Strong multipolar transition enhancement with graphene nanoislands

Cite as: APL Photonics 6, 086103 (2021); https://doi.org/10.1063/5.0053234
Submitted: 06 April 2021 . Accepted: 19 July 2021 . Published Online: 02 August 2021

Gilles Rosolen, and Bjorn Maes

COLLECTIONS

This paper was selected as Featured
Strong multipolar transition enhancement with graphene nanoislands

Cite as: APL Photon. 6, 086103 (2021); doi: 10.1063/5.0053234
Submitted: 6 April 2021 • Accepted: 19 July 2021 • Published Online: 2 August 2021

Gilles Rosolen and Bjorn Maes

ABSTRACT

For a long time, the point-dipole model was a central and natural approximation in the field of photonics. This approach assumes that the wavelength is much larger than the size of the emitting atom or molecule so that the emitter can be described as a single or a collection of elementary dipoles. This approximation no longer holds near plasmonic nanostructures, where the effective wavelength can reach the nanometer-scale. In that case, deviations arise and high-order transitions, beyond the dipolar ones, are not forbidden anymore. Typically, this situation requires intensive numerical efforts to compute the photonic response over the spatial extent of the emitter wavefunctions. Here, we develop an efficient and general model for the multipolar transition rates of a quantum emitter in a photonic environment by computing Green’s function through an eigen permittivity modal expansion. A major benefit of this approach is that the position of the emitter and the permittivity of the material can be swept in a rapid way. To illustrate, we apply the method on various forms of graphene nanoislands, and we demonstrate a local breakdown of the selection rules, with quadrupolar transition rates becoming 100 times larger than dipolar ones.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053234

I. INTRODUCTION

Usually the quantum emitter is approximated as a point emitting a dipolar electric field. This is a legitimate approximation when the wavelength of the emitted light is much larger than the size of the atom or molecule. In that case, high-order transitions (transitions beyond the dipolar one, such as two-photon processes and electric and magnetic multipolar transitions) are negligible and termed forbidden. However, these transitions are of particular importance in spectroscopy, photochemistry, quantum information, and many other fields. Here, we develop a numerical method that computes the multipolar transition rates of a quantum emitter in a general photonic environment, and we show that graphene nanoislands can locally break the conventional selection rules of a hydrogen-like emitter.

The transitions are governed by the coupling between the charged constituents of the emitter and the electromagnetic field. In free space, the latter is a plane wave, with expansion \(\exp(ik \cdot x) \approx 1 + i(k \cdot x) - 0.5(k \cdot x)^2 + \cdots \) in the limit of \(k \cdot x \to 0 \). Through Fermi’s golden rule, each term, which corresponds to a number of gradients of the electromagnetic field (0, 1, 2, ...), can be traced back to a particular multipolar transition. For visible light, the wave vector is \(|k| = 10^7 \text{ m}^{-1} \), and for hydrogen-like atoms, \(\langle |x| \rangle \approx 10^{-10} \text{ m} \). It directly shows that the first term in the Taylor expansion, attributed to the dipolar transition, dominates by 3 orders of magnitude compared to the linear order, attributed to the quadrupolar transition, and by 6 orders of magnitude compared to the quadratic term, attributed to the octupolar transition. Therefore, stronger field gradients over the spatial extent of the wave function of the emitter are necessary to enhance higher-order transitions. One route toward non-negligible higher-order terms is, therefore, to consider larger emitters, as shown for quantum dots and Rydberg excitons. Another route consists of enhancing the wave vector magnitude \(|k|\) by confining light in a nanophotonic structure. The wave vector can be written as \(k = \eta_0 \omega/c \), with the confinement factor \(\eta_0 \), being the ratio between the vacuum and the effective wavelength. In this case, higher-order transitions are enhanced by a factor \(\eta_0 \) to the power of the considered order (for example, the octupolar transition is enhanced by a factor \(\eta_0^3 \)).

