若手奨励賞受賞記念講演

ピコ秒相対論的レーザーによる非平衡プラズマの理論研究

岩田 夏弥
Natsumi Iwata

大阪大学 レーザー科学研究所

受賞対象論文

[1] N. Iwata et al., Nature Communications 9, 623 (2018)
[2] N. Iwata et al., Physics of Plasmas 24, 073111 (2017)
[3] A. Yogo, K. Mima, N. Iwata et al., Scientific Reports 7, 42451 (2017)
受賞対象論文の概要

Keyword: ピコ秒相対論的レーザープラズマ相互作用

(1) A. Yogo, K. Mima, N. Iwata et al. (他24人),
 Boosting laser-ion acceleration with multi-picosecond pulses,
 Scientific Reports 7, 42451 (2017)

(2) N. Iwata, K. Mima, Y. Sentoku, A. Yogo, H. Nagatomo,
 H. Nishimura and H. Azechi,
 Fast ion acceleration in a foil plasma heated by a multi-picosecond
 high intensity laser,
 Physics of Plasmas 24, 073111 (2017)

(3) N. Iwata, S. Kojima, Y. Sentoku, M. Hata and K. Mima,
 Plasma density limits for hole boring by intense laser pulses,
 Nature Communications 9, 623 (2018)

Highlighted in
Collections (Plasma Physics, Fundamental properties of plasma),
Nature Communications (2018)
Outline

- 背景
 高強度レーザー、高エネルギー密度プラズマ、ピコ秒相対論的領域

 一ピコ秒相対論的領域における新しいレーザープラズマ相互作用

- レーザーホールポーリングの理論的限界
 N. Iwata et al., Nature Communications 9, 623 (2018)

- 薄膜プラズマにおける統計的電子加熱とイオン加速の効率化
 N. Iwata et al., Physics of Plasmas 24, 073111 (2017)
 A. Yogo, K. Mima, N. Iwata et al., Scientific Reports 7, 42451 (2017)

- まとめ
高強度レーザーの発展

■ レーザー光の強度

\[I \left[\text{W/cm}^2 \right] \approx \frac{k\text{J}}{\text{ps}} \left(\frac{1}{100 \mu\text{m}} \right)^2 \approx 10^{19} \text{W/cm}^2 \]

例：ピコ秒レーザーの場合

規格化振幅 \(a_0 \equiv \frac{p_{\text{os}}}{m_e c} \)

\(a_0 < 1 \) 非相対論的

\[a_0 \geq 1 \] 相対論的

\(a_0 = 1 \iff I \approx 10^{18} \text{W/cm}^2 \) （レーザー波長 1 \(\mu\text{m} \)）
高エネルギー密度・相対論的プラズマ

レーザー（実験室）宇宙物理

レーザー核融合

Relativistic laser light

n_e > n_c

n_c: レーザー波長に対する臨界密度

電子加速

イオン加速

イオンビーム源、中性子源

（相対論的電子）

多数場
E ~ TV/m

高エネルギー密度科学

光の圧力

\[\frac{I}{c} \approx \text{Gbar} (= 100 \text{ TPa}) \]

\[10^{19} \text{ W/cm}^2 \]

\[G_{\text{bar}} \approx 0.6 \text{ MeV} \cdot n_c \text{（相互作用面での密度）} \]

\[\approx \text{keV} \cdot 600 n_c \text{（固体密度）} \]

X線領域の固体密度発射体
ピコ秒相対論的領域ではイオン運動が重要となり、
加熱・加速が新しい段階に遷移する

\[\omega_{pi}^{-1} \approx 100 \text{ fs} \]
レーザー光との相互作用面 \((n_e = n_c) \) におけるイオンプラズマ振動数

音速 \(\approx 1-10 \text{ \(\mu \)m/ps} \)
for \(I = 10^{18-19} \text{ W/cm}^2 \). (\(\mu \text{m} \approx \text{レーザー波長} \))
ピコ秒相対論的領域ではイオン運動が重要となり、加熱・加速が新しい段階に遷移する

\[\omega_{\text{pi}}^{-1} \sim 100 \text{ fs} \] レーザー光との相互作用面 \((n_e = n_c)\) におけるイオンプラズマ振動数

音速 \(\sim 1-10 \mu\text{m/ps}\) for \(I = 10^{18-19} \text{ W/cm}^2\). (\(\mu\text{m} \sim \text{レーザー波長}\))

