On the NLO QCD corrections to gluon-initiated ZH production

Giuseppe Degrassi,a,b Ramona Gröber,c Marco Vittib and Xiaoran Zhaob

aCERN, Theoretical Physics Department,
1211 Geneva 23, Switzerland
bDipartimento di Matematica e Fisica, Università di Roma Tre
and INFN, sezione di Roma Tre,
I-00146 Rome, Italy
cDipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova
and INFN, sezione di Padova,
I-35131 Padova, Italy
E-mail: giuseppe.degrassi@uniroma3.it, ramona.groeber@pd.infn.it,
marco.vitti@uniroma3.it, xiaoran.zhao@uniroma3.it

ABSTRACT: We compute the QCD corrections at next-to-leading order for the process $gg \rightarrow ZH$, including both the virtual two-loop terms and real-emission contributions. The two-loop box diagrams in the virtual corrections are approximated analytically over the complete phase space, combining the results of an expansion in the limit of small transverse momentum and an expansion in the regime of high energy. We obtain both inclusive and differential results for the cross section. We find that the NLO QCD corrections are of the same size as the LO contribution up to ZH invariant masses close to 1 TeV, but they increase significantly when higher energies are considered, due to a class of real-emission diagrams in which the Z boson is radiated from an open quark line. Finally, we estimate the uncertainty due to the renormalization scheme used for the top-quark mass both on the total and differential cross section.

KEYWORDS: Higgs Production, Higher-Order Perturbative Calculations

ArXiv ePrint: 2205.02769
1 Introduction

In the last ten years following the discovery of the Higgs boson [1, 2] a great experimental effort has been undertaken at the Large Hadron Collider (LHC) in order to measure the properties of this particle with high precision. The increased statistics expected from the next LHC runs and from the High-Luminosity phase will allow for more accurate comparisons with the Standard Model (SM) predictions, and refined theoretical calculations are needed to extract as much information as possible from the forthcoming measurements.\footnote{A comprehensive review on precision calculations for Higgs physics can be found in ref. [3].}

The process in which a Higgs is produced together with a weak vector boson, known as \(VH \) associated production (\(V = W, Z \)), is of great relevance at the LHC not only as a probe of the couplings between the Higgs and the weak bosons, but also because of its sensitivity to the \(H \rightarrow b\bar{b} \) decay. Indeed, the large QCD backgrounds affecting searches of \(H \rightarrow b\bar{b} \) can be reduced more efficiently in \(VH \) than in other production modes [4–6]. Recently \(VH \) production has been considered also to improve the constraints on the charm Yukawa coupling [7].

In current \(VH \) analyses the impact of theoretical uncertainties from missing higher-order terms in perturbative calculations depends on the choice of the final-state boson \(V \): while in the \(WH \) case these uncertainties are around 1%, and are comparable to the uncertainties from the PDF and \(\alpha_s \) determination, the corresponding uncertainties for \(ZH \) production are slightly larger, close to 3% [8]. In view of the progress in experimental precision it is hence essential to improve the theoretical control over \(pp \rightarrow ZH \).

There are two partonic channels that contribute to the \(pp \rightarrow ZH \) hadronic cross section. The \(q\bar{q} \)-initiated (Drell-Yan-like) channel gives the leading contribution, and higher-order corrections are well under control as they are known to next-to-next-to-leading order
(NNLO) in QCD [9–11] and to NLO in the EW interactions [12, 13]. The gg-initiated channel has been computed at LO in refs. [14, 15], and it contributes for the first time as a NNLO QCD correction to the hadronic process. However, this sub-leading channel is enhanced by the large gluon luminosity at the LHC, and it provides about 6% of the total cross section for 13 TeV collisions. Differential analyses have pointed to significant differences in the shapes of distributions between the $q\bar{q}$ and the gg channels [16–19], showing an increased relative importance of the gg channel in the boosted regime [20]. The $gg \rightarrow ZH$ process has been considered also as a probe of new physics effects, with examples including anomalous couplings [19–22] and new degrees of freedom [20, 23]. Finally, the gluon-initiated channel has the largest impact on the theoretical uncertainties for $pp \rightarrow ZH$, as only the LO contribution is included in the Monte Carlo programs used for experimental studies. Since an equivalent gluon-initiated contribution is not allowed in WH production because of electric charge conservation, $gg \rightarrow ZH$ is responsible for the larger uncertainties in ZH production compared to WH. The reduction of the current theoretical uncertainties requires the calculation of the NLO QCD corrections to $gg \rightarrow ZH$, which are the main subject of this paper.

Since the main contribution to $gg \rightarrow ZH$ at LO comes from one-loop diagrams involving loops of massive quarks, the most challenging part of the NLO calculation is associated to two-loop multi-scale integrals in the virtual corrections. An estimate of these terms has been obtained in ref. [24] in the $m_t \rightarrow \infty$ limit and included in the program $v@nnlo$ [18, 25], while the effects of a large but finite top-quark mass have been considered in refs. [26, 27]. An approximation that retains the effects of the top-quark mass and that is accurate over the complete phase space has been presented in ref. [28], whereas the very recent calculation of ref. [29] relies on a combination of the Padé-improved high-energy expansion presented in ref. [30] and a numerical evaluation using sector decomposition [31]. All of the previous results show that the NLO corrections are comparable in magnitude to the LO contribution,\footnote{In fact, the NLO corrections can become substantially larger than the LO contribution in transverse-momentum distributions [29].} and this fact makes the implementation of the NLO terms in a Monte Carlo code (possibly interfaced with parton-shower generators [32, 33]) a priority for a reliable interpretation of the experimental results.\footnote{Additionally, in ref. [34] it has been shown that the resummation of soft-gluon effects can significantly reduce the scale uncertainties for $gg \rightarrow ZH$.} In this paper we take a step towards this goal, as we provide a fast and flexible way to compute $gg \rightarrow ZH$ at NLO in QCD including the effects of a finite top-quark mass.

