1. Introduction

Machine translation (MT) for spoken language has been developed as a component of speech-to-speech translation. C-star\(^1\), Verbmobil(Wahlster, 2000), and Nespole!(Metze et al., 2002) are well-known projects in this field.

When a machine translation system receives input sentences of spoken language, the following two types of sentences are difficult to translate: (1) long sentences and (2) sentences having redundant expressions often seen in spoken language. To reduce these difficulties, we are developing methods to paraphrase input sentences into more translatable ones. In this paper, we report a preliminary Japanese paraphrase corpus. The corpus consists of original sentences derived from travel conversation and versions of them paraphrased by humans. We use three paraphrasing methods: plain, segment, and summary paraphrasing. Plain paraphrasing is applied to short sentences, where redundant expressions are replaced with plain ones. Segment and summary paraphrasing is applied to long sentences, where long sentences are converted into one or several short sentences. We also report a comparison of machine translation quality between the original sentences and the paraphrased sentences. We use two corpus-based machine translation systems in the experiment.

2. Basic Idea of Paraphrasing

We are developing a method for paraphrasing input sentences to reduce this difficulty. A paraphrased sentence shares its main meaning with the original input sentence but is easier to translate. MT performance can be improved by using a paraphrased sentence instead of the original input sentence. In this paper, we report a Japanese paraphrase corpus in which paraphrasing has been done by humans. The corpus consists of original sentences derived from travel conversation and paraphrased versions of these sentences. Three paraphrasing methods are used in the corpus: plain, segment, and summary. Plain paraphrasing is applied to short input sentences, and segment and summary paraphrasing are applied to long input sentences.

We report a comparison of machine translation performance between original sentences and paraphrased sentences. Two corpus-based machine translation systems are used in the experiment. We also report the statistical characteristics of these sentences in terms of perplexity.

2.1. Sentence Length Metric

We use “number of content words” as a metric of sentence length. This means that a unit of the metric is a word, and function words are excluded from the counting. The reason for excluding function words is that they have a wide variety in Japanese conversation. This variety reduces the correlation between the number of function words and the complexity of the sentences. Moreover, shortening sentences by deleting function words sometimes causes translation difficulty because an MT system has to infer the lost function word information.

Content words and function words are classified by information of part-of-speech. Content words are defined to include nouns, verbs, adjectives, adverbs, and numerals. Function words are defined to include particles, auxiliary

\(^1\)http://www.c-star.org/
verbs, and the copula. Compound words, in the case of English “New York,” “get off,” and “two hundred dollars,” are treated as one word.

2.2. Threshold for Long Sentences

We define "short" sentences as sentences having less than five content words. This threshold is based on statistics of the BTEC corpus (Kikui et al., 2003), which is a fundamental bilingual corpus for developing our corpus-based MT systems. In the BTEC corpus, sentences having fewer than five content words are dominant (86.5%) over those having more than five content words. Figure 1 shows the ratio of content words in the BTEC corpus.

3. Paraphrasing Methods

In this section, we describe a detail of three paraphrasing methods. Examples of input sentences and paraphrased sentences are shown in Figure 2. To facilitate reader’s comprehension, the examples are shown in English and content words are underlined.

3.1. Segment Paraphrasing

A long sentence is divided into several short sentences in the segment paraphrasing method. If some words need to be complemented to make sentences, adding these words is allowed. If it is difficult to divide a given sentence into parts that are all “sentences,” the use of phrases is allowed. In the first example in Figure 2, the original sentence includes five content words. It is paraphrased into two short sentences, each of which includes fewer than five content words.

3.2. Summary Paraphrasing

A long sentence is condensed into one short sentence by eliminating unimportant content words in the summary paraphrasing method. We assume that a good translation of condensed sentences is more valuable than a poor translation of original sentences. In the second example in Figure 2, the number of content words is reduced from five to three. Deleted information such as “just” and “computer” are insignificant.

3.3. Plain Paraphrasing

Redundant expressions in input sentences are replaced by plainer ones in the plain paraphrasing method. Furthermore, insignificant information can be deleted. Insignificant information is defined as information that can be removed without causing a significant problem for the progress of the conversation. We leave the judgment of redundant and plain expressions to a human paraphraser. In the third example in Figure 2, the original sentence includes euphemistic and polite expressions, while the paraphrased sentence is a plain one. This paraphrasing strategy is also applied to segment paraphrasing and summary paraphrasing.

4. Experiment

We built a Japanese paraphrase corpus having 683 original sentences and corresponding paraphrased sentences as a pilot study. The original sentences were derived from the travel conversation corpus (Kikui et al., 2003). Figure 3 shows an overview of the experiment. We classified input sentences into short and long and had a human paraphraser paraphrase them. Short sentences have one paraphrased sentence of plain paraphrasing and long sentences have two paraphrased sentences of segment and summary. This paraphrasing task took just one day for each method.

