Does the Adequacy Parameter \(\text{Kt/V}_{\text{urea}} \) Reflect Uremic Toxin Concentrations in Hemodialysis Patients?

Sunny Eloot*, Wim Van Biesen, Griet Glorieux, Nathalie Neirynck, Annemieke Dhondt, Raymond Vanholder

Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium

Abstract

Hemodialysis aims at removing uremic toxins thus decreasing their concentrations. The present study investigated whether \(\text{Kt/V}_{\text{urea}} \) used as marker of dialysis adequacy, is correlated with these concentrations. Predialysis blood samples were taken before a midweek session in 71 chronic HD patients. Samples were analyzed by colorimetry, HPLC, or ELISA for a broad range of uremic solutes. Solute concentrations were divided into four groups according to quartiles of \(\text{Kt/V}_{\text{urea}} \), and also of different other parameters with potential impact, such as age, body weight (BW), Protein equivalent of Nitrogen Appearance (PNA), Residual Renal Function (RRF), and dialysis vintage. Dichotomic concentration comparisons were performed for gender and Diabetes Mellitus (DM). Analysis of Variance in quartiles of \(\text{Kt/V}_{\text{urea}} \) did not show significant differences for any of the solute concentrations. For PNA, however, concentrations showed significant differences for urea (P < 0.001), uric acid (UA), p-cresylsulfate (PCS), and free PCS (all P < 0.01), and for creatinine (Crea) and hippuric acid (HA) (both P < 0.05). For RRF, concentrations varied for β2-microglobulin (P < 0.001), HA, free HA, free indoxyl sulfate, and free indole acetic acid (all P < 0.01), and for p-cresylglucuronide (PCG), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), free PCS, and free PCG (all P < 0.05). Gender and body weight only showed differences for Crea and UA, while age, vintage, and diabetes mellitus only showed differences for one solute concentration (UA, UA, and free PCS, respectively). Multifactor analyses indicated a predominant association of concentration with protein intake and residual renal function. In conclusion, predialysis concentrations of uremic toxins seem to be dependent on protein equivalent of nitrogen appearance and residual renal function, and not on dialysis adequacy as assessed by \(\text{Kt/V}_{\text{urea}} \). Efforts to control intestinal load of uremic toxin precursors by dietary or other interventions, and preserving RRF seem important approaches to decrease uremic solute concentration and by extension their toxicity.

Introduction

Failure of the kidneys is associated with the gradual retention of a myriad of solutes [1], causing an endogenous intoxication and failure of almost all organ systems [2,3]. Dialysis aims at removing those solutes, resulting in a decrease of their concentration and hence also their biological toxicity.

Quantification of the removal of these toxins may offer a useful tool to evaluate the adequacy of a given approach, but might also lead to misconceptions, e.g. by abandoning attempts to further improve a removal strategy once a set target is reached. Traditionally, \(\text{Kt/V}_{\text{urea}} \) is the marker of dialysis adequacy that is most widely used on a regular basis. In some countries, reaching a threshold \(\text{Kt/V}_{\text{urea}} \) is even a prerequisite for reimbursement of dialysis [4].

When considering observational data, one cannot deny that the introduction of \(\text{Kt/V}_{\text{urea}} \) in 1985 helped to gradually improve survival of the dialysis population [5–8]. The parameter was however developed in an era when dialysis was almost exclusively performed over relatively short sessions with small pore dialyzers [9]. Many strategic modifications have meanwhile been introduced, such as large pore membranes, convection, frequent dialysis and extended dialysis. All these alternative strategies enhance solute removal [10–16] and have been associated with improved outcome [15,17–23], but do not necessarily increase \(\text{Kt/V}_{\text{urea}} \) [10,11,22,23]. Also the number of known uremic toxins has extended [24,25], mostly with compounds that are difficult to remove by standard dialysis.

In two recent studies, we demonstrated in CKD patients not yet on dialysis that estimated GFR (eGFR), as the main currently used marker of renal function, was barely and inconsistently associated with concentrations of uremic toxins, although the latter are associated with organ dysfunction [26,27]. This divergence was attributed to a greater impact on uremic solute concentration by factors other than GFR, such as diet, intestinal generation, metabolism and tubular secretion [28].

Thus, the question could be raised in how far this would be true as well for the main marker of dialysis adequacy \(\text{Kt/V}_{\text{urea}} \). Although \(\text{Kt/V}_{\text{urea}} \) is mathematically related to the concentration change during dialysis, one could assume that keeping this parameter at a higher threshold would result in a decrease of...
uremic solute concentration as a consequence of more efficient removal, also before dialysis.

An additional asset of performing this type of study in hemodialysis, is that in this setting, it is quite easy to assess objectively dietary protein intake, one of the potentially impacting factors [29]. Remarkably enough, this question has to the best of our knowledge never been studied, although a recent review pointed to the theoretical possibility that KT/Vurea would not be an accurate marker for uremic solute removal and retention [21].

Therefore, in this study we want to clarify: 1/whether KT/Vurea is representative for the concentration of a broad array of uremic toxins in patients on hemodialysis; 2/whether there is a difference in uremic toxin concentrations depending on other patient characteristics such as age, body weight, protein equivalent of nitrogen appearance, residual renal function, dialysis vintage, gender, and diabetes mellitus.

Patients and Methods

Ethics Statement

The study was approved by the local Ethics Committee (Ethical Committee, Ghent University Hospital, Ghent, Belgium) and performed in accordance to the Declaration of Helsinki. Written informed consent was obtained from all participants.

