The efficacy of radioactive iodine for the treatment of well-differentiated thyroid cancer with distant metastasis

Jen-Der Lin, Sheng-Fong Kuo, Bie-Yui Huang, Shu-Fu Lin and Szu-Tah Chen

Objective Radioactive iodine (¹³¹I) has been used as a treatment for high-risk well-differentiated thyroid cancer after thyroidectomy. The aim of this study was to evaluate the long-term follow-up results after using high accumulated doses of ¹³¹I (>600 mCi) for the treatment of well-differentiated thyroid cancer.

Patients and methods In this study, we retrospectively evaluated prospectively enrolled patients with well-differentiated thyroid cancer who were treated and followed up in Chang Gung Memorial Hospital in Linkou and Keelung, Taiwan. All the patients underwent thyroidectomy between 1979 and 2016.

Results For our study, 228 patients with papillary and follicular thyroid carcinoma with distant metastases were enrolled. Of the 228 patients, 71 (31.1%) received ¹³¹I therapy with an accumulated dose of at least 600 mCi. Forty-four died because of disease-specific mortality (DSM) after a mean follow-up of 10.6 ± 6.3 years. Compared with the patients in the DSM group, which included 27 survival cases, patients who were younger, and those with a multifocal tumor, more extensive thyroidectomy, and papillary thyroid carcinoma showed better prognosis. The DSM group included a higher percentage of patients who developed a secondary primary cancer after receiving a diagnosis of thyroid cancer than the survival group (18.2 vs. 3.7%). However, the difference did not reach statistical significance (P = 0.075).

Conclusion ¹³¹I provided an effective therapeutic modality for well-differentiated thyroid cancer patients with distant metastasis. After a mean of follow-up 10 years, more than 60% of cases resulted in DSM when high accumulated ¹³¹I doses were administered. Nucl Med Commun 39:1091–1096 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc.

Keywords: cancer-specific mortality, radioactive iodine, thyroglobulin, total thyroidectomy

Introduction Radioactive iodine (¹³¹I) has been used as an adjuvant treatment for high-risk, well-differentiated thyroid cancer after thyroidectomy for residual or recurrent thyroid cancer [1,2]. Decreasing the use of ¹³¹I for the treatment of low-risk thyroid cancer may be necessary owing to the controversial effects of this treatment on well-differentiated thyroid cancer [3,4]. Until now, we lacked sufficient information on the long-term follow-up results of high accumulated ¹³¹I doses (>600 mCi) in patients with well-differentiated thyroid cancer.

Most patients with well-differentiated thyroid cancer have good prognoses following appropriate treatment. A 90% remission rate can be achieved after receiving treatments that include thyroidectomies and postoperative ¹³¹I therapies [5]; however, recurrence occurs in 15–20% of patients with well-differentiated thyroid cancer during the follow-up period [6,7]. The occurrence of distant metastases is a sign of a poor prognosis for most cases [8]. The aim of this study was to perform a long-term follow-up investigation of patients with well-differentiated thyroid cancer who were treated with ¹³¹I ablation and to determine the treatments and prognostic factors that are associated with disease-specific mortality (DSM).

Patients and methods Study participants

The study was a retrospective analysis of prospectively enrolled patients with well-differentiated thyroid cancer who were treated and followed up in the Chang Gung Memorial Hospital, in Linkou, Taiwan. All patients were treated with thyroidectomy between 1979 and 2016. In our center, most patients with well-differentiated thyroid cancer with tumor sizes of at least 1 cm were treated with total thyroidectomy. After thyroidectomy, tumors were staged on the basis of the Union for International Cancer Control tumor-node-metastasis criteria (6th ed.) [9]. The pathological classification of all thyroid carcinoma tissues was performed according to the WHO criteria [10].
Postoperative thyroid remnant ablation was recommended for patients with high-risk papillary and follicular thyroid cancers, 4–6 weeks after surgery, and the 131I ablation dose for most patients was 1.1–3.7 GBq (30–100 mCi). A whole-body scan (WBS) was performed 1 week after 131I administration using a dual-head gamma camera (Dual Genesys; ADAC, Milpitas, California, USA) equipped with a high-energy collimator as described previously [11]. The L-T4 treatment was then initiated to decrease thyroid stimulating hormone levels without inducing clinical thyrotoxicosis. Patients in whom the 131I uptake foci extended beyond the thyroid bed were diagnosed with persistent disease with distant metastases. Patients with lung or bone metastasis were administered increased therapeutic 131I doses at 5.6–7.4 GBq (100–200 mCi), and hospital isolation was arranged at doses that exceeded 1.1 GBq. A WBS was performed 1 week after the administration of the higher therapeutic 131I dose.

