A Dynamic Low-Rank Fast Gaussian Transform

Baihe Huang∗ Zhao Song† Omri Weinstein‡ Junze Yin§ Hengjie Zhang¶
Ruizhe Zhang‖

Abstract

The Fast Gaussian Transform (FGT) enables subquadratic-time multiplication of an $n \times n$ Gaussian kernel matrix $K_{i,j} = \exp(-\|x_i - x_j\|^2_2)$ with an arbitrary vector $h \in \mathbb{R}^n$, where $x_1, \ldots, x_n \in \mathbb{R}^d$ are a set of fixed source points. This kernel plays a central role in machine learning and random feature maps. Nevertheless, in most modern data analysis applications, datasets are dynamically changing (yet often have low rank), and recomputing the FGT from scratch in (kernel-based) algorithms incurs a major computational overhead ($\gtrsim n$ time for a single source update $\in \mathbb{R}^d$). These applications motivate a dynamic FGT algorithm, which maintains a dynamic set of sources under kernel-density estimation (KDE) queries in sublinear time while retaining Mat-Vec multiplication accuracy and speed.

Assuming the dynamic data-points x_i lie in a (possibly changing) k-dimensional subspace ($k \leq d$), our main result is an efficient dynamic FGT algorithm, supporting the following operations in $\log^{O(k)}(n/\varepsilon)$ time: (1) Adding or deleting a source point, and (2) Estimating the “kernel-density” of a query point with respect to sources with ε additive accuracy. The core of the algorithm is a dynamic data structure for maintaining the projected “interaction rank” between source and target boxes, decoupled into finite truncation of Taylor and Hermite expansions.

∗banghua@berkeley.edu. University of California, Berkeley.
†zsong@adobe.com. Adobe Research.
‡omri@cs.columbia.edu. The Hebrew University and Columbia University.
§junze@bu.edu. Boston University.
¶hengjie.z@columbia.edu. Columbia University.
‖rzzhang@berkeley.edu. Simons Institute for the Theory of Computing.
1 Introduction

The fast Multipole method (FMM) was described as one of the top 10 most important algorithms of the 20th century [DS00]. It is a numerical technique that was originally developed to speed up calculations of long-range forces for the n-body problem in theoretical physics. FMM was first introduced in 1987 by Greengard and Rokhlin [GR87], based on the multipole expansion of the vector Helmholtz equation (see Section A). By treating the interactions between far-away basis functions using the FMM, the underlying matrix entries $M_{ij} \in \mathbb{R}^{n \times n}$ (encoding the pairwise “interaction” between $x_i, x_j \in \mathbb{R}^d$) need not be explicitly computed nor stored for matrix-vector operations – This technique allows to improve the naïve $O(n^2)$ matrix-vector multiplication time to quasi-linear time $\approx n \cdot \log^O(d)(n)$, with negligible (polynomial-small) additive error.

Since the discovery of FMM in the late 80s, it had a profound impact on scientific computing and has been extended and applied in many different fields, including physics, mathematics, numerical analysis and computer science [GR87, Gre88, GR88, GR89, Gre90, GS91, EMRV92, Gre94, GR96, BG97, Dar00, YDGD03, YDD04, Mar12, CDG+06]. To mention just one important example, we note that FMM plays a key role in efficiently maintaining the SVD of a matrix under low-rank perturbations, based on the Cauchy structure of the perturbed eigenvectors [GE94].

In the context of machine learning, the FMM technique can be extended to the evaluation of matrix-vector products with certain Kernel matrices $K_{i,j} = f(\|x_i - x_j\|)$, most notably, the Gaussian Kernel $K_{i,j} = \exp(-\|x_i - x_j\|^2)$ [GS91]. For any query vector $q \in \mathbb{R}^n$, the fast Gaussian transform (FGT) algorithm outputs an arbitrarily-small pointwise additive approximation to $K \cdot q$, i.e., a vector $z \in \mathbb{R}^n$ such that

$$\|K \cdot q - z\|_\infty \leq \varepsilon,$$

in merely $n \log^O(d)(\|q\|_1/\varepsilon)$ time, which is dramatically faster than naïve matrix-vector multiplication (n^2) for constant dimension d. Note that the (poly)logarithmic dependence on $1/\varepsilon$ means that FGT can achieve polynomially-small additive error in quasi-linear time, which is as good as exact computation for all practical purposes. The crux of FGT is that the $n \times n$ matrix K can be stored implicitly, using a clever spectral-analytic decomposition of the geometrically-decaying pairwise distances (“interaction rank”, more on this below).

Kernel matrices play a central role in machine learning [STC04, RR08], as they allow to extend convex optimization and learning algorithms to nonlinear feature spaces and even to non-convex problems [LL18, JGH18, DZPS19, AZLS19a, AZLS19b, LSS+20]. Accordingly, matrix-vector multiplication with kernel matrices is a basic operation in many ML optimization tasks, such as Kernel PCA and ridge regression [AM15, ACW17, AKM+17, LSS+20], Gaussian-process regression (GPR) [RN10], Kernel linear system solvers (via Conjugate Gradient [ACSS20]), and in fast implementation of the dynamic “state-space model” (SSM) for sequence-correlation modeling (which crucially relies on the Multipole method [GGR21]), to mention a few. The related data-structure problem of kernel density estimation of a point [CS17, BCIS18, CS19, CKNS20, ZHK23, AS23]

$$\text{KDE}(X, y) = \frac{1}{n} \sum_{i=1}^{n} K(x_i, y)$$

has various applications in data analysis and statistics [FG96, SS02, SZK14], and is the main subroutine in the implementation of transfer learning using kernels (see [CS17, CKNS20] and references therein, and the Related Work section below). As such, speeding up matrix-vector multiplication with kernel matrices, such as FGT, is an important question in theory and practice.
One drawback of FMM and FGT techniques, however, is that they are static algorithms, i.e., they assume a fixed set of n data points $x_i \in \mathbb{R}^d$. By contrast, most aforementioned ML and data analysis applications are dynamic by nature and need to process rapidly-evolving datasets to maintain prediction and model accuracy. One example is the renewed interest in online regression \cite{CLM+15, JPW22}, motivated by continual learning theory \cite{PKP+19}. Indeed, it is becoming increasingly clear that many static optimization algorithms do not capture the requirements of real-world applications \cite{JKDG08, CMF+20, CLP+20, SYZ21, SZZ21, XSS21, SSSX21}.

Notice that changing a single source-point $x_i \in \mathbb{R}^d$ generally affects an entire row (n distances $\|x_i - x_j\|$) of the matrix K. As such, naively re-computing the static FGT on the modified set of distances, incurs a prohibitive computational overhead ($n \gg d$). This raises the natural question of whether it is possible to achieve sublinear-time insertion and deletion of source points, as well as “local” kernel-density estimation (KDE) queries \cite{CS17, YGD03}, while maintaining speed and accuracy of matrix-vector multiplication queries:

Is it possible to ‘dynamize’ the Fast Gaussian Transform, in sublinear time? Can the exponential dependence on d \cite{GS91} be mitigated if the data-points x_i lie in a k-dimensional subspace of \mathbb{R}^d?

The last question is motivated by the recent work of \cite{CN22}, who observed that kernel-based methods and algorithms typically involve low-rank datasets, (where the “intrinsic” dimension is $w \ll d$), in which case one could hope to circumvent the exponential dependence on d in the aforementioned (static) FMM algorithm \cite{GS91, ACSS20}.

1.1 Main Result

Our main result is an affirmative answer to the above question. We design a fully-dynamic FGT data structure, supporting polylogarithmic-time updates and “density estimation” queries, while retaining quasi-linear time for arbitrary Mat-Vec queries (Kq).

More formally, for a set of N “source” points s_1, \ldots, s_N, the j-th coordinate $(Kq)_{j \in [N]}$ is $G(s_j) = \sum_{i=1}^{N} q_i \cdot e^{-\|s_j - s_i\|^2/\delta}$, which measures the kernel-density at s_j (“interaction” of s_j with the rest of the sources). More generally, for any “target” point $t \in \mathbb{R}^d$, let

$$G(t) := \sum_{i=1}^{N} q_i \cdot e^{-\|t - s_i\|^2/\delta}$$

denote the kernel density of t with respect to the sources, where each source s_i is equipped with a charge q_i. Our data structure supports fully-dynamic source updates and density-estimation queries in sublinear time. Observe that this immediately implies that entire Mat-Vec queries $(K \cdot q)$ can be computed in quasi-linear time $N^{1+o(1)}$. The following is our main result:

Theorem 1.1 (Dynamic Low-Rank FGT, Informal version of Theorem F.2). Let \mathcal{B} denote a w-dimensional subspace $\subset \mathbb{R}^d$. Given a set of source points s, and charges q, there is a (deterministic) data structure that maintains a fully-dynamic set of N source vectors $s_1, \ldots, s_N \in \mathcal{B}$ under the following operations:

- **INSERT/DELETE**($s_i \in \mathbb{R}^d, q_i \in \mathbb{R}$) Insert or Delete a source point $s_i \in \mathbb{R}^d$ along with its “charge” $q_i \in \mathbb{R}$, in $\log^{O(w)}(|q|_1/\varepsilon)$ time. The intrinsic subspace B could change as the source points are updated.

- **DENSITY-ESTIMATION**($t \in \mathcal{B}$) For any point $t \in \mathcal{B} \subset \mathbb{R}^d$, output the kernel density of t with respect to the sources, i.e., output \hat{G} such that $G(t) - \varepsilon \leq \hat{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(|q|_1/\varepsilon)$ time.
We note that when \(w = d \), the costs of our dynamic algorithm match the static FGT algorithm. As one might expect, our data structure applies to a more general subclass of ‘geometrically-decaying’ kernels \(K_{i,j} = f(\|x_i - x_j\|) (f(tx) \leq (1 - \alpha)^t f(x)) \), see Theorem B.5 for the formal statement of our main result. It is also noteworthy that our data structure is deterministic, and therefore handles even adaptive update sequences [HW13, BEJWY20, CN20]. This feature is important in adaptive data analysis and in the use of dynamic data structures for accelerating path-following iterative optimization algorithms [BLSS20], where proximity to the original gradient flow (linear) equations is crucial for convergence, hence the data structure needs to ensure the approximation guarantees hold against any outcome of previous iterations.

Remark on Dynamization of “Decomposable” Problems A data structure problem \(P(D, q) \) is called decomposable, if a query \(q \) to the union of two separate datasets can be recovered from the two marginal answers of the query on each of them separately, i.e.,

\[
P(D_1 \cup D_2, q) = g(P(D_1, q), P(D_2, q))
\]

for some function \(g \). A classic technique in data structures [BS80] asserts that decomposable data structure problems can be (partially) dynamized in a black-box fashion – It is possible to convert any static DS for \(P \) into a dynamic one supporting incremental updates, with an amortized update time \(t_u \sim (T/N) \cdot \log(N) \), where \(T \) is the preprocessing time of building the static data structure, and \(N \) is the input size. It is not hard to see that Matrix-Vector multiplication over a field (with row-updates to the matrix), is a decomposable problem (since \(A + B)q = Aq + Bq \), and so one might hope that the dynamization of static FMM/FGT methods is an immediate consequence of decomposability. This reasoning is, unfortunately, incorrect, since changing even a single input point \(x_i \in \mathbb{R}^d \), perturbs \(n \) distances (i.e., an entire row in the kernel matrix \(K \)), and so the aforementioned reduction is prohibitively expensive (yields update time at least \(n \gg d \) for adding/removing a point).

Notations For a vector \(x \), we use \(\|x\|_2 \) to denote its \(\ell_2 \)-norm, \(\|x\|_1 \), \(\|x\|_0 \) and \(\|x\|_{\infty} \) for its \(\ell_1 \)-norm, \(\ell_0 \)-norm and \(\ell_{\infty} \)-norm. We use \(\tilde{O}(f) \) to denote \(f \cdot \text{poly}(\log f) \). For a vector \(x \in \mathbb{R}^d \) and a real number \(p \), we say \(x \leq p \) if \(x_i \leq p \) for all \(i \in [d] \). We say \(x \geq p \) if there exists an \(i \in [d] \) such that \(x_i \geq p \). For a positive integer \(n \), we use \([n] \) to denote a set \{1, 2, \ldots, n\}.

1.2 Related Work

Structured Linear Algebra Multiplying an \(n \times n \) matrix \(M \) by an arbitrary vector \(q \in \mathbb{R}^n \) generally requires \(\Theta(n^2) \) time, and this is information-theoretically optimal since merely reading the entries of the matrix requires \(\sim n^2 \) operations. Nevertheless, if \(M \) has some structure (\(\tilde{O}(n) \)-bit description-size), one could hope for quasi-linear time for computing \(M \cdot q \). Kernel matrices (\(K_{i,j} = f(\|x_i - x_j\|) \)), which are the subject of this paper, are special cases of such geometric-analytic structure, as their \(n^2 \) entries are determined by only \(\sim n \) points in \(\mathbb{R}^d \), i.e., \(O(nd) \) bits of information. There is a rich and active body of work in structured linear algebra, exploring various “algebraic” structures that allow quasi-linear time matrix-vector multiplication, most of which relies on (novel) extensions of the Fast Fourier Transform (see [DJR97, SGP+18, CDL+21] and references therein).

A key difference between FMMs and the aforementioned FFT-style line of work is that the latter develops exact Mat-Vec algorithms, whereas FMM techniques must inevitably resort to (small) approximation, based on the analytic smoothness properties of the underlying function and metric space [ACSS20, AMC+21]. This distinction makes the two lines of work mostly incomparable.

3
Comparison to LSH-based KDEs A recent line of work due to [CS17, BCIS18, CS19, CKNS20, BIK+23] develops fast KDE data structures based on locality-sensitive hashing (LSH), which seems possible to be dynamized naturally (as LSH is dynamic by nature). However, this line of work is incomparable to FGT, as it solves KDE in the low-accuracy regime, i.e., the runtime dependence on ε of these works is $\text{poly}(1/\varepsilon)$ (but polynomial in d), as opposed to FGT ($\text{poly log}(1/\varepsilon)$ but exponential in d). Additionally, some work (e.g., [CKNS20]) also needs an upper bound of the ground-truth value $\mu_\star = K \cdot q$, and the efficiency of their data structure depends on $\mu_\star^{-O(1)}$, while FGT does not need any prior knowledge of μ_\star.

Kernel Methods in ML Kernel methods can be thought of as instance-based learners: rather than learning some fixed set of parameters corresponding to the features of their inputs, they instead “remember” the i-th training example (x_i, y_i) and learn for it a corresponding weight w_i. Prediction for unlabeled inputs, i.e., those not in the training set, is treated using an application of a similarity function (i.e., a kernel) between the unlabeled input x' and each of the training-set inputs x_i. This framework is one of the main motivations for the development of kernel methods in ML and high-dimensional statistics [SSB02]. There are two main themes of research on kernel methods in the context of machine learning: The first one is focused on understanding the expressive power and generalization of learning with kernel feature maps [NJW02, SSB02, STC04, RR08, HSS08, JGH18, DZPS19, YJZ+23]; The second line is focused on the computational aspects of kernel-based algorithms [ACSS20, BPSW21, SYZ21, SZZ21, HSWZ22, ALS+22, Zha22, AS23, DMS23, GSY23, GMS23]. We refer the reader to these references for a much more thorough overview of these lines of research and the role of kernels in ML.

