INTRODUCTION

Developing countries depend on potatoes as a significant source of food and nutrition, which is why it represents one of the essential Andean crops for both agriculture and food for many rural families (Casas and Daniel, 2017). Currently, Peru is the largest potato producer in Latin America, potatoes being the fourth most important food crop globally (Zhang et al., 2016). Across the world, potato consumption has changed from fresh to industrial products with added value (Cerón and López, 2013), which generates residues like peel that do not add value to the production chain and are destined for animal feed, fertilizer, and biofuel production (Sandoval et al., 2015). There is high demand throughout the world for snacks made of native processed potatoes. In 2017, Peru recorded an increase of 19.4% in sales of native potatoes processed products (ADEX, 2016); due to their unique variety of shapes, color, flavors, and textures (Peña, 2017). Peruvian farmers have managed to preserve diversity over many years (Flores, 2017) with breeding programs to improve the nutritional value of the potato in other highlands environments (André et al., 2009).
Research has been carried out with potato peel extract showing its potent antioxidant activity is due to the presence of phenolic compounds such as chlorogenic acid, caffeic acid, and vanillin (Sukrasno and Kusumardiyan, 2014). It has been reported that the polyphenol content in native potatoes is four times higher than in the improved varieties (Morales et al., 2015). Rojas-Padilla and Vásquez-Villalobos (2016) reported for Huagalina peel (mg/ 100 g dry weight): 476.82, 76.50 and 11.52 for chlorogenic acid, caffeic acid and vanillin respectively; and less concentrations in the cooking water of the whole tuber (Rojas-Padilla et al., 2018).

Numerous studies have examined chlorogenic acid (CGA) biological properties (Tajik et al., 2017), such as antibacterial, antioxidant (Naveed et al., 2018), reducing inflammatory damage (Wang et al., 2020), and anticarcinogenic (Siswanto et al., 2017; Bender and Atalay, 2011). Likewise, preclinical and clinical studies have shown that CGA treatment has beneficial effects on colon cancer, breast tumors, lung cancer, and chronic myelogenous leukemia (Bandyopadhyay et al., 2004).

Due to the importance of CGA, studies have been made of different purification techniques, which offer a high percentage recovery of the final product (Dutra-Molino et al., 2014). The application of an aqueous two-phase system (ATPS) offers advantages such as low cost, short times, and easy recovery of the phase-forming components, which generate a harmless environment for biomolecules due to their low interfacial tension and high water content. (Benavides and Rito-Palomares, 2008). It does not represent a health risk, so it may be possible to use it on an industrial scale (Aydogan et al., 2010). This technique involves constructing extractions formed by two polymers, a polymer, a salt, an ionic liquid, a salt, or alcohol of low molecular weight, and salt mixed in a concentration limit, resulting in two immiscible phases (Iqbal et al., 2016).

Genetic algorithms (GA) based on the mechanism of natural selection and population genetics constitute a stochastic method to optimize an objective function with linear or non-linear restrictions and are considered very efficient in solving large, discrete, non-linear optimization problems. A clear advantage of using them over other methods is the possibility of finding a general optimal or near-optimal solution without the need to investigate all parameters. GA operates on a population of potential solutions, applying the principle of "survival of the fittest" to increase the chances of a better approximation to a solution. In each generation, a new set of approximations is created by selecting individual parameters according to their aptitude level in the problem domain, using operators from natural genetics (Marijayaprakash et al., 2015). This research work aimed to use ATPS to extract and purify CGA from potato peel, using disodium phosphate (DSP) and ethanol (EtOH) and optimize CGA extraction by applying GA to create an industrially feasible system.

MATERIALS AND METHODS

Raw material

Native potato (Solanum tuberosum L.) variety Huagalinia, cultivated in Las Colpas (2,110 m.a.s.l.), Chugay - Sánchez Carrión (La Libertad - Peru). Geolocation: 7 ° 46'56"S and 77 ° 52'04"W (76% RH).

