Cu$_{2-x}$Se Modification onto Monoclinic BiVO$_4$ for Enhanced Photocatalytic Activity Under Visible Light

Zirui Liu1, Xiaoyong Liu2,*, Xinxin Gu3, Renqing Guo3 and Wenwu Zhong3,*

Abstract

The rapid recombination of electron-hole pairs in BiVO$_4$ has limited its performance as a photocatalyst. In this paper, BiVO$_4$ is combined with Cu$_{2-x}$Se semiconductor to slow down the recombination process, and thus improve its photocatalytic activity. This is enabled by careful band structure design. The work function of Cu$_{2-x}$Se is larger than that of BiVO$_4$. Therefore, electrons flow to Cu$_{2-x}$Se from BiVO$_4$ after the composition. Accordingly, an inner field could be built, which facilitates the separation of electrons and holes. The experimental result shows that the photocatalytic efficiency of the 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composite is 15.8 times than that of pure BiVO$_4$.

Keywords: Photocatalysis, Hydrothermal, Bismuth-based semiconductor

Introduction

With the developing of modern industry, environmental pollution has become more and more severe. Utilizing solar energy, photocatalytic decomposition of organic matter is an environmentally friendly and efficient technology to solve pollution [1–6]. The Bi-based semiconductor photocatalytic material has a suitable band gap, which enables it to absorb visible light sufficiently and possess superior photocatalytic performance [7–10]. Among them, monoclinic BiVO$_4$ has a narrow band gap of 2.4 eV and good photocatalytic activity, which has been nominated as an efficient material for decomposing organic pollutions [11–15]. The rapid electron-hole recombination rate, however, leads to a low photocatalytic activity for pure BiVO$_4$ [16–18]. An effective approach to slow down the recombination of electrons and holes is to combine two different semiconductor materials, given the band structures of the two combined materials match a specific condition.

As a p-type semiconductor, Cu$_{2-x}$Se has an indirect bandgap of 1.4 eV, which is beneficial to absorb visible light [19–21]. When BiVO$_4$ semiconductor is compounded with Cu$_{2-x}$Se, redistribution of charges is caused. The work function of Cu$_{2-x}$Se is larger than that of BiVO$_4$, and the Fermi energy is lower than that of BiVO$_4$ [22, 23]. Therefore, electrons flow to Cu$_{2-x}$Se from BiVO$_4$ while holes flow the other way around. Accordingly, an inner field could be built pointing from BiVO$_4$ to Cu$_{2-x}$Se, which facilitates the separation of electrons and holes. When under illumination, the photo-generated electrons in BiVO$_4$ and photo-generated holes in Cu$_{2-x}$Se will recombine preferentially, due to the band bending and inner field, leaving useful holes in BiVO$_4$. The useful holes possess higher energy level, which can benefit the generation of •OH species. These •OH species can break down long chains of organic matter into small molecules. Hence, the Cu$_{2-x}$Se/BiVO$_4$ composites are expected to have high visible light photocatalytic activity.

In this work, we have fabricated Cu$_{2-x}$Se/BiVO$_4$ composites and made use of it for the degradation of RhB under visible light irradiation (> 420 nm) for the first time. After compounding with Cu$_{2-x}$Se, the photocatalytic activity becomes much higher than pure BiVO$_4$. Specifically, the photocatalytic efficiency of 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composite is 15.8 times that of pure BiVO$_4$. Furthermore, after adding low concentration H$_2$O$_2$ into the organic solution, RhB completely degraded within 50 min. This work provides evidence that Cu$_{2-x}$Se is an effective co-catalysis.
for the development of new composite semiconductor photocatalysts.

