ABSTRACT In this paper, a 24–40 GHz broadband millimeter-wave (mmWave) down-conversion double-balanced mixer with a dual-band local oscillator (LO) buffer employing RF and IF coupled resonators is presented for 5G new radio (NR) frequency range 2 (FR2) cellular applications. The proposed mixer comprises a transformer-coupled g_m-boosted common-gate (CG) G_{m}-stage, a single-to-differential current-to-current RF capacitor-tuned coupled resonator, active switching stages with dual-band three-stage LO buffers, a current-to-voltage IF coupled resonator with gain equalization, and a wideband IF buffer with a transformer-based balun. The transformer-coupled g_m-boosted CG G_{m}-stage improves the NF and provides broadband input power matching. RF and IF coupled resonators enable an RF operating frequency range of 24–40 GHz and IF 1 dB bandwidth of more than 0.8 GHz, respectively. The implemented mixer was fabricated using a 40 nm CMOS process and characterized primarily in the 5G NR FR2 bands. The active die area was 0.654 mm2, and the mixer drew a bias current of 16 mA from a nominal supply voltage of 1.1 V. The mixer exhibited an RF operating frequency range of 24–40 GHz, noise figure of 12.4 dB, conversion gain of 1.2 dB, IF 1 dB bandwidth of 1.1 GHz, and output-referred third-order intercept point of 6.8 dBm.

INDEX TERMS 5G, broadband, capacitor-tuned, cellular, coupled resonator, frequency range 2 (FR2), down-conversion mixer, dual-band, gain equalization, g_m-boosted, LO buffer, millimeter-wave (mmWave), new radio (NR).

I. INTRODUCTION

Fifth generation (5G) mobile communication technology, characterized by ultra-high speed, ultra-low latency, and hyper connection, makes it possible to realize key technologies of the fourth industrial revolution, such as smart factories, autonomous driving, and virtual/augmented reality. Several noncontiguous millimeter-wave (mmWave) frequency bands of n257, n258, n259, n260, and n261, located in the range of 24.25–43.5 GHz, are being allocated to different countries and regions for 5G new radio (NR) frequency range 2 (FR2) communications. Ultra-wideband mmWave phased array transceivers covering all the above bands are required to support frequency diversity and international roaming.
There are several 5G NR transceiver architecture options for user equipment such as RF, baseband (BB), and intermediate frequency (IF) interfaces [1]–[10]. The IF interface is the most realistic choice and widely employed in mobile platforms owing to the lower loss and ease of matching at the IF signal frequency [1], [3], [4], [6]–[9]. One chip solution, including 5G NR sub-6 GHz frequency range 1 (FR1) and mmWave IF transceiver, can also be used to implement low-cost and highly integrated IF interface option [4]. For a 5G NR mmWave transceiver with an IF ratio interface option to cover all the FR2 bands, a broadband down-conversion mixer is required.

mmWave down-conversion active mixers based on the conventional Gilbert-cell mixer are widely used in 5G NR FR2 applications. The authors of [2] and [3] employed a Gilbert mixer with current bleeding techniques in direct-conversion and sliding-IF receivers. Gilbert mixers with multiple gate transistors (MGTR) [11] or distributed derivative superposition (DS) [12] were introduced to improve linearity with low power. In addition, a 28 GHz bidirectional active mixer based on the Gilbert-cell topology was proposed to achieve both down- and up-conversion [13]. A K-band folded down-conversion double-balanced mixer based on the Gilbert-cell topology was also proposed to enhance the conversion gain and noise figure (NF) [14]. A 57–66 GHz down-conversion mixer employing the current-reused LO-boosting technique was presented to achieve a high conversion gain with a low LO input power [15]. A 20–26 GHz down-conversion mixer with a bleeding path G_m-boosting technique was presented in [16] to improve NF. The authors of [17] proposed a 79–110 GHz 4 × quasi-subharmonic mixer to reduce the design burden of the phase shifter. A 57–66 GHz RF to 12 GHz IF down-conversion mixer employing output-matching, noise-and distortion-cancelling active balun was introduced in [18]. The active balun enhances the linearity performance of the mixer. A 57–66 GHz RF to 8.2–9.5 GHz IF down-conversion mixer with a transformer-based IF matching network was presented in [19]. The HBT transistors were used to improve performances. A new broadband down-conversion mixer topology with high performance is required to cover all the 5G NR FR2 bands.

