Planning and Scheduling in Hybrid Domains Using Answer Set Programming

Sandeep Chintabathina
University of Arkansas at Pine Bluff, Pine Bluff AR 71601, USA
chintabathinas@uapb.edu

Abstract. In this paper we present an Action Language-Answer Set Programming based approach to solving planning and scheduling problems in hybrid domains - domains that exhibit both discrete and continuous behavior. We use action language H to represent the domain and then translate the resulting theory into an A-Prolog program. In this way, we reduce the problem of finding solutions to planning and scheduling problems to computing answer sets of A-Prolog programs. We cite a planning and scheduling example from the literature and show how to model it in H. We show how to translate the resulting H theory into an equivalent A-Prolog program. We compute the answer sets of the resulting program using a hybrid solver called EZCSP which loosely integrates a constraint solver with an answer set solver. The solver allows us reason about constraints over reals and compute solutions to complex planning and scheduling problems. Results have shown that our approach can be applied to any planning and scheduling problem in hybrid domains.

1 Introduction

In this paper we are interested in modeling intelligent agents capable of planning, acting and reasoning in a dynamic environment. We are primarily interested in hybrid domains - domains that exhibit both discrete and continuous behavior. Many real world situations such as a robot in a manufacturing plant, a decision control system of a space shuttle etc. deal with both discrete change as well as continuous change. For example, a decision control system in a space shuttle is capable of opening and closing valves of fuel tanks to supply fuel to some jets. The actions open and close change positions of valves. The valves will remain in a certain position as long as no open or close actions occurs. The change of position of valves is, therefore, discrete. However, the fuel level in the tank can change continuously with time when the valve is open or there is an incoming supply of fuel to the tank. This type of continuous change coupled with discrete change makes this domain hybrid. We are not only interested in modeling such domains but also to solve planning and scheduling problems in such domains. A simple planning and scheduling problem in the above example would be to fire a jet within 10 seconds. This would require opening and closing the appropriate valves and delivering fuel to the jet in time to achieve the goal.

To model intelligent agents we need to provide the agent with knowledge about its environment and its own capabilities and goals. There are several approaches to representing and reasoning about such knowledge. In this paper, we use action language
H - a high level language for representing and reasoning about actions and their effects. We chose this language mainly because it is capable of representing and reasoning about hybrid domains. A description written in H describes a transition diagram whose states correspond to possible physical states of the system and whose arcs are labeled by actions. A transition, (σ, a, σ'), of a diagram denotes that action a is possible in state σ and that after the execution of a the system may move to state σ'. The diagram consists of all possible trajectories of the system.

Language H [4] was developed by extending the signature of action language \mathcal{L} [2] with a collection of numbers for representing time, a collection of functions of time, and fluents [1] with non-boolean values including fluents defined by functions of time (process fluents). It also allows triggers which specifies conditions under which actions are triggered. The semantics of \mathcal{L} is based on the McCain-Turner equation [9]. A slightly modified version of this equation defines the semantics of H. Thus, both languages are based on the same underlying intuition. However, in \mathcal{L} a state of the transition diagram is a snapshot of the world, whereas in H, a state is a snapshot of the world over a time interval. Process fluents are defined over this time interval. Prior to H, logic-based formalisms such as Situation Calculus [13] and Event Calculus [14] were extended to reason about process fluents. Both approaches demonstrate via examples how their approach can be used for reasoning about process fluents. However, in both approaches, it is difficult to express causal relations between fluents.

To solve planning and scheduling problems in hybrid domains, we use an action language-logic programming approach. We begin by representing the domain in H. To this extent, we come up with a theory of H (also called action description) to describe actions and their effects. We implement this theory by translating it into an Answer Set Prolog (A-Prolog) program, a class of logic programs under answer set semantics [7,8], and computing answer sets (models) of the resulting program. In this way, we reduce the problem of finding solutions to the planning and scheduling problem to computing answer sets of the A-Prolog program. In [5] we show that there is a one-to-one correspondence between models of A-Prolog programs and models of our specification.

The paper is organized as follows. In section 2, we revisit the syntax and semantics of H as described in [4]. In section 3, we cite a planning and scheduling example from [12] and come up with a theory of H to model it. In section 4, we present the main contribution of this paper which is the translation of the resulting H theory into an A-Prolog program. The example from [12] was run using ZENO, a least commitment planner that supports continuous change. After ZENO, researchers have come up with several efficient solvers. One significant contribution is the Planning Domain Description Language (PDDL) which was exclusively developed for planning purposes. A variant of this language, $PDDL+$ [6] is capable of modeling continuous change through the use of processes and events. Like H, the semantics of this language is defined using a labeled transition diagram. The language has been shown to represent a number of complex time dependent effects. However, one major limitation of the language is that it does not support derived predicates - predicates defined in terms of other predicates for eg. $above(x, y)$ from the blocks world domain. There are no such limitations in H.

1 functions whose values depend on a state and may change as a result of actions
2 Preliminaries

In this section we revisit the syntax and semantics of H as described in [4].

2.1 Syntax

By sort we mean a non-empty countable collection of strings in some fixed alphabet. A sorted signature Σ is a collection of sorts and function symbols. A process signature is a sorted signature with special sorts time, action, and process. Sort time is normally identified with one of the standard numerical sorts with the exception that it contains an ordinal ω such that for any x ∈ time \ {ω}, ω > x. No operations are defined over ω. If time is discrete, elements of time \ {ω} may be viewed as non-negative integers, otherwise they can be interpreted as either rational numbers, constructive real numbers, etc.

