FORMAL MEROMORPHIC FUNCTIONS ON MANIFOLDS OF FINITE TYPE

ROBERT JUHLIN, BERNHARD LAMEL, AND FRANCINE MEYLAN

Dedicated to Prof. J.J. Kohn on the occasion of his 75th birthday.

Abstract. It is shown that a real-valued formal meromorphic function on a formal generic submanifold of finite Kohn-Bloom-Graham type is necessarily constant.

1. Introduction

It is easy to see (and known, see [1]) that if \(M \subset \mathbb{C}^N \) is a connected generic real-analytic CR manifold which is of finite type in the sense of Kohn [2] and Bloom-Graham [3] at some point \(p \in M \), then any meromorphic map \(H: U \to \mathbb{C}^m \) defined on a connected neighbourhood of \(M \) which satisfies \(H(M) \subset E \), where \(E \subset \mathbb{C}^m \) is a totally real analytic submanifold, is necessarily constant.

Let us give a short proof of this fact. First, we recall the definition of the Segre sets \(S_p^1 \). These are defined inductively. First, we define the Segre variety \(S_p^0 = S_p^1 \) for \(p \in M \). Let \(\rho(Z, \bar{Z}) = (\rho_1(Z, \bar{Z}), \ldots, \rho_d(Z, \bar{Z})) \) be a (vector-valued) defining function for \(H \) defined in a neighbourhood \(U \times \tilde{U} \) of \((p, \tilde{p}) \), i.e.

\[
M \cap U = \{ Z \in U : \rho(Z, \bar{Z}) = 0 \}, \quad d\rho_1 \wedge \cdots d\rho_d \neq 0 \text{ on } U, \quad \rho(Z, \bar{Z}) = \bar{\rho}(\tilde{Z}, Z).
\]

With this notation, \(S_p^1 \) is defined by

\[
S_p^1 = \{ Z \in U : \rho(Z, q) = 0 \}, \quad q \in U,
\]

and the \(j \)-th Segre set \(S_p^j \), \(j > 1 \), is defined inductively by

\[
S_p^j = \bigcup_{q \in S_p^{j-1}} S_p^1.
\]

For consistency, we also put \(S_p^0 = \{ p \} \).

We are using the following Theorem, which characterizes finite type in terms of properties of the Segre sets:

Theorem 1 (Baouendi, Ebenfelt and Rothschild [1]). Let \(M \subset \mathbb{C}^N \) be a generic real-analytic CR manifold. Then \(M \) is of finite type at \(p \in M \) if and only if there exists an open set \(V \subset \mathbb{C}^N \) with \(V \subset S_p^{d+1} \).

Now assume that \(H: U \to \mathbb{C}^m \) is a meromorphic map which satisfies \(H(M) \subset E \), where \(E \) is totally real. First note that since \(M \) is of finite type at some point \(p \), it is of finite type on the complement of a proper real-analytic subvariety \(F \subset M \). So there exists a point \(p \in M \) with the property that \(M \) is of finite type at \(p \) and \(H \) is holomorphic in some neighbourhood of \(p \) (because \(M \) is generic, it is a set of uniqueness for holomorphic functions). We shall prove that in this situation, \(H \) is constant on an open set in \(\mathbb{C}^N \), and thus constant.

We can find coordinates \(\eta \) in \(\mathbb{C}^m \) such that near \(H(p) \), \(E \) is given by an equation of the form \(\eta = \varphi(\bar{\eta}) \). Thus, \(H(Z) = \varphi(H(Z)) \), whenever \(Z \in M \), and from this we have that \(H(Z) = \varphi(H(\bar{\zeta})) \) whenever \(Z \in S_\zeta \) (restricting to a suitable neighbourhood \(U \) of \(p \)). Thus, \(H(Z) = \varphi(H(\bar{p})) \) for \(Z \in S_p \); since \(p \in S_p \), \(H(Z) = H(p) \) for \(Z \in S_p \). Now we consider \(Z \in S_p^2 \). For each such \(Z \), there is \(\zeta \in S_p^1 \) with \(Z \in S_\zeta \). Our equation tells us that \(H(Z) = \varphi(H(\bar{\zeta})) = \varphi(H(\bar{p})) \), and again, since \(p \in S_p^2 \), \(H(Z) = H(p) \) for \(Z \in S_p^2 \).

Date: March 14, 2008.

The authors were supported by the Austrian Science Fund FWF, project P19667; the third author was partially supported by Swiss NSF grant 2100-063464/00/2. This paper was written during the third author’s visit to Vienna; she wishes to express her gratitude for the hospitality of the faculty of mathematics at the University of Vienna.
Continuing the iteration process like this, we see that $H(Z) = H(p)$ for $Z \in S_p^j$ for $j \in \mathbb{N}$. Since S_p^d contains an open subset of \mathbb{C}^N by Theorem 1 the identity principle implies that $H(Z) = H(p)$ on U. This proves the constancy of such an H.

