Quinoline-Based Polyazaheterocycles by a Hydrogen Peroxide-Mediated Isocyanide Insertion

Farzaneh Bandehali-Naeini, Morteza Shiri, Bahareh Ramezani, and Saideh Rajai-Daryasarei

Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran, Iran

ABSTRACT
An efficient and green protocol for the synthesis of quinoline-based polyazaheterocycles with 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones and aliphatic and aromatic isocyanides using hydrogen peroxide is described.

Introduction
Polyazaheterocycles are complex organic molecules that have received significant attention in the fields of dyes and pigments science, materials and polymer science, medicinal chemistry, and agrochemistry. Accordingly, the design and synthesis of diverse and complex heterocyclic systems from readily available starting materials are of high significance for synthetic and medicinal chemistry.

Quinoline- and quinazolinone-based polyazaheterocycles are fundamental motifs in numerous pharmaceuticals, natural products, and organic functional materials. For instance, they served as anticancer, anticonvulsant, anti-hypertensive, antiviral, and antibacterial properties. Furthermore, 1,2-fused quinazolinones are also used as potent inhibitors of TNF-α. Although several methodologies for the synthesis of 2,3-fused quinazolinone with diverse heterocycles have been reported, the synthetic strategies for the 1,2-fused quinazolinones are rare in the literature.

On the other hand, sulfur-containing organic compounds play an important role in functional materials, synthetic drugs, natural products, and even food. Among them, thiazine and its derivatives have exhibited a wide range of bioactivities such as 5-lipoxygenase inhibitor, anti-HIV, antidiabetic, antihistaminic, and antimycobacterial activities. According to the importance of quinolines, quinazolinones, and thiazines in medicinal chemistry, development of a new method for the combination of this three distinct pharmacophores into a single molecule can be interested in drug discovery programs.

In 2016, Berteina-Raboin group reported the synthesis of substituted 2-aminobenzothiazole derivatives using reaction of 2-aminothiophenol and isocyanides in the presence of H₂O₂ as oxidant and I₂ as a catalyst. Noteworthy performance of similar reaction in the presence of transition metals have also reported. In a continuation of our efforts on isocyanides chemistry and...
synthesis of biologically active heterocycles, herein, we wish to report a practical and efficient method for the preparation of quinolino-thiazino-quinazolinones (Scheme 1).

Results and discussions

To evaluate the feasibility, 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one 1a and cyclohexyl isocyanide 2a were initially chosen as the model substrates (Scheme 1, Table 1). At first, the reaction was performed in the presence of H$_2$O$_2$ (1.1 equiv.) and I$_2$ (5 mol%) in PEG$_{400}$ as described by Berteina-Raboin for 2-aminothiophenol. The desired product 3a was isolated in 61% yield (Table 1, entry 1). By increasing the amount of H$_2$O$_2$ to 2.2 equiv. the yield of 3a increased to 76% (Table 1, entry 2). Because of benefits of environmentally benign approaches we decided to remove I$_2$. It was found that in the absence of I$_2$, reaction needs 5 equiv. of H$_2$O$_2$ to be completed (Table 1, entry 3). Noteworthy, hydrogen peroxide constitutes a potentially green oxidant because it releases only water as by-product. Increasing the time to more than 2 h did not affect the yield of product any more. Screening of various solvents showed that THF is the best solvent for this two-component reaction in which 3a was isolated in 89% yield (Table 1, entry 4).

After having the optimal conditions, we investigated the generality of this reaction. To this end, various 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones and isocyanides were applied to the reaction conditions to afford the desired products 3a–l (Figure 1). The reaction of 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones bearing neutral and electron-donating substituents such as Me and OMe at different position of the quinoline ring with cyclohexyl and t-butyli isocyanides afforded the corresponding products 3a–c and 3f–i in 77–91% yields. Also, electron-withdrawing Cl group at the C-6 position of the quinoline ring provided desired products 3d and 3j in 85% and 82% yields, respectively. Furthermore, when 2-(2-mercaptobenzo[h]quinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one was used as substrate, the desired products 3k and 3l were isolated in 66% and 57% yields, respectively.

