Leukocyte Telomere Length is Associated With Serum Vitamin B$_{12}$ and Homocysteine Levels in Older Adults With the Presence of Systemic Inflammation

Chol Shin1, Inkyung Baik2*

1Department of Internal Medicine, Korea University Ansan Hospital, Ansan, 15355 Korea
2Department of Foods and Nutrition, College of Natural Sciences, Kookmin University, Seoul, 02707 Korea

Folate, vitamin B$_{12}$, and homocysteine (HCY) are involved in the metabolism of nucleic acid precursors and it has been hypothesized that they also influence telomere length, a biomarker of aging. However, previous studies have reported inconsistent findings, and data for older adults are limited. Our study aimed to evaluate associations between leukocyte telomere length (LTL) and serum folate, vitamin B$_{12}$, and HCY levels among adults aged 55 years and over. In a cross-sectional study in 798 men and women aged 55-79 years, serum folate, vitamin B$_{12}$, and HCY levels were measured using chemiluminescent immunoassays, and relative LTL was assessed using quantitative real-time polymerase chain reaction. To evaluate associations between LTL and serum folate, vitamin B$_{12}$, and HCY levels, multiple linear regression models were used. In multiple models adjusted for age, sex, serum high sensitive C-reactive protein (hs-CRP) levels, and other potential confounding factors, we found no association between LTL and serum folate, vitamin B$_{12}$, and HCY levels. However, we did find a significant inverse association between HCY levels and LTL in participants with serum hs-CRP levels of ≥ 2 mg/L (p < 0.05). Moreover, there was a trend toward an association between HCY and vitamin B$_{12}$ levels in these individuals (p = 0.08). In those with serum hs-CRP levels of < 2 mg/L, HCY was inversely associated with vitamin B$_{12}$ levels (p < 0.001) and had no association with LTL. Our findings suggest that increased serum HCY levels, when combined with the presence of systemic inflammation, may play a role in accelerating biological aging.

Key Words: Telomere length, B vitamins, Homocysteine, C-reactive protein, Older adults

Introduction

Folate (vitamin B$_9$), vitamin B$_{12}$, and homocysteine (HCY) are involved in one-carbon transfer pathways. In particular, folate plays a key role in the pathways as an acceptor or donor of one-carbon units, and vitamin B$_{12}$ acts as a coenzyme in the conversion of HCY to methionine by adding methylene from the methylated form of folate. These pathways in turn lead to the biosynthesis of purine and pyrimidine nucleotides, as well as to the methylation of DNA, RNA, proteins, and other molecules [1,2]. Thus, it has been hypothesized that folate deficiency or vitamin B$_{12}$ deficiency, accompanied by elevated levels of HCY, may disrupt genomic stability and the normal methylation state of genes [3,4].

Many epidemiological studies have examined the associa-
tions of circulating folate, vitamin B₁₂, and HCY levels with leukocyte telomere length (LTL) [5-12], which is considered a biomarker of cellular aging [13]. Several mechanisms have been suggested to underlie this association. For example, one proposal is that deficiencies of folate and vitamin B₁₂ influence genomic instability, which results in the attrition of telomere length. Another is that elevated levels of HCY increase oxidative stress independent of vitamin B₁₂ status, which accelerates the attrition of telomere length [3,14]. Both of these mechanisms have been confirmed in experimental studies [15,16], although epidemiological studies have shown inconsistent results regarding the associations of plasma or serum folate and HCY levels with LTL [5-11]; even no association has been found between plasma vitamin B₁₂ levels and LTL [5,8]. The association between circulating folate levels and LTL has variously been found to be U-shaped [5], positive [11], and null [8-10]. Similarly, circulating HCY levels and LTL have been shown to be an inverse [6,7,10], positive [5], and null association [8]. Such inconsistencies in data may be partly due to different characteristics or conditions of subjects among those studies, such as age, the presence of chronic disease, and nutritional status of folate and vitamin B₁₂ (deficiency, adequacy, or overload). Indeed, a recent study suggested that a lack of association between plasma folate levels and LTL may be due to the adequate folate status of study participants [9]. A significant positive association between serum folate level and LTL was observed in a study involving patients with hypertension [12]. In addition, a case-control study involving patients with atherosclerosis showed that serum folate and high sensitive C-reactive protein (hs-CRP) levels modify the association between HCY levels and LTL [11]. In a study of subjects stratified by age group, an inverse association between circulating HCY levels and LTL was observed only in older men [7].

