Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Haematological parameters and coagulation in umbilical cord blood following COVID-19 infection in pregnancy

Claire A. Murphy a,b,c,⇑, Daniel P. O'Reilly b,c, Osasere Edebiri c,d, Luisa Weiss c, Sarah Sullivan c,e, Afif EL-Khuffash a,b, Emma Doyle f, Jennifer C. Donnelly c,h, Fergal D. Malone g,h, Wendy Ferguson a,b,i, Richard J. Drew j,k,l, John O'Loughlin m, Elaine Neary n,o, Patricia B. Maguire c, Barry Kevane c,e, Fionnuala NiAinle c,d,e, Naomi McCallion a,b

a Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
b Department of Neonatology, Rotunda Hospital, Dublin, Ireland
c Conway-SPHERE Research Group, Conway Institute, University College Dublin, Ireland
d School of Medicine, University College Dublin, Ireland
e Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
f Department of Pathology, Rotunda Hospital, Dublin, Ireland
g Department of Obstetrics and Gynaecology, Royal College of Surgeons in Ireland, Dublin, Ireland
h Department of Paediatric Infectious Diseases, Children's Health Ireland at Temple Street, Dublin, Ireland
i Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
j Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland
k Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
l Department of Laboratory Medicine, Rotunda Hospital, Dublin, Ireland
m Department of Neonatology, Liverpool Women's Hospital, Liverpool, United Kingdom
n Department of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom

Objective: The aim of this study was to evaluate infants, born to women with SARS-CoV-2 detected during pregnancy, for evidence of haematological abnormalities or hypercoagulability in umbilical cord blood.

Study design: This was a prospective observational case-control study of infants born to women who had SARS-CoV-2 RNA detected by PCR at any time during their pregnancy (n = 15). The study was carried out in a Tertiary University Maternity Hospital (8,500 deliveries/year) in Ireland. This study was approved by the Hospital Research Ethics Committee and written consent was obtained. Umbilical cord blood samples were collected at delivery, full blood count and Calibrated Automated Thrombography were performed. Demographics and clinical outcomes were recorded. Healthy term infants, previously recruited as controls to a larger study prior to the outbreak of COVID-19, were the historical control population (n = 10).

Results: Infants born to women with SARS-CoV-2 had similar growth parameters (birth weight 3600 g vs 3680 g, p = 0.83) and clinical outcomes, such as need for resuscitation at birth (2 (13.3%) vs 1 (10%), p = 1.0) and NICU admission (1 (6.7%) vs 2 (20%), p = 0.54). Haematological parameters (Haemoglobin, platelet, white cell and lymphocyte counts) in the COVID-19 group were all within normal neonatal reference ranges. Calibrated Automated Thrombography revealed no differences in any thrombin generation parameters (lag time (p = 0.92), endogenous thrombin potential (p = 0.24), peak thrombin (p = 0.44), time to peak thrombin (p = 0.94)) between the two groups.

Conclusion: In this prospective study including eligible cases in a very large population of approximately

Abbreviations: CAT, Calibrated automated thrombography; EDTA, Ethylenediaminetetraacetic acid; ETP, Endogenous thrombin potential; FBC, Full blood count; IQR, Interquartile range; PPP, platelet poor plasma; TTP, Time to peak thrombin; UCB, Umbilical cord blood.

⇑ Corresponding author at: Department of Neonatology, Rotunda Hospital, Dublin, Ireland.
E-mail address: claireamurphy@rcsi.com (C.A. Murphy).

https://doi.org/10.1016/j.ejogrb.2021.09.019
2215-1532/© 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Background

COVID-19, an illness caused by the SARS-CoV-2 virus, typically manifests as a viral pneumonia, but has also been characterised by a high incidence of thrombo-embolic complications [1]. Elevated markers of coagulation activation and endothelial dysfunction appear to be a hallmark of COVID-19, and persistent hypercoagulability has been reported for months following infection [2,3]. Children infected with SARS-CoV-2 have also demonstrated hypercoagulability, albeit without evidence of clinical thromboembolic complications [4]. Adult COVID-19 infection (including pregnant women) is commonly associated with lymphopenia, leukopenia and thrombocytopenia [5–7].

