Developing a Core Outcome Set for the Evaluation of Antibiotic Use in Prelabor Rupture of Membranes: A Systematic Review and Semi-Structured Interview

Dan Liu1,2,3,4, Lin Wu4,5, Jiefeng Luo1,2,3,4, Siyu Li2,3,4,6, Yan Liu1,2,3,4, Chuan Zhang2,3,4, Linan Zeng2,3,4, Qin Yu4,7 and Lingli Zhang2,3,4*

†This author have contributed equally to this work and share last authorship

1West China School of Pharmacy, Sichuan University, Chengdu, China, 2Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China, 3Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China, 4Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China, 5Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China, 6West China School of Medicine, Sichuan University, Chengdu, China, 7National Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu, China

Background: Prelabor rupture of membranes (PROM) is associated with maternal and neonatal infections. Although guidelines suggest prophylactic antibiotics for pregnant women with PROM, the optimal antibiotic regimen remains controversial. Synthesizing the data from different studies is challenging due to variations in reported outcomes.

Objective: This study aimed to form the initial list of outcomes for the core outcome set (COS) that evaluates antibiotic use in PROM by identifying all existing outcomes and patients’ views.

Methods: Relevant studies were identified by searching PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, and VIP databases. We also screened the references of the included studies as a supplementary search. We extracted basic information from the articles and the outcomes. Two reviewers independently selected the studies, extracted the data, extracted the outcomes, and grouped them into domains. Then, semi-structured interviews based on the potential factors collected by the systematic review were conducted at West China Second Hospital of Sichuan University. Pregnant women who met the diagnostic criteria for PROM were enrolled. Participants reported their concerns about the outcomes. Two researchers identified the pregnant women’s concerns.

Results: A total of 90 studies were enrolled in this systematic review. The median outcomes in the included studies was 7 (1–31), and 109 different unique outcomes were identified. Pre-term PROM (PPROM) had 97 outcomes, and term PROM (TPROM) had 70 outcomes. The classification and order of the core outcome domains of PPROM and TPROM were consistent. The physiological domain was the most common for PPROM and TPROM outcomes. Furthermore, 35.1 and 57.1% outcomes were only reported once in PPROM and TPROM studies, respectively. Thirty pregnant women...
Preterm rupture of membranes (PROM) is a rupture of membranes before the onset of labor, which consists of "pre-term prelabor rupture of membranes (PPROM)" and "term prelabor rupture of membranes (TPROM)" (Siegler et al., 2020). It affects 2.3%–18.7% of pregnancies and increases the risk of intrauterine infection, neonatal sepsis, neonatal pneumonia, etc. (Kenyon et al., 2001a; Martin et al., 2005; Mercer, 2005; Smith et al., 2005; Clark and Varner, 2011; Reuter et al., 2014; Middleton et al., 2017; Zhuang et al., 2020). Although guidelines suggest that the use of prophylactic antibiotics could reduce infection morbidity and improve the outcomes for mothers and newborns, the optimal antibiotic regimen is still controversial (Yudin et al., 2009; Kenyon et al., 2013; Thomson and Royal College of Obstetricians and Gynaecologists, 2019; Chatzakis et al., 2020; Siegler et al., 2020). Despite many studies about the antibiotics regimen for PROM conducted, it is difficult to synthesize their data due to outcome variations. As a recent systematic review shows, only 70.0% (17/20) of the included studies reported the primary outcome. The risk of bias was 35.0% (7/20) and 90.0% (18/20) of the included studies, including risk in "Measurement of outcome" and "Selection of reported result," respectively (Chatzakis et al., 2020).

A core outcome set (COS), defined as an agreed standardized set of outcomes that should be measured and reported as a minimum, could improve consistency in outcome measurement and reduce outcome reporting bias. A COS would eliminate unnecessary waste in producing and reporting research findings (Williamson et al., 2012). The COS is drawing increasing attention across all health research areas and is referred to as a starting point for outcome selection in the work of some trialists, systematic reviewers, and guideline developers (COS users) (Gorst et al., 2016).

However, there is no COS for antibiotics in PROM or COS for treating or preventing infection in pregnant women. This systematic review and semi-structured interview would form the initial list of outcomes for the COS of antibiotics in PROM by identifying all existing outcomes and patients' views.

2 METHODS

This COS project is registered on the core outcome measures in effectiveness trials (COMET) database, and further details are available at https://www.comet-initiative.org/Studies/Details/1986.

1 INTRODUCTION

2.1 Systematic Review

The part of the systematic review was performed and reported per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for systematic reviews (Preferred Reporting Items for Systematic Reviews and Meta-Analyses, 2009).

2.1.1 Search Strategy

We conducted an electronic search of PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, and VIP Database from inception to September 2021. The search strategy was adjusted specifically for each database. It combined medical subject headings and free text terms for ("Fetal Membranes, Premature Rupture" or "Prelabor rupture of membranes") and ("Anti-Infective Agents" or "antibiotics" or "Penicillins" or "Cephalosporins" or "azithromycin" or "erythromycin" or "Clindamycin").

Supplementary Table S1 lists the search terms. Citation lists of the included studies were reviewed to identify any intervention reports missed by the search strategy.

2.1.2 Inclusion Criteria

The following studies were included: 1) Participants: pregnant women (no restriction for gestational age) met the diagnostic criteria for PROM according to the guidelines of the Chinese Medical Association, American College of Obstetricians and Gynecologists, Society of Obstetricians & Gynaecologists (SOGC), Royal College of Obstetricians and Gynaecologists (ROGC), etc. 2) Intervention: antibiotics. 3) Type of study: systematic reviews, randomized controlled trials, non-randomized controlled trials, or cohort studies. The following studies were excluded: 1) non-Chinese and non-English literature, 2) unobtainable full-texts.

2.1.3 Data Extraction

Titles and abstracts were independently screened by two reviewers to determine potential eligible studies, and full texts of potentially relevant articles were independently screened by two reviewers to assess for eligibility. Disagreements were resolved by consensus or consulted a third reviewer. Two reviewers independently extracted data from the included studies and cross-checked it. The extracted data included: 1) the basic information of the articles (the first author, published year, study design, country, etc.); 2) the characteristics of participants and interventions; 3) the outcomes reported (names, definitions, and measurements of each outcome).
2.1.4 Assessment of Risk of Bias
There was no assessment of the risk of bias since the purpose of this study was to identify all outcomes reported irrespective of the study quality.

2.1.5 Data Synthesis
All outcomes were extracted verbatim from studies. Variations in the same outcome reporting were revised for consistency, and the composite outcomes were split into unique outcomes by a researcher with clinical experience in obstetrics. Outcome terminologies were assigned to one of the core outcome domains according to the COMET Handbook (Williamson et al., 2017). We calculated the number of unique outcomes for each study and outcome domain, the number of reported studies for each outcome, and the median number of the reported studies for each outcome domain.

2.2 Semi-Structured Interview
According to recommendations of COS-STAndards for Development and COMET handbook (version 1.0) (Kirkham et al., 2016; Williamson et al., 2017), a list of outcomes from published clinical trials may be supplemented with semi-structured interviews with patients. Therefore, we conducted the semi-structured interview to obtain the opinions of patients on PROM treatment.

The semi-structured interview study was conducted at West China Second Hospital of Sichuan University from January to February 2022. The West China Second University Hospital, Sichuan University, provided ethical approval. The participants gave verbal consent before their interviews. The participants’ socioeconomic information of participants came from the hospital information system.

2.2.1 Participants
Pregnant women in West China Second Hospital of Sichuan University, January to February 2022, who met the diagnostic criteria for PROM were enrolled. The exclusion criteria included: 1) pregnant women with serious illnesses who were not suitable to participate in the study; 2) pregnant women with communication difficulties; 3) pregnant women who refused to...
participate. The sample size was 30 since 30 subjects could achieve data saturation reported in other studies (Keyvanara et al., 2013; Alkadhimi et al., 2020). However, if new information is generated in the final interview, the sample size of the interview will increase.

