ROLE OF NONPERTURBATIVE INPUT IN QCD RESUMMED HEAVY
BOSON Q_T DISTRIBUTION

JIANWEI QIUa and XIAOFEI ZHANGb

aDepartment of Physics and Astronomy, Iowa State University
Ames, Iowa 50011, U.S.A.
bCenter for Nuclear Research, Department of Physics, Kent State University
Kent, Ohio 44242, U.S.A.

We show that role of nonperturbative input in the b-space QCD resummation formalism for heavy boson transverse momentum (Q_T) distribution strongly depends on collision energy \sqrt{S}. At collider energies, the larger \sqrt{S} is, the weaker role nonperturbative input plays, and better predictive power the b-space resummation formalism has.

1 Introduction

With new data coming from Fermilab Run II and from the Large Hadron Collider (LHC) in the near future, we expect to test Quantum Chromodynamics (QCD) to a new level of accuracy, and also expect that a better understanding of QCD will underpin precision tests of the Electroweak interactions and particle searches beyond the Standard Model. In this talk, we will concentrate on Drell-Yan type production of color neutral heavy boson (W^\pm, Z, and Higgs) of invariant mass Q at small transverse momentum Q_T.

When $Q_T \ll Q$, the Q_T distribution of the heavy boson production calculated in the conventional fixed-order perturbation theory receives a large logarithm, $\ln(Q^2/Q_T^2)$. Beyond the leading order, we can get two powers of the logarithm for every power of α_s. Therefore, at sufficiently small Q_T, convergence of the conventional perturbative expansion in powers of α_s is impaired, and the logarithms must be resummed.

2 The b-space resummation formalism

By using the renormalization group equation technique, Collins, Soper, and Sterman (CSS) derived a b-space resummation formalism for the Q_T distribution of the heavy boson production.
The formalism has the following generic form for collisions between hadrons A and B,

\[
\frac{d\sigma_{A+B\rightarrow V+X}}{dQ^2 dy dQ_T^2} = \frac{d\sigma_{A+B\rightarrow V+X}^{(\text{resum})}}{dQ^2 dy dQ_T^2} + \frac{d\sigma_{A+B\rightarrow V+X}^{(Y)}}{dQ^2 dy dQ_T^2},
\]

where V represents the heavy boson. In Eq. (1), the $\sigma^{(Y)}$ term is negligible for small Q_T and becomes important when $Q_T \sim Q$. The $\sigma^{(\text{resum})}$ includes all orders resummation of the large logarithms and can be expressed as

\[
\frac{d\sigma_{A+B\rightarrow C+X}^{(\text{resum})}}{dQ^2 dy dQ_T^2} = \frac{1}{(2\pi)^2} \int d^2 b e^{iQ_T \cdot b} W(b, Q) = \int \frac{db}{2\pi} J_0(Q_T b) b W(b, Q)
\]

where J_0 is Bessel function and $W(b, Q) = \sum_{ij} \sigma_{ij\rightarrow V}^{(0)}(Q) W_{ij}(b, Q)$ is a b-space distribution with dependence on rapidity y suppressed. The $\sigma_{ij\rightarrow V}^{(0)}(Q)$ is the lowest order partonic cross section for partons of flavor i and j to produce a heavy boson V of invariant mass Q.

Because of initial-state hadrons, $W_{ij}(b, Q)$ depends on momentum scale of hadron wave function ($1/\text{fm} \sim \Lambda_{\text{QCD}}$) and is in principle nonperturbative. However, when b is small ($\ll 1/\Lambda_{\text{QCD}}$), physics associated with momentum scales $1/b$ and Q are perturbative, and large logarithms from $\log(1/b^2)$ to $\log(Q^2)$ can be resummed by solving the following evolution equation.

