Supplementary Material

Synthesis of optically active vicinal fluorocyclopentanols and fluorocyclopentanamines by enzymatic deracemization

Olga O. Kolodiazhna, Dmitry V. Prysiazhnuk, Anastasy O. Kolodiazhna, and Oleg I. Kolodiazhnyi*

V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Str., 1, Kiev, Ukraine
Email: olegkol321@gmail.com

Table of Contents

Copies of 1H, 19F and 13C NMR Spectra ...S2
Copies of mass spectra ..S10
Determination of optical purity by Mosher’s acid derivatization and HPLCS14
1H NMR spectrum (500MHz, CDCl$_3$) of (R,R)-2-fluorocyclopentan-1-ol 4
1H NMR spectrum (500MHz, CDCl$_3$) of (S,S)-2-fluorocyclopentan-1-ol 3
1H NMR spectrum (500 MHz, DMSO-d6) of (1S,2R)-fluorocyclopentane-1-amine hydrochloride 14
1H NMR spectrum (500 MHz, DMSO-d6) of (1R,2S)-fluorocyclopentane-1-amine hydrochloride 12
$^1{}^3$C NMR spectrum of (R,S)-2-fluorocyclopentan-1-ol 2
13C NMR spectrum of (5,R)-2-fluorocyclopentan-1-ol 1
19F NMR spectrum (CDCl$_3$) of (S,S)-2-fluorocyclopentan-1-ol 3
19F NMR spectrum of (R,S)-2-fluorocyclopentan-1-ol 2
Mass spectrum of (1R,2S)-2-fluorocyclopentan-1-ol 3
Mass-spectrum of (R,R)-2-Fluorocyclopentane-1-ol 4
Mass spectrum of (S,S)-2-fluorocyclopentan-1-ol 3
Mass-spectrum of (1S,2R)-2-fluorocyclopentane-1-amine hydrochloride

Mass-spectrum of (1R,2S)-2-fluorocyclopentane-1-amine hydrochloride 13
Determination of optical purity of resolved stereoisomers

![Chemical structure](image)

a) To 10 mg (4.7 mmol) of racemic 2,1-bromoindanol and 0.01 ml of triethylamine in 2 ml of diethyl ether was added 13 mg (5.17 mmol) of Mosher acid chloride in the solution of 1 ml of diethyl ether with stirring and cooling to −20 °C. After 10 min, the reaction mixture was centrifuged; the solvent was evaporated in vacuo, 1 ml of CDCl₃ was added to the residue, the solution was placed to NMR tube, ¹H and ¹⁹F NMR spectroscopic analyses were performed (See NMR spectra below);
b) The resolved 2-bromo-2,3-dihydro-1H-inden-1-ol stereoisomers were analyzed analogously (See NMR spectra below).
19F Spectra of Mosher derivative of 2-fluorocyclopentan-1-ol: A) racemate; B) (1S,2R)-Stereoisomer 1
19F Spectra of Mosher derivative of (rac)-2-fluorocyclopentan-1-ol
19F Spectra of Mosher derivative of (R,S)-2-fluorocyclopentan-1-ol 2
19F Spectra of Mosher derivative of (S,R)-2-fluorocyclopentan-1-ol
1H NMR spectrum of Mosher derivative of racemic fluorocyclopentane-1-amine hydrochloride

1H NMR spectrum of Mosher derivative of (1S,2R)- fluorocyclopentane-1-amine hydrochloride 14
1H NMR spectrum of Mosher derivative of (1R,2S)- fluorocyclopentane-1-amine hydrochloride 12
chiral HPLC analysis on Chiralcel AD-H column of (1S,2R) 2-fluorocyclopentan-1-ol 1
chiral HPLC analysis on Chiralcel AD-H column of (1R,2S) 2-fluorocyclopentan-1-ol 2