In this paper, a 24–40 GHz broadband mmWave down-conversion double-balanced mixer is proposed for 5G NR FR2 cellular applications. To obtain broad RF and IF characteristics, the G_m-stage of the mixer employs a transformer-coupled g_m-boosted common-gate (CG) topology with a single-to-differential (S-to-D) current-to-current (I-to-I) capacitor-tuned RF coupled resonator. The IF stage adopts a current-to-voltage (I-to-V) coupled resonator load with gain equalization and a wideband IF buffer stage with a differential-to-single (D-to-S) transformer-based balun. The remainder of this paper is organized as follows. Section II describes the proposed broadband mmWave down-conversion double-balanced mixer architecture. Section III elaborates on the circuit implementation of the mixer with a dual-band LO buffer. The experimental results are discussed in Section IV. The concluding remarks are presented in Section V.

II. PROPOSED BROADBAND MMWAVE DOWN-CONVERSION MIXER ARCHITECTURE

Fig. 1 shows the proposed 24–40 GHz RF to 8 GHz IF down-conversion double-balanced mixer configuration. It comprises a transformer-coupled g_m-boosted CG G_m-stage, an S-to-D I-to-I capacitor-tuned RF coupled resonator, double-balanced active switching stages with a dual-band LO buffer, an IF coupled resonator load with gain equalization and a wideband IF buffer with a D-to-S transformer-based balun. To meet the 5G NR FR2 specification, the RF input operating frequencies of 24.25–43.5 GHz is required in the mixer design. To support an inter-band carrier aggregation, it is very important that a single mixer covers all 5G NR FR2 frequencies. Considering two carrier component intra-band carrier aggregation scenario, the mixer should have 1 dB IF bandwidth of more than 0.8 GHz. The IF output frequency was set to 8 GHz.

The G_m-stage of the mixer employs the proposed wideband S-to-D I-to-I capacitor-tuned RF coupled resonator load to cover the 5G NR FR2 bands. Fig. 2(a) shows a conventional two-port I-to-V transformer-based RF coupled resonator. Unlike LC loads, the I-to-V coupled resonator load has transimpedance Z_{21} with two resonant peaks, tuned at two
The two resonant frequencies can be expressed as:

\[f_L = \frac{1}{2\pi \sqrt{L(1+k)C}} \quad \text{and} \quad f_H = \frac{1}{2\pi \sqrt{L(1-k)C}} \]

(1)

where \(L, C, \) and \(k \) are the inductance, capacitance, and magnetic coupling coefficient, respectively [20]. To simplify the analysis, a symmetric transformer structure is assumed. In other words, \(L_1 = L_2 = L, C_1 = C_2 = C, \) and \(R_1 = R_2 = R. \) \(Z_{21} \) at the resonant frequencies can be expressed as:

\[|Z_{21}|_{f_L} = \frac{L(1+k)}{2RC} \quad \text{and} \quad |Z_{21}|_{f_H} = \frac{L(1-k)}{2RC}. \]

(2)

where \(R \) is the parasitic resistance of the inductor \(L. \) From (1), the separation between \(f_L \) and \(f_H \) can be tuned using \(k. \) Fig. 2(d) shows the simulated \(Z_{21} \) magnitude response versus different \(k. \) As \(k \) increases, the frequency separation increases. To connect the \(G_m\)-stage and I-to-I double-balanced active switching stages of the mixer, a modified I-to-I RF coupled resonator, shown in Fig. 2(b), is proposed. The transfer function of the I-to-I RF coupled resonator can be derived using the input impedance \(R_{SW} \) of the following switching stages, expressed as (3), as shown at the bottom of the page. From (3), we find that \(R_{SW} \) changes the frequency response of the I-to-I RF coupled resonator compared with the conventional I-to-V RF coupled resonator.

\[Q_1 \approx \frac{\sqrt{C(1+k)R_{SW}(R+R_{SW})}}{L} \quad \text{and} \quad Q_2 = \frac{1}{R} \sqrt{\frac{L(1-k)}{C}}. \]

(4)

(5)

Assuming \(R/R_{SW} \ll 1 \) for a simple analysis, \(H_I \) at the resonant frequencies can be approximately expressed as:

\[|H_I|_{f_L} \approx \frac{L(1+k)}{2R_{SW}RC + L} \quad \text{and} \quad |H_I|_{f_H} \approx \frac{L(1-k)}{2R_{SW}RC}. \]

