ALGEBRAIC EMBEDDINGS OF \mathbb{C} INTO $\text{SL}_n(\mathbb{C})$

IMMANUEL STAMPFLI

Abstract. We prove that any two algebraic embeddings $\mathbb{C} \to \text{SL}_n(\mathbb{C})$ are the same up to an algebraic automorphism of $\text{SL}_n(\mathbb{C})$, provided that n is at least 3. Moreover, we prove that two algebraic embeddings $\mathbb{C} \to \text{SL}_2(\mathbb{C})$ are the same up to a holomorphic automorphism of $\text{SL}_2(\mathbb{C})$.

1. Introduction

There are many results concerning algebraic embeddings of some variety into the affine space \mathbb{C}^n. Let me recall two of them. Any two algebraic embeddings of a smooth affine variety X into \mathbb{C}^n are the same up to an algebraic automorphism of \mathbb{C}^n, provided that $n > 2 \dim X + 1$. This result is due to Nori, Srinivas [Sri91] and Kaliman [Kal91]. If one relaxes the condition that the automorphism of \mathbb{C}^n must be algebraic, Kaliman [Kal13] and independently, Feller and the author [FS14] proved the following improvement: Any two algebraic embeddings of a smooth affine variety X into \mathbb{C}^n are the same up to a holomorphic automorphism of \mathbb{C}^n, provided that $n > 2 \dim X$.

As a further development of these results, we study algebraic embeddings of \mathbb{C} into SL_n. This article can be seen as a first example to understand algebraic embeddings of a curve into an arbitrary affine algebraic variety with a large automorphism group.

In dimension zero, Arzhantsev, Flenner, Kaliman, Kutzschebauch and Zaidenberg proved that two embeddings of a finite set into any irreducible smooth affine flexible variety Z are the same up to an algebraic automorphism of Z, provided that $\dim Z > 1$ [AFK+13]. Our main result is based on this work.

Main Theorem (see Theorem 4 and Theorem 7). Let $f, g: \mathbb{C} \to \text{SL}_n$ be algebraic embeddings. If $n \geq 3$, then f and g are the same up to an algebraic automorphism of SL_n and if $n = 2$, then f and g are the same up to a holomorphic automorphism of SL_n.

To the author’s knowledge it is not known, whether all algebraic embeddings $\mathbb{C} \to \text{SL}_2$ are the same up to an algebraic automorphism of SL_2. Also for algebraic embeddings $\mathbb{C} \to \mathbb{C}^3$ it is an open problem, whether all these embeddings are the same up to an algebraic automorphism of \mathbb{C}^3, see [Sha92] for potential examples that are not equivalent to linear embeddings.

In fact, in a certain sense the class of algebraic embeddings $\mathbb{C} \to \text{SL}_2$ is as big as the class of algebraic embeddings $\mathbb{C} \to \mathbb{C}^3$. More precisely,

2010 Mathematics Subject Classification. 14R10, 14J50, 32M17.

The author gratefully acknowledge support by the Swiss National Science Foundation Grant “Automorphisms of Affine Algebraic Varieties” 148627.
the following holds. If \(g: \mathbb{C} \rightarrow \mathbb{C}^3, t \mapsto (g_1(t), g_2(t), g_3(t)) \) is an algebraic embedding, then one can apply a (tame) algebraic automorphism of \(\mathbb{C}^3 \) such that afterwards the polynomial \(g_2 \) divides \(g_1g_3 - 1 \) and thus the following map is an algebraic embedding

\[
\mathbb{C} \longrightarrow \text{SL}_2, \quad t \mapsto \begin{pmatrix} g_1(t) & (g_1(t)g_3(t) - 1)/g_2(t) \\ g_2(t) & g_3(t) \end{pmatrix}.
\]

The construction of the claimed (tame) algebraic automorphism of \(\mathbb{C}^3 \) can be seen as follows. First one can apply a map of the form \((x, y, z) \mapsto (x, y + \lambda, z) \) such that afterwards the polynomial \(g_2 \) has only finitely many simple roots, say \(t_1, \ldots, t_n \). Now, it is enough to apply some (tame) algebraic automorphism of the form \((x, y, z) \mapsto (\varphi_1(x, z), y, \varphi_3(x, z)) \), which sends the points \(g(t_1), \ldots, g(t_n) \) to the curve \(\{xz = 1, y = 0\} \subseteq \mathbb{C}^3 \), see [KZ99, Lemma 5.5].

The proof of the main theorem gives a method to construct the claimed automorphism. However, the proof does not produce a computer algorithm that would give such an automorphism. This is because the construction in the proof depends on certain zero sets of polynomials.

