Structured Regularization of Functional Map Computations

Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov
KAUST, École Polytechnique
Shape Matching

Point-based methods
- [Bronstein et al. 2006],
- [Huang et. al 2008]...

Parameterization-based methods
- [Lipman and Funkhouser 2009]
- [Aigerman et al. 2017]...

Optimal transport
- [Solomon et al. 2016]
- [Mandad et al. 2017]...

Functional maps
- [Ovsjanikov et al. 2012]
- [Ezuz and Ben-Chen 2017]...
- ...

Source

Target
Functional map pipeline

Eigenfunctions of Laplace–Beltrami Operator

Helmholtz equation
\[\Delta_S f = \lambda f \]

Shape \(S \)

\[0 = \lambda_1^S \leq \lambda_2^S \leq \lambda_3^S \leq \cdots \leq \lambda_i^S \leq \cdots \leq \lambda_k^S \]
Functional map pipeline

Function space basis

Shape S

ϕ_1^S, ϕ_2^S, ϕ_3^S, ... ϕ_i^S, ϕ_k^S

Function f

$f \approx a_1 \phi_1^S + a_2 \phi_2^S + ... + a_i \phi_i^S + ... + a_k \phi_k^S = \Phi^S a$
Functional map pipeline

Functional map definition

$S_1 \quad \Phi^{S_1} \quad f \quad \Phi^{S_1} a \approx f \
S_2 \quad \Phi^{S_2} \quad g \quad \Phi^{S_2} b \approx g$

$Ca = b$

functional map: the matrix C that transports the coefficients from Φ^{S_1} to Φ^{S_2}
Functional map pipeline

\[a = (\Phi^{S_1})^\dagger f \]

\[\hat{g} = \Phi^{S_2} b \]
Functional map pipeline

\[a = (\Phi^{S_1})^+ f \]

\[\hat{g} = \Phi^{S_2} b \]
Functional map pipeline

\[C_{12}^* = \arg\min_C \|CA - B\|_F^2 \]

\[+ w_1 \|C\Delta_1 - \Delta_2 C\|_F^2 \]

\[+ w_2 \|C\Omega_1^{\text{multi}} - \Omega_2^{\text{multi}} C\|_F^2 \]

\[+ w_3 \|C\Omega_1^{\text{orient}} - \Omega_2^{\text{orient}} C\|_F^2 \]

\[+ \ldots \]

Descriptor preservation
[OBCS*12]

Laplacian commutativity
[OBCS*12]

Multiplicative operators
[NO17]

Orientation preservation
[RPWO18]
Outline

- Laplacian commutativity – widely used
- **Drawbacks** of the standard Laplacian commutativity
 - Unbounded in the smooth setting
 - Not aligned with the ground-truth functional map
- Propose the **resolvent** Laplacian commutativity
 - Bounded operator
 - Better aligned
- Quantitative results
 - Better **stability**
 - Better **accuracy**
Reformulate the Laplacian–Commutativity term

\[E(C) = \|C \Delta_1 - \Delta_2 C\|_F^2 \]

\[= \|C \text{diag}(\Lambda_1) - \text{diag}(\Lambda_2) C\|_F^2 \]

\[= \sum_{(i,j)} M_{ij} C_{ij}^2 \]

where \(M_{ij} = \left(\lambda_j^{S_1} - \lambda_i^{S_2} \right)^2 \)
Applications of the Laplacian commutativity

“Image Co-Segmentation via Consistent Functional Maps”
Fan Wang, Qixing Huang, Leonidas J. Guibas

(a) (b) (c) (d)

Figure 1: Overview of the proposed framework. (a) the original image and its super-pixel representation; (b) the first few Laplacian eigenvectors; (c) functional maps between pairs of images; (d) the resulting segmentation.
Applications of the Laplacian commutativity

“Partial Functional Correspondence”
E. Rodolà, L. Cosmo, M.M. Bronstein, A. Torsello, D. Cremers

$$\rho_{\text{corr}}(C) = \sum_{ij} W_{ij} C_{ij}^2 + \cdots$$
Drawbacks of the Laplacian commutativity

- Unboundedness
 - in the full LB basis (of smooth manifolds)
 \[\| C_{12} \Delta_1 - \Delta_2 C_{12} \|^2 \rightarrow \infty \]
- Structure misalignment
Unboundedness Example

