Effect of anlotinib as a third- or further-line therapy in advanced non-small cell lung cancer patients with different histologic types: Subgroup analysis in the ALTER0303 trial

Ying Cheng1 | Baohui Han2 | Kai Li3 | Qiming Wang4 | Li Zhang5 | Jianhua Shi6 | Zhehai Wang7 | Jianxing He8 | Yuankai Shi9 | Weiqiang Chen10 | Xiwen Wang11 | Yi Luo12 | Kejun Nan13 | Faguang Jin14 | Baolan Li15 | Jing Zhu16

1Jilin Cancer Hospital, Changchun, China
2Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
3Tianjin Medical University Cancer Hospital, Tianjin, China
4Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
5Peking Union Medical College Hospital, Beijing, China
6Lin Yi Cancer Hospital, Linyi, China
7Shandong Cancer Hospital, Jinan, China
8The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
9Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
10Lanzhou Military General Hospital, Lanzhou, China
11Qilu Hospital of Shandong University, Jinan, China
12Hunan Cancer Hospital, Changsha, China
13The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
14Tang Du Hospital, Xi’an, China
15Beijing Chest Hospital, Capital Medical University, Beijing, China
16Jilin Cancer Hospital, Jilin, China

Abstract

Background: Anlotinib showed significant survival benefits in advanced non-small cell lung cancer (NSCLC) patients as a third- or further-line treatment in the ALTER0303 trial. We aimed to evaluate the efficacy of anlotinib in patients with different histologies.

Methods: The ALTER0303 trial was a randomized, open-label, phase 3 study of anlotinib in NSCLC patients previously treated with at least two lines of chemotherapy or a tyrosine kinase inhibitor (TKI) in 31 centers in China. Patients were randomly assigned at a 2:1 ratio to receive anlotinib (12 mg QD from days 1 to 14 of a 21-day cycle) or placebo until progression or intolerable toxicity. The primary endpoint was overall survival (OS). We assessed the efficacy of anlotinib in histological subgroups in the full analysis set.
INTRODUCTION

During recent years, histological types and gene mutation types have become the basis of treatment for non-small cell lung cancer (NSCLC). Differentiation between squamous cell carcinoma (SCC) and nonsquamous tissues is critical for determining treatment strategies for patients with NSCLC. For example, pemetrexed, which was approved in 2004 for advanced NSCLC independent of the histological type and was subsequently revised for second-line indications, is now an option only for adenocarcinoma (ACC) patients. The development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) has progressed significantly, and many novel EGFR TKIs have been developed. Guidelines suggest that patients without sensitizing EGFR mutations not be treated with EGFR TKIs in any line of therapy. Most patients with sensitizing EGFR mutations are nonsmokers or former light smokers with ACC. Therefore, EGFR TKIs perform well in ACC patients, but few provide clinical benefits for SCC patients. Immunotherapy has made a breakthrough. Nivolumab and pembrolizumab have shown survival benefits in both ACC and SCC patients as second-line or subsequent therapies, but they are difficult to apply widely in China because of economic reasons.

Angiogenesis is very important for several aspects of tumor development, including tumor growth, invasion, and metastasis. Therefore, antiangiogenesis therapy plays an important role in oncotherapy. However, bevacizumab was approved only for nonsquamous NSCLC. Nintedanib prolonged overall survival (OS) only in patients with ACC. Sorafenib improved only the progression-free survival (PFS) of NSCLC patients, while sunitinib and pazopanib showed no clear efficacy. Anlotinib is a multitargeted TKI that inhibits VEGFR, PDGFR, FGFR, c-Kit, and other kinases. The ALTER0303 trial, which was a randomized, open-label, phase 3 trial (NCT02388919), reported the efficacy of anlotinib for the third- and further-line treatment of advanced NSCLC. Anlotinib significantly prolonged OS (9.6 months vs 6.3 months) and PFS (5.4 months vs 1.4 months). These results suggest that anlotinib is a promising treatment for advanced NSCLC, and it has been approved by the China Food and Drug Administration (CFDA) for this population. However, its efficacy in different histological subtypes of NSCLC is not yet clear.

Here, we report a subgroup analysis that was performed to assess the efficacy of anlotinib in subgroups of patients with different histological subtypes and who received different treatments and treatment durations in the ALTER-0303 trial.