2. Algebraic automorphisms of \(\text{SL}_n \)

Let us introduce first some notation. For \(i, j \) in \(\{1, \ldots, n\} \), we denote the \(ij \)-th entry of a matrix \(X \in \text{SL}_n \) by \(X_{ij} \). The projection \(\text{SL}_n \rightarrow \mathbb{C}, X \mapsto X_{ij} \) we denote by \(x_{ij} \).

In the first lemma, we list algebraic automorphisms of \(\text{SL}_n \) that we use constantly. The proof is straight forward.

Lemma 1. Let \(n \geq 2 \) and let \(i \neq j \) be integers in \(\{1, \ldots, n\} \). Then, for every polynomial \(p \) in the functions \(x_{kl}, k \neq i \), the map

\[
\text{SL}_n \longrightarrow \text{SL}_n, \quad X \mapsto E_{ij}(p(X)) \cdot X
\]

is an automorphism, where \(E_{ij}(a) \) denotes the elementary matrix with \(ij \)-th entry equal to \(a \). Similarly, for every polynomial \(q \) in the functions \(x_{kl}, l \neq j \), the map

\[
\text{SL}_n \longrightarrow \text{SL}_n, \quad X \mapsto X \cdot E_{ij}(q(X))
\]

is an automorphism.

Recall that the group of tame automorphisms of \(\mathbb{C}^n \) is the subgroup of the automorphisms of \(\mathbb{C}^n \) generated by the affine linear maps and the elementary automorphisms, i.e. the automorphisms of the form

\[
(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_i + h_i(x_1, \ldots, \hat{x}_i, \ldots, x_n), \ldots, x_n),
\]

where \(h_i \) is a polynomial not depending on \(x_i \). In the next result we list automorphisms of \(\mathbb{C}^n \) that can be lifted to automorphisms of \(\text{SL}_n \) via the projection to the first column \(\pi_1: \text{SL}_n \rightarrow \mathbb{C}^n \), i.e. automorphisms \(\psi \) of \(\mathbb{C}^n \) such that there exists an automorphism \(\Psi \) of \(\text{SL}_n \) (depending on \(\psi \)) that
makes the following diagram commutative:

\[
\begin{array}{ccc}
\text{SL}_n & \xrightarrow{\psi} & \text{SL}_n \\
\pi_1 \downarrow & & \downarrow \pi_1 \\
\mathbb{C}^n & \xrightarrow{\psi} & \mathbb{C}^n.
\end{array}
\]

Lemma 2. Let \(n \geq 2 \). Every tame automorphism of \(\mathbb{C}^n \) that preserves the origin can be lifted to some automorphism of \(\text{SL}_n \) via \(\pi_1 : \text{SL}_n \to \mathbb{C}^n \).

Proof. First, remark that the group of tame automorphisms of \(\mathbb{C}^n \) that preserve the origin is generated by the linear group \(\text{GL}_n \) and by the elementary automorphisms that preserve the origin. For every \(A \in \text{GL}_n \), the linear map \(x \mapsto A \cdot x \) of \(\mathbb{C}^n \) can be lifted to the automorphism \(\text{SL}_n \xrightarrow{\pi_1} \text{SL}_n \), \(X \mapsto \pi_1(A \cdot X) \cdot \text{diag}(\lambda_1, \ldots, \lambda_n) \) where \(\text{diag}(\lambda_1, \ldots, \lambda_n) \) denotes the \(n \times n \)-diagonal matrix with entries \(\lambda_1, \ldots, \lambda_n \).

Let \(\psi \) be an elementary automorphism of \(\mathbb{C}^n \) that preserves the origin, i.e. there exist \(i \in \{1, \ldots, n\} \) and polynomials \(p_1, \ldots, p_i, \ldots, p_n \) in the variables \(x_1, \ldots, \hat{x}_i, \ldots, x_n \) such that \(\psi(x_1, \ldots, x_n) = (x_1, \ldots, x_i + \sum_{j \neq i} x_j p_j(x_1, \ldots, \hat{x}_i, \ldots, x_n), \ldots, x_n) \).

The automorphism \(\psi \) can be lifted to some automorphism of \(\text{SL}_n \), e.g. to the automorphism

\[
\text{SL}_n \xrightarrow{\pi_1} \text{SL}_n, \quad X \mapsto \left(\prod_{j \neq i} E_{ij}(p_j(X_{11}, \ldots, \hat{X}_{i1}, \ldots, X_{n1})) \right) \cdot X,
\]

cf. also Lemma 1. This finishes the proof. \(\square \)

3. A generic projection result

Let \(V \) be an algebraic variety. We say that a statement is true for **generic** \(v \in V \) if there exists a Zariski dense open subset \(U \subseteq V \) such that the statement is true for all \(v \in U \).