ピコ秒のタイムスケールでは、イオンを含めたプラズマ全体が光の照射に反応して構造を変化させる。

レーザー吸収、加速が変化

電子のエネルギー分布が再構成される

\(\lambda_L = 1 \mu\text{m}\)

Relativistic laser

膨張プラズマ中で、より高エネルギーの電子が生成される。

プラズマ膨張（イオン加速）

高エネルギー化していく電子が作る膨張プラズマ
ピコ秒高強度レーザー実験では、フェムト秒領域でのスケーリングを超える加熱・加速が観測されている

NIF-ARC (LLNL, USA)
- 2 x 10^{18} W/cm2, 1 ps
- 9 x 10^{17} W/cm2, 10 ps
- 33 µm Ti foil target
- D. Mariscal et al., Phys. Plasmas, to be published

LFEX (ILE, Osaka Univ.)
- 2 x 10^{18} W/cm2, 1.5 ps or 3 ps flattop
- 5 µm Al foil target
- A. Yogo, K. Mima, N. Iwata et al., Sci. Rep. 7, 42451 (2017)

![Graphs showing proton and electron energy](image)

Electron (exp.)
- 1.5 ps
- $T_e = 0.45 \pm 0.02$ MeV
- $T_p \times 5$

Proton (exp.)
- 13 MeV
- 1.5 ps
- $T_p \times 3$

PIC simulation
- ~10 ps
- 5 ps

![Graphs showing intensity vs. max proton energy](image)

Max Proton Energy [MeV]
- Intensity [W cm$^{-2}$]

![Graphs showing electron and proton energy](image)

Sub-psレーザーによる実験 (green)
- 等温膨張モデル (red and blue lines)

Sub-ps領域で用いられる
Outline

● 背景
高強度レーザー、高エネルギー密度プラズマ、ピコ秒相対論的領域

——ピコ秒相対論的領域における新しいレーザープラズマ相互作用——

● レーザーホールボーリングの理論的限界
N. Iwata et al., Nature Communications 9, 623 (2018)

● 薄膜プラズマにおける統計的電子加熱とイオン加速の効率化
N. Iwata et al., Physics of Plasmas 24, 073111 (2017)
A. Yogo, K. Mima, N. Iwata et al., Scientific Reports 7, 42451 (2017)

● まとめ
レーザーホールボーリング

レーザーは光圧でプラズマ表面を押し進む（ホールボーリング）。

\[
KM = MEMJFMIL < (1 + R) I c = n_e T_e + 2n_i M_i v_f^2
\]

従来のホールボーリング理論

圧力バランスの式

\[
(1 + R) \frac{I}{c} = n_e T_e + 2n_i M_i v_f^2
\]

エネルギーフーリエクス保存の式

\[
(1 - R) I \simeq n_e T_e c
\]

\[\Rightarrow v_f > 0 \text{ (for } I > 0 \text{ and } R > 0)\]

レーザー照射が続く限り、ホールボーリングは有限速度で進む。

- 光の侵入に限界はない（長時間進み続ける）のか？
ピコ秒スケールでは、ホールボーリング面の停止状態が確立する

Continuous Laser

Relativistically overdense

(D^{1+} 40 n_c, 20 um foil + 1 um pre-plasma)

1D PIC simulation
Laser condition:
150 fs Gaussian + const.
\(a_0 = 2 \) (I = 5 \times 10^{18} W/cm^2)
Linear polarization

Initial plasma density distribution

Ion phase plot (longitudinal)

Ion longitudinal momentum distribution at the HB front

Number of ion PIC particle

\(p_{xi} \)

\(x \)

\(t \)

1 \mu m

Natsumi IWATA (ILE, Osaka Univ.)
JPS Annual Meeting, Fukuoka
March 14, 2019
ピコ秒スケールでは、ホールボーリング面の停止状態が確立する

Continuous Laser

Relativistically overdense

Initial plasma density distribution

γn_c

Relativistic transparency

Collisionless shock

$\bar{p}_{xf} > 0$

Hole boring

1D PIC simulation

Laser condition:

150 fs Gaussian + const.

