Theory and a posteriori practical methods for calculating the reliability of electrical equipment

S M Kuznetsov 1, I V Orlova 2, O I Lisichko 2

1 Novosibirsk State Technical University, 20, Karla Marksya Av., Novosibirsk, 630073, Russia
2 Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia

E-mail: mbv5@mail.ru

Abstract. The determination of the current technical resource of the electric transport system is an important characteristic that allows one to define not only the current reliability of the system, but also to predict it for the future. If the maintenance of electrical equipment is carried out to restore the reliability, failure flow is not stopped, then the intensity of equipment failure will be artificially overstated. The timing of service impacts will also be overstated unsuccesssfully.

1. Introduction
Determination of the current technical resource of electric transport systems is an important characteristic that allows one to determine not only the current reliability of systems, but also to predict it for the future. If the maintenance of electrical equipment (EE) is carried out with the restoration of reliability up to period $P(t) \approx 1$ to period I (Fig. 1), then the flow of run-in failures is not stopped, the intensity of equipment failure will be artificially overstated. Obviously, the timing of service impacts will also be erroneously overstated [1].

If during the preventive maintenance, the reliability was restored up $P(t) \approx 1$, the frequency of prevention was equal to t_d and it was carried out for each N units of EE of one group evenly with interval t_d/N, then the reliability curves of each object will have form (2), where the qualitative dependences for a group of homogeneous objects are given where $N = 5$. Naturally, the assumption of recovery in the prevention up to $P(t) \approx 1$ is approximate [2].

2. Mathematical description of object
In the discussion group, reliability k of each object $(k = 0, 1, 2, \ldots, N-1)$, taking into account that the worn out trolleybus fleet, dominated by the exponential law of reliability, is determined by the expression:

$$P_k(t) = e^{-t\cdot k \left(\frac{T_k}{N} \right)},$$

where T - time of failure of the k element. In this case, the average reliability function of the entire
group consisting of \(N \) objects in the interval of \(t = 0 \ldots \frac{t_d}{N} \) is represented by the expression:

\[
\overline{P(t)} = \frac{P(t) + P_2(t) + \ldots + P_N(t)}{N}.
\]

(2)

Recording (2) as the sum of the geometric progression divided by \(N \), there will be the following:

\[
\overline{P(t)} = \frac{e^{-\frac{t_d}{N}T}}{N \left(1 - e^{-\frac{t_d}{N}T} \right)}.
\]

(3)

Thus, the value of the average reliability of the entire group of objects for the year can be analytically determined from (3):

\[
\overline{P_{av}} = \frac{\overline{P(t)}_{\text{max}} + \overline{P(t)}_{\text{min}}}{2}.
\]

(4)

For the values of time \(t = 0 \) and \(t = \frac{t_d}{N} \), determining the maximum and minimum level of reliability of each of the objects \(N \) in the group, there will be the following:

\[
\overline{P(t)}_{\text{max}} = \frac{e^{-\frac{t_d(1-N)}{N}T}}{N \left(1 - e^{-\frac{t_d}{N}T} \right)}.
\]

(5)

From equations (4) and (5) with failure rate \(\lambda = \frac{1}{T} \), the expression can be obtained for \(\overline{P_{av}} \).

As shown by experiments, annual fluctuations of the failure parameter take place. In this regard, there are confidence limits, in which the actual magnitude of the failure rate of the element under consideration can exist. Confidence limits are determined for the likelihood of their compliance - failures are random occurrences and there is a possibility of out of range \(\lambda \). In this regard \(\alpha \) is used as the confidence factor [3, 4]. Practically assuming that the probability of failure of the failure rate beyond the confidence interval is 90\% (\(\alpha = 0.9 \)), the definition of lower \(\lambda_n \) and upper \(\lambda_b \) limits of the confidence interval is:

\[
\lambda_{n,b} = \lambda \frac{1}{r_{1,2}},
\]

(6)

where \(r_{1,2} \) - specially tabulated functions, depending on the number of failures \(m \) and coefficient \(\alpha \) [1, 2]. The upper limit of the failure rate is of practical interest; the failure rate is maximal.

Using equations (5) in (4), the equation will be obtained allowing defining its individual failure rates \(\lambda \) in given operating conditions having an average object reliability during a year [5, 14].
Figure 1. Change in the failure rate of electrical systems of the trolleybus over a long period of operation: I - the period of run-in, II - long-term operation; III - the period before the overhaul.

\[
\lambda(t) = \begin{cases}
\frac{1}{\lambda} & \text{for } t < t_1 \\
1 - e^{-\frac{t}{T}} & \text{for } t_1 \leq t < t_2 \\
1 - e^{-\frac{t}{N T}} + e^{-\frac{t_d}{T}} & \text{for } t \geq t_2
\end{cases}
\]

