Modern antipsychotic drugs: a critical overview

David M. Gardner, Ross J. Baldessarini, Paul Waraich

Abstract

Conventional antipsychotic drugs, used for a half century to treat a range of major psychiatric disorders, are being replaced in clinical practice by modern “atypical” antipsychotics, including aripiprazole, clozapine, olanzapine, quetiapine, risperidone and ziprasidone among others. As a class, the newer drugs have been promoted as being broadly clinically superior, but the evidence for this is problematic. In this brief critical overview, we consider the pharmacology, therapeutic effectiveness, tolerability, adverse effects and costs of individual modern agents versus older antipsychotic drugs. Because of typically minor differences between agents in clinical effectiveness and tolerability, and because of growing concerns about potential adverse long-term health consequences of some modern agents, it is reasonable to consider both older and newer drugs for clinical use, and it is important to inform patients of relative benefits, risks and costs of specific choices.

A
ntipsychotic drugs are useful for treating a range of severe psychiatric disorders. Applications include the short-term treatment of acute psychotic, manic and psychotic-depressive disorders as well as agitated states in delirium and dementia and the long-term treatment of chronic psychotic disorders including schizophrenia, schizoaffective disorder and delusional disorders. Newer, “second-generation” antipsychotic drugs have largely replaced older phenothiazine, thioxanthene and butyrophenone neuroleptics in clinical practice (Table 1). The development of modern antipsychotic drugs was stimulated by a landmark 1988 study that showed clozapine to be superior in efficacy to chlorpromazine in schizophrenia patients resistant to high doses of haloperidol and to have none of the adverse neurologic effects typical of older antipsychotic agents. Clozapine was considered “atypical” in having a very low risk of adverse extrapyramidal symptoms. This term has since been applied broadly and uncritically to antipsychotics marketed in the past decade, despite their striking chemical, pharmacologic and clinical heterogeneity. In this overview we consider the neuropharmacology, efficacy and adverse effects of conventional antipsychotics and specific modern antipsychotic drugs.

Neuropharmacology

The venerable hypothesis that schizophrenia is caused by increased cerebral activity of the neurotransmitter dopa-
as well as tardive dyskinesias and dystonias. Although the pathophysiology of these extrapyramidal syndromes is ill-defined, parkinsonism, at least, is probably related to decreased dopaminergic transmission in the forebrain basal ganglia. Clinical computed positron-emission tomography (PET) studies have indicated that 60%–80% occupation of D₂ receptors is associated with antipsychotic efficacy and that higher occupation levels are associated with an increased risk of acute extrapyramidal symptoms as well as hyperprolactinemia from the blocking of D₂ receptors on anterior-pituitary mammatrophic cells that normally are tonically inhibited by dopamine produced in the hypothalamic arcuate nucleus.12,13,14

The atypically low risk of extrapyramidal symptoms associated with some modern antipsychotic agents (e.g., clozapine, olanzapine, ziprasidone) may reflect their greater affinity for 5-HT₁₉ receptors over dopamine D₂ receptors.15 However, this pattern is not followed by all modern agents and is found in some older drugs (e.g., loratadine).14,15 Also, PET studies have shown that some modern antipsychotic agents (including clozapine, olanzapine, quetiapine and ziprasidone, but not aripiprazole or risperidone) have moderate affinity and relatively low avidity (rapid dissociation) at basal ganglia D₂ receptors (Table 2).16,17 The anticholinergic effects of some modern agents (e.g., clozapine, olanzapine) may also limit the risk of extrapyramidal symptoms and avoid the need to add an antimuscarinic–antiparkinsonism agent (e.g., benztropine, biperiden, cyclizine or trihexyphenidyl), as is often required with older antipsychotic agents to rebalance critical dopaminergic–cholinergic functions in the basal ganglia.20

Table 1: Routes of administration, dosage and cost of antipsychotics in Canada

Antipsychotic agent (year marketed in Canada)	Forms available	Usual target doses, mg/d	Monthly cost, $*
Modern “atypical” antipsychotics			
Aripiprazole†	T	10–30	370–740†
Clozapine (1991)	T	300–450	310–470
Olanzapine (1996)	T, W, IM₆	10–20	265–515
Quetiapine (1998)	T	300–600	145–275
Risperidone (1993)	T, L	2–6	100–250
Risperidone depot (2004)	IM₆	25–50†	640–1250
Ziprasidone§	T, IM₆	80–160	–
Representative conventional antipsychotics			
Chlorpromazine (1953)	T, L, IM₆	75–400	25–50
Flupenthixol (1983)	T, L	9–24	65–160
Flupenthixol decanoate (1983)	IM₆	20–60†	40–80
Fluphenazine (1960)	T, L, IM₆, IM₃₀	4–20	25–35
Haloperidol (1966)	T, L, IM₆, IM₃₀	4–12	15–35
Loxapine (1978)	T, L, IM₆	20–100	30–45
Perphenazine (1957)	T, L	16–48	10–15
Thiothixine (1968)	C	15–30	20–60
Trifluoperazine (1958)	T	5–20	15–35

Note: T = tablet, W = rapid-dissolving wafer, IM₆ = short-acting intramuscular injection, L = oral liquid, IM₃₀ = long-acting intramuscular depot, C = capsule.

