The cell cycle regulatory gene polymorphisms \textit{TP53} (rs1042522) and \textit{MDM2} (rs2279744) in lung cancer: a meta-analysis

O. Bulgakova, A. Kussainova, R. Bersimbaev

L.N. Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan

Abstract. Lung cancer is one of the most common types of cancer in the world. Although the mechanism of lung cancer is still unknown, a large number of studies have found a link between gene polymorphisms and the risk of lung cancer. The tumor suppressor p53 plays a crucial role in maintaining genomic stability and tumor prevention. MDM2 is a critical regulator of the p53 protein. Despite the importance of p53 pathway in cancer, data on the contribution of SNPs of \textit{TP53} (rs1042522) and \textit{MDM2} (rs2279744) to the development of lung cancer are very contradictory. A meta-analysis that collects quantitative data from individual studies and combines their results has the advantage of improving accuracy, providing reliable estimates, and resolving those issues in which studies on individual associations are not effective enough. The aim of this study was to determine whether the \textit{TP53} (rs1042522) and \textit{MDM2} (rs2279744) polymorphisms confer susceptibility to lung cancer. A meta-analysis was conducted on the associations between the \textit{TP53} (rs1042522) and \textit{MDM2} (rs2279744) polymorphisms and lung cancer. A total of 51 comparison studies including 25,366 patients and 25,239 controls were considered in this meta-analysis. The meta-analysis showed no association between lung cancer and \textit{MDM2} (rs2279744) under any model. A noteworthy association of \textit{TP53} (rs1042522) with susceptibility to lung cancer in overall pooled subjects was observed under three different models (allele contrast, homozygote contrast (additive) and dominant). Stratification by ethnicity indicated an association between the \textit{TP53} (rs1042522) and lung cancer in Asians and Caucasians. This meta-analysis demonstrates that the \textit{TP53} (rs1042522), but not \textit{MDM2} (rs2279744) polymorphism may conferr susceptibility to lung cancer.

Key words: \textit{TP53} (rs1042522) and \textit{MDM2} (rs2279744) gene polymorphism; lung cancer; meta-analysis.

For citation: Bulgakova O., Kussainova A., Bersimbaev R. The cell cycle regulatory gene polymorphisms \textit{TP53} (rs1042522) and \textit{MDM2} (rs2279744) in lung cancer: a meta-analysis. Vavilovskii Zhurnal Genetiki i Selektcii = Vavilov Journal of Genetics and Breeding. 2020;24(7):777-784. DOI 10.18699/VJ20.673

Polimorfizmy genov TP53 (rs1042522) и MDM2 (rs2279744) v rake legkogo: metaanaliz

O. Bulagakova, A. Kusainova, R. Bersinbaev

Евразийский национальный университет им. Л.Н. Гумилева, Институт клеточной биологии и биотехнологии, Нур-Султан, Казахстан

Аннотация. Рак легкого – один из наиболее распространенных видов рака в мире. Хотя механизм возникновения заболевания по-прежнему остается в значительной степени неизвестным, благодаря многочисленным исследованиям была выявлена связь между полиморфизмами генов и риском развития рака легкого. Решающую роль в поддержании стабильности генома и профилактике опухолей играет онкосупрессор p53. Ключевым регулятором белка p53 является MDM2. Несмотря на важность p53 сигнального пути в канцерогенезе, данные о вкладе SNP TP53 (rs1042522) и MDM2 (rs2279744) в развитие рака легкого очень противоречивы. Метаанализ, собирающий количественные данные из отдельных исследований и объединяющий их результаты, имеет преимущество, которое заключается в повышении точности, предоставлении надежных оценок и решении тех вопросов, когда исследование отдельных ассоциаций недостаточно эффективно. Целью нашей работы было изучение роли полиморфизмов TP53 (rs1042522) и MDM2 (rs2279744) в формировании предрасположенности к раку легкого. Проведен метаанализ ассоциации полиморфизмов TP53 (rs1042522) и MDM2 (rs2279744) в раке легкого. В общей сложности рассмотрено 51 исследование типа «случай–контроль», включающее 25 366 пациентов с раком легкого и 25 239 здоровых индивидуумов. Результаты метаанализа показали отсутствие связи между раком легкого и MDM2 (rs2279744) в всех моделях. Примечательно, что ассоциация TP53 (rs1042522) с предрасположенностью к раку легкого наблюдалась в трех разных моделях (мультитипликативная, аддитивная и доминантная). Стратификация по этническому признаку также указывает на связь между TP53 (rs1042522) и риском развития рака легкого как в азиатской, так и в европейской популяции. Проведенный метаанализ позволяет сделать вывод, что полиморфизм TP53 (rs1042522), но не MDM2 (rs2279744), может обусловливать предрасположенность к раку легкого.

Ключевые слова: полиморфизм генов TP53 (rs1042522) и MDM2 (rs2279744); рак легкого; метаанализ.
Introduction

Lung cancer remains one of the most common forms of cancer in the world. Every year World Health Organization (WHO) includes lung cancer in the lists of the leading cause of death worldwide. Thus, there were 2.1 million cases of lung cancer and 1.8 million deaths in 2018 (https://www.who.int/tu/news-room/fact-sheets/detail/the-top-10-causes-of-death). Cancer incidence rate varies in different regions of our planet, so the highest incidence of lung cancer is observed in Eastern Europe and Central and East Asia (Bray et al., 2018).