We obtain a very reliable approximation of the two-loop virtual corrections by merging analytic results that are accurate in two complementary phase-space regions, namely the results of the transverse-momentum expansion of ref. [35] and the high-energy (HE) expansion of ref. [30]. In ref. [36] it has been shown that this approach can provide a fast evaluation of the virtual corrections with an accuracy of 1% or below. In this paper, we present a complete assessment of the NLO QCD corrections to $gg \rightarrow ZH$ by including the real-emission contributions, which are related to one-loop diagrams with an additional parton in the final state. We use our results to quantify the effects of the gluon-initiated channel on the hadronic cross section, both at the inclusive and differential level, and we
compare our findings with previous independent calculations. Additionally, we discuss the
theoretical uncertainty related to the choice of renormalization scheme for the top-quark
mass. We finally point out a so-far unnoticed feature of the NLO QCD corrections, as we
observe that the contribution from the class of $2 \rightarrow 3$ diagrams in which the Z boson is
emitted from an open quark line becomes numerically relevant for collisions at very high
energies, namely for invariant masses in the range $M_{ZH} > 1$ TeV. To the best of our knowl-
edge, the impact of these diagrams on ZH production over this energy regime has not been
discussed in the literature.

This paper is structured as follows: in the next section we set our notation and we
describe the ingredients for the calculation of the NLO corrections to $gg \rightarrow ZH$; in section 3
we present our results for the inclusive and differential cross section and we assess the top-
mass scheme uncertainty. In section 4 we state our conclusions.

2 The $gg \rightarrow ZH$ channel at NLO

The cross section for the subprocess $gg \rightarrow ZH + X$ in the hadronic reaction $pp \rightarrow ZH + X$
at center-of-mass energy \sqrt{s}, can be written as

$$M_{ZH}^2 \frac{d\sigma}{dM_{ZH}^2} = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \int_0^1 dz \ \delta \left(z - \frac{\tau}{x_1 x_2}\right) \ M_{ZH}^2 \frac{d\hat{\sigma}_{ab}}{dM_{ZH}^2},$$

(2.1)

where M_{ZH}^2 is the invariant mass of the Z-Higgs system, $\tau = M_{ZH}^2 / s$, μ_F is the factorization
scale, $f_a(x, \mu_F^2)$ is the parton density of the colliding proton for the parton of type a, ($a = g, q, \bar{q}$) and $\hat{\sigma}_{ab}$ is the partonic cross section for the subprocess $ab \rightarrow ZH + X$ at the partonic
center-of-mass energy $\hat{s} = x_1 x_2 s$. The partonic cross section can be written in terms of the
Born (i.e. LO) partonic cross section $\hat{\sigma}^{(0)}$ as:

$$M_{ZH}^2 \frac{d\hat{\sigma}_{ab}}{dM_{ZH}^2} = \hat{\sigma}^{(0)}(z \hat{s}) z G_{ab}(z),$$

(2.2)

where, up to NLO terms in QCD,

$$G_{ab}(z) = G_{ab}^{(0)}(z) + \frac{\alpha_s(\mu_R)}{\pi} G_{ab}^{(1)}(z),$$

(2.3)

with $\alpha_s(\mu_R)$ the strong coupling constant defined at the renormalization scale μ_R.

The LO contribution $G_{ab}^{(0)}(z)$ is given by the $gg \rightarrow ZH$ channel only, i.e.

$$G_{ab}^{(0)}(z) = \delta(1 - z) \delta_{ag} \delta_{bg},$$

(2.4)

The amplitude for $g_\mu(p_1)g_\nu^*(p_2) \rightarrow Z\rho(p_3)H(p_4)$ can be written as

$$A = i \sqrt{2} \frac{m_Z}{\mu} G_{\rho}(\mu_R) \delta_{ab} \epsilon_\mu^a(p_1) \epsilon_\nu^b(p_2) \epsilon_\rho(p_3) \hat{A}^{\mu\nu\rho}(p_1, p_2, p_3),$$

(2.5)

$$\hat{A}^{\mu\nu\rho}(p_1, p_2, p_3) = \sum_{i=1}^6 P^{\mu\nu\rho}(p_1, p_2, p_3) A_i(\hat{s}, \hat{t}, \hat{u}, m_t, m_H, m_Z),$$

(2.6)
where G_μ is the Fermi constant and $\epsilon^a_\mu(p_1)\epsilon^b_\nu(p_2)\epsilon_\rho(p_3)$ are the polarization vectors of the gluons and the Z boson, respectively. The tensors $P^{\mu\nu\rho}_{vi}$ are a set of orthogonal projectors whose expressions can be found in ref. [35]. The corresponding form factors $A_i(\hat{s}, \hat{t}, \hat{u}, m_t, m_H, m_Z)$ are functions of the masses of the top quark4 (m_t), Higgs (m_H) and Z (m_Z) bosons, and of the partonic Mandelstam variables

$$\hat{s} = (p_1 + p_2)^2, \quad \hat{t} = (p_1 + p_3)^2, \quad \hat{u} = (p_2 + p_3)^2,$$

(2.7)

where $\hat{s} + \hat{t} + \hat{u} = m_Z^2 + m_H^2$ and we took all the momenta to be incoming.

The A_i form factors can be expanded up to NLO terms as

$$A_i = A_i^{(0)} + \frac{\alpha_s}{\pi} A_i^{(1)} \quad (2.8)$$

with

$$A_i^{(0)} = A_i^{(0,\Delta)} + A_i^{(0,\square)}, \quad (2.9)$$

$$A_i^{(1)} = A_i^{(1,\Delta)} + A_i^{(1,\square)} + A_i^{(1,\pi)}, \quad (2.10)$$

where the LO amplitude can be written in terms of two contributions, namely the one-loop triangle diagrams ($A_i^{(0,\Delta)}$) and the one-loop box diagrams ($A_i^{(0,\square)}$), while at NLO besides the genuinely two-loop triangles ($A_i^{(1,\Delta)}$) and the two-loop boxes ($A_i^{(1,\square)}$) also the contribution from reducible double-triangle diagrams ($A_i^{(1,\pi)}$) is present. In the latter we include also diagrams featuring loops of bottom quarks connecting to the Z boson, and we set the bottom mass to zero. In eq. (2.10) the $A_i^{(1,\Delta)}$ and $A_i^{(1,\square)}$ contributions are understood as regularized with respect to the ultraviolet (UV) and infrared (IR) singularities via the introduction of a counterterm as in ref. [27].