Methods
Preparation of \(\text{Cu}_{2-x}\text{Se}/\text{BiVO}_4 \) Composites

\(\text{BiVO}_4 \) was synthesized through a chemical precipitation method [24, 25]. The preparation method of \(\text{Cu}_{2-x}\text{Se} \) can be found in our previously reported paper [26]. Then \(\text{Cu}_{2-x}\text{Se}/\text{BiVO}_4 \) composites were fabricated by a co-precipitation approach. The schematic illustration of the preparation progress is shown in Fig. 1. Firstly, the pre-prepared \(\text{Cu}_{2-x}\text{Se} \) and \(\text{BiVO}_4 \) powders were dispersed in ethanol with constant stirring for 4 h under 60 °C. Secondly, the suspension of the mixture was continuously stirred at 80 °C to remove the ethanol solvent. Finally, the obtained powdery sample was heated at 160 °C for 6 h under a flowing nitrogen atmosphere to form the \(\text{Cu}_{2-x}\text{Se}/\text{BiVO}_4 \) composite.

Characterization

XRD (X-ray diffraction) measurement of the as-prepared samples was performed by a PANalytical X’pert Pro diffractometer with Cu Ka radiation. The morphology of the sample was obtained by an SEM (scanning electron microscope) Hitachi S-4800. XPS (X-ray photoelectron spectroscopy) of the samples was characterized on a Perkin Elmer PHI-5300 instrument. The photoluminescence emission spectra of the samples were committed using a Cary Eclipse fluorescence spectrophotometer.

Photocatalytic Reaction

The photocatalytic performance was characterized by an XPA photochemical reactor. Additionally, a Xe lamp with a power of 500 W and a cut-off wavelength of 420 nm is utilized to simulate natural light, while a solution of test dye RhB is used to mimic organic solutions. During the degradation process, 60 mg \(\text{Cu}_{2-x}\text{Se} \) composite powder was placed in a 60-mL RhB solution. The suspension was stirred in a dark environment for 2 h before light irradiation to realize an adsorption-desorption balance. Then, light illumination is added with stirring remaining and about 6 mL of the suspension was taken out at intervals of 10 min. Subsequently, the suspension was centrifuged twice. The absorbance spectrum of the solution was characterized on a Shimadzu UV-2450 spectrometer.

Photoelectrochemical Measurements

The photocurrent is measured by a CHI 660E electrochemical workstation. To make the illumination consistent with that in the degradation process, the light source is still selected as a Xe lamp with a power of 500 W and a cut-off wavelength of 420 nm. The photoelectrochemical measurement is detailed as follows. First, 10 mg of the photocatalyst and 20 \(\mu \)L of Nafion solution were ultrasonically dispersed in 2 mL of ethyl alcohol. Then, 40 \(\mu \)L of the above solution was deposited on an ITO conductive glass with 0.196 cm\(^2\), which was sequentially heated at 200 °C for 1 h to obtain the working electrode. Besides, Pt foil is chosen as the counter electrode. A saturated solution of mercury and mercurous chloride in an aqueous solution of potassium chloride as the reference electrode, and 0.5M Na\(_2\)SO\(_4\) solution is used for the electrolyte.

Results and Discussion

We used photodegradation of RhB to examine the photocatalytic properties of the samples. Figure 2a shows the photocatalytic degradation of RhB over \(\text{Cu}_{2-x}\text{Se}/\text{BiVO}_4 \). When \(\text{BiVO}_4 \) is combined with \(\text{Cu}_{2-x}\text{Se} \), its photocatalytic performance is significantly improved. The optimum composite ratio is 3%, and the photocatalytic efficiency at this ratio reaches the maximum. Figure 2b shows the degradation rate of the \(\text{Cu}_{2-x}\text{Se}/\text{BiVO}_4 \) composites, corresponding

Fig. 1 The schematic diagram of formation for \(\text{Cu}_{2-x}\text{Se}/\text{BiVO}_4 \) composite
to the concentration of Cu$_{2-x}$Se with 0, 2, 3, and 4 wt%, respectively. In Fig. 2b, the slope value of degradation lines is 0.0011, 0.0118, 0.0174, and 0.0045 min$^{-1}$, respectively. Therefore, the photocatalytic efficiency of the 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composite is 15.8 times than that of pure BiVO$_4$. Figure 2c shows the recycle runs of photocatalytic degradation of RhB over 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composite with added H$_2$O$_2$ under visible light irradiation. When a small amount of H$_2$O$_2$ is added (103 μL/100 mL), the 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composites can degrade RhB completely in 50 min under visible light excitation. It can also be seen from Fig. 2c that the degradation efficiency is not attenuated after 3 cycles.

