AN APPLICATION OF LATTICE POINTS COUNTING TO SHRINKING TARGET PROBLEMS

Dmitry Kleinbock* and Xi Zhao
Brandeis University
Waltham MA, 02454, USA

(Communicated by Yitwah Cheung)

Abstract. We apply lattice points counting results to solve a shrinking target problem in the setting of discrete time geodesic flows on hyperbolic manifolds of finite volume.

1. Introduction. Let (X, μ) be a probability space and $T : X \to X$ a measure-preserving transformation. For a sequence of measurable sets $B_n \subset X$, consider the set

$$\limsup_{n} T^{-n} B_n = \cap_{m=1}^{\infty} \cup_{n=m}^{\infty} T^{-n} B_n$$

of points $x \in X$ such that $T^n x \in B_n$ for infinitely many $n \in \mathbb{N}$. The Borel-Cantelli Lemma implies that if $\sum_{n=1}^{\infty} \mu(B_n)$ is finite, then $\mu(\limsup_n T^{-n} B_n) = 0$. The (converse) divergence case requires additional assumptions on the sets B_n. The classical Borel-Cantelli Lemma would imply that the measure of $\limsup_n T^{-n} B_n$ is full if the sets $T^{-n} B_n$ are pairwise independent, an assumption which is hard to establish for deterministic dynamical systems.

In many cases however a milder version of independence can be verified, still implying the full measure of the limsup set. Such results are usually referred to as dynamical Borel-Cantelli Lemmas. In many applications the family of sets $\{B_n\}$ is nested, and thus can be viewed as a ‘shrinking target’, hence the terminology ‘Shrinking Target Problems’. For example, if $\{B_n\}$ are shrinking balls centered at a point $p \in X$, a dynamical Borel-Cantelli Lemma can be thought of as a quantitative way to express density of trajectories of a generic point of X at this fixed point p. Starting from the work of Phillip [15], there have been many results of this flavor. For example Sullivan [17] proved a Borel-Cantelli type theorem for cusp neighborhoods in hyperbolic manifolds of finite volume (here $p = \infty$), and the first named author with Margulis [11] extended the result of Sullivan to non-compact Riemannian symmetric spaces. See also [2, 5, 6, 8, 9] for more references, and [1] for a nice survey of the area.

One particular example of a shrinking target property can be found in a paper by Maucourant [13]. He considered nested balls in hyperbolic manifolds (quotients of hyperbolic manifolds).
the n-dimensional hyperbolic space \mathbb{H}^n) of finite volume, and proved the following theorem:

Theorem 1.1. Let V be a finite volume hyperbolic manifold of real dimension n, T^1V the unit tangent bundle of V, $\pi: T^1V \to V$ the canonical projection, $(\phi_t)_{t \in \mathbb{R}}$ the geodesic flow on T^1V, μ the Liouville measure on T^1V, and d the Riemannian distance on V. Let $(B_t)_{t \geq 0}$ be a decreasing family of closed balls in V (with respect to the metric d) of radius $(r_t)_t \geq 0$. Then for μ-almost every v in T^1V, the set $\{t \geq 0 : \pi(\phi^t v) \in B_t\}$ is bounded provided

$$\int_0^\infty r_t^{n-1} dt$$

(1.1)

converges, and is unbounded if (1.1) diverges.

Note that Maucourant’s theorem holds for the continuous-time geodesic flow on T^1V. Now suppose that one replaces the continuous family $(B_t)_{t \geq 0}$ by a sequence $(B_t)_{t \in \mathbb{N}}$, and instead of the continuous geodesic flow considers the h-step discrete geodesic flow $(\phi_{ht})_{t \in \mathbb{N}}$ for fixed $h \in \mathbb{R}_+$. The goal of this work is to provide additional argument needed to prove the Borel-Cantelli property, assuming some restrictions on the sequence (B_t).

One of the ingredients in Maucourant’s proof is a counting result for the number of lattice points inside balls in \mathbb{H}^n. To address a discrete time analogue of Theorem 1.1 we use more refined lattice point counting results, namely an error term estimate for the number of lattice points in large balls in \mathbb{H}^n.

We use the following notation throughout the paper: for two non-negative functions f and g, the notation $f(x) \ll g(x)$ means $f(x) \leq Cg(x)$ where $C > 0$ is a constant independent of x.

Here is a special case of our main result:

Theorem 1.2. Let V be as in Theorem 1.1, and let $(B_t)_{t \in \mathbb{N}}$ be a decreasing family of closed balls in V centered at $p_0 \in V$ of radius r_t. Fix $h > 0$ and let $(\phi_{ht})_{t \in \mathbb{N}}$ be the h-step discrete geodesic flow. Then for μ-almost every v in T^1V, the set

$$\{t \in \mathbb{N} : \pi(\phi^t v) \in B_t\}$$

(1.2)

is finite provided the sum

$$\sum_{t \in \mathbb{N}} r_t^n$$

(1.3)

converges. Also, if one assumes that (1.3) diverges and, in addition, that

$$\frac{-\ln r_t}{r_t} \ll t \text{ for large enough } t,$$

(1.4)

then for μ-almost every v in T^1V, the set (1.2) is infinite.

That is, in the terminology of [4], the sequence (B_t) is a Borel-Cantelli sequence. Note that the difference in exponents in (1.1) and (1.3) is due to the fact that Theorem 1.1, unlike Theorem 1.2, deals with a continuous time setting.

