Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus

Xinlong He & Juhee Ahn
Department of Biomaterials Engineering, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, South Korea

Correspondence: Juhee Ahn, Department of Biomaterials Engineering and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea. Tel.: +82 33 2506564; fax: +82 33 2536560; e-mail: juheeahn@kangwon.ac.kr

Received 13 May 2011; revised 27 September 2011; accepted 28 September 2011. Final version published online 17 October 2011.

DOI: 10.1111/j.1574-6968.2011.02429.x

Editor: Stefan Schwarz

Keywords
biofilm; planktonic cell; antibiotic resistance; gene expression; Staphylococcus aureus; Salmonella Typhimurium.

Abstract
This study was designed to evaluate gene expression patterns of the planktonic and biofilm cells of Staphylococcus aureus and Salmonella Typhimurium in trypticase soy broth adjusted to pH 5.5 and pH 7.3. The planktonic and biofilm cells of multiple antibiotic-resistant S. aureus (S. aureusR) and S. Typhimurium (S. TyphimuriumR) were more resistant to β-lactams than those of antibiotic-susceptible S. aureus (S. aureusS) and S. Typhimurium (S. TyphimuriumS) at pH 5.5 and pH 7.3. The relative gene expression levels of norB, norC, and mdeA genes were increased by 7.0-, 4.7-, and 4.6-fold, respectively, in the biofilm cells of S. aureusS grown at pH 7.3, while norB, norC, mdeA, sec, seg, sei, sel, sem, sen, and seo genes were stable in the biofilm cells of S. aureusR. This study provides useful information for understanding gene expression patterns in the planktonic and biofilm cells of antibiotic-resistance pathogens exposed to acidic stress.

Introduction
Over the last decades, the prevalence of antibiotic-resistant bacterial infections has been rapidly increased because of the repeated and prolonged use of antibiotics, leading to a serious health problem worldwide (Wegener, 2003; Gootz, 2010). The emergence of antibiotic-resistant bacteria has become of great concern for public health, which widely appears as frequent outbreaks in recent years (Boonmar et al., 1998; Van et al., 2007). Therefore, prevention strategies for antibiotic resistance are essential to control the spread of antibiotic-resistant pathogens. However, the discovery and development of novel antibiotics has lagged behind the emergence of antibiotic-resistant pathogens because of the lengthy and expensive processes, requiring phases of clinical investigation trials to obtain approval, and the lack of information on the antibiotic resistance mechanisms (Yineyama & Katsumata, 2006). Therefore, understanding the molecular properties of strains that are antibiotic-resistant is vital for the treatment of diseases associated with antibiotic-resistant pathogens.

In the natural environments, most bacteria can form biofilms, embedded within a self-produced extracellular polymeric matrix consisting mainly of polysaccharide groups (Flemming & Wingender, 2010). The biofilm formation as a bacterial survival strategy leads to increased resistance to heat, acid, preservatives, and antibiotics (Stewart & William Costerton, 2001; Chmielewski & Frank, 2003; Van Houdt & Michiels, 2010). Bacterial infections can mainly occur after consumption of contaminated foods. The ingested bacteria are exposed to acidic stress and bile salt under oxygen-limited conditions during transit through the stomach, the small intestine, and the colon. These stress conditions can influence antibiotic resistance patterns, biofilm-forming abilities, and virulence properties (Riesenberg-Wilmes et al., 1996;
Gahan & Hill, 1999; Schobert & Tielen, 2010). Moreover, antibiotic-resistant bacteria can possibly reside in biofilms and lead to enhanced tolerance to adverse environmental conditions, causing serious infectious diseases (Gustafson et al., 2001; Langsrud et al., 2004; Ngwai et al., 2006; Kim & Wei, 2007). However, there is a lack of information on the biofilm-associated infections involved in altered virulence properties of antibiotic-resistant bacteria. Therefore, the objective of this study was to evaluate the gene expression patterns of biofilm and planktonic cells of antibiotic-resistant foodborne pathogens, *Salmonella Typhimurium* and *Staphylococcus aureus*, when exposed to acidic stress under anaerobic condition.

Materials and methods

Bacterial strains and culture conditions

Strains of *S. aureus* KACC13236 and *S. Typhimurium* KCCM 40253 were obtained from the Korean Agricultural Culture Collection (KACC, Suwon, Korea) and the Korean Culture Center of Microorganisms (KCCM, Seoul, Korea), respectively. Strains of *S. aureus* CCARM 3080 and *S. Typhimurium* CCARM 8009 were purchased from the Culture Collection of Antibiotic Resistant Microbes (CCARM, Seoul, Korea). All strains were cultured in trypticase soy broth (TSB; BD, Becton, Dickinson and Co., Sparks, MD) at 37 °C for 20 h. The cultured cells were collected by centrifugation at 3000 g for 20 min at 4 °C, and then used to prepare biofilm cells for assays.

