On the connection between mutually unbiased bases and orthogonal Latin squares

T Paterek¹, M Pawłowski², M Grassl¹ and Č Brukner³,⁴

¹ Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
² Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
³ Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
⁴ Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

E-mail: tomasz.paterek@nus.edu.sg

Received 31 March 2010
Accepted for publication 13 April 2010
Published 30 September 2010
Online at stacks.iop.org/PhysScr/T140/014031

Abstract
We offer a piece of evidence that the problems of finding the number of mutually unbiased bases (MUB) and mutually orthogonal Latin squares (MOLS) might not be equivalent. We study a particular procedure that has been shown to relate the two problems and generates complete sets of MUB in power-of-prime dimensions and three MUB in dimension six. For these cases, every square from an augmented set of MOLS has a corresponding MUB. We show that this no longer holds for certain composite dimensions.

PACS numbers: 03.65.Ta, 02.10.Ox

1. Introduction
Mutually unbiased bases (MUB) encapsulate the concept of complementarity in quantum formalism. Quantum observables associated with these bases are maximally complementary in the sense that given a system in an eigenstate of one observable, measurement outcomes of the other observables are completely random. Although the complementarity is a distinguishing feature of quantum mechanics, we still do not know what the total number of mutually maximally complementary observables for a general d-level system is.

It is known that for d being a power of a prime, there are d + 1 MUB [1, 2] and this number sets the upper bound for arbitrary d. For all other dimensions, it is a puzzle whether this bound is saturated. Solving this problem gives insights not only into physics, but also into mathematics, as the problem is linked with other unsolved mathematical problems [3, 4]. It was also noticed that it is similar in spirit to some combinatorial problems [5–8] and problems in finite geometry [9, 10]. In this paper, we shall briefly review and study one such connection [8].

The problem that is assumed to be connected to finding the number of MUB is that of finding the number of mutually orthogonal Latin squares (MOLS). The latter has a long history originating in the works by Euler [11] and more is known about it than about the number of MUB. For example, it is known that there are no more than three squares in the augmented set of MOLS of order six [12], but the question whether or not there are more than three MUB in dimension six is still open. The connection of [8] allows one to link every square in an augmented set of MOLS with an MUB for power-of-prime dimensions and dimension six. Here we show that this connection fails in composite dimensions for which MacNeish’s bound is not tight [13]. We study in detail the case of d = 10, being the smallest d with this property: while there are at least four squares in an augmented set of MOLS, one cannot find more than three MUB using the link of [8].

2. The connection
A Latin square of order d is an array of numbers [0, . . . , d − 1] where every row and every column contains each number exactly once. Two Latin squares, A = [Aij] and B = [Bij], are orthogonal if all ordered pairs (Aij, Bij) are distinct. There are at most d − 1 MOLS, and such a set of MOLS is considered complete. Complete sets of MOLS are known to
exist for d being a power of a prime. It is also known that there are no two MOLS of order six [12]. The existence of L MOLS is equivalent to the existence of a combinatorial design called a net with $L + 2$ rows [14]. The net design has the form of a table in which every row contains d^2 distinct numbers. They are grouped into d cells of d numbers each, in such a way that the numbers of any cell in a given row are distributed among all cells of any other row. The additional two rows of the net design correspond to orthogonal but not Latin squares, with the entries $A_{ij} = j$ and $A_{ij} = i$. The set of all $L + 2$ squares is referred to as the augmented set of MOLS. An algorithm to construct the design from a set of MOLS is given, e.g., in [8].

The MUB are constructed using the entries of any cell of the design. We write the entries in modulo d decomposition such that each of them is now represented by two integers: m and n, having values from the set $\{0, 1, \ldots, d - 1\}$. These integers are taken as exponents of the Weyl–Schwinger operators, $X^n_d Z^n_d$, defined as

$$
\hat{Z}_d |k\rangle = \eta_d^k |k\rangle, \quad \hat{X}_d |k\rangle = (|k + 1\rangle \bmod d),
$$

with $\eta_d = \exp(i2\pi/d)$ being a complex dth root of unity. The Weyl–Schwinger operators span a unitary operator basis which is orthogonal with respect to trace scalar product. If they can be partitioned into sets of d commuting operators (the only common element of each set being identity), the joint eigenbases of the commuting operators form MUB [15, 16]. It turns out that for prime d and for dimension six, the d operators having exponents from a single cell of the design commute and therefore define MUB [8]. For power-of-prime $d = p^r$, the operators having exponents from some cells do not commute. In order to obtain a complete set of $d + 1$ MUB, one needs to take advantage of the fact that d can be factored. In this case, every integer m and n from the net design can be represented by r digits having their values from the set $\{0, 1, \ldots, p - 1\}$, i.e., there is a mapping $m \mapsto (m_1, m_2, \ldots, m_r)$ and $n \mapsto (n_1, n_2, \ldots, n_r)$. We take these integers as exponents of tensor product operators $\hat{X}^{m_1}_d \hat{Z}^{n_1}_d \otimes \hat{X}^{m_2}_d \hat{Z}^{n_2}_d \otimes \cdots \otimes \hat{X}^{m_r}_d \hat{Z}^{n_r}_d$. For suitable decompositions, related to finite fields, we find that the operators having exponents from a single cell of the design again commute and hence define MUB.

