Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint

Andreas Schutt Thibaut Feydy Peter J. Stuckey

Optimisation Research Group, National ICT Australia, and Department of Computing and
Information Systems, The University of Melbourne, Victoria 3010, Australia
{andreas.schutt,thibaut.feydy,peter.stuckey}@nicta.com.au

Abstract
Cumulative resource constraints can model scarce resources in scheduling problems or a dimension in packing and cutting problems. In order to efficiently solve such problems with a constraint programming solver, it is important to have strong and fast propagators for cumulative resource constraints. One such propagator is the recently developed time-table-edge-finding propagator, which considers the current resource profile during the edge-finding propagation. Recently, lazy clause generation solvers, i.e., constraint programming solvers incorporating nogood learning, have proved to be excellent at solving scheduling and cutting problems. For such solvers, concise and accurate explanations of the reasons for propagation are essential for strong nogood learning. In this paper, we develop the first explaining version of time-table-edge-finding propagation and show preliminary results on resource-constrained project scheduling problems from various standard benchmark suites. On the standard benchmark suite PSPLib, we were able to close one open instance and to improve the lower bound of about 60% of the remaining open instances. Moreover, 6 of those instances were closed.

1. Introduction
A cumulative resource constraint models the relationship between a scarce resource and activities requiring some part of the resource capacity for their execution. Resources can be workers, processors, water, electricity, or, even, a dimension in a packing and cutting problem. Due to its relevance in many industrial scheduling and placement problems, it is important to have strong and fast propagation techniques in constraint programming (CP) solvers that detect inconsistencies early and remove many invalid values from the domains of the variables involved. Moreover, when using CP solvers that incorporate “fine-grained” nogood learning it is also important that each inconsistency and each
value removal from a domain is explained in such a way that the full strength of nogood learning is exploited.

In this paper, we consider renewable resources, i.e., resources with a constant resource capacity over time, and non-preemptive activities, i.e., whose execution cannot be interrupted, with fixed processing times and resource usages. In this work, we develop explanations for the time-table-edge-finding (TtEf) propagator \[34\] for use in lazy clause generation (LCG) solvers \[22, 9\].

Example 1.1. Consider a simple cumulative resource scheduling problem. There are 5 activities A, B, C, D, and E to be executed before time period 10. The activities have processing times 3, 3, 2, 4, and 1, respectively, with each activity requiring 2, 2, 3, 2, and 1 units of resource, respectively. There is a resource capacity of 4. Assume further that there are precedence constraints: activity B must finish before activity D begins, written \(B \ll D\), and similarly \(C \ll E\). Figure 1 shows the five activities and precedence relations, while Fig. 2 shows a possible schedule, where the start times are: 0, 0, 3, 5, and 5 respectively.

In \(Cp\) solvers, a cumulative resource constraint can be modelled by a decomposition or, more successfully, by the global constraint cumulative \[2\]. Since the introduction of this global constraint, a great deal of research has investigated stronger and faster propagation techniques. These include time-table \[2\], (extended) edge-finding \[21, 33\], not-first/not-last \[21, 25\], and energetic-reasoning propagation \[4, 6\]. Time-table propagation is usually superior for highly disjunctive problems, i.e., in which only some activities can run concurrently, while (extended) edge-finding, not-first/not-last, and energetic reasoning are more appropriate for highly cumulative problems, i.e., in which many activities can run concurrently. \[4\] The reader is referred to \[4\] for a detailed comparison of these techniques.

Vilim \[34\] recently developed TtEf propagation which combines the time-table and (extended) edge-finding propagation in order to perform stronger propagation while having a low runtime overhead. Vilim \[34\] shows that on a range of highly disjunctive open resource-constrained project scheduling problems from the well-established benchmark

![Figure 1: Five activities with precedence relations.](image1)

![Figure 2: A possible schedule of the activities.](image2)
library PSPLib\(^1\) TTtEf propagation can generate lower bounds on the project deadline (makespan) that are superior to those found by previous methods. He uses a Cr solver without nogood learning. This result, and the success of LCG on such problems, motivated us to study whether an explaining version of this propagation yields an improvement in performance for LCG solvers.

In general, nogood learning is a resolution step that infers redundant constraints, called nogoods, given an inconsistent solution state. These nogoods are permanently or temporarily added to the initial constraint system in order to reduce the search space and/or to guide the search. Moreover, they can be used to short circuit propagation. How this resolution step is performed is dependent on the underlying system.

LCG solvers employ a “fine-grained” nogood learning system that mimics the learning of modern Boolean satisfiability (SAT) solvers (see e.g. [20]). In order to create a strong nogood, it is necessary that each inconsistency and value removal is explained concisely and in the most general way possible. For LCG solvers, we have previously developed explanations for time-table and (extended) edge-finding propagation [27]. Moreover, for time-table propagation we have also considered the case when processing times, resource usages, and resource capacity are variable [24]. Explanations for the time-table propagator were successfully applied on resource-constraint project scheduling problems [27, 29] and carpet cutting [28] where in both cases the state-of-the-art of exact solution methods were substantially improved. The explanations defined here are similar to the step-wise ones for the (extended) edge-finding propagation in [27], but there we do not consider the resource profile and are more complex. Moreover, the proposed explanations for edge-finding propagation in [27] has never been implemented.

Explanations for the propagation of the cumulative constraint have also been proposed for the PaLM [14, 13] and SCIP [1, 7, 12] frameworks. In the PaLM framework, explanations are only considered for time-table propagation, while the SCIP framework additionally provides explanations for energetic reasoning propagation and a restricted version of edge-finding propagation. Neither framework consider bounds widening in order to generalise these explanations as we do in this paper. Other related works include [32], which presents explanations for different propagation techniques for problems only involving disjunctive resources, i.e., cumulative resources with unary resource capacity, and generalised nogoods [15]. A detailed comparison of explanations for the propagation of cumulative resource constraints in LCG solvers can be found in [24].

In this paper we develop explanations for the TTtEf cumulative propagator in LCG solvers. The explaining TTtEf propagation is then compared with the explaining timetable propagation from [27] in the LCG solver on RCPSP using the reengineered LCG solver [9] which was also used for the experiments presented in [27].

2. Cumulative Resource Scheduling

In cumulative resource scheduling, a set of (non-preemptive) activities \(\mathcal{V} \) and one cumulative resource with a (constant) resource capacity \(R \) is given where an activity \(i \) is

\(^1\)See http://129.187.106.231/psplib/
specified by its \textit{start time} \(S_i \), its \textit{processing time} \(p_i \), its \textit{resource usage} \(r_i \), and its \textit{energy} \(e_i := p_i \cdot r_i \). In this paper we assume each \(S_i \) is an integer variable and all others are assumed to be integer constants. Further, we define \(\text{est}_i \) (\(\text{ect}_i \)) and \(\text{lst}_i \) (\(\text{lct}_i \)) as the \textit{earliest} and \textit{latest} start (completion) time of \(i \).

