Supplementary Table S1. Physicochemical properties of the water column and the correlation (Pearson correlation analysis) of these variables with sample depth.

Depth (m)	Irradiance (µmol m\(^{-2}\) s\(^{-1}\))	pH	Temperature (°C)	Conductivity (mS m\(^{-1}\))	Oxygen (%)	Dissolved Organic Carbon (mg l\(^{-1}\))	Dissolved Inorganic Carbon (mg l\(^{-1}\))	Total Nitrogen (µg l\(^{-1}\))	Total Phosphorus (µg l\(^{-1}\))	Correlation with Depth
2	153	6.96	1.07	0.40	114.9	0.41	3.0	35.84	20.40	-0.8
9	1.55	7.10	0.20	9.21	113.9	0.47	6.5	74.04	19.54	0.96
13	–	7.26	-0.93	41.84	90.4	0.95	21.4	235.89	5.00	-0.95
20	–	7.75	-1.15	43.07	86.9	1.16	22.5	292.83	12.01	0.9
Correlation with Depth	-0.8	0.96	-0.95	0.9	-0.89	0.93	0.91	0.94	-0.64	
Table S3. Characteristics of putative Uncultivated Viral Genomes (UViGs), which have been identified as circular by VirSorter. Viral Family has been determined by VPF-Class, and Module is determined by WGCNA as described in the text. ‘*’ indicates UViGs that are shown in Figure 7A.

Contig identifier	Viral Family	Module	Length (bp)	Open Reading Frames	Non-hypothetical proteins	Total Reads recruited to vOTU	Distribution
NODE51_04	Myoviridae	Yellow	37 365	50	5	43 595	Marine
NODE34_03	Myoviridae	Yellow	42 107	51	10	97 385	Marine
NODE30_02	Myoviridae	Brown	39 941	58	7	27 174	Surface-Halocline
NODE684_01	Podoviridae	Blue	31 966	44	13	139 816	Marine
NODE62_02	Siphoviridae	Yellow	31 876	47	8	40 826	Marine
NODE42_03	Myoviridae	Blue	38 599	52	16	30 391	Marine
NODE72_04*	Podoviridae	Green	34 569	48	9	38 620	Surface-Halocline
NODE2_01*	Phycodnaviridae	Blue	110 748	116	15	37 163	Marine
NODE24_03	Podoviridae	Blue	55 116	76	13	45 917	Marine
NODE41_03*	Podoviridae	Blue	39 547	47	20	25 472	Marine
NODE37_03*	Podoviridae	Yellow	36 431	46	9	80 750	Marine
NODE16_01*	Siphoviridae	Brown	48 628	69	13	23 627	Surface-Halocline
NODE41_02	Podoviridae	Blue	38 968	36	17	142 288	Marine
NODE15_04*	Podoviridae	Blue	61 246	72	15	227 725	Marine
NODE12_03	Podoviridae	Yellow	68 348	88	17	41 845	Marine
Table S4. Number of reads obtained per library.

Depth (m)	Replicate	Number of reads
2	A	19,666,448
	B	18,695,438
	C	15,932,910
9	A	20,104,378
	B	9,513,168
	C	15,110,742
13	A	19,860,086
	B	18,470,662
	C	19,974,192
20	A	14,687,992
	B	18,000,044
	C	18,210,582
Figure S2. *Pelagibacter* (SAR11) clades detected by 16S rRNA genes in replicate samples from four depths.
Figure S3. Comparison of vOTU abundance and frequency between virus families. A flatter peak indicates fewer, and more abundant vOTUs. vOTUs were clustered at 95% identity over 85% of the sequence length. Gaussian kernel density estimation was plotted using a fast Fourier transform, with bandwidth value selected using Silverman’s rule of thumb, such that the bandwidth was the standard deviation of the smoothing kernels. Note that x axis is truncated.
Figure S4. Gene annotation from RefSeq, KEGG, and PFAM databases of selected vOTUs with ecological significance, representing genome fragments, (a) vsNODE54_01, (b) NODE170_03, and (c) NODE14_04. In (c), orthologs of genes with best hit to *Phycodnaviridae* genomes in GenBank are starred (*). The numbering of each Open Reading Frame is shown within the arrow. Abbreviations: DNA Pol, DNA polymerase; NUDIX, nucleoside diphosphate linked moiety X; WLM, Wss1p-like metalloprotease; PAP2_C, Type 2 phosphatidic acid phosphatase; SWIB, SWI/SNF (Switch/Sucrose non-fermentable) complex B; TBP, TATA-box binding protein; HRD1B, HMG-CoA reductase degradation ubiquitin ligase 1B.
Figure S5. Fraction of Open Reading Frames (ORFs) annotated with genes for (a) DNA polymerase A, (b) T7 primase/helicase, (c) RNA reductase, (d) tauD, (e) patatin-like phospholipid, and (f) integrase, by WGCNA module. Dashed line represents overall fraction of ORFs (modules pooled together). Note that a lower diversity of vOTUs in the modules purple, pink, and magenta contributes to less reliable values for these modules.