Biofilm formation assay

The biofilm formation was evaluated based on the ability of strains to adhere to the surface of polystyrene Petri dishes. The strains of *S. aureus* KACC13236, *S. Typhimurium* KCCM 40253, *S. aureus* CCARM 3080, and *S. Typhimurium* CCARM 8009 were inoculated at approximately 10⁶ CFU mL⁻¹ in TSB adjusted to a sub-lethal pH of 5.5 using 1 M HCl and TSB at pH 7.3 as the control. The inoculated strains were anaerobically cultured without mechanical agitation at 37 °C for 48 h in a GasPak anaerobic system (BBL, Cockeysville, MD) and centrifuged at 5000 g. The collected cells were serially diluted (1 : 10) with 0.1% sterile buffered peptone water (BPW). The collected cells were disrupted in a buffer containing guanidine isothiocyanate and lysozyme, mixed with ethanol to adjust proper binding conditions, and then loaded into an RNeasy mini column for RNA isolation.

Antibiotic susceptible assay

The antibiotic susceptibility of planktonic and biofilm cells was determined according to the Clinical Laboratory Standards Institute (CLSI) procedure (CLSI, 2009). The antibiotic stock solutions were prepared by dissolving them in sterile distilled water at concentrations of 256 μg mL⁻¹ (ampicillin, aztreonam, cefotaxime, cefoxitin, ceftazidime, cephalothin, oxacillin, and piperacillin) and serial dilution (1 : 2) with TSB (pH 7.3). The strains of *S. aureus* KACC13236, *S. aureus* CCARM 3080, *S. Typhimurium* KCCM 40253, and *S. Typhimurium* CCARM 8009 were anaerobically cultured in TSB at pH 5.5 and 7.3 to obtain planktonic and biofilm cells. In accordance with the CLSI procedure, the planktonic and biofilm cells grown in TSB at pH 5.5 and 7.3 were incubated in the diluted antibiotic solutions for 18 h at 37 °C to evaluate the susceptibility of cells to antibiotics. Minimum inhibitory concentrations (MICs) were determined at concentrations at which there was no visible growth. The susceptible (S), intermediate (I), and resistant (R) strains were defined based on MIC values of < 4 μg mL⁻¹, between 4 and 8 μg mL⁻¹, and more than 16 μg mL⁻¹, respectively (Hamilton-Miller & Shah, 1996).

Microbiological analysis

The numbers of planktonic and biofilm cells were estimated using the plate count method. For planktonic cell counts, the cell suspensions were collected and the remaining non-adherent cells were rinsed by flooding the plate surface with 10 mL of 0.1% sterile BPW. For biofilm cell counts, the attached cells were collected with a cell scraper (Thermo Scientific Nunc, Rochester, NY) and suspended by sonication at 20 kHz for 10 min in 20 mL of 0.1% sterile BPW. The collected cells were serially diluted (1 : 10) with 0.1% sterile BPW and the proper dilutions were plated on trypticase soy agar (TSA). The agar plates were incubated at 37 °C for 48 h for enumeration of planktonic and biofilm cells.

RNA extraction

Each planktonic or biofilm culture (0.5 mL) was mixed with 1 mL of RNaProtect Bacteria Reagent (Qiagen, Hilden, Germany) and centrifuged at 5000 g for 10 min. The collected cells were used for RNA extraction according to the RNeasy® Mini Handbook (Qiagen). The collected cells were disrupted in a buffer containing guanidine isothiocyanate and lysozyme, mixed with ethanol to adjust proper binding conditions, and then loaded into an RNeasy mini column for RNA isolation.

RT-PCR amplification

The cDNA was synthesized as described previously (Xu et al., 2010), according to the QuantiTect Reverse Transcription protocol (Qiagen). In brief, the RNA sample was mixed with a master mixture containing QuantiScript Reverse Transcriptase, QuantiScript RT Buffer, RT Primer
Mix and RNase-free water, incubated at 42 °C for 15 min, and then immediately incubated at 95 °C for 3 min to inactivate the QuantiScript Reverse Transcriptase. The custom-synthesized oligonucleotide primers using IDT (Integrated DNA Technologies Inc., Coralville, IA) were used in this study (Tables 1 and 2). The PCR mixture (20 μL) containing 2× QuantiTect SYBR Green PCR Master (10 μL), 60 pmol primer (0.6 μL), cDNA (2 μL), and RNase-free water (6.8 μL) was amplified using an iCycler iQ™ System (Bio-Rad Laboratories, Hemel Hempstead, UK) and denatured initially for 15 min at 95 °C, followed by 45 cycles of 94 °C for 15 s, 59 °C for 20 s, and 72 °C for 15 s. The melt-curve analysis was performed immediately after the amplification protocol with 0.4 °C increments per 10 s for 85 cycles from 65 to 97 °C. The PCR products were visualized and analyzed using the iQ5 real-time PCR detection system (Bio-Rad Laboratories). The comparative Ct method (Livak & Schmittgen, 2001; Xu et al., 2010) was used to analyze the relative expression of targeted genes. The untreated cells were cultured anaerobically in TSB (pH 7.3) at 37 °C for 20 h.