In this setting, the cumulative resource scheduling problem is defined as a constraint satisfaction problem that is characterised by the set of activities \(V \) and a cumulative resource with resource capacity \(R \). The goal is to find a solution that assigns values from the domain to the start time variables \(S_i \) \((i \in V)\), so that the following conditions are satisfied.

\[
est_i \leq S_i \leq \text{lst}_i, \quad \forall i \in V \]
\[
\sum_{i \in V: \tau \in [S_i, S_i + p_i]} r_i \leq R \quad \forall \tau
\]

where \(\tau \) ranges over the time periods considered. Note that this problem is NP-hard \[5\].

We shall tackle problems including cumulative resource scheduling using \(\text{Cp} \) with nogood learning. In a \(\text{Cp} \) solver, each variable \(S_i, i \in V \) has an initial domain of possible values \(D^0(S_i) \) which is initially \([\text{est}_i, \text{lst}_i] \). The solver maintains a current domain \(D \) for all variables. \(\text{Cp} \) search interleaves propagation with search. The constraints are represented by propagators that, given the current domain \(D \), creates a new smaller domain \(D' \) by eliminating infeasible values. The current \textit{lower} and \textit{upper bound} of the domain \(D(S_i) \) are denoted by \(\text{lb}(S_i) \) and \(\text{ub}(S_i) \), respectively. For more details on \(\text{Cp} \) see e.g. \[23\].

For a learning solver we also represent the domain of each variable \(S_i \) using Boolean variables \([S_i \leq v] \), \(\text{est}_i \leq v < \text{lst}_i \). These are used to track the reasons for propagation and generate nogoods. For more details see \[22\]. We use the notation \(\llbracket v \leq S_i \rrbracket \), \(\text{est}_i < v \leq \text{lst}_i \) as shorthand for \(\neg \llbracket S_i \leq v - 1 \rrbracket \), and treat \(\llbracket v \leq S_i \rrbracket \), \(v \leq \text{est}_i \) and \(\llbracket S_i \leq v \rrbracket \), \(v \geq \text{lst}_i \) as synonyms for \textit{true}. Propagators in a learning solver must explain each reduction in the domain by building a clausal explanation using these Boolean variables.

Optimisation problems are typically solved in \(\text{Cp} \) via branch and bound. Given an objective \(\text{obj} \) which is to be minimised, when a solution is found with objective value \(o \), a new constraint \(\text{obj} < o \) is posted to enforce that we only look for better solutions in the subsequent search.

\section{3. TTEF Propagation}

In this section we develop explanations for \(\text{TTEF} \) propagation. For a more detailed description about \(\text{TTEF} \) propagation the reader is referred to \[34\].

\(\text{TTEF} \) propagation splits the treatment of activities into a fixed and free part. The former results from the activities’ compulsory part whereas the latter is the remainder. The fixed part of an activity \(i \) is characterised by the length of its compulsory part \(p_i^{TT} := \max(0, \text{ect}_i - \text{lst}_i) \) and its fixed energy \(e_i^{TT} := r_i \cdot p_i^{TT} \). The free part has a processing time \(p_i^{EF} := p_i - p_i^{TT} \) and a free energy of \(e_i^{EF} := e_i - e_i^{EF} \). Let \(\mathcal{V}^{EF} \) be the set of
activities with a non-empty free part \(\{ i \in V \mid p_i^{\text{EF}} > 0 \} \). An illustration of this is shown in Figure 3.

\(TtEf \) propagation reasons about the energy available from the resource and energy required for the execution of activities in specific time windows. The start and end times of these windows are determined by the earliest start and the latest completion times of activities \(i \in V^{\text{EF}} \). These time windows \([\text{begin}, \text{end}]\) are characterised by the so-called task intervals \(V^{\text{EF}}(a, b) := \{ i \in V^{\text{EF}} \mid \text{est}_a \leq \text{est}_i \wedge \text{lct}_i \leq \text{lct}_b \} \) where \(a, b \in V^{\text{EF}} \), \begin{align*}
\text{begin} := \text{est}_a,
\text{end} := \text{lct}_b.
\end{align*}

It is not only the free energy of activities in the task interval \(V^{\text{EF}}(a, b) \) that is considered, but also the energy resulting from the compulsory parts in the time window \([\text{est}_b, \text{lct}_b]\). This energy is defined by \(ttEn(a, b) := ttAfter[\text{est}_a] - ttAfter[\text{lct}_b] \) where \(ttAfter[\tau] := \sum \tau \geq \sum_{i \in V} \text{est}_i \leq t < \text{ect}_i \).

Furthermore, we also consider activities \(i \in V \setminus V^{\text{EF}}(a, b) \) in which a portion of their free part must be run within the time window as described in [34]. Let \(\text{lst}^{\text{EF}}_i \) be the latest start time of the free part of an activity, i.e., \(\text{lct}_i - p_i^{\text{EF}} \). Then activity \(i \)'s free part consumes at least \(r_i \cdot (\text{lct}_b - \text{lst}^{\text{EF}}_i) \) energy units in \([\text{est}_a, \text{lct}_b]\) if \(\text{est}_a \leq \text{est}_i \) and \(\text{lst}^{\text{EF}}_i < \text{lct}_b \). We define the energy contributed by such activities by \(rsEn(a, b) := \sum_{i \in V \setminus V^{\text{EF}}(a, b); \text{est}_a \leq \text{est}_i \leq \text{est}_b} \max(0, \text{lct}_b - \text{lst}^{\text{EF}}_i) \).

In summary, \(TtEf \) propagation considers three ways in which an activity \(i \) can contribute to energy consumption within a time window determined by a task interval \(V^{\text{EF}}(a, b) \). First, the free parts that must fully be executed in the time window; second, the compulsory parts that must lie in the time window; and third, some free parts that must partially be run in the time window. Thus, the considered length of an activity \(i \) is

\[
p_i(a, b) := \begin{cases}
p_i & i \in V^{\text{EF}}(a, b) \\
\max(0, \text{lct}_b - \text{lct}_i) & i \notin V^{\text{EF}}(a, b) \wedge \text{est}_a \leq \text{est}_i \\
\max(0, \min(\text{lct}_b, \text{ect}_i) - \max(\text{est}_a, \text{lst}_i)) & \text{others}
\end{cases}
\]

The considered energy consumption is \(e_i(a, b) := r_i \cdot p_i(a, b) \) in the time window.
3.1. Explanation for the TTEF Consistency Check

The consistency check is one part of TTEF propagation that checks whether there is a resource overload in any task interval.

