Systematic literature review of system models for technical system development

Marvin M. Schmidt 1,†, Thomas C. Zimmermann 1,† and Rainer Stark 1,2

1 Fraunhofer Institute for Production Systems and Design Technology IPK, 10587 Berlin, Germany
2 Technische Universität Berlin, Department for Industrial Information Technology, 10587 Berlin, Germany
* Correspondence: Marvin.Michael.Schmidt@ipk.fraunhofer.de; Tel.: +49-30-39006-478
† These authors contributed equally to this work.

Abstract: In MBSE there is yet no converged terminology. The term ‘system model’ is used in different contexts in literature. In this study we elaborated the definitions and usages of the term ‘system model’, to find a common definition. 104 publications have been analyzed in depth for their usage and definition as well as their meta-data e.g., the publication year and publication background to find some common patterns. While the term is gaining more interest in recent years it is used in a broad range of contexts for both analytical and synthetic use cases. Based on this three categories of system models have been defined and integrated into a more precise definition.

Keywords: Model-based systems engineering (MBSE); Model informatics and analytics; Model-based collaboration

1. Introduction

While the research and industrial interest in Model-Based Systems Engineering (MBSE) – as this special issue of Multidisciplinary Digital Publishing Institute (MDPI) shows – there is yet no common terminology for this topic. Huldt and Stenius [1] mentioned that ‘the definition of MBSE is not yet internationally converged and standardized. As a consequence, the definition of MBSE is rather vague and open to a broad range of interpretations of the concept.’ Even though the model of a system is seen as a main artifact in MBSE [2], there is also yet no definition for the term ‘system model’, which the model is often referred to. In 2015, Hart [3] mentioned, that a system model is ‘[...] a structured representation that focuses on the overall system requirements, behavior, structure, properties,& interconnections’. This definition is as vague as the MBSE definition mentioned by Huldt and Stenius [1]. Despite the vagueness of the existing definitions the concept of systems modeling increases in popularity across various industries. But this also means multiple definitions and concepts, which are difficult to compare. From an industry perspective this means information and results are difficult to exchange between different systems modeling eco-systems both internally and externally. The wide spread but fragmented understanding poses a challenge for research and academia, since there is no universal understanding or grand theory of systems modeling which could function as a base from which to extend on existing knowledge. Therefore, on one hand, it is important to understand how organizations and industries apply the concepts they define as systems modeling to meet their individual needs in order to then identify recurring schemes and similarities. On the other hand inconsistencies and contradictions help to identify gaps and areas of improvement to derive future solutions that are needed to advance systems development through the use of system models.

In order to evaluate those points in particular as well as the current state of system model application and development for engineering systems across various industries in general, the following research questions have been addressed in this study:

1. How is the term ‘system model’ used in MBSE and further domains?
2. Who uses ‘system models’ besides Systems Engineers?

The following hypotheses are connected to these research questions:
1. There is yet no converged overall definition of the term ‘system model’.
2. A ‘system model’ can be created in different ways and is not limited to the application of Systems Modeling Language (SysML).
3. The usage of a ‘system model’ is limited to the domain of System Engineers.

This paper is structured as follows. In section 2, the method used for the systematic literature review is introduced. This includes for example the search strategy, the eligibility criteria and information sources. The results of this systematic literature review are listed in section 3. Screened studies are presented and discussed in context of bias. Eventually, the findings of the synthesis of these studies are discussed in section 4. This includes limitations, e.g. based on the bias, as well as an overall conclusion regarding the hypotheses listed above.

2. Materials and Methods

The systematic literature review has been carried out without a systematic review protocol. The study focused on international definition and thus on titles in English. Due to the native language of the authors being German, literature written in German has been declared as eligible as well with the term ‘Systemmodell’ as equivalent to the English term ‘system model’. To get a full overview of any possible definition for the term ‘system model’ the year has not been limited in any form. The eligibility has mainly been based on the reference to engineered systems and a possible correlation to MBSE.

The scanning period dated from July 18th, 2020 to July 31st, 2020. Information sources included the databases Scopus from Elsevier (www.scopus.com), Web of Science from Clarivate (apps.webofknowledge.com), SAGE Journals from SAGE Publications (journals.sagepub.com), IEEExplore of the Institute of Electrical and Electronics Engineers (IEEE) (ieeexplore.ieee.org) and arXiv.org made available by the Cornell University (arxiv.org). As of November 18th, Scopus includes 41,462 journals, proceedings, books and trade publications (https://www.scopus.com/sources.uri) from 1960-2020. Web of Science covers 21,419 books, proceedings and journals from 1900-2020 (https://clarivate.libguides.com/webofscienceplatform/coverage). IEEExplore includes 5,329,188 articles from journals, conferences, early access publications, standards, magazines, courses and books. The date coverage goes from 1872-2021. Sage Journals dates back from 1847-2021 and accesses 1,211 journals. arXiv.org covers 1,795,706 open-access articles explicitly submitted to arXiv.org with a date coverage of 1991-2020.

Table 1 summarizes these information and gives an overview on the content of the database.

source name	date coverage	last searched	comments on included data
Scopus	1960-2020	July 21st, 2020	41,462 journals, proceedings, trade publications and books
Web of Science	1970-2020	July 28th, 2020	21,419 books, proceedings and journals
Sage Journals	1847-2020	July 22nd, 2020	1,211 journals
IEEExplore	1872-2021	July 24th, 2020	5,329,188 articles from journals, conferences, early access publications, standards, magazines, courses and books
arXiv.org	1991-2020	July 31st, 2020	1,795,706 open-access articles (only explicitly submitted to arXiv.org)

No additional sources have been used.
As the search for the term ‘system model’ would bring too much results regarding different kinds of none technical systems and models in various contents, the keywords have been refined. The following keywords have been used:
The search for these keyword-searches has been carried out as demonstrated in the following for the Scopus database:

1. The advanced search of the database has been located and the keywords were entered for searching the title, abstract and keywords, if available. The keyword combination has been combined with logical ‘AND’ to limit the results. Range of year, language and authors have not been limited. If the keyword combination raised too many results, i.e. exceeded 1,000 results, the keywords have been combined with quotation marks. An example search string for Scopus is TITLE-ABS-KEY("system model" AND development). All key combination are attached in the appendix as table A1, table A2, table A3, table A4 and table A5.

2. All titles have been exported as *.csv (or if a *.csv has not been available as *.bib) files. If the total number of entries exceeded the limit for export, it has been split in partial exports and was combined locally. For arXiv.org a script for the Application Programming Interface (API) has been written to export the information into a *.csv file, which is shown in Appendix B.1.

3. The *.csv files containing all results for a search string have been combined to an overall data table. To allow an easier filtering the *.csv-files have been imported into Microsoft Excel and analyzed as *.xlsx file.

The following methodology was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) workflow [4]. It is depicted in the following figure 1.

![Figure 1. Workflow for selecting studies for the systematic literature review based on the PRISMA workflow [4].](image)

The table produced in the final step of the identification process with the keyword search has been screened for duplicates. This included identical titles, titles with different capitalizations of the words and abbreviated titles with same list of authors and year. The rest of the titles has been screened for eligibility. As the defined criteria did not exclude any year or, this step mainly focused on selecting titles in English or German and excluding most non-engineered systems. In the following, the same procedure has been done with the abstracts of the publications and their full-texts in the final screening step. The screening for eligibility has been performed by 2 reviewers. Unclarities and disagreements between them were resolved by consensus. The number of publications that remained have been included in the study.

The data has been manually extracted by copying and comprising the relevant information of each publication into comments in the PDF and transfer these comments into a tabularized dataset. The extracted items have been discussed by the two review authors and whenever a disagreement was reached, a third reviewer was contacted. A the this study focused on the definition and usage in literature, none of the authors have been contacted for further details, as this might bias the analysis.
As this literature review here does not focus on quantitative values that have been analyzed in other studies the process of extraction of data was about identifying the meaning for the topics of interest. These topics focused on three variables:

1. Domain/origin/background of the systems under consideration,
2. Definition or meaning of the term ‘system model’ and
3. Usage of the ‘system model’.

While the different domains represented in the publications could raise some bias in another context it was used here as the first variable under consideration. Further risk of bias has been assessed by two authors collecting the data of the studies independently. Principle measures have been the quantities of specific origins, definitions, creation approaches and usage description for ‘system models’ (defined variables listed above). The analysis of the studies was done by clustering the dataset with respect to the definition of the term ‘system model’. These clusters have been investigated for specific domains for the system under consideration as well as their stated creation and usage methods. Additionally, the authors and years of publication have been analyzed to assess a risk of bias across studies.

3. Results

In this section, the literature body as result of the PRISMA workflow from figure 1 is first described and then the analysis of its content is presented.

3.1. Selected studies for literature body

The following figure 2 shows the number of results which pertained each step of the methodological approach of figure 1.

![Figure 2. Results of literature screening](image)

