Title	Pharmacology of ginsenosides: a literature review
Author(s)	Leung, KW; Wong, AS
Citation	Chinese Medicine, 2010, v. 5
Issued Date	2010
URL	http://hdl.handle.net/10722/127432
Rights	This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Chinese Medicine. Copyright © BioMed Central Ltd.
Pharmacology of ginsenosides: a literature review

Kar Wah Leung*1 and Alice Sze-Tsai Wong2

Abstract
The therapeutic potential of ginseng has been studied extensively, and ginsenosides, the active components of ginseng, are shown to be involved in modulating multiple physiological activities. This article will review the structure, systemic transformation and bioavailability of ginsenosides before illustration on how these molecules exert their functions via interactions with steroidal receptors. The multiple biological actions make ginsenosides as important resources for developing new modalities. Yet, low bioavailability of ginsenoside is one of the major hurdles needs to be overcome to advance its use in clinical settings.

Review

Background

Panax ginseng (Renshen, Chinese ginseng) is commonly used either by itself or in combination with other medicinal ingredients as a key herb in Chinese medicine. A member of the Araliaceae family, the genus name Panax was derived from the Greek word meaning “all-healing" first coined by the Russian botanist Carl A. Meyer. The Panax family consists of at least nine species, including P. ginseng, Panax quinquefolium (Xiyangshen, American ginseng), Panax notoginseng (Sanqi) and Panax japonicus (Japanese ginseng). The worldwide sale of ginseng products has estimated to reach US$ 300 million in 2001 [1,2].

Ginseng modulates blood pressure, metabolism and immune functions [3-6]. The action mechanism of ginseng had not been known until ginsenosides were isolated in 1963 [7,8]. Much effort has since been focused on evaluating the function and elucidating the molecular mechanism of each ginsenoside. Number of publications on ginseng and ginsenosides has been growing exponentially since 1975 according to the Pubmed entry.

Ginsenosides are the pharmacologically active components in ginseng

Ginsenosides are triterpene saponins. Most ginsenosides are composed of a dammarane skeleton (17 carbons in a four-ring structure) with various sugar moieties (e.g. glucose, rhamnose, xylose and arabinose) attached to the C-3 and C-20 positions [9,10]. Ginsenosides are named as ‘Rx’, where the ‘R’ stands for the root and the ‘x’ describes the chromatographic polarity in an alphabetical order [7], for example, Ra is the least polar compound and Rb is more polar than Ra. Over 30 ginsenosides have been identified and classified into two categories: (1) the 20(S)-protopanaxadiol (PPD) (Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2, Rs1) and (2) the 20(S)-protopanaxatriol (PPT) (Re, Rf, Rg1, Rg2, Rh1). The difference between PPTs and PPDs is the presence of carboxyl group at the C-6 position in PPDs [9,10]. Moreover, several rare ginsenosides, such as the ooctillol saponin F11 (24-R-pseudoginsenoside) [11] and the pentacyclic oleanane saponin Ro (3,28-O-bisdesmoside) [12] have also been identified.

The quality and composition of ginsenosides in the ginseng plants are influenced by a range of factors bhsuch as the species, age, part of the plant, cultivation method, harvesting season and preservation method [13,14]. For example, ginsenoside Rf is unique to Asian ginseng while F11 is found exclusively in American ginseng. Thus the Rf/F11 ratio is used as a phytochemical marker to distinguish American ginseng from Asian ginseng [15,16]. The overall saponin content in ginseng is directly proportional to its age, reaching a peak level at around 6 years of age [17,18]. Most harvested ginseng roots are air-dried while some are steamed at 100°C for two to four hours before drying, which gives the ginseng a darker appearance known as red ginseng. The red ginseng has a unique saponin profile, with emerging ginsenosides Ra1, Ra2, Ra3, Rf2, Rg4, Rg5, Rg6, Rk1, Rs1 and Rs2 being likely the results of heat transformation and deglycosylation of naturally occurring ginsenosides [19-24]. The presence of these compounds may confirm the folk knowledge that

* Correspondence: kwl_melody@yahoo.co.uk
1 Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, PR China
Full list of author information is available at the end of the article

© 2010 Leung and Wong; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Pharmaton SA, Switzerland) and NAGE from NAGE has higher in Rb1 and Re [32-34].

between G115 and NAGE, G115 has higher Rg1, but NAGE, and ginsenoside Rg2 in G115 only. To compare sides Rb1, Rb2, Rc, Rd, Re and Rg1 in both G115 and mance liquid chromatography (HPLC) found ginsenosides [31].