In a population-based study comprising men and women aged 55 years and over, we evaluated the associations of serum folate, vitamin B₁₂, and HCY levels with LTL, taking into account hs-CRP levels and the presence of diabetes mellitus, hypertension, and dyslipidemia. Furthermore, we examined these associations when stratified according to serum folate and hs-CRP levels.

Materials and Methods
Study design and population

We performed a cross-sectional study embedded within the population-based cohort of the Korean Genome Epidemiology Study, which is an ongoing longitudinal investigation. Detailed information regarding enrollment of cohort members and study procedures is available elsewhere [17]. Briefly, 5015 cohort members aged 40-69 years were enrolled between June 18, 2001, and January 29, 2003. Since baseline, they have been followed up biennially, undergoing both a comprehensive health examination and an on-site interview at the Korea University Ansan Hospital. As part of the health examination, cohort members provided blood specimens for biochemical assays, as well as undergoing anthropometric and clinical evaluations. They also participated in questionnaire-based interviews administered by trained personnel to collect information regarding socio-demographics, medical history, health conditions, and lifestyle factors. At each visit, participants signed an informed consent form approved by the Human Subjects Review Committee at the Korea University Ansan Hospital (ED0624).

Between May 2009 and November 2012, 1156 of the cohort members provided blood samples for LTL assays and biochemical assessments of serum folate, vitamin B₁₂, HCY, and hs-CRP levels. Among these participants, individuals with hs-CRP levels > 10 mg/L or outlying values of biomarker (> mean + 5SD) (n = 43) and those with age < 55 years at the follow-up interview (n = 315) were excluded. After this exclusion, 798 participants aged 55 years or older were included in the present study.

LTL measurement

Relative LTL was measured using quantitative real-time polymerase chain reaction [18]. Peripheral blood samples were collected during the 10-year follow-up, and leukocyte genomic DNA was extracted using a QIAaampTM DNA blood mini kit (Qiagen, Hilden, Germany). Purified DNA samples were diluted and quantified using a NanoDropTM 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). The ratio of the telomere-repeat-copy number to the single-copy gene (36B4, which encodes acidic ribosomal phosphoprotein) copy number was determined in order to calculate the relative LTL using an iTQ Multi-Color Real-Time Polymerase Chain Reaction Detection System (Bio-Rad, Hercules, CA, USA). The final composition of the polymerase chain reaction mixture was 1x SYBR Green SuperMix (Bio-Rad, Hercules, CA, USA), 50 ng DNA, 0.2 μM telomere primers (forward, 5'-GGTGGGAGG-3'; reverse, 5'-TCCGAC-3'), and 0.3 μM 36B4 primers (forward, 5'-CATCAATCCCTACCTATCCATATCCATCCATCTAAC-3'; reverse, 5'-CACCAAGTGGAAGGTAATCC-3').
Vitamin B₁₂, homocysteine, and telomere length

reverse, 5’-CCCATTCTA TCATCAACGGGTACAA-3’). The reactions were performed in the 96-well plate, and each plate included a reference DNA sample. A four-point standard curve was established to allow a conversion of the cycle threshold into nanograms of DNA. A validity test showed that the Pearson correlation coefficients were 0.78 (intra-assay) and 0.69 (inter-assay) when 25 samples were run in triplicate.

Biochemical assessment
All participants fasted for at least 8 h before blood collection. Blood samples were collected and delivered to the Seoul Clinical Laboratories (Seoul, Korea) for assays of serum folate, vitamin B₁₂, HCY, and hs-CRP levels. These biomarkers were assessed using the ADVIA CentaurTM immunoassay kits (Siemens Healthcare Diagnostics Inc., Deerfield, IL, USA).