In order to analyze the microscopic morphology and grain size of the samples, the samples were characterized by SEM. As shown in Fig. 3a, BiVO$_4$ is a hexagonal bulk with a particle size of 0.2–1 μm. In Fig. 3b, the area circled by the red solid line exhibits a Cu$_{2-x}$Se sheet with a thickness of 300 nm and a length of 4 μm. After compounding, the Cu$_{2-x}$Se sheets are randomly distributed on the surface of BiVO$_4$ bulk. The XPS results also reveal the presence of Cu$_{2-x}$Se (shown below).

Figure 4a shows the XRD data for BiVO$_4$ and 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composite, which exhibits that the BiVO$_4$ has a monoclinic crystal structure. It can be seen that the crystal structure of BiVO$_4$ does not change when BiVO$_4$ is combined with Cu$_{2-x}$Se. This may be due to the fact that the content of Cu is relatively too small to be detected by XRD. Photoluminescence measurement is a general way to explore the separation and combination of electrons and holes. The relatively low luminescence intensity means a high electron-hole separation efficiency [27, 28]. Figure 4b shows the PL spectra for BiVO$_4$ and Cu$_{2-x}$Se/BiVO$_4$ composites. After BiVO$_4$ is combined with Cu$_{2-x}$Se, the relative luminescence intensity of the Cu$_{2-x}$Se/BiVO$_4$ composite is lower than that of BiVO$_4$, which indicates that the Cu$_{2-x}$Se/BiVO$_4$ composite has higher electron-hole separation efficiency after the combination of BiVO$_4$ and Cu$_{2-x}$Se.

The surface chemical state plays an important role in determining photocatalytic performance. So XPS is used to analyze the surface element valence of the Cu$_{2-x}$Se/BiVO$_4$ composite. Figure 5a is the XPS survey spectrum of the Cu$_{2-x}$Se/BiVO$_4$ composite and pure BiVO$_4$, from
which characteristic energy of Bi, V, O, Cu, and Se can be observed for \(\text{Cu}_{2-x} \text{Se/BiVO}_4 \), and characteristic energy of Bi, V, and O can be observed for BiVO4. The peaks of 159.1 and 164.1 eV can be attributed to the binding energies of Bi 4f\(_{7/2}\) and Bi 4f\(_{5/2}\), respectively (Fig. 5b), which are derived from Bi\(^{3+}\) in BiVO4 [29]. The peaks of 517.0 eV and 525.0 eV correspond to V 2p\(_{3/2}\) and V 2p\(_{1/2}\) band respectively (Fig. 5c), which are derived from the V\(^{5+}\) of BiVO4. The peak of 530.2 eV can be attributed to O 1s in BiVO4 (Fig. 5d) [30, 31]. The two peaks of 58.6 eV and 53.8 eV correspond to Se 3d\(_{3/2}\) and Se 3d\(_{5/2}\), respectively (Fig. 5e) [32]. The Cu 2p\(_{3/2}\) peak located at 931.9 eV corresponds to Cu\(^0\) or Cu\(^+\) (Fig. 5f) [33].

