Anisotropic magnetic properties of trigonal ErAl$_2$Ge$_2$ single crystal

Moumita Nandi, A Thamizhavel and S K Dhar

Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400 005, India

E-mail: moumita.nandi11@gmail.com

Received 18 November 2019, revised 24 December 2019
Accepted for publication 17 January 2020
Published 6 February 2020

Abstract

We report the anisotropic magnetic properties of the ternary compound ErAl$_2$Ge$_2$. Single crystals of this compound were grown by high temperature solution growth technique, using Al:Ge eutectic composition as flux. From the powder x-ray diffraction we confirmed that ErAl$_2$Ge$_2$ crystallizes in the trigonal CaAl$_2$Si$_2$-type crystal structure. The anisotropic magnetic properties of a single crystal were investigated by measuring the magnetic susceptibility, magnetization, heat capacity and electrical resistivity. A bulk antiferromagnetic ordering occurs around 4 K as inferred from the magnetic susceptibility and the heat capacity. The susceptibility is larger along the ab-plane and flattens out below the magnetic transition temperature (T_N) and the magnetization in the ordered state increases more rapidly along the ab-plane than along the c-axis suggesting that the moments are inclined more towards the ab-plane. The magnetic susceptibility, magnetization and the $4f$-derived part of the heat capacity in the paramagnetic regime analysed based on the point charge model of the crystalline electric field (CEF) indicate a relatively low CEF energy level splitting.

Keywords: ErAl$_2$Ge$_2$, magnetocrystalline anisotropy, single crystal, antiferromagnetism

(Some figures may appear in colour only in the online journal)
2. Experimental methods

Single crystals of ErAl₂Ge₂ were grown by the high temperature solution growth method, taking advantage of the deep eutectic (420 °C) formed by the Al:Ge (72:28) \[12\]. High purity metals of Er, Al and Ge with a starting composition of 1 : 17.5 : 7.5 were placed in a high quality recrystallized alumina crucible. The alumina crucible was sealed in an evacuated quartz ampoule under a partial pressure of argon gas. The pressure of the argon gas was kept at a level such that it does not exceed the atmospheric pressure at the maximum growth temperature. The ampoule was placed in a resistive heating box type furnace and heated to 1050 °C at a rate of 30 °C h⁻¹ and held at this temperature for 20 hr for homogenizing the melt. Then the furnace was cooled at the rate of 1.8 °C h⁻¹ down to 600 °C at which point the excess flux was removed by means of centrifuging. Well defined shiny single crystals with typical dimensions of 4 mm × 3 mm × 1 mm were obtained. A few pieces of the single crystals were ground for powder x-ray diffraction measurement using PANalytical x-ray machine with a monochromatic Cu-Kα radiation. The crystals were oriented along ab-plane and along c-axis by means of Laue diffraction, in the back-reflection geometry, using a polychromatic source of x-rays. The magnetic measurements were performed using SQUID magnetometer (Quantum Design, USA) and the heat capacity and electrical measurements were performed using a physical property measurement system (PPMS).

3. Results and discussions

3.1. X-ray studies

The room temperature powder x-ray diffraction (XRD) pattern of ErAl₂Ge₂ is shown in figure 1. All the peaks can be indexed to the trigonal CaAl₂Si₂ type crystal structure and there are no extra peaks due to any trace impurity phase(s). The Rietveld analysis of the XRD data furnishes the lattice constants as \(a = 4.180 \ \text{Å}\) and \(c = 6.654 \ \text{Å}\), which are in close agreement with the previously reported values [13]. The well defined Laue diffraction pattern, shown in the inset of figure 1 confirms the good quality of the single crystal. The nearest Er–Er distance is in the ab-plane which is the same as that of the lattice constant \(a\).

