ASYMPTOTIC BEHAVIOR FOR A SCHRÖDINGER EQUATION WITH NONLINEAR SUBCRITICAL DISSIPATION

THIERRY CAZENAVE
Sorbonne Université & CNRS, Laboratoire Jacques-Louis Lions, B.C. 187
4 place Jussieu, 75252 Paris Cedex 05, France

ZHENG HAN∗
Department of Mathematics, Hangzhou Normal University
2318 Yuhangtang Road, 311121 Hangzhou, China

(Communicated by Joachim Krieger)

Abstract. We study the time-asymptotic behavior of solutions of the Schrödinger equation with nonlinear dissipation
\[\partial_t u = i \Delta u + \lambda |u|^{\alpha} u \]
in \(\mathbb{R}^N \), \(N \geq 1 \), where \(\lambda \in \mathbb{C} \), \(\Re \lambda < 0 \) and \(0 < \alpha < \frac{2}{N} \). We give a precise description of the behavior of the solutions (including decay rates in \(L^2 \) and \(L^\infty \), and asymptotic profile), for a class of arbitrarily large initial data, under the additional assumption that \(\alpha \) is sufficiently close to \(\frac{2}{N} \).

1. Introduction. In this paper, we consider the Schrödinger equation with nonlinear dissipation
\[\begin{cases} \partial_t u = i \Delta u + \lambda |u|^{\alpha} u \\ u(0, x) = u_0, \end{cases} \tag{1.1} \]

where \(\lambda \in \mathbb{C} \) with \(\Re \lambda < 0 \) \(\tag{1.2} \)
and \(0 < \alpha < \frac{2}{N} \).

Equation (1.1) is itself a particular case of the more general complex Ginzburg-Landau equation on \(\mathbb{R}^N \): \(u_t = e^{i\theta} \Delta u + z|u|^{\alpha} u \), where \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \), \(z \in \mathbb{C} \) and \(\alpha > 0 \), which is a generic modulation equation describing the nonlinear evolution of patterns at near-critical conditions (see e.g. [20, 7, 16]).

Equation (1.1) is mass-subcritical, and is globally well-posed in \(L^2(\mathbb{R}^N) \) and \(H^1(\mathbb{R}^N) \). See Proposition 2.1 below.

Concerning the large-time asymptotic behavior of the solutions of (1.1) under assumption (1.2), \(\alpha = \frac{2}{N} \) is a limiting case. Indeed, if \(\alpha > \frac{2}{N} \), \(\lambda \in \mathbb{C} \), then a large set of initial values produces solutions that scatter as \(t \to \infty \), i.e. that are asymptotic to a solution of the free Schrödinger equation. (See [21, 9, 10, 6, 8, 17, 1, 4].)
If \(\alpha \leq \frac{2}{N} \), then in many cases solutions are known to decay faster than the solutions of the free Schrödinger equation. If \(\alpha = \frac{2}{N} \), then for a large class of initial values, the solutions of (1.1) can be described by an asymptotic formula, and have the decay rate \((t \log t)^{-\frac{N}{2}}\). See [19, 15, 5]. In addition, for some solutions,
\[
(t \log t)^{\frac{n}{2}} \|u(t)\|_{L^\infty} \xrightarrow{t \to \infty} (\alpha |\Re \lambda|)^{-\frac{N}{2}}.
\]

See [5].

In the one-dimensional case \(N = 1 \), if \(\alpha < 2 \) is sufficiently close to 2 and
\[
\frac{\alpha}{2\sqrt{\alpha + 1}} |3\lambda| \leq |\Re \lambda|, \tag{1.3}
\]
then the large-time asymptotic behavior of solutions can be described for any initial data in \(H^1(\mathbb{R}) \cap L^2(\mathbb{R}, |x|^2 dx) \), and the solutions satisfy
\[
\|u(t)\|_{L^\infty} \lesssim t^{-\frac{1}{2}}, \tag{1.4}
\]
see [15]. In addition, in any space dimension \(N \geq 1 \), under assumption (1.3) and for \(\alpha < \frac{2}{N} \) sufficiently close to \(\frac{2}{N} \), all solutions with initial value in \(H^1(\mathbb{R}^N) \cap L^2(\mathbb{R}^N, |x|^2 dx) \) satisfy \(\|u(t)\|_{L^\infty} \lesssim t^{-\left(\frac{1}{2} - \frac{2}{N}\right)q} \) for all \(q < \frac{2}{N+1} \). See [11].

In space dimensions \(N \geq 1 \), if \(\alpha < \frac{2}{N} \) sufficiently close to \(\frac{2}{N} \), the upper estimate (1.4), as well as lower estimates, is established for sufficiently small initial data in a certain space. See [12].

Our purpose in this article is to complete the previous results for (1.1), and describe the large-time asymptotic behavior of the solutions for a class of arbitrarily large initial data. In order to state our result, we recall the definition of the space \(\mathcal{X} \) introduced [4], which we use in a essential way. We consider three integers \(k, m, n \) such that
\[
k > \frac{N}{2}, \quad n > \max\left\{ \frac{N}{2} + 1, \frac{N(N+1)}{4} \right\}, \quad 2m \geq k + n + 1 \tag{1.5}
\]
and we let
\[
J = 2m + 2 + k + n. \tag{1.6}
\]
We define the space \(\mathcal{X} \) by
\[
\mathcal{X} = \{ u \in H^J(\mathbb{R}^N); (x)^n D^\beta u \in L^\infty(\mathbb{R}^N) \text{ for } 0 \leq |\beta| \leq 2m, \quad (x)^n D^\beta u \in L^2(\mathbb{R}^N) \text{ for } 2m + 1 \leq |\beta| \leq 2m + 2 + k, \quad (x)^{J-|\beta|} D^\beta u \in L^2(\mathbb{R}^N) \text{ for } 2m + 2 + k < |\beta| \leq J \tag{1.7}
\}
\]
and we equip \(\mathcal{X} \) with the norm
\[
\|u\|_\mathcal{X} = \sum_{j=0}^{2m} \sup_{|\beta| = j} \| (x)^n D^\beta u \|_{L^\infty} + \sum_{\nu=0}^{k+1} \sum_{\mu=0}^{n} \sum_{|\beta|=\nu+\mu+2m+1} \| (x)^{n-\mu} D^\beta u \|_{L^2}. \tag{1.8}
\]
where
\[
(x) = (1 + |x|^2)^{\frac{1}{2}}.
\]
In particular, \((\mathcal{X}, \| \cdot \|_\mathcal{X}) \) is a Banach space and \(\mathcal{X} \hookrightarrow H^J(\mathbb{R}^N) \).

Our main result is the following.

Theorem 1.1. Let \(\lambda \in \mathbb{C} \) satisfy (1.2), assume (1.5)-(1.6) and let \(\mathcal{X} \) be defined by (1.7)-(1.8). Given any \(K > 1 \), there exist \(\frac{2}{N+1} < \alpha_1 < \frac{2}{N} \) and \(b_1 > 0 \) with the
following property. Let $\alpha_1 \leq \alpha < \frac{2}{N}$. Suppose $u_0(x) = e^{i\frac{b|x|^2}{4}}v_0(x)$, where $b \geq b_1$ and $v_0 \in \mathcal{X}$ satisfies

$$\inf_{x \in \mathbb{R}^N} \langle x \rangle^\alpha |v_0(x)| > 0. \quad (1.9)$$

and

$$\|v_0\|_{\mathcal{X}} + \left(\inf_{x \in \mathbb{R}^N} \langle x \rangle^\alpha |v_0(x)| \right)^{-1} \leq K. \quad (1.10)$$

It follows that the corresponding solution $u \in C([0, \infty), H^1(\mathbb{R}^N))$ of (1.1) belongs to $L^\infty((0, \infty) \times \mathbb{R}^N)$. Moreover, there exist $f_0, \omega_0 \in L^\infty(\mathbb{R}^N)$, with f_0 real-valued and $\|f_0\|_{L^\infty} \leq \frac{1}{2}$, and $\langle \cdot \rangle^\alpha \omega_0 \in L^\infty(\mathbb{R}^N)$, such that

$$t^{\frac{1}{2} - \frac{\alpha}{N}} \|u(t) - z(t)\|_{L^2} + t^{\frac{1}{2}} \|u(t) - z(t)\|_{L^\infty} \leq Ct^{-\left(\frac{N+1}{2} - \frac{\alpha}{N}\right)}, \quad (1.11)$$

where

$$z(t, x) = (1 + bt)^{-\frac{N}{2}} e^{i\Theta(t, x)} \Psi \left(t, \frac{x}{1 + bt} \right) \omega_0 \left(\frac{x}{1 + bt} \right) \quad (1.12)$$

with

$$\Theta(t, x) = \frac{b|x|^2}{4(1 + bt)} - \frac{3\lambda}{\Re \lambda} \log \left(\Psi \left(t, \frac{x}{1 + bt} \right) \right) \quad (1.13)$$

and

$$\Psi(t, y) = \left(\frac{1 + f_0(y)}{1 + f_0(y) + \frac{2\alpha|\Re \lambda|}{b(2 - N\alpha)} |v_0(y)|^\alpha \left[(1 + bt)^{\frac{2 - N\alpha}{2}} - 1 \right] } \right)^{\frac{1}{2}}. \quad (1.14)$$

Moreover,

$$|\omega_0|^\alpha = \frac{|v_0|^\alpha}{1 + f_0}, \quad (1.15)$$

so that $\frac{2}{N}|v_0|^\alpha \leq |\omega_0|^\alpha \leq 2|v_0|^\alpha$. Furthermore,

$$t\|u(t)\|_{L^\infty} \xrightarrow{t \to \infty} \frac{2 - N\alpha}{2\alpha|\Re \lambda|}, \quad (1.16)$$

and

$$t^{-\left(\frac{1}{2} - \frac{\alpha}{N}\right)(1 - \frac{2}{N})} \leq \|u(t)\|_{L^2} \leq t^{-\left(\frac{1}{2} - \frac{\alpha}{N}\right)(1 - \frac{2\alpha}{N})} \quad (1.17)$$

as $t \to \infty$, where n is given by (1.5).