As result of the database search described in section 2 10,514 records have been extracted. After screening for duplicates, the 6,586 left titles have been screened for eligibility depending on the eligibility criteria (engineered systems as target systems and a possible correlation to MBSE) mentioned in section 2. With this procedure, 6,103 titles have been excluded as they were not fitting into the topic of interest. This was primarily done by investigating the titles for fitting into the topic of model based technical system development. The rest of 483 publications have been investigated in their abstracts and after excluding 303 mainly due to different scopes (e.g. full software systems in scope or no existing full-texts to be found for the publication) the rest of the 180 publications was read in more detail with the same criteria. While reading the publications in more detail it turned out, that 76 of them were still out of scope and thus 104 publications have been included in this study and are listed in the following table 2. This table lists the publications in chronological order (focusing on the year and not month of publication) with their reference, year of publication, type of publication, domain of the target system under consideration in the publication, the category of work behind the publication, whether the system model is a single model or consists of multiple models and whether
the model is used for analytics or synthesis of the target system. The different columns of the table will be investigated in the following subsections.
Reference	Year	Type	Domain	Category	multitude	usage
Capehart [5]	1977	Journal Article	Production Systems	theoretical concept	single	analytics
Joshi et al. [6]	1995	Journal Article	Production Systems	theoretical concept	multiple	synthesis
Ironmonger et al. [7]	1996	Conference Paper	Energy	prototype	single	analytics
Bluff [8]	1999	Conference Paper	Air & land vehicle	theoretical concept	multiple	synthesis
Bluff [9]	1999	Journal Article	Air & land vehicle	theoretical concept	single	analytics
Estanbouli et al. [10]	2004	Conference Paper	Other	theoretical concept	single	analytics
Hicks et al. [11]	2004	Journal Article	Other	theoretical concept	single	synthesis
Wilson et al. [12]	2007	Journal Article	Defense	theoretical concept	single	analytics
Che and Jennings [13]	2007	Conference Paper	Air & land vehicle	theoretical concept	multiple	synthesis
Ma et al. [14]	2008	Conference Paper	Energy	theoretical concept	single	analytics
Curry et al. [15]	2008	Journal Article	Other	theoretical concept	single	analytics
Sturm [16]	2008	Conference Paper	Defense	theoretical concept	single	analytics
Wakefield and Miller [17]	2008	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Amrhein et al. [18]	2008	Journal Article	Air & land vehicle	theoretical concept	both	analytics
Hoang et al. [19]	2008	Conference Paper	Space Technology	...	multiple	analytics
Hummel and Braun [20]	2008	Conference Paper	not specified	theoretical concept	multiple	analytics
Swerdon et al. [21]	2009	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Qamar et al. [22]	2009	Conference Paper	not specified	theoretical concept	multiple	analytics
Li and Xiong [23]	2010	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Dickerson and Valerdi [24]	2010	Conference Paper	Defense	theoretical concept	single	synthesis
Borutzky [25]	2010	Monography	not specified	theoretical concept	multiple	analytics
Follmer et al. [26]	2010	Conference Paper	not specified	theoretical concept	multiple	analytics
Stetter et al. [27]	2011	Conference Paper	not specified	theoretical concept	multiple	analytics
Kleins et al. [28]	2011	Conference Paper	not specified	theoretical concept	multiple	analytics
Witsch and Vogel-Heuser [29]	2011	Conference Paper	Production system	theoretical concept	multiple	analytics
Schütz and Vogel-Heuser [30]	2011	Other	Production system	theoretical concept	single	synthesis
Piasczyk [31]	2011	Other	Defense	theoretical concept	multiple	analytics
Guan et al. [32]	2012	Journal Article	Air & land vehicle	theoretical concept	multiple	analytics
Strahllov et al. [33]	2012	Conference Paper	Production systems	theoretical concept	multiple	analytics
Magalhães et al. [34]	2012	Journal Article	Energy	theoretical concept	multiple	analytics
Hoffmann [35]	2012	Conference Paper	Other	theoretical concept	multiple	analytics
Ahn et al. [36]	2012	Conference Paper	Other	theoretical concept	single	analytics
Chandraiah and Dömer [37]	2012	Conference Paper	Other	theoretical concept	single	synthesis
Kim et al. [38]	2012	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Schmelcher et al. [39]	2012	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Reichwein et al. [40]	2012	Conference Paper	not specified	theoretical concept	single	synthesis
Follmer et al. [41]	2012	Conference Paper	not specified	theoretical concept	single	synthesis
Ramos et al. [42]	2012	Conference Paper	Other	theoretical concept	multiple	analytics
Reference	Year	Type	Domain	Category	multitude usage	usage
----------------------------	-------	-------------------------	---------------------	--------------------	-----------------	-------
Becherini et al. [43]	2012	Conference Paper	Space Technology	theoretical concept	single	analytics
Glas and Sartorius [44]	2012	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Wang and Wang [45]	2013	Journal Article	Energy	theoretical concept	single	analytics
Ma et al. [46]	2013	Journal Article	Other	theoretical concept	single	analytics
Zander [47]	2013	Conference Paper	Other	prototype	single	analytics
Haveman and Bonnema [48]	2013	Conference Paper	Air & land vehicle	theoretical concept	multiple	synthesis
Nattermann and Anderl [49]	2013	Conference Paper	Air & land vehicle	prototype	multiple	synthesis
Sharon et al. [50]	2013	Journal Article	not specified	theoretical concept	single	synthesis
Gausemeier et al. [51]	2013	Conference Paper	not specified	theoretical concept	single	analytics
Broy [52]	2014	Conference Paper	Production system	prototype	multiple	synthesis
Barbieri et al. [53]	2014	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Zierolf et al. [54]	2014	Conference Paper	not specified	theoretical concept	multiple	synthesis
Komoto et al. [55]	2014	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Micouin [56]	2014	Journal Article	Air & land vehicle	theoretical concept	single	multiple
Song et al. [57]	2014	Conference Paper	Other	theoretical concept	single	multiple
Pfuegel et al. [58]	2015	Monography	Air & land vehicle	prototype	multiple	analytics
Acker et al. [59]	2015	Conference Paper	Other	theoretical concept	single	synthesis
Aboutaleb and Monsuez [60]	2015	Journal Article	Other	theoretical concept	single	synthesis
Morkevičius and Jankevičius [61]	2015	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Tschirner et al. [62]	2015	Conference Paper	Space Technology	theoretical concept	multiple	analytics
Kaslow [63]	2015	Conference Paper	Space Technology	theoretical concept	multiple	analytics
Kaslow et al. [64]	2015	Conference Paper	Air & land vehicle	theoretical concept	multiple	synthesis
Holtmann et al. [65]	2015	Conference Paper	not specified	theoretical concept	multiple	synthesis
Dumitrescu et al. [66]	2015	Other	not specified	theoretical concept	multiple	synthesis
Iwata et al. [67]	2015	Conference Paper	Space Technology	theoretical concept	single	analytics
Hampson [68]	2015	Journal Article	not specified	theoretical concept	multiple	analytics
Aboutaleb and Monsuez [69]	2015	Conference Paper	not specified	theoretical concept	multiple	synthesis
Cheng and Zhou [70]	2016	Conference Paper	Energy	theoretical concept	multiple	analytics
Johnson et al. [71]	2016	Journal Article	Other	theoretical concept	multiple	analytics
Kulkarni et al. [72]	2016	Conference Paper	Space Technology	prototype	multiple	analytics
Sindy et al. [73]	2016	Conference Paper	Space Technology	existing business	multiple	synthesis
Brecher et al. [74]	2016	Conference Paper	Production systems	theoretical concept	single	synthesis
Vannesjo et al. [75]	2016	Journal Article	Other	theoretical concept	single	synthesis
Henke et al. [76]	2016	Conference Paper	Production system	prototype	multiple	synthesis
Pleshkova and Zahariev [77]	2017	Conference Paper	Other	prototype	single	analytics
Wu et al. [78]	2018	Conference Paper	Energy	theoretical concept	multiple	analytics
Qu et al. [79]	2017	Conference Paper	Defense	theoretical concept	multiple	analytics
Kaslow et al. [80]	2017	Conference Paper	Space Technology	theoretical concept	multiple	synthesis
Reference	Year	Type	Domain	Category	multitude	usage
-----------	------	---------------------	--------------------	---------------------------	-----------	---------
Watson et al. [81]	2017	Journal Article	Defense	theoretical concept	multiple	synthesis
Fischer et al. [82]	2017	Journal Article	Space Technology	prototype	multiple	synthesis
Rambikur et al. [83]	2017	Conference Paper	Other	theoretical concept	multiple	analytics
Friedli et al. [84]	2017	Conference Paper	Production system	theoretical concept	multiple	synthesis
Köfler and Paetzold [85]	2017	Conference Paper	not specified	theoretical concept	multiple	analytics
Hanson et al. [86]	2017	Conference Paper	Other	theoretical concept	multiple	synthesis
Parrott and Weiland [87]	2017	Conference Paper	Space Technology	theoretical concept	multiple	analytics
Anyanchnun and Edmonson [88]	2018	Conference Paper	Space Technology	theoretical concept	single	synthesis
Wang et al. [89]	2018	Journal Article	not specified	theoretical concept	multiple	synthesis
Fischer et al. [90]	2018	Conference Paper	Space Technology	existing business	multiple	synthesis
Köhler et al. [91]	2018	Conference Paper	Production system	theoretical concept	single	synthesis
Madni and Sievers [2]	2018	Journal Article	not specified	theoretical concept	multiple	synthesis
Bossa et al. [92]	2018	Conference Paper	Air & land vehicle	prototype		analytics
Papakonstantinou et al. [93]	2019	Conference Paper	Energy	theoretical concept	multiple	analytics
Gaskell and Harrison [94]	2019	Conference Paper	Defense	theoretical concept	multiple	analytics
Wang et al. [95]	2019	Conference Paper	Production system	theoretical concept	multiple	analytics
Duncan and Etienne-Cummings [96]	2019	Journal Article	Other	theoretical concept	multiple	analytics
Kunnen et al. [97]	2019	Conference Paper	Not specified	theoretical concept	multiple	synthesis
Bulidakova [98]	2019	Conference Paper	not specified	theoretical concept	multiple	synthesis
Stevens [99]	2019	Conference Paper	Space Technology	theoretical concept	multiple	synthesis
Konrad et al. [100]	2019	Conference Paper	Other	theoretical concept	multiple	analytics
Balkloufi et al. [101]	2019	Journal Article	Air & land vehicle	theoretical concept	multiple	analytics
Bagdatli et al. [102]	2019	Conference Paper	Air & land vehicle	theoretical concept	multiple	analytics
Gao et al. [103]	2019	Conference Paper	Defense	theoretical concept	multiple	analytics
Kamburjan and Stromberg [104]	2019	Conference Paper	not specified	theoretical concept	single	analytics
Duhil et al. [105]	2020	Conference Paper	Defense	theoretical concept	single	analytics
Zimmermann et al. [106]	2020	Other	not specified	theoretical concept	multiple	analytics
Mei et al. [107]	2020	Journal Article	Production System	prototype	multiple	analytics
3.2. Description of the literature body

In the following subsections the literature body will be described and characterized in terms of scientific sources, types of use cases and industry context in order to classify and subsequently discuss the results. It shall be mentioned that all mentions of ‘raw search results’ focus on the results after the duplicate removal.

Figure 3 displays the distribution over publication types.

The body of literature consists primarily of conference papers and articles published in peer-review journals not tied to a conference. Combined those make up 94% percent of the selected samples, with monographs only accounting for 2% of the literature body. ‘Other’ in figure 3 represent articles published without going through a peer-review process.

The chronological distribution of the 104 publications included is shown in figure 4.

In this sample, the earliest publication was in 1977 as could be seen in table 2. Despite the earliest sample being published in 1977, only about 12% of the raw search results were published before the year 2000, with only 5% of the publication in the literature body analyzed in depth dating from before 2000.
Comparing the initial raw search results after duplicate removal with the body of literature analyzed in depth there is a considerable selection bias towards publications sources published 2011 or later.

Figure 5 displays this publication bias.

![Figure 5. comparison of actually included and raw search result data](image)

The largest amount of samples qualified for inclusion into the literature body dates from 2011 through 2015, despite this only being the second largest bracket in terms of raw search results. At about 41% compared to a little under 38% this is of no significance given the sample size of n=104. What is more indicative of a shift towards the usage of the term ‘system model’ in the last decade is that, if combined, close to 80% of the publications included in the literature body were published in 2011 or later. This is largely driven by the fact that a significant amount of results before 2011 makes use of similar verbiage and concepts of systems theory but apply those concepts to natural systems, social systems, entirely mathematical problems or computer science topics. (Of those, a good amount offers great inspiration for novel systems engineering approaches and certainly deserves more attention from the engineering community, but they obviously do not qualify in the context of reviewing the definition and usage of systems models in systems engineering or for engineered systems in general.) We observed this being overall related to advances in IT-infrastructure and tools available and in particular the increasing computing capabilities that allow for more intensive use of tracing between artifacts and data used as part of systems development and of simulation as part of system development and operation.

The domain of the target systems have been clustered in seven (7) categories: Space Technology, Production Systems, Air and Land Vehicle, Energy, Defense, Other and ‘Not Specified’. The latter has been used when the solution is was described as universally applicable or if there could not be defined a specific domain or even target system (e.g., if the aim of the publication was on the methodological approach). In context of the domain, ‘Other’ constitutes of communication, forestry, mechanical, embedded systems, control systems, complex System of Systems (SoS), building, Cyber-Physical System (CPS), computer engineering, robotics, biomedical and business process. The following figure 6 depicts the distrubition of these domains over the literature body.
With many publications of Systems Engineering (SE) focus on Space and Aerospace, Space Technology and Air and Land Vehicle sum up to 33%. Production systems (12%), Energy (7%) and Defense (9%) are slightly around 10% of the literature body. While the summed up other systems have an impact too (18%) the 22% of the not specified system show the use case independent relevance of this topic.

For a breakdown of the use cases according to their maturity in the business model, we have divided them into the categories: Existing business, prototype, and theoretical concept. The latter refers to theoretical concepts based on existing business models that have not yet been implemented. Figure 7 displays their distribution.

The largest part (85%) of the literature body fall into the category “Theoretical Concept” and only 2% of the included publications cover the category “existing business” beyond mentioning currently applied methods and tools to the proposed new approaches to systems development. Overall, it is very noticeable that an overwhelming majority of 98% of samples falls into the categories “Theoretical Concept” or “Prototype”. This may be explained by the fact that holistic system modeling is often either not applied to established system development processes or simply just not recognized as such, driven by the fact that organizations often develop system modeling capabilities over time and through a need-based bottom-up approach.
One question we tried to answer, when we set out to review literature pertaining the definition and use of system models was whether there is a consensus if there can be more than one system model per system.

