Same-day discharge after early mobilisation and increased frequency of physiotherapy following hip and knee arthroplasty

Introduction

Osteoarthritis (OA) is a chronic degenerative joint disease that can affect any joint (Contartese et al. 2020). Osteoarthritis affects women more than men and can decrease function and independence, thus reducing quality of life (Hawker 2019). Individuals living with symptomatic hip and/or knee OA number an estimated 242 million (3.8% of the world population) people worldwide (Carlesso et al. 2016). Musculoskeletal and orthopaedic diseases such as OA are on the rise in South Africa (SA) because of lifestyle changes, obesity, increased life expectancy, trauma and the high incidence of human immunodeficiency virus (HIV) (Plenge et al. 2018).

Hip and knee arthroplasty have been effective as interventions for end-stage OA since the 1970s, treating pain, stiffness, decreased function and quality of life where conservative treatment methods failed (Gademann et al. 2016; Sculco & Pagnano 2015). In the United States of America (USA), the demand for joint arthroplasties is predicted to increase by 174% for hips and 673% for knees by 2030 from the demand in 2007 (Kurtz et al. 2007). According to Rupp et al. (2016), it is predicted that joint arthroplasties will increase by 23% for hips and 45% for knees in Germany between 2016 and 2040.

The increased demand for hip and knee arthroplasties creates an enormous financial strain on the South African health care system. Elective surgeries being postponed during the
coronavirus disease 2019 (COVID-19) pandemic to prioritise hospital resources and staff for the care of COVID-19 patients led to extended waiting times, further delaying elective hip and knee arthroplasties (Anderson et al. 2021; The Lancet Rheumatology 2021).

Multidisciplinary advanced rehabilitation pathways (ARPs) have been introduced globally to deliver good-quality health care in a cost-effective, safe manner while improving patient satisfaction and outcomes in comparison to more conservative protocols (Immelman, De Vos & Venter 2018; Plenge et al. 2018; Riemer et al. 2017; Robertson et al. 2015; Tayrose et al. 2013). There are several ways to decrease the cost of arthroplasties, one being pre-operative education and early mobilisation that decreases hospital length of stay (LOS) and post-operative complications (Riemer et al. 2017). These ARP pathways focus on standardised care, including patient education, multi-modal opioid-sparing pain control, thromboprophylaxis, restricting blood loss during surgery and early mobilisation (Lazic et al. 2018; Riemer et al. 2017).

Prolonged hospital stay is associated with increased mortality and morbidity following joint arthroplasty (Lazic et al. 2018; Maempel et al. 2016; McCulloch et al. 2017). By safely implementing ARP and gradually decreasing hospital LOS, these pathways have led to same-day discharge (SDD) joint arthroplasties in Europe and the USA (Yates et al. 2018). Same-day discharge means patients are discharged on the same calendar day as the surgery (McCulloch et al. 2017). Jean-Yves and Gisonni (2022) suggest that reluctance to use ambulatory or SDD is based on concerns of increased complication rates. A number of studies have found that there is no significant increase in complication rate with SDD when compared to longer LOS (Bovonratvet et al. 2020; Jean-Yves & Gisonni 2022; Kelmer, Turcotte & King 2021). Common complications identified in these studies are stiffness, delayed wound healing, infections, dislocation and fractures, thromboembolic complications, swelling and pain. Continuous improvement of pre-operative education on home medication and oedema management will further decrease the risk of complications (Kelmer et al. 2021).

As part of the multidisciplinary team, physiotherapists play an essential part of the ARP with patient education and early mobilisation. Pre-operative education decreases patient expectations, improves patient knowledge, improves knee flexion range of movement and improves post-operative performance specifically exercise and functional activities (Jordan et al. 2014). The combination of education and early mobilisation decreases hospital LOS and the cost of knee arthroplasty (Jordan et al. 2014). Early mobilisation post-operative day zero (POD0) decreases hospital LOS significantly (Lazic et al. 2018; Masaracchio et al. 2017; McCulloch et al. 2017; Riemer et al. 2017; Tayrose et al. 2013; Yakkanti et al. 2019) and also decreases post-operative complications like deep venous thrombosis, infections related to the prosthesis and postural hypotension (Chen et al. 2012; Dossett & Chesser 2017). In a systematic review and meta-analysis, Masaracchia et al. (2017) found that early initiation of rehabilitation 1–4 h post-operative (Raphael, Jaeger & Van Vlymen 2011; Tayrose et al. 2013) on the day of surgery decreases the LOS without increasing adverse events or readmission rate in patients following joint arthroplasty surgery.

