ON A CONJECTURE OF DUNFIELD, FRIEDL AND JACKSON

TAKAYUKI MORIFUJI

ABSTRACT. In this short Note, we show that the twisted Alexander polynomial associated to a parabolic $SL(2, \mathbb{C})$-representation detects genus and fibering of the twist knots. As a corollary, a conjecture of Dunfield, Friedl and Jackson is proved for the hyperbolic twist knots.

1. INTRODUCTION

Let K be a knot in the 3-sphere S^3 and denote its knot group by $G(K)$. That is, $G(K) = \pi_1 E(K)$ where $E(K)$ is the knot exterior $S^3 \setminus \text{int}(N(K))$ which is a compact 3-manifold with torus boundary. For a nonabelian representation $\rho : G(K) \to SL(2, \mathbb{C})$, the twisted Alexander polynomial $\Delta_{K,\rho}(t) \in \mathbb{C}[t^{\pm 1}]$ is defined up to multiplication by some t^i, with $i \in \mathbb{Z}$, see [10], [16] and [9] for details.

If K is a hyperbolic knot, namely the interior of $E(K)$ admits the complete hyperbolic metric with finite volume, there is a discrete faithful representation $\rho_0 : G(K) \to SL(2, \mathbb{C})$, which is called the holonomy representation, corresponding to the hyperbolic structure.

The hyperbolic torsion polynomial $T_K(t) \in \mathbb{C}[t^{\pm 1}]$ was defined in [3] for hyperbolic knots as a suitable normalization of $\Delta_{K,\rho_0}(t)$. It is a symmetric polynomial in the sense that $T_K(t^{-1}) = T_K(t)$, which seems to contain geometric information. In fact Dunfield, Friedl and Jackson conjectured in [3] that T_K determines the genus $g(K)$ and moreover, the knot K is fibered if and only if T_K is monic.

They show in [3] that the conjecture holds for all hyperbolic knots with at most 15 crossings. Our main theorem in this note is the following.

Theorem 1.1. For all hyperbolic twist knots K (see Figure 1) T_K determines the genus $g(K)$ and moreover, the knot K is fibered if and only if T_K is monic.

As far as we know, this is the first infinite family of knots for which the conjecture is verified. Since twist knots are 2-bridge knots (in particular alternating knots), their genus and fibering can be detected by the Alexander polynomial (see [2], [12], [13], [14]). However there seems to be no a priori reason that the same must be true for T_K. See [3] Section 7], [8] for twisted Alexander polynomials and character varieties of knot groups.

Recall that an $SL(2, \mathbb{C})$-representation ρ is called parabolic if the meridian of $G(K)$ is sent to a parabolic element of $SL(2, \mathbb{C})$ and $\rho(G(K))$ is nonabelian. Since the holonomy representation of hyperbolic knots is parabolic, the above theorem is an immediate consequence of the following:

Theorem 1.2. Let K be a twist knot and $\rho : G(K) \to SL(2, \mathbb{C})$ a parabolic representation. Then $\Delta_{K,\rho}(t)$ determines $g(K)$. Moreover K is fibered if and only if $\Delta_{K,\rho}(t)$ is monic.

2010 Mathematics Subject Classification. 57M27.

Key words and phrases. Twist knot, parabolic representation, twisted Alexander polynomial.
In the next section, we quickly review twisted Alexander polynomials of twist knots for parabolic $SL(2, \mathbb{C})$-representations (see [11], Sections 3, 4) for details. The proof of Theorem 1.2 will be given in Section 3.

2. Twisted Alexander polynomials of twist knots

Let $K = J(\pm 2, p)$ be the twist knot $(p \in \mathbb{Z})$. It is known that $J(\pm 2, 2q + 1)$ is equivalent to $J(\mp 2, 2q)$ and $J(\pm 2, p)$ is the mirror image of $J(\mp 2, -p)$. Hence we only consider the case where $K = J(2, 2q)$ for $q \in \mathbb{Z}$ (see Figure 1). The knot $J(2, 0)$ presents the trivial knot, so that we always assume $q \neq 0$. The typical examples are the trefoil knot $J(2, 2)$ and the figure eight knot $J(2, -2)$.

The twist knots are alternating knots and have genus one. The Alexander polynomial of $K = J(2, 2q)$ is given by $\Delta_K(t) = q - (2q - 1)t + qt^2$. Furthermore, it is known (see [14]) that $J(2, 2q)$ is fibered if and only if $|q| = 1$. It is also known that $J(2, 2q)$ is hyperbolic if $q \not\in \{0, 1\}$.

