Obtaining of dependence of sustained angular rotor speed of centrifugal pump with hydrostatic bearings

S Korsakova¹ and A Protopopov¹,²
¹Bauman Moscow State Technical University, 5 Second Baumanskaya Street, Moscow, 105005, Russian Federation
²E-mail: proforg6@yandex.ru

Abstract. Manned and cargo vehicles in space industry often use low-capacity centrifugal pumps with direct-current motors with hydrostatic bearings. Such pumps have plenty of benefits, but their main drawback is instability of characteristics. It is caused by wide spread of rotor frequency which influences other parameters. This article describes mathematical model of rotor start-up developed and solved in order to determine sustained rotation frequency. Dependence between angular rotation speed of rotor shaft and all basic construction parameters of pump was determined by Runge-Kutta numerical method with varied pitch.

1. Introduction
Operational scheme of low-capacity centrifugal pump is shown on figure 1.

Figure 1. Structure of low-capacity centrifugal pump with opposite scheme and hydrostatic bearings: 1 – Impeller; 2 – Hydrostatic bearing; 3 – Pair of footstep bearing; 4 – Inlet connection; 5 – Outlet connection; 6 – Motor rotor; 7 – Motor stator; 8 – Motor body; 9 – Body of one of pumps of electric pump unit; 10 – Directions of working liquid are shown by dash lines; 11 – Downstream side; 12 – Throttle; 13 – Pocket; 14 – Hole system in the shaft, providing working liquid return to the impeller
Operating principle of the pump is as following: working liquid is directed to the input of the impeller, from its output it is directed to diverter. Liquid comes to throttles of hydrostatic bearings through channels in pump's body. It is important to note that problems concerning design of centrifugal pump rotors are well described in [1-6].

Research concerning methods of hydrodynamic modelling are of most interest [7-18]. However, research concerning rotor's dynamics is described scantily.

2. Mathematical model

Force diagram is shown on figure 2.

Figure 2. Forces and moments applied to the shaft: forces Mg – rotor weight; Pr – radial force emerging in impeller; N – normal force of support reaction; Rs – static reaction of hydrostatic bearing; moments Mim – impeller moment; Mdf – dry friction moment; Mvf – viscous friction moment; Mr – rotor moment.

They are known from pump shaft equation [1]

\[
\begin{align*}
M \cdot \frac{d^2 y}{dt^2} &= 2 \cdot Rs(t) + 2 \cdot N(t) - 2 \cdot Pr(t) - M \cdot g - 2 \cdot Pr(t) \\
J \cdot \frac{d\omega}{dt} &= Mr(t) - 2 \cdot Mim(t) - 2 \cdot Mst(t) - 2 \cdot Mvf(t)
\end{align*}
\]

(1)

where

\(M \) – rotor mass;
\(J \) – rotor inertia about its axis;
ω — angular rotational speed of pump shaft;
t — time from the moment of pump start-up;
g — gravity acceleration.

Let's write down members of the system (1). Radial force $Pr(t)$ applied to the impeller [1]:

$$Pr(t) = 0,1 \cdot \rho \cdot D_2^3 \cdot b_2 \cdot \eta \cdot \omega(t)^2$$

(2)

where

$H(t)$ — pump head;
D_2 — diameter of output from the impeller;
b_2 — width of the impeller at the output;
ρ — working liquid density.

Hydrostatic reaction of the bearing [1]:

$$Rc = l \cdot d \cdot \left[\frac{p_n \cdot \left(\frac{\pi \cdot d_c^2}{4} \right)^2}{\left(\frac{\mu_c \cdot \pi \cdot d_c^2}{4} \right)^2 + \left(\mu_m \cdot 2 \cdot f_z(y) \right)^2} - \frac{p_n \cdot \left(\frac{\pi \cdot d_c^2}{4} \right)^2}{\left(\frac{\mu_c \cdot \pi \cdot d_c^2}{4} \right)^2 + \left(\mu_m \cdot 2 \cdot f_i(y) \right)^2} \right].$$

(3)

Dry friction moment [1]:

$$M_{df} = \begin{cases} \frac{2 \cdot Pr + M \cdot g - 2 \cdot Rs \cdot \kappa \cdot d}{4} & \text{for } y = 0 \\ 0 & \text{for } y > 0 \end{cases}$$

(4)

Viscous friction moment [1]:

$$M_{vf} = \left(\beta_1 + \beta_2 \cdot (y - \delta)^6 \right) \cdot \omega,$$

(5)

where

$$\beta_1 = 6,28 \cdot 10^{-5} N \cdot m$$

$$\beta_2 = 7,15 \cdot 10^{10} N \cdot m^{5}$$

Impeller moment [1]:

$$M_{im}(t) = \frac{\omega(t) \cdot \pi \cdot \mu \cdot R_2^4}{a} + \rho \cdot Q \cdot R_2^2 \cdot \omega$$

(6)

Rotor moment [1]:

$$M_r(t) = K - K_1 \cdot \omega(t),$$

(7)

where

K and K_1 — coefficients of moment-mechanical characteristic of the motor.

