Caroline Polo*, Elise D’Huart, Gwendoline Lesperlette, Jean Vigneron, Florence Meyer and Béatrice Demoré

Compatibility of injectable posaconazole with drugs commonly used in a hematology care unit

Abstract

Objectives: Concomitant administration of two incompatible drugs in the same infusion line can lead to a precipitation which could have clinical consequences for patients. The objective of this work was to study the physical compatibility of injectable posaconazole with other drugs commonly used in an adult hematology care unit.

Methods: The most widely used injectable drugs co-administered with posaconazole have been listed with a total of 19 drugs. For some drugs, different conditions have been tested. A total of 24 solutions were produced (not including the posaconazole). In the absence of compatibility data, the physical compatibility was tested for each pair including one of the 24 solutions and posaconazole. For each pair studied, three different ratios were prepared (9:1, 1:1, 1:9). Visual evaluations were performed after the mixture, after one and 4 h.

Results: Seventy two mixtures have been realised: 55.56% of pairs (n=40/72) resulted in a precipitation, against 44.44% (n=32/72) with no visual modification after a 4-h storage. On the 19 drugs tested, only filgrastim and tacrolimus showed no visual change with posaconazole during a 4-h storage.

Conclusions: In majority of cases, posaconazole was not compatible with drugs having alkaline pH, commonly used in a hematology unit.

Keywords: antifungal; anti-infectious; co-administration; physical compatibility.

Introduction

Posaconazole (Noxafil®) is a broad-spectrum triazole used to prevent and treat invasive mycoses due to Candida sp. or Aspergillus sp. This antifungal agent is widely used for patients with a high risk of developing invasive fungal infections as immune-compromised patients hospitalised in hematology departments with a prolonged neutropenia following chemotherapy. Posaconazole is available as different forms: gastro-resistant tablets, oral suspension, solution to be diluted for infusion. By intravenous (IV) infusion, posaconazole is administered through a central venous line over about 90 min. The posology used is a loading dose of 300 mg posaconazole twice a day on the first day, then 300 mg once a day thereafter [1]. There are several pharmaceutical forms:

Patients hospitalized in a hematology care unit can receive numerous injectable treatments. A majority of patients have a PICC-line (Peripherally Inserted Central Catheter) or an implantable port to administer these many injectable drugs. Concomitant administration of drugs in the same line is often mandatory [2]. Compatibility data are necessary to perform these co-administrations and to prevent undesirable effects: catheter obstruction, loss of efficiency, toxic derivatives formation, crystal deposition in the body or embolism risk, potentially deadly [3, 4]. Drugs must be physically compatible for Y-site administration [5].

In our hematology department, some cases of precipitation were notified. During an administration of posaconazole, a white precipitate in the infusion line was observed. Before the administration of the antifungal drug, the patient received an infusion of ganciclovir sodium. The hypothesis for an incompatibility with ganciclovir sodium was raised. Another case was reported after administration of piperacillin sodium/tazobactam sodium. In order to prevent other administration incidents, the objective of this study was to evaluate the physical compatibility of posaconazole with injectable drugs commonly administered in our hematology care unit.
Materials and methods

Observational analysis

An observational study was performed to establish a list of the drugs commonly used in a hematology care unit. First, using the prescribing software, the prescriptions of patients receiving injectable posaconazole and another intravenous drug were selected. A list of drugs administered by IV infusion concomitantly with posaconazole was realised. Then, in collaboration with several hematology nurses, a data collection was performed to understand care practices (concentrations, containers, solvent, time of infusion, co-administration in the same line).

Compatibility data available in the literature

Information on the physical compatibility of posaconazole with the injectable drugs of the established list was searched in posaconazole Summary of Product Characteristics (SmPC) and in two databases: the 19th edition of the Handbook on Injectable Drugs® and Stabilis® [1, 6–8].

The pH of each drug molecule was searched for in two databases: the 19th edition of the Handbook on Injectable Drugs® and Martindale – The Complete Drug Reference [9].

Laboratory tests

For Y-site mixtures with no compatibility information available in the literature, laboratory tests were performed. Drugs selected were evaluated in pairs, even if more than two drugs were administered simultaneously in the same IV line.

