Chernoff Information of Bottleneck Gaussian Trees

Binglin Li, Shuangqing Wei, Yue Wang, Jian Yuan

Abstract

In this paper, our objective is to find out the determining factors of Chernoff information in distinguishing a set of Gaussian trees. In this set, each tree can be attained via an edge removal and grafting operation from another tree. This is equivalent to asking for the Chernoff information between the most-likely confused, i.e. “bottleneck”, Gaussian trees, as shown to be the case in ML estimated Gaussian tree graphs lately. We prove that the Chernoff information between two Gaussian trees related through an edge removal and a grafting operation is the same as that between two three-node Gaussian trees, whose topologies and edge weights are subject to the underlying graph operation. In addition, such Chernoff information is shown to be determined only by the maximum generalized eigenvalue of the two Gaussian covariance matrices. The Chernoff information of scalar Gaussian variables as a result of linear transformation (LT) of the original Gaussian vectors is also uniquely determined by the same maximum generalized eigenvalue. What is even more interesting is that after incorporating the cost of measurements into a normalized Chernoff information, Gaussian variables from LT have larger normalized Chernoff information than the one based on the original Gaussian vectors, as shown in our proved bounds.

Index Terms

Gaussian trees; Chernoff information; Edge grafting operation; Generalized eigenvalue

I. INTRODUCTION

Gaussian graphical models have found great successes in characterizing conditional independence of continuous random variables in diverse applications including social networks [1], biology [2], and economics [3], to name a few. Among Gaussian graphical models, Gaussian trees in particular have attracted much attention due to their sparse structures, as well as existing computationally efficient algorithms in learning the underlying topologies [4]. The statistical inference problems related to Gaussian graphical models are often focused on two primary aspects, namely, parameter estimation and performance analysis. The parameter estimation is concerned of graph model selection and an estimation of the associated covariance matrix. The focus of this paper is on the analysis aspect, and more specifically, we want to develop some fundamental bounds on Chernoff-Information (CI) based error exponents in learning Gaussian tree graphs.

Chernoff information between two probability distributions offers us an exact error exponent for the average error probability in discerning the two distributions based on a sequence of data drawn independently from one of the two distributions [5], and the minimum pair-wise Chernoff information is the error exponent characterizing the performance of an M-ary hypothesis testing problem [6]. Recently in [7], graph model selection problem has been formulated as an information theoretical problem where each candidate graph model is deemed as a message, and the sufficient conditions have been found to decode and thus learn correctly the actual message (i.e. the right graphical model). Such conditions were found by bounding pair-wise error probabilities with some symmetrized distances between two candidate graph models, which are weaker than Chernoff information, though.

Large deviation analysis has been conducted in [8]–[10] where the error exponents for learning either discrete Markov or Gaussian trees have been found. However, the error events in learning tree graph models in [8], [10] are conditional error event, and a symmetrized Kullback–Leibler (KL) distance, namely, J-divergence, instead of the tighter Chernoff distance, was adopted in [9] to analyze the corresponding error exponent. Such conditional error event was also considered in [11] where a tight lower-bound on KL distance between a true Gaussian graph model and an incorrect one was found. In addition, it was shown that such lower-bound is attained when the two graphs differ by at least one edge, and the joint distribution of the candidate graph is a projection of the true one onto it.

B. Li, Y. Wang and J. Yuan are with Department of Electronic Engineering, Tsinghua University, Beijing, P. R. China, 100084. (E-mail: libl13@mails.tsinghua.edu.cn, wangyue, jyuan@mail.tsinghua.edu.cn). S. Wei is with the school of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA (Email: swei@lsu.edu).
under the missing edge constraint. It should be noted that it has been shown in [8], [10] that the most likely error in ML estimation of a Markov tree is another tree which differs from the true tree by a missing edge.

In this paper, we are interested in finding out the determining factors of Chernoff information in distinguishing a set of Gaussian trees with the same amount of randomness, i.e. sharing the same determinant of their covariance matrices and normalized variances. In this set, any tree in can be attained via some topological operation by grafting one edge from another tree, as shown in Figure 1. Our formulation is for the purpose of identifying the contributing factors to Chernoff information in distinguishing Gaussian trees with minimum topological difference, which can be deemed as a worst case scenario or equivalently dominant error event as put in [10], with one edge missing from one tree to get the other. The assumptions made on sharing the same entropy and normalized variances are for the ease of analysis and providing insights, as shown later in our results.

To reduce measurement cost, we could linearly transform an N\textsubscript{I} dimensional Gaussian vector X to a N\textsubscript{O} < N\textsubscript{I} dimensional vector Y = AX, through a N\textsubscript{O} by N\textsubscript{I} matrix A. An immediate question we address in this paper is the selection of A through which we want to maximize the Chernoff information between two two Gaussian distributions of Y corresponding to two original Gaussian trees. In particular, we solved the problem for a simple, but non-trivial case with N\textsubscript{O} = 1, i.e. the selection of a one by N\textsubscript{I} vector to maximize the Chernoff information between the two resulting Gaussian scalars.

Our major and novel results can be summarized as follows. We first prove a sequence of results on how to reduce the complexity of computing Chernoff information between two Gaussian trees sharing some local parameters. Based on these results, we further prove that the Chernoff information between two Gaussian trees related through an edge removal and a grafting operation is the same as that between two three-node Gaussian trees, whose topologies and edge weights are subject to the underlying graph operation. In addition, such Chernoff information is determined only by the maximum generalized eigenvalue of the two Gaussian covariance matrices. The aforementioned transformation is further shown to be applicable when we consider the Chernoff information between two Gaussian scalar variables resulted from a linear transformation (LT) of the original Gaussian vectors. What is even more interesting is that after incorporating the cost of measurements into a normalized Chernoff information, Gaussian variables from LT have larger normalized Chernoff information than the one based on the original Gaussian vectors, as shown in our proved bounds.

The paper is organized as follows. Section II presents the system model. Some propositions used to simplify big trees are presented in Section III. Section IV is about the study of two simplified 3-node trees and comparison of how observation cost affects Chernoff information. And in Section V we conclude the paper.

II. SYSTEM MODEL

Gaussian tree models capture the conditional independence relationships of multiple Gaussian variables using tree topologies. Here, we normalize the variance of all the values to be 1 and all the mean values to be 0. An N-node tree can be represented as G = (V, E, W). Here V = \{1, . . . , N\} is the vertex set of the tree. E = \{e\textsubscript{ij}(i, j) \subset V \times V\} is the edge set that satisfies |E| = N - 1 and contains no cycles. W = \{w\textsubscript{ij} \in [-1, 1]|e\textsubscript{ij} \in E\} is the set of edge weights. On these conditions, a vector of Gaussian variables x = [x\textsubscript{1}, x\textsubscript{2}, . . . , x\textsubscript{N}]T \sim N(0, \Sigma) is said to be a Gaussian distribution on the tree G = (V, E, W) if

$$\sigma_{ij} = \begin{cases} 1 & i = j \\ w_{ij} & e_{ij} \in E \\ w_{im} w_{mn} \cdots w_{pj} & e_{ij} \notin E \end{cases}$$

(1)
where σ_{ij} is the (i,j) term of Σ and $e_{im}e_{mn} \ldots e_{pj}$ is the unique path from node i to node j [12].