It is well known that the geodesic flow on T^1V as above has exponential decay of correlations, see e.g. [14, 16]. For systems with exponential mixing similar dynamical Borel-Cantelli Lemmas have been established before. For example, it follows from [9, Theorem 4.1] that the set (1.2) will be infinite provided

$$\mu(B_t) \gg \frac{\ln t}{t}.$$

(1.5)
or, equivalently, \(r_t \gg (\ln t)^{1/n} \). This shows that the restriction (1.4) is weaker than the one coming from [9, Theorem 4.1]. For example, take \(r_t = \frac{C}{t^\alpha} \), where \(\alpha \leq \frac{1}{n} \). Then (1.3) diverges, and one can write

\[
-\ln r_t \leq -\ln \frac{C}{r_t} = \frac{1}{C} (\ln C + \alpha \ln t) t^{\alpha} \ll t
\]

when \(t \) is large enough, therefore (1.4) is satisfied. Note that in the ‘critical exponent’ case \(\alpha = \frac{1}{n} \) condition (1.5) fails to hold, thus the methods of [9] are not powerful enough to treat this case. The same also works for \(r_t = \frac{C}{t^{\alpha/(\ln t)^\beta}} \) where \(0 < \beta \leq 1 \): one has

\[
-\ln r_t \leq -\ln \frac{C}{t^{\alpha/(\ln t)^\beta}} = \frac{1}{C} t^{1/(\ln t)^\beta} \left(\frac{1}{n} \ln t + \beta \ln(\ln t) - \ln C \right) \ll t
\]

for large enough \(t \).

We derive Theorem 1.2 from a more general statement, Theorem 1.3, which involves a technical condition (1.6) weaker than (1.4):

Theorem 1.3. Let \(V \) be as above, and let \((B_t)_{t \in \mathbb{N}} \) and \(h \) be as in Theorem 1.2. Then for \(\mu \)-almost every \(v \in T^1 V \), the set (1.2) is finite provided the sum (1.3) converges. Also there exist \(C_1, C_2 > 0 \) such that if (1.3) diverges and, in addition, that

\[
\sum_{t=1}^s r_t^{n-1} \ll \sum_{t=1}^s r_t^n \quad \text{when } s \text{ is large enough},
\]

(1.6) then for \(\mu \)-almost every \(v \in T^1 V \), the set (1.2) is infinite.

In the next section we will reduce Theorem 1.3 to a certain \(L^2 \) bound, Theorem 2.2, which will be verified in §3, and in §4 we will deduce Theorem 1.2 from Theorem 1.3.

2. **Reduction to Theorem 2.2.** First note that for the divergence case of Theorem 1.3 without loss of generality one can assume that \(r_t \to 0 \) when \(t \to \infty \): indeed, if \((r_t) \) is bounded from below by a positive constant, then the ergodicity of the geodesic flow implies that

\[
\pi(\varphi^{ht}v) \in B_t \text{ infinitely often for } \mu\text{-a.e. } v \in T^1 V.
\]

(2.1)

Furthermore, for a fixed \(R > 0 \) we can assume that \(r_t \leq R \) for all \(t \in \mathbb{N} \). Indeed, if the theorem is proved under that assumption, then applying it to the family \(\{B_t : t \geq t_0 \} \) where \(t_0 \) is such that \(r_t \leq R \) when \(t \geq t_0 \), we still recover condition (2.1). This \(R \) will be fixed later, see (3.4).

Our proof follows Maucourant’s approach in [13]. Let us first introduce some terminology. Let \(F = (f_t)_{t \in \mathbb{N}} \) be a family of measurable functions on a probability space \((X, \mu) \). We call \(F \) decreasing if \(f_s(x) \leq f_t(x) \) for any \(x \in X \) whenever \(s \geq t \). Also let us write

\[
S_T[F](x) \overset{\text{def}}{=} \sum_{t=1}^T f_t(\varphi^{ht}x), \quad I_T[F] \overset{\text{def}}{=} \sum_{t=1}^T \int_X f_t \, d\mu.
\]

We are going to use the following proposition from Maucourant’s paper:
Proposition 2.1. ([13, Proposition 1]) Let $F = \{f_t\}_{t \in \mathbb{N}}$ be a decreasing family of non-negative measurable functions on X such that $f_t \in L^2(X, \mu)$ for all t. Assume that $\lim_{T \to \infty} I_T[F] = \infty$, and that $S_T[F]/I_T[F]$ is bounded in L^2-norm as $T \to \infty$.

Then, as $T \to \infty$, $S_T[F]/I_T[F]$ converges to 1 weakly in $L^2(X, \mu)$, and for μ-almost every x in X one has

$$\limsup_{T \to +\infty} \frac{S_T[F](x)}{I_T[F]} \geq 1. \quad (2.2)$$

We note that the above proposition was stated in [13] for the case of a continuous family of functions, but it is immediate to deduce a discrete version. To prove Theorem 1.3, we will apply Proposition 2.1 to the family of characteristic functions of Theorems 1.2 and 1.3 immediately follows from the Borel-Cantelli Lemma, (2.2) of Proposition 2.1 implies that the set (1.2) is infinite. Since the convergence of every x in X one has

$$\limsup_{T \to +\infty} \frac{S_T[F](x)}{I_T[F]} \geq 1. \quad (2.2)$$

Proof of Theorem 2.2. Let $F = \{f_t\}_{t \in \mathbb{N}}$ be as in (2.3). Then there exist $C_1, C_2 > 0$ such that if $I_T[F]$ diverges when T goes to ∞ and condition (1.6) holds, then the L^2-norm of $S_T[F]/I_T[F]$ is bounded for all $T \geq 1$.

3. Proof of Theorem 2.2. To prove Theorem 2.2, following the same methodology as in [13], we will apply a result on counting lattice points stated below (Theorem 3.3) together with a measure estimate for the space of discrete geodesics (Theorem 3.7).

