Prevalence of household food insecurity in East Africa: Linking food access with climate vulnerability

Girma Gezimu Gebrea,b,*, Dil Bahadur Rahutc,d

a Faculty of Environment, Gender and Development Studies, Hawassa University, Hawassa, Ethiopia
b Department of Agricultural and Resource Economics, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
c Asian Development Bank Institute, Tokyo, Japan
d International Maize and Wheat Improvement Center, El Batán, Texcoco, Mexico

ARTICLE INFO

Keywords:
Food insecurity
Household
Climate change
Vulnerability
East Africa

ABSTRACT

The prevalence of food insecurity is much higher in East Africa than in other parts of the world. Climate change and associated variability are important contributors to food insecurity in the region. Using primary data collected in 2018/19 from Ethiopia, Kenya and Tanzania, this study examines the links between the prevalence of household food insecurity (the access to food dimension) and vulnerability to climate change in East Africa. The Household Food Insecurity Access Scale (HFIAS) was constructed to measure the prevalence of household food insecurity, and an ordered probit econometrics model was used to investigate the factors affecting the prevalence rates. The aggregate results show that 52% of the total sampled households in the region were food-secure; 15% and 26% were mildly food-secure and moderately food-insecure, respectively; and the remaining 7% were severely food-insecure. The ordered probit results suggest that exposure to climate change extremes and crop losses caused by these extremes significantly contribute to the prevalence of food insecurity across countries in East Africa. The results also indicate that households’ adaptive capacity plays a significant role in reducing the prevalence of food insecurity. The demographic/human, social, financial, physical, and natural assets/capital of the household also play a significant role in reducing household-level food insecurity in Ethiopia, Kenya, and Tanzania.

1. Introduction

The 2030 Agenda for Sustainable Development, adopted by the United Nations General Assembly on 25 September 2015, aims to “end hunger and ensure access by all people, in particular, the poor and people in vulnerable situations, including infants, to safe, nutritious and sufficient food all year round” (Food and Agriculture Organization, FAO, 2017). However, food security remains a major uncertainty for households and individuals across the globe (Agidew and Singh, 2018; Abdullah et al., 2019; Drammeh et al., 2019; Kabubo-Mariara and Mulwa, 2019; Thome et al., 2019; Oduniyi and Tekana, 2020). The recent estimates by FAO et al. (2019) indicate that 26.4% of the world population were living in a food-insecure state in 2018.

The prevalence of food insecurity is much higher in Africa than in other parts of the world (FAO, 2017; Smith et al., 2017; Drammeh...
would be considered under the sensitivity dimensions of climate change vulnerability, since loss or decline in crop production leads to (the food access dimension) could be determined by the loss of or decline in household food production due to damage from climate change. When these functions are described at the household level, food (in)security falls under the sensitivity function (Sam et al., 2019); however, this paper argues that the prevalence of agrarian household food insecurity places emphasis on access to food, our study links the food access dimension of food insecurity with vulnerability to climate change, and people who are already vulnerable and food insecure are likely to be the first affected by these (FAO et al., 2020).

2. Conceptual framework and measurement

2.1. Conceptual framework

Food security is defined by the FAO as “a situation that exists when all people, at all times, have physical, social, and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for active and healthy life” (FAO, 1996). In contrast, food insecurity is defined by the FAO as “a situation that exists when people lack secure access to sufficient amounts of safe and nutritious food for normal growth and development, and active and healthy life.” (ibid). As the FAO definition of food insecurity places emphasis on access to food, our study links the food access dimension of food insecurity with vulnerability to climate change. Food access is a function of the demographic, social, physical, and policy environments that determine how effectively households are able to utilize their resources to meet their food needs (Shah and Dulal, 2015, Sam et al., 2019). These demographic, social, physical, and policy settings that determine food access change with climate vulnerability (Schmidhuber and Tubiello, 2007; Sam et al., 2019).

The term “vulnerability” has no universally accepted definition (Cutter et al., 2009; IPCC, 2007; Nelson et al., 2010). Hence, this study refers to the widely-cited definition provided by the Intergovernmental Panel on Climate Change (IPCC), which defines vulnerability as “the degree to which an environmental or social system is susceptible to, and unable to cope with, adverse effects of climate change, including climate variability and extremes” (IPCC, 2007). Vulnerability is a result of a system’s exposure and sensitivity to climatic stimuli, and its capacity to adapt to their adverse effects (IPCC, 2007). As defined by the IPCC, exposure refers to the presence of people with their livelihoods, resources, infrastructure, and economic, social, and cultural assets, in places that could be adversely affected by climate change outcomes such as extremes of rainfall (drought or flood). Sensitivity refers to the degree to which a system is negatively affected by climate variability or drought. Adaptive capacity refers to a system’s ability to respond successfully to the adverse effects of climate change. When these functions are described at the household level, food (in)security falls under the sensitivity function (Sam et al., 2019); however, this paper argues that the prevalence of agrarian household food insecurity (the food access dimension) could be determined by the loss of or decline in household food production due to damage from climate change extremes such as drought or flooding. That is, both loss or decline in household crop production and household food insecurity would be considered under the sensitivity dimensions of climate change vulnerability, since loss or decline in crop production leads to
The adaptive capacity or ability of households to respond to their food-insecure state depends on their human, social, financial, natural, and physical endowments (Antwi-Agyei et al., 2013; Wright et al., 2012; Islam and Al Mamun, 2020; Piya et al., 2016; Sam et al., 2019). A household with greater adaptive capacity is less likely to be rendered food insecure. In considering the above situations and following Islam and Al Mamun (2020), this study conceptualizes the links between food insecurity (food access) and climate change vulnerability (exposure, sensitivity, and adaptive capacity) as in Fig. 1.

