Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The Impact of Different Prophylactic Anticoagulation Doses on the Outcomes of Patients with COVID-19

Rodolfo Jiménez-Soto,*,1 Mercedes Aguilar-Soto,*,1 Roberta Demichelis, MD2

1Internal Medicine, Centro Médico ABC, Mexico City, Mexico
2Hematology, Centro Médico ABC, Mexico City, Mexico

Blood (2020) 136 (Supplement 1) : 17.
http://doi.org/10.1182/blood-2020-142594

Introduction

As the COVID-19 pandemic spread throughout the world, it was seen that patients who presented with critical disease had a higher incidence of thrombotic complications, associated with a poor prognosis. Currently prophylactic anticoagulation is recommended for all patients with COVID-19 who require hospitalization as part of the supportive management. However, since a higher incidence of thrombosis despite prophylactic anticoagulation has been reported, some recommendations indicate that an increase to intermediate or therapeutic dosing should be considered. The full spectrum of complications and outcomes related to this strategy are still unknown.

Methods

We conducted a cross-sectional study using the COVID-19 registry of the ARMII study group, based in Centro Medico ABC, a private hospital in Mexico City. We included all patients admitted from March 12 to July 31, 2020, who received prophylactic anticoagulation at standard (enoxaparin 40mg QD), intermediate (0.5 mg/kg QD or 40 mg BID), or therapeutic doses (1mg/kg BID), a decision taken by the attending physician based on clinical and laboratory criteria. Patients with previous or presenting with thrombosis were excluded.

We compared the three groups to identify baseline characteristics and conducted multivariable logistic regressions to measure the association of anticoagulation profiles and adverse outcomes.

Results
Out of total 322 patients, we identified 81 (25%) who received standard dose, 164 (51%) who received intermediate and 77 (24%) on therapeutic doses. Age and sex were distributed similarly among groups; patients with intermediate and therapeutic doses were more overweight and obese, but this was not significant (p=0.052). On admission, patients who received intermediate and therapeutic doses had lower oximetry registry when compared with standard doses (89%, 88% and 92% respectively, p=0.008). Three severity scales, NEWS, MULBSTA and CALL, were higher in patients with intermediate and therapeutic doses (p=0.01, p=0.02 and p=0.005, respectively). Regarding laboratory values, patients on therapeutic doses had higher leucocytes on admission (median 6 x 10^9L, 6 and 8, p=0.05) but lower lymphocyte absolute counts (median 1240 cells/mm3, 935 and 920, p<0.001). Patients who were given higher doses of anticoagulation had higher levels of C-reactive protein, DHL, and ferritin (p<0.001) and higher levels of IL-6 (p=0.02). Levels of D-dimer were also higher in this group (p<0.001). Patients with therapeutic doses of anticoagulation were more likely to present major bleeding when compared to intermediate or standard prophylactic doses (9% vs 1% vs 0%, p=0.0006) and clinically relevant bleeding (12% vs 2% vs 5%, p=0.01).

(Table 1)

The incidence of pulmonary embolism (PE) in the entire cohort was 5%, while the incidence of major bleeding was 2.5%. There were no differences between the different doses of anticoagulation; no patients presented deep venous thrombosis.

During follow-up, a total of 21 patients died, representing 6.5% of the study population. Independent factors that predicted death included age, CRP and D-dimer levels on admission, history of hypertension and requirement of mechanical invasive ventilation. When adjusting for these confounders, therapeutic anticoagulation was associated with a lower risk of death (OR 0.079 95% CI 0.008-0.76).

When restricting the analysis for patients who required mechanical ventilation, anticoagulation was also associated with a lower risk of death (OR 0.031 95% CI 0.002-0.54) but not for intermediate doses (OR 0.10 95% CI 0.01-1.06).

(Figure 1)

Conclusions

Anticoagulation might not play a causal role in the risk of requiring mechanical ventilation, but the decision to increase doses might reflect patients who present with more severe disease. In our cohort, the majority of the patients were receiving intermediate prophylactic doses and the incidence of PE is lower than in worldwide reports. Therapeutic doses of anticoagulation were not associated with a lower risk of PE,
but were associated with lower risk of death. However, therapeutic doses were also associated with a higher risk of major and clinically significant bleeding. Randomized-controlled clinical trials are needed to understand the role of higher doses of prophylactic anticoagulation in COVID-19.

Table 1. Baseline characteristics of 322 patients included in the analyses, divided by dose of anticoagulation

	Do not have prophylactic anticoagulation	Standard dose (n=139)	Intermediate dose (n=97)	Therapeutic dose (n=85)	P value
Age, years	61 (79)	61 (63)	66 (14)	0.27	
Men	24 (31)	21 (19)	28 (32)	0.29	
race	White	36 (42)	75 (88)	32 (38)	0.052
	Black	21 (26)	97 (11)	21 (25)	0.36
	Hispanic	14 (17)	29 (31)	16 (23)	0.87
Hypertension	33 (40)	46 (53)	22 (39)	0.94	
Diabetes	20 (25)	30 (32)	22 (35)	0.84	
Other risk of admission	11 (13)	29 (30)	15 (31)	0.50	
	Respiratory rate on admission	35 (48)	20 (10)	20 (19)	0.044
	Temperature on admission	35 (48)	88 (54)	86 (53)	0.0027
	Severity Score	7 (9)	7 (9)	7 (9)	0.72

Laboratory values

	No relevant conflicts of interest to declare.			
Value	0.8 (1.5)	8.0 (4.3)	8.0 (11)	0.06
Value	130 (245)	169 (216)	151 (179)	0.72
Value	81 (100)	95 (100)	96 (100)	0.0091
Value	3 (10)	11 (40)	19 (61)	0.0061
Value	209 (265)	90 (273)	78 (244)	0.0014
Value	86 (104)	86 (104)	86 (104)	0.0001
Value	22 (44)	30 (50)	21 (28)	0.0008
Value	97 (100)	98 (100)	98 (100)	0.72
Value	33 (34)	31 (31)	32 (33)	0.0003
Value	17 (19)	17 (19)	17 (19)	0.0007
Value	62 (62)	110 (83)	62 (81)	0.27
Value	66 (174)	130 (81)	68 (71)	0.19
Value	101 (72)	108 (76)	68 (72)	0.0032
Value	7 (28)	7 (28)	7 (28)	0.79
Value	20 (25)	20 (25)	20 (25)	0.99
Value	0.6	0.6	0.6	1.00
Value	2.9	2.9	2.9	1.00
Value	8	8	8	1.00
Value	10	10	10	1.00
Value	5	5	5	1.00
Value	2	2	2	1.00

Disclosures

No relevant conflicts of interest to declare.

Author notes

* Asterisk with author names denotes non-ASH members.