(6)

As known from (4) and (5), the separation between \(f_L \) and \(f_H \) and \(Q_1 \) of the proposed I-to-I RF coupled resonator are lower than those of the conventional I-to-V RF coupled resonator. Consequently, the proposed I-to-I RF coupled resonator has wider frequency response. Fig. 2(e) shows the simulated \(H_I \) magnitude response of the proposed I-to-I RF coupled resonator. \(R_{SW} \) makes the magnitude response wider. If the capacitance \(C \) of the coupled resonator is tuned appropriately,
the proposed I-to-I RF coupled-resonator can provide sufficient current gain to cover the required 5G NR FR2 bands, as shown in Fig. 2(e). Because the conventional capacitor-tuned I-to-V RF coupled resonator cannot support all 5G NR FR2 bands due to the narrowband characteristic, the proposed capacitor-tuned I-to-I RF coupled resonator has a great advantage. Moreover, it performs S-to-D conversion. The required 1 dB IF bandwidth in the mixer output is >0.8 GHz. To meet this specification, a magnetically and electrically I-to-V IF coupled resonator load with low k, shown in Fig. 2(c), is employed after switching stages. It provides broadband and gain flatness characteristics. The capacitance C_C between the primary and secondary windings of the transformer can reduce the difference between the Z_{21} peak values at the two resonant frequencies [20]. Z_{21} of the magnetically and electrically coupled resonator load at the resonant frequencies can be expressed as:

$$|Z_{21}|_{f=f_L} = \frac{L(1+k)}{2R(C + C_C)}$$

and

$$|Z_{21}|_{f=f_H} = \frac{L(1-k)}{2RC}.$$ \hspace{1cm} (7)

Fig. 2(f) shows the simulated Z_{21} of the I-to-V IF coupled resonator with and without C_C. C_C helps perform gain equalization. A parasitic capacitance between the two windings of the transformer was used to enhance the gain equalization of the IF coupled resonator through a thorough electromagentic (EM) simulation with the EMX tool. To drive a 50 Ω load, a wideband IF buffer with a transformer-based D-to-S balun was also used.

III. CIRCUIT IMPLEMENTATION

This section describes the detailed circuit design of the broadband down-conversion double-balanced mixer for 5G NR FR2 applications. Fig. 3 shows the schematic of the proposed mmWave down-conversion mixer with a dual-band LO buffer.

A. TRANSFORMER-COUPLED g_m-BOOSTED COMMON-GATE g_m-STAGE

A transformer-coupled g_m-boosted CG configuration is used to boost the effective transconductance of the mixer G_{m}-stage. Transformer TF1 provides anti-phase operation between the
gate and source terminals. A cascode transistor is not used to improve the noise performance at the cost of reverse isolation [21]. The input impedance and overall transconductance of the transformer-coupled \(g_m \)-boosted CG \(G_m \)-stage are analyzed using the small-signal model introduced in [22], which is shown in Fig. 4. For an intuitive and simple analysis, the effects of \(C_{gs} \) and channel-length modulation of \(M_{N1} \) are considered, while other parasitics and body effect are ignored. Using the Kirchhoff current law and Kirchhoff voltage law, the following equations can be derived.

\[
I_{IN} + g_m V_{g1} = \frac{V_{OUT} - V_{IN}}{r_{o1}} = I_{S1} + \frac{M I_{S1}}{L_{P1}} + \frac{V_{IN}}{sL_{P1}} \quad (8)
\]

\[
I_{S1} = \frac{V_{IN} + V_{g1}}{sL_{S1}} + M I_{S1} \quad (9)
\]

\[
I_{P1} = M I_{S1} + \frac{V_{IN}}{sL_{P1}} \quad (10)
\]

\[
V_{g1} = -\frac{I_{S1}}{sC_{g1}} \quad (11)
\]

\[
V_{OUT} = -Z_L I_{OUT} \quad (12)
\]

\[
I_{OUT} = g_m V_{g1} + \frac{V_{OUT} - V_{IN}}{r_{o1}} \quad (13)
\]