3. MacNeish’s bound

MacNeish gave a lower bound on the number of MOLS [13]. If two squares of order a are orthogonal, $A \perp B$, and two squares of order b are orthogonal, $C \perp D$, then the squares obtained by a direct product, of order ab, are also orthogonal, $A \times C \perp B \times D$. This implies that the number of MOLS, L, of order $d = p_1^{r_1} \cdots p_s^{r_s}$, with p_i being prime factors of d, is at least $L \geq \min_i (p_i^{r_i} - 1)$, where $p_i^{r_i} - 1$ is the number of MOLS of order $p_i^{r_i}$.

A parallel result holds for MUB [16, 17], which we call the quantum MacNeish bound. If $|a\rangle$ and $|b\rangle$ are the states of two different MUB in dimension d_1, and $|c\rangle$ and $|d\rangle$ are the states of two MUB in dimension d_2, then the tensor product bases $|a\rangle \otimes |c\rangle$ and $|b\rangle \otimes |d\rangle$ form MUB in dimension $d_1 d_2$. Thus, for $d = p_1^{r_1} \cdots p_s^{r_s}$ there are at least $\min_i (p_i^{r_i} + 1)$ MUB.

Our motivation to study dimension ten comes from the fact that it is the simplest case in which MacNeish’s bound is not tight. There are at least two MOLS of order ten, which is larger than MacNeish’s bound of one. If the connection established in [8] holds generally, we shall correspondingly expect the quantum MacNeish bound not to be tight for $d = 10$. It is already known that the quantum bound is not tight in general, but the smallest case for which it was proven is $d = 26^2 = 676$ [7].

4. Ten dimensions

The two MOLS of order ten read [18]

$$
\begin{align*}
0 & 1 2 3 4 5 6 7 8 9 \\
1 & 2 6 5 8 0 9 3 4 7 \\
2 & 9 4 0 5 7 3 8 6 1 \\
3 & 4 9 7 6 8 5 1 0 2 \\
4 & 3 7 8 1 6 0 2 9 5 \\
5 & 8 3 6 2 9 7 0 1 4 \\
6 & 5 1 9 7 3 8 4 2 0 \\
7 & 0 5 2 9 1 4 6 3 8 \\
8 & 7 0 4 3 2 1 9 5 6 \\
9 & 6 8 1 0 4 2 5 7 3
\end{align*}
$$

Using the algorithm of [8], the representative four cells of the net design read

$$
\begin{array}{ccccccccccc}
00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 \\
00 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
00 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 \\
00 & 12 & 24 & 36 & 48 & 50 & 62 & 74 & 86 & 98
\end{array}
$$

where we present pairs of numbers mn. Writing the pairs as exponents of operators $\hat{X}^{m}_{10} \hat{Z}^{n}_{10}$, the first row gives ten commuting operators \hat{Z}_{10} and therefore defines the eigenbasis of \hat{Z}_{10}. Similarly, the second row gives the eigenbasis of \hat{X}_{10} and the third row provides the eigenbasis of $\hat{X}_{10} \hat{Z}_{10}$. However, the operators corresponding to the fourth row do not commute, e.g., $[X^{10}_{10} Z^{10}_{10}, X^{10}_{10} Z^{10}_{10}] \neq 0$, and in this way we do not improve upon the quantum MacNeish bound, which is three for $d = 10$.

Similar to the case of d being a power of a prime, one may ask if there is a decomposition of m and n into pairs $m_1 m_2$ and $n_1 n_2$ (with $m_1, n_1 \in \{0, 1\}$ and $m_2, n_2 \in \{0, 1\}$).
\[\{0, 1, 2, 3, 4\}, \] respectively, such that the operators \(\hat{X}_2 \hat{Z}_2^{d_2} \), having their exponents from the corresponding entries of the rows of (1), commute. However, contrary to the case of power-of-prime \(d \), for \(d = d_1 d_2 \) with coprime factors, the problem of finding commuting operators \(\hat{X}_2^{d_2} \hat{Z}_{d_1} \otimes \hat{X}_{d_2} \hat{Z}_{d_2} \) is equivalent to the problem of finding commuting operators \(\hat{X}_2^{d_2} \hat{Z}_{d_1} \). This is a consequence of the lemma in the appendix, which states that the tensor product operators and the operators in \(d \) dimensions are related by a permutation.

We checked, by grouping the commuting operators \(\hat{X}_2^{10} \hat{Z}^{10}_{10} \) that their eigenbases lead to at most three MUB. Similarly, we verified for \(d = 35 \) that there are at most six MUB formed by the eigenbases of \(\hat{X}_{35}^{5} \hat{Z}_{35}^{5} \) [19]. These are independent proofs of special cases of the result of Aschbacher et al [20]. In particular, they showed that the eigenbases of the Weyl–Schwinger operators do not lead to more MUB than given by the quantum MacNeish bound. Therefore, for all \(d \) in which MacNeish’s bound on the number of MOLS is not tight, the connection of [8] fails to relate all the squares with MUB.

