ABSTRACT
Soil carbon (C) plays a key role in mitigating and adapting to global climate change. In-situ soil C measurement has faced many challenges including those related to aerial coverage, economics, accuracy, and availability. The concept of paying for C credits to farmers and ranchers who sequester C has necessitated availability of improved methods for in-situ measurement of soil C at large scale. The objective of this review is to (i) synthesize the existing knowledge on methods of soil C measurement, (ii) discuss their pros and cons (iii) review key factors affecting soil C measurement, and (iv) propose integrated data driven method of soil C measurement using Machine Learning (ML)/Artificial Intelligence (AI) approach. Lab and in-situ techniques of soil C determination are expensive, time consuming and lack scale. Although, remote sensing (RS) technique is used to predict soil C maps at large scale, it also lacks accuracy and requires high technical knowledge of image processing. Soil C measurements are affected by key soil physical properties such as color, texture, moisture content, bulk density etc. Thus, these factors must be considered while developing innovative methods for soil C determination. A prototype handheld device is proposed to measure these four properties along with Near Infrared (NIR) reflectance of soil that store data in cloud using Wi-Fi signals. A data driven model is proposed that can use the data from handheld devices and integrate with drone imagery to create soil C map of the entire field and satellite imagery for the entire region. This model uses data from in-situ soil C measurement technique in integrated form and soil C map can be updated every time the handheld device is used at different locations of the field.

KEYWORDS
dry combustion; wet oxidation; soil moisture content; soil bulk density; soil strength; satellite image; machine learning

Introduction
Globally, soil holds total carbon (C) stock of ~2500 Pg (1 Pg = 10^{15} g) to 1-m depth, which is approximately three times of that in the atmosphere (800 Pg) [1–4]. Of the 2500 Pg of total C stock; 1550 Pg is soil organic carbon (SOC) and 950 Pg is soil inorganic carbon (SIC) [1, 5]. In 2019, about 4.8 billion hectares (B ha), 38% of global land area, is agricultural land, of which one-third (1.6 B ha) is cropland and two-thirds (3.2 B ha) is meadows and pasture for grazing livestock [6,7]. Since 1990, the cropland area has increased by 5% but permanent meadows and pastures decreased by 4%, with an overall decrease of agricultural land by 1% [7]. The human population was ~ 250 million (M) in circa 1000 AD, increased to 6.1 B by 2000 and is projected to reach 9.8 B by the year 2050 [8,9]. This growing trend of population will create greater demand for food and put pressure on finite land and water resources [7]. Agriculture, forestry, and other land uses (AFOLU) contribute ~23% of total anthropogenic greenhouse gas (GHG) emission (2007-2016), of which 12-14% is contributed by the agriculture land use [10]. The conversion of natural vegetation to agricultural land increases atmospheric CO2 concentration due to increase in mineralization of SOC, accelerated loss of erosion and reduction of input of biomass -C [11–13]. Several studies [14–16] have documented the loss of SOC stock upon conversion of natural to agricultural ecosystems. However, the depleted SOC stock can be re-sequestered through adoption of improved rotations with deeper rooting cultivars and species, use of organic amendments, agroforestry [17–19]; along with conversion to reduced and no-till (NT) practices [20,21] and incorporation of soil organic matter (SOM) into subsoil [22]. In contrast, high inputs of fertilizers and use of conventional tillage can release soil C stock into the atmosphere [23]. Strategies of SOC protection and sequestration contribute 47% of
total of total potential mitigation (2.3 PgCO₂ e yr⁻¹) from grassland and agriculture, while 20% involves other GHGs related with improved soil management practices [24]. UN-Sustainable Development Goals (SDGs) can also be advanced by increasing or protecting soil C stock by long-term increase of soil fertility, maintaining resilience to climate change, reducing soil erosion, and improving habitat conversion [25]. The United Nations Framework Convention on Climate Change (UNFCCC) at Congress of Parties (COP) 21 Lima-Paris Plan of Action adopted new program of the Global Climate Action Agenda (GCAA), known as “4 per 1000” initiative (https://www.4p1000.org/). It aspires to increase SOM and C sequestration through implementation of agriculture practices such as agro-ecology, regenerative agriculture, agroforestry, conservation agriculture (CA) or landscape management at the annual rate of 0.4% to 40 cm depth [26,27]. Presently, the attention is also directed to land-based efforts to reduce C emission, remove CO₂ from the atmosphere and provide monetary credits to landowners [28,29].

The concept of C credit was introduced during the UNFCCC in Kyoto, Japan in 1997 [30]. A C credit is a tradable certificate or permit representing the right to emit one metric ton (megagram or Mg) of CO₂ and has been used by many companies to sell C credits to commercial and individual customers [31,32]. This mechanism also provides monetary value to the farmers or landowners who are encouraged to protect or improve soil C stock following sustainable agriculture methods [33]. The U.S. 117th congress passed the Growing Climate Solutions Act of 2021 that authorizes USDA to establish a voluntary GHG technical assistance provider and third-party verifier certification program to help reduce entry barriers into voluntary environmental credit markets for farmers, ranchers, and private forest landowners [34]. This plan is proposed to convert diverse regions across the U. S. into C sinks, aimed at offsetting the nation’s 7Pg CO₂ e of GHG emission each year [35].

Private companies (i.e. Bayer, CIBO, ESMC, Graddle, INDIGO, NORI, Soil and Water Outcomes Fund, TRUTERRA) are also connecting with farmers to follow sustainable agricultural practices (i.e. NT, cover cropping) for 5-10 years and paying them a US$7.5 to 24 ha⁻¹ yr⁻¹ [36,37]. These payments are based on baseline field information, history of agriculture farming and the future plan. Farmers have to sign a contract for 5-10 years and follow the specific guidelines to get paid for the C credit [36,38]. The major problems for the farmers lie in getting full benefits of C credit by using an easy and affordable soil C measurement method [37].

Smallholder farmers are defined as households who farm less than 2 hectares (ha) of land size and obtain annual economic revenue from the same farm [39]. Smallholder farming dominates the agricultural farming in sub-Saharan Africa, South Asia (i.e. India, China) where food security depends on how small holders use their limited resources and traditional knowledge to feed 80% of those populations [40,41]. The UN Food System Summit through its Action Track 3: Boosting Nature Positive Production suggested an opportunity to encourage small holder farmers in Africa and elsewhere to improve soil health and fertility by using the C credit program [42]. The farm size in Asia and Africa is decreasing and the number of smallholder farmers are in an increasing trend since 1950 and projected to increase through 2050 [43].

A study conducted by Shames [44] in Africa showed that out of many challenges (project management, cost, monitoring, unstable international policy), inaccessible and expensive methods of soil C measurement was the main challenge faced by smallholder farmers. An economical and accessible handheld device is instrumental in measuring soil C and that will boost the C credit for all farm sizes around the globe.

Researcher from the academic and industry sector are working to develop data-driven model that includes designing a handheld device, using cloud to store data and artificial intelligence to predict soil organic carbon or SOC [45,46]. Ewing et al. [45] proposed affordable, accessible handheld device (Our Sci Reflectometer; www.our-sci.net) an open-source hardware tool licensed under the GNU General Public License v3.0. This reflectometer using the co-variates field estimable textural class and slope class provides unbiased (r²=0.57; n=1155; p=0.06) and actionable [area under curve (AUC)=0.88] data at field scale when compared with African Soil Information Services (AFSIS; www.soilgrids.org). Yard Stick (www.uyeyardstick.com) is also developing a handheld device that integrate Near Infrared (NIR) reflection, resistance sensor to measure bulk density and GPS locator to predict SOC using artificial intelligence. These initiatives show the future scope of data-driven soil carbon prediction at academic and industry sector.

Soil C sequestration is a potential climate solution [24], and its credible and economic measurement is key to addressing global climate change.
Since the 1990s, several advanced analytical methods have been developed to estimate soil C stock \[47–50\]. Methods of soil C measurement can be categorized into three groups: laboratory methods, remote sensing techniques and in-situ procedures \[51\]. These measurement methods have their own merits, limitations, and challenges in terms of cost involved, laboratory equipment required, and accessibility to farmers \[52\]. Therefore, the objective of this article is to (1) synthesize the existing knowledge about the current methods of soil C measurement, (2) discuss pros and cons of those methods, (3) review key factors affecting soil C measurement, and (4) propose integrated methods to measure soil C using Machine Learning (ML)/Artificial Intelligence (AI) approach under in-situ conditions.

**Methodology**

The systematic review of literature was done thorough Google Scholar, Web of Science, Scopus using key search terms: (soil carbon measurement) and (texture OR color OR moisture OR remote sensing OR UAVs OR SOC OR in-situ OR machine learning OR Artificial Intelligence OR laboratory OR bulk density OR carbon credit). Scopus identified 6111 search results, Web of Science 9136, and Google Scholar 36600 results of literature for string search. These results were refined by using soil C measurement in agricultural practices and fields resulting in 352 articles in Scopus, 223 in Web of science and 300 in Google Scholar. The bibliographic details were imported into endnote and duplicates were eliminated by applying exclusion-inclusion criteria and examining the title and keywords. Finally, 161 potentially usable articles were selected for this review.

