aiWave: Volumetric Image Compression With 3-D Trained Affine Wavelet-Like Transform

Dongmei Xue, Haichuan Ma, Li Li, Member, IEEE, Dong Liu, Senior Member, IEEE, and Zhiwei Xiong, Member, IEEE

Abstract—Volumetric image compression has become an urgent task to effectively transmit and store images produced in biological research and clinical practice. At present, the most commonly used volumetric image compression methods are based on wavelet transform, such as JP3D. However, JP3D employs an ideal, separable, global, and fixed wavelet basis to convert input images from pixel domain to frequency domain, which seriously limits its performance. In this paper, we first design a 3-D trained wavelet-like transform to enable signal-dependent and non-separable transform. Then, an affine wavelet basis is introduced to capture the various local correlations in different regions of volumetric images. Furthermore, we embed the proposed wavelet-like transform to an end-to-end compression framework called aiWave to enable an adaptive compression scheme for various datasets. Last but not least, we introduce the weight sharing strategies of the affine wavelet-like transform according to the volumetric data characteristics in the axial direction to reduce the number of parameters. The experimental results show that: 1) when cooperating our trained 3-D affine wavelet-like transform with a simple factorized entropy coding module, aiWave performs better than JP3D and is comparable in terms of encoding and decoding complexities; 2) when adding a context module to remove signal redundancy further, aiWave can achieve a much better performance than HEVC.

Index Terms—Volumetric image compression, wavelet-like transform, lifting scheme, convolutional neural network, end-to-end image compression.

I. INTRODUCTION

VOLUMETRIC images, including biological and medical images, are widely utilized nowadays due to the advance in imaging technology. Among all kinds of volumetric images, the biological images are mainly obtained by electron microscopy (EM) and play an essential role in investigating the morphology and pathology of tissue cells. Medical images such as computer tomography (CT) and magnetic resonance imaging (MRI) have been applied to clinical diagnosis in most modern hospitals. However, the massive size of volumetric images brings considerable challenges to hardware storage and transmission. For example, the raw brain images of drosophila occupy approximately 106 terabytes (TBs) of storage space [1]. To this end, exploring effective volumetric image compression techniques has become an urgent task. In recent years, many methods have been proposed to address this challenge [2], [3], [4], [5], [6], [7]. They can be roughly divided into three groups: wavelet-based methods, video-based methods, and autoencoder-based methods.

The most commonly used methods for volumetric image compression are based on wavelets. One representative method is JP3D [8], which is a 3-D extension of JPEG-2000 and has been widely used as a standard for volumetric image compression. The traditional wavelet used in JP3D can be implemented by constructing a wavelet basis or decomposing it into basic building blocks, e.g., lifting scheme. An input image can be converted from the pixel domain to a more energy-concentrated frequency domain through traditional wavelets. However, there are still many problems in JP3D, which limit its performance. Firstly, the traditional wavelet basis in JP3D is designed manually with certain assumptions of the signal, e.g., smooth. However, volumetric images are usually not ideal and do not follow those assumptions strictly. Secondly, the traditional wavelet basis performs 1-D filtering in three directions independently, ignoring non-directional correlations. Thirdly, the traditional wavelet basis fails to handle various local contexts since it shares wavelet basis functions in different positions of the entire image. Last but not least, the traditional wavelet basis employed in JP3D is fixed and cannot be optimized according to characteristics of specific data.

Video-based methods, such as High Efficiency Video Coding (HEVC), are mainly designed for natural videos. They treat one of the three spatial dimensions of volumetric images as a temporal dimension and then estimate a motion field to exploit correlations in that dimension. However, in essence, the three spatial dimensions of volumetric images are the same and should be treated equally. Treating one spatial dimension as a temporal dimension may limit the performance of video-based methods.

Manuscript received 6 June 2022; accepted 30 September 2022. Date of publication 6 October 2022; date of current version 2 March 2023. This work was supported in part by the National Science Foundation of China under Grant 62171429 and Grant 62021001; in part by the Fundamental Research Funds for the Central Universities under Grant WK4390000006; in part by University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiative under Grant YD3490000201; and in part by the Graphic Processing Unit (GPU) cluster built by Multimedia Computing and Communication (MCC) Laboratory of Information Science and Technology Institution, USTC. (Corresponding author: Li Li.)

Dongmei Xue, Haichuan Ma, Li Li, and Dong Liu are with the CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei 230027, China (e-mail: xdm1@mail.ustc.edu.cn; hcmc@mail.ustc.edu.cn; li11@ustc.edu.cn; dongeliu@ustc.edu.cn).

Zhiwei Xiong is with the CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei 230027, China, and also with the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China (e-mail: zwxiong@ustc.edu.cn).

Digital Object Identifier 10.1109/TMI.2022.3212780

1558-254X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Thanks to the vigorous development of deep learning, autoencoder-based methods have developed rapidly and achieved state-of-the-art image compression performance, especially under low bitrate scenarios. However, autoencoder-based methods employ an irreversible transform module, which leads to uncontrollable losses when converting images into latent features. Therefore, they have been shown to have poor performance in the high bit rate scenarios [9]. Unfortunately, high-quality reconstruction is often needed to avoid fatal mistakes in volumetric image compression, and some application scenarios even require lossless reconstruction [10], [11]. To this end, the autoencoder-based compression methods are rarely used in volumetric image compression.

Motivated by the success of trained 2-D wavelets [12], [13], we propose a trained 3-D affine wavelet-like transform based on a lifting scheme to overcome the disadvantages of the traditional 3-D wavelet in JP3D. We replace the prediction and update filters in a lifting scheme with 3-D convolutional neural networks (CNNs). In this way, our trained 3-D affine wavelet is signal-dependent and can adapt to non-ideal signals. In addition, 3-D CNNs make it possible to capture correlations in any direction in 3-D space and can overcome the problems of traditional wavelet basis with only 1-D filters. Moreover, compared with using the same wavelet basis globally in traditional wavelet, we introduce the affine wavelet-like transform to adaptively adjust the wavelet basis according to the local content. We embed the proposed wavelet-like transform into a versatile end-to-end compression framework called aiWave. We introduce a weight sharing strategy of the affine wavelet-like transform according to the volumetric data characteristics in the axial direction to reduce the encoding and decoding complexities. Inheriting the advantages of the wavelet transform, our affine wavelet-like transform is reversible and can meet the demand for high reconstruction quality of volumetric images.