Spectrum of torus and sphere with unit area

λ_k

$\|M_{\text{standard}}\|_F^2$ v.s. increasing size of M_{standard}

$\|M_{\text{standard}}\|_F^2$

size of M

Torus
Sphere
Unboundedness Example

\[S_2: \Delta_2 = c\Delta_1 \]
\[c \neq 1 \]

\[S_1: \Delta_1 \]

\[\|C_{12}\Delta_1 - \Delta_2 C_{12}\|^2 = (c - 1)^2 \|\Delta_1\|^2_F \rightarrow \infty \]
Structure misalignment

Mask M_{standard}

where $M_{ij} = (\lambda_j^{S_1} - \lambda_i^{S_2})^2$

$(C_{\text{ground_truth}})^2$

Funnel-shape
Our solution

- **Boundedness**: $\Delta \rightarrow \text{resolvent of } \Delta$
- **Structure alignment**: $\Delta \rightarrow \Delta^Y$
Resolvent operator

Definition

Let A be a possibly unbounded linear operator (with some technical assumption), the resolvent of A at μ is defined as

$$R_\mu(A) = (A - \mu I)^{-1}$$

- μ is a complex number
- $R_\mu(A)$ is defined for all μ NOT in the spectrum of A

$R_{a+ib}(\Delta)$ is well-defined for any $(a + ib)$ NOT in the non-negative real line (which contains the spectrum of Δ)
Important tool in operator theory

- **Spectral theory**: used in the definition of spectrum
- **Unbounded self-adjoint operators**: norm–resolvent convergence $d(A, B) = \|R_{\mu}(A) - R_{\mu}(B)\|$
Theorem 1 (Bounded Resolvent Commutativity) Let C_{12} be a bounded functional map. Then in the operator norm,

$$\|C_{12}R(\Delta_1^\nu) - R(\Delta_2^\nu)C_{12}\|_{op}^2 < \infty$$
Bounded resolvent Laplacian–Commutativity

The graph plots the size of M against the squared Frobenius norm of M_{standard} and $M_{\text{resolvent}}$. As the size of M increases, the norm of M_{standard} and $M_{\text{resolvent}}$ also increases, showing the relationship between the size of the matrix and its norm.
Bounded resolvent Laplacian–Commutativity

- \(\Delta \rightarrow \) standard Laplacian commutator
- \(R_{a+ib}(\Delta^\gamma) \): well-defined and bounded
 - Introduce \(\gamma \) to tune the structure of the mask
 - Our resolvent Laplacian commutator

\[
E(C_{12}) = \| C_{12} \Delta_1 - \Delta_2 C_{12} \|_F^2 = \| C_{12} R(\Delta_1^\gamma) - R(\Delta_2^\gamma) C_{12} \|_F^2
\]
Resolvent mask

- Δ has eigenvalues λ_k
- $R_i(\Delta^{1/2})$ has eigenvalues $\sqrt{\lambda_k}$

Mask M_{standard}

\[
 M_{ij} = \left(\lambda_j^{S_1} - \lambda_i^{S_2}\right)^2
\]

Real part

\[
 M_{ij}^{\text{Re}} = \left(\frac{\sqrt{\lambda_j^{S_1}}}{\lambda_j^{S_1} + 1} - \frac{\sqrt{\lambda_i^{S_2}}}{\lambda_i^{S_2} + 1}\right)^2
\]

Imaginary part

\[
 M_{ij}^{\text{Im}} = \left(\frac{1}{\lambda_j^{S_1} + 1} - \frac{1}{\lambda_i^{S_2} + 1}\right)^2
\]

* Def: $R_\mu(A) = (A - \mu I)^{-1}$
Resolvent mask

\[\| C_{12} R(\Delta^2_1) - R(\Delta^2_2) C_{12} \|_F^2 = \sum_{i,j} M_{ij} C_{12}^2 \]

Mask \(M_{\text{resolvent}} \)

where \(M_{ij} = M_{ij}^{\text{Re}} + M_{ij}^{\text{Im}} \)

Funnel-shape

\((C_{\text{ground_truth}})^2\)
Mask reformulation of the resolvent commutativity

\[E(C_{12}) = \| C_{12} R(\Delta_1^\gamma) - R(\Delta_2^\gamma) C_{12} \|_F^2 = \sum_{i,j} M_{ij} C_{12}^2 \]

\(\gamma = 0.25 \) \(\gamma = 0.5 \) \(\gamma = 0.75 \) \(\gamma = 1 \)
Penalty mask v.s. ground-truth functional map

Standard mask Slanted mask Resolvent mask Mean squared ground-truth

“Partial Functional Correspondences” Rodolà et al

\(\gamma = 0.5 \)
Results: **Stability** (example)

