Is Thrombophilic Genetic Profile Responsible for an Acute Ischemic Stroke in a COVID-19 Male Patient?

Alexandru Burlacu1,2, Bogdan Artene1, Radu Crisan-Dabija2,3, Iolanda Valentina Popa2,4, and Adrian Covic2,5

Keywords
COVID-19, thrombosis, stroke, thrombophilic profile, genes, thrombophilia

Date received: 25 August 2020; revised: 22 September 2020; accepted: 28 September 2020.

Mezalek et al. presented a recent study (published in August 2020 in the Clinical and Applied Thrombosis/Hemostasis), a comprehensive review of the COVID-19 induced coagulopathy with its particular traits, the specificity of thromboembolic events and potential therapeutic interventions.1 This paper pertinently emphasizes the importance of a coagulopathy in the clinical course of COVID-19. Thrombotic events influence the clinical deterioration process, thus linking the hypercoagulable state with disease severity.

Several possible thrombotic sites are distinctively described “from classic deep vein thrombosis and pulmonary embolism to unusual thrombosis of central lines or arterial catheters, very early thromboses of extra-renal hemodialysis filters, and ECMO cannulas” providing valuable information for clinical practice. Additionally, the paper mainly describes the mechanisms of the COVID-19 coagulopathy at the intersection of inflammation and coagulation, highlighting distinctive elements that differentiate it from the classical diffuse intravascular coagulation.

In this particular context, the authors underline that the conventional clinical assessment of the risk of thrombotic events may not be efficient due to disease’s particular evolution. Nevertheless, there is a legitimate need for a rigorous thrombotic risk assessment to implement suitable anticoagulation strategies.

As a contribution to our colleagues’ work, we envision a new, well-sustained hypothesis that could bring more clarity into the process of assessing the COVID-19 patients’ risk for thrombosis. We consider that the mechanisms of COVID-19 coagulopathy are not limited to the dynamics of D-dimers and fibrinogen nor the impact of the well-described “cytokine storm” and its inflammatory consequences on the activation of endothelial cells and tissue factor expression. A genetic component related to a pre-existing prothrombotic status might also be involved, explaining the heterogeneous variety of disease forms.

Our assumption is based on several considerations.

Firstly, the process of “viral sepsis” has been described in COVID-19, showing a substantial similarity with the classical condition of sepsis. Here, a validated theory states that several thrombophilic mutations affect patients’ clinical response.2 Secondly, racial and ethnic genetic differences are responsible for significant dissimilar thrombotic risks among various nations.3 Thirdly, apolipoprotein E (ApoE) polymorphism and its prothrombotic genotypes were associated with increased mortality in confirmed COVID-19.4 Fourthly, the angiotensin-converting enzyme (ACE) D/I polymorphism is a risk factor for thrombosis and mortality in ARDS.5 Finally, the prothrombotic genotypes of ACE D/I and angiotensinogen (AGT M235 T) could explain the observed link between thrombosis and disease severity, due to the strong interactions of SARS-CoV-2 with the renin-angiotensin-aldosterone system.6

We recall a particular case of a 47-year-old male, from our center, with an acute ischemic stroke. Three days before the neurological event, the patient presented with mild respiratory symptoms erroneously interpreted as a non-COVID-19 pulmonary infection. Our patient was referred to the neurology service 3 hours after a sudden onset of weakness of his left arm.
and leg associated with left facial droop and vertigo. On clinical examination, he was confused, with left upper and lower limb hemiplegia, and dysarthria. He resulted positive for the SARS-CoV-2 RT-PCR test at admission. He had no prior medical history.

Emergent non-enhanced computed tomography revealed no cerebral hemorrhage. Three and a half hours after the onset of symptoms, intravenous tissue plasminogen activator (IV tPA—alteplase) was administered according to the European guidelines. After thrombolysis, patient’s neurologic status progressively improved. A CT scan obtained 6 hours later was negative for cerebral hemorrhage or acute ischemic lesions. Our patient received a continuous infusion of unfractionated heparin (UFH) (1,200 U/h) for 24 hours after the procedure. Our patient was discharged a week later with routine neurological and pulmonary clinical examination.

At 1-month follow-up, he manifested neurologically normal status without residual deficits. After discharge, transesophageal echocardiography was performed. Due to the assumption of a patent foramen ovale, a bubble study was conducted with a gaseal echocardiography was performed. Due to the assumption of a patent foramen ovale, a bubble study was conducted with a...