ZEAMAP, a Comprehensive Database Adapted to the Maize Multi-Omics Era

Songtao Gui, Linfeng Yang, Jianbo Li, ..., Qiang Gao, Ning Yang, Jianbing Yan
yangningjingji@126.com (N.Y.)
yjianbing@mail.hzau.edu.cn (J.Y.)

HIGHLIGHTS
- Functional annotations and comparative genomics of maize and teosinte genomes
- Multi-omics data generated from the same maize inbred lines panel
- Interactive tools to query, cross-refer, and visualize the omics data

Gui et al., iScience 23, 101241
June 26, 2020 © 2020 The Author(s)
https://doi.org/10.1016/j.isci.2020.101241
Article
ZEAMAP, a Comprehensive Database Adapted to the Maize Multi-Omics Era

Songtao Gui,1 Linfeng Yang,1 Jianbo Li,2 Jingyun Luo,1 Xiaokai Xu,1 Jianyu Yuan,2 Lu Chen,1 Wenqiang Li,1 Xin Yang,2 Shenshen Wu,1 Shuyan Li,1 Yuebin Wang,1 Yabing Zhu,2 Qiang Gao,2 Ning Yang,1,3,* and Jianbing Yan1,*

SUMMARY
As one of the most extensively cultivated crops, maize (Zea mays L.) has been extensively studied by researchers and breeders for over a century. With advances in high-throughput detection of various omics datasets, a wealth of multidimensional and multi-omics information has been accumulated for maize and its wild relative, teosinte. Integration of this information has the potential to accelerate genetic research and generate improvements in maize agronomic traits. To this end, we constructed ZEAMAP, a comprehensive database incorporating multiple reference genomes, annotations, comparative genomics, transcriptomes, open chromatin regions, chromatin interactions, high-quality genetic variants, phenotypes, metabolomics, genetic maps, genetic mapping loci, population structures, and populational DNA methylation signals within maize inbred lines. ZEAMAP is user friendly, with the ability to interactively integrate, visualize, and cross-reference multiple different omics datasets.

INTRODUCTION
Maize (Zea mays L.) is one of the most important crops for food, feed, and fuel and is also a model species for genetic and genomic researches. As the cost of sequencing has been decreased and new omics technologies have arisen, there has been an explosive growth in the amount of biological information available for maize. The maize B73 reference genome has recently been updated (Jiao et al., 2017), and four high-quality maize genome assemblies have been released during the last 2 years (Li et al., 2019; Springer et al., 2018; Sun et al., 2018; Yang et al., 2019). The previous two-dimensional genome has recently been resolved in three dimensions with the mapping of open chromatin and the identification of chromatin interactions based on ChiA-PET and Hi-C technologies (Peng et al., 2019; Rodil-Melnick et al., 2016). Omics data, including deep DNA resequencing, transcriptome, and metabolome, have been accumulated at the population scale (Hirsch et al., 2014; Hu et al., 2018; Li et al., 2013; Walley et al., 2016; Wang et al., 2018; Wen et al., 2014; Xu et al., 2019a; Zhou et al., 2019). There are many different applications for these new datasets, including gene cloning and the study of regulatory networks. These new and comprehensive datasets provide valuable resources for maize research and have the potential to completely revolutionize breeding (Wallace et al., 2018).

Comprehensive databases are needed to store, maintain, and analyze the multi-omics data that are now available for maize. Several maize genomics and functional genomics databases have been developed, including the Maize Genetics and Genomics Database (MaizeGDB) (https://www.maizegdb.org/), which collects maize reference sequences, stocks, and phenotypic and genotypic data and also provides useful tools for maize data mining (Lawrence et al., 2004; Portwood et al., 2018). Panzea (https://www.panzea.org/) collects genotypic and phenotypic information for several maize populations (Zhao et al., 2006), whereas MaizeNet (http://www.inetbio.org/maizenet/) provides a genome-scale co-functional network of maize genes (Lee et al., 2019). Other generic databases such as GenBank (https://www.ncbi.nlm.nih.gov/genbank), Gramene (http://www.gramene.org/), and ePlant (http://bar.utoronto.ca/eplant_maize/) also collect maize omics data. Despite being very useful, these databases are designed either to collect general maize genomic and genetic information or to focus on one specific omics area. To make the best use of the multi-omics information for maize research and breeding, researchers currently need to either systematically integrate omics data generated from different sources (Rajasundaram and Selbig, 2016) or use multi-omics data that were all generated from the same panel.

*Correspondence: yangningyingji@126.com (N.Y.), yjianbing@mail.hzau.edu.cn (J.Y.)
https://doi.org/10.1016/j.isci.2020.101241
MODEM (http://modem.hzau.edu.cn/) is the first attempt to integrate multi-omics datasets, including various types of genetic variants, expression data, and metabolomic data (Liu et al., 2016). Despite the importance of wild relatives in understanding the domestication of modern crops, no existing maize multi-omics databases incorporate teosinte (Tian et al., 2019). To fill this gap, we have developed ZEAMAP (http://www.zeamap.com/), a multi-omics database for maize research and breeding, which integrates omics data generated from 307 elite inbred lines (in an association mapping panel, AMP) (Yang et al., 2011) and 183 teosinte accessions (unpublished data). ZEAMAP includes genome assemblies and annotations of four inbred lines, B73 (Jiao et al., 2017), Mo17 (Sun et al., 2018), SK (Yang et al., 2019), and Huang-ZaoSi (HZS) (Li et al., 2019), and a teosinte accession (Zea mays ssp. mexicana) (Yang et al., 2017), expression patterns of tissues from different developmental stages of the same inbred line (Walley et al., 2016, Yang et al., 2019) and same tissue of different samples within the AMP (Li et al., 2013), three dimensional chromatin interactions and open chromatin of B73 (Peng et al., 2019), genetic variations including single-nucleotide polymorphisms (SNPs), small insertions and deletions (InDels) and large structure variations (SVs) generated from the deep sequencing of the AMP and the comparison among reference genome assemblies, the phenotypes and metabolome of the AMP and the related loci mapped by genome-wide association studies (GWASs), expression quantitative trait locus (eQTL) and linkage analysis, the population structure and pedigrees of each germplasm, and the populational DNA methylation signals within maize inbred lines. ZEAMAP generated comprehensive functional annotations for the annotated gene models in each assembly and provided useful tools for users to search, analyze, and visualize all these different omics data.

