Enhancing students’ self-efficacy through metacognitive strategies in learning mathematics

M F Amal, Ali Mahmudi
Graduate School of Mathematics Education, Universitas Negeri Yogyakarta, Indonesia

E-mail: muhammadfachrullahamal@gmail.com

Abstract. Student activities in the learning process in the classroom have not yet determined the effectiveness in thinking and learning. Students and teachers must learn in the right collaboration, one of which applies a learning strategy. Metacognitive strategies are learning strategies that support students in improving their cognitive abilities. The cognitive development of students is very important because it is often used with children's intelligence and children's intelligence is always directly proportional to self-efficacy. In addition to cognitive, affective domains are also important to stimulate students’ minds to improve their academic abilities. The question is that students' self-efficacy, self-efficacy depends on the individual's confidence in his ability to complete the task. In this paper, the authors argue that metacognitive strategies can be applied in mathematics learning to improve students' self-efficacy in two ways. First, the orientation of the two variables are similar, although not completely as metacognitive activities are able to train students' thinking processes and their relevance with self-efficacy ie students who have a high sense of self-efficacy will affect their cognitive processes, for example students who are taught using metacognitive strategies will have a positive impact on metacognition and self-efficacy abilities. Second, learning with metacognitive strategies based on strengthening self-efficacy students will obtain high academic achievements in several cognitive aspects, such as reasoning and communication skills, problem solving skill.

1. Introduction
Metacognitive activity is thinking about what is in the mind. Flavell [1] explains that metacognitive includes a person's knowledge about cognitive processes or things related to it. The term metacognitive has been widely applied in learning in schools, such as mathematics [2-4], science [5-7], nursing [8] and English [9-12] as part of the development of students' cognitive domains, but not much research has been done yet. focus on using metacognitive strategies.

According to Kwang [5] that learning using metacognitive strategies has been emphasized in the curriculum in Singapore since 1992. Since then, guidelines in applying metacognitive strategies to teach mathematics have never been made explicit for teachers, but the resulting impact is that not many students have been able to develop and control his metachogical abilities and teacher's role provide only a few pointers in the problem solving process. Unlike education in Indonesia, the term metacognitive recently began to be widely known by people who are oriented in the world of education. Even though metacognitive is one of the supporting factors in developing students' cognitive abilities [13].

Cognitive development is considered important because it is often associated with children's intelligence, even though the child's cognitive development is valid from the beginning of birth. Normal
cognitive development indicates the development of children's intelligence. Children's intelligence is always directly proportional to the child's self-efficacy. According to Bandura [7] that self-efficacy is a belief in the ability of himself to solve certain problems. Children who have high self-efficacy will affect their cognitive abilities [15,16]. In line with the opinion of Bong & Skaalvik [16] that having high self-efficacy can improve certain self abilities. The ability in question is not only in the cognitive aspect but also in other skills, such as the courage to express opinions and not be afraid of being wrong.

By using metacognitive strategies, teachers are expected to be able to condition and involve all aspects of students in mathematics learning, especially in the cognitive and self-efficacy domains. Therefore, this paper tries to review and explore the research literature systematically about whether students' self-efficacy can be improved through metacognitive strategies in mathematics learning.

2. Method

This article uses the literature review method regarding knowledge, ideas, or findings contained in the literature. So as to provide theoretical and scientific information that students’ self-efficacy can be improved through metacognitive strategies. Data is collected and analyzed in the form of student self-efficacy literature and metacognitive strategies. In this article, the author will cite some facts that occur in the field based on the findings of previous research on students ‘self-efficacy with metacognitive strategies so that metacognitive strategies can improve students’ self-efficacy. Data obtained from scientific journals and some author’s experience. The data analysis technique was carried out in several steps. The first step is to collect literature on self-efficacy and metacognitive strategies. The second step, the authors identify the use of metacognitive strategies in increasing students’ self-efficacy. After believing that metacognitive strategies can improve students’ self-efficacies. Finally, the final step is the authors conclude that metacognitive strategies can improve students’ self-efficacies.

3. Result and Discussion

3.1 Self efficacy

According to Bandura [10], there are two factors that influence whether a person engages in certain behaviors: outcome expectations and self-efficacy. In other words, our ability to achieve goals or complete tasks depends on whether we are able to build self-efficacy in the minds of our minds, and whether we think the results obtained are good (expected results). Bandura defines self-efficacy is the belief of an individual with the ability and skills he has today to do things in a variety of conditions. Meanwhile, Baron and Byrne [18] revealed that self-efficacy is an activity to evaluate someone about their abilities or competencies in achieving goals, doing a task, and overcoming obstacles. Furthermore Bandura also revealed, Self-efficacy has an important influence on the amount of individual effort applied to the task given. Someone with a high level of self-efficacy is able to complete the task given in a tough and persistent manner, while someone with a low level of self-efficacy with the same task can get away or avoid problems. For example, a student who is not very talented in a particular subject but believes in his own ability to learn it well. Based on the description above, self-efficacy refers to the individual's belief in his ability to complete tasks, assign tasks and do something that depends on the interaction between behavior, personal factors to achieve the desired results.