Lemma 3. Let \(n \geq 3 \). If \(f : \mathbb{C} \to \text{SL}_n \) is an algebraic embedding such that the matrices \(f(0) - f(1) \) and \(f'(0) \) have maximal rank, then, for generic \(A \in M_{n,n-1} \) the map

\[
\mathbb{C} \xrightarrow{f} \text{SL}_n \xrightarrow{\pi_A} M_{n,n-1}
\]

is an algebraic embedding, where \(M_{n,n-1} \) denotes the space of \(n \times (n-1) \)-matrices and \(\pi_A \) is given by \(X \mapsto X \cdot A \).

Proof. Let \(\Delta \subseteq \mathbb{C}^2 \) be the diagonal. Consider the following (Zariski) locally closed subsets of \(\mathbb{C}^2 \setminus \Delta \):

\[
C_i = \{ (t, r) \in \mathbb{C}^2 \setminus \Delta \mid \text{rank}(f(t) - f(r)) = i \}.
\]

Consider for every \(A \in M_{n,n-1} \) the composition

\[
C_i \xrightarrow{(t, r) \mapsto f(t) - f(r)} M_{n,n} \xrightarrow{\pi_A} M_{n,n-1}.
\]

This map is never zero for generic \(A \in M_{n,n-1} \); indeed:
• If $1 < i \leq n$, then π is never zero provided that $A \in M_{n,n-1}$ has maximal rank.

• If $i = 1$, then $\dim C_1 \leq 1$, since $\dim C_n = 2$ (note that $f(0) - f(1)$ has maximal rank). For $(t,r) \in C_1$, let $Z_{(t,r)} = \ker(f(t) - f(r))$.

Since $\dim C_1 \leq 1 < n - 1$, a generic $(n-1)$-dimensional subspace of \mathbb{C}^n is different from $Z_{(t,r)}$ for all $(t,r) \in C_1$. Thus, for generic A the composition π is never zero.

Clearly, $C_0 = \emptyset$. Hence, we proved that the composition $\pi_A \circ f$ is injective for generic $A \in M_{n,n-1}$. Clearly, $\pi_A \circ f$ is proper for generic $A \in M_{n,n-1}$.

For the immersivity, we have to show for generic $A \in M_{n,n-1}$ that

$$f'(t) \cdot A \neq 0$$

for all $t \in \mathbb{C}$. Since $\operatorname{rank} f'(0) = n$, the set $U = \{ t \in \mathbb{C} \mid \operatorname{rank} f'(t) = n \}$ is Zariski dense and open in \mathbb{C}. Thus π is satisfied for all $A \neq 0$ and for all $t \in U$. Since f is immersive, we have $f'(t) \neq 0$ for all $t \in \mathbb{C}$. This implies that for generic A we have $f'(t) \cdot A \neq 0$ for all $t \in \mathbb{C}$. □

4. Algebraic embeddings of \mathbb{C} into SL_n for $n \geq 3$

Theorem 4. For $n \geq 3$, any two algebraic embeddings of \mathbb{C} into SL_n are the same up to an algebraic automorphism of SL_n.

Lemma 5. Let $n \geq 2$. Assume that $f : \mathbb{C} \to \text{SL}_n$ is an algebraic embedding such that

$$\mathbb{C} \xrightarrow{f} \text{SL}_n \xrightarrow{\pi_{n-1}} M_{n,n-1}$$

is an algebraic embedding, where π_{n-1} denotes the projection to the first $n-1$ columns. Then there exists an algebraic automorphism φ of SL_n such that

$$\mathbb{C} \xrightarrow{f} \text{SL}_n \xrightarrow{\varphi} \text{SL}_n \xrightarrow{\pi_1} \mathbb{C}^n$$

is given by $t \mapsto (1,0,\ldots,0,t)^T$.

Proof of Lemma 4. Assume that $n = 2$. Since two algebraic embeddings of \mathbb{C} into \mathbb{C}^2 are the same up to an algebraic automorphism of \mathbb{C}^2 (Abhyankar-Moh-Suzuki Theorem, see [AM75, Suz74]), one can see that there exists an algebraic automorphism of \mathbb{C}^2 that preserves the origin and changes the embedding $\pi_1 \circ f : \mathbb{C} \to \mathbb{C}^2$ to the embedding $\mathbb{C} \to \mathbb{C}^2$, $t \mapsto (1,t)$. Using the fact that every algebraic automorphism of \mathbb{C}^2 is tame (Jung’s Theorem, see [Jung42]), it follows from Lemma 2 that there exists an algebraic automorphism φ of SL_2 such that $\pi_1 \circ \varphi \circ f(t) = (1,t)$.

