Effects of Diluent Volume and Administration Time on the Incidence of Anaphylaxis Following Docetaxel Therapy in Breast Cancer

Shigeru Ishida, Ken Masuguchi, Takehiro Kawashiri, Toshikazu Tsuji, Hiroyuki Watanabe, Sayuri Akiyoshi, Makoto Kubo, Satohiro Masuda, and Nobuaki Egashira

INTRODUCTION

Docetaxel, an antineoplastic agent of the taxoid family, is prepared by hemisynthesis from 10-deacetyl-baccatin III, which is an inactive precursor derived from the European yew, Taxus baccata. Docetaxel promotes tubulin polymerization, forming stable microtubules and suppressing depolymerization. In addition, docetaxel promotes the formation of morphologically abnormal microtubule bundles. Docetaxel is widely used in the treatment of various cancers, including breast, head and neck, lung, and stomach cancers. In particular, docetaxel is an essential postoperative adjuvant chemotherapy in breast cancer patients, as indicated abundantly in several clinical studies. However, docetaxel is known to cause adverse effects in some patients. Some of these adverse effects, such as bone marrow and gastrointestinal toxicities, have now become manageable due to the development of granulocyte colony-stimulating factor (G-CSF) and serotonin type 3 receptor antagonists; consequently, adverse events related to cutaneous toxicities have gained significance.

Treatment with docetaxel sometimes causes hypersensitivity reactions, such as anaphylaxis, dyspnea, bronchospasm, urticaria, flushing, rashes, hypotension, and angioedema. Although these symptoms indicate type I allergic reactions, they appear without any history of past exposure or sensitization; thus, these symptoms are presumed to be immunoglobulin E-independent reactions associated with mast cell degranulation. Studies performed using information found in the U.S. Food and Drug Administration (FDA) adverse event reporting system have reported that patients treated with docetaxel developed lethal hypersensitivity reactions at a higher rate than those treated with other chemotherapeutic agents, including the closely-related taxane drug, paclitaxel. Dexamethasone, diphenhydramine, and histamine type 2 receptor antagonists have been reported to be effective in the prophylaxis of hypersensitivity induced by paclitaxel. However, despite premedication with such drugs, hypersensitivity reactions to paclitaxel have been found to occur in 41% of patients. Although many reports indicated that patients with docetaxel-induced hypersensitivity reactions can be desensitized, no strategies have been developed for the prevention of hypersensitivity. Moreover, discontinuation of docetaxel treatment due to the development of hypersensitivity adversely affects the patients as it results in narrowed treatment options and inability to receive a standard and effective treatment.

In this study, we analyzed the risk factors for docetaxel-induced anaphylaxis in breast cancer patients. In particular, we compared the incidence of anaphylaxis induced by docetaxel treatments, depending on the difference of diluent volumes and administration times.

PATIENTS AND METHODS

Patients This study included breast cancer patients who started monotherapy/combo chemotherapy with

Key words docetaxel; anaphylaxis; hypersensitivity reaction; diluent volume; administration time
 docetaxel between April 1, 2014 and February 28, 2017 in Kyushu University Hospital. No patients were excluded due to other severe toxicities or other complications. This study was approved by the ethics committee of Kyushu University Graduate School and Faculty of Medicine (Approval number 28-206), and was performed in accordance with the Declaration of Helsinki and its amendments.

Treatments Chemotherapeutic treatment consisted of docetaxel (75–100 mg/m²) administered intravenously on day 1 every 3 weeks. Doctors could choose an administration time of 60 or 90 min and a diluent volume of 250 or 500 mL for docetaxel used for breast cancer patients in our hospital. Dexamethasone (8.8 mg) and granisetron (3 mg) were administered intravenously as premedication prior to docetaxel. Dose reduction was performed in some patients based on the judgment of the patients’ physicians. Other medications for underlying diseases, complications, and pain control were allowed.

Data Collection and Assessment The anaphylaxis was judged by doctors from the vital signs, skin symptoms, or other related symptoms. We retrospectively collected the anaphylaxis data from the electronic charts. Patient characteristics (e.g., age and body sizes), docetaxel doses, diluent volumes, administration times, treatment regimens, and laboratory data were collected from patients immediately before each treatment.