Several factors have been identified in studies that can make early mobilisation easier. Opioid-sparing pain control decreases dizziness, nausea, orthostatic hypotension and sleepiness, and the absence of surgical drains and urine catheters make mobilisation easier and improve patient independence (Lazic et al. 2018; Sharma, Palekar & Tanna 2016). Using a tourniquet sparingly during surgery and at appropriate pressures is associated with decreased post-operative pain, and the combination of general anaesthesia and local infiltration anaesthesia has fewer post-operative complications and allows for early mobilisation because the motor function is preserved (Marques et al. 2014). Quick patient transfers from the recovery room to the ward and the availability of physiotherapists even for patients returning from theatre late in the day, allows for early mobilisation of patients and therefore may decrease LOS (Guerra, Singh & Taylor 2015).

Despite arthroplasty being a cost-effective way of treating OA and the progress made in decreasing hospital LOS, studies have indicated a 10% for total hip arthroplasty (THA) and 20% for total knee arthroplasty (TKA) patient dissatisfaction with outcomes (Gill & McBurney 2013; Gunaratne et al. 2017). Follow-up periods for studies include 3 months up to 3.5 years, with 1-year post-operative being the most common follow-up period following arthroplasty surgery (Gunaratne et al. 2017). Factors such as pre-operative patient expectations and post-operative pain, stiffness, function and complications influence patient satisfaction (Gill & McBurney 2013; Walker et al. 2018). Patients expect a decrease in pain and stiffness and improvement in function and quality of life following an arthroplasty (Gunaratne et al. 2017; Thambiah et al. 2015).

Since implementing an ARP with early mobilisation POD0 at a private hospital in Rustenburg, SA, the average LOS decreased from 3.5 days to 23 h. Physiotherapy as part of the multidisciplinary ARP plays a vital role, and with a lack of studies in this area on best evidence practice for arthroplasty management in SA, the aim of our study was to investigate the effect of early mobilisation and increased frequency of physiotherapy on POD0 on patient outcomes following elective hip and knee arthroplasty in a private hospital in SA.

Method

Our prospective cohort study included a purposive convenient, selected sample of patients (n = 60). With the margin for error set on 0.05 and power of 95%, we calculated that n = 53 patients were required for our study to compare
the two cohorts. The ARP guided the management following hip and knee arthroplasty surgery. The prospective cohort was compared to a retrospective control group \((n = 60)\), managed with a more conservative protocol. The sample size was determined by the total number of patients who underwent either a total hip or knee arthroplasty in the retrospective control group year at the private hospital performed by the orthopaedic surgeon who implemented the ARP and consented to our study.

The setting and multidisciplinary team for both the prospective treatment group and the retrospective control group were the same. The multidisciplinary team for all surgeries consisted of an orthopaedic surgeon, anaesthetist, physiotherapist and nursing staff. The protocols stayed consistent throughout our study.

The physiotherapy protocol for the retrospective control group included early mobilisation with exercises 3 hours post-intervention on POD0. The prospective cohort physiotherapy protocol included early mobilisation with exercises 1–3 hours post-operative on POD0 and a second mobilisation with an exercise session 1 to 2 hours later. The physiotherapy protocol included a pre-intervention physiotherapy education session, assessments of outcomes, the post-intervention session/s, assessment, and criteria before discharge. For the detailed protocol the proposal article may be read (Prinsloo & Keller 2021).

All consecutive elective hip and knee arthroplasty patients who were cleared pre-operatively by the anaesthetist or general physician (depending on co-morbidities) as per the ARP protocol were included. Participants received information regarding the purpose of our study, and informed consent was obtained. Patients excluded were trauma-related arthroplasty, bilateral arthroplasty, revision surgery and cognitive deficiencies. Patients with conditions affecting their balance or poor balance observed during the education sessions by either the orthopaedic surgeon or physiotherapist were also excluded. Demographically the prospective and retrospective groups were matched according to age, gender, body mass index (BMI) and the type of arthroplasty.

Patients in both groups (retrospective and prospective) received the same multi-disciplinary ARP management and protocol at the Medicare Private Hospital in Rustenburg, the difference being the time before the first mobilisation and the frequency of physiotherapy treatment on POD0. The previous more conservative protocol as per the retrospective group included a pre-operative education session in the hospital and patients mobilising once on POD0, 3 hours post-operative. With the new protocol, patients received an education session the week before surgery, mobilising 1 to 3 hours post-operative (Raphael et al. 2011; Tayrose et al. 2013) and then again for a second time 1 to 2 hours after the first session. Standardised verbal instructions and procedures were used in a standardised environment when collecting data to ensure and improve reliability with the outcome measures listed below.