Most of the publications (72%) refer to system models as a conglomerate of multiple models. In some cases (28%) the term ‘system model’ is used for a specific type of model that can be used without further dependencies or related models.

The definition and the purpose of the system model have been extracted from each publication as well. Due to readability, the table has been added to the appendix (Table A6). For each reference, the extracted key points for the purpose of the system model in the publication as well as the definition in sense of what is inside the model and how is it is created are listed there. The purpose has been clustered as synthesis and analytics in table 2.

Both use cases, analysis and synthesis, have roughly the same percentage with analytical use cases having a slightly larger share (51%). To get a better insight, these aspects will be further investigated in the discussion part.

Regarding the definition of a ‘system model’ the distribution taken from table A6 are listed in figure 8.

![Figure 8. Number of definitions used in literature body (multiple assignments possible)](image)

The most widely used definition of a ‘system model’ are graphical language models defined with SysML or Object-Process Methodology (OPM) (44%). 24% of the literature body call the combination of different domain specific models a system model. Explicit domain models used for simulation like Matlab models are used in 14% of the literature body when speaking of ‘system models’. Eventually, pure mathematical models as differential equation (DEQ) systems and data models are meant in 10% and 4% of the literature body, respectively.

While most publication regarding graphical language models had references to MBSE, the publications to mathematical models and domain models did mention MBSE not so often.

Figure 9 displays the dominant model formats for these definitions.
When it comes to the primary model format a publication utilizes there is a wide variety of custom or commercial tools and formats and only very few formats are used in more than three samples. SysML and Matlab/Simulink or Modelica are the dominant ones across all systems model definitions. Analyzing the primary model formats used in publications in correlation to their understanding of system models shows that multiple samples see graphical modeling as the main aspect of systems modeling, but utilize Matlab/Simulink or Modelica as the primary model format. This is mainly caused by the fact that a large portion of the publications describing graphical modeling as the core of a systems model, connect various behavior models through graphical diagrams.

As MBSE is largely driven by Software Engineering, the distribution of software systems as target system compared to interdisciplinary systems has been investigated and is shown in figure 10.

Figure 9. Number of model types per definition in literature body (multiple assignments possible)

Figure 10. Distribution of system type per definition (multiple assignments possible)
The distinction between publications that focus on the information system or sw-aspects of their system of interest on one hand or the entire system across all domains equally on the other hand, interestingly does not show huge discrepancies in the respective understanding of system models. Data Models as the focus of systems modeling are significantly more common in software centric publications compared to more holistic ones. The samples that consider the entire system equally put more emphasis on domain-specific simulation models, as well as general mathematical approaches like networks of differential equations. This is mostly driven by a stronger need to find generic ways to combine multiple viewpoints and system aspects, while from a software centric view behavior and data models are often sufficient.

4. Discussion

The results presented in the previous section shall be used to answer the research questions and validate the working hypotheses.

In this section, we discuss the results of our literature review.

4.1. Definition of the term ‘system model’

As was expected, most publications referred to system models as graphical models like SysML and OPM models (figure 8) which are often linked to MBSE. Furthermore, system models have been defined as mathematical models in form of DEQs, domain specific models like Matlab models and as an interconnection of multiple domain models. The definition data model was barely mentioned and therefore was included in the definition ‘interconnected models’, as data models were exclusively mentioned in the context of connecting multiple models.

Even though the domain-specific and mathematical models did not mention MBSE that often, it is still seen as feasible form of modeling a complex engineered system. Therefore, they should still be considered as a kind of system models.

Additionally, all system models have been digital. While models in general do not have to be virtual (e.g., clay models), digital representations that allow for different views on a model and the dynamic integration of different artifacts as system parameters provides great benefits.

4.2. Usage of the term ‘system model’

In regards to the use of system models, 51% of sources indicate a primary use of system models in the context of their publication as analytics, as opposed to 49% of publications that indicate system synthesis as the main driver behind the application of system modeling. According to our observations, this unclear picture is largely driven by the nature of systems development in engineering. Due to the recursive and iterative nature of system development, simulations as an aspect of system analytics generate knowledge about a current or future system, yet might ultimately be driven by system synthesis. This circular dependency between analytics and synthesis also means that the results obtained are usually applied to further develop and optimize a system until a desired system maturity and layout is achieved through multiple iterations. This usage is not bound to a single domain but is widely spread as could be seen in figure 6.

One question we tried to answer, when we set out to review literature pertaining the definition and use of system models was whether there is consensus if there can be more than one ‘system model’ per system. It turned out that even within individual publications the judgment whether a single or multiple system models are being developed or applied is very difficult, due to the generally iterative and recursive nature of system development. Furthermore, it turned out that none of the selected publications put much emphasis on this question either. The first issue here may be the vague definition of what constitutes a single model versus a group of highly interconnected models. For example, there is not even consensus on a technical level whether multiple diagrams in a graphical modeling notation constitute one model or multiple ones. This again, may be attributed to the fact that system modeling is often applied from a need-driven perspective and ultimately it is probably
not important as long as project/product boundaries are predetermined and the selected modeling approach supports existing or prospective use cases. This is further supported by the fact that none of the analyzed publications explicitly defines clear boundaries between pre-domain systems modeling and domain-specific modeling and development approaches. None of the samples attempts to even implicitly define a generalized definition of that pre-domain/domain boundary, which suggests that this boundary may be driven by existing processes and organizational structure and therefore be highly dependent on a specific use case. Also, none of the reviewed publications contains negative views on system models, despite some samples mentioning new difficulties which arise with new methods and tools, such as requirements regarding IT-infrastructure, potentially new organizational structures as well as extended skill sets of developers. As conclusion, we found no consensus across the literature body, if there can be more than one ‘system model’ per system. Looking at the different definitions used in the publications (see figure 8), there seems to be no evidence, that there must not be more than one system model per system. Thus, it is proposed, that multiple system models per system are feasible.

4.3. Drivers and Indicators for the usage of system models

The decomposition of the statements on the reasons for applying system models into indicators and drivers supports a cause-and-effect analysis between drivers of system model usage. This means connect the question why system models are being considered (Drivers) with the question, which measures authors aim to invoke on a technical level in order to achieve what they set out to accomplish. Since the body of literature is of the size $n = 104$, most publications mention only one driver (111 mentions of drivers and 143 mentions of indicators) and for readability, the number shown in the figure 11 represent the share of the drivers and indicators mentioned in the publications over their respective sum in absolute numbers. The different indicators are comprised of clustered aspects of systems development in engineering, which are supposed to be optimized across the publications contained in our body of literature. The drivers are comprised of system properties on one hand and perceived challenges across a systems development life cycle on the other hand. Potentially perceived challenges might trace back to system or product properties, but there was no clear evidence for this in the analyzed set of publications. While beyond the scope of this review, the obvious fact that system development activities seek to produce a system that exhibit a set of desired properties, suggests that the drivers would ultimately all trace to system or product properties (the “best” possible system). The flow within the figure highlights relationships between drivers and indicators. If, for example, a publication describes the impact of improved traceability and attributes this to the driver Collaboration, this is recorded as a relation and is displayed as a sankey flow in the figure. The width of each sankey flow connector correlates to the number of samples mentioning this driver-indicator relationship. This enables visual identification of the correlations between drivers and indicators, and indicates the frequency of occurrence in the literature body.

The drivers were aggregated to form groups from the sum of all identified drivers contained in the body of literature, which often used different verbiage but were alluding to the identical driver:

- **System Complexity:** By far the most important driver resulted from the focus of many publications on improving the development and operation of large and highly interconnected mechatronic or cyber-physical systems.
- **Development Process:** A large number of publications included in the body of literature indicated the development process itself as a main driver for the application of system models in order to maintain consistency across processes and methods that are themselves complex and can not be handled well without the extensive use of modeling.
- **System Quality:** This is perhaps the most basic of all mentioned drivers and refers to the quality properties of a developed system as opposed to the performance of its development lifecycle activities.
- **System Design**: This driver pertains to the functional properties of a system and is mentioned by publications that describe the development of new features and design solutions, which emerged using system modeling.

- **System Safety**: The publications that explicitly describe safety as one of the drivers behind the use of system models employ systems modeling as a means to derive safety engineering related artifacts automatically (e.g., fault trees).

- **System Validation**: This driver relates explicitly to system validation activities.

- **System Modularization**: Publications that mention this driver view system modeling as a tool to improve system modularization in terms of clear and standardized system boundaries to support compatibilities with other systems and sub-systems.

- **System Security**: This driver relates systems modeling to the development of secure systems.

- **System Certification**: The publications explicitly mentioning certification as a driver see system modeling not only as a means to satisfy other certification requirements, but also as a direct requirement by certification authorities.

- **System Performance**: This driver does not relate to the implementation of novel features but improvements in non-functional properties, like general efficiency of the system, uptime, or accuracy of an operation executed by the developed system.

- **Collaboration**: A number of publications mention general collaboration amongst developers or even all stakeholders as a driver. This often is related to the ease or efficiency of exchange of information and data between developers internally, as well as with customers and other external parties.

Indicators:

- **Improved Modeling Quality**: This indicator includes factors such as model fidelity and performance in other aspects.

- **Earlier Testing and Validation**: This relates to the front-loading of verification and validation activities.

- **Traceability**: This includes explicit traceability, e.g., in a requirements engineering context, as well as (dynamic) modeling of connections inside and between models improved systems.

- **Integration**: This includes aspects such as (co-) simulation and other digital methods that allow for front-loading and concurrent execution of integration activities.

- **Better Requirements**: This indicator relates to improved requirements in terms of formal quality of the developed requirements and their usefulness for other aspects of system development.

- **Improved Tools and Methods**: This comprises improved IT-Tools and methods enabled by the application of systems modeling.

- **Compliance**: This indicator indicates a direct requirement to apply systems modeling by certification bodies or legal frameworks.

- **Better Solution Architecture**: An improved solution architecture relates to an improved system in terms of features available and/or system performance through new structural or behavioral properties that emerged using systems modeling.

- **Intellectual Property (IP)**: This indicator relates to the way that system models can support the protection of intellectual property, in this particular case through compartmentalization of IP and easier exchange of subsystem models.
Figure 11. Sankey-flow chart with drivers depicted on the left side and indicators on the right.

Our analysis shows that the general challenge of development processes, system quality and system complexity are the main drivers for the application of system models (combined those three alone amount to more than 73% of all mentions). These three are not necessarily independent criteria and over the course of our review, we come to conclude that the main reason development processes are perceived as challenging is often a combination of system complexity as well as the complexity of processes and tools. This would suggest that managing complexity and achieving high quality are the key drivers for the use of system modeling. The fact that complexity is a vaguely defined term in the context of systems engineering appears to show in a relatively equal distribution of connections to all mentioned indicators. The three largest drivers System Complexity, Development Process and System Quality account for an overwhelming majority among the drivers. They are associated with almost all indicators to equal amounts (with the exception of System Quality being based towards improved model performance), which may be because system development of large and interconnected systems poses a particular challenge with wide ranging impact. This is because it comprises various activities and technical goals that need to be managed and balanced in order to create the desired system or at least approximate the ideal outcome as closely as possible with available resources and under the current circumstances.