Here, \(V_{g1}, g_m, r_{o1}, \) and \(C_{g1} \) are the gate-to-source voltage, transconductance, output impedance, and gate-to-source capacitance of \(M_{N1} \), respectively. \(Z_L \) is the load impedance. \(L_{P1}, L_{S1}, \) and \(M_1 \) are the self-inductances of the primary and secondary windings, and mutual inductance of transformer TF1, respectively. \(I_{P1} \) and \(I_{S1} \) are the currents flowing into the primary and secondary windings, respectively. From (8)–(13), the input admittance of the \(G_m \)-stage can be given as:

\[
Y_{IN} = \frac{I_{IN}}{V_{IN}} = \frac{1}{sL_{P1}} + \frac{1}{r_{o1}} \left(1 - \frac{Z_L}{r_{o1} + Z_L} \right) + \frac{1}{sC_{g1}(1 + n_1 k_1)} \left(\frac{g_m}{r_{o1}} \left(1 - \frac{Z_L}{r_{o1} + Z_L} \right) + 1 + n_1 k_1 \right) \quad (14)
\]

where \(k_1 \) is a coupling coefficient \((k_1 = M_1/\sqrt{L_{P1} L_{S1}}) \), and \(n_1 \) is the turns ratio \((n_1 = \sqrt{L_{P1} L_{S1}}) \). When it is assumed that \(g_m r_{o1} \gg 1, Z_L(r_{o1} + Z_L) \ll 1, \omega^2 (1 - k_1^2) L_{S1} C_{g1} \ll 1 \), the input admittance of the \(G_m \)-stage can be simplified to

\[
Y_{IN} \approx \frac{1}{sL_{P1}} + (1 + n_1 k_1) g_m + s(1 + n_1 k_1)^2 C_{g1}. \quad (15)
\]

The overall transconductance of the \(G_m \)-stage is

\[
|G_m| = \left| \frac{I_{OUT}}{V_{IN}} \right| = \frac{(1 + n_1 k_1) g_m}{1 + s^2 (1 - k_1^2) L_{S1} C_{g1}} \frac{r_{o1}}{r_{o1} + Z_L} + \frac{1}{r_{o1} + Z_L} \approx (1 + n_1 k_1) g_m. \quad (16)
\]

The transformer-coupled configuration increases the effective transconductance by \((1 + n_1 k_1)\).

B. SWITCHING STAGE WITH DUAL-BAND LO BUFFER

The double-balanced active switching stage, where the transistors of \(M_{N2}, M_{N3}, M_{N4}, \) and \(M_{NS} \) are switched between the saturation and cut-off regions, are driven by a dual-band LO buffer. The required operating frequency range of the LO buffer is 16.25–35.5 GHz because the mixer has 24.25–43.5 GHz RF and 8 GHz IF. Since it is difficult to design a broadband amplifier that covers such a wide frequency range, the LO buffer is designed to be divided into two bands to obtain sufficient voltage gain stably. Fig. 3 shows the proposed dual-band LO buffer. In each band, a three-stage LO buffer is employed, which is composed of a cross-coupled CG amplifier, and two common-source amplifiers. All the amplifiers adopt cascode transistors to enhance the voltage gains. Because adjacent inductors can influence each other, \(L_{D1}, L_{D2}, \) and \(L_{D3} \) were co-designed through a thorough EM simulation. Low-band and high-band LO signals are selected through the MUX and supplied to the switching transistor. The simulated voltage gains of the LO buffers including the routing line and MUX exceed 18 dB for all operating frequencies. When an LO input signal with \(P_{LO} = -10 \) dBm is applied, the LO buffer can stably drive the switching stages to achieve the maximum conversion gain and minimum NF of the mixer.
C. RF AND IF COUPLED RESONATORS

The k of the transformer for the I-to-I RF coupled resonator was set to 0.38 to provide a broadband frequency response. Fig. 5(a) and (b) illustrate the layout and simulated parameters of the designed transformer, respectively. The EM simulated $L_p/L_s/Q_s/Q_{ps}/k$ values at 24 and 40 GHz are 0.21 nH/0.22 nH/17.8/16.7/0.37 and 0.25 nH/0.24 nH/15.1/19.2/0.42, respectively. In addition, by adopting a 4-bit digitally-controlled capacitor array, the resonant peak of the RF coupled resonator can be tuned based on the operating band. The simulated H_1 magnitude responses of the implemented broadband S-to-D I-to-I capacitor-tuned RF coupled resonator with the 4-bit capacitor array based on several codes are depicted in Fig. 5(c). The designed RF coupled resonator covers all 5G NR FR2 operating bands.