Under these conditions, plasmonic nanoantennas are ideal candidates to enhance higher order transitions. For instance, in noble...
metals, forbidden quadrupolar transitions are enhanced for emitters close to tips, interfaces, nanowires, nanogaps, arrays, and gold dimers. The strongly confined graphene plasmons ($\eta_0 = 150–300$, depending on the absorption losses) form an excellent platform for high-order transitions, which can occur efficiently, even similar to dipolar transitions. In the case of extremely high confinement ($\eta_0 > 500$) of plasmons in a two-dimensional material sheet, higher-order transition rates can surpass lower order transitions, hence breaking the conventional selection rules.

Generally, accessing high-orders allows us to probe a much larger range of the electronic energy level structure of an emitter, finding a way to a multiplex and broadband spectroscopy platform. These higher-order transitions already play an important role in spectroscopy of many relevant chemical species, from individual atoms to larger molecules with high symmetry, such as dihydrogen, carbon dioxide, methane, and benzene. In photochemistry, enhancing the magnetic dipole transition in oxygen is interesting for photochemical reactions. Finally, interference effects between multipolar orders can occur: the possibility of complete suppression of a certain transition through interference is required for many applications in the context of quantum computing, quantum storage, and quantum communication.

Despite its high potential and these developments, the field is currently limited by the difficulty in computing the electromagnetic environment of the emitter. Indeed, computing the spontaneous emission rates of a quantum emitter requires the knowledge of the electromagnetic field profile over the spatial extent of the wavefunctions of the emitter. Usually, the problem is solved for absorption rates: in that case, a plane wave excites a state; the problem is reduced to solve the modes (e.g., of a cavity) is required to know the full spatial variation of the eigen permittivity modal expansion. The complete resolution, however, requires knowledge of Green’s function, which is analytical only for uniform media and for simple geometries. Numerical evaluation is very demanding with conventional numerical methods, as repeated simulations for different positions and orientations of a point dipole source are necessary.

In order to compute advanced photonic structures, a modal-based approach is very useful: a single simulation that determines the modes (e.g., of a cavity) is required to know the full spatial variation of Green’s function. The eigen permittivity modal expansion is particularly suited for the spontaneous emission of an emitter for which the emission frequency is fixed. Eigen permittivity modes have a permittivity eigenvalue that pertains only to a scattering element, which spans a finite portion of space. As a result, the normalization is trivial. Furthermore, they are orthogonal and appear to form a complete set. Once computed for a scatterer at a fixed wavelength, they straightforwardly give the optical response for any material constituting this scatterer. These modes have been derived during the 1970s in the quasi-static approximation, and were used to derive bounds for scattering problems, to study spasers, disordered media, and second harmonic generation. The formalism (called GENOME for GEneralized NORMal Mode Expansion) was recently extended beyond the quasistatic approximation by computing the electromagnetic fields and the associated Green’s function of open and lossy electromagnetic systems, in particular for general nanoparticle configurations using commercial software (COMSOL Multiphysics).

In this paper, we derive a general method to compute the transition rate of a quantum emitter influenced by its electromagnetic environment in the weak coupling regime (Sec. II). We apply the macroscopic QED formalism, which separates the electromagnetic environment obtained from the classical Maxwell equations (we use GENOME to determine Green’s function) from the quantum description of the emitter embodied by its wavefunction, which in this case is a hydrogen-like emitter. Then, we apply this method to compute the electric dipolar, quadrupolar, and octupolar transition rates of the emitter in the vicinity of graphene nanoislands with different geometries (triangle, square, and crescent), showing strong enhancement of the transition rates (Sec. III A). Afterward, we show that the graphene doping can be tuned to select particular transitions in Sec. III B, before demonstrating a local breakdown of the selection rules in Sec. III C.