The Born partonic cross section can be written as

$$\hat{\sigma}^{(0)}(\hat{s}) = \frac{m_Z^2 G_F^2 \alpha_s(\mu_R)^2}{32 \hat{s} \hat{t} \pi^2} \int d\Phi \sum_i |A_i^{(0)}|^2, \quad (2.11)$$

where $d\Phi$ is the two-particle Lorentz-invariant phase space.

The NLO terms $G_{ab}^{(1)}$ in eq. (2.3) include, besides the gg channel, also the $2 \rightarrow 3$ processes $gg \rightarrow ZHq, \bar{q}g \rightarrow ZHq$ and $q\bar{q} \rightarrow ZHg$. The NLO contribution to the gg channel involves the two-loop virtual corrections to $gg \rightarrow ZH$ discussed above and one-loop real corrections from $gg \rightarrow ZHq$. As well known, the individual contributions are IR divergent while their sum is finite. In this work, at the level of cross section, the IR singularities in all channels were treated via the dipole subtraction method [37]. The outcome of this procedure for the gg channel can be summarized as follows

$$G_{gg}^{(1)}(z) = \delta(1-z) \left[C_A \frac{\pi^2}{3} + \beta_0 \ln \left(\frac{\mu_R^2}{\mu_F^2} \right) + C_{NLO} \right]$$

$$+ P_{gg}(z) \ln \left(\frac{\hat{s}}{\mu_F^2} \right) + C_A \frac{4}{z} (1-z + z^2)^2 \mathcal{D}_1(z) + \mathcal{R}_{gg} \quad (2.12)$$

4We neglect the masses of all quarks except for the top.
where \(C_A = N_c \) (\(N_c \) being the number of colors), \(\beta_0 = 11/6 C_A - 1/2 N_f C_F T_R \) (\(N_f \) being the number of active flavors, \(C_F = (N_c^2 - 1)/(2N_c) \) and \(T_R = 1/2 \)) is the one-loop \(\beta \)-function of the strong coupling in the SM, \(P_{gg} \) is the LO Altarelli-Parisi splitting function

\[
P_{gg}(z) = 2 C_A \left[\mathcal{D}_0(z) + \frac{1}{z} - 2 + z(1 - z) \right], \quad (2.13)
\]

and

\[
\mathcal{D}_i(z) = \left[\ln i(1 - z) \right]_+ \quad (2.14)
\]

where the plus distribution is used.

The first line of eq. (2.12) displays the two-loop virtual contribution, with

\[
C_{\text{NLO}} = \frac{\int d\Phi \sum_i \text{Re} \left[A_i^{(0)} (A_i^{(1)})^\dagger \right]}{\int d\Phi \sum_i |A_i^{(0)}|^2}. \quad (2.15)
\]

In the second line of eq. (2.12), the term \(R_{gg} \) contains the integration over the three-particle phase space of the \(gg \rightarrow ZHg \) squared amplitude minus two dipole subtractions\(^5\) which cure the IR singularities when the final-state gluon becomes soft or becomes collinear with either of the initial-state gluons. According to our normalization (see eqs. (2.2), (2.3)) \(R_{gg} \) is obtained dividing the latter quantity by \(\alpha_s(\mu_R)\sigma^{(0)}(z\hat{s}) z/\pi \).

The other NLO contributions to \(G_{ab} \), i.e. the \(gq \rightarrow ZHq, \bar{q}g \rightarrow ZH\bar{q} \) and \(qq \rightarrow ZHg \) channels, require a little discussion. The LO contribution in the hadronic reaction \(pp \rightarrow ZH + X \) is given by the tree-level Drell-Yan-like process \(q\bar{q} \rightarrow Z^* \rightarrow ZH \). The NLO real contribution, \(\mathcal{O}(\alpha_s) \), to this channel includes the tree-level process \(q\bar{q} \rightarrow ZHg \) and the crossed channels. The interference between these tree-level diagrams and their one-loop corrections is usually considered as an NNLO correction, \(\mathcal{O}(\alpha_s^2) \), to the Drell-Yan-like contribution and taken into account in the NNLO evaluation of \(pp \rightarrow ZH + X \).

The NLO real corrections to the \(gg \rightarrow ZH \) process are formally an N\(^3\)LO contribution, \(\mathcal{O}(\alpha_s^3) \), to the \(pp \rightarrow ZH + X \) reaction. In this paper we identify them as the square of the one-loop diagrams containing a closed fermion loop to which a Higgs or a \(Z \) boson, or both particles, are attached in the \(gg \rightarrow ZHq, \bar{q}g \rightarrow ZH\bar{q} \) and \(qq \rightarrow ZHg \) channels. It should be remarked that our definition of the NLO contribution to the \(gg \rightarrow ZH \) process differs from the one employed in refs. [28, 29]. In those references, diagrams in which a \(Z \) boson is emitted from an open fermion line, which we denote as \(Z \)-radiated diagrams for brevity (see subsection 2.2), were not taken into account because they were assigned to uncalculated N\(^3\)LO corrections to the Drell-Yan-like contribution.

The contribution of the \(qq \rightarrow ZHq \) channel, and similarly for \(\bar{q}g \rightarrow ZH\bar{q} \), can be written as:

\[
G_{qq}^{(1)}(z) = P_{qq}(z) \left[\ln(1 - z) + \frac{1}{2} \ln \left(\frac{s}{\mu_F^2} \right) \right] + \frac{1}{2} C_F z + R_{gg}, \quad (2.16)
\]

\(^5\)All the squared matrix elements are understood as averaged over the initial-state spin, helicity and color and summed over the final ones.
where
\[P_{gq}(z) = C_F \frac{1 + (1 - z)^2}{z} , \] (2.17)
and \(R_{qg} \) is obtained from the integration over the three-particle phase space of the squared amplitude of the process minus one dipole subtraction, which cures the IR singularity when the final quark becomes collinear to the initial quark, normalized to \(\alpha_s(\mu_R)\sigma^{(0)}(z\hat{s})z/\pi \).