These papers were categorized based on the objectives of this review. Literature related to soil C measurement (laboratory, remote sensing, and in-situ) were reviewed and critically analysed to prepare the pros and cons of each method under different field studies. Four key soil properties were identified, and tables developed on their effect on soil C measurement. Literature was also collated on use of machine learning and Artificial Intelligence (AI) in predicting soil C at different scales (field, farm and regional). Finally, with the understanding of the different aspects of soil C management a data driven model was suggested to predict soil C at different scales.

**Current methods of soil carbon measurement**

Direct measurement of soil C being difficult, some methods are more direct, and some others are far from direct with assumptions and sources of error \[51, 53\]. Most available methods calculate soil C at point source (lab methods) \[47\] or at large scale (remote sensing or high-tech methods) \[49, 54, 55\]. Laboratory analysis of soil C by the dry combustion method is considered as the Gold Standard \[56\], but it is expensive and time consuming to map large areas \[52\]. Remote sensing techniques can be useful for large scale measurement and mapping of soil C \[57\] but have numerous errors \[58\]. The following section discusses commonly used laboratory, remote sensing, and in-situ methods of soil C measurement.

**Laboratory methods**

Dry combustion or elemental analysis and wet oxidation are commonly used laboratory methods for soil C measurement \[47, 59, 60\]. Dry combustion method is regarded as the standard method to conduct soil C analysis of field collected samples in a laboratory \[60\]. This method is considered to measure soil C with high precision and accuracy \[61, 62\]. It is quick and reliable with the use of an automatic elemental analyzer. In the dry combustion method, SOC is oxidized, and carbonate (CO$_3^-$) minerals are thermally decomposed in a medium temperature resistance furnace. The CO$_2$ produced is then trapped in a suitable reagent and determined titrimetrically or gravimetrically. The elemental analyzers to measure soil C by the dry combustion method are produced by the different companies \[60\]. However, the working principle is same for all, and uses a subsample of oven dried soil \([40 \, ^\circ C]\) sieved through 250 microns \((\mu m = 1 \times 10^{-6} \, m)\) mesh. Some of the commonly used elemental analyzer for C analysis are LECO TruSpec CN, St. Joseph, MI \[63\]; Carlo-Erba Model NA 1500 analyzer, Milan, Italy \[64\]; Perkin-Elmer CHN2400, Northwalk, CT \[65\]; Thermo Scientific Flash 2000, Massachusetts, USA \[66\]; VELP Scientifica CN 802 CN elemental analyzer, Italy \[67\].

The oldest method of soil C measurement, the wet oxidation method \[68\], is still used in many countries \[5, 69\]. This method is simple, rapid and needs minimal equipment \[69, 70\]. Some major problems with the wet oxidation method include disposal of the waste produced during the procedure and being less accurate in soils with...
carbonates [71]. Wet oxidation method is based on oxidation of the C using potassium dichromate (K₂Cr₂O₇) in sulfuric acid (H₂SO₄). In the wet oxidation method, only the most active organic C is oxidized, leading to incomplete oxidation of organic compounds [60].

The detailed process of Walkley Black (wet oxidation) method for soil C measurement is described by Nelson and Sommers [60]. Oven dried (40 °C) and finely grind (250 μm sieved) 1 g soil is placed in an Erlenmeyer flask (125 ml), and 10 ml of 0.2 M potassium dichromate solution is added. Then 10 ml concentrated sulfuric acids slowly added to this solution. The soil sample with higher amount of SOC (>4%) requires a higher amount of potassium dichromate and sulfuric acid solution. After 30 min of oxidation under room temperature, 50 ml (cm³) of distilled water, 3 ml (cm³) of concentrated orthophosphoric acid (H₃PO₄) and four drops of the diphenylamine indicator are added. SOC content is determined by titration of the excess potassium dichromate using Mohr’s salt solution (0.1 M). Each set of soil samples require three blank reagents of Mohr’s salt solution used for the titration of the blank and the sample, respectively; CFe²⁺ is the molarity of Mohr’s salt solution; 0.003 g mmol⁻¹ represents the ratio [0.012/4], where 0.012 is the molecular mass of the C (g mmol⁻¹), and 4 refers to the number of electrons involved in the oxidation of SOC, and wt. refers to the mass of soil sample (g).

This method generally underestimates the SOC content compared to that by the dry combustion method [71]. The SOC content measured by the wet oxidation method is adjusted with a C equivalent correction factor of 1.33 [68]; 1.63 for Russian Chernozemic soil [71]; 1.16 to 1.59 for a range of soils [60]; 1.05 for subtropical soil in southern Brazil [72]. The correction factor in the Walkley Black method is suggested because the temperature obtained by the H₂SO₄ dilution is not sufficient to totally oxidize all soil organic compounds that depends on organic C recovery under different soil and management systems [73,74].

Remote sensing technique

Conventional methods for soil C measurement are expensive and time consuming [52]. Scientific communities are looking for alternative methods to accurately predict soil C at large scale with limited resources in terms of cost and time [75–77]. Large scale soil C mapping is challenging due to variation of soil type, crops grown, tillage systems, and landscape characteristics [78]. Remote sensing techniques provide opportunity for cost-effective, non-destructive, rapid, and large-scale mapping of soil C [50]. These methods are based on the electromagnetic radiation that is radiated on soil surface and is reflected in distinct wavelength and energy providing specific spectral signature [79,80]. These specific reflectance on the spectrum, known as spectral signature, derive qualitative and quantitative information on the soil properties [81,82]. The near infrared (NIR) - short wave infrared (SWIR) spectroscopy ranging from 700-2500 nm (1 x 10⁻⁹m) is based on the characteristic’s vibrations of chemical bonds in a molecule [83]. NIR-SWIR have weak overtones and combinations of these vibrations occur due to stretching and bending of the N-H, O-H and C-H bonds [84,85]. Remote sensing (RS) techniques use different platforms to get the spectral signature such as spaceborne, airborne and unmanned aerial vehicles (UAVs) [80].

Spaceborne RS imageries, such as optical and multispectral satellites, have been used in SOC quantification from 1980 after the launch of Landsat [86]. Hyperspectral imagery started gaining popularity later after the Hyperion spaceborne system was operational [87–89]. Spaceborne imageries are popular because they capture the entire landscape and are available online to download and some are free (USGS), but they require atmospheric, geometric, and radiometric correction [90,91]. Airborne hyperspectral imaging offers accurate mapping of the SOC variability observed at the agricultural field level [92,93]. Airborne devices can produce information in single flight missions that cover large areas and are used to extend the existing dataset of soil properties to support the digital soil mapping [94]. UAVs have been a revolution since circa 2000 because they are novel and low cost and advancement in the sensor specifications [95]. The RS using UAVs provide high spatial resolution, temporal flexibility, and narrow-band spectral data from different wavelengths [96]. With the improvement in the analytical capabilities for data handling, UAVs can
be handy and useful in identifying soil properties [97].

The data derived from the remote sensing techniques can be used as auxiliary variables to develop high quality soil C maps [98,99]. Several studies have shown that the RS data (e.g. brightness, wetness, and vegetation indices) are strongly correlated with soil C as well as first and second derivative of digital elevation models [100]. The direct quantification of the soil C using spectral signature is challenging and requires multivariate statistical methods such as partial least square regression (PLSR) [101,102] or machine learning algorithms (random forest, support vector) [103,104]. Studies circa 2000 using different remote sensing platforms have shown huge potential in soil C measurement using various machine learning algorithms (Table 1).

### In situ techniques

In-situ technique involves minimum soil disturbance operated in dynamic or static mode for scanning larger area, enable repetitive-sequenced measurement [49, 106]. Soil C measurement using classical lab methods are not only expensive but also time consuming and further complicated by the temporal and spatial variability inherent in soil horizons, bulk density, and soil C concentration [108]. In-situ soil C measurement techniques are important because they are rapid, potentially cost-effective and reduce sampling and laboratory errors [49]. Other benefits of in-situ techniques include minimum soil disturbance and ability to analyze large areas providing repetitive and sequential measurements to evaluate spatial and temporal variation [109,110]. Research attempts have been made to make economic, handy, and easily accessible devices to measure soil C at field level [45, 49]. Recent advances in in-situ instrument are based on Laser Induced Breakdown Spectroscopy (LIBS) [111], inelastic neutron scattering (INS) [106], near-infrared spectroscopy [112,113].

The LIBS method is based on the atomic emission spectroscopy, where laser pulse is focused on a sample and microplasma emission is recorded in time and spectrally resolved by a timed gated sensor to detect concentration of elements based on the unique spectral characteristics [114,115]. Some studies showed that C emission line at 247.8 nm is used for testing and calibration of LIBS and reported higher correlation (adjusted $r^2 = 0.96$) [115], whereas other studies [111] showed spectral interference between C and Fe at 247.8 nm line and suggested 193 nm line. Calibration curves are required for each sample set and soil specific calibration databases are required for the rapid analysis in the future [116,117].