Remark 1.2. Here are some comments on Theorem 1.1.

(i) We have $v_0 \in \mathcal{X} \hookrightarrow L^2(\mathbb{R}^N)$, $\mathcal{X} \hookrightarrow H^1(\mathbb{R}^N)$, and $\mathcal{X} \hookrightarrow L^2(\mathbb{R}^N, |x|^2 dx)$ (because $n > \frac{N}{2} + 1$), so that $u_0 \in H^1(\mathbb{R}^N)$. Therefore, the solution $u \in C([0, \infty), H^1(\mathbb{R}^N))$ of (1.1) is well defined, see Proposition 2.1. Moreover, u is smoother than stated. Indeed, u is given by the pseudo-conformal transformation (5.1) in terms of a solution $v \in C([0, \frac{1}{2}], \mathcal{X})$ of equation (1.19). In particular, u is a classical solution of (1.1) (C^1 in t and C^2 in x).

(ii) Theorem 1.1 is valid in any dimension $N \geq 1$ and for any $\lambda \in \mathbb{C}$ with $\Re \lambda < 0$. In particular, we do not require assumption (1.3). The main restrictions are that α must be sufficiently close to $\frac{2}{N}$ and that the initial value must be bounded from below in the sense (1.9) and sufficiently oscillatory in the sense that b must be sufficiently large. Moreover, how close α must be to $\frac{2}{N}$ depends on a certain bound on the initial value through (1.10). On the other hand, there is no restriction on the size of u_0.
A typical initial value which is admissible in Theorem 1.1 is

\[v_0 = c(\cdot)^{-\alpha} + \varphi \]

with \(c \in \mathbb{C}, \ c \neq 0, \) and \(\varphi \in \mathcal{S}(\mathbb{R}^N), \ ||\varphi|| \leq ||c - \varepsilon||(\cdot)^{-\alpha}, \ \varepsilon > 0. \) Indeed, it is easy to check that \(v_0 \in X \) and \(v_0 \) satisfies (1.9). Then \(K \) must be chosen sufficiently large so that (1.10) holds and \(\alpha \) sufficiently close to \(\frac{N}{2}. \) Note that any value of \(n \) sufficiently large so that the second condition in (1.5) is satisfied, is admissible.

(vi) It follows from (1.16) and (1.17) that

\[\|u(t)\|_{L^\infty} \rightarrow 0, \quad t \rightarrow \infty. \]

Thus we see that the asymptotic behavior of \(u(t) \) as \(t \rightarrow \infty \) is described by the function \(z(t) \) via the estimate (1.11). Note that the functions \(f_0 \) and \(\Psi \) are both real-valued, and that \(\frac{1}{2} \leq 1 + f_0 \leq \frac{3}{2} \) and \(0 < \Psi \leq 1. \) The function \(\Theta \) is also real-valued. If \(3\lambda \leq 0, \) then \(\Theta > 0. \) If \(3\lambda > 0, \) then \(\Theta \) takes both positive and negative values.

Remark 1.3. If \(R\lambda > 0, \) then finite-time blowup occurs for equation (1.1), at least for \(H^1 \)-subcritical powers \((N-2)\alpha < 4. \) See [3, 2]. Moreover, if \(\alpha < \frac{2}{N}, \) then all nontrivial solutions blow up in finite or infinite time, see [1]. Finite-time blowup also occurs if \(R\lambda = 0, \) \(3\lambda > 0, \) and \(\alpha \geq \frac{4}{N}, \) since in this case (1.1) is the focusing NLS. If \(R\lambda < 0, \) \(\alpha > \frac{4}{N} \) and condition (1.3) is not satisfied, then whether or not some solutions of (1.1) blow up in finite time seems to be an open question.

We apply the strategy of [4, 5] to prove Theorem 1.1. We require the nonvanishing condition (1.9), as well as strong decay and regularity of the initial data to overcome the difficulty of non-smooth nonlinearity and derivative loss in their estimates. This is why the various conditions in the definition of the space \(X \) arise. The other main ingredient is the application of the pseudo-conformal transformation. Given any \(b > 0, \) by the pseudo-conformal transformation

\[v(t, x) = (1 - bt)^{-\frac{N}{2}} \left(\frac{t}{1 - bt} \right)^{\frac{x}{1 - bt}} e^{-\frac{bt|x|^2}{(1 - bt)^2}} \quad t \geq 0, \ x \in \mathbb{R}^N, \]

equation (1.1) is equivalent to the nonautonomous equation

\[
\begin{cases}
\partial_t v = i\Delta v + \lambda (1 - bt)^{-\frac{4 - N\alpha}{2}} |v|^\alpha v, \\
v(0, x) = v_0.
\end{cases}
\]

Note that the assumption \(\alpha \leq \frac{2}{N} \) implies that \((1 - bt)^{-\frac{4 - N\alpha}{2}} \) is not integrable at \(1/b. \) As in [5], we estimate the solution \(v(t, x) \) by allowing a certain growth of the various components of the \(X \)-norm of the solution, see (3.7)-(3.10). Using
Duhamel’s formula for (1.19), i.e.,
\[v(t) = e^{it\Delta}v_0 + \lambda \int_0^t (1 - bs)^{-\frac{2-N\alpha}{2}} e^{i(t-s)\Delta} |v(s)|^\alpha v(s) \, ds \]
(2.20)
and the elementary calculation
\[\int_0^t (1 - bs)^{-1-\nu} \, ds = \frac{1}{b\nu}[(1 - bt)^{-\nu} - 1] \leq \frac{1}{b\nu} (1 - bt)^{-\nu}, \]
(2.21)
we see that if \(e^{i(t-s)\Delta} |v(s)|^\alpha v(s) \) is estimated in a certain norm by \((1 - bs)^{-\mu}\), then \(v(t) \) can be controlled in that norm by \((1 - bs)^{-\mu + \frac{2-N\alpha}{2}}\). In the case \(\alpha = \frac{2}{N} \), one obtains the same power \((1 - bs)^{-\mu}\), and this can be used to close appropriate estimates. This is the strategy employed in [5]. In the present case \(\alpha < \frac{2}{N} \), we observe that if \(e^{i(t-s)\Delta} |v(s)|^\alpha v(s) \) is estimated in a certain norm by \((1 - bs)^{\mu - \frac{2-N\alpha}{2}}\), then \(v(t) \) can be controlled in that norm by \((1 - bs)^{-\mu}\). We obtain the extra decay by monitoring the decay of \(|v(s)|\) (see Lemma 3.1). The price to be paid is that the constants that appear in the calculations not only depend on \(1/b\), but also on \(\frac{2-N\alpha}{2}\). Therefore, in order to close the estimates, we are led to require not only that \(b\) is large, but also that \(\alpha\) is close to \(\frac{2}{N}\).

The rest of the paper is organized as follows. In section 2, we recall some estimates and a local well-posedness result in the space \(X\) for equation (1.19), taken from [4, 5]. The crucial estimate of the solutions is carried out in Section 3. Using these estimates, we describe in Section 4 the asymptotic behavior of the corresponding solutions of (1.19). Finally, we complete the proof of Theorem 1.1 in section 5, by applying the pseudo-conformal transformation.

2. Preliminary. We recall some properties of equation (1.1) which will be useful in the next sections. We begin with a global well-posedness result.

Proposition 2.1. Let \(0 < \alpha < \frac{4}{N}\) and let \(\lambda \in \mathbb{C}\) satisfy \(\Re\lambda \leq 0\). It follows that the Cauchy problem (1.1) is globally well-posed in \(L^2(\mathbb{R}^N)\) and in \(H^1(\mathbb{R}^N)\). More precisely, given any \(u_0 \in L^2(\mathbb{R}^N)\) there exists a solution \(u \in C([0, \infty), L^2(\mathbb{R}^N)) \cap L^{\alpha+2}(0, \infty), L^{\alpha+2}(\mathbb{R}^N))\) of (1.1). The solution is unique and depends continuously on \(u_0\) in \(C([0, T), L^2(\mathbb{R}^N)) \cap L^{\alpha+2}(0, T), L^{\alpha+2}(\mathbb{R}^N))\) for every \(T > 0\). If, in addition, \(u_0 \in H^1(\mathbb{R}^N)\), then \(u \in C([0, \infty), H^1(\mathbb{R}^N))\).

Proof. For the local theory (local existence, uniqueness, continuous dependence, regularity), see e.g. [13, 14]. For global existence, it is sufficient to estimate the \(L^2\) norm of \(u\). Multiplying (1.1) by \(\bar{u}\), taking the real part and integrating by parts, we obtain
\[\|u(t)\|^2_{L^2} + (-\Re\lambda) \int_0^t \|u(s)\|_{L^{\alpha+2}}^{\alpha+2} = \|u_0\|^2_{L^2}. \]
(2.21)
(This argument is formal, but (2.1) can be proved by standard approximation arguments, see for instance [18].) It follows that \(u\) is bounded in \(L^2(\mathbb{R}^N)\). \(\square\)

Next, we recall some estimates for the Schrödinger equation in the space \(X\).

Proposition 2.2 ([5, Proposition 2.1]). Assume (1.5)-(1.6) and let \(X\) be defined by (1.7)-(1.8). There exists \(C_1 \geq 1\) such that if \(T \geq 0, v_0 \in X\) and \(f \in C([0, T], X)\), then for all \(0 \leq t \leq T\), the solution \(v\) of
\[\begin{cases} \partial_t v = i\Delta v + f, \\ v(0, x) = v_0, \end{cases} \]
satisfies the following estimates.

