On Inflation Rules for Mosseri–Sadoc Tilings

Zorka Papadopolos#, Oleg Ogievetsky##

Institut für Theoretische Physik, Universität Magdeburg, PSF 4120, 39016 Magdeburg, Germany
Center of Theoretical Physics, Luminy, 13288 Marseille, France

Received 31 August 1999

Abstract

We give the inflation rules for the decorated Mosseri–Sadoc tiles in the projection class of tilings \(T^{(MS)} \). Dehn invariants related to the stone inflation of the Mosseri–Sadoc tiles provide eigenvectors of the inflation matrix with eigenvalues equal to \(\tau = \frac{1 + \sqrt{5}}{2} \) and \((-\tau^{-1}) \).

Keywords: Quasiperiodic tiling; Icosahedral tiling; Inflation rules; Dehn invariant

1. Introduction

Kramer has introduced the icosahedrally symmetric tiling of the (3-dimensional) space by seven (proto)tiles [1]. Sadoc and Mosseri have rebuilt these prototiles and reduced their number to four: \(z, h, s \) and \(a \). But the inflation class (inflation specie [2]) of the tilings of the space by the four Mosseri–Sadoc prototiles has lost the icosahedral symmetry [3]. In Ref. [4] a projection class (projection specie [2]) of the tilings \(T^{(MS)} \) by the Mosseri–Sadoc prototiles has been locally derived from the canonical icosahedrally projected (from the lattice \(D_6 \)) local isomorphism class of the tilings \(T^*(2F) \). In Ref. [4] it has been shown that the projection class of the locally isomorphic tilings \(T^*(2F) \) (the tilings of the 3dimensional space by the six tetrahedra with all edges parallel to the 2fold symmetry axis of an icosahedron, of two lengths, the standard one denoted by \(\frac{1}{2} \), the “short” edge, and \(\tau \), the “long” edge, [3]) by the “golden” tetrahedra [8] can be locally transformed into the tilings \(T^{(MS)} \), \(T^*(2F) \rightarrow T^{(MS)} \). The class \(T^{(MS)} \) of locally isomorphic tilings by Mosseri–Sadoc tiles has been defined by the projection [4]. The important property is that the mini-
Fig. 1. Decorated tiles a, m, r, z and s of the tilings $T^{(MS)}$ obtained from the decorated eight tiles A^*, B^*, C^*, D^*, F^*b, F^*r, G^*b and G^*r of the tilings $T^{(2F)}$. The arrows which decorate the eight $T^{(2F)}$-tiles are along their edges, the arrows which decorate the (composite) tiles of the projection species $T^{(MS)}$ are drawn on certain distance in order to be distinguishable from the previous. The “white” arrow (by the tile a) is marking the edge τa, the “long” edge in the $\tau T^{(2F)}$-class of tilings.

Fig. 2. The tiles r and m appear in $T^{(MS)}$ always as a union, $h = r \cup m$. The decoration of the tile h is determined by the decoration of the tiles r and m.

Fig. 3. Inflation rule of the decorated tile a: $\tau a = a \cup s \cup a$. The “white” arrow marks the edge τa^2, the “long” edge in the $\tau T^{(2F)}$-class of tilings.

Fig. 4. Inflation rule of the decorated tile r: $\tau r = z \cup s \cup m \cup r$.

Fig. 5. Inflation rule of the decorated tile z: $\tau z = \tau r \cup a$. The white arrows are marking the “short” and “long” edges in the $\tau T^{(2F)}$-class of tilings.

Table of Invariants

Invariant	Value
α	$\frac{\tau}{\tau + 2} = \frac{1}{\sqrt{5}}$

Thus, the space of Dehn invariants of the Mosseri–Sadoc tiles is one-dimensional, there is only one independent lateral angle. For the Dehn invariants applied to the inflation, see Ref. [8].

For the vector of volumes of the Mosseri–Sadoc tiles one obtains

$$v_{MS} = \text{Vol} \begin{pmatrix} z \\ h \\ s \\ a \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 4\tau + 2 \\ 6\tau + 4 \\ 4\tau + 3 \\ 2\tau + 1 \end{pmatrix} .$$

We show that the inflation matrix for Mosseri–Sadoc tiles z, h, s and a can be uniquely reconstructed from the Dehn invariants (and the volumes).

Denote the inflation matrix by \mathcal{M}_{MS}.

The vectors d_{MS} and v_{MS} are eigenvectors of the inflation matrix, with the eigenvalues τ and τ^2 correspondingly (the eigenvalue is equal to the inflation...
Fig. 6. Inflation rule of the decorated tile s: $\tau s = \tau z \cup a$. The white arrow is marking the “long” edge in the $\tau T^{(2F)}$–class of tilings.

