Current emerging MRI tools for radionecrosis and pseudoprogression diagnosis

Lucía Nichelli and Stefano Casagrande

Purpose of review
This review aims to cover current MRI techniques for assessing treatment response in brain tumors, with a focus on radio-induced lesions.

Recent findings
Pseudoprogression and radionecrosis are common radiological entities after brain tumor irradiation and are difficult to distinguish from real progression, with major consequences on daily patient care. To date, shortcomings of conventional MRI have been largely recognized but morphological sequences are still used in official response assessment criteria. Several complementary advanced techniques have been proposed but none of them have been validated, hampering their clinical use. Among advanced MRI, brain perfusion measures increase diagnostic accuracy, especially when added with spectroscopy and susceptibility-weighted imaging. However, lack of reproducibility, because of several hard-to-control variables, is still a major limitation for their standardization in routine protocols. Amide Proton Transfer is an emerging molecular imaging technique that promises to offer new metrics by indirectly quantifying intracellular mobile proteins and peptide concentration. Preliminary studies suggest that this noncontrast sequence may add key biomarkers in tumor evaluation, especially in posttherapeutic settings.

Summary
Benefits and pitfalls of conventional and advanced imaging on posttreatment assessment are discussed and the potential added value of APT in this clinicoradiological evolving scenario is introduced.

Keywords
advanced MRI, amide proton transfer weighted imaging, brain tumor, pseudoprogression, radionecrosis

INTRODUCTION

MRI plays a key-role in brain tumor follow-up, allowing to monitor response to treatment or the detection of progression, and therefore, driving critical clinical decisions. From year to year, as the therapeutic arsenal increases, assessing treatment efficacy, especially after radiotherapy or during immunotherapy, becomes more difficult. The distinction between pseudoprogression and radionecrosis from true progression or stable disease is often not possible with conventional MRI sequences and requires advanced imaging. However, no advanced MRI protocol has yet been validated. The aim of this article is to review the current knowledge on the posttherapeutic evaluation of brain tumors with a focus on the potential added value of Amide Proton Transfer (APT), a new promising noncontrast MRI technique belonging to Chemical Exchange Saturation Transfer (CEST) imaging domain.

Department of Neuroradiology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Sorbonne Université, INSERM, CNRS, Assistance Publique-Hôpitaux de Paris, Institut du Cerveau et de la Moelle épinière, boulevard de l'Hôpital, Paris and Department of Research & Innovation, Olea Medical, avenue des Sorbiers, La Ciotat, France

Correspondence to Lucía Nichelli, MD, Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, boulevard de l'Hôpital, Paris, France. Tel: +33 1 42 16 35 96; e-mail: lucia.nichelli@aphp.fr

Curr Opin Oncol 2021, 33:597–607
DOI:10.1097/CCO.0000000000000793

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

1040-8746 Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. www.co-oncology.com
Brain radionecrosis and pseudo progression require advanced imaging.
Perfusion holds the higher diagnostic accuracy, especially when combined with spectroscopy and susceptibility-weighted imaging.
Diffusion weighted imaging must be interpreted with caution, as similar diffusion water molecules metric can reflect opposite phenomena (i.e. necrotic or hypercellular lesions).
Amide Proton Transfer weighted imaging is an emerging technique that promises high diagnostic performances for assessing treatment response in brain tumors.

THE FUNDAMENTALS OF RADIONECROSIS AND PSEUDOPROGRESSION

Radiotherapy is a well established treatment option against brain primary tumors or metastases, which together account for the majority of brain tumors [1]. Stereotactic radiosurgery (SRS) is currently the most relevant therapeutic option for selected patients with brain metastasis and its indications are continuously expanding [2]. Maximum well tolerated surgical resection followed by a 6-week course of radiotherapy concurrently with temozolomide chemotherapy is the cornerstone of glioblastoma treatment [3]. Salvage re-irradiation may also be considered in some case of recurrent glioblastoma [4], although an optimal dosing regimen has not been established [5].

Unfortunately, brain radiotherapy is likely to induce chronic inflammatory reactions [6,7] and possibly result in necrotic and edematous lesions that can be extremely difficult to distinguish from tumor recurrence with both conventional and advanced MRI sequences [8,9,10,11].

Several risk factors can predispose to radio-induced brain complications. Among them, the type of systemic concurrent antitumor therapy plays an important role in enhancing radiation toxicity [12]. Notably, Immune-Checkpoint Inhibitors (ICIs), a recent target strategy against metastatic disease [2,13], are often combined with SRS [14] as focal irradiation can improve systemic antitumor immunity, a phenomenon typically referred as the abscopal effect [15,16]. Nevertheless, this combinatorial approach increases the risk of radiation necrosis [17], with largely unknown pathophysiological mechanisms [18]. Additionally, even in the absence of irradiation, immunotherapy agents can provoke unconventional transient immune-related phenomena that lead to misleading pseudoprogressing contrast-enhancing lesions [19].

Due to widespread use of these advanced therapeutic approaches, knowledge of these complex cutting-edge treatments is essential to properly assess treatment response and guide subsequent clinical decisions.

Definitions

There is no clear evidence nor consensus on the distinction between pseudoprogression and radio necrosis, probably because of the paucity of histopathological data, difficulties in assessing the correct histological diagnosis, given the frequent ‘mixed’ pattern with tumor remnants and radiation-induced tissue changes in biopsy samples [20], and the absence of large-scale, harmonized, multicenter, prospective researches.