To further illustrate the separation efficiency of photo-generated electrons and holes, the sample was subjected to EIS analysis. As shown in Fig. 6, the EIS Nyquist diagram of \(\text{Cu}_{2-x} \text{Se/BiVO}_4 \) has a smaller arc radius than \(\text{Cu}_{2-x} \text{Se} \), indicating that \(\text{Cu}_{2-x} \text{Se/BiVO}_4 \) composites have smaller charge transfer resistance and faster interface electron transfer. [34, 35]

The reason why \(\text{Cu}_{2-x} \text{Se/BiVO}_4 \) composite exhibits high efficiency is explained as follows. As illustrated in Fig. 7, the Fermi level of \(\text{Cu}_{2-x} \text{Se} \) and BiVO4 disagrees...
with each other. As a result, after the BiVO₄ semiconductor surface is compounded with CuSe, the charges will be redistributed. Cu₂₋ₓSe has larger work function and lower Fermi energy, so electrons flow to Cu₂₋ₓSe from BiVO₄ while holes flow the other way around. As a result, the Cu₂₋ₓSe is negatively charged and BiVO₄ is positively charged until the Fermi level is equal. Meanwhile, the band structure of both materials will bend corresponding to the movement of Fermi levels. Another effect of the redistribution of carriers is the building of an inner field pointing from BiVO₄ to Cu₂₋ₓSe. Both the Fermi level movement and inner field form the so-called S-scheme heterojunction between Cu₂₋ₓSe and BiVO₄ [36]. Under illumination, electrons and holes are excited in both materials. In this type of heterojunction, however, the photo-generated electrons in BiVO₄ and photo-generated holes in Cu₂₋ₓSe will recombine preferentially, due to the band bending and inner field, leaving useful holes in BiVO₄. The useful holes possess higher energy level, which can benefit the generation of •OH species. These •OH species can break down long chains of organic matter into small molecules. The above results indicate that loading Cu₂₋ₓSe on the surface of BiVO₄ can enhance the visible light photocatalytic activity.

![Fig. 6 The EIS for BiVO₄ and Cu₂₋ₓSe/BiVO₄ under visible light irradiation in 0.5 M Na₂SO₄ solution](image)

![Fig. 7 The schematic diagram of photocatalytic mechanism](image)
Conclusion
In summary, the Cu$_{2-x}$Se/BiVO$_4$ composites have been successfully prepared and examined for degrading organic pollutants. Experimental data shows that the photocatalytic activity is largely improved after the combination. The photocatalytic efficiency of 3 wt% Cu$_{2-x}$Se/BiVO$_4$ composite is 15.8 times that of pure BiVO$_4$. Furthermore, after adding low concentration H$_2$O$_2$, RhB can be completely degraded within 50 min. The SEM and XPS results confirm the presence of Cu$_{2-x}$Se in the Cu$_{2-x}$Se/BiVO$_4$ composites. The results of photoluminescence indicate that the Cu$_{2-x}$Se/BiVO$_4$ composites have higher electron-hole separation efficiency. The results of EIS indicate that Cu$_{2-x}$Se/BiVO$_4$ composites have smaller charge transfer resistance and faster interface electron transfer. This work shows that Cu$_{2-x}$Se is an effective co-catalyst for the development of new composite semiconductor photocatalysts.

Abbreviations
RhB: Rhodamine B; SEM: Scanning electron microscope; XRD: X-ray diffraction

Acknowledgements
We acknowledge financial support from the National Natural Science Foundation of China (Grant No. 51572183 and 51502188).

Availability of Data and Materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

Authors’ Contributions
XL and WZ designed this work. XG and RG performed the experiments. RG analyzed the data. ZL and WZh wrote this paper. All authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1School of Automotive Engineering, Chongqing University, Chongqing 400044, China. 2School of Material Science and Engineering, Chongqing University, Chongqing 400044, China. 3Department of Materials, Taizhou University, Taizhou 318000, China.

