Spectral evolution of GRBs observed with *BeppoSAX* WFCs and GRBM

F. Frontera
University of Ferrara, Physics Department, Via Saragat, 1 44100 Ferrara, Italy
INAF, IASF, Via Gobetti, 101, 40129 Bologna, Italy

L. Amati
INAF, IASF, Via Gobetti, 101, 40129 Bologna, Italy

C. Guidorzi
University of Ferrara, Physics Department, Via Saragat, 1 44100 Ferrara, Italy

R. Landi
INAF, IASF, Via Gobetti, 101, 40129 Bologna, Italy

V. La Parola
INAF, IASF, Via La Malfa, 153, 90146 Palermo, Italy

Abstract
We present some preliminary results obtained from a systematic analysis of almost all GRBs simultaneously observed with the Gamma Ray Burst Monitor and the Wide Field Cameras aboard the *BeppoSAX* satellite.

Key words: Gamma Ray Bursts, GRB spectral evolution, X-/gamma-ray Observations, GRB prompt emission, BeppoSAX satellite

PACS: 95.55.Ka, 95.76.Fg, 95.85.Nv, 95.85.Pw, 98.70.Rz

1. Motivations
In spite of the huge advances in the knowledge of the GRB afterglow properties, the GRB phenomenon is still poorly understood. Of crucial im-
portance, it is recognized to be the study of the prompt emission, which is
directly connected with the original explosion. The radiation emission mecha-
nism at work is still matter of debate. Most best fit models are still empirical:
power-law (PL), smoothly broken PL proposed by Band et al. [5] (Band law, BL),
power–law with high energy exponential cutoff (CPL). Physical models
have also been proposed (e.g., synchrotron shock model [20], BB+PL).

Relations between intrinsic peak energy $E_{p,i}$ and GRB released energy/luminosity
(e.g., Amati relation [2] or the Yonetoku relation [21]) could help to solve
the radiation mechanism issue. However these relations, derived using the
GRB time integrated spectral properties, are still debated, mainly due to the
dispersion of the data points around the best fit power–law. It is well known
that the spectral properties evolve with time. What happens about these
relations when the time resolved properties are considered?

Recently several authors have concentrated their interest on the time re-
solved spectra, using mainly BATSE data [11, 18, 17]. According to Ryde
& Pe’er [18] the time resolved spectra of GRB FRED-like pulses can be fit
with a BB+PL. However the BATSE data cover the hard X-/soft gamma-ray
energy band (20-2000 keV). What happens if the band is extended down to
2 keV?

We present here some preliminary results of the time resolved spectral
analysis of the entire sample of GRBs observed with BeppoSAX WFC plus
GRBM in the 2-700 keV band. Results on the time resolved properties of 8
GRBs were published by Frontera et al. [9].

2. The GRB sample

The entire GRB sample is made of 55 events simultaneously detected with
both the Gamma Ray Burst Monitor (GRBM) and the Wide Field Cameras
(WFCs) aboard the BeppoSAX satellite. An exhaustive description of the
GRBM can be found in Frontera et al. [10] and references therein, while
that of the WFCs can be found in Jager et al. [14]. The main features of
the GRBM were the following: an energy band from 40 to 700 keV, a Field
of View (FOV) of about 2π sr, a time resolution, in the case of a GRB
trigger, down to 0.5 ms in the 40-700 keV energy channel, and a continuous
transmission of the counts integrated over 1 s in 2 energy channels (40-700
keV, \approx100 keV) and over 128 s in 240 energy channels to cover the 40–700
keV band. Concerning the WFCs, their main features were the following:
an energy band from 2 to 28 keV, a FOV of 40x40 deg (FWZR), 31 energy
channels with a time resolution of 0.5 ms. A view of the BeppoSAX payload is shown in Fig. 1.

