Study on prevalence of obesity using different scales and its association with hypertension among the elderly in a district of Gujarat

Noopur Nagar¹, Shashwat Nagar², Niraj Bharadva³, Hiren B. Patel², Darshan Mahyavanshi³, Sunita S. Nagar⁴

¹Departments of Obstetrics and Gynecology and ²Community Medicine, Parul Institute of Medical Sciences and Research, Parul University, Gujarat, ³Department of Community Medicine, NAMO MERI, Silvassa, ⁴Department of Community Medicine, C U Shah Medical College, Surendranagar, Gujarat, India

Abstract

Introduction: In older adults, excess weight is associated with a higher prevalence of cardiovascular disease, metabolic disease, several important cancers, and numerous other medical conditions. Several indices such as body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) are used to classify general. Some studies also reported that WC and WHR is a better indicator of cardiovascular disease (CVD) risk than BMI and WHR. Aims and Objective: 1. To estimate the prevalence of obesity among the elderly using three scale viz. BMI, WHR, and WHtR 2. To compare the results of these three-scale used for assessment of obesity 3. To determine the presence of association between obesity and hypertension if any. Material and Methods: For selection of the area, in both the urban and rural areas, the sampling units were enumerated and samples were collected from them. The estimated geriatric population combined in both Urban and Rural areas amounted to 12,220 (7% of geriatric population as per Census 2001), out of which 5% was selected as sample. This came out to be 611 elderly subjects which were selected equally from both urban and rural areas. For assessment of obesity BMI, WHR, and WHtR were measured. Assessment of hypertension was as per JNC classification. Result: Prevalence of obesity as per BMI in the urban area was found to be 40%, whereas that in rural areas was found to be 47.4%. WHR and WHtR showed higher prevalence in rural areas (70%) and also in urban areas (60%). BMI and WHR were significantly associated with hypertensive status of elderly. Conclusion: Anthropometric assessments of obesity like WHR and WHTR are more sensitive indicators of obesity among the elderly. BMI is found to be significantly associated with hypertension as well in the present study. Logistic regression showed that the association of BMI with hypertension was higher than other obesity assessments.

Keywords: Anthropometric assessment, anthropometry, BMI, hypertension, JNC Classification, obesity, waist height ratio, waist hip ratio

Introduction

Worldwide increase in longevity has shifted the age distribution towards elderly population.¹ In India, the size of the elderly population (above age of 60 years) is growing fast. As the data suggest that the absolute number in India increased from 76 million in 2001 to 100 million in 2011 and continues to rise further.²

Obesity is a worldwide problem with increasing prevalence and incidence in both developed and developing countries. In older adults, excess weight is associated with a higher prevalence of

Access this article online

Quick Response Code: [QR Code Image]

Website: www.jfmpc.com

DOI: 10.4103/jfmpc.jfmpc_658_21

How to cite this article: Nagar N, Nagar S, Bharadva N, Patel HB, Mahyavanshi D, Nagar SS. Study on prevalence of obesity using different scales and its association with hypertension among the elderly in a district of Gujarat. J Family Med Prim Care 2022;11:162-9.
cardiovascular disease, metabolic disease, several important cancers, and numerous other medical conditions. Obesity among elderly is also an established risk factor for hypertension, hypercholesterolemia, insulin resistance, and diabetes. Obesity and hypertension are also a risk factor for cardiovascular disease, which creates significant economic burdens, especially in developing countries.

Anthropometry is the most basic method for assessing body composition. It is an easy, economical, and effective method that is used in the initial screening of obesity, hypertension, and other metabolic disorders. Several indices such as body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) are used to classify obesity. WHtR and WHR are better measures of visceral and abdominal fat distribution. On the other hand, some studies also reported that WC and WHR is a better indicator of cardiovascular disease (CVD) risk than BMI and WHR; however, a high WHR has been identified as an increasing risk factor of dyslipidemia, hypertension, CVD, and diabetes mellitus as compared with BMI. BMI is widely used to describe total or general obesity while WC, WHR, and WHtR describe more visceral fat; abdominal or centralised obesity.

Because human populations are leading to higher age and obesity, choosing the best measure to monitor the complications of obesity in the elder population is very important. The most common indicator used to measure obesity is the BMI. But this indicator does not indicate the distribution of central fat, while WHR is used as an alternative to determine the central distribution of obesity. Therefore, identification of risk factors associated with hypertension is required to determine the relationship between obesity and hypertension.