Bandura [10] explains that the source that is very influential in self-efficacy is the performance accomplishment/experience of success, because the experience of success will strengthen / increase the confidence they have, for example someone who has achieved achievements in the past, which will be very influential on the person's self-efficacy if later found the same case. On the other hand, vicarious experience can increase effectiveness, depending on the number and quality of learning experiences that can be observed and imitated by the individual, ie observing others (based on the experience of the person being observed) and when the person is successful, then the individual's self-efficacy can increases, but if the individual's self-efficacy fails it can decrease. Then, social persuasion that convinces someone about their ability to get things done will have a positive effect on self-efficacy. This happens
if someone believes in the person who gives the persuasion, and vice versa, namely a bad emotional state can also reduce self-efficacy.

Figure 1. Sources of self-efficacy

Beliefs in one's abilities vary depending on each dimension. According to Bandura [10], self-efficacy beliefs can be divided into three dimensions, namely: the dimension of magnitude, is the level of confidence in the ability of individuals to determine the level of difficulty of the problems / problems faced; dimension of strength, is the level of individual confidence in the ability to overcome problems or difficulties arising from problems / problems; and the dimension of generality, is a belief in the ability of individuals in various activities / generalizing tasks and previous experiences.

3.2 Metacognitive Strategies
Flavel was the first to introduce the term metacognitive in 1976. Although various concepts of the term "metacognitive" have been used in the literature on cognitive development, this concept is usually broadly defined as cognitive knowledge or activity that takes as its object, or regulation of every aspect of every effort cognitive [19]. Cognitive is a term used by psychologists to describe all mental activities related to thoughts, perceptions, memories, and information processing that enables a person to solve problems, gain knowledge, and plan for the future, or all psychological activities related to how an individual observes, pay attention, study, imagine, estimate, assess and think about the environment. According to Flavell [1] metacognitive refers to a person's knowledge or awareness about the thought process and self control during thinking. Furthermore, metacognitive is formed from one's knowledge of cognitive processes and their own products. Metacognitive leads to a high level of ability that involves active control during the cognitive process in learning. [20] suggested that metacognitive as "thinking about thinking" which means thinking about what is being thought. Metacognitive knowledge of strategies includes how to do things and use strategies, or solve a problem.

Tavakoli & Koosha [14] states that metacognitive processes are expressed through metacognitive strategies that are directed, procedural, intentional, full of effort, essential and facilitative. Meanwhile the opinion by Sun [15] that metacognitive strategies are based on metacognition, further explained that metacognitive strategies are successive processes to regulate or measure cognitive activity, thereby ensuring that cognitive goals will be obtained. This process contributes to the regulation and management of learning, including planning and assisting cognitive activities and evaluating the results of these activities. Hartman [16] mentions that there are four things students do in metacognitive strategies, namely 1) identifying the assignment; 2) determine the initial approach to the task; 3) selecting available information using information management skills and understanding techniques; and 4) evaluating the work, efficiency, and effectiveness of the methods used to complete the task.
Woollfolk [17] states that there are three important types of skills that make it possible to do metacognitive, namely a) Planning, these skills involve decisions about how much time is used for a problem / task, which strategies to use, how to start, what resources will be used, what order will be followed, what will be given more attention and so on; b) Monitoring, this skill is a full awareness of how someone works; and c) Evaluating, this skill involves an assessment of the process and results of thinking.

Metacognitive strategies are used to monitor the process of one's cognitive activity. Where someone can find out whether the activities carried out in accordance with the expected goals or not. Therefore, an outline of metacognitive strategy includes three phases that include planning (planning), monitor the process of its solution (monitoring), and evaluate the results (evaluating).

![Figure 2. Stages of metacognitive strategy](image)

3.3 The relationship between self-efficacy and metacognitive strategies

In the literature, there are a number of research results linking self-efficacy and metacognitive strategies [25-31]. In general, it can be understood that these two variables are not independent of one another would but can not be separated from each other. Because the application of metacognitive strategies in learning often results in conditions where when investigated students with high metacognition abilities, the level of student self-efficacy is also found to be high. Likewise, when students with high levels of self-efficacy, it is likely that students have higher metacognition abilities.

When looking at studies conducted in some literature, it appears that most researchers using the subject of their research are children, in line with some studies in Indonesia that make students as subjects or respondents of research conducted [9], [13], [32], [33]. This indicates that the importance of confidence in self-efficacy in students to be improved since the beginning of school, because it will affect the child's performance in thinking and learning.

