Effectiveness and Efficiency as a Tool of Measurement of Waste Bank’s Performance

C Meidiana¹, Y A Pamungkas¹, and K E Sari¹

¹Department of Regional and Urban Planning, Faculty of Engineering, Universitas Brawijaya

*email: c_meideiana@ub.ac.id

Abstract. The objectives of the study are to measure the efficiency and effectiveness of waste bank as an informal institution in waste reduction. The research was conducted in five waste banks located in Batu District, Batu City. Survey concerning waste bank performance was conducted for about 5 months. The questionnaires were distributed during the survey for effectiveness assessment, while in-depth interview was conducted on waste bank staffs for attaining waste bank characteristics. Overall Equipment Effectiveness (OEE) and Elasticity index were used to measure the waste banks’ effectiveness and efficiency respectively. The waste bank performance was determined by these two parameters. The results showed that all waste banks have low effectiveness indicated by the value of OEE lower than 60%. Meanwhile, the elasticity index varied among the waste banks from 0.57 to 2.74 representing low or high efficiency. Thus, the waste banks’ performance in Batu District was either low or moderate depending on the combination of the two above parameters.

Keywords: Waste-Bank Performance, Effectiveness, Efficiency.

1. Introduction

Local government is the main authority in dealing with solid waste management effectively and efficiently from the residents [1]. The Local Authorities have to emphasize more on waste reduce household waste [2]. One of the informal waste sectors that are able to reduce waste is waste bank. Waste bank is a collective waste management focusing on waste separation and recycle aiming to increase waste value and to involve community. It is one of the efforts to reduce domestic waste. Some previous studies showed that it may attract public involvement for its promising profit and its ability to reduce waste transporting to the landfill [3, 4]. Waste management through waste bank can reduce the negative impact of landfill for its methane emission to the atmosphere and infiltration of leachates into the soil. However, most existing waste bank lack the capability to operate the business professionally in order to optimize the profit for the members. This had an effect seeing the low performance of the waste bank. [5] Explained that performance is the achievement of an organization based on its responsibility that is carried out efficiently and effectively.

Furthermore, [6] defined waste bank’s efficiency as a ratio of marginal product value to average waste production, while waste bank’s effectiveness is a measurement representing the target achievement set by the waste bank indicated by OEE value. The same approach was also used by [7]. Waste bank’s efficiency and effectiveness was used to measure waste bank’s performance according
Waste bank’s performance may also be measured using the ratio between waste volume treated in WB with total volume of municipal solid waste [9].

2. Methods

Analysis of Overall Equipment Effectiveness (OEE) and elasticity index are used to measure waste bank’s effectiveness and efficiency respectively. The independent variables required for both measurements are presented in Table 1.

Table 1. Variables used in the measurement

No.	Variables	Reference
1.	Income	[6]
2.	Number of active members	
3.	Availability	
4.	Quality	
5.	Performance	[7]

Effectiveness is measured based on the OEE value showed in Table 2. The value indicates that the higher the OEE value is, the better the effectiveness of waste bank will be.

Table 2. Reference for OEE Value indicating Effectiveness

OEE Value	Remarks	Effectiveness
If OEE= 100%	Outstanding. WB generates significant impact to programs, rapid performance, no downtime.	High
If 85% ≤ OEE <100%	Good. The scope of service is national wide.	Moderate
If 60% ≤ OEE <85%	Moderate. WB’s performance is average but there are spaces for improvements.	Moderate
If 40% ≤ OEE <60%	Marginal. WB has low score but it can be improved easily through direct measurements.	Low
If OEE< 40%	Low. WB has very low score and requires much efforts to improve it.	

Source: [6]

Efficiency is measured as elasticity index calculated on monthly basis. The value is compared with indicators value presented in Table 3.

Table 3. Elasticity index of waste bank

Elasticity index	Remarks	Efficiency
> 1	More members of WB will increase the profit for its capability to generate more outputs	High
= 1	Average productivity of members are maximum that the condition can be maintained to maintain the sustainability of the program	Moderate
< 1	Members are required to be more empowered to sustain or to improve the average productivity towards the program	Low

Source: (Kristina, 2014)

Combining the value of effectiveness and efficiency generates WB’s performance which are categorized into 9 groups presented in Table 4 [9].
Table 4. Matrix for measurement of waste bank’s performance

Effectiveness	High Efficiency	Moderate Efficiency	Low Efficiency
High Effectiveness	High Performance	High Performance	Moderate Performance
Moderate Effectiveness	High Performance	Moderate Performance	Low Performance
Low Effectiveness	Moderate Performance	Low Performance	Low Performance

Source: Sudibyakto & Priatmodjo (2016)

3. Result and Discussion

3.1. Waste bank’s efficiency

WB’s efficiency is reflected by its monthly elasticity calculated using income and number of active members. The result of the calculation is showed in Table 5.

