A semi-canonical reduction for periods of Kontsevich-Zagier

Juan Viu-Sos

Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau (Francia)
Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza

III Congreso de Jóvenes investigadores de la RSME 2015
Universidad de Murcia

10 septiembre 2015
1 Introduction
- What is a period?
- Periods of Kontsevich-Zagier
- Open problems and conjectures

2 A semi-canonical reduction
- Resolution of poles and volumes of compact domains
- Compact domains in \mathbb{R}^2 and tangent cones
- An example: π

3 Conclusions and perspectives
Part I

Introduction
What is a "period"?

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over \mathbb{Q}:

\[H^\bullet_{\text{sing}}(X; \mathbb{C}), Y; \mathbb{C}) \oplus H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \]

Integration via Poincaré duality defines a pairing:

\[H^\bullet_{\text{sing}}(X; \mathbb{C}), Y; \mathbb{C}) \times H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \to \mathbb{C} \]

Tensorizing by \mathbb{C}, the previous pairing gives the comparison isomorphism:

\[H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \otimes \mathbb{C} \cong H^\bullet_{\text{B}}(X, Y; \mathbb{Q}) \otimes \mathbb{C} \]

represented taking \mathbb{Q}-basis by the period matrix $\Pi = (\int \gamma_i \omega^j)_{i,j=1,...,s}$.
What is a "period"?

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over \mathbb{Q}:
 - Betti cohomology: $H^\bullet_B(X, Y; \mathbb{Q}) = \left(H^\bullet_{\text{sing}}(X(\mathbb{C}), Y(\mathbb{C}); \mathbb{Q}) \right)^\vee$
 - Algebraic de Rham cohomology: $H^\bullet_{\text{dR}}(X, Y; \mathbb{Q})$
What is a ”period”?

• “Most of the important constants in mathematics, coming from algebraic geometry”.

• Let X be a smooth variety and Y an closed subvariety of X, both defined over \mathbb{Q}:

 - Betti cohomology: $H_B^\bullet(X, Y; \mathbb{Q}) = \left(H^\text{sing}_B(X(\mathbb{C}), Y(\mathbb{C}); \mathbb{Q})\right)^\vee$

 - Algebraic de Rham cohomology: $H_{dR}^\bullet(X, Y; \mathbb{Q})$

• Integration via Poincaré duality defines a pairing:

$$H^\bullet_B(X, Y; \mathbb{Q}) \times H^\bullet_{dR}(X, Y; \mathbb{Q}) \rightarrow \mathbb{C}$$

$$(\gamma, \omega) \mapsto \int_\gamma \omega$$
What is a "period"?

- “Most of the important constants in mathematics, coming from algebraic geometry”.
- Let X be a smooth variety and Y an closed subvariety of X, both defined over \mathbb{Q}:
 - Betti cohomology: $H^\bullet_B(X, Y; \mathbb{Q}) = \left(H^{\text{sing}}_\bullet(X(\mathbb{C}), Y(\mathbb{C}); \mathbb{Q}) \right)^\vee$
 - Algebraic de Rham cohomology: $H^\bullet_{\text{dR}}(X, Y; \mathbb{Q})$
- Integration via Poincaré duality defines a pairing

$$H^\bullet_B(X, Y; \mathbb{Q}) \times H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \rightarrow \mathbb{C}$$

$$(\gamma, \omega) \mapsto \int_\gamma \omega$$

- Tensorizing by \mathbb{C}, the previous pairing gives the *comparison isomorphism*

$$\text{comp}_{B,dR} : H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \otimes \mathbb{C} \sim \rightarrow H^\bullet_B(X, Y; \mathbb{Q}) \otimes \mathbb{C}$$

represented taking \mathbb{Q}–basis by the *period matrix* $\Pi = \left(\int_\gamma \omega_j \right)_{i,j=1,\ldots,s}$.

Juan Viu-Sos

A semi-canonical reduction for periods of Kontsevich-Zagier

4 / 21
What is a "period"?

- “Most of the important constants in mathematics, coming from algebraic geometry”.
- Let X be a smooth variety and Y an closed subvariety of X, both defined over \mathbb{Q}:
 - Betti cohomology: $H^\bullet_B(X, Y; \mathbb{Q}) = \left(H^\bullet_{\text{sing}}(X(\mathbb{C}), Y(\mathbb{C}); \mathbb{Q}) \right)^{\vee}$
 - Algebraic de Rham cohomology: $H^\bullet_{\text{dR}}(X, Y; \mathbb{Q})$
- Integration via Poincaré duality defines a pairing

$$H^\bullet_B(X, Y; \mathbb{Q}) \times H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \to \mathbb{C}$$

$$\langle \gamma, \omega \rangle \mapsto \int_\gamma \omega$$

- Tensorizing by \mathbb{C}, the previous pairing gives the comparison isomorphism

$$\text{comp}_{B, \text{dR}} : H^\bullet_{\text{dR}}(X, Y; \mathbb{Q}) \otimes \mathbb{C} \xrightarrow{\sim} H^\bullet_B(X, Y; \mathbb{Q}) \otimes \mathbb{C}$$

represented taking \mathbb{Q}–basis by the period matrix $\Pi = \left(\int_{\gamma_i} \omega_j \right)_{i,j=1,\ldots,s}$.

