Observational Study

Association between periodontitis and bipolar disorder

A nationwide cohort study

Kuang-Hsi Chang, PhDa,b,c, Yi-Chao Hsu, PhDd, Ing-Ming Chiu, PhDe, Lih-Chyang Chen, PhDf, Chih-Chao Hsu, MDg, Chang-Yin Lee, PhDh,i,j, Hueng-Chuen Fan, PhDk,l, Hsuan-Ju Chen, MScm, Ruey-Hwang Chou, PhDn.o.p,q,r,s,

Abstract

Whether periodontitis is a risk factor for developing bipolar disorders (BD) has not been investigated. We aimed to determine whether periodontitis is associated with the subsequent development of BD and examine the risk factors for BD among patients with periodontitis.

Using ambulatory and inpatient claims data from the National Health Insurance Research Database (NHIRD), we identified 12,337 patients who were aged at least 20 years and newly diagnosed with periodontitis between 2000 and 2004. The date of the first claim with a periodontitis diagnosis was set as the index date. For each patient with periodontitis, 4 subjects without a history of periodontitis were randomly selected from the NHIRD and frequency-matched with the patients with periodontitis according to sex, age (in 5-year bands), and index year.

The periodontitis group had a mean age of 44.0 ± 13.7 years and slight predominance of men (51.3%). Compared with the subjects without periodontitis, the patients with periodontitis had higher prevalence of diabetes mellitus, hyperlipidemia, hypertension, ischemic heart disease, stroke, head injury, major depressive disorder, chronic obstructive pulmonary disease (COPD), and asthma (\(P < .001\)). The incidence rate of BD was higher in the periodontitis group than in the non-periodontitis group (2.74 vs 1.46 per 1000 person-year), with an adjusted hazard ratio of 1.82 (95% confidence interval=1.59–2.08) after adjustment for sex, age, and comorbidities.

Editor: Wen-Wei Sung.

K-H C and Y-C H have contributed equally to this work.

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and materials: The datasets during and/or analyses during the current study are available from the corresponding author upon reasonable request.

The authors declare that they have no competing financial interests.

Funding from the Ministry of Science and Technology (MOST) of Taiwan Government (MOST 107-2314-B-715 -004 -MY3, MOST103-2314-B-715-001-MY2, MOST104-2314-B-715 -003 -MY3, MOST 105-2320-B-039-059-MY3, MOST 106-2320-B-715-013), intramural research grants from Mackay Medical College (1052807, 1051823, 1061009, 1071812, 1081303) and from China Medical University (CMU108-MF-49). This study is supported in part by Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (MOHW105-TDU-B-111-1331019), China Medical University Hospital, Drug Development Center, China Medical University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Academia Sinica Taiwan Biobank Stroke Biosignature Project (BM10501010037), NRPB Stroke Clinical Trial Consortium (MOST 104-2325-B-039 -005), Tseng-Lien Lin Foundation, Taichung, Taiwan, Taiwan Brain Disease Foundation, Taipei, Taiwan, and Katsuzo and Kiyo Aoshima Memorial Funds, Japan.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The dataset is owned by the Taiwan National Health Research Institutes (NHRI). Requests for the data set may be sent an e-mail to the NHRI at nhird@nhri.org.tw or call at +886-037-246166 ext. 33603 for immediate service. Office Hour: Monday-Friday 8:00-17:30 (UTC+8).

The authors have no conflicts of interest to disclose.

The data that support the findings of this study are available from a third party, but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are available from the authors upon reasonable request and with permission of the third party.

* Department of Medical Research, a Graduate Institute of Biomedical Sciences, China Medical University, b General Education Center, c Institute of Biomedical Sciences, d Institute of Cellular and System Medicine, National Health Research Institutes, e Department of Medicine, Mackay Medical College, New Taipei City, f Division of Psychiatry, Taitung Branch, Taipei Veterans General Hospital, Taitung, g College of Medicine, The School of Chinese Medicine for Post Baccalaureate, I-Shou University (Yancho Campus), h Department of Chinese Medicine, E-DA Hospital, i Department of Chinese Medicine, E-DA Cancer Hospital, Kaohsiung, j Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, k Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, l Management Office for Health Data, m Center for Molecular Medicine, China Medical University Hospital, n Department of Biotechnology, Asia University, Taichung, Taiwan.

