Synergy of the catalytic activation on Ni and the CeO$_2$–TiO$_2$/Ce$_2$Ti$_2$O$_7$ stoichiometric redox cycle for dramatically enhanced solar fuel production†

Chongyan Ruan,*a,b Zheng-Qing Huang,†c,d Jian Lin,*a Lin Li,*a Xiaoyan Liu,*a Ming Tian,*a Chuande Huang,*a Chun-Ran Chang,*a Jun Li,d and Xiaodong Wang†*a

Solar thermochemical approaches to CO$_2$ and H$_2$O splitting have emerged as an attractive pathway to solar fuel production. However, efficiently producing solar fuel with high redox kinetics and yields at lower temperature remains a major challenge. In this study, Ni promoted ceria–titanium oxide (CeO$_2$–TiO$_2$) redox catalysts were developed for highly effective thermochemical CO$_2$ and H$_2$O splitting as well as partial oxidation of CH$_4$ at 900 °C. Unprecedented CO and H$_2$ production rates and productivities of about 10–140 and 5–50 times higher than the current state-of-the-art solar thermochemical carbon dioxide splitting and water splitting processes were achieved with simultaneous close to complete CH$_4$ conversions and high selectivities towards syngas. The underlying mechanism for the exceptional reaction performance was investigated by combined experimental characterization and density functional theory (DFT) calculations. It is revealed that the metallic Ni and the Ni/oxide interface manifest catalytic activity for both CH$_4$ activation and CO$_2$ or H$_2$O dissociation, whereas CeO$_2$–TiO$_2$ enhances the lattice oxygen transport via the CeO$_2$–TiO$_2$/Ce$_2$Ti$_2$O$_7$ stoichiometric redox cycle for CH$_4$ partial oxidation and the subsequent CO$_2$ or H$_2$O splitting promoted by catalytically active Ni. Such findings substantiate the significance of the synergy between the reactant activation by catalytically active Ni and the stoichiometric redox chemistry governing oxygen ion transport, paving the way for designing prospective materials for sustainable solar fuel production.

Broader context

Solar energy, with tremendous potential as an environmentally sound and sustainable energy source, dwarfs all the derivative sources by a wide margin. The challenge, however, is to take full advantage of the abundant and infinite solar energy and to convert it into readily utilisable and storable forms. Solar thermochemical CO$_2$ and H$_2$O splitting, tapping sunlight directly and storing solar energy in renewable fuel, are emerging technologies towards meeting this goal. Successful adoption of solar-to-fuel technologies is predicated upon identifying advanced materials with higher efficiency. The present work demonstrates the application of novel Ni promoted ceria–titanium oxide redox catalysts for solar thermochemical CO$_2$ and H$_2$O splitting coupled with CH$_4$ partial oxidation, which exhibit considerably higher CO and H$_2$ production rates and productivities than the conventional solar thermochemical carbon dioxide splitting and water splitting processes with ~100% CH$_4$ utilization. Supported by detailed experimental characterization and DFT calculations, a synergism between the catalytic activation on Ni and the CeO$_2$–TiO$_2$/Ce$_2$Ti$_2$O$_7$ stoichiometric redox cycle is shown to be responsible for the high efficiency of CO$_2$ and H$_2$O splitting as well as CH$_4$ conversion. These findings provide fundamental insights into the mechanisms underlying the remarkable reactivity and constitute a basis for engineering efficient materials for enhanced solar energy conversion.

1. Introduction

Access to carbon-neutral, affordable and sustainable energy sources is widely recognized as the cornerstone of sustained economic growth and increasing prosperity of modern society. 1,2 Solar-based routes hold great promise given sunlight’s infinite abundance and accessibility, since the annual sunlight striking the earth (~120 000 TW) is far exceeding the world energy consumption rate (estimated at ~43 TW by 2100). 2–5 Solar fuel
production via two-step solar thermochemical carbon dioxide splitting (STCDS) and water splitting (STWS) is an attractive alternative to artificial photosynthesis, biomass production and conversion, and photovoltaic-driven electrolysis in particular as it can be potentially more energy efficient and require less land and water to implement. In the two-step redox cycle, the metal oxide is first reduced at low oxygen partial pressures and elevated temperatures (above 1400 °C) utilizing concentrated solar energy. Following thermal reduction, the oxygen deficient metal oxide is re-oxidized at lower temperatures (below 1100 °C) with CO$_2$ and/or H$_2$O, yielding CO and/or H$_2$. Although extensive research efforts have been devoted to two-step STCDS and STWS processes, challenges associated with rather high activation energy required for lattice oxygen removal and the low surface area, the cost-effectiveness of incorporating noble metals are debatable. For example, Ce$_{0.8}$Zr$_{0.2}$O$_2$ solid solutions were evaluated for CH$_4$ partial oxidation and H$_2$O splitting at 800 °C, which exhibited restricted CH$_4$ conversions of 36–55% with Ce$^{4+}$ reduction degrees ranging between 50% and 70%. The second strategy is to promote CeO$_2$ with noble metal catalysts such as Pt and Pd. While this remarkably decreased the activation energy for CH$_4$ partial oxidation at the gas–solid interface and enhanced the lattice oxygen consumption from the bulk, the cost-effectiveness and cycling stability of incorporating noble metals are debatable.

The metal oxides function as the redox intermediates to store and deliver oxygen ions in between the MDR and the following CO$_2$ (H$_2$O) splitting step. Therefore, the thermodynamic and kinetic properties of the metal oxides dictate the technoeconomic feasibility of two-step MDR-STCDS and MDR-STWS technologies. Among the various redox metal oxides developed, iron- and ceria-based oxides have attracted significant attention. Iron oxide represents a very promising candidate by virtue of its earth abundance, low cost and minimal environmental impact. Nevertheless, the poor reactivity with CH$_4$, low selectivity toward syngas, slow re-oxidation kinetics with CO$_2$ and H$_2$O and the susceptibility to sintering with successive redox cycles constitute significant drawbacks. Recent studies indicated that the activity, selectivity and stability of iron-based oxides can be significantly enhanced promoted by tailored supports, such as lanthanum strontium ferrite (LSF) and calcium manganese oxide (Ca$_{x}$Mn$_{3}$O$_{4}$). Unfortunately, the CO$_2$ or H$_2$O splitting kinetics was still far from satisfactory, which may render these processes less efficient.

In comparison to iron oxide, ceria is particularly attractive owing to its (i) rapid redox kinetics, (ii) excellent syngas selectivity, and (iii) robust structural and crystallographic stability. Nonetheless, the solar fuel yield is limited by the low ceria reduction extent (Ce$^{4+}$ → Ce$^{3+}$: 0.2–1.6 mol%) via the nonstoichiometric redox cycle (CeO$_2$ ↔ CeO$_{1−δ}$ without phase transitions) and the inferior CH$_4$ reactivity (CH$_4$ conversion: 2–20%). This is primarily due to the high activation energy required for lattice oxygen removal and the low surface activity for CH$_4$ activation. To address the aforementioned challenges, two potential strategies have been proposed. The first one is through doping or lattice site substitution (Ce$_{1−x}$Zr$_x$O$_2$, Ce$_{1−x}$Fe$_x$O$_2$, Ce$_{1−x}$Hf$_x$O$_2$, etc.), in an attempt to introduce crystallographic defects that facilitate oxygen ion diffusion. However, such metal doping approaches have achieved limited success in enhancing the ceria reduction extent and CH$_4$ reactivity based on nonstoichiometric chemistries. For example, Ce$_{0.9}$Zr$_{0.1}$O$_2$ solid solutions were evaluated for CH$_4$ partial oxidation and H$_2$O splitting at 800 °C, which exhibited restricted CH$_4$ conversions of 36–55% with Ce$^{4+}$ reduction degrees ranging between 50% and 70%. The second strategy is to promote CeO$_2$ with noble metal catalysts such as Pt and Pd. While this remarkably decreased the activation energy for CH$_4$ partial oxidation at the gas–solid interface and enhanced the lattice oxygen consumption from the bulk, the cost-effectiveness and cycling stability of incorporating noble metals are debatable.