Statistical analysis

All experiments were conducted in duplicate for three replicates. Data were analyzed using STATISTICAL ANALYSIS System software (SAS). The general linear model (GLM) and least significant difference (LSD) procedures were used to determine significant mean differences among strains and culture conditions at $P < 0.05$.

Results

Planktonic and biofilm growths of selected foodborne pathogens in different pH levels under anaerobic conditions

The planktonic and biofilm cell growths of *S. aureus* KACC13236, *S. aureus* CCARM 3080, *S. Typhimurium* KCCM 40253, and *S. Typhimurium* CCARM 8009 were evaluated in TSB at pH 5.5 and 7.3 under anaerobic conditions (Table 3). At pH 5.5, the planktonic cell growths of antibiotic-resistant strains *S. aureus* KACC13236 and *S. Typhimurium* KCCM 40253 were inhibited during the 48-h incubation, showing a decrease in cell counts to 5.59 and 6.25 log CFU mL$^{-1}$, respectively. However, at pH 5.5 the planktonic cell growths of antibiotic-susceptible strains *S. aureus* KACC13236 and *S. Typhimurium* KCCM 40253 were inhibited during the 48-h incubation, showing a decrease in cell counts to 5.59 and 6.25 log CFU mL$^{-1}$, respectively. At pH 7.3, the planktonic cell populations of *S. Typhimurium* KCCM 40253, and *S. Typhimurium* CCARM 8009 increased to approximately 9 log CFU mL$^{-1}$.

Table 1. Primer sequences used in RT-PCR analysis for *Staphylococcus aureus*

Gene	Function	Primer name and sequence	Size (bp)
sec	Enterotoxin	F: TGTACTTCTTAAGGTTTGTGAAT	104
C		R: TCCTATCTTTTTGTCATCTTCG	
seg	Enterotoxin	F: TTCACAAGGCAAGACATGCTTCA	73
sei	Enterotoxin	F: GTTACAAGATTGATGCTACGAA	147
sel	Enterotoxin	F: TAGATGCGCAAGAAATATACC	176
sem	Enterotoxin	F: TCAATGCGCAACGGCTGATG	150
sen	Enterotoxin	F: GATAGAAGAGATGTATAAGGCT	167
seo	Enterotoxin	F: GTGTGAAAGAATCAAGTGAAC	163
norB	Efflux transporter protein	F: AGCCGGCCTGTACCTGCAC	213
norC	Efflux transporter protein	F: AATGAGGCTTACCGGACACAA	216
mdeA	Multidrug efflux system	F: GTTTATGCGATCGATGTTG	155

F, forward; R, reverse.

Table 2. Primer sequences used in RT-PCR analysis for *Salmonella Typhimurium*

Gene	Molecular function	Primer name and sequence	Size (bp)
acrA	Multidrug efflux system	F: AAACCGGAAAGGCGAAGGT	64
		R: GTACCGGATCCTGGGGAATT	
acrB	Multidrug efflux system	F: TGAAGAAAAATGGAACGTTCTTC	69
		R: CGAACCGCTGGTGTCA	
tolC	Multidrug efflux system	F: GCCCGTGCAAGATATG	67
		R: CCGCTTATCAGGTTG	
ompD	Outer membrane protein D	F: GCCAAAGCCTGACAGGCGG	239
		R: GCCAAAGAAGTACGTGTTACG	
hiaA	Invasion gene activator	F: TATGGCAATGACGCTCC	50
		R: TCGTAATGCGTACCAG	
fimA	Major fimbrial subunit	F: TTGACGCTGTAAGTTGCG	62
		R: CAGACCTACCGAGATG	
lpfE	Fimbrial protein	F: GTCGACTTGGCTCGGA	61
		R: GATGGCCGATGCAG	
invA	Invasion protein	F: ACAGTGGTCGACCGCAA	454
		R: AGACGGTCGACTGATCGAAAT	
stn	*Salmonella enterotoxin*	F: GCCATGCTGCGATGAT	467
		R: GTACCGGATAGGGGAAGG	

F, forward; R, reverse.
respectively, while the fewest biofilms were formed by CCARM 3080 in TBS at pH 5.5 and pH 7.3 after 48-h cultivation, were 8.26 and 8.32 log CFU mL\(^{-1}\) respectively.

