ON THE ASYMPTOTIC BEHAVIOR
OF WEAKLY LACUNARY SERIES

C. Aistleitner, I. Berkes, and R. Tichy

ABSTRACT. Let f be a measurable function satisfying
\[f(x + 1) = f(x), \quad \int_0^1 f(x) \, dx = 0, \quad \text{Var}_{[0, 1]} f < +\infty, \]
and let $(n_k)_{k \geq 1}$ be a sequence of integers satisfying $n_{k+1}/n_k \geq q > 1$ ($k = 1, 2, \ldots$). By the classical theory of lacunary series, under suitable Diophantine conditions on n_k, $(f(n_k x))_{k \geq 1}$ satisfies the central limit theorem and the law of the iterated logarithm. These results extend for a class of subexponentially growing sequences $(n_k)_{k \geq 1}$ as well, but as Fukuyama showed, the behavior of $f(n_k x)$ is generally not permutation-invariant; e.g. a rearrangement of the sequence can ruin the CLT and LIL. In this paper we construct an infinite order Diophantine condition implying the permutation-invariant CLT and LIL without any growth conditions on $(n_k)_{k \geq 1}$ and show that the known finite order Diophantine conditions in the theory do not imply permutation-invariance even if $f(x) = \sin 2\pi x$ and $(n_k)_{k \geq 1}$ grows almost exponentially. Finally, we prove that in a suitable statistical sense, for almost all sequences $(n_k)_{k \geq 1}$ growing faster than polynomially, $(f(n_k x))_{k \geq 1}$ has permutation-invariant behavior.

1. INTRODUCTION

Let f be a measurable function satisfying
\[f(x + 1) = f(x), \quad \int_0^1 f(x) \, dx = 0, \quad \text{Var}_{[0, 1]} f < +\infty \]
and let $(n_k)_{k \geq 1}$ be a sequence of positive integers satisfying the Hadamard gap condition
\[n_{k+1}/n_k \geq q > 1 \quad (k = 1, 2, \ldots). \]
In the case $n_k = 2^k$, Kac [14] proved that $f(n_k x)$ satisfies the central limit theorem
\[N^{-1/2} \sum_{k=1}^N f(n_k x) \xrightarrow{D} N(0, \sigma^2) \]
with respect to the probability space [0, 1] equipped with the Lebesgue measure, where
\[\sigma^2 = \int_0^1 f^2(x) \, dx + 2 \sum_{k=1}^{\infty} \int_0^1 f(x)f(2^k x) \, dx. \]

Gaposhkin \cite{11} extended (3) to the case when the fractions \(n_{k+1}/n_k \) are all integers or if \(n_{k+1}/n_k \to \alpha \), where \(\alpha \) is irrational for \(r = 1, 2, \ldots. \) On the other hand, an example of Erdős and Fortet (see \cite{15}, p. 646) shows that the CLT (3) fails if \(n_k = 2^k - 1. \) Gaposhkin also showed (see \cite{12}) that the asymptotic behavior of \(\sum_{k=1}^N f(n_k x) \) is intimately connected with the number of solutions of the Diophantine equation
\[an_k + bn_l = c, \quad 1 \leq k, l \leq N. \]

Improving these results, Aistleitner and Berkes \cite{1} gave a necessary and sufficient condition for the CLT (3). For related laws of the iterated logarithm, see \cite{5}, \cite{11}, \cite{13}, and \cite{17}.

The previous results show that for arithmetically “nice” sequences \((n_k)_{k \geq 1} \), the system \(f(n_k x) \) behaves like a sequence of independent random variables. However, as an example of Fukuyama \cite{9} shows, this result is not permutation-invariant: a rearrangement of \((n_k)_{k \geq 1} \) can change the variance of the limiting Gaussian law or ruin the CLT altogether. A complete characterization of the permutation-invariant CLT and LIL for \(f(n_k x) \) under the Hadamard gap condition (1) is given in our forthcoming paper \cite{3}. In particular, it is shown there that in the harmonic case \(f(x) = \cos 2\pi x, f(x) = \sin 2\pi x \) the CLT and LIL for \(f(n_k x) \) hold after any permutation of \((n_k)_{k \geq 1}. \)

For subexponentially growing \((n_k)_{k \geq 1} \) the situation changes radically. Note that in the case \(f(x) = \cos 2\pi x, f(x) = \sin 2\pi x, \) the unpermuted CLT and LIL remain valid under the weaker gap condition
\[n_{k+1}/n_k \geq 1 + ck^{-\alpha}, \quad 0 < \alpha < 1/2; \]
see Erdős \cite{8}, Takahashi \cite{18}, \cite{19}. However, as the following theorem shows, the slightest weakening of the Hadamard gap condition (2) can ruin the permutation-invariant CLT and LIL.