Our main contributions are summarized as follows.

- We propose a versatile end-to-end compression framework called aiWave, which is composed of trained 3-D affine wavelet-like forward and inverse transforms, entropy coding, and optional quantization and post-processing modules. It can be utilized for both lossy and lossless volumetric image compression.
- For the first time, the affine wavelet-like transform is proposed and used for image compression. It is an adaptive and learnable wavelet-like transform that overcomes several shortcomings of the traditional wavelet transform.
- Different weight sharing strategies are explored according to data characteristics to reduce the number of parameters.

Part of this work has been published in our previous work [14]. In this paper, we further propose an affine wavelet-like transform by utilizing an adaptive wavelet basis to overcome the shortcomings of the traditional wavelet. The weight-sharing strategies are explored under different data characteristics to reduce the complexity of encoding and decoding processes. In addition, we propose aiWave-heavy by equipping our affine wavelet-like transform module with a more complex entropy coding module, which finally improves the BD-PSNR by 3.071 dB compared with our previous work. Furthermore, the medical image datasets are used to further explore the generalization performance of aiWave in 3-D images.

This paper is organized as follows. Section II introduces the related work. Section III describes some technical details of our aiWave framework. Section IV presents our experimental results and analysis. Section V concludes the entire paper.

II. Related Work

In this section, we give an introduction to the existing methods for volumetric image compression. They can be roughly divided into three groups: wavelet-based methods, video-based methods, and autoencoder-based methods.

A. Wavelet Transform and Its Variants

1) Wavelet Transform: Wavelet transform is highly praised for its excellent decomposition ability. It can support both lossy and lossless compression. These advantages make it widely used in the field of volumetric image compression [15], [16], [17]. One representative method based on wavelet transform is JP3D. It is the tenth part of JPEG-2000, an extension for 3-D images. It is the most widely used method for volumetric image compression.

By converting the filtering operations into banded matrix multiplications, lifting [18], [19], [20] scheme is proposed as another way to implement wavelet transform. Based on it, Srikal et al. [21] proposed a neural network-based compression approach with a lifting scheme. In [22], the necessity of unitary transform by integer lifting scheme was discussed, and the performance of different integer filter kernels was compared. Rossinelli et al. [4] proposed a new lossless data compression scheme based on lifting.

However, all traditional 2-D wavelet transforms above fail to handle 2-D singularities in images [23]. To this end, lines and curves in images are ignored when performing traditional wavelet transform. This problem stems from the fact that the 2-D wavelet transform performs a 1-D discrete wavelet transform in each direction separately from the 2-D image. To this end, the traditional wavelet transform cannot capture the non-directional features. Moreover, it utilizes these 1-D kernels on the entire image and cannot capture rich local features such as edges and textures.

2) Variants of Wavelet Transform: In order to solve the problems mentioned above, two kinds of variants of traditional wavelet transform have been proposed. One kind of method includes ridgelet transform, curvelet transform, and contourlet transform, aiming to solve these problems theoretically. The ridgelet transform [24] was developed to capture straight lines in any direction. The key idea was to convert straight lines into several points by radon transform, and then a one-dimension wavelet transform was employed. Curvelet transform [25] was actually a block ridgelet transform to handle curves, which was a more general form compared with ridgelet transform. Contourlet transform [26] had a more flexible multi-resolution, partial, and reverse image expansion. It solved the problems above by performing a directional transform after the subband...
transform. Note that curvelet and contourlet transform may produce redundant coefficients and thus are unsuitable for compression tasks.

The other kind of method addresses this problem by adaptively selecting filtering directions. Chang et al. [27] proposed a direction-adaptive wavelet transform based on adaptive directional lifting (ADL). Their method predicted the local adjustment of the filtering direction based on image content. Liu et al. [28] then proposed a new wavelet transform based on weighted adaptive lifting (WAL), which was an improvement of ADL. It addressed the mismatch between prediction and updating steps.

Although these methods improve the traditional wavelet to a certain extent, there are some unresolved problems. First, traditional wavelet transforms are manually designed for ideal signals instead of images. Second, the traditional wavelet basis is fixed when facing different contents. These problems affect the performances of traditional wavelet transforms, which prompt us to find a better solution. Most recently, Ma et al. [12], [13] designed a trained wavelet-like reversible transform for end-to-end image compression. Although it is data-dependent, it still uses a fixed wavelet-like basis when facing different contents.

B. Video-Based Methods

Video-based methods regard a certain dimension of volumetric images as the time dimension. Previous work mostly adjusts the traditional video codec for compressing volumetric images. The bit depth ranges of volumetric images are from 8 to 64. However, due to complexity limitations, video coding codecs often limit the maximum number of coding bits to 16.

To solve this problem, Parikh et al. [29] proposed a high bit-depth medical image compression method using HEVC. Experimental results show that compared with JPEG-2000, using HEVC can improve compression performance by more than 54%. Some other methods aim to improve the lossless compression of HEVC. An improvement to the HEVC intra-frame coding process was proposed in [30] for the lossless compression of gray-scale anatomical medical images, which is characterized by a large number of edges. Guarda et al. [31] improved the lossless coding of volumetric medical images for HEVC. Based on Least Squares Prediction (LSP), a new pixel-by-pixel prediction scheme was explored to extend the current HEVC lossless tools.

Although these methods can bring noticeable performance improvements, we would still consider that using video-based methods to compress 3-D images is counter-intuitive. The three dimensions of volumetric images should be treated equally as they are essentially the same. The time dimension should not be distinguished and treated differently.

C. Autoencoder-Based Methods

Learning-based methods have attracted widespread attention in recent years. Balle et al. [32] first proposed an end-to-end fully CNN-based compression method. Then they introduced hyperprior [33] and auto-regressive prior [34] to their methods. Among them, [34] was reported to outperform BPG for the first time. The common part of these popular learning-based methods is that they use an autoencoder as a transform module. However, the autoencoder module is irreversible and causes loss of information. Some work [9] reported that these popular methods became convergent at high bitrates, and the performance does not increase as the bitrate increases.

Gao et al. [6] converted the method mentioned in [34] into its 3-D version to compress brain images. This is also the first time that learning-based methods have been used to compress 3-D images. Because of the use of a 3-D autoencoder, their method only surpasses JP3D on very low bitrates. As we know, high-quality reconstruction is essential for volumetric images. Therefore, supporting high-quality reconstruction is an essential requirement for volumetric image compression, which is quite different from natural image compression.