3.2. Electrical resistivity

The temperature dependence of electrical resistivity was measured from 2–300 K by passing a current of 1 mA in the ab-plane of the crystal and is shown in figure 2. The electrical resistivity decreases with the decrease in temperature typical of a metal and shows an upturn below 4 K, which is due to the onset of antiferromagnetic ordering (see magnetization data below). Similar upturn in the electrical resistivity was observed in the isostructural compound HoAl₂Ge₂ [11], below its Néel temperature. The increase in the electrical resistivity in the antiferromagnetic state is usually attributed to the formation of superzone gap, when the magnetic periodicity is different from the lattice periodicity. Because of the gap opening the number of charge carrier decreases which leads to the increase in the electrical resistivity. The superzone gap is observed in elemental rare-earth metals such as Dy, Er, Ho and Tm etc [14] and has also been observed in several rare-earth intermetallic compounds like CeGe, CePd₅Al₂, UCu₂Sn, UNiGa etc to name a few [15–18].

3.3. Magnetic susceptibility and isothermal magnetization

3.3.1. Magnetic susceptibility. The dc magnetic susceptibility (main panel) measured in an applied field of 3 kOe and the inverse magnetic susceptibility (inset) of ErAl₂Ge₂ are shown in figure 3. The susceptibility follows Curie–Weiss behaviour at high temperatures. There is a prominent change of slope in the susceptibility at around 4 K for field applied both along the c-axis and normal to it, which is due to the antiferromagnetic transition at 4 K. A large anisotropy is observed at low temperatures (below 20 K) but it weakens considerably at higher temperature in the paramagnetic state. The susceptibility in the ab-plane increases more rapidly below 20 K than
are the crystal field parameters and

\(\chi_{CEF} \) is relatively weaker for ErAl\(_2\)Ge\(_2\). This can be attributed to temperature of \(-0.39\) K for free Er\(^{3+}\) with that of HoAl\(_2\)Ge\(_2\) [11]. The inverse susceptibility plot along with the modified Curie–Weiss effect was previously observed in HoAl\(_2\)Ge\(_2\) [11]. The inverse susceptibility data were fitted to the modified Curie–Weiss law, \(\chi^{-1} = (\chi_0 + \frac{g^2}{kT})^{-1} \), where \(\chi_0 \) is the temperature independent term whose contributions come from the conduction electrons and the Pauli spin susceptibility of the conduction electrons. We obtain an effective magnetic moment of 9.73 \(\mu_B/\text{Er} \) and 9.31 \(\mu_B/\text{Er} \) and the paramagnetic Curie–Weiss temperature of \(-7.35\) K and \(-0.39\) K for \(H \parallel ab\)-plane and \(c\)-axis, respectively. The effective magnetic moment values are close to the Hund’s rule derived value of 9.59 \(\mu_B/\text{Er} \) for free Er\(^{3+}\). If we compare the overall magnetic susceptibility with that of HoAl\(_2\)Ge\(_2\), the anisotropy in paramagnetic state is relatively weaker for ErAl\(_2\)Ge\(_2\). This can be attributed to the crystal electric field (CEF) effect. A similar behavior is observed in R\(_2\)CoGa\(_8\) (R = Gd–Lu), where the sign of the \(B_0^n \) parameter (discussed later) changes as one moves towards higher rare-earth side [19].

3.3.3. Crystal electric field analysis

We have applied the point charge model of crystalline electric field to the magnetic susceptibility data to get a semi-quantitative estimate of the CEF level splitting. The Er-atom in ErAl\(_2\)Ge\(_2\) unit cell, occupies the 1a Wyckoff’s position with point symmetry \(3m \) (Schönflies symbol: \(D_{6h} \)) which possesses trigonal site symmetry. The crystal field Hamiltonian for rare-earth atom occupying trigonal site symmetry is given by:

\[
H_{\text{CEF}} = B_0^0 \mathbf{O}_0^0 + B_2^0 \mathbf{O}_2^0 + B_4^0 \mathbf{O}_4^0 + B_6^0 \mathbf{O}_6^0
\]

(1)

where \(B_0^n \) are the crystal field parameters and \(\mathbf{O}_n^m \) are the Stevens operators [20, 21]. In order to reduce the number of fitting parameters and for the sake of convenience, we have used the CEF Hamiltonian for the hexagonal site symmetry which is given by,

\[
H_{\text{CEF}} = B_0^0 \mathbf{O}_0^0 + B_2^0 \mathbf{O}_2^0 + B_4^0 \mathbf{O}_4^0 + B_6^0 \mathbf{O}_6^0
\]