Among different anthropometric indicators, it has been seen that WC is the only clinical index of obesity associated with an increased ambulatory and conventional hypertension independent of other indices. However, WC does not account for differences in height, therefore, potentially over- and under-evaluating risk for tall and short individuals, respectively. Consequently, several researchers independently proposed the WHtR as an alternative to WC. This ratio has been shown to be a good indicator of abdominal adiposity, similar to WC and recent systematic reviews and meta-analyses have supported the use of WHtR as a better predictor of CVD risk factors.

So, BMI, WC, WHtR, and WHR are simple and valid anthropometric measures for the assessment of obesity and risk of hypertension. Screening of non-communicable diseases at regular intervals will help to diagnose them at an earlier stage and will prevent its long-term sequel. This study will be very helpful for the community and primary care physicians to orient them about the prevalence of obesity and the co-existence with hypertension and their determinants among the elderly population. Keeping all the above discussed factors in mind, it was decided to carry out this study and compare the different scales used for obesity with the classically used BMI and to associate the same with the hypertensive status of the study subjects.

Aims and Objective

1. **To estimate the prevalence of obesity among the elderly using three scales viz. BMI, Waist hip ratio and Waist height ratio.**
2. **To compare the results of these three-scale used for assessment of obesity for both urban and rural study subjects.**
3. **To determine the presence of association between obesity and hypertension if any.**
Material and Methods

For selection of the area, in both the urban and rural areas, the sampling units were enumerated and samples were collected from them. For Rural data collection, out of all the 12 talukas in Surendranagar district, one taluka was selected by using simple random sampling, which came out to be Sayla taluka. For selection of villages, the similar process was followed and Sayla village was selected. For urban data collection, the city which has 14 wards were enumerated and by simple random technique, Ward No. 7 was selected for the study. The estimated geriatric population combined in both Urban and Rural areas amounted to 12,220 (7% of geriatric population as per Census 2001), out which 5% was selected as sample. This came out to be 611 elderly subjects which were selected equally from both urban and rural areas. Study was conducted for 6 months. The study was cross-sectional study by directly interviewing the subjects. Self-structured and pre-tested Performa was used, consisting of sociodemographic futures, current and past economical situation of elderly. The permission from ethical committee of C U Shah Medical College, Surendranagar was taken prior to the commencement of the study. Data was collected by directly interviewing and examining the subjects and was entered and analysed using MS excel 2007.

Hypertension is defined as systolic blood pressure of ≥140 mm of Hg and diastolic blood pressure of ≥90 mm of Hg using JNC 7 criteria. For measurement of blood pressure, a rest of

| Table 3a: Association of Obesity and Blood pressure among the elderly in Urban areas |
|-------------------------------|---------|---------|--------|--------|---------|-------------------|-----|
| **Obesity vs. Blood pressure** | Normal | Pre‑hypertensive | Stage 1 | Stage 2 | Total | Chi square | **P** |
| **BMI Category** | | | | | | | |
| Underweight | 20 | 17 | 9 | 3 | 49 | 48.30 | <0.01|
| Normal Range | 25 | 57 | 33 | 19 | 134 | | |
| Overweight | 14 | 18 | 5 | 6 | 43 | | |
| Obese I | 15 | 14 | 11 | 9 | 49 | | |
| Obese II | 0 | 4 | 18 | 8 | 30 | | |
| Total | 74 | 110 | 76 | 45 | 305 | | |

Waist hip ratio category							
Normal	26	37	32	16	111	1.49	0.68
Risk	48	73	44	29	194		
Total	74	110	76	45	305		

Waist to height ratio category							
Underweight	15	7	6	3	31	42.39	<0.01
Normal	21	39	17	13	90		
Overweight	13	23	3	1	40		
Very Overweight	11	16	20	8	55		
Obese	14	25	30	20	89		
Total	74	110	76	45	305		

| Table 3b: Association of obesity and Blood pressure among the elderly in Rural areas |
|-------------------------------|---------|---------|--------|--------|---------|-------------------|-----|
| **Obesity vs. Blood pressure** | Normal | Pre‑hypertensive | Stage 1 | Stage 2 | Total | Chi square | **P** |
| **BMI Category** | | | | | | | |
| Underweight | 3 | 24 | 12 | 5 | 44 | 21.276 | 0.046|
| Normal Range | 6 | 44 | 30 | 37 | 117 | | |
| Overweight | 4 | 13 | 18 | 10 | 45 | | |
| Obese I | 8 | 30 | 16 | 34 | 88 | | |
| Obese II | 0 | 6 | 3 | 3 | 12 | | |
| Total | 21 | 117 | 79 | 89 | 306 | | |