According to the theoretical review above, this paper argues that there are at least two things why metacognitive strategies can improve student self-efficacy. First, the orientation of the two variables are similar, although not completely as metacognitive activities are able to train students' thinking processes and their relevance with self-efficacy ie students who have a high sense of self-efficacy will affect their cognitive processes [34,35], for example students who are taught using metacognitive strategies will have a positive impact on metacognition and self-efficacy abilities. Second, learning with metacognitive strategies based on strengthening self-efficacy students will obtain high academic achievements in several cognitive aspects, such as reasoning and communication skills [32], [36]; problem solving skill [37,38]. This relationship is shown in Figure 3.
4. Conclusion
Metacognitive strategies are the knowledge that everyone has about how their cognitive processes work. Metacognitive strategies are used to monitor the process of one's cognitive activity. Meanwhile, self-efficacy refers to an individual's belief in his ability to complete a task. Seeing the relationship between two variables is that they do not depend on one another to be but it can’t be separated. It can be said, learning mathematics with metacognitive strategies can improve students' self-efficacy. The first reason, the orientation of the two variables have in common although not completely like metacognitive activities able to train students' thought processes and their relevance with self-efficacy is students who have a high sense of self-efficacy will affect their cognitive processes, for example students who are taught using metacognitive strategies will have a positive impact on metacognition and self-efficacy abilities. Second, learning with metacognitive strategies based on strengthening self-efficacy students will obtain high academic achievements in several cognitive aspects, such as reasoning and communication skills.

Acknowledgements
Praise be to Allah SWT for blessings and mercy so that the writing of this article will be completed. In carrying out the activities of writing this article can’t be separated from the guidance and assistance of various parties both moral, material and spiritual. Therefore, the author would like to thank to reviewer who gave directions in polishing this article; first author’s parents who have given moral and material encouragement and support so that this article can be properly compiled; first author classmates at Yogyakarta State University who have provided input, assistance and support; And all parties who cannot be mentioned individually. Thank you for all the supports.