\[
\frac{\partial}{\partial \ln Q^2} W_{ij}(b, Q) = \left[K(\mu, \alpha_s) + G(Q/\mu, \alpha_s)\right] W_{ij}(b, Q)
\]

where kernels K and G themselves obey renormalization group equations. By solving the linear evolution equation, one derives the resummed b-space distribution, $W(b, Q) = e^{-S(b,Q)} W(b, c/b)$, with constant $c = \mathcal{O}(1)$ and $S(b, Q) = \int_{Q^2/\mu^2}^{Q^2} \frac{ds}{s} \left[A(\alpha_s(\bar{\mu})) + B(\alpha_s(\bar{\mu})) \right]$. The $A(\alpha_s(\bar{\mu}))$ and $B(\alpha_s(\bar{\mu}))$ are perturbatively calculable in power series of α_s. All large logarithms in $W(b, Q)$ are completely resummed into the exponential factor $\exp[-S(b, Q)]$ leaving $W(b, c/b)$ with only one hard scale $1/b$. When $b \leq b_{\text{max}} \ll 1/\Lambda_{\text{QCD}}$, the nonperturbative physics in $W(b, c/b)$ can be factorized into parton distributions, and the resummed $W(b, Q)$ can be factorized as

\[
W^{\text{pert}}(b, Q) = \sum_{ij} \sigma_{ij\rightarrow V}^{(0)} \left[f_{a/A} \otimes C_{a\rightarrow i} \right] \otimes \left[f_{b/B} \otimes C_{b\rightarrow j} \right] \times e^{-S(b,Q)}
\]

where f and C are parton distributions and perturbatively calculable coefficient functions, respectively. In Eq. (4), the \otimes represents convolution over parton momentum fraction, and the superscript “pert” indicates that $W^{\text{pert}}(b, Q)$ is perturbatively calculable at small b if parton distributions are known.

When Q^2 is large enough, the perturbatively resummed b-space distribution $W^{\text{pert}}(b, Q)$ has a generic functional form shown in Fig. 1. The peak and corresponding saddle point (b_{np}) depends on values of Q and $\sqrt{Q^2}$. Since the $W^{\text{pert}}(b, Q)$ is only reliable for small b region, an extrapolation to large b is necessary in order to complete the Fourier transform in Eq. (4).

3 Extrapolation to large b region

Collins, Soper, and Sterman proposed the following large-b extrapolation,

\[
W^{\text{CSS}}(b, Q) \equiv W(b_*, Q) F^{NP}(b, Q),
\]

where $b_* \equiv b/\sqrt{1 + (b/b_{\text{max}})^2} < b_{\text{max}} \sim 0.5 \text{ GeV}^{-1}$ and $F^{NP}(b, Q) \sim \exp(-\kappa b^2)$ is a Gaussian-like nonperturbative function. The κ depends on fitting parameters, g_i with $i = 1, \ldots, n$. By adjusting functional form for κ and fitting parameters g_i, Q_T distributions derived from $W^{\text{CSS}}(b, Q)$ are not inconsistent with Fermilab data on Z and W.\[\]
Although it is successful in interpreting existing data, the b-space resummation formalism has been questioned due to two apparent drawbacks. The first is the difficulty of matching the resummed and fixed-order predictions; and the second is to know the quantitative difference between the prediction and the fitting because of the introduction of a nonperturbative F^{NP}. Recently, we demonstrated that both apparent drawbacks can be overcome. According to the large-b extrapolation defined in Eq. (5), the nonperturbative function F^{NP} and its fitting parameters can not only affect the large b region, but also significantly change the perturbatively calculated b-space distribution at small b. In order to quantitatively separate QCD prediction from parameter fitting, we introduce a new large-b extrapolation

$$W(b, Q) = \begin{cases} W^{\text{pert}}(b, Q) & b \leq b_{\text{max}} \\ W^{\text{pert}}(b_{\text{max}}, Q) F^{NP}(b, Q; b_{\text{max}}) & b > b_{\text{max}}. \end{cases}$$

(6)

This new extrapolation preserves the QCD resummed b-space distribution at small b. For large b region, a new functional form of F^{NP} was derived by adding power corrections to the evolution equations of $W(b, Q)$

$$F^{NP} = \exp \left\{ -\ln \left(\frac{Q^2 b_{\text{max}}^2}{c^2} \right) \left[g_1 \left((b^2)^\alpha - (b_{\text{max}}^2)^\alpha \right) + g_2 \left(b^2 - b_{\text{max}}^2 \right) \right] - \bar{g}_2 \left(b^2 - b_{\text{max}}^2 \right) \right\}.$$

(7)

The $(b^2)^\alpha$ term with $\alpha < 1/2$ corresponds to a direct extrapolation of resummed $W^{\text{pert}}(b, Q)$, while the b^2 terms correspond to the power corrections to the evolution equation. The \bar{g}_2 term corresponds to power correction from soft gluon shower; and the \bar{g}_2 is due to parent partons’ nonvanish intrinsic transverse momentum. The parameters, g_1 and α are completely fixed by W^{pert} by requiring the first and second derivatives of $W(b, Q)$ to be continuous at $b = b_{\text{max}}$.