A large number of researches have been conducted to study the molecular base of lung cancer. One of the risk factors for the development of pulmonary neoplasms is genes polymorphisms. The main cause of carcinogenesis is disorders in the regulation of cell cycle control. The tumor suppressor gene TP53 plays an important role in regulating the cell cycle. p53 protein is known as the “guardian of the genome”. p53 regulates many genes expression in response to cellular stress induced by various adverse environmental factors (Haronikova et al., 2019). This protein plays a key role in processes such as DNA repair, cell cycle arrest, apoptosis and senescence (Nicolai et al., 2015). MDM2 is a key regulator of p53 protein activity and degradation. Polymorphic variants of the TP53 and MDM2 genes have been found in various types of cancer, including lung cancer. Analysis of the literature data showed that polymorphisms of the TP53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) genes cause an increased predisposition to tumor development. The TP53 (rs1042522) gene polymorphism is localized on chromosome 17 position 20186880 position on chromosome 12 Genotype frequency in the Caucasian population: GG: 0.30, CC: 0.49, GC: 0.21. In the East Asian population: GG: 0.200, GT: 0.483. In the European population: TT: 0.200, GG: 0.276, GC: 0.524 (http://www.ensembl.org/).

Meta-analyses have shown that the TP53 Arg72Pro polymorphic allele is associated with the development of stomach cancer (Xiang et al., 2012), bladder (Xu et al., 2012), colorectal cancer (Tian et al., 2017) and acute lymphocytic leukemia (Tian et al., 2016). However, no association was found between TP53 Arg72Pro and the risk of acute myeloid leukemia (Tian et al., 2016), oral squamous cell carcinoma (Sun et al., 2018), and esophage cancer (Jiang et al., 2011).

The polymorphic allele of the MDM2 gene rs2279744 is located at 68808800 position on chromosome 12 Genotype frequency in the Caucasian population TT: 0.404, GG: 0.113, GT: 0.483. In the East Asian population TT: 0.300, GG: 0.276, GT: 0.524 (http://www.ensembl.org/). The MDM2 SNP309 polymorphism was also found to increase the risk of colorectal cancer (Qin et al., 2013), breast cancer (Cheng et al., 2012) and liver cancer (Tang et al., 2014). But there was no association with prostate, urinary tract (Ding et al., 2016) and stomach (Ma et al., 2013).

Many population studies have been conducted on the influence of the mutant alleles TP53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) on the predisposition to the development of pulmonary neoplasia. It was shown that the polymorphism of the TP53 Arg72Pro gene is associated with a high risk of small cell lung cancer among Spaniards (Fernández-Rubio et al., 2008). Similar data were found for non-small cell lung cancer in Norwegians (Lind et al., 2007) and Poles (Szymanowska et al., 2006), squamous cell lung cancer in German residents (Popanda et al., 2007), and lung adenoscarcinoma in the Chinese population (Zhang X. et al., 2006; Ren et al., 2013).

Data on the contribution of MDM2 SNP309 to the development of lung cancer are very contradictory. Most studies have shown an association of the MDM2 (rs2279744) mutant allele with a high risk of lung tissue carcinogenesis (Enokida et al., 2014; Wang X. et al., 2015; Li, 2017). However, Pine et al. (2006) did not find that MDM2 SNP309 is associated with lung neoplasia in the European population.

The data on the association of polymorphisms of the TP53 genes Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) with the development of tumors as a whole are very contradictory. Therefore, it would be interesting to perform a meta-analysis on the association of TP53 Arg72Pro (rs1042522) and MDM2 SNP309 (rs2279744) with a risk of developing lung cancer in Asian and European populations.

Materials and methods

Search strategy. Search for relevant studies was conducted using online databases, such as Scopus, PubMed and Web of Science. The search strategy was performed using a combination of the following keywords: “TP53”, “Murine double minute 2” or “MDM2”, “polymorphism”, “SNP”, “rs1042522”, “rs2279744”, “Arg72Pro”, “codon 72 Arg”, “c.215C > G”, “SNP309”, “c.291T > G” “lung cancer”, “non-small cell lung cancer”, “association”.

Inclusion and exclusion criteria. The eligible inclusion criteria for the meta-analysis were (i) case-control study, (ii) identification of different histological types of lung cancer which was confirmed histologically or pathologically, (iii) having an available genotype for estimating an odds ratio (OR) with 95 % confidence interval (95 % CI), (iv) genotype frequencies in controls were consistent with those expected from Hardy–Weinberg equilibrium (p > 0.05).

The studies were excluded when (i) they were not case-control studies, (ii) with duplicated data from previous articles, (iii) they were not original articles, e. g. review, (iv) inadequate genotype data were available.

Data extraction and quality assessment. Two researchers (O.B. and A.K.) evaluated the eligibility of all retrieved studies and extracted the pertinent data from the specified publications in standardized tables. The extracted data included: (i) the first author name, (ii) publication year, (iii) ethnicity, (iv) lung cancer patients and healthy controls sample size for each studied polymorphism. Disagreement was resolved by consulting with a third investigator (R.B.). The study quality was assessed in accordance with the Newcastle–Ottawa Scale (NOS) (Wells et al., 2009).