(2)

Previously, we used the same approximation for analysing the anisotropic magnetic properties of isostructural HoAl\(_2\)Ge\(_2\) [11]. The 16-fold \((2J + 1; J = 15/2) \) degenerate level of free Er\(^{3+}\) ion splits into 8 doublets in the CEF of hexagonal symmetry. The magnetic susceptibility including the molecular field contribution \(\lambda \) is given by

\[
\chi^{-1} = \chi_{\text{CEF}}^{-1} - \lambda
\]

(3)

where \(\chi_{\text{CEF}} \) is CEF susceptibility. The expression for the magnetic susceptibility and magnetization based on the CEF model is given in [22, 23]. In order to analyse the inverse susceptibility in the above CEF model, we first fitted the paramagnetic inverse susceptibility to modified Curie–Weiss expression by fixing the \(\mu_B/\text{Er} \) value to 9.59 \(\mu_B/\text{Er} \) and subtracted the resulting \(\chi_0 \) value from the raw susceptibility data. Finally we plotted the inverse \((\chi - \chi_0) \) versus temperature and fitted the CEF Hamiltonian of equation (3) to the renormalized data, following the procedure applied earlier on some rare-earth
intermetallic compounds \[24,25\]. The solid lines in figure 5 show the fitted inverse magnetic susceptibility based on the CEF model, with the crystal field parameters as \(B_2^0 = -0.062\) K, \(B_4^0 = 0.001\) K, \(B_6^0 = -3.9 \times 10^{-5}\) K, \(B_8^0 = 2.0 \times 10^{-5}\) K. The molecular field coefficients are \(\lambda_1 = -0.1\) mol emu\(^{-1}\) and \(\lambda_2 = -0.62\) mol emu\(^{-1}\). The negative sign of the molecular field constants, albeit small, supports the antiferromagnetic nature of the magnetic ordering. The corresponding energy eigenvalues of the crystal field levels are also shown in figure 5. In practice various combinations of CEF parameters \(B_{n}^m\)’s which furnish widely different CEF energy eigenvalues provide a good fit to the susceptibility data. However, the listed CEF parameters also qualitatively explain the magnetization data as shown in figure 4(b). The energy eigenvalues depicted in figure 5 provide the closest fit to the Schottky heat capacity (to be discussed later) and can be taken as the first order estimates. From the mean field theory, one can obtain a rough estimate of the \(B_2^0\) parameter which is related to the paramagnetic Weiss temperature and the exchange constant by the following relation \[26\]

\[
k_B\theta_a = \frac{1}{3}J(J+1)\mathcal{J}^a_{ex} + \frac{2}{3}\left(J - \frac{1}{2}\right)\left(J + \frac{3}{2}\right)B_2^0. \tag{4}
\]

and

\[
k_B\theta_c = \frac{1}{3}J(J+1)\mathcal{J}^c_{ex} - \frac{4}{3}\left(J - \frac{1}{2}\right)\left(J + \frac{3}{2}\right)B_2^0. \tag{5}
\]

Assuming, an isotropic two-ion interaction \(\mathcal{J}^a_{ex} = \mathcal{J}^c_{ex} = \mathcal{J}_{ex}\) and using \(J = 15/2\) and the paramagnetic Curie–Weiss temperature \(\theta_p\) values, obtained in section 3.3, the value of \(B_2^0\) was estimated to be \(-0.092\) K. Given the assumptions involved in the point charge model and the limitations of the mean filed theory, this value may be considered to be in fairly good agreement with the \(B_2^0\) value obtained from the CEF analysis. It thus provides some additional support to our final choice of crystal field parameters and the resulting crystal field levels.

Figure 5. The crystal electric field analysis on the inverse susceptibility data. The solid lines are fit to the CEF analysis (refer to text). The estimated energy levels are also shown.