Waist hip ratio category							
Normal	6	27	28	28	89	3.84	0.27
Risk	15	90	51	61	217		
Total	21	117	79	89	306		

Waist to height ratio category							
Underweight	0	3	0	3	6	29.69	0.003
Normal	7	21	25	16	69		
Overweight	2	43	22	17	84		
Very Overweight	4	29	13	17	63		
Obese	8	21	19	36	84		
Total	21	117	79	89	306		
10 min. was given to all study subjects prior to the measurement in sitting position. The measurement was done by using standard mercury sphygmomanometer and standard stethoscope after calibration with already calibrated instruments. A total of three measurements were taken for the systolic and diastolic blood pressure on the study subjects. Out of the three, an average was taken for the final classification. The higher classification for either of the systolic or diastolic was taken as the final BP classification of the study subjects. All subjects currently on anti-hypertensive medication or having a prescription of anti-hypertensive drugs were classified as hypertensive as per their current blood pressure range.

For the assessment of obesity, anthropometric measurements were taken by a trained staff, according to the World Health Organization (WHO) recommendations as depicted in Table 1.22 For measurement, weight machine was used after calibration. Weight was measured to the nearest 0.5 kg, height was measured with the subject barefoot in the standing position to the nearest 0.5 cm. BMI was calculated by dividing weight per kilograms by height per meter square (kg/m^2). The waist circumference and hip circumference was measured using stiff and non-elastic measuring tape. WC was measured to the nearest centimetre, midway between lowest rib margin and iliac

Table 4: Comparison of newer scales used for obesity with BMI

Waist hip ratio category (Urban)	BMI Category	Total	Chi square value	P				
Underweight	Normal	28	53	12	12	111	22.21	<0.01
Risk	21	81	37	37	18	194	305	
Total	49	134	43	49	30	305	305	

Table 5: Comparison of the newer scales used for obesity

WHP Ratio	WHT Ratio (Urban)	WHT Ratio (Rural)		
Normal	68	43	43	32
Risk	53	41	46	185
Chi square value	0.8438		2.1667	
P	0.35		0.1410	

Table 6: Effect of different scales on hypertension using binary logistic regression

Three obesity variables vs Hypertension	Hypertension Urban	Hypertension Rural	P			
BMI	1.528	1.255-1.861	<0.01	1.13	0.927-1.377	0.227
Waist Hip Ratio	1.263	0.786-2.03	0.335	0.629	0.379-1.04	0.072
Waist Height Ratio	1.409	1.187-1.672	<0.01	1.108	0.914-1.34	0.296
Nagar, *et al.*: Association of obesity and hypertension among elderly

To compare the results with newer scales, prevalence was also measured in terms of WHR in urban areas which was 63.6% and that in rural areas was 70.9%, similarly as for WHtR the prevalence in 60.3% in urban areas and 75.6% in rural areas. The prevalence was higher in the rural areas as per all the three scales as compared to that in the urban areas.

As seen in Figure 1, it can be seen that in the urban areas, nearly 40% were hypertensive, whereas in rural areas, more than half, that is, 55% were hypertensive. The prevalence of pre-hypertension was 38% in rural areas and almost the same, that is, 36% in urban areas. Higher prevalence thus found in rural areas as compared to urban areas.

As shown in Table 3a, it can be seen that in urban areas, the BMI and WHR were both found to be statistically significant in their association with the hypertensive status, whereas the WHR was not found significantly associated.

As shown in Table 3b, it can be seen that in rural areas also a similar picture was seen in that BMI and WHR were both found to be statistically significant in their association with the hypertensive status, whereas the WHR was not found significantly associated.

As shown in Table 4, it shows a significant association between the newer two scales when compared with BMI. Both WHR and WHtR have shown a significant association with BMI which is commonly used scale except in rural areas where WHR is not significantly associated.