To simulate the administration, each drug tested was prepared separately before being mixed with posaconazole. For some drugs, different conditions have been tested (concentrations, containers, solvent).

As D’Huart E. et al. reports, this test consists in performing three mixtures with different ratios realised for each pair studied (drug X:posaconazole): (a) 9:1; (b) 1:1; (c) 1:9. These different ratios were performed to simulate different drug flows which can lead to lower or higher concentrations. Drugs were mixed and kept in glass tubes at room temperature (23 °C), not protected from light, to simulate the conditions of storage observed in a hematology unit [6]. Mixtures were manually stirred during 10 s by turning the tubes three times.

A pair of drugs with an absence of particulate formation, haze, colour change and gas evolution, was considered as physically compatible [5]. As recommended by the European Pharmacopeia, the samples were visually inspected against a white (colour shift) and black (precipitate) background [10]. And as D’Huart E. et al. reports, the observation was carried out with the unaided eye and a magnifying glass (×10) by two laboratory technicians after the mixture and after a 1-h and a 4-h storage [6]. Drugs were considered physically compatible if no visible change was detectable after 4 h.

pH was measured for solutions with no pH data in the literature and solutions with pH values not sufficiently precise in the literature. Measurements were carried out on with a Bioblock Scientific pH meter previously calibrated.

Results

Observational analysis

Table 1 lists injectable drugs and solvents commonly administered in the same IV line with posaconazole in our adult hematology unit. All powdered medicines have been reconstituted with the final solvent (0.9% sodium chloride or dextrose 5% in water).

Compatibility data available in the literature and laboratory tests

The SmPC of posaconazole indicates incompatibilities with Lactated Ringer’s solution, 5% dextrose with Lactated Ringer’s solution and 4.2% sodium bicarbonate without explanation on the type of incompatibility (chemical degradation, precipitation, change of colour). No incompatibility is noted with other drugs. It was also verified that posaconazole was compatible with a saline solution (0.9% sodium chloride) in the SmPC [1].

In the 19th edition of the Handbook on injectable drugs, only filgrastim (6 μg/mL tested in dextrose 5% in water or 0.9% in sodium chloride) and potassium chloride (0.04 mEq/mL tested in dextrose 5% in water or in 0.9% sodium chloride) have data of physical compatibility [7].

No data is available on the compatibility of posaconazole in the Stabilis database [8].

Table 2 gives pHs found in the Handbook of injectable drugs and the Martindale – the complete drugs reference [7, 9] and pH measurements carried out in our laboratory.

Table 3 regroups all products used during the compatibility study. This information makes it possible to detail the laboratory, the batch number and the expiry date of the products used.

In the laboratory, two drugs out of the 19 tested drugs showed no visual observation with posaconazole from the time of mixing to a 4-h storage: filgrastim and tacrolimus. Some drugs have been tested at different concentrations or in different containers. Therefore, 24 solutions have been performed and for each, three mixtures (9:1; 1:1; 1:9) have been prepared (total of 72 mixtures): 87.5% of solutions (n=21/24) presented a precipitation, against 12.5% (n=3/24) without visual modification. Out of 72 mixtures, 55.56% (n=40/72) resulted in a precipitation, against 44.44% (n=32/72) with no visual modification after 4-h storage.

All physical changes are presented in Table 4. Table 5 regroups ratio results without physical observation after a 4-h storage.
Table 1: List of preparations before mixture.

