Three remarks on Matula numbers

Albert Burgos
Universidad de Murcia
30100 Espinardo, Murcia, Spain
e-mail: albert@um.es

Abstract

In SIAM Review 10, page 273, D. W. Matula described a bijection between \(\mathbb{N} \) and the set of topological rooted trees; the number is called the Matula number of the rooted tree. The Gutman-Ivić-Matula (GIM) function \(g(n) \) computes the number of edges of the unique tree with Matula number \(n \). Since there is a prefix-free code for the set of prime numbers such that the codelength of each prime \(p \) is \(2g(p) \), we show how some properties of the GIM function can be obtained trivially from coding theorems.

Key words: Matula numbers, Kraft’s inequality, Shannon’s entropy.

Introduction

\(\mathbb{N} \) stands for the set of natural numbers, \(\mathbb{W} \) for the set of whole numbers \(\mathbb{N} \cup \{0\} \), \(\mathcal{T} \) for the set of finite and undirected rooted trees, and \(\mathbb{T} \) for the set of topological rooted trees (i.e. all equivalence classes of undirected rooted trees where the equivalence is the natural isomorphism). Let \(S \subset \mathbb{N} \) (respectively \(\mathbb{W} \)) be a set defined by property such that every natural number (respectively whole number) has a unique decomposition as a multiset of \(S \). Since the set of integers is totally ordered, then \(S \) is totally ordered. If the least element in \(S \) is greater than 1 (resp. 0), the index of an element \(s_i \in S \) is less than \(s_i \), i.e. \(s_i \in S \) implies \(i < s_i \). This leads to a recursive map from the naturals into \(\mathbb{T} \). We can easily construct examples of such property by setting \(S = \{b^n|n \geq 0\} \) (for some base \(b > 1 \)) or \(S = \{n!|n \geq 1\} \). In these two cases, decomposition builds on the addition operation on \(\mathbb{W} \). However, the prototype of all \(S \) defined as above

1 Preliminary draft, please do not quote without the author permission. I thank Maríα F. Morales for helpful comments. I also thank Regis de la Bretèche who have pointed out to me an important reference, from which I borrow the term of GIM function. Of course, all errors and/or omissions are my own. Financial support from the Spanish Ministry of Education through the project ECO2010-21624 is gratefully acknowledged.
is of course the set of all primes \(\mathbb{P} = \{ p(n) | n \geq 1 \} \), for which decomposition is the product of elements in \(\mathbb{P} \). In this case, the fundamental theorem of arithmetic tells us that the recursive map is a denumeration of \(\mathbb{T} \), as was noted independently by Matula [1] and Göbel [2], which give an explicit construction of the map and its inverse. Thus, any statistics on rooted trees may be assigned to a natural number. This has been done for several statistics starting with the pioneering work of Gutman, Ivić and Elk [3], with follow-ups by Gutman and Yeh [4], Gutman and Ivić [5], [6], and Deutsch [7], among others. In particular, Gutman, Ivić and Elk ask themselves how many edges does a natural number have, proving that the solution is given by the unique function completely additive \(g \), such that, for any \(n \in \mathbb{N} \),

\[
g(p(n)) = 1 + g(n).
\]

This function, dubbed by La Bretèche and Tenenbaum in [8] as the Gutman-Ivić-Matula (GIM) function, has a simple translation in terms of coding theory: It represents the semi-length of the codewords when natural numbers are encoded a Dyck alphabet via the Matula bijection. By exploiting this relation we can apply basic results on information entropy to provide non-asymptotic results on its behavior.

1 Preliminaries

Write \(\pi(n) \) for the number of primes less than or equal to \(n \), and \(p(n) \) for the \(n \)-th prime in ascending order. Given \(n \in \mathbb{N}_{\geq 2} \), if the prime factorization of \(n \) is \(f_1 \cdot f_2 \cdots \cdot f_m \) and \(\{ \circ \} \) denotes the rooted tree consisting of a single node, then the function \(\tau : \mathbb{N} \mapsto \mathbb{T} \) is defined as a recursion:

1. \(\tau(1) = \{ \circ \} \).
2. For \(n \geq 2 \), \(\tau(n) \) is the tree in which the root is adjacent to the roots of \(\tau(\pi(f_i)) \) for \(1 \leq i \leq m \).

