ON THE RATIONALITY OF THE MODULI OF HIGHER SPIN CURVES IN LOW GENUS

LETIZIA PERNIGOTTI AND ALESSANDRO VERRA

ABSTRACT: The global geometry of the moduli spaces of higher spin curves and their birational classification is largely unknown for \(g \geq 2 \) and \(r > 2 \). Using quite related geometric constructions, we almost complete the picture of the known results in genus \(g \leq 4 \) showing the rationality of the moduli spaces of even and odd 4-spin curves of genus 3, of odd spin curves of genus 4 and of 3-spin curves of genus 4.

Key words: Rationality, Higher spin curves, Higher theta-characteristics, Low genus.

Mathematics Subject Classification (2010): 14H10, 14H45, 14E05, 14E08.

1. Introduction

Let \(C \) be a smooth, irreducible complex projective curve of genus \(g \), a theta characteristic on \(C \) is a square root \(\eta \) of the canonical sheaf \(\omega_C \). By definition a pair \((C,\eta)\) is a spin curve. It is said to be even or odd according to the parity of \(h^0(\eta) \). Starting from Cornalba’s paper \[CS9\], the moduli space \(S_g \) of spin curves of genus \(g \) and its compactifications became object of systematic investigations. As is well known \(S_g \) is split in two irreducible connected components \(S^+_g \) and \(S^-_g \). They respectively correspond to moduli of even and odd spin curves. The Kodaira dimension of \(S^+_g \) is completely known, as well as several facts about rationality or unirationality in low genus. The picture is as follows for even or odd spin curves:

- \(S^+_g \) is uniruled for \(g \leq 7 \),
- \(S^+_8 \) has Kodaira dimension zero,
- \(S^+_g \) is of general type for \(g \geq 9 \),
- \(S^-_g \) is uniruled for \(g \leq 11 \),
- \(S^-_g \) is of general type for \(g \geq 12 \).

Moreover the unirationality of \(S^-_g \) and \(S^+_g \) has been proved respectively for \(g \leq 8 \) and \(g \leq 6 \). Concerning the rationality problem, \(S^+_g \) is classically known to be rational for \(g \leq 3 \), while the rationality of \(S^+_g \) is a recent result. For more details on the above picture see \[Dol10\], \[F10\], \[FV10\], \[FV12\], \[TZ09\], \[V13\].

Higher spin curves generalize spin curves. By definition a higher spin curve of genus \(g \) and order \(r \) is a pair \((C,\eta)\) such that \(\eta^{\otimes r} \cong \omega_C \). The moduli spaces of these pairs are denoted by \(S^{1/r}_g \). They were constructed by Jarvis in \[J98\] and then studied by several authors, see for instance \[CCC07\], \[Ch08\], \[J01\].

Supported by PRIN Project 2010-11 'Geometria delle varietà algebriche' of MIUR and by GNSAGA group of INdAM.
Concerning the irreducibility of these spaces, it is useful to recall how they behave: \(S_{g/r}^1 \) is irreducible if \(r \) is odd and \(g \geq 2 \), while \(S_{g/r}^1 \) is split in two irreducible connected components if \(r \) is even and \(g \geq 2 \) \cite{[00]}. They are distinguished by the condition that \(\eta \otimes r^2 \) is an even or odd theta characteristic. However, with the exception of the case of genus 1, the global geometry of \(S_{g/r}^1 \) appears largely unknown for \(r > 2 \).

From another side a natural, elementary, remark is that for every curve \(C \) the canonical sheaf \(\omega_C \) not only admits square roots, but the roots of order \(g - 2 \) and \(g - 1 \) as well. Restricting to \(g - 1 \) roots, they form configurations of line bundles of degree two which are worth of being studied.

For \(r = g - 1 \) the forgetful map \(f : S_{g/(g-1)}^1 \rightarrow \mathcal{M}_g \) has degree \((g-1)^2\). Since this grows up very fast, it is seems natural to expect that \(S_{g/(g-1)}^1 \) becomes of general type after very few exceptions. About this, assume that \(g - 1 \) is even so that \(\eta \otimes (g-1)/2 \) is a theta characteristic. Then every irreducible component of \(S_{g/(g-1)}^1 \) dominates \(S_{g}^+ \) or \(S_{g}^- \) if \(g \) is odd, via the assignment \((C, \eta) \rightarrow (C, \eta \otimes (g-1)/2)\).

Therefore, in view of the picture on moduli of spin curves, there exist irreducible components of \(S_{g/(g-1)}^1 \) of non negative Kodaira dimension as soon as \(g \geq 8 \). In this frame the first unknown case of low genus to be considered is the genus 4 case. Somehow surprisingly this is still an exception. We prove in this note that

Theorem 1.1. The moduli space of 3-spin curves of genus 4 is rational.

Let \((C, \eta)\) be a general spin curve of genus 4 and order 3. The starting point for proving the theorem is the remark that giving \((C, \eta)\) is equivalent to give the unique effective divisor \(t \in |\eta^\otimes 2| \). Furthermore, let \(C \) be canonically embedded in \(\mathbb{P}^3 \), then \(3t \) is the complete intersection of two quadrics and a cubic surface. We show that the GIT-quotient \(Q \) of the family of these complete intersections is rational and that there is a natural birational map between \(Q \) and \(S_{1/3}^1 \).

Adding up this result to the known picture we obtain a list of cases of genus \(g \leq 4 \) where the rationality of \(S_{g/r}^1 \) is confirmed. Here is the complementary list of unknown cases for \(g \leq 4 \):

- Moduli of 4-spin curves of genus 3.
- Moduli of odd spin curves of genus 4.
- Moduli of 6-spin curves of genus 4.

In particular it seems that the case of odd spin curves of genus 4 was not considered in the literature. Notice also that \(S_{g/(2g-2)}^1 \) splits into the union of two components: the moduli of pairs \((C, \eta)\) such that \(\eta \otimes g-1 \) is an even theta characteristic and the complementary component. We will denote them respectively by

\[S_{g/(2g-2)}^1, S_{g/(2g-2)}^- \]

We will say that \((C, \eta)\) is an even (odd) \(r \)-spin curve if \(\eta \otimes r^2 \) is an even (odd) theta characteristic. In the final part of this paper we almost complete the picture of the known results in genus \(g \leq 4 \). Building on quite related geometric constructions and methods, we prove the following theorems.

Theorem 1.2. The moduli space of odd spin curves of genus 4 is rational.

Theorem 1.3. The moduli spaces of 4-spin curves of genus 3 are rational.
We have not found evidence to the uniruledness of $S_g^{1/r}$ in the only two missing cases in genus $g \leq 4$, namely for $S_4^{1/6^+}$ and $S_4^{1/6^-}$. The same lack of evidence appears for further very low values of g, say $g \leq 7$ and $r \geq 3$. Already for these cases, it could be interesting to apply some recent results on the structure of the Picard group of the Deligne-Mumford compactification of $S_g^{1/r}$ to obtain informations on the Kodaira dimension of these spaces, (cfr. for instance [P13] and [RW12]).

2. Third roots on genus 4 curves

Let (C, η) be a spin curve of genus g and order r. We will assume that C is canonically embedded in \mathbb{P}^{g-1}.

Putting $k = \lfloor \frac{g - 1}{\deg \eta} \rfloor + 1$, we have $h^0(\eta^\otimes k) \geq 1$ by Riemann-Roch. This implies that each effective divisor $t \in |\eta^\otimes k|$ satisfies the condition $rt = C \cdot F$, where F is a hypersurface of degree k. If $\deg \eta$ divides g then $\deg t = g$ and we expect that t is isolated, which is equivalent to $h^1(\eta^\otimes k) = 0$.