As shown in Table 5, the Mc Nemar’s Chi-square was applied to find out a significant difference between the results of the two newer scales. It was seen that there was no such statistically significant difference found. This reflects the fact that the scales showed similar results of “normal” and “at risk” or “obese/overweight” status of the study subjects.

As shown in Table 6, binary logistic regression was applied to find out the strength of association for the outcome of hypertension to know which scale of obesity helps to best predict the outcome. It can be seen that the scales in the present study have shown near similar results. Even though some have statistically significant results and some don’t, the results are quite similar for the association for hypertension. From the existing data, BMI seems to be a better predictor of Hypertension as compared to the other two newer scales, that is, Waist to hip and Waist to height ratios.

Discussion

The present study enrolled 611 elders. Females constituted 56.3% of the study population. Around 28% in urban and 58% in rural were illiterate. Most of the subjects were married and about 30% in both areas, who were widow/widower.

Modified Prasad’s Classification (2009) was used to calculate the social class of the families in both urban and rural areas. Majority of the families in the urban areas were from social class 4 (29%), followed by those from social class 3 (24%), whereas in the rural areas, majority of the families were from social class 5 (47%) followed by those from social class 4 (26%).

As shown in Table 2, prevalence of obesity as per BMI in the urban area was found to be 40%, whereas that in rural areas was found to be 47.4%. This shows a high level of prevalence among the elderly as per the most commonly used scale BMI. To compare the results with newer scales, prevalence was also measured in terms of WHR in urban areas which was 63.6% and that in rural areas was 70.9%, similarly as for WHtR the prevalence in 60.3% in urban areas and 75.6% in rural areas. The prevalence was higher in the rural areas as per all the three scales as compared to that in the urban areas.

As seen in Figure 1, it can be seen that in the urban areas, nearly 40% were hypertensive, whereas in rural areas, more than half, that is, 55% were hypertensive. The prevalence of pre-hypertension was 38% in rural areas and almost the same, that is, 36% in urban areas. Higher prevalence thus found in rural areas as compared to urban areas.

As shown in Table 3a, it can be seen that in urban areas, the BMI and WHR were both found to be statistically significant in their association with the hypertensive status, whereas the WHR was not found significantly associated.

As shown in Table 3b, it can be seen that in rural areas also a similar picture was seen in that BMI and WHR were both found to be statistically significant in their association with the hypertensive status, whereas the WHR was not found significantly associated.

As shown in Table 4, it shows a significant association between the newer two scales when compared with BMI. Both WHR and WHtR have shown a significant association with BMI which is commonly used scale except in rural areas where WHR is not significantly associated.

As shown in Table 5, the Mc Nemar’s Chi-square was applied to find out a significant difference between the results of the two newer scales. It was seen that there was no such statistically significant difference found. This reflects the fact that the scales showed similar results of “normal” and “at risk” or “obese/overweight” status of the study subjects.

As shown in Table 6, binary logistic regression was applied to find out the strength of association for the outcome of hypertension to know which scale of obesity helps to best predict the outcome. It can be seen that the scales in the present study have shown near similar results. Even though some have statistically significant results and some don’t, the results are quite similar for the association for hypertension. From the existing data, BMI seems to be a better predictor of Hypertension as compared to the other two newer scales, that is, Waist to hip and Waist to height ratios.

Results

Assessment of sociodemographic profile of study subjects showed that majority of the subjects in the urban area were in the age group up to 75 years, whereas in the rural area most of the subject aged more than 65 years. In the urban area, majority of subject were females, whereas in rural area proportions were same. About 99% of the subjects in urban areas and about 89% of rural subjects were Hindus. Nearly 60% of the subjects in both urban and rural area were currently unemployed. About 58% of the subjects in the urban and rural area were unemployed. Majority of the subject in urban area were professional or semiprofessional where those in rural area were skilled or unskilled workers. With respect to education, 28% in urban and 58% rural were illiterate. Majority of the literate in both the areas were educated up to primary. About 14% in urban, 4% in rural were graduates. Most of the subjects were married and about 30% in both areas, who were widow/widower.

