Chemical constituents of the egg cases of *Tenodera angustipennis* (Mantidis ootheca) with intracellular reactive oxygen species scavenging activity

Seung Mok Ryu,¹ Hyeon-hwa Nam,¹ Joong Sun Kim,¹ Jun-ho Song,¹ Young Hye Seo,¹ Hyo Seon Kim,¹ A Yeong Lee,¹ Wook Jin Kim,¹ Dongho Lee,² Byeong Cheol Moon,¹ and Jun Lee¹*.

¹Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
²Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea

Authors to whom correspondence should be addressed.

*Tel: +82-61-338-7129. Fax: +82-61-338-7135. E-mail: junlee@kiom.re.kr (Jun Lee).
Table of contents

Figure S1: Structures of known compounds (3–15) ... 3
Figure S2: Spectroscopic data of known compounds (3–14) ... 4
Figure S3: GC-MS spectrum of compound 15 ... 7
Figure S4: 1H NMR spectrum of tenoderin A (1) (CD$_3$OD, 500 MHz) 8
Figure S5: 13C NMR spectrum of tenoderin A (1) (CD$_3$OD) ... 9
Figure S6: HSQC NMR spectrum of tenoderin A (1) (CD$_3$OD) ... 10
Figure S7: HMBC NMR spectrum of tenoderin A (1) (CD$_3$OD) ... 11
Figure S8: COSY NMR spectrum of tenoderin A (1) (CD$_3$OD) ... 12
Figure S9: HRESIMS spectrum of tenoderin A (1) (CD$_3$OD) ... 13
Figure S10: 1H NMR spectrum of tenoderin B (2) (CD$_3$OH, 500 MHz) 14
Figure S11: 13C NMR spectrum of tenoderin B (2) (CD$_3$OH, 125 MHz) 15
Figure S12: HSQC NMR spectrum of tenoderin B (2) (CD$_3$OH) ... 16
Figure S13: HMBC NMR spectrum of tenoderin B (2) (CD$_3$OH) ... 17
Figure S14: COSY NMR spectrum of tenoderin B (2) (CD$_3$OH) ... 18
Figure S15: HRESIMS spectrum of tenoderin B (2) ... 19
Figure S16: Stereomicroscope micrographs showing the ootheca morphology of *Tenodera angustipennis*. (A) Dorsal view; (B) Lateral view; (C) Surface pattern on lateral view; Scale bars = 1 cm (A, B). 1 mm (C) ... 20
Table S1: Screening of the antioxidant activity of extract (100 μg/mL) and isolated compounds (100 μM) ... 21
Figure S1: Structures of known compounds (3–15)
Figure S2: Spectroscopic data of known compounds (3–14)

N-acetyldopamine (3): ESIMS (positive) m/z 196 [M + H]⁺; ESIMS (negative) m/z 194 [M – H]⁻; ¹H NMR (CD₃OD, 500 MHz) δ 6.68 (1H, d, J = 8.1 Hz, H-5), 6.64 (1H, d, J = 2.1 Hz, H-2), 6.52 (1H, dd, J = 8.0, 2.1 Hz, H-6), 3.31 (2H, overlap with MeOD, H-8), 2.62 (2H, t, J = 7.4 Hz, H-7), 1.90 (3H, s, H-10); ¹³C NMR (CD₃OD, 125 MHz) δ 173.4 (C-9), 146.4 (C-3), 144.9 (C-4), 132.2 (C-1), 121.2 (C-6), 117.0 (C-2), 116.5 (C-5), 42.6 (C-8), 36.0 (C-7), 22.7 (C-10).

2-oxo-N-acetyldopamine (4): ESIMS (positive) m/z 210 [M + H]⁺; ESIMS (negative) m/z 208 [M – H]⁻; ¹H NMR (CD₃OD, 500 MHz) δ 7.45 (1H, d, J = 8.7 Hz, H-6), 7.42 (1H, s, H-2), 6.84 (1H, d, J = 8.2 Hz, H-5), 4.60 (2H, s, H-8), 2.05 (3H, s, H-10); ¹³C NMR (CD₃OD, 125 MHz) δ 194.9 (C-7), 173.9 (C-9), 152.8 (C-4), 146.8 (C-3), 128.7 (C-1), 122.9 (C-6), 116.2 (C-5), 115.8 (C-2), 46.9 (C-8), 22.6 (C-10).