II. METHOD

We consider the spontaneous emission of atomic hydrogen-like emitters into plasmons given by the minimal coupling Hamiltonian:

$$H = H_k + H_{em} + H_{int},$$

$$H_k = \frac{p^2}{2m_e} - \frac{q^2}{4\pi\varepsilon_0 r} + H_{e-e} + H_{SO},$$

$$H_{em} = \sum_{j=\text{e},\text{f}} \int d\omega \int d\omega' \left[f_j^* (\omega) f_j (\omega) + \frac{1}{2} \right],$$

$$H_{int} = \sum_{j} e^2 \left(\frac{p_j \cdot A (r_j)}{2m_e} + \frac{q^2}{2m_e} A^2 (r) + \frac{\hbar}{2m_e} \sigma_j \cdot B (r) \right),$$

with p_j, r_j, and σ_j being the impulsion, position, and spin of the jth electron, e being the electronic charge, m_e being the electron mass, A and B being the vector potential and magnetic field, H_{SO} being the spin–orbit coupling, and H_{e-e} being the electron–electron interaction. $f_j^* (\omega)$ and $f_j (\omega)$ are the creation and annihilation operators, respectively.

For the interaction Hamiltonian, we neglect the ponderomotive potential (A^2 term) and the B term as the latter is negligible for non-magnetic structures. Note that in the Coulomb gauge, $\nabla \cdot A = 0$ except at an interface: with the atom–interface distance we consider, and the rapid decay of the atom wavefunctions, the contribution of this term will be negligible. Writing the vector potential with Green’s function of the system, and applying the Fermi’s golden rule, one finds (for details, see Ref. 5).
Finally, the transition rates are obtained with a three-dimensional integration over the wavefunctions and the mode profiles, with a sum that can be truncated once the convergence is sufficient (40 modes in our case, see the supplementary material for more details on the implementation). Note that when the integral is computed, the rate can be known for any material constituting the scatterer, enclosed in the parameter \(\gamma_m \). In that regard, graphene is the perfect candidate as it can be tuned to match a particular resonance (see Sec. III B).

In this work, the graphene nanoislands are modeled with an effective thickness of \(t = 1 \, \text{nm} \). The graphene permittivity \(\varepsilon_G \) is deduced from the surface optical conductivity \(\sigma = \sigma_{\text{intra}} + \sigma_{\text{inter}} \) with \(\varepsilon_i = 1 + i \sigma / \omega \varepsilon_0 c \). The optical conductivity is derived within the local random-phase approximation model \(^{36,37}\) and is the sum of the following two contributions:

\[
\sigma_{\text{intra}} = \frac{2 e^2 k_B T}{\hbar^2 \pi (\omega + i \tau_{\text{F}}^{-1})} \ln \left[2 \cosh \left(\frac{E_F}{2 k_B T} \right) \right],
\]

\[
\sigma_{\text{inter}} = \frac{e^2}{4 \hbar} \left[\frac{1}{2} \frac{1}{\pi} \arctan \left(\frac{\hbar \omega - E_F}{2k_B T} \right) \right] - \frac{e^2}{4 \hbar} \ln \left(\frac{\hbar \omega - E_F}{2k_B T} \right)^2.
\]

with \(T = 300 \, \text{K} \) being the temperature, \(k_B \) being the Boltzmann constant, and \(E_F \) being the doping level of graphene. The scattering lifetime of electrons in graphene depends on the doping and is given by \(\tau_{\text{F}} = \mu E_F / e v_F \approx 10^{11} \, \text{s} \) for \(E_F = 1 \, \text{eV} \), with the impurity-limited DC conductivity \(\mu \approx 10,000 \, \text{cm}^2 / (\text{V} \cdot \text{s}) \) and \(v_F = 10^6 \, \text{m/s} \) being the graphene Fermi velocity. \(^{31,42}\)

The integration of Eq. (8) is successfully compared to direct simulations of dipolar and quadrupolar transitions in the supplementary material, showing great convergence with only 40 modes (1% relative error). In Sec. III, we implement Eq. (8) to compute the rate of a H-like atom close to graphene nanoislands of varying geometry.

