OPAQUE OR TRANSPARENT? A LINK BETWEEN NEUTRINO OPTICAL DEPTHS AND THE CHARACTERISTIC DURATION OF SHORT GAMMA-RAY BURSTS

WILLIAM H. LEE
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, Cd. Universitaria, Mexico DF 04510, Mexico

ENRICO RAMIREZ-RUIZ
School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540

AND

DANY PAGE
Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, Cd. Universitaria, Mexico DF 04510, Mexico

Received 2004 March 26; accepted 2004 April 28; published 2004 May 7

ABSTRACT

Cosmological gamma-ray bursts (GRBs) are thought to occur as a result of violent hypercritical accretion onto stellar mass black holes, following either core collapse in massive stars or compact binary mergers. This dichotomy may be reflected in the two classes of bursts having different durations. Dynamical calculations of the evolution of these systems are essential if one is to establish characteristic relevant timescales. We show here for the first time the result of dynamical simulations, lasting approximately 1 s, of postmerger accretion disks around black holes, using a realistic equation of state and considering neutrino emission processes. We find that the inclusion of neutrino optical depth effects produces important qualitative temporal and spatial transitions in the evolution and structure of the disk, which may directly reflect on the duration and variability of short GRBs.

Subject headings: accretion, accretion disks — dense matter — gamma rays: bursts — hydrodynamics — neutrinos

1. INTRODUCTION

The coalescence of two compact objects due to the emission of gravitational radiation is a possible origin of cosmological gamma-ray bursts (GRBs) of the short variety (see, e.g., Mészáros 2002 for a review), lasting a few tenths of a second (Lattimer & Schramm 1976; Paczyński 1986; Eichler et al. 1989; Narayan et al. 1992). Previous multidimensional studies have shown that the outcome of such a merger is in all likelihood a dense torus surrounding a supramassive neutron star, likely to collapse to a black hole on a short timescale, or a black hole, if one was already present in the system (e.g., Rasio & Shapiro 1994; Kluźniak & Lee 1998; Ruffert & Janka 1999; Rosswog et al. 2003). This class of systems has been studied observationally since the 1970s, when the Hulse-Taylor system was discovered (Hulse & Taylor 1975), and the recent detection of PSR J0737–3039 (Burgay et al. 2003), the tightest binary yet known, and its evolution was followed for 0.2 s, comparable to the duration of a short GRB. The equation of state was simple (ideal gas with adiabatic index $\gamma = 4/3$), and we assumed that all the energy dissipated by viscosity (modeled with the full expression of the stress tensor, using an α-prescription for the magnitude of the viscosity) was radiated away.

In this Letter, we present for the first time dynamical calculations of postmerger accretion disks in two dimensions, (r, z), that (1) use a realistic and self-consistent equation of state for the fluid in the disk; (2) consider the cooling of the disk through neutrino emission, using appropriate rates; (3) account for the effects of neutrino opacities and the corresponding optical depths through a simplified treatment; and (4) last for a minimum of 0.4 s, comparable to the duration of a short GRB.

2. PHYSICS

After the initial merger phase of the binary is completed, a few tenths of a solar mass can be left in orbit around the central black hole (which has a mass $M_{\text{BH}} \approx 3–5 M_\odot$), in a small disk a few hundred kilometers across. The densities are high, with $10^9 \leq \rho \leq 10^{12}$, and the corresponding temperatures are $10^{10} \leq T \leq 10^{11}$ K. Under these conditions, nuclei are entirely photodisintegrated, and the fluid consists of free electrons, protons, and nucleons, plus a small number of positrons. The nucleons makes up a nonrelativistic ideal gas, while electrons