Pseudoprogression and radionecrosis are radiologically defined by a new or enlarging area(s) in the radiation field that resolves without treatment modification. When images of radiation-induced lesions appear shortly after the end of radiotherapy (within the first 6 months for most of the studies [8,21,22], whereas others only consider the first 2 [23] or 3 months [24,25]), the term pseudoprogression is preferred, especially in the context of diffuse glioma. On the contrary, radionecrosis emerges at a later stage (from around 6 months to several years) [8,26].

Mechanism

Pathologically, no clear boundaries separate these two entities as the physiopathology of the radio-induced lesion is dynamic [27,28]. Pseudoprogression is probably an expression of early delayed brain injury and is dominated by vascular damage (i.e. vasodilatation and increased capillary permeability), resulting in vasogenic edema that normally resolves spontaneously, and is often associated with transient demyelination [29]. Conversely, radionecrosis is part of late delayed brain injury and is characterized by a mixture of vascular endothelial damage and demyelination lesions, followed by neuronal death, and often does not recede [24].

Even though our understanding of the biomolecular pathways following radiotherapy is still very limited, blood vessel damage has been repeatedly recognized as one of the core step in the development of radiation toxicity [29–31], leading to hypoxia and upregulation of Hypoxia Inducible Factor-1 alpha (HIF-1α) in microglia and subsequent Vascular Endothelial Growth Factor (VEGF) induction, and several pro-inflammatory cytokines release [32]. VEGF over-expression results in leaky angiogenesis.
and ultimately facilitates radio-induced necrotic lesion expansion [33–35].

Incidence

Pseudoprogression and radionecrosis are common entities in both gliomas and in brain metastases. A recent meta-analysis showed that pseudoprogression occurred in 36% (95% confidence interval, 33–40%) high-grade glioma patients [36]. At the same time, nearly a third of SRS-treated metastases show a transient, moderate volume increase at around 6 weeks after treatments, which sometimes lasts beyond 15 months [26,37,38]. The incidence of later (after 6 months) radionecrotic lesions is less understood for both primary and secondary brain tumors, as reported incidence ranges widely from 5 to 50%, and is probably underestimated [24,34,39–41].

Risk factors

Radiotherapy toxicity is complex and depends on several parameters. Total irradiation dose [42,43], treated volume [44,45] and the dose per fraction [46] are important and obvious risk factors. In the context of diffuse gliomas, it has been suggested that MGMT promoter methylated tumors are more prone to develop pseudoprogression [47] and that temozolamide increases radiation-induced lesions in both high grade [23] and low-grade glioma [48]. Immunotherapy may raise the incidence of radionecrosis in brain metastases treated with SRS [17,19] but further studies are needed to quantify its impact [14*,18,49]. All in all, the intertangled network of these heterogeneous predisposing factors is largely unknown, and it is impossible to predict individual sensitivity to radiation toxicity. Large, multivariate analysis are certainly needed, and they should include an extensive panel on molecular tumor characteristics and all different types of concurrent or adjuvant antitumor agents.

Clinical implications

Radiation-induced toxicity is usually asymptomatic or paucisymptomatic [44]. When radiation necrosis is clinically meaningful, it is commonly treated with high-dose steroids or with surgical debulking [50,51]. Given the role of VEGF on the radiation-induced progressing lesion [35,52], it is not surprising that bevacizumab, an anti-VEGF monoclonal antibody, is also an effective treatment for symptomatic steroid-resistant radiation necrosis of both primary [53] and secondary tumors [54,55*,56] and that it may help reducing steroid dosage [57]. Hyperbaric oxygen [58], laser interstitial thermal therapy [50] and anti-TNF antibodies [59,60] are other treatment options but have only been investigated in preliminary reports.

In the most frequent scenario, the clinical challenge is not simply to treat radiation-induced lesions but firstly to diagnose it correctly. Resolving this clinical problem is crucial as it permits to avoid premature cessation of effective treatments or delays in withdrawal of ineffective treatments. To date, no validated single MRI-based imaging metric can differentiate between treatment response and tumor recurrence after radiation therapy. Therefore, a multimodality approach is almost always required, although sometimes still insufficient because of intrinsic limitations of the available MRI sequences, as furtherly discussed.

CURRENT MRI IMAGING IN POSTTREATMENT TUMOR EVALUATION

The Response Assessment in Neuro-Oncology (RANO) working group has provided consensus response criteria for high-grade [61] and low-grade [62] gliomas, and for brain metastases with the commendable purposes of accuracy and reproducibility between different institutions. At present, however, it is extremely difficult to combine these two characteristics in posttherapeutic assessment of brain tumors as accuracy requires advanced multimodal imaging protocols that are extremely difficult to standardize and validate in multicenter studies. On the other hand, reproducibility can be achieved with conventional imaging but it is often far from being accurate. At present, on the urge of interpretation of clinical trials, reproducibility has been preferred and RANO criteria are based on conventional MRI sequences [63]. To overcome inherent limitation of RANO criteria on the evaluation of pseudoprotossing lesions during ICIs trials, immunotherapy response assessment for neuro-oncology (iRANO) criteria [64] have been developed but they are still based on morphological imaging features, and therefore, lead to delayed diagnosis.

Conventional sequences

Visual inspection of T1-weighted (T1w), T2-weighted (T2w), and fluid-attenuated inversion recovery (FLAIR) sequences is essential for detecting fine anatomical details but it is useless in the metabolic discrimination of space-occupying lesion. Morphological imaging after contrast agent injection detects blood–brain barrier leakage, which is present in both radiation-induced inflammation and in neoplastic lesion [8]. Early studies explored the value of
T2w and T1w postcontrast imaging in differentiating tumor recurrence from radiation necrosis in brain metastases treated with SRS. Evaluation of the spatial concordance between the boundaries of the lesion on T2w and T1w postcontrast imaging show a T1/T2 match (in favor of tumor recurrence) or T1/T2 mismatch (in favor of radionecrosis) [65]. Quantitative determination of lesion quotient, defined as the area of a hypointense nodule on T2w divided by its area on contrast-enhanced T1w, suggested to show different results in radionecrosis (lesion quotient less than 0.3) and in recurrent metastasis (lesion quotient greater than 0.6) [66]. These qualitative and quantitative signs were not confirmed in further studies [67,68].

