New-Generation Quantitative Immunoassays for SARS-CoV-2 Antibody Detection: Need for Harmonization

Danilo Villalta, M.D., Anna Moratto, Ph.D., Valeria Salgarolo, Ph.D., Mirella Da Re, Ph.D., Roberto Giacomello, Ph.D., and Giacomo Malipiero, M.D.
Department of Immunology and Allergy, S. Maria degli Angeli Hospital, Pordenone, Italy

Dear Editor,

Since March 2020, many qualitative or semi-quantitative serologic assays to detect antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) have become commercially available. Harristshøj, et al. [1] compared the results of 16 serological assays on a large number of patients and controls, showing differences in accuracy, despite the majority of automated assays for total (IgG+IgM) and IgG antibody detection reaching the predefined criteria for acceptable performance. Additionally, the antibody response appeared to be the strongest among patients with more severe disease [1]. Since quantitative determination of SARS-CoV-2 antibodies may be important for longitudinal monitoring of the antibody response in patients and in response to a vaccine, a new generation of quantitative immunoassays for SARS-CoV-2 antibody detection was recently launched [2-7]. However, to date, few independent studies evaluating these assays have been published, and no studies have compared the quantitative data obtained with these novel immunoassays.

We compared the results of four new-generation fully automated immunoassays for quantitative SARS-CoV-2 IgG antibody detection using a total of 123 serum samples, including 93 samples from patients diagnosed as having coronavirus disease 2019 (COVID-19; 44 with mild, 35 with severe, and 14 with critical disease) and 30 samples from patients with other acute viral diseases (Epstein-Barr virus, cytomegalovirus, influenza, adenovirus) as controls. Sera from patients with COVID-19 were collected between 19 and 30 days from symptom onset. All serum samples were collected at Pordenone Hospital (Italy) from March to June 2020. The study was approved by the Institutional Review Board of the Pordenone Hospital, and informed consent was obtained from the patients. Two of the assays use an antigen of the recombinant receptor-binding domain (RBD) of the spike (S) protein (sCOVG, Siemens, Tarrytown, NY, USA, and Maglumi SARS-CoV-2 S-RBD IgG, Snibe, Shenzhen, China), one uses a recombinant S1 protein (SARS-CoV-2-Sp1 IgG EliA, Thermo Fisher, Uppsala, Sweden), and one uses a recombinant trimeric protein (S1+S2+RBD) (Liaison SARS-CoV2 Trimeric S IgG, Diasorin, Saluggia, Italy). All samples were processed according to the manufacturers’ instructions using an automated chemiluminescence immunoassay platform (Advia Centaur XPT [Siemens], Maglumi [Snibe], and Liaison XL [Diasorin]) and an automated fluoroenzyme immunoassay platform (ImmunoCAP 250 [Thermo Fisher]). All assay results are expressed in arbitrary units (AU/mL), and the dynamic range of the Siemens, Snibe, Diasorin, and Thermo Fisher immunoassays was 0.5–150 AU/mL, 0.18–100 AU/mL, 1.85–800 AU/mL, and 0.7–204 AU/mL, respectively. Samples with antibody levels exceeding the upper limit of

Received: March 14, 2021
Revision received: April 14, 2021
Accepted: July 12, 2021

Corresponding author: Danilo Villalta, M.D.
Department of Immunology and Allergy, S. Maria degli Angeli Hospital, 24 Via Montereale, Pordenone 33170, Italy
Tel: +39-0434-399647, E-mail: danilo.villalta@asfo.sanita.fvg.it

© Korean Society for Laboratory Medicine
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.3343/alm.2022.42.1.113
Villalta D, et al.  
Quantitative immunoassays for anti-SARS-CoV-2