Antibiotic susceptibility patterns of selected foodborne pathogens anaerobically grown at different pH levels

The gene expression patterns were evaluated in the antibiotic-susceptible (S. aureus\(^S\) and S. Typhimurium\(^S\)) and multiple antibiotic-resistant strains (S. aureus\(^R\) and S. Typhimurium\(^R\)) anaerobically cultured in TSB adjusted to pH 5.5 and 7.3 during the planktonic-to-biofilm transition for 48 h at 37 °C (Figs 1 and 2). The relative expression of norB, norC, mdeA, sec, seg, sei, sel, sem, sen, and seo genes was observed in the planktonic and biofilm cells of S. aureus\(^S\) and S. aureus\(^R\) (Fig. 1). The norB and mdeA genes were overexpressed at the planktonic cells of both S. aureus\(^S\) and S. aureus\(^R\) grown in TSB at pH 5.5 after 48-h incubation (Fig. 1a). The relative expression level of norC gene was increased 2.8-fold in S. aureus\(^S\). The relative gene expression levels of sel and sem were increased 5.0- and 3.0-fold, respectively, in the planktonic cells of S. aureus\(^S\) grown in TSB at pH 5.5. As shown in Fig. 1b, the relative gene expression of norC and mdeA was stabilized in the planktonic cells of both S. aureus\(^S\) and S. aureus\(^R\) grown in TSB at pH 7.3. The relative expression levels of norB, seg, and sei genes were increased 52.6-, 2.6-, and 5.9-fold, respectively, in the planktonic cells of S. aureus\(^S\) grown in TSB at pH 7.3. Unlike the planktonic cells, all genes were stable in the biofilm cells of S. aureus\(^R\) grown in TSB at pH 5.5 and pH 7.3, except for the sec gene in S. aureus\(^R\) biofilm cells formed in TSB at pH 5.5 (Fig. 1c,d). The relative gene expression levels of norB and mdeA were increased 1.9- and 2.0-fold, respectively, in the biofilm cells of S. aureus\(^S\) grown in TSB at pH 5.5 (Fig. 1c). The highest expression level (116.6-fold) was observed at the norB gene in the S. aureus\(^S\) biofilm cells grown in TSB at pH 5.5. As shown in Fig. 1d, the norB, norC, and mdeA genes were stable in the biofilm cells of both S. aureus\(^S\) and S. aureus\(^R\) grown in TSB at pH 7.3.

Table 3. Viability of planktonic and biofilm cells grown at 37 °C for 48 h in TSB adjusted to pH 5.5 and 7.3

Treatment	Strain*	0 h (log CFU mL\(^{-1}\))	48 h (log CFU mL\(^{-1}\))	0 h (log CFU mL\(^{-1}\))	48 h (log CFU mL\(^{-1}\))
pH 5.5	S. aureus\(^S\)	6.51	5.59	6.51	7.02
	S. aureus\(^R\)	6.62	6.78	6.62	8.26
	S. Typhimurium\(^S\)	6.97	6.25	6.97	5.48
	S. Typhimurium\(^R\)	6.92	7.47	6.92	6.67
pH 7.3	S. aureus\(^S\)	6.54	5.64	6.54	7.77
	S. aureus\(^R\)	6.64	7.83	6.64	8.32
	S. Typhimurium\(^S\)	6.83	8.96	6.83	7.88
	S. Typhimurium\(^R\)	6.84	8.91	6.84	7.45

n.d., not detected; S, antibiotic-sensitive; R, antibiotic-resistant.

*Staphylococcus aureus KACC13236, S. aureus\(^S\); S. aureus CCARM 3080, S. aureus\(^S\); Salmonella Typhimurium KCCM 40253, S. Typhimurium\(^S\); and S. Typhimurium CCARM 8009, S. Typhimurium\(^R\).

a–e Means with different subscripts within a column are significantly different at P < 0.05.
Table 4. MIC (μg mL⁻¹)* of selected antibiotics against *Staphylococcus aureus* strains grown in TSB adjusted to pH 5.5 and 7.3 at 37 °C

Antibiotic	S. aureus KACC13236		S. aureus CCARM 3080	
	Planktonic	Biofilm	Planktonic	Biofilm
	pH 5.5 pH 7.3	pH 5.5 pH 7.3	pH 5.5 pH 7.3	pH 5.5 pH 7.3
Ampicillin	< 0.25 (S) < 0.25 (S)	< 0.25 (S) > 256 (R)	< 0.25 (S) > 256 (R)	4 (S) 32 (R)
Aztreonam	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)
Cefotaxime	< 0.25 (S) 2 (S)	2 (S) > 256 (R)	> 256 (R) > 256 (R)	64 (R) > 256 (R)
Cefoxitin	0.5 (S) 4 (S)	2 (S) > 256 (R)	64 (R) > 256 (R)	> 256 (R) > 256 (R)
Ceftazidime	4 (S) 16 (I)	16 (I) > 256 (R)	> 256 (R) > 256 (R)	64 (R) > 256 (R)
Cephalothin	< 0.25 (S) < 0.25 (S)	< 0.25 (S) > 256 (R)	16 (I) 128 (R)	> 256 (R) > 256 (R)
Oxacillin	< 0.25 (S) < 0.25 (S)	< 0.25 (S) > 256 (R)	16 (I) > 256 (R)	> 256 (R) > 256 (R)
Piperacillin	< 0.25 (S) 1 (S)	0.5 (S) > 256 (R)	4 (S) 256 (R)	> 256 (R) > 256 (R)

*S, susceptible; I, intermediate; R, resistant.