Patients

All chronic hemodialysis patients, older than 18 years, with a residual renal function lower than 10 mL/min, and dialyzed in our centre during the day, were considered for inclusion. Patients were on maintenance hemodialysis for at least three months during which the same hemodialyzer, dialysis duration, blood and dialysate flows, convective strategy, and vascular access had been applied. Dialysis dose, expressed as KT/Vurea is calculated monthly according to the single-pool Daugirdas formula [30] to check accordance to the EBPG [31], and is only adapted if the value goes below threshold. The general exclusion criteria were active infection, pregnancy, unstable condition, and vascular access problems.

Sampling and data collection

Predialysis blood samples were taken during a midweek session, immediately centrifuged (3000 rpm corresponding to 1250 g), aliquoted, and stored at −80°C until analysis. Postdialysis blood samples, as needed for the calculation of KT/Vurea and PNA, were taken immediately after discontinuation of the dialysis session after slowing the blood pump to 100 mL/min during 15 s.

Urea [molecular weight MW: 60D] and creatinine (Crea) [MW: 113D] were measured by standard laboratory methods.

Different solutes, most of them protein bound, were determined by high performance liquid chromatography (HPLC): uric acid (UA) [168D], hippuric acid (HA) [179D, protein binding (PB)~50%], 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMFP) [240D - PB~100%], indoxyl sulfate (IS) [213D - PB~90%], indole acetic acid (IAA) [175D - PB~65%], p-cresylsulfate (PCS) [187D - PB~95%], and p-cresylglucuronide (PCG) [284D - PB~10%]. To determine the total fraction, serum samples were first deproteinized by heat denaturation [32] and analyses were performed by reverse-phase HPLC. IS and IAA (excitation λ_{ex}:280 nm; emission λ_{em}:340 nm) and PCS and PCG (λ_{ex}:265 nm; λ_{em}:290 nm) were determined by fluorescence analysis, and HA and CMFP were analyzed by UV detection at 254 nm [14]. Free fractions were determined according to Fagugli et al [14].

ELISA kits manufactured by DLD Diagnostika GmbH (Hamburg, Germany) were used for measuring asymmetric dimethylarginine (ADMA) [202D], symmetric dimethylarginine (SDMA) [202D] after acylation. For beta-2-microglobulin (B2M) [11.8 kD], ELISA kits of Orgentec Diagnostika GmbH (Mainz, Germany) were used.

For each patient, the following additional parameters were registered: age, gender, body weight (BW), presence of diabetes mellitus (DM), dialysis vintage, and medication, while KT/Vurea residual renal function (RRF), and protein equivalent of nitrogen appearance (PNA) were calculated as explained below.

Calculations

Since the single treatment dose as measured during a midweek dialysis session does not reflect the average clearance both by exogenous hemodialysis and endogenous residual renal clearance, we calculated weekly KT/Vurea accounting for ultrafiltration and residual renal function according to Daugirdas et al [33]:

\[
Kt/V = \frac{S}{1 - \left(\frac{0.74}{F}\right) \left(\frac{UF}{V}\right)} + K_{en} \left(\frac{0.974}{spKt/V} + 1.62\right) \frac{10080}{V} \tag{1}
\]

with F the number of dialysis sessions per week, K_{en} the residual renal urea clearance (mL/min), UF/W the weekly fluid removal (L), V the urea distribution volume (L) as calculated according to Daugirdas and Smye [34], and S the standard KT/V according to Leypoldt:

\[
S = \text{std} Kt/V = \frac{10080}{1 - \exp\left(\frac{-eKt/V}{t}\right)} \tag{2}
\]

with t the treatment time (min), and eKt/V calculated according to [35]:

\[
eKt/V = spKt/V \left(\frac{1}{t + 30.7}\right) \tag{3}
\]

And spKt/V calculated according to Daugirdas et al [30]:

\[
spKt/V = -LN\left(\frac{BUN_{post}}{BUN_{pre}} - 0.008t\right) + \left(4 - 3.5\frac{BUN_{post}}{BUN_{pre}}\right) \frac{UF}{BW} \tag{4}
\]

with BUN_{pre} and BUN_{post} the pre and post dialysis Blood Urea Nitrogen concentration, UF the ultrafiltration volume, and BW the post dialysis body weight.

Residual Renal Function (RRF) was calculated as the arithmetic mean of the creatinine and urea clearance (Cl_{Crea} and Cl_{urea}) respectively:

\[
RRF = \text{average}(Cl_{Crea}, Cl_{urea}) \tag{5}
\]

with:
Statistical analyses

For the patient characteristics age, BW, \(Kt/V_{urea} \), PNA, and dialysis vintage, the median and 25th and 75th percentile were calculated and, per characteristic, patients were divided into four groups according to quartiles. Since the median of RRF was zero, the four groups for this parameter were not defined by quartiles but consisted of one group to which all anuric patients were selected (\(n = 40 \)), whereas the remaining non-anuric patients were distributed in tertiles (\(n = 10-11 \) each). For gender and DM, patients were divided in two groups according to male/female and DM/non DM. With these data, non-parametric analysis of variance (Kruskal-Wallis) tests were performed to check potential differences in uremic toxin concentrations among the groups. Furthermore, correlations (Spearman) were evaluated between uremic toxin concentrations and the different studied characteristics; finally, multifactor analyses per solute were performed.

Results

Seventy-four chronic hemodialysis patients fulfilled the inclusion criteria. Two of them declined written consent, and 1 patient had an interdialytic interval of 2.5 days at midweek instead of 1.5 days. The 71 chronic hemodialysis patients included were on thrice weekly hemodialysis for 38.0 (19.5–61.5) months: 26/45 females/males, 28 diabetes mellitus, 31 with RRF, age 72 (63.0–80.0) years, body weight 69.0 (61.3–78.8) kg, weekly \(Kt/V_{urea} \) 2.43 (2.28–2.63), and PNA 0.83 (0.74–1.01) g/kg/day (Table 1).