2 Technical Overview

In this section, we provide a streamlined overview of our data structure (Theorem (B.5)).

In Section 2.1, we review the offline FGT algorithm [GR87, ACSS20] and analyze the computational costs. In Section 2.2, we illustrate the technique of estimating $G(t)$ for an arbitrary target vector $t \in \mathbb{R}^d$. In Section 2.3, we explain that the data structures support the dynamic setting where the source vectors are allowed to come and leave. In Section 2.4, we describe how to extend the data structure to a more general kernel function. In Section 2.5, we show that if the source and target vectors come from a low dimensional subspace, the data structure can bypass the curse of dimension. In Section 2.6, we modify the data structure to support the scenario where the rank of data points varies across iterations.

2.1 Offline FGT Algorithm

We first review [ACSS20]’s offline FGT algorithm. Consider the following easier problem: given N source vectors $s_1, \ldots, s_N \in \mathbb{R}^d$, and M target vectors $t_1, \ldots, t_M \in \mathbb{R}^d$, estimate

$$G(t_i) = \sum_{j=1}^N q_j \cdot e^{-\|t_i - s_j\|_2^2/\delta}$$

for any $i \in [M]$, in quasi-linear time.

Following [GS91, ACSS20], our algorithm subdivides $B_0 = [0, 1]^d$ into smaller boxes with sides of length $L = r\sqrt{2\delta}$ parallel to the axes, for a fixed $r \leq 1/2$, and then assign each source s_j to the box B in which it lies and each target t_i to the box C in which it lies. Note that there are $(1/L)^d$
boxes in total. Let $N(B)$ and $N(C)$ denote the number of non-empty source and target boxes, respectively. For each target box C, we need to evaluate the total field due to sources in all boxes. Since each box B has side length $r\sqrt{2\delta}$, only a fixed number of source boxes B can contribute more than $\|q\|_1\varepsilon$ to the field in a given target box C, where ε is the precision parameter. Hence, for a target vector in box C, if we only count the contributions of the source vectors in its $(2k+1)^d$ nearest boxes where k is a parameter, it will incur an error that can be upper bounded as follows:

$$\sum_{j: \|t-s_j\|_\infty \geq k r\sqrt{2\delta}} |q_j| \cdot e^{-\|t-s_j\|_2^2/\delta} \leq \|q\|_1 \cdot e^{-2r^2k^2} \quad (1)$$

When we take $k = \log(\|q\|_1/\varepsilon)$, this error becomes $o(\varepsilon)$.

For a single source vector $s_j \in B$, its field $G_{s_j}(t) = q_j \cdot e^{-\|t-s_j\|_2^2/\delta}$ has the following Taylor expansion at t_C (the center of C):

$$G_{s_j}(t) = \sum_{\beta\geq0} B_\beta(j, C) \left(\frac{t - t_C}{\sqrt{\delta}}\right)^\beta, \quad (2)$$

where $\beta \in \mathbb{N}^d$ is a multi-index,

$$B_\beta(j, C) = q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_\beta \left(\frac{s_j - t_C}{\sqrt{\delta}} \right),$$

and $H_\beta(x)$ is the multi-dimensional Hermite function indexed by β (Definition A.7). We can also control the truncation error of the first p^d terms by ε for $p = \log(\|q\|_1/\varepsilon)$ (see Lemma E.6). Then, for a fixed source box B, the field can be approximated by

$$\sum_{\beta \leq p} C_\beta(B, C) \left(\frac{t - t_C}{\sqrt{\delta}}\right)^\beta.$$
where \(C_\beta(B, C) := \sum_{j \in B} B_\beta(j, C) \). Hence, for each query point \(t \), we just need to locate its target box \(C \), and then \(G(t) \) can be approximated by:
\[
\tilde{G}(t) = \sum_{B \in \text{nb}(C)} \sum_{\beta \leq p} C_\beta(B, C) \left(\frac{t - t_c}{\sqrt{\delta}} \right)^\beta
\]
\[
= \sum_{\beta \leq p} C_\beta(C) \left(\frac{t - t_c}{\sqrt{\delta}} \right)^\beta,
\]
where \(\text{nb}(C) \) is the set of \((2k + 1)^d\) nearest-neighbor of \(C \) and
\[
C_\beta(C) := \sum_{B \in \text{nb}(C)} C_\beta(B, C).
\]

Notice that we can further pre-compute \(C_\beta(C) \) for each target box \(C \) and \(\beta \leq p \). Then, the running time for each target point becomes \(O(p^d) \).

For the preprocessing time, notice that each \(C_\beta(B, C) \) takes \(O(N_B) \)-time to compute, where \(N_B \) is the number of source points in \(B \). Fix a \(\beta \leq p \). Consider the computational cost of \(C_\beta(C) \) for all target boxes \(C \). Note that each source box can interact with at most \((2k + 1)^d\) target boxes. Therefore, the total running time for computing \(\{C_\beta(C_t)\}_{t \in [N(C)]} \) is bounded by
\[
O \left(N \cdot (2k + 1)^d + M \right).
\]

Then, the total cost of the preprocessing is
\[
O \left(N \cdot (2k + 1)^d \cdot p^d + M \cdot p^d \right).
\]

By taking \(p = \log(\|q\|_1/\varepsilon) \) and \(k \leq \log(\|q\|_1/\varepsilon) \), we get an algorithm with \(O_d(N + M) \)-time for preprocessing and \(O_d(1) \)-time for each target point.

We note that this algorithm also supports fast computing \(Kq \) for any \(q \in \mathbb{R}^d \) and \(K \in \mathbb{R}^{n \times n} \) with
\[
K_{ij} = e^{-\|s_i - s_j\|_2^2/\delta}.
\]
Roughly speaking, for each query vector \(q \), we can build this data structure, and then the \(i \)-th coordinate of \(Kq \) is just \(G(s_i) \), which can be computed in poly-logarithmic time. Hence, \(Kq \) can be approximately computed in nearly-linear time with \(\ell_\infty \) error at most \(\varepsilon \).

2.2 Online Static KDE Data Structure (Query-Only)

Next, we consider the same static setting, except target queries \(t \in \mathbb{R}^d \) arrive online, and the goal is to estimate \(G(t) \) for an arbitrary vector in sublinear time. To this end, note that if \(t \) is contained in a non-empty target box \(C_t \), then \(G(t) \) can be approximated using pre-computed \(C_\beta(C_t) \) in poly-logarithmic time. Otherwise, we need to add a new target box \(C_{N(C) + 1} \) for \(t \) and compute \(C_\beta(C_{N(C) + 1}) \), which takes time
\[
\sum_{B \in \text{nb}(C_{N(C) + 1})} O(N_B).
\]

Note, however, that this linear scan naively takes \(O(N) \) time in the worst case. Indeed, looking into the coefficients \(C_\beta(B, C) \):
\[
C_\beta(B, C) = \sum_{j \in B} q_j \cdot \frac{(-1)^{1/|\beta|}}{|\beta|!} \cdot H_\beta \left(\frac{s_j - t_c}{\sqrt{\delta}} \right)
\]
reveals that the source vectors s_j are “entangled” with t_C, so evaluating $C_\beta(B, C)$ brute-force for a new target box C, incurs a linear scan of all source vectors in B.

To “disentangle” s_j and t_C, we use the Taylor series of Hermite function (Eq. (5)):

$$H_\beta \left(\frac{s_j - t_C}{\sqrt{\delta}} \right)$$

$$= H_\beta \left(\frac{s_j - s_B}{\sqrt{\delta}} + \frac{s_B - t_C}{\sqrt{\delta}} \right)$$

$$= \sum_{\alpha \geq 0} \frac{(-1)^{||\alpha||_1}}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right),$$

where s_B denotes the center of the source box B.

Hence, $C_\beta(B, C)$ can be re-written as:

$$C_\beta(B, C)$$

$$= \sum_{j \in B} q_j g(\beta) \sum_{\alpha \geq 0} g(\alpha) \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right)$$

$$= g(\beta) \sum_{\alpha \geq 0} A_\alpha(B) H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right),$$

where $g(x) = (-1)^{||x||_1} / x!$ and

$$A_\alpha(B) := \sum_{j \in B} q_j g(\alpha) \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha.$$ (3)

Now, $A_\alpha(B)$ does not rely on the target box and can be pre-computed, hence we can compute $C_\beta(B, C)$ without going over each source vector. However, there is a price for this conversion, namely, that now $C_\beta(B, C)$ involves summing over all $\alpha \geq 0$, so we need to somehow truncate this series while controlling the overall truncation error for $G(t)$, which appears difficult to achieve.

To this end, we observe that this two-step approximation is equivalent to first forming a truncated Hermite series of $e^{||t-s_j||^2/\delta}$ at the center of the source box s_B, and then transforming all Hermite expansions into Taylor expansions at the center of a target box t_C. More formally, the Hermite approximation of $G(t)$ is

$$G(t)$$

$$= \sum_B \sum_{\alpha \leq p} (-1)^{||\alpha||_1} A_\alpha(B) H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right) + Err_H(p),$$

where $|Err_H(p)| \leq \varepsilon$ (see Lemma E.2). Hence, we can Taylor-expand each H_{α} at t_C and get that:

$$G(t) = \sum_{\beta \leq p} C_\beta(C) \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta + Err_T(p) + Err_H(p),$$

where

$$|Err_H(p)| + |Err_T(p)| \leq \varepsilon$$

(for the formal argument, see Lemma E.5).
Remark 2.1. The original FGT paper contains a flaw in the error estimation, which was partially fixed in [BR02] for the Hermite expansion. Later, [LMG05] corrected the error in both Hermite and Taylor expansions. However, their proofs are brief and use different notations that are adapted for their dual-tree algorithm. We provide more detailed and user-friendly proofs for the correct error estimations in Section E. We believe that they are of independent interest to the community.

This means that, at preprocessing time, it suffices to compute $A_\alpha(B)$ for all source boxes and all $\alpha \leq p$, which takes

$$\sum_{k \in [N(B)]} O\left(p^d \cdot N_B_k\right) = O\left(p^d \cdot N\right) = \tilde{O}_d(N).$$

time. Then, at query time, given an arbitrary query vector t in a target box C, we compute

$$C_\beta(C) = h(\beta) \sum_{B \in \text{nb}(C)} \sum_{\alpha \leq p} A_\alpha(B) H_{\alpha+\beta} \left(\frac{s_B - t_C}{\sqrt{\delta}}\right),$$

which takes $O\left(d \cdot p^d \cdot (2k + 1)^d\right) = \text{poly log}(n)$ time, so long as $d = O(1)$ and $\varepsilon = n^{-O(1)}$.

2.3 Dynamization

Given our (static) representation of points from the last paragraph, dynamizing the above static KDE data structure now becomes simple. Suppose we add a source vector s in the source box B. We first update the intermediate variables $A_\alpha(B)$, $\alpha \leq p$, which takes $O(p^d)$ time. So long as the ℓ_1-norm of the updated charge-vector q remains polynomial in the norm of the previously maintained vector, namely

$$\sqrt{\log(\|q_{\text{new}}\|_1)} > \log(\|q\|_1),$$

we show that one source box can only affect $(2k + 1)^d$ nearest target box C; otherwise, when the change is super-polynomial, we rebuild the data structure, but this cost is amortized away. Hence, we only need to update $C_\beta(C)$ for those $C \in \text{nb}(B)$. Notice that each $C_\beta(B, C)$ can be updated in $O_d(1)$ time, so each affected $C_\beta(C)$ can also be updated in $O_d(1)$ time. Hence, adding a source vector can be done in time $O((2k + 1)^d p^d) = \tilde{O}_d(1)$ as before. Deleting a source vector follows from a similar procedure.

2.4 Generalization to Fast-Decaying Kernels

We briefly explain how the dynamic FGT data structure generalizes to more general kernel functions $K(s, t) = f(\|s - t\|_2)$ where f satisfies the 3 properties in Definition B.1 (cf. [ACSS20]).

In the general case,

$$G_f(t) = \sum_B \sum_{j \in B} q_j K(s_j, t).$$

Similar to the Gaussian kernel case, we can first show that only near boxes matter:

$$\sum_{j: \|t - s_j\|_\infty \geq kr} |q_j| \cdot f(\|s - t\|_2) \leq \varepsilon$$
by the fast-decreasing property (P2) in Definition B.1 of f and taking $k = O(\log(\|q\|_1/\varepsilon))$. Then, we can follow the same “decoupling” approach as the Gaussian kernel case to first Hermite expand $G_f(t)$ at the center of each source box and then Taylor expands each Hermite function at the center of the target box. In this way, we can show that

$$G_f(t) \approx \sum_{\beta \leq p} C_{f,\beta}(\mathcal{C}) \left(\frac{t - t_c}{\sqrt{\delta}} \right)^\beta$$

where

$$C_{f,\beta}(\mathcal{C}) = c_{\beta} \sum_{\mathcal{B} \in \text{nb}(\mathcal{C})} \sum_{\alpha \leq p} A_{f,\alpha}(\mathcal{B}) H_{\alpha+\beta} \left(\frac{s_{\mathcal{B}} - t_c}{\sqrt{\delta}} \right),$$

and the approximation error can be bounded since f is truncateable. $A_{f,\alpha}(\mathcal{B})$ depends on the kernel function f and can be pre-computed in the preprocessing. Then, each $C_{f,\beta}(\mathcal{C})$ can be computed in poly-logarithmic time. Hence, $G(t)$ can be approximately computed in poly-logarithmic time for any target vector t.

$\text{Figure 2: An illustration of inserting two source points with corresponding interactions to the data structure.}$

2.5 Handling Points From Low-Dimensional Static Spaces

In many practical problems, the data lies in a low dimensional subspace of \mathbb{R}^d. We can first project the data into this subspace and then perform FGT on \mathbb{R}^w, where w is the rank. The following lemma shows that FGT can be performed on the projections of the data.

Lemma 2.2 (Hermite projection lemma in low-dimensional space, informal version of Lemma F.3). Given $\mathcal{B} \in \mathbb{R}^{d \times w}$ that defines a w-dimensional subspace of \mathbb{R}^d, let

$$B^\top B = U \Lambda U^\top \in \mathbb{R}^{w \times w}$$

denote the spectral decomposition where $U \in \mathbb{R}^{w \times w}$ and a diagonal matrix $\Lambda \in \mathbb{R}^{w \times w}$. We define

$$P := \Lambda^{-1/2}U^{-1}B^\top \in \mathbb{R}^{w \times d}.$$

$\text{1Indeed, by property P2, } f(\Theta(\log(1/\varepsilon'))) \leq \varepsilon'. \text{ Taking } \varepsilon' := \varepsilon/\|q\|_1, \text{ we get that } f(\|s - t\|_2) \leq \varepsilon/\|q\|_1. \text{ Hence, the summation is at most } \varepsilon.'
Then we have for any \(t, s \in \mathbb{R}^d \) from subspace \(B \), the following equation holds

\[
e^{-\|t-s\|_2^2/\delta} = \sum_{\alpha \geq 0} \frac{(\sqrt{1/\delta}P(t-s))^\alpha}{\alpha!} h_\alpha(\sqrt{1/\delta}P(t-s)).
\]

By Lemma 2.2, it suffices to divide \(\mathbb{R}^w \) instead of \(\mathbb{R}^d \) into boxes and conduct Hermite expansion and Taylor expansion on the low-dimensional subspace. More specifically, given the initial source points, we can compute \(P \) by SVD or QR decomposition in \(N \cdot \omega^{-1} \)-time\(^2\), which is of smaller order than the FGT’s preprocessing time\(^3\). Then, we can project each point \(s_i \in \mathbb{R}^d \) to \(x_i := Ps_i \in \mathbb{R}^w \) for \(i \in [N] \). The remaining procedure in preprocessing is the same as before, but directly working on the low-dimensional sources \(\{x_1, \ldots, x_N\} \).