Outcome measures

Length of stay is often used as an outcome measure following hip and knee arthroplasty and measured in mean number of days. Length of stay was measured in hours to be more accurate and to detect subtle changes in LOS more effectively (McCulloch et al. 2017). Length of stay was calculated from the time the patient went to theatre until discharge.

The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) is a frequently used, valid and reliable outcome measure for patients following hip and knee arthroplasty surgery measuring the total score and subscores for pain, function and stiffness (Collins et al. 2011; Giesinger et al. 2015). The score is calculated according to an ordinal scale of 0–4. However, recent studies (Walker et al. 2018) have used a reverse scale from 4 to 0 (none, mild, moderate, severe and extreme), with a total score of 0 being the best possible outcome and 100 being the worst possible outcome. We used the reversed scale to score.

Patient satisfaction was measured as suggested by the International Society of Arthroplasty Registries Patient-reported Outcome Measures (PROMs) Working Group, using a one-item satisfaction outcome (Rolfson et al. 2016). A single question, ‘How satisfied are you with your hip/knee arthroplasty?’ was posed to patients on a five-point Likert scale, with 1 extremely dissatisfied, 2 dissatisfied, 3 neutral, 4 satisfied and 5 extremely satisfied (Thambiah et al. 2015). Participants were then grouped as either satisfied (4–5) or dissatisfied (1–3).

Patient safety was measured by documenting any adverse events or readmissions within the first 30 days following surgery. Lastly the direct cost of hospital LOS was compared between the prospective and retrospective cohorts. Hospital (including theatre), orthopaedic surgeon, anaesthetist, physiotherapy and assistive device costs were considered and included in the simple cost comparison.

Statistical analysis

Data analysis was performed using the IBM SPSS 27 (International Business Machine Statistical Package for the Social Sciences) version 27 and \(p < 0.05\) was considered statistically significant. Descriptive statistics, namely frequencies and percentages for categorical data and means and standard deviations (SD), or medians and percentiles for numerical data, were calculated. Quantitative outcome variables were tested for normality using the Shapiro-Wilk’s test to assess whether parametric tests were appropriate or not. If data were found to be normally distributed, parametric tests were used, and if not normal, then non-parametric tests were used. Safety data were collected as binary data. Demographics were compared between the treatment groups using \(t\)-tests for quantitative demographic variables such as age, BMI and chi-square tests in the case of categorical demographics.
Length of stay was presented using median and inter-quartile ranges and for comparison between the two treatments groups using a non-parametric Mann-Whitney test because this variable was not normally distributed. Western Ontario and McMaster Universities Osteoarthritis Index scores were normally distributed and thus summarised using mean and SD and a comparison between the two treatment groups using t-tests. Repeated measures Analysis of Variance (ANOVA) tests of the effect of time were used in the treatment group to assess the significance of the change in scores over the three time points using the Wilk’s lambda statistic. This is the appropriate test for comparison of three paired means in normally distributed data. The occurrence of adverse events was compared between the two treatment groups using Fisher’s exact test. Cost of LOS data was summarised using median and inter-quartile ranges and the two treatment groups compared using non-parametric Mann-Whitney tests.

Ethical considerations

Our trial is registered with the Pan African Trial Registry (trial number: PACTR202103637993156). Ethical clearance was obtained from the University of the Witwatersrand Human Research Ethics (Medical) Committee (clearance number: M200576), and consent from the orthopaedic surgeon and the manager at the private hospital in Rustenburg where data collection took place. Permission for using data from the hospital records for data collection in the main prospective and retrospective cohort group was included. Information regarding the research and participation was provided to prospective participants and they all signed an informed consent form.

Results

Demographics

There was no difference in the mean age ($p = 0.217$) or BMI ($p = 0.903$) between the groups as summarised in Table 1.

The demographics of the study sample are shown per group according to gender and arthroplasty type (Table 2). There was no difference between the retrospective and prospective groups.

There was a statistically significant difference in LOS between the two groups ($p < 0.001$). The median hours were much higher in the retrospective group (median = 43.15) than in the prospective group (median = 7.65), as shown in Table 3.

Data were normally distributed for the WOMAC subscale and there were no differences pre-operatively between the two groups, but at 6 weeks, each of the WOMAC scales and the total scores were statistically significantly different between the two groups (Table 4) in favour of the prospective group.

Patient satisfaction up to three months in the treatment group

Pain, stiffness, function and total WOMAC scores increased statistically significantly over time in the treatment group ($p < 0.001$). Figure 1 shows the means of the total score over time at 95% confidence intervals. The highest change was between the pre-operative and 6-week periods.