In the current work, we explore and demonstrate a new approach operating by stoichiometric redox chemistry. This novel chemistry enables a complete reduction of Ce$^{4+}$ to Ce$^{3+}$ with a reversible phase change (CeO$_2$ ↔ Ce$_3$TiO$_7$), dramatically different from current metal oxide cycles utilizing oxygen non-stoichiometry in ceria. Note that stoichiometric redox chemistry has recently drawn significant attention in enhancing solar fuel production for two-step STCDS and STWS processes and in enhancing the robustness of catalysts via the unique phase transition for sorption enhanced steam reforming of bio-glycerol, yet it is still rarely exploited in...
two-step MDR-STCDS and MDR-STWS processes. Furthermore, non-noble metal Ni was introduced to accelerated CH₄ partial oxidation, as it has been proposed in heterogeneous catalysis that metallic nickel has sufficient catalytic activity for CH₄ activation by lowering the dissociation barrier of C–H bond cleavage. Encouragingly, the Ni promoted ceria–titanium oxide nanocomposite (CeO₂–TiO₂) developed here exhibited exceptional efficacy for CO₂ and H₂O splitting as well as partial oxidation of CH₄. One to two orders of magnitude higher CO/H₂ production rates and productivities were achieved as compared to the state-of-the-art STCDS/STWS and MDR-STCDS/MDR-STWS processes regarding CO₂ and H₂O splitting, and nearly complete CH₄ conversions with excellent syngas selectivities were achieved in the MDR step. By combining detailed experimental characterization of the physicochemical properties during the redox cycles with density functional theory (DFT) calculations, a synergistic effect between reduced Ni species and ceria–titanium oxide is suggested to be responsible for the superior CH₄ reactivity and CO₂ and H₂O splitting performance. Specifically, the metallic Ni and Ni/oxide interface act as active sites to lower the reaction barrier for CH₄ activation during reduction and accelerate CO₂ and H₂O dissociation kinetics during oxidation. On the other hand, the CeO₂–TiO₂ oxide solid compound serves as the reactive intermediates to transport active lattice oxygen for CH₄ partial oxidation and the subsequent CO₂ and H₂O splitting via the CeO₂–TiO₂/Ce₂Ti₂O₇ stoichiometric chemistry with a complete Ce⁴⁺ ↔ Ce³⁺ redox cycle readily accessible. The lower formation energies of oxygen vacancies on Ti-doped CeO₂ indicate that the incorporation of TiO₂ into CeO₂ weakens the Ce–O bonds and thus enhances the lattice oxygen transport. The combination of experimental investigation and theoretical calculations allows for a step forward in the understanding of the structure–activity relationship in designing highly promising candidates for solar fuel production applications.

The supported nickel catalysts were synthesized by wet impregnation of the as-synthesized CeO₂–TiO₂ solid compound with an appropriate amount of Ni(NO₃)₂·6H₂O dissolved in deionized water. The obtained slurry was then dried in a vacuum at room temperature to evaporate excess moisture. Finally, the impregnated catalysts were dried at 110 °C overnight and annealed at 900 °C in air for 8 hours (a heating rate of 5 °C min⁻¹) to stabilize the structure properties. Catalysts with nominal Ni loadings of 5, 2, 1, and 0.5 wt% were prepared and are referred to as 5Ni/CeO₂–TiO₂, 2Ni/CeO₂–TiO₂, 1Ni/CeO₂–TiO₂, and 0.5Ni/CeO₂–TiO₂, respectively.

2.2 Reactivity investigation

Catalytic activity tests were carried out at atmospheric pressure in a differential quartz tube microreactor (10 mm i.d.) positioned in an infrared image furnace (VTH-E44, ULVAC-RIKO). Typically, 200 mg of the catalyst sample was sandwiched between two layers of quartz wool, and the temperature was measured with an alumina-shielded R-type thermocouple (±3.8 °C) in direct contact with the catalyst bed. The cyclic redox reactions were performed isothermally at 900 °C. Inlet gas flow rates were regulated by electronic mass flow controllers. In the MDR step, the catalysts were reduced using methane (1.5 mL min⁻¹) diluted in argon (148.5 mL min⁻¹) for 6 min. The following CO₂ or H₂O splitting reaction was initiated by introducing CO₂ (99.999%) or water vapor balanced with Ar (H₂O/Ar at 25%) into the reactor at a total flow rate of 700 mL min⁻¹ for 10 min. The line for the steam to the reactor was heated to 150 °C to prevent H₂O condensation. In between each half cycle, the reactor was purged with Ar (500 mL min⁻¹) for 5–10 min to avoid poorly defined mixtures, thereby allowing clear determination of products from each segment. To initiate each experiment, several reduction–oxidation cycles were conducted until syngas production stabilized. Besides, preliminary experiments were also conducted to identify reduction durations to avoid coke formation. The outlet gas concentrations were constantly analyzed and recorded after condensation of H₂O via a calibrated quadrupole mass spectrometer (MS, GAM200 InProcess Instruments), and the effective volumetric flow rates (Vᵢ) of observed species were determined. The MS signals were calibrated before each experiment using standard calibration gases. CH₄ was monitored at m/z 16, CO₂ at m/z 44 and 28, and CO again at m/z 44, CO₂ at m/z 28 before the CO quantification. The CH₄ conversion (X₇₆), CO selectivity (SCO) and H₂/CO molar ratio (RH₂/CO) during the reduction half-cycle were calculated using:

\[
X_{\text{CH}_4} = \frac{\int_0^t V_{\text{CH}_4} \, dt - \int_0^t V_{\text{CH}_4,\text{out}} \, dt}{\int_0^t V_{\text{CH}_4,\text{in}} \, dt}
\]

\[
SCO = \frac{\int_0^t V_{\text{CO},\text{out}} \, dt}{\int_0^t V_{\text{CH}_4,\text{out}} \, dt - \int_0^t V_{\text{CH}_4,\text{in}} \, dt}
\]

\[
R_{\text{H}_2/\text{CO}} = \frac{\int_0^t V_{\text{H}_2,\text{out}} \, dt}{\int_0^t V_{\text{CO},\text{out}} \, dt}
\]
A carbon balance was performed to check the accuracy of the measurement and a maximum deviation of 5% was obtained for the reported experiments.

\[
\text{Carbon balance: } \int_0^t V_{\text{CH}_4\text{in}} dt = \int_0^t V_{\text{CH}_4\text{out}} dt + \int_0^t V_{\text{CO}_2\text{out}} dt + \int_0^t V_{\text{CO}_2\text{out}} dt + 0.5 \\
\times \left(\int_0^t V_{\text{H}_2\text{out}} dt - 2 \int_0^t V_{\text{CO}_2\text{out}} dt \right)
\]

The transient CO or H\textsubscript{2} evolution rate during the oxidation half-cycle was calculated as:

\[
V_i = \frac{x_i V_{\text{total}}}{m_{\text{cat}}}
\]

where \(V_i\) denotes the volumetric rates of CO or H\textsubscript{2} produced per unit mass of the catalyst; \(x_i\) denotes the mole fraction of CO or H\textsubscript{2} monitored by the mass spectrometer; \(V_{\text{total}}\) is the total volumetric flow rate regulated by the digital mass flow controller; and \(m_{\text{cat}}\) is the mass of the catalyst. The corresponding CO or H\textsubscript{2} yield was calculated by integrating the transient CO or H\textsubscript{2} evolution rate with respect to time.

2.3 Catalyst characterization

The catalysts were characterized at various stages (after synthesis, after CH\textsubscript{4} reduction, and after multicycle reactive tests) via thorough physical and chemical techniques. Powder X-ray diffraction (XRD) was performed to investigate the crystallographic phase evolution of the catalysts using a PANalytical diffractometer (40 kV, 40 mA), with Cu K\textsubscript{α} radiation (\(\lambda = 1.5418\ \text{Å}\)).