Given one pair of descriptors, compute a $k \times k$ functional map with k^2 variables!
Results: Stability (summary)

FAUST

per-vertex measure

Average error

\(k \)

standard
slanted
ours
Results: **Accuracy** (example)

Given one pair of descriptors
Compute a 100×100 functional map

Standard Slanted Resolvent Ground-truth
Results: **Accuracy** (summary)

![Graph showing accuracy results for TOSCA](image)

- **standard (1):** 213.0
- **slanted (2):** 190.6
- **ours (3):** 125.7
- **(1) + ICP:** 156.5
- **(2) + ICP:** 163.2
- **(3) + ICP:** 90.2
- **(1) + BCICP:** 81.8
- **(2) + BCICP:** 125.3
- **(3) + BCICP:** 61.5
Results: Correlation (fMap penalty v.s. pMap accuracy)

![Graph showing correlation between mask penalty and average geodesic error (direct measure)]
Results: **Stability** under remeshing and coarsening

\[n_v = 6890 \quad n_v = 200 \quad n_v = 300 \quad n_v = 500 \quad n_v = 1000 \quad n_v = 3000 \quad n_v = 5000 \quad n_v = 6890 \]
Summary

- Shape matching – functional map pipeline
- Laplacian commutativity – widely used
- Drawbacks of the standard Laplacian commutativity
 - Unbounded in the smooth setting
 - Not aligned with the ground-truth functional map
- Propose the resolvent Laplacian commutativity
 - Bounded operator
 - Aligned with the funnel shape
- Results
 - Better accuracy
 - Better stability
Thanks for your attention

Structured Regularization of Functional Map Computations

Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov
KAUST, École Polytechnique
Lemma 2. Let Δ_1 and Δ_2 be Laplacians on compact, connected, oriented surfaces M_1 and M_2, respectively. Let $C_{12}: L_2(M_1) \to L_2(M_2)$ be a bounded operator. If $\gamma > \frac{1}{2}$, then:

$$\|C_{12} R_\mu (\Delta_1^\gamma) - R_\mu (\Delta_2^\gamma) C_{12}\|_{HS}^2 < \infty$$

Where μ is any complex number not on the non-negative real line.
Reformulate the Laplacian–Commutativity term

\[E(C_{12}) = \|C_{12}\Delta_1 - \Delta_2 C_{12}\|_F^2 \]

\[= \|C_{12}\text{diag}(\Lambda_1) - \text{diag}(\Lambda_2)C_{12}\|_F^2 \]

\[= \|C_{12} \otimes (1_{k_2} \Lambda_1^T) - (\Lambda_2 1_{k_1}^T) \otimes C_{12}\|_F^2 \]

\[= \|(1_{k_2} \Lambda_1^T - \Lambda_2 1_{k_1}^T) \otimes C_{12}\|_F^2 \]

\[= \sum_{(i,j)} M \otimes (C_{12})^2 \]

Note: \(\otimes \) is the entry–wise matrix multiplication
Results: **Stability** (summary)

FAUST

per-vertex measure

- Standard
- Slanted
- Ours

FAUST

direct measure

- Initialization
- With ICP
Given one pair of descriptors
Compute a 100×100 functional map
Corresponding point-wise map
Unboundedness Example

Unit Sphere
Unit Torus

\[\lambda_k \]

Torus	Sphere	Weyl Estimate

0	20	40	60	80	100
0	500	1000			

ACM Trans. Graph. 1, 1 (June 2019), 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

REFERENCES

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0730-0301/2019/6-ART $15.00 https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2019.
Unbounded standard Laplacian–Commutativity

\[\|M_{\text{standard}}\|_F^2 \text{ w.r.t. increasing size of } M_{\text{standard}} \]
Definition 1 (Resolvent) Let A be a closed operator on some Hilbert space. Let $\rho(A)$ be the set of all complex numbers μ such that $R_\mu(A) = (A - \mu I)^{-1}$ is defined and bounded.

$\rho(A)$: the resolvent set of operator A

$R_\mu(A)$: the resolvent operator of A at μ

- Given Laplace–Beltrami operator Δ
- Define $R_{a+ib}(\Delta^\gamma)$, the resolvent operator of Δ^γ at $(a + bi)$
 - Parameters $\gamma = \frac{1}{2}, a = 0, b = 1$
 - $R_{a+ib}(\Delta^\gamma)$ is well-defined and bounded for any $(a + ib)$ not in the non-negative real line (where the spectra of Δ^γ lies in)