Correspondence: Ruey-Hwang Chou, Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shin Road, North District, Taichung 404, Taiwan (e-mail: rchou@mail.cmu.edu.tw).

Copyright © 2020 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and build upon the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Chang KH, Hsu YC, Chiu IM, Chen LC, Hsu CC, Lee CY, Fan HC, Chen HJ, Chou RH. Association between periodontitis and bipolar disorder: A nationwide cohort study. Medicine 2020;99(31):e21423.

Received: 6 January 2020 / Received in final form: 7 June 2020 / Accepted: 24 June 2020

http://dx.doi.org/10.1097/MD.00000000000021423
1. Introduction

Periodontitis is initiated by bacterial plaque biofilm and can be caused by gingivitis affecting soft tissues near the teeth, resulting in the destruction of the tissue supporting the teeth. Periodontal tissue respond to bacterial invasion by mobilizing defense cells and releasing inflammatory cytokines, such as interleukins (ILs), tumor necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2), which may cause tissue destruction by stimulating the production of enzymes such as matrix metalloproteinase. Evidence is mounting for possible associations between periodontitis and other diseases such as depression, diabetes mellitus, atherosclerotic cardiovascular disease, and rheumatoid arthritis.

Bipolar disorder (BD) is a disabling, recurrent mental illness that varies widely in severity. The onset of BD is typically observed in late childhood or early adolescence. Patients with BD have higher rates of comorbidities of psychiatric disorders and other medical conditions, which might entail an increased medical burden and multiple physical abnormalities. Early detection and treatment of BD can improve patient outcomes. One study suggested that patients with BD are at high risk of dental diseases. When patients are in depressive episodes, they may pay less attention to oral hygiene, leading to an increase in dental diseases. When patients are in depressive episodes, they may pay less attention to oral hygiene, leading to an increase in dental diseases.

Although the association between periodontitis and psychiatric conditions, such as major depressive disorders and cognitive decline, remains controversial, periodontitis has been suggested as a risk factor for dementia. Whether periodontitis is a risk factor for developing subsequent BD has not been investigated. In this study, we hypothesized that periodontitis increases the risk of BD. To test our hypothesis, we conducted a nationwide population-based study to investigate the incidence and risks of BD among patients with or without periodontitis.

2. Patients and methods

2.1. Data source

The Taiwan National Health Insurance (NHI) program was implemented in 1995. At the end of 2014, the program was providing health care to approximately 99% of the Taiwan population (23.75 million people). The NHI is a mandatory health insurance program that offers comprehensive medical care coverage to all residents of Taiwan. The National Health Insurance Research Database (NHIRD) is managed and maintained by the National Health Research Institutes (NHRI) according to the directives of the National Health Insurance Administration. Our study used the Longitudinal Health Insurance Database (LHID2000), which contains the data of 1 million enrollees sampled from the medical claim records of the NHI from 1996 to 2011. The LHID2000 contains comprehensive outpatient and inpatient data, including demographic, clinical visit, and prescription information, and diagnostic codes based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). To ensure privacy protection, the NHRI encrypts and converts the identification numbers of all NHIRD records before releasing them for research. Our study was exempted from review by the Institutional Research Ethics Committee of China Medical University (CMU-REC-101-012), Taiwan.

