Construction of a 25-T cryogen-free superconducting magnet

K Watanabe1,*, S Awaji1, H Oguro1, Y Tsuchiya1, S Hanai2, H Miyazaki2, T Tosaka2, M Takahashi2 and S Ioka2

1Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Toshiba Corporation, Yokohama 230-0045, Japan

E-mail: kwata@imr.tohoku.ac.jp

Abstract. The construction of a 25-T cryogen-free superconducting magnet (25T-CSM) has started in 2013 at the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University. The 25T-CSM consists of a low-\(T_c\) superconducting (LTS) coil and a high-\(T_c\) superconducting (HTS) coil. A high-strength CuNb/Nb\(_3\)Sn Rutherford cable with the reinforcing stabilizer CuNb composite is adopted for the middle LTS section coil. The characteristic feature of the new technology using a CuNb/Nb\(_3\)Sn Rutherford cable is a react-and-wind method for the coil-winding process. The LTS coil of 300-mm winding inner diameter is fabricated, and a central magnetic field of 14 T is generated at an operation current of 851 A. The HTS insert coil wound with GdBa\(_2\)Cu\(_3\)O\(_y\) (Gd123) tape has a 52-mm experimental room temperature bore, and a central magnetic field of 25.5 T will be generated at an operation current of 150 A in a background field of 14 T.

1. Introduction
A cryogen-free superconducting magnet conductively cooled by a tiny GM-cryocooler has been demonstrated in practice in 1992 [1]. At present, cryogen-free high-field superconducting magnets generating 10-15 T are widely used in new research fields such as magneto-science. The distinctive feature of the liquid-helium-free and nitrogen-free operation is the realization of an easy-to-use superconducting magnet. There is no need to supply any liquid helium or nitrogen for the magnet operation.

We have already developed an 18-T cryogen-free superconducting magnet (18T-CSM), which consists of a low-\(T_c\) superconducting (LTS) coil and a high-\(T_c\) superconducting (HTS) Bi\(_2\)Sr\(_2\)Ca\(_2\)Cu\(_3\)O\(_y\) (Bi2223) insert coil. The 18T-CSM generated a magnetic field of 18.1 T in a 52-mm experimental room temperature bore [2]. Recently, the HTS insert coil of 18T-CSM was replaced by employing the high performance Ag/Bi2223 tape, and consequently the magnet was successfully improved to generate 20.1 T [3].

Since a high magnetic field is one of the important physical parameters in condensed matter physics and materials science, the combination of a high field and a cryogen-free superconducting magnet is expected to greatly contribute to the progress of high magnetic field research. In 2013, the construction of the 25-T cryogen-free superconducting magnet (25T-CSM) was funded by the Japanese government at the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

*correspondence author

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
In this paper, a new technology related to LTS and HTS coils for the 25T-CSM is reported.

2. Design of the magnet system for the 25T-CSM

The magnet system for the 25T-CSM, consisting of an LTS coil and an HTS coil, is shown in figure 1. The parameters of the 25T-CSM superconducting coils are summarized in table 1. Total inductance is 97 H, and stored magnetic energy is 10.7 MJ. The HTS coil, denoted as H1, consists of 68 single-pancake coils. The HTS and LTS coils are individually operated by dual power supplies. The 25T-CSM LTS coil is wound with Rutherford cable conductors. Nb$_3$Sn Rutherford cables are utilized for three coils (L1-L3), and NbTi Rutherford cables are used for two coils (L4-L5). A central magnetic field of 14 T is generated at an operation current of 851 A.

![Figure 1. Schematic view of the 25-T cryogen-free superconducting magnet (25T-CSM).](image)

Coil ID	H1	L1	L2	L3	L4a	L4b	L5	
Conductor material	Gd123	Nb,3Sn	Nb,3Sn	Nb,3Sn	Nb,3Ti	Nb,3Ti	Nb,3Ti	
Operation current	A	150	851					
Inner diameter	mm	102	300	372	458	545	603	628
Outer diameter	mm	276	366	452	539	603	622	712
Height	mm	408	540	628	628	628	628	628
Magnetic field contribution	T	25.7	13.7	11.3	8.37	6.83	6.22	5.84
Width of conductor	mm	25.7	13.7	11.3	8.37	6.83	6.22	5.84
Thickness of conductor	mm	5.00	6.45	6.45	6.45	6.30	5.57	5.57
Thickness of layer insulation	mm	0.13	1.83	1.83	1.83	1.80	1.61	1.61
Space current density	A/mm2	125	68.9	68.9	68.9	71.6	90.0	90.0
T_{cs}	K	5.87	7.28	8.58	5.92	6.12	6.32	
Hoop stress	MPa	488	251	243	200	138	112	52