In the query phase, consider a target point \(t \) in the subspace. We are supposed to compute

\[
G(t) \approx \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t-s_j\|_2^2/\delta}.
\]

By Lemma 2.2, we know that

\[
G(t) \approx \sum_{\beta \leq p} C_\beta(C) \left(P(t-t_C) / \sqrt{\delta} \right)^\beta \approx \sum_{\beta \leq p} C_\beta(C) \left(y - y_C / \sqrt{\delta} \right)^\beta,
\]

where \(C \) is the target box that contains \(t \), \(y = Pt \) and \(y_C = Pt_C \) projected points. Moreover, for each \(\beta \leq p \) and target box \(C \), we have

\[
C_\beta(C) = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{Ps_B - t_C}{\sqrt{\delta}} \right),
\]

\[
= \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{x_B - y_C}{\sqrt{\delta}} \right).
\]

Similarly, for each \(\alpha \leq p \) and source box \(\mathcal{B} \),

\[
A_\alpha(\mathcal{B}) = \frac{(-1)^{||\alpha||_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x_j - x_B}{\sqrt{\delta}} \right)^\alpha.
\]

Therefore, each query is equivalent to being conducted in a \(w \)-dimensional space using our data structure, which takes \(\log O(w)(\|q\|_1/\varepsilon) \)-time.

The update can be done in a similar way in the low-dimensional space using the procedure described in Section 2.3. Hence, each update (insertion or deletion) takes \(\log O(w)(\|q\|_1/\varepsilon) \)-time.

\(^2\omega \approx 2.372 \) is the fast matrix multiplication time exponent.

\(^3\)In practice, we can run numerical algorithms such as randomized SVD that are very fast for low-rank matrices.
2.6 Handling Points From Low-Dimensional Dynamic Spaces

We note that when we add a new source point to the data structure, the intrinsic rank of the data might change by 1 when the point is not in the subspace. For an inserting source point \(s \), consider the rank-increasing case, i.e., \((I - P)s \neq 0\). Then, this new source point contributes to one new basis

\[
u := \frac{(I - P)s}{\| (I - P)s \|_2}.
\]

And we can update the projection matrix \(P \) by \([P \ u] \in \mathbb{R}^{(w+1) \times d}\).

However, as the subspace is changed, we need to maintain the intermediate variables \(A_\alpha(B), C_\beta(C) \). It is easy to observe that for the original projected source and target points or boxes, they can easily be “lifted” to the new subspace by setting zero to the \((w + 1)\)-th coordinate. We show how to update \(A_\alpha(B) \) efficiently. For each source box \(B \) and \(\alpha \leq p \), we have

\[
A_{(\alpha, 0)}^{\text{new}}(B) = (-1)^{\|\alpha\|_1} \cdot \frac{(-1)^i}{\alpha! \cdot i!} \sum_{j \in B} q_j \cdot \left(\frac{x_j^\prime - y_j^\prime}{\sqrt{\delta}} \right)^{(\alpha, i)}
\]

where \(x_j^\prime \) denotes the lifted point. And \(A_{(\alpha, 1)}^{\text{new}}(B) = 0 \) for all \(i > 0 \). Similarly, for each target box \(C \),

\[
C_{(\beta, i)}^{\text{new}}(C) = (-1)^{\|\beta\|_1} (-1)^i \frac{1}{\beta! i!} \cdot \sum_{B \subseteq \tilde{B}} \sum_{\alpha \leq p, j = 0} A_{(\alpha, j)}^{\text{new}}(B) H_{(\alpha, \beta, j + i)} \left(\frac{x_j^\prime - y_j^\prime}{\sqrt{\delta}} \right) \cdot h_i(0)
\]

Therefore, by enumerating all boxes \(B, C \) and indices \(\alpha, \beta \leq p \), we can compute \(A_{(\alpha, 0)}^{\text{new}}(B) \) and \(C_{(\beta, i)}^{\text{new}}(C) \) in \(O(w \|q\|_1 / \varepsilon) \)-time.

Then, we just follow the static subspace insertion procedure to insert the new source point \(s \).

In this way, we obtain a data structure that can handle dynamic low-rank subspaces.

3 Conclusion and Future Directions

In this paper, we study the Fast Gaussian Transform (FGT) in a dynamic setting and propose a dynamic data structure to maintain the source vectors that support very fast kernel density estimation, Mat-Vek queries \((K \cdot q)\), as well as updating the source vectors. We further show that the efficiency of our algorithm can be improved when the data points lie in a low-dimensional
subspace. Our results are especially valuable when FGT is used in real-world applications with rapidly-evolving datasets, e.g., online regression, federated learning, etc.

One open problem in this direction is, can we compute K_q in

$$O(N) + \log^{O(d)}(N/\varepsilon)$$

time? Currently, it takes $N \log^{O(d)}(N/\varepsilon)$ time even in the static setting. The lower bounds in [ACSS20] indicate that this improvement is impossible for some “bad” kernels K which are very non-smooth. It remains open when K is a Gaussian-like kernel. It might be helpful to apply more complicated geometric data structures to maintain the interactions between data points.

Another open problem is, can we fast compute Mat-Vec product or KDE for slowly-decaying kernels? The main difficulty is the current FMM techniques cannot achieve high accuracy when the kernel decays slowly. New techniques might be required to resolve this problem.
Appendix

Roadmap. In Section A, we provide several notations and definitions about the Fast Multipole Method. In Section B, we present the formal statement of our main result. In Section C, we present our data-structures and algorithms. In Section D, we provide a complete and full for our results. In Section E, we prove several lemmas to control the error. In Section F, we generalize our results to low dimension subspace setting.

A Preliminaries

We first give a quick overview of the high-level ideas of FMM in Section A.1. In Section A.2, we provide a complete description and proof of correctness for the fast Gaussian transform, where the kernel function is the Gaussian kernel. Although a number of researchers have used FMM in the past, most of the previous papers about FMM either focus on low-dimensional or low-error cases. We therefore focus on the superconstant-error, high dimensional case, and carefully analyze the joint dependence on \(\varepsilon \) and \(d \). We believe that our presentation of the original proof in Section A.2 is thus of independent interest to the community.

A.1 FMM Background

We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let \(K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+ \) denote a kernel function. The inputs to the FMM are \(N \) sources \(s_1, s_2, \ldots, s_N \in \mathbb{R}^d \) and \(M \) targets \(t_1, t_2, \ldots, t_M \). For each \(i \in [N] \), source \(s_i \) has associated ‘strength’ \(q_i \). Suppose all sources are in a ‘box’ \(B \) and all the targets are in a ‘box’ \(C \). The goal is to evaluate

\[
 u_j = \sum_{i=1}^{N} K(s_i, t_j)q_i, \quad \forall j \in [M]
\]

Intuitively, if \(K \) has some nice property (e.g. smooth), we can hope to approximate \(K \) in the following sense:

\[
 K(s, t) \approx \sum_{p=0}^{P-1} B_p(s) \cdot C_p(t), \quad s \in B, t \in C
\]

for some functions \(B_p, C_p : \mathbb{R}^d \to \mathbb{R} \), where \(P \) is a small positive integer, usually called the interaction rank in the literature [CMZ15, Mar19].

Now, we can construct \(u_i \) in two steps:

\[
 v_p = \sum_{i \in B} B_p(s_i)q_i, \quad \forall p = 0, 1, \ldots, P-1,
\]

and

\[
 \tilde{u}_j = \sum_{p=0}^{P-1} C_p(t_j)v_p, \quad \forall i \in [M].
\]

Intuitively, as long as \(B \) and \(C \) are well-separated, then \(\tilde{u}_j \) is very good estimation to \(u_j \) even for small \(P \), i.e., \(|\tilde{u}_j - u_j| < \varepsilon \).
Recall that, at the beginning of this section, we assumed that all the sources are in the same box \(B \) and \(C \). This is not true in general. To deal with this, we can discretize the continuous space into a batch of boxes \(B_1, B_2, \ldots \) and \(C_1, C_2, \ldots \). For a box \(B_i \) and a box \(C_j \), if they are very far apart, then the interaction between points within them is small, and we can ignore it. If the two boxes are close, then we deal with them efficiently by truncating the high order expansion terms in \(\mathbf{K} \) (only keeping the first \(\log^O(d)(1/\varepsilon) \) terms). For each box, we will see that the number of nearby relevant boxes is at most \(\log^O(d)(1/\varepsilon) \).

A.2 Fast Gaussian Transform

Given \(N \) vectors \(s_1, \ldots, s_N \in \mathbb{R}^d \), \(M \) vectors \(t_1, \ldots, t_M \in \mathbb{R}^d \) and a strength vector \(q \in \mathbb{R}^n \), Greengard and Strain [GS91] provided a fast algorithm for evaluating discrete Gauss transform

\[
G(t_i) = \sum_{j=1}^{N} q_j e^{-\|t_i - s_j\|^2/\delta}
\]

for all \(i \in [M] \) in \(O(M + N) \) time. In this section, we re-prove the algorithm described in [GS91], and determine the exact dependence on \(\varepsilon \) and \(d \) in the running time.

Without loss of generality, we can assume that all the sources \(s_j \) and targets are belonging to the unit box \(B_0 = [0, 1]^d \). The reason is, if not, we can shift the origin and rescaling \(\delta \).

Let \(t \) and \(s \) lie in \(d \)-dimensional Euclidean space \(\mathbb{R}^d \), and consider the Gaussian

\[
e^{-\|t-s\|^2/\delta} = e^{-\sum_{i=1}^{d}(t_i-s_i)^2}
\]

We begin with some definitions. One important tool we use is the Hermite polynomial, which is a well-known class of orthogonal polynomials with respect to Gaussian measure and widely used in analyzing Gaussian kernels.

Definition A.1 (One-dimensional Hermite polynomial, [Her64]). The Hermite polynomials \(\overline{h}_n : \mathbb{R} \to \mathbb{R} \) is defined as follows

\[
\overline{h}_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} e^{-t^2}
\]

The first few Hermite polynomials are:

\[
\overline{h}_1(t) = 2t, \quad \overline{h}_2(t) = 4t^2 - 2, \quad \overline{h}_3(t) = 8t^3 - 12t, \quad \cdots
\]

Definition A.2 (One-dimensional Hermite function, [Her64]). The Hermite functions \(h_n : \mathbb{R} \to \mathbb{R} \) is defined as follows

\[
h_n(t) = e^{-t^2} \overline{h}_n(t) = (-1)^n \frac{d^n}{dt^n} e^{-t^2}
\]

We use the following Fact to simplify \(e^{-(t-s)^2/\delta} \).

Fact A.3. For \(s_0 \in \mathbb{R} \) and \(\delta > 0 \), we have

\[
e^{-(t-s)^2/\delta} = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \left(\frac{s-s_0}{\sqrt{\delta}} \right)^n \cdot h_n \left(\frac{t-s_0}{\sqrt{\delta}} \right)
\]

and

\[
e^{-(t-s)^2/\delta} = e^{-(t-s_0)^2/\delta} \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \left(\frac{s-s_0}{\sqrt{\delta}} \right)^n \cdot \overline{h}_n \left(\frac{t-s_0}{\sqrt{\delta}} \right).
\]
Lemma A.4 (Cramer’s inequality for one-dimensional, [Hil26]). For any $K < 1.09$,
\[|\tilde{h}_n(t)| \leq K 2^{n/2} \sqrt{n} e^{t^2/2}. \]

Using Cramer’s inequality (Lemma A.4), we have the following standard bound.

Lemma A.5. For any constant $K < 1.09$, we have
\[|h_n(t)| \leq K \cdot 2^{n/2} \cdot \sqrt{n} \cdot e^{-t^2/2}. \]

Next, we will extend the above definitions and observations to the high dimensional case. To simplify the discussion, we define multi-index notation. A multi-index $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_d)$ is a d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any multi-index $\alpha \in \mathbb{R}^d$ and any $t \in \mathbb{R}^d$, we write
\[\alpha! = \prod_{i=1}^{d} (\alpha_i!), \quad t^\alpha = \prod_{i=1}^{d} t_i^{\alpha_i}, \quad D^\alpha = \partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_d^{\alpha_d}. \]

where ∂_i is the differential operator with respect to the i-th coordinate in \mathbb{R}^d. For integer p, we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [d]$; and we say $\alpha \geq p$ if $\alpha_i \geq p, \exists i \in [d]$. We use these definitions to guarantee that $\{\alpha \leq p\} \cup \{\alpha \geq p\} = \mathbb{N}^d$.

We can now define multi-dimensional Hermite polynomial:

Definition A.6 (Multi-dimensional Hermite polynomial, [Her64]). We define function $e^H_{\alpha} : \mathbb{R}^d \rightarrow \mathbb{R}$ as follows:
\[e^H_{\alpha}(t) = \prod_{i=1}^{d} e^{h_{\alpha_i}(t_i)}. \]

Definition A.7 (Multi-dimensional Hermite function, [Her64]). We define function $H_{\alpha} : \mathbb{R}^d \rightarrow \mathbb{R}$ as follows:
\[H_{\alpha}(t) = \prod_{i=1}^{d} h_{\alpha_i}(t_i). \]

It is easy to see that $H_{\alpha}(t) = e^{-\|t\|_2^2} \cdot \tilde{H}_\alpha(t)$

The Hermite expansion of a Gaussian in \mathbb{R}^d is
\[e^{-\|t-s\|_2^2} = \sum_{\alpha \geq 0} \frac{(t-s_0)^\alpha}{\alpha!} h_{\alpha}(s-s_0). \quad (4) \]

Cramer’s inequality generalizes to

Lemma A.8 (Cramer’s inequality for multi-dimensional case, [GS91, ACSS20]). Let $K < (1.09)^d$, then
\[|\tilde{H}_{\alpha}(t)| \leq K \cdot e^{\|t\|_2^2/2} \cdot 2^{\|\alpha\|_1/2} \cdot \sqrt{\alpha!} \]

and
\[|H_{\alpha}(t)| \leq K \cdot e^{-\|t\|_2^2/2} \cdot 2^{\|\alpha\|_1/2} \cdot \sqrt{\alpha!} \]

The Taylor series of H_{α} is
\[H_{\alpha}(t) = \sum_{\beta \geq 0} \frac{(t-t_0)^\beta}{\beta!} (-1)^{\|\beta\|_1} H_{\alpha+\beta}(t_0). \quad (5) \]
B. Our Result

![Diagram of deleting a source point from the data structure]

Figure 3: An illustration of deleting a source point from the data structure.

B.1 Properties of Kernel Function

[ACSS20] identified the three key properties of kernel functions \(K(s, t) = f(\|s - t\|_2) \) which allow sub-quadratic matrix-vector multiplication via the fast Multipole method. Our dynamic algorithm will work for any kernel satisfying these properties.