Quantitative comparison of SARS-CoV-2 antibody levels showed
a very high correlation between the Siemens and Snibe assays
($r=0.920$), between the Thermo Fisher and Siemens assays
($r=0.930$), and between the Thermo Fisher and Snibe assays
($r=0.930$). High correlations were observed between the Diasorin
and Siemens assays ($r=0.871$), between the Diasorin and
Snibe assays ($r=0.797$), and between the Diasorin and Thermo
Fisher assays ($r=0.810$). However, the Passing-Bablok regression
test (Fig. 2) showed different absolute values among the
assays and, with the exception of the Snibe vs. Siemens and
Snibe vs. Thermo Fisher comparisons, also showed significant
deviation from linearity. The relatively weak correlations between
Diasorin and the other assays could be explained by the trimeric
nature of the antigen used in this assay, likely detecting an anti-
body subset not detected by the other assays.

In conclusion, with the limitation of the small sample size, per-
fected qualitative agreement of results was obtained among four
new-generation immunoassays, whereas some differences in
the quantitative results were found, indicating that commutabil-

![Fig. 1](https://doi.org/10.3343/alm.2022.42.1.113)
ity of results among these assays is not possible. Since the first WHO International Standards for anti-SARS-CoV-2 Ig (code 20/136) was recently prepared [8], all manufacturers should use this standard for calibration of their quantitative serological assays, enabling accurate comparisons, at least for assays using the same antigen. Harmonization of results remains essential for the longitudinal monitoring of antibody response in patients after recovery and to help elucidate the response to vaccination.

**ORCID**

Danilo Villalta https://orcid.org/0000-0002-8865-4150
Anna Moratto https://orcid.org/0000-0002-4349-2346
Valeria Salgarolo https://orcid.org/0000-0002-2890-9553
Mirella Da Re https://orcid.org/0000-0002-9852-1431
Roberto Giacomello https://orcid.org/0000-0001-7864-6010
Giacomo Malipiero https://orcid.org/0000-0002-2914-8258

**REFERENCES**

1. Harristshøj LH, Gybel-Brask M, Afzal S, Kamstrup PR, Jørgensen CS, Tomsen MK, et al. Comparison of 16 serological SARS-CoV-2 immunoassays in 16 clinical laboratories. J Clin Microbiol 2021;59:e02596-20.
2. Infantino M, Damiani A, Li Gobbi F, Grossi V, Lari B, Macchia D, et al. Serological assays for SARS-CoV-2 infectious disease: benefits, limitations and perspectives. Isr Med Assoc J 2020;22:203-20.
3. Higgins V, Fabros A, Kulasingam V. Quantitative measurement of anti-SARS-CoV-2 antibodies: analytical and clinical evaluation. J Clin Microbiol 2021;59:e03149-20.
4. Noda K, Matsuda K, Yagishita S, Maeda K, Akiyama Y, Terada-Hirashima J, et al. A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Sci Rep 2021;11:5198.
5. Bonelli F, Blocki FA, Bunnell T, Chu E, De La OA, Grenache DG, et al. Evaluation of the automated LIAISON SARS-CoV-2 TrimericS IgG assay for detection of circulating antibodies. Clin Chem Lab Med 2021;59:1463-7.
6. Narasimhan M, Mahimainathan L, Araj E, Clark AE, Markantonis J, Green A, et al. Clinical evaluation of the Abbott Alinity SARS-CoV-2 spike-spe-
cific quantitative IgG and IgM assays among infected, recovered, and vaccinated groups. J Clin Microbiol 2021;59: e0038821.

7. Irsara C, Egger AE, Prokop W, Nairz M, Loacker L, Sahanic S, et al. Clinical validation of the Siemens quantitative SARS-CoV2 spike IgG assay (sCOVG) reveals improved sensitivity and a good correlation with virus neutralization titers. Clin Chem Lab Med 2021;59:1453-62.

8. National Institute for Biological Standards and Control. First WHO International Standard Anti-SARS-CoV-2 Immunoglobulin (Human). https://www.nibsc.org/products/brm_product_catalogue/detail_page.aspx?catid=20/136 (Updated on Jan 21, 2021).