Studies on these two ginseng extracts using high-performance liquid chromatography (HPLC) found ginsenosides [31].

Ginsenosides Rb1, Rb2, Rc, Rd, Re and Rg1 in both G115 and NAGE, and ginsenoside Rg2 in G115 only. To compare between G115 and NAGE, G115 has higher Rg1, but NAGE has higher in Rb1 and Re [32-34].

Ginsenosides are part of the defense mechanisms in ginseng

Similar to plants that produce insect repellents and antimicrobial substances as part of their defense mechanisms, e.g. nicotine from tobacco leaves [35], rotenone from derris tree roots [36], pyrethroids from chrysanthemum flowers [37], and triterpenoids from neem tress [38], evidence suggests that ginsenosides may protect ginseng. Addition of methyl jasmonate (a plant-specific signaling molecule expressed during insect and pathogenic attacks) into ginseng in vitro cultures enhances ginsenoside production [39-41]. Naturally occurring ginsenosides are antimicrobial and antifungal; the bitter taste of ginsenosides makes them antifeedant [42-46].

Furthermore, ginsenosides may act as ecdysteroids, the insect molting and metamorphosis hormones, due to the structural similarities between the two groups of chemicals. The ecdysteroids have a steroid backbone with a C-20 sugar side-chain and a C-3 hydroxyl group [47] resembling the structure of most of the PPT-type ginsenosides such as Rg1 and several metabolites of PPDs such as compound Y and compound K. Ecdysteroids differ from ginsenosides in the C-6 position which is occupied by an oxygen group in the former and a hydrogen or hydroxyl group in the latter [47]. Such difference, however, has minor and non-significant influence on ecdysteroid receptor binding affinity as demonstrated by biochemical analysis [47,48]. The structural similarity suggests that certain naturally occurring ginsenosides may disrupt insects’ life cycle by binding to ecdysteroid receptor.

Biotransformation of ginsenosides

Treatment of various cultured cells by ginsenosides revealed multiple bioactivities, including neuroprotection [49-53], antioxidation [54-56], angiogenesis modulation [57-59] and cytotoxicity [60-62]. However, biotransformation may be required before ginsenosides becoming active in mammalian systems. Recent studies demonstrated that ginsenoside metabolites had greater biological effects than ginsenosides [63-65]. Anti-tumor activities of Rh2 and PD, which are the metabolites of Rg3, are more potent than those of ginsenoside Rg3 [64]. Ginsenosides Rb1, Rb2, Rg1 and Re do not possess the same human liver enzyme cytochrome P450 inhibitory effects of compound K, PT and PD which are the intestinal metabolites of PPTs and PPDs [65].

Major ginsenosides, such as Rg1, Rg3, Rb1, Re and Rg3, are treated as antigens by mammalian systems. Antibodies against these ginsenosides have been purified from immunized animals [66-70]. Due to their bulky molecular structures, the ginsenosides are poorly membrane permeable and prone to degradation. Oral consumption of ginseng preparations exposes ginsenosides to acid hydrolysis accompanied by side-reactions, glycosyl elimination and epimerization of C-20 sugar moiety [71,72]. The C-3 or C-20 oligosaccharides are also cleaved by intestinal microflora stepwise from the terminal sugar [72,73]. These intestinal microflora include Prevotella orris [74], Eubacterium A-44 [75], Bifidobacterium sp. [73,76], Bacteroides [76], Fusbacterium K-60 [73], Lactobacillus delbrueckii sp. [76] and Aspergillus sp. [76]. Following biodegradation, compound K and protopanaxadiol (PPD) are the major metabolites of PPDs while PPTs are converted to F1 and protopanaxatriol (PTT) (Figure 1).

Pharmacokinetic and bioavailability of ginsenosides

How intact and transformed ginsenosides are absorbed and transported to the human system remains elusive. Transport of ginsenosides across the intestinal mucosa is energy-dependent and non-saturable [77-79]. The sodium-dependent glucose co-transporter 1 may be involved in this process [80]. The availability of intact ginsenosides and their metabolites from the intestines is extremely low [81-83]. For example, only 3.29% Rg1 and 0.64% Rb1 are detected in rat serum after oral administration of ginsenosides [78,79], confirming the classic studies by Odani et al. in 1983 [84,85]. Rg1 levels become undetectable within 24 hours of oral consumption while Rb1 levels remain relatively stable for three days [83].