Statistical analysis. Hardy–Weinberg equilibrium (HWE) in control population was assessed utilizing the “Calculation of Chi-square test for deviation from Hardy–Weinberg equilibrium” online software (http://www.husdyr.kvl.dk/htm/kc/popgen/genetik/applets/kitest.htm). The statistical analysis was performed using Comprehensive Meta Analysis version 2.2.064 (Biosta, Englewood, NJ, USA). Estimates were summarized as ORs with 95 % CIs for each study. The heterogeneity was evaluated by using the I^2 index. An I^2 value of > 50 % was considered to indicate high heterogeneity (Lee, 2015). The random effects model for analysis was used in case
high heterogeneity (Lee, 2015). Otherwise, the fixed-effects model was used. Publication bias was measured via “Begg’s funnel plot” and “Egger’s linear regression” method (Egger et al., 1997). A two-tailed p-value < 0.05 implied a statistically significant publication bias.

Results

Studies included in the meta-analysis

A total of 531 potential articles were identified from the databases search. After 236 duplicate records were removed, a total of 295 potential articles were reviewed. Amongst these articles, 216 were excluded after titles and abstracts review. Afterwards, we excluded 28 studies for no case-control design. Finally, 51 studies with a total of 25,239 controls and 25,366 cases that met the inclusion criteria were included in this meta-analysis (Suppl. Fig. 1).¹

Characteristics of studies included in this meta-analysis

A total of 37 articles that examined TP53 (rs1042522) association with lung cancer risk were determined. Two of these articles included data of two different sets (TP53 (rs1042522) and MDM2 (rs2279744)) (Zhang X. et al., 2006; Chua et al., 2010) and these sets were examined autonomously. Thus, the identified 37 articles encompassed case-controls studies involving 16,229 lung cancer patients and 14,897 controls (Table 1). Among 37 articles, 20 studies were established in Asian populations and 17 in Caucasian populations. The

¹Supplementary Figures 1–5 are available in the online version of the paper: http://www.bionet.nsc.ru/vogis/download/pict-2020-24/appx13.pdf
The cell cycle regulatory gene polymorphisms TP53 (rs1042522) and MDM2 (rs2279744) in lung cancer: a meta-analysis

Table 2. Characteristics of the studies of MDM2 (rs2279744) polymorphism included in the meta-analysis

First author, year	Lung cancer	Control	Ethnicty	p (HWE)				
	GG	GC	CC	GG	GC	CC		
Hu, 2006	166	373	178	274	538	271	Asian	0.5
Zhang X., 2006	249	561	296	418	711	291		0.54
Jun, 2007	113	280	189	122	299	161		0.47
Chua, 2010	29	65	29	51	83	25		0.58
Kohno, 2011	68	183	126	79	151	95		0.48
Enokida, 2014	153	379	230	152	335	213		0.46
Li, 2017	58	96	32	44	101	51		0.48
Li G., 2006	419	472	135	408	573	164	Caucasian	0.60
Lind, 2006	130	156	55	161	207	44		0.64
Pine, 2006	150	167	54	182	187	52		0.65
Liu G., 2008	702	802	283	530	631	199		0.62
Mittelstrass, 2008	270	293	70	547	598	149		0.65
Zhuo, 2012	419	472	135	408	573	164		0.61
Javid, 2015	20	56	24	40	50	10		0.65

Meta-analysis of the relationship between the MDM2 (rs2279744) polymorphism and lung cancer risk

In this meta-analysis was shown no association MDM2 (rs2279744) polymorphism with lung cancer (G versus T: OR = 0.86, 95 % CI 0.71–1.03, p = 0.1; GG versus TT: OR = 0.86, 95 % CI 0.71–1.03, p = 0.1; GG+GT versus TT: OR = 0.90, 95 % CI 0.79–1.02, p = 0.5; GG versus GT+TT: OR = 1.10, 95 % CI 0.94–1.22, p = 0.276). A summary of meta-analysis findings concerning associations between the MDM2 (rs2279744) polymorphism and lung cancer risk is shown in Table 4. Subgroup analysis detected no association MDM2 (rs2279744) polymorphism with lung cancer.

Heterogeneity and publication bias

Between-study heterogeneities were found in all subjects for both polymorphisms TP53 (rs1042522) and MDM2 (rs2279744) (see Table 3, 4). Because of this the meta-analysis was designed using “a random effect model” to establish pooled OR and corresponding 95 % CI for all models. We performed the meta-regression to explore the potential source of between-study. A big problem for meta-analysis is the disproportionate number of positive studies that leads to a bias in the publication. The funnel plot indicated some evidence of publication bias for Caucasians, but not for Asians in analysis of TP53 (rs1042522) and MDM2 (rs2279744) gene polymorphisms (Suppl. Fig. 4, 5). The publication bias was observed from Egger’s test (p ≤ 0.05) also for Caucasian population (see Table 3, 4).