Let us focus on the case $g = 4$ and $r = 3$. In this situation $C \subset \mathbb{P}^3$ is a genus 4 curve of degree 6 and t is a divisor in the linear system $|\eta^\otimes 2|$. Then $3t$ is a bicanonical divisor and there exists a quadric surface S such that

$$3t = C \cdot S.$$

Lemma 2.1. Let C be a general curve of genus 4, then $h^0(\eta) = 0$ for every spin curve (C, η) of order 3.

Proof. We can assume that $C = Q \cap F$, where Q is a fixed, smooth quadric and F a cubic surface. Now assume $h^0(\eta) = 1$ for some cubic root η of ω_C. Then there exist points $x, y \in C$ such that $x + y \in |\eta|$ and $3x + 3y = C \cdot H$, where $H \in |\mathcal{O}_Q(1)|$. Let F be the family of complete intersections $3x' + 3y' = C' \cdot H'$, where $H' \in |\mathcal{O}_Q(1)|$ and $C' \in |\mathcal{O}_Q(3)|$ is smooth. It is easy to see that the action of $\text{Aut} \ Q$ on F has finitely many orbits. On the other hand, since $3x + 3y$ is a complete intersection, it follows $\dim |I_{3x+3y}(C)| = 8$, where I_{3x+3y} is the ideal sheaf of $3x + 3y$. But then, since the moduli space of C is 9-dimensional, C is not general: a contradiction. □

From now on our spin curve (C, η) will be sufficiently general. In particular we fix the following assumptions:

Assumption 2.1.

- C is a complete intersection in \mathbb{P}^3 of a smooth quadric Q and a cubic F,
- for each $x \in C$ one has $h^0(\mathcal{O}_C(3x)) = 1$,
- $h^0(\eta) = 0$ so that $h^0(\eta^\otimes 2) = 1$.

The second condition is just equivalent to say that the two g^3_4’s on C have simple ramification. The third one is satisfied iff the unique effective divisor $t \in |\eta^\otimes 2|$ is not contained in any plane.

It is clear that the locus of moduli of pairs (C, η) satisfying these assumptions is a dense open subset of $S_4^{1/3}$. It is also clear from the previous remarks that the scheme $3t$ is a complete intersection, namely

$$3t = F \cdot Q \cdot S,$$

where S is a quadric. This defines a second curve, that we denote from now on as

$$E := Q \cdot S.$$
We point out that E is uniquely defined by (C, η). E is a quartic curve of arithmetic genus one. We will denote by I_{at} the ideal sheaf in Q of the divisor at C. Let $o \in t$ be a closed point, we can fix local parameters x, y at o so that y is a local equation of C and x restricts to a local parameter in $O_{C,o}$. Then I_{at} is generated at o by x^{am} and y, where m is the multiplicity of t at o. We observe that $3t$ is a 0-dimensional scheme of length 12, embedded in the smooth curve C.

Now assume for simplicity that E is smooth. Since $3t = E \cdot C$, it follows that $3t$, a divisor in E, belongs to $|O_E(3)|$. Let us define

$$\epsilon(1) := O_E(t).$$

Since we are assuming that $h^0(O_C(t)) = 1$, we know that then t is not contained in a plane. Hence the line bundle ϵ is non trivial. On the other hand we have $3t \in |O_E(3)|$ so that $\epsilon^{\otimes 3} \cong O_E$. It follows that

Lemma 2.2. The line bundle ϵ is a non trivial 3-torsion element of $\text{Pic}^0 E$.

Actually the condition that E be smooth is satisfied as soon as the the pair (C, η) is sufficiently general. This is proven in the next theorem, where some useful conditions, satisfied by a general pair (C, η), are summarized.

Theorem 2.3. On a dense open set $U \subset S_4^{1/3}$ every point is the moduli point of a spin curve (C, η) such that:

1) (C, η) is general as in assumption 2.1,
2) E is a smooth quartic elliptic curve,
3) t is a smooth divisor of E,
4) $t \in |\epsilon(1)|$, where ϵ is a non trivial third root of O_E.

Proof. We use the irreducibility of $S_g^{1/r}$ when r is odd and $g \geq 2$, [00]. The space $S_4^{1/3}$ is irreducible, so that every non-empty open subset of it is dense. Conditions 1), 2), 3) and 4) are open on families of triples (C, η, E) and hence they define open subsets of $S_4^{1/3}$. We already know that the open set defined by 1) is not empty. Therefore, to prove the theorem, it suffices to produce one pair (C, η) satisfying 2), 3), 4). We start from a smooth elliptic quartic E. We have $E = Q \cdot S \subset P^3$, where Q, S are smooth quadrics. Let $\epsilon \in \text{Pic}^0 E$ be a non trivial element such that $\epsilon^{\otimes 3} \cong O_E$. Since $\epsilon(1)$ is very ample, a general $t \in |\epsilon(1)|$ is smooth and not contained in a plane. Note that $3t \in |O_E(3)|$. Then, since E is projectively normal, we have

$$3t = Q \cdot S \cdot F$$

where F is a cubic surface. Let I_{3t} be the ideal sheaf of $3t$ in Q, then we have $h^0(I_{3t}(3)) = 5$. Moreover the base locus of $|I_{3t}(3)|$ is $3t$. Hence, by Bertini theorem, a general $C \in |I_{3t}(3)|$ is smooth along $C - t$. To prove that a general C is smooth along t it suffices to produce one element with this property. This is the case for $E + L$, where L is a general plane section. Let $C \in |I_{3t}(3)|$ be smooth and let $\eta := O_C(1 - t)$. Then (C, η) is a spin curve of order 3 satisfying 2), 3), 4). \qed

3. Projective bundles related to $S_4^{1/3}$

Let (C, η) be a general spin curve of order 3 and genus 4. We keep the previous conventions, so that C is canonically embedded in P^3 as $Q \cap F$.

It follows from the above theorem that the moduli point \([C, \eta]\) uniquely defines, up to isomorphisms, a triple \((E, \epsilon, t)\) such that \(E\) is a smooth quartic elliptic curve in \(\mathbb{P}^3\) and \(\epsilon\) is a non trivial third root of \(\mathcal{O}_E\).

Moreover \(t\) is a smooth element of \(|\epsilon(1)|\) and \(3t\) is a complete intersection

\[3t = C \cdot E = F \cdot Q \cdot S \subset \mathbb{P}^3,\]

where \(S\) is a quadric. As a divisor in \(C\), \(t\) is the the unique element of \(|\eta^{\otimes 2}|\). In order to prove the rationality of \(S_{4}^{1/3}\) our strategy is as follows. We consider the moduli space of elliptic curves \(E\) endowed with a non trivial 3-torsion element of \(\text{Pic}^0 E\), namely

\[\mathcal{R}_{1,3} := \{[E, \epsilon] \mid g(E) = 1, \quad \epsilon \not\in \mathcal{O}_E, \quad \epsilon^{\otimes 3} \cong \mathcal{O}_E\}.\]

Over it we have the moduli space \(\mathcal{P}_{1,4}\) of triples \((E, \epsilon, H)\) such that \(H \in \text{Pic}^4 E\). This can be also defined via the Cartesian square

\[
\begin{array}{ccc}
\mathcal{P}_{4,1} & \longrightarrow & \mathcal{P} \text{i}c_{4,1} \\
\downarrow & & \downarrow \\
\mathcal{R}_{1,3} & \longrightarrow & \mathcal{M}_1.
\end{array}
\]

As usual, \(\mathcal{P} \text{i}c_{4,1}\) denotes the universal Picard variety, that is, the moduli space of pairs \((H, E)\) such that \(E\) is an elliptic curve and \(H \in \text{Pic}^4 E\).

