A REGULARITY CRITERION TO THE 3D BOUSSINESQ EQUATIONS

A.M. ALGHAMDI, I. BEN OMRANE, S. GALA, AND M.A. RAGUSA

Abstract. The paper deals with the regularity criterion for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution \((u, \theta)\) becomes regular provided that
\[
(\nabla_h u, \nabla_h \theta) \in L^8(0, T; B^{-1}_{\infty, \infty}(\mathbb{R}^3)).
\]
Our results improve and extend the well-known results of Fang-Qian [13] for the Navier-Stokes equations.

Keywords: Boussinesq equations; regularity criterion; weak solutions; Besov space.

Mathematics Subject Classification(2000): 35Q35; 76D03

The researchers acknowledge the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University, Saudi Arabia, for financing this project under the grant no. (381206). Part of the work was carried out while the third author was long-term visitor at University of Catania. The hospitality of Catania University is graciously acknowledged. This research is partially supported by Piano della Ricerca 2016-2018 - Linea di intervento 2: "Metodi variazionali ed equazioni differenziali". M.A. Ragusa wish to thank the support of "RUDN University Program 5-100". The authors wish to express their thanks to the referees for their very careful reading of the paper, giving valuable comments and helpful suggestions.

Received July, 30, 2019, published ..., 2020.
1. Introduction and main result

This paper is devoted to the study of the Cauchy problem for the Boussinesq equations in $\mathbb{R}^3 \times (0, T)$:

\[
\begin{aligned}
\partial_t u - \Delta u + u \cdot \nabla u + \nabla \pi &= \theta e_3, \\
\partial_t \theta - \Delta \theta + u \cdot \nabla \theta &= 0, \\
\nabla \cdot u &= 0, \\
u(x, 0) &= u_0(x), \quad \theta(x, 0) = \theta_0(x),
\end{aligned}
\]

where $u = u(x, t)$ is the velocity of the fluid, $\theta = \theta(x, t)$ is the scalar quantity such as the concentration of a chemical substance or the temperature variation in a gravity field, $\pi = \pi(x, t)$ is the scalar pressure, while u_0 and θ_0 are given initial velocity and initial temperature with $\nabla \cdot u_0 = 0$ in the sense of distributions. $e_3 = (0, 0, 1)^T$ denotes the vertical unit vector.

The Cauchy problem (1.1) for the Boussinesq equation, has been studied extensively by many authors (see, for example, [1, 2, 3, 5, 6, 7, 10, 11, 12, 14, 19, 20, 21, 22, 23, 24] and references cited therein).

When $\theta = 0$, (1.1) is the well-known incompressible Navier-Stokes equations, which the global regularity is an outstanding open problem, as well as the famous millennium prize problem. Since the global existence of weak solutions is well-known and strong solutions are unique and smooth in $(0, T)$, it is an interesting problem on the regularity criterion of the weak solutions if some partial derivatives of the velocity satisfy certain growth conditions (see, e.g. [4, 13, 15, 16, 18, 25, 30, 32, 33]).

One of the most significant achievements in this direction is the celebrated Fang and Qian criterion [13]. More precisely, they showed that a weak solution with H^1-data is a strong solution provided that

\[
\nabla_h u \in L^\frac{4}{3}(0, T; B^{-1\infty}_\infty(\mathbb{R}^3)).
\]

where $\nabla_h = (\partial_1, \partial_2)$ denotes the horizontal gradient operator and $B^{-1\infty}_\infty$ denotes the homogeneous Besov space. For details see [31].

Recall that the weak solutions satisfy the following energy inequality

\[
\|u(t)\|_2^2 + \|\theta(t)\|_2^2 + 2 \int_0^t (\|\nabla u(\tau)\|_2^2 + \|\nabla \theta(\tau)\|_2^2) d\tau \leq \|u_0\|_2^2 + \|\theta_0\|_2^2,
\]

for all $0 \leq t \leq T$.

Motivated by the reference mentioned above, our aim of the present paper is to improve and extend the above regularity criterion (1.2) to the Boussinesq equations (1.1).

Our main result reads as follows.
Theorem 1.1. Suppose $T > 0, (u_0, \theta_0) \in H^1(\mathbb{R}^3)$ with $\text{div} u_0 = 0$ in \mathbb{R}^3, in the sense of distributions. Let (u, θ) be a weak solution of (1.1) in $(0, T)$. Assume that
\begin{align*}
(\nabla_h u, \nabla_h \theta) \in L^\infty(0, T; B^\infty_{\infty, \infty}(\mathbb{R}^3)),
\end{align*}
then the weak solution (u, θ) is regular on $\mathbb{R}^3 \times (0, T]$.