Drugs	Concentration	Container	Solvent	Final volume
Posaconazole	1.2 mg/mL	Infusion bag	0.9% NaCl^a	250 mL
Acyclovir sodium	3.5 mg/mL	Infusion bag	0.9% NaCl	100 mL
Alizapride hydrochloride	3.0 mg/mL	Syringe	0.9% NaCl	50 mL
Cefepime hydrochloride	40.0 mg/mL	Syringe	D5W^a	50 mL
Filgrastim	0.3 MUI/mL	Infusion bag	D5W	100 mL
Furosemide	0.8 mg/mL	Infusion bag	0.9% NaCl	50 mL
Ganciclovir sodium	3.5 mg/mL	Infusion bag	0.9% NaCl	100 mL
Insulin aspartate	100.0 UI/mL	Syringe	0.9% NaCl	50 mL
Levetiracetam	5.0 mg/mL	Infusion bag	0.9% NaCl	100 mL
Methylprednisolone sodium succinate	20.0 mg/mL	Syringe	0.9% NaCl D5W	12 mL
Metoclopramide hydrochloride	0.4 mg/mL	Infusion bag	0.9% NaCl	100 mL
Nefopam hydrochloride	0.2 mg/mL	Infusion bag	0.9% NaCl	100 mL
Ondansetron hydrochloride	2.5 mg/mL	Infusion bag	0.9% NaCl	50 mL
Pantoprazole sodium	0.16 mg/mL	Syringe	0.9% NaCl	50 mL
Paracetamol	0.08 mg/mL	Infusion bag	0.9% NaCl	100 mL
Phloroglucinol dihydrate	0.48 mg/mL	Syringe	0.9% NaCl	50 mL
Piperacillin sodium-Tazobactam sodium	0.4 mg/mL	Infusion bag	0.9% NaCl	100 mL
Potassium chloride	160.0 mg/mL	Syringe	0.9% NaCl	50 mL
Tacrolimus	100.0 mg/mL	Syringe	Without dilution	40 mL
Tramadol hydrochloride	3.0 mg/mL	Syringe	D5W	50 mL
Tramadol hydrochloride	30.0 mg/mL	Syringe	D5W	50 mL
Tramadol hydrochloride	0.5 mg/mL	Infusion bag	0.9% NaCl	100 mL

^aNaCl 0.9%: 0.9% sodium chloride. ^aD5W: dextrose 5% in water.

Table 2: pH values from the 19th edition of the Handbook on injectable drugs and Martindale – the complete drug reference and pH values measured in our laboratory.

Drugs	pH values in literature	pH values measured in our laboratory	Concentration	Solvent
Posaconazole	2.6		3.0 mg/mL	0.9% NaCl
Acyclovir sodium	11.0			
Alizapride hydrochloride	No data		4.88	
Cefepime dihydrochloride	4.0–6.0		4.42	D5W
Filgrastim	3.8–4.2		40.0 mg/mL	
Furosemide	8.0–9.3			
Ganciclovir sodium	11.0			
Insulin aspartate	7.0–7.8			
Levetiracetam	5.5			
Methylprednisolone sodium succinate	7.0–8.0			
Metoclopramide hydrochloride	4.5–6.5		5.59	0.1 mg/mL
Ondansetron hydrochloride	3.3–4.0		5.34	0.2 mg/mL
Pantoprazole sodium	9.0–11.5		4.15	0.16 mg/mL
Paracetamol	5.5		4.31	0.08 mg/mL
Phloroglucinol dihydrate	4.0–6.0		3.88	0.48 mg/mL
Piperacillin sodium-Tazobactam sodium	5.5–6.8			
Potassium chloride	4.0–8.0		5.40	100.0 mg/mL
Tacrolimus	2.0–6.0		4.26	3.0 µg/mL
Tramadol hydrochloride	No data		4.24	30.0 µg/mL

^aW: dextose, ^b% NaCl: 0.9% sodium chloride, ^cWb: dextrose 5% in water.
Table 3: List of injectable drugs used for laboratory tests.

Drugs	Laboratory	Batch	Expiry date
Posaconazole NOXAFIL® 300 mg/16.7 mL	MSD	S030468	10/21
Acyclovir sodium 500 mg	Mylan	B2139	04/22
Alizapride hydrochloride PLITICAN® 50 mg/2 mL	Sanofi	H1503	06/22
Cefepime dihydrochloride 2 g	Gerda	P-09	04/22
Filgrastim ZARZIO® 30 MUI/0.5 mL=300 µg/0.5 mL	Sandoz	KB9549	05/22
Furosemide 20 mg/2 mL	Renaudin	206612	09/22
Ganciclovir sodium CYMEVAN® 500 mg	Cheplapharm	B8039B03	05/21
Insulin aspartate NOVORAPID® 1,000 UI/10 mL	Novo Nordisk	J5695Y8	11/21
Levetiracetam 500 mg/5 mL	Mylan	F2066	07/21
Methyldapenosine sodium succinate 120 mg	Mylan	B3124	04/21
Methyldapenosine sodium succinate 40 mg	Mylan	B2444	06/21
Metoclopramide hydrochloride PRIMPERAN® 10 mg/2 mL	Sanofi	HY022	06/22
Nefopam hydrochloride 20 mg/2 mL	Mediso	H1045	09/22
Ondansetron hydrochloride 8 mg/4 mL	Accord	Y08562	04/22
Pantoprazole sodium 40 mg	Arrow	891978	11/21
Paracetamol 1,000 mg/100 mL	B Braun	1943451	09/21
Phloroglucinol dehydrate 40 mg/4 mL	Arrow	206363	10/20
Piperacillin sodium-Tazobactam sodium 4 g	Pan Pharma	305856	06/22
Potassium chloride 2 g/20 mL	Lavoisier	8P371	06/21
Tacrolimus PROGRAF® 5 mg/1 mL	Astellas	5A3419N	01/21
Tramadol hydrochloride TOPALGIC® 100 mg/2 mL	Sanofi	1049	05/22