4-hydroxybenzaldehyde (5): ESIMS (positive) m/z 123 [M + H]⁺; ESIMS (negative) m/z 121 [M – H]⁻; ¹H NMR (CD₃OD, 500 MHz) δ 9.79 (1H, s, H-7), 7.80 (2H, d, J = 8.7 Hz, H-2 and H-6), 6.94 (2H, d, J = 8.5 Hz, H-3 and H-5); ¹³C NMR (CD₃OD, 125 MHz) δ 193.0 (C-7), 165.4 (C-4), 133.6 (C-2 and C-6), 130.5 (C-1), 117.0 (C-3 and C-5).

4-hydroxybenzoic acid (6): ESIMS (positive) m/z 139 [M + H]⁺; ESIMS (negative) m/z 137 [M – H]⁻; ¹H NMR (CD₃OD, 500 MHz) δ 7.87 (2H, d, J = 8.4 Hz, H-2 and H-6), 6.82 (2H, d, J = 8.1 Hz, H-3 and H-5); ¹³C NMR (CD₃OD, 125 MHz) δ 169.8 (C-7), 163.5 (C-4), 133.3 (C-2 and C-6), 123.7 (C-1), 116.2 (C-3 and C-5).
Apocynin (7): ESIMS (positive) m/z 167 [M + H]^+; ESIMS (negative) m/z 165 [M – H]^−; 1H NMR (CD$_3$OD, 500 MHz) δ 7.56 (1H, dd, J = 8.5, 2.1 Hz, H-6), 7.42 (1H, s, H-2), 7.02 (1H, d, J = 8.4 Hz, H-5), 3.94 (3H, s, OCH$_3$-3); 13C NMR (CD$_3$OD, 125 MHz) δ 199.7 (C-7), 153.8 (C-4), 147.7 (C-3), 131.7 (C-1), 123.2 (C-6), 115.7 (C-5), 111.7 (C-2), 56.5 (OCH$_3$-3), 26.4 (C-8).

Benzoic acid (8): ESIMS (negative) m/z 121 [M – H]^−; 1H NMR (CD$_3$OD, 500 MHz) δ 8.01 (2H, d, J = 8.0 Hz, H-2 and H-6), 7.57 (1H, t, J = 7.4 Hz, H-4), 7.46 (1H, t, J = 7.5 Hz, H-3 and H-5); 13C NMR (CD$_3$OD, 125 MHz) δ 170.1 (C-7), 133.9 (C-2 and C-6), 131.2 (C-4), 130.6 (C-1), 129.6 (C-3 and C-5).

Protocatechuic acid (9): ESIMS (positive) m/z 155 [M + H]^+; ESIMS (negative) m/z 153 [M – H]^−; 1H NMR (CD$_3$OD, 500 MHz) δ 7.42 (2H, overlap with H-2 and H-6), 6.79 (1H, d, J = 7.9 Hz, H-5); 13C NMR (CD$_3$OD, 125 MHz) δ 170.6 (C-7), 151.6 (C-4), 146.2 (C-3), 124.1 (overlap, C-1 and C-6), 117.9 (C-2), 115.9 (C-5).

4-hydroxyphenylacetic acid (10): ESIMS (negative) m/z 151 [M – H]^−; 1H NMR (CD$_3$OD, 500 MHz) δ 7.08 (2H, d, J = 8.3 Hz, H-2 and H-6), 6.72 (2H, d, J = 8.5 Hz, H-3 and H-5), 3.50 (2H, s, H-7); 13C NMR (CD$_3$OD, 125 MHz) δ 176.2 (C-8), 157.6 (C-4), 146.2 (C-3), 124.1 (overlap, C-1 and C-6), 127.1 (C-1), 116.3 (C-3 and C-5), 41.7 (C-7).