(i) If $|\beta| \leq 2m$, then
\[\|\langle x \rangle^n D^\beta v(t)\|_{L^\infty} \leq \|v_0\|_X + C_1 \int_0^t (\|v(s)\|_X + \|\langle x \rangle^n D^\beta f(s)\|_{L^\infty}) \, ds. \tag{2.2} \]

(ii) If $|\beta| = \nu + \mu + 2m + 1$ with $0 \leq \nu \leq k + 1$ and $0 \leq \mu \leq n$, then
\[\|\langle x \rangle^{n-\nu} D^\beta v(t)\|_{L^\infty} \leq \|v_0\|_X + C_1 \int_0^t (\|v(s)\|_X + \|\langle x \rangle^{n-\nu} D^\beta f(s)\|_{L^2}) \, ds. \tag{2.3} \]

We now recall several estimates of the nonlinearity $|v|^{\alpha} v$. Given $\ell \in \mathbb{N}$, we set
\[\|u\|_{1,\ell} = \sup_{0 \leq |\beta| \leq \ell} \|\langle \cdot \rangle^n D^\beta u\|_{L^\infty} \tag{2.4} \]
\[\|u\|_{2,\ell} = \begin{cases} \sup_{2m+1 \leq |\beta| \leq \ell} \|\langle \cdot \rangle^n D^\beta u\|_{L^2} & \ell \geq 2m + 1 \\ 0 & \ell \leq 2m \end{cases} \tag{2.5} \]
and
\[\|u\|_{3,\ell} = \begin{cases} \sup_{2m+3+k \leq |\beta| \leq \ell} \|\langle \cdot \rangle^{j-\ell} D^\beta u\|_{L^2} & \ell \geq 2m + 3 + k \\ 0 & \ell \leq 2m + 2 + k \end{cases} \tag{2.6} \]

We have the following estimates of the nonlinearity.

Proposition 2.3 ([5], Proposition 3.1). Assume (1.5)-(1.6) and let X be defined by (1.7)-(1.8). Let $\alpha > 0$ and suppose that, in addition to (1.5), $n \geq \frac{N}{2\alpha}$. It follows that there exists a constant $C_2 \geq 1$ such that if $v \in X$ satisfies
\[\eta \inf_{x \in \mathbb{R}^N} \langle x \rangle^n |v(x)| \geq 1, \tag{2.7} \]
for some $\eta > 0$, then the following estimates hold.

(i) If $0 \leq |\beta| \leq 1$, then
\[\|\langle \cdot \rangle^n D^\beta (|v|^{\alpha} v)\|_{L^\infty} \leq C_2 \|v\|_{L^\infty} \|\langle \cdot \rangle^n D^\beta v\|_{L^\infty}. \tag{2.8} \]

(ii) If $2 \leq |\beta| \leq 2m$, then
\[\|\langle \cdot \rangle^n D^\beta (|v|^{\alpha} v)\|_{L^\infty} \leq C_2 \|v\|_{L^\infty} \|\langle \cdot \rangle^n D^\beta v\|_{L^\infty} + C_2 \|v\|_{L^\infty} \|\eta\|_{1,|\beta|-1} 2^{[|\beta|]} \|v\|_{1,|\beta|-1}. \tag{2.9} \]

(iii) If $2m + 1 \leq |\beta| \leq 2m + 2 + k$, then
\[\|\langle \cdot \rangle^n D^\beta (|v|^{\alpha} v)\|_{L^2} \leq C_2 \|v\|_{L^2} \|\langle \cdot \rangle^n D^\beta v\|_{L^2} + C_2 \|\eta\|_{1,2m} 2^{J+\alpha} \|v\|_{1,2m} \tag{2.10} \]
\[+ C_2 \|v\|_{L^2} \|\eta\|_{1,2m} 2^{J} \|v\|_{2,|\beta|-1} \]

(iv) If $2m + 3 + k \leq |\beta| \leq J$, then
\[\|\langle \cdot \rangle^{J-|\beta|} D^\beta (|v|^{\alpha} v)\|_{L^2} \leq C_2 \|v\|_{L^2} \|\langle \cdot \rangle^{J-|\beta|} D^\beta v\|_{L^2} + C_2 \|\eta\|_{1,2m} 2^{J+\alpha} \|v\|_{1,2m} \tag{2.11} \]
\[+ C_2 \|v\|_{L^2} \|\eta\|_{1,2m} 2^{J} \|v\|_{2,2m+2+k} + \|v\|_{3,|\beta|-1}. \]
Remark 2.4. Estimates (2.9)–(2.11) are not exactly the estimates of [5, Proposition 3.1]. First, 1 + \eta∥v∥_{1,\ell} is replaced by \eta∥v∥_{1,\ell} (with \ell = |\beta| - 1 in (2.9) and \ell = 2m in (2.10) and (2.11)). The two quantities are indeed equivalent, since by (2.7), \eta∥v∥_{1,\ell} ≥ 1. Next, the term \eta∥v∥_{1,2m}^{2J+\alpha}∥v∥_{2,|\beta| - 1} in [5, formula (3.9)] is replaced in formula (2.10) here by \eta∥v∥_{1,2m}^{2J}∥v∥_{2,|\beta| - 1}. This is in fact what the proof in [5] shows, see in particular [5, formulas (3.24) and (3.25)]. Finally, the term \eta∥v∥_{1,2m}^{2J+\alpha}∥v∥_{2,|\beta|} in [5, formula (3.10)] is replaced in formula (2.11) here by \eta∥v∥_{L_\infty}^{2J}∥v∥_{2,2m+2+\alpha} + ∥v∥_{3,|\beta| - 1}. Again, this is what the proof in [5] shows, see in particular [5, formulas (3.24) and (3.25)]. The term \eta∥v∥_{L_\infty}^{2J} in these estimates is important in our proof of Proposition 3.2 below.

Finally, we recall the local well-posedness of (1.19) in the space \mathcal{X}, see [4, Theorem 1] and [5, Proposition 4.1].

Proposition 2.5. Assume (1.5)-(1.6) and let \mathcal{X} be defined by (1.7)-(1.8). Let \alpha > 0 and suppose that, in addition to (1.5), \eta ≥ \frac{N}{2\alpha}. Let \lambda \in \mathbb{C} and \sigma \geq 0. If \nu_0 \in \mathcal{X} satisfies

\inf_{x \in \mathbb{R}^N} \left(\langle x \rangle^n \nu_0(x)\right) > 0, \tag{2.12}

then there exist 0 < T < \frac{1}{\lambda} and a unique solution \nu \in C([0, T], \mathcal{X}) of (1.19) satisfying

\inf_{0 \leq t \leq T} \inf_{x \in \mathbb{R}^N} \left(\langle x \rangle^n \nu(t, x)\right) > 0. \tag{2.13}

Moreover, \nu can be extended on a maximal existence interval [0, T_{\text{max}}) with 0 < T_{\text{max}} ≤ \frac{1}{\lambda} to a solution \nu \in C([0, T_{\text{max}}), \mathcal{X}) satisfying (2.13) for all 0 < T < T_{\text{max}} and if T_{\text{max}} < \frac{1}{\lambda}, then

\|\nu(t)\|_{\mathcal{X}} + \left(\inf_{x \in \mathbb{R}^N} \left(\langle x \rangle^n \nu(t, x)\right)\right)^{-1} \xrightarrow{t \uparrow T_{\text{max}}} \infty. \tag{2.14}

3. Estimates for (1.19). Throughout this section, we assume (1.5)-(1.6) and we let \mathcal{X} be defined by (1.7)-(1.8). We derive estimates for certain solutions of (1.19).

We first introduce several indices and seminorms. Let

\begin{align*}
\sigma_0 &= 0, \\
\sigma_1 &= \frac{1}{4[4J(J - 2m - 1) + 4J + (4/N) + 1](8m + 1)^{2m}}, \tag{3.1}
\end{align*}

and set

\begin{align*}
\sigma_j &= \begin{cases}
(8m + 1)^j \sigma_1, & 2 \leq j \leq 2m \\
\frac{2 - N\alpha}{2} + (4J + 2\alpha + 1) \sigma_{2m}, & j = 2m + 1 \\
4J \sigma_{2m}(j - 2m - 1) + \sigma_{2m+1}, & 2m + 2 \leq j \leq J.
\end{cases} \tag{3.2}
\end{align*}

It follows that

\begin{align*}
0 = \sigma_0 < \sigma_1 \leq \sigma_j < \sigma_k \leq \sigma_J, & \quad 1 \leq j < k \leq J. \tag{3.3}
\end{align*}

Moreover, it follows from (3.3) that

\begin{align*}
\sigma_J = [4J(J - 2m - 1) + 4J + 2\alpha + 1](8m + 1)^{2m} \sigma_1 + \frac{2 - N\alpha}{2}. \tag{3.4}
\end{align*}

We deduce from (3.5) and (3.2) that

\begin{align*}
\sigma_J \leq \frac{1}{2} & \quad \text{for } \alpha \in \left[\frac{3}{2N}, \frac{2}{N}\right]. \tag{3.6}
\end{align*}
Given $0 < T < \frac{1}{b}$ and $v \in C([0, T], \mathcal{X})$ satisfying (2.13), we define

\begin{align*}
\Phi_{1,T} &= \sup_{0 \leq t \leq T} \sup_{0 \leq J \leq 2^m} (1 - bt)^{\sigma_j} \|v\|_{1,j} \\
\Phi_{2,T} &= \sup_{0 \leq t \leq T} \sup_{2^m+1 \leq J \leq 2^{m+1}+k} (1 - bt)^{\sigma_j} \|v\|_{2,j} \\
\Phi_{3,T} &= \sup_{0 \leq t \leq T} \sup_{2^m+3+k \leq J \leq J} (1 - bt)^{\sigma_j} \|v\|_{3,j} \\
\Phi_{4,T} &= \sup_{0 \leq t \leq T} \inf_{x \in \mathbb{R}^N} \frac{\Im\langle x \rangle^n |v(t, x)|}{(1 - bt)^{\sigma_1}} \\
\end{align*}

where the norms $\| \cdot \|_{l,j}$ are given by (2.4)–(2.6), and we denote

\begin{align*}
\Phi_T &= \max\{\Phi_{1,T}, \Phi_{2,T}, \Phi_{3,T}\} \\
\Psi_T &= \max\{\Phi_T, \Phi_{4,T}\}. \\
\end{align*}

From these definitions, it is easy to verify that

\begin{align*}
\|v\|_{L^\infty(0, T), \mathcal{X}} &\leq C_3 (1 - bt)^{-\sigma_J} \Phi_T, \\
\|v(t)\|_{\ell,j} &\leq (1 - bt)^{-\sigma_j} \Psi_T, \quad \ell = 1, 2, 3 \\
\frac{1}{|\langle x \rangle^n|} v(t, x) &\leq (1 - bt)^{-\sigma_1} \Psi_T, \\
\end{align*}

where the constant $C_3 \geq 1$ is independent of $t \in [0, T]$.