Our main point in this paper is the extension of this result to the formal category. Here we cannot “move to a good point”. Let us be a bit more specific about the notions which we are going to use (and refer the reader to Baouendi, Mir and Rothschild [3] for more information). A generic real formal submanifold $(M, 0) \subset (\mathbb{C}^N, 0)$ of codimension d is given by its manifold ideal

$$I(M, 0) \subset \mathbb{C}[[Z, \zeta]],$$

which satisfies that $I(M, 0)$ can be generated by d functions ρ_1, \ldots, ρ_d, where ρ_1, \ldots, ρ_d have the following properties:

1. $\overline{\rho_j}(\zeta, Z) = \rho_j(Z, \zeta)$ (the ρ_j are real)
2. $\rho_j, Z(0) \wedge \cdots \wedge \rho_d, Z(0) \neq 0$, where $\rho_j, Z = \left(\frac{\partial \rho_j}{\partial Z_1}, \ldots, \frac{\partial \rho_j}{\partial Z_N}\right)$.

A formal meromorphic map $H: (\mathbb{C}^N, 0) \to (\mathbb{C}^m, 0)$ is given by $H = \frac{N}{D}$, where D is a formal power series which is not identically zero, and $N: (\mathbb{C}^N, 0) \to (\mathbb{C}^m, 0)$ is a formal holomorphic map (i.e., $N = (N_1, \ldots, N_m)$ where $N_j \in \mathbb{C}[[Z]]$). In the present context, $(E, 0) \subset (\mathbb{C}^m, 0)$ is a formal totally real manifold if it is a formal real submanifold which in suitable (formal) holomorphic coordinates $\eta \in \mathbb{C}^m$, $(E, 0)$ is given by $\Im \eta = 0$—by this we mean that $I(E, 0) \subset \mathbb{C}[[\eta, \nu]]$ can be generated by the functions $\frac{1}{2i} (\nu_j - \eta_j)$.

Remark 1. Usually, a totally real CR-manifold is defined as a CR-manifold of CR-dimension 0; what we refer to as “totally real” here is usually referred to as “maximally totally real”. However, in the formal category, every “totally real” submanifold is automatically equivalent to a “maximally totally real” submanifold; this justifies the chosen terminology.

Definition 1. We say that a formal meromorphic map $H = N/D: (\mathbb{C}^N, 0) \to (\mathbb{C}^m, 0)$ maps $(M, 0) \subset (\mathbb{C}^N, 0)$ into the totally real submanifold $(E, 0) \subset (\mathbb{C}^m, 0)$ (with coordinates as above) if for any formal holomorphic map $\gamma(t) = (\gamma_1(t), \gamma_2(t)): (\mathbb{C}^{2N-d}, 0) \to (\mathbb{C}^{2N})$ satisfying $\rho(\gamma_1(t), \gamma_2(t)) = 0$ for every $\rho \in I(M, 0)$ it holds that

$$N_j(\gamma_1(t)) \dot{D}(\gamma_2(t)) - \dot{N}_j(\gamma_2(t)) D(\gamma_1(t)) = 0$$

for every $j = 1, \ldots, m$.

We also recall that a formal generic manifold $(M, 0) \subset (\mathbb{C}^N, 0)$ is of finite type at 0 if the Lie algebra generated by the formal $(1,0)$- and $(0,1)$-vector fields tangent to $(M, 0)$, evaluated at 0, spans \mathbb{C}^N. We can now state our main result.

Theorem 2. Let $(M, 0) \subset (\mathbb{C}^N, 0)$ be a formal generic manifold of finite type, $H: (\mathbb{C}^N, 0) \to (\mathbb{C}^m, 0)$ a formal meromorphic map which maps $(M, 0)$ into $(E, 0)$, where $(E, 0)$ is a formal totally real manifold. Then H is constant.

We note that the finite type assumption is necessary. Indeed, every manifold of the form $M = \tilde{M} \times E$, where \tilde{M} is some CR manifold and E is totally real, has nonconstant CR maps onto a totally real manifold (the projection onto its second coordinate). On the other hand, here is another example, due to J. Lebl:

Example 1. Let $M \subset \mathbb{C}^3$ be given by

$$w_1 = w_1 e^{ip|z|^2}, \quad w_2 = w_2 e^{iq|z|^2},$$

for some integers p and q. Then the function

$$H(z, w_1, w_2) = \frac{w_1^q}{w_2^p}$$

maps M into \mathbb{R} and is not the restriction of a holomorphic function. Also note that this function is not even continuous on M. Our results imply that no nonconstant holomorphic choice of projection onto \mathbb{R} can be made.
2. Reflected Identities and Consequences