Potential confounding variables
Information was collected regarding potential confounding variables, which were selected on the basis of previous studies [5-10], during the health examination and questionnaire-based interview. Such information comprised age, sex, body mass index (BMI), smoking status, alcohol consumption, and physical activity level, as well as the presence of diabetes mellitus, hypertension, or dyslipidemia. According to a standardized protocol for anthropometric measurements, height (cm) and body weight (kg) were measured to the nearest 0.1 cm or 0.1 kg, respectively, without footwear, and the body mass index (BMI, kg/m²) was subsequently calculated. To calculate the daily amount of alcohol consumed (g/day), information was gathered regarding alcohol consumption during the past year; this included the average frequency of drinking occasions, the amount of alcohol consumed on a typical occasion, and the volume of one standard drink for each alcoholic beverage. Information regarding physical activity level was obtained using 5 categories of activity intensity, with open-ended questions about the hours spent in a typical day at each level of intensity. A total metabolic equivalent (MET-h) score was calculated by multiplying the hours spent at a particular activity intensity by given MET values (1.0 for sleep or sedentary, 1.5 for very light activity, 2.4 for light activity, 5.0 for moderate activity, and 7.5 for vigorous activity); these values were determined on the basis of given examples of activities in each category. The presence of diabetes mellitus was confirmed if the fasting plasma glucose level of ≥ 120 mg/dL, or if the post-prandial glucose level of ≥ 200 mg/dL. Hypertension was identified when antihypertensive medications were used, or if systolic blood pressure (BP) was ≥ 140 mmHg or diastolic BP of ≥ 90 mmHg. Dyslipidemia was confirmed when hypolipidemic medications were used, or when serum total cholesterol levels were ≥ 240 mg/dL, or when serum high-density lipoprotein (HDL)-cholesterol levels were < 50 mg/dL (in women) or < 40 mg/dL (in men), or when serum triglyceride levels were ≥150 mg/dL. BP was measured in a sitting position using mercury sphygmomanometers after a rest period of at least 5 min. Repeated BP measurements were performed at approximately 30-s intervals and recorded to the nearest 2 mmHg. The mean of 4 measurements (2 in each arm) was calculated for both systolic and diastolic BP.

Statistical analyses
Descriptive statistics of the study participants’ characteristics were obtained according to the quartiles of serum folate levels. The chi-square test and analysis of variance were used to analyze data, where appropriate. In order to evaluate the associations of LTL with serum folate, vitamin B₁₂, and HCY levels, LTL was transformed using the natural logarithm function, to minimize the effect of outliers, and fitted as a dependent variable in linear regression models. In multiple linear regression models, the following covariates were included: age (continuous), sex, BMI (continuous), smoking status (non-smoking, moderate smoking [1-20 cigarettes/day], heavy smoking [% cigarettes/day]), alcohol consumption (non-drinking, alcohol consumption of 1-15 g/day, of 16-30 g/day, and of > 30 g/day), physical activity (MET-h quartiles), as well as the presence of diabetes mellitus, hypertension, or dyslipidemia. Multiple linear regression analyses were stratified on the basis of both serum folate levels (< 5.4 ng/mL and ≥ 5.4 ng/mL) and CRP levels (< 2 mg/L and ≥ 2 mg/L). All statistical analyses were performed using SAS™ software (SAS 9.1.3, SAS Institute, Cary, NC, USA).

Results
This cross-sectional study included 798 men (57%) and women (43%). As reported during the interview, none of the participants had been diagnosed with either cancer or cardiovascular disease. Thirty-one participants (3.9%) were deficient in serum folate (< 3.4 ng/mL). None were deficient in serum levels of vitamin B₁₂ while 64.2% had mild hyperhomocysteinemia (> 12 μmol/L) and none had severe hyperhomocysteinemia (≥ 50 μmol/L) (Figure 1).

The characteristics of the study participants were compared across the quartiles of serum folate levels (Table 1). Men,
smokers, alcohol drinkers, and individuals with hypertension were likely to have lower serum folate levels. Those with lower serum folate levels also were likely to have lower levels of vitamin B_{12} and higher levels of HCY (Table 1).