2.2. Study population

Using the ambulatory and inpatient claims data sets, the inclusion criteria for this study of patients with periodontitis included being 20 years old or older and newly diagnosed with periodontitis (ICD-9-CM 523.4x and 523.5x) between 2000 and 2004. The date of the first claim with a periodontitis diagnosis was considered as the index date. For each patient with periodontitis, subjects with no history of periodontitis (ICD-9-CM 523.xx) were randomly selected from the NHIRD and frequency-matched according to sex, age (in 5-year bands), and index year. The definition of BD patients was based on the following criteria: patients with a diagnosis of BD (ICD-9-CM code 296.xx) at least 3 times before the index date. However, patients who developed BD within 1 month after the index date were excluded. Finally, the periodontitis and non-periodontitis groups comprised of 12,337 and 49,348 patients, respectively. The ICD-9 code 523.4 includes the symptoms of chronic periodontitis, including chronic pericoronitis, chronic periodontitis (no otherwise specific, complex, and simplex), but excludes chronic apical periodontitis (ICD 9 code: 522.6). ICD-9 code 523.5 refers to the type of periodontitis with diffuse atrophy of the alveolar bone. Demographic data included sex and age (20–34 years, 35–49 years, 50–64 years, and ≥65 years). We also recorded claims data on comorbidities before the index date on DM (ICD-9-CM 250.xx), hyperlipidemia (ICD-9-CM 272.xx), hypertension (ICD-9-CM 401.xx–405.xx), ischemic heart disease (IHD, ICD-9-CM 410.xx–414.xx), stroke (ICD-9-CM 430.xx–438.xx), head injury (ICD-9-CM 850.xx–854.xx and 959.01), alcohol abuse and dependence (ICD-9-CM 303.xx, 305.0x, and V11.3), major depressive disorder (ICD-9-CM 296.2x, 296.3x, 311.xx, 316.xx, 318.81-318.89).
300.4x, and 309.0x). Smoking status and alcohol consumption were not available in NHIRD. Thus, we performed the multivariate analysis by adjusting for tobacco related diseases (including tobacco dependence [ICD-9-CM codes 305.1], chronic obstructive pulmonary disease [ICD-9-CM codes 490–492, 494, and 496], and asthma [ICD-9-CM code 493]).

The primary outcome was a diagnosis of BD (ICD-9-CM code 296.xx), which was determined by linking the NHIRD ambulatory and inpatient data. All study participants were observed from the index date to BD diagnosis, withdrawal from the NHI program, or the end of 2011.

2.3. Statistical analysis

Summary statistics are expressed as frequencies and percentages for categorical data and means and standard deviations (SDs) for continuous variables. The Pearson chi-square test and Student t test were used to compare categorical and continuous variables, respectively, between the patients with and without periodontitis. The sex, age-, and comorbidity-specific incidence rates of BD were measured for both groups. The Kaplan–Meier method was used to depict the cumulative incidence of BD for the groups. The log-rank test was used to test the difference between the curves. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for determining whether periodontitis is a risk factor for the development of BD, and the models were adjusted for sex, age, DM, hyperlipidemia, hypertension, IHD, stroke, head injury, alcohol abuse/dependence, and major depressive disorder. We also performed sex-, age-, and comorbidity-stratified analysis to investigate the association between periodontitis and the risk of BD. All the data processing and statistical analyses were performed using SAS Version 9.3 (SAS Institute, Inc., Cary, NC). A 2-sided P value of <.05 was considered statistically significant.

3. Results

We identified 12,337 patients with periodontitis from 2000 to 2004 as the periodontitis group and frequency-matched them with 49,348 subjects without periodontitis according to sex, age, and year of periodontitis diagnosis. Table 1 contains the demographics and comorbidities of the patients with and without periodontitis. The mean age of the periodontitis group was 44.0 years (SD = 13.7 years), with a slight predominance of men (51.3%). The patients with periodontitis had higher prevalence of DM, hyperlipidemia, hypertension, IHD, stroke, head injury, and major depressive disorder, chronic obstructive pulmonary disease (COPD), and asthma than the subjects without periodontitis (all P < .001).

Figure 1 showed the results of the log-rank test and the cumulative incidences of BD. The Kaplan–Meier analysis was used to determine the risk of BD during follow-up in both groups. The cumulative incidence of BD was significantly higher in the periodontitis group than in the non-periodontitis group (P < .001).