4 Predictive power of the formalism

In order to exam the predictive power, we divide the b-integration in Eq. (2) into a perturbative ($b \leq b_{\text{max}}$) and a nonperturbative ($b > b_{\text{max}}$) region. Predictive power of the b-space resummation formalism is sensitive to the relative contributions from these two regions.

From the generic b-space distribution in Fig. 1, better predictive power requires a smaller b_{sp} for the saddle point. We found that numerical value of b_{sp} has a strong dependence on the \sqrt{S} in addition to its well-known Q^2 dependence. The larger \sqrt{S} corresponds to much a smaller b_{sp}.

In Fig. 2 we plot the b-space distribution for Z production at two different collision energies, $\sqrt{S} = 14$ TeV (solid) and $\sqrt{S} = 2.0$ TeV (dashed) with $W(b, Q)$ at Tevatron energy multiplied by a factor of 50. The $W(b, Q)$ at LHC energy is clearly peaked at a smaller b_{sp}.

Precise contribution from large b region depends on the functional form and corresponding parameters of the F^{NP}. In Fig. 3, we plot log$(1/F^{NP})$ as a function of b for $Q = M_Z$ and
Figure 3: Nonperturbative $\log(1/F_{NP})$ defined in Eq. (7) as a function of b.

$b_{\text{max}} = 0.5 \text{ GeV}^{-1}$. The dotted (dashed) line represents the leading fractional power term at $\sqrt{S} = 14 \text{ TeV}$ ($\sqrt{S} = 2 \text{ TeV}$). Both power correction terms are combined into the solid line. The parameters, g_2 and \bar{g}_2, are fixed by fitting low energy Drell-Yan data. Since the b-integration converges at $b \leq 2 \text{ GeV}^{-1}$ for all $Q_T < Q$, we expect very small power corrections for heavy boson production at collider energies, in particular, at the LHC energy.

Because of its weak role in F_{NP}, we can first neglect the power corrections and predict the heavy boson transverse momentum distribution without any free parameter, except the choice of b_{max}. Variation of b_{max} is a good test of uncertainties of our predictions. In Fig. 4, we compare our prediction with Fermilab data on Z production with $b_{\text{max}} = 0.5 \text{ GeV}^{-1}$ (solid line). We find that the theoretical prediction is insensitive to the choice of b_{max} within 0.3 to 0.8; and the power corrections in F_{NP} only change the Q_T distribution in Fig. 4 for less than 5% at the lowest Q_T and less than 1% for $Q_T > 5 \text{ GeV}$. As expected from the features shown in Figs. 2 and 3, the power corrections to Z production at the LHC at $\sqrt{S} = 14 \text{ TeV}$ is less than 1% even at the lowest Q_T bin.

5 Conclusions

We conclude that CSS b-space resummation formalism with a new large-b extrapolation has an excellent predictive power for heavy boson transverse momentum distribution at collider energies. Larger the collision energy is, better the predictive power is. At collider energies, the large-b nonperturbative contribution is dominated by the extrapolation of $W_{\text{pert}}(b, Q)$, and power corrections plays a very weak role.

Acknowledgments

This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG02-86ER40251 and DE-FG02-87ER40371.

References

1. S. Catani, et al., in the Report of the “1999 CERN Workshop on SM Physics (and more) at the LHC”, [hep-ph/0005025], and references therein.
2. J.C. Collins, D.E. Soper, and G. Sterman, Nucl. Phys. B 250, 199 (1985).
3. J.-W. Qiu and X.-F. Zhang, Phys. Rev. Lett. 86, 2724 (2001); Phys. Rev. D 63, 114011 (2001), and references therein.
4. F. Landry, R. Brock, G. Ladinsky, and C.-P. Yuan, Phys. Rev. D 63, 013004 (2001).
5. X.-F. Zhang and G. Fai, Phys. Rev. C (in press), [hep-ph/0202029].