Disentangling the effects of genetic architecture, mutational bias and selection on evolutionary forecasting

Peter A. Lind1,2, Eric Libby1,3,4, Jenny Herzog1 and Paul B. Rainey1,5,6

1New Zealand Institute for Advanced Study, Massey University at Albany, Auckland, 0745, New Zealand.
2Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
3Santa Fe Institute, Santa Fe, New Mexico, United States of America.
4Department of Mathematics, Umeå University, SE-901 87 Umeå, Sweden.
5Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany.
6Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris-Tech), CNRS UMR 8231, PSL Research University, 75231 Paris, France.

Correspondence and requests for materials should be addressed to
Peter A. Lind, Dept. Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
email: peter.lind@umu.se

Keywords: Pseudomonas fluorescens, experimental evolution, genetic architecture, wrinkly spreader, c-di-GMP, evolutionary forecasting

Short running title: complexities of the genotype-to-phenotype map

Impact statement: Using a combination of genetics, experimental evolution and mathematical modelling this work defines information necessary to predict the outcome of short-term adaptive evolution
Abstract

Predicting evolutionary change poses numerous challenges. Here we take advantage of the model bacterium Pseudomonas fluorescens in which the genotype-to-phenotype map determining evolution of the adaptive “wrinkly spreader” (WS) type is known. We present mathematical descriptions of three necessary regulatory pathways and use these to predict both the routes that evolution follows and the expected mutational targets. To test predictions, mutation rates and targets were determined for each pathway. Unanticipated mutational hotspots caused data to depart from predictions but the new data were readily incorporated into refined models. A mismatch was observed between the spectra of WS-causing mutations obtained with and without selection due to low fitness of previously undetected WS-causing mutations. Our findings contribute toward the development of mechanistic models for forecasting evolution, highlight current limitations, and draw attention to challenges in predicting locus-specific mutational biases and fitness effects.
Introduction

Adaptation requires the realization of beneficial mutations. As self-evident as this maybe, predicting the occurrence of beneficial mutations and their trajectories to improved fitness is fraught with challenges (Lässig, et al. 2017). Nonetheless progress has been made for phenotypically diverse asexual populations subject to strong selection. Effective approaches have drawn upon densely sampled sequence data and equilibrium models of molecular evolution to predict amino acid preferences at specific loci (Luksza and Lassig 2014). Predictive strategies have also been developed based on selection inferred from the shape of coalescent trees (Neher, et al. 2014). In both instances the models are coarse-grained and sidestep specific molecular and mutational details.

There is reason to by-pass molecular details: mutation, being a stochastic process, means that for the most part details are likely to be idiosyncratic and unpredictable. But an increasing number of investigations give reason to think otherwise – that adaptive molecular evolution might follow rules (Pigliucci 2010; Stern 2013; Laland, et al. 2015). This is particularly apparent in studies of parallel molecular evolution (Colosimo, et al. 2005; Woods, et al. 2006; Ostrowski, et al. 2008; Flowers, et al. 2009; Meyer, et al. 2012; Tenaillon, et al. 2012; Zhen, et al. 2012; Herron and Doebeli 2013; Galen, et al. 2015; Bailey, et al. 2017; Kram, et al. 2017; Stoltzfus and McCandlish 2017).

A standard starting position for predicting adaptive evolution recognises the importance of population genetic parameters including mutation rate, generation time, population size, selection and more recently information on the distribution of beneficial fitness effects, but these factors alone leave unconsidered mechanistic details that arise from the genotype-to-phenotype map and from mutational biases. To what extent do these details matter?

Mutations arise randomly with respect to utility, but genetic architecture can influence the translation of mutation into phenotypic variation: the likelihood that a given mutation generates phenotypic effects depends on the genotype-to-phenotype map (Alberch 1991; Gompel and Prud'homme 2009; Stern and Orgogozo 2009; Rainey, et
The function of gene products and their regulatory interactions thus provides information on likely mutational targets underpinning particular phenotypes. This is evident when considering a hypothetical structural determinant subject to both positive and negative regulation and whose over-expression generates a given adaptive phenotype. Assuming a uniform distribution of mutational events, mutations in the negative regulator (and not the positive activator) will be the primary cause of the adaptive phenotype. This follows from the fact that loss-of-function mutations are more common than gain-of-function mutations. Indeed, an emerging rule indicates that phenotypes determined by genetic pathways that are themselves subject to negative regulation are most likely to arise by loss-of-function mutations in negative regulatory components (McDonald, et al. 2009; Tenaillon, et al. 2012; Lind, et al. 2015; Fraebel, et al. 2017).

Mutation is not equally likely at each nucleotide of a given genome (Lind and Andersson 2008; Lynch 2010; Seier, et al. 2011; Foster, et al. 2015; Reijns, et al. 2015; Sankar, et al. 2016; Stoltzfus and McCandlish 2017). Numerous instances of mutational bias have been reported. Prime examples are simple sequence repeats such as homopolymeric nucleotide tracts or di-, tri- and tetrameric repeats that mutate at high frequency via slipped strand mispairing (Levinson and Gutman 1987). These readily identifiable sequences define contingency loci in obligate human pathogens and commensals (Moxon, et al. 1994) and are widespread in eukaryotic genomes (Tautz and Renz 1984). The behaviour of contingency loci can be further modulated by defects in components of methyl-directed mismatch repair systems (Richardson and Stojiljkovic 2001; Martin, et al. 2004; Hammerschmidt, et al. 2014; Heilbron, et al. 2014).

Certain palindromic structures also lead to mutational bias (Viswanathan, et al. 2000; Lovett 2004) and promote amplification events including that increase mutational target size (Roth, et al. 1996; Kugelberg, et al. 2010; Reams and Roth 2015), transition-transversion bias (Stoltzfus and McCandlish 2017) and elevated mutation rates at CpG sites (Galen, et al. 2015) can also skew the distributions of mutational effects. Further bias arises from the chromosomal neighbourhood of genes under selection (Steinrueck and Guet 2017), the location of genes with regard to interactions with DNA replication/transcription machineries (Sankar, et al. 2016), and
environmental factors that affect not only mutation rate but also the spectra of mutational events (Krasovec, et al. 2017; Maharjan and Ferenci 2017; Shewaramani, et al. 2017).

Beyond the genotype-to-phenotype map and mutational biases, predicting adaptive evolution requires ability to know a priori the fitness effects of specific mutations. At the present time there is much theoretical and empirical interest in the distribution of fitness effects (DFE) (Eyre-Walker and Keightley 2007) — and particularly the DFE of beneficial mutations (Orr 2005) — because of implications for predicting the rate of adaption and likelihood of parallel evolution (de Visser and Krug 2014), but knowledge of the shape of the distribution is insufficient to connect specific mutations to their specific effects, or to their likelihood of occurrence. Such connections require a means of knowing the connection between mutations and their environment-specific fitness effects. This is tall order. A starting point is to understand the relationship between all possible mutational routes to a particular phenotype and the set that are realised by selection.

Here we take a bacterial system in which the genetic pathways underpinning evolution of the adaptive “wrinkly spreader” (WS) type are known and use this to explore the current limits on evolutionary forecasting. *Pseudomonas fluorescens* SBW25 growing in static broth microcosms rapidly depletes available oxygen establishing selective conditions that favour mutants able to colonise the air-liquid interface. The most successful mutant-class encompasses the WS types (Ferguson, et al. 2013; Lind, et al. 2017b). These types arise from mutational activation of diguanylate cyclases (DGCs), cause over-production of the second messenger c-di-GMP (Goymer, et al. 2006; McDonald, et al. 2009), over-production of an acetylated cellulose polymer (Spiers, et al. 2002; Spiers, et al. 2003) and ultimately formation of a self-supporting microbial mat (Figure 1A).
Selection for access to oxygen allows wrinkly spreader (WS) mutants to invade the ancestral smooth (SM) population in static microcosms. WS mutants form a mat at the air-liquid interface through increased expression of the main structural component, cellulose, encoded by the wss operon. Expression of cellulose is controlled by the second messenger c-di-GMP, which is produced by diguanylate cyclases (DGCs). Mutations in the wsp, aws and mws operons that activate their respective DGCs (WspR, AwsR, MwsR) are the primary mutational pathways to WS. (B) When a reporter construct connecting expression of the wss operon to resistance to kanamycin is used under shaken non-selective conditions, WS mutants can be isolated without the biasing influence of natural selection. This allows estimation of the mutation rate to WS and an unbiased spectrum of mutations defining the mutational target. Fitness can then be assayed in competition with a common reference strain and the influence of fitness, mutational target size and mutational biases on the outcome of evolution can be evaluated.

McDonald et al. (McDonald, et al. 2009) showed that each time the tape of WS evolution is re-run mutations generating the adaptive type arise in one of three DGC-encoding pathways (Wsp, Aws, or Mws) (Figure 1A). Subsequent work revealed that when these three pathways are eliminated from the ancestral type that evolution proceeds along multiple new pathways (Lind, et al. 2015). Preferential usage of Wsp, Aws and Mws pathways stems from the fact that they are subject to negative effects of natural selection.
regulation and thus, relative to pathways subject to positive regulation, or requiring
gene fusion events, or other rare mutations, present a
large mutational target.

Given repeatability of WS evolution, knowledge of the Wsp/Aws/Mws pathways,
plus genetic tools for mechanistic investigation — including capacity to obtain WS
mutants in the absence of selection — the WS system offers a rare opportunity to
explore the feasibility of developing bottom-up strategies for evolutionary
forecasting. Our findings show that mechanistic-level predictions are possible, but
also draw attention to challenges that stem from current inability to a priori predict
locus specific mutational biases and environment-specific fitness effects.

Results

Obtaining an unbiased measure of pathway-specific mutation rates to WS
Knowledge of the rate at which mutation generates WS types via each of the Wsp,
Aws and Mws pathways — unbiased by the effects of selection — provides a
benchmark against which the predictive power of null models can be appraised. To
achieve such measures we firstly constructed a set of genotypes containing just one of
the three focal pathways: PBR721 carries the Wsp pathway but is devoid of Aws and
Mws, PBR713 carries the Aws pathway but is devoid of Wsp and Mws, while
PBR712 harbours the Mws pathway but is devoid of Wsp and Aws. Into each of
these genotypes a promoterless kanamycin resistance gene was incorporated
immediately downstream of the promoter of the cellulose-encoding Wss operon and
fused to an otherwise unaffected Wss operon (Figure 1B).

In the ancestral SM genotype the cellulose promoter is inactive in shaken King’s
Medium B (KB) broth and thus the strain is sensitive to kanamycin. When a WS-
causing mutation occurs the wss promoter becomes active resulting in a kanamycin-
resistant WS type (Fukami, et al. 2007; McDonald, et al. 2011). Individual growth of
this set of three genotypes in shaken KB, combined with plating to detect kanamycin-
resistant mutants, makes possible a fluctuation assay (Luria and Delbruck 1943; Hall,
et al. 2009) from which a direct measure of the rate at which WS mutants arise can be
obtained. Importantly, because WS types are maladapted in shaken broth culture, the
screen for kanamycin-resistant clones allows the pathway-specific mutation rate to WS to be obtained without the biasing effects of selection for growth at the air-liquid interface (Figure 1B). The results are shown in Figure 2.

The mutation rate was highest for the Aws pathway (6.5×10^{-9}); approximately double that of Wsp (3.7×10^{-9}) and an order of magnitude higher than that of the Mws pathway (0.74×10^{-9}) (Figure 2). The rate at which WS mutants arose from the ancestral genotype in which the three pathways are intact (11.2×10^{-9}) was approximately the sum of the rates for the three pathways (11.0×10^{-9}) confirming that the Wsp, Aws and Mws pathways are the primary routes by which WS types evolve (Lind, et al. 2015). That the Aws pathway has the greatest capacity to generate WS is surprising given the smaller target size (three genes compared to seven genes in the Wsp pathway).