Juan Viu-Sos
QUESTION: Could the comparison isomorphism be induced by an isomorphism $H_{dR}^\bullet(X, Y; \mathbb{Q}) \xrightarrow{\sim} H_B^\bullet(X, Y; \mathbb{Q})$?

- No! If $X = \mathbb{A}^1_\mathbb{Q} \setminus \{0\} = \text{Spec} \mathbb{Q}[t, t^{-1}], Y = \emptyset$ and $\gamma = S^1 \subset \mathbb{C}^*$:

 $$H^\bullet_B(\mathbb{C}^*; \mathbb{Q}) = \mathbb{Q} \gamma^*, \quad H^\bullet_{dR}(X; \mathbb{Q}) = \mathbb{Q} \frac{dt}{t}$$

 but $\int_\gamma \frac{dt}{t} = 2\pi i \notin \mathbb{Q}$.

QUESTION: Could the comparison isomorphism be induced by an isomorphism $H^{\bullet}_{dR}(X, Y; \mathbb{Q}) \xrightarrow{\sim} H^{\bullet}_{B}(X, Y; \mathbb{Q})$?

- No! If $X = \mathbb{A}^{1}_{\mathbb{Q}} \setminus \{0\} = \text{Spec} \mathbb{Q}[t, t^{-1}], Y = \emptyset$ and $\gamma = S^{1} \subset \mathbb{C}^{*}$:

$$H^{\bullet}_{B}(\mathbb{C}^{*}; \mathbb{Q}) = \mathbb{Q}\gamma^{*}, \quad H^{\bullet}_{dR}(X; \mathbb{Q}) = \mathbb{Q} \frac{dt}{t}$$

but $\int_{\gamma} \frac{dt}{t} = 2\pi i \notin \mathbb{Q}$.

“Transcendental” obstrucción, invariant of the pair (X, Y)!
QUESTION: Could the comparison isomorphism be induced by an isomorphism \(H_{dR}^\bullet(X, Y; \mathbb{Q}) \xrightarrow{\sim} H_B^\bullet(X, Y; \mathbb{Q})? \)

No! If \(X = \mathbb{A}^1_{\mathbb{Q}} \setminus \{0\} = \text{Spec} \mathbb{Q}[t, t^{-1}], \ Y = \emptyset \text{ and } \gamma = S^1 \subset \mathbb{C}^*: \)

\[
H_B^\bullet(\mathbb{C}^*; \mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{dR}^\bullet(X; \mathbb{Q}) = \mathbb{Q}\frac{dt}{t}
\]

but \(\int_\gamma \frac{dt}{t} = 2\pi i \not\in \mathbb{Q}. \)

\[\exists \]

“Transcendental” obstrucción, invariant of the pair \((X, Y)\)!
Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg}–semi-algebraic if it can be described as finite unions of sets $\{f_1 \star_1 0, \ldots, f_s \star_s 0\}$, where $f_i \in \mathbb{R}_{\text{alg}}[x_1, \ldots, x_d]$ and $\star_i \in \{=, >\}$ for $i = 1, \ldots, s$.
Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg}–semi-algebraic if can be described as finite unions of sets $\{f_1 *_1 0, \ldots, f_s *_s 0\}$, where $f_i \in \mathbb{R}_{\text{alg}}[x_1, \ldots, x_d]$ and $*_i \in \{=, >\}$ for $i = 1, \ldots, s$.

Definition

A *period of Kontsevich-Zagier* (or *effective period*) is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\mathcal{I}(S, P/Q) = \int_S \frac{P(x_1, \ldots, x_d)}{Q(x_1, \ldots, x_d)} \cdot dx_1 \wedge \ldots \wedge dx_d$$

where $S \subset \mathbb{R}^d$ is a d–dimensional \mathbb{R}_{alg}–semi-algebraic set and $P/Q \in \mathbb{R}_{\text{alg}}(x_1, \ldots, x_d)$.
Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg}–semi-algebraic if it can be described as finite unions of sets $\{f_1 \ast_1 0, \ldots, f_s \ast_s 0\}$, where $f_i \in \mathbb{R}_{\text{alg}}[x_1, \ldots, x_d]$ and $\ast_i \in \{=, >\}$ for $i = 1, \ldots, s$.

Definition

A *period of Kontsevich-Zagier* (or *effective period*) is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\mathcal{I}(S, P/Q) = \int_S \frac{P(x_1, \ldots, x_d)}{Q(x_1, \ldots, x_d)} \cdot dx_1 \wedge \ldots \wedge dx_d$$

where $S \subset \mathbb{R}^d$ is a d–dimensional \mathbb{R}_{alg}–semi-algebraic set and $P/Q \in \mathbb{R}_{\text{alg}}(x_1, \ldots, x_d)$.