Theorem 1. For any positive sequence \((\varepsilon_k)_{k \geq 1} \) tending to 0, there exists a sequence \((n_k)_{k \geq 1} \) of positive integers satisfying
\[n_{k+1}/n_k \geq 1 + \varepsilon_k, \quad k \geq k_0 \]
and a permutation \(\sigma : \mathbb{N} \to \mathbb{N} \) of the positive integers such that
\[N^{-1/2} \sum_{k=1}^N \cos 2\pi n_{\sigma(k)} x - b_N \overset{D}{\to} G, \]
where \(G \) is a non-Gaussian distribution with characteristic function given by (14) \cite{10} and \((b_N)_{N \geq 1} \) is a numerical sequence with \(b_N = O(1) \). Moreover, there exists a permutation \(\sigma : \mathbb{N} \to \mathbb{N} \) of the positive integers such that
\[\limsup_{N \to \infty} \frac{\sum_{k=1}^N \cos 2\pi n_{\sigma(k)} x}{\sqrt{2N \log \log N}} = +\infty \quad \text{a.e.} \]
As we will see, with a slight change of the norming sequence \(N^{-1/2} \) in (5) the limit distribution \(G \) can also be chosen as the Cauchy distribution with density \(\pi^{-1}(1+x^2)^{-1} \). The proof of Theorem 1 will also show that (6) can be improved to

\[
\limsup_{N \to \infty} \frac{\sum_{k=1}^{N} \cos 2\pi \sigma(k)x}{\sqrt{N \log N}} > 0 \quad \text{a.e.}
\]

It should be noted that the subexponential gap condition (4) does not imply the permutation-invariant behavior of \(f(n_k x) \) even for arithmetically “nice” sequences \((n_k)_{k \geq 1}\). Indeed, the sequence \((n_k)_{k \geq 1}\) in Theorem 1 can be chosen so that it satisfies conditions B, C, G in our paper [7] implying very strong independence properties of \(\cos 2\pi n_k x, \sin 2\pi n_k x \), including the CLT and LIL. In fact, it is not easy to construct subexponential sequences \((n_k)_{k \geq 1}\) satisfying the permutation-invariant CLT and LIL: the only known example (see [2]) is the Hardy-Littlewood-Pólya sequence, i.e. the sequence generated by finitely many primes and arranged in increasing order; the proof uses deep number-theoretic tools. The purpose of this paper is to introduce a new, infinite order Diophantine condition \(A_\omega \) which implies the permutation-invariant CLT and LIL for \(f(n_k x) \) and then to show that, in a suitable statistical sense, almost all sequences \((n_k)_{k \geq 1}\) growing faster than polynomially satisfy \(A_\omega \). Thus, despite the difficulties to construct explicit examples, the permutation-invariant CLT and LIL are rather the rule than the exception.

Given a nondecreasing sequence \(\omega = (\omega_1, \omega_2, \ldots) \) of positive numbers tending to \(+\infty\), let us say that a sequence \((n_k)_{k \geq 1}\) of different positive integers satisfies

Condition \(A_\omega \) if for any \(N \geq N_0 \) the Diophantine equation

\[
a_1 n_{k_1} + \ldots + a_r n_{k_r} = 0, \quad 2 \leq r \leq \omega_N, \quad 0 < |a_1|, \ldots, |a_r| \leq N^{\omega_N}
\]

with different indices \(k_j \) and nonzero integer coefficients \(a_j \) has only such solutions, where all \(n_{k_j} \) belong to the smallest \(N \) elements of the sequence \((n_k)_{k \geq 1}\).

Clearly, this property is permutation-invariant and it implies that for any fixed nonzero integer coefficients \(a_j \) the number of solutions of (8) with different indices \(k_j \) is at most \(N^r \).

