of the N–H bond (107 kcal mol−1 for ammonia), NCRs can function as reactive species for intramolecular hydrogen-atom transfer, for example to generate pyrrolidine derivatives, as in the Hofmann–Löffler–Freytag reaction. NCRs can also function as electrophilic radicals, adding to electron-rich π systems in alkenes or arenes to form alkyl or aryl amines. Synthetic applications of such reactivity have resulted in successful hydroamination, aminooxygenation, aminofluorination, carboamination and aminoazidation, all of which introduce two different functional groups to an alkene in a single step. Despite the advance and scope of difunctionalization reactions with NCRs, intermolecular cyclization reactions to furnish N-heterocycles are still challenging because most nitrogen-radical precursors contain sulfonyl or similar groups on the nitrogen to enhance the electrophilicity of the respective NCRs.

1Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany. 2Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany. ✉e-mail: ritter@kofo.mpg.de
In this article, bifunctional sulfilimines that feature both nitrogen-radical and polar reactivity have been developed to react with alkenes, giving a divergent and modular approach to versatile N-heterocycles including morpholines, piperazines and oxazepanes (a), dihydroxazoles (b) and dihydroimidazoles (c). Nu, nucleophilic group; Het, heteroaryl.

Fig. 1 | Bifunctional sulfilimines for synthesis of various N-heterocycles. a–c, In this article, bifunctional sulfilimines that feature both nitrogen-radical and polar reactivity have been developed to react with alkenes, giving a divergent and modular approach to versatile N-heterocycles including morpholines, piperazines and oxazepanes (a), dihydroxazoles (b) and dihydroimidazoles (c). Nu, nucleophilic group; Het, heteroaryl.

the Bi(OTf)₃-coordinated sulfilimine 1 (A) exhibits a high reduction potential ($E_{\text{red}} = -0.4 \text{ V} \text{ versus Ag/AgCl}$, Supplementary Fig. 7), so that fast SET with the excited iridium photocatalyst ($E_{\text{red}}(\text{Ir}^{III}/\text{Ir}^{II}) = -1.28 \text{ V} \text{ versus saturated calomel electrode}$) can be observed, to form B (Fig. 2b). Bi(OTf)₃ was identified as optimal because Bronsted acids could result in cationic polymerization of olefins such as electron-rich styrenes (Supplementary Table 2). In addition, both Lewis and Bronsted acids could be responsible for rendering the amine radical electrophilic for polarity-matched addition to the electron-rich π system of the olefin. A stoichiometric amount of Bi(OTf)₃ is required due to the basicity of the products. A conceptual advantage of the sulfilimines over other NCR precursors is their ability to enable easy introduction of pendant nucleophilic functional groups on NCRs, and directly afford unprotected N–H nitrogen heterocycles in a single step without the need for covalent activating groups or a deprotection step. Upon addition to the π system, the oxidized photoredox catalyst can oxidize the resulting carbon radical C for subsequent intramolecular nucleophilic attack (D) of the pendant nucleophile and regeneration of the photoredox catalyst resting state (Fig. 2b).

Various bifunctional sulfilimine reagents can be synthesized in a single step (Tables 1 and 2). Primary amines including aminoalcohols, diamines and aminopyridines react to produce iminodibenzo thiophenes with pendant hydroxyl (3–6), amide (7, 8) or pyridyl groups (9, 10). The diversity of the suitable sulfilimines for heterocycle synthesis was extended by reaction of the parent iminodibenzothiophene (11) with acylating reagents, which gives access to other classes of sulfilimines, such as those derived from amides, pyrimidines and triazines from acid chlorides (12–15), chloropyrimidines (16) and chlorotriazines (17), respectively. All sulfilimines shown, with the exception of 6, are easily handled solids and are stable in ambient atmosphere without detectable decomposition for at least three months; while also stable, 6 was isolated as an oil.