Fig. 7. Inflation rule of the decorated tile m: $\tau m = a \cup s \cup z \cup a$. The white arrow is marking the “long” edge in the $\tau T^{(2F)}$–class of tilings.

factor to the power which is the dimension of the corresponding invariant).

Explicitly,

$$M_{MS} \begin{pmatrix} 4\tau + 2 \\ 6\tau + 4 \\ 4\tau + 3 \\ 2\tau + 1 \end{pmatrix} = \begin{pmatrix} 16\tau + 10 \\ 26\tau + 16 \\ 18\tau + 11 \\ 8\tau + 5 \end{pmatrix}$$

(6)

for the vector of volumes and

$$M_{MS} \begin{pmatrix} \tau \\ 2 \\ \tau - 1 \\ -\tau \end{pmatrix} = \begin{pmatrix} \tau + 1 \\ 2\tau \\ 1 \\ -\tau - 1 \end{pmatrix}$$

(7)

for the the vector of Dehn invariants.

Assume that the inflation matrix is rational. Then, decomposing eqs. (6) and (7) in powers of τ, we obtain four vector equations for M_{MS} or a matrix equation

$$M_{MS} \begin{pmatrix} 4 & 2 & 1 & 0 \\ 6 & 4 & 0 & 2 \\ 4 & 3 & 1 & -1 \\ 2 & 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 16 & 10 & 1 & 1 \\ 26 & 16 & 2 & 0 \\ 18 & 11 & 0 & 1 \\ 8 & 5 & -1 & -1 \end{pmatrix}$$

(8)

The solution of this equation is unique and we find the matrix [8].

Acknowledgements

The work of Z. Papadopolos was supported by the Deutsche Forschungsgemeinschaft. Z. Papadopolos is grateful for the hospitality to the center of the Theoretical Physics in Marseille, where this work has been started. The work of O. Ogievetsky was supported by the Procope grant 99O82. We also thank the Geometry–Center at the University of Minnesota for making Geomview freely available.

References

[1] P. Kramer, “Non–periodic Central Space Filling with Icosahedral Symmetry using Copies of Seven Elementary Cells”, Acta Cryst. A38 (1982) 257–264

[2] L. Danzer, “Quasiperiodicity; local and global aspects”, in Lecture Notes in Physics 382, eds. V.V. Dodonov and V.I. Man’ko, Springer 1991, pp. 561–572

[3] O. Ogievetsky and J. F. Sadoc, “Two and three dimensional non–periodic networks obtained from self–similar tiling”, The Physics of Quasicrystals, eds. P. J. Steinhardt and S. Ostlund, World Scientific (1987) 720–734

[4] P. Kramer and Z. Papadopolos, “The Mosseri–Sadoc tiling derived from the root–lattice D_6”, Can. J. Phys. 72 (1994) 408–414

[5] P. Kramer, Z. Papadopolos and D. Zeidler, “Symmetries of icosahedral quasicrystals”, in Proc. of the Symp. Symmetries in Science V: Algebraic structures, their representations, realizations and physical applications, ed. B. Gruber et al., Plenum Press (1991) 395–427

[6] Z. Papadopolos and P. Kramer, “Models of icosahedral quasicrystals from 6D lattice”, Proceedings of the International Conference on Aperiodic Crystals, Aperiodic ’94, ed. by G. Chapuis et al., World Scientific, Singapore (1995), pp. 70–76

[7] M. Dehn, “Uber den Rauminhalt”, Göttingen Nachr. Math. Phys. (1900) 345–354; Math. Ann. 55 (1902) 465–478

[8] O. Ogievetsky and Z. Papadopolos, “On Quasiperiodic Space Tilings, Inflation and Dehn Invariants”, preprint CPT-99/P.3879, preprint math-ph/9910006

[9] Z. Papadopolos, C. Hohneker and P. Kramer, “Tiles–inflation rules for the canonical tiling $T^{(2F)}$, derived by the projection method”, preprint math-ph/9909014 to be published in the Special Issue of Discrete Mathematics in honor of Ludwig Danzer;

C. Hohneker, P. Kramer, and Z. Papadopolos, “Tiles–inflation for the canonical tiling $T^{(2F)}$, in GROUP21 Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, Volume 2, eds.: H.-D. Doehnner, W. Scherer, and C. Schulte, World Scientific, Singapore (1997) 982–986
This figure "FIG1.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1
This figure "FIG2.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1
This figure "FIG3.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1
This figure "FIG4.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1
This figure "FIG5.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1
This figure "FIG6.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1
This figure "FIG7.gif" is available in "gif" format from:

http://arxiv.org/ps/math-ph/9911005v1