We shall first show that we can simplify our situation somewhat by choosing "normal" coordinates. Recall that normal coordinates for a formal generic submanifold $(M,0) \subset (\mathbb{C}^N,0)$ means a choice of coordinates $(z,w) \in \mathbb{C}^n \times \mathbb{C}^d$ (d being the real codimension of $(M,0)$) together with formal functions $Q_j(z,\chi,\tau) \in \mathbb{C}[[z,\chi,\tau]], j = 1, \ldots, d$, satisfying

$$Q_j(z,0,\tau) = Q_j(0,\chi,\tau) = \tau_j, \quad j = 1, \ldots, d,$$

such that $w_j - Q_j(z,\chi,\tau)$ generate the manifold ideal associated to $(M,0)$ in $\mathbb{C}[[z,w,\chi,\tau]]$. We will write $Q = (Q_1, \ldots, Q_d)$, and abbreviate the generating set with $w - Q(z,\chi,\tau)$.

We will show that in normal coordinates, a formal meromorphic function H which maps $(M,0)$ into $(\mathbb{R},0)$ actually only depends on the transverse variables w. To do this, we first give a reflection identity which we will use.

Proposition 2. If $(M,0) \subset (\mathbb{C}^N,0)$ is a formal generic submanifold, and (z, w) are normal coordinates for $(M,0)$ with corresponding generators $w - Q(z,\chi,\tau)$. If $H = \frac{N}{D} : (M,0) \to (\mathbb{R},0)$ is formal meromorphic, and N and D do not have any common factors, then there exists a formal holomorphic function $a(z,\chi, z^1, w)$, with $a(0,0,0,0) = 1$, such that

$$N(z, Q(z, \chi, \bar{Q}(z^1, w))) = a(z, \chi, z^1, w)N(z^1, w),$$

$$D(z, Q(z, \chi, \bar{Q}(z^1, w))) = a(z, \chi, z^1, w)D(z^1, w).$$

Proof. From the definition, we have

$$\bar{D}(\chi, \tau)N(z, Q(z, \chi, \tau)) = \bar{N}(\chi, \tau)D(z, Q(z, \chi, \tau)).$$

Taking the complex conjugate and replacing z by z^1 in this equation, we also have that

$$D(z^1, w)\bar{N}(\chi, \bar{Q}(z^1, w)) = N(z^1, w)\bar{D}(\chi, \bar{Q}(z^1, w)).$$

We now substitute $\tau = \bar{Q}(\chi, z^1, w)$ into (2) to obtain

$$\bar{D}(\chi, \bar{Q}(\chi, z^1, w))N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = \bar{N}(\chi, \bar{Q}(\chi, z^1, w))D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))).$$

We now multiply the left (and right, respectively) hand sides of (3) and (4) with each other, and after cancelling a common factor of $\bar{N}(\chi, \bar{Q}(\chi, z^1, w))\bar{D}(\chi, \bar{Q}(\chi, z^1, w))$ we obtain

$$D(z^1, w)N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w)))N(z^1, w).$$

Now, using the fact that N and D do not have any common factors, unique factorization in the ring $\mathbb{C}[[z, \chi, z^1, w]]$ implies that there exists a unit $a(z, \chi, z^1, w)$ such that (1) holds. By evaluating (1) at $z = z^1$, and using the reality property $Q(z, \chi, \bar{Q}(\chi, z, w)) = w$, we have that $a(z, \chi, z, w) = 1$, so in particular, $a(0,0,0,0) = 1$. \hfill \Box

Lemma 3. Let $(M,0) \subset (\mathbb{C}^N,0)$ be a formal generic submanifold. Assume that $H(Z) = \frac{N(Z)}{D(Z)}$ is a formal meromorphic map sending $(M,0)$ into $(\mathbb{R},0)$. Then for any choice of normal coordinates (z,w) for $(M,0)$, we have that $H(z,w) = H(0,w)$; in particular, there exist formal functions $\bar{N}(w)$ and $\bar{D}(w)$ such that $H(z,w) = \frac{\bar{N}(w)}{\bar{D}(w)}$.

