SINGLE- AND TWO-COMPONENT GAMMA-RAY BURST SPECTRA IN THE FERMI GBM-LAT ENERGY RANGE

P. VERES AND P. MÉSZÁROS

Department of Astronomy & Astrophysics, Department of Physics, and Center for Particle Astrophysics, 525 Davey Lab., Pennsylvania State University, University Park, PA 16802, USA; veresp@psu.edu, mnp@astro.psu.edu

Received 2012 February 15; accepted 2012 June 1; published 2012 July 20

ABSTRACT

Most Fermi gamma-ray burst spectra appear as either a broken power law extending to GeV energies or as a broken power with a separate GeV power-law component. Here we show that such spectra can be understood in terms of magnetically dominated relativistic jets where a dissipative photosphere produces the prompt MeV emission, which is extended into the GeV range by inverse Compton scattering in the external shock, with possible contributions from a reverse shock as well. The bulk Lorentz factors required in these models are in the range of 300–600, and the MeV–GeV time delays arise naturally. In some cases an optical flash and a sub-dominant thermal component are also present.

Key words: gamma-ray burst: general – gamma rays: stars – magnetic fields – radiation mechanisms: non-thermal – relativistic processes

1. INTRODUCTION

The gamma-ray burst (GRB) spectra observed with the LAT detector on Fermi reveal a diversity of appearances. Some have spectra consistent with a single canonical Band function (Band et al. 1993) extending to the highest detected multi-GeV energies, while in others at the higher end of the Band spectrum a second, flatter spectral component emerges, which sometimes appears to have a cutoff (Pelassa 2011; Pe’er 2011). The origin of such a dichotomy, as well as the extent of the applicability of such spectra for deriving lower limits on the bulk Lorentz factor (Kocevski & The Fermi Collaboration 2012), is the subject of ongoing research and discussions.

Here we investigate possible scenarios for these two spectral types in the context of magnetically dominated, baryon loaded outflows, where the prompt MeV emission arises in the jet photosphere. Magnetically dominated models have recently received increased attention (Drenkhahn & Spruit 2002; Lyutikov & Blandford 2003; Giannios & Spruit 2007; Giannios 2012; Komissarov et al. 2009; McKinney & Uzdensky 2011; Metzger et al. 2011a; Mészáros & Rees 2011; Bošnjak & Kumar 2012; Zhang & Yan 2011), while photospheric emission, either in baryonic or magnetic models where dissipation occurs near the photosphere, have been shown to be able to produce Band-like non-thermal spectra (Pe’er et al. 2006, 2012; Lazatti et al. 2011; Beloborodov 2010; Ryde et al. 2010). In the scenarios that we discuss here we combine these two elements and add a third one, assuming that the prompt spectrum is a combination of the emission from two distinct regions, namely, a magnetically dominated dissipative photosphere and the external shock. We argue that the photosphere is initially responsible for the low-energy (GBM) part of the Band-like prompt spectrum, the final observed spectrum being modified by inverse Compton scattering in the external shock, which results in a delayed high-energy (LAT) component. The latter includes a forward and possibly also a reverse shock (RS) contribution, dominated by synchrotron self-inverse Compton (SSC) as well as external inverse Compton (EIC) of the photospheric photons. We consider here mainly the radial structure of the outflow and restrict ourselves to leptonic mechanisms.

Our primary goal here is to explore the generic features of such models, and to test the extent to which they qualitatively lend themselves to the interpretation of LAT spectra. That is, we do not perform detailed fits to individual bursts, which at this point would be premature given the preliminary nature and the uncertainties in the models. The purpose is to explore the connection between elements of the physical model and the presence or absence of broad spectral features, and how these depend on typical burst parameters. We concentrate on the prompt emission, from the time of the trigger up to times comparable to the deceleration time, when the external forward shock (FS; and the reverse, if present) has fully developed. The latter should be representative of the physics in the late afterglow, which we do not address specifically here. We then qualitatively compare our results to several of the archetypical LAT bursts, such as GRB 090902B (Abdo & the Fermi Collaboration 2009), which has a Band component and an extra high-energy power-law (PL) second component; GRB 090926, which also has an extra spectral component and shows a high-energy cutoff (Ackermann & the Fermi Collaboration 2011); and GRB 080916C, which shows a single Band component extending to multi-GeV (Abdo et al. 2009).

We show that in the context of these models, this variety of appearances can be attributed to differences in the strength of the various radiation components under plausible variations of the input physical parameters. Previous investigations (e.g., Toma et al. 2011b; Fraija et al. 2012) have considered a connection between the extra high-energy component and inverse Compton and/or an RS in a baryon-dominated outflow. Here the magnetically dominated dynamics, photospheric input spectrum, and consideration of separate SSC and EIC components from both FS and RS result in a different and broader range of possible outcomes. Depending on the parameters, the SSC or EIC from the FS and the RS (if the latter is present) can either result in an extra high-energy component, or sometimes in an apparent single Band component extending to the highest energies. We show that, even if there is a pair-production cutoff in the non-thermal prompt emission at a few or a few tens of MeV, the EIC radiation from the RS can constitute a natural extension of the absorbed emission to form a continuous Band spectrum out to higher energies. We argue that if an RS does not develop, the dominant high-energy components will be the FS SSC or EIC, resulting in a distinct extra component. For some parameters, however, the latter can also be produced by an RS. A further result from

1
these calculations is that, since the high energy component arises mainly in the external shock, where the compactness parameter is low, these high-energy photons do not constrain via $\gamma\gamma$ cut-off considerations the bulk Lorentz factor to as high values as considered in many of the recent analysis papers.

In Section 2 we discuss the basic magnetic jet model used. In Section 3 we give the details of the dissipative photospheric (prompt) spectrum. In Section 4 we discuss the various external shock synchrotron and inverse Compton radiation components. In Section 5 we present numerical results for various cases. In Section 6 we discuss our results and conclusions.

2. MAGNETIC MODEL

We assume a total luminosity $L_t = 10^{53} L_{t,53}$ erg s$^{-1}$ is released at a radius $r_0 = 10^7 r_{0,7}$ cm, lasting for 10 s in the central engine frame. This is initially (at r_0) mainly magnetic, which at larger radii gets gradually converted into bulk kinetic energy and non-thermal radiation. We assume that at the dissipative photosphere a fraction ζ_γ of L_t is released as prompt radiation, whose spectrum is discussed in the next section. A nominal value for this here is $\zeta_\gamma \approx 0.5$, which we assume to consist mainly of a non-thermal component $\zeta_{\text{nt}} \sim \zeta_\gamma$ giving the Band PL spectrum (a smaller fraction of ζ_γ is in a thermal component $\zeta_{\text{th}} < \zeta_{\text{nt}}$, discussed in Section 3.2, so that $\zeta_\gamma = \zeta_{\text{nt}} + \zeta_{\text{th}}$).

The remaining energy fraction beyond the photosphere ζ_γ, after the Lorentz factor reaches its saturation (coasting) value, is in kinetic energy form. About half of this, $\zeta_\gamma \approx 0.25$, is assumed to be radiated away in the external shock (forward and reverse) when deceleration starts, while the other half, $\zeta_{\text{ag}} \approx 0.25$, continues as kinetic energy of the decelerating ejecta, and is eventually radiated away in the longer afterglow phase. Thus, $\zeta_\gamma + \zeta_\text{ag} = 1$. Most of our results are evaluated for $\zeta_\gamma = 1 - \zeta_\text{ag} = 0.5$, and we use these nominal numerical fractions unless stated otherwise. These factors are used to define the respective luminosities, e.g., $L_{k,53} = (1 - \zeta_\gamma)L_{t,53}$, etc., and we use the $Q = 10^9 Q_9$ convention in cgs units, except, e.g., for the cooling Lorentz factor ($\eta = 600\eta_6$).

We consider a continuous outflow in which the central engine is active for $t_{\text{obs}} = 20 h_{1/2}(1 + z)/2$ s, while the deceleration time is \sim few seconds resulting in a modestly thick-shock deceleration region, which for simplicity will be approximated as a thin shell. We assume a constant density external medium $(n = 1 n_0$ cm$^{-3}$) and a burst with a fiducial density at the deceleration radius $n \approx 0.25 600$ cm$^{-3}$.

In magnetically dominated models the magnetic fields become rapidly transverse, in a striped magnetic structure (Kennel & Coroniti 1984). The Lorentz factor in such jets will become rapidly transverse, in a striped magnetic structure after a few characteristic lengths above r_0 the average Lorentz factor will increase as r^{n_b}, where m depends on the geometry assumed at the lower boundary (e.g., McKinney & Uzdensky 2011; Narayan et al. 2010). When magnetic reconnection plays a role, the expected Lorentz factor behavior is $\gamma \propto r^{-1/3}$ until it saturates (Drenkhan 2002; Giannios & Spruit 2007; Metzger et al. 2011b; Mészáros & Rees 2011), which we assume in what follows:

$$\Gamma(r) \propto \begin{cases} r^{1/3} & \text{if } r < r_{\text{sat}} \\ \text{const.} & \text{if } r_{\text{sat}} \leq r < r_{\text{dec}} \end{cases}$$

where r_{sat} is the saturation radius where $\Gamma \rightarrow \eta \equiv L_t / \dot{M} c^2$ and $r_{\text{dec}} > r_{\text{sat}}$ is the deceleration radius. We will concern ourselves here only with the behavior before and in the neighborhood of the deceleration radius, and do not consider the longer term afterglow phase. A feature worth stressing is that an acceleration behavior such as Equation (1) implies a comoving volume element $V' \propto r^2 \Gamma(r)$ scaling leading to a radius dependence of the comoving particle density n', temperature T', etc., which differs from that in the usual baryon-dominated $\gamma \propto r$. Also, the saturation radius occurs at significantly larger radii than in the matter-dominated acceleration cases, if other relevant quantities are the same. Furthermore, the scattering photospheric radius (see Equation (2)) occurs generally before the saturation radius.