Solvants

Dextrose 5% in water 100 mL Ecolifac®³	Fresenius	15NLCS20	10/22
Dextrose 5% in water 250 mL glass vial	Lavoisier	9F561	02/22
Sodium chloride 0.9% 100 mL EasyFlex®³	MacoPharma	19A09B	01/21
Sodium chloride 0.9% 100 mL Ecolifac®	Fresenius	15MNCS510	11/21
Sodium chloride 0.9% 50 mL Ecolifac®	Fresenius	15MD150	11/21
Sodium chloride 0.9% 50 mL glass vial	Lavoisier	9F561	09/22

³Ecolifac® is a low density polyethylene infusion bag. EasyFlex® is a polyolefin bag.

Table 4: Final ratio results with physical modification after 4-h storage.

Drug X/Posaconazole (1.20 mg/mL)	Concentration	Type of incompatibility	Ratio	Time
Acyclovir sodium	3.5 mg/mL	Precipitate	9:1	After mixture
Alizapride hydrochloride	3.0 mg/mL	Precipitate	9:1	After 1 h
Cefepime dihydrochloride	40.0 mg/mL	Precipitate	9:1	After mixture
Furosemide	0.8 mg/mL	Precipitate	9:1	After mixture
Ganciclovir sodium	3.5 mg/mL	Precipitate	9:1	After mixture
Insulin aspartate	100.0 UI/mL	Precipitate	9:1	After mixture
Levetiracetam	5.0 mg/mL	Precipitate	9:1	After mixture
Methyldapenosine sodium succinate	20.0 mg/mL	Precipitate	9:1	After mixture
Metoclopramide hydrochloride	0.1 mg/mL	Precipitate	9:1	After 4 h
Nefopam hydrochloride	0.2 mg/mL	Precipitate	9:1	After mixture
Ondansetron hydrochloride	0.16 mg/mL	Precipitate	9:1	After 1 h
Paracetamol	10.0 mg/mL	Precipitate	9:1	After mixture
Phloroglucinol dehydrate	0.8 mg/mL	Precipitate	9:1	After mixture
Piperacillin sodium–Tazobactam sodium	160.0 mg/mL	Precipitate	9:1	After mixture
Potassium chloride	100.0 mg/mL	Precipitate	9:1	After mixture
Tramadol hydrochloride	0.5 mg/mL	Precipitate	9:1	After mixture
In the majority of cases, a white precipitate after mixture appeared. Figure 1 shows a white precipitate which occurred instantly after mixing posaconazole and ganciclovir. After mixing posaconazole with pantoprazole, a precipitate was observed for the 9:1 ratio, a precipitate and a yellow colouring for 1:1 ratio are visual and for the 1:9 ratio, only a yellow colouring can be observed (Figure 2).

Discussion

In the 19th edition of the Handbook on injectable drugs, only filgrastim (6 μg/mL in 0.9% sodium chloride and dextrose 5% in water) and potassium chloride (0.04 mEq/mL=2.98 mg/mL, in 0.9% sodium chloride and D5W) were physically compatible with posaconazole [7]. During the observational study in hematology care unit, higher concentrations of potassium chloride have been observed and used for the compatibility tests in this study. These drugs were tested with different concentrations in our laboratory: filgrastim 3 μg/mL and potassium chloride 100.0 mg/mL. This current study highlighted an incompatibility with potassium chloride 100.0 mg/mL.