The GRBM/WFC events were extracted from the population of 1082 GRBs detected with the GRBM (see GRBM catalog in the paper by Frontera et al. [10] and shown in Fig. 2). The 2–700 keV time-resolved spectral analysis performed thus far concerns 45 GRBs.

3. Data analysis and fit models

Each GRB time profile is subdivided in time slices with duration that takes into account the GRB pattern and the statistics of the data. Background is properly subtracted.

Spectra are derived in each of the time slices. In the spectral fits, GRBM and WFC normalization factors were left free to vary in the range 0.8-1.3,
found in extended cross-calibrations.

Many input models were tested. We found that a photoelectrically cpl (as called in the XSPEC spectral deconvolution software [4]) gives the best fits and the best constrained parameters of the derived spectra. Thus we adopted this model. However a photoelectrically absorbed bl was used when the peak energy E_p of the $EF(E)$ spectrum derived from cpl is inconsistent with that derived from bl and, at the same time, bl gives a better fit and a constrained value of the high energy index β.

4. Preliminary results

4.1. Test of the blackbody plus power–law model

We have also tested the blackbody plus power–law (BB+PL) model recently proposed by Ryde and Pe'er [18] for the fit of the time resolved spectra of 56 strong BATSE GRBs. If we use only BATSE data, we confirm their results for GRB990123), the only GRB of their sample observed with BeppoSAXGRBM plus WFC. However this model is rejected when we fit the BATSE+WFC or WFC+GRBM time resolved spectra. In Fig. 3 we show the results obtained in the case of the 6 s duration count spectrum measured during the rise of GRB990123.

4.2. Evolution of the spectral parameters with time

Depending on GRB and its brightness, the time resolved spectral parameters have a different behavior with time. As far as the peak energy E_p of the $EF(E)$ spectrum is concerned, its time behaviour is twofold: in some
cases it mimics the GRB pattern of the prompt emission, in other cases it decreases with time (e.g., Fig 4). As far as the low energy photon index α is concerned, in general it decreases with time (i.e., the spectrum softens), but we also found some cases in which it mimics the GRB pattern. In any case, we do not find any correlation between α and E_p, with α mainly determined by the WFCs data.

4.3. Time resolved peak energy versus flux

As it is well known, a key importance relation is that found by us in 2002 [2] (now known as Amati relation) between intrinsic time averaged peak energy $E_{p,i}$ and time averaged released energy E_{iso} of the GRB prompt emission, derived assuming isotropy. This relation is now widely confirmed by all GRBs (about 100) with known redshift z [1], detected thus far, except the nearest GRB ever observed (BeppoSAX GRB 980425, with $z = 0.0085$). A similar relation was later found by Yonetoku et al. [21], using the peak luminosity $L_{p,iso}$, instead of the total released energy, evaluated from the time averaged spectrum of the prompt emission. Either the Amati relation or the Yonetoku relation are very robust, but they are characterized by a significant spread, that is inconsistent with the statistical uncertainty in the data points (see Fig. 5 for E_p vs. E_{iso}). Also due to this spread, the Amati relation is questioned by some authors [6, 8, 7, 19], who state that it could be the result of selection effects. However other authors [12, 13, 16, 15] find that these
We find that, within each burst, the measured peak energy is related with the 2–700 keV flux and this dependence is clearly independent of the redshift or other selection effects. The E_p vs. 2–700 keV flux (F_{2-700}) is shown in Fig. 6 for those GRBs in our sample for which constrained values of E_p are possible. As it can be seen, a positive correlation between E_p and F_{2-700} is outstanding and it is a clear consequence of the correlation we have found between these two quantities within each GRB. The best fit is obtained with power–law (PL) $E_p \propto F_{2-700}^\alpha$, with index $\alpha = 0.43 \pm 0.07$ and a significant extrinsic scatter ($\sigma_{\log E_p} = 0.30$). This scatter is apparent in the figure above, especially for fluxes lower than 10^{-6} cgs. A higher contribution to the scatter seems to be due to the parameters derived during the event tail.