Fig. 6(a) and (b) show the layout and simulated parameters of the transformer for the I-to-V IF coupled resonator load, respectively. To obtain a low overlap between the primary and secondary windings is minimized. The EM simulated L_p, L_s, Q_p, Q_s, and k at 8 GHz are 1.23 nH, 1.21 nH, 11.9, 11, and 0.13, respectively. A parasitic capacitance between the two windings of the transformer was used as C_C to enhance the gain equalization of the IF coupled resonator. The optimal transformer was designed through numerous trials and errors through a thorough EM simulation by adjusting the width, layer, and spacing of the metal and overlapping area of the two windings of the transformer. Fig. 6(c) shows the simulated Z_{21} magnitude response of the IF coupled resonator employing gain equalization with the 4-bit capacitor array. When $k = 0.13$, the IF load has the 1 dB bandwidth of more than 0.8 GHz. C_{31} and C_{32} can be tuned using 4-bit digitally controlled signals to compensate for the center frequency variation due to the process, voltage, and temperature variations.

D. WIDEBAND IF BUFFER WITH BALUN

A wideband IF buffer with a transformer-based 1:1 balun is used to drive the single-ended 50 Ω. As shown in Fig. 3, the topology of the IF buffer involves a CS amplifier and cross-stacked source-follower [23]. The gain of this combined topology can be expressed as:

$$A_{VBF} \approx g_{m1} \left(\frac{1}{g_{m3}} \|r_{o1}\|\|r_{o3}\| \frac{R_L}{2} \right) + \left(\frac{1}{g_{m3}} + (r_{o1}\|r_{o3}\| \frac{R_{LP3}}{2}) \right),$$

(17)

where g_{m_i} and r_{o_i} are the transconductance and output impedance of M_i, respectively, and R_L is the load impedance of the buffer, which is close to 50 Ω. When $g_{m1} = g_{m3} = g_{mBF}$, $r_{o1} = r_{o3} = r_{BF}$, $g_{mBF}r_{BF} \gg 1$, the gain is simplified to $2g_{mBF}R_L/(2 + g_{mBF}R_L)$. From (17), we find that the gain of the current-reused IF buffer is almost twice that of the conventional source follower.

E. CONVERSION GAIN

Considering the source resistance R_S and input impedance matching condition of $(1 + n_1 k_1)g_{m1}R_S = 1$, the conversion gain of the proposed down-conversion mixer can be approximated as:

$$A_{VMixer} \approx \frac{1}{\pi} (1 + n_1 k_1)g_{m1}H_1(s)Z_{21IFCR}A_{VBF}n_4k_4,$$

(18)

where $Z_{21IFCR} = L_{P3}(1 + k_3)/2R_{LP3}C_{31}$, $A_{VBF} = 2g_{mBF}R_L/(2 + g_{mBF}R_L)$, and R_{LP3} is the parasitic resistance of L_{P3} in TF3.

F. NOISE ANALYSIS

The noise sources were assumed to be uncorrelated to each other. For simplicity, the body effect, channel-length modulation, and induced gate noise were also ignored. When a voltage source V_S with a source impedance R_S is applied to the source of M_{N1}, the total noise factor of the proposed down-conversion mixer can be expressed as:

$$F \approx 1 + \frac{V_{SW}^2 + V_{IFCR}^2 + V_{IFBF}^2}{4kT R_S A_{V Mixer}^2}$$

$$= 1 + EF_{gm} + EF_{SW} + EF_{IFCR} + EF_{IFBF},$$

(19)

where EF is the excess noise factor used to quantify the noise contribution of each sub-block to the overall noise factor F, k is the Boltzmann’s constant, T is the absolute temperature, A_{VMixer} is the conversion gain from the voltage source V_S
where A is the LO amplitude, and I_B is the dc bias current of the switching stage [25]. From (20)–(23), the noise factor of the mixer sub-block at 28 GHz RF and 8 GHz IF under the condition of input impedance match, $g_m = 35$ mS, $n_1 = 0.63, k_1 = 0.47, n_2 = 1, k_2 = 0.38, n_3 = 1, k_3 = 0.13, n_4 = 0.94, k_4 = 0.71, g_{mBF} = 40$ mS, and $R_L = 50$ Ω.