![Mutation rates to WS](image_url)

Figure 2. Mutation rates to WS. Fluctuation tests were used to estimate the mutation rate to WS for the three common mutational pathways to WS. Error bars represent mean and 95% confidence intervals.

Modelling the genotype-to-phenotype map underpinning WS evolution

Much is known about the function and interactions among components of each of the three focal pathways. This knowledge allows development of models that capture the dynamic nature of each pathway and thus allow predictions as to the likelihood that evolution will precede via each of the three pathways. An unresolved issue is the extent to which these models match experimental findings. Following a brief description of each pathway we describe the models.
The 8.4 kb Wsp pathway is a chemotaxis-like system (Goymer et al. 2006; Guvener and Harwood 2007; Romling et al. 2013; Micali and Endres 2016) comprised of seven genes with the first six genes (wspA-wspF) being transcribed as a single unit and the last (wspR) from its own promoter (Bantinaki et al. 2007). WspA (PFLU1219) is a methyl-accepting chemotaxis (MCP) protein that forms a complex with the CheW-like scaffolding proteins WspB (PFLU1220) and WspD (PFLU1222). WspA senses environmental stimuli and transmits the information via conformational changes in the WspA/WspB/WspD complex to effect activity of WspE (PFLU1223), a CheA/Y hybrid histidine kinase response regulator. WspE activates both the WspR (PFLU1225) diguanylate cyclase (DGC) and the CheB-like WspF methylesterase WspF (PFLU1224) following transference of an active phosphoryl group. The activity of WspA is modulated by methylation: the constitutively active CheR-like methyltransferase WspC (PFLU1221) transfers methyl groups to conserved glutamine residues on WspA while when phosphorylated, WspF serves to remove these groups. WS mutants are known to arise by mutations in the WspF negative regulator and also in the WspE kinase (McDonald et al. 2009). In vitro manipulations of WspR that abolish repression of the DGC domain by the response regulator domain are known, but have never been observed to occur in experimental populations (Goymer et al. 2006).

The 2.3 kb aws operon contains three genes transcribed from a single promoter (awsXRO). Homologous genes in Pseudomonas aeruginosa (yfiRN, PA1121-1119) have been characterised in detail (Malone et al. 2010; Malone et al. 2012; Xu et al. 2016). The outer membrane lipoprotein AwsO (PFLU5209) has an OmpA domain, a signal peptide and binds to peptidoglycan. AwsO is thought to be the sensor whose activity is modulated in response to envelope stress (Malone et al. 2012). AwsO sequesters the periplasmic protein AwsX (PFLU5211) at the outer membrane. AwsX functions as a negative regulator of the DGC AwsR (PFLU5210) in the inner membrane. Both increased binding of AwsX to AwsO or loss of negative regulation by inactivation of the interaction between AwsX and AwsR can lead to WS (McDonald et al. 2009; Malone et al. 2010; Malone et al. 2012).

The 3.9 kb mwsR gene (PFLU5329, known as morA (PA4601) in Pseudomonas aeruginosa), encodes a predicted membrane protein with both a DGC domain that
produces c-di-GMP and a phosphodiesterase (PDE) domain that degrades c-di-GMP. Little is known of the molecular details determining its function, but both catalytic domains appear to be active (Phippen, et al. 2014). Deletion of the PDE domain results in a WS phenotype with activity being dependent on a functional DGC domain (McDonald, et al. 2009).

If the specific effect of changing each nucleotide (and sets of nucleotides) was known then models for each pathway would not be required, but such knowledge does not exist. We therefore take a simplifying approach in which attention focuses on the interactions between components that correspond to reactions whose rate can either increase, decrease, or remain unaffected, depending on mutations in the component parts. Such mutations increase the reaction (enabling mutations), decrease the reaction (disabling mutations) or leave them unaffected. The components and interactions are shown in Figure 3. Figure 3 along with figure supplements 1 to 3 describe the molecular reactions and the associated differential equations governing the dynamics of each pathway. An advantage of this simplifying approach is that changes to a reaction may encompass mutations in more than a single component. For example, mutations in either WspE or WspR may increase reaction r_5 of the Wsp pathway (Figure 3A).
Figure 3. Modeling of WS. (A) Model of the Wsp pathway. R* represents the activated form of WspR and increase of R* leads to a WS phenotype. (B) Model for the Aws pathway. RR represents the activated form of AwsR and increase of RR leads to a WS phenotype. (C) Model of the Mws Pathway. D* represents the activated form of the DGC domain. Our functional model places the PDE domain as a negative regulator of DGC activity. Details of the molecular networks are found in Figure 3 figure supplement 1 for Wsp, Figure 3 figure supplement 2 for Aws and Figure 3 figure supplement 3 for Mws. In the simple null models all genetic components are the same size, but information of mutational target size can readily be accommodated in the model by changing the individual probabilities of disabling and enabling mutations. The benefit of doing so might however be small if not combined with detailed data on mutation rates (see Discussion).

Equipped with the set of mathematical descriptions it is possible to consider combinations of enabling, disabling, and no effect changes to reaction rates and determine the likelihood that a WS type is generated. For the Wsp system this amounts to 3^6 or 729 combinations. An example of one set of the possible mutations (m_i) in Wsp is $1, -1, 0, 0, 0, 0$ (an increase in r_1, a decrease in r_2, but no change in r_3, r_4, r_5, or r_6 (Figure 3A)).

Predicting the pathways that evolution follows and genetic targets

To determine whether mutations producing WS occur more often in Wsp compared to Aws or Mws pathways, we adopt a Bayesian approach in which the probability that a particular pathway is used is decomposed into two terms: the probability that a particular set of mutations (m_i) occurs in Wsp (or Aws, or Mws) represented as $P(m_i \in \text{Wsp})$ and the probability that those mutations give rise to a wrinkly spreader represented as $P(\text{WS} | m_i \in \text{Wsp})$ (or Aws, or Mws).

$$P(\text{WS} \cap m \cap \text{Wsp}) = \sum_i P(\text{WS} | m_i \in \text{Wsp}) P(m_i \in \text{Wsp})$$ (1)

To estimate $P(m_i \in \text{Wsp})$ we assume fixed probabilities of enabling and disabling mutations and compute the product. Thus, the probability of $m_i = 1, -1, 0, 0, 0, 0$ is $p_e p_d (1 - p_e - p_d)^4$, where p_e is the probability of a mutation with an enabling effect
and p_d is the probability of a mutation with a disabling effect. Recognising the value
of accommodating the possibility of localised mutational bias we note that p_e and p_d
can be adjusted for the affected reactants. The second term, $P(WS|m_i \in Wsp)$,
requires knowing both how gene products interact and how these interactions result in
a phenotype. This information is estimated based on the pathway dynamics
represented in Figure 3 and Figure 3 – figure supplement 1 by repeated sampling from
the space of all possible reaction rates, initial concentrations, and magnitude of effects
(see Materials and Methods).

The results of simulations are shown in Figure 4. Figure 4A shows that the Wsp
pathway is predicted to be the target of mutation 1.3 - 2.1 times more often than the
Aws pathway while Figure 4B shows that the Mws pathway is predicted to be the
target of mutation 0.7 - 1.0 times less often that the Aws pathway. While these results
agree with the experimental data showing Mws to be least likely pathway to be
followed, the predictions are at odds with the mutation rate data showing WS types to
be twice as likely to arise from mutation in Aws, versus Wsp. The causes of this
discrepancy are described in the following section.

Figure 4. Modelling of the probability of using the Wsp, Aws and Mws pathways
(A) Probability of Wsp relative to Aws. Equal mutation rates for all components.
(B) Probability of Mws relative to Aws. Equal mutation rates for all components.
(C) Probability of Mws relative to Wsp. Equal mutation rates for all components.

(D) Probability of Wsp relative to Aws with the mutational hotspot in AwsX included. Based on the mutational data a hot spot for Aws is included in the models that increase the mutation rate by a factor five for both enabling and disabling mutations. (E) Probability of Mws relative to Aws with the mutational hotspot in AwsX included. The relative contributions of individual reactions rates are available in Figure 4 - figure supplement 1 for Wsp and Figure 4 - figure supplement 1 for Aws.

In addition to predicting the preferred mutational pathways to produce a WS, the Bayesian approach also predicts genes likely to be affected by mutation (Figure 4 figure supplement 1 and 2). Predictions as to specific genetic targets come from appraisal of the relative importance of each reaction in terms of generating a wrinkly spreader (Figure 4 – supplement 1 and 2). While it is recognised that a majority of WS mutations arise from mutations in negative regulators of DGC activity, such as WspF and AwsX (McDonald, et al. 2009; Lind, et al. 2015), further predictions are possible based on impacts of alterations in gene function on reaction rates. For example, with reference to the Wsp pathway (Figure 4 – figure supplement 1), there are two reactions (r_2 and r_6) that affect WspF function: r_2 describes the rate of removal of methyl groups from the signalling complex and r_6 the rate at which WspF is activated by transfer of active phosphoric groups from the WspE kinase. Loss-of-function (disabling) mutations being much more common than gain-of-function (enabling) mutations means that both WspF and WspE are likely targets. The null model predicts that in the area of parameter space in which Wsp is most likely compared to Aws, 45% of the time WS will be generated when the second reaction, r_2, is altered (Figure 4 – figure supplement 1). The same is true for reaction r_6. Thus the presence of a negative regulator is predicted to extend the mutational target size well beyond the gene itself. This is also true for Aws, where r_3 is the main contributor to the WS phenotype in the case where disabling change is more common than enabling change. Here mutations are predicted not only in the negative regulator AwsX, but also in the interacting region of the DGC AwsR (Figure 4 – figure supplement 2).
Loss-of-function mutations in negative regulators and their interacting partners are not the only predicted targets. For Wsp r_1, r_3, r_4, and r_5 are altered approximately 5% of the time in the parameter region where disabling mutations are more common than enabling mutations, but contribute more when the rate of enabling mutations is increased (Figure 4 – figure supplement 1). Enabling mutations based on the model are likely to be found in WspC increasing r_1, WspABD increasing r_3, WspABD/WspE increasing r_4 and WspR increasing r_5 (Figure 2A). For Aws, enabling mutations are predicted to increase reaction r_1 by mutations causing constitutive activation of AwsO, r_2 increasing binding of AwsO and AwsX and r_4 increasing formation of the active AwsR dimer (Figure 3B, Figure 4 – figure supplement 2).

In summary, high rates of WS mutations are predicted for $wspF$, $wspE$, $wspA$, $awsX$ and $awsR$ with lower rates for $wspC$, $wspR$ and $awsO$. Several of these predictions sit in accord with previous experimental observations, however, notable are predictions that evolution might also target $wspA$ and $wspR$, two genes that have not previously been identified as mutational causes of WS types (McDonald, et al. 2009).

Analysis of mutants reveals sources of mutational bias

There are several reasons why predictions from the models might be out of kilter with experimental data on mutation rates. We firstly looked to the distribution of WS generating mutations among the 109 mutants collected during the course of the fluctuation assays. Of the 109 mutants, 105 harboured a mutation in wsp (46 mutants), aws (41 mutants) or mws (18 mutants) (Figure 5A, Figure 5 – source data 1). The remaining four had mutations in previously described rare pathways (PFLU0085, PFLU0183), again confirming that these non-focal pathways produce just a fraction of the total set of WS mutants (Lind, et al. 2015).

The distribution of mutations for each of the three pathways is indicative of bias. As shown in Figure 5B, almost 29% of all WS-causing mutations (adjusted for differences in mutation rates between the three pathways) were due to an identical 33 base pair in-frame deletion in $awsX$ (ΔY229-g261, ΔY77-Q87), while a further 13% were due to an identical mutation (79 a->c, T27P) in $awsR$. At least 41 different mutations in Aws can lead to WS: if mutation rates were equal for these sites the probability of observing 20 identical mutations would be extremely small. In fact 10
million random samplings from the observed distribution of mutations failed to
recover this bias. While the Wsp pathway also contains sites that were mutated more
than once (six positions were mutated twice, one site three times and one five times),
sources of mutational bias in Wsp were less evident than in Aws (Figure 5B).

