INTRODUCTION

Biological invasion plays fundamental role for ecosystem dysfunctions through loss of biodiversity across the world (Cordero, Torchelsen, Overbeck, & Anand, 2016; Heringer, Thiele, Meira-Neto, & Neri, 2019; Mack et al., 2000). Thus, it prompts widespread research to unravel invasion mechanisms and consequences of invasive species into natural systems. Therefore, this advances our understanding of mechanisms and effects of those invaders that play an important role in altering community
structure and ecosystem functions (Castro-Diez, Pauchard, Traveset, & Vila, 2016; Lodge, 1993; Sodhi, Livingstone, Carboni, & Cadotte, 2019). There are many hypotheses may explain the success of the invasive species in the introduced range (Catford, Jansson, & Nilsson, 2009; Crandall & Knight, 2018). Specifically, "enemy release"—lack of coevolutionary history with its host in the introduced range (Allen et al., 2017); "novel weapons"—gaining a competitive advantage over native by possessing novel biochemical (Becerra et al., 2018); and "evolution of increased competitive ability"—evolving more competitive ability by releasing most specialist enemies following introduction (Montesinos, Graebner, & Callaway, 2019) are commonly used. Biochemical interactions among plants have revived interest in invasion ecology (Callaway & Maron, 2006), which is referred as "allelopathy." The "allelopathy" was defined by Rice (1984): "any direct or indirect harmful or beneficial effect by one plant (including microorganisms) on another through production of chemical compounds that escape into the environment." However, it has been acknowledged with doubt for decades due to its complexity in demonstration (Keeley, 1988; Meiners, Kong, Ladwig, Pisula, & Lang, 2012; da Silva, Overbeck, & Soares, 2017). However, contemporary research provides evidence of allelopathy between invasive and native plant species, which might be one of the underlying mechanisms of invaders' success into invasion processes (Bais, Vepachedu, Gilroy, Callaway, & Vivanco, 2003; Callaway & Ridenour, 2004; Ooka & Owens, 2018; Prati & Bosdorff, 2004; Song, Qin, He, Wang, & Yu, 2019; Stinson et al., 2006; Uddin, Robinson, Buultjens, Al Harun, & Shampa, 2017). Additionally, some studies found success of the invader is in part due to the introduction of novel allelopathic compounds, as many co-occurring plant species exhibit a lack of evolved tolerance to these compounds (Callaway & Ridenour, 2004; Huang, Lankau, & Peng, 2018; Lankau, 2012; Lyttenin & Lindstrom, 2019).

The debate on allelopathy in natural ecosystems is partially characterized by methodological difficulties to demonstrate the effects of the natural concentration level of allelochemicals on coexisting plant species (Mallick, 2008). A majority of allelopathic studies have been conducted using plant extracts from different solvents and plant materials under laboratory conditions which are ecologically unrealistic (Inderjit & Dakshini, 1995) (Hierro & Callaway, 2003; Inderjit & Callaway, 2003; Inderjit & Weston, 2000). In spite of advancement in using ecologically "realistic" technique, experiments evaluating the evolved tolerance of neighboring plant species (native versus non-native) to root exudates found in rhizosphere are exceptionally rare (Inderjit & Nilsen, 2003; Lankau, 2012; Lyttenin & Lindstrom, 2019), with a few exceptions (Blair, Weston, Nissen, Brunk, & Hufbauer, 2009; Fuji et al., 2004; Nilsson, 1994; Nilsson, Zackrison, Sterner, & Wallstedt, 2000). Noteworthy here is that the study regarding C. cardunculus by Scavo, Rial, Molinillo, et al. (2019) has been carried out to improve the methodological aspects of allelopathy. The experiments in the field and/or using field level allelochemical concentration in rhizosphere with co-occurring plant species and demonstrating the evolved tolerance of those may offer the possibility to overcome the debate on allelopathic effects (da Silva et al., 2017; C. Fernandez et al., 2016; Jose & Gillespie, 1998; Scavo, Abbate, & Mauromite, 2019; Zackrison & Nilsson, 1992).

Cynara cardunculus, native to the Mediterranean basin, is a herbaaceous perennial thistle (Pignone & Sonnante, 2004) and has invaded in the western USA, South America, UK, Australia, and New Zealand (GISD, 2020). In Australia, *Cynara cardunculus* subsp. *flavescens* is declared as a significant environmental weed in the states of Victoria, South Australia, and Tasmania (Bean, 2019), and the variety is unclear but it might be *scolymus* (L.) Benth (Bean, 2015). *C. cardunculus* is considered a pest in agriculture systems, including pasture land and disturbed areas, and it invades natural habitats including grasslands, riparian areas, open woodlands, and wetlands.

Though *C. cardunculus* has higher vegetative reproduction from its roots and crowns of the mature plant, it also produces higher seeds ranged from 600 to 30,000 seeds/year/plant (Marushia & Holt, 2006, 2008). It is very fast growing with higher above and belowground biomass, and more competitive than associated native plant species. These attributes could contribute to the invasiveness of this plant (White & Holt, 2005). The widespread distribution and dense monocultures (20,000 plants per acre) displace native plant communities and reduce plant diversity across the world (Marushia & Holt, 2006; White & Holt, 2005). The dense populations of *C. cardunculus* also cause the restriction of wildlife movement and native vegetation growth creating fragmentation of native habitats (Kelly & Pepper, 1996). For instance, the invasion of *C. cardunculus* displaced the endangered plant species Acanthomintha ilicifolia in California (Kelly, 2000).

With these common invasive traits, the allelopathic trait of *C. cardunculus* has contributed to the displacement and reduction of native biodiversity (Carlos Rial, Novaes, Varela, Molinillo, & Macias, 2014; Scavo, Pandino, et al., 2019; Scavo, Restuccia, Abbate, & Mauromite, 2019; Scavo, Restuccia, Pandino, Onofri, & Mauromite, 2018). It produces a variety of allelochemicals including phenolic compounds (Pandino, Lombardo, Mauromite, & Williamson, 2011a, 2011b), sesquiterpene lactone (Rial et al., 2016; Scavo, Rial, Molinillo, et al.,), and polyphenols (caffeoylquinic acids and flavonoid derivatives) (Ciancolini, Alignan, Pagnotta, Vilarem, & Crino, 2013). Those allelochemicals demonstrated inhibitory effects on wheat coleoptile, standard target species, and weed growth (Rial et al., 2014, 2016). These compounds may be available through biomass leaching and decomposition, and root exudates that makes substantial concentration in the rhizosphere soil to influence seed bank of associated plant species (Scavo, Restuccia, et al., 2019).