Table 5. MIC (μg mL⁻¹)* of selected antibiotics against *Salmonella* Typhimurium strains grown in TSB adjusted to pH 5.5 and 7.3 at 37 °C

Antibiotic	S. Typhimurium KCCM 40253		S. Typhimurium CCARM 8009	
	Planktonic	Biofilm	Planktonic	Biofilm
	pH 5.5 pH 7.3	pH 5.5 pH 7.3	pH 5.5 pH 7.3	pH 5.5 pH 7.3
Ampicillin	4 (S) 2 (S)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)
Aztreonam	1 (S) < 0.25 (S) 32 (I)	32 (I) > 256 (R)	< 0.25 (S) < 0.25 (S) 1 (S)	< 0.25 (S) < 2.5 (S) 2 (S)
Cefotaxime	1 (S) 0.25 (S) 0.5 (S) 8 (S)	< 256 (R) > 256 (R)	4 (S) 64 (R)	16 (I) 64 (R)
Cefoxitin	8 (S) 32 (R) 8 (S) 128 (R)	32 (R) > 256 (R)	1 (S) 0.5 (S) 8 (S)	64 (R) 64 (R)
Ceftazidime	2 (S) 0.5 (S) 2 (S) 8 (S)	8 (S) > 256 (R)	16 (I) 32 (R)	256 (R) 256 (R)
Cephalothin	8 (S) 16 (I) 16 (I) 32 (R)	32 (R) > 256 (R)	16 (I) 32 (R)	256 (R) 256 (R)
Oxacillin	> 256 (R) > 256 (R) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)
Piperacillin	4 (S) 16 (I) 8 (S) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)	> 256 (R) > 256 (R)

*S, susceptible; I, intermediate; R, resistant.

The relative expression patterns of acrA, acrB, filmA, hilA, invA, lpfE, ompD, stn, and tolC genes were observed in the planktonic and biofilm cells of *S. Typhimurium* and *S. Typhimurium* (Fig. 2). The relative gene expression levels of hilA and lpfE were increased in the planktonic cells of both *S. Typhimurium* and *S. Typhimurium* grown in TSB at pH 5.5 after 48-h incubation (Fig. 2a). The highest expression level (46.4-fold) was observed at the lpfE gene in *S. Typhimurium* grown in TSB at pH 5.5. The relative gene expression levels were higher in *S. Typhimurium* than in *S. Typhimurium*. The relative expression levels of acrB and tolC genes were increased 1.8- and 1.5-fold, respectively, in *S. Typhimurium* (Fig. 2a). As shown in Fig. 2b, the relative gene expression levels of hilA and lpfE were increased more than fivefold in the planktonic cells of both *S. Typhimurium* and *S. Typhimurium* grown in TSB at pH 7.3 after 48-h incubation. The greatest changes in gene expression, 18.8- and 18.1-fold, were observed at the lpfE gene in *S. Typhimurium* and *S. Typhimurium*, respectively. The relative expression levels of acrB, filmA, invA, and tolC genes were increased 2.3-, 2.9-, 1.8-, and 1.4-fold, respectively, in *S. Typhimurium* grown in TSB at pH 7.3. Similar to the planktonic cells, the relative expression of lpfE gene was increased more than twofold in the biofilm cells of both *S. Typhimurium* and *S. Typhimurium* grown in TSB at pH 5.5 after 48-h incubation (Fig. 2c). The relative expression level of hilA gene was increased 1.1-fold in the biofilm cells of *S. Typhimurium* at pH 5.5. As shown in Fig. 2d, the acrA, acrB, lpfE, stn, and tolC genes were stable in the biofilm cells of both *S. Typhimurium* and *S. Typhimurium* grown in TSB at pH 7.3. The relative expression levels of all genes were increased in the biofilm cells of *S. Typhimurium* grown in TSB at pH 7.3, except for the ompD gene (Fig. 2d).