The mathematical models presented above assumed no mutational bias thus the lack
of fit between mutation rate data and predictions from the models. Nonetheless,
changing specific reaction rates within the models readily incorporates such
knowledge. For example, the mutational hotspot in $awsX$ affects reactions r_2 and r_3 in
the Aws differential equation system (Figure 3B, Figure 3 – figure supplement 2).
The effect of a five-fold change in the probability of enabling/disabling change in
these reactions leads to the prediction that the Aws pathway is more likely to generate
WS types than Wsp for most probability values (see Figure 4D). The only area of
parameter space in which evolution is more likely to utilise the Wsp pathway is for
rare mutations that have a high probability of enabling change ($\gg 10^{-2}$). One
interesting consequence is that it changes the phase-space over which evolution of
WS via mutations in the Wsp pathway is more likely with respect to the Aws
pathway. In Figure 4A, evolution is most likely to proceed via the Wsp pathway when
the probability of disabling change is greater than the probability of enabling change.
In contrast, when the likelihood of producing WS types is affected by the mutational
hotspot in $awsX$, then evolution will proceed via Wsp only when the probability of
enabling change is greater than the probability of disabling change (Figure 4D and
Figure 4 figure supplement 2).

Analysis of mutants reveals mutational targets and effects

Wsp pathway: Mutations were identified in five genes of the seven-gene pathway all
of which were predicted by the null model (Figure 4 – figure supplement 1). The most
commonly mutated gene was *wspA* (PFLU1219), with ten of 15 mutations (Figure 5)
being amino acid substitutions (six unique) clustered in the region 352-420 at the stalk
of the signalling domain. This region has been implicated in trimer-of-dimer
formation for the WspA homologue in *Pseudomonas aeruginosa* (O’Connor, et al.
2012) which is critical for self-assembly and localization of Wsp clusters in the
membrane. It is possible that these mutations stabilize trimer of dimer formation,
change the subcellular location of the Wsp complex, or affect interaction with WspD
(putative interface 383-420 in WspA) (Griswold, et al. 2002) and thus affecting relay
of signal to WspE. These effects we interpreted as enabling mutations increasing r_3 in
Figure 2A. The four additional mutations were in frame deletions in a separate region
of the transducer domain (ΔT293 - E299, ΔA281-A308). Although it is possible that
these mutations could also affect trimer-of-dimer formation, there are predicted
methylation sites in the region (Rice and Dahlquist 1991) that regulate the activity of
the protein via methyltransferase WspC and methylesterase WspF. Given that
disabling mutations are more common than enabling mutations it is likely that these
mutations decrease r_2 in Figure 3A by disrupting the interaction with WspF. We also
identified a single mutation that fused the open reading frame of WspC, the
methyltransferase that positively regulates WspA activity, to WspD, resulting in a
chimeric protein (Figure 5, Figure 5 – source data). This mutation is likely to be a rare
enabling mutation that increases the activity of WspC (increasing r_1 in Figure 3A) by
physically tethering it to the WspABD complex thus allowing it to more effectively
counteract the negative regulator WspF. Alternatively, the tethering may physically
block the interaction with WspF (decrease of r_2 in Figure 3A).

The second most commonly mutated gene in the wsp operon was wspE (PFLU1223)
(Figure 5). Four amino acids were repeatedly mutated in the response regulatory
domain of WspE and all cluster closely in a structural homology model made with
Phyre2 (Kelley, et al. 2015). All mutated residues surround the active site of the
phosphorylated D682 and it is likely that they disrupt feedback regulation by
decreasing phosphorylation of the negative regulator WspF (decreasing r_6) rather than
increasing activation of WspR (r_5 in Figure 3A).
Figure 5. Mutational targets. (A) 105 independent mutations in the \(wsp \) \((n=46)\), \(aws \) \((n=41)\) and \(mws \) \((n=18)\) operons were identified. Numbers of independent mutants are shown in brackets. Full details on the mutations are available in Figure 5 – source data 1. (B) Diversity of mutations with area proportional to mutation rate (Figure 2). Two mutations (\(AwsX \, \Delta Y77-Q87 \) and \(AwsR \, T27P \)) contribute 41% of all mutations to WS suggesting that these are mutational hot spots. The increased mutation rate can be incorporated into the null model by increasing the probability of change for \(r_2 \) and \(r_3 \) in the Aws model (Figure 3B).

Twelve mutations were detected in \(wspF \) (PFLU1224). These are distributed throughout the gene and include amino acid substitutions, in-frame deletions as well as a frame-shift and a stop codon (Figure 5). The pattern of mutations is consistent with both the role of WspF as a negative regulator of WspA activity and the well-
characterised effect of loss-of-function mutations in this gene (Bantinaki, et al. 2007; McDonald, et al. 2009). The mutations are interpreted as decreasing r_2 in Figure 3A. Five mutations were found in WspR (PFLU1225), the DGC output response regulator that produces c-di-GMP and activates expression of cellulose (Figure 5). All mutations were located in the linker region between the response regulator and DGC domains. Mutations in this region are known to generate constitutively active wspR alleles by relieving the requirement for phosphorylation (Goymer, et al. 2006). They may additionally affect subcellular clustering of WspR (Huangyutitham, et al. 2013) or shift the equilibrium between the dimeric form of WspR, with low basal activity, towards a tetrameric activated form (De, et al. 2009). In our model these increase reaction r_5.

Aws pathway: Mutations were identified in all three genes of the Aws pathway – all of which were predicted by the null model. In the Aws pathway, mutations were most commonly found in *awsX* (25 out of 41 mutations (Figure 5)). The above-mentioned mutational hotspot produced in-frame deletions likely mediated by 6 bp direct repeats (Figure 5 – source data 1). The deletions are consistent with a loss of function and a decrease in r_3 (Figure 3B) that would leave the partially overlapping open reading frame of the downstream gene (*awsR*) unaffected.

The DGC AwsR, was mutated in 14 cases with an apparent mutational hot spot at T27P (9 mutants) in a predicted transmembrane helix (amino acids 19-41). The remaining mutations were amino acid substitutions in the HAMP linker and in the PAS-like periplasmic domain between the two transmembrane helices. These amino acid substitutions are removed from the output DGC domain (Figure 5) and their effects are difficult to interpret, but they could cause changes in dimerization (Malone, et al. 2012) or the packing of HAMP domains, which could, in turn, alter transmission of conformational changes in the periplasmic PAS-like domain to the DGC domain causing constitutive activation (Parkinson 2010). Such effects would increase r_3 in Figure 3B. Mutations in the N-terminal part of the protein are easier to interpret based on the existing functional model (Malone, et al. 2012) and most likely disrupt interactions with the periplasmic negative regulator AwsX resulting in a decrease in r_3 in Figure 3B.
Two mutations were found in the outer membrane lipoprotein protein AwsO between the signal peptide and the OmpA domain (Figure 5). Both mutations were glutamine to proline substitutions (Q34P, Q40P), which together with a previously reported G42V mutation (McDonald, et al. 2009) suggest that multiple changes in this small region can cause a WS phenotype. This is also supported by data from Pseudomonas aeruginosa in which mutations in nine different positions in this region lead to a small colony variant phenotype similar to WS (Malone, et al. 2012). A functional model based on the YfiBNR in P. aeruginosa (Malone, et al. 2012; Xu, et al. 2016), suggest that AwsO sequesters AwsX at the outer membrane and that mutations in the N-terminal part of the protein lead to constitutive activation and increased binding of AwsX. This would correspond to an increase in \(r_2 \) in Figure 3B, which would relieve negative regulation of AwsR.

Mws pathway: The MwsR pathway (comprising just a single gene) harbours mutations in both DGC and phosphodiesterase (PDE) domains. Only mutations in the C-terminal phosphodiesterase (PDE) domain were predicted (Figure 3C). Eleven of 18 mutations were identical in-frame deletions (\(\Delta R1024 \)-E1026) in the PDE domain, mediated by 8 bp direct repeats (Figure 5, Figure 5 – source data 1). It has been shown previously that deletion of the entire PDE domain generates the WS phenotype (McDonald, et al. 2009), suggesting a negative regulatory role that causes a decrease of \(r_2 \) in the model in Figure 3C. One additional mutation was found in the PDE domain (E1083K) located close to R1024 in a structural homology model made with Phyre2 (Kelley, et al. 2015), but distant to the active site residues (E1059-L1061). Previously reported mutations (A1018T, ins1089DV) (McDonald, et al. 2009) are also removed from the active site and cluster in the same region in a structural homology model. This suggests that loss of phosphodiesterase activity may not be the mechanism leading to the WS phenotype. This is also supported by the high solvent accessibility of the mutated residues, which indicates that major stability-disrupting mutations are unlikely and changes in interactions between domains or dimerization are more probable. Thus, it is likely that the WS phenotype resulting from a deletion in the PDE domain is caused by disruption of domain interactions or dimerization rather than loss of phosphodiesterase activity.
The remaining mutations within mwsR are amino acid substitutions in the GGDEF domain, close to the DGC active site (927-931) with the exception of a duplication of I978-G985. While it is possible that these mutations directly increase the catalytic activity of the DGC, increasing r_1 in Figure 3C, such enabling mutations are considered to be rare. An alternative hypothesis is that these mutations either interfere with c-di-GMP feedback regulation or produce larger conformational changes that change inter-domain or inter-dimer interactions, similar to the mutations in the PDE domain. Based on these data we reject the current model of Mws function, which predicted mutations decreasing r_2 (Figure 3C) through mutations inactivating the PDE domain. We instead suggest that the mutations are likely to disrupt the conformational dynamics between the domains and could be seen either as activating mutations causing constitutive activation or disabling mutations with much reduced mutational target size that must specifically disrupt the interaction surface between the domains. In both cases the previous model lead to an overestimation of the rate to WS for the Mws pathway.

Fitness of WS types

We measured the fitness of representative WS types with mutations in each of the mutated genes (wspA, wspC/D, wspE, wspF, wspR, awsX, awsR, awsO, mwsR) in 1:1 competitions against a reference WspF ΔT226-G275 deletion mutant marked with GFP (Figure 6). This type of fitness data should be interpreted with caution because the fitness of WS mutants have been shown to be frequency dependent and some WS mutants are superior in early phase attachment as opposed to growth at the air-liquid interface (Lind, et al. 2015). Nevertheless, these competition experiments provide an estimate of fitness when several different WS mutants compete at the air-liquid interface (a likely situation given a $\sim10^{-8}$ mutation rate to WS and a final population size of $>10^{10}$). The fitness data account for the over- or under-representation of some WS mutants when grown under selection (McDonald, et al. 2009) compared to those uncovered without selection (as reported here).
Figure 6. Fitness of different WS mutants. Competitive fitness against a WspF ΔT226-G275 reference strain was measured for representative mutations in the Wsp, Aws, Mws pathways. Pairwise competitions were performed in quadruplicates and error bars represent +/- one standard deviation.

The three wspF mutants, the wspC-wspD fusion, and the wspE mutants have similar fitness. In contrast, both wspA mutants are slightly less fit and both wspR mutants are severely impaired (Figure 6). This sits in accord with previous work in which mutations generating WS obtained with selection have been detected in wspF and wspE, but not wspA or wspR (Goymer, et al. 2006; McDonald, et al. 2009). All awsXRO mutants have similar low fitness compared to the wspF reference strain (Figure 6), which explains why under selection these are found at lower frequencies compared to mutations in the wsp pathway (McDonald, et al. 2009) despite a roughly two-fold higher mutation rate to WS.

Differences of mutational spectra with and without selection

A final question concerns the outcome of the original experimental evolution under selection (McDonald, et al. 2009) and whether it can be explained by our detailed measurement of mutation rates, mutational targets and fitness assays. As indicated above, there exist major differences in the spectrum of mutations isolated with and without selection (Figure 7). The most obvious difference is in the use of the Wsp pathway, which is most commonly used (15/24) under selection and yet produces WS
types at a lower rate than the Aws pathway. The explanation lies in the lower fitness of Aws mutants (Figure 6). Similarly, fitness effects also explains differences in the spectrum of wsp mutations, with no wspA mutations being found under selection despite being the most commonly mutated gene without selection (15/46). The previous failure to detect wspR mutants in a screen of 53 WS mutants (Goymer, et al. 2006) is similarly explained by low fitness of WS types arising via mutations in this gene.