2.2.2 Procedure
The research team designed a semi-structured interview guide involving open-ended questions (Supplementary). The face-to-face semi-structured interviews took place at the patient’s bedside at mutually convenient times. The researchers would explain the content and purpose of the study to the patients and interview them after obtaining their informed consent. Interviews were digitally audio-recorded using a mobile phone.

2.2.3 Analysis
All the interviews were transcribed literally by a researcher. Our systematic review developed a consensus codebook using a deduction coding process and evaluating the first 10 transcripts to identify emerging codes through an inductive coding process. Each transcript was independently coded by two researchers, and coding inconsistencies were resolved by discussion. Disagreements were resolved by consensus or a discussion in the research group. Data analysis was processed by identifying the codes to judge whether these were new outcomes and whether they should be added to the list of candidate outcomes. We would identify whether these outcomes are new and judge whether they should be added to the list of candidate outcomes.

3 RESULTS
3.1 Systematic Review
3.1.1 Study Characteristics
The search retrieved 6,487 studies. After removing duplicates and irrelevant records by screening the titles and abstracts, 230 studies were assessed for eligibility by full-text screening. Eventually, 90 studies (Chatzakis et al., 2020) were included in this systematic review (Figure 1). These studies were conducted in 17 countries on five continents from 1966 to 2021 (Figure 2). The study designs were comprised of systematic review (7/90, 7.8%) (Mercer and Arheart, 1995; Maymon et al., 1998; Kenyon et al., 2004; Cousens et al., 2010; Wojcieszek et al., 2014; Saccone and Berghella, 2015; Chatzakis et al., 2020), RCTs (32/90, 35.6%) (Breije and Kaltreider, 1966; Amon et al., 1988; Johnston et al., 1990; McGregor et al., 1991; Kurkiewicz et al., 1992; McCaul et al., 1992; Mercier et al., 1992; Lockwood et al., 1993; Ernest and Givner, 1994; Lewis et al., 1995; Almeida et al., 1996; Grable et al., 1996; Lovett et al., 1997; Kenyon et al., 2001; Ovalle et al., 2002; Lewis et al., 2003; Segel et al., 2003; August Fuhr et al., 2006; Kwak et al., 2013; Nabhan et al., 2014; Zhang, 2014; Kahramanoglu et al., 2016; Mai and He, 2016; Liang, 2018; Zheng, 2018; Pasquier et al., 2019; Siegel et al., 2019; Deng, 2020; Wolf et al., 2020; Chen, 2021; Cong, 2021; Zheng, 2021) and cohort studies (51/90, 56.6%) (A, 2021; Ali, 2020; Bar et al., 2020; Barišić et al., 2017; Bergström, 1991; Chang et al., 2017; Chen et al., 2020; Dotters-Katz et al., 2017; Du, 2016; Du et al., 2019; Du and Zhang, 2020; Ehsanipoor et al., 2008; Feng, 2020; Finneran et al., 2019; Finneran et al., 2017; Fitzgibbon et al., 2021; Siegel et al., 2019; Ke, 2013; Kenyon et al., 2008; Knupp et al., 2022; Kole-White et al., 2021; Lee et al., 2016; Li, 2017; Li, 2020; Lin et al., 2012; Martingano et al., 2020; Navathe et al., 2019; Pan et al., 2018;
Pawar and Reddy, 2020; Pierson et al., 2014; Edwards et al., 2020; Ryo et al., 2005; Smith et al., 2015; Song and Han, 2005; Sung et al., 2017; Tai, 2011; Tanaka et al., 2019; Kramer et al., 1996; Wu, 2018; Yeung et al., 2014; Zeng and Lin, 2020; Zhang, 2017; Zhang, 2019; Zhao, 2019a; Zhao, 2019b; Zheng et al., 2016; Zhou et al., 2015; Zhou, 2020; Zou, 2021; Zheng et al., 2020). Out of the 90 studies, 78 (86.7%) studies (Ali, 2020; Almeida et al., 1996; Amon et al., 1988; Bar et al., 2000; Bergström, 1991; Chang et al., 2017; Chatzakis et al., 2020; Chen et al., 2020; Chen, 2021; Cong, 2021; Cousens et al., 2010; Lewis et al., 1995; Deng, 2020; Dotters-Katz et al., 2017; Du, 2016; Du et al., 2019; Du and Zhang, 2020; Ehsanipoor et al., 2008; Ernest and Givner, 1994; Feng, 2020; Finneran et al., 2019; Finneran et al., 2017; Fitzgibbon et al., 2021; August et al., 2006; Grable et al., 1996; Siegel et al., 2019; Johnston et al., 1990; Kahramanoglu et al., 2016; Ke, 2013; Kenyon et al., 2004; Knupp et al., 2022; Kole-White et al., 2021; Kurki et al., 1992; Kwak et al., 2013; Lee et al., 2016; Li, 2017; Li, 2020; Li, 2021; Liang, 2018; Lin et al., 2012; Lockwood et al., 1993; Lovett et al., 1997; Siegel et al., 2019; Mai et al., 2016; Martingano et al., 2020; Maymon et al., 1998; McGauley et al., 1992; McGregor et al., 1991; Mercer et al., 1992; Mercer and Arheart, 1995; Almeida et al., 1996; Grable et al., 1996; Kramer et al., 1996; Maymon et al., 1998; Bar et al., 2020; Brelje and Kaltreider, 1966; Kenyon et al., 2008; Nabhan et al., 2014; Navathe et al., 2019; Ovalle et al., 2002; Pan et al., 2018; Pasquier et al., 2019; Pawar and Reddy, 2020; Pierson et al., 2014; Edwards et al., 2020; Ryo et al., 2005; Saccone and Berghella, 2015; Segel et al., 2003; Smith et al., 2015; Song et al., 2005; Sung et al., 2017; Tai, 2011; Tanaka et al., 2019; Kramer et al., 1996; Wojcieszek et al., 2014; Wolf et al., 2020; Wu, 2018; Yeung et al., 2014; Zeng and Lin, 2020; Zhang, 2014; Zhang, 2017; Zhang, 2019; Zhao, 2019a; Zhao, 2019b; Zheng et al., 2016; Zheng, 2021; Zhou et al., 2015; Zhou, 2020; Zou, 2021) included PPROM women, 6 (6.7%) studies (Zheng, 2018; A, 2021; Barišić et al., 2017; Tai, 2011; Zhao, 2019a; Zheng et al., 2020) included term PROM women, 4 (4.4%) studies (Kwik et al., 2013; Nabhan et al., 2014; Wojcieszek et al., 2014; Saccone and Berghella, 2015) included both PPROM and term PROM women and 2 (2.2%) studies (Breje and Kaltreider, 1966; Kenyon et al., 2008) did not report whether the participants were term. The study interventions/comparisons included: 1) using antibiotics vs placebo/blank control (31/90, 34.4%) (Breje and Kaltreider, 1966; Amon et al., 1988; Johnston et al., 1990; Bergström, 1991; Kurki et al., 1992; McCaul et al., 1992; Mercer et al., 1992; Lockwood et al., 1993; Ernest and Givner, 1994; Mercer and Arheart, 1995; Almeida et al., 1996; Grable et al., 1996; Kramer et al., 1996; Maymon et al., 1998; Bar et al., 2020; Ovalle et al., 2002; Kenyon et al., 2004; Song and Han, 2005; August Fuhr et al., 2006; Cousens et al., 2010; Lin et al., 2012; Ke, 2013; Nabhan et al., 2014; Wojcieszek et al., 2014; Zhang, 2014; Saccone and Berghella, 2015; Du, 2016; Chang et al., 2017; Dotters-Katz et al., 2017; Pasquier et al., 2019; Feng, 2020); 2) different antibiotics (29/90, 32.2%) (McGregor et al., 1991; Lewis et al., 1995; Lovett et al., 1997; Edwards et al., 2020; Kenyon et al., 2001b; Ryo et al., 2005; Ehsaniipoor et al., 2008; Kenyon et al., 2008; Kwik et al., 2013; Pierson et al., 2014; Yeung et al., 2014; Kahramanoglu et al., 2016; Lee et al., 2016; Zheng et al., 2016; Finneran et al., 2017; Sung et al., 2017; Wu, 2018; Zhao, 2019b; Finneran et al., 2019; Navathe et al., 2019; Siegel et al., 2019; Tanaka et al., 2019; Ali, 2020; Chatzakis et al., 2020; Martingano et al., 2020; Pawar and Reddy, 2020; Wolf et al., 2020; Fitzgibbon et al., 2021); 3) different timing of antibiotics administration (17/90, 18.9%) (Deng, 2020; Liang, 2018; Zheng, 2018; A, 2021; Barišić et al., 2017; Tai, 2011; Zhao, 2019a; Zheng et al., 2020; Chen et al., 2020; Du et al., 2019; Du and Zhang, 2020; Knupp et al., 2022; Li, 2017; Pan et al., 2018; Zeng and Lin, 2020; Zhang, 2019; Zhou et al., 2015); 4) antibiotics chosen depending on

FIGURE 3 | Summary of core outcome areas.
TABLE 1 | The initial outcomes list of COS for antibiotics in PROM.