2.2. Measurements of Household-level Food Security/Insecurity

As food security is a complex and multidimensional concept that encompasses availability, access, utilization and stability, a single measure cannot capture all the dimensions of what it means to be food secure or food insecure (see, e.g., Coates and Maxwell, 2012; Coates, 2013; Jones et al., 2013; Tadesse et al., 2020). Therefore, analysts use a diverse set of proxy indicators that capture different dimensions of food security/insecurity. These are broadly divided into objective and subjective/experimental measures. The objective measures include calorie intake or availability, monetary poverty thresholds, and dietary diversity (Headey and Ecker, 2012; Tadesse et al., 2020). These measures are based on a consumption or income approach. Consumption data tend to have large seasonal volatility, and such data are most often collected through a single-round survey undertaken in a specific month of the year. Household surveys of food (in)security studies based on consumption data usually focus on either the four-week or seven-day duration prior to the start of survey interviews. Hence, consumption data could be subjected to problems related to infrequent purchase (where, for example, food is purchased shortly after the survey interview, consequently biasing the results of reported expenditure in the month prior to the

Fig. 1. Conceptual framework of household food insecurity (food access) in the context of the IPCC dimensions of vulnerability (i.e., the links between climate exposure threat, sensitivity, adaptive capacity, and lack of access to sufficient food for a household). Note that the arrows and the ± signs indicate expected direction of effects on the corresponding variables or indicators; the dashed line indicates a potential impact (excluding adaptive capacity).
3.1. Study area

The East Africa region is the most vulnerable in the world to climate-related risks. Apart from protracted conflict and political violence, climate-induced risk is the major driver of vulnerability in the region, particularly for poor communities whose livelihood depends on rainfed agricultural systems (FAO, 2017), which account for 40% of the regional economy. Extreme weather events that are associated with climate change and variability have increased in recent years. This has resulted in more crop and livestock diseases, livestock deaths, and total crop losses, as well as frequent emergencies, food insecurity, infrastructure damage, and high economic costs. On the other hand, East Africa is a region with one of the highest population growths in the world (Waithaka et al., 2013), and as a result, the demand for food is increasing dramatically. This study focuses on Ethiopia, Kenya, and Tanzania that together make up a significant share of the region's population, while experiencing frequent droughts related to climate change.

3.2. Data

The study used the primary data that was collected in 2018/19 from Ethiopia, Kenya, and Tanzania using a purposive multi-stage sampling strategy. In Ethiopia, the data were collected from the three biggest regional states in the country: Amhara, Oromia and the
South Nation, Nationalities, and People (SNNP) regional states. In Amhara region, data were collected from Awi and West Gojam zones; in Oromia region, data were taken in Jimma, East Shewa, Aris, and West Aris zones; and in the SNNP region, data were collected from Gurage, Hadiya, Wolaita and, Gamo zones. In Kenya, the data were recorded in Makueni, Machakos, Embu, Tharaka Nithi, Kakamega, and Busia counties, while in Tanzania, data were collected from Morogoro, Iringa, Mbeya, Tabora, Manyara, Simiyu, Arusha, and Kilimanjaro regions. In total, data were collected from 1912 smallholder farm households (516 in Ethiopia, 676 in Kenya, and 720 in Tanzania). The collected data had detailed information on household demographic characteristics, social networks, households’ assets, climate change and adaptation to it by the household, food security, location, incomes, agricultural output, and other institutional information.

3.3. Methods of analysis

Prevalence levels of household food insecurity were calculated using the HFIAP indicators. Firstly, we coded frequency-of-occurrence as 0 for all cases where the answer to the corresponding occurrence question was “no” (i.e., if the answer to Q1 was “no” then frequency-of-occurrence was coded as Q1 = 0 and so on). If the answer to the occurrence question was “yes”, then a frequency-of-occurrence question was coded as 1 for all cases where the situation occurred rarely, 2 for sometimes, and 3 for often. In short, each occurrence question (Table 1) was assigned four alternative codes (e.g., Q1 was coded as Q1 = 0 for no occurrence, Q1 = 1 for rare occurrence, Q1 = 2 for occasional occurrence, or Q1 = 3 for frequent occurrence). Secondly, the Household Food Insecurity Access (HFIA) category variable was calculated for each household using the assigned codes of the degree of food insecurity in which it fell. Accordingly, four categories of food insecurity were created sequentially, (1 = food secure, 2 = mildly food insecure, 3 = moderately food insecure, and 4 = severely food insecure), to ensure that households were classified according to their most severe response.

Following the operational definition of food insecurity used in this paper, each category of the HFIA was calculated from Table 1 as:

Food secure = 1 if [(Q1 = 0 or Q1 = 1) and Q2 = 0 and Q4 = 0 and Q6 = 0 and Q8 = 0 and Q9 = 0]
Mildly food insecure = 2 if [(Q1 = 2 or Q1 = 3 or Q2 = 1 or Q4 = 2 or Q8 = 3 or Q9 = 1 or Q1 = 1) and Q3 = 0 and Q5 = 0 and Q7 = 0 and Q9 = 0]
Moderately food insecure = 3 if [(Q1 = 2 or Q1 = 3 or Q4 = 2 or Q8 = 3 or Q9 = 1 or Q9 = 2) and Q7 = 0 and Q9 = 0]
Severely food insecure = 4

if [Q2 = 3 or Q8 = 3 or Q2 = 1 or Q9 = 2 or Q2 = 3 or Q7 = 1 or Q9 = 2 or Q9 = 3 or Q9 = 1 or Q2 = 2 or Q9 = 3]

Finally, the prevalence of the different levels of household food insecurity was calculated by dividing the number of households in one category to the total number of households in the four categories.

To examine the effect of climate vulnerability on the prevalence of the different levels of household food insecurity, an ordered probit model was estimated to derive the probabilities related to the prevalence of household food insecurity. This was because the outcome variables (food secure, mildly food-insecure, moderately food-insecure, and severely food-insecure) were categorical and ordinal.