Discussion

This study describes the gene expression dynamics of planktonic and biofilm-associated foodborne pathogens with multiple antibiotic resistance profiles when grown at different acidic pH ranges under anaerobic conditions. As antibiotic resistance is one of the major public health problems worldwide, this study sheds light on new approaches to the understanding of virulence properties of antibiotic-resistant pathogens exposed to stress conditions.
The antibiotic-resistant strains *S. aureus* \(^R\) and *S. Typhimurium* \(^R\) grew well in TSB at pH 5.5 compared to the antibiotic-susceptible strains (Table 3), suggesting that the antibiotic-resistant strains can adapt better to acidic conditions than the antibiotic-susceptible strains can. The acid-adapted cells provide cross-protection against heat, pH, osmolarity, and antibiotics (Leyer & Johnson, 1993; Lee et al., 1994; Greenacre & Brocklehurst, 2006). The biofilm formation by antibiotic-susceptible strains (*S. aureus* \(^S\) and *S. Typhimurium* \(^S\)) was significantly inhibited by pH 5.5 compared to the antibiotic-resistant strains (*S. aureus* \(^R\) and *S. Typhimurium* \(^R\)) (Table 3). The results imply that acidic pH can negatively influence biofilm formation (Salsali et al., 2006). However, acid-adapted antibiotic-resistant bacteria can be more resistant to other environmental stresses (Leyer & Johnson, 1993; Lee et al., 1994; Greenacre & Brocklehurst, 2006; McKinney et al., 2009). The MIC values of biofilm cells of *S. aureus* KACC13236 grown in TSB at pH 5.5 and 7.3 were relatively greater for all antibiotics than the values for planktonic cells (Table 4), indicating that biofilm cells were significantly more resistant to antibiotics compared with the planktonic cells. The results are in good agreement with previous reports that biofilm formation was directly associated with the significant increase in antibiotic resistance of bacteria (Donlan & Costerton, 2002; Kim & Wei, 2007; Cho et al., 2008; Kwon et al., 2008). The antibiotic resistance of biofilm cells might be attributed to their structural and physiological properties, leading to the changes in membrane permeability and metabolic activity (Costerton et al., 1999; Donlan & Costerton, 2002; Stewart, 2002). Compared to pH 7.3, the planktonic and biofilm |

Fig. 1. Relative gene expression in *Staphylococcus aureus* planktonic cells grown in TSB adjusted to pH 5.5 (a) and pH 7.3 (b) and *S. aureus* biofilm cells grown in TSB adjusted to pH 5.5 (c) and pH 7.3 (d). Means with different uppercase letters (A–E) within *S. aureus* KACC13236 (\(S. aureus^s\)) and lowercase letters (a–d) within *S. aureus* CCARM 3080 (\(S. aureus^r\)) are significantly different at \(P < 0.05\). Asterisk (*) indicates significant difference between *S. aureus* KACC13236 (\(S. aureus^s\)) and *S. aureus* CCARM 3080 (\(S. aureus^r\)) at \(P < 0.05\).
cells grown in TSB at pH 5.5 were highly susceptible to the antibiotics used in this study (Table 5). Acid stress can cause the changes in cellular membrane permeability, leading to increased susceptibility to antibiotics (Alakomi et al., 2000; Delcour, 2009).

The norB and mdeA genes were stable in S. aureusS and S. aureusR planktonic cells cultured at pH 5.5 (Fig. 1a). The enhanced resistance to multiple antibiotics is mediated by the relative gene expression associated with norB, norC, and mdeA genes in S. aureus (Huang et al., 2004; Truong-Bolduc et al., 2006; Ding et al., 2008). The gene expression stability of norB, norC, and mdeA in S. aureus planktonic cells may play an important role in antibiotic resistance under anaerobic conditions, resulting in an increased virulence in S. aureus exposed to the gastrointestinal tract. Staphylococcal enterotoxins, a family of pyrogenic toxin superantigen-carrying staphylococcal pathogenicity island, are the major causative agents of staphylococcal food poisoning (Lowry, 1998; Becker et al., 2003; Derzelle et al., 2009). The relative expression levels of norB, norC, mdeA, sec, seg, sei, sel, sem, sen, and seo genes were increased 23.9-, 7.7-, 2.8-, 3.4-, 4.5-, 6.6-, 16.4-, 36.4-, 6.3-, and 8.2-fold, respectively, in the biofilm cells of S. aureusR grown in TSB at pH 7.3 (Fig. 1d). The efflux pump and virulence-related gene expression may be changed during the biofilm formation by S. aureusR. This confirms a previous report that the antibiotic resistance of biofilm cells contributed to the enhanced virulence (Rajesh & Vandana, 2009; Hoiby et al., 2010). The hilA and lipE genes were overexpressed in S. TyphimuriumS and S. TyphimuriumR planktonic cells cultured in TSB at pH 5.5 (Fig. 2a). This suggests that the adhesion

Fig. 2. Relative gene expression in Salmonella Typhimurium planktonic cells grown in TSB adjusted to pH 5.5 (a) and pH 7.3 (b) and S. Typhimurium biofilm cells grown in TSB adjusted to pH 5.5 (c) and pH 7.3 (d). Means with different uppercase letters (A–E) within S. Typhimurium KCCM 40253 (■, S. TyphimuriumS) and lowercase letters (a–d) within S. Typhimurium CCARM 8009 (○, S. TyphimuriumR) are significantly different at $P < 0.05$. Asterisk (*) indicates significant difference between S. Typhimurium KCCM 40253 (S. TyphimuriumS) and S. Typhimurium CCARM 8009 (S. TyphimuriumR) at $P < 0.05$. **