Assume that $n \geq 3$. Let $A(t) = \pi_{n-1} \circ f(t)$. Since the kernel of $A(t)^T$ is one-dimensional for all t, the following affine variety

$$E = \{ (v,t) \in \mathbb{C}^n \times \mathbb{C} \mid A(t)^T \cdot v = 0 \}$$

defines the total space of a line bundle over \mathbb{C} with projection map $(v,t) \mapsto t$.

Since $n \geq 3 > \dim E$, this implies that there exists a vector $v \in \mathbb{C}^n$ such that $v^T \cdot A(t)$ is non-zero for all $t \in \mathbb{C}$. Now, complete v^T to a matrix $B \in \text{SL}_n$ with last row equal to v^T. Since $n \geq 3$, there exists a permutation matrix $P \in \text{SL}_n$, with first column equal to $(0,\ldots,0,1)^T$. After applying the automorphism $X \mapsto B \cdot X \cdot P$ of SL_n, we can assume that
i) the map \(\mathbb{C} \to M_{n,n-1} \) given by \(t \mapsto (f_{ij}(t))_{1 \leq i \leq n, 2 \leq j \leq n} \) is an algebraic embedding and

ii) the vector \((f_{n2}(t), f_{n3}(t), \ldots, f_{nn}(t)) \) is non-zero for all \(t \in \mathbb{C} \), where \(f_{ij}(t) \) denotes the \(ij \)-th entry of the matrix \(f(t) \). By ii), there exist polynomials \(\tilde{p}_k \in \mathbb{C}[t] \), \(2 \leq k \leq n \) such that

\[
\sum_{k=2}^{n} f_{nk}(t) \tilde{p}_k(t) = t - f_{n1}(t).
\]

By i), there exist polynomials \(p_k \) in the functions \(x_{ij} \) with \(1 \leq i \leq n \), \(2 \leq j \leq n \) such that \(\tilde{p}_k(t) = p_k(\ldots, f_j(t), \ldots) \). Let \(\varphi : SL_n \to SL_n \) be the automorphism

\[
X \mapsto X \cdot \begin{pmatrix} 1 & 0 & \cdots & 0 \\ p_2(X) & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ p_n(X) & 0 & \cdots & 1 \end{pmatrix}.
\]

Clearly, the left down corner of the matrix \(\varphi \circ f(t) \) is equal to \(t \). Now, one can construct with the aid of Lemma \(2 \) an automorphism \(\psi \) of \(SL_n \) such that the first column of \(\psi \circ \varphi \circ f(t) \) is equal to \((1,0,\ldots,0,t)^T\). This proves the lemma.

Lemma 6. Let \(n \geq 2 \) and let \(f : \mathbb{C} \to SL_n \) be an algebraic embedding such that the first column of \(f(t) \) is equal to \((1,0,\ldots,0,t)^T\). Then \(f \) is the same as

\[
\mathbb{C} \to SL_n, \quad t \mapsto E_{n1}(t)
\]

up to an algebraic automorphism of \(SL_n \), where \(E_{n1}(t) \) denotes the elementary matrix with left down corner equal to \(t \).

Proof of Lemma 6. Let \(\psi \) be the automorphism of \(SL_n \) defined by

\[
X \mapsto X \cdot f(X_{n1})^{-1} \cdot E_{n1}(X_{n1})
\]

where \(X_{ij} \) denotes the \(ij \)-th entry of the matrix \(X \). Now, one can easily check that \(\psi \circ f \) is the embedding \(t \mapsto E_{n1}(t) \).

Proof of Theorem 4. Start with an algebraic embedding \(f : \mathbb{C} \to SL_n \). As \(SL_n \) is flexible, for any finite set \(Z \) in \(SL_n \) there exists an automorphism of \(SL_n \) which fixes \(Z \) and has prescribed volume preserving differentials in the points of \(Z \), see \[AFK-13\] Theorem 4.14 and Remark 4.16]. Using the fact that \(\text{Aut}(SL_n) \) acts 2-transitively on \(SL_n \), see e.g. \[AFK-13\] Theorem 0.1], we can assume that

\[
\det(f(0) - f(1)) \neq 0 \quad \text{and} \quad \det f'(0) \neq 0.
\]