Sort process contains strings of the form λ T.f(T) where T is a variable ranging over time and f(T) is a mathematical expression (possibly) containing T. A string λ T.f(T) represents a function defined over time. The λ is said to bind T in f(T). If the expression, f(T), does not contain any variables for time then λ T.f(T) is said to denote a constant function. For e.g. λ T.0 denotes the constant function 0. For simplicity we assume that all functions from process have the same range denoted by the sort range(process).

An example of a function from sort process is λ T.h − (g/2) × (T − t)² which defines the height in meters, at time T, of a freely falling object dropped from a height h, T − t seconds before. The symbol g denotes the Earth’s average gravitational acceleration which is equal to 9.8 meters/sec².

Sort action is divided into subsorts agent and exogenous. Members of agent denote (unit) actions performed by an agent and members of exogenous denote non-agent actions. Both agent and exogenous actions will be referred to as actions. A compound action is a set of unit actions performed at the same time.

The collection of function symbols includes names for fluents and standard numerical functions. Each fluent name is associated with an arity - a number indicating the number of arguments. Intuitively, fluents are properties that may change as a result of actions. For example, the height of a brick held at a certain position above the ground could change when it is dropped. Every process signature contains reserved fluents start and end of sort time.

A term of sort s is defined as follows:

1. A string y ∈ s is a term of sort s;
2. If t₁, ..., tₙ are terms of sorts s₁, ..., sₙ respectively and f : s₁ × ... × sₙ → s is a function symbol then f(t₁, ..., tₙ) is a term of sort s.

Notice that if f(⃗x) is a term of sort process and t is a term of sort time then f(⃗x)(t) is a term of sort range(process). For example, to represent the height of brick b we can introduce a fluent height(b) of sort process. Then by height(b)(10) we denote the height of b at time 10. Similarly, λ T.200 − (g/2) × (T − 5)²(10) denotes the value of the function at T = 10 which is equal to 77.5.

An atom of Σ is a statement of the form t = y where t is a term of some sort s and y ∈ s. Examples of atoms are end = 10, 2 + 3 = 5 etc. If t is a term built from fluent symbols
an action description of H can be either a result of execution of a state and a transition of T with more than one successor state. In this section we will give a formal definition for non-deterministic is at most one successor state \(2\)) or a mapping defined as follows.

Definition 2. Given an action description AD of $H(\Sigma)$, an interpretation I of Σ is a mapping defined as follows.

The semantics of language H is based on a slightly modified McCain-Turner equation \[9\]. An action description, AD, of $H(\Sigma)$ describes a transition diagram, $TD(AD)$, whose nodes correspond to possible physical states of a system and whose arcs are labeled by actions. A transition $\langle s, a, s' \rangle$ of the diagram denotes that action a is possible in s and as a result of execution of a the system may move to state s'. It is important to note that an action description of H can be either deterministic (i.e. for any state-action pair there is at most one successor state \[2\]) or non-deterministic (i.e. there is a state-action pair with more than one successor state). In this section we will give a formal definition for a state and a transition of $TD(AD)$. We begin with interpreting symbols of Σ.

Definition 1. An action description of $H(\Sigma)$ is a collection of statements of the form:

\[
\begin{align*}
&l_0 \text{ if } l_1, \ldots, l_n, \quad (1) \\
e' \text{ causes } l_0 \text{ if } l_1, \ldots, l_n, \quad (2) \\
\text{impossible } e_1, \ldots, e_m \text{ if } l_1, \ldots, l_n. \quad (3) \\
l_1, \ldots, l_n \text{ triggers } e. \quad (4)
\end{align*}
\]

where e''s are elements of action, l_0's are fluent atoms and l_1, \ldots, l_n are literals of the signature of H. l_0 is referred to as the head of a statement and l_1, \ldots, l_n are referred to as the body of a statement. A statement of the form (1) is called a state constraint. It guarantees that any state satisfying l_1, \ldots, l_n also satisfies l_0. A statement of the form (2) is called a dynamic causal law and it states that if action e were executed in a state satisfying literals l_1, \ldots, l_n then any successor state would satisfy l_0. A statement of the form (3) is called an executability condition and it states that actions e_1, \ldots, e_m cannot be executed in a state satisfying l_1, \ldots, l_n. If $n = 0$ then if is dropped from statements (1), (2) and (3). A statement of the form (4) is called a trigger and it states that action e is triggered in any state satisfying l_1, \ldots, l_n.

By ground instantiations of a variable of sort s, we mean the elements of s. From the description of the syntax, the only variable that appears in the statements of H is the variable T ranging over time. However, variables ranging over other sorts are allowed in the statements as long as those statements are viewed as a shorthand for the collection of statements obtained by replacing each occurrence of a variables other than T by its corresponding ground instantiations.

2.2 Semantics

The semantics of language H is based on a slightly modified McCain-Turner equation \[9\]. An action description, AD, of $H(\Sigma)$ describes a transition diagram, $TD(AD)$, whose nodes correspond to possible physical states of a system and whose arcs are labeled by actions. A transition $\langle s, a, s' \rangle$ of the diagram denotes that action a is possible in s and as a result of execution of a the system may move to state s'. It is important to note that an action description of H can be either deterministic (i.e. for any state-action pair there is at most one successor state \[2\]) or non-deterministic (i.e. there is a state-action pair with more than one successor state). In this section we will give a formal definition for a state and a transition of $TD(AD)$. We begin with interpreting symbols of Σ.

Definition 2. Given an action description AD of $H(\Sigma)$, an interpretation I of Σ is a mapping defined as follows.

then such an atom is called a fluent atom. Examples of fluent atoms are $height(b) = \lambda T.100 - (g/2) * (T - 5)^2$, $height(b)(5) = 100$, $end = 10$, etc.