© 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved
and invasion ability of S. Typhimurium can be enhanced under acid stress conditions (Chowdhury et al., 1996). The acrB and tolC genes were stable in S. TyphimuriumR grown in TSB at pH 5.5 (Fig. 2a). The AcrAB-TolC system is responsible for the increased antibiotic resistance, invasion ability, and virulence (Piddock, 2006; Nikaido et al., 2008; Pages & Amaral, 2009). Therefore, the observations imply that S. TyphimuriumR can effectively extrude antibiotics under acidic stress conditions. The AcrAB-TolC pump system can lead directly to multiple antibiotic resistance in bacteria (Piddock, 2006). Salmonella Typhimurium cells causing foodborne salmonellosis can invade the small intestine, which plays a role in bacterial pathogenicity (Pfeifer et al., 1999). The stn gene in S. Typhimurium is responsible for the production of enterotoxin (Chopra et al., 1994, 1999).

In conclusion, this study highlights the differential gene expression of the planktonic and biofilm cells of S. aureus (S. aureusR and S. aureusR) and S. Typhimurium (S. TyphimuriumS and S. TyphimuriumR) exposed to acidic stress under anaerobic conditions. The most significant findings in this study were that (1) the biofilm cells of multiple antibiotic-resistant S. aureusR and S. TyphimuriumR were more resistant to acidic stress compared with the planktonic cells; (2) the biofilm-forming ability was increased in S. aureusR and S. TyphimuriumR grown in TSB at pH 5.5 and 7.3; and (3) the relative expression of toxin-, virulence-, efflux pump-related genes in the biofilm of S. aureusR and S. TyphimuriumR strains was distinct from that in the planktonic cells. The multiple antibiotic-resistant pathogens (S. aureusR and S. TyphimuriumR) were more likely to form the biofilm, possibly leading to cross-protection against environmental stresses and enhanced pathogenesis. Further study is needed taking molecular approaches to elucidate the relationship between biofilm formation and the virulence potential of antibiotic-resistant foodborne pathogens exposed to various environmental stress conditions.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 2011-0026113).

References

Alakomi H-L, Skytta E, Saarela M, Mattila-Sandholm T, Latvakala K & Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. *Appl Environ Microbiol* 66: 2001–2005.

Becker K, Friedrich AW, Lubritz G, Weiert M, Peters G & von Eiff C (2003) Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of *Staphylococcus aureus* isolated from blood and nasal specimens. *J Clin Microbiol* 41: 1434–1439.

Boonmar S, Bangtrakulnonth A, Pornruangwong S, Samosornsuk S, Kaneko K-I & Ogawa M (1998) Significant increase in antibiotic resistance of *Salmonella* isolates from human beings and chicken meat in Thailand. *Vet Microbiol* 62: 73–80.

Chmielewski RAN & Frank JF (2003) Biofilm formation and control in food processing facilities. *Compr Rev Food Sci Food Saf* 2: 22–32.

Cho KJ, Jin S, Cui J, Yoon TR & Ryu PY (2008) Effects of biofilm formation on the antimicrobial susceptibility of *Staphylococcus aureus*. *J Bacteriol Virol* 38: 197–205.

Chopra AK, Xu XI & Peterson JW (1994) *Salmonella typhimurium* enterotoxin epitopes shared among bacteria. *FEMS Microbiol Lett* 118: 237–242.

Chopra AK, Huang JH, Xu X et al. (1999) Role of *Salmonella* enterotoxin in overall virulence of the organism. *Microb Pathog* 27: 155–171.

Chowdhury R, Sahu G & Das J (1996) Stress response in pathogenic bacteria. *J Biostat* 21: 149–160.

CLSI (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M07-A8.

Costerton JW, Stewart PS & Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. *Science* 284: 1318–1322.

Delcour AH (2009) Outer membrane permeability and antibiotic resistance. *Biochim Biophys Acta* 1794: 808–816.

Derzelle S, Dilasser F, Duquenne M & Deperoois V (2009) Differential temporal expression of the staphylococcal enterotoxins genes during cell growth. *Food Microbiol* 26: 896–904.

Ding Y, Onodera Y, Lee JC & Hooper DC (2008) NorB, an efflux pump in *Staphylococcus aureus* strain MW2, contributes to bacterial fitness in abscesses. *J Bacteriol* 190: 7123–7129.

Donlan RM & Costerton JW (2002) Biofilms: Survival mechanisms of clinically relevant microorganisms. *Clin Microbiol Rev* 15: 167–193.

Flemming H-C & Wingender J (2010) The biofilm matrix. *Nat Rev Microbiol* 8: 623–633.

Gahan CGM & Hill C (1999) The relationship between acid stress responses and virulence in *Salmonella typhimurium* and *Listeria monocytogenes*. *Int J Food Microbiol* 50: 93–100.

Gootz TD (2010) The global problem of antibiotic resistance. *Crit Rev Immunol* 30: 79–93.

Greenacre EJ & Brocklehurst TF (2006) The acetic acid tolerance response induces cross-protection to salt stress in *Salmonella typhimurium*. *Int J Food Microbiol* 112: 62–65.