Since \(n \geq 3 \), by Lemma 3 there exists a matrix \(A \in M_{n,n-1} \) of maximal rank, such that \(t \mapsto f(t) \cdot A \) defines an algebraic embedding of \(\mathbb{C} \) into \(M_{n,n-1} \). Extend \(A \) with an additional column \(v \in \mathbb{C}^n \) to a \(n \times n \)-matrix \((A|v) \) of determinant one. After applying the algebraic automorphism \(X \mapsto X \cdot (A|v) \) of \(SL_n \), we can assume that the composition

\[
\mathbb{C} \xrightarrow{f} SL_n \xrightarrow{(A|v)} M_{n,n-1}
\]

is an algebraic embedding. After an algebraic coordinate change of \(SL_n \), we can assume that the first column of \(f(t) \) is equal to \((1,0,\ldots,0,t)^T\) by
Lemma 5. Thus, up to an algebraic automorphism of SL_n, f is the same as $t \mapsto E_{n1}(t)$ by Lemma 6. This finishes the proof. □

5. ALGEBRAIC EMBEDDINGS OF \mathbb{C} INTO SL_2

Theorem 7. Any two algebraic embeddings $\mathbb{C} \to \text{SL}_2$ are the same up to a holomorphic automorphism of SL_2.

Remark 8. Since for all $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ the embeddings

\[t \mapsto \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad t \mapsto \begin{pmatrix} 1 & at + b \\ 0 & 1 \end{pmatrix} \]

are the same up to an algebraic automorphism of SL_2, it is enough to prove Theorem 7 up to an algebraic reparametrization of the embeddings $\mathbb{C} \to \text{SL}_2$.

For the proof of Theorem 7 we need the following rather technical result, which enables us to bring an arbitrary algebraic embedding $\mathbb{C} \to \text{SL}_2$ in a “nice” position.

Proposition 9. Let $f : \mathbb{C} \to \text{SL}_2$ be an algebraic embedding. Then there exists a holomorphic automorphism φ of SL_2 and a constant $a \in \mathbb{C}$ such that the embedding

\[\mathbb{C} \longrightarrow \text{SL}_2, \quad t \mapsto \begin{pmatrix} g_{11}(t) & g_{12}(t) \\ g_{21}(t) & g_{22}(t) \end{pmatrix} := (\varphi \circ f)(t + a) \]

satisfies:

1. for all $t \in g_{11}^{-1}(0)$ we have $g_{12}(t) = t$;
2. the map $t \mapsto (g_{11}(t), g_{21}(t))$ is a proper, bimeromorphic immersion such that the image Γ has only simple normal crossing singularities;
3. the singularities of Γ are distinguished by the first coordinate of \mathbb{C}^2;
4. the line $\{0\} \times \mathbb{C}$ intersects Γ transversally; in particular, Γ is smooth in every point of $\Gamma \cap \{0\} \times \mathbb{C}$;
5. the map $t \mapsto g_{11}(t)$ is polynomial.

The proof of this proposition uses the following easy result which is a direct application of the Baire category theorem:

Lemma 10. Let $\mathcal{H}(\mathbb{C}^n)$ be the Fréchet space of holomorphic functions on \mathbb{C}^n with the compact-open topology. If S is the countable union of closed proper subspaces of $\mathcal{H}(\mathbb{C}^n)$, then $\mathcal{H}(\mathbb{C}^n) \setminus S$ is dense in $\mathcal{H}(\mathbb{C}^n)$.

Let $p \in \mathbb{C}^n$ and let $i \in \{1, \ldots, n\}$. In our proof of Proposition 9 we use the fact that the linear functionals on $\mathcal{H}(\mathbb{C}^n)$

\[h \mapsto h(p) \quad \text{and} \quad h \mapsto D_{x_i}h(p) \]

are continuous and thus their kernels are proper closed subspaces of $\mathcal{H}(\mathbb{C}^n)$.

Additionally, we use for the proof of Proposition 9 the following, again rather technical result:

Lemma 11. Let $f : \mathbb{C} \to \text{SL}_2$ be an algebraic embedding. Then there exists an algebraic automorphism φ of SL_2 such that the embedding

\[\mathbb{C} \longrightarrow \text{SL}_2, \quad t \mapsto (\varphi \circ f)(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \\ w(t) \end{pmatrix} \]

satisfies:
a) the maps $t \mapsto x(t)$ and $t \mapsto w(t)$ are non-constant polynomials;
b) the maps $t \mapsto (x(t), z(t))$ and $t \mapsto (x(t), w(t))$ are bimeromorphic and immersive;
c) the singularities of the image of $t \mapsto (x(t), z(t))$ lie inside $(\mathbb{C}^*)^2$;
d) the image of $t \mapsto (x(t), z(t))$ intersects $\{0\} \times \mathbb{C}$ transversally.

