Research on The Pore-Forming Mechanism of Porous Tial Intermetallics With Urea

Xide Li, Liangbo Sun, Junsheng Yang and Yuzuo Liu*

School of mechanical engineering, Wuhan Polytechnic University, Wuhan, China

*Corresponding author e-mail: yangjunsheng2008@163.com

Abstract. Porous TiAl intermetallic compound has excellent properties, which could be applied to various fields. However, the disadvantage of current porous TiAl intermetallics is that the permeate flux is low. Urea, as an economical fertilizer with abundant sources, low price and volatile linearity, can be used as a good pore-forming agent in this paper. Urea was chosen as pore-forming agent to manufacture porous TiAl intermetallics by activation reactive sintering. After that, the effect of pore former Urea content and pore-forming mechanism were explored. The results indicated that the pore former Urea is benefit for the formation of through-holes in porous TiAl intermetallics, and the Kirkendall partial diffusion effect has great influence on the pore formation.

1. Introduction

Porous metal materials have high porosity and high specific surface area, so that they have excellent properties and they could be widely used in purification and different liquid components concentration of chemical, aerospace, pharmaceutical industry [1]. Zhang et al [2] reported porous TiAl intermetallics were prepared with Ti and Al element powders as raw materials by Kirkendall partial diffusion-activation reaction sintering. At present, porous TiAl materials with controllable pore structure, excellent filtration performance, long service life has been basically achieved, and which can be applied in acid, alkali, and server environment for industrial processes. However, there are still some shortcomings with this material, such as small flux, low filtration efficiency.

In order to solve these problems, adding different things [3-6] as pore former and dealloying [7] to increase through-hole are the mainly methods. But these methods are difficult to remove residual substances, which may affect the performance of the material. In this work, Urea was added as a good pore-forming agent. The reasons lied in the low price, wide source, low boiling point and easy volatilization. Therefore, a pore-forming agent Urea was studied its influence on the porosity of the through-holes of porous TiAl intermetallics. Last but not least, the pore-forming mechanism from mathematical perspective was explored.

2. Experiment and methods

The raw materials were used in this experiment: Ti powder (- 200 ~ + 400 mesh, purity 99.7%), Al powder (- 325 mesh, purity 99.5%), Urea (- 200 mesh, analytical grade). The Ti and Al element powders are mixed according to Ti-33wt % Al in a planetary ball mill for stirring 5 h with the ball to material ratio 5:1. Then, the same proportion (mass ratio 1%, 3%, 5%, 7%) of The Urea was added to
the mixed powders. After the grinding, the mixed powders were subjected to press molding at a pressing pressure of 200 MPa. The green compact of a diameter of 32 mm and a thickness of 2 mm was formed. Then it would be subjected to activation reaction sintering in a vacuum sintering furnace. The porosity was measured by bubble point method, and the gas permeability was measured by a dry film differential pressure flow measurement method.

3. Results and discussion

3.1. Sintering process
As was depicted in Fig 1, there were four platforms. The first temperature platform was to remove the water with the temperature of 120 ℃. The second stage was corresponding to the resoving of Urea with temperature of 200 ℃. The third stage was related to the diffusion of Ti and Al with the temperature of 620 ℃ and the time was 90min. For the last platform, the sample was kept for 120min, it was related to the densification of Porous TiAl intermetallic compounds.

Fig 1. The sintering temperature as a function of sintering time.

3.2. The effect of pore-forming agent content on the expansion behavior of porous material
For analysing the influence of the content of pore-forming agent on the expansion behavior of porous TiAl intermetallics, Data on inflation rates were shown in table 1

Space-holder	Amount (wt. %)	Radial Direction (%)	Axial Direction (%)	Volume Expansion (%)
	0	10.22	9.38	33.42
	1	11.17	9.96	35.90
(NH₂)₂CO	3	11.96	10.10	38.01
	5	13.18	10.23	41.20
	7	14.37	10.90	45.06

As can be view in the table, the axial expansion rate and volume expansion rate of the sample presented a linear growth trend with the increase of the content of pore-forming agent. To explore the quantitative relationship between volume expansion rate and the content of pore-forming agent w, assuming that they meet the linear relation, that was:

\[\alpha = \kappa w + b \] (1)
Linear fitting was performed on the data in the table to obtain:

\[\alpha = 1.581w + 33.658, \quad R^2 = 0.99461 \] \hspace{1cm} (2)

The determination coefficient was close to 1, indicating that the linear fitting degree was good.

