Molecular Identification of *Rhizobium* Isolates Nodulating Faba Bean Plants in Egyptian Soils

Abdel Fattah El-Zanaty, Khalid Abdel-lateif* and Mohamed Elsobky

Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt

Abstract

Eleven isolates of *Rhizobium leguminosarum* symbiovar. *Viciae* were isolated from root nodules of *Vicia faba* L. cultivated in 11 fields and represent different governorates in Egypt. The genetic diversity among the isolates was studied using the 16S rRNA gene partial sequence. The phylogenetic analysis formed two groups of isolates and the values of genetic distances were variable among the studied isolates. The highest value of genetic distance was between the isolates RL6 of North Sinai and RL8 of Dakhalia, while the lowest value was between isolates RL9 of Giza and RL10 of Sharkia. The isolates were evaluated for their tolerance to heavy metals using concentrations of 0.5, 1 and 2 mM of heavy metals (Cu, Pb and Zn). The ability to resist the heavy metals decreased with increase in concentration. At the highest concentration (2 mM), No growth was obtained with addition of Zn and Mn to the growth media, however only 27% of isolates could survive with the same concentration of Pb.

Keywords: Rhizobium; Legumes; Heavy metals

Introduction

The Legumes are the third largest family of higher plants with more than 650 genera, 18,000 species and are second in agricultural importance [1]. Legumes are grown on approximately 250 Mha and able to fix about 90 Tg of N2 per year as result of symbiosis with Rhizobia [2]. *Rhizobium* are a diverse group of eleven genera of Gram-negative unicellular soil bacteria which are able to induce nitrogen-fixing nodules on the roots of leguminous plants as *Vicia faba* L. The symbiosis between *Rhizobium* and legumes species is very important and accounts for 50% of 175 million tons of total biological nitrogen fixation used in agriculture. The *Rhizobium leguminosarum* symbiovar. *Viciae* is among fast-growing rhizobia and able to nodulate *Pisum sativum* and *Pisum sativum* [3].

Many papers focused on the genetic diversity of *Rhizobium* isolated from several countries around the world [4-9]. However the taxonomy of *rhizobia* is very diverse [10], molecular techniques based on the Polymerase Chain Reaction (PCR) provided easy and quick methods to microbial characterization [11,12]. The 16S rRNA gene sequencing is an excellent tool for molecular characterization of the different isolates of *Rhizobium* [13,14].

The aims of this study were to characterize *Rhizobium* isolates collected from different Governorates in Egypt and to evaluate their tolerance of some heavy metals.

Materials and Methods

Isolation of Rhizobia

Eleven rhizobium isolates were collected from root nodules on broad bean (*Vicia faba* L.) plants from 11 different fields representing different geographic sites in Egypt according to the methods described by Vincent 1970. Table 1 and Figure 1 show the isolation sites and the name of the isolates.

DNA extraction

Total genomic DNA was extracted from bacterial cultures grown in Yeast Extract Mannitol media (YEM) as described by Shamseldin et al. [9]. The quality and quantity of DNA was characterized both spectrophotometrically and by 0.8% agarose gel. The DNA from all isolates produced clear sharp bands, indicating good quality of DNA. Samples were then diluted to 20 ng DNA µL\(^{-1}\) and kept at -20°C.

Amplification of 16S rRNA gene

The DNA of the Rhizobium isolates was amplified using the universal primers, fD1 (5’ AGAGTTTGATCCTGG CTCAG 3’) and rP2 (5’ ACGGTACCTTGTTA CGACTT 3’) described as Tsuzuki et al., [15]. The PCR reaction was performed in 50-µL reaction volume containing 100 ng DNA, 25 µL Maxima Hot Start PCR Master Mix (Fermentas, Lithuania) and 20 µM of forward and reverse primers. Amplifications were performed with the following conditions: initial denaturation at 95°C for 10 min, 35 cycles of 95°C for 30 s, 58°C for 1 min, 72°C for 1 min and 10 min final extension at 72°C.

