Radiative Corrections to Triple Higgs Coupling and Electroweak Phase Transition: Beyond One-loop Analysis

Eibun Senaha

Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34126, Korea

(Dated: November 2, 2018)

We evaluate dominant two-loop corrections to the triple Higgs coupling and strength of a first-order electroweak phase transition in the inert Higgs doublet model. It is found that sunset diagrams can predominantly enhance the former and reduce the latter. As a result, the triple Higgs coupling normalized by the standard model value at two-loop level is more enhanced than the corresponding one-loop value.

I. INTRODUCTION

Higgs mechanism is one of the fundamental footings of the standard model (SM). In spite of the new scalar particle with a mass of 125 GeV was discovered at the LHC [1], its roles as the mass giver for all the SM particles and the symmetry breaker for SU(2)_L × U(1)_Y have not been fully established yet. For the latter, measurement \(\lambda \) which constrains the mass of the heavy Higgs bosons have the nondecoupling heavy Higgs bosons play a pivotal role, and the symmetry breaker for SU(2)

In Ref. [4], \(\lambda_{hhh} \) is calculated at one-loop level in a softly Z_2-broken two Higgs doublet model (2HDM). It is found that the extra heavy Higgs boson loop corrections can significantly enhance \(\lambda_{hhh} \). As a result, \(\kappa_\lambda \) can be \(O(2-4) \). This can occur if the one-loop corrections of the heavy Higgs bosons have the nondecoupling properties, i.e., the power corrections such that \(\lambda_{hhh} \) is still relevant to the correlation between \(\kappa_\lambda \) and strength of the first-order EWPT.

II. CALCULATION SCHEME

We expand the effective \(hh \) vertex defined in the on-shell (OS) scheme in powers of momenta as

\[
\Gamma_{hhh}(p_1^2, p_2^2, p_3^2) \simeq \hat{\Gamma}_{hhh}(0, 0, 0) + \cdots \tag{1}
\]

Apart from a threshold enhancement that occurs when incoming momentum is twice as large as the masses of particles running in loops, the dominant quantum contributions come from the momentum-independent part \([4]\). Moreover, since we are interested in a deviation of the effective \(hhh \) vertex from the SM value in new physics models such as the IDM, the ratio of \(\Gamma_{hhh}^{NP}(p_1^2, p_2^2, p_3^2)/\Gamma_{hhh}^{SM}(p_1^2, p_2^2, p_3^2) \) is well approximated by \(\Gamma_{hhh}^{NP}(0, 0, 0)/\Gamma_{hhh}^{SM}(0, 0, 0) \equiv \kappa_\lambda \). Therefore, we will exclusively focus on the momentum-independent term in Eq. (1) in this Letter. Calculation of \(\hat{\Gamma}_{hhh}(0, 0, 0) \) is greatly simplified if an effective potential is used. Let us define \(\lambda_{hhh} \) as

\[
-\hat{\Gamma}_{hhh}(0, 0, 0) \equiv \lambda_{hhh} = \hat{Z}_h^{\lambda/2} \lambda_{hhh}, \tag{2}
\]

where \(\lambda_{hhh} \) is the third derivative of the effective potential \(V_{eff} \) defined in the \(\overline{\text{MS}} \) scheme and \(\hat{Z}_h = Z_h^{\overline{\text{MS}}}/Z_h^{\overline{\text{OS}}} \) with \(Z_h^{\overline{\text{OS}}} \) being the Higgs wavefunction renormalization constant in the OS scheme and \(Z_h^{\overline{\text{MS}}} \) in the \(\overline{\text{MS}} \) scheme.

Though \(\lambda_{hhh} \) is calculated up to two-loop level in supersymmetric SMs \([11]\), the analytic expression of \(\lambda_{hhh} \) in the SM seems absent in the literature. We thus start with the SM case using our calculation scheme.