Modified Prasad’s Classification (2009) was used to calculate the social class of the families in both urban and rural areas. Majority of the families in the urban areas were from social class 4 (29%), followed by those from social class 3 (24%), whereas in the rural areas, majority of the families were from social class 5 (47%) followed by those from social class 4 (26%).

As shown in Table 2, prevalence of obesity as per BMI in the urban area was found to be 40%, whereas that in rural areas was found to be 47.4%. This shows a high level of prevalence among the elderly as per the most commonly used scale BMI. To compare the results with newer scales, prevalence was also measured in terms of WHR in urban areas which was 63.6% and that in rural areas was 70.9%, similarly as for WHtR the prevalence in 60.3% in urban areas and 75.6% in rural areas. The prevalence was higher in the rural areas as per all the three scales as compared to that in the urban areas.
The present study revealed 47.4% prevalence of obesity (as per BMI) in the rural area. This is much higher than study by Gupta R et al[28] and Mungreiphy NK,[33] which reported 9% and 2%, respectively. The National Family Health Survey-5 (NFHS-5) reported 56% prevalence of obesity in the urban area and 32.6% in the rural area for Gujarat.[34]

The present study reported 63.6% prevalence of obesity in urban areas and 70.9% in rural areas was as per WHR (abdominal obesity). Bhardwaj S et al.[37] reported 68.9% prevalence of abdominal obesity. The finding of this study is correlating with the fact that Asian Indians have a greater predisposition to abdominal obesity termed as “Asian Indian phenotype.”[35,36]

The present study reported high burden of hypertension in the elderly age group (39.7% in urban areas and 54.9% in rural areas). Earlier studies have found the prevalence of hypertension among geriatric population of Puducherry,[37] Surat,[38] Uttarakhand,[39] Maharashtra,[40] Kerala,[41] and Kolkata[42] to be 40.5%, 52.0%, 40.94%, 36.1%, 34.6%, and 64%, respectively. The study showed significant association between obesity (as per BMI and WHR) and hypertension in both urban and rural areas. Obesity has been found to be an important predictor of hypertension by other studies also.[43‑46]

The study also showed that WHR and WHtR have significant association with BMI. Similar finding was also noted by Kokiwar et al.[47] and Midha et al.[48] From the study it was revealed that WHtR can be a proxy measure for BMI to assess the obesity. This is consistent with the findings of Lucy M. Browning et al.[47] and Lam BCC et al.[49]

While some studies report that the risk of developing hypertension was greater with increased BMI, compared to WC,[50] others suggest that visceral adiposity is generally a stronger predictor of hypertension than BMI-based measures.[51] Visceral adiposity is not only a predictor of hypertension, but also correlates with the severity of the disease. In this study, WC rather than BMI increased the severity of hypertension. This finding is consistent with study done on Mexican American population.[52] Greater central obesity can be associated with systemic inflammation which directly contributes to CVD risk.[53] The WHtR was described as a useful tool for assessing abdominal adiposity.[54] Like other studies, the study found that WHtR is superior to WC and BMI in association with hypertension[55,56] in the male group. In a meta-analysis done, WHtR was found to be significantly better than WC for hypertension, CVD, and all outcomes in both men and women.[51]

Binary logistic regression showed that in the urban area waist height ratio and BMI were significantly associated with hypertensive status, whereas in the rural area BMI showed significant relationship. These findings were similar to study carried out by Midha et al.,[49] Kokiwar et al.,[47] and Panda et al.[55] in their respective study area.

Conclusion

It can be concluded from the study that the prevalence of obesity among the elderly is quite high as detected in different scales. Anthropometric assessments of obesity like WHR and WHtR are more sensitive indicators of obesity as compared to BMI among the elderly. This is due to a higher reported prevalence through them. BMI is found to be significantly associated with hypertension as well in the present study. Logistic regression showed that the association of BMI with hypertension was higher than other obesity assessments. This re-iterates the fact that BMI is also an equally important indicator of obesity and should be used to determine the prevalence as it can be used easily during screening procedures. WHR and WHtR on other hand are important to determine cardiovascular risk like hypertension and other cardiovascular disorders among elderly. Studies of similar types need to be conducted to identify inter-relationships between these indices and develop an evidence of the best scale for assessment of obesity among the elderly.