(7)

where \(T = \frac{1}{\lambda} \). Equation (7) is transcendental with respect to \(T \), which is solved only by numerical methods. Let us solve it for one point by the graphic method. Taking into account the smallness of exponent \(\frac{t_d}{N \cdot T} \) when \(N = 100 \) of mobile units, according to [6, 7]:

\[
e^{-\frac{t_d}{N \cdot T}} \approx 1 - \frac{t_d}{T \cdot N}.
\]

(8)

Let us obtain a simpler equation:

\[
\overline{P}_{uv} = \frac{1}{2} \cdot \frac{t_d}{T} \left(1 - e^{-\frac{t_d}{T}} + e^{-\frac{t_d}{T}} \right).
\]

(9)

Given \(N = 100 \) with expression \(1 - N \approx -N \), one gets:

\[
\overline{P}_{uv} \cdot \frac{t_d}{T} = \left(1 - e^{-\frac{t_d}{T}} \right) e^{-\frac{t_d}{T}}.
\]

(10)

Equation (10) is solved graphically, determining the intersection point of the graphs \(\left(1 - e^{-\frac{t_d}{T}} \right) e^{-\frac{t_d}{T}} \) and \(\overline{P}_{uv} \cdot \frac{t_d}{T} \).

The graphical solution of equation (7) is shown in Fig. 2. Thus, for certain \(P = 0.921 \) and
$t_d = 3.5$, let us find $T = 20.9$.

\[f(T) = \left(1 - e^{\frac{3.5}{T}} \right) \cdot e^{\frac{3.5}{T}} \]

\[P \cdot \frac{t_d}{T} = 0.921 \cdot \frac{3.5}{T} \]

Figure 2. Graphic determination of the operating time to failure T with a known average for a year of reliability P and diagnosis period t_d.

\[t_d, \text{days} \]

\[\bar{P}_u, \text{days} \]

\bar{P}_u,T, t_d

Figure 3. 3D surface (\bar{P}_u, T, t_d) to define T with given t_d and \bar{P}_u.
Using mathematical-analytical software packages *MathCAD Enterprise Edition 11.0, Wolfram research Mathematica 5.0, Waterloo Maple 8.0* \(t_d \), families of characteristics and a three-dimensional surface in coordinates \((P_{sr}, T, t_d)\) were obtained.

In Fig. 3 graphs are shown for determining the individual operating time for failure with given reliability of the whole group and the time of restoration of electrical equipment to \(P = 1 \) when \(t_d = 3.5 \) day, when \(t_d = 7 \) day, when \(t_d = 14 \) day, when \(t_d = 28 \) day, when \(t_d = 56 \) day, when \(t_d = 112 \) day, when \(t_d = 224 \) day, corresponding to a complete repair cycle. Fig. 4 shows the solution of equation (7) with respect to a 3-dimensional surface in coordinates \((P_{sr}, T, t_d) \) when \(T = 1 \ldots 1000 \) days, \(P_{sr} = 0.1 \ldots 0.95 \) and \(t_d = 0 \ldots 1600 \) days.

\[\begin{align*}
\text{Figure 4. Dependence between reliability during year } P_{sr} \text{ and operating time for failure } T \\
\text{when: } 1 - t_d = 3.5 \text{ days, } 2 - t_d = 7 \text{ days, } 3 - t_d = 14 \text{ days, } 4 - t_d = 28 \text{ days, } 5 - t_d = 56 \text{ days.}
\end{align*} \]

Obviously, if the time between failures is determined by the most dangerous border external conditions and operating factors, the duration of the running-in of the trolleybus switching equipment...
was determined.

\[T_v = \frac{1}{\lambda_v} \] (11)

is a year or a significant part of it, the use of the graphs in Fig. 3 and Fig. 4 gives almost the same value as the expression (11). With smaller value \(T_v \), Fig. 4 gives a slightly different, more accurate value of the operating time. From Fig. 3 it is seen that for a given time between failures for a traction motor \(T_i = 476 \) at different diagnostic time values \(t_d \). For example, for a traction motor, one will have a different level of its reliability. So, for \(t_d = 28 \) days, let us have \(P_{sr} = 0.921 \), but for \(t_d = 7 \) a day, let us have \(P_{sr} = 0.96 \). Thus, it is obvious that when the diagnostic time decreases, the reliability of the electrical equipment of the trolleybus increases. For the electrical engineering complexes of the trolleybus in Fig. 4, there is a graph of the relationship between failure rates \(\lambda \) and the period of running-in of the switching electrical equipment of the trolleybus [8]. During the run-in period, the objects have a significant failure rate. Taking the intensity of failures for the measure of the intensity of operation and taking into account the quality of service impacts, environmental conditions and real-world effects the period of running-in of electrical equipment of trolleybus were determined [9, 13, 15].