Figure 6. Temperature variation of heat capacity of ErAl\(_2\)Ge\(_2\) and LaAl\(_2\)Ge\(_2\). Inset shows the temperature variation of the 4\(f\)-derived heat capacity and the corresponding entropy of ErAl\(_2\)Ge\(_2\) and the solid line is the calculated Schottky heat capacity based on CEF calculations.

3.4. Heat capacity studies

The temperature dependence of the specific heat capacity of a single crystalline ErAl\(_2\)Ge\(_2\) and its non-magnetic reference polycrystalline LaAl\(_2\)Ge\(_2\) in the temperature range \(2 – 50\) K is shown in the main panel of figure 6. The heat capacity of the magnetic compound ErAl\(_2\)Ge\(_2\) is greater than the non-magnetic compound in the entire temperature range, due to the additional 4\(f\)-derived contribution to the heat capacity \(C_{4f}\). A very sharp \(\lambda\)-like transition is observed at \(T_N = 4\) K suggesting the bulk nature of the magnetic ordering in ErAl\(_2\)Ge\(_2\). We have estimated the 4\(f\)-derived contribution to the heat capacity \(C_{4f}\), by subtracting the phononic contribution (taken to be identical to that of LaAl\(_2\)Ge\(_2\)) from the heat capacity of ErAl\(_2\)Ge\(_2\) and plotted it in the inset of figure 6. Above the magnetic transition, a broad peak is observed in the magnetic part of the heat capacity, which is mainly attributed to the Schottky heat capacity arising due to the thermal population of the several low lying crystalline electric field states as the temperature is increased. Theoretically, the Schottky heat capacity can be calculated using the energy levels obtained from the CEF fitting of the magnetic susceptibility data. The expression for the Schottky heat capacity is given by the following relation:

\[
C_{sch}(T) = R \left[\frac{\sum_i g_i e^{-\frac{\delta_i}{T}} \sum_i g_i E_i e^{-\frac{\delta_i}{T}} - \left(\sum_i g_i E_i e^{-\frac{\delta_i}{T}}\right)^2}{T^2 \left(\sum_i g_i e^{-\frac{\delta_i}{T}}\right)^2}\right], \tag{6}
\]

where \(R\) is the gas constant, \(E_i\) is the energy in units of temperature and \(g_i\) is the degeneracy of the energy level, the summation index \(i\) runs from zero to \((n – 1)\) number of energy levels. The solid curve in the inset of figure 6, representing the CEF derived Schottky heat capacity is in a semi-quantitative agreement with the experimentally observed
values. An estimate of the entropy change with temperature has also been carried out and it is shown in the inset of figure 6. The entropy increases very rapidly and attains a value of nearly 20 J/(K mol), thus suggesting several low lying CEF states.

4. Summary

In summary, we have successfully grown the single crystals of ErAl$_2$Ge$_2$ and studied its anisotropic physical properties. From the susceptibility and magnetization data, we infer that the easy axis of magnetization is inclined more towards the ab-plane. In the simple two sub-lattice collinear antiferromagnet, the magnetic susceptibility along the easy axis should go down to zero as the temperature is decreased below T_N. However, in the present case the susceptibility along the ab-plane is larger and does not go down to zero. This suggests a possible canting of the magnetic moments and the moments are inclined more closer towards the ab-plane. A microscopic tool like neutron diffraction experiment is necessary to determine the exact orientation of the magnetic moment. The anisotropy in the magnetic susceptibility can be qualitatively explained by our CEF analysis. It has been shown that the 16 fold $(2J + 1)$ degenerate level of the free Er$^{3+}$ ion splits into eight doublets with an overall separation of just 108 K with several levels lying at low energies. The estimated crystal field energy levels account semi-quantitatively for the experimentally observed Schottky heat capacity. The electrical resistivity revealed that a superzone gap forms in ErAl$_2$Ge$_2$ below the antiferromagnetic transition. The exchange interaction, as reflected by the magnetic transition temperature in Ho and Er analogs decreases as one moves towards the higher rare-earth side, which is in accordance with the deGennes scaling. It would be interesting to study the next compound in the series TmAl$_2$Ge$_2$ where, based on the CEF theory, one can expect to see the change of the easy axis compared to ErAl$_2$Ge$_2$ and that work is planned as a future study.