Most of the past studies into *C. cardunculus* have focused on medicine (Bras, Guerreiro, Duarte, & Neves, 2015; Garbetta et al., 2014; Koubaa, Damak, McKillop, & Simmonds, 1999; Miadokova et al., 2008; Yasukawa, Matsubara, & Sano, 2010), food (Agboola, Chan, Zhao, & Reham, 2009; Dias et al., 2018; Pandino, Lombardo, Mauromite, & Williamson, 2011a, 2011b), and biofuel (Ciancolini et al., 2013; J. Fernandez, Curt, & Aguado, 2006; Gominho, Curt, Lourenco, Fernandez, & Pereira, 2018). Some studies have tested allelopathy using plant extract in its native
range (Carlos Rial et al., 2014; Scavo, Pandino, et al., 2019; Scavo, Restuccia, et al., 2019; Scavo et al., 2018), and competitive ability of *C. cardunculus* (White & Holt, 2005). While those studies have demonstrated allelopathic effects of *C. cardunculus* on model and weed species in its native range, none has examined the effects on associated native and non-native grass species. More specifically, no studies evaluate the evolved tolerance of the co-occurring native and non-native grass species with field concentrations of root exudates (allelochemicals) available in rhizosphere of *C. cardunculus*. To the best of our knowledge, to date no allelopathic studies have been conducted in its non-native range, specifically in Australian *C. cardunculus* populations.

2 | MATERIALS AND METHODS

Our experiments were set to test the allelopathic effects of *C. cardunculus* on germination and growth of grass species that co-occurs in agriculture field in Victoria, Australia. We used field-collected rhizosphere soils to imitate natural conditions through exposing of target species that minimize uncertainties in plant extract concentrations or exclusion of other possible edaphic effects (Gómez-Aparicio & Canham, 2008). As the allelopathic effects are species-specific (Callaway & Ridenour, 2004; Gomez-Aparicio & Canham, 2008), we also devised the experiments to determine the evolved tolerance of associated native versus non-native grass species to the allelopathic potential of *C. cardunculus* in its invaded community. In addition, chemical properties (total phenolic content and pH) of *C. cardunculus* rhizosphere were assessed to test the differences among the populations. Overall, this study aimed to evaluate allelopathy and coevolutionary effects of rhizosphere soil induced by *C. cardunculus* on co-occurring native and non-native grass species in its invaded range.

2.1 | Measurement of field soil chemical properties

To test whether invasive plant species *C. cardunculus* changes chemical soil properties, we collected rhizosphere soil at the end of November 2018 during its highest biomass production from three invaded and three nearby noninvaded populations in agricultural land at 26.7 m above sea level in Werribee South, Victoria, Australia (37°54′44.5″S 144°42′00.8″E). We designed our sampling protocol to minimize the effects through selection of homogenous soil profile, and plant density and diversity in uninvaded and invaded sites of each population, which were also close to each other. The location of each population including soil from both invaded and nearby noninvaded was separated from the others by a distance of at least 500 m. At each location, we collected five samples from five individuals of *C. cardunculus* as invaded soil samples and five from nearby noninvaded population where other species such as *Juncus pallidus*, *Maireana decalvans*, and *Themeda triandra* except *C. cardunculus* were present. After that, the soil samples were transported into the laboratory, sorted and homogenized for composite sample. Then, we took five subsamples from each population for measurement of soil properties and measured total phenolic content (TPC) and pH in soil as it is assumed those properties might play a significant role in testing allelopathy, though rhizosphere has also numerous aspects (Scavo, Abbate, et al., 2019). Soil pH was determined with a pH meter (Pocket digital pH meter, 99.559, Dick Smith Electronics, Australia) in a 1:2.5 w/v (soil: distilled water) ratio (Paz-Ferreiro, Trasar-Cepeda, Leirós, Seoane, & Gil-Sotres, 2007). Soil phenolics was determined by sampling 100 mg of air-dried soil following the Folin–Ciocalteu method (Blainski, Lopes, & De Mello, 2013).

2.2 | Germination experiment

However, the multiple populations provide the possibility to check the variation among populations through increasing the reliability of the results, and better representing the condition of each treatment, but we avoided using multiple populations in this occasion due to complexity in research design and the possibility of confusion. The collected homogenized rhizosphere soil from only one population was used in the experiment as no attempt was made to check variation among populations. Half of the soil (invaded and noninvaded) was thoroughly mixed with activated carbon (AC) and the mixture was placed into the pots as a treatment. The remaining soil was considered as a treatment without AC. The AC has special characteristics with high absorptivity of organic complexes, such as allelochemicals, and weak affinity for inorganic molecules, such as those present in nutrient solution. Many allelopathic studies related to *C. stoebe* including *C. maculosa, C. rhenana, C. murettii, C. vallesiaca*, and *C. stoebe* subsp. have demonstrated through reducing the suppressive effects of root exudates (Callaway, Ridenour, Laboski, Weir, & Vivanco, 2005; Lytinen & Lindstrom, 2019; Ridenour & Callaway, 2001). The 100 g soils were placed in punnets (9.75 cm by 6.75 cm) with five replicates. The punnets were moistened and kept at room temperature for 24 hr to activate the soil microbes. The sterilized seeds (collected from fields invaded by *C. cardunculus*) of native *Juncus pallidus* and non-native *Lolium rigidum* grass species were then seeded at a rate of 20/pot. The tested seeds were selected due to the following reasons: (a) They are co-occurring plant species of *C. cardunculus*; (b) allelopathic interactions between invasive alien and coexisting plant species (native and non-native) seem to be one of the underlying mechanisms for the invasion success of some invaders; and (c) testing the evolved tolerance of the coexisting species. We followed a complete randomized block design in this study. The pots were kept in shade for 3 days and then transferred to the natural lit greenhouse at 23 ± 3°C day and 12 ± 2°C night temperatures. The pots were watered with automated irrigation system twice in a day. Pots were randomly shuffled every week to minimize the spatial effects. Then, after four weeks, the germinant was counted for each treatment.
2.3 Growth and establishment experiment