Our patients were routinely dialyzed for 245±18 min, with a blood flow of 321±37 mL/min (\(Q_B \) range 220–350 mL/min) and \(Q_{QD} = 500 \) mL/min in hemodialysis mode with either an FX8 (Fresenius Medical Care, Germany) (\(n = 5 \)), or Eovial (Gambro, Sweden) (\(n = 1 \)) dialyzer, or in postdilution hemodiafiltration mode with either an FX300 (Fresenius Medical Care, Germany) (\(n = 41 \)), Phylter 17SD (Bellco, Italy) (\(n = 7 \)), Xeniun 210 (Baxter, USA) (\(n = 6 \)), PHF (Belco, Italy) (\(n = 4 \)), Polyflux 170H (Gambro, Sweden) (\(n = 4 \)), or Surflox 170UH (Nipro, Japan) (\(n = 3 \)) dialyzer. All patients had a permanent vascular access: i.e. 42 fistulas and 29 tunneled central venous catheters.

An overview of the measured predialysis concentrations of uremic solutes is given in Table 2. The percentage differences between minimum and maximum concentrations among the patients ranged from 72.0 (UA) to 99.5% (total and free PCG) (Table 2); normalizing concentrations to \(Kt/V_{urea} \) resulted in the same percentage differences between the minimum and maximum values (data not shown).

Table 3 shows the P-values of the Kruskal-Wallis tests for the concentrations under study if patient characteristics were separated in quartiles or dichotomically. The main characteristics associated with a significant difference of solute concentrations were PNA and RRF (Table 3 and Figure 1). For \(Kt/V_{urea} \) no single significant difference was found.

Table 4 shows the R and P-values of the Spearman correlations between solute concentrations and patient characteristics. \(Kt/V_{urea} \) showed a correlation only with the concentration of Crea. PNA, on the contrary, showed significant correlations for the majority of solutes with \(R = 0.894 \) for urea, and a value in the range 0.4–0.6 for UA, PCS, and free PGS, and 0.2–0.4 for Crea, HA, IS, PCG, free HA, and free PCG. RRF showed inverted correlations with an R-value in the range −0.4 to −0.6 for \(\beta_2 \) M, HA, free HA, and free IAA, and with R between −0.2 and −0.4 for IS, PCG, free IS, free PCS, and free PCG.

Also in multifactor analysis, PNA and RRF were the main factors associated with uremic solute concentration, except for Crea, and this occurred mainly independently (Table 5).
Table 2. Uremic toxin concentrations.

	median (25th–75thp)	[(75th–25th)/75th]	min - max	[(max-min)/max]	100
urea	0.90 (0.71–1.06)	33.5	0.18–1.88	90.4	
Crea	7.19 (5.77–9.01)	36.0	3.35–14.9	80.4	
ADMA	1.00 (0.84–1.18)	28.2	0.51–1.93	73.6	
SDMA	2.08 (1.73–2.48)	30.3	0.77–3.79	79.7	
UA	6.53 (5.62–7.06)	20.3	2.55–9.11	72.0	
β2M	39.4 (28.5–48.1)	40.8	13.9–96.3	89.6	
HA	2.94 (1.47–5.64)	74.0	0.24–14.21	98.3	
IS	1.80 (1.27–2.77)	54.4	0.29–5.75	97.7	
IAA	0.18 (0.13–0.23)	42.7	0.07–0.73	90.9	
PCS	2.94 (1.73–4.36)	60.2	0.06–7.53	99.2	
PCG	0.49 (0.18–0.89)	79.8	0.02–3.94	99.5	
CMPF	0.38 (0.20–0.61)	68.0	0.06–1.37	95.8	
Free HA	1.65 (0.70–3.32)	79.0	0.13–9.09	98.6	
Free IS	0.11 (0.06–0.23)	72.4	0.02–0.72	97.8	
Free IAA	0.06 (0.04–0.07)	48.1	0.02–0.22	91.2	
Free PCS	0.18 (0.11–0.33)	66.4	0.04–0.66	94.7	
Free PCG	0.48 (0.17–0.86)	80.1	0.02–3.59	99.5	

mg/dL, except urea in g/L, β2M in mg/mL, and ADMA and SDMA in μmol/L. Crea: creatinine, ADMA: asymmetric dimethylarginine, SDMA: symmetric dimethylarginine, UA: uric acid, β2M: beta-2-microglobulin, HA: hippuric acid, IS: indoxyl sulfate, IAA: indole acetic acid, PCS: p-cresylsulfate, PCG: p-cresylglucuronide, CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.

doi:10.1371/journal.pone.0076838.t002

Table 3. P-values of comparison between concentrations for characteristics as divided in quartiles or dichotomically.

	Age	BW	Kt/V	PNA	RRF	vintage	gender	DM
urea	0.097	0.116	0.478	<0.001	0.265	0.219	0.310	0.728
Crea	0.129	0.015	0.339	0.027	0.345	0.441	0.004	0.842
ADMA	0.616	0.458	0.396	0.848	0.337	0.683	0.492	0.814
SDMA	0.408	0.891	0.297	0.548	0.196	0.794	0.797	0.668
UA	0.002	0.026	0.097	0.004	0.240	0.026	0.025	0.171
β2M	0.898	0.666	0.585	0.607	<0.001	0.644	0.346	0.916
HA	0.539	0.577	0.602	0.036	0.004	0.268	0.247	0.378
IS	0.850	0.462	0.340	0.261	0.159	0.664	0.839	0.259
IAA	0.678	0.251	0.583	0.203	0.089	0.959	0.437	0.402
PCS	0.283	0.698	0.809	0.001	0.815	0.739	0.452	0.312
PCG	0.230	0.786	0.391	0.067	0.041	0.766	0.273	0.291
CMPF	0.065	0.537	0.316	0.464	0.073	0.984	0.865	0.106
Free HA	0.491	0.580	0.629	0.092	0.002	0.181	0.277	0.384
Free IS	0.505	0.605	0.620	0.266	0.006	0.772	0.976	0.110
Free IAA	0.633	0.219	0.480	0.660	0.002	0.978	0.440	0.107
Free PCS	0.263	0.604	0.858	0.007	0.050	0.601	0.445	0.036
Free PCG	0.205	0.763	0.409	0.070	0.038	0.777	0.300	0.317

Crea: creatinine, ADMA: asymmetric dimethylarginine, SDMA: symmetric dimethylarginine, UA: uric acid, β2M: beta-2-microglobulin, HA: hippuric acid, IS: indoxyl sulfate, IAA: indole acetic acid, PCS: p-cresylsulfate, PCG: p-cresylglucuronide, CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.