Consider a set of Gaussian trees, namely, $G_k = (V_k, E_k, W_k)$, $k = 1, 2, \ldots, m$, with their prior probabilities given by $\pi_1, \pi_2, \ldots, \pi_m$. They share the same entropy, and thus the same determinant of their covariance matrices $\Sigma_k = [\sigma_{ij}^{(k)}]$, whose sets of edge weights are denoted by $W_k = \{w_{ij}^{(k)}\}$. We want to run an m-ary hypothesis testing to find out from which Gaussian tree the data sequence $X = [x_1, \ldots, x_T]$ ($x_t = [x_{1,1}, \ldots, x_{n,t}]'$) has been drawn. We define the average error probability of the hypothesis testing to be P_e, and let $E_e = \lim_{T \to \infty} -\frac{\ln P_e}{T}$ be the resulting error exponent [5], which depends on the smallest Chernoff information between the trees [6], namely,

$$E_e = \min_{1 \leq i \neq j \leq m} CI(\Sigma_i || \Sigma_j)$$

(2)

where $CI(\Sigma_i || \Sigma_j)$ is the Chernoff information between the i^{th} and j^{th} trees.

For two N-dim Gaussian joint distributions $x_1 \sim N(0, \Sigma_1)$ and $x_2 \sim N(0, \Sigma_2)$, the KL distance from G_1 to G_2 is

$$D(\Sigma_1 || \Sigma_2) = \frac{1}{2} \ln \frac{\Sigma_2}{\Sigma_1} + \frac{1}{2} tr(\Sigma_2^{-1} \Sigma_1) - \frac{N}{2}$$

(3)

where $tr(A) = \sum a_{ii}$ is the trace of the matrix. We define a new distribution $N(0, \Sigma_\lambda)$ in the exponential family of the $N(0, \Sigma_1)$ and $N(0, \Sigma_2)$, namely

$$\Sigma_\lambda^{-1} = \Sigma_1^{-1} \lambda + \Sigma_2^{-1} (1 - \lambda),$$

(4)

and the Chernoff information is as given by

$$CI(\Sigma_1 || \Sigma_2) = D(\Sigma_\lambda || \Sigma_2) = D(\Sigma_\lambda || \Sigma_1),$$

(5)

where λ^* is the point which satisfies the latter equation [5]. As expected, the computational complexity of Chernoff information greatly depends on the two specific trees involved.

It has been shown recently in [13] that the KL distance between a true Gaussian graph model and an incorrect one is lower-bounded by a conditional mutual information, and the lower-bound becomes tight when the learned tree only differs from the true one by removal of one leaf node and grafting to another vertex in the original tree. As we already know that the overall Chernoff information in an m-ary testing is bottle-necked by the minimum pair-wise difference, thus for the rest of this paper, we only consider pairs of Gaussian trees one of which can be obtained from the other through such grafting operations in order to reveal what really determines the Chernoff information related to such dominant error events.

In addition to the full observation case, we will also study a linearly transformed (LT) observation case. For two N-node trees: G_1, G_2, in the full observation case, we can have access to all N variables and only need to calculate $CI(\Sigma_1 || \Sigma_2)$. But in the LT observation case, we can only observe a N_O-dim vector each time, namely, $y = Ax$, where A is a $N_O \times N$ matrix and $x \in R^N, y \in R^{N_O}$. The new variables follow joint distributions $N(0, \tilde{\Sigma}_1)$ and $N(0, \tilde{\Sigma}_2)$. For fixed N_O, we want to find the optimal A^* and its Chernoff information result $CI(\tilde{\Sigma}_1 || \tilde{\Sigma}_2)$, s.t.

$$A^* = \arg \max_A CI(\tilde{\Sigma}_1 || \tilde{\Sigma}_2)$$

(6)

For m-ary Hypothesis testing case, the optimal A^* becomes

$$A^* = \arg \max_A \min_{1 \leq i \neq j \leq m} CI(\tilde{\Sigma}_i || \tilde{\Sigma}_j)$$

(7)

To gain insights, we only consider and compare two cases, the full observation one against the case of $N_O = 1$ for the LT in terms of their respective Chernoff information with and without a normalization factor to count the differences reflected by measurement dimensions. Next section, we will provide some interesting results to shed light on the determining factors of Chernoff information between two trees with minimum structure difference.
III. PROPOSITIONS TO SIMPLIFY THE CALCULATION OF CHERNOFF INFORMATION

A normalized covariance matrix of a Gaussian tree has a very simple inverse matrix and determinant, which are necessary for the calculation of Chernoff information.

Proposition 1: For a normalized covariance matrix of Gaussian trees $G = (V, E, W)$, define $\Sigma^{-1} = [u_{ij}]$. So $|\Sigma| = \prod_{e_i \in E}(1 - w_{ij}^2)$ and the elements of Σ^{-1} follow the following expressions:

$$
u_{ij} = \begin{cases}
\frac{-w_{ij}}{1-w_{ij}^2} & i \neq j \text{ and } e_{ij} \in E \\
0 & i \neq j \text{ and } e_{ij} \notin E \\
1 + \sum_{p \in e_{ip} \in E} \frac{w_{ip}^2}{1-w_{ip}^2} & i = j.
\end{cases}$$ (8)

This proposition can be easily proved with the equation of block matrix and mathematical induction.

A. Full observation case

For the full observation case, we can observe all the N nodes each time. Then we can learn the resolution potential of the trees without the effect of observation mapping. Here we learn how small local differences influence the Chernoff information. The grafting operation contains cutting operation and attaching operation. We want to study the cutting operation first and see how Chernoff information changes when we cut the same vertex from two trees. For convenience, we define a new symbol $A = B/\{b\}$, indicating that the set A has all the elements in set B except element b.

Proposition 2: For two N-node Gaussian graphical models $G_1 = (V, E_1, W_1), G_2 = (V, E_2, W_2)$, their Chernoff information is written as $CI(G_1||G_2)$. Then we draw two new Gaussian graphical models $G'_1 = (V/\{i\}, E'_1, W'_1), G'_2 = (V/\{i\}, E'_2, W'_2)$ whose joint distributions are the same with the joint distribution of $V/\{i\}$ nodes in G_1, G_2. Their Chernoff information is written as $CI(G'_1||G'_2)$, with $CI(G'_1||G'_2) \leq CI(G_1||G_2)$.

To prove this proposition, we have to prove several other results first.

Proposition 3: Assuming that there are two n states discrete PMF $P = [p_1, p_2, \ldots, p_{n-2}, p_{n-1}, p_n]$ and $Q = [q_1, q_2, \ldots, q_{n-2}, q_{n-1}, q_n]$. We combine the $(n-1)^{th}$, n^{th} states and get two new PMF $P' = [p_1, p_2, \ldots, p_{n-2}, p_{n-1} + p_n]$ and $Q' = [q_1, q_2, \ldots, q_{n-2}, q_{n-1} + q_n]$. Then $CI(P||Q) \geq CI(P'||Q')$ and the equation holds if and only if $\frac{p_{n-1}}{q_{n-1}} = \frac{p_n}{q_n}$ or $q_{n-1} = q_n = 0$.

Proposition 4: Assume that there are N continuous values $X = [X_1, \ldots, X_N]$ and two distributions $f_1(X)$ and $f_2(X)$, their joint distributions on nodes $X/\{i\}$ are $f'_1(X/\{i\})$ and $f'_2(X/\{i\})$. So the Chernoff information between them follows this property:

$$CI(f_1(X)||f_2(X)) \geq CI(f'_1(X/\{i\})||f'_2(X/\{i\}))$$ (9)

and it becomes equality if and only if the conditional distribution follows $f_1(X_i|X/\{i\}) = f_2(X_i|X/\{i\})$.