Theorem 2. Let \(\omega = (\omega_1, \omega_2, \ldots) \) be a nondecreasing sequence tending to \(+\infty\) and let \((n_k)_{k \geq 1}\) be a sequence of different positive integers satisfying condition \(A_\omega \). Then for any \(f \) satisfying (11) we have

\[
N^{-1/2} \sum_{k=1}^{N} f(n_k x) \overset{P}{\to} \mathcal{N}(0, \|f\|^2),
\]

where \(\|f\| \) denotes the \(L_2(0,1) \) norm of \(f \). If \(\omega_k \geq (\log k)^\alpha \) for some \(\alpha > 0 \) and \(k \geq k_0 \), then we also have

\[
\limsup_{N \to \infty} \frac{\sum_{k=1}^{N} f(n_k x)}{(2N \log \log N)^{1/2}} = \|f\| \quad \text{a.e.}
\]

Condition \(A_\omega \) is different from the usual Diophantine conditions in lacunarity theory, which typically involve 4 or fewer terms. In contrast, \(A_\omega \) is an “infinite order” condition; namely, it involves equations with arbitrary large order. As noted, the usual Diophantine conditions do not suffice in Theorem 2. Given any \(\omega_k \uparrow \infty \), it is not hard to see that any sufficiently rapidly growing sequence \((n_k)_{k \geq 1}\) satisfies \(A_\omega \); on the other hand, we do not have any “concrete” subexponential examples for
Theorem 3. Let \(g \) growing faster than polynomially satisfy condition \(A_\omega \) for some appropriate \(\omega \).

However, we will show that, in a suitable statistical sense, almost all sequences growing faster than polynomially satisfy condition \(A_\omega \) for some appropriate \(\omega \).

To make this precise requires defining a probability measure over the set of such sequences, or, equivalently, a natural random procedure to generate such sequences. A simple procedure is to choose \(n_k \) independently and uniformly from the integers in the interval

\[
I_k = [a(k - 1)^{\omega_k - 1}, ak^{\omega_k}), \quad k = 1, 2, \ldots
\]

Note that the length of \(I_k \) is at least \(a_\omega (k - 1)^{\omega_k - 1} \geq a_\omega \) for \(k = 2, 3, \ldots \) and equals \(a \) for \(k = 1 \), and thus choosing \(a \) large enough, each \(I_k \) contains at least one integer. Let \(\mu_\omega \) be the distribution of the random sequence \((n_k)_{k \geq 1}\) in the product space \(I_1 \times I_2 \times \ldots \).

Theorem 3. Let \(\omega_k \uparrow \infty \) and let \(f \) be a function satisfying (11). Then with probability one with respect to \(\mu_\omega \), the sequence \((f(n_k))_{k \geq 1}\) satisfies the CLT (10) after any permutation of its terms, and if \(\omega_k \geq (\log k)^{\alpha} \) for some \(\alpha > 0 \) and \(k \geq k_0 \), \((f(n_k))_{k \geq 1}\) also satisfies the LIL (11) after any permutation of its terms.

The sequences \((n_k)_{k \geq 1}\) provided by \(\mu_\omega \) satisfy \(n_k = O(k^{\omega_k}) \); for slowly increasing \(\omega_k \), the so-obtained sequences grow much slower than exponentially, in fact they grow barely faster than polynomial speed. If \(\omega_k \) grows so slowly that \(\omega_k - \omega_{k-1} = o((\log k)^{-1}) \), then the so-obtained sequence \((n_k)_{k \geq 1}\) has the precise speed \(n_k \sim k^{\omega_k} \).

We do not know if there exist polynomially growing sequences \((n_k)_{k \geq 1}\) satisfying the permutation-invariant CLT or LIL. The proof of Theorem 3 will also show that with probability 1, the sequences provided by \(\mu_\omega \) satisfy \(A_{\omega^*} \) with \(\omega^* = (\omega_1^{1/2}, \omega_2^{1/2}, \ldots) \).

2. Proofs

2.1. Proof of Theorem 1. We begin with the CLT part. Let \((\varepsilon_k)_{k \geq 1}\) be a positive sequence tending to 0. Let \(m_1 < m_2 < \ldots \) be positive integers such that \(m_{k+1}/m_k \geq 2^k \), \(k = 1, 2, \ldots \) and all the \(m_k \) are powers of 2; let \(r_1 \leq r_2 \leq \ldots \) be positive integers satisfying \(1 \leq r_k \leq k^2 \). Put \(I_k = \{m_k, 2m_k, \ldots, r_km_k\} \); clearly the sets \(I_k \), \(k = 1, 2, \ldots \) are disjoint. Define the sequence \((n_k)_{k \geq 1}\) by

\[
(n_k)_{k \geq 1} = \bigcup_{j=1}^{\infty} I_j.
\]

