Behaviour-based Pricing in the Green Product Supply Chain

Kanying Liu
Hunan Agricultural University

Wei Li
Hunan University
liweihncs@hnu.edu.cn
https://orcid.org/0000-0001-8307-4934

Erbao Cao
Hunan University

Yong Lan
Hunan Agricultural University

Research Article

Keywords: Behaviour-based pricing (BBP), Green product supply chain (GPSC), Green degree

Posted Date: May 24th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-497867/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Environmental Science and Pollution Research on July 29th, 2021. See the published version at https://doi.org/10.1007/s11356-021-15659-8.
Behaviour-based pricing in the green product supply chain

Kanying Liu
School of Business, Hunan Agriculture University, PR China, Hunan Changsha, 410128

School of Economics and Trade, Hunan University, PR China, Hunan Changsha, 410079
Email: kanying1109@aliyun.com

Wei Li*
School of Economics and Trade, Hunan University, PR China, Hunan Changsha, 410079
Hunan Key Laboratory of Logistics Information and Simulation Technology, PR China, Hunan Changsha, 410079
Email: liweihncs@hnu.edu.cn (W Li)

Erbao Cao
School of Economics and Trade, Hunan University, PR China, Hunan Changsha, 410079
Hunan Key Laboratory of Logistics Information and Simulation Technology, PR China, Hunan
Email: ceb9491@126.com

Yong Lan
School of Business, Hunan Agriculture University, PR China, Hunan Changsha, 410128
Email: lanyong@hunau.edu.cn
Abstract

We study the pricing strategies of supply chains of green products under behaviour-based pricing. Considering consumer preferences for green product functional attributes and environmental attributes, we construct a two-stage supply chain. The optimal behaviour pricing of green products is solved, and the effects of green sensitivity and the cost coefficient on the optimal price are analysed. We find that when consumers are less sensitive to the greenness, with the increase in the market share of green products, green product retailers will increase the loyalty price. An increase in greenness sensitivity and a decrease in the greenness cost coefficient will increase the wholesale prices and retail prices of green products. Consumer attention to the greenness and a decrease in the initial market share of green products will be conducive to promoting the greenness and improving the environment. Consumers' emphasis on the greenness of their products will lead to higher profits for the manufacturers and retailers of green products.

Keywords: Behaviour-based pricing (BBP); Green product supply chain (GPSC); Green degree
Green products are generally regarded as environmentally friendly, resource-saving, healthy and harmless. In both developed and developing countries, the concept of green product consumption has become increasingly popular, the supply of green products has been expanding, and the scale of green consumption has continued to grow (Giri et al., 2019). According to the 2019 Tmall double 11 green consumption reports, the number of green consumers in Tmall in 2018-2019 exceeded 380 million, 5.8 times the year-on-year growth in 2015. However, there is still a large gap compared with the monthly active users (more than 600 million) on the platform. Therefore, we can foresee that in the future, green and nongreen products will coexist in the market with increasingly strong competition between them.

Consumers' preference for green products is influenced by environmental awareness, consumer trust, age, location, educational level, information source and many other factors. In recent years, despite the continuous growth in green consumption, some factors, such as the green consumption awareness of consumers (Zhu and He, 2017), the insufficient supply and demand of green products, the unregulated green market (Nuttavuthisit and Thøgersen, 2017), and the high price of green products (Rahmani and Yavari, 2019), have inhibited consumers' willingness to consume green products again (Mahenc, 2017). Therefore, in this research, we assume that consumers who have purchased green products may turn to buying nongreen products in their later consumption, while consumers who have purchased nongreen products may also turn to buying green products due to their psychological benefits, novelty, and other factors (Lin and Huang, 2012).

In the big data era, enterprises can have both online and offline sales channels such as mobile devices, mobile applications, cookies, information systems and a series of information
technologies to obtain and record a substantial amount of customer information and use it to implement differential pricing for loyal and new customers (Rhee and Thomadsen, 2017). For example, when consumers log on to the shopping website or app of Amazon or JD, they may be surprised to find that such Internet sellers show them commodities preferred by consumers according to their purchase information and web-browsing records and that these sellers can identify whether consumers have ever purchased such commodities before (Wang and Ng, 2018). Currently, BBP and customer identification are used in many fields, such as commodity sales, telecommunications services, and travel and housekeeping services.

Therefore, when green and nongreen products compete in the market, especially when selling products through the Internet, an increasing number of enterprises adopt BBP for new and old customers. Table 1 presents actual cases of BBP with respect to green products on the Alibaba platform in 2020. And past evidence has proven that enterprises can increase profits by using big data to implement BBP. For example, Netflix's profit increased 11.4% after using differentiated pricing compared with pricing based only on customer display graphics (Shiller, 2014). Therefore, we will discuss the application of BBP in GPSCs in this paper.

Most of the previous literature on GPSC pricing seldom applied behavioural pricing (Jamali and Rasti-Barzoki, 2018; Sana, 2020), and the advantages of BBP and its successful practices in other fields provide new ideas for the study of this paper. Some previous research focused on the combination of BBP and organic product pricing strategies (Liu et al., 2019, 2020), but the model is designed to include only the retailers of the products. They did not explore the influence of the green product initial market share and green degree sensitivity coefficient on green product manufacturers' wholesale pricing, green degree decision and profit after the implementation of BBP in the retail segment. The influence of the green sensitivity
coefficient and green cost coefficient on BBP, profit and the environment on the GPSC have not been discussed. In this article, we answer the following questions:

(1) Given the different initial market shares of green products, how does sensitivity to greenness affect the choice of BBP for green product supply chains?

(2) What are the effects of the initial market shares of green products, sensitivity coefficients of greenness, and cost coefficients of greenness on wholesale and retail pricing, greenness, environment, and profits of enterprises in the GPSC?

The rest of the paper proceeds as follows. After the introduction, we give a literature review. In Section 3, we discuss the assumptions and the problem description of this paper. In Section 4, solutions to the problem are shown, and the applicable conditions for using BBP are analysed. Section 5 conducts parametric sensitivity analysis. Section 6 is the numerical simulation analysis. In Section 7, conclusions and future research suggestions are offered.