Viscous friction moment [1]:

$$P_{vf} = 0,4 \cdot V$$

(8)

Let's write down equation system (1) as follows [1]:
\[
\begin{align*}
\frac{dV}{dt} &= \frac{2 \cdot \rho \cdot \omega^2 \cdot R_2^2 \cdot \eta \cdot l \cdot d - 0,2 \cdot \rho \cdot D_2^3 \cdot b_2 \cdot \eta \cdot \omega^2 - M \cdot g}{M} \\
\frac{dy}{dt} &= V \\
\frac{d\omega}{dt} &= \frac{Mr(t) - 2 \cdot Mim(t) - 2 \cdot Mdf(t) - 2 \cdot Mvf(t)}{J}
\end{align*}
\]

The system (9) is solved in Mathcad, using Runge – Kutta method of 4th order. The following formula is obtained:

\[
\omega_{\text{max}} = A \cdot (-462,56 \cdot \ln K_1 + 1211.4) \cdot (119.05 \cdot K + 174.95) \cdot (-10.498 \cdot a + 569.09) \times
\]

\[
\times (-13.434 \cdot D1 + 587.15) \cdot (-2.7616 \cdot D2^2 - 1.1665 \cdot D2 + 568.78) \times
\]

\[
\times (-0.0335 \rho^3 + 0.4509 \rho^2 - 15.304 \rho + 589.69),
\]

where

A – scale coefficient describing influence of other construction parameters.

Thus, dependence between sustained angular rotor speed and construction parameters of the pump is obtained. It is important to note that construction parameters are given in non-dimensional form and brought to the following values:

- \(K_1 = 0.0015 \) N·m·sec
- \(K = 0.9 \) N·m
- \(a = 0.001 \) m
- \(D_2 = 0.05 \) m
- \(D_1 = D_2/5 \) m
- \(\rho = 1000 \) kg/m³

3. Conclusion

Obtained model allows to determine sustained angular rotor speed of centrifugal pump with hydrostatic bearings. Such model can be useful in different industry segments, in particular, in space systems.

Published under licence in Materials Science and Engineering by IOP Publishing Ltd.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

[1] Borovin G.K. et al. 2016 Dinamika rotorov maloraskhodnykh tsentrobezhnykh nasosov s gidrostaticheskimi podshipnikami i privodom ot elektrodvigateley pstoyannogo toka Preprinty IPM imeni M V Keldysha 142 p 24
[2] Cherkas’kii V M 1984 Nasosy, ventilatory, kompressory Moscow Energoatomizdat Publ 416 p
[3] Lomakin A A 1966 Tsentrobezhnye i osevyoe nasosy Moscow Mashinostroyeniye Publ 354 p
[4] Lomakin V O, Artemov A V and Petrov A I 2012 Opredeleiniye vliyaniya osnovnykh geometricheskikh parametrov otvoda nasosa HM 10000-210 na ego kharakteristiki Nauka i obrazovaniye: electronnoye nauchno-tekhicheskoye izdaniye(8) p 5
[5] Lomakin V O, Petrov A I and Shcherbachyov P S 2012 Razrabotka bokovogo poluspiral'nogo podvoda s uvelichennym momentum skorosti na vkhode v rabochee koleso Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye (S) pp 3–5

[6] Petrov A I, Martynov N D, Pokrovskiy P A, Pashchenko V I, Ustyuzhanin P Yu, Korolyov P V and Artemov A V 2010 Opyt razrabotki stenda dlya ispytaniy krupnykh tsentrobezhnykh nasosov Nauka i obrazovaniye: electronnuye nauchno-tekhicheskoye izdaniye (11) p 2

[7] Lomakin V O, Petrov A I and Kuleshova M S 2014 Issledovaniye dvukhfaznogo techeniya v ose tsentrobezhnom kolesse metodami gidrodinamicheskogo modelirovaniya Nauka i obrazovaniye: electronnuye nauchno-tekhicheskoye izdaniye (9) pp 45–64

[8] Lomakin V O and Petrov A I 2012 Verifikatsiya resul'tatov rascheta v pakete gidrodinamicheskogo modelirovaniya STAR-CCM+ protochnoy chaste tsentrobezhnogo nasosa AX 50-32-200 Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye (S) p 6

[9] Gusakov A M, Lomakin V O, Banin E P and Kuleshova M S 2017 Minimization of Hemolysis and Improvement of the Hydrodynamic Efficiency of a Circulatory Support Pump by Optimizing the PumpFlowpathBiomedical Engineering 4 pp 229–233

[10] Lomakin V O, Chaburko P S and Kuleshova M S 2017 Multi-criteria Optimization of the Flow of a Centrifugal Pump on Energy and Vibroacoustic Characteristics Procedia Engineering 176 pp 476–482

[11] Gouskov A M, Lomakin V O, Banin E P and Kuleshova M S 2016 Assessment of Hemolysis in a Ventricular Assist Axial Flow Blood Pump Biomedical Engineering 4 pp 12–15

[12] Lomakin V O, Kuleshova M S and Bozh'eva S M 2016 Numerical Modeling of Liquid Flow in a Pump StationPower Technology and Engineering 5 pp 324–327

[13] Lomakin V O 2015 Proceedings of 2015 International Conference on Fluid Power and Mechatronics

[14] Lomakin V O, Kuleshova M S and Krameva E A 2015 Fluid Flow in the Throttle Channel in the Presence of Cavitation Procedia Engineering 106 pp 27–35

[15] Pugachev P V, Svoboda D G and Zharkovsky A A 2016 Calculation and design of blade hydraulic machines. Calculation of viscous flow in blade hydraulic machines using the ANSYS CFX package St. Petersburg Publishing house of Polytechnic University 120 p

[16] Petrov A I 2016 Technique of continuous obtaining of characteristics of a vane pump for variable temperature and viscosity of a working fluid during tests in a thermal pressure chamber Engineering Bulletin Electronic Journal (10) Available at: http://technomag.edu.ru/doc/850931.html

[17] Petrov A I and Isaev N Yu 2017 Gidrodinamicheskoye modelirovaniye raboty tsentrobezhnogo nasosa v zone otritsatel'nykh podach Gidravlika (3) pp 91–101

[18] Petrov A I and Isaev N Yu 2017 Issledovaniye raboty lopastnogo nasosa v zone otritsatel'nykh podach metodami gidrodinamicheskogo modelirovaniya Nauchnyye obozreniya (13) pp 75–80