$a_0 = 2 \ (I = 5 \times 10^{18} \ W/cm^2)$

Linear polarization

イオンの平均の粒子フランクスが正。＝ホールボーリングが進行している。
ピコ秒スケールでは、ホールボーリング面の停止状態が確立する

Continuous Laser

Relativistically overdense

Initial plasma density distribution

\(\gamma n_c \)

Relativistic transparency

Collisionless shock

Hole boring

\(p_{xi} \)

HB front

Shock front

(Transition)

\(p_{xi} \)

HB front

Shock front

Blowout

Time \(t \)

1 \(\mu \)m

Number of ion PIC particle

10^2

10

1

\(p_{xf}/M_{i}c \) [10^{-2}]

\(\overline{p}_{xf} > 0 \)

\(\overline{p}_{xf} = 0 \)

Number of ion PIC particle

10^2

10

1

\(p_{xf}/M_{i}c \) [10^{-2}]

1D PIC simulation

Laser condition:

150 fs Gaussian + const.

\(a_0 = 2 (I = 5 \times 10^{18} \text{ W/cm}^2) \)

Linear polarization

イオンの平均の粒子フラックスが正。＝ホールボーリングが進行している。

イオンの平均の粒子フラックスがゼロ。
ピコ秒スケールでは、ホールポーリング面の停止状態が確立する

Relativistically overdense

\(n_s > \gamma n_c \)

Initial plasma density distribution

Continuous Laser

Hole boring

\(p_{xi} \)

Collisionless shock

\(p_{xf} > 0 \)

Initial plasma density distribution

\((D^{1+} 40 n_c, 20 \mu m \text{ foil} + 1 \mu m \text{ pre-plasma}) \)

1D PIC simulation

Laser condition:

150 fs Gaussian + const.

\(a_0 = 2 (I = 5 \times 10^{18} \text{ W/cm}^2) \)

Linear polarization

Ion longitudinal momentum distribution at the HB front

\(\bar{p}_{xf} > 0 \)

Ion longitudinal momentum distribution

\(\bar{p}_{xf} = 0 \)

Negatively accelerated

reflected

HB front

イオンの平均の粒子フラックスが正。＝ホールポーリングが進行している。

イオンの平均の粒子フラックスがゼロ。

イオンは反射され続けるが、ホールポーリング速度はゼロになる。

ホールポーリングは、レーザー照射下で停止する。

← 長時間の相互作用を通して、イオンを含めたプラズマ全体が、光の照射に反応して構造変化した結果。

Natsumi IWATA (ILE, Osaka Univ.)

JPS Annual Meeting, Fukuoka

March 14, 2019
ホールポーリング停止状態の記述

電子は光の圧力により $\ell_s/2$ の距離押し込まれている

l_s: スキン長

イオンの平均フラックスはゼロ。
(1) ホールポーリング停止面での圧力バランスの式
（2 流体運動方程式で、イオンの圧力項を無視して導かれる。）

\[
(1 + R) \frac{I}{c} = n_h T_h + \frac{E_s^2 (n_e)}{8\pi}
\]

レーザー光圧 電子圧力

\[
(n_e T_e \sim n_h T_h)
\]

ホールポーリング面でイオンを反射するポテンシャル。
＝“プラズマの表面張力”

\[
\frac{E_s^2}{8\pi} = 2\pi e^2 n_e^2 \left(\frac{l_s}{2}\right)^2
\]

\text{R: Reflectivity,}
\text{Subscript 'h' = hot component.}
\text{l_s: Skin depth,}
\text{n_e: Plasma density at the stationary HB front.}
ホールポーリング停止状態の記述

(1) ホールポーリング停止面での圧力バランスの式
（流体運動方程式で、イオンの圧力項を無視して導かれる。）

\[(1 + R) \frac{I}{c} = n_h T_h + \frac{E_s^2 (n_e)}{8\pi}\]

R: Reflectivity,
Subscript 'h'
= hot component.
l_s: Skin depth,
n_e: Plasma density at the stationary HB front.