ORCID iDs

Moumita Nandi ● https://orcid.org/0000-0003-4078-7875
A Thamizhavel ● https://orcid.org/0000-0003-1679-4370
S K Dhar ● https://orcid.org/0000-0003-3074-9058

References

[1] Steglich F, Aarts J, Bredl C, Lieke W, Meschede D, Franz W and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[2] Dung N D, Ota Y, Sugiyama K, Matsuda T D, Haga Y, Kindo K, Hagiwara M, Takeuchi T, Settai R and Onuki Y 2009 J. Phys. Soc. Jpn. 78 024712
[3] Thamizhavel A, Kulkarni R and Dhar S 2007 Phys. Rev. B 75 144426
[4] Joshi D A, Nigam A, Dhar S and Thamizhavel A 2010 J. Magn. Magn. Mater. 322 3363–71
[5] Drachuck G, Böhmere A E, Bud’ko S L and Canfield P C 2016 J. Magn. Magn. Mater. 417 420–33
[6] Klüfers P and Mewis A 1984 Z. Kristallogr.-Cryst. Mater. 169 135–48
[7] Kranenberg C, Johrendt D, Mewis A, Pöttgen R, Kotzyba G, Rosenhahn C and Mosel B D 2000 Solid State Sci. 2 215–22
[8] Kranenberg C, Johrendt D and Mewis A 1999 Z. Anorg. Allg. Chem. 625 1787–93
[9] Schobinger-Papamantellos P and Hulliger F 1989 J. Less Common Met. 146 327–35
[10] Maurya A, Kulkarni R, Thamizhavel A, Bonville P and Dhar S 2015 J. Phys. Conf. Ser. 592 012045
[11] Matin M, Mondal R, Thamizhavel A, Provino A, Manfrinetti P and Dhar S 2018 AIP Adv. 8 055709
[12] Okamoto H 1993 J. Phase Equilib. 14 118–9
[13] Qin P, Chen Y, He J, He W, Nong L and Zeng L 2008 Mater. Chem. Phys. 109 515–8
[14] Elliott R and Wedgwood F 1963 Proc. Phys. Soc. 81 846
[15] Das P K, Kumar N, Kulkarni R, Dhar S and Thamizhavel A 2012 J. Phys.: Condens. Matter 24 146003
[16] Onimaru T et al 2008 J. Phys. Soc. Japan 77 074708
[17] Takabatake T, Shirase M, Katoh K, Echizen Y, Sugiyama K and Osakabe T 1998 J. Magn. Magn. Mater. 177 53–4
[18] Aoki Y, Kobayashi Y, Sato H, Sugawara H, Sechovsky V, Havela L, Prokes K, Mihalik M and Menovsky A 1996 J. Phys. Soc. Japan 65 3312–6
[19] Joshi D A, Nagalakshmi R, Dhar S and Thamizhavel A 2008 Phys. Rev. B 77 174420
[20] Stevens K 1952 Proc. Phys. Soc. A 65 209
[21] Hutchings M, Seitz F and Turnbull B 1965 Solid State Physics: Advances in Research and Applications ed F Seitz and B Turnbull (New York: Academic) p 227
[22] Das P K, Kumar N, Kulkarni R and Thamizhavel A 2011 Phys. Rev. B 83 134416
[23] Das P K, Bhattacharyya A, Kulkarni R, Dhar S and Thamizhavel A 2014 Phys. Rev. B 89 134418
[24] Takeuchi T et al 2004 J. Phys.: Condens. Matter 16 L333
[25] Mondal R, Bapat R, Dhar S and Thamizhavel A 2018 Phys. Rev. B 98 115160
[26] Jensen J and Mackintosh A R 1991 Rare Earth Magnetism (Oxford: Clarendon) p 73