BW: body weight, PNA: protein equivalent of nitrogen appearance, RRF: residual renal function, DM: diabetes mellitus.
P<0.05 is indicated in bold.
doi:10.1371/journal.pone.0076838.t003
Discussion

In a group of 71 hemodialysis patients, variances were studied for a broad range of predialysis uremic toxin concentrations as functions of different patients characteristics and Kt/Vurea. The most important findings are that different quartiles of Kt/Vurea did not show any variations in serum concentration of the studied solutes, whereas quartiles of PNA and RRF showed significant variations of serum levels for 6 and 8 solutes under study, respectively. For correlation analysis, only one association was found for Kt/Vurea, whereas there were 10 associations for PNA and 9 for RRF, pointing into the same direction as the analysis per quartiles.

UA, ADMA, PCS, IS, and β2M have repeatedly been associated with vascular damage and mortality in renal and general populations [39–49]. In our study, quartiles of weekly Kt/Vurea did not show any significant variance in serum concentration of these solutes as was also found for spKt/V and eKt/V (data not shown). The weekly Kt/Vurea, per definition accounting for RRF, was correlated to only one investigated solute concentration, while no correlations were found when considering spKt/V or eKt/V (data not shown). On the other hand, subdivision for quartiles of PNA showed differences in the serum concentration of UA, PCS, urea, Crea, HA, and free PCS, and showed, additionally, correlations with the concentrations of IS, PCG, free HA, and free PCG. Furthermore, quartiles of RRF showed differences for β2M, HA, PCG, and free concentrations of HA, IS, IAA, PCS, and PCG, and showed, additionally, correlations with the IS concentrations. Hence, from the present study, Kt/Vurea does not seem to be a very good predictor of uremic solute concentrations, not even in the subpopulation of patients without any residual renal function (data not shown).

During the last decade, it became clear that dialysis dose, as measured by the removal of a low-molecular weight solute such as urea as is the case with Kt/Vurea, may not entirely be a parameter of dialysis adequacy. Kinetics of urea differ from that of other uremic solutes, even when these are small and water soluble like urea is [50,51]. Furthermore, increasing dialysis time from 4 up to 8 hours, without changing the quantity of processed blood and dialysate, did not impact Kt/Vurea while β2M, a middle molecule and phosphate, a small but difficult to remove solute, showed an increase by 81 and 49% respectively [11]. The present study here adds that not only solute removal but also predialysis solute concentration is not reflected in Kt/Vurea. At first sight, this could be an evident conclusion, since Kt/Vurea is mathematically related to the change in urea concentration during dialysis rather than to the absolute concentration. However, the ultimate goal of hemodialysis is to decrease absolute toxic solute concentrations, and with it, the biological activity of uremic toxins. Hence, keeping the adequacy parameter Kt/Vurea above the prescribed threshold should result in decreased concentrations.

Fairly similar deceiving results, pleading against a unique universal marker of uremic solute removal, were obtained in two recent studies evaluating the associations of uremic retention solute concentrations with estimated Glomerular Filtration Rates (eGFR) in patients of Chronic Kidney Disease (CKD) stage 2 to 5, not on dialysis [26,27]. These data strongly suggest that other factors than GFR are more powerful determinants of serum solute concentration [26]. These include renal tubular secretion (IS, HA) [52], metabolic factors (ADMA) [53], intestinal secretion, absorption
We found that residual renal function (RRF) distinguishes well among solute concentrations. This confirms previous findings for eGFR as predictor for solute concentrations in CKD 2–5 patients not on dialysis [69–72]. In addition, even limited increments of RRF are substantially more important than dialyzer clearance as a determinant of β_2M concentrations in patients on high flux hemodialysis [63] and even hemodiafiltration, in spite of enhanced β_2M clearance with this strategy due to convection [64,65]. Also for the protein bound compounds, RRF has a major contribution to total solute removal of patients on dialysis [66,67]. The contribution of RRF to the differences between patients in the serum concentration of β_2M is in correspondence with the inverse associations between RRF and another middle molecule, Fibroblast Growth Factor-23 (FGF23) as previously found in a prospective observational cohort study in peritoneal and hemodiagnosis patients [68].

Our findings for RRF as predictor for most uremic solute concentrations in the dialysis population do not fully match our previous findings for eGFR as predictor for solute concentrations in CKD 2–5 patients not on dialysis [69–72]. This might be due to a difference in calculation of the renal function: i.e. while RRF in this study is assessed directly using concentrations of Crea and/or CystC in blood and urine, in our previous studies eGFR was estimated only using blood concentrations of Crea and/or CystC. The contribution of RRF to the differences between patients in the serum concentration of β_2M is in correspondence with the inverse associations between RRF and another middle molecule, Fibroblast Growth Factor-23 (FGF23) as previously found in a prospective observational cohort study in peritoneal and hemodiagnosis patients [68].