A literal of Σ is an atom $t = y$ or its negation $\neg(t = y)$. Negation of = will be often written as \neq. If t is a term of Boolean sort then $t = true$ ($t \neq false$) is often written as t and $t = false$ ($t \neq true$) is often written as $\neg t$. For example, the atom $4 < 5 = true$ will be written as $4 < 5$.

Language, H, is parameterized by a process signature Σ with standard interpretations of numerical functions and relations (such as $+, <, \leq, \neq$, etc).
– for every non-process sort, \(s \), and every string \(y \in s \), \(I \) maps \(y \) into itself i.e. \(y^I = y \).
– standard interpretation is used for the sort \(\text{process} \) and other standard numerical functions and relations.
– \(I \) maps every fluent into a properly typed function.

Often an interpretation \(I \) of \(\Sigma \) is identified with a collection, \(s(I) \), of atoms of the form \(t = y \) such that \(t^I = y \) where \(t \) and \(y \) are terms of some sort. In other words, \(s(I) = \{ t = y | t^I = y \} \).

Before we give the definition of a state of \(TD(AD) \) let us consider the following definitions.

A set, \(s \), of atoms is said to be consistent if for every atom \(t = y \in s \), \(\nexists y_2 \) such that \(t = y_2 \in s \) and \(y_1 \neq y_2 \).

Let us define what it means for a literal to be true w.r.t a set of atoms of \(\Sigma \).

Definition 3. Given a consistent set, \(L \), of atoms of \(\Sigma \)– An atom \(t = y \) is true in \(L \) (symbolically \(L \models t = y \)) iff \(t = y \in L \).
– A literal \(t \neq y \) is true in \(L \) (\(L \models t \neq y \)) iff \(L \models t = y_0 \) and \(y \neq y_0 \).

We will now define what it means for a set of atoms to be closed under state constraints of \(AD \).

Definition 4. A set \(L \) of atoms is closed under the state constraint
\[
\begin{align*}
l_0 & \text{ if } l_1, \ldots, l_n \\
& \text{ of } AD \text{ if, whenever } L \models l_i \text{ for every } i, 1 \leq i \leq n, L \models l_0.
\end{align*}
\]
A set \(L \) of atoms is closed under state constraints of \(AD \) if \(L \) is closed under every state constraint of \(AD \).

Next, we define what it means for a set of atoms to satisfy a trigger of \(AD \).

Definition 5. A set \(L \) of atoms of \(H \) satisfies a trigger
\[
\begin{align*}
l_1, \ldots, l_n \text{ triggers } e
\end{align*}
\]
of \(AD \) iff \(L \models l_i \) for every \(i \) such that \(1 \leq i \leq n \).

Intuitively, if a set of atoms satisfies a trigger it means that the corresponding action will take place at some time point. The next definition characterizes sets of atoms which “end” before any triggered action takes place.

Definition 6. A set \(L \) of atoms of \(H \) is closed under triggers of \(AD \) iff \(\nexists L' \) such that \(L' \) satisfies at least one trigger of \(AD \) and \(L \setminus L' = \{ \text{end} = t_2 \} \) and \(L' \setminus L = \{ \text{end} = t_1 \} \) and \(t_1 < t_2 \).

Intuitively, a state of \(TD(AD) \) can be viewed as a collection of functions of time defined over an interval. The endpoints of the interval are implicitly defined by the reserved fluents \(\text{start} \) and \(\text{end} \). The domain of each function is the set \(\{ t | \text{start} \leq t \leq \text{end} \land t < \omega \} \). We say that a state is defined over an interval of the form \([\text{start}, \text{end}] \) iff \(\text{end} \neq \omega \). There is at least one arc labeled by an action leading out of such a state. We say that a state is defined over an interval of the form \([\text{start}, \text{end}] \) iff \(\text{end} = \omega \). There is no arc leading out of such a state. States that begin at time 0 are called initial states. They define the initial conditions of a domain. Here is the formal definition of a state.
Definition 7. Given an interpretation I of Σ, $s(I)$ is a state of $TD(AD)$ if each of the following holds.

- $s(I)$ is a collection of atoms of the form $t = y$ such that $t' = y$ where t and y are terms of the same sort.
- $s(I)$ is closed under the state constraints of AD.
- If $s(I) \models start = t_1$ and $s(I) \models end = t_2$ then $t_1 \leq t_2 \land t_1 < \omega$.
- $s(I)$ is closed under the triggers of AD.
- If $s(I) \models p = \lambda T.f(T)$ where p is a fluent of sort process then $\lambda T.f(T)$ is defined over the domain $\{t \mid start^l \leq t \leq end^l \land t < \omega\}$.
- If p is a fluent of sort process and t is a term of sort time then $s(I) \models p(t) = x$ iff $s(I) \models p = \lambda T.f(T)$ and $\lambda T.f(T)(t') = x$.

By definition of interpretation every symbol is mapped uniquely. Therefore, states of $TD(AD)$ are complete and consistent. Whenever convenient the parameter I will be dropped from $s(I)$. Next, we will define what is means for an action to be possible in a state.

Definition 8. Action a is possible in state s if for every non-empty subset a_0 of a, there is no executability condition

\[\text{impossible } a_0 \text{ if } l_1, \ldots, l_n.\]

of AD such that $s \models l_i$ for every i, $1 \leq i \leq n$.

Given a state s and action e let us define what are the direct effects of executing e in s.