Proposition 3.1 (Consistency Check). The cumulative resource scheduling problem is inconsistent if

\[R \cdot (lct_b - est_a) - energy(a, b) < 0 \rightarrow \perp \]

where \(energy(a, b) := \sum_{i \in V^{EF}(a, b)} e_i^{EF} + ttEn(a, b) + rsEn(a, b) \).

This check can be done in \(O(l^2 + n) \) runtime, where \(l = |V^{EF}| \), if the resource profile is given. The corresponding algorithm is shown in Alg. 1 in App. A.

A naïve explanation for a resource overload in the time window \([est_a, lct_b]\) only considers the current bounds on activities’ start times \(S_i \).

\[\bigwedge_{i \in V^{p_i(a,b)>0}} \left[\left[est_a \leq S_i \right] \wedge \left[S_i \leq lct_b \right] \right] \rightarrow \perp \]

However, we can easily generalise this explanation by only ensuring that at least \(p_i(a,b) \) time units are executed in the time window. This results in the following explanation.

\[\bigwedge_{i \in V^{p_i(a,b)>0}} \left[est_a + p_i(a, b) - p_i \leq S_i \right] \wedge \left[S_i \leq lct_b - p_i(a, b) \right] \rightarrow \perp \]

Note that this explanation expresses a resource overload with respect to energetic reasoning propagation which is more general than TTEF.

Let \(\Delta := energy(a, b) - R \cdot (lct_b - est_a) - 1 \). If \(\Delta > 0 \) then the resource overload has extra energy. We can use this extra energy to further generalise the explanation, by reducing the energy required to appear in the time window by up to \(\Delta \). For example, if \(r_i \leq \Delta \) then the lower and upper bound on \(S_i \) can simultaneously be decreased and increased by a total amount in \(\{1, 2, \ldots, \min(\lfloor \Delta/r_i \rfloor, p_i(a, b))\} \) units without resolving the overload. If \(r_i \cdot p_i(a, b) \leq \Delta \) then we can remove activity \(i \) completely from the explanation. In a greedy manner, we try to maximally widen the bounds of activities \(i \) where \(p_i(a, b) > 0 \), first considering activities with non-empty free parts. If \(\Delta_i \) denotes the time units of the widening then it holds \(p_i(a, b) \geq \Delta_i \geq 0 \) and \(\sum_{i \in V^{p_i(a,b)>0}} \Delta_i \cdot r_i \leq \Delta \) and we create the following explanation.

\[\bigwedge_{i \in V^{p_i(a,b)>0}} \left[est_a + p_i(a, b) - p_i - \Delta_i \leq S_i \right] \wedge \left[S_i \leq lct_b - p_i(a, b) + \Delta_i \right] \rightarrow \perp \]

The last generalisation mechanism can be performed in different ways, e.g. we could widen the bounds of activities that were involved in many recent conflicts. Further study is required to identify which are the most appropriate.
3.2. Explanation for the TTEF Start Times Propagation

Propagation on the lower and upper bounds of the start time variables S_i are symmetric; consequently, we only present the case for the lower bounds’ propagation. To prune the lower bound of an activity u, TrTEF bounds propagation tentatively starts the activity u at its earliest start time est_u and then checks whether that causes a resource overload in any time window $[est_a, lct_b)$ ($\{a, b\} \subseteq V^EF$). Thus, bounds propagation and its explanation are very similar to that of the consistency check.

The work of [34] considers four positions of u relative to the time window: right ($est_a \leq est_u < lct_u < ect_u$), inside ($est_a \leq est_u < ect_u \leq lct_b$), through ($est_u < est_a \land lct_b < ect_a$), and left ($est_u < est_a < ect_u \leq lct_b$). The first two of these positions correspond to edge-finding propagation and the last two to extended edge-finding propagation. We first consider only the right and inside positions, i.e., $est_a \leq est_u$. Note that a could be u. Then,

$$R \cdot (lct_b - est_a) - energy(a, b, u) < 0 \rightarrow \left\lceil \frac{rest(a, b, u)}{r_u} \right\rceil \leq S_u$$

where $energy(a, b, u) := energy(a, b) - e_u(a, b) + r_u \cdot (\min(lct_b, ect_u) - est_u)$ and

$$rest(a, b, u) := energy(a, b, u) - (R - r_u) \cdot (lct_b - est_a) - r_u \cdot (\min(lct_b, ect_u) - est_u).$$

The first two terms in the sum of $energy(a, b, u)$ gives the energy consumption of all considered activities except u, whereas the last term is the required energy of u if it is scheduled at est_u in the time window $[est_a, lct_b)$. The propagation, including explanation generation, can be performed in $O(l^2 + k \cdot n)$ runtime, where $l = |V^EF|$ and k the number of bounds’ updates, if the resource profile is given. Moreover, TrTEF propagation does not necessarily consider each $u \in V^EF$, but those only that maximise $\min(e_u^{EF}, r_u \cdot (lct_b - est_a)) - r_u \cdot \max(0, lct_b - lst^{EF}_u)$ and satisfy $est_a \leq est_u$. The corresponding algorithm is shown in Alg. 2 in App. A.

A naïve explanation for a lower bound update from est_u to $newLB := \lceil rest(a, b, u)/r_u \rceil$ with respect to the time window $[est_a, lct_b)$ additionally includes the previous and new lower bound on the left and right hand side of the implication, respectively, in comparison to the naïve explanation for a resource overload.

$$[est_a \leq S_u] \land \bigwedge_{i \in V \setminus \{u\} \land p_i(a, b) > 0} [est_i \leq S_i] \land [S_i \leq lst_i] \rightarrow [newLB \leq S_u]$$

As we discussed in the case of resource overload, we perform a similar generalisation for the activities in $V \setminus \{u\}$, and for u we decrease the lower bound on the left hand side as much as possible so that the same propagation holds when u is executed at that
Table 1: Specifications of the benchmark suites.

suite	sub-suites	#inst	#act	\(p_i\)	#res	notes
AT	st27/st51/st103	48 each	25/49/101	1–12	6 each	notes
PSPLib	j30/j60/j90	480 each	30/60/90	1–10	4 each	based on j30
	j120	600	30	1–10	4	
BL	BL20/BL25	20 each	20/25	1–6	3 each	
PACK		55	15–33	1–19	2–5	based on PACK
KSD15		480	15	1–250	4	based on PACK

Decreased lower bound.

\[
\lceil est_a + lct_b - newLB + 1 - p_a \leq S_a \rceil \land \\
\bigwedge_{i \in \mathcal{V} \setminus \{u\} \mid p_i(a, b) > 0} \lceil est_a + p_i(a, b) - p_i \leq S_i \rceil \land \lceil S_i \leq lct_b - p_i(a, b) \rceil \\
\rightarrow [newLB \leq S_a] \quad (3)
\]

Again this more general explanation expresses the energetic reasoning propagation and the bounds of activities in \(\{ i \in \mathcal{V} \setminus \{u\} \mid p_i(a, b) > 0 \}\) can further be generalised in the same way as for a resource overload. But here the available energy units \(\Delta\) for widening the bounds is \(rest(a, b, u) - r_u \cdot (newLB - 1) + 1\). Hence, \(0 \leq \Delta < r_u\) indicate that the explanation only can further be generalised a little bit. We perform this generalisation as for the overload case.