The space \(\mathcal{P}_{4,1}\) is a rational surface. Proving its unirationality, so that the rationality follows, is easy. Starting from \(\mathcal{P}_{4,1}\) we construct a suitable “tower”

\[
P_c \xrightarrow{\epsilon} P_b \xrightarrow{b} P_a \xrightarrow{a} \mathcal{P}_{4,1}
\]

of projective bundles \(a, b, c\). Clearly, as a “tower” of projective bundles over a rational base, \(P\) is rational. Let \(\psi : S_{4}^{1/3} \to \mathcal{P}_{4,1}\) be the rational map defined as follows: \(\psi([C, \eta]) := [E, \epsilon]\). Then we will show that \(\psi\) factors through a natural birational map between \(S_{4}^{1/3}\) and \(P_c\), so proving that \(S_{4}^{1/3}\) is rational. In the next subsections we produce the projective bundles which are needed.

3.1. The ambient bundle \(\mathbb{P}\). Let us start with the universal elliptic curve over \(\mathcal{M}_1\) and its pull-back \(\mathcal{E} \to \mathcal{R}_{1,3}\). As is well known there exists a Poincaré bundle \(\mathcal{P}\) on the fibre product \(\mathcal{P}_{4,1} \times_U \mathcal{E}\), where \(U \subset \mathcal{R}_{1,3}\) is a suitable dense open set. In particular the restriction of \(\mathcal{P}\) to the fibre at \([E, \epsilon, H]\) of the projection map

\[\alpha : \mathcal{P}_{4,1} \times_U \mathcal{E} \to \mathcal{P}_{4,1}\]

is given by \(\mathcal{P} \otimes \mathcal{O}_{\mathcal{P}_{4,1}} \otimes \mathcal{E} \cong H\). Note that \((\alpha_{\mathcal{P}})[E, \epsilon, H] = H^0(H)\) has constant dimension 4. Let \(\mathcal{H} := \alpha_{\mathcal{P}}\); then, by Grauert’s theorem, \(\mathcal{H}\) is a vector bundle of rank 4 over \(\mathcal{P}_{4,1}\). We define the the ambient bundle \(\mathbb{P}\) as follows:

\[\mathbb{P} := \mathcal{P} \mathcal{H}^*.
\]

Its structure map will be denoted as \(p : \mathbb{P} \to \mathcal{P}_{4,1}\). It is a \(\mathbb{P}^2\)-bundle over \(\mathcal{P}_{4,1}\). In particular, the tautological bundle \(\mathcal{O}_{\mathbb{P}}(1)\) defines an embedding

\[\mathcal{P}_{4,1} \times_U \mathcal{E} \subset \mathbb{P}.
\]

At \(x := [E, \epsilon, H]\) this is the embedding \(E \subset \mathbb{P}_{x} = \mathbb{P} H^0(H)^*\) defined by \(H\).
3.2. The bundle of quadrics $a : \mathbb{P}_a \to \mathcal{P}_{a,1}$. Let us consider the map
\[\mu : \text{Sym}^2 \mathcal{H} \to \alpha_*(\mathcal{P} \otimes 2) \]
of vector bundles on $\mathcal{P}_{a,1}$. At $x := [E, \epsilon, H]$ we have $\alpha_*(\mathcal{P} \otimes 2)_x = H^0(H \otimes 2)$ and
\[\mu_x : \text{Sym}^2 H^0(H) \to H^0(H \otimes 2) \]
is the multiplication map. Putting $Q := \ker \mu$ and $\mathbb{P}_a := \mathbb{P}Q$, we denote as
\[a : \mathbb{P}_a \to \mathcal{P}_{a,1} \]
the structure map. The bundle a is a \mathbb{P}^1-bundle and the fibre \mathbb{P}_x parametrizes the quadrics containing the tautological embedding $E \subset \mathbb{P}_x$ defined by H.

3.3. The \mathbb{P}^3-bundle $b : \mathbb{P}_b \to \mathbb{P}_a$. At first we define the \mathbb{P}^3-bundle
\[e : \mathbb{P}_c \to \mathcal{P}_{4,1}. \]
Its fibre $\mathbb{P}_{c,x}$ will be $[\epsilon \otimes H]$ at $x := [E, \epsilon, H]$. On $\mathcal{P}_{a,1} \times U \mathcal{E}$ we fix a vector bundle \mathcal{N} whose restriction to the fibre of $\alpha : \mathcal{P}_{a,1} \times U \mathcal{E} \to \mathcal{P}_{a,1}$ at x is
\[\mathcal{N} \otimes \mathcal{O}_{\alpha^*x} \cong \epsilon. \]
The construction of \mathcal{N} is standard: let $\beta : \mathcal{P}_{a,1} \times U \mathcal{E} \to \mathcal{R}_{1,3} \times U \mathcal{E}$ be the natural map. Then we define $\mathcal{N} := \beta^* \mathcal{L}$, where \mathcal{L} is a Poincaré bundle on $\mathcal{R}_{1,3} \times U \mathcal{E}$. Note that \mathcal{L} restricted to the fibre at $[E, \epsilon]$ of the projection $\gamma : \mathcal{R}_{1,3} \times U \mathcal{E} \to \mathcal{R}_{1,3}$ is the line bundle ϵ. We consider the tensor product $\mathcal{H} \otimes \mathcal{N}$ and finally $\alpha_*(\mathcal{H} \otimes \mathcal{N})$. The latter is a rank 4 vector bundle with fibre $H^0(\mathcal{H} \otimes \epsilon)$ at x. We define
\[\mathbb{P}_b := a^* \mathbb{P}\alpha_*(\mathcal{H} \otimes \epsilon). \]
The bundle \mathbb{P}_b is a \mathbb{P}^3-bundle over \mathbb{P}_a. The fibre at x of the map $a \circ b : \mathbb{P}_b \to \mathcal{P}_{a,1}$ is the Segre product $[\epsilon \otimes H] \times [I_3(2)]$, where I_3 is the ideal sheaf of the embedding $E \subset \mathbb{P}_x$.

3.4. The \mathbb{P}^4-bundle $c : \mathbb{P}_c \to \mathbb{P}_b$. In the fibre product $\mathbb{P}_b \times \mathcal{P}_{a,1}$ we define the following subvarieties
\[t \subset E \subset Q \subset \mathbb{P}_b \times \mathcal{P}_{a,1}. \]
Let $o \in \mathbb{P}_b \times U \mathbb{P}$, then o defines a pair (x, z) where $z \in \mathbb{P}_x$ and $x := a \circ b(o) = [E, \epsilon, H]$. Moreover, the point o is an element $t \in [\epsilon \otimes H]$ of the fibre of \mathbb{P}_b at $b(o)$. Finally $b(o)$ is an element $Q \in [I_3(2)]$, where I_3 is the ideal sheaf of the tautological embedding $E \subset \mathbb{P}_x$. Clearly we have $t \subset E \subset Q$.

The conditions $z \in t$, $z \in E$, $z \in Q$ respectively define the closed sets t, E, Q. In particular E is a natural embedding of $\mathcal{P}_{1,4} \times U \mathcal{E}$ in $\mathbb{P}_b \times \mathcal{P}_{a,1}$ and t is a Weil divisor in E. Let us consider the standard exact sequence
\[0 \to I_{3t} \to \mathcal{O}_Q \to \mathcal{O}_{3t} \to 0 \]
where I_{3t} is the ideal sheaf of t in Q. We pull-back the line bundle $\mathcal{O}_Q(3)$ to the fibre product $\mathbb{P}_b \times \mathcal{P}_{a,1}$ and tensor the above exact sequence by it. The resulting exact sequence is denoted in the following way:
\[0 \to I_{3t}(3) \to \mathcal{O}_Q(3) \to \mathcal{O}_{3t}(3) \to 0. \]
Let $\beta : \mathbb{P}_b \otimes \mathbb{P} \to \mathbb{P}_b$ be the projection onto \mathbb{P}_b. Then we apply the push-down functor β_* to this new exact sequence. We obtain the exact sequence
\[0 \to \beta_* I_{3t}(3) \to \beta_* \mathcal{O}_Q(3) \to \beta_* \mathcal{O}_{3t}(3) \to R^1 \beta_* I_{3t}(3) = 0. \]
Here the sheaf $R^1\beta_*\mathcal{I}_{3t}(3)$ is zero because at any point $p = (t, Q, [E, \epsilon, H]) \in \mathbb{P}_b$ its fibre is $H^1(\mathcal{I}_{3t/Q}(3)) = 0$. Notice also that the sheaf $\mathcal{F} := \beta_*\mathcal{I}_{3t}(3)$ is a rank 5 vector bundle with fibre $H^0(\mathcal{I}_{3t/Q}(3))$ at the same point p. Finally we define

$$P_c := \mathbb{P}\mathcal{F}.$$

We denote the structure map of this \mathbb{P}^4-bundle as $c : P_c \to \mathbb{P}_b$. The fibre of c at p is the linear system of cubic sections C of Q containing the scheme $3t \subset E$. Notice that a smooth C is a canonical curve of genus 4 endowed with the order 3 spin structure $\eta := \omega_C(-t)$.