Recurrent disease included locoregional or distant metastases and was diagnosed using diagnostic or therapeutic 131I scans or other imaging techniques such as ultrasonography, computed tomography (CT), MRI, and PET-CT (metastases may or may not have been cytologically proven). Recurrent tumors were not included if they were diagnosed postoperatively, with diagnostic or therapeutic 131I scans, or if they were nonresectable. In contrast, persistent disease was diagnosed postoperatively, through diagnostic or therapeutic 131I scans and/or other imaging studies, and these analyses included patients with nonresectable thyroid cancer. For the analysis of the therapeutic outcomes, all data on therapeutic outcomes were censored at the end of 2014. Patients were classified into the DSM, nonremission, and remission groups. The DSM group comprised patients who died of thyroid cancer with distant metastases. Patients with lung or bone metastases were diagnosed using diagnostic or therapeutic 131I scans, or if they were nonresectable. In contrast, persistent disease was diagnosed postoperatively, through diagnostic or therapeutic 131I scans and/or other imaging studies, and these analyses included patients with nonresectable thyroid cancer. For the analysis of the therapeutic outcomes, all data on therapeutic outcomes were censored at the end of 2014. Patients were classified into the DSM, nonremission, and remission groups. The DSM group comprised patients who died of thyroid cancer and the remission group comprised patients with negative 131I WBS results and no evidence of local or distant metastasis upon noninvasive examination.

Serum thyroglobulin (Tg) levels were measured using an immunoradiometric assay (CIS Bio International, Paris, France), and the detection limit of the Tg kit was 0.5 ng/ml. The functional sensitivity of this assay was assessed in our laboratory and was found to be 1.2 ng/ml. Tg antibody levels were measured using a competitive radioimmunoassay (Biocode, Liège, Belgium). The analytical sensitivity of this assay was 6 IU/ml.

Unpaired t-tests were used to compare continuous data between groups. Categorical data were compared using χ2 or Fisher’s exact tests for small data sets. We calculated the DSM rates for patients who died from thyroid cancer. The follow-up period was defined as the time from the date following surgery and the first 131I ablation to the date of DSM. Survival rates were calculated using the Kaplan–Meier method and compared using log-rank tests [12]. A multivariable Cox proportional hazard regression model was used to estimate the mortality risk. All statistical analyses were carried out using SPSS, version 17.0 statistical software (SPSS Inc., Chicago, Illinois, USA). A P value less than 0.05 was defined as statistically significant in all tests. The Chang Gung Medical Foundation Institutional Review Board (104-3901B) approved this study. The requirement for informed consent was waived because of the retrospective nature of this study.

Results

A total of 228 patients with papillary and follicular thyroid carcinomas with distant metastases were enrolled into our study (Table 1). The 228 patients included 151 patients with papillary thyroid carcinoma and 77 patients with follicular thyroid carcinoma. The mean age of these patients was 54.1 ± 14.9 years, and 155 (68.0%) of the patients were women. Among the 228 patients, 122 were diagnosed with persistent disease with distant metastases at the time of thyroidectomy and 131I remnant ablation. The other 106 patients with distant metastases were diagnosed 6 months after thyroidectomy during the follow-up period.

Seventy-one (31.1%) of the 228 patients received 131I therapy, with an accumulated dose of at least 600 mCi.