Definition B.1 (Properties of general kernel function, [ACSS20]). We define the following properties of the function \(f : \mathbb{R} \rightarrow \mathbb{R}_+ \):

- **P1**: \(f \) is non-increasing, i.e., \(f(x) \leq f(y) \) when \(x \geq y \).
- **P2**: \(f \) is decreasing fast, i.e., \(f(\Theta(\log(1/\varepsilon))) \leq \varepsilon \).
- **P3**: \(f \)'s Hermite expansion and Taylor expansion are truncateable: the truncation error of the first \((\log d(1/\varepsilon))\) terms in the Hermite and Taylor expansion of \(K \) is at most \(\varepsilon \).

Remark B.2. We note that **P3** can be replaced with the following more general property:

- **P4**: \(K : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \) is \(\{\phi_\alpha\}_{\alpha \in \mathbb{N}^d} \)-expansionable: there exist constants \(c_\alpha \) that only depend on \(\alpha \in \mathbb{N}^d \) and functions \(\phi_\alpha : \mathbb{R}^d \rightarrow \mathbb{R} \) such that
 \[
 K(s, t) = \sum_{\alpha \in \mathbb{N}^d} c_\alpha \cdot (s - s_0)^\alpha \cdot \phi_\alpha(t - s_0)
 \]
 for any \(s_0 \in \mathbb{R}^d \) and \(s \) close to \(s_0 \). Moreover, the truncation error of the first \((\log d(1/\varepsilon))\) terms is \(\leq \varepsilon \).

Remark B.3. Two examples of kernels that satisfy Properties 1 and 2 are:

- \(K(s, t) = e^{-\alpha \|s - t\|^2} \) for any \(\alpha \in \mathbb{R}_+ \).
- \(K(s, t) = e^{-\alpha \|s - t\|^{2p}} \) for any \(p \in \mathbb{N}_+ \).
Algorithm 1 Informal version of Algorithm 2, 3, 4 and 5.

1: data structure DynamicFGT \[\triangleright \text{Theorem B.5}\]
2: members
3: \(A_\alpha(B_k), k \in [N(B)], \alpha \leq p\)
4: \(C_\beta(C_k), k \in [N(C)], \beta \leq p\)
5: \(t_{C_k}, k \in [N(C)]\)
6: \(s_{B_k}, k \in [N(B)]\)
7: end members
8: procedure Update \((s \in \mathbb{R}^d, q \in \mathbb{R})\) \[\triangleright \text{Informal version of Algorithm 4 and 5}\]
9: Find the box \(s \in B_k\)
10: Update \(A_\alpha(B_k)\) for all \(\alpha \leq p\)
11: Find \((2k + 1)^d\) nearest target boxes to \(B_k\), denote by \(\text{nb}(B_k)\) \[\triangleright k \leq \log(\|q\|_1/\varepsilon)\]
12: for \(C_l \in \text{nb}(B_k)\) do
13: Update \(C_\beta(C_l)\) for all \(\beta \leq p\)
14: end for
15: end procedure
16: procedure KDE-QUERY \((t \in \mathbb{R}^d)\) \[\triangleright \text{Informal version of Algorithm 3}\]
17: Find the box \(t \in C_k\)
18: \(\widetilde{G}(t) \leftarrow \sum_{\beta \leq p} C_\beta(C_k)((t - t_{C_k})/\sqrt{\delta})^\beta\)
19: end procedure
20: end data structure

B.2 Dynamic FGT

In this section, we present our main result. We first define the dynamic density-estimation maintenance problem with respect to the Gaussian kernel.

Definition B.4 (Dynamic FGT Problem). We wish to design a data-structure that efficiently supports any sequence of the following operations:

- INIT \((S \subset \mathbb{R}^d, q \in \mathbb{R}^{|S|}, \varepsilon \in \mathbb{R})\) Let \(N = |S|\). The data structure is given \(N\) source points \(s_1, \ldots, s_N \in \mathbb{R}^d\) with their charge \(q_1, \ldots, q_N \in \mathbb{R}\).
- INSERT \((s \in \mathbb{R}^d, q_s \in \mathbb{R})\) Add the source point \(s\) with its charge \(q_s\) to the point set \(S\).
- DELETE \((s \in \mathbb{R}^d)\) Delete \(s\) (and its charge \(q_s\)) from the point set \(S\).
- KDE-QUERY \((t \in \mathbb{R}^d)\) Output \(\widetilde{G}\) such that \(G(t) - \varepsilon \leq \widetilde{G} \leq G(t) + \varepsilon\).

The main result of this paper is a fully-dynamic data structure supporting all of the above operations in polylogarithmic time:

Theorem B.5 (Dynamic FGT Data Structure). Given \(N\) vectors \(S = \{s_1, \ldots, s_N\} \subset \mathbb{R}^d\), a number \(\delta > 0\), and a vector \(q \in \mathbb{R}^N\), let \(G : \mathbb{R}^d \rightarrow \mathbb{R}\) be defined as \(G(t) = \sum_{i=1}^N q_i \cdot K(s_i, t)\) denote the kernel-density of \(t\) with respect to \(S\), where \(K(s_i, t) = f(||s_i - t||_2)\) for \(f\) satisfying the properties in Definition B.1. There is a dynamic data structure that supports the following operations:

- INIT () (Algorithm 2) Preprocess in \(N \cdot \log^{O(d)}(\|q\|_1/\varepsilon)\) time.
• **KDE-QUERY**($t \in \mathbb{R}^d$) (Algorithm 3) Output \tilde{G} such that $G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon$ in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.

• **INSERT**($s \in \mathbb{R}^d, q_s \in \mathbb{R}$) (Algorithm 4) For any source point $s \in \mathbb{R}^d$ and its charge q_s, update the data structure by adding this source point in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.

• **DELETE**($s \in \mathbb{R}^d$) (Algorithm 5) For any source point $s \in \mathbb{R}^d$ and its charge q_s, update the data structure by deleting this source point in $\log^{O(d)}(\|q\|_1/\varepsilon)$ time.

• **QUERY**($q \in \mathbb{R}^N$) (Algorithm 3) Output $\tilde{K}q \in \mathbb{R}^N$ such that $\|\tilde{K}q - Kq\|_\infty \leq \varepsilon$, where $K \in \mathbb{R}^{N \times N}$ is defined by $K_{i,j} = K(s_i, s_j)$ in $N \log^{O(d)}(\|q\|_1/\varepsilon)$ time.

Remark B.6. The QUERY time can be further reduced when the change of the charge vector q is sparsely changed between two consecutive queries. More specifically, let $\Delta := \|q_{\text{new}} - q\|_0$ be the number of changed coordinates of q. Then, QUERY can be done in $O_d(\Delta)$ time.
C Algorithms

Algorithm 2 This algorithm are the init part of Theorem B.5.

\begin{algorithm}
\begin{algorithmic}[1]
\STATE \textbf{data structure} \textsc{DynamicFGT} \hfill \triangleright \text{Theorem B.5}
\STATE \textbf{members}
\STATE \textbf{end members}
\STATE \textbf{procedure} \textsc{Init}(\{s_j \in \mathbb{R}^d, j \in [N]\}, \{q_j \in \mathbb{R}, j \in [N]\})
\STATE \hspace{1em} p \leftarrow \log(\|q\|_1 / \varepsilon)
\STATE \hspace{1em} Assign \(N \) sources into \(N(B) \) boxes \(B_1, \ldots, B_{N(B)} \) of length \(r\sqrt{\delta} \)
\STATE \hspace{1em} Set center \(s_{B_k}, k \in [N(B)] \) of source boxes \(B_1, \ldots, B_{N(B)} \)
\STATE \hspace{1em} Set centers \(t_{C_k}, k \in [N(C)] \) of target boxes \(C_1, \ldots, C_{N(C)} \)
\FOR {\(k \in [N(B)] \)} \hfill \triangleright \text{Source box} \(B_k \) with center \(s_{B_k} \)
\FOR {\(\alpha \leq p \)} \hfill \triangleright \text{we say} \(\alpha \leq p \) \text{if} \(\alpha_i \leq p, \forall i \in [d] \)
\STATE \hspace{1em} Compute \[A_{\alpha}(B_k) \leftarrow \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{s_j \in B_k} q_j \left(\frac{s_j - s_{B_k}}{\sqrt{\delta}} \right) ^\alpha \]
\hspace{1em} \triangleright \text{takes} \(p^d N \) \text{time in total}
\ENDFOR
\ENDFOR
\FOR {\(k \in [N(C)] \)} \hfill \triangleright \text{Target box} \(C_k \) with center \(t_{C_k} \)
\FOR {\(\beta \leq p \)} \hfill \triangleright \(k \leq \log(\|q\|_1 / \varepsilon) \)
\STATE \hspace{1em} Compute \[C_{\beta}(C_k) \leftarrow \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{B_l \in \text{nb}(C_k)} \sum_{\alpha \leq p} A_{\alpha}(B_l) \cdot H_{\alpha+\beta} \left(\frac{s_{B_l} - t_{C_k}}{\sqrt{\delta}} \right) \]
\hspace{1em} \triangleright \text{takes} \(N(C) \cdot (2k+1)^d\eta p^{d+1} \) \text{time in total}
\hspace{1em} \triangleright \(N(C) \leq \min\{(r\sqrt{2\delta})^{-d/2}, M\} \)
\ENDFOR
\ENDFOR
\textbf{end procedure}
\STATE \textbf{end data structure}
\end{algorithmic}
\end{algorithm}
Algorithm 3 This algorithm is the query part of Theorem B.5.

1:
2: data structure DYNAMICFGT
3: procedure KDE-QUERY \(t \in \mathbb{R}^d \)
4: Find the box \(t \in \mathcal{C}_k \)
5: Compute \(G_p(t) \leftarrow \sum_{\beta \leq p} C_\beta(C_k) \cdot \left(\frac{t - t_{C_k}}{\sqrt{\delta}} \right)^\beta \) \(\triangleright \) Takes \(p^d \) time in total
6: return \(G_p(t) \)
7: end procedure
8: procedure QUERY \(q \in \mathbb{R}^N \)
9: INIT(\(\{s_j, j \in [N]\}, q \)) \(\triangleright \) Takes \(\tilde{O}(N) \) time
10: for \(j \in [N] \) do
11: \(u_j \leftarrow \text{LOCAL-QUERY}(s_j) \) \(\triangleright \|u - Kq\|_{\infty} \leq \varepsilon \)
12: end for
13: return \(u \)
14: end procedure
15: end data structure
Algorithm 4 This algorithm is the update part of Theorem B.5.

1: data structure \textsc{DynamicFGT} \quad \triangleright \text{Theorem B.5}
2: members \quad \triangleright \text{This is exact same as the members in Algorithm 2.}
3: \quad A_\alpha(B_k), k \in [N(B)], \alpha \leq p
4: \quad C_\beta(C_k), k \in [N(C)], \beta \leq p
5: \quad t_{C_l}, k \in [N(C)]
6: \quad s_{B_k}, k \in [N(B)]
7: end members
8: 9: procedure INSERT(s \in \mathbb{R}^d, q \in \mathbb{R})
10: \quad \text{Find the box } s \in B_k \quad \triangleright \text{we say } \alpha \leq p \text{ if } \alpha_i \leq p, \forall i \in [d]
11: \quad \text{for } \alpha \leq p \text{ do}
12: \quad \quad \text{Compute}
13: \quad \quad A_{\alpha}^\text{new}(B_k) \leftarrow A_\alpha(B_k) + \frac{(-1)^{\|\alpha\|1}}{\alpha!} q \cdot \left(\frac{s - s_{B_k}}{\sqrt{\delta}} \right)^\alpha \quad \triangleright \text{Takes } p^d \text{ time}
14: \quad \quad \text{end for}
15: \quad \text{Find } (2k + 1)^d \text{ nearest target boxes to } B_k, \text{ denote by } \text{nb}(B_k) \quad \triangleright k \leq \log(\|q\|_1/\varepsilon)
16: \quad \text{for } C_l \in \text{nb}(B_k) \text{ do}
17: \quad \quad \text{for } \beta \leq p \text{ do}
18: \quad \quad \quad \text{Compute}
19: \quad \quad \quad C_{\beta}^\text{new}(C_l) \leftarrow C_\beta(C_l) + \frac{(-1)^{\|\beta\|1}}{\beta!} \sum_{\alpha \leq p} (A_{\alpha}^\text{new}(B_k) - A_\alpha(B_k)) \cdot H_{\alpha + \beta} \left(\frac{s_{B_k} - t_{C_l}}{\sqrt{\delta}} \right) \quad \triangleright \text{Takes } (2k + 1)^d p^d \text{ time}
20: \quad \quad \quad \text{end for}
21: \quad \quad \text{end for}
22: \quad \text{for } \alpha \leq p \text{ do}
23: \quad \quad A_\alpha(B_k) \leftarrow A_{\alpha}^\text{new}(B_k) \quad \triangleright \text{Takes } p^d \text{ time}
24: \quad \text{end for}
25: \text{for } C_l \in \text{nb}(B_k) \text{ do}
26: \quad \quad \text{for } \beta \leq p \text{ do}
27: \quad \quad \quad C_{\beta}(C_l) \leftarrow C_{\beta}^\text{new}(C_l) \quad \triangleright \text{Takes } (2k + 1)^d p^d \text{ time}
28: \quad \quad \text{end for}
29: \quad \text{end for}
30: \text{end procedure}
31: \text{end data structure}
Algorithm 5 This algorithm is another update part of Theorem B.5.

1: data structure \texttt{DynamicFGT}
2: members
3: $A_{\alpha}(B_k), k \in [N(B)], \alpha \leq p$
4: $C_{\beta}(C_k), k \in [N(C)], \beta \leq p$
5: $t_{C_k}, k \in [N(C)]$
6: $s_{B_k}, k \in [N(B)]$
7: $\delta \in \mathbb{R}$
8: end members
9: procedure \texttt{DELETE}(s $\in \mathbb{R}^d$, q $\in \mathbb{R}$)
10: Find the box s $\in B_k$
11: for $\alpha \leq p$ do
12: \hspace{1cm} Compute
13: $A_{\alpha}^{\text{new}}(B_k) \leftarrow A_{\alpha}(B_k) - \frac{(-1)^{\|\alpha\|_1}q}{\alpha!} \left(\frac{s - s_{B_k}}{\sqrt{\delta}}\right)^\alpha$
14: \hspace{1cm} \triangleright Takes p^d time
15: end for
16: Find $(2k + 1)^d$ nearest target boxes to B_k, denote by \texttt{nb}(B_k)
17: for $C_l \in \texttt{nb}(B_k)$ do
18: \hspace{1cm} for $\beta \leq p$ do
19: \hspace{2cm} Compute
20: $C_{\beta}^{\text{new}}(C_l) \leftarrow C_{\beta}(C_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_{\alpha}^{\text{new}}(B_k) - A_{\alpha}(B_k)) \cdot H_{\alpha+\beta} \left(\frac{s_{B_k} - t_{C_l}}{\sqrt{\delta}}\right)$
21: \hspace{2cm} \triangleright Takes $(2k + 1)^d p^d$ time
22: \hspace{1cm} end for
23: end for
24: for $\alpha \leq p$ do
25: \hspace{1cm} $A_{\alpha}(B_k) \leftarrow A_{\alpha}^{\text{new}}(B_k)$
26: end for
27: for $C_l \in \texttt{nb}(B_k)$ do
28: \hspace{1cm} for $\beta \leq p$ do
29: \hspace{2cm} $C_{\beta}(C_l) \leftarrow C_{\beta}^{\text{new}}(C_l)$
30: \hspace{2cm} \triangleright Takes $(2k + 1)^d p^d$ time
31: \hspace{1cm} end for
32: end for
33: end procedure
34: end data structure
D Analysis

Proof of Theorem B.3. Correctness of KDE-QUERY. Algorithm 2 accumulates all sources into truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via Lemma E.5, thus it can approximate the function $G(t)$ by

$$G(t) = \sum_{B} \sum_{j \in B} q_j \cdot e^{-\frac{\|t-s_j\|^2}{2\delta}}$$

$$= \sum_{\beta \leq p} C_{\beta} \left(\frac{t-t_c}{\sqrt{\delta}} \right)^{\beta} + \text{Err}_T(p) + \text{Err}_H(p)$$

where $|\text{Err}_H(p)| + |\text{Err}_T(p)| \leq Q \cdot \varepsilon$ by $p = \log(\|q\|_1/\varepsilon)$,

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{B} \sum_{\alpha \leq p} A_{\alpha}(B) H_{\alpha+\beta} \left(\frac{s_B - t_c}{\sqrt{\delta}} \right)$$

and the coefficients $A_{\alpha}(B)$ are defined as Eq. (3).