Table 1. Optimization of the reaction conditions.\(^a\)

Entry	H$_2$O$_2$ (equiv.)	Solvent	Yield 3a (%)\(^b\)
1\(^c\)	1.1	PEG$_{400}$	61
2\(^c\)	2.2	PEG$_{400}$	76
3	5	PEG$_{400}$	77
4	5	THF	89
5	5	EtOH	57
6	5	PhCH$_3$	41
7	5	DCM	30
8	5	1,4-dioxane	82
9	5	CH$_3$CN	62

\(^a\)Reagents and conditions: 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one (1a) (1 mmol), cyclohexyl isocyanide (2a) (1.1 mmol), H$_2$O$_2$ in H$_2$O (30 wt%), solvent (2 mL), at 50 °C for 2 h.

\(^b\)Isolated yield.

\(^c\)I$_2$ (0.05 equiv.).
products 3e and 3k were obtained in good yields. Notably, phenyl isocyanide participated in the reaction to give the corresponding product 3l in 83% yield.

The structures of isolated products 3a–l were elucidated from their IR, 1H NMR, and 13C NMR spectra. The IR spectrum of 3a showed absorption band related to C=O bond of the amide group at 1677 cm⁻¹. The 1H NMR spectrum of 3a exhibited 10 protons related to five CH₂ of cyclohexyl ring at δ = 1.17–1.90 ppm and one more proton of cyclohexyl; CH, at δ = 3.68 ppm as multiplets. A doublet was observed at δ = 6.22 (J = 4.8 Hz) ppm for the methine moiety of the six-membered ring due to a vicinal coupling with the proton of the amide group. Nine aromatic H-atoms appeared in the region of δ = 7.01–8.35 ppm of the spectrum. Moreover,
one doublet at $\delta = 9.30$ (J = 4.4 Hz) ppm is seen for NH the amide group. The 13C NMR spectrum of 3a showed characteristic signals at $\delta = 24.3, 25.6, 33.3$, and 59.6 ppm for aliphatic carbons of cyclohexyl ring, a fairly shielded signal at $\delta = 66.0$ ppm due to the CH moiety of the six-membered ring, at $\delta = 153.7$ ppm for the C= N, as well as deshielded signal at $\delta = 162.6$ ppm arising from the amide carbonyl group. Fifteen other resonances (9 CH and 6 C) with appropriate chemical shifts were observed in the range of 116.8–147.7 ppm in agreement with the proposed structure.

Remarkably, this protocol employed for the synthesis of thiazino[6,5-b]quinolins 5 and gave desired products 5a and 5b in 91% and 87% yields, respectively (Scheme 2).
On the basis of the previous reports, a plausible mechanism for the present process can be suggested as depicted in Scheme 3. Initially, thiol 1 may be converted to disulfide A with hydrogen peroxide (H$_2$O$_2$). Next, the nucleophilic attack of isocyanide 2 on disulfide A gives intermediate B which underwent intramolecular cyclization through nucleophilic attack of the amine moiety of quinazolinone onto the nitrilium moiety to afford the corresponding product 3.

Conclusion

We have disclosed an efficient approach for the synthesis of thiazino[3,4-a]quinazolin-15(6H)-ones via two-component reaction between 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones and isocyanides using H$_2$O$_2$ as oxidant. The main features of this reaction are high yields of the products, short reaction times, and easy work-up without any need for chromatographic purification process. Moreover, this approach provided a fast-track strategy to construct a complex core in one single operation from simple and easily accessible starting materials in an environmental friendly way.

Experimental

General

All chemicals were purchased from commercial sources. Melting points were taken by using a 9200-Branread Electrothermal. IR spectra were recorded on a Shimadzu Infra-Red Spectroscopy IR-435. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 300 and 400 MHz spectrometer in DMSO-d$_6$ as a solvent.

A typical procedure for the synthesis of thiazino[3,4-a]quinazolin-15(6H)-one 3a

A mixture of 2-(2-mercaptoquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one 1a (0.304 g, 1.0 mmol), cyclohexyl isocyanide 2a (0.109 g, 1.1 mmol), and an aqueous solution of H$_2$O$_2$ 30% (0.5 mL, 5.0 mmol) was stirred at 50°C for 2 h. After completion of the reaction as was indicated by TLC monitoring, the reaction mixture was cooled to room temperature. Next, the reaction mixture was extracted with CH$_2$Cl$_2$ (3 × 7 mL). The combined organic phase was dried over Na$_2$SO$_4$ and the solvent was removed under reduced pressure. Finally, the resulting precipitate was filtered, washed with EtOAc to afford the pure product 3a as a white solid.