Following Greene (2012), the standard ordered probit equation is given as:

\[Y_i^* = X_i \beta + e_i, e_i \sim \text{Normal}(0, 1) \]

where, \(Y_i^* \) is a latent variable, \(i \) represents food-secure, mildly food-insecure, moderately food-insecure, or severely food-insecure farm households; \(X_i \) is a vector of explanatory variables describing climate change vulnerability (exposure, sensitivity, and adaptive capacity); \(\beta \) is the coefficient and \(e_i \) is the random error term assumed to be normal. Let \(a_1 < a_2 < a_3 \), be the unknown threshold parameters (cut-off points), and define the probability of the household food (in)security status in Equation (2) as:

Table 1

Questions in the Household Food Insecurity Access Prevalence.
No.
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
negative relationship with the food-secure category and a positive relationship with the mildly, moderately, and severely food-insecure

together explain the prevalence status of household food insecurity. Since the coefficients from ordered probit regression do not tell us

As observed by Greene (2012), the coefficient (8) estimates from the ordered probit regression are not straightforward and are
difficult to interpret. The coefficient estimates simply give the direction of the explanatory variables on the outcome variables. They do
not represent the actual magnitude of change associated with the explanatory variables. Thus, the marginal effects of each explanatory
variable on the probabilities are discussed in this paper. The description of the variables used in the model analysis is provided in table
2.

4. Results and discussion

4.1. Descriptive results

Table 3 provides the descriptive statistics of the prevalence rates of household food insecurity. Of the total surveyed farm
households in the three countries, 52% were food-secure, while 15% and 26% were mildly food-insecure and moderately food-
insecure, respectively; the remaining 7% of households were severely food-insecure. These results indicate that about 52% and
48% of the total sampled households in East Africa are food-secure and food-insecure, respectively. The prevalence rates of the
moderately and severely food-insecure states, in our findings, are lower than the findings reported by FAO et al. (2020) in the East
African region. They found that about 26% of people in East Africa were severely food-insecure in 2018, while 37% of people in the
region were moderately food-insecure in the same year. The FAO thus concluded that about 63% of East Africans did not have regular
access to nutritious and sufficient food, even if they were not necessarily suffering from hunger. The FAO analysis did not consider
mildly food-insecure households; this might thus be a reason for the lower prevalence of moderately food-insecure and severely food-
insecure households in this study.

Country-specific analysis shows that about 60% of the surveyed farm households in Ethiopia were food-secure, while 11% and 22%
of the households were mildly food-insecure and moderately food-insecure, respectively. Of the Kenyan households, 50% were food-
secure, while 12% and 30% were mildly food-insecure and moderately food-insecure, respectively. In Tanzania, 48% of the farm
households were food-secure, while 22% and 24% were mildly food-insecure and moderately food-insecure, respectively. These results
indicate that there is a slight variation in the prevalence rates of farm household food insecurity across countries in the East African
region.

Table 4 provides descriptive statistics of the explanatory variables used in the model analysis. Different explanatory variables were
included to predict the influence of climate change vulnerability on the prevalence levels of household food insecurity. They mainly
include variables related to exposure to climate change extremes such as short and long dry spells, degree of damage or loss of crop
production due to dry spells, and a household’s ability to respond to damage from climate change-related extremes. Aggregate results
show that all the food-insecure categories of the households suffered more adversity from climate change extremes; however, the
severity of the damage due to these was higher in the moderately and severely food-insecure categories. The country-specific results
show that Kenya recorded more frequent droughts in the last three years than Ethiopia and Tanzania; however, over a longer period,
the last ten years, all three countries recorded nearly similar occurrences of dry spells during the major production seasons.

The survey results also show that in each country there was a higher proportion of male-headed households in the food-secure
category and a lower proportion in the severely food-insecure category. This result implies that, without indicating any causal
relationship, the prevalence levels of food insecurity are higher in female-headed households in East Africa. The results also show that in all
three countries, the family size in food-secure households was small, while the family size in severely food-insecure households was
larger. The average number of livestock owned, measured in TLU, was higher among food-secure households, while it was lower in
severely food-insecure households in each country.

4.2. Factors affecting the prevalence of household food insecurity

The results of the factors affecting the prevalence of food insecurity among the surveyed farm households are presented in Table 5.
We estimated aggregate and specific country samples to examine the effects of climate vulnerability on the prevalence status of
household food insecurity. In both estimations, the model was significant at a 1% level, meaning that the explanatory variables taken
together explain the prevalence status of household food insecurity. Since the coefficients from ordered probit regression do not tell us
if there is a change in household food insecurity status due to a change in an explanatory variable, the marginal effects are discussed in
this section. These marginal effects are interpreted based on the sign and category. The results offer insights into the linkage of
vulnerability to climate change (the exposure, sensitivity, and adaptive capacity dimensions) to the prevalence of household food
insecurity (access to food dimension).

4.2.1. Exposure-sensitivity attributes and prevalence of food insecurity

All the variables related to exposure to climate change extremes and damage caused by such extremes (sensitivity) showed a
negative relationship with the food-secure category and a positive relationship with the mildly, moderately, and severely food-insecure
categories (Table 5). Both aggregate and specific country estimates show that the occurrence of a short or long dry spell during the main production season would decrease the probability that a household would remain in the food-secure category and increase the probability that it would fall into one of the three food-insecure categories. An increase in the frequency of crop loss due to a dry spell would decrease the likelihood of a household being food-secure, and increase the probability that a household would become mildly, moderately, or severely food-insecure. These results were expected, as climate variability has increased the frequency and intensity of extreme events such as erratic rainfall and drought across countries in East Africa (Nicholson, 2017). Consequently, the situation regarding the food security of smallholders and subsistence farm households is worsening in the region (FAO et al., 2018). A study by Tesso et al. (2012) in Ethiopia indicated that annual production losses due to climate variability significantly increase from year to year. Using an IPCC climatic projection model, Schlenker and Lobell (2010) and Zinyengere et al. (2013) noted that agricultural yield losses due to climate variability range from 18% for southern Africa to 22% aggregated across sub-Saharan Africa.