Outcome domain	Outcome	Number of reported studies	Definition	Participants' views
PROM (97)	Latency period	41 (Johnston et al. (1990); Bergström, (1991); McGregor et al. (1991); McCaul et al. (1990); Lockwood et al. (1990); Ernst and Givner, 1994; Lewis et al. (1995); Mercer and Arheart; 1995; Almeida et al. (1996); Grable et al. (1996); Lovett et al. (1997); Maymon et al. (1998); Bar et al. (2000); Kenyon et al. (2001b); Lewis et al. (2003); Segel et al. (2003); Kenyon et al. (2004); Ryo et al. (2005); August Fuhr et al. (2006); Pierson et al. (2014); Saccone and Berghella, 2015; Smith et al. (2015); Kole-White et al. (2021))	✓ Lockwood et al. (1995); Ernst and Givner, (1994); Grable et al. (1996); Pierson et al. (2014); Smith et al. (2015); Chang et al. (2017); Dotters-Katz et al. (2017); Sung et al. (2017); Siegel et al. (2019); Fitzgibbon et al. (2021); Kole-White et al. (2021))	√
Physiological (17/97)	Mode of delivery	27 (Brelje and Kaltreider, 1966; Johnston et al., 1990; Lewis et al. (1995); Grable et al. (1996); Bar et al. (2000); Kenyon et al. (2001b); Ke, (2013); Lee et al. (2016); Finneran et al. (2017); Ali, (2020); Feng, (2020); Chen, (2021); Fitzgibbon et al. (2021))	—	✓
	Postpartum haemorrhage	22 (Lin et al. (2012); Nabhan et al. (2014); Wojcieszek et al. (2014); Zhou et al. (2015); Li, (2017); Zhang, (2017); Pan et al. (2018); Zhao, (2019); Du et al. (2019); Chen et al. (2020); Deng, (2020); Du and Zhang, (2020); Feng, (2020); Li, (2020); Zeng and Lin, (2020); Zhou, (2020); Chen, (2021); Cong, (2021); Zhang, (2021); Knap et al. (2023))	—	—
	Preterm delivery	6 (Brelje and Kaltreider, 1966; Lee et al. (2016); Feng, (2020))	—	—
	Maternal white blood cell count	4 (Kahramanoglu et al. (2016); Liang, (2018); Wu, (2018); Fitzgibbon et al. (2021))	—	—
	Placental abruption	4 (Mercer et al. (1990); Lewis et al. (1995); Saccone and Berghella, 2015; Pawar and Reddy, 2020)	—	—
	Deep vein thrombosis	3 (Dotters-Katz et al. (2017); Ali (2020); Knupp et al. (2022))	—	✓ Dotters-Katz et al. (2017)
	Maternal iNOS reactive protein	3 (Kahramanoglu et al. (2016); Liang, (2018); Wu, (2018))	—	—
	Fever	2 (Wojcieszek et al. (2014); Kahramanoglu et al. (2016))	—	✓ Wojcieszek et al. (2014)
	Maternal intensive care unit admission	2 (Wojcieszek et al. (2014); Fitzgibbon et al. (2021))	—	—
	Meconium-stained amniotic fluid	2 (Feng, (2020); Martingano et al. (2020))	—	✓
	Amniotic fluid index	2 (Lewis et al. (1995); Kahramanoglu et al. (2016))	—	—
	Cardiac arrest	1 (Wojcieszek et al. (2014))	—	—
	Cord prolapse	1 (Saccone and Berghella, 2015)	—	—
	Reason for delivery	1 (Finneran et al. (2017))	—	—
	Respiratory arrest	1 (Wojcieszek et al. (2014))	—	—
	Trophoblastic hyperplasia	1 (Ovalle et al. (2002))	—	—
	Infection (7/97)	43 (Brelje and Kaltreider, 1966; Amon et al. (1988); Johnston et al. (1990); Korki et al. (1992); Mercer et al. (1992); Ernst and Givner, 1994; Grable et al. (1996); Kramer et al. (1996); Maymon et al. (1998); Edwards et al. (2020); Segel et al. (2003); Ehsanipoor et al. (2008); Du et al. (2016); Lee et al. (2016); Siegel et al. (2019); Ali (2020); Chatzakis et al. (2020); Deng, (2020); Chen, (2021); Cong, (2021); Knupp et al. (2022))	✓ Amon et al. (1988); Korki et al. (1992); Mcer et al. (1992); Grable et al. (1996); Ehsanipoor et al. (2008); Wojcieszek et al. (2014); Zheng et al. (2016); Pasquier et al. (2019); Martingano et al. (2020))	—
	Chorioamnionitis	43 (Brelje and Kaltreider, 1966; Amon et al. (1988); Johnston et al. (1990); Korki et al. (1992); Mercer et al. (1992); Ernst and Givner, 1994; Grable et al. (1996); Kramer et al. (1996); Maymon et al. (1998); Edwards et al. (2020); Segel et al. (2003); Ehsanipoor et al. (2008); Nabhan et al. (2014); Wojcieszek et al. (2014); Saccone and Berghella, (2015); Martingano et al. (2020); Knupp et al. (2022))	✓ Amon et al. (1988); Mercer et al. (1992); Ernst and Givner, (1994); Grable et al. (1996); Kramer et al. (1996); Ehsanipoor et al. (2008); Wojcieszek et al. (2014); Martingano et al. (2020))	—
	Endometritis	18 (Brelje and Kaltreider, 1966; Amon et al. (1988); Johnston et al. (1990); Korki et al. (1992); Mercer et al. (1992); Ernst and Givner, 1994; Grable et al. (1996); Kramer et al. (1996); Maymon et al. (1998); Edwards et al. (2020); Segel et al. (2003); Ehsanipoor et al. (2008); Du et al. (2022); Zhou et al. (2022); Zhou et al. (2015); Du, (2016); Finneran et al. (2017); Li, (2017); Liang, (2018); Wu, (2018); Du et al. (2019); Deng, (2020); Du and Zhang, (2020); Feng, (2020); Li, (2020); Chen, (2021); Cong, (2021); Zhang, (2021); Zou, (2021); Knap et al. (2023))	✓ Ernest and Givner, (1994)	✓
	Puerperal infection	18 (Mercer and Arheart, 1995; Zhou et al. (2015); Li, (2017); Zhang, (2017); Pan et al. (2018); Zhao, (2019); Du et al. (2019); Ali (2020); Chen et al. (2020); Du and Zhang, (2020); Feng, (2020); Li, (2020); Zeng and Lin, (2020); Zhou, (2020); Chen, (2021); Cong, (2021); Zhang, (2021); Zou, (2021))	—	—
	Intrauterine infection	13 (Ernest and Givner, (1994); Ovalle et al. (2002); Zhou et al. (2015); Du, (2016); Finneran et al. (2017); Li, (2017); Liang, (2018); Wu, (2018); Du et al. (2019); Deng, (2020); Du and Zhang, (2020); Feng, (2020); Li, (2020))	✓ Ernest and Givner, (1994)	✓
	Maternal sepsis	11 (Johnston et al. (1990); Korki et al. (1992); Mercer et al. (1992); Song and Han, (2005); Wojcieszek et al. (2014); Saccone and Berghella, (2015); Finneran et al. (2017); Sung et al. (2017); Siegel et al. (2019); Pawar and Reddy, (2020); Knupp et al. (2022))	✓ Wojcieszek et al. (2014)	—

(Continued on following page)
TABLE 1 | (Continued) The initial outcomes list of COS for antibiotics in PROM.