Denote by \mathcal{P}_{KZ} the set of periods of Kontsevich-Zagier and $\mathcal{P}_{\text{KZ}}^{\mathbb{R}} = \mathcal{P}_{\text{KZ}} \cap \mathbb{R}$.
Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg}–semi-algebraic if can be described as finite unions of sets $\{f_1 \ast_1 0, \ldots f_s \ast_s 0\}$, where $f_i \in \mathbb{R}_{alg}[x_1, \ldots, x_d]$ and $\ast_i \in \{=, >\}$ for $i = 1, \ldots, s$.

Definition

A period of Kontsevich-Zagier (or effective period) is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\mathcal{I}(S, P/Q) = \int_S \frac{P(x_1, \ldots, x_d)}{Q(x_1, \ldots, x_d)} \cdot dx_1 \wedge \ldots \wedge dx_d$$

where $S \subset \mathbb{R}^d$ is a d–dimensional \mathbb{R}_{alg}–semi-algebraic set and $P/Q \in \mathbb{R}_{alg}(x_1, \ldots, x_d)$.

Denote by \mathcal{P}_{kz} the set of periods of Kontsevich-Zagier and $\mathcal{P}^{\mathbb{R}}_{kz} = \mathcal{P}_{kz} \cap \mathbb{R}$.
Examples of numbers in \mathcal{P}_{KZ}

1. **Algebraic numbers:** $\alpha = \int_0^\alpha dx$, $\forall \alpha \in \mathbb{R}_{\text{alg}}$.

2. As a first transcendental number

\[
\pi = \int_{\{x^2+y^2 \leq 1\}} 1 \, dx \, dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx = \int_{\{(1-x^2)y^2 < 1\}} \frac{dx \, dy}{2}
\]
Examples of numbers in \mathcal{P}_{KZ}

1. **Algebraic numbers**: $\alpha = \int_0^\alpha dx$, $\forall \alpha \in \mathbb{R}_{alg}$.

2. **As a first transcendental number**

 $\pi = \int_{\{x^2+y^2\leq 1\}} 1 \, dx \, dy = \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int \frac{dxdy}{2} \\{(1-x^2)y^2<1\}$

3. **Logarithms of algebraic numbers**: if $\alpha \in \mathbb{R}_{alg}$ such that $\alpha > 1$,

 $$\log(\alpha) = \int_1^\alpha \frac{dt}{t} = \int_{0 < xy < 1} 1 \, dx \, dy$$
Examples of numbers in \mathcal{P}_{KZ}

1. **Algebraic numbers:** $\alpha = \int_0^\alpha dx$, $\forall \alpha \in \mathbb{R}_{\text{alg}}$.

2. **As a first transcendental number**

 $$\pi = \int_{\{x^2+y^2\leq1\}} 1 \, dx \, dy = \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{\{(1-x^2)y^2<1\}} \frac{dx \, dy}{2}$$

3. **Logarithms of algebraic numbers:** if $\alpha \in \mathbb{R}_{\text{alg}}$ such that $\alpha > 1$,

 $$\log(\alpha) = \int_1^{\alpha} \frac{dt}{t} = \int_{1<x<\alpha} \int_{0<xy<1} 1 \, dx \, dy$$

4. **Multi-zeta values, Elliptic integrals, $\Gamma(p/q)^q$, Feynmann integrals,**...
Examples of numbers in \mathcal{P}_{KZ}

1. Algebraic numbers: $\alpha = \int_0^\alpha dx$, $\forall \alpha \in \mathbb{R}_{\text{alg}}$.

2. As a first transcendental number

$$\pi = \int_{\{x^2+y^2\leq 1\}} 1 \ dx \ dy = \int_{-\infty}^{\infty} \frac{1}{1+x^2} \ dx = \int_{\{(1-x^2)y^2<1\}} \frac{dx \ dy}{2}$$

3. Logarithms of algebraic numbers: if $\alpha \in \mathbb{R}_{\text{alg}}$ such that $\alpha > 1$,

$$\log(\alpha) = \int_1^\alpha \frac{dt}{t} = \int_{1<x<\alpha} 1 \ dx \ dy$$

4. Multi-zeta values, Elliptic integrals, $\Gamma(p/q)^q$, Feynmann integrals, . . .
Extended inclusion diagram for fields:

\[
\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}_{\text{alg}} \subset \overline{\mathbb{Q}} \\
\cap \cap \cap \cap \cap \\
\mathcal{P}_K \subset \mathcal{P}_K \\
\cap \cap \cap \cap \cap \\
\mathbb{R} \subset \mathbb{C}
\]

But, how many transcendental numbers contains \mathcal{P}_K?
Extended inclusion diagram for fields:

\[
\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}_{\text{alg}} \subset \overline{\mathbb{Q}} \\
\mathbb{P}_{\text{KZ}} \subset \mathbb{P}_{\text{KZ}} \\
\mathbb{R} \subset \mathbb{C}
\]

But, how many transcendental numbers contains \(\mathbb{P}_{\text{KZ}} \)?