The diffraction patterns were collected at ambient conditions between 20 values of 20 and 70° with a step size of 0.02° and 30 s counting time per angle. The crystal phases were identified using the JCPDS database and the lattice spacing derived from the peak position was determined based on Bragg's diffraction law.

X-ray photoelectron spectroscopy (XPS) measurements were conducted on an ESCALAB 250 photoelectron spectrometer (Thermo Fisher Scientific, Al K\textsub{α}, \(h\nu = 1486.6\ \text{eV}\)) with a chamber pressure of \(3 \times 10^{-8}\ \text{Pa}\) to probe the near-surface element states. All binding energies were calibrated with respect to the C 1s peak centered at 284.8 eV. Deconvolution of the peaks was processed with the XPSPEAK program using Shirley background subtraction and a mix of Gaussian–Lorentzian functions.

The redox behavior of the catalysts was assessed via temperature-programmed reduction using H\textsubscript{2} (H\textsubscript{2}-TPR) instead of CH\textsubscript{4} to avoid complications from possible carbon deposition. H\textsubscript{2}-TPR measurements were carried out using Micromeritics Auto Chem II 2920 apparatus equipped with a thermal conductivity detector (TCD). In a typical experiment, approximately 0.1 g of the catalyst sample was loaded in a U-shape quartz tube. Pretreatment was carried out in flowing Ar (30 mL min-1) at 350 °C for 30 min to eliminate water and gas adsorbed on the surface of the sample, followed by cooling down to 50 °C. Thereafter, TPR analysis was performed under 10% H\textsubscript{2}/Ar (30 mL min-1) up to 900 °C at a ramp rate of 10 °C min-1.

High-resolution scanning electron microscopy (HRSEM; JSM-7800F, 1 kV accelerating voltage) was applied to observe the microstructure and morphology of the catalyst samples before and after redox cycles. High-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy (STEM-EDX) were employed to identify the morphology, crystallinity, and elemental distribution and composition of samples after various process steps. These techniques were implemented on a JEOL JEM-2200F microscope operated at 200 kV and with a linear resolution of 0.10 nm. Prior to the measurement, the samples were crushed into fine powders and dispersed ultrasonically in ethanol. After dispersion, a few droplets of each sample were deposited on a carbon coated Cu grid and allowed to dry.

X-ray absorption near edge structure (XANES) experiments were carried out at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF) with a ring current of 140–210 mA at 3.5 GeV. Samples (∼10 mg) diluted with BN (∼90 mg) were ground finely and pressed into self-supporting wafers for XANES measurements. Spectra were collected at the Ce L\textsub{III} and Ti K edges in transmission mode with a Si(111) double-crystal monochromator. Reagent grade CeO\textsub{2} and Ce(NO\textsub{3})\textsub{3}\textsub{·}6H\textsub{2}O were used as Ce4+ and Ce3+ standards respectively, whereas TiO\textsub{2} (Degussa-P25) and Ti\textsub{2}O\textsub{3} were used as Ti4+ and Ti3+ standards respectively. Data processing and analysis were performed with the Athena software program in a standard curve-fitting procedure.

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements were performed on an IRIS Intrepid II XSP instrument (Thermo Electron Corporation) to quantify the actual Ni loadings in the as-prepared catalysts.

2.4 Computational details

Electronic structure methods. All the spin-polarized DFT calculations were carried out using the Vienna Ab-initio Simulation Package (VASP).39–41 The projected-augmented wave (PAW) pseudopotentials were utilized to describe the core electrons, and plane-wave basis sets with a kinetic energy cutoff of 400 eV were adopted to treat the valence electrons.42 The Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional of the generalized gradient approximation (GGA) was used.43 The \(k\)-point sampling was performed using the Monkhorst–Pack scheme,44 and the meshes used for the bulk and surfaces are given in Table S1 (ESI†). The DFT + \(U\) method was used to treat the on-site Coulomb and exchange interactions of highly localized states in the d or f orbitals of the metal oxides.45,46 An effective \(U = 4.5\ \text{eV}\) was used for both the 4f orbital of Ce and 3d orbital of Ti in metal oxides, consistent with previous values in the studies of ceria17 and titania.48 All the structures were relaxed until the forces on each ion were less than 0.02 eV Å-1, and the convergence criterion for the energy was set as \(10^{-5}\ \text{eV}\). The nudged elastic band combined with minimum-mode following dimer method was used to locate the transition state structure of the reaction.59,50 All the transition state structures were identified by vibrational analysis.
Surface models. To study the catalytic activity of the 5Ni/CeO₂–TiO₂ catalyst, a series of surface models were used, including Ni(111), CeO₂(111), TiO₂(110), Ce₂Ti₂O₇(211), Ni/CeO₂(111), Ni/TiO₂(110) and Ni/Ce₂Ti₂O₇(211). The explicit surface structures are shown in Fig. S1 and S2 (ESI†). The Ni(111) surface was modelled as a four atomic layer slab of FCC Ni to mimic the active sites of Ni nanoparticles. The CeO₂(111) and TiO₂(110) surfaces were also represented using slab models to study the activity of CeO₂–TiO₂ metal oxide. The crystal structure of Ce₂Ti₂O₇ with a space group P21 was used and the metal oxide active sites were modelled using the Ce₂Ti₂O₇(211) surface. As the interface between Ni nanoparticles and the metal oxide support may also exhibit high activity for reactions, we built interface models for Ni/CeO₂(111), Ni/TiO₂(110) and Ni/Ce₂Ti₂O₇(211) as shown in Fig. S2 (ESI†). For all the metal–oxide interface sites, the close-packed Ni(111) surface was in contact with the metal oxide facets. The two-layer thick Ni nanorods with two-atom width were anchored on the top of the metal oxide surfaces. The appropriate designs of the Ni nanorod/oxide models bear only small lattice mismatches: 4.01% for Ni/CeO₂(111), 2.78% for Ni/TiO₂(110) and 0.83% for Ni/Ce₂Ti₂O₇(211), which avoids the large strain in the metal overlayers. Detailed structural parameters concerning the size of supercells, the number of atomic layers and the vacuum space of surface slabs etc. are provided in Table S3 (ESI†).

3. Results and discussion

3.1 Redox performance and stability

Since the feasibility of two-step MDR-STCDS and MDR-STWS processes is contingent upon satisfactory performance for CO₂ and H₂O splitting as well as CH₄ conversion, consecutive redox cycles were carried out to investigate the activity and stability of Ni/CeO₂–TiO₂ catalysts. Fig. 2a and b show the transient CO and H₂ formation rates during the CO₂ and H₂O splitting steps (indicated by the red curves) for 5Ni/CeO₂–TiO₂ after the isothermal MDR step, respectively. As can be seen, both reactions proceeded rapidly with extraordinary peak CO and H₂ evolution rates followed by a quick decay, indicating very fast CO₂ and H₂O splitting kinetics. The peak CO/H₂ production rates and CO/H₂ productivities reported here exceed virtually all of those reported in the STCDS/STWS, HDR-STCDS (H₂ driven reduction solar thermochemical CO₂ splitting)/HDR-STWS (H₂ driven reduction solar thermochemical H₂O splitting) and MDR-STCDS/MDR-STWS processes, as summarized in Tables S4 and S5 (ESI†).