Figure 7. WS mutations isolated with and without selection. Fitness effects bias the mutational spectrum observed under selection resulting in underrepresentation of WspA and WspR compared to WspF and WspE. Similar fitness effects of different Aws mutants lead to similar patterns regardless of selective conditions. Only within operon comparisons are valid for this figure as the mutants isolated without selection had double deletions of the other operons. Between operon mutation rates are available in Figure 2.

Discussion

The issue of evolutionary predictability and the relative importance of stochastic events compared to deterministic processes have a long history in evolutionary biology (Darwin 1872; Simpson 1949; Jacob 1977; Gould 1989; Conway Morris 2003; Orgogozo 2015). Recent interest has been sparked by an increasing number of observations that evolution, under certain circumstances, can be remarkably repeatable (Colosimo, et al. 2005; Shindo, et al. 2005; Jost, et al. 2008; Barrick, et al. 2009; Lee and Marx 2012; Meyer, et al. 2012; Zhen, et al. 2012; Herron and Doeberi
2013), but whether these cases are representative for evolutionary processes in
general remains to be determined. A related question, with greater potential for
practical applications, is whether it is possible to forecast short-term evolutionary
events and if so, then the challenge is to stipulate the data necessary to make
successful predictions.

Our uniquely detailed knowledge of the WS experimental evolution system has
provided a rare opportunity to disentangle the contributions of selection, mutational
biases and genetic architecture to evolutionary outcomes, and consequently explore
the limits of evolutionary forecasting. A thorough understanding of the function of the
molecular species and their interactions allowed development of a null model by
defining the genotype-to-phenotype map, which successfully predicted mutational
targets and the relative likelihood that evolution followed each of the three principle
pathways. Importantly, genetic architecture is likely to be transferable between
different species, which stands to allow the formulation of general principles and
evolutionary rules (Lind, et al. 2015). Despite the simplicity of the mathematical null
models, which contain only general information about functional interactions, we
successfully predicted mutational targets including previously unknown mutations in
wspA. Without information about fitness and mutational biases, however, only order
of magnitude predictions of mutant frequencies can be made. Thus, it is possible to
predict that Wsp, which is subject to negative regulation will be more common than a
DGC that requires enabling mutations (Lind, et al. 2015), but not which of two
pathways (Wsp and Aws) with differently wired negative regulation is likely to be
dominant after selection. Insights from the null model combined with data on
mutational targets also allowed us to reject our functional model of Mws.

Direct measurement of the fitness effects of large number of mutations is difficult and
time-consuming and typically only possible for microbial species. Therefore future
success in predicting fitness effects of mutations rests on the ability to infer them
from other parameters, such as estimated effects of mutations on thermodynamic
stability or molecular networks, or from incorporation of information concerning
evolutionary conservation of amino acid residues. Alternatively, it might be possible
to extrapolate findings from a small number of mutations that are either directly
constructed and assayed in the laboratory or through fitness estimates of
polymorphisms data for natural populations. Recent work on the prediction of the
fitness effects of random mutations in several genes suggests that in many cases large
effect mutations can be predicted using methods based on evolutionary conservation
(Lind, et al. 2017a).

Interestingly WS mutations in the same gene often have similar fitness effects (Figure
6). Obviously no general conclusions can be drawn from these few cases, but if
mutations with similar functional effects, for example disruption of a particular
interaction, can be assumed to be equally fit, this would greatly reduce the number of
specific mutants that need to be experimentally assayed for each gene. Several studies
suggest that fitness distributions are often bimodal, with a significant proportion being
complete loss-of-function mutations, which could explain the similar fitness effects of
mutations in the same genes if they result in inactivation of a particular biochemical
reaction of interaction (Sanjuan 2010; Jacquier, et al. 2013; Sarkisyan, et al. 2016;
Lind, et al. 2017a). The extent to which fitness effects are transferable between strains
with different genetic backgrounds or closely related species remains to be more fully
investigated (Ungerer, et al. 2003; Pearson, et al. 2012; Wang, et al. 2014).

Estimates of genomic mutation rates are remarkably consistent across species (Drake
1991), and mutational biases as evident in the types of base substitutions, are well-
characterized for a large number of bacterial species (Sung, et al. 2012; Wei, et al.
2014; Farlow, et al. 2015; Foster, et al. 2015; Long, et al. 2015). It is also known that
molecular processes, such as transcription and replication, can introduce mutational
biases (Beletskii and Bhagwat 1996; Hudson, et al. 2003; Lind and Andersson 2008;
Reijns, et al. 2015; Zhao, et al. 2015) and mutational hotspots caused by
homopolymeric tracts and direct repeats can greatly increase local mutation rate
(Streisinger and Owen 1985; Seier, et al. 2011). However, the distribution of mutation
rates across a gene or operon remains largely unknown. Absence of this knowledge
currently hinders efforts to forecast adaptive evolution.

There are several cases of probable mutational hotspots in the spectrum of WS
mutants found in this study before the influence of selection. One specific deletion
(ΔY77-Q87) in awsX accounts for nearly half (20/41) of the mutations in the Aws
pathway. Thus, despite the existence of hundreds of possible mutations leading to WS
(this work and (McDonald, et al. 2009; McDonald, et al. 2011; Lind, et al. 2015)) one
single mutation accounts for more than one quarter of all WS mutations. While the six
base pair direct repeat flanking the deletion provides a convincing explanation for its
increased rate, it is not clear why this deletion would be ten times more common than
the ΔP34-A46 deletion in the same gene that is flanked by ten base pair repeats and
contains five base pairs identical to those from the ΔY77-Q87 deletion (Figure 5 –
source data 1). There are also instances where single base pair substitutions are
overrepresented: the AwsR T27P mutation is found in nine cases, while eight other
single pair substitutions in Aws were found only once. Consider further the fact that
WspE (a gene of ~2.3 kb), where changes to only four specific amino acids repeatedly
cause WS, and WspF (a gene of ~1 kb) where any mutation that disrupts function
results in WS (Figure 5) contribute equally to the evolution of WS types. Together,
these findings draw attention to the limited value of including mutational target size
alone as a parameter in predictive models.

It is evident from these findings and from related studies (Pollock and Larkin 2004)
that there is need for detailed experimental measurement of local mutation rates in
specific systems. Such investigations stand to contribute to understanding of the
causes of mutational bias and the extent to which biases might be conserved among
related or even unrelated organisms. If local nucleotide sequence is the major
determinant, an estimate of mutation rate will apply strictly to very closely related
species, but if the dynamics of molecular processes, such as transcription and
replication (Sankar, et al. 2016), are major influences then estimates might be
applicable to a wider range of species.

Evolutionary forecasting is likely to be most successful for biological systems where
there are experimental data on a large number of independent evolutionary events,
such as influenza, HIV and cancer (Kouyos, et al. 2012; Fraser, et al. 2014; Lawrence,
et al. 2014; Luksza and Lassig 2014; Neher, et al. 2014; Eirew, et al. 2015). Evolution
might appear idiosyncratic indicating that every specific system requires detailed
investigation, but our hope is that deeper knowledge of the distribution of fitness
effects and mutational biases will allow short term forecasts to be produced using
modelling without the need for large-scale experimental studies. A major boost to
further refinement of evolutionary forecasting is likely to come from combining
coarse and fine-grained approaches. Our demonstration that simple null models of functional networks can produce highly relevant quantitative predictions is an important step forward allowing predictions to be directly tested in other experimental systems.

Materials and methods

Strains and media
The strains used in the study are all Pseudomonas fluorescens SBW25 (Silby, et al. 2009) or derivatives thereof. The reporter construct (pMSC), used for isolation of WS mutants before selection, fused the P_wss promoter to a kanamycin resistance marker (nptII) (Fukami, et al. 2007; McDonald, et al. 2011). P. fluorescens strains with deletions of the wsp (PFLU1219-1225), aws (PFLU5209-5211) and mws (PFLU5329) operons were previously constructed as described by McDonald et al. (McDonald, et al. 2011). All experiments used King’s medium B (KB) (King, et al. 1954), solidified with 1.5% agar and incubation was at 28°C. All strains were stored in glycerol saline at -80°C.

Fluctuation tests and isolation of WS mutants before selection
Strains with the pMSC reporter construct and either wild type genetic background or double deletions of aws/mws, wsp/mws or wsp/aws were used to estimate mutation rates to WS before selection. Overnight cultures were diluted to approximately 10^3 cfu/ml and 60 independent 110 ul cultures were grown for 16-19 h (OD600= 0.9-1.0) with shaking (200 rpm) in 96-well plates before plating on KB plates with 30 mg/l kanamycin. Viable counts were estimated by serial dilution and plating on KB agar. One randomly chosen colony per independent culture with WS colony morphology was restreaked once on KB agar. The assay was repeated at least four times for the double deletion mutants and twice for the wild type strain. Mutations rates were estimated using the Ma-Sandri-Sarkar Maximum Likelihood Estimator (Hall, et al. 2009) available at www.keshavssingh.org/protocols/FALCOR.html.

Sequencing
Mutations causing the WS phenotype were identified by Sanger sequencing of candidate genes in the remaining common pathway to WS, for example the wsp operon for the aws/mws deletion strain. In a few cases where no mutations were identified in the previously established WS target genes, we used genome sequencing (Illumina HiSeq, performed by Macrogen Korea).

Fitness assays

Competition assays were performed as previously described (Lind, et al. 2015) by mixing the WS mutant 1:1 with a reference strain labelled with green fluorescent protein and measuring the ratio of each strain before and after static growth for 24 h using flow cytometry (BD FACS Canto). We used a WspF ΔT226-G275 deletion mutant as the reference strain because WspF mutants are the most commonly found WS type when grown under selective conditions (McDonald, et al. 2009) and the in frame deletion of 50 amino acids most likely represents a complete loss-of-function mutation with minimal polar effects on the downstream wspR. Selection coefficients per generation were calculated as $s = \frac{\ln(R(t)/R(0))}{t}$, as previously described (Dykhuizen 1990) where R is the ratio of alternative WS mutant to WspF ΔT226-G275 GFP and t the number of generations determined using viable counts. Control competition experiments with isogenic WspF ΔT226-G275 reference strains with and without GFP were used to correct for the cost of the GFP marker. Control competitions were also used to determine the cost of the double deletions and the reporter construct relative to a wild type genetic background, for example an AwsX ΔY77-Q87 mutant in Awsp/Δmws background with pMSC was competed with a GFP labeled AwsX ΔY77-Q87 mutant in wild type background. Competitions were performed independently inoculated quadruplicates for each strain.

Homology models

Homology models of the structure of WspA, WspE, WspR, AwsR, AwsO and MwsR were made using Phyre2 in intensive mode (http://www.sbg.bio.ic.ac.uk/phyre2) (Kelley, et al. 2015).

Probability estimation in the mathematical models

The differential equation models describe the interactions between proteins in each of the three WS pathways. In order to solve the differential equations, two pieces of
information are required: i) the initial concentrations of the molecular species and ii) the reaction rates. Although this information is unavailable a random-sampling approach was used to generate different random sets of initial concentrations and reaction rates. Each random set was used to establish a baseline of potential WS expression making it possible to evaluate whether a set of mutations results in a WS type. Effectively, this approach allows sampling of the probability distribution $P(\text{WS} | m_i \in \text{Wsp})$ used in our Bayesian model.