4. Experiments on Resource-constrained Project Scheduling Problems

We carried out extensive experiments on RCSP instances comparing our solution approach using both time-table and/or TrEF propagation. We compare the obtained results on the lower bounds of the makespan with the best known so far. Detailed results are available at http://www.cs.mu.oz.au/~pjs/rcpsp.

We used six benchmark suites for which an overview is given in Tab. 1 where #inst, #act, \(p_i\), and #res are the number of instances, number of activities, range of processing times, and number of resources, respectively. The first two suites are highly disjunctive, while the remainder are highly cumulative.

The experiments were run on a X86-64 architecture running GNU/Linux and an Intel(R) Core(TM) i7 CPU processor at 2.8GHz. The code was written in Mercury [30] using the G12 Constraint Programming Platform [31].

We model an instance as in [27] using global cumulative constraints cumulative and difference logic constraints \((S_i + p_i \leq S_j)\), resp. In addition, between two activities \(i, j\) in disjunction, i.e., two activities which cannot concurrently run without overloading some
resource, the two half-reified constraints $b \rightarrow S_i + p_i \leq S_j$ and $\neg b \rightarrow S_j + p_j \leq S_i$ are posted where b is a Boolean variable.

We run cumulative constraint propagation using different phases:

(a) time-table consistency check in $O(n + p \log p)$ runtime,

(b) TtEf consistency check in $O(l^2 + n)$ runtime as defined in Section 3.1,

(c) time-table bounds’ propagation in $O(l \cdot p + k \cdot \min(R, n))$ runtime, and

(d) TtEf bounds’ propagation in $O(l^2 + k \cdot n)$ runtime as defined in Section 3.2 where k, l, n, p are the numbers of bounds’ updates, unfixed activities, all activities, and height changes in the resource profile, resp.

Note that in our setup phase (d) TtEf bounds’ propagation does not take into account the bounds’ changes of the phase (c) time-table bounds’ propagation. For the experiments, we consider three settings of the cumulative propagator: tt executes phases (a) and (c), ttef(c) (a–c), and ttef (a–d). Note that phases (c) and (d) are not run if either phase (a) or (b) detects inconsistency.

4.1. Upper Bound Computation

For solving RCPSP we use the same branch-and-bound algorithm as we used in [27], but here we limit ourselves to the search heuristic HotRestart which was the most robust one in our previous studies [26, 27]. It executes an adapted search of [4] using serial scheduling generation for the first 500 choice points and, then, continues with an activity based search (a variant of VSIDS [20]) on the Boolean variables representing a lower part $x \leq v$ and upper part $v < x$ of the variable x’s domain where x is either a start time or the makespan variable and v a value of x’s initial domain. Moreover, it is interleaved with a geometric restart policy [35] on the number of node failures for which the restart base and factor are 250 failures and 2.0, respectively. The search was halted after 10 minutes.

The results are given in Tab. 2 and 3. For each benchmark suite, the number of solved instances ($\#svd$) is given. The column $\text{cmpr}(a)$ shows the results on the instances solved by all methods, where a is the number of such instances. The left entry in that column is the average runtime on these instances in seconds, and the right entry is the average number of failures during search. The entries in column $\text{all}(a)$ have the same meaning, but here all instances are considered where a is the total number of instances. For unsolved instances, the number of failures after 10 minutes is used.

Table 2 shows the results on the highly disjunctive RCPSPs. As expected, the stronger propagation (ttef(c), ttef) reduces the search space overall in comparison to tt, but the average runtime is higher by a factor of about 5%–70% and 50%–100% for ttef(c) and ttef. Interestingly, ttef(c) and ttef solved respectively 1 and 2 more instances on j60 and closed the instance j120,1,1 on j120 which has an optimal makespan 105. This makespan corresponds to the best known upper bound. However, the stronger propagation does not generally pay off for a Cp solver with nogood learning.
Table 2: UB results on highly disjunctive RCPSPs.

#svd	cmpr(480)	all(480)	#svd	cmpr(429)	all(480)		
tt	480	0.12	1074	430	1.82	5798	
	cmpr(480)			all(480)		64.25	93164
ttef(c)	480	0.20	1103	431	2.00	4860	
	cmpr(480)			all(480)		64.39	80845
ttef	480	0.23	991	432	3.04	5191	
	cmpr(480)			all(480)		64.87	62534

#svd	cmpr(400)	all(480)	#svd	cmpr(280)	all(600)		
tt	400	5.03	9229	283	9.71	15022	
	cmpr(400)			all(480)		322.35	398941
ttef(c)	400	6.93	9512	282	13.47	16958	
	cmpr(400)			all(480)		324.73	297562
ttef	400	8.10	8830	283	14.97	13490	
	cmpr(400)			all(480)		324.66	186597

#svd	cmpr(129)	all(144)		
tt	132	8.90	19997	
	cmpr(129)		66.22	87226
ttef(c)	130	9.36	16466	
	cmpr(129)		69.41	72056
ttef	129	13.55	17239	
	cmpr(129)		74.60	63554

Table 3: UB results on highly cumulative RCPSPs.