Clinical characteristics	Patients [n (%)]
All patients (N)	228
Sex (female)	155 (68.0)
Age at diagnosis [mean ± SD (range)] (median) [years]	54.1 ± 14.9 (11–85) (55)
Tumor size [mean ± SD (range)] (median) [cm]	4.0 ± 2.9 (0.2–20.0) (3.5)
Preablation Tg [mean ± SD (range)] (median) [ng/ml]	32078 ± 12 436.0 (0.0–141 970.0) (95.5)
Multifocality	51 (22.4)
Extent of thyroidectomy	
Total	174 (76.3)
Less than total	54 (23.7)
Histology	
Papillary	151 (66.2)
Follicular	77 (33.8)
Clinical stage	
Stage I	30 (13.2)
Stage II	28 (12.3)
Stage III	48 (21.1)
Stage IV	122 (54.5)
TNM stage	
Stage I	35 (15.4)
Stage II	37 (16.2)
Stage III	23 (10.1)
Stage IV	133 (58.3)
Site of metastasis	
Lung	88 (38.6)
Others	43 (18.9)
Multiple	97 (42.5)
Postoperative 131I accumulative dose (mCi) < 100	16 (70)
≤ 100 and <600	141 (61.8)
≥ 600	71 (31.1)
Follow-up period [mean ± SD (range)] (median) [years]	8.3 ± 7.0 (3.0–35.8) (5.9)
Overall mortality	144 (63.2)
Disease-specific mortality	135 (59.2)
Disease free	4 (1.8)
Secondary cancer after thyroid cancer	14 (6.1)

Tg, serum thyroglobulin; TNM, tumor-node-metastasis.
Among the 228 patients, 88 (38.6%) had lung metastases only and 97 (42.5%) had multiple organs metastases. After a mean follow-up duration of 8.3±7.0 years, 135 (59.2%) patients experienced DSM. Only four (1.8%) patients were diagnosed as being disease free at the end of the follow-up period. In addition, 14 (6.1%) patients developed secondary primary cancer after the thyroid cancer operation. These included three lung, one nasopharyngeal, one gastric, one colon, one bone sarcoma, one giant cell tumor, one malignant fibrous histosarcoma, one brain anaplastic astrocytoma, one ovarian, one prostate, one renal transitional, and one pituitary anaplastic cancer.

Of the 71 patients who underwent 131I treatments with at least 600 mCi 131I, 44 experienced DSM after a mean follow-up interval of 10.6±6.3 years (Table 2). Compared with the DSM group, with 27 surviving patients, younger patients, and patients with multifocal tumor, more extensive thyroidectomy, and papillary thyroid carcinoma presented better prognoses in the univariate statistical analysis. Only one of the 71 patients was treated until remission. The DSM group showed a higher percentage of secondary primary cancer after thyroid cancer diagnosis compared with the survival group (18.2 vs. 3.7%); however, this difference was not statistically significant (P = 0.075). In addition, the multivariate analysis with a Cox proportional hazards regression model showed that patient age differed significantly between the survival and mortality groups (Table 3).

Of the 71 patients, 45 were diagnosed with papillary thyroid carcinomas (Table 4). On comparing the clinical features between patients with papillary and follicular thyroid carcinomas, among the patients with follicular thyroid carcinoma cohort, there was a higher number of women, and patients with larger tumor sizes, less lymph

Table 2 Clinical features of recurrent and distant metastatic papillary or follicular thyroid cancers that were treated with postoperative 131I accumulative dose of at least 600 mCi in terms of the disease-specific mortality or survival

Clinical characteristics	Total number of patients	DSM	Survival	P value
Patient number (N)	71	44	27	
Sex (female) [n (%)]	46 (64.8)	28 (63.6)	18 (66.7)	0.795
Age at diagnosis (mean±SD) (years)	51.3±12.5	53.9±10.9	47.1±13.7	0.025
Mean tumor size (mean±SD) (cm)	4.0±3.0	4.6±3.8	3.1±1.6	0.051
Preablation Tg (mean±SD) (ng/ml)	2542.4±6524.5	2635.8±6909.6	2388.0±5828.7	0.881
Multilocality [n (%)]	17 (23.9)	6 (13.6)	11 (40.7)	0.009
Extent of thyroidectomy [n (%)]	57 (80.3)	32 (72.7)	25 (92.6)	0.041
Total	14 (19.7)	12 (27.3)	2 (7.4)	
Papillary	45 (63.4)	23 (52.3)	2 (8.1)	0.013
Follicular	26 (36.6)	21 (47.7)	5 (18.5)	
Clinical stage [n (%)]	75 (100)	39 (88.4)	36 (11.6)	
Stage I	7 (9.9)	4 (8.8)	3 (8.3)	0.281
Stage II	7 (9.9)	5 (10.6)	2 (5.3)	
Stage III	18 (24.5)	12 (25.5)	6 (16.2)	
Stage IV	39 (54.9)	25 (50.0)	14 (38.1)	
TNM stage [n (%)]	75 (100)	40 (80.0)	35 (70.0)	
Stage I	12 (16.0)	4 (8.0)	8 (16.0)	0.032
Stage II	14 (19.2)	7 (14.0)	7 (14.0)	
Stage III	4 (5.4)	4 (8.0)	–	
Stage IV	41 (54.7)	29 (58.0)	12 (24.5)	
Site of metastasis [n (%)]	75 (100)	40 (80.0)	35 (70.0)	
Lung	21 (28.0)	10 (20.0)	11 (22.0)	0.196
Others or multiple	50 (70.0)	34 (68.0)	16 (32.0)	
Follow-up period (mean±SD) (years)	11.6±6.5	10.6±6.3	13.2±6.5	0.104
Postoperative 131I accumulative dose (mean±SD) (mCi)	1013.2±426.2	990.1±378.4	1050.9±492.0	0.566
Disease free [n (%)]	1 (1.4)	–	1 (3.7)	0.199
Secondary cancer after thyroid cancer [n (%)]	9 (12.7)	8 (18.2)	1 (3.7)	0.075