Experiments to increase the bioavailability of ginsenosides include co-administration of ginsenosides with adrenaline [86], emulsification of ginsenosides into lipid-
Figure 1 Biodegradation of ginsenosides by intestinal microflora. PPDs and PPTs are deglycosylated to end-metabolites protopanaxadiol (PPD) and protopanaxatriol (PPT) respectively. Glc = beta-D-glucopyranosyl; Ara(p) = alpha-L-arabinopyranosyl; Ara(f) = alpha-D-arabinofuranosyl; Rha = alpha-L-rhamnopyranosyl [73-76].
based formulation [87,88] and suppression of p-glycoprotein efflux system [77]. P-glycoprotein-mediated multidrug resistance is a major obstacle to effective cancer treatments. As ginsenoside Rg3 blocks drug efflux by inhibiting p-glycoprotein activities and reducing membrane fluidity, it is used to assist cancer chemotherapy [28,89,90].

Ginsenosides are agonists to steroidal receptors

Ginsenosides modulate expressions and functions of receptors such as receptor tyrosine kinases (RTK) [91], serotonin receptors (5-HT) [92], NMDA receptors [93] and nicotinic acetylcholine receptors (AChR) [94]. Direct interactions of ginsenosides with the receptor ligand-binding sites have only been demonstrated in steroid hormone receptors; ginsenosides Rg1 [58,95,96] and Re [97] are functional ligands of the glucocorticoid receptor (GR) while ginsenosides Rh1 and Rb1 are functional ligands of the estrogen receptor (ER), in particular, the ER beta isoform of Rb1 [59,98]. These findings provide an explanation for the aggravation of menopausal symptoms by ginsenosides [99,100] and modulation of the endocrine system in the case of chronic consumption of ginseng [3,4].

Glucocorticoid is a stress hormone to elicit 'fight-or-flight' responses through GR activation. If Rg1 and Re are functional ligands of GR, how is ginseng adaptogenic and antistress? Rg1 and Re may behave as partial agonists to GR. Both Rg1 and Re inhibit the binding of the synthetic glucocorticoid dexamethasone to GR and 100% displacement is possible when ginsenosides are in excess [96,97]. Since Rg1 and Re elicit biological activities that are GR inhibitor RU486 sensitive, indicating these ginsenosides are agonists, but not inhibitors for GR [58,96]. And it is because the steroidal effects of Rg1 and Re are not as prominent as dexamethasone, these ginsenosides are likely to be partial agonist of GR [58,96]. Under physiological conditions, ginsenosides may compensate the insufficient steroidal activities, when the intrinsic ligand is absent or inadequate in the system. On the other hand, ginsenosides can reversibly occupy certain percentage of the steroidal receptor at low affinity to counter the steroidal effects when they co-exist with a large amount of intrinsic ligand.

Moreover, each ginsenoside is able to bind to multiple steroid hormone receptors. In addition to GR, ginsenoside Rg1 acts through ER and elicits cross-talking with insulin-like growth factor-1 receptor (IGF-IR) in neuronal cells [101]. Effects of ginsenoside Re on cardiac myocytes are related to ER alpha isoform, androgen receptor and progesterone receptor [102]. The end metabolites PD and PT bind and activate both GR and ER in endothelial cells [103]. The multi-target properties of ginsenosides may explain why ginseng has a wide range of beneficial effects.

Conclusion

As partial agonists to multiple steroidal receptors, ginsenosides are important natural resources to be developed into new modalities, and may replace steroids in the current regimen to lessen undesirable side effects. However, low bioavailabilities of ginsenosides and its metabolites means that most of these compounds do not reach the intended biological system when administered orally. The results of ginsenoside researches will become physiologically relevant only when (1) the pure compounds of the ginsenosides is available in large quantities; (2) the ginsenosides are biochemically stabilized to avoid degradation and enhance absorption in the gastrointestinal tract; and/or (3) special delivery methods for the ginsenosides to reach the areas of treatment. Moreover, this review highlighted the necessary of ginsenoside transformation to exert its greatest effects in the mammalian system, thus accelerating this process would help maximizing the remedial effects of ginsenosides. Addressing these two issues in the near future would advance ginseng researches and enhance the possibility for ginseng to be used clinically.