ホールポーリング面でイオンを反射するポテンシャル。
＝“プラズマの表面張力”

(2) エネルギーフラックス保存式

\[(1 - R) I = \alpha n_h T_h v_h\]

\[v_h \sim c: \text{Electron flow velocity}\]

Geometrical factor:

\[\frac{E_s^2}{8\pi} = 2\pi e^2 n_e \left(\frac{l_s}{2}\right)^2\]

- 1D, 2D, 3D 相対論的 マクスウェル運動量分布に対し \(\alpha = 1, 2, 3\).
- レーザービーム径方向へのエネルギー拡散を表す。

Natsumi IWATA (ILE, Osaka Univ.)
JPS Annual Meeting, Fukuoka
March 14, 2019
ホールボーリングのプラズマ密度限界

ホールボーリング限界密度

\[
\frac{n_s}{n_c} = 8\epsilon^2 a_0^2 \frac{1 + R - (1 - R) \alpha^{-1}}{2}
\]

レーザー光が密度 \(n_s\) に到達すると、ホールボーリングは停止する。

\(\epsilon = 1\) は線偏光、
\(\epsilon = \sqrt{2}\) は円偏光

→ 準一次元的な系（\(\alpha = 1\)、大集光径レーザー）
で、直線偏光（\(\epsilon = 1\)）の場合、

\[
\frac{n_s}{n_c} = 8Ra_0^2
\]

相対論的強度の光は、
最大で \(8a_0^2n_c\) の密度領域まで
プラズマを押し進むことができる。

シミュレーションでも、限界密度付近でホールボーリングが止まることが確認された。

Simulation points: 1D PIC ▲, 2D PIC, wide focus ■

Simulation condition: 1 \(\mu\)m pre-plasma + 20 \(\mu\)m thick overdense plasma. Simulations are performed by EPIC [1] and PICLS [2] codes.

[1] Y. Kishimoto+ J. Plasma Phys.72 (2006) 971. [2] Y. Sentoku+ J. Comp. Phys. 227 (2008) 6846
ホールポーリングモードから噴き出し（blowout）モードへの遷移

ホールポーリング停止後、さらに加熱されたプラズマはレーザー側に噴出する。

喷出プラズマ電子の高効率レーザー加速

噴き出しモードへの遷移時間

\[t_s = \frac{AL\left(n_s^{1/2} - (\gamma n_c)^{1/2}\right)}{\sqrt{1 + R} a_0} \approx 1 \text{ps} \times \frac{L}{1 \mu\text{m}} \]

L: プリプラズマスケール長（~ 数μm）

ピコ秒を超える相互作用では、レーザー加速・加熱が新しい段階へと遷移する。
Outline

● 背景

高強度レーザー、高エネルギー密度プラズマ、ピコ秒相対論的領域

一ピコ秒相対論的領域における新しいレーザープラズマ相互作用一

● レーザーホールポーリングの理論的限界

N. Iwata et al., Nature Communications 9, 623 (2018)

● 薄膜プラズマにおける統計的電子加熱とイオン加速の効率化

N. Iwata et al., Physics of Plasmas 24, 073111 (2017)
A. Yogo, K. Mima, N. Iwata et al., Scientific Reports 7, 42451 (2017)

● まとめ
TNSA イオン加速と等温プラズマ膨張モデル

- Target normal sheath acceleration

\[n_e > n_c \]

(1) 電子加速
High intensity laser

(2) シース場の形成
\(E \sim MV/\mu m \)

(3) イオン加速
(=プラズマ膨張)

Ponderomotive scaling

\[T_e = m_e c^2 \left(\sqrt{1 + \frac{a_0^2}{2}} - 1 \right) \]

S. C. Wilks et al., PRL 96, 1383 (1992)

\(a_0 \): Normalized laser amplitude at laser pulse peak

\[T_e = \text{const.} \]

- 等温膨張モデル

\[\varepsilon_{\text{imax}} = 2 T_e \left[\ln (\tau_{\text{acc}} + \sqrt{\tau_{\text{acc}} + 1}) \right]^2 \]

P. Mora, Phys. Rev. Lett. 90, 185002 (2003)
J.E. Allen et al., J. Plasma Phys. 4, 187 (1970)

+ empirical time scale: \(\tau_{\text{acc}} \sim 1.3 \tau_{\text{pulse}} \)

J. Fuchs et al., Nat. Phys. 199 (2006)

+ 3 dimensional effect

\[\rightarrow \text{fsからsub-psのイオン加速実験結果をよく説明できる。} \]

\[\rightarrow \text{ピコ秒を超える加速にも適用可能なのか？} \]
Target: 5 μm Al foil

LFEX laser (ILE, Osaka Univ.)
1 kJ on target (by 4 beams)

