Supporting Information:
Explicitly correlated double hybrid DFT: a comprehensive analysis of the basis set convergence on the GMTKN55 database

Nisha Mehta and Jan M. L. Martin*

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel

E-mail: gershom@weizmann.ac.il
Contents

SI.1 How to run DHDF-F12 calculations S-3
 SI.1.1 Sample input for B2GP-PLYP-F12: S-3
 SI.1.2 Sample input for revDSD-PBEP86-F12: S-3

SI.2 Analysis of weighted total mean signed deviation (WTMSD2) S-4

SI.3 Basis set convergence of B2GP-PLYP PT2 correlation component of Ne atom S-6

References S-7
SI.1 How to run DHDF-F12 calculations

SI.1.1 Sample input for B2GP-PLYP-F12:

```molpro
SI.1.1.1 Sample input for B2GP-PLYP-F12:

```
gthresh,energy=1d-9, throvl=1d-9
ANGSTROM
geomtyp=xyz
geom=
include struc.xyz
! end geometry
thecharge=0
multiplicity=1
```

```molpro
basis,avdz-f12
{DF=KS,b,lyp;dh,0.65,0.36;wf,spin=$multiplicity-1,CHARGE=$thecharge;}
eksf12=ENERGY;
DF=mp2-f12, GEM_BETA=0.9
! For close shell systems
if($multiplicity.eq.1)then
eglptf12=(ENERGY-ENERGGR)*0.36
ecabs=EF12_SINGLES
else
! For close shell systems
eglptf12=(ENERG_VV+ENERG_CC+ENERG_CV)*0.36
ecabs=EF12_SINGLES
endif
ETOT=eksf12+eglptf12+ecabs
show,*
!Note that the DFT-D3(BJ) correction is not included in this molpro input.
```

**SI.1.2  Sample input for revDSD-PBEP86-F12:**

```molpro
SI.1.2 Sample input for revDSD-PBEP86-F12:

```
gthresh,energy=1d-9
ANGSTROM
geomtyp=xyz
geom=
include struc.xyz
! end geometry
thecharge=0
multiplicity=1
```

```molpro
cDFTc=0.4210
cXHF=0.69
c2ab=0.5922
c2ss=0.0636
basis,vdz-f12
{DF=ks,pbex,p86;dh,cXHF,1.00-cDFTc; wf,spin=$multiplicity-1,CHARGE=$thecharge;}
EKS=ENERGY;
DF=mp2-f12,scsfacs=c2ab/(1.00-cDFTc),scsfact=c2ss/(1.00-cDFTc), GEM_BETA=0.9
SCSMP2=(EMP2_SING+EMP2_TRIP/3)*1.02280+EMP2_TRIP*2/3*0.10984
SCSF12=(EF12_SING+EF12_TRIP/3)*1.02280+EF12_TRIP*2/3*0.10984
ECABS=EF12_SINGLES
ETOT=EKS+ECABS+(SCSMP2+SCSF12)*0.5790
show,*
!This is the end of Molpro input
!Note that the DFT-D4 dispersion correction is not included in this molpro input.
```
SI.2 Analysis of weighted total mean signed deviation (WTMSD2)

Table S1: WTMSD2 values (kcal/mol) of conventional and explicitly correlated B2GP-PLYP-D3(BJ) for GMTKN55 and its categories relative to Ref. S1 reference data. A positive sign indicates overestimation.

	B2GP-PLYP-D3(BJ)	B2GP-PLYP-F12-D3(BJ)											
	WTMSD2	THERMO	BARRIERS	LARGE	CONF	INTERMOL	WTMSD2	THERMO	BARRIERS	LARGE	CONF	INTERMOL	
VDZ	2.738	-0.862	-0.536	-0.331	2.343	2.124	VDZ-F12	0.717	0.145	-0.127	-0.009	0.269	0.468
VDZ*	3.451	-0.134	-0.396	-0.331	2.343	1.970	VDZ-F12	0.741	0.141	-0.125	-0.003	0.268	0.459
VTZ	1.083	-0.134	-0.396	-0.319	0.527	1.405	VTZ-F12	0.753	0.155	-0.127	-0.003	0.268	0.469
VTZ*	1.382	-0.279	-0.289	-0.400	0.864	1.126	VTZ-F12	0.714	0.168	-0.128	0.006	0.279	0.459
VTZ**	1.759	0.114	-0.195	-0.400	0.864	1.015	VTZ-F12*	0.755	0.177	-0.129	0.006	0.279	0.422
VQZ	0.703	-0.084	-0.223	0.010	0.448	0.774	V[D,T]Z-F12	0.748	0.177	-0.133	0.008	0.283	0.413
VQZ*	0.703	0.107	-0.146	0.009	0.269	0.570	VQZ-F12*	0.689	0.180	-0.120	0.005	0.269	0.364
V[Q,T]Z	1.158	0.067	-0.242	0.031	0.367	0.994	V[Q,T]Z-F12	0.683	0.177	-0.123	0.004	0.259	0.365
V[Q,T]Z*	1.340	0.181	-0.145	0.031	0.367	0.995	V[Q,T]Z-F12*	0.685	0.181	-0.119	0.004	0.259	0.360
V[Q,T]Z**	1.037	0.181	-0.145	0.032	0.270	0.700							
V5Z	0.745	0.154	-0.123	0.066	0.298	0.418							
V5Z*	0.745	0.154	-0.123	0.066	0.298	0.418							
V5Z**	0.745	0.154	-0.123	0.066	0.298	0.418							
def2-TZVPP	0.692	-0.184	-0.292	-0.004	0.512	0.560							
def2-TZVPP*	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPP**	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD	0.844	-0.040	-0.130	0.044	0.274	0.696							
def2-TZVPPFD**	0.692	-0.184	-0.292	-0.004	0.512	0.560							
def2-TZVPPFD*	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD**	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD*	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD**	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD*	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD**	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD*	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD**	0.731	-0.084	-0.127	-0.004	0.512	0.604							
def2-TZVPPFD*	0.731	-0.084	-0.127	-0.004	0.512	0.604							
Table S2: WTMSD2 values (kcal/mol) of conventional and explicitly correlated B2GP-PLYP-D3(BJ) for GMTKN55 and its categories relative to the B2GP-PLYP-F12-D3(BJ)/V\{T,Q\}Z-F12* reference data. A positive sign indicates overestimation.