Proposition 5: For two N-node Gaussian tree models $G_1 = (V, E_1, W_1)$ and $G_2 = (V, E_2, W_2)$, their Chernoff information is written as $CI(G_1||G_2)$. If they have the same leaf node i with an edge connecting to the same node j with the same weight w_{ij}, then we can delete this node and edge and get two new trees $G'_1 = (V/\{i\}, E_1/e_{ij}, W_1/w_{ij}), G'_2 = (V/\{i\}, E_2/e_{ij}, W_2/w_{ij})$, with $CI(G'_1||G'_2) = CI(G_1||G_2)$.

Proposition 6: For two N-node Gaussian tree models $G_1 = (V, E_1, W_1)$ and $G_2 = (V, E_2, W_2)$, their Chernoff information is written as $CI(G_1||G_2)$. If they have the same internal node i with two edges connecting to the same nodes p, q with the same weights w_{ip}, w_{iq}, then we can delete this node and edges, add new edge e_{pq} with weight $w_{ip}w_{iq}$ instead, and get two new trees $G'_1 = (V/\{i\}, E'_1, W'_1), G'_2 = (V/\{i\}, E'_2, W'_2)$, with $CI(G'_1||G'_2) = CI(G_1||G_2)$.

Proposition 7: For a normalized covariance matrix of Gaussian trees $G = (V, E, W)$, define $\Sigma^{-1} = [u_{ij}]$. So $|\Sigma| = \prod_{e_i \in E}(1 - w_{ij}^2)$ and the elements of Σ^{-1} follow the following expressions:

$$
u_{ij} = \begin{cases}
\frac{-w_{ij}}{1-w_{ij}^2} & i \neq j \text{ and } e_{ij} \in E \\
0 & i \neq j \text{ and } e_{ij} \notin E \\
1 + \sum_{p \in e_{ip} \in E} \frac{w_{ip}^2}{1-w_{ip}^2} & i = j.
\end{cases}$$ (8)

This proposition can be easily proved with the equation of block matrix and mathematical induction.
These two propositions are direct extensions of proposition 4. If we have a 1-degree or 2-degree node with identical local relationship and correlation parameters, we can remove the leaf or combine its two edges without changing the Chernoff information. We consider nodes with degree 1 and 2, because only in these situations are new graphs still trees.

Note that we only consider the Chernoff information of two Gaussian trees differing through a single edge grafting operation. In other words, the two Gaussian trees correspond to two N by N covariance matrices Σ_1 and Σ_2, sharing the same determinant, and with normalized variances. In particular, G_2 is attained from G_1 by cutting one edge connecting node i and j from any node i and then connecting node j to another node k, as shown in Figure 1, without changing the weights of all edges in order to maintain the same determinant, which is determined by the product of $(1 - |\omega_{ij}|^2)$, for all edges of $(i, j) \in E$. We can use proposition 5 and 6 repeatedly to reduce the original N-node trees G_1 and G_2 into two special 3-node trees G'_1 and G'_2, shown as Figure 2. In the new trees, $w_2 = w_{ij}$ (the edge weight of e_{ij}), and w_1 is the weight of the path connecting node i with node k in the graph G_1, i.e. $w_1 = \prod_{e \in \text{path } ik} w_e$.

B. 1-dim LT observation in 2-ary Hypothesis testing

For the full observation case, we know that nodes with the same local subgraph relationship do not making contribution to Chernoff information. It is thus anticipated that this type of nodes does not provide any gain when we can only observe a 1-dim LT mapping output.

Proposition 7: For two N-node Gaussian tree models $G_1 = (V, E_1, W_1)$ and $G_2 = (V, E_2, W_2)$, we can’t get all the data of the values but only one linearly combining value $Y = \alpha X$ where α is an $1 \times N$ vector, and $\alpha^* = \arg \max CI(Y^{(1)} || Y^{(2)})$ is the optimal observation mapping. If node i has identical local relationship and correlation parameters as shown in proposition 5 and 6, there exists an optimal α^* whose i^{th} value α_i^* equals to 0. It tells us that we needn’t observe the nodes if the local subgraph around it is completely the same. We only need to see a linear combination of other nodes to get enough information for distinguishing. Using this proposition, we can leave out the same subgraphs of two trees and focus on the different parts when we are looking for the optimal observation.

C. The comparison between two observation models

Intuitively, the Chernoff information in full observation is always larger than that of LT observation as a consequence of data processing inequality 5.

Proposition 8: For two N states distributions X_1 and X_2 of two graphs, we can use two different observation matrices and get different output $Y_p = P_{p \times N}X$ and $Y_q = Q_{q \times N}X$ where $q < p \leq N$. P^* and Q^* are the optimal matrix shown as 7 under the observation constraint. So $CI(Y_p^{(1)*} || Y_p^{(2)*}) \geq CI(Y_q^{(1)*} || Y_q^{(2)*})$.

The more information we have access to, the larger optimal Chernoff information will be. Due to the LT operation, we have lower-dim observation data. The dimension-reduced result will decrease the Chernoff information. However, we are interested in a more fair comparison between Chernoff information after counting their observation dimensions. Particularly and surprisingly, LT observation yields larger normalized the Chernoff information than the case with full observation, as shown next in Section IV-C.

D. An important parameter λ_{max}

We next introduce a critical parameter λ_{max}, which will play a key role in determining the Chernoff information of two Gaussian trees between which there is only minor difference in topology and parameters due to the edge-wise grafting operation, entailing the underlying error event the dominant one in distinguishing between one of two trees with those “adjacent” ones.

Proposition 9: For the two trees G'_1 and G'_2 in Figure 2, the generalized eigenvalue of their correlation matrix Σ_1 and Σ_2, i.e. the eigen-values of the resulting matrix $S = \Sigma_1 \Sigma_2^{-1}$ is $\{1, \lambda_{max}, 1/\lambda_{max}\}$ with λ_{max} determined by

$$
\lambda_{max} = \frac{\sqrt{\beta} + w_2}{\sqrt{\beta} - w_2}
$$

(10)
where $\beta = w_2^2 + 2\frac{1-w_2^2}{1-w_1}$, and w_2 is the weight of cut edge, and w_1 is the weight of the path connecting the neighboring vertices of the moved node before and after the grafting operation. Its proof hinges upon the symmetric property of the Chernoff information, as well as the shared determinant of the matrices Σ_1 and Σ_2.

IV. CHERNOFF INFORMATION OF 3-NODE GAUSSIAN TREES

Propositions 5, 6 and 7 show that we can transform two large and similar Gaussian trees into two 3-node trees when calculating their Chernoff information, as shown in Figure 2. Thus, in this section, we shift our attention to the Chernoff information of two such 3-node trees. We want to calculate their Chernoff information in full observation case and 1-dim LT observation case. And then we will compare these two Chernoff information with a fair metric in terms of Chernoff information per measurement dimension.