Proof of Lemma 11. Clearly, we can assume that $f(0) = E_2$ is the identity matrix $E_2 \in \text{SL}_2$. By [AFK'13, Theorem 4.14 and Remark 4.16], there exists an algebraic automorphism of SL_2 which fixes E_2 and maps the tangent vector $f'(0) \in T_{E_2} \text{SL}_2 = \text{Lie SL}_2$ to the matrix

$$F_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \text{Lie SL}_2.$$

Thus we can assume that $f(0) = E_2$ and $f'(0) = F_2$. In particular, property a) is satisfied. Since $f'(t)$ is never zero and since $f'(t)$ is invertible for generic t (note that $f'(0) = F_2$ is invertible) it follows that $f'(t) \cdot v$ is non-zero for generic $v \in \mathbb{C}^2 \setminus \{(0, 0)\}$. For generic $\mu \in \mathbb{C}$, this implies that the embedding

$$t \mapsto f(t) \cdot \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$$

satisfies still property a) and the projection to the first column gives an immersive map. Let us fix such a μ. For generic $\lambda \in \mathbb{C}$ the embedding

$$t \mapsto f(t) \cdot \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$

still satisfies property a) and the projection to the first column and the projection to the diagonal give immersive maps. Since any immersive morphism of \mathbb{C} to an irreducible affine curve is birational, we can assume that f satisfies properties a) and b). Now, for generic $a \in \mathbb{C}$ the embedding

$$t \mapsto \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \cdot f(t)$$

satisfies properties a) and b) and the singularities of the image of the projection to the first column lie inside $\mathbb{C} \times \mathbb{C}^*$. Let us fix such an a. For generic $b \in \mathbb{C}$ the embedding

$$t \mapsto \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \cdot f(t)$$

satisfies now the properties a) to c). Let $(p(t), q(t))^T$ be the first column of the embedding (***). Then the top left entry of the embedding (***) is given by $p(t) + bq(t)$. Now, if (***) satisfies properties a) to c), then (***) satisfies property d) if and only if $p(t) + bq(t)$ has only simple roots. However, this last condition is satisfied for generic b, since $p(t) + bq(t)$ has only simple roots if and only if for all t the vector $(1, b)^T$ lies not in the kernel of the matrix

$$\begin{pmatrix} p(t) & q(t) \\ p'(t) & q'(t) \end{pmatrix}$$

and since this last matrix is invertible for generic t and never vanishes. This finishes the proof. \[\square\]
Proof of Proposition 8. Using Lemma 11 we can assume that \(f \) satisfies the properties a) to d) of Lemma 11. As a consequence of b) and c) we get that the map \(t \mapsto (x(t), z(t), w(t)) \) is a proper holomorphic embedding.

Let \(t_1, \ldots, t_n \), be the roots of \(x(t) = 0 \) (which are simple according to property d)). After a reparametrization of \(f \) of the form \(t \mapsto t + a \) one can assume that \(w(t_i) \neq w(t_j) \) for all \(i \neq j \) and \(t_i \neq 0 \) for all \(i \). Let \(a_i \in \mathbb{C} \) such that \(e^{-a_i} = -t_i z(t_i) \) and let \(b: \mathbb{C} \to \mathbb{C} \) be a polynomial map such that \(b(w(t_i)) = a_i \) and \(b'(w(t)) = 0 \) for all \(t \) with \(x'(t) = 0 \). After applying the holomorphic automorphism

\[
\text{SL}_2 \to \text{SL}_2, \quad \begin{pmatrix} x & y \\ z & w \end{pmatrix} \mapsto \begin{pmatrix} x & e^{-b(w)}y \\ z e^{b(w)} & w \end{pmatrix}
\]

we can assume that the embedding \(f \) satisfies \(y(t_i) = t_i \) for all \(i \) and \(f \) still satisfies the properties a) to d).

Let \(\rho \) be the embedding \(t \mapsto (x(t), y(t), z(t)) \). Fix \(x_0 \neq 0 \) such that

i) \(z(s) \neq 0 \) and \(x'(s) \neq 0 \) for all \(s \in x^{-1}(x_0) \) and

ii) the maps \(t \mapsto z(t) \) and \(t \mapsto w(t) \) are injective on \(x^{-1}(x_0) \).