2 Literature review

This work is related to two aspects of literature. The first is the literature on the pricing of green products. Considering environmental protection, an increasing number of green products are being produced and marketed. Scholars have researched how these green products compete with nongreen products. The research questions involve the supply chain channels (the traditional retail channel and the e-commerce channel), the supply chain structure (decentralized, centralized and cooperative), the competition type (price competition, green quality competition, sales effort and advertising investment), consumer environmental awareness (Zhang et al., 2015), the cost of product greenness (Li et al., 2016) and other factors affecting the pricing and related decisions of the two types of products in the supply chain (Jian et al., 2019). Stackelberg and
Nash equilibrium models are mainly used in the analysis. Jamali and Rasti-Barzoki (2018) studied the pricing problem in the competition between green and nongreen product supply chains under a dual-channel supply chain consisting of retail and the Internet. Ranjan and Jha (2019) studied pricing strategies under three different scenarios and realized channel coordination through surplus profit sharing. Basiri and Heydari (2017) added the consumer price, green quality of products and retailers’ sales efforts to the demand function and analysed the coordination of green channels in a two-stage supply chain by simulating and comparing three scenarios. Furthermore, Heydari et al. (2019) studied the optimal decision of a three-tier dual-channel green supply chain and proposed a mathematical programming model developed to achieve coordination. Liu and Yi (2017) used game theory to analyse the trend of green product prices with greenness and target advertising input and discussed the pricing strategy of green supply chains in the context of big data. Rahmani and Yavari (2019) considered the pricing and greenness decision of the green dual-channel supply chain after joining the interrupted demand.

However, the above research focused on the pricing of green products without BBP implementation, ignoring the fact that when an increasing number of enterprises can identify their loyal customers, they may use and are willing to use information about consumers' purchase history to provide consumers with different prices or products (Li and Jain, 2016). In recent years, scholars have conducted a considerable amount of research on BBP (references to Fudenberg and Villas-Boas, 2006, 2012). These studies have involved questions such as whether the model is dynamic or static (Fudenberg and Tirole, 2000; Shaffer and Zhang, 1995), whether competition is the third degree of price discrimination or personalized pricing (Jing, 2017; Rhee and Thomadsen, 2017; Zhang, 2011), and whether BBP harms or improves company profitability (Jing, 2017; Li and Jain, 2016). For example, Li and Jain (2016) analyse the influence of
consumer concerns on the enterprise behaviour pricing strategy, finding that the profit obtained by enterprises from BBP increased with consumer concerns for fairness but reduced consumer surplus and improved social welfare. Rhee and Thomadsen (2017) studied BBP in a vertical differentiation model. Choe et al. (2017) proposed a dynamic competition model between two companies to study the impact of differentiated prices on prices and profits throughout the sales cycle. Jing (2017) studied how behaviour-based price discrimination (BBPD) affects the endogenous quality differences and profits of enterprises in a two-stage vertical duopoly. The BBP model constructed by Colombo (2018) considers the personality characteristics of consumers. Liu et al. (2019) discussed the impact of government subsidies on the production cost of organic agricultural products on the behavioural pricing and profits of enterprises when conducting BBP on organic and ordinary agricultural product producers. Furthermore, Xu et al. (2020) added consumptive habits data based on BBP to distinguish old and new consumers and high-cost and low-cost consumers, and they studied how BBP and consumer cost-based pricing (CCP) affect the price, market share and profit of channel members.

In contrast to the above studies, this study considers a two-stage supply chain consisting of two manufacturers (a local nongreen product manufacturer and a nonlocal green product manufacturer) and a green product retailer selling the two products of different greenness. This paper combines BBP with the pricing strategy of GPSC. It analyses the applicable conditions to realize BBP equilibrium of GPSC as well as the influence of market share and various parameters on the pricing, greenness, environment, and profit of green products after using BBP. Therefore, the main contributions of this paper are as follows.

- Extending the single attribute utility function in the previous BBP model. The utility function of green products bought by consumers is considered based on
two aspects—product functional and environmental quality attributes.

• We discuss the pricing and green degree decisions of green product manufacturers in the implementation of BBP and explore the change in BBP of green product retail with related parameters by adding green product manufacturers into the BBP model.

• The influence of market share, the sensitivity coefficient of product greenness and the cost coefficient of greenness on BBP, as well as greenness, the impact of the environment and the profits of the GPSC, are analysed.

3 Problem definition and hypothesis

3.1 Parameters and variables

In this section, we will first define the symbols used in the paper, as shown in Table 2.

3.2 Problem definition and Assumptions

This paper considers a two-stage supply chain composed of a local nongreen product manufacturer, a nonlocal green product manufacturer and a green product retailer, with M for the manufacturer and R for the retailer. The main framework of the supply chain is shown in Fig.1. Suppose that two types of manufacturers produce two kinds of different degrees of products with brand differences: a green product (g) and a nongreen product (b). Non-green product manufacturers are located locally and produce and sell their own products. Since the requirements and complexity of green product production and sales are higher than those of nongreen products, we assumed that the production and sales of green products are separated,
with green product retailers placing orders with green product manufacturers.

Considering that there are multiple periods throughout the sales cycle, consumers' purchasing behaviours will change in different periods due to price, environmental preferences, diversified needs, and novelty-seeking. For convenience of analysis, the whole sales cycle is standardized into two periods \((t = 0,1)\). As green manufacturers dominate the supply chain, before period \(t (t = 0,1)\), green product manufacturers first determine green products' wholesale price and greenness. Since the manufacturers themselves produce and sell nongreen products, there is no wholesale price. We assume that consumers in each period will not choose either green or nongreen products of the same category.

The order of the two-period game is as follows: In period \(t = 0\), the two types of products are in competition to obtain the corresponding market share, and the green product market share is \(x_0\). Purchase histories are public information. Let \(h(x): [0,1] \rightarrow \{g, b\}\) describe the purchase history of each consumer \(x, x \in (0,1)\); \(h(x) = g\) imply that consumer \(x\) purchased green products in period \(t = 0\), while \(h(x) = b\) denotes that consumer \(x\) purchased nongreen products in period \(t = 0\). In period \(t = 1\), consumers seek a diversification of purchases, and green product retailers and nongreen product manufacturers price the two products differently according to purchase histories. Meanwhile, green product retailers purchase products from their manufacturers according to market demand \(q_g\) and wholesale price \(w_g\).

Assumption 1. Product attributes

Following Wang and Hazen (2016), Bansal and Gangopadhyay (2003), we assume that green products and nongreen products have two attributes. The first is the functional attribute of the product, denoted by \(U\). The second is the environmental quality attribute of the product. It is
assumed that the initial environmental impact of the product is D. Green product manufacturers will take certain measures to make their green products environmentally friendly. The greenness of green products is represented by θ, where $\theta \in [0, D]$, and the environmental pollution caused by the production and consumption of green products is reduced to $D - \theta$.