Theorem

\(\mathbb{P}_{\text{KZ}} \) forms a countable \(\overline{\mathbb{Q}} \)-algebra.
Extended inclusion diagram for fields:

\[
\begin{align*}
\mathbb{Z} & \subset \mathbb{Q} \subset \mathbb{R}_{\text{alg}} \subset \overline{\mathbb{Q}} \\
\mathbb{R} \subset \mathbb{C} & \quad \mathcal{P}_{\mathbb{R}} \subset \mathcal{P}_{KZ} \subset \mathcal{P}_{KZ} \\
& \quad \mathbb{R} \subset \mathbb{C}
\end{align*}
\]

But, how many transcendental numbers contains \(\mathcal{P}_{KZ} \)?

Theorem

\(\mathcal{P}_{KZ} \) *forms a countable* \(\overline{\mathbb{Q}} \)-*algebra.*

\[\uparrow \]

Not “a lot”!
Extended inclusion diagram for fields:

\[\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}_{\text{alg}} \subset \overline{\mathbb{Q}} \]

\[\bigcap \mathcal{P}^\mathbb{R}_{\text{kz}} \subset \mathcal{P}_{\text{kz}} \bigcap \]

\[\mathbb{R} \subset \mathbb{C} \]

But, how many transcendental numbers contains \(\mathcal{P}_{\text{kz}} \)?

Theorem

\(\mathcal{P}_{\text{kz}} \) forms a countable \(\overline{\mathbb{Q}} \)-algebra.

\[\not\exists \]

Not “a lot”!

Kontsevich-Zagier: Conjecturally, \(e, 1/\pi \) or Liouville numbers are not periods.
Extended inclusion diagram for fields:

\[
\begin{align*}
\mathbb{Z} & \subset \mathbb{Q} \subset \mathbb{R}_{\text{alg}} \subset \bar{\mathbb{Q}} \\
\bigcap \quad & \quad \bigcap \\
\mathcal{P}_{\text{KZ}} & \subset \mathcal{P}_{\text{KZ}} \\
\bigcap \quad & \quad \bigcap \\
\mathbb{R} & \subset \mathbb{C}
\end{align*}
\]

But, how many transcendental numbers contains \(\mathcal{P}_{\text{KZ}} \)?

Theorem

\(\mathcal{P}_{\text{KZ}} \) forms a countable \(\bar{\mathbb{Q}} \)-algebra.

\[\zeta\]

Not “a lot”!

Kontsevich-Zagier: Conjecturally, \(e, 1/\pi \) or Liouville numbers are not periods.
Open problems and conjectures

From the foundational paper:

Maxim Kontsevich and Don Zagier. *Periods*, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one formulation to the other using only three operations (called the KZ–rules):

- integral additions by domains or integrands.
- change of variables.
- Stokes formula.

Moreover, these operations should respect the class of the objects previously defined.
From the foundational paper:

Maxim Kontsevich and Don Zagier. Periods, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one formulation to the other using only three operations (called the KZ–rules):

- integral additions by domains or integrands.
- change of variables.
- Stokes formula.

Moreover, these operations should respect the class of the objects previously defined.

Conjecture (Equality algorithm)

Determination of an algorithm which allows us to prove if two periods are equal or not.
From the foundational paper:

Maxim Kontsevich and Don Zagier. *Periods*, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one formulation to the other using only three operations (called the KZ–rules):

- integral additions by domains or integrands.
- change of variables.
- Stokes formula.

Moreover, these operations should respect the class of the objects previously defined.

Conjecture (Equality algorithm)

* Determination of an algorithm which allows us to prove if two periods are equal of not.*
Part II

A semi-canonical reduction for periods

"Periods of Kontsevich-Zagier I: A semi-canonical reduction.", arXiv:1509.01097, 26 pags., (Preprint)
Resolution of poles and compact domains

Main ideas:

- codify all the complexity of a period on the semi-algebraic domain.
Main ideas:

- codify all the complexity of a period on the semi-algebraic domain.
- choose a “good” class of semi-algebraic domains in \mathbb{R}^d:
 - Topological properties,
 - Semi-algebraic complexity,
 - ...
Main ideas:

- codify all the complexity of a period on the semi-algebraic domain.
- choose a “good” class of semi-algebraic domains in \mathbb{R}^d:
 - Topological properties,
 - Semi-algebraic complexity,
 - ...
- obtain this new form from an integral representation of a period in an algorithmic way and only using the three KZ–rules.
Main ideas:

- codify all the complexity of a period on the semi-algebraic domain.
- choose a “good” class of semi-algebraic domains in \mathbb{R}^d:
 - Topological properties,
 - Semi-algebraic complexity,
 - ...
- obtain this new form from an integral representation of a period in an algorithmic way and only using the three KZ–rules.
Our principal result:

Theorem (Semi-canonical reduction)

Let \(p \in \mathcal{P}_{KZ} \) be non-zero given in an integral form \(\mathcal{I}(S, P/Q) \) in \(\mathbb{R}^d \). Then there exists an effective algorithm satisfying the KZ–rules such that \(\mathcal{I}(S, P/Q) \) can be written as

\[
p = \text{sgn}(p) \cdot \text{vol}_{d+1}(K),
\]

where \(K \subset \mathbb{R}^{d+1} \) is a top-dimensional compact semi-algebraic set.
Our principal result:

Theorem (Semi-canonical reduction)

