Surgical Options for Localized Renal Cell Carcinoma, A Retrospective Clinical Study Based on Tumor Size

Jianyue Li
Jiangsu Province Academy of Traditional Chinese Medicine

Xiang Li
kunshan shi zhong yi yi yuan: Traditional Chinese Medicine Hospital of Kunshan

Ziyu Jiang
Jiangsu Province Academy of Traditional Chinese Medicine

Canhong Hu
Jiangsu Province Academy of Traditional Chinese Medicine

Jingbing Liu
Jiangsu Province Academy of Traditional Chinese Medicine

Baorui Liu (✉ baoruiliu@nju.edu.cn)
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Jiege Huo
Jiangsu Province Academy of Traditional Chinese Medicine

Research

Keywords: Renal cell carcinoma, Radical nephrectomy, Nephron sparing surgery, Tumor size

DOI: https://doi.org/10.21203/rs.3.rs-689103/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose

Although many studies have explored the options of radical nephrectomy (RN) and nephron sparing surgery (NSS) for localized renal cell carcinoma (RCC), the answer to this question remains unclear. This study aims to compare the long-term prognostic differences between RN and NSS among different sizes of localized RCC.

Methods

This study retrospectively included 80,439 T1-T4 N0 M0 patients who underwent RN or NSS based on the Surveillance, Epidemiology, and End Results database. We calculated the 10-year overall survival (OS) and cancer specific survival of patients with RCC. We also evaluated the risk of cardiovascular death in patients using competing risk models for RN and NSS.

Results

Our analysis showed that patients who underwent NSS had a more prolonged OS of 5 and 10 years when the tumor size was less than 8.5cm and 7.2cm. Compared to RN, NSS does not appear to improve OS in large (> 7.2cm) RCC patients. And stratified analysis showed that NSS for RCC less than 9.2cm may be more likely to benefit from long-term OS in younger patients (<60 years), while RCC above 7.3cm may be more suitable for RN in older patients (>=60 years). The gender-stratified results suggested male and female patients may be more suitable for NSS for RCC below 6.4 and 7.7cm, respectively. Besides, competing risk models showed patients receiving RN have higher cumulative cardiovascular mortality.

Conclusions

For large RCC, NSS may be very carefully selected unless there are clear indications such as isolated congenital kidney and bilateral kidney cancer.

Introduction

Renal cell carcinoma (RCC) is one of the most common malignant tumors of the urinary system. As health screenings become more widespread, rising numbers of patients with RCC are found by abdominal imaging. Until now, surgery is still the first choice for patients with localized RCC without definite metastases. There are two main types of surgical approaches for RCC: radical nephrectomy (RN) and nephron sparing surgery (NSS). Due to new technologies such as segmental renal artery clamping(1,2) and the da Vinci robot and better preservation of renal function, NSS has been increasingly used in RCC treatment. To date, NSS has become standard therapy for patients with T1a RCC(3). However, it is still unclear which operation is preferred for T1b and T2 N0M0 kidney cancer(4).
Many studies have reported that NSS is more protective of renal function and reduces adverse cardiovascular events in patients relative to RN(5-7). And no differences were found between NSS and RN for tumor control(8-10). On the other hand, studies have shown that patients who received NSS were more likely to have a recurrent tumor(11), and more postoperative complications(12). However, most of these were retrospective studies with limited samples, and the only prospective randomized controlled trial study included only patients with RCC whose tumor size was less than 5 cm. Also, the current research only subclassified patients according to the stage, age, and so on. The choice of surgery for patients with different tumor sizes is still not reported. In kidney cancer, an increase in tumor size is related with an increased risk of malignancy(13-15). The selection of tumor size-based adjunctive surgical options may provide a new way of thinking for urologists.

In this study, we retrospectively analyzed the three-, five-, and ten-year overall survival (OS) of patients with different RCC sizes who underwent RN or NSS, based on the Surveillance, Epidemiology, and End Results (SEER) database. Furthermore, this study's findings may provide some guidance and assistance to urologists in selecting surgical approaches.