*Prescription retail price in Canadian dollars rounded to closest $5; includes $10 pharmacy professional fee (source: Shoppers Drug Mart, Halifax, NS, May 2005).
†Available only through special access in Canada.
‡Risperidone and flupenthixol depot formulations are usually administered every 2 weeks.
§Not available in Canada.

Table 2: Receptor potencies (Ki values, nM) of selected antipsychotic agents*†

Agents	Dopamine D₂	Serotonin 5-HT₁₉	ACh muscarinic	Adrenergic α₁	Adrenergic α₂	Histaminic H₁
Perphenazine	1.4	5.6	1500	10	510	–
Risperidone	3.3	0.2	> 10 000	2	55.6	58.8
Aripiprazole	3.4	3.4	> 10 000	57	–	61
Haloperidol	4	36	> 20 000	6.2	3800	1890
Ziprasidone	4.8	0.4	≥ 10 000	10.5	–	46.8
Olanzapine	11	4	1.9	19	230	7.1
Chlorpromazine	19	1.4	60	0.6	750	9.1
Loxapine	71.4	1.7	62.5	27.8	2400	5
Quetiapine	160	294	120	62.5	2500	11
Clozapine	180	1.6	7.5	9	160	2.8

Note: ACh = acetylcholine. Data are in descending order of potency at dopamine D₂ (predominant long form, based on gene splice variants) receptors.
*Data are in nM values determined by radioligands for binding to the indicated receptors.
†Adapted, with permission, from Baldessarini et al.7

Efficacy: modern versus older antipsychotic agents

So-called “positive” psychotic symptoms (particularly agitation, aggression, delusions and hallucinations) are especially responsive to antipsychotic treatment, whereas “negative” symptoms of chronic psychotic illnesses (e.g., social withdrawal, lack of motivation) and impaired cognition (e.g., deficient working memory, verbal fluency) are typically less responsive to treatment and contribute to long-term disability.21 To compare individual drugs for their clinical efficacy, tolerability and safety, we examined...
decrease tolerability, and low doses can limit efficacy.22–24,33 Haloperidol, and low doses of quetiapine. High doses can doses of risperidone and standard comparators such as concern in some clinical trials is the use of relatively high comparisons, modest clinical effects or outcome measures of sometimes dubious clinical relevance.23,26,31,32 Of particular limitations of the findings in many trials included in these reviews are possibly unrepresentative patient samples, relatively brief treatment, high dropout rates, unbalanced dose sometimes of conventional antipsychotic drugs influenced outcomes. Leucht and colleagues23 found that the superiority of modern drugs to older ones was variable and limited in terms of treatment dropouts due to inadequate benefits or poor tolerability. For example, quetiapine (at a dose of about 450 mg/d) was associated with 17% fewer dropouts due to

evidence presented in published systematic reviews that compared modern and conventional antipsychotic drugs22–30 (Table 3; a longer version of the table is available online at www.cmaj.ca/cgi/content/full/172/13/1703/DC1). Notable

Trial	Focus of review	Study design and diagnoses	Main results
Leucht et al, 1999	Compare efficacy and extrapyramidal symptoms: MAs (OLZ, QTP, RSP) v. HAL	RCTs (3–12 wk); schizophrenia or related disorders Comparator: HAL (8–20 mg/d)	Less antiparkinson drug use with MAs. Minor benefits in global efficacy and negative symptoms with OLZ and RSP. Fewer dropouts for treatment failure with RSP, or for adverse effects with QTP and OLZ
N = 21			
n = 7245			
Geddes et al, 2000	Compare efficacy and dropout rates: MAs (CLZ, OLZ, QTP, RSP) v. CAs	RCTs (3–104 wk; median 6.5 wk); schizophrenia or related disorders	Superior symptom improvement with CLZ (moderate) and less with OLZ (small). No differences in dropout rates
N = 52			
n = 12 649			
Chakos et al, 2001	Compare efficacy: MAs (CLZ, OLZ, QTP) v. CAs or other MAs	RCTs (6–104 wk; median 8 wk), treatment-resistant schizophrenia or schizoaffective disorder	Response rates higher with CLZ and OLZ than with CAs
N = 12			
n = 1916			
Wahlebeck et al, 2001	Compare dropout rates: MAs v. CAs v. placebo	RCTs for schizophrenia (Cochrane database)	MAs associated with fewer dropouts only when CLZ included
N = 163			
n = 18 585			
Leucht et al, 2003	Compare EPS risk: MAs v. low-potency CAs	RCTs (4–52 wk; median 6 wk), CPZ or other low-potency CAs as comparators for schizophrenia or related disorders	EPS less frequent with CLZ and OLZ. No differences in antiparkinson drug use
N = 31			
n = 2320			
Leucht et al, 2003	Compare relapse, treatment failure and dropout rates due to adverse events: MAs v. HAL or other CAs	RCTs (22–130 wk, median 52 wk); schizophrenia or related disorders	Relapse and treatment failure rates reduced with RSP. Marginal difference in treatment failures but not relapses with OLZ. Rate of relapse and treatment failure not different for AMS or CLZ. No superiority for any MA in dropouts due to adverse events.
N = 11			
n = 2,032			
Davis et al, 2003	Compare efficacy: MAs (AMS, APZ, CLZ, OLZ, QTP, RSP, ZPS) v. CAs	RCTs (16/124 studies were ≥ 26 wk), schizophrenia or schizoaffective	By order of effect size, differences in symptom improvement favoured CLZ > AMS > RSP > OLZ. No advantages for APZ, QTP or ZPS
N = 124			
n = 18 272			
Correll et al, 2004	Assess TD risk: MAs v. HAL	Follow-up studies (≥ 1 yr) in schizophrenia-like disorders	TD less frequent with MAs than with CAs
N = 11			
n = 3248			