RESULTS
Overview Structures of ZEAMAP Database
ZEAMAP comprises a user account management system, a main database, a full-site search engine, and a set of analysis and visualization tools (Figure S1). The multi-omics data in ZEAMAP are categorized into five main content modules involving genomic, genetic, variation, population, and epigenetic information (Figures 1 and S1). ZEAMAP construction utilized the biological community database construction toolkit Tripal (Ficklin et al., 2011), which combines the content management system Drupal (https://www.drupal.org) with the standard biological relational database storage backend, Chado (Jung et al., 2016). Each feature in ZEAMAP has its own page, and features are linked to each other by sequence ontology relationships.

The Genomics Module
The Genomics module collects reference genome assemblies, gene expression profiles, and comparative genomics information related to the available genomes and populations in ZEAMAP. Currently, ZEAMAP contains reference genome assemblies of four maize inbred lines (B73, SK, Mo17, and HZS) and one teosinte species (Zea mays ssp. mexicana). Each genome assembly has its own page, which contains general information for each genome assembly and sub-menus with links to access various related information and bioinformatics analysis tools (Figure S2). The mRNA and predicted protein for gene models in each genome assembly were assigned functional annotations including gene ontologies (GO), Kyoto Encyclopedia of Genes and Genomes pathways (KEGG), clusters of orthologous groups (COG), orthology relationships, Single Copy Orthologs (SCO), known gene-product annotations, proteolytic enzymes, and related items in InterPro, PFAM, and NCBI nr databases (Figure S3). The genome features for each assembly, including genes, mRNAs, proteins, and transposable elements, can be searched by their IDs or locations through Chado feature search (Figure S4A). Genes (as well as mRNAs and proteins) can also be searched by their functional annotation descriptions (Figure S4B). Each annotated genome feature has its own page with multiple sub-menus displaying summary information (resource type, accession, organism, name, identifier, and others), sequences, annotations, cross-references linked to the same feature in MaizeGDB or NCBI, as well as related parent and child features, orthologs, and synteny blocks.

Two genome browsers, JBrowse (Buels et al., 2016) and WashU Epigenome Browser (Zhou et al., 2013), were embedded to display the genome sequences, annotated genomic features, and other genomic information for all the available reference genome assemblies in ZEAMAP (Figure 2A). Both genome browsers are designed to easily add tracks, search for certain information in specific regions, and export data as well as figures. These two genome browsers share some common features, including genome sequences and genomic annotations. However, each one has unique information tracks (see sections below) because JBrowse performs better when dealing with large piecemeal features such as variations and the WashU Epigenome Browser is specially designed to display epigenomic tracks.
ZEAMAP provides comparative genomic information for each pair of the available reference genome assemblies, including both synteny blocks identified from gene collinearities and whole-genome alignment details. The synteny blocks are managed and displayed through the Tripal synteny viewer module (https://github.com/tripal/tripal_synview). Each synteny block has its own unique block ID and can be searched by it in both the Synteny block browser page and in the full-site search engine (Figure 2B). The detailed whole genome sequence alignments can also be accessed through the genome browser (Figure 2B).

Figure 1. A Screenshot of the ZEAMAP Home Page
The home page of ZEAMAP consists of a top menu bar, a site-wide search engine, access to the six biological modules, and miscellaneous tools.
We have collected gene expression patterns in different tissues for each maize genome assemblies, as well as expression profiles of kernels for 368 inbred lines of the AMP (Li et al., 2013) based on B73 reference annotations. Expression patterns in different tissues for each gene can be visually displayed through heat-maps after being queried in the “Tissue Overview” page (Figure 2C). ZEAMAP also enables users to browse the expression patterns of several genes among different tissues or samples and cluster the genes and tissues/samples based on the gene expression patterns (Figure 2C). Both functions provide download links to a raw expression matrix of the queries.

The Variations Module
The Variations module collects the genotypes and annotations of polymorphic variations including SNPs, InDels, and SVs among the AMP in reference to the B73 reference genome, as well as a haplotype map generated from the SNP genotype matrix (see Transparent Methods for the source and the analysis used to generate the related data). The general variation information of a gene, including variation positions, allele types, and annotations can be queried by their IDs or locations and displayed through tabular view (Figure S5A). The variations can also be browsed through JBrowse. Upon clicking each variant block in JBrowse tracks, the detailed information about that variant, including the annotations and the genotype of each germplasm, will be shown. There is also a genotype overview for the variations in the current JBrowse display panel when the related “variant matrix” track is selected (Figure S5B). ZEAMAP also provides a function to query for the detailed genotype matrix for specified germplasms within certain regions (Figure S5C).
The Genetics Module