DSM, disease-specific mortality; TCA, thyroid carcinoma; Tg, serum thyroglobulin; TNM, tumor-node-metastasis.

*Include one case in which the cause of death was not TCA.

Table 3 Multivariate analysis by Cox proportional hazards regression model for survival and mortality

β Coefficient	P value	Hazard ratio	95% Confidence interval
Age at diagnosis	0.048	0.0191 1.049	1.008 1.092
Histology (papillary/follicular TCA)	0.057	0.869 1.058	0.540 2.072
Thyroid operative method (less total/total thyroidectomy)	0.069	0.851 1.072	0.518 2.215
Multilocality (no/yes)	0.447	0.364 1.563	0.595 4.108
TNM stage (SI/SII/SIII/SIV)	0.043	0.832 1.044	0.699 1.560

TCA, thyroid carcinoma; TNM, tumor-node-metastasis.
node metastases, less lung metastases, and higher DSMs and total mortality than the papillary thyroid carcinoma cohort.

Figure 1 shows the disease-specific survival rates of the patients in the three groups: papillary thyroid carcinoma, follicular thyroid carcinoma, and total patients. The disease-specific survival rates, which were compared using the Kaplan–Meier method with log-rank tests, of the total patient, papillary thyroid carcinoma, and follicular thyroid carcinoma groups were 86.3, 88.6, and 80.8% at 5 years; 64.2, 68.1, and 53.8% at 10 years; and 16.4, 24.9, and 0% at 20 years, respectively. The DSM was not significantly different between the papillary and the follicular thyroid carcinoma groups ($P = 0.1777$) (Fig. 1).

Discussion

Distant metastasis of well-differentiated thyroid cancer is not unusual during treatment, which may be diagnosed on the presentation of thyroid cancer or during follow-up [13–15]. Unlike other malignancies, 131I is the first choice for papillary and follicular thyroid carcinomas with distant metastases, unless they lose the ability to trap iodine [16]. Our study showed that 131I therapy was effective for controlling distant metastases of patients with well-differentiated thyroid cancer over a long-term follow-up period of 10 years. However, in our study, the remission rate was low. During treatment, the balance between the 131I effective dose and possible side effects from the accumulated 131I dose needs to be considered.

A recent Asian survey showed that different 131I dose ranges were used in patients with low-risk thyroid cancer, which was probably because the enrolled physicians considered 131I dose elevation on the basis of clinicosocial factors that were beyond the pre-existing guidelines [17]. Postoperative high serum Tg level, inadequate information on lymph node involvement, and histopathology reporting were the major factors for elevated 131I dose. There remains no consensus on the dose and timing of