Women infected with SARS-CoV-2 during pregnancy usually experience mild-to-moderate disease [8]. However, pregnant women are at greater risk of severe COVID-19 illness [9].

Evidence suggests that the vertical transmission of COVID-19 is possible [10], although the mother to child transmission rate is low [11]. Neonatal COVID-19 infection is rare, and most infants are mildly affected [12]. However, there is growing concern about the effect of maternal SARS-CoV-2 infection on the placenta and developing fetus. Numerous studies have described an increased rate of preterm birth, low birth weight infants and neonatal unit admission following a COVID-19 infection during pregnancy [7,13]. It is unclear whether these findings are due to placental pathology or the increased incidence of preterm birth.

Pathological evidence of maternal and fetal vascular malperfusion and thrombosis of larger fetal vessels have been demonstrated in placentas of pregnancies affected by COVID-19 [14–18]. These findings occur in the absence of inflammatory changes or confirmed placental infection, suggesting the placental changes may be a result of a maternal systemic hypercoagulable or hyperinflammatory state following a COVID-19 infection.

Concerningly, there are reports of COVID-19 placentitis, resulting from direct placental COVID-19 infection. The features of COVID-19 placentitis include positive SARS-CoV-2 staining with chronic histiocytic intervillitis and necrosis of the syncytiotrophoblast [19,20]. In April 2021, reports of six stillbirths and one second trimester miscarriage caused by SARS-CoV-2 placentitis were reported in Ireland, a country with variant B.1.1.7 dominance [21].

Several viruses, including Human Immunodeficiency Virus and Cytomegalovirus, cause hypercoagulability and thrombotic complications [22–26]. Moreover, maternal infections with Cytomegalovirus, Parvovirus B-19 and Rubella are associated with haematological abnormalities including thrombocytopenia and anaemia in the fetus [27–29]. Placental insufficiency can independently cause fetal thrombocytopenia, neutropenia and polycythaemia [30,31]. We aimed to assess if maternal COVID-19 infection during pregnancy caused derangement of haematological parameters or increased thrombin generation in the fetal circulation, measured in umbilical cord blood (UCB) at birth, compared with controls without antenatal COVID-19 exposure.

Methods

Patient recruitment

This was a prospective observational case-control study carried out in a tertiary university maternity hospital and neonatal intensive care unit (8,500 deliveries/year). Women who had SARS-CoV-2 RNA detected at any time during pregnancy were eligible for recruitment. Women less than 18 years of age, those with a personal history of coagulation disorder, major fetal abnormality, those who did not speak English and those who could not be contacted were excluded. Women were contacted by phone about this study, prior to presentation to hospital for delivery and were provided with a Patient Information Leaflet. Ethical approval was granted by the Hospital Research Ethics Committee (REC-2020-0022) and written consent was obtained for each participant. All infants were delivered between January and March 2021.

A group of healthy full-term infants, with no major congenital anomalies or family history of coagulation disorders, recruited to a larger study prior to 1st March 2020 (before the COVID-19 outbreak in Ireland) were the historical control group (n = 10).

Maternal demographics, antenatal history, details of the COVID-19 infection and neonatal outcomes were recorded from the electronic patient record.

Sample collection

Following routine delayed cord clamping, a sample of umbilical cord blood was collected using a 10 ml syringe and a 21 gauge needle. Blood was collected in sodium citrate 3.2% (3 × 3mls) and ethylenediaminetetraacetic acid (EDTA) (1 × 2.5mls). All samples were manually checked for clot and excluded if detected.

Full blood count

A full blood count (FBC) was performed on the EDTA sample using the “CELL-DYN Sapphire Hematology Analyzer” (Abbott). Results were compared to local neonatal reference ranges.