Type of contrast uptake has also been investigated, and a ‘cut-green pepper’, a ‘soapbubbles’ or a ‘gruyere’ cheese contrast enhancement appearance has been related to radionecrosis [69,70] but the subjective evaluation of these signs limits their reproducibility [9].

Overall, conventional sequence evaluation does not distinguish between tumor and posttherapeutic lesion at an early stage [71], whereas in the later stage, the tumor progresses while the posttherapeutic lesion remains stable, shrink or disappear.

Diffusion-weighted imaging

Diffusion-weighted imaging and its various extensions (diffusion tensor imaging, diffusion kurtosis imaging, neurite orientation dispersion and density imaging, diffusional and constrained diffusional variance decomposition) can provide important complementary information on tissue microstructure in treatment-naive patients [72–76]. Conversely, after radiotherapy, the evaluation of diffusion-derived changes must be interpreted with caution as studies on this topic are contradictory [77,78] and similar diffusion water molecules metric can reflect opposite phenomena (i.e. diffusion restriction because of hypercellularity or postradiotherapy coagulative necrosis) [72,79]. An example of diffusion restriction in a pathologically proved radionecrosis is shown in Fig. 1. Detection of restricted diffusion foci in irradiated tumor successively treated with Bevacizumab is a well known form of therapy-induced necrosis [80,81]. Radiologist and clinicians should be aware of this entity and avoid misdiagnosis with stroke or tumor progression.

Intravoxel Coherent Motion Imaging, a novel diffusion technique that produces simultaneous diffusion and perfusion maps, can have a potential role in identifying radiation-induced changes in gliomas and brain metastases treated with SRS, as a pilot works suggest [82].

Susceptibility-weighted imaging

Several paramagnetic and diamagnetic sources of signal, such as deoxygenated hemoglobin, tissue calcifications or iron deposits can alter magnetic susceptibility and thus lead to susceptibility-weighted imaging (SWI) changes. They can be present in brain metastases, especially of melanoma [83], and in glioma [84]. In this latter group, the degree of intratumoral susceptibility signal intensity (ITSS) was shown to be positively correlated with glioma grade and higher perfusion values [85]. After radiotherapy, a marked increase of SWI signal changes within the radiation field is often observed, traducing blood vessel injury and radiotherapy-related remnants [79,86]. Measuring the proportion of hemorrhage shown in SWI lowers false-positive rate in the differentiation of recurrence from radionecrosis-based simply on perfusion measurements [87] and increases overall survival prediction [87].

R_2 coefficient is also sensitive to hemorrhage and calcifications, and it can be measured within a specific region of interest by fitting signal decay through multiechoes gradient echo sequences. A pilot study in glioblastoma patients showed that this coefficient, also referred as apparent transverse relaxation, shows lower value in pseudoprogressing compared with progressing contrast—enhancing lesions [88]. Preclinical data suggest that R_2 coefficient might even predict radionecrosis 10 weeks before morphological changes [89].

Brain perfusion

Brain MRI tumor perfusion measures can be acquired through dynamic susceptibility contrast (DSC), dynamic contrast-enhanced (DCE), or arterial spin labelling (ASL) techniques. Relative Cerebral Blood Volume (rCBV) value, a semi-quantitative vascularity measure derived from DSC perfusion, is the most used advanced MRI indicator in posttreatment tumor assessment [90–93], with a cutoff of the contralateral white matter Region of Interest (ROI) usually ranging above 1.5–2 for tumor lesions [94–96]. Elevated rCBV is a marker of increased microvascular density and often reflects tumor aggressiveness, correlating with glioma grade [97] and survival [98] (except for oligodendrogliomas [99]). The increase in rCBV compared with baseline after antitumor treatment predicts a worse outcome [100,101] and seems more accurate in survival prediction than histopathologic grade in glioma [102].

In SRS-treated metastasis, the percentage signal-intensity recovery (PSR) towards baseline, an indicator of capillary permeability, appears to be a better prognostic indicator of metastatic tumor
progression than rCBV as radiation-induced lesions show a higher PSR than do recurrent tumors [103].

Unfortunately, because of the difficulty in controlling several technical acquisition and postprocessing variables, there are considerable interinstitutional and even intrainstitutional variations in DSC-derived measurements [104]. This variability severely limits reproducibility and hampers the implementation of DSC perfusion in the routine assessment of treatment response (e.g. current RANO criteria) [105].

DCE-MRI data enable the evaluation of several pharmacokinetics parameters. The most investigated is the volume transfer coefficient (K\text{trans}) that reflects the tumor vascular permeability and is higher in radiation necrosis than in tumor progression [106–109]. In brain metastatic disease, DCE technique appears to have better diagnostic accuracy than DCS perfusion in the differential diagnosis between radiation necrosis and tumor recurrence [110]. In contrast, high-grade glioma DSC-derived blood volume measures seem more accurate than DCE-derived permeability measures in the same distinction [111,112].

ASL is a contrast-free perfusion technique obtained through magnetically labeled blood protons. ASL imaging is starting to be studied in high-
grade gliomas [113], especially in posttherapeutic settings, where it showed no need of leakage-correction algorithms, fewer susceptibility artifacts than DSC perfusion [114] but contrasting accuracy results. To date, no studies have been published on the ASL performance in brain metastasis posttreatment evaluation.