The soils were prepared as per the abovementioned germination experiment, and the 100g soils were placed in punnets (9.75 cm by 6.75 cm) for growth experiment. However, the size of the punnets may seem tighten for growth of whole period of the experiment, but the plants can adopt with it, and it may not interfere the findings as it was applicable for all replicates of both tested species. About 300 (three hundred) sterilized seeds of each grass species (native and non-native) were germinated in a tray (30 cm by 28 cm) filled with sterilized sand. One seedling of both species was then transplanted into the prepared punnet by twenty-one replicates and pots were grouped by target species following a randomization across treatments and kept as per the abovementioned condition. Dead seedlings were replaced after a period of two weeks, to allow the experiment to continue. The pots were watered using an automated irrigation system twice in a day and fertilized fortnightly with liquid fertilizer (Hyponex, N-P-K, 6-10-5, Hyponex Inc) at a concentration of 2ml/1 of water. Pots were randomly shuffled every week to minimize the spatial effects, and after 3.5 months, the plants were harvested for biometric parameters including maximum plant height and root length, aboveground biomass (AGB), belowground biomass (BGB), total biomass (AGB plus BGB), and AGB-BGB ratio.

We conducted a separate experiment along with the main experiments to assess the direct effect of AC on seedlings growth of native and non-native used grass species with sterilized sand and AC treatments. We used five replicates per treatment (with and without AC) for both of grass species. The direct effect of AC on plant growth has been assessed due to its complication on allelopathy (Lau et al., 2008). This experiment was carried out adopting the same procedure as the aforementioned experiment and measured biometric parameters (Appendix S1).

2.4 Data analyses

An independent sample t test was performed to check the differences of soil phenolics and pH level among uninvaded and invaded sites for each population of C. cardunculus. Two-way ANOVAs were also conducted to test the differences of those variables as functions of populations and invasion status (uninvaded and invaded). We again conducted two-way ANOVAs to test the effect of soil allelopathy as functions of activated carbon (with and without AC) and invasion status (uninvaded and invaded) on AGB, BGB, AGB-BGB ratio, total biomass, and maximum plant height and root length of native and non-native grass species. Target species (native and non-native) were not considered as third fixed factor in the univariate general linear model due to avoid complexity. For example, the test does not provide which specific species is significantly different from each other. As a result, separate analysis (species-specific) was done to get direct understanding of the allelopathic effects on each of them. Moreover, an independent sample t test was performed to compare the significant differences between AC treatments (with vs. without carbon) and species (native vs. non-native) in both of germination and growth experiments including separate growth experiment. To maintain homogeneity of variances and normality of the used data for these analyses, we used data transformation techniques: a square root (soil phenolics, AGB, BGB, total biomass for native; AGB for non-native) and an arcsine-square root function (germination percentage for native). We also applied Levene’s test for homogeneity of variance and Kolmogorov-Smirnov (K-S) test for normality of the used data. All data were analyzed using SPSS version 20.0 (IBM Corporation).

3 RESULTS

3.1 Rhizosphere soil chemical properties

The measured soil chemical properties such as total phenolics and pH have been altered due to C. cardunculus invasion. The soil phenolics and pH of all populations was significantly higher and lower, respectively, at invaded sites compared to uninvaded sites (phenolics: \(F_{1,24} = 3,291.77, p < .001 \); pH: \(F_{1,24} = 304.06, p < .001 \) (Figure 1). The
significant variation of only phenolics among populations was observed \((F_{2,24} = 17.47, p ≤ .001)\). However, there were no interactions between populations \(×\) invasion status on those variables (phenolics: \(F_{2,24} = 1.18, p = .32\); pH: \(F_{2,24} = 1.45, p = .25\)). The phenolic content varied with a range of 0.18 to 0.23 mg/g at uninvaded and 1.07 to 1.28 mg/g at invaded sites among populations, whereas the pH level was 7.27 to 7.45 at uninvaded and 6.35 to 6.55 at invaded sites.

3.2 | Germination test

There was significant interactive effect of invasion status and carbon treatments on germination percentage of the native species \((F_{1,16} = 36.24, p ≤ .001)\) and non-native species \((F_{1,16} = 5.72, p ≤ .01)\) (Figure 2). The germination percentage of native species was also influenced significantly by the main effect of invasion status \((F_{1,16} = 360.29, p ≤ .0001)\) and AC treatments \((F_{1,16} = 625.55, p ≤ .001)\), whereas non-native species was neither affected by invasion status \((F_{1,16} = 0.51, p = .48)\) nor AC treatments \((F_{1,16} = 0.69, p = .40)\). The AC in invaded rhizosphere soil increased 341% germination for native. However, it was only 2.1% for non-native grass seeds indicating that soil allelopathy of \(C.\) cardunculus had strong negative effect on native compared to non-native seed germination (Figure 2). In addition, there was significant difference between native and non-native species in without \((t = 36.24, df = 8, p ≤ .001)\) and with \((t = 11.63, df = 8, p ≤ .001)\) AC treatments in invaded soil, but no effect in uninvaded soil (Figure 2).

![Germination percentage](image)

TABLE 1 ANOVA of the effects of activated carbon (without carbon vs. with carbon), and plant invasion (uninvaded vs. invaded) on maximum plant height, maximum root length, aboveground biomass (AGB), belowground biomass (BGB), and total biomass of test plant species (native \(Juncus pallidus\) and non-native \(Lolium rigidum\)).