Definition 9. Let e be an elementary action that is possible in state s. By $E_s(e)$ we denote the set of all direct effects of e w.r.t. s.

\[E_s(e) = \{l_0 \mid e \text{ causes } l_0 \text{ if } l_1, \ldots, l_n \in AD \land s \models l_i \text{ for every } i, 1 \leq i \leq n\}\]

If a is a compound action then $E_s(a) = \bigcup_{e \in a} E_s(e)$.

The following definition allows us to identify sets of atoms with adjacent intervals.

Definition 10. Let x, y, and z be elements of sort time such that $x \leq y \leq z \land y < \omega$ and s and s' be sets of atoms of H. We say that s' follows s iff $s \models \{\text{start} = x, \text{end} = y\}$ and $s' \models \{\text{start} = y, \text{end} = z\}$.

Given two sets of atoms s and s', the function $T_s(s')$ is defined as follows.

\[T_s(s') = \begin{cases} \{\text{start} = t_1, \text{end} = t_2\} \text{ if } s' \text{ follows } s \land \{\text{start} = t_1, \text{end} = t_2\} \subseteq s' \hfill \\ \emptyset \text{ otherwise.} \end{cases}\]

In other words, the function returns the interval of s' if s' follows s; otherwise it returns an empty set.

The consequences of a set of atoms w.r.t a set of state constraints is defined as follows.

Definition 11. Given a set S of atoms and a set Z of state constraints of AD the set, $Con_Z(S)$, of consequences of S under Z is the smallest set of atoms (w.r.t set theoretic inclusion) containing S and closed under Z.
Definition 12. Action a is complete w.r.t a set of atoms s if for every trigger $r \in AD$ of the form

$$l_1, \ldots, l_n$$

triggers e such that $e \in a$ iff s satisfies r.

We know that a state contains arbitrary atoms of Σ. However, for the next definition we focus only on fluent atoms including those formed from start and end. All other atoms such as $2 + 3 = 5$ which is always true will be ignored.

Definition 13. A transition diagram $TD(AD)$ is a tuple $\langle \phi, \psi \rangle$ where

- ϕ is the set of states.
- ψ is the set of all transitions $\langle s, a, s' \rangle$ such that each of the following holds.
 - a is complete w.r.t s
 - a is possible in s
 - s' is closed under the triggers of AD
 - $s' = Cn_Z(E_s(a) \cup (s \cap s') \cup T_s(s'))$ (1)

where Z is the set of state constraints of AD.

The set, $E_s(a)$, consists of direct effects of a while the set, $s \cap s'$, consists of facts preserved by inertia. $T_s(s')$ projects the start and end of s'. The application of Cn_Z to the union of these sets adds the indirect effects. From the definition, it is evident that concurrent actions such as dropping two balls from different heights at the same time can be handled in H.

3 A planning and scheduling example

In this section we will visit a planning and scheduling example from [12] and demonstrate how to model it in H. Consider a toy world in which a single plane moves passengers between cities. Slow flying travels at 400 miles per hour and consumes 1 gallon of fuel every 3 miles, on average. Fast flying travels at 600 miles per hour and consumes 1 gallon of fuel every 2 miles. Passengers can be boarded in 30 minutes and deplaned in 20 minutes. Refueling gradually increases the fuel level to a maximum of 750 gallons, taking one hour from an empty tank. Boarding, deplaning, and refueling must all occur while the plane is on the ground. The distance between city-a and city-b is 600 miles, the distance between city-a and city-c is 1000 miles, the distance between city-b and city-c is 800 miles and the distance between city-c and city-d is 1000 miles. Suppose that Dan and Ernie are at city-c, but the empty plane and Scott are at city-a. If the plane only has 500 gallons of fuel, how can we ensure that Scott and Ernie get to city-d in less than five and a half hours? [12]

A solution to this problem requires reasoning about effects of (concurrent) actions in the presence of continuous time. There are properties of the domain that change continuously with time such as the fuel level of the plane, the distance covered by the plane etc. With proper planning and scheduling, the plane will make its tight schedule without running out of fuel. Hence, the problem is a planning and scheduling problem in the presence of continuous change. We begin with the representation of the domain in H.
3.1 Representation in H

We begin with the description of the signature. It consists of several objects - persons scott, ernie, and dan and locations a,b,c, and d. We will use another location called enroute to denote that the plane is in the air. We will use (possibly indexed) variables P and L to denote persons and locations respectively. We are given the constants distance(a,b,600), distance(a,c,1000) and so on. We are also given the fuel consumption rates for different speeds. For example, when flying at 400 mph the mileage is 3 miles per gallon. We can encode this information in the form of constants fc(400) and fc(600) which denote 3 miles per gallon and 2 miles per gallon respectively. For modeling purposes we will use minutes as our unit of time.

We know that there are several durative actions in the domain, for example, boarding which takes 30 minutes. We will use the approach used by Reiter [13] to model durative actions. We introduce the action start_boarding(P,L) which denotes that person P is boarding at location L and end_boarding(P,L) which denotes that person P has finished boarding at location L. So instead of one action we have two actions start_boarding(P,L) and end_boarding(P,L) which make the fluent boarding(P,L) true and false respectively. In our model, the end_boarding(P,L) action will be triggered 30 minutes from the time start_boarding(P,L) is executed. We will use the same approach for all durative actions. We introduce the action start_flying(L1,L2,S) to denote that the plane has started flying from location L1 to location L2 with speed S. The variable S ranges over {400,600}. The remaining actions in the domain are start_deplaning(P,L), end_deplaning(P,L), start_refueling, end_refueling, and end_flying(L1,L2).