Note: AMS = amisulpride, APZ = aripiprazole, CA = conventional antipsychotic agent, CLZ = clozapine, HAL = haloperidol, MA = modern (atypical) antipsychotic agent, OLZ = olanzapine, QTP = quetiapine, RSP = risperidone, ZPS = ziprasidone, EPS = extrapyramidal symptoms, N = trials, n = subjects, RCTs = randomized controlled trials, TD = tardive dyskinesia.

A longer, more detailed version of this table appears online at www.cmaj.ca/cgi/content/full/172/13/1703/DC1.
adverse effects than various antipsychotic comparators (at haloperidol-equivalent doses of 8–12 mg/d); olanzapine (11–16 mg/d) yielded only 9% fewer dropouts due to treatment failure and 6% fewer due to adverse effects than haloperidol (12–18 mg/d), and risperidone lacked any advantage. These systematic reviews indicate that modern antipsychotic agents are not consistently superior to conventional drugs in efficacy or tolerability and that reported advantages are variable and often minor. The newest antipsychotic agents, ziprasidone and aripiprazole, have undergone fewer comparison trials, and their efficacy compared with that of other antipsychotic drugs remains uncertain.33–35

The effects of antipsychotic drugs on negative symptoms of emotional withdrawal and lack of motivation are especially difficult to ascertain because of challenges in rating such features and because of their interactions with depressed mood and reduced motility, both of which can be worsened by antipsychotic drugs.36 In a large pooled comparison of a modern and a conventional antipsychotic agent, involving nearly 2000 subjects given treatment for 6 weeks,37 the advantage (as measured by Cohen’s effect size statistic) of olanzapine over haloperidol for negative symptoms was 0.2. Assuming a normal distribution of symptom response, this effect size suggests that 58% of patients taking olanzapine had greater improvement of negative symptoms compared with the mean level of improvement with haloperidol, but it also indicates that 42% did less well with olanzapine.38 Relative efficacy of other modern antipsychotic agents versus older drugs has been similar or even smaller.39 Such findings do not support the hope that modern agents would represent a major advance in the clinical management of negative symptoms.

Impaired cognition is common among patients with chronic psychotic illnesses, but it is also particularly sensitive to dosage of antipsychotic agents and may be worsened by concurrent administration of antiparkinson-anticholinergic drugs. Many studies have compared a newer antipsychotic agent with high doses of haloperidol given with anticholinergics, as needed.40 For example, olanzapine (at a moderate average daily dose of 9.7 mg) was rated superior in several cognitive measures to high daily doses of haloperidol (average dose 27 mg),41 but less so when compared with lower doses of haloperidol (5.5 mg). Similarly, a 2-year randomized trial found no difference in cognitive improvements between risperidone (average dose 6 mg/d) and a moderate daily dose of haloperidol (average dose 5 mg/d).42 Such studies do not indicate important advantages of modern over conventional antipsychotics with respect to cognitive function, and any between-drug differences appear to pale in comparison to the often severe cognitive deficits of schizophrenia.43

Positive effects on rates of relapse or readmission to hospital, as well as improvements in occupational and social functioning, quality of life and subjective well-being have been assessed much less consistently than have symptom ratings in most trials comparing treatments of psychotic disorders, even though such outcomes are important from clinical and public health perspectives and may not be predicted well by symptom improvement. In a long-term trial comparing risperidone and haloperidol in patients with chronic psychotic disorders, psychotic symptoms changed little (4.9% improvement and 3.9% worsening respectively), whereas the Kaplan–Meier estimates of relapse risk at the end of the study (34% vs. 60% respectively) strongly favoured the modern drug.44 This advantage of risperidone over haloperidol with respect to 1-year relapse risk was replicated in a study of first-episode psychosis (42% vs. 55%) despite near identical improvements in symptom measures with low doses (about 3 mg/d) of both agents.45 In contrast, a 12-month study found little difference between treatment with moderate doses of olanzapine (11–16 mg/d) and treatment with haloperidol (11–14 mg/d) combined with benztrpine to limit extrapyramidal symptoms in outcomes including psychotic symptoms, negative symptoms, risk of extrapyramidal symptoms or tardive dyskinesia, quality of life and dropout rates.46 Including an antiparkinsonian agent with moderate doses of haloperidol may have accounted for the lack of difference observed in this trial.46