The map \(\tau \) is a bijection. Its inverse is defined as follows:

1. \(\tau^{-1}(\circ) = 1 \).
2. If the root of tree \(t \) is adjacent to subtrees \(t_1, t_2, \ldots, t_m \), then

\[
\tau^{-1}(t) = \prod_{i=1}^{m} p(\tau^{-1}(t_i)).
\]

A prime factorization of a number is in canonical order when the primes are presented in nondecreasing order. An analogue for rooted trees goes as follows: If \(\tau(n) = t \), the rooted tree \(t \) is presented canonically when:
(1) The rooted trees t_1, t_2, \ldots, t_m, corresponding to the factors f_1, f_2, \ldots, f_m, respectively, are presented from left to right.

(2) Each rooted tree t_i is presented canonically.

Notice that $n \in \mathbb{P}$ iff $\tau(n) \in T_p$, where $T_p \subset T$ is the set of all planted rooted trees.\footnote{i.e. rooted trees for which the root has degree 1.}

Let $(\mathbb{N}, \cdot, 1)$ denote the commutative monoid of the positive integers under product. Let the merging of rooted trees t_1 and t_2, denoted, $t_1 \land t_2$, to be the labeled tree that results from identifying their roots. Now let (T, \land, \circ) be the commutative monoid of rooted trees under product, and let $p(t)$ be the rooted tree whose root is adjacent to subtree t. Since τ is a bijection, there is a isomorphism between $(\mathbb{N}, \cdot, 1)$ and (T, \land, \circ), which trivially extends to an isomorphism of the algebra $\mathcal{N} = \langle \mathbb{N}, \cdot, p, 1 \rangle$ onto the algebra $T = \langle T, \land, p, \circ \rangle$.

2 The Matula code

In what follows, we are motivated to use the algebra T to encode the positive integers. Any tree can be written as a string of symbols from the set $\{p, \circ, \land, (,)\}$. In any string representing a tree presented in canonical form, p is always followed by $($, the operator \land is always followed by p, and \circ appears only between $($ and $)$. Hence, no information is lost if we drop all the p's, \circ's, and \land's. For example, the rooted tree (b) in the figure above is represented as $p(p(p(\circ) \land p(\circ))))$, which can be simply written as $((())())$.

We need now to introduce some relevant formalism. I shall call alphabet a given set Σ such that $2 \leq |\Sigma| < +\infty$. Elements of Σ are called symbols. A string or word over Σ is any finite sequence of symbols from Σ. The length of a string is the number of symbols in the string (the length of the sequence) and can be any non-negative integer. The empty string is the unique string over Σ of length 0, and is denoted e. The set of all strings over Σ of length t is denoted Σ^t. (Note that $\Sigma^0 = \{e\}$ for any Σ.) The set of all finite-length strings over Σ is the Kleene closure of Σ, denoted Σ^*. For any two strings s and s' in Σ^*, their concatenation is defined as the sequence of symbols in s followed by the sequence of symbols in s', and is denoted ss'. The empty string serves as the identity element; for any string s, $es = se = s$. Therefore, the set Σ^* and the concatenation operation form a monoid, the free monoid generated by Σ. In addition, the length function defines a monoid homomorphism $\ell : \Sigma^* \to \mathbb{N}$. Given a set S with Kleene closure S^*, a code is a function $c : S \to \Sigma^*$. The elements of $c(S)$ will be referred to as the codewords, and c is said to be a $|\Sigma|$-ary code. In this paper we shall assume that any code c satisfies that if
s, s′, ss′ ∈ c(S) and s ≠ e, then s′ = e (i.e. the code is prefix-free).

In accordance with the above definitions, by setting Σ = { (,) } and S = P, it is clear that τ induces a code, which we dub the Matula code, denoted c_M.

3 Concluding remarks

The following are results of the direct translation of the coding approach into properties of the Gutman-Ivić-Matula arithmetic function.

In Gutman, Ivić and Elk [3], Gutman and Yeh [4], Gutman and Ivić [5], and Gutman and Ivić [6] is introduced an arithmetic function capturing some graph theoretic properties of τ:

Definition 1 Let g : N → C be the unique function completely additive such that, for any n ∈ N,

\[g(p(n)) = 1 + g(n). \] \hspace{1cm} (2)

Then, we have:

Lemma 1 For all p ∈ P, \(\ell \circ c_M(p) = 2g(p) \).

Proof. It trivially follows from Theorem 3(a) in Gutman and Ivić [5]. ■

Then, we have,

Conclusion 1: \(M_P = \sum_{p \in P} 1/4^g(p) < 1/2 \).