Statistical Analyses Differences between patients with and without anaphylaxis were identified using either Mann–Whitney U tests or Chi-square tests. Cut-off values were then determined using receiver operating characteristic (ROC) analyses of potential risk factors with p-values of <0.1. Odds ratios for risk factors were calculated using logistic regression analyses. We performed two independent multivariate analyses, because “dose/diluent volumes” and “dose/administration times” are relevant confounding factors for each other. We used Fisher’s exact test to compare ratios of anaphylaxis in the first cycle between patients receiving treatments diluted in either 250 or 500 mL normal saline and between patients receiving treatments for either 60 or 90 min. Data were analyzed using StatView (Abacus Concepts, CA, U.S.A.). Differences and associations were considered significant when \(p < 0.05 \).

RESULTS

Patient Characteristics and Incidence of Anaphylaxis

Docetaxel was administered to 182 female breast cancer patients. Patient characteristics are shown in Table 1. Twelve of 182 patients (6.6%) experienced docetaxel-related anaphylaxis, but no hypersensitivity reactions were lethal. Only one patient presented anaphylaxis symptoms during the infusion of trastuzumab. We did not consider this case as docetaxel-related hypersensitivity, because the anaphylaxis was not caused by docetaxel. Almost all anaphylaxis incidents occurred during the first or second treatment with docetaxel.

Risk Factors for Docetaxel-Related Anaphylaxis A total of 767 docetaxel treatment cycles were performed in 182 patients, and anaphylaxis was recorded in only 12 of all treatment cycles. Table 2 shows comparisons of several factors between patient groups with and without anaphylactic reactions. Patient groups did not differ in body surface areas (BSA), body weights, heights, body mass index (BMI), or in chosen regimens. On the other hand, treatment dose, dose per diluent volumes, and dose/administration times in the anaphylaxis group were significantly higher than those in the no-anaphylaxis group (median: 73.0 vs. 67.9 mg/m², \(p = 0.0027 \); 0.29 vs. 0.24 mg/m²/mL, \(p = 0.0014 \); 1.20 vs. 1.00 mg/m²/min, \(p = 0.0017 \)). Moreover, patients with anaphylaxis had lower levels of white blood cells (4120 vs. 5410 cells/mL, \(p = 0.0500 \)) and higher serum albumin levels (4.4 vs. 4.0 g/dL, \(p = 0.0045 \)) than those who did not experience anaphylaxis. We did not detect differences in any other laboratory variables between the patients with or without anaphylaxis. Patients with anaphylaxis tended to be younger than patients without anaphylaxis (48 vs. 58 years old, \(p = 0.0707 \)).

In multivariate analyses, cut-off values were determined for age, dose per diluent volumes, dose/administration times, white blood cell counts, and serum albumin; all values had associated \(p \)-values of less than 0.1, as shown in Table 2. Respective cut-off values were \(<48\) years of age, \(>0.275\) mg/m²/mL docetaxel dose per diluent volumes, \(>1.15\) mg/m²/min docetaxel administration times, \(<4290\) white blood cells/mL, and \(>4.3\) g/dL serum albumin (Fig. 1).

Dose volumes and administration times confounded each other; hence, we performed independent multivariate analyses for both (Table 3). In analyses of dose volumes with age, white blood cell counts, and serum albumin as independent variables, dose volumes (\(>0.275\) mg/m²/mL) was identified as a risk factor for docetaxel-related anaphylaxis (odds ratio, 11.88; 95% confidence interval \(2.43–58.16\); \(p = 0.0023 \)). Moreover, analyses of administration times with age, white blood cell counts, and serum albumin as independent variables showed that administration times of \(>11.5\) mg/m²/min was a risk factor for anaphylaxis (odds ratio, 11.60; 95% confidence interval \(2.37–56.79\); \(p = 0.0025 \)). White blood cell counts (\(<4290\) cells/mL) was also a risk factor in both analyses.

Effects of Diluent Volumes and Administration Times on Anaphylaxis Patients treated with docetaxel in a diluent volume of 250 mL experienced anaphylaxis more frequently than those treated with docetaxel in a diluent volume of 500 mL (7.0 vs. 0.9%, \(p = 0.0236 \), Table 4). Moreover, patients who were treated over 60 min tended to experience anaphylaxis more frequently than those who were treated over 90 min (6.7 vs. 1.1%, \(p = 0.0637 \), Table 4).