Outcome domain	Outcome	Number of reported studies	Definition	Participants’ views	
Resource use					
(5/97)					
Maternal infection	3	McLaugh et al. (1992); Mai and He, (2016); Zhang, (2019)	—		
Wound infection	2	Wojcieszek et al. (2014); Knupp et al. (2022)	—		
Length of maternal hospitalization	8	Johnston et al. (1990); Lockwood et al. (1993); Almeida et al. (1996); Lovett et al. (1997); Kenyon et al. (2010); Nabhan et al. (2014); Wojcieszek et al. (2014); Kehranamoglu et al. (2016)	—		
Steroid administration	3	Bar et al. (2020); Kehranamoglu et al. (2016); Chang et al. (2017)	—		
Postpartum antibiotic administration	2	Kenyon et al. (2010); Wojcieszek et al. (2014)	—		
Cesarean section	1	Kehranamoglu et al. (2016)	—		
—	Finneran et al. (2019)	√			
Adverse events	Adverse drug reaction	5	Nabhan et al. (2014); Pierson et al. (2014); Wojcieszek et al. (2014); Saccoone and Bergella, 2015; Sung et al. (2017)	—	
(2/97)	Anaphylaxis	1	Wojcieszek et al. (2014)	—	
Death (2/97)	Maternal deaths	3	Kenyon et al. (2010); Knupp et al. (2022)	—	
Function (1/97)	Breastfeeding	2	Wojcieszek et al. (2014); Saccoone and Bergella, 2015	—	
Physiological (3/97)	Birth weight	33	Johnston et al. (1990); Bergström, (1991); Ernest and Gioner, (1994); Lewis et al. (1995); Almeida et al. (1996); Grable et al. (1996); Bar et al. (2020); Kenyon et al. (2011); Kew et al. (2013); Du, 2016; Kehranamoglu et al. (2016); Lee et al. (2016); Chang et al. (2017); Chen, (2015); Knupp et al. (2022)	√	
—	—	—	—		
—	Respiratory distress syndrome	32	Johnston et al. (1990); Lewis et al. (1996); Grable et al. (1996); Bar et al. (2020); Kenyon et al. (2011); August Fuhr et al. (2006); Ehsanipoor et al. (2008); Cousens et al. (2010); Ke, (2013); Kew et al. (2013); Kehranamoglu et al. (2016); Lee et al. (2016); Chang et al. (2017); Finneran et al. (2017); Chatzakis et al. (2020); Knupp et al. (2022)	√ Grable et al. (1996); Ehsanipoor et al. (2008); —	
—	Apgar score	30	Brelje and Kaltreider, (1966); Johnston et al. (1990); Kurki et al. (1992); Mercere et al. (1992); Lockwood et al. (1993); Grable et al. (1996); Lovett et al. (1997); Bar et al. (2020); Lewis et al. (2003); Kew et al. (2013); Nabhan et al. (2014); Pierson et al. (2014); Wojcieszek et al. (2014); Saccoone and Bergella, 2015; Zhou et al. (2015); Du, 2016; Kehranamoglu et al. (2016); Finneran et al. (2017); Li, 2017; Sung et al. (2017); Wu, (2018); Du et al. (2019); Navaith et al. (2019); Tanaka et al. (2019); Zhang, (2019); Du and Zhang, (2020); Li, (2020); Wolf et al. (2020); Zeng and Lin, (2020); Fitzgibbon et al. (2021)	√	
—	Necrotising enterocolitis	27	Johnston et al. (1990); Grable et al. (1996); Bar et al. (2020); Kenyon et al. (2010); Siegel et al. (2010); August Fuhr et al. (2006); Ehsanipoor et al. (2008); Cousens et al. (2010); Kew et al. (2013); Lee et al. (2016); Chang et al. (2017); Finneran et al. (2017); Pasquier et al. (2019); Siegel et al. (2019); Chatzakis et al. (2020); Knupp et al. (2022)	√ Grable et al. (1996); Kenyon et al. (2010); Brelje and Kaltreider, (1966); Ehsanipoor et al. (2008); —	
—	Neonatal pneumonia	19	McGregor et al. (1991); Mercere et al. (1992); Mercere and Arheart, (1995); Ehsanipoor et al. (2008); Lin et al. (2012); Ke, (2013); Nabhan et al. (2014); Wojcieszek et al. (2014); Zhang, (2014); Smith et al. (2015); Kehranamoglu et al. (2016); Zhang, (2017); Zhao, (2018); Feng, (2020); Zeng and Lin, (2020); Zhou, (2020); Chen, (2021); Zheng, (2021); Zou, (2021)	√ Ehsanipoor et al. (2008); —	
—	Neonatal infection	15	Brelje and Kaltreider, (1966); Amon et al. (1998); Ernst and Gioner, (1994); Lewis et al. (1996); Bar et al. (2020); Kenyon et al. (2010); August Fuhr et al. (2006); Saccoone and Bergella, 2015; Smith et al. (2015); Du, (2016); Chang et al. (2017); Chatzakis et al. (2020); Feng, (2020); Wolf et al. (2020); Zeng and Lin, (2020)	√ Brelje and Kaltreider, (1966); Amon et al. (1998); Lewis et al. (1996); Bar et al. (2020); Smith et al. (2015)	
—	Bronchopulmonary dysplasia	11	Kurki et al. (1992); Ehsanipoor et al. (2008); Kew et al. (2013); Lee et al. (2016); Chang et al. (2017); Siegel et al. (2019); Knupp et al. (2022)	√ Ehsanipoor et al. (2008); —	
—	Neonatal asphyxia	9	Ke, (2013); Zhang, (2014); Liang, (2018); Pan et al. (2018); Zhao, (2018); Zhang, (2018); Chen et al. (2020); Du and Zhang, (2020); Feng, (2020)	—	
—	Periventricular leukomalacia	9	Lee et al. (2016); Chang et al. (2017); Siegel et al. (2019)	—	
—	Cerebral palsy	7	Kenyon et al. (2008); Lee et al. (2016); Siegel et al. (2019)	—	
—	Fetal distress	7	Mercere et al. (1990); Lin et al. (2012); Pan et al. (2018); Zhao, (2019); Chen et al. (2020); Du and Zhang, (2020); Feng, (2020)	—	
—	Cord arterial pH	4	Johnston et al. (1990); Lockwood et al. (1993); Grable et al. (1996); Wolf et al. (2020)	—	
—	Neonatal icterus	4	Lin et al. (2012); Kehranamoglu et al. (2016); Pan et al. (2018); Feng, (2020)	—	
—	Retinopathy of prematurity	—	—	—	

