Fatty Liver Increases the Association of Metabolic Syndrome With Diabetes and Atherosclerosis

Juan G. Juárez-Rojas, PhD1
Aida X. Medina-Urrutia, MSc1
Esteban Jorge-Galarza, MSc1
Carmen González-Salazar, Rd1
Eric Kimura-Hayama, MD2
Guillermo Cardoso-Saldana, PhD1
Rosalinda Posadas-Sánchez, MSc1
Rocío Martínez-Alvarado, MD1
Carlos Posadas-Romero, MD1

OBJECTIVE—To analyze the participation of fatty liver (FL) in the association of metabolic syndrome (MS) with type 2 diabetes and coronary artery calcification (CAC).

RESEARCH DESIGN AND METHODS—A total of 765 subjects (52% women) aged 30 to 75 years without clinical atherosclerosis were included in this study. MS was defined in accordance with the Adult Treatment Panel III (ATPIII) guidelines, while FL and CAC were identified by computed tomography.

RESULTS—There were increasing frequencies of type 2 diabetes and CAC in all three groups: control, MS without FL, and MS plus FL. Multivariable-adjusted logistic regression analyses showed that FL increased the association of MS with type 2 diabetes in both women (odds ratio 3.4–10.6 (95% CI 3.4–10.6) and men (12.1 (4.1–36.1]). In women, FL also increased the association of MS with CAC (2.34 (1.07–5.12).

CONCLUSIONS—FL increases the association of MS with type 2 diabetes and subclinical atherosclerosis.

Numerous studies have reported controversial associations of metabolic syndrome (MS) with type 2 diabetes and coronary artery disease (CAD) (1–4). Nonalcoholic fatty liver (FL) has been considered a hepatic expression of MS and has been suggested to be a key element in the development of type 2 diabetes and CAD (5). We studied the participation of FL in the association of MS with type 2 diabetes and subclinical CAD in subjects with no personal or family history of premature CAD.

RESEARCH DESIGN AND METHODS—Participants were from the Genetics of Atherosclerosis Disease Study [Genética de la Enfermedad Aterosclerós (GEA)], which was designed to examine the genomic bases of coronary heart disease in a Mexican Mestizo population. In this ongoing study, 1,500 control subjects aged 30–75 years are currently being recruited. From 918 control individuals enrolled in the GEA project by September 2011, 765 subjects for whom data were complete; who had no history of viral hepatitis, renal, malignant or drug-induced liver disease; whose alcohol consumption was <20 g/day; and who had a BMI <40 kg/m² and triglycerides <6.78 mmol/L were selected.

Blood pressure and anthropometric and biochemical variables were measured. Central obesity was defined as waist circumference >90 cm in men and >80 cm in women. Metabolic syndrome was diagnosed on the basis of the presence of three or more of the following features: 1) central obesity, 2) triglycerides ≥1.695 mmol/L, 3) HDL cholesterol <1.03 mmol/L in men and <1.29 mmol/L in women, 4) glucose ≥5.55 mmol/L, and 5) systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg (6). Subjects were considered to have type 2 diabetes when they either self-reported use of medication or had a fasting plasma glucose level ≥7 mmol/L (7).

Multidetector computed tomography is a validated method for identifying the presence of FL (8) and coronary artery calcification (CAC) (9). In this study, FL was defined by a liver-to-spleen attenuation ratio <1.0 (10), and subclinical CAD was defined as positive CAC (score >0.0), using a 64-slice scanner (Somatom Cardiac Sensation; Medical Solutions, Forchheim, Germany).

Subjects were classified in three groups: individuals with neither MS nor FL (control group), participants with MS but no FL (MS group), and those with MS plus FL (MS + FL). The effect of FL on the association of MS with the presence of type 2 diabetes and CAC was assessed by multivariate logistic regression analysis. Statistical procedures were performed using SPSS 15 software (SPSS, Chicago, IL).