Cyclization of a variety of sulfilimines with a variety of electron-rich olefins gives access to a large family of diverse, synthetically valuable heterocycles in a single step (Table 3 and Fig. 3). The products can be isolated without protecting groups on nitrogen, but in situ protection of nitrogen with a tert-butylxoycarbonyl (Boc) group is facile, if desired, as shown for 18. Styrene derivatives that are prone to cationic polymerization under acidic conditions such as 19 and 22 can selectively react with the bifunctional sulfilimine 1 to produce morpholines in 78% and 55% yield, respectively. Olefins with heteroaryl substituents, such as indoles (24), pyridines (25) and benzothiazepines (28), are well tolerated. The putative bismuth(III)-coordinated amine radicals undergo addition reactions chemoselectively to alkenes in the presence of electron-rich aranes (19), allylic hydrogens (23, 27, 30–33, 35) and even ether (DME) as solvent. Such functional groups are often reactive with other NCRs either via radical addition or via hydrogen-atom transfer processes. In addition to α-styrnes, 1,1-disubstituted alkenes (37) can also undergo cyclization with sulfilimine 1 to produce morpholine heterocycles with a quaternary centre, although for most other investigated alkyl-substituted alkenes that feature allylic hydrogen atoms, allylic amination was observed. For 1,2-disubstituted alkenes that bear a group that can stabilize a positive charge, high diastereoselectivity is observed for cyclization (26, 27), providing 2,3-disubstituted morpholines. Both trans- and cis-propenylbenzenes produce the same product with the same diastereoselectivity, which supports the proposed intermediacy of NCRs. High regioselectivity is also obtained in reactions with dienes, such as 34 and 35, as cyclization reaction only occurs at the terminal alkene of the diene, producing alkyl-substituted morpholines. When alkyl-substituted dienes are used, the thermodynamically more stable trans-olefin is obtained as major product (35). In the case of styrene-derived dienes (34), a known photocatalysed isomerization occurs to produce cis- and trans-styrenylmorpholines. Cyclic alkenes afford bicyclic and tricyclic morpholines. Highly diastereoselective formation of morpholine derivatives with fused rings is achieved when endocyclic olefins such as norbornene (29), 1-phenyl-1-cyclohexene (30) and indenes (31, 32) are used. Exocyclic olefins such as 7-methyl-4-methylenechromane (33) and camphene (37) are also suitable reaction partners, producing spirocyclic morpholines. These polycyclic heterocycles can be constructed selectively in a single step from the corresponding alkenes, and are not readily accessible via other synthetic methods. Olefins that would afford cations upon radical addition and oxidation that are not sufficiently stabilized, such as in α olefins and 1,2-disubstituted alkenes without stabilizing groups, such as aryl or vinyl substituent, cannot participate in the reaction
Fig. 2 | Synthesis of sulfilimine 1, reaction optimization and proposed mechanism of the cyclization reaction. a. The sulfilimine 1 was obtained from the reaction of aminoethanol and trifluor-acetyl-activated dibenzothiophene-S-oxide in a single step. The reaction optimization shows that both photocatalyst and acid additive are essential for the reactivity; *Yield determined from 1H NMR with CH2Br2 as an internal standard. **Isolated yield in parenthesis. DCM, dichloromethane; DME, 1,2-dimethoxyethane. b. A radical-polar-crossover annulation process was proposed. The acid additive plays a crucial role in activation of sulfilimine to generate bifunctional NCR as a key intermediate. DBT, dibenzothiophene. c. X-ray crystal structure of 1 (Supplementary Tables 7 and 8; hydrogen atoms are omitted for clarity). Selected bond distances and angles: s(1)–N(1), 1.591(2) Å; C(1)–s(1)–C(2), 110.8(2)°, C(3)–N(1)–C(2), 116.97(14)°.