3. PROMPT PHOTOSPHERIC RADIATION

The photospheric radius is obtained by setting the scattering optical depth to unity for the ejecta, i.e., $\tau_T = L_t / (4\pi r^2 m_p e^3 \eta \Gamma)/ (2 \sigma_T) = 1$, if the e^+e^- pair contribution can be ignored. The effect of pairs will be that they will increase the photospheric radius. With the increased radius variables have to be recomputed, resulting in a different cutoff energy and in a different number of pairs. At the end of this iterative process, we find that the photospheric radius increases by a factor of ~ 5 for the nominal parameters (see also Bošnjak & Kumar 2012). We address the details of pair creation at the end of this section.

For $\Gamma = (r/r_0)^{1/3}$ the photospheric radius at which $\tau_T = 1$ is

$$r_{\text{ph}} = \left(\frac{L_t r_0^{2/3} \sigma_T}{8\pi m_p e^3 \eta} \right)^{3/5} = 6.5 \times 10^{12} L_{t,53}^{5/3} r_0^{2/3} \eta_6^{-3/5} \text{ cm}$$

(2)

for a nominal $\eta = 600$, where σ_T is the Thomson cross section. The photospheric radius occurs in the accelerating phase for any realistic set of parameters, for the magnetized dynamics described in the previous section. The saturation radius, where the acceleration ceases and the ejecta starts to coast with $\Gamma \sim \eta \propto r$, is for a magnetically dominated jet, at

$$r_{\text{sat}} = r_0 \eta_3^3 = 2.2 \times 10^{15} r_{0,7} \eta_6^3 \text{ cm}$$

(3)

While the photosphere is relatively farther away from the central engine compared with baryonic outflow models, both the photosphere and the saturation radius remain generally smaller than the deceleration radius,

$$r_{\text{dec}} = \left(\frac{3L_{k,53}}{4\pi n \eta m_p c^2 \Gamma^3} \right)^{1/3} = 4.8 \times 10^{16} L_{t,53}^{1/3}$$

$$\times \left(1 - \zeta_\gamma\right)^{1/3} t_{1,3}^{-1/3} n_0^{-1/3} \eta_6^{-2/3} \text{ cm}$$

(4)

This is the radius at which we calculate, in Section 4, the interaction of the photospheric photons with the external shock electrons, resulting in SSC and EIC components. Using the scaling relations of the magnetic dynamics, the density decreases with radius as $n_0' \propto V^{-n_b} \propto r^{-7/3}$ for $r < r_{\text{sat}} = r_0 \eta_3^3$ and $n_0' \propto r^{-2}$ for $r_{\text{sat}} < r$, that is, $n_0'(r) = n_0'(r_{\text{sat}})r^{-7/3}$ for $r < r_{\text{sat}}$ and $n_0'(r) = n_0'(r_{\text{sat}})(r/r_{\text{sat}})^{-2}$ for $r_{\text{sat}} < r$. Thus, the comoving baryon density at the deceleration radius is $n_{b,\text{dec}} = 5.3 \times 10^4 (1 - \zeta_\gamma)^{-2/3} L_{t,53}^{1/3} n_0^{-2/3} \eta_6^{-2/3} t_{1,3}^{-2/3} \text{ cm}^{-3}$.

3.1. Non-thermal Photospheric Spectrum

Near the scattering photosphere, a prompt spectrum with a high radiation efficiency can be produced through dissipative effects. For non-magnetic outflows, such photospheres were
considered by, e.g., Rees & Mészáros (2005), Pe’er et al. (2006), and Beloborodov (2010), while for magnetic photospheres dissipation of magnetic energy via reconnection, turbulence dissipation or the associated semi-relativistic shocks was considered by, e.g., Giannios & Spruit (2007), Giannios (2012), McKinney & Uzdensky (2011), and Mészáros & Rees (2011). This generally can convert some fraction \(\zeta \) of the initial jet energy \(L_t \) into a prompt burst of radiation, the rest remaining available as kinetic energy of the coasting ejecta beyond the saturation radius. The spectrum of an unmagnetized dissipative outflow in the photospheric neighborhood has been calculated by Beloborodov (2010), who performed a radiative transfer calculation including both thermal and non-thermal electrons from nuclear collisions which results in a Band spectrum with spectral indices in the range of those observed (see also Vurm et al. 2011 for inclusion of magnetic fields up to \(\eta_\text{br} \sim 1 \)). Magnetic photospheres where reconnection leads to magnetic turbulence and/or dissipation combined with Comptonization effects involving purely thermal electrons were calculated by Thompson (1994) and Giannios & Spruit (2007), resulting also in Band-like spectra with spectral slopes close to the average observed values \(\alpha = 1 \) and \(\beta = 2 \). Of course, the dissipation of energy can occur in magnetic cases both below and above the photosphere, up to the saturation radius (Giannios 2008), and also in non-magnetic cases scattering occurring below and above for some distance above the photosphere can affect the spectrum (Pe’er et al. 2006; Beloborodov 2010). These calculations indicate that the spectral peak occurs naturally in the neighborhood of \(\epsilon_{\text{pk}} \sim 300 \text{ keV} \). Dissipation radii larger than the photosphere would permit also multi-GeV prompt photons to escape if these are indeed produced as shown by Giannios (2008), Beloborodov (2010), and Vurm et al. (2011).

Here we do not specialize to a specific dissipation mechanism, and we consider an idealized photospheric model where some fraction \(\zeta_r \sim 0.5 \) of the initial outflow luminosity is converted into prompt radiation near the nominal radius \(r_{\text{ph}} \) of the photosphere, producing a Band-like spectrum whose slopes are in the range of the observed values. In order to connect this spectrum to the magnetic properties of the flow, we assume that the spectral peak is given by the synchrotron spectral peak of the minimum energy electrons accelerated in the dissipative photosphere, which, as it happens, turns out also to be in the observed range of \(\sim 300 \text{ keV} \). (Note that, in principle, the prompt emission model could also be taken to be a non-magnetic photosphere, as in Pe’er et al. 2006; Beloborodov 2010; the photospheric radius would be different, but the upscattering in the external shock would differ only insofar as caused by any possible differences in the photospheric seed spectrum. Also, the range of radii over which the prompt spectrum forms does not have an impact on the upscattered spectrum, as long as the external shock lies significantly beyond the dissipation and saturation radii.)

The value of the Lorentz factor at the magnetic photosphere is

\[
\Gamma_{\text{ph}} = \left(\frac{r_{\text{ph}}}{r_0} \right)^{1/3} = 87 \frac{L_{t,53}^{1/5}}{\xi_7^{-1/5} \eta_7^{1/5} \eta_6^{1/3}}.
\]

At this photosphere, the magnetic dissipation and/or collisional effects such as \(n, p \) decoupling will lead to a significant non-thermal electron component. For example, for reconnection acceleration or semi-relativistic shocks associated with reconnection (Mészáros & Rees 2011), a typical minimum comoving electron random Lorentz factor \(\gamma_{\text{ec}, \text{ph}} \sim 600 \gamma_7 \), coincidentally of similar order of magnitude as \(n \). The magnetic field at the photosphere is \(B_{\text{ph}} = (32 \pi \epsilon_M p c^2 n_h)^{1/2} \approx 1.7 \times 10^6 \left(1 - \zeta_r \right)^{1/2} \zeta_r^{-7/10} \eta_7^{-3/10} \eta_6^{1/5} \xi_7^{1/5} \eta_6^{1/3} \frac{L_{t,53}}{r_0,7^{-1/5} \eta_6^{1/3}} \text{ G} \). Here \(n_h \) is the comoving baryon density evaluated at the photosphere, \(n_{\text{ph}, \text{br}} = L_k / (4 \pi m_p c^2 r_{\text{ph}}^2 \Gamma_{\text{ph}}) \approx 2.0 \times 10^{13} L_{t,53}^{3/5} \xi_r^{-7/5} \left(1 - \zeta_r \right) \eta_7^{-3/5} \eta_6^{1/5} \xi_7^{1/5} \eta_6^{1/3} \text{ cm}^{-3} \). Here as before, \(L_k \) and \(L_t \) are expressed as functions of \(L_t \) and \(\zeta_r \). The observed synchrotron spectral peak of the photosphere will be

\[
\epsilon_{\text{pk}, \text{obs}} = \epsilon_{\text{br}} = \frac{3 \epsilon_B B_{\text{ph}}^2}{4 \pi m_p c^2 r_{\text{ph}}^2 \Gamma_{\text{ph}}} \left(\frac{\Gamma_{\text{ph}}}{1 + \xi} \right) = 310 \zeta_r^{-1/2}
\]