4.2.2. Human /demographic attributes and the prevalence of food insecurity

The human capital-related factors of a household are important determinants of the prevalence status of household food insecurity. Prevalence of household food insecurity may likely vary according to the gender, age and education level of the household head, size of

| Table 2 |
| Description of variables used in the ordered probit regression. |
Variables	Description and measurement	Expected sign
Dependent variable Food insecurity	1 = Food-insecure 2 = Mildly food-insecure 3 = Moderately food-insecure 4 = severely food-insecure	
Independent Variables Exposure Latest period dry spell	Frequency of dry spells that impacted major crop production between 2016 and 2018. +	
Longer period dry spell	Frequency of dry spells that impacted major crop production over the last ten years (2008–2018) +	
Sensitivity Crop loss	Number of seasons the household lost their crop due to dry spells between 2016 and 2018. +	
Household Adaptive Capacity Human Capital Gender	Sex of the household head (1 = male) –	
Age	Age of the household head in years –/+	
Family size	Number of household’s members –/+	
Education level	Education level of the head in years –	
Reciprocal labor	Does household use/access reciprocal labor (1 = yes) –	
Financial Capital Saving	Does current income allow household to save money (1 = yes) –	
Borrowings	Is the household able to borrow money from formal and informal sources (1 = yes) –	
Social Capital Visiting village demonstration	Does household attend farm demonstration sites in respondent’s village (1 = yes) –	
Visiting another village	Does household attend farm demonstration sites in another village (1 = yes) –	
Extension contact	Number of contacts with extension agent in 2018. –	
Information on rainfall and temperature	Does household regularly receive information on expected rainfall and temperature (1 = yes) –	
Membership in social group	Is household a member of a social group such as a farmers’ cooperative or farmers’ association? (1 = yes) –	
Physical Capital Distance to Market	Distance to the nearest main crop market in KM? –	
Distance to agriculture office	Distance to nearest government agricultural field office in KM? –	
Owned radio	Does the household currently own any radio or television? (1 = yes) –	
Natural Capital Land size	Total farm size owned by the household in hectares –	
Livestock	Number of livestock owned by the household in tropical livestock units (TLU) –	

Note that the expected sign was predicted from the perspective of food insecurity.

| Table 3 |
| Prevalence of household food insecurity by country. |
Household food insecurity level	Aggregate (N = 1,912)	Ethiopia (N = 516)	Kenya (N = 676)	Tanzania (N = 720)
Food-secure	52%	60%	50%	48%
Mildly food-insecure	15%	11%	12%	22%
Moderately food-insecure	26%	22%	30%	24%
Severely food-insecure	7%	7%	8%	6%
Table 4
Summary statistics showing the average values of the included variables by the prevalence of different levels of food insecurity.

Variables	Aggregate	Ethiopia	Kenya	Tanzania												
	Food-secure	Mild	Moderate	Severe												
Exposure																
Latest dry spell	0.84	0.97	1.17	1.38	0.94	0.91	0.88	1.18	0.97	1.41	1.37	1.88	0.61	0.96	1.16	1.25
Longer dry spell	1.11	1.57	1.77	1.78	1.35	1.55	1.83	1.97	1.43	1.68	1.71	1.85	1.38	1.75	1.76	1.98
Sensitivity																
Crop loss	0.70	0.88	0.96	0.98	0.64	0.87	0.94	0.95	0.57	1.40	1.11	1.08	0.68	0.99	0.83	1.28
Adaptive Capacity																
Human Capital																
Gender (Male head)	0.85	0.84	0.80	0.72	0.94	0.91	0.90	0.80	0.75	0.69	0.64	0.57	0.95	0.88	0.72	0.64
Age	47.30	51.56	50.71	48.0	49.50	51.02	46.48	48.97	40.62	50.04	52.15	44.69	52.23	52.55	52.00	51.40
Family size	5.30	5.80	6.33	7.24	6.87	6.91	7.00	6.74	3.72	5.06	5.97	8.77	5.41	5.83	6.33	7.73
Education level	7.73	6.13	5.58	5.60	5.09	4.93	3.21	3.09	9.30	8.56	7.65	5.70	7.06	6.70	6.50	4.15
Reciprocal labor	0.61	0.50	0.72	1.02	1.91	1.63	1.33	1.27	0.14	0.43	1.35	0.44	0.35	0.19	0.23	0.23
Financial Capital																
Savings	0.45	0.24	0.20	0.20	0.62	0.26	0.19	0.12	0.19	0.08	0.11	0.10	0.56	0.40	0.31	0.20
Borrowings	0.36	0.35	0.30	0.20	0.31	0.40	0.18	0.15	0.33	0.41	0.38	0.20	0.43	0.30	0.28	0.25
Social Capital																
Visiting village	0.38	0.29	0.34	0.30	0.85	0.77	0.74	0.61	0.19	0.15	0.18	0.20	0.27	0.21	0.20	0.05
demonstration site																
Visit another village	0.14	0.12	0.14	0.14	0.20	0.18	0.24	0.18	0.12	0.07	0.14	0.16	0.11	0.12	0.96	0.08
Extension contact	1.11	0.92	0.84	1.43	2.42	2.93	2.80	2.94	0.32	0.20	0.23	0.14	0.71	0.63	0.23	1.80
Information	0.70	0.58	0.50	0.43	0.79	0.64	0.60	0.42	0.76	0.66	0.56	0.68	0.54	0.47	0.49	0.25
Membership in group	0.48	0.36	0.30	0.25	0.56	0.48	0.37	0.31	0.51	0.36	0.24	0.28	0.26	0.20	0.10	0.10
Physical Capital																
Distance to Market	6.31	6.32	6.48	6.10	8.02	9.50	7.56	8.03	2.77	2.80	3.14	2.24	8.23	7.14	9.67	9.40
Distance to Agri Office	4.92	3.86	3.63	3.91	3.30	2.72	2.72	2.63	6.19	4.99	4.63	4.87	3.38	3.11	4.42	3.77
Owned radio or TV	0.75	0.70	0.61	0.42	0.56	0.40	0.24	0.15	0.88	0.81	0.69	0.59	0.83	0.80	0.63	0.43
Natural Capital																
Land size (ha)	2.47	2.91	2.19	1.82	1.97	1.91	1.81	2.00	1.83	2.85	1.72	1.16	3.55	3.30	3.03	2.52
Livestock (TLU)	3.08	2.71	2.17	1.61	4.64	4.20	2.52	2.12	1.87	1.56	1.28	0.81	3.17	3.00	2.67	2.20
No. of observations	994	305	488	125	309	55	118	34	337	87	201	51	348	163	169	40