Table 1. Patient Characteristics and Incidence of Anaphylaxis
Characteristic
Number of patients
Sex
Male
Female
Age, median (range)
Regimen
Docetaxel alone
Docetaxel and trastuzumab
Docetaxel and cyclophosphamide
Docetaxel, pertuzumab, and trastuzumab
Docetaxel, doxorubicin, and cyclophosphamide
Incidence of anaphylaxis
First cycle
Second cycle
After third cycle
DISCUSSION

Anaphylactic reactions occurred in 6.6% of patients treated with docetaxel, and in almost all cases, symptoms appeared during the first or second treatment cycles. These results are in agreement with previous studies, which reported docetaxel-related hypersensitivity in 3–28% of patients and severe reactions in 1–5% of the patients.\(^{19–23}\) Although lethal hypersensitivity reactions were identified as serious side effects of docetaxel in studies using the FDA adverse event reporting systems,\(^{10,11}\) no fatal anaphylactic reactions occurred in the present study.

Our analyses indicated that concentration of docetaxel >0.275 mg/m\(^2\)/mL, dosing rate >1.15 mg/m\(^2\)/min, and white blood cell counts <4290 cells/mL are risk factors for the development of docetaxel-related anaphylaxis. Moreover, in our logistic regression analyses, dose volumes and administration times of docetaxel were associated with high odds ratios (11.88 and 11.60, respectively). Thus, it may be preferable to avoid docetaxel concentrations higher than 0.275 mg/m\(^2\)/mL and administration rates more than 1.15 mg/m\(^2\)/min.

In our hospital, two docetaxel regimens were used, with dilution volumes of 250 or 500 mL and administration times of 60 or 90 min. In breast cancer patients, docetaxel is generally used at a dose of 75\(^{24–27}\) or 100 mg/m\(^2.\)\(^{28–30}\) Hence, when docetaxel is administered at a dose of 75 or 100 mg/m\(^2\) in a volume of 250 mL, the concentration of docetaxel is 0.3 or 0.4 mg/m\(^2\)/mL, both of which are higher than 0.275 mg/m\(^2\)/mL. In contrast, when docetaxel is administered at the same dose, in a volume of 500 mL, the docetaxel concentration achieved is either 0.15 or 0.2 mg/m\(^2\)/mL. In these conditions, the corresponding administration rate of docetaxel infused over 60 min is 1.25 or 1.667 mg/m\(^2\)/min, which is above the cut-off value of 1.15 mg/m\(^2\)/min. However, the administration rate of docetaxel

Table 2. Risk Factors for Docetaxel-Related Anaphylaxis (Univariate Analyses)

Factor	Without anaphylaxis 755 cycles	With anaphylaxis 12 cycles	p-Values
Age	58 (26–78)	48 (36–70)	0.0707
Body size			
BSA (m\(^2\))	1.53 (1.23–2.00)	1.47 (1.41–1.64)	0.1476
Body weight (kg)	54.3 (37.7–100.0)	50.5 (45.0–60.0)	0.1210
Height (m)	1.56 (1.41–1.71)	1.55 (1.48–1.65)	0.8566
BMI (kg/m\(^2\))	21.8 (15.2–40.1)	21.8 (16.5–22.7)	0.3501
Administration			
Dose of docetaxel (mg/m\(^2\))	67.9 (37.1–78.9)	73.0 (66.0–75.1)	0.0027
Dose/diluent volumes (mg/m\(^2\)/mL)	0.24 (0.10–0.32)	0.29 (0.15–0.30)	0.0014
Dose/administration times (mg/m\(^2\)/min)	1.00 (0.48–1.32)	1.20 (0.83–1.25)	0.0017
Regimens			
Docetaxel alone	371 (49.1%)	6 (50.0%)	0.7737
Docetaxel and trastuzumab	251 (33.2%)	4 (33.3%)	
Docetaxel and cyclophosphamide	66 (8.7%)	2 (16.7%)	
Docetaxel, pertuzumab, and trastuzumab	56 (7.4%)	0	
Docetaxel, doxorubicin, and cyclophosphamide	5 (0.7%)	0	
Laboratory data			
WBC (counts/mL)	5410 (1540–14540)	4120 (3400–10190)	0.0500
NEUT (counts/mL)	3586 (639–10938)	2491 (1918–7755)	0.0652
Alb (g/dL)	4.0 (2.6–4.9)	4.4 (3.8–4.7)	0.0045
CCr (mL/min)	94.2 (11.8–216.3)	104.4 (54.0–158.5)	0.2907
BUN (mg/dL)	12 (4–28)	12 (8–19)	0.9417
AST (U/L)	24 (10–162)	21 (16–43)	0.2058
ALT (U/L)	18 (6–114)	15 (16–43)	0.2033
CRP (mg/dL)	0.10 (0.01–0.22)	0.08 (0.02–0.68)	0.7605