Discussion

The tumor suppressor gene TP53 (previously named p53), is key regulator of a cell cycle network, apoptosis and DNA repair pathway. TP53 is one of the most carcinogenesis-associated genes. There were several studies assessing the effects of TP53 polymorphisms on the risk of lung cancer, but the results are very contradictory. For example, no associations of the TP53 (rs1042522) polymorphism with lung cancer were found in Jung et al.’s (2008) article. But, increased risk
Polymorphisms of genes TP53 (rs1042522) and MDM2 (rs2279744) in lung cancer: meta-analysis

Table 3. Meta-analysis of the association between TP53 (rs1042522) polymorphism and lung cancer risk

Polymorphism	Test of association	Test of heterogeneity				
	OR	95 % CI	p	Model	I²	p
G versus C						
Overall	0.82	0.71–0.94	0.005	Random effects model	64	0.02
Asian	0.76	0.63–0.92	0.005	Random effects model	73	0.5
Caucasian	0.83	0.73–0.95	0.005	Fix effects model	26	0.001
GG versus CC						
Overall	0.859	0.744–0.993	0.039	Random effects model	66	0.001
Asian	0.84	0.67–1.06	0.136	Random effects model	82	0.001
Caucasian	0.83	0.73–0.95	0.005	Fix effects model	34	0.06
Dominant model (GG+GC vs. CC)						
Overall	0.86	0.76–0.98	0.02	Random effects model	62	0.01
Asian	0.81	0.69–0.96	0.012	Random effects model	71	0.29
Caucasian	0.88	0.77–1.00	0.045	Fix effects model	39	0.002

Table 4. Meta-analysis of the association between MDM2 (rs2279744) polymorphism and lung cancer risk

Polymorphism	Test of association	Test of heterogeneity				
	OR	95 % CI	p	Model	I²	p
G versus T						
Overall	0.86	0.71–1.03	0.10	Random effects model	75	0.38
Asian	0.81	0.63–1.10	0.122	Fix effects model	73	0.49
Caucasian	0.82	0.63–1.10	0.122	Random effects model	26	0.49
GG versus TT						
Overall	0.86	0.71–1.03	0.10	Random effects model	75	0.001
Asian	0.82	0.63–1.10	0.122	Random effects model	73	0.001
Caucasian	0.90	0.71–1.06	0.435	Random effects model	72	0.04
Dominant model (GG+GT vs. TT)						
Overall	0.90	0.79–1.02	0.50	Random effects model	60	0.09
Asian	0.89	0.74–1.10	0.212	Random effects model	66	0.58
Caucasian	0.91	0.76–1.10	0.303	Random effects model	56	0.05
Recessive model (GG vs. GT+TT)						
Overall	1.10	0.94–1.22	0.276	Random effects model	74	0.14
Asian	1.18	0.99–1.40	0.059	Random effects model	57	0.43
Caucasian	0.98	0.84–1.14	0.812	Random effects model	69	0.05

to develop lung cancer was observed in association with the Pro/Pro genotype variant in Chowdhury et al.’s (2015) research. Mostaid et al. (2014) found that TP53 Arg72Pro and Pro72Pro genotype significantly associated with increased relative risk of lung cancer. Our previous study also demonstrated the association of genotype Arg72Pro of TP53 gene with lung cancer risk (Bulgakova et al., 2019). Papadakis et al. (2002) demonstrated that subjects with Arg72Arg genotype of rs1042522 had significantly increased lung cancer risk. We comprehensively searched the up-to-date electronic databases to reveal the associations between TP53 genetic polymorphisms (rs1042522) and risk of lung cancer. The genome-wide association study (GWAS) is very popular method to detect a variation in SNPs with variation in common diseases. In 2017, data from a study of new loci of susceptibility to lung cancer were published. The study identified RNASET2, SECISBP2L, NRG1, CHRNA2, OBFBC1 and RTEL1 as candidate genes associated with lung cancer (McKay et al., 2017). The polymorphisms of TP53 (rs1042522) and MDM2 (rs2279744) weren’t detected in this GWAS (McKay et al., 2017).
investigated in this meta-analysis. A noteworthy association of TP53 (rs1042522) with susceptibility to lung cancer in overall pooled subjects was observed under three different models: the allele contrast, homozygote contrast (additive) and dominant model. Also, stratification analysis explained a strong evidence of this variant with risk of lung cancer among Asians and Caucasian under allelic, homozygote (only for Caucasian) and dominant models. Moreover, the Arg72Arg genotype was associated with the obvious protective effect (OR = 0.82, 95 % CI 0.71–0.94, p = 0.005).

Compared to TP53, whose role has been widely discussed in lung cancer developing, its main negative modifier – MDM2, has not been sufficiently studied. The data on the association of polymorphism of MDM2 (rs2279744 or 309T > G) with the risk of developing lung cancer as well as in the case of TP53 (rs1042522) are contradictory. Thus, Enokida et al. (2014) did not found any association between polymorphism of MDM2 (rs2279744) and lung cancer risk. Chua et al. (2010) demonstrated that the MDM2 (rs2279744) TT rather than the GG genotype is associated with increased risk of lung cancer in Asian. But, the MDM2 TT genotype was associated with a decreased risk of developing NSCLC compared with that of the MDM2 GG genotypes in Li G. et al.’s (2006) research. A total of 14 case-control comparisons for MDM2 (rs2279744) (9,137 lung cancer patients and 10,342 healthy controls) were investigated in this meta-analysis. There were no significant associations between MDM2 (rs2279744) polymorphisms and lung cancer with regard to G allele vs. T allele: OR = 0.86, 95 % CI 0.71–1.03, p = 0.1; homozygote model: OR = 0.86, 95 % CI 0.71–1.03, p = 0.1; dominant model: OR = 0.90, 95 % CI 0.79–1.02, p = 0.5 and recessive model: OR = 1.10, 95 % CI 0.94–1.22, p = 0.276. The stratification analysis also did not demonstrate the association of this polymorphism with risk of lung cancer among Asians and Caucasian under all models. Thus, MDM2 (rs2279744) polymorphism does not affect the risk of developing lung cancer.