III. RESULTS AND DISCUSSION

We apply our method to compute the electric dipolar (E1), quadrupolar (E2), and octupolar (E3) transition rates of a H-like atom close to a graphene sheet with triangle, square, and crescent geometries. We consider the transition series 6p, d, f, into and out of, respectively. We suppose that the angular magnetic number remains \(n = 0 \) during the transition, and we rotate the emitter wavefunctions to match the corresponding classical point-dipole orientation. The free-space wavelengths of the transitions are \(\lambda = 2.63 \, \mu \text{m} \), and in the whole paper, the emitter is situated 5 nm above the graphene surface.

We then discuss the rate dependence on the graphene doping (Sec. III A) and we demonstrate the advantage of graphene tunability for multipolar transitions (Sec. III B). Finally, we optimize a configuration where the conventional selection rules break down, i.e., when the quadrupolar transition rate dominates the dipolar one (Sec. III C).
A. Transition rates

Figure 1 shows the dipolar (Γ_D), quadrupolar (Γ_Q), and octupolar (Γ_O) transition rates of a H-like emitter in the vicinity of a graphene nanoisland for three geometries: square, triangle, and crescent shape. The rates are normalized by the dipole emission rate in free space, Γ_D0 = 4.484 × 10^5 s⁻¹. The latter is obtained by integrating Eq. (5) in free space and is in perfect agreement with the experimental values (for more information, see the supplementary material). One can see, for example, that the octupolar rate is strongly enhanced with respect to vacuum: it is up to 300 times stronger than the dipolar rate in free space for the triangle geometry.

One observes that the strongest quadrupolar and octupolar rate enhancements appear along the edges and corners of the geometries. This is a consequence of the strong field gradients appearing along the graphene edge. Second, for all geometries, the maximum quadrupolar rate is two orders of magnitude smaller than the maximum dipolar rate. This two-order magnitude difference compares fairly with the rate comparison obtained in Ref. 5 for a H-like emitter close to a non-structured two-dimensional material supporting plasmons confined with a factor n_0 ≈ 35–50 (corresponding to doping between 0.7 and 1 eV). The four-order magnitude difference between the dipolar and octupolar transition rates is also in agreement with the literature.

With the graphene nanoislands, we break the in-plane translational symmetry and the conventional dominance of the dipolar transition rate over the quadrupolar transition rate. From the spatial maps, we observe that the maxima of the quadrupolar rate do not coincide with the maxima of the dipolar rate: by moving the emitter, one can find a position where the quadrupolar rate dominates the dipolar rate, breaking the conventional selection rules (see Sec. III C).

FIG. 1. Dipolar, quadrupolar, and octupolar transition rates of an x-oriented emitter close to graphene nanoislands of various geometries. The dipolar (left), quadrupolar (center), and octupolar (right) transition (λ = 2.63 μm) rates as a function of the emitter position, which is 5 nm above the graphene nanoislands: 50 nm side length square (up), 50 nm side length triangle (middle), and 80 nm height crescent (bottom). The geometry boundaries are represented by a solid white line, and the rates are normalized by the dipolar emission rate in free space Γ_D0. For all geometries, the background permittivity is vacuum but graphene doping varies: for the triangle, E_F = 0.98 eV; for the square, E_F = 0.72 eV; and for the crescent, E_F = 0.88 eV.
Note that the z-oriented emitter (out-of-plane direction) shows stronger rate enhancement, but the dipolar, quadrupolar, and octupolar transition maxima coincide: they all show the maximum enhancement at the same position (see the supplementary material). This implies the conservation of selection rules for the z-oriented emitter, as the dipolar rate always dominates.

B. Graphene tunability

In a spontaneous emission process the emission wavelength is fixed via the considered transition. Hence, as the frequency of the source is not a variable, a tuning knob is offered by the environment, e.g., the permittivity of the scatterer. The considered mode expansion is particularly well suited for this context as the permittivity is the eigenvalue of the problem. As a consequence, the permittivity of the scatterer only appears as a multiplicative constant in Eq. (8) of the three-dimensional integration over the plasmonic modes (E_m) and the wavefunctions of the emitter. Tuning the permittivity, therefore, allows selecting the mode resonating with the targeted transition.