4. The rationality of $S_{4}^{1/3}$

Let $\mathcal{I}_{2t/\mathbb{P}^3}$ be the ideal sheaf of $2t \subset C \subset \mathbb{P}^3$. Notice also that

Lemma 4.1. $|\mathcal{I}_{2t/\mathbb{P}^3}(2)|$ is a pencil of quadrics with base locus E.

Proof. Observe that $\omega_{C}^{\otimes 2}(-2t) \cong \eta^{\otimes 2}$. Moreover, this is also the sheaf $\mathcal{I}_{2t/C}(2)$. Consider the standard exact sequence of ideal sheaves

$$0 \to \mathcal{I}_{C/\mathbb{P}^3}(2) \to \mathcal{I}_{2t/\mathbb{P}^3}(2) \to \eta^{\otimes 2} \to 0.$$

Since we have $h^0(\mathcal{I}_{C/\mathbb{P}^3}(2)) = h^0(\eta^{\otimes 2}) = 1$, the statement follows. \[\square\]

Due to the latter construction there exists a natural moduli map

$$\phi : P_c \to S_{4}^{1/3}$$

which sends a point $z = (C, t, Q, [E, \epsilon, H]) \in P_c$ to the point

$$\phi(z) := (C, \eta),$$

with $\eta = \omega_C(-t)$. Clearly ϕ is defined at z iff C is smooth. Since P_c is rational we can finally deduce the rationality of $S_{4}^{1/3}$, stated in the Introduction. We show that

Theorem 4.2. The map $\phi : P_c \to S_{4}^{1/3}$ is birational, so that $S_{4}^{1/3}$ is rational.

Proof. At first we show that the map ϕ is dominant. Starting with a general point $[C, \eta] \in S_{4}^{1/3}$ it is possible to reconstruct a point $z = (C, t, Q, [E, \epsilon, H]) \in P_c$ such that $\phi(z) = [C, \eta]$. Indeed t is the unique element of $|\eta^{\otimes 2}|$. Then, from the canonical embedding $C \subset \mathbb{P}^3$, we reconstruct E as the smooth base locus of the pencil of quadrics $|\mathcal{I}_{2t}(2)|$, considered above. Then we have $H := O_E(1)$ and $\epsilon := H(-t)$. The quadric Q is the unique quadric of $|\mathcal{I}_{2t/\mathbb{P}^3}(2)|$ containing C. It is clear that $[C, \eta] = \phi(z)$, with $z = (C, t, Q, [E, \epsilon, H])$. Conversely the inverse map of ϕ is well-defined too. Starting from a general $[C, \eta]$ the point z is indeed uniquely reconstructed as above. Hence ϕ^{-1} is well defined and ϕ is birational. \[\square\]

In the next sections we prove the other rationality results announced in the Introduction.
5. The rationality of S_4^-

We start from an odd spin curve (C,η) of genus 4. As in the previous sections, C will be sufficiently general. Thus, passing to its canonical model, we have

$$C \subset Q \subset \mathbb{P}^3,$$

where $Q = \mathbb{P}^1 \times \mathbb{P}^1$ is a smooth quadric and C has bidegree $(3, 3)$ in it. Since η is odd, there exists a unique $d \in |\eta|$ and we have

$$2d = L \cdot C,$$

where L is a plane section of Q and a conic tritangent to C. The condition that both d and L be smooth clearly defines an open set $U \subset S_4^-$. Furthermore it is easily seen that $U \neq \emptyset$. Then, since S_4^- is irreducible, the next lemma follows.

Lemma 5.1. For a general C both the divisor d and the conic L are smooth.

Let o_1, o_2, o_3 be the three points of d. They are not collinear because $h^0(\eta) = 1$. Hence we can fix projective coordinates $(x_0 : x_1) \times (y_0 : y_1)$ on $\mathbb{P}^1 \times \mathbb{P}^1$ so that

$$o_1 = (1 : 0) \times (1 : 0), \quad o_2 = (0 : 1) \times (0 : 1), \quad o_3 = (1 : 1) \times (1 : 1).$$

In particular we can assume that these points are in the diagonal

$$L := \{x_0y_1 - x_1y_0 = 0\}$$

of $\mathbb{P}^1 \times \mathbb{P}^1$. Let \mathcal{I}_{2d} be the ideal sheaf of $2d$ in $\mathbb{P}^1 \times \mathbb{P}^1$ and let

$$I := H^0(\mathcal{I}_{2d}(3, 3)).$$

We consider the 9-dimensional linear system $\mathcal{I}I$. This is endowed with the map

$$m : \mathcal{I}I \to S_4^-$$

defined as follows. Let $C \in \mathcal{I}I$ be smooth, then $m(C) := [C, \eta]$, where $\eta := \mathcal{O}_C(o_1 + o_2 + o_3)$. It is clear from the construction that m is dominant. Let

$$G \subset \text{Aut} \mathbb{P}^1 \times \mathbb{P}^1$$

be the stabilizer of the set $\{o_1, o_2, o_3\}$. We have:

Lemma 5.2. Assume $C_1, C_2 \in \mathcal{I}I$ are smooth. Then $m(C_1) = m(C_2)$ if and only if $C_2 = \alpha(C_1)$ for some $\alpha \in G$.

Proof. Let $m(C_i) = [C_i, \eta_i], \ i = 1, 2$. If $m(C_1) = m(C_2)$ there exists a birational map $\alpha : C_2 \to C_1$. Since $\mathcal{O}_{C_i}(1, 1) \cong \omega_{C_i}$, it follows that α induces an isomorphism $a^* : H^0(\mathcal{O}_{C_1}(1, 1)) \to H^0(\mathcal{O}_{C_2}(1, 1))$. This implies that a is induced by some $\alpha \in \text{Aut} \mathbb{P}^1 \times \mathbb{P}^1$. Furthermore, the condition $m(C_1) = m(C_2)$ also implies that $a^*\mathcal{O}_{C_2}(o_1 + o_2 + o_3) \cong \mathcal{O}_{C_1}(o_1 + o_2 + o_3)$. Hence $\alpha \in G$. The converse is obvious. \(\square\)

Now observe that G acts, in the natural way, on $\mathcal{I}I$ and that $m : \mathcal{I}I \to S_4^-$ is dominant. Then, as an immediate consequence of the previous lemma, we have

Corollary 5.3. S_4^- is birational to the quotient $\mathcal{I}I/G$.

Thus the rationality of S_4^- follows if $\mathcal{I}I/G$ is rational. In order to prove this, we preliminarily describe the group G and its action on $\mathcal{I}I$. We recall that the natural inclusion $\text{Aut} \mathbb{P}^1 \times \text{Aut} \mathbb{P}^1 \subset \text{Aut} \mathbb{P}^1 \times \mathbb{P}^1$ induces the exact sequence

$$0 \to \text{Aut} \mathbb{P}^1 \times \text{Aut} \mathbb{P}^1 \to \text{Aut} \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{Z}_2 \to 0,$$
where \mathbb{Z}_2 is generated by the class of the projective involution
\[\iota : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1 \]
exchanging the factors. From the above exact sequence we have the exact sequence
\[0 \to G_3 \to G \to \mathbb{Z}_2 \to 0. \]
Here G_3 denotes the stabilizer of the set $O := \{o_1, o_2, o_3\}$ in $\text{Aut} \mathbb{P}^1 \times \text{Aut} \mathbb{P}^1$. Since O is a subset of the diagonal L, L itself is fixed by G_3. In particular it follows that G_3 is the diagonal embedding in $\text{Aut} \mathbb{P}^1 \times \text{Aut} \mathbb{P}^1$ of the stabilizer of $\{o_1, o_2, o_3\}$ in $\text{Aut} L$. As is very well known, this is a copy of the symmetric group S_3.