Chemical reagents

Chlorogenic acid (CGA) standard (≥ 95%) was obtained from Sigma-Aldrich (USA); ethanol absolute (EtOH), ammonium sulfate (AS), and disodium phosphate (DSP) (≥99%); phosphoric acid, acetic acid, boric acid was procured from J.T. Baker; deionized water obtained from a GenPure purification system (TermoFisher Scientific) was used in this study.

Experimental methodology

Experimental design

A Central Composite Design Rotatable (CCDR) was applied with two (2) levels 2^2 + 2*2 + 3 central points. The concentration of ethanol (EtOH) and disodium phosphate (DSP) were selected as factors capable of affecting CGA extraction. Each factor was tested at two levels with limits: upper (+) and lower (-).

Response Surface Methods (RSM) in R x 64 4.0.3 and RSM package was used to identify the regions of interest that resulted in the best extraction levels, which allows more significant degrees of freedom in the ANOVA and the ability to detect curvature in any quadratic effects (Gutiérrez and Vara, 2012). It was based on a 95% confidence level with a p-value <0.05 for each treatment. Likewise, it provides adjusted R^2 and R^2 values and the level of significance of the experimental values with those from the statistical model obtained using RSM.

A sequence of the extraction and purification of CGA using an ATPS

Sample preparation

The native Huagalinia variety potatoes were taken to the Laboratory three days after being harvested. They were immediately sliced, freeze-dried (Labconco Free Zone 3.5 Plus), and then the peel was carefully separated from the pulp. The peel was ground, and the powder was stored at 4 °C for later analysis.

Construction of the phase diagram

A phase diagram was elaborated by turbidimetric titration using ammonium sulfate (AS) and disodium phosphate (DSP) to compare the system's best formation (Nemati-Knade et al., 2012). To five mL of ethanol, 0.5 mL of a 25% DSP solution was added and then mixed by shaking. It was repeated fifteen times until the data...
to construct the phase diagram was obtained.

Extraction of CGA from potato peel

The extraction method was adapted from Narváez-Cuenca et al. (2012). An extraction solution (ES) containing 70% ethanol was used. Potato peel powder (40 g) was placed in a volumetric flask of 100 mL and filled up with ES, mixed with a magnetic agitator for 60 seconds, and given a subsequent ultrasonic treatment (Ultrasonic Bath 3800) of 40 Hz for 60 minutes at 30 °C, then filtered and concentrated using a rotary evaporator (Heidolph WB2000) at 40 °C, 1200 rpm and 80 mbar for 40 minutes. The CGA residue was diluted in 100 mL of deionized water and stored at 4 °C.

Purification of CGA with ATPS

0.5 mL of diluted CGA solution was centrifuged with 5 mL of deionized water; EtOH and DSP were also added for ATPS optimization. Once the solution was obtained, 1.5 mL of Britton-Robinson buffer was added to adjust the pH to 3.4 at 25 °C, then mixed using a vortex mixer (VWR Analog Vortex Mixer) until the DSP completely dissolved (~10 min). It was then centrifuged at 3500 rpm for 30 minutes and then kept at 10 °C for 18 hours, resulting in two phases (Figure 1). The EtOH-rich phase was separated and diluted with 250 mL deionized water to analyze the CGA concentration using a spectrophotometer (UNICO UV-VIS 4802) (López-Méndez et al., 2014). The absorbance of CGA was measured at a wavelength of 326 nm.

The phase relationship \(R \) was established using equation (1):

\[
R = \frac{V_t}{V_b} \quad \ldots \ldots (1)
\]

\(V_t \) and \(V_b \) are the volumes of the phase rich in EtOH and DSP, respectively. The partition coefficient \(K \) was established using equation (2):

\[
K = \frac{C_t}{C_b} \quad \ldots \ldots (2)
\]

\(C_t \) and \(C_b \) are the CGA concentrations in the EtOH-rich phase and the salt-rich phase.

The extraction efficiency (% EE) of CGA in the EtOH-rich phase was determined using equation (3):

\[
\% \text{ EE} = \frac{K}{(K + 1 / R)} \times 100 \quad \ldots \ldots (3)
\]

Optimization

The CGA extraction efficiency values for EtOH and DSP concentrations were optimized through genetic algorithms (GA) applying GA package with the free software R x64 4.0.3; the statistical model obtained by RSM was used as an objective function, with the restrictions of the limits established by the coded stationary points of the response surface. A population of 50 individuals with 200 iterations, elitism of 2, a crossover probability of 0.8, and mutation probability of 0.1 was used.

