A Weighted Universality Theorem for Periodic Zeta-Functions

Renata Macaitienėa, Mindaugas Stoncelisb and
Darius Šiaučiūnasc

aResearch Institute, Šiauliai University
Vilniaus str. 88, LT-76285, Šiauliai, Lithuania
bFaculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225, Vilnius, Lithuania
cFaculty of Technology, Physical and Biomedical Sciences, Šiauliai University
Vilniaus str. 141, LT-76353, Šiauliai, Lithuania
E-mail\textit{corresp.}: darius.siauciunas@su.lt
E-mail: renata.macaitiene@mi.su.lt
E-mail: stoncelis@su.lt

Received June 4, 2016; revised December 2, 2016; published online January 5, 2017

Abstract. The periodic zeta-function $\zeta(s; \alpha)$, $s = \sigma + it$ is defined for $\sigma > 1$ by the Dirichlet series with periodic coefficients and is meromorphically continued to the whole complex plane. It is known that the function $\zeta(s; \alpha)$, for some sequences α of coefficients, is universal in the sense that its shifts $\zeta(s + i\tau; \alpha)$, $\tau \in \mathbb{R}$, approximate a wide class of analytic functions. In the paper, a weighted universality theorem for the function $\zeta(s; \alpha)$ is obtained.

Keywords: Hurwitz zeta-function, Mergelyan theorem, periodic zeta-function, universality.

AMS Subject Classification: 11M41.

1 Introduction

Let $s = \sigma + it$ be a complex variable, and $\alpha = \{a_m : m \in \mathbb{N}\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. The periodic zeta-function $\zeta(s; \alpha)$ is defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s; \alpha) = \sum_{m=1}^{\infty} \frac{a_m}{m^s}.$$

The Hurwitz zeta-function $\zeta(s, \alpha)$ with parameter α, $0 < \alpha \leq 1$, is given, for
\[\sigma > 1, \text{ by the series} \]
\[\zeta(s, \alpha) = \sum_{m=0}^{\infty} \frac{1}{(m + \alpha)^s} \]
and can be analytically continued to the whole complex plane, except for a simple pole at the point \(s = 1 \) with residue 1. Since, in view of periodicity of \(a \),
\[\zeta(s; a) = \frac{1}{k^s} \sum_{m=1}^{k} a_m \zeta(s, \frac{m}{k}), \tag{1.1} \]
the periodic zeta-function also has analytic continuation to the whole complex plane, except for a simple pole at the point \(s = 1 \) with residue
\[\frac{1}{k} \sum_{m=1}^{k} a_m. \]
If the later quantity is equal to zero, then the function \(\zeta(s; a) \) is entire one.

In 1975, S.M. Voronin discovered [16] the universality of the Riemann zeta-function \(\zeta(s) = \zeta(s, 1) \) on the approximation of a wide class of analytic functions by shifts \(\zeta(s + i\tau), \tau \in \mathbb{R} \). After Voronin’s work, various authors observed that some other zeta-functions also are universal in the Voronin sense. The attention was also devoted to the periodic zeta-function. The first universality results for periodic zeta-function was obtained by B. Bagchi in [1] and [2], and by different methods in [13] and [14]. We will recall Theorem 11.8 from [14]. Denote by \(\mathcal{K} \) the class of compact subsets of the strip \(D = \{ s \in \mathbb{C} : \frac{1}{2} < \sigma < 1 \} \) with connected complements, and by \(H(K), K \in \mathcal{K} \), the class of continuous functions on \(K \) which are analytic in the interior of \(K \). Let \(\text{meas} \ A \) stand for the Lebesgue measure of a measurable set \(A \subset \mathbb{R} \).

Theorem 1. [14]. Suppose that \(a_m \) is not a multiple of a character \(\text{mod} \ k \) satisfying \(a_m = 0 \) for \((m, k) > 1 \). Let \(K \in \mathcal{K} \) and \(f(s) \in H(K) \). Then, for every \(\varepsilon > 0 \),
\[\lim \inf_{T \to \infty} \frac{1}{T} \text{meas} \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau; a) - f(s)| < \varepsilon \right\} > 0. \]

In [14], also the upper bounds for the density of universality of \(\zeta(s; a) \) were obtained.