In the majority of cases, this study demonstrated that posaconazole is responsible for many incompatibilities not previously published. Critical molecules with high precipitation potential were identified in the drug list established in the first step of this study. Out of 19 drugs, 17 were identified as physically incompatible with posaconazole.

For the drugs tested, posaconazole was compatible only with filgrastim and tacrolimus for any dilution studied (9:1, 1:1 and 1:9). These different ratios were performed

Drug X/Posaconazole (1.20 mg/mL)	Concentration	Ratio
Alizapride hydrochloride	3.0 mg/mL	1:1, 1:9
Filgrastim	0.3 μM/mL	9:1, 1:1, 1:9
Furosemide	0.8 mg/mL	1:9
Insulin aspartate	100.0 UI/mL	1:9
Levetiracetam	5.0 mg/mL	1:9
Methylprednisolone sodium succinate	20.0 mg/mL	9:1
Metoclopramide hydrochloride	0.1 mg/mL	1:1, 1:9
Nefopam hydrochloride	0.2 mg/mL	1:1, 1:9
Ondansetron hydrochloride	0.16 mg/mL	1:1, 1:9
	0.08 mg/mL	1:1, 1:9
	0.48 mg/mL	1:9
Paracetamol	10.0 mg/mL	1:9
Phloroglucinol dihydrate	0.8 mg/mL	1:1, 1:9
Piperacillin sodium – Tazobactam sodium	160.0 mg/mL	9:1
Potassium chloride	100.0 mg/mL	1:1, 1:9
Tacrolimus	3.0 μg/mL	9:1, 1:1, 1:9
	30.0 μg/mL	9:1, 1:1, 1:9
Tramadol hydrochloride	0.5 mg/mL	1:1, 1:9

Figure 1: Mixture of ganciclovir sodium (G) 3.5 mg/mL diluted in 0.9% sodium chloride with posaconazole (P) 1.2 mg/mL diluted in 0.9% sodium chloride after the mixture (G:P (v:v)): glass tube left to right, n°1: 9:1, n°2: 1:1, n°3: 1:9.

Figure 2: Mixture of pantoprazole sodium (PS) 0.4 mg/mL diluted in 0.9% sodium chloride with posaconazole (P) 1.2 mg/mL diluted in 0.9% sodium chloride after a 4-h storage (PS:P (v:v)): glass tube left to right, n°1: 9:1, n°2: 1:1, n°3: 1:9.
because the drugs flows can be modified leading to higher or lower concentrations. If the three ratios are compatibles, it is possible to extrapolate over all the concentration ranges. As notified in the Handbook [7] or in Martindale [9], these two drugs have an acidic pH like posaconazole. As described by Vu N. et al., knowledge of pH is really useful in stabilization of preparations. The pH affects the solubility of a basic or an acid drug. An optimal pH range is necessary for solubilizing drugs [11]. The pH could be a precipitation factor, since two opposite pHs are more likely to form a precipitate as illustrated by Perez M et al. during their experiment [12]. This present study shows that posaconazole does not present a precipitate directly after mixing with an acidic drug (the pH of posaconazole ± 2 pH units), cefepime being an exception. In our laboratory, pH posaconazole was measured at 4.42 pH units. Another parameter may come into play concerning the stability between posaconazole and cefepime. All drugs that precipitate instantly after mixing with posaconazole, have a basic pH (above 9.0, except for cefepime dihydrochloride): acyclovir sodium: 11.0 pH units, ganciclovir sodium: 11.0 pH units, pantoprazole sodium: 9.0–11.5 pH units. The hypothesis to explain the formation of a precipitate for these molecules after mixing with posaconazole is a pH too far from the pH of posaconazole.

Posaconazole is a weak base which cause a low aqueous solubility. To increase the solubility by ionization a cyclodextrin used as complexing agent: sulfobutylether-β-cyclodextrin (SBECD) is added to the formulation [1]. As described in the literature by Dhruve P. et al., this complexing agent improved the solubility of the drug [13]. The balance between the complexed molecule and the complexing agent could be very weak and therefore lead to precipitation when a chemically active element is added.

The compatibility between posaconazole and cefepime could be due to the presence of excipients (sodium edentate, L-arginine). However, we did not find any information to confirm this hypothesis. This hypothesis needs further investigations.