The INS method is based on the atomic emission spectroscopy, where Deuterium-Tritium generator and gamma ray emission is detected by NaI detectors. To measure soil C, calibration lines are derived using the mixture of sand and predetermined amounts of C power (0, 2%, 5%, and 10% by weight) [106, 118]. The INS method is advantageous because it does not need sample preparation and offers true sequential measurements at large area scanning. Wielopolski et al. [119] found higher correlation ($r^2 = 0.99$) between soil C estimated by INS and dry combustion in organic soil.

| Sensors                  | Spectral range (nm) | $r^2$ | RMSE (%) | RPD § | Soil depth (cm) | Algorithm       | Country       | Reference |
|--------------------------|---------------------|------|----------|-------|----------------|----------------|--------------|-----------|
| Hyperion                 | 400-2500            | 0.66 | 0.61     | 1.69  | 0-10           | PLSR           | Australia    | [105]     |
| Agrispec Portable        | 350-2500            | 0.51 | 0.73     | 1.43  |                |                |              |           |
| Hyperion + Agrispec      |                     | 0.67 | 0.60     | 1.75  |                |                |              |           |
| Sentinel 2 A             | 458-2500            | 0.56 | 1.32     | 1.51  | 0-8            | PLSR           | Italy        | [106]     |
| Landsat (using SFC) ¥    | 430-2400            | 0.43 | 1.01     | –     | 0-5            | Random Forest  | Australia    | [99]      |
| without SFC              |                     | 0.48 | 0.43     | –     | 0-30           |                |              |           |
| EnMAP £                  | 400-2500            | 0.65 | 0.22     | 1.78  | 0-8            | PLSR           | Italy        | [107]     |
| PRISM                    | 400-2500            | 0.65 | 0.21     | 1.75  |                |                |              |           |
| HySpIRI                  | 280-2510            | 0.60 | 0.22     | 1.65  |                |                |              |           |
| EO-1 ALI                 | 400-2500            | 0.49 | 0.25     | 1.43  |                |                |              |           |
| Hyperion                 | 400-2500            | 0.62 | 0.22     | 1.70  |                |                |              |           |
| Landsat 8 OLI            | 430-2400            | 0.50 | 0.25     | 1.46  |                |                |              |           |
| Sentinel 2 MSI           | 458-2500            | 0.56 | 0.23     | 1.55  |                |                |              |           |

*SFC-Seasonal Fraction Cover based on the four bands: b1-bare ground, b2-green vegetation fraction, b3-non-green vegetation fraction and b4-model fitting error derived from Landsat platform.

*Castaldi et al. [103] used PONMAC spectral library for calculating SOC.

*RPD stands for Ratio of Performance to Deviation.

Table 1. Soil organic carbon estimation using different remote sensing platforms.
However, large discrepancy was recorded in the pastureland in Ohio [119].

Infrared reflectance spectroscopy (IR spectroscopy) is a non-destructive and a widely used method for soil C measurement [120]. This reflectance spectroscopy is based on diffusely reflected radiation of illuminated soil [121]. The unique absorptive or reflective properties of SOC have a unique spectral signature at near infrared range (0.7-25 μm) [122]. Near infrared (NIR) range has been predominantly used in measurement of soil C due to improvements in the computer hardware and statistical software [123]. After the laboratory success of measuring soil C [124], IR spectroscopy has been designed, fabricated, and tested as a portable NIR spectrometer. The soil C estimation has been affected by the physical properties of soil (moisture, texture, bulk density etc.) [125]. Some statistical techniques (i.e. partial least squares regression [126], random forest [127], support vector machines [128]) are used for calibration development and soil property estimation.

Based on the IR Spectroscopy two handheld devices are under field trial i.e. Our Sci Reflectometer [Our Sci, LLC; https://www.our-sci.net/; General Public License v3.0.] and Yard Stick [https://www.useyardstick.com/]. Our Sci Reflectometer has 10 light emitting diodes ranging from UV-B to near infrared wavelengths (365, 385, 450, 500, 530, 587, 632, 850, 880 and 940 nm.) These light sources are then pulsed allowing software to filter ambient light and reflection is measured using two pin photodiode detectors in the 300-700 and 700-1000 nm ranges. The area of

| Table 2. Pros and cons of the different methods of soil carbon measurement at field level. |
|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Methods                             | Pros                                 | Cons                                 | References                          |
|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| **Laboratory Methods**              |                                      |                                      |                                      |
| Dry combustion method               | • Gold standard with high precision  | • Costly and destructive method      | [60]                                 |
|                                     | and accuracy                         | • Difficult to upscale at larger area|                                      |
|                                     | • Quick and reliable                 | • Expensive instrument and not       |                                      |
|                                     | • Does not produce hazardous waste   | affordable by all soil labs          |                                      |
| Wet oxidation method                | • Low cost, minimum equipment        | • Required high level of training    | [68]                                 |
|                                     | requirement, simple                  | • Old and traditional method,        |                                      |
|                                     | • Cheaper cost of apparatus and easy | required recovery factor due          |                                      |
|                                     | to assemble compared to              | incomplete oxidation of soil carbon  |                                      |
|                                     | dry combustion                       | • Produce hazardous chemicals such   |                                      |
|                                     |                                     | as dichromate, a carcinogen          |                                      |
|                                     |                                     | • Not sufficiently sensitive to      |                                      |
|                                     |                                     | identify small changes over time in  |                                      |
|                                     |                                     | response to land use changes and     |                                      |
|                                     |                                     | management practices.                |                                      |
| Remote sensing techniques           |                                      |                                      |                                      |
| Spaceborne                          | • Non-destructive method, capture    | • Need image correction (geometric,  | [90]                                 |
|                                     | entire earth and provide consistent | atmospheric, radiometric)            |                                      |
|                                     | viewing geometry                      | • Images are taken in specific dates,|                                      |
|                                     |                                     | must coincide work with the         |                                      |
|                                     |                                     | passing day of satellite             |                                      |
|                                     |                                     | • Difficult to process the image of  |                                      |
|                                     |                                     | cloudy days                          |                                      |
| Airborne                            | • Cover larger areas of land in one  | • More susceptible to geometry       | [94]                                 |
|                                     | flight mission                       | problems                              |                                      |
|                                     | • Easier to re-fly area on aircraft  | • Radar system must use sophisticated|                                      |
|                                     | to study changes                     | navigation equipment                 |                                      |
|                                     |                                     | • Expensive to conduct using aircraft|                                      |
|                                     |                                     | • Poor performance under windy and   |                                      |
|                                     |                                     | cloudy conditions                    |                                      |
|                                     |                                     | • Required high level of knowledge   |                                      |
|                                     |                                     | during image processing              |                                      |
| Unmanned aerial vehicles (UAVs)     | • Non-destructive method, easily     | • Expensive and complex system;      | [111]                                |
|                                     | available and economical nowadays    | chances of eye damage                |                                      |
|                                     | • Does not require high level of     | • Difficult to obtain suitable        |                                      |
|                                     | expertise to fly UAVs                | standards                             |                                      |
| In-situ techniques                  | • Required small amount of sample    | • Calibration curves required for    |                                      |
| Laser Induced Breakdown             | therefore practically non-destructive| each sample set                      | [106]                                |
| Spectroscopy                        | • Time and money saving potential    | • Need calibration for each soil type|                                      |
|                                     |                                     | • Expensive and complex device       |                                      |
| Inelastic neutron scattering        | • Noninvasive method                 | • Not accurate, need other soil      | [113]                                |
|                                     | • Rapid and cover large area in short| properties to calibrate              |                                      |
| Infrared reflectance spectroscopy   | • Most popular and non-destructive   | • Affected by innate soil properties  |                                      |
|                                     | method                               | (moisture, texture, etc.)            |                                      |
|                                     | • Possible to developed simplified   | • Easy to calculate due to           |                                      |
|                                     | version                              | advancement in the hardware and      |                                      |
|                                     | • Easy to calculate due to           | statistical software                 |                                      |
|                                     |                                     |                                       |                                      |
influence is $9.9 \times 22 \text{ mm} (1 \times 10^3 \text{ mm})$ [45]. Our Sci Reflectometer uses air dried soil and measures reflectance in a 3.5-cm diameter petri dish. In addition to NIR reflectance values, soil physical properties (i.e. bulk density, soil texture and slope) are also considered in calibration using random forest regression method. Yard Stick is a second-hand held probe which has a small camera on the tip and uses wavelengths to sense the presence of SOC. In addition to the small camera, it has a resistance sensor that measures bulk density that can be used to calculate the amount of C sequestered in a particular soil. It can be used in standing crops and instantly collects SOC and bulk density measurement and saves in the cloud. This probe is under field trial and developed in collaboration with Soil Health Institute, University of Nebraska-Lincoln, University of Sydney, and Yard Stick (https://www.useyardstick.com/solutions).

### Pros and cons of current methods

Soil C has been considered as a key soil quality indicator since 1990s [129], but now it is also an important option to mitigate and adapt to global climate change [17, 130]. Sequestering C in soil by adopting recommended agricultural practices (RAPs) is a pertinent option to improve soil health and offset anthropogenic emissions [11]. Soil C measurement protocols and tools have been developed to measure soil health [131,132]. With the increasing interest of farmers, private sector and policy makers towards credits and payment for C sequestration in soil; new easy, affordable, farmer’s friendly device to measure soil carbon is a high priority [38, 45]. The major challenge is to calculate soil C stock accurately at farm level under conservation agriculture (CA) and other RAPs to sequester C. Current methods that measure/estimate soil C for crediting farmers are expensive, highly sophisticated and needs technical expertise making it difficult to use under on-farm conditions (Table 2) [47, 133]. Different analytical, remote sensing and in-situ methods of soil C measurements have been widely studied [59, 74, 134–137]. Data from available studies show large impacts of land use, sampling depth, and soil type on the interpretation of results from a wide range of conditions (vegetation, cropland, textural gradients). However, Dieckow et al. [72] found no significant difference among the analytical methods of soil samples from different no-tillage and cropping system [bare soil; pigeon pea (Cajanus cajan) + corn (Zea mays); lablab (Lablab purpureum) + corn] in Kaolinite Typic Paleudult soil type under humid-subtropical climate. The pros and cons of these methods to measure soil C for calculating stock at farm level are listed in Table 2.