III. PROPOSED FRAMEWORK

This section introduces the proposed versatile volumetric image compression framework aiWave in detail. First, we give an overview of the structure and pipeline of aiWave. Second, we focus on introducing the affine wavelet-like transform module. Third, we discuss the weight-sharing strategies of the proposed transform module, followed by the entropy encoding and post-processing modules. Finally, we briefly introduce the loss function to train the whole framework.

A. Overview of the Framework

Fig. 1 shows our proposed versatile volumetric image compression framework aiWave. It mainly includes four main modules: affine wavelet-like forward transform module, entropy coding module, affine wavelet-like inverse transform module, and post-processing module. The overall encoding and decoding processes are shown as follows.

In the encoding process, the input image \(x \in \mathbb{R}^N \) is converted into a series of subband coefficients \(y \):

\[
y = g_a(x; \phi),
\]
where \(g_a(x; \phi) \) is affine wavelet-like forward transform implemented with 3-D CNNs. Then \(y \) is quantized and rounded to its nearest integer:

\[
q = \lfloor y/QS \rfloor, \tag{2}
\]

where \(\lfloor \cdot \rfloor \) is the rounding operation and \(QS \) is the quantization step. It is worth noting that the transform is reversible and does not lead to any loss of information. Only the quantization process introduces loss in the entire framework. Next, the quantized coefficients \(q \) are sent to the arithmetic encoder to generate the bitstream. An entropy coding module is used to estimate the probability distribution of coefficients to assist the arithmetic encoder. This paper explores two entropy coding modules: a light one implemented by factorized entropy model and a heavy one to further remove redundancy.

In the decoding process, the bitstream is first decoded by an arithmetic decoder with the help of the entropy model. Then, the decoded coefficients are inversely quantized to obtain the coefficient \(\hat{y} \):

\[
\hat{y} = q \times QS. \tag{3}
\]

Finally, the restored image \(\hat{x} \) is obtained by

\[
\hat{x} = g_a^{-1}(\hat{y}; \phi). \tag{4}
\]

Note that affine wavelet-like inverse transform \(g_a^{-1} \) is the inverse of affine wavelet-like forward transform \(g_a \). Finally, \(\hat{x} \) is enhanced by the post-processing module to remove compression noise.

The quantization, inverse-quantization, and post-processing modules are removed when performing lossless compression. At the same time, the transform module should also be changed to its lossless version.

B. Affine Wavelet-Like Transform Module

1) Structure of Affine Wavelet-Like Transform: Our proposed affine wavelet-like transform is built based on a traditional lifting scheme. Fig. 2 shows the difference between the 1-D traditional lifting scheme and the 1-D affine wavelet-like transform.

The traditional lifting scheme includes three operations, namely split, prediction, and update. Through these operations, the lifting scheme aims to decompose the original signal into high-frequency and low-frequency components. One prediction operation and one update operation constitute a basic lifting step. A split operation incorporating \(N \) basic lifting steps forms a 1-D traditional lifting scheme.

We take a 1-D signal as an example to show the detailed lifting scheme. First, the input signal is split into an odd component \(x_o \) and an even component \(x_e \):

\[
x_o, x_e = \text{split}(x). \tag{5}
\]

Note that there is a strong similarity between \(x_o \) and \(x_e \). Therefore, the prediction operation is performed to predict \(x_o \) from \(x_e \):

\[
h = x_o - P_l(x_e), \tag{6}
\]

where \(P_l \) is the prediction filter, and \(h \) represents the prediction residual containing high-frequency information of \(x \). Then, \(h \) is utilized to update \(x_e \) through the update operation,

\[
l = x_e + U_l(h), \tag{7}
\]

where \(U_l \) is the update filter, and \(l \) contains the coarse details in \(x \), that is, low-frequency information. Note that \(P_l \) and \(U_l \) in traditional wavelet transform are simple linear filters. For example, in the CDF 5/3 wavelet, which is used in JP3D for lossless compression, \(h \) can be written as:

\[
h[m] = x_o[m] - (p_a x_o[m-1] + p_b x_o[m]), \]

where \(p_a = p_b = 0.5 \). Different prediction and update filters correspond to different wavelet transforms [19].

Considering that the above prediction and update filters are designed manually, in this paper, we try to replace these filters with 3-D CNNs. The structure of our proposed 3-D CNNs is shown in Fig. 3. In addition, inspired by the generative model glow [35], [36], [37], we further predict an affine map to adjust the wavelet basis according to the context as shown in Fig. 2 (b). Therefore, the proposed affine...
larger than the value of the subband HHH on average. We notice that the value of the affine map of the subband LLL is much higher. Moreover, the affine value range of different subbands is very different. The affine map will change as the content of the input image changes. The subbands LLL and HHH are given. It can be seen that the value of the affine map of the subband LLL is much larger than the value of the subband HHH on average.

The lifting step can be written as:

\[
\begin{align*}
x_{oi}, x_e &= \text{split}(x), \\
h &= A(x_e) \circ (x_e - P_i'(x_e)), \\
l &= B(h) \circ (x_e + U_i'(h)),
\end{align*}
\]

where \(P_i' \) and \(U_i' \) represent the prediction and update network, respectively. \(A \) and \(B \) represent the network for predicting the affine map, which has the same structure as \(P_i' \) and \(U_i' \), except that a sigmoid operation is added to limit the values in the affine map to the range between 0 and 1. Similar to the traditional lifting scheme, (9) and (10) form a basic affine lifting step. A split operation incorporating \(N \) basic affine lifting steps forms a 1-D affine wavelet-like transform.

In the affine wavelet-like transform, the affine map predicts a value for each spatial position. We call it a fine-grained affine wavelet-like transform. As shown in Fig. 4, after network training, we find out that the difference between the affine maps is much more significant than that between the different positions of the same affine map. This motivates us to simplify each affine map in the affine wavelet-like transform into a trainable variable, and we call it a coarse-grained affine wavelet-like transform. Results of fine-grained and coarse-grained affine wavelet-like transform are further discussed in Section IV-F2.