Our data with regards to residual renal function point into the same direction as those recently reported by Marquez et al [69–72], also showing inverse correlations between protein bound solute concentrations and residual renal function, even if they did not take into account a measure of protein intake such as PNA.

Regarding PNA, significant correlations were found with predialysis urea concentrations, as could be expected from the PNA formula (equation 8). However, PNA is also well related to optimal nutritional status than dialysis adequacy [62]. In addition, even limited increments of RRF are substantially more important than dialyzer clearance as a determinant of β_2M concentrations in patients on high flux hemodialysis [63] and even hemodiafiltration, in spite of enhanced β_2M clearance with this strategy due to convection [64,65]. Also for the protein bound compounds, RRF has a major contribution to total solute removal of patients on dialysis [66,67].

The contribution of RRF to the differences between patients in the serum concentration of β_2M is in correspondence with the inverse associations between RRF and another middle molecule, Fibroblast Growth Factor-23 (FGF23) as previously found in a prospective observational cohort study in peritoneal and hemodiagnosis patients [68].

Our findings for RRF as predictor for most uremic solute concentrations in the dialysis population do not fully match our previous findings for eGFR as predictor for solute concentrations in CKD 2–5 patients not on dialysis [69–72]. This might be due to a difference in calculation of the renal function: i.e. while RRF in this study is assessed directly using concentrations of Crea and/or CystC in blood and urine, in our previous studies eGFR was estimated only using blood concentrations of Crea and/or CystC. In addition, GFR in the present dialysis population is much lower than in the earlier CKD stages, whereas dialysis is an additional confounder affecting concentration. Thus conditions in between studies were entirely different.

Our data with regards to residual renal function point into the same direction as those recently reported by Marquez et al [69–72], also showing inverse correlations between protein bound solute concentrations and residual renal function, even if they did not take into account a measure of protein intake such as PNA.

Regarding PNA, significant correlations were found with predialysis urea concentrations, as could be expected from the PNA formula (equation 8). However, PNA is also well related to optimal nutritional status than dialysis adequacy [62]. In addition, even limited increments of RRF are substantially more important than dialyzer clearance as a determinant of β_2M concentrations in patients on high flux hemodialysis [63] and even hemodiafiltration, in spite of enhanced β_2M clearance with this strategy due to convection [64,65]. Also for the protein bound compounds, RRF has a major contribution to total solute removal of patients on dialysis [66,67].

Table 4. P and R-values for Spearman correlations between the solute concentrations and the different patient characteristics.

Solute	Covariates/R-value of full model
Urea	PNA/0.894
Crea	PNA/0.336 Kt/V/0.624
ADMA	
SDMA	
UA	PNA/0.373
β_2M	RRF/-0.415
HA	RRF/-0.431
IS	RRF/-0.380
IAA	RRF/-0.410
PCS	PNA/0.529
PCG	PNA/0.349 RRF/0.441
CMPF	PNA/0.445 RRF/0.438
Free HA	RRF/0.229
Free IS	RRF/0.282
Free IAA	RRF/0.401
Free PCS	RRF/0.410
Free PCG	RRF/0.438

Empty cells indicate that the correlation analysis did not include other elements that contributed significantly. doi:10.1371/journal.pone.0076838.t005

| Table 5. Multifactor analysis: covariates with cumulative R-value. |
|-------------------|-------------------|
Solute	Covariates/R-value of full model
Urea	PNA/0.894
Crea	PNA/0.336 Kt/V/0.624
ADMA	
SDMA	
UA	PNA/0.373
β_2M	RRF/-0.415
HA	RRF/-0.431
IS	RRF/-0.272
IAA	
PCS	PNA/0.529
PCG	PNA/0.349 RRF/0.441
CMPF	age/0.346
Free HA	RRF/-0.453
Free IS	RRF/-0.380
Free IAA	RRF/-0.410
Free PCS	PNA/0.445
Free PCG	PNA/0.346 RRF/0.438

Empty cells indicate that the correlation analysis did not include other elements that contributed significantly. doi:10.1371/journal.pone.0076838.t005

Table 4.	P and R-values for Spearman correlations between the solute concentrations and the different patient characteristics.
Solute	Covariates/R-value of full model
urea	PNA/0.373
Crea	PNA/0.336
β_2M	RRF/-0.415
HA	RRF/-0.431
IS	RRF/-0.380
IAA	RRF/-0.410
PCS	PNA/0.529
PCG	PNA/0.349 RRF/0.441
CMPF	age/0.346
Free HA	RRF/-0.453
Free IS	RRF/-0.380
Free IAA	RRF/-0.410
Free PCS	PNA/0.445
Free PCG	PNA/0.346 RRF/0.438

Empty cells indicate that the correlation analysis did not include other elements that contributed significantly. doi:10.1371/journal.pone.0076838.t005

Table 5.	Multifactor analysis: covariates with cumulative R-value.
Solute	Covariates/R-value of full model
urea	PNA/0.373
Crea	PNA/0.336
β_2M	RRF/-0.415
HA	RRF/-0.431
IS	RRF/-0.272
IAA	PNA/0.529
PCS	PNA/0.349 RRF/0.441
CMPF	age/0.346
Free HA	RRF/-0.453
Free IS	RRF/-0.380
Free IAA	RRF/-0.410
Free PCS	PNA/0.445
Free PCG	PNA/0.346 RRF/0.438

Empty cells indicate that the correlation analysis did not include other elements that contributed significantly. doi:10.1371/journal.pone.0076838.t005
substantial differences in serum concentrations of many other solutes under study. These data are consistent with growing evidence that food protein intake and its intestinal processing, to a large extent regulated by the gut microbiota, plays an important role in uremic toxin generation, especially in relation with protein bound molecules derived from amino acid metabolites such as indole or p-cresol [29,73,74]. Of note, whereas quartiles of PNA showed variances in concentrations of solutes that are amino acid metabolites and thus depending on protein intake, this was not the case for $\beta_{2}M$ which, as a component of major histocompatibility complex class I molecules, is of endogenous origin.