(Continued on following page)
Outcome domain	Outcome	Number of reported studies	Definition	Participants’ views
Abnormal brain sonography	4 Song and Han, (2008); Kwak et al, (2013); Chang et al, (2017)			
Neonatal fever	2 Smith et al, (2015); Knupp et al, (2022)			
Neurological outcome	2 Kwak et al, (2015); Chang et al, (2017)			
Patent ductus arteriosus	2 Lewis et al, (1996); Tanaka et al, (2019)			
Respiratory problems	2 Kwak et al, (2008); Saccone and Berghella, (2015)			
Seizures	2 Kwak et al, (2008); Knupp et al, (2022)			
Small for gestational age	2 Johnston et al, (1990); McGregor et al, (1991)			
Abnormal hearing screen	1 Tanaka et al, (2019)			
Bowel disorders	1 Kwak et al, (2008)			
Chronic lung disease	1 Kwak et al, (2015)			
Conjunctivitis	1 McGregor et al, (1991)			
Diabetes	1 Kwak et al, (2008)			
Fetal placental vascular lesions	1 Ovail et al, (2002)			
Hypoxic ischemic encephalopahy	1 Zhang, (2014)			
Neonatal group B streptococcus colonization	1 Young et al, (2014)			
Neonatal group B streptococcus infection	1 Young et al, (2014)			
Neonatal sepsis	1 Zhang, (2014)			
Neonatal white cell count	1 Fitzgibbon et al, (2021)			
Patent ductus arteriosus ligated	1 Tanaka et al, (2019)			
Persistent fetal circulation	1 Grable et al, (1996)			
Postnatal steroid requirement	1 Tanaka et al, (2019)			
Pulmonary hypoplasia	1 Knupp et al, (2022)			
Skeletal deformities	1 Kurki et al, (1992)			
Transient tachypnea of the newborn	1 Kahramanoglu et al, (2016)			
Weight gain	1 Johnston et al, (1990)			
Admitted to the neonatal intensive care unit (13/97)	9 Lewis et al, (1995); Kennyan et al, (2016); Lewis et al, (2003)			
Duration of hospitalization of the newborns	9 McCaul et al, (1992); Mercer et al, (1992); Almeida et al, (1996); Wojciezsk et al, (2014); Saccone and Berghella, (2015); Kahnmanoglu et al, (2016); Chatzakis et al, (2020)			
Duration of stay in the neonatal intensive care unit	7 Johnston et al, (1990); Lockwood et al, (1993); Kwak et al, (2013); Nabilhan et al, (2014); Wojciezsk et al, (2016); Finneran et al, (2017); Knupp et al, (2022)			
Duration of ventilation	5 Lewis et al, (1995); Lovett et al, (1996); Kwak et al, (2013); Nabilhan et al, (2014); Tanaka et al, (2019)			
Mechanical ventilation requirement	5 Kurki et al, (1992); Lovett et al, (1997); Kenyon et al, (2001b); Kwak et al, (2013); Wojciezsk et al, (2014)			
Oxygen requirement	4 Lewis et al, (1995); Lovett et al, (1997); Kenyon et al, (2001b); Pasquier et al, (2019)			
Antibiotic therapy requirement	3 Wojciezsk et al, (2014); Saccone and Berghella, (2015); Wolf et al, (2020)			
Hospital admission	3 McGregor et al, (1991); Lewis et al, (1995); Kenyon et al, (2008)			
Duration of antibiotics	2 Johnston et al, (1990); Tanaka et al, (2019)			
Duration of oxygen requirement	2 Lewis et al, (1995); Lovett et al, (1997)			
Surfactant requirement	2 Kenyon et al, (2001b); Tanaka et al, (2019)			
Internal fetal monitoring	1 Wojciezsk et al, (2014)			
Neonatal respiratory support infection (5/97)	1 Wolf et al, (2020)			
Neonatal sepsis	35 Johnston et al, (1990); Kurki et al, (1992); Kenyon et al, (2001b); Cousens et al, (2010); Kwak et al, (2013); Kahnmanoglu et al, (2016); Lee et al, (2016); Chang et al, (2017); Siegel et al, (2019); Chen et al, (2020); Knupp et al, (2022)			
Intraventricular haemorrhage	26 Johnston et al, (1993); Lewis et al, (1996); Grable et al, (1998); Bar et al, (2020); Augusti Furth et al, (2006); Cousens et al, (2010); Kwak et al, (2013); Lee et al, (2016); Chang et al, (2017); Siegel et al, (2019); Chatzakis et al, (2020); Knupp et al, (2022)			
Funisitis	3 Lee et al, (2016); Zhang et al, (2014)			

(Continued on following page)
TABLE 1 | (Continued) The initial outcomes list of COS for antibiotics in PROM.

Outcome domain	Outcome	Number of reported studies	Definition	Participants’ views	
Neonatal infections	Neonatal meningitis	1 Wojcieszek et al. (2014)	—	—	
	Intracranial infection	1 Zeng and Lin, (2020)	—	—	
Death (4/70)	Neonatal deaths	34 Brelje and Kaltreider, (1966); Johnston et al. (1990); Bergström, (1991); Kurki et al. (1992); Bar et al. (2020); Kenyon et al. (2001b); Kenyon et al. (2008); Couzens et al. (2010); Ke, (2013); Kwak et al. (2013); Kahramanoglu et al. (2016); Lee et al. (2016); Dotters-Katz et al. (2017); Finneran et al. (2017); Siegel et al. (2019); Chatzakis et al. (2020); Knupp et al. (2022)	—	—	
	Perinatal death	10 McGregor et al. (1991); Kurki et al. (1992); Maymon et al. (1998); Lewis et al. (2003); Kenyon et al. (2004); Nabhan et al. (2014); Wojcieszek et al. (2014); Saccone and Berghella, 2015; Zhao, (2018c); Chatzakis et al. (2020)	—	—	
	Stillbirth	5 Johnston et al. (1990); Bergström, (1991); Kurki et al. (1992); Mercer et al. (1992); Wojcieszek et al. (2014)	—	—	
Quality of life (2/70)	Neonatal deaths due to infection	1 Mercer et al. (1992)	—	—	
Function (1/97)	Physiological Function (1/70)	Breastfeeding	2 (Wojcieszek et al. (2014); Saccone and Berghella, 2015)	—	—
		Functional impairment	1 Kenyon et al. (2008)	—	—
TPRM (7/70)	Physiological (14/70)	Mode of delivery	5 Brelje and Kaltreider, (1966); Tai, (2011); Nabhan et al. (2014); Saccone and Berghella, (2015)	—	—
	Postpartum hemorrhage	5 Wojcieszek et al. (2014); Nabhan et al. (2014); A, (2021); Tai, (2011); Zheng et al. (2020)	—	—	
	Latency period	2 Saccone and Berghella, (2015); Barbić et al. (2017)	—	—	
	Preterm delivery	2 Brelje and Kaltreider, (1966); Saccone and Berghella, (2015)	—	—	
	Temperature	2 Zhao, (2019a); Zheng et al. (2016); Zheng, (2018); Zheng et al. (2020)	—	—	
	Abnormalities in blood routine	1 Zhao, (2019a)	—	—	
	Maternal neutrophil percentage	1 Zheng et al. (2020)	—	—	
	Maternal procalcitonin	1 Zheng et al. (2020)	—	—	
	Maternal white blood cell count	1 Zheng et al. (2020)	—	—	
	Maternal C-reactive protein	1 Zheng et al. (2020)	—	—	
	Cord prolapse	1 Saccone and Berghella, (2015)	—	—	
	Fever	1 Wojcieszek et al. (2014)	—	—	
	Placental abruption	1 Saccone and Berghella, (2015)	—	—	
	Respiratory arrest	1 Wojcieszek et al. (2014)	—	—	
Infection (7/70)	Chorioamnionitis	8 Saccone and Berghella, (2015); Wojcieszek et al. (2014); Brelje and Kaltreider, (1966); Nabhan et al. (2014); Zheng, (2018); A, (2021); Bari et al. (2020); Kenyon et al. (2008); Cousens et al. (2010); Ke, (2013); Kwak et al. (2013); Kahramanoglu et al. (2016); Lee et al. (2016); Dotters-Katz et al. (2017); Finneran et al. (2017); Siegel et al. (2019); Chatzakis et al. (2020); Knupp et al. (2022)	—	—	
	Endometritis	4 Brelje and Kaltreider, (1966); Nabhan et al. (2014); Wojcieszek et al. (2014); Saccone and Berghella, (2015)	—	—	
	Puerperal infection	3 A, (2021); Tai, (2011); Zheng et al. (2020)	—	—	
	Maternal sepsis	2 Wojcieszek et al. (2014); Saccone and Berghella, (2015)	—	—	
	Wound infection	2 Wojcieszek et al. (2014); Wolf et al. (2020); Wu, (2018); Yeung et al. (2014); Zeng and Lin, (2020); Zhang, (2014); Zhang, (2017); Zhang, (2019); Zhao, (2019a); Zhao, (2019b)	—	—	
	Urinary tract infection	1 Zheng et al. (2020)	—	—	
	Vaginitis	1 Zheng et al. (2020)	—	—	
Resource use (6/70)	Length of maternal hospitalization	2 Nabhan et al. (2014); Wojcieszek et al. (2014)	—	—	
	Maternal intensive care unit admission	1 Wojcieszek et al. (2014)	—	—	
Death (1/70)	Postpartum antibiotic administration	1 Wojcieszek et al. (2014)	—	—	
	Anaphylaxis	1 Wojcieszek et al. (2014)	—	—	
	Cardiac arrest	1 Wojcieszek et al. (2014)	—	—	
	Maternal deaths	1 Wojcieszek et al. (2014)	—	—	
Adverse events (1/70)	Adverse drug reaction	3 Nabhan et al. (2014); Wojcieszek et al. (2014); Saccone and Berghella, (2015)	—	—	
Function (1/70)	Physiological (22/70)	Breathing	2 (Wojcieszek et al. 2014); Saccone and Berghella, 2015)	—	—
	Apgar score	6 Saccone and Berghella, (2015); Wojcieszek et al. (2014); Brelje and Kaltreider, (1966); Kwak et al. (2013); Nabhan et al. (2014); A, (2021)	—	—	
	Fetal distress	3 Zheng, (2018); A, (2021); Tai, (2011)	√	A, (2021)	
	Abnormal brain sonography	2 Kwak et al. (2013); Saccone and Berghella, (2015)	—	—	
	Cerebral palsy	2 Kenyon et al. (2008); Saccone and Berghella, (2015)	—	—	
	Respiratory distress syndrome	2 Kwak et al. (2013); Wojcieszek et al. (2014)	—	—	
	Respiratory problems	2 Kenyon et al. (2008); Saccone and Berghella, (2015)	—	—	
	Baby gender	1 Kwak et al. (2013)	—	—	