Specifically, 5Ni/CeO₂–TiO₂ showed unprecedented CO/H₂ production rates and total CO/H₂ yields of about 10–140 and 5–50 times higher than the state-of-the-art ceria-based materials and perovskites in conventional STCDS and STWS processes performed at significantly higher temperatures (above 1250 °C). Moreover, 5Ni/CeO₂–TiO₂ also far outperformed most redox materials in the MDR-STCDS/MDR-STWS processes and even in HDR-STCDS/HDR-STWS redox schemes. Note that no detectable amount of CO₂ or CO was observed during the H₂O splitting.
half-cycle (Fig. 2b), indicating that almost no carbon deposition occurred after the MDR step. To further disclose the impact of Ni species on the CO₂ and H₂O splitting performance, CeO₂–TiO₂ in the absence of Ni was chemically reduced with 1% H₂/Ar at 900 °C to ensure complete reduction. Subsequently, the completely reduced CeO₂–TiO₂ was subjected to CO₂ and H₂O splitting reactions at identical operating conditions as in the oxidation half cycle of two-step MDR-STCDS and MDR-STWS processes. As shown in Fig. 2a and b, it is evident that the reduced CeO₂–TiO₂ (indicated by the black curves) behaved significantly differently. The peak CO and H₂ production rates were less than 19% and 21% of the reduced 5Ni/CeO₂–TiO₂, with CO and H₂ evolution profiles being lower and broader, and it can be attributed to the considerably slower CO₂ and H₂O splitting kinetics over the reduced CeO₂–TiO₂. These results strongly suggest that the reduced Ni species substantially accelerated the catalytic splitting of CO₂ and H₂O, which will be discussed in detail in Section 3.3. In heterogeneous catalysis, Heine et al. also showed that CO₂ molecules could be activated on Ni(111) and dissociated into CO and atomic oxygen in the methanation reaction. Carrasco et al. demonstrated that the strong electronic perturbations induced by nickel/ceria interactions could lead to an unexpectedly low H₂O dissociation activation barrier and thus faster dissociation of H₂O in the water-gas shift reaction as compared to bare CeO₂. Consecutive CO₂/H₂O splitting cycles verified the stability of the 5Ni/CeO₂–TiO₂ redox catalyst (see Fig. 2c and d), which showed reproducible kinetic curves of CO and H₂ evolution rates in the second and subsequent oxidation. The CO (Fig. 2c) or H₂ (Fig. 2d) productivity, estimated by integrating the corresponding transient CO or H₂ evolution rate with respect to time, stayed relatively constant over the course of 10 repetitive cycles. Interestingly, the CO or H₂ productivity was comparable to the theoretically expected value (44.5 mL CO/H₂ g⁻¹ assuming a full reduction to Ce³⁺) stoichiometrically available for complete oxidation of Ce⁴⁺ to Ce³⁺. These results might imply that the 5Ni/CeO₂–TiO₂ redox catalyst was completely reoxidized after the CO₂ or H₂O splitting step. The slightly excess amount of CO or H₂ above the theoretical maximum might result from the partial reoxidation of the reduced Ni species on the surface of 5Ni/CeO₂–TiO₂ with CO₂ or H₂O as no carbon was deposited.

In regard to the MDR step, representative CH₄ isothermal reduction results are illustrated in Fig. 3a and b. For both processes, the as-prepared 5Ni/CeO₂–TiO₂ catalyst exhibited promising CH₄ conversions (>99%) with negligible CH₄ detected. As can be seen, the reaction between CH₄ and 5Ni/CeO₂–TiO₂ followed a similar pattern characterized by two distinct regions. The initial stage (region I) was dominated by complete oxidation of CH₄ to CO₂, which was typically attributed to oxygen derived from NiO and/or loosely bonded surface oxygen on CeO₂–TiO₂. The second stage (region II) was dominated by partial oxidation of CH₄ to CO and H₂ by the strongly bonded bulk oxygen of CeO₂–TiO₂ that was sufficiently favored over the metallic nickel. The amount of oxygen converted to CO for 5Ni/CeO₂–TiO₂ reached 36.3 mL g⁻¹ and 40.5 mL g⁻¹ in MDR-STCDS and MDR-STWS processes, respectively, which was close to the theoretical removable oxygen (44.5 mL g⁻¹) assuming a complete reduction from Ce⁴⁺ to Ce³⁺. Notably, the reaction of CeO₂–TiO₂ with CH₄ in the absence of Ni shows drastically different results. As evidenced in Fig. S3a (ESI†), the CH₄ concentration rapidly reached the nominal value during the reduction step in the MDR-STWS process with inferior CH₄ conversion (5.9%), and the amount of oxygen converted to CO was only 1.0 mL g⁻¹, indicating the bulk oxygen of CeO₂–TiO₂.
remained largely unconsumed without Ni promotion. Additionally, the conversion of CH₄ using CeO₂–TiO₂ samples with different Ni loadings (0, 0.5, 1, 2 and 5 wt%) is illustrated in Fig. S3b (ESI†). It is evident that CH₄ conversion increased concurrently with increasing Ni content. The above observations reveal that the presence of Ni species is vital for catalyzing CH₄ activation, thereby enhancing the bulk oxygen consumption originating from CeO₂–TiO₂ and hence the partial oxidation of CH₄. The instantaneous gaseous product concentrations during the reduction of 5Ni/CeO₂–TiO₂ varied slightly among 10 isothermal MDR-STCDS and MDR-STWS cycles (Fig. S4a and b, ESI†), confirming that 5Ni/CeO₂–TiO₂ could be reduced with CH₄ repeatedly with high reproducibility. The corresponding catalytic performance of 5Ni/CeO₂–TiO₂ during CH₄ reduction is summarized in Fig. 3c and d, in terms of the CH₄ conversion (CH₄ Con), H₂/CO ratio, and CO selectivity (CO Sele). Remarkably, essentially complete conversions of CH₄ were achieved for both processes over the entire 10 redox cycles, with H₂:CO ratios stabilized at ~1.8 (Fig. 3c) and ~1.9 (Fig. 3d), i.e., close to the typically desired ratio for downstream Fischer–Tropsch or methanol synthesis. The CO selectivity for 5Ni/CeO₂–TiO₂ in the isothermal MDR-STCDS and MDR-STWS processes amounted to ~76 and ~85%, respectively, which is most likely due to the different surface oxygen species as will be discussed later. To summarize, the extraordinary CO₂ and H₂O splitting performance and the superior CH₄ partial oxidation activity render 5Ni/CeO₂–TiO₂ a highly promising redox catalyst in the MDR-STCDS and MDR-STWS processes.

3.2 Redox catalyst characterization

In order to elucidate the underlying reasons for the exceptional efficacy of the 5Ni/CeO₂–TiO₂ redox catalyst, various physico-chemical characterization techniques complemented by detailed theoretical studies were applied to probe the redox chemistry and reaction pathways. Fig. 4 illustrates the XRD patterns of the 5Ni/CeO₂–TiO₂ redox catalyst at various stages (after synthesis, after the MDR step, and after multicycle reactive tests). As observed in Fig. 4a, the as synthesized sample exhibited distinct reflections characteristic of NiO, CeO₂, and TiO₂ (rutile, JCPDS 01-083-2242; brookite, JCPDS 01-076-1934), evidencing the solid state reactions between individual compounds remained negligible after the initial calcination process. Intriguingly, reflection peaks attributable to CeO₂ and TiO₂ completely disappeared for the reduced sample after the MDR step, accompanied by the emergence of new reflection peaks indexable to Ce₂Ti₂O₇ pyrochlore (JCPDS 00-047-0667) and (Fe,Cu)O, (Fe,Cu)NiO, (Fe,Cu)₂Ti₂O₇ (JCPDS 00-047-0667) and Ni (JCPDS 00-001-1272).

Fig. 4 X-ray powder diffraction patterns of (a) as synthesized 5Ni/CeO₂–TiO₂, (b) 5Ni/CeO₂–TiO₂ after the CH₄ reduction half cycle and (c) 5Ni/CeO₂–TiO₂ after isothermal MDR-STCDS (up) and MDR-STWS (below) redox cycling at 900 °C. The following compounds were identified: (●) CeO₂, (●) TiO₂ (rutile), (●) TiO₂ (brookite), (●) NiO, (●) Ni, (●) Ce₂Ti₂O₇ (JCPDS 00-047-0667) and (●) Ni (JCPDS 00-001-1272).