When transforming a 3-D image using the proposed 3-D wavelet-like transform, we first perform a 1-D affine wavelet-like transform in the axial direction of the 3-D image. After that, the original image is decomposed into a low-frequency subband \(L \) and a high-frequency subband \(H \). Then we perform a 1-D affine wavelet-like transform on \(L \) and \(H \) in the horizontal direction, resulting in four subbands \{LLL, LHL, LLH, HHL\}. For the resulting four subbands, finally, another 1-D affine wavelet-like transform is carried out in the vertical direction, and eight subbands \{LLL, HLL, LLH, HHL, LLL, LLH, HLL, HHH\} are obtained. Three such 1-D affine wavelet-like transforms constitute a complete decomposition. The LLL subband can be further decomposed into eight subbands to make the energy more concentrated. After \(N \) times of decomposition, \(7N+1 \) subbands are obtained. Note that the parameters of affine wavelet-like transforms in different decomposition levels are shared in our method. To this end, the scale-invariant characteristics of traditional wavelets are still satisfied in our affine wavelet-like transform.

In addition, our affine wavelet-like transform is reversible. The affine wavelet-like inverse transform can be easily obtained from the forward transform as follows:

\[
\begin{align*}
x_e &= l/B(h) - U_i'(h), \\
x_o &= h/A(x_e) + P_i'(x_e), \\
x &= M(x_e, x_o),
\end{align*}
\]

where \(M \) means the merge operation, which is a reverse operation of split. Note that \(P_i', U_i', A \) and \(B \) in inverse transform share parameters with that in forward transform.

2) Lossless Affine Wavelet-Like Transform: To guarantee lossless compression in a traditional lifting step, a rounding operation is usually added to the prediction and update operations:

\[
\begin{align*}
h &= x_o - [P_i'(x_e)], \\
l &= x_e + [U_i'(h)].
\end{align*}
\]

In this way, the entire traditional lifting scheme has only integer operations, thus avoiding loss of precision. However, the situation is different in the proposed affine lifting step. Our method introduces multiplication and division operations, which can bring precision losses, especially in hardware implementation. In this paper, for simplification, we propose a lossless compression scheme by setting each position of the affine map to a constant 1. At this time, the lossless scheme of aiWave is consistent with (14) and (15).

3) Theoretical Analysis of Affine Wavelet-Like Transform: In this section, we theoretically explain that the proposed affine wavelet-like transform improves the wavelet basis of the traditional wavelet transform into a data-driven and content-adaptive form, thus improving the performance.

According to [19], the traditional wavelet transform for finite impulse response filter can be decomposed into a lifting scheme by performing factorization. For example, the \(z \)-transform of a analysis filter pair \((h, g)\) is denoted by \(h(z) \) and \(g(z) \), which represent the low-pass and high-pass filter, respectively. Then the corresponding decomposition polyphase matrix \(P(z) \) is defined as follows:

\[
P(z) = \begin{bmatrix} h_0(z) & h_e(z) \\ g_e(z) & g_0(z) \end{bmatrix}
\]

where the \(h_e(z) \) and \(g_e(z) \) are the even parts and the \(h_0(z) \) and \(g_0(z) \) are the odd parts of the low-pass and high-pass filter. The polyphase matrix \(P(z) \) can be factorized into:

\[
P(z) = \prod_{i=1}^{m} \begin{bmatrix} 1 & s_i(z) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ t_i(z) & 1 \end{bmatrix} \begin{bmatrix} K & 0 \\ 0 & 1/K \end{bmatrix}.
\]

Taking the CDF 9/7 filter bank used in JP3D as an example, the CDF 9/7 filter pair can be written as:

\[
P(z) = \begin{bmatrix} 1 & af(z) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \beta g(z) & 1 \end{bmatrix} \begin{bmatrix} 1 & \gamma f(z) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \delta g(z) & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1/\zeta \end{bmatrix},
\]

where \(\zeta \) denotes the normalization factor.
where \(f(z) = 1 + z^{-1} \), \(g(z) = 1 + z \), \(\alpha \approx -1.586 \), \(\beta \approx -0.053 \), \(\gamma \approx 0.883 \), \(\delta \approx 0.444 \), \(\zeta \approx -1.150 \). As we know, \(\alpha \), \(\beta \), \(\gamma \) and \(\delta \) are the parameters of prediction and update filters in a traditional lifting scheme. \(\zeta \) is the scaling factor, which can achieve overall scaling for the previous parameters. Therefore, changing these parameters in the lifting scheme corresponds to the selection of different wavelet basis in the first generation of wavelets.

In the affine wavelet-like transform, we first replace the prediction and update filters with 3D CNNs. This indicates that we improve the traditionally handcrafted wavelet basis to a wavelet-like basis learned from data. More importantly, once the traditional wavelet basis is determined, it does not change when used. However, our affine wavelet-like transform also predicts an affine map to form the wavelet-like basis, which varies according to input content. In other words, our affine wavelet-like transform adaptively learns a pixel-wise wavelet basis for each different spatial position, similar to a spatial wavelet transform. After all the coded subbands are concatenated, a series of quantized subband coefficients are obtained. The factorized entropy model [33] estimates a continuous probability distribution for each subband. These probabilities can then be used to assist the arithmetic coding process. It is worth mentioning that the subbands are considered independent and are coded and decoded in parallel in aiWave-light. Therefore, aiWave-light has low coding and decoding complexities and is suitable for low latency scenarios.

2) Context-Based Entropy Coding Module: For scenes requiring high performance, we employ a context-based entropy coding module to further remove redundancies within and between subbands.

As shown in Fig. 5, our context-based entropy coding module mainly includes four sub-modules. First, the context extraction model is used to roughly obtain the context of the current subband. Then, we employ the context between model and context within model to further extract context information between different subbands and within the same subband through the coded pixels. Finally, a context merge model is employed to fuse these context information and get a series of entropy parameters for probability estimation.

 a) Context extraction model: We employ the context extraction model to roughly extract the context \(C_t \) from the coded subbands \(\{S_1, S_2, \ldots, S_{t-1}\} \).

\[
C_t = \text{Conv}(\text{Recon}(S_1, S_2, \ldots, S_{t-1})).
\]

(19)

\(C_t \) is further used in context between model and context within model. Note that if the resolution of \(S_{t-1} \) is not the same as that of \(S_t \), we reconstruct a high-resolution low-frequency subband \(LLL \) with the affine wavelet-like inverse transform. After all the coded subbands are concatenated, a 3-D convolution is applied to obtain \(C_t \).

b) Context between model: We employ the context between model to remove redundancies between the current subband and the coded subbands.