As expected, the excess noise factor of the switching stages has the most dominant effect in determining the overall NF performance. Fig. 8 shows the simulated NFs of the mixer with the transformer-coupled g_m-boosted CG G_m-stage and basic CG G_m-stage. By employing the transformer-coupled
IV. EXPERIMENTAL RESULTS

The proposed mmWave broadband down-conversion double-balanced mixer with the dual-band LO buffer for 5G NR FR2 applications was implemented in a 40 nm CMOS process.

The chip photograph is demonstrated in Fig. 9. The effective active areas of the mixer and LO buffer without the bond pads are 0.36 and 0.294 mm², respectively. The power consumptions of the mixer and dual-band LO buffer are 17.6 and 10.7 mW with a nominal supply voltage of 1.1 V, respectively. The power consumptions of the g_m-stage, double-balanced switching stages, and IF buffer in the implemented mixer are 5.83, 2.07, and 9.7 mW, respectively. The measurement of
the mixer was performed using an on-wafer probing. The RF input and IF output of the mixer were probed with ground-signal-ground (GSG) RF probes, and the LO signal was provided through a bonding wire on the test PCB board. Supply voltages and SPI control signals were also provided from the PCB board.

The measured and simulated \(S_{11} \) and \(S_{22} \) of the down-conversion mixer are depicted in Fig. 10 and 11, respectively. The measured \(S_{11} \) is less than \(-6.5\) in the entire frequency range of 24–40 GHz, and the measured \(S_{22} \) is less than \(-10\) dB at an IF frequency of 8 GHz. When it is actually used in the receiver, the \(S_{11} \) characteristic is expected to improve because there is no test pad for measuring the mixer input. Fig. 12 shows the measured and simulated conversion gains of the down-conversion mixer. The measured conversion gain in the 24–30 and 37–40 GHz frequency bands are obtained from \(-2.5\) to \(-0.46\) dB and \(-4.1\) to 1.2 dB, respectively. The frequency response of the mixer in the IF frequency range is illustrated in Fig. 13. The measured 1 dB bandwidth of the mixer IF output is more than 1.1 GHz. The proposed IF coupled resonator load with gain equalization improves the gain flatness and bandwidth. As shown in Fig. 14, the measured NF in the 24–30 and 37–40 GHz frequency bands are obtained from 13.8 to 15.3 dB and 12.4 to 13 dB, respectively. The proposed wideband down-conversion mixer topology can serve as an effective candidate in 5G NR FR2 transceivers employed in mobile phones.

V. CONCLUSION

A broadband mmWave down-conversion double-balanced mixer employing RF and IF coupled resonators with a dual-band three-stage LO buffer was implemented for 5G NR FR2 applications through a 40 nm CMOS process. In the proposed mixer architecture, the transformer-coupled \(g_m \)-boosted \(CG \) \(g_m \)-stage improved the noise performance, and the I-to-I capacitor-tuned RF coupled resonator and I-to-V IF coupled resonator with gain equalization provided broadband frequency characteristics such as an RF operating frequency range of 24–40 GHz and a 1 dB IF bandwidth of more than 0.8 GHz. The proposed wideband down-conversion mixer topology can serve as an effective candidate in 5G NR FR2 transceivers employed in mobile phones.

REFERENCES

[1] J. D. Dunworth, A. Homayoun, B.-H. Ku, Y.-C. Ou, K. Chakraborty, G. Liu, T. Segoria, J. Lerdworatasee, J. W. Park, H.-C. Park, H. Hedayati, D. Lu, P. Monat, K. Douglas, and V. Aparin, “A 28 GHz bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment,” in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2018, pp. 70–72.

[2] H. Kim, B. Park, S. Song, T. Moon, S. Kim, J. Kim, J. Chang, and Y. Ho, “A 28-GHz CMOS direct conversion transceiver with packaged 2x4 antenna array for 5G cellular system,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1245–1259, May 2018.
[3] S. Mondal, R. Singh, A. I. Hussein, and J. Paramesh, “A 25–30 GHz fully-connected hybrid beamforming receiver for MIMO communication,” *IEEE J. Solid-State Circuits*, vol. 53, no. 5, pp. 1275–1287, May 2018.