Preparation of platelet poor plasma

UCB samples were transported directly to the laboratory and processed within one hour of collection. Platelet poor plasma (PPP) was prepared by double centrifugation of the citrated blood at 3000 RPM for six minutes. PPP was aliquoted and stored at −80 C.

Calibrated Automated Thrombography (CAT)

Calibrated Automated Thrombography (CAT) is a global coagulation assay which evaluates both the pro- and anti-coagulant pathways, and is used to evaluate thrombin generation [32]. CAT has been used extensively as a research tool to evaluate for both hypercoagulability [33–35] and hypocoagulability [36,37].
CAT was performed using the Fluoroskan Ascent (ThermoFisher Scientific, Waltham Massachusetts) plate reader and Thrombinscope BV (Stago, Asnieres sur Seine, France) software. All reagents were obtained from Thrombinscope BV. Frozen PPP was thawed in a water bath at 37 °C for 10 min. Briefly, 80 µL of PPP was incubated with 20 µL of “PPP reagent LOW” (contains 1 pM tissue factor and 4 µM phospholipid) or “Thrombin calibrator”. To initiate the reaction, 20 µL of FluCa (fluorogenic Z-Gly-Gly-Arg-AMC.HCl substrate and 100 mM CaCl2) was added to each well (final concentrations, Z-Gly-Gly-Arg-AMC.HCl, 0.42 mM and CaCl2, 16.67 mM). Thrombin generation was performed in duplicate over 60 min and the thrombin generation curve was analysed.

The CAT parameters include “lag time”, the time from the beginning of the experiment until 10 nM of thrombin is produced [38]. “Peak thrombin” indicates the maximum amount of thrombin produced and “time to peak thrombin” (TTP) represents the propagation phase of the coagulation cascade. The “endogenous thrombin potential” (ETP) represents the total amount of thrombin produced during the clotting process. A shortened lag time and increased peak thrombin/ETP suggest a hypercoagulable state.

Statistical analysis

Data was collected from both the COVID-19 and control groups and entered into an MS Excel spreadsheet. Descriptive analysis of continuous data included medians and interquartile ranges (25th-75th percentile) (IQR), and frequency (percentages) for categorical data. For some categorical data, the values were combined to ensure sufficient numbers available for analysis. Comparisons between the COVID-19 and control groups were performed using Fisher’s exact test for categorical variables and non-parametric Mann Whitney U test for continuous variables. Significance was assumed at two-sided p < 0.05. Stata (version 16.0) was used for statistical analysis and R (version 4.0.2) was used for graphical representation of the data.

Results

Clinical demographics

Recruitment began on 4th January 2021 and was completed on 6th March 2021. During this period, 1449 infants were delivered in this hospital (Fig. 1). The charts of 142 women with a SARS-CoV-2 diagnosis were screened. Thirty-three patients met inclusion criteria and were contacted about the study. Written consent was obtained from 23 patients and fifteen patients were ultimately recruited. The maternal demographics and details of the SARS-CoV-2 diagnosis are described in Table 1.

The maternal SARS-CoV-2 diagnosis occurred between September 2020 and February 2021 (12 occurred between December 2020 and February 2021). Fourteen participants (93%) were diagnosed on PCR testing in the community. All of the women had mild to moderate disease and none required hospitalisation for symptoms of COVID-19 and were managed conservatively. The neonatal outcomes are described in Table 2. All infants in the COVID-19 group were born at full term (37 – 42 weeks gestation). All infants were singletons, had an Apgar score greater than 7 at five minutes and no baby in either group was small for gestational age (<10th centile). As per hospital policy (and national recommendations) infants in the COVID-19 group roomed in with their mothers unless there was a clinical indication for admission to the NICU [39]. Breastfeeding was encouraged regardless of maternal COVID-19 status at delivery and 9 (60%) infants in the COVID-19 group received breast milk during their hospital stay. The median

![Fig. 1. Cohort flow diagram of the COVID-19 group (image created with BioRender.com).](image-url)
day of life at discharge was Day 4 in the COVID group, and Day 4.5 in the control group. No infant developed clinical evidence of haemorrhage or thrombosis and there were no neonatal deaths.