Source of variation	df1, df2	AGB	BGB	AGB-BGB ratio	Total biomass	Plant height	Root length						
		\(F\)	\(p\)	\(F\)	\(p\)	\(F\)	\(p\)	\(F\)	\(p\)				
Native													
Activated carbon (AC)	1, 80	903.62	<.001	224.91	<.001	40.06	<.001	765.45	<.001	40.57	<.001	23.01	<.001
Plant invasion (PI)	1, 80	404.08	<.001	1,413.13	<.001	266.72	<.001	1,418.63	<.001	64.10	<.001	49.16	<.001
AC \(×\) PI	1, 80	472.75	<.001	299.58	<.001	0.32	.57	625.55	<.001	78.51	<.001	0.14	.710
Non-native													
Activated carbon (AC)	1, 80	12.36	<.01	108.05	<.001	63.98	<.001	29.17	<.001	3.43	.067	5.72	<.05
Plant invasion (PI)	1, 80	85.80	<.001	667.07	<.001	33.71	<.001	563.17	<.001	1.63	.205	10.29	<.01
AC \(×\) PI	1, 80	17.77	<.001	42.55	<.001	32.88	<.001	4.92	.029	0.69	.408	1.14	.288

Note: Here, degrees of freedom 1 \(df1\) and degrees of freedom 2 \(df2\), where \(df2\) equals the total number of observations in all cells \(n\) minus the degrees of freedoms lost because the cell means are set.
3.3 | Seedling growth performance

The main and interactive effects of invasion status and carbon treatments on the growth performance of native and non-native seedlings were presented in Table 1. The AC treatments in invaded rhizosphere soil had significant incremental effect on AGB, BGB, total biomass, AGB-BGB ratio, plant height, and root length of native seedlings, whereas AGB and AGB-BGB ratio of non-native seedlings were positively affected (Table 1, Figures 3, 4, 5). In the invaded rhizosphere soil, AC significantly increased AGB (267%), BGB (202%), total biomass (237%), AGB-BGB ratio (20.75%), maximum plant height (63%), and maximum root length (13%) for native seedlings, whereas the increased rate for non-native was for AGB (20%) and AGB-BGB ratio (49.59%) (Figures 3, 4, 5). Overall, AC in invaded soil had incremental effects on all measured biometric parameters of native seedlings, whereas most of the parameters except AGB, AGB-BGB ratio, and maximum root length for non-native seedlings were negatively affected (Figures 3, 4, 5). In uninvaded soil, AC treatments had significant incremental effects on AGB (17%), AGB-BGB ratio (23.21%), and maximum root length (9.0%) for native seedlings, whereas only maximum root length (9.5%) of non-native seedlings was positively affected (Figures 3, 4, 5). In most cases, AC in uninvaded soil had less significant effects on seedling performance of both species. On average, invaded rhizosphere soil of *C. cardunculus* showed greater negative effects on native seedlings compared with non-native. The direct comparisons between native and non-native grass species for measured parameters varied across treatments of invasion status (invaded and noninvaded) and AC (without and with AC; Figures 3, 4, 5).

The direct effects of AC on experimental seedlings showed that there was no significant effect on the native seedlings in terms of AGB, BGB, total biomass, maximum plant height and root length and non-native seedlings in terms of aboveground biomass, and maximum plant height and root length (all \(p > .05 \)) except belowground biomass (\(t = 2.32, df = 8, p = .048 \)). Actual data are provided in the online Appendix S1 (see Data S1).
4 | DISCUSSION

4.1 | Chemical changes in rhizosphere

Our results showed significant differences in phenolics content and pH level between rhizosphere soil of uninvaded and invaded plots in all populations. Many of the previous studies found inconsistent results for soil properties invaded by invasive plants under field conditions (Broz, Manter, & Vivanco, 2007; Ehrenfeld, 2003), but we followed the systematic sampling protocol to avoid the inconsistency in results. The findings of our studies aligned with other studies of *C. cardunculus*, those documented the high concentration of phenolic compounds in different organs of the plant (Ciancolini et al., 2013; Dias et al., 2018; Pandino, Lombardo, Mauromicale, & Williamson, 2011a, 2011b). The high concentration of allelochemicals in plant organs has led to the suggestion that soil may receive a major portion of the released chemicals from plants through leaching, rhizodeposition, litter decomposition, etc. and might be involved in allelopathic effects between neighboring plant species (Kong, Xuan, Khanh, Tran, & Trung, 2019; Kong et al., 2018). Furthermore, the results were supported by other studies, which found high phenolic concentration in soil invaded by invasive plants such as *Pluchea lanceolata*, *C. stoebe*, *Mikania micrantha*, and *Phragmites australis* (Bais et al., 2003; Hierro & Callaway, 2003; Inderjit, 1998; Kaur, Malhotra, & Inderjit, 2012; Rudrappa, Bonsall, Gallagher, Seliskar, & Bais, 2007; Nazim & Robinson, 2017a, b).

In addition to the increased phenolic content in the invaded soil of *C. cardunculus*, our studies found lower pH level, which seems to be associated with the phenolic compounds in the plants that might accumulate in rhizosphere through root exudates, leachate, and litter decomposition. The invasive plants including *Solidago gigantea* (Herr, Chapuis-Lardy, Dassonville, Vanderhoeven, & Meerts, 2007; Scharfy, Eggenschwiler, Venterink, Edwards, & Gusewell, 2009), *Phragmites australis* (Nazim & Robinson, 2017a, b), *Eucalyptus camaldulensis* (Soumare et al., 2016), and *Rudbeckia laciniata* (Stefanowicz, Majewska, Stanek, Nobis, & Zubek, 2018) lowered the pH level in the invaded soil, which support our findings. On the contrary, some studies regarding invasive plants like *Alliaria petiolata* (Rodgers, Wolfe, Werden, & Finzi, 2008), *Mikania micrantha* (Kaur et al., 2012), and *Kalmia angustifolia* (Inderjit & Mallik, 1999) increased the pH level in the invaded soil.
4.2 | Germination and growth performance

Our results found *C. cardunculus* invaded soil had a significant negative effect on the germination percentage and growth parameters of native, but less significant effect on non-native co-occurring grass species, indicating that the result depended intricately on the identity of test species. The total effect of allelopathy was greater on the native grass species, as the germination and total biomass increased more significantly in the invaded soil manipulated with AC. The AC neutralized the negative effects of allelochemicals available in soil, whereas the non-native grass species showed almost no sensitivity to allelochemicals. Goslee, Peters, and Beck (2001) found that moderate sensitivity to allelochemicals induced by *Acroptilon repens* was an important component to swing the consequences among neighboring species competition in grasslands.