\[
\times \left(1 - \zeta_r \right)^{1/2} r_{0,7}^{1/2} \eta_0^{1/2} \zeta_r^{-1} \Gamma_{\text{ph}}^{-1} \left(\frac{1 + \zeta}{2} \right)^{-1} \text{keV},
\]

corresponding to the Band peak. The magnetic field energy fraction at the photosphere is still \(\epsilon_B \sim 1 \), but dissipation will lead to values \(\epsilon_{B, \text{IS}} \ll 0.1 \) by the time the flow reaches the deceleration radius. Following Thompson (1994), Giannios & Spruit (2007), and Beloborodov (2010), we assume that the emergent spectral shape is of the Band form, taking for its peak value dependence on the flow parameters the expression (6). As a nominal photon number low-energy spectral index we take \(\alpha \sim 1 \) (where \(N_\gamma(\epsilon) \propto \epsilon^{-\alpha} \)) and for the high-energy spectral index \(\beta \sim 2.4 \). The flux in energy per energy units is then

\[
F_\epsilon = A \left\{ \begin{array}{ll} \frac{\epsilon}{\epsilon_{\text{br}}}^{-\alpha+1} & \text{if } \epsilon \leq \epsilon_{\text{br}} \\ \frac{\epsilon}{\epsilon_{\text{br}}}^{-\beta+1} & \text{if } \epsilon \geq \epsilon_{\text{br}} \end{array} \right. \quad (7)
\]

The flux is related to the luminosity via \(L / 4 \pi D_n^2 = \int_{\epsilon_{\text{br}}}^{\epsilon_{\text{max}}} \epsilon A \epsilon^{-\beta+1} d\epsilon \) which yields the normalization factor \(A = L / (4 \pi D_n^2 \epsilon_{\text{br}}^{\alpha+1} \epsilon_{\text{br}}^{\beta+1} (1/2 - \alpha + 1/(\beta - 2))) = 9.1 \times 10^{-6} L_{t,53}^{3/5} \eta_7^{1/5} \eta_6^{1/3} \Gamma_{\text{ph}}^{-1} \left(1 + \zeta \right)/2 \text{ erg cm}^{-2} \text{s}^{-1} \text{ keV}^{-1} \). The \(\epsilon_{\text{br}} \) peak of the non-thermal spectrum will arise at \(\epsilon_{\text{br}} \) and at \((\epsilon F_\epsilon)_{\text{max}} = \epsilon_{\text{br}} A = 2.8 \times 10^{-6} L_{t,53}^{3/5} D_n^{28.3} \text{ erg cm}^{-2} \text{s}^{-1} \). At low energies a self-absorption break is expected. In our case, this will occur at \(\epsilon_{\text{sA}} \approx 6.8 L_{t,53}^{1/5} \eta_6^{-1/5} \left(1 - \zeta_r \right) \eta_7^{1/5} \eta_6^{1/3} \epsilon_{\text{br}} \text{ keV} \) (Guetta & Granot 2003a).

The high-energy branch of the photospheric spectrum (Equation (7)) extends up to an energy which is model dependent. We discuss here two scenarios. In the first scenario, photons above the photospheric spectral peak (Equation (6)) are upscattered as a result of interactions with electrons associated with magnetic turbulent waves, up to an energy \(\epsilon' \approx m_e c^2 \) in the jet frame (Thompson 1994). In our case, this corresponds to an observer-frame cutoff at

\[
\epsilon_{\gamma} \approx (4/3) m_e c^2 \Gamma_{\text{ph}} / (1 + z)
\]

\[
\approx 30 \frac{L_{t,53}^{1/5}}{r_0,7^{-1/5} \eta_0^{1/2}} \zeta_r^{-1/5} \left(1 + \zeta \right)^{-1} \text{ MeV}.
\]

This corresponds to \(\epsilon' \sim m_e c^2 \) in the comoving frame, and is below the \(\gamma \gamma \) cutoff expected from pair production against photospheric lower energy photons (see below), so no pairs are created.

In the second scenario, we assume that the magnetic reconnection regions or the shocks associated with them are coherent over long enough periods of time that electrons can be accelerated, e.g., via a Fermi mechanism, to a PL extending above the previous \(\epsilon_{\text{sA}} \) to photons energies sufficiently high to be subject to
\[\varepsilon_{\gamma\gamma} = (\Gamma_{\text{ph}}m_e c^2)^2 / [(1 + z)^2 \varepsilon_{\text{eff}}], \]

where \(\tau_{\gamma\gamma} \sim 11/180 \sigma_T N_{\gamma\gamma} c / 4\pi r_{\text{ph}}^2 \) (Lithwick & Sari 2001; Murase & Ioka 2008), where \(N_{\gamma\gamma} \) is the number of photons with energies higher than \(\varepsilon \). This will result in an observer-frame cutoff energy \(\varepsilon_{\gamma\gamma} \sim 30-100 \text{ MeV} \). If \(\varepsilon_{\gamma\gamma} > \varepsilon_{\text{eff}} \) is not satisfied, the cutoff will be at \(-\Gamma_{\text{ph}}m_e c^2 / (1 + z) \). Above the cutoff, the spectrum becomes steeper, the exact post cutoff spectral index depending on the spectrum and photon spatial distribution. A simple slab approximation, as discussed for GRB 090926A (Ackermann & the Fermi Collaboration 2011), results in a steepening of the high-energy slope index by \(\beta - 1 \) above the \(\varepsilon_{\gamma\gamma} \) energy (see also Beloborodov 2010).

These pairs also radiate in the magnetic field of the prompt emission site, and this will result in a low-energy synchrotron component peaking at tens of electron volts. As we discuss in Section 6, this component is a good candidate for the bright prompt optical emission observed in some bursts. The pair synchrotron component will be in the fast cooling regime, with \(\gamma_{\pm,m} = \varepsilon_{\gamma\gamma}(1 + z)/(2\Gamma_{\text{ph}}m_e c^2) = 3.9 \) and \(\gamma_{\pm,\text{peak}} \approx 3.2 \text{ eV} \) (e.g., Toma et al. 2011a). The functional dependence is different depending on the different cases for \(\varepsilon_{\gamma\gamma} \). The peak of the \(\varepsilon_F \) spectrum is \(7.7 \times 10^{-9} \text{ erg cm}^{-2}\text{s}^{-1} \) for nominal parameters.

3.2. Thermal Component of the Photospheric Spectrum

In the presence of collisional or magnetic dissipation, in addition to a non-thermal component one also expects a thermal component, whose luminosity \(L_{\text{th}} = \zeta_\theta L_\gamma \) should have a quasi-blackbody spectrum. In our case, this peaks in the soft X-rays (Mészáros & Rees 2011), due to the different temperature scaling with radius for the magnetic dynamics, comprising a fraction \(\zeta_\theta \) of the luminosity of the photosphere. This thermal component can be calculated from the initial \(T_0 = (L_\gamma / 4\pi r_0^2 G c^2 G)^{1/4} = 2.1 L_{53}^{1/4} r_7^{1/2} \Gamma_\gamma^{-1/2} \text{ MeV} \) at the initial radius \(r_0 = 10^7 r_0 \text{ cm} \).

Above \(r_0 \) the magnetically dominated jet dynamics \(\Gamma \propto r^{1/3} \) implies a comoving velocity \(V' = r^2 \Gamma \propto r^{7/3} \) in the acceleration regime. Thus, the temperature will decrease more gradually with radius than in the baryon-dominated case (where \(T' \propto r^{-1} \)), or \(T' \propto \rho^{5/3} \propto V'^{-1/3} \propto r^{-7/9} \), or \(T'(r) = T_0(r/r_0)^{-7/9} \), where \(\gamma = 4/3 \) is the adiabatic exponent for a relativistic gas. Thus, at the photosphere \(T(r_{\text{ph}}) = 2.7 L_{53}^{1/60} r_{45}^{-4/15} \rho_{60}^{-4/15} \Gamma_{1.3}^{-1/2} (1 + z)^{-1} \text{ keV} \).

The corresponding thermal luminosity is \(L_{\text{th}} = 6.5 \times 10^{49} \text{ erg s}^{-1} \), which is low for producing the prompt emission, as well as being too soft. This blackbody component from the photosphere thus peaks in the soft X-rays at \((\varepsilon_{F,\text{BB}})_{\text{peak}} \approx 9.5 \times 10^{-9} L_{53}^{1/15} \zeta_\delta^{4/15} \rho_{60}^{4/15} r_{0.7} \text{ erg cm}^{-2}\text{s}^{-1} \). This thermal component is similar to the one found by Page et al. (2011).