\[
C_{_b_1} = B(C_t).
\]

(20)

\(B() \) means two cascaded residual blocks used to extract high-dimensional features \(C_{_b} \) from \(C_t \).

c) Context within model: Motivated by PixelCNN [43], we utilize a context within model to remove redundant information in the same subband.

\[
C_{_w_1} = C_t, S_t.
\]

(21)

\(C() \) is the masked 3-D convolutional layers used to extract high-dimensional features \(C_{_w_1} \) from \(C_t \) and \(S_t \).

d) Context merge model: After extracting the context \(C_{_b_1} \) and \(C_{_w_1} \), they are concatenated together in the channel dimension. Then the concatenated result is input to the context merge model to calculate a series of entropy parameters \(\psi \).

\[
\psi = D(\text{concat}(C_{_b_1}, C_{_w_1})).
\]

(22)

Note that the output \(\psi \) has 58 channels and different channels of \(\psi \) corresponding to different entropy parameters in a cumulative probability distribution, which is defined as follows:

\[
c = f_k \circ f_{k-1} \cdots f_1.
\]

(23)
where H is the cumulative probability distribution function is a composition of functions f_k. K is set to 5 in our experiments. For $k = 1$, f_k is:

$$f_1(x) = g_1(H^1 x + b^1),$$

where $H^1, b^1, a^1 \in \mathbb{R}^{3 \times 1}$. When $1 < k < K$,

$$f_k(x) = g_k(H^k x + b^k),$$

where $H^k \in \mathbb{R}^{3 \times 3}$, b^k, $a^k \in \mathbb{R}^{3 \times 1}$. The dot operation is element-wise multiplication. When $k = K$,

$$f_K(x) = \text{sigmoid}(H^K x + b^K),$$

where $H^K \in \mathbb{R}^{1 \times 3}$, $b^K \in \mathbb{R}$.

All of the $H^k \in \mathbb{R}^{1 \times 3}$, b^k / b^K, and a^k above constitute the entropy parameters ψ. We get the estimated cumulative probability distribution for the subband coefficients by learning these parameters. This cumulative probability distribution is then differentiated to obtain the required probability distribution according to [33],

$$p = f'_K \cdot f'_{K-1} \cdots f'_1.$$

E. Post-Processing Module

As mentioned above, our transform module is reversible. Therefore, the inverse transform cannot compensate the loss caused by quantization. To compensate for quantization loss in aiWave, we introduce a post-processing module after affine wavelet-like inverse transform. Specifically, we employ multiple 3-D convolutional layers to construct a 3-D residual block, and the post-processing module contains six 3-D residual blocks. Note that this is different from autoencoder-based frameworks whose decoders can achieve inverse transform and reconstructed image enhancement simultaneously.

F. Loss Function

During training, we treat the framework as a rate-distortion optimization problem. Thus the loss function becomes:

$$L = R + \lambda \cdot D = \mathbb{E}_{x \sim p_x} \left[-\log_2 p_q (q)\right] + \lambda \cdot \mathbb{E}_{x \sim p_x} \left\| x - \hat{x} \right\|^2_2,$$

where R and D represents bitrate and distortion, respectively. q stands for quantized coefficients. For each model, we specify a Lagrange multiplier λ, which controls the tradeoff between rate and distortion. MSE is utilized to compute the distortion between input image x and reconstruct image \hat{x}.

IV. EXPERIMENTAL RESULTS

A. Datasets

In our experiments, six volumetric image datasets are used for extensive quantitative assessment. Note that under the proposed framework, a different group of network parameters are trained for different datasets. Detailed information about these datasets are shown in Table I.

1) FAFB Dataset [1]: The FAFB dataset is a adult fly brain electron microscope anisotropic imaging, imaged at $4 \times 4 \times 40$ nm3 resolution. The complete dataset contains 106TB of volumetric images. In our experiments, we downloaded four $64 \times 768 \times 768$ blocks located in the cortical area and cropped them into $64 \times 64 \times 64$ blocks, of which 90% of the blocks were used for training and the remaining 10% for testing.
2) FIB-25 Dataset [38]: The FIB-25 dataset is the raw EM data for the 7 medulla column FIB-SEM reconstruction. The complete set includes 8000 images, combined into one large tar file (about 100 GB). FIB-25 is an isotropic dataset that is imaged at $8 \times 8 \times 8 \text{nm}^3$ resolution. We extended the part with segmentation annotations, which have already been divided into training and testing sets. We cropped them into $64 \times 64 \times 64$ blocks, and 80% of them were used for training, others for testing.

3) CT-Spleen Dataset [39]: The CT-spleen dataset was used to investigate the relationship between changes in spleen volume after preoperative chemotherapy and postoperative complications. This dataset includes 61 3D images of sizes from $33 \times 512 \times 512$ to $168 \times 512 \times 512$ in nii.gz format. We chose the images with the size of the z-direction more than or equal to 64 and cropped them into $64 \times 64 \times 64$ blocks. Among them, blocks with more than half of the pixels being 0 are discarded. We got 386 $64 \times 64 \times 64$ blocks. Sixty-four of them were randomly selected as the testing and the rest for training.

4) MRI-Heart Dataset [40]: The MRI-heart dataset includes 31 3D heart MR images in nii.gz format, the size is from $90 \times 320 \times 320$ to $180 \times 320 \times 320$. After performing the same cropping and dropping as the CT-spleen dataset, we got 283 training blocks and 64 testing blocks with sizes $64 \times 64 \times 64$. Note that the bit depth of the CT-spleen and MRI-heart dataset is 32. As we know, JP3D and HEVC do not support the volumetric image compression with input bit depth larger than 16. To compare aiWave with JP3D and HEVC, we scale the CT-spleen and MRI-heart images to 16 bits by performing min-max normalization following [44].

5) Chaos-CT Dataset [41]: This dataset contains many DICOM images of abdominal CT and MRI from multiple patients. We select CT images for quantitative assessment. These CT images were obtained in the upper abdominal region following the injection of contrast in the patient’s portal venous phase. The size is from $78 \times 512 \times 512$ to $294 \times 512 \times 512$. Again, we cropped it into $64 \times 64 \times 64$ and dropped the blocks with more than half of the pixels being 0. Then we got 978 blocks, and 64 of them were randomly selected for testing.