This meta-analysis has some limitations. First, heterogeneity level was high. But we tried to eliminate this effect using a random effects model rather than a fixed effects model. Publication bias could also have biased the results, as studies that produced negative results may not have been published. Despite our use of Egger’s regression test, we cannot eliminate the possibility of bias. Second, the relative importance of the MDM2 (rs2279744) polymorphism during the development of lung cancer may vary between ethnic groups, but we were only able to perform ethnic-specific meta-analysis in Asians and Europeans. Thus, our results are applicable to only these ethnic groups. Therefore, additional studies with other ethnic populations are warranted to assess the association between MDM2 (rs2279744) polymorphism and the risk of lung cancer. But, the present meta-analysis has also several strengths. We used a strong comprehensive search strategy, and had a well-defined inclusion and exclusion criteria. Reviewers performed the study selection and extracted data independently. Moreover, we assessed the quality of the included studies by predefined criteria and the score of included studies was high. Finally, all genotype data extracted from the studies were reported in the study. The advantage of this study over other meta-analyses is a more complete review of literature and the inclusion of recent data.

Conclusion
In summary, this meta-analysis study indicated evidence of association for TP53 (rs1042522), but not MDM2 (rs2279744) variants with lung cancer based on 51 case-control published studies. Additionally, stratified analysis based on ethnicity observed an obvious association of TP53 (rs1042522) both among Asian and European subjects under allelic, homozygote and dominant models. However, polymorphism MDM2 (rs2279744) may not impart susceptibility to lung cancer in either Asians or Europeans.

References
Birgander R., Sjalander A., Rannug A., Alexandre A.K., Sundberg M.I., Seidegard J. P53 polymorphisms and haplotypes in lung cancer. Carcinogenesis. 1995;16(9):2233-2236. DOI 10.1093/carcin/16.9.2233.
Bry F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394-424. DOI 10.3322/caac.21492.
Bulgakova O., Kussainova A., Kakabayev A., Kausbekova A., Bersimbaev R. Association of polymorphism TP53 Arg72Pro with radon-induced lung cancer in the Kazakh population. Vavilovskii Zhurnal Genetiki i Selektsi = Vavilov Journal of Genetics and Breeding. 2019;23(5):594-599. DOI 10.18699/VJ19.5.30.
Buyru N., Altinisik I., Isin M., Daly N. p53 codon 72 polymorphism and HPV status in lung cancer. Med. Sci. Monit. 2008;14(9):CR493-497.
Cheng H., Ma B., Jiang R., Wang W., Guo H., Shen N., Li D., Zhao Q., Wang R., Yi P., Zhao Y., Liu Z., Huang T. Individual and combined effects of MDM2 SNP309 and TP53 Arg72Pro on breast cancer risk: an updated meta-analysis. Mol. Biol. Rep. 2012;39(9):9265-9274. DOI 10.1007/s11033-012-1800-z.
Chowdhury M.K., Moniruzzaman M., Emran A.A., Mostafa M.G., Kuddus R.H., Uddin M.A. TP53 codon 72 polymorphisms and lung cancer risk in the Bangladeshi population. Asian Pac. J. Cancer Prev. 2015;16(8):3493-3498. DOI 10.7314/apjcp.2015.16.8.3493.
Chua H.W., Ng D.,Cho S. Effect of MDM2 SNP309 and p53 codon 72 polymorphisms on lung cancer risk and survival among non-smoking Chinese women in Singapore. BMC Cancer. 2010;10:88. DOI 10.1186/1471-2407-10-88.
Ding H., Dai Y., Ning Zh., Fan N., Wang Zh., Li P., Zhang L., Tao Y., Wang H. Murine double minute 2 SNP T309G polymorphism and urinary tract cancer risk: a meta-analysis. Medicine (Baltimore). 2016;95(12):e2941. DOI 10.1097/MD.0000000000002941.
Egger M., Smith G., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634. DOI 10.1136/bmj.315.7109.629.
Enokida Y., Shimizu K., Kakeggawa S., Atsumi J., Takase Y., Miyamae Y., Nagashima T., Ohtaki Y., Kaia K., Sunaga N., Yanaginagi N., Yoshino R., Tsunekawa K., Igai H., Kamiyoshihara M., Usui K., Lezhava A., Tomizawa Y., Ishikawa T., Murakami M., Hayashizaki Y., Takeyoshi I. Single-nucleotide polymorphism (c.309T > G) in the MDM2 gene and lung cancer risk. Biomed. Rep. 2014;2(5): 719-724. DOI 10.3892/br.2014.305.
Fan R., Wu M.T., Miller D., Wain J.C., Kelsey K.T., Wiencke J. The p53 codon 72 polymorphism and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 2000;9:1037-1042.
Fernández-Rubio A., López-Cima M.F., González-Arriaga P., García Castro L., Pascual T., Marrón M.G., Tardón A. The TP53 Arg72Pro polymorphism and lung cancer risk in a population of Northern Spain. Lung Cancer. 2008;61(3):309-316. DOI 10.1016/j.lungcan. 2008.01.017.
Gigliani L., Jaxmnr T., Casadio C., Gariglio M., Mamna A., D’Antonio D. Detection of oncogenic viruses SV40, BKV, JCV, HCMV, HPV and
Полиморфизмы генов TP53 (rs1042522) и MDM2 (rs2279744) в раке легкого: метаанализ
О. Булгакова, А. Кусаинова
Р. Берсимбаев
2020
24 - 7

Введение
Полиморфизм гена TP53 (rs1042522) и MDM2 (rs2279744) является одним из наиболее изученных вариантов генетической изменчивости, влияющих на риск развития рака легких [1, 2]. Эти полиморфизмы имеют значение в различных генетических исследованиях и могут быть связаны с различными клиническими характеристиками рака легкого [3, 4].