Lemma 3.1. Suppose $\Re \lambda < 0$ and $\frac{3}{2N} \leq \alpha \leq \frac{2}{N}$. Let $K \geq 1$ and set

\begin{equation}
b_0 = \frac{16}{N} (4K)^{\frac{4}{2N}}. \\
\end{equation}

Let $b > 0$, let $v_0 \in \mathcal{X}$ satisfy (2.12), and let $v \in C([0, T_{\text{max}}], \mathcal{X})$ be the solution of (1.19) given by Proposition 2.5. If v satisfies

\begin{equation}
\sup_{0 \leq t \leq T} \Psi_t \leq 4K, \\
\end{equation}

for some $0 < T < T_{\text{max}}$ and if $b \geq b_0$, then

\begin{equation}
\|v(t)\|_{L^\infty} \leq \frac{b(2 - N\alpha)}{2\alpha |\Re \lambda|} \frac{(1 - bt)^{-\frac{4-N\alpha}{2}}}{1 - (1 - bt)^{-\frac{4-N\alpha}{2}}}, \\
\end{equation}

for all $0 < t \leq T$.

Proof. Multiplying (1.19) by π, taking the real part and using that $|v| > 0$ on $[0, T_{\text{max}}] \times \mathbb{R}^N$ by Proposition 2.5, we obtain

\begin{equation}
\partial_t |v| = L + \Re \lambda (1 - bt)^{-\frac{4-N\alpha}{2}} |v|^{\alpha+1} \\
\end{equation}

where

\begin{equation}
L(t, x) = -\frac{\Im (\pi \Delta v)}{|v|}; \\
\end{equation}

and so

\begin{equation}
-\frac{1}{\alpha} \partial_t (|v|^{-\alpha}) = |v|^{-\alpha-1} L + \Re \lambda (1 - bt)^{-\frac{4-N\alpha}{2}}. \\
\end{equation}
Integrating (3.21) in t, we obtain
\[
\frac{1}{|v(t,x)|^\alpha} = \frac{1}{|v_0(x)|^\alpha} + \frac{2\alpha|\Re \lambda|}{(2-N\alpha)b} \left[(1-bt)^{-\frac{2-N\alpha}{2}} - 1 \right] - \alpha \int_0^t |v(s,x)|^{-\alpha-1} L(s,x) \, ds
\]
so that
\[
|v(t,x)|^\alpha = \frac{|v_0(x)|^\alpha}{1 + f(t,x) + \frac{2\alpha|\Re \lambda|}{(2-N\alpha)b}|v_0(x)|^\alpha[(1-bt)^{-\frac{2-N\alpha}{2}} - 1]}
\] (3.22)
where
\[
f(t,x) = -\alpha \int_0^t |v_0(x)|^\alpha |v(s,x)|^{-\alpha-1} L(s,x) \, ds.
\] (3.23)
It follows from the definitions of Ψ_T and $L(t,x)$ that, for any $0 \leq s \leq t \leq T$
\[
|v_0(x)|^\alpha |v(s,x)|^{-\alpha-1} |L(s,x)| \leq (\langle x \rangle^\alpha |v_0|) (\langle x \rangle^n |v|)^{-\alpha-1} (\langle x \rangle^n |\Delta v|)
\]
\[
\leq (4K)^{2\alpha+2}(1-bs)^{-(\alpha+1)}\sigma_1 - \sigma_2
\] (3.24)
where in the last inequality we used
\[(\alpha + 1)\sigma_1 + \sigma_2 \leq (\alpha + 2)\sigma_2 \leq 4\sigma_2 \leq \sigma_3\]
by (3.3). Using $\sigma_3 \leq \sigma_j \leq \frac{1}{2}$ (see (3.6)), we obtain
\[
|f(t,x)| \leq \alpha \int_0^t (4K)^{2\alpha+2}(1-bs)^{-\frac{\alpha}{2}} \, ds \leq \frac{2\alpha(4K)^{2\alpha+2}}{b}.
\] (3.25)
We deduce from (3.25) and (3.16) that
\[
\frac{3}{2} \geq 1 + f(t,x) \geq \frac{1}{2},
\] (3.26)
for $b \geq b_0$, $0 \leq t \leq T$ and $x \in \mathbb{R}^N$. In particular, $1 + f \geq 0$ and estimate (3.18) follows.

Proposition 3.2. Suppose $\Re \lambda < 0$. Given $K \geq 1$, let $\alpha_1 \in (\max\{\frac{3}{2N}, \frac{2}{N+1}\}, \frac{2}{N})$ be given by
\[
\frac{12C_1C_2(4K)^{4J+1} |\lambda|}{\sigma_1 |\Re \lambda|} \left(\frac{2}{\alpha_1} - N \right) = 1,
\] (3.27)
and let
\[
b_1 = \max\left\{ \frac{16}{N}(4K)^{\frac{N}{2}+2}, 8C_3, \frac{32(4K)^{4J+4} |\lambda| C_1 C_2}{\sigma_1}, \frac{2^{\frac{2}{N}+3}\alpha(4K)^2}{3^{N+1}} \right\},
\] (3.28)
where σ_1 is given by (3.2), C_1 by Proposition 2.2, C_2 by Proposition 2.3, and C_3 by (3.13). If $v_0 \in \mathcal{X}$ satisfies (1.10), then for every $\alpha \in [\alpha_1, \frac{2}{N}]$ and $b \geq b_1$, the corresponding solution $v \in C([0,T_{\max}), \mathcal{X})$ of (1.19) given by Proposition 2.5 satisfies $T_{\max} = \frac{1}{b}$ and
\[
\sup_{0 \leq t < \frac{1}{b}} \Psi_T \leq 4K.
\] (3.29)
\textbf{Proof.} We set
\begin{equation}
T^* = \sup\{0 \leq T < T_{\text{max}}; \Psi_T \leq 4K\}. \tag{3.30}
\end{equation}
Since \(\Psi_0 \leq K\) and \(v \in C([0, T_{\text{max}}), \mathcal{X})\), we see that \(0 < T^* \leq T_{\text{max}}\). We claim that if \(\alpha \in \left(\frac{N}{2}, \frac{N}{2}\right)\) and \(b > b_1\), then
\begin{equation}
T^* = T_{\text{max}}. \tag{3.31}
\end{equation}
We note that, since \(\alpha \geq \alpha_1 \geq \frac{2}{N+\beta}\), the second condition in (1.5) implies that \(n > \max\{\frac{N}{\beta}, \frac{N}{b}\}\), so that we may apply Propositions 2.3 and 2.5. Assuming (3.31), it follows from (3.13), (3.15) and (3.30) that for any \(T \in [0, T_{\text{max}}]\)
\begin{equation}
\|v(t)\|_X \left(\inf_{x \in \mathbb{R}^N} \langle x \rangle^n \|v(t, x)\|\right)^{-1} \leq C K (1 - bt)^{-\sigma_j}. \tag{3.32}
\end{equation}
If \(T_{\text{max}} < \frac{1}{b}\), then we deduce from (3.32) that
\begin{equation}
\sup_{0 \leq t < T_{\text{max}}} \left(\|v(t)\|_X \left(\inf_{x \in \mathbb{R}^N} \langle x \rangle^n \|v(t, x)\|\right)^{-1}\right) < \infty,
\end{equation}
which contradicts the blowup alternative (2.14). Therefore, we have \(T^* = T_{\text{max}} = \frac{1}{b}\), and (3.29) follows.