Proof. We use Proposition 2. Setting $\chi = z^1 = 0$, we see that

$$N(z,w) = a(z,0,0,w)N(0,w), \quad D(z,w) = a(z,0,0,w)D(0,w).$$

The Lemma follows. \hfill \Box
3. Prolongation of the reflection along Segre maps and proof of Theorem 2

We will denote by
\[v^1(z, \chi, z^1; w) = Q(z, \chi, Q(z, z^1, w)); \]
in the usual Segre-map terminology, \(v^1(z, \chi, z^1; 0) \) is the transversal component of the second Segre map of \((M, 0) \). Since we shall only have use for the Segre-maps of even order, we introduce the notation adapted to our setting. We define \(S^{(0)} = z \), and for \(j \geq 1 \)
\[S^{(j)} = (z, \chi, z^1, \chi^1, \ldots, z^j), \]
and write \(S^{(j)}_k = (z^k, \chi^k, \ldots, z^j) \) for \(k \leq j \). By Lemma 4, \(H \) does not depend on \(z \) and we can assume that
\[H(z, w) = \frac{N(w)}{D(w)}. \]

With that notation and our simplification from Lemma 3, our reflection identity now reads
\[
N \left(v^1(S^{(1)}; w) \right) = a(S^{(1)}, w) N(w), \\
D \left(v^1(S^{(1)}; w) \right) = a(S^{(1)}, w) D(w).
\]

For \(j \geq 1 \), we define inductively
\[
v^j \left(S^{(j)}; w \right) = v^1(z, \chi, z^1; v^{j-1}(S_1^{(j)}; w)).
\]

We can now state the finite type criterion of Baouendi, Ebenfelt and Rothschild for formal submanifolds, for later reference, as follows:

Theorem 3. If \((M, 0)\) is of finite type in the sense of Kohn-Bloom-Graham, then there exists a \(j \geq 1 \) such that
\[S^{(j)} \to v^j \left(S^{(j)}; 0 \right), \quad (\mathbb{C}^{(2j-1)n}, 0) \to (\mathbb{C}^d, 0), \]
is of generic full rank \(d \).

Thus, if we replace \(w \) by \(v^{j-1}(S_1^{(j)}; w) \) in (6), we obtain
\[
N \left(v^j(S^{(j)}; w) \right) = N \left(v^1(S^{(1)}; v^{j-1}(S_1^{(j)}; w)) \right) = a(S^{(1)}; v^{j-1}(S_1^{(j)}; w)) N \left(v^{j-1}(S_1^{(j)}; w) \right).
\]

Applying induction, we see that the following holds:

Lemma 4. For every \(j \geq 1 \), there exists a unit \(a_j(S^{(j)}, w) \) such that
\[
N \left(v^j(S^{(j)}; w) \right) = a_j(S^{(j)}, w) N(w), \quad D \left(v^j(S^{(j)}; w) \right) = a_j(S^{(j)}, w) D(w).
\]

We can now prove Theorem 2. By Theorem 3 there exists a \(j \) such that \(v^j(S^{(j)}; 0) \) is of generic full rank. Assuming that \(D(0) = 0 \), we see that \(D(v^j(S^{(j)}; 0)) = 0 \). Since \(v^j \) is of generic full rank, this implies that \(D(w) = 0 \); this contradiction shows that \(D(0) \neq 0 \). Hence, we can assume that \(H(z, w) = N(w) \) is formal holomorphic, and without loss of generality, \(N(0) = 0 \). The same argument shows that \(N(w) = 0 \), and so, \(H \) is constant.

Remark 2. More generally, if we do not assume that \((M, 0)\) is of finite type, then we can define the formal variety
\[V_j = \overline{\text{image}(v^j(S^{(j)}; 0))} \cong \{ f \in \mathbb{C}[[w]] : f \circ v^j(S^{(j)}; 0) = 0 \}, \]
and \(V = \bigcup_j V_j \) (which is again a formal variety). The same arguments as above show that \(D \), as well as \(N \), are constant on \(V \). This corresponds to the statement that a real-valued CR meromorphic function is constant along the CR-orbits of \(M \).
REFERENCES

[1] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild. Algebraicity of holomorphic mappings between real algebraic sets in \mathbb{C}^n. *Acta Math.*, 177(2):225–273, 1996.

[2] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild. Dynamics of the Segre varieties of a real submanifold in complex space. *J. Algebraic Geom.*, 12:81–106, 2003.

[3] M. S. Baouendi, N. Mir, and L. P. Rothschild. Reflection ideals and mappings between generic submanifolds in complex space. *J. Geom. Anal.*, 12(4):543–580, 2002.

[4] T. Bloom and I. Graham. On “type” conditions for generic real submanifolds of \mathbb{C}^n. *Invent. Math.*, 40(3):217–243, 1977.

[5] J. J. Kohn. Boundary behavior of $\bar{\partial}$ on weakly pseudo-convex manifolds of dimension two. *J. Differential Geometry*, 6:523–542, 1972.

Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien, Österreich

E-mail address: robert.juhlin@univie.ac.at

Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien, Österreich

E-mail address: bernhard.lamel@univie.ac.at

University of Fribourg, Department of Mathematics, CH 1700 Perolles, Fribourg, Suisse

E-mail address: francine.meylan@unifr.ch