Let \(p \in \mathcal{P}_{\text{kz}} \) be non-zero given in an integral form \(\mathcal{I}(S, P/Q) \) in \(\mathbb{R}^d \). Then there exists an effective algorithm satisfying the KZ–rules such that \(\mathcal{I}(S, P/Q) \) can be written as

\[
p = \text{sgn}(p) \cdot \text{vol}_{d+1}(K),
\]

where \(K \subset \mathbb{R}^{d+1} \) is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!
Our principal result:

Theorem (Semi-canonical reduction)

Let \(p \in \mathcal{P}_{KZ} \) be non-zero given in an integral form \(\mathcal{I}(S, P/Q) \) in \(\mathbb{R}^d \). Then there exists an effective algorithm satisfying the KZ–rules such that \(\mathcal{I}(S, P/Q) \) can be written as

\[
p = \text{sgn}(p) \cdot \text{vol}_{d+1}(K),
\]

where \(K \subset \mathbb{R}^{d+1} \) is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

- Compactification of domains.

Juan Viu-Sos

A semi-canonical reduction for periods of Kontsevich-Zagier

12 / 21
Our principal result:

Theorem (Semi-canonical reduction)

Let \(p \in \mathcal{P}_{\text{KZ}} \) be non-zero given in an integral form \(\mathcal{I}(S, P/Q) \) in \(\mathbb{R}^d \). Then there exists an effective algorithm satisfying the KZ–rules such that \(\mathcal{I}(S, P/Q) \) can be written as

\[
p = \text{sgn}(p) \cdot \text{vol}_{d+1}(K),
\]

where \(K \subset \mathbb{R}^{d+1} \) is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

1. Compactification of domains.
2. (Algorithmic) resolution of poles over the boundary: holding local compacity of domains!
Our principal result:

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{KZ}$ be non-zero given in an integral form $I(S, P/Q)$ in \mathbb{R}^d. Then there exists an effective algorithm satisfying the KZ–rules such that $I(S, P/Q)$ can be written as

$$p = \text{sgn}(p) \cdot \text{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables $+$ (linear) semi-algebraic partitions!

1. Compactification of domains.
2. (Algorithmic) resolution of poles over the boundary: holding local compactness of domains!
3. We obtain $p = \text{vol}_{d+1}(K_1) - \text{vol}_{d+1}(K_2) \leadsto$ Riemann sums to construct K.
Our principal result:

Theorem (Semi-canonical reduction)

Let \(p \in \mathcal{P}_{KZ} \) be non-zero given in an integral form \(\mathcal{I}(S, P/Q) \) in \(\mathbb{R}^d \). Then there exists an effective algorithm satisfying the KZ–rules such that \(\mathcal{I}(S, P/Q) \) can be written as

\[
p = \text{sgn}(p) \cdot \text{vol}_{d+1}(K),
\]

where \(K \subset \mathbb{R}^{d+1} \) is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

1. Compactification of domains.
2. (Algorithmic) resolution of poles over the boundary: holding local compacity of domains!
3. We obtain \(p = \text{vol}_{d+1}(K_1) - \text{vol}_{d+1}(K_2) \Rightarrow \) Riemann sums to construct \(K \).
We define the *projective closure* of a semi-algebraic set $S \subset \mathbb{R}^d$ by the topological closure of the inclusion of $S \hookrightarrow \mathbb{P}^d_{\mathbb{R}}$.

Theorem

$\mathbb{P}^d_{\mathbb{R}}$ can be constructed as the gluing of C_1, \ldots, C_{d+1} affine unit hypercubes through their opposite faces, and such that the Zariski closure of

$$\bigcup_{i,j=0}^{d} (C_i \cap C_j)$$

is the hyperplane arrangement

$$\mathcal{A} = \{x_i^2 - x_j^2 = 0 \mid 0 \leq i < j \leq d\} \subset \mathbb{P}^d_{\mathbb{R}}$$

$\leadsto D = D_1 \sqcup \ldots \sqcup D_{d+1}$ affine compact up to $(d-1)$–dim semi-algebraic sets.
We define the *projective closure* of a semi-algebraic set $S \subset \mathbb{R}^d$ by the topological closure of the inclusion of $S \hookrightarrow \mathbb{P}^d$.

Theorem

\mathbb{P}^d can be constructed as the gluing of C_1, \ldots, C_{d+1} affine unit hypercubes through their opposite faces, and such that the Zariski closure of $\bigcup_{i,j=0}^d (C_i \cap C_j)$ is the hyperplane arrangement

$$\mathcal{A} = \{x_i^2 - x_j^2 = 0 \mid 0 \leq i < j \leq d\} \subset \mathbb{P}^d$$

$\leadsto D = D_1 \sqcup \ldots \sqcup D_{d+1}$ affine compact up to $(d - 1)$–dim semi-algebraic sets.
We can assume that we are dealing with integrals $\mathcal{I}(S, P/Q)$ with compact domains.

Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg}. Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0. Denote by $\partial_z S$ the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω, respectively.
Resolution of poles

We can assume that we are dealing with integrals $I(S, P/Q)$ with compact domains.

Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg}. Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0. Denote by ∂_S the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω, respectively.