A. 1-dim LT observation in 2-ary Hypothesis testing

For two Gaussian tree models shown in figure 2, we can only observe an 1-dim linear output $Y = \alpha X$ each time, where α is an 1×3 observation vector and Y is an 1-dim output distribution. We want to find the optimal observation vector α^* to maximum the Chernoff information between the output of two trees. So the optimal LT mapping vectors are $\alpha_1 = k[s_1, s_2, 1], \alpha_2 = k[s_2, s_1, 1]$, and the maximum Chernoff information $CI_1(\Sigma_1||\Sigma_2)$ is $g(\lambda_{max})$, where $g(x)$ is shown in (11), k is an arbitrary non-zero number and $s_1 = -\frac{1}{2}(w_2 + \sqrt{\beta})$, $s_2 = -\frac{1}{2}(w_2 - \sqrt{\beta})$.

$$g(x) = \frac{1}{2} \left\{ \ln \frac{x}{e \ln x} + \ln \frac{x}{x-1} \right\}$$

(11)

β and λ_{max} is defined in section III-D. The proof exploits the concavity property of the transformed objective function which is subject to the ratio of the variances of two scalar Gaussian variables after the LT operation. Its maximum value is further expressed using the maximum generalized eigenvalue of Σ_1 and Σ_2.

B. Full observation case

In this case, the Chernoff information between G'_1 and G'_2 shown in figure 2 is

$$CI_2(\Sigma_1||\Sigma_2) = \ln\left(\frac{\lambda_{max} + 1}{2\sqrt{\lambda_{max}}}\right)$$

(12)

The main idea of the proof is to take advantage of the topological relationship between the two trees in Figure 2 and then seek the optimal covariance matrix in the form of Eq. 4.

C. Comparing the two Chernoff information

In the case of full observation and 1-dim LT observation, Figure 3 shows the ratio of their Chernoff information expressed with parameters of (w_1, w_2).

Proposition 10: For two Gaussian trees G_1 and G_2, where G_1 can be obtained from G_2 by a single edge grafting operation, the ratio of their Chernoff information under full observation and 1-dim LT observation satisfies: $1 \leq \frac{CI_1}{CI_2} \leq 2$.

![Fig. 2. Special 3-node case](image-url)
The ratio must not be greater than 1 because of proposition [8]. And from equation (11), (12) and $\lambda_{\text{max}} \geq 1$, we can prove that $\frac{CI_2}{CI_1} \leq 2$.

Given two trees G_1 and G_2, the error probability $P_{e1} \leq e^{-TCI_1}$ in 1-dim LT observation testing and $P_{e2} \leq e^{-TCI_2}$ in full observation testing, where T is the number of slots expended for testing purpose. However in full observation case, we have three effective measurement values in each slot, and thus we actually have $\hat{T}_2 = 3T$ number of measurements collected in total. As a contrast, the LT approach is based on $\hat{T}_1 = T$ measurements only. To fairly compare the two approaches, we propose a normalized Chernoff information $\hat{CI}_j = \lim_{\hat{T}_j, \to \infty} -\frac{\log(P_{e_j})}{\hat{T}_j}$, where \hat{T}_j denotes the total number of real valued measurements collected.

As a result, the normalized Chernoff information for the two cases are: $\hat{CI}_2 = \frac{CI_2}{3}$, and $\hat{CI}_1 = CI_1$, which implies that the ratio of such normalized Chernoff information satisfies: $1/3 \leq \frac{\hat{CI}_2}{\hat{CI}_1} \leq 2/3$. We can see that the LT actually has a larger normalized Chernoff information than that with full access to the original data, which suggests its efficiency after we have taken the dimension of the sample size into consideration. This is quite surprising, considering that linear mapping always reduces Chernoff information without putting normalization into the picture, and it thus demonstrates a favor towards the LT option after we count the measurement cost into the comparison of Chernoff information between the two approaches.

V. CONCLUSION

In this paper, we have shown how local changes in topology and parameters affect the capacity of distinguishing two resulting Gaussian trees measured by Chernoff information. In particular, the maximum generalized eigenvalue λ_{max} is shown to play a critical role in determining the Chernoff information with or without linear transformation mapping. Our proposed normalized Chernoff information is able to reflect the discerning capability in terms of error exponents with a constraint of the same amount of measurement cost. In one of our future works, we will investigate how Chernoff information varies if a Gaussian tree is attained from the other one via a sequence of local graph operations.

REFERENCES

[1] F. Vega-Redondo, Complex social networks. Cambridge University Press, 2007, no. 44.
[2] A. Ahmed, L. Song, and E. P. Xing, “Time-varying networks: Recovering temporally rewiring genetic networks during the life cycle of drosophila melanogaster,” arXiv preprint arXiv:0901.0138, 2008.
[3] A. Dobra, T. S. Eicher, and A. Lenkoski, “Modeling uncertainty in macroeconomic growth determinants using gaussian graphical models,” Statistical Methodology, vol. 7, no. 3, pp. 292–306, 2010.
[4] C. Chow and C. Liu, “Approximating discrete probability distributions with dependence trees,” IEEE Trans. Inf. Theor., vol. 14, no. 3, pp. 462–467, Sept. 1968.
[5] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[6] M. B. Westover, “Asymptotic geometry of multiple hypothesis testing,” IEEE transactions on information theory, vol. 54, no. 7, pp. 3327–3329, 2008.
[7] N. P. Santhanam and M. J. Wainwright, “Information-theoretic limits of selecting binary graphical models in high dimensions,” *Information Theory, IEEE Transactions on*, vol. 58, no. 7, pp. 4117–4134, 2012.

[8] V. Y. F. Tan, A. Anandkumar, and A. S. Willsky, “Learning Gaussian tree models: analysis of error exponents and extremal structures.” *IEEE Transactions on Signal Processing*, vol. 58, no. 5, pp. 2701–2714, 2010.

[9] V. Tan, S. Sanghavi, J. Fisher, and A. Willsky, “Learning graphical models for hypothesis testing and classification.” *IEEE Transactions on Signal Processing*, vol. 58, no. 11, pp. 5481–5495, Nov 2010.

[10] V. Y. Tan, A. Anandkumar, L. Tong, and A. S. Willsky, “A large-deviation analysis of the maximum-likelihood learning of markov tree structures.” *Information Theory, IEEE Transactions on*, vol. 57, no. 3, pp. 1714–1735, 2011.

[11] V. Jog and P.-L. Loh, “On model misspecification and KL separation for Gaussian graphical models,” *arXiv preprint arXiv:1501.02320*, 2015.

[12] A. Moharrer, S. Wei, G. T. Amariucai, and J. Deng, “Classifying unrooted gaussian trees under privacy constraints,” *arXiv preprint arXiv:1504.02530*, 2015.
APPENDIX A

PROOF OF PROPOSITION 1

We use the equation of block matrix and mathematical induction to prove them.

1) For a 2-node tree, \(\Sigma = \begin{bmatrix} 1 & w \\ w & 1 \end{bmatrix} \), \(|\Sigma| = 1 - w^2 \) and \(\Sigma^{-1} = \begin{bmatrix} 1 + \frac{w^2}{1-w^2} & -\frac{w}{1-w^2} \\ -\frac{w}{1-w^2} & 1 + \frac{w^2}{1-w^2} \end{bmatrix} \).

2) For an arbitrarily \(N \)-node tree with the normalized \(\Sigma \), assume \(\Sigma^{-1} = \begin{bmatrix} A(N-1) & B(N-1) \ast 1 \\ B^T & a \end{bmatrix} \) and \(\Sigma = \prod_{e_{ij} \in E} (1 - w_{ij}^2) \). At the same time, we can set the last column of \(\Sigma \) as \(\alpha \), which satisfies \(\Sigma^{-1} \alpha = [0, 0, \ldots, 0, 1]^T \).