Abbreviations

5-HT: serotonin receptors; AChR: acetylcholine receptor; ER: estrogen receptor; GR: glucocorticoid receptor; HPLC: high performance liquid chromatography; IGF-IR: insulin-like growth factor-1; PD: panaxadiol; PT: panaxatriol; PPD: 20(S)-protopanaxadiol; PPT: 20(S)-protopanaxatriol; RTK: receptor tyrosine kinases

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KWL and ASTW contributed equally on developing the concept, drafting and editing the manuscript. Both authors read and approved the final version of the manuscript.

Acknowledgements

This work was supported by the Research Grant Council, Hong Kong SAR Government (HKBU1/06C) and the Hong Kong University Outstanding Young Researcher Award to ASTW.

Author Details

1 Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, PR China and 2 School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China

Received: 8 March 2010 Accepted: 11 June 2010
Published: 11 June 2010

References

1. Eliason BC, Kruger J, Mark D, Rasmann DN: Dietary supplement users: demographics, product use and medical system interaction. J Am Board Fam Pract 1997, 10:265-271.
2. Hamack LJ, Rydell SA, Stang J: Prevalence of use of herbal products by adults in the Minneapolis/St Paul, Minn, Metropolitan area. Mayo Clin Proc 2001, 76:688-694.
3. Liu CX, Xiao PG: Recent advances on ginseng research in China. J Ethnopharmacol 1992, 36:27-38.
4. Attele AS, Wu JA, Yuan CS: Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999, 58:1685-1693.
5. Spellman K, Bums J, Nichols D, Winters N, Ottersberg S, Tenborg M: Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 2006, 11:128-150.
6. Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. *Phytomedicine* 2008, 15:251-258.

7. Shibata S, Fujita M, Itoaka H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese Curcuma Drugs. XI. Panaxadiol, a sapogenin of ginseng roots. (1). *Chem Pharm Bull (Tokyo)* 1963, 11:59-76.

8. Shibata S, Tanaka O, Soma K, Ando T, Ieda Y, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol, *Tetrahedron Lett* 1965, 42:207-213.

9. Matsuura H, Kasai R, Tanaka O, Saruwatari Y, Kunihiro K, Fuwa T. Further studies on the dammarane-saponins of ginseng roots. *Chem Pharm Bull (Tokyo)* 1984, 32:1188-1192.

10. De Smet PAGM. Herbal remedies. *N Engl J Med* 2002, 347:2046-2056.

11. Namba T, Matsushige K, Morita T, Tanaka O. Saponins of plants of Panax species collected in central Nepal and their chemotaxonomical significance. *Chem Pharm Bull (Tokyo)* 1986, 34:730-738.

12. Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S. Studies on the saponin of ginseng. I. Structures of ginsenoside-Ro, -Rb1, -Rc, and -Rd. *Chem Pharm Bull (Tokyo)* 1974, 22:421-428.

13. Lim W, Mudge KW, Vermeylen E. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (*Panax quinquefolium*). *J Agric Food Chem* 2003, 51:8498-8505.

14. Schlag EM, McIntosh MS. Ginsenoside content and variation among and within American ginseng (*Panax quinquefolium*) populations. *Phytochemistry* 2006, 67:1510-1519.

15. Li W, Gu C, Zhang H, Avang DVC, Fitzloff J, Fong HHS, van Breen RB. Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng C.A. meyer (Asian ginseng) and *Panax quinquefolium* L. (North American ginseng). *Anal Chem* 2000, 72:5417-5422.

16. Asoneva VA, Baum BR, Gagnon D, Amazont J. Phytochemistry of wild populations of *Panax quinquefolium* L. (North American ginseng). *J Agric Food Chem* 2003, 51:549-559.

17. Soldat F, Tanaka O. Panax ginseng: relation between age of plant and content of ginsenosides. *Planta Med* 1984, 50:351-352.

18. Court WA, Reynolds LB, Hendel JG. Influence of root age on the concentration of ginsenosides of American ginseng (*Panax quinquefolium*). *Can J Plant Sci* 1996, 76:853-855.