1 Chandra Fellow.
are degenerate and highly relativistic. Photons are completely trapped because of the extremely high optical depth and are hence advected with the flow. The composition of the fluid is determined self-consistently assuming (1) charge neutrality and (2) complete β-equilibrium (Kohri & Mineshige 2002; W. H. Lee et al. 2004, in preparation). This allows us to determine the electron fraction Y_e and the electron degeneracy parameter (through the chemical potential) locally and to follow it throughout the dynamical evolution. This is important since the composition directly affects the neutrino emission rates (see eq. [2]). The equation of state is then given by

$$P = \frac{aT^4}{3} + \frac{\rho k T}{m_e} + K \left(\frac{\rho}{\rho_c} \right)^{4/3} + P_e,$$ \hspace{1cm} (1)

where K is the constant corresponding to a fully degenerate, relativistic electron gas, $\mu_e = 1/Y_e$ is the number of baryons per electron, and P_e is the pressure due to the presence of neutrinos in the optically thick regions of the disk (see below). Strictly speaking, the electrons are not fully degenerate, since η_e/kT is in the range 2–4 (η_e is the electron chemical potential). However, this represents a small error in the equation of state, since gas pressure dominates the overall balance, contributing about 90% of the total pressure, followed by electron degeneracy pressure at around 5%.

Neutrinos are emitted abundantly in the disk because of the high temperatures and densities. We take into account all of the following processes: (1) nucleon-nucleon bremsstrahlung, (2) e^\pm pair annihilation, (3) electron and positron captures onto free nucleons, and (4) plasmon decay. In practice, the global cooling rate is completely dominated by e^\pm captures and is hence well approximated by (Kohri & Mineshige 2002)

$$\dot{q}_{c\nu} = 1.1 \times 10^{31} \left(\frac{\eta_e}{kT} \right)^9 T_{11}^9 \text{ergs}^{-1} \text{cm}^{-3}$$ \hspace{1cm} (2)

in the regime where electrons are degenerate. This expression has been used directly to compute the cooling within the disk. The error in doing so, as opposed to a full integration over the phase space, is limited to about a factor of 2 (in the inner regions, where the cooling is most intense), as compared with rates extrapolated from the work of Langanke & Martinez-Pinedo (2001).

The emitted neutrinos are not entirely free to leave the system, since scattering off free nucleons is important. The optical depth for neutrinos can be estimated as $\tau = \rho T_l / l$, where H is the optical depth for neutrinos, l is the mean free path between scatterings, and T_l is the temperature. The cross section depends on the mean neutrino energy as $\sigma_e = E_e^{-2}$ (Tubbs & Schramm 1975), and $E_e \approx 43Y_e \rho_{12}^{1/3}$ MeV ($\rho_{12} = \rho/10^{12}$ g cm$^{-3}$), using the fact that neutrinos are being produced by reactions involving degenerate electrons (see, e.g., Shapiro & Teukolsky 1983). This amounts to a surface of last scattering for neutrinos or “neutrino-surface” at $\rho \approx 10^{12}$ g cm$^{-3}$. Our simple treatment of this fact consists of suppressing the local cooling rate by a factor of $\exp(-\tau)$ and adding a pressure term $P \propto aT^4[1 - \exp(-\tau)]$ to the equation of state. This simple alteration is crucial in determining the energy output of the disk. We note that no modification in the composition was computed owing to this fact. In reality, the opaqueness of the material will lead to an increase in the electron fraction Y_e by up to a factor of 2 (Beloborodov 2003). The optical depth will thus rise by a factor of $2^{2/3} \approx 1.6$, making the optically thick region in the disk larger and the overall luminosity slightly lower. Any energy release in neutrinos will thus be spread over a longer period, making our estimates concerning timescales fall on the conservative side (see § 3).

