High-energy Orbit Sliding Mode Control for Nonlinear Energy Harvesting

Ying Zhang (✉ zhangyingu789@163.com)
Xi’an Jiaotong University https://orcid.org/0000-0001-5477-8297

Changshun Ding
Xi’an Jiaotong University School of Mechanical Engineering

Jie Wang
Xi’an Jiaotong University School of Mechanical Engineering

Junyi Cao
Xi’an Jiaotong University School of Mechanical Engineering https://orcid.org/0000-0002-5025-7838

Original Research

Keywords: Energy harvesting, Nonlinear system, Sliding mode control, High-energy orbit, Performance enhancement

Posted Date: February 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-203705/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Vibration energy harvesting has extensive application prospects in many significant occasions, such as mechanical structure health monitoring, vehicle tire pressure monitoring, IoT devices and human health monitoring. The nonlinearity is an effective method to improve the energy harvesting efficiency where there are low- and high-energy orbits in the multi-solution region of the system. The harvested power will be increased significantly when the system is guided from the low-energy orbit to the high-energy orbit. However, previous research mainly focuses on the theoretical and numerical investigation of controlling strategy, but the feasibility of control methods has not been verified experimentally. This paper proposes a high-energy sliding mode control method through rotatable magnets actuated by micro-motor. The electromechanical model of mono-stable and bi-stable systems with the identified nonlinear restoring force is established to design a sliding mode control algorithm for enhancing the energy harvesting performance. Simulation and experiment results demonstrate that the rotatable magnets with sliding mode control have a positive influence on reaching the high-energy orbit for both mono-stable and bi-stable systems within the multi-solution region. Moreover, the rotatable magnets method with a sliding mode control actuates the small magnets in the system for a short time with little consumption of energy. This research has provided a practical application of high-energy orbit control for improvement of the energy harvesting.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures
Figure 1

Schematic of the piezoelectric energy harvester
Figure 2

Nonlinear restoring force versus transverse displacement for different magnet angle
Figure 3

Potential energy functions versus transverse displacement for different magnet angle

Figure 4

Nonlinear restoring force fitting surface
Figure 5

Numerical up-sweep and down-sweep open-circuit voltage output frequency response curves of mono-stable system
Figure 6

The displacement and control angle of the mono-stable system
Figure 7

The output voltage with control of the mono-stable system
Figure 8

Numerical up-sweep and down-sweep open-circuit voltage output frequency response curves of bi-stable system
Figure 9

The displacement and control angle of the bi-stable system.
Figure 10

Velocity–displacement phase diagram of the bi-stable system
Figure 11

The output voltage with control of the bi-stable system
Figure 12

Velocity-displacement phase diagram under noise excitation of the bi-stable system
Figure 13

The output voltage with control under noise excitation of the bi-stable system
Figure 14

The schematic diagram of the system energy

Figure 15
Figure 16

Restoring force curves versus transverse displacement from the center line ($x=0$) for different magnet angle.
Figure 17

Potential energy functions versus transverse displacement from the center line ($x=0$) for different magnet angle
Figure 18

The output voltage and displacement with control of the mono-stable system.
Figure 19

Experimental velocity-displacement phase diagram of the mono-stable system
Figure 20

The output voltage and displacement with control of the bi-stable system
Figure 21

Experimental velocity-displacement phase diagram of the bi-stable system