19. Kaneko H, Nakanishi K. Proof of the mysterious efficacy of ginseng: basic effects of medical ginseng, Korean red ginseng: its anti-stress action for neurotrophic and neuroprotective actions of ginseng *Rg5*, a genuine dammarane glycoside from Korean red ginseng. *Arch Pharm Res* 1996, 19:551-553.

20. Ryu JH, Park JH, Eun JH, Jung JH, Sohn DH. A dammarane glycoside from Korean red ginseng. *J Agric Food Chem* 1997, 45:931-933.

21. Park JD, Lee YH, Kim SI. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (*Panax ginseng*). *Arch Pharm Res* 1998, 21:615-617.

22. Kwon SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. *J Chromatogr A* 2001, 921:335-339.

23. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. *J Nat Prod* 2003, 66:702-704.

24. Lee KY, Lee YH, Kim SI, Park JH, Lee SK. Ginsenoside-Rg5 suppresses cyclin E-dependent protein kinase activity via up-regulating p21Cip1/WAF1 and down-regulating cyclin E in SK-HEP-1 cells. *Anticancer Res* 1997, 17:1067-1072.

25. Liu XK, Xu SX, CH YC. Anti-proliferative effect of ginsenosides sapogenins on human prostate cancer cell line. *Life Sci* 2000, 67:1297-1306.

26. Xu TM, Xin Y, Cui MH, Jiang X, Gu LP. Inhibitory effect of ginsenoside Rg3 combined with cyclophosphamide on growth and angiogenesis of ovarian cancer, *Chinese Med J (Engl)* 2007, 120:584-588.

27. Kim YJ, Kwon HC, Ko H, Park JH, Kim HY, Yoo JH, Yang HO. Anti-tumor activity of the ginsenoside Rk1 in human hepatocellular carcinoma cells through inhibition of telomerase activity and induction of apoptosis. *Biol Pharm Bull* 2008, 31:826-830.
53. Zhu J, Tao YF, Lou S, Wu ZM: Protective effects of ginsenoside Rb3(1) on oxygen and glucose deprivation-induced ischemic injury in PC12 cells. Acta Pharmaceutica Sinica 2010, 45:273-280.

54. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mengenah S, Wang CZ, Hsu CW, Becker LB, Yin JJ, Yuan CS: Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2002, 530:201-207.

55. Xie KS, Liu HC, Yang M, Zuo C, Deng Y, Fan JM: Ginsenoside Rb1, a paxanloxi saponin against oxidative damage and renal interstitial fibrosis in rats with unilateral ureteral obstruction. Chin J Integr Med 2009, 15:133-140.

56. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, Zhou ZW, Wang SQ: Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009, 108:117-124.

57. Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RNS, Sasikesharan R, Fan TPD: Modulating angiogenesis: The Yin and the Yang in ginseng. Circulation 2004, 110:1219-1225.

58. Leung K, Pon YL, Wong RNS, Wong AST: Ginsenoside-Rg1 induces vascular endothelial growth factor expression through glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and β-catenin/TCF-dependent pathway in human endothelial cells. J Biol Chem 2008, 283:36280-36288.

59. Leung K, Cheung LWT, Pon YL, Wong RNS, Mak NK, Fan TPD, Au SCL, Tombran-Tink J, Wong AST: Ginsenoside-Rb1 inhibits angiogenesis by regulating p53 expression through the beta benzodiazepine receptor. Br J Pharmacol 2007, 152:207-212.

60. Yang ZG, Sun HX, Ye YP: Ginsenoside Rb1 from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis. Chem Biodivers 2006, 3:187-197.

61. Kitts DD, Popovich DG, Hu C: Characterizing the mechanism for ginsenoside-induced cytotoxicity in cultured leukemia (THP-1) cells. Can J Physiol Pharmacol 2007, 85:1173-1183.

62. Lei J, Li XG, Kong XJ, Zhou YN: Involvement of cytochrome P450 and heat shock proteins in the metabolism of ginsenoside Rb1. Toxicol Lett 2006, 161:356-364.

63. Sankawa U, Sun CG, Han BH, Akita T, Kashawashi K: Radioimmunoassay for the determination of ginseng saponins, ginsenoside Rg1. Chem Pharm Bull (Tokyo) 1982, 30:1907-1910.

64. Tanaka H, Fukuda N, Shoyama Y: Formation of monoclonal antibody against a major ginseng component, ginsenoside Rb1 and its characterization. Cytotechnology 1999, 28:115-120.