Clearly, if \(n_k, n_{k+1} \in I_j \), then \(n_{k+1}/n_k \geq 1 + 1/r_j \) and thus if \(r_j \) grows sufficiently slowly, the sequence \((n_k)_{k \geq 1}\) satisfies the gap condition (4). Also, if \(r_j \) grows sufficiently slowly, there exists a subsequence \((n_{k_i})_{i \geq 1}\) of \((n_k)_{k \geq 1}\) which has exactly the same structure as the sequence in (12), just with \(r_k \sim k \). By the proof of Theorem 1 in [4], \((\cos 2\pi n_{k_i}x)_{i \geq 1}\) satisfies

\[
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \cos 2\pi n_{k_i}x - b_N \overset{D}{\rightarrow} G,
\]
As in [6, Lemma 2.1], the random variables

\[\sigma \]

and thus

\[\text{satisfying (4) that contains a subsequence } (\sigma) \]

where \((\sigma)\) in Berkes and Philipp [6]. Similarly as above, we construct a sequence \((\sigma)\) of Theorem 1.

Then

\[\exp \left\{ \int_{R \setminus \{0\}} \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dL(x) \right\} , \]

where

\[L(x) = \begin{cases}
-\frac{1}{\pi} \int_{-1}^{0} F(t) dt & \text{if } 0 < x \leq 1, \\
\frac{1}{\pi} \int_{-1}^{0} G(t) dt & \text{if } -1 \leq x < 0, \\
0 & \text{if } |x| > 1
\end{cases} \]

and

\[F(t) = \lambda\{x > 0 : \sin x/x \geq t\}, \quad G(t) = \lambda\{x > 0 : \sin x/x \leq -t\} \quad (t > 0), \]

where \(\lambda\) is the Lebesgue measure. Define a permutation \(\sigma\) in the following way:

- for \(k \notin \{1, 2, 4, \ldots, 2^m, \ldots\}\), \(\sigma(k)\) takes the values of the set \(\{k_1, k_2, \ldots\}\) in consecutive order;
- for \(k \in \{1, 2, 4, \ldots, 2^m, \ldots\}\), \(\sigma(k)\) takes the values of the set \(N \setminus \{k_1, k_2, \ldots\}\) in consecutive order.

Then \(\sigma\) is a permutation of \(N\) and the sums

\[\sum_{k=1}^{N} \cos 2\pi n_{\sigma(k)} x \quad \text{and} \quad \sum_{i=1}^{N} \cos 2\pi n_{ki} x \]

differ at most in \(2 \log_2 N\) terms. Therefore, \([1.3]\) implies \([1.5]\), proving the first part of Theorem 1.

The proof of the LIL part of Theorem 1 is modeled after the proof of Theorem 1 in Berkes and Philipp [6]. Similarly as above, we construct a sequence \((n_k)_{k \geq 1}\) satisfying \([4]\) that contains a subsequence \((\mu_k)_{k \geq 1}\) of the form \([12]\) with

\[I_k = \{m_k, 2m_k, \ldots, r_km_k\}, \]

where \(r_k \sim k \log k\) and \((m_k)_{k \geq 1}\) is growing fast; specifically we choose \(m_k\) in such a way that it is a power of 2 and \(m_{k+1} \geq r_k 2^{2k} m_k\). Let \(\mathcal{F}_i\) denote the \(\sigma\)-field generated of the dyadic intervals

\[\nu 2^{-(\log_2 m_i - i)}, (\nu + 1)2^{-(\log_2 m_i - i)}, \quad 0 \leq \nu < 2^{(\log_2 m_i) + i}. \]

Write

\[X_i = \cos 2\pi m_i x + \cdots + \cos 2\pi r_i m_i x \]

and

\[Z_i = \mathbb{E}(X_i | \mathcal{F}_i). \]

Then for all \(x \in (0, 1), \)

\[|X_i(x) - Z_i(x)| \ll r_i^2 m_i 2^{-(\log_2 m_i) - i} \]

and thus

\[\sum_{i \geq 1} |X_i(x) - Z_i(x)| < \infty \quad \text{for all } x \in (0, 1). \]