Running time of KDE-QUERY. In line 17, it takes $O(p^dN)$ time to compute all the Hermite expansions, i.e., to compute the coefficients $A_{\alpha}(B)$ for all $\alpha \leq p$ and all sources boxes B.

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^d coefficients of C_{β} is only $O(dp^{d+1})$ for each box B in the range. Thus, we know for each target box C, the running time is $O((2k+1)^d dp^{d+1})$, thus the total time in line 23 is

$$O(N(C) \cdot (2k+1)^d dp^{d+1}).$$

Finally we need to evaluate the appropriate Taylor series for each target t_i, which can be done in $O(p^dM)$ time in line 4. Putting it all together, Algorithm 2 takes time

$$O((2k+1)^d dp^{d+1} N(C)) + O(p^d N) + O(p^d M)$$

$$= O \left((M + N) \log^{O(d)}(\|q\|_1/\varepsilon) \right).$$

Correctness of UPDATE. Algorithm 4 and Algorithm 5 maintains C_{β} as follows,

$$C_{\beta} = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{B} \sum_{\alpha \leq p} A_{\alpha}(B) H_{\alpha+\beta} \left(\frac{s_B - t_c}{\sqrt{\delta}} \right)$$

where $A_{\alpha}(B)$ is given by

$$A_{\alpha}(B) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \sum_{j \in B} q_j \cdot \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^{\alpha}.$$
Correctness of **QUERY**. To compute Kq for a given $q \in \mathbb{R}^d$, notice that for any $i \in [N]$,

$$
(Kq)_i = \sum_{j=1}^{N} q_j \cdot e^{-\|s_i - s_j\|_2^2/\delta}
= G(s_i).
$$

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for $G(t)$ immediately gives the ℓ_∞-error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the query, which takes $O_d(N)$ time. Then, we perform N KDE-Query, each takes $O_d(1)$ time. Hence, the total running time is $O_d(N)$.

We note that when the charge vector q is slowly changing, i.e., $\Delta := \|q_{\text{new}} - q\|_0 \leq o(N)$, we can UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes $O_d(1)$ time, it will take $O_d(\Delta)$ time to update the data structure.

Then, consider computing Kq_{new} in this setting. We note that each source box can only affect $O_d(\Delta)$ other target boxes, where the target vectors are just the source vectors in this setting. Hence, there are at most $O_d(\Delta)$ boxes whose C_β is changed. Let S denote the indices of source vectors in these boxes. Since

$$
G(s_i) = \sum_{\beta \leq p} C_\beta(B_k) \cdot \left(\frac{s_i - s_{B_k}}{\sqrt{\delta}}\right)^\beta,
$$

we get that there are at most $O_d(\Delta)$ coordinates of Kq_{new} that are significantly changed from Kq, and we only need to re-compute $G(s_i)$ for $i \in S$. If we assume that the source vectors are well-separated, i.e., $|S| = O(\delta)$, the total computational cost is $O_d(\Delta)$.

Therefore, when the change of the charge vector q is sparse, Kq can be computed in sublinear time.

\[\Box \]

E Error Estimation

This section provides several technical lemma that are used in Appendix D. We first give a definition.

Definition E.1 (Hermite expansion and coefficients). Let B denote a box with center $s_B \in \mathbb{R}^d$ and side length $r\sqrt{2\delta}$ with $r < 1$. If source s_j is in box B, we will simply denote as $j \in B$. Then the Gaussian evaluation from the sources in box B is,

$$
G(t) = \sum_{j \in B} q_j \cdot e^{-\|t - s_j\|_2^2/\delta}.
$$

The Hermite expansion of $G(t)$ is

$$
G(t) = \sum_{\alpha \geq 0} A_\alpha \cdot H_\alpha \left(\frac{t - s_B}{\sqrt{\delta}}\right),
$$

(6)

where the coefficients A_α are defined by

$$
A_\alpha = \frac{1}{\alpha!} \sum_{j \in B} q_j \cdot \left(\frac{s_j - s_B}{\sqrt{\delta}}\right)^\alpha
$$

(7)
The rest of this section will present a batch of Lemmas that bound the error of the function truncated at certain degree of Taylor and Hermite expansion.

We first upper bound the truncation error of Hermite expansion.

Lemma E.2 (Truncated Hermite expansion). Let p denote an integer, let $\text{Err}_H(p)$ denote the error after truncating the series $G(t)$ (as defined in Eq. (6)) after p^d terms, i.e.,

$$\text{Err}_H(p) = \sum_{\alpha \geq p} A_{\alpha} \cdot H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right).$$

(8)

Then we have

$$|\text{Err}_H(p)| \leq \frac{\sum_{j \in B} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}$$

where $r \leq \frac{1}{2}$.

Proof. Using Eq. (4) to expand each Gaussian (see Definition E.1) in the

$$G(t) = \sum_{j \in B} q_j \cdot e^{-\|t - s_j\|^2/\delta}$$

into a Hermite series about s_B:

$$\sum_{j \in B} q_j \sum_{\alpha \geq 0} \frac{1}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right)$$

and swap the summation over α and j to obtain the desired form:

$$\sum_{\alpha \geq 0} \left(\frac{1}{\alpha!} \sum_{j \in B} q_j \cdot \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \right) H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right) = \sum_{\alpha \geq 0} A_{\alpha} H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right).$$

Here, the truncation error bound is due to Lemma A.8 and the standard equation for the tail of a geometric series.

To formally bound the truncation error, we first rewrite the Hermit expansion as follows

$$e^{-\|t - s_j\|^2/\delta} = \prod_{i=1}^{d} \left(\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_B)_i}{\sqrt{\delta}} \right) \right) + \sum_{n_i=p}^{\infty} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_B)_i}{\sqrt{\delta}} \right)$$

(9)

Notice from Cramer’s inequality (Lemma A.5),

$$h_{n_i} \left(\frac{t_i - (s_B)_i}{\sqrt{\delta}} \right) \leq \sqrt{n_i!} \cdot 2^{n_i/2} \cdot e^{-\left(\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \right)^2/2}.$$

Therefore we can use properties of the geometric series (notice $\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \leq r/\sqrt{2}$) to bound each term in the product as follows

$$\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_B)_i}{\sqrt{\delta}} \right) \leq \frac{1 - r^p}{1 - r},$$

(10)
and

\[
\sum_{n_i=p}^{\infty} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_B)_i}{\sqrt{\delta}} \right) \leq \frac{1}{\sqrt{p!}} \cdot \frac{r^p}{1 - r}.
\]

(11)

Now we come back to bound Eq. (8) as follows

\[
\text{Err}_H(p) = \sum_{j \in B} q_j \sum_{\alpha \geq p} \frac{1}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^{\alpha} H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right)
\leq \left(\sum_{j \in B} |q_j| \right) \left(e^{-\frac{||t - s_B||_2^2}{p}} - \prod_{j=1}^{d} \left(\sum_{n_i=1}^{p-1} \frac{1}{n_i!} \left(\frac{(s_j)_i - (s_B)_i}{\sqrt{\delta}} \right)^{n_i} h_{n_i} \left(\frac{t_i - (s_B)_i}{\sqrt{\delta}} \right) \right) \right)
\leq \frac{\sum_{j \in B} |q_j|}{(1 - r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1 - r)^k \left(\frac{r^p}{\sqrt{p!}} \right)^{d-k}
\]

where the first step comes from definition, the second step comes from Eq. (9) and the last step comes from Eq. (10) and Eq. (11) and binomial expansion.

Remark E.3. By Stirling’s formula, it is easy to see that when we take \(p = \log(||q||_1 / \varepsilon) \), this error will be bounded by \(||q||_1 \cdot \varepsilon \).

The Lemma E.4 shows how to convert a Hermite expansion at location \(s_B \) into a Taylor expansion at location \(t_C \). Intuitively, the Taylor series converges rapidly in the box (that has side length \(r \sqrt{2\delta} \) center around \(t_C \), where \(r \in (0, 1) \)).

Lemma E.4 (Hermite expansion with truncated Taylor expansion). Suppose the Hermite expansion of \(G(t) \) is given by Eq. (6), i.e.,

\[
G(t) = \sum_{\alpha \geq 0} A_{\alpha} \cdot H_{\alpha} \left(\frac{t - s_B}{\sqrt{\delta}} \right).
\]

Then, the Taylor expansion of \(G(t) \) at an arbitrary point \(t_0 \) can be written as:

\[
G(t) = \sum_{\beta \geq 0} B_{\beta} \left(\frac{t - t_0}{\sqrt{\delta}} \right)^{\beta}
\]

(13)

where the coefficients \(B_{\beta} \) are defined as

\[
B_{\beta} = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\alpha \geq 0} (-1)^{||\alpha||_1} A_{\alpha} \cdot H_{\alpha + \beta} \left(\frac{s_B - t_0}{\sqrt{\delta}} \right).
\]

(14)

Let \(\text{Err}_T(p) \) denote the error by truncating the Taylor expansion after \(p^d \) terms, in the box \(C \) (that has center at \(t_C \) and side length \(r \sqrt{2\delta} \), i.e.,

\[
\text{Err}_T(p) = \sum_{\beta \geq p} B_{\beta} \left(\frac{t - t_C}{\sqrt{\delta}} \right)^{\beta}
\]

26
Then
\[|\text{Err}_T(p)| \leq \sum_{j \in \mathcal{B}} \frac{|q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{|\beta|}} \right)^{d-k} \]
where \(r \leq 1/2 \).

Proof. Each Hermite function in Eq. (12) can be expanded into a Taylor series by means of Eq. (5). The expansion in Eq. (13) is due to swapping the order of summation.

Next, we will bound the truncation error. Using Eq. (7) for \(A_\alpha \), we can rewrite \(B_\beta \):
\[
B_\beta = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\alpha \geq 0} (-1)^{||\alpha||_1} A_\alpha H_{\alpha+\beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right)
\]
\[
= \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\alpha \geq 0} \left(\frac{(-1)^{||\alpha||_1}}{\alpha!} \sum_{j \in \mathcal{B}} q_j \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^{\alpha} \right) H_{\alpha+\beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right)
\]
By Eq. (5), the inner sum is the Taylor expansion of \(H_\beta((s_j - t_C)/\sqrt{\delta}) \). Thus
\[
B_\beta = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{j \in \mathcal{B}} q_j \cdot H_\beta \left(\frac{s_j - t_c}{\sqrt{\delta}} \right)
\]
and Cramer’s inequality implies
\[
|B_\beta| \leq \frac{1}{\beta!} K \cdot Q_B 2^{||\beta||_1/2} \sqrt{\beta!} = K Q_B \frac{2^{||\beta||_1/2}}{\sqrt{\beta!}}.
\]
To formally bound the truncation error, we have
\[
\text{Err}_T(p) = \sum_{\beta \geq p} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta
\]
\[
\leq K Q_B \left(\prod_{i=1}^{d} \left(\sum_{n_i=0}^{\infty} \frac{1}{\sqrt{n_i!}} 2^{n_i/2} \left(\frac{t - t_C}{\delta} \right)^{n_i} \right) \right)
\]
\[
\leq \frac{\sum_{j \in \mathcal{B}} |q_j|}{(1-r)^d} \sum_{k=0}^{d-1} \binom{d}{k} (1-r^p)^k \left(\frac{r^p}{\sqrt{|\beta|}} \right)^{d-k}
\]
where the second step uses \(|B_\beta| \leq K Q_B \frac{2^{||\beta||_1/2}}{\sqrt{\beta!}} \) and the rest are similar to those in Lemma E.2. \(\square \)

For designing our algorithm, we would like to make a variant of Lemma E.4 that combines the truncations of Hermite expansion and Taylor expansion. More specifically, we first truncate the Taylor expansion of \(G_p(t) \), and then truncate the Hermite expansion in Eq. (14) for the coefficients.

Lemma E.5 (Truncated Hermite expansion with truncated Taylor expansion). Let \(G(t) \) be defined as Def E.1. For an integer \(p \), let \(G_p(t) \) denote the Hermite expansion of \(G(t) \) truncated at \(p \), i.e.,
\[
G_p(t) = \sum_{\alpha \leq p} A_\alpha H_\alpha \left(\frac{t - s_B}{\sqrt{\delta}} \right).
\]
The Taylor expansion of function $G_p(t)$ at an arbitrary point t_0 can be written as:

$$G_p(t) = \sum_{\beta \geq 0} C_\beta \left(\frac{t - t_0}{\sqrt{\delta}} \right)^\beta,$$

where the coefficients C_β are defined as

$$C_\beta = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\alpha \leq \beta} (-1)^{||\alpha||_1} A_\alpha \cdot H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right). \tag{15}$$

Let $\text{Err}_T(p)$ denote the error in truncating the Taylor series after p^d terms, in the box C (that has center t_C and side length $r\sqrt{2\delta}$), i.e.,

$$\text{Err}_T(p) = \sum_{\beta \geq p} C_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta.$$

Then, we have

$$|\text{Err}_T(p)| \leq 2 \sum_{j \in B} |q_j| \sum_{k=0}^{d-1} \binom{d}{k} \left(1 - r^p \right)^k \left(\frac{r^p}{\sqrt{\beta}} \right)^{d-k}$$

where $r \leq 1/2$.

Proof. We can write C_β in the following way:

$$C_\beta = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{j \in B} q_j \sum_{\alpha \leq \beta} (-1)^{||\alpha||_1} \frac{1}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right)$$

$$= \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{j \in B} q_j \left(\sum_{\alpha \geq 0} - \sum_{\alpha > p} \right) (-1)^{||\alpha||_1} \frac{1}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right)$$

$$= B_\beta - \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{j \in B} q_j \sum_{\alpha > p} (-1)^{||\alpha||_1} \frac{1}{\alpha!} \left(\frac{s_j - s_B}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha + \beta} \left(\frac{s_B - t_C}{\sqrt{\delta}} \right)$$

$$= B_\beta + (C_\beta - B_\beta)$$

Next, we have

$$|\text{Err}_T(p)| \leq \left| \sum_{\beta \geq p} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \right| + \left| \sum_{\beta \geq p} (C_\beta - B_\beta) \cdot \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \right| \tag{16}$$

Using Lemma E.4, we can upper bound the first term in the Eq. (16) by,

$$\left| \sum_{\beta \geq p} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \right| \leq \sum_{j \in B} |q_j| \sum_{k=0}^{d-1} \binom{d}{k} \left(1 - r^p \right)^k \left(\frac{r^p}{\sqrt{\beta}} \right)^{d-k}.$$

Since we can similarly bound $C_\beta - B_\beta$ as follows

$$|C_\beta - B_\beta| \leq \frac{1}{\beta!} K \cdot Q_B 2^{||\beta||_1/2} \sqrt{\beta!} \leq KQ_B \frac{2^{||\beta||_1/2}}{\sqrt{\beta!}},$$

$$\sum_{\beta \geq p} (C_\beta - B_\beta) \cdot \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \leq KQ_B \frac{2^{||\beta||_1/2}}{\sqrt{\beta!}} \cdot \sum_{\beta \geq p} \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta,$$
we have the same bound for the second term
\[
\left| \sum_{\beta \geq p} (C_\beta - B_\beta) \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta \right| \leq \sum_{j \in B} |q_j| \sum_{k=0}^{d-1} \binom{d}{k} (1 - r^p)^k \left(\frac{r^p \sqrt{p!}}{\sqrt{p!}} \right)^{d-k}.
\]

The proof of the following Lemma is almost identical, but it directly bounds the truncation error of Taylor expansion of the Gaussian kernel. We omit the proof here.