BSA, body surface area; BMI, body mass index; WBC, white blood cells; NEUT, neutrophils; Alb, serum albumin; CCr, creatinine clearance calculated by Cockcroft–Gault equation; BUN, blood urea nitrogen; AST, aspartate aminotransferase; ALT, alanine aminotransferase; CRP, C-reactive protein. a) Mann–Whitney U test; b) Chi-square test.

Fig. 1. ROC Analyses of Anaphylaxis and Cut-Off Values for Age (A), Dose/Diluent Volumes (B), Dose/Administration Times (C), White Blood Cell (WBC) Counts (D), and Serum Albumin (Alb) Levels (E)

Cut-off values, true positive fractions (TPF), and true negative fractions (TNF) are shown in each figure.
such as alpha 1-acid glycoprotein.32) Consistent with this idea to change with alternations in the blood levels of proteins with a high protein-binding rate, and its effects are expected sensitivity to taxanes and age. Meanwhile, docetaxel is a drug volumes,” and lower one shows the results using “dose/administration times.”

The upper table shows the result from multivariate analysis using “dose/diluent volumes” and “dose/administration times” are relevant confounding factors for each other. The upper table shows the results from multivariate analysis using “dose/diluent volumes,” and lower one shows the results using “dose/administration times.”

Table 3. Risk Factors for Docetaxel-Related Anaphylaxis (Multivariate Analyses)

Factor	Odds ratio (95% CI)	p-Values
First cycle	2.66 (0.71–9.94)	0.1469
Age (<48 years old)	3.53 (0.93–13.33)	0.0634
Dose/diluent volumes (/>0.275 mg/mL)	11.88 (2.43–58.16)	0.0023
WBC (<4290 counts/mL)	3.76 (1.04–13.62)	0.0437
Alb (/>4.3 g/dL)	2.81 (0.75–10.52)	0.1243

Table 4. Effects of Diluent Volumes and Administration Times on the Incidence of Docetaxel-Related Anaphylaxis

Administration	Without anaphylaxis	With anaphylaxis	Ratio	p-Values
Diluent volume				
250mL	66	5	1.325	0.0236
500mL	110	1	9.9	
Administration time				
60 min	70	5	1.4	0.0637
90 min	86	1	1.1	

WBC, white blood cells; Alb, serum albumin; 95% CI, 95% confidence interval.

Table 4. Effects of Diluent Volumes and Administration Times on the Incidence of Docetaxel-Related Anaphylaxis

over 90min is determined as 0.833 or 1.111 mg/mL/min, with the incidence of anaphylaxis in patients administered the drug in a 500mL volume being significantly lower than that in patients receiving docetaxel in a 250mL volume. Moreover, 90-min treatments tended to induce anaphylaxis less frequently than 60-min treatments. These observations suggest that increasing the dilution volume administered and extending the duration of administration could be effective strategies to avoid docetaxel-related anaphylaxis. However, we did not define optimal concentrations or dilution volumes for the evasion of anaphylaxis, since almost all patients using the diluent volume of 500mL were administered docetaxel over 90min. Few patients were administered docetaxel in a volume of 500mL over 60min, or in a volume of 250mL over 90min.

Younger age and high levels of albumin were identified as potential risk factors in the univariate analysis, as shown in Table 2. A previous report also indicated that younger age is a predictor for hypersensitivity in patients receiving paclitaxel-based therapy.31) Hence, there is a relationship between hypersensitivity to taxanes and age. Meanwhile, docetaxel is a drug with a high protein-binding rate, and its effects are expected to change with alternations in the blood levels of proteins such as alpha 1-acid glycoprotein.32) Consistent with this idea is the hypothesis that albumin levels might cause changes in docetaxel-related anaphylaxis. Therefore, scrupulous clinical attention is required for patients presenting these risk factors.