Finally, the \(q\bar{q} \to ZHg \) channel is IR safe. Its contribution can be written as
\[C_{q\bar{q}}(z) = R_{q\bar{q}} \, , \] (2.18)
where \(R_{q\bar{q}} \) is given by the square of the one-loop diagrams integrated over the phase space and normalized to \(\alpha_s(\mu_R)\sigma^{(0)}(z\hat{s})z/\pi \).

In the following subsections we discuss the method used for the calculation and the implementation of the various contributions to eq. (2.3). We evaluated our results using different renormalization schemes for the top-quark mass, namely the on-shell (OS) and the modified minimal subtraction (MS) scheme. In particular, for evaluating the top mass in the MS scheme, we first convert the OS mass to \(m_{MS}^t = m_{OS}^t \) using the three-loop relation \[38\], and then run it at three-loop order \[39\] numerically to the indicated scale \(\mu_t \).

2.1 Virtual corrections

Concerning the two-loop form factors \(A_i^{(1)} \) in eq. (2.15), the contributions from \(A_i^{(1,\Delta)} \) and \(A_i^{(1,\rho)} \), as well as the LO contribution, were evaluated in exact top-mass dependence using the results available from ref. \[35\]. Instead, the two-loop box integrals associated to \(A_i^{(1,\Xi)} \) were evaluated combining two analytic approximations corresponding to different kinematical regimes, and here we briefly recall the main features of this approach, described in detail in ref. \[36\].

The box integrals depend on five scales, namely \(m_Z, m_H, m_t \) and the kinematic variables \(\hat{s} \) and \(\hat{t} \), where the latter can be traded for the transverse momentum of the final-state particles, \(p_T \). In the \(p_T \) expansion of refs. \[35, 40\] it is assumed that the scales associated to \(m_Z, m_H \) and to \(p_T \) are small compared to the scales set by \(\hat{s} \) and \(m_t \). Under this assumption, the box integrals are expanded in ratios of small over large scales, and the resulting simplified integrals are written as linear combinations of 52 master integrals (MI) using Integration-by-Parts (IBP) identities obtained with \texttt{LiteRed} \[41, 42\]. On the other hand, in the high-energy expansion used in ref. \[30\] the two-loop box integrals are first expanded in terms of small \(m_Z \) and \(m_H \), then an IBP reduction is performed on the expanded integrals; the resulting MIs are further expanded in the limit \(m_t^2 \ll \hat{s}, |\hat{t}| \) and expressed in terms of harmonic polylogarithms.

In ref. \[36\] it has been shown that, in the forward kinematic regime\(^6\) defined by \(|\hat{t}| \leq |\hat{u}| \), the results of the \(p_T \) expansion are accurate in the phase-space region \(|\hat{t}| \lesssim 4m_t^2 \), while the HE expansion is accurate in the complementary region \(|\hat{t}| \gtrsim 4m_t^2 \). If the convergence of both expansions is improved using Padé approximants, then the combination of the results

\(^6\)Here and in ref. \[36\] it is assumed that the form factors are (anti)symmetric under \(\hat{t} \leftrightarrow \hat{u} \). As a consequence, the discussion above can be adapted to the backward regime simply replacing \(|\hat{t}| \) with \(|\hat{u}| \).
allows to approximate the exact cross section with an accuracy of 1% or below over the whole phase space. This procedure has been implemented in a FORTRAN program, which uses the Padé-improved HE expansion for phase-space points such that $|\hat{t}| > 4m_t^2$ and $|\hat{u}| > 4m_t^2$, and the Padé-improved p_T expansion for all the remaining phase-space points. When we compute the results using the $\overline{\text{MS}}$ scheme for the top-mass renormalization, the form factors $A^{(1,\Delta)}_i$ and $A^{(1,\tilde{\Delta})}_i$ need to be shifted by a quantity that is defined in eqs. (14,15) in ref. [36]. This shift is applied to the form factors before the construction of the relative Padé approximants.

We use handyG [43] for the evaluation of polylogarithms and the routine of ref. [44] for the evaluation of the two elliptic integrals occurring in the p_T expansion results. As a result, the average timing for evaluating one phase-space point using the Padé-improved HE expansion is around 0.004 s, while using the Padé-improved p_T expansion the timing ranges from 0.02 s to 0.09 s. For comparison, the evaluation of a phase-space point for the virtual terms using the results of a small-mass expansion requires on average 2 s [28].

2.2 Real corrections

For the $gg \rightarrow ZHg$ process, we adopt Recola2 [45, 46] to compute the one-loop matrix element, and we cross checked the result with MadGraph5_aMC@NLO [47]. We include all diagrams with massive and massless closed quark loops. Some representative diagrams are shown in figure 1. We note that in Recola2 the value of the top-quark mass cannot be changed after process initialization, and hence the process needs to be reinitialized each time if a dynamical top mass is adopted (which is the case if a dynamical scale is chosen in the $\overline{\text{MS}}$ top-mass renormalization scheme, see the next section). As a result, the average time to compute one phase-space point increases from 0.2 s to 1.0 s.

For $qg \rightarrow ZHq$, and $q\bar{q} \rightarrow ZHg$, the one-loop matrix elements are computed by MadGraph5_aMC@NLO, where we implement a filter to exclude diagrams without a closed fermion loop. In other words, we include two classes of Feynman diagrams: in the first class, examples of which are shown in figures 2a 2c, both the Z boson and Higgs boson are attached directly or indirectly (i.e. by connecting to an intermediate virtual boson, similarly to figure 1c) to a closed quark loop, while in the second class (as shown in figure 2b 2d) the Higgs boson is attached to a closed quark loop, but the Z boson is radiated from an open fermion line. We note that both types of diagrams can interfere with tree-level diagrams, hence produce $O(\alpha_s^2)$ contributions. Such contributions were studied in detail in ref. [11].

7They belong to the classes R_I and R_{II} for the top-mediated terms considered in ref. [11].
of the total cross section both at LO and NLO, while in the uncertainties is reduced by a factor of about 2. Moreover, the relative size of the scale uncertainties is essentially the same regardless of the top-mass renormalization scheme. We note that going from LO to NLO the relative size of the scale uncertainties is obtained from the envelope of a 7-point variation of the central scale.

Table 1. Total cross section at LO and NLO with full top-quark mass dependence using different top-quark-mass renormalization schemes. The central value of the renormalization and factorization scales is fixed to be \(\mu_R = \mu_F = M_{ZH}/2 \). Scale uncertainties are taken from a 7-point scale variation.