4. EXTERNAL SHOCK RADIATION SPECTRAL COMPONENTS

4.1. Forward Shock (FS) Synchrotron

The FS develops at the deceleration radius, where the jet has plowed up an amount of external mass roughly equal to \(1/\eta \) times of the ejecta mass. The electrons in the shock will be accelerated into a relativistic energy distribution, and will undergo cooling through synchrotron emission and by inverse Compton scattering off external (photospheric) and their own (synchrotron) photons. At this deceleration radius the Lorentz factor has roughly halved from its cosmological value. The time of the deceleration is \(t_{\text{dec}} = r_{\text{dec}} / (2n^2 c) (1 + z) \approx 4.4 L_{53}^{1/3} (1 - \zeta_r) / (1 + z)^{1/3} \eta_{60}^{-1/3} n_0 (1 + z)^{2/3} \text{ s}. \)

While at the photosphere the magnetic field parameter \(\varepsilon_{\text{B}} \) is close to unity for a magnetically dominated model, after magnetic dissipation ceases one expects this parameter to be much less, the outflow becoming essentially baryon dominated (e.g., Zhang & Yan 2011). Here we assume that at the deceleration radius \(\varepsilon_{\text{B}} \lesssim 0.1 \).

The magnetic field in the FS is then \(B_{\text{FS}} = (32\pi m_ne^2 \varepsilon_B / T_{\text{FS}})^{1/2} \approx 74 \eta_{60}^{1/2} n_0^{-1/2} \text{ G} \). The cooling Lorentz factor is \(\gamma_c = 6\pi m_e c/(1 + Y) \sigma_T B_{\text{FS}}^2 \Gamma_{\text{dec}} \approx 3 / (8(1 + Y) \sigma_T (m_p / m_e) e G_{\text{ph}} \eta_{60}^{-1/2}) = 98(1 - \zeta_r)^{-1/3} L_{53}^{1/3} \gamma_0^{-1/3} n_0^{-2/3} \eta_{60}^{-1} (1 + y)^{-1} \text{ keV} \), where \(Y = (-1 + (4\varepsilon_B / \varepsilon_{\text{B,FS}})) / 2 \approx 0.1 \) is the Compton parameter. The minimal (injection) Lorentz factor is \(\gamma_m = \varepsilon_{\gamma\gamma}(m_e p / m_e) p - 1 \Gamma = 3100 \varepsilon_{\gamma\gamma} \eta_{60} G_{p,2.4}^{-1} \text{ keV} \).

The observer-frame energy of photons radiated by electrons with a random Lorentz factor \(\gamma_m \) in the FS is

\[\varepsilon_{\gamma} = \frac{3\varepsilon_{\gamma\gamma} \eta_{60} G_{p,2.4}}{4\pi m_e c^2 \Gamma_{\gamma}^{1/2}} \approx 3.8 \frac{1}{2} (1 + Y) \eta_{60} G_{p,2.4}^{-1} \text{ keV} \] for electrons with a random Lorentz factor \(\gamma_c \) the observed photon energy is

\[\varepsilon_{\gamma} = \frac{3.7 L_{53}^{-2/3} (1 - \zeta_r)^{-2/3} \varepsilon_{\gamma\gamma}^{-3/2} \eta_{60}^{-5/6} n_0^{-4/3}(1 + Y)^{-2}}{1 + \frac{1}{2} \frac{1}{2}} \text{ keV} \]

The peak flux density of the FS synchrotron spectrum occurs, for fast cooling, at \(\varepsilon_c \), and is given by, e.g., Sari et al. (1998):

\[F_{\gamma}(\varepsilon_c) = \frac{4\pi^3 n_{e,1} m_e c^2 \gamma_T \eta_B B_{\text{FS}}^2}{3 \frac{1}{2} \eta_{60} G_{p,2.4}^{-1/2} \Gamma_{T,1} \zeta_r^{-1/2} L_{53}^{-1/2} D_{L,28}^{-3} Jy^{-1}} \text{ keV} \]

The maximum Lorentz factor attainable by the electrons is calculated by equating the acceleration timescale in the shock to the radiation timescale, which gives \(\gamma_{\text{m},1} = (3\sigma_T / G_{\gamma} n_0 B_{\text{FS}}) \approx 5.4 \times 10^6 \eta_{60}^{-1/4} n_0^{-1/4} \frac{1}{2} \text{ keV} \), where \(n_0 \) is a numerical factor of order unity. The corresponding photon energy is \(E_{\gamma,1} = 3\sigma_T B_{\text{FS}}(4\pi m_p c^2) / \eta_{60} (1 + z) \approx 1.2 \eta_{60} (1 + z)^{2/3} \text{ GeV} \).

The scattering optical depth in the FS is given by

\[\tau_{\gamma} = \frac{N_e \sigma_T}{4\pi R^2} = \frac{4\pi^3 n_{e,1} m_e c^2 \gamma_T \eta_B B_{\text{FS}}^2}{3 \frac{1}{2} \eta_{60} G_{p,2.4}^{-1/2} \Gamma_{T,1} \zeta_r^{-1/2} L_{53}^{-1/2} D_{L,28}^{-3} Jy^{-1}} \text{ keV} \]

where \(N_e \) is the number of electrons in the FS.
4.2 Reverse Shock (RS) Synchrotron

The RS, if it develops, becomes strongest at the deceleration radius. A contact discontinuity (CD) separates the FS from the RS, and in the frame of the CD the RS travels backward. The pressure is the same in both sides of the CD, and consequently the magnetic energy density will be the same as well, under the usual assumption that the magnetic field is turbulently generated and ϵ_B is taken to be the same in both sides.

The characteristic frequencies for the RS will be $\nu_{RS} = \nu_{FS}/\Gamma^2 = 1.1 \times 10^{-4} \epsilon_{\nu,r}^{-1} \epsilon^{-2}_{B,0}^{-1} \eta \varpi n_0^{1/2} \eta_600^{1/2} \eta_{2,2.4}^{-1/2} (1 + z)^{-1} \mathrm{keV}$ and $\epsilon_{RS} = \epsilon_{FS}$ (e.g., Sari & Mészáros 2000). The RS cooling frequency can differ by about 10%, but we will ignore this difference. Generally, the RS peak flux will be a factor Γ higher than in the FS. In our case the radiative regime changes from RS to FS. While the FS electrons are in fast cooling, the RS is in the slow cooling case. We calculate the peak flux F_{RS} from

$$F_{RS}(\nu_{m}) = \frac{N_e \psi_{\nu,\nu_{max}}(v)}{4\pi D_L^2} = \frac{L_{\nu_{max}} m c^2 \sigma_T \eta B}{4\pi D_L^2} 1 + \frac{3\eta e}{4\pi D_L^2}$$

$$= 92L_{1.53}(1 - \zeta_r) n_{1.3} \eta_{600}^{1/2} \eta_600^{1/2} \eta_{2,28.2}^{-1} \mathrm{Jy}.$$ (15)

It is unclear, in an initially magnetically dominated outflow, whether the RS will develop or not, depending on various assumptions (Zhang & Kobayashi 2005; Giannios et al. 2008; Zhang & Yan 2011; Narayan et al. 2011). In the simplest cases, the Alfvenic $\gamma_A \sim \sqrt{1 + \sigma}$ Lorentz factor will be high and magnetic waves can carry information from the CD to the start of the ejecta, supressing the RS. Here $\sigma \approx F_{\nu,r}/F_{\nu,k}$ is the magnetization parameter giving the ratio of the Poynting (magnetic) flux to the kinetic flux. However, the result depends on the amount of dissipated magnetic energy at radii before reaching the deceleration radius. If there is significant portion of magnetic energy compared to the kinetic energy there may be no RS, while in the contrary case RSs may form.

The optical depth of the RS Compton radiation. We calculate the optical depth of the RS at t_{dec} from

$$\tau_{RS} = \frac{N_e \sigma_T}{4\pi R^2} = \frac{L_{\nu_{max}} m c^2 \sigma_T \eta B}{4\pi D_L^2} 1 + \frac{3\eta e}{4\pi D_L^2}$$

$$= 6.4 \times 10^{-6} L_{1.53} (1 - \zeta_r)^{1/3} \eta_600^{1/3} \eta_{2,28.2}^{-2/3},$$ (16)

where N_e is the number of electrons in the RS. Note that at t_{dec} the optical depth of the RS is η times the optical depth of the FS as expected.

4.3 Forward Shock Self-Compton (FS-SSC)

At the deceleration radius the FS (and the RS, if present) accelerated electrons will cool also by inverse Compton interactions with their own synchrotron photons. The FS at the deceleration is in the synchrotron fast cooling regime, for the parameters considered here, and the Compton parameter is $Y = (1 + \sqrt{1 + 4\eta_{SSC} \epsilon_{B,0} \epsilon_{\nu}}) / 2 \approx \epsilon_{\nu} / \epsilon_B = 0.1$, where $\eta_{SSC} = \min(\sqrt{\gamma_{cm} \gamma_e^2}, 1)$ and $\eta_{SSC} = 1$ is valid for the fast cooling case.

The SSC component of the FS will also be in the fast cooling radiative regime, and the minimal and the cooling energies will be given by $\nu_{SSC} = 75\epsilon_{\nu} \eta_{600}^{1/2} \eta_600^{1/2} \eta_{2,28.2}^{1/2} (1 + z)^{-1} \mathrm{GeV}$ and $\epsilon_{\nu} = 2\epsilon_{\nu} \epsilon_{\mu} = 70\epsilon_{\nu} \eta_600^{1/2} \eta_{2,28.2}^{1/2} (1 + z)^{-1} \mathrm{keV}$, respectively.