Our data might seemingly be in contradiction with the current understanding that inadequate nutrition is an important predictor of outcome in chronic hemodialysis patients [75–77], since low values of PNA have been associated with higher morbidity and mortality [78,79] whereas here they are linked to lower uremic toxin concentrations. However, for several uremic retention solutes such as AGEs and Hcy, a low rather than high concentration has been associated with higher mortality in dialysis patients [69–72]; these differences have been attributed to the fact that the toxic effect of the molecules was overridden by the deleterious impact of malnutrition and the lower intake of solutes or their precursors when less food is entering the intestine [69,71]. For protein bound toxins, like indoxyl sulfate or p-cresylsulfate, however, high, not low, concentration has repeatedly been associated with mortality, even after adjustment for protein intake parameters [39,40,42], suggesting that toxin concentration in this case overrides the impact of nutrition on outcome. This does not take away that low protein intake should be avoided in hemodialysis patients due to its negative impact on outcome per se [77,78]. Our data do not refute high protein intakes but are only proof of concept that the intestinal protein load is an important source of uremic toxins, and that therapeutic means to reduce this (probiotics, prebiotics, sorbents), if they are not jeopardizing nutritional status, may have added value to the removal obtained by dialysis and should be explored and assessed in controlled trials.

Furthermore, PNA is not only a nutrition term but is also influenced by the metabolic status of the patient. Examination of the body weights during a period starting one month before until one month after the study reveals however that 35% of the patients are stable in weight, while only minor changes (1.8%) were seen in the remaining group with a comparable number of patients with increasing and decreasing body weight, respectively [69.0 (61.3–78.8) kg]. Hence, changes in metabolic status in our patient population did not influence correlations between PNA and uremic toxin concentrations.

A small number of studies suggested that PNA linearly varies with the dialysis dose Kt/V_{urea} [80,81], but the HEMO study failed to demonstrate any significant change in protein intake attributable to hemodialysis dose [92]. The present study as well did not find any correlation between PNA and Kt/V_{urea} (data not shown).

Strengths of this study are the assessment of a population from one single unit where the same standards of treatment are applied overall, and the inclusion of several parameters with the potential impact on solute concentration. A shortcoming of this study is its transversal nature with only one set of values per patient at one single moment. However, an analysis using average Kt/V_{urea} of the same population over a period of 3 months resulted in the same conclusions (data not shown). In addition, single values of PNA and RRF were used which nevertheless resulted in much higher variances. An analysis using average PNA of the same population over a period of 3 months resulted in even more correlations with uremic toxin concentrations (i.e. also correlated with free IS and free IAA concentrations). Another shortcoming might have been the use of predialysis uremic toxin concentrations. However, an analysis using the time averaged concentration (TAC) of urea, the only solute of which the post dialysis value was available to calculate TAC, gave similar results. Finally, the study results for PNA could have been skewed by not considering the urea concentration after post-dialysis rebound [93] and by only looking at a midweek dialysis session possibly overestimating the weekly value [84] and not including intraweek variability [95]. However, since overestimations by not considering urea rebound are only in the range of 6% [93], since we considered midweek sessions with similar dialysis durations (245±10 min) which were constant during the preceding three months, and since intraweek variations (estimated being 9.3% [95]) are likely to be counter-balanced among patients, our correlation analyses between PNA and uremic toxin concentrations can be considered representative.

Conclusion

In conclusion, serum concentrations of most uremic toxins are correlated with residual renal function and protein equivalent of nitrogen appearance, and not with dialysis adequacy as assessed by Kt/V_{urea}. Hence, we conclude from this observational study that efforts to control intestinal load of uremic toxin precursors by dietary or other interventions, and preserving RRF are important approaches to decrease uremic solute concentration and by extension their toxicity.

Acknowledgments

The first author is working as postdoctoral fellow for the Belgian Fund for Scientific Research-Flanders (FWO-Flanders). The authors are indebted to the dialysis nurses and to the laboratory staff, MA Waterhoos and M Van Landschoot, for their assistance.

Author Contributions

Conceived and designed the experiments: SE AD RV. Performed the experiments: SE GG NN. Analyzed the data: SE WVB. Contributed reagents/materials/analysis tools: GG NN. Wrote the paper: SE WVB RV.

References

1. Vanholder R, Schepers E, Meert N, Lameire N (2006) What is uremia? Retention versus oxidation. Blood Purif 24: 33–38.
2. Vanholder R, Baumert U, Brunet P, Cohen G, Gloireux G, et al. (2000) A bench to bedside view of uremic toxins. J Am Soc Nephrol 19: 863–870.
3. Meyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357: 1316–1325.
4. Vanholder R, Davenport A, Hannedouche T, Kooman J, Kribben A, et al. (2012) Reimbursement of dialysis: a comparison of seven countries. J Am Soc Nephrol 23: 1291–1298.
5. Gotch FA, Sargent JA (1985) A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int 20: 526–534.
6. Port FK, Wolfe RA, Hulbert-Sharon TE, McCullough KP, Ashby VB, et al. (2004) High dialysis dose is associated with lower mortality among women but not among men. Am J Kidney Dis 43: 1014–1023.
7. Port FK, Pisoni RL, Bragg-Gresham JL, Satayathum SS, Young EW, et al. (2012) DOPPS estimates of patient life years attributable to modifiable hemodialysis practices in the United States. Blood Purif 22: 175–180.
8. Sarah K, Canaud BJ, Depner TA, Keen ML, McCullough KF, et al. (2004) Dose of dialysis: key lessons from major observational studies and clinical trials. Am J Kidney Dis 44: 47–53.
9. Sirich TL, Luo FJ, Plummer NS, Hostetter TH, Meyer TW (2012) Selectively increasing the clearance of protein-bound uremic solutes. Nephrol Dial Transplant 27: 1574–1579.
10. Basile C, Libutti P, Di Turo AL, Casino FG, Vernaglione I, et al. (2011) Removal of uremic retention solutes in standard bicarbonate hemodialysis and long-hour slow-flow bicarbonate hemodialysis. Nephrol Dial Transplant 26: 1296–1303.