RESULTS AND DISCUSSION

Selecting ethanol/salt system

In Figure 2, the result of the selection phase is presented, showing two areas delineated by a curve. The upper phase contained mainly supernatant rich in EtOH and CGA, while the lower stage contained an aqueous liquid rich in salt (Cienfuegos et al., 2017). Likewise, it shows disodium phosphate’s superposition on ammonium sulfate as the best ethanol/salt ratio for an ATPS (Souza et al., 2015). For this reason, for extraction of CGA in potato peels, ethanol was chosen as a phase former for having advantages such as lower cost, no toxicity, and moderate boiling point, making it suitable for large-scale industrial production (Cienfuegos et al., 2017). Tan et al. (2014) obtained up to 93.44% efficien-
cy of CGA extraction from ramie (Boehmeria nivea L. Gaud) leaf, using disodium phosphate and 89.91% ammonium sulfate; Yang et al. (2016) used an ATPS formed by ionic liquid extract and salt to extract and purify CGA from ramie leaves. The maximum efficiency of 96.18% was obtained at pH 3.0 and temperature 37 °C. Wang et al. (2017) have used eutectic solvent coupled with the aqueous two-phase system (ATPS) for the negative pressure cavitation extraction and enrichment of chlorogenic acid (CGA) from blueberry leaves. Huang et al. (2019) evaluated hexafluoroisopropanol to develop novel alcohol-salt ATPS, which was applied to extract and purify CGA from ramie leaves. They reported optimum conditions with pH 3.0. The extraction efficiency was 99.3% in the salt-rich phase.

Chong and Su-Ling (2021) evaluated the effects of recycling aqueous two-phase extraction of phenolic components from haskao (Lonicera caerulea) leaves. The total average efficiencies across the two recycling stages were 91.4% for EtOH/AS and 99.6% for EtOH/DSP. Research's novelty is that the extraction and purification of CGA from native potato (Solanum tuberosum L.) peel was done with ATPS, and this method is always reported by researchers to extract and purify CGA in leaves.

The phase diagram data are necessary for designing an ATPS and developing models that may predict the distribution of CGA (López-Méndez et al., 2014). Tan et al. (2014) showed that acid systems formed by EtOH/DSP (pH 3.9) provide a better CGA extraction. Cheng et al. (2017) found that the recovery improved significantly when the mass fractions of DSP increased from 12.70% to 19.97%, because the water was descedned to the lower phase, and a higher concentration of impurities be transferred from the upper to the lower stage; this salt has the sodium [Na+] cation, the two-phase formation capacity is determined by the anion's hydration capacity.

Some of the properties that directly affect the particles' partition (ethanol/salt) are temperature, pH, types of salts, concentration, and molecular weight (Mu et al., 2017). This research used pH 3.4, a value lower than those reported (3.52-3.82) by Wu et al. (2014) with DSP solution.

GA optimization of CGA extraction and purification using ATPS

Table 1 shows the relationship of EtOH and DSP on the extraction efficiency through an ATPS, obtaining the highest yield values at 94.93% and 93.18% in treatments 3 and 8, respectively, which contain the highest levels of DSP, and would indicate that when an increase in their concentration occurs, the efficiency of extraction of phenolic compounds increases (Soto-Fig. 2. Ethanol/salt phase diagram.

Cheng et al. (2017) found that the recovery improved significantly when the mass fractions of DSP increased from 12.70% to 19.97%, because the water was descended to the lower phase, and a higher concentration of impurities be transferred from the upper to the lower stage; this salt has the sodium [Na+] cation, the two-phase formation capacity is determined by the anion's hydration capacity.

Some of the properties that directly affect the particles' partition (ethanol/salt) are temperature, pH, types of salts, concentration, and molecular weight (Mu et al., 2017). This research used pH 3.4, a value lower than those reported (3.52-3.82) by Wu et al. (2014) with DSP solution.

Table 1. Experimental results of the partition coefficient (K) and extraction efficiency in ATPS.