As in [6, Lemma 2.1], the random variables \(Z_1, Z_2, \ldots\) are independent, and as in [6, Lemma 2.2], for almost every \(x \in (0, 1)\) we have

\[\limsup_{i \to \infty} X_i/r_i \geq 2/\pi. \]
Assume that for a fixed x and some $i \geq 1$ we have $X_i/r_i \geq 1/\pi$. Then either

$$|X_1 + \cdots + X_{i-1}| \geq r_i/2\pi$$

or

$$|X_1 + \cdots + X_i| \geq r_i/2\pi.$$

Since the total number of summands in X_1, \ldots, X_i is $\ll i^2 \log i$, and since $r_i \gg (i^2 \log i)^{1/2}(\log(i^2 \log i))^{1/2}$, we have

$$\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^{N} \cos 2\pi \mu_k x \right|}{\sqrt{N \log N}} > 0 \ a.e.,$$

and, in particular,

$$\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^{N} \cos 2\pi \mu_k x \right|}{\sqrt{2N \log \log N}} = +\infty \ a.e.$$

Thus we constructed a subsequence of $(n_k)_{k \geq 1}$ failing the LIL and similarly as above, we can construct a permutation $(n_{\sigma(k)})_{k \geq 1}$ of (n_k) failing the LIL as well.

Note that the just completed proof of Theorem 1 provides the stronger relation (7) instead of (6). Also, if relation $r_k \sim k$ just preceding relation (13) is replaced by $r_k \sim k \log \log k$, then the proof of Theorem 2 in [4] shows that (5) will be replaced by

$$a_N^{-1} \sum_{k=1}^{N} \cos 2\pi n_{\sigma(k)} x = b_N \to G,$$

where G is the Cauchy distribution with density $\pi^{-1}(1 + x^2)^{-1}$ and $a_N \sim c\sqrt{N/\log \log N}$ with some $c > 0$ and $b_N = O(1)$.

2.2. Proof of Theorem 2

Lemma 1. Let $\omega_k \uparrow \infty$ and let $(n_k)_{k \geq 1}$ be a sequence of different positive integers satisfying condition A_{ω}. Let f satisfy (1) and put $S_N = \sum_{k=1}^{N} f(n_k x)$, $\sigma_N = (\text{ES}_N^2)^{1/2}$. Then for any $p \geq 3$ we have

$$\mathbb{E} S_N^p = \left\{ \begin{array}{ll} \frac{\mu^p}{(p/2)!} 2^{-p/2} \sigma_N^p + O(T_N) & \text{if } p \text{ is even,} \\ O(T_N) & \text{if } p \text{ is odd,} \end{array} \right.$$}

where

$$T_N = \exp(p^2)N^{(p-1)/2}(\log N)^p$$

and the constants implied by the O are absolute.

Proof. Fix $p \geq 2$ and choose the integer N so large that $\omega_{\lceil N^{1/4} \rceil} \geq 8p$. Without loss of generality we may assume that f is an even function and that $\|f\|_{\infty} \leq 1$, $\text{Var}_{[0,1]} f \leq 1$; the proof in the general case is similar. Let

$$f \sim \sum_{j=1}^{\infty} a_j \cos 2\pi jx$$

be the Fourier series of f. $\text{Var}_{[0,1]} f \leq 1$ implies that

$$|a_j| \leq j^{-1}$$
(see Zygmund [20, p. 48]), and writing
\[g(x) = \sum_{j=1}^{N_p} a_j \cos 2\pi j x, \quad r(x) = f(x) - g(x), \]
we have
\[\|g\|_\infty \leq \text{Var}_{[0,1]} f + \|f\|_\infty \leq 2, \quad \|r\|_\infty \leq \|f\|_\infty + \|g\|_\infty \leq 3 \]
by (4.12) of Chapter II and (1.25) and (3.5) of Chapter III of Zygmund [20]. Letting \(\| \cdot \| \) and \(\| \cdot \|_p \) denote the \(L_2(0,1) \), resp. \(L_p(0,1) \), norms, (18) yields for any positive integer \(n \),
\[\|r(nx)\|^2 = \|r(x)\|^2 = \frac{1}{2} \sum_{j=N_p+1}^\infty a_j^2 \leq N^{-p}. \]
By Minkowski’s inequality,
\[\|S_N\|_p \leq \left\| \sum_{k=1}^N g(n_k x) \right\|_p + \left\| \sum_{k=1}^N r(n_k x) \right\|_p \]
and
\[\sum_{k=1}^N \|r(n_k x)\|_p \leq 3 \sum_{k=1}^N \|r(n_k x)\|_p \leq 3 \sum_{k=1}^N \|r(n_k x)\|^2/p \leq 3 \sum_{k=1}^N N^{-1} \leq 3. \]
Similarly,
\[\left\| S_N - \sum_{k=1}^N g(n_k x) \right\| \leq \left\| \sum_{k=1}^N r(n_k x) \right\| \leq N^{-\frac{p}{2}+1}, \]
and therefore
\[\left\| S_N \right\|^p - \left\| \sum_{k=1}^N g(n_k x) \right\|_p \leq p \max \left(\left\| S_N \right\|^{p-1}, \left\| \sum_{k=1}^N g(n_k x) \right\|^{p-1} \right) \left\| S_N \right\| - \left\| \sum_{k=1}^N g(n_k x) \right\| \leq p \left(N(\log \log N)^2 \right)^{\frac{p-1}{2}} N^{-\frac{p}{2}+1} \ll p (\log \log N)^{p-1} N^{1/2} \]
since by a result of Gál [10] and Koksma [16],
\[\|S_N\|^2 \ll N(\log \log N)^2 \quad \text{and} \quad \sum_{k=1}^N \|g(n_k x)\|^2 \ll N(\log \log N)^2, \]
where the implied constants are absolute.