We randomly sample 1,000 different sets of reaction rates and initial concentrations from uniform priors: reaction rates were sampled randomly from a uniform distribution on log space (i.e. $10^{U[-2,2]}$) and initial concentrations of reactants were sampled from a uniform distribution $U[0,10]$. For each set, the appropriate differential equation model was integrated and the steady state concentration of the compounds that correspond to a wrinkly spreader (RR in Aws, R* in Wsp and D* for Mws) computed. This served as a baseline for the non-WS phenotype that was used for comparison to determine whether combinations of mutations result in increased WS expression. After obtaining the baseline, we implemented particular combinations of enabling/disabling mutations (a m_i). Ideally, a distribution linking enabling/disabling mutations to a fold change in reaction rates would be used, but this information is unavailable. In order to progress the effect sizes for enabling and disabling mutations were sampled from $10^{U[0,2]}$ and $10^{U[-2,0]}$, respectively, and then multiplied by the reaction rates. The differential equations were then solved for the same time that it took the baseline to reach steady state. The final concentration of R* (Figure 3A), RR (Figure 3B) and D* (Figure 3C) was then compared to the baseline and the number of times out of 1,000 that the WS-inducing compound increased served as an estimate of $P(\text{WS} | m_i \in \text{Wsp})$. The probability distribution stabilized by 500 random samples and additional sampling did not produce significant changes (data not shown).

The absence of empirical data on reaction rates, initial concentrations, and expected mutation effect size meant using a random sampling approach requiring estimates for parameter ranges. Parameter ranges were chosen to be broad enough to capture differences spanning several orders of magnitudes while allowing numerical computations for solving the differential equations. To assess the effect of these
ranges on the results, the sampling procedure was repeated for WSP for three
different parameter regimes i) an expanded range for initial concentrations [0-50], ii)
an expanded range for reaction rates $10^{[3.3]}$, iii) a compressed range for mutational
effect size $10^{[1.1]}$. This analysis shows that qualitative results are robust to these
changes (see Figure S1).

Source code for the mathematical modelling is deposited as supplemental material.

Acknowledgements

This work was supported by Marsden Fund Council from New Zealand Government
funding, administered by the Royal Society of New Zealand.

Competing interests

The authors declare no competing interests.

Author contributions

Peter A. Lind Conceptualization, Methodology, Investigation, Data Curation,
Writing—original draft, Writing—review and editing, Visualization

Eric Libby Conceptualization, Methodology, Software, Formal analysis,
Investigation, Writing—original draft, Writing—review and editing, Visualization

Jenny Herzog Methodology, Investigation, Data Curation

Paul B. Rainey Conceptualization, Methodology, Validation, Writing—original
draft, Writing—review and editing, Visualization, Supervision, Project
administration, Funding acquisition
References

Alberch P. 1991. From genes to phenotype: dynamical systems and evolvability. Genetica 84:5-11.

Bailey SF, Blanquart F, Bataillon T, Kassen R. 2017. What drives parallel evolution?: How population size and mutational variation contribute to repeated evolution. Bioessays 39:1-9. http://dx.doi.org/10.1002/bies.201600176

Bantinaki E, Kassen R, Knight CG, Robinson Z, Spiers AJ, Rainey PB. 2007. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176:441-453. http://dx.doi.org/10.1534/genetics.106.069906

Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243-1247. http://dx.doi.org/10.1038/nature08480

Beletskii A, Bhagwat AS. 1996. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 93:13919-13924.

Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Jr., Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928-1933. http://dx.doi.org/10.1126/science.1107239
Conway Morris S. 2003. Life's solution inevitable humans in a lonely universe. New York u.a.: Cambridge Univ. Press.

Darwin C. 1872. The origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. London: John Murray.

De N, Navarro MV, Raghavan RV, Sondermann H. 2009. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J Mol Biol 393:619-633. http://dx.doi.org/10.1016/j.jmb.2009.08.030

de Visser JA, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution. Nature reviews. Genetics 15:480-490. http://dx.doi.org/10.1038/nrg3744

Drake JW. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences of the United States of America 88:7160-7164.

Dykhuizen DE. 1990. Experimental studies of natural selection in bacteria. Annu. Rev. Ecol. Syst. 21:373-398.

Eirew P, Steif A, Khattr J, Ha G, Yap D, Farahani H, Gelmon K, Chia S, Mar C, Wan A, et al. 2015. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422-426. http://dx.doi.org/10.1038/nature13952

Eyre-Walker A, Keightley PD. 2007. The distribution of fitness effects of new mutations. Nature reviews. Genetics 8:610-618. http://dx.doi.org/10.1038/nrg2146
Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M. 2015. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe. Genetics 201:737-744. http://dx.doi.org/10.1534/genetics.115.177329

Ferguson GC, Bertels F, Rainey PB. 2013. Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. V. Insight into the Niche Specialist "Fuzzy Spreader" Compels Revision of the Model Pseudomonas Radiation. Genetics. http://dx.doi.org/10.1534/genetics.113.154948

Flowers JM, Hanzawa Y, Hall MC, Moore RC, Purugganan MD. 2009. Population genomics of the Arabidopsis thaliana flowering time gene network. Molecular biology and evolution 26:2475-2486. http://dx.doi.org/10.1093/molbev/msp161

Foster PL, Lee H, Popodi E, Townes JP, Tang H. 2015. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of America 112:E5990-5999. http://dx.doi.org/10.1073/pnas.1512136112

Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S. 2017. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife 6. http://dx.doi.org/10.7554/eLife.24669

Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S, Bonhoeffer S. 2014. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343:1243727. http://dx.doi.org/10.1126/science.1243727
Fukami T, Beaumont HJ, Zhang XX, Rainey PB. 2007. Immigration history controls diversification in experimental adaptive radiation. Nature 446:436-439. http://dx.doi.org/10.1038/nature05629

Galen SC, Natarajan C, Moriyama H, Weber RE, Fago A, Benham PM, Chavez AN, Cheviron ZA, Storz JF, Witt CC. 2015. Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens. Proceedings of the National Academy of Sciences of the United States of America 112:13958-13963. http://dx.doi.org/10.1073/pnas.1507300112

Gompel N, Prud'homme B. 2009. The causes of repeated genetic evolution. Dev Biol 332:36-47. http://dx.doi.org/10.1016/j.ydbio.2009.04.040

Gould SJ. 1989. Wonderful life : the Burgess Shale and the nature of history. New York: W.W. Norton.

Goymer P, Kahn SG, Malone JG, Gehrig SM, Spiers AJ, Rainey PB. 2006. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Genetics 173:515-526. http://dx.doi.org/10.1534/genetics.106.055863

Griswold IJ, Zhou HJ, Matison M, Swanson RV, McIntosh LP, Simon MI, Dahlquist FW. 2002. The solution structure and interactions of CheW from Thermotoga maritima. Nature Structural Biology 9:121-125. http://dx.doi.org/DOI 10.1038/nsb753

Hall BM, Ma CX, Liang P, Singh KK. 2009. Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation
analysis. Bioinformatics 25:1564-1565.

http://dx.doi.org/10.1093/bioinformatics/btp253

Hammerschmidt K, Rose CJ, Kerr B, Rainey PB. 2014. Life cycles, fitness decoupling and the evolution of multicellularity. Nature 515:75-79.

http://dx.doi.org/10.1038/nature13884

Heilbron K, Toll-Riera M, Kojadinovic M, MacLean RC. 2014. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment. Genetics 197:981-990. http://dx.doi.org/10.1534/genetics.114.163147

Herron MD, Doebeli M. 2013. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS biology 11:e1001490.

http://dx.doi.org/10.1371/journal.pbio.1001490

Huangyutitham V, Guvener ZT, Harwood CS. 2013. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. MBio 4:e00242-00213. http://dx.doi.org/10.1128/mBio.00242-13

Hudson RE, Bergthorsson U, Ochman H. 2003. Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucleic Acids Res 31:4517-4522.

Jacob F. 1977. Evolution and tinkering. Science 196:1161-1166.

Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E, Glodt J, Bercot B, Petit E, Poulain J, Barnaud G, et al. 2013. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc Natl Acad Sci U S A 110:13067-13072.

http://dx.doi.org/10.1073/pnas.1215206110
Jost MC, Hillis DM, Lu Y, Kyle JW, Fozzard HA, Zakon HH. 2008. Toxin-resistant sodium channels: parallel adaptive evolution across a complete gene family. Molecular biology and evolution 25:1016-1024. http://dx.doi.org/10.1093/molbev/msn025

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845-858. http://dx.doi.org/10.1038/nprot.2015.053

King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of laboratory and clinical medicine 44:301-307.

Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S. 2012. Exploring the complexity of the HIV-1 fitness landscape. PLoS genetics 8:e1002551. http://dx.doi.org/10.1371/journal.pgen.1002551

Kram KE, Geiger C, Ismail WM, Lee H, Tang H, Foster PL, Finkel SE. 2017. Adaptation of Escherichia coli to Long-Term Serial Passage in Complex Medium: Evidence of Parallel Evolution. mSystems 2. http://dx.doi.org/10.1128/mSystems.00192-16

Krasovec R, Richards H, Gifford DR, Hatcher C, Faulkner KJ, Belavkin RV, Channon A, Aston E, McBain AJ, Knight CG. 2017. Spontaneous mutation rate is a plastic trait associated with population density across domains of life. PLoS biology 15:e2002731. http://dx.doi.org/10.1371/journal.pbio.2002731

Kugelberg E, Kofoed E, Andersson DI, Lu Y, Mellor J, Roth FP, Roth JR. 2010. The tandem inversion duplication in Salmonella enterica: selection drives unstable
precursors to final mutation types. Genetics 185:65-80.

http://dx.doi.org/10.1534/genetics.110.114074

Laland KN, Uller T, Feldman MW, Sterelny K, Muller GB, Moczek A, Jablonka E, Odling-Smee J. 2015. The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings. Biological sciences / The Royal Society 282:20151019. http://dx.doi.org/10.1098/rspb.2015.1019

Lässig M, Mustonen V, Walczak AM. 2017. Predicting evolution. Nature Ecology & Evolution 1:0077. http://dx.doi.org/10.1038/s41559-017-0077

Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495-501. http://dx.doi.org/10.1038/nature12912

Lee MC, Marx CJ. 2012. Repeated, selection-driven genome reduction of accessory genes in experimental populations. PLoS genetics 8:e1002651. http://dx.doi.org/10.1371/journal.pgen.1002651

Levinson G, Gutman GA. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular biology and evolution 4:203-221. http://dx.doi.org/10.1093/oxfordjournals.molbev.a040442

Lind PA, Andersson DI. 2008. Whole-genome mutational biases in bacteria. Proceedings of the National Academy of Sciences of the United States of America 105:17878-17883. http://dx.doi.org/10.1073/pnas.0804445105
Lind PA, Arvidsson L, Berg OG, Andersson DI. 2017a. Variation in Mutational Robustness between Different Proteins and the Predictability of Fitness Effects. Molecular biology and evolution 34:408-418. http://dx.doi.org/10.1093/molbev/msw239

Lind PA, Farr AD, Rainey PB. 2017b. Evolutionary convergence in experimental Pseudomonas populations. ISME J 11:589-600. http://dx.doi.org/10.1038/ismej.2016.157

Lind PA, Farr AD, Rainey PB. 2015. Experimental evolution reveals hidden diversity in evolutionary pathways. Elife 4. http://dx.doi.org/10.7554/eLife.07074

Long H, Kucukyildirim S, Sung W, Williams E, Lee H, Ackerman M, Doak TG, Tang H, Lynch M. 2015. Background Mutational Features of the Radiation-Resistant Bacterium Deinococcus radiodurans. Molecular biology and evolution 32:2383-2392. http://dx.doi.org/10.1093/molbev/msv119

Lovett ST. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243-1253. http://dx.doi.org/10.1111/j.1365-2958.2004.04076.x

Luksza M, Lassig M. 2014. A predictive fitness model for influenza. Nature 507:57-61. http://dx.doi.org/10.1038/nature13087

Luria SE, Delbruck M. 1943. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 28:491-511.
Lynch M. 2010. Rate, molecular spectrum, and consequences of human mutation. Proceedings of the National Academy of Sciences of the United States of America 107:961-968. http://dx.doi.org/10.1073/pnas.0912629107

Maharjan RP, Ferenci T. 2017. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS biology 15:e2001477. http://dx.doi.org/10.1371/journal.pbio.2001477

Malone JG, Jaeger T, Manfredi P, Dotsch A, Blanka A, Bos R, Cornelis GR, Haussler S, Jenal U. 2012. The YfIBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 8:e1002760. http://dx.doi.org/10.1371/journal.ppat.1002760

Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U. 2010. YfIBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 6:e1000804. http://dx.doi.org/10.1371/journal.ppat.1000804

Martin P, Sun L, Hood DW, Moxon ER. 2004. Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. Microbiology 150:3001-3012. http://dx.doi.org/10.1099/mic.0.27182-0

McDonald MJ, Cooper TF, Beaumont HJE, Rainey PB. 2011. The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens. Biology Letters 7:98-100. http://dx.doi.org/Doi 10.1098/Rsbl.2010.0547
McDonald MJ, Gehrig SM, Meintjes PL, Zhang XX, Rainey PB. 2009. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. Genetics 183:1041-1053. http://dx.doi.org/10.1534/genetics.109.107110

Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428-432. http://dx.doi.org/10.1126/science.1214449

Moxon ER, Rainey PB, Nowak MA, Lenski RE. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Current biology : CB 4:24-33.