A \((N+1)\)-node tree can be treated as a \(N \)-node tree added with a new leaf. Without loss of generality, the \(N \)-node tree has node 1, 2, \ldots, \(N \) and the new edge is \(e_{N,N+1} \) with parameter \(w \). So

\[
\Sigma' = \begin{bmatrix} \Sigma & w\alpha \\ w\alpha^T & 1 \end{bmatrix}
\]

\(|\Sigma'| = |\Sigma| |1 - w^2\alpha^T \Sigma^{-1} \alpha|
= |\Sigma|(1 - w^2(\alpha(N)))
= |\Sigma|(1 - w^2)
= \prod_{e_{ij} \in E'} (1 - w_{ij}^2)
\]

\[
\Sigma'^{-1} = \begin{bmatrix} \Sigma^{-1} + \frac{w^2}{1-w^2} \Sigma^{-1} \alpha \alpha^T \Sigma^{-1} \alpha & \frac{-w}{1-w^2} \Sigma^{-1} \\ \frac{-w}{1-w^2} \Sigma^{-1} & \frac{1}{1-w^2} \end{bmatrix}
= \begin{bmatrix} A & B \\ B^T & a + \frac{w^2}{1-w^2} \end{bmatrix} \begin{bmatrix} 0_{(N-1) \times 1} \\ 1 \end{bmatrix}
\]

So the \((N+1)\)-node tree fits the supposition and the proposition is proved.

APPENDIX B

PROOF OF PROPOSITION 3

We define the energy function of the two exponential family as below:

\[
F(\lambda) = \sum_{i=1}^{n-2} p_i^\lambda q_i^{1-\lambda} + p_{n-1}^\lambda q_{n-1}^{1-\lambda} + p_n^\lambda q_n^{1-\lambda}
\]

\[
F'(\lambda) = \sum_{i=1}^{n-2} p_i^\lambda q_i^{1-\lambda} + (p_{n-1} + p_n)^\lambda (q_{n-1} + q_n)^{1-\lambda}
\]

So the Chernoff information is a function of \(F(\lambda) \):

\[
CI(P||Q) = -\min_{0 \leq \lambda \leq 1} \ln F(\lambda)
\]

\[
CI(P'||Q') = -\min_{0 \leq \lambda \leq 1} \ln F'(\lambda)
\]

\[
\frac{p_n^\lambda q_n^{1-\lambda} + p_n^\lambda q_n^{1-\lambda}}{p_n^\lambda q_n^{1-\lambda} + p_n^\lambda q_n^{1-\lambda}} \leq (p_{n-1} + p_n)^\lambda (q_{n-1} + q_n)^{1-\lambda}
\]

when \(0 < \lambda < 1 \) because of the Holder Inequality, so \(F(\lambda) \leq F'(\lambda) \) and the equation holds if and only if \(\frac{p_{n-1}}{q_{n-1}} = \frac{p_n}{q_n} \) or \(q_{n-1} = q_n = 0 \).

a) When \(\frac{p_{n-1}}{q_{n-1}} = \frac{p_n}{q_n} \) or \(q_{n-1} = q_n = 0 \), \(\ln F(\lambda) = \ln F'(\lambda) \) and therefore \(CI(P||Q) = CI(P'||Q') \).

b) Otherwise we can get \(\ln F(\lambda) < \ln F'(\lambda) \leq 0 \) when \(0 < \lambda < 1 \) and \(\ln F(\lambda) = \ln F'(\lambda) = 0 \) when \(\lambda = 0, 1 \).

So \(\min_{0 \leq \lambda \leq 1} \ln F(\lambda) < \min_{0 \leq \lambda \leq 1} \ln F'(\lambda) \) and \(CI(P||Q) > CI(P'||Q') \).

In summary \(CI(P||Q) \geq CI(P'||Q') \) and the equation holds if and only if \(\frac{p_{n-1}}{q_{n-1}} = \frac{p_n}{q_n} \) or \(q_{n-1} = q_n = 0 \).
APPENDIX C
PROOF OF PROPOSITION 4

We divide the range of the values X_1, X_2, \ldots, X_N into K_1, K_2, \ldots, K_N pieces. So X_i has $A = K_i$ states, $X/\{i\}$ has $B = \prod_{m=1, m \neq i}^{N} K_m$ states, and X has $A = AB$ states.

$f_1(X)$ and $f_2(X)$ can be treated as two 1-dim discrete distributions $P(X)$ and $Q(X)$ with C possible states when K_1, K_2, \ldots, K_N are large enough. And $f_1(X/\{i\})$ and $f_2(X/\{i\})$ can be treated as two a-dim discrete distributions $P'(X/\{i\})$ and $Q'(X/\{i\})$ with B possible states.

Observe the states of $P(X)$ and $P'(X/\{i\})$ and we can find their relationship. If we combine all the A states with the same X_i, $P(X)$ with C states will become $P'(X/\{i\})$ with B states. Using proposition 3 repeatedly, we will get $CI(P||Q) \geq CI(P'||Q')$, and the equation holds if and only if $P(X_i|X/\{i\}) = Q(X_i|X/\{i\})$.

When K_1, K_2, \ldots, K_N goes to infinite, $P(X)$ and $Q(X)$ go to $f_1(X)$ and $f_2(X)$. $P'(X/\{i\})$ and $Q'(X/\{i\})$ go to $f_1(X/\{i\})$ and $f_2(X/\{i\})$. The inequality remains in the process of convergence. So

$$CI(f_1(X)||f_2(X)) \geq CI(f_1(X/\{i\})||f_2(X/\{i\}))$$

and it becomes equality if and only if the conditional distribution follows $f_1(X_i|X/\{i\}) = f_2(X_i|X/\{i\})$.

APPENDIX D
PROOF OF PROPOSITION 7

The relative entropy of two zero-mean Gaussian distribution $N(0, \sigma_1^2)$ and $N(0, \sigma_2^2)$ is

$$D(\sigma_1^2||\sigma_2^2) = \int_{-\infty}^{\infty} f_{\sigma_1^2}(x) \log \frac{f_{\sigma_1^2}(x)}{f_{\sigma_2^2}(x)} dx$$

$$= \frac{1}{2} \log \frac{\sigma_2^2}{\sigma_1^2} + \frac{\sigma_1^2}{2\sigma_2^2} - \frac{1}{2}$$

(21)

The Chernoff information between them is

$$CI(\sigma_1^2||\sigma_2^2) = D(\sigma^2||\sigma_1^2) = D(\sigma^2||\sigma_2^2)$$

(22)

where

$$\sigma^2 = \log \frac{\sigma_2^2}{\sigma_1^2} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 - \sigma_1^2}$$

(23)

So the Chernoff information is a function of $\frac{\sigma_2^2}{\sigma_1^2}$, namely,

$$CI(\sigma_1^2||\sigma_2^2) = g\left(\frac{\sigma_2^2}{\sigma_1^2}\right)$$

(24)

$$g(x) = \frac{1}{2} \left\{ \log x - \frac{1}{e} \log x + \frac{\log x}{x - 1} \right\}$$

(25)

g(x) is a increasing function when $x > 1$, and satisfies $g(x) = g(\frac{1}{x})$.

If we want to maximize the Chernoff information, we can maximize the proportion between the bigger variance and the smaller variance instead.

Then we provide a simple proposition at first and we will use it repeatedly later. It is easy to prove.

Proposition 11: If $B_i > 0, a \leq \frac{A_i}{B_i} \leq b (i = 1, \ldots, k), \sum c_i B_i > 0$, so $a \leq \frac{\sum c_i A_i}{\sum c_i B_i} \leq b$.

We prove proposition 7 in two different cases.
A. Node i is a leaf with the same neighbor

Without loss of generality, we make \(i = N, w_{ij} = w \).