Remark 1.1. In the case $\theta = 0$, the above theorem reduces to the well-known Fang and Qian result [13] for the Navier-Stokes equations.

1.1. Proof of Theorem 1.1. In this section, we shall give the proof of Theorem 1.1, we first need to prove the following lemma.

Lemma 1.2. Let (u, θ) be a smooth solution to (1.1). Then, there exists a positive universal constant C such that the following a priori estimates hold:
\begin{align*}
&\int_{\mathbb{R}^3} (u \cdot \nabla) u \cdot \Delta u dx + \int_{\mathbb{R}^3} (u \cdot \nabla) \theta \cdot \Delta \theta dx \\
&\leq C \int_{\mathbb{R}^3} |\nabla_h u| |\nabla u|^2 dx + C \int_{\mathbb{R}^3} |\nabla_h \theta| |\nabla \theta|^2 dx + C \int_{\mathbb{R}^3} |\nabla_h \theta| |\nabla u| |\nabla \theta| dx.
\end{align*}

Proof: Due to the divergence-free condition $\nabla \cdot u = 0$, one shows that
\begin{align*}
\sum_{i,j,k=1}^{3} \int_{\mathbb{R}^3} u_i \partial_i \partial_k u_j \partial_k u_j dx &= \frac{1}{2} \sum_{i,j,k=1}^{3} \int_{\mathbb{R}^3} u_i \partial_i (\partial_k u_j)^2 dx \\
&= \frac{1}{2} \int_{\mathbb{R}^3} \left(\sum_{i=1}^{3} \partial_i u_i \right) \left(\sum_{j,k=1}^{3} (\partial_k u_j)^2 \right) dx = 0,
\end{align*}

Hence,
\begin{align*}
I &= \int_{\mathbb{R}^3} (u \cdot \nabla) u \cdot \Delta u dx \int_{\mathbb{R}^3} (u \cdot \nabla) \theta \cdot \Delta \theta dx \\
&= - \int_{\mathbb{R}^3} \nabla (u \cdot \nabla) u \cdot \Delta u dx - \int_{\mathbb{R}^3} \nabla (u \cdot \nabla) \theta \cdot \nabla \theta dx \\
&= - \sum_{i,j,k=1}^{3} \int_{\mathbb{R}^3} \partial_k u_i \partial_i \partial_k u_j dx - \sum_{i,k=1}^{3} \int_{\mathbb{R}^3} \partial_k u_i \partial_i \theta \partial_k \theta dx.
\end{align*}

In order to estimate the right hand side of I, we split each of the above integrals according to the following rules:

Case 1: when $1 \leq k \leq 2$ or $1 \leq i \leq 2$, then the integral I has at least $\nabla_h u$ or $\nabla_h \theta$ in the integrand and can be dominated by
\begin{align*}
I \leq C \int_{\mathbb{R}^3} |\nabla_h u| |\nabla u|^2 dx + C \int_{\mathbb{R}^3} |\nabla_h \theta| |\nabla \theta|^2 dx + C \int_{\mathbb{R}^3} |\nabla_h \theta| |\nabla u| |\nabla \theta| dx
\end{align*}
Case 2: when \(k = i = 3 \), then we use the divergence-free condition to rewrite
\[
\partial_3 u_3 = -\partial_1 u_1 - \partial_2 u_2,
\]
then the integral can be controlled by (1.6). Hence the proof of Lemma is complete. □

1.2. Proof of Theorem 1.1. Before going to the proof, we recall the following inequality established in [8]:
\[
\|f\|_{L^r} \leq C \|f\|_{L^2}^{\frac{6-r}{2}} \|\partial_1 f\|_{L^2}^{\frac{r-2}{2}} \|\partial_2 f\|_{L^2}^{\frac{r-2}{2}} \|\partial_3 f\|_{L^2}^{\frac{r-2}{2}}
\]
(1.7)
for every \(f \in H^1(\mathbb{R}^3) \) and \(r \in [2, 6) \).

Now we are ready to present the proof of Theorem 1.1.