The dynamical evolution is followed for at least 0.4 s in the central Newtonian potential produced by the black hole, $\Phi = -GM_{\text{bh}}/r$, using a two-dimensional smooth particle hydrodynamics code in azimuthal symmetry (Monaghan 1992). Accretion is modeled by placing an absorbing boundary at the Schwarzschild radius $r_s = 2GM_{\text{bh}}/c^2$, and the mass of the black hole is updated continuously. There is no external agent feeding the disk with matter; and no boundary conditions need to be specified (other than for accretion). The equations of motion and the energy equation contain all the terms for a physical viscosity derived from the stress tensor (Flebbe et al. 1994), and we use an α-prescription for the coefficient of viscosity, with $10^{-3} < \alpha < 10^{-2}$. The dissipated energy is injected back into the disk as thermal energy and may leave the system depending on the local cooling rate (cf. eq. [2]).

3. TEMPORAL AND SPATIAL TRANSITIONS

If the disk is assumed to be optically thin everywhere and the effects discussed above are ignored, the neutrino luminosity is a smooth monotonically decreasing function of time, similar to what we obtained in previous work (we have confirmed this in trial runs with the present input physics). Accounting for a variable optical depth leads to behavior that is markedly different, as can be seen in Figure 1, where $L_n(t)$ is shown for three values of the viscosity parameter α. For a high viscosity, $\alpha = 0.1$, the accretion timescale is so short (40 ms) that most of the material is accreted onto the black hole and has no time to radiate away its internal energy reservoir of 10^{52} ergs. The disk becomes entirely optically thin at around 30 ms, and this explains the rebrightening that is observed. The luminosity subsequently exhibits a power-law decay, as in the trial runs with no optical depth effects, with $L_n \propto t^{-5/9}$.

For lower viscosities ($\alpha = 10^{-2}$ and 10^{-3}), the behavior is qualitatively different at early times and is a consequence of the longer accretion timescales: 0.4 and 1 s, respectively (we note here that all our estimates of t_{acc} are based on the actual accretion rate, i.e., $L_{\text{acc}} \approx M_p/M_{\text{bh}}$). Quite simply, the material in the disk is allowed to remain in the vicinity of the black...
hypothesis that its energy density, e_{d}, is in equipartition with the magnetic field strength, we can make a simple rough estimate of the magnetic field strength by explicitly accounting for the presence of magnetic fields in our code. Since our code does not include optical depth effects, the vertical compression of the disk as it cools. Accretion eventually drains the disk of matter, producing the characteristic breaks at $t = 0.05$ and 0.8 s for $\alpha = 10^{-3}$ and 10^{-2}.

It is again evident that the high-viscosity case is markedly different in the other two, showing a significant prompt decrease in ρ_{max}. The transition to complete transparency to neutrinos occurs at around 40 ms. The balance between cooling, which produces vertical compression (and hence a rise in central density), and accretion, which slowly reduces the mass of the disk, produces a break in the curves for $\alpha = 0.01$ and 0.001 at $t = 0.05$ and 0.8 s, respectively. The total estimated energy release through the Blandford-Znajek mechanism is $E_{\text{BZ}}/10^{51}$ ergs $= 0.34, 1.3, 6.5$, for $\alpha = 10^{-1}$ (up to 0.4 s), $\alpha = 10^{-2}$ (up to 0.4 s), and $\alpha = 10^{-3}$ (up to 1.2 s), respectively.

In addition to the temporal variations in total luminosity, there is a spatial transition within the disk, when the optical depth is around unity. For the calculations with $\alpha \leq 10^{-2}$, there is always (up to the end of the run) an opaque region in the center of the disk. The density ρ and entropy per baryon s/k along the equatorial plane ($\varpi = 0$), as well as density contours in the $r-z$ plane, are plotted in Figure 3, 0.2 s after the beginning of the calculation with $\alpha = 10^{-2}$. We also show for comparison the equipartition density profile of the disk in a calculation that did not take into account the effects of optical depths (Fig. 3, dashed line). There is a clear break at $r \approx 9 \times 10^5$ cm, where $\tau_{\gamma} = 1$. As the optical depth increases and the cooling is suppressed, the pressure rises, inhibiting the thinning of the disk and the increase in density in the inner regions. This break is essentially a stationary feature because of the relatively long accretion timescales, as long as the optically thick region is present. We believe that this transition is significant, as geometrically thick accretion flows around rotating black holes, with $H \approx R$, are believed to be more favorable for the production of energetic outflows than thin flows, where $H \ll R$ (Livio et al. 1999; Meier 2001).