The approach in our study using invaded rhizosphere soil is more ecologically realistic than general bioassay because the use of plant extracts lacks the ability to quantify or identify the response of allelochemicals available in invaded soil system, and whether the concentration of allelochemicals is responsible for allelopathy. Our study did not cover the whole criteria of allelopathy research design documented by Williamson (1990) and Blum, Shafer, & Lehman (Blum, Shafer, & Lehman, 1999) to demonstrate allelopathy of *C. cardunculus*. However, we used AC in field-collected soil to separate the allelopathic effects on co-occurring plant species from other possible effects that could demonstrate the allelopathy in a more ecologically realistic way. This approach may provide a better understanding of allelopathy under soil chemical ecological context. The previous studies of *C. cardunculus* demonstrated phytotoxicity of sesquiterpene lactones as secondary metabolites derived from different parts of the plant (Rial et al., 2014, 2016), but our studies did not isolate the individual chemical from the invaded soil. Isolation of those chemicals from rhizosphere, and the implications of those under settings that are more natural is required, to evaluate its extent compared to resource competition or other interactions (Scavo, Abbate, et al., 2019).

Our results found native species *J. pallidus* were more sensitive to allelochemicals available in rhizosphere of *C. cardunculus*, whereas

FIGURE 5 (a) Aboveground biomass (AGB): belowground biomass (BGB) and (b) total biomass of native *Juncus pallidus* and non-native *Lolium rigidum* grass species grown in uninvaded and invaded rhizosphere soil of *Cynara cardunculus* either with or without activated carbon (AC). Each bar is the mean ± SE, n = 21. Asterisks above bar and horizontal line designate significant difference between AC treatments and target species, respectively, after independent sample t test (*p ≤ .05 & **p ≤ .001)
non-native *L. rigidum* showed less sensitivity. The AC increased more significantly of germination percentage, growth parameters namely AGB, BGB, total biomass, and maximum plant height and root length of native grass species, whereas only AGB increased for non-native. The effect of AC may provide the evidence of allelopathy (Adomako et al., 2019; Callaway & Aschehoug, 2000; Lytten & Lindstrom, 2019; Mahall & Callaway, 1991), but there is debate to use AC for allelopathy test, as it may also influence other soil properties such as nutrient availability (Lau et al., 2008), and biological properties, namely microbial communities in soil (Weißhuhn & Prati, 2009). Nevertheless, the results in our separate experiment showed no significant direct effect of AC on the measured biometric parameters including AGB, and total biomass of any of the two grass species.

The non-native invasive plant species might achieve success in their introduced range due to allelopathy this being the alternative mechanism for their “evolution of increased competitive ability” (Hierro & Callaway, 2003; Zheng et al., 2015). This hypothesis explains invasive plants achieve greater competitive advantages over resident species due to lack of coevolved tolerance to new allelochemicals compared to their original ranges, referred to as “allelopathic advantage against resident species” hypothesis proposed by Callaway and Ridenour (2004; Inderjit, Callaway, & Vivanco, 2006). Thus, it is evident that native species experience greater effects through induced allelochemicals by invasive species compared to non-natives, which had same original range of the invaders. In our studies, the tested non-native grass species *L. rigidum* co-occur with *C. cardunculus* in their native range (Müller, Deil, De Mera, & Orellana, 2005), which may provide a comparative evidence of co-evolved tolerance to allelochemicals induced by *C. cardunculus*.

Our studies found native *J. pallidus* experienced strong allelopathic effects, whereas non-native *L. rigidum* showed more resistance to allelochemicals indicating that *L. rigidum* is less susceptible to allelochemicals induced by *C. cardunculus*. This may explain the coevolutionary history of the *L. rigidum* with *C. cardunculus* in its native range (i.e., southern Europe), which may provide more competitive advantages over native species. It is evident that the species *L. rigidum* coevolves with *C. cardunculus* over a longer period in their native ranges that may provide resistance to allelochemicals induced by *C. cardunculus*. The findings are more aligned with the studies of Hu and Zhang (2013) and Prati and Bossdorf (2004) whom found, for example, *Alliaria petiolata* had greater allelopathic effects on native (American) *Geum laciniatum* germination, but less effect on non-native (European) *Geum urbanum*. In addition, *Chromolaena odorata* showed significant allelopathic effects on five native species (China) compared to non-native (South American) species. In contrast, Mallik and Pellissier (2000) found that invasive *Vaccinium myrtillus* had significant allelopathic effects on the non-native *Picea mariana* in comparison with the native *Picea abies*. This indicates plant species without a common evolutionary history exert significant allelopathic interactions. This is also supported with the notion of a coevolutionary aspect to allelopathy (Arroyo, Puyeo, Saiz, & Alados, 2015; Rabotnov, 1981; Thorpe, Thelen, Diaconu, & Callaway, 2009).

4.3 Linking changes in soil properties and plant communities

Invasive plant species may influence rhizosphere properties rapidly from surrounding native communities, which have major impact on the plant communities (Gibbons et al., 2017; Weidenhamer & Callaway, 2010). The plant-driven changes in physical, chemical, or biological soil properties may significantly influence germination and growth performance of the neighboring plant species (Chen, Wang, Wang, & Kong, 2014; Gentili, Ambrosini, Montagnani, Caronni, & Citterio, 2018; Herranz, Ferrandis, Copete, Duro, & Zalacain, 2006; Lytten & Lindstrom, 2019; Miller, Perron, & Collins, 2019). The chemical soil characteristics influenced by allelochemicals of invader might play an important role in ecological implications between plants and soil systems (Scavo, Abbate, et al., 2019). Among all the changes, the allelopathic attributes of some invasive plants make them more aggressive. Allelopathy as an invasion mechanism of some invaders in natural plant communities remains a disputed ecological research matter, partly due to lack of evidence of allelochemicals persistence and effects in the surrounding plants. The establishments of the allelopathic interactions need the demonstration of allelopathy in invaded rhizosphere under soil chemical ecological context (Blum et al., 1999; Scavo, Abbate, et al., 2019). Thus, our studies demonstrated that the chemical changes in rhizosphere induced by *C. cardunculus* had significant negative allelopathic effects on co-occurring native grass species compared to non-native. This also leads to explain that the non-native grass species might have a long coevolution history with *C. cardunculus*, and thus, the evolution influenced the allelopathic interactions among them.