11. Elsoy S, Van Biesen W, Dhondt A, Van de Weyele H, Gheerbrant E, et al. (2008) Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int 73: 765–770.

12. Elsoy S, Van Biesen W, Dhondt A, De Smet R, Marrascanu B, et al. (2009) Impact of increasing hemodialysis frequency versus hemodiasit on removal of urea and guanidino compounds: a kinetic analysis. Nephrol Dial Transplant 24: 2225–2232.

13. Faghih RM, Vanholsbergen R, De Smet R, Schi D, Antonelli F, et al. (2001) Advanced glycation end products: specific fluorescent markers of pentosidase like compounds during short daily hemodialysis. Int J Artif Organs 24: 256–262.

14. Faghih RM, De Smet R, Buoncristiani U, Lanceit N, Vanholsbergen R (2002) Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Nephrol Dial Transplant 17: 238.

15. Tattersall JE, DeTakats D, Chamney P, Greenwood RN, Farrington K (1996) Standard Kt/Vurea: a method of calculation that includes effects of fluid and protein. J Am Soc Nephrol 7: 16–31.

16. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, et al. (2012) The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int 80: 1080–1091.

17. Walsh M, Mann BJ, Klarenbach S, Tonelli M, Hemmelgarn B, et al. (2010) The effects of nocturnal compared with conventional hemodialysis on mineral metabolism: A randomized-controlled trial. Hemodial Int 14: 174–181.

18. Ayus JC, Maltman AR, Aigner SB, Van As, et al. (2005) Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammation markers: a prospective, controlled study. J Am Soc Nephrol 16: 2778–2788.

19. Chertow GM, Levin NW, Beck JJ, Ebersberger PW, Gassman JJ, et al. (2011) The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int 80: 1080–1091.

20. Neirynck N, Eloot S, Glorieux G, Barreto DV, Barreto FC, et al. (2012) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109: 172–177.

21. Liabeuf S, De Smet R, Moor B, Verheke K, Vanrenterghem Y, et al. (2006) Free p-cresyl sulfate is associated with cardiovascular disease in hemodialysis patients. Kidney Int 73: 1174–1186.

22. Meier-Kriesche HU, Verheke K, De Smet R, Moor B, Vanrenterghem Y, et al. (2009) The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 54: 891–901.

23. Yamazaki H, Souma A, Sagawa M, Qureshi AR, Carroccio A, et al. (2008) ADMA levels correlate with proteinuria, secondary amyloidosis, and endothelial dysfunction. J Am Soc Nephrol 19: 392–398.

24. Yu MA, Sanchez-Lozada LG, Johnson RJ, Karg DH (2010) Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 28: 1234–1242.

25. Zoccali C, Mairol R, Mallaini F, Sesti G, Periconi F (2006) Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol 17: 1466–1471.

26. Cheung AK, Rocco MV, Yu V, Leyboldt JK, Levin NW, et al. (2006) Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEEDO study. J Am Soc Nephrol 17: 4398–4401.

27. McGuire DJ, Buttmore AL, Lynn KL, Nicholls MG, Jardine DI, et al. (2001) A Comparative Study of Blood Pressure Control with Short In-Center versus Long Home Hemodialysis. Blood Purif 19: 293–300.

28. McEnery TW, Sera JL, Hostetter TH (2011) Dialysis cannot be dosed. Semin Dial 24: 471–479.

29. Locatelli F, Martin-Malo A, Hanneveou T, Loureiro A, Papadimitrou M, et al. (2009) Effect of membrane permeability on survival of hemodialysis patients. J Am Soc Nephrol 20: 645–654.

30. Santos A, Mancini E, Bolzan R, Boggi R, Cagnoli L, et al. (2008) The effect of on-line high-flux hemodialysis versus low-flux hemodialysis on mortality in chronic kidney failure: a small randomized controlled trial. Am J Kidney Dis 52: 557–561.

31. Duranton F, Cohen G, De Smet R, Rodriguez M, Janssouk J, et al. (2012) Normal and Pathologic Concentrations of Uremic Toxins. J Am Soc Nephrol 23: 1238–1270.

32. Vanholsbergen R, De Smet R, Gheerbrant E, Argiles A, Boumendil P, et al. (2003) Removal on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63: 1934–1943.

33. Elsoy S, Schepers E, Barroto DV, Barretto FC, Liabeuf S, et al. (2011) Estimated glomerular filtration rate is a poor predictor of concentration for a broad range of uremic toxins. J Am Soc Nephrol 22: 1266–1273.

34. Neirynck N, Elsoy S, Gheerbrant E, Barreto FC, et al. (2012) Estimated glomerular filtration rate is a poor predictor of the concentration of middle molecular weight uremic solutes in chronic kidney disease. Philos Trans Proc 367: 1–9.

35. Vanholsbergen R, Elsoy S, Schepers E, Neirynck N, Gheerbrant E, et al. (2011) An Obituary for GFR as the Main Marker for Kidney Function? Semin Dial 25: 9–16.

36. Schepers E, Gheerbrant E, Vanholsbergen R (2010) “The gut: the forgotten organ in uremia?” Blood Purif 29: 130–136.

37. Daugirdas JT (1993) Second generation logarithmic estimates of single-pool variable volume Kr/V: an analysis of error. J Am Soc Nephrol 4: 1205–1213.