The Walkley-Black (wet oxidation) procedure is popular around the world due to its low cost and minimal requirement of laboratory equipment. However, correction of soil C obtained from wet oxidation is required for the influence of soil depth, vegetation, and soil type [47, 138]. Dry combustion method has high accuracy but is expensive. The cost for total organic carbon analysis in UC Davis analytical lab is US$26 and US$18 for total carbon for University of California client using dry combustion method (https://anlab.ucdavis.edu/Prices). Comparatively, the Walkley Black method is less expensive, and it costs around US$300 to purchase chemical reagent needed for 120 samples and cost of running all together is US$2.01 per sample including labour charge [139]. The LIBS method is expensive and difficult to interpret the results of samples containing fine roots and other biological substances [49]. However, these remote sensing techniques have a large potential with the efficient machine learning and artificial intelligence for soil C estimation at a large scale [140,141].

Soil C stock calculated for C credit must consider some important on-farm parameters that can improve the accuracy and address the variability. Soil C credits are based on the following specific cultural practices such as reduced tillage ($5.7 \text{ ha}^{-1}$), cover cropping ($15 \text{ ha}^{-1}$) and $22.5 \text{ ha}^{-1}$ for both (https://www.soyohio.org/council/carbon-markets/). This practice is not scientific, and farmers have to follow the guidelines of the private big agriculture companies that include up to ten years of contract. Soil C needs to be monitored by understanding different factors that affect soil C determination. Thus, the next section focuses on the key parameters that may be pertinent to soil C measurement. These parameters can be used to predict soil C by using machine learning and artificial intelligence.
**Table 3. Literature showing relationship between soil color and soil carbon under different land use.**

| Device used to measure color | Variable | Equation | Land use       | \( r^2 \) | Reference |
|-----------------------------|----------|----------|----------------|-----------|-----------|
| Konica Minolta chroma meter CR410 | \( y = \text{Soil lightness (L}^*\text{)} \) | \( y = -0.07x + 45.58 \) | Grassland     | 0.60     | [156]     |
|                              | \( x = \text{SOC (g kg}^{-1}\text{)} \) | \( y = -0.17x + 50.34 \) | Forest       | 0.52     |           |
|                              | \( y = \% \text{Reflectance} \) | \( y = -4.339 \ln(x) + 23.52 \) | Agriculture   | 0.74     | [145]     |
| Minolta CR-310 chroma meter  | \( y = \text{Munsell value} \) | \( y = -0.7128 \ln(x) + 5.867 \) | Agriculture   | 0.74     |           |
|                              | \( x = \text{SOC (g kg}^{-1}\text{)} \) | \( y = -2.32x + 159 \) | Grassland     | 0.70     | [147]     |
| SPAD-503                     | \( y = \text{Total Carbon (g kg}^{-1}\text{)} \) | \( y = -1.35 \ln(x) + 6.55 \) | Hayden Prairie | 0.74   | [144]     |
| Minolta CR-310 chroma meter  | \( y = \text{Munsell value} \) | \( y = -0.9 \ln(x) + 4.78 \) | Agriculture   | 0.74     |           |
|                              | \( x = \text{SOC (g kg}^{-1}\text{)} \) | \( y = -2.32x + 159 \) | Agriculture   | 0.70     |           |

**Key parameters in the context of soil carbon measurement**

*In situ* measurement of soil C is important for farmers to get C credits and map soil C stock for larger areas. New device must take measurement of multiple variables which are pertinent to predicting accurate soil C content and relevant to mapping soil C at farm scale. The measurement of these variables can be used as covariates in the machine learning algorithm/Artificial Intelligence and get precise soil C values for an entire farm area. This process can be termed as integrated data-driven soil C mapping. This data driven soil C mapping can integrate laboratory, remote sensing, and other *in-situ* methods to precisely measure soil C that can be used for calculating soil C stock. The following discussion focuses on some important variables that affect soil C measurement at the field scale.

**Soil color**

Direct measurement of SOC is expensive and time consuming and is also complicated by the need of many samples to evaluate spatial heterogeneity [52, 142]. Soil color can be used as a cost-effective proxy to determine SOC content [143–145]. SOM is one of the primary pigments of soil that determines soil color [146–148] and is also an indicator of soil quality [149]. In the USA, there is a long history of relating soil color to SOM content even before the introduction of the Munsell color system by Brown and O’Neal [150] in Iowa and later Alexander [151] in Illinois using field color charts. Several studies have been conducted to estimate SOC content using the Field Munsell color chart [152,153]. Soil color is measured using Munsell color chart [154], Minolta CR-310 chroma meter (Minolta Crop., Ramsay, NJ) [144], Nix Pro Color Sensors and Konica Minolta CR-400 [155], soil color reader (SPAD-503) [146]. Research studies establishing the relationship between SOC and soil color are shown in Table 3. Wills et al. [143] reported that soil color was the best predictor for SOC by weight for agricultural fields \( r^2 = 0.79 \) compared to prairie \( r^2 = 0.53 \). The study conducted by Mueller and Pierce [156] in Central Michigan observed that the regression-derived maps closely resemble the spatial patterns of soil color and concluded that soil color maps can be used as a proxy of soil C maps. The lightness values (L*) was negatively correlated with the total C content \( r^2 = 0.70 \) in the Japanese agricultural soils [146]. These above studies showed that soil color can play an important role in estimating SOC content as a proxy variable.

**Soil moisture content**

Soil moisture content (SMC) plays a key role in transportation of nutrients and minerals and is a life-giving element for plant and soil microorganisms [157]. While SMC does not directly influence the SOC content but conversely soil C influences soil moisture reserves. Parajuli and Duffy [158] observed a weak relationship between SOC and SMC and high degree of variability within soil moisture data in two watersheds of south-eastern U.S. region of Mississippi. In addition, SMC exerted a stronger control on the decomposition rate under different temperatures in the tea-bags decomposition study conducted in Italy [159]. SMC has a strong effect on runoff, land surface energy dynamics, biomass yield, and root zone productivity. It also has far-reaching implications for irrigation, agricultural management, water quality and climate change [160,161]. Kerr and Ochsner [162] argued that soil-climate variables (soil moisture and temperature) play crucial roles in statistical models to predict soil C in the study conducted in temperate grassland sites across Oklahoma, USA. They reported that SMC is a single most influential predictor variable using the least absolute shrinkage and selection operator (LASSO) regression analysis and improved SOC estimates from \( r^2 = 0.42 \) to 0.52 at 5 cm soil depth. Similarly, Fantappie et al. [163] showed that soil moisture regime is a...
key predictor of SOC variations across Italy. Hursh et al. [164] reported strong correlation between SMC and SOC in a global study. Soil moisture plays a vital role in soil respiration affecting soil C stock and creating uncertainty in climate-carbon cycle [165].

SMC is measured using the ruggedized components that measure the resistance, capacitance or conductivity change of sensors. These commercial soil moisture sensors are expensive with the lowest cost of ~100 dollars, but economic sensors are not reliable and degrade quickly. Ding and Chandra [166] proposed a new technique called “strobe” for estimating SMC and electrical conductivity (EC) using Wi-Fi signals. Strobe estimates EC and soil moisture by measuring the relative time flight of Wi-Fi signals between multiple antennas and the ratios of the amplitude of the signals. Ding and Chandra [166] stated that strobe technique can be useful in soil sensing to small holder farmers using their own smartphone at economical value.

**Soil strength**

Soil strength is an important dynamic soil mechanical property which is influenced by land use and management practices [167]. Soil strength affects seedling emergence, soil erodibility, bearing capacity of soils and traction required to pull farm implements [168]. High soil strength reduces hydraulic conductivity and water infiltration rate, increases runoff and soil losses, affects root growth, and reduces crop production [105, 169]. Several management practices (i.e. tillage, cover cropping, crop residue retention) affect soil C stock as well as soil strength [170]. Soil strength increases because of compaction caused by a high mechanical load, less crop diversification, intensive grazing, and irrigation methods [171]. The effect of SOC on soil shear strength is moderated through changes in soil aggregate stability [168]. The distribution of SOC concentration and soil strength behavior are also affected by landscape position [172]. Blanco-Canqui et al. [167] reported an inverse relationship between soil strength and SOC content in forest soils compared to pasture and cultivated soils. Soil strength is measured as shear strength and cone index and its relationship with SOC content under different land uses are shown in (Figure 1).

**Soil bulk density**

Soil bulk density, defined as mass per unit bulk volume, determines pore space available for air and water movement in soil. Bulk density is influenced by SOM content, soil texture, mineral composition, and porosity, which in turn are influenced by soil management practices [173]. Bulk density is strongly correlated with SOC content and depends on compaction, consolidation, and amount of SOC present [174–176]. Chaudhari et al. [173] observed a strong negative relationship ($r^2=0.79$) between SOM and bulk density of soil samples. Similar opposite relationship was also observed by Curtis and Post [177] and Sakin [178]. Thus, bulk density is also useful to calculate the SOC stock.