Our studies may contribute to the existing body of evidence demonstrating that changes in soil properties induced by invasive plants like *C. cardunculus* may influence the composition of the plant communities. The plant-driven changes in soil properties and thereby the altered functions and processes might create feedback mechanisms, which may proliferate the invisibility of the invader (Ehrenfeld & Scott, 2001; Inderjit & Cahill, 2015; Weidenhamer & Callaway, 2010). This is of a particular concern because such mechanisms might have significant implications for management of invasions and restoration of native communities in the invaded communities.

5 CONCLUSIONS

In summary, the results of our studies recommend that allelopathy of *C. cardunculus* can contribute to its success through negative impacts on the natives as an invasive species in Australian agricultural fields. The allelopathic interference was species-specific as a function of coevolutionary context, which is mostly imperative for invasive species, as the invaders compete with diverse sets of species (native and non-native) in different ranges. We recommend further works to evaluate the relative allelopathic effects by *C. cardunculus* on co-occurring species of “origin” versus “recipient” plant communities,
considering the concentration of natural allelochemicals in soil that may demonstrate the generality of allelopathy to the better understanding of plant invasions. Furthermore, studies regarding species-specific rhizosphere allelochemistry evaluating evolved tolerance of test species may be recommended for ecologically realistic and meaningful information.

ACKNOWLEDGMENTS
We acknowledge the Japanese Society for the Promotion of Science (JSPS) for financial support for the first author (Grant in Aid: T17F17724).

CONFLICT OF INTEREST
Authors declare no conflict of interest.

AUTHOR CONTRIBUTION
Md Nazim Uddin: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Funding acquisition (lead); Investigation (lead); Methodology (lead); Project administration (lead); Resources (equal); Supervision (lead); Validation (lead); Resources (equal); Methodology (equal); Project administration (equal); Visualization (lead); Writing-original draft (lead); Writing-review & editing (lead). Takashi Asaeda: Conceptualization (supporting); Writing-review & editing (lead). Randall Robinson: Conceptualization (lead); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Validation (equal); Resources (equal); Methodology (equal); Project administration (equal); Writing-original draft (supporting); Writing-review & editing (supporting).

DATA AVAILABILITY STATEMENT
Uddin, Md. Nazim; Asaeda, Takashi; Shampa, Shahana H.; Robinson, Randall W. (2020). Allelopathy and its coevolutionary implications between native and non-native neighbors of invasive Cynara cardunculus L., Dryad, Dataset, https://doi.org/10.5061/dryad.f7m0c

ORCID
Md. Nazim Uddin https://orcid.org/0000-0002-7904-4115

REFERENCES
Adomako, M. O., Ning, L., Tang, M., Du, D. L., van Kleunen, M., & Yu, F. H. (2019). Diversity- and density-mediated allelopathic effects of resident plant communities on invasion by an exotic plant. Plant and Soil, 440(1-2), 581–592. https://doi.org/10.1007/s11104-019-04123-9
Agboola, S. O., Chan, H. H., Zhao, J., & Rehman, A. (2009). Can the use of Australian cardoon (Cynara cardunculus L.) coagulant overcome the quality problems associated with cheese made from ultrafiltered milk? IWT - Food Science and Technology, 42(8), 1352–1359. https://doi.org/10.1016/j.wst.2009.03.015
Allen, W. J., Meyerson, L. A., Cummings, D., Anderson, J., Bhattacharj, G. P., & Cronin, J. T. (2017). Biogeography of a plant invasion: Drivers of latitudinal variation in enemy release. Global Ecology and Biogeography, 26(4), 435–446. https://doi.org/10.1111/geb.12550
Arroyo, A. I., Puyeo, Y., Saiz, H., & Alados, C. L. (2015). Plant-plant interactions as a mechanism structuring plant diversity in a Mediterranean semi-arid ecosystem. Ecology and Evolution, 5(22), 5305–5317. https://doi.org/10.1002/ece3.1770
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Allelopathy and Exotic Plant Invasion: From molecules and genes to species interactions. Science, 301, 1377–1380. https://doi.org/10.1126/science.1083245
Bean, A. R. (2015). Cynara cardunculus subsp. flavescens, Asteraceae Subfam. 2. Carduoideae Trib. 1. Cardueae. In A. J. G. E. Wilson (Ed.), Flora of Australia (Vol. 37, pp. 61–62). Melbourne: CSIRO publishing.
Bean, A. R. (2017). Cynara cardunculus subsp. flavescens. In: Flora of Australia, Australian Biological Resources Study. Retrieved from https://profiles.ala.org.au/opus/foa/profile/Cynara%20cardunculus%20subsp.%20flavescens
Becerra, P. I., Catford, J. A., Inger, , McLeod, M. L., Andonian, K., Aschehoug, E. T., ... Callaway, R. M. (2018). Inhibitory effects of Eucalyptus globulus on understorey plant growth and species richness are greater in non-native regions. Global Ecology and Biogeography, 27(1), 68–76. 10.1111/geb.12676
Blainski, A., Lopes, G. C., & De Mello, J. C. P. (2013). Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules, 18(6), 6852–6865. https://doi.org/10.3390/molecules18066852
Blair, A., Weston, L., Nissen, S., Brunk, G., & Hufbauer, R. (2009). The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biological Invasions, 11(2), 325–332. https://doi.org/10.1007/s10533-008-9250-1
Blum, U., Shafer, S. R., & Lehman, M. E. (1999). Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18(5), 673–693. https://doi.org/10.1080/0735268991309441
Bras, T., Guerreiro, O., Duarte, M. F., & Neves, L. A. (2015). Impact of extraction parameters and concentration by nanofiltration on the recovery of phenolic compounds from Cynara cardunculus var. altiiis: Assessment of antioxidant activity. Industrial Crops and Products, 67, 137–142. https://doi.org/10.1016/j.indcrop.2015.01.005
Broz, A. K., Manter, D. K., & Vivanco, J. M. (2007). Soil fungal abundance and diversity: Another victim of the invasive plant Centaurea maculosa. The ISME Journal, 1(8), 763–765. https://doi.org/10.1038/ismej.2007.81
Callaway, R. M., & Aschehoug, E. T. (2000). Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290(5491), 521–523. https://doi.org/10.1126/science.290.5491.521.
Callaway, R. M., & Maron, J. L. (2006). What have exotic plant invasions taught us over the past 20 years? Trends in Ecology & Evolution, 21(7), 369–374. https://doi.org/10.1016/j.tree.2006.04.008
Callaway, R. M., & Ridenour, W. M. (2004). Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2(8), 436–443. https://doi.org/10.1890/1540-9295(2004)002[0436:NWISA T]2.0.CO;2
Callaway, R. M., Ridenour, W. M., Laboski, T., Weir, T., & Vivanco, J. M. (2003). Natural selection for resistance to the allelopathic effects of invasive plants. Journal of Ecology, 93(3), 576–583. https://doi.org/10.1111/j.1365-2745.2005.00994.x
Castro-Diez, P., Pauchard, A., Travestet, A., & Vila, M. (2016). Linking the impacts of plant invasion on community functional structure and ecosystem properties. Journal of Vegetation Science, 27(6), 1233–1242. https://doi.org/10.1111/jvs.12429
Catford, J. A., Jansson, R., & Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical
the midwestern USA. *Plant and Soil*, 203(2), 191–197. https://doi.org/10.1007/s11104-010-0536-7