During the average follow-up of 8.79 years, 339 (2.76%) patients in the periodontitis group and 611 (1.46%) patients in the non-periodontitis group developed BD. The incidence rate of BD was higher in the periodontitis group than in the non-periodontitis group (2.76 vs 1.46 per 1000 person-year), with an adjusted HR (aHR) of 1.82 (95% CI = 1.59–2.08) after adjustment for sex, age, and comorbidities (Table 2). In a multivariate Cox regression analysis, men exhibited a lower risk of BD than women did (aHR = 0.59, 95% CI = 0.52–0.68). Compared with the patients without counterpart comorbidities, higher risks of BD were observed in those with comorbidities of hyperlipidemia (aHR = 1.42, 95% CI = 1.16–1.74), hypertension (aHR = 1.34, 95% CI = 1.11–1.62), IHD (aHR = 1.52, 95% CI = 1.22–1.89), head injury (aHR = 1.85, 95% CI = 1.23–2.79), alcohol abuse or dependence (aHR = 9.43, 95% CI = 4.66–19.1), major depressive disorder (aHR = 7.42, 95% CI = 5.86–9.41), and COPD (aHR = 1.36, 95% CI = 1.04–1.77).

Stratified by sex, the higher risks of BD in patients with periodontitis were exhibited by both women (aHR = 1.68, 95% CI = 1.42–2.00) and men (aHR = 1.87, 95% CI = 1.51–2.32) compared with the subjects without periodontitis. Stratified by age group, the patients with periodontitis had a significantly
higher risk of BD compared with the subjects without periodontitis in all age categories. The aHRs of BD were 1.76 (95% CI = 1.26–2.45) for those aged 20 to 29 years, 1.80 (95% CI = 1.32–2.47) for those aged 30 to 39 years, 1.74 (95% CI = 1.33–2.27) for those aged 40 to 49 years, and 1.68 (95% CI = 1.35–2.08) for those aged 50 years or older. Regardless of the subjects’ comorbidity status, patients with periodontitis had a higher risk of BD than subjects without periodontitis (aHR = 1.80, 95% CI = 1.50–2.16 for those without comorbidity and aHR = 1.78, 95% CI = 1.47–2.17 for those with comorbidity) (Table 3).

4. Discussion
Periodontitis is a highly prevalent oral disease initiated by a bacterial plaque biofilm[1] around the teeth resulting in chronic inflammation in adjacent soft tissue. In routine dental procedures, even tooth brushing, these bacteria and their components, such as endotoxin, can be easily disseminated into the systemic circulation through minor or major gingival injuries. Notably, in immunocompromised people or patients with preexisting pathologic oral conditions, bacteremia may lead to the bacterial infection of distant organs, which may elicit immunological
Table 3
Incidence rates and hazard ratios of bipolar disorder according to periodontitis status and stratified by sex, age, and comorbidities.

Characteristics	No BP no.	PY	IR	Yes BP no.	PY	IR	Crude HR (95% CI)	Adjusted HR (95% CI)
Sex								
Women	385	207896	1.85	203	50653	3.39	1.84 (1.55–2.18)	1.68 (1.42–2.00)
Men	226	212275	1.06	136	62788	2.17	2.06 (1.66–2.56)	1.87 (1.51–2.32)
Age, y								
20–29	96	70086	1.37	56	22620	2.48	1.84 (1.33–2.56)	1.76 (1.26–2.43)
30–39	110	89439	1.23	63	26467	2.38	1.93 (1.41–2.63)	1.80 (1.32–2.47)
40–49	164	129226	1.27	85	35562	2.39	1.89 (1.45–2.46)	1.74 (1.33–2.27)
≥50	261	13171	1.84	135	37905	3.55	1.96 (1.58–2.42)	1.68 (1.35–2.08)
Comorbid status								
No	362	325020	1.11	173	85537	2.02	1.81 (1.51–2.17)	1.80 (1.50–2.16)
Yes	249	94841	2.63	166	37104	4.47	1.74 (1.43–2.12)	1.78 (1.47–2.17)

BP no. = number of patients with BP, CI = confidence interval, HR = hazard ratio, IR = incidence rate, per 1000 = person-years, PY = person-years.

1 Patients with a comorbidity of diabetes mellitus, hyperlipidemia, hyper tension, ischemic heart disease, stroke, heart failure, alcohol abuse or dependence, major depressive disorder, COPD, asthma, and tobacco dependence were enrolled in the comorbidity group.