3.1. Counting lattice points. Write $T^n V = \Gamma \backslash G$, where Γ is a lattice in $G = \text{SO}(n, 1)$, the isometry group of $V = \mathbb{H}^n$. Choose a lift $\tilde{p}_0 \in \mathbb{H}^n$ of p_0 and for $r > 0$ and $i \in \mathbb{N},$ let us denote

$$\hat{\Gamma}_i(r) \overset{\text{def}}{=} \{\gamma \in \Gamma : d(\tilde{p}_0, \gamma \tilde{p}_0) \in (hi - r, hi + r]\}.$$

Then

$$\# \hat{\Gamma}_i(r) = \#(\Gamma \cap D_{hi+r}) - \#(\Gamma \cap D_{hi-r}),$$

where

$$D_t = \{g \in G : d(gp_0, \tilde{p}_0) \leq t\}.$$

An estimate for $\# \hat{\Gamma}_i(r)$ would follow from a reasonable estimate for the error term in the asymptotics of the size of $\Gamma \cap D_t$ for large t. Such estimates are due to Huber [10] for $n = 2$ and to Selberg for the general case, see [12], and also [3, 7] for more recent results of this flavor. Denote by m_G the Haar measure on G which locally projects onto μ. The following is a consequence of [12, Theorem 1]:

Theorem 3.1. There exist constants $0 < q < 1$ and $t_1, c_1 > 0$ such that

$$|\#(\Gamma \cap D_t) - m_G(D_t)| \leq c_1 m_G(D_t)^q,$$

for all $t > t_1$.

An important property of the family $\{D_i\}$ is so-called Hölder well-roundedness, see [7]. In particular the following is true:

Proposition 3.2. There exist $t_2, c_2, c_3 > 0$ such that:

(i) For any $\varepsilon < 1$ and $t > t_2$, we have that

$$m_G(D_{t+\varepsilon}) - m_G(D_{t-\varepsilon}) \leq c_2 \varepsilon m_G(D_{t-\varepsilon}).$$ \hfill (3.1)

(ii) For any $t > 0$,

$$m_G(D_t) \leq c_3 e^{(n-1)t}.$$ \hfill (3.2)

From the two statements above one can easily derive the following estimate:

Theorem 3.3. There exist constants c_4, c_5 with the following property: if $0 < r < 1$ and $i \in \mathbb{N}$ are such that

$$h_i \geq \max(-c_4 \ln r, r + t_0),$$

where $t_0 = \max(t_1, t_2)$, then

$$\#\hat{\Gamma}_i(r) \leq c_5 r e^{(n-1)hi}.$$

Proof of Theorem 3.3. Applying Theorem 3.1 for all i with $h_i - r > t_0$, we get that

$$\#(\Gamma \cap D_{h_i+r}) \leq m_G(D_{h_i+r}) + c_1 m_G(D_{h_i+r})^q$$

and

$$\#(\Gamma \cap D_{h_i-r}) > m_G(D_{h_i-r}) - c_1 m_G(D_{h_i-r})^q.$$

Therefore, by (3.1) and (3.2), we have:

$$\#\{\gamma \in \Gamma : d(\gamma p_0, \gamma p_0) \in [h_i - r, h_i + r]\}
\leq \#(\Gamma \cap D_{h_i+r}) - \#(\Gamma \cap D_{h_i-r})
\leq m_G(D_{h_i+r}) + c_1 m_G(D_{h_i+r})^q - m_G(D_{h_i-r}) + c_1 m_G(D_{h_i-r})^q
\leq m_G(D_{h_i+r}) - m_G(D_{h_i-r}) + c_1 (m_G(D_{h_i+r})^q + m_G(D_{h_i-r})^q)
\ll \text{r} m_G(D_{h_i-r}) + (m_G(D_{h_i+r})^q + m_G(D_{h_i-r})^q)
\ll \text{r} e^{(n-1)(h_i-r) + e(n-1)q(h_i+r) + e(n-1)q(h_i-r)}
\leq \text{r} e^{(n-1)hi} \left(1 + \frac{e^{-(n-1)(1-q)hi}}{r} \left(e(n-1)qr + e^{-(n-1)qr}\right)\right).$$

Since $q < 1$ and $r < 1$, we have

$$e^{(n-1)qr} + e^{-(n-1)qr} < 2e^{n-1},$$

and clearly $\frac{1}{r} e^{-(n-1)(1-q)hi} \leq 1$ whenever $h_i \geq -\frac{\ln r}{(1-q)(n-1)}$. Summarizing the above, if

$$h_i \geq \max\left(-\frac{1}{(1-q)(n-1)} \ln r, r + t_0\right),$$

then $\#\hat{\Gamma}_i(r) \ll r e^{(n-1)hi}$. \hfill \square
3.2. The space of discrete geodesics on \mathbb{H}^n. In this section we will state measure estimates for spaces of geodesics on \mathbb{H}^n.

Definition 3.4. We will write \mathcal{G} as the space of oriented, unpointed continuous geodesics on \mathbb{H}^n. Using the fact that $T^1\mathbb{H}^n$ can be written as $\mathcal{G} \times \mathbb{R}$, we can define a measure ν on \mathcal{G} by $\mu = \nu \times dt$, where μ is the Liouville measure on $T^1\mathbb{H}^n$.

Then we will describe a similar definition for discrete geodesic flows. Namely:

Definition 3.5. For fixed $h > 0$, \mathcal{G}_h is the space of all h-step discrete geodesic trajectories: $\{\varphi^{ht} : t \in \mathbb{Z}\}$. That is $\mathcal{G}_h = \mathcal{G} \times S_h$ where S_h is $[0, h]$ with 0 and h identified. In addition, since we can write $T^1\mathbb{H}^n = \mathcal{G}_h \times \mathbb{Z}h$, then we can define the measure m on \mathcal{G}_h by $m = \nu \otimes \lambda$, where ν is the measure on \mathcal{G} defined above and λ the Lebesgue measure on S_h. Furthermore, the measure μ on the unit tangent bundle $T^1\mathbb{H}^n$ becomes the product of the measure m on \mathcal{G}_h with the counting measure on $\mathbb{Z}h$.