Proof: Since the initial data \((u_0, \theta_0) \in H^1(\mathbb{R}^3)\) with \(\text{div} \, u_0 = 0 \) in \(\mathbb{R}^3 \), there exists a unique local strong solution \((u, \theta)\) of the 3D Boussinesq equations on \((0, T)\) (see [2] [6] [7] [23]). By using a standard method, we only need to show the following a priori estimate
\[
\sup_{0 \leq t \leq T} \left(\|\nabla u(\cdot, t)\|_{L^2}^2 + \|\nabla \theta(\cdot, t)\|_{L^2}^2 \right)
\leq \left(\|\nabla u_0\|_{L^2}^2 + \|\nabla \theta_0\|_{L^2}^2 + C \|\nabla_h u_0\|_{L^2}^{\frac{8}{3}} + C \|\nabla_h \theta_0\|_{L^2}^{\frac{8}{3}} \right) e^{C \mathcal{K}(T)},
\]
where
\[
\mathcal{K}(T) = \int_0^T \left(\|\nabla_h u(s)\|_{B_{\infty, \infty}^{\frac{4}{3}}} + \|\nabla_h \theta(s)\|_{B_{\infty, \infty}^{\frac{4}{3}}} \right) ds.
\]
Let
\[
\mathcal{J}(t) = \|\nabla_h u(t)\|_{L^2}^2 + \|\nabla_h \theta(t)\|_{L^2}^2 + \int_0^t \left(\|\nabla h u(\tau)\|_{L^2}^2 + \|\nabla h \theta(\tau)\|_{L^2}^2 \right) d\tau,
\]
\[
\mathcal{K}(t) = \int_0^t \left(\|\nabla_h u(\tau)\|_{B_{\infty, \infty}^{\frac{4}{3}}} + \|\nabla_h \theta(\tau)\|_{B_{\infty, \infty}^{\frac{4}{3}}} \right) \left(\|\nabla u(\tau)\|_{L^2}^2 + \|\nabla \theta(\tau)\|_{L^2}^2 \right) d\tau,
\]
\[
\mathcal{Z}(t) = \|\nabla u(\cdot, t)\|_{L^2}^2 + \|\nabla \theta(\cdot, t)\|_{L^2}^2 + \int_0^t \left(\|\Delta u(\cdot, \tau)\|_{L^2}^2 + \|\Delta \theta(\cdot, \tau)\|_{L^2}^2 \right) d\tau,
\]
\[
\mathcal{W}(t) = \int_0^t \left(\|\nabla_h u(\tau)\|_{B_{\infty, \infty}^{\frac{4}{3}}} + \|\nabla_h \theta(\tau)\|_{B_{\infty, \infty}^{\frac{4}{3}}} \right) \left(\|\nabla u(\tau)\|_{L^2}^2 + \|\nabla \theta(\tau)\|_{L^2}^2 \right) d\tau.
\]