Figures 2(a)–2(c) show the transition rates’ dependence on the permittivity of the material, for a square two-dimensional material with variable permittivity and with a side length of 50 nm. The emitter is y-oriented at the position (14.4; 24.5) nm, 5 nm above the material [green arrow in Figs. 2(d)–2(f)] and the transition wavelength remains $\lambda = 2.63 \mu m$. The transition rate map is characterized by horizontal lines of enhanced transition rates, appearing at particular relative permittivities of the material [Re(\(\varepsilon_r\))]. Each line directly corresponds to a plasmonic mode of the structure, which constitutes the dominant decay route for this transition. For example, the dipolar transition couples with mode A [represented in Fig. 2(d)] and the quadrupolar and octupolar transitions couple with modes B and C [represented in Figs. 2(e) and 2(f)]. Note that modes A and B are different, but their eigenvalues are close (resp. $\varepsilon_m = -15.65$ and $\varepsilon_m = -15.45$). Their proximity implies that the dipolar rate ($\Gamma_D/\Gamma_D^0 = 1.1 \times 10^5$) dominates the quadrupolar rate ($\Gamma_Q/\Gamma_D^0 = 1.5 \times 10^4$) for the considered position of the emitter, considered emission wavelength, and for a material permittivity close to that particular value [Re(\(\varepsilon_r\)) ≈ -15.5].

Mode C is very interesting since it couples strongly with the quadrupolar transition ($\Gamma_Q/\Gamma_D^0 = 1.2 \times 10^4$) and weakly with...
the dipolar transition ($\Gamma_D/\Gamma_{D0} = 0.6 \times 10^3$), as shown in Figs. 2(a) and 2(b). This conclusion corresponds with the field profile in Fig. 2(f) at the position of the dipole (green dot). The emitter is placed at a position where the field has a low value (weak enhancement of dipolar transition), but near the edge, where the field gradient is the strongest (strong enhancement of quadrupolar and octupolar transitions).

In the horizontal direction of Figs. 2(a)–2(c), the imaginary part of the permittivity of the material broadens the resonance peaks, consequently reducing the maximum value of all transition rates.

Therefore, selecting a square two-dimensional material (of this size, and at $\lambda = 2.63 \mu m$) for a particular permittivity can enhance a particular transition. For example, in order to produce an electric octupolar rate 50 times stronger than the dipolar rate in free space, one can choose a material with real relative permittivity of $\approx 10 000 \text{ cm}^2/(\text{V s})$, as shown in Figs. 2(a)–2(c) show the permittivity of graphene in this case. The curve is shifted to the right [compared to a DC conductivity is $\mu \approx 3000 \text{ cm}^2/(\text{V s}$)], which leaves the conclusion unchanged: fine tuning of the doping allows us to select the plasmonic mode that will dominate the transition, and hence the transition order. Note that in the case of lower quality graphene samples, the scattering is enhanced and consequently the DC conductivity can be lowered to $\mu \approx 10 000 \text{ cm}^2/(\text{V s})$, which is experimentally achievable with graphene, but at the cost of considerable absorption losses.

The white lines in Figs. 2(a)–2(c) represent the permittivity range covered by graphene at this wavelength via doping. A fine tuning of the doping thus allows us to select the plasmonic mode that will dominate the transition, and hence the transition order. Note that in the case of lower quality graphene samples, the scattering is enhanced and consequently the DC conductivity can be lowered to $\mu \approx 3000 \text{ cm}^2/(\text{V s})$, which leaves the conclusion unchanged: fine tuning of the doping allows us to select the transition enhancement rates, even if the dipolar, quadrupolar, and octupolar rates are all equivalently reduced by 30%.

In Sec. III C, we show a particular doping of graphene where the quadrupolar rate dominates the dipolar transition rate, consequently breaking the conventional selection rules.

C. Local breakdown of conventional selection rules

At particular positions of the emitter, the quadrupolar transition rate overcomes the dipolar transition rate. This breakdown occurs at ultra-strong plasmon confinement ($\eta_0 > 500$) for planar two-dimensional materials, which is experimentally achievable with graphene, but at the cost of considerable absorption losses.