Lemma E.6 (Truncated Taylor expansion). Let \(G_{s_j}(t) : \mathbb{R}^d \to \mathbb{R} \) be defined as
\[
G_{s_j}(t) = q_j \cdot e^{-\|t - s_j\|_2^2/\delta}.
\]

The Taylor expansion of \(G_{s_j}(t) \) at \(t_C \in \mathbb{R}^d \) is:
\[
G_{s_j}(t) = \sum_{\beta \geq 0} B_\beta \left(\frac{t - t_C}{\sqrt{\delta}} \right)^\beta,
\]
where the coefficients \(B_\beta \) is defined as
\[
B_\beta = q_j \cdot \frac{(-1)^{\|\beta\|_1}}{\beta!} \cdot H_\beta \left(\frac{s_j - t_C}{\sqrt{\delta}} \right)
\]
and the absolute value of the error (truncation after \(p^d \) terms) can be upper bounded as
\[
|\text{Err}_T(p)| \leq \sum_{j \in B} |q_j| \sum_{k=0}^{d-1} \binom{d}{k} (1 - r^p)^k \left(\frac{r^p \sqrt{p!}}{\sqrt{p!}} \right)^{d-k}
\]
where \(r \leq 1/2 \).

F Low Dimension Subspace FGT

In this section, we consider FGT for data in a lower dimensional subspace of \(\mathbb{R}^d \). The problem is formally defined below:

Problem F.1 (Dynamic FGT on a low dimensional set). Let \(W \) be a subspace of \(\mathbb{R}^d \) with dimension \(\dim(S) = w \ll d \). Given \(N \) source points \(s_1, \ldots, s_N \in W \) with charges \(q_1, \ldots, q_N \), and \(M \) target points \(t_1, \ldots, t_M \in W \), find a dynamic data structure that supports the following operations:

- **INSERT/DELETE** \((s_i, q_i)\) Insert or Delete a source point \(s_i \in \mathbb{R}^d \) along with its “charge” \(q_i \in \mathbb{R} \), in \(\log^{O(w)}(\|q\|_1/\varepsilon) \) time.
- **DENSITY-ESTIMATION** \((t \in \mathbb{R}^d)\) For any point \(t \in \mathbb{R}^d \), output the kernel density of \(t \) with respect to the sources, i.e., output \(G \) such that \(G(t) - \varepsilon \leq G \leq G(t) + \varepsilon \) in \(\log^{O(w)}(\|q\|_1/\varepsilon) \) time.
- **QUERY** \((q \in \mathbb{R}^N)\) Given an arbitrary query vector \(q \in \mathbb{R}^N \), output \(\widetilde{K}_q \) in \(N \cdot \log^{O(w)}(\|q\|/\varepsilon) \) time.
Algorithm 6 Initialization of low-dim FGT.

1: **data structure** `DYNAMIC_FGT`
2: **members**
3: $A_\alpha(B_i), i \in [N(B)], \alpha \leq p$
4: $C_\beta(C_i), i \in [N(C)], \beta \leq p$
5: $t_{C_i}, i \in [N(C)]$
6: $s_{B_i}, i \in [N(B)]$
7: **end members**
8:
9: **procedure** `INIT`\{ $s_j \in \mathbb{R}^d, j \in [N]$, \{ $q_j \in \mathbb{R}, j \in [N]$ \}\}
10: \begin{align*}
& p \leftarrow \log(\|q\|_1/\varepsilon) \\
& \text{Compute SVD: } (U_0, \Sigma, V_0) \leftarrow \text{SVD } ((s_1, \ldots, s_N, t_1, \ldots, t_M)) \\
& \quad \triangleright U_0 \Sigma V_0^T = (s_1, \ldots, s_N, t_1, \ldots, t_M), U_0 \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times (N+M)}, V_0 \in \mathbb{R}^{(N+M) \times (N+M)} \\
& \text{Let } B \leftarrow U_0 \Sigma_{:,1:w} \in \mathbb{R}^{d \times w} \quad \triangleright \Sigma_{:,1:w} \text{ denotes the first } w \text{ columns of } \Sigma \\
& \text{Compute the spectral decomposition } U \Lambda U^T = B^T B, \text{ and let } P \leftarrow \Lambda^{-1/2} U^{-1} B^T \in \mathbb{R}^{w \times d} \\
& \text{for } i \in [N] \text{ and } j \in [M] \text{ do} \\
& \quad x_i \leftarrow P s_i, y_j \leftarrow P t_j \\
& \text{end for} \\
& \text{Assign } x_1, \ldots, x_N \text{ into } N(B) \text{ boxes } B_1, \ldots, B_{N(B)} \text{ of length } vr\sqrt{\delta} \\
& \text{Divide } \mathbb{R}^w \text{ into } N(C) \text{ boxes } C_1, \ldots, C_{N(C)} \text{ of length } v\sqrt{\delta} \\
& \text{Set center } x_{B_i}, i \in [N(B)] \text{ of source boxes } B_1, \ldots, B_{N(B)} \\
& \text{Set centers } y_{C_j}, j \in [N(C)] \text{ of target boxes } C_1, \ldots, C_{N(C)} \\
& \text{for } l \in [N(B)] \text{ do} \\
& \quad \triangleright \text{Source box } B_l \text{ with center } s_{B_l} \\
& \quad \text{for } \alpha \leq p \text{ do} \\
& \quad \quad \text{Compute} \\
& \quad \quad A_\alpha(B_l) \leftarrow \frac{(-1)^{\alpha} \|q\|_1}{\alpha!} \sum_{x_j \in B_l} q_j \left(\frac{x_j - x_{B_l}}{\sqrt{\delta}} \right)^\alpha \\
& \quad \quad \triangleright \text{Takes } p^w N \text{ time in total} \\
& \quad \text{end for} \\
& \text{end for} \\
& \text{for } l \in [N(C)] \text{ do} \\
& \quad \triangleright \text{Target box } C_l \text{ with center } t_{C_l} \\
& \quad \text{Find } (2k+1)^w \text{ nearest source boxes to } C_l, \text{ denote by } \text{nb}(C_l) \\
& \quad \text{for } \beta \leq p \text{ do} \\
& \quad \quad \text{Compute} \\
& \quad \quad C_\beta(C_l) \leftarrow \frac{(-1)^{\beta} \|q\|_1}{\beta!} \sum_{B \in \text{nb}(C_l)} \sum_{\alpha \leq p} A_\alpha(B) \cdot H_{\alpha + \beta} \left(\frac{x_B - y_{C_l}}{\sqrt{\delta}} \right) \\
& \quad \quad \triangleright \text{Takes } N(C) \cdot (2k+1)^w dp^{w+1} \text{ time in total} \\
& \quad \quad \triangleright N(C) \leq \min\{ (r\sqrt{2\delta})^{-d/2}, M \} \\
& \quad \text{end for} \\
& \text{end for} \\
& \text{end procedure} \\
& \text{end data structure}
Algorithm 7 This algorithm is the query part of Theorem F.2.

1: data structure DYNAMICFGT
2: procedure KDE-QUERY(t ∈ R^d)
3: Find the box Pt ∈ C_t
4: Compute G_p(t) ← \sum_{\beta \leq p} C_{\beta}(C_t) \cdot \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^{\beta} \triangleright Takes p^w \text{ time in total}
5: return G_p(t)
6: end procedure
7: procedure QUERY(q ∈ R^N)
8: INIT(\{s_j, j ∈ [N]\}, q) \triangleright Takes \tilde{O}(N) \text{ time}
9: for j ∈ [N] do
10: u_j ← LOCAL-QUERY(s_j) \triangleright \|u - Kq\|_\infty \leq \varepsilon
11: end for
12: return u
13: end procedure
14: end data structure

We generalize our dynamic data structure to solve Problem F.1, which is stated in the following theorem. The computational cost of each update or query depends on the intrinsic dimension w instead of d.

Theorem F.2 (Low Rank Dynamic FGT Data Structure, formal version of Theorem 1.1). Let W be a subspace of R^d with dimension \text{dim}(S) = w \ll d. Given N source points s_1, \ldots, s_N ∈ W with charges q_1, \ldots, q_N, and M target points t_1, \ldots, t_M ∈ W, a number δ > 0, and a vector q ∈ R^N, let G : R^d → R be defined as G(t) = \sum_{i=1}^{N} q_i \cdot K(s_i, t) denote the kernel-density of t with respect to S, where K(s_i, t) = f(\|s_i - t\|_2) for f satisfying the properties in Definition B.1. There is a dynamic data structure that supports the following operations:

- **INIT** (Algorithm 6) Preprocess in N \cdot \log^{O(w)}(\|q\|_1/\varepsilon) time.
- **KDE-QUERY(t ∈ R^d)** (Algorithm 7) Output \tilde{G} such that G(t) - \varepsilon \leq \tilde{G} \leq G(t) + \varepsilon in \log^{O(w)}(\|q\|_1/\varepsilon) time.
- **INSERT(s ∈ R^d, q_s ∈ R)** (Algorithm 8) For any source point s ∈ R^d and its charge q_s, update the data structure by adding this source point in \log^{O(w)}(\|q\|_1/\varepsilon) time.
- **DELETE(s ∈ R^d)** (Algorithm 9) For any source point s ∈ R^d and its charge q_s, update the data structure by deleting this source point in \log^{O(w)}(\|q\|_1/\varepsilon) time.
- **QUERY(q ∈ R^N)** (Algorithm 7) Output \tilde{K}_q ∈ R^N such that \|\tilde{K}_q - K_q\|_\infty \leq \varepsilon, where K ∈ R^{N \times N} is defined by K_{i,j} = K(s_i, s_j) in N \log^{O(w)}(\|q\|_1/\varepsilon) time.

F.1 Projection Lemma

Lemma F.3 (Hermite projection lemma in low-dimensional space, formal version of Lemma 2.2). Given a subspace B ∈ R^{d \times w}. Let B^TB = UΛU^T ∈ R^{w \times w} denote the spectral decomposition where U ∈ R^{w \times w} and a diagonal matrix Λ ∈ R^{w \times w}.
Algorithm 8 This algorithm is the update part of Theorem F.2.

1: data structure DynamicFGT

2: members ▷ This is exact same as the members in Algorithm 6.
3: \(A_\alpha(B_i), i \in [N(B)], \alpha \leq p \)
4: \(C_\beta(C_i), i \in [N(C)], \beta \leq p \)
5: \(t_{C_i}, i \in [N(C)] \)
6: \(s_{B_i}, i \in [N(B)] \)
7: end members
8:
9: procedure Insert \((s \in \mathbb{R}^d, q \in \mathbb{R})\)
10: Find the box \(s \in B \)
11: for \(\alpha \leq p \) do ▷ we say \(\alpha \leq p \) if \(\alpha_i \leq p, \forall i \in [w] \)
12: Compute \[A_\alpha^\text{new}(B) \leftarrow A_\alpha(B) + \frac{(-1)^\|\alpha\|_1 q}{\alpha!} \left(\frac{P(s - s_B)}{\delta} \right)^\alpha \] ▷ Takes \(p^w \) time
13: end for
14: Find \((2k + 1)^w\) nearest target boxes to \(B \), denote by \(n\text{b}(B) \) ▷ \(k \leq \log(\|q\|_1/\varepsilon) \)
15: for \(C_l \in n\text{b}(B) \) do
16: for \(\beta \leq p \) do
17: Compute \[C_\beta^\text{new}(C_l) \leftarrow C_\beta(C_l) + \frac{(-1)^\|\beta\|_1}{\beta!} \sum_{\alpha \leq p} (A_\alpha^\text{new}(B) - A_\alpha(B)) \cdot H_{\alpha + \beta} \left(\frac{P(s_B - t_{C_l})}{\sqrt{\delta}} \right) \] ▷ Takes \((2k + 1)^w p^w \) time
18: end for
19: end for
20: for \(\alpha \leq p \) do
21: \(A_\alpha(B) \leftarrow A_\alpha^\text{new}(B) \) ▷ Takes \(p^w \) time
22: end for
23: for \(C_l \in n\text{b}(B) \) do
24: for \(\beta \leq p \) do
25: \(C_\beta(C_l) \leftarrow C_\beta^\text{new}(C_l) \) ▷ Takes \((2k + 1)^w p^w \) time
26: end for
27: end for
28: end procedure
29: end data structure

We define \(P = \Lambda^{-1/2}U^{-1/2}B^\top \in \mathbb{R}^{w \times d} \). Then we have for any \(t, s \in \mathbb{R}^d \) from subspace \(B \), the following equation holds

\[
e^{-\|t-s\|^2/\delta} = \sum_{\alpha \geq 0} \frac{(\sqrt{1/\delta}P(t-s))^\alpha}{\alpha!} h_\alpha(\sqrt{1/\delta}P(t-s)).
\]
Algorithm 9 This algorithm is another update part of Theorem F.2.

1: data structure DynamicFGT
2: members
3: $A_\alpha(B_i), i \in [N(B)], \alpha \leq p$
4: $C_\beta(C_i), i \in [N(C)], \beta \leq p$
5: $t_{C_i}, i \in [N(C)]$
6: $s_{B_i}, i \in [N(B)]$
7: $\delta \in \mathbb{R}$
8: end members
9:
10: procedure DELETE($s \in \mathbb{R}^d, q \in \mathbb{R}$)
11: Find the box $s \in B$
12: for $\alpha \leq p$ do \triangleright we say $\alpha \leq p$ if $\alpha_i \leq p, \forall i \in [w]$
13: Compute
$$A_{\alpha}^\text{new}(B) \leftarrow A_{\alpha}(B) - \frac{(-1)^{\|\alpha\|_1}q}{\alpha!} \left(\frac{P(s - s_B)}{\sqrt{\delta}}\right)^\alpha$$
\triangleright Takes p^w time
14: end for
15: Find $(2k + 1)^w$ nearest target boxes to B, denote by nb(B) $\triangleright k \leq \log(\|q\|_1/\varepsilon)$
16: for $C_l \in \text{nb}(B)$ do
17: for $\beta \leq p$ do
18: Compute
$$C_{\beta}^\text{new}(C_l) \leftarrow C_{\beta}(C_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_{\alpha}^\text{new}(B) - A_{\alpha}(B)) \cdot H_{\alpha + \beta} \left(\frac{P(s_B - t_{C_i})}{\sqrt{\delta}}\right)$$
\triangleright Takes $(2k + 1)^wp^w$ time
19: end for
20: end for
21: for $\alpha \leq p$ do
22: $A_{\alpha}(B) \leftarrow A_{\alpha}^\text{new}(B)$ \triangleright Takes p^w time
23: end for
24: for $C_l \in \text{nb}(B)$ do
25: for $\beta \leq p$ do
26: $C_{\beta}(C_l) \leftarrow C_{\beta}^\text{new}(C_l)$ \triangleright Takes $(2k + 1)^wp^w$ time
27: end for
28: end for
29: end procedure
30: end data structure

Proof. First, we know that

$$Pt = \Lambda^{-1/2}U^{-1}B^\top t$$
$$= \Lambda^{-1/2}U^{-1}B^\top Bx$$
$$= \Lambda^{-1/2}U^{-1}U\Lambda U^\top x$$
$$= \Lambda^{-1/2}U^\top x$$
$$= \Lambda^{1/2}U^\top x \quad (17)$$
where the first step follows from $P = \Lambda^{-1/2}U^{-1}B^T$, the second step follows from $t = Bx$ (since t is from low dimension, then there is always a vector x), the third step follows $B^TB = U\Lambda U^T$, the forth step follows $U^{-1}U = I$, and the last step follows from $\Lambda^{-1/2}\Lambda = \Lambda^{1/2}$.

