Evaluating the power efficiency and performance of multi-core platforms using HEP workloads

April 14th, CHEP 2015, Okinawa

Pawel Szostek, Vincenzo Innocente
Outline

› “Haswell-EP” microarchitecture refresher
› Description of the tested setup
› Experiments and results: scalability, vectorization, single core performance, power efficiency
› Conclusions
“Haswell-EP” microarchitecture refresher

- **dual-socket** platform, 22nm, AVX2 256b vectors, DDR4 support
- 10-core and higher core counts come with **two memory controllers** (Cluster-on-Die),
- beefed-up core (already in single socket HSW):
 - 8 instead of 6 execution units
 - bigger OoO execution buffer (192 vs. 168 entries)
“Haswell-EP” microarchitecture refresher (II)

› comes with a couple of interesting power-saving features:
 - frequency/voltage scaled on a per-core basis
 - uncore frequency/voltage scaling independent from cores
 - configurable TDP
 - energy efficient turbo mode

› As in the single socket, AVX slows down the clock. Switching to AVX is penalized
Setup for the tests

› **Haswell-EP (dual socket):**
 - E5-2699v3 – 18 cores, 2.3Ghz, 145W TDP
 - E5-2698v3 – 16 cores, 2.3GHz, 135W
 - E5-2683v3 – 14 cores, 2.0GHz, 120W

› **Ivy Bridge-EP:**
 - E5-2695v2 – 12 cores, 2.4Ghz, 115W

› **Sandy Bridge-EP:**
 - E5-2690 – 8 cores, 2.9GHz, 135W
Setup for the tests (II)

- 2U Intel Bobcat Pass chassis with 4 servers in an enclosure
- 8x8GB 2133MT/s DDR4 DIMMs
- 2xIntel SSD DC S3500 240GB, with LVM stripping
- Turbo Boost disabled, SMT enabled, P- and C- states disabled unless stated otherwise
- SLC 6.6 with the 2.6.32-504.12.2
The benchmarks

› **Standard:** HEPSPEC06
 - not optimized for next-gen hardware

› **Analysis:**
 - MLFit
 - Threaded (pthreads, MPI, OpenMP, TBB)
 - Vectorized (Cilk+)
 - VIFit (Vincenzo Innocente Fit)
 - lightweight version of MLfit
 - NUMA-aware memory management

› **Simulation:** up-to-date ParFullCMS with Geant 4 v.10.01 patch 01 [MT]
 - multi-threaded, not vectorized
HEP-SPEC06 scalability (freq. scaled)

- Sandy Bridge-EP E5-2690
- Ivy Bridge-EP E5-2695v2
- Haswell-EP E5-2683v3, COD enabled
- Haswell-EP E5-2683v3, COD disabled
- Haswell-EP E5-2698v3 COD enabled
- Haswell-EP E5-2698v3, COD disabled
- Haswell-EP E5-2699v3, COD enabled
- Haswell-EP E5-2699v3, COD disabled
HEP-SPEC06 per core (freq. scaled)

- Sandy Bridge-EP E5-2690
- Ivy Bridge-EP E5-2695v2
- Haswell-EP E5-2683v3, COD enabled
- Haswell-EP E5-2683v3, COD disabled
- Haswell-EP E5-2698v3 COD enabled
- Haswell-EP E5-2698v3, COD disabled
- Haswell-EP E5-2699v3 COD enabled
- Haswell-EP E5-2699v3, COD disabled

Number of threads vs. HEP-SPEC06 per core, frequency scaled.
COD gains in HS06

System	Total HS06 Score	COD Disabled	COD Enabled
Haswell-EP E5-2683v3	600.00	500.00	400.00
Haswell-EP E5-2698v3	700.00	600.00	500.00
Haswell-EP E5-2699v3	800.00	700.00	600.00

COD disabled
COD enabled
Data throughput scalability

- Sandy Bridge-EP E5-2690
- Ivy Bridge-EP E5-2695v2
- Haswell-EP E5-2683v3, COD enabled
- Haswell-EP E5-2683v3, COD disabled
- Haswell-EP E5-2698v3 COD enabled
- Haswell-EP E5-2698v3, COD disabled
- Haswell-EP E5-2699v3 COD enabled
- Haswell-EP E5-2699v3, COD disabled
ParFullCMS (II)

Power efficiency scalability

- Sandy Bridge-EP E5-2690
- Ivy Bridge-EP E5-2695v2
- Haswell-EP E5-2683v3, COD enabled
- Haswell-EP E5-2683v3, COD disabled
- Haswell-EP E5-2698v3 COD enabled
- Haswell-EP E5-2699v3 COD enabled
- Haswell-EP E5-2699v3, COD disabled
- Haswell-EP E5-2699v3, COD disabled
VIFit speed-up
(freq. scaled, SNB is the baseline)
Vectorization speedup
-no-vec is the baseline

Sandy Bridge-EP
E5-2690

Ivy Bridge-EP
E5-2695v2

Haswell-EP
E5-2683v3,
COD enabled

Haswell-EP
E5-2683v3,
COD disabled

Haswell-EP
E5-2698v3

Haswell-EP
E5-2698v3,
COD enabled

Haswell-EP
E5-2698v3,
COD disabled

Haswell-EP
E5-2699v3,
COD enabled

Haswell-EP
E5-2699v3,
COD disabled

no vec

SSE4.2

AVX

AVX2
ParFullCMS – energy efficiency

Three power settings (on Haswell-EP E5-2699v3 – 18 cores/socket)

	Turbo	P- and C- states	Uncore scaling	Energy Efficient Turbo
“standard”	NO	NO	YES	NO
Low power	YES	YES	YES	YES
High power	YES	NO	NO	NO
ParFullCMS – energy efficiency (II)

Power efficiency scalability

Data throughput scalability

- Normal power
- Low power
- High power

Number of threads vs. events/J

Number of threads vs. events/s
Conclusions

- Haswell-EP offers major improvements in the uncore part, which can be mainly exploited by multi-threaded (NUMA-aware) applications.
- Otherwise, we “just” get a massive core-count increase.
- Haswell-EP provides higher vectorization gains than previous dual socket platforms.
- New power saving features allow lowering down the absolute power consumption, but for a cost of lower power efficiency.
Questions?

Other questions?
pawel.szostek@cern.ch
Detailed COD diagram
Haswell EP Die Configurations

Chop	Columns	Home Agents	Cores	Power (W)	Transistors (B)	Die Area (mm²)
HCC	4	2	14-18	110-145	5.69	662
MCC	3	2	6-12	65-160	3.84	492
LCC	2	1	4-8	55-140	2.60	354

Not representative of actual die-sizes, orientation and layouts – for informational use only.
Core-to-core bandwidth
Backup – VIFit with a core disabled

VIFit runtime with a core disabled

mean values over 100 runs

Pawel Szostek, Vincenzo Innocente – CERN openlab
Backup – power consumption

- Sandy Bridge-EP E5-2690
- Ivy Bridge-EP E5-2695v2
- Haswell-EP E5-2683v3, COD enabled
- Haswell-EP E5-2683v3, COD disabled
- Haswell-EP E5-2698v3, COD enabled
- Haswell-EP E5-2698v3, COD disabled
- Haswell-EP E5-2699v3, COD enabled
- Haswell-EP E5-2699v3, COD disabled

Legend:
- blue: idle
- red: loaded, turbo off
- green: loaded, turbo on

14/04/2015

Pawel Szostek, Vincenzo Innocente – CERN openlab