2 Mutually adjusted for sex, age (continuous), and comorbidity in Cox proportional hazards regression.

responses. Oral bacteria and endotoxins have also been associated with the occurrence of lung infection, sepsis, liver disease, and infective endocarditis,[33] but not with BD.

Our results revealed that the patients with periodontitis were at a significantly increased risk of BD. According to our analysis of the risk factors for BD in patients with periodontitis, we suggested that a possible mechanism is the interaction between chronic inflammation and the hypothalamic–pituitary–adrenal (HPA) axis. The key structures comprising the HPA axis are the paraventricular nucleus (PVN) of the hypothalamus, anterior lobe of the pituitary gland, and adrenal gland.[27,28] In addition, recent studies have demonstrated that chronic inflammation is associated with BD.[29–32] The immune reaction and proinflammatory cytokines, such as ILs and TNF-α, could induce neuroinflammation.[13] Lipopolysaccharide, a membrane component of Gram-negative bacteria, is an endotoxin and has been shown to stimulate microglia to produce numerous proinflammatory cytokines, such as TNF-α, interleukin-1 (IL-1), and interleukin-6 (IL-6).[34] Likewise, inflammatory cytokines, such as TNF-α, IL-1, IL-6, and IL-17 have been shown to be increased in patients with chronic periodontitis. Elevated secretion of these cytokines contributes to acute and chronic inflammation and tissue injury, leading to increased risk of systemic diseases such as cardiovascular diseases, DM, cancer, and chronic respiratory diseases.[35–37] Interestingly, the serum levels of anti-inflammatory cytokines, IL-4, and IL-10 were reduced in patients with chronic periodontitis.[37,38] Therefore, periodontitis may result in a local infection and thereafter induce inflammatory cascades, thus increasing the susceptibility to other severe pathological conditions such as cardiovascular disease[35–39] and DM.[41] Notably, it has been shown that proinflammatory cytokines, such as IL-1β, can be detected in PVN. The upregulation of IL-6 and COX-2 has also been detected in the adrenal glands. These findings provide novel insight into the relationship between proinflammatory cytokines within key structures comprising the HPA axis.[27] Furthermore, chronic inflammation may disturb the HPA axis and induce hypercortisolism and neuroinflammation through a proinflammatory cascade.[27,42,43] In addition to inducing neuroinflammation, proinflammatory cytokines could also induce indoleamine 2,3-dioxxygenase, thus reducing the availability of tryptophan and disturbing serotonin synthesis.[14] Immune-inflammatory pathways and cytokine changes in BD have been linked to changes in oxidative stress, nitrosative stress, and tryptophan catabolites.[14] As a result, the risk of BD was increased among patients with periodontitis.

It has been reported that periodontitis is a risk factor of dementia. That is not a concrete causality research, instead that is an association study. Two research designs have been used on the similar topics, namely case-control study[10] and retrospective cohort study.[45] For the case-control study, they enrolled the cases with (experimental group) or without (control group) cognitive impairment or dementia, and analyzed the association with periodontitis to evaluate its risk to dementia.[10] For the retrospective cohort study, they enrolled the patients diagnosed with periodontitis during 2003 to 2004, followed up for overall dementia, Alzheimer disease, and vascular dementia until 2015, and retrospectively analyzed the adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) of dementia according to chronic periodontitis.[13] The experimental design of our current study was similar to the later one as a retrospective cohort study. Periodontitis represented a source of systemic inflammation,[46] and chronic inflammation is associated with dementia.[9,10,47] as well as BD,[12,32] suggesting that the mechanism of periodontitis increasing the risk to dementia and BD might share similar factors, at least in part, including inflammation.