We use embedded resolution of singularities to send the poles ”far away“ from ∂S.

Proposition (Geometric criterion for convergence)

The integral $\int_S \omega$ converges absolutely if and only if there exist a finite sequence of blow-ups $\pi = \pi_r \circ \cdots \circ \pi_1 : W_r \to W_0$ over smooth centers such that $\tilde{S} \cap P(\pi^* \omega) = \emptyset$, where \tilde{S} the strict transform of S.
Resolution of poles

We can assume that we are dealing with integrals \(\mathcal{I}(S, P/Q) \) with compact domains.

Let \(W_0 \) be a smooth real algebraic variety defined over \(\mathbb{R}_{\text{alg}} \). Let \(S \subset W_0 \) be a compact semi-algebraic set in \(W_0 \) and \(\omega \) a top differential rational form in \(W_0 \). Denote by \(\partial_z S \) the Zariski closure of \(\partial S \) and by \(Z(\omega) \) and \(P(\omega) \) the real zero and pole locus of \(\omega \), respectively.

We use embedded resolution of singularities to send the poles "far away" from \(\partial S \).

Proposition (Geometric criterion for convergence)

The integral \(\int_S \omega \) converges absolutely if and only if there exist a finite sequence of blow-ups \(\pi = \pi_r \circ \cdots \circ \pi_1 : W_r \to W_0 \) over smooth centers such that \(\tilde{S} \cap P(\pi^*\omega) = \emptyset \), where \(\tilde{S} \) the strict transform of \(S \).

\(\leadsto \) it suffices to consider the embedded resolution of singularities of \(X = \partial_z S \cup Z(\omega) \cup P(\omega) \).
Resolution of poles

We can assume that we are dealing with integrals $\mathcal{I}(S, P/Q)$ with compact domains.
Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg}. Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0. Denote by $\partial_z S$ the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω, respectively.

We use embedded resolution of singularities to send the poles ”far away“ from ∂S.

Proposition (Geometric criterion for convergence)

The integral $\int_S \omega$ converges absolutely if and only if there exist a finite sequence of blow-ups $\pi = \pi_r \circ \cdots \circ \pi_1 : W_r \rightarrow W_0$ over smooth centers such that $\tilde{S} \cap P(\pi^* \omega) = \emptyset$, where \tilde{S} the strict transform of S.

\Rightarrow it suffices to consider the embedded resolution of singularities of $X = \partial_z S \cup Z(\omega) \cup P(\omega)$.
Hironaka’s desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).

A proper birational map $\pi : W \to \mathbb{R}^d$ where W is a closed d–dimensional \mathbb{R}_{alg}–subvariety of $\mathbb{R}^d \times \mathbb{P}_\mathbb{R}^m$.
Hironaka’s desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).

A proper birational map $\pi : W \rightarrow \mathbb{R}^d$ where W is a closed d–dimensional \mathbb{R}_{alg}–subvariety of $\mathbb{R}^d \times \mathbb{P}^m_{\mathbb{R}}$.

Using decomposition by hypercubes of $\mathbb{P}^m_{\mathbb{R}}$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.
Hironaka’s desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).

A proper birational map $\pi : W \to \mathbb{R}^d$ where W is a closed d–dimensional \mathbb{R}_{alg}–subvariety of $\mathbb{R}^d \times \mathbb{P}_\mathbb{R}^m$.

Using decomposition by hypercubes of $\mathbb{P}_\mathbb{R}^m$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.

We have a sum of well-defined integrals over compact domains taking areas under the integrand:
Hironaka’s desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).

A proper birational map $\pi : W \to \mathbb{R}^d$ where W is a closed d–dimensional \mathbb{R}_{alg}–subvariety of $\mathbb{R}^d \times \mathbb{P}_\mathbb{R}^m$.

Using decomposition by hypercubes of $\mathbb{P}_\mathbb{R}^m$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.

We have a sum of well-defined integrals over compact domains obtaining areas under the integrand:

Corollary

Any real period $p = \mathcal{I}(S, P/Q)$ can be expressed as

$$p = \text{vol}_d(K_1) - \text{vol}_d(K_2),$$

where K_1, K_2 are compact $(d + 1)$–dimensional \mathbb{R}_{alg}–semi-algebraic sets, obtained algorithmically and respecting the KZ–rules from $\mathcal{I}(S, P/Q)$.
Hironaka’s desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).

A proper birational map $\pi : W \rightarrow \mathbb{R}^d$ where W is a closed d–dimensional \mathbb{R}_{alg}–subvariety of $\mathbb{R}^d \times \mathbb{P}^m_{\mathbb{R}}$.

Using decomposition by hypercubes of $\mathbb{P}^m_{\mathbb{R}}$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.

We have a sum of well-defined integrals over compact domains \rightsquigarrow taking areas under the integrand:

Corollary

Any real period $p = \mathcal{I}(S, P/Q)$ can be expressed as

$$p = \text{vol}_d(K_1) - \text{vol}_d(K_2),$$

where K_1, K_2 are compact $(d + 1)$-dimensional \mathbb{R}_{alg}–semi-algebraic sets, obtained algorithmically and respecting the KZ–rules from $\mathcal{I}(S, P/Q)$.