Received: 14 January 2019 Accepted: 6 March 2019
Published online: 14 March 2019

References
1. Fu JW, Yu XG, Jiang CJ, Cheng B (2018) g-C$_3$N$_4$-based heterostructured photocatalysts. Adv Energy Mater 8:1701503
2. Yang HJ, Geng L, Zhang YF, Cheng G, Zhang ZL, Liu X, Lei M, He YB (2019) Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl Surf Sci 466:385
3. Xu AJ, Feng SS, Shen SJ, Liu YP, Zhong WW (2018) Enhanced visible light-responsive photocatalytic properties of ag/BiFeO$_3$/C nanosheet composites. Nanoscale Res Lett 13:292
4. Wang H, Liu RP, Li YT, Li XJ, Wang Q, Zhao SQ, Yuan KJ, Cui ZM, Li X, Xin S, Zhang R, Lei M, Lin ZQ (2018) Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule. 2:337
5. Zhang LY, Gong Y, Wu D, Li Z, Li Q, Zheng L, Chen W (2019) Palladium-cobalt nanodots anchored on graphene: in-situ synthesis, and application as an anode catalyst for direct formic acid fuel cells. Appl Surf Sci 469:305–311
6. Wang X, Cui Y, Li T, Lei M, Li J, Wei Z (2019) Recent advances in the functional 2D photonic and optoelectronic devices. Adv Opt Mater 7:1801274
7. Pan CS, Xu J, Wang YJ, Li D, Zhu YF (2012) Dramatic activity of C$_3$N$_4$/BiPO$_4$ photocatalyst with core/shell structure formed by self-assembly. Adv Funct Mater 22:1518
8. Hu JL, Fan WJ, Ye WQ, Huang CJ, Qiu XQ (2014) Insights into the photosensitivity activity of BiOCl under visible light irradiation. Adv Catal B Environ 158-159:182
9. Fu HB, Pan CS, Yao WQ, Zhu YF (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi$_2$WO$_6$. J Phys Chem B 109:22432
10. Liu B, Wang S, Mo Q, Peng L, Gao S, Wang J, Wu C, Li C, Guo J, Liu B, Chen W, Lin Y (2018) Epitaxial MoS$_2$ nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution. Electrochim Acta 292:407–418
11. Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photovoltaics by “Co-P” catalyst-modified W. BiVO$_4$. J Am Chem Soc 133:18370
12. Yu QJ, Kudo A (2006) Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO$_4$. Adv Funct Mater 16:2163
13. Tokunaga S, Kato H, Kudo A (2001) Selective preparation of monoclinic and tetragonal BiVO$_4$ with Scheelite structure and their photocatalytic properties. Chem Mater 13:4624
14. Wu C, Liu B, Wang J, Su Y, Yan H, Ng C, Li C, Wei J (2013) 3D structured Mo-doped Ni$_2$S$_3$ nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl Surf Sci 441:1024–1033
15. Liang C, Tao N, Wang B, Lin S, Lei M (2018) Graphite carbon coated TiN nanoparticles as high durable oxygen reduction reaction catalyst in alkaline electrolyte. Micro Nano Lett 13:1260–1264
16. Tan HL, Amal R, Nq YH (2017) Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO$_4$. J Mater Chem A 5:16498
17. Tan HL, Amal R, Nq YH (2016) Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO$_4$. ACS Appl Mater Interfaces 8:28607
18. Guo DY, Yu YL, Shi HZ, Li PG, Zhao N, Ye JH, Wang SL, Liu AP, Chen ZW, Li CR, Tang WH (2017) Self-powered ultraviolet photodetector with superhigh photosensitivity activity of BiOCl under visible light irradiation. Appl Catal B Environ 180:274–283
19. Zheng XW, Hu QT (2009) Facile synthesis and phase control of copper chalcogenides with different morphologies. Appl Phys A Mater Sci Process 94:805
20. Deka S, Genovese A, Zhang Y, Miotto K, Bertoni G, Rahne K, Giannini C, Manni L (2010) Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents. J Am Chem Soc 132:8912
