Supporting information of
Adsorption and Visible-Light Photodegradation of
Organic Dyes with TiO$_2$/Conjugated Microporous
Polymer Composites

Jisi Li,a Xianhui Wen,a Qiujing Zhanga and Shijie Ren*a

a College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

E-mail: rensj@scu.edu.cn

Contents:

1. Characterizations

2. Figure S1. FT-IR spectra of monomer, TiO$_2$, TrCMP and the composites

3. Figure S2. TGA traces of TiO$_2$, TrCMP and the composites.

4. Figure S3. SEM images of TiO$_2$, TrCMP and the composites.

5. Figure S4. HRTEM images of 10% TrCMP-TiO$_2$.

6. Figure S5. UV-vis absorption spectra and photoluminescent spectra of TiO$_2$, TrCMP and the composites.

7. Figure S6. UV-vis spectra of MB and the eluent of 10% TrCMP-TiO$_2$ after irradiation for 60 minutes.

7. Table S1. Removal ratios of the cycling runs for the photodegradation of MB with 10% TrCMP-TiO$_2$.
Characterizations

1H-NMR experiments were obtained on a Bruker 400MHz spectrometer. Element analysis was carried out by an Elementer Vario EL automatic element analyzer. FT-IR spectra were collected as KBr disks using a Nicolet 560 FT-IR spectrometer. Thermogravimetric analysis (TGA) was carried out using a Thermo Nicolet is10 thermal analysis instrument over the temperature ranging from 30 to 800 °C under a nitrogen atmosphere with a heating rate of 20 °C/min. Scanning electron microscopy (SEM) was applied using a Nova NanoSEM450 with an acceleration voltage of 5 kV using the dispersions of ethanol (1 mg ml$^{-1}$) on the silicon wafer. High Resolution transmission electron microscopies (HRTEM) were performed on a Titan G2 60-300, FEI microscope.

Gas sorption analysis:

Surface areas and pore size distributions were obtained by nitrogen adsorption and desorption isotherms at 77 K using a BELSORB Max (BEL Japan Inc.) volumetric sorption analyzer. The samples were degassed at 120 °C for 15 h under vacuum (10$^{-5}$ bar) before analysis. The surface areas were calculated in the relative pressure (P/P_0) range from 0.05-0.35 using Brunauer-Emmet-Teller (BET) method. Pore size distributions and pore volumes were derived from the nitrogen adsorption branches of the isotherms using the non-local density functional theory (NL-DFT).

Optical performance test:

The solid UV-visible absorption spectrum was measured by UV2100 UV-vis spectrophotometer; the liquid UV-visible absorption spectrum was measured by UV3600 UV-vis spectrophotometer of Shimadzu Corporation of Japan. The solid fluorescence spectrum was measured by a Hitachi F-7000 fluorescence spectrophotometer.

Photocatalytic performances:

The adsorption amount of MB with different photocatalysts is calculated as:
\[Q = \frac{(C_0 - C_{eq}) \times V \times M}{m} \]

Where, \(Q \) is the adsorption amount, \(C_0 \) is the initial concentration of MB, \((2.7 \times 10^{-5} \text{ mol L}^{-1})\), \(C_{eq} \) is the concentration of MB when it comes to adsorption equilibrium, \(V \) is the volume of MB aqueous solution (35 mL), \(M \) is molecular weight of MB molecular (319.86 g mol\(^{-1}\)), \(m \) is mass of photocatalyst (26.25 mg).

The photodegradation rate of MB with different photocatalysts is calculated as:

\[\ln \left(\frac{C}{C_0} \right) = K \times t \]

Where, \(C \) is concentration of MB be taken at interval time, \(C_0 \) is the concentration of MB at “0 min” just before the irradiation of light, \(t \) is the irradiation time, the slope \(K \) is the photodegradation rate.

The removal ratio of MB is calculated as:

\[D = \frac{A_0 - A_t}{A_0} \times 100\% \]

Where, \(D \) is the removal ratio, \(A_0 \) is the absorbance intensity of the MB before photodegradation test at 664 nm, \(A_t \) is the absorbance intensity of MB after “t” min after the beginning of photodegradation test at 664 nm.
Figure S1. FT-IR spectra of (a) Tr-M and TrCMP, and (b) TiO$_2$ and TrCMP-TiO$_2$ composites with different contents of TrCMP.
Figure S2. Thermogravimetric analysis traces of the materials under a nitrogen atmosphere with a heating rate of 20 °C/min.
Figure S3. SEM images of (a) TiO$_2$, (b) TrCMP, (c) 3% TrCMP-TiO$_2$, (d) 5% TrCMP-TiO$_2$, (e) 10% TrCMP-TiO$_2$ and (f) 20% TrCMP-TiO$_2$.
Figure S4. HRTEM images of 10% TrCMP-TiO$_2$.
Figure S5. (a) UV-vis absorption spectra of the materials measured in solid state powders; and (b) photoluminescent spectra of the materials measured in solid state powders ($\lambda_{ex} = 300$ nm).
Figure S6. UV-vis spectra of the MB solution and the eluent of 10% TrCMP-TiO$_2$ dispersion after irradiation for 60 minutes under visible light.
Table S1. Removal ratios of the cycling runs for the photodegradation of MB with 10% TrCMP-TiO$_2$.

Test	Adsorption amount (Q) (mg g$^{-1}$)	Photodegradation Rate (min$^{-1}$)	Removal Ratio (D) (%)
First Test	6.99	-0.0359	95.77
Cycle Test 1	5.07	-0.0314	92.15
Cycle Test 2	6.00	-0.0284	91.43
Cycle Test 3	5.34	-0.0317	91.91