Clinical features of patients with recurrent and distant metastatic papillary or follicular thyroid cancers who were treated with postoperative 131I accumulative dose ≥ 600 mCi
Total patients Papillary Follicular
Patient number (N)
Sex (n [%]) (female)
Age at diagnosis (mean±SD) (year)
Tumor size (mean±SD) (cm)
Preablation Tg (mean±SD) (ng/ml)
Multifocality (n [%])
Extent of thyroidectomy (n [%])
Less than total
Clinical features of the 1st operation (n [%])
Lymph node metastasis
Soft tissue invasion
Distant metastasis
TNM stage (n [%])
Stage I
Stage II
Stage III
Stage IV
Site of metastasis (n [%])
Lung
Others or multiple
Follow-up period (mean±SD) (years)
Postoperative 131I accumulative dose (mean±SD) (mCi)
Overall mortality (n [%])
Disease-specific mortality (n [%])
Disease free (n [%])
Secondary cancer after thyroid cancer (n [%])

Tg, serum thyroglobulin; TNM, tumor-node-metastasis.
Conclusions

Patients with well-differentiated thyroid cancer with distant metastases have poor prognoses after long-term follow-up. 131I is an effective therapeutic modality for patients with well-differentiated thyroid cancer with distant metastases. After further follow-up, over a mean period of 10 years, more than 60% of patients experienced DSNM when high accumulated 131I doses were administered.

Acknowledgements

There are no conflicts of interest.

References

1. Park KW, Wu JX, Du L, Leung AM, Yeh MW, Livhits MJ. Decreasing use of radioactive iodine for low risk thyroid cancer in California, 1999–2015. J Clin Endocrinol Metab 2018; 103:1095–1101.

2. Utken ML, Milas M, Randolph GW, Tutano R, Bergman D, Bernet V, et al. Management of recurrent and persistent metastatic lymph nodes in well-differentiated thyroid cancer: a multifactorial decision-making guide for the Thyroid Cancer Care Collaborative. Head Neck 2015; 37:605–614.

3. Park S, Kim WG, Song E, Oh HS, Kim M, Kwon H, et al. Dynamic risk stratification for predicting recurrence in patients with differentiated thyroid cancer treated without radioactive iodine remnant ablation therapy. Thyroid 2017; 27:524–530.

4. Orlov S, Salari F, Khashat L, Freeman J, Freeman J, Witterick IJ, et al. Post-operative stimulated thyroglobulin and neck ultrasound as personalized criteria for risk stratification and radioactive iodine selection in low- and intermediate-risk papillary thyroid cancer. Endocrine 2015; 50:130–137.

5. Dal Maso L, Tavilla A, Pacini F, Serraino D, van Dijk BAC, Chirilă MD, et al. EUROCAR-5 Working Group. Survival of 86 690 patients with thyroid cancer: a population-based study in 29 European countries from EUROCAR-5. Eur J Cancer 2017; 77:140–152.

6. Wang TS, Cheung K, Faivre F, Roman SA, Sosa JA. A meta-analysis of the effect of prophylactic central compartment neck dissection on locoregional recurrence rates in patients with papillary thyroid cancer. Ann Surg Oncol 2013; 20:3477–3483.

7. Lin JD, Hsueh C, Chao TC. Long-term follow-up of the therapeutic outcomes for papillary thyroid carcinoma with distant metastasis. Medicine 2015; 94:e1063.

8. Ito Y, Masuoka H, Fukushima M, Inoue H, Kihara M, Tomoda C, et al. Prognosis and prognostic factors of patients with papillary carcinoma showing distant metastasis at surgery (M1 patients) in Japan. Endocr J 2010; 57:523–531.

9. Sobin LH, Wittekind CH, editors. TNM classification of malignant tumors, 7th ed. New York: Wiley-Liss. pp. 52–56.

10. Delellis RA, Lloyd RV, Heid PJ, Eng C. Pathology and genetics of tumors of endocrine organs. Lyon: IARC; 2004. pp. 53–70.

11. Lin JD, Hsueh C, Chao TC. Early recurrence of papillary and follicular thyroid carcinoma predicts a worse outcome. Thyroid 2009; 19:1053–1058.

12. Zhang DD, Zhou XH, Friedman DH, Freeman J. A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets. Stat Med 2002; 21:701–715.

13. de Melo TG, Zantuti-Wittmann DE, Ficher E, da Assumpção LV. Factors related to mortality in patients with papillary and follicular thyroid cancer in long-term follow-up. J Endocrinol Invest 2014; 37:1195–1200.