A single question, ‘How satisfied are you with your hip/knee arthroplasty?’, was posed to patients 3 months post-operative on a five-point Likert scale, with 1 extremely dissatisfied, 2 dissatisfied, 3 neutral, 4 satisfied and 5 extremely satisfied (Rolfsen et al. 2016; Thambiah et al. 2015). Participants’ responses were then grouped as either satisfied (4–5) or dissatisfied (1–3); 98% of participants stated that they were satisfied, and only 2% (one patient) reported dissatisfaction, with one patient stating no relief in pain.

The results regarding the adverse events indicated that there were six readmissions. In the control group, 6.7% ($n = 4$) participants were readmitted, and in the treatment group 3.3% ($n = 2$) participants were readmitted. The difference was small and not statistically significant ($p = 0.679 −$ Fisher’s exact two-sided test), as shown in Table 5. The estimated difference between the groups in terms of readmission was 3.4% (95% CI: 4.3% − 11.18%).

There was a statistically significant difference in the hospital costs ($p < 0.001$) between the groups, with the retrospective

TABLE 1: Patient demographics as per age and body mass index ($n = 120$).

Variables	Group	p
Retrospective control	Prospective treatment	
Age	0.217	
Mean	62.00	59.00
Standard deviation	10.00	11.00
BMI	0.903	
Mean	31.89	31.74
Standard deviation	6.39	6.84

BMI, body mass index.
† Independent samples t-test were used to get the p-value.

TABLE 2: Patient demographics as per gender and arthroplasty type ($n = 120$).

Variables	Group	p		
Retrospective control	Prospective treatment			
Gender	0.361			
Male	34	56.7	29	48.3
Female	26	43.3	31	51.7
Total	60	100.0	60	100.0
Type	0.674			
TKA	30	50.0	33	55.0
PNA	15	25.0	11	18.3
THA	15	25.0	16	26.7
Total	60	100.0	60	100.0

TKA, Total knee arthroplasty; PNA, partial knee arthroplasty; THA, total hip arthroplasty.
† Chi square test was used to get the p-value.

TABLE 3: Comparison of hospital length of stay in hours between groups (medians and inter-quartile ranges) ($n = 120$).

Variables	Group	p
LOS hours	0.001	
Median	43.150	7.650
Percentile 25	27.133	6.292
Percentile 75	49.433	21.249

LOS, Length of stay.
† Mann-Whitney test was used to get the p-value.
group having higher hospital costs than the prospective group. The findings were similar for physiotherapy costs ($p < 0.001$) and total costs ($p < 0.001$). However, prosthesis costs were significantly higher in the prospective group ($p = 0.004$) (Table 6).

The average number of physiotherapy treatment sessions in the retrospective group was five, and two in the prospective group, with a statistically significant difference between the groups ($p < 0.001$).

Discussion

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

The primary outcome measure LOS was measured in hours as suggested by McCulloch et al. (2017) to be more accurate in documentation, detect more minor changes and decrease outlier distortion. With LOS below 24 hours, day-to-day variation in the length of stay is minor.

Table 4: Comparison of patient reported outcome Western Ontario and McMaster Universities Osteoarthritis index between groups ($n = 120$).

Variable	Group	n	Mean	Standard deviation	Standard error mean	95% Confidence interval (CI)	p^f
Pre-operative pain	Retrospective control	60	8.18	3.661	0.473	-1.034 to 1.700	0.630
	Prospective treatment	60	7.85	3.896	0.503	-2.811 to 0.299	0.259
Pre-operative stiffness	Retrospective control	60	2.83	1.758	0.227	-2.811 to 5.611	0.512
	Prospective treatment	60	3.23	2.094	0.270	-2.811 to 5.611	0.512
Pre-operative function	Retrospective control	60	27.00	11.102	1.433	-4.077 to 7.277	0.578
	Prospective treatment	60	25.60	12.166	1.571	-4.077 to 7.277	0.578
Total WOMAC score	Retrospective control	60	39.67	15.454	1.995	-3.413 to -1.554	< 0.001
pre-operative	Prospective treatment	60	37.93	17.292	2.323	-3.413 to -1.554	< 0.001
6/52 pain	Retrospective control	60	13.72	2.464	0.318	-1.033 to -0.167	0.007
	Prospective treatment	60	16.20	2.673	0.345	-1.033 to -0.167	0.007
6/52 stiffness	Retrospective control	60	5.22	1.180	0.152	-1.033 to -0.167	0.007
	Prospective treatment	60	5.82	1.214	0.157	-1.033 to -0.167	0.007
6/52 function	Retrospective control	60	49.68	5.655	0.730	-7.803 to -2.564	< 0.001
	Prospective treatment	60	54.87	8.544	1.103	-7.803 to -2.564	< 0.001
Total WOMAC score at 6	Retrospective control	60	71.58	8.280	1.069	-12.622 to -5.043	< 0.001
weeks	Prospective treatment	60	80.13	12.022	1.552	-12.622 to -5.043	< 0.001

WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

f Fisher’s exact two-sided test.