The discussion presented herein shows the use of four soil physical parameters in determining SOC stock. These four variables include soil color, soil moisture, soil strength and bulk density, and they affect soil C content and soil functions. The data of these parameters can be used to estimate soil C using artificial intelligence/machine learning.
Data driven soil carbon estimation using artificial intelligence

A range of methods of C measurement (lab, in situ and remote sensing) are used globally. The choice of method is based on time constraints, equipment and reagent availability, software to analyze imagery, lack of resources (drone, aircraft), and expensive equipment (LIBS) [47, 49, 77, 99]. The accuracy of soil C measurement is higher with elemental analysis (dry combustion) [56] and slowly decreases while following other methods (in situ and remote sensing) [101]. Soil C measurement is affected by soil type and texture, and strength [167], tillage methods [179], crop grown [99], etc. Further, long-term changes in soil C stock depend on the rainfall, temperature, slope, etc. [180]. Highly efficient computing power is being used in predicting different soil properties using machine learning algorithms or artificial intelligence (AI) [181]. The use of AI needs a lot of data to improve the accuracy in predicting different soil properties such as soil moisture, EC, nitrogen (N) content etc. [182,183]. Data-driven agriculture has a bright future, and it can help in planning farming to meet the needs of growing population [184]. AI can be used in soil C measurement by integrating important soil physical characteristics. AI not only can predict soil properties at specific point but also create map for entire farm and region using remote sensing techniques [185]. This can be done at three phases; (i) field data collection using handheld device (ii) process the image data collected from drone, and satellite, and (iii) build model to predict soil C for entire farm. These three phases are described below.

Field data collection using handheld device

Soil sample collection from the field and analyzing at the lab is tedious and expensive for the entire farm. In this paper, four important soil physical properties are suggested that affect soil C viz., soil color, density, moisture, and strength. New handheld devices to measure soil C content must have sensors to measure these additional properties of soil and store them in the cloud (such as Microsoft Azure, Google cloud, IBM cloud services). The prototype of the handheld device is shown in Figure 2. This handheld device can measure bulk density, soil moisture, soil color, soil strength and NIR reflectance. These data are then stored in the cloud for each GPS location (Geographical Position System).

Soil samples from some of these GPS locations are randomly selected to measure soil C using dry combustion method. Model can be developed using machine learning algorithms (random forest, boosted regression trees, support vector machine, artificial neural network). SOC content can be predicted using the handheld device using this model for the entire field. The predictor variables are soil moisture, bulk density, NIR reflectance, soil strength and soil color to predict soil C at each point (Figure 3). The data driven SOC measurement will address the effect of those soil physical properties and can be applied to diverse soil types.

Image processing collected from drone and satellite

Soil C mapping for the entire farm and region is challenging due to labor and time requirements. Remote sensing techniques have used drone and satellite imagery to map soil properties at larger scale [50]. However, the accuracy of the prediction of soil C has not been excellent (lower r² values and higher RMSE) (Table 1). This problem with accuracy can be addressed by identifying key soil properties that affect soil C content [186]. Once soil C content is predicted using a machine
learning algorithm from key soil physical properties (i.e. color, moisture, strength, and bulk density) and NIR spectroscopy. These properties can be used as key variables in predicting soil C content using the reflectance values or vegetative indices processed using drone or satellite image. Drone has the time and coverage limitation and covers a couple of fields at one flight [187]. However, satellites can cover a larger area, but it is essential to follow the time frame of the satellite revolving around the earth [188]. Drone can collect many images at the field and farm levels, and these can be used in mapping soil C at farm level. Accuracy at large regions can be improved by using drone imagery processing.

Drone and/or satellite imagery have been used not only to detect the type of vegetation but also tillage method and residue management which are key factors affecting the SOC content. These parameters are valuable in predicting SOC and can
be used as predictor variables in machine learning/AI.

**Building model to predict soil carbon for entire region**

The goal of developing soil C maps at larger regions can be started at the farm field level. The schematic diagram (Figure 3) and flow chart (Figure 4) show how the randomly selected field data can be used to map soil C for the entire region considering key soil parameters and AI/Machine learning. The upscaling of the soil C measurements from a field using handheld devices goes through the series of machine learning/AI processes that use drone image to map soil C at farm level and satellite image at region scale. In remote sensing, researchers have either used different vegetative indices or specific wavelength reflectance to predict soil C content. Therefore, a model is proposed that can be effectively used to create soil C map and this can be updated every year to get more precise results. Farmers can select a few fields of their farm, take measurements using the proposed handheld device and link these data with the drone imagery. Different farms can be selected in a region and satellite images are used to create a soil C map for the entire region. This approach can help build a data store in the cloud for each time and AI can be used to improve accuracy and precision every year.

**Conclusion**

Soil C stock being the indicator of soil health and has monetary value due to C credits is global concern. The measurement of soil C at field level has faced challenges of time, money, accuracy following different methods from lab, *in-situ* to remote sensing. Laboratory methods provide higher accuracy but are expensive and give value at one point of field, whereas *in-situ* methods do provide soil C measurement for larger areas but are expensive and have lower accuracy. Remote sensing techniques showed a lot of promise but lacked accuracy. The pros and cons of these methods suggested four soil physical properties have a huge impact on soil C measurement. In this review article, the data driven soil C measurement is proposed that can be used at different scales (field, farm, and region). A prototype handheld device is suggested that can measure soil color, bulk density, moisture, strength and NIR spectroscopy, record the data and store in cloud (ex. Microsoft Azure). Soil C can be predicted using the machine learning/AI for that field using these above covariates. Next step is integrating data from drone imagery using ML/AI that will give soil C maps for the entire farm. For the larger scale soil C mapping, we suggested the use of satellite images (Landsat 8, Sentinel 2 A) adding it with the soil C predicted using drone imagery. This process integrates all the methods from field level (laboratory method) to farm level (in-situ) and finally regional level (remote sensing). It not only helps to create a soil C map but also facilitates calculating change in soil C stock over the time and location. This conceptual framework has a huge potential of soil C mapping and future study in applying this method in the field.

**Disclosure statement**

No potential conflict of interest was reported by the author.

**Funding**

This research was funded by the Microsoft (GF317072) and CFAES Rattan Lal Center for Carbon Management and Sequestration program support fund (C-MASC).

**Data availability statement**

The data used to support the findings of this study are available from the corresponding author upon request.