3.3. Effect of pore former content on porosity

In this paper, the pore diameter distribution of pore morphology was calculated. The results were shown in figure 2. As was seen in the figure, the pore size of the Porous TiAl intermetallic compound without pore formation agent was concentrated in 15μm ~ 25μm. After 7% Urea was added, the pore diameter was 20μm ~ 50μm. The aperture becomes larger and the distribution becomes wider. The results show that the pore size was affected by the pore preparation.

![Figure 2. The pore size distribution of porous TiAl intermetallics with cross section morphology.](image)

3.4. Influencing factors of pore formation in TiAl intermetallic compounds

Porosity of the porous TiAl intermetallics was caused by four kinds of factors: (1) the volume expansion during the sintering process; (2) the mespore between powders and powder in the green compact; (3) the pore former in the original position after volatilization at a high temperature; (4) the Kirkendall's partial diffusion effect. According to the equation of mass conservation before and after sintering (the pore-forming agent was not included due to volatilization), the formula could be illustrated as:

\[\rho_0 V_0 (1 - \theta_m - \theta_s) = \rho (1 + \alpha) V_0 (1 - \theta_v) \] \hspace{1cm} (3)

Where, \(\rho_0 \) and \(\rho \) represent the theoretical density of the green and sintered porous samples, g/cm³; \(\theta_m \) symbolize the porosity of the interstitial pores in the green body; \(\theta_s \) depict the porosity occupied by the pore former; \(V_0 \) describe the green volume; \(\theta_v \) was the total void ratio, and \(\alpha \) express sintering the volume expansion ratio of the sample.

Then the pore former porosity \(\theta_s \) caused by Urea could be expressed as:

\[\theta_s = 1 - \theta_m - \frac{\rho}{\rho_0} (1 + \alpha)(1 - \theta_v) \] \hspace{1cm} (4)

As we all know, the pore former porosity \(\theta_s \) is positive relevant to the amount of pore forming agent. So, the formula (4) can be conducted as follows:
\[
\theta_s = K_w w = 1 - \theta_m - \frac{\rho}{\rho_0} (1 + \alpha)(1 - \theta_v) \tag{5}
\]

Where, \(K_w\) was the proportionality factor of pore forming agent.

In order to further verify the relationship between the pore \(\theta_s\) caused by the pore former and other parameters, the amount of pore forming agent \(W\) and the mapping were performed in Figure. 3.

Figure 3. Relationship between pore former content and \((1+\alpha)(1-\theta_v)\)

Then fitting data and the resulting straight-line formula was:

\[
y = 2.76 - 3.61x \quad R^2 = 0.9772 \tag{6}
\]

The value of \(R^2\) is 0.9772 close to 1, indicating that the experimental data is reliable with no large deviation. In order to obtain the effecting of the pore former content on the pores of the porous TiAl intermetallics, whose value was represented by \(K_w\). Combining equation \(1/(1+\alpha)\) with \((1-\theta_v)\) linear fit to obtain a slope of 1.242, or \(\rho_0 V_0 (1-\theta_m - \theta_s)\). Diagraming of Equation 5 and Figure 3, the pore-forming coefficient \(K_w\) of the pore-forming agent was found to be 0.60. Jiang et al. [10] synthesized porous TiAl intermetallics by activation reaction sintering technique. The results indicated that the pore parameters were ratio to the Al amount. Since the composition ratio of the porous TiAl intermetallics used in this experiment was Ti-33wt.% Al, and the Kirkendall reaction perforation coefficient can be conducted as 0.92. According to Fig 3, it could be concluded that the Kirkendall pores were 30.36%. The sum of the pores of the mesopores and volume expansion pores were 12.04%.
Fig 4. The effect of Al content on the porosity of Ti-Al porous alloy