Table 2 | Synthesis of bifunctional sulfilimines from dibenzothiophene-S-imine

| Reaction conditions: 1.0 equiv. of dibenzothiophene-S-imine (11), 2.0 equiv. of K2CO3 and 1.5 equiv. of acid chloride in DMF (0.1 M) at 25 °C for 3 h, or 2.0 equiv. of chloroazine in DMF (0.1 M) at 110 °C for 6 h.

(Supplementary Fig. 1), whereas styrene-like, 1,1-disubstituted and diene-based olefins participate successfully. The method can be used for late-stage diversification (38, 39). To further demonstrate the synthetic value of the method, we accomplished a concise synthesis of H1 receptor antagonist 41 (Fig. 3). The modular approach allows us to construct the key morpholine structure directly from alkene 40, which substantially increased the total yield and reduced the step count compared to the previously published procedure35. The reaction requires the use of a stoichiometric amount of dibenzothiophene heterocycle, which, however, can be recycled after successful cyclization; for example, 92% of dibenzothiophene was reisolated after formation of 2.

The modular approach and the accessibility of various bifunctional sulfilimines enables the synthesis of other types of N-heterocycles under the same reaction conditions by simply changing the substituents on the sulfilimines (Fig. 3). Disubstituted morpholines are obtained when sulfilimines such as 3 or 4 react with alkenes. Although low diastereoselectivity (2:1) was observed when the stereocentre is α to the hydrogen substituent, high diastereoselectivity (>20:1) is obtained when the stereocentre is α to the nitrogen substituent. Other sulfilimine reagents (5–8) enable the construction of oxazepanes (44, 45) and piperazines (46, 47) in synthetically useful yields. We subsequently explored the generality of our modular approach to N-heterocycles with sulfilimines derived from amines other than alkyl amines. Acyl-amidine-derived sulfilimines (12–14) can also function as bifunctional reagents, which undergo cyclization with alkenes under the same reaction conditions to produce dihydrooxazoles (50–52). An intriguing reactivity was discovered when using sulfilimine 15 as substrate, providing tetrahydrobenzofuran 53 exclusively in 89% yield instead of an N-heterocycle. A plausible rationale is that the generated enamine NCR reacts to the more stable carbon-centred radical, which is then involved in annulation with 1,1-diphenylethylene (Supplementary Fig. 13). The photocatalytic annulation strategy can also be applied to heteroaroyl-amidine-derived sulfilimines (9, 10, 16, 17), generating electrophilic arylation radicals that are reactive for cyclization with alkenes to form dihydroimidazole derivatives (48, 49, 54, 55). In the case of sulfilimine 17, the initially formed triazinium underwent hydrolysis under basic conditions to form triazinone 55. NCRs with alkyl, aryl and acyl substituents on nitrogen can be accessed via the
same photocatalytic method, which is difficult to achieve with other NCR precursors. The scope of heterocycles presented herein exceeds that of other reported single methods.

Preliminary mechanistic experiments are in agreement with the proposed strategy shown in Fig. 2b (Supplementary Figs. 2–12). A 1:1 mixture of sulfilimine 1 and Bi(OTf)₃ results in a new peak potential that is absent in both 1 and Bi(OTf)₃ alone, which we assign to the 1–Bi(OTf)₃ adduct A as observed in the cyclic voltammogram (Fig. 4a). The high reduction potential (Eₚ = −0.4 V versus Ag/AgCl) may be responsible for a fast SET from the excited iridium.
Table 3 | Scope of alkenes for synthesis of morpholine derivatives

R1	R2	DBT	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	Product	Yield (%)	%d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	18	66%b	56.57:1 Z:1
MeO	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	19	78%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	20	72%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	21	84%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	22	55%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	23	70%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	24	55%	56.57:1 Z:1
MeO	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	25	51%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	26	87%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	27	71%, 78%d	13:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	28	68%	56.57:1 Z:1
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	29	50%e,f	>20:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	30	45%	>20:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	31	69%	>20:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	32	74%	>20:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	33	45%	>20:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	34	53%	1:1 E:Z
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	35	71%	>20:1 E:Z
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	36	65%	>20:1 d.r.
Ph	Ph	NBOc	[Ir(dFppy)3] (2 mol%), 2 equiv. Bi(OTf)3	DME, 10 °C blue LED	37	63%	>20:1 d.r.