METHODS

2.1 Study design and participants

The ALTER0303 trial was a multicenter, double-blind, randomized, phase III trial that enrolled patients from 31 centers in China. The design and results of the ALTER0303 trial were published previously. Briefly, eligibility criteria were as follows: patients aged 18-75 years with metastatic or recurrent NSCLC confirmed by histology or cytology; patients with driver mutations (EGFR mutation or ALK rearrangement) needed to progress from at least one line of chemotherapy and one line of TKI therapy, while patients without driver mutations needed to progress after at least 2 lines of chemotherapy. Key exclusion criteria included patients with centrally located SCC with cavitary features and patients...
with brain metastases that were uncontrolled and/or controlled for <2 months. The predefined stratification factors were as follows: histopathological classification (ACC vs SCC vs others), number of metastases (≤3 vs >3), and driver gene (EGFR or ALK) mutation status (positive vs negative).

2.2 | Treatments

Oral anlotinib (12 mg/day) or matched placebo was administered. One cycle was defined as 2 weeks on treatment followed by 1 week off treatment. Treatment was continued until disease progression or intolerance to adverse reactions. Dose modifications (10 mg/day or 8 mg/day) of anlotinib were allowed according to the degree of drug-related toxicity (according to NCI CTC AE 4.0) and the potential benefit to the patient. Briefly, if the patient with 12 mg/day presented ≥grade 3 adverse events (AE), the dose was reduced to 10 mg/day or 8 mg/day. If the dose of 8 mg/day was not tolerated, treatment was terminated. According to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, tumor assessment was performed within 2 weeks before treatment with computed tomography. After treatment initiation, tumors were evaluated once every cycle during the first two cycles and then once every two cycles, and patients were followed up every eight weeks to assess clinical outcomes, including toxicity, efficacy, and survival, until patients died or until the day of data cut-off was reached (January 6th, 2017).

2.3 | Outcomes

The primary endpoint was OS. The secondary endpoints included PFS, the objective response rate (ORR), the disease control rate (DCR), and quality of life (QoL). Tumor response and progression were assessed according to the RECIST version 1.1. The safety of the treatment was assessed by AEs, and the severity of AEs was graded according to the NCI Common Terminology Criteria for Adverse Events version 4.02.

2.4 | Statistical analysis

In this subgroup analysis, patients were divided into two subgroups according to histological type: SCC and ACC. In these subgroups, we analyzed the efficacy of anlotinib in patients treated with different front-line therapies and different treatment durations. Effect outcomes were analyzed based on the full analysis set, which was defined as all patients treated with the study drug at least once in accordance with the intend-to-treat principle. Safety outcomes were analyzed in the safety set, which included all randomized patients who received at least one dose of the study medication and had records of safety. Demographic data, outcome data, and other clinical parameters are presented as the proportions for categorical variables and as the mean ± SD for continuous variables. The ORR and DCR were compared using the χ² test or Fisher's exact test, as appropriate. Continuous variables were tested using an independent samples t test. The Kaplan-Meier method was used to estimate the survival curves for OS and PFS. Differences in survival were assessed using the log-rank test. The proportional hazards (Cox) model was used to estimate hazard ratios (HRs). Two-sided P values <.05 were considered statistically significant. All analyses were performed using SAS software version 9.4.

3 | RESULTS

3.1 | Patients and treatment

In total, 437 NSCLC patients were enrolled. Among them, 336 patients had the histological subtype of ACC, 86 patients had the histological subtype of SCC, and 15 patients had another histological subtype. Patient characteristics are summarized in Table 1. In total, 38.09% of ACC patients and 9.30% of SCC patients had previously received targeted therapy. In ACC patients, the most common chemotherapy agents were pemetrexed, docetaxel, and gemcitabine, and the most common targeted agents were gefitinib, erlotinib, and icotinib. After progression, 27 and 13 ACC patients in the anlotinib and placebo groups, respectively, received targeted agents, and 26 and 12 ACC patients, respectively, received chemotherapy agents. In SCC patients, the most common chemotherapy agents were docetaxel, gemcitabine, and paclitaxel. A few SCC patients received gefitinib (n = 7), erlotinib (n = 3), icotinib (n = 3), or crizotinib (n = 4). After progression, 3 and 3 SCC patients in the anlotinib and placebo groups, respectively, received targeted agents, and 6 and 2 SCC patients, respectively, received chemotherapy agents.