The signature consists of the boolean fluents boarding(P,L), deplaning(P,L), on_board(P) and refueling. We also have non-boolean fluents location(P) and location(plane) which range over {a,b,c,d, enroute}. We have process fluents time_left_board(P,L) and time_left_deplane(P,L) which are clock functions to count down the time left for person P to board and deplane at location L respectively. We have process fluent distance_left(L1,L2) to denote the distance that is yet to be covered to reach L2 from L1. Finally, the process fluent fuel_level denotes the fuel level in the plane’s tank. We proceed with defining the effects of each action. The effects of start_boarding(P,L) are defined using dynamic causal laws

\[\text{start_boarding}(P,L) \text{ causes } \text{boarding}(P,L). \]
\[\text{start_boarding}(P,L) \text{ causes } \text{time_left_board}(P,L) = \lambda T.\max(0,30-(T-T_0)) \quad \text{if end } = T_0. \]

The following executability condition says that person P cannot start boarding if he or she is already boarding.

impossible start_boarding(P,L) if boarding(P,L).

The following are causal laws involving end_boarding(P,L).

\[\text{end_boarding}(P,L) \text{ causes } \neg\text{boarding}(P,L). \]
\[\text{end_boarding}(P,L) \text{ causes } \text{on_board}(P). \]
\[\text{impossible end_boarding}(P,L) \text{ if } \neg\text{boarding}(P,L). \]
The following are causal laws involving actions \textit{start_deplaning}(P,L) and \textit{end_deplaning}(P,L).

\begin{itemize}
 \item \textit{start_deplaning}(P,L) causes \textit{deplaning}(P,L)
 \item \textit{start_deplaning}(P,L) causes
 \[\text{time_left_deplane}(P,L) = \lambda T.\max(0, 20 - (T - T_0))\]
 if \text{end} = T_0.
 \item impossible \textit{start_deplaning}(P,L) if \textit{deplaning}(P,L).
 \item \textit{end_deplaning}(P,L) causes \neg\textit{deplaning}(P,L).
 \item \textit{end_deplaning}(P,L) causes \neg\textit{on_board}(P).
 \item impossible \textit{end_deplaning}(P,L) if \neg\textit{deplaning}(P,L).
\end{itemize}

The following are direct effects of \textit{refueling}. Instead of assuming that it takes 1 hour to fill up from an empty tank we will assume that the rate of \textit{refueling} is 20 gallons per minute. When we start \textit{refueling}, we add fuel to the existing level and the level increases at the rate of 20 gallons per minute.

\begin{itemize}
 \item \textit{start_refueling} causes \textit{fuel_level} = \lambda T.\max(750, X + 20 * (T - T_0))
 if \text{end} = T_0, \text{fuel_level}(\text{end}) = X.
 \item \textit{start_refueling} causes \textit{refueling}.
 \item impossible \textit{start_refueling} if \textit{refueling}.
 \item impossible \textit{start_refueling} if \textit{location}(plane) = \textit{enroute}.
 \item \textit{end_refueling} causes \neg\textit{refueling}.
 \item impossible \textit{end_refueling} if \textit{location}(plane) = \textit{enroute}.
 \item impossible \textit{end_refueling} if \neg\textit{refueling}.
\end{itemize}

Next, we define the direct effects of \textit{start_flying}(L_1,L_2,S).

\begin{itemize}
 \item \textit{start_flying}(L_1,L_2,S) causes \textit{location}(plane) = \textit{enroute}.
 \item \textit{start_flying}(L_1,L_2,S) causes \textit{distance_left}(L_1,L_2) = \lambda T.\max(0, X - S * (T - T_0)/60)
 if \text{distance}(L_1,L_2,X), \text{end} = T_0.
 \item \textit{start_flying}(L_1,L_2,S) causes \textit{fuel_level} = \lambda T.\max(0, X - S * (T - T_0)/(60 * f(S)))
 if \text{fuel_level}(\text{end}) = X, \text{end} = T_0.
 \item impossible \textit{start_flying}(L_1,L_2,S) if \textit{location}(plane) = \textit{enroute}.
 \item impossible \textit{start_flying}(L_1,L_2,S) if \text{location}(plane) \neq L_1.
 \item impossible \textit{start_flying}(L_1,L_2,S) if \text{boarding}(P,L_1), \text{location}(P) = L_1.
\end{itemize}

The following are causal laws involving action \textit{end_flying}(L_1,L_2).

\begin{itemize}
 \item \textit{end_flying}(L_1,L_2) causes \textit{location}(plane) = L_2.
 \item impossible \textit{end_flying}(L_1,L_2) if \text{location}(plane) \neq \textit{enroute}.
\end{itemize}

The following causal laws specify conditions under which each “ending” action is triggered.

\begin{itemize}
 \item \text{time_left_board}(P,L,\text{end}) = 0 triggers \textit{end_boarding}(P,L).
 \item \text{time_left_deplane}(P,L,\text{end}) = 0 triggers \textit{end_deplaning}(P,L).
 \item \text{fuel_level}(\text{end}) = 750 triggers \textit{end_refueling}.
 \item \text{distance_left}(L_1,L_2,\text{end}) = 0 triggers \textit{end_flying}(L_1,L_2).
\end{itemize}
The following state constraint encodes common sense knowledge. It states that a person on board a plane is at the same location as the plane.

\[
\text{location}(P) = L \text{ if } \text{location(plane)} = L, \text{on_board}(P).
\]

The following executability condition states that flying to a location without enough fuel is not allowed. A rational reasoner who wants to reach his or her destination safely will not violate this constraint.

\[
\text{impossible start_flying}(L_1, L_2, S) \text{ if } \text{fuel_level(end)} = X, \\
\text{distance}(L_1, L_2, Y), \\
X < Y / fc(S).
\]

This concludes the representation of the domain in H.