Neher RA, Russell CA, Shraiman BI. 2014. Predicting evolution from the shape of genealogical trees. Elife 3. http://dx.doi.org/10.7554/eLife.03568

Orgogozo V. 2015. Replaying the tape of life in the twenty-first century. Interface Focus 5:20150057. http://dx.doi.org/10.1098/rsfs.2015.0057

Orr HA. 2005. The genetic theory of adaptation: a brief history. Nature reviews. Genetics 6:119-127. http://dx.doi.org/10.1038/nrg1523

Ostrowski EA, Woods RJ, Lenski RE. 2008. The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli. Proceedings. Biological sciences / The Royal Society 275:277-284. http://dx.doi.org/10.1098/rspb.2007.1244

Parkinson JS. 2010. Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu Rev Microbiol 64:101-122. http://dx.doi.org/10.1146/annurev.micro.112408.134215
Pearson VM, Miller CR, Rokyta DR. 2012. The consistency of beneficial fitness effects of mutations across diverse genetic backgrounds. Plos One 7:e43864.

http://dx.doi.org/10.1371/journal.pone.0043864

Phippen CW, Mikolajek H, Schlaefli HG, Keevil CW, Webb JS, Tews I. 2014. Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator. FEBS Lett 588:4631-4636. http://dx.doi.org/10.1016/j.febslet.2014.11.002

Pigliucci M. 2010. Genotype-phenotype mapping and the end of the 'genes as blueprint' metaphor. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 365:557-566.

http://dx.doi.org/10.1098/rstb.2009.0241

Pollock DD, Larkin JC. 2004. Estimating the degree of saturation in mutant screens. Genetics 168:489-502. http://dx.doi.org/10.1534/genetics.103.024430

Rainey PB, Remigi P, Farr AD, Lind PA. 2017. Darwin was right: where now for experimental evolution? Curr Opin Genet Dev 47:102-109.

http://dx.doi.org/10.1016/j.gde.2017.09.003

Reams AB, Roth JR. 2015. Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol 7:a016592.

http://dx.doi.org/10.1101/cshperspect.a016592

Reijns MA, Kemp H, Ding J, de Proce SM, Jackson AP, Taylor MS. 2015. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518:502-506. http://dx.doi.org/10.1038/nature14183
Rice MS, Dahlquist FW. 1991. Sites of deamidation and methylation in Tsr, a bacterial chemotaxis sensory transducer. J Biol Chem 266:9746-9753.

Richardson AR, Stojiljkovic I. 2001. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol Microbiol 40:645-655.

Roth JR, Benson N, Galitsky T, Haack K, Lawrence JG, Miesel L. 1996. Rearrangements of the Bacterial Chromosome: Formation and Applications. In: Neidhardt FC, editor. Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington, D.C.: 2256-2276. p. 2256-2276.

Sanjuan R. 2010. Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 365:1975-1982. http://dx.doi.org/10.1098/rstb.2010.0063

Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. 2016. The nature of mutations induced by replication-transcription collisions. Nature. http://dx.doi.org/10.1038/nature18316

Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS, Sharonov GV, Ivankov DN, Bozhanova NG, Baranov MS, Soylemez O, et al. 2016. Local fitness landscape of the green fluorescent protein. Nature 533:397-401. http://dx.doi.org/10.1038/nature17995

Seier T, Padgett DR, Zilberberg G, Sutera VA, Jr., Toha N, Lovett ST. 2011. Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events. Genetics 188:247-262. http://dx.doi.org/10.1534/genetics.111.127746
Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra. PLoS genetics 13:e1006570. http://dx.doi.org/10.1371/journal.pgen.1006570

Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant physiology 138:1163-1173. http://dx.doi.org/10.1104/pp.105.061309

Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome biology 10:R51. http://dx.doi.org/10.1186/gb-2009-10-5-r51

The meaning of evolution : a study of the history of life and of its significance for man. New Haven: Yale University Press.

Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Molecular Microbiology 50:15-27.

Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 161:33-46.

Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. Elife 6. http://dx.doi.org/10.7554/eLife.25100
Stern DL. 2013. The genetic causes of convergent evolution. Nature reviews. Genetics 14:751-764. http://dx.doi.org/10.1038/nrg3483

Stoltzfus A, McCandlish DM. 2017. Mutational Biases Influence Parallel Adaptation. Molecular biology and evolution 34:2163-2172. http://dx.doi.org/10.1093/molbev/msx180

Streisinger G, Owen J. 1985. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics 109:633-659.

Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and mutation-rate evolution. Proceedings of the National Academy of Sciences of the United States of America 109:18488-18492. http://dx.doi.org/10.1073/pnas.1216223109

Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127-4138.

Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS. 2012. The molecular diversity of adaptive convergence. Science 335:457-461. http://dx.doi.org/10.1126/science.1212986

Ungerer MC, Linder CR, Rieseberg LH. 2003. Effects of genetic background on response to selection in experimental populations of Arabidopsis thaliana. Genetics 163:277-286.
Viswanathan M, Lacirignola JJ, Hurley RL, Lovett ST. 2000. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. J Mol Biol 302:553-564. http://dx.doi.org/10.1006/jmbi.2000.4088

Wang AD, Sharp NP, Agrawal AF. 2014. Sensitivity of the distribution of mutational fitness effects to environment, genetic background, and adaptedness: a case study with Drosophila. Evolution 68:840-853. http://dx.doi.org/10.1111/evo.12309

Wei W, Ning LW, Ye YN, Li SJ, Zhou HQ, Huang J, Guo FB. 2014. SMAL: A Resource of Spontaneous Mutation Accumulation Lines. Molecular biology and evolution 31:1302-1308. http://dx.doi.org/10.1093/molbev/msu073

Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE. 2006. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 103:9107-9112. http://dx.doi.org/10.1073/pnas.0602917103

Xu M, Yang X, Yang XA, Zhou L, Liu TZ, Fan Z, Jiang T. 2016. Structural insights into the regulatory mechanism of the Pseudomonas aeruginosa YfiBNR system. Protein Cell 7:403-416. http://dx.doi.org/10.1007/s13238-016-0264-7

Zhao HL, Xia ZK, Zhang FZ, Ye YN, Guo FB. 2015. Multiple Factors Drive Replicating Strand Composition Bias in Bacterial Genomes. Int J Mol Sci 16:23111-23126. http://dx.doi.org/10.3390/ijms160923111

Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. 2012. Parallel molecular evolution in an herbivore community. Science 337:1634-1637. http://dx.doi.org/10.1126/science.1226630
Figure supplements

A

1. Methylated WspC activates the WspABD complex via methylation
2. Phosphorylated WspC inactivates a methylated WspABD complex by demethylation
3. A signal S can activate a methylated WspABD complex via an autophosphorylation reaction
4. A methylated and phosphorylated WspABD complex can activate WspR by phosphorylation
5. Phosphorylated WspC can phosphorylate WspR to an active form
6. Phosphorylated WspR can phosphorylate WspF
7. WspR is degraded or bound by a competitor at constant concentration (mathematically equivalent). The rate (0.01) is chosen to provide a steady, slow decay. Without this all WspR is converted to R*

B

1. C8 + ABD → ABDe
2. E* + ABDe → E + ABDe
3. ABDe + S → ABDe*
4. ABDe* + E → ABDe + E*
5. E* + R → R* + E
6. E* + F → E + E
7. R → R

C

\[\frac{dx}{dt} = r_1[x]^2 \]
\[\frac{d[e]}{dt} = r_2[x][e] \]
\[\frac{d[r]}{dt} = r_3[x][r] \]

Figure 3 - figure supplement 1. Wsp model (A) Description of functional interactions (B) Description of molecular reaction (C) Differential equations describing the dynamics of the Wsp pathway. The activity of WspA is modulated by methylation, where it is activated by the CheR-like methyltransferase WspC (PFLU1221). The CheB-like methylesterase WspF (PFLU1224) functions as a negative regulator. Modulation of WspR activity through changes in oligomerization state and clustering is not explicitly included in the model (De, et al. 2008; Huangyutitham, et al. 2013), but can be interpreted as changes in the rate of WspR activation.

A

1. A signal S binds to AwsO and activates it
2. Activated AwsO binds to AwsX to form a complex that sequesters AwsX
3. AwsX binds AwsR to form a complex that sequesters AwsX
4. AwsR dimerizes (active form)

B

1. S + O → O
2. X + O → X
3. X + R → XR
4. R + R → RR

C

\[\frac{dx}{dt} = -r_1[x][o^*] - r_2[x][r] \]
\[\frac{d[o]}{dt} = r_1[x][o] \]
\[\frac{d[x]}{dt} = -r_3[x][o] - r_4[x][x^*] \]
\[\frac{d[o^*]}{dt} = r_5[x][o] - r_6[x][o^*] \]
\[\frac{d[r]}{dt} = r_7[x][r] - r_8[x][r] \]
\[\frac{d[rr]}{dt} = r_9[x][r] - r_10[x][r] \]

Figure 3 - figure supplement 2. Aws model (A) Description of functional interactions (B) Description of molecular reaction (C) Differential equations describing the dynamics of the Aws pathway. Release of AwsX mediated repression results in a conformational shift that in the model is represented as formation of an active dimer.
Figure 3 - figure supplement 3. Mws model (A) Description of functional interactions (B) Description of molecular reaction (C) Differential equations describing the dynamics of the Aws pathway.
Figure 4 - figure supplement 1. Relative contributions of reaction rates for Wsp.

Figure 4 - figure supplement 2. Relative contributions of reaction rates for Aws.

Effect of the mutational hotspot on the relative contribution of each reaction in Aws to the probability of generating a wrinkly spreader (A) Null model. (B) Hot spot in AwsX increase rate mutation rate five times. Because the mutational hotspot increases the likelihood that AwsX’s reactions will be altered, r_2 and r_3 have an increased probability of enabling or disabling change. As a consequence, r_2 shows the biggest change as it contributes up to 70% (as opposed to 35% without the mutational hotspot) of the probability that Aws is used to generate a WS in the area where

$\text{Figure 4 - figure supplement 1. Relative contributions of reaction rates for Wsp.}$
enabling change is more likely than disabling change. Furthermore, in the other area of parameter space where disabling change is more likely, r_3 contributes up to 90% of the probability that Aws is used with or without the hotspot.