H₂-TPR experiments were performed to investigate the redox properties of the as synthesized 5Ni/CeO₂–TiO₂ and CeO₂–TiO₂ samples, together with those of TiO₂ and CeO₂ as references, and the results are presented in Fig. 5. TiO₂ exhibited no appreciable reduction in the temperature range of 100–900 °C. For CeO₂ two weak reduction peaks were observed. The first peak located at about 480 °C was generally ascribed to the reduction of surface capping oxygen, and the second peak centered at about 800 °C was related to the removal of bulk lattice oxygen, which still proceeded significantly at above 900 °C, revealing that bulk lattice oxygen of CeO₂ was extremely stable. Notably, in the case of CeO₂–TiO₂ mixed oxides, the H₂-TPR profile featured a single broad peak ranging from 400 to 700 °C with intensity much greater than pure CeO₂, indicative of relatively high lattice oxygen mobility. The enhanced reducibility can potentially be explained by the reduction of the energy...
barrier for oxygen anion migration via the stoichiometric reaction between CeO$_2$ and TiO$_2$ during reduction, resulting in Ce$_2$Ti$_2$O$_7$ pyrochlore as indicated by the XRD pattern of CeO$_2$–TiO$_2$ after the H$_2$-TPR measurement (see Fig. S8, ES$	ext{I}^+$ for further details). The anion-deficient Ce$_2$Ti$_2$O$_7$ pyrochlore may enable efficient oxygen anion transport and facilitate the accessibility of bulk lattice oxygen. These results correspond well with the earlier work of Luo et al.,63 whereby the reduction degree of CeO$_2$–TiO$_2$ mixed oxides was greatly enhanced owing to incorporation of TiO$_2$ into the CeO$_2$ lattice. It is noteworthy that the presence of NiO can further improve the oxygen anion diffusivity within CeO$_2$–TiO$_2$. This is validated by the fact that the reduction peak of 5Ni/CeO$_2$–TiO$_2$ shifted down to ~350 °C, overlapping with the reduction band of NiO,63,64 while the H$_2$-TPR profile was characterized by a broader satellite peak at 861.5 eV (blue). These features could be assigned to the Ni$^{2+}$ in NiO,65,66 evidencing that the surface Ni species were present as NiO. After the MDR step, a peak at 852.2 eV (yellow) associated with zero-valent metallic Ni0 was clearly identified,66,67 indicating that metallic nickel was evolved after CH$_4$ isothermal reduction. In addition, a NiO contribution resulting from air exposure was observed due to the ex situ and surface sensitivity of XPS measurements as described elsewhere.66,67 Apparently, for 5Ni/CeO$_2$–TiO$_2$ catalysts after isothermal MDR-STCDS and MDR-STWS redox cycling, the contributions of metallic Ni0 decreased remarkably, pointing toward the reoxidation of the surface reduced Ni species by CO$_2$ and H$_2$O combined with the post-reaction air exposure. Furthermore, the O 1s spectra of the catalysts after isothermal MDR-STCDS and MDR-STWS redox cycling are displayed in Fig. 6b. Deconvolution of the O 1s band showed two distinct components. The predominant component at about 529.5 eV (pink) agrees well with the signature of lattice oxygen,55,65 while the minor components centered at 531.5 eV (26.3%) and 532.0 eV (20.4%) may originate from low coordination surface oxygen in hydroxyl and carbonate species of the catalysts after the MDR-STCDS and MDR-STWS cyclic experiments, respectively.55,68 The electrophilic surface oxygen species have been associated with deep oxidation of CH$_4$ to CO$_2$,68,69 and this is consistent with the fact that a higher CO selectivity was obtained on the 5Ni/CeO$_2$–TiO$_2$ catalyst in MDR-STWS redox cycling as the surface oxygen species were relatively fewer.

To gain further insight into the redox chemistry during solar fuel production, the oxidation states of cerium and titanium were probed using XANES spectroscopy. Fig. 7 shows the normalized Ce L$_{\text{III}}$ and Ti K edge XANES spectra of the 5Ni/CeO$_2$–TiO$_2$ redox catalyst after three different stages in isothermal MDR-STCDS and MDR-STWS redox cycling. For comparison, standard reference spectra of Ce$^{4+}$ (CeO$_2$), Ce$^{3+}$ (Ce(NO$_3$)$_3$.6H$_2$O), Ti$^{4+}$ (TiO$_2$), and Ti$^{3+}$ (Ti$_2$O$_3$) are also included. The spectrum of Ce$^{4+}$ is characterized by two absorption peaks around 5732.2 eV and 5739.0 eV, whereas the spectrum of Ce$^{3+}$ is dominant with one intense absorption peak at around 5727.9 eV.70,71 As observed in Fig. 7a, the Ce L$_{\text{III}}$-edge XANES spectrum of the as synthesized catalyst resembled that of Ce$^{4+}$ in CeO$_2$. Remarkably, the spectrum of the catalyst after the MDR step exhibited exclusively features characteristic of cerium in the completely reduced state (Ce$^{3+}$), indicating the complete reduction of Ce$^{4+}$ after reacting with CH$_4$. Contrary to 5Ni/CeO$_2$–TiO$_2$, only minute changes are observed in the Ce L$_{\text{III}}$-edge spectrum of CeO$_2$–TiO$_2$ after the MDR step (Fig. S9, ES$	ext{I}^+$), suggesting no significant change in the oxidation state of cerium in CeO$_2$–TiO$_2$ without Ni promotion. The reduced 5Ni/CeO$_2$–TiO$_2$ after the final CO$_2$ or H$_2$O splitting step recovered the initial doublet feature indicative of Ce$^{4+}$. Therefore, the valence state of cerium in 5Ni/CeO$_2$–TiO$_2$ changed reversibly during the redox reactions. On the other hand, Ti K-edge XANES spectra of 5Ni/CeO$_2$–TiO$_2$ were in close resemblance to TiO$_2$ irrespective of the different processing steps, i.e., after initial synthesis, after reduction with CH$_4$ or after CO$_2$ or H$_2$O splitting redox cycling (Fig. 7b). The absence of shifts in the Ti K-edge position reveals that unlike cerium, all titanium remained in the formal +4 oxidation state.

Fig. 5 H$_2$-TPR profiles of as synthesized 5Ni/CeO$_2$–TiO$_2$ and CeO$_2$–TiO$_2$. For comparison, the data for TiO$_2$ and CeO$_2$ are also shown.