A striking exception to the inconsistent but generally modest differences between use of a modern antipsychotic drug and appropriately managed treatment with an older drug is clozapine. Patented in 1960, clozapine has shown consistent and substantial superiority to several standard antipsychotic agents in a large number of head-to-head comparisons, with even more striking differences (e.g., in relapse rates and treatment compliance) occurring with prolonged treatment.22,27,28 Superiority has been less consistent in comparison with other modern antipsychotic agents,49 except that treatment adherence has been consistently greater with clozapine (60%) than with other modern (41%) or conventional (37%) antipsychotic drugs, perhaps because of the unusually close medical monitoring required for the safe use of clozapine.49 Clozapine remains the drug of choice for treating refractory schizophrenia.49 It also has been associated with reduced or delayed risk of suicide attempts, which led to the precedent-setting approval by the US Food and Drug Administration (FDA) for this effect in 2003.50,51 In a pivotal 18-month comparison of clozapine and olanzapine among 450 patients with schizophrenia who were at relatively high risk of suicide but not necessarily unresponsive to treatment, the risk of suicide attempts and interventions to prevent suicide was moderately lower in the clozapine group (relative risk [RR] 1.32, 95% confidence interval [CI] 1.03–1.72).50,51

Tolerability and safety of modern antipsychotic agents

The validity of the claim that modern antipsychotic agents carry lesser risks of adverse effects than conventional antipsychotic drugs is challenged by findings from randomized studies that have shown similar rates of treatment dis-
continuation due to adverse events. The much promoted advantage of reduced risk of extrapyramidal symptoms with modern antipsychotic drugs needs to be balanced against other adverse effects.23,24,26

Adverse neurologic effects

The risk of extrapyramidal symptoms varies with specific agents, doses and particular neurologic syndromes. The superiority of the modern agents is clearest for reducing the risk of acute dystonia and late parkinsonian bradykinesia (Table 3). Not surprisingly, in clinical trials, the largest differences in risk have been demonstrated in comparisons between moderate doses of modern antipsychotic drugs and large doses of potent conventional antipsychotic agents without use of a prophylactic anticholinergic. When compared with low-potency antipsychotic drugs (e.g., chlorpromazine) or low to moderate doses of high-potency agents (e.g., haloperidol), or when high-potency agents are combined with anticholinergic drugs at regular doses, the advantage of modern agents of reduced extrapyramidal symptoms is lessened or eliminated.24,46 Clozapine and possibly quetiapine appear to be relatively well tolerated by patients with Parkinson’s disease who become psychotic with treatment. Risperidone and olanzapine are not well tolerated, and other modern agents have not been adequately investigated.32

Potential superiority of modern antipsychotics is less clear for acute or late dyskinesias, akathisia or neuroleptic malignant syndrome.33,35,38 Regarding tardive dyskinesia, the 1-year incidence was 17 times lower with olanzapine than with haloperidol, each at a dose of about 14 mg/d (0.5% v. 7.4% respectively), but it was not avoided altogether.31 The annualized risk in a randomized trial comparing risperidone (4.9 mg/d) and haloperidol (11.7 mg/d) with a follow-up of at least 1 year was 0.6% and 4.1% respectively. There are no blinded, randomized, long-term follow-up trials comparing other modern agents.29,45

Akathisia, marked by restlessness and anxious agitation, has been associated with virtually all antipsychotic agents, including clozapine.36,47 This clinically distressing idiopathic syndrome is often misdiagnosed as psychotic agitation, typically persists as long as antipsychotic treatment continues and invites mistreatment with more antipsychotic therapy. Lack of an association with antidopaminergic potency suggests that D2-receptor blockade does not explain akathisia, whereas beneficial effects of lipophilic, centrally active β-adrenoceptor antagonists (e.g., propranolol) suggest adrenergic involvement.48

Neuroleptic malignant syndrome is an uncommon, potentially life-threatening cerebrotoxic delirium, with variable fever, autonomic instability, and muscle rigidity with release of circulating creatine kinase and myoglobinuria.49 It is important to emphasize that incomplete forms of neuroleptic malignant syndrome may occur: for example, in patients who are taking clozapine, the syndrome may present with less pronounced muscle rigidity.60,61