4 Translation into logic program

We solve the planning and scheduling problem by translating the above theory into an Answer Set Prolog program and computing answer sets of the resulting program. Thus, we reduce the problem of finding solutions to the planning and scheduling problem to computing answer sets of the resulting program. The translation that was provided in [5] is a theoretical translation from statements of H into rules of A-Prolog. However, in this paper we are going to provide a translation that adheres to the syntax of a specific ASP solver. Since we are dealing with continuous functions we chose a solver that, in addition to computing answer sets, is capable of reasoning about constraints over reals. Here is a brief summary of solvers that are available at our disposal.

In the past few years researchers [10] have focused on integrating Answer Set Programming (ASP) and Constraint logic programming (CLP). They came up with new systems that achieve significant improvement in performance over existing ASP solvers. The following such systems are available: Acsolver [10] (and its successor Luna [11]); EZCSP [2] and Clingcon [3]. Each solver couples a constraint solver with an answer set solver. However, the coupling varies. In Luna (Acsolver) and Clingcon the coupling is tight whereas in EZCSP the coupling is loose. We considered using Luna for our purposes but we found out that there are some implementation issues. Besides, the underlying answer set solver is less efficient than the one used by EZCSP. We also considered using Clingcon, however, the underlying constraint solver only deals with finite domains which is a limitation when dealing with continuous functions. We chose EZCSP as it allows us to reason about constraints over reals.

In EZCSP, the A-Prolog programs are written in such a way that their answer sets encode a constraint satisfaction problem. The system calls the answer set solver, uses the resulting answer sets to pose a constraint satisfaction problem in the input language of the constraint solver, then calls the constraint solver and combines the solutions returned by both solvers. The constraint solver can use the results from the answer set

\[\text{http://marcy.cjb.net/ezcsp/index.html}\]

\[\text{http://www.cs.uni-potsdam.de/clingcon/}\]
solver to solve new constraints but the answer set solver cannot use results from the
constraint solver to make new inferences. The current version uses gringo+clasp\footnote{http://potassco.sourceforge.net/} by
default as the ASP solver and SICSTUS Prolog as the constraint solver. Both solvers
are very fast.

The translation that we present here will be in the input language of EZCSP. Before
we begin the translation there are some modeling decisions to be made. These decisions
are necessary to overcome some of the implementation issues. One of the main issues
is the implementation of functions. The input language of EZCSP will allow us to rep-
resent constants and variables but it is not possible to represent functions of time. For
example, we can translate statements such as velocity = 5 directly into the input lan-
guage of EZCSP but it is not possible to translate a statement such as height = \lambda T.T^2.
The reason is that there is no representation for functions in this language. The alterna-
tive is to provide a value for T and obtain the value of the function for that instance. So it
is possible to translate the statement height(5) = \lambda T.T^2(5) = 25. The constraint solver
may obtain the value for T from other constraints and then use that value to evaluate
height(5).

Sorts, actions, boolean fluents and fluents ranging over finite domains will be trans-
lated as atoms in the input language of EZCSP. All other fluents ranging over infinite
or large domains will be represented as constraint variables. Every constraint involv-
ing a constraint variable will appear in an atom called required. For example, we write
required(height > 5) to denote the variable height must be greater than 5. Process flu-
ents will be represented by constraint variables. For each process fluent we can use two
constraint variables - one to denote the initial value and one to denote the final value in
a given state.

Let us look at some statements from our example and see how they are translated
into EZCSP rules. Consider the following statement from our example.

\begin{align*}
\text{start_refueling} & \text{ causes } \text{fuel_level} = \lambda T.\max(750, X + 20 \times (T - T_0)) \\
& \text{ if } end = T_0, \text{fuel_level}(end) = X.
\end{align*}

Since we cannot encode functions in EZCSP we are going to expand the signature to
include a boolean fluent called refueling, a real-valued fluent called f_time to denote
the time at which fueling began and two new real-valued fluents - f_initial and f_final
to denote the initial and final fuel level in a state. We then replace the above causal law
with the following causal laws.

\begin{align*}
\text{start_refueling} & \text{ causes } f_{\text{initial}} = X \text{ if } f_{\text{final}} = X. \\
\text{start_refueling} & \text{ causes } f_{\text{time}} = T \text{ if } end = T. \\
\text{start_refueling} \text{ causes } & \text{refueling,} \\
f_{\text{final}} & = \max(750, X + 20 \times (T - T_0)) \text{ if } f_{\text{initial}} = X, f_{\text{time}} = T_0, \\
& end = T, \text{refueling}.
\end{align*}

The first two dynamic causal laws say that executing start_refueling initializes f_initial
to the current fuel level and f_time to the end time of the current state. The next dy-
namic law says that start_refueling begins the refueling process. Next, we have a state
constraint which defines f_{final} in terms of f_{initial}, f_{time} and end of a state in which refueling is true. We consider fluents f_{initial}, f_{time} and refueling to be inertial. These fluents will retain their values until an action causes them to change. For example, f_{initial} will be reset by actions end_\text{refueling}, start_\text{flying}(L_1, L_2, S)$ and end_\text{flying}(L_1, L_2)$ because each action has a bearing on the fuel level. So we will add dynamic causal laws encoding the effects of these actions on f_{initial}. The relationship between the process fluent $fuel_{\text{level}}$ in the original action description and f_{final} in the modified action description is that for any given state, $f_{\text{final}} = fuel_{\text{level}}(end)$.

