Research Article

Application of Wireless Communication Technology in Construction Project Information Management

Jie Zhang, Xin Guo, and Ying Xu

1School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia 430071
2School of Economics and Management, Jinzhong University, Jinzhong, Shanxi, China 030619
3Shanxi Professional College of Finance, Taiyuan, Shanxi, China 030008

Correspondence should be addressed to Jie Zhang; z5123256@zmail.unsw.edu.au

Received 28 July 2021; Accepted 11 August 2021; Published 29 August 2021

Abstract

With the replacement of the times, the electronic information technology of all countries in the world has developed rapidly, and 4G mobile communication technology has also obtained the opportunity of development, which has improved the transmission speed of 5G mobile communication technology, which has been widely used in intelligent information management of construction engineering. Under this background, this paper selects the research methods of theory guiding practice and practice updating theory to guide the application of information technology. Based on the actual engineering cases, this paper discusses the scientific process of information management construction of construction projects from the perspective of BIM Technology by taking the specific construction details as the starting point. Firstly, this paper systematically introduces the key technologies of BIM and the related concepts and basic contents of construction project management informatization, expounds and analyzes the three construction modes that should be followed by construction project collaborative management informatization, and puts forward the key and main contents of standardization construction. Then, taking New York freedom building as an engineering case, this paper analyzes the application of building information modeling (BIM) in the architectural design of New York freedom building. Relevant research can provide theoretical and practical references for realizing and ensuring the combination of project management and information technology.

1. Background

In recent years, in order to accelerate the process of informatization management of construction projects, my country has successively issued the “Twelfth Five-Year Development Plan for the Construction Industry” and the “2011-2015 Outline for the Development of the Construction Industry Informatization,” both of which clearly pointed out the following: emerging intelligent management tools, such as BIM Technology, Internet of Things technology, 5G mobile communication technology, and 4D smart vision have greatly strengthened the intelligent control and management of engineering construction [1], so it is very necessary to further develop and construct information intelligent management tools. In mid-2016, the Party Central Committee issued the “2016-2020 Construction Industry Information Development Outline,” further planning the overall development of the construction industry, which emphasized the importance of information technology such as building information modeling and construction management information systems [2]. In addition, the document also pointed out that the current society’s construction information management technology is far from reaching the expected goal, and the entire construction industry alone has generated huge technical needs for it, especially construction engineering information management and modern emerging mobile communications. The integration of technology will greatly promote the efficiency of construction engineering information management.

“Internet+” brings new opportunities to the development of the times and leads all fields into the era of information management. As a leader in the field of construction engineering, project management must adapt to the changes in the new era. In addition, with the rapid development of
science and technology, mobile communication technology has also made a qualitative leap [3, 4]. As a result, 5G wireless communication technology, which not only covers a wide range but also has high-speed transmission speed, is on the stage, which brings good development opportunities for the development of construction project management information [5]. The analysis of hot topics in domestic and foreign research shows that the life cycle management of construction projects is currently a hot topic in the construction industry. The key to achieving this goal is to establish an information model, which is now called BIM (building information modeling) technology.

The monitoring and control of construction progress is a long-term and dynamic development process, which requires the continuous update of on-site data and the generation of a large amount of information. With the continuous development of the construction progress of the project, the progress information of the project will continue to increase dynamically. And some information in the construction process can be used in the later stages of the building, such as the operation and maintenance stage, thereby contributing to the life cycle of the building [6, 7].

The information generated in the process of building construction monitoring and control is dynamic and real-time development, so it is necessary to keep, share, and manage the information generated in the construction process, so as to facilitate all parties involved in the construction project to obtain the information in a time when the construction project information changes and avoid unnecessary rework due to information errors in the later stage. As a comprehensive and coordinated information database, BIM has incomparable speed and portability in obtaining the required information and realizing information sharing [8]. Based on this advantage, the application of BIM Technology in practical engineering projects has become the common expectation of all participants and also promotes all parties to make better use of information for their own adjustment, so as to promote the better realization of construction projects.

BIM Technology can be applied to the storage and query of information in the whole life cycle of construction projects. It can effectively sort out and track the transmission and change of construction information from one stage to another, avoiding “information interruption” and information loss. Another function of BIM Technology is to reduce information fuzziness and ununiformity. The research on BIM by many scholars at home and abroad also fully reflects the feasibility and value of the application measures taken by BIM Technology in the design and implementation of construction projects. Therefore, BIM Technology is widely applied to the dynamic real-time construction monitoring and management system of the construction industry, which can effectively provide excellent solutions for the fields of dynamic monitoring data information integration and analysis of the construction industry and resource sharing.