Haematological parameters

UCB full blood counts were available for 13 infants in the COVID group (insufficient sample = 1, not processed = 1). All had haematological parameters within the local normal neonatal reference ranges (Table 3).

Calibrated automated thrombography

CAT was performed in PPP from the COVID-19 group (n = 15) and the control group (n = 10). One patient in the COVID-19 group was excluded from CAT analysis due to an erroneous thrombogram, suggestive of a clotted sample. There was no difference between the COVID-19 group and control group in any thrombin generation parameter (Table 4). The ETP results are displayed in Fig. 2.

Table 1

Clinical outcome	COVID-19 N = 15	Controls N = 10	p-value
Maternal Demographics			
Maternal age (years) (IQR)	30 (28 – 35)	34.5 (34 – 37)	0.01**
BMI (kg/m2) (IQR)	23.8 (22.9 – 26.7)	26 (24.9 – 27.8)	0.24*
Caucasian (%)	14 (93.3)	9 (90)	1.0
Nulliparous (%)	10 (66.7)	2 (20)	0.04**
Any underlying medical diagnosis (%)	5 (33.3)	4 (40)	1.0
Tobacco use in pregnancy (%)	1 (6.7)	0 (0)	1.0
Antenatal History			
Gestation at booking (weeks) (IQR)	12.9 (12.3 – 13.3)	12.6 (12.1 – 13.7)	0.92*
Aspirin use in pregnancy (%)	0 (0)	2 (20)	0.15
Thrombocytopenia (% ever < 150 x 10^9/L)	1 (6.7)	1 (10)	1.0
Preeclampsia (%)	1 (6.7)	0 (0)	1.0
Gestational diabetes (%)	1 (6.7)	0 (0)	1.0
SARS-CoV-2 Diagnosis			
Gestation at SARS-CoV-2 diagnosis (weeks) (IQR)	34.7 (31.6 – 36.1)		
Trimester at time of diagnosis			
1st trimester	0 (0)		
2nd trimester	2 (13.3)		
3rd trimester	13 (86.7)		
Any symptoms of COVID-19 (%)	14 (93.3)		
Maternal hospitalisation with COVID-19 (%)	0 (0)		
Time from diagnosis to delivery (days) (IQR)	36 (21 – 58)		
Delivery within 10 days of diagnosis (%)	1 (6.7)		

*p < 0.05, **Mann Whitney U test, *Fisher's exact test.

Table 2

Clinical Outcome	COVID-19 N = 15	Control N = 10	p-value	
Onset of labour				
Spontaneous/Induced labour (%)	11 (73.3)	2 (20)	0.015**	
Pre-labour (%)	4 (26.7)	8 (80)		
Method of Delivery				
Spontaneous/operative vaginal delivery (%)	8 (53.3)	1 (10)	0.04**	
Caesarean section (%)	7 (46.7)	9 (90)		
Male (%)	10 (66.7)	6 (60)	1.0	
Gestational age (weeks) (IQR)	39.3 (38.9 – 40.3)	39.4 (39.1 – 39.7)	0.75*	
Birth weight (g) (IQR)	3600 (3270 – 4040)	3680 (3290 – 4120)	0.83*	
Chorioamnionitis (%)	1 (6.7)	0 (0)	1.0	
Need for resuscitation (%)	2 (13.3)	1 (10)	1.0	
Admission to NICU (%)	1 (6.7)	2 (20)	0.54*	
Congenital anomaly (%)	2 (13.3)	1 (10)	1.0	
Tested for SARS-CoV-2 (%)	0 (0)			

*p < 0.05, **Mann Whitney U test, *Fisher's exact test.