Overall, our analysis shows that system models are viewed as a sufficient tool to synthesize and analyze technical systems across various industries and domains, despite being seen as novel and to a degree often still experimental. A precise definition the term system model remains elusive, yet there are certain key aspects in regards to the purpose system modeling should serve, that we were able to extract. Overall system modeling is applied to manage complexity in system development and unify as well as align different domains of system development. Depending on the authors perspective and the context this can manifest itself as improved consistency, improved communication, improve collaboration or other terms to describe a concerted effort by an organization to develop a technical system. For practitioners in engineering, the issue of system modeling and specifically how to utilize a system model is largely need-driven, without much emphasis on the definitions and boundaries that are of potential interest to academia and systems theory research. This becomes even more clear when considering the relative variety of implied definitions of the term system model. This need-driven and basically problem-solving oriented view in industry appears to also be reinforced by a largely
bottom-up approach to systems modeling. Across all industries explicit generic system modeling
efforts through graphic modeling languages such as SysML, OPM and others are gaining traction,
which are often associated with MBSE. When it comes to incorporating behavioral and dynamic system
characteristics though, the architectures encountered in the body of literature draw significantly from
established methods and models used in different engineering domains. For both modeling solution
vendors as well as engineers ultimately only the outcome matters.

Due to the need-based and often bottom-up approach to system modeling in engineering there is
a considerable risk of missing publications that simply make use of different verbiage to describe their
understanding of system models and their applications. Furthermore, non-peer reviewed engineering
magazines could contain more information regarding the use and understanding of system models in
different industries, but those sources were mostly not searchable or otherwise indexed and were not
included in the initial key word search.

This review sought to lower this risk by using a relatively wide range of key words and putting
more emphasis on manual review of a larger literature body. Across the body of literature review a
wide range of either, very explicit or implicit statements were made regarding system models, their
purpose, definition, general usage as well as unique use cases described. Quite often defining and
describing the system model is not the main focus of publications and systems modeling is merely
established and described as a solution to a problem, which is then described in further detail.

In addition to information about the scope of the review being embedded within other subjects
of research in engineering and technology, some publications mentioned keywords of our search
exclusively in their the abstract without mentioning them in the actual text, or if so, only implicitly
and hard to extract through automated methods, which was another driver for our focus on manual
review of a less exclusive body of literature as opposed to a very restrictive keyword search.

4.4. Validation of hypotheses

Considering these discussion points, the hypotheses defined in the beginning shall be validated
shortly.

- **Hypothesis 1**: There is yet no converged overall definition of the term ‘system model’: As most publications
 used different definitions for a ‘system model’, this hypothesis was confirmed. The definition
 presented by Hart [3] in section 1 was the only full definition of a system model, even though it
 has not been referenced in any publication.

- **Hypothesis 2**: A ‘system model’ can be created in different ways and is not limited to the application of
 Systems Modeling Language (SysML): This hypothesis was confirmed. System models are often
 created with and thus connected to graphical modeling languages like SysML, but are not limited
 to them. Mathematical modeling and direct linking of different models are also valid forms of
 system modeling.

- **Hypothesis 3**: The usage of a ‘system model’ is limited to the domain of System Engineers: This hypothesis
 was false considering all kinds of system models defined in the previous subsections. As one
 kind of system models may be domain specific, different other domains can use them. With
 interconnection models and data models as system models domain specific engineers can use
 them as well in their common tools, even though it is in an indirect form. Thus, system models
 can benefit all domains that are part of the system development.

Thus two hypotheses could be confirmed and one was neglected.
This can be used to enrich the definition of Hart [3] to a more precise form.

Definition 1. A system model is a (usually virtual) representation of the target system or one or more of its
subsystems. It can be in the form of

(A) a domain specific part of the (sub)system (e.g., a domain-specific simulation model of a subsystem),
(B) a domain-independent structure of the (sub)system (e.g., system architecture) or
(C) a model linking the various (sub)system artifacts.
5. Conclusion

Defining the term “system model” is particularly challenging, considering the fact that there are multiple definitions for both the words system and model, which are not always consistent. Despite there being a vague general agreement as to what those terms mean, the general understanding is not clear enough to establish a definitive scope of system modeling and system models in engineering and technology.

Across various industries, as much as it seems clear what purpose system models serve on a higher level, it remains unclear where system modeling ends and where domain specific methods and models begin. This makes it particularly difficult to define an exclusive scope of systems modeling in engineering and technology.

There is also no consensus in the reviewed publications regarding the ideal system modeling approach (a perfect generic solution probably does not exist) there is a broad consensus about the benefits and the need for system models. Innovations appear therefore mostly driven by use-case studies and experiments as opposed to an overall theory of system modeling in engineering. More academia heavy publications looking to improve on current advances and to innovate current system development approaches, attempt to apply existing concepts from other modeling domains, such as SW Engineering. In those samples systems theory concepts are additionally leveraged to support evidence-based knowledge with a more mathematical and rule-based foundation. Often this is part of a greater effort in further defining and developing Model Based Systems Engineering beyond high-level approaches or the mere application of specific methods that are supposed to support model based approaches to systems engineering.

Author Contributions: Conceptualization, M.M. Schmidt and T.C. Zimmermann; methodology, M.M. Schmidt; formal analysis, T.C. Zimmermann; investigation, M.M. Schmidt and T.C. Zimmermann; data curation, T.C. Zimmermann; writing–original draft preparation, M.M. Schmidt; writing–review and editing, T.C. Zimmermann; visualization, M.M. Schmidt; supervision, R. Stark. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
BN Bayesian network
BPMN Business process model and notation
CPS Cyber-Physical System
DEQ differential equation
DHS Distributed heterogenous simulation
DSL Domain specific language
DSM Descriptive System Model
FAD Function analysis diagram
FEA Finite Element Analysis
FMEA Failure Mode and Effect Analysis
IDEF0 Integration Definition for Function Modeling
IEEE Institute of Electrical and Electronics Engineers
INCOSE International Council on Systems Engineering
IML Interdisciplinary modeling language
MDPI Multidisciplinary Digital Publishing Institute
MES Manufacturing Execution System
MBSE Model-Based Systems Engineering
OPM Object-Process Methodology
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SE Systems Engineering
SETR Systems engineering technical review
SoS System of Systems
SysML Systems Modeling Language
UML Unified Modeling Language
V&V Validation and Verification

Appendix A. Tables

Table A1. Used Keywords - Scopus

database	keyword	count	search string
Scop-1	federated system model	45	TITLE-ABS-KEY(federated AND "system model")
Scop-2	system model creation	499	TITLE-ABS-KEY("system model" AND creation)
Scop-3	system model development	130	TITLE-ABS-KEY("system model development")
Scop-4	system model usage	642	TITLE-ABS-KEY("system model" AND usage)
Scop-5	system model fidelity	458	TITLE-ABS-KEY("system model" AND fidelity)
Scop-6	system model complexity	14	TITLE-ABS-KEY("system model complexity")
Scop-7	system model uncertainty	114	TITLE-ABS-KEY("system model uncertainty")
Scop-8	multi-model networks	7	TITLE-ABS-KEY("multi-model network")
Scop-9	model hierarchy	411	TITLE-ABS-KEY("model hierarchy")
Scop-10	system model perspectives	19	TITLE-ABS-KEY("system model perspective")
Scop-11	system model visualization	469	TITLE-ABS-KEY("system model" AND visualization)
Scop-12	system model characteristics	8	TITLE-ABS-KEY("system model characteristic")
Scop-13	transdisciplinary system model	21	TITLE-ABS-KEY(transdisciplinary AND "system model")
Scop-14	interdisciplinary system model	242	TITLE-ABS-KEY(interdisciplinary AND "system model")
Scop-15	system model + MBSE	155	TITLE-ABS-KEY("system model" AND mbse)
Scop-16	system of systems model	52	TITLE-ABS-KEY("system of systems model")
Table A2. Used Keywords - Web Of Science

database	keyword	count	search string
WebO-1	federated system model	21	ALL=(federated AND "system model")
WebO-2	system model creation	193	ALL="(system model' AND creation)"
WebO-3	system model development	74	ALL="(system model development)"
WebO-4	system model usage	278	ALL="(system model' AND usage)"
WebO-5	system model fidelity	205	ALL="(system model' AND fidelity)"
WebO-6	system model complexity	10	ALL="(system model complexity)"
WebO-7	system model uncertainty	25	ALL="(system model uncertainty)"
WebO-8	multi-model networks	679	ALL="(multi-model' AND network)"
WebO-9	model hierarchy	217	ALL="(model hierarchy)"
WebO-10	system model perspectives	604	ALL="(system model' AND "perspective")"
WebO-11	system model visualization	170	ALL="(system model' AND 'visualization')"
WebO-12	system model characteristics	671	ALL="(system model' AND 'characteristic')"
WebO-13	transdisciplinary system model	17	ALL="(transdisciplinary' AND 'system model')"
WebO-14	interdisciplinary system model	228	ALL="(interdisciplinary' AND 'system model')"
WebO-15	system model + MBSE	87	ALL="(system model' AND 'MBSE' OR "ModelBased Systems Engineering" OR 'Model-Based Systems Engineering' OR 'Model Based Systems Engineering'))"
WebO-16	system of systems model	339	ALL="(system-of-systems model' OR 'system of systems model' OR 'systems of systems models' OR 'systems-of-systems model' OR 'SoS model')"

Table A3. Used Keywords - Sage

database	keyword	count	search string
Sage-1	federated system model	22	[Abstract "system model"] AND [Abstract federated]
Sage-2	system model creation	35	[Abstract "system model"] AND [Abstract creation]
Sage-3	system model development	210	[Abstract "system model"] AND [Abstract development]
Sage-4	system model usage	347	[Abstract "system model"] AND [Abstract usage]
Sage-5	system model fidelity	4	[Abstract "system model"] AND [Abstract fidelity]
Sage-6	system model complexity	75	[Abstract "system model"] AND [Abstract complexity]
Sage-7	system model uncertainty	47	[Abstract "system model"] AND [Abstract uncertainty]
Sage-8	multi-model networks	4	[Abstract "multi-model"] AND [Abstract network]
Sage-9	model hierarchy	3	[Abstract "model hierarchy"]
Sage-10	system model perspectives	14	[Abstract "system model"] AND [Abstract perspective]
Sage-11	system model visualization	2	[Abstract "system model"] AND [Abstract visualization]
Sage-12	system model characteristics	93	[Abstract "system model"] AND [Abstract characteristic]
Sage-13	transdisciplinary system model	0	[Abstract "system model"] AND [Abstract transdisciplinary]
Sage-14	interdisciplinary system model	2	[Abstract "system model"] AND [Abstract interdisciplinary]
Sage-15	system model + MBSE	0	[Abstract "system model"] AND [MBSE]
Sage-16	system of systems model	0	[Abstract "system of systems model"]
Table A4. Used Keywords - IEEEExplore

database	keyword	count	search string
IEEE-1	federated system model	19	("All Metadata":"federated AND "system model")
IEEE-2	system model creation	88	("All Metadata": "system model" AND creation)
IEEE-3	system model development	23	("All Metadata": "system model development")
IEEE-4	system model usage	184	("All Metadata": "system model" AND usage)
IEEE-5	system model fidelity	89	("All Metadata": "system model" AND fidelity)
IEEE-6	system model complexity	14	("All Metadata": "system model complexity")
IEEE-7	system model uncertainty	46	("All Metadata": "system model uncertainty")
IEEE-8	multi-model networks	264	("All Metadata": "multi-model" AND network)
IEEE-9	model hierarchy	69	("All Metadata": "model hierarchy")
IEEE-10	system model perspectives	203	("All Metadata": "system model" AND perspective)
IEEE-11	system model visualization	169	("All Metadata": "system model" AND visualization)
IEEE-12	system model characteristics	1	("All Metadata": "system model characteristic")
IEEE-13	transdisciplinary system model	3	("All Metadata": transdisciplinary AND "system model")
IEEE-14	interdisciplinary system model	38	("All Metadata": interdisciplinary AND "system model")
IEEE-15	system model + MBSE	52	("All Metadata": "system model" AND MBSE)
IEEE-16	system of systems model	49	("All Metadata": "system-of-systems model" OR "system of systems model" OR "systems of systems model" OR "SoS model")