Table 5: Comparison of patient safety 30-day readmission rate between the two groups.

Variables	Group	n	%	n	%	n	%
Readmission	Retrospective control	60	56.0	34.0	96.7	95.0	
	Prospective treatment	60	60.0	40.0	96.7	95.0	
Total	60.0	100.0	60.0	100.0	120.0	100.0	

Fisher’s exact two-sided test.
TABLE 6: Simple in-hospital cost comparison between groups (median and inter-quartile range)

Variables	Group	p†	
Hospital cost	Retrospective control	Prospective treatment	< 0.001
Median	R 53 703	R 43 340	-
Percentile 25	R 48 355	R 37 072	-
Percentile 75	R 58 937	R 48 188	-
Orthopaedic surgeon	0.415		
Median	R 24 910	R 24 205	-
Percentile 25	R 20 000	R 22 666	-
Percentile 75	R 33 000	R 28 250	-
Anaesthetist	0.811		
Median	R 8500	R 8500	-
Percentile 25	R 6292	R 6244	-
Percentile 75	R 10 467	R 8800	-
Physiotherapy treatment	< 0.001		
Median	R 1923	R 1069	-
Percentile 25	R 1600	R 832	-
Percentile 75	R 2327	R 1248	-
Prosthesis	0.004		
Median	R 36 700	R 38 350	-
Percentile 25	R 35 435	R 38 000	-
Percentile 75	R 42 171	R 39 603	-
Assistive devices	0.416		
Median	R 881	R 673	-
Percentile 25	R 521	R 485	-
Percentile 75	R 1318	R 1314	-
Total cost	< 0.001		
Median	R 128 416	R 117 062	-
Percentile 25	R 124 367	R 111 636	-
Percentile 75	R 137 157	R 125 862	-

†, Mann-Whitney test was used to get the p-value.

In our prospective group, patients received a second session 1 to 2 hours after the first session and gained confidence in their own functional ability and the belief that they would cope at home. A large percentage of patients could progress to climbing stairs and walk independently out of the hospital after discharge with their mobility aid. Patients who only mobilised the following morning for the second time showed readiness for discharge only the day following the surgery. From this, it seems that two physiotherapy sessions in the hospital on the day of the surgery led to patients being ready for discharge and achieving discharge criteria sooner compared to only one physiotherapy session. The number of physiotherapy sessions needed to make patients prepared for discharge is currently a relevant topic. Certain funders will allow patients three in-hospital sessions but restricting providers to only one session per day. So, if the average number of sessions needed for patients to be discharge ready is two sessions, patients would need to wait till the next day to receive the second session, thereby increasing hospital cost versus the cost of the second physiotherapy session.

Jenkins et al. (2019) encouraged patients to avoid knee flexion following knee arthroplasty because the authors thought it would increase swelling and pain, and delay mobilisation and discharge. By mobilising early on POD0, the LOS decreased and SDD was possible in 39% of patients, and 38% of patients were discharged on POD1. Our patients started knee flexion exercises immediately after their TKA up to 90°, with no delay in mobilisation in 61.66% (n = 37) patients with SDD and 33.33% (n = 20) discharged POD1. In contrast to Jenkins et al. (2019), we did not find early knee flexion to delay mobilisation or to delay discharge.

Lenssen et al. (2006) found that increasing the frequency of treatment on POD0 from one to two sessions did not make a significant difference in LOS, pain, function or knee ROM. This might be because their study protocol was not part of a multi-disciplinary ARP and no pre-operative education sessions were performed. In contrast to this, we experienced that those patients who received only one session on POD0 in the retrospective control group tended not to mobilise again until they saw the physiotherapist the next morning. Firstly, patients seemed to not have the confidence to mobilise alone and, secondly, nursing staff were reluctant to assist patients to mobilise to the toilet during the night and would instead use bedpans owing to fearing that patients may fall.

Rules like these by funders should be reviewed not to hinder early discharge and SDD. The role of physiotherapists in SDD should be recognised by funders and providers should be compensated accordingly. In our prospective treatment group, 66% of patients achieved SDD through early mobilisation with increased frequency of physiotherapy. It is therefore recommended that if teams wish to progress to next day and eventually SDD, there should be a physiotherapist on call to mobilise patients out of bed on POD0 even when they return late from theatre. We also recommend that patients for hip and knee arthroplasty are prepared for discharge criteria sooner compared to only one physiotherapy session. The number of physiotherapy sessions needed to make patients prepared for discharge is currently a relevant topic. Certain funders will allow patients three in-hospital sessions but restricting providers to only one session per day. So, if the average number of sessions needed for patients to be discharge ready is two sessions, patients would need to wait till the next day to receive the second session, thereby increasing hospital cost versus the cost of the second physiotherapy session.