3.2 | Efficacy of anlotinib for ACC and SCC

For patients with the ACC subtype, the median duration of follow-up was 7.6 months. In total, 142 of 228 patients in the anlotinib group and 77 of 108 patients in the placebo group died, and the median treatment cycle was 6 in the anlotinib group and 2 in the placebo group. The median OS time was 9.6 months in the anlotinib group (n = 228) and 6.9 months in the placebo group (n = 108) (P = .0051), and the median PFS time was 5.5 months.
and 1.4 months, respectively ($P < .0001$) (Figure 1A,B).

For patients with the SCC subtype, the median duration of follow-up was 6.9 months. Thirty-six of 53 patients in the anlotinib group and 24 of 33 patients in the placebo group died, and the median treatment cycle was 7 in the anlotinib group and 2 in the placebo group. The median OS time was 10.7 months in the anlotinib group ($n = 53$) and 6.5 months in the placebo group ($n = 33$) ($P = .2570$) (Figure 1C), and the median PFS time was 4.8 months and 2.7 months, respectively ($P = .2570$, Figure 1D). The DCR (82.89% vs 33.33%, $P < .0001$) and ORR (9.65% vs 0.93%, $P = .002$) significantly improved with anlotinib treatment in ACC patients. However, there were no significant differences in the DCR (71.70% vs 51.51%, $P = .0580$) or ORR (7.55% vs 0%, $P = .2758$) between SCC patients in the anlotinib and placebo groups (Table S1). The subsequent treatment of ACC and SCC patients are shown in Table S2.

3.3 | Subgroup analysis in ACC and SCC

In ACC patients, anlotinib significantly prolonged PFS in most subgroups (Figure 2A). OS was significantly prolonged with anlotinib in patients with an EGFR mutation, an Eastern Cooperative Oncology Group performance status (ECOG PS) score of 1, and >3 metastases and in patients who received two chemotherapy regimens or targeted regimens (Figure 2B). In SCC patients, PFS was significantly prolonged with anlotinib in subgroups with large sample sizes, and OS was significantly improved in patients with ≤ 3 metastases (Figure 2C,D).

3.4 | Safety of anlotinib in ACC and SCC

In this study, we also evaluated the safety of anlotinib for the treatment of patients in the ACC and SCC subgroups. AEs (grades 1-5) observed in these groups are summarized in Table 2. In the anlotinib group, 20 ACC patients had dose reductions, while 35 ACC patients discontinued treatment because of AEs. In the placebo group, 8 ACC patients discontinued treatment because of AEs. The AEs of the SCC subgroup were similar to those of the ACC subgroup, and the most common AEs were hypertension (65.79%), an elevated TSH level (45.61%), fatigue (45.61%) and a HFSR (44.74%), and the most common grade 3 or worse AEs were hypertension (11.84%), an HFSR (3.51%), hyponatremia (3.07%), and lymphocyte reduction (3.07%). In the anlotinib group, four SCC patients had dose reductions, and eight SCC patients discontinued treatment because of AEs. In placebo group, four SCC patients discontinued treatment because of AEs.
hyponatremia (11.32%), hemoptysis (9.43%), and prolongation of the QT interval (5.66%).

4 | DISCUSSION

In this subgroup analysis, OS was significantly improved in ACC patients treated with anlotinib compared to ACC patients treated with placebo, but these findings were not observed in SCC patients. In the ACC subgroup, anlotinib significantly prolonged OS in patients with an EGFR mutation, an ECOG PS of 1, and >3 metastases and in patients who received two chemotherapy regimens and targeted regimens. OS was not improved in SCC patients treated with anlotinib, while PFS was significantly prolonged. The AEs observed in the SCC and ACC subgroups were similar.