Endocrine and metabolic effects

Weight gain is a common adverse effect of several modern and some conventional antipsychotic drugs. In a review of the literature, Allison and coauthors3 found the following mean increases in weight at 10 weeks of treatment: clozapine 4.45 kg, olanzapine 4.15 kg, chlorpromazine 2.58 kg, quetiapine 2.18 kg (at 6 weeks), risperidone 2.10 kg, haloperidol 1.08 kg and ziprasidone 0.04 kg. Weight gain associated with olanzapine tends to plateau over 8–12 months.61 Weight gain is often considered to be clinically significant in antipsychotic drug trials at increases of at least 7%. In a systematic review, Taylor and McAskill4 found the risk of such increases associated with olanzapine, quetiapine and risperidone to be 14%–27% at 6–8 weeks and as high as 40% by 3.5 years. The rates of increases of 10% or more associated with clozapine, olanzapine and risperidone were, respectively, 27%–60% at 3–12 months, 15% at 8 weeks and 6% at 8 weeks.41 Lack of direct long-term comparisons precludes more reliable estimates of the rate and severity of weight gain with specific antipsychotic agents. However, the available data suggest that the risk of weight gain is greatest with clozapine and olanzapine, probably intermediate with quetiapine and low-potency conventional antipsychotic drugs, less with high-potency antipsychotic drugs including risperidone, and minimal with aripiprazole, molindone and ziprasidone. Many patients experience moderate weight gain, but some experience rapid and potentially massive increases that are very difficult to control.42 Children are at particularly high risk of weight gain.60 Mechanisms involved in weight gain and associated adverse metabolic changes probably include sedation and inactivity, perhaps more specific effects of central blockade of H1 and 5-HT2c receptors, as well as specific factors associated with the psychiatric disorder.60,66

Hyperlipidemia and hyperglycemia with resultant type 2 diabetes mellitus have been associated with modern antipsychotic agents. Their rates, although not well quantified, probably vary among specific antipsychotic drugs. Using a general practice research database in the United Kingdom, Koro and colleagues49,70 estimated the risk of hyperlipidemia and diabetes associated with olanzapine to be 3.4 (95% CI 1.8–6.4) and 4.2 (95% CI 1.5–12.2) times the risk associated with conventional antipsychotic agents, and 4.6 (95% CI 2.4–8.9) and 5.8 (95% CI 2.0–16.7) times the risk associated with no antipsychotic use. The risk associated with risperidone was much lower, at 0.81 (95% CI 0.4–1.5) and 1.6 (95% CI 0.7–3.8) times the risk of conventional antipsychotic agents, and 1.1 (95% CI 0.6–2.1) and 2.2 (95% CI 0.9–5.2) times the risk associated with no antipsychotic use. In another study, Lambert and colleagues also found an increased risk of diabetes associated with olanzapine (odds ratio [OR] 1.36, 95% CI 1.20–1.53) compared with conventional antipsychotic drugs, but it was less than the risk reported by Koro and colleagues.71
They found a similar increase in risk associated with clozapine (OR 1.34, 95% CI 1.16-1.55). The risks associated with quetiapine (OR 1.2) and risperidone (OR 1.0) were not statistically different from those associated with conventional antipsychotic agents. Overall, the risk of disturbances in both glucose and lipid metabolism appears to be greatest with clozapine and olanzapine, possibly intermediate with quetiapine and the low-potency conventional agents chlorpromazine and thioridazine, and lowest with aripiprazole, risperidone and ziprasidone and with haloperidol and other high-potency conventional antipsychotic agents.72-76 Risks of hyperlipidemia and hyperglycemia are associated with, but not necessarily dependent on, weight gain.76,77 The health implications of long-term therapy with antipsychotic agents that increase the risk of medical morbidity are of growing concern and may well be more dangerous than the extrapyramidal symptoms typically associated with older antipsychotic agents.8,78,79

Cardiovascular effects

Several antipsychotic agents are associated with worsening of cardiovascular risk factors, including the previously described weight gain, hyperglycemia and hyperlipidemia. In addition to acute hypotensive effects (Table 4), elevated blood pressure has been reported in patients with weight gain due to antipsychotic use.63 A post hoc analysis involving 113 patients with bipolar disorder taking olanzapine for several months revealed an increase of 13.1% (11 mm Hg) and 9.4% (5.9 mm Hg) in systolic and diastolic blood pressures respectively in those who had above-median changes in body mass index (BMI). Blood pressure was not changed in patients with below-median changes in BMI.63

Some antipsychotic drugs are associated with prolongation of ventricular repolarization, which is reflected as a prolongation of the QT interval on an electrocardiogram. Prolongation of the QT interval is associated with an increased risk of polymorphic ventricular tachycardia (torsades de pointes) and sudden cardiac death, especially when the QT interval corrected for rate (QTc) exceeds 500 ms.82 The precise risks for prolonged QT interval are unknown for particular antipsychotic drugs but can occur with both older and modern agents. Among older agents, thioridazine and mesoridazine have been virtually abandoned as a result of this association.83 Among modern agents, ziprasidone

Table 4: Benefits and risks of modern and conventional antipsychotic agents*

Property	Aripiprazole	Clozapine	Olanzapine	Quetiapine	Risperidone	Ziprasidone
Efficacy in terms of						
positive symptoms	++	++++	+++	++	+++	+++
negative symptoms	+	++	+	+	+	+
relapse	++	+++	?	+++	?‡	+
Adverse effects						
Anticholinergic	0	+++	+	0	0	0
Cardiac repolarization	0	0	0	0	0	0
Hypotension	+	+++	+	+++	+	+
Hyperprolactinemia	0	0	0	++	+	+
Type 2 diabetes mellitus	+	++	+	+	+	+
Sexual dysfunction	+	++	+	+	+	+
Weight gain	0	+++	+++	+	0	0
EPS§	0	+	0	++	+	+++
NMS	?	+	+	+	+	+++

Note: EPS = extrapyramidal signs or symptoms (dystonia, bradykinesia, tremor, akathisia, dyskinesia), NMS = neuroleptic malignant syndrome (fever, delirium, unstable vital signs, variable rigidity).