Three months post-operative when posed a single question, ‘how satisfied are you with your hip/knee arthroplasty’? 98% (n = 59) of participants indicated on a five-point Likert scale that they were satisfied, and only one patient (2%) was dissatisfied, with one patient indicating no relief in pain. This is similar to the 98% of patients being extremely
satisfied in a study by Riemer et al. (2017) 3 months post-operatively. Only one patient felt stressed and hurried by early discharge associated with the rapid recovery pathway. Walker et al. (2018) in their study found that 89.7% of patients were satisfied and only 10.3% dissatisfied following TKA out of 2589 patients, indicating that the WOMAC post-operative score can be reliably used by the health care professional to classify patients' satisfaction following arthroplasty as excellent, good, fair and poor at 1-year post-operatively as it is a measure of pain, function and stiffness (Collins et al. 2011; Giesinger et al. 2015).

We used the reversed scoring scale as suggested by Walker et al. (2021). No difference was found in the pre-operative WOMAC scores between the two groups. At 6 weeks post-operative, however, there was a significant difference between the two groups in favour of the prospective treatment group (p < 0.001), indicating that the prospective group had favourable short-term outcomes in terms of decreased pain and stiffness and improved function. This could be because of patients becoming independent functionally quicker with earlier and increased frequency of physiotherapy treatment POD0 and gaining confidence that they are able to cope on their own at home. Because there were no WOMAC scores available 3 months post-operatively for the retrospective group, this comparison was not possible. The mean total WOMAC score for the prospective group pre-operatively was 37.93 and at 3 months post-operatively it was 87.34. Riemer et al. (2017) had a mean total WOMAC score pre-operatively of 35 and 85 at 3 months post-operative after implementing a rapid recovery protocol and early mobilisation on POD0 6 h after surgery. The frequency of treatment was also increased with mobilisation done two to three times per day. For pain, stiffness and function scores, the prospective treatment group showed a statistically significant increase with less pain and stiffness, and higher function, as compared to the retrospective group. The greatest increase was seen between the pre-operative and 6 weeks post-operative participants’ scores (p < 0.001). Thambiah et al. (2015) also found that patients with increased WOMAC total and function scores were more satisfied. However, post-operative pain and stiffness were not statistically significant for patient satisfaction in their study.

To evaluate the safety of implementing an ARP with early mobilisation we compared the 30-day readmission rate or rate of adverse events between the two groups. In the retrospective group, 6.7% of patients were readmitted compared to 3.3% in the prospective group. Thus, the difference was small and statistically insignificant (p = 0.679). Several studies found that earlier mobilisation with increased frequency of physiotherapy on POD0 as part of an ARP can be implemented safely without an increase in adverse events (Krause et al. 2018; Riemer et al. 2017; Thompson et al. 2021; Yakkanti et al. 2019). The reasons for readmission in our study were because of a family member of a patient with a total hip replacement being concerned about excessive swelling around the thigh area. The patient was admitted by the family’s general practitioner without consulting the orthopaedic surgeon. This highlights the importance of educating patients and family members and/or caregivers on expectations following arthroplasty. Another patient was admitted with COVID-19, and this could not be linked to the patient’s hospital stay during the arthroplasty.

In a simple cost comparison of direct in-hospital cost between the two groups, we found a statistical difference, with higher costs incurred in the retrospective control group (p < 0.001). The total cost and cost of physiotherapy showed a statistically significant difference between the groups, with the retrospective group having higher costs (p < 0.001). The cost of physiotherapy decreased by 44.4% in the prospective group, and the reason for this is the decreased LOS and the average number of physiotherapy sessions decreasing from five sessions in the retrospective group to two sessions in the prospective group. There was no significant difference in the orthopaedic surgeon, anaesthetist or assistive device cost per arthroplasty. Prosthesis costs, however, were significantly higher in the prospective group (p = 0.004). This might also be because of more total knee arthroplasties than partial knee arthroplasties in the prospective group. Several studies found early mobilisation associated with decreased LOS and total hospital cost. Schultz, Segovia and Castillo (2019) found that early mobilisation decreased LOS from 3.4 days to 1.6 days (p < 0.001), decreasing hospital cost by 24.7% while also decreasing post-operative complications. Similarly, Pelt et al. (2017) found that by changing physiotherapy shifts having a physiotherapist on call after-hours for patients returning late from theatre led to more patients mobilising early on POD0 and a median cost saving of 28% was achieved in patients following total joint arthroplasty. There is a lack of studies to determine the cost saving in physiotherapy fees following early mobilisation as part of an ARP. Thompson et al. (2021) found in a systematic review of 13 manuscripts and 3370 patients of day-case total knee arthroplasties that both the patient and health care system benefit from decreased LOS with decreased cost, improved patient outcome in terms of function, decreased post-operative complications and 30-day readmission rate.

