Supporting information

Composition and structure of magnetic high-temperature-phase, stable Fe-Au core-shell nanoparticles with zero-valent bcc Fe core

Marius Kamp¹, Anna Tymoczko², Radian Popescu³, Ulrich Schürmann¹, Ruksan Nadarajah², Bilal Gökce² Christoph Rehbock², Dagmar Gerthsen³, Stephan Barcikowski², and Lorenz Kienle¹*

¹ Institute for Materials Science, Synthesis and Real Structure, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
² Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
³ Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, 76131, Karlsruhe, Germany

Table S1: Average Fe content from EDXS measurements of single NPs with standard deviation σ, absolute error Δf, and variance σ².

at% Au	Au₂₀Fe₈₀	Au₅₀Fe₅₀
average	22.6	50.3
σ	2.4	6.2
Δf	0.5	1.8
σ²	6.0	38.5
Number of NPs	21	12

Table S2: quantified EDXS analyses of single NPs (average compositions) for comparison with the subshell approach. The absolute deviation is ±2.3 at% Au on average, calculated from row 4.

Number of NP	C₁(Subshell approach) Au at%	C₂(Reference) Au at%	absolute Δc Au at%
1	62	63	0.9
2	52	56	4.0
3	51	53	1.6
4	43	44	1.3
5	52	54	2.0
6	77	78	1.0
7	84	80	4.0
8	83	80	3.0
9	76	78	2.0
10	69	69	0.0
11	71	76	5.0
12	71	74	3.0
13	76	78	2.0
Fig. S1: Sketch of the steps of FIB cross-section preparation of NPs. NPs are embedded in C-Matrix before standard lift-out preparation. At the tip of the lamella, a section is extracted from a core-shell (CS) NP.
Fig. S2: (Top row) HAADF-STEM Z-contrast images and (bottom rows) elemental maps for Au (Au-L$_{α1}$ line) and Fe (Fe-K$_{α1}$ line). The overlay of the Fe and Au signals illustrates the of an outermost Fe-containing (presence of a FeO$_x$) deposit on the CS and solid solution NPs, probably stemming from FeO$_x$ by-products present in the liquid before drying.
Fig. S3: EDXS spectrum of the position marked by an asterisk in Fig. 4. Chemical composition is quantified to be 100 at% Fe. Carbon and oxygen signal arises from the carbon matrix, that is needed to stabilize the sample during sample preparation.

Electron beam broadening was calculated by the Goldstein approach using Eq. (1), which yields the broadened beam diameter d_f for an electron beam with an initial probe diameter d_i and energy E_0 in keV after passing through a NP characterized by an average atomic number Z_m, an average atomic mass A_m, an average density ρ_m in g cm$^{-3}$, and a sample thickness (NP diameter) D in nm$^{-1}$. For our transmission electron microscope without aberration corrector, a probe diameter of $d_i=0.4$ nm is reasonable. For electron energy of 200 keV, Eq. (1) yields a broadened beam with $d_f=0.80$ nm for NPs with maximum diameter $D=29$ nm and nominal composition of Au$_{20}$Fe$_{80}$. Beam broadening up to 0.78 nm is expected for NPs with $D=23$ nm, and the average composition of Au$_{50}$Fe$_{50}$. Accordingly, the distance between two adjacent measuring points along EDXS line scans was chosen to be of 1 nm (i.e. larger than d_f-values) to avoid overlap of the EDXS signal recorded from two neighbor regions of the NP.
Fig. S4: HAADF-STEM Z-contrast image of the CS NP depicted in Fig. 3 d)-f).

Fig. S5: HRTEM (left) and Fast Fourier Transform (right) of NCS NPs, showing the polycrystalline shell.
Fig. S6: Overview HAADF-STEM Z-contrast image and representative size distribution for Au$_{50}$Fe$_{50}$ solid solution and CS NPs and respective LogNormal fit. Resulting average size ($\langle xc \rangle$) SoSo = 8 nm, CS = 19 nm.
Fig. S7: Overview HAADF-STEM Z-contrast image and representative size distribution of NCS and CS NPs from (Au$_{20}$Fe$_{80}$) and respective LogNormal fit. Resulting average size ($\langle x \rangle$) NCS = 16 nm, CS = 22 nm. Also, the sample contains SoSo NPs that are not shown in this graph.
Fig. S 8: HAADF-STEM Z-contrast image of NCS NPs with fragmented nested cores. Scale bars are 25 nm.

References

1 S. Barcikowski, T. Baranowski, Y. Durmus, U. Wiedwald, and B. Gökce, *J. Mater. Chem. C*, 2015, 3, 10699–10704.

2 J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, *Scanning Electron Microscopy and X-Ray Microanalysis*, Springer-Verlag, New York, 4th, 2018.