In [13], Maucourant considered the space of continuous geodesics, and estimated the probability that a random geodesic visits two fixed balls in V as follows:

Theorem 3.6. [13, Lemma 4] There exists a constant $c_6 > 0$ such that, for any two balls in \mathbb{H}^n of respective centers and radii (o_1, r_1), (o_2, r_2) that satisfy $r_1, r_2 < 1$, and $d(o_1, o_2) > 2$, the ν-measure of continuous geodesics meeting those two balls is less than

$$c_6 r_1^{n-1} r_2^{n-1} e^{-(n-1)d(o_1, o_2)}.$$

Here is a similar estimate for discrete geodesics on $T^1\mathbb{H}^n$:

Theorem 3.7. Consider two balls in \mathbb{H}^n with respective centers and radii (o_1, r_1), (o_2, r_2) that satisfy $r_1 < 1$, $r_2 < 1$, and $d(o_1, o_2) > 2$. Also assume that $h > 2 \min(r_1, r_2)$. Then the μ-measure of the h-step geodesics which intersect those two balls is less than

$$\begin{cases} 2c_6 r_1^{n-1} r_2^{n-1} e^{-(n-1)d(\min(r_1, r_2), r_2)} & \text{if } \text{dist}(d, h\mathbb{Z}) \leq 2 \max(r_1, r_2) \\ 0 & \text{otherwise,} \end{cases}$$

where c_6 is as in Theorem 3.6.

Proof. An h-step geodesic will fail to intersect both balls if for any k we have

$$|d - kh| > 2 \max(r_1, r_2);$$

in this case the measure we are to estimate is zero. So only if there is an integer k such that (3.3) fails, can the h-step geodesic meet those balls. Using Theorem 3.6 and the fact that the space of discrete geodesics is $\mathcal{G} \times S_h$ with measure $m = \nu \otimes dh$, one can notice that the measure of such geodesics is bounded by $2c_6 \min(r_1, r_2) r_1^{n-1} r_2^{n-1} e^{-(n-1)d}$. \qed

3.3. A bound for the L^2-norm of $S_T[F]$. Recall that for $t \in \mathbb{N}$ we defined f_t to be the characteristic function of B_t, which is a ball centered at $p_0 \in V = \Gamma \setminus \mathbb{H}^n$ of radius r_t, see (2.3), and considered the family of functions $F = (f_t)_{t \in \mathbb{N}}$ on T^1V. Also we have chosen a lift $\tilde{p}_0 \in \mathbb{H}^n$ of p_0. Now define \tilde{B}_t to be a ball in \mathbb{H}^n centered at \tilde{p}_0 of radius r_t, and let g_t be the characteristic function of \tilde{B}_t. Thus, the lift \tilde{f}_t of f_t to $T^1\tilde{V}$ satisfies

$$\tilde{f}_t = \sum_{\gamma \in \Gamma} g_t \circ \gamma.$$
Fix a fundamental domain D of \mathbb{H}^n for Γ containing \tilde{p}_0, and define
\[i_V(\tilde{p}_0) \overset{\text{def}}{=} \sup \{ r \in \mathbb{R} : B(\tilde{p}_0, r) \subset D \}. \]

Also define
\[R \overset{\text{def}}{=} \min \{ i_V(\tilde{p}_0)/4, 1, h \}, \tag{3.4} \]
and, for $i \in \mathbb{Z}_+$,
\[\Gamma_i \overset{\text{def}}{=} \left\{ \gamma \in \Gamma : d(\tilde{p}_0, \gamma \tilde{p}_0) \in \left[hi - \frac{h}{2}, hi + \frac{h}{2} \right] \right\}. \]

Theorem 3.8. Let $D \subset \mathbb{H}^n$ be a fundamental domain for Γ such that D contains the ball of center \tilde{p}_0 and of radius $3R$. Then for all $T \in \mathbb{N}$,
\[\int_{T^1 V} S_T[F](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{i=1}^{[\frac{s}{2R}]} \sum_{\gamma \in \Gamma_i} \int_{T^1 D} g_s(v) g_t(\gamma \phi^{h(s-t)} v) \, d\tilde{\mu}(v). \]

Proof. For fixed $T \in \mathbb{N}$ and $v \in T^1 V$, we know that
\[S_T[F](v)^2 = \left(\sum_{s=1}^{T} f_s(\phi^{h} v) \right) \left(\sum_{s=1}^{T} f_s(\phi^{h_s} v) \right) = 2 \sum_{s=1}^{T} \sum_{t \leq s} f_s(\phi^{h} v) f_s(\phi^{h_s} v). \]

Now we can integrate $S_T[F](v)^2$ over $T^1 V$ and make a change of variable $w = \phi^{h_s} v$. Since ϕ^{h_s} preserves the measure, we have the following:
\[\int_{T^1 V} S_T[F](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{t \leq s} \int_{T^1 V} f_s(w) f_s(\phi^{h(t-s)} w) \, d\mu(w). \]

By the fact that \tilde{f}_t is the lift of f_t, we obtain that
\[\int_{T^1 V} S_T[F](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{t \leq s} \int_{T^1 \mathbb{H}^n} \tilde{f}_s(w) \tilde{f}_s(\phi^{h(t-s)} w) \, d\tilde{\mu}(w). \]

Since $\tilde{f}_t = \sum_{\gamma \in \Gamma} g_t \circ \gamma$, we can write
\[\int_{T^1 V} S_T[F](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{\gamma \in \Gamma} \left(\sum_{\gamma \in \Gamma} g_s(\gamma w) \right) \left(\sum_{\gamma \in \Gamma} g_t(\gamma \phi^{h(t-s)} w) \right) \, d\tilde{\mu}(w). \]

