Analysis of Sustainable Urban Landscape in Karawang HSR Station Area

H R Herdini3, A Gamal1,2,3 and A Hadi3

1 SMART City Center, Universitas Indonesia
2 Program of Urban and Regional Planning, Universitas Indonesia
3 Department of Architecture, Universitas Indonesia

E-mail: a.gamal@ui.ac.id

Abstract. This research presents a qualitative study that examined the sustainable urban landscape based on the land value aspect by mapping the potentials of an area in the land value by synthesizing the results of a theory on specific factors that affect land values in examining the spatial direction of land value determination by mapping the potentials of an area of land value. This study looks from a different perspective. In previous studies, it was seen how land use could change prices, but in this study, it is more seen how land value maps can also map the spatial changes of a city. Future researchers are encouraged to confirm the results of this finding in quantitative research that links the determinants of land value which can be later used to calculate the value of vacant lands.

Keywords: land value, spatial mapping, sustainable urban landscape

1. Introduction

The growing urbanization is causing a steady loss of agriculture. [1]. The transformation of agricultural land into residential [2], commercial [3], and industrial [3] areas is one example of land conversion [4]. This situation is caused by social development and population growth [5], both of which are not by regional supporting facilities and infrastructure [6]. As a result, infrastructure must be built by redesigning the surrounding environment and implementing mobility-based planning through accessibility and space creation. [7]. The goal is to connect the cities in a shorter travel time. The ‘Kereta Cepat Jakarta Bandung’ (KCJB) or High-Speed Rail (HSR) Jakarta-Bandung is part of the Indonesian government's grand plan to develop mass transportation, inter-regional connectivity, and the development of integrated areas. KCJB will connect Jakarta and Bandung with a shorter travel time [8] from Bekasi and Karawang stations, West Java. This plan can potentially increase the value of the land around the development area and will result in changes to the urban landscape. It is necessary to map the area and land values from the last few times to see the relationship between changes in landscape and land values.

This research examines the variable affecting land value around the Karawang HSR. If previous research was conducted in cities, or suburban areas [6], [7] where infrastructure development was intended to support the region's development, discussed the land value in urban areas with well-established infrastructure [9]–[11] and examined the factors that affected land value by measuring the correlation between certain variables [12]–[14]. In this present research, factors affecting land value are determined by connecting various theories with factors that affect land values in the area being studied.
This qualitative study will discuss an important issue on how the potentials of the area affect the land values around the Karawang HSR Area. This problem will be closely related to the land value determinants that follow the infrastructure development.

2. Material and Method

This qualitative study will investigate the causes and relationships between infrastructure development and land value. A qualitative study was performed to understand land value development in association with regional development. This study will also be performed to map the area's potentials that can affect land values. Later, factors that may affect the land value will be examined.

Variety of Architectural Data	Literature Study	Spatial Analysis Through Satellite Image
Collected/generated	Collecting data containing understanding, data, regulations, and previous research	Data in the form of data collections at Karawang and Bekasi Regencies that are containing photos of satellite images, RTRW 2011-2031, BPS, and regional developments, as well as increasing land values that appear based on ATR/BPN data
Data Type	Secondary data	Secondary data
System	Digital	Digital
Objective	Making sense of context – archival document	Making sense of context – archival document
Perspective & Depth	Group of society perspective, multiple variables	Group of society perspective, multiple variables

3. Literature Review

This literature research will discuss environmental changes and their impact on land values. This research will provide a qualitative basis in the form of knowledge about appropriate strategies that can be used to solve similar problems. This research will provide a qualitative basis in the form of knowledge of proper strategies that can be used to solve similar problems.

Areas with dense industries will grow faster than non-industrial areas with a greater amount of capital. Industrial areas have higher land values [4], [9]. In addition, infrastructure development inside and outside the area will support economic activities in an area. Several aspects cause changes in a city, including environmental, social, political, and economic aspects [10]. Consequences also follow, especially (1) economic changes in the form of economic attractiveness of a region, (2) environmental phenomena such as visual intern from an environment, and (3) social phenomena in which humans behave. These phenomena include community concentration and population movement, which drive socio-economic transformation [11], and environmental changes [12]. Through various patterns, namely the pattern of trajectories or processes of dependent change, turning points are results of innovation or crisis, while the pattern forms a repetition of spatial changes, intertwined temporality, and transformation of regional forms [13]. The land is defined as a physical location and a collection of values and meanings that make it a more valuable commodity due to territorial planning [14]. Alternatively, it can be said that the notion of land value is a type of measurement that does not take into account the value of the building [15].