The concepts that emerge from this study include the use of newer scales like WHR and WHtR in hospital and/or community settings by primary care physicians. The role of determining cardiovascular risk and risk of hypertension with newer scales is profound and needs to be used as a screening tool. BMI, a widely used scale, is also important but rarely differentiates between fat mass and muscle mass and hence cannot determine the cardiovascular risk that accurately. The prevalence of pre-hypertension among the elderly was also quite significant up to nearly 36–38%. The prevalence of stage 1 and stage 2 hypertension in rural and urban areas was quite high as compared to previous documented studies. The association between hypertension and obesity was found statistically significant.

Recommendations

It can be recommended from the study that BMI can be continued to be used to screen the elderly for obesity and the WHR and/or WHtR can be used to estimate the central obesity and the cardiovascular risk resulting thereafter. The higher prevalence of hypertension among elderly also needs due attention of policy managers. The prevalence of obesity among the elderly is surely a cause of concern and hence screening and life-style modifications need to be carried out at regular intervals starting from the youngest of the elderly age group. Physical exercise and involvement in physical activities should be encouraged and systems need to be more sensitive in this approach. Screening of Non-communicable diseases needs to be carried out at regular intervals for the elderly population and prompt referral is the need of the hour. Geriatric clinics need to be operational at all centres including primary health centres to deal with the increasing need of elderly healthcare which is well re-iterated in Ayushman Bharat also.
Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Land KC, Lamb VL. Demography of aging. In: Heggenhougen K, Stella Q, editors. International Encyclopaedia of Public Health. Vol 12. San Diego: Academic Press; 2008. p. 89–95.
2. Situation analysis of elderly in India. 2011. Available from: http://mospi.nic.in/sites/default/files/publication_reports/elderly_in_india.pdf. [Last accessed on 2020 Nov].
3. Samper-Ternent R, Al Snih S. Obesity in older adults: Epidemiology and implications for disability and disease. Rev Clin Gerontol 2012;22:10–34.
4. Sakurai M, Miura K, Takamura T, Ota T, Ishizaki M, Morikawa Y, et al. Gender differences in the association between anthropometric indices of obesity and blood pressure in Japanese Hypertens Res 2006;29:75–80.
5. Ishikawa-Takata K, Ohta T, Moritaki K, Gotou T, Inoue S. Obesity, weight change and risk for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur J Clin Nutr 2002;56:601–7.
6. Bloom DE, Cafiero E, Jané-Llopis E, Abrahams-Gessel S, Poirier P, et al. The value and limitations of anthropometric indices as predictors of hypertension, weight change and other cardiovascular risk factors in Taiwan. Obes Res 2005;13:170–8.
7. Lee ZB, Kim ZY. A comparison of the predictive power of anthropometric indices for hypertensive and hypotension risk. PLoS One 2014;9:1–11.
8. Koh P, Seidel JC, Meinders AE. The value and limitations of the body mass index (BMI) in the assessment of the health risks of overweight and obesity. Ned Tijdschr Geneeskd 2004;148:2379–82.
9. Mirmiran P, Esmaillzadeh A, Azizi F. Detection of cardiovascular risk factors by anthropometric measures in Tehranian adults: Receiver operating characteristic (ROC) curve analysis. Eur J Clin Nutr 2004;58:1110–8.
10. Zhu S, Heymsfield SB, Toyoshima H, Wang Z, Pietrobelli A, Heshka S. Race-ethnicity-specific waist circumference cutoffs for identifying cardiovascular disease risk factors. Am J Clin Nutr 2005;81:409–15.