The knot group $G(J(2, 2q))$ has the presentation:

$$G(J(2, 2q)) = \langle x, y | w^q x = yw^q \rangle,$$

where $w = [y, x^{-1}]$. Suppose that $\rho : G(J(2, 2q)) \to SL(2, \mathbb{C})$ is a parabolic representation. After conjugating, if necessary, we may assume that

$$\rho(x) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \rho(y) = \begin{pmatrix} 1 & 0 \\ -u & 1 \end{pmatrix}.$$

Let $\rho(w^q) = (a_{ij}(u))$ and write $\phi_q(u) = a_{11}(u)$. It is known that ρ defines a group representation when u satisfies $\phi_q(u) = 0$ (see [15], Theorem 2). We call $\phi_q(u)$ the Riley polynomial of the twist knot $J(2, 2q)$. By [11] Proposition 3.1, $\phi_q(u)$ has an explicit formula

$$\phi_q(u) = (1 - u) \frac{\lambda_+^q - \lambda_-^q}{\lambda_+ - \lambda_-} - \frac{\lambda_+^{q-1} - \lambda_-^{q-1}}{\lambda_+ - \lambda_-},$$

denote the eigenvalues of the matrix $\rho(w)$. Of course, the holonomy representation ρ_0 corresponds to one of the roots of $\phi_q(u) = 0$.

Lemma 2.1. The Riley polynomial $\phi_q(u)$ satisfies the following:
(1) The highest coefficient of \(\phi_q(u) \) is \(\pm 1 \).
(2) \(\phi_q(u) \in \mathbb{Z}[u] \) is irreducible.
(3) \(\deg \phi_q(u) = 2q - 1 \) \((q > 0)\) or \(2|q| \) \((q < 0)\).

Proof. (1) See [15, Theorem 2]. (2), (3) See [7, Theorem 1]. \(\square \)

Example 2.2. We can easily check that \(\phi_1(u) = 1 - u, \phi_1(u) = 1 + u + u^2, \phi_2(u) = 1 - 2u + u^2 - u^3, \phi_2(u) = 1 + 2u + 3u^2 + u^3 + u^4 \) and \(\phi_3(u) = 1 - 3u + 3u^2 - 4u^3 + u^4 - u^5 \).

Lemma 2.3. For a parabolic representation \(\rho : G(K) \to SL(2, \mathbb{C}) \) of \(K = J(2,2q) \), the twisted Alexander polynomial \(\Delta_{K,\rho}(t) \) is given by

\[
\Delta_{K,\rho}(t) = \alpha \beta + \left\{ \alpha + \beta - 2\alpha \beta + \frac{\lambda_+ - \lambda_-}{2 + \lambda_+ + \lambda_-}(\alpha - \beta) \right\} t + \alpha \beta t^2,
\]

where \(\alpha = 1 + \lambda_+ + \lambda_+^2 + \cdots + \lambda_+^{q-1} \) and \(\beta = 1 + \lambda_- + \lambda_-^2 + \cdots + \lambda_-^{q-1} \).

Proof. We only have to put \(s = 1 \) in the formula of [11, Theorem 4.1]. \(\square \)

Example 2.4. For \(K = J(2,2) \), there is just one parabolic representation up to conjugation and we have \(\Delta_{K,\rho}(t) = 1 + t^2 \). Similarly we obtain \(\Delta_{K,\rho}(t) = 1 - 4t + t^2 \) for any parabolic representation of \(K = J(2, -2) \).

In general, the degree of the twisted Alexander polynomial gives a lower bound for the knot genus \(g(K) \). In fact, for every nonabelian representation \(\rho : G(K) \to SL(2, \mathbb{C}) \), the following inequality holds (see [4]):

\[(2.1) \quad 4g(K) - 2 \geq \deg \Delta_{K,\rho}(t).\]

When the equality holds in \((2.1)\), we say \(\Delta_{K,\rho}(t) \) determines the knot genus. For a fibered knot \(K \), it is known that \(\Delta_{K,\rho}(t) \) determines \(g(K) \) and is a monic polynomial (see [11, 4, 5, 6, 9]).

3. **Proof of Theorem [1.2]**

First we denote the highest coefficient of \(\Delta_{K,\rho}(t) \) in Lemma 2.3 by \(\gamma_q(u) \), namely \(\gamma_q(u) = \alpha \beta \). Moreover we put \(\tau_q(u) = tr \rho(w^q) = \lambda_+^q + \lambda_-^q \). By [11, Corollary 4.1], \(\tau_q(u) = \tau_{-q}(u) \) is a monic polynomial in \(\mathbb{Z}[u] \) and \(\deg \tau_q(u) = 2|q| \).

Example 3.1. Since \(\tau_1(u) = u^2 + 2 \), we obtain \(\tau_{1\pm 2}(u) = \tau_1^2 - 2 = u^4 + 4u^2 + 2 \) and \(\tau_{1\pm 3}(u) = \tau_1^3 - 3\tau_1 = u^6 + 6u^4 + 9u^2 + 2 \).