Let \(\{s_1, \ldots, s_n\} = x^{-1}(x_0) \). With the aid of Lemma 10 one can see that there exists a holomorphic function \(c: \mathbb{C}^2 \to \mathbb{C} \) that satisfies the following:

i) for all \((x, z, w) \neq (x, z, w') \in \rho(\mathbb{C}) \) we have \(c(x, w) \neq c(x, w') \);

ii) for all \(t \) with \(x'(t) = 0 \), the partial derivative \(D_w c \) vanishes in \((x(t), w(t)) \); and

iii) for all \(i = 1, \ldots, n \) we have \(c(0, w(t_i)) = 0 \).

iv) for all integers \(k, q \) and for all 2-element sets \(\{i, j\} \neq \{l, p\} \) we have

\[
[\log z(s_i) - \log z(s_p) + 2 \pi i q] \cdot [c(x_0, w(s_j)) - c(x_0, w(s_i))] = \left[c(x_0, w(s)) - c(x_0, w(s)) \right];
\]

v) for all integers \(k \) and for all \(i \neq j \) we have

\[
[\log z(s_i) - \log z(s_j) + 2 \pi i k] \cdot [x'(s_i)c(x, w)'(s_j) - x'(s_j)c(x, w)'(s_i)] = \left[c(x_0, w(s_j)) - c(x_0, w(s_j)) \right].
\]

Let \(V \subseteq \mathbb{C}^* \) be the largest subset such that for all \(x_0 \in V \) the properties I) and II) are satisfied. By property a), the complement \(\mathbb{C} \setminus V \) is a closed discrete (countable) subset of \(\mathbb{C} \). The inequalities in iv) and v) are locally holomorphic in \(x_0 \in V \) after a local choice of sections \(s_1, \ldots, s_n \) of the covering \(x^{-1}(V) \to V \) and a local choice of the branches of the logarithms.

Since \(V \) is path-connected, one can now deduce that there exists a subset \(U \subseteq V \) such that \(\mathbb{C} \setminus U \) is countable and for all \(x_0 \in U \) the properties iv) and v) are satisfied.

According to i) and c) there exists \(\lambda \in \mathbb{C}^* \) such that for all \(x_1 \in \mathbb{C} \setminus U \) we have the following: If \((x_1, z, w) \neq (x_1, z', w') \in \rho(\mathbb{C}) \), then \(e^{\lambda c(x_1, w)z} \neq e^{\lambda c(x_1', w')z} \). Now, let \(\varphi \) be the following holomorphic automorphism

\[
\text{SL}_2 \to \text{SL}_2, \quad \begin{pmatrix} x & y \\ z & w \end{pmatrix} \mapsto \begin{pmatrix} x & e^{-\lambda c(x, w)}y \\ e^{\lambda c(x, w)}z & w \end{pmatrix}
\]

and let \(g = \varphi \circ f \). According to iii), \(g \) satisfies property (1) of the proposition. Property ii) implies that \(t \mapsto (g_1(t), g_2(t)) \) is immersive. Clearly, \(t \mapsto (g_{11}(t), g_{21}(t)) \) is proper and \(g \) satisfies property (5) of the proposition. By iii), it follows that \(g \) satisfies property (4) of the proposition and thus
$t \mapsto (g_{11}(t), g_{21}(t))$ is bimeromorphic. By the choice of λ, it follows for $x_1 \notin U$ that $g_{21}(t) \neq g_{21}(t')$ for all $t \neq t' \in x^{-1}(x_1)$. Since all $x_0 \in U$ satisfy iv) and v) the image of $t \mapsto (g_{11}(t), g_{21}(t))$ has only simple normal crossings, which have distinct first coordinates in \mathbb{C}^2. This implies properties (2) and (3) of the proposition. □

Proof of Theorem 7 Let $f: \mathbb{C} \to \text{SL}_2$ be an algebraic embedding. We will prove that up to a holomorphic automorphism of SL_2 and up to an algebraic reparametrization, f is the same as the standard embedding $t \mapsto E_{12}(t)$.

After applying a holomorphic automorphism of SL_2 and performing an algebraic reparametrization we can assume that f satisfies properties (1) to (5) of Proposition 9. We denote

$$f(t) = \begin{pmatrix} x(t) & y(t) \\ z(t) & w(t) \end{pmatrix}.$$

As usual, $\pi_1: \text{SL}_2 \to \mathbb{C}^2$ denotes the projection onto the first column. Let S be the (countable) closed discrete set of points $s \in \mathbb{C}^2 \setminus \{0\}$ such that $(\pi_1 \circ f)^{-1}(s) = \{s_1, s_2\}$ with $s_1 \neq s_2$, see property (2). For every s in S, it holds that $y(s_1) \neq y(s_2)$, since f is an embedding and since all simple normal crossings of the image of $\pi_1 \circ f$ lie inside $\mathbb{C}^* \times \mathbb{C}$ due to property (4). Thus, we can choose $a_s \in \mathbb{C}$ such that