Top-mass scheme	LO [fb]	\(\sigma_{LO}/\sigma_{LO}^{OS} \)	NLO [fb]	\(\sigma_{NLO}/\sigma_{NLO}^{OS} \)	\(K = \sigma_{NLO}/\sigma_{LO} \)
On-Shell	64.01\(^{+27.2\%}_{-20.3\%} \)	—	118.6\(^{+16.7\%}_{-14.1\%} \)	—	1.85
\(\overline{\text{MS}}, \mu_t = M_{ZH}/4 \)	59.40\(^{+27.1\%}_{-20.2\%} \)	0.928	113.3\(^{+17.4\%}_{-14.5\%} \)	0.955	1.91
\(\overline{\text{MS}}, \mu_t = m_t^{\text{MS}}/(m_t^{\text{MS}}) \)	57.95\(^{+26.9\%}_{-20.1\%} \)	0.905	111.7\(^{+17.7\%}_{-14.6\%} \)	0.942	1.93
\(\overline{\text{MS}}, \mu_t = M_{ZH}/2 \)	54.22\(^{+26.8\%}_{-20.0\%} \)	0.847	107.9\(^{+18.4\%}_{-15.0\%} \)	0.910	1.99
\(\overline{\text{MS}}, \mu_t = M_{ZH} \)	49.23\(^{+26.6\%}_{-19.9\%} \)	0.769	103.3\(^{+19.6\%}_{-15.0\%} \)	0.871	2.10

and they were considered as part of the NNLO corrections to \(pp \to ZH \). On the other hand, in this paper we compute the square of those diagrams, corresponding to \(O(\alpha_s^3) \) contributions that we consider as NLO corrections to \(gg \to ZH \).

3 Results

In this section, we present our numerical results for a center-of-mass energy \(\sqrt{s} = 13 \) TeV. We adopt the following input parameters: \(m_t^{\text{OS}} = 172.5 \) GeV, \(m_W = 80.385 \) GeV, \(m_Z = 91.1876 \) GeV, \(m_H = 125 \) GeV, \(G_\mu = 1.1663787 \times 10^{-5} \) GeV\(^{-2} \). We adopt the NNPDF31_nnlo_as_0118 [48] parton distribution functions in a five flavour scheme.

3.1 Inclusive cross section

In table 1, we show the total cross section at LO and NLO adopting different top-quark-mass renormalization schemes, i.e. OS and \(\overline{\text{MS}} \) with different scale choices. We fix the central value of the renormalization and factorization scales to be \(\mu_R = \mu_F = M_{ZH}/2 \). The scale uncertainty is obtained from the envelope of a 7-point variation of the central scale according to \((\mu_R/\mu_C, \mu_F/\mu_C) = (1, 1), (1, \frac{1}{2}), (1, 2), (\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 1), (2, 1), (2, 2) \).

We find that the NLO corrections are large for each choice of the top-mass renormalization scheme, with an approximate \(K \)-factor, \(K = \sigma_{NLO}/\sigma_{LO} \), of around 2. Moreover, the relative size of the scale uncertainties is essentially the same regardless of the top-mass renormalization scheme. We note that going from LO to NLO the relative size of the scale uncertainties is reduced by a factor of about 2/3. The OS scheme leads to the largest value of the total cross section both at LO and NLO, while in the \(\overline{\text{MS}} \) scheme for \(\mu_t = M_{ZH} \) the
Figure 3. Invariant-mass distribution at LO (magenta) and NLO (green) for the OS scheme (a) and the \(\overline{\text{MS}} \) scheme with the choice \(\mu_t = M_{ZH}/2 \) (b). The scale uncertainties are depicted as shaded bands. The lower panels show the \(K \)-factor.

The smallest cross section value is obtained. At LO, the difference between these two schemes amounts to about 23%, while it decreases to 13% at NLO.

We notice that our OS results are about 20% larger at LO and 14% larger at NLO than those of ref. [29] (see table 1 therein). This discrepancy is mainly due to the different choice for \(\mu_C \), and it is related only in a minor way to the additional diagrams included in our calculation and to the different input parameters adopted. To verify this, we have computed our results including the same diagrams and adopting the same input parameters as in ref. [28] (which is in accordance with ref. [29]) and we have found an agreement at the level of the Monte Carlo error. Furthermore, when we consider the relative importance of the scale uncertainties, we observe very similar results to ref. [29].

3.2 Differential distributions

In figure 3, we plot the \(M_{ZH} \) distribution in both the OS scheme (3(a)) and the \(\overline{\text{MS}} \) scheme with \(\mu_t = M_{ZH}/2 \) (3(b)) in the region \(M_{ZH} \in [200, 800] \) GeV. In both schemes, the \(K \)-factor is about 3 in the \(ZH \) threshold region, then it decreases as \(M_{ZH} \) increases. In the top-pair threshold region (\(M_{ZH} \sim 2 m_t \)), the OS scheme gives a peak with \(K \)-factor slightly above 2, while the \(\overline{\text{MS}} \) scheme shows a small dip followed by a peak instead. Increasing \(M_{ZH} \) to about 800 GeV, the \(K \)-factor in the OS scheme decreases to about 1.5, while it remains about 2 in \(\overline{\text{MS}} \) scheme.
If M_{ZH} is increased to very large values, as shown in figure 4, we observe that the K-factor starts to increase rapidly. At $M_{ZH} = 2.5$ TeV, the value of the K-factor can reach ~ 6 in the OS scheme, and ~ 10 in the $\overline{\text{MS}}$ scheme. Such behaviour is due to the inclusion of diagrams where the Z boson is radiated from an open quark line, as in figures 2b and 2d. For comparison, in figure 4 we show also the NLO cross section when these contributions are excluded. Indeed, one finds that in the latter case the K-factor remains rather flat at high M_{ZH} in both schemes.