The shape of the graphene nanoislands provides another degree of freedom to mold the field profile and break the selection rules.

We focus on the triangular graphene nanoisland of 50 nm side length, for which we computed the normalized dipolar and quadrupolar rates of an emitter 5 nm above its surface (Fig. 1). In Fig. 3(a), we plot the maximum of the ratio Γ_Q/Γ_D (scanned over all positions of the emitter), as a function of the doping. This shows that the dipolar transition rate can be up to 100 times stronger than the dipolar transition rate at particular positions, breaking locally the conventional selection rules (the value is converged for 40 modes, as shown in the supplementary material).

In Figs. 3(b) and 3(c), for the x- and y-oriented emitters, respectively, we observe enhancement where the field demonstrates strong gradients, i.e., at the corner of the triangle or along the edge. On the contrary, as observed in Fig. 3(a) for the z-oriented emitter, the dipolar rate always dominates the quadrupolar one (the maximum rate enhancement of each order appears at the same position, as discussed in Sec. III A).

Note that the maximum is not a consequence of an inhibited dipolar transition: the quadrupolar rate is strongly enhanced. For example, for an x-oriented emitter [Fig. 3(b)] at the left corner of the triangle, the dipolar transition remains enhanced ($\Gamma_D/\Gamma_{D0} = 0.51 \times 10^3$), but its rate is weaker than the quadrupolar rate, which is 5.3×10^3 times the dipolar transition in free space.

Other areas further away from graphene seem to demonstrate a strong quadrupolar enhancement [for example, position $\approx 9; 35 \text{ nm}$].

FIG. 3. Local breakdown of the selection rules with the triangle graphene nanoisland. (a) The maximum of the quadrupolar rate (Γ_Q) over the dipolar rate (Γ_D) for a H-like emitter 5 nm above the triangular graphene nanoisland in vacuum, evaluated for varying graphene doping and emitter orientation. The z-oriented emitter does not demonstrate a breakdown of the selection rules (ratio always smaller than 1). A maximum is obtained for a graphene doping of $E_F < 0.98 \text{ eV}$. At this doping, (b) shows the logarithmic value of the ratio for an x-oriented emitter and (c) a y-oriented emitter. The boundaries of the triangular graphene nanoisland are represented by a solid white line and the transition wavelength is $\lambda = 2.63 \mu m$.

APL Photon. 6, 086103 (2021); doi: 10.1063/5.0053234 © Author(s) 2021
in Fig. 3(b). However, these are regions where the dipolar transition is poorly enhanced ($\Gamma_D/\Gamma_D^0 = 16$) as well as the quadrupolar transition ($\Gamma_Q/\Gamma_D^0 = 161$).

IV. CONCLUSIONS AND PERSPECTIVES

We develop a numerical method based on Fermi’s golden rule that evaluates the multiple transition orders of a molecule. The molecule is described by its wavefunction, while the photonic environment is implemented through Green’s function. The latter is expanded in eigen-permittivity modes leading to a simplified formula [Eq. (8)] that shows the deep mechanism of strong multipolar enhancement. Indeed, the following two main terms play a role in the sum: the global term ψ_i and the local term $\int \psi_i(r) E_m(r) \nabla \psi_i(r) dr$. Together, they show that each mode m contributes to the transition rate. The global term states that the permittivity of the material constituting the nano-island (ϵ_m) should match the mode eigen-permittivity (ϵ_m^0) to contribute to the transition rate. Hence, graphene is an excellent platform to fit ϵ_m to ϵ_m^0 owing to its optical parameter tunability. The local term shows the primordial importance of the mode-field profile locally at the position of the emitter. If the field profile E_m is constant over the spatial extent of the wavefunctions of the emitter (ψ_i and ψ_j), we return to the dipole approximation (or long wavelength approximation), commonly employed in free space, and the higher-order transitions are deemed forbidden. In our case, due to the strong confinement of the field near a graphene nanoisland, the integral is no longer negligible. The order of magnitude of the maximum dipolar, quadrupolar, and octupolar rates compares with the rates obtained for an unstructured graphene sheet and is in perfect agreement with direct simulations. Finally, we demonstrate a breakdown of the selection rules, with the quadrupolar transition rate, forbidden in free space, becoming 100 times stronger than the dipolar transition rate for an H-like emitter in the vicinity of a triangular graphene nanoisland. These results uncover interesting perspectives for applications in spectroscopy, photochemistry, and quantum technologies.