Materials And Methods

Patients selection

We employed the SEER*stat version 8.3.8 to screen RCC patients who received RN or NSS from 18 SEER registries across the United States. The ICD-O-3 site code: C64.9, kidney, renal pelvis, and ureter surgery code: NSS (Code 30) or RN (Code 40 and 50) were used to search for eligible patients for inclusion. Patients were excluded if they meet the following exclusion criteria: 1. unknown survival time, survival status and cause of death. 2. unknown TNM stage information and tumor size. 3. bilateral RCC, multiple primary carcinomas and RCC that has developed lymphatic or distant metastases. Finally, we enrolled 51,027 patients who received RN and 29,412 patients received NSS from 2004 to 2017. And the information of demographic characteristics and tumor statistics were also recorded, including age at diagnosis, race, Fuhrman grade and gender. OS was calculated from the date of diagnosis until death from any cause or until 2017. Patients diagnosed before 2010 were staged using the 6th edition of the TNM staging system, and patients diagnosed after 2010 were staged using the 7th edition of the TNM staging system.

Statistical analysis

Categorical variables are described using frequencies and ratios, and the Chi-square test was used to test for differences between the categorical variables. Fisher’s Exact Test was used when the data do not meet the conditions for using the chi-square test. The R software "survival" package was used to calculate 5 and 10-year OS for patients with different tumor sizes who received RN and NSS, respectively. Scatter plots of survival for different tumor sizes were fitted to curves using the logistic regression. Cumulative incidence function was used to assess tumor- and cardiovascular-specific mortality in
patients undergoing RN or NSS. And Gray's test was used to examine whether there was a difference in cumulative mortality between patients undergoing RN and NSS. A two-sided P value of less than 0.05 was considered statistically significant.
Variables	RN	NSS	P-value
Cases evaluated	51,027 (100)	29,412 (100)	<0.0001
Age at diagnosis			
< 50	1,0052 (19.7%)	7,827 (26.6%)	
50-59	1,3832 (27.1%)	8,380 (28.5%)	
60-69	1,4667 (28.7%)	8,481 (28.8%)	
70-79	9,307 (18.2%)	3,965 (13.5%)	
>=80	3,169 (6.2%)	759 (2.6%)	
Sex			0.156
Male	31,552 (61.8%)	18,038 (61.3%)	
Female	19,475 (38.2%)	11,374 (38.7%)	
Race			0.007
White	41,729 (81.8%)	23,879 (81.2%)	
Black	5,592 (10.9%)	3,220 (10.9%)	
Other and unknown	3,706 (7.3%)	2,313 (7.9%)	
Laterality			0.001
Left	25,122 (49.2%)	14,137 (48.1%)	
Right	25,905 (50.8%)	15,275 (51.9%)	
Grade			<0.0001
1	4,603 (9.0%)	4,134 (14.0%)	
2	22,715 (44.5%)	15,125 (51.4%)	
3	13,954 (27.3%)	5,601 (19.0%)	
4	3,386 (6.6%)	455 (1.5%)	
Unknown	6,369 (12.5%)	4,096 (13.9%)	
AJCC T stage			<0.0001
T1	29,842 (58.5%)	27,282 (92.7%)	
T2	8,593 (16.8%)	562 (1.9%)	
Tumor size	RN: radical nephrectomy; NSS: nephron sparing surgery.		
-----------	---		
T3	12,244 (24.0%)		
T4	1,554 (5.3%)		
Tumor size	<0.0001		
0.1-4.9	21,450 (42.0%)		
5.0-9.9	23,181 (45.4%)		
10.0-14.9	5,360 (10.5%)		
15.0-20.0	1,036 (2.0%)		

Results

Patient characteristics

A total of 80,439 RCC patients were enrolled in the study, 51,027 (63.4%) of whom received RN and 29,412 (36.6%) of whom received NSS (Table 1). Patients receiving NSS were younger compared to the RN group (P<0.001). And no difference in gender between patients receiving RN or NSS (P=0.156). As expected, patients who undergo RN surgery have larger tumors (P<0.0001) and higher T staging (P<0.0001). In addition, patients who underwent RN had tumors with a higher Fuhrman grade (P<0.0001).

