Study on Physiological Changes of Seed *Broccoli* under Salt Stress

Yong Zhou\(^1,2\)*, Yanjie Peng\(^1,2\), Zhong Liu\(^1,2\), Jiao Huang\(^1,2\), Ying Zheng\(^3\) and Yu Wang\(^1\)

\(^1\) College of Life Sciences, Leshan Normal University, Leshan, China
\(^2\) Research Institution of Biodiversity Conservation and Utilization of Mount Emei, Leshan, China
\(^3\) Leshan Agricultural Science Research Academy, Leshan, China

Email: zhouyongls@163.com

Abstract. In this paper, the typical neutral salt NaCl in salt soil was used to simulate salt stress. The changes of CAT, H\(_2\)O\(_2\), POD, proline, total SOD and leaf thickness of H17, a seed broccoli variety, under the concentration of 100, 200 and 300 mmol/L NaCl were detected at water sensitive stage of seed broccoli. The results showed that the total SOD activity of seed broccoli was not significantly affected, and the activity of POD was more sensitive to low salt stress (100 mmol/L). The activity of POD remained basically stable when the salt concentration continued to increase. The activity of CAT showed a tendency to decrease first and then rise. The H\(_2\)O\(_2\) and proline exhibited more sensitive to low and moderate salt concentration with a trend of rise first and fall then. The content of H\(_2\)O\(_2\) and proline reached the peak at middle salt concentration (200 mmol/L). Additionally, the leaf thickness was positively correlated with salt stress concentration.

1. Introduction

Plant growth and yield will be affected by low temperature, drought, salinity and other environmental stresses [1]. Soil salinization is one of the global agricultural environmental and ecological problems. According to the statistics of FAO and UNESCO, the saline soil in the world is 9.5 × 10^8 hm\(^2\), which is about 10% of the land area. China's salinized soil area is about 1.0 × 10^8 hm\(^2\) [2], accounting for one third of Asia. With the development and deterioration of the following factors, such as the aggravation of industrial pollution, the development and utilization of wastewater and seawater, the input of chemical fertilizer and the development of agricultural production, the secondary salinization of soil tends to increase. Soil secondary salinization has seriously affected the yield and quality of agricultural products [3-4]. Therefore, the cultivation of salt tolerant varieties and the development of salt land planting can maintain water pressure and salt and improve soil structure and microenvironment, which is of great significance to the development of salt land and characteristic planting industry [5].

Brassica oleracea var. Italica, known as green cauliflower, broccoli and green cauliflower, originated from Europe, belongs to Cruciferae Brassica herb. It has important edible and medicinal value. The vitamin a content of white vegetables is 2 times that of tomatoes, and the vitamin a content of white vegetables is 6 times that of tomatoes. Its protein content is 2 times that of broccoli. Its V\(_a\) content is 240 times and 6 times that of broccoli and tomato, and its calcium content is 2 times that of tomato. More importantly, Brassica oleracea var. Italica has anti-cancer effect. It is regarded as a good health vegetable and "spring preserving vegetable" by European and American nutritionists, and is an...
indispensable vegetable variety in people's life [6]. In salt stress, plants will produce a large number of free radicals to increase the permeability of cell plasma membrane and disorder the mineral metabolism and water metabolism [7]. Meanwhile, the morphological characteristics of leaves and other organs changed. Up to now, few studies have been conducted to reveal the salt tolerance of crops, such as cowpea [8], wheat [9] and elaeagnus angustifolia [10]. However, there is no study on salt tolerance of seed broccoli. Therefore, in the present study, pot culture method was used to detect the physiological response of seed broccoli under salt stress. The purpose of this study is to provide reference for the cultivation of salt tolerant seed broccoli and salt field planting.

2. Materials and Methods

2.1. Materials

The test materials were self-bred broccoli line H17. The NaCl (analytically pure) used in this study is produced by Boao Weixin Co.

2.2. Plant Cultivation

In this study, broccoli seeds with uniform size, plumpness and health were selected. Broccoli seeds were soaked in 70% ethanol for 1 min, washed with water, and then treated with 1% NaHCO$_3$ for 10 min. After washing with water, it was placed in the tray and cultured at 25 °C. When three true leaves grew, they were transplanted into a 25cm×16.5cm plastic pot for soil culture, and irrigated with 1/2 Hoagland nutrient solution regularly. After the seedlings grew to 10-15 leaves, 20 pots with the same growth and normal growth were selected and treated with salt stress in the greenhouse.