14. Harari A, Singh RK. Increased rates of advanced thyroid cancer in California. J Surg Res 2016; 201:244–252.

15. Nixon U, Ganly I, Palmer FL, Whitcher MM, Patel SG, Tuttle RM, et al. Disease-related death in patients who were considered free of macroscopic disease after initial treatment of well-differentiated thyroid carcinoma. Thyroid 2011; 21:501–504.

16. Phay JE, Ringel MD. Metastatic mechanisms in follicular cell-derived thyroid cancer. Endocr Relat Cancer 2013; 20:R307–R319.

17. Jabin Z, Kwon SY, Born HS, Lin Y, Yang K, Inaki A, et al. Thyroid Study Group of the Asia Oceania Research Initiative Network (ADORIN). Clinico-social factors to choose radioactive iodine dose in differentiated thyroid cancer patients: an Asian survey. Nucl Med Commun 2018; 39:283–289.

18. Watanabe K, Uchiyama M, Fukuda K. The outcome of I-131 ablation therapy for intermediate and high-risk differentiated thyroid cancer using a strict definition of successful ablation. Jpn J Radiol 2017; 35:505–510.

19. Seo M, Kim YS, Lee JC, Han MW, Kim ES, Kim KB, et al. Low-dose radioactive iodine ablation is sufficient in patients with small papillary thyroid cancer having minor extrathyroidal extension and central lymph node metastasis (T3 N1a). Clin Nucl Med 2017; 42:842–846.

20. Sabra MM, Grewal RK, Ghosein RA, Tuttle RM. Higher administered activities of radioactive iodine are associated with less structural persistent response in older, but not younger, papillary thyroid cancer patients with lateral neck lymph node metastases. Thyroid 2014; 24:1088–1095.

21. Jeong JH, Kong EJ, Jeong SY, Lee SW, Cho IH, Ah Chun K, et al. Clinical outcomes of low-dose and high-dose postoperative radioiodine therapy in
patients with intermediate-risk differentiated thyroid cancer. *Nucl Med Commun* 2017; 38:228–233.

22 Song HJ, Qiu ZL, Shen CT, Wei WJ, Luo QY. Pulmonary metastases in differentiated thyroid cancer: efficacy of radiiodine therapy and prognostic factors. *Eur J Endocrinol* 2015; 173:399–408.

23 Sun F, Gerrard GE, Roberts JK, Telford T, Namini S, Waller M, et al. Ten year experience of radiiodine dosimetry: is it useful in the management of metastatic differentiated thyroid cancer? *Clin Oncol (R Coll Radiol)* 2017; 29:310–315.

24 Verburg FA, Reiners C, Hänscheid H. Approach to the patient: role of dosimetric RAI Rx in children with DTC. *J Clin Endocrinol Metab* 2013; 98:3912–3919.

25 Scheffel RS, Zanella AB, Dora JM, Maia AL. Timing of radioactive iodine administration does not influence outcomes in patients with differentiated thyroid carcinoma. *Thyroid* 2016; 26:1623–1629.

26 Gillanders SL, O’Neill JP. Prognostic markers in well differentiated papillary and follicular thyroid cancer (WDTC). *Eur J Surg Oncol* 2018; 44:286–296.

27 Teo KW, Yuan NK, Tan WB, Parameswaran R. Comparison of prognostic scoring systems in follicular thyroid cancer. *Ann R Coll Surg Engl* 2017; 99:479–484.

28 Lin J-D, Chao T-C. Follicular thyroid carcinoma: diagnosis to treatment. *Endocrine J* 2006; 53:441–448.

29 Cho YY, Lim J, Oh CM, Ryu J, Jung KW, Chung JH, et al. Elevated risks of subsequent primary malignancies in patients with thyroid cancer: a nationwide, population-based study in Korea. *Cancer* 2015; 121:259–268.

30 Ko KY, Kao CH, Lin CL, Huang WS, Yen RF. 131I treatment for thyroid cancer and the risk of developing salivary and lacrimal gland dysfunction and a second primary malignancy: a nationwide population-based cohort study. *Eur J Nucl Med Mol Imag* 2015; 42:1172–1178.

31 Liou MJ, Tsang NM, Hsueh C, Chao TC, Lin JD. Therapeutic outcome of second primary malignancies in patients with well differentiated thyroid cancer. *Int J Endocrinol* 2016; 2016:9870171.