In addition to inflammation, smoking is also a common risk factor for both periodontitis and BD. A previous study demonstrated that smoking and oral pain are factors related to the prevalence and risk of periodontitis among adults with or without DM.[48] Similarly, smoking is about 2 to 3 times common in adults with BD compared with the general population.[49] The associations may be related to lower levels of serotonin, which contributes to brain serotonergic function[50,51] in smokers. The associations between smoke-related diseases such as COPD, asthma, and tobacco dependence with periodontitis and BD were also evaluated in the current study. The results showed that the patients with periodontitis had higher prevalence of COPD and asthma compared with those without periodontitis (Table 1), and the patients with BD had higher risk of COPD (aHR 1.36, 95%
This population-based study specifically examined periodontitis as a risk factor for BD by using matched cohorts. The major finding of our study is that the incidence of non-periodontitis group was lower than the non-periodontitis group, the prevalence of HT and IHD in the periodontitis group was still higher. This might be due to the shorter follow-up period in the periodontitis group. Both HT and IHD usually occur before the onset of stroke. Because the periodontitis patients had higher risk of comorbidities, the non-periodontitis group was more active. This resulted in higher risk of head injury caused by vehicle accidents. Moreover, the patients with periodontitis might be more likely to stop drinking alcohol which may have contributed to the slightly higher (but not statistically significant) prevalence of alcohol abuse in the non-periodontitis group.

5. Conclusion

We propose that patients with BD exhibit a significantly increased risk of developing BD. Accordingly, we suggest that, following the diagnosis of BD, practitioners could notice the occurrence of the symptoms of BD, and associated prevention. Additional prospective studies investigating the relationship between periodontitis and BD are warranted.

Acknowledgments

The authors thank the grants from the Ministry of Science and Technology (MOST) of Taiwan Government (MOST 107-2314-B-715-004-MY3, MOST103-2314-B-715-001-MY2, MOST104-2314-B-715-003-MY3, MOST 105-2320-B-039-059-MY3, MOST 108-2320-B-039-013), intramural research grants from Mackay Medical College (105SB07, 1051B23, 1061B09, 1071B12, 1081E03), and from China Medical University (CMU108-MF-49). This study is supported in part by Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (MOHW105-TDU-B-212-133019), China Medical University Hospital, Drug Development Center, China Medical University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Academia Sinica Taiwan Biobank Stroke Biosignature Project (BM10501010037), NRBP Stroke Clinical Trial Consortium (MOST 104-2325-B-039-005), Tseng-Lien Lin Foundation, Taichung, Taiwan, Taiwan Brain Disease Foundation, Taipei, Taiwan, and Katsuzo and Kiyo Aoshima Memorial Funds, Japan.

Author contributions

Collection and assembly of data: Kuang-Hsi Chang, Yi-Chao Hsu, Ing-Ming Chiu, Lih-Chyang Chen, Chih-Chao Hu, Chang-Yin Lee, Hueng-Chuen Fan, Hsuan-Ju Chen, Ruey-Hwang Chou.

Conception/Design: Yi-Chao Hsu, Ruey-Hwang Chou.

Data analysis and interpretation: Kuang-Hsi Chang, Yi-Chao Hsu, Ing-Ming Chiu, Lih-Chyang Chen, Chih-Chao Hu, Chang-Yin Lee, Hueng-Chuen Fan, Hsuan-Ju Chen, Ruey-Hwang Chou.

Final approval of manuscript: Kuang-Hsi Chang, Yi-Chao Hsu, Ing-Ming Chiu, Lih-Chyang Chen, Chih-Chao Hu, Chang-
References

[1] Hirschfeld J, Kawai T. Oral inflammation and bacteremia: implications for chronic and acute systemic diseases involving major organs. Cardiovasc Hematol Disord Drug Targets 2015;15:70–84.

[2] Xiong X, Buekens P, Vastardis S, et al. Periodontal disease and gestational diabetes mellitus. Am J Obstet Gynecol 2006;195:1086–9.

[3] Armingohar Z, Jorgensen JJ, Kristoffersen AK, et al. Polymorphisms in the interleukin-1 gene locus and chronic periodontitis in patients with atherosclerotic and aortic aneurysmal vascular diseases. Scand J Immunol 2014;79:338–45.

[4] Gupta A, Govila V, Saini A. Proteomics - the research frontier in periodontics. J Oral Biol Craniofac Res 2015;5:46–52.

[5] Chen XT, Tan JY, Lei LH, et al. Cytokine levels in plasma and gingival crevicular fluid in chronic periodontitis. Am J Dent 2015;28:9–12.