Reaction conditions: alkene (0.2 mmol), 1 (0.4 mmol), Bi(OTf)3 (0.4 mmol), [Ir(dFppy)3] (2 mol%) in DME (1 ml) at 10 °C under a 30 W blue light-emitting diode (LED) for 6 h. b All chiral products are obtained as racemic mixtures. c In situ Boc protection of the morpholine product after irradiation of the reaction mixture for 6 h by addition of 6 equiv. of Et3N and 3 equiv. of Boc2O. d (E)-Propenylbenzene is used. e (Z)-Propenylbenzene is used. f Alkene (0.8 mmol), 1 (0.2 mmol), Bi(OTf)3 (0.2 mmol). Base workup is not applied due to easier purification of these products in protonated form.
photocatalyst, while reduction of 1 by itself was not observed. The existence of adduct A is further substantiated by ultraviolet–visible spectroscopy through a new absorption maximum at 326 nm (Fig. 4b). Radical clock experiments with 2-vinylcyclopropylenzene and a 1,6-diene under optimized reaction conditions with sulfilmine 1 produce ring-opened product 56 and cyclization product 57, respectively, in agreement with NCRs (Fig. 4c).

Conclusion

Photocatalysed modular synthesis has enabled the construction of various N-heterocycles with different ring types, ring sizes and substituents on the skeleton in a single step by reaction of easily available bifunctional sulfilmines and alkenes. The scope of heterocycles provided here is broader than that of other reported single methods for N-heterocycle synthesis from olefins.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41557-022-00997-y.

Received: 12 October 2021; Accepted: 14 June 2022; Published online: 25 July 2022

