Extraction of Curcumin Pigment from Indonesian Local Turmeric with Its Infrared Spectra and Thermal Decomposition Properties

A B D Nandiyanto1*, A S Wiryani1, A Rusli1, A Purnamasari1, A G Abdullah2, Ana3, I Widiyat3 and R Hurriyati1

1Departemen Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi no 229, Bandung 40154, Jawa Barat, Indonesia
2Departemen Pendidikan Teknik Elektro, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi no 229, Bandung 40154, Jawa Barat, Indonesia
3Departemen Pendidikan Kesejahteraan Keluarga, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi 229, Bandung 40154, Indonesia
4Departemen Manajemen dan Bisnis, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi 229, Bandung 40154, Indonesia

*nandiyanto@upi.edu

Abstract. Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

1. Introduction
Curcumin is one of the organic materials with a natural orange-yellow color. Curcumin is commonly used as natural coloring agent in Asian cuisine, traditional cosmetics, and medicine Curcumin can be obtained from turmeric [1] and has a melting point of 174 °C.[2] Curcumin is stable in acidic pH and heat, but it can decompose at alkaline pH and sensitive to light. [3]

For the first time, curcumin was isolated by Vogel in 1842. Then, in 1910, its structured manner was described by Lampe and Milobedeska [4]. Until Now, research about curcumin has been widely spread and curcumin has been used for many applications[5,6]. Curcumin has been studied because of its antibacterial, antifungal, and antiviral activity [7]. Curcumin also has been investigated as a diabetic
prevention agent [8]. Over the decade, extraction of curcumin from turmeric was reported and more advanced methods are still being reported.

Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin will give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

2. Experimental Method

Curcumin was extracted from turmeric collected from Bandung using our previous method[9]. There are several steps to obtain curcumin from turmeric. First, turmeric was washed and sliced into small pieces (sizes of about 1 mm). The sliced turmeric was then dried at 50°C to remove water. After that, the dried turmeric were grinded to become turmeric powder. Next, turmeric powder was dissolved in ethanol (95%) and heated at 50°C in water bath for 1 hour. The solution then filtered and filtrate was put in rotary evaporator (at 90°C) to remove excess ethanol in the filtrate. Finally, curcumin gel was obtained. To investigate the chemical properties of our product, we used a Thermal Gravimetry Analysis (TGA; Shimadzu Corp., Japan) and a Fourier Transform Infra Red (FTIR; Prestige 21, Shimadzu Corp., Japan).

3. Results and Discussion

![FTIR spectra of dried turmeric and curcumin paste.](image)

Figure 1. FTIR spectra of dried turmeric and curcumin paste. Figure was adopted from reference [9]

Figure 1 shows the FTIR spectra of dried turmeric and curcumin paste. In the dried turmeric sample, there is a sharp peak at 3425.58 cm⁻¹, indicating the sample has strong O-H stretching. However, this peak decreased in curcumin paste sample. In addition, there are also several peaks in spectra found in dried turmeric that reduce in curcumin spectra such as at 1327 and 1276 cm⁻¹. Interestingly, FTIR results showed that both samples had specific spectra of curcumin (shown in the dashed area), such as 1438 (olefinic C–H bending vibration), 1510 (C=C vibrations), as well as 1597 and 1674.21 cm⁻¹ (C=O stretch). Detailed information about the peak detected in the FTIR analysis is shown in **Table 1**.
Based on above results, we can conclude that

1. The dried turmeric has similar structure with the curcumin product. This confirm that the curcumin component existed in the dried turmeric.

2. Peaks at 1327 and 1276 cm\(^{-1}\) were detected in the dried turmeric sample only. These peaks are not characteristic peaks for curcumin, in which this confirmed the existence of other compounds in turmeric. Then, the extraction process made these compounds to be reduced/removed.

3. Peaks at 3425.58 cm\(^{-1}\) (indicated OH) were detected in both sample. However, this peak decreased greatly after the extraction process. The dried curcumin can take much water because this sample contained some components that can interact with water, for example starch and reduced sugar [10]. Since these component is typically reduced after the extraction process, the curcumin paste is relatively water insoluble.

Functional Group	Wavenumber \((obtained\) from experiment) \((cm^{-1})\)	Wavenumber \((from\) references) \((cm^{-1})\)	References
Phenolic O–H stretching	3425.58	3510	[11]
C–C vibrations	1510.26	1627	[12]
C–O stretch	1674.21	1656	[13]
olefinic C–H bending vibration	1438.90	1427	[14]
aromatic C–O stretching vibrations	1276.88	1285	[15]
C–O–C stretching vibrations	1033.86	840	[11]
C–H methyl ring	2924.09	2845	[11]
aromatic ring	3028.241	3016	[16]

Figure 2 shows the TGA curves of dried turmeric and extracted curcumin. As shown in this figure, the mass loss starts at about 60°C, ends at about 500°C. The observed mass loss in the TG curve is 20 and 30% for dried turmeric and extracted curcumin, respectively. The final mass was obtained as a black powder, indicating that samples were completely decomposed into carbon. Different thermal characteristics are because of different compositions contained in the sample. Dried curcumin did not contain only curcumin compound but also other components, such as sugar and sucrose. [10] Indeed, these components make the formation of carbon in the final product lower than that in the extracted curcumin.