Environmental quality and its effect on land value appear in the land control and configuration. The decisions made close to the land regarding agglomeration effects and spatial externalities impact land usage. Regional incomes and productivity can be affected by agglomeration [16]. Regional investment influences the surrounding area through spatial interaction [11], [12]. Infrastructure will positively impact the region's and nearby
areas’ spatial and production features. The association is directly linked to a site’s strategic position, impacting a region’s success, particularly in choosing the location [17], [18].

Table 2. Factors Affecting Land Value.

Factor	Theory	Recent Research
Economic Factor	• In classical economics in the nineteenth century, land played a crucial part in economic analysis. Alonso (1964), Muths (1969), and Mills (1969) indicate that agricultural land productivity, geographical theory, locational features of the land in terms of its use and value, as well as tax, population, and spatial aspects.	Income, tax, Purchasing power, and transaction costs. [7], [21]–[24]
Social Factor	• The city is a representation of human life. The following elements must be considered while determining strategic locations: Accessibility, traffic, visibility, regional complementing facilities, government laws, the environment, competition, and regional expansion are all factors that must be considered. [19]	Population density, education level, demographic. Characteristics of the population. [25]–[29]
Government-Related Factor	• Spatial planning, zoning	The planned land use for redevelopment [30]–[32].
Physical Factor	• Accessibility, Transportation Distance to public park, hospital, mall Open space area / Forest. [33]–[35]	Accessibility, Transportation Distance to public park, hospital, mall Open space area / Forest. [33]–[35]

In this research, map data retrieved from Google Earth and RTRW 2011-2031 for Karawang and Bekasi Regencies were used to map the areas with certain development criteria and detect the types of development that can significantly affect the environment and land values based on historical movements. The environmental movement of this area can show an increase in the land value in the form of ‘Zona Nilai Tanah’ or ZNT in each area. The ZNT Policy is intended as a guideline and monitoring mechanism for all land-related transactions and is shown in color to identify boundaries. Each ZNT value is based on several determinants: market price transactions, individual transactions, offers and natural conditions, distance to the city center, land use, public and social facilities, and accessibility [36].

4. Data Area Mapping

This research took place in an area between Bekasi and Karawang districts that used to be agricultural land converted into an industrial area. Along with the region’s development, new residential, commercial, business, and industrial areas emerged, resulting in higher income levels [9]. To support this, necessary to establish integrated infrastructure and transportation to facilitate the need for mass transportation, which will be a strategic key to regional development [37]. The development of an area will also affect the value of the area and its land value. The urban development within a territory will vary depending on the growth pattern of the surrounding environment. The mapping of the local potentials of the region was performed using satellite imaging in a radius of 10 kilometers surrounding HSR Karawang Station. There are 7648 ZNTs (Zona Nilai Tanah) throughout the location of the study, each has a separated attribute and polygon presented in Figure 1.
5. Analysis
The data is then combined and compared with secondary data obtained from the Bekasi and Karawang Regency Governments (RTRW 2011 – 2031), BPS, and ATRBPN in the form of ZNT data for 2016, 2018, 2020, and 2021 in the form of polygon maps of land value zones as the basis for calculations and maps of other variables. which is determined.

Regional mapping is carried out to see regional developments and detect what developments can significantly affect the environment and land values based on historical movements:
- land use shift (Google Earth)
- activities in zoning (RTRW)
- infrastructure/facility/area development/land
- owner/developer/landowner

The increasing growth of the Road Pattern environment already exists, but not many houses and industries have been built. Source: Google Earth Historical Imagery 2014

The increase in price was due to an increase in housing and industrial area development. Source: Google Earth Historical Imagery 2015

Compared to existing theories regarding factors that affect land value Land Value:
Economic
- Social
- Population
- Street
- Transportation
- Infrastructure
- Facility Support
- Security
- Central government

Massive increase in the growth of the urban environment (supported by affordable and complete infrastructure/facilities)

Rymarczuk dan Slemriska (2012); Ma et al (2013); Giorno et al (2013); Upati & Kubat Sema (2010); BV et al (2010); Wawrine & Thori (2003)

Figure 1. Research Location & Population Sample
Source: Google Earth, ATRBPN and RTRW 2011-2031, Karawang and Bekasi Regencies

Figure 2. Analysis Step.
Source: Google Earth, ATRBPN and RTRW 2011-2031, Karawang and Bekasi Regencies
The mapping of regional strengths and weaknesses is carried out by comparing the restricted zones of the Deltamas area, the area around the Karawang HSR Station, and the THK/KIIC area to see and complete the segmentation and regional potential.