Supplementary files

- Figure S1
- Figure 5 – source data 1. Table of all WS mutations in Wsp, Aws and Mws.
- ODE model and code
Figure S1. **Parameter sensitivity analysis.** To assess the effect of the chosen parameter (A) ranges on our results, we redid our sampling procedure for WSP for three different parameter regimes: (B) an expanded range for initial concentrations [0-50], (C) an expanded range for reaction rates $10^{[3.3]}$, (D) a compressed range for mutational effect size $10^{[3.1]}$. We found that our qualitative results are robust to these changes.
| Genome position | Type | Change | Gene position | Gene locus | Gene symbol | Effect | Comment | Proposed molecular effect | |
|---|---|---|---|---|---|---|---|---|---|
| 1353597 - 1353602 | Deletion | del 6 bp | 1328 - 1333 | PFLU1219 | wspA | in frame del G443 - M444 | No homology | disrupt demethylase activity |
| 1353112 - 1353195 | Deletion | del 84 bp | 843 - 926 | PFLU1219 | wspA | in frame del A281-A308 | 6 bp GGCCAC homology | disrupt demethylase activity |
| 1353112 - 1353195 | Deletion | del 84 bp | 843 - 926 | PFLU1219 | wspA | in frame del A281-A308 | 6 bp GGCCAC homology | disrupt demethylase activity |
| 1353140 - 1353160 | Deletion | del 21 bp | 878 - 898 | PFLU1219 | wspA | in frame del T293 - E299 | 5 bp ACTGA homology | disrupt demethylase activity |
| 1353140 - 1353160 | Deletion | del 21 bp | 878 - 898 | PFLU1219 | wspA | in frame del T293 - E299 | 5 bp ACTGA homology | disrupt demethylase activity |
| 1353423 | Transversion | A>C | 1154 | PFLU1219 | wspA | N385T | | trimer-of-dimer association | |
| 1353451 | Transversion | A>C | 1182 | PFLU1219 | wspA | E394D | | trimer-of-dimer association | |
| 1353451 | Transversion | A>C | 1182 | PFLU1219 | wspA | E394D | | trimer-of-dimer association | |
| 1353411 | Transition | C>T | 1142 | PFLU1219 | wspA | A381V | | trimer-of-dimer association | |
| 1353411 | Transition | C>T | 1142 | PFLU1219 | wspA | A381V | | trimer-of-dimer association | |
| 1353528 | Transition | C>T | 1259 | PFLU1219 | wspA | A420V | | possible trimer-of-dimer association | |
| 1353528 | Transition | C>T | 1259 | PFLU1219 | wspA | A420V | | possible trimer-of-dimer association | |
| 1353323 | Transition | G>A | 1054 | PFLU1219 | wspA | A352T | | possible trimer-of-dimer association | |
| 1353323 | Transition | G>A | 1054 | PFLU1219 | wspA | A352T | | possible trimer-of-dimer association | |
| 1353408 | Transversion | T>G | 1139 | PFLU1219 | wspA | V380G | | trimer-of-dimer association | |
| 1355373 - 1355707 | Deletion | del 309 bp | 973 - 51 | PFLU1219 | wspC/D | WspC M1-A324 fused to WspD D18-S232 | 9 bp ACCCTGGCC homology | increase wspC activity |
| 1358267 | Transversion | A>C | 1916 | PFLU1223 | wspE | D639A | | disrupt phosphorylation site of wspF | |
| 1358267 | Transversion | A>C | 1916 | PFLU1223 | wspE | D639A | | disrupt phosphorylation site of wspF | |
| 1358267 | Transversion | A>C | 1916 | PFLU1223 | wspE | D639A | | disrupt phosphorylation site of wspF | |
| 1358267 | Transversion | A>C | 1916 | PFLU1223 | wspE | D639A | | disrupt phosphorylation site of wspF | |
| 1358553 | Transversion | A>C | 2202 | PFLU1223 | wspE | K734N | | disrupt phosphorylation site of wspF | |
| 1358553 | Transversion | A>C | 2202 | PFLU1223 | wspE | K734N | | disrupt phosphorylation site of wspF | |
| 1358766 - 1358780 | Deletion | del 15 bp | 151-165 | PFLU1224 | wspF | in frame del L51 - L55 | 10 bp GGACCTGATC homology | disrupt demethylase activity |
| 1358766 - 1358780 | Deletion | del 15 bp | 151-165 | PFLU1224 | wspF | in frame del L51 - L55 | 10 bp GGACCTGATC homology | disrupt demethylase activity |
| 1358810 - 1358935 | Deletion | del 126 bp | 195 - 320 | PFLU1224 | wspF | in frame del R66-L107 | No homology | disrupt demethylase activity |
| 1359285 - 1359289 | Deletion | del 5 bp | 670 - 674 | PFLU1224 | wspF | Frame shift after L223 | 3 bp GGC homology | disrupt demethylase activity |
| 1359292 - 1359441 | Deletion | del 150 bp | 677 - 826 | PFLU1224 | wspF | in frame del T226-G275 | 3 bp ACC homology | disrupt demethylase activity |
| 1359505 | Transition | A>G | 890 | PFLU1224 | wspF | Q297R | | disrupt demethylase activity | |
| Genome position | Type | Gene position | Gene symbol | Effect | Comment | Proposed molecular effect |
|-----------------|--------------|---------------|-------------|--------|---------|---------------------------|
| 1358755 | Transition | C→T | PFLU1224 | wspF | P47L | disrupt demethylase activity |
| 1359091 | Transition | C→T | PFLU1224 | wspF | S159L | disrupt demethylase activity |
| 1359171 | Transition | C→T | PFLU1224 | wspF | H186Y | disrupt demethylase activity |
| 1359538 | Transition | C→T | PFLU1224 | wspF | P308L | disrupt demethylase activity |
| 1359423 | Transition | G→C | PFLU1224 | wspF | G270R | disrupt demethylase activity |
| 1359604 | Transition | T→A | PFLU1224 | wspF | L331* | disrupt demethylase activity |
| 1360156 - 1360167 | Deletion | del 12 bp | PFLU1225 | wspR | In frame del N161 - L164 | No homology disrupt requirement for phosphorylation |
| 1360099 | Transition | C→A | PFLU1225 | wspR | Q142K | disrupt requirement for phosphorylation |
| 1360102 | Transition | C→T | PFLU1225 | wspR | R143W | disrupt requirement for phosphorylation |
| 1360102 | Transition | C→T | PFLU1225 | wspR | R143W | disrupt requirement for phosphorylation |
| 1360107 | Transition | T→G | PFLU1225 | wspR | D144E | disrupt requirement for phosphorylation |

Figure 5 - Source data - Aws mutations
Genome position	Source data - Mws mutations						
	Type Change	Gene position	Gene loci	Gene symbol	Effect	Comment	Proposed molecular effect
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disrupt awsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disrupt awsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disrupt awsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707405-5707437	Deletion del 33 bp	229-261 PFLUS211	awsX	del Y77-Q87	6 bp homology ACCCAG	disruptawsX function	
5707262	Transversion T>G	404 PFLUS211	awsX	L135R	disruptawsX function		
Differential equations for WSP, AWS, & MWS pathways

WSP

\[
\frac{d[ABD]}{dt} = r_2 F^* [ABDm] - r_1 [ABD][Cm]
\]

\[
\frac{d[ABDm]}{dt} = r_1 [ABD][Cm] - r_2 F^* [ABDm] - r_3 S[ABDm] + r_4 E[ABDm^*]
\]

\[
\frac{d[ABDm^*]}{dt} = -r_4 E[ABDm^*] + r_3 S[ABDm]
\]

\[
\frac{dE^*}{dt} = r_4 E[ABDm^*] - r_5 E^* R - r_6 E^* F
\]

\[
\frac{dR^*}{dt} = r_5 RE^*
\]

\[
\frac{dE}{dt} = r_6 E^* F - r_4 E[ABDm^*] + r_5 RE^*
\]

\[
\frac{dF}{dt} = -r_6 E^* F + r_2 F^* [ABDm]
\]

\[
\frac{dF^*}{dt} = r_6 E^* F - r_2 F^* [ABDm]
\]

\[
\frac{dR}{dt} = -r_5 RE^* - 0.01 R
\]

AWS

\[
\frac{dX}{dt} = -r_2 XO^* - r_3 XR
\]

\[
\frac{d[X R]}{dt} = r_3 XR
\]

\[
\frac{dO}{dt} = -r_1 SO
\]

\[
\frac{dO^*}{dt} = r_1 SO - r_2 XO^*
\]

\[
\frac{d[O X]}{dt} = r_2 O^* X
\]

\[
\frac{dR}{dt} = -r_3 XR - r_4 RR
\]

\[
\frac{d[RR]}{dt} = r_4 RR
\]
\[
\begin{align*}
\frac{dG}{dt} &= -r_1 G S \\
\frac{dG^*}{dt} &= r_1 G S - r_2 G^* E - r_3 G^* C \\
\frac{dE}{dt} &= -r_2 G^* E \\
\frac{d[G]E}{dt} &= r_2 G^* E \\
\frac{dC}{dt} &= -r_3 G^* C \\
\frac{d[G]C}{dt} &= r_3 G^* C
\end{align*}
\]

Julia code for WSP, AWS, and MWS differential equations

The following three functions implement the differential equation model (ODE model) for the WSP, AWS, and MWS pathways.

```julia
using ODE, StatsBase, MAT, HDF5, JLD

# code for WSP differential equations
function lindodeWSP(t,y)
    # convert y to reactants for ease of reading
    ABD=y[1];
    ABDm=y[2];
    ABDmp=y[3];
    Ep=y[4];
    Rp=y[5];
    E=y[6];
    F=y[7];
    Fp=y[8];
    R=y[9];

    # pull reaction rates from rs variable
    r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];r5=rs[5];r6=rs[6];

    # compute derivatives, i.e. y'
    yp=zeros(size(y));
    yp[1]=r2*Fp*ABDm-r1*ABD*Cm;  # dABD/dt
    yp[2]=r1*ABD*Cm-r2*Fp*ABDm-r3*S*ABDm+r4*E*ABDmp; # dABDm/dt
    yp[3]=-r4*E*ABDmp + r3*S*ABDm; # dABDmp/dt
    yp[4]=r4*E*ABDmp - r5*Ep*R - r6*Ep*F; # dEp/dt
    yp[5]=r5*R*Ep;  # dRp/dt
    yp[6]=r6*Ep*F-r4*E*ABDmp+r5*R*Ep; # dE/dt
    yp[7]=r6*Ep*F + r2*Fp*ABDm; # dF/dt
    yp[8]=r6*Ep*F - r2*Fp*ABDm; # dFp/dt
    yp[9]=-r5*R*Ep-.01*R; # dR/dt
    return yp
end

# code for AWS differential equations
```

2
function lindodeAWS(t,y)
 # convert y to reactants for ease of reading
 X=y[1];
 XR=y[2];
 O=y[3];
 Op=y[4];
 OX=y[5];
 R=y[6];
 RR=y[7];
 # pull reaction rates from rs variable
 r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];
 # compute derivatives, i.e. y'
 yp=zeros(size(y));
 yp[1]=-r2*X*Op-r3*X*R; # dX/dt
 yp[2]=r3*X*R; # dXR/dt
 yp[3]=-r1*S*O; # dO/dt
 yp[4]=r1*S*O-r2*X*Op; # dOp/dt
 yp[5]=r2*Op*X; # dOX/dt
 yp[6]=-r3*X*R-r4*R*R; # dR/dt
 yp[7]=r4*R*R; # dRR/dt
 return yp;
end

code for WSP differential equations
function lindodeWSP(t,y)
 # convert y to reactants for ease of reading
 X=y[1];
 XR=y[2];
 O=y[3];
 Op=y[4];
 OX=y[5];
 R=y[6];
 RR=y[7];
 # pull reaction rates from rs variable
 r1=rs[1];r2=rs[2];r3=rs[3];r4=rs[4];
 # compute derivatives, i.e. y'
 yp=zeros(size(y));
 yp[1]=-r2*X*Op-r3*X*R; # dX/dt
 yp[2]=r3*X*R; # dXR/dt
 yp[3]=-r1*S*O; # dO/dt
 yp[4]=r1*S*O-r2*X*Op; # dOp/dt
 yp[5]=r2*Op*X; # dOX/dt
 yp[6]=-r3*X*R-r4*R*R; # dR/dt
 yp[7]=r4*R*R; # dRR/dt
 return yp;
end

code for running differential equation solvers
We include the code for implementing our Bayesian sampling method. The colored sections correspond to statements that make it specific to WSP (blue), AWS (red), or MWS (green). It was run in julia version 0.4.3.