We note that the assumptions of Theorem 1 imply that the sequence \(a \) is not multiplicative. We recall that the sequence \(a \) is multiplicative if \(a_{mn} = a_m a_n \) for all coprime \(m, n \in \mathbb{N} \). The universality of \(\zeta(s; a) \) with multiplicative sequence \(a \) was obtained in [11]. Denote by \(H_0(K), K \in \mathcal{K} \), the class of continuous non-vanishing functions on \(K \), which are analytic in the interior of \(K \).

Theorem 2. [11]. Suppose that the sequence is multiplicative and
\[\sum_{\alpha=1}^{\infty} \frac{|a_{p\alpha}|}{p^{\sigma}} \leq c < 1 \]
for all primes \(p \). Let \(K \in \mathcal{K} \) and \(f(s) \in H_0(K) \). Then the assertion of Theorem 1 is true.
The universality of periodic zeta-functions is not a simple problem. It turns out, as it was observed in [5], that not all periodic zeta-functions are universal in the Voronin sense. Moreover, in [5], a new restricted universality property for $\zeta(s; a)$ was introduced. For $K \in \mathcal{K}$, the height $h(K)$ of K is defined by

$$
 h(K) = \max_{s \in K} \text{Im}(s) - \min_{s \in K} \text{Im}(s).
$$

Then in [5] the following theorem has been obtained.

Theorem 3. There exists a positive constant $c = c(a)$ such that, for every $K \in \mathcal{K}$ of height $h(K) \leq c$, every $f(s) \in H(K)$ and every $\varepsilon > 0$, the inequality of Theorem 1 is true.

Also, in [5], the necessary and sufficient conditions of the universality for $\zeta(s; a)$ with prime k were obtained. In [15], the universality of the function $\zeta(s; a)$ with prime k satisfying the condition

$$
 a_k = \frac{1}{\varphi(k)} \sum_{m=1}^{k-1} a_m,
$$

where $\varphi(k)$ is the Euler function, was considered. A joint universality theorem for periodic zeta-functions was proved in [9]. The joint universality of periodic and periodic Hurwitz zeta-functions was studied in [4] and [7].

The aim of this paper is to discuss the weighted universality of the function $\zeta(s; a)$. The universality of this type for the Riemann zeta-function was considered in [6].

Let $w(t)$ be a positive function of bounded variation on $[T_0, \infty)$, $T_0 > 0$, such that the variation $V^b_a w$ on $[a, b]$ satisfies the inequality $V^b_a w \leq cw(a)$ with certain $c > 0$ for any subinterval $[a, b] \subset [T_0, \infty)$. Define $U = U(T, w) = \int_{T_0}^{T} w(t) \, dt$ and suppose that $U(T, w) \to \infty$ as $T \to \infty$. Let I_A stand for the indicator function of the set A. Then the following statement holds.

Theorem 4. Suppose that the function $w(t)$ satisfies all above conditions, and that the sequence a is as in Theorem 2. Let $K \in \mathcal{K}$ and $f(s) \in H_0(K)$. Then, for every $\varepsilon > 0$,

$$
 \liminf_{T \to \infty} \frac{1}{U} \int_{T_0}^{T} w(\tau) I_{\{\tau : \sup_{s \in K} |\zeta(s + i\tau; a) - f(s)| < \varepsilon\}}(\tau) \, d\tau > 0.
$$

We note that in [6] a certain additional condition generalizing the classical Birkhoff-Khintchine theorem was used. We do not need that condition.

2 Limit theorems

Denote by $\mathcal{B}(X)$ the Borel σ-field of the space X, and by $H(D)$ the space of analytic functions on D equipped with the topology of uniform convergence on compacta. This section is devoted to a limit theorem on weakly convergent probability measures in the space $(H(D), \mathcal{B}(H(D)))$.