Table 3

Hematological parameters	Median values COVID-19 N = 15	Local neonatal reference ranges
Haemoglobin (g/L)	15.7 (14.7 – 16.4)	13.5 – 19.5
Haematocrit (L/L)	0.47 (0.44 – 0.51)	0.42 – 0.6
Platelet count (x 10^9/L)	260 (214 – 281)	150 – 450
White cell count (x 10^9/L)	16.5 (16.2 – 18.9)	9 - 30
Lymphocyte count (x 10^9/L)	5.62 (4.69 – 7.17)	2 – 11

Table 4

CAT Parameters of plasma thrombin generation in PPP in the COVID-19 group compared with controls; Median (IQR).	Median values COVID-19 N = 14	Median values Control N = 10	p-value
Lag Time (mins)	2.84 (2.67 – 3)	2.84 (2.67 – 3.33)	0.92*
Peak thrombin (nM)	136.7 (130.7 – 156.1)	133.9 (129.2 – 149.5)	0.44*
ETP (nM.min)	987.8 (869 – 1055.6)	861 (826.3 – 980)	0.24*
Time to peak (mins)	6.4 (6.0 – 7.0)	6.3 (5.7 – 7.3)	0.94*

*p < 0.05, **Mann Whitney U test, *Fisher's exact test.

![Fig. 2. Box plot of the Endogenous Thrombin Potential in controls versus those born to women with SARS-CoV-2 during pregnancy.](image)
In this prospective observational study, including eligible cases from a large population of approximately 1500 women, the neonatal clinical outcomes following a maternal COVID-19 infection were reassuring and similar to controls. The haematological parameters in UCB in the COVID-19 group were all within normal neonatal ranges; we did not identify any of the haematological abnormalities typically associated with COVID-19 infection in adults or placental insufficiency in the fetus [5,30,31]. Moreover, a maternal COVID-19 infection did not result in hypercoagulability in the fetal circulation, measured by CAT in UCB.

In this study, the neonatal outcomes differed from the adverse perinatal outcomes reported in the literature [7]. Infants in the COVID-19 group were born at full term, appropriately grown and none were small for gestational age (<10th centile). While two infants (13.3%) did require initial resuscitation, this was brief, and all infants had Apgar scores of ≥ 9 by five minutes. Approximately 10% of infants are expected to require some initial resuscitation at birth [40]. The incidence of admission to NICU (6.7%) did not exceed the control group (20%) or 2019 hospital incidence (15%) [41]. The congenital anomalies in the COVID-19 group were milder than previous reports of placental insufficiency in adults or placental insufficiency in the fetus [5,30,31]. Moreover, no hypercoagulability was identified in this group of infants exposed to COVID-19 during pregnancy.

Discussion

In this prospective observational study, including eligible cases from a large population of approximately 1500 women, the neonatal clinical outcomes following a maternal COVID-19 infection were reassuring and similar to controls. The haematological parameters in UCB in the COVID-19 group were all within normal neonatal ranges; we did not identify any of the haematological abnormalities typically associated with COVID-19 infection in adults or placental insufficiency in the fetus [5,30,31]. Moreover, a maternal COVID-19 infection did not result in hypercoagulability in the fetal circulation, measured by CAT in UCB.

In this study, the neonatal outcomes differed from the adverse perinatal outcomes reported in the literature [7]. Infants in the COVID-19 group were born at full term, appropriately grown and none were small for gestational age (<10th centile). While two infants (13.3%) did require initial resuscitation, this was brief, and all infants had Apgar scores of ≥ 9 by five minutes. Approximately 10% of infants are expected to require some initial resuscitation at birth [40]. The incidence of admission to NICU (6.7%) did not exceed the control group (20%) or 2019 hospital incidence (15%) [41]. The congenital anomalies in the COVID-19 group were milder than previous reports of placental insufficiency in adults or placental insufficiency in the fetus [5,30,31]. Moreover, no hypercoagulability was identified in this group of infants exposed to COVID-19 during pregnancy.