Compute the spectral decomposition $B^TB = U\Lambda U^T$, $U \in \mathbb{R}^{w \times w}$ is the orthonormal basis, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_k) \in \mathbb{R}^{w \times w}$. Let $u_i \in \mathbb{R}^w$ denote the vector that is the transpose of i-th row $U \in \mathbb{R}^{w \times w}$. Then we have

$$e^{-\|t - s\|^2_2/\delta} = e^{-(x - y)^T B^T B (x - y)/\delta}$$

$$= e^{-(x - y)^T U\Lambda U^T (x - y)/\delta}$$

$$= \prod_{i=1}^{w} \left(\sum_{n=1}^{\infty} \frac{1}{n!} (\sqrt{\lambda_i/\delta} \cdot u_i^\top (x - y))^n \cdot h_n(\sqrt{\lambda_i/\delta} \cdot u_i^\top (x - y)) \right)$$

$$= \sum_{\alpha \geq 0} \frac{\sqrt{1/\delta} \cdot \Lambda^{1/2} U^\top (x - y)}{\alpha!} \cdot h_\alpha \left(\sqrt{1/\delta} \cdot \Lambda^{1/2} U^\top (x - y) \right)$$

$$= \sum_{\alpha \geq 0} \frac{\sqrt{1/\delta} \cdot \mathbf{P}(t - s)}{\alpha!} \cdot h_\alpha \left(\sqrt{1/\delta} \cdot \mathbf{P}(t - s) \right)$$

where the first step follows from changing the basis preserves the ℓ_2-distance, the second step follows from $B^TB = U\Lambda U^T$, and the fifth step follows from Eq. (17).

F.2 Proof of Main Result in Low-Dimensional Case

Proof of Theorem F.2. Correctness of KDE-QUERY. Algorithm 6 accumulates all sources into truncated Hermite expansions and transforms all Hermite expansions into Taylor expansions via Lemma F.4. Thus it can approximate the function $G(t)$ by

$$G(t) = \sum_{\mathcal{B}} \sum_{j \in \mathcal{B}} q_j \cdot e^{-\|t - s_j\|^2_2/\delta}$$

$$= \sum_{\beta \leq p} C_\beta \left(\frac{\mathbf{P}(t - t_c)}{\sqrt{\delta}} \right)^\beta + \text{Err}_T(p) + \text{Err}_H(p)$$

where $|\text{Err}_H(p)| + |\text{Err}_T(p)| \leq Q \cdot \varepsilon$ by $p = \log(||q||_1/\varepsilon)$,

$$C_\beta = \frac{(-1)^{||\beta||_1}}{\beta!} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha + \beta} \left(\frac{\mathbf{P}(s_B - t_c)}{\sqrt{\delta}} \right)$$

and the coefficients $A_\alpha(\mathcal{B})$ are defined as Line 24.

Running time of KDE-QUERY. In line 24, it takes $O(p^w N)$ time to compute all the Hermite expansions, i.e., to compute the coefficients $A_\alpha(\mathcal{B})$ for all $\alpha \leq p$ and all source boxes \mathcal{B}.

Making use of the large product in the definition of $H_{\alpha + \beta}$, we see that the time to compute the p^w coefficients of C_β is only $O(dp^{w+1})$ for each box \mathcal{B} in the range. Thus, we know for each target box \mathcal{C}, the running time is $O((2k + 1)^w dp^{w+1})$, thus the total time in line 30 is

$$O(N(C) \cdot (2k + 1)^w dp^{w+1})$$.

34
Finally, we need to evaluate the appropriate Taylor series for each target t_i, which can be done in $O(p^w M)$ time in line 4. Putting it all together, Algorithm 6 takes time

$$O((2k + 1)^w dp^{w+1} N(C)) + O(p^w N) + O(p^w M)$$

$$= O \left((M + N) \log^{O(w)}(\|q\|_1/\varepsilon) \right).$$

Correctness of UPDATE. Algorithm 8 and Algorithm 9 maintains C_β as follows,

$$C_\beta = \left(\frac{-1}{\beta!}\right)^{\|\beta\|_1} \sum_{\mathcal{B}} \sum_{\alpha \leq p} A_\alpha(\mathcal{B}) H_{\alpha+\beta} \left(\frac{P(s_B - t_\mathcal{B})}{\sqrt{\delta}} \right)$$

where $A_\alpha(\mathcal{B})$ is given by

$$A_\alpha(\mathcal{B}) = \left(\frac{-1}{\alpha!}\right)^{\|\alpha\|_1} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{P(s_j - s_B)}{\sqrt{\delta}} \right)^\alpha.$$

Therefore, the correctness follows similarly from Algorithm 6.

Running time of UPDATE. In line 12, it takes $O(p^w)$ time to update all the Hermite expansions, i.e. to update the coefficients $A_\alpha(\mathcal{B})$ for all $\alpha \leq p$ and all sources boxes \mathcal{B}.

Making use of the large product in the definition of $H_{\alpha+\beta}$, we see that the time to compute the p^w coefficients of C_β is only $O(dp^{w+1})$ for each box $C_i \in \text{nb}(\mathcal{B})$. Thus, thus the total time in line 17 is

$$O((2k + 1)^w dp^{w+1}).$$

Correctness of QUERY. To compute Kq for a given $q \in \mathbb{R}^w$, notice that for any $i \in [N]$,

$$(Kq)_i = \sum_{j=1}^{N} q_j \cdot e^{-\|s_i - s_j\|_2^2/\delta} = G(s_i).$$

Hence, this problem reduces to N KDE-QUERY() calls. And the additive error guarantee for $G(t)$ immediately gives the ℓ_∞-error guarantee for Kq.

Running time of QUERY. We first build the data structure with the charge vector q given in the query, which takes $\tilde{O}_d(N)$ time. Then, we perform N KDE-Query, each takes $\tilde{O}_d(1)$. Hence, the total running time is $\tilde{O}_d(N)$.

We note that when the charge vector q is slowly changing, i.e., $\Delta := \|q^{new} - q\|_0 \leq o(N)$, we can UPDATE the source vectors whose charges are changed. Since each INSERT or DELETE takes $\tilde{O}_d(1)$ time, it will take $\tilde{O}_d(\Delta)$ time to update the data structure.

Then, consider computing Kq^{new} in this setting. We note that each source box can only affect $\tilde{O}_d(1)$ other target boxes, where the target vectors are just the source vectors in this setting. Hence, there are at most $\tilde{O}_d(\Delta)$ boxes whose C_β is changed. Let S denote the indices of source vectors in these boxes. Since

$$G(s_i) = \sum_{\beta \leq p} C_\beta(B_k) \cdot \left(\frac{P(s_i - s_{B_k})}{\sqrt{\delta}} \right)^\beta,$$
we get that there are at most \(O(d(\Delta)) \) coordinates of \(Kq^\text{new} \) that are significantly changed from \(Kq \), and we only need to re-compute \(G(s_i) \) for \(i \in S \). If we assume that the source vectors are well-separated, i.e., \(|S| = O(\delta) \), the total computational cost is \(O(d(\Delta)) \).

Therefore, when the change of the charge vector \(q \) is sparse, \(Kq \) can be computed in sublinear time.

Lemma F.4 (Truncated Hermite expansion with truncated Taylor expansion (low dimension version of Lemma E.5)). Let \(G(t) \) be defined as Def E.1. For an integer \(p \), let \(G_p(t) \) denote the Hermite expansion of \(G(t) \) truncated at \(p \), i.e.,

\[
G_p(t) = \sum_{\alpha \leq p} A_\alpha H_\alpha \left(\frac{P(t - s_B)}{\sqrt{\delta}} \right).
\]

The Taylor expansion of function \(G_p(t) \) at an arbitrary point \(t_0 \) can be written as:

\[
G_p(t) = \sum_{\beta \geq 0} C_\beta \cdot \left(\frac{P(t - t_0)}{\sqrt{\delta}} \right)^\beta,
\]

where the coefficients \(C_\beta \) are defined as

\[
C_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (-1)^{\|\alpha\|_1} A_\alpha \cdot H_{\alpha + \beta} \left(\frac{P(s_B - t_C)}{\sqrt{\delta}} \right).
\]

Let \(\text{Err}_T(p) \) denote the error in truncating the Taylor series after \(p^w \) terms, in the box \(C \) (that has center \(t_C \) and side length \(r \sqrt{2\delta} \)), i.e.,

\[
\text{Err}_T(p) = \sum_{\beta \geq p} C_\beta \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^\beta.
\]

Then, we have

\[
|\text{Err}_T(p)| \leq 2 \sum_{j \in B} |q_j| \sum_{l=0}^{w-1} \binom{w}{l} (1 - r^p)^l \left(\frac{r^p}{\sqrt{\delta}} \right)^{w-l}
\]

where \(r \leq 1/2 \).

Proof. We can write \(C_\beta \) in the following way:

\[
C_\beta = \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in B} q_j \sum_{\alpha \leq p} \left(\frac{P(s_j - s_B)}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha + \beta} \left(\frac{P(s_B - t_C)}{\sqrt{\delta}} \right)
\]

\[
= \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in B} q_j \left(\sum_{\alpha \geq 0} - \sum_{\alpha > p} \right) \left(\frac{P(s_j - s_B)}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha + \beta} \left(\frac{P(s_B - t_C)}{\sqrt{\delta}} \right)
\]

\[
= B_\beta - \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{j \in B} q_j \sum_{\alpha > p} \left(\frac{P(s_j - s_B)}{\sqrt{\delta}} \right)^\alpha \cdot H_{\alpha + \beta} \left(\frac{P(s_B - t_C)}{\sqrt{\delta}} \right)
\]

\[
= B_\beta + (C_\beta - B_\beta)
\]

36
Next, we have
\[|\text{Err}_T(p)| \leq \left| \sum_{\beta \geq p} B_\beta \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| + \left| \sum_{\beta \geq p} (C_\beta - B_\beta) \cdot \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| \] (19)

Using Lemma E.4, we can upper bound the first term in the Eq. (19) by,
\[\left| \sum_{\beta \geq p} B_\beta \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| \leq \frac{\sum_{j \in B} |q_j|}{(1 - r)^w} \sum_{l=0}^{w-1} \binom{w}{l} (1 - r^p)^l \left(\frac{r^p}{\sqrt{p^l}} \right)^{w-l} . \]

Since we can similarly bound $C_\beta - B_\beta$ as follows
\[|C_\beta - B_\beta| \leq \frac{1}{\beta!} K \cdot Q_B 2^{\|\beta\|_1/2} \sqrt{\beta!} \leq KQ_B \frac{2^{\|\beta\|_1/2}}{\sqrt{\beta!}} , \]
we have the same bound for the second term
\[\left| \sum_{\beta \geq p} (C_\beta - B_\beta) \left(\frac{P(t - t_C)}{\sqrt{\delta}} \right)^\beta \right| \leq \frac{\sum_{j \in B} |q_j|}{(1 - r)^w} \sum_{l=0}^{w-1} \binom{w}{l} (1 - r^p)^l \left(\frac{r^p}{\sqrt{p^l}} \right)^{w-l} . \]

\[\square \]

F.3 Dynamic Low-Rank FGT with Increasing Rank

We further give an algorithm for FGT when the low-dimensional subspace is dynamic, i.e., the rank may increase with data insertions.

Theorem F.5 (Low Rank Dynamic FGT Data Structure). Let W be a subspace of \mathbb{R}^d with dimension $\dim(S) = w \ll d$. Given N source points $s_1, \ldots, s_N \in W$ with charges q_1, \ldots, q_N, and M target points $t_1, \ldots, t_M \in W$, a number $\delta > 0$, and a vector $q \in \mathbb{R}^N$, let $G : \mathbb{R}^d \rightarrow \mathbb{R}$ be defined as $G(t) = \sum_{i=1}^N q_i \cdot K(s_i, t)$ denote the kernel-density of t with respect to S, where $K(s_i, t) = f(\|s_i - t\|_2)$ for f satisfying the properties in Definition B.1. There is a dynamic data structure that supports the following operations:

- **INIT** (Algorithm 6) Preprocess in $N \cdot \log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- **KDE-QUERY** ($t \in \mathbb{R}^d$) (Algorithm 7) Output \hat{G} such that $G(t) - \varepsilon \leq \hat{G} \leq G(t) + \varepsilon$ in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time.
- **INSERT** ($s \in \mathbb{R}^d, q_s \in \mathbb{R}$) (Algorithm 10) For any source point $s \in \mathbb{R}^d$ and its charge q_s, update the data structure by adding this source point in $\log^{O(w)}(\|q\|_1/\varepsilon)$ time. The subspace dimension w may be increased by 1 if s is not in the original subspace.
- **QUERY** ($q \in \mathbb{R}^N$) (Algorithm 7) Output $\hat{K}q \in \mathbb{R}^N$ such that $\|\hat{K}q - Kq\|_\infty \leq \varepsilon$, where $K \in \mathbb{R}^{N \times N}$ is defined by $K_{i,j} = K(s_i, s_j)$ in $N \log^{O(w)}(\|q\|_1/\varepsilon)$ time.

Proof. Since Algorithm 10 updates A_α, C_β in the same way as Algorithm 8, the correctness of Procedures KDE-QUERY and QUERY follows similarly from Theorem B.5.

Furthermore, SCALE takes $O(wd + (N(B) + N(C)) \cdot p^w)$ time. For the correctness, we know that the rows of P form an orthonormal basis for the subspace. For a newly inserted point s, if it
Algorithm 10 This algorithm is the update part of Theorem F.5.