Spectroscopy

Magnetic resonance spectroscopy (MRS) provides insight into metabolic tissue features by noninvasively detecting solute protons in water. Concentration of choline-containing compound metabolites, markers of cell membrane turnover, is highly increased in tumor progression [115], whereas lipids and lactates have been shown to dominate in posttreatment disease, suggesting cellular necrosis [116]. Several metabolite ratios have been proposed to diagnose radionecrotic lesion (summarized in previous reviews [117–119]), and Cho/NAA and Cho/Cr ratios seem to be the best discriminators [120] but none of them have been validated in multicenter studies. When compared with perfusion, MRS showed inferior discriminating abilities [121]. However, the combination of MRS and perfusion imaging increases diagnostic accuracy [111,122], hence with sensitivity and specificity values that still prevent replacing invasive biopsy sampling or serial imaging confirmation.

D-2-hydroxyglutarate (2HG) MRS [123] is an umbrella term that refers to MRS techniques that can measure 2HG oncometabolite [124] in IDH-mutant diffuse gliomas. Preliminary longitudinal 2HG MRS evaluations have shown that this biomarker decreases after antitumor treatments [125] and possibly increases in tumor recurrence [126], thus this novel noninvasive technique could also aid in IDH-mutant glioma posttreatment assessment.

Texture analysis and radiomics

The term ‘texture analysis’ encompasses different computational methods that are used to quantify the spatial arrangement of image signal intensities. After ROI definition and preprocessing, several features, imperceptibles to the human eye, are extracted, selected and finally classified [127]. The complementary information provided by this noninvasive, objective and possibly fully automatic approach is clearly attractive but lack of standardization and overfitting issues are still major constraints [128,129]. When these multiple parameters are used to predict clinical and biological variables, this multistep approach is referred to as ‘radiomics’ [130].

MR texture analysis and radiomics have been conducted mainly with conventional sequences, with already interesting results, especially in the evaluation of tumor shape features and surface irregularities in the diagnosis of glioblastoma versus pseudoprogression [131]. Adding complementary advanced sequences to this complex evaluation indeed promises to achieve higher diagnostic performances [132,133].

CHEMICAL EXCHANGE SATURATION TRANSFER IMAGING: A NEW TOOL ON MRI ARSENAL

Chemical exchange saturation transfer (CEST) is a molecular imaging technique recently available on 3 Tesla MRI scanners [134,135] that detects low-concentration solute molecules with exchangeable hydrogen protons. By applying a radiofrequency pulse at their resonance frequencies, the chemical species of interest – such as amide (NH), amine (NH2) or hydroxyl group (OH) – reach a saturation state and their labile excited hydrogen protons are exchanged with the nonexcited hydrogen protons of solvent water. If this process is repeated continuously for a few seconds of RF irradiation, saturation builds up, which decreases water signal, thus indirectly reflecting the concentration of the targeted species with amplified detection. Their detectability is, for example, amplified by a factor of 100, if this exchange takes places 100 times [136].

To extract the CEST signal of interest, multiple samples are acquired around the frequency of water and molecules of interest to correct field inhomogeneities [137,138], for denoising purposes [139], and for averaging of the sampled values to increase the signal-to-noise ratio [140]. This set of sampled volumes (normalized for an unsaturated volume) is called the Z-Spectrum [136].

The most marked clinical distinction for this molecular technique is whether the CEST agent is endogenous (and therefore, is already found in the human body, such as the amide and amine groups from peptides and proteins [141]) or exogenous (and therefore, needs to be administered, such as glucose-based agents [142] or Iopamidol [143]).

Amide CEST imaging, also known as APT, has been shown to provide more stable and sensitive detection compared with other CEST agent on clinical 3 Tesla scanners, and therefore is, to date, the most used CEST technique, in and out of the neurological field [144]. In neuro-oncology, an increase in APT-weighted (APTw) signal intensity is observed in tumor tissues, because of elevated concentration of intracellular mobile proteins and peptides, and consequent increase of protein backbone amides.
APTw imaging has demonstrated promising results in glioma grading [141,145,146], in the identification of higher cellularity and proliferation area in heterogeneous diffuse glioma [147], as in IDH status and 1p/19q co-deletion prediction [148–151].

Another major potential application of APTw imaging is the assessment of response to treatment, with the hypothesis that tumor hypercellularity leads to an increase in APTw signal intensity compared with lower cellular density of therapeutic related changes. In 2011, a first preclinical study showed a significant decrease in APTw signal intensity in the radionecrotic lesions compared with gliomas [152]. Shortly thereafter, another preclinical work showed that APTw values decrease more rapidly than diffusion and ASL perfusion values, suggesting that Amide CEST could prompt early response information [153]. The former group then conducted a first clinical radiohistopathological validation in glioma patients and found positive significant correlations between APTw signal intensity and both cellularity and proliferation index [154], therefore, suggesting that APTw values are a marker of active glioma in posttreatment settings. These results are in line with other studies that have been conducted in diffuse gliomas, especially in context of the antiangiogenic therapy and in the distinction between progressing and pseudoprogressing lesion [149]. Interestingly, the changes in APTw signal intensity was also seen to spatially overlap FET-PET data for both contrast-enhancing and noncontrast-enhancing glioma lesions [156], which is easily explained as biological processes behind this different imaging modalities are similar.