6) Attention Dataset [42]: The Attention dataset was used to resolve attentional modulation of active connectivity using functional magnetic resonance imaging (fMRI). The original dataset contains 360 images in the HDR format without partition. The size of each image is $44 \times 60 \times 52$. We used the first 300 of them for training and the last 60 for testing.

Tables

TABLE I

Name	Category	Species	Position	Characteristic	Bit depth	w/o sign	Resolution
FAFB [1]	biological	adult drosophila	brain	anisotropy	8	unsigned	-
FIB-25 [38]	biological	adult drosophila	brain	isotropy	8	unsigned	$520 \times 520 \times 520$
CT-spleen [39]	medical	human	spleen	anisotropy	32	signed	$33 \sim 168 \times 512 \times 512$
MRI-heart [40]	medical	human	heart	anisotropy	32	signed	$90 \sim 180 \times 320 \times 320$
Chaos-CT [41]	medical	human	abdominal	anisotropy	16	signed	$78 \sim 294 \times 512 \times 512$
Attention [42]	medical	human	brain	anisotropy	16	unsigned	$44 \times 60 \times 52$

B. Experiment Settings

We evaluate our aiWave on validation data with peak-signal-to-noise ratio (PSNR) and compare it with JP3D, JPEG-2000-Part2, HEVC, HEVC-RExt, and other learning-based methods. For JP3D, we use the software OpenJPEG 2.3.1 with the default configuration. opj_jp3d_compress and opj_jp3d_decompress are employed for encoding and decoding, respectively. We specified the use of 3D wavelet transform and 3D code block coding. During the testing step, CDF 9/7 wavelet transform is used for lossy compression, and CDF 5/3 wavelet transform is used for lossless compression.

For JPEG-2000-Part2, the software Kakadu V6.1 is used, and kdu_compress and kdu_expand are employed for encoding and decoding. The transform is set to DWT with 4 levels, and the kernel index is set to CDF 9/7 for lossy compression and CDF 5/3 for lossless compression.

For HEVC, we use the reference software HM-16.15 with the random-access configuration. We set GOPSize to 16, IntraPeriod to -1, and InternalBitDepth to be consistent with the bit depth of each dataset, without REExt.

For HEVC-RExt, the HM 16.15 software is used with the randomaccess-rext config file. We set GOPSize to 16, IntraPeriod to -1, and InternalBitDepth to be consistent with the bit depth of each dataset.

We first fix the transform and train the entropy coding and post-processing modules in our training process. Then, we fix the entropy coding and post-processing modules and train the affine wavelet-like transform. Finally, we train all modules end-to-end to obtain the final model. The Adam algorithm with its default setting is adopted in the training process. The learning rate is set to 1×10^{-4}. The value of λ in (30) is set to $\{1, 4, 16, 64, 128\}$ to generate a bitstream with variable bitrates. The whole training process is carried out on a GTX 1080Ti GPU and takes about 6 days. For the CPU runtime, we used an Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz, 1800Mhz, 4 cores, and 8 logical processors. The OS used is Microsoft Windows 10 Home Chinese Edition; the version number is 10.0.19042. For the GPU runtime, we used the same GPU as that in the training process.

C. Lossy Compression Performance

1) Comparison With Traditional Compression Methods: Fig. 6 shows the rate-distortion (R-D) curve comparison between the

1. [1] https://www.openjpeg.org/2019/04/02/OpenJPEG-2.3.1-released
2. [2] https://kakadusoftware.com/
3. [3] https://vcgit.hhi.fraunhofer.de/jvet/HM/-/tree/HM-16.15
Fig. 6. R-D performance comparisons on FAFB, FIB-25, CT-Spleen, MRI-heart, Chaos-CT, and Attention datasets for lossy compression. “aiWave-heavy” stands for aiWave with context-based entropy coding module and “aiWave-light” stands for aiWave with factorized entropy coding module.

Table II

BD-PSNR / BD-RATE IMPROVEMENTS OF DIFFERENT METHODS COMPARED WITH JP3D

Datasets	JPEG-2000-Part2	HEVC	HEVC-RExt	aiWave-heavy	aiWave-light
FAFB	-0.243 / -1.300%	2.662 / -16.641%	2.606 / -16.058%	1.766 / -10.639%	3.817 / -23.817%
FIB-25	1.567 / -12.401%	3.369 / -25.653%	3.360 / -25.974%	1.882 / -14.157%	4.091 / -30.332%
CT-Spleen	0.232 / -0.753%	1.335 / -5.015%	3.130 / -11.652%	0.507 / -2.231%	5.392 / -20.817%
MRI-heart	1.266 / -4.606%	2.604 / -11.200%	4.430 / -17.234%	3.073 / -12.545%	6.878 / -28.511%
Chaos-CT	2.061 / -20.458%	1.953 / -16.289%	4.124 / -45.158%	0.332 / -3.073%	4.886 / -55.594%
Attention	1.103 / -6.470%	3.069 / -19.853%	4.991 / -32.153%	6.047 / -40.480%	8.885 / -67.805%

Proposed aiWave and the traditional compression methods in lossy case, where the rate and distortion are measured by bits per pixel (bpp) and PSNR, respectively. Our aiWave-heavy outperforms all traditional compression methods for all bitrates and even surpasses HEVC-RExt by a large margin. The phenomenon that aiWave-heavy leads to a much better performance than aiWave-light indicates that the context-based entropy coding module further removes redundancies compared with the factorized entropy coding module. For the aiWave-light, it outperforms JP3D due to the use of the affine wavelet-like transform and post-processing modules. In order to quantitatively measure the performance, the average Bjontegaard Delta-PSNR (BD-PSNR) and Bjontegaard Delta-Rate (BD-Rate) improvements of aiWave-heavy compared with the other methods are shown in Table II. Taking the FIB-25 dataset as an example, “4.091dB / -30.332%” means that aiWave-heavy improves 4.091dB compared with JP3D, which is equivalent to saving about -30.332% of the bit rate under the same quality. In addition, aiWave-light also outperforms JP3D by 1.882dB.

2) Comparison With Learning-Based Methods: Fig. 7 shows the comparison between aiWave-heavy and the current state-of-the-art volumetric image compression method based on autoencoder [6]. The experimental results show that the method of Gao et al. only achieves better performances at very low bitrates. As the bitrate increases, their method converges, and the PSNR does not increase. This phenomenon is the same as “AE Limit” in 2-D image compression, as claimed in [9]. The autoencoder is irreversible and thus cannot achieve high-quality reconstruction. As a consequence, this experiment
Fig. 7. R-D performance for aiWave-heavy when compared with autoencoder-based method on FAFB dataset.

further illustrates that a reversible and efficient transform like affine wavelet-like transform is more suitable for volumetric image compression.