NB: TLU conversion factor cattle = 0.70, donkey = 0.50, goat and sheep = 0.10, and chicken = 0.01.
the household, and availability of reciprocal labor\(^1\) in the household. A male-headed household has a significant positive association with the probability of being in the food-secure category, and a negative association with the probability of being in the mildly, moderately, or severely food-insecure categories in Ethiopia and Tanzania. This result suggests that in Ethiopia and Tanzania, male-headed households provide a better buffer against shortfalls of food access for their household members than their female counterparts. This might be because male-headed households have higher levels of resource endowments than female-headed households in rural areas of Ethiopia and Tanzania. Even if male and female-headed households have equal levels of resource endowments, unobservable characteristics are also responsible for the difference in their food security status. For example, in cases of crop failure due to harsh climatic conditions, cultural and social traditions make it easier for male heads to leave their farms in search of employment elsewhere than for their female counterparts. Due to cultural and social traditions, it is mainly men who acquire agro-climatic information, adopt new ideas, and have access to inputs through social groups in East Africa (Kebe et al., 2018). The present result is similar to studies by FAO (2011), Felker-Kantor and Wood (2012), Kassie et al. (2014), Abdullah et al. (2019), and Oduniyi and Tekana (2020), that all established that male-headed households were more likely to be food-secure than their female counterparts. Our result contradicts a study by Lutomia et al. (2019) in Kenya, who found a positive relationship between female-headed households and food security. They argued that female household heads provided a more critical buffer against food consumption shortfalls, and that their household members were more likely to be food secure. Other studies also indicate that women traditionally place more emphasis on family and child welfare, often leading to better educational and food-related outcomes (Smith and Haddad, 2000). When women have more decision-making power in the household (e.g., as household head), and a larger share of the household’s total income, the share of the household’s resources that is spent on food increases, leading to more but also higher-quality food (Sraboni et al., 2014). Access and power to control assets are vital pathways to boost income and empower individuals or households to escape from poverty, reduce vulnerability, and adapt and build resilience to accelerating climate change and variability (Ngigi et al., 2016).

Age of the household head in Kenya was negatively associated with the probability of the household being in the food-secure category, while it was positively associated with the probability of being in the mildly, moderately, or severely food-insecure categories. This finding suggests the diminishing contribution of household heads to food security as they age. An increase in age above a certain number of years may reduce the economic contribution of individuals to welfare improvements (Lutomia et al., 2019). Using data collected from 76 low- and middle-income countries, Thome et al. (2019) found that the likelihood of experiencing food insecurity increases with age but decreases with old age (i.e., the slope of age is zero at 45 years old). They argue that those who have reached old age have generally had opportunities that provide for a healthy life, but it may also be because the amount of food one needs declines with age. The present finding is similar to findings by Gebre (2012); Lutomia et al. (2019); Yahaya et al. (2018); and Oluwatayo and Ojo (2019), who found that the age of the household head was positively related and important in explaining the food-insecure states of households in Ethiopia, Ghana, Kenya, and Nigeria, respectively. The present finding contradicts some studies that argue that as age is a proxy for farming experience, a rural household’s knowledge of food security issues will increase as their heads get older and more experienced in farming and predicting the weather (e.g., Bogale and Shimelis, 2009; Mitiku et al., 2012; Mango et al., 2014).

Family size is found to be highly significant in determining the prevalence of food insecurity in all three countries. This household factor suggests that the probability of being food-secure decreases with an increase in family size, while the probability of being in one of the food insecurity categories increases with an increase in family size. The possible explanation is that in an area where households depend on agricultural land that is less productive due to climate change extremes, an increase in family size results in an increase in demand for food. This demand, however, cannot be matched with the existing diminished levels of household crop production, so ultimately the family becomes food insecure. This finding is similar to those of studies by Bogale and Shimelis, (2009) and Ayele et al. (2020). The availability of a person who provides labor for the household significantly determines the prevalence of household food insecurity in all three countries. The result suggests that access to reciprocal labor increases the probability that the household is in the food-secure category, and decreases the probability that it falls in the mildly, moderately, or severely food-insecure categories.

The education level of the household head significantly increases the probability of the household being food secure, and decreases the probability of it being in one of the three food-insecure categories in Ethiopia and Kenya. Education equips individuals with necessary knowledge on how to make a living. Hence, this result indicates the significance of education for households in improving food security, because educated household heads usually practice family planning, thereby limiting their family size and thus increasing their ability to manage the food demands of their households. Moreover, they engage themselves and their family members in various off-farm income-generating activities. Educated farmers are also more likely to adopt drought-resistant agricultural technologies, resulting in higher yields at harvest, and thus enabling their households to become food secure. This result is consistent with findings by Chinnakali et al. (2014); Mutisya et al. (2016); Agidew and Singh (2018); and Abdullah et al. (2019) in India, Kenya, Ethiopia, and Pakistani, respectively, that all indicate that an increase in education level increases the probability of being food-secure.