Table 2 shows the coefficient estimates and standard errors obtained from the linear regression analyses of the associations between LTL and serum folate, vitamin B_{12}, and HCY levels. After adjustment for potential confounding variables, including the presence of metabolic diseases and serum hs-CRP levels, no significant association was found between LTL and serum folate, vitamin B_{12}, and HCY levels among all participants (Table 2).

Table 3 presents the results stratified on the basis of serum folate and HCY levels. Because of the trivial proportion of in-

Table 1. Characteristics of 798 study participants according to the quartiles of serum folate levels

Characteristics	Quartiles of serum folate levels (median)	p-value			
	1st (4.8 ng/mL)	2nd (7.1 ng/mL)	3rd (9.5 ng/mL)	4th (15.8 ng/mL)	
Leukocyte telomere length	1.09 ± 0.47	1.10 ± 0.46	1.14 ± 0.51	1.19 ± 0.83	0.24
Age, years	63.1 ± 6.4	61.9 ± 6.4	62.5 ± 6.6	63.0 ± 6.2	0.24
Men, %	77.4	61.5	45.0	42.7	< 0.001
Body mass index, kg/m^2	25.2 ± 2.6	24.9 ± 2.9	24.7 ± 3.1	24.5 ± 2.9	< 0.001
Current smokers, %	21.1	9.5	6.5	5.5	0.001
Current alcohol drinkers, %	63.3	49.5	39.5	39.7	< 0.001
Physical activity, MET-h^1	39.9 ± 6.9	40.3 ± 5.0	41.5 ± 6.8	40.4 ± 6.0	0.05
Presence of diseases					
Diabetes mellitus, %	24.6	21.5	23.5	25.6	0.79
Hypertension, %	49.8	41.0	42.0	33.7	0.01
Dyslipidemia, %	56.3	52.5	54.0	50.8	0.72
Biochemical measures in serum					
Vitamin B_{12}, pg/mL	557.7 ± 188.6	605.6 ± 199.7	640.4 ± 218.6	730.5 ± 283.1	< 0.001
HCY, μmol/L	16.1 ± 4.6	14.0 ± 3.5	13.1 ± 3.7	12.3 ± 3.0	< 0.001
Hs-CRP, mg/L	1.23 ± 1.21	1.10 ± 1.31	0.97 ± 1.06	1.00 ± 1.11	0.12

HCY: homocysteine, hs-CRP: high-sensitive C-reactive protein.

*Mean ± SD; †Metabolic equivalent scores.
Vitamin B₁₂, homocysteine, and telomere length

Table 2. Associations between LTL and serum folate, vitamin B₁₂, and HCY levels

Nutrients (median)	Coefficient estimates ± SE for LTL* (p-value)	Model 1	Model 2	Model 3
Folate				
1st quartile (4.8 ng/mL)	Reference			
2nd quartile (7.1 ng/mL)	0.010 ± 0.040 (0.80)	-0.00013 ± 0.041 (1.00)	-0.010 ± 0.042 (0.87)	
3rd quartile (9.7 ng/mL)	0.025 ± 0.041 (0.54)	0.010 ± 0.042 (0.85)	0.00019 ± 0.043 (1.00)	
4th quartile (15.8 ng/mL)	0.051 ± 0.042 (0.22)	0.042 ± 0.043 (0.33)	0.040 ± 0.045 (0.37)	
Vitamin B₁₂				
1st quartile (405 pg/mL)	Reference			
2nd quartile (530 pg/mL)	-0.012 ± 0.040 (0.77)	-0.010 ± 0.041 (0.87)	-0.010 ± 0.041 (0.83)	
3rd quartile (659 pg/mL)	0.027 ± 0.040 (0.50)	0.031 ± 0.040 (0.45)	0.021 ± 0.041 (0.61)	
4th quartile (887 pg/mL)	-0.045 ± 0.040 (0.27)	-0.049 ± 0.041 (0.23)	-0.071 ± 0.042 (0.09)	
HCY				
1st quartile (10.1 μmol/L)	Reference			
2nd quartile (12.1 μmol/L)	0.023 ± 0.041 (0.58)	0.034 ± 0.042 (0.41)	0.036 ± 0.042 (0.39)	
3rd quartile (14.2 μmol/L)	0.044 ± 0.042 (0.29)	0.042 ± 0.042 (0.32)	0.043 ± 0.043 (0.31)	
4th quartile (18.2 μmol/L)	-0.048 ± 0.045 (0.28)	-0.048 ± 0.045 (0.30)	-0.044 ± 0.046 (0.34)	