Posaconazole should not be administered simultaneously with these commonly intravenous drugs. In addition, as explained by Perez M et al., the use of a new multilumen access device could prevent physical incompatibility between several drugs with different pH levels (acid and basic), for example the Edelvaiss Multiline-8®, which confirms that the infusion set has an impact on the physical compatibilities drugs [12]. A grouping of drugs of similar pH may also be considered, or a delay in the administration of the least essential injectable drugs [14]. In case of available specialties and for a patient able to swallow, it is possible to change the route of administration [15].

Conclusion

This study provides new data on the physical compatibility of posaconazole with drugs commonly used via Y-site infusion in a hematoloy care unit. Among the 19 drugs tested, only filgrastim and tacrolimus were physically compatible with posaconazole. In majority of cases, posaconazole was not compatible with drugs having alkaline pH, commonly used in our hematology unit.

Acknowledgments: Assistance with the study: Thank you to Jacques Kuhnle for reading through it all and making corrections. Thank you to Franck Blaise and Hubert Zenier for their technical assistance and their help during this study.

Research funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: The authors state no conflict of interest. The authors have read the journal’s Publication ethics and publication malpractice statement available at the journal’s website and hereby confirm that they comply with all its parts applicable to the present scientific work.

Informed consent: Not applicable.

Ethical approval: Not applicable.

References

1. Noxafil® 300 mg concentrate for solution for infusion. Summary of product characteristics. Updated September. UK: Merck Sharp & Dohme Limited; 2019.
2. Hanifah S, Ball P, Kennedy R. Medication incompatibility in intravenous lines in a pediatric intensive care unit (PICU) of Indonesian hospital. Crit Care Shock 2018;21:114–23.
3. Guignard B, Gschwind L, Fonzo-Christe C. Les incompatibilités médicamenteuses en 2015: encore une mission du pharmacien d’établissement de santé ? Pharmaceut 2015;48:132–4.
4. Tatro DS. Drug interaction facts: the authority on drug interactions. St. Louis: Facts and Comparisons; 2006.
5. Bardin C, Astier A, Vulto A, Sewell G, Vigneron J, Trittler R, et al. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference. Ann Pharm Fr 69;2011:221–31.
6. D’Huart E, Vigneron J, Demoré B. Physical compatibility of intravenous drugs commonly used in intensive care units: an observational study and physical compatibility laboratory tests on anti-infective drugs. Pharmaceut Technol Hosp Pharm 2019;4:29–40.

7. Trissel LA. Handbook on injectable drugs, 19th ed. Bethesda, MD: American Society of Health-System Pharmacist; 2017.

8. Stabilis®. Created in 2001. Available from: www.stabilis.org.

9. The Royal Pharmaceutical Society of Great Britain. Martindale – the complete drug reference; 2020. Available from: www.micromedexsolutions.com.

10. European Pharmacopeia 9.0. Chapter 2.2. Physical and physicochemical methods. 2.2.2: Degree of coloration of liquids. Strasbourg: EDQM; 2016:22 p.

11. Vu N, Misty M. Pharmaceutical and analytical considerations of significance of pH. Int J Pharm Compd 2009;13:231–2.

12. Perez M, Décaudin B, Foinard A, Barthélémy C, Debaene B, Lebuffe G, et al. Compatibility of medications during multi-infusion therapy: a controlled in vitro study on a multilumen infusion device. France: Société française d’anesthésie et de réanimation (Sfar); 2015:83–8 p.

13. Dhruve P, Tripathi A, Gidwani B, Vyas A. Investigating the phase-solubility and compatibility study of anticancer drug complexed with β-cyclodextrin and hp-β-cyclodextrin. Int J Adv Pharmaceut Sci 2017;9:69–74.

14. Serrurier C, Chenot E, Vigneron J, May I, Demoré B. Assessment of injectable drugs’ administration in two intensive care units and determination of potential physico-chemical incompatibilities. Eur J Hosp Pharm Sci 2006;5:96–9.

15. Administration de médicaments par voie parentérale et incompatibilité physico-chimiques. HUG: Hôpitaux universitaires de Genève; 2004. Available from: https://pharmacie.hug-ge.ch/.