References

1. Wang, Y., Zhang, W., Colandrea, V. J. & Jimenez, L. S. Reactivity and rearrangements of dialkyl- and diarylvinyllsulfonium salts with indole-2- and pyrrole-2-carboxaldehydes. Tetrahedron 55, 10659–10672 (1999).
2. Yamanaka, H., Yamane, Y. & Mukaiyama, T. A new method for the preparation of nitrogen-containing heterocycles using diphenylsulfonium triflates. Heterocycles 63, 2813–2826 (2004).
3. Yan, M., McGarrigle, E. M. & Aggarwall, V. K. An annulation reaction for the synthesis of morpholines, thiomorpholines, and piperazines from β-heteroatom amino compounds and vinyl sulfonium salts. Angew. Chem. Int. Ed. 47, 3784–3786 (2008).
4. Julia, F., Yan, I., Paulus, F. & Ritter, T. Vinylic thiahydantoin tetrafluoroborate: a practical and versatile vinylation reagent made from ethylene. J. Am. Chem. Soc. 143, 12992–12998 (2021).
5. Huang, H.-M., Bellotti, P., Ma, J., Dalton, T. & Glorius, F. Bifunctional reagents in organic synthesis. Angew. Chem. Int. Ed. 47, 3784–3786 (2008).
6. Vo, C.-V. T., Mikkutis, G. & Bode, J. W. SnAP reagents for the transformation of aldehydes into substituted thiomorpholines—an alternative to cross-coupling with saturated heterocycles. Angew. Chem. Int. Ed. 52, 1705–1708 (2013).
7. Tsuritani, T., Shinshiro, H. & Oshima, K. Radical [3+2] annulation of N-allyl-N-chlorosulfonylimide with alkenes via atom-transfer process. Org. Lett. 3, 2709–2711 (2001).
8. Yuan, W., Du, H., Zhao, B. & Shi, Y. A mild Cu(I)-catalyzed regioselective amination of arenes using alkyl amines. Org. Lett. 16, 1970–1973 (2014).
9. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed amidofluorination of unactivated alkenes. Angew. Chem. Int. Ed. 53, 11079–11083 (2014).
10. Lu, D.-F., Zhu, C.-L., Sears, J. D. & Xu, H. Iron(II)-catalyzed intermolecular aminooxylation of olefins through a catalytic N-centered radical cascade reaction. Nat. Commun. 11, 7528 (2020).
11. Zhang, R. & Studer, A. Amidal radicals by oxidation of α-amido-oxy acids: transition-metal-free amidofluorination of unactivated alkenes. Angew. Chem. Int. Ed. 57, 10707–10711 (2018).
12. Jiang, H. & Studer, A. Intermolecular radical carboamination of alkenes. Chem. Soc. Rev. 49, 1790–1811 (2020).
13. McAteer, R. C., Noten, E. A. & Stephenson, C. R. J. Arene dearomatization through a catalytic N-centered radical cascade reaction. Nat. Commun. 11, 7528 (2020).
14. Zhang, B. & Studer, A. Copper-catalyzed intermolecular amination of alkenes. Org. Lett. 16, 1970–1973 (2014).
15. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).
16. Griffiths, A. S. et al. Photoduced olefin diamination with alkylamines. Angew. Chem. Int. Ed. 59, 15021–15026 (2020).
17. Tian, X., Song, L. & Hashmi, A. S. K. α-Imino gold carbene intermediates from readily accessible sulfilmines: intermolecular access to structural diversity. Chem. Eur. J. 26, 3197–3204 (2020).
18. Teegaard, S., Rozen, R. I., Brimacombe, J. & Guglielmetti, K. A microreview of visible light mediated ruthenium and iridium catalyzed organic transformations. Org. Process Res. Dev. 20, 1156–1163 (2016).
19. Throssell, J. J., Sood, S. P., Szwarc, M. & Stannett, V. The instantaneous polymerization of styrene by trifluoroacetic acid. J. Am. Chem. Soc. 78, 1122–1125 (1956).
20. Ganley, J. M., Murray, P. B. & Knowles, R. R. Photocatalytic generation of amino radical cations for C–N bond formation. ACS Catal. 10, 11712–11738 (2020).
21. Svejstrup, T. D., Ruffoni, A., Juliá, F., Aubert, V. M. & Leonori, D. Synthesis of arylamines via aminium radicals. Angew. Chem. Int. Ed. 45, 14948–14952 (2017).
22. Cheng, Q., Chen, J., Liu, S. & Ritter, T. Allylic amination of alkenes with iminothioanilides to afford alkyl alylamines. J. Am. Chem. Soc. 142, 12787–12793 (2020).
23. Aoshima, S. & Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev. 109, 5245–5287 (2009).
24. Allen, L. I., Cabrera, P. I., Lee, C. Y., Sanford, M. S. N-Acetylpyrrolineamides as nitrogen radical precursors in the visible light photocatalyzed room temperature C–H amination of amines and heteroarenes. J. Am. Chem. Soc. 136, 5607–5610 (2014).
25. Ruffoni, A. et al. Practical and regioselective amination of amines using alkyl amines. Nat. Chem. 11, 426–433 (2019).
48. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. *Nature* **574**, 516–521 (2019).
49. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp² C–H bonds as latent nucleophiles. *Science* **352**, 1304–1308 (2016).
50. Choi, G., Zhu, Q., Miller, D., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. *Nature* **539**, 268–271 (2016).
51. Metternich, J. B. et al. Photocatalytic E→Z isomerization of polarized alkenes inspired by the visual cycle: mechanistic dichotomy and origin of selectivity. *J. Org. Chem.* **82**, 9955–9977 (2017).
52. Botta, M., Castiglioni, E., Di Fabio, R., Spinosa, R. & Togninelli, A. Spiro compounds useful as antagonists of the H1 receptor and their asymmetric preparation, pharmaceutical compositions and use in the treatment of sleep disorders. WO patent 2009016085 (2009).
53. Wu, F., Kaur, N., Alom, N. & Li, W. Chiral hypervalent iodine catalysis enables an unusual regiodivergent intermolecular olefin aminooxygenation. *JACS Au* **1**, 734–741 (2021).
54. Mumford, E. M., Hemric, B. N. & Denmark, S. E. Catalytic, enantioselective syn-oxyamination of alkenes. *J. Am. Chem. Soc.* **143**, 13408–13417 (2021).
55. Kärkäs, M. D. Photochemical generation of nitrogen-centered amidyl, hydrazonyl, and imidyl radicals: methodology developments and catalytic applications. *ACS Catal.* **7**, 4999–5022 (2017).
56. Jiang, H. & Studer, A. Chemistry with N-centered radicals generated by single-electron transfer-oxidation using photoredox catalysis. *CCS Chem.* **1**, 38–49 (2019).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022
Methods