Variables for reactions
numrxs=6; # number of reaction rates for WSP
Variables for running ODE solver

testnums=1000; # number of runs
yorig=zeros(testnums); # storage for baseline WS production
yout=0; # establish variable scope
tftimes=1.0; # establish variable scope

Code for Bayesian sampling method
while numfinished<testnums
 try
 println(numfinished) # keeps track of how many sims have been done
 # Sample concentrations and rates to establish a baseline amount of WS production
 rs=10.^(4*rand(numrxns)-2); # sample reaction rates from [.01,100]
 rs_save=copy(rs); # saved copy as a reference when altering later
 init=10*rand(numreactants); # sample initial concentrations for reactants from [0,10]
 S=10*rand(); # sample initial concentration for constant reactant of signal (S) from [0,10]
 Cm=10*rand(); # sample initial concentration for constant reactant Cm from [0,10]

 # ODE solver for baseline
 tf=1.0; # initial time for ode solver
dst=100; # initial distance, used to determine solution converged
tol=10^(-8.0); # tolerance for ODE solver
while dst>tol
 tout, yout = ode45(lindodeWSP, init, [0.0 ,tf]);
 tout, yout = ode45(lindodeAWS, init, [0.0 ,tf]);
 tout, yout = ode45(lindodeMWS, init, [0.0 ,tf]);
dst=sum((yout[end-1]-yout[end]).^2); # Euclidean distance in final step of solution

 yorig[numfinished]=yout[end][indexWS]; # reactant corresponding to WS
 tftimes=tout[end]; # final time
 tf*=2;
end
done=1; # successful completion of try loop
end
if done==1 # baseline WS production is established, now sample changes/mutations
 i0=1; # counter for completed changes
cct=0; # counter for total number of attempts
while i0<totnumruns;
 cct+=1;
 println([numfinished cct]) # report status for tracking progress
 # Alter reaction rates
 num=i0-1; # used for determining which rates change down/none/up
 for i1=length(rs)-1:-1:0;
 v[i1+1]=floor(num/(3^i1)); # v is num into base 3 number
 num=num-v[i1+1]*3^i1;
 end
 v+=1;
 facs=[10.^(-2*rand()), 1, 10.^((2*rand()))]; # factors to alter rxn rates [.01,1] down, 1 none, [1,100] up
 for i1=1:length(rs)
 rs[i1]=facs[v[i1]]*rs_save[i1]; # alter reaction rates
 end
 try
 tout, yout = ode45(lindodeWSP, init, [0.0,tftimes]);
 tout, yout = ode45(lindodeAWS, init, [0.0,tftimes]);
 tout, yout = ode45(lindodeMWS, init, [0.0,tftimes]);
 if abs(tout[end]-tftimes)<.01 # ODE solver finished
 res[i0,numfinished]=yout[end][indexWS]; # store amount of WS produced
 i0+=1
 end
 end
 if cct>10000
 i0=2*totnumruns; # baseline and sampling occurred in space with poorly conditioned ODEs, try again
 end
 if i0<2*totnumruns # successful
 numfinished+=1;
 # Save data to a file for checking in MATLAB
 file=matopen("pathway_results_temp.mat","w")
 write(file,"res",res); altered WS production
 write(file,"yorig",yorig); baseline WS production
 close(file);
 end
end
end
end
end
end

Save data to a file for processing in MATLAB
file=matopen("pathway_results_complete_WSP.mat","w")
file=matopen("pathway_results_complete_AWS.mat","w")
file=matopen("pathway_results_complete_MWS.mat","w")
write(file,"res",res); altered WS production
write(file,"yorig",yorig); baseline WS production
close(file);

MATLAB code for interpreting saved data WSP vs MWS

This code shows how the data from the julia code is analyzed and transformed into the contour plots shown in the paper.

% create record of how parameters change down, none, up for WSP
rsl1=rand(1,6);
totnumruns=3.^length(rs1);
paramsWSP=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;
 num=i0-1;
 for il=length(rs1)-1:-1:0;
 v(il+1)=floor(num/(3^il));
 num=num-v(il+1)*3^il;
 end
 v=v+1;
 paramsWSP(i0,:)=v;
 i0=i0+1;
end

% create record of how parameters change down, none, up for MWS
rs1=rand(1,3);
totnumruns=3.^length(rs1);
paramsMWS=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;
 num=i0-1;
 for il=length(rs1)-1:-1:0;
 v(il+1)=floor(num/(3^il));
 num=num-v(il+1)*3^il;
 end
 v=v+1;
 paramsMWS(i0,:)=v;
 i0=i0+1;
end

% Load data
load pathway_results_complete_WSP.mat
resWSP=res;
yorigWSP=yorig';
clear res yorig
load pathway_results_complete_MWS.mat
resMWS=res;
yorigMWS=yorig';

% Variables and data storage to compare likelihood of pathways
numsampWSP=size(resWSP,2); % in case want to use fewer samples
numsampMWS=size(resMWS,2); % in case want to use fewer samples
perange=10.^[-7:.5:-1]; % range for probability enabling mutations
pdrange=10.^[-7:.5:-1]; % range for probability disabling mutations
pemat=zeros(length(perange),length(pdrange)); % matrix for plotting data and reference
pdmat=zeros(size(pemat)); % matrix for plotting data and reference
psummatWSP=zeros(size(pemat)); % matrix for probability WSP used
psummatMWS=zeros(size(pemat)); % matrix for probability MWS used
tol=0;

% Code to compare likelihood of pathways
for i0=1:length(perange)
 for j0=1:length(pdrange)
 % Retrieve probabilities
 pe=perange(i0);
 pd=pdrange(j0);
 pemat(i0,j0)=pe;
MATLAB code for interpreting saved data WSP vs AWS

% create record of how parameters change down, none, up for WSP
rsl1=rand(1,6);
totnumruns=3^length(rsl1);
paramsWSP=zeros(totnumruns,length(rsl1));
v=zeros(size(rsl1));
i0=1;
while i0<=totnumruns;
 num=i0-1;
 for il1=length(rsl1)-1:-1:0;
 v(il1+1)=floor(num/(3^il1));
 end
 paramsWSP(i0,:)=v;
 i0=i0+1;
end

% WSP computation
pmatforr=ones(6,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for il1=1:size(resWSP,1)
 probevent=1; % initialize, probability to get combination of down, none, up for rxns
 for j1=1:6;
 probevent=probevent*pmatforr(j1,paramsWSP(il1,j1)); % multiply by prob of each change
 end
 psum=psum+probevent*sum(resWSP(il1,1:numsampWSP)>yorigWSP(1:numsampWSP)+tol)/numsampWSP;
end
psummatWSP(i0,j0)=psum;

% MWS computation
pmatforr=ones(3,1)*[pd 1-pe-pd pe];
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for il1=1:size(resMWS,1)
 probevent=1; % initialize, probability to get combination of down, none, up for rxns
 for j1=1:3;
 probevent=probevent*pmatforr(j1,paramsMWS(il1,j1)); % multiply by prob of each change
 end
 psum=psum+probevent*sum(resMWS(il1,1:numsampMWS)>yorigMWS(1:numsampMWS)+tol)/numsampMWS;
end
psummatMWS(i0,j0)=psum;

% Plot data
close all
figure
contourf(pemat,pdmat,log2(psummatWSP./psummatMWS),400,'LineStyle','None')
set(gca,'xScale','log','yScale','log','TickLength',[.025 .025],'LineWidth',3);
xlabel('Probability of enabling change','FontSize',24);
ylabel('Probability of disabling change','FontSize',24);
c=colorbar('FontSize',18);
c.Label.String='log_2 ratio probability WSP/MWS';
colormap jet;
axis square
eval(['print -f1 -depuc -r300 WSP vs MWS contour.eps']);
num=num-v(i1+1)*3^i1;
end
v=v+1;
paramsWSP(i0,:)=v;
i0=i0+1;
end
% create record of how parameters change down, none, up for AWS
rs1=rand(1,4);
totnumruns=3. ^length(rs1);
paramsAWS=zeros(totnumruns,length(rs1));
v=zeros(size(rs1));
i0=1;
while i0<=totnumruns;
num=i0-1;
for i1=length(rs1)-1:-1:0;
 v(i1+1)=floor(num/(3^i1));
 num=num-v(i1+1)*3^i1;
end
v=v+1;
paramsAWS(i0,:)=v;
i0=i0+1;
end
% Load data
load pathway_results_complete_AWS.mat
resAWS=res;
yorigAWS=yorig';
clear res yorig
load pathway_results_complete_WSP.mat
resWSP=res;
yorigWSP=yorig';

% Variables and data storage to compare likelihood of pathways
numsampWSP=size(resWSP,2); % in case want to use fewer samples
numsampAWS=size(resAWS,2); % in case want to use fewer samples
perange=10.^[-7:.5:-1]; % range for probability enabling mutations
pdrange=10.^[-7:.5:-1]; % range for probability disabling mutations
pemat=zeros(length(perange),length(pdrange)); % matrix for plotting data and reference
pdmat=zeros(size(pemat)); % matrix for plotting data and reference
psummatWSP=zeros(size(pemat)); % matrix for probability WSP used
psummatAWS=zeros(size(pemat)); % matrix for probability AWS used
tol=0;
fac=5; % factor increase of mutation because of hotspot

% Code to compare likelihood of pathways
for i0=1:length(perange)
 for j0=1:length(pdrange)
 % Retrieve probabilities
 pe=perange(i0);
pd=pdrange(j0);
pemat(i0,j0)=pe;
pdmat(i0,j0)=pd;
 % WSP computation
 pmatforr=ones(6,1)*[pd pe 1-pd-pe];
 psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
 for i1=1:size(resWSP,1)
 probevent=1; % initialize, probability to get combination of down, none, up for rxns

for j1=1:6;
 probevent=probevent*pmatforr(j1,paramsWSP(i1,j1)); % multiply by prob of each change
end
psum=psum+probevent*sum(resWSP(i1,1:numsampWSP)>yorigWSP(1:numsampWSP)+tol)/numsampWSP;
end
psummatWSP(i0,j0)=psum;

% AWS computation
pmatforr=ones(4,1)*[pd 1-pe-pd pe];
pmatforr(4,:)=[.5*pd 1-.5*pd-.5*pe .5*pe]; % because only reactant in dimerization
pmatforr(3,:)=[fac*pd 1-fac*pd-fac*pe fac*pe]; % effect of hotspot
pmatforr(2,:)=[fac*pd 1-fac*pd-fac*pe fac*pe]; % effect of hotspot
psum=0; % total sum of (prob of rxn changes) X (number of times WS produced)
for i1=1:size(resAWS,1)
 probevent=1; % initialize, probability to get combination of down, none, up for rxns
 for j1=1:4;
 probevent=probevent*pmatforr(j1,paramsAWS(i1,j1)); % multiply by prob of each change
 end
 psum=psum+probevent*sum(resAWS(i1,1:numsampAWS)>yorigAWS(1:numsampAWS)+tol)/numsampAWS;
end
psummatAWS(i0,j0)=psum;
end

% Plot data
close all
figure
contourf(pemat,pdmat,log2(psummatWSP./psummatAWS),400,'LineStyle','None')
set(gca,'xScale','log','yScale','log','TickLength',[.025 .025],'LineWidth',3);
set(gca,'FontSize',18,'xTick',10.^[-7:1:-1],'yTick',10.^[-7:1:-1]);
xlabel('Probability of enabling change','FontSize',24);
ylabel('Probability of disabling change','FontSize',24);
c LABEL.String='log2 ratio probability WSP/AIDS';
colormap jet;
axis square
eval(['print -f1 -depsc -r300 WSP_vs_AWS_contour.eps']);