Spectroscopic data

6-(Cyclohexylimino)-13b,14-dihydro-6H,15H-quinolino[3',2':5,6][1,3]thiazino[3,4-a]quinazolin-15-one (3a): White powder, mp: 292–297°C. FT-IR (KBr): ν_{max}: 599, 1117, 1157, 1246, 1417, 1470, 1637, 1677, 2853, 2923, 3055, 3178 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d$_6$): δ = 1.17–1.90 (m, 10H), 3.65–3.70 (m, 1H), 6.22 (d, J = 4.8 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.2 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.80–7.83 (m, 2H), 7.93 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.35 (s, 1H), 9.30 (d, J = 4.4 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d$_6$): δ = 24.3, 25.6, 33.3, 59.6, 66.0, 116.8, 119.1, 122.6, 126.4, 127.8, 128.1, 128.4, 128.5, 129.0, 131.6, 133.8, 133.9, 142.9, 144.3, 147.7, 153.7, 162.6 ppm.

Funding

We are thankful to Alzahra University and Iran National Science Foundation (INSF) for the financial support.
References

1. A. Vasilev, T. Deligeorgiev, N. Gadjev, S. Kaloyanova, J. J. Vaquero, J. Alvarez-Builla, and A. G. Baeza, “Novel Environmentally Benign Procedures for the Synthesis of Styril Dyes,” Dyes and Pigments 77, no. 3 (2008): 550–55; M. Shaikh, J. Mohanty, P. K. Singh, A. C. Bhasikuttan, R. N. Rajule, V. S. Satam, S. R. Bendre, V. R. Kanetkar, and H. Pal, “Contrasting Solvent Polarity Effect on the Photophysical Properties of Two Newly Synthesized Aminostyryl Dyes in the Lower and in the Higher Solvent Polarity Regions,” The Journal of Physical Chemistry A 114, no. 13 (2010): 4507–19.
2. J. C. Gustafsson, O. Inganäs, and A. M. Andersson, “Conductive Polyheterocycles as Electrode Materials in Solid State Electrochromic Devices,” Synthetic Metals 62, no. 1 (1994): 17–21; M. Mrsevic, D. Düsseldorf, and C. Staudt, “Synthesis and Characterization of a Novel Carboxyl Group Containing (co) Polymide with Sulfur in the Polymer Backbone,” Beilstein Journal of Organic Chemistry 8 (2012): 776–86; K. Sekine, F. Stuck, J. Schulmeister, T. Wurm, D. Zetschok, F. Rominger, M. Rudolph, and A. S. K. Hashmi “N-Heterocycle-Fused Pentalenes by a Gold-Catalyzed Annulation of Diethynyl-Quinoxalines and –Phenazines,” Chemistry – A European Journal 24, no. 48 (2018): 12515–18; Z. Zeng, H. Jin, M. Rudolph, F. Rominger, and A. S. K. Hashmi “Gold(III)-Catalyzed Site-Selective and Divergent Synthesis of 2-Aminopyrroles and Quinoline-Based Polyzaheterocycles” Angewandte Chemie International Edition 57, no. 50 (2018): 16549–53; Z. Zeng, H. Jin, X. Song, Q. Wang, M. Rudolph, F. Rominger and A. S. K. Hashmi “Gold-Catalyzed Intermolecular Cycloarboamination of Ynamides with 1,3,5-Triazinanes: En Route to Tetrahydroprimidines” Chemical Communications 53, no. 31, (2017): 4304–07.
3. Y. Feng, N. Tian, Y. Li, C. Jia, X. Li, L. Wang, and X. Cui, “Construction of Fused Polyheterocycles through Sequential [4 + 2] and [3 + 2] Cycloadditions,” Organic Letters 19, no. 7 (2017): 1658–61; T. H. Al-Tel, and R. A. Al-Qawasmeh, “Post Groebke–Blackburn Multicomponent Protocol: Synthesis of New Polyfunctional Imidazo[1,2-a]Pyridine and Imidazo[1,2-a]Pyrimidine Derivatives as Potential Antimicrobial Agents,” European Journal of Medicinal Chemistry 45, no. 12 (2010): 5848–55; C. Cheng, W. W. Chen, B. Xu, and M. H. Xu, “Intramolecular Cross Dehydrogenative Coupling of 4-Substituted Coumarins: Rapid and Efficient Access to Coumestans and Indole [3,2-c] Coumarins,” Organic Chemistry Frontiers 3, no. 9 (2016): 1111–15; G. M. Coppola, J. D. Fraser, G. E. Hardtmann, M. J. Shapiro “The Chemistry of 3-Azaisotioic Anhydrides. Synthesis and Reactions of Polyzaheterocycles” Journal of Heterocyclic Chemistry 22, no. 1 (1985): 193–206; K. M. Dawood and M. A. Raslan “Fused Polyzaheterocycles and 1,3,4-Thiadiazoles via a Tricyano Synthon” Journal of Heterocyclic Chemistry 45, no. 1 (2008): 137–41; E. Bejan, H. A. Haddou, J. C. Daran, G. G. A. Balavoine “The Reaction of Enaminores with Carboxamidines: A Convenient Route for the Synthesis of Polyzaheterocycles” Synthesis 27, no. 8 (1996): 1012–18.