**References**

1. Lal R. Sequestration of atmospheric CO2 in global carbon pools. Energy Environ Sci. 2008;1(1):86–100. doi:10.1039/b809492f.
2. Watson RT, Noble IR, Bolin B, et al. Land use, land-use change and forestry: a special report of the intergovernmental panel on climate change. Cambridge University Press; 2000.
3. Janzen HH. Soil carbon: a measure of ecosystem response in a changing world? Can J Soil Sci. 2005; 85(Special Issue):467–480. doi:10.4141/S04-081.
4. Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci U S A. 2017;114(36):9575–9580. doi:10.1073/pnas.1706103114.
5. Singh G, Bhattacharyya R, Das TK, et al. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic plains. Soil Tillage Res. 2018;184:291–300. doi:10.1016/j.still.2018.08.006.
6. Ritchie H, Roser M. Land use. Our World in Data. 2013. Nov 13. Available from: https://ourworldindata.org/land-use. [Online Resource]
7. FAO. Land use statistics and indicators statistics. Global, regional, and country trends 1990–2019 FAOSTAT Analytical Brief Series No 28. Rome, Italy; 2021.
8. UN. World population prospects: the 2017 revision, key findings and advance tables Working Paper No. ESA/P/WP/248. United Nations, Department of Economic and Social Affairs, Population Division, New York, NY; 2017.
9. Bacci ML. A concise history of world population. West Sussex, UK: John Wiley & Sons; 2017.
10. IPCC. Summary for policymakers. In: Shukla PR, Skea J, Calvo Buendia E, et al. Editor. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva, Switzerland: IPCC; 2019.
11. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304(5677):1623–1627. doi:10.1126/science.1097396.
12. Don A, Schumacher J, Freibauer A. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Global Change Biol. 2011;17(4):1658–1670. doi:10.1111/j.1365-2486.2010.02336.x.
13. Harris NL, Brown S, Hagen SC, et al. Baseline map of carbon emissions from deforestation in tropical regions. Science. 2012;336(6088):1573–1576. doi:10.1126/science.1217962.
14. Tang S, Guo J, Li S, et al. Synthesis of soil carbon losses in response to conversion of grassland to agriculture land. Soil Tillage Res. 2019;190:29–35. doi:10.1016/j.still.2018.08.011.
15. Ding F, Hu YL, Li LJ, et al. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in northeast China. Plant Soil. 2013;373(1–2):659–672. doi:10.1007/s11104-013-1827-5.
16. Oberholzer HR, Leifeld J, Mayer J. Changes in soil carbon and crop yield over 60 years in the Zurich organic fertilization experiment, following land-use change from grassland to cropland. J Plant Nutr Soil Sci. 2014;177(5):696–704. doi:10.1002/jpln.201300385.
17. Lal R. Soil carbon management and climate change. Carbon Manage. 2013;4(4):439–462. doi:10.4155/cmt.13.31.
18. Vermeulen SJ, Campbell BM, Ingram JS. Climate change and food systems. Annu Rev Environ Resour. 2012;37(1):195–222. doi:10.1146/annurev-environ-020411-130608.
19. Lorenz R, Pitman AJ. Effect of land-atmosphere coupling strength on impacts from Amazonian deforestation. Geophys Res Lett. 2014;41(16):5987–5995. doi:10.1002/2014GL061017.
20. Van Kessel C, Venterea R, Six J, et al. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a Meta-analysis. Glob Change Biol. 2013;19(1):33–44. doi:10.1111/j.1365-2486.2012.02779.x.
21. Six J, Ogle SM, Jay Breidt F, et al. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biol. 2004;10(2):155–160. doi:10.1111/j.1529-8817.2003.00730.x.
22. Alcántara V, Don A, Well R, et al. Deep ploughing increases agricultural soil organic matter stocks. Glob Chang Biol. 2016;22(8):2939–2956. doi:10.1111/gcb.13289.
23. Duiker SW, Lal R. Crop residue and tillage effects on carbon sequestration in a luvisol in Central Ohio. Soil Tillage Res. 1999;52(1–2):73–81. doi:10.1016/S0167-1987(99)00059-8.
24. Bossio DA, Cook-Patton SC, Ellis PW, et al. The role of soil carbon in natural climate solutions. Nat Sustain. 2020;3(5):391–398. doi:10.1038/s41893-020-0491-z.
25. Keesstra SD, Bouma J, Wallinga J, et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil. 2016;2(2):111–128. doi:10.5194/soil-2-111-2016.
26. King JK, Granjou C, Fournil J, et al. Soil sciences and the French 4 per 1000 initiative—the promises of underground carbon. Energy Res Soc Sci. 2018;45:144–152. doi:10.1016/j.erss.2018.06.024.
27. Wiesmeier M, Mayer S, Burmeister J, et al. Feasibility of the 4 per 1000 initiative in Bavaria: a reality check of agricultural soil management and carbon sequestration scenarios. Geoderma. 2020;369:114333. doi:10.1016/j.geoderma.2020.114333.
28. Kitchens C. Carbon markets in agriculture: a market-based conservation solution. R Street Institute; 2020. http://www.jstor.org/stable/resrep30544.
29. Crespi JM, Tidgren K. The first legal step for an agricultural carbon market is in the Growing Climate Solutions Act of 2021, Ames, IA: Center for Agricultural and Rural Development (CARD) at Iowa State University; 2021.
30. Morgan JP. Carbon trading under the Kyoto protocol: Risks and opportunities for investors. Fordham Environ Law Rev. 2006;151:151–184.
31. Alam MA, Jain S. Blockchain implementation using smart Grid-Based smart city. In: Handbook of research on blockchain technology. Cambridge, MA: Academic Press; 2020. p. 133–169.
32. Bosch DJ, Stephenson K, Groover G, et al. Carbon returns to carbon credit creation with intensive rotational grazing. J Soil Water Conserv. 2009;64(1):91–98. doi:10.2489/jswc.64.2.91.
33. Paustian K, Brenner J, Easter M, et al. Counting carbon on the farm: Reaping the benefits of carbon offset programs. J Soil Water Conserv. 2009;64(1):36A–40A. doi:10.2489/jswc.64.1.36A.
34. U.S. Senate. S. 1251, the Growing Climate Solutions Act of 2021. https://www.congress.gov/bill/117th-congress/senate-bill/1251.
35. Manning L. Brief: Biden’s climate plan includes ‘carbon bank’ for farmers who adopt regen practices. Ag Funder News. 2021. https://agfundernews.com/carbon-bank-bidens-climate-plan-includes-aimed-at-farmers-who-adopt-regen-practices.html.
36. Bomgardner M, Erickson B. Carbon farming gets off the ground. Chem Engin News. 2021;99(18):22–28.
37. Oldfield EE, Eagle AJ, Rubin RL, et al. Agricultural soil carbon credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals. New York, NY: Environmental Defense Fund; 2021. edf.org/sites/default/files/content/agricultural-soil-carbon-credits-protocolsynthesis.pdf.

38. Badger W, Murphy B, Cowie A, et al. Soil carbon market-based instrument pilot—the sequestration of soil organic carbon for the purpose of obtaining carbon credits. Soil Res. 2021;59(1):12–23. doi:10.1071/SR19331.

39. FAO, Food and Agricultural Organization, FAO Statistics Division Working Paper on "Defining small-scale food producers to monitor target 2.3. of the 2030 agenda for sustainable development"; 2018. available at http://www.fao.org/3/a-i6858e.pdf.

40. Cui Z, Zhang H, Chen X, et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature. 2018;555(7696):363–366. doi:10.1038/nature25785.

41. Sanchez PA. En route to plentiful food production in Africa. Nat Plants. 2015;1(1):1–2. doi:10.1038/nplants.2014.14.

42. UN, UN Food Systems Submit, Action Track 3 Boosting Nature Positive Production Potential Game Changing and Systemic Solutions: A Second Compilation Submitted to the UN Food Systems Summit Secretariat, 2021. https://www.un.org/sites/un2.un.org/files/fss_action_track_3__wave_2__ideas_paper_final.pdf.

43. Masters WA, Djurfeldt AA, De Haan C, et al. Urbanization and farm size in asia and africa: Implications for food security and agricultural research. Global Food Secur. 2013;2(3):156–165. doi:10.1016/j.gfs.2013.07.002.

44. Shames S. How can small-scale farmers benefit from carbon markets? CCAFS Policy Brief No. 8. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS); 2013. https://hdl.handle.net/10568/29009.

45. Ewing PM, TerAvest D, Tu X, et al. Accessible, affordable, fine-scale estimates of soil carbon for sustainable management in Sub-Saharan Africa. Soil Sci Soc Am J. 2021;85(5):1814–1826. doi:10.1002/saj2.20263.

46. John K, Abraham Isong I, Michael Kebone Y, et al. Using machine learning algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil. Land. 2020;9(12):487. doi:10.3390/land9120487.

47. Chatterjee A, Lal R, Wielopolski L, et al. Evaluation of different soil carbon determination methods. Crit Rev Plant Sci. 2009;28(3):164–178. doi:10.1080/07352680902766556.

48. Tivet F, Carlos de Moraes Sá J, Borszowskei PR, et al. Soil carbon inventory by wet oxidation and dry combustion methods: Effects of land use, soil texture gradients, and sampling depth on the linear model of C-equivalent correction factor. Soil Sci Soc Am J. 2012;76(3):1048–1059. doi:10.2136/sssaj2011.0328.

49. Gehl RJ, Rice CW. Emerging technologies for in situ measurement of soil carbon. Clim Change. 2007;80(1–2):43–54. doi:10.1007/s10584-006-9150-2.

50. Vaudour E, Gilliot JM, Bel L, et al. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int J Appl Earth Obs Geoinf. 2016;49:24–38. doi:10.1016/j.jag.2016.01.005.

51. Johns C. Measuring soil carbon and soil carbon change. Strategic Analysis Paper, Future Directions International, 1–6; 2017. https://www.futuredirections.org.au/files/MeasuringSoilCarbonChange.pdf.

52. Omran ES. Rapid prediction of soil mineralogy using imaging spectroscopy. Eurasian Soil Sc. 2016;265:615–17. doi:10.1134/j.1064-2293.2015.11.015.

53. Donovan P. Measuring soil carbon change. A flexible, practical, and local method. Soil carbon Coalition; 2013. https://soilcarboncoalition.org/files/MeasuringSoilCarbonChange.pdf.

54. Viscarra-Rossel R, Brus DJ, Lobsey C, et al. Baseline estimates of soil organic carbon by proximal sensing: comparing design-based, model-assisted and model-based inference. Geoderma. 2016;265:152–163. doi:10.1016/j.geoderma.2015.11.015.

55. Vaudour E, Gomez C, Lagacherie P, et al. Temporal mosaicking approaches of sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int J Appl Earth Obs Geoinf. 2021;96:102.777. doi:10.1016/j.jag.2020.102277.

56. Reeves III JB, McCarty GW, Calderon F, et al. Advances in spectroscopic methods for quantifying soil carbon. In: Managing agricultural greenhouse gases. Waltham, MA: Elsevier; 2012. doi:10.1016/8978-0-12-386897-8.00020-62012.

57. Xu Y, Smith SE, Grunwald S, et al. Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields. ISPRS J Photogramm Remote Sens. 2017;123:1–9. doi:10.1016/j.isprsjprs.2016.11.001.

58. Angelopoulou T, Tziolas N, Balafoutis A, et al. Remote sensing techniques for soil organic carbon estimation: a review. Remote Sens. 2019;11(6):676. doi:10.3390/rs11060676.

59. Meersmans J, Van Wesemael B, Van Molle M. Determining soil organic carbon for agricultural soils: a comparison between the Walkley & Black and the dry combustion methods (North Belgium). Soil Use and Management. 2009;25(4):346–353. doi:10.1111/j.1475-2743.2009.00242.x.

60. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis: Part 3 Chemical methods; 1996;5. p. 961–1010.

61. Yeomans JC, Bremner JM. A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal. 1988;19(13):1467–1476. doi:10.1080/00103628809368027.

62. Matejevic I. Determination of carbon and nitrogen in samples of various soils by the dry combustion.
90. Dematțe JA, Fangaro CT, Rizzo R, et al. Geospatial soil sensing system (GEOS3): a powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens Environ. 2018;212:161–175. doi:10.1016/j.rse.2018.04.047.

91. Woodcock CE, Allen R, Anderson M, et al. Free access to landsat imagery. Science. 2008;320(5879):1011. doi:10.1126/science.1185879.1011a.