senaha@ibs.re.kr
The tree-level Higgs potential is given by

$$V_0(\Phi) = -\mu_0^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2, \quad \Phi = \left(\begin{array}{c} G^+ \\ (v + h + iG^0) \end{array} \right),$$

where v denotes the vacuum expectation value (VEV) of the Higgs boson (h) and $G^{0,\pm}$ are the Nambu-Goldstone bosons. We calculate λ_{hhh} using the $\overline{\text{MS}}$-regularized effective potential at two-loop level \cite{12, 13}, which is expanded as

$$V_{\text{eff}}(\varphi) = V_0(\varphi) + V_1(\varphi) + V_2(\varphi),$$

where φ denotes the background classical field. With this, the Higgs mass and the triple Higgs coupling are, respectively, defined as

$$m_h^2 = \left. \frac{\partial^2 V_{\text{eff}}}{\partial \varphi^2} \right|_{\varphi = v} = 2\lambda v^2 + D_m \Delta V_{\text{eff}}(\varphi),$$

$$\lambda_{hhh}^{\text{SM}} = \left. \frac{\partial^4 V_{\text{eff}}}{\partial \varphi^4} \right|_{\varphi = v} = \frac{3m_h^2}{v} + D_\lambda \Delta V_{\text{eff}}(\varphi),$$

where

$$D_m = \left[\frac{\partial^2}{\partial \varphi^2} - \frac{1}{v} \frac{\partial}{\partial \varphi} \right]_{\varphi = v},$$

$$D_\lambda = \left[\frac{3}{v} \left(\frac{\partial^2}{\partial \varphi^2} - \frac{1}{v} \frac{\partial}{\partial \varphi} \right) \right]_{\varphi = v},$$

with $\Delta V_{\text{eff}}(\varphi) = V_1(\varphi) + V_2(\varphi)$. Note that μ_0 is eliminated by a minimization condition so that m_h^2 is defined in the minimum of V_{eff}. Furthermore, since λ is replaced by m_h^2 using Eq. (5), the leading log corrections at each loop in Eq. (4) are absorbed by the Higgs mass renormalization as explicitly demonstrated below.

The dominant two-loop contributions arise from the sunset diagrams as depicted in Fig. 1. From them, one can obtain the $O(g_3^2 y_t^2)$ and $O(y_t^6)$ corrections to $\lambda_{hhh}^{\text{SM}}$, where g_3 and y_t are the SU(3)$_C$ and top Yukawa couplings, respectively. Combining the dominant one-loop contribution coming from the top quark, one finds

$$\lambda_{hhh}^{\text{SM}} = \frac{3m_h^2}{v} + \Delta^{(1)} \lambda_{hhh}^{\text{SM}} + \Delta^{(2)} \lambda_{hhh}^{\text{SM}},$$

where

$$\Delta^{(1)} \lambda_{hhh}^{\text{SM}} = \frac{1}{16\pi^2} \left(-\frac{48m_h^4}{v^3} \right),$$

$$\Delta^{(2)} \lambda_{hhh}^{\text{SM}} = \frac{1}{(16\pi^2)^2} \frac{m_t^4}{v^3} \left[768g_3^2 \left(\ell_t + \frac{1}{6} \right) - 144g_3^2 \left(\ell_t - \frac{7}{6} \right) \right],$$

with $m_t = y_t v/\sqrt{2}$ and $\ell_t = \ln(m_t^2/\bar{\mu}^2)$ with $\bar{\mu}$ being the renormalization scale. As mentioned above, the leading-log terms at each loop level are absorbed by the m_h renormalization. As a result, the one-loop leading contribution becomes $O(m_t^4)$. Likewise, after absorbing the double-log terms at two-loop level, one has $O(m_t^4)$ with extra coefficients including the single log terms. Noting that all the parameters appearing in $\lambda_{hhh}^{\text{SM}}$ are the $\overline{\text{MS}}$ running parameters, the ℓ_t terms at two-loop level can be absorbed into m_t at one-loop order using the renormalization group (RG) equations. After expressing all the $\overline{\text{MS}}$ variables evaluated at the pole top quark mass ($M_t = 173.1$ GeV \cite{15}) with the physical ones \cite{10}, one arrives at

$$\lambda_{hhh}^{\text{SM}} = 3\frac{m_t^2}{v_{\text{phys}}} \left[\frac{1}{16\pi^2} \left(-\frac{16M_t^4}{M_t^2 v_{\text{phys}}^2} + \frac{7}{2} \frac{M_t^2}{v_{\text{phys}}^2} \right) \right] + \frac{1}{(16\pi^2)^2} \frac{16M_t^4}{M_t^2 v_{\text{phys}}^2} \left[24g_3^2 + \frac{7M_t^2}{v_{\text{phys}}^2} \right]$$