4. F.-Q. He, X.-H. Liu, B.-L. Wang, and Z.-M. Li, “Synthesis and Biological Activities of Novel Bis-Heterocyclic Pyrroldiazole Derivatives,” Heterocatalysis Chemistry 19, no. 1 (2008): 21–7; A. Andreani, M. Rambaldi, A. Leoni, A. Locatelli, F. Andreani, and J.-C. Gehret, “Synthesis of Imidazo [2,1-b] Thiazoles as Herbicides,” Pharmaceutica Acta Helvetiae 71, no. 4 (1996): 247–52.
5. R. M. Wilson, and S. J. Danishefsky, “On the Reach of Chemical Synthesis: Creation of a Mini-Pipeline from an Academic Laboratory,” Angewandte Chemie International Edition 49, no. 35 (2010): 6032–56; D. Cornut, H. Lemoine, O. Kanishchev, E. Okada, F. Albreux, A. H. Beavogui, A. L. Bienvenu, S. Picot, J. P. Bouillon, and M. Médebielle, “Incorporation of a 3-(2,2,2-Trifluoroethyl)-γ-Hydroxy-γ-Lactam Motif in the Side Chain of 4-Aminoquinolines. Syntheses and Antimalarial Activities,” Journal of Medicinal Chemistry 56, no. 1 (2013): 73–83; J. D. Gohil, H. B. Patel, and M. P. Patel, “Synthesis and Evaluation of New Chromene Based [1,8]Naphthyridines Derivatives as Potential Antimicrobial Agents,” RSC Advances 6, no. 78 (2016): 74726–33; R. Rohini, K. Shanker, P. M. Reddy, Y.-P. Ho, and V. Ravinder, “Mono and Bis-6-Arylbenzimidazo [1,2-c]Quinazolines: A New Class of Antimicrobial Agents,” European Journal of Medicinal Chemistry 44, no. 8 (2009): 3330–9; U. A. Kshirsagar, “Recent Developments in the Chemistry of Quinazoline Alkaloids,” Organic & Biomolecular Chemistry 13, no. 36 (2015): 9336–52; A. S. K. Hashmi, “Gold-Catalyzed Organic Reactions” Chemical Reviews 107, no. 7 (2007): 3180–211; M. Rudolph, and A. S. K. Hashmi, “Heterocycles from gold catalysis” Chemical Communications 47, no. 23 (2016): 6536–44; D. Pflasterer, and A. S. K. Hashmi, “Gold Catalysis in Total Synthesis – Recent Achievements” Chemical Society Reviews 45, no. 5 (2016): 1331–67.
6. M. Shiri, M. A. Zolligol, H. G. Kruger, and Z. Tanbakouchian, “Friedländer Annulation in the Synthesis of Azaheterocyclic Compounds,” Advances in Heterocyclic Chemistry 102 (2011): 139–227; J. Marco-Contelles,
E. Pérez-Mayoral, A. Samadi, M. D. C. Carreiras, and E. Soriano, “Recent Advances in the Friedlander Reaction,” *Chemical Reviews* 109, no. 6 (2009): 2652–71; Z. Ma, Y. Hano, T. Nomura, and Y. Chen, “Novel Quinazoline–Quinoline Alkaloids with Cytotoxic and DNA Topoisomerase II Inhibitory Activities,” *Bioorganic & Medicinal Chemistry Letters* 14, no. 5 (2004): 1193–6; Y. Sawada, H. Kayakiri, Y. Abe, T. Mizutani, N. Inamura, M. Asano, C. Hatori, I. Aramori, T. Oku, and H. Tanaka, “Discovery of the First Non-Peptide Full Agonists for the Human Bradykinin B2 Receptor Incorporating 4-(2-Picolyloxy)Quinoline and 1-(2-Picolyl)Benimidazole Frameworks,” *Journal of Medicinal Chemistry* 47, no. 11 (2004): 2853–63; P. Beagley, M. A. L. Blackie, K. Chibale, C. Clarkson, R. Meijboom, J. R. Moss, P. J. Smith, and H. Su, “Synthesis and Antitumoral Activity of Vitro of New Ferrocene–Chloroquine Analogues,” *Dalton Transactions* (2003): 3046–51; M. A. Khan, and J. F. da Rocha, “Pyrrolquinolines I. 1H-Pyrro[2,3-b]Quinolines,” *Heterocycles* 6, no. 8 (1977): 1229–46; F. He, B. M. Foxman, and B. B. Snider, “Total Syntheses of (–)-Asperlicin and (–)-Asperlicin C,” *Journal of the American Chemical Society* 120, no. 25 (1998): 6417–18; C.-W. Jao, W.-C. Lin, Y.-T. Wu, and P.-L. Wu, “Isolation, Structure Elucidation, and Synthesis of Cytotoxic Tryptanthrin Analogues from *Phaius mistumshinum*,” *Journal of Natural Products* 71, no. 7 (2008): 1275–79; A. Servais, M. Azzouz, D. Lopes, C. Courillon, and M. Malacrida, “Radical Cyclization of N-Acylcyanamides: Total Synthesis of Luotonin A,” *Angewandte Chemie International Edition* 46, no. 4 (2007): 576–79; J. Zhou, and J. Fang, “One-Pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers,” *The Journal of Organic Chemistry* 76, no. 19 (2011): 7730–36; M. A. McGowan, C. Z. McAvoy, and S. L. Buchwald, “Palladium-Catalyzed N-Monoarylation of Amidines and a One-Pot Synthesis of Quinazoline Derivatives” *Organic Letters* 14, no. 12 (2012): 3800–3.