The current share temperature T_{cs} is 5.87 K for the L1 coil. This results in a temperature margin of over 1.3 K for all coils at an operation temperature of 4.5 K. Concerning the cooling system for the 25T-CSM, the cold mass of the 25T-CSM including the superconducting coils and the structures is 2410 kg. Since the HTS coil with a large temperature margin can be operated at higher temperatures compared to the LTS coil, the cooling structure is separated between the HTS and the LTS coil. To cool the mass, two GM-JT cryocoolers with a cooling power of 4.2 W at 4.3 K are used for the LTS.
coil, and two GM cryocoolers with a cooling power of 1.5 W at 4.2 K are used for the HTS coil. Even if the temperature of the HTS coil rises, the LTS coil temperatures can be kept at a low level owing to the separated cooling structure. The radiation shield is cooled by two single-stage GM cryocoolers with a cooling power of 100 W at 55 K.

The total cooling time from room temperature for the 25T-CSM is approximately 12 d. When the magnet is charged up to 25 T in 60 min, the total heat loads are estimated to be 10.3 W for HTS coils and 4.4 W for LTS coils. Further detailed cooling properties for the 25T-CSM will be reported elsewhere [4]. A large temperature rise due to AC losses limits the magnet sweep rate. We estimated the AC losses for HTS coils on the basis of the Brandt model [5] for a film shape. However, a practical HTS pancake coil will become a bulk shape. Therefore, the designed AC losses for HTS coils are considered to be overestimation, and a ramp-up time will be reduced.

3. React-and-wind method of CuNb/Nb$_3$Sn Rutherford cable superconducting coils

It is worth noting that we developed the high strength Nb$_3$Sn strand with CuNb reinforcing stabilizer (CuNb/Nb$_3$Sn) using the Nb-rod fabrication method [6]. Figure 2 schematically shows the Nb-rod-processed CuNb/Nb$_3$Sn using the drawings of Nb rods embedded into a Cu sheath. CuNb/Nb$_3$Sn compounds were formed by heat treatment at 670 ºC for 96 h, and the characteristics of CuNb/Nb$_3$Sn strands were examined. The CuNb/Nb$_3$Sn strand and Rutherford cable parameters are listed in table 2. As shown in figure 3, the Rutherford flat cable without insulation, composed of 16 strands using a 0.8-mm-diameter CuNb/Nb$_3$Sn strand, is 1.53 mm in width, 6.45 mm in thickness, and 65 mm in twist pitch. A glass epoxy tape is used as an insulating material in 1/4 lap winding. In order to fabricate a coil using a react-and-wind method, the bending treatment for heat-treated Rutherford flat cables was repeated ten times at 0.5% bending strain because we found that the repeated bending treatment significantly enhances the critical current for CuNb/Nb$_3$Sn strands owing to reduction of the residual strain [7].

Figure 2. Fabrication process of Nb-rod-processed CuNb/Nb$_3$Sn strands.

Table 2. Characteristic parameters of (a) the Nb-rod-processed CuNb/Nb$_3$Sn strand and (b) relevant Rutherford cable.

(a) Strand	(b) Rutherford cable
Superconductor	Bronze-processed Nb$_3$Sn
Reinforcement	Nb-rod-processed Cu-17.4wt%Nb
Diameter [mm]	0.8
Cu/CuNb/non-Cu [%]	20/35/45
Filament diameter [μm]	3.3
No. of filaments	6973
Twist pitch [mm]	20
No. of strands	16
Dimensions [mm×mm]	6.4×1.5
Cabling pitch [mm]	65
I_c (4.2K, 14.5T) [A]	1600 <
The mechanical properties of CuNb/Nb$_3$Sn strands at low temperatures were measured using a tensile stress testing apparatus [8]. The critical currents I_c of CuNb/Nb$_3$Sn strands were determined with an electric field criterion of 1 μV/cm.

The prebending treatment changes the mechanical properties of the CuNb/Nb$_3$Sn strand, suggesting that the mechanical properties are enhanced because of the work hardening of the Cu stabilizer and the CuNb composite by the prebending treatment [9]. The Young’s modulus of the CuNb/Nb$_3$Sn strand changed from 125 GPa for an as-reacted sample to 180 GPa for a prebent sample. Figure 4 shows the stress dependence of I_c for the as-reacted and 0.8% prebent Nb-rod-processed CuNb/Nb$_3$Sn strands. I_c values of the prebent strands under a tensile stress of 230 MPa were higher than those of the as-reacted strands. The peak positions of the I_c-stress curves were 210 MPa for the as-reacted strand and 125 MPa for the prebent strand. The hoop stress calculated by Wilson’s model [10] is 251 MPa for the L1 coil. The hoop stress value lies in the mechanical tolerance of the CuNb/Nb$_3$Sn strand. The maximum I_c of 104 A for the as-reacted strand was increased to 112 A by the prebending treatment. These results indicate that the CuNb/Nb$_3$Sn Rutherford cable composed of 16 strands has enough critical current properties over 1600 A in fields up to 14.5 T at 4.2 K [11], because the designed operation current of 851 A for a 25T-CSM LTS coil is approximately half the critical current.