In recent years, great progress has been made in the treatment of NSCLC, but the clinical outcome of patients with SCC is not as ideal as those with ACC. The DELTA trial assessed the effect of erlotinib in patients previously treated with one or two chemotherapies. There was no significant difference in outcomes between ACC patients treated with erlotinib and docetaxel. In patients with SCC, docetaxel is associated with prolonged PFS (HR: 1.60; 95% CI: 1.05-2.43). The LUX-Lung 8 trial compared the efficacy of afatinib and erlotinib in SCC patients who had progressed from previous platinum-based chemotherapy. Afatinib significantly improved PFS (2.6 months vs 1.9 months, HR: 0.81, 95% CI: 0.69-0.96, P = .010) and OS (7.9 months vs 6.8 months, HR: 0.81, 95% CI: 0.69-0.95, P = .008) compared with erlotinib. However, erlotinib did not show superiority to docetaxel in SCC, and there was no head-to-head comparison between afatinib and docetaxel. Antiangiogenic therapies have been used in NSCLC treatment and showed benefit for non-SCC patients. Bevacizumab, the first antiangiogenic agent against VEGF, shows the best treatment effect in addition to carboplatin-paclitaxel chemotherapy, which improves OS (12.3 months vs 10.3 months, HR: 0.79; 95% CI: 0.67-0.92). However, the benefits are modest and dependent on nonsquamous histology. These advances are
observed mainly in non-SCC patients, while there are few effective treatment options for SCC patients, except for necitumumab, which produces modest survival improvements in SCC patients. In this subgroup analysis, anlotinib significantly improved PFS not only in ACC patients (5.53 vs 1.37 months; HR: 0.79; 95% CI: 4.40-5.63) but also in SCC patients (5.63 vs 2.7 months, HR: 0.79; 95% CI: 3.83-7.00). OS was improved significantly in ACC patients (9.63 vs 6.93 months; HR: 0.79; 95% CI: 8.17-10.53), while it was prolonged without a statistically significant difference in SCC patients (10.7 vs 6.00 months; HR: 0.79; 95% CI: 6.30-15.13).

A previous meta-analysis showed that the response to the first-line regimen significantly impacted the efficacy of second-line therapy. In addition to their ability to directly kill tumor cells, cytotoxic agents may also affect the immune response. Different resistance mechanisms will develop in patients with an EGFR mutation that progress from EGFR TKIs; for example, after treatment with gefitinib and erlotinib, the T970M mutation in exons 20, 30,31 amplifications in HER2 or mutations in MET, BRAF or phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), SCLC transformation will occur. Therefore, the effects of front-line treatment for patients should also be considered in the subsequent treatment. This subgroup analysis showed that anlotinib prolonged PFS and OS in ACC patients who had received common chemotherapy regimens. In addition, patients previously treated with targeted agents also received an OS benefit.

In ALTER 0303 trial, many patients received subsequent treatment, especially in the placebo group. The proportions of ACC patients who received subsequent chemotherapy and targeting-drug therapy in the placebo group were more than that in the anlotinib group suggesting that the recorded OS benefit is attributable to anlotinib but not to either subsequent target or other therapies.

Anlotinib exhibited good tolerance, the AE profile observed in ACC patients and SCC patients were similar.