To further assess the contribution of these Z-radiated diagrams, in figure 5(a) we show various pieces of the $\mathcal{O}(\alpha_s^3)$ corrections to the $pp \rightarrow ZH + X$ cross section: we compare the isolated contribution of the Z-radiated diagrams for the qg and $q\bar{q}$ initial states (green and yellow lines, respectively) to the contribution from each of the two partonic channels including all the relevant diagrams (orange and red lines for qg and $q\bar{q}$, respectively). We can see that in the qg channel when $M_{ZH} > 1$ TeV, the dominant contribution comes from the square of the Z-radiated diagrams. We ascribe this feature to the contribution from logarithmic terms of EW origin, of the form $\log^2 (m_Z^2/M_{ZH}^2)$, which become large when the typical scale of the process (M_{ZH}) and the EW scale (represented by m_Z) are very different, see e.g. ref. [49]. On the other hand, although the $q\bar{q}$ channel includes diagrams where the Z boson is radiated from the external quark lines, its size remains negligible with respect to the total cross section, though also there we observe that the Z-radiated diagrams are dominating the respective initial state at high M_{ZH}. This suppression can
be mainly attributed to the reduced partonic luminosity with respect to the qg channel. For comparison, in figure 5(a) we also report the size of the Drell-Yan type contribution at NNLO (black line), which we obtained using vh@nnlo [18, 25] with MCFM [50–52]. In the lower panel of figure 5(a) we plot the ratio of the $\mathcal{O}(\alpha_3^2)$ corrections computed by us with respect to the NNLO Drell-Yan contribution. We can see that despite being $\mathcal{O}(\alpha_3^2)$, the relative importance of the Z-radiated contribution can reach 2% when $M_{ZH} \sim 2$ TeV.

In figure 5(b) we compare our results for $gg \rightarrow ZH$ at LO (green line) and NLO (blue line) with the Drell-Yan type contribution (black line). In the upper panel we show the size of the differential cross section for the various channels, while in the lower panel the ratio of the gluon-fusion with respect to the NNLO Drell-Yan contribution is displayed. We can see that the gluon-fusion contribution peaks around the top-pair threshold, which increases its relative size over the Drell-Yan contribution by about 25% at LO, and about 45% at NLO. The relative size of the gluon-fusion contribution decreases above the top-pair threshold as M_{ZH} increases, and at NLO becomes dominated by the Z-radiated terms for very large values of M_{ZH}. In particular, at 2 TeV the latter constitute more than half of the gluon-fusion contribution.
Figure 6. Invariant-mass distribution at LO (a) and NLO (b) for different choices of the top-mass renormalization scheme. The lower panels show the ratio of the $\overline{\text{MS}}$ results using various scales over the OS results.

3.3 Change of renormalization scheme

To assess the impact of the top-quark-mass renormalization scheme at differential level, we show in figure 6 the differential cross section at LO (6(a)) and NLO (6(b)) in various top-mass schemes. The lower panel shows the ratio of the $\overline{\text{MS}}$ results with respect to the OS scheme.

Before discussing the results, we note that the value of the top mass can affect the shape of the distributions in two ways: first, in the high-energy regime, it directly controls the overall size of the LO and NLO contributions via the proportionality of the amplitude to the top-Yukawa coupling; second, in the low M_{ZH} region the value of m_t shifts the position of the peak associated to the top-pair threshold, $M_{ZH} = 2m_t$. The former effect has been already observed by the authors of ref. [29], and our results are in agreement when the same scale choices ($\mu_t = M_{ZH}$ and $\mu_t = m_t^{\overline{\text{MS}}}$) and the same invariant-mass range ($M_{ZH} > 400$ GeV) are considered. On the other hand, since we can use our analytic results to investigate the low M_{ZH} region, in figure 6 we are also able to observe the effect of the peak shift on the invariant-mass distribution. In particular, we can see that the ratio (orange line) between $\mu_t = M_{ZH}$ and the OS scheme is about 2 in the bin $M_{ZH} \in [300, 325]$ GeV at LO, and decreases to about 1.75 at NLO. Instead, for $\mu_t = M_{ZH}/4$ (green

In the low-energy regime $M_{ZH} \lesssim 2m_t$, where an expansion in the large-m_t limit is accurate, the amplitude goes to a constant, as observed for the first time in ref. [53].
line) this effect is rather small. Indeed, since renormalization-group evolution predicts that $m_t^{\overline{MS}}(\mu_t)$ decreases monotonically as μ_t increases, we expect larger deviations from the OS results when larger values of μ_t are chosen, see also ref. [54]. In the region $M_{ZH} > 350$ GeV, the OS scheme provides the largest cross section, while the cross section for the choice $\mu_t = M_{ZH}$ is the smallest. Across all regions, we can see that going from LO to NLO reduces the difference among different top-mass schemes.

To quantify the size of top-mass renormalization uncertainties, we follow the procedure adopted in refs. [54, 55]. In this approach, after a binning of the M_{ZH} range is chosen, the OS scheme result is taken as the central value, while for each bin the uncertainty is obtained using the minimal and maximal values from a set of results in different renormalization schemes. In particular, for the top mass we considered the set \{ m_t^{OS}, $m_t^{\overline{MS}}(m_t^{\overline{MS}})$, $m_t^{\overline{MS}}(M_{ZH}/4)$, $m_t^{\overline{MS}}(M_{ZH}/2)$, $m_t^{\overline{MS}}(M_{ZH})$ \}. In table 2, we show our results under different choices of the bin size. Due to the way in which the overall uncertainty is constructed, the latter becomes bigger the smaller the bin size is chosen. This is though mainly due to the top-pair threshold region, where the location of the bin can lead to a bigger or smaller top-mass renormalization uncertainty in dependence on how well the structure at the top-pair threshold is resolved by the binning. In particular, if the bin width is too small then peak values related to different choices of μ_t will contribute to separate bins (compare e.g. the bins [300;325] GeV and [325;350] GeV in figure 6), likely resulting in an overestimate of the uncertainty. On the other hand, for large invariant masses the OS scheme result is always the largest and the scheme using $m_t^{\overline{MS}}(M_{ZH})$ is the smallest. In the very-low invariant-mass region (i.e. $M_{ZH} \lesssim 275$ GeV) the scheme dependence is small, as this region can be well described by a large mass expansion.