Assumption 2. Consumer utility

Considering that there are multiple periods in the sales cycle and that the purchase behaviour of consumers in period $t = 1$ will be affected by the price, the environment and other factors, following Rhee and Thomadsen (2017), Jamali and Rasti-Barzoki (2018)) and their research on consumer utilities, it is assumed that in period $t = 1$, the utility of green product consumers will be influenced by retail price, greenness and transportation cost. Therefore, in period $t = 1$, the utility function for consumers who purchase green products is $U(x) = U - g_i - \tau x + \gamma \theta$, while the utility function for consumers who purchase nongreen products is $U(x) = U - b_i - \tau (1 - x)$.

Assumption 3.\(C_g(\theta) = \mu \frac{\theta^2}{2} \)

Compared with the production of nongreen products, green product manufacturers will invest more in the greenness of their products. For convenience of research, this paper mainly considers the cost of green product manufacturers in terms of greenness. Therefore, suppose that the cost of green products is $C_g(\theta) = \mu \frac{\theta^2}{2}$ and that the production cost of nongreen products is 0 (Jamali and Rasti-Barzoki, 2018; Li et al., 2016).

Assumption 4. $g_i > w_g, w_g q_g > C_g b_i > 0$
In period $t = 1$, green retailers must price (loyalty price and poaching price) higher than the wholesale price of green products because the profit of green product retailers must be positive. Meanwhile, the revenue of wholesale sales of green products should be greater than the production cost of green products to ensure that the profit of wholesalers of green products is positive. In addition, to ensure that nongreen product manufacturers do not lose money, the retail price of nongreen products (loyalty price and poaching price) must be greater than 0 (Jamali and Rasti-Barzoki, 2018; Li et al., 2016).

3.3 The demand functions

Based on the above hypotheses, the utility of consumer x in period $t = 1$ can be defined as follows:

$$U(x) = \begin{cases}
U - g_o - \tau x + \gamma \theta, & \text{if } h(x) = g \text{ and continues to purchase product } g \\
U - b_n - \tau (1-x), & \text{if } h(x) = g \text{ and now switches to product } b \\
U - b_o - \tau (1-x), & \text{if } h(x) = b \text{ and continues to purchase product } b \\
U - g_n - \tau x + \gamma \theta, & \text{if } h(x) = b \text{ and now switches to product } g
\end{cases}$$

For consumers who purchase green product g in period $t = 0$, in period $t = 1$, due to the influence of price and other factors, they may turn to buying nongreen products. Let x_{1g} be given. Consumers indexed by $x \leq x_{1g}$ still consume green products in period $t = 1$ and enjoy loyalty prices. Consumers indexed by $x > x_{1g}$, who have bought green products before, switch to product b in period $t = 1$. Therefore, x_{1g} must satisfy $U - g_o - \tau x + \gamma \theta = U - b_n - \tau (1-x)$, as shown in Fig.2. Similarly, x_{1b} must satisfy $U - b_o - \tau (1-x) = U - g_n - \tau x + \gamma \theta$.

$$x_{1g} = \frac{1}{2} + \frac{\gamma \theta}{2\tau} + \frac{b_n-g_o}{2\tau}$$ \hspace{1cm} (1)

$$x_{1b} = \frac{1}{2} + \frac{\gamma \theta}{2\tau} + \frac{b_o-g_n}{2\tau}$$ \hspace{1cm} (2)
4 Model and equilibrium results

The decision variables of nongreen product manufacturers are the loyalty price and poaching price of nongreen products; the decision variables of green product manufacturers are the greenness and wholesale price of green products; and the decision variables of green product retailers are the loyalty price and poaching price of green products. According to the supply chain structure in Fig.1, the following is the profit function of each member in the supply chain:

The profit of the nongreen product manufacturer (M_b) is as follows:

$$\pi_{M_b}(b_n, b_o) = b_n(x_0 - x_1^g) + b_o(1 - x_1^b)$$

The profit of the green product manufacturer (M_g) is as follows:

$$\pi_{M_g}(w_g, \theta) = w_g(x_1^g + x_1^b - x_0) - \frac{\theta^2}{2}$$

The profit of the green product retailer (R_g) is as follows:

$$\pi_{R_g}(g_n, g_o) = (g_o - w_g)x_1^g + (g_n - w_g)(x_1^b - x_0)$$

By using the reverse solution method to solve the problem, the equilibrium results under enterprise profit maximization are obtained and are presented in Table 3. The relevant solution process is shown in Appendix A.

The total environmental impact of two types of products:

$$E^* = E_g + E_b = (D - \theta)(x_1^g + x_1^b - x_0) + D(1 - x_1^b + x_0 - x_1^g) = D - \theta(x_1^g + x_1^b - x_0)$$

$$= \frac{64D\mu^2\tau^2 - 16D\mu\gamma^2\tau - \mu\gamma^2x_0^2 + 4\mu\gamma^2x_0 - 4\mu\gamma^2 + D\gamma^4}{(8\mu\tau - \gamma^2)^2}$$

Lemma 1 To ensure the effectiveness of the equilibrium solution, the range of the sensitivity coefficient of the greenness is as follows:

1) When $x_0 \in (0, \frac{4\mu}{\gamma}]$, $0 < \gamma < \frac{44\mu\tau x_0}{(5\mu x_0 + 1)^2}$.
2) When $x_0 \in \left(\frac{4}{7}, \frac{3}{5}\right)$, $\sqrt{\frac{4\mu\tau(4-7x_0)}{(1-3x_0)}} < \gamma < \sqrt{\frac{44\mu\tau x_0}{(5x_0+1)}}$.

3) When $x_0 \in \left[\frac{3}{5}, 1\right)$, $\sqrt{\frac{4\mu\tau(4-7x_0)}{(1-3x_0)}} < \gamma < \sqrt{\frac{12\mu\tau(4-3x_0)}{(7-5x_0)}}$.

Proof: See Appendix A.

Lemma 1 indicates that for different initial market shares of green products, the consumers' greenness sensitivity will have an impact on whether enterprises in the GPSC choose BBP. The balance of BBP in GPSC exists only when the consumer's green sensitivity is in a reasonable range.

5 Equalization results analysis

In this section, the influence of some parameters on the price, profit, environment, and greenness of green products in the supply chain in the case of BBP is investigated.

5.1 Effect of the initial market share of green products on pricing, greenness and environment

Theorem 1 As the initial market share of green products increases, when consumers' green sensitivity is relatively low ($\gamma < 2\sqrt{\mu\tau}$), green product retailers will increase the loyalty price of green products. When consumers' green sensitivity is relatively high ($2\sqrt{\mu\tau} < \gamma < \sqrt{8\mu\tau}$), green retailers will lower the loyalty price of green products.