(S)-1-phenylethane-1,2-diol (11): [α]$^{26}_D +10.8$ (c 0.01, MeOH); ESIMS (positive) m/z 139 [M + H]^+; ESIMS (negative) m/z 137 [M – H]^−; 1H NMR (CD$_3$OD, 500 MHz) δ 7.37 (2H, d, J = 7.1 Hz, H-2 and H-6), 7.33 (2H, t, J = 7.5 Hz, H-3 and H-5), 7.25 (1H, t, J = 7.3 Hz, H-4), 4.68 (1H, t, J = 5.5 Hz, H-7), 3.60 (2H, overlap with MeOH, H-8); 13C NMR (CD$_3$OD, 125 MHz) δ 143.5 (C-1), 129.4 (C-3 and C-5), 128.7 (C-4), 127.6 (C-6), 76.1 (C-7), 68.9 (C-8).
4-hydroxyphenylglyoxylic acid amide (12): ESIMS (negative) \(m/z \) 164 \([M - H]^−\); \(^1\)H NMR (CD\(_3\)OD, 500 MHz) \(\delta \) 8.01 (2H, \(d, J = 8.8 \text{ Hz}, \text{H-2 and H-6} \)), 6.87 (2H, \(d, J = 8.9 \text{ Hz}, \text{H-3 and H-5} \)); \(^{13}\)C NMR (CD\(_3\)OD, 125 MHz) \(\delta \) 189.8 (C-7), 170.2 (C-8), 165.4 (C-3), 134.3 (C-2 and C-6), 126.1 (C-1), 116.7 (C-3 and C-5).

(±)-hydroxybutenolide (13): Racemic mixture, ESIMS (positive) \(m/z \) 193 \([M + H]^+\); ESIMS (negative) \(m/z \) 191 \([M - H]^−\); \(^1\)H NMR (CD\(_3\)OD, 500 MHz) \(\delta \) 7.67 (2H, \(d, J = 8.8 \text{ Hz}, \text{H-2 and H-6} \)), 6.86 (2H, \(d, J = 8.8 \text{ Hz}, \text{H-3 and H-5} \)), 6.50 (1H, s, H-2’), 6.32 (1H, s, H-4’); \(^{13}\)C NMR (CD\(_3\)OD, 125 MHz) \(\delta \) 174.3 (C-5’), 165.8 (C-3’), 162.3 (C-4), 131.5 (C-2 and C-6), 122.4 (C-1), 117.0 (C-3 and C-5), 111.9 (C-4’), 100.1 (C-2’).

Scoparone (14): ESIMS (positive) \(m/z \) 207 \([M + H]^+\); \(^1\)H NMR (CD\(_3\)OD, 500 MHz) \(\delta \) 7.90 (1H, \(d, J = 9.4 \text{ Hz}, \text{H-4} \)), 7.15 (1H, s, H-5), 7.00 (1H, s, H-8), 6.27 (1H, \(d, J = 9.4 \text{ Hz}, \text{H-3} \)), 3.93 (3H, s, OCH\(_3\)-7), 3.88 (3H, s, OCH\(_3\)-6); \(^{13}\)C NMR (CD\(_3\)OD, 125 MHz) \(\delta \) 164.0 (C-2), 155.0 (C-7), 151.5 (C-8a), 148.3 (C-6), 146.1 (C-4), 113.7 (C-3), 113.3 (C-4a), 110.1 (C-5), 101.2 (C-8), 57.0 (OCH\(_3\)-7), 57.0 (OCH\(_3\)-6).
Figure S3: GC-MS spectrum of compound 15
Figure S4: 1H NMR spectrum of tenoderin A (1) (CD$_3$OD, 500 MHz)
Figure S5: 13C NMR spectrum of tenoderin A (1) (CD$_3$OD, 125 MHz)
Figure S6: HSQC NMR spectrum of tenoderin A (1) (CD$_3$OD)
Figure S7: HMBC NMR spectrum of tenoderin A (1) (CD$_3$OD)
Figure S8: COSY NMR spectrum of tenoderin A (I) (CD$_3$OD)
Figure S9: HRESIMS spectrum of tenoderin A (1) (CD$_3$OD)

Elemental Composition Report

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
1273 formula(e) evaluated with 9 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-500 H: 0-1000 N: 0-200 O: 0-200
200805_SeohYH_SM-S6-1K_Neg (0.026) Is (1.00,1.00) C20H22N2O7
1. TOF MS ES-

Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
401.1349	100.00	401.1349	0.0	0.0	11.5	46.9	0.000	100.00	C20 H21 N2 O7
401.1362	-1.3	-3.2	16.5	70.9	23.914	0.00	C21 H17 N6 O3		
401.1355	1.4	3.5	17.5	75.1	28.125	0.00	C17 H13 N12 O		
401.1330	1.9	4.7	24.5	79.1	32.116	0.00	C32 H17		
401.1367	-1.8	-4.5	-1.5	79.4	32.480	0.00	C8 H25 N4 O14		
401.1354	-0.5	-1.2	4.5	82.4	35.444	0.00	C5 H17 N14 O8		
401.1367	-1.8	-4.5	9.5	82.6	35.612	0.00	C6 H13 N18 O4		
401.1340	0.9	2.2	10.5	86.1	39.154	0.00	C2 H9 N24 O2		
Figure S10: 1H NMR spectrum of tenoderin B (2) (CD$_3$OH, 500 MHz)
Figure S11: 13C NMR spectrum of tenoderin B (2) (CD$_3$OH, 125 MHz)
Figure S12: HSQC NMR spectrum of tenoderin B (2) (CD$_3$OH)
Figure S13: HMBC NMR spectrum of tenoderin B (2) (CD$_3$OH)
Figure S14: COSY NMR spectrum of tenoderin B (2) (CD$_3$OH)
Figure S15: HRESIMS spectrum of tenoderin B (2)

Elemental Composition Report

Multiple Mass Analysis: 2 mass(es) processed
- Tolerance = 5.0 PPM
- DBE: min = -1.5, max = 50.0
- Element prediction: Off
- Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
659 formula(e) evaluated with 4 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:
- C: 0-500
- H: 0-1000
- N: 0-200
- O: 0-200

202805_SeoYH_SM-36-1K_Neg-re 326 (3.701) Cm (320:331)
1: TOF MS ES-

Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
314.1042	100.00	314.1042	0.0	15.5	1134.2	0.060	94.20	C18 H12 N5 O	
314.1028	1.4	314.1028	1.6	5.79	1137.0	2.848	C17 H16 N O5		
314.1047	-0.5	314.1047	-1.6	8.5	1143.9	9.758	0.01	C3 H8 N17 O2	
314.1034	0.8	314.1034	3.5	1144.3	10.142	0.00	C2 H12 N13 O6		
Figure S16: Stereomicroscope micrographs showing the ootheca morphology of *Tenodera angustipennis*. (A) Dorsal view; (B) Lateral view; (C) Surface pattern on lateral view; Scale bars = 1 cm (A, B). 1 mm (C)
Table S1: Screening of the antioxidant activity of extract (100 µg/mL) and isolated compounds (100 µM)

Compounds	Antioxidant capacity (%)		
		DPPH	ABTS
Extract	81.99 ± 1.98 1)		99.74 ± 0.13
1	56.59 ± 0.60	60.56 ± 0.18	
1b	71.16 ± 0.22	67.77 ± 1.29	
2	80.83 ± 0.09	93.13 ± 0.31	
3	76.39 ± 2.60	95.87 ± 0.12	
4	81.93 ± 0.25	89.53 ± 0.17	
5	-1.83 ± 0.75	0.93 ± 1.46	
6	0.37 ± 0.28	-0.12 ± 0.99	
7	9.40 ± 0.97	1.59 ± 1.23	
8	-1.00 ± 0.52	1.39 ± 1.27	
9	78.87 ± 0.48	92.38 ± 0.04	
10	38.80 ± 1.09	11.45 ± 0.86	
11	41.58 ± 0.90	19.05 ± 0.48	
12	-0.53 ± 1.40	2.06 ± 0.69	
13	-0.03 ± 1.58	0.37 ± 0.12	
14	-1.74 ± 1.70	0.37 ± 0.26	
15	-2.40 ± 1.42	-1.79 ± 0.45	
Gallic acid	82.89 ± 0.09		95.40 ± 0.07

1) Values are reported as mean ± SD (n=3)