Recall that D is the fundamental domain of \mathbb{H}^n for Γ. This insures that for all w in $T^1 D$, in the sum $\sum_{\gamma \in \Gamma} g_s(\gamma w)$, all terms but the one corresponding to $\gamma = \text{id}$ are zero. So we have
\[\int_{T^1 V} S_T[F](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{\gamma \in \Gamma} \sum_{t \leq s} \int_{T^1 D} g_s(w) g_t(\gamma \phi^{h(t-s)} w) \, d\tilde{\mu}(w). \]

Making another change of variables $v = -w$, where $-w$ means the point in $T^1 D$ with the same projection as w and the tangent vector pointing in the opposite direction, we deduce that
\[\int_{T^1 V} S_T[F](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{\gamma \in \Gamma} \sum_{t=1}^{s} g_s(v) g_t(\gamma \phi^{h(s-t)} v) \, d\tilde{\mu}(v). \]
For fixed \(v \in T^1 D \), we know that \(g_s(v)g_t(\gamma \phi^{h(s-t)}v) \) is zero when \(\pi(v) \notin \tilde{B}_s \) or \(\pi(\phi^{h(s-t)}v) \notin \gamma^{-1} \tilde{B}_t \), which implies that \(g_s(v)g_t(\gamma \phi^{h(s-t)}v) \) vanishes when
\[
|h(s-t) - d(\tilde{p}_0, \gamma^{-1} \tilde{p}_0)| > 2r_t + 2r_s.
\]
Since we know that \(2r_t + 2r_s < 4R \), we can conclude that \(g_s(v)g_t(\gamma \phi^{h(s-t)}v) \) vanishes when \(t \) is outside of the interval
\[
\left[s - \frac{d(\tilde{p}_0, \gamma^{-1} \tilde{p}_0)}{h}, \frac{4R}{h}, s - \frac{d(\tilde{p}_0, \gamma^{-1} \tilde{p}_0)}{h} + \frac{4R}{h} \right].
\]
Therefore, for any \(v \in T^1 V \) and any \(s \in \mathbb{N} \),
\[
\#\left\{ 1 \leq t \leq s : g_s(v)g_t(\gamma \phi^{h(s-t)}v) = 1 \right\} \leq \frac{8R}{h}. \tag{3.5}
\]
Furthermore, the integral is zero if \(|d(\tilde{p}_0, \gamma^{-1} \tilde{p}_0) - hi| > 2R > r_t + r_s \) for all \(i \). Hence this integral vanishes when \(|hi - h(s-t)| > 6R \), i.e. when
\[
hi - h(s-t) > 6R \quad \text{or} \quad hi - h(s-t) < -6R.
\]
In particular, we see that the quantity \(g_s(v)g_t(\gamma \phi^{h(s-t)}v) \) is zero if
\[
hi > hs + 6R > h(s-t) + 6R, \quad \text{i.e.} \quad i > s + \frac{6R}{h}.
\]

By the above fact and the fact that the union of all \(\Gamma_i \) is \(\Gamma \), we have
\[
\int_{T^1 V} S_T[\mathcal{F}](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{i \geq 0} \sum_{\gamma \in \Gamma_i} \int_{T^1 D} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\tilde{\mu}(v).
\]
\[
= 2 \sum_{s=1}^{T} \sum_{i=0}^{[s+\frac{6R}{h}]} \sum_{\gamma \in \Gamma_i} \int_{T^1 D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\tilde{\mu}(v).
\]
\[\square\]

Now let us define
\[
e_R = \frac{6R + 2}{h}
\]
and split the estimate of Theorem 3.8 into two parts:
\[
\int_{T^1 V} S_T[\mathcal{F}](v)^2 \, d\mu(v) \leq 2 \sum_{s=1}^{T} \sum_{i=1}^{[e_R]} \sum_{\gamma \in \Gamma_i} \int_{T^1 D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\tilde{\mu}(v)
\]
\[
+ 2 \sum_{s=1}^{T} \sum_{i=[e_R]}^{[s+\frac{6R}{h}]} \sum_{\gamma \in \Gamma_i} \int_{T^1 D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\tilde{\mu}(v). \tag{3.6}
\]

3.4. A bound on the first part of (3.6). It is not hard to estimate the first part.

Theorem 3.9. There is constant \(c_7 \), only depending on \(R \) and \(h \), such that for all \(T \in \mathbb{N} \)
\[
\sum_{s=1}^{T} \sum_{i=0}^{[e_R]} \sum_{\gamma \in \Gamma_i} \int_{T^1 D} \sum_{t=1}^{s} g_s(v)g_t(\phi^{h(s-t)}v) \, d\tilde{\mu}(v) \leq c_7 \sum_{t=1}^{T} r_t^n.
\]
Proof. Observing that $\bigcup_{i=3}^{c_R} \Gamma_i$ is a finite set, we write N as its cardinal. Moreover, using (3.5), we get that
\[
\sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \leq \frac{8R}{h}.
\] (3.7)

In addition, we notice the following facts:
- if $g_s(v) = 0$, then $g_s(v)g_t(\gamma \phi^{s-t}v)$ in the left side vanishes;
- if $g_s(v) = 1$, then $g_s(v)g_t(\gamma \phi^{s-t}v)$ is at most 1.