[4] B. Jann, G. Chance, A. G. Roy, A. Balakrishnan, N. Karandikar, T. Brown, X. Li, B. Davis, J. L. Ceballes, N. Tani, K. Hausmann, H. Yoon, Y.-H. Huang, A. Freiman, B. Geren, P. Pawlik, and W. Ballantyne, “A 9G sub-6 GHz zero-IF and mm-wave IF transceiver with MIMO and carrier aggregation,” in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2019, pp. 352–354.

[5] J. Pang et al., “A 28 GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR,” in *IEEE ISSCC Dig. Tech. Papers*, San Francisco, CA, USA, Feb. 2019, pp. 352–354.

[6] M.-Y. Huang and H. Wang, “A 27-to-41 GHz MIMO receiver with N-input-N-output using scalable cascaded autonomous array-based high-order spatial filters for instinctual full-FoV multi-blocker/signal management,” in *IEEE ISSCC Dig. Tech. Papers*, San Francisco, CA, USA, Feb. 2019, pp. 346–348.

[7] S. Mondal and J. Paramesh, “A reconconfigurable 28/37-GHz MMSE-adaptive hybrid-beamforming receiver for carrier aggregation and multi-standard MIMO communication,” *IEEE J. Solid-State Circuits*, vol. 54, no. 5, pp. 1391–1406, May 2019.

[8] S. Mondal, L. R. Carley, and J. Paramesh, “A 28/37 GHz scalable, reconconfigurable multi-layer hybrid/digital MIMO transceiver for TDD/FDD and full-duplex communication,” in *IEEE ISSCC Dig. Tech. Papers*, San Francisco, CA, USA, Feb. 2020, pp. 82–84.

[9] H.-C. Park et al., “A 39 GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications,” in *IEEE ISSCC Dig. Tech. Papers*, San Francisco, CA, USA, Feb. 2020, pp. 76–78.

[10] B. Sadhu, Y. Tousi, J. Hallin, S. Sahi, S. Reynolds, O. Renström, K. Sjögren, O. Haapalahi, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlinger, E. Westesson, J.-E. Thillberg, L. Rexberg, M. Yeck, X. Gu, D. Friedman, and A. V. Garcia, “A 28 GHz 32-element phased-array transceiver IC with concurrent dual-polarized beams and 1.4 degree beam-steering resolution for 5G communication,” in *IEEE ISSCC Dig. Tech. Papers*, San Francisco, CA, Feb. 2017, pp. 128–130.

[11] C.-L. Wu, C. Yu, and K. K. O, “Amplification of nonlinearity in multiple gate transistor millimeter wave mixer for improvement of linearity and noise figure,” *IEEE Microw. Wireless Compon. Lett.*, vol. 25, no. 5, pp. 310–312, May 2015.

[12] H. Lin, Y. Lin, and H. Wang, “A high linearity 24-GHz down-conversion mixer using distributed derivative superposition technique in 0.18-μm CMOS Process,” *IEEE Microw. Wireless Compon. Lett.*, vol. 28, no. 1, pp. 49–51, May 2018.

[13] Y.-T. Chang and K.-Y. Lin, “A 28-GHz bidirectional active Gilbert-cell mixer in 90-nm CMOS,” *IEEE Microw. Wireless Compon. Lett.*, vol. 31, no. 5, pp. 473–476, May 2021.

[14] Y. Peng, J. He, H. Hou, H. Wang, S. Chang, Q. Huang, and Y. Zhu, “A K-band high-gain and low-noise folded CMOS mixer using current-reuse and cross-coupled techniques,” *IEEE Access*, vol. 7, pp. 133218–133226, 2019.

[15] C. W. Byeon, J. J. Lee, I. S. Song, and C. S. Park, “A 60 GHz current-reuse LO-boosting mixer in 90 nm CMOS,” *IEEE Microwave Wireless Compon. Lett.*, vol. 22, no. 3, pp. 135–137, Mar. 2012.

[16] S. Kong, C. Kim, and S. Hong, “A K-band UWB low-noise CMOS mixer with bleeding path Gm-boosting technique,” *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 60, no. 3, pp. 117–121, Mar. 2013.

[17] T. Huang, X. Yi, C. Boon, X. He, G. Feng, W. Lim, and X. Zhu, “A CMOS W-band 4X quasi-subharmonic mixer,” *IEEE Microwave Wireless Compon. Lett.*, vol. 25, no. 6, pp. 385–387, Jun. 2015.