Table A5. Used Keywords - arXive.org

database	keyword	count	search string
arXi-1	federated system model	7	all:federated+AND+all:%22system+model%22
arXi-2	system model creation	9	all:creation+AND+all:%22system+model%22
arXi-3	system model development	448	all:development+AND+all:%22system+model%22
arXi-4	system model usage	14	all:usage+AND+all:%22system+model%22
arXi-5	system model fidelity	17	all:fidelity+AND+all:%22system+model%22
arXi-6	system model complexity	356	all:complexity+AND+all:%22system+model%22
arXi-7	system model uncertainty	128	all:uncertainty+AND+all:%22system+model%22
arXi-8	multi-model networks	41	all:network+AND+all:%22multi+model%22
arXi-9	model hierarchy	33	all:%22model+ hierarchy%22
arXi-10	system model perspectives	49	all:perspective+AND+all:%22system+model%22
arXi-11	system model visualization	36	all:visualization+AND+all:%22system+model%22
arXi-12	system model characteristics	116	all:characteristics+AND+all:%22system+model%22
arXi-13	transdisciplinary system model	0	all:transdisciplinary+AND+all:%22system+model%22
arXi-14	interdisciplinary system model	2	all:interdisciplinary+AND+all:%22system+model%22
arXi-15	system model + MBSE	0	all:MBSE+AND+all:%22system+model%22
arXi-16	system of systems model	3	all:%22system-of-systems+model%22 OR+all:%22system+of+systems+model%22
Table A6. Purpose and Definition of system models extracted from eligible literature

Reference	Definition	Purpose
Capehart [5]	system of differential equations	create continuous computer simulation
Joshi et al. [6]	state graphs connecting models	connection with physical models
Ironmonger et al. [7]	Object-Oriented database management system	controlling
Bluff [8]	link between behavior model and performance model, should aim to provide architecture optimization	Analyze hardware and software components and their interaction, early understanding of system behavior in operation
Bluff [9]	link between behavior model and performance model, should aim to provide architecture optimization	Analyze hardware and software components and their interaction, early understanding of system behavior in operation
Estanbouli et al. [10]	mathematical model (equations)	analysis, easier form of Finite Element Analysis (FEA)
Hicks et al. [11]	system architecture that is progressively fed with details until a network of mathematical components is achieved	developing architectures comprised of standard components
Wilson et al. [12]	captures logic of knowledge in a graphical (Bayesian network (BN)) and mathematical model	provides a big picture of the system’s functionality that can form the basis for a statistical analysis
Che and Jennings [13]	any kind of system, subsystem or component with behavior representation that can be shared with other developers and connected with their respective models	integrated system representation from requirement through behavioral component models
Ma et al. [14]	block model	system operation and optimization
Curry et al. [15]	graphical and mathematical model (parameter model network, linear programming model)	quantify system capacity, getting alternatives
Sturm [16]	Unified Modeling Language (UML) model	provide multiple views on the system
Wakefield and Miller [17]	center of development process, simulation model of a process	design of complex algorithms combined with hardware, system simulation
Amrhein et al. [18]	combination of subsystem models (Distributed heterogenous simulation (DHS)) or single models	integrated system simulation and behavior prediction
Hoang et al. [19]	simulation models of integrated system	mitigate system risk, system test
Hummel and Braun [20]	integrated model based on multiple behavior models defining components and ports	quickly derive domain specific simulation scenarios
Swerdon et al. [21]	simulation model on component level	diagnostics & health management, failure mode analysis
Reference	Definition	Purpose
---------------------------	---	---
Qamar et al. [22]	models defined with system modeling languages (here SysML)	investigate design alternatives, check quality of design, resolving complexity by transformation of information, simulation (in combination with other tools, e.g. Matlab)
Li and Xiong [23]	connected models of application and behavior	understanding of possible operation - design space exploration
Dickerson and Valerdi [24]	basic attributes of the system, graphical model	tracing and model transformation to SoS
Borutzky [25]	an interconnection of system components, an aggregation of data and methods operating on them	single source of truth and used for simulation
Follmer et al. [26]	domain-neutral models to bridge different engineering domains, provide a holistic system view and simulate overall system behavior	describe complex system in holistic way
Stetter et al. [27]	model, holding cross domain information about the system and important relations; holds different types of knowledge	application of agent systems
Kleins et al. [28]	UML diagrams	build modeling tools and Domain specific language (DSL) for running simulations
Witsch and Vogel-Heuser [29]	graphical modeling notation based on Business process model and notation (BPMN), model of the technical system, describes components of that system, static model	provide data for Manufacturing Execution System (MES)
Schütz and Vogel-Heuser [30]	control of agents in agent based system	manually integrate model information
Piaszczyk [31]	graphically described model (Integration Definition for Function Modeling (IDEF0) or SysML or similar)	very early validation in cooperation with stakeholders, generally front-loading
Guan et al. [32]	mathematically formalized model, does not rely on structural architecture of the system	used for hybrid simulation (virtual/real) validation
Strahilov et al. [33]	geometry, multi body system model	validation
Magalhães et al. [34]	tool for understanding and predicting the performance of the trigeneration system as well as sizing it	predict system performance, simulation
Hoffmann [35]	SysML models, relevant for systems engineering (architecture etc.), mainly executable, only mentions subsystem models	trade studies
Ahn et al. [36]	mathematical equations, transform function	Analysis of system (e.g. damping) and design of system
Chandraiah and Dömer [37]	executable specification of the design on system level	(automated) system exploration and synthesis
Reference	Definition	Purpose
--------------------	---	--
Kim et al. [38]	generated with graphical modeling (here SysML), descriptive, not analytical by default	automatically generate analytical models and execute them, connected to analytical model
Schmelcher et al. [39]	contains cross-domain information and relations, created here with SysML	survey interdisciplinary information with agent based systems, spanning framework for further system development tools
Reichwein et al. [40]	SysML or Modelica (high level and simulation)	describe requirements etc (glbSysML),describe and simulate dynamics and behavior (Modelica)
Follmer et al. [41]	integrated model connecting a full system model with sub system and domain models	provide holistic cross domain view of system and analyze overall reliability of the system, connect abstract models with concrete models
Ramos et al. [42]	in SysML: requirements, its structure, its behavior, its parametrics. This integrated specification is usually in interaction with other engineering models (e.g., simulation models, analysis models, hardware models)	single source of truth, defining system boundaries
Becherini et al. [43]	static model of functions and elements of a system	to provide different views of systems and subsequently used as basis for the derivation of simulation models in a more mature stage of product development
Glas and Sartorius [44]	SysML/UML model of capabilities, parameters, system function, simulation, unclear of individual UML artifacts are system models too	performance assessment and effort estimation; sketching existing system for benchmarking the to-be-designed system; explore design alternatives
Wang and Wang [45]	mathematical models (DEQ)	simulation
Ma et al. [46]	model of the energy consumption system, multi-view model and mathematical model	efficiency assessment
Zander [47]	executable simulation model of the system	simulation (compute states and outputs)
Haveman and Bonnema [48]	high-level (pre-domain) model (here SysML)	communicate information for design trade-offs
Nattermann and Anderl [49]	contains requirements, functions, components and corresponding properties and parameters as well as their interdependencies, derived from functions and requirements	communication across domains, simulation
Sharon et al. [50]	OPM model	formally and model-based connection project management and product development
Reference	Definition	Purpose
---------------------------	---	---
Gausemeier et al. [51]	partial models form the discipline-spanning system model. This system model is the starting point for the discipline-specific development of the product	calculate the product maturity on system level, module level, domain level, and system element level, obtaining relevant information for planning the development progress are extracted from the system model and project management
Broy [52]	Dymola models	Analysis of a system
Barbieri et al. [53]	SysML model	change analysis and linking domain specific design
Zierolf et al. [54]	software model	simulation, understanding system level behavior
Komoto et al. [55]	modelica model, physical model + data model	cross-domain communication
Micouin [56]	made up of a Specification model and behavioral Design model, can be composite of multiple spec and design model pairs	validation through simulation
Song et al. [57]	model that provides key performance parameters of the system starting at the beginning of the design	derive simulation
Pfluegl et al. [58]	series of interconnected domain models	monitoring
Acker et al. [59]	composed of models of the subsystems, in general one level of abstraction, sometimes more levels of abstraction combined; computation, communication and control models	system simulation, transfer to simulink
Aboutaleb and Monsuez [60]	shows system complexity, set of components, interrelations and their intensity	early system design/architecture
Morkevicius and Jankevicius [61]	SysML	Requirements verification
Tschirner et al. [62]	graphical model of the system (SysML/OPM)	core of MBSE, enabling consistent specification of product from different viewpoints, requirements, structure, behavior, concepts / e.g., sketches), makes dependencies visible, one system model, data basis for all disciplines
Kaslow [63]	single source of truth, integrates other models and simulations	integrates other models
Kaslow et al. [64]	integration of domain specific models	integrates other models
Holtmann et al. [65]	SysML	coordinate disciplines (E/E, Mech, SW), common understanding, starting point for domain specific engineering, generate software spec
Dumitrescu et al. [66]	graphic models, SysML	derive behavioral models
Reference	Definition	Purpose
---------------------------	---	--
Iwata et al. [67]	single model in SysML or similar (can consist of multiple SysML diagrams) that integrates other design and modeling information	visualize the concurrent activities and identify conflicts more efficiently
Hampson [68]	system architecture + system parameters	perform verification of its value properties post-analysis against the requirements
Aboutaleb and Monsuez [69]	holistic integration of models that provide a single source of truth across domains	collaborate across domains, manage complexity beyond “divide and conquer”
Cheng and Zhou [70]	common information model	active monitoring
Johnson et al. [71]	physic based models of robot system, model of hybrid dynamic system, number of assumptions for mathematical model	analysis
Kulkarni et al. [72]	SysML model	evaluate design decisions
Sindiy et al. [73]	SysML	multi-user accessible, reporting (web-based extracted), single source of truth (main source of project information), needs to be center of MBSE infrastructure, partial write access through view editor, stored in system model repository
Brecher et al. [74]	Interdisciplinary modeling language (IML), self developed, based on UML, SysML, Function analysis diagram (FAD), Consensus	communication, extract discipline specific information
Vannesjo et al. [75]	DEQ	support development
Henke et al. [76]	requirements and architecture, connected with domain models via SysML	tracing
Pleshkova and Zahariev [77]	graphical model of the system (SysML/OPM)	design of systems
Wu et al. [78]	behavior and block model of the hybrid AC/DC system	reflect electromagnetic properties
Qu et al. [79]	behavior model, multi-agent system	simulate emergence
Kaslow et al. [80]	commonly uses SysML	Single source of truth
Watson et al. [81]	SysML - series of tightly integrated and interrelated models that form a complete system model	integrate human interaction into system development
Fischer et al. [82]	database, for the whole lifecycle, several for different phases, central source of truth for system relevant information	organize information for everyone and keep data consistent
Rambikur et al. [83]	word not used in text, but speaks of system modeling (behavior and architecture models)	fault tree analysis
Reference	Definition	Purpose
----------------------------	---	--
Friedl et al. [84]	descriptive SysML model	NOT the main focus of SysML to run simulation, should support calculations, automatically generate executable (Simulink) models out of (SysML system model)
Kößler and Paetzold [85]	complementing domain specific models, core of SysML	enable consistency of data, visualization, understanding of complete system, communication, calculate the fulfillment of requirement with less effort, represent dependencies between different domain’s data
Hanson et al. [86]	SysML model	improve integration and collaboration
Parrott and Weiland [87]	SysML model	technical reviews
Anyanlun and Edmonson [88]	concept model (SysML)	requirements definition
Wang et al. [89]	SysML model	document change propagation
Fischer et al. [90]	meta-model, similar to database, merged knowledge of engineer, stores current design of system	focus on common tasks, feedback to engineers, hierarchial decomposition of system, on-the-fly analysis
Kühler et al. [91]	graphical language model that connects to domain models	single source of truth, lifecycle management, collaboration, provide view points
Madni and Sievers [2]	‘living representation’ of a system that continues to evolve as details are incrementally added throughout the system’s lifecycle	single source of truth, Validation and Verification (V&V)
Bossa et al. [92]	capella model	starting point for the definition of a co.simulation platform model
Papakonstantinou et al. [93]	multidisciplinary model of the system under development	used for safety and security assessment as well as communicating information between all system stakeholders
Gaskell and Harrison [94]	more connected and dynamic definition of a system, Descriptive System Model (DSM), (SysML/OPM model)	Systems engineering technical review (SETR) with metrics in meta-model
Wang et al. [95]	connected SysML diagrams	creation of highly integrated product model
Duncan and Etienne-Cummings [96]	SysML (can be integrated with Matlab)	trade-off and analytics using FEA, Single source of truth
Kunnen et al. [97]	continuous data model with usage of modeling language, here SysML	identification of errors and risk = identify negative influences and risk
Reference	Definition	Purpose
--------------------	--	---
Buldakova [98]	ONLY behavioral black box model	study real processes or phenomena and the control system as well as the system response; classification of system states, forecast of changes, assessment of system description completeness and parameter sufficiency
Stevens [99]	connection of various models which are accepted and maintained as authoritative representation	development of concepts, understanding of real system and inform decision makers, improve communication
Konrad et al. [100]	graphical modeling language model (here SysML)	support the development process, visualization of processes, identification of complexity drivers, complexity management
Baklouti et al. [101]	SysML with included system requirements, behavior, architecture and functions	generation of Failure Mode and Effect Analysis (FMEA) and fault tree
Bagdatli et al. [102]	SysML	single source of truth, design space exploration
Gao et al. [103]	SysML based digital system model or sets of models that help integrate other discipline specific engineering models and simulations, which is initiated at the start and evolves through the system’s lifecycle	used or integration and to support optimization, simulation and analysis
Kamburjan and Stromberg [104]	formal model of a real target system that mirrors structure and behavior sufficiently for prototyping and to evaluate changes, digital twins are a variant of this	prototyping and to evaluate changes and digital twins
Duhil et al. [105]	system architecture	Simulation (when enriched)
Zimmermann et al. [106]	model that integrates requirements and architecture	generating dynamic models and viewpoints, supporting digital twin application
Mei et al. [107]	integrated multi-domain model incl. a “transformer model” for integrating all comprising models, created through bottom up integration of component and subsystem models	simulation, prediction and system V&V
Appendix B. Code