ZEAMAP has collected phenotypic data from the AMP, including 21 agronomic traits, 31 kernel lipid content-related traits, 19 kernel amino acid content-related traits, and 184 known metabolites of maize kernels. All these phenotypes can be searched and filtered by their threshold values using the “Search Trait Evaluation” tool (Figure S6). We have identified loci significantly associated with these phenotypes using GWAS and provided a tabular data search function to find specific loci by trait names, variant IDs, chromosome regions, and significant p values (Figure S7). Three GWAS visualization tools (“GWAS-Single-Trait,” “GWAS-Multi-Trait,” and “GWAS-Locus”) were developed to better browse the GWAS results and compare the significant signals among different traits. Querying a trait and navigating to specific regions can be easily accomplished by inputting boxes or through the interactive navigational Manhattan plot (in GWAS-Single-Trait and GWAS-Multi-Trait tools). The GWAS-Single-Trait tool displays all signals associated with the selected trait as a scatterplot, with colors indicating the linkage disequilibrium (LD) r^2 values between the user-selected reference variant and all the other variants (Figure 3A). The GWAS-Multi-Trait tool was designed to compare GWAS signals among two or more traits, with the colors indicating different
traits (Figure S8), whereas the GWAS-Locus tool displays GWAS signals of all traits that show significant association with the query variant (Figure S9). These three tools are provided with a lightweight genome browser that indicates the gene models within the current region. Each element in the plot is also interactive and links to other related information.

Genetic variations can impact gene expression through many factors, including alterations in splicing, non-coding RNA expression, and RNA stability (Gilad et al., 2008). Expression quantitative trait locus (eQTL) mapping is a powerful approach to detect the possible variants that alter gene expression. In ZEAMAP, we have collected cis-eQTL signals with gene expression patterns in maize kernels based on B73 annotation and provided a tabular tool to search and filter eQTL signals by gene IDs, gene locations, distances from transcription start site (TSS), effect sizes, and significance values (Figure S10). A visualization tool was also developed to browse all cis-eQTLs affecting the selected gene, with significance values, effect size, and pairwise LD information displayed interactively (Figure 3B).

ZEAMAP has currently collected 12 published genetic maps constructed from different artificial maize segregating populations using genotypes generated from the Illumina MaizeSNP50 BeadChip (Illumina, San Diego, CA, USA), as well as 813 quantitative trait loci (QTLs) identified from 15 plant architecture-related traits (Pan et al., 2016). The genetic markers can be searched and filtered by their IDs, genomic locations, and genetic linkage group (Figure S11). QTLs can be searched by traits and QTL labels, resulting in detailed records of the genetic markers located in or adjacent to that QTL. By employing the TripalMap extension module (https://github.com/ksbuble/TripalMap), the linkage maps, including all related markers and QTLs, can be visualized and compared with another map interactively (Figure 3C).

The Populations Module
It is often useful to dissect the genetic diversity, population structure, and pedigrees of maize lines for both evolutionary studies and molecular breeding. ZEAMAP provides interactive information about the population structures assessed by principal component analysis (PCA) and ancestries inferred from an unsupervised clustering analysis for the whole Zea population and each sub-population in the database (Figure 4A). We have also added a table that lists the origins or pedigree information for each inbred line of maize AMP (Figure 4B).

The Epigenetics Module
Eukaryotic gene expression has been shown to be altered by three-dimensional DNA interactions, which are affected by chromatin accessibility. Additionally, the modifications of epigenetic states on histones and nucleotides add another layer of control to gene expression regulation (Dekker, 2008). These regulatory factors are crucial for the ability of sessile plants to respond to diverse environmental challenges (He and Li, 2018). In ZEAMAP, we have collected the chromatin interaction maps associated with RNA polymerase II occupancy and the histone mark H3K4me3 according to the B73 reference genome (Peng et al., 2019). Open chromatin regions are based on micrococcal nuclease (MNase) digestion (Rodgers-Melnick et al., 2016), histone acetylation and methylation regions, and populational DNA methylation information generated from the third leaves at V3 of the 263 AMP inbred lines (Xu et al., 2019b). This information can be accessed through a tabular data browser or visualized through the WashU Epigenome Browser (Figure 5A). For DNA methylation information from the AMP, customized interfaces were developed to easily select multiple samples with differentially methylated regions (DMRs) in the table browser (Figure 5B) and visualize both DMR and DNA methylation sites in the WashU Epigenome Browser (Figure 5C).

Additional Tools
In addition to the aforementioned major biological modules, ZEAMAP also offers several additional tools. The currently available additional tools include a site-wide search engine, BLAST server, a CRISPR browser and an FTP data downloader.

Although there are already independent search tools for several of these analyses, a site-wide search engine powered by Chado is still useful since it enables users to quickly search for all items related to their queries. The ZEAMAP site-wide search engine was built using the Tripal Elasticsearch module (https://github.com/tripal/tripal_elasticsearch), with a search box that is accessible in both the home page and the status bar of each page. The search engine supports advanced search behaviors including wildcards, fuzzy searches, regular expressions, and Boolean operators. The search results are also categorized by their entity type in the database (Figure 6A).
We have also implemented an instance of NCBI’s BLAST tool in ZEAMAP using SequenceServer (Priyam et al., 2019), which provides a user-friendly interface with text-based and interactive visual outputs (Figure 6B). ZEAMAP currently has BLAST databases for whole-genome sequences, mRNAs, CDSs, and predicted proteins for each reference genome assembly.

ZEAMAP also includes an imbedded tool to search for reliable single-guide RNAs (sgRNAs) targeting the genes in each maize genome assembly in the database in order to support genome editing experiments using the CRISPR-Cas9 system. The sgRNA information can be browsed tabularly when querying a gene ID.
or a genomic region and graphically through JBrowse. Both the tabular and the graphical results provide information about the editing positions and possible off-target genes (Figure S12).