A limitation of our study is the retrospective nature of the control group. Because of the nature of the ARP, it was not possible to have a prospective control group because the orthopaedic surgeon no longer makes use of the old protocol. Another limitation was that WOMAC scores were not available for the retrospective control group for comparisons to be made at 3 months post-operatively. A suggestion for a future study is to compare outcomes at 6 weeks, 3 months and 1-year post-operative. A strength of our study is that, to our knowledge, it is the first study following the implementation of a detailed and documented physiotherapy protocol for hip and knee arthroplasty in an ARP. It is also the first study on early mobilisation and frequency of physiotherapy.
in SA, with results leading to SDD. A further strength of this study is that it included a cost comparison, augmenting the lack of studies in this field.

Conclusion
South Africa is in the position to use the latest protocols to ensure individuals waiting for hip and knee arthroplasty surgeries that have been delayed because of COVID-19 receive earlier, and more cost-effective management. Reaching SDD requires a multidisciplinary approach. We demonstrated that SDD is possible in SA in patients following hip and knee arthroplasty by implementing a multidisciplinary ARP. Physiotherapy with patient education, early mobilisation and increased frequency of treatment on POD0 and as part of this ARP led to improved patient-reported outcomes and satisfaction in a safe and cost-effective manner.

Acknowledgements
The authors would like to thank the Medicare private hospital, orthopaedic specialist Dr J.W.T. Potgieter, all members of the multidisciplinary team and the study participants for their willingness to be part of this novel approach to hip and knee arthroplasty and Mrs T. Esterhuizen for support with statistics.

Competing interests
The authors declare that they have no financial or personal relationships that may have inappropriately influenced them in writing this article.

Authors’ contributions
R.P. conceptualised the idea, wrote a physiotherapy protocol, collected the data and proposed the topic of research. M.M.K. assisted in the refinement of the topic and proposal. Both authors wrote the first draft of the article and read, elaborated and refined the article.

Funding information
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials. Any further results will be made accessible on the author’s ORCID accounts.

Disclaimer
The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of any affiliated agency of the authors.

References
Anderson, A.M., Comer, C., Smith, T.O., Drew, B.T. & Pandit, H., 2021, ‘Consensus on pre-operative total knee replacement education and prehabilitation recommendations: A UK-based modified Delphi study’, BMC Musculoskeletal Disorders 22, 352. https://doi.org/10.1186/s12891-021-04160

Auyong, D.B., Allen, C.J., Pahang J.A., Clabeaux, J.J., MacDonald, K.M. & Hanson, N.A., 2015, ‘Reduced length of hospitalisation in primary total knee arthroplasty patients using an updated enhanced recovery after orthopedic surgery (ERAS) pathway’, Journal of Arthroplasty 30(10), 1705–1709. https://doi.org/10.1016/j.arth.2015.05.007

Bovonratwet, P., Shen, T.S., Ast, M.P., Mayman, D.J., Haas, S.B. & Su, E.P., 2020, ‘Reasons and risk factors for 30-day readmissions after outpatient total knee arthroplasty: A review of 3015 cases’, The Journal of Arthroplasty 35(9), 2451–2457. https://doi.org/10.1016/j.arth.2020.04.073

Carlesso, L.C., Hawker, G.A., Waugh, E.J. & Davis, A.M., 2016, ‘Disease-specific pain and function predict pain impact in hip and knee osteoarthritics’, Clinical Rheumatology 35, 2999–3005. https://doi.org/10.1007/s10067-016-3461-z

Chen, H.-W., Chen, H.-M., Wang, Y.-C., Chen, P.-Y. & Chen, C.-W., 2012, ‘Association between rehabilitation timing and major complications of total knee arthroplasty’, Journal of Rehabilitation Medicine 44(7), 588–592. https://doi.org/10.2340/16501977-0971

Collins, N.J., Misra, D., Felson, D.T., Crossley, K.M. & Roos, E.W., 2011, ‘Measures of knee function’, Arthritis Care & Research 63(11), 5208–5228. https://doi.org/10.1002/acr.20632

Contartese, D., Tchon, M., DeMattel, M. & Finn, M., 2020, ‘Sex-specific determinants in osteoarthritis: A Systematic review of preclinical studies’, International Journal of Molecular Sciences 21(10), 3696. https://doi.org/10.3390/ijms21103696

Dossett, H.G. & Chesser, M.S., 2017, ‘Improving care and reducing length of stay in patients undergoing total knee replacement’, Federal Practitioner 34(10), 38–40.