65. Fukuda N, Tanaka H, Shoyama Y: Formation of monoclonal antibody against a major ginseng component, ginsenoside Rg1 and its characterization. Cytotechnology 2000, 34:197-204.

66. Moriwaka O, Tanaka H, Shoyama Y: Detection and quantification of ginsenoside Re in ginseng samples by chromatographic immunostaining method using monoclonal antibody against ginsenoside Re. Chromatographia 2006, 63:100-104.

67. Joo EJ, Ha YW, Shin H, Son SH, Kim YS: Generation and characterization of monoclonal antibody to ginsenoside Rg3. Biol Pharm Bull 2009, 32:48-052.

68. Karikura M, Miyase T, Tanizawa H, Takinoue T, Yama Yama T, Hayashi T: Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem Pharm Bull (Tokyo) 1996, 44:2859-2861.

69. Takino Y: Studies on pharmacodynamics of ginsenoside-Rg1, Rb1 and -Rb2 in rats. Yakugaku Zasshi 1994, 114:550-564.

70. Xu QF, Fand XL, Chen DF: Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 2003, 84:187-192.

71. Odani T, Tanizawa H, Takino Y: Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in vivo in the rat. J Pharmacol 1983, 31:292-298.

72. Odani T, Tanizawa H, Takino Y: Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside Re in the rat. Pharm Bull (Tokyo) 1983, 31:1059-1066.

73. Ilman M, Fu S, Gao XQ, Fang XL: Evaluation of intestinal absorption of ginsenoside Rg1 incorporated in microemulsion using parallel artificial membrane permeability assay. Biol Pharm Bull 2009, 32:1069-1074.

74. Kim SW, Kwon HY, Choi DW, Shin JH, Park JD, Lee YH, Pyo S, Rhee DK: Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg3. Biochem Pharmacol 2003, 65:75-82.

75. Kwon HY, Kim EH, Kim SW, Kim SN, Park JD, Rhee DK: Selective toxicity of ginsenoside Rb3 on multidrug resistant cells by membrane fluidity modulation. Arch Pharm Res 2008, 31:717-177.

76. Salim KN, McEwen BS, Chao HM: Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. Mol Brain Res 1997, 47:177-182.

77. Choi S, Lee JH, Oh S, Rhim H, Lee SM, Nah SY: Effects of ginsenoside Rg2 on the 5-HT3A receptor-mediated ion current in Xenopus oocytes. Mol Cells 2007, 15:108-113.

78. Kim HS, Hwang SL, Oh S: Ginsenoside Rg3 and Rb1 differentially modulate rRNA gene expression in rat hypothalamus. Mol Brain Res 2007, 147:17-22.

79. Yoo YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK: Ginsenoside-Rg1, one of the major active molecules in Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997, 133:135-140.
96. Leung KW, Cheng YK, Mak NK, Chan KKC, Fan TPD, Wong RNS: Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 2006, 580:3211-3216.

97. Leung KW, Leung FP, Huang Y, Mak NK, Wong RNS: Non-genomic effects of ginsenoside-Re in endothelial cells via glucocorticoid receptor. FEBS Lett 2007, 581:2423-2428.

98. Lee YJ, Jin YR, Lim WC, Ji SM, Choi S, Jang S, Lee SK: A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J Steroid Biochem Mol Biol 2003, 84:463-468.

99. Amato P, Christophe S, Mellon PL: Estrogenic activity of herbs commonly used as remedies for menopausal symptoms. Menopause 2002, 9:145-150.

100. Liu J, Burdette JE, Xu H, Gu C, van Breemen RB, Bhat KPL, Booth N, Constantinou AJ, Pezzuto JM, Fong HHS, Farnsworth NR, Bolton JL: Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J Agric Food Chem 2001, 49:2472-2479.

101. Gao QG, Chen WF, Xie JX, Wong MS: Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. J Neurochem 2009, 109:1338-1347.

102. Furukawa T, Bai CX, Kaihara A, Ozaki E, Kawano T, Nakaya Y, Awais M, Sato M, Umezawa Y, Kurokawa J: Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol Pharmacol 2006, 70:1916-1924.

103. Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RNS: Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol 2009, 156:626-637.

doi: 10.1186/1749-8546-5-20
Cite this article as: Leung and Wong, Pharmacology of ginsenosides: a literature review Chinese Medicine 2010, 5:20