Table 5. Value of waste bank’s efficiency

Waste Bank	Elasticity Index	Remarks	Efficiency
Kartini Mandiri	0.57	E < 1	Low
Saras Asri	1.13	E > 1	High
Cahaya	0.96	E < 1	Low
RW 03 Krajan	2.74	E > 1	High
Kampung Damai	1.20	E > 1	High

According to Table 5, Kartini Mandiri and Cahaya waste bank have value of E lower than one (E<1), indicating that its members should be more empowered to maintain or to increase their average productivity in WB’s programs. Low efficiency is caused by low income and instable number of members. For example, low elasticity of Kartini Mandiri was caused by significant decrease of member’s marginal product. The calculation showed that the addition of one active member will decrease waste value of Rp 64,700 and Rp 64,500 in the 15th and 19th round respectively. Member’s marginal product decrease leads to elasticity index to -4.26 and -4.16 in respective round. Therefore, member empowerment is necessary to increase the average productivity leading to higher efficiency. Meanwhile, Saras Asri, RW 03 Krajan, and Kampung Damai have value of E higher than one (E > 1). In this case, addition of members will profit from WB because it contributed to more output as the average productivity rose. High efficiency of the three WBs was mainly caused by steadily increasing income and number of members every round.

3.2. Waste bank’s Effectiveness

Waste bank used the Overall Equipment Effectiveness (OEE) formula to measure WB’s effectiveness that described targeted achievement of WB based on quantity, quality, and time [6]. Three parameters, availability (A), performance (P), dan quality (Q) were calculated to generate the OEE value. Table 6 presents the result of each parameters as well the OEE value. According to Table 2, the effectiveness parameter was predetermined.
Table 6. Determination of WB’s effectiveness based on OEE value

Waste Bank	A	P	Q	OEE	Effectiveness
Kartini Mandiri	92%	78%	33%	24%	Low
Saras Asri	88%	68%	50%	29%	Low
Cahaya	67%	59%	33%	39%	Low
RW 03 Krajan	100%	55%	100%	55%	Low
Kampung Damai	33%	65%	50%	24%	Low

Table 6 indicates that all WBs are categorized into WB with low effectiveness since the value of OEE is lower than 60% comprising of low and marginal group.

3.3. Waste bank’s Performance

Referring Table 5, Table 6, and Table 7 as well, WB’s performance was measured and the result is presented in Table 7. WB in Batu district has various value of elasticity index and OEE. However, the measurement of WB performance based on these values come to the result of two main group of WBs based on its performance i.e. low and moderate. The average WB’s performance is moderate.

Table 7. Matrix of WB’s Performance in Batu District

Waste Bank	Elasticity	Efficiency	OEE	Effectiveness	Performance
Kartini Mandiri	0.57	Low	24%	Low	Low
Saras Asri	1.13	High	29%	Low	Moderate
Cahaya	0.96	Low	39%	Low	Low
RW 03 Krajan	2.74	High	55%	Low	Moderate
Kampung Damai	1.20	High	24%	Low	Moderate
Mean	1.32	High	34%	Low	Moderate

4. Conclusion

Performance of the five WBs in Batu District was measured and the three of them have high efficiency (Sarah Asri, RW 3 Krajan, Kampung Damai) and two WBs have low efficiency (Kartini Mandiri and Cahaya). However, all WBs have low effectiveness which were caused by low availability (the actual time compared to the planned operational time), low performance (capability of WB staffs), and low quality (number of implemented programs over the planned programs). Meanwhile, high efficiency was caused by steady income and stable number of members. In conclusion, WBs in Batu district have moderate performance with high efficiency and low effectiveness.

References

[1] Sujauddin M, Huda MS, Rafiqul Hoque ATM. Household solid waste characteristics and Management in Chittagong, Bangladesh. Journal of Waste Management 2008; 28: 1688 – 1695.
[2] Cole C, Osmani M, Quddus M, Wheatley A, Kay K. Towards a zero waste strategy for an English local authority. Resources, Conservation and Recycling 2014; 89: 64 – 75.
[3] Wijayanti, D. R., & S. Suryani. (2015). Waste Bank as Community-based Environmental Governance: A Lesson Learned from Surabaya. Procedia - Social and Behavioural Sciences 184, 171-179.
[4] Suryani, A. (2014). Peran Bank Sampah Dalam Effectiveness Pengelolaan Sampah (Studi Kasus Bank Sampah Malang). Jurnal Aspirasi Vol.5 No.1.
[5] Hartanto, W. (2006). Performance Pengelolaan Sampah di Kota Gombong Kabupaten Kebumen. Semarang: Magister Teknik Pembangunan Wilayah dan Kota Universitas
Diponegoro Semarang.

[6] Kristina, H. J. (2014). Model Konseptual untuk Mengukur Adaptabilitas Bank Sampah di Indonesia. *Jurnal TI UNDIP Vol IX No.1*

[7] Rahmadhani, D., Taroepratjeka, H., & Fitria, L. (2014). Usulan Peningkatan Efektivitas Mesin Cetak Manual Menggunakan Metode Overall Equipment Effectiveness (OEE) Studi Kasus di Perusahaan Kerupuk TTN. ITENAS Bandung.

[8] Suttibak, N. (2008). Assessment of Waste Recycling Performance: A Study of School Garbage Banks in Thailand. *GMSARN International Journal*, 83-90.

[9] Sudibyakto, & Priatmojo, A. (2016). Manajemen Risiko Bencana pada Kawasan Cagar Budaya Gunung Padang, Ciamis, Jawa Barat. *Jurnal Riset Kebencanaan Indonesia Vol.2 No.1*, 50-58.