5. Conclusions

We presented some evidence that the physical problem of the number of MUB might not be equivalent to the mathematical problem of the number of MOLS. The proof of this statement is still an open question.

Acknowledgments

This work is supported by the National Research Foundation and Ministry of Education in Singapore, and by the European Commission, project QAP (no. 015848). CB acknowledges supports from the Austrian Science Foundation FWF within project no. P19570-N16, SFB and CoQuS no. W1210-N16. The collaboration is a part of an ÖAD/MNiSW program.

Appendix

Lemma. If \(d = d_1 d_2 \) with \(\gcd(d_1, d_2) = 1 \), there exists a permutation matrix \(\tilde{T} \) such that

\[\tilde{T} \hat{X}_d \tilde{T}^{-1} = \hat{X}_{d_1} \otimes \hat{X}_{d_2} \quad \text{and} \quad \tilde{T} \hat{Z}_d \tilde{T}^{-1} = \hat{Z}_{d_1} \otimes \hat{Z}_{d_2}. \]

Proof. Define the permutation\(^6\) matrix \(\tilde{T} \) by

\[\tilde{T}|j\rangle = (j \mod d_1) d_2 + j \mod d_2 \]

\[\equiv |j \mod d_1| j \mod d_2 \equiv |j_1| |j_2|. \]

Hence we have

\[\tilde{T} \hat{X}_d \tilde{T}^{-1} = \sum_{j=0}^{d-1} \tilde{T}|j+1\rangle \mod d \langle j| \tilde{T}^{-1} \]

\[= \sum_{j=0}^{d_1-1} |(j_1 + 1) \mod d_1 \rangle \langle j_1| \]

\[\otimes \sum_{j=0}^{d_2-1} |(j_2 + 1) \mod d_2 \rangle \langle j_2|. \]

\[= \hat{X}_{d_1} \otimes \hat{X}_{d_2}, \]

and

\[\tilde{T} \hat{Z}_d \tilde{T}^{-1} = \sum_{j=0}^{d-1} \tilde{T}|j+1\rangle \mod d \langle j| \tilde{T}^{-1} \]

\[= \sum_{j=0}^{d_1-1} \eta_{d_1}^{d_2 j} |j_1| \langle j_1| \otimes |j_2| \langle j_2| \]

\[= \sum_{j_1=0}^{d_2-1} \eta_{d_1}^{d_2 j_1} |j_1| \langle j_1| \otimes \sum_{j_2=0}^{d_2-1} \eta_{d_2}^{d_1 j_2} |j_2| \langle j_2| \]

\[= Z_{d_1} \otimes Z_{d_2}, \]

where we used \(\eta_{d_i}^{d_2 j} = \eta_{d_i}^{d_2 |j\rangle \langle j| \rangle \langle j|}. \)

References

[1] Ivanović I D 1981 J. Phys. A: Math. Gen. 14 3241
[2] Wootters W K and Fields B D 1989 Ann. Phys. 191 363
[3] Boykin P O, Sitharam M, Tiek P H and Wocjan P 2005 arXiv:quant-ph/0506089
[4] Bengtsson I, Bruza W, Ericsson A, Larsson J-A, Tadej W and Życzkowski K 2007 J. Math. Phys. 48 052106
[5] Zauner G 1999 Dissertation Universität Wien
[6] Bengtsson I 2004 arXiv:quant-ph/0406174
[7] Wocjan P and Beth T 2005 Quantum Inf. Comput. 5 93
[8] Paterek T, Dakić B and Brukner Č 2009 Phys. Rev. A 79 012109
[9] Saniga M, Planat M and Rosu H 2004 J. Opt. B 6 L19
[10] Wootters W K 2006 Found. Phys. 36 112
[11] Euler L 1849 Comm. Arithm. 2 593
[12] Tarry G 1900 C. R. Assoc. Française Adv. Sci. Nat. 1 122
[13] MacNeish H F 1921 Ann. Math. 23 221
[14] Colbourn C J and Dinitz H J 1996 The CRC Handbook of Combinatorial Designs (Boca Raton, FL: CRC Press)
[15] Bandryopadhay S, Boykin P O, Roychowdhury V and Vatan F 2002 Algorithmica 34 512
[16] Grassl M 2004 arXiv:quant-ph/0406175
[17] Klappenecker A and Rötteler M 2004 Lect. Notes Comput. Sci. 2948 262
[18] Parker E T 1959 Proc. Natl Acad. Sci. USA 45 859
[19] Wojtas M 1996 J. Comb. Des. 4 153
[20] Aschbacher M, Childs A M and Wocjan P 2007 J. Algebr. Comb. 25 111

\(^6\) It follows from the Chinese remainder theorem that \(\tilde{T} \) is a permutation, and this is why \(d \) has to have coprime factors.