The \(N - 1 \) node trees without node \(N \) have the normalized covariance matrix \(\Sigma_1 \) and \(\Sigma_2 \). We set the \(j \)-st column of \(\Sigma_1 \) as \(\beta_1 \), so as \(\beta_2 \).

The complete trees can be treated as the \(N - 1 \) node trees added with a new leaf \(N \). So

\[
\Sigma'_1 = \begin{bmatrix} \Sigma_1 & w\beta_1 \\ w\beta_1^T & 1 \end{bmatrix}
\]

\[
\Sigma'_2 = \begin{bmatrix} \Sigma_2 & w\beta_2 \\ w\beta_2^T & 1 \end{bmatrix}
\]

(26)

(27)

We can find \(x \geq 1 \) and \(\alpha^* \) so that \(\frac{1}{x} \leq \frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} \leq x \) holds for arbitrary \(\alpha \) and \(\frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} = x \) or \(\frac{1}{x} \). As \(24 \) shown, \(\alpha^* \) is the optimal observation of the \(N - 1 \)-node trees and the optimal Chernoff information is \(g(x) \).

We want to prove that \(\frac{1}{x} \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} \leq x \) holds for arbitrary \(\gamma = [\alpha, b] \). If it holds, then the Chernoff information of \(N \) nodes trees is no more than \(g(x) \), which is the result of \(\gamma^* = [\alpha^*, 0] \). So \(\gamma^* \) is the optimal observation and its \(N \)-st component is zero.

From the structure of \(\Sigma \), we can get this equation

\[
\frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} = \frac{\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_1}{\alpha^T \Sigma_2 \alpha + b^2 + 2wb\alpha^T \beta_2}
\]

We consider two situations:

1) \(\alpha_j \neq 0 \), we define \(\theta = \alpha \) but replace \(\theta_j \) with 0. So

\[
1 \leq \frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} \leq x
\]

(28)

\[
\frac{1}{x} \leq \frac{\theta^T \Sigma_1 \theta}{\theta^T \Sigma_2 \theta} = \frac{\alpha^T \Sigma_1 \alpha + \alpha_j^2 - 2\alpha_j \alpha^T \beta_1}{\alpha^T \Sigma_2 \alpha + \alpha_j^2 - 2\alpha_j \alpha^T \beta_2} \leq x
\]

(29)

We know \(\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_1 = \frac{-wb}{\alpha_j} (\alpha^T \Sigma_1 \alpha + \alpha_j^2 - 2\alpha_j \alpha^T \beta_1) + (1 + \frac{wb}{\alpha_j})(\alpha^T \Sigma_1 \alpha) + (b^2 + wb\alpha_j) \) and \(\alpha^T \Sigma_2 \alpha + b^2 + 2wb\alpha^T \beta_2 = \frac{-wb}{\alpha_j} (\alpha^T \Sigma_2 \alpha + \alpha_j^2 - 2\alpha_j \alpha^T \beta_2) + (1 + \frac{wb}{\alpha_j})(\alpha^T \Sigma_2 \alpha) + (b^2 + wb\alpha_j) \). So we can use proposition [11] and get

\[
1 \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} = \frac{\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_1}{\alpha^T \Sigma_2 \alpha + b^2 + 2wb\alpha^T \beta_2} \leq x
\]

(30)

2) \(\alpha_j = 0 \), we define \(\theta = \alpha \) but replace \(\theta_j \) with 1. So

\[
1 \leq \frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} \leq x
\]

(31)

\[
\frac{1}{x} \leq \frac{\theta^T \Sigma_1 \theta}{\theta^T \Sigma_2 \theta} = \frac{\alpha^T \Sigma_1 \alpha + 1 + 2\alpha^T \beta_1}{\alpha^T \Sigma_2 \alpha + 1 + 2\alpha^T \beta_2} \leq x
\]

(32)

So we can use proposition [11] and get

\[
1 \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} = \frac{\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_1}{\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_2} \leq x
\]

(33)

So \(\frac{1}{x} \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} = \frac{\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_1}{\alpha^T \Sigma_1 \alpha + b^2 + 2wb\alpha^T \beta_2} \leq x \) holds for all \(\gamma \), the proposition is proved.
B. Node i is 2-degree node with the same neighbor

Without loss of generality, we make $i = N$, $w_{ip} = w_1, w_{iq} = w_2$.

The $N - 1$ node trees without node N have the normalized covariance matrix Σ_1 and Σ_2. We get the p-st column of Σ_1 and set its T_2 nodes row(Fig[4]) to be 0, namely β_{11}. We get the q-st column of Σ_1 and set its T_1 nodes row to be 0, namely β_{12}. So the p-st column of Σ_1 is $\beta_{11} + w_1w_2\beta_{12}$ and the q-st column of Σ_1 is $\beta_{12} + w_1w_2\beta_{11}$. So as β_{21} and β_{22} are the same parameters with Σ_2.

The complete trees can be treated as the $N - 1$ node trees added with a new leaf N. So

$$\Sigma'_1 = \begin{bmatrix} \Sigma_1 & w_1\beta_{11} + w_2\beta_{12} \\ w_1\beta_{11}^T + w_2\beta_{12}^T & 1 \end{bmatrix}$$

$$\Sigma'_2 = \begin{bmatrix} \Sigma_2 & w_1\beta_{21} + w_2\beta_{22} \\ w_1\beta_{21}^T + w_2\beta_{22}^T & 1 \end{bmatrix}$$

(34)

We can find $x \geq 1$ and $\alpha^* \geq 0$ so that $\frac{1}{x} \leq \frac{\alpha^T \Sigma \alpha}{\alpha^T \Sigma \alpha^*} \leq x$ holds for arbitrary α and $\frac{\alpha^T \Sigma \alpha^*}{\alpha^T \Sigma \alpha}$ is $x \leq \frac{1}{x}$. As (24) shown, α^* is the optimal observation of the $N - 1$-node trees and the optimal Chernoff information is $g(x)$.

We want to prove that $\frac{1}{x} \leq \frac{\gamma^T \Sigma \gamma}{\gamma^T \Sigma \gamma^*} \leq x$ holds for arbitrary α, b when $\gamma = [\alpha, b]$. If it holds, then the Chernoff information of N nodes trees is no more than $g(x)$, which is the result of $\gamma^* = [\alpha^*, 0]$. So γ^* is the optimal observation and its N-st component is zero.

From the structure of Σ, we can get this equation

$$\gamma^T \Sigma \gamma = \frac{\alpha^T \Sigma \alpha + b^2 + 2w_1w_2\alpha^T \beta_{11} + 2w_2b^T \beta_{12}}{\alpha^T \Sigma \alpha + b^2 + 2w_1w_2\alpha^T \beta_{21} + 2w_2b^T \beta_{22}}$$

(35)

We consider three situations:

1) $\alpha_p \neq 0, \alpha_q \neq 0$, we define $\theta = \alpha$ but replace θ_p with 0, $\nu = \alpha$ but replace ν_q with 0.

$$\frac{1}{x} \leq \frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} \leq x$$

(36)

$$\frac{1}{x} \leq \frac{\theta^T \Sigma_1 \theta}{\theta^T \Sigma_2 \theta} = \frac{\alpha^T \Sigma_1 \alpha + \alpha_p^2 - 2\alpha_p \alpha^T \beta_{11} - 2w_1w_2\alpha_p \alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + \alpha_p^2 - 2\alpha_p \alpha^T \beta_{21} - 2w_1w_2\alpha_p \alpha^T \beta_{22}} \leq x$$