For the practical application value of BIM Technology, this paper will select an engineering example to show the working path of project management. At the same time, in order to promote the technology to comply with the requirements of the development of the times and meet the development needs of modern architecture, it is also necessary to point out the limitations and defects of existing models in the process of practical case application, promote the technology to keep pace with the times, and give full play to the characteristics and advantages of BIM Technology in the practical application of the construction industry. By analyzing the improvement and upgrading of traditional project management by BIM Technology, this paper obtains the advantages of project management based on BIM Technology compared with traditional project management.

2. BIM Key Technology and Construction Project Information Construction

2.1. BIM Key Technology. Based on the realization of the 3D building model, BIM Technology realizes the sharing of information generated by the 3D building model among all participating departments of the building. By connecting all stages of the whole construction life cycle of the construction project with each department one by one, it truly realizes the unified application and management of information. For each stage, each department forms a complete, comprehensive interpretation of guidance. All departments of the construction project have access to the same 3D building model, and all the building information is added to the model to facilitate the extraction of the necessary information. Through such analysis, we can know that BIM Technology has the advantages of integrating, managing, and sharing all information in the whole life cycle of buildings. It can not only achieve certain coordination and consistency in the transmission and use of drawings, data, and other information in the profession. More importantly, it can also easily realize the information sharing, extraction, and use of timeliness and accuracy of information in different majors.

In order to perfectly realize the functional benefits brought by BIM Technology, it is also necessary to create an information application platform, which can uniformly manage the project construction information of all participants in the project and, based on the information application platform, create an open information model that can exchange and communicate, namely, IFC; thus, a 3D building information exchange application model is established.

Tracing the development process of BIM Technology, it can be seen that it originated in the United States, but it has developed rapidly. In just a few years, it has been applied and promoted by many countries, such as Britain, Switzerland and other European countries, Japan, Singapore, and other developed countries. The application of BIM Technology in China started late, and it began to talk about BIM Technology after 2002 at the earliest. He Guanpei, a famous research scholar in China, proposed that since the BIM model is the basis for supporting the whole BIM process, the core of the BIM software also lies in the BIM modeling software (see Figure 1).

2.2. Application Value of BIM Technology. Through practical application, it can be seen that BIM Technology is more or less applied in different stages of the whole life cycle of
construction projects. The following is mainly explained from two aspects: engineering design and project management.

2.2.1. Intelligent Engineering Design. When the collaborative management application of construction projects is realized in the actual project, the designers of the company can make full use of the 3D rendering function of BIM Technology to carry out relevant operations on the mode of construction projects, simulate the actual scene of buildings, and render the documents and images of buildings and scenes through the change of data and mode. When there are changes related to the 3D model, the corresponding files and drawings can be automatically updated. After that, construction management such as joint design can be carried out.

2.2.2. Information-Based Project Management. In the previous construction project information collaborative management, paper is often used. This paper method is greatly affected by human subjective factors. If there is improper storage or loss in the process of mutual transmission, all kinds of data and information on this paper will be distorted and produce wrong information, which will affect the information of construction projects and the management quality of a large number of data. Therefore, in the information management of construction projects, the use of BIM Technology effectively overcomes the defects existing in the information management of existing construction projects and avoids the problems of confusion or lack of information. On this basis, participants can also use the information query service function provided by the information management system and database to quickly obtain the necessary construction project data, so as to more efficiently optimize the work efficiency and quality of project data management.

2.3. Application Outline of Civil Engineering Information Management Technology. First, construction enterprises should pay attention to the comprehensive application of information technology. There are a lot of manual operations in the management process, which has a certain negative impact on the reliability, integrity, and quality of construction enterprise information.

Second, construction engineering enterprises need to constantly absorb experts with professional information management talents and strengthen their own talent management. At present, the level of hardware equipment of many construction companies has been greatly improved, but the informatization of enterprise internal management is still at a low level. Some new procurement information management software has not been fully developed, so it is necessary to further improve the informatization management level.

Third, construction engineering enterprises must pay attention to the phased development process of information management and replan the construction of enterprise information management in the heyday of strategic development. At the same time, we should also pay attention to the system planning process and put forward practical information management solutions according to the current financial situation, personnel, equipment, technical situation, and market situation of the enterprise, so as to reduce the resistance of information management in the application process.