11. Huang KC, Lee MS, Lee SD, Chang YH, Lin YC, Tu SH, et al. Obesity in the elderly and its relationship with cardiovascular risk factors in Taiwan. Obes Res 2005;13:170–8.
12. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 2004;79:379–84.
13. Despres JP. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012;126:1301–13.
14. Chiang Y-C, Wang M-H, Huang D-H, Yang C-H, Lin J-D. To construct a forecasting model of the anthropometric chronic disease risk factor score. Chang Gung Med J 2006;29:135–42.
15. Lee J-W, Lim N-K, Back T-H, Park S-H, Park H-Y. Anthropometric indices as predictors of hypertension among men and women aged 40–69 years in the Korean population: The Korean genome and epidemiology study. BMC Public Health 2013;13:140–6.
16. Zhou Z, Hu D, Chen J. Association between obesity indices and blood pressure or hypertension: Which index is the best? Public Health Nutr 2009;12:1061–71.
17. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev 2010;23:247–69.
18. Majane OHI, Norton GR, Maseko MJ, Makaula S, Crowther N, Paiker J, et al. The association of waist circumference with ambulatory blood pressure is independent of alternative adiposity indices. J Hypertens 2007;25:1798–806.
19. Ashwell M, Cole Tj, Dixon AK. Ratio of waist circumference to height is strong predictor of intraabdominal fat. BMJ 1996;313:559–60.
20. Lee CM, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J Clin Epidemiol 2008;61:646–53.
21. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes Rev 2012;13:275–86.
22. Savva SC, Lamnios D, Kafatos AG. Predicting cardiometabolic risk: Waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes 2013;6:403–19.
23. Mello RB, Moreira LB, Gus M, Wiehe M, Fuchs FD, Fuchs SC. Central obesity is a risk factor for hypertension independent of body mass index in elderly individuals: Results of a population-based study. Circulation 2011;21:1245.
24. Rodea-Montero ER, Evia-Viscarra ML, Apolinar-Jimenez E. Waist-to-Height ratio is a better anthropometric index than waist circumference and BMI in predicting metabolic syndrome among obese Mexican adolescents. Int J Endocrinol 2014;2014:19540.
25. Eyveleth PB, Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. Am J Hum Biol 1996;8:786–7.
26. Pandey RM, Gupta R, Misra A, Misra P, Singh V, Agrawal A, et al. Determinants of urban-rural differences in cardiovascular risk factors in middle-aged women in India: A cross-sectional study. Int J Cardiof 2013;163:157–62.
27. Bhadorwaj S, Misra A, Misra R, Goel K, Bhatt SP, Rastogi KV, et al. High prevalence of abdominal, intra-abdominal and subcutaneous adiposity and clustering of risk factors among urban Asian Indians in North India. PLoS One 2011;6:24362.
28. Misra A, Pandey RM, Devi JR, Sharma R, Vikram NK, Khanna N, et al. High prevalence of diabetes, obesity and dyslipidaemia in urban slum population in Northern India. Int J Obes Relat Metab Disord 2001;25:1722–9.
29. Shukla HC, Gupta PC, Mehta HC, Hebert JR. Descriptive epidemiology of body mass index of an urban adult population in Western India. J Epidemiol Community Health 2002;56:876–80.
30. Zargar AH, Masoodi SR, Laway BA, Khan AK, Wani AI, Bashir MI, et al. Prevalence of obesity in adults – An epidemiological study from Kashmir valley of Indian subcontinent. J Assoc Physicians India 2006;48:1170–4.
31. Masoodi SR, Wani AA, Wani AI, Bashir MI, Laway BA, Zargar AH, et al. Prevalence of overweight and obesity in young adults aged 20–40 years in North India (Kashmir valley) Diabetes Res Clin Pract 2010;87:e4–6.
32. Gupta R, Gupta VP, Bhagat N, Rastogi P, Sarna M, Prakash H, et al. Obesity is major determinant of coronary risk factors in India: Jaipur heart watch studies. Indian Heart J 2008;60:26–33.