Therefore, (3.7) is equivalent to the following:
\[
\sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \leq \frac{8R}{h} g_s(v).
\]

This allows us to write
\[
\sum_{s=1}^{T} \sum_{i=0}^{[c_R]} \sum_{\gamma \in \Gamma_i} \int_{T^1D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) d\mu(v) \leq \frac{8NR}{h} \sum_{s=1}^{T} \int_{T^1D} g_s(v) d\mu(v).
\]

Since $\int_{T^1D} g_s(v) d\mu(v)$ is equivalent to r_s^n, up to a multiplicative constant, there exists some positive constant c_7, depending only on R and h, such that
\[
\sum_{s=1}^{T} \sum_{i=0}^{[c_R]} \sum_{\gamma \in \Gamma_i} \int_{T^1D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) d\mu(v) \leq c_7 \sum_{t=1}^{T} r_t^n.
\]

3.5. A bound on the second part of (3.6).

Theorem 3.10. There exist constants c_8 and c_9, only depending on R, such that
\[
\sum_{s=1}^{T} \sum_{i=[s\frac{R}{h}]}^{[s+\frac{9R}{h}]} \sum_{\gamma \in \Gamma_i} \int_{T^1D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) d\mu(v)
\]
\[
\leq c_8 \sum_{s=1}^{T} r_s^n \sum_{t=[s+\frac{4}{h} \ln r_s - \frac{6R}{h}-2]}^{[s-10R+4]} r_t^{n-1} + c_9 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{T} r_t^n,
\]

where c_4 is as in Theorem 3.3.

Proof. Let us fix s and produce an upper bound on
\[
\int_{T^1D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) d\mu(v)
\]

This requires the following observations:
1. (3.7) tells us that $\sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \leq \frac{8R}{h}$ for any s and v.
2. We know that $|d(\tilde{p}_0, \gamma^{-1}\tilde{p}_0) - hi| < 2R$, i.e.
\[
hi - 2R < d(\tilde{p}_0, \gamma^{-1}\tilde{p}_0) < hi + 2R.
\]

Therefore, $i \geq c_R \geq \frac{6R+2}{h}$ implies that
\[
d(\tilde{p}_0, \gamma^{-1}\tilde{p}_0) > hi - 2R > 6R + 2 - 2R > 2.
\]

Hence, we know that the distance between the centers of $B(\tilde{p}_0, r_s)$ and $B(\gamma^{-1}\tilde{p}_0, r_t)$ is greater than 2. Thus by Theorem 3.7, the measure m of the set of
discrete geodesics intersecting both $B(p_0, r_s)$ and $B(\gamma^{-1}p_0, r_t)$ is bounded by $2c_dq^{\gamma^{-1}r_s(r_t^{-1}-e^{-(n-1)(hi+1)})}r_s$.

3. Moreover, D contains the ball of center \tilde{p}_0 with radius $3R$. So we know that for fixed v, $\# \{z \in \mathbb{Z}h : g_t(\phi^{h+1}z) > 0\} \leq \frac{3R}{h}$.

4. In addition, notice that $g_s(v)g_t(\gamma \phi^{h(s-t)}v)$ is not zero only if $|hi - h(s-t)| < 6R$.

This implies that

$$s - i - \frac{6R}{h} < t < s - i + \frac{6R}{h}.$$

Now since (r_i) is decreasing, for all $i \geq c_R = \frac{6R+2}{h}$, we have that

$$\int_{T^1D} \sum_{i=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\mu(v) \ll r_s^{n^{n-1}}e^{-(n-1)hi}.$$

Therefore, for all $i \geq c_R$, we obtain that

$$\sum_{i=1}^{s} \int_{T^1D} \sum_{s \in \Gamma_i} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\mu(v) \ll N_i r_s^{n^{n-1}}e^{-(n-1)hi},$$

where N_i is the number of elements of Γ_i such that the integrated function is not zero. Now we can consider the sum over all s and $i \geq c_R$:

$$\sum_{s=1}^{T} \sum_{i=1}^{s} \sum_{s \in \Gamma_i} \int_{T^1D} \sum_{t=1}^{s} g_s(v)g_t(\gamma \phi^{h(s-t)}v) \, d\mu(v)$$

$$\ll \sum_{s=1}^{T} \sum_{i=1}^{s} r_s^{n^{n-1}}e^{-(n-1)hi} N_i.$$

Our goal now is to estimate N_i. Recall Theorem 3.3, which allows us to estimate $\#\Gamma_i(r)$ when $hi \geq \max(-c_4 \ln r, r + t_0)$ for some constants $c_4, t_0 > 0$. We will take $r = r_{s-i-\frac{6n}{h}-1}$. Indeed, since (r_i) is decreasing and we have assumed that $r_s \leq R < 1$, it follows that

$$-\ln r_s \geq -\ln r_{s-i-\frac{6n}{h}-1}$$

and $r_{s-i-\frac{6n}{h}-1} < R$.

Now let us define

$$V_s \overset{\text{def}}{=} \max\left(-c_4 \ln r_s, \frac{1 + t_0}{h}\right) + c_R. \quad (3.8)$$

Then $i \geq V_s$ implies that

$$hi \geq \max\left(-c_4 \ln r_{s-i-\frac{6n}{h}-1}, r_{s-i-\frac{6n}{h}-1} + t_0\right).$$

Meanwhile, we also know that $g_s(v)g_t(\gamma \phi^{h(s-t)}v)$ is not zero only if $d(\tilde{p}_0, \gamma^{-1}\tilde{p}_0) \in [ih - r_{s-i-\frac{6n}{h}-1}, ih + r_{s-i-\frac{6n}{h}-1}]$, where i is such that $\gamma^{-1} \in \Gamma_i$. Therefore

$$N_i \leq \# \{ \gamma : d(\tilde{p}_0, \gamma \tilde{p}_0) \in [hi - r_{s-i-\frac{6n}{h}-1}, hi + r_{s-i-\frac{6n}{h}-1}] \}$$

$$\leq c_0 e^{(n-1)(hi+1)} r_{s-i-\frac{6n}{h}-1}.$$
when \(i \geq V_s \).