3. Construction Enterprise Project Management Information Construction

In the whole process of the implementation of construction project management, in order to realize the informatization of construction, we must not only need mature software system products and stable hardware operating environment but also establish a set of the corresponding management system, management framework, and good cultural atmosphere. These are the necessary conditions for the construction industry to implement project management informatization. As shown in Figure 2, the basic preparation for project management informatization in the construction industry is mainly carried out in four steps.

For the buzzsaw platform, project participants provide leasing services through the approved project management platform, and all participants save project shared information through the central database of the network. The comparison of the characteristics of the three methods is shown in Figure 3.

It can be seen from Figure 3 that among the three informatization management methods, each has its own advantages. Therefore, the author establishes the project management informatization standard system according to its advantages, and the overall block diagram is shown in Figure 4.

The overall block diagram is composed of standard content, standard level, and professional categories. The standard system table is shown in Tables 1 and 2.

4. Application of BIM Key Technology in Construction Project Management

The freedom building in New York is the first building built on the former site of the world trade building. The freedom
building is equipped with world-class restaurants, viewing platforms, and the most advanced news broadcasting facilities. In addition, other interior design places of the building adopt the highest level of design technology to achieve the purpose of building safety, sustainability, and quality. The project is of great significance to the United States. Its completion will mark the development of a new generation of buildings. SOM and other companies have established cooperation with Autodesk consulting company to realize the Autodesk Revit architectural information modeling platform, so as to successfully complete this innovative architectural design.

The freedom building project in the United States is a complex building with a height of about 450 meters and a rotation of 40 degrees. The building is designed to reduce the wind power of the Hudson River and realize the purpose of dispersing wind power. In other words, the layout of each floor of the building is different. In addition, the broadcast antenna on the top of the freedom building is a steel cable, which plays a role as a wind turbine to generate building power. The design style of the freedom building corresponds to the design style of the Brooklyn Bridge.

Any complex design needs to rely on advanced computer technology, because as long as there is a small error, it may cause high cost and construction delay during the construction period. After screening various industry software, SOM selects Autodesk Revit as the priority architecture design tool of the project to realize the seamless integration of the other two components of the building information modeling platform and generate the proposed structural solution in real time. In the design process, when the model data is updated, all project participants in other fields can display the latest and complete information of the whole project in real time. In addition, the software also

Figure 2: Project information construction preparation.

Figure 3: Comparison of three construction project information management methods.
facilitates extensive design cooperation. In the original design process, when the designer changes the very complex part, it is often discussed around the design drawing. With the help of the Revit platform, the architect only needs to open the model on the screen and change the area to be adjusted.

Taking freedom tower as an example, Autodesk Revit structure software can help architects effectively improve the integrity and coordination of the project in the field of engineering construction. This is because the building information modeling can adjust its own model according to needs, so it can greatly save design time and design change time. Instead of marking the problem in red, the project leader waited a week to obtain the image of the building column in real time. Using Autodesk consulting software, SOM divides the project into five parts: foundation, core structure, around the foundation, around the main tower, and spire. It can be seen that the Revit platform is a technological revolution, which has made outstanding contributions to the construction of freedom building.

5. Countermeasures for Information Technology to Improve the Effect of Collaborative Management of Construction Projects

5.1. Make Full Use of Big Data Technology to Strengthen the Information Management Awareness of Senior Managers. In order to improve the effectiveness of collaborative management of construction projects, construction enterprises must make maximum use of big data technology. After nearly 10 years of development, China’s construction industry continues to expand, and construction technology and equipment are constantly updated. The application of big data technology to the construction of information in the

![Figure 4: Project management informatization standard system.](image-url)

Table 1: Basic standard system.

System coding	Standard name
1.1	Terminology standard
1.1.1	Standard for basic terms of engineering management informatization
1.2	Text graphic symbol standard
1.2.1	Standard for text and graphic symbols of engineering management information system
1.2.2	Unified standard for electronic documents of engineering management
1.3	Information classification and coding standard
1.3.1	Classification and coding standard of engineering management information
1.3.2	Application data classification and coding standard in the field of engineering management informatization

Table 2: Special standard system.

System coding	Standard name
2	Application system specific standards
2.1	Technical specification for collaborative construction information system
2.2	Technical specification for supervision behavior system
2.3	Technical specification for on-site real-time monitoring
2.4	Technical specification for construction quality management system
2.5	Site safety and health management standards
construction industry can significantly improve the practical application level of project collaborative management.