*Benefit or risk: ++++ = very high, +++ = high, ++ = moderate, + = low, 0 = negligible, ? = poorly defined.

†Examples of high-potency conventional agents are flupenthixol, fluphenazine, haloperidol, trifluoperazine; moderate-potency agents include loxapine and zuclopenthixol; and low-potency agents include chlorpromazine, methotrimeprazine and thioridazine.

‡The risk of relapse was reduced when compared with placebo over 1 year. No long-term data are available for comparison with other antipsychotic agents.

§Akathisia (anxious restlessness) can occur with modern antipsychotic agents.
may be dangerous when combined with other drugs that result in prolonged QT intervals, but when used alone it has not been associated with an increased risk of cardiac arrhythmia or death. The effects on the QT interval are likely to be more pronounced when antipsychotic drugs are used in combination with other drugs that prolong the QT interval. The list of such drugs is extensive, although common agents include class I and III antiarrhythmic drugs, tricyclic antidepressants and some antibiotics.

Of great concern are findings associating modern antipsychotic drugs with increased risks of death and cerebral ischemia or stroke among elderly patients receiving therapy for psychiatric disorders or the agitation of dementia. On the basis of findings from 17 placebo-controlled trials of modern antipsychotic drugs (aripiprazole, olanzapine, quetiapine and risperidone) involving a total of 5106 elderly patients with dementia-related psychosis, the US FDA issued a warning of a 1.6- to 1.7-fold increase in the risk of death associated with all modern antipsychotics, including clozapine and ziprasidone. Collectively, the mean rate of death was 4.5% with modern antipsychotic drugs and 2.6% with placebo over 10 weeks. The attributable risk of death in this population with conventional antipsychotic drugs remains unknown. Regarding stroke or transient cerebral ischemia, the incidence in 4 placebo-controlled trials was 3.3% with risperidone versus 1.1% with placebo (RR 3.30, 95% CI 1.43–7.70). In 5 other trials, the risk of cerebrovascular events was 1.3% with olanzapine and 0.4% with placebo (RR 3.04, 95% CI 0.70–13.3; p = 0.043 when controlling for sex, age and type of dementia). However, a large retrospective analysis found negligible differences between 14 865 elderly patients taking older antipsychotic drugs and 13 503 taking risperidone (RR 1.04, 95% CI 0.82–1.31), 3459 taking olanzapine (RR 0.91, 95% CI 0.62–1.32) or 883 taking quetiapine (RR 0.78, 95% CI 0.38–1.57). Unwithout untreated control groups, these findings are inconclusive about the potential risks of older antipsychotic agents, and comparisons with other modern antipsychotic agents are not available.

Clozapine

Despite its considerable advantages in treating psychosis, clozapine’s value is limited by potentially life-threatening agranulocytosis, which has an incidence of about 1% without close monitoring of leukocyte counts, especially during the initial months of treatment. In addition, clozapine has a dose-dependent risk of epileptic seizures (about 5% at a daily dose of 600 mg or more), potentially massive weight gain, possible cardiac damage, including early myocarditis (≤ 19 per 10 000) or late cardiomyopathy (≤ 10 per 10 000), cerebral intoxication such as that seen with neuroleptic malignant syndrome, with delirium and fever but not muscle rigidity or elevated creatine kinase levels; and severe depression of intestinal motility.

Conclusions

Modern antipsychotic drugs (Table 1) offer useful therapeutic options, and the risk of some extrapyramidal symptoms is generally lower with these drugs than with older antipsychotic drugs (Table 3, Table 4). As a group, modern antipsychotic drugs vary greatly in their pharmacology (Table 2) and in their risks of specific adverse effects (Table 4). With the exception of clozapine, they do not represent major gains in effectiveness or tolerability (Table 4). Some present potentially important adverse effects associated with weight gain, including diabetes, hyperlipidemia and hypertension. As a group, they are much more expensive than older antipsychotic drugs, some of which are available as generic drugs (Table 1). It seems reasonable to consider an antipsychotic drug from either group, conventional or modern, for the treatment of psychiatric disorders and to inform patients of the relative benefits, risks and costs associated with specific choices.

This article has been peer reviewed.

From the Department of Psychiatry and the College of Pharmacy, Dalhousie University, Halifax, NS (Gardner); Harvard Medical School, and the Psychopharmacology Program, McLean Division of Massachusetts General Hospital, Boston, Mass. (Baldessarini); and the Mental Health Evaluation and Community Consultation Unit, Department of Psychiatry, University of British Columbia, Vancouver, BC (Waraich).

Competing interests: None declared for Paul Waraich. David Gardner has received research funding from Janssen-Ortho, Eli Lilly, Novartis, Pfizer and AstraZeneca. Ross Baldessarini is a consultant with Auritec Laboratories, Eli Lilly Laboratories, IFI SpA, Janssen Pharmaceuticals, JDS Corporation and NeuroHealing Pharmaceuticals, a research collaborator with Auritec Laboratories and has received research grants from Eli Lilly and Janssen Pharmaceuticals.

