Supporting Information

A Mn(II)-cluster-based coordination framework derived from a C_3 symmetric ligand: Synthesis, structure and magnetic properties

Yong-Jun Bian, Yuan Tian, Ai-Hua Zhang and Yong-Qiang Chen*

College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, P. R. of China. E-mail: chenyongqiang@jzxy.edu.cn
Table S1. Selected bond distances (Å) and angles (°) for complex 1

Bond/Angle	Distance/Angle				
Mn(1)-O(1)	2.145(3)				
Mn(1)-O(5)	2.202(3)				
Mn(1)-O(7)#1	2.302(3)				
Mn(2)-O(2)#2	2.168(3)				
Mn(2)-O(9)	2.140(3)				
Mn(2)-O(12)	2.235(4)				
Mn(3)-O(6)#1	2.161(3)				
Mn(3)-O(10)#4	2.100(3)				
Mn(3)-O(24)#5	2.171(3)				
Mn(4)-O(17)	2.086(4)				
Mn(4)-O(19)	2.146(3)				
Mn(5)-O(18)	2.128(3)				
Mn(5)-O(23)#2	2.147(3)				
Mn(5)-O(13)#7	2.171(3)				
Mn(6)-O(15)	2.085(3)				
Mn(6)-O(22)#1	2.119(3)				
Mn(6)-O(14)#2	2.183(3)				
Mn(7)-O(31)	2.183(4)				
Mn(7)-O(26)	2.198(4)				
Mn(7)-O(34)	2.146(4)				
O(3)-Mn(1)-O(1)	97.95(13)				
O(3)-Mn(1)-O(5)	97.99(12)				
O(1)-Mn(1)-O(5)	84.88(12)				
O(11)-Mn(1)-O(7)	93.26(11)				
O(5)-Mn(1)-O(7)	85.95(12)				
O(11)-Mn(1)-O(7)#1	81.64(11)				
O(5)-Mn(1)-O(7)#1	89.37(11)				
O(9)-Mn(2)-O(2)#2	164.81(13)				
O(9)-Mn(2)-O(12)	83.53(14)				
O(2)#2-Mn(2)-O(12)	82.52(14)				
O(11)#2-Mn(2)-O(4)#2	93.98(12)				
O(12)-Mn(2)-O(4)#2	94.96(14)				
O(11)#2-Mn(2)-O(25)#3	83.91(12)				
O(12)-Mn(2)-O(25)#3	88.14(14)				
O(11)-Mn(3)-O(10)#4	108.08(13)				
O(10)#4-Mn(3)-O(6)#1	122.41(13)				
O(10)#4-Mn(3)-O(8)	88.00(12)				
O(11)-Mn(3)-O(24)#5	88.57(12)				
O(6)#1-Mn(3)-O(24)#5	83.68(13)				
Bond	Distance	Bond	Distance	Bond	Distance
-----------------------	----------	-----------------------	----------	-----------------------	----------
O(16)#6-Mn(4)-O(17)	120.23(16)	O(16)#6-Mn(4)-O(21)#3	111.66(16)	O(17)-Mn(4)-O(21)#3	126.93(15)
O(16)#6-Mn(4)-O(19)	94.21(13)	O(21)#3-Mn(4)-O(19)	93.37(13)	O(16)#6-Mn(4)-O(28)	91.06(17)
O(17)-Mn(4)-O(21)#3	83.48(16)	O(19)-Mn(4)-O(28)	175.49(15)	O(17)-Mn(4)-O(28)	85.15(15)
O(18)-Mn(5)-O(21)#3	95.34(13)	O(18)-Mn(5)-O(23)#2	84.57(13)	O(18)-Mn(5)-O(29)	101.15(15)
O(18)-Mn(5)-O(23)#2	94.99(14)	O(19)-Mn(5)-O(29)	99.46(15)	O(19)-Mn(5)-O(29)	93.97(14)
O(19)-Mn(5)-O(29)	126.93(15)	O(19)-Mn(5)-O(13)#7	92.21(12)	O(19)-Mn(5)-O(13)#7	93.97(14)
O(19)-Mn(5)-O(13)#1	90.40(12)	O(19)-Mn(5)-O(13)#1	75.81(12)	O(19)-Mn(5)-O(13)#1	75.81(12)
O(19)-Mn(5)-O(13)#1	89.50(13)	O(19)-Mn(5)-O(13)#1	165.95(13)	O(19)-Mn(5)-O(13)#1	165.95(13)
O(19)-Mn(5)-O(13)#1	76.08(12)	O(19)-Mn(5)-O(13)#1	106.31(13)	O(19)-Mn(5)-O(13)#1	106.31(13)
O(19)-Mn(5)-O(13)#1	124.88(14)	O(19)-Mn(5)-O(13)#1	128.78(13)	O(19)-Mn(5)-O(13)#1	128.78(13)
O(19)-Mn(5)-O(13)#1	96.33(14)	O(19)-Mn(5)-O(13)#1	91.25(12)	O(19)-Mn(5)-O(13)#1	91.25(12)
O(19)-Mn(5)-O(13)#1	82.16(14)	O(19)-Mn(5)-O(13)#1	86.65(14)	O(19)-Mn(5)-O(13)#1	86.65(14)
O(19)-Mn(5)-O(13)#1	102.37(12)	O(19)-Mn(5)-O(13)#1	83.82(14)	O(19)-Mn(5)-O(13)#1	83.82(14)
O(19)-Mn(5)-O(13)#1	164.68(13)	O(19)-Mn(5)-O(13)#1	178.04(18)	O(19)-Mn(5)-O(13)#1	178.04(18)
O(19)-Mn(5)-O(13)#1	86.74(17)	O(19)-Mn(5)-O(13)#1	94.78(15)	O(19)-Mn(5)-O(13)#1	94.78(15)
O(19)-Mn(5)-O(13)#1	88.84(17)	O(19)-Mn(5)-O(13)#1	89.38(14)	O(19)-Mn(5)-O(13)#1	89.38(14)
O(19)-Mn(5)-O(13)#1	175.06(14)	O(19)-Mn(5)-O(13)#1	88.45(14)	O(19)-Mn(5)-O(13)#1	88.45(14)
O(19)-Mn(5)-O(13)#1	89.48(13)	O(19)-Mn(5)-O(13)#1	89.3(2)	O(19)-Mn(5)-O(13)#1	89.3(2)
O(19)-Mn(5)-O(13)#1	89.47(18)	O(19)-Mn(5)-O(13)#1	91.58(15)	O(19)-Mn(5)-O(13)#1	91.58(15)

Symmetry transformations used to generate the equivalent atoms: #1: -x+1, -y+1, -z+1; #2: x-1, y, z; #3: x-1, y, z-1; #4: x+1, y, z; #5: x, y, z-1; #6: x, y-1, z-1; #7: x-1, y-1, z-1; #8: x, y+1, z+1; #9: x-1, y+1, z.
Figure S1. The IR spectra of 1.

Figure S2. The TGA curve of 1.
Figure S3. The simulated (red line) and experimental (black line) powder X-ray diffraction patterns for complex 1.

Figure S4. The plots of M vs. H curve at 2K of 1.