By applying the fact that \((r_t)\) is decreasing, we have the following:

\[
\sum_{s=1}^{T} \sum_{i=\lceil [V_s] \rceil}^{T} r_s^n r_{s-i}^{n-1} e^{-(n-1)(hi-1)} N_i \ll \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n-1}.
\]

When \(i < V_s \), we will use the counting lattice point estimate (Theorem 3.1) to conclude that \(N_i \ll e^{(n-1)hi} \). Recalling the definition of \(V_s \), see (3.8), we know that the assumption \(i < -\frac{h}{R} \ln r_s \) implies that \(i < V_s \). Meanwhile, since \((r_t)\) is decreasing, we have that

\[
\sum_{s=1}^{T} \sum_{i=\lceil [V_s] \rceil}^{T} r_s^n r_{s-i}^{n-1} e^{-(n-1)(hi-1)} N_i \ll \sum_{s=1}^{T} r_s^n \sum_{t=1}^{\lceil [V_s] \rceil} r_t^{n-1}.
\]

Putting it all together, we conclude that

\[
\sum_{s=1}^{T} \sum_{i=\lceil [V_s] \rceil}^{T} \int_{D} \int_{1}^{s} g_s(v) g_t(\gamma \phi^{k(s-t)}v) d\tilde{\mu}(v) \leq c_8 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{\lceil [V_s] \rceil} r_t^{n-1} + c_9 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n-1}.
\]

3.6. **Completion of the proof of Theorem 2.2.**

Proof. Recall that so far we have

\[
\int_{T^4 V} S_T[F](v)^2 d\mu(v) \leq c_7 \sum_{s=1}^{T} r_s^n + c_8 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n-1} + c_9 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n-1}.
\]

Now let us take \(C_1 = c_4/h, C_2 = 2 + 6R/h \), and let us assume (1.6), i.e. that there exist \(C, s_0 \) such that

\[
\sum_{t=1}^{s} r_t^{n-1} \leq C \sum_{i=1}^{s} r_i^n \quad \text{when } s \geq s_0.
\]

Then we can write

\[
\int_{T^4 V} S_T[F](v)^2 d\mu(v) \leq c_7 \sum_{s=1}^{T} r_s^n + c_8 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n-1} + c_9 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n-1} + C \cdot c_8 \sum_{s=s_0}^{T} r_s^n \sum_{t=1}^{s} r_t^{n} + c_9 \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n} + c_{14}
\]

\[
\leq c_7 \sum_{s=1}^{T} r_s^n + c_{13} \sum_{s=1}^{T} r_s^n \sum_{t=1}^{s} r_t^{n} + c_{14}
\]

\[\]
Since $\int_{T^1} I_T[F]^2 d\mu(v)$ is equivalent, up to a multiplicative constant, to $\sum_{s=1}^T r_s^n \sum_{t=1}^s r_t^n$, and with the assumption that $\int_{T^1} I_T[F]^2 d\mu(v) \to \infty$, one can easily conclude that $\frac{\int_{T^1} I_T[F]^2 d\mu(v)}{\int_{T^1} I_T[F]^2 d\mu(v)}$ is bounded in L^2-norm. \[\blacksquare\]

4. Proof of Theorem 1.2. Recall that we are given a non-increasing sequence r_t, which tends to 0 as $t \to \infty$ and such that $\sum_0^\infty r_t^n = \infty$ and in addition satisfying (1.4), that is, for some $C_0, s_0 > 0$ it holds that

\[
- \ln r_s \leq C_0 s \quad \text{when} \quad s \geq s_0.
\]

(4.1)

We need to show that this sequence satisfies condition (1.6). This will be an easy consequence of the following lemma:

Lemma 4.1. Under the above assumptions, for any $C_1, C_2 > 0$ there exist $C_3, T > 0$ such that

\[
\sum_{s=\max(s+C_1 \ln r_s-C_2)}^s r_t^{n-1} \leq C_3 \sum_{t=1}^s r_t^n \quad \text{when} \quad s \geq T.
\]

Proof. By (4.1),

\[
- C_1 \ln r_s \leq C_1 C_0 s r_s \quad \text{when} \quad s \geq s_0.
\]

(4.2)

Take s_1 such that $- \ln r_{s_1} \geq \frac{C_2}{C_1}$ when $s > s_1$. This and (4.2) imply that

\[
C_2 \leq C_1 C_0 s r_s
\]

and

\[
2C_1 C_0 s r_s \geq -C_1 \ln r_s + C_2.
\]

(4.3)

Since r_s is non-increasing, (4.3) implies that

\[
2C_1 C_0 s r_s \geq \sum_{s=\max(s+C_1 \ln r_s-C_2)}^s r_t^{n-1} \geq -C_1 \ln r_s + C_2
\]

when $s > \max(s_0, s_1)$. Due to the fact that $0 < r_s < r_{\max(s+C_1 \ln r_s-C_2)} < 1$, we have that

\[
2C_1 C_0 s r_s \geq \sum_{s=\max(s+C_1 \ln r_s-C_2)}^s r_t^{n-1} \geq \left(1 - C_1 \ln r_s + C_2\right) \left(1 + r_{\max(s+C_1 \ln r_s-C_2)} - r_s\right);
\]

thus

\[
2C_1 C_0 s r_s \geq \left(1 - C_1 \ln r_s + C_2\right) \left(1 + r_{\max(s+C_1 \ln r_s-C_2)} - r_s\right)
\]

\[
\geq \left(- C_1 \ln r_s + C_2\right) \left(1 - r_s\right) + \left(- C_1 \ln r_s + C_2\right) r_{\max(s+C_1 \ln r_s-C_2)}.
\]

Therefore, when $s > \max(s_0, s_1)$, we obtain that

\[
\left(2C_1 C_0 s + C_1 \ln r_s - C_2\right) r_{\max(s+C_1 \ln r_s-C_2)} \geq \left(- C_1 \ln r_s + C_2\right) \left(1 - r_s\right).
\]

(4.4)

Now take $s_2 > 0$ such that $r_s < \frac{1}{4C_1 C_0}$ when $s > s_2$, and let $T \defeq \max(s_0, s_1, s_2)$. Then (4.3) implies that, when $s > T$,

\[
s \geq 2C_1 C_0 \left(- C_1 \ln r_s + C_2\right).
\]

Thus, by adding $2C_1 C_0 s + (2C_1 C_0 + 1)(C_1 \ln r_s - C_2)$ to both sides, we conclude that, when $s > T$,

\[
(2C_1 C_0 + 1)(s + C_1 \ln r_s - C_2) \geq 2C_1 C_0 s + C_1 \ln r_s - C_2.
\]

Now let us define $C_3 \defeq 2C_1 C_0 + 1$.