To translate the above statements into EZCSP we have to first define the various constraint variables. All the real-valued fluents will be translated as constraint variables. Since fluents are dependent on state, we have to consider state as one of its parameters during translation. It is important to note that with the assignment of time intervals to states, each state in a transition diagram is unique. Our approach is to assign (non-negative) integers to each state in the order it appears in the trajectory of a transition diagram. This is done in the language of EZCSP as follows.

\[
\text{#const } n = 10. \quad \text{step}(0..n), \text{ #domain step}(I;11).
\]

Here n denotes the length of the trajectory and the #domain declaration says that variables I and 11 range over $[0,n]$. Next, we will define the various constraint variables parameterized by $step$.

\[
cspvar(f_{\text{time}}(I), 0, 400). \quad cspvar(f_{\text{initial}}(I), 0, 750). \\
cspvar(f_{\text{final}}(I), 0, 750). \quad cspvar(end(I), 0, 400).
\]

The numbers in each declaration specify the range of that variable. Next, the boolean fluent refueling will be translated into the atom $v(X, refueling, I)$ where X ranges over \{true, false\}. It says that X is the value of refueling in step I. The action $\text{start}_\text{refueling}$ is translated as $\text{occurs}(\text{start}_\text{refueling}, I)$ which says that $\text{start}_\text{refueling}$ occurred in step I. Finally, here are the EZCSP rules obtained by translating the above causal laws.

\[
\text{required}(f_{\text{initial}}(I) == f_{\text{final}}(I)) : -\text{occurs}(\text{start}_\text{refueling}, I), I1 = I + 1. \\
\text{required}(f_{\text{time}}(I) == \text{end}(I)) : -\text{occurs}(\text{start}_\text{refueling}, I), I1 = I + 1. \\
v(\text{true}, \text{refueling}, I + 1) : -\text{occurs}(\text{start}_\text{refueling}, I). \\
\text{required}(f_{\text{final}}(I) == \text{max}(750, f_{\text{initial}}(I) + 20 * (\text{end}(I) - f_{\text{time}}(I)))) : -v(\text{true}, \text{refueling}, I).
\]

The rest of the dynamic causal laws are translated using a similar approach. As mentioned before, in EZCSP the answer set solver does not receive any input from the constraint solver to make new inferences. This poses a problem especially when translating triggers. A trigger mentions the conditions under which an action will be executed. It is possible that these conditions are constraints over time. Even if these constrains are evaluated, since there is no feedback to the answer set solver, it is not possible to know when an action is triggered. The author of EZCSP, Marcello Balduccini, has suggested a solution to overcome this problem. Suppose that we have the following trigger.

\[
fuel_{\text{level}}(end) = 750 \text{ triggers } \text{end}_\text{refueling}.
\]
Since we have replaced process fluent \(f_{\text{fuel}} \) with other real valued fluents, this trigger is really

\[
f_{\text{initial}} = X, f_{\text{time}} = T, \text{refueling}, \text{end} = (750 - X)/20 + T \quad \text{triggers} \quad \text{end_refueling}
\]

Given the initial fuel level \(X \) and the refuel rate of 20 gallons per minute, the expression \((750 - X)/20\) gives the number of minutes it takes to fill up the tank. The trigger states that if a state ends at a time when the tank is full then \(\text{end_refueling} \) is triggered. Of course, \(\text{refueling} \) must be also be true in that state. A direct translation of this trigger is

\[
\text{occurs}(\text{end_refueling}, I) : -\text{required}(\text{end}(I) == (750 - f_{\text{initial}}(I))/20 + f_{\text{time}}(I)), v(true, \text{refueling}, I).
\]

This rule will be fired if the body is satisfied. The atom \(v(true, \text{refueling}, I) \) is a direct consequence of \(\text{start_refueling} \). However, the constraint atom in the body of the rule is not obtained from other rules of the program. Balduccini suggested that it can be generated by adding the rules

\[
1\{p(I), q(I)\}1 : -v(true, \text{refueling}, I).
\]

\[
\text{required}(\text{end}(I) == (750 - f_{\text{initial}}(I))/20 + f_{\text{time}}(I)) : -p(I).
\]

\[
\text{required}(\text{end}(I) < (750 - f_{\text{initial}}(I))/20 + f_{\text{time}}(I)) : -q(I).
\]

The choice rule will allow us to generate one of the two constraints. If no action takes place before the tank fills up then \(\text{end_refueling} \) is triggered. We use the same approach to translate other triggers in the domain. Currently, there is no formal proof stating that this solution will always work. However, the solution is based on answer set programming methodology and EZCSP uses a state-of-the-art answer set solver. We rely on the solver to give us the correct solutions.

In our example, the goal is to have Scott and Ernie in city \(d \) in less than five and a half hours (330 minutes). We encode this goal in EZCSP as follows

\[
goal(I) : -v(d, \text{location}(\text{scott}), I), v(d, \text{location}(\text{ernie}), I), \text{required}(\text{start}(I) < 330),
\]

where \(\text{start}(I) \) is a constraint variable denoting the start time of a step. The constraint says that the goal state must be achieved in less than five and a half hours. It is generated by adding the rules

\[
1\{g(I), ng(I)\}1.
\]

\[
\text{required}(\text{start}(I) < 330) : -g(I).
\]

\[
\text{required}(\text{start}(I) >= 330) : -ng(I).
\]

We add the following rules to say that failure is not an option.

\[
\text{success} : -\text{goal}(I).
\]

\[
: -not \text{success}.
\]

