Phytochemical investigation of *Erythroxylum rimosum* O. E. Schulz

Jociano da Silva Lins \(^1\), Ana Rita R. A. Silva \(^1\), Pedro T. R. Figueiredo, \(^1\) Nikole Durand Trigueiro \(^1\), Carlos A. G. Veloso \(^1\), Emille W. R. da Silva \(^1\), Anderson A. V. Pinheiro \(^1\) and Vicente Carlos de O. Costa \(^1\)

\(^1\) Universidade Federal da Paraíba Campos I João Pessoa, CEP: 58051-900, João Pessoa-PB, Brasil. Emails: anaritarodrigues@gmail.com (UFPB); ptrf19@hotmail.com (UFPB); nikoledt@hotmail.com (UFPB); arthur.gouveia@me.com (UFPB); wannick123@hotmail.com (UFPB); anderson_avp@hotmail.com (UFPB); vicente@ltf.ufpb.br(UFPB).

* Jociano.ejc2012@gmail.com
Tel.: (083) 98875-9471.

Received: / Accepted: / Published:

Abstract: *Erythroxylum rimosum* O. E. Schulz is a species restricted to the northeastern region of Brazil, found in the states of Ceará, Piauí, Sergipe and Bahia, occurring respectively in Restinga, Cerrado and Carrasco vegetation. The study of the extract of *E. rimosum*, reported the identification of pentacyclic triterpenes, steroid, tropic alkaloid and flavonoids. Thus, a chromatographic study of its crude ethanol extract was carried out. The botanical material of the aerial parts was collected in the municipality of Pirambu, state of Sergipe and identified by Profa. Dra. Ana Paula do Nascimento Prata, Department of Biology, Federal University of Sergipe (FUS). It was then oven dried with circulating air at an average temperature of 40 °C, ground in a mechanical mill and subjected to steeping with 95% EtOH. The BSE (105 g) was dissolved in a methanol: water (7:3 v/v) solution and partitioned with the following solvents: hexane, dichloromethane and ethyl acetate. The AcOEt phase was subjected to column chromatography, using silica gel 60 as stationary phase and as mobile phase, the Hex, AcOEt and MeOH solvents, pure and in binary mixtures in increasing order of polarity. This yields 30 fractions which after analytical thin layer chromatography (TLC) were pooled according to their respective retention factors (Rfs). The fractions from 23 to 25 were submitted to High Performance Liquid Chromatography Coupled to a Diode Array Detector (HPLC-DAD). Getting yourself 8 fractions. From fractions 4 and 2 the coded substances of Er-1 and Er-2 respectively were obtained. They have had their structures identified by \(^1\)H-NMR, \(^{13}\)C, and two-dimensional techniques in comparison with literature data, namely: kaempferol-3-rutinoside and quercetin-3-O-β-D-glucopyranoside-α-L-rhamnioside, two glycosylated flavonoids that are being reported for the first time in the study species.

Keywords: Erythroxylaceae; *E. rimosum*; Kaempferol-3-rutinoside.
1. Introduction

E. rimosum O. E. Schulz is a species restricted to the northeastern region of Brazil, found in the states of Ceará, Piauí, Sergipe and Bahia, occurring respectively in Restinga, Cerrado and Carrasco vegetation. The study of the crude ethanolic extract of *E. Rimosum* leaves carried out by RIBEIRO, (2011), reported the identification of pentacyclic triterpenes (α-amirin, β-amirin), steroid (β-sitosterol), tropic alkaloid and flavonoids. The substance encoded as Er-1 was isolated as a brown solid with 20 mg. In the ¹³C-APT spectrum obtained at 100 MHz in CD₂OD of Er-2 was shown to be quite similar to Er-1 differing only in the chemical shifts at δC 117.8; δC 145.9 and δC 149.9 which were assigned to the C-2 'aromatic' carbons; C-3 'and C-4' respectively, when compared to these same carbons in Er-1, it was possible to suggest the insertion of a hydroxyl in C-3 'due to an ortho effect of electron donor group that promoted protection in C-2' and C-4'.

In the ¹H spectrum, it was shown to be quite similar to Er-1, differentiating only in the absence of the signal in δH 6.93 (d, J = 8.8 Hz), where a C-3 'group was suggested. It was also observed that the chemical shifts and coupling constants values were δH 7.67 (d, J = 2.0 Hz), δH 6.89 (d, J = 8.4 Hz) and δH 7.63 (dd, J = 8.4; 2.0 Hz), which were attributed to the hydrogen H-2 ', H-5' and H-6 ', respectively, being suggestive of the presence of an ABX system in ring B of flavones. After these analyzes, it was possible to conclude that Er-2 is quercetin-3-O-β-D-glucopyranoside-α-L-raminoside.