We start with the estimates of \(\|\nabla_h u\|_{L^2} \) and \(\|\nabla_h \theta\|_{L^2} \). Multiplying the first equation of (1.1) by \((-\Delta_h u)\), where \(\Delta_h = \partial_1 \partial_1 + \partial_2 \partial_2 \) is the horizontal Laplacian.
and integrating by parts and using the divergence free condition $\nabla \cdot u = 0$ into account, we get
\begin{align*}
\frac{1}{2} \frac{d}{dt} \| \nabla h u(t) \|^2_{L^2} + \| \nabla \nabla h u \|^2_{L^2} &= \int_{\mathbb{R}^3} (u \cdot \nabla) u \cdot \Delta h u dx - \int_{\mathbb{R}^3} \theta e_3 \cdot \Delta h u dx \\
&= \int_{\mathbb{R}^3} \sum_{j=1}^{3} \sum_{l=1}^{2} u_j \partial_j u \cdot \partial_l^2 u dx - \int_{\mathbb{R}^3} \sum_{l=1}^{2} \theta e_3 \cdot \partial_l^2 u dx \\
&= -\int_{\mathbb{R}^3} \sum_{j=1}^{3} \sum_{l=1}^{2} \partial_l u_j \partial_j u \partial_l u dx + \int_{\mathbb{R}^3} \sum_{l=1}^{2} \partial_l (\theta e_3) \partial_l u dx \\
&= -\int_{\mathbb{R}^3} \nabla h u \cdot \nabla u \cdot \nabla h u dx + \int_{\mathbb{R}^3} \nabla h (\theta e_3) \cdot \nabla h u dx,
\end{align*}
(1.9)
where we have used
\begin{align*}
\int_{\mathbb{R}^3} \sum_{j=1}^{3} \sum_{l=1}^{2} u_j \partial_j \partial_l u \cdot \partial_l u dx = 0.
\end{align*}
Similarly, multiplying the second equation of (1.1) by $(-\Delta h \theta)$, we obtain
\begin{align*}
\frac{1}{2} \frac{d}{dt} \| \nabla h \theta(t) \|^2_{L^2} + \| \nabla \nabla h \theta \|^2_{L^2} &= \int_{\mathbb{R}^3} (u \cdot \nabla) \theta \cdot \Delta h \theta dx = \int_{\mathbb{R}^3} \sum_{j=1}^{3} \sum_{l=1}^{2} u_j \partial_j \theta \cdot \partial_l^2 \theta dx \\
&= -\int_{\mathbb{R}^3} \sum_{j=1}^{3} \sum_{l=1}^{2} \partial_l u_j \partial_j \partial_l \theta dx = -\int_{\mathbb{R}^3} \nabla h u \cdot \nabla \theta \cdot \nabla h \theta dx,
\end{align*}
(1.10)
when we have used
\begin{align*}
\int_{\mathbb{R}^3} \sum_{j=1}^{3} \sum_{l=1}^{2} u_j \partial_j \partial_l \theta \cdot \partial_l \theta dx = 0.
\end{align*}
Combining (1.9) and (1.10) yields
\begin{align*}
\frac{1}{2} \frac{d}{dt} (\| \nabla h u(t) \|^2_{L^2} + \| \nabla h \theta(t) \|^2_{L^2}) &= \| \nabla \nabla h u \|^2_{L^2} + \| \nabla \nabla h \theta \|^2_{L^2} \\
&= -\int_{\mathbb{R}^3} \nabla h u \cdot \nabla u \cdot \nabla h u dx - \int_{\mathbb{R}^3} \nabla h u \cdot \nabla \theta \cdot \nabla h \theta dx + \int_{\mathbb{R}^3} \nabla h (\theta e_3) \cdot \nabla h u dx \\
(1.11) &= R_1 + R_2 + R_3,
\end{align*}
Attention is now focused on bounding these terms; we start with R_1. Using Hölder and Young’s inequalities, one has, for R_1,
\begin{align*}
|R_1| &\leq C \| \nabla h u \|^2_{L^4} \| \nabla u \|_{L^2} \\
&\leq C \| \nabla \nabla h u \|_{L^2} \| \nabla h u \|_{B_{\infty, \infty}^{-1}} \| \nabla u \|_{L^2} \\
&\leq \frac{1}{4} \| \nabla \nabla h u \|^2_{L^2} + C \| \nabla h u \|_{B_{\infty, \infty}^{-1}}^{2} \| \nabla u \|^2_{L^2}.
\end{align*}
Inserting the above estimate into (1.11), we derive that
\begin{equation}
\| f \|_{L^4}^2 \leq C \| \nabla f \|_{L^2} \| f \|_{B_{\infty, \infty}}^{-1}.
\end{equation}

For \(R_2 \), analogously, using Hölder and Young’s inequalities, we deduce from (1.12) that
\begin{align*}
| R_2 | & \leq C \| \nabla \theta \|_{L^2} \| \nabla \theta \|_{L^2} \| \nabla \theta \|_{L^2} \\
& \leq C \| \nabla \nabla \theta \|_{L^2} \| \nabla \nabla \theta \|_{L^2} \| \nabla \nabla \theta \|_{L^2} \\
& = C \left(\| \nabla \nabla \theta \|_{L^2}^2 \right)^{\frac{1}{4}} \\
& \leq C \left(\| \nabla \theta \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 \right).
\end{align*}

For \(R_3 \), by means of the Hölder and Cauchy inequalities, it follows that
\begin{align*}
| R_3 | & \leq C \| \nabla h \|_{L^2} \| \nabla h \|_{L^2} \\
& \leq C \left(\| \nabla \theta \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 \right).
\end{align*}

Inserting the above estimate into (1.11), we derive that
\begin{align*}
\frac{d}{dt} \left(\| \nabla h \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 \right) & \leq C \left(\| \nabla u \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 \right) \\
& \leq C \left(\| \nabla u \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 \right).
\end{align*}