33. Munegirephy NK, Kapoor S. Socioeconomic changes as covariates of overweight and obesity among Tangkhul Naga tribal women of Manipur, North-East India. J Biosoc Sci 2010;42:289–305.

34. National Family Health Survey – 5, State Fact Sheet Gujarat; 2019–20. Available from: http://rchiips.org/nfhs/NFHS-5_FCTS/Gujarat.pdf.

35. Joshi SR. Metabolic syndrome–emerging clusters of the Indian phenotype. J Assoc Physicians India 2003;51:445–6.

36. Deepa R, Sandeep S, Mohan V. Abdominal obesity, visceral fat and type 2 diabetes- Asian Indian phenotype. In: Mohan V, Rao GHR, editors. Type 2 diabetes in South Asians: Epidemiology, Risk Factors and Prevention. New Delhi, India: Jaypee Brothers Medical Publishers (P) Ltd; 2006. p. 138–52.

37. Chinnakali P, Mohan B, Upadhyay RP, Singh AK, Srivastava R, Yadav K. Hypertension in the elderly: Prevalence and health seeking behavior. N Am J Med Sci 2012;4:558–62.

38. Pawar AB, Bansal RK, Bharodiya P, Panchal S, Patel H, Padariya P, et al. Prevalence of hypertension among elderly women in slums of Surat city. Natl J Community Med 2010;1:39–40.

39. Bartwal J, Rawat CS, Awashti S. Prevalence, awareness, treatment and control of hypertension among the elderly residing in rural area of Haldwani block, in Nainital district of Uttarakhand. J Cardiovasc Dis Res 2016;7:112–5.

40. Joshi R, Takande B, Kalantri SP, Jajoo UN, Gupta R. Prevalence of cardiovascular risk factors among rural population of elderly in Wardha district. J Cardiovasc Dis Res 2013;4:140–6.

41. Sebastian NM, Jesha MM, Sheela PH, Arya SN. Hypertension in Kerala: A study of prevalence, control, and knowledge among adults. Int J Med Sci Public Health 2016;5:2041-6.

42. Biswas D, Gupta AD, Kumar A, Das S, Sahoo SK, Das MK, et al. A study on hypertension in geriatric population in a slum of Kolkata. Int J Med Sci Public Health 2015;4:1527-31.

43. Srikant J, Kulkarni S. Hypertension in elderly: Prevalence and health seeking pattern in an urban slum of Bangalore city. Int J Recent Sci Res 2013;6:2952-7.

44. Naveen KH, Sumanth M, Manjunatha SN, Hassan MA, Dwivedi S. Prevalence and predictors of hypertension among the elderly population in rural areas of Allahabad district: A cross sectional study. J Med Sci Clin Res 2014;2:2004-15.

45. Kapil U, Khandelwal R, Ramakrishnan L, Khenduja P, Gupta A, Pandey RM, et al. Prevalence of hypertension, diabetes, and associated risk factors among geriatric population living in a high-altitude region of rural Uttarakhand, India. J Family Med Prim Care 2018;7:1527-36.

46. Rouf A, Rasool M, Khan S, Haq I, Hamid A, Bashir K, et al. Prevalence of hypertension and its association with waist circumference in adult population of block Hazratbal, Srinagar, India. Ann Med Health Sci Res 2018;8:68-73.

47. Kokiar PR, Gupta SS. Prevalence of hypertension in a rural community of central India. Int J Biol Med Res 2011;2:950-3.

48. Midha T, Idris MZ, Saran RK, Srivastava AK, Singh SK. A study on the association between hypertensivesstatus and Anthropometric correlates in the adult population of Lucknow District, India Indian J Prev SocMed 2009;40:49-54.

49. Lam BCC, Koh GCH, Chen C, Wong MTK, Fallows SJ. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE 2015;10:e0122985.

50. Ghosh JR, Bandyopadhyay AR. Comparative evaluation of obesity measures: Relationship with blood pressures and hypertension. Singapore Med J 2007;48:232-5.

51. Hirani V, Zaninotto P, Primalesta P. Generalized and abdominal obesity and risk of diabetes, hypertension and hypertension-dietary co-morbidity in England. Public Health Nutr 2007;11:521-7.

52. Aguirre T, Koehler A, Tovar A. Relationships among hypertension, waist circumference, and body composition in a rural Mexican-American population. J Family Med Community Health 2015;2:1057.

53. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005;96:939–49.

54. Schneider HJ, Klotsche J, Silber S, Stalla GK, Wittchen HU. Measuring abdominal obesity: Effects of height on distribution of cardiometabolic risk factors risk using waist circumference and waist-to-height ratio. Diabetes Care 2011;34:e7.

55. Tseng CH, Chong CK, Chan TT, Bai CH, You SL, Chiuo HY, et al. Optimal anthropometric factor cutoffs for hyperglycemia, hypertension and dyslipidemia for the Taiwanese population. Atherosclerosis 2010;210:585–9.

56. Park SH, Choi SJ, Lee KS, Park HY. Waist circumference and waist-to-height ratio as predictors of cardiovascular disease risk in Korean adults. Circ J 2009;73:1643-50.

57. Panda PS, Jain KK, Soni GP, Gupta SA, Dixit S, Kumar J. Prevalence of hypertension and its association with anthropometric parameters in adult population of Raipur city, Chhattisgarh, India. Int J Res Med Sci 2017;5:2120-5.