(Continued on following page)
experience vs culture results (8/90, 8.9%) (Mai and He, 2016; Zhang, 2017; Zhou, 2020; Chen, 2021; Cong, 2021; Zheng, 2021; Zou, 2021); 5) different courses of antibiotics administration (4/90, 4.4%) (Lewis et al., 2003; Segel et al., 2003; Smith et al., 2015; Li, 2020); 6) different administration route (1/90, 1.1%) (Kole-White et al., 2021). The median number of the outcomes in the included studies was 7, with the range 1–31. Only 38.9% (35/90) studies (Chatzakis et al., 2020; Saccone and Berghella, 2015; Amon et al., 1988; Brejle and Kalbreider, 1966; Lewis et al., 1995; Ernest and Givner, 1994; Grable et al., 1996; Siegel et al., 2019; Kramaranoglu et al., 2016; Kenyon et al., 2001b; Kurki et al., 1992; Kwak et al., 2013; Lockwood et al., 1993; Mercer et al., 1992; Nabhan et al., 2014; Pasquier et al., 2019; Segel et al., 2003; A, 2021; Zhao, 2019a; Zheng et al., 2020; Kenyon et al., 2008; Bar et al., 2020; Chang et al., 2017; Dotters-Katz et al., 2017; Kramer et al., 1996; Ehsanipoor et al., 2008; Fitzgibbon et al., 2021; Martingano et al., 2020; Pierson et al., 2014; Sung et al., 2017; Zheng et al., 2016; Knupp et al., 2022; Smith et al., 2015; Kole-White et al., 2021) defined study outcomes and 3.3% (3/90) studies (Kenyon et al., 2008; Kwak et al., 2013; Chang et al., 2017) explained how to measure the outcomes. 16.7% (15/90) of studies used composite outcomes (Lockwood et al., 1993; Kenyon et al., 2001b; Segel et al., 2003; Kenyon et al., 2008; Kwak et al., 2013; Wojcieszek et al., 2014; Smith et al., 2015; Kramaranoglu et al., 2016; Zheng et al., 2017; Zhao, 2019a; Pasquier et al., 2019; Siegel et al., 2019; Zheng et al., 2020; Knupp et al., 2022). Supplementary Table S2 shows the study characteristics.

3.1.2 Outcomes Reported in the Studies
Extraction of each verbatim outcome domain from each study, a total of 784 verbatim outcomes were identified. After merging outcomes with similar definitions and removing duplicates, we had 109 unique outcomes. Of those, 76.1% (83/109) of outcomes were not clearly

TABLE 1 | (Continued) The initial outcomes list of COS for antibiotics in PROM.

Outcome domain	Outcome	Number of reported studies	Definition	Participants’ views
Birth weight	1 Kwak et al. (2013)	—	—	✓
Bowel disorders	1 Kenyon et al. (2008)	—	—	—
Bronchopulmonary dysplasia	1 Kwak et al. (2013)	—	—	—
Cord arterial pH	1 Zheng et al. (2020)	—	—	—
Diabetes	1 Kenyon et al. (2008)	—	—	—
Intraventricular haemorrhage	1 Kwak et al. (2013)	—	—	—
Neonatal asphyxia	1 Zheng et al. (2018)	—	—	—
Neonatal e-reactive protein	1 Bartišić et al. (2017)	—	—	—
Neonatal lung injury	1 Zheng, (2018)	—	—	—
Neonatal procalcitonin	1 Zheng et al. (2020)	—	—	—
Neonatal white blood cell count	1 Zheng et al. (2020)	—	—	—
Neurological outcome	1 Kwak et al. (2013)	—	—	—
Retinopathy of prematurity	1 Kwak et al. (2013)	—	—	—
Seizures	1 Kwak et al. (2013)	—	—	—
Admission to the neonatal intensive care unit	5 Kwak et al. (2013); Nabhan et al. (2014); Wojcieszek et al. (2014); Saccone and Berghella, (2015); Bartišić et al. (2017)	—	—	—
Antibiotic therapy requirement	3 Wojcieszek et al. (2014); Saccone and Berghella, (2015); Bartišić et al. (2017)	—	—	—
Duration of hospitalization of the newborns	3 Wojcieszek et al. (2014); Saccone and Berghella, (2015); Bartišić et al. (2017)	—	—	—
Duration of stay in the neonatal intensive care unit	3 Kwak et al. (2013); Nabhan et al. (2014); Wojcieszek et al. (2014)	—	—	—
Hospital admission	2 Kenyon et al. (2008); Knupp et al. (2022); Kole-White et al. (2021); Kurki et al. (1992); Kwak et al. (2013); Lee et al. (2016)	✓ Kenyon et al. (2008)	—	—
Mechanical ventilation requirement	2 Kwak et al. (2013); Wojcieszek et al. (2014)	—	—	—
Duration of ventilation	1 Nabhan et al. (2014)	—	—	—
Duration of ventilator treatment	1 Kwak et al. (2013)	—	—	—
Internal fetal monitoring	1 Wojcieszek et al. (2014)	—	—	—
Neonatal sepsis	5 Saccone and Berghella, (2015); Wojcieszek et al. (2014); Kwak et al. (2013); Nabhan et al. (2014); A, (2021)	✓ Saccone and Berghella, (2015); Wojcieszek et al. (2014); Nabhan et al. (2014); A, (2021)	—	—
Neonatal pneumonia	4 Tai, (2011); Nabhan et al. (2014); Wojcieszek et al. (2014); Zheng, (2018)	✓ Brejle and Kalbreider, (1966); A, (2021)	—	—
Neonatal infection	3 Saccone and Berghella, (2015); Brejle and Kalbreider, (1966); A, (2021)	✓ Brejle and Kalbreider, (1966); A, (2021)	—	—
Neonatal meningitis	1 Wojcieszek et al. (2014)	—	—	—
Neonatal deaths	4 Brejle and Kalbreider, (1966); Kenyon et al. (2008); Kwak et al. (2013); Wojcieszek et al. (2014)	✓	—	—
Perinatal death	3 Nabhan et al. (2014); Wojcieszek et al. (2014); Saccone and Berghella, (2015)	—	—	—
Stillbirth	1 Wojcieszek et al. (2014)	—	—	✓
Quality of life (2/70)	1 Kenyon et al. (2008)	—	—	✓
Health-related quality-of-life and behavior	1 Kenyon et al. (2008)	✓ Kenyon et al. (2008)	—	—
Function (1/70)	1 Kenyon et al. (2008)	—	—	—
defined and often had different definitions for the same term. For example, the definition of "latency period" was provided in 11 studies (Lockwood et al., 1993; Ernest and Givner, 1994; Grable et al., 1996; Pierson et al., 2014; Smith et al., 2015; Chang et al., 2017; Dotters-Katz et al., 2017; Sung et al., 2017; Siegel et al., 2019; Fitzgibbon et al., 2021; Kole-White et al., 2021); however, some studies meant "time from the first dose of antibiotics to delivery" (Pierson et al., 2014; Sung et al., 2017; Kole-White et al., 2021) and other studies meant "from the day of rupture of membranes to the date of delivery" (Lockwood et al., 1993; Ernest and Givner, 1994; Grable et al., 1996; Smith et al., 2015; Chang et al., 2017; Dotters-Katz et al., 2017; Siegel et al., 2019; Fitzgibbon et al., 2021).