By expanding and using elementary properties of the trigonometric functions we get
\[E \left(\sum_{k=1}^N g(n_k x) \right)^p \]
\[= 2^{-p} \sum_{1 \leq j_1, \ldots, j_p \leq N^p} a_{j_1} \cdots a_{j_p} \sum_{1 \leq k_1, \ldots, k_p \leq N} \mathbb{I}\{\pm j_1 n_{k_1} \pm \ldots \pm j_p n_{k_p} = 0\}, \]

with all possibilities of the signs ± within the indicator function. Assume that j_1, \ldots, j_p and the signs ± are fixed, and consider a solution of $\pm j_1 n_{k_1} \pm \cdots \pm j_p n_{k_p} = 0$. Then the set $\{1, 2, \ldots, p\}$ can be split into disjoint sets A_1, \ldots, A_l such that for each such set A we have $\sum_{i \in A} \pm j_i n_{k_i} = 0$ and no further subsums of these sums are equal to 0. Group the terms of $\sum_{i \in A} \pm j_i n_{k_i}$ with equal k_i. If after grouping there are at least two terms, then by the restriction on subsums, the sum of the coefficients j_i in each group will be different from 0 and will not exceed

$$pN^p \leq \omega_{[N^{1/4}]} N^{\frac{1}{2} \omega_{[N^{1/4}]}} \leq 2^{\frac{1}{2} \omega_{[N^{1/4}]}} N^{\frac{1}{2} \omega_{[N^{1/4}]}} \leq N^{\frac{1}{2} \omega_{[N^{1/4}]}} \quad (N \geq N_0).$$

Also the number of terms after grouping will be at most $p \leq \omega_{[N^{1/4}]}$ and thus applying condition A_ω with the index $[N^{1/4}]$ shows that within a block A the n_{k_i} belong to the smallest $[N^{1/4}]$ terms of the sequence. Thus letting $|A| = m$, the number of solutions of $\sum_{i \in A} \pm j_i n_{k_i} = 0$ is at most $N^{m/4}$. If after grouping there is only one term, then all the k_i are equal and thus the number of solutions of $\sum_{i \in A} \pm j_i n_{k_i} = 0$ is at most N. Thus if $m \geq 3$, then the number of solutions of $\sum_{i \in A} \pm j_i n_{k_i} = 0$ in a block is at most $N^{m/3}$. If $m = 2$, then the number of solutions is clearly at most N. Thus if $s_i = |A_i| \quad (1 \leq i \leq l)$ denotes the cardinality of A_i, the number of solutions of $\pm j_1 n_{k_1} \pm \cdots \pm j_p n_{k_p} = 0$ admitting such a decomposition with fixed A_1, \ldots, A_l is at most

$$\prod_{\{i: s_i \geq 3\}} N^{s_i/3} \prod_{\{i: s_i = 2\}} N = N^{\frac{1}{3} \sum_{\{i: s_i \geq 3\}} s_i + \frac{1}{3} \sum_{\{i: s_i = 2\}} s_i} = N^{\frac{1}{3} \sum_{\{i: s_i \geq 3\}} s_i + \frac{1}{3} \sum_{\{i: s_i \geq 3\}} (p - \sum_{\{i: s_i \geq 3\}} s_i)} = N^{\frac{1}{3} - \frac{1}{3} \sum_{\{i: s_i \geq 3\}} s_i}.$$