[6] Kato Y, Hagiwara M, Ishihara Y, et al. TNF-alpha augmented Porphyromonas gingivalis invasion in human gingival epithelial cells through Rab5 and ICAM-1. BMC Microbiol 2014;14:229.

[7] Liao CH, Fei W, Shen ZH, et al. Expression and distribution of TNF-alpha and PGE2 of periodontal tissues in rat periodontitis model. Asian Pac J Trop Med 2014;7:412–6.

[8] Deo V, Bhongade ML. Pathogenesis of periodontitis: role of cytokines in host response. Dent Today 2010;29:60–2. 64–66; quiz 68–9.

[9] Gaur S, Agnico R. Alzheimer’s disease and chronic periodontitis: is there an association? Geriatr Gerontol Int 2015;15:391–404.

[10] Gil-Montoya JA, Sanchez-Lara I, Carnerno-Pardo C, et al. Is periodontitis a risk factor for cognitive impairment and dementia? A case-control study. J Periodontol 2015;86:244–53.

[11] Hsu CC, Hsu YC, Chen HJ, et al. Association of periodontitis and subsequent depression: a nationwide population-based study. Medicine (Baltimore) 2015;94:e2347.

[12] Zhou X, Zhang W, Liu X, et al. Interrelationship between diabetes and periodontitis: role of hyperlipidemia. Arch Oral Biol 2015;60:667–74.

[13] Kholy KE, Genco RJ, Van Dyke TE. Oral infections and cardiovascular disease. Trends Endocrinol Metab 2015;26:315–21.

[14] Saifi MA, Furtado MV, Polanczyk CA, et al. Relationship between vascular endothelium and periodontal disease in atherosclerotic lesions: review article. World J Cardiol 2015;7:26–30.

[15] Andrushkov O, Steiner I, Liu S, et al. Differential effects of Porphyromonas gingivalis lipopolysaccharide and TLR2 agonist Pam3CSK4 on the adhesion molecules expression in endothelial cells. Odontology 2015;103:19–26.

[16] Hashimoto M, Yamazaki T, Hamaguchi M, et al. Periodontitis and porphyromonas gingivalis in preclinical stage of arthritis patients. PLoS One 2015;10:e0122121.

[17] Kobayashi T, Yoshie H. Host responses in the link between periodontitis and rheumatoid arthritis. Curr Oral Health Rep 2015;2:1–8.

[18] Sloos I, Cojocaru M, Fota L, et al. Significance of circulating and crevicular matrix metalloproteinase-9 in rheumatoid arthritis-chronic periodontitis association. J Immunol Res 2015;2015:218060.

[19] Price AL, Marzani-Nissen GR. Bipolar disorders: a review. Am Fam Physician 2012;85:483–93.

[20] Maina G, Bechon E, Rigardetto S, et al. Porphyromonas gingivalis lipopolysaccharide and TLR2 agonist Pam3CSK4 on the activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol 2015;18:pyv021.

[21] Frey BN, Andreazza AC, Houenou J, et al. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z Psychiatry 2013;47:321–32.

[22] Hope S, Diset I, Agartz I, et al. Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res 2011;45:1608–16.

[23] Hsu CC, Chen SC, Liu CJ, et al. Rheumatoid arthritis and the risk of bipolar disorder: a nationwide population-based study. PLoS One 2014;9:e107512.

[24] Singhall G, Jaelne EJ, Corrigan F, et al. Inflammases in neuro-immunology and changes in brain function: a focused review. Front Neurosci 2014;8:315.

[25] Steinert JR, Swars S, Bishop C, et al. Lipopolysaccharide is a frequent and significant contaminant in microglia-activating factors. Glia 2008;56:16–26.

[26] Cardoso EM, Reis C, Manzanares-Cespedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad Med 2018;130:98–104.

[27] Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 2010;89:1549–53.

[28] Passoja A, Pujol A, Kruuntula M, et al. Serum levels of interleukin-10 and tumour necrosis factor-alpha in chronic periodontitis. J Clin Periodontol 2010;37:881–7.

[29] Bublin K, Hultin M, Nordero Y, et al. Risk factors for atherosclerosis in cases with severe periodontitis. J Clin Periodontol 2009;36:541–9.