Kaur, R., Malhotra, S., & Inderjit, (2012). Effects of invasion of Mikania micrantha on germination of rice seedlings, plant richness, chemical properties and respiration of soil. *Biology and Fertility of Soils*, 48(4), 481–488. https://doi.org/10.1007/s00374-011-0645-2

Keeley, J. E. (1988). Allelopathy. *Ecology*, 69(1), 292–293. https://doi.org/10.2307/1943186

Kelly, M. (2000). *Cynara cardunculus*. In C. C. Bossard, J. M. Randall, & M. C. Hoshovsky (Eds.), *Invasive plants of California’s Wildlands* (pp. 139–145). Berkeley, CA: University of California Press.

Kelly, M. Pepper A. (1996). J. E. Lovich J. Randall & M. D. Kelly Controlling Cynara cardunculus (artichoke thistle, cardoon, etc.), *Proceedings of the California exotic pest plant council symposium*, 2, (97–101). San Diego, California: California Exotic Pest Plant Council.

Kong, C. H., Xuan, T. D., Khanh, T. D., Tran, H. D., & Trung, N. T. (2019). Allelochemicals and signaling chemicals in plants. *Molecules*, 24(15), https://doi.org/10.3390/molecules24152737

Kong, C. H., Zhang, S. Z., Li, Y. H., Xia, Z. C., Yang, X. F., Meiners, S. J., & Wang, P. (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. *Nature Communications*, 9. https://doi.org/10.1038/s41467-018-06429-1

Koubba, L., Damak, M., McKillop, A., & Simmonds, M. (1999). Constituents of *Cynara cardunculus*. *Fitoterapia*, 70(2), 212–213. https://doi.org.10.1016/s0367-326x(99)00007-6

Lankau, R. A. (2012). Coevolution between invasive and native plants driven by chemical competition and soil biota. *Proceedings of the National Academy of Sciences*, 109(28), 11240–11245. https://doi.org/10.1073/pnas.1201343109

Lau, J. A., Puliafico, K. P., Koepscher, J. A., Steltzer, H., Jarvis, E. P., Lankau, R. A., &Collins, C. D. (2019). Evidence for evolution of increased competitive ability for invasive *Centarea solstitialis*, but not for naturalized *C. calcitrapa*. *Biological Invasions*, 21(1), 99–110. https://doi.org/10.1007/s10530-018-1807-z

Mallik, A. U., & Prat, D., & Bossdorf, O. (2004). Allelopathic Inhibition of Germination of *Cynara cardunculus var. scolymus* germplasm. *Journal of Food Composition and Analysis*, 24(2), 148–153. https://doi.org/10.1016/j.jfca.2010.04.010

Monteiro, C., & Owens, D. K. (2018). Allelopathy in tropical and subtropical species. *Phytochemistry Reviews*, 17(6), 1225–1237. https://doi.org/10.1007/s11101-018-9596-7

Mallik, A. U., & Pellissier, F. (2000). Effects of *Vaccinium myrtillus* on the California exotic pest plant council symposium, 2, (97–101). San Diego, California: California Exotic Pest Plant Council.

Mallik, A. U. (2008). Allelopathy: Advances, challenges and opportunities. *Biology and Fertility of Soils*, 48(4), 481–488. https://doi.org/10.1007/s00374-011-0645-2

Meli, S., & Lang, K. A. (2012). Developing an ecological context for allelopathy. *Plant Ecology*, 213(12), 1861-1867. https://doi.org/10.1007/s11258-012-0121-6

Mikami, E., Nadova, S., Vickova, V., Duhova, V., Kopaskova, M., Cipak, L., ... Grancaí, D. (2008). Antigenotoxic effect of extract from *Cynara cardunculus L.* *Phytotherapy Research*, 22(1), 77–81. https://doi.org/10.1002/ptr.2268

Miller, E. C., Perron, G. G., & Collins, C. D. (2019). Plant-driven changes in soil microbial communities influence seed germination through negative feedbacks. *Ecology and Evolution*, 9(16), 9298–9311. https://doi.org/10.1002/ece3.5476

Miller, E. C., Perron, G. G., & Collins, C. D. (2019). Plant-driven changes in soil microbial communities influence seed germination through negative feedbacks. *Ecology and Evolution*, 9(16), 9298–9311. https://doi.org/10.1002/ece3.5476