$$= (190.38 \text{ GeV}) \times \left[1 - 8.5\% + 2.2\% \right] = 178.36 \text{ GeV},$$

where $v_{\text{phys}} = 1/(\sqrt{2}G_F)$ with $G_F(\approx 1.166 \times 10^{-5}$ GeV$^{-2}$) being the Fermi coupling constant, $M_h = 125.0$ GeV is the pole mass of the Higgs boson and $g_3(M_t) = 1.167$. One can see that λ_{hhh} gets enhanced compared to the one-loop result. Note that the additional one-loop correction arises when converting the $\overline{\text{MS}}$ parameters into the OS ones, which has the $+1.1\%$ contribution. Even though it is subleading at one loop order, it is comparable to the two-loop corrections so that it is not negligible. In our numerical study, we also take the leading one-loop corrections of the gauge and Higgs bosons into account. Our numerical calculations show that $\lambda_{hhh}^{\text{SM}} = 176.23$ GeV and 180.17 GeV at one and two-loop levels, respectively \cite{17}, and the analytic formula \cite{12} gives a good approximation. We have checked that the corresponding one-loop value of H-COUP \cite{18} is $\lambda_{hhh}^{\text{SM}} = 177.96$ GeV, so the relative error is 0.9%. The difference may come from subleading gauge bosons contributions that are missing in our calculation.

III. MODEL

As a benchmark model, we consider the inert two Higgs doublet model (IDM) in which a Z_2-odd Higgs
doublet (η) is added to the SM [19 21]. It is known that the model can accommodate both the strong first-order EWPT and the dark matter (DM) candidate simultaneously [22 24]. We quantify the leading two-loop corrections of the extra Higgs bosons to λ_{hhh} in a cosmologically interesting region.

As a result of the Z_2 parity ($\Phi \rightarrow \Phi$ and $\eta \rightarrow -\eta$), the Higgs potential is cast into the form

$$V_0^{\text{IDM}}(\Phi, \eta) = \mu_1^2 \Phi^4 + \mu_2^2 \eta^4 + \lambda_1 \Phi^2 \eta^2 + \lambda_2 \Phi^4 + \lambda_3 \Phi \eta^4,$$

where Φ is the same as in the SM given in Eq. (3) and η is parametrized as

$$\eta = \left(\frac{\sqrt{H^+}}{v_2} \right).$$

The Higgs boson masses are expressed at tree level as $m_h^2 = \lambda_1 v^2$ and $m_\phi^2 = \mu_1^2 + \lambda_{h\phi\phi} v^2/2$ for $\phi = H, A, H^\pm$, where $\lambda_{hHH} = \lambda_3 + \lambda_4 + \lambda_5$, $\lambda_{hAA} = \lambda_3 + \lambda_4 - \lambda_5$, and $\lambda_{hH^+H^-} = \lambda_3$. In our analysis, H is assumed to be the DM. The pole Higgs masses are denoted as M_h, M_H, M_A and M_{H^\pm}, respectively, and we trade $\{m_h^2, m_\phi^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5\}$ with $\{v_{\text{phys}}, M_h, M_H, M_A, M_{H^\pm}, \lambda_{hHH}, \lambda_{hAA}, \lambda_{hH^+H^-}\}$ as the input parameter set.

It is easy to obtain the one-loop contributions of the extra particles to λ_{hhh}, which takes the form [21]

$$\Delta^{(1)}\lambda_{hhh}^{\text{IDM}} = \sum_{\phi=H,A,H^\pm} n_\phi \frac{4m_\phi^4}{16\pi^2 v^2} \left(1 - \frac{\mu_1^2}{m_\phi^2} \right)^3,$$

where $n_H = n_A = 1$ and $n_{H^\pm} = 2$. As found in Refs. [4 21], the one-loop correction can grow with m_ϕ^2 if $\mu_1^2 \ll m_\phi^2$, i.e., $m_\phi^2 \approx \lambda_{h\phi\phi} v^2/2$ (nondecoupling regime). In the opposite limit of $m_\phi^2 \approx \mu_1^2$, on the other hand, $\Delta^{(1)}\lambda_{hhh}^{\text{IDM}}$ would be suppressed in the large m_ϕ limit (decoupling regime). As discussed below, the nondecoupling regime is exactly the condition that EWPT is strongly first order. In our work, we consider $M_H \approx M_h/2$ so that the former limit applies only for A and H^\pm. Furthermore, $M_A = M_{H^\pm}$ is taken to avoid the ρ parameter constraint [19]. In this case, one has $\lambda_{hAA} = \lambda_{hH^+H^-} = \lambda_3$.