If there is at least one i with $s_i \geq 3$, then the last exponent is at most $(p - 1)/2$ and since the number of partitions of the set $\{1, \ldots, p\}$ into disjoint subsets is at most $p! 2^p$, we see that the number of solutions of $\pm j_1 n_{k_1} \pm \cdots \pm j_p n_{k_p} = 0$, where at least one of the sets A_i has cardinality ≥ 3, is at most $p! 2^p N^{(p-1)/2}$. If p is odd, there are no other solutions and thus using (18) the inner sum in (23) is at most $p! 2^p N^{(p-1)/2}$ and consequently, taking into account the 2^p choices for the signs ±1,

$$\left| \mathbb{E} \left(\sum_{k \leq N} g(n_k x) \right)^p \right| \leq p! 2^p N^{(p-1)/2} \sum_{1 \leq j_1, \ldots, j_p \leq N^p} |a_{j_1} \cdots a_{j_p}| \ll \exp(p^2) N^{(p-1)/2} (\log N)^p.$$
If \(p \) is even, there are also solutions where each \(A \) has cardinality 2. Clearly, the
correction of the terms in (23), where \(A_1 = \{1, 2\}, A_2 = \{3, 4\}, \ldots, \) is
\[
\left(\frac{1}{4} \sum_{1 \leq i, j \leq N^{2p}} \sum_{1 \leq k, \ell \leq N} a_i a_j \mathbb{I} \{ \pm in_k \pm jn_\ell = 0 \} \right)^{p/2} = \left(\mathbb{E} \left(\sum_{k \leq N} g(n_k x) \right)^2 \right)^{p/2}
\]
\[
= \left\| \sum_{k \leq N} g(n_k x) \right\|^p
\]
\[
= \| S_N \|^p + O \left(p(\log \log N)^{p-1} N^{1/2} \right)
\]
by (21).

Since the splitting of \(\{1, 2, \ldots, p\} \) into pairs can be done in
\(\frac{p!}{(p/2)!^2} \) different ways, we proved that
\[
(24) \quad \mathbb{E} \left(\sum_{k \leq N} g(n_k x) \right)^p = \begin{cases}
\frac{p!}{(p/2)!^2} 2^{-\frac{p}{2}} \sigma_N^p + O(T_N), & \text{if } p \text{ is even} \\
O(T_N), & \text{if } p \text{ is odd}
\end{cases}
\]
according as \(p \) is even or odd; here
\[
T_N = \exp(p^2) N^{(p-1)/2} (\log N)^p.
\]
Now, letting \(G_N = \sum_{k \leq N} g(n_k x) \) we get, using (20), (22) and (24),
\[
| \mathbb{E} S_N^p - \mathbb{E} G_N^p | \leq p \max \left(\| S_N \|^p - 1, \| G_N \|^p - 1 \right) \cdot \| S_N \|_p - \| G_N \|_p \\
\ll p \left(\frac{p!}{(p/2)!^2} 2^{-\frac{p}{2}} \sigma_N^p \right)^{p-1} \\
\ll T_N,
\]
where in the last step we used the fact that \(\sigma_N \ll \sqrt{\log \log N} \) by (22).
This completes the proof of Lemma 1. \(\Box \)

Lemma 2. Let \(\omega \uparrow \infty \) and let \((n_k)_{k \geq 1} \) be a sequence of different positive integers
satisfying condition \(A_\omega \). Then for any \(f \) satisfying (1) we have
\[
(25) \quad \int_0^1 \left(\sum_{k=1}^N f(n_k x) \right)^2 \, dx \sim \| f \|^2 N \quad \text{as } N \to \infty.
\]

Proof. Clearly, \(\omega_{[N^{1/4}]} \geq 4 \) for sufficiently large \(N \) and thus applying Condition \(A_\omega \)
for the index \([N^{1/4}] \) it follows that for \(N \geq N_0 \) the Diophantine equation
\[
(26) \quad j_1 n_{i_1} + j_2 n_{i_2} = 0, \quad i_1 \neq i_2, \quad 0 < |j_1|, |j_2| \leq N
\]
has only such solutions, where \(n_{i_1}, n_{i_2} \) belong to the set \(J_N \) of \([N^{1/4}] \) smallest
elements of the sequence \((n_k)_{k \geq 1} \). Write \(p_N(x) \) for the \(N \)-th partial sum of the
Fourier series of \(f \), and \(r_N \) for the \(N \)-th remainder term. Then we have for any \(f \)
satisfying (1),
\begin{equation}
\left\| \sum_{k=1}^{N} f(n_k x) \right\| \geq \left\| \sum_{k \in [1, N] \setminus J_N} p_N(n_k) \right\| - \left\| \sum_{k \in J_N} f(n_k x) \right\| - \left\| \sum_{k \in [1, N] \setminus J_N} r_N(n_k) \right\|.
\end{equation}