Additionally, we have provided an FTP server to store a backup of all the publicly released datasets used in ZEAMAP through h5ai (https://larsjung.de/h5ai/), an open source file indexer with an enhanced user interface, text preview, and directory download.

DISCUSSION

We have created ZEAMAP, a database for maize research and breeding that collects multi-dimensional omics information, including genome assemblies, comparative genomics, transcriptomes, open chromatin, chromatin interactions, genetic variants, phenotypes, metabolomics, genetic maps, genetic mapping loci, population structures and pedigrees, and populational DNA methylation signals within maize inbred lines. Most of the datasets were generated from the same maize population, which makes it possible to cross-reference these multi-omics data to support maize research in a more uniform and comprehensive manner. To make the acquisition and analysis of information more effective and flexible, ZEAMAP provides several convenient modules, including a site-wide search function, dataset-specific search tools, a BLAST server, a gene expression pattern analyzer, tabular browsers, genome browsers, and specialized visualizers for different datasets. ZEAMAP will be carefully maintained and continuously updated with the latest genomic and genetic advances. More online analysis tools (software for LD and PCA analyses, for example) will be embedded in ZEAMAP in the near future. Ultimately, we plan to systematically integrate all available omics data and make ZEAMAP a platform to analyze relationships between genotypes and phenotypes in order to predict complex traits for maize researchers and breeders.

Limitations of the Study

Currently, ZEAMAP has mainly focused on collection, query, and visualization of pre-analyzed datasets, with only several lightweight online analysis tools embedded. The lack of comprehensive online analysis tools that make the best of the multi-omics data in ZEAMAP to help users better understand their custom data is the main limitation for the current version of ZEAMAP database.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ning Yang (yangningyingji@126.com).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All the strategies and data included in this paper are available from ZEAMAP (http://www.zeamap.com). The related source codes are available at https://github.com/ZEAMAP.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101241.
ACKNOWLEDGMENTS

This research was supported by the National Key Research and Development Program of China (2016YFD0101001, 2016YFD0100303) and the National Natural Science Foundation of China (31525017, 31900494). The authors would like to thank Dr. Qing Li and Ms. Jing Xu (National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University) for providing the DNA methylation data of AMP.

Figure 6. Features of the Additional Functional Tools in ZEAMAP

(A) An example search result by the site-wide search engine queried with an asterisk wildcard. The resulting items are categorized by their feature types and have links to their detailed information pages.

(B) An example result of the BLAST server in ZEAMAP. The result page provides download links of sequences (1) with reports available in different formats. Also included are interactive plot views of each alignment including Circos plots (2), NCBI BLAST-like alignment hits visualization (3), and length distribution of hits (4). Each alignment hit has detailed alignment information, including a graphic view of the aligned regions and detailed alignments (5).
AUTHOR CONTRIBUTIONS

Conceptualization, N.Y., L.Y., and S.G.; Methodology, S.G., L.Y., and J. Li; Software, S.G., X.X., and J. Yuan; Resources, J. Luo, L.C., W.L., and Y.W.; Formal Analysis, S.G., X.Y., X.X., J. Yuan, S.W., S.L., and Y.Z.; Writing - Original Draft, S.G. and N.Y.; Writing - Review & Editing, S.G., N.Y., and J. Yan; Funding Acquisition, J. Yan and N.Y.; Supervision, J. Yan and Q.G.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 3, 2020
Revised: May 21, 2020
Accepted: June 1, 2020
Published: June 26, 2020

REFERENCES

Buels, R., Yao, E., Desh, C.M., Hayes, R.D., Munoz-Torres, M., Helt, G., Goodstadt, D.M., Elsk, C.G., Lewis, S.E., Steinn, L., et al. (2016). JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66.

Dekker, J. (2008). Gene regulation in the third dimension. Science 319, 1793–1794.

Ficklin, S.P., Sanders, L.A., Cheng, C.-H., Stanton, M.E., Lee, T., Cho, I.-H., Jung, S., Bett, K.E., and Main, D. (2011). Tripl: a construction toolkit for online genome databases. Database 2011, bar044.

Gilad, Y., Rikin, S.A., and Pritchard, J.K. (2008). Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 24, 406–415.

He, Y., and Li, Z. (2018). Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet. 34, 856–866.

Hirsch, C.N., Foerster, J.M., Johnson, J.M., Sekhon, R.S., Muttoni, G., Vaillancourt, B., Perfagancano, F., Lindquist, E., Pedraza, M.A., Barry, K., et al. (2014). Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26, 121–135.

Hu, L., Robert, C.A., Cadot, S., Zhang, X., Ye, M., Li, B., Mazon, D., Chernet, N., Steiner, T., Van Der Heyden, M.G., et al. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738.

Jiao, Y., Peluso, P., Shi, J., Liang, T., Sitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C., Wei, X., Chin, C.S., et al. (2017). Improved maize reference genome with single-molecule technologies. Nature 546, 524.

Jung, S., Lee, T., Ficklin, S., Yu, J., Cheng, C.-H., and Main, D. (2016). Chado use case: storing genomic and breeding data of Rosaceae and Goosypium crops in Chado. Database 2016, baw010.

Lawrence, C.J., Dong, Q., Polacco, M.L., Seigfried, T.E., and Brendel, V. (2004). MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res. 32, D393–D397.

Lee, T., Lee, S., Yang, S., and Lee, I. (2019). MaizeNet: a co-functional network for network-assisted systems genetics in Zea mays. Plant J. 99, 571–582.