Contributors: Each author contributed meaningfully to the manuscript. David Gardner wrote the original and subsequent drafts of the manuscript. Ross Baldessarini made substantial changes to each draft and identified numerous references. With each draft, Paul Waraich provided input in terms of content, citations and style. All of the authors approved the final version to be published.

Acknowledgements: We thank Elizabeth Foy and Warren Meek for their valuable contributions to the preparation of this report.

Ross Baldessarini was supported, in part, by the Bruce J. Anderson Foundation and the McLean Private Donors Psychopharmacology Research Fund.

References

1. Leslie DL, Rosenheck RA. From conventional to atypical antipsychotics and back: dynamic processes in the diffusion of new medications. Am J Psychiatry 2002;159:1534–40.
2. Gill SS, Roehl PA, Herrmann N, Lee PE, Sykora K, Guzman N, et al. Atypical antipsychotic drugs and risk of ischemic stroke: population based retrospective cohort study. BMJ 2005;330:445.
3. Kane J, Honigfeld G, Singer J, Meltzer HY. Clozapine for the treatment resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988;45:789–96.
4. Möller HJ. State of the art of drug treatment of schizophrenia and the future position of the novel/atypical antipsychotics. World J Biol Psychiatry 2000;1:204–14.
5. Matthysse S. Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed Proc 1973;32:200–5.
6. Schotte A, Janssen PFM, Gommeren W, Luyten WHML, Van Gompel P, Lesage AS, et al. Risperidone compared with new and reference antipsychotic agents. Gen Psychiatry 1988;55(Suppl B):47-52.
7. Meltzer HY. An overview of the mechanism of action of clozapine. J Clin Psychiatry 1999;55(Suppl B):67-73.
8. Baldessarini RJ, Tarazi FI. Drugs and the treatment of psychiatric disorders: Antipsychotic and antidepressant agents. In: Hardman JG, Limbird LE, Gilman