We gave the original sentences and paraphrased sentences to MT systems and obtained translations. The effect of paraphrasing on MT was evaluated by comparing the translation qualities of original and paraphrased sentences (Section 4.2.). The characteristic of original and paraphrased sentences is analyzed using perplexity (Section 4.3.).

4.1. Experimental MT Systems

Two corpus-based MT systems are used in the experiment: Example-based MT (EBMT) (Sumita, 2001) and Statistical MT (SMT) (Watanabe and Sumita, 2003). The two MT systems commonly use the BTEC corpus as an example/learning corpus.

The basic idea of the EBMT system is that it retrieves sentences similar to input sentences from a parallel corpus and modifies the translation of similar sentences to generate
output translation. The similarity between input sentence and example sentences is measured by edit distance. The weight of substitution is adjusted by similarity, which is based on the given thesaurus. The basic idea of the SMT system is that it generates output translation that has the highest likelihood for the input sentence. Likelihood is decomposed into a translation model and a language model. The parameters for the two models are determined from a learning corpus.

4.2 Translation Quality

The MT systems receive both original and paraphrased sentences and return their English translations. These translations are evaluated by a native English speaker. There are four evaluation ranks: A (good), B (fair), C (acceptable), and D (bad). The EBMT system outputs no translation when there is no similar sentence in the example corpus. In that case, we give an “N” rank.

Table 1 shows the results of translation quality. Translation accuracy is defined as the ratio of sentences having A, B, and C ranks to total sentences. As for long sentences, both paraphrasing methods provide a large improvement in EBMT. In particular, the paraphrasing methods improve the performance by reducing the ratio of the N rank. Segment paraphrasing reduces it from 62.2% to 0.0%, and summary reduces it to 30.6%. On the other hand, both paraphrasing methods bring little improvement in SMT. As for short sentences, the ratios of all ranks are approximately equal. This shows that plain paraphrasing for short sentences has little effect.

4.3 Cross Perplexity

Cross perplexity (CP) is a metrics for determining how much predictive test data is under the N-gram model learned from training data. The lower the CP value, the more predictive test data is with learning data. A CP in which the BTEC corpus is used as training data indicates dissimilarity between the BTEC corpus and the test data.

Table 2 shows the CP value using the original and paraphrased sentences as test data. All CP values of the paraphrased sentences are lower than those of the original sentences. This effect is more evident in long sentences, and it indicates that all paraphrasing methods simplify the original sentences and make the paraphrased sentences more predictive for the BTEC corpus.
5. Conclusions and Future Work

We are developing a method for paraphrasing input sentences to facilitate machine translation. In this paper, we reported a Japanese paraphrase corpus as a pilot study. The corpus consists of original sentences derived from a travel conversation corpus and their paraphrased versions. We use three paraphrasing methods: plain, segment, and summary. Plain paraphrasing is applied to short sentences and replaces redundant expressions with plainer ones. Segment and summary paraphrasing are applied to long sentences and convert long sentences into one of several short sentences.

Experimental result suggests that this paraphrasing strategy has a large effect on EBMT in long sentences but a small effect on SMT in long sentences; Paraphrasing has a small effect on both MTs in short sentences. We believe that additional improvement can be achieved by eliminating deteriorating paraphrasing.

At present, we are constructing a paraphrased corpus containing about forty five thousand sentences in both Japanese and English. We plan to exploit this corpus and thus improve the effect of our paraphrasing in both Japanese and English.

Acknowledgment

The research reported here was supported in part by a contract with the Telecommunications Advancement Organization of Japan entitled, “A study of speech dialogue translation technology based on a large corpus”.

6. References

Imamura, Kenji, Eiichiro Sumita, and Yuji Matsumoto, 2003. Feedback cleaning of machine translation rules using automatic evaluation. In *Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics*.

Kikui, G., E. Sumita, T. Takezawa, and S. Yamamoto, 2003. Creating corpora for speech-to-speech translation. In *Eurospeech-2003*.

Metze, F., J. McDonough, H. Soltau, C. Langley, A. Lavie, L. Levin, T. Schultz, A. Waible, R. Cattoni, G. Lazzari, N. Mana, F. Pianesi, and E. Pianta, 2002. The nespole! speech-to-speech translation system. In *Proc. of Human language technology (HLT)*.

Shimohata, Mitsuo and Eiichiro Sumita, 2002. Identifying synonymous expressions from a bilingual corpus for example-based machine translation. In *Proc. of the 9th COLING Workshop on Machine Translation in Asia*.

Sumita, E., 2001. Example-based machine translation using DP-matching between work sequences. In *Proc. of the ACL 2001 Workshop on Data-Driven Methods in Machine Translation*.

Takezawa, T. and G. Kikui, 2003. Collecting machine-translation-aided bilingual dialogues for corpus-based speech translation. In *Eurospeech-2003*.

Wahlster, W. (ed.), 2000. *Verbmobil: Foundations of Speech-to-Speech Translation*. Springer.

Watanabe, T. and E. Sumita, 2003. Example-based decoding for statistical machine translation. In *Proc. of the 9th Machine Translation Summit*.