Appendix B.1. Arxiv Export Code

```python
---
python_arXiv_parsing_example.py

This sample script illustrates a basic arXiv api call followed by parsing of the results using the feedparser python module.

Please see the documentation at http://export.arxiv.org/api_help/docs/user-manual.html for more information, or email the arXiv api mailing list at arxiv-api@googlegroups.com.

urllib is included in the standard python library. feedparser can be downloaded from http://feedparser.org/.

Author: Julius B. Lucks

This is free software. Feel free to do what you want with it, but please play nice with the arXiv API!

# coding: utf-8
# Your code goes below this line

import urllib
import feedparser
import csv

# Base api query url
base_url = 'http://export.arxiv.org/api/query?'

# Search parameters
search_query = 'all:mbse+OR+all:system+AND+all:model+AND+Engineering'
# search for electron in all fields
start = 0
# retrieve the first x results
max_results = 1000
query = 'search_query=%s&start=%i&max_results=%i' % (search_query, start, max_results)

# Opensearch metadata such as totalResults, startIndex, and itemsPerPage live in the opensearch namespase.
# Some entry metadata lives in the arXiv namespace.
# This is a hack to expose both of these namespaces in feedparser v4.1
feedparser._FeedParserMixin.namespaces['http://a9.com/-/spec/opensearch/1.1/'] = 'opensearch'
feedparser._FeedParserMixin.namespaces['http://arxiv.org/schemas/atom'] = 'arXiv'

# perform a GET request using the base_url and query
response = urllib.urlopen(base_url+query).read()

# parse the response using feedparser
feed = feedparser.parse(response)

# print out feed information
```
print 'Feed_title:%s' % feed.feed.title
print 'Feed_last_updated:%s' % feed.feed.updated

print opensearch metadata
print 'totalResults_for_this_query:%s' % feed.feed.opensearch_totalresults
print 'itemsPerPage_for_this_query:%s' % feed.feed.opensearch_itemsperpage
print 'startIndex_for_this_query:%s' % feed.feed.opensearch_startindex

Run through each entry, and print out information
count = 0
with open('arxiv_query_result.csv', 'wb') as csvfile:
 filewriter = csv.writer(csvfile, delimiter=';', quotechar='|', quoting=csv.QUOTE_MINIMAL)
 filewriter.writerow(['ID', 'Published', 'Title', 'Link', 'All_Authors', 'Abstract', 'Primary Category'])
 for entry in feed.entries:
 print 'RECORD NO: ' + str(count)
 print e−print_metadata
 print 'arxiv_id:%s' % entry.id.split('/abs/')[−1]
 print 'Published:%s' % entry.published
 print 'Title:%s' % entry.title

 # feedparser v4.1 only grabs the first author
 author_string = entry.author

 # grab the affiliation in <arxiv:affiliation> if present
 # this will only grab the first affiliation encountered
 # (the first affiliation for the first author)
 # Please email the list with a way to get all of this information!
 try:
 author_string += '(%s)' % entry.arxiv_affiliation
 except AttributeError:
 pass

 print 'Last_Author:%s' % author_string

 # feedparser v5.0.1 correctly handles multiple authors, print them all
 try:
 authors = ','.join(author.name for author in entry.authors)
 all_authors = '%s ,%s'.join(author.name for author in entry.authors)
 all_authors = all_authors.encode(errors="replace")
 except AttributeError:
 pass

 print 'Authors:%s' % authors

 # get the links to the abs page and pdf for this e−print
 for link in entry.links:
 if link.rel == 'alternate':
 print 'abs_page_link:%s' % link.href
 elif link.title == 'pdf':
 print 'pdf_link:%s' % link.href
The journal reference, comments and primary category sections live under
the arxiv namespace
try:
 journal_ref = entry.arxiv_journal_ref
except AttributeError:
 journal_ref = 'No journal_ref found'
print 'Journal reference: %s' % journal_ref

try:
 comment = entry.arxiv_comment
except AttributeError:
 comment = 'No comment found'
print 'Comments: %s' % comment

Since the <arxiv:primary_category> element has no data, only
attributes, feedparser does not store anything inside
entry.arxiv_primary_category
This is a dirty hack to get the primary_category, just take the
first element in entry.tags. If anyone knows a better way to do
this, please email the list!
so far only last author!
print 'Primary Category: %s' % entry.tags[0]["term"]

Let's get all the categories
all_categories = [t['term'] for t in entry.tags]
print 'All Categories: %s' % (', ').join(all_categories)

The abstract is in the <summary> element
print 'Abstract: %s' % entry.summary
primary_cat = comment, entry.tags[0]["term"];
primary_cat = primary_cat.replace(";"," ,")

entryid = entry.id
entryid = entryid.encode(errors="replace")
entropub= entry.published
entropub = entropub.encode(errors="replace")
entropub = entropub.replace("\r","")
entropub = entropub.replace("\n","")

etrytitle = entry.title
entrytitle = entrytitle.encode(errors="replace")
entrytitle = entrytitle.replace("\r","")
entrytitle = entrytitle.replace("\n","")

#entrytitle = "title"

authorstring = author_string.encode(errors="replace")

entrysummary = entry.summary
entrysummary = entrysummary.encode(errors="replace")
entrysummary = entrysummary.replace("\r","")
entrysummary = entrysummary.replace("\n","")

filewriter.writerow([entryid,
 entrypub,
...
References

1. Huldt, T.; Stenius, I. State-of-practice survey of model-based systems engineering. *Systems Engineering* 2018, 22, 134–145. doi:10.1002/sys.21466.

2. Madni, A.M.; Sievers, M. Model-based systems engineering: Motivation, current status, and research opportunities. *Systems Engineering* 2018, 21, 172–190. doi:10.1002/sys.21438.

3. Hart, L.E. Introduction To Model-Based System Engineering (MBSE) and SysML. Delaware Valley INCOSE Chapter Meeting, 2015.

4. Moher, D.; Liberati, A.; Tetzlaff, J.; and, D.G.A. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Medicine* 2009, 6, e1000097. doi:10.1371/journal.pmed.1000097.

5. Capehart, B.L. Simulation of continuous system models in industrial engineering. *Computers & Industrial Engineering* 1977, 1, 207–216. doi:10.1016/0360-8352(77)90002-x.

6. Joshi, S.; Mettala, E.; Smith, J.; Wysk, R. Formal models for control of flexible manufacturing cells: physical and system model. *IEEE Transactions on Robotics and Automation* 1995, 11, 558–570. doi:10.1109/70.406940.

7. Ironmonger, S.; Bushnell, M.; Patel, R.; Vaughan, W. An object-oriented power system model and graphical information display system for control engineers. Fourth International Conference on Power System Control and Management. IEE, 1996. doi:10.1049/cp:19960248.

8. Bluff, R. An avionic system modeling framework. Modeling and Simulation Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics, 1999. doi:10.2514/6.1999-4022.

9. Bluff, R.J. Integrated modular avionics: system modelling. *Microprocessors and Microsystems* 1999, 23, 435–448. doi:10.1016/s0141-9331(99)00054-x.

10. Estanbouli, Y.; Hayward, G.; Ramadas, S.; Barbenel, J. A linear systems model of the thickness mode piezoelectric transducer containing dual piezoelectric zones. IEEE Ultrasonics Symposium, 2004. IEEE, 2004. doi:10.1109/ultsym.2004.1418211.

11. Hicks, B.J.; Culley, S.J.; Mullineux, G. The Modeling of Engineering Systems for Their Computer-Based Embodiment With Standard Components. *Journal of Mechanical Design* 2004, 127, 442–432. doi:10.1115/1.1862676.

12. Wilson, A.G.; McNamara, L.A.; Wilson, G.D. Information integration for complex systems. *Reliability Engineering & System Safety* 2007, 92, 121–130. doi:10.1016/j.ress.2006.07.003.

13. Che, J.; Jennings, M. Vehicle System Modeling for HEV Systems Development. Volume 2: 27th Computers and Information in Engineering Conference, Parts A and B. ASMEDC, 2007. doi:10.1115/detc2007-34650.

14. Ma, J.; guang Ma, Y.; shu Wang, B. Dynamic characteristic optimization for superheater system model based on evolutionary computation. 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing. IEEE, 2008. doi:10.1109/asc-isc.2008.4675473.

15. Curry, G.L.; Coulson, R.N.; Gan, J.; Tchakerian, M.D.; Smith, C.T. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization. *Bulletin of Science, Technology & Society* 2008, 28, 486–495. doi:10.1177/0270467608318121.

16. Sturm, A. Guiding System Modelers in Multi View Environments: A Domain Engineering Approach. Proceedings of EMMSAD 2008, 2008.

