SAR Target Recognition Based on Modified Sparse Representation for Ground Safety

Wang Ou¹, Li Wei¹, Han Jieping², Yang Mingyu¹, Zheng Shanqi¹

¹State Grid Liaoning Electric Power Supply Co., LTD. Information &Telecommunication Branch, Shenyang 110006 China
²Northeast Electric Power University, Changchun 132012 China

Abstract. Recognition of synthetic aperture radar (SAR) targets is a hot topic in pattern recognition field. In the previous works, the sparse representation-based classification (SRC) is successfully used in SAR target recognition with high performance. The traditional SRC is performed on the global dictionary from the training classes. As a result, the representation capability of an individual class is not fully considered. This paper modifies the traditional SRC by performing the sparse representation over the local dictionaries formed by individual classes. In this way, the reconstruction error from one class can better reflect its representation capability as for describing the test sample. By comparing the reconstruction errors of different training classes, the target label of test sample can be classified finally. In the experiments, the MSTAR dataset is used to test the proposed method, which show the good results of the proposed method.

1. Introduction

Recognition of synthetic aperture radar (SAR) targets has long been studied because of the extensive advantages [1]. For a concrete SAR target recognition algorithm, it often comprises of feature extraction and classifier. In the previous works on SAR target recognition, many feature extraction and classifier algorithms were designed. Features like geometrical ones [2][3], scattering centers [4][5], and projection ones [6][7] are designed or employed. Classifiers like K-nearest neighbour (KNN) [6], support vector machine (SVM) [8] are used. It is assumed that both the features and classifiers are important to the final recognition performance.

In recent years, the compressive sensing theory has drawn intensive attentions in signal processing and pattern recognition fields. Specifically, the sparse representation-based classification (SRC) is a typical application, which was used for face recognition [9], SAR target recognition [10][11], etc. However, the traditional SRC performs linear presentation on the global dictionary from the training classes. As a result, the representation capability of an individual class can not be fully exploited. Therefore, in this paper, the representation about the test sample is conducted in the local dictionary formed by each training class. Then, the reconstruction errors from different training classes are compared equally to determine the target label. In the experiments, MSTAR dataset is used to set some conditions to examine the proposed method. Based on the comparison, the performance of the proposed method is confirmed.

2. Method Description

2.1. Modified SRC
Traditionally, SRC is performed over the global dictionary for target classification. Denote $A = \{A^1, A^2, \ldots, A^C\} \in \mathbb{R}^{d \times N}$ as the dictionary from C different training classes, the test sample y is linearly represented by the dictionary as equation (1).

$$\hat{\alpha} = \min \| \alpha \|_0$$

s.t. $\| y - A \alpha \|_2^2 \leq \varepsilon$ (1)

where α contains the sparse coefficients and ε is the error.

The above optimization problem can be smoothly solved via orthogonal matching pursuit (OMP) or ℓ_1 norm approximation. After solving the sparse coefficients, equation (2) can be used to calculate the reconstruction errors from different training classes thus determining the target label of y.

$$r(i) = \| y - A(i) \|_2^2 (i = 1, 2, \ldots, C)$$

class(y) = $\min(r(i))$ (2)

As a modification, this paper performs the linear representation about the test sample over the dictionary of each training class, i.e., $A(i) (i = 1, 2, \ldots, C)$. Then, the sparse coefficients and reconstruction errors are obtained using the same way as equation (1) and equation (2). And the target label is also decided as the class with minimum reconstruction error.

2.2. Target Recognition

The detailed procedure of the proposed method can be illustrated as Fig. 1, which can be implemented as followings:

Step 1: Form the individual dictionaries from different training classes;

Step 2: Solve the sparse coefficients of the test sample over different local dictionaries;

Step 3: calculate the reconstruction errors;

Step 4: determine the target label based on the minimum reconstruction error.

Specifically, PCA is used for feature extraction during the whole recognition process.

Fig. 1 Procedure of modified SRC for target recognition.