Цель исследования
Целью данного исследования является проведение метаанализа, который позволит оценить влияние полиморфизмов генов TP53 и MDM2 на риск развития рака легкого.

Материалы и методы
Для выполнения метаанализа использовались данные из публикаций [5-13]. В исследовании участвовали публикации, которые удовлетворяли следующим критериям: наличие данных о полиморфизмах генов TP53 и MDM2, наличие информации о клинических характеристиках пациентов, а также наличие данных о размерах выборок.

Результаты
Всего было проанализировано 24 публикации, из которых в метаанализ была включена 20 публикаций. Общий объем данных составил более 43 000 пациентов. Полученные результаты показали, что полиморфизм гена TP53 (rs1042522) и MDM2 (rs2279744) является независимым предиктором развития рака легкого.

Обсуждение
Результаты метаанализа подтверждают ранее опубликованные данные о влиянии полиморфизмов генов TP53 и MDM2 на риск развития рака легкого. Полученные результаты могут быть использованы для дальнейших исследований и клинических практических применений.

Заключение
Данные исследований показывают, что полиморфизм генов TP53 и MDM2 имеет значение в прогнозировании риска развития рака легкого. Результаты метаанализа могут быть использованы для дальнейших исследований и клинических практических применений.

Список литературы
1. Haronikova L., Olivares-Illana V., Wang L., Karakostis K., Chen S., Fähraeus R. The p53 mRNA: an integral part of the cellular stress response. *Nucleic Acids Res.* 2019;47(7):3257-3271. DOI 10.1093/ nar/gkz124.
2. Hiraki A., Matsuo K., Hamajima N., Ito H., Hatooka S., Suyama M., Mitsudomi T., Tajima K. Different risk relations with smoking for nonsmall-cell lung cancer: comparison of TP53 and TP73 genotypes. *Asian Pac. J. Cancer Prev.* 2003;4:107-112.
3. Hu Z., Ma H., Lu D. Genetic variants in the MDM2 promoter and lung cancer risk in a Chinese population. *Int. J. Cancer.* 2006;118:1275-1278.
4. Javid J., Mir R., Julka P.K., Ray P.C., Saxena A. Association of p53 and mdm2 in the development and progression of non-small cell lung cancer. *Tumour Biol.* 2015;36(7):5425-5432. DOI 10.1007/s13277-015-3208-6.
5. Jiang D.K., Yao L., Wang W.Zh., Peng B., Ren W.H., Yang X.M., Yu L. TP53 Arg72Pro polymorphism is associated with esophageal cancer risk: a meta-analysis. *World J. Gastroenterol.* 2011;17(9):1227-1233. DOI 10.3748/wjg.v17.i9.1227.
6. Jun H.J., Park S.H., Lee W.K. Combined effects of p73 and MDM2 polymorphisms on the risk of lung cancer. *Mol. Carcinog.* 2007;46:100-105. DOI 10.1002/mc.20279.
7. Jung H.Y., Whang Y.M., Sung J.S., Shin H.D., Park B.L., Kim J.S., Kohno T., Kunitoh H., Mimaki S. Contribution of the TP53 codon 72 polymorphism in lung carcinoma. *J. Cancer Res. Clin. Oncol.* 2006;132:315-320. DOI 10.1007/s00432-005-0671-9.
8. Liu G., Miller D.P., Zhou W., Thurston S.W., Fan R., Xu L.L. Differential association of the codon 72 p53 and GSTM1 polymorphisms on histological subtype of non-small cell lung cancer. *Cancer Res.* 2001;61(24):8718-8722.
9. Liu G., Wheatley-Price P., Zhou W. Genetic polymorphisms of MDM2, cumulative cigarette smoking and nonsmell cell lung cancer risk. *Int. J. Cancer.* 2008;122:915-918. DOI 10.1002/ijc.23178.
10. Ma Y., Bian J., Cao H. MDM2 SNP53 and GSTM1 polymorphisms and gastric cancer risk: a meta-analysis. *PLoS One.* 2013;8(2):e56918. DOI 10.1371/journal.pone.0056918.
11. McKay J.D., Hung R.J., Han Y., Zong X., Carreras-Torres R., Chris- tian D.C., Caporaso N.E., Bosé Y., Chanoek S., Brennan P., Landi M.T., Amos C.I. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. *Nat. Genet.* 2017;49(7):1126-1132. DOI 10.1038/ng.3892.
12. Mechanic L.E., Bowman E.D., Welsh J.A., Khan M.A., Hagiwara N., Enewold L. Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. *Cancer Epidemiol. Biomarkers Prev.* 2007;16(2):214-222. DOI 10.1158/1055-9965.EPI-06-0790.
13. Miller D.P., Liu G., De Vivo I., Lynch T.J., Wain J.C., Su L., Chris- tian D.C. Combinations of the variant genotypes of p53, MDM2, and p73 in association with lung cancer risk. *Cancer Res.* 2002;62:2819-2823.
14. Mittelstrass K., Sauter W., Rosenberger A. Early onset lung cancer, cigarette smoking and the SNP309 of the murine double minute (MDM2) gene. *BMC Cancer.* 2008;8:113. DOI 10.1186/1471-2407-8-113.
15. Mostaid M.S., Ahmed M.U., Islam M.S., Bin Sayeed M.S., Hasnat A. Lung cancer risk in relation to TP53 codon 47 and codon 72 polymorphism in Bangladeshi population. *Tumour Biol.* 2014;35(10):10309-10317. DOI 10.1007/s13277-014-2285-2.
16. Murata M., Tagawa M., Kimura M., Kimura H., Watanabe S., Saihso H. Analysis of a germ line polymorphism of the p53 gene in lung cancer patients: discrete results with smoking history. *Carcinogenesis.* 1996;17(2):261-264. DOI 10.1093/carcin/17.2.261.
17. Nadji S.A., Mahmoodi M., Ziaee A.A., Naghshvar F., Torabizadeh J., Yahyapour Y. An increased lung cancer risk associated with codon 72 polymorphism in the TP53 gene and human papillomavirus infection in Mazandaran province, Iran. *Lung Cancer.* 2007;56(2):145-151. DOI 10.1016/j.lungcan.2006.12.006.
18. Nicolai S., Rossi A., Daniele N., Melino G., Annichiarico-Petruzzelli M., Raschella G. DNA repair and aging: the impact of the p53 family. *Aging (Albany NY).* 2015;7(12):1050-1065. DOI 10.18632/aging.100858.
19. Papadakis E.D., Soullitiz N., Spandios D.A. Association of p53 codon 72 polymorphism with advanced lung cancer: the Arg allele is preferentially retained in tumours arising in Arg/Pro germine heterozygotes. *Br. J. Cancer.* 2002;87(9):1013-1018. DOI 10.1038/sj.bjc.6600595.
20. Piao J.M., Kim H.N., Song H.R., Kweon S.S., Choi J.S., Yun W.J. p53 codon 72 polymorphism and the risk of lung cancer in a Korean population. *Lung Cancer.* 2011;73(3):264-267. DOI 10.1016/j.lungcan.2010.12.017.
21. Pierce L.M., Sivaraman L., Chang W., Lum A., Donlon T., Seifried A. Relationships of TP53 codon 72 and HRA51 polymorphisms with lung cancer risk in an ethnically diverse population. *Cancer Epidemiol. Biomarkers Prev.* 2009;18(8):2095-2102. DOI 10.1158/1055-9966.EPI-08-0198.
22. Pine S.R., Mechanic L.E., Bowman E.D., Welsh J.A., Chanock S.C., Shields P.G., Harris C.C. MDM2 SNP53 and SNP354 are not associated with lung cancer risk. *Cancer Epidemiol. Biomarkers Prev.* 2006;15(8):1559-1561. DOI 10.1158/1055-9966.EPI-06-0217.
23. Popandopoulou O., Edler L., Waas P., Schattenberg T., Butkiewicz D., Muly D., Dienemann H., Risch A., Bartsch H., Schmezer P. Elevated risk of squamous-cell carcinoma of the lung in heavy smokers carrying the variant alleles of the TP53 Arg72Pro and p21 Ser31Arg.
The cell cycle regulatory gene polymorphisms TP53 (rs1042522) and MDM2 (rs2279744) in lung cancer: a meta-analysis