Now we prove the claim (3.31). We assume by contradiction that
\begin{equation}
T^* < T_{\text{max}}, \tag{3.33}
\end{equation}
then by the definition of \(T^*\), we have
\begin{equation}
\Psi_{T^*} = 4K. \tag{3.34}
\end{equation}
It follows from (3.13), (3.34) and (3.6) that
\begin{equation}
\int_0^{T^*} \|v(s)\|_X \, ds \leq 4KC_3 \int_0^{T^*} (1 - bs)^{-\sigma_j} \, ds \leq \frac{8KC_3}{b}. \tag{3.35}
\end{equation}
Using also (1.10) and (3.28), we see that
\begin{equation}
\|v_0\|_X + \int_0^{T^*} \|v(s)\|_X \, ds \leq 2K. \tag{3.36}
\end{equation}
Next, we set
\begin{equation}
\eta(t) = 4K(1 - bt)^{-\sigma_1}, \tag{3.37}
\end{equation}
so that (by definition of \(\Phi_{4,T^*}\))
\begin{equation}
\inf_{0 \leq t \leq T^*} \left\{\eta(t) \inf_{x \in \mathbb{R}^N} \langle x \rangle^n \|v(t, x)\|\right\} \geq 1. \tag{3.38}
\end{equation}
If \(2 \leq |\beta| \leq 2m\), we deduce from (3.37), (3.14) and (3.34) that
\begin{equation}
(\eta \|v\|_{1,|\beta|-1})^{2|\beta|} \|v\|_{1,|\beta|-1} \leq (4K(1 - bt)^{-\sigma_1} 4K(1 - bt)^{-(\sigma_1|\beta|-1)} 2|\beta| 4K(1 - bt)^{-(\sigma_1|\beta|-1)} \tag{3.39}
\end{equation}
\begin{equation}
\leq (4K)^{4|\beta|+1} (1 - bt)^{-(\sigma_1+|\beta|-1)} 2|\beta|-|\sigma_1| \leq (4K)^{8m+1} (1 - bt)^{-|\sigma_1|},
\end{equation}
since \((\sigma_1+|\beta|-1)|\beta|+|\sigma_1|-1 \leq (8m+1)|\sigma_1| = |\sigma_1| \) by (3.3). Similarly, if \(2 \leq |\beta| \leq 2m\), we deduce from (3.37), (3.14) and (3.34) that
\begin{equation}
(\eta \|v\|_{1,2m})^{2J+\alpha} \|v\|_{1,2m} \leq (4K)^{4J+2\alpha+1} (1 - bt)^{-(2J+\alpha)(|\sigma_1|+2m)} \tag{3.40}
\end{equation}
\begin{equation}
\leq (4K)^{4J+2\alpha+1} (1 - bt)^{-(4J+2\alpha+1)2m} = (4K)^{4J+2\alpha+1} (1 - bt)^{\frac{N\alpha}{2} - \sigma_2m+1}.
\end{equation}
where the last equality follows from the definition of σ_{2m+1} by (3.3). As well, if $2m + 2 \leq |\beta| \leq J$ and $\ell \in \{2, 3\}$, then
\[
(\eta\|v\|_{L^{2m}})^2 \|v\|_{L^{(\ell+1)|\beta|-1}} \leq (4K)^{4J+1}(1 - bt)^{-2J(\sigma_1 + \sigma_{2m}) - |\sigma| - 1}
\leq (4K)^{4J+1}(1 - bt)^{-4J\sigma_{2m} - |\sigma| - 1}
\leq (4K)^{4J+1}(1 - bt)^{-\sigma|\beta|}
\]
where we used $2J(\sigma_1 + \sigma_{2m}) + \sigma|\beta| - 1 \leq 4J\sigma_{2m} + |\sigma| = |\sigma|$ by (3.3).

Since $\|v\|_{L^\infty} \leq 4K$ by (3.14), it follows from (1.21) that, given any $\sigma > 0$ and $0 \leq t < \frac{1}{4}$,
\[
\int_0^t (1 - bs)^{-\frac{4 - N\alpha}{2} - \sigma}\|v(s)\|_{L^\infty}^\sigma ds \leq \frac{2(4K)^\alpha}{b(2 - N\alpha + 2\sigma)}(1 - bt)^{-\frac{4 - N\alpha}{2} - \sigma}
\leq \frac{2(4K)^\alpha}{b\sigma}(1 - bt)^{-\frac{4 - N\alpha}{2} - \sigma}.
\]

Let $0 < t' < \frac{1}{4}$ be defined by $(1 - bt')^\frac{4 - N\alpha}{2} = \frac{1}{2}$, i.e. $(1 - bt') = 2^{-\frac{4 - N\alpha}{4}}$. It follows from the above inequality that if $0 \leq t \leq t'$, then
\[
\int_0^t (1 - bs)^{-\frac{4 - N\alpha}{2} - \sigma}\|v(s)\|_{L^\infty}^\sigma ds \leq \frac{2(4K)^\alpha}{b\sigma}(1 - bt)^{-\sigma}.
(3.42)
\]
Moreover, if $b \geq b_0$ and $t' \leq t < T^*$, then it follows from (3.18) and (1.21) that
\[
\int_{t'}^t (1 - bs)^{-\frac{4 - N\alpha}{2} - \sigma}\|v(s)\|_{L^\infty}^\sigma ds \leq \frac{b(2 - N\alpha)}{2\sigma|\Re\lambda|} \int_{t'}^t (1 - bs)^{-\sigma} ds \leq \frac{2 - N\alpha}{\sigma\alpha|\Re\lambda|}(1 - bt)^{-\sigma}.
(3.43)
\]
Using $\int_0^t = \int_0^{t'} + \int_{t'}^t$ if $t' < t < T^*$, we deduce from (3.42) and (3.43) that for all $b \geq b_0$ and all $0 \leq t < T^*$,
\[
\int_0^t (1 - bs)^{-\frac{4 - N\alpha}{2} - \sigma}\|v(s)\|_{L^\infty}^\sigma ds \leq \left(\frac{2(4K)^\alpha}{b\sigma} + \frac{2 - N\alpha}{\sigma\alpha|\Re\lambda|}\right)(1 - bt)^{-\sigma}.
(3.44)
\]
Now, we are ready to estimate Ψ_{T^*} and the process is divided into four steps. We first estimate $\|\langle x \rangle^n v\|_{L^\infty}$. Since $\Re\lambda < 0$, it follows from (3.19) and (3.20) that
\[
\partial_t|v| \leq |L| \leq |\Delta v|,
\]
so that
\[
\langle x \rangle^n|v(t)| - \langle x \rangle^n|v_0| \leq \int_0^t \langle x \rangle^n|\Delta v| ds \leq \int_0^t \|v\|_{L^\infty} ds \leq \frac{8KC_3}{b},
\]
where we used (3.35) in the last inequality. Since $\langle x \rangle^n|v_0| \leq K$, we deduce that if $b \geq b_1$ with b_1 given by (3.28), then
\[
\|\langle x \rangle^n v\|_{L^\infty} \leq 2K.
(3.45)
\]
We next estimate $\|\langle x \rangle^n D^\beta v\|_{L^\infty}$ for $1 \leq |\beta| \leq 2m$. Applying (2.2) and (3.36), we obtain
\[
\|\langle x \rangle^n D^\beta v\|_{L^\infty} \leq 2K + |\lambda|C_1 \int_0^t (1 - bs)^{-\frac{4 - N\alpha}{2}}\|\langle x \rangle^n D^\beta (\langle v \rangle^\alpha v)\|_{L^\infty} ds.
(3.46)
\]
Using (3.38), (2.8)-(2.9), (3.14) and (3.39) and setting $\kappa = 0$ if $|\beta| = 1$ and $\kappa(\beta) = 1$ if $|\beta| \geq 2$, we see that
\[
\| \langle \cdot \rangle^n D^\beta (|v|^\alpha v) \|_{L^\infty} \leq C_2 \| |v|^\alpha \|_{L^\infty} \| \langle \cdot \rangle^n D^\beta v \|_{L^\infty} + \kappa C_2 \| v \|_{L^\infty} (\eta \| v \|_{L^1(1,|\beta|^{-1})})^{|2|\beta|} \| v \|_{L^1(|\beta|^{-1})} \leq 2C_2 (4K)^{2|m+1|} \| v \|_{L^\infty} (1 - bs)^{-\sigma(\beta)}. \tag{3.47}
\]
Applying now (3.44) and using $\sigma_{|\beta|} \geq \sigma_1$, we deduce from (3.46)-(3.47) that
\[
\| \langle x \rangle^n D^\beta v \|_{L^\infty} \leq 2K + 2(4K)^{2|m+1|} |\lambda| C_1 C_2 \left(\frac{2(4K)^{\alpha}}{b\sigma_1} + \frac{2 - N\alpha}{\sigma_1 \alpha |R\lambda|} \right) (1 - bt)^{-\sigma_{|\beta|}}.
\]
It follows, using also (3.27), (3.28) and (3.45), that
\[
\Phi_{1,T^*} \leq 3K. \tag{3.48}
\]
We next estimate similarly $\| \langle x \rangle^n D^\beta v \|_{L^2}$ for $2m + 1 \leq |\beta| \leq 2m + 2 + k$. It follows from (2.3) (with $\mu = 0$) and (3.36) that
\[
\| \langle x \rangle^n D^\beta (|v|^\alpha v) \|_{L^2} \leq 2K + C_1 |\lambda| \int_0^t (1 - bs)^{-\frac{4-N\alpha}{2}} \| \langle x \rangle^n D^\beta (|v|^\alpha v) \|_{L^\infty} ds.
\]
Using (2.10), (3.34), (3.40) and (3.41), we see that
\[
\| \langle x \rangle^n D^\beta (|v|^\alpha v) \|_{L^2} \leq C_2 (4K)^2 (1 - bs)^{-\sigma_{|\beta|}} \| v \|_{L^\infty}^2 + C_2 (4K)^2 J^{2 + 2\alpha + 1} (1 - bs)^{2 - \sigma_{2m+1}} + C_2 (4K)^2 J^{1 + 2\alpha + 1} (1 - bs)^{-\sigma_{|\beta|}} \| v \|_{L^\infty}^2,
\]
so that
\[
\| \langle x \rangle^n D^\beta v \|_{L^2} \leq 2K + C_1 C_2 (4K)^2 J^{2 + 2\alpha + 1} |\lambda| \int_0^t (1 - bs)^{-\sigma_{2m+1}} ds + C_1 C_2 (4K)^2 J^{1 + 2\alpha + 1} |\lambda| \int_0^t (1 - bs)^{-\sigma_{|\beta|}} \| v \|_{L^\infty}^2 ds.
\]
Applying (1.21) and (3.44) to estimate the integrals, we obtain
\[
\| \langle x \rangle^n D^\beta v \|_{L^2} \leq 2K + C_1 C_2 (4K)^2 J^{2 + 2\alpha + 1} |\lambda| (1 - bt)^{-\sigma_{2m+1}} + C_1 C_2 (4K)^2 J^{1 + 2\alpha + 1} |\lambda| \left(\frac{2(4K)^{\alpha}}{b\sigma_1} + \frac{2 - N\alpha}{\sigma_1 \alpha |R\lambda|} \right) (1 - bt)^{-\sigma_{|\beta|}}. \tag{3.49}
\]
Using $\sigma_1 \leq \sigma_{2m+1} \leq \sigma_{|\beta|}$, it follows that
\[
\| \langle x \rangle^n D^\beta v \|_{L^2} \leq 2K + C_1 C_2 (4K)^2 J^{2 + 2\alpha + 1} |\lambda| (1 - bt)^{-\sigma_{|\beta|}} + C_1 C_2 (4K)^2 J^{1 + 2\alpha + 1} |\lambda| \left(\frac{2(4K)^{\alpha}}{b\sigma_1} + \frac{2 - N\alpha}{\sigma_1 \alpha |R\lambda|} \right) (1 - bt)^{-\sigma_{|\beta|}}.
\]
Using also (3.27) and (3.28), we conclude that
\[
\Phi_{2,T^*} \leq 3K. \tag{3.50}
\]
Now we estimate $\| \langle x \rangle^{J-|\beta|} D^\beta v \|_{L^2}$ for $2m + k + 3 \leq |\beta| \leq J$. It follows from (2.3) (with $\mu = n + |\beta| - J, \nu = k + 1$) and (3.36) that
\[
\| \langle x \rangle^{J-|\beta|} D^\beta v \|_{L^2} \leq 2K + C_1 |\lambda| \int_0^t \| \langle x \rangle^{J-|\beta|} D^\beta (|v|^\alpha v) \|_{L^2} ds.
\]
Using (2.11), (3.34), (3.40) and (3.41), we see that
\[
\|\langle x \rangle^{J - |\beta|} D^\beta (|v|^\alpha v)\|_{L^2} \leq C_2 (4K) (1 - bs)^{-\sigma_1} \|v\|_{L^\infty}^2 + C_2 (4K)^{4J + 2m + 1} (1 - bs) \frac{2N_\alpha}{2 - N_\alpha} + 2C_2 (4K)^{4J + 1} (1 - bs)^{-\sigma_1} \|v\|_{L^\infty}^2,
\]
so that
\[
\|\langle x \rangle^{J - |\beta|} D^\beta v\|_{L^2} \leq 2K + C_1 C_2 (4K)^{4J + 2m + 1} |\lambda| \int_0^t (1 - bs)^{-1 - \sigma_2} ds
\]
\[
+ C_1 C_2 (4K)^{4J + 2} |\lambda| \int_0^t (1 - bs)^{-\frac{2N_\alpha}{2 - N_\alpha} - \sigma_1} \|v\|_{L^\infty}^2 ds.
\]
(3.51)
The right-hand side of (3.51) is similar to the right-hand side of (3.49), and we conclude as above that
\[
\Phi_{3,T*} \leq 3K.
\]
(3.52)
Finally, we estimate \(\Phi_{4,T*}\), we set
\[
w(t, x) = \langle x \rangle^n |v(t, x)|.
\]
Multiplying (3.21) by \(\langle x \rangle^{-n_\alpha}\) and integrating in \(t\), we obtain
\[
\frac{1}{|w(t, x)|^\alpha} \geq \frac{1}{|w(0, x)|^\alpha} + \alpha |\Re \lambda| \int_0^t \langle x \rangle^{-n_\alpha} (1 - bs)^{-\frac{2N_\alpha}{2 - N_\alpha} - \sigma_1} ds
\]
\[
- \alpha \int_0^t |w(s, x)|^{-\alpha - 1} \langle x \rangle^n L(s, x) ds.
\]
Applying (3.34), we see that \(\langle x \rangle^n |L| \leq (\langle x \rangle^n |\Delta v| \leq 4K (1 - bs)^{-\sigma_2}\), and \(|w|^{-\alpha - 1} \leq (4K)^{\alpha + 1} (1 - bs)^{-(\alpha - 1)\sigma_1}\). Since \((\alpha + 1)\sigma_1 + \sigma_2 \leq \sigma_3\) by (3.3), we deduce that
\[
\frac{1}{|w(t, x)|^\alpha} \leq K^\alpha + \alpha |\Re \lambda| \int_0^t (1 - bs)^{-\frac{2N_\alpha}{2 - N_\alpha} - \sigma_1} ds + \alpha (4K)^{\alpha + 2} \int_0^t (1 - bs)^{-\sigma_3} ds.
\]
Since \(-\frac{2N_\alpha}{2 - N_\alpha} = -1 - \alpha \sigma_1 + (\alpha \sigma_1 - \frac{2N_\alpha}{2 - N_\alpha})\), and since by (3.27) \(\alpha \sigma_1 \geq \frac{2N_\alpha}{2 - N_\alpha}\), we see that \(-\frac{2N_\alpha}{2 - N_\alpha} \geq -1 - \alpha \sigma_1\); and so, using (1.21) and \(\sigma_3 \leq \sigma_J \leq \frac{1}{2}\),
\[
\frac{1}{|w(t, x)|^\alpha} \leq K^\alpha + |\Re \lambda| \int_0^t (1 - bs)^{-1 - \alpha \sigma_1} ds + \alpha (4K)^{\alpha + 2} \int_0^t (1 - bs)^{-\sigma_3} ds
\]
\[
\leq K^\alpha + \frac{|\Re \lambda|}{b\sigma_1} (1 - bt)^{-\alpha \sigma_1} + \frac{2\alpha (4K)^{\alpha + 2}}{b}.
\]
It follows that
\[
\Phi_{4,T*}^0 \leq K^\alpha + \frac{|\Re \lambda|}{b\sigma_1} + \frac{2\alpha (4K)^{\alpha + 2}}{b}.
\]
Using (3.28), we deduce that for \(b \geq b_1\),
\[
\Phi_{4,T*}^0 \leq 3^\frac{\alpha}{\sigma} K^\alpha \leq (3K)^\alpha,
\]
(3.53)
since \(\alpha \geq \frac{1}{\sigma}\). Estimates (3.48), (3.50), (3.52) and (3.53) yield \(\Psi_{T*} \leq 3K\), which leads to a contradiction with (3.34). This completes the proof. \(\square\)
4. Asymptotics for (1.19). Throughout this section, we assume (1.5)-(1.6) and we let \(X \) be defined by (1.7)-(1.8). We describe the asymptotic behavior as \(t \to \frac{1}{b} \) of the solutions of (1.19) given by Proposition 3.2. More precisely, we have the following result.