D. Lossless Compression Performance

1) Comparison With Traditional Compression Methods: Table IV shows the average bits per pixel of various algorithms on the test datasets. It can be seen that the average bpp of aiWave-heavy is the smallest to achieve lossless compression. In addition, aiWave-light also performs better than JP3D on all datasets. The bpp reduction of aiWave on the Attention dataset is the most significant among them. Compared with JP3D and JPEG-2000-Part2, the bits per pixel is reduced by 36.8% and 40.9% when using aiWave-heavy. Compared with HEVC and HEVC-RExt, the bits per pixel are reduced by 39.4% and 39.4% when using aiWave-heavy. Meanwhile, aiWave-light also saves 18.4% bits on average compared with JP3D.

2) Comparison With Learning-Based Methods: We compared aiWave with the current state-of-the-art lossless compression methods ICEC [45] and L3C [46]. ICEC is a lossless compression network for 3D images designed to exploit the correlation within intra and inter frames. At the same time, L3C is another representative method for end-to-end lossless compression. We select the MRNet dataset used in their paper [45] and conduct experiments in the same setting as theirs. The experiment results are shown in Table III. All the anchors are directly copied from their paper except for our method. Experiment results show that our aiWave-heavy can outperform all methods on three datasets. For MRNet-axial, MRNet-coronal, and MRNet-sagittal, aiWave saves about 2.1%, 1.0%, and 2.9% in bits per pixel, respectively. In addition to these two state-of-the-art lossless compression methods, we also found that aiWave-heavy outperforms other traditional codecs mentioned in their paper, including PNG, JPEG-LS, JPEG-2000, HEVC-Intra, HEVC-RExt-Intra, and FFV1.

E. Runtime Analysis

Table V shows the complexities of the proposed framework in terms of encoding/decoding time and the number of parameters. Note that the encoding/decoding time when using GPU is obtained through multi-process parallel acceleration.

It can be seen that the encoding time of aiWave-light is shorter than that of JP3D because our factorized entropy coding module only relies on the current coefficients when encoding and decoding and thus can be accelerated in parallel. When decoding, due to the post-processing module, the decoding time of aiWave is slightly slower than JP3D. In other words, our aiWave-light and JP3D have a comparable runtime, but the compression performance of aiWave-light is much better. Our aiWave-heavy has a slower speed and a larger amount of parameters compared with aiWave-light. This is because each pixel to be encoded depends on all the encoded pixels in the context-based entropy coding module. It trades larger runtime for a significant performance improvement. We also notice that since the the traditional codec has been optimized and accelerated many times, the decoding speed of HEVC is very fast. Moreover, Kakadu software is known as a high-speed implementation of JPEG-2000, and a large number of parallelization is designed to save time. To this end, Kakadu has the fastest encoding speed. In the decoding stage, since Kakadu can only get the decode images of one channel at a time, its decoding time is longer than that of JP3D, HEVC and HEVC-RExt.

F. Ablation Study

1) Comparison of Affine Wavelet-Like Transform, Additive Wavelet-Like Transform and Traditional CDF 9/7 Wavelet Transform: Fig. 8(a) shows the performance comparisons among affine wavelet-like transform, additive wavelet-like transform, and traditional CDF 9/7 wavelet transform. The BD-rate improvements compared with JP3D in Fig. 8(a) are shown in Table VI. The additive wavelet-like transform is obtained by removing the affine map in the affine wavelet-like transform. We can see from Fig. 8(a) that our affine wavelet-like transform significantly outperforms traditional CDF 9/7 wavelet transform by 1.859dB on average. In addition, our affine wavelet-like transform performs better than the additive
TABLE IV
AVERAGE BITS PER PIXEL ON SIX DATASETS FOR LOSSLESS COMPRESSION

Datasets	JP3D	JPEG-2000-Part2	HEVC	HEVC-RExt	aiWave-light	aiWave-heavy
FAFB [1]	6.406	6.541	6.260	6.260	5.940	5.636
FIB-25	5.660	5.025	5.171	5.171	4.723	4.608
CT [39]	10.765	11.374	10.689	10.704	10.537	9.789
MRI [40]	10.394	11.581	10.351	10.569	10.392	9.161
Chaos-CT [39]	5.957	6.059	5.975	5.975	5.972	5.877
Attention [40]	7.436	7.964	7.756	7.758	7.321	4.703

TABLE V
AVERAGE RUNNING TIME PER IMAGE ON THE FAFB DATASET (IN SECONDS) AND THE NUMBER OF TRAINING PARAMETERS

	JP3D	JPEG-2000-Part2	HEVC	HEVC-RExt	aiWave-light	aiWave-heavy
Avg. Enc. Time	0.487	0.066	9.617	12.647	5.528	986.966
Avg. Dec. Time	0.243	0.576	0.052	0.067	5.947	982.032
Parameters	-	-	-	-	-	695.5MB

Fig. 8. Subfigure (a) compares the affine wavelet-like transform, the additive wavelet-like transform, the traditional CDF 9/7 wavelet and JP3D on FAFB dataset in terms of R-D curve. Subfigure (b) shows the comparison between fine-adaptation affine wavelet-like transform, coarse-adaptation affine wavelet-like transform and JP3D on MRI-heart dataset in terms of R-D curve.

wavelet-like transform on the FAFB dataset, which demonstrates that predicting a context-adaptive affine map indeed brings some performance improvements. Furthermore, the performance of our additive wavelet-like transform is much higher than that of traditional wavelets, which demonstrates that our 3-D learnable wavelet transform significantly improves the performance by replacing traditional manual design through training with a large number of samples.

2) Comparison of Coarse-Adaptation and Fine-Adaptation Affine Wavelet-Like Transform: Fig. 8(b) shows the comparison between the coarse-adaptation and fine-adaptation affine wavelet-like transforms. The BD-rate improvements compared with JP3D in Fig. 8(b) are shown in Table VII. As we described in Section III-B, the coarse-adaptation affine wavelet-like transform is obtained through sharing parameters for all spatial positions. The experimental results show that the coarse-adaptation affine wavelet-like transform leads to a bit of performance degradation. However, the coarse-adaptation version has fewer parameters. We also observe that coarse-adaptation version converges faster, and can be trained more stable during training.