1: data structure DynamicFGT
2: members
3: \(k \in \mathbb{N} \) \(\triangleright \) Rank of \(\text{span}(s_1, \ldots, s_N, t_1, \ldots, t_M) \)
4: \(A_\alpha(\mathcal{B}_l), l \in [N(\mathcal{B})], \alpha \leq p \)
5: \(C_\beta(\mathcal{C}_l), l \in [N(\mathcal{C})], \beta \leq p \)
6: \(t_{\mathcal{C}_l}, l \in [N(\mathcal{C})] \)
7: \(s_{\mathcal{B}_l}, l \in [N(\mathcal{B})] \)
8: \(P \in \mathbb{R}^{w \times d} \)
9: end members
10: procedure Insert \((s \in \mathbb{R}^d, q \in \mathbb{R})\)
11: \(\) Scale \((s, q)\)
12: Find the box \(s \in \mathcal{B} \)
13: for \(\alpha \leq p \) do \(\triangleright \) we say \(\alpha \leq p \) if \(\alpha_i \leq p, \forall i \in [w] \)
14: \(\) Compute
15: \[A_{\alpha}^{\text{new}}(\mathcal{B}) \leftarrow A_{\alpha}(\mathcal{B}) + \frac{(-1)^{\|\alpha\|_1}}{\alpha!} q \left(\frac{P(s - s_{\mathcal{B}})}{\sqrt{\delta}} \right)^{\alpha} \]
16: \(\triangleright \) Takes \(p^k \) time
17: \(\) Find \((2k + 1)^w \) nearest target boxes to \(\mathcal{B} \), denote by \(\text{nb}(\mathcal{B}) \)
18: for \(\mathcal{C}_l \in \text{nb}(\mathcal{B}) \) and \(\beta \leq p \) do
19: \(\) Compute
20: \[C_{\beta}^{\text{new}}(\mathcal{C}_l) \leftarrow C_{\beta}(\mathcal{C}_l) + \frac{(-1)^{\|\beta\|_1}}{\beta!} \sum_{\alpha \leq p} (A_{\alpha}^{\text{new}}(\mathcal{B}) - A_{\alpha}(\mathcal{B})) \cdot H_{\alpha + \beta} \left(\frac{P(s_{\mathcal{B}} - t_{\mathcal{C}_l})}{\sqrt{\delta}} \right) \]
21: \(\triangleright \) Takes \((2k + 1)^w p^w \) time
22: end for
23: for \(\alpha \leq p \) do \(\triangleright \) Takes \(p^w \) time
24: \(\) Compute
25: \(\) for \(\mathcal{C}_l \in \text{nb}(\mathcal{B}) \) and \(\beta \leq p \) do
26: \(\) Compute
27: end for
28: end procedure
29: end data structure

is not lie in the subspace, \((I - P)s\) gives a new basis direction. Therefore, we can easily update \(P \) by attaching this vector (after normalization) as a column. Then, we show that the intermediate variables \(A_\alpha \) and \(C_\beta \) can be correctly updated for the new subspace. For each source box \(\mathcal{B} \) and each \(w \)-tuple \(\alpha \leq p \), we have

\[
A_{(\alpha, 0)}^{\text{new}}(\mathcal{B}) = \frac{(-1)^{\|\alpha\|_1}}{\alpha!} \cdot \frac{(-1)^i}{i!} \sum_{j \in \mathcal{B}} q_j \cdot \left(\frac{x_j' - x_{\mathcal{B}}'}{\sqrt{\delta}} \right)^{(\alpha, i)} = A_\alpha(\mathcal{B}),
\]

where \(x_j' \) denotes the “lifted” point in the new subspace. And \(A_{(\alpha, i)}^{\text{new}}(\mathcal{B}) = 0 \) for all \(i > 0 \), since
Algorithm 11 This algorithm is another part of Theorem F.5.

1: data structure DYNAMICFGT
2: members
3: \(w \in \mathbb{N} \quad \triangleright \text{Rank of span}(s_1, \ldots, s_N, t_1, \ldots, t_M) \)
4: \(A_\alpha(B_l), l \in [N(B)], \alpha \leq p \)
5: \(C_\beta(C_l), l \in [N(C)], \beta \leq p \)
6: \(t_{C_l}, l \in [N(C)] \)
7: \(s_{B_l}, l \in [N(B)] \)
8: \(P \in \mathbb{R}^{w \times d} \)
9: end members
10:
11: procedure SCALE(\(s \in \mathbb{R}^d, q \in \mathbb{R} \))
12: if \(s \in \text{span}(P) \) then
13: pass
14: else
15: \(P \leftarrow (P, (I - P)s/\|I - P)s\|_2), w \leftarrow w + 1 \)
16: for \(B_l, l \in [N(B)] \) and \(C_l, l \in [N(C)] \) do
17: \(s_{B_l} \leftarrow (s_{B_l}, 0) \) and \(t_{C_l} \leftarrow (t_{C_l}, 0) \)
18: end for
19: Find the box \(B_{N(B) + 1} \) of length \(r\sqrt{\delta} \) containing \(s \) and let \(s_{B_{N(B) + 1}} \) be its center
20: for \(\alpha \leq p \in \mathbb{N}^w \) and \(B_l, l \in [N(B)] \) do
21: \(A_{(\alpha, 0)}(B_l) \leftarrow A_\alpha(B_l) \)
22: end for
23: for \(\beta \leq p \in \mathbb{N}^w, 0 \leq i \leq p \) and \(C_l, l \in [N(C)] \) do
24: \(C_{(\beta, i)}(C_l) \leftarrow \left(-\frac{1}{i} \right)^i h_i(0) \cdot C_\beta(C_l) \)
25: end for
26: end if
27: end procedure
28: end data structure

\((x'_j - x''_{B_l})_{k+1} = 0\). Similarly, for each target box \(C \),

\[
C_{(\beta, i)}(C) = \frac{(-1)^{\|\beta\|_1}}{\beta !} \sum_{B} \sum_{\alpha \leq p} \sum_{j=0}^{p} A_{(\alpha, j)}(B) H_{(\alpha + \beta, i + j)} \left(\frac{x_B - y_C}{\sqrt{\delta}} \right) = \frac{(-1)^{\|\beta\|_1}}{\beta !} \sum_{B} \sum_{\alpha \leq p} A_{\alpha}(B) H_{\alpha + \beta} \left(\frac{x_B - y_C}{\sqrt{\delta}} \right) \cdot h_i(0)
\]

\[
= \frac{(-1)^i}{i!} h_i(0) \cdot C_\beta(C),
\]

where the second step follows from \(A_{(\alpha, i)}(B) = A_\alpha(B) \cdot 1_{i=0} \). Therefore, by enumerating all boxes \(B, C \) and indices \(\alpha, \beta \leq p \), we can correctly compute \(A_{(\alpha, 0)}(B) \) and \(C_{(\beta, i)}(C) \). Thus, we complete the proof of the correctness of Algorithm 11.

\(\square \)
References

[ACSS20] Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 541–552. IEEE, 2020.

[ACW17] Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data fitting. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Approx-Random), 2017.

[AKM+17] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir Zandieh. Random fourier features for kernel ridge regression: Approximation bounds and statistical guarantees. In International Conference on Machine Learning, pages 253–262. PMLR, 2017.

[ALS+22] Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time preprocessing: Fast neural network training via weight-data correlation preprocessing. arXiv preprint arXiv:2211.14227, 2022.

[AM15] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical guarantees. Advances in Neural Information Processing Systems, 28:775–783, 2015.

[AMC+21] Josh Alman, Gary Miller, Timothy Chu, Shyam Narayanan, Mark Sellke, and Zhao Song. Metric transforms and low rank representations of kernels. In arXiv preprint, 2021.

[AS23] Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint arXiv:2302.13214, 2023.

[AZLS19a] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-parameterization. In ICML, 2019.

[AZLS19b] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural networks. In NeurIPS, 2019.

[BCIS18] Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 615–626. IEEE, 2018.

[BEJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yoge. A framework for adversarially robust streaming algorithms. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems, pages 63–80, 2020.

[BG97] Rick Beatson and Leslie Greengard. A short course on fast multipole methods. Wavelets, multilevel methods and elliptic PDEs, 1:1–37, 1997.

[BIK+23] Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic algorithms for kernel matrices via kernel density estimation. In The Eleventh International Conference on Learning Representations, 2023.
[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs in nearly linear time. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC)*, pages 775–788, 2020.

[BPSC21] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-parametrized) neural networks in near-linear time. In *ITCS*, 2021.

[BR02] Bradley John Charles Baxter and George Roussos. A new error estimate of the fast gauss transform. *SIAM Journal on Scientific Computing*, 24(1):257–259, 2002.

[BS80] Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic transformation. *Journal of Algorithms*, 1(4):301–358, 1980.

[CDG+06] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for hss representations via sparse matrices. *SIAM J. Matrix Anal. Appl.*, 29(1):67–81, dec 2006.

[CDL+21] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re. Pixelated butterfly: Simple and efficient sparse training for neural network models. *ICLR*, 2021.

[CKNS20] Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation through density constrained near neighbor search. In *2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)*, pages 172–183. IEEE, 2020.

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Tim Roughgarden, editor, *Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015*, pages 181–190. ACM, 2015.

[CLP+20] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable LSH framework for efficient neural network training. In *International Conference on Learning Representations (ICLR)*, 2020.

[CMF+20] Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, Anshumali Shrivastava, et al. Slide: In defense of smart algorithms over hardware acceleration for large-scale deep learning systems. *Proceedings of Machine Learning and Systems*, 2:291–306, 2020.

[CMZ15] Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. An o (n) direct solver for integral equations on the plane. *Applied and Computational Harmonic Analysis*, 38(2):284–317, 2015.

[CN20] Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In *Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS)*, 2020.

[CN22] Yeshwanth Cherapanamjeri and Jelani Nelson. Uniform approximations for randomized hadamard transforms with applications. *arXiv preprint arXiv:2203.01599*, 2022.

[CS17] Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimensions. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 1032–1043. IEEE, 2017.
[CS19] Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 769–792. IEEE, 2019.

[Dar00] Eric Darve. The fast multipole method: numerical implementation. Journal of Computational Physics 160.1, 2000.

[DJR97] James R. Driscoll, Dennis M. Healy Jr., and Daniel N. Rockmore. Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):1066–1099, 1997.

[DMS23] Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsification algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426, 2023.

[DS00] Jack Dongarra and Francis Sullivan. Guest editors’ introduction: The top 10 algorithms. Computing in Science & Engineering, 2(1):22, 2000.

[DZPS19] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-parameterized neural networks. In ICLR, 2019.

[EMRV92] Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou. The fast multipole method for electromagnetic scattering computation. IEEE Transactions on Antennas and Propagation 40, pages 634–641, 1992.

[FG96] Jianqing Fan and Irène Gijbels. Local polynomial modelling and its applications. Number 66 in Monographs on statistics and applied probability series. Chapman & Hall, London [u.a.], 1996.

[GE94] Ming Gu and Stanley C. Eisenstat. A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM Journal on Matrix Analysis and Applications, 15:1266–1276, 1994.

[GGR21] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. CoRR, abs/2111.00396, 2021.

[GMS23] Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv preprint arXiv:2303.16504, 2023.

[GR87] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of computational physics, 73(2):325–348, 1987.

[GR88] Leslie Greengard and Vladimir Rokhlin. The rapid evaluation of potential fields in three dimensions. Vortex Methods. Springer, Berlin, Heidelberg, pages 121–141, 1988.

[GR89] Leslie Greengard and Vladimir Rokhlin. On the evaluation of electrostatic interactions in molecular modeling. Chemica scripta, 29:139–144, 1989.

[GR96] Leslie Greengard and Vladimir Rokhlin. An improved fast multipole algorithm in three dimensions. ., 1996.

[Gre88] Leslie Greengard. The rapid evaluation of potential fields in particle systems. MIT press, 1988.
[Gre90] Leslie Greengard. The numerical solution of the n-body problem. *Computers in physics*, 4(2):142–152, 1990.

[Gre94] Leslie Greengard. Fast algorithms for classical physics. *Science*, 265(5174):909–914, 1994.

[GS91] Leslie Greengard and John Strain. The fast gauss transform. *SIAM Journal on Scientific and Statistical Computing*, 12(1):79–94, 1991.

[GSY23] Ye Qi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. *arXiv preprint arXiv:2305.04701*, 2023.

[Her64] M Hermite. *Sur un nouveau développement en série des fonctions*. Imprimerie de Gauthier-Villars, 1864.

[Hil26] Einar Hille. A class of reciprocal functions. *Annals of Mathematics*, pages 427–464, 1926.

[HSS08] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learning. *The annals of statistics*, 36(3):1171–1220, 2008.

[HSWZ22] Hang Hu, Zhao Song, Omri Weinstein, and Danyang Zhuo. Training overparametrized neural networks in sublinear time. *arXiv preprint arXiv:2208.04508*, 2022.

[HW13] Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In *Proceedings of the forty-fifth annual ACM symposium on Theory of computing (STOC)*, pages 121–130, 2013.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in neural information processing systems*, pages 8571–8580, 2018.

[JKDG08] Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and fast similarity search. In *NIPS*, volume 8, pages 761–768. Citeseer, 2008.

[JPW22] Shuohua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression. In *ICLR*, 2022.

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. In *NeurIPS*, 2018.

[LMG05] Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. *Advances in Neural Information Processing Systems*, 18, 2005.

[LSS+20] Jason D Lee, Ruqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score sampling for neural networks. In *NeurIPS*, 2020.

[Mar12] Per-Gunnar Martinsson. Encyclopedia entry on “fast multipole methods”. In *University of Colorado at Boulder*. http://amath.colorado.edu/faculty/martinss/2014_CBMS/Refs/2012_fmm_encyclopedia.pdf, 2012.

[Mar19] Per-Gunnar Martinsson. Fast summation and multipole expansions. Lecture note, 2019.
[NJW02] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In *Advances in neural information processing systems*, pages 849–856, 2002.

[PKP+19] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019.

[RN10] Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (gpml) toolbox. *J. Mach. Learn. Res.*, 11:3011–3015, 2010.

[RR08] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in neural information processing systems*, pages 1177–1184. https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf, 2008.

[SJP+18] Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged progress in structured dense matrix vector multiplication. In Artur Czumaj, editor, *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA)*, pages 1060–1079. SIAM, 2018.

[SS02] Bernhard Schölkopf and Alexander J. Smola. *Learning with kernels : support vector machines, regularization, optimization, and beyond*. Adaptive computation and machine learning. MIT Press, 2002.

[SSB02] Bernhard Schölkopf, Alexander J Smola, and Francis Bach. *Learning with kernels: support vector machines, regularization, optimization, and beyond*. MIT press, 2002.

[SSX21] Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value iteration via locality sensitive hashing. *arXiv preprint arXiv:2105.08285*, 2021.

[STC04] John Shawe-Taylor and Nello Cristianini. *Kernel methods for pattern analysis*. Cambridge university press, 2004.

[SYZ21] Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized neural networks? *Advances in Neural Information Processing Systems*, 34, 2021.

[SZK14] Erich Schubert, Arthur Zimek, and Hans Peter Kriegel. Generalized outlier detection with flexible kernel density estimates. In *Proceedings of the 2014 SIAM International Conference on Data Mining*, pages 542–550, 2014.

[SZZ21] Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network in subquadratic time. *arXiv preprint arXiv:2112.07628*, 2021.

[XSS21] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for some well-known conditional gradient methods using maxip data-structures. *Advances in Neural Information Processing Systems (NeurIPS)*, 34, 2021.

[YDD04] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using the improved fast gauss transform. In *NIPS*, 2004.

[YDG03] Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast gauss transform and efficient kernel density estimation. In *Proceedings Ninth IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2003.
[YJZ+23] Hongru Yang, Ziyu Jiang, Ruizhe Zhang, Zhangyang Wang, and Yingbin Liang. Convergence and generalization of wide neural networks with large bias, 2023.

[Zha22] Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance. Master’s thesis, Carnegie Mellon University, 2022.

[ZHDK23] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.