Proof. By Claim 1 and Kraft’s inequality. ■

And,

Conclusion 2: \(M_N = \sum_{n \in N} 1/4^g(n) = M_P/4 < 2 \).

Proof. By Conclusion 1 and equation (2). ■

Thus, \(M_P \) is a probability, whereas \(M_P \) is not, because \(g(2) = 1 \) and therefore \(M_P > 1/4 \).

Bounds on g appear in Gutman and Ivić [5], and [6], which show, for all \(n \geq 7 \),

\[\underline{g}(n) = \frac{\ln n}{\ln(\ln n)} \leq g(n) \leq \frac{3\ln n}{\ln 5} = \bar{g}(n). \] \hspace{1cm} (3)

The bounds \(g \) and \(\bar{g} \) cannot be improved upon—i.e. there exist infinite values of \(n \) for which they are reached asymptotically. However, Conclusion 2 implies
that most values of g are close to those of \bar{g}. Indeed, in [8], La Bretteche and Tenenbaum develop a method which evaluates the moments of g, showing that if $G(n) = \sum_{1 \leq i \leq n} g(i)$, then

$$G(n) = \phi n \ln n + O(n \ln(\ln n))$$

for some constant $\phi > 0$ (see [8] Theorem 1 and Theorem 3). Now, we shall see that Shannon’s source coding theorem [9] offers a proof of the fact that for all n, $G(n) > \phi n \ln n$ whenever $\phi \leq 1/\ln 4$.

Let S be a finite subset of \mathbb{N}, 2^S the associated σ-algebra, and $\mu = (\mu(s))_{s \in S}$ a probability distribution on the elements of S. We shall denote by S the discrete random variable taking values in S according to μ. Thus, the expectation for the length of $c_M(S)$ is

$$E[\ell \circ c_M(S)] = 2 \sum_{i=1}^{n} \mu(i) g(i). \quad (4)$$

Shannon’s coding theorem places a lower bound on this expected length. Namely, the ratio between the entropy of S, $H(S) = -\sum_{s \in S} \mu(s) \log \mu(s)$, and the cardinal of the target alphabet Σ. Therefore

$$E[\ell \circ c_{MG}(S)] \geq H(S) = -\sum_{s \in S} \mu(s) \log \mu(s), \quad (5)$$

i.e.

$$2 \sum_{s \in S} \mu(s) g(s) \geq \sum_{s \in S} \mu(s) \log \mu(s) \quad (6)$$

Trivially, $H(S) \leq \log |S|$ with equality if and only if μ is the uniform distribution. Thus, we get:

Conclusion 3: For all $n \in \mathbb{N}$,

$$G(n) \geq \frac{n}{\ln 4} \ln n. \quad (7)$$

Proof. Set $n \in \mathbb{N}$. If $S = [n]$ and $\mu(i) = 1/n$ for all $i \in S$, (3.6) yieldst $G(n) \geq n \log n/2 = n \ln n / \ln 4$. □

References

[1] D.W. Matula, A Natural Root Tree Enumeration by Prime Factorization, *SIAM Review*, 10: 273, 1968.

Here and thereafter we denote by log and ln the logarithms in bases 2 and e, respectively.
[2] F. Göbel, On a 1-1 correspondence between rooted trees and natural numbers, *Journal of Combinatorial Theory, Series B* **29**: 141-143, 1980.

[3] I. Gutman, A. Ivić, and S.B. Elk, Matula numbers for coding chemical structures and some of their properties, *Journal of the Serbian Chemical Society* **58** (3-4): 193-201, 1993.

[4] I. Gutman and Y.-N. Yeh, Deducing properties of trees from their Matula numbers, *Publications de l’Institut Mathématique, Nouvelle série* **53** (67) 17-22, 1982.

[5] I. Gutman and A. Ivić, Graphs with maximal and minimal Matula numbers, *Bulletin Académie Serbe des Sciences et des Arts (Classe des Sciences Mathématiques et Naturelles)* **107**: 65-74, 1994.

[6] ——, On Matula numbers, *Discrete Mathematics* **41**: 199-214, 1982.

[7] E. Deutsch, Rooted tree statistics from Matula numbers, *Discrete Applied Mathematics* **160** (15): 2314-2322, 2012.

[8] R. de La Bretèche and G. Tenenbaum, Sur certaines équations fonctionnelles arithmétiques, *Annales de l’institut Fourier* **50** (5): 1445-1505, 2000.

[9] C.E. Shannon, A Mathematical Theory of Communication, *Bell System Technical Journal*, **27** 379-423, 623-656, 1948.