The absence of haematological abnormalities or hypercoagulability in the COVID-19 group. While COVID-19 infection causes hypercoagulability in adults [46], and there may be evidence of thrombosis on the maternal and fetal aspects of the placenta [14], this does not appear to result in hypercoagulability in the fetus. Placental histopathological analysis was not part of this study and routine SARS-CoV-2 testing was not performed in infants, in keeping with National Irish Guidelines [39]. FBC results were not available in the control group, as ethical approval at that time did not allow it. However, all FBC parameters in the COVID group were within the local neonatal reference ranges.

Conclusions

Infants born to women with SARS-CoV-2, in this prospective study, had normal growth and neonatal outcomes compared with healthy controls. There was no evidence of haematological abnormalities or evidence of hypercoagulability in UCB. This study provides some reassurance regarding the haematological outcomes of infants exposed to COVID-19 in utero.

Further research is required to investigate the adverse perinatal outcomes and pathological placental changes, particularly COVID-19 placentitis, seen in some pregnancies and the relative impact of different strains of SARS-CoV-2 (particularly the B.1.1.7. and the
emerging Delta variant) and the severity and timing of infection on the developing fetus.

Funding

This study was funded by a grant from the National Children’s Research Centre, Dublin, Ireland (D/19/7), a charitable organisation, and was also supported by a Science Foundation Ireland COVID-19 Rapid Response Award (20/COV/0157). The funding bodies were not involved in the study design or the decision to submit.

Declaration of Competing Interest

Prof. Fionnuala NíAinle has received research funding (paid to the University) from Bayer and Sanofi (unrelated to this study). The remaining authors report no conflicts of interest.

Acknowledgements

We would like to thank the families who participated in this research and the midwifery and obstetric staff in the Perinatal ward, Labour ward and Theatre, without whom this study would not have been possible. We would like to acknowledge the staff who have worked on the Rotunda Infection Control team and the COVID-19 helpline throughout the pandemic. The authors wish to acknowledge Kathleen Bennett in the RCSI Data Science Centre (DSC) for providing statistical advice and support. Finally, we would like to thank the staff in the Clinical Laboratory in the Rotunda hospital and Dr. Tully and Dr. Griffin in the Rotunda-RCSI Research Department for their assistance with this project.

References

[1] Di Minno A, Ambrosino P, Calcaterra I, Di Minno MND. COVID-19 and Venous Thromboembolism: A Meta-analysis of Literature Studies. Semin Thromb Hemost. 2020;46(07):763–71.

[2] Townsend L, Fogarty H, Dyer A, Martin-Loeches I, Bannan C, Nadarajan P, et al. Prolonged elevation of D-dimer levels is convervative COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064–70.

[3] Al-Sahaf H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489–500.

[4] Al-Chaffa M, Vagrecha S, Malik M, Levine C, Uster E, Aygun B, et al. Multisystem Inflammatory Syndrome in Children (MIS-C) and the Prothrombotic State: Coagulation Profiles and Rotational Thromboelastometry in a MIS-C Cohort. J Thromb Haemost. 2021.

[5] Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Linehan L, O'Donoghue K, Dineen S, White J, Higgins JR, Fitzgerald B. SARS-CoV-2 Placentitis: An uncommon complication of maternal COVID-19. Placenta. 2021;104:261–6.

[6] Covid Placentitis: Statement from the RCPI Faculty of Pathology and the Institute of Obstetricians and Gynaecologists [press release]. RCPI website, 13 April 2021.

[7] Banerjee M, Sim M, Myint T, Whiteheart SW, Wood JP. Antiretroviral Therapy Does Not Correct the Increased Thrombin Generation and Platelet Hyperreactivity Associated with HIV. Blood. 2010;114(Supplement 1):3659.