Since the antibiotics strategy dramatically differs between PPROM and TPROM, we analyzed these subsets of pregnancy complications separately. Outcomes were categorized according to the populations in the studies reporting these outcomes, with PPROM having more outcomes than TPROM, 97 and 70, respectively.

The 97 outcomes for PPROM were grouped into maternal outcomes and neonatal outcomes. Maternal outcomes involved 33 outcomes categorized into six core domains (physiological, infection, resource use, death, adverse events, and function, from most to least). Neonatal outcomes involved 64 outcomes categorized into six core domains (physiological, resource use, infection, death, quality of life, and function, from most to least) (Figure 3). The physiological domain was the most common for both maternal and neonatal outcomes, with the 51.5% (17/33) and 60.9% (39/64) outcomes belonging to it, respectively. Table 1 presents the outcomes for TPROM and the number of reported studies. The rank for maternal outcome domains by reported frequencies were adverse events, infection, function, death, physiological, and resource use, and for neonatal outcomes were infection, death, resource use, physiological, and quality of life (Figure 3). The physiological domain was the most common for both maternal and neonatal outcomes, with the 48.3% (14/29) and 53.7% (22/41) outcomes belonging to it, respectively.

Table 1 presents outcomes for PPROM with the number of reported studies (reported frequencies). Figure 3 ranks the outcome domains by median reported frequencies from high to low. The rank for maternal outcome domains were infection, death, adverse events, physiological, function and resource use, and for neonatal domains were death, infection, resource use, physiological, quality of life, and function. Across all maternal outcomes, the top three most frequently reported outcomes were chorioamnionitis, pregnancy latency period, and mode of delivery, reported in 47.8% (43/90), 45.6% (41/90), and 30.0% (27/90), respectively of the including studies. The top three most frequently reported outcomes for newborns were neonatal sepsis, neonatal deaths, and birth weight, reported in 38.9% (35/90), 37.8% (34/90), and 36.7% (33/90) of the included studies. Nevertheless, 35.1% of outcomes (34/97, eight maternal and 26 neonatal outcomes) were reported only once in the related studies.

The 70 outcomes for TPROM were divided into maternal outcomes and neonatal outcomes. Maternal outcomes included 29 outcomes and were classified into six core domains, while neonatal outcomes included 41 outcomes classified into six core domains. Besides, the order of domains is the same as for PPROM (Figure 3). The physiological domain was the most common for both maternal and neonatal outcomes, with the 48.3% (14/29) and 53.7% (22/41) outcomes belonging to it, respectively.
outcomes after normalization, and no new outcomes were obtained (Figure 4). The most frequently reported outcomes by PROM pregnant women were intrauterine infection (43.3%, 13/30), followed by latency period (40.0%, 12/30), fetal distress (20.0%, 6/30), and health-related quality of life and behavior (20.0%, 6/30).

DISCUSSION

To our knowledge, this is the first study to investigate study outcomes and the concerns of pregnant women on antibiotics in PROM. Our study showed a growing number of studies about antibiotics used in PROM; however, a significant inconsistency appeared in outcomes reported in antibiotics used in pregnant women with PROM. Firstly, the current studies reported many different outcomes, some of which were only reported once. Moreover, many outcomes were not clearly defined, and different definitions were frequently found for the same term. Therefore, it might not be possible to compare, contrast or combine the results of the individual studies in a systematic review to provide higher-level evidence for clinical practice (Clarke and Williamson, 2016), which contributes to waste in research (Glasziou et al., 2014). The development of the COS for antibiotics in PROM could improve the research quality of PROM and provide a reference for research about the infection in pregnant women.

Although the classification and order of the core outcome domains of PPROM and TPROM were consistent, there were some differences between the specific outcomes of PPROM and TPROM studies due to the different clinical stages of PPROM and TPROM. For example, neonatal death was one of the most concerned outcomes of PPROM researchers. However, this outcome was seldom reported in TPROM studies because pre-term birth complications are the leading cause of death among children (World Health Organization, 2018).

The outcomes identified in the including studies could cover the outcomes concerned by pregnant women. The physiological domain contained the most outcomes. Despite this, many outcomes were reported only once in studies or by pregnant women. Both the PPROM studies’ researchers and the pregnant women interviewed were very concerned about the latency period. During the latency period of PROM, the fetus would be exposed to the risk of maternofetal infection, abruptio placentae, cord prolapse, and intrauterine death (Mercer, 2003). However, a large cohort study suggested that prolonged latency duration did not worsen neonatal prognosis. Moreover, survival and survival without severe morbidity improved with increased gestational age at birth (Lorthe et al., 2017). Therefore, prolonging latency if there is no contraindication was recommended in pregnant women at 24 0/7 weeks of gestation (Siegler et al., 2020). Nevertheless, some pregnant women’s concerns, such as health-related quality of life and behavior, were rarely reported in the studies. This kind of outcome is used to assess the effect of chronic disease management on an individual’s health status and is drawing the attention of researchers and policymakers (Guyatt et al., 1993). Although PROM is not a chronic disease, the sequelae of premature infants, according to PROM, require constant attention as many pre-term children develop important behavioral and educational difficulties (Bhutta et al., 2002). Future studies could pay attention to these outcomes.

Limitation and Future Research
Firstly, our study only included articles in Chinese and English, which could have a language limitation. Besides, the semi-structured interview was conducted at a single center, which could have limitations to sample representativeness. Therefore, in the next stage of this COS research, we would conduct a Delphi survey with stakeholder groups, which were based on multicenter, to add important outcomes not identified by our current study and prioritize outcomes for the COS.

CONCLUSION

An initial list of core outcomes set for antibiotics in pregnant women with prelabor rupture of membranes is formed. We identified 109 outcomes from 90 studies and a semi-structured interview. There was considerable inconsistency in outcomes selection and reporting in current studies for antibiotics in PROM. These results provide a robust foundation for the development of a COS.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

LZh and QY contributed to the conception and design of the study. DL, LW, JL, SL, and YL conducted the systematic review including screening of abstracts and full-text and extracting the data. DL, LW, CZ, and LZe conducted the semi-structured interview including data collection and data analysis. DL, LW, and LZe performed the analyses and wrote the manuscript. All authors revised it critically for important intellectual content and gave their approval of the final version.

FUNDING

This work was supported by the Science and Technology Plan Project of Sichuan Province(2020YFS0035).