Impact of surgery type on survival

We grouped patients according to maximum tumor diameter, ranging from 0.1cm to 15cm, and calculated 5 and 10-year OS for different tumor sizes. As shown in figure 1A, with increasing tumor size, the 5-year OS of the patient decreases. When tumor size is less than 8.5 cm, 5-year OS of NSS patients is better than that of patients receiving RN. When the tumor size is more significant than 8.5cm, RN was superior. However, the maximum tumor diameter of 7.2cm is the cutoff for RN and NSS from the perspective of 10-year overall survival (Fig 1B).

Gender and age stratified analysis

We stratified by gender and age to further analyze the prognostic differences between the two surgical approaches. Interestingly, in almost all subgroups, the five-year OS was slightly higher for patients with NSS than for those in the RN group (Fig 2A-2C). Except in elderly patients (>=60 years), NSS patients have a superior five-year OS in kidney cancers smaller than 7.2 cm (Fig 2D). While two surgical subgroups of male, female, young and old patients showed differences in 10-year OS when tumors reached 6.4cm, 7.7cm, 7.3cm and 9.2cm in size (Fig 2E- 2H), respectively.

Effect of type of surgery on cardiovascular mortality
Due to the fact that the chronic renal insufficiency increases the risk of cardiovascular events in patients, we further compared the risk of cardiovascular death in patients with the two surgical approaches. As shown in Fig3, cumulative cardiovascular mortality was higher in patients receiving RN than in those receiving NSS in both young and elderly patients. And the risk of cardiovascular death after kidney cancer surgery is both significantly higher in older patients than in younger patients.

Discussion

The choice of RCC surgical procedure requires a balance between the tumor's location and size, the patient's health status, and many other factors. In this study, we provided a new way of determining the surgical approach in tumor size. In general, we found that as tumor size increased, the patients' long-term OS decreased progressively, regardless of the surgical option. However, when the tumor size was less than 7.2 cm, OS was better in patients who received NSS than those who received RN. And when the tumor size was more extensive than 8.5 cm, patients receiving RN showed an advantage in OS. When the tumor was 7.2 cm to 8.5 cm, there was little difference in OS between the two surgical approaches. Besides, stratified analysis by age and sex suggested that the tumor size cutoff applicable to NSS and RN may be around 6-7 cm. Except for young people, whose tumor size thresholds need to be higher.

More than one study has found similar prognostic effects of RN and NSS surgery in patients with localized large RCC(16-19). And these studies further promote aggressive surgical selection strategies for NSS. However, these studies were limited by sample size or stratified patients into simple categories such as T-stage, elderly patients. Besides, few studies have examined the differences between RN and NSS in T2 RCC. Breau et al.(17) reported that the effect of NSS is similar to that of RN in the management of T2 or larger RCC. However, a 13-center study showed NSS surgery is an independent risk factor for patient's outcome in RCC larger than 7 cm (P = 0.025)(20). Considering the puzzling role of NSS in large RCC, our study retrospectively included 80,439 patients who received either RN or NSS. Patients were stratified according to tumor size from 0.1cm to 20cm.

In our research, we found patients with RCC smaller than 7.6 cm in size could achieve longer OS through NSS. And this means that patients in stage T1b may be more appropriate for NSS. And this finding is consistent with the recommendations of the latest European Association of Urology (EAU) guidelines on RCC. As mentioned above, studies of T2 RCC reached contradictory conclusions, which may be due to differences in the characteristics of each study's patient populations. Notably, a meta-analysis that included four studies specifically comparing RN and NSS of T2 RCC showed that patients receiving NSS had lower tumor-specific mortality and tumor recurrence rates despite increased blood loss and the likelihood of complications(12). This comprehensive study contradicts our conclusions, which may be because they only included a total of 212 NSSs for T2 RCC. And a well-designed randomized controlled trial is necessarily better to define the role of NSS in larger RCC.