3. Research results

Thus, the data obtained with the average time of prevention are overestimated because of the large proportion of working hours in the entire preventive period [10-15]. Obviously, this conclusion should serve as a prerequisite for a certain refinement of maintenance time for each of the types of EE trolleybus. At the same time, due to the fact that the estimates of the working hours are based on the failure ratio, these values can be slightly increased and, for example, the running time for the repaired contactor of field weakening will slightly exceed the time of 1.7 day and night.

The foregoing practically means that it is impossible to carry out adjusting operations, for example, in an efficient control circuit more than once every 6 day and night, since the danger of failure of such regulation is undoubtedly increased because the entire control circuit again starts operating its elements. Moreover, in the presence of a control circuit failure, it is important to find a really faulty element, without violating substantially the operating conditions of other elements that are already in the ready-made state, that is, in the mode according to Fig. 3, with a low failure rate. At the same time, the running-in time should be a small fraction of the total time of the interdiagnostic period (Fig. 4).

So, if initial running-in intensity \(\lambda \) is 3 times higher than the intensity during normal operation of the EE, then for an interdiagnostic period, \(t_d \) equals three times the running-in time \(T_{run} \), the average failure rate will be equal to \(1.33 \cdot \lambda \). This means that the probability per unit of failure time in the EE group due to the large share of still unprocessed elements will be increased by 33% relative to the situation when all the elements in the given group have already been worked on.

4. Conclusion

Thus, according to the calculations, for some elements of the EE trolley bus, it is necessary to increase the existing inter-professional period.

The methods and criteria set forth in the example of aircraft electrical equipment maintenance allowed clarifying this conclusion.

References

[1] Bykadorov A L, Zarutskaya T A and Muratova-Milekhina A S 2015 Increase of efficiency of short-circuits fault location in traction networks of alternating current on the basis of information technologies. Bulletin of transport of the Volga region 6(54) 15-19
[2] Filyushov Yu P, Zonov P V, Malozemov B V and Wilberger M E 2011 Energy efficient control
of an alternating current machine. *The Polzunovsky Herald*. 2011 2 45-51

[3] Kuznetsov S M 2005 *Traction network protection of SC current*. (Novosibirsk: NSTU) p. 352

[4] Kuznetsov S M 2011 Setting of electronic security with simulation model corrected. *Transport Science, Technology, Management. VINITY* **12** 30-34

[5] Kuznetsov S M, Demidenko I S, Yaroslavtsev M V and Krivova A O 2009 Mathematical model study of traction network dynamics of direct-current railway with train starting. / *Scientific transport problems of Siberia and Far East. NSAWT* **2** 324-327

[6] Malozyomov B V, Vorfolomeyev G N and Schurov N I 2005 Reliability and diagnosing electrotechnical systems. *In the collection: Proceedings - 9th Russian-Korean International Symposium on Science and Technology. KORUS-2005* 347-350

[7] Ivanov G Ja and Malozyomov B V 2005 Reliable power saving electric drive of wide application. *In the collection: Proceedings - 9th Russian-Korean International Symposium on Science and Technology. KORUS-2005* 330-332

[8] Schurov N I and Wilberger M E 2011 Spectral analysis of rectifier unit current for unbalance and non-sinusoidal supply voltage *Transport: science, technology, management* **12** 41-43

[9] Mischenko T M 2011 The mathematic stimulation of transient process in a.c. - system “electric-traction network - LOCOMOTIVE”. *Transport: science, technology, management* **12** 105-109

[10] Anurov V I 2008 Modeling of transient processes in case of short circuit in the traction network and the presence of electronic locomotives on the feeder zone. *Electro. Electrical engineering, electric power industry, electrotechnical industry* **2** 16-18

[11] Ardashkin I B, Yakovlev A N, Martyushev N V 2014 Evaluation of the resource efficiency of foundry technologies: Methodological aspect *Advanced Materials Research* **1040** 912-916 DOI: 10.4028/www.scientific.net/AMR.1040.912

[12] Martyushev N V 2014 Alignment of the microstructure of castings from the heterophase lead bronzes *Advanced Materials Research* **880** 163-167 DOI: 10.4028/www.scientific.net/AMR.880.163

[13] Efimov A E, Maksarov V V 2018 Simulation modeling of dynamic characteristics of machining in NI LabView software environment to improve processing technique of a rod component, International Conference on Innovations and Prospects of Development of Mining Machinery and Electrical Engineering №2, Vol. 194, 22021

[14] Nazarova M N, Palaev A G 2017 Diagnostics and repair of centrifugal oil transfer pump rotor shaft. *IOP Conference Series: Earth and Environmental Science* **87** 092016

[15] Kuvshinkin S U, Zvonarev I E, Ivanova P V 2018 Relationship of dynamic properties of mine excavator hoisting mechanism versus design parameters of operating equipment *Journal of Physics: Conference Series* **1118** 012054 DOI: 10.1088/1742-6596/1118/1/012054