2.3 Salt Stress Treatment

The pot seedlings were randomly divided into 4 groups with 5 pots in each group. In the first group, normal 1/2 Hoagland nutrient solution was applied, 500ml/pot each time, and then applied after the soil became white. The second group was treated with 1/2 Hoagland solution mixed with 100 mmol/L NaCl. The third group was treated with 200 mmol/L NaCl mixed solution prepared with 1/2 Hoagland solution. The fourth group was treated with 1/2 Hoagland solution mixed with 300 mmol/L NaCl. The physiological and morphological indexes were detected 15 days later.

2.4 Physiological and Morphological Detections under Salt Tolerance

2.4.1. Sampling and Morphological Detection. Take 3-5 mature leaves from the middle and upper parts of each pot and number them in groups. The spiral micrometer was used for measurement. The mesophyll thickness near the vein in the middle of the leaf was measured at three places randomly, and the average value was calculated to estimate the leaf thickness.

2.4.2. Physiological Indexes under Salt Tolerance. 0.5g and 4ml of 0.05mol/l phosphate buffer (pH 7.8) were accurately weighed from the leaves of the plants sampled above, and a little quartz sand was added and placed in the mortar. The homogenate was grinded in ice bath and centrifuged at 4000R/min for 15min. Proline was determined by ninhydrin method [11]. The activity of catalase was determined by ammonium molybdate complexation method [12]. The activity of superoxide dismutase (SOD), peroxidase (POD) and the content of hydrogen peroxide (H$_2$O$_2$) were tested by the test kit of Nanjing Jiancheng Co.

2.5 Statistical analysis

All data management and analysis were performed using Microsoft Office Excel 2007 and DPS 2000. DMRT method was used for multiple comparisons.
3. Results and Analysis

3.1. Effect of Salt Stress on SOD Activity

The activity of SOD was not significantly affected by salt concentration in seed broccoli leaves ($P=0.3848$), which indicated that the total SOD activity of seed broccoli was not sensitive to salt stress (Table 1).

NaCl (mmol·L⁻¹)	CAT (U·ml⁻¹)	H₂O₂ (mmol·L⁻¹)	POD (U·mgprot⁻¹)	Proline (µg·g⁻¹)	SOD (U·g⁻¹)	Leaf thickness (mm)
0	11.56ᵇᴬ	61.38ᵇᴮ	0.0145ᵇᴬ	39.81ᶜᶜ	5.36ᵃᴬ	0.2433ᵈᶜ
100	10.61ᵇᴬ	64.28ᵇᴮ	0.0221ᵃᴬ	53.31ᵇᴮᶜ	5.36ᵃᴬ	0.4333ᶜᴮ
200	10.36ᵇᴬ	78.32ᵃᴬ	0.0173ᵇᴬ	73.95ᵃᴬ	5.30ᵃᴬ	0.5467ᵇᴬ
300	11.01ᵇᴬ	64.56ᵇᴮ	0.0185ᵇᴬ	61.22ᵇᴮᶜ	5.35ᵃᴬ	0.6233ᵃᴬ

3.2. Effects on POD Activity

The results showed that different salt concentrations had significant effects on the activity of POD ($P=0.0335$). At low salt concentration, the activity of POD exhibited an upward trend, and reached the highest value of 0.0221U/mgprot at 100 mmol/L salt concentration, which was significantly higher than that in the blank control (0.0145 U/mgprot). The content of POD exhibited an upward trend with the increase of salt concentration.

There was no significant difference in POD content between the salt concentrations 200 mmol/L and 300 mmol/L, which indicated that the content of POD was more sensitive to low salt stress (100 mmol/L) in seed broccoli. When the salt concentration increased to 200 mmol/L and 300 mmol/L, the POD content remained basically stable.

3.3. Effects on CAT Activity

The activity of CAT became weak under low and medium salt concentration. With the increase of salt concentration, the CAT activity of seed broccoli began to increase.

Table 1 showed that the CAT activity of seed broccoli decreased under the treatment of low and medium salt concentration. At 200 mmol/L salt concentration, CAT activity reached the lowest value (10.36 U/ml), which was 10.38% less than that of the blank control group ($P=0.0922$). With the increase of salt concentration, the CAT activity of seed broccoli increased to 11.01 U/ml at 300 mmol/L salt concentration, which was 4.76% less than that in the control group. The overall trend of CAT activity of seed broccoli was first decreased and then increased.