Our study still has some unavoidable limitations. Although 80,439 cases were included in this study, the composition of patients receiving RN and NSS differed in terms of age, Fuhrman grade, T-stage, and other
characteristics, leading to biased analysis. Second, due to the limitations of the retrospective study, it is not possible to consider surgical techniques with more detail, such as subdividing the surgical approach into open, laparoscopic and robotic surgery. Third, due to the limitation of data size, we were unable to accurately describe the trend of CSS in RN and NSS patients. Given that patients with postoperative RCC often lose renal function, decreased renal function is strongly associated with increased all-cause mortality and cardiovascular-related mortality (21,22). Thus, patients receiving either RN or NSS will have higher CSS than OS. And this may partially explain the increase in the applicable tumor size range of the NSS in the CSS scatter plot.

Conclusions

Our retrospective study suggests that RN may remain the preferred approach for larger kidney tumors (>8.5 cm), and NSS may be more recommended for kidney tumors <7.2 cm. And a well-designed randomized controlled trial is necessarily better to define the role of NSS in larger RCC. The growth site of the tumor, the surgeon's experience and so forth are all factors that influence the choice of the surgical method, and the specific surgical procedure still requires a comprehensive judgment.

Abbreviations

RCC: Renal cell carcinoma
RN: Radical nephrectomy
NSS: Nephron sparing surgery
OS: overall survival
SEER: Surveillance, Epidemiology, and End Results database
CSS: Cancer-specific survival
EAU: European Association of Urology

Declarations

Funding

Jiangsu Province TCM Leading Talent Training Project. (No.SLJ0211)
Project of National Clinical Research Base of Traditional Chinese Medicine in Jiangsu Province. (No.JD2019SZXYB04)

Competing Interest
The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical Approval and Consent to participate

Ethical approval was not required for this study, because the data used in this study were obtained from the SEER database in a publicly available manner.

Consent for publication

Yes

Availability of supporting data

Not applicable

Author contributions

(I) Conception and design: Jiege Huo, Baorui Liu

(II) Administrative support: Jianyue Li, Xiang Li, Ziyu Jiang

(III) Provision of study materials or patients: Canhong Hu, Jingbing Liu

(IV) Collection and assembly of data: Jianyue Li, Xiang Li, Ziyu Jiang

(V) Data analysis and interpretation: Jianyue Li,

(VI) Manuscript writing: All authors

(VII) Final approval of manuscript: All authors

Acknowledgements

Not applicable

Authors' information

Not applicable

References

1. Shao P, Qin C, Yin C, et al. Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and clinical outcomes. Eur Urol 2011;59:849-55.

2. Shao P, Tang L, Li P, et al. Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy. Eur Urol 2012;62:1001-8.
3. Lee CT, Katz J, Shi W, et al. Surgical management of renal tumors 4 cm. or less in a contemporary cohort. J Urol 2000;163:730-6.

4. Kim SP, Campbell SC, Gill I, et al. Collaborative Review of Risk Benefit Trade-offs Between Partial and Radical Nephrectomy in the Management of Anatomically Complex Renal Masses. Eur Urol 2017;72:64-75.

5. Scosyrev E, Messing EM, Sylvester R, et al. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 2014;65:372-7.

6. Huang WC, Elkin EB, Levey AS, et al. Partial nephrectomy versus radical nephrectomy in patients with small renal tumors–is there a difference in mortality and cardiovascular outcomes? J Urol 2009;181:55-61; discussion -2.

7. Kim SP, Thompson RH, Boorjian SA, et al. Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: a systematic review and meta-analysis. J Urol 2012;188:51-7.

8. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011;59:543-52.