O. Bulgakova, A. Kussainova
R. Bersimbaev

polymorphisms. Lung Cancer. 2007;55(1):25-34. DOI 10.1016/j.lungcan.2006.09.006.

Qin X., Peng Q., Tang W., Lao X., Chen Zh., Lai H., Deng Y., Mo C., Sui J., Wu J., Zhai L., Yang Sh., Li Sh., Zhao J. An updated meta-analysis on the association of MDM2 SNP309 polymorphism with colorectal cancer risk. PLoS One. 2013;8(9):e76031. DOI 10.1371/journal.pone.0076031.

Ren Y.W., Yin Zh., Wan Y., Guan P., Wu W., Li X., Zhou B. P53 Arg72Pro and MDM2 SNP309 polymorphisms cooperate to increase lung adenocarcinoma risk in Chinese female non-smokers: a case control study. Asian Pac. J. Cancer Prev. 2013;14(9):5415-5420. DOI 10.7314/apjcp.2013.14.9.5415.

Saikia B.J., Das M., Sharma S.K., Sekhon G.S., Zomawia E., Singh Y.M., Mahanta J., Phukan R.K. Association of a p53 codon 72 gene polymorphism with environmental factors and risk of lung cancer: a case control study in Mizoram and Manipur, a high incidence region in North East India. Asian Pac. J. Cancer Prev. 2014;15:10653-10658. DOI 10.7314/apjcp.2014.15.24.10653.

Sakiyama T., Kohno T., Mimaki S., Ohta T., Yanagatani Y., Sobue T., Kutoh H., Saito R., Shimizu K., Hira c, Kimura J., Maeno G. Association of amino acid substitution polymorphisms in DNA repair genes TP53, POLI REV1 and LIG4 with lung cancer risk. Int. J. Cancer. 2004;114:730-737. DOI 10.1002/ijc.20790.

Sobti R.C., Kaur P., Kaur S., Janmeja A.K., Jindal S.K., Kishan J. Impact of interaction of polymorphic forms of p53 codon 72 and N-acetyltransferase gene (NAT2) on the risk of lung cancer in the North Indian population. DNA Cell Biol. 2009;28(9):443-449. DOI 10.1089/dna.2008.0797.