17. Wakefield, A.; Miller, S. Improving System Models by Using Monte Carlo Techniques on Plant Models. AIASS Modeling and Simulation Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2008. doi:10.2514/6.2008-7094.
18. Amrhein, M.; Wells, J.R.; Walters, E.A.; Matasso, A.F.; Erdman, T.R.; Iden, S.M.; Lamm, P.L.; Page, A.M.; Wong, I.H. Integrated Electrical System Model of a More Electric Aircraft Architecture. SAE Technical Paper Series. SAE International, 2008. doi:10.4271/2008-01-2899.

19. Hoang, H.; Fu, S.J.; Dinh, V. Integrated Electrical System Testing and Modeling for Risk Mitigation. SAE Technical Paper Series. SAE International, 2008. doi:10.4271/2008-01-2897.

20. Hummel, B.; Braun, P. Towards an integrated system model for testing and verification of automation machines. Proceedings of the 2008 international workshop on Models in software engineering - MiSE ’08. ACM Press, 2008. doi:10.1145/1370731.1370744.

21. Swerdon, G.; Watson, M.; Bhardwaj, S.; Byington, C.; Smith, M.; Goebel, K.; Balaban, E. A Systems Engineering Approach to Electro-Mechanical Actuator Diagnostic and Prognostic Development.

22. Qamar, A.; During, C.; Wikander, J. Designing mechatronic systems, a model-based perspective, an attempt to achieve SysML-Matlab/Simulink model integration. 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2009. doi:10.1109/aim.2009.5229869.

23. Li, X.; Xiong, H. Modeling and analysis of integrated avionics processing systems. 29th Digital Avionics Systems Conference. IEEE, 2010. doi:10.1109/dasc.2010.5655443.

24. Dickerson, C.; Valerdi, R. Using relational model transformations to reduce complexity in SoS requirements traceability: Preliminary investigation. 2010 5th International Conference on System of Systems Engineering. IEEE, 2010. doi:10.1109/sysose.2010.5544064.

25. Borutzky, W. Bond Graph Methodology; Springer London, 2010. doi:10.1007/978-1-84882-882-7.

26. Follmer, M.; Hehenberger, P.; Punz, S.; Zeman, K. Using SysML in the product development process of mechatronic systems. 11th International Design Conference, DESIGN 2010, 2010, pp. 1513–1522.

27. Stetter, R.; Seemüller, H.; Chami, M.; Voos, H. INTERDISCIPLINARY SYSTEM MODEL FOR AGENT-SUPPORTED MECHATRONIC DESIGN. INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11 15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK, 2011.

28. Kleins, A.; Teilans, A.; Merkuryev, Y.; Krasts, O. A Metamodel Based Approach for UML Notated Domain Specific Modelling Language. 2011 UkSim 13th International Conference on Computer Modelling and Simulation. IEEE, 2011. doi:10.1109/uksim.2011.58.

29. Witsch, M.; Vogel-Heuser, B. Formal MES Modeling Framework –Integration of Different Views. IFAC Proceedings Volumes 2011, 44, 14109–14114. doi:10.3182/20110828-6-it-1002.02206.

30. Schütz, D.; Vogel-Heuser, B. Modellintegration von Verhaltens- und energetischen Aspekten für mechatronische Module. at - Automatisierungstechnik 2011, 59. doi:10.1524/auto.2011.0890.

31. Piaszczyk, C. Model Based Systems Engineering with Department of Defense Architectural Framework. Systems Engineering 2011, 14, 305–326. doi:10.1002/sys.20180.

32. Guan, H.; Hao, W.T.; Zhan, J. A Characteristic Brake System Model for Passenger Car. Applied Mechanics and Materials 2012, 224, 316–319. doi:10.4028/www.scientific.net/amm.224.316.

33. Strahilov, A.; Ovtcharova, H.C.J.; Bar, T. Development of the physics-based assembly system model for the mechatronical validation of automated assembly systems. Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC). IEEE, 2012. doi:10.1109/wsc.2012.6465049.

34. Magalhães, P.; Martins, J.; Joyce, A.; Coelho, L.; Tavares, N.; Pereira, R. Solar Trigeneration System Model for Off-Grid Residential Applications. In Technological Innovation for Value Creation; Camarinha-Matos, L.; others., Eds.; Springer Berlin Heidelberg, 2012; Vol. 372, IFIP AICT, pp. 375–384. doi:10.1007/978-3-642-28255-3_41.

35. Hoffmann, H. Streamlining the development of complex systems through model-based systems engineering. 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC). IEEE, 2012. doi:10.1109/dasc.2012.6382404.

36. Ahn, H.J.; Shim, K.S.; Lim, Y.C.; Ko, Y.J.; Park, K.M.; Baek, I.H.; Ro, Y.S.; Kim, E.S. System modeling and controller design using time series data. 2012 12th International Conference on Control, Automation and Systems. IEEE, 2012.

37. Chandraiah, P.; Dömer, R. Computer-Aided Recoding to Create Structured and Analyzable System Models. ACM Transactions on Embedded Computing Systems 2012, 11S, 1–27. doi:10.1145/2180887.2180900.

38. Kim, H.; Fried, D.; Menegay, P.; Soremekun, G. Integrated Modeling and Analysis to Support Model-Based Systems Engineering. Volume 3: Advanced Composite Materials and Processing; Robotics; Information
39. Schmelcher, J.; Stetter, R.; Kaufmann, A.; Voos, H. INTERDISCIPLINARY SYSTEM MODEL FOR AGENT BASED MECHATRONIC DESIGN OF TURBOCHARING SYSTEMS. INTERNATIONAL DESIGN CONFERENCE - DESIGN 2012 Dubrovnik - Croatia, May 21 - 24, 2012., 2012.

doi:10.1115/esda2012-83017.

40. Reichwein, A.; Paredis, C.J.J.; Canedo, A.; Witschel, P.; Stelzig, P.E.; Votintseva, A.; Wasgint, R. Maintaining consistency between system architecture and dynamic system models with SysML4Modelica. Proceedings of the 6th International Workshop on Multi-Paradigm Modeling - MPM ’12. ACM Press, 2012.

doi:10.1145/2508443.2508451.

41. Follmer, M.; Hehenberger, P.; Zeman, K. Model-Based Approach for the Reliability Prediction of Mechatronic Systems on the System-Level. In Computer Aided Systems Theory – EUROCAST 2011; Springer Berlin Heidelberg, 2012; pp. 105–112. doi:10.1007/978-3-642-27579-1_14.

42. Ramos, A.L.; Ferreira, J.V.; Barcelo, J. Model-Based Systems Engineering: An Emerging Approach for Modern Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2012, 42, 101–111. doi:10.1109/tsmcc.2011.2106495.

43. Becherini, F.; Cencetti, M.; Pasquinelli, M. System Model Optimization through Functional Models Execution: Methodology and Application to System-Level Analysis. 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. IEEE, 2012.

doi:10.1109/wetice.2012.88.

44. Glas, M.; Sartorius, S. Towards a continuous build-up process of a reusable requirements-based system model. 2012 IEEE Aerospace Conference. IEEE, 2012. doi:10.1109/aero.2012.6187338.

45. Wang, A.L.; Wang, Q.J. An Improved Model Reduction Method and its Application in Similar Simulation of Complex Systems. Advanced Materials Research 2013, 744, 8–12.

doi:10.4028/www.scientific.net/amr.744.8.

46. Ma, Y.L.; Chen, X.H.; Liu, B.; Zhang, G.F. Energy Efficiency Assessment Oriented Building Energy Consumption System Model. Applied Mechanics and Materials 2013, 744, 734–740.

doi:10.4028/www.scientific.net/amm.744.734.

47. Zander, J. Model-based testing for execution algorithms in the simulation of cyber-physical systems. 2013 IEEE AUTOTESTCON. IEEE, 2013. doi:10.1109/autest.2013.6645058.

48. Haveman, S.P.; Bonnema, G.M. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering. Procedia Computer Science 2013, 16, 293–302.

doi:10.1016/j.procs.2013.01.031.

49. Nattermann, R.; Anderl, R. The W-Model – Using Systems Engineering for Adaptronics. Procedia Computer Science 2013, 16, 937–946. doi:10.1016/j.procs.2013.01.098.

50. Sharon, A.; de Weck, O.L.; Dori, D. Improving Project-Product Lifecycle Management with Model-Based Design Structure Matrix: A joint project management and systems engineering approach. Systems Engineering 2013, 16, 413–426. doi:10.1002/sys.21240.

51. Gausemeier, J.; Gaukstern, T.; Tschirner, C. Systems Engineering Management Based on a Discipline-Spanning System Model. Procedia Computer Science 2013, 16, 303–312.

doi:10.1016/j.procs.2013.01.032.

52. Broy, M. A Model of Dynamic Systems. In From Programs to Systems. The Systems perspective in Computing; Springer Berlin Heidelberg, 2014; pp. 39–53. doi:10.1007/978-3-642-54848-2_3.

53. Barbieri, G.; Kernschmidt, K.; Fantuzzi, C.; Vogel-Heuser, B. A SysML based design pattern for the high-level development of mechatronic systems to enhance re-usability. IFAC Proceedings Volumes 2014, 47, 3431–3437. doi:10.3182/20140824-6-za-1003.00615.

54. Zierolf, M.L.; Brinson, T.; Fleming, A. Integrated System Modeling. SAE Technical Paper Series. SAE International, 2014. doi:10.4271/2014-01-2117.

55. Komoto, H.; Kondoh, S.; Masui, K.; Tezuka, A. Parameter-oriented Visualization of a Modelica Model with a Numerical Data Integration Feature. Procedia CIRP 2014, 21, 40–45. doi:10.1016/j.procir.2014.03.138.

56. Micouin, P. Property-Model Methodology: A Model-Based Systems Engineering Approach Using VHDL-AMS. Systems Engineering 2013, 17, 249–263. doi:10.1002/sys.21267.
57. Song, Y.; Cao, K.; Zhang, D. The research on system-level modeling technology of mixed-level abstraction. 2014 International Conference on Anti-Counterfeiting, Security and Identification (ASID). IEEE, 2014. doi:10.1109/icasid.2014.7064955.

58. Pfuegl, H.; Ricci, C.; Borgarello, L.; Magnin, P.; Sellier, F.; Berzi, I.; Pierini, M.; Mazal, C.; Benzaoui, H. A Framework for Electric Vehicle Development: From Modelling to Engineering Through Real-World Data Analysis. In Electric Vehicle Systems Architecture and Standardization Needs; Springer International Publishing, 2015; pp. 55–73. doi:10.1007/978-3-319-13656-1_4.

59. Acker, B.V.; Denil, J.; Vangheluwe, H.; Meuleenaere, P.D. Managing Heterogeneity in Model-Based Systems Engineering of Cyber-Physical Systems. 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE, 2015. doi:10.1109/3pgcic.2015.29.

60. Aboutaleb, H.; Monsuez, B. Measuring the Complexity of a Higraph-based System Model: Formalism and Metrics. Procedia Computer Science 2015, 44, 11–20. doi:10.1016/j.procs.2015.03.057.

61. Morkevicius, A.; Jankevicius, N. An approach: SysML-based automated requirements verification. 2015 IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2015. doi:10.1109/syseng.2015.7302739.

62. Tschirner, C.; Bremer, C.; Dumitrescu, R.; Gausemeier, J. Applying Model-Based Systems Engineering for Product Engineering Management concepts for industrial application. 2015 IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2015. doi:10.1109/syseng.2015.7302510.

63. Kaslow, D. CubeSat Model Based System Engineering (MBSE) Reference Model - Application in the Concept Lifecycle Phase. AIAA SPACE 2015 Conference and Exposition. American Institute of Aeronautics and Astronautics, 2015. doi:10.2514/6.2015-4474.