3) Comparison of Different Weight Sharing Strategies for Different Volumetric Images: Fig. 9 shows the performance of different weight sharing strategies for affine wavelet-like transform mentioned in Section III-C. The BD-rate improvements in Fig. 9 are shown in Table VIII. Anisotropic FAFB dataset and isotropic FIB-25 dataset are applied to represent two kinds of volumetric images.

For an anisotropic dataset, we find that sharing parameters in the x and y directions while not in the z direction lead to almost the same performance as not sharing parameters in all three directions. Note that using independent parameters in the z-direction is about 0.5dB better than using independent parameters in the x or y direction alone, even if they have the same number of parameters. This phenomenon indicates that the characteristics of the z-direction of anisotropic datasets are different from those of x and y directions. Therefore, we can use independent parameters for the z direction.

For isotropic datasets, we find that even if we do not share parameters in three directions, the performance does not improve significantly compared with sharing parameters in all three directions. That further demonstrates that the isotropic dataset has consistent properties in all three directions. Therefore, all parameters can be shared to reduce complexities without affecting the compression performance.

4) Energy Compaction Analysis: To quantitatively demonstrate the energy concentration of aiWave, we compared the CDF 5/3 wavelet, CDF 9/7 wavelet, affine wavelet-like transform, and additive wavelet-like-transform (The additive wavelet-like transform is obtained by removing the affine map...
TABLE VI
BD-PSNR AND BD-RATE IMPROVEMENTS OF DIFFERENT WAVELETS COMPARED WITH JP3D

Datasets	CDF 9/7 wavelet	additive wavelet	affine wavelet
PAFB	1.958 / -12.865%	3.356 / -20.308%	3.187 / -23.817%

TABLE VII
BD-PSNR AND BD-RATE IMPROVEMENTS OF COARSE-ADAPTATION AND FINE-ADAPTATION AFFINE WAVELET-LIKE TRANSFORM COMPARED WITH JP3D

Datasets	coarse-adaptation	fine-adaptation
MRI-heart	4.471 / -16.481%	4.772 / -17.644%

Fig. 10. Comparison of CDF 5/3 wavelet transform, CDF 9/7 wavelet transform, affine wavelet-like transform and additive wavelet-like transform in terms of reconstructed PSNR of partial subband coefficients on the Spleen-CT dataset. (a) 0.365 bpp. (b) 3.739 bpp.

in the affine wavelet-like transform) on the Spleen-CT dataset with the reconstructed PSNR of partial subband coefficients. The experiment results in Fig. 10 and Table IX show that the additive wavelet-like transform has a better energy concentration than the CDF 9/7 wavelet and CDF 5/3 wavelet at all bit rates. The affine wavelet-like transform has the best energy concentration at a low bit rate while does not have a good energy concentration at high bitrates. This is because all prediction and update networks of the additive wavelet-like transform share parameters during training, limiting it to make each subband’s energy concentration better to achieve a better performance. However, all prediction and update networks of affine wavelet-like transform do not share parameters during training, and different subbands do not need to become energy concentrated to achieve a good performance. Especially when the bit rate is relatively high (right picture in Fig. 10), almost all low-frequency subbands need to be encoded to get a high reconstruction quality. So the affine wavelet-like transform only guarantees the energies of the high-frequency subbands to be low.

G. Limitations of the Proposed Framework

The proposed framework achieves significant BD-rate savings compared with the traditional methods by training data-dependent wavelets. However, it seems that we have not made full use of the characteristics of “data-dependent” as we expected an even larger performance improvement. First, we consider that 3D biomedical images have their common statistical characteristics such as high spatial correlations and many low-frequency components. The data-independent transform such as CDF 9/7 wavelet can characterize these common features effectively. The only thing the data-dependent transform can do is to characterize the unique characteristic belonging to each image. Second, our training is minimizing the average rate-distortion loss for all the images in a dataset. We have not performed online optimization for each specific image, which can be quite complex, to achieve a better balance between the complexity and the performance.

V. CONCLUSION

This paper proposes an end-to-end volumetric image compression framework aiWave, which supports both lossy and lossless compression. We design a trained affine wavelet-like transform to obtain more compact representations of images. Then, we introduce a trainable affine map to enable a content-related wavelet-like basis in different spatial regions of images. After that, we introduce the weight sharing strategies according to the volumetric data characteristics in the axial direction to reduce the number of parameters. Finally, different entropy coding modules are explored to handle different application scenarios. The experimental results demonstrate the superiority of our proposed aiWave compared with the state-of-the-art methods on a variety of 3-D image datasets.

REFERENCES

[1] Z. Zheng, J. Lauritzen, E. Perlman, and C. Robinson, “A complete electron microscopy volume of the brain of adult Drosophila melanogaster,” Cell, vol. 174, no. 3, pp. 730–743, 2018.
[2] S. Wang et al., “Learning joint-sparse codes for calibration-free parallel MR imaging,” IEEE Trans. Med. Imag., vol. 37, no. 1, pp. 251–261, Jan. 2018.
[3] L. F. R. Lucas, N. M. M. Rodrigues, L. A. da Silva Cruz, and S. M. de Faria, “Lossless compression of medical images using 3-D predictors,” IEEE Trans. Med. Imag., vol. 36, no. 11, pp. 2250–2260, Nov. 2017.
[4] D. Rossinelli, G. Fourestre, F. Schmidt, B. Busse, and V. Kurtcuoglu, “High-throughput lossy-to-lossless 3D image compression,” IEEE Trans. Med. Imag., vol. 40, no. 2, pp. 607–620, Feb. 2020.
[5] M. Hernández-Cabrero, V. Sánchez, I. Blanes, F. Auli-Llinàs, M. W. Marcellin, and J. Serra-Sagristà, “Mosaic-based color-transform optimization for lossy and lossy-to-lossless compression of pathology whole-slide images,” IEEE Trans. Med. Imag., vol. 38, no. 1, pp. 21–32, Jan. 2019.
[6] S. Gao, Y. Zhang, D. Liu, and Z. Xiong, “Volumetric end-to-end optimized compression for brain images,” in Proc. IEEE Int. Conf. Vis. Commun. Image Process. (VCIP), Dec. 2020, pp. 503–506.