Math. Model. Anal., 22(1):95–105, 2017.
Let $\gamma = \{ s \in \mathbb{C} : |s| = 1 \}$ be the unit circle on the complex plane. Define $\Omega = \prod_p \gamma_p$, where $\gamma_p = \gamma$ for all primes p. With the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group. Therefore, the probability Haar measure m_H on $(\Omega, \mathcal{B}(\Omega))$ can be defined. This gives the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$. Let $\omega(p)$ stand for the projection of $\omega \in \Omega$ to the coordinate space γ_p. Moreover, let

$$\omega(m) = \prod_{p^a|m, p^{a+1}|m} \omega^a(p)$$

for $m \in \mathbb{N}$. On the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, define the $H(D)$-valued random element $\zeta(s, \omega; a)$ by the formula

$$\zeta(s, \omega; a) = \prod_p \left(1 + \sum_{\alpha = 1}^{\infty} \frac{a^\alpha \omega^\alpha(p)}{p^{\alpha s}} \right).$$

We note that the latter product converges uniformly on compact subsets of D for almost all $\omega \in \Omega$. Moreover, for almost all $\omega \in \Omega$,

$$\zeta(s, \omega; a) = \sum_{m=1}^{\infty} \frac{a_m \omega(m)}{m^s}.$$

We start with a weighted limit theorem on the torus. Let, for $A \in \mathcal{B}(\Omega)$,

$$Q_{T,w}(A) = \frac{1}{U} \int_{T_0}^{T} w(\tau) I_{\{p^{-i\tau}: p \in \mathcal{P} \in A\}}(\tau) \, d\tau,$$

where \mathcal{P} is the set of all prime numbers.

Lemma 1. $Q_{T,w}$ converges weakly to the Haar measure m_H as $T \to \infty$.

Proof. Denote by $g_{T,w}(k)$, $k = (k_p : k_p \in \mathbb{Z}, p \in \mathcal{P})$, the Fourier transform of the measure $Q_{T,w}$. Since characters χ of Ω are of the form

$$\chi(\omega) = \prod_p \omega^{k_p}(p),$$

where only a finite number of integers k_p are distinct from zero, we have that

$$g_{T,w}(k) = \int_{\Omega} \prod_p \omega^{k_p}(p) \, dQ_{T,w}.$$

Hence, by the definition of $Q_{T,w}$,

$$g_{T,w}(k) = \frac{1}{U} \int_{T_0}^{T} w(\tau) \prod_p p^{-ik_p \tau} \, d\tau$$

$$= \frac{1}{U} \int_{T_0}^{T} w(\tau) \exp \left\{ -i\tau \sum_p k_p \log p \right\} \, d\tau,$$

(2.1)
where only a finite number of integers \(k_p\) are distinct from zero. It is well known that the set \(\{\log p : p \in \mathcal{P}\}\) is linearly independent over the field of rational numbers \(\mathbb{Q}\). Therefore, in view of (2.1),

\[
g_T, w(0) = 1 \quad (2.2)
\]

and, for \(k \neq 0\), using properties of \(w(t)\), we find that

\[
g_T, w(k) = \frac{1}{U} \sum_p k_p \log p \int_{T_0}^T w(t) \, d \tau \exp \left\{ -i \tau \sum_p k_p \log p \right\}
\]

\[
= O\left(|U \sum_p k_p \log p|^{-1} \right).
\]

This and (2.2) show that

\[
\lim_{T \to \infty} g_T, w(k) = \begin{cases}
1, & \text{if } k = 0, \\
0, & \text{if } k \neq 0,
\end{cases}
\]

i.e., \(g_T, w(k)\), as \(T \to \infty\), converges to the Fourier transform of the measure \(m_H\). Hence, the lemma follows. \(\square\)

Let \(\theta > \frac{1}{2}\) be a fixed number and, for \(m, n \in \mathbb{N}\),

\[
v_n(m) = \exp \left\{ -\left(\frac{m}{n} \right)^\theta \right\}.
\]

Define

\[
\zeta_n(s; \omega) = \sum_{m=1}^{\infty} \frac{a_m v_n(m)}{m^s} \quad \text{and} \quad \zeta_n(s, \omega; a) = \sum_{m=1}^{\infty} \frac{a_m \omega(m) v_n(m)}{m^s},
\]

and let the function \(u_n : \Omega \to H(D)\) be defined by the formula

\[
u_n(\omega) = \zeta_n(s, \omega; a).
\]

Since the series for \(\zeta_n(s, \omega; a)\) is absolutely convergent for \(\sigma > \frac{1}{2}\) [11], the function \(u_n\) is continuous one. We set \(\hat{P}_n = m_H u_n^{-1}\), where, for \(A \in \mathcal{B}(H(D))\),

\[
\hat{P}_n(A) = m_H u_n^{-1}(A) = m_H(u_n^{-1} A).
\]

Define

\[
P_{T, n, w}(A) = \frac{1}{U} \int_{T_0}^T w(t) \mathbb{I}_{\{\tau: \zeta_n(s+i\tau; a) \in A\}}(\tau) \, d\tau, \quad A \in \mathcal{B}(H(D)).
\]

Lemma 2. \(P_{T, n, w}\) converges weakly to \(\hat{P}_n\) as \(T \to \infty\).