38. Daugirdas JT, Elsoy S, Etienne T, Tatterson J (2011) Section II. Hemodialysis adequacy. (2002) Nephrol Dial Transplant 17 Suppl 16: S1–S101.

39. Vanholsbergen R, Hoeflig N, De SR, Ringrose S (1992) Extraction of protein bound ligands from azotemic sera: comparison of 12 deproteinization methods. Kidney Int 41: 1707–1712.

40. Daugirdas JT, Djedje TA, Greene T, Levin NW, Chertow GM, et al. (2010) Standard Kr/Vurca: a method of calculation that includes effects of fluid removal and residual kidney clearance. Kidney Int 77: 637–644.

41. Daugirdas JT, Smey SW (1997) Effect of a two compartment distribution on apparent urea distribution volume. Kidney Int 51: 1270–1273.

42. Tattersall JE, DeTakats D, Channey P, Greenwood RN, Farrington K (1996) The post-hemodialysis rebound: predicting and quantifying its effect on Kr/V. Kidney Int 50: 2094–2102.

43. Egan KM, Stern CE, Egan KM, Stern CE, Meier-Kriesche HU, et al. (2004) Measurement of renal function, when to refer and when to start dialysis. (2002) Nephrol Dial Transplant 17 Suppl 7: 7–15.

44. National Kidney Foundation (2000) KDOQI Guidelines: Nutrition in Chronic Renal Failure. Am J Kidney Dis 35: S1–S40.
change in beta2-microglobulin levels in hemodiafiltration patients. Clin J Am Soc Nephrol 5: 80–86.

66. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y (2003) Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int 64: 2238–2243.

67. Marquez JO, Tambra S, Luo FY, Li Y, Plummer NS, et al. (2011) Contribution of residual function to removal of protein-bound solutes in hemodialysis. Clin J Am Soc Nephrol 6: 290–296.

68. Viaene L, Bammens B, Meijers BK, Vanrenterghem Y, Vanderauwerden D, et al. (2012) Residual renal function is an independent determinant of serum FGF-23 levels in dialysis patients. Nephrol Dial Transplant 27: 2017–2022.

69. Schwebler SB, Metzger T, Schanz R, Wanner C (2002) Advanced glycation end products and mortality in hemodialysis patients. Kidney Int 62: 301–310.

70. Kalantar-Zadeh K, Block G, Humphreys MH, McAllister CJ, Kopple JD (2004) A low, rather than a high, total plasma homocysteine is an indicator of poor outcome in hemodialysis patients. J Am Soc Nephrol 15: 442–453.

71. Suliman ME, Steinvinkel P, Qureshi AR, Kalantar-Zadeh K, Barany P, et al. (2007) The reverse epidemiology of plasma total homocysteine as a mortality risk factor is related to the impact of wasting and inflammation. Nephrol Dial Transplant 22: 209–217.

72. Suliman ME, Steinvinkel P, Qureshi AR, Barany P, Heimburger O, et al. (2004) Hyperhomocysteinemia in relation to plasma free amino acids, biomarkers of inflammation and mortality in patients with chronic kidney disease starting dialysis therapy. Am J Kidney Dis 44: 455–465.

73. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y (2004) Impairment of small intestinal protein assimilation in patients with end-stage renal disease: extending the malnutrition-inflammation-atherosclerosis concept. Am J Clin Nutr 80: 1536–1543.

74. Evenepoel P, Meijers BK, Bammens BR, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl : S12–S19.

75. Schulman G (2004) The dose of dialysis in hemodialysis patients: impact on nutrition. Semin Dial 17: 479–489.

76. Marcel R, Tersel JL, de la Cal MA, Gamez C (1997) The impact of malnutrition in morbidity and mortality in stable haemodialysis patients. Spanish Cooperative Study of Nutrition in Hemodialysis. Nephrol Dial Transplant 12: 2324–2331.

77. Bergstrom J (1995) Nutrition and mortality in hemodialysis. J Am Soc Nephrol 6: 1329–1341.

78. Acchiardo SR, Moore LW, Latour PA (1983) Malnutrition as the main factor in morbidity and mortality of hemodialysis patients. Kidney Int Suppl 16: S199–S203.

79. Laird NM, Berkley CS, Lowrie EG (1983) Modeling success or failure of dialysis therapy: the National Cooperative Dialysis Study. Kidney Int Suppl : S101–S106.

80. Lindley RM, Spanner E. (1989) A hypothesis: the protein catabolic rate is dependent upon the type and amount of treatment in dialyzed uremic patients. Am J Kidney Dis 13: 382–389.

81. Azar AT, Wahba K, Mohamed AS, Massoud WA (2007) Association between dialysis dose improvement and nutritional status among hemodialysis patients. Am J Nephrol 27: 113–119.

82. Rocco MV, Dwyer JT, Larive B, Greene T, Cockram DB, et al. (2004) The effect of dialysis dose and membrane flux on nutritional parameters in hemodialysis patients: results of the HEMO Study. Kidney Int 65: 2321–2334.

83. Stegeman CA, Huisman RM, de RB, Jaostema A, de Jong PE (1995) Determination of protein catabolic rate in patients on chronic intermittent hemodialysis: urea output measurements compared with dietary protein intake and with calculation of urea generation rate. Am J Kidney Dis 25: 887–895.

84. Lopot F, Kotyk P, Biba J, Valek A (1995) Analysis of the urea generation rate and the protein catabolic rate in hemodialyzed patients. Artif Organs 19: 832–836.

85. Kloppenburg WD, Stegeman CA, Hooyschuur M, van der Ven J, de Jong PE, et al. (1999) Assessing dialysis adequacy and dietary intake in the individual hemodialysis patient. Kidney Int 55: 1961–1969.