The amplitude of the FS-SSC component is determined from

$$\nu_{SSC} F_{\nu,SSC} \mathrm{peak} = Y_{10} F_{\nu,FS} \mathrm{FS} = 3.7 \times 10^{-9} L_{1.53} (1 - \zeta_r)^{1/3} \eta_600^{1/3} \eta_{2,2.4}^{1/2} (1 + z)^{-1/3} \mathrm{erg \ cm^{-2} \ s^{-1}}.$$

The higher energy electrons can reach the Klein–Nishina (KN) regime. This results in a peak in the spectrum at $\nu_{KN,\nu} = \nu_{m} \epsilon_{\nu,r} \eta/(1 + z) = 15\epsilon_{\nu} \eta_600^{1/3} \eta_{2,28.2}^{-1/3} (1 + z)^{-1/3} \mathrm{GeV}$. Details of the KN break energy are in Appendix B.

4.4 EIC Scattering of Photospheric Non-thermal Photons on External Forward Shock Electrons (FS-EIC)

The electrons in the FS will also lose energy by EIC as they upscatter the photons from the prompt emission (photospheric region). This effect was discussed by Beloborodov (2005) for interaction of the prompt photons with both FS and RS. It was further proposed that a delay of the order observed by Fermi arises within this setup (see also Meszaros & Rees 1994). The minimum and cooling frequencies of this component will be $\nu_{EIC} \approx 2\nu_{\nu,\nu_{max}} = 6.2\zeta_{\nu}^{-1/3} (1 - \zeta_r)^{-1/3} \epsilon_{\nu,r}^{-1/2} \epsilon_B^{-1/2} \eta_600^{1/2} \eta_{2,28.2}^{-1/2} (1 + z)^{-1/2} \mathrm{TeV}$ and $\epsilon_{EIC} \approx 2\epsilon_{\nu} \epsilon_{\nu,r}^{-1/2} = 6.0\epsilon_{\nu} \eta_600^{-1/2} \eta_{2,28.2}^{-1/2} \epsilon_B^{-1/2} \eta_600^{-1/2} (1 + 1.2\epsilon_{\nu}^{-2/3} \eta_600^{-1/2} \eta_{2,28.2}^{-1/2} (1 + z)^{-1/2} \mathrm{GeV}$, where we differentiate between prompt and FS magnetic parameter by using $\epsilon_{\nu,0}$ and $\epsilon_{\nu,-1}$, respectively.

In the absence of KN suppression, the flux of the FS EIC emission would be of the form (Murase et al. 2011)

$$F_{\nu,EIC} \propto \left\{ \begin{array}{ll}
\epsilon_{\nu,r}^{-\alpha} & \text{if } \epsilon_{\nu,r} \lesssim \epsilon_{EIC,c} \\
\epsilon_{\nu,r}^{-1/2} & \text{if } \epsilon_{EIC,c} < \epsilon_{\nu,r} \lesssim \epsilon_{EIC,m} \\
\epsilon_{\nu}^{-\beta/2} & \text{if } \epsilon_{EIC,m} < \epsilon_{\nu,r}.
\end{array} \right.$$ (17)

The KN effects however would introduce breaks in the high-energy part of the spectrum. Details of the derivation of the KN frequencies are in Appendix B. For a large part of the parameter space, $\epsilon_{EIC,m}$ will be in the KN regime, and the $\epsilon_{\nu,peak}$ will be at the KN break frequency $\nu_{KN,\nu} \approx 15\epsilon_{\nu} \eta_600^{-1/3} \eta_{2,28.2}^{-3/2} (1 + z)^{-3/4}$ \mathrm{GeV}$. A rough estimate of the peak of the EIC emission at the peak is

$$\epsilon_{\nu,peak} \approx \epsilon_{\nu,0} N_e \tau_{\nu,FS-EIC} =$$

$$7.2 \times 10^{-10} L_{1.53} \beta_3^{-1/2} (1 + z)^{-1/3} \epsilon_{\nu,0}^{-1/2} \epsilon_{\nu,-1}^{-1/2} \epsilon_B^{-1/2} \eta_{2,28.2}^{-1/2} \eta_600^{-1/2} (1 + z)^{-1/2} \mathrm{GeV},$$ (18)

$$\times D_{2,28.2}^{-1/2} \mathrm{erg \ cm^{-2} \ s^{-1}}.$$ (19)

where $N_{e,\nu,0}$ is the photon number spectrum of the prompt emission, evaluated here for $\alpha = 1$, $\beta = 2.4$, and for $\epsilon_{\nu} \approx \epsilon_{\nu,0}$. To account for the anisotropy of the emitted radiation in the FS frame, we multiply our flux by a factor of 0.5 (Fan & Pan 2006).

4.5 EIC Scattering of Photospheric Non-thermal Photons on External Reverse Shock Electrons (RS-EIC)

If the RS develops, there will be an EIC component from the RS electrons scattering prompt photons as well. This differs from the FS EIC because of the larger optical depth and the lower energy of the electrons in the RS, and because the RS will be in the slow cooling phase. The characteristic frequencies are $\nu_{RS-EIC} \approx 2\nu_{RS,\nu_{max}} = 17\epsilon_{\nu} \eta_600^{-1/2} \eta_{2,28.2}^{-1/2} (1 + z)^{-2} \mathrm{MeV}$ and $\epsilon_{\nu,RS-EIC} \approx 2\epsilon_{\nu,RS,\nu_{max}} = 6.0L_{1.53} \beta_3^{-1/2} (1 + z)^{-3} \epsilon_{\nu,0}^{-1/2} \epsilon_{\nu,-1}^{-1/2} \epsilon_B^{-1/2} \eta_{2,28.2}^{-1/2} \eta_600^{-1/2} (1 + z)^{-2} \mathrm{MeV}$.

$$\times D_{2,28.2}^{-2} \mathrm{erg \ cm^{-2} \ s^{-1}}.$$ (19)
The RS electrons, being in the slow cooling phase, will upscatter the prompt emission into a spectrum of the following shape:

\[
F_{\epsilon}^{\text{RS-EIC}} \propto \begin{cases}
\epsilon^{1-a} & \text{if } \epsilon \leq \epsilon_{\text{m}}^{\text{RS-EIC}} \\
\epsilon^{(1-p)/2} & \text{if } \epsilon_{\text{m}}^{\text{RS-EIC}} < \epsilon \leq \epsilon_{\epsilon}^{\text{RS-EIC}} \\
\epsilon^{-p/2} & \text{if } \epsilon_{\epsilon}^{\text{RS-EIC}} < \epsilon.
\end{cases}
\]

The peak of the emission will be at the KN cutoff frequency for this component, which is
\[
\eta_{c,\text{KN}}^{\text{RS-EIC}} \approx \eta_{m}^{\text{RS-EIC}} \approx 0.8 \eta_{600} \epsilon_{-2.8p,2.4} (1 + z) / 2^{-1} \text{GeV.}
\]

This introduces a spectral break and the photon index above this energy will be \(\sim (\alpha - p - 2).\)

The peak flux of the emission, considering a weakening by 0.5 due to anisotropy, is

\[
\epsilon F_{\epsilon,\text{RS-EIC}}^{\text{Peak}} \approx \epsilon_{\eta p, r} \eta_{R S}^{\text{RS-EIC}} \approx 2.3 \times 10^{-8} L_{53}^{1/3} \gamma^{2/3} \eta_{\epsilon, r}^{1/3} \eta_{600}^{4/3} \eta_{0}^{2/3} \gamma_{\epsilon, r}^{1/3} m_{e}^{1/3} c^{2} / (1 + z) \times \epsilon_{\epsilon, -2.8p,2.4} D_{L}^{2} \epsilon_{28.2} \epsilon_{\text{erg cm}^{-2}s^{-1}}.
\]

Note that \(\eta_{c,\text{KN}}^{\text{RS-EIC}}\) falls in the low-energy part of the Fermi LAT range. Thus, if the RS-EIC were dominant, the photon index expected would be \(\sim (\alpha - p - 2) \approx 3.4.\) In bursts with extra high-energy components, such soft photon indices (or even softer) are indeed observed. For other model parameters, we found that while the RS-EIC is the dominating component at its peak, other inverse Compton radiation components such as FS-EIC of FS-SSC can make the spectrum harder by contributing at a few \(\times 10\) GeV s.

5. NUMERICAL RESULTS AND MODEL PARAMETER VARIATIONS

We calculated a number of model spectra based on the considerations of the previous sections. The initial set of nominal parameters used is \(L_{1} = 10^{52} \text{erg s}^{-1}, t = 20 \text{s}, \qquad \xi_{r} = 0.5, \quad \xi_{e} = 0.5, \quad n = 1 \text{ cm}^{-3}, \quad \eta = 600, \quad \epsilon_{B,\text{ret}} = 1, \quad \epsilon_{B,\text{FS}} = \epsilon_{B,\text{RS}} = 0.1, \quad \epsilon_{\epsilon,\text{FS}} = \epsilon_{\epsilon,\text{RS}} = 0.01, \quad \gamma_{0} = 10^{7} \text{ cm,} \quad z = 1, \quad \text{and } D_{L} \approx 2 \times 10^{28} \text{ cm.}

Here \(\xi_{r} = 0.5\) is the nominal fraction of the initial \(L_{1}\) assumed to be radiated at the photosphere in non-thermal and thermal radiation, \(\xi_{e} = 0.5\) is the energy radiated by the external shock at the deceleration radius. Also, for simplicity, when an RS forms, we assume the same values for \(\epsilon_{B}\) and \(\epsilon_{e}\) in both the forward and in the RSs. We have explored also the effects of departures from these various nominal parameters.