Concerning brain metastases, previous study reported that not only the CEST signal from amide groups but also from the Nuclear Overhauser Enhancement (NOE) effects, a protein un-folding biomarker [157] that can be derived through CEST imaging fitting [138,158], was able to distinguish radiation necrosis from tumor progression, and NOE signal intensity provided the best separation of these two conditions [158].

Advances in CEST imaging are increasing the ability to extract both individual APT and NOE biomarkers in clinical routine [134,159] without the contamination of magnetization transfer effect coming from semisolid macromolecules [136].

Figure 2 illustrates an example of biopsy-proven tumor progression that was early detected by APTw imaging and neither by conventional nor perfusion MRI, whereas Fig. 3 displays a radiation-induced lesion that regressed at 6-month follow-up.
Radionecrosis and pseudoprogression are common phenomena that urge precise imaging diagnosis to provide optimal early patient care. Shortcomings of conventional MRI are well known, whereas the added value of complementary advanced imaging sequences, especially perfusion, needs to be accurately established, as inherent limitations have been reported for each sequence. In this evolving scenario, APT-CEST metrics offer new problem-solving tools that expand MRI armamentarium for assessing treatment response. A multimodal machine-learning analysis that includes the best performing perfusion technique with validated molecular information provided by CEST imaging promises highly accurate personalized patient care of each individual brain lesion.

CONCLUSION
Radionecrosis and pseudoprogression are common phenomena that urge precise imaging diagnosis to provide optimal early patient care. Shortcomings of conventional MRI are well known, whereas the added value of complementary advanced imaging sequences, especially perfusion, needs to be accurately established, as inherent limitations have been reported for each sequence. In this evolving scenario, APT-CEST metrics offer new problem-solving tools that expand MRI armamentarium for assessing treatment response. A multimodal machine-learning analysis that includes the best performing perfusion technique with validated molecular information provided by CEST imaging promises highly accurate personalized patient care of each individual brain lesion.

Acknowledgements
We acknowledge the help of Stéphane Lehéricy (Department of Neuroradiology, La Pitié Salpêtrière - Charles Foix Hospital, Paris, France), Julian Jacob (Department of Radiation Oncology, La Pitié Salpêtrière - Charles Foix Hospital, Paris, France) and Malgorzata Marjanska (Center for Magnetic Resonance Research, Department of Radiology, Minneapolis, Minnesota, United States) for their critical revision of the article. We thank Christos Papageorgakis (Department of Research & Innovation, Olea Medical, La Ciotat, France) for MR acquisition processing support.

Financial support and sponsorship
None.

Conflicts of interest
L.N. has no financial disclosure. S.C. is currently an employee at Olea Medical (Research & Innovation Team Leader – Molecular Imaging Project Manager).

REFERENCES AND RECOMMENDED READING
Papers of particular interest, published within the annual period of review, have been highlighted as:
* of special interest
** of outstanding interest

1. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl) 2016; 131:803–820.
2. Suh JH, Kotecha R, Chao ST, et al. Current approaches to the management of brain metastases. Nat Rev Clin Oncol 2020; 17:279–298.

This article contains an exhaustive description on the current treatment and management of patients with brain metastases.

3. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352:987–996.
4. Shah JL, Li G, Shaffer JL, et al. Stereotactic radiosurgery and hypofractionated radiotherapy for glioblastoma. Neurosurgery 2018; 82:24–34.
5. Kazmi F, Soon YY, Leong YH, et al. Re-irradiation for recurrent glioblastoma (GBM): a systematic review and meta-analysis. J Neurol Oncol 2019; 142:79–90.
6. Soussain C, Ricard D, Fike JR, et al. CNS complications of radiotherapy and chemotherapy. The Lancet 2009; 374:1639–1651.
7. De Rysscher D, Niedermann G, Burnet NG, et al. Radiotherapy toxicity. Nat Rev Dis Prim 2019; 5:13.
8. Ellingson BM, Chung C, Pope WB, et al. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurol Oncol 2017; 134:495–504.
9. Toshniwal S, van den Bent MJ, Smits M. Pseudoprogression of brain tumors: pseudoprogression of brain tumors. J Magn Reson Imaging 2018; 48:571–589.
10. Matsuda G, Sato J, Akahane M, et al. Recognizing radiation-induced changes in the central nervous system: where to look and what to look for. Radiographics 2021; 41:224–248.

This very clear and didactic review summarizes the vast spectrum of radiation-induced lesions of the central nervous system.

11. Ly KI, Gerstner ER. The role of advanced brain tumor imaging in the care of patients with central nervous system malignancies. Curr Treat Options Oncol 2018; 19:18–40.
12. Ruben JD, Dally M, Bailey M, et al. Bevacizumab treatment for radiation necrosis after radiotherapy in brain metastases: a phase III, randomized, controlled trial. J Natl Cancer Inst 2011; 103:1868–1929.
13. Marks JE, Baglan RJ, Prasad SC, Blank WF. Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 2006; 64:419–424.
14. Patil TR, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res 2000; 153:357–370.

This review covers the current state-of-the-art on brain metastases treated with irradiation and immunotherapy, an emerging therapeutic approach that seems to increase radionecrotic lesions.