Li, C., Song, W., Luo, Y., Gao, S., Zhang, R., Shi, Z., Wang, X., Wang, R., Wang, F., Wang, J., et al. (2019). The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize. Mol. Plant 12, 402–409.

Li, H., Peng, Z., Yang, X., Wang, F., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., et al. (2013). Genome-wide association study dissect the genetic regulation of oil biosynthesis in maize kernels. Nat. Genet. 45, 43.

Liu, H., Wang, F., Xiao, Y., Tan, Z., Wen, W., Zhang, X., Chen, X., Liu, N., Li, W., Liu, L., et al. (2016). MODEM: multi-omics data envelopment and mining in maize. Database 2016, baw117.

Pan, Q., Li, L., Yang, X., Tong, H., Xu, S., Li, Z., Li, W., Muehlebauer, G.J., Li, J., and Yan, J. (2016). Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol. 210, 1083–1094.

Peng, Y., Xiong, D., Zhao, L., Ouyang, W., Wang, S., Sun, J., Zhang, Q., Guan, P., Xie, L., Li, W., et al. (2019). Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat. Commun. 10, 2632.

Portwood, J.L., Woodhouse, M.R., Cannon, E.K., Gardner, J.M., Harper, L.C., Schaeffer, M.L., Walsh, J.R., Sen, T.Z., Cho, K.T., Schott, D.A., et al. (2018). MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res. 47, D1146–D1154.

Priyam, A., Woodcraft, B.J., Rai, V., Moghul, I., Mungala, A., Ter, F., Chowdhary, H., Piennak, L.I., Gibbins, M.A., Moon, H., et al. (2019). Sequenceserver: a modern graphical user interface for custom BLAST databases. Mol. Biol. Evol. msz185, 1–6.

Rajasundaram, D., and Selbig, J. (2016). More insights into the maize pan-genome genetics and genomics database. Genome Biol. Evol. 8, 3126–3134.

Rodgers-Melnick, E., Vera, D.L., Bass, H.W., and Buckler, E.S. (2016). Open chromatin reveals the functional maize genome. Proc. Natl. Acad. Sci. U S A 113, E3177–E3184.

Springer, N.M., Anderson, S.N., Andorf, C.M., Aherm, K.R., Bai, F., Barad, Q., Barbazuk, W.B., Bass, H.W., Baruch, K., Ben-Zvi, G., et al. (2018). The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50, 1282.

Sun, S., Zhou, Y., Chen, J., Shi, J., Zhao, H., Zhao, H., Song, W., Zhang, M., Cui, Y., Dong, X., et al. (2018). Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50, 1289.

Tian, J., Wang, C., Xia, J., Wu, L., Xu, G., Wu, W., Li, D., Qin, W., Han, X., Chen, Q., et al. (2019). Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365, 658–664.

Wallace, J.G., Rodgers-Melnick, E., and Buckler, E.S. (2018). On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genetics. Annu. Rev. Genet. 52, 421–444.

Walter, J.W., Sartor, R.C., Shen, Z., Schmitz, R.J., Wu, K.J., Uph, M.A., Nery, J.R., Smith, L.G., Schnable, J.C., and Ecker, J.R. (2016). Integration of omic networks in a developmental atlas of maize. Science 353, 814–818.

Wang, B., Regulski, M., Tseng, E., Olson, A., Goodwin, S., McCombie, W.R., and Ware, D. (2018). A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing. Genome Res. 28, 921–932.

Wen, W., Li, D., Lin, X., Gao, S., Li, W., Li, H., Liu, H., Chen, W., Luo, J., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5, 3438.

Xu, G., Cao, J., Wang, X., Chen, Q., Jin, W., Li, Z., and Tian, F. (2019a). Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. Plant Cell 31, 1990–2009.

Xu, J., Chen, G., Hermanson, P.J., Xu, Q., Sun, C., Chen, W., Kan, Q., Li, M., Crisp, P.A., Yan, J., et al. (2019b). Population-level analysis reveals the widespread occurrence and phenotypic
consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 20, 243.

Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., et al. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052.

Yang, N., Xu, X.-W., Wang, R.-R., Peng, W.-L., Cai, L., Song, J.-M., Li, W., Luo, X., Niu, L., Wang, Y., et al. (2017). Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat. Commun. 8, 1874.

Yang, X., Gao, S., Xu, S., Zhang, Z., Prasanna, B.M., Li, L., Li, J., and Yan, J. (2011). Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511–526.

Zhao, W., Canaran, P., Jurkuta, R., Fulton, T., Glaubitz, J., Buckler, E., Doebley, J., Gaut, B., Goodman, M., Holland, J., et al. (2006). Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res. 34, D752–D757.

Zhou, S., Zhang, Y.K., Kremling, K.A., Ding, Y., Bennett, J.S., Bae, J.S., Kim, D.K., Ackerman, H.H., Kolomiets, M.V., Schmelz, E.A., et al. (2019). Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diteroloylsucroses and Fusarium graminearum resistance in maize seedling roots. New Phytol. 221, 2096–2111.