7. Y. Xia, Z. Y. Yang, M. J. Hour, S. C. Kuo, P. Xia, K. F. Bastow, Y. Nakamishi, P. Nampoothiri, T. Hackl, E. Hamel, and K. H. Lee, “Antitumor Agents. Part 204: I Synthesis and Biological Evaluation of Substituted 2-Aryl Quinazolinones,” *Bioorganic & Medicinal Chemistry Letters* 11, no. 9 (2001): 1193–6; S.-L. Cao, Y.-P. Feng, Y.-Y. Jiang, S.-Y. Liu, G.-Y. Ding, and R.-T. Li, “Synthesis and in Vitro Antitumor Activity of 4 (3H)-Quinazolinone Derivatives with Dithiocarbamate Side Chains,” *Bioorganic & Medicinal Chemistry Letters* 15, no. 7 (2005): 1915–17; M. Atanasova, S. Ilieva, and B. Galabov, “QSAR Analysis of 1,4-Dihydropyrido-4-Oxol-1-(2-Thiazoyl)-1,8-Naphthyridines with Anticancer Activity,” *European Journal of Medicinal Chemistry* 42, no. 9 (2007): 1184–92.

8. J. F. Wolfe, T. L. Rathman, M. C. Sleevi, J. A. Campbell, and T. D. Greenwood, “Synthesis and Anticonvulsant Activity of Some New 2-Substituted 3-Aryl-(4(3H)-Quinazolinones,” *Journal of Medicinal Chemistry* 33, no. 1 (1990): 161–66; S. Malik, R. S. Bahare, and S. A. Khan, “Design, Synthesis and Anticonvulsant Evaluation of N-(Benzo[d][thiazol-2-yl]carbamoyl)-2-Methyl-4-Oxoquinazoline-3(4H)-Carbothioamido Derivatives: a Hybrid Pharmacophore Approach,” *European Journal of Medicinal Chemistry* 63 (2013): 1–13.