Proof. Clearly,

\[
u_n\left(p^{-i\tau} : p \in \mathcal{P}\right) = \zeta_n(s + i\tau; a).
\]

Math. Model. Anal., 22(1):95–105, 2017.
Therefore,
\[
P_{T,n,w}(A) = \frac{1}{U} \int_{T_0}^{T} w(\tau) I_{\{\tau: (p-\iota: p \in \mathcal{P}) \in u_n^{-1} A\}}(\tau) \, d\tau
\]
\[= Q_{T,w}(u_n^{-1} A) = Q_{T,w} u_n^{-1}(A).
\]
This, the continuity of \(u_n\), Lemma 1 and Theorem 5.1 of [3] prove the lemma.

\(\Box\)

Now we will approximate \(\zeta(s; a)\) by \(\zeta_n(s; a)\). Let, for \(g_1, g_2 \in H(D)\),
\[
\rho(g_1, g_2) = \sum_{l=1}^{\infty} 2^{-l} \frac{\sup_{s \in K_l} |g_1(s) - g_2(s)|}{1 + \sup_{s \in K_l} |g_1(s) - g_2(s)|},
\]
where \(\{K_l : l \in \mathbb{N}\}\) is a sequence of compact subsets of the strip \(D\) such that \(D = \bigcup_{l=1}^{\infty} K_l\), \(K_l \subset K_{l+1}\) for all \(l \in \mathbb{N}\), and if \(K \subset D\) is a compact, then \(K \subset K_l\) for some \(l\). Then \(\rho\) is a metric on \(H(D)\) which induces its topology of uniform convergence on compacta.

Lemma 3. The equality
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^{T} w(\tau) \rho(\zeta(s + i\tau; a), \zeta_n(s + i\tau; a)) \, d\tau = 0
\]
holds.

Proof. Consider the series
\[
\sum_{m=1}^{\infty} \frac{b_n(m)}{m^{s}}, \quad (2.3)
\]
where
\[
b_n(m) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \frac{a_m l_n(s)}{s m^s} \, ds,
\]
\[
l_n(s) = \frac{s}{\theta} \Gamma(s/\theta) n^s, \quad n \in \mathbb{N},
\]
\(\Gamma(s)\) is the Euler gamma-function, and \(\theta > \frac{1}{2}\) is as above. Since \(a_m\) is uniformly bounded, we find that
\[
b_n(m) \ll m^{-\theta}.
\]
Thus, the series (2.3) is absolutely convergent for \(\sigma > \frac{1}{2}\). From this remark, we deduce that
\[
\frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \zeta(s + z; a) l_n(z) \frac{dz}{z} = \sum_{m=1}^{\infty} \frac{b_n(m)}{m^{s}}, \quad (2.4)
\]
and an application of the Mellin formula shows that
\[
b_n(m) = a_m \exp \left\{ -\left(\frac{m}{n} \right)^{\theta} \right\}.
\]
Now the series (2.3) coincides with $\zeta_n(s; a)$. Therefore, by (2.4) and the residue theorem,

$$
\zeta_n(s; a) = \frac{1}{2\pi i} \int_{\theta-i\infty}^{\theta+i\infty} \zeta(s + z; a) l_n(z) \frac{dz}{z} + \zeta(s; a) + \text{Res}_{z=1-s} \zeta(s + z; a) l_n(z) \frac{1}{z},
$$

(2.5)

where $\frac{1}{2} < \sigma < 1$ and $\sigma > \theta$.