The multivariate analyses in our study indicated low levels of white blood cells to be a risk factor for docetaxel-related anaphylaxis. There are no reports showing that leukopenia is related to the hypersensitivity caused by drugs such as the taxanes. On the other hand, activated basophils, one of the types of leukocytes, produce large amounts of T helper type 2 (Th2) cytokines,33) and basophil CD203c is expected as a promising biomarker for the prediction of severe carboplatin-related anaphylaxis.34) Further investigation is necessary to elucidate the mechanism of docetaxel-related anaphylaxis.

In general, docetaxel is used with human epidermal growth factor receptor type 2 (HER2)-targeting drugs, such as trastuzumab and pertuzumab, in many cases. These molecularly targeted drugs are known as high-risk drugs for hypersensitivity. In our study, there were no differences in the rates of hypersensitivity for each regimen, as shown in Table 2. Thus, the molecularly targeted drugs, such as trastuzumab and pertuzumab, might not increase the risk of hypersensitivity of docetaxel.

Limitations of the present study include the fact that our study does not fully address differences in incidence rates between original and generic docetaxel,35) effects of CYP1B1 gene polymorphisms,36) and the influence of dexamethasone premedication.37,38) The retrospective nature of the study limits the conclusions that can be drawn. In addition, all patients were treated at a single institution. Further studies such as prospective, multi-center research are expected to clearly define the conditions to prevent docetaxel hypersensitivity reactions.

In conclusion, we report that high concentration of docetaxel, high administration rates, and low white blood cell counts are risk factors for docetaxel-related anaphylaxis. In addition, anaphylaxis rates were significantly lower in patients treated with a diluted docetaxel volume of 500mL than in those treated with a volume of 250mL, and tended to be lower in patients treated over a duration of 90min rather than in those treated over 60min. Our study findings indicate that the incidence of docetaxel-induced hypersensitivity reactions could be reduced by altering the treatment method to administer a volume of 500mL over 90min.

Acknowledgments The present study was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant number 16K08404, 17K08447).