Proof: Take the first derivative of the green product with respect to parameter x_0:

$$\frac{d\tilde{g}_0}{dx_0} = \frac{\tau(-3y^2 + 12\mu\tau)}{-2y^2 + 16\mu\tau},$$

such that $8\mu\tau > \gamma^2$; thus, when $4\mu\tau > \gamma^2$, $\frac{d\tilde{g}_0}{dx_0} > 0$; additionally, when $4\mu\tau < \gamma^2 < 8\mu\tau$, $\frac{d\tilde{g}_0}{dx_0} < 0$. Theorem 1 is proved.

Theorem 1 shows that when the green sensitivity of consumers in the market is relatively...
low, with the increase in the proportion of consumers who buy green products in the previous stage, green product retailers will have stronger confidence in the future market. However, when consumers are more concerned about the greenness of products, retailers of green products will reduce the loyalty pricing of green products with the strengthening of the dominant position of green products in the initial market.

In previous practical studies on BBP (Wang et al., 2020), companies in different industries also offered repurchasing customer discounts or increased loyalty prices but did not discuss the behavioural pricing of green products in the context of different green sensitivities. However, consumers differ in their green sensitivity to different products (Jamali and Rasti-Barzoki, 2018). According to the different consumers’ green degrees of sensitivity, Theorem 1 corresponds to different initial market share changes and green product retailers’ pricing strategies for loyal customers.

Theorem 2 Increasing the initial market share of green products will reduce the greenness of green products and have a negative impact on environmental improvement.

Proof: The first derivative of the greenness of green products and the total impact of the two types of products on the environment with respect to parameter \(x_0\) is derived.

\[
\frac{d\theta^*}{dx_0} = \frac{-\tau \gamma}{-\gamma^2 + 8 \mu \tau} < 0, \quad \frac{dE^*}{dx_0} = \frac{2 \mu \gamma \tau^2 (2-x_0)}{(-\gamma^2 + 8 \mu \tau)^2} > 0
\]

We find that the initial market share of green products is not only negatively correlated with the greenness of green products but also has a negative impact on environmental improvement. As the initial market share of green products increases, the market share and wholesale price of green products in the second period decrease

\[
\frac{d\theta}{dx_0} = \frac{-\mu \tau}{-\gamma^2 + 8 \mu \tau} < 0, \quad \frac{dw^*}{dx_0} = \frac{-4 \mu \tau^2}{-\gamma^2 + 8 \mu \tau} < 0
\]

Thus, green product manufacturers generate less revenue. To reduce the impact of
the decreased revenue from green products on their profits, green product manufacturers will reduce the greenness of their products to reduce their costs. This decision will mitigate the negative impact of the increase in the initial market share of green products on the profits of green product manufacturers.

On the other hand, the market share of green products in the second period q_g^* will decrease with the increase in x_0; when the greenness of green products and the market share in the second period are reduced, because $E^* = D - \theta^* q_g^*$, the total impact of the two types of products on the environment increases. Hence, theorem 2 is proven.

5.2 The effect of the sensitivity coefficient of greenness on pricing, greenness, environment and profit

Theorem 3 The prices of green products (wholesale price, loyalty price and poaching price) are positively correlated with the sensitivity coefficient of greenness.

Proof: The first derivative of the prices of green and nongreen products (loyalty price and poaching price) with respect to parameter γ is derived.

\[
\frac{dg_0}{dy} = \frac{dg_n}{dy} = \frac{12\gamma \mu \tau^2 (2-x_0)}{(-\gamma^2 + 8\mu \tau)^2} > 0, \quad \frac{dw_0}{dy} = \frac{8\mu \tau^2 \gamma (2-x_0)}{(-\gamma^2 + 8\mu \tau)^2} > 0, \quad \frac{db_0}{dy} = \frac{db_n}{dy} = \frac{-2\gamma \mu \tau^2 (2-x_0)}{(-\gamma^2 + 8\mu \tau)^2} < 0;
\]

This result means that with the increase in consumer sensitivity to product greenness, green product manufacturers and retailers increase both their wholesale price and their sales price (loyalty price and poaching price). At this point, nongreen product manufacturers will reduce their sale price to reduce the loss caused by the increase in the consumer green sensitivity coefficient.

Theorem 4 In the context of BBP, consumer attention to the greenness of products not only promotes the greenness of green products but also improves the environmental effects on
Proof: The first derivative of greenness and the environment with respect to parameter γ is derived and is as follows:

$$\frac{d\theta^*}{dy} = \frac{\tau(y^2 + 8\mu\tau)(2-x_0)}{(-y^2 + 8\mu\tau)^2} > 0, \quad \frac{dE^*}{dy} = -\frac{\mu\tau^2(3y^2 + 8\mu\tau)(2-x_0)^2}{(-y^2 + 8\mu\tau)^3} < 0.$$

Thus, theorem 4 is proven. It is noted that the sensitivity of consumers to greenness under the BBP model will influence the decision-making of green product manufacturers. The more sensitive consumers are to greenness, the more motivated manufacturers of green products are to improve the greenness of their products, thus promoting the overall green level of society.

Theorem 5 In the context of BBP, consumers' attention to the greenness of products will help to improve the profits of enterprises in the GPSC.

Proof: The first derivative of the profits of green product manufacturers and retailers with respect to parameter γ is derived and is as follows:

$$\frac{d\pi^*_M}{dy} = \frac{4\mu\gamma\tau^2(x_0-2)^2}{(-2\gamma^2 + 16\mu\tau)^2} > 0, \quad \frac{d\pi^*_R}{dy} = \frac{8\mu^2\gamma\tau^3(x_0-2)^2}{(-\gamma^2 + 8\mu\tau)^3} > 0$$

Therefore, when consumer sensitivity to product greenness increases, the profits of manufacturers and retailers of green products also increase. As consumer preference for greenness increases, manufacturers and retailers of green products increase the wholesale price and retail price, respectively, of green products. Hence, the market share of green products in the second period does decrease due to the increase in price, but rather, they occupy a larger market.

$$\left(\frac{dq^*_g}{r} = \frac{2\mu\gamma\tau(2-x_0)}{(-\gamma^2 + 8\mu\tau)^2} > 0\right)$$. Therefore, although the increase in the degree of greenness increases the cost for green product manufacturers, the sales revenue of green products increases even more, meaning that the profits of green product manufacturers will also ultimately increase.