Now we proceed to an elementary and explicit description of the G-invariant subspaces of $\mathbb{P} I$. From it the rationality of $\mathbb{P} I / G$ will follow. We fix the notation $l := x_0y_1 - x_1y_0$ for the equation of the diagonal L. Let
\[R = \oplus_{a, b \in \mathbb{Z}} R_{a, b} \]
be the coordinate ring of $\mathbb{P}^1 \times \mathbb{P}^1$, where $R_{a, b}$ is the vector space of forms of bidegree a, b. We can assume that $\iota^* : R \to R$ is the involution such that $\iota^* x_i = y_i, i = 0, 1$. On the other hand let
\[h_1 := x_0(y_1 - y_0) + y_0(x_1 - x_0), \ h_2 := x_1(y_1 - y_0) + y_1(x_0 - x_1), \ h_3 := x_0y_1 + x_1y_0, \]
so that $\{l, h_1, h_2, h_3\}$ is a basis of $R_{1, 1}$. We can also assume that, for each $\sigma \in G_3$, the map $\sigma^*: R \to R$ is such that $\sigma^* l = l$ and σ^* permutes the elements of the set $\{h_1, h_2, h_3\}$. Then we observe that the eigenspaces of $\iota^*: R_{1, 1} \to R_{1, 1}$ are
\[R_{1, 1}^+ = l, \ R_{1, 1}^- = h_1, h_2, h_3 \]
This implies that
\[R_{1, 1} = l \oplus h_1 + h_2 + h_3 \oplus h_1 - h_3, h_2 - h_3 \]
where all the summands are G-invariant. Considering the multiplication map
\[\mu : \text{Sym}^2 R_{1, 1} \to R_{2, 2} \]
one can check that
\[\text{Ker} \mu = l^2 - (h_1 - h_3)(h_2 - h_3). \]
Then, putting $h := h_1 + h_2 + h_3$ and $h_{ij} := h_i - h_j$, it is easy to deduce that the eigenspaces of $\iota^*: R_{2, 2} \to R_{2, 2}$ decompose as follows:
\[R_{2, 2}^+ = h^2 \oplus h_{13}, \ hh_{23} \oplus h_{13}^2, \ h_{23}^2 \oplus h_{13} h_{23} \]
and
\[R_{2, 2}^- = lh \oplus lh_{13}, \ lh_{23}, \]
where each summand appearing above is G-invariant. Finally, we consider the vector space I and observe that, taking the multiplication by l, we have an injection
\[l < l > \cap R_{2, 2} \to I. \]
Its image $lR_{2, 2} \subset I$ is a subspace codimension one. Moreover we have
\[lR_{2, 2}^+ \subseteq I^-, \ lR_{2, 2}^- \subseteq I^+, \]
where I^+, I^- are the eigenspaces of $\iota^*: I \to I$. Let us consider
\[c = x_0x_1(x_0 - x_1) + y_0y_1(y_0 - y_1). \]
Notice that $c \in I$ and that $\text{div}(c)$ is G-invariant. Indeed, $\text{div}(c)$ is the union of the six lines in the quadric $Q = \mathbb{P}^1 \times \mathbb{P}^1$ passing through the points o_1, o_2, o_3. Notice also that c is not in $lR_{Q,2}$, in particular $I = \langle c \rangle \oplus lR_{Q,2}$. Notice also that $\iota^*c = c$.

Summing all the previous remarks up, we can finally describe the eigenspaces of $\iota^*: I \to I$ and their decompositions as a direct sum of G-invariant summands.

Lemma 5.4. Let I^+, I^- be the eigenspaces of $\iota^*: I \to I$, then we have

- $I^+ = \langle c \rangle \oplus \langle l^2h > \oplus \langle l^2h_{13}, l^2h_{23} >$,
- $I^- = \langle lh^2 > \oplus \langle lh_{13}, lh_{23} > \oplus \langle lh_{13}^2, lh_{23}^2 > \oplus \langle lh_{13}h_{23} >$,

where each summand is an irreducible representation of G.

Now it is straightforward to conclude. For instance let us consider

$$B := \mathbb{P}I^+ \times \mathbb{P}I^-$$

and then the variety

$$\mathbb{P} := \{(x, p) \in \mathbb{P}I \times B \mid x \in \mathbb{P}_p \subset \mathbb{P}I \times B,$$

where $p := (p^+, p^-) \in \mathbb{P}I^+ \times \mathbb{P}I^-$ and \mathbb{P}_p denotes the line joining p^+ and p^-. The variety \mathbb{P} is endowed with its two natural projections

$$\mathbb{P}I \overset{\beta}{\leftarrow} \mathbb{P} \overset{\alpha}{\twoheadrightarrow} B.$$

Note that $\beta: \mathbb{P} \to \mathbb{P}I$ is birational, since there exists a unique line \mathbb{P}_p passing through a point in $\mathbb{P}I - (\mathbb{P}I^+ \cup \mathbb{P}I^-)$. Moreover

$$\alpha: \mathbb{P} \to B$$

is a \mathbb{P}^1-bundle structure with fibre \mathbb{P}_p at the point $p = (p^+, p^-) \in B$. It is also clear that the action of G on $\mathbb{P}I$ induces an action of G on \mathbb{P} and that

$$\mathbb{P}I/G \cong \mathbb{P}/G.$$

More precisely, the map ι^* acts as the identity on B, since its two factors are projectivized eigenspaces of ι^*. Moreover each fibre \mathbb{P}_p of α is ι^*-invariant. Indeed ι^*/\mathbb{P}_p is a projective involution with fixed points p^+, p^- on the line \mathbb{P}_p.

Note that the induced action of G_3 on B is faithful, since the 2-dimensional summands of I^\pm are standard representations of S_3. Furthermore G_3 acts linearly on the fibres of $\alpha: \mathbb{P} \to B$.

Indeed consider any $\phi \in G_3$ and any $p = (p^+, p^-) \in B$. Then $\phi(\mathbb{P}_p)$ is the line $\mathbb{P}_{\phi(p)}$, where $\phi(p) = (\phi(p^+), \phi(p^-))$. In particular the map $\phi/\mathbb{P}_p: \mathbb{P}_p \to \mathbb{P}_{\phi(p)}$ is a projective isomorphism. Let

$$\overline{\mathbb{P}} := \mathbb{P}/G_3.$$

Then the latter remarks imply that $\alpha: \mathbb{P} \to B$ descends to a \mathbb{P}^1-bundle

$$\overline{\alpha}: \overline{\mathbb{P}} \to B/G_3$$

over a non empty open set $U \subset B/G_3$. Now let us consider $\iota \in G$ and the involution $\iota : \mathbb{P} \to \mathbb{P}$ due to the action of G on \mathbb{P}. It is clear from the previous construction that ι descends to an involution

$$\overline{\iota}: \overline{\mathbb{P}} \to \overline{\mathbb{P}},$$

which is fixing each fibre of $\overline{\alpha}$ and acts linearly on it. Passing to the quotient

$$\hat{\mathbb{P}} := \overline{\mathbb{P}}/\langle \overline{\iota} \rangle,$$

it follows that $\overline{\alpha}$ induces a \mathbb{P}^1-bundle structure $\hat{\alpha}: \hat{\mathbb{P}} \to B/G_3$.