Camphorol-3-O-rutinoside (Er-1)

¹H NMR (400 MHz, CH₂OD), 6.20 (d, J = 2.0 Hz, H-6), 6.38 (d, J = 2.0 Hz, H-8), 7.78 (d, J = 8.8 Hz, H-2' e H-6'), 6.93 (d, J = 8.8 Hz, H-3' e H-5'), 5.37 (d, J = 1.6 Hz, H-1''), 3.52-4.22 (m, H-2'''), 3.52-4.22 (m, H-3''''), 3.52-4.22 (m, H-5'''), 4.21 (dd, J = 3.6; 1.6 Hz, H-6''), 4.57 (s, H-1''''), 3.32-4.22 (m, H-2'''''), 3.32-4.22 (m, H-3'''''), 3.32-4.22 (m, H-5'''''), 1.10 (d, J = 6.0 Hz, H-6'''''), APT.¹³C NMR (100 MHz, CH₂OD), 158.69 (C-2), 136.36 (C-3), 179.63 (C-4), 163.10 (C-5), 101.38 (C-6), 166.29 (C-7), 94.92 (C-8), 159.54 (C-9), 105.60 (C-10), 122.78 (C-1'), 132.05 (C-2'), 116.70 (C-3'), 161.75 (C-4'), 116.70 (C-5'), 132.05 (C-6'), 103.66 (C-7'), 72.20 (C-2'''), 77.26 (C-3'''), 71.50 (C-4'''), 78.20 (C-5'''), 68.60 (C-6'''), 102.40 (C-1''''), 72.27 (C-2''''), 72.48 (C-3''''), 72.06 (C-4'''''), 69.73 (C-5''''), 17.80 (C-6''''').

Quercetin-3-O-β-D-glucopyranoside-α-L-raminoside (Er-2)
3. Materials and Methods

The aerial parts (1.0 kg) were oven dried with circulating air at 40 °C for 72 hours. After drying, the plant material was subjected to a grinding process in a mechanical mill, yielding 480 g of dry powder.

The dried and ground vegetable material was subjected to maceration with 95% ethanol (EtOH). Four extraction processes were performed within 72 hours between them. The ethanolic solution obtained was filtered, followed by evaporation of the solvent with the aid of a rotavaporator at 40 °C. After this solvent evaporation process, the crude ethanolic extract (BSA) was obtained, which weighed 105 g.

The BSE was dissolved in a methanol-water solution (7:3 v/v) and partitioned with hexane (Hex), dichloromethane (DCM) and ethyl acetate (AcOEt) solvents. Providing the phases, hexane (4.0 g), DCM (2.6 g) and AcOEt (10.1 g). The AcOEt phase was subjected to a column chromatography, using as the silica gel stationary phase, and as mobile phase hex, AcOEt and methanol, pure or in binary mixtures, in increasing polarity order. This gives a total of 30 fractions. These fractions were monitored by analytical thin-layer chromatography (TLC) and pooled according to their retention factors (Rfs) after visualization in ultraviolet light. The fractions were collected in groups. After analytical methodology was developed in CLAE-DAD from the meeting of the fractions from 23 to 25 and then the chromatographic separation in preparative HPLC-DAD, the obtained fractions were analyzed by nuclear magnetic resonance (NMR) of 1H and 13C.

Figure 1. Isolated substances of E. rimosum

4. Conclusions

From the phytochemical study of the constituents of the crude ethanolic extract of Erythroxylum rimosum O. E. Schulz. Two substances were isolated. Through the analysis of the spectra and comparison with literature data the substances were identified as: camferol-3-O-rutinoside and quercetin-3-O-β-D-glucopyranoside-α-L-rhamnoside. They are reported for the first time in the study species, contributing to the chemotaxonomic study of this species.

Acknowledgments

The authors thank CAPES, CNPq for the financial support and the LMCA-Central Analytical of the UFPB for obtaining the spectra.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Loiola, M. I. B.; Agra, M. F.; Baracho, G. S.; Quiros, R. T. da flora Paraibana Brasil: Erythroxylaceae. Acta Botanica Brasilia, v. 21, p. 473-4887, 2007.

2. Teses e dissertações: Ribeiro, E. M. O.; Estudo fitoquímico de Erythroxylum rimosum O. E.Schulz e Erythroxylum betulaceum mart. (Erythroxylaceae). Tese (Doutorado em Química) – Instituto de Química, Universidade Federal da Bahia, Salvador-BA, 2011.