The growth rate of the green product retail price with the green sensitivity coefficient γ is
faster than that of the wholesale price with the green sensitivity coefficient γ. From theorem 3, we know $\frac{dg_o^*}{d\gamma} > \frac{dg_n^*}{d\gamma} > \frac{d\omega^*_g}{d\gamma} > 0$. Thus, the profits of green product retailers also increase with the increase in the green sensitivity coefficient γ.

5.3 The effect of the green degree cost coefficient on pricing

Theorem 6 The prices of green products (wholesale price, loyalty price and poaching price) are negatively correlated with the green degree cost coefficient.

Proof: The first derivative of the prices of green and nongreen products (wholesale price, loyalty price and poaching price) with respect to parameter μ is derived.

$$
\frac{dg_o^*}{d\mu} = \frac{dg_n^*}{d\mu} = \frac{6\gamma^2\tau^2(2-x_0)}{(-\gamma^2+8\mu\tau)^2} < 0, \quad \frac{d\omega^*_g}{d\mu} = \frac{-4\gamma^2\tau^2(2-x_0)}{(-\gamma^2+8\mu\tau)^2} < 0, \quad \frac{db_o^*}{d\mu} = \frac{db_n^*}{d\mu} = \frac{\gamma^2\tau^2(2-x_0)}{(-\gamma^2+8\mu\tau)^2} > 0.
$$

This means that the higher the unit cost is to improve the greenness of green products, the lower the optimal greenness will be. Accordingly, manufacturers and retailers of green products will reduce the wholesale price and the sale price (loyalty price, poaching price) to increase their sales volume and maximize profits. As nongreen products narrow the gap between green and nongreen products, their manufacturers have the confidence to raise their selling prices to obtain more unit product profits.

6 Numerical analysis

We use a numerical example to analyse the influence of the initial market share of green products on the profits of enterprises in the supply chain of green and nongreen products. All parameter values are set according to the problem hypothesis and satisfy the conditions in lemma 1.

Suppose $\tau = 0.3, \mu = 1.2$. Then, when $0 < x_0 < \frac{4}{7}$, $\gamma = 0.38$, and when $\frac{4}{7} \leq x_0 < 1$, $\gamma = 1.47$.

17
Fig. 3 and Fig. 4 describe the changes in the profits of enterprises in the supply chain of green and nongreen products, respectively, corresponding to different initial market shares of green products.

As evidenced from Fig. 3 and Fig. 4, the increase in the initial market share of green products results in a decrease in profits for green product manufacturers in the second period. This indicates that when the initial market share of green products is higher, the wholesale price of green products will be lower and the market share will be reduced even though the production cost of green products is lower as the production cost is affected by greenness. Thus, the profits of green product manufacturers will be lower \(\frac{d\pi_{Mg}}{dx_0} = \frac{\mu r^2(x_0 - 2)}{-y^2 + 8\mu r} < 0 \). Hence, for manufacturers of green products, a lower initial share of green products can actually be more beneficial.

With the increase in the initial market share of green products, the profits of manufacturers of nongreen products in the second period exhibit a trend of first declining and then increasing. In other words, the more intense the market competition is in the first period, the lower the profits of nongreen product manufacturers will be in the second period. This is because the profits of the manufacturers of nongreen products in the second period depend on the sum of the profits under the sales prices (loyalty price and poaching price) of nongreen products. Accordingly, the larger the initial market share of green products is, the lower the loyalty price and the corresponding market capacity of nongreen products will be in the second period \(\frac{db_{ho}^n}{dx_0} = \frac{-r(-5y^2 + 36\mu r)}{-4y^2 + 32\mu r} < 0 \), \(\frac{d(1-x_1^b)}{dx_0} = \frac{-(-5y^2 + 36\mu r)}{8(-y^2 + 8\mu r)} < 0 \). Similarly, the higher the poaching price of nongreen products is in the second period, the higher its corresponding market share will be \(\frac{db_{no}^n}{dx_0} = \)
\[
\frac{\tau(-5y^2+44\mu\tau)}{-4y^2+32\mu\tau} > 0, \quad \frac{d(x_0-x_1^2)}{dx_0} = \frac{(-5y^2+44\mu\tau)}{8(-y^2+8\mu\tau)} > 0 .
\]

Therefore, the increased revenue from a nongreen product’s poaching price is less than the decreased revenue from its loyalty price. Hence, the profits of nongreen product manufacturers also decrease.

In the second period, the profits of green retailers in the two intervals where \(0 < x_0 < \frac{4}{7}\) and \(\frac{4}{7} < x_0 < 1\) exhibit a trend of first decreasing and then increasing. This is because several factors affecting green product retailers' profits reveal the following trends: as the initial market share of green products increases, the wholesale price and poaching price of green products decrease \(\frac{dg^*_n}{dx_0} = \frac{-\tau(-3y^2+36\mu\tau)}{-2y^2+16\mu\tau} < 0\), and the market share corresponding to the poaching price decreases first and then increases \(\frac{d(x_1^b-x_0)}{dx_0} = \frac{(-7y^2+28\mu\tau)}{8(-y^2+8\mu\tau)}\). When \(\gamma < 2\sqrt{\mu\tau}\), the market share corresponding to the poaching price decreases; when \(2\sqrt{\mu\tau} < \gamma\), the market share corresponding to the poaching price increases and the loyalty price increases and then decreases \(\frac{dg^*_o}{dx_0} = \frac{\tau(-3y^2+12\mu\tau)}{-2y^2+16\mu\tau}\). Furthermore, when \(\gamma < 2\sqrt{\mu\tau}\), loyalty prices increase, and when \(2\sqrt{\mu\tau} < \gamma\), loyalty prices decrease, while the market share corresponding to the loyalty price increases \(\frac{dx_1^g}{dx_0} = \frac{(y^2+20\mu\tau)}{8(-y^2+8\mu\tau)} > 0\). As a result, the profits of green retailers fluctuate within different ranges.

7 Conclusions

Considering that an increasing number of enterprises have been trying to increase profits by implementing BBP in recent years, this paper studies the pricing strategy of the GPSC when applying BBP. The main differences between our paper and the existing studies are as follows.

First, when discussing the pricing strategy of the GPSC, the existing literature mostly adopts the
unified pricing model. However, this paper constructs a two-stage behavioural pricing model of
the GPSC based on the dual preferences of consumers for product functional attributes and
environmental attributes and analyses the conditions for the existence of a BBP balance in the
GPSC. Second, after the implementation of BBP, this paper clarifies the impact of various factors
related to the GPSC (initial market share of green products, sensitivity coefficient of greenness,
cost coefficient of green degree) on the pricing strategy, green degree strategy, profit and
environment of each enterprise in the GPSC.