Integrating the above inequality in time variable over \(0 \leq t \leq T \), we get
\begin{equation}
J(t) \leq \| \nabla h \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 + C \mathcal{X}(t).
\end{equation}

Next, we derive the bounds of \(\| \nabla u \|_{L^2} \) and \(\| \nabla \theta \|_{L^2} \). Multiplying the two equations of (1.1) by \(-\Delta u \) and \(-\Delta \theta \), respectively, integrating and applying the incompressibility condition, we have by (1.3)
\begin{align*}
\frac{1}{2} \frac{d}{dt} \left(\| \nabla u \|_{L^2}^2 + \| \nabla \theta \|_{L^2}^2 \right) & + \| \Delta u(t) \|_{L^2}^2 + \| \Delta \theta(t) \|_{L^2}^2 \\
& = \int_{\mathbb{R}^3} (u \cdot \nabla) u \cdot \Delta u dx + \int_{\mathbb{R}^3} (u \cdot \nabla) \theta \cdot \Delta \theta dx + \int_{\mathbb{R}^3} (\theta e_3) \cdot \Delta u dx \\
& \leq C \int_{\mathbb{R}^3} |\nabla u| |\nabla u|^2 \, dx + C \int_{\mathbb{R}^3} |\nabla u| |\nabla \theta|^2 \, dx + C \int_{\mathbb{R}^3} |\nabla \theta| |\nabla \theta| \, dx + C \| \theta \|_{L^2} \| \Delta u \|_{L^2} \\
& \leq K_1 + K_2 + K_3 + \frac{1}{4} \| \Delta u \|_{L^2}^2 + C \| \theta \|_{L^2}^2.
\end{align*}
Now we deal with K_1. It follows that, from the Hölder inequality and (1.7),

\[K_1 \leq C \| \nabla h u \|_{L^2} \| \nabla u \|_{L^4}^2 \]
\[\leq C \| \nabla h u \|_{L^2} \| \nabla u \|_{L^2}^2 \| \nabla \nabla h u \|_{L^2} \| \Delta u \|_{L^2}^{\frac{1}{4}}. \]

For K_2, Hölder inequality and (1.7), together give,

\[K_2 \leq C \| \nabla h u \|_{L^2} \| \nabla \theta \|_{L^4}^2 \]
\[\leq C \| \nabla h u \|_{L^2} \| \nabla \nabla h \theta \|_{L^2} \| \Delta \theta \|_{L^2}^{\frac{1}{4}}. \]

Arguing similarly as the estimate of K_1, thanks to the Hölder inequality and (1.7), one has

\[K_3 \leq C \| \nabla h \theta \|_{L^2} \| \nabla u \|_{L^4} \| \nabla \theta \|_{L^4} \]
\[\leq C \| \nabla h \theta \|_{L^2} \left(\| \nabla u \|_{L^2}^{\frac{5}{4}} \| \nabla \nabla h u \|_{L^2} \| \Delta u \|_{L^2} \right) \left(\| \nabla \theta \|_{L^2}^{\frac{5}{4}} \| \nabla \nabla h \theta \|_{L^2} \| \Delta \theta \|_{L^2} \right). \]

Combining the above estimates of K_1, K_2 and K_3 and inserting into (1.13), we get

\[
\frac{d}{dt} (\| \nabla u (\cdot, t) \|_{L^2} + \| \nabla \theta (\cdot, t) \|_{L^2}^2) + \| \Delta u \|_{L^2}^2 + \| \Delta \theta \|_{L^2}^2 \]
\[\leq C \| \nabla h u \|_{L^2} \| \nabla u \|_{L^2}^{\frac{5}{2}} \| \nabla \nabla h u \|_{L^2} \| \Delta u \|_{L^2}^{\frac{5}{2}} + C \| \nabla h u \|_{L^2} \| \nabla \theta \|_{L^2}^{\frac{5}{2}} \| \nabla h \theta \|_{L^2} \| \Delta \theta \|_{L^2}^{\frac{5}{2}} \]
\[+ C \| \nabla h \theta \|_{L^2} \| \nabla u \|_{L^2}^{\frac{5}{2}} \| \nabla \nabla h u \|_{L^2} \| \Delta u \|_{L^2} \| \nabla \theta \|_{L^2} \| \nabla \nabla h \theta \|_{L^2} \| \Delta \theta \|_{L^2}^{\frac{5}{2}} + C \| \nabla \theta \|_{L^2}^2. \]