Models with negligible pair formation. A first set of models was calculated assuming that the first scenario of Section 3.1, where the photospheric spectrum of Equation (7) cuts off around \(m_{e}c^{2}\) in the jet frame, or around \(\sim 50 \text{ MeV}\) in the observer frame, with pair formation being negligible in both the photosphere and in the external shock. The resulting generic observer-frame spectrum consists of a Band function spectral component peaking at sub-MeV energies and extending up to \(\sim 50 \text{ MeV, with a second component at GeV energies due to a combination of EIC and SSC by external FS and RS electrons of photospheric photons and their own synchrotron photons. This second GeV component typically has a total fluence that is \(\sim 0.1\) that of the MeV Band function, and for some parameter ranges it stands out from the first component, while for others it merges more or less smoothly with the high-energy branch of the first component. Whether it stands out or not depends on the external density, the external shock parameters, and on whether an RS forms or not.

In Figure 1 we show one of the cases where the second, GeV component, stands out from the first Band component. The parameters of the external FS are \(\epsilon_{B} = 0.01\) and \(\epsilon_{e} = 0.02,\) and the dissipative photosphere produces a Band function peaking at \(\lesssim 1 \text{ MeV}\) in the GBM range.

In the LAT range, if an RS is present, we can see a clear “bump” in the spectrum around 1 GeV (the upper thick curve). The prompt emission and the bump up to \(\sim 3 \text{ GeV}\) in Figure 1 is strikingly similar to the spectrum of GRB 090926A (Ackermann & the Fermi Collaboration 2011, their Figure 5), which showed an extra PL with a cutoff besides the Band component. Here the extra PL would be the rising part of the RS-EIC (the model photon index \(\sim (\sim (\alpha - p - 2) \approx 1.7\) coincides precisely with the measured one for \(p = 2.4)\) and the cutoff is the part after the RS-EIC peak. The ratio between the GBM and LAT fluences is \(\sim 10^{-1}\), an average ratio in the observed bursts (Omodei & the Fermi LAT Collaboration 2011; Pelassa 2011). At optical wavelengths the RS produces a high flux \((\sim 3 \times 10^{-8} \text{ erg cm}^{-2}\text{s}^{-1})\), or \(m_{r} \sim 7.1)\) which could be responsible for the very bright optical flashes observed in some bursts.

However, if the RS is weak or missing, in Figure 1 the upper thick bump at \(\sim 1 \text{ GeV}\) is absent, and is replaced by the lower thick line. One has the same GBM prompt emission and a hard component emerging at \(\lesssim 10 \text{ GeV}\). This component would also appear as an extra PL component, but in this case, it is weaker by one order of magnitude than the prompt emission. For the low photon number detected in this energy range, such a component might have low significance in a fit. Also the optical flux is much lower, \(3 \times 10^{-10} \text{ erg cm}^{-2}\text{s}^{-1}\), or \(m_{r} \sim 11.8).\) We note that the combination of parameters used for obtaining the single component and two component spectra in this figure are not unique.

In Figure 2 we show one of the cases where the overall spectrum appears as a single Band component, due to the second GeV component approximating an extension of the first, MeV Band component.

The parameters of the external shock are in this case \(\epsilon_{B} = 0.02, \quad \epsilon_{e} = 0.005\) for both the FS and RS, with \(\eta = 400\) and \(n = 30 \text{ cm}^{-3}\), other parameters being nominal. It is seen that the combination of the external RS EIC and the FS SSC plus EIC provides a roughly continuous slope connecting the MeV Band spectrum to the high-energy branch (the upper thick curve from \(\sim 0.1 \text{ GeV}\) onward). The RS EIC hump fills in the through left by the FS SSC. The wiggles from the two humps at 100 MeV and 10 GeV would be smoothed out in typical spectral fits with low photon number statistics in this range encountered in Fermi LAT bursts. The matching of the flux levels between the photospheric spectrum high-energy end and the external RS peak is controlled largely by the external density \(n,\) whose value here is in the usual range.

Assuming that an RS is absent or negligibly weak (i.e., ignoring the upper thick gray continuous line in Figure 2 peaking at \(\gtrsim 100 \text{ MeV}\)), one sees that now a second hard component appears above 100 MeV and peaks at 3 GeV, being in this case mainly due to the FS SSC, with a contribution from the EIC of photospheric photons. Other components, while present, are here sub-dominant. The secondary peak (also in the absence of the RS-EIC component in Figure 2), though reminiscent of the extra PL component observed in GRB 090920B or 090926A, is \(\sim 2)\) orders of magnitude fainter than the main peak, while in
the observed cases this ratio, when reported, is at most ~ 1.5. The optical flux predictions are $m_R \sim 8.3$ and $m_B \sim 10.5$ in the presence or absence of the RS. Again, this is not the sole combination of parameters that produces an approximate single Band function extending to GeV energies.

In the above models where pair formation is not expected, the qualitative effects of increasing the terminal Lorentz factor η consist in a strengthening of the RS-EIC component. Even though at low η we expect a lower cutoff for the prompt emission and a more prominent inverse Compton component, this is not the case. Below $\eta \approx 300$ the main high-energy component is the sum of the FS-SSC, the FS-EIC, and the prompt SSC at ~ 10 GeV, which form a distinct peak. Increasing the density n makes the RS-EIC component more detectable from $n \approx 10^7$ cm$^{-3}$ up to $n \approx 500$ cm$^{-3}$. Outside these parameters, the FS-SSC and the FS-EIC are the same magnitude or dominating.
the RS-EIC component and a break in the spectrum is more visible. The shape of the high-energy part of the spectrum has only a weak dependence on the value of ϵ_B. By decreasing the prompt magnetic parameter, the peak energy becomes lower and the external components could become more prominent.

Models with pair formation. A second set of models was calculated assuming that the Band spectrum from the photosphere extends to sufficiently high energies that pair formation from $\gamma\gamma$ interactions is expected (see Section 3). In these cases the primary Band component extends up to an energy given by Equation (9), and there is a secondary synchrotron component from the $\gamma\gamma$ pairs, both the primary and secondary photons leading to separate SSC and EIC components from upscatter-
ing in the photosphere and in the forward and reverse external shock, some components being more important than others.

Figure 3 presents one of the cases involving pair production. The overall behavior is not too different from that of the models with no pair production: The RS-EIC component is approximately smoothly joined to the prompt at \(\sim 100 \text{ MeV} \). The RS-EIC in turn joins smoothly to the other higher energy components at \(\sim 10 \text{ GeV} \). If an RS does not develop, the only missing component at high energies will be the RS-EIC (thick black line) and again we get a bump in the spectra at \(\sim 10 \text{ GeV} \) energies. The optical flux is only about 1.3 mag fainter in the absence than in the presence of the RS, \(m_R \sim 9.3 \) and \(\sim 8 \) for the two cases.

In Figure 4 we show another case where pair formation occurs, for a different choice of parameters. In this case the second component bump would be present irrespective of whether the RS is present or absent, since both shocks result in a similar bump. The FS synchrotron and the FS-EIC contribute significant flux to the bump. In this case, the optical flux with the RS is larger, \(m_R \sim 5.5 \), and much fainter in the absence of the RS, \(m_R \sim 10 \).

Low-energy PL extensions. A notable feature of Figures 1 through 4 is that the FS synchrotron radiation extends into the optical range. In Asano et al. (2010), such a PL extending into the optical was obtained for a hadronic cascade GRB model. Here it arises in a purely leptonic mode. For reasonable parameters this component falls between the cooling and the characteristic synchrotron frequencies. One sees that, for bright Fermi LAT bursts, in the absence of pair formation the FS synchrotron can produce a prompt optical flash of \(m_R \sim 11–12 \), even in the absence of an RS. This visual flux scales with the prompt photon luminosity \(L_p \). A conversion of the flux units to \(R \) magnitudes is \(10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1} \rightarrow m_R \sim 8.0 \), and \(10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \rightarrow m_R \sim 13.0 \), with the usual five magnitudes interval per each factor 100 increase in flux. In the cases where pair formation occurs, the pairs contribute an additional synchrotron component, which in the optical range predicts an even brighter prompt flash. This is seen in Figure 3, with the source at \(z = 1 \). In both types of models (with or without pair formation), in the cases where an RS is present, the optical flashes can be significantly brighter, in the range \(m_R \sim 6–8 \) at the same redshift.