ACKNOWLEDGMENTS

We are grateful to the evidence-based pharmacy committee of the Chinese Pharmaceutical Association.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2022.915698/full#supplementary-material
REFERENCES

A. W. Q. Z. (2021). The Application Opportunity and Clinical Effect of Antibiotics for Term Premature Rupture of Membranes. Fertil. Health (2), 8–9.

Ali, A. I. (2020). Preterm Premature Rupture of Membranes Management with Erythromycin versus Azithromycin. *Ije* 12, 2117–2122. doi:10.31838/ijpr/2020.12.01.331

Akldhami, A., Dawood, O. T., and Hassali, M. A. (2020). Dispensing of Antibiotics in Community Pharmacy in Iraq: a Qualitative Study. *Pharm. Pract. (Granada)* 18 (4), 2095. doi:10.18549/PharmPract.2020.4.2095

Almeida, L., Schmauch, A., and Bergström, S. (1996). A Randomised Study on the Impact of Peroral Amoxicillin in Women with Prelabour Rupture of Membranes Preterm. *Gynecol. Obstet. Invest.* 41 (2), 82–84. doi:10.1159/000292046

Amon, E., Lewis, S. V., Sibai, B. M., Villar, M. A., and Arheart, K. L. (1988). Ampicillin Prophylaxis in Preterm Premature Rupture of the Membranes: a Prospective Randomized Study. *Am. J. Obstet. Gynecol.* 159 (3), 539–543. doi:10.1016/s0002-9378(88)80002-4

August Fuhr, N., Becker, C., van Baalen, A., Bauer, K., and Hopp, H. (2006). Antibiotic Therapy for Preterm Premature Rupture of Membranes - Results of a Multicenter Study. *J. Perinat. Med.* 34 (3), 203–206. doi:10.1515/JPM.2006.035

Bar, J., Maayan-Metsger, A., Hod, M., Ben Rafael, Z., Orvieto, R., Shalev, Y., et al. (2020). Effect of Antibiotic Therapy in Preterm Premature Rupture of the Membranes on Neonatal Mortality and Morbidity. *Am. J. Perinatol.* 17 (5), 237–241. doi:10.1515/s-0005-200004

Barišić, T., Mandić, V., Tomić, V., Zovko, A., and Novaković, G. (2017). Antibiotic Prophylaxis for Premature Rupture of Membranes and Perinatal Outcome. *J. Maternal-Fetal Neonatal Med.* 30 (5), 580–584. doi:10.1080/14767058.2016.1178228

Bergström, S. (1991). A Prospective Study on the Perinatal Outcome in Mozambican Pregnant Women with Pre-term Rupture of Membranes Using Two Different Methods of Clinical Management. *Gynecol. Obstet. Invest.* 32 (4), 217–219. doi:10.1159/000293305

Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., and Anand, K. J. (2002). A Retrospective Review of Ampicillin-Sulbactam and Amoxicillin + Clavulanate vs Cefazolin/cephalexin and Erythromycin in the Setting of Pre-term Premature Rupture of Membranes: Maternal and Neonatal Outcomes. *Am. J. Obstet. Gynecol.* 198 (5), e54–e6. doi:10.1016/j.ajog.2007.12.022

Ernest, J. M., and Givner, L. B. (1994). A Prospective, Randomized, Placebo-Controlled Trial of Penicillin in Preterm Premature Rupture of Membranes. *Am. J. Obstet. Gynecol.* 170 (2), 516–521. doi:10.1016/s0002-9378(94)70220-9

Feng, Y. (2020). Intervention Effect of Anti-infection Treatment on Pregnancy Outcomes and Neonatal Status in GBS Infected Pregnant Women with Premature Rupture of Membranes. *J. Rare Uncommon Dis.* 27 (2), 54–56.6. doi:10.3969/j.issn.1009-3257.2020.02.020

Finneran, M. M., Appiagyei, A., Templin, M., and Mertz, H. (2017). Comparison of Azithromycin versus Erythromycin for Prolongation of Latency in Pregnancies Complicated by Preterm Premature Rupture of Membranes. *Am. J. Perinatol.* 34 (11), 1102–1107. doi:10.1055/s-0037-1603915

Finneran, M. M., Smith, D. D., and Buhimschi, C. S. (2019). Cost Analysis of Azithromycin versus Erythromycin in Pregnancies Complicated by Preterm Premature Rupture of Membranes. *Am. J. Perinatol.* 36 (1), 105–110. doi:10.1055/s-0038-1667369

Fitzgibbon, A., Clooney, L., Broderick, D., Eogan, M., McCallion, N., and Drew, R. J. (2021). Erythromycin Compared to Amoxicillin and Azithromycin for Antimicrobial Prophylaxis for Preterm Premature Rupture of the Membranes: a Retrospective Study. *J. Obstet. Gynaecol. Res.* 47 (4), 569–572. doi:10.1007/s12015-020-05804-2

Glassiou, P., Altman, D. G., Bossuyt, P., Brunton, I., Clarke, M., Julious, S., et al. (2014). Reducing Waste from Incomplete or Unusable Reports of Medical Research. *Lancet* 383, 267–276. doi:10.1016/S0140-6736(13)62228-X

Gorš, S. L., Gargen, E., Clarke, M., Blaebzy, J. M., Altman, D. G., and Williamsson, P. R. (2016). Choosing Important Health Outcomes for Comparative Effectiveness Research: An Updated Review and User Survey. *PLoS ONE* 11, e0146444. doi:10.1371/journal.pone.0146444

Grable, I. A., Garcia, P. M., Perry, D., and Socol, M. L. (1996). Randomized, Double-Blind Clinical Trial of Antepartum Amoxicillin. *Am. J. Obstet. Gynecol.* 175 (4 Pt 1), 1036–1042. doi:10.1016/s0002-9378(96)00409-4

Guyatt, G. H., Feeny, D. H., and Patrick, D. L. (1993). Measuring Health-Related Quality of Life. *Ann. Intern Med.* 118 (8), 622–629. doi:10.7326/0002-4819-118-8-19930415-00009

Johnston, M. M., Sanchez-Ramos, L., Vaughn, A. J., Todd, M. W., and Benrubi, G. I. (1990). Antibiotic Therapy in Pre-term Premature Rupture of Membranes: a Randomized, Prospective, Double-Blind Trial. *Am. J. Obstet. Gynecol.* 163 (3), 743–747. doi:10.1016/s0002-9378(90)91060-p

Kahramanoglu, I., Baktiroglu, M., Senol, T., Kahramanoglu, O., Ozkaya, E., Ilhan, O., et al. (2016). Comparison of Two Different Antibiotic Regimens for the Prophylaxis of Cases with Preterm Premature Rupture of Membranes: a...
Zheng, F. (2021). To Observe the Effect of Antibiotic Treatment on Premature Rupture of Membranes Complicated with Reproductive Tract Infection. Jia You Yun Bao 3 (3), 96.

Zhou, Z., Yang, C., Lin, F., Huang, L., and Pan, H. (2015). Influen Ce Exploration of Antibiotics Time PPROM Maternal and Neonatal Outcomes. Mod. Diagnosis Treat. (10), 2243–2245.

Zhou, Y. (2020). Efficacy Evaluation of Antibiotics in the Treatment of Premature Rupture of Membranes Complicated with Reproductive Tract Infection. Women’s Health Res. (9), 85–86.

Zhuang, L., Li, Z. K., Zhu, Y. F., Ju, R., Hua, S. D., Yu, C. Z., et al. (2020). The Correlation between Prelabour Rupture of the Membranes and Neonatal Infectious Diseases, and the Evaluation of Guideline Implementation in China: a Multi-Centre Prospective Cohort Study. Lancet Reg. Health West Pac 3, 100029. doi:10.1016/j.lanwpc.2020.100029

Zou, Y. (2021). To Investigate the Clinical Effect of Antibiotics in the Treatment of Premature Rupture of Membranes with Reproductive Tract Infection. Chin. Baby (4), 124.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Liu, Wu, Luo, Li, Liu, Zhang, Zeng, Yu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.