#svd	cmpr(480)	all(480)	#svd	cmpr(37)	all(55)		
tt	400	0.01	26	37	32.72	42503	
	cmpr(480)			all(480)		218.26	184293
ttef(c)	400	0.01	26	37	23.96	32916	
	cmpr(480)			all(480)		212.37	170301
ttef	400	0.01	26	37	36.93	37004	
	cmpr(480)			all(480)		221.11	157015

#svd	cmpr(144)	all(144)		
tt	132	8.90	19997	
	cmpr(144)		66.22	87226
ttef(c)	130	9.36	16466	
	cmpr(144)		69.41	72056
ttef	129	13.55	17239	
	cmpr(144)		74.60	63554
Table 4: LB results on AT, Pack, and Pack_d

	AT	Pack	Pack_d
ttef(c)	5/4/3	+52	0/4/12 +100
ttef	7/2/3	+44	1/4/11 +101

Table 5: LB results on j60, j90, and j120

	j60	j90	j120
1 min			
ttef(c)	4 1 -	12 1 -	27 8 4 - - - 2 -
ttef	7 5 -	25 14 3 1 -	90 20 10 5 2 - - 2 - -
10 mins			
ttef(c)	21 2 -	25 7 -	68 16 4 4 2 - - 1 1 -
ttef	13 6 3	35 17 6 3 1	116 39 9 9 4 1 - - 1 1 -

Table 3 presents the results on highly cumulative Rcpsps which clearly shows the benefit of TtEf propagation, especially on BL for which ttef(c) and ttef reduce the search space and the average runtime by a factor of 8, and Pack for which they solved 23 instances more than tt. On Pack_d, ttef(c) is about 50% faster on average than tt while ttef is slightly slower on average than tt. No conclusion can be drawn on KSD15_d because the instances are easy for Lcg solvers.

4.2. Lower Bound Computation

The lower bound computation tries to solve Rcpsps in a destructive way by converging to the optimal makespan from below, i.e., it repeatedly proves that there exists no solution for current makespan considered and continues with an incremented makespan by 1. If a solution found then it is the optimal one. For these experiments we use the search heuristic HotStart as we did in [26, 27]. This heuristic is HotRestart (as described earlier) but no restart. We used the same parameters as for HotRestart. For the starting makespan, we choose the best known lower bounds on j60, j90, and j120 recorded in the PSPLib at http://129.187.106.231/psplib/ and http://vilim.eu/petr/cpaior2011-results.txt at http://vilim.eu/petr/cpaior2011-results.txt. On the other suites, the search starts from makespan 1. Due to the tighter makespan, it is expected that the TtEf propagation will perform better than for upper bound computation on the highly disjunctive instances. The search was cut off at 10 minutes as in [26, 27].

Table 4 shows the results on AT, Pack, and Pack_d restricted to the instances that none of the methods could solve using the upper bound computation, that are 12, 16, and 18 for AT, Pack, and Pack_d, respectively. An entry a/b/c for method x means that x achieved respectively a-times, b-times and c-times a worse, the same and a better lower bound than tt. The entry +d is the sum of lower bounds’ differences of method x to tt. On Pack and Pack_d, ttef(c) and ttef clearly perform better than tt. On the highly disjunctive instances in AT, ttef(c) and tt are almost balanced whereas tt could generate better lower bounds on more instances as ttef. The lower bounds’ differences on AT are dominated by the instance st103_4 for which ttef(c) and ttef retrieved a lower
bound improvement of 54 and 53 time periods with respect to tt.

The more interesting results are presented in Tab. 5 because the best lower bounds are known for all the remaining open instances (48, 77, 307 in j60, j90, j120). An entry in a column +d shows the number of instances for that the corresponding method could improve the lower bound by d time periods. On these instances, we run at first the experiments with a runtime limit of one minute as it was done in the experiments for TtEf propagation in [34] but he used a Cp solver without nogood learning. tt could not improve any lower bound because its corresponding results are already recorded in the PSPLib. ttef(c) and ttef improved the lower bounds of 59 and 183 instances, respectively, which is about 13.7% and 42.4% of the open instances. Although, the experiments in [34] were run on a slower machine the results confirm the importance of nogood learning. For the experiments with 10 minutes runtime, we excluded tt due to time constraints and expected inferior results to ttef(c) and ttef. With the extended runtime, ttef(c) and ttef could improved the lower bounds of more instance, namely 151 and 264 instances, respectively, which is about 35.0% and 61.1%. Moreover, 3, 1, and 1 of the remaining open instances on j60, j90, and j120, respectively, could be solved optimally. See App. A for the listing of the closed instances and the new lower bounds.

5. Conclusion and Outlook

We present explanations for the recently developed TtEf propagation of the global cumulative constraint for lazy clause generation solvers. These explanations express an energetic reasoning propagation which is a stronger propagation than the TtEf one.

Our implementation of this propagator was compared to time-table propagation in lazy clause generation solvers on six benchmark suites. The preliminary results confirms the importance of energy-based reasoning on highly disjunctive Rcpsps for Cp solvers with nogood learning.

Moreover, our approach with TtEf propagation was able to close one instance. It also improves the best known lower bounds for 264 of the remaining 432 remaining open instances on Rcpsps from the PSPLib.

In the future, we want to integrate the extended edge-finding propagation into TtEf propagation as it was originally proposed in [34], to perform experiments on cutting and packing problems, and to study different variations of explanations for TtEf propagation. Furthermore, we want to look at a more efficient implementation of the TtEf propagation as well as an implementation of energetic reasoning.

Acknowledgements NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program. This work

2Note that the PSPLib still lists the instances j60_25_5, j90_26_5, j120_8_3, j120_48_5, and j120_35_5 as open, but we closed the first four ones in [27] and [19] closed the last one.

Intel(R) Core(TM)2 Duo CPU T9400 on 2.53GHz
was partially supported by Asian Office of Aerospace Research and Development grant 10-4123.

References

[1] Tobias Achterberg. SCIP: solving constraint integer programs. *Mathematical Programming Computation*, 1:1–41, 2009. ISSN 1867-2949. doi: 10.1007/s12532-008-0001-1.

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex scheduling and placement problems. *Mathematical and Computer Modelling*, 17(7):57–73, 1993.

[3] Ramón Alvarez-Valdés and José Manuel Tamarit. *Advances in Project Scheduling*, chapter Heuristic algorithms for resource-constrained project scheduling: A review and an empirical analysis, pages 113–134. Elsevier, 1989.

[4] Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems. *Constraints*, 5(1-2):119–139, 2000.

[5] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Satisfiability tests and time-bound adjustments for cumulative scheduling problems. *Annals of Operations Research*, 92:305–333, 1999. doi: 10.1023/A:1018995000688.

[6] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. *Constraint-Based Scheduling*. Kluwer Academic Publishers, Norwell, MA, USA, 2001. ISBN 0792374088.

[7] Timo Berthold, Stefan Heinz, Marco Lübbecke, Rolf Möhring, and Jens Schulz. A constraint integer programming approach for resource-constrained project scheduling. In Andrea Lodi, Michela Milano, and Paolo Toth, editors, *Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems*, volume 6140 of *Lecture Notes in Computer Science*, pages 313–317. Springer Berlin / Heidelberg, 2010. doi: 10.1007/978-3-642-13520-0_34.