At two-loop order, the dominant corrections to λ_{hhh} come from the sunset diagrams with $O(\lambda_3^2)$ in magnitude. For illustrative purpose, we consider the case of $m_\phi \ll m_A, m_{H^\pm}$ in the nondecoupling regime. In this limit, m_h can be considered as a small perturbation and hence the $O(\lambda_3^2)$ contributions have the simple form

$$\Delta^{(2)}\lambda_{hhh}^{\text{IDM}} \approx \sum_{\phi=A,H^\pm} n_\phi \frac{8n_\phi \lambda^2_{h\phi\phi} m_\phi^2}{(16\pi^2)^2 v} \left(\frac{\ell_\phi}{2} - 1 \right),$$

where $\ell_\phi = \ln(m_\phi^2/\mu_1^2)$. As is the top quark contribution, the log terms are absorbed into m_ϕ^2 in Eq. (15) by use of the RG equations. Putting all together, one arrives at

$$\Delta^{(1)}\lambda_{hhh}^{\text{IDM}} + \Delta^{(2)}\lambda_{hhh}^{\text{IDM}} \approx \sum_{\phi=A,H^\pm} \frac{4m_\phi}{16\pi^2 v^2} m_\phi^4 \left[m_\phi^2 (m_\phi) - \frac{4m_\phi^6}{16\pi^2 v^2} \right] + \cdots,$$

where $m_\phi(m_\phi)$ are the MS-running masses of ϕ evaluated at m_ϕ. We choose $M_Z = 91.1876$ GeV as the input scale for all the running parameters as in Refs. [23 24]. Modification due to the two-loop contributions mainly comes through the RG running effects in the first term, which enhances λ_{hhh}.

It is found that the $O(M_h^2 m_\phi^2/(16\pi^2 v^2))$ terms appear when expressing $\lambda_{hhh}^{\text{IDM}}$ with the physical parameters. However, they are actually cancelled for $M_A = M_{H^\pm}$. Use of the analytic expression (17) yields overestimated results for nonzero m_ϕ^2 so that we evaluate $\Delta^{(2)}\lambda_{hhh}^{\text{IDM}}$ numerically for our quantitative studies [17].

In Fig. 2 κ_λ at one and two-loop levels are plotted as functions of M_A with the red-dashed and solid-blue curves, respectively. We take $M_H = 62.7$ GeV, $\lambda_2 = 0.02$ and $\lambda_{hHH} = 4.6 \times 10^{-3}$ at the M_Z scale.
be greater than a certain value due to the occurrence of \(\mu_2^2 < 0 \) that generates a nontrivial minimum along the inert doublet field direction, which could be deeper than the prescribed electroweak vacuum and thus excluded. In the chosen parameter set, it is found that \(\mu_2^2 \lesssim 0 \) for \(M_A \gtrsim 300 \text{ GeV} \). Within the allowed range, \(\kappa_\lambda \) at two-loop level can be enhanced up to about 2\%. It should be noted, however, that the further enhancement could be possible if the requirement of \(\mu_2^2 > 0 \) were absence. In the ordinary 2HDM, for instance, \(\lambda_{hhh} \) can receive \(O(100)\% \) corrections at one-loop level with increasing \(M_A \) as mentioned above. In this case, one may ask whether the power correction of the \(m_\phi^6 \) term in Eq. (17) can compete with the one-loop ones. Here, we give a simple argument that it would not happen. On the grounds of the dimensional analysis, the dominant power corrections to \(\lambda_{hhh} \) at \(\ell \)-loop order may be cast into the form

\[
\Delta^{(\ell)} \lambda_{hhh} \sim (-1)^{\ell+1} \frac{m_\phi^2}{v} \left(\frac{4 m_\phi^2}{16 \pi^2 v^2} \right)^\ell,
\]

where \(\mu_2^2 = 0 \) and combinatorial factors are ignored. If the expansion parameter \(m_\phi^2/(4\pi^2 v^2) \) is close to unity, one obtains \(m_\phi \simeq 2\pi v = 1546 \text{ GeV} \) which corresponds to \(\lambda_{h\phi\phi} \simeq 8\pi^2 \). This is clearly far beyond the perturbativity bound. Conversely, if we require \(\lambda_{h\phi\phi} = 2 m_\phi^2/v^2 < 4\pi \) as a crude perturbativity criterion, \(m_\phi^2/(4\pi^2 v^2) < 1/(2\pi) \simeq 0.16 \). Thus, the maximal two-loop power corrections amount to about \(-16\% \) of the one-loop ones.