Next, we will talk about the planning component of the program. As in the case of non-continuous domains, we will use Answer Set Programming techniques for generating
and testing plans. A plan is a sequence of actions. We will be generating all possible sequences of actions that will lead us to our goal. In the process of generating these plans we use the constraints in our program to test these plans and discard the ones that violate the constraints. A simple way to generate plans is to use the choice rule
\[
\{\text{occurs}(A,I) : \text{action}(A)\} : -\text{step}(I), I < n.
\]
where \(n\) is the length of the plan. Note that we are going to generate only the initiating actions for example, \(\text{start_refueling}\) etc. This is because all the terminating actions have triggers associated with them and there is no need to generate them again. Since we are dealing with continuous time, in addition to computing the sequences of actions, we will also determine when these actions will take place. This is the reason why planning in hybrid domains also involves scheduling. According to the problem specification, we have a constraint that specifies the time within which the goal has to be achieved i.e. five and a half hours. We can specify this constraint in EZCSP as follows.
\[
\text{required}(\text{end}(I) < 330) : -\text{occurs}(A,I), \text{action}(A).
\]

The rules state that all action occurrences must take place before five and a half hours. This constraint gives a very broad range of scheduling possibilities. The times during which actions will take place could now range over intervals of time. For example, in order to achieve our goal it may be required that Scott has to board the plane within the first 50 minutes and that the plane has to depart city \(c\) no later than three hours and 45 minutes into the trip. Dealing with time intervals is an issue because it does not allow us to compute values of fluents at specific time points. More issues arise when fluents are defined in terms of other fluents whose values are unknown. To overcome these issues we decided to assign specific times to the initiating actions. The times for the terminating actions were determined by our triggers. Here is a solution given by EZCSP to our planning and scheduling problem.

\[
\begin{align*}
\text{occurs}(\text{start_boarding}(\text{scott}, a), 0) & \quad \text{end}(0) = 5.0 \\
\text{occurs}(\text{end_boarding}(\text{scott}, a), 1) & \quad \text{end}(1) = 35.0 \\
\text{occurs}(\text{start_flying}(a,c,400), 2) & \quad \text{end}(2) = 40.0 \\
\text{occurs}(\text{end_flying}(a,c), 3) & \quad \text{end}(3) = 190.0 \\
\text{occurs}(\text{start_refueling}, 4) & \quad \text{end}(4) = 195.0 \\
\text{occurs}(\text{start_boarding}(\text{ernie}, c), 5) & \quad \text{end}(5) = 197.0 \\
\text{occurs}(\text{end_refueling}, 6) & \quad \text{end}(6) = 224.16 \\
\text{occurs}(\text{end_boarding}(\text{ernie}, c), 7) & \quad \text{end}(7) = 227.0 \\
\text{occurs}(\text{start_flying}(c,d,600), 8) & \quad \text{end}(8) = 229.0 \\
\text{occurs}(\text{end_flying}(c,d), 9) & \quad \text{end}(9) = 329.0
\end{align*}
\]

It is necessary to refuel in city \(c\) because there is not enough fuel to travel to city \(d\). A shorter plan can be obtained by allowing concurrent actions. For example, refueling and boarding can start at the same time. The running times and the performance of the solver will be discussed in a longer version of the paper.
5 Conclusions and Future Work

In this paper, we presented an Action Language-Answer Set Programming based approach to solving planning and scheduling problems in hybrid domains. We used action language H to model a planning and scheduling example and translated the resulting theory into an A-Prolog program. We used a hybrid solver called EZCSP to compute the answer sets of the resulting program. Our approach overcomes the limitations of existing formalisms such as PDDL+. We believe that our approach can be applied to any planning and scheduling problem in hybrid domains.

In the future, we would like to model several benchmark examples and compare the performance of EZCSP with existing planners. Some of the planners used for industry-sized problems are domain-specific [3]. It will be useful to investigate why some of these planners work really well. There are areas for improvement including the efficiency of solvers, the expressiveness of the input language and so on.

References

1. M. Balduccini. Representing constraint satisfaction problems in answer set programming. In ICLP’09 Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP09), July 2009.
2. C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In J. Minker, editor, Logic-Based Artificial Intelligence, pages 257–279. Kluwer Academic Publishers, 2000.
3. M. Boddy and D. Johnson. Integrated planning and scheduling for petroleum refinery operations. In Proc. of ICAPS Workshop on Integrating Planning into Scheduling (WIPIS), 2004.
4. S. Chintabathina and R. Watson. A New Incarnation of Action Language H. In Correct Reasoning - Essays on Logic-Based AI in Honor of Vladimir Lifschitz, June 2012.
5. Sandeep Chintabathina. Towards Answer Set Programming Based Architectures for Intelligent Agents. PhD Dissertation. Texas Tech University, December 2010.
6. Maria Fox and Derek Long. Modeling mixed discrete-continuous domains for planning. Journal of Artificial Intelligence Research, pages 235–297, October 2006.
7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski and K. Bowen, editors, Proc. of ICLP-88, pages 1070–1080, Cambridge, Massachusetts, 1988. The MIT Press.
8. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.
9. N. McCain and H. Turner. A causal theory of ramifications and qualifications. In C. Mellish, editor, Proc. of IJCAI-95, pages 1978–1984. Morgan Kaufmann, 1995.
10. V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating Answer Set Programming and Constraint Logic Programming. In Proc. of ISAIM’08, http://isaim2008.unl.edu/index.php, 2008.
11. A. Ricardo Morales. Improving Efficiency of Solving Computational Problems with ASP. PhD Dissertation. Texas Tech University, December 2010.
12. Scott Penberthy and Daniel Weld. Temporal planning with continuous change. In Proc. of AAAI-94, pages 1010–1015, 1994.
13. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, 2001.
14. M. Shanahan. Solving the frame problem. MIT Press, 1997.