Gademan, M.G.J., Hofstede, S.N., Vliet Vlieland, T.P.M., Neelen, R.G.H.M. & Marang-van de Mheen, P.J., 2016, ‘Indication criteria for total hip or knee arthroplasty in osteoarthritis: A state-of-the-science overview’, BMC Musculoskeletal Disorders 17, 463. https://doi.org/10.1186/s12891-016-1325-z

Giesinger, J.M., Hamilton, D.H., Jost, B., Behrend, H. & Giesinger, K., 2015, ‘WOMAC, EQ-5D and knee society scores for treatment success after total knee arthroplasty’, The Journal of Arthroplasty 30(12), 2154–2158. https://doi.org/10.1016/j.arth.2015.06.012

Gill, S.D. & McBurney, H., 2013, ‘Does exercise reduce pain and improve physical function before hip or knee replacement surgery? A systematic review and meta-analysis of randomized controlled trials’, Archives of Physical Medicine and Rehabilitation 94(1), 164–176. https://doi.org/10.1016/j.apmr.2012.08.211

Guerra, M.L., Singh, P.J. & Taylor, N.F., 2015, ‘Early mobilization of patients who have had a hip or knee joint replacement reduces length of stay in hospital: A systematic review’, Clinical Rehabilitation 29(9), 844–854. https://doi.org/10.1177/0269215514558841

Gunaratne, R., Pratt, D.N., Banda, J., Fick, D.P., Khan, R.J.K. & Robertson, B.W., 2017, ‘Patient dissatisfaction following knee arthroplasty: A systematic review of the literature’, The Journal of Arthroplasty 32(12), 3854–3860. https://doi.org/10.1016/j.arth.2017.07.021

Hawker, G.A., 2019, ‘Osteoarthritis is a serious disease’, Clinical and Experimental Rheumatology 37 Suppl 120(5), 53–56.

Immelman, R.J., De Vos, J.N. & Venter, J.H., 2018, ‘Comparing outcomes between enhanced recovery after surgery and traditional protocols in total hip arthroplasty: A retrospective cohort study’, South African Orthopaedic Journal 17(1), 11–16. https://doi.org/10.7133/0294-8398/2018120171096

Jean-Yves, J. & Gisonni, V., 2022, ‘Complications of total hip or knee arthroplasty are not significantly more common after ambulatory surgery than after in-patient surgery and enhanced recovery: A case-control study with propensity-score matching’, Orthopaedic Traumatology: Surgery & Research 108(2), 103206. https://doi.org/10.1016/j.otsr.2022.103206

Jenkins, C., Jackson, W., Bottomley, N., Price, A., Murray, D. & Barker, K., 2019, ‘Introduction of an innovative day surgery pathway for unicompartamental knee replacement: No need for early knee flexion’, Journal of Physiotherapy 105(1), 46–52. https://doi.org/10.1016/j.jphys.2018.11.005

Jordan, R.W., Smith, N.A., Chabal, G.S., Casson, C., Reed, M.R. & Sproswon, A.P., 2014, ‘Enhanced education and physiotherapy before knee replacement: Is it worth it? A systematic review’, Journal of Physiotherapy 100(4), 305–312. https://doi.org/10.1016/j.jphysio.2014.03.003

Kelmer, G.C., Turcotte, J.J. & King, P.J., 2021, ‘Same-day vs. one-day discharge: Rates and reasons for emergency department return after hospital-based total joint arthroplasty’, The Journal of Arthroplasty 36(3), 879–884. https://doi.org/10.1016/j.arth.2020.09.027

Krause, A., Sayeed, Z., El-Othmani, M., Pallekonda, V., Minhalo, W. & Saleh, K.J., 2018, ‘Outpatient total knee arthroplasty: Are we there yet? [Part 1]’, Orthopaedic Clinics of North America 49(1), 1–6. https://doi.org/10.1016/j.ocl.2017.08.002

Kurtz, S., Ong, K., Lau, E., Mowat, F. & Halpern, M., 2007, ‘Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030’, The Journal of Bone and Joint Surgery 89(4), 780–785. https://doi.org/10.2106/JBJS.F.00222

Lazic, S., Boughton, O., Kellett, C.F., Kader, D.F., Villett, L. & Riviere, C., 2018, ‘Outpatient surgery for total hip and knee replacement: How safe and effective is it?’, EFORT Open Review 3(4), 130–135. https://doi.org/10.1302/2058-5241.3.170031

http://www.sajp.co.za

Open Access