Tests	Extraction conditions	Partition coefficient	Extraction efficiency	
X₁, EtOH (% w/w)	X₂, DSP (% w/w)	K	(% E.E.)	
1	-1 (16.5)	-1 (22.2)	2.98±0.04	82.26±0.10
2	1 (23.5)	-1 (22.2)	2.56±0.07	84.74±0.14
3	-1 (16.5)	1 (32.8)	6.73±0.09	94.93±0.08
4	1 (23.5)	1 (32.8)	2.02±0.07	83.86±0.05
5	-1.41 (15.05)	0 (27.5)	5.75±0.05	91.41±0.08
6	1.41 (24.95)	0 (27.5)	1.43±0.05	79.62±0.11
7	0 (20)	-1.41 (20)	4.09±0.04	86.81±0.12
8	0 (20)	1.41 (35)	4.38±0.11	93.48±0.09
9	0 (20)	0 (27.5)	5.22±0.05	93.36±0.09
10	0 (20)	0 (27.5)	5.21±0.07	93.04±0.10
11	0 (20)	0 (27.5)	5.18±0.11	92.76±0.11
Fig. 3. Extraction efficiency (% EE, represented by bars) and partition coefficient (K represented by circles and solid line).

García and Rosales-Castro, 2016). However, the opposite occurs when EtOH's mass fraction increases; the extraction efficiency spirals downwards.

The standard deviations (SD) of the partition coefficient (K) and % EE were minimal. Treatments 3, 8, 9 showed lower SD than 0.1%.

Figure 3 illustrates the concentration of CGA in ethanol-rich phase at different EtOH/DSP concentrations; the highest and lowest value of K is observed (7.6 and 1.42, respectively), which is defined as the quotient between the concentrations of the particle in the upper and lower phase of the system.

Higher temperatures are not favorable to induce ATPS's formation; CGA migrates mainly to the alcohol-rich phase (Malpiedi, 2014). As a consequence of the ionic interaction between the system and solutes, negative molecules will have a lower K (Cortés-Burgos, 2008).

Table 2 shows the coefficients that determine % E.E. molecules will have a lower K (Cortés-Burgos, 2008). While, positively charged ionic interaction between the system and solutes, negatively charged molecules have a higher Partition Coefficient (K) and % EE were minimal. Treatments 3, 8, 9 showed lower SD than 0.1%.

Table 2 shows the coefficients that determine % E.E. molecules will have a lower K (Cortés-Burgos, 2008). While, positively charged ionic interaction between the system and solutes, negatively charged molecules have a higher Partition Coefficient (K) and % EE were minimal. Treatments 3, 8, 9 showed lower SD than 0.1%.

Table 2. Coefficients of the independent variables and significance of the variables of the statistical model of the % EE level.

| Estimated value | Standard error | Value t | Pr (>|t|) |
|-----------------|----------------|---------|----------|
| (Intercept) | 93.05333 | 0.92612 | 100.4766 | 1.851e-09 *** |
| x1: EtOH | -3.15795 | 0.56713 | -5.5683 | 0.002572 ** |
| x2: DSP | 2.65285 | 0.56713 | 4.6777 | 0.005445 ** |
| EtOH: DSP | -3.38750 | 0.80204 | -4.2236 | 0.008299 ** |
| EtOH^2 | -4.11479 | 0.67502 | -6.0958 | 0.001720 ** |
| DSP^2 | -1.79979 | 0.67502 | -2.6663 | 0.044547 * |

Significance codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05; R^2: 0.956, adjusted R^2: 0.9121; F-statistic: 21.74, 5 d.f., p-value: 0.002099
coefficients and % E.E. of CGA in the EtOH - rich
phase were observed at 25 °C. The Huagalina variety
had a yield of 443.7 ± 0.062 mg CGA / 100 g peel dry
weight; 7% lower value than those reported by
Rojas-Padilla and Vásquez-Villalobos (2016) with
476.82. ± 63.58 mg CGA/100 g peel dry weight, using
the UPLC MS-MS method with the same variety of na-
tive potato. It shows that the model is adequate, pre-
dicting the expected optimization. Therefore, it is shown
that the peels of native potato Huagalina constitute an
excellent food source with antioxidant potential. This
extraction method has all the necessary conditions re-
quired to scale up production at an industrial level.