5.2. Make Efficient Use of Cloud Technology to Build a Comprehensive Information Management Platform. Facing the development of modern technology, China’s construction industry needs to make maximum use of cloud computing technology, build an information collaborative management platform, and promote the all-round promotion of the information management mode. Construction engineering companies can make full use of this good market environment to build their own companies, promote the development of the company, improve the level of construction technology, and improve the efficiency of management.

5.3. Improve the Informatization Management Level of Project Managers. The engineering company can implement special technical training for information technology implementers, actual operators, and persons in charge of later maintenance. Finally, the construction engineering company forms standardized measurement standards by holding lectures and training, checks the learning achievements of employees, and regularly checks the status of employees using information technology to guide their work.

5.4. Make Efficient Use of Mobile Communication Technology to Speed Up the Project Informatization Audit. The engineering construction company should not only further improve the quality level of project information construction and improve the scientific effectiveness of project quality supervision and management but also make full use of wireless communication technology to speed up the audit of project information construction. Because the project management of a construction enterprise often has obvious timeliness and periodicity, in the progress and development of modern construction enterprises, wireless communication technology can establish an effective wireless communication conveyor belt for the financial management, design department, construction management, human resources, and management of the whole construction enterprise. With this frequent communication from the construction site and project management process, effective communication with the project manager can be effectively improved. The wide application of mobile communication technology will greatly change the specific operation and management mode of construction engineering enterprises. Through the research and development of wireless communication technology, architectural designers can transfer the special conditions of the construction site under certain conditions to the actual application design drawings of construction engineering construction in real time. In addition to the above means, construction engineering enterprises can also use the development of remote control technology and remote supervision technology to strengthen the effective supervision and management of construction sites.

To sum up, the use of information management technology can reduce the waste of resources in construction project management and improve the integrity of management. From the analysis of this paper, it can be seen that the research on the application of informatization in construction engineering management will help construction engineering enterprises to see the shortcomings in the current enterprise engineering management process from the perspective of problems and upgrade the management scheme pertinently. Therefore, construction enterprises should pay more attention to information technology and explore countermeasures to improve the effectiveness of management in management practice.

6. Conclusion

Modern construction projects are gradually driven in the direction of complexity and large scale. The complex building structure has brought unprecedented challenges to the engineering construction management industry. The traditional project management model can no longer meet today’s complex project management needs. Therefore, BIM Technology appears in people’s vision without solving the problems. BIM Technology uses the latest information collection, processing, analysis, and sharing technology to integrate a large number of complex engineering information into a unified work platform according to the unified IFC standard. All relevant personnel related to the project can retrieve and query data and information related to the project. Therefore, BIM Technology provides a rapid and convenient communication method for all participants in engineering construction. At the same time, it ensures the real-time update of project information and the synchronization of information of all relevant personnel after information change.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

[1] J. Wang, J. Tang, Z. Xu et al., “Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach,” in IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9, Atlanta, GA, USA, May 2017.
[2] B. Ai, K. Guan, M. Rupp et al., “Future railway services-oriented mobile communications network,” IEEE Communications Magazine, vol. 53, no. 10, pp. 78–85, 2015.
[3] Z. Henrique and C. Luiz, “Designing the Car2X-Communication infrastructure based on the Internet of Things for the Curitiba public transport system,” IFAC-Papers on Line, vol. 49, no. 30, pp. 239–244, 2016.
[4] E. Ndashimye, S. K. Ray, N. I. Sarkar, and J. A. Gutiérrez, “Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: a survey,” Computer Networks, vol. 112, pp. 144–166, 2017.
[5] K. Chen, G. Xu, F. Xue, R. Y. Zhong, D. Liu, and W. Lu, “A physical internet-enabled building information modelling system for prefabricated construction,” *International Journal of Computer Integrated Manufacturing*, vol. 31, no. 4-5, pp. 349–361, 2018.

[6] B. Johnston, T. Bulbul, Y. Beliveau, and R. Wakefield, “An assessment of pictographic instructions derived from a virtual prototype to support construction assembly procedures,” *Automation in Construction*, vol. 64, pp. 36–53, 2016.

[7] R. Haberfellner, O. de Weck, E. Fricke, and S. Vössner, “Characteristics of Successful Project Management,” in *Systems Engineering*. Birkhäuser, Cham, pp. 359–364, 07 June 2019.

[8] G. Costa and L. Madrazo, “Connecting building component catalogues with BIM models using semantic technologies: an application for precast concrete components,” *Automation in Construction*, vol. 57, pp. 239–248, 2015.