92. Hbirkou C, Pätzold S, Mahlein AK, et al. Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma. 2012;175-176:21–28. doi:10.1016/j.geoderma.2012.01.017.

93. Hively WD, McCarty GW, Reeves JB, et al. Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields. Appl Environ Soil Sci. 2011;2011:1–13. doi:10.1155/2011/358193.

94. Mulder VL, De Bruin S, Schaepman ME, et al. The use of remote sensing in soil and terrain mapping-A review. Geoderma. 2011;162(1-2):1–9. doi:10.1016/j.geoderma.2010.12.018.

95. Giordan D, Adams MS, Aicardi I, et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull Eng Geol Environ. 2020;79(7):3437–3481. doi:10.1007/s10064-020-01766-2.

96. Wehrhan M, Rauneker P, Sommer M. UAV-based estimation of carbon exports from heterogeneous soil landscapes-A case study from the carbozalf experimental area. Sensors (Basel). 2016;16(2):255. doi:10.3390/s16020255.

97. Padua L, Vanko J, Hruška J, et al. UAS, sensors, and data processing in agroforestry: a review towards practical applications. Int J Remote Sens. 2017;38(8-10):2349–2391. doi:10.1080/01431161.2017.1297548.

98. Mirzaee S, Ghorbani-Dashaki S, Mohammadi J, et al. Spatial variability of soil organic matter using remote sensing data. Catena. 2016;165:118–127. doi:10.1016/j.catena.2016.05.023.

99. Wang B, Waters C, Orgill S, et al. High-resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of Eastern Australia. Sci Total Environ. 2018;630:367–378. doi:10.1016/j.scitotenv.2018.02.204.

100. Mondal A, Khare D, Kundu S, et al. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egyptian J Remote Sens Space Sci. 2017;20(1):61–70. doi:10.1007/s11783-016-0004-9.

101. Peng X, Shi T, Song A, et al. Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods. Remote Sens. 2014;6(4):2699–2717. doi:10.3390/rs6042699.

102. Chang CW, Laird DA, Hurburgh Jr CR. Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Sci. 2005;170(4):244–255.

103. Stenberg B, Rossel RA, Mouazen AM, et al. Visible and near infrared spectroscopy in soil science. In: Advances in agronomy. Waltham, MA: Elsevier; 2010. Vol. 107. pp. 163–215.

104. Liakos KG, Busato P, Moshou D, et al. Machine learning in agriculture: a review. Sensors. 2018;18(8):2674. doi:10.3390/s18082674.

105. Gomez C, Rossel RA, McBratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma. 2008;146(3-4):403–411. doi:10.1016/j.geoderma.2008.06.011.

106. Wielopolski L, Mitra S, Hendrey G, et al. Non-Destructive in-situ soil carbon analysis: Principle and results. Upton, NY: Brookhaven National Lab. (BNL); 2003.

107. Vaudour E, Gomez C, Fouad Y, et al. Sentinel-2 image capacities to predict common topsoil properties of temperate and mediterranean agroecosystems. Remote Sens Environ. 2019;223:21–33. doi:10.1016/j.rse.2019.01.006.

108. Castaldi F, Palombo A, Santini F, et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens Environ. 2016;179:54–65. doi:10.1016/j.rse.2016.03.025.

109. Ellert BH, Janzen HH, McConkey BG, et al. Measuring and comparing soil carbon storage. In: Assessment methods for soil carbon. Boca Raton, FL: Lewis Publishers; 2001. p. 131–146.

110. Wilding LP, Drees LR, Nordt LC. Spatial variability: Enhancing the mean estimate of organic and inorganic. In: Assessment methods for soil carbon; 2000. p. 69.

111. Ebinger MH, Norfleet ML, Breshears DD, et al. Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement. Soil Sci Soc Am J. 2003;67(5):1616–1619. doi:10.2136/sssaj2003.161.

112. Sudduth KA, Hummel JW. Geographic operating range evaluation of a NIR soil sensor. Transac ASAE. 1996;39(5):1599–1604.

113. Christy CD, Drummond P, Laird DA. An on-the-go spectral reflectance sensor for soil. 2003 ASAE Annual Meeting: 2003. p. 1. American Society of Agricultural and Biological Engineers.

114. Boutillier GD, Pollard BD, Winefordner JD, et al. A review and tutorial discussion of noise and signal-to-noise ratios in analytical spectrometry—II. Fundamental principles of signal-to-noise ratios. Spectrochim Acta, Part B. 1978;33(8):401–416. doi:10.1016/0584-8547(78)80050-0.

115. Cremers DA, Ebinger MH, Breshears DD, et al. Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). J Environ Qual. 2001;30(6):2202–2206. doi:10.2134/jeq2001.2202.

116. Cremers DA, Ferris MJ, Davies M. Transportable laser-induced breakdown spectroscopy (LIBS) instrument for field-based soil analysis. In: Advanced technologies for environmental monitoring and remediation. Denver, CO: International Society for Optics and Photonics; 1996. Vol. 2835. pp. 190–200.

117. Mosier-Boss PA, Lieberman SH, Theriault GA. Field demonstrations of a direct push FO-LIBS metal sensor. Environ Sci Technol. 2002;36(18):3968–3976. doi:10.1021/es020528z.

118. Wielopolski L, Orion I, Hendrey G, et al. Soil carbon measurements using inelastic neutron scattering.
IEEE Trans Nucl Sci. 2000;47(3):914–917. doi:10.1109/23.856717.

119. Wielopolski L, Chatterjee A, Mitra S, et al. In situ determination of soil carbon Pool by inelastic neutron scattering: Comparison with dry combustion. Geoderma. 2011;160(3-4):394–399. doi:10.1016/j.geoderma.2010.10.009.

120. Anne NJ, Abd-Elrahman AH, Lewis DB, et al. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands. Int J Appl Earth Obs Geoinf. 2014;33:47–56. doi:10.1016/j.jag.2014.04.007.

121. Rossel RV, Behrens T, Ben-Dor E, et al. A global spectral library to characterize the world’s soil. Earth Sci Rev. 2016;155:198–230. doi:10.1016/j.earscirev.2016.01.012.

122. Shepherd KD, Walsh MG. Development of reflectance spectrum libraries for characterization of soil properties. Soil Sci Soc Am J. 2002;66(3):988–998. doi:10.2136/sssaj2002.9880.

123. Morgan CL, Waiser TH, Brown DJ, et al. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma. 2009;151(3-4):249–256. doi:10.1016/j.geoderma.2009.04.010.

124. Sudduth KA, Hummel JW. Portable, near-infrared spectrophotometer for rapid soil analysis. Transactions of the ASAE. 1993;36(6):185–193.

125. Sudduth KA, Hummel JW. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Transactions of the ASAE. 1993;36(6):1571–1582.

126. Shi Z, Ji W, Viscarra Rossel RA, et al. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library. Eur J Soil Sci. 2015;66(4):679–687. doi:10.1111/ejss.12277.

127. Knox NM, Gruenwald S, McDowell ML, et al. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma. 2009;146;239-240:229–239. doi:10.1016/j.geoderma.2014.10.019.

128. Jia S, Li H, Wang Y, et al. Hyperspectral imaging analysis for the classification of soil types and the determination of soil total nitrogen. Sensors. 2017;17(10):2252. doi:10.3390/s17102252.

129. Islam K, Weil RR. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J Soil Water Conserv. 2000;55(1):69–78.

130. Dynarski KA, Bossio DA, Scow KM. Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration. Front Environ Sci. 2020;8:218. doi:10.3389/fenvs.2020.514701.

131. Lal R. Soil health and carbon management. Food Energy Secur. 2016;5(4):212–222. doi:10.1002/fes3.96.

132. Kibblewhite MG, Ritz K, Swift MJ. Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci. 2008;363(1492):685–701. doi:10.1098/rstb.2007.2178.

133. Jimenez RR, Ladha JK. Automated elemental analysis: a rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Commun Soil Sci Plant Anal. 1993;24(15–16):1897–1924. doi:10.1080/00103629309368926.

134. Wang XJ, Smethurst PJ, Herbert AM. Relationships between three measures of organic matter or carbon in soils of eucalypt plantations in Tasmania. Soil Res. 1996;34(4):545–553. doi:10.1071/SR9960545.

135. De Vos B, Lettens S, Muys B, et al. Walkley-Black analysis of Forest soil organic carbon: recovery, limitations and uncertainty. Soil Use & Management. 2007;23(3):221–229. doi:10.1111/j.1475-2743.2007.00084.x.

136. Lettens S, De Vos B, Quataert P, et al. Variable carbon recovery of Walkley-Black analysis and implications for national soil organic carbon accounting. Eur J Soil Science. 2007;58(6):1244–1253. doi:10.1111/j.1365-2389.2007.00916.x.

137. Gatto A, Barros NF, Novais RF, et al. Comparison of methods for determination of organic carbon in soils under eucalypt plantations. Rev Bras Cienc Solo. 2009;33(3):735–740. doi:10.1590/S0100-06832009000300026.

138. Chen L, Flynn DF, Jing X, et al. A comparison of two methods for quantifying soil organic carbon of alpine grasslands on the Tibetan Plateau. PLoS One. 2015;10(5):e0126372. doi:10.1371/journal.pone.0126372.