IV. \(\lambda_{hhh} \)-EWPT CORRELATION

It is known that the remnant of the strong first-order EWPT can appear in \(\lambda_{hhh} \). Before conducting the two-loop analysis, we briefly outline the \(\lambda_{hhh} \)-EWPT correlation at one-loop. The criterion for the strong first-order EWPT is given by [2]

\[
\frac{\nu_C}{T_C} > \zeta_{sph},
\]

where \(T_C \) is a temperature at which there are two degenerate vacua in the effective potential, \(\nu_C \) is the Higgs VEV at \(T_C \), and \(\zeta_{sph} \) depends on the sphaleron profile etc, and typically, \(\zeta_{sph} \simeq 1 \). Use of the high-\(T \) expansion (HTE) of the one-loop thermal function [27] makes it easy to see the \(\lambda_{hhh} \)-EWPT correlation. AT \(T_C \) the effective potential is cast into the form

\[
V_{\text{eff}}(\varphi; T_C) = \frac{\lambda_{T_C}}{4} \varphi^2(\varphi - v_C)^2, \quad \nu_C = \frac{2E T_C}{\lambda_{T_C}},
\]

where \(E \) denotes the coefficient of the \(\varphi^3 \) term. In the SM, \(E_{\text{SM}} \simeq 0.01 \) coming from the gauge bosons. In the IDM model, on the other hand, the extra Higgs bosons yield the contributions of \(-T(m_\phi^2)^{3/2}/(12\pi) \) in \(V_{\text{eff}}(\varphi; T) \). As is the gauge boson case, the \(\varphi^3 \) term can be generated if \(m_\phi^2 \simeq \lambda_{h\phi\phi} \varphi^2/2 \), which contributes to \(E \). Remarkably, this is exactly the case that \(\Delta^{(1)} \lambda_{hhh}^{\text{IDM}} \) is enhanced, i.e., nondecoupling regime. As mentioned above, only \(A \) and \(H^\pm \) can have such a limit and play an essential role in achieving the strong first-order EWPT. The additional contributions in \(E \) are found to be \(\Delta E \simeq (m_A^2 + 2m_{H^\pm}^2)/(12\pi v^2) \). One can find that the minimum values of \(m_A \) and \(m_{H^\pm} \) satisfying the criterion [19] sets the minimum deviation of \(\Delta^{(1)} \lambda_{hhh}^{\text{IDM}}/\lambda_{hhh}^{\text{SM}} \). In this way, the strong first-order EWPT inevitably leads to the significant deviation in \(\lambda_{hhh} \). Detailed knowledge of \(\zeta_{sph} \) is of great importance in order to quantify the amount of the deviation precisely (for an improvement of \(\zeta_{sph} \) and its impact on \(\lambda_{hhh} \) in the SM with a real singlet scalar, see Ref. [28]).

Now we extend the above discussion to two-loop level. As far as the first-order EWPT is concerned, the sunset diagrams are more relevant than the figure-8 diagrams [30]. In the IDM, the relevant contributions are

\[
V_2(\varphi; T) \equiv -\frac{1}{4} \sum_{\phi=A,H^\pm} n_\phi \left[\lambda_{h\phi\phi}^2 \frac{H(T)m_\phi^2}{m_\phi^2} \right] \simeq \sum_{\phi} \frac{T^2 \lambda_{h\phi\phi}^2}{128\pi^2} \ln \frac{\bar{m}_{\phi}^2}{T^2},
\]

where \(H(T) \) is the finite-temperature part of the sunset diagram [29]. In the second line, the HTE as well as \(\bar{m}_h \simeq 0 \) are assumed. It is known that \(\varphi^2 \ln(\bar{m}/T^2) \) with positive (negative) coefficient would weaken (strengthen) the first-order EWPT [30], and the dominant scalar sunset diagrams in the IDM correspond to the former. From this simple argument, one can infer that strength of the first-order EWPT would get smaller than those at one-loop level while the other way around for \(\lambda_{hhh} \). In what follows, we evaluate the \(\lambda_{hhh} \)-EWPT correlation without using the HTE approximation of Eq. (21) (details are given in a separate paper [17]).