Table 3. Accessibility and Facilities in Surrounding HSR Karawang Area.

Type	Deltamas	HSR Karawang	THK & KIIC
Accessibility	![Private car (major road on the road within the area)](image)	![Shuttle Bus](image)	Toll Gate (KM 47)
	![Motorcycle (bargroad on the road within the area)](image)		
	![Medium Bus (big road)](image)	![Shuttle Bus](image)	
Toll Gate	East Cikarang Toll Gate (KM 31)	Toll Gate (KM 47)	
Schools	International school, SMU/K, SMP, INSTITUT ITSB, PESANTREN, SDN.	SDN, SMP	Pusdiklat BMK, SD, SMP, SMAK/N International School
		17 km to Karawang Regency Government	14 km to Karawang Regency Government
Central Government Area	Close to the Deltamas area (1-2 km) to the Bekasi City Government		
Hospital	RS Mitra Keluarga, RS Pemantara Keluarga, OMNI Hospital	9 km to RS Rosella, 12 km to RS Primaya	4 km to RS Rosella, 6 km to RS Primary

Source: Google Earth, ATRBP and RTRW 2011-2031, Karawang and Bekasi Regencies

Figure 3. Density Surrounding HSR Karawang in 2016, 2018, and 2020,2021 with the average increase in population is 0.44 million every year.

Source: Google Earth, 2021 Karawang and Bekasi Regencies

6. Result and Discussion
It is necessary to map the image of a city about determine of strategic locations of the area because the image of a city reflects the social value of the community. A combination of theories [38], [39], combined Brinckerhoff Jackson’s (1984) statement that a city is the image of human life. Strategic locations need to be determined regarding the elements of Accessibility, traffic, visibility, regional complementing facilities, government laws, the environment, competition, and regional expansion are
all factors that must be considered [20]. At this stage, map data retrieved from Google Earth and RTRW were used to map the areas with certain criteria of development and detect the types of development that can significantly affect the environment and land values based on historical movements. The historical movement included (1) land function conversion, (2) zoning, (3) infrastructure development, (4) land ownership, and (5) developer and land ownership. Comparing data and the result of this analysis shows in Figure 4 and Tables 3 to 4.

Figure 4. Comparing Data
Source: GoogleEarth, ATBPBN and RTRW 2011-2031, Karawang and Bekasi Regencies

Table 4. Result for Surrounding HSR Area (KCIC, KCIIC & THK).

Year & Mapping	Spatial Change Within the Observed Area	Result
2012	It consists of rice fields and villages along Pasar Jati Street. KIIC developed industrial area near the Karawang Barat I Tollgate	In 2012 to 2014, Land value increased in residential and industrial by 5%. The influencing factors are infrastructure, industrial area, population, and policy.
2016	KIIC developed the west side area, and industries started to fill up, and in 2018 KIIC started developing the southeast side area. THK land cleared in the south area.	Land value increased in residential by 4% and industrial by 19%. The influencing factors are infrastructure, industrial area, economic, and policy.
2020	KIIC has become crowded and continued to develop the southeast side area.	Land value increased in commercial areas by 20% residential and industrial by -0.4% to 10%, from 2018. The influencing factors are infrastructure, industrial area, population, economic, and policy.

Source: GoogleEarth, ATBPBN and RTRW 2011-2031, Karawang and Bekasi Regencies
Table 5. Result for Surrounding HSR Area (Lippo Cikarang, Deltamas & Meikarta).