Remark 5.1. Actually $\hat{\alpha}$ has two natural sections $s^\pm : B/G_3 \to \hat{P}$. They are defined as follows: let $\overline{\sigma} \in B/G$ be the orbit of $p = (p^+, p^-) \in B$. Then the fixed points of $\overline{\tau} : \overline{P} \to \overline{P}^\pm$ are the orbits \overline{P}^\pm of p^+, p^-. Passing to the quotient by $\overline{\tau}$ they define two distinguished points $\hat{p}^+, \hat{p}^- \in \hat{P}$, by definition $\hat{p}^\pm = s^\pm(\overline{\sigma})$.

Theorem 5.5. The quotient \mathbb{P}/G is rational.

Proof. Since $\mathbb{P}/G \cong \hat{P}$ and $\hat{\alpha} : \hat{P} \to B/G_3$ is a \mathbb{P}^1-bundle, the preceding remarks imply that $\mathbb{P}/G \cong B/G_3 \times \mathbb{P}^1$. Hence it remains to show the rationality of B/G_3. This is now straightforward: we have $B = PI^+ \times PI^-$ and G_3 acts linearly on both factors. Considering B as the trivial projective bundle over PI^+, it follows that B/G_3 is a \mathbb{P}^2-bundle over PI^+/G_3. The rationality of PI^+/G_3 is a standard property. Since $PI^+ = \mathbb{P}^1$, it is easily proven considering the decomposition of I^+ as a sum of irreducible representations of G_3. Hence B/G_3 is rational. \(\square\)

We have already proved that S^4_1 is birational to \mathbb{P}/G. Hence it follows:

Corollary 5.6. The moduli space of odd spin curves of genus 4 is rational.

6. The rationality of S^{4-4}_3

The rationality result to be proven in this section naturally relies on the geometry of odd spin curves of genus 4 considered above. To see this relation let us fix from now on a general curve C of genus three and two distinct points $n_1, n_2 \in C$. As is well known, the line bundle $\omega_C(n_1 + n_2)$ defines a morphism

$$\phi : C \to C_n \subset Q \subset \mathbb{P}^3$$

where $C_n := \phi(C)$ and $Q := \mathbb{P}^1 \times \mathbb{P}^1$ is a smooth quadric. ϕ is an embedding on $C - \{n_1, n_2\}$. Moreover C_n is a curve of bidegree $(3, 3)$ in $\mathbb{P}^1 \times \mathbb{P}^1$ with exactly one node $n := \phi(n_1) = \phi(n_2)$, see [GL86]. The condition that $\mathcal{O}_C(n_1 + n_2)$ is a theta characteristic is reflected by the projective model C_n as follows:

Lemma 6.1. Let R_1 and R_2 be the two lines of Q passing through the node n. Then the following conditions are equivalent:

- R_1, R_2 are tangent to the branches of n, that is $\phi^* R_i = 2n_i + n_j$ for $i \neq j$.
- $\mathcal{O}_C(n_1 + n_2)$ is a theta characteristic.

We omit for brevity the standard proof of this lemma. Assume now that $[C, \eta]$ is a general point of S^{4-4}_3 so that $\eta^{\otimes 2}$ is an odd theta characteristic on C. This is equivalent to say that there exist two distinct points $n_1, n_2 \subset C$ such that

$$\mathcal{O}_C(n_1 + n_2) \cong \eta^{\otimes 2} \quad \text{and} \quad \eta^{\otimes 6} \cong \omega_C(n_1 + n_2) \cong \mathcal{O}_C(3n_1 + 3n_2).$$

Considering the morphism ϕ defined by $\eta^{\otimes 6}$, we have as above that its image

$$C_n \subset Q \subset \mathbb{P}^3$$

is a curve with exactly one node $n = \phi(n_1) = \phi(n_2)$ and no other singular point. Now we observe that the linear system $|\eta^{\otimes 6}|$ contains the two distinct elements:

- $3n_1 + 3n_2$, where $n_1 + n_2 \in |\eta^{\otimes 2}|$,
- $2o_1 + 2o_2 + 2o_3$, where $o_1 + o_2 + o_3 \in |\eta^{\otimes 3}|$.

Lemma 6.2. One has $h^0(\eta) = 0$, so that $h^0(\mathcal{O}_C(o_1 + o_2 + o_3)) = 1$.

Proof. If \(h^0(\eta) \geq 1 \) then \(\eta \cong \mathcal{O}_C(p) \) for some point \(p \in C \). But then \(4p \in |\omega_C| \), which is impossible on a general \(C \) of genus 3. Now observe that \(\omega_C(-o_1-o_2-o_3) \cong \eta \). Since \(h^0(\eta) = 0 \) it follows \(h^0(\mathcal{O}_C(o_1+o_2+o_3)) = 1 \) by Riemann-Roch.

Lemma 6.3. The points \(o_1, o_2, o_3 \) are distinct and \(\{o_1 o_2 o_3\} \cap \{n_1 n_2\} = \emptyset \). Moreover one has \(2o_1 + 2o_2 + 2o_3 = L \cdot C_n \) where \(L \in |\mathcal{O}_Q(1)| \) is smooth.

Proof. It suffices to produce one pair \((C, \eta)\) satisfying the statement. Fix in \(\mathbb{P}^2 \) five general points \(o_1, o_2, o_3, n_1, n_2 \) and let \(L \) be the conic through them. Consider the linear system \(\Sigma \) of all quartics \(C \) which are tangent to \(L \) at \(o_1, o_2, o_3 \) and tangent to the line \(<n_1, n_2> \) at \(n_1, n_2 \). It is easy to check that the general \(C \in \Sigma \) is smooth. Let \(\eta = \mathcal{O}_C(o_1 + o_2 + o_3 - n_1 - n_2) \), then \((C, \eta)\) satisfies the statement.

Remark 6.1. As above let \(\mathcal{O}_C(n_1 + n_2) \) be an odd theta characteristic and let \(C_n \subset \mathbb{P}^3 \) be the image of the map defined by \(|\omega_C(n_1 + n_2)| \). It follows from the previous discussion that there exists a bijection between the set of square roots \(\eta \) of \(\mathcal{O}_C(n_1+n_2) \) and the set of tritangent planes \(P \) to \(C_n - \{n\} \). This bijection associates to \(P \) the line bundle \(\eta = \mathcal{O}_C(o_1 + o_2 + o_3 - n_1 - n_2) \), where \(P \cdot C_n = 2o_1 + 2o_2 + 2o_3 \).

To prove the rationality result of this section we proceed as in the previous one. We fix coordinates \((x_0 : x_1) \times (y_0 : y_1)\) on \(Q \) so that \(o_1 = (1:0:1:0), o_2 = (0:1:0:1) \) and \(o_3 = (1:1,1:1) \). Then we observe that the diagonal \(L = \{x_0 y_1 - x_1 y_0\} \) is tritangent to the the previous curve \(C_n \) at \(o_1, o_2, o_3 \) and that \(n \in Q - L \). Keeping the notations of the previous section we consider the linear system \(\mathbb{P}^1 \). \(C_n \) is in the family of the singular elements of \(\mathbb{P}^1 \). Let

\[
U := Q - L,
\]

for each \(n \in U \) we consider the 4-dimensional linear system

\[
\mathbb{F}_n
\]

of all curves \(D \) of bidegree \((3,3)\) such that:

1. \(2o_1 + 2o_2 + 2o_3 \subset L \cdot D \),
2. \(D \) has multiplicity \(\geq 2 \) at \(n \),
3. \(R_i \cdot D = 3n \) for \(i = 1, 2 \), where \(R_1 \) and \(R_2 \) are the lines of \(Q \) through \(n \).