Model 1: Age and sex were adjusted for. Model 2: Age, sex, body mass index, smoking status, alcohol consumption, physical activity, the presence of diabetes mellitus, hypertension, or dyslipidemia, and serum high-sensitive C-reactive protein levels were adjusted for. Model 3: Covariates in model 2 and serum folate, vitamin B₁₂, and HCY levels were adjusted for.

LTL: leukocyte telomere length, HCY: homocysteine, SE: standard error.
*Log-transformed value.

Discussion
We observed no significant association between LTL and serum folate, vitamin B₁₂, and HCY levels in older adults who showed adequate folate and vitamin B₁₂ status, as well as normal or moderately elevated serum HCY levels. However, we did find a weak inverse association between serum HCY levels and LTL in those with elevated levels of serum hs-CRP, a biomarker of low-grade systemic inflammation [19]. In these participants, we also observed a weak inverse association between serum vitamin B₁₂ levels and LTL. Thus, we suggest that moderately elevated serum HCY levels may influence the attrition of LTL in older adults with low-grade inflammation, even when they have adequate folate and vitamin B₁₂ levels.

Telomeres consist of repeating hexameric DNA sequences (TTAGGG in humans), which cap the ends of each chromosome. They function to prevent end-to-end fusion and deterioration of chromosomes, as well as to ensure genomic stability. The attrition of telomeres occurs naturally during cell division, but its rate differs among individuals. It has been hypothesized that telomere attrition is accelerated by aberrant formation and methylation of DNA, by oxidative stress, and by inflammation [4,14,20,21]. These hypotheses have been further linked to one-carbon transfer pathways involving folate, vita-
The degradative pathways of some amino acids produce carbon units, which are in turn transferred to tetrahydrofolate (THF). Subsequently, THF is converted to methylene-THF and methyl-THF. Methylene-THF is involved in the conversion of deoxyuridine monophosphate to deoxythymidine monophosphate for pyrimidine biosynthesis. In folate deficiency, deoxyuridine monophosphate accumulates and uracil is incorporated into DNA in place of thymine. Such misincorporation results in aberrant DNA formation, thus accelerating the DNA strand breakage by excision-repair.

Table 3. Associations between LTL and serum folate, vitamin B₁₂, and HCY levels stratified by serum folate and hs-CRP levels

Nutrients (median)	Coefficient estimates ± SE for LTL* (p-value)			
	Serum folate levels	Serum hs-CRP levels		
	< 5.4 ng/mL (n = 151)	≥ 5.4 ng/mL (n = 647)	< 2 mg/L (n = 688)	≥ 2 mg/L (n = 110)
Folate				
1st quartile (4.8 ng/mL)	NA	NA	Reference	Reference
2nd quartile (7.1 ng/mL)	-0.022 ± 0.045 (0.62)	0.10 ± 0.11 (0.36)		
3rd quartile (9.7 ng/mL)	-0.027 ± 0.046 (0.57)	0.19 ± 0.12 (0.12)		
4th quartile (15.8 ng/mL)	0.033 ± 0.047 (0.47)	0.021 ± 0.12 (0.86)		
Vitamin B₁₂†				
1st quartile (405 pg/mL)	Reference	Reference	Reference	Reference
2nd quartile (530 pg/mL)	-0.044 ± 0.086 (0.61)	0.00010 ± 0.047 (1.00)	0.0047 ± 0.044 (0.91)	-0.12 ± 0.11 (0.27)
3rd quartile (659 pg/mL)	0.033 ± 0.087 (0.70)	0.027 ± 0.046 (0.56)	0.037 ± 0.043 (0.40)	0.013 ± 0.12 (0.91)
4th quartile (887 pg/mL)	-0.18 ± 0.098 (0.07)	-0.030 ± 0.046 (0.51)	-0.016 ± 0.044 (0.71)	-0.28 ± 0.11 (0.01)
HCY				
1st quartile (10.1 μmol/L)	Reference	Reference	Reference	Reference
2nd quartile (12.1 μmol/L)	0.027 ± 0.14 (0.85)	0.037 ± 0.044 (0.40)	0.057 ± 0.044 (0.20)	-0.19 ± 0.14 (0.17)
3rd quartile (14.2 μmol/L)	-0.041 ± 0.13 (0.75)	0.044 ± 0.046 (0.34)	0.059 ± 0.045 (0.19)	-0.19 ± 0.13 (0.17)
4th quartile (18.2 μmol/L)	-0.073 ± 0.13 (0.57)	-0.060 ± 0.051 (0.24)	-0.031 ± 0.048 (0.52)	-0.32 ± 0.14 (0.03)

