Improved electrochemical performance of 5 V spinel LiNi_{0.5}Mn_{1.5}O_4 by La_2O_3 surface coating for Li-ion batteries

Aijia Wei1,2, Wen Li1,2, Lihui Zhang1,2 and Zhenfa Liu1,2*

1Institute of Energy Resources, Hebei Academy of Science, Shijiazhuang Hebei 050081, China
2Hebei Engineering Research Center for Water Saving in Industry, Shijiazhuang Hebei 050081, China

Abstract. LiNi_{0.5}Mn_{1.5}O_4 coated with 1.5 wt.\% La_2O_3 was prepared and investigated as cathode materials for lithium ion batteries. The samples was characterized by XRD, SEM and EDX. After the 1.5 wt.\% La_2O_3 coating, the lattice structure of LiNi_{0.5}Mn_{1.5}O_4 is not destroyed and a La_2O_3 coating layer has formed on the surface of LiNi_{0.5}Mn_{1.5}O_4 particles. The 1.5 wt.\% La_2O_3-coated LiNi_{0.5}Mn_{1.5}O_4 exhibits a higher rate capacity, with discharge capacity between 3.5 and 5 V of 131.9, 127.1, 126.5, 120.7, 114.1 and 101.5 mAh g-1 at rates of 0.2, 0.5, 1, 2, 3 and 5 C (1 C = 140 mAh g-1), respectively. The results indicate that the La_2O_3 coating could reduce the electrode polarization and enhance the rate capacities.

1 Introduction

High voltage cathode materials are playing an important role in the development of high power lithium-ion batteries for their potential applications in hybrid electric vehicles and renewable energy storage devices [1-4]. Spinel LiNi_{0.5}Mn_{1.5}O_4 (LNMO) is considered as one of the most attractive cathode materials due to its high operating voltage (at about 4.7V vs Li+) and high specific energy of 658 Wh kg-1, which is much higher than commercial cathode materials such as LiCoO_2 (518 Wh kg-1), LiMn_2O_4 (400 Wh kg-1), LiFePO_4 (495 Wh kg-1), and LiCoO_3Ni_{1/3}Mn_{1/2}O_2 (576 Wh kg-1). However, the LNMO acts as cathode material may exist two problem. On the one hand, the Mn dissolution into the electrolyte could result in the structure collapse and capacity degradation. On the other hand, the decomposition of the electrolyte would generate HF, which would also corrode the LNMO material, leading to the capacity fading.

Recently, many efforts have been devoted to resolve the above-mentioned problem. Surface coating is an effective method to improve the electrochemical performance of LNMO material. These surface coating materials include metal oxides (ZnO [5]), TiO\textsubscript{2} [6], Al_2O_3 [7-8], SiO_2 [9], Bi_2O_3 [10], ZrO_2 [11], MgO [12], Fe_2O_3 [13-14], LiSiO_2 [15], LiNbO_3 [16], RuO_2 [17], CeO_2 [18], TiO_2 [19], CoAl_2O_4 [20], phosphates (Li_3PO_4 [21], FePO_4 [22]), fluorides (AlF_3 [23], GaF_3 [24]) and some conductive components (carbon nanotubes [25], or graphene [26]). La_2O_3 with excellent thermal stability has been used to coat the LiCoO_2 and improve the electrochemical performances [27]. In our previous work, we use the La_2O_3 to modify the LTO to suppress the electrolyte decomposition and enhance the rate capacity of LTO anode material [28]. Inspired by these results, we propose to use the La_2O_3 as a coating layer to determine whether it is effective to improve the electrochemical performance of LNMO.

In this paper, 1.5 wt.\% La_2O_3 was successfully coated on the surface of LNMO. The structure and electrochemical performance of the La_2O_3 coated LNMO sample was investigated and reported below.

2 Material and methods

2.1 Synthesis and characterization

Pure LNMO powders were synthesized by a solid-state ball-milling and spray drying method. Specifically, a stoichiometric amount of NiO, Li_2CO_3, MnO_2 and deionized water were mixed by ball milling at 300 rpm for 10 h using zirconia as the milling media. The mixture was subsequently used the spray drying to get the precursor powders. Finally, the precursor powders were calcined at 500°C for 5h and 800°C for 8 h in an air atmosphere to obtain pure LNMO. The molar ratio of Li: Ni: Mn was 1:0.5:1.5 and excessive Li (5%) was added to compensate for the volatilization of Li during the calcined process.