\rightsquigarrow inner and outer Riemann sums on K_1 and K_2 to construct K.
Hironaka’s desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).

A proper birational map \(\pi : W \to \mathbb{R}^{d} \) where \(W \) is a closed \(d \)-dimensional \(\mathbb{R}_{\text{alg}} \)-subvariety of \(\mathbb{R}^{d} \times \mathbb{P}^{m}_{\mathbb{R}} \).

Using decomposition by hypercubes of \(\mathbb{P}^{m}_{\mathbb{R}} \), we can decompose \(\tilde{S} \) in compact sets contained in the charts of the resolution.

We have a sum of well-defined integrals over compact domains \(\rightsquigarrow \) taking areas under the integrand:

\[
\text{Corollary}
\]

Any real period \(p = \mathcal{I}(S, P/Q) \) can be expressed as

\[
p = \text{vol}_{d}(K_{1}) - \text{vol}_{d}(K_{2}),
\]

where \(K_{1}, K_{2} \) are compact \((d + 1)\)-dimensional \(\mathbb{R}_{\text{alg}} \)-semi-algebraic sets, obtained algorithmically and respecting the KZ–rules from \(\mathcal{I}(S, P/Q) \).

\(\rightsquigarrow \) inner and outer Riemann sums on \(K_{1} \) and \(K_{2} \) to construct \(K \).
Compact domains in \mathbb{R}^2 and tangent cones

This case is more easy to manipulate:

- Blow-ups over points $p \in \partial S$.
- The compacity of the domain can be controlled \textit{a priori} using the tangent cone $T_p(\partial z S)$ at p of $\partial z S$.

\begin{proposition}
Let $p \in \partial S$ and suppose that there exists a line L such that $\overline{S} \cap L = \{p\}$. If $L \notin T_p(\partial z S)$ then there exist a Zariski open $U \subset \widehat{\mathbb{R}}^2$ such that $\widetilde{S^T} \cap U$ is compact.
\end{proposition}
Compact domains in \mathbb{R}^2 and tangent cones

This case is more easy to manipulate:

- Blow-ups over points $p \in \partial S$.
- The compacity of the domain can be controlled \textit{a priori} using the tangent cone $T_p(\partial_z S)$ at p of $\partial_z S$.

Proposition

\begin{align*}
\text{Let } p \in \partial S \text{ and suppose that there exists a line } L \text{ such that } \overline{S} \cap L = \{p\}. \text{ If } L \not\in T_p(\partial_z S) \text{ then there exist a Zariski open } U \subset \hat{\mathbb{R}}^2 \text{ such that } \widetilde{S}^T \cap U \text{ is compact.}
\end{align*}

- If $T_p(\partial_z S)$ contains $n \geq 2$ lines: let $X = T_p(X) \cap S$, and $S = X \cup S_1 \cup \ldots \cup S_n$.
- If $T_p(\partial_z S)$ only contains one line: consider $N_p(\partial_z S)$ the normal space of $\partial_z S$ at p and let $X = (T_p(X) \cup N_p(\partial_z S)) \cap S$. We obtain a partition $S = X \cup S_1 \cup S_2$.

\text{Juan Viu-Sos}
This case is more easy to manipulate:
- Blow-ups over points $p \in \partial S$.
- The compacity of the domain can be controlled \textit{a priori} using the tangent cone $T_p(\partial_z S)$ at p of $\partial_z S$.

Proposition

Let $p \in \partial S$ and suppose that there exists a line L such that $\overline{S} \cap L = \{p\}$. If $L \not\in T_p(\partial_z S)$ then there exist a Zariski open $U \subset \widehat{\mathbb{R}}^2$ such that $\overline{S^T} \cap U$ is compact.

- If $T_p(\partial_z S)$ contains $n \geq 2$ lines: let $X = T_p(X) \cap S$, and $S = X \cup S_1 \cup \ldots \cup S_n$.
- If $T_p(\partial_z S)$ only contains one line: consider $N_p(\partial_z S)$ the normal space of $\partial_z S$ at p and let $X = (T_p(X) \cup N_p(\partial_z S)) \cap S$. We obtain a partition $S = X \cup S_1 \cup S_2$.

Juan Viu-Sos
A semi-canonical reduction for periods of Kontsevich-Zagier
16 / 21
A classical way to write $\pi/4$ as an integral is:

$$\frac{\pi}{4} = \int_1^\infty \frac{1}{1+x^2} \, dx = \int_{D} dx dy$$

with $D = \{ x > 1, 0 < y(1+x^2) < 1 \} \subset \mathbb{R}^2$.

By a change of charts given by the inclusion $U_z = \{ [x : y : z] \mid z \neq 0 \} \subset \mathbb{P}^2_\mathbb{R}$, we obtain a diffeomorphism φ of \mathbb{R}^2 minus a line such that

$$D_1 = \varphi^{-1}D = \left\{ 0 < x_1 < 1, \ 0 < y_1, \ 0 < x_1^3 - y_1(1 + x_1^2) \right\}.$$
A classical way to write $\pi/4$ as an integral is:

$$\frac{\pi}{4} = \int_1^\infty \frac{1}{1 + x^2} \, dx = \int_D \, dxdy$$

with $D = \{x > 1, 0 < y(1 + x^2) < 1\} \subset \mathbb{R}^2$.