15. Ashraftadeh M, Farhood B, Eloeoo Masa A, et al. Abscopal effect in radioimmunotherapy. Int Immunopharmacol 2020; 85:106663.
16. Nga W, Inabor OC, Schoenfeld JD, et al. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18:313–322.
17. Colaco RJ, Martin P, Kluger HM, et al. Dose immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J Neurosurg 2016; 125:17–23.
18. Hwang WL, Pike LRG, Royce TJ, et al. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat Rev Clin Oncol 2018; 15:477–494.
19. Wang Q, Gao J, Wu X. Pseudoprogression and hyperprogression after checkpoint blockade. Int Immunopharmacol 2018; 58:125–135.
20. Melguizo-Gavilanes I, Bruner JM, Guha-Thakurta N, et al. Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? J Neurol Oncol 2015; 123:141–150.
21. de Wit MCY, de Bruin HG, Eijkenboom W, et al. Immediate postradiotherapy changes in malignant glioma can mimic tumor progression. Neurology 2004; 63:535–537.
22. Pope WB. Brain metastases: neuroimaging. Handb Clin Neurol 2018; 149:89–112.
23. Taal W, Brandsma D, de Bruin HG, et al. The incidence of pseudoprogression in patients with brain metastases treated with chemoradiation with temozolomide. J Clin Oncol 2007; 25(18 Suppl):e1682–e1689.
24. Brandsma D, Stalpers L, Taal W, et al. Clinical features, mechanisms, and management of pseudoprogression in malignant glioma. Lancet Oncol 2008; 9:453–461.
25. Rowe LS, Butman JA, Mackey M, et al. Differentiating pseudoprogression from true progression; analysis of radiographic, biologic, and clinical clues in GBM. J Neurol Oncol 2018; 136:145–152.
26. Le Ruhn E, Dhemain F, Vogin G, et al. Radiation necrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother 2016; 16:903–914.
27. Schaefer K, Wexler ED, Raitkan JA, et al. Radiation and inflammation. Semin Radiat Oncol 2015; 25:4–10.
28. Toltjon PJ, Fike JR. The radioreponse of the central nervous system: implications for neuroprotection. Mol Inter 2004; 4:273–284.
29. Miyatake S, Noroughi N, Furuse M, et al. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol Med Chir (Tokyo) 2015; 55:50–59.
30. Burger PC, Mahley MS, Dudka L, Vogel FS. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 1979; 44:1256–1272.
31. Fink J, Bjom D. Chamberlain MC. Radiation-induced changes in high-grade glioma: a systematic review and meta-analysis. Clin Neurol 2018; 28:401–411.
32. Patel TR, McHugh BJ, Bi WL, et al. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am J Neuroradiol 2011; 32:1885–1892.
33. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21:109–122.
34. Furuse M, Noroughi N, Kawabata S, et al. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment. Med Mol Morphol 2015; 48:183–190.
35. Zhang H, Shi S, Yuan Z, Chang JY. Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Mol Cancer 2019; 18:21.
36. Abbasz AW, Westraha AE, Holtman GA, et al. Incidence of tumour progression and pseudoprogression in high-grade glioma: a systematic review and meta-analysis. Clin Neurol 2018; 28:401–411.
37. Abbasz AW, Westraha AE, Holtman GA, et al. Incidence of tumour progression and pseudoprogression in high-grade glioma: a systematic review and meta-analysis. Clin Neurol 2018; 28:401–411.
38. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
39. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
40. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
41. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
42. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
43. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
44. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
45. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
46. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
47. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
48. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
49. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
50. Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review. Curr Oncol 2019; 26:2019–2027.
Brain and nervous system

61. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology Working Group. J Clin Oncol 2010; 28:1963–1972.
62. van den Bent MJ, Wefel J, Schiﬀ D, et al. Response assessment in neuro- oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 2011; 12:583–593.
63. Leao DJ, Craig PG, Goddy LF, et al. Response assessment in neuro- oncology for gliomas: practical approach using conventional and advanced techniques. Am J Neuroradiol 2020; 41:10–20.
64. Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 2015; 16:e534–e542.
65. Kano H, Kondziolka D, Lobato-Polo J, et al. T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neuro- surgery 2010; 66:486–492.
66. Desquesada M, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radia- tion necrosis after radiosurgery for brain metastases? A radiographic-patho- logical study. Neurosurgery 2008; 63:898–904.
67. Stockman AL, Tievsky AL, Koyfman SA, et al. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol 2012; 109:149–158.
68. Lerman JE, Clump DA, Flickinger JC, et al. Extent of perilesional edema differentiates radiation necrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro-Oncol 2013; 15:1732–1738.
69. Kumar AJ, Lees ND, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217:377–384.
70. Mullins ME, Barest GD, Schaefer PW, et al. Differentiation of edema- tion necrosis after radiosurgery for brain metastases. Am J Neuroradiol 2012; 33:1047–1051.
71. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the utility of intravoxel incoherent motion perfusion MRI and correlation with tumor progression in brain metastases treated with stereotactic radiotherapy: a meta-analysis. J Neurooncol 2020; 2020.25680336.
72. Hoefnagels FWA, Lagerwaard FJ, Sanchez E, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurosurg 2009; 6:42380–42393.
73. van Dijken BRJ, van Laar PJ, Holtman GA, et al. The discriminative accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta- analysis. Eur Radiol 2017; 27:4129–4144.
74. Heim PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004; 25:201–209.
75. Gesmondoddi S, Hashemi H, Oghabian MA, et al. Imaging differentiation of brain tumors, tumoral and normal areas of brain using diffusion tensor and neurite orientation dispersion and density imaging. J Biomed Phys Eng 2018; 8:291–300.
76. Wen Q, Kelley DAC, Banerjee S, et al. Clinically feasible NODDI character- ization of glioma using multiband EPI at 7 T. NeuroImage Clin 2015; 10:113–127.
77. Morabito R, Alafaci C, Pergolizzi S, et al. Semiquantitative assessment of intra- tumoral susceptibility weighted imaging signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: compar- ison with MR perfusion imaging. Am J Neuroradiol 2009; 30:1402–1408.
78. Varon D, Simons M, Chiang F, et al. Brain radiation-related black dots on MR imaging: comparison to MR perfusion imaging. Neuroradiol J 2014; 27:445–451.
79. Kim TH, Yun TJ, Park CK, et al. Combined use of susceptibility weighted magnetic resonance imaging sequences and dynamic susceptibility contrast perfusion weighted imaging to improve the accuracy of the differential diagnosis of recurrence and radionecrosis in high-grade glioma patients. Oncotarget 2017; 8:20340–20353.
80. Belliveau JG, Bauman GS, Macdonald D, et al. Apparent transverse relaxa- tion (R2) on MRI as a method to differentiate treatment effect (pseudopro- gression) versus progressive disease in chemoradiation for malignant glioma. J Med Imaging Radiat Oncol 2018; 62:224–231.
81. Belliveau JG, Jensen MD, Stewart JMP, et al. Prediction of radiation necrosis in a rodent model using magnetic resonance imaging apparent transverse relaxation (R2) on MRI. Magn Reson Med 2018; 83:365010.
82. Fliss CP, Gicone F, Shah NJ, et al. Amino acid PET and MR perfusion imaging in brain tumours. Clin Transl Imaging 2017; 5:209–223.
83. Galilids N, Kocher M, Ceconen G, et al. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, prog- ression, and pseudoprogression. Neuro-Oncol 2020; 22:17–30.
84. Kaufmann TJ, Smits M, Boxerman J, et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro-Oncol 2020; 22:757–772.
85. Wan B, Wang S, Tu M, et al. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: a meta-analysis. Mediat Invasive Oncol 2019; 6:42380–42393.
86. Varon D, Simons M, Chiang F, et al. Brain radiation-related black dots on MR imaging: comparison to MR perfusion imaging. Neuroradiol J 2009; 30:1402–1408.
87. Boks JS, Simons M, Boerman J, et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro-Oncol 2020; 22:757–772.
88. Hoefnagels FWA, Lagerwaard FJ, Sanchez E, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurosurg 2009; 6:42380–42393.
89. Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MRI imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21:891–898.
90. Spampinato MV, Schiarelli C, Cianfori A, et al. Correlation between cerebral blood flow volumes by perfusion-weighted magnetic resonance imaging and two-year progression-free survival in gliomas. Neurosurg 2013; 28:385–395.
91. Smits M. Imaging of oligodendroglioma. Br J Radiol 1080; 89:21508578.
92. Essig M, Waschkies M, Wenz F, et al. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial re- sults. Radiology 2003; 228:193–199.
93. Filss CP, Kukick M, Prah M, et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro-Oncol 2014; 6:880–888.
94. Bisdas S, Kirkpatrick M, Giglio P, et al. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? Am J Neuroradiol 2009; 30:681–688.
95. Barajas RF, Chang JS, Sneed PK, et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am J Neuroradiol 2009; 30:367–372.
96. van Dijken BRJ, van Laar PJ, Smits M, et al. Perfusion MRI in treatment evaluation of glioblastoma: clinical relevance of current and future techni- ques. J Magn Reson Imaging 2019; 49:11–22.
97. Strauss SB, Meng A, Ebanz EI, Chiang GC. Imaging glioblastoma posttreat- ment. Neuroimaging Clin N Am 2012; 21:103–120.
98. Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol 2011; 21:147–156.
99. Narang J, Jain R, Arbab AS, et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquanti- tative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro-Oncol 2011; 13:1037–1046.
100. Thomas AA, Arvaza-Pecho J, Kaley T, et al. Dynamic contrast enhanced T1 MR perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol 2015; 125:183–190.
101. Winter JD, Moresa FY, Chuang CY, Coolen C. Detectability of radiation-induced changes in magnetic resonance biomarkers following stereotactic radiosurgery: a pilot study. PLoS One 2018; 13:e0207933.
102. Morabito R, Alafaci C, Pergolizzi S, et al. DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial...
brain tumors treated by radiosurgery with CyberKnife. Radiat Oncol Lond Engl 2019; 14:65.

111. Seeger A, Braun C, Skaradely M, et al. Comparison of three different MR perfusion sequences and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013; 20:1557–1565.

112. Zahner N, Tacconne MS, Torres CH, et al. Prospective comparative diagnostic accuracy evaluation of dynamic contrast-enhanced (DCE) vs. dynamic susceptibility contrast (DSC) MR perfusion in differentiating tumor recurrence from radiation necrosis in treated high-grade gliomas. J Magen Reson Imaging 2019; 50:573–582.

113. Haller S, Zaharchuk G, Thomas DL, et al. Atrial spin labeling perfusion of the brain: emerging clinical applications. Radiology 2016; 281:337–356.

114. Xu Q, Liu H, et al. Tumor recurrence versus treatment effects in glioma: a comparative study of three dimensional pseudo-continuous arterial spin labeling and dynamic susceptibility contrast imaging. Medicine (Baltimore) 2017; 96:e9332.

115. Kazda T, Bulik M, Pospisil P, et al. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. Neuroradiol Clin 2016; 11:316–321.

116. Kamada K, Houkin K, Abe H, et al. Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neuroradiology (Tokyo) 1997; 37:250–256.

117. Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-Oncol 2013; 15:315–334.

118. Rambaut A, Cazals X, Lavoix M-A, et al. Radiocence of malignant glioma and cerebral metastasis: a diagnostic challenge in M.R. Diagn Interv Imaging 2014; 95:965–1000.