21. Zheng LX, Han SC, Liu H, Yu PP, Fang XS (2016) Hierarchical MoS$_2$ nanosheet@TiO$_2$ nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12:1527.
22. Ghosh A, Kuli C, Banerjee D, Mandal A (2016) Galvanic synthesis of Cu$_{2-x}$Se thin films and their photocatalytic and thermoelectric properties. Appl Surf Sci 369:525
23. Su JZ, Guo LJ, Bo N, Grimes CA (2011) Nanostructured WO$_3$/BiVO$_4$ heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928
24. Booshehri AY, Goh SC-K, Hong JD, Jiang RR, Xu R (2014) Effect of depositing different sacrificial reagent solutions. Appl Catal A 350:111
25. Ke D, Peng T, Ma L, Cai P, Jiang P (2008) Photocatalytic water splitting for photovoltaic and photoelectrochemical activities of p-type copper(I) selenide nanocrystals in hot coordinating solvents. J Am Chem Soc 130:8912
26. Zheng XW, Hu QT (2009) Facile synthesis and phase control of copper chalcogenides with different morphologies. Appl Phys A Mater Sci Process 94:805
27. Booshehri AY, Goh SC-K, Hong JD, Jiang RR, Xu R (2014) Effect of depositing different sacrificial reagent solutions. Appl Catal A 350:111
28. Zheng XW, Hu QT (2009) Facile synthesis and phase control of copper chalcogenides with different morphologies. Appl Phys A Mater Sci Process 94:805
29. Ke D, Peng T, Ma L, Cai P, Jiang P (2008) Photocatalytic water splitting for O$_2$ production under visible light irradiation on BiVO$_4$ nanoparticles in different sacrificial reagent solutions. Appl Catal A 350:111
30. Zhong WW, Shen SJ, Feng SS, Lin ZP, Wang ZP, Fang BZ (2018) Facile fabrication of alveolate Cu$_{2-x}$Se microsheets as a new visible-light photocatalyst for decolorization of rhodamine B. CrysEngComm 20:2785
31. Zhang J, Zhao K, Xiao XX, Zhang LZ (2012) Synthesis and facet-dependent photocactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134:4474
32. Lin S, Bai X, Wang H, Wang H, Song J, Huang K, Wang C, Wang N, Li B, Lei M, Wu H (2017) Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows. Adv Mater 29:1703238
29. Zhang KF, Liu YX, Deng JG, Xie SH, Zhao XT, Yang J, Han Z, Dai HX (2018) Co-Pd/BiVO₄: high-performance photocatalysts for the degradation of phenol under visible light irradiation. Appl Catal B Environ 224:350
30. Guo DY, Shi HZ, Qian YP, Lv M, Li PG, Su YL, Liu Q, Chen K, Wang SL, Cui C, Li CR, Tang WH (2017) Fabrication of β-Ga₂O₃/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond Sci Technol 32:03LT01
31. Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W (2017) Zero-power-consumption solar-blind photodetector based on β-Ga₂O₃/NSTO heterojunction. ACS Appl Mater Interfaces 9:1619–1628
32. Shenasa M, Sainkar S, Lichtman D (1986) XPS study of some selected selenium compounds. J Electron Spectrosc Relat Phenom 40:329
33. Silvester EJ, Grieser F, Sexton BA, Healy TW (1991) Spectroscopic studies on copper sulfide sols. Langmuir 7:2917
34. Jiang ZY, Liu YY, Jing T, Huang BB, Zhang XY, Qin XY, Dai Y, Whangbo M-H (2016) Enhancing the photocatalytic activity of BiVO₄ for oxygen evolution by Ce doping: Ce⁴⁺ ions as hole traps. J Phys Chem C 120:2058
35. Huang QW, Tian SQ, Zeng DW, Wang XX, Song WL, Li YY, Xiao W, Xie CS (2013) Enhanced photocatalytic activity of chemically bonded TiO₂/graphene composites based on the effective interfacial charge transfer through the C-Ti bond. ACS Catal 3:1477
36. Fu J, Xu Q, Lou J, Jiang C, Yu J (2018) Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl Catal B Environ 243:556