Integrating the above inequality in time variable over $0 \leq \tau \leq t$, one shows that

\[
\mathcal{Z}(t) \leq C \left(\sup_{0 \leq \tau \leq t} \| \nabla h u \|_{L^2} \right) A_1(t) + C \left(\sup_{0 \leq \tau \leq t} \| \nabla h u \|_{L^2} \right) A_2(t) \]
\[+ C \left(\sup_{0 \leq \tau \leq t} \| \nabla h \theta \|_{L^2} \right) (A_3(t) \times A_4(t)) + \| \nabla u_0 \|_{L^2}^2 + \| \nabla \theta_0 \|_{L^2}^2 \]
\[\leq C \left(\| \nabla h u_0 \|_{L^2}^2 + \| \nabla h \theta_0 \|_{L^2}^2 + \mathcal{X}(t) \right) \times A_5(t) + \| \nabla u_0 \|_{L^2}^2 + \| \nabla \theta_0 \|_{L^2}^2, \]
where we denote

\[
A_1(t) = \left(\int_0^t \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \nabla h u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \Delta u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2},
\]

\[
A_2(t) = \left(\int_0^t \| \nabla \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \nabla h \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \Delta \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2},
\]

\[
A_3(t) = \left(\int_0^t \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \nabla h \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \Delta u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2},
\]

\[
A_4(t) = \left(\int_0^t \| \nabla \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \nabla h \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} \left(\int_0^t \| \Delta \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2},
\]

\[
A_5(t) = \left(\int_0^t \left(\| \Delta u(\cdot, \tau) \|_{L^2}^2 + \| \Delta \theta(\cdot, \tau) \|_{L^2}^2 \right) \, d\tau \right)^\frac{1}{2}.
\]

By virtue of the Hölder and Young inequalities and energy inequality (13), we get

\[
Z(t) \leq \| \nabla u_0 \|_{L^2}^2 + \| \nabla \theta_0 \|_{L^2}^2 + C \left(\| \nabla h u_0 \|_{L^2}^\frac{1}{2} + \| \nabla h \theta_0 \|_{L^2}^\frac{1}{2} \right)
\]

\[
+ C \int_0^t \left(\| \nabla h u(\tau) \|_{B_{\infty, \infty}^1}^2 \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} + C \int_0^t \left(\| \nabla h u(\tau) \|_{B_{\infty, \infty}^1}^2 \| \nabla \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2}
\]

\[
+ C \int_0^t \left(\| \nabla h \theta(\tau) \|_{B_{\infty, \infty}^1}^2 \| \nabla \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} + C \int_0^t \left(\| \nabla h \theta(\tau) \|_{B_{\infty, \infty}^1}^2 \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2}
\]

\[
\leq \| \nabla u_0 \|_{L^2}^2 + \| \nabla \theta_0 \|_{L^2}^2 + C \| \nabla h u_0 \|_{L^2}^\frac{1}{2} + C \| \nabla h \theta_0 \|_{L^2}^\frac{1}{2}
\]

\[
+ C \int_0^t \left(\| \nabla h u(\tau) \|_{B_{\infty, \infty}^1}^\frac{1}{2} \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} + C \int_0^t \left(\| \nabla h u(\tau) \|_{B_{\infty, \infty}^1}^\frac{1}{2} \| \nabla \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2}
\]

\[
+ C \int_0^t \left(\| \nabla h \theta(\tau) \|_{B_{\infty, \infty}^1}^\frac{1}{2} \| \nabla \theta(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2} + C \int_0^t \left(\| \nabla h \theta(\tau) \|_{B_{\infty, \infty}^1}^\frac{1}{2} \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2}
\]

\[
+ C \int_0^t \left(\| \nabla h \theta(\tau) \|_{B_{\infty, \infty}^1}^\frac{1}{2} \| \nabla u(\tau) \|_{L^2}^2 \, d\tau \right)^\frac{1}{2}.
\]
Thanks to the energy inequality (1.3), we get
\[Z(t) \leq \|\nabla u_0\|^2_{L^2} + \|\nabla \theta_0\|^2_{L^2} + C \|\nabla_h u_0\|^{rac{4}{3}}_{L^2} + C \|\nabla_h \theta_0\|^{rac{4}{3}}_{L^2} + C \mathcal{V}(t). \]