Spot radius: 35 μm

~ 5 ps × Sound speed

数ピコ秒にわたり準一次元的な相互作用が可能。

Peak intensity:

\[I = 2.3 \times 10^{18} \text{ W/cm}^2 \]

\((a_0 = 1.4) \)

Pulse shape:

1. 1 pulse
2. 2 pulse train

\[1.5 \text{ ps} \]

\[3 \text{ ps} \]

A. Yogo et al., Sci. Rep. 7, 42451 (2017)
非等温プラズマ膨張モデルによるイオン加速エネルギーの導出

等温膨張モデル for sub-ps TNSA

\[T_e = \text{const.} \equiv T_0 \]

Self-similar variable

\[\xi \equiv \frac{x}{C_s t} \quad C_s = \sqrt{\frac{Z_i T_e}{M_i}} \quad \text{const.} \]

音速

J.E. Allen et al., J. Plasma Phys. 4, 187 (1970)

P. Mora, Phys. Rev. Lett. 90, 185002 (2003)

イオン最大エネルギー

\[\varepsilon_{i\text{max}} = 2T_0 \left[\ln \left(\tau_{\text{acc}} + \sqrt{\tau_{\text{acc}} + 1} \right) \right]^2 \]

非等温膨張モデル for over-ps TNSA

\[T_e \neq \text{const.} \]

Define a new variable

\[\xi \equiv \frac{x}{R(t)} \quad R(t) = \int_0^t C_s(t) dt \]

温度変化の時間スケールは、プラズマ膨張の時間スケールより短いとする。

\[\frac{R \dot{T}_e}{C_s T_e} = O(\varepsilon) \ll 1 \]

近似

\[\varepsilon_{i\text{max}} = 2ZT_0 \left[\int_0^\tau \frac{\Theta \tilde{T}_e(\tau')}{\sqrt{1 + \tilde{R}^2(\tau')}} d\tau' \right]^2 \]

\[\tilde{T}_e = \frac{T_e}{T_0} \quad \tilde{R} = \frac{R}{C_s(T_0)t} \quad \tau = \frac{\omega pt}{\sqrt{2eN}} \]

イオン最大エネルギーは、電子温度-時間プロットの面積によって決まる。
イオン最大エネルギーの時間発展（PICシミュレーション）

\[\varepsilon_{\text{max}} \text{ [MeV]} \]

\[t \text{ [ps]} \]

(Pulse shape)

2 pulse train
イオン最大エネルギーの時間発展（等温膨張モデルとの比較）

(Pulse shape)

2 pulse train

\[\varepsilon_{\text{max}} \mathrm{[MeV]} \]

\[t \mathrm{[ps]} \]

等温膨張モデル
assuming the ponderomotive temperature

4 \(n_c \)

0.2 \(n_c \)

PIC
非等温膨張モデルは、ピコ秒領域のイオン最大エネルギーの時間発展を記述できる

非等温膨張モデル

by Natsumi IWATA (ILE, Osaka Univ.)

JPS Annual Meeting, Fukuoka

March 14, 2019
嘔き出し（blowout）モードに遷移すると、電子加速とプラズマ膨張が新しい段階に入る

● プラズマ膨張の様子（レーザー連続照射，t = 2.5 ps）

図に示すように、レーザー照射により電子密度が減少し、電子の再循環が観測される。時間経過に伴い、電子のエネルギーが増加し、フェルミ加速に類似する統計的加速が観察される。

● PIC電子軌道とエネルギー発展

エネルギー発展の図において、レーザー照射から約1 ps後、エネルギーが著しく増加し、その後はスロープ状に増加する。この現象は、電子の再循環とプラズマの膨張と密接に関連している。

高速電子の平均エネルギー（スロープ温度）の増加

図に示すように、エネルギーと時間の関係から、電子の平均エネルギーは時間経過に伴い増加している。
まとめ：ピコ秒相対論的レーザープラズマ相互作用とは
開放系での空間、エネルギー空間での構造形成

相対論的レーザーの照射時間スケール

フェムト（10⁻¹⁵）秒

ピコ（10⁻¹²）秒

レイザー加熱・加速が新しいモードに遷移

→イオンを含めた
プラズマ全体が応答

非熱的定常状態

光の侵入（ホールポーリング）の停止

撃力的なエネルギー注入
→その後の緩和過程

持続的なエネルギー注入の中での定常状態形成過程