[18] C. Choi, J. H. Son, O. Lee, and I. Nam, “A +12-dBm OIP3 60-GHz RF downconversion mixer with an output-matching, noise- and distortion-canceling active balun for 5G applications,” *IEEE Microwave Wireless Compon. Lett.*, vol. 27, no. 3, pp. 284–286, Jun. 2017.

[19] N. Mazor, B. Sheiman, O. Katz, R. Levinger, E. Bloch, R. Carmon, R. Ben-Yishay, and D. Eldad, “Highly linear 60-GHz SiGe Downconversion/Upconversion mixers,” *IEEE Microwave Wireless Compon. Lett.*, vol. 27, no. 4, pp. 401–403, Apr. 2017.

[20] V. Bhagavatula, T. Zhang, A. Suvana, and J. Rudell, “An ultra-wideband IF millimeter-wave receiver with a 20 GHz channel bandwidth using gain-equalized transformers,” *IEEE J. Solid-State Circuits*, vol. 51, no. 2, pp. 323–331, Feb. 2016.

[21] N. Li, K. Okada, T. Suzuki, T. Hirose, and A. Matsuzawa, “A three-stage 60 GHz CMOS LNA using dual noise-matching technique for 5dB NF,” in *Proc. Asia-Pacific Microw. Conf.*, Dec. 2008, pp. 1–4.
KYUDO LEE (Student Member, IEEE) received the B.S. degree from the Department of Electronics Engineering, Kangwon National University, Chuncheon, South Korea, in 2021, where he is currently pursuing the M.S. degree with the Department of Electronics Engineering.

His research interests include CMOS mmWave/RF/analog integrated circuits and RF system design for wireless communications.

JEONGWOO LEE (Member, IEEE) received the B.S. and M.S. degrees in electronics engineering and the Ph.D. degree in electrical engineering from Seoul National University, Seoul, South Korea, in 1994, 1996, and 2000, respectively.

In 2000, he joined GCT Semiconductor Inc., San Jose, CA, USA, as a Founder Engineer, where he is currently the Senior Director of Engineering. His research interest includes CMOS transceiver circuitry for highly integrated radio applications.

He has been involved with the development of various CMOS RF chip sets for W-CDMA, DMB, WiMAX, and LTE. He is currently leading the development of 5G NR RF products.

JUNGHWAN HAN (Member, IEEE) was born in Daegu, South Korea, in 1977. He received the B.S. degree (Honors) from Inha University, Incheon, South Korea, in 2002, the M.S. degree from the University of Michigan, Ann Arbor, in 2004, and the Ph.D. degree from the University of Texas at Austin, in 2007, all in electrical engineering.

From 2008 to 2010, he was with Qualcomm Inc., Santa Clara, CA, USA, where he designed and developed various CMOS RF front-end circuits for WLAN and GPS applications. From 2010 to 2017, he was a Senior Engineer and a Principle Engineer at Samsung Electronics Company Ltd., Hwasung, South Korea. He has been involved with the development of CMOS transceivers for several cellular applications, including GSM, WCDMA, LTE, and 5G standards. Since 2017, he has been joining the Department of Radio Science and Information Communication Engineering, Chungnam National University, Daejeon, South Korea, where he is currently an Assistant Professor. His research interests include low-power analog and RF integrated circuit and system design for wired and wireless communication systems.

Dr. Han was a recipient of the Best Paper Award from IEEE Journal of Solid-State Circuits, in 2008.

KUDUCK KWON (Senior Member, IEEE) received the B.S. and Ph.D. degrees in electrical engineering and computer science from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, in 2004 and 2009, respectively.

His Ph.D. research concerned digital TV tuners and dedicated short-range communication (DSRC) systems. From 2009 to 2010, he was a Postdoctoral Researcher with KAIST, where he studied a surface acoustic wave (SAW)-less receiver architectures and developed 5.8GHz RF transceivers for DSRC applications. From 2010 to 2014, he was a Senior Engineer with Samsung Electronics Company Ltd., Suwon, South Korea, where he has been involved with studies of the SAW-less software-defined receivers and development of CMOS transceivers for 2G/3G/4G cellular applications and receivers for universal silicon tuners. In 2014, he joined the Department of Electronics Engineering, Kangwon National University, Chuncheon, South Korea, where he is currently an Associate Professor. His research interests include CMOS mmWave/RF/analog integrated circuits and RF system design for wireless communications.

* * *