3.4. Effects on H₂O₂ Content

Under the treatment of low salt concentration, the content of H₂O₂ in the seed broccoli leaves continued to rise. When the salt concentration exceeded the tolerance level of 200 mmol/L, the H₂O₂ content begins to decrease. Table 1 showed that under the medium and low salt concentration, the H₂O₂ content of seed broccoli showed a trend of continuous increase. The H₂O₂ content of seed broccoli reached the maximum value of 78.32mmol/L when the salt concentration was 200mmol/L, which was 127.66% of the blank group and had a very significant difference from the control group ($P=0.0027$).

The content of H₂O₂ in seed broccoli decreases with the increase of salt concentration. When the salt concentration reached 300mmol/L, the H₂O₂ content of seeded broccoli was 64.56 mmol/L, which was only 105.18% of the control group.

3.5. Effects on Pro Content

The results showed that salt concentration had a significant effect on Pro level ($P=0.0017$). Table 1
showed that the content of Pro first increased and then decreased. With the increase of salt concentration, the content of Pro increased continuously. When the salt concentration was 200mmol/L, the Pro content reached the maximum of 73.95 g/g, which was extremely significantly higher than that of the control group. After 200mmol/L concentration, the content of Pro began to decrease. The results indicated that content of Pro under salt stress reached its tolerance peak under medium and high salt concentration.

3.6. Effects on Leaf Thickness

The data showed that the leaf thickness of seed broccoli increased with the increase of salt concentration. When the salt concentration was 300mmol/L, the maximum leaf thickness reached 0.623mm, which was significantly higher than that of the control group (P=0.0001).

4. Discussion

A large number of studies have been conducted to explore the physiological changes of plants under stress, indicating that reactive oxygen species are closely related to the peroxidation of membrane lipids [10, 13-16]. Reactive oxygen species (ROS) include hydrogen peroxide and three types of free radicals (superoxide, hydroxyl and peroxide radicals). These radicals lead to the peroxidation of membrane lipids after accumulating in large quantities in cells. In general, an antioxidant system can remove these free radicals. For example, SOD, CAT and POD can scavenge superoxide radicals, hydrogen peroxide radicals, and peroxide radicals, respectively. However, under adverse conditions, the activity of antioxidant enzymes is inhibited, which leads to the accumulation of free radicals and adversely affects cell membranes [17]. In the antioxidant system, the decrease of SOD may be related to cell senescence [18]. CAT and POD can remove the oxidative effect of H$_2$O$_2$ on cells in plants. Therefore, CAT is a key factor for plants to against the OH-toxicity. Under salt stress, Pro can prevent dehydration and maintain the osmotic potential of cells at a normal level [5].

In this study, the Pro content of seed broccoli leaves increased with the increase of salt concentration. Pro ensures water absorption in high salt environments by reducing osmotic potential. However, there is a limit to this regulatory capacity. With the significant increase of Pro, the plant will consume too much energy, resulting in malnutrition. In the present study, when the salt concentration reached 200mmol/L, the Pro content reached its maximum value and exceed the maximum tolerance of seed broccoli. After the concentration of 200mmol/L, the content Pro decreased.

The detection of enzyme activity showed that when the POD content in the seed broccoli leaves was low in salt concentration, it would increase with the increase of salt concentration. The activity of CAT and total SOD showed a steady decrease trend. Dong proposed that POD activity of low-resistant wheat strains decreased while that of high-resistant wheat strains increased under the same salt stress, and the SOD activity of both strains remained at a high level [14]. However, in this study, POD activity reached its peak value when the salt concentration was 100mmol/L. There was no significant change in CAT and SOD activity. This indicated that Broccoli was sensitive to salt stress when the salt concentration was low, and a certain amount of POD was produced to protect the membrane structure, reflecting the low NaCl tolerance potential.