By limiting the analysis to the GRBs with known z, we derived, in the z corrected plane, the intrinsic time resolved peak energies $E_{p,i}$ versus the corresponding bolometric (in the 1–10000 keV rest frame energy band) luminosities L_{bol}. As also expected, we find that the PL correlation between $E_{p,i}$ and L_{bol} is confirmed. The derived best fit PL index is consistent with 0.5, and the scattering of the (E_p, F_{2-700}) data points is almost unchanged.

Exhaustive results of our comparative analysis are the subject of a paper in preparation that will be published soon (Frontera et al. 2009, in preparation).
5. Conclusions

The 2-700 keV time resolved spectra of 55 GRBs detected with BSAX WFC+GRBM are being analyzed and compared.

A photoelectric absorbed power–law with a high energy exponential cutoff (CPL) appears to be the best model for the comparison of the time resolved spectra. A smoothly broken power–law (Band law) is used in a few controversial cases.

A blackbody + power–law model is inconsistent with the WFC data. The results found by Ryde and Pe’er [18] and their consequences should be revisited.

No correlation between measure peak energy E_p and photon index of the CPL is found. This result strengthens the E_p vs. Flux correlation.

A strong power–law correlation between the measured E_p and the 2-700 keV flux is observed, with a power–law index= 0.43 ± 0.07 and significant extrinsic scatter ($\sigma_{\log E_p} = 0.30$).

A power–law index consistent with 0.5 and a similar scatter is found in the case of $E_{p,i}$ vs. L_{iso}. Similar results, with different slope, are found when $E_{p,i}$ is correlated with the GRB beaming corrected L_γ. However we find a slightly lower scatter ($\sigma_{\log E_p} = 0.21$) in the assumption of a jet emission in a standard ISM environment.

All these results strengthen the Amati correlation with a possible explanation of the spread of the data points around the best fit PL in terms of
the spread of the time resolved E_p vs. Flux correlation within each GRB.

The final analysis is in progress and will be published soon.

6. Acknowledgments

We wish to thank Jean J. M. in’t Zand from SRON, Utrecht for supplying us the time resolved spectra of WFCs. The BeppoSAX mission was an effort of the Italian Space Agency ASI, with a participation of the Netherlands Space Agency NIVR.

References

[1] Amati, L., Frontera, F., Guidorzi, C., Jul. 2009. Spectrum-energy correlations in Gamma-Ray Bursts confront extremely energetic Fermi GRBs. ArXiv e-prints.

[2] Amati, L., Frontera, F., Tavani, M., in’t Zand, J. J. M., Antonelli, A., Costa, E., Feroci, M., Guidorzi, C., Heise, J., Masetti, N., Montanari, E., Nicastro, L., Palazzi, E., Pian, E., Piro, L., Soffitta, P., Jul. 2002. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. A&A390, 81–89.

[3] Amati, L., Guidorzi, C., Frontera, F., Della Valle, M., Finelli, F., Landi, R., Montanari, E., Dec. 2008. Measuring the cosmological parameters with the $E_{p,i} - E_{iso}$ correlation of gamma-ray bursts. MNRAS391, 577–584.

[4] Arnaud, K. A., 1996. XSPEC: The First Ten Years. In: Jacoby, G. H., Barnes, J. (Eds.), Astronomical Data Analysis Software and Systems V. Vol. 101 of Astronomical Society of the Pacific Conference Series. pp. 17–+.

[5] Band, D., Matteson, J., Ford, L., Schaefer, B., Palmer, D., Teegarden, B., Cline, T., Briggs, M., Paciesas, W., Pendleton, G., Fishman, G., Kouveliotou, C., Meegan, C., Wilson, R., Lestrade, P., 1993. BATSE observations of gamma-ray burst spectra. I - Spectral diversity. ApJ413, 281–292.