6. DISCUSSION

We have addressed the high-energy spectral properties of the bursts observed with Fermi LAT, using a magnetically dominated outflow model where the prompt MeV emission arises in the photosphere, and high-energy components arise from inverse Compton scattering by both photospheric and external shock electrons. We have investigated circumstances under which a single Band function appears to extend to the highest energies detected by the Fermi LAT, and where a second high-energy component shows itself above the MeV range Band spectrum. We have also addressed, in the same context, the production of prompt optical flashes.
We find that, qualitatively, these types of models are able to explain the observed diversity of GBM and LAT prompt emission spectra, without invoking an internal shock emission at intermediate radii. The presence or relative strength of an RS plays a role in determining the spectral shape and the basic dichotomy in the latter. As discussed by, e.g., Narayan et al. (2011), Mimica & Aloy (2012), and Giannios et al. (2008), for modest magnetization σ of the outflow an RS may be expected; and while for initially magnetically dominated outflows σ is still large at the photosphere, at larger radii it can be expected to drop sufficiently low to make RSs possible, although uncertainties remain concerning the threshold magnetization and the RS strength. Thus, we assumed that within the normal range of parameters, RSs may be important in some bursts and not in others. When an RS is absent, the FS results in a distinct high-energy (GeV) spectral component, whose fluence is 1–2 orders of magnitude below the prompt thermal component (marked BB), the thick black line is the RS-EIC, the gray thick dotted line is the forward shock synchrotron part (FS), the gray dashed line is the forward shock external inverse Compton, the black dash-dotted line is the FS-SSC component, the gray dash-dotted line is the RS synchrotron component, and the thick dash-dotted line is the pair synchrotron contribution. The thick gray continuous line is the sum of the components (the upper one is with and the lower one without the RS contributions).

The implications of our model for constraints on the bulk Lorentz factor are much less stringent than in one-zone models where the GBM and LAT emission are assumed to arise in the same region. For example, in Abdo & the Fermi Collaboration (2009), Ackermann & the Fermi Collaboration (2011), and Abdo et al. (2009), such analyses indicated Lorentz factors $\gamma \sim 800$–1000 or higher. However, in generic two-zone models (Zou et al. 2011; Pe’er 2011; Zhao et al. 2011) the Lorentz factor need not be so large. Specifically, in our model, which is a two-zone model in which the high-energy photons arise in the external shock, the compactness parameter in the latter is low, and the spectra can be reproduced with terminal Lorentz factors $\Gamma \sim \eta \sim 300$–600.

As discussed in Section 3.1, the magnetized dissipative photosphere can produce a Band-like non-thermal spectrum resembling the observations. In our magnetized models, in the absence of pair formation this component cuts off above ~ 50 MeV, or in the presence of pair formation, it steepens by one PL index above ~ 100 MeV. Recently Kocievski & The Fermi Collaboration (2012) analyzed the paucity of GRBs measured by LAT. They claim that nearly half of the bursts detected by GBM that were in the LAT field of view required a break under 0.1 GeV to explain the nondetection by LAT. In the framework of this model these results mean that there is indeed a cutoff at ~ 50–100 MeV. This is either due to a softening because of pair creation or a cutoff according to the magnetic acceleration mechanism.

Recently, Yonetoku et al. (2011) reported a polarization measurement in the prompt emission from GRB 100826A. This could be an indication of a magnetically dominated photosphere (Waxman 2003; Nakar et al. 2003), although polarization might also be expected from processes not requiring strong magnetic
fields (e.g., Lazzati et al. 2004). For a magnetic jet, the transverse field components will dominate in the emission region, and while for an observer line of sight along the jet axis the polarization could average itself out, for the larger probability off-axis viewing directions a net polarization could be expected.

The magnetic photosphere models also predict a weaker thermal component peaking at a few keV (Section 3.2), plotted in Figures 1 through 4. Such a thermal component has been reported in Guiriec et al. (2011) for GRB 100724B. In our models such a component appears at approximately the right energies, its fluence generally being low compared with the non-thermal components. However, only for a relatively small range of parameters would it appear possible to detect it. One problem is that it can be conflated with the contribution of the FS synchrotron, e.g., as the bump around \(\gtrsim 10 \) keV in Figure 3.

Another interesting component is the optical band extension of the external shock synchrotron spectra (see Figures 1 through 4). It is seen that just the external FS by itself already can produce optical flashes of \(m R \gtrsim 12 \) (Figures 1 and 2), while if pair formation occurs in the photosphere, the cooled pairs there can lead to flashes of \(m R \approx 9.3 \) (Figures 3 and 4) or even brighter for suitable sets of parameters. On the other hand, when an RS is present, its synchrotron component naturally produces a bright prompt optical flash, as known for quite a while (e.g., Meszaros & Rees 1993, 1997). Here, in addition, we have considered also the IC components of the RS, and the effect of a photospheric EIC component as well. For reasonable parameters, the flux can be close to \(\sim 10^{-7} \) erg cm\(^{-2}\) s\(^{-1}\) in the optical band, which translates to \(m R \) brighter than 7 at \(z = 1 \). Generically, the relative scarcity of observed optical flashes may be attributed to the fact that their brightness scales roughly the same way as the prompt GeV luminosity \((\varepsilon F_\gamma \propto L_\gamma^{1/3} \propto L_\nu^{0.8}) \) and \(\varepsilon F_\gamma \approx L_\nu^{4/3} \), as well as to the fact that RSs may be rare in magnetically dominated outflows.

For the naked eye GRB 080319, the roughly similar behavior of the optical and \(\gamma \)-ray light curves can be used to argue for a common origin of both (Racusin et al. 2008). However, the optical light curve is not sampled as well as the \(\gamma \)-ray light curves, and at least in the prompt phase shows temporal structures (peaks) comparable in duration to the deceleration time, which could be compatible with an RS origin, although the RS origin was disfavored by Racusin et al. (2008). On the other hand, a fast variability of the prompt optical flash might be suggestive of an origin in the same region as the prompt MeV emission, which might be attributed to the photospheric cooled pair synchrotron component. However, only very rare parameter combinations could push the optical flux of the pair synchrotron component up to \(m R \sim 5 \) as in the naked eye burst (Racusin et al. 2008). For example, in our model a combination of \(\eta \sim 1000 \), \(\beta \approx 2.1 \), and \(\xi \sim 0.99 \) would approach such brightnesses.

Concerning the FS-EIC and RS-EIC components, strictly speaking for these it is not necessary to invoke the magnetically dominated jet model. Indeed, similar results can be obtained by a baryonic model as well (Beloborodov 2005, 2010). In magnetic and baryonic cases the delay between the MeV and GeV components will be a few seconds, comparable to the values measured by Fermi.

We note that this model may be applicable both to long and short bursts, since a magnetized photosphere and an external shock would be expected in both cases. The relatively shorter GeV–MeV delays in the short burst cases could be understood in terms of a closer-in deceleration or a larger Lorentz factor, the latter being suggested also by their harder MeV spectra.

Finally, we point out that the predicted inverse Compton components in these models extend into the TeV range, for a range of parameters. The photon with the highest energy detected by LAT from a GRB had an energy of \(\sim 33 \) GeV (Abdo & the Fermi Collaboration 2009). However, the spectral features above this energy are in the range of ground-based Cherenkov telescopes, including also HAWC and the future CTA, providing potentially interesting targets for such detectors.

We acknowledge NASA NNX09AL40G, NSF PHY-0757155, and OTKA grant K077795 for partial support, and thank Bin-Bin Zhang, Shan Gao, Kenji Toma, and the referee for useful comments.

APPENDIX A

OTHER RADIATION COMPONENTS

Other electron inverse Compton components, besides those already discussed, may be present if an RS develops. In this case one would expect scattering of RS photons on the FS electrons, and FS photons on the RS electrons. Both of these components have a flux density (He et al. 2011) \(\epsilon F_\epsilon \propto \epsilon_{\text{peak}} \approx 1 \) keV with a flux of \((\epsilon F_\epsilon \propto 2 \times 10^{-11} \) erg cm\(^{-2}\) s\(^{-1}\) which makes them negligible compared with other (e.g., FS or RS) components.

The EIC radiation of the pair synchrotron photons on the FS and the RS will also give a flux of the order \(5 \times 10^{-10} \) erg cm\(^{-2}\) s\(^{-1}\) at 80 MeV and 0.4 MeV, respectively.

The prompt thermal (blackbody) component will also be upscattered at the FS as well as at the RS (Ando & Mészáros 2008). Both components consist of a set of smoothly joined PLs and a cutoff at high energies. The BB-FS-EIC has a peak of \(9 \times 10^{-12} \) erg cm\(^{-2}\) s\(^{-1}\) at \(\sim 30 \) GeV while the BB-RS-EIC has a peak of \(6 \times 10^{-12} \) erg cm\(^{-2}\) s\(^{-1}\) at \(\sim 4 \) GeV.

The SSC component of the RS peaks (in \(\epsilon F_\epsilon \) at \(\epsilon_{\text{peak}} \approx 2 \gamma_{\epsilon_{\text{peak}}} \epsilon_{\text{peak}} \approx 35 \) keV. The Compton \(Y \) parameter, which gives the luminosity ratio of the SSC to the synchrotron component is \(\gamma_{\epsilon_{\text{peak}}} = \frac{1}{1+\epsilon_{\text{peak}}^4\epsilon_{\text{peak}}/\epsilon_{\text{peak}}^4} \approx 0.03 \) (Sari & Esin 2001), where \(\gamma_{\epsilon_{\text{peak}}} = \min(\gamma_{\epsilon_{\text{peak}}}^4, \gamma_{\epsilon_{\text{peak}}}^4 - 1) \). In this slow cooling regime, \(\gamma_{\epsilon_{\text{peak}}} < 1 \) is valid. The amplitude of the RS-SSC is obtained from \(\epsilon F_\epsilon \propto \epsilon_{\text{peak}} \approx 3.5 \times 10^{-10} \) erg cm\(^{-2}\) s\(^{-1}\), which can have fluxes of the order of \(10^{-8} \) erg cm\(^{-2}\) s\(^{-1}\), it is dominated by other components.