[8] Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained project scheduling problem. *European Journal of Operational Research*, 149(2):314–324, 2003. ISSN 0377-2217. doi: 10.1016/S0377-2217(02)00763-4.

[9] Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered. In Gent [11], pages 352–366. doi: 10.1007/978-3-642-04244-7_29.

[10] Thibaut Feydy, Zoltan Somogyi, and Peter J. Stuckey. Half reification and flattening. In Jimmy Ho-Man Lee, editor, *Proceedings of Principles and Practice of Constraint Programming – CP 2011*, volume 6876 of *Lecture Notes in Computer Science*, pages 286–301. Springer, 2011.
[11] Ian P. Gent, editor. *Proceedings of Principles and Practice of Constraint Programming – CP 2009*, volume 5732 of *Lecture Notes in Computer Science*, 2009. Springer Berlin / Heidelberg.

[12] Stefan Heinz and Jens Schulz. Explanations for the cumulative constraint: An experimental study. In Panos M. Pardalos and Steffen Rebennack, editors, *Proceedings of Experimental Algorithms – SEA 2011*, volume 6630 of *Lecture Notes in Computer Science*, pages 400–409. Springer Berlin / Heidelberg, 2011. doi: 10.1007/978-3-642-20662-7_34.

[13] Narendra Jussien. The versatility of using explanations within constraint programming. Research Report 03-04-INFO, École des Mines de Nantes, Nantes, France, 2003.

[14] Narendra Jussien and Vincent Barichard. The PaLM system: explanation-based constraint programming. In *Proceedings of TRICS: Techniques for Implementing Constraint Programming Systems, a post-conference workshop of CP 2000*, pages 118–133, Singapore, 2000.

[15] George Katsirelos and Fahiem Bacchus. Generalized nogoods in CSPs. In Manuel M. Veloso and Subbarao Kambhampati, editors, *Proceedings on Artificial Intelligence – AAAI 2005*, pages 390–396. AAAI Press / The MIT Press, 2005.

[16] Rainer Kolisch and Arno Sprecher. PSPLIB – A project scheduling problem library. *European Journal of Operational Research*, 96(1):205–216, 1997. doi: 10.1016/S0377-2217(96)00170-1.

[17] Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and generation of a general class of resource-constrained project scheduling problems. *Management Science*, 41(10):1693–1703, 1995. ISSN 0025-1909.

[18] Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based milp models for resource-constrained project scheduling problems. *Computers & Operations Research*, 38(1):3–13, 2011. doi: 10.1016/j.cor.2009.12.011.

[19] Olivier Liess and Philippe Michelon. A constraint programming approach for the resource-constrained project scheduling problem. *Annals of Operations Research*, 157(1):25–36, January 2008. doi: 10.1007/s10479-007-0188-y.

[20] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver. In *Proceedings of Design Automation Conference – DAC 2001*, pages 530–535, New York, NY, USA, 2001. ACM. doi: 10.1145/378239.379017.

[21] Wilhelmus Petronella Maria Nuijten. *Time and Resource Constrained Scheduling*. PhD thesis, Eindhoven University of Technology, 1994.
[22] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation. *Constraints*, 14(3):357–391, 2009.

[23] Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines. *ACM Transactions on Programming Languages and Systems*, 31(1):Article No. 2, 2008.

[24] Andreas Schutt. *Improving Scheduling by Learning*. PhD thesis, The University of Melbourne, 2011. URL http://repository.unimelb.edu.au/10187/11060.

[25] Andreas Schutt and Armin Wolf. A new $O(n^2 \log n)$ not-first/not-last pruning algorithm for cumulative resource constraints. In David Cohen, editor, *Proceedings of Principles and Practice of Constraint Programming – CP 2010*, volume 6308 of *Lecture Notes in Computer Science*, pages 445–459. Springer Berlin / Heidelberg, 2010. URL 10.1007/978-3-642-15396-9_36.

[26] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Why cumulative decomposition is not as bad as it sounds. In Gent [11], pages 746–761. doi: 10.1007/978-3-642-04244-7_58.

[27] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining the cumulative propagator. *Constraints*, 16(3):250–282, 2011. doi: 10.1007/s10601-010-9103-2.

[28] Andreas Schutt, Peter Stuckey, and Andrew Verden. Optimal carpet cutting. In Jimmy Lee, editor, *Principles and Practice of Constraint Programming – CP 2011*, volume 6876 of *Lecture Notes in Computer Science*, pages 69–84. Springer Berlin / Heidelberg, 2011. doi: 10.1007/978-3-642-23786-7_8.

[29] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Solving RCPSP/max by lazy clause generation. *Journal of Scheduling*, pages 1–18, 2012. doi: 10.1007/s10951-012-0285-x.

[30] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of Mercury, an efficient purely declarative logic programming language. *The Journal of Logic Programming*, 29(1–3):17–64, 1996. ISSN 0743-1066. doi: 10.1016/S0743-1066(96)00068-4.

[31] Peter J. Stuckey, Maria J. García de la Banda, Michael J. Maher, Kim Marriott, John K. Slaney, Zoltan Somogyi, Mark G. Wallace, and Toby Walsh. The G12 project: Mapping solver independent models to efficient solutions. In Maurizio Gabbrielli and Gopal Gupta, editors, *Proceedings of Logic Programming – ICLP 2005*, volume 3668 of *Lecture Notes in Computer Science*, pages 9–13. Springer Berlin / Heidelberg, October 2005. doi: 10.1007/11562931_3.

[32] Petr Vilím. Computing explanations for the unary resource constraint. In Roman Barták and Michela Milano, editors, *Proceedings of Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems – CPAIOR 2005, volume 3524 of Lecture Notes in Computer Science, pages 396–409. Springer Berlin / Heidelberg, 2005. doi: 10.1007/11493853_29.

[33] Petr Vilím. Edge finding filtering algorithm for discrete cumulative resources in $O(kn \log n)$. In Gent [11], pages 802–816. doi: 10.1007/978-3-642-04244-7_62.

[34] Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources. In Tobias Achterberg and J. Beck, editors, Proceedings of Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems – CPAIOR 2011, volume 6697 of Lecture Notes in Computer Science, pages 230–245. Springer Berlin / Heidelberg, 2011. doi: 10.1007/978-3-642-21311-3_22.