[6] Band, D. L., Preece, R. D., Jul. 2005. Testing the Gamma-Ray Burst Energy Relationships. ApJ627, 319–323.
[7] Butler, N. R., Kocevski, D., Bloom, J. S., Mar. 2009. Generalized Tests for Selection Effects in Gamma-Ray Burst High-Energy Correlations. ApJ694, 76–83.

[8] Butler, N. R., Kocevski, D., Bloom, J. S., Curtis, J. L., Dec. 2007. A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations. ApJ671, 656–677.

[9] Frontera, F., Amati, L., Costa, E., Muller, J. M., Pian, E., Piro, L., Soffitta, P., Tavani, M., Castro-Tirado, A., Dal Fiume, D., Feroci, M., Heise, J., Masetti, N., Nicastro, L., Orlandini, M., Palazzi, E., Sari, R., Mar. 2000. Prompt and Delayed Emission Properties of Gamma-Ray Bursts Observed with BeppoSAX. ApJS127, 59–78.

[10] Frontera, F., Guidorzi, C., Montanari, E., Rossi, F., Costa, E., Feroci, M., Calura, F., Rapisarda, M., Amati, L., Carturan, D., Cinti, M. R., Dal Fiume, D., Nicastro, L., Orlandini, M., Jan. 2009. The Gamma-Ray Burst catalog obtained with the Gamma Ray Burst Monitor aboard BeppoSAX. ApJS180, 192–223.

[11] Ghirlanda, G., Bosnjak, Z., Ghisellini, G., Tavecchio, F., Firmani, C., Jul. 2007. Blackbody components in gamma-ray bursts spectra? MNRAS379, 73–85.

[12] Ghirlanda, G., Ghisellini, G., Firmani, C., Jul. 2005. Probing the existence of the $E_{\text{peak}} - E_{\text{iso}}$ correlation in long gamma ray bursts. MNRAS361, L10–L14.

[13] Ghirlanda, G., Nava, L., Ghisellini, G., Firmani, C., Cabrera, J. I., Jun. 2008. The $E_{\text{peak}} - E_{\text{iso}}$ plane of long gamma-ray bursts and selection effects. MNRAS387, 319–330.

[14] Jager, R., Mels, W. A., Brinkman, A. C., Galama, M. Y., Goulooze, H., Heise, J., Lowes, P., Muller, J. M., Naber, A., Rook, A., Schuurhof, R., Schuurmans, J. J., Wiersma, G., 1997. The Wide Field Cameras onboard the BeppoSAX X-ray Astronomy Satellite. A&AS125, 557–572.

[15] Nava, L., Ghirlanda, G., Ghisellini, G., May 2009. Selection effects on GRB spectral-energy correlations. In: Meegan, C., Kouveliotou, C.,
[16] Nava, L., Ghirlanda, G., Ghisellini, G., Firmani, C., Dec. 2008. Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux. MNRAS391, 639–652.

[17] Peng, Z. Y., Ma, L., Zhao, X. H., Yin, Y., Fang, L. M., Bao, Y. Y., Jun. 2009. The E_p Evolutionary Slope Within the Decay Phase of ”Fast Rise and Exponential Decay” Gamma-Ray Burst Pulses. ApJ698, 417–427.

[18] Ryde, F., Pe’er, A., Nov. 2008. Quasi-blackbody component and radiative efficiency of the prompt emission of gamma-ray bursts. ArXiv e-prints.

[19] Shahmoradi, A., Nemiroff, R. J., Apr. 2009. The Possible Impact of GRB Detector Thresholds on Cosmological Standard Candles. ArXiv e-prints.

[20] Tavani, M., Aug. 1996. A Shock Emission Model for Gamma-Ray Bursts. II. Spectral Properties. ApJ466, 768–778.

[21] Yonetoku, D., Murakami, T., Nakamura, T., Yamazaki, R., Inoue, A. K., Ioka, K., 2004. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. ApJ609, 935–951.