[30] El Fadl KA, Rady N, El Rattran M, et al. Periodontitis and cardiovascular disease: floss and reduce a potential risk factor for CVD. Angiology 2011;62:62–7.

[31] Jetha A, Holmes H. Periodontitis and cardiovascular disease. SADJ 2013;68:6062–63.

[32] Preshaw PM, Alba AL, Herrera D, et al. Periodontitis and diabetes: a two-way relationship. Diabetologia 2012;55:21–31.

[33] Garcia-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008;32:1136–51.

[34] Choi DC, Furay AR, Evanson NK, et al. The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic-pituitary-adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology 2008;33:659–69.

[35] Anderson G, Maes M. Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr Psychiatry Rep 2015;17:8.

[36] Chou S, Kim K, Chang J, et al. Association of chronic periodontitis on Alzheimer’s disease or vascular dementia. J Am Geriatr Soc 2019;67:1234–9.

[37] Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and changes in brain function: a focused review. Front Neurosci 2014;8:315.

[38] García-Bueno B, Caso JR, Leza JC. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 2008;32:1136–51.

[39] Choi DC, Furay AR, Evanson NK, et al. The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic-pituitary-adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology 2008;33:659–69.

[40] Anderson G, Maes M. Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr Psychiatry Rep 2015;17:8.

[41] Chou S, Kim K, Chang J, et al. Association of chronic periodontitis on Alzheimer’s disease or vascular dementia. J Am Geriatr Soc 2019;67:1234–9.

[42] Kamer AR, Craig RG, Dasanayake AP, et al. Inflammation and Alzheimer’s disease: possible role of periodontal diseases. Alzheimers Dement 2008;4:242–50.

[43] Daly B, Thompsett A, Sharping J, et al. Evidence summary: the relationship between oral health and dementia. Br Dent J 2018;223:846–53.

[44] Hong M, Kim HY, Seek H, et al. Prevalence and risk factors of periodontitis among adults with or without diabetes mellitus. Korean J Intern Med 2016;31:910–9.

[45] Heffner JL, Strawn JR, DelBello MP, et al. The co-occurrence of cigarette smoking and bipolar disorder: phenomenology and treatment considerations. Bipolar Disord 2011;13:439–53.
[50] Malone KM, Waternaux C, Haas GL, et al. Cigarette smoking, suicidal behavior, and serotonin function in major psychiatric disorders. Am J Psychiatry 2003;160:773–9.

[51] Thomson D, Berk M, Dodd S, et al. Tobacco use in bipolar disorder. Clin Psychopharmacol Neurosci 2015;13:1–1.

[52] Bauer M, Glenn T, Pilhatsch M, et al. Gender differences in thyroid system function: relevance to bipolar disorder and its treatment. Bipolar Disord 2014;16:58–71.

[53] Bhumika S, Darras VM. Role of thyroid hormones in different aspects of nervous system regeneration in vertebrates. Gen Comp Endocrinol 2014;203:86–94.

[54] Zahid TM, Wang BY, Cohen RE. The effects of thyroid hormone abnormalities on periodontal disease status. J Int Acad Periodontol 2011;13:80–5.

[55] Marangoni C, De Chiara L, Faedda GL. Bipolar disorder and ADHD: comorbidity and diagnostic distinctions. Curr Psychiatry Rep 2015;17:604.

[56] Douglas LN, McGuire AB, Manzardo AM, et al. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder. Gene 2016;586:136–47.

[57] Hofer D, Thoma MV, Schmidlin PR, et al. Pre-treatment anxiety in a dental hygiene recall population: a cross-sectional pilot study. BMC Oral Health 2016;16:43.

[58] Rayman S, Dincer E, Almas K. Managing dental fear and anxiety. N Y State Dent J 2013;79:25–9.

[59] Armfield JM, Heaton LJ. Management of fear and anxiety in the dental clinic: a review. Aust Dent J 2013;58:390–407. quiz 531.

[60] Cosci F, Fava GA, Sonino N. Mood and anxiety disorders as early manifestations of medical illness: a systematic review. Psychother Psychosom 2015;84:22–9.