64. Kaslow, D.; Anderson, L.; Asundi, S.; Ayres, B.; Iwata, C.; Shiotani, B.; Thompson, R. Developing a CubeSat Model-Based System Engineering (MBSE) Reference Model - interim status. 2015 IEEE Aerospace Conference. IEEE, 2015. doi:10.1109/aero.2015.7118965.

65. Holtmann, J.; Bernijazov, R.; Meyer, M.; Schmelter, D.; Tschirner, C. Integrated systems engineering and software requirements engineering for technical systems. Proceedings of the 2015 International Conference on Software and System Process - ICSSP 2015. ACM Press, 2015. doi:10.1145/2785992.2785997.

66. Dumitrescu, R.; Bremer, C.; Kühn, A.; Trächtler, A.; Frieben, T. Model-based development of products, processes and production resources. at - Automatisierungstechnik 2015, 63. doi:10.1515/auto-2015-0014.

67. Iwata, C.; Infeld, S.; Bracken, J.M.; McGuire, M.; McQuirck, C.; Kisdi, A.; Murphy, J.; Cole, B.; Zarifian, P. Model-Based Systems Engineering in Concurrent Engineering Centers. AIAA SPACE 2015 Conference and Exposition. American Institute of Aeronautics and Astronautics, 2015. doi:10.2514/6.2015-4437.

68. Hampson, K. Technical Evaluation of the Systems Modeling Language (SysML). Procedia Computer Science 2015, 44, 403–412. doi:10.1016/j.procs.2015.03.054.

69. Aboutaleb, H.; Monsuez, B. Towards a Holistic Definition of System Engineering: Paradigm and Modeling Requirements. In Progress in Systems Engineering; Springer International Publishing, 2015; pp. 603–608. doi:10.1007/978-3-319-08422-0_85.

70. Cheng, Y.; Zhou, Y. A CIM extended power transmission and transformation on-line monitoring system model. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE, 2016. doi:10.1109/icsess.2016.7883161.

71. Johnson, A.M.; Burden, S.A.; Koditschek, D.E. A hybrid systems model for simple manipulation and self-manipulation systems. The International Journal of Robotics Research 2016, 35, 1354–1392. doi:10.1177/0278364916639380.

72. Kuikarn, T.; DeBruin, K.; Nelessen, A.; Reilley, K.A.; Peak, R.; Edwards, S.J.; Mavris, D.N. A Model Based Systems Engineering Approach Towards Developing a Rapid Analysis and Trades Environment. AIAA SPACE 2016. American Institute of Aeronautics and Astronautics, 2016. doi:10.2514/6.2016-5472.

73. Sindiy, O.; Mozafari, T.; Budney, C. Application of Model-Based Systems Engineering for the Development of the Asteroid Redirect Robotic Mission. AIAA SPACE 2016. American Institute of Aeronautics and Astronautics, 2016. doi:10.2514/6.2016-5312.

74. Brecher, C.; Obdenbusch, M.; Ozdemir, D.; Flender, J.; Weber, A.R.; Jordan, L.; Witte, M. Interdisciplinary specification of functional structures for machine design. 2016 IEEE International Symposium on Systems Engineering (ISSE). IEEE, 2016. doi:10.1109/syseng.2016.7753173.
75. Vannesjo, S.J.; Duerst, Y.; Vionnet, L.; Dietrich, B.E.; Pavan, M.; Gross, S.; Barmet, C.; Pruessmann, K.P. Gradient and shim pre-emphasis by inversion of a linear time-invariant system model. *Magnetic Resonance in Medicine* 2016, 78, 1607–1622. doi:10.1002/mrm.26531.

76. Henke, C.; Michael, J.; Lankeit, C.; Trachtler, A. A holistic approach for virtual commissioning of intelligent systems: Model-based systems engineering for the development of a turn-milling center. 2017 Annual IEEE International Systems Conference (SysCon). IEEE, 2017. doi:10.1109/syscon.2017.7934735.

77. Pleshkova, S.; Zahariev, Z. Development of system model for audio visual control of mobile robots with voice and gesture commands. 2017 40th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2017. doi:10.1109/isst.2017.8000979.

78. Wu, Q.; Gouyon, D.; Levrat, É.; Boudau, S. A Review of Know-How Reuse with Patterns in Model-Based Systems Engineering. In *Complex Systems Design & Management*; Springer International Publishing, 2018; pp. 219–229. doi:10.1007/978-3-030-04209-7_18.

79. Qu, Q.; He, X.; Cheng, H.; Zhang, W. The Design of SoS Multi-Agent System Model Based on Emergence Imitation. Proceedings of the 2017 International Conference on Applied Mathematics, Modeling and Simulation (AMMS 2017). Atlantis Press, 2017. doi:10.2991/amms-17.2017.48.

80. Kaslow, D.; Ayres, B.; Cahill, P.T.; Hart, L.; Yntema, R. A Model-Based Systems Engineering (MBSE) approach for defining the behaviors of CubeSats. 2017 IEEE Aerospace Conference. IEEE, 2017. doi:10.1109/aero.2017.7943865.

81. Watson, M.E.; Rusnock, C.F.; Colombi, J.M.; Miller, M.E. Human-Centered Design Using System Modeling Language. *Journal of Cognitive Engineering and Decision Making* 2017, 11, 252–269. doi:10.1177/15553417705255.

82. Fischer, P.M.; Lüdtke, D.; Lange, C.; Roshani, F.C.; Dannemann, F.; Gerndt, A. Implementing model-based system engineering for the whole lifecycle of a spacecraft. *CEAS Space Journal* 2017, 9, 351–365. doi:10.1007/s12567-017-0166-4.

83. Rambikur, S.A.; Giammarco, K.; O’Halloran, B. Increasing System Failure Analysis Effectiveness Through Architecture Modeling. *Procedia Computer Science* 2017, 114, 4–13. doi:10.1016/j.procs.2017.09.057.

84. Friedl, M.; Kellner, A.; Weingartner, L. Integration of domain-specific simulation models into descriptive system models by using SysML. 2017 IEEE International Systems Engineering Symposium (ISSE). IEEE, 2017. doi:10.1109/syseng.2017.8088256.

85. Kößler, J.; Paetzold, K. INTEGRATION OF MBSE INTO EXISTING DEVELOPMENT. 21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED17 21-25 AUGUST 2017, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA, 2017.

86. Hanson, A.; Mindock, J.; McGuire, K.; Reilly, J.; Cerro, J.; Othon, W.; Rubin, D.; Urbina, M.; Canga, M. Using A Model-Based Systems Engineering Approach For Exploration Medical System Development. International Astronautical Congress (IAC) 2017, 2017.

87. Parrott, E.; Weiland, K. Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews. AIAA SPACE and Astronautics Forum and Exposition. American Institute of Aeronautics and Astronautics, 2017. doi:10.2514/6.2017-5299.

88. Anyanhun, A.I.; Edmonson, W.W. An MBSE conceptual design phase model for inter-satellite communication. 2018 Annual IEEE International Systems Conference (SysCon). IEEE, 2018. doi:10.1109/syscon.2018.8369575.

89. Wang, H.; Thomson, V.; Tang, C. Change propagation analysis for system modeling using Semantic Web technology. *Advanced Engineering Informatics* 2018, 35, 17–29. doi:10.1016/j.aei.2017.11.004.

90. Fischer, P.M.; Deshmukh, M.; Maiwald, V.; Quantius, D.; Gomez, A.M.; Gerndt, A. Conceptual data model: A foundation for successful concurrent engineering. *Concurrent Engineering* 2017, 26, 55–76. doi:10.1177/1063293X17734592.

91. Kübler, K.; Scheifele, S.; Scheifele, C.; Riedel, O. Model-Based Systems Engineering for Machine Tools and Production Systems (Model-Based Production Engineering). *Procedia Manufacturing* 2018, 24, 216–221. doi:10.1016/j.promfg.2018.06.036.

92. Bossa, B.; Boulbene, B.; Dubé, S.; Pantel, M. Towards a Co-simulation Based Model Assessment Process for System Architecture. In *Software Technologies: Applications and Foundations*; Springer International Publishing, 2018; pp. 58–68. doi:10.1007/978-3-030-04771-9_6.
93. Papakonstantinou, N.; Linnosmaa, J.; Alanen, J.; Bashir, A.Z.; O’Halloran, B.; Bossuyt, D.L.V. Early Hybrid Safety and Security Risk Assessment Based on Interdisciplinary Dependency Models. 2019 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2019. doi:10.1109/rams.2019.8768943.

94. Gaskell, J.D.; Harrison, C.N. Improved System Engineering Technical Review’s Entrance/Exit Criteria with Model Maturity Metrics. 2019 International Symposium on Systems Engineering (ISSE). IEEE, 2019. doi:10.1109/issese6696.2019.8984435.

95. Wang, Y.; Zingel, P.; Anderl, R. A Methodical Approach for Using SysML to Optimize Product Architectures for Industrie 4.0. Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 IMECS 2019 : March 13-15, 2019.

96. Duncan, K.R.; Etienne-Cummings, R. A Model-Based Systems Engineering Approach to Trade Space Exploration of Implanted Wireless Biotelemetry Communication Systems. IEEE Systems Journal 2019, 13, 1669–1677. doi:10.1109/jsyst.2018.2874102.

97. Kunnen, S.G.; Adamenko, D.; Pluhnau, R.; Nagarajah, A. An Approach to Integrate Risk Management in Cross-structure SysML-models. Proceedings of the Design Society: International Conference on Engineering Design 2019, 1, 3571–3580. doi:10.1017/dsi.2019.364.

98. Buldakova, T. Approaches to the Development of Complex Systems Models. 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). IEEE, 2019. doi:10.1109/cscmp45713.2019.8976542.

99. Stevens, R. Concept Design Using Model Based Systems Engineering. 2019 IEEE Aerospace Conference. IEEE, 2019. doi:10.1109/aero.2019.8741962.

100. Konrad, C.; Jacobs, G.; Rasor, R.; Riedel, R.; Katzzwinkel, T.; Siebrecht, J. Enabling complexity management through merging business process modeling with MBSE. Procedia CIRP 2019, 84, 451–456. doi:10.1016/j.procir.2019.04.267.

101. Baklouti, A.; Nguyen, N.; Mhenni, F.; Choley, J.Y.; Mlika, A. Improved Safety Analysis Integration in a Systems Engineering Approach. Applied Sciences 2019, 9, 1246. doi:10.3390/app9061246.

102. Bagdatli, B.; Karagoz, F.; Reilley, K.A.; Mavris, D.N. MBSE-enabled Interactive Environment for Aircraft Conceptual Sizing & Synthesis. AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics, 2019. doi:10.2514/6.2019-0497.

103. Gao, X.; Zhang, Y.; Wang, Z. The Architecture of Digital System Model for Systems-of-Systems Engineering. 2019 Chinese Automation Congress (CAC). IEEE, 2019. doi:10.1109/cac48633.2019.8996449.

104. Kamburjan, E.; Stromberg, J. Tool Support for Validation of Formal System Models: Interactive Visualization and Requirements Traceability. Electronic Proceedings in Theoretical Computer Science 2019, 310, 70–85. doi:10.4204/ptcs.310.8.

105. Duhil, C.; Babau, J.P.; Lépicier, E.; Voirin, J.L.; Navas, J. Chaining model transformations to develop a system model verification tool. Proceedings of the 35th Annual ACM Symposium on Applied Computing. ACM, 2020. doi:10.1145/3341105.3374093.

106. Zimmermann, T.C.; Masuhr, C.; Stark, R. MBSE-Entwicklungsfähigkeit für Digitale Zwillinge. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 2020, 115, 51–54. doi:10.3139/104.112312.

107. Mei, Z.; Chen, L.; Ding, J. Multi-domain integrated modeling and verification for the ball screw feed system in machine tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2020, 234, 1707–1719. doi:10.1177/0954405420933704.