By a change of charts given by the inclusion $U_z = \{[x : y : z] \mid z \neq 0\} \subset \mathbb{P}_\mathbb{R}^2$, we obtain a diffeomorphism φ of \mathbb{R}^2 minus a line such that

$$D_1 = \varphi^{-1}D = \left\{0 < x_1 < 1, \ 0 < y_1, \ 0 < x_1^3 - y_1(1 + x_1^2)\right\},$$
\[\mathcal{I}(D, 1) = \int_D dx dy = \int_{D_1} \frac{dx_1 dy_1}{x_1^3}. \]

\[\implies \text{the jacobian gives a pole of order 3 at the origin.} \]
\[\mathcal{I}(D, 1) = \int_D dx dy = \int_{D_1} \frac{dx_1 dy_1}{x_1^3}. \]

\[\implies \text{the jacobian gives a pole of order 3 at the origin.} \]

We decrease the order of this pole by a sequence of blow-ups at the origin:
$\mathcal{I}(D, 1) = \int_D dx dy = \int_{D_1} \frac{dx_1 dy_1}{x_1^3}.$

\Rightarrow the jacobian gives a pole of order 3 at the origin.

We decrease the order of this pole by a sequence of blow-ups at the origin:

Then:

$$\frac{\pi}{4} = \int_{D_1} \frac{dx_1 dy_1}{x_1^3} = \text{vol}_2 \left(\left\{ 0 \leq x \leq 1, 0 \leq y_4(1 + x_4^2) \leq 1 \right\} \right).$$
\[I(D,1) = \int_D dx\,dy = \int_{D_1} \frac{dx_1\,dy_1}{x_1^3}. \]

\[\Rightarrow \text{the jacobian gives a pole of order } 3 \text{ at the origin}. \]

We decrease the order of this pole by a sequence of blow-ups at the origin:

Then:

\[\frac{\pi}{4} = \int_{D_1} \frac{dx_1\,dy_1}{x_1^3} = \text{vol}_2 \left(\left\{ 0 \leq x \leq 1, 0 \leq y_4(1 + x_4^2) \leq 1 \right\} \right). \]
PART III

PERSPECTIVES AND CONTINUATION
Compact semi-algebraic sets have a PL–manifold structure via triangulations:
- Reduction of the KZ-conjecture in a combinatorial problem?
Compact semi-algebraic sets have a PL–manifold structure via triangulations:

- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?
Compact semi-algebraic sets have a PL–manifold structure via triangulations:
- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?

We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \text{vol}_d(K)\}$$
Compact semi-algebraic sets have a PL–manifold structure via triangulations:
- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?

We can define a notion of degree for periods with some transcendence consequences:

\[\text{deg}(p) = \min\{ d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \text{vol}_d(K) \} \]

First natural property: \(\text{deg}(p) = 1 \) iff \(p \in \overline{\mathbb{Q}}! \) (Wan, 2011)
Compact semi-algebraic sets have a PL–manifold structure via triangulations:
- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?

We can define a notion of degree for periods with some transcendence consequences:

$$\text{deg}(p) = \min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \text{vol}_d(K)\}$$

First natural property: $\text{deg}(p) = 1$ iff $p \in \overline{\mathbb{Q}}$! (Wan, 2011)

An approximation theory for periods based in geometrical approximations of volumes?
Compact semi-algebraic sets have a PL–manifold structure via triangulations:

- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?

We can define a notion of *degree* for periods with some transcendence consequences:

$$\text{deg}(p) = \min\{ d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \text{vol}_d(K) \}$$

First natural property: $\text{deg}(p) = 1$ iff $p \in \overline{\mathbb{Q}}$! (Wan, 2011)

An approximation theory for periods based in geometrical approximations of volumes?

Implement this reduction in Sage/Singular.
Compact semi-algebraic sets have a PL–manifold structure via triangulations:
- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?

We can define a notion of degree for periods with some transcendence consequences:

\[\deg(p) = \min\{d \in \mathbb{N} | \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \text{vol}_d(K) \} \]

First natural property: \(\deg(p) = 1 \) iff \(p \in \overline{\mathbb{Q}} \! \) (Wan, 2011)

- An approximation theory for periods based in geometrical approximations of volumes?
- Implement this reduction in Sage/Singular.
- Best choice of centers for the general case, in order to decrease complexity.
Compact semi-algebraic sets have a PL–manifold structure via triangulations:
- Reduction of the KZ-conjecture in a combinatorial problem?
- Study of the transcendence of periods?

We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \text{vol}_d(K)\}$$

First natural property: $$\deg(p) = 1$$ iff $$p \in \overline{\mathbb{Q}}!$$ (Wan, 2011)

An approximation theory for periods based in geometrical approximations of volumes?
Implement this reduction in Sage/Singular.

Best choice of centers for the general case, in order to decrease complexity.
A semi-canonical reduction for periods of Kontsevich-Zagier