Year & Mapping	Spatial Change Within the Observed Area	Result
2012	In 2012, Lippo Cikarang developed the west side area, which is already crowded with the residential and industrial areas, and Tollgate Cibatu is under construction. In 2014, Lippo Cikarang developed the west side area and expanded to the south side for developed residential and industrial areas.	From 2012 to 2014, land value increased in the residential, commercial, and industrial areas by 83%. The influencing factors are infrastructure, industrial and residential areas, population, social, economic, and policy.
2016	In 2016, the residential area was developed on the south side by Lippo Cikarang and land clearing for Meikarta Land development. Deltamas developed the residential and industrial area in the nearby Lippo Cikarang area. In 2018, Meikarta started constructing the apartment building structure, lake, and park. Cibatu Tollgate has been completed.	Land value increased in the residential area by 37%, Industrial area by 78%, and commercial area by 211% (2014 to 2016).
2020	In 2020, Lippo Cikarang constructed 8-Cibarusah Deltamas Silicon Road to connect industrial and residential areas. In 2021, Meikarta building apartments and a commercial area. In 2021, lippo Cikarang constructing the 8-Cibarusah Deltamas Silicon Road, to open public road access to Cibarusah.	Land value increased in, commercial areas by 264% to 360%, residential areas by 83% to 139%, and industrial by 146% to 186% from 2018. The influencing factors are infrastructure, industrial and residential areas, population, social, economic, and policy.

Source: GoogleEarth, ATRBPN and RTRW 2011-2031, Karawang and Bekasi Regencies
The completeness of the road network would increase the value of the land [40]. However, road construction tends to only develop in industrial and residential areas. In contrast, main roads and arteries in other areas have not experienced additions, so from the existing mapping, the land value tends to be higher in areas within industrial and residential clusters due to the completeness of road facilities and landscape lenses that are built in its territory. Currently, the construction of the Karawang HSR station has not experienced a significant increase because it is still in the land acquisition stage. This follows the research of Sharma et al. (2021), where the land value before construction did not increase significantly compared to the post-development and operational periods [41].

Spatial changes strongly influence the increase in land value in the environment. Income levels, inflation, and the purchasing power of settlements affect land prices as an economic factor. Upgrading the area and changing the area's zoning, the value of the property may increase or change. Agricultural areas continued to transform into settlements and industries when changes in regional function affect a country's value in state regulatory factors. Increasing population density, changing types of work, and increasing welfare, affect the value of land in social factors. Improvement of environmental infrastructure and facilities affects the value of land in the spatial factor of the region.

7. Conclusion and recommendation
The development of an area will result in spatial conditions and income levels. A spatially agglomerated area will have greater economic growth. Areas with dense industries will grow faster than non-industrial areas with a greater amount of capital. Industrial areas tend to have higher land values [9], [18]. In addition, infrastructure development inside and outside the area will support economic activities in an area. Supportive regional regulations and planning will also add up to the land value and good transportation infrastructure development. Hence, it is necessary to identify factors related to the area being studied to identify the determinants.

The result of this research is that the changes that exist are more on changes in the landscape, which were initially rice fields converted into industrial land and residential land controlled by developers, resulting in a significant price increase in that area. Adding a network of infrastructure, commercial areas, and facilities to complement the area will increase the potential and quality of the area and automatically increase the value of the land. Furthermore, the results obtained can answer the purpose of this research, by altering the landscape and improving land function, the addition of buildings, roads, and properties, along with supporting areas above the land, will automatically increase the land value. This can be demonstrated by examining the causes and relationships between infrastructure development and land value. Land for various development initiatives and spatial development can alter the physical landscape. The city's sustainability is impacted by these changes, which is crucial for the growth of cities and attaining sustainable urban development. Moreover, from legislation, urban planning in many sectors, and development control, governments need to include city sites created to link people, activities, buildings, and public spaces with excellent walking and bicycle connections. They started by structuring and structuring cities in multiple industries and managing regional growth in multiple sectors [42]. The limitation of this research is that the land value maps obtained from ATRB PN in 2012, 2014, 2016, 2018, 2020, and 2021 do not have complete data for each year. Thus, mapping the entire area within a certain period needs to be carried out to provide an overview of changes in land values in each area studied. This research needs to be supported by quantitative calculations to get the determinants that affect the land value, and then it is mapped again on the unfilled land value map.