Miadokova, E., Nadova, S., Vickova, V., Duhova, V., Kopaskova, M., Cipak, L., ... Grancaí, D. (2008). Antigenotoxic effect of extract from *Cynara cardunculus L.* *Phytotherapy Research*, 22(1), 77–81. https://doi.org/10.1002/ptr.2268

Nilsson, M. C. (1994). Separation of allelopathy and resource competition by the boreal dwarf shrub *Emetrum hermaphroditum* Hagerup. *Oecologia*, 98(1), 1–7. https://doi.org/10.1007/bf00326083

Nilsson, M. C., Zackrisson, O., Sterner, O., & Wallstedt, A. (2000). Characterisation of the differential interference effects of two boreal dwarf shrub species. *Oecologia*, 123(1), 122–128. https://doi.org/10.1007/s004400050997

Noda, S., & Wang, P. (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. *Nature Communications*, 9. https://doi.org/10.1038/s41467-018-06429-1

Ookka, J. K., & Owens, D. K. (2018). Allelopathy in tropical and subtropical species. *Phytochemistry Reviews*, 17(6), 1225–1237. https://doi.org/10.1007/s11101-018-9596-7

Pandino, G., Lombardo, S., Mauromicile, G., & Williamson, G. (2011a). Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild *Cynara cardunculus* L. genotypes. *Food Chemistry*, 126(2), 417–422. https://doi.org/10.1016/j.foodchem.2010.11.001

Pandino, G., Lombardo, S., Mauromicile, G., & Williamson, G. (2011b). Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (*Cynara cardunculus* var. *scolymus*) germplasm. *Journal of Food Composition and Analysis*, 24(2), 148–153. https://doi.org/10.1016/j.jfca.2010.04.010

Paz-Ferreiro, J., Trasar-Cepeda, C., Leirós, M., Seoane, S., & Gil-Sotres, F. (2007). Biochemical properties of acid soils under native grassland in a temperate humid zone. *New Zealand Journal of Agricultural Research*, 50(4), 537–548. https://doi.org/10.1080/00288230709510321

Pignone, D., & Sonnante, G. (2004). Wild artichokes of south Italy: Did the story begin here? *Genetic Resources and Crop Evolution*, 51(6), 577–580. https://doi.org/10.1023/b:gres.0000024786.01004.71

Prati, D., & Bossdorf, O. (2004). Allelopathic Inhibition of Germination by Alliaria petiolata (Brassicaceae). *American Journal of Botany*, 91(2), 285–288.

Rao, T. A. (1981). Importance of the evolutionary approach to the study of allelopathy. *Soviet Journal of Ecology*, 88(3), 874–876. https://doi.org/10.1073/pnas.88.3.874

Rao, T. A. (2008). Allelopathy: Advances, challenges and opportunities. R. S. Zeng A. U. Mallik & S. M. Luo *Allelopathy in Sustainable Agriculture and Forestry*, 25–38. New York, NY: Springer. https://doi.org/10.1007/978-0-387-77337-7_2

Rao, T. A., & Pellissier, F. (2000). Effects of Vaccinium myrtillus on spruce regeneration: Testing the notion of coevolutionary significance of allelopathy. *Journal of Chemical Ecology*, 26(9), 2197–2209. https://doi.org/10.1023/a:1005528701927

Rao, T. A. (2008). Allelopathy: Advances, challenges and opportunities. *Allelopathy in Sustainable Agriculture and Forestry*, 25–38. New York, NY: Springer. https://doi.org/10.1007/978-0-387-77337-7_2

Rodgers, V. L., Wolfe, B. E., Werden, L. K., & Finzi, A. C. (2008). The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient...
availability in northern hardwood-conifer forests. Oecologia, 157(3), 459–471. https://doi.org/10.1007/s00442-008-1089-8

Rudrapa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., & Bais, H. P. (2007). Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. Journal of Chemical Ecology, 33, 1898–1918. https://doi.org/10.1007/s10886-007-9353-7

Scavo, A., Abbate, C., & Mauromicale, G. (2019). Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 442(1-2), 23–48. https://doi.org/10.1007/s11104-019-04190-y

Scavo, A., Pandino, G., Restuccia, A., Lombardo, S., Pesce, G. R., & Mauromicale, G. (2019). Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. on the seedling growth of two cosmopolitan weed species. Italian Journal of Agronomy, 14(2), 78–83.

Scavo, A., Restuccia, A., Abbate, C., & Mauromicale, G. (2019). Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agronomy for Sustainable Development, 39(4), https://doi.org/10.1007/s10886-019-0580-4

Scavo, A., Restuccia, A., Pandino, G., Onofri, A., & Mauromicale, G. (2018). Allelopathic effects of Cynara cardunculus L. leaf aqueous extracts on seed germination of some Mediterranean weed species. Italian Journal of Agronomy, 13(2), 119–125. https://doi.org/10.4081/ija.2018.1021

Scharfy, D., Eggenschwiler, H., Venterink, H. O., Edwards, P. J., & Soumare, A., Sall, S. N., Sanon, A., Cissoko, M., Hafidi, M., Ndoye, I., Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., & Thelen, G. C., ... & Prati, D. (2009). Activated carbon may have undesired side effects for testing allelopathy in invasive plants. Basic and Applied Ecology, 10(6), 500–507. https://doi.org/10.1016/j.baae.2008.10.009

White, V. A., & Holt, J. S. (2005). Competition of artichoke thistle (Cynara cardunculus) with native and exotic grassland species. Weed Science, 53(6), 826–833. https://doi.org/10.1614/ws-04-171r.1

Zackrisson, O., & Nilsson, M.-C. (1992). Allelopathic effects by Eucalyptus camaldulensis and microbial community mediated by Eucalyptus camaldulensis. Applied Ecology and Environmental Research, 14(3), 1–19. https://doi.org/10.15666/aeer/1403_001019

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Uddin MN, Asaeda T, Shampa SH, Robinson RW. Allelopathy and its coevolutionary implications between native and non-native neighbors of invasive Cynara cardunculus L. Ecol Evol. 2020;10:7463–7475. https://doi.org/10.1002/ece3.6472