Fig. 6 (a) Ni 2p$_{3/2}$ XPS spectra of the 5Ni/CeO$_2$–TiO$_2$ sample: (i) as synthesized, (ii) after the CH$_4$ reduction half cycle, (iii) after isothermal MDR-STCDS redox cycling at 900 °C and (iv) after isothermal MDR-STWS redox cycling at 900 °C. (b) O 1s XPS spectra of the 5Ni/CeO$_2$–TiO$_2$ sample: (i) after isothermal MDR-STCDS redox cycling at 900 °C, and (ii) after isothermal MDR-STWS redox cycling at 900 °C.
The elemental distribution and structure of the 5Ni/CeO2–TiO2 catalyst were further characterized by STEM-EDX and HRTEM techniques and the results are indicated in Fig. 9. For the initial catalyst, STEM-based EDX mapping (Fig. 9b1–b4) showed an inhomogeneous distribution of the elements with distinct Ce, Ti, and Ni rich regions (see Fig. S10, ESI† for more details). The corresponding HRTEM images exhibited well-resolved lattice fringes of 0.31, 0.35, and 0.24 nm, which can be ascribed to CeO2(111), TiO2(210), and NiO(111) facets, respectively (Fig. 9c). The above results further confirm the intimately mixed oxides of CeO2, TiO2, and NiO in the as-prepared catalyst. In contrast, elemental mapping for 5Ni/CeO2–TiO2 after reduction with CH4 (Fig. 9e1–e4) demonstrates clearly that the distributions of Ce, Ti, and O overlap with each other, whereas Ni was at oxidation state Ni0 as no clear O element was identified within the same region. Besides, clear lattice fringes of 0.29 and 0.20 nm corresponding to (112) Ce2Ti2O7 (JCPDS 00-047-0667) and (111) Ni (JCPDS 00-001-1272) structural domains, respectively, were revealed (Fig. 9f). These results thus provide unambiguous evidence that TiO2 was incorporated into the CeO2 lattice, resulting in Ce2Ti2O7 pyrochlore, while NiO was reduced to metallic nickel after CH4 reduction, in accordance with the XRD analysis. However, the distribution of Ce and Ti remained inhomogeneous for CeO2–TiO2 before and after the MRD step (Fig. S11, ESI†), indicating the incorporation of TiO2 into CeO2 appeared to be negligible. Additionally, STEM-EDX mapping of 5Ni/CeO2–TiO2 catalysts after MDR-STCDS and MDR-STWS redox cycling verified a homogeneous distribution of Ce, Ti, and O elements (Fig. S12, ESI†), implying that CeO2 and TiO2 were regenerated with a homogeneous dispersion, with Ni species dispersed on the CeO2–TiO2 matrix. In essence, the STEM-EDX mapping and HRTEM analysis visualized the crystalline phase evolution of the 5Ni/CeO2–TiO2 catalyst, i.e., the as-prepared catalyst existed in the form of mixed oxides, which transformed into Ce2Ti2O7 pyrochlore and metallic Ni after the MDR step and regenerated with uniformly distributed CeO2 and TiO2 upon CO2 or H2O splitting.

3.3 DFT studies

To provide a more fundamental understanding of the observed catalytic performance, DFT calculations were undertaken to probe the reaction landscape associated with CH4 dissociation and CO2/H2O splitting, as well as the performance of oxygen anion migration within the CeO2–TiO2 support. For the methane driven reduction step, the breaking of the first C–H bond in CH4 was studied on the metal, oxide and metal–oxide interface, respectively, as shown in Fig. 10a. The CH4 dissociation on metal oxide surfaces, CeO2(111) and TiO2(110), is endothermic.
with a reaction energy larger than 1.00 eV and possesses high reaction barriers. In contrast, on the Ni(111) surface the reaction is slightly endothermic (0.17 eV) and the reaction barrier decreases to 0.73 eV, much lower than that on metal oxide surfaces with 1.44 eV for CeO$_2$(111) and 1.27 eV for TiO$_2$(110). Furthermore, at the interface of Ni/CeO$_2$(111) and Ni/TiO$_2$(110),

Fig. 9 (a) STEM image, (b$_1$–b$_4$) the corresponding element-mapping images and (c) HRTEM images of as synthesized 5Ni/CeO$_2$–TiO$_2$; (d) STEM image, (e$_1$–e$_4$) the corresponding element-mapping images and (f) HRTEM images of 5Ni/CeO$_2$–TiO$_2$ after the CH$_4$ reduction half cycle.

Fig. 10 DFT calculation results. Potential energy diagrams for (a) methane dissociation (CH$_4$(g) \rightarrow CH$_3^*$ + H*), (b) carbon dioxide splitting (CO$_2$(g) \rightarrow CO* + O*) and (c) water splitting (H$_2$O(g) \rightarrow H$_2^*$ + O*) on the metal, oxide and metal–oxide interface. (d) The formation energies of oxygen vacancies ($E(V_O)$) at different sites of Ti-doped CeO$_2$(111), and $E(V_O)$ for CeO$_2$(111) and TiO$_2$(110) are also shown as references. The zero energy reference corresponds to the sum of energies of gas-phase molecules and a clean surface. The reaction energies and activation energies for the elementary steps involved in the three reactions are displayed in Tables S6–S8 (ESI†). The geometric structures of states labelled in (a–c) are displayed in Fig. S13–S15 (ESI†). On the Ti-doped CeO$_2$(111) in (d), the oxygen atoms in the first atomic layer are labelled with “u” and the oxygen atoms in the third atomic layer are labelled with “d”. The surface structures with oxygen vacancies are displayed in Fig. S16 (ESI†). The red, yellow and gray spheres represent O, Ce and Ti atoms, respectively.
Despite the reaction barriers being slightly higher than that on Ni(111), the reaction energies change to significantly exothermic, indicating that the Ni/\(\text{Ce}_2\text{Ti}_2\text{O}_7\) interfaces are more preferential for \(\text{CH}_4\) dissociation. Therefore, our calculation results suggest that both Ni and the Ni/\(\text{Ce}_2\text{Ti}_2\text{O}_7\) interface are more active than the pure metal oxide, which echoes the constructive role of Ni in metal oxides for methane driven reduction.

In the process of \(\text{CO}_2\) or \(\text{H}_2\text{O}\) splitting, the reduced \(\text{Ce}_2\text{Ti}_2\text{O}_7\) (211), Ni(111) and Ni/\(\text{Ce}_2\text{Ti}_2\text{O}_7\) (211) interfaces were considered as active sites. As shown in Fig. 10b, the \(\text{CO}_2\) dissociation on Ce(111) is an endothermic reaction with a reaction energy of 1.08 eV and a large reaction barrier of 1.45 eV. On Ni(111) the reaction energy becomes exothermic with a value of −1.14 eV and the reaction barrier is as low as 0.46 eV. However, the adsorption energy of \(\text{CO}_2\) on Ni(111) is insignificant (only −0.01 eV), which can lead to a low coverage of adsorbed \(\text{CO}_2\) and thus is detrimental to the total rate of \(\text{CO}_2\) dissociation. At the interface between Ni and \(\text{Ce}_2\text{Ti}_2\text{O}_7\), though the reaction barrier is increased by 0.36 eV compared to that on Ni(111), the reaction is more exothermic and the adsorption of \(\text{CO}_2\) is dramatically enhanced with an adsorption energy of −0.82 eV, suggesting the Ni/\(\text{Ce}_2\text{Ti}_2\text{O}_7\) interface is more favorable for \(\text{CO}_2\) splitting. For the water dissociation reaction on the \(\text{Ce}_2\text{Ti}_2\text{O}_7\) (211) surface (Fig. 10c), the breakage of the first O–H bond only needs to overcome a small reaction barrier of 0.34 eV, resulting in the OH group binding with metal atoms and the H atom binding with surface oxygen atoms (state A-w1). However, the subsequent hydrogenation reaction on the \(\text{Ce}_2\text{Ti}_2\text{O}_7\) (211) surface is extremely difficult as the reaction barrier and the reaction energy are up to 3.53 eV and 2.99 eV, respectively. On the Ni(111) surface, water first experiences two steps of O–H bond breaking, then followed by one step of hydrogen generation. The breaking of the second O–H bond (from state A-w2 to B-w2) is the rate-determining step with a reaction barrier of 1.09 eV. At the interface of Ni/\(\text{Ce}_2\text{Ti}_2\text{O}_7\), water needs to go through three steps similar to that on \(\text{Ce}_2\text{Ti}_2\text{O}_7\) and two steps of hydrogen atom diffusion (state A-w3 to A-w3 and state B-w3 to B-w3). The reaction barrier of the rate-determining step (the breaking of the first O–H bond) is 1.13 eV, which is only 0.04 eV higher than that on the Ni(111) surface. However, the adsorption of water at interface sites (−1.07 eV) is stronger than that on Ni(111) (−0.50 eV). Therefore, Ni and the Ni/\(\text{Ce}_2\text{Ti}_2\text{O}_7\) interface show comparable activity in water splitting, but are much more active than the pure \(\text{Ce}_2\text{Ti}_2\text{O}_7\) surface.