In principle, we expect that if the description of the top-pair threshold region was improved by a Coulomb resummation, the dependence on the binning of the uncertainty would become smaller. At the same time, in order to avoid the risk of overestimating the top-mass renormalization uncertainty with our results, the binning should be chosen in such a way that the various top-pair threshold regions associated to different choices of μ_t lie within a single bin, for example using a 100 GeV bin in the region [275;375] GeV.

We observe that the uncertainty nearly halves when going from LO to NLO for choosing a bin size ≥ 100 GeV. This is similar to what has been observed for $gg \rightarrow HH$ in ref. [55]. When smaller bin sizes are adopted, the uncertainty does not half but still shows a sizable reduction.

4 Conclusions

In this paper we have presented the evaluation of the QCD corrections at NLO for the gg-initiated channel to ZH associated production. The computation of the virtual corrections is based on the approach of ref. [36], while for this work we have computed the real corrections and included them in a fast and flexible code. For the inclusive cross section, we have found that the NLO QCD corrections are of the same size as the LO contribution.

\footnote{For instance, in ref. [36] a peak dip structure for the virtual corrections was observed at the top-pair threshold.}
Table 2. Inclusive OS results for the LO and NLO $gg \rightarrow ZH$ cross sections and relative top-mass-scheme uncertainties. The uncertainties are computed according to refs. [54, 55].

Bin Width [GeV]	LO	NLO
1	64.01+15.6%\,−35.9%	118.6+17.2%\,−27.0%
5	64.01+15.3%\,−35.6%	118.6+14.7%\,−24.0%
25	64.01+14.0%\,−33.1%	118.6+10.9%\,−20.8%
100	64.01+2.0%\,−25.3%	118.6+0.6%\,−13.7%
∞	64.01+0%\,−23.1%	118.6+0%\,−12.9%

and they increase the cross section by a factor of about 2. Our findings are in accordance with independent results in the literature [28, 29]. We have also studied the invariant-mass distribution of the $gg \rightarrow ZH$ channel at NLO, observing that the perturbative K-factor is not flat across the M_{ZH} range, specifically in the region of threshold ZH production and in the very-high-energy tail ($M_{ZH} > 1$ TeV). Furthermore, we have shown that in this latter region the contribution from real-emission diagrams in which the Z boson is emitted from an open quark line is the dominant one, and it causes the K-factor to rise up to 10 in the \overline{MS} scheme. We expect that in WH production an analogous class of W-radiated diagrams will give a similar contribution in the high-energy regime. While the focus of our analysis is on LHC phenomenology, this feature could be of interest for studies at future colliders.

The gg-initiated channel is responsible for the larger theoretical uncertainties in the prediction for ZH production, compared to its WH counterpart. We have shown that the inclusion of the NLO corrections bring only a mild reduction of the scale uncertainties, about a factor 2/3, suggesting that more accurate calculations are necessary in order to describe the gg-initiated channel at a level that is adequate for experimental studies in the future. Finally, the implementation used for our results allowed us to study for the first time the impact of the uncertainty due to the renormalization scheme for the top-quark mass over the whole invariant-mass range: we have found that different choices for the top mass scheme can lead to substantially different results, and we suggest that this uncertainty should be included in refined theoretical predictions.

Acknowledgments

We thank Luigi Bellafronte and Pier Paolo Giardino for useful discussions. The work of M.V. and X.Z. is supported by the Italian Ministry of Research (MUR) under grant PRIN 20172LNEEZ.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.
References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] G. Heinrich, Collider physics at the precision frontier, Phys. Rept. 922 (2021) 1 [arXiv:2009.00516] [INSPIRE].

[4] ATLAS collaboration, Observation of $H \to b\bar{b}$ decays and VH production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

[5] CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].

[6] ATLAS collaboration, Measurements of WH and ZH production in the $H \to b\bar{b}$ decay channel in pp collisions at 13 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 178 [arXiv:2007.02873] [INSPIRE].

[7] ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector, arXiv:2201.11428 [INSPIRE].

[8] LHC HIGGS CROSS SECTION WORKING GROUP collaboration, Handbook of LHC Higgs cross sections: 1. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].

[9] T. Han and S. Willenbrock, QCD correction to the $pp \to WH$ and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].

[10] O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

[11] O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].

[12] M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

[13] A. Denner, S. Dittmaier, S. Kallweit and A. Muck, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

[14] B.A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions, Phys. Rev. D 42 (1990) 2253 [INSPIRE].

[15] D.A. Dicus and C. Kao, Higgs boson-Z^0 production from gluon fusion, Phys. Rev. D 38 (1988) 1008 [Erratum ibid. 42 (1990) 2412] [INSPIRE].

[16] G. Ferrera, M. Grazzini and F. Tramontano, Associated ZH production at hadron colliders: the fully differential NNLO QCD calculation, Phys. Lett. B 740 (2015) 51 [arXiv:1407.4747] [INSPIRE].

[17] B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2HDM, JHEP 06 (2015) 065 [arXiv:1503.01656] [INSPIRE].
[18] R.V. Harlander, J. Klappert, S. Liebler and L. Simon, vh@nnlo-v2: new physics in Higgs strahlung, *JHEP* **05** (2018) 089 [arXiv:1802.04817] [inSPIRE].

[19] W. Bizoń, F. Caola, K. Melnikov and R. Röntsch, Anomalous couplings in associated VH production with Higgs boson decay to massive b quarks at NNLO in QCD, *Phys. Rev. D* **105** (2022) 014023 [arXiv:2106.06328] [inSPIRE].

[20] C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, *Phys. Rev. D* **89** (2014) 013013 [arXiv:1310.4828] [inSPIRE].

[21] C. Englert, R. Rosenfeld, M. Spannowsky and A. Tonero, New physics and signal-background interference in associated pp \(\rightarrow \) HZ production, *EPL* **114** (2016) 31001 [arXiv:1603.05304] [inSPIRE].

[22] B. Yan and C.P. Yuan, Anomalous Zb\(\bar{b} \) couplings: from LEP to LHC, *Phys. Rev. Lett.* **127** (2021) 051801 [arXiv:2101.06261] [inSPIRE].

[23] B.A. Kniehl and C.P. Palisoc, Associated production of Z and neutral Higgs bosons at the CERN Large Hadron Collider, *Phys. Rev. D* **85** (2012) 075027 [arXiv:1112.1575] [inSPIRE].