4. DISCUSSION

The evolution of accretion disks resulting from dynamical three-dimensional binary coalescence calculations, in which a neutron star is tidally disrupted before being swallowed by its black hole companion, is studied numerically. Angular momentum transport and the associated energy dissipation are modeled using an α-prescription. By assuming azimuthal symmetry, we are able to follow the time dependence of the disk structure for a fraction of a second, a time comparable with...
the duration of short GRBs. During this time, the rate of mass supply to the central black hole is of the order of a fraction of a solar mass per second, i.e., much greater than the Eddington rate. Although the gas photon opacities are large, the disk becomes sufficiently dense and hot to cool via neutrino emission. There is in principle no difficulty in dissipating the disk internal energy, but the problem is in allowing these neutrinos to escape from the Thomson thick inflowing gas.

At sufficiently low accretion rates, \(\alpha \lesssim 0.01 \), we find that the energy released by viscous dissipation is almost completely radiated away on a timescale given by \(t_{\text{cool}} \approx E_{\text{vis}} / L_p \approx 0.1 \) s. In contrast, for a higher mass supply, \(\alpha \gtrsim 0.1 \), energy advection remains important until the entire disk becomes optically thin, at \(t (\tau_e = 1) \approx 30 \) ms. The restriction on the cooling rate imposed by high optical depths is key because it allows the energy loss to be spread over an extended period of time [i.e., \(t_{\text{cool}} \) or \(t (\tau_e = 1) \)] during which the neutrino luminosity stays roughly constant. In principle, neutrinos could give rise to a relativistic pair-dominated wind if they converted into pairs in a region of low baryon density. This gives a characteristic timescale for energy extraction and may be essential for determining the duration of neutrino-driven short GRBs.

An alternative way to tap the torus energy is via magnetic fields threading the disk: the energy liberated by accretion is converted efficiently into magnetic form and emitted as a magnetically dominated outflow. The launching of a jet probably requires the existence of a poloidal magnetic field of magnitude \(B_p \) over a scale of radius \(R_p \), where \(B_p \) is smaller than the field strength \(B_{\text{disk}} \) associated with the dynamo-driven magnetic disk viscosity (Livio et al. 1999). This results directly from estimating the accretion and jet luminosities as \(L_{\text{acc}} \sim M_{\text{acc}} v_e^2 \) and \(L_{\text{jet}} \sim B_p^2 R^2 v_e \), respectively, which gives \((B_p / B_{\text{disk}})^2 \sim (L_{\text{jet}} / L_{\text{acc}}) (H/R) \). Assuming the scaling \(B_p \sim (H/R) B_{\text{disk}} \), derived by Tout & Pringle (1996), one obtains \(L_{\text{jet}} / L_{\text{acc}} \sim H/R \). In order to achieve \(L_{\text{jet}} \sim L_{\text{acc}} \), Livio et al. (2003) argue that a number \(R/H \) of neighboring annuli in the disk need to provide a locally generated net poloidal field in the same direction. They note that since the local dynamics vary on timescales of \(t_{\text{dyn}} \), the timescale for establishing a change in the magnetic field in the disk should be of the order of \(t_{\text{jet}} \sim t_{\text{dyn}} 2^{w/o} \). In our case \(R/H \sim 3 \), which gives \(t_{\text{jet}} \sim 100 \) ms. This corresponds to the typical variability timescale of short-duration GRBs (Ramirez-Ruiz & Fenimore 2000; Nakar & Piran 2002).