Additionally, to explore the effect of TiO\(_2\) on the oxygen anion diffusivity within CeO\(_2\), the formation energies of oxygen vacancies \(E(V_0)\) of Ti-doped CeO\(_2\) were calculated with CeO\(_2\) and TiO\(_2\) as references (Fig. 10d). The calculated results indicate that the \(E(V_0)\) of Ti-doped CeO\(_2\) (111) are lower than those of CeO\(_2\) (111) and TiO\(_2\) (110). Moreover, the oxygen atoms (\(u_2, d_2\) in Fig. 10d) with lower coordination numbers after replacing one Ce atom with a Ti atom are more likely to be removed from the surface with the lowest \(E(V_0)\) of 1.57 eV and 1.70 eV. Overall, the lower formation energies of oxygen vacancies approaching the Ti atom on Ti-doped CeO\(_2\) (111) reflect the weakening of the Ce–O bond induced by the Ti atom, which indicates the promotional effect of TiO\(_2\) on oxygen anion diffusion within CeO\(_2\).

3.4 Reaction mechanism

On the basis of the experimental evidence and DFT calculations presented above, the potential reaction mechanism for the 5Ni/\(\text{Ce}_2\text{O}_2–\text{TiO}_2\) redox catalyst in MDR-STCDS and MDR-STWS processes is depicted in Fig. 11. We propose that in the MDR step, oxygen originating from NiO and loosely bonded surface oxygen were responsible for the total oxidation of \(\text{CH}_4\) to \(\text{CO}_2\) and \(\text{H}_2\text{O}\) with simultaneous reduction of NiO to metallic Ni. Furthermore, a stoichiometric reaction between CeO\(_2\) and TiO\(_2\) was promoted by the presence of Ni, providing lattice oxygen necessary for partial oxidation of \(\text{CH}_4\) and resulting in \(\text{Ce}_2\text{Ti}_2\text{O}_7\) pyrochlore. In the subsequent \(\text{CO}_2\) or \(\text{H}_2\text{O}\) splitting step, the anion-deficient \(\text{Ce}_2\text{Ti}_2\text{O}_7\) pyrochlore was reoxidized back to CeO\(_2\) and TiO\(_2\) after incorporation of O anions, producing CO or H\(_2\). Meanwhile, the surface metallic Ni was partially reoxidized by \(\text{CO}_2\) or \(\text{H}_2\text{O}\). The reduced Ni species in 5Ni/\(\text{Ce}_2\text{O}_2–\text{TiO}_2\) are identified as the active sites for \(\text{CH}_4\) activation and accelerate \(\text{CO}_2\) and \(\text{H}_2\text{O}\) dissociation in the reduction and oxidation steps, as strongly indicated by the drastically enhanced \(\text{CH}_4\) reactivity (Fig. 3 and Fig. S3, ESI) and \(\text{CO}_2\) and \(\text{H}_2\text{O}\) splitting kinetics (Fig. 2a and b) over those of CeO\(_2–\text{TiO}_2\). The phase transformations between CeO\(_2–\text{TiO}_2\) and \(\text{Ce}_2\text{Ti}_2\text{O}_7\) pyrochlore proceeded reversibly with the promotion of Ni species for enhanced lattice oxygen transport, accompanied by the complete Ce\(^{4+}\) ↔ Ce\(^{3+}\) redox cycle through reduction with \(\text{CH}_4\) and oxidation with \(\text{CO}_2\) or \(\text{H}_2\text{O}\), and it was backed up by XRD, XANES and electron microscopy (STEM-EDX, HRTEM) observations. DFT calculations also indicate that the metallic Ni and Ni/\(\text{Ce}_2\text{O}_2–\text{TiO}_2\) interface sites enhance the \(\text{CH}_4\) activation and the dissociation of \(\text{CO}_2\) and \(\text{H}_2\text{O}\). The calculated formation energies of oxygen vacancies suggest that the incorporation of TiO\(_2\) into CeO\(_2\) can weaken the Ce–O bond and thus promote...
the oxygen anion diffusion within CeO$_2$. Overall, the synergistic effect between the catalytic activation on Ni and the CeO$_2$–TiO$_2$/Ce$_2$Ti$_2$O$_7$ stoichiometric redox cycle enabled the highly effective solar fuel production in MDR-STCDS and MDR-STWS processes.

4. Conclusions

In summary, 5Ni/CeO$_2$–TiO$_2$ has emerged as an exceptional catalytic system for robust operation in MDR-STCDS and MDR-STWS processes. The redox catalyst featured ~100% CH$_4$ conversions and syngas selectivities up to ~76 and ~85% in the MDR step. In regard to the CO$_2$ and H$_2$O splitting steps, one to two orders of magnitude higher CO/H$_2$ production rates and productivities were achieved compared to the state-of-the-art STCDS/STWS and MDR-STCDS/MDR-STWS studies. In addition, the catalyst developed here possesses excellent stability over multiple redox cycles. As revealed by the experimental investigations and DFT calculations, the superior performance of 5Ni/CeO$_2$–TiO$_2$ is driven by the synergy between the catalytic activation on Ni and the CeO$_2$–TiO$_2$/Ce$_2$Ti$_2$O$_7$ stoichiometric redox cycle as they provide active sites and reactive intermediates to transport lattice oxygen for CH$_4$ partial oxidation and CO$_2$ or H$_2$O splitting in a complementary fashion. We anticipate the fundamental understanding on the crucial roles of the catalytic sites for reactant activation and the stoichiometric redox chemistry for enhanced lattice oxygen availability can provide important guidance for the rational design of advanced materials toward solar fuel production.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by National Natural Science Foundation of China (21476223, 21590792, 21776271, 21676269, 21603170, 91645203), National Key Projects for Fundamental Research and Development of China (2016YFA0202801), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDB17020100) and Department of Science and Technology of Liaoning province under contract 2015020086-101. C. R. C. gratefully acknowledges the China Postdoctoral Science Foundation (2018T111034), the Fundamental Research Funds for the Central Universities (xktr218016 and cxtd2017004) and the support of K. C. Wong Education Foundation. The calculations were performed by using the HPC Platform at Xi’an Jiaotong University and National Supercomputing Center in Shenzhen. This paper is dedicated to the 70th anniversary of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