Zhou, X., Lowdon, R.F., Li, D., Lawson, H.A., Madden, P.A., Costello, J.F., and Wang, T. (2013). Exploring long-range genome interactions using the WashU Epigenome Browser. Nat. Methods 10, 375.
Supplemental Information

ZEAMAP, a Comprehensive Database
Adapted to the Maize Multi-Omics Era

Songtao Gui, Linfeng Yang, Jianbo Li, Jingyun Luo, Xiaokai Xu, Jianyu Yuan, Lu Chen, Wenqiang Li, Xin Yang, Shenshen Wu, Shuyan Li, Yuebin Wang, Yabing Zhu, Qiang Gao, Ning Yang, and Jianbing Yan
Supplemental Files

Supplemental Figures

Figure S1. Sketch of ZEAMAP database structure.
Figure S2. Species detailed page of Zea mays cultivar B73.
Figure S3. Functional annotation information in each gene’s detailed page.
Figure S4. Feature search and gene search functions in ZEAMAP.
Figure S5. Features of ZEAMAP variations module.
Figure S6. Search trait function in ZEAMAP.
Figure S7. GWAS table browser in ZEAMAP.
Figure S8. GWAS-Multi-Trait visualization tool in ZEAMAP.
Figure S9. GWAS-Locus visualization tool in ZEAMAP.
Figure S10. eQTL table browser in ZEAMAP.
Figure S11. Genetic marker search functions in ZEAMAP.
Figure S12. Crispr sgRNA function in ZEAMAP.

Transparent Methods

Supplementary References
Supplemental Figures

Figure S1. Sketch of ZEAMAP database structure, Related to Figure 1. The multi-omics data were stored into database and managed by chado sequence ontology and tripal modules. Two genome browsers, custom table browsers and visualization tools were developed for data querying and visualization. The frontend of ZEAMAP were divided into five main biological sections (Genomics, Variations, Genetics Populations and Epigenetics), and miscellaneous tools including site-wide search engine, BLAST server, Crispr sgRNA searcher and FTP Download server.
Figure S2. Species detailed page of *Zea mays* cultivar B73, Related to Figure 2. The species page shows the general information about the current species/germplasm, including brief introductions, external links to the germplasm information and the accessions of related omics data.
Figure S3. Functional annotation information in each gene’s detailed page, Related to Figure 2. (A) The “Functional annotation” tag in the detailed page of each gene/mRNA/protein (taking the detailed page of protein Zm00001d044266_P013 for example here), the annotated items within each database were linked to their detailed information page (B-F). A specific page was developed to get the detailed information of the related ortholog group including the phylogenetic relationships, the gene ontology items, and the sequence alignments within the ortholog group from EggNOG database (G).
Figure S4. Feature search and gene search functions in ZEAMAP, Related to Figure 2.
The feature search function (A) in ZEAMAP enables searching for all annotated features on
certain genome assemblies by their locations and/or names. The locations of the search results
displayed and linked to genome browser for visualization. The gene search function (B) is dedicated
to search for annotated genes, mRNAs and polypeptides by their names and/or their functional annotations, with the detailed functional annotations displayed in the search results for each record.
Figure S5. Features of ZEAMAP variations module, Related to Figure 1. In ZEAMAP, variants could be displayed tabularly and filtered by IDs, locations and annotated effects (A), with each resulted record has links to its location on Jbrowse (B). The popup for each variant in Jbrowse shows the detailed information including annotations and genotype in each sample (inset in B). Jbrowse has also provided an additional track shows an overview of genotype matrix (red: reference genotype; light blue: homozygous genotype; light pink: heterozygous; grey: no call). (C) ZEAMAP has also provided a “Genotype Search” function to get the genotype information by genomics regions and germplasms of interest, with a resulted matrix shows the variant positions, their IDs, reference and alternative alleles and genotypes in each samples (“0” for reference allele and “1” for alternative allele; red: homozygous reference genotype; blue: homozygous alternative genotype; green: heterozygous genotype).
Figure S6. Search trait function in ZEAMAP, Related to Figure 3. Both qualitative and quantitative trait could be searched by their trait values with multiple filter conditions supported. The search result shows all the germplasms that passed the filter conditions and their trait values.
Figure S7. GWAS table browser in ZEAMAP, Related to Figure 3. The GWAS signals could be searched by traits, variant IDs and variant locations, and filtered by significant P values. Each record in the search result has links to the GWAS visualization tools.
Figure S8. GWAS-Multi-Trait visualization tool in ZEAMAP, Related to Figure 3. This tool displays GWAS signals of multiple traits, with logic similar to GWAS-Single-Trait tool (as indicated in Figure 2A). The only differences are that the traits here are multi-selectable, and the colors in the detailed scatter plot indicate variants for different traits rather than LDs. A “data layers” button has been added in the control panel of the detailed scatter plot to fade, hide, order or remove certain trait layers.
Figure S9. GWAS-Locus visualization tool in ZEAMAP, Related to Figure 3. This tool displays all significantly associated signals between the query variant and all available traits, with a yellow highlight line and a red dashed line respectively indicated the general and detailed position of the query variant.
Figure S10. eQTL table browser in ZEAMAP, Related to Figure 3. Using this tool, eQTL signals could be filtered by gene IDs and locations, as well as the distance from transcription start site, the effect size (beta value) and the significance (p value) of the most significant variant within each gene. The search result shows one gene per record, with links to the visualization of each gene. Each record has a sub-table which lists all the cis-eQTL signals significantly associated with this gene.
Figure S11. Genetic marker search functions in ZEAMAP, Related to Figure 3. The genetic markers in ZEAMAP could be searched by their names, features and locations through “Advanced Marker Search” function (A) or by their distances with certain QTL through “QTL Nearby Marker” function (inset in A). The search result lists general information of genetic and physical locations for each record, with physical locations linked to Jbrowse visualization (B). Click on each marker name would lead to the detailed page for this marker including the flanking sequence and the location on maps (C).
Figure S12. Crispr sgRNA function in ZEAMAP, Related to Figure 1. The sgRNA information could be searched by IDs and genome locations of target genes through table browser (A), the resulted records have links to their locations on Jbrowse (B) and the detail page of each Cas9_sgRNA element on Jbrowse shows the information of target and off-target genes (C).