8. Further Research Recommendation
This study tries to map as many variables as possible that affect land values. In the future, the determining factor will alter based on the territory's development by both the government and the private sectors. Future researchers are encouraged to confirm the results of this finding in quantitative research that links the determinants of land value which can be later used to calculate the value of vacant lands.
9. Reference

[1] Wästfelt A and Zhang Q, 2016 Reclaiming localisation for revitalising agriculture: A case study of peri-urban agricultural change in Gothenburg, Sweden J. Rural Stud. 47, 2016 p. 172–185. [crossref]

[2] Zhang L Zhu L Shi D and Hui E C, 2022 Urban residential space differentiation and the influence of accessibility in Hangzhou, China Habitat Int. 124, September 2021 p. 10256. [crossref]

[3] Yang T Pan H Hewings G and Jin Y, 2019 Understanding urban sub-centers with heterogeneity in agglomeration economies—Where do emerging commercial establishments locate? Cities 86, August 2018 p. 25–36. [crossref]

[4] Zhang H Uwasu M Hara K and Yabar H, 2010 Land use change patterns and sustainable urban development in China J. Asian Archit. Build. Eng. 9, 1 p. 131–138. [crossref]

[5] Dadashpoor H and Aldadi M, 2017 Towards decentralization: Spatial changes of employment and population in Tehran Metropolitan Region, Iran Appl. Geogr. 85 p. 51–61. [crossref]

[6] Ndulu B J, 2006 Infrastructure, regional integration and growth in Sub-Saharan Africa: Dealing with the disadvantages of geography and sovereign fragmentation. J. Afr. Econ. 15(suppl_2 p. 212–244. [crossref]

[7] Lu S and Wang H, 2020 Local economic structure, regional competition and the formation of industrial land price in China: Combining evidence from process tracing with quantitative results Land use policy 97, October 2019. [crossref]

[8] 2015, Perpres No. 107 tahun 2015 Tentang percepatan Penyelenggaraan Prasarana Dan Sarana Kereta Cepat Antara Jakarta Dan Bandung [Presidential Decree No. 107 of 2015 concerning the acceleration of the implementation of fast train infrastructure and facilities b.

[9] Baldwin R E Martin P and Ottaviano G I P, 2021 Global Income Divergence, Trade, and Industrialization: The Geography of Growth Take-Offs World Sci. Stud. Int. Econ. 79, 1 p. 25–57. [crossref]

[10] Silver C, 2007 Planning the Megacity_ Jakarta in the Twentieth Century - Routledge. [crossref]

[11] Liu Y Fang F and Li Y, 2014 Key issues of land use in China and implications for policy making Land use policy 40 p. 6–12. [crossref]

[12] Hillmann F Okine R K and Borri G, 2020 “Because migration begins from the villages”: environmental change within the narrations of the Ewe diaspora Ethn. Racial Stud. 43, 16 p. 39–56. [crossref]

[13] Cysek-Pawlak M M and Pabich M, 2021 Walkability—the New Urbanism principle for urban regeneration J. Urban. 14, 4 p. 409–433. [crossref]

[14] Yang Z Song T and Chahine T, 2016 Spatial representations and policy implications of industrial co-agglomerations, a case study of Beijing Habitat Int. 55 p. 32–45. [crossref]

[15] BV B MA N and PP A K, 2020 A methodology for identifying critical factors influencing land value in urban areas: a case study of Kerala, India Prop. Manag. 38, 5 p. 665–681. [crossref]

[16] Marshall A, 1890 Principles of Economics Macmillan London.

[17] Cervero R and Duncan M, 2004 Neighbourhood composition and residential land prices: Does exclusion raise or lower values? Urban Stud. 41, 2 p. 299–315. [crossref]

[18] Loibl W Etminan G Gebetsroither-Geringer E Neumann H-M and Sánchez-Guzman S, 2018 Characteristics of Urban Agglomerations in Different Continents: History, Patterns, Dynamics, Drivers and Trends Urban Agglom. March. [crossref]

[19] Angelsen A, 2007 Forest Cover Change in Space and Time: Combining the von Thünen and Forest Transition World Bank Policy Res. Work. Pap. February p. 1–43. [crossref]

[20] Brinckerhoff J and Jackson, 1984 Discovering the Vernacular Landscape New Haven: Yale University Press.