(37)

$$\frac{1}{x} \leq \frac{\nu^T \Sigma_1 \nu}{\nu^T \Sigma_2 \nu} = \frac{\alpha^T \Sigma_2 \alpha + \alpha_q^2 - 2w_1w_2\alpha_q \alpha^T \beta_{21} - 2w_2\alpha_q \alpha^T \beta_{22}}{\alpha^T \Sigma_2 \alpha + \alpha_q^2 - 2w_1w_2\alpha_q \alpha^T \beta_{21} - 2w_2\alpha_q \alpha^T \beta_{22}} \leq x$$

(38)

So we can use proposition [11] and get

$$\frac{1}{x} \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} \leq x$$

(39)

2) $\alpha_p = 0, \alpha_q = 0$, we define $\theta = \alpha$ but replace θ_p with 1, $\nu = \alpha$ but replace ν_q with 1.

$$\frac{1}{x} \leq \frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} \leq x$$

(40)

$$\frac{1}{x} \leq \frac{\theta^T \Sigma_1 \theta}{\theta^T \Sigma_2 \theta} = \frac{\alpha^T \Sigma_1 \alpha + 1 + 2\alpha^T \beta_{11} + 2w_1w_2\alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + 1 + 2\alpha^T \beta_{21} + 2w_1w_2\alpha^T \beta_{22}} \leq x$$

(41)

$$\frac{1}{x} \leq \frac{\nu^T \Sigma_1 \nu}{\nu^T \Sigma_2 \nu} = \frac{\alpha^T \Sigma_2 \alpha + 1 + 2w_1w_2\alpha^T \beta_{21} + 2\alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + 1 + 2w_1w_2\alpha^T \beta_{21} + 2\alpha^T \beta_{22}} \leq x$$

(42)
So we can use proposition [11] and get

\[\frac{1}{x} \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} = \frac{\alpha^T \Sigma_1 \alpha + b^2 + 2w_1b \alpha^T \beta_{11} + 2w_2b \alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + b^2 + 2w_1b \alpha^T \beta_{21} + 2w_2b \alpha^T \beta_{22}} \leq x \tag{43} \]

3) \(\alpha_p = 0, \alpha_q \neq 0 \), we define \(\theta = \alpha \) but replace \(\theta_p \) with 1, \(v = \alpha \) but replace \(v_q \) with 0. (\(\alpha_p \neq 0, \alpha_q = 0 \) is the same)

\[\frac{1}{x} \leq \frac{\theta^T \Sigma_1 \theta}{\theta^T \Sigma_2 \theta} = \frac{\alpha^T \Sigma_1 \alpha + 2 \alpha^T \beta_{11} + 2w_1w_2 \alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + 2 \alpha^T \beta_{21} + 2w_1w_2 \alpha^T \beta_{22}} \leq x \tag{44} \]

\[\frac{1}{x} \leq \frac{v^T \Sigma_1 v}{v^T \Sigma_2 v} = \frac{\alpha^T \Sigma_2 \alpha + \alpha_q^2 - 2w_1w_2 \alpha_q \alpha^T \beta_{11} - 2 \alpha_q \alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + \alpha_q^2 - 2w_1w_2 \alpha_q \alpha^T \beta_{21} - 2 \alpha_q \alpha^T \beta_{22}} \leq x \tag{45} \]

So we can use proposition [11] and get

\[\frac{1}{x} \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} = \frac{\alpha^T \Sigma_1 \alpha + b^2 + 2w_1b \alpha^T \beta_{11} + 2w_2b \alpha^T \beta_{12}}{\alpha^T \Sigma_2 \alpha + b^2 + 2w_1b \alpha^T \beta_{21} + 2w_2b \alpha^T \beta_{22}} \leq x \tag{47} \]

So \(\frac{1}{x} \leq \frac{\gamma^T \Sigma_1 \gamma}{\gamma^T \Sigma_2 \gamma} \) holds for all \(\gamma \), the proposition is proved.

APPENDIX E

PROOF OF PROPOSITION

To prove this proposition, we construct a \(p \)-dim observation matrix \(P_{p \times m} = [Q^*; K_{(p-q) \times m}] \) whose output is \(Y_q \).

When we use the observation \(P \), \(Y_q \) has \(q \) values which are the same with \(Y_q^* \) and another \(p - q \) different values. Using proposition [4], we know

\[CI(Y_q^{(1)} || Y_q^{(2)}) \geq CI(Y_q^{(1)*} || Y_q^{(2)*}) \] \(\tag{48} \)

The definition of optimal matrix tells us

\[CI(Y_q^{(1)*} || Y_q^{(2)*}) \geq CI(Y_q^{(1)} || Y_q^{(2)}) \] \(\tag{49} \)

So

\[CI(Y_q^{(1)*} || Y_q^{(2)*}) \geq CI(Y_q^{(1)} || Y_q^{(2)*}) \] \(\tag{50} \)

APPENDIX F

CALCULATION OF EQUATION

The optimal \(\alpha^* \) is the one to maximize or minimize \(\frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} \).

The Chernoff information of mapping \(\alpha \) and \(k \alpha \) is the same. When \(\alpha_3 = 0 \), the Chernoff information equals to 1. So \(\alpha = [a_1, a_2, 0] \) can’t be the optimal observation. Therefore we only need consider \(\alpha = [a_1, a_2, 1] \). So

\[\alpha^T \Sigma_1 \alpha = \alpha^T \alpha + 2w_1a_1a_2 + 2w_2(w_1a_1 + a_2) \tag{51} \]

\[\alpha^T \Sigma_2 \alpha = \alpha^T \alpha + 2w_1a_1a_2 + 2w_2(a_1 + w_1a_2) \tag{52} \]

We calculate the derivative of ratio first:

\[\frac{\partial \alpha^T \Sigma_1 \alpha}{\partial a_1} = \frac{1}{(\alpha^T \Sigma_2 \alpha)^2} \left\{ 2w_2(w_1 - 1)(2(w_1 + 1)w_2a_2 - a_1^2 + a_2^2 + 1 + 2a_1a_2 + 2w_1a_1^2) \right\} \tag{53} \]

\[\frac{\partial \alpha^T \Sigma_1 \alpha}{\partial a_2} = \frac{1}{(\alpha^T \Sigma_2 \alpha)^2} \left\{ 2w_2(1 - w_1)(2(w_1 + 1)w_2a_1 + a_1^2 - a_2^2 + 1 + 2a_1a_2 + 2w_1a_1^2) \right\} \tag{54} \]
When \(a_1, a_2 \to \pm \infty \), \(\frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} = 1 \). So the optimal must be one of the stationary points, not at infinity. Stationary points means \(\frac{\partial \alpha^T \Sigma_1 \alpha}{\partial \alpha} = 0 \). In other words,

\[
2(w_1 + 1)w_2a_2 - a_1^2 + a_2^2 + 1 + 2a_1a_2 + 2w_1a_1^2 = 0 \tag{55}
\]

\[
2(w_1 + 1)w_2a_1 + a_1^2 - a_2^2 + 1 + 2a_1a_2 + 2w_1a_1^2 = 0 \tag{56}
\]

Here we have deleted the points \(w_2 = 0, a_3 = 0, w_1 = 1, a_1 = a_2 \) which lead to \(\frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} = 1 \) and can’t be the optimization.