General procedure for cyclization. Under a nitrogen atmosphere, to a 4 ml borosilicate vial equipped with a magnetic stir bar were added alkene (if solid) (0.200 mmol, 1.00 equiv.), sulfilimine (0.400 mmol, 2.00 equiv.), [Ir(dFppy)₃] (3.0 mg, 4.0 µmol, 2.0 mol%), Bi(OTf)₃ (262 mg, 0.400 mmol, 2.00 equiv.), DME (1 ml, c = 0.2 M), and alkene (if liquid) (0.200 mmol, 1.00 equiv.). The vial was sealed with a septum cap and irradiated for 6 h at 10 °C using a photoreactor equipped with a blue LED module (KT-Elektronik, '100 W Power LED blau 450 nm Aquarium', 450 nm, 30 W), cooled with two Peltier elements (TEC1-12706). Then, the reaction mixture was concentrated to dryness. The residue was dissolved in DCM (5 ml) and washed with saturated aqueous sodium carbonate solution (5 ml). The aqueous phase was extracted with DCM (2 × 5 ml). The organic phase was dried over Na₂SO₄, and filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH₂Cl₂/MeOH (50/1–10/1 v/v) to afford the cyclization product.

Note: The reaction is air sensitive. The Schlenk technique was used to avoid air. For simplicity, in our research, we have opted to execute the transformation for most compounds in a glovebox. Control experiments showed that yields were within the error of measurement if the reaction was carried out using a glovebox or the Schlenk technique.

Data availability
All the data generated or analysed during this study are included in this article and its Supplementary Information. Crystallographic data for the structure reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers 2101016 (1). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

Acknowledgements
We thank N. Haupt, D. Kampen, F. Kohler and D. Margold for mass spectrometry analysis, M. Leutzsch, M. Kochius, S. Tobegen, C. Wirtz and P. Philipps for NMR spectroscopy analysis, J. Rust for X-ray analysis and Y. Wang for the help with Stern–Volmer quenching experiments (all from MPI für Kohlenforschung). We thank B. Lansbergen, E. M. Alvarez, Y. Cai and F. Juliá (all from MPI für Kohlenforschung) for helpful discussions. We thank S. Lin (MPI für Kohlenforschung) for help with revision. We also thank the MPI für Kohlenforschung for funding. Q.C. acknowledges the Alexander von Humboldt Foundation for a Humboldt Research Fellowship.

Author contributions
Q.C. developed the chemistry and optimized the reaction conditions. Q.C., Z.B. and S.T. explored the substrate scope for cyclization. Q.C. and T.R. wrote the manuscript. T.R. directed the project.

Funding
Open access funding provided by Max Planck Society.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41557-022-00997-y.
Correspondence and requests for materials should be addressed to Tobias Ritter.

Peer review information Nature Chemistry thanks Jia-Rong Chen, A. Stephen K. Hashmi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.