The pore-forming porosity and the ratio of kirkendall porosity to the residual porosity were plotted for the pore-forming agent content in Fig 5. As was depicted in Fig 5, The pore-forming porosity and the ratio of kirkendall porosity to the residual porosity were plotted for the pore-forming agent content. With the increasing of pore-forming agent content, the ratio of Kirkendall porosity to total porosity gradually decreased. This may be because of the gap between powder particles increased after the addition of pore-forming agent, which affected the Kirkendall diffusion process and its diffusion pores. The proportion of degrees has decreased. The porosity of the pore-forming agent, the ratio of the pore volume and the volume expansion hole to the total porosity increased. Indicating that the increasing of porosity was mainly caused by the above three factors.

Fig 5. The effect of different pore proportion in porous TiAl intermetallics

4. Conclusion
1) The pore size of the Porous TiAl intermetallic compound without pore formation agent was concentrated in 15μm ~ 25μm. After 7% Urea was added, the pore diameter was 20μm ~ 50μm. The aperture becomes larger and the distribution becomes wider.
2) The pore-forming coefficient of the pore former was 0.60, and the pore ratio of the Kirkendall reaction was 0.92. The pore porosity of Kirkendall was 30.36%, and the sum of the pores of the clearance hole and the volume expansion hole was 12.04%. The increasing of porosity was mainly
affected by pore former, Kirkendall diffusion process and volume expansion of porous TiAl intermetallics.

Acknowledgments
This project is financially supported by the Natural Science Foundation of China (51704221, 51875418) and Outstanding youth fund of Wuhan Polytechnic University (2018J05)

References
[1] Fathy A, Sadoun A, Abdelhameed M. Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites [J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(5-8):1049-1056.
[2] Zhang W, Liu Y, Wang H, et al. Preparation and properties of porous Ti–Al alloys by reactive infiltration [J]. Powder Metallurgy, 2011, 54(3):253-256.
[3] Esen Z, Ezgi Bütev Öcal. Surface characteristics and in-vitro behavior of chemically treated bulk Ti6Al7Nb alloys [J]. Surface & Coatings Technology, 2017, 309:829-839.
[4] He Xiaoyu, Liu Wei, Li Wei, et al. Preparation of Porous Ni3Al Materials by Mixed Element Method [J]. Journal of Central South University: Natural Science, 2009, 40(2).
[5] Ruiping L, Chang'An W. Effects of Pore-Forming Agent Content on the Properties of Porous 8YSZ Ceramics by TBA Based Gel-Casting [J]. RARE METAL MATERIALS AND ENGINEERING, 2013, 42:422-425.
[6] Xu G, Li J, Cui H, et al. Biotemplated fabrication of porous alumina ceramics with controllable pore size using bioactive yeast as pore-forming agent [J]. Ceramics International, 2015, 41(5):7042-7047.
[7] Zou L, Chen F, Chen X, et al. Fabrication and mechanical behavior of porous Cu via chemical de-alloying of Cu25Fe75 alloys [J]. Journal of Alloys and Compounds, 2016, 689:6-14.
[8] Nan Bo, CUI Wenhua, WU Hao, et al. Preparation of porous material of Ni3Al intermetallic compound by pore formation of ammonium carbonate [J]. Powder Metallurgy Materials Science and Engineering, 2014(4).
[9] Wu Wei, He Yuehui, Jiang Wei, et al. Effect of pore structure on corrosion resistance of porous materials of Ni3Al intermetallic compound (English) [J]. Chinese Journal of Nonferrous Metals: English, 2014(11): 3509-3516.
[10] Jiang Y, He Y H, Xu N P, et al. Effects of the Al content on pore structures of porous Ti–Al alloys [J]. Intermetallics, 2008, 16(2):0-332.