Partial 16S rRNA gene sequencing

The PCR products for the eleven isolates were used in sequencing of the 16S rRNA gene from both strands using the same primers used in PCR amplification and Big Dye Terminator DNA analyzer (ABI) at Bioneer (Daejeon, Korea).

Evaluation of heavy metals tolerance

The eleven Rhizobium isolates were evaluated for their tolerance against three different heavy metals (Cu, Zn and Pb) on solid YEMA medium. The stock solutions of heavy metals (mM) were filtered, sterilized and added to sterile agar as follows: CuCl\(_2\)·2H\(_2\)O 0.5, 1 and 2 mM of heavy metals (Cu, Pb and Zn).

Corresponding author: Khalid Abdel-lateif, Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin EL-Kom, Egypt, Tel: 002-010-048-02; E-mail: k_dein2001@yahoo.com

Received October 22, 2014; Accepted December 16, 2014; Published December 19, 2014

Citation: El-Zanaty AF, Abdel-lateif K, Elsobky M. (2014) Molecular Identification of *Rhizobium* Isolates Nodulating Faba Bean Plants in Egyptian Soils. J Bioprocess Biotech 5: 194 doi: 10.4172/2155-9821.1000194

Copyright: © 2014 El-Zanaty AF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2; ZnSO₄.7H₂O 0.5, 1 and 2; Pb(C₂H₃O₂)₂.3H₂O 0.5, 1.0 and 2.0. The plates were inoculated with 10⁶ cells and the bacterial growth was evaluated after 7 days at 28°C [16,17]. Isolates were considered resistant if growth was observed or sensitive if otherwise.

Statistical analysis
Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 6 [18].

Results and Discussion
Amplification and sequencing of 16S rRNA gene
This work presents study on the genetic diversity of 11 Rhizobium leguminosarum symbiovar. Viciae isolates collected from different Vicia faba fields and representing several governorates in Egypt (Table 1 and Figure 1).

The 16S rRNA gene sequencing, which is widely used for molecular phylogeny of rhizobia [13,14,19], was used as powerful tool to study the diversity and phylogenetic of Rhizobium isolates. The 16S rRNA gene was amplified using fD1 and rP2 primers as described by Tsuzuki et al. [15], and all the isolates yielded a single-fragment about 850 bp. After amplification the same primers were used for partial sequencing of 16S rRNA region from the both sides. The alignment was done for all isolates sequences and the genetic diversity was estimated based on the number of base pairs substitution per site among all isolates (Table 2). The phylogenetic relationship analysis according to these data divided the isolates into two principal groups (Figures 2 and 3); the first group included isolates numbers 1,2,3,4,5,7,8,9,10 and 11 which were isolated from Menoufia, Menoufia, Gharbia, Gharbia, Gharbia, Behira, Dakhalia, Giza, Sharkiya and Ismailia governorates respectively. While the second group included only one isolate RL6 which was isolated from North Sinai Governorate. The genetic distance values between the isolates were variable and ranged from 0.02 to 0.8. The lowest genetic distance values were obtained between isolate RL9 of Giza and RL10 of Sharkiya; the isolates RL4 of Gharbia and RL9 of Giza; the isolates RL1 of Menoufia and RL9 of Sharkiya with genetic values of 0.02, 0.03 and 0.05 respectively. While the highest genetic value was between RL6 of North Sinai and RL8 of Dakhalia.

It should be mentioned that the genetic distance values between isolates collected from different fields but from the same governorate for example Menoufia and Gharbia are low. In general, the values of genetic distances among the first group isolates are low. This may be due to the high conserved nature of the 16S rRNA gene sequences, so the sequences variability are limited and, second, the distance between the isolation sites of first group isolates ranged from 30 to 130 km so that it is possible that these isolates has originated from the same genetic background and the human activities like soil and plant transfer limited the genetic diversity of these isolates.