[35] Toby Walsh. Search in a small world. In Proceedings of Artificial intelligence – IJCAI 1999, pages 1172–1177. Morgan Kaufmann, 1999.
A. TTEF propagation algorithms

Algorithm 1 shows the TTEF consistency check used. The outer loop (lines 2–16) iterates over all distinctive possible end times for the time windows while the inner loop (lines 7–16) iterates over all possible start times. In line 11 (12), it checks whether a must fully (partially) be executed in the current time window and further ones checked in the same inner loop. If so it adds the required free energy units e_{EF}^a of a to E. In line 13, it calculates the still available energy units in the time window $(begin, end)$ taking the energy units from the resource profile $ttEn(a, b)$ into account. If this results in a resource overload then a corresponding explanation is generated (line 15) and the algorithm fails; otherwise, the algorithm succeeds.

Algorithm 1: TTEF consistency check.

\begin{verbatim}
Input : X an array of activities sorted in non-decreasing order of the earliest start time.
Input : Y an array of activities sorted in non-decreasing order of the latest completion time.
1 \hspace{1em} end = \infty;
2 \hspace{1em} for $y := n \text{ down to } 1$ do
3 \hspace{2em} $b := Y[y]$;
4 \hspace{2em} if lct$_b = end$ then continue;
5 \hspace{2em} end := lct$_b$;
6 \hspace{2em} $E := 0$;
7 \hspace{2em} for $x := n \text{ down to } 1$ do
8 \hspace{3em} $a := X[x]$;
9 \hspace{3em} if end \leq est$_a$ then continue;
10 \hspace{3em} begin := est$_a$;
11 \hspace{3em} if lct$_a \leq end$ then $E := E + e_{EF}^a$;
12 \hspace{3em} if lst$_{EF}^a < end$ then $E := E + r_a \cdot (end - lst_{EF}^a)$;
13 \hspace{3em} avail := $R \cdot (end - begin) - E - ttEn(a, b)$;
14 \hspace{3em} if avail < 0 then
15 \hspace{4em} explainOverload(begin, end);
16 \hspace{3em} return false;
17 \hspace{2em} return true;
\end{verbatim}

Algorithm 2 shows the lower bounds propagation algorithm. As for Alg. 1 the outer loop (lines 3–24) and inner loop (lines 7–24) iterate over the end and start times of the time windows $(begin, end)$, but require more book keeping. In line 6, it initialises E, u, and $enReqU$ where: E records the required energy units by the considered activities that must fully or partially be run in the time window; and u stores the activity that maximises $\min(e_{EF}^u, r_u \cdot (end - begin)) - r_u \cdot \max(0, end - lst_{EF}^u)$ and that value is saved in $enReqU$. If a must be fully or partially be executed in the time window then the corresponding energy units are added to E in lines 11 and 14, resp. The desired activity for pruning is computed in lines 13, 15, and 16, whereas the available energy units are calculated in line 17. In the case that there is not sufficient energy available then the condition of line 18 holds and the algorithm determines the first possible start time for u (lines 19, 20). If that is larger than the recorded earliest start time in est'_u then the algorithm generates the explanation (line 22) and postpones the update (line 23) after finishing with the outer loop (line 25).
Algorithm 2: TrEF lower bounds propagator on the start times.

Input: X an array of activities sorted in non-decreasing order of the earliest start time.
Input: Y an array of activities sorted in non-decreasing order of the latest completion time.

1. for $i \in V^{\text{EF}}$ do $est_i' := est_i$;
2. $end := \infty$; $k := 0$;
3. for $y := n$ down to 1 do
 4. $b := Y[y]$;
 5. if $lct_b = end$ then continue;
 $end := let_b$; $E := 0$; $u := -\infty$; $enReqU := 0$;
6. for $x := n$ down to 1 do
 7. $a := X[x]$;
 8. if $end \leq est_a$ then continue;
 9. begin := est_a;
 10. if $let_a \leq end$ then $E := E + e_a$;
 else
 $enIn := r_a \cdot \max(0, end - lst_a^{\text{EF}})$;
 $E := E + enIn$;
 $enReqA := \min(e_a^{\text{EF}}, r_a \cdot (end - est_a)) - enIn$;
 if $enReqA > enReqU$ then $u := a$; $enReqU := enReqA$;
 avail := $R \cdot (end - begin) - E - ttEn(a, b)$;
 if $enReqU > 0$ and avail < 0 then
 rest := $E - avail - r_a \cdot \max(0, end - lst_a)$;
 $lbU := begin + \lceil \text{rest}/r_a \rceil$;
 if $est'_u < lbU$ then
 expl := explainUpdate(begin, end, u, est'_u, lbU);
 $Update[++] := (u, lbU, expl)$;
 $est'_u := lbU$;
5. for $z := 1$ to k do updateLB($Update[z]$);
Table 6: New lower bounds on j60.

inst	LB										
9_1	85	9_5	84	9_6	106	9_7	103	9_8	95	9_10	89
13_2	103	13_3	84	13_4	98	13_7	82	13_8	115	13_9	96
25_2	96	25_4	106	25_6	106	29_1	97	29_6	144	29_7	115
41_3	90	41_10	106	45_1	90						

Table 7: New lower bounds on j90.

inst	LB										
5_3	84	5_5	84	5_7	106	5_8	97	5_9	114	5_10	95
9_3	98	9_4	120	9_5	127	9_6	113	9_7	103	9_8	111
9_10	105	13_1	119	13_3	105	13_5	109	13_7	116	13_8	113
13_10	114	21_7	106	21_8	108	25_1	117	25_2	122	25_3	113
25_5	110	25_6	113	25_8	131	25_9	98	25_10	119	29_1	126
29_4	139	29_6	117	29_7	160	29_8	146	29_9	120	30_9	92
41_1	129	41_2	154	41_3	149	41_4	142	41_5	116	41_6	124
41_8	148	41_9	110	41_10	144	45_1	143	45_2	138	45_3	144
45_6	163	45_7	129	45_8	150	45_9	145	45_10	156	46_9	86

B. Closed Instances and New Lower Bounds on PSPLib

From the open instances, we closed the instances 9_3 (100), 9_9 (99), 25_10 (108) on j60, 5_6 (86) on j90, and 1_1 (105), 8_6 (85) on j120 where the number in brackets shows the optimal makespan. We computed new lower bounds on the remaining open instances from the PSPLib. Tables 6–8 list these new lower bounds where the column “inst” shows the name of the instance and the column “LB” the corresponding new lower bound.