Proposition 4.1. Suppose \(\Re \lambda < 0 \). Let \(K \geq 1 \), let \(\alpha_1 \in (0, \frac{2}{N}) \) be given by (3.27) and let \(b_1 > 0 \) be given by (3.28). Let \(v_0 \in X \) satisfy (1.10), and let \(v \in C([0, \frac{1}{b}], X) \) be the solution of (1.19) given by Proposition 3.2. There exist \(f_0, \omega_0 \in L^\infty(\mathbb{R}^N) \), with \(f_0 \) real-valued, \(\|f_0\|_{L^\infty} \leq \frac{2}{b} \), and \(\langle \rangle^\alpha \omega_0 \in L^\infty(\mathbb{R}^N) \), such that

\[
\|\langle \rangle^\alpha (v(t) - \omega_0 \psi(t) e^{i\theta(t)})\|_{L^\infty} \leq C(1 - bt)^{\frac{1}{2}}
\]

for all \(t \in [0, \frac{1}{b}] \), where

\[
\psi(t, x) = \left(\frac{1 + f_0(x)}{1 + f_0(x) + \frac{2\alpha_i|\Re \lambda|}{b(2 - N\alpha)} |v_0(x)|^\alpha ((1 - bt)^{-\frac{2-N\alpha}{2}} - 1) } \right) ^{\frac{1}{2}}
\]

and

\[
\theta(t, x) = \frac{\Re \lambda}{\Re \lambda} \log(\psi(t, x)).
\]

Moreover,

\[
|\omega_0|^\alpha = \frac{|v_0|^\alpha}{1 + f_0},
\]

so that \(\frac{2}{b} |v_0|^\alpha \leq |\omega_0|^\alpha \leq 2 |v_0|^\alpha \). In addition,

\[
(1 - bt)^{-\frac{b - N\alpha}{2}} \|v(t)\|_{L^\infty} \to \frac{b(2 - N\alpha)}{2\alpha_i|\Re \lambda|} \text{ as } t \to \frac{1}{b},
\]

where \(n \) is given by (1.5).