The second group included the isolate RL6 of north Sinai governorate which are located about of 300 km from isolation sites of other isolates and this may give explanation for the high genetic distances values with these isolates.

Evaluation of heavy metals tolerance
All of Rhizobium isolates were tested for their tolerance to heavy metals using concentrations of 0.5, 1 and 2 mM of heavy metals (Cu, Pb and Zn). The isolates can be considered tolerant when the growth occurs in the presence of heavy metals. At the low concentration (0.5 mM), 73%, 100% and 91% of isolates were found to be resistant of Cu, Pb and Zn respectively. Moreover at the concentration of 1mM, 37%, 80% and 55% of isolates were found to be tolerant of Cu, Pb and Zn respectively. The resistance of Rhizobium isolates was recorded for copper, zinc and lead at concentration of 0.5, 1 mM of Cu and Zn.

This result is consistent with previous literature which indicated that Rhizobium is resistant to high concentrations of arsenate, zinc, copper, and mercury [20-22]. The ability to resist the heavy metals decreased with increase in concentration. At the highest concentration (2 mM), No growth was obtained with addition of Zn and Mn, however only 27% of isolates could survive with the same concentration of Pb. Previous studies have shown that the increased concentrations of heavy metals can affect the growth, morphology and activities of microorganisms, including symbiotic N₂ fixation [23-26]. Resistance of some tested isolates for the highest concentration of Pb is not understood [27]. One of explanation is that these isolates were isolated from soil polluted with Pb and have probably adapted to this environmental stress [28-31].

In general, the studied isolates showed a variable resistance against heavy metals and this will allow selecting of good candidates for genetic studies.

Rhizobium isolates	Source
RL1	Menoufia governorate
RL2	Menoufia governorate
RL3	Gharbia governorate
RL4	Gharbia governorate
RL5	Gharbia governorate
RL6	North Sinai governorate
RL7	Behira governorate
RL8	Dakhalia governorate
RL9	Giza governorate
RL10	Sharkiya governorate
RL11	Ismailia governorate

Table 1: Rhizobium isolation governorates

Figure 1: Map show distribution of Rhizobium isolation sites in Egypt
References

1. Doyle JJ (2001) Leguminosae. Encyclopedia of Genetics. Brenner S, Miller JH (Editors), Academic, San Diego, USA, 1081-1085.

2. Künzig AP, Socolow RH (1994) Is nitrogen fertiliser use nearing a balance-reply. Physics Today 14: 24-35.

3. Doyle JJ (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends in Plant Science 3: 473-478.

4. Mutch LA, Tamimi SM, Young JPW (2003) Genotypic characterization of rhizobia nodulating Vicia faba from soils of Jordan: a comparison with UK isolates. Soil Biol Bioch 35: 709-714.

5. Mutch LA, Young PW (2004) Diversity and specificity of Rhizobium leguminosarum symbiovar viciae on wild and cultivated legumes. Molecular Ecology 13: 2435-2444.

6. Moschetti G, Peluso AL, Protopapa A, Anastasio M, Pepe O, et al. (2005) Use of nodulation pattern, stress tolerance, nodC amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Systematic and Applied Microbiology 28: 619-631.

7. Vessey JK, Chemin'g'wa GN (2006) The genetic diversity of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biology and Biochemistry 38: 153-163.

8. Tian CF, Wang ET, Han TX, Sui XH, Chen WX (2007) Genetic diversity of rhizobia associated with Vicia faba in three ecological regions of China. Archives of Microbiology 188: 273-282.

9. Shamseldin A, El-Saadani M, Sadowsky MJ, Sun An C (2009) Rapid identification and discrimination among Egyptian genotypes of Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti nodulating faba bean (Vicia faba L.) by analysis of nodC, ARDRA, and rDNA sequence analysis. Soil Biology & Biochemistry 41: 45-53.

10. Wolde-Meskel E, Terefezework Z, Lindstrom K, Frostegard A (2004) Metabolic and Genomic Diversity of Rhizobia Isolated from Field Standing Native and Exotic Woody Legumes in Southern Ethiopia. Syst Appl Microbiol 27: 603-611.