In the present study, the physiological indexes of seed broccoli showed different changes under salt stress. With the increase of salt concentration, the leaf thickness of seed broccoli increased, which was consistent with the change of leaf morphology of soybean plants in saline alkali environment. The reason for this phenomenon may be that the excessive salt content made the leaf tissue increased and arranged closely, which eventually leaded to the increase of leaf thickness. The activities of SOD and CAT in seed broccoli showed a gentle change trend, which was different from the results in previous studies [19-20], and this may be due to the strong salt tolerance of seed broccoli varieties. The change trend of proline and hydrogen peroxide was same as basically, which was consistent with that of common broccoli under salt stress, exhibiting the trend of first rising and then declining. Under salt stress, the POD activity of seed broccoli was significantly different from that of common broccoli, indicating that the maximum tolerance of POD activity of seed broccoli was lower than that of
common broccoli. In conclusion, the present study showed that H17 had a certain salt tolerance, and H17 showed strong salt tolerance when the concentration of NaCl reached the strongest salt stress at 100 mmol/L.

Acknowledgments
This work was supported by the talent introduction project of Leshan Normal University (Z1410), the Science and Technology Planning of Sichuan Province of China (18KLFP0001).

References
[1] Xiong L, Schumaker K S and Zhu J K 2002 Cell signaling during cold, drought, and salt stress Plant Cell 14 Suppl S165-83
[2] Wang C Y 1997 Discussion on ecological control of soil salinization Chinese Journal of Ecology 16 67-71
[3] Tong Y W and Chen D F 1991 Study on the cause and control of secondary saline soils in greenhouses Acta Horticulturae Sinica 18 159-62
[4] Cai Z Y 2005 Formation and control of secondary salinization in protected land Science and Technology of Tianjin Agriculture and Forestry 183 24-6
[5] Tian X Y, Liu Y J and Guo Y C 2008 Effect of salt stress on Na⁺, K⁺, proline, soluble sugar and protein of NHC Pratacultural Science 25 34-8
[6] Wang X M, Cui K and Lu Y L 2008 Overview of applicable value and production and export prospect of Chinese broccoli Chinese Agricultural Science Bulletin 24 478-80
[7] Hu X W, Jin H X and Zhu D H 2015 Research progress of drought and salt resistant mechanism of plant Chinese Agricultural Science Bulletin 31 137-42
[8] Hernandez J A, Del Rio I A and Sevilla F 1994 Salt stress-introduced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata(L.) Walp. New Phytol. 126 37-44
[9] Tan J K, An S Q, Wang Z F, Zhu X L, Zhang J H, Cheng X L and Li G Q 1998 Comparative study on content of free radical and membrane leakage in wheat leaves under salt stress of NaCl, Na₂SO₄ and Na₂CO₃ Chinese Bulletin of Botany 15 82-6
[10] Wang B S and Yao D Y 1993 Effect of salt stress on membrane permeability, lipid peroxidation, proline content and SOD activity in the callus of elaeagnus angustifolia Journal of Hebei Agricultural University 16 20-4
[11] Zhang D Z, Wang P H and Zhao H X 1990 Determination of the content of free proline in wheat leaves Plant Physiology Communication 4 62-5
[12] Lang J and Zhu Y S 2014 Comparison of two methods for determination of catalase activity in rice Journal of the Chinese Cereals and Oils Association 29 89-93,9
[13] Ma J H, Zheng H L, Zhao Z Q and Zhang C G 2001 Progress in mechanisms of plant resistance to salt stress Life Science Research 5 175-9,226
[14] Dong F C, Miao C, Jing Y C, An G Y, Yang H J and Song C P 2002 Relationship between the salt tolerance and H₂O₂ accumulation in the root of wheat seedlings Journal of Wuhan Botanical Research 20 293-8
[15] Wang J G, Chen G C and Zhang C L 2002 The effects of water stress on soluble protein content, the activity of SOD, POD and CAT of two ecotypes of reeds (Phragmites communis) Acta Botanica Boreali-Occidentalia Sinica 22 561-5
[16] Chen Q and Liu Y L 2000 Effect of glutathion on active oxygen scavenging system in leaves of barley seedlings under salt stress Acta Agronomica Sinica 26 365-71
[17] Liao X R and Zhu X C 1996 Active oxygen metabolism and plant salt resistance Chemistry of Life 16 19-23
[18] Wang J H, Liu H X and Xu T 1989 The role of superoxide dismutase (SOD) in stress physiology and senescence physiology of plant Plant Physiology Communication 1 1-7
[19] Jiang H Y 2015 Comparation of salt stress resistance between brocoli and cauliflower
[20] Liu C, Ding N F, Fu Q L, Guo B and Lin Y C 2010 Effect of the salt stress on the anti-oxidative enzyme in seedlings of three vegetable species *Journal of Anhui Agricultural Sciences* **38** 115-6