In multiple linear regression models, age, sex, body mass index, smoking status, alcohol consumption, physical activity, and the presence of diabetes mellitus, hypertension, or dyslipidemia were adjusted for.

LTL: leukocyte telomere length, HCY: homocysteine, hs-CRP: high-sensitive C-reactive protein, SE: standard error, NA: not applicable.

*Log-transformed value.

Table 4. Associations of serum folate and vitamin B₁₂ levels with serum HCY levels stratified by serum folate and hs-CRP levels

Nutrients (median)	Coefficient estimates ± SE for HCY* (p-value)			
	Serum folate levels	Serum hs-CRP levels		
	< 5.4 ng/mL (n = 151)	≥ 5.4 ng/mL (n = 647)	< 2 mg/L (n = 688)	≥ 2 mg/L (n = 110)
Folate				
hs-CRP < 2 mg/L	-0.01 ± 0.002 (< 0.001)	-0.01 ± 0.002 (< 0.001)		
hs-CRP ≥ 2 mg/L	-0.01 ± 0.004 (< 0.01)	-0.01 ± 0.004 (< 0.01)		
Vitamin B₁₂†				
hs-CRP < 2 mg/L	-0.03 ± 0.004 (< 0.001)	-0.02 ± 0.004 (< 0.001)		
hs-CRP ≥ 2 mg/L	0.004 ± 0.010 (0.69)	0.02 ± 0.009 (0.08)		

In multiple models, serum levels of folate and vitamin B₁₂ were fitted as a continuous variable, and age, sex, body mass index, smoking status, alcohol consumption, physical activity, the presence of diabetes mellitus, hypertension, or dyslipidemia, and serum folate and vitamin B₁₂ levels were adjusted for.

HCY: homocysteine, hs-CRP: high-sensitive C-reactive protein, SE: standard error.

*Log-transformed value; †The original value was divided by 100 because of small coefficient estimates.
enzymes as they remove uracil bases. Meanwhile, methyl-THF, in concert with vitamin B_{12}, donates methylene to generate methionine from HCY. Methionine serves as a methyl donor for the maintenance of proper methylation of DNA, RNA, and proteins. However, deficiencies in folate and vitamin B_{12} result in aberrant methylation and HCY accumulation [2,3,22]. Recently, HCY has been suggested as a potential determinant of oxidative and inflammatory stress [23]. Two HCY molecules, each of which contains a reactive sulfhydryl group, form a disulfide bond and a superoxide radical in the presence of oxygen. Indeed, even modestly elevated HCY levels have been reported to increase oxidative stress in rats [24], as well as in humans [25]. Moreover, it has been hypothesized that HCY-induced oxidative stress triggers pro-inflammatory responses [26], although data are still limited.