Transparent Methods

Data collection

The pedigree information of elite inbred lines in the maize association mapping panel was collected from (Yang et al., 2011). The B73 reference genome assembly (AGPv4) and annotation files (Version 4.43) were downloaded from Gramene (https://www.maizegdb.org/genome/genome_assembly/Zm-B73-REFERENCE-GRAMENE-4.0), while the Mo17 reference genome (version 1.0) and annotations (version 1.0) were downloaded from MaizeGDB (https://ftp.maizegdb.org/MaizeGDB/FTP/Zm-Mo17-REFERENCE-CAU-1.0/). The SK reference genome (YeUVion 1.0), annotations and RNA-seq data of nine SK tissues were collected from (Yang et al., 2019). The HZS genome assembly, annotations and RNA-seq data were retrieved from GenBank non-redundant protein (nr) database using Basic Local Alignment Search Tool (BLAST) with the options "-p blastp -e 1e-05 -b 5 -v 5 -a 4 -m 7 -F F". The BLAST results against the nr database and the Interpro results were further analyzed by Blast2GO (Conesa et al., 2005) to assign gene ontology (GO) terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed by running BLAST against the KEGG database (version 84.0) with options "-p blastp -e 1e-05 -a 4 -m 8 -F F". The proteins were also searched against PFAM version 32.0 (Finn et al., 2014) using HMmer 3.1b2 (Potter et al., 2018) with default parameters. To identify gene orthologs and clusters of orthologous group (COG) annotations, the proteins were mapped to eggNOG orthology database (version 4.5.1) (Huerta-Cepas et al., 2015) using emapper-1.0.3 (Huerta-Cepas et al., 2017). To add gene-product annotations, the proteins were searched against UniProt database (version 2019_04) (Consortium, 2018) using Diamond (v0.8.22.84) (Buchfink et

Functional annotation

For each genome annotation, the protein sequences of the predicted genes were compared against the InterPro database using InterProScan 5 (Jones et al., 2014) to identify functional protein domains. The proteins were further compared against the GenBank non-redundant protein (nr) database using Basic Local Alignment Search Tool (BLAST) with the options "-p blastp -e 1e-05 -b 5 -v 5 -a 4 -m 7 -F F". The BLAST results against the nr database and the Interpro results were further analyzed by Blast2GO (Conesa et al., 2005) to assign gene ontology (GO) terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed by running BLAST against the KEGG database (version 84.0) with options "-p blastp -e 1e-05 -a 4 -m 8 -F F". The proteins were also searched against PFAM version 32.0 (Finn et al., 2014) using HMmer 3.1b2 (Potter et al., 2018) with default parameters. To identify gene orthologs and clusters of orthologous group (COG) annotations, the proteins were mapped to eggNOG orthology database (version 4.5.1) (Huerta-Cepas et al., 2015) using emapper-1.0.3 (Huerta-Cepas et al., 2017). To add gene-product annotations, the proteins were searched against UniProt database (version 2019_04) (Consortium, 2018) using Diamond (v0.8.22.84) (Buchfink et
al., 2015) with the options “--evaluate 1e-05 --max-target-seqs 1”, the UniProt and EggNog search results were combined to get the gene and product names using Gene2Product v1.32 (https://github.com/nextgenusfs/gene2product). Possible proteolytic enzymes were annotated by searching the proteins against the MEROPS database (version 12.0) (Rawlings et al., 2017) using Diamond with the options “--evaluate 1e-05 --max-target-seqs 1”. The proteins were also searched against the embryophyta single copy ortholog models from BUSCO Datasets (embryophyta_odb9, update date: 2017-02-13) (Simao et al., 2015) using HMMer with default options.

Comparative genomics

To identify synteny blocks, we first compared proteins from one genome to those from another using BLASTP with an E-value cutoff of 1e-10 and a maximum number of alignments of 5. The significant hits were then analyzed by MCScanX (Wang et al., 2012) with parameters “-k 50 -g -1 -s 5 -e 1e-10 -m 25 -w 5” to obtain synteny blocks. The whole genome alignments between two genomes in ZEAMAP were performed using minimap2 (version 2.17-r941) (Li, 2018), with parameters "-c -x asm5 -B5 -O4,16 --no-long-join -r 85 -N 50 -s 65 -z 200 --mask-level 0.9 --min-occ 200 -g 2500 --score-N 2", and the raw alignment results were filtered to get the best alignment for each contig with QUAST-LG (Mikheenko et al., 2018).

Annotating of genetic variations

The SNPs and InDels were annotated using the Ensembl variant effect predictor (VEP) (McLaren et al., 2016) according to B73 gene annotation v4.43. The polymorphic SVs between B73 and SK, as well as their genotypes in the AMP, were retrieved from (Yang et al., 2019), and annotated according to B73 gene annotation v4.43 using SURVIVOR v1.0.6 (Jeffares et al., 2017). Haplotype blocks and tag SNPs were identified using Haploview (Barrett et al., 2004).

Mapping and filtering of genetic loci

To perform genome-wide association studies for the collected phenotypic traits, the SNPs were then further filtered to keep only records with a minor allele frequency (MAF) of at least 5%. A mixed linear model accounting for the population structure (Q) and familial relationship (K) was used to examine the association between the SNPs and each trait using Tassel3 (Bradbury et al., 2007). The P value of each SNP was calculated, and significance was defined with Bonferroni corrected P value cutoff of 1/N, where N is the total number of markers used. To prevent the interactive GWAS viewers and the tabular loci browser from operating too slowly, the volume of GWAS results was reduced by filtering out SNPs which had very low significance values (P value > 1e-4). The pairwise LD r^2 values of the remaining SNPs for each trait within 500 Kb windows were calculated using PopLDdecay (Zhang et al., 2018).