[21] He C Wang Z Guo H Sheng H Zhou R and Yang Y, 2010 Driving forces analysis for residential housing price in Beijing Procedia Environ. Sci. 2, 5 p. 925–936. [crossref]

[22] Wen H and Goodman A C, 2013 Relationship between urban land price and housing price: Evidence from 21 provincial capitals in China Habitat Int. 40 p. 9–17. [crossref]
[23] Epple D, 2016 Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions for Differentiated Products. Author(s): Dennis Epple. Source: Journal of Political Economy, Vol. 95, No. 1 (Feb., 1987), pp. 59-80. Published by: The University of Chicago. p. 59–80. [crosref]

[24] Nakamura H, 2019 Relationship among land price, entrepreneurship, the environment, economics, and social factors in the value assessment of Japanese cities. J. Clean. Prod. 217 p. 144–152. [crosref]

[25] Addae-Dapaah K, 1999 Utilization of urban residential land: A case study of Singapore. Cities 16, 2 p. 93–101. [crosref]

[26] Mirkoatuli J, Hosseini A, and Samadi R, 2018 Evaluating and analysis of socio-economic variables on land and housing prices in Mashhad, Iran. Sustain. Cities Soc. 41, June p. 695–705. [crosref]

[27] Codosero Rodas J, Castanho R A, Cabezas Fernández J, and Naranjo Gómez J M, 2020 Sustainable valuation of land for development. Adding value with urban planning progress. A Spanish case study. Land use policy 92, September 2019 p. 104456. [crosref]

[28] Bischoff O, 2012 Explaining regional variation in equilibrium real estate prices and income. J. Hous. Econ. 21, 1 p. 1–15. [crosref]

[29] Davis J S, Huang K X, and Sapci A, 2022 Land price dynamics and macroeconomic fluctuations with imperfect substitution in real estate markets. J. Econ. Dyn. Control 134. [crosref]

[30] El Araby M M, 2003 The role of the state in managing urban land supply and prices in Egypt. Habitat Int. 27, 3 p. 429–458. [crosref]

[31] Alexander E R, 2014 Land-property markets and planning: A special case. Land use policy 41 p. 533–540. [crosref]

[32] Asadi Bagloee S, Heshmati M, Tavana M, and Di Caprio D, 2017 A logit-based model for measuring the effects of transportation infrastructure on land value. Transp. Plan. Technol. 40, 2 p. 143–166. [crosref]

[33] Liu Y, Zheng B, Huang L, and Tang X, 2007 Urban residential land value analysis. Case Danyang, China. Geo-Spatial Inf. Sci. 10, 3 p. 228–234. [crosref]

[34] Millard-Ball A, 2022 The Width and Value of Residential Streets. J. Am. Plan. Assoc. 88, 1 p. 30–43. [crosref]

[35] Zygmunt R, and Gluszak M, 2015 Forest proximity impact on undeveloped land values. A spatial hedonic study. For. Policy Econ. 50 p. 82–89. [crosref]

[36] Kementerian ATR/BPN, 2015 Penelitian Pemanfaatan Zona Nilai Tanah Berbasis Penataan Ruang. Pus. Penelit. Dan Pengemb. Kementeri. Agrar. dan Tata Ruang/Badan Pertanah. Nas. p. 118.

[37] Lai Y, Tang B, Chen X, and Zheng X, 2021 Spatial determinants of land redevelopment in the urban renewal processes in Shenzhen, China. Land use policy 103, February 2020 p. 105330. [crosref]

[38] O’Kelly, M., & Bryan D, 1996 Agricultural Location Theory: Von Thunen’s contribution to economic geography. Hum. Geogr. 20 p. 457–475. [crosref]

[39] Alonso W, 1964 Location and Land Use: Toward a General Theory of Land Rent. Harvard University Press: Cambridge. [crosref]

[40] Ndulu B, Niekerk L K, and Reinikka R, 2005 Infrastructure, Regional Integration and Growth in Sub-Saharan Africa. World Econ. December p. 101–121.

[41] Narjary B, Kumar S, Meena M, Kamra S K, and Sharma D K, 2021 Spatio-temporal mapping and analysis of soil salinity: an integrated approach through electromagnetic induction (EMI), multivariate and geostatistical techniques. Geocarto Int. 0, 0 p. 1–22. [crosref]

[42] Isaacs R R, 1948 The Neighborhood Theory: An Analysis of its Adequacy. J. Am. Plan. Assoc. 14, 2 p. 15–23. [crosref]