4. GdBa$_2$Cu$_3$O$_y$ (Gd123) superconducting coils with large hoop stress tolerance

As listed in the design parameters of the 25T-CSM HTS coil in table 1, the HTS coil can generate 11.5 T at an operation current of 150 A in a background field of 14 T. In this design, a single bundle
conductor composed of one Gd123 tape is adopted. The maximum radial component B_r of the HTS coil that corresponds to the magnetic field parallel to the c-axis of the Gd123 tape is 4.9 T. Figure 5 shows both field components, the coil-axial field B_z and the coil-radial field B_r, in comparison with I_c properties of the Gd123 tape. Considering a Gd123 single bundle conductor, the coil load lines for the operation current of 150 A per one Gd123 tape are compared with the critical current properties. Since the critical currents in fields for $B\perp c$ are very high for the Gd123 tape, the critical currents in fields for $B//c$ limit the coil performance. The hoop stress is estimated to be 488 MPa using Wilson’s model. When the LTS coil happens to quench, a large induced current is added to the operation current for the HTS coil. Since it is very difficult to detect a small voltage due to the hot spot for HTS, we cannot apply the traditional quench protection like a LTS coil system. We found that it is important for an HTS coil design to not have an overcurrent above the critical current. Therefore, the operation current was established below the critical current at 20 K, even in the case of a coil quench for the HTS coil. As a result, the coil performance is limited by the coil radial field B_r for the Gd123 tape.

5. Summary
We are constructing a cryogen-free 25-T superconducting magnet consisting of a low-T_c 14-T superconducting coil and a high-T_c 11-T insert coil. This magnet will generate 25.5 T in a 52-mm room temperature bore, and the magnetic field of 25.5 T would be the highest generated by a practical superconducting magnet to date.

A high-strength CuNb/Nb$_3$Sn Rutherford cable with the reinforcing stabilizer CuNb composite was successfully developed for the middle low-T_c section coil. A new technology of a react-and-wind method using a CuNb/Nb$_3$Sn Rutherford cable is adopted for the coil-winding process. The high-T_c insert coil is fabricated by stacking 68 single-pancake coils using GdBa$_2$Cu$_3$O$_y$ tape.

6. References
[1] Watanabe K, Yamada Y, Sakuraba J, Hata F, Chong C K, Hasebe T and Ishihara M 1993 Jpn. J. Appl. Phys. 32 L488
[2] Nishijima G, Awaji S, Hanai S and Watanabe K 2006 Fusion Engineering and Design 81 2425
[3] Hanai S, Tsuchihashi T, Minemoto Y, Ioka S, Watanabe K, Awaji S and Oguro H 2014 IEEE Trans. Appl. Supercond. 24 4301204
[4] Iwai S, Takahashi M, Miyazaki H, Tosaka T, Tasaki K, Hanai S, Ioka S, Watanabe K, Awaji S and Oguro H presented in Applied Superconductivity Conference 2014
[5] Brandt E H and Indenbom M 1993 Phys. Rev. B 48 12893
[6] Oguro H, Awaji S, Watanabe K, Sugimoto M and Tsubouchi H 2013 Supercond. Sci. Technol. 26 094002
[7] Watanabe K, Awaji S, Oguro H, Nishijima G, Miyoshi K and Meguro S 2005 IEEE Trans. Appl. Supercond. 15 3564
[8] Katagiri K, Fukumoto M, Saito K, Ohgami M, Okada T, Nagata A, Noto K and Watanabe K 1990 Adv. Cryo. Eng. 36 69
[9] Oguro H, Awaji S, Nishijima G, Badica P, Watanabe K, Shikanai F, Kamiyama T and Katagiri K 2007 J. Appl. Phys. 101 103913
[10] Wilson M N 1982 Superconducting Magnets (Oxford, UK: Oxford Science) pp 41–67
[11] Watanabe K, Oguro H, Awaji S, Kumakura H, Sugimoto M and Tsubouchi H 2014 Adv. Cryo. Eng. 60 186

Acknowledgments
This work was partly supported by the Grant-in-Aid for Scientific Research from JSPS, (KAKENHI 25246032), Japan. CuNb/Nb$_3$Sn Rutherford cables were fabricated by Furukawa Electric Co., Ltd, and Gd123 tapes by Fujikura Ltd.