The circulating HCY level is determined by both genetic and nutritional factors, as well as by physiological characteristics such as age, sex, and race, and the presence of cancer or metabolic diseases. Regarding nutritional factors, deficient intake of folate, vitamin B_{12}, or vitamin B_{6}, as well as excessive intake of methionine-rich proteins, is known to raise circulating HCY levels [27]. In present study, we included Korean older adults who were free of cancer and cardiovascular disease, and took into account age, sex, and the presence of metabolic diseases in our association analyses, although we were unable to consider genetic factors. Approximately 2 thirds of the study participants showed modestly elevated HCY levels, but most of them showed adequate folate status and all participants showed adequate vitamin B_{12} status. Therefore, we hypothesize that the mild hyperhomocysteinemia seen in some subjects may be partly due to methionine-rich protein intake rather than B-vitamin deficiency. Excessive consumption of beef, pork, poultry, and fish, major sources of methionine-rich protein and vitamin B_{12}, was reported in previous studies to raise circulating HCY levels [28,29]. The finding of a positive association between serum HCY levels and vitamin B_{12} among individuals with elevated hs-CRP levels seems to support this hypothesis. However, other nutritional mechanisms, as well as non-nutritional mechanisms, cannot be ruled out in explaining these findings.

The strengths of our study include the use of data from a general population and the consideration of a broad range of confounding factors. However, some study limitations should be taken into account when interpreting our findings. Because the study design was cross-sectional, a causal relationship between serum HCY levels and LTL remains undetermined, and this should be investigated in future studies. In addition, because we were unable to measure consumption of protein or specific amino acids, whether methionine-rich protein intake has an effect on hyperhomocysteinemia of the study participants remains undetermined. Similar to other studies, our study used leukocytes instead of somatic cells to assess telomere length. Because the attrition rates of telomeres are reportedly similar between leukocytes and somatic tissues [30], LTL seems to be a reasonable biomarker reflecting telomere length of somatic tissues. Our findings may be generalizable to East Asian adults aged 55 years and over, but not to other ethnicities and age groups.

Conclusion

In this study, we observed that serum HCY levels are inversely associated with LTL under conditions of low-grade systemic inflammation (indicated as serum hs-CRP levels) and adequate folate and vitamin B_{12} status. Given these findings, we suggest that circulating HCY and hs-CRP levels should be strictly maintained below their normal ranges to delay biological aging for healthy adults, and that the reduction of circulating HCY and hs-CRP levels via lifestyle modification should be investigated in future studies.

Acknowledgements

This study was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2014R1A2A2A01004863). This study was also supported by a fund (2011-E71004-00, 2012-E71005-00, 2013-E71005-00) by research of Korea Centers for Disease Control and Prevention. The funders have no role in the study.

Conflict of Interest

All authors declare no conflict of interest.

ORCID

Inkyung Baik http://orcid.org/0000-0002-9524-4344
Chol Shin http://orcid.org/0000-0002-2928-8576
References