Condition (1) implies the inclusion \(\mathbb{F}_n \subset \mathbb{P}^1 \). We consider the incidence correspondence

\[
\mathbb{F} := \{(D,n) \in \mathbb{P}^1 \times U \mid D \in \mathbb{F}_n\}
\]

together with its two projection maps

\[
\mathbb{P}^1 \xleftarrow{\pi_1} \mathbb{F} \xrightarrow{\pi_2} U
\]

Note that \(\mathbb{F} \) is a \(\mathbb{P}^1 \)-bundle via the map \(\pi_2 : \mathbb{F} \rightarrow U \). On the other hand the closure of \(\pi_1(\mathbb{F}) \) is the locus of singular elements of \(\mathbb{P}^1 \). Now we define a rational map

\[
m : \mathbb{F} \rightarrow S^{1/4}_{\mathbb{G}}
\]

as follows. Let \(C_n \in \mathbb{F}_n \) be nodal with exactly one node \(n \), so that its normalization \(\nu : C \rightarrow C_n \) is of genus 3. Defining \(\eta := \nu^* \mathcal{O}_C(o_1 + o_2 + o_3 - \nu^* n) \), one has by definition

\[
m(C_n) := [C, \eta].
\]

Note that the group \(\mathbb{G} \), defined as in the previous section, acts on \(\mathbb{F} \) in the natural way. The action of \(\alpha \in \mathbb{G} \) on \(\mathbb{F} \) is the isomorphism \(f_\alpha : \mathbb{F} \rightarrow \mathbb{F} \) sending \((D,n) \in \mathbb{F} \)
to $(\alpha(D), \alpha(n))$. The proof of the next lemma is completely analogous to the proof of Lemma 6.2 and hence we omit it. The corollary is immediate.

Lemma 6.4. Let $D_1, D_2 \in \mathbb{F}$. Then $m(D_1) = m(D_2)$ iff there exists $\alpha \in G$ such that $\alpha(D_1) = \alpha(D_2)$.

Corollary 6.5. The quotient \mathbb{F}/G is birational to $S^{1/4-}_3$.

Finally we can deduce that

Theorem 6.6. $S^{1/4-}_3$ is rational.

Proof. It is easy to see, and it follows from the analysis of the previous section on the action of G on \mathbb{P}^1, that the action of G on F is faithful and linear between the fibres of \mathbb{F}. Hence the \mathbb{P}^1-bundle $\pi_2 : \mathbb{F} \to U$ descends to a \mathbb{P}^1-bundle $\mathbb{F} \to U/G$, which is just \mathbb{F}/G. But U/G is rational, since it is a unirational surface, therefore $\mathbb{F} = \mathbb{F}/G$ is rational. Then, by the previous corollary, $S^{1/4-}_3$ is rational. □

7. The rationality of $S^{1/4+}_3$

Let us recall that, for any smooth curve C and any divisor e of degree two on it, the line bundle $\omega_C(e)$ is very ample iff $h^0(\mathcal{O}_C(e)) = 0$. Let C be a general curve of genus 3 and let η be any 4-th root of ω_C. Then $\eta \otimes 2$ is an even theta characteristic. Hence we assume that $\eta \otimes 2$ is odd in the previous section.

From now on we assume that $[C, \eta]$ is in $S^{1/4+}$, so that $h^0(\eta \otimes 2) = 0$. Then the line bundle $\omega_C \otimes \eta \otimes 2$ is very ample and moreover it defines an embedding of C in \mathbb{P}^3 as a projectively normal curve whose ideal is generated by cubics, see [Dol10, §6.3]. Obviously no quadric contains C and we cannot argue as in the previous section. Though the beautiful geometry of cubic surfaces through C can be used, it is simpler to consider the canonical model of C. Hence we assume that C is embedded in \mathbb{P}^2 as a general plane quartic.

Lemma 7.1.

1. One has $h^0(\eta \otimes 3) = 1$. Moreover, the unique divisor of $|\eta \otimes 3|$ is supported on three distinct points o_1, o_2, o_3.

2. There exists exactly one cubic E such that $C \cdot E = 4(o_1 + o_2 + o_3)$ and E is smooth.

Proof. We have $h^0(\eta \otimes 3) \geq 2$ iff $h^0(\omega_C \otimes \eta^{- \otimes 3}) = 1$. This implies that C has a Weierstrass point p such that $4p \in |\omega_C|$. But then C is not a general curve. To complete the proof of (1) and to prove (2) it suffices to construct a pair (C, η) with the required properties. Starting from a smooth cubic E this construction is standard: adapt the argument analogous to the one of the proof of Theorem 2.3.

Furthermore, let $H := \mathcal{O}_E(1)$ and, as above, $4(o_1 + o_2 + o_3) = E \cdot C$. Let $\epsilon := H(-o_1 - o_2 - o_3)$. Clearly ϵ is a 4-th root of \mathcal{O}_E. Moreover:

Lemma 7.2. The line bundle $\epsilon \otimes 2$ is not trivial.

Proof. If $\epsilon \otimes 2$ were trivial then $2o_1 + 2o_2 + 2o_3 = B \cdot E$, where B is a conic. This would imply that $h^0(\eta \otimes 2) = h^0(\mathcal{O}_C(B - 2o_1 - 2o_2 - 2o_3)) = 1$, which is against our assumption that $\eta \otimes 2$ is an even theta. □
Moving \(\varrho_1 + \varrho_2 + \varrho_3 \) in \([H \otimes \epsilon^{-1}] \), we can see that a general \(d \in [H \otimes \epsilon^{-1}] \) defines a linear system of genus 3 spin curves \((D, \eta_D) \) of order 4, such that \(\eta_D^{\otimes 2} \) is an even theta characteristic on \(D \). Indeed, let \(\mathcal{I}_{4d} \) be the ideal sheaf of \(4d \subset E \). Then
\[
|\mathcal{I}_{4d}(4)|
\]
is a 3-dimensional linear system of plane quartics \(D \) such that the line bundle \(\eta_D := \omega_D(-d) \) satisfies the previous requirements.

Since the previous curve \(C \) was general in moduli, the construction implies that a dense open set of \(S_3^{1/4+} \) is filled up by points \([D, \eta_D] \) realized as above. We now use the previous remarks to prove that \(S_3^{1/4+} \) is birational to a suitable tower of projective bundles over a rational modular curve.

Let \(\mathcal{T} \) be the moduli space of abelian curves, polarized by a degree 3 polarization and endowed with a 4-torsion point whose square is not trivial. We can think of \(\mathcal{T} \) as a rational curve.

\[\text{Proposition 7.3.} \quad \mathcal{T} \text{ is a rational curve.} \]

Proof. Observe that, on a smooth plane cubic \(E \), a 4-th root of \(O_E \) is a line bundle \(\tau := O_E(t-o) \) such that \(o, t \in E \) and moreover
\begin{enumerate}[(i)]
\item \(3o \in |O_E(1)| \),
\item \(4t + q + r \in |O_E(2)| \),
\item \(q, r \in E \) and \(q + r \in |2o| \).
\end{enumerate}

Indeed these conditions are just equivalent to say that \(4t \sim 4o \). Notice also that they are fulfilled iff there exists a conic \(B \) such that \(B \cdot E = 4t + q + r \) and \(q + r \sim 2o \).