The main conclusions of the study are as follows. (1) As the initial market share of green
products increases, when consumers' green sensitivity is relatively low ($\gamma < 2\sqrt{\mu \tau}$), green
product retailers will increase the loyalty price of green products. When consumers' green
sensitivity is relatively high ($2\sqrt{\mu \tau} < \gamma < \sqrt{8\mu \tau}$), green retailers will lower the loyalty price of
green products. (2) The wholesale price and sales price of green products (loyalty price and
poaching price) are positively correlated with the sensitivity coefficient of greenness and
negatively correlated with the cost coefficient of the green degree. (3) An increase in consumers'
attention to the greenness of products and a decrease in the initial market share of green products
are conducive to the improvement of product greenness and the environment. (4) Consumers'
attention to the greenness of products will bring higher profits to the manufacturers and retailers
of green products.

Through numerical experiments, we find that with the increase in the initial market shares
of green products, the profits of nongreen product manufacturers first decrease and then increase,
while the profits of green product manufacturers decrease and the profits of green product
retailers present a trend of first decreasing, then increasing, then decreasing and then increasing
again.
There are some limitations in our work. Our model considers only a supply chain composed of two manufacturers and one retailer. In the real world, however, supply chains may contain multiple enterprises. Therefore, one future research direction involves a supply chain of green or nongreen products that is composed of multiple enterprises. On the other hand, we can also consider a situation in which green and nongreen products are sold in multiple channels at the same time. In addition, given the increased government support for environmental protection, it would be interesting to discuss the pricing of green and nongreen products under government intervention. Additional factors include environmental barriers, green barriers, tariff barriers, etc., and the pricing and related decisions of supply chains of green and nongreen products, all of which can be considered in our future research.

Appendix A

Proof of equilibrium results in Table 3: First, Eqs. (1) and (2) are substituted into the profit function of nongreen product manufacturer π_{Mb}, the poaching price and loyalty price at maximum π_{Mb} are solved, and simultaneous equations are established

\[
\begin{align*}
\frac{d\pi_{Mb}}{db_n} &= 0 \\
\frac{d\pi_{Mb}}{db_o} &= 0
\end{align*}
\]

Solving the equations, you get

\[
\begin{align*}
b_n &= \frac{g_o}{2} - \frac{\tau}{2} - \frac{\eta_\theta}{2} + \frac{\tau x_0}{2} \\
b_o &= \frac{g_n}{2} + \frac{\tau}{2} - \frac{\eta_\theta}{2}
\end{align*}
\]

The expressions of b_n and b_o regarding g_o and g_n are substituted into the profit functions of Eqs. (1) and (2) and green product retailer π_{Rg}, and the poaching price and loyalty price when π_{Rg} is maximum are solved to obtain

\[
\begin{align*}
g_n &= \frac{3\tau}{2} + \frac{w_g}{2} + \frac{\eta_\theta}{2} - 2\tau x_0 \\
g_o &= \frac{\tau}{2} + \frac{w_g}{2} + \frac{\eta_\theta}{2} + \tau x_0
\end{align*}
\]

Then, g_o and g_n are substituted into b_n and b_o and Eqs. (1) and (2). Then, the wholesale price and greenness of green product manufacturer π_{Mg} at the maximum can
be obtained to obtain \[
\begin{align*}
 w_g^* &= \frac{8\mu \tau^2 - 4\mu \tau^2 x_0}{-y^2 + 8\mu \frac{\tau}{2}\left(-y^2 - 7x_0\right)} \\
 \theta^* &= \frac{8\mu \tau^2 - 4\mu \tau^2 x_0}{-y^2 + 8\mu \frac{\tau}{2}}
\end{align*}
\]
. Further, other equilibrium results in Table 3 can be obtained.

Proof of Lemma 1: According to assumption 4, to ensure the validity of the solution, that is,

\[g_i^* > w_g^* > 0, \quad b_i^* > 0, \quad w_g^* q_g^* > C_g, \]

Equations (A.1) to (A.5) can be simplified to

\[
\begin{align*}
 \frac{16\mu \tau^2 - 3y^2 \tau x_0 + y^2 \tau + 12\mu \tau^2 x_0}{-2y^2 + 16\mu \tau} &> \frac{8\mu \tau^2 - 4\mu \tau^2 x_0}{-y^2 + 8\mu \tau} > 0 \\
 \frac{32\mu \tau^2 + 3y^2 \tau x_0 - y^2 \tau - 36\mu \tau^2 x_0}{-2y^2 + 16\mu \tau} &> \frac{8\mu \tau^2 - 4\mu \tau^2 x_0}{-y^2 + 8\mu \tau} > 0 \\
 \frac{-5y^2 \tau x_0 - y^2 \tau + 44\mu \tau^2 x_0}{-4y^2 + 32\mu \tau} &> 0 \\
 \frac{48\mu \tau^2 + 5y^2 \tau x_0 - 7y^2 \tau - 36\mu \tau^2 x_0}{-4y^2 + 32\mu \tau} &> 0 \\
 \frac{\mu(2\tau - \tau x_0)^2}{-2y^2 + 16\mu \tau} &> 0
\end{align*}
\]

If Eq. (A.5) is true, then \(-y^2 + 8\mu \tau > 0\) must be satisfied. Eq. (A.1) can be simplified to

\[
\frac{\mu(2\tau - \tau x_0)^2}{-2y^2 + 16\mu \tau} > 0, \quad \text{and this formula is always true when } x_0 \in (0,1).
\]

According to Eq. (A.2), \((1 - 3x_0)y^2 < 4\mu \tau (4 - 7x_0)\). At this time, if \(x_0 < \frac{1}{3}\), then \(y^2 < \frac{4\mu \tau (4 - 7x_0)}{(1 - 3x_0)}\); if \(x_0 > \frac{1}{3}\), then \(y^2 > \frac{4\mu \tau (4 - 7x_0)}{(1 - 3x_0)}\). Otherwise, the wholesale price of green products will be higher than the retail price (poaching price), and green retailers will lose money.

According to Eq. (A.3), \(y^2 < \frac{44\mu \tau}{(5x_0 + 1)}\). According to Eq. (A.4), \(y^2 < \frac{12\mu \tau (4 - 3x_0)}{(7 - 5x_0)}\), and when \(x_0 \in (0,1), \frac{44\mu \tau}{(5x_0 + 1)} > 0, \frac{12\mu \tau (4 - 3x_0)}{(7 - 5x_0)} > 0\) are always true.