We kept cis-eQTLs alone by retaining only the SNPs within 1 Mb of each gene (Lonsdale et al., 2013). High quality cis-eQTL SNPs were selected by only retaining those
with a P value smaller than the Bonferroni corrected P value cutoff of $1/N$. The pairwise LD r^2 values of the remaining SNPs for each gene were calculated using PopLDdecay (Zhang et al., 2018).

Interactive visualization tools

The visualization tools for GWAS results were developed using LocusZoom.js (https://github.com/statgen/locuszoom), a JavaScript embeddable plugin for interactively visualizing statistical genetic data, and ECharts (https://www.echartsjs.com), an open-sourced JavaScript visualization tool. The gene expression pattern viewer and the eQTL visualizer were modified from GTEx visualizations (https://github.com/broadinstitute/gtex-viz) (Lonsdale et al., 2013). The principal component analyses (PCA) dot plot and the ancestries stacked histogram were also developed using ECharts.

CRISPR/Cas9 single-guide RNA designing

CRISPR/Cas9 sgRNAs for each maize reference genome were designed using CRISPR-Local (Sun et al., 2018) with default options. Results were converted into gff format with in-house perl scripts to format them for JBrowse.

Supplemental References

Barrett, J.C., Fry, B., Maller, J., and Daly, M.J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265.

Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., and Buckler, E.S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633-2635.

Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59-60.

Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.

Consortium, T.U. (2018). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research 47, D506-D515.

Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., et al. (2014). Pfam: the protein families database. Nucleic acids research 42, D222-D230.

Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. (2017). Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Molecular Biology and Evolution 34, 2115-2122.

Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., et al. (2015). eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research 44, D286-D293.
Jeffares, D.C., Jolly, C., Hoti, M., Speed, D., Shaw, L., Rallis, C., Balloux, F., Dessimoiiz, C., Bährler, J., and Sedlazeck, F.J. (2017). Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nature communications 8, 14061.

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-3100.

Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., et al. (2013). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature genetics 45, 43.

Liu, H., Wang, X., Warburton, M.L., Wen, W., Jin, M., Deng, M., Liu, J., Tong, H., Pan, Q., Yang, X., et al. (2015). Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding. Molecular plant 8, 871-884.

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., et al. (2013). The genotype-tissue expression (GTEx) project. Nature genetics 45, 580.

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thorrmann, A., Flicek, P., and Cunningham, F. (2016). The ensembl variant effect predictor. Genome biology 17, 122.

Mikheenko, A., Prijibelski, A.D., Saveliev, V., Antipov, D., and Gurevich, A. (2018). Versatile genome assembly evaluation with QUAST-LG. intelligent systems in molecular biology 34, i142–1150.

Pan, Q., Li, L., Yang, X., Tong, H., Xu, S., Li, Z., Li, W., Muehlbauer, G.J., Li, J., and Yan, J. (2016). Genome–wide recombination dynamics are associated with phenotypic variation in maize. New Phytologist 210, 1083-1094.

Peng, Y., Xiong, D., Zhao, L., Ouyang, W., Wang, S., Sun, J., Zhang, Q., Guan, P., Xie, L., Li, W., et al. (2019). Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nature communications 10, 2632.

Potter, S.C., Luciani, A., Eddy, S.R., Park, Y., Lopez, R., and Finn, R.D. (2018). HMMER web server: 2018 update. Nucleic Acids Research 46, W200-W204.

Rawlings, N.D., Barrett, A.J., Thomas, P.D., Huang, X., Bateman, A., and Finn, R.D. (2017). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research 46, D624-D632.

Rodgers-Melnick, E., Vera, D.L., Bass, H.W., and Buckler, E.S. (2016). Open chromatin reveals the functional maize genome. Proceedings of the National Academy of Sciences 113, E3177-E3184.

Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.

Sun, J., Liu, H., Liu, J., Cheng, S., Peng, Y., Zhang, Q., Yan, J., Liu, H.-J., and Chen, L.-L. (2018). CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes. Bioinformatics 35, 2501–2503.

Walley, J.W., Sartor, R.C., Shen, Z., Schmitz, R.J., Wu, K.J., Urich, M.A., Nery, J.R., Smith,
L.G., Schnable, J.C., and Ecker, J.R. (2016). Integration of omic networks in a developmental atlas of maize. Science 353, 814-818.

Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.-h., Jin, H., Marler, B., Guo, H., et al. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research 40, e49-e49.

Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., Liu, J., Liu, H., Chen, W., Luo, J., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature communications 5, 3438.

Xu, J., Chen, G., Hermanson, P.J., Xu, Q., Sun, C., Chen, W., Kan, Q., Li, M., Crisp, P.A., Yan, J., et al. (2019). Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome biology 20, 243.

Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L., et al. (2019). Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature genetics 51, 1052.

Yang, N., Lu, Y., Yang, X., Huang, J., Zhou, Y., Ali, F., Wen, W., Liu, J., Li, J., and Yan, J. (2014). Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics 10, e1004573.

Yang, N., Xu, X.-W., Wang, R.-R., Peng, W.-L., Cai, L., Song, J.-M., Li, W., Luo, X., Niu, L., Wang, Y., et al. (2017). Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nature communications 8, 1874.

Yang, X., Gao, S., Xu, S., Zhang, Z., Prasanna, B.M., Li, L., Li, J., and Yan, J. (2011). Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding 28, 511-526.

Zhang, C., Dong, S.-S., Xu, J.-Y., He, W.-M., and Yang, T.-L. (2018). PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786-1788.