4.2.3. Financial and social attributes and prevalence of food insecurity

Economic conditions in the rural households in our sample are measured by the financial benefits households have in terms of money. Financial variables are associated with differences in the prevalence of food insecurity. Persons who provide labor for other members of the same household (Hofmeester et al., 2015).

\(^1\) Persons who provide labor for other members of the same household (Hofmeester et al., 2015).
Table 5
Average Marginal effects after ordered probit regression factors affecting the prevalence of household-level food insecurity.

Variables	Three countries combined (Aggregate)	Ethiopia	Kenya	Tanzania												
	Food-secure	Mil	Moderate	Severe												
Exposure																
Latest																
G.G. Gebre and D.B. Rahut	0.016	0.002	0.003	0.004	0.016	0.002	0.005	0.006	0.016	0.002	0.005	0.006	0.016	0.002	0.005	0.006
dry spell	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000
Sensitivity																
Family size	0.016	0.003	0.004	0.006	0.016	0.003	0.005	0.006	0.016	0.003	0.005	0.006	0.016	0.003	0.005	0.006
Education level	0.004	0.004	0.005	0.005	0.004	0.004	0.007	0.007	0.004	0.004	0.007	0.007	0.004	0.004	0.007	0.007
Reciprocal labor	0.031	0.004	0.004	0.004	0.031	0.004	0.005	0.005	0.031	0.004	0.005	0.005	0.031	0.004	0.005	0.005
Saving 1	0.215	0.025	0.133	0.058	0.215	0.025	0.133	0.058	0.215	0.025	0.133	0.058	0.215	0.025	0.133	0.058
Borrowings 1	0.042	0.003	0.014	0.006	0.042	0.003	0.014	0.006	0.042	0.003	0.014	0.006	0.042	0.003	0.014	0.006
Social Capital																
Visiting village demonstration	0.003	0.000	0.002	0.001	0.003	0.000	0.002	0.001	0.003	0.000	0.002	0.001	0.003	0.000	0.002	0.001
Visiting outside	0.011	0.001	0.007	0.003	0.011	0.001	0.007	0.003	0.011	0.001	0.007	0.003	0.011	0.001	0.007	0.003
Extension contact	0.005	0.001	0.003	0.001	0.005	0.001	0.003	0.001	0.005	0.001	0.003	0.001	0.005	0.001	0.003	0.001
Information on rainfall 1	0.037	0.004	0.023	0.002	0.037	0.004	0.023	0.002	0.037	0.004	0.023	0.002	0.037	0.004	0.023	0.002
Membership in group 1	0.019	0.002	0.012	0.005	0.019	0.002	0.012	0.005	0.019	0.002	0.012	0.005	0.019	0.002	0.012	0.005
Distance to nearest Market	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000

(continued on next page)
Table 5 (continued)

Variables	Three countries combined (Aggregate)	Ethiopia	Kenya	Tanzania
	Food-secure Mild Moderate Severe	Food-secure Mild Moderate Severe	Food-secure Mild Moderate Severe	Food-secure Mild Moderate Severe
Distance to agriculture office	0.003 (0.002) -0.000 (0.001) -0.001 (0.001)	0.005 (0.005) -0.000 (0.003) -0.002 (0.002)	0.009** (0.003) -0.000** -0.005** -0.003**	0.000 (0.003) -0.000 (0.001) -0.000 (0.002)
Owned radio/TV³	0.146*** (0.023) -0.017*** (0.003) -0.090*** -0.039***	0.156*** (0.007) -0.015** -0.091*** -0.050***	0.040** (0.004) -0.002* -0.025** -0.012**	0.133*** -0.022*** -0.079*** -0.031***
Natural Capital	Land size (ha) 0.003 (0.000) -0.002 (0.001) -0.001 (0.001)	0.024 (0.016) -0.002 (0.009) -0.014 -0.008	0.001 (0.005) -0.000 (0.003) -0.000 (0.001)	0.006 (0.005) -0.001 (0.003) -0.004 (0.001)
	Livestock (TLU) 0.016*** (0.003) -0.002*** -0.010*** -0.004***	0.030*** (0.007) -0.003** -0.017*** -0.010***	0.046*** (0.011) -0.002** -0.029*** -0.014***	0.008** -0.001** -0.005** -0.002**
Log likelihood	-459.13841 -701.43858 -781.42762			

- ** at 1% level of significance, * at 5% level of significance, and * at 10% level of significance, ^3indicates dummy variables.
if the current income of the household allows them to save money, they are more likely to be in the food-secure category and less likely to fall in a food-insecure category. On the other hand, a household that is able to borrow money from different sources is also likely to be food-secure and less likely to fall in the mildly, moderately, and severely food-insecure categories. This significant result is consistent with findings by Sharif and Khor (2008); Gupta et al. (2015), and Sam et al. (2018), who noted that the ability to borrow money from various sources such as family members, relatives, and neighbors was considered as a strategy to help households from experiencing insufficiency of food.