Gustafson JE, Cox SD, Liew YC, Grant Wylie S & Warminster JR (2001) The bacterial multiple antibiotic
resistant (Mar) phenotype leads to increased tolerance to tea tree oil. *Pathology* 33: 211–215.

Hamilton-Miller JM T & Shah S (1996) Activity of glycolytes CL 32998 and CL 331002 against minocycline-resistant and other strains of methicillin-resistant Staphylococcus aureus. *J Antimicrob Chemother* 37: 1171–1175.

Hoiby N, Bjarnsholt T, Givskov M, Molin Se & Ciofu O (2010) Antibiotic resistance of bacterial biofilms. *Int J Antimicrob Agent* 35: 322–332.

Huang J, O’Toole PW, Shen W et al. (2004) Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. *Antimicrob Agents Chemother* 48: 909–917.

Kim SH & Wei CI (2007) Biofilm formation by multidrug-resistant Salmonella enterica serotype Typhimurium phase type DT104 and other pathogens. *J Food Prot* 70: 22–29.

Kwon AS, Park GC, Ryu SY et al. (2008) Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. *Int J Antimicrob Agents* 34: 62–72.

Langsrud S, Sundheim G & Holck AL (2004) Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. *J Appl Microbiol* 96: 201–208.

Lee IS, Słonczewski JL & Foster JW (1994) A low-pH-induced, stationary-phase acid tolerance response in *Salmonella typhimurium*. *J Bacteriol* 176: 1422–1426.

Leyer GJ & Johnson EA (1993) Acid adaptation induces cross-protection against environmental stresses in *Salmonella typhimurium*. *Appl Environ Microbiol* 59: 1842–1847.

Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(^-ΔΔCT) method. *Methods* 25: 402–408.

Lowry FD (1998) Staphylococcus aureus infection. *N Engl J Med* 339: 520–532.

McKinney JM, Williams RC, Boardman GD, Eifert JD & Sumner SS (2009) Effect of acid stress, antibiotic resistance, and heat shock on the resistance of Listeria monocytogenes to UV light when suspended in distilled water and fress brine. *J Food Prot* 72: 1634–1640.

Ngwai YB, Adachi Y, Ogawa Y & Hara H (2006) Characterization of biofilm-forming abilities of antibiotic-resistant *Salmonella typhimurium* DT104 on hydrophobic abiotic surfaces. *J Microbiol Immunol Infect* 39: 278–291.

Nikaido E, Yamaguchi A & Nishino K (2008) AcrAB multidrug efflux pump regulation in *Salmonella enterica* serovar Typhimurium by RamA in response to environmental signals. *J Biol Chem* 283: 24245–24253.

Pages J-M & Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. *Biochim Biophys Acta* 1794: 826–833.

Pfeifer CG, Marcus SL, Steele-Mortimer O, Knodler LA & Finlay BB (1999) *Salmonella typhimurium* virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. * Infect Immun* 67: 5690–5698.

Piddock LJ V (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. *Clin Microbiol Rev* 19: 382–402.

Rajesh S & Vandana B (2009) Bacterial biofilm formation, pathogenicity, diagnostics and control: an overview. *Indian J Med Sci* 63: 313–321.

Riesenberg-Wilmes M, Bearson B, Foster J & Curtis R 3rd (1996) Role of the acid tolerance response in virulence of *Salmonella typhimurium*. * Infect Immun* 64: 1085–1092.

Salsali HR, Parker WJ & Sattar SA (2006) Impact of concentration, temperature, and pH on inactivation of *Salmonella* spp. by volatile fatty acids in anaerobic digestion. *Can J Microbiol* 52: 279–286.

Schober M & Tielen P (2010) Contribution of oxygen-limiting conditions to persistent infection of *Pseudomonas aeruginosa*. *Future Microbiol* 5: 603–621.

Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. *Int J Med Microbiol* 292: 107–113.

Stewart PS & William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. * Lancet* 358: 135–138.

Truong-Bolduc QC, Stahlheber J & Hooper DC (2006) NorC, a new efflux pump regulated by MgrA of *Staphylococcus aureus*. *Antimicrob Agents Chemother* 50: 1104–1107.

Van Houdt R & Michiels C (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. *J Appl Microbiol* 109: 1117–1131.

Van TTH, Moutafis G, Tran LT & Coloe PJ (2007) Antibiotic resistance in food-borne bacterial contaminants in Vietnam. *Appl Environ Microbiol* 73: 7906–7911.

Wegener HC (2003) Antibiotics in animal feed and their properties and role in resistance development. *Curr Opin Microbiol* 6: 439–445.

Xu H, Lee HY & Ahn J (2010) Growth and virulence properties of biofilm-forming *Salmonella enterica* Serovar Typhimurium under different acidic conditions. *Appl Environ Microbiol* 76: 7910–7917.

Yineyama H & Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel antibiotic development. *Biosci Biotechnol Biochem* 70: 1060–1075.