Suppose that $\sigma \geq \frac{1}{2}$ and $2\pi \leq |t| \leq \pi x$. Then, see, for example, [8],

$$
\zeta(s, \alpha) = \sum_{0 \leq m \leq x} \frac{1}{(m + \alpha)^s} + \frac{x^{1-s}}{s-1} + O(x^{-\sigma}).
$$

(2.6)

Moreover, by (1.1),

$$
\zeta(s; a) = O \left(\sum_{m=1}^{k} |\zeta(s, \frac{m}{k})| \right).
$$

From this and (2.6), we find similarly as in the proof of Lemma 4 of [10] that, for $\frac{1}{2} < \sigma < 1$ and $\tau \in \mathbb{R}$,

$$
\frac{1}{U} \int_{T_0}^{T+\tau} w(t - \tau) |\zeta(\sigma + it; a)|^2 dt = O(U(1 + |\tau|)^2).
$$

Let K be a compact subset of the strip D. Then, using (2.5) and the contour integration, we obtain that with $\tilde{\sigma} < 0$

$$
\frac{1}{U} \int_{T_0}^{T} w(\tau) \sup_{s \in K} |\zeta(s + i\tau; a) - \zeta_n(s + i\tau; a)| d\tau = O \left(\int_{-\infty}^{\infty} |l_n(\tilde{\sigma} + it)|(1 + |t|)^2 dt \right) + o(1)
$$

as $T \to \infty$. This and the definition of $l_n(s)$ prove the lemma. □

Denote by P_ζ the distribution of the random element $\zeta(s, \omega; a)$, i.e,

$$
P_\zeta(A) = m_H(\omega \in \Omega : \zeta(s, \omega; a) \in A), \quad A \in \mathcal{B}(H(D)).
$$

For $A \in \mathcal{B}(H(D))$, define

$$
P_{T, w}(A) = \frac{1}{U} \int_{T_0}^{T} w(t) I_{\{\tau : \zeta(s+i\tau; a) \in A\}}(\tau) d\tau.
$$

Theorem 5. The measure $P_{T, w}$ converges weakly to P_ζ as $T \to \infty$. Moreover, the support of P_ζ is the set $\{g \in H(D) : g(s) \neq 0 \text{ or } g(s) = 0\}$.

Proof. On a certain probability space $(\Omega, \mathcal{F}, \mathbb{P})$, define a random variable η_T by

$$
\mathbb{P}(\eta_T \in A) = \frac{1}{U} \int_{T_0}^{T} w(t) I_A(t) dt, \quad A \in \mathcal{B}(\mathbb{R}).
$$

Math. Model. Anal., 22(1):95–105, 2017.
By Lemma 2, we have that $P_{T,n,w}$ converges weakly to \hat{P}_n as $T \to \infty$. Define

$$X_{T,n} = X_{T,n}(s) = \zeta_n(s + i\eta; a).$$

Then the assertion of Lemma 2 can be written as

$$X_{T,n} \xrightarrow{D} \hat{X}_n, \quad (2.7)$$

where \xrightarrow{D} denotes the convergence in distribution, and \hat{X}_n is the $H(D)$-valued random element having the distribution \hat{P}_n. We will prove that the family of probability measures $\{\hat{P}_n : n \in \mathbb{N}\}$ is tight.

Since the series for $\zeta_n(s; a)$ is absolutely convergent for $\sigma > \frac{1}{2}$, it is not difficult to see that, for $\sigma > \frac{1}{2}$,

$$\lim_{T \to \infty} \frac{1}{U} \int_{T_0}^{T} w(t) |\zeta_n(\sigma + it; a)|^2 \, dt = \sum_{m=1}^{\infty} \frac{|a_m|^2 v_n^2(m)}{m^{2\sigma}}$$

$$\leq \sum_{m=1}^{\infty} \frac{|a_m|^2}{m^{2\sigma}} \leq C < \infty. \quad (2.8)$$

Let K_l be a compact set from the distribution of the metric ρ. Then using the Cauchy integral formula and (2.8) leads to

$$\sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^{T} w(\tau) \sup_{s \in K_l} |\zeta_n(s + i\tau; a)| \, d\tau \leq R_l < \infty.$$

Now let $\varepsilon > 0$ be arbitrary and $M_l = 2lR_l\varepsilon^{-1}$. Then

$$\limsup_{T \to \infty} \mathbb{P} \left(\sup_{s \in K_l} |X_{T,n}(s)| > M_l \right)$$

$$= \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^{T} w(\tau) I \left\{ \tau : \sup_{s \in K_l} |\zeta_n(s + i\tau; a)| \geq M_l \right\} \, d\tau$$

$$\leq \sup_{n \in \mathbb{N}} \limsup_{T \to \infty} \frac{1}{M_lU} \int_{T_0}^{T} w(\tau) \sup_{s \in K_l} |\zeta_n(s + i\tau; a)| \, d\tau \leq \frac{\varepsilon}{2l}.$$