C. Best Lower and Upper Bounds Retrieved

For a later comparison, Tables 9–11 show the best lower and upper bounds for AT, PACK, and PACK_d retrieved by one of the methods tt, ttef(c), and ttef. The column “inst” shows the instance name and the column “LB/UB” the corresponding lower and upper bound. If these bounds are equal then only one number is given.
Table 8: New lower bounds on j_{120}.

inst	LB												
6.1	134	6.2	127	6.5	117	6.6	141	6.8	141	6.9	150	6.10	158
7.1	99	7.3	98	7.4	106	7.6	116	7.7	114	7.8	93	7.9	87
7.10	112	8.2	102	8.5	100	8.9	90	8.10	92	9.4	85	11.1	157
11.2	147	11.3	189	11.4	178	11.5	194	11.6	192	11.7	149	11.8	153
11.10	164	12.1	126	12.2	112	12.4	122	12.5	155	12.6	116	13.1	124
13.3	116	13.4	109	13.6	96	13.9	83	14.2	91	14.5	94	14.7	90
16.1	181	16.3	221	16.4	191	16.6	195	16.8	183	17.5	124	17.6	134
18.8	102	18.9	89	18.10	97	26.1	155	26.2	159	26.3	158	26.4	161
26.5	139	26.6	171	26.7	147	26.8	168	26.9	161	26.10	178	27.1	107
27.2	110	27.3	142	27.4	105	27.5	106	27.6	133	27.7	119	27.8	136
27.9	121	27.10	111	28.1	106	31.1	181	31.2	176	31.3	160	31.4	195
31.5	187	31.6	182	31.7	191	31.8	176	31.9	176	31.10	202	32.1	144
32.2	123	32.5	133	32.6	122	32.8	132	33.1	105	33.2	107	33.3	102
33.4	107	33.8	107	33.9	109	34.1	76	34.2	103	34.3	99	34.5	102
36.1	201	36.3	218	36.5	213	36.7	196	36.9	203	37.2	141	37.5	195
37.8	169	37.9	138	38.1	105	38.2	119	38.4	138	38.6	119	38.7	103
38.10	137	39.2	105	40.1	80	42.1	107	46.1	172	46.2	187	46.3	163
46.5	136	46.7	158	46.9	157	46.10	175	47.1	130	47.3	119	47.4	120
47.5	126	47.6	128	47.7	114	47.8	124	47.10	128	48.4	123	51.1	186
51.2	200	51.3	193	51.4	197	51.6	193	51.7	185	51.8	186	51.9	190
51.10	201	52.1	161	52.2	169	52.3	126	52.4	157	52.5	158	52.6	183
52.7	142	52.8	148	52.9	142	52.10	131	53.1	138	53.2	109	53.4	138
53.5	109	53.6	101	53.8	135	53.10	124	54.1	102	54.5	107	54.6	104
54.8	100	54.9	105	57.1	173	57.2	151	57.3	176	57.5	170	57.6	176
57.7	156	57.9	157	58.2	122	58.3	117	58.4	138	58.5	116	58.6	135
58.7	143	58.8	126	58.9	126	59.5	104	59.6	112	59.8	107	59.9	117
59.10	128	60.3	88	60.7	91								
Table 9: Lower and upper bounds for AT.

inst	LB/UB								
27.1	41	27.2	53	27.3	68	27.4	112/114	27.5	56
27.6	73	27.7	54	27.8	95	27.9	38	27.10	45
27.11	57	27.12	73	27.13	38	27.14	55	27.15	46
27.16	75	27.17	55	27.18	55	27.19	79	27.20	152
27.21	92	27.22	86	27.23	82	27.24	106	27.25	51
27.26	53	27.27	58	27.28	95	27.29	51	27.30	76
27.31	75	27.32	82	27.33	66	27.34	61	27.35	115
27.36	146	27.37	78	27.38	100	27.39	119	27.40	130
27.41	60	27.42	53	27.43	75	27.44	88	27.45	49
27.46	65	27.47	75	27.48	80	51.1	98	51.2	96
51.3	133	51.4	161/219	51.5	97	51.6	126	51.7	120
51.8	194	51.9	74	51.10	73	51.11	99	51.12	116/137
51.13	84	51.14	86	51.15	86	51.16	132	51.17	84
51.18	99	51.19	170	51.20	274	51.21	145	51.22	168
51.23	183	51.24	228	51.25	95	51.26	89	51.27	113
51.28	164	51.29	98	51.30	105	51.31	130	51.32	139
51.33	116	51.34	115	51.35	173	51.36	300	51.37	162
51.38	177	51.39	189	51.40	218	51.41	102	51.42	108
51.43	121	51.44	174	51.45	122	51.46	125	51.47	151
51.48	167	103.1	158	103.2	182	103.3	216/259	103.4	280/445
103.5	191	103.6	207/209	103.7	234/293	103.8	207/294	103.9	139
103.10	119	103.11	160/169	103.12	213/302	103.13	127	103.14	152
103.15	157/168	103.16	167/179	103.17	209	103.18	232	103.19	301
103.20	475	103.21	276	103.22	295	103.23	368	103.24	449
103.25	177	103.26	183	103.27	199	103.28	295	103.29	225
103.30	231	103.31	227	103.32	281	103.33	220	103.34	264
103.35	341	103.36	575	103.37	327	103.38	376	103.39	389
103.40	451	103.41	191	103.42	187	103.43	260	103.44	375
103.45	216	103.46	251	103.47	262	103.48	300		

Table 10: Lower and upper bounds for Pack.

inst	LB/UB										
001	23	002	32	003	29	004	43/44	005	42	006	47
007	41	008	44	009	57/72	010	38	011	44	012	45
013	36	014	45	015	43	016	63	017	62	018	60
019	59	020	62	021	51	022	59	023	51	024	56
025	69/70	026	54	027	55	028	64	029	43	030	20
031	70	032	80	033	78	034	73	035	73/77	036	100/106
037	116/138	038	86	039	99/111	040	87/91	041	27	042	29
043	105	044	103	045	86/87	046	110/128	047	103/107	048	76/77
049	29	050	94/109	051	29	052	85	053	97/113	054	92/100
055	91/97										
Table 11: Lower and upper bounds for PACK_d.

inst	LB/UB								
001	512	002	674/747	003	624/625	004	1381	005	983
006	1119	007	1082	008	1274	009	1593/1951	010	1216
011	940	012	1234/1241	013	829	014	1565	015	1198
016	1783/1813	017	1641/1651	018	1462/1480	019	1526/1542	020	1661
021	1600	022	11787	023	1092	024	1625	025	16121/2147
026	926	027	1789/1793	028	1897/1962	029	1233	030	597
031	1949	032	2943	033	3390	034	2371	035	2305
036	2175/2191	037	3325/3614	038	2180	039	2730/2734	040	3024
041	679	042	838	043	2439	044	3050	045	2712
046	3243/3277	047	2740/2745	048	2446	049	675	050	2687/2716
051	838	052	2253	053	2521	054	2750	055	2628