119. Zhang H, Ma L, Wang Q, et al. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. PLoS One 2016; 11:e0141438.

120. Weybright P, Sundgren PC, Maly P, et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 2005; 185:1471–1476.

121. Huang J, Wang A-M, Shetty A, et al. Differentiation between intra-axial metastatic tumor progression and radiation injury following fractionated radiation therapy or stereotactic radiosurgery using MR spectroscopy, perfusion MR imaging or volume progression modeling. Magn Reson Imaging 2011; 29:993–1001.

122. Chuang M-T, Liu Y-S, Tsai Y-S, et al. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS One 2016; 11:e0141438.

123. Branzoli F, Marjancsik M. Magnetic resonance spectroscopy of isocitrate dehydrogenase mutated gliomas: current knowledge on the neurochemical profile. Curr Opin Neuro 2020; 33:413–421.

124. Deng L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462:739–744.

125. Androneni CO, Loebe F, Bogenr W, et al. Treatment response assessment in IDH-mutant gliomas with noninvasive 3D functional spectroscopic mapping of 2-hydroxyglutarate. Clin Cancer Res 2016; 22:1632–1641.

126. Cho I, Rans enorm AM, Ganji SK, et al. Prognostic value of arterial spin labeling assessment of 2-hydroxyglutarte magnetic resonance spectroscopy identifies broad clinical utility for the management of patients with IDH-mutant glioma. J Clin Oncol 2016; 34:4030–4039.

127. Sori N, Priya S, Bathla G. Texture analysis in cerebral gliomas: a review of the literature. Am J Neuroradial 2019; 40:928–934.

128. Hang J, Chen SY, Hwang DH, Delbar VA. Texture analysis of imaging: what radiologists need to know. Am J Roentgenol 2019; 212:520–528.

129. Laros A, Bodl V, Montal D. Texture analysis in magnetic resonance imaging: review and potential for future applications, review of cellular and organ function and dysfunction using direct and derived MR methodologies.2016IntechOpen.

130. Lamber P, Rois-Velazquez E, Lejeanr E, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48:441–446.

131. Ismail M, Switala E, Vanc V, et al. Shape features of the lesion habit to differentiate brain tumor progression from pseudoprogression on routine multiparametric MR: a multi-site study. Am J Neuroradial 2018; 39: 2187–2193.

132. Paprotka KJ, Klein S, Preibisch C, et al. Fully automated analysis combining {18F}FET-PET and multiparametric MRI including DSC perfusion and APT imaging: a promising tool for objective evaluation of glioma progression. Eur J Nucl Med Mol Imaging 2021; 1–11.

133. Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol 2021; 77:2372–2379.

134. Deshame A, Zais M, Lindig T, et al. 3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T. Magn Reson Med 2019; 81:2412–2423.

135. Togao O, Keupp J, Hitawahsi A, et al. Amide proton transfer imaging of brain tumors using a self-corrected 3D fast spin-echo dixon method: comparison with separate B correction: 3D FSE Dixon APT imaging of brain tumor. Eur J Nucl Med Mol Imaging 2017; 44:327–347.

136. Wu B, Warnock G, Zais M, et al. An overview of CEST MRI for non-MR physicists. JNMIMI Phys 2016; 3:19.

137. Stancanelli E, Terreno E, Castelli DD, et al. Development and validation of a smoothing-spines-based correction method for improving the analysis of CEST-MRI images. Contrast Media Mol Imaging 2008; 3:136–149.

138. Windschu J, Zais M, Meisner E-J, et al. Correction of B1 inhomogeneities for relaxation-compensated CEST imaging at 7T: correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7T. NMR Biomed 2015; 28:520–537.

139. Breeilng J, Deshame A, Goerke S, et al. Adaptive denoising for chemical exchange saturation transfer MRI. NMR Biomed 2019; 32:e4133.

140. Terreno E, Stancanelli J, Longo D, et al. Methods for an improved detection of the MR-CEST effect. Contrast Media Mol Imaging 2009; 4:237–247.

141. Togao O, Yoshihira T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncol 2014; 16:447–448.

142. Kim M, Torrealde F, Adeleke S, et al. Challenges in with histopathological grades. Neuro-Oncol 2021; 140:65.

143. Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol 2021; 14:65.

144. Adel S. Brain tumors treated by radiosurgery with CyberKnife. Radiat Oncol Lond Engl 2019; 14:65.

145. Togao O, Keupp J, Hitawahsi A, et al. Amide proton transfer imaging of brain tumors using a self-corrected 3D fast spin-echo dixon method: comparison with separate B correction: 3D FSE Dixon APT imaging of brain tumor. Eur J Nucl Med Mol Imaging 2017; 44:327–347.

146. Wu B, Warnock G, Zais M, et al. An overview of CEST MRI for non-MR physicists. JNMIMI Phys 2016; 3:19.

147. Stancanelli E, Terreno E, Castelli DD, et al. Development and validation of a smoothing-spines-based correction method for improving the analysis of CEST-MRI images. Contrast Media Mol Imaging 2008; 3:136–149.

148. Windschu J, Zais M, Meisner E-J, et al. Correction of B1 inhomogeneities for relaxation-compensated CEST imaging at 7T: correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7T. NMR Biomed 2015; 28:520–537.

149. Breeilng J, Deshame A, Goerke S, et al. Adaptive denoising for chemical exchange saturation transfer MRI. NMR Biomed 2019; 32:e4133.

150. Terreno E, Stancanelli J, Longo D, et al. Methods for an improved detection of the MR-CEST effect. Contrast Media Mol Imaging 2009; 4:237–247.

151. Togao O, Yoshihira T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncol 2014; 16:447–448.

152. Kim M, Torrealde F, Adeleke S, et al. Challenges in with histopathological grades. Neuro-Oncol 2021; 140:65.

153. Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol 2021; 14:65.