Conclusion

The extraction and purification conditions of chlorogen-
ic acid (CGA) in the peel of native Huagalina variety
potato (Solanum tuberosum L.) were optimized. EtOH /
DSP was selected as an aqueous two-phase for the

Fig. 4. Contour surface and the three-dimensional response % EE of CGA.

Fig. 5. Iterations to maximize % E.E. with genetic algorithms.

Fig. 5. Iterations to maximize % E.E. with genetic algorithms.

conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

1. ADEX. (2016). Asociación de Exportadores. Exportación
de papa peruana. http://andina.pe/agencia/noticia.aspx?id=668919
2. André, Ch., Oufr, M., Hoffmann, L., Hausman, J., Rogez,
H., Larondelle, Y., Evers, D. (2009). Influence of environ-
ment and genotype on polyphenol compounds and in vitro
antioxidant capacity of native Andean potatoes (Solanum
tuberosum L.). Journal of Food Composition and Analysis,
22, 517-524. https://doi.org/10.1016/j.jfca.2008.11.010
3. Aydoğan, Ö., Bayraktar, E., Mehmetoğlu, Ü., Kaeding, T.
and Zeng, A. P. (2010). Selection and optimization of an
aqueous two-phase system for the recovery of 1,3 pro-
panediol from fermentation broth. Engineering in Life
Sciences, 10(2), 121-129. https://doi.org/10.1002/elsc.20
900084
4. Bandyopadhyay, G., Biswas, T., Roy, K. C., Mandal, S.,
Mandal, C., Pal, B. C. and Konar, A. (2004). Chlorogenic
acid inhibits Bcr-Abl tyrosine kinase and triggers p38 mito-
gen-activated protein kinase-dependent apoptosis in
chronic myelogenous leukemia cells. Blood, 104(8), 2514-
2522. https://doi.org/10.1182/blood-2003-11-4065
5. Benavides, J. and Rito-Palomares, M. (2008). Aplicación
genérica de sistemas de dos fases acuosas polietilengli-
col-sal para el desarrollo de procesos de recuperación
primaria de compuestos biológicos. Revista Mexicana de
Ingeniería Química, 7(2), 99111. http://www.scielo.or
g.mx/scielo.php?script=sci_arttext&pid=S166527
38200800020002&lang=es&lng=es
6. Bender, O. and Alatay, A. (2021). Polyphenol chlorogenic
acid, antioxidant profile, and breast cancer. In Cancer (pp.
311-321). Academic Press. https://doi.org/10.1016/B978-0
-12-819547-5.00028-6
7. Casas, P. and Daniel, H. (2017). Análisis de las restriccio-
escas que influyen en la competitividad de la cadena pro-
ductiva de papas nativas (Solanum tuberosum) en la re-
gión Apurímac. [tesis de bachiller, Universidad Nacional
José María Arguedas]. Repositorio Institucional UNAJMA.
http://repositorio.unajma.edu.pe/handle/123456 789/317
8. Cerón, L. and López, I. (2013). Extracción y cuantificación
de compuestos con actividad antioxidante a partir de cárs-
caras de tres variedades de papa (Solanum tuberosum)
en el departamento de Nariño. [Tesis de grado, Universi-
dad de Nariño]. Sistema de Recursos digitales UN. http://
sered.udenar.edu.co/2454/
9. Cheng, Z., Song, H., Cao, X., Shen, Q., Han, D., Zhong,
F. and Yang, Y. (2017). Simultaneous extraction and puri-
ificación de polysaccharides from Gentiana scabra Bunge
por microwave-assisted ethanol-salt aqueous two-phase
system. Industrial Crops and Products, 102, 75-87. https://
doi.org/10.1016/j.indcrop.2017.03.029
10. Chon, K.Y. and Su-Ling, M. (2021). Effects of recycling on
the aqueous two-phase extraction of bioactives from
haskap leaves. Separation and Purification Technology,
255, 117755. https://doi.org/10.1016/j.sepprot.2020.11
775 5
11. Cienfuegos, N. E. C., Santos, P. L., García, A. R., Soares,
C. M. F., Lima, A. S. and Souza, R. L. (2017). Integrated
process for purification of capsaicin using aqueous two-
phase systems based on ethanol. Food and Bioproducts
Processing, 106, 1-10. https://doi.org/10.1016
6/j.fbp.2017 7.08.005
12. Cortés-Burgos, M. P. (2008). Predicción del coeficiente de
partición de proteínas en sistemas de dos fases acuosas
a través de la caracterización bioinfórmatica de su superfi-
cie. [tesis de grado, Universidad de Chile]. Repositorio
Institucional UC. http://repositorio.uuchile.cl/handle/225
0/1 03096
13. Dutra-Molino, J., Feitosa, V. A., de Lencastre-Novaes, L.
C., Santos-Ebinuma, V., Lopes A. M., Jozala, A. F., Mar-
qués D. de A. V., Pellegrini-Malpiedi, L. and Pessoa-
Júnior, A. (2014). Biomolecules extracted by ATPS: Prac-