Therefore, in view of (2.7),

$$\mathbb{P} \left(\sup_{s \in K_l} |\hat{X}_n(s)| > M_l \right) \leq \frac{\varepsilon}{2l} \quad (2.9)$$

for all $n \in \mathbb{N}$ and $l \in \mathbb{N}$. Let

$$H_\varepsilon = \left\{ g \in H(D) : \sup_{s \in K_l} |g(s)| \leq M_l, \, l \in \mathbb{N} \right\}.$$

Then the set H_ε is uniformly bounded on every compact set of D, thus it is compact subset of $H(D)$. Moreover, by (2.9)

$$\mathbb{P}(\hat{X}_n(s) \in H_\varepsilon) \geq 1 - \varepsilon$$
for all \(n \in \mathbb{N} \). Hence,

\[
\hat{P}_n(H_\varepsilon) \geq 1 - \varepsilon
\]

for all \(n \in \mathbb{N} \), i.e., the family \(\{\hat{P}_n\} \) is tight. Therefore, by the Prokhorov theorem [3], it is relatively compact. Hence, every sequence of \(\{\hat{P}_n\} \) contains a subsequence \(\{\hat{P}_{n_r}\} \) such that \(\hat{P}_{n_r} \) converges weakly to a certain probability measure \(P \) on \((H(D), \mathcal{B}(H(D))) \), i.e.,

\[
\hat{X}_{n_r} \xrightarrow{D} P.
\] (2.10)

Moreover, using Lemma 3, we find that, for every \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{U} \int_{T_0}^T w(\tau) I_{\{\tau: \rho(\zeta(s + i\tau; a), \zeta_n(s + i\tau, a)) \geq \varepsilon\}}(\tau) \, d\tau
\leq \lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{\varepsilon U} \int_{T_0}^T w(\tau) \rho(\zeta(s + i\tau; a), \zeta_n(s + i\tau, a)) \, d\tau = 0.
\]

Now this, (2.7), (2.10) and Theorem 4.2 of [3] show that

\[
X_T(s) = \hat{\zeta}(s + i\eta_T; a) \xrightarrow{D} P.
\]

Hence, \(P_{T,w} \) converges weakly to \(P \) as \(T \to \infty \). The latter relation also implies, that the measure \(P \) in (2.10) is independent of the choice of subsequence \(\hat{P}_{n_r} \). Thus

\[
\hat{X}_n \xrightarrow{D} P,
\]

or \(\hat{P}_n \) converges weakly to \(P \). This means that \(P_{T,w} \), as \(T \to \infty \), converges weakly to the limit measure of \(\hat{P}_n \), as \(n \to \infty \). It remains to identify the measure \(P \).

In [11], the measure

\[
P_T(A) = \frac{1}{T} \text{meas}\{\tau \in [0, T]: \, \zeta(s + i\tau; a) \in A\}, \quad A \in \mathcal{B}(H(D))
\]

was considered, and it was obtained that \(P_T \) converges weakly to \(P_\zeta \) as \(T \to \infty \). Moreover, in the proving process, it was observed that \(P_T \), as \(P_{T,w} \), also converges weakly to the limit measure of \(\hat{P}_n \) as \(n \to \infty \), i.e, to the measure \(P \). From these remarks, we have that \(P \) coincides with \(P_\zeta \). In [11] it is also noted that the support of the measure \(P_\zeta \) is the set \(\{g \in H(D): \, g(s) \neq 0 \text{ or } g(s) \equiv 0\} \). The theorem is proved. \(\Box \)

3 Universality

The proof of Theorem 4 is quite standard and is based on Theorem 5 and the Mergelyan theorem on the approximation of analytic functions by polynomials [12].