139. Ou L. Comparison of soil organic carbon methods and carbon sequestration and soil characteristics in Louisiana crawfish ponds (Master Thesis) Department of Agronomy and Soils, Auburn University, Auburn, AL, 2013.

140. Mandal A, Majumder A, Dhaliwal SS, et al. Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: a review. Crit Rev Environ Sci Technol. 2022;52(1):1–49. doi:10.1080/10643389.2020.1811590.

141. Grinand C, Le Maire G, Vieilledent G, et al. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote sensing. Int J Appl Earth Obs Geoinf. 2017;54:1–4. doi:10.1016/j.jag.2016.09.002.

142. Bird SB, Herrick JE, Wander MM, et al. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ Pollut. 2002;116(3):445–455. doi:10.1016/S0269-7491(01)00222-6.

143. Wills SA, Burras CL, Sandor JA. Prediction of soil organic carbon content using field and laboratory measurements of soil color. Soil Sci Soc Am J. 2007;71(2):380–388. doi:10.2136/sssaj2005.0384.

144. Konen ME, Burras CL, Sandor JA. Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in North Central Iowa. Soil Sci Soc Am J. 2003;67(6):1823–1830. doi:10.2136/sssaj2003.1823.

145. Lindbo DL, Rabenhorst MC, Rhoton FE. Quantifying hydric soil indicators with soil color. Quantifying soil hydromorphology. SSSA Spec. Publ. 1998;54:95–106.

146. Moritsuka N, Matsuoka K, Katsura K, et al. Soil color analysis for statistically estimating total carbon, total
nourishment and active iron contents in Japanese agricultural soils. Soil Sci Plant Nutr. 2014;60(4):475–485. doi:10.1080/03603040.2014.906295.

147. Buol SW, Southard RJ, Graham RC, et al. Soil genesis and classification. 5th ed. Ames, IA: Iowa State University Press.

148. Schulze DG, Nagel JL, Van Scoyoc GE, et al. Significance of organic matter in determining soil colors. Soil Color. 1993;31:71–90.

149. Belachew T, Abera Y. Assessment of soil fertility status with depth in wheat growing highlands of southeast Ethiopia. World J Agr Sci. 2010;6(5):525–531.

150. Brown PE, O’Neal AM. The color of soils in relation to organic carbon content. Res Bull. 1923;75:275–300.

151. Alexander JD. Color chart for estimating organic carbon in mineral soils in Illinois. Bull. 1971.

152. Steinhardt GC, Franzmeier DP. Comparison of organic matter content with soil color for silt loam soils of Indiana. Commum Soil Sci Plant Anal. 1979;10(10):1271–1277. doi:10.1016/00103627(79)906698.

153. Fernandez RN, Schulze DG. Calculation of soil color from reflectance spectra. Soil Sci Soc Am J. 1987;51(5):1277–1282. doi:10.2136/sssaj1987.03615995005100050033x.

154. Schoeneberger PJ. Field book for describing and sampling soils: Version 2.0. Lincoln, NE: National Soil Survey Center, Natural Resources Conservation Service; 2002.

155. Stiglitz R, Mikhailova E, Post C, et al. Evaluation of an inexpensive sensor to measure soil color. Comput Electron Agric. 2016;121:141–148. doi:10.1016/j.compag.2015.11.014.

156. Mueller TG, Pierce FJ. Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci Soc Am J. 2005;69(3):936–943. doi:10.2136/sssaj2004.0254.

157. Chapman N, Miller AJ, Lindsey K, et al. Roots, water, and nutrient acquisition: let’s get physical. Trends Plant Sci. 2012;17(12):701–710. doi:10.1016/j.tplants.2012.08.001.

158. Parajuli PB, Duffy S. Evaluation of soil organic carbon and soil moisture content from agricultural fields in Mississippi. QJSS. 2013;3(2):81–90. doi:10.4236/qjss.2013.32009.

159. Petraglia A, Cacciatore C, Chelli S, et al. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil. 2019;435(1–2):187–200. doi:10.1007/s11104-018-3889-x.

160. Moran MS, Peters-Lidard CD, Watts JM, et al. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can J Remote Sens. 2004;30(5):805–826. doi:10.5589/m04-043.

161. Han E. Soil moisture data assimilation at multiple scales and estimation of representative field scale soil moisture characteristics. Dissertation Abstracts International. 2011;73(9):38–90.

162. Kerr DD, Ochsner TE. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Sci Soc Am J. 2020;84(2):587–596. doi:10.1002/saj2.20018.

163. Fantappie M, L’Abate G, Costantini EA. Factors influencing soil organic carbon stock variations in Italy during the last three decades. In: Land degradation and desertification: assessment, mitigation and remediation. Dordrecht: Springer; 2010. p. 435–465.

164. Hursch A, Ballantyne A, Cooper L, et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob Chang Biol. 2017;23(5):2090–2103. doi:10.1111/gcb.13489.

165. Falloon P, Jones CD, Ades M, et al. Direct soil moisture controls of future global soil carbon changes: an important source of uncertainty. Global Biogeochern Cycles. 2011;25(3):n/a–n/a. doi:10.1029/2010GB003938.

166. Ding J, Chandra R. Towards low-cost soil sensing using Wi-Fi. The 25th Annual International Conference on Mobile Computing and Networking; 2019. p. 1–16.

167. Blanco-Canqui H, Lal R, Owens LB, et al. Strength properties and organic carbon of soils in the North Appalachian region. Soil Sci Soc Am J. 2005;69(3):663–673. doi:10.2136/sssaj2004.0254.

168. Ekwue El. Organic-matter effects on soil strength properties. Soil Tillage Res. 1990;16(3):289–297. doi:10.1016/0167-1987(90)90102-J.

169. Busscher WJ, Bauer PJ. Soil strength, cotton root growth and lint yield in a southeastern USA coastal loamy sand. Soil Tillage Res. 2003;74(2):151–159. doi:10.1016/j.still.2003.06.002.

170. Agenbag GA, Maree PC. The effect of tillage on soil carbon, nitrogen and soil strength of simulated surface crusts in two cropping systems for wheat (Triticum aestivum). Soil Tillage Res. 1989;14(1):53–65. doi:10.1016/0167-1987(89)90020-2.

171. Shah AN, Tanveer M, Shahnaz B, et al. Soil compaction effects on soil health and crop productivity: an overview. Environ Sci Pollut Res Int. 2017;24(11):10056–10067. doi:10.1007/s11356-017-8421-y.

172. Zebartz BJ, Rees H, Walsh J, et al. Soil variation within a hummocky podzolic landscape under intensive potato production. Geoderma. 2002;110(1-2):19–33. doi:10.1016/S0016-7061(02)00213-6.

173. Chaudhari PR, Ahire DV, Ahire VD, et al. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int J Sci Res Publ. 2013;3(2):1–8.

174. Post WM, Emanuel WR, Zinke PJ, et al. Soil carbon pools and world life zones. Nature. 1982;298(5870):156–159. doi:10.1038/298156a0.

175. Morisada K, Ono K, Kanomata H. Organic carbon stock in Forest soils in Japan. Geoderma. 2004;119(1-2):21–32. doi:10.1016/S0016-7061(03)00220-9.

176. Leifeld J, Bassin S, Fuhrer J. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agri Ecosyst Environ. 2005;105(1–2):255–266. doi:10.1016/j.agee.2004.03.006.

177. Curtis RO, Post BW. Estimating bulk density from organic-matter content in some Vermont Forest soils. Soil Sci Soc Am J. 1964;28(2):285–286. doi:10.2136/sssaj1964.03615995002800020004x.
178. Sakin E, Deliboran A, Tutar E. Bulk density of Harran plain soils in relation to other soil properties. Afr J Agri Res. 2011;6(7):1750–1757.

179. Tian S, Ning T, Wang Y, et al. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 2016;163:207–213. doi:10.1016/j.still.2016.06.005.

180. Liu Z, Shao MA, Wang Y. Effect of environmental factors on regional soil organic carbon stocks across the loess Plateau region, China. Agri Ecosyst Environ. 2011;142(3–4):184–194. doi:10.1016/j.agee.2011.05.002.

181. Rivera JI, Bonilla CA. Predicting soil aggregate stability using readily available soil properties and machine learning techniques. Catena. 2020;187:104408. doi:10.1016/j.catena.2019.104408.

182. Wolfert S, Ge L, Verdouw C, et al. Big data in smart farming—a review. Agric Syst. 2017;153:69–80. doi:10.1016/j.agsy.2017.01.023.

183. Jha K, Doshi A, Patel P, et al. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric. 2019;2:1–2. doi:10.1016/j.aiia.2019.05.004.

184. Vasisht D, Kapetanovic Z, Won J, et al. FarmBeats: an IoT platform for Data-Driven agriculture. 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17); 2017. p. 515–529.

185. Khanal S, Fulton J, Klopfenstein A, et al. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput Electron Agric. 2018;153:213–225. doi:10.1016/j.compag.2018.07.016.

186. Lal R. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Chang Biol. 2018;24(8):3285–3301. doi:10.1111/gcb.14054.

187. Puri V, Nayyar A, Raja L. Agriculture drones: a modern breakthrough in precision agriculture. J Stat Manage Syst. 2017;20(4):507–518. doi:10.1080/09720510.2017.1395171.

188. Murugan D, Garg A, Singh D. Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE J Sel Top Appl Earth Observations Remote Sens. 2017;10(12):5322–5328. doi:10.1109/JSTARS.2017.2746185.