Here, we apply the method to a single nano-island in free-space, but the method has a large flexibility and can be applied to more realistic structures reachable in experiments. Indeed, GENOME also allows the determination of Green’s function for more complex structures. For instance, the method can account for a substrate or a background permittivity different from 1.29 It can also resolve Green’s function of non-uniform scatterers.24 Recently, the procedure has been developed to find Green’s function of an assembly of nano-island (cluster) and finite periodic structures.26 For experimental observations, the coupling of produced photons to the far-field is important. As an example, combining the near-field results (e.g., Fig. 2) with the far-field out-coupling efficiency of the dominant mode allows us to select the graphene doping necessary to reach sufficient far-field emission. Such an analysis was carried out for two-photon emission processes near graphene nanoislands.26 Other structures may be envisaged to enhance the coupling of a plane wave with a quadrupolar transition.36

Since the transition of the emitter fixes the operating wavelength, the control of the emitted photons goes through the optimization of the structure and the permittivity of the material. Here, we consider graphene for its tunable properties, already allowing to target particular transitions (Fig. 2). Strong doping of 1.2 eV has been achieved with electrostatic doping with ionic gel or with ionic glass mobility35 and a moderate doping of 0.5 eV with chemical (N-doped) doping.36 It is challenging to reach high Fermi level values, as a specific structure considering the gate and the substrate should be designed. Other materials can also be considered for their strong plasmonic response, such as thin gold films or for their strong phononic response, such as hBN or SiC.

In parallel, our method allows for the computation of larger atoms and complex molecules by combining GENOME with time-dependent density functional theory techniques. Hence, controlling the emission rate of quantum dots and Rydberg excitons in complex electromagnetic environments is within reach. Such emitters are larger than the H-like atoms considered here, so placing those in the gaps of clusters should ensure a strong field gradient over their orbital extent to promote the higher order rate enhancements. Furthermore, since the dipolar and quadrupolar rates compete, destructive interference effects can be observed and lead to suppression of particular transition channels, leading to diverse quantum applications, such as quantum computing, quantum storage, and quantum communication.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the method implementation. It contains the integration convergence; a verification of the dipolar transition rate in free-space; a comparison with direct simulations; and additional figures that illustrate the permittivity dependence, the quadrupolar transition rate dominance over the dipolar one for the square graphene nanoisland, and rate calculations for various emitter orientations.

ACKNOWLEDGMENTS

The authors thank Ido Kaminer and Nicholas Rivera for fruitful discussions and Parry Yu Chen and Yonatan Sivan for their support with GENOME. The authors acknowledge support from the FRS-FNRS (Research Project No. T.0166.20 and Grant No. FC 95592) and the Actions de Recherche Concertées, Project No. ARC-21/25 UMONS.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. S. Sanders, A. May, A. Alabastri, and A. Manjavacas, “Extraordinary enhancement of quadrupolar transitions using nanostructured graphene,” ACS Photonics 5, 3282–3290 (2018).
2. R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, and F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
3. C. Qian, X. Xie, J. Yang, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, M. J. Steer, I. G. Thayne, K. Jin, C. Gu, and X. Xu, “Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation,” Phys. Rev. Lett. 122, 087401 (2019).
1. A. M. Konzelmann, S. O. Krüger, and H. Giessen, “Interaction of orbital angular momentum light with Rydberg excitons: Modifying dipole selection rules,” Phys. Rev. B 100, 115308 (2019).

2. N. Rivera, I. Kammer, B. Zhen, D. J. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).

3. J. R. Zurita-Sánchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355 (2002).

4. Š. Tojo and M. Hasuo, “Oscillator-strength enhancement of electric-dipole-forbidden transitions in evanescent light at total reflection,” Phys. Rev. A 71, 012508 (2005).

5. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570 (2009).

6. H. Y. Kim and D. S. Kim, “Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap,” Nanophotonics 7, 229–236 (2018).

7. V. Yannopoulos and E. Papalakis, “Giant enhancement of dipole-forbidden transitions via lattices of plasmonic nanospheres,” J. Mod. Opt. 62, 1435–1441 (2015).

8. N. Neuman, R. Esteban, D. Casanova, F. J. García-Vidal, and J. Aizpurua, “Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation,” Nano Lett. 18, 2358–2364 (2018).

9. M. Koski, O. Burlayenko, C. Rockstuhl, I. Fernandez-Corbaton, and K. Slowik, “Interaction of atomic systems with quantum vacuum beyond electric dipole approximation,” Sci. Rep. 10, 5879 (2020).

10. Y. Liu, P. F. Willis, K. V. Emstew, and T. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403 (2008).

11. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421–425 (2014).

12. N. Rivera, G. Rosolen, D. J. Joannopoulos, I. Kammer, and M. Soljačić, “Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons,” Proc. Natl. Acad. Sci. U. S. A. 114, 13607–13612 (2017).

13. Š. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadruple transition of cesium atoms in an evanescent ﬁeld,” Phys. Rev. Lett. 92, 053001 (2004).

14. S. Enzonga Yoca and P. Quinet, “Radiative decay rates for electric dipole, magnetic dipole and electric quadrupole transitions in triply ionized thulium (Tm IV),” Atoms 5, 28 (2017).

15. W. Li, T. Pohl, J. M. Rost, S. T. Böttcher, H. R. Sadeghpour, J. Nipper, B. Butcher, J. B. Bdalewski, V. Bendkowsky, R. Low, and T. Pfau, “A homonuclear molecule with a permanent electric dipole moment,” Science 334, 1110–1114 (2011).

16. K.-F. Cheng, Y. R. Sun, H. Pan, J. Wang, A.-W. Liu, A. Campargue, and S.-M. Hu, “Electric-quadrupole transition of H2 determined to 10−10 precision,” Phys. Rev. A 85, 024501 (2012).

17. A. Manjavacas, R. Fenollas, I. Rodriguez, M. C. Jiménez, M. A. Miranda, and F. Meseguer, “Magnetic light and forbidden photochemistry: The case of singlet oxygen,” J. Mater. Chem. A 5, 11824–11831 (2017).

18. E. Rasak, J. Straubel, P. Gladysz, M. Göddel, A. Kędziorski, M. Kühn, F. Weigend, C. Rockstuhl, and K. Slowik, “Enhancement of and interference among normal modes of non-uniform open optical resonators,” J. Comput. Phys. 422, 109754 (2020).

19. A. V. Lavrinenko, J. Lægsgaard, N. Gregersen, F. Schmidt, and T. Søndergaard, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012).

20. K. S. Novoselov, A. A. Kheim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666 (2004).

21. W. L. Wiese and J. R. Fuhr, “Accurate atomic transition probabilities for hydrogen, helium, and lithium,” J. Phys. Chem. Ref. Data 38, 565–709 (2009).

22. V. Karanikolas, P. Tozman, and E. Papalakis, “Light-matter interaction of a quantum emitter near a half-space graphene nanostructure,” Phys. Rev. B 100, 245403 (2019).

23. P. Y. Chen, Y. Sivan, and E. A. Muljarov, “An efficient solver for the generalized normal modes of non-uniform open optical resonators,” J. Comput. Phys. 422, 109754 (2020).

24. K. Sakai, T. Yamamoto, and K. Sasaki, “Nanofocusing of structured light for two-dimensional materials: Graphene as a case study,” Appl. Phys. Lett. 107, 143103 (2015).
D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).

F. Joucken, L. Henrard, and J. Lagoute, “Electronic properties of chemically doped graphene,” Phys. Rev. Mater. 3, 110301 (2019).

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13, 328–333 (2019).