Math. Model. Anal., 22(1):95–105, 2017.
Proof of Theorem 4. By Theorem 5 and the equivalent of weak convergence of probability measures in terms of open sets [3], we have that

$$\liminf_{T \to \infty} \frac{1}{U} \int_{T_{0}}^{T} w(t) I_{\{\tau : \zeta(s+i\tau; a) \in G\}}(\tau) \, d\tau \geq P(\zeta(G)), \quad (3.1)$$

where

$$G = \left\{ g \in H(D) : \sup_{s \in K} |g(s) - e^{p(s)}| < \frac{\varepsilon}{2} \right\}$$

and $p(s)$ is a polynomial such that

$$\sup_{s \in K} |f(s) - e^{p(s)}| < \frac{\varepsilon}{2}. \quad (3.2)$$

The existence of $p(s)$ is implied by the Mergelyan theorem. By Theorem 5, $e^{p(s)}$ is an element of the support of the measure P_{ζ}, thus $P_{\zeta}(G) > 0$ because G is an open neighbourhood of $e^{p(s)}$. Therefore, in view of (3.1) and the definition of G,

$$\liminf_{T \to \infty} \frac{1}{U} \int_{T_{0}}^{T} w(t) I_{\{\tau : \sup_{s \in K} |\zeta(s+i\tau; a) - e^{p(s)}| \geq \frac{\varepsilon}{2}\}}(\tau) \, d\tau > 0.$$

From this, the theorem follows since, in virtue of (3.2),

$$\left\{ \tau : \sup_{s \in K} |\zeta(s+i\tau; a) - e^{p(s)}| < \frac{\varepsilon}{2} \right\} \subset \left\{ \tau : \sup_{s \in K} |\zeta(s+i\tau; a) - f(s)| < \varepsilon \right\}.$$

References

[1] B. Bagchi. The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph. D. Thesis, Indian Statist. Institute, Calcutta, 1981.

[2] B. Bagchi. A joint universality theorem for Dirichlet L-functions. Math. Z., 181:319–334, 1982. https://doi.org/10.1007/BF01161980.

[3] P. Billingsley. Convergence of Probability Measures. Willey, New York, 1968.

[4] R. Kačinskaitė and A. Laurinčikas. The joint distribution of periodic zeta-functions. Stud. Sci. Math. Hungarica, 48(2):257–279, 2011. https://doi.org/10.1556/SScMath.48.2011.2.1162.

[5] J. Kaczorowski. Some remarks on the universality of periodic L-functions. In R. Steuding and J. Steuding(Eds.), New Directions in Value-Distribution of Zeta and L-Functions, pp. 113–120, Aachen, 2009. Shaker Verlag.

[6] A. Laurinčikas. On the universality of the Riemann zeta-function. Lith. Math. J., 35(4):502–507, 1995. https://doi.org/10.1007/BF02348827.

[7] A. Laurinčikas. Joint universality of zeta-functions with periodic coefficients. Izv. Math., 74(3):515–539, 2010. https://doi.org/10.1070/IM2010v074n03ABEH002497.
[8] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer, Dordrecht, 2002.

[9] A. Laurinčikas and R. Macaitienė. On the joint universality of periodic zeta-functions. *Math. Notes*, **85**(1):51–60, 2009. https://doi.org/10.1134/s0001434609010052.

[10] A. Laurinčikas and G. Misevičius. Weighted limit theorem for the Riemann zeta-function in the space of analytic functions. *Lith. Math. J.*, **34**(2):171–182, 1994. https://doi.org/10.1007/BF02333415.

[11] A. Laurinčikas and D. Šiaučiūnas. Remarks on the universality of periodic zeta-function. *Math. Notes*, **80**(3):532–538, 2006. https://doi.org/10.1007/s11006-006-0171-y.

[12] S.N. Mergelyan. Uniform approximation to functions of complex variable. *Usp. Mat. Nauk*, **7**:31–122, 1952 (in Russian).

[13] J. Sander and J. Steuding. Joint universality for sums and products of Dirichlet L-functions. *Analysis*, **26**(3):295–312, 2006. https://doi.org/10.1524/anly.2006.26.99.295.

[14] J. Steuding. *Value-Distribution of L-Functions*. Lecture Notes Math. Vol. 1877, Springer-Verlag, Berlin, Heidelberg, 2007.

[15] M. Stoncelis and D. Šiaučiūnas. On the periodic zeta-function. *Chebyshevskii Sb.*, **15**(4):139–147, 2014.

[16] S.M. Voronin. Theorem on the "universality" of the Riemann zeta-function. *Math. USSR Izv.*, **9**(3):443–453, 1975. https://doi.org/10.1070/im1975v009n03abeh001485.