	B2GP-PLYP-D3(BJ)	B2GP-PLYP-F12-D3(BJ)	WTMSD2	THERMO	BARRIERS	LARGE	CONF	INTERMOL	WTMSD2	THERMO	BARRIERS	LARGE	CONF	INTERMOL
VDZ	1.949	-1.040	-0.429	-0.350	-0.350	2.055	1.712							
VDZ*	2.093	-0.310	-0.285	-0.305	2.055	1.564								
VDZ**	0.345	-0.310	-0.285	-0.339	0.264	1.015								
VTZ	0.701	-0.458	-0.175	-0.460	0.600	0.781								
VTZ*	1.077	-0.664	-0.978	-0.466	0.600	0.666								
VTZ**	0.235	-0.664	-0.978	-0.053	0.067	0.364								
VIQZ	0.246	-0.261	-0.106	0.097	0.188	0.417								
VIQZ*	0.501	-0.038	-0.028	0.097	0.188	0.372								
VIQZ**	0.182	-0.038	-0.028	0.005	0.031	0.213								
V[T,Q]Z	0.461	-0.170	-0.127	0.038	0.107	0.623								
V[T,Q]Z*	0.638	0.005	-0.028	0.030	0.107	0.523								
V[T,Q]Z**	0.337	0.005	-0.028	0.139	0.014	0.141								
VDZ	0.076	-0.022	-0.004	0.002	0.032	0.068								
VDZ*	0.019	-0.022	-0.004	0.001	0.007	0.086								
VDZ**	0.042	0.001	0.001	-0.001	-0.023	0.063								
V(T,Q)Z	0.048	0.001	0.001	-0.001	0.002	0.014								
V(T,Q)Z*	0.183	-0.212	-0.012	0.143	0.039	0.345								
V(T,Q)Z**	0.314	-0.181	-0.098	-0.008	0.256	0.211								
V(T,Q)ZPPP	0.080	-0.038	-0.005	-0.008	0.256	0.211								
V(T,Q)ZPPP*	0.074	-0.181	-0.098	-0.013	0.034	0.212								
V(T,Q)ZVPP	0.183	-0.212	-0.012	0.143	0.039	0.345								
V(T,Q)ZVPP*	0.314	-0.181	-0.098	-0.008	0.256	0.211								
V(T,Q)ZVPP**	-0.228	-0.173	-0.030	0.069	0.034	-0.089								
V(T,Q)ZVPPPP	-0.024	-0.097	0.011	0.069	0.054	-0.061								
V(T,Q)ZVPPPP*	-0.060	-0.097	0.011	0.008	0.024	-0.066								
V(T,Q)ZVPPDD	-0.016	-0.100	0.011	0.021	0.011	0.042								
V(T,Q)ZVPPDD*	-0.060	-0.084	-0.039	0.019	0.017	0.026								
V(T,Q)ZVPPPP	-0.088	-0.042	0.007	0.020	0.039	-0.032								
V(T,Q)ZVPPPP*	-0.110	-0.036	0.012	0.003	0.032	-0.122								

S-5
SI.3 Basis set convergence of B2GP-PLYP PT2 correlation component of Ne atom

![Graph](image)

Figure S1: B2GP-PLYP same-spin and opposite-spin PT2 components for neon atom with Petersson’s nZaP basis sets as a functions of $L=n$
References

(S1) Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. Phys. Chem. Chem. Phys. 2017, 19, 32184-32215.