So when \(x_0 < \frac{1}{3}\), \(y^2 < \min\left(\frac{44\mu \tau x_0}{(5x_0 + 1)}, \frac{4\mu \tau (4 - 7x_0)}{(1 - 3x_0)}, \frac{12\mu \tau (4 - 3x_0)}{(7 - 5x_0)}\right)\). By comparison, it can be
seen that when $\frac{44\mu \tau x_0}{(5x_0+1)}$ is the least in the interval, then $\gamma < \sqrt{\frac{44\mu \tau x_0}{(5x_0+1)}}$; when $x_0 > \frac{1}{3}$, $\gamma^2 > \frac{4\mu \tau (4-7x_0)}{(1-3x_0)}$, but $\frac{4\mu \tau (4-7x_0)}{(1-3x_0)}$ is less than 0 in $x_0 \in \left(\frac{1}{3}, \frac{4}{7}\right)$, and by comparison, we know that when $x_0 \in \left(\frac{1}{3}, \frac{4}{7}\right)$, $0 < \gamma < \sqrt{\frac{44\mu \tau x_0}{(5x_0+1)}}$. When $x_0 > \frac{4}{7}$, $\frac{4\mu \tau (4-7x_0)}{(1-3x_0)} > 0$, and when $x_0 \in \left(\frac{4}{7}, \frac{3}{5}\right)$, $\frac{44\mu \tau}{(5x_0+1)} < \frac{12\mu \tau (4-3x_0)}{(7-5x_0)}$, then $x_0 \in \left[\frac{3}{5}, 1\right]$, $\frac{12\mu \tau (4-3x_0)}{(7-5x_0)} < \frac{44\mu \tau}{(5x_0+1)}$. Thus, when $\frac{4}{7} < x_0 < \frac{3}{5}$, $\frac{4\mu \tau (4-7x_0)}{(1-3x_0)} < \gamma^2 < \frac{44\mu \tau}{(5x_0+1)}$; when $\frac{3}{5} < x_0 < 1$, $\frac{4\mu \tau (4-7x_0)}{(1-3x_0)} < \gamma^2 < \frac{12\mu \tau (4-3x_0)}{(7-5x_0)}$, lemma 1 is proven.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding
This study was partially supported by National Natural Science Foundation of China (71971078; 71601074); Natural Science Foundation of Hunan Province (2019JJ40042).

Authors' contributions

Conceptualization and Methodology: Kanying Liu and Wei Li; Software: Kanying Liu; Validation: Kanying Liu and Yong Lan; Writing: Kanying Liu, Wei Li, Erbao Cao, Yong Lan.

Acknowledgements

The author thanks the editor and anonymous reviewers for their constructive comments.
References

Bansal, S., Gangopadhyay, S., 2003. Tax/subsidy policies in the presence of environmentally aware consumers. J. Environ. Econ. Manag. 45, 333–355. https://doi.org/10.1016/S0095-0696(02)00061-X.

Basiri, Z., Heydari, J., 2017. A mathematical model for green supply chain coordination with substitutable products. J. Clean. Prod. 145, 232–249. https://doi.org/10.1016/j.jclepro.2017.01.060.

Choe, C., King, S., Matsushima, N., 2017. Pricing with cookies: behavior-based price discrimination and spatial competition. Manag. Sci. 64, 5669–5687. https://doi.org/10.1287/mnsc.2017.2873.

Colombo, S., 2018. Behavior- and characteristic-based price discrimination. J. Econ. Manag. Strategy 27, 237–250. https://doi.org/10.1111/jems.12244.

Fudenberg, D., Tirole, J., 2000. Customer poaching and brand switching. RAND J. Econ. 31, 634–657. https://doi.org/10.2307/2696352.

Fudenberg, D., Villas-Boas, J.M., 2006. Behavior-based price discrimination and customer recognition, in: Hendershott, T.J. (Ed.), Handbook on Economics and Information Systems. Elsevier, Oxford, UK, pp. 377–436.

Fudenberg, D., Villas-Boas, J.M., 2012. Price discrimination in the digital economy, in: Peitz, M., Waldfogel, J. (Eds.), Oxford Handbook of the Digital Economy. Oxford University Press, Oxford, UK, pp. 1–30.

Giri, R.N., Mondal, S.K., Maiti, M., 2019. Government intervention on a competing supply chain with two green manufacturers and a retailer. Comput. Ind. Eng. 128, 104–121. https://doi.org/10.1016/j.cie.2018.12.030.
Heydari, J., Govindan, K., Aslani, A., 2019. Pricing and greening decisions in a three-tier dual channel supply chain. Int. J. Prod. Econ. 217, 185–196. https://doi.org/10.1016/j.ijpe.2018.11.012.

Jamali, M.B., Rasti-Barzoki, M., 2018. A game theoretic approach for green and non-green product pricing in chain-to-chain competitive sustainable and regular dual-channel supply chains. J. Clean. Prod. 170, 1029–1043. https://doi.org/10.1016/j.jclepro.2017.09.181.

Jian, M., He, H., Ma, C., Wu, Y., Yang, H., 2019. Reducing greenhouse gas emissions: a duopoly market pricing competition and cooperation under the carbon emissions cap. Environ. Sci. Pollut. Res. Int. 26, 16847–16854. https://doi.org/10.1007/s11356-017-8767-1.

Jing, B., 2017. Behavior-based pricing, production efficiency, and quality differentiation. Manag. Sci. 63, 2365–2376. https://doi.org/10.1287/mnsc.2016.2463.

Li, B., Zhu, M., Jiang, Y., Li, Z., 2016. Pricing policies of a competitive dual-channel green supply chain. J. Clean. Prod. 112, 2029–2042. https://doi.org/10.1016/j.jclepro.2015.05.017.

Li, K.J., Jain, S., 2016. Behavior-based pricing: an analysis of the impact of peer-induced fairness. Manag. Sci. 62, 2705–2721. https://doi.org/10.1287/mnsc.2015.2265.

Lin, P.C., Huang, Y.H., 2012. The influence factors on choice behavior regarding green products based on the theory of consumption values. J. Clean. Prod. 22, 11–18. https://doi.org/10.1016/j.jclepro.2011.10.002.

Liu, K., Lan, Y., Li, W., Cao, E., 2019. Behavior-based pricing of organic and conventional agricultural products based on green subsidies. Sustainability 11, 1151. https://doi.org/10.3390/su11041151.

Liu, P., Yi, S.P., 2017. Pricing policies of green supply chain considering targeted advertising and
product green degree in the big data environment. J. Clean. Prod. 164, 1614–1622.
https://doi.org/10.1016/j.jclepro.2017.07.049.