CMAJ • JUNE 21, 2005; 172 (13) 1709
64. Taylor DM, McAskill R. Atypical antipsychotics and weight gain—a systematic review. *Acta Psy-chotherap Scr* 2000;101:416-32.
65. Bryden KE, Kopala LC. Body mass index increase of 58% associated with olanzapine. *Am J Psychiatry* 1999;156:1835-6.
66. Safer DJ. Comparison of risperidone-induced weight gain across the age-span. *J Clin Psychopharmacol* 2004;24:429-36.
67. Wirshing DA. Schizophrenia and obesity: impact of antipsychotic medica-
tions. *J Clin Psychiatry* 2004;65(Suppl 18):13-26.
68. Allison DB, Casey DE. Antipsychotic-induced weight gain: a review of the lit-
erature. *J Clin Psychiatry* 2001;62(Suppl 7):22-31.
69. Koro CE, Fedder DO, L’Italien CJ, Weiss SS, Magder LS, Kreyenbuhl J, et al. Assessment of the independent effects of olanzapine and risperidone exposure on the risk of hyperlipidemia in schizophrenia patients. *Arch Gen Psych-
try* 2002;59:1021-26.
70. Koro CE, Fedder DO, L’Italien CJ, Weiss SS, Magder LS, Kreyenbuhl J, et al. Assessment of independent effect of olanzapine and risperidone on risk of type 2 diabetes among patients with schizophrenia: population based nested case-control study. *BMJ* 2002;325:243-7.
71. Lambert BL, Chou CH, Chang KY, Tafesse E, Carson W. Antipsychotic ex-
pose and type 2 diabetes among patients with schizophrenia: a matched case-control study of California Medicaid claims. *Pharmacoepidemiol Drug Saf* 2005;14:595-603.[Epub ahead of print]
72. Cassidy F, Ahearn E, Carroll BJ. Elevated frequency of diabetes mellitus in hospitalized manic-depressive patients. *Am J Psychiatry* 1999;156:1417-20.
73. Gianfrancesco F, White R, Wang R, Nasrallah HA. Antipsychotic-induced type 2 diabetes: evidence from a large health plan database. *J Clin Psychophar-
macol* 2003;23:328-35.
74. Meyer JM, Koro CE. The effects of antipsychotic therapy on serum lipids: a comprehensive review. *Schizophr Res* 2004;70:1-17.
75. Jin H, Meyer JM, Jeste DV. Atypical antipsychotics and glucose dysregula-
tion: a systematic review. *Schizophr Res* 2004;71:195-212.
76. Casey DE. Dyslipidemia and atypical antipsychotic drugs. *J Clin Psychophar-
macol* 2004;65(Suppl 18):27-35.
77. Newcomer JW. Abnormalities of glucose metabolism associated with atypical antipsychotic drugs. *J Clin Psychopharmacol* 2004;65(Suppl 18):36-46.
78. Casey DE, Haupt DW, Newcomer JW, Henderson DC, Sernyak MJ, David-
son M, et al. Antipsychotic-induced weight gain and metabolic abnormalities: Implications for increased mortality in patients with schizophrenia. *J Clin Psy-
chopharmacol* 2004;65(Suppl 7):4-18.
79. Fontaine KR, Heo M, Harrigan EP, Shear CL, Lakshminarayanan M, Casey DE, et al. Estimating the consequences of anti-psychotic induced weight gain on health and mortality rate. *Psychiatry Res* 2001;101:277-88.
80. Kleinberg DL, Davis JM, de Coster R, Van Baalen B, Brecher M. Pro lactin levels and adverse events in patients treated with risperidone. *J Clin Psych-
opharmacol* 1999;19:57-61.
81. Haddad PM, Wieck A. Antipsychotic-induced hyperprolactinemia: mecha-
nisms, clinical features and management. *Drugs* 2004;64:2291-314.
82. Zarela W, Moss AJ. QT interval and its drug-induced prolongation. In: Gass-
sak I, Antzelevitch C, editors. *Cardiac repolarization bridging basic and clinical science*. Totowa (NJ): Humana Press; 2003. p.311-28.
83. Haddad PM, Anderson JM. Antipsychotic-related QTc prolongation, tor-
sades de pointes and sudden death. *Drugs* 2002;62:1649-71.
84. Pfizer Inc. FDA Psychopharmacological Drugs Advisory Committee Briefing document for Zeldox® capsules (ziprasidone HCl). Pfizer Inc.; 2000. Available: www.fda.gov/ohrms/dockets/ac/00/backgrd/36196f1a.pdf (accessed 2005 May 19).
85. Kutzer S, Brooks SJ, Gardner DM, Honer B, Kopala L, Labelle A, et al. Ex-
pert Canadian consensus suggestions on the rational, clinical use of zipra-
sidone in the treatment of schizophrenia and related psychotic disorders. *Neu-
ropsychiatry Drug Treat* 2005;1(2):89-108.
86. FDA issues public health advisory for antipsychotic drugs used for treatment of behavioral disorders in elderly patients [FDA Talk Paper]. Rockville (MD): US Food and Drug Administration; 2005. Available: www.fda.gov/bbs/topics /ANSWERS/2005/ANS01350.html (accessed 2005 May 19).
87. Risperdal (risperidone) tablets/oral solution [product monograph]. Titusville (NJ): Janssen Pharmacaceutica Products, LP; 2005. Available: www.janssen.com/ active/janus/en_US/assets/jan/risperdal.pdf (accessed 2005 May 19).
88. Olanzapine (marketed as Zyprexa): increased mortality in patients with de-
mentia-related psychosis [FDA Alert 4/11/05]. Rockville (MD): US Food and Drug Administra-
tion; 2005. Available: www.fda.gov/cder/drug/InfoSheets /HCP/olanzapineHCP.pdf (accessed 2005 May 10).
89. Summary of clinical trial data on cerebrovascular adverse events (CVAEs) in randomized clinical trials of risperidone conducted in patients with dementia. London (UK): Medicines and Healthcare products Regulatory Agency; 2004. Available: http://medicines.mhra.gov.uk/outwork/monitorsafequalmed/safetymessages /risperidoneclinicaltrialdata_final.pdf (accessed 2005 May 19).
90. Health Canada endorsed important safety information on Zyprexa (olanzap-
ine) [Dear Healthcare Professional letter]. Toronto: Eli Lilly Canada Inc.; 2004 May 10. Available: www.hc-sc.gc.ca/hpb-dgpsa/tpl-dpt/zyprexa_hpc_e_ html (accessed 2005 May 19).
91. Clozaril [product monograph]. *Compendium of pharmaceutical specialties*. Ot-
tawa: Canadian Pharmacists Association; 2004.
92. Theisen EM, Ciochin S, Linden A, Martin M, Remschmidt H, Heehbrand J. Clozapine and weight gain. *Am J Psychiatry* 2001;158:816.
93. Wehmeier PM, Heiser P, Remschmidt H. Myocardi tis, pericarditis and car-
diomyopathy in patients treated with clozapine. *J Clin Pharmacol Ther* 2005;30:91-6.
94. Killian JG, Kerr K, Lawrence C, Celerman DS, Myocarditis and cardiomy-
opathy associated with clozapine. *Lancet* 1999;354:1841-5.
95. Levin TT, Barnett J, Mendelowitz A. Death from clozapine-induced consti-
ton: case report and literature review. *Psychosomatics* 2002;43:71-3.

Clinical trial registration

CMAJ will consider clinical trials for publication only if they have been registered in a publicly accessible clinical trials reg-
istry before the enrolment of the first patient. This policy applies to trials that start recruiting on or after July 1, 2005. For trials that began enrolment before this date, registration is required by Sept. 13, 2005. The criteria for acceptable registration are described in CMAJ (2005;172[13]:1700-2).

Correspondence to: Dr. David M. Gardner, Queen Elizabeth II Health Sciences Centre, Rm. A1LB 7517, 5909 Veterans Memorial Lane, Halifax NS B3H 2E2; david.gardner@dal.ca