Based on the above result, the thermal decomposition of curcumin below 600 °C occurs in four stages (See Figure 3). The decomposition of curcumin involved several processes that produce trans-6-(4,-hydroxy-3,-methoxyphenyl)-2,4-dioxo-5-hexenal; ferulic acid; vanillin and vanillic acid, and carbon. [17, 18,19] Detailed stages occurred during the thermal decomposition are in the following:

1. The stage I (route R1), in which the mass loss is 5% that starts at about 60 °C and ends at about 100 °C, is the decomposition of curcumin into trans-6-(4,-hydroxy-3,-methoxyphenyl)-2,4-dioxo-5-hexenal;

2. The stage II (route R2), in which the mass loss is 15% that begins at about 170 °C and ends at about 220 °C, is the decomposition of 6-(4,-hydroxy-3,-methoxyphenyl)-2,4-dioxo-5-hexenal become ferulic acid;

3. The stage III (route R3 and R4), in which mass loss is 35% that begins at about 260 °C and ends at about 320 °C, is the decomposition of ferulic acid become vanillin and vanillic acid;
(4) The stage IV (route R5), in which the mass decreases gradually and is relatively stable after 50 °C, is the decomposition of vanillin and vanillic acid become few other smaller compounds such as carbon.

Although the reaction can be predicted as shown in Figure 3, other reactions are possible. Therefore, in this figure, we classified the reaction route into two types, one is the main route (shown as solid line) and the other is side route (dashed line). In short, side routes (as dashed lines) are the chemical reaction routes that happen as an additional possible route.

Figure 2. Thermal decomposition properties of curcumin and dried turmeric

Figure 3. Thermal decomposition of curcumin (reaction mechanism route)
4. Conclusion
The simple method for extracting curcumin from Indonesian local turmeric has been demonstrated. We also presented the infrared spectra and thermal decomposition properties of the isolated curcumin. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

Acknowledgement
Authors thank to RISTEK DIKTI (Grant: Penelitian Unggulan Perguruan Tinggi Negeri). Authors also acknowledged Desri Sofiani, Novie Permatasari, and Transmissa Noviska Sucyahia.

References
[1] Kikuchi R 1999 Application of coal ash to environmental improvement: transformation into zeolite, potassium fertilizer, and FGD absorbent. Resources. Conservation and Recycling, 27(4) 333-346
[2] Rao DB, Sekhera NC, Satyanarayana MN and Srinivasan M 1970 Effect of curcumin on serum and liver cholesterol levels in the rat J Nutr 100 1307-1316
[3] Sogi D S, Sharma S, Oberoi D P S and Wani I A 2010 Effect of extraction parameters on the yield of curcumin from turmeric J Food Sci Technol 47(3) 300–304
[4] Milobedzka J, Kostanecki S and Lampe V 1910Curcumin Ber Dtsch Ges Chem 43(21) 63-70
[5] Hamaguchi T, Ono K and Yamada M 2010 REVIEW: Curcumin and Alzheimer's disease CNS Neurosci Therapeutics, 16(5) 285-297
[6] Bar-Sela G, Epelbaum R and Schaffer M 2010 Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications Current Medicinal Chem 17(3) 190-197.
[7] Zorofchian M S Abdul K H, Hassandarvish P, Tajik H, Abubakar S and Zandi K 2014 A review on antibacterial, antiviral, and antifungal activity of curcumin BioMed Res Int 2014.
[8] Zhang D W, Fu M, Gao S H and Liu J L 2013 Curcumin and diabetes: a systematic review Evidence-Based Complementary and Alternative Medicine
[9] Nandiyanto AB, Sofiani D, Permatasari N, Sucayahia TN, Wiryani AS, Purnamasari A, Rusli A, Prima EC 2016 Photodecomposition Profile of Organic Material during the Partial Solar Eclipse of 9 March 2016 and Its Correlation with Organic Material Concentration and Photocatalyst Amount Indones J Sci Technol 1(2) 132-55
[10] Braga M E, Leal P F, Carvalho J E and Meireles M A 2003 Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques J Agricultural Food Chem 51(22):6604-11
[11] Yallapu M M, Jaggi M and Chauhan S C 2010 β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells Colloid Surfaces B 79(1) 113-125
[12] Chen Y, Lin J, Fei Y, Wang H and Gao W 2010 Preparation and characterization of electrospinning PLA/curcumin composite membranes Fibers Polym 11(8) 1128-31
[13] Mandeville J S, Froehlich E and Tajmir-Riahi H A 2009 Study of curcumin and genistein interactions with human serum albumin J Pharm Biomedical Anal 49(2) 468-74
[14] Darandale S S and Vavia P R 2013 Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization J Inclusion Phenomena Macrocyclic Chem 75(3-4) 315-22
[15] Bich V T, Thuy N T, Binh N T, Huong N T, Yen P N and Luong T T 2009 Structural and spectral properties of curcumin and metal-curcumin complex derived from turmeric (Curcuma longa) Phys Eng New Mater 127 271-278
[16] Hatamie S, Nouri M, Karandikar SK, Kulkarni A, Dhole SD, Phase DM and Kale SN 2012 Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents Mater Sci Eng C 32(2):92-7.

[17] Chen Z, Xia Y, Liao S, Huang Y, Li Y, He Y, Tong Z and Li B 2014 Thermal degradation kinetics study of curcumin with nonlinear methods Food Chem 155:81-6.

[18] Li S, Yuan W, Deng G, Wang P, Yang P and Aggarwal B 2011 Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm Crops 2 28-54

[19] Suresh D, Gurudutt K N and Srinivasan K 2009 Degradation of bioactive spice compound: curcumin during domestic cooking Eur Food Res Technol 228(5) 807-12.