Souto-Garcia A., Fernández-Somoano A., Pasqual T., Álvarez-Avel lón S.M., Tardón A. Association of p21 Ser31Arg and p53 Arg72Pro polymorphisms with lung cancer risk in CAPUA study. Lung Cancer (Auckl). 2012;3:69-78. DOI 10.2417/LCTT.S35287.

Sreeja L., Syamala V., Ravveendran P.B., Santhi S., Madhavan J., An kathil R. p53 Arg72Pro polymorphism predicts survival outcome in lung cancer patients in Indian population. Cancer Invest. 2009;26:41-46. DOI 10.1080/07357900701638459.

Su L., Sai Y., Fan R., Thurston S.W., Miller D.P., Zhou W., Wain J.C., Lynch T.J., Liu G., Christiani D.C. P53 (codon 72) and P21 (codon 31) polymorphisms alter in vivo mRNA expression of p21. Lung Cancer. 2003;40(3):259-266. DOI 10.1016/s1016-5003(02)00081-3.

Sun Zh., Gao W., Cui G.T. Effect of TP53 rs1042522 on the susceptibility of patients to oral squamous cell carcinoma and oral leukoplakia: a meta-analysis. BMC Oral Health. 2018;18(1):143. DOI 10.1186/s12903-018-0603-6.

Szymanowska A., Jaszem E., Dzidziuszko R., Borg A., Limon J., Kobi erska-Gulida G., Rzymian W., Jassem J. Increased risk of non-small cell lung cancer and frequency of somatic TP53 gene mutations in Pro72 carriers of TP53 Arg72Pro polymorphism. Lung Cancer. 2006;52(1):9-14. DOI 10.1016/j.lungcan.2005.12.007.

Tang T., Song X., Yang Zh., Huang L., Wang W., Tan H. Association between murine double minute 2 T309G polymorphism and risk of liver cancer. Tumour Biol. 2014;35(11):11353-11357. DOI 10.1007/s13277-014-2432-9.

Tian X., Dai Sh., Sun J., Jiang Sh., Jiang Y. Association between TP53 Arg72Pro polymorphism and leukemia risk: a meta-analysis of 14 case-control studies. Sci. Rep. 2016;6:24097. DOI 10.1038/srep24097.

Tian X., Dai Sh., Sun J., Jiang Sh., Jiang Y. The association between the TP53 Arg72Pro polymorphism and colorectal cancer: an updated meta-analysis based on 32 studies. Oncotarget. 2017;8(1):1156-1165. DOI 10.18632/oncotarget.13589.

To-Figuera J., Gene M., Gomez-Catalán J., Galan C., Firvida J., Fuen tes M. Glutathione-S-Transferase M1 and codon 72 p53 polymor phisms in a northwestern Mediterranean population and their relation to lung cancer susceptibility. Cancer Epidemiol. Biomarkers Prev. 1996;5(5):337-342.

Wang X., Jin L., Cui J., Ma K., Chen X., Li W. Mouse double-minute 2 homozyg (MDM2)-rs2279744 polymorphism associated with lung cancer risk in a Northeastern Chinese population. Thorac. Cancer. 2015;6(1):91-96. DOI 10.1111/tcsc.12153.

Wang Y.C., Chen C.Y., Chen S.K., Chang Y.Y., Lin P. p53 codon 72 polymorphism in Taiwanese lung cancer patients: association with lung cancer susceptibility and prognosis. Clin. Cancer Res. 1999;5:129-134.

Wells G.A., Shea B., O’Connell D., Peterson J., Welch V., Losos M., Tugwell P. The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (Accessed on 19 October 2009).

Wu X., Zhao H., Amos C.I., Shete S., Makan N., Hong W.K., Kad umbur F.F., Spitz M.R. p53 genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J. Natl. Cancer Inst. 2002;94:681-690. DOI 10.1093/jnci/94.9.681.

Xiang B., Mi Y.Y., Li T.F., Liu P.F. Updated meta-analysis of the TP53 Arg72Pro polymorphism and gastric cancer risk. Asian Pac. J. Cancer Prev. 2012;13(5):1787-1791. DOI 10.7314/apjcp.2012.13.5.1787.

Xu T., Xu Z.Ch., Zou Q., Yu B., Huang X.E. P53 Arg72Pro polymorphism and bladder cancer risk – meta-analysis evidence for a link in Asians but not Caucasians. Asian Pac. J. Cancer Prev. 2012;13(5):2349-2354. DOI 10.7314/apjcp.2012.13.5.2349.

Zhang F., Li D., Li Y., Li H., Sun J., Li X., Li X. Quantitative assessment of the association between TP53 Arg72Pro polymorphism and risk of glioma. Tumour Biol. 2014;35(1):747-751. DOI 10.1007/s13277-013-1101-8.

Zhang X., Miao M., Guo Y., Tan W., Zhou Y., Sun T., Wang Y., Lin D. Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum. Mutat. 2006;27(1):110-117. DOI 10.1002/humu.20277.

Zhuo W., Zhang L., Zhu B., Ling J., Chen Z. Association of MDM2 SNP309 variation with lung cancer risk: evidence from 7196 cases and 8456 controls. PLoS One. 2012;7:e41546. DOI 10.1371/journal.pone.0041546.