$$s_1 - e^{a_s} y(s_1) = s_2 - e^{a_s} y(s_2).$$

Let $\psi_1: \mathbb{C} \to \mathbb{C}$ be a holomorphic function with $\psi_1(0) = 0$ such that for all $s \in S$ we have $\psi_1(x(s_1)) = a_s$. This function exists, since $x(s_1) = x(s_2) \neq 0$ for all $s \in S$ (by property (4)), since $x((\pi_1 \circ f)^{-1}(S))$ is a closed analytic subset of \mathbb{C} (by property (5)) and since $x(s_1) \neq x(s'_1)$ for distinct s, s' of S (by property (3)). Let α_1 be the holomorphic automorphism of SL_2 defined by

$$\alpha_1 \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & e^{\psi_1(x)} y \\ e^{-\psi_1(x)} z & w \end{pmatrix}.$$

By composing f with α_1, we can assume that $s_1 - y(s_1) = s_2 - y(s_2)$ for all $s \in S$. The embedding f still satisfies the properties (1) to (5).

Let $\Gamma \subset \mathbb{C}^2$ be the image of $\pi_1 \circ f: \mathbb{C} \to \mathbb{C}^2$. By Remmert’s proper mapping theorem [Rem57, Satz 23], Γ is a closed analytic subvariety of \mathbb{C}^2. Now, using that $\pi_1 \circ f$ is immersive and Γ has only simple normal crossings, we get a holomorphic factorization

$$\mathbb{C} \xrightarrow{\pi_1 \circ f} \Gamma \xrightarrow{e} \mathbb{C}.$$

Using properties (1) and (4), it follows that the map

$$\tilde{e}: \Gamma \to \mathbb{C}, \quad (x, z) \mapsto e(x, z)$$

is holomorphic. Using Cartan’s Theorem B [Car53 Théorème B], we can extend \tilde{e} to a holomorphic map $\psi_2: \mathbb{C}^2 \to \mathbb{C}$. Let α_2 be the holomorphic
automorphism of SL_2 defined by

$$\alpha_2 \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x + \psi_2(x, z) & y + \psi_2(x, z) \\ z + \psi_2(y, z) & w + \psi_2(y, z) \end{pmatrix}.$$

After applying the automorphism α_2 to f we can assume that $y(t) = t$. This implies that $x(0)t = x(0) - x(0)$. Let p, q be the holomorphic functions such that $p(t) = x(t) - x(0)$ and $q(t) = w(t) - w(0)$. After applying the holomorphic automorphism

$$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \mapsto \begin{pmatrix} w(0) & 0 \\ 0 & x(0) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -q(y) & 1 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -p(y) & 1 \end{pmatrix}$$

we can additionally assume that $w(t) = x(t) = 1$, which implies $z(t) = 0$. The statement follows now from Remark 8. □

6. Acknowledgements

The author would like to thank Peter Feller for many fruitful and stimulating discussions. Many thanks go also to the referees for their helpful comments.

References

[AFK+13] Ivan Arzhantsev, Hubert Flenner, Shulim Kaliman, Frank Kutzschebauch, and Mikhail Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767–823. MR 3039680

[AM75] Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 0379502 (52 #407)

[Car53] Henri Cartan, Variétés analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles, 1953, Georges Thone, Liège; Masson & Cie, Paris, 1953, pp. 41–55. MR 0064154 (16,235a)

[FS14] Peter Feller and Immanuel Stampfli, Holomorphically equivalent embeddings, http://arxiv.org/abs/1409.7319, 2014.

[Jun42] Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174. MR 0008915 (5,74f)

[Kal91] Shulim Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of k^n to automorphisms of k^n, Proc. Amer. Math. Soc. 113 (1991), no. 2, 325–334. MR 1076575 (91m:14019)

[Kal13] ———, Analytic extensions of algebraic isomorphisms, to appear in Proc. Amer. Math. Soc. (2013), http://arxiv.org/abs/1309.3791.

[KZ99] Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95. MR 1669174 (2000f:14099)

[Rem57] Reinhold Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370. MR 0092996 (19,1193d)

[Sha92] Anant R. Shastri, Polynomial representations of knots, Tohoku Math. J. (2) 44 (1992), no. 1, 11–17. MR 1145717 (92k:57016)

[Sri91] Vasudevan Srinivas, On the embedding dimension of an affine variety, Math. Ann. 289 (1991), no. 1, 125–132. MR 1087241 (92a:14013)

[Suz74] Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \mathbb{C}^2, J. Math. Soc. Japan 26 (1974), 241–255. MR 0338423 (49 #3188)