References
[1] Flavell J H 1976 Metacognitive aspects of problem solving (Hillsdale, NJ: Lawrence Erlbaum)
[2] Du Toit S and Kotze G 2009 Metacognitive strategies in the teaching and learning of mathematics Pythagoras 0 pp 57–67
[3] Pennequin V, Sorel O, Nanty I and Fontaine R 2010 Metacognition and low achievement in mathematics: The effect of training in the use of metacognitive skills to solve mathematical word problems Think. Reason 16 pp 198–220
[4] Kramarski B and Zoldan S 2008 Using errors as springboards for enhancing mathematical reasoning with three metacognitive approaches J. Educ. Res. 102 pp 137–51
[5] Jayapraba G and Kammani M 2013 Metacognitive awareness in science classroom of higher secondary students International Journal on New Trends in Education and Their Implications 4 pp 49–56
[6] Alkan F and Erdem E 2014 The Relationship between Metacognitive Awareness, Teacher Self-efficacy and Chemistry Competency Perceptions Procedia - Soc. Behav. Sci. 143 pp 778–83
[7] Akyol G, Sungur S and Tekkaya C 2010 The contribution of cognitive and metacognitive strategy use to students’ science achievement Educ. Res. Eval. 16 pp 1–21
[8] Chen J H, Björkman A, Zou J H and Engström M 2019 Self–regulated learning ability, metacognitive ability, and general self-efficacy in a sample of nursing students: A cross-sectional and correlational study Nurse Educ. Pract. 37 pp 15–21
[9] Hamsia W 2017 Strategi metakognitif untuk keterampilan berbicara Bahasa Inggris J. Pendidik. dan Pembelajaran Sekol. Dasar 1 pp 28–37
[10] Rahimirad M and Abedi S 2014 The Relationship between Listening Self-efficacy and Metacognitive Awareness of Listening Strategies Procedia - Soc. Behav. Sci. 98 pp 1454–60
[11] Rahimirad M and Zare-ee A 2015 Metacognitive strategy instruction as a means to improve listening self-efficacy among Iranian undergraduate learners of English Int. J. Instr. 8 pp 117–32
[12] Kwang T S 2000 The effect of metacognitive training on the mathematical word problem solving on Singapore 11–12 years old in a computer environment PhD Thesis (Leeds: University of Leeds) pp 46–55
[13] Panggayuh 2017 Pengaruh Kemampuan Metakognitif Terhadap Prestasi Akademik Mahasiswa Pada Mata Kuliah Pemrograman Dasar Jurnal Ilm. Penelit. dan Pembelajaran Inform. 2 pp 20–5
[14] Bandura A 1978 Self-Efficacy: Toward A Unifying Theory Of Behavioral Change,” vol. 1, pp. 139–161, 1978
[15] Clark R E 2017 Comparison between self-concept and self-efficacy in academic motivation Educational Psychologist 34 pp 139–53
[16] Liu X and Koirala H 2009 The Effect of Mathematics Self-Efficacy on Mathematics Achievement of High School Students NERA conference proceedings
[17] Bandura A 1977 Self-efficacy: Toward a unifying theory of behavioral change Psychol. Rev., 84 pp 191–215
[18] Ghufron M N and Risnawita R 2014 Teori-Teori Psikologi (Yogyakarta: Ar-Ruzz Media)
[19] Schneider W and Artelt C 2010 Metacognition and mathematics education ZDM - Int. J. Math. Educ. 42 pp 149–61
[20] Livingston J A 1977 Metacognition: An Overview (USA: ERIC)
[21] Tavakoli H and Kooshla M 2016 The effect of explicit metacognitive strategy instruction on reading comprehension and self-efficacy beliefs: The case of Iranian University EFL students Porta Linguarum 2016 pp 119–33
[22] Sun L 2013 The effect of meta-cognitive learning strategies on English learning Theory Pract. Lang. Stud. 3 pp 2004-9
[23] Hartman H J 2001 Teaching metacognitively (Boston: Kluwer Academic Publishers)
[24] Woolfolk A 2016 Educational Psychology, 13th edition (USA: Pearson Education)
[25] AL-Baddareen G, Ghaith S and Akour M 2015 Self-Efficacy, Achievement Goals, and Metacognition as Predicators of Academic Motivation Procedia - Soc. Behav. Sci. 191 pp
[26] Arslan S 2014 An Investigation of the Relationships between Metacognition and Self - Regulation with Structural Equation Int. Online J. Educ. Sci. 6 pp 603-11
[27] Bozgün K 2018 The Self-Efficacy as Predictors of the Metacognition Awareness in Children Çocuklarda Üstbiliş Farkındalığının Yordayıcısi o larak Özyeterlik Journal of Education and Future 14 pp 57–69
[28] Cera R, M. Mancini, and A. Antonietti, “Relationships between Metacognition, Self-efficacy and Self-regulation in Learning,” ECPS - Educ. Cult. Psychol. Stud., no. 7, pp. 115–141, 2014
[29] Coutinho S 2008 Self-efficacy, metacognition, and performance PsycNET N. Am. J. Psychol. 10 pp 165-72
[30] Moores T T, Cha-Jan J C and Smith D K 2006 Clarifying the Role of Self-Efficacy and Metacognition as Predictors of Performance: Construct Development and Test Data Base Adv. Inf. Syst. 37 pp 125-32
[31] Valencia-Vallejo N, López-Vargas O and Sanabria-Rodríguez L 2019 Effect of a metacognitive scaffolding on self-efficacy, metacognition, and achievement in e-learning environments,” Knowl. Manag. E-Learning 11 pp 1–19
[32] Lestari W 2018 Pengaruh Strategi Metakognitif pada Pembelajaran Bangun Ruang Sisi Datar terhadap Prestasi Belajar, Kemampuan Penalaran dan Komunikasi Matematis Siswa SMP Theses (Yogyakarta: Universitas Negeri Yogyakarta)
[33] Muhali 2019 Meningkatkan kesadaran metakognisi melalui strategi pembelajaran metakognisi pada pembelajaran kimia di sekolah menengah Pros. Semin. Nas. Pendidik. Sains Tahun 2015 pp 430-35
[34] Bouffard-Bouchard T, Parent S and Larivee S 1991 Influence of Self-Efficacy on Self-Regulation and Performance among Junior and Senior High-School Age Students Int. J. Behav. Dev. 14 pp 153-64
[35] Roick J and Ringeisen T 2018 Students’ math performance in higher education: Examining the role of self-regulated learning and self-efficacy Learn. Individ. Differ. 65 pp 148–58
[36] Roza M 2017 Penerapan Strategi Pembelajaran Metakognitif Terhadap Kemampuan Penalaran Matematis Siswa Kelas Xi Ips Sma Negeri 1 Talamau Kabupaten Pasaman Barat J. Kepemimp. dan Pengu. Sekol. 2 pp 39-48
[37] Prasetyoningrum F D Pengaruh strategi metakognitif terhadap kemampuan pemecahan masalah matematis siswa kelas viii di smp negeri 6 yogyakarta J. Pendidik. Mat. 6 pp 19–27
[38] Purnami A S 2017 Pengaruh strategi metakognitif terhadap kemampuan pemecahan masalah matematika ditinjau dari persepsi siswa terhadap pelajaran matematika J. Pendidik. Mat. 5 pp 183–94