9. O. Y. K. Goto, and T. Oe, PCT Int. Appl. WO 8401711, A1, 1984; V. Alagarsamy, and U. S. Pathak, “Synthesis and Anthihypertensive Activity of Novel 3-Benzyl-2-Substituted-3H-[1,2,4]Triazolo[5,1-b]Quinazolin-9-ones,” Bioorganic & Medicinal Chemistry 15, no. 10 (2007): 3457–62.

10. P. M. S. Chauhan, and S. K. Srivastava, “Present Trends and Future Strategy in Chemotherapy of Malaria,” *Current Medicinal Chemistry* 8, no. 13 (2001): 1535–42; Z. Wang, M. Wang, X. Yao, Y. Li, J. Tan, L. Wang, W. Qiao, Y. Geng, Y. Liu, and Q. Wang, “Design, Synthesis and Antiviral Activity of Novel Quinazolinones,” *European Journal of Medicinal Chemistry* 53, (2012): 275–82.

11. Y.-L. Chen, K.-C. Fang, J.-Y. Sheu, S.-L. Hsu, and C.-C. Tseng, “Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives,” *Journal of Medicinal Chemistry* 44, no. 14 (2001): 2374–77; P. Selvam, K. Girija, G. Nagaranjan, and E. De Clercq, “Synthesis, Antibacterial and AntiHIV Activities of 3-(5-Amino-6-(2-3-Dichloro-Phenyl)-(1,2,4)Triazin-3-yl)-6,8-Dibromo-2-Substituted-3H-Quinazolin-4-One,” *Indian Journal of Pharmacological Sciences* 67, no. 4 (2005): 484–87.

12. K. S. Kumar, P. M. Kumar, K. A. Kumar, M. Sreenivasulu, A. A. Jafar, D. Rambabu, G. R. Krishna, C. M. Reddy, R. Kapavarapu, K. Shivakumar, et al. “A New Three-Component Reaction: Green Synthesis of Novel Isoindolo[2,1-a]Quinolin Derivatives as Potent Inhibitors of TNF-a,” *Chemical Communications* 47, no. 17 (2011): 5012–3.

13. R. Qiao, L. Ye, K. Hu, S. Yu, W. Yang, M. Liu, J. Chen, J. Ding, and H. Wu, “Copper-Catalyzed C–O Bond Cleavage and Cyclization: Synthesis of Indazole[3,2-b]Quinolinones,” *Organic & Biomolecular Chemistry* 15, no. 10 (2017): 2168–73; M. Liu, M. Shu, C. Yao, G. Yin, D. Wang, and J. Huang, “Synthesis of PyridoFused Quinazolinone Derivatives via Copper-Catalyzed Domino Reaction,” *Organic Letters* 18, no. 4 (2016): 824–27; F.-C. Jia, Z.-W. Zhou, C. Xu, Y.-D. Wu, and A.-X. Wu, “Divergent Synthesis of Quinazolin-4(3H)-One and Tryptanthrins Enabled by a tert-Butyl Hydroperoxide/K3PO4-Promoted Oxidative Cyclization of Isatin at Room Temperature,” *Organic Letters* 18, no. 12 (2016): 2942–45; P. K. Gupta, N. Yadav, S. Jaiswal, M. Asad, R. Kant, and K. Hajela, “Palladium-Catalyzed Synthesis of Phenanthridine/Benzoxazine-Fused Quinazolinones by Intramolecular C–H Bond Activation,” *Chemistry – A European Journal* 21, no. 38 (2015): 13210–15; J. Sun, Q. Tan, W. Yang, B. Liu, and B. Xu, “Copper-Catalyzed Aerobic Oxidative
Annulation and Carbon-Carbon Bond Cleavage of Arylacetamides: Domino Synthesis of Fused Quinazolinones,” *Advanced Synthesis & Catalysis* 356, no. 2–3 (2014): 388–94; W. Yang, L. Ye, D. Huang, M. Liu, J. Ding, J. Chen, and H. Wu, “Copper-Catalyzed Intramolecular C–N Bond Formation Reaction of 3-Amino-2-(2-Bromophenyl)Dihydroquinazolinones: Synthesis of Indazolo [3, 2-b] Quinazolinones,” *Tetrahedron* 69, no. 46 (2013): 9852–6; I. Boullon, and V. Krchnák, "Efficient Solid-Phase Synthesis of 3-Substituted-5-Oxo-5H-Thiazolo[2,3-b]Quinazline-8-Carbamides under Mild Conditions with Two Diversity Positions,” *Journal of Combinatorial Chemistry* 9, no. 06 (2007): 912–15; D. J. Hart, and N. A. Magomedov, “Synthesis of ent-Alantrypinone,” *Journal of the American Chemical Society* 125, no. 25 (2001): 5892–9.