1. Mason JB. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 2003;133 Suppl 3:9415-9475.
2. Arize U. Facilitating understanding of the purine nucleotide cycle and the one-carbon pool: Part I. The purine nucleotide cycle. Biochem Mol Biol Educ 2005;33:21-33.
3. Fenech M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res 2012;733:21-33.
4. Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 2012;3:21-38.
5. Paul L, Cattaneo M, D’Angelo A, Sampietro F, Fermo I, Razzari C, Fontana G, Eugène N, Jacques PF, Selhub J. Telomere length in peripheral blood mononuclear cells is associated with folate status in men. J Nutr 2009;139:1273-8.
6. Richards JB, Valdes AM, Gardner JP, Kato BS, Siva A, Kimura M, Lu X, Brown MJ, Aviv A, Spector TD. Homocysteine levels and leukocyte telomere length. Atherosclerosis 2008;200:271-7.
7. Bull CF, O’Callaghan NJ, Mayrhofer G, Fenech MF. Telomere length in lymphocytes of older South Australian men may be inversely associated with plasma homocysteine. Rejuvenation Res 2009;12:341-9.
8. Liu JJ, Prescott J, Giovannucci E, Hankinson SE, Rosner B, De Vivo I. One-carbon metabolism factors and leukocyte telomere length. Am J Clin Nutr 2013;97:794-9.
9. Paul L, Jacques PF, Aviv A, Vasan RS, D’Agostino RB, Levy D, Selhub J. High plasma folate is negatively associated with leukocyte telomere length in Framingham Offspring cohort. Eur J Nutr 2015;54:235-41.
10. Rane G, Koh WP, Kanchi MM, Wang R, Yuan JM, Wang X. Association between leukocyte telomere length and plasma homocysteine in a Singapore Chinese population. Rejuvenation Res 2015;18:203-10.
11. Zhang D, Wen X, Wu W, Xu E, Zhang Y, Cui W. Homocysteine-related hTERT DNA demethylation contributes to shortened leukocyte telomere length in atherosclerosis. Atherosclerosis 2013;231:173-9.
12. Zhang DH, Wen XM, Zhang L, Cui W. DNA methylation of human telomerase reverse transcriptase associated with leukocyte telomere length shortening in hyperhomocysteinemia-type hypertension in humans and in a rat model. Circ J 2014;78:1915-23.
13. Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontol A Biol Sci Med Sci 2011;66:202-13.
14. Saretzki G, Von Zglinicki T. Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 2002;959:24-9.
15. Bull CF, Mayrhofer G, O’Callaghan NJ, Au AY, Pickett HA, Low GK, Zeegers D, Hande MP, Fenech MF. Folate deficiency induces dysfunctional long and short telomeres; both states are associated with hypomethylation and DNA damage in human WIL2-NS cells. Cancer Prev Res (Phila) 2014;7:128-38.
16. Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005;289:H2649-56.
17. Baik I, Kim J, Abbott RD, Joo S, Jung K, Lee S, Shim J, In K, Kang K, Yoo S, Shin C. Association of snoring with chronic bronchitis. Arch Intern Med 2008;168:167-73.
18. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002;30:47.
19. Kushner I, Samols D, Magrey M. A unifying biologic explanation for "high-sensitivity" C-reactive protein and "low-grade" inflammation. Arthritis Care Res (Hoboken) 2010;62:442-6.
20. Moores CJ, Fenech M, O’Callaghan NJ. Telomere dynamics: the influence of folate and DNA methylation. Ann N Y Acad Sci 2011;1229:76-88.
21. Wong JY, De Vivo I, Lin X, Fang SC, Christiani DC. The relationship between inflammatory biomarkers and telomere length in an occupational prospective cohort study. PLoS One 2014;9:e87348.
22. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A 1997;94:3290-5.
23. Ventura E, Durant R, Jaussent A, Picot MC, Morena M, Badiou S, Dupuy AM, Jeandel C, Cristol JP. Homocysteine and inflammation as main determinants of oxidative stress in the elderly. Free Radiol Biol Med 2009;46:737-44.
24. Mendes RH, Mostarda C, Candido GO, Moraes-Silva IC, D’Almeida V, Belló-Klein A, Irigoyen MC, Rigatto K. Moderate hyperhomocysteinemia provokes dysfunction of cardiovascular autonomic system and liver oxidative stress in rats. Auton Neurosci 2014;180:43-7.
25. Wilcken DE, Wang XL, Adachi T, Hara H, Duarte N, Green K, Wilcken B. Relationship between homocysteine and superoxide dismutase in homocystinuria: possible relevance to cardiovascular risk. Arterioscler Thromb Vasc Biol 2000;20:1199-202.
26. Schroersnaedel K, Frick B, Wirtzfeld B, Winkler C, Schennach H, Fuchs D. Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 2004;5:107-18.
27. Durand P, Prost M, Loreau N, Lussier-Cacan S, Blache D. Impaired homocysteine metabolism and atherothrombotic disease. Lab Invest 2001;81:645-72.
28. Chambers JC, Obeid OA, Kooner JS. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in homocystinuria: possible relevance to cardiovascular risk. Arterioscler Thromb Vasc Biol 1999;19:2922-7.
29. Yakub M, Iqbal MF, Iqbal R. Dietary patterns are associated with hyperhomocysteinemia in an urban Pakistani population. J Nutr 2010;140:1261-6.
30. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, Desai K, Granick M, Aviv A. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 2013;4:1597.