Social capital helps households to reduce vulnerability and enhance adaptive capacity and recovery from adverse events (Adger et al., 2009; Bezabih et al., 2013). A social-group-based approach offers alternative sources of livelihood diversification, and acts as a risk-management tool through employing innovative systems to adapt to climate change (Ngigi et al., 2016). It plays a significant role in improving household food security (Mertens et al., 2015; Smith et al., 2017). In the present study, participation in farm demonstrations significantly determined the prevalence of household food insecurity in Ethiopia, while it was not significant in Kenya and Tanzania. The result suggests that participation in village farm demonstrations is positively associated with the probability of being food-secure, and negatively associated with being mildly, moderately, or severely food-insecure in Ethiopia. This result might be connected to the agricultural extension modalities of Ethiopia. Membership of social groups has a positive effect on the probability of being food-secure and a negative effect on being mildly, moderately, or severely food-insecure in all three countries. Using data collected from three agro-ecological zones in Kenya, an analysis by Kebe et al. (2018) indicated that farmers who belonged to social groups were more likely to adapt to climate change, and to change crop variety and type supported by group-based seed acquisition. They became more food-secure than those who were not social-group members. Similar results are found a study by Westengen et al. (2019) in Ethiopia and Tanzania.

Climate variability impacts crop farming systems in different ways, such as damaging crops and causing persistently low yields that could lead to household food insecurity (Sawe et al., 2018). A study by Kinda et al. (2019) suggests that rainfall variability during the cropping season reduces food security in developing countries. Studies by Nhemachena et al. (2010), Charles (2014) and Shumetie and Yismaw (2018) indicate that rainfall variability and higher average temperatures in Africa negatively affect smallholder farm households’ income that comes from crops and livestock, and as a result, reduces their food security. The present result shows that regular access to information on rainfall and temperature has a positive effect on the probability of households being in the food-secure category and a negative effect on them being in the mild, moderately, or severely food-insecure categories in all three countries.

4.2.4. Physical and natural attributes and prevalence of food insecurity

Physical and natural capital can provide a buffer for farm households against food insecurity in the face of crop losses due to climate change extremes. Farm households’ ability to cope with or change their food-insecure situation, due to climate change extremes, depends on their access to different assets and infrastructures. We observed how households with a higher number of assets, such as livestock, were able to cope with food shortages (Table 5). The results of the present study indicate that ownership of durable assets such as a radio or television is positively associated with the probability of being food-secure, and negatively associated with being mildly, moderately, or severely food-insecure in all three countries. This might be due to the fact that a household who owns a radio or television regularly receives information on weather forecasts, while households who do not own such items do not.

The results also suggest that increases in the number of livestock (TLU) increase the probability of being food-secure, and decrease the probability of being mildly, moderately, or severely food-insecure in all three countries. This is an indication that ownership of livestock acts as a hedge against food insecurity in the study areas. Livestock, besides its direct contribution to subsistence needs and nutritional requirements, is a vital input into crop production as it provides manure, and serves to accumulate wealth that can be disposed of during times of need, especially when food stocks in the household diminish. This result is consistent with findings by Bogale and Shimelis (2009) and Ayele et al. (2020), who found a negative relationship between TLU and the likelihood of experiencing food insecurity.

5. Conclusion and policy implications

Climate variability has increased the frequency and intensity of extreme events such as drought and flooding in East Africa. These events have led to a drastic reduction in agricultural production and household incomes across countries in the region. Reduction in crop production caused by climate change extremes amplifies the existing stress on food insecurity across the region. This natural crisis imposes significant demographic, social, economic, physical, and psychological challenges to households that are primarily dependent on agriculture for their livelihood and food security. However, the degree of exposure and sensitivity to climate change extremes experienced by farm households is not the same, and their capacity to adapt to these extremes varies. Therefore, this study sought to investigate the prevalence of household food insecurity in the face of vulnerability to climate change in East Africa. The study links the FAO concept of food access with the IPCC dimensions (exposure, sensitivity, and adaptive capacity) of climate change vulnerability, using the primary data collected in 2018/19 from three East African countries: Ethiopia, Kenya, and Tanzania. The study went beyond food (in)security as a binary outcome variable, as has been done in many studies, and employed the most sophisticated and innovative food security measure, the HFIAS, to measure food insecurity as an ordinal outcome. An econometric estimation procedure that involves the use of an ordered probit mode was employed to identify the factors affecting the prevalence rates of household food insecurity in three countries.

The results suggest that the occurrence of a short or long dry spell during the main production season would increase the probability that the household fell into one of the food-insecure states in all three countries, and that the loss of crop production due to damage caused by a dry spell would significantly increase the prevalence of food insecurity in the region. The analysis revealed that the
adaptive capacity of a household has a significant role in reducing the prevalence of its food insecurity. The demographic/human, social, financial, physical, and natural attributes of the household play a significant role in reducing the prevalence of food insecurity that is aggravated by climate change extremes in Ethiopia, Kenya, and Tanzania. Strengthening households’ human and financial capital emerged as an influential intervention that would eventually reduce their food-insecure status through improved education of the household head, better family planning, access to reciprocal labor, and increased household savings. An educated farmer or household head is more likely to engage in income-diversification activities, adopt drought-resistant agricultural technologies, achieve a higher level of crop productivity, and become more food secure. Enabling access to information on weather (rainfall and temperature) for agrarian households would be a significant intervention that would help them adapt to climate change extremes and reduce the stress on food security in the region. It would enable farm households to make decisions about planting and harvesting according to the weather conditions. Improved weather and climate information (forecasting) could lead to better agricultural and food security outcomes and benefit farm households in the region. In particular, enabling access to local-level agrometeorological information that realistically relates to the farming environment would be a crucial intervention strategy for coping with climate variability. Delivering seasonal weather forecasts would be an important intervention mechanism to reduce the prevalence of household food insecurity. Building households’ physical and natural capital, such as ownership of a radio, television, and tropical livestock units, would play a significant role in reducing food insecurity in the region.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We would like to express our sincere gratitude to the International Maize and Wheat Improvement Center (CIMMYT) for supporting our study through the Stress Tolerant Maize for Africa (STMA) project, which is funded by the Bill and Melinda Gates Foundation (Grant No. OPP1134248).

References

Abdullah, Zhou, D., Shah, T., Ali, S., Ahmad, W., Din, I.U., Ilyas, A., 2019. Factors affecting household food security in rural northern hinterland of Pakistan. J. Saudi Soc. Agric. Sci.. 18 (2), 201–210.