14. A. D. Sonawane, Y. B. Shaikh, R. D. Garud, and M. Koketsu, “Synthesis of Isoquinoline-Fused Quinazolines through Ag (I)-Catalyzed Cascade Annulation of 2-Aminobenzanilides and 2-Alkynylbenzaldehydes,” *Synthesis* 51, no. 02 (2019): 500–7; L.-S. Wei, G.-X. He, X.-F. Kong, C.-X. Pan, D.-L. Mo, and G.-F. Su, “Gold (III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused Quinoline Scaffolds,” *The Journal of Organic Chemistry* 83, no. 12 (2018): 6719–27; S. Guo, J. Zhai, F. Wang, and X. Fan, “One-Pot Three-Component Selective Synthesis of Isoindolo[2, 1-a]Quinazoline Derivatives via a Palladium-Catalyzed Cascade Cyclocondensation/Cyclocarbonylation Sequence,” *Organic & Biomolecular Chemistry* 15, no. 17 (2017): 3674–80; H. Xu, and H. Fu, “Copper-Catalyzed One-Pot Synthesis of Imidazo/Benzimidazoquinazoliones by Sequential Ullmann-Type Coupling and Intramolecular C–H Amidation,” *Chemistry – A European Journal* 18, no. 4 (2012): 1180–6.

15. M. J. H. Worthington, R. L. Kucera, and J. M. Chalker, “Green Chemistry and Polymers Made from Sulfur,” *Green Chemistry* 19, no. 12 (2017): 2748–61; A. Mishra, C.-Q. Ma, and P. Bäuerle, “Functional Oligothiophenes: Molecular Design for Multidimensional Nanarchitectures and Their Applications,” *Chemical Reviews* 109, no. 3 (2009): 1141–76; W. Jiang, Y. Li, and Z. Wang, “Heteroarenes as High Performance Organic Semiconductors,” *Chemical Society Reviews* 42, no. 14 (2013): 6113–27.

16. M. Feng, B. Tang, S. H. Liang, and X. Jiang, “Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry,” *Current Topics in Medicinal Chemistry* 16, no. 11 (2016): 1200–16; R. Suhas, S. Chandrashker, and D. C. Gowda, “Synthesis of Uriedo and Thiouriedo Derivatives of Peptide Conjugated Heterocycles – A New Class of Promising Antimicrobials,” *European Journal of Medicinal Chemistry* 48 (2012): 179–91; A. Halama, J. Jarrah, O. Bouskova, P. Gibala, and K. Jarrah, “Improved Process for the Preparation of Montelukast: Development of an Efficient Synthesis, Identification of Critical Impurities and Degradants,” *Organic Process Research & Development* 14, no. 2 (2010): 425–31; S.-T. Huang, I.-J. Hsei, and C. Chen, “Synthesis and Anticancer Evaluation of Bis(Benzimidazoles), Bis(Benzoxazoles), and Benzothiazoles,” *Bioorganic & Medicinal Chemistry* 14, no. 17 (2006): 6106–19.

17. T. B. Nguyen, “Recent Advances in Organic Reactions Involving Elemental Sulfur,” *Advanced Synthesis & Catalysis* 359, no. 7 (2017): 1066–130; K. C. Nicolaou, C. R. H. Hale, C. Nilewski, and H. A. Ioannidou, “Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance,” *Chemical Society Reviews* 41, no. 15 (2012): 5185–38.

18. M. Aoyagi, T. Kamoi, M. Kato, H. Sasako, N. Tsuge, and S. Imai, “Functional Oligothiophenes: Molecular Design for Multidimensional Nanarchitectures and Their Applications,” *Chemical Reviews* 109, no. 3 (2009): 1141–76; W. Jiang, Y. Li, and Z. Wang, “Heteroarenes as High Performance Organic Semiconductors,” *Chemical Society Reviews* 42, no. 14 (2013): 6113–27.