9. Ristau BT, Handorf EA, Cahn DB, et al. Partial nephrectomy is not associated with an overall survival advantage over radical nephrectomy in elderly patients with stage Ib-II renal masses: An analysis of the national cancer data base. Cancer 2018;124:3839-48.

10. Chung JS, Son NH, Lee SE, et al. Overall survival and renal function after partial and radical nephrectomy among older patients with localised renal cell carcinoma: a propensity-matched multicentre study. Eur J Cancer 2015;51:489-97.

11. Shah PH, Moreira DM, Patel VR, et al. Partial Nephrectomy is Associated with Higher Risk of Relapse Compared with Radical Nephrectomy for Clinical Stage T1 Renal Cell Carcinoma Pathologically Up Staged to T3a. J Urol 2017;198:289-96.

12. Mir MC, Derweesh I, Porsiglia F, et al. Partial Nephrectomy Versus Radical Nephrectomy for Clinical Stage T1b and T2 Renal Tumors: A Systematic Review and Meta-analysis of Comparative Studies. Eur Urol 2017;71:606-17.

13. Pierorazio PM, Patel HD, Johnson MH, et al. Distinguishing malignant and benign renal masses with composite models and nomograms: A systematic review and meta-analysis of clinically localized renal masses suspicious for malignancy. Cancer 2016;122:3267-76.

14. Frank I, Blute ML, Cheville JC, et al. Solid renal tumors: an analysis of pathological features related to tumor size. J Urol 2003;170:2217-20.
15. Thompson RH, Kurta JM, Kaag M, et al. Tumor size is associated with malignant potential in renal cell carcinoma cases. J Urol 2009;181:2033-6.

16. Becker F, Siemer S, Hack M, et al. Excellent long-term cancer control with elective nephron-sparing surgery for selected renal cell carcinomas measuring more than 4 cm. Eur Urol 2006;49:1058-63; discussion 63-4.

17. Breau RH, Crispen PL, Jimenez RE, et al. Outcome of stage T2 or greater renal cell cancer treated with partial nephrectomy. J Urol 2010;183:903-8.

18. Kopp RP, Mehrazin R, Palazzi KL, et al. Survival outcomes after radical and partial nephrectomy for clinical T2 renal tumours categorised by R.E.N.A.L. nephrometry score. BJU Int 2014;114:708-18.

19. An JY, Ball MW, Gorin MA, et al. Partial vs Radical Nephrectomy for T1-T2 Renal Masses in the Elderly: Comparison of Complications, Renal Function, and Oncologic Outcomes. Urology 2017;100:151-7.

20. Jeldres C, Patard JJ, Capitanio U, et al. Partial versus radical nephrectomy in patients with adverse clinical or pathologic characteristics. Urology 2009;73:1300-5.

21. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-305.

22. Weight CJ, Larson BT, Fergany AF, et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol 2010;183:1317-23.

Figures
Figure 1

The five- and ten-year overall survival scatter plot for different tumor sizes. Figure 1A: The five-year overall survival scatter plot for different tumor sizes. Figure 1B: The ten-year overall survival scatter plot for different tumor sizes. The blue line is the scatter plot fitting curve for patients receiving RN, and the red line is the scatter plot fitting curve for patients receiving NSS. RN: radical nephrectomy, NSS: nephron sparing surgery.
Figure 2

The five- and ten-year overall survival scatter plot for different tumor sizes by gender and age stratified analysis. Figure 2A-2D: The five-year overall survival scatter plot for different tumor sizes of male, female, young and old patients. Figure 2E-2H: The ten-year overall survival scatter plot for different tumor sizes of male, female, young and old patients. The blue line is the scatter plot fitting curve for patients receiving RN, and the red line is the scatter plot fitting curve for patients receiving NSS. RN: radical nephrectomy, NSS: nephron sparing surgery.

Figure 3
The Cumulative risk of cardiovascular death. The cumulative risk of cardiovascular death of young and old patients receiving RN or NSS. RN: radical nephrectomy, NSS: nephron sparing surgery.