Following the thermal resummation and renormalization schemes adopted in Refs. [31, 32], we study \(\nu_C/T_C \) numerically. Previous two-loop analysis of EWPT in the IDM can be found in Ref. [24], and our results are consistent with them within theoretical uncertainties if we use their input parameters.

In the left panel of Fig. 3 \(\nu_C/T_C \) at one and two-loop levels against \(M_A \) are shown by the red-dashed and blue-solid curves, respectively. We take the same input parameters as in Fig. 2 and set \(\bar{m} = M_A \). As expected from the qualitative discussion above, \(\nu_C/T_C \) in both cases grow with increasing \(M_A \) due to the nondecoupling effects of \(A \) and \(H^\pm \). However, \(\nu_C/T_C \) at two-loop level is reduced by around (7-16)\%, which is due mostly to the sunset diagrams involving \(A \) and \(H^\pm \).

In the right panel of Fig. 3 the correlations between \(\nu_C/T_C \) and \(\kappa_\lambda \) are represented at one and two-loop levels. The style and color schemes of the curves are the same as those in the left panel. It is found that \(\kappa_\lambda \) at two-loop
V. CONCLUSION AND DISCUSSION

We have quantified the two-loop effects on the triple Higgs coupling and strength of the first-order EWPT in the IDM. We found that the sunset diagrams can alter both of the one-loop results by about +2% and −(7-16)%, respectively. The magnitudes of the corrections are restricted by the requirement of $\mu_2^2 > 0$. Correspondingly, at two-loop level $M_A (= M_{H^\pm})$ is shifted upward by about 10 GeV and κ_λ rises up to around 4% in the region where EWPT is strongly first order.

We finally make some comments on the $\bar{\mu}$ and gauge dependences of v_C/T_C. It is found that the former can reach about 5% under the variation of $0.5 \leq \bar{\mu}/M_A \leq 1.5$, which is predominantly originated from the thermal loop functions. In spite of this, it still holds that $v_C/T_C|_{2\text{-loop}} < v_C/T_C|_{1\text{-loop}}$ so that the inequality of $\kappa_\lambda^{1\text{-loop}} < \kappa_\lambda^{2\text{-loop}}$ remains intact. For the later, our calculation method is not gauge invariant, and the Landau gauge is adopted. Since the dominant two-loop contributions are the scalar loops, their effects are not spoiled by the gauge artifact. However, to solve those two theoretical problems in a satisfactory manner, more refined calculation scheme is needed. We defer this to future work.

ACKNOWLEDGMENTS

This work was supported by IBS under the project code, IBS-R018-D1.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012); S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).
[2] M. Aaboud et al. [ATLAS Collaboration], arXiv:1807.04873 [hep-ex].
[3] A. M. Sirunyan et al. [CMS Collaboration], arXiv:1806.00408 [hep-ex].
[4] S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C. P. Yuan, Phys. Lett. B 558, 157 (2003); S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Phys. Rev. D 70, 115002 (2004).
[5] C. Grojean, G. Servant and J. D. Wells, Phys. Rev. D 71, 036001 (2005).
[6] S. Kanemura, Y. Okada and E. Senaha, Phys. Lett. B 606, 361 (2005).
[7] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985). For some reviews, see e.g. M. Quiros, Helv. Phys. Acta 67, 451 (1994); V.A. Rubakov and M.E. Shaposhnikov, Uspekhi Fiz. Nauk 166, 493 (1996) [Phys. Usp. 39, 461 (1996)]; K. Funakubo, Prog. Theor. Phys. 96, 475 (1996); A. Riotto, hep-ph/9807454; W. Bernreuther, Lect. Notes Phys. 591, 237 (2002); J.M. Cline, arXiv:hep-ph/0609145; D.E. Morrissey and M.J. Ramsey-Musolf, New J. Phys. 14, 125003 (2012); T. Konstandin, Phys. Usp. 56, 747 (2013).
[8] Talk given by D. Delgove at Double Higgs Production at Colliders Workshop, September 4-9, 2018, Fermilab, USA.
[9] K. Fujii et al., arXiv:1506.05992 [hep-ex].
[10] D. Goncalves, T. Han, F. Kling, T. Plehn and M. Takeuchi, Phys. Rev. D 97, no. 11, 113004
[11] M. Brucherseifer, R. Gavin and M. Spira, Phys. Rev. D 90, no. 11, 117701 (2014); M. Mhlleitner, D. T. Nhung and H. Ziesche, JHEP 1512, 034 (2015).