Then we have that, when $s > T$

$$C_3(s + C_1 \ln r_s - C_2) \geq 2C_1C_0s + C_1 \ln r_s - C_2.$$

which, in view of (4.4), implies

$$C_3(s + C_1 \ln r_s - C_2)r_{[s+C_1 \ln r_s-C_2]} \geq (-C_1 \ln r_s + C_2)(1 - r_s).$$

Since $r_{[s+C_1 \ln r_s-C_2]} > 0$, the above inequality implies that, when $s \geq T$,

$$C_3(s + C_1 \ln r_s - C_2)r^n_{[s+C_1 \ln r_s-C_2]} \geq (-C_1 \ln r_s + C_2)(1 - r_s)r^{n-1}_{[s+C_1 \ln r_s-C_2]}.$$ (4.5)

On the other hand, since r_s is non-increasing, one will notice that

$$C_3(s + C_1 \ln r_s - C_2)r^n_{[s+C_1 \ln r_s-C_2]} \leq C_3 \sum_{t=1}^{[s+C_1 \ln r_s-C_2]} r^n_t,$$

and

$$\sum_{t=[s+C_1 \ln r_s-C_2]}^{s} (r^n_t - r^n_{t-1}) = \sum_{t=[s+C_1 \ln r_s-C_2]}^{s} (1 - r_t)r^{n-1}_t$$

$$\leq (-C_1 \ln r_s + C_2)(1 - r_s)r^{n-1}_{[s+C_1 \ln r_s-C_2]}.$$

Therefore, by (4.5), we have that, when $s \geq T$,

$$\sum_{t=[s+C_1 \ln r_s-C_2]}^{s} (r^n_t - r^n_{t-1}) \leq C_3 \sum_{t=1}^{[s+C_1 \ln r_s-C_2]} r^n_t,$$

and hence

$$\sum_{t=[s+C_1 \ln r_s-C_2]}^{s} r^{n-1}_t \leq C_3 \sum_{t=1}^{[s+C_1 \ln r_s-C_2]} r^n_t + \sum_{t=[s+C_1 \ln r_s-C_2]}^{s} r^n_t \leq C_3 \sum_{t=1}^{s} r^n_t.$$

This shows that (1.4) implies (1.6), and finishes the proof of Theorem 1.2. \(\square\)

Acknowledgments. The authors want to thank Dubi Kelmer, Keith Merrill, Amos Nevo, Hee Oh and the anonymous referee for useful comments.

REFERENCES

[1] J. Athreya, Logarithm laws and shrinking target properties, *Proc. Indian Acad. (Math. Sci.),* 119 (2009), 541–557.

[2] ______, Cusp excursions on parameter spaces, *J. Lond. Math. Soc.,* 87 (2013), 741–765.

[3] Y. Benoist and H. Oh, Effective equidistribution of S-integral points on symmetric varieties, *Annales de L’Institut Fourier,* 62 (2012), 1889–1942.

[4] N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, *Israel J. Math.,* 122 (2001), 1–27.

[5] D. Dolgopyat, Limit theorems for partially hyperbolic systems, *Trans. Amer. Math. Soc.,* 356 (2004), 1637–1689.

[6] S. Galatolo, Dimension and hitting time in rapidly mixing systems, *Math. Res. Lett.,* 14 (2007), 797–805.

[7] A. Gorodnik and A. Nevo, Counting lattice points, *J. Reine Angew. Math.,* 663 (2012), 127–176.

[8] A. Gorodnik and N. Shah, Khinchin’s theorem for approximation by integral points on quadratic varieties, *Math. Ann.,* 350 (2011), 357–380.

[9] N. Haydn, M. Nicol, T. Persson and S. Vaienti, A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, *Ergodic Theory Dynam. Systems,* 33 (2013), 475–498.
[10] H. Huber, Über eine neue Klasse automorpher Functionen und eine Gitterpunktproblem in der hyperbolischen Ebene, *Comment. Math. Helv.*, **30** (1956), 20–62.

[11] D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, *Invent. Math.*, **138** (1999), 451–494.

[12] P. Lax and R. Phillips, The asymptotic distribution of lattice points in Euclidean and Non-Euclidean spaces, *J. Funct. Anal.*, **46** (1982), 280–350.

[13] F. Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, *Israel J. Math.*, **152** (2006), 143–155.

[14] C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in: *Group representations, ergodic theory, operator algebras, and mathematical physics* (Berkeley, CA, 1984), 163–181, Math. Sci. Res. Inst. Publ. **6**, Springer, New York, 1987.

[15] W. Philipp, Some metrical theorems in number theory, *Pacific J. Math.*, **20** (1967), 109–127.

[16] M. Ratner, The rate of mixing for geodesic and horocycle flows, *Ergodic Theory Dynam. Systems*, **7** (1987), 267–288.

[17] D. Sullivan, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, *Acta Math.*, **149** (1982), 215–237.

Received January 2017; revised July 2017.

E-mail address: kleinboc@brandeis.edu
E-mail address: zhaoxi89@brandeis.edu