FIGURE 2 Subgroup analysis of overall survival (A) and progression-free survival (B) in adenocarcinoma patients; subgroup analysis of overall survival (C) and progression-free survival (D) in squamous cell carcinoma patients.
Adverse event	All grades ACC	≥Grade 3 ACC	All grades SCC	≥Grade 3 SCC
Hypertension	150 (65.79%)	27 (11.84%)	13 (12.04%)	0 (0%)
Fatigue	104 (45.61%)	0 (0%)	29 (26.85%)	0 (0%)
TSH elevation	104 (45.61%)	1 (0.44%)	4 (3.7%)	0 (0%)
HFSR	102 (44.74%)	8 (3.51%)	10 (9.26%)	0 (0%)
Triglyceride elevation	91 (39.91%)	6 (2.63%)	21 (19.44%)	0 (0%)
Anorexia	88 (38.6%)	2 (0.88%)	24 (22.22%)	1 (0.93%)
TC elevation	83 (36.4%)	0 (0%)	13 (12.04%)	0 (0%)
Sinus arrhythmia	75 (32.89%)	1 (0.44%)	26 (24.07%)	0 (0%)
Diarrhea	67 (29.39%)	3 (1.32%)	14 (12.96%)	0 (0%)
Pharyngalgia	60 (26.32%)	0 (0%)	9 (8.33%)	0 (0%)
Proteinuria	58 (25.44%)	5 (2.19%)	12 (11.11%)	1 (0.93%)
Prolongation of the QT interval	57 (25%)	4 (1.75%)	15 (13.89%)	1 (0.93%)
GT elevation	55 (24.12%)	6 (2.63%)	16 (14.81%)	4 (3.7%)
Hyperglycemia	54 (23.68%)	0 (0%)	23 (21.3%)	1 (0.93%)
Oral mucositis	52 (22.81%)	2 (0.88%)	3 (2.78%)	0 (0%)
Hyperbilirubinemia	51 (22.37%)	2 (0.88%)	14 (12.96%)	1 (0.93%)
Hypothyroidism	47 (20.61%)	1 (0.44%)	4 (3.7%)	0 (0%)
Hoarseness	46 (20.18%)	0 (0%)	3 (2.78%)	1 (0.93%)
LDL elevation	40 (17.54%)	2 (0.88%)	7 (6.48%)	0 (0%)
Vomiting	39 (17.11%)	1 (0.44%)	10 (9.26%)	0 (0%)
Cough	37 (16.23%)	1 (0.44%)	14 (12.96%)	0 (0%)
Urine occult blood	35 (15.35%)	0 (0%)	8 (7.41%)	1 (0.93%)
Nausea	34 (14.91%)	0 (0%)	13 (12.04%)	0 (0%)
LYM reduction	34 (14.91%)	7 (3.07%)	12 (11.11%)	5 (4.63%)
ALT elevation	31 (13.6%)	0 (0%)	8 (7.41%)	0 (0%)
Hyponatremia	30 (13.16%)	7 (3.07%)	8 (7.41%)	3 (2.78%)
Abdominal pain	30 (13.16%)	1 (0.44%)	7 (6.48%)	0 (0%)
Hypoalbuminemia	28 (12.28%)	0 (0%)	12 (11.11%)	1 (0.93%)
AST elevation	28 (12.28%)	0 (0%)	8 (7.41%)	0 (0%)
ALP elevation	27 (11.84%)	4 (1.75%)	13 (12.04%)	2 (1.85%)
Dyspnea	27 (11.84%)	0 (0%)	8 (7.41%)	2 (1.85%)
Weight loss	27 (11.84%)	0 (0%)	2 (1.85%)	0 (0%)
Rash	25 (10.96%)	0 (0%)	6 (5.56%)	1 (0.93%)
Constipation	24 (10.53%)	0 (0%)	12 (11.11%)	0 (0%)
Hemoptyisis	24 (10.53%)	3 (1.32%)	5 (4.63%)	1 (0.93%)
Dizziness	23 (10.09%)	0 (0%)	7 (6.48%)	0 (0%)
SCC	Anlotinib, n = 53	Placebo, n = 33		
Hypertension	30 (63.83%)	9 (19.15%)	5 (17.24%)	0 (0%)
Fatigue	23 (48.94%)	1 (2.13%)	2 (6.9%)	0 (0%)
TSH elevation	20 (42.55%)	0 (0%)	2 (6.9%)	0 (0%)
Anorexia	18 (38.3%)	0 (0%)	6 (20.69%)	0 (0%)
HFSR	16 (34.04%)	1 (2.13%)	3 (10.34%)	0 (0%)
(Continues)
More patients in the anlotinib group than in the placebo group discontinued treatment because of AEs, this could be associated with the longer duration of treatment in anlotinib group. Among the AEs induced by antiangiogenic drugs, major hemoptysis was strongly associated with patients with SCC histology.33 In the ALTER0303 trial, hemoptysis occurred in 27.66% of SCC patients treated with anlotinib, and the incidence of grade 3 or worse hemoptysis was 10.64%.

In conclusion, anlotinib improved survival in ACC patients treated with at least two lines of chemotherapy or a TKI. SCC patients who received anlotinib experienced a significant improvement in PFS and a tendency to experience prolonged OS. Anlotinib should be considered as an appropriate option for difficult-to-treat NSCLC patients as a subsequent treatment regardless of the histological type.

ACKNOWLEDGMENTS
The authors thank the participants, the coordinators, and administrators for their support during the study.

CONFLICT OF INTERESTS
The authors have no conflict of interest to declare.

AUTHOR CONTRIBUTIONS
YC was involved in the literature search, figures, study design, data collection, data analysis, and writing. BH, KL,
REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108.

2. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naïve patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543-3551.

3. Hanna N, Johnson D, Temin S, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol. 2017;35:3484-3515.

4. Blakely CM, Watkins TBK, Wu W, et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 2017;49:1693-1704.

5. Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22:1589-1597.

6. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Small Cell Lung Cancer. vol 3.2019. January 18, 2019.

7. Mok TS, Wu Y-L, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947-957.

8. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123-135.

9. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627-1639.

10. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540-1550.