11. Adiguzel A (2006) Molecular characterization of thermophilic bacteria isolated from water samples taken from various thermal plants. PhD Thesis, Ataturk University, Graduate School at Natural and Applied Sciences, Erzurum, Turkey.

12. Shoukry AA, Khattab AA, Abou-Ellail M, El-shabrawy H (2013) Molecular and biochemical characterization of new Rhizobium leguminosarum bio viciae strains isolated from different located of Egypt. Journal of Applied Sciences Research 9: 5864-5877.

13. Ismail M, El-Zanaty AM, Eissa RA, Hewedy OA (2013) Genetic Diversity of Rhizobium leguminosarum as Revealed by 16S rRNA Gene Sequence. African Journal of Biotechnology 10: 2423-2429.

14. Silva FV, Simões-Araújo JL, Silva Júnior JP, Xavier GR, Rumjanek NG (2012) Genetic diversity of Rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant. Brazilian Journal of Microbiology: 682-691.

15. Tsuzuki C, Brunheira ATP, Mayer MPA (2008) 16S rRNA Region Based PCR protocol for identification and subtyping of Parvimonas micra. Braz J Microbiol 39: 605-607.

16. Ausili P, Borisov A, Lindblad P, Martensson A (2002) Cadmium affects the interaction between peas and root nodule bacteria. Acta Agric Scand Sect B, Soil Plant Sci 52: 8-17.

17. Chaudi AM, McGrath SP, Giller KE (1992) Metal tolerance of isolates of Rhizobium leguminosarum biovar Trifolii from soil contaminated by past applications of sewage sludge. Soil Biol Biochem 24: 83-88.

18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.

19. Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, et al. (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains isolated from different soils of the eastern Canadian prairie. Syst Appl Microbiol 29: 315-332.

20. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, et al. (2005) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29: 315-332.

21. Cenap Cevheri, Çiğdem Kılıçk, Esat Çetin (2011) Fungicide, antibiotic, heavy metal resistance and salt tolerance of root nodule isolates from Vicia faba. African Journal of Biotechnology 10: 2423-2429.
22. Berrada H, Nouioui I, Houssaini Mi, El Ghachtouli N, Gtari M, et al. (2012) Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez, Morocco. African Journal of Microbiology Research 6: 5314-5324.

23. Shi W, Bischoff M, Turco R, Konopka A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl Soil Ecol 21: 169-177.

24. Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biology and Biochemistry 34: 519-529.

25. Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil microorganisms and their activities. Appl Soil Ecol 20: 145-155.

26. McGrath SP, Brookes PC, Giller KE (1988) Effects of potentially toxic elements in soil derived from past applications of sewage sludge on nitrogen fixation by *Trifolium repens* L. Soil Biology and Biochemistry 20: 415-424.

27. Ogutcu H, Alguor OF, Elkoce E, Kantar F (2008) The determination of symbiotic effectiveness of rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turk J Agric Forest Sci 32: 241-248.

28. Küçük Ç, Kvanç M, Kinaci E (2006) Characterization of *Rhizobium* sp. isolated from bean. Turk J Biol 30: 127-132.

29. Rincón A, Arenal F, González I, Manrique E, Lucas MM, Pueyo JJ (2007) Diversity of Rhizobial Bacteria Isolated from Nodules of the Gypsophyte *Ononis tridentata* L. Growing in Spanish Soils. Microb Ecol 56: 223-233.

30. Pereira SIA, Lima AIG, Figueira EMAP (2006) Heavy metal toxicity in *Rhizobium leguminosarum biovar viciae* isolated from soils subjected to different sources of heavy-metal contamination: Effects on protein expression. Applied Soil Ecology 33: 286-293.

31. Vincent JM (1970) A manual for the practical study of the root nodule bacteria. International Biological Programme hand-book no. 15. Blackwell, Oxford.