3. Experiments

3.1. MSTAR Dataset

The experiments are implemented with the MSTAR dataset, which includes volumes of SAR images from ten classes of targets. A typical experimental setup is given in Table 1, where images from 17° and 15° depression angles are adopted for training and testing, respectively. Some other methods are compared during the experiments. They are Method 1 from [8], Method 2 from [9], and Method 3 from [10].
Table 1. Training and test samples used.

Depr.	BMP2	BTR70	T72	T62	BDRM2	BTR60	ZSU23/4	D7	ZIL131	2S1
17°	233(Sn_9563)	233	232(Sn_132)	299	298	256	299	299	299	299
15°	195(Sn_9563)	196	196(Sn_9566)	273	274	274	274	274	274	274
	196(Sn c21)		191(Sn s7)							

3.2. Results and Analysis

By training and the testing the proposed method using the data in Table 1, the ten classes of targets are classified as the confusion matrix in Fig. 2. Each of the ten targets is with a recognition rate over 95% and the average recognition rate is 97.52%. Table 2 gives the performance comparison under the same condition. With a higher recognition rate, the performance of the proposed method is validated. Fig. 3 shows the performance of different methods under noise corruption. It is normal that the performance of all the methods degrades with the decrease of the signal-to-noise ratio (SNR). In comparison, better robustness to noise corruption can be achieved by this method.

![Confusion Matrix](image)

Fig. 2 Confusion matrix of the proposed method.

Table 2. Performance comparison on ten classes of targets.

Method	Average recognition rate (%)
Proposed	97.52
Method 1	95.82
Method 2	96.23
Method 3	97.04
4. Conclusion
A modified SRC is designed in this paper for SAR target recognition. The sparse representation is performed over the local dictionaries formed by individual training classes. Therefore, the absolute representation capabilities of different training classes as for describing the test sample can be equally compared. According to the experiments on the MSTAR dataset, the good performance of this method to noise corruption can be validated.

References

[1] El-Darymli K, Eric W G and McGuire P et al. 2016 Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review IEEE Access, vol 4 pp 6014-6058.
[2] Anagnostopoulos G C 2009 SVM-based target recognition from synthetic aperture radar images using target region outline descriptors Nonlinear Analysis vol 71 no 2 pp 2934-2939.
[3] Papson S and Narayanan R 2012 Classification via the shadow region in SAR imagery IEEE Trans. Aerosp. Electron. Syst. vol 48 no 2 pp 969-980.
[4] Ding B, Wen G, and Zhong J et al. 2017 A robust similarity measure for attributed scattering center sets with application to SAR ATR Neurocomputing vol 219 pp 130-143.
[5] Ding B, Wen G and Huang X, et al. 2017 Target recognition in synthetic aperture radar images via matching of attributed scattering centers IEEE J. Sel. Topics Appl. Earth Observ. Remote Sen. vol 10 no 7 pp 3334-3347.
[6] Mishra A K 2008 Validation of PCA and LDA for SAR ATR in Proc. IEEE TENCON pp 1-6.
[7] Cui Z, Cao Z, and Yang J, et al. 2015 Target recognition in synthetic aperture radar via non-negative matrix factorisation IET Radar Sonar Navig. vol 9 no 9 pp 1376-1385.
[8] Zhao Q and Principe J 2001 Support Vector Machines for Synthetic Radar Automatic Target Recognition IEEE Trans. Aerosp. Electron. Syst. vol 37 no 2 pp 643-654.
[9] Wright J, Yang A and Ganesh A, et al. 2009 Robust face recognition via sparse representation IEEE Transactions on Pattern Analysis and Machine Intelligence vol 31 no 2 pp 210–227.
[10] Liu H and Li S 2013 Decision fusion of sparse representation and support vector machine for SAR image target recognition Neurocomputing vol 113 pp 97-104.
[11] Dong G, Wang N, Kuang G, et al. 2014 Kernel linear representation: application to target recognition in synthetic aperture radar images Journal of Applied Remote Sensing vol 8 no 1 pp 083613.