Mahenc, P., 2017. Honest versus misleading certification. J. Econ. Manag. Strategy 26, 454–483.
https://doi.org/10.1111/jems.12195.

Nuttavuthisit, K., Thøgersen, J., 2017. The importance of consumer trust for the emergence of a market for green products: the case of organic food. J. Bus. Ethics 140, 323–337.
https://doi.org/10.1007/s10551-015-2690-5.

Rahmani, K., Yavari, M., 2019. Pricing policies for a dual-channel green supply chain under demand disruptions. Comput. Ind. Eng. 127, 493–510.
https://doi.org/10.1016/j.cie.2018.10.039.

Ranjan, A., Jha, J.K., 2019. Pricing and coordination strategies of a dual-channel supply chain considering green quality and sales effort. J. Clean. Prod. 218, 409–424.
https://doi.org/10.1016/j.jclepro.2019.01.297.

Rhee, K.E., Thomadsen, R., 2017. Behavior-based pricing in vertically differentiated industries. Manag. Sci. 63, 2729–2740. https://doi.org/10.1287/mnsc.2016.2467.

Sana, S.S., 2020. Price competition between green and non green products under corporate social responsible firm. J. Retail. Consum. Serv. 55, 102118.
https://doi.org/10.1016/j.jretconser.2020.102118.

Shaffer, G., Zhang, Z.J., 1995. Competitive coupon targeting. Mark. Sci. 14, 395–416.
https://doi.org/10.1287/mksc.14.4.395.

Shiller, B.R., 2014. First Degree Price Discrimination Using Big Data. Working Paper.
Department of Economics, Brandeis University, Waltham, MA.

Wang, J., Fan, X., Zhang, T., 2020. Behaviour-based pricing and wholesaling contracting under
supply chain competition. J. Oper. Res. Soc. 1–17.
https://doi.org/10.1080/01605682.2020.1750310.

Wang, X., Ng, C.T., 2018. New retail versus traditional retail in e-commerce: channel establishment, price competition, and consumer recognition. Ann. Oper. Res. 291, 921–937. https://doi.org/10.1007/s10479-018-2994-9.

Wang, Y., Hazen, B.T., 2016. Consumer product knowledge and intention to purchase remanufactured products. Int. J. Prod. Econ. 181, 460–469. https://doi.org/10.1016/j.ijpe.2015.08.031.

Xu, M., Tang, W., Zhou, C., 2020. Price discrimination based on purchase behavior and service cost in competitive channels. Soft Comput. 24, 2567–2588. https://doi.org/10.1007/s00500-019-03760-7.

Zhang, J., 2011. The perils of behavior-based personalization. Mark. Sci. 30, 170–186. https://doi.org/10.1287/mksc.1100.0607.

Zhang, L., Wang, J., You, J., 2015. Consumer environmental awareness and channel coordination with two substitutable products. Eur. J. Oper. Res. 241, 63–73. https://doi.org/10.1016/j.ejor.2014.07.043.

Zhu, W., He, Y., 2017. Green product design in supply chains under competition. Eur. J. Oper. Res. 258, 165–180. https://doi.org/10.1016/j.ejor.2016.08.053.
Table 1. Examples of BBP for green products

	Formaldehyde - resistant cleaning 5--n-1 interior wall paint by Nippon	Zeqiu-brand natural straws
Loyalty price	46.4 CNY/L	17.9 CNY/100 straws
Poaching price	45.4 CNY/L	15.4 CNY/100 straws
Table 2. Parameters and variables

Notation	Description
μ	Cost coefficient of the green degree
U	Basic consumer satisfaction
τ	Transportation cost
γ	Sensitivity coefficient of the greenness of unit product
θ	Greenness of a green product
i	Customer type: loyal customer ($i = o$), new customer ($i = n$)
g_i	Retail price of green products in period 2 with BBP
b_i	Retail price of non-green products in period 2 with BBP
x_0	Market share of green products in period 1
q_j	Market share of product j in period 2 ($j = g, b$)
w_g	Wholesale price of green products
D	Initial environmental impact of the product
Table 3. Equilibrium results

Variables	Value
b_n^*	$-5y^2x_0 - y^2\tau + 44\mu \tau^2x_0$
b_0^*	$-4y^2 + 32\mu \tau$
g_0^*	$48\mu \tau^2 + 5y^2x_0 - 7y^2\tau - 36\mu \tau^2x_0$
g_0^*	$-4y^2 + 32\mu \tau$
g_0^*	$16\mu \tau^2 - 3y^2x_0 + y^2\tau + 12\mu \tau^2x_0$
g_0^*	$-2y^2 + 16\mu \tau$
g_0^*	$32\mu \tau^2 - 3y^2x_0 - y^2\tau - 36\mu \tau^2x_0$
w_0^*	$-2y^2 + 16\mu \tau$
w_0^*	$8\mu \tau^2 - 4\mu \tau^2x_0$
g_0^*	$-y^2 + 8\mu \tau$
g_0^*	$2\mu \tau - \mu \tau x_0$
q_0^*	$-y^2 + 8\mu \tau$
q_0^*	$2\mu \tau - \mu \tau x_0$
q_0^*	$-y^2 + 6\mu \tau + \mu \tau x_0$
π_{Mb}^*	$16(8\mu \tau - y^2)^2$
π_{Mb}^*	$\mu(2\tau - \tau x_0)^2$
π_{Mb}^*	$16(8\mu \tau - y^2)^2$
π_{Mb}^*	$-2y^2 + 16\mu \tau$
π_{Mb}^*	$592\mu^2x_0^2 - 448\mu \tau^2x_0 + 128\mu^2\tau^2$
π_{Mb}^*	$-144\mu^2x_0^2 + 96\mu \tau^2x_0 - 16\mu \tau^2\tau$
π_{Mb}^*	$+9\mu^2x_0^2 - 6y^4x_0 + y^4$
π_{Mb}^*	$8(8\mu \tau - y^2)^2$
Fig. 1 Supply chain structure
Fig. 2 Consumption patterns and regions of consumers x
Fig. 3 The impact of x_0 on profits ($x_0 < \frac{4}{7}, Y = 0.38$)
Fig. 4 The impact of x_0 on profits ($x_0 \geq \frac{4}{7}, Y = 1.47$)
Figures

Figure 1
Supply chain structure

Figure 2
Consumption patterns and regions of consumers x
Figure 3

Please see the Manuscript PDF file for the complete figure caption.
Figure 4

Please see the Manuscript PDF file for the complete figure caption