Two further physical effects, noted previously in a more general context, are relevant for the present study. First, the mechanism by which a jet is launched is not scale free (Pringle 1993), and thus the poloidal field must be established in the inner regions of the disk. Second, in these same regions, the inflow speed caused by angular momentum loss to the outflow is increased, up to a factor of \(R/H \) over the value expected from magnetic viscosity alone (Livio et al. 2003). Thus the poloidal flux generated by the dynamo can be effectively trapped. This probably implies that once the dynamo process generates a global poloidal field, it is able to maintain it during the lifetime of the thick portion of the disk, \(t (\tau_e = 1) \). For the typical parameters studied here, this timescale could be of the order of seconds when the rate of mass supply is low (i.e., \(\alpha \sim 10^{-3} \)). There is thus no problem in principle in accounting for sporadic large-amplitude variability on timescales as short as 1 ms, even in the most long-lived short GRBs.

We gratefully acknowledge helpful discussions with M. Rees and W. Kluzniak. We thank the referee, Jason Pruet, for his comments and suggestions. Financial support for this work was provided in part by CONACYT (36632E) and NASA through a Chandra Postdoctoral Fellowship award PF3-40028 (E. R.-R.).

REFERENCES

Beloborodov, A. M. 2003, ApJ, 588, 931
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Burgay, M., et al. 2003, Nature, 426, 531
Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Nature, 340, 126
Flebbe, O., Münzel, S., Herold, H., Riffert, H., & Ruder, H. 1994, ApJ, 431, 754
Hulse, R. A., & Taylor, J. H. 1975, ApJ, 195, L51
Kluzniak, W., & Lee, W. H. 1998, ApJ, 494, L53
Kohri, K., & Mineshige, S. 2002, ApJ, 577, 311
Langanke, K., & Martínez-Pinedo, G. 2001, At. Data Nucl. Data Tables, 79, 1
Lattimer, J. M., & Schramm, D. N. 1976, ApJ, 210, 549
Lee, W. H. 2001, MNRAS, 328, 583
Lee, W. H., & Ramirez-Ruiz, E. 2002, ApJ, 577, 893
Livio, M., Ogilvie, G. I., & Pringle, J. E. 1999, ApJ, 512, 100
Livio, M., Pringle, J. E., & King, A. R. 2003, ApJ, 593, 184
Meier, D. L. 2001, ApJ, 548, L9
Mészáros, P. 2002, ARA&A, 40, 137
Monaghan, J. J. 1992, ARA&A, 30, 543
Narayan, R., & Piran, T. 2002, MNRAS, 330, 920
Narayan, R., Paczyński, B., & Piran, T. 1992, ApJ, 395, L83
Narayan, R., Piran, T., & Kumar, P. 2001, ApJ, 557, 949
Paczynski, B. 1986, ApJ, 308, L43
Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518, 356
Pringle, J. E. 1993, in Astrophysical Jets, ed. D. Burgerela, M. Livio, & C. O’Dea (Cambridge: Cambridge Univ. Press), 1
Pruet, J., Woosley, S. E., & Hoffman, R. D. 2003, ApJ, 586, 1254
Ramirez-Ruiz, E., & Fenimore, E. 2000, ApJ, 539, 712
Rasio, F. A., & Shapiro, S. L. 1994, ApJ, 432, 242
Rosswog, S., Ramirez-Ruiz, E., & Davies, M. B. 2003, MNRAS, 345, 1077
Ruffert, M., & Janka, H.-Th. 1999, A&A, 344, 573
Setiawan, S., Ruffert, M., & Janka, H.-Th. 2004, MNRAS, in press (astro-ph/0402481)
Shapiro, S. A., & Teukolsky, S. L. 1983, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: Wiley-Interscience)
Thorne, K. S. 1995, in Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, ed. E. W. Kolb & R. D. Peccei (Singapore: World Scientific), 398
Tout, C., & Pringle, J. E. 1996, MNRAS, 281, 219
Tubbs, D. L., & Schramm, D. N. 1975, ApJ, 201, 467