[24] L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak and T.J.E. Zirke, Gluon-induced Higgs strahlung at next-to-leading order QCD, *JHEP* **02** (2013) 078 [arXiv:1211.5015] [inSPIRE].

[25] O. Brein, R.V. Harlander and T.J.E. Zirke, vh@nnlo — Higgs strahlung at hadron colliders, *Comput. Phys. Commun.* **184** (2013) 998 [arXiv:1210.5347] [inSPIRE].

[26] A. Hasselhuhn, T. Luthe and M. Steinhauser, On top quark mass effects to gg \(\rightarrow \) ZH at NLO, *JHEP* **01** (2017) 073 [arXiv:1611.05881] [inSPIRE].

[27] R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes, *JHEP* **03** (2018) 020 [arXiv:1709.07799] [inSPIRE].

[28] G. Wang, X. Xu, Y. Xu and L.L. Yang, Next-to-leading order corrections for gg \(\rightarrow \) ZH with top quark mass dependence, *Phys. Lett. B* **829** (2022) 137087 [arXiv:2107.08206] [inSPIRE].

[29] L. Chen et al., ZH production in gluon fusion at NLO in QCD, [arXiv:2204.05225] [inSPIRE].

[30] J. Davies, G. Mishima and M. Steinhauser, Virtual corrections to gg \(\rightarrow \) ZH in the high-energy and large-m\(\ell \) limits, *JHEP* **03** (2021) 034 [arXiv:2011.12314] [inSPIRE].

[31] L. Chen, G. Heinrich, S.P. Jones, M. Kerner, J. Klappert and J. Schlenk, ZH production in gluon fusion: two-loop amplitudes with full top quark mass dependence, *JHEP* **03** (2021) 125 [arXiv:2011.12325] [inSPIRE].

[32] S. Alioli, A. Broggio, S. Kallweit, M.A. Lim and L. Rottoli, Higgstrahlung at NNLL’+NNLO matched to parton showers in GENEVA, *Phys. Rev. D* **100** (2019) 096016 [arXiv:1909.02026] [inSPIRE].

[33] S. Zanoli, M. Chiesa, E. Re, M. Wiesemann and G. Zanderighi, Next-to-next-to-leading order event generation for VH production with H \(\rightarrow \) b\(\bar{b} \) decay, *JHEP* **07** (2022) 008 [arXiv:2112.04168] [inSPIRE].

[34] R.V. Harlander, A. Kulesza, V. Theeuwes and T. Zirke, Soft gluon resummation for gluon-induced Higgs strahlung, *JHEP* **11** (2014) 082 [arXiv:1410.0217] [inSPIRE].
[35] L. Alasfar, G. Degrassi, P.P. Giardino, R. Gröber and M. Vitti, Virtual corrections to $gg \to ZH$ via a transverse momentum expansion, *JHEP* 05 (2021) 168 [arXiv:2103.06225] [nSPIRE].

[36] L. Bellafronte, G. Degrassi, P.P. Giardino, R. Gröber and M. Vitti, Gluon fusion production at NLO: merging the transverse momentum and the high-energy expansions, *JHEP* 07 (2022) 069 [arXiv:2202.12157] [nSPIRE].

[37] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, *Nucl. Phys. B* 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [nSPIRE].

[38] K. Melnikov and T.v. Ritbergen, The three loop relation between the MS-bar and the pole quark masses, *Phys. Lett. B* 482 (2000) 99 [hep-ph/9912391] [nSPIRE].

[39] K.G. Chetyrkin, Quark mass anomalous dimension to $O(\alpha_s^4)$, *Phys. Lett. B* 404 (1997) 161 [hep-ph/9703278] [nSPIRE].

[40] R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, Analytical method for next-to-leading-order QCD corrections to double-Higgs production, *Phys. Rev. Lett.* 121 (2018) 162003 [arXiv:1806.11564] [nSPIRE].

[41] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, *J. Phys. Conf. Ser.* 523 (2014) 012059 [arXiv:1310.1145] [nSPIRE].

[42] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [nSPIRE].

[43] L. Naterop, A. Signer and Y. Ulrich, handyG — rapid numerical evaluation of generalised polylogarithms in fortran, *Comput. Phys. Commun.* 253 (2020) 107165 [arXiv:1909.01656] [nSPIRE].

[44] R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, A numerical routine for the crossed vertex diagram with a massive-particle loop, *Comput. Phys. Commun.* 241 (2019) 122 [arXiv:1812.02698] [nSPIRE].

[45] S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, *JHEP* 04 (2013) 037 [arXiv:1211.6316] [nSPIRE].

[46] A. Denner, J.-N. Lang and S. Uccirati, Recola2: REcursive Computation of One-Loop Amplitudes 2, *Comput. Phys. Commun.* 224 (2018) 346 [arXiv:1711.07388] [nSPIRE].

[47] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, *JHEP* 07 (2014) 079 [arXiv:1405.0301] [nSPIRE].

[48] NNPDF collaboration, Parton distributions from high-precision collider data, *Eur. Phys. J. C* 77 (2017) 663 [arXiv:1706.00428] [nSPIRE].

[49] M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, *Phys. Rev. Lett.* 84 (2000) 4810 [hep-ph/0001142] [nSPIRE].

[50] J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, *JHEP* 07 (2011) 018 [arXiv:1105.0020] [nSPIRE].

[51] J.M. Campbell, R.K. Ellis and W.T. Giele, A multi-threaded version of MCFM, *Eur. Phys. J. C* 75 (2015) 246 [arXiv:1503.06182] [nSPIRE].

– 17 –
[52] R. Boughezal et al., *Color singlet production at NNLO in MCFM*, *Eur. Phys. J. C* **77** (2017) 7 [arXiv:1605.08011] [INSPIRE].

[53] B.A. Kniehl, *On the decay mode* $Z \rightarrow Hgg$, *Phys. Rev. D* **42** (1990) 3100 [INSPIRE].

[54] J. Baglio et al., *Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections*, *JHEP* **04** (2020) 181 [arXiv:2003.03227] [INSPIRE].

[55] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, *Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme*, *Eur. Phys. J. C* **79** (2019) 459 [arXiv:1811.05692] [INSPIRE].