[8] Inacio C, Sillarexa V, Dalla V, Denninger A, Mesaritis K, van Vliet H, Thomassen MC, Bertina R, Rosendaal F, Sandset P-M, Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Mullins E, Hudak ML, Banerjee J, Getzlaff T, Townson J, Barnette K, et al. Rotunda Hospital Annual Report 2019. 2019.

[9] Textbook of Neonatal Resuscitation (NRP), 7th Ed. Weiner GM, Zaichkin J, editors.2016. 326 p.

[10] Tournier A, Waidh, Chaoaout A, Max J-P, Regnault V, Lecompte T, et al. Calibrated automated thrombography demonstrates hypercoagulability in patients with idiopathic pulmonary arterial hypertension. Thromb Res. 2010;126(6):418–23.

[11] Ruger I, Beguin S, Hemker C, Bordet J-C, Fleury R, Chatard B, et al. Thrombin-generating capacity in patients with von Willebrand’s disease. Haematologica. 2007;92(2):1639–46.

[12] Dargaud Y, Beguin S, Lienhart A, Al Dieri R, Trzezak C, Bordet J, et al. Evaluation of thrombin-generating capacity in plasma from patients with haemophilia A and B and Thromb Haemost. 2005;93(3):475–80.

[13] Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenrohr R, et al. Calibrated automated thrombography measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003;33(1):14–15.

[14] RCPI-IOG. COVID-19 infection: Guidance for Maternity Services (Version 4.0). RCPI-IOG. 2020 5th May 2020.

[15] Textbook of Neonatal Resuscitation (NRP), 7th Ed. Weiner GM, Zaichkin J, editors.2016. 326 p.
C.A. Murphy, D.P. O'Reilly, O. Edibir et al. European Journal of Obstetrics & Gynecology and Reproductive Biology 266 (2021) 59–105

[43] Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):53–60.

[44] Chen Y, Peng H, Wang L, Zhao Y, Zeng L, Gao H, et al. Infants Born to Mothers With a New Coronavirus (COVID-19). Frontiers. Pediatrics 2020;8. https://doi.org/10.3389/fped.2020.00104.

[45] Yang P, Wang X, Liu P, Wei C, He B, Zheng J, et al. Clinical characteristics and risk assessment of newborns born to mothers with COVID-19. J Clin Virol. 2020;127:104356. https://doi.org/10.1016/j.jcv.2020.104356.

[46] Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res 2020;194:101–15.

[47] Lamarca B. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia. Minerva Ginecol. 2012;64(4):309–20.

[48] Campello E, Spiezia L, Radu CM, Dhima S, Visentin S, Valle FD, et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res. 2015;136(2):427–31.

[49] Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45.

[50] Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax 2021;76(4):412–20.

[51] Delorme-Axford E, Sadowsky Y, Coyne CB. The Placenta as a Barrier to Viral Infections. Annual Review of Virology. 2014;1(1):133–46.

[52] Robbins JR, Bakardjieva M. Pathogens and the placental barrier. Curr Opin Microbiol. 2012;15(1):36–43.

[53] Pal S, Curley A, Stanworth SJ. Interpretation of clotting tests in the neonate. Arch Dis Child Fetal Neonatal Ed. 2015;100(3):F270–4.

[54] Carroll PD, Nankervis CA, Iams J, Kelleher K. Umbilical cord blood as a replacement source for admission complete blood count in premature infants. J Perinatol. 2012;32(2):97–102.

[55] Hansen A, Forbes P, Buck R. Potential substitution of cord blood for infant blood in the neonatal sepsis evaluation. Biol Neonate. 2005;88(1):12–8.

[56] Woodworth KR, Olsen EO, Neelam V, Lewis EL, Galang RR, Oduyebo T, et al. Birth and Infant Outcomes Following Laboratory-Confirmed SARS-CoV-2 Infection in Pregnancy — SET-NET, 16 Jurisdictions, March 29–October 14, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(44):1635–40.