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Lavelle F, Combeau C, Commerçon A. Taxoids: structural and experimental properties. Bull. Cancer, 82, 249–264 (1995).
2) Ringel I, Horwitz SB. Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J. Natl. Cancer Inst., 83, 288–291 (1991).
3) De Laurentiis M, Cancello G, D’Agostino D, Giuliano M, Giordano A, Montagna E, Lauria R, Forestieri V, Esposito A, Silvestro L, Pennacchio R, Criscitiello C, Montanino A, Limite G, Bianco AR, De Placido S. Taxane-based combinations as adjuvant chemothera-
py of early breast cancer: a meta-analysis of randomized trials. *J. Clin. Oncol.*, 26, 44–53 (2008).
4) Baden LR, Swaminathan S, Angarone M, et al. Prevention and treatment of cancer-related infections. Version 2.2016, NCCN clinical practice guidelines in oncology. *J. Natl. Compr. Canc. Netw.*, 14, 882–913 (2016).
5) Berger MJ, Ettinger DS, Aston J, et al. NCCN guidelines insights: antimetis, Version 2.2017. *J. Natl. Compr. Canc. Netw.*, 15, 883–893 (2017).
6) Zanotti KM, Markman M. Prevention and management of antineoplastic-induced hypersensitivity reactions. *Drug Saf.*, 24, 767–779 (2001).
7) Lenz HJ. Management and preparedness for infusion and hypersensitivity reactions. *Oncologist*, 12, 601–609 (2007).
8) Shepherd GM. Hypersensitivity reactions to chemotherapeutic drugs. *Clin. Rev. Allergy Immunol.*, 24, 253–262 (2005).
9) Robinson JB, Singh D, Bodurka-Bevers DC, Wharton JT, Gershenwald J. Hypersensitivity reactions and the utility of oral and intravenous desensitization in patients with gynecologic malignancies. *Gynecol. Oncol.*, 82, 550–558 (2001).
10) Kadoyama K, Kuwahara A, Yamamori M, Brown JB, Sakaeda T, Okuno Y. Hypersensitivity reactions to anticancer agents: data mining of the public version of the FDA adverse event reporting system. *J. Exp. Clin. Cancer Res.*, 30, 93 (2011).
11) Rausch DW, Campbell W, Garg V, Qureshi ZP, Bookstaver PB, Norris LB, Bennett CL. Description of anaphylactic reactions to paclitaxel and docetaxel reported to the FDA, with a focus on the role of premedication. *Expert Opin. Drug Saf.*, 10, 521–528 (2011).
12) Kintzel PE. Prophylaxis for paclitaxel hypersensitivity reactions. *Ann. Pharmacother.*, 35, 1114–1117 (2001).
13) Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, Baker JR Jr, Van Echo DA, Von Hoff DD, Leyland-Jones B. Hypersensitivity reactions from taxol. *J. Clin. Oncol.*, 8, 1263–1268 (1990).
14) Feldweg AM, Lee CW, Matulonis UA, Castells M. Rapid desensitization for hypersensitivity reactions to paclitaxel and docetaxel: a new standard protocol used in 77 successful treatments. *Gynecol. Oncol.*, 96, 824–829 (2005).
15) Syriou E, Damos I, Kottas E, Matrilia N, Tourkantonis I, Dilana K, Gikozos I, Saif MW, Syrigos KN. Hypersensitivity reactions to docetaxel: retrospective evaluation and development of a desensitization protocol. *Int. Arch. Allergy Immunol.*, 156, 320–324 (2011).
16) Madrigal-Hurgaleta R, Berges-Gimeno MP, Angel-Pereira D, Ferreiro-Montaño G, Guillen-Ponce C, Pueyo C, Gomez de Salazar E, Alvaroz-Cuesta E. Hypersensitivity and desensitization to antineoplastic agents: outcomes of 189 procedures with a new short protocol and novel diagnostic tools assessment. *Allergy*, 68, 853–861 (2013).
17) Lisko J, Golebiowski T, Cok G, Karakus H, Bacakoglu F, Goker E, Uloa R, Erdine M. Hypersensitivity to chemotherapeutics: a cross-sectional study with 35 desensitisations. *Int. J. Clin. Oncol.*, 20, 595–604 (2015).
18) Picard M, Castells MC. Re-visiting hypersensitivity reactions to taxanes: a comprehensive review. *Clin. Rev. Allergy Immunol.*, 49, 177–191 (2015).
19) Schrijvers D, Wanders J, Dirix L, Prove A, Vonck I, van Oosterom A, Kaye S. Coping with toxicities of docetaxel (Taxotere). *Ann. Oncol.*, 4, 610–611 (1993).
20) Mortens WC, Eisenhauer EA, Jolivet J, Ernst S, Moore M, Muldal A. Docetaxel in advanced renal carcinoma. A phase II trial of the National Cancer Institute of Canada Clinical Trials Group. *Ann. Oncol.*, 5, 185–187 (1994).
21) Chan S. Docetaxel vs. doxorubicin in metastatic breast cancer resistant to alkylating chemotherapy. *Oncology*, 11 (Suppl. 8), 19–24 (1997).
22) Nabholtz JM, Falkson C, Campos D, Szanto J, Martin M, Chan S, Pienkowski T, Zaluski J, Pinter T, Krajkowski M, Vorobiow D, Leonard R, Kennedy I, Azli N, Murawsky M, Riva A, Poullart P. Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer: results of a randomized, multicenter, phase III trial. *J. Clin. Oncol.*, 21, 968–975 (2003).
23) Georgoulas V, Androulakis N, Kotsakis A, Hatzidakis D, Syrigos K, Polyzos A, Ageidou A, Varlahitis I, Ziras N, Ageidou M, Chandrinos V, Boukovinas I, Geroyianii A, Vamvakas I, Mavroudis D. Docetaxel versus docetaxel plus gemcitabine as front-line treatment of patients with advanced non-small cell lung cancer: a randomized, multicenter phase III trial. *Lung Cancer*, 59, 57–63 (2008).
24) Martin M, Pienkowski T, Mackey J, et al. Adjuvant docetaxel for node-positive breast cancer. *N. Engl. J. Med.*, 352, 2302–2313 (2005).
25) Jones S, Holmes FA, O’Shaughnessy J, Blum JL, Vukelja SJ, McIntyre KJ, Pippen PE, Bordelon JH, Kirby RL, Sandbach J, Hyman WJ, Richards DA, Meenel RG, Boehm KA, Meyer WG, Asmar L, Mackey D, Riedel S, Mudd H, Savin MA. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 3-year follow-up of US Oncology Research Trial 9735. *J. Clin. Oncol.*, 27, 1177–1183 (2009).
26) Jones SE, Collea R, Paul D, Sedlack S, Favret AM, Gore J Jr, Lindquist DL, Holmes FA, Allison MAK, Brooks BD, Portillo RM, Vukelja SJ, Steinberg MS, Stocoke C, Crockett MW, Wang Y, Asmar L, Robert NJ, O’Shaughnessy J. Adjuvant docetaxel and cyclophosphamide plus trastuzumab in patients with HER2-amplified early stage breast cancer: a single-group, open-label, phase 2 study. *Lancet Oncol.*, 14, 1121–1128 (2013).
27) Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Waldron-Lynch M, Eng-Wong J, Kirk S, Cortés J. Long-term efficacy analysis of the randomised, phase II IRYPHAENA cardiac safety study: Evaluating pertuzumab and trastuzumab plus standard nonoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer. *Eur. J. Cancer*, 49, 35–38 (2015).
28) von Minckwitz G, Raab G, Caputo A, Schütte M, Hilfrich J, Blohmer JU, Gerber B, Costa SD, Merkle E, Eidtmann H, Lampe D, Jackisch C, du Bois A, Kaufmann M. Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPRADUO study of the German Breast Group. *J. Clin. Oncol.*, 23, 2676–2685 (2005).
29) Roche H, Fumoleau P, Spielmann M, Canion JL, Delozier T, Serin D, Syman M, Kerbrat P, Soulé P, Echler P, Viens P, Monnier A, Vindevoghel A, Campone M, Goutier MJ, Bonneterie J, Ferrero JM, Martin AL, Geneve J, Asselain B. Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC: PACS 01 trial. *J. Clin. Oncol.*, 24, 5664–5671 (2006).
30) Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, Albain KS, Rugo HS, Ellis M, Heiston H, Hampe D, Jackisch C, du Bois A, Kaufmann M. Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the FNCLCC PACS 01 Trial. *J. Clin. Oncol.*, 24, 5664–5671 (2006).
31) Aoyama T, Takano M, Miyamoto M, Yoshikawa T, Soyama H, Kato K, Ishibashi H, Iwahashi H, Nakatsuka M, Yajima I, Shimizu Y, Aizawa Y, Suguchi Y, Moriiwa M, Muto T, Sasa H, Nagaoka I, Tsuda H, Furuya K. Is there any predictor for hypersensitivity reactions in gynecologic cancer patients treated with paclitaxel-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. *J. Clin. Oncol.*, 24, 5664–5671 (2006).
32) Minami H, Kawada K, Sasaki Y, Igarashi T, Saeki T, Tahara M, Itoh K, Fujii H. Pharmacokinetics and pharmacodynamics of protein-unbound docetaxel in cancer patients. *Cancer Sci.*, 97, 235–241.
(2006).