Proof. We let \(f \) be defined by (3.23). It follows from (3.24) that \(f(t, \cdot) \) is convergent in \(L^\infty(\mathbb{R}^N) \) as \(t \uparrow \frac{1}{b} \). Then \(f \) can be extended to a continuous function \([0, \frac{1}{b}] \to L^\infty(\mathbb{R}^N) \) and we set

\[
f_0(x) = f \left(\frac{1}{b} x \right) = -\alpha \int_0^{\frac{1}{b}} |v_0(x)|^\alpha |v(s, x)|^{-\alpha - 1} L(s, x) ds.
\]

By using (3.24), (3.25), (3.16) and \(\sigma_3 \leq \sigma_j \leq \frac{1}{2} \) (see (3.6)), we have for all \(0 \leq t \leq \frac{1}{b} \)

\[
\|f(t) - f_0\|_{L^\infty} \leq \frac{1}{4} (1 - bt)^{1 - \sigma_3},
\]

\[
\|f(t)\|_{L^\infty} \leq \frac{1}{4}.
\]

In particular, \(1 + f_0 > 0 \), so that by (4.2),

\[
0 < \psi(t, x) \leq 1
\]

for all \(0 \leq t < \frac{1}{b} \) and \(x \in \mathbb{R}^N \). Moreover, it follows from (4.8) that

\[
\left\| \frac{1}{1 + f_0(x) + \frac{2\alpha_i|\Re \lambda|}{b(2 - N\alpha)} |v_0(x)|^\alpha ((1 - bt)^{-\frac{2-N\alpha}{2}} - 1) \right\|_{L^\infty} \leq 2
\]
for all $0 \leq t < \frac{1}{b}$. We set

$$\vec{v}(t, x) = \left(1 + f_0(x) + \frac{2\alpha|RL|}{b(2 - N\alpha)}|v_0(x)|^\alpha[(1 - bt)^{-\frac{2 - N\alpha}{2}} - 1]\right)^{\frac{1}{\sigma}}.$$ \hspace{1cm} (4.11)

It follows from (1.10) and (4.10) that

$$\|\langle x \rangle^{\alpha} \vec{v}(t)\|_{L^\infty} \leq 2^{\frac{1}{\sigma}} K,$$

and we deduce from (3.22), (4.7) and (4.10) that

$$\|\langle x \rangle^{\alpha} (|v(t, \cdot)|^\alpha - \vec{v}(t, \cdot)|^\alpha)\|_{L^\infty} \leq \|\langle x \rangle^{\alpha} v_0\|_{L^\infty}(1 - bt)^{1 - \sigma_3} \leq K^\alpha(1 - bt)^{1 - \sigma_3}$$ \hspace{1cm} (4.12)

for all $0 \leq t < \frac{1}{b}$. Next, we introduce the decomposition

$$v(t, x) = \omega(t, x)\psi(t, x)e^{i\theta(t, x)},$$ \hspace{1cm} (4.13)

where $\psi(t, x)$ and $\theta(t, x)$ are defined by (4.2) and (4.3) respectively. Differentiating (4.13) with respect to t, we obtain

$$\partial_t \omega = \frac{e^{-i\theta}}{\psi} \partial_t v - \omega \frac{\partial_t \psi}{\psi} - i\omega \partial_t \theta.$$ \hspace{1cm} (4.14)

On the other hand, it follows easily from (4.2), (4.3) and (4.11) that

$$\frac{\partial_t \psi}{\psi} = \Re\lambda(1 - bt)^{-\frac{4 - N\alpha}{2}} \bar{v}^\alpha,$$

$$\partial_t \theta = \Im\lambda(1 - bt)^{-\frac{4 - N\alpha}{2}} \bar{v}^\alpha.$$

Therefore, we deduce from (4.14), (4.13) and (1.19) that

$$\partial_t \omega = \frac{e^{-i\theta}}{\psi} \partial_t v - \omega(1 - bt)^{-\frac{4 - N\alpha}{2}} \lambda \bar{v}^\alpha$$

$$= \frac{e^{-i\theta}}{\psi} (\partial_t v - \lambda(1 - bt)^{-\frac{4 - N\alpha}{2}} \bar{v}^\alpha v)$$ \hspace{1cm} (4.15)

$$= \frac{e^{-i\theta}}{\psi} (i\Delta v + \lambda(1 - bt)^{-\frac{4 - N\alpha}{2}} (|v|^\alpha - \bar{v}^\alpha) v).$$

Next, it follows from (4.2) and the property $1 + f_0 \geq \frac{1}{2}$ that

$$\psi(t, x)^{-\alpha} \leq 1 + \frac{2\alpha|RL|}{b(2 - N\alpha)} |v_0(x)|^\alpha(1 - bt)^{-\frac{2 - N\alpha}{2}}.$$ \hspace{1cm} (4.16)

Moreover, we deduce from (3.18) that if $t' \leq t < \frac{1}{b}$ where $t' \in (0, \frac{1}{b})$ is defined by $(1 - bt')^{\frac{2 - N\alpha}{2}} = \frac{1}{2}$, then

$$|v(t, x)|^\alpha \leq \frac{b(2 - N\alpha)}{\alpha|RL|}(1 - bt)^{\frac{2 - N\alpha}{2}},$$

hence

$$(1 - bt)^{-\frac{2 - N\alpha}{2}} \leq \frac{b(2 - N\alpha)}{\alpha|RL|} |v(t, x)|^{-\alpha}.$$ \hspace{1cm} (4.16)

Therefore, it follows from (4.16) that $\psi(t, x)^{-\alpha} \leq 1 + 2|v_0(x)|^\alpha |v(t, x)|^{-\alpha}$. Applying (3.15), (1.10) and (3.29), we conclude that

$$\psi(t, x)^{-\alpha} \leq C(1 - bt)^{-\alpha \sigma_1}.$$ \hspace{1cm} (4.17)
for $t' \leq t < \frac{1}{5}$. It follows from (4.15) and (4.17) that
\[
\|\langle \cdot \rangle^n \partial_t \omega \|_{L^\infty} \leq C(1-bt)^{-\sigma_1} \|\|\langle \cdot \rangle^n \Delta v\|_{L^\infty} + (1-bt)^{-\frac{2-N\alpha}{2}} \|\|v\|^{\alpha} - \bar{v}\|_{L^\infty} \|\langle \cdot \rangle^n v\|_{L^\infty}\|.
\]
Since $\|\langle \cdot \rangle^n \Delta v\|_{L^\infty} \leq 4K(1-bt)^{-\sigma_2}$ and $\|\langle \cdot \rangle^n v\|_{L^\infty} \leq 4K$ by (3.29), we deduce using (4.12) that
\[
\|\langle \cdot \rangle^n \partial_t \omega \|_{L^\infty} \leq C(1-bt)^{-\sigma_1} \left[(1-bt)^{-\sigma_2} + (1-bt)^{-\frac{2-N\alpha}{2}}\right] \leq C(1-bt)^{-\frac{1}{2}},
\]
(4.18) where we used $\sigma_1 + \sigma_2 \leq \sigma_1 + \frac{2-N\alpha}{2} + \sigma_3 \leq \sigma_j \leq \frac{1}{2}$ by (3.3) and (3.6). It follows from (4.18) that if $t' \leq t < \frac{1}{5}$, then
\[
\|\langle \cdot \rangle^n (\omega(t) - \omega(s))\|_{L^\infty} \leq C(1-bt)^{\frac{1}{2}},
\]
so that there exists ω_0 such that $\langle x \rangle^n \omega_0 \in L^\infty(\mathbb{R}^N)$ and
\[
\|\langle \cdot \rangle^n (\omega(t) - \omega_0)\|_{L^\infty} \leq C(1-bt)^{\frac{1}{2}}
\]
(4.19) for all $t' \leq t < \frac{1}{5}$. Using (4.13), (4.9) and (4.19), we obtain
\[
\|\langle \cdot \rangle^n (v(t) - \omega_0 \psi(t) e^{i\theta(t)})\|_{L^\infty} \leq \|\langle \cdot \rangle^n (\omega(t) - \omega_0)\|_{L^\infty} \|\psi\|_{L^\infty} \leq C(1-bt)^{\frac{1}{2}},
\]
which proves (4.1).

Next, we prove (4.4). It follows from (4.1) (recall that $0 \leq \psi \leq 1$) that
\[
\| |v(t)| - |\omega_0 \psi(t)| \|_{L^\infty} \leq C(1-bt)^{\frac{1}{2}}.
\]
Using the elementary inequalities $|x^{\alpha} - y^{\alpha}| \leq |x - y|^\alpha$ if $\alpha \leq 1$ and $|x^{\alpha} - y^{\alpha}| \leq \alpha(x^{\alpha-1} + y^{\alpha-1})|x - y|$ if $\alpha \geq 1$, and the boundedness of $\|\langle \cdot \rangle^n v\|_{L^\infty}$, we deduce that
\[
\|v(t, t')\|^{\alpha} - (|\omega_0| \psi(t))^{\alpha}\|_{L^\infty} \leq C((1-bt)^{\frac{1}{2}} + (1-bt)^{\frac{3}{2}})
\]
Moreover, it follows from (4.12) and $\sigma_3 \leq \frac{1}{2}$ that
\[
\|v(t, t')\|^{\alpha} - \bar{v}(t, \cdot)^{\alpha}\|_{L^\infty} \leq K^\alpha(1-bt)^{\frac{1}{2}}.
\]
Thus we see that
\[
\|v(t, t')\|^{\alpha} - (|\omega_0| \psi(t))^{\alpha}\|_{L^\infty} \leq C(1-bt)^{\frac{1}{2}},
\]
where $\rho = \min\{\alpha, 1\}$. Using the explicit expressions (4.2) and (4.11), we obtain
\[
\frac{\|v_0(x)\|^{\alpha} - (1 + f_0(x))|\omega_0(x)|^{\alpha}|1 + f_0(x) + \frac{2\alpha |\mathcal{R}\lambda|}{b(2-N\alpha)}|v_0(x)|^{\alpha}|[(1-bt)^{-\frac{2-N\alpha}{2}} - 1]}{1 + f_0(x) + \frac{2\alpha |\mathcal{R}\lambda|}{b(2-N\alpha)}|v_0(x)|^{\alpha}|[(1-bt)^{-\frac{2-N\alpha}{2}} - 1]} \leq C(1-bt)^{\frac{1}{2}}.
\]
For $\frac{1}{2b} \leq t < \frac{1}{5}$, we have
\[
1 + f_0(x) + \frac{2\alpha |\mathcal{R}\lambda|}{b(2-N\alpha)}|v_0(x)|^{\alpha}|[(1-bt)^{-\frac{2-N\alpha}{2}} - 1] \leq C(1-bt)^{\frac{1}{2} - \frac{2-N\alpha}{2}},
\]
so that
\[
|v_0(x)|^{\alpha} - (1 + f_0(x))|\omega_0(x)|^{\alpha}| \leq C(1-bt)^{\frac{1}{2} - \frac{2-N\alpha}{2} - \frac{2-N\alpha}{2}}.
\]
since $\alpha > \min\{\frac{1}{N}, \frac{2}{N+1}\}$ by (3.27), we see that $\frac{1}{2} - \frac{2-N\alpha}{2} > 0$. Letting $t' \uparrow \frac{1}{5}$ in the above inequality, we obtain (4.4).