Furthermore, it is easy to see that either \(\tau^{\otimes 2} \) is not trivial and \(B \) is smooth or \(B \) is a double line and \(B \cdot E = 2(2t + o) \). Assuming the former case we consider the plane cubic \(A + B \), where \(A \) is the flex tangent to \(E \) at \(o \). Let \(P \) be the pencil of cubics generated by \(E \) and \(A + B \), then its base locus is the 0-dimensional scheme \(4t + q + r + 3o \subset E \). Let \(F \in P \) be smooth, then \(F \) is endowed with the line bundles \(\tau_F := O_F(t-o) \) and \(H_F := O_F(1) \). Hence there exists a rational map \(m : P \to \mathcal{T} \) defined as follows: \(m(F) = [F, H_F, t] \). This map clearly dominates \(\mathcal{T} \) and hence \(\mathcal{T} \) is a rational curve.

\[\square \]

The space \(\mathcal{T} \) is a finite cover of the moduli space \(\mathcal{A}(3) \) of abelian curves endowed with a degree 3 polarization. An example of such a cover is the forgetful map
\[f : \mathcal{T} \to \mathcal{A}(3) \]
sending \([E, H, t] \) to \([E, H] \). Let \(\mathcal{E} \) be the universal family of abelian curves over \(\mathcal{A}(3) \). Over a suitable open set of \(\mathcal{A}(3) \times \mathcal{M}_1 \), \(\mathcal{E} \) we fix a Poincaré line bundle \(\mathcal{P} \), whose restriction to the curve \([E, H] \times E \) is the line bundle \(H \). We consider the map
\[f \times \text{id}_{\mathcal{E}} : \mathcal{T} \times \mathcal{M}_1, \mathcal{E} \to \mathcal{A}(3) \times \mathcal{M}_1, \mathcal{E} \]
and the pull-back
\[\mathcal{P} := (f \times \text{id}_{\mathcal{E}})^* \mathcal{P} \]
of \(\mathcal{P} \) over the surface
\[\hat{\mathcal{E}} := \mathcal{T} \times \mathcal{M}_1, \mathcal{E}. \]
Let $u : \tilde{E} \to T$ be the elliptic fibration defined by projection onto T. We have two natural sections
\[s_0, s_1 : T \to \tilde{E} \]
of u which are so defined: $s_1([E, H, t]) = t \in E$ and $s_0([E, H, t]) = o \in E$. The section s_0 is just induced by the zero section of $E \to A_1(3)$. Let $D_0 := s_0(T)$ and $D_1 := s_1(T)$. Over a dense open set of T we can finally define the \mathbb{P}^2-bundles:
\begin{itemize}
 \item $T := \mathbb{P}(u_*\overline{\mathcal{P}} \otimes \mathcal{O}_{\mathcal{E}}(D_1 - D_0))$,
 \item $\mathbb{P} := \mathbb{P}(u_*\overline{\mathcal{P}}^*)$.
\end{itemize}

The fibre of T at the point $[E, H, t]$ is the linear system $|H(t - o)|$, while the fibre of \mathbb{P} at the same point is $\mathbb{P}H^0(H)^*$. Now we consider the tautological embedding
\[\tilde{E} \subset \mathbb{P}. \]

At the point $e := [E, H, t]$ the fibre of \tilde{E} is E and the tautological embedding restricts to the embedding $E \subset \mathbb{P}_e = \mathbb{P}H^0(H)^*$, defined by H. Then we consider the fibre product
\[F := T \times_T \mathbb{P} \]
and the incidence correspondence $Z \subset F$ parametrizing the points $[E, H, t; d, x] \in T \times_T \mathbb{P}$ such that
\begin{itemize}
 \item $x \in d \subset E \subset \mathbb{P}H^0(H)^*$,
 \item $d \in |H(t - o)|$.
\end{itemize}

Let $\pi_1 : F \to T$ and $\pi_2 : F \to \mathbb{P}$ be the projection maps; we have the embeddings
\[Z \subset \pi_1^*\tilde{E} \subset F \]
where Z is a divisor in $\pi_1^*\tilde{E}$ and the latter, up to shrinking its base, is a smooth family of elliptic curves. Such a family contains the divisor $4Z$ and this is a subscheme of F. Let J be its ideal sheaf; then our construction yields the projective bundle
\[Q := \mathbb{P}_{\pi_1^*}(J \otimes \pi_2^*\mathcal{O}_p(4)) \]
over T. Let $p := [E, H, t, d]$ be a general point of T, then the fibre of Q at p is
\[Q_p = |\mathcal{I}_{4d}(4)|, \]
where \mathcal{I}_{4d} is the ideal sheaf of $4d$ in $E \subset \mathbb{P}H^0(H)^*$. In particular, by Grauert’s theorem, Q is a \mathbb{P}^1-bundle over T. Furthermore, the bundle T is rational, since it is a projective bundle over the rational curve T, and hence also Q is rational.

The conclusion is now quite clear: we can construct a birational map
\[m : Q \to S^{1/4}_3 \]
defined as follows. Let $p \in T$ be a general point as above and consider a general element $D \in Q_p = |\mathcal{I}_{4d}(4)|$. By definition, the map m sends it to the point $[D, \omega_D(-d)]$ of $S^{1/4}_3$.

Furthermore m is generically invertible. Indeed let (C, η) be as above, then there exists a unique E such that $E \cdot C = d$ and $\eta \cong \omega_C(-d)$. Let $\tilde{E} = \text{Pic}^0 E$, then $\tilde{t} := H(-d)$ is a 4-torsion point of \tilde{E} and $\tilde{H} := \mathcal{O}_{\tilde{E}}(3\tilde{t})$ is the degree 3 polarization defined by $\tilde{\eta} := \mathcal{O}_{\tilde{E}} \subset \tilde{E}$. Let $d = x_1 + x_2 + x_3$ and $\tilde{d} = \tilde{x}_1 + \tilde{x}_2 + \tilde{x}_3$, where $\tilde{x}_i := H(-3x_i) \in \tilde{E}$. Then m^{-1} is the rational map sending a general (C, η) to the point $[\tilde{E}, \tilde{H}, \tilde{t}, \tilde{d}]$ of Q. We omit some further details. Now $S^{1/4}_3$ is irreducible and $\dim S^{1/4}_3 = \dim Q$. Hence m is birational and it follows that
Theorem 7.4. \(S_{1/4}^{1/4} \) is rational.

References

[CCC07] L. Caporaso, C. Casagrande and M. Cornalba, Moduli of roots of line bundles on curves, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3733 - 3768.

[Ch08] A. Chiodo, Stable twisted curves and their r-spin structures, Annales de l’Institut Fourier, 58 (2008), 1635-1689.

[C98] M. Cornalba, Moduli of curves and theta-characteristics, Lectures on Riemann surfaces (Trieste, 1987), 560 - 589, World Sci. Publ., Teaneck, NJ, 1989.

[Dol10] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge 2012, pp. 1 – 636.

[F10] G. Farkas, The birational type of the moduli space of even spin curves, Adv. Math. 223 (2010), no. 2, 433 - 443. (Reviewer: Montserrat Teixidor i Bigas).

[FV10] G. Farkas, A. Verra, The geometry of the moduli space of odd spin curves, 2010, arXiv:1004.0278.

[FV12] G. Farkas, A. Verra, Moduli of theta-characteristics via Nikulin surfaces, Math. Ann. 354 (2012), no. 2, 465 - 496.

[GL86] M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1985), 73-90.

[J98] T. J. Jarvis, Torsion-free sheaves and moduli of generalized spin curves., Compositio Math. 110 (1998), no. 3, 291 - 333.

[J00] T. J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000), no. 5, 637 - 663.

[J01] T. J. Jarvis, The Picard group of the moduli of higher spin curves, New York J. Math. 7 (2001), 23 - 47.

[P13] L. Pernigotti, On the rational Picard group of the moduli space of higher spin curves, arXiv: 1301:5207.

[RW12] O. Randal-Williams, The Picard group of the moduli space of r-Spin Riemann surfaces, Adv. Math. 231 (2012), no. 1, 482 - 515.

[TZ09] H. Takagi and F. Zucconi, The moduli space of genus 4 even spin curves is rational, arXiv:0904.3591.

[V13] A. Verra, Rational parametrizations of moduli spaces of curves in Handbook of Moduli III, Higher Education Press, Beijing (2013) 431 - 506.

Università di Trento, Dipartimento di Matematica, Via Sommarive 14, 38123 Povo Trento, Italy
E-mail address: pernigotti@science.unitn.it

Università Roma Tre, Dipartimento di Matematica, Largo San Leonardo Murialdo 1-00146 Roma, Italy
E-mail address: verramat.uniroma3.it