La(NO_3)_3·6H_2O (Aladdin) and polyvinyl alcohol (PVA, degree of polymerization is 1500) were purchased for this work. The La_2O_3-coated LNMO sample was achieved by the following steps: LNMO (5 g) was dispersed in deionized water, then the mixture stirred for 2 hours. The calculated 1.5 wt.\% of La(NO_3)_3·6H_2O to form La_2O_3 and 1.5 wt.\% polyvinyl alcohol were dissolved in warm deionized water and added dropwise to the dispersed LNMO. The mixture was continuously stirred for 1 hours at 25°C and continuously stirred at 100°C to evaporate the water, then the mixed solid

* Corresponding author: lzf63@sohu.com

© The Authors, published by EDP Sciences, This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
powder was calcined at 500 °C for 5 hours in air to obtain the 1.5 wt.% La2O3-coated LNMO sample.

Powder X-ray diffraction (XRD, Ultima IV, Rigaku) with Cu Kα radiation was used to characterize the phase composition and crystal structures of all the samples. The diffraction patterns were collected at room temperature by step scanning in the range of 10–90° at a scanning rate of 0.02° per 10 s. The morphology of the materials was characterized by SEM (Hitachi SU8020, Japan). The microstructure and EDX mapping of all samples were also observed by SEM (INCA Penta-FETx3).

2.2 Electrochemical measurements
The electrochemical properties of all samples were tested by adopting a CR2032 coin-type half-cell with Li foil as the counter electrode. The cathode slurry was prepared by homogeneously mixing the active materials, Super-P, and polyvinylidene fluoride (PVDF) in a mass ratio of 80:10:10 in N-methyl-2-pyrrolidone (NMP) solvent. Then, the slurry was cast onto a Al foil and dried for 12 h in vacuum at 105°C. Finally, the electrode laminate was punched into disks (10 mm in diameter) and dried in a vacuum oven at 105°C for 24 h. The coin cell was assembled entirely in an argon-filled glovebox. The separator was Celgard 2400 (Celgard Inc., USA), and the electrolyte (Capchem Technology (Shenzhen) Co., Ltd.) was a solution of 1 mol L−1 LiPF6 in ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate (1:1:1, volume ratio).

The galvanostatic charge-discharge tests were conducted on an automatic galvanostatic charge-discharge unit (Land 2001A, Wuhan, China) between 3.5 and 5 V and at charge/discharge C-rates between 0.2 and 5 C (1 C = 140 mAh g−1) at 25°C.

3 Result and discussion
3.1 Material characterization
The XRD patterns of pure LNMO and the La2O3-coated LNMO are presented in Fig. 1. All the XRD patterns are indexed to the standard spinel structure of LNMO (card NO. 80-2162) with Fd-3m space group. The structure of LNMO was not destroyed by La2O3 coating. There is a small peak (marked with ‘*’), which is corresponding to an impurity phase of Li2Ni1−xO2, demonstrating an oxygen loss reaction at high temperatures during the calcining process. Furthermore, there were no peaks that indicate the existence of La2O3. This may be attribute to the low La2O3 content or its amorphous state.
3.2 Electrochemical properties

Fig. 3a-b compares the rate capabilities of pure LNMO and the 1.5 wt.% La$_2$O$_3$-coated LNMO at C-rates from 0.2–5 C between 3.5 and 5V. It is worth noting that the 1.5 wt.% La$_2$O$_3$-coated LNMO exhibits a higher rate capacity. The discharge capacity values of the 1.5 wt.% La$_2$O$_3$-coated LNMO are 131.9, 127.1, 126.5, 120.7, 114.1 and 101.5 mAh g$^{-1}$ at rates of 0.2, 0.5, 1, 2, 3 and 5 C mAh g$^{-1}$ (1 C = 140 mAh g$^{-1}$), respectively, which is higher than that of pure LNMO with the discharge capacity values are 130.4, 121.7, 112.4, 103.3, 95.2 and 64.7 mAh g$^{-1}$, respectively. The galvanostatic charge-discharge curves of pure LNMO and the 1.5 wt.% La$_2$O$_3$-coated LNMO are shown in Fig. 3c–d. It can be observed that the two samples have similar charge/discharge profiles, demonstrating that there are two discharge plateaus in the potential region of 4.7 V and one lower plateau at around 4.0 V. The 1.5 wt.% La$_2$O$_3$-coated LNMO displays a smaller potential difference between the charge and discharge platforms, especially at high C-rates. This phenomenon indicates that the La$_2$O$_3$-coating can reduce electrode polarization and suppress the side reactions between LNMO and the electrolytes and enhance the rate capacities.