[12] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).

[13] C. Ford, I. Jack and D. R. T. Jones, Nucl. Phys. B 387, 373 (1992) Erratum: [Nucl. Phys. B 504, 551 (1997)].

[14] W. Hollik and S. Penaranda, Eur. Phys. J. C 23, 163 (2002).

[15] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018).

[16] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia, JHEP 1208, 098 (2012).

[17] E. Senaha, in preparation.

[18] S. Kanemura, M. Kikuchi and K. Yagyu, Comput. Phys. Commun. 233, 134 (2018).

[19] R. Barbieri, L. J. Hall and V. S. Rychkov, Phys. Rev. D 74, 015007 (2006).

[20] E. Lundstrom, M. Gustafsson and J. Edsjo, Phys. Rev. D 79, 035013 (2009); L. Lopez Honorez and C. E. Yaguna, JHEP 1009, 046 (2010); A. Arhrib, B. Herrmann and O. Sti, JHEP 1309, 106 (2013); A. Arhrib, Y. L. S. Tsai, Q. Yuan and T. C. Yuan, JCAP 1406, 030 (2014); T. Abe and R. Sato, JHEP 1503, 109 (2015); B. Swiezewska, JHEP 1507, 118 (2015); A. Arhrib, R. Benbrik, J. El Falaki and A. Jueid, JHEP 1512, 007 (2015); P. M. Ferreira and B. Swiezewska, JHEP 1604, 099 (2016); N. Blinov, J. Kozaczuk, D. E. Morrissey and A. de la Puente, Phys. Rev. D 93, no. 3, 035020 (2016); P. Poulouse, S. Sahoo and K. Sridhar, Phys. Lett. B 765, 300 (2017); A. Datta, N. Ganguly, N. Khan and S. Rakshit, Phys. Rev. D 95, no. 1, 015017 (2017); M. Hashemi and S. Najjari, Eur. Phys. J. C 77, no. 9, 592 (2017); A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abate and M. Thomas, Phys. Rev. D 97, no. 3, 035011 (2018).

[21] S. Kanemura, M. Kikuchi and K. Sakurai, Phys. Rev. D 94, no. 11, 115011 (2016).

[22] D. Borah and J. M. Cline, Phys. Rev. D 86, 055001 (2012); G. Gil, P. Chankowski and M. Krawczyk, Phys. Lett. B 717, 396 (2012); F. P. Huang and J. H. Yu, arXiv:1704.04201 [hep-ph].

[23] N. Blinov, S. Profumo and T. Stefaniak, JCAP 1507, no. 07, 028 (2015).

[24] M. Laine, M. Meyer and G. Nardini, Nucl. Phys. B 920, 565 (2017).

[25] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 176, 367 (2007); G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 185, 960 (2014).

[26] E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett. 121, no. 11, 111302 (2018).

[27] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).

[28] K. Fuyuto and E. Senaha, Phys. Rev. D 90, no. 1, 015015 (2014).

[29] P. B. Arnold and O. Espinosa, Phys. Rev. D 47, 3546 (1993) Erratum: [Phys. Rev. D 50, 6662 (1994)].

[30] J. E. Bagnasco and M. Dine, Phys. Lett. B 303, 308 (1993); J. R. Espinosa, Nucl. Phys. B 475, 273 (1996).

[31] R. R. Parwani, Phys. Rev. D 45, 4695 (1992) Erratum: [Phys. Rev. D 48, 5965 (1993)]; S. Chiku and T. Hatsuda, Phys. Rev. D 58, 076001 (1998).

[32] K. Funakubo and E. Senaha, Phys. Rev. D 87, no. 5, 054003 (2013).