Minus (55) from (56), we get

\[
2(w_1 + 1)(a_1 - a_2)(w_2 + a_1 + a_2) = 0 \tag{57}
\]

We ignore the point \(a_1 = a_2 \), which stands for \(\frac{\alpha^T \Sigma_1 \alpha}{\alpha^T \Sigma_2 \alpha} = 1 \).

1) When \(w_1 = -1 \), we calculate the equation set (55)(56) and get the result \(a_1 - a_2 = \pm 1 \). The optimal Chernoff information is \(g(\frac{1+w_2}{1-w_2}) \) on the points \(k[a_1, a_1 \pm 1, 1] \).

2) When \(a_1 = -(w_2 + a_2) \), (55)(56) becomes

\[
2(1 - w_1)(w_2a_2+a_2^2) - 1 + w_2^2 = 0 \tag{58}
\]

\[
a_1a_2 = \frac{1 - w_2^2}{2w_1 - 2} \tag{59}
\]

So \(a_1, a_2 \) satisfy \(a_1 + a_2 = -w_2 \) and \(a_1a_2 = \frac{1-w_2^2}{2w_1-2} \). Define \(s_1, s_2 \) is two solutions of equation \(s_2^2 + w_2s + \frac{1-w_2^2}{2w_1-2} = 0 \). So

\[
s_1 = -\frac{1}{2} (w_2 + \sqrt{w_2^2 - 2\frac{1-w_2^2}{w_1-1}}) \tag{60}
\]

\[
s_2 = -\frac{1}{2} (w_2 - \sqrt{w_2^2 - 2\frac{1-w_2^2}{w_1-1}}) \tag{61}
\]

The stationary points are \(\alpha_1 = k[s_1, s_2, 1], \alpha_2 = k[s_2, s_1, 1] \) and the ratio \(\frac{\alpha_1^T \Sigma_1 \alpha_1}{\alpha_2^T \Sigma_2 \alpha_2} \) are \(C \) and \(\frac{1}{C} \) where

\[
C = \frac{2 - w_1w_2^2 - w_2^2 + (1 - w_1)w_2\sqrt{w_2^2 - 2\frac{1-w_2^2}{w_1-1}}}{2 - w_1w_2^2 - w_2^2 - (1 - w_1)w_2\sqrt{w_2^2 - 2\frac{1-w_2^2}{w_1-1}}} \tag{62}
\]

The function has only two stationary point, and \(g(C) = g(\frac{1}{C}) > 1 \). So the optimal points must be this two points. When \(w_1 = -1, s_1 - s_2 = -1 \). So we can combine case 1) into case 2). So \(\alpha_1 = k[s_1, s_2, 1], \alpha_2 = k[s_2, s_1, 1] \) are the optimal points all the time.

In summary, when we can read only one value at a time, then the Chernoff information is:

\[
CI_1(\Sigma_1||\Sigma_2) = g(C) \tag{63}
\]

where

\[
g(x) = \frac{1}{2} \left\{ \frac{\log x - 1}{e \log x} + \frac{\log x}{x-1} \right\} \tag{64}
\]

\[
C = \frac{2 - w_1w_2^2 - w_2^2 + (1 - w_1)w_2\sqrt{w_2^2 - 2\frac{1-w_2^2}{w_1-1}}}{2 - w_1w_2^2 - w_2^2 - (1 - w_1)w_2\sqrt{w_2^2 - 2\frac{1-w_2^2}{w_1-1}}} \tag{65}
\]

Here \(C \) is equal to \(\lambda_{max} \), and \(s_1 = -\frac{1}{2} (w_2 + \sqrt{\beta}), s_2 = -\frac{1}{2} (w_2 - \sqrt{\beta}) \).
APPENDIX G

CALCULATION OF EQUATION [IV-B]

We can find the exponential family between the two distribution $N(0, \Sigma_\lambda)$ where $\Sigma_\lambda^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}(1 - \lambda)$. In order to calculate the Chernoff information, we have to find the equilibrium point λ^* which satisfies $D(\Sigma_\lambda^*||\Sigma_1) = D(\Sigma_\lambda^*||\Sigma_1)$. The expression of the KL-distance is as shown in (3). Simplify the equation and it becomes $tr(\Sigma_1^{-1}\Sigma_\lambda) = tr(\Sigma_2^{-1}\Sigma_\lambda)$. It's a simple equation and the result is $\lambda^* = \frac{1}{2}$. At last, we substitute it into $CI(\Sigma_1||\Sigma_2) = D(\Sigma_\lambda^*||\Sigma_2)$ and get the Chernoff information:

$$CI_2(\Sigma_1||\Sigma_2) = \frac{1}{2} \log(1 + \frac{1}{2} w_1^2 (1 - w_1))$$

(66)

Use λ_{max} to place the parameters (w_1, w_2), it becomes [12]

APPENDIX H

PROOF OF PROPOSITION [10]

For equation [11] and [12] we want to prove that $CI_1 \geq \frac{1}{2} G_2$ when $\lambda_{\text{max}} \geq 1$. We can change the problem’s form. Consider two functions $G_1(x) = \frac{\ln x}{x - 1} - \ln \frac{\ln x}{x - 1} - 1$ and $G_2(x) = \ln \frac{x + 1}{2\sqrt{x}}$. We only need prove $G_1(x) \geq G_2(x)$ for $x \in [1, \infty)$.

$$G_1^{(1)}(x) = \frac{(\ln x - x + 1)(1 - 1/x - \ln x)}{\ln x(1 - 1)^2}$$

(67)

$$G_2^{(1)}(x) = \frac{x - 1}{2x(1 + x)}$$

(68)

$$F(x) = 2 \ln x (x - 1)^2 x(x + 1) \left(G_1^{(1)}(x) - G_2^{(1)}(x) \right)$$

$$= 2x(1 + x) (\ln x - x + 1)(1 - 1/x - \ln x) = \ln x \left(x^3 + 5x^2 - 5x - 1 \right) - \ln^2 x \left(2x + 2x^2 \right) - 2x^3 + 2x^2 + 2x - 2$$

(69)

$$F^{(1)}(x) = \ln x \left(3x^2 + 6x - 9 \right) - \ln^2 x \left(4x + 2 \right) - 5x^2 + 9x - 3 - 1/x$$

(70)

$$F^{(2)}(x) = \ln x \left(6x - 2 - 4/x \right) - 4\ln^2 x - 7x + 15 - 9/x + 1/x^2$$

(71)

$$F^{(3)}(x) = \ln x \left(6 - 8/x + 4/x^2 \right) - 1 + 5/x^2 - 2 - 2/x - 2/x^3$$

(72)

$$F^{(4)}(x) = 8\ln x \left(1 + 1/x \right) + 6(1 - 1/x)(1 - 1/x^2)/x$$

(73)

$F^{(4)}(x) \geq 0$ and $F^{(3)}(1) = 0$, so $F^{(3)}(x) \geq 0$.

$F^{(3)}(x) \geq 0$ and $F^{(2)}(1) = 0$, so $F^{(2)}(x) \geq 0$.

$F^{(2)}(x) \geq 0$ and $F^{(1)}(1) = 0$, so $F^{(1)}(x) \geq 0$.

$F^{(1)}(x) \geq 0$ and $F(1) = 0$, so $F(x) \geq 0$.

$F(x) \geq 0$, so $G_1^{(1)}(x) - G_2^{(1)}(x) \geq 0$.

$G_1^{(1)}(x) - G_2^{(1)}(x) \geq 0$ and $G_1(x) - G_2(x) \xrightarrow{x \to 1} 0$, so $G_1(x) - G_2(x) \geq 0$.