Taking the Gronwall inequality into consideration, we arrive at
\[Z(t) \leq \left(\|\nabla u_0\|^2_{L^2} + \|\nabla \theta_0\|^2_{L^2} + C \|\nabla_h u_0\|^{rac{4}{3}}_{L^2} + C \|\nabla_h \theta_0\|^{rac{4}{3}}_{L^2}\right) e^{CK(t)}, \]
for any \(t \in [0, T) \), which implies that
\[\sup_{0 \leq t \leq T} \left(\|\nabla u(\cdot, t)\|^2_{L^2} + \|\nabla \theta(\cdot, t)\|^2_{L^2}\right) < \infty. \]

In the end, by the standard arguments of continuation of local solutions, we complete the proof of Theorem 1.1. \(\square \)
[15] S. Gala, A remark on the regularity for the 3D Navier-Stokes equations in terms of the two components of the velocity, Electronic J. Differential Equations. vol. 2009 (2009) no. 148, pp. 1-6.

[16] W. Chen and S. Gala, A regularity criterion for the Navier-Stokes equations in terms of the horizontal derivatives of two velocity components, Electronic J. Differential Equations. vol. 2011 (2011) no. 06, pp. 1-7.

[17] Z. Guo and S. Gala, Remarks on logarithmical regularity criteria for the Navier-Stokes equations, J. Math. Phys. 52 (2011), 063503.

[18] S. Gala and M.A. Ragusa, A new regularity criterion for the Navier-Stokes equations in terms of two components of the velocity, Electronic J. of Qualitative Theory of Differential Equations 26 (2016), 1-9.

[19] S. Gala, M. Mezhedene and M.A. Ragusa, Logarithmically improved regularity criteria for the Boussinesq equations, AIMS Math. 2 (2017), 336-347.

[20] S. Gala and M.A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal. 95 (2016), 1271-1279.

[21] S. Gala, Z. Guo and M.A. Ragusa, A remark on the regularity criterion of Boussinesq equations with zero heat conductivity, Appl. Math. Lett. 27 (2014), 70-73.

[22] Z. Guo and S. Gala, Regularity criterion of the Newton–Boussinesq equations in R3, Commun. Pure Appl. Anal. 11 (2012), 443-451.

[23] T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Disc. Cont. Dyn. Syst. 12 (2005), 1-12.

[24] N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3-D Boussinesq equations, Math. Model. Meth. Appl. Sci. 9 (1999), 1323-1332.

[25] I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction, J. Math. Phys. 48 (2007), 065203, 10 pp.

[26] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, no. 9, AMS/CIMS, (2003).

[27] M. Mezhedene, S. Gala, Z. Guo and A.M. Ragusa, Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure, Z. Angew. Math. Phys. 67 (2016), 1-10.

[28] Y. Meyer, P. Gerard and F. Oru, Inégalités de Sobolev précisées; in Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. IV, 11 pp, École Polytech., Palaiseau.

[29] J. Pedlosky, Geophysical Fluid Dynamics. New-York : Springer Verlag, 1987.

[30] Z. Skaláč, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient, Nonlinear Anal., 118 (2015), 1-21.

[31] H. Triebel, Theory of Function Spaces. Birkhäuser, Basel (1983).

[32] Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl. 84 (2005), 1496-1514.

[33] Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity 23 (2010), 1097-1107.
Ahmad Mohammad Alghamdi
Department of Mathematical Science, Faculty of Applied Science, Umm Alqura University, P.O.B. 14035, Makkah 21955, Saudi Arabia
E-mail address: amghamdi@uqu.edu.sa;

Ines Ben Omrane
Department of Mathematics, Faculty of Science, Imam Mohammad Ibn Saud, Islamic University (IMSIU), P. O. Box 90950, Riyadh 11623, Saudi Arabia
E-mail address: imbenomrane@imamu.edu.sa

Sadek Gala
Department of Mathematics, Ecole Normale Supérieure de Mostaganem University of Mostaganem, Box 227, Mostaganem 27000, Algeria, Dipartimento di Matematica e Informatica, Viale Andrea Doria, 6, 95125- Catania, Italy
E-mail address: sgala793@gmail.com

Maria Alessandra Ragusa
Dipartimento di Matematica e Informatica, Viale Andrea Doria, 6, 95125- Catania, Italy
RUDN University, 6 Miklukho - Maklay St, Moscow, 117198, Russia
E-mail address: maragusa@dmi.unict.it