tical examples. Revista Mexicana de Ingeniería Química,
13(2), 359-377. https://rir.conicet.gov.ar/handle/11 336/
12064
14. Flores, C. F. (2017). Análisis de los factores que inciden
en la baja productividad de 5 variedades de papa nativa
en la Provincia de Cotabambas, Región Apurímac [tesis
de grado, Universidad Nacional de San Agustín]. Reposi-
torio Institucional UNSA. http://repositorio.unsa.edu.pe/
handle/UNSA/2725
15. Gutiérrez, H. and Vará, R. (2012). Análisis y diseño de
experimentos, 2. a ed. Mc Graw Hill, México. https://
gc.scalahed.com/resources/files/r161r/w19537/w/analis
s_y_diseño_experimentos.pdf
16. Huang, A., Deng, W., Wu, D., Wu, S. and Xiao, Y. (2019).
Hexafluorisopropanol-salt aqueous two-phase system for
extraction and purification of chlorogenic acid from ramie
leaves. Journal of Chromatography A, 1597, 196-201.
https://doi.org/10.1016/j.chroma.2019.04.046
17. Izbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X.
and Hussain, H. I. (2016). Aqueous two-phase system
(ATPS): an overview and advances in its applications.
Biological procedures online, 18(1), 18. https://doi.or
g/10.1186/s12575-016-0048-8
18. López-Méndez, I. C., Ríos, G. and De Sarón, R. (2014).
Determinación del contenido de ácido clorogénico por
Espectroscopia UV-VIS en hojas secas y verdes de Ce-
cropia peltata (Guaruma) en árboles silvestres de 10,
15 y 20 M de altura en la reserva natural laguna de apoyo
[tesis de doctorado, Universidad Nacional Autónoma de
Nicaragua, Managua]. Repositorio UNAN. https://
repositorio.unan.edu.ni/5369/
19. Malpiedi, L. P., Netri, B. B., Abdala, D. S., de Alcântara
Pessôa-Filho, P. and Pessoa, A. (2014). Aqueous micellar
systems containing Triton X-114 and Pichia pastoris fer-
mencation supernatant: A novel alternative for single chain
-antibody fragment purification. Separation and Purifica-
tion Technology, 132, 295-301. https://doi.org/1 0.1016/j.
seppur.2014.05.045
20. Marijaya/prakash, A., Senthivelan, T. and Gnanadass, R.
(2015). Optimization of process parameters through fuzzy
logic and genetic algorithm–A case study in a process
industry. Applied Soft Computing, 30, 94-103. https://
doi.org/10.1016/j.asoc.2015.01.042
21. Morales, C. A. D., Medina, S. E. L., Salvatierra, C. R. Z.,
Barrantes, M. Y. R. and Viera, J. P. H. (2015). Cuantifica-
tión de los principios anticancerígenos de la variedad de
papa nativa de pulpa de color de la región La Libertad con
 el fin de procesamiento industrial. Pueblo Continente,
24 (2), 425-431. http://journal.upao.edu.pe/Pueblo oCinenten-
te/article/view/58
22. Mu, T., Sun, H., Zhang, M. and Wang, C. (2017). Sweet
potato processing technology. Academic Press, 7(1),357-
403. https://doi.org/10.1016/B978-0-12-812871-8.00001-5
23. Myers, R ., Montgomery, D., Anderson-Cook (2016)
Response Surface Methodology (Process and Product
Optimization Using Designed Experiments). Second Edi-
tion. John Wiley & Sons.
24. Narváez-Cuenca, C. E., Vincken, J. P. and Gruppen, H.
2012. Identification and quantification of (di)hydro-
xycinnamic acids and their conjugates in potato by
UHPLC–DAD–ESI–MSn. Food Chemistry, 730-738.
https://doi.org/10.1016/j.foodchem.2011.04.050
25. Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan,
G. J., Shumzaid, M., ... & XiaoHui, Z. (2018). Chlorogenic
acid, antioxidant profile, and breast cancer. Biomedical
Research. 97, 67-74. https://doi.org/10.1016/j.biopha.2017.10.064
26. Nemati-Knade, E., Skekaari, H. and Jafari, S. A. (2012).
Thermodynamic study of aqueous two-phase systems for
some aliphatic alcohols+ sodium thioulsate+ water. Fluid
Phase Equilibria, 321, 64-72. https://doi.org/10.1016/j.flu
d.2012.02.015
27. Peña, E. F. (2017). Extracción y caracterización fisicoquí-
mica y funcional de almidones de cinco variedades de
papas nativas procedentes de Ilave (Puno) [tesis de gra-
do, Universidad Agraria la Molina]. Repositorio Institucio-
34. Sukrasno, Y. and Kusmardiyan, S. (2014). Influence of Cooking Methods on Chlorogenic Acid Content of Potato Peels (Solanum tuberosum L.). *International Journal of Pharmacognosy and Phytochemical Research*, 6(3), 488-491. https://pdfs.semanticscholar.org/626a/eee324910923442a5aa2c1a7abe6ede32254.pdf