Now an easy calculation shows that

\[
\gamma_q(u) = (1 + \lambda_+ + \lambda_+^2 + \cdots + \lambda_+^{q-1})(1 + \lambda_- + \lambda_-^2 + \cdots + \lambda_-^{q-1})
\]

\[
= \tau_{q-1}(u) + (\text{some polynomial in } \tau_1, \ldots, \tau_{q-2}).
\]

Thus we have \(\deg \gamma_q(u) = 2|q| - 2 \). By Lemma [2.1](1), (2), if \(\gamma_q(u) = 0 \) for a complex number \(u \) satisfying \(\phi_q(u) = 0 \), then the Riley polynomial \(\phi_q(u) \) divides \(\gamma_q(u) \). But this contradicts the fact that

\[
\deg \phi_q(u) = 2|q| - \max\{\text{sign}(q), 0\} > 2|q| - 2 = \deg \gamma_q(u).
\]

Hence \(\gamma_q(u) \) never vanishes for the parabolic representations. Thus \(\deg \Delta_{K,\rho}(t) = 2 \) and hence it determines the genus.
A similar argument applied to $\gamma_q(u) - 1$ shows that $\Delta_{K,\rho}(t)$ is not a monic polynomial for the nonfibered twist knot $K = J(2, 2q)$ with $|q| > 1$. This completes the proof of Theorem 1.2.

Remark 3.2. For the 3830 nonfibered 2-bridge knots $K(a, b)$ with $b < a \leq 287$, Dunfield, Friedl and Jackson numerically compute the twisted Alexander polynomials for the parabolic representations. In fact, it is shown in [3] Section 7.6 that $\Delta_{K,\rho}(t)$ is nonmonic and determines the knot genus in every case.

Remark 3.3. Let $\delta_q(u)$ be the second coefficient of $\Delta_{K,\rho}(t)$ in Lemma 2.3. As we saw in Example 2.4, $\delta_{\pm 1}(u)$ are integers for the fibered twist knots $J(2, \pm 2)$. It is not so hard to show that $\delta_q(u) \in \mathbb{Z}[u]$ and $\deg \delta_q(u) = 2q - 4$ for $q > 1$. Therefore we can conclude that $\delta_q(u)$ with $q > 2$ is not a rational number for the parabolic representations. On the other hand, we have $\Delta_{K,\rho}(t) = (u^2 + 4) - 4t + (u^2 + 4)t^2$ for the hyperbolic twist knot $K = J(2, 4)$. In particular, we see that the second coefficient $\delta_2(u)$ is an integer for the holonomy representation, although $J(2, 4)$ is nonfibered (see [3] Section 6.5).

Acknowledgements. The author would like to thank Stefan Friedl, Teruaki Kitano, Takahiro Kitayama and Yoshikazu Yamaguchi for helpful comments. The author also would like to thank the referee for useful comments, which helped to improve the Note. This research was partially supported by Grant-in-Aid for Scientific Research (No. 23540076), the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] J. C. Cha, *Fibred knots and twisted Alexander invariants*, Trans. Amer. Math. Soc. 355 (2003), 4187–4200.
[2] R. Crowell, *Genus of alternating link types*, Ann. of Math. (2) 69 (1959), 258–275.
[3] N. Dunfield, S. Friedl and N. Jackson, *Twisted Alexander polynomials of hyperbolic knots*, Experiment. Math. (to appear).
[4] S. Friedl and T. Kim, *The Thurston norm, fibered manifolds and twisted Alexander polynomials*, Topology 45 (2006), 929–953.
[5] S. Friedl and S. Vidussi, *Twisted Alexander polynomials detect fibered 3-manifolds*, Ann. of Math. 173 (2011), 1587–1643.
[6] H. Goda, T. Kitano and T. Morifuji, *Reidemeister torsion, twisted Alexander polynomial and fibered knots*, Comment. Math. Helv. 80 (2005), 51–61.
[7] J. Hoste and P. D. Shanahan, *Trace fields of twist knots*, J. Knot Theory Ramifications 10 (2001), 625–639.
[8] T. Kim and T. Morifuji, *Twisted Alexander polynomials and character varieties of 2-bridge knot groups*, Internat. J. Math. 23 (2012), 1250022 (24 pages).
[9] T. Kitano and T. Morifuji, *Divisibility of twisted Alexander polynomials and fibered knots*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), 179–186.
[10] X. S. Lin, *Representations of knot groups and twisted Alexander polynomials*, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361–380.
[11] T. Morifuji, *Twisted Alexander polynomials of twist knots for nonabelian representations*, Bull. Sci. Math. 132 (2008), 439–453.
[12] K. Murasugi, *On the genus of the alternating knot I*, J. Math. Soc. Japan 10 (1958), 94–105.
[13] K. Murasugi, *On the genus of the alternating knot II*, J. Math. Soc. Japan 10 (1958), 235–248.
[14] K. Murasugi, *On a certain subgroup of the group of an alternating link*, Amer. J. Math. 85 (1963), 544–550.
[15] R. Riley, *Parabolic representations of knot groups, I*, Proc. London Math. Soc. (3) 24 (1972), 217–242.
[16] M. Wada, *Twisted Alexander polynomial for finitely presentable groups*, Topology 33 (1994), 241–256.

Department of Mathematics, Hiyoshi Campus, Keio University, Yokohama 223-8521, Japan
E-mail address: morifuji@z8.keio.jp