RESULTS—The general prevalence was as follows: MS 43.9%, FL 21.3%, type 2 diabetes 9.4%, and positive CAC 29.8%. As shown in Table 1, type 2 diabetes showed an ascending tendency from the control, the MS, and the MS + FL group without sex differences. Compared with women, men had a higher prevalence of positive CAC in each of the three groups (P < 0.05 in each case). Compared with the control group, men and women with MS had higher levels of adiposity, blood pressure, non-HDL cholesterol, triglycerides, glucose, insulin, and C-reactive protein. Also, the group with MS plus FL had higher concentrations of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase, as well as lower values of HDL-C. The most prevalent MS component in the MS and MS + FL groups was central obesity; followed by
CONCLUSIONS — MS groups include metabolic disorders such as insulin resistance, dyslipidemia, and hypertension. The presence of these disorders is associated with an increased risk of type 2 diabetes. In our study, we found that individuals with MS had higher levels of triglycerides, glucose, and low levels of HDL-C. These findings are consistent with previous studies that have shown the association of MS with type 2 diabetes and other metabolic disorders.

Our study shows that isolated MS is not a predictor of type 2 diabetes in the presence of CAD. Consistent with previous studies, we found that MS is associated with an increased risk of CAD. These findings highlight the importance of identifying individuals with MS to prevent complications associated with this condition.

In conclusion, our study suggests that the presence of MS is associated with an increased risk of type 2 diabetes and CAD. Therefore, identifying individuals with MS is crucial for preventing these complications.
Fatty liver and metabolic syndrome

the general population. Finally, though we have no histological confirmion, FL can be easily diagnosed by computed tomography scan (8).

This study suggests that FL increases the strength of the association of MS with type 2 diabetes. Moreover, the combination FL + MS is independently associated with subclinical atherosclerosis in women.

Acknowledgments—This study was supported by Mexico’s Consejo Nacional de Ciencia y Tecnología (project no. SALUD-2010-2-150537).

No potential conflicts of interest relevant to this article were reported.

J.G.J.-R. conceived the project, researched data, contributed to discussion, and wrote the manuscript. A.X.M.-U. researched data, provided critical review and revision, and contributed to discussion. E.J.-G., C.G.-S., E.K.-H., G.C.-S., R.P.-S., and R.M.-A. researched data and contributed to discussion. C.P.-R. contributed to discussion. E.J.-G., C.G.-S., E.K.-H., C.P.-R., J.G.J.-R., G.C.-S., R.P.-S., and R.M.-A. contributed to discussion and contributed to discussion. C.P.-R. conceived the project, contributed to discussion, and provided critical review and revision. J.G.J.-R. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

The authors appreciate the comments of A. Hernandez-Ono, Columbia University, to improve the final version of the manuscript.

References
1. Eckel RH. Mechanisms of the components of the metabolic syndrome that predispose to diabetes and atherosclerotic CVD. Proc Nutr Soc 2007;66:82–95
2. Ginsberg HN, MacCallum PR. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. J Cardiometab Syndr 2009;4:113–119
3. Stern MP, Williams K, González-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 2004;27:2676–2681
4. Sundström J, Vallhagen E, Risérus U, et al. Risk associated with the metabolic syndrome versus the sum of its individual components. Diabetes Care 2006;29:1673–1674
5. Lattuada G, Ragognia F, Perseghin G. Why does NAFLD predict type 2 diabetes? Curr Diab Rep 2011;11:167–172
6. Alberti KG, Eckel RH, Grundy SM, et al.; International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–1645
7. American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care 2010;33(Suppl. 1):S1–S61
8. Pantogragh-Brown L. Imaging of non-alcoholic fatty liver disease. Thai Journal of Gastroenterology 2010;11:118–122
9. McColough CH, Ulzheimer S, Halliburton SS, Shanneik K, White RD, Kalender WA. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology 2007;243:527–538
10. McKinnie RL, Daniel KR, Carr JJ, et al. Hepatic steatosis and subclinical cardiovascular disease in a cohort enriched for type 2 diabetes: the Diabetes Heart Study. Am J Gastroenterol 2008;103:3029–3035
11. Shyangdan D, Clar C, Ghouri N, et al. Insulin sensitizers in the treatment of non-alcoholic fatty liver disease: a systematic review. Health Technol Assess 2011;15:1–110
12. Bild DE, Detrano R, Peterson D, et al. Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2005;111:1313–1320
13. Brea A, Mosquera D, Martín E, Arizti A, Cordero JL, Ros E. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis: a case-control study. Atheroscler Thromb Vasc Biol 2005;25:1045–1050
14. Assy N, Djibre A, Farah R, Grossovska M, Marmor A. Presence of coronary plaques in patients with nonalcoholic fatty liver disease. Radiology 2010;254:393–400
15. Targher G, Arcaro G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 2007;191:233–240