Adger, W.N., Dessai, S., Goulard, M. et al. (2009). Are there social limits to adaptation to climate change?. Climatic Change 93, 335–354 (2009). https://doi.org/10.1007/s10584-008-9520-z.

Agidew, A. A. & Singh K.N. (2018). Determinants of food insecurity in the rural farm households in South Wollo Zone of Ethiopia: the case of the Teleyayen sub-watershed Agric. Food Econ. (2018) 6:10.

Antwi-Agyei, P., Dougill, A.J., Fraser, E.D.G., Stringer, L.C., 2013. Characterizing the nature of household vulnerability to climate variability. Environ. Dev. Sustain. 15, 903–926. https://doi.org/10.1007/s10668-012-9418-9.

Ayele, W.A., Kassa, M., Fenthahun, Y., Edmealeh, H., 2020. Prevalence and associated factors for rural households food insecurity in selected districts of east Gojjam zone, northern Ethiopia: cross-sectional study. BMC Public Health 20, 202.

Bezabih, M., Beyene, D. A., Gebregeziabher, Z., Barga, L., 2013. Social Capital, climate change and soil conservation investment: panel data evidence from the Highlands of Ethiopia, GRI Working Papers 115, Grantham Research Institute on Climate Change and the Environment.

Bogale, A., Shemlis, A., 2009. Household-level determinants of food insecurity in rural areas of Dire and Dawar, Eastern Ethiopia. Afr. J. Food Agric. Nutr. Dev. 9 (9), 1914–1926.

Charles, N., 2014. Economic impacts of climate change on agriculture and implications for food security in Zimbabwe. Afr. J. Agric. Res. 9 (11), 1001–1007.

Chinnakali, P., Upadhyay, P.R., Shokeen, D., Singh, K., Kaur, M., Singh, K.A., Goswami, A., Kapil Yadav, K., Pandav, S.C., 2014. Prevalence of household-level food insecurity and its determinants in an urban resettlement Colony in North India. J. Health Popul. Nutr. 32 (2), 227–236.

Coates, J., 2013. Build it back better: deconstructing food security for improved measurement and action. Global Food Security 2 (3), 188–194.

Coates, J., Maxwell, D., 2012. Reaching for the stars? Universal measures of household food security. In FAO International Scientific Symposium on Food Security and Nutrition Measurement. 2012. http://www.fao.org/docrep/017/i3244e/i3244e.pdf.

Coates, J., Swindale, A., Bilinsky, P., 2007. Household Food Insecurity Access Scale (HFAS) for measurement of food access: Indicator guide (v.3). Washington, DC: Food and Nutrition Technical Assistance Project, Academyfor Educational Development.

Cutler, S. L., Emrich, C. T., Webb, J.J., Morath, D., 2009. Social vulnerability to climate variability hazards: A review of the literature. Final report to Oxfam America.

Drammeh, W., Hamid, A.N., Rohana, J.A., 2019. Determinants of household food insecurity and its association with child malnutrition in sub-Saharan Africa: A review of the literature. Curr. Res. Nutrit. Food Sci. 07 (3), 610–623.

FAO (1996). Rome declaration on World food security and World food summit plan of action. World food summit 13-17 November 1996. FAO, Rome.

FAO, 2011. The State of Food and Agriculture 2010–2011: Women in Agriculture: Closing the Gender Gap for Development. Rome. Food Policy 44, 272–284.

FAO, Eca, & AUC, 2020. Africa Regional Overview of Food Security and Nutrition 2019. Accra. https://doi.org/10.4060/CAT343EN.

FAO, Ifad, UNICEF, WFP, & WHO, 2018. The State of Food Security and Nutrition in the World 2018. Building climate resilience for food security and nutrition. FAO, Rome.

FAO, Ifad, UNICEF, WFP, & WHO, 2019. The State of Food Security and Nutrition in the World 2019. Safeguarding against economic slowdowns and downturns. CC, Rome. FAO. Licence.

FAO, (2017). Regional Overview of Food Security and Nutrition in Africa 2017. The food security and nutrition–conflict nexus: building resilience for food security, nutrition and peace. Accra.

Feller-Kantor, E., Wood, C.H., 2012. Female-headed households and food insecurity in Brazil. Food Security 4 (4), 607–617.

Gebre, G.G., 2012. Determinants of food insecurity among households in Addis Ababa city, Ethiopia. Interdiscip. Descript. Complex Syst. 10 (2), 159–173.

Gebre, G.G., Isoda, H., Amekawa, Y., Rahut, D.B., Nomura, H., Watanabe, T., 2021. What explains gender gaps in household food security? Evidence from maize farm households in Southern Ethiopia. Soc. Indic. Res. 155 (1), 281–314. https://doi.org/10.1007/s10950-020-02600-W.

Greene, W.H., 2012. Econometric Analysis, 7th (Int.) ed. New York University. Pearson.

Gupta, P., Singh, K., Seth, V., Agarwal, S., Mathur, P., 2015. Coping strategies adopted by households to prevent food insecurity in urban slums of Delhi, India. J. Food Security 3 (1), 6–10.
Wright H., Kristjanson P., Bhatta G., 2012. Understanding adaptive capacity: Sustainable livelihoods and food security in coastal Bangladesh. CCAFS working paper no. 32. CGIAR research program on climate change, agriculture and food security (CCAFS), Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org.

Yahaya, I., Pokharel, K.P., Alidu, A.-F., Yamoah, P.A., 2018. Sustainable agricultural intensification practices and rural food security: The case of North-western Ghana. British Food J. 120 (2), 468–482.

Zinyengere, N., Crespo, O., Hachigonta, S., 2013. Crop response to climate change in southern Africa: a comprehensive review. Global Planet. Change 111, 118–126.