33) Schroeder JT, MacGlashan DW Jr, Lichtenstein LM. Human basophils: mediator release and cytokine production. *Adv. Immunol.*, **77**, 93–122 (2001).

34) Iwamoto T, Yuta A, Tabata T, Sugimoto H, Gabazza EC, Hirai H, Kojima S, Okuda M. Evaluation of basophil CD203c as a predictor of carboplatin-related hypersensitivity reaction in patients with gynecologic cancer. *Biol. Pharm. Bull.*, **35**, 1487–1495 (2012).

35) Ratanajrusiri T, Sriuranpong V, Sitthideatphaiboon P, Poovoravan N, Vinayanuwat C, Parinyanitikul N, Angspatt P, Thawinwisan W, Tanasanvimon S. A difference in the incidences of hypersensitivity reactions to original and generic taxanes. *Chemotherapy*, **62**, 134–139 (2017).

36) Rizzo R, Spaggiari F, Indelli M, Lelli G, Baricordi OR, Rimessi P, Ferlini A. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. *Breast Cancer Res. Treat.*, **124**, 593–598 (2010).

37) Zhang M, Chen Z, Yang Y, Cheng H, Li C, He Q. Pretreatment with different doses of dexamethasone in the prevention of docetaxel-induced hypersensitivity. *Pak. J. Pharm. Sci.*, **30**, 61–65 (2017).

38) Kang RY, Yoo KS, Han HJ, Lee JY, Lee SH, Kim DW, Lee YJ. Evaluation of the effects and adverse drug reactions of low-dose dexamethasone premedication with weekly docetaxel. *Support. Care Cancer*, **25**, 429–437 (2017).