In summary, the 1.5 wt.% La$_2$O$_3$ has been successfully coated on the surface of LNMO. The characterization results show that the La$_2$O$_3$ coating does not destroy the formation of LNMO and a La$_2$O$_3$ coating layer distributes uniformly on the surface of LNMO particles. The electrochemical results indicate that the 1.5 wt.% La$_2$O$_3$-coated LNMO exhibits a higher rate capability over pure LNMO. This is attributed to the fact that the La$_2$O$_3$ coating layer could protect the transition metal ions from dissolving into the electrolyte and minimizing harmful side reactions between the LNMO and electrolyte. Therefore, our studies display that the La$_2$O$_3$ coating offers an important benefit to increase the rate capacity.
capacity of LNMO cathode material for lithium ion batteries.

Acknowledgements
This work was financially supported by Technology Program of Hebei Province (17394411D) and (18214404D) and Project of Hebei Academy of Science(181604).

References
1. Y. M. Chiang, Science 330, 1485 (2010)
2. J.M. Tarascon, M. Armand, Nature 414, 359 (2001)
3. A. Patil, V. Patil, D. Wook Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Mater. Res. Bull. 43, 1913 (2008)
4. J.B. Goodenough, Y. Kim, J. Power Sources 196, 6688 (2011)
5. R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, J Electrochem Soc. 566, 187 (2004)
6. Y.K. Sun, C.S. Yoon, I.H. Oh, Electrochim Acta 48:503 (2003)
7. J.W. Kim, D.H. Kim, D.Y. Oh, H. Lee, J.H. Kim, J.H. Lee, Y.S. Jung, J. Power Sources 274, 1254 (2015)
8. H.M. Cho, M.V. Chen, A.C. MacRae, Y.S. Meng, Appl. Mater. Interfaces 7, 16231(2015)
9. Y. Fan, J. Wang, Z. Tang, W. He, J. Zhang, Electrochim Acta 52, 3870 (2007)
10. J. Liu, A. Manthiram, J Electrochem Soc 156, S13 (2009)
11. H.M.Wu, I. Belharouak, A. Abouimrane, Y. K. Sun, K. Amine, J. Power Sources 195, 2909 (2010)
12. G. Alva, C.J. Kim, T.H. Yi, J. B. Cook, L.P. Xu, G. M. Nolis, J. Cabana, J. Phys. Chem. C 118, 10596 (2014)
13. 13 G. Wang, W. Wen, S. Chen, R. Yu, X. Wang, X. Yang, Electrochim. Acta 212, 791 (2016)
14. 14. H. Ming, J. Ming, S.M. Oh, S. Tian, Q. Zhou, H. Huang,Y.K. Sun, J.W. Zheng, Appl. Mater. Interfaces 6, 15499 (2014)
15. 15. K. Zhang, P. Li, M. Ma, J.H. Park, J. Power Sources 336, 307 (2016)
16. 16. M. Gellert, K.I. Gries, J. Sann, E. Pfeifer, K. Volz, B. Roling, Solid State Ionics 287, 8 (2016)
17. 17 Q. Pang, Q. Fu, Y.H. Wang, Y.Q. Zhang, B. Zou, F. Du, G. Chen, Y.J. Wei, Electrochim. Acta 152, 240 (2015)
18. 18. T.F. Yi, X. Han, B.Chen, Y.R. Zhu, Y. Xi, J. Alloys Compd. 703, 103 (2017)
19. 19. T. Shi, F.J. Kong, C.Q. Wu, X. Z. Su, T. Xiang, S.M. Chen, H.H. Hou, L. Zhang, Y. Fang, Z.C. Wang, W.S. Chu, B. Qian, L. Song, Alloys Compd. 705, 413(2017)
20. 20. J. Wang, S. Yao, Y. Yu, T. Fu, P. Zhang, J. Zhao, Electrochim. Acta 208, 310(2016)