35. Tan, Z., Wang, C., Yi, Y., Wang, H., Li, M., Zhou, W. and Li, F. (2014). Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. *Separation and Purification Technology*, 132, 396-400. https://doi.org/10.1016/j.seppur.2014.05.048

36. Tajik, N., Tajik, M., Mack, I., and Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. *European Journal of Nutrition*, 56(7), 2215-2244. https://doi.org/10.1007/s00394-017-1379-1

37. Wang, D., Tian, L., Lv, H., Pang, Z., Li, .., Yao, Z., & Wang, S. (2020). Chlorogenic acid prevents acute myocardial infarction in rats by reducing inflammatory damage and oxidative stress. *Biomedicine & Pharmacotherapy*, 132, 11073. https://doi.org/10.1016/j.biopha.2020.11.07 73

38. Wang,T., Xu, W-J, Wang, S-X., Kou,P., Wang, P.,Wang; X-Q, Fu, Y-J.(2017). Integrated and sustainable separation of chlorogenic acid from blueberry leaves by deep eutectic solvents coupled with an aqueous two-phase system. *food and bioproducts processing*, 105, 205–214. https://doi.org/10.1016/j.fbp.2017.07.010

39. Wu, Y., Wang, Y., Zhang, W., Han, J., Liu, Y., Hu, Y. and Ni, L. (2014). Extraction and preliminary purification of anthocyanins from grape juice in an aqueous two-phase system. *Separation and Purification Technology*, 124, 170-178. https://doi.org/10.1016/j.seppur.2014.01.025

40. Yang, Z., Tan, Z., Li, F., Li, X. (2016). An effective method for the extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L.) leaves using acidic ionic liquids. *Industrial Crops and Products*, 89, 78–86. http://dx.doi.org/10.1016/j.indcrop.2016.05.006

41. Zhang, D. Q., Mu, T. H. and Sun, H. N. (2016). Domestic and abroad research progress of potato tuber-specific storage protein patatin. *Sci. Agric. Sin*, 49, 1746-1756. http://www.chinaagrisci.com/EN/10.3864/j.issn.0578-175 2.2