References

1 S. Chu and A. Majumdar, Nature, 2012, 488, 294–303.
2 N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729–15735.
3 N. S. Lewis, Science, 2016, 351, 1920–1929.
4 J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong and Z. Kang, Science, 2015, 347, 970–974.
5 E. M. Nichols, J. J. Gallagher, C. Liu, Y. Su, J. Resasco, Y. Yu, Y. Sun, P. Yang, M. C. Chang and C. J. Chang, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 11461–11466.
6 D. S. Mallapragada, N. R. Singh, V. Curteanu and R. Agrawal, Ind. Eng. Chem. Res., 2013, 52, 5136–5144.
7 J. A. Herron, J. Kim, A. A. Upadhye, G. W. Huber and C. T. Maravelias, Energy Environ. Sci., 2015, 8, 126–157.
8 W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile and A. Steinfeld, Science, 2010, 330, 1797–1801.
9 M. Tou, R. Michalsky and A. Steinfeld, Joule, 2017, 146–154, DOI: 10.1016/j.joule.2017.07.015.
10 C. L. Muhich, B. W. Evanko, K. C. Weston, P. Lichty, X. Liang, J. Martinek, C. B. Musgrave and A. W. Weimer, Science, 2013, 341, 540–542.
11 A. H. Bork, M. Kubieck, M. Struzik and J. L. M. Rupp, J. Mater. Chem. A, 2015, 3, 15546–15557.
12 C. Ruan, Y. Tan, L. Li, J. Wang, X. Liu and X. Wang, AIChEJ., 2017, 63, 3450–3462.
13 F. He, J. Trainham, G. Parsons, J. S. Newman and F. Li, Energy Environ. Sci., 2014, 7, 2033–2042.
14 F. He and F. Li, Energy Environ. Sci., 2015, 8, 535–539.
15 J. R. Scheffe, M. D. Allendorf, E. N. Coker, B. W. Jacobs, A. H. McDaniel and A. W. Weimer, Chem. Mater., 2011, 23, 2030–2038.
16 Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz and A. F. Ghoniem, J. Phys. Chem. C, 2017, 121, 11055–11068.
17 Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz and A. F. Ghoniem, Phys. Chem. Chem. Phys., 2017, 19, 25774–25785.
18 D. Maiti, B. J. Hare, Y. A. Daza, A. E. Ramos, J. N. Kuhn and V. R. Bhetanabotla, Energy Environ. Sci., 2018, 11, 648–659.
19 B. J. Hare, D. Maiti, Y. A. Daza, V. R. Bhetanabotla and J. N. Kuhn, ACS Catal., 2018, 8, 3021–3029.
20 R. Michalsky, D. Neuhaus and A. Steinfeld, Energy Technol., 2015, 3, 784–789.
21 J. Zhang, V. Haribal and F. Li, Sci. Adv., 2017, 3, e1701184.
22 P. T. Krenzke and J. H. Davidson, Energy Fuels, 2014, 28, 4088–4095.
23 P. T. Krenzke, J. R. Fosheim, J. Zheng and J. H. Davidson, Int. J. Hydrogen Energy, 2016, 41, 12799–12811.
24 K. J. Warren, J. Reim, K. Randhir, B. Greek, R. Carrillo, D. W. Hahn and J. Scheffe, Energy Technol., 2017, 5, 2138–2149.
25 A. Steinfeld, P. Kuhn and J. Karni, Energy, 1993, 18, 239–249.
26 Q. Imtiaz, N. S. Yüzbası, P. M. Abdala, A. M. Kierzkowska, W. van Beek, M. Broda and C. R. Müller, J. Mater. Chem. A, 2016, 4, 113–123.
27 M. M. Nair and S. Abanades, Energy Fuels, 2016, 30, 6050–6058.
28 X. Gao, A. Vidal, A. Bayon, R. Bader, J. Hinkley, W. Liptiński and A. Tricoli, J. Mater. Chem. A, 2016, 4, 9614–9624.
29 M. Welte, K. Warren, J. R. Scheffe and A. Steinfeld, Ind. Eng. Chem. Res., 2017, 56, 10300–10308.
30 Y. Zheng, Y. Wei, K. Li, X. Zhu, H. Wang and Y. Wang, Int. J. Hydrogen Energy, 2014, 39, 13361–13368.
31 X. Zhu, Y. Wei, H. Wang and K. Li, Int. J. Hydrogen Energy, 2013, 38, 4492–4501.
32 J. R. Scheffe, R. Jacot, G. R. Patzke and A. Steinfeld, J. Phys. Chem. C, 2013, 117, 24104–24114.
33 Y. Zheng, K. Li, H. Wang, X. Zhu, Y. Wei, M. Zheng and Y. Wang, Energy Fuels, 2016, 30, 638–647.
34 K. Otsuka, Y. Wang, E. Sunada and I. Yamanaka, J. Catal., 1998, 175, 152–160.
35 D. Arifin, V. J. Aston, X. Liang, A. H. McDaniel and A. W. Weiner, Energy Environ. Sci., 2012, 5, 9438.
36 C. Dang, Y. Li, S. M. Yusuf, Y. Cao, H. Wang, H. Yu, F. Peng and F. Li, Energy Environ. Sci., 2018, 11, 660–668.
37 D. R. Killelea, V. L. Campbell, N. S. Shuman and A. L. Utz, Science, 2008, 319, 790–793.
38 Z. Liu, D. C. Grinter, P. G. Lustemberg, T. D. Nguyen-Phan, Y. Zhou, S. Luo, I. Waluyo, E. J. Crumlin, D. J. Stacchiola, J. Zhou, J. Carrasco, H. F. Busnengo, M. V. Ganduglia-Pirovano, S. D. Senanayake and J. A. Rodriguez, Angew. Chem., Int. Ed., 2016, 55, 7455–7459.
39 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15–50.
40 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169–11186.
41 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 49, 14251–14269.
42 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 1758–1775.
43 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
44 H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State, 1976, 13, 5188–5192.
45 V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, 44, 943–954.
46 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, 57, 1505–1509.
47 S. Fabris, G. Vicario, G. Balducci, S. de Gironcoli and S. Baroni, J. Phys. Chem. B, 2005, 109, 22860–22867.
48 J. B. Park, J. Graciani, J. Evans, D. Stacchiola, S. D. Senanayake, L. Barrio, P. Liu, J. F. Sanz, J. Hrbek and J. A. Rodriguez, J. Am. Chem. Soc., 2010, 132, 356–363.
49 G. Henkelman and H. Jonsson, J. Chem. Phys., 1999, 111, 7010–7022.
50 H. Jönsson, G. Mills and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, ed. B. J. Berne, G. Cicotti and D. F. Coker, World Scientific, Singapore, 1998, pp. 385–404.
51 A. Preuss and R. Gruehn, J. Solid State Chem., 1994, 110, 363–369.
52 L. Foppa, T. Margossian, S. M. Kim, C. Müller, C. Coprét, K. Larmier and A. Comas-Vives, J. Am. Chem. Soc., 2017, 139, 17128–17139.
53 S. Takenaka, N. Hanaizumi, V. T. D. Son and K. Otsuka, J. Catal., 2004, 228, 405–416.
54 J. Carrasco, D. Lopez-Duran, Z. Liu, T. Duchon, J. Evans, S. D. Senanayake, E. J. Crumlin, V. Matolin, J. A. Rodriguez and M. V. Ganduglia-Pirovano, Angew. Chem., Int. Ed., 2015, 54, 3917–3921.
55 C. Heine, B. A. Lechner, H. Buhlm and M. Salmeron, J. Am. Chem. Soc., 2016, 138, 13246–13252.
56 Q. G. Yan, W. Z. Weng, H. L. Wan, H. Toghiyani, R. K. Toghiyani and C. U. Pittman, Appl. Catal., A, 2003, 239, 43–58.
57 S. Chen, L. Zeng, H. Tian, X. Li and J. Gong, ACS Catal., 2017, 7, 3548–3559.
58 M. Rydén, M. Johansson, A. Lyngfelt and T. Mattisson, Energy Environ. Sci., 2009, 2, 970.
59 A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens and L. Jalowiecki-Duhamel, Appl. Catal., B, 2017, 212, 159–174.
60 I. Atribak, A. Buenolopez and A. Garciagarcia, J. Catal., 2008, 259, 123–132.
61 X. Wang, D. Liu, J. Li, J. Zhen and H. Zhang, NPG Asia Mater., 2015, 7, e158.
62 M. F. Luo, J. Chen, L. S. Chen, J. Q. Lu, Z. Feng and C. Li, Chem. Mater., 2001, 13, 197–202.
63 T. J. Lin, H. Xie, X. Meng and L. Shi, Catal. Commun., 2015, 68, 88–92.
64 H. Zhu, D. C. Rosenfeld, D. H. Anjum, S. S. Sangaru, Y. Saih, S. Ould-Chikh and J.-M. Basset, J. Catal., 2015, 329, 291–306.
65 M. A. Peck and M. A. Langell, Chem. Mater., 2012, 24, 4483–4490.
66 A. Antzara, E. Heracleous, L. Silvester, D. B. Bukur and A. A. Lemonidou, Catal. Today, 2016, 272, 32–41.
67 V. V. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, 44, 943–954.
68 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 54, 11169–11186.
69 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 49, 14251–14269.
70 T. Yamamoto, A. Suzuki, Y. Nagai, T. Tanabe, F. Dong, Y. Inada, M. Nomura, M. Tada and Y. Iwasawa, Angew. Chem., Int. Ed., 2007, 119, 9413–9416.
71 S. Zhang, S. Muratsugu, N. Ishiguro, S.-I. Ohkoshi and M. Tada, ChemCatChem, 2012, 4, 1783–1790.