11. Zouaz-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol. 2018;8:248.

12. Assoum S, Brosseau S, Steinmetz C, Gounant V, Zalcman G. Bevacizumab in advanced lung cancer: state of the art. Future Oncol. 2017;13:2515-2535.

13. Reck M, Kaiser R, Mellemgaard A, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15:143-155.

14. Wakelee HA, Lee J-W, Hanna NH, Traynor AM, Carbone DP, Schiller JH. A double-blind randomized discontinuation phase-II study of sorafenib (BAY 43–9006) in previously treated non-small-cell lung cancer patients: eastern cooperative oncology group study E2501. J Thorac Oncol. 2012;7:1574-1582.

15. Scagliotti GV, Krzakowski M, Szczesna A, et al. Sunitinib plus erlotinib versus placebo plus erlotinib in patients with previously treated advanced non-small-cell lung cancer: a phase III trial. J Clin Oncol. 2012;30:2070-2078.

16. Groen H, Socinski MA, Grossi F, et al. A randomized, double-blind, phase II study of erlotinib with or without sunitinib for the second-line treatment of metastatic non-small-cell lung cancer (NSCLC). Ann Oncol. 2013;24:2382-2389.

17. O’Brien MER, Gaafar R, Hasan B, et al. Maintenance pazopanib versus placebo in non-small cell lung cancer patients non-progressive after first line chemotherapy: a double blind randomised phase III study of the lung cancer group, EORTC 08092 (EudraCT: 2010-018566-23, NCT01208064). Eur J Cancer. 2015;51:1511-1528.

18. Lin B, Song X, Yang D, Bai D, Yao Y, Lu NA. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene. 2018;654:77-86.

19. Han B, Li K, Wang Q, et al. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: the ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 2018;4:1569-1575.

20. Kawaguchi T, Ando M, Asami K, et al. Randomized phase III trial of erlotinib versus docetaxel as second- or third-line therapy in patients with advanced non-small-cell lung cancer: docetaxel and erlotinib lung cancer trial (DELTA). J Clin Oncol. 2014;32:1902-1908.

21. Soria J-C, Felip E, Cobo M, et al. Afinatinib versus erlotinib as second- line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol. 2015;16:897-907.

22. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542-2550.

23. Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21:1804-1809.

24. Niho S, Kunitoh H, Nokihara H, et al. Randomized phase II study of pemetrexed versus docetaxel in patients with non-small-cell lung cancer: the ALTER 0303 phase 3 randomized controlled trial. Radiat Oncol. 2013;8:219.

25. Kawaguchi T, Ando M, Asami K, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small cell lung cancer: a double blind randomised phase 3 trial. J Clin Oncol. 2013;31:2542-2550.

26. Thatcher N, Hirsch FR, Luft AV, et al. Necitumumab plus gemcitabine and carboplatin for patients with advanced squamous non-small-cell lung cancer. J Thorac Oncol. 2012;7:632-637.

27. Zhou C, Wu Y-L, Chen G, et al. BEYOND: a randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33:2197-2204.

28. Thatcher N, Hirsch FR, Luft AV, et al. Necitumumab plus gemcitabine and carboplatin for patients with advanced squamous non-small-cell lung cancer in the phase III trial. J Clin Oncol. 2015;16:763-774.
27. Di Maio M, Lama N, Morabito A, et al. Clinical assessment of patients with advanced non-small-cell lung cancer eligible for second-line chemotherapy: a prognostic score from individual data of nine randomised trials. *Eur J Cancer*. 2010;46:735-743.

28. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. *Nat Rev Immunol*. 2017;17:97-111.

29. Kaderbhai C-G, Richard C, Fumet JD, et al. Response to first line chemotherapy regimen is associated with efficacy of nivolumab in non-small-cell lung cancer. *Oncoimmunology*. 2017;6:e1339856.

30. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. *N Engl J Med*. 2005;352:786-792.

31. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. *Sci Transl Med*. 2011;3:75ra26.

32. Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. *Nat Rev Clin Oncol*. 2014;11:473-481.

33. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. *J Clin Oncol*. 2004;22:2184-2291.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Cheng Y, Han B, Li K, et al. Effect of anlotinib as a third- or further-line therapy in advanced non-small cell lung cancer patients with different histologic types: Subgroup analysis in the ALTER0303 trial. *Cancer Med*. 2020;9:2621–2630. https://doi.org/10.1002/cam4.2913