Now, we prove (4.5). Set
\[
Z(t, x) = (1-bt)^{-\frac{2-N\alpha}{2}} |\omega_0(x) \psi(t, w) e^{i\theta(t, w)}|^{\alpha} = (1-bt)^{-\frac{2-N\alpha}{2}} |\omega_0(x) \psi(t, w)|^{\alpha}.
\]
It follows from (4.2) and (4.4) that
\[
Z(t, x) = \frac{|v_0(x)|^\alpha (1 - bt)^{-\frac{2-N\alpha}{2}}}{1 + f_0(x) + \frac{2\alpha|\Re|}{b(2-N\alpha)}|v_0(x)|^\alpha [(1 - bt)^{-\frac{2-N\alpha}{2}} - 1]}.
\]
Since $1 + f_0 \geq 0$ by (4.8), we obtain
\[
Z(t, x) \leq \frac{b(2-N\alpha)}{2\alpha|\Re|} \frac{1}{1 - (1 - bt)^{-\frac{2-N\alpha}{2}}},
\]
so that
\[
\limsup_{t \uparrow \frac{1}{b}} \|Z(t)\|_{L^\infty} \leq \frac{b(2-N\alpha)}{2\alpha|\Re|}.
\]
Moreover, $1 + f_0 \leq 2$, so that
\[
Z(t, 0) \geq \frac{|v_0(0)|^\alpha (1 - bt)^{-\frac{2-N\alpha}{2}}}{2 + \frac{2\alpha|\Re|}{b(2-N\alpha)}|v_0(0)|^\alpha [(1 - bt)^{-\frac{2-N\alpha}{2}} - 1]}
\]
Since $|v_0(0)| > 0$ by (1.10), we deduce that
\[
\liminf_{t \uparrow \frac{1}{b}} \|Z(t)\|_{L^\infty} \geq \frac{b(2-N\alpha)}{2\alpha|\Re|}.
\]
Thus we see that $\|Z(t)\|_{L^\infty} \to \frac{b(2-N\alpha)}{2\alpha|\Re|}$ as $t \uparrow \frac{1}{b}$. On the other hand, it follows from (4.12) and (4.4) that
\[
|(1 - bt)^{-\frac{2-N\alpha}{2}} \|v(t)\|_{L^\infty}^\alpha - \|Z(t)\|_{L^\infty}| \leq K^\alpha (1 - bt)^{\frac{N\alpha}{2} - \sigma_3}.
\]
Since $\frac{N\alpha}{2} \geq \frac{1}{2} > \sigma_3$, (4.5) follows.

Finally, we prove (4.6). It follows from (4.2) and (4.4) that
\[
|\omega_0(x)^2 \psi(t, x)^2| = \left(\frac{|v_0(x)|^\alpha}{1 + f_0(x) + \frac{2\alpha|\Re|}{b(2-N\alpha)}|v_0(x)|^\alpha [(1 - bt)^{-\frac{2-N\alpha}{2}} - 1]} \right)^{\frac{1}{2}}.
\]
Recall that $\frac{1}{2} \leq 1 + f_0 \leq \frac{3}{2}$ and $\frac{1}{\alpha} \langle x \rangle^{-n} \leq |v_0(x)| \leq K \langle x \rangle^{-n}$. Therefore, for $\frac{1}{\alpha} \leq t < \frac{1}{b}$, we have
\[
a(x)^{-2n} \left(\frac{1}{1 + (1 - bt)^{-\frac{2-N\alpha}{2}} \langle x \rangle^{-n}} \right)^{\frac{1}{2}} \leq |\omega_0|^2 \psi^2 \leq \frac{A(x)^{-2n}}{(1 + (1 - bt)^{-\frac{2-N\alpha}{2}} \langle x \rangle^{-n})^{\frac{1}{2}}},
\]
for some constants $0 < a \leq A < \infty$. If $|x| \geq (1 - bt)^{-\frac{2-N\alpha}{2\alpha}}$, then $|\omega_0|^2 \psi^2 \geq |x|^{-2n}$ by the first inequality in (4.20). Since also $|\omega_0|^2 \psi^2 \lesssim |x|^{-2n}$ by the second inequality in (4.20), we deduce that
\[
a_1(1 - bt)^{\left(\frac{\alpha}{2} - N\right)(1 - \frac{2}{\alpha})} \leq \int_{|x|>(1 - bt)^{-\frac{2-N\alpha}{2\alpha}}} |\omega_0|^2 \psi^2 \leq A_1(1 - bt)^{\left(\frac{\alpha}{2} - N\right)(1 - \frac{2}{\alpha})},
\]
for some constants $0 < a_1 \leq A_1 < \infty$. If $|x| \leq (1 - bt)^{-\frac{2-N\alpha}{2\alpha}}$, then $|\omega_0|^2 \psi^2 \gtrsim (1 - bt)^{\left(\frac{2-N\alpha}{2\alpha}\right)^2}$ by the first inequality in (4.20). Since also $|\omega_0|^2 \psi^2 \lesssim (1 - bt)^{\left(\frac{2-N\alpha}{2\alpha}\right)^2}$ by the second inequality in (4.20), we deduce that
\[
a_2(1 - bt)^{\left(\frac{\alpha}{2} - N\right)(1 - \frac{2}{\alpha})} \leq \int_{|x|<(1 - bt)^{-\frac{2-N\alpha}{2\alpha}}} |\omega_0|^2 \psi^2 \leq A_2(1 - bt)^{\left(\frac{\alpha}{2} - N\right)(1 - \frac{2}{\alpha})},
\]
for some constants $0 < a_2 \leq A_2 < \infty$. It follows that
\[
a_3(1 - bt)^{\left(\frac{\alpha}{2} - N\right)(1 - \frac{2}{\alpha})} \leq \|\omega_0 \psi(t) e^{ibt(t)}\|_{L^2} \leq A_3(1 - bt)^{\left(\frac{\alpha}{2} - N\right)(1 - \frac{2}{\alpha})},
\]
for some constants $0 < a_3 \leq A_3 < \infty$. On the other hand, estimate (4.1) implies (since $n > \frac{N}{2}$)
\[\|v(t) - \omega_0 \psi(t)e^{i\theta(t)}\|_{L^2} \leq C(1 - bt)^{\frac{1}{2}}. \] (4.22)
Since $\alpha > \frac{2}{N+1}$, we have
\[\left(1 - \frac{N}{2}\right)\left(1 - \frac{N}{2n}\right) < 1 - \frac{N}{2} < \frac{1}{2} \]
and (4.6) follows from (4.21)-(4.22). \hfill \Box

5. Proof of Theorem 1.1. Let $\Re \lambda < 0$ and $K \geq 1$, and let $v_0 \in \mathcal{X}$ satisfy (1.10).
Let α_1 and b_1 be given by Proposition 3.2. Given $\alpha_1 \leq \alpha < \frac{2}{N}$ and $b \geq b_1$, let $v \in C([0,1/b], \mathcal{X})$ be the corresponding solution of (1.19) given by Proposition 3.2. Let
\[u(t, x) = (1 + bt)^{-\frac{N}{2}} e^{\frac{b|x|^2}{1+bt}} e^{\frac{t}{1+bt}(x)} e^{\frac{x}{1+bt}}, \quad t \geq 0, \ x \in \mathbb{R}^N. \] (5.1)
It follows that $u \in C([0, \infty), H^1(\mathbb{R}^N))$ is the solution of (1.1) with the initial condition $u_0(x) = e^{\frac{b|x|^2}{1+b}} v_0(x)$. Since $n > \frac{N}{2}$, we deduce from (4.1) in Proposition 4.1 that
\[\|v(t, x) - \omega_0(x)\psi(t, x)e^{i\theta(t, x)}\|_{L^\infty L^2} \leq C(1 - bt)^{\frac{1}{2}}. \]
This proves (1.11), while (1.16) and (1.17) follow from (4.5) and (4.6), respectively. This completes the proof of Theorem 1.1.

REFERENCES

[1] T. Cazenave, S. Correia, F. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146–161.
[2] T. Cazenave, Z. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dynam. Differential Equations (2020).
[3] T. Cazenave, Y. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dynam. Systems, 39 (2019), 1171–1183.
[4] T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp.
[5] T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402–432.
[6] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75–100.
[7] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851–1112.
[8] J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211–239.
[9] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. Scattering theory, general case, J. Funct. Anal., 32 (1979), 33–71.
[10] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2 and 3, Ann. Inst. Henri Poincaré Sect. A (N.S.), 28 (1978), 287–316.
[11] N. Hayashi, C. H. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields, Adv. Math. Phys., (2016), Art. ID 3702378, 7 pp.
[12] N. Hayashi, C. H. Li and P. I. Naumkin, Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 16 (2017), 2089–2104.
[13] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113–129.
[14] T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sonderborg, 1988), Lecture Notes in Phys., Springer, Berlin, 345 (1989), 218–263.
[15] N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, *J. Math. Soc. Japan*, 61 (2009), 39–64.

[16] A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, *Handbook of Dynamical Systems, North-Holland, Amsterdam*, 2 (2002), 759–834.

[17] K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, *NoDEA Nonlinear Differential Equations Appl.*, 9 (2002), 45–68.

[18] T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, *Calc. Var. Partial Differential Equations*, 25 (2006), 403–408.

[19] A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, *Comm. Partial Differential Equations*, 31 (2006), 1407–1423.

[20] K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, *J. Fluid Mech.*, 48 (1971), 529–545.

[21] W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, *J. Funct. Anal.*, 43 (1981), 281–293.

Received for publication October 2019.

E-mail address: thierry.cazenave@sorbonne-universite.fr
E-mail address: hanzh_0102@hznu.edu.cn