19. M. Koketsu, K. Tanaka, Y. Takenaka, C. D. Kwong, and H. Ishihara, “Synthesis of 1,3-Thiazine Derivatives and Their Evaluation as Potential Antimycobacterial Agents,” *European Journal of Pharmaceutical Sciences* 15, no. 3 (2002): 307–10.

20. G. Dumonteil, M.-A. Hiebel, M.-C. Scherrmann, and S. Berteina-Raboin, “Iodine-Catalyzed Formation of Substituted 2-Aminobenzothiazole Derivatives in PEG 400,” *RSC Advances* 6, no. 77 (2016): 73517–21.
25. T. Vlaar, R. C. Cioc, P. Mampuys, B. U. W. Maes, R. V. A. Orru, and E. Ruijter, “Sustainable Synthesis of Diverse Privileged Heterocycles by Palladium-Catalyzed Aerobic Oxidative Isocyanide Insertion,” Angewandte Chemie International Edition 51, no. 52 (2012): 13058–61; T.-H. Zhu, X.-P. Xu, J.-J. Cao, T.-Q. Wei, S.-Y. Wang, and S.-J. Ji, “Cobalt (II)-Catalyzed Isocyanide Insertion Reaction with Amines under Ultrasonic Conditions: A Divergent Synthesis of Ureas, Thioureas and Azaheterocycles,” Advanced Synthesis & Catalysis 356, no. 2–3 (2014): 509–18; T.-H. Zhu, S.-Y. Wang, G.-N. Wang, and S.-J. Ji, “Cobalt-Catalyzed Oxidative Isocyanide Insertion to Amine-Based Bisnucleophiles: Diverse Synthesis of Substituted 2-Aminobenzimidazoles, 2-Aminobenzothiazoles, and 2-Aminobenzoxazoles,” Chemistry – A European Journal 19, no. 19 (2013): 5850–3; G.-N. Wang, T.-H. Zhu, S.-Y. Wang, T.-Q. Wei, S.-J. Ji, “NiCl2-Catalyzed Cascade Reaction of Isocyanides with Functionalized Anilines,” Tetrahedron 70, no. 43 (2014): 8079–83; V. N. Bochatay, P. J. Boissarie, J. A. Murphy, C. J. Suckling, and S. Lang, “Mechanistic Exploration of the Palladium-Catalyzed Process for the Synthesis of Benzoxazoles and Benzothiazoles,” The Journal of Organic Chemistry 78, no. 4 (2013): 1471–7.

26. P. Salehi, and M. Shiri, “Palladium-Catalyzed Highly Regioselective Synthesis of 3-(Hetero)Arylpropynamides from Gem-Dibromoalkenes and Isocyanides,” Advanced Synthesis & Catalysis 361, no. 1 (2019): 118–25; M. Shiri, M. Ranjbar, Z. Yasaei, F. Zamanian, and B. Notash, “Palladium-Catalyzed Tandem Reaction of 2-Chloroquinoline-3-Carbaldehydes and Isocyanides,” Organic & Biomolecular Chemistry 15, no. 47 (2017): 10073–81; M. Shiri, Z. Faghihi, H. A. Oskouei, M. M. Heravi, S. Fazelzadeh, and B. Notash, “The Synthesis of Iminothiophenone-Fused Quinolines and Evaluation of Their Serendipitous Reactions,” RSC Advances 6, no. 95 (2016): 92235–40; M. Shiri, B. Farajpour, Z. Bozorgpour-Savadjani, S. A. Shintre, N. A. Koobtanally, H. G. Kruger, and B. Notash, “Transition-Metal Free Highly Selective Aerobic Oxidation of Hindered 2-Alkylindoles,” Tetrahedron 71, no. 34 (2015): 5531–7; M. Shiri, S. Z. Mirpour-Marzoni, Z. Bozorgpour-Savadjani, B. Soleymanifard, and H. G. Kruger, “Base-Catalyzed Cyclization of Ugi-Adducts to Substituted Indolyl Based γ-Lactams,” Monatshefte für Chemie-Chemical Monthly 145, no. 12 (2014): 1947–52.

27. Q. Chen, X. Wang, C. Wen, Y. Huang, X. Yan, and J. Zeng, “Cs2CO3-Promoted Cross-Dehydrogenative Coupling of Thiophenols with Active Methylene Compounds,” RSC Advances 7, no. 63 (2017): 39758–61.