The prompt emission will generate an SSC component. The peak energy of this component \(\gamma_{\epsilon_{\text{peak}}} \approx 0.2 \) TeV falls in the deep KN regime and its \(\epsilon F_\epsilon \) peak will be less than \(10^{-9} \) erg cm\(^{-2}\) s\(^{-1}\).

APPENDIX B

KLEIN–NISHINA BREAK FOR SSC AND EIC COMPONENTS

KN effects are potentially important when assessing high-energy, inverse Compton components. In our study we investigate the KN break for SSC and EIC components of both the FS and RS with the prompt emission. We calculate the KN break energy based on Guetta & Granot (2003b). The KN break occurs at the solution of the \(\epsilon = \epsilon_{\max}(\epsilon) \) where \(\epsilon_{\max} \) is a function of \(\epsilon \) (for the detailed expression of \(\epsilon_{\max}(\epsilon) \), see Guetta & Granot
Depending on the radiative regime and the position of $\varepsilon_{\text{KN}}^\text{IC}$ with respect to the characteristic IC frequencies, we have four cases for each regime (IC here stands for either EIC or SSC emission). In the fast cooling case (valid here for FS-EIC and FS-SSC) we need to solve

$$
\varepsilon_{\text{IC}}^\text{KN} = \begin{cases}
(m_c \gamma_m^2 / \varepsilon_c^2) & \text{if } \gamma_i^2 / \varepsilon_i < \varepsilon_{\text{IC}}^\text{KN} \leq \gamma_m^2 / \varepsilon_m^2 \\
(m_c \gamma_m^2 / \varepsilon_m) & \text{if } \gamma_m^2 / \varepsilon_m < \varepsilon_{\text{IC}}^\text{KN} \leq \gamma_m^2 / \varepsilon_m (= \varepsilon_{\text{IC}}^\text{KN}) \\
(m_c \gamma_m^2 / \varepsilon_m) & \text{if } \gamma_m^2 / \varepsilon_m < \varepsilon_{\text{IC}}^\text{KN} \leq \gamma_m^2 / \varepsilon_m \\
(m_c \gamma_m^2 / \varepsilon_m) & \text{if } \gamma_m^2 / \varepsilon_m < \varepsilon_{\text{IC}}^\text{KN}
\end{cases}
$$

for $\varepsilon_{\text{IC}}^\text{KN}$. Above the break the spectrum will change to $F_\varepsilon \propto \varepsilon^{-(p+1-\alpha)}$ or in some cases to $F_\varepsilon \propto \varepsilon^{-(2-\alpha)}$ in the fast cooling, or to $F_\varepsilon \propto \varepsilon^{-(p-\alpha)}$ in slow cooling regime. In the slow cooling regime (used here for RS-SSC and RS-EIC), we can obtain the break energy by swapping the roles of the cooling (c) and characteristic (m) quantities in the above equation.

REFERENCES

Abdo, A. A., Ackermann, M., Arimoto, M., et al. 2009, Science, 323, 1688
Abdo, A. A., & the Fermi Collaboration. 2009, ApJ, 706, L138
Ackermann, M. the Fermi Collaboration. 2011, ApJ, 729, 114
Ando, S., & Mészáros, P. 2008, ApJ, 689, 351
Asano, K., Inoue, S., & Mészáros, P. 2010, ApJ, 725, L121
Band, D., Matteson, J., Ford, L., et al. 1993, ApJ, 413, 281
Beloborodov, A. M. 2005, ApJ, 618, L13
Beloborodov, A. M. 2010, MNRAS, 407, 1033
Bošnjak, Ž., & Kumar, P. 2012, MNRAS, 421, L39
Drenkhahn, G. 2002, A&A, 387, 714
Drenkhahn, G., & Spruit, H. C. 2002, A&A, 391, 1141
Fan, Y., & Piran, T. 2006, MNRAS, 370, L24
Fraiija, N., Magdalena Gonzalez, M., & Lee, W. H. 2012, ApJ, 751, 33
Ghisellini, G., Ghirlanda, G., Nava, L., & Celotti, A. 2009, MNRAS, 403, 926
Giannios, D. 2008, A&A, 480, 305
Giannios, D. 2012, MNRAS, 422, 3092
Giannios, D., Mimica, P., & Aloy, M. A. 2008, A&A, 478, 747
Giannios, D., & Spruit, H. C. 2007, A&A, 469, 1
Guetta, D., & Granot, J. 2003a, ApJ, 585, 885
Guetta, D., & Granot, J. 2003b, MNRAS, 340, 115
Guiriec, S., Connaughton, V., Briggs, M. S., et al. 2011, ApJ, 727, L33
He, H.-N., Wu, X.-F., Toma, K., Wang, X.-Y., & Mészáros, P. 2011, ApJ, 733, 22
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 710
Kocevski, D. the Fermi Collaboration. 2012, arXiv:1201.3948
Komissarov, S. S., Vlahakis, N., Königl, A., & Barkov, M. V. 2009, MNRAS, 394, 1182
Kumar, P., & Barniol Duran, R. 2009, MNRAS, 400, L75
Lazzati, D., Morsony, B. J., & Begelman, M. C. 2011, ApJ, 732, 34
Lazzati, D., Rossi, E., Ghisellini, G., & Rees, M. J. 2004, MNRAS, 347, L1
Lithwick, Y., & Sarı, R. 2001, ApJ, 555, 540
Lyuutikov, M., & Blandford, R. 2003, arXiv:astro-ph/0312347
McKinney, J. C., & Udenski, D. A. 2011, MNRAS, 419, 519
Meszaros, P., & Rees, M. J. 1993, ApJ, 418, L59
Meszaros, P., & Rees, M. J. 1994, MNRAS, 269, L41
Meszaros, P., & Rees, M. J. 1997, ApJ, 476, 232
Mészáros, P., & Rees, M. J. 2011, ApJ, 733, L40
Metzger, B. D., Giannios, D., & Horiuichi, S. 2011a, MNRAS, 415, 2495
Metzger, B. D., Giannios, D., Thompson, T. A., Bucciantini, N., & Quataert, E. 2011b, MNRAS, 413, 2031
Minnica, P., & Aloy, M. A. 2012, Int. J. Mod. Phys.: Conf. Ser., 8, 360
Murase, K., & Ioka, K. 2008, ApJ, 676, 1123
Murase, K., Toma, K., Yamazaki, R., & Mészáros, P. 2011, ApJ, 732, 77
Nakar, E., Piran, T., & Waxman, E. 2003, J. Cosmol. Astropart. Phys., JCAP10(2003)005
Narayan, R., Kumar, P., & Techechkovskiy, A. 2011, MNRAS, 416, 2193
Narayan, R., Techechkovskiy, A., & McKinney, J. 2010, in ASP Conf. Ser. 427, Accretion and Ejection in AGN: A Global View, ed. L. Maraschi, G. Ghisellini, R. Della Ceca, & F. Tavecchio (San Francisco, CA: ASP), 127
Omodei, N., & the Fermi LAT Collaboration. 2011, Talk at Fermi Meeting, Stanford University
Page, K. L., Starling, R. L. C., Fitzpatrick, G., et al. 2011, MNRAS, 416, 2078
Pe'er, A. 2011, arXiv:1111.3378
Pe'er, A., Zhang, B.-B., Ryde, F., et al. 2012, MNRAS, 420, 468
Pelassa, V., 2011, in AIP Conf. Proc. 1358, Gamma Ray Bursts 2010, ed. J. E. McEnery, J. L. Racusin, & N. Gehrels (Melville, NY: AIP), 41
Racusin, J. L., Karpov, S. V., Sokolowski, M., et al. 2008, Nature, 455, 183
Rees, M. J., & Mészáros, P. 2005, ApJ, 628, 315
Ryde, F., Axelsson, M., Zhang, B. B., et al. 2010, ApJ, 709, L172
Sari, R., & Esin, A. A. 2001, ApJ, 548, 787
Sari, R., & Mészáros, P. 2000, ApJ, 535, L33
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17
Thompson, C. 1994, MNRAS, 270, 480
Toma, K., Sakamoto, T., & Mészáros, P. 2011a, ApJ, 731, 127
Toma, K., Wu, X.-F., & Mészáros, P. 2011b, MNRAS, 415, 1663
Vurm, I., Beloborodov, A. M., & Poutanen, J. 2011, ApJ, 738, 77
Waxman, E. 2003, Nature, 423, 388
Yonetoku, D., Murakami, T., Gunji, S., et al. 2011, ApJ, 743, L30
Zhang, B., & Kobayashi, S. 2005, ApJ, 628, 847
Zhang, B.-B., Zhang, B., Liang, E.-W., et al. 2011, ApJ, 730, 141
Zhao, X.-H., Li, Z., & Bai, J.-M. 2011, ApJ, 726, 89
Zou, Y.-C., Fan, Y.-Z., & Piran, T. 2011, ApJ, 726, L2