Using the previous remark on the number of solutions of (26) we get, as in (23),
\begin{equation}
\left\| \sum_{k \in [1, N] \setminus J_N} p_N(n_k) \right\| = (N - [N^{1/4}])^{1/2} \|p_N\| \sim N^{1/2} \|f\|,
\end{equation}

since \(\|p_N\| \to \|f\| \). Further, \(\|r_N\| \ll N^{-1/2} \) by (18) and thus using Minkowski’s inequality and the results of Gál and Koksma mentioned in (22), we get
\begin{equation}
\left\| \sum_{k \in J_N} f(n_k x) \right\| \ll N^{1/4}, \quad \left\| \sum_{k \in [1, N] \setminus J_N} r_N(n_k) \right\| \ll \sqrt{N} \log \log N \|r_N\| \ll \log \log N.
\end{equation}

These estimates, together with (27), prove Lemma 2.

Lemma 1 and Lemma 2 imply that for any fixed \(p \geq 2 \), the \(p \)-th moment of \(S_N/\sigma_N \) converges to \(\frac{p!}{(p/2)!} \left[\log \log N \right]^{2-p/2} \) if \(p \) is even and to 0 if \(p \) is odd; in other words, the moments of \(S_N/\sigma_N \) converge to the moments of the standard normal distribution. By \(\sigma_N \sim \|f\| \sqrt{N} \) and a well-known result in probability theory, this proves the CLT part of Theorem 2. The proof of the LIL part of Theorem 2 is more involved, and we will give just a sketch of the proof. The details can be modeled after the proof of Theorem 1. The crucial ingredient is Lemma 3 below, which yields the LIL part of Theorem 2 just as Theorem 1 follows from Lemma 3.

Let \(\theta > 1 \) and define \(\Delta_M' = \{ k \in \mathbb{N} : \theta^{M} < k \leq \theta^{M+1} \} \) and \(T_M' = \sum_{k \in \Delta_M'} f(n_k x) \). By the standard method of proof of the LIL, we need precise bounds for the tails of \(T_M' \) and also, a near independence relation for the \(T_M' \) for the application of the Borel-Cantelli lemma in the lower half of the LIL. From the set \(\Delta_M' \) we remove its \(\theta^{M/2} \) elements with the smallest value of \(n_k \) (recall that the sequence \((n_k)_{k \geq 1} \) is not assumed to be increasing) and denote the remaining set by \(\Delta_M \). Since the number of removed elements is \(\ll |\Delta_M'|^{1/4} \), this operation does not influence the partial sum asymptotics of \(T_M' \). As in the proof of Lemma 1 we assume that we have a representation of \(f \) in the form (17) and that (15) holds. Define
\begin{equation}
g_M(x) = \sum_{j=1}^{\lfloor \theta^{M/2} \rfloor} a_j \cos 2\pi j x, \quad \sigma_M^2 = \int_0^1 \left(\sum_{k \in \Delta_M} g_M(n_k x) \right)^2 dx
\end{equation}

and
\begin{equation}
T_M = \sum_{k \in \Delta_M} g_M(n_k x), \quad Z_M = T_M/\sigma_M.
\end{equation}

From Lemma 2 it follows easily that
\begin{equation}
\sigma_M \gg |\Delta_M|^{1/2}.
\end{equation}

Assume that \((n_k)_{k \geq 1} \) satisfies Condition \(A_\omega \) for a sequence \((\omega_k)_{k \geq 1} \) with \(\omega_k \geq (\log k)^\alpha \) for some \(\alpha > 0, k \geq k_0 \). Without loss of generality we may assume
0 < \alpha < 1/2. Choose \delta > 0 so small that for sufficiently large \(r \),

\[
(29) \quad \left(\log \theta^{\sqrt{r}/4} \right)^{\alpha} > 4 \left(\log \theta \right)^{\delta}.
\]

Lemma 3. For sufficiently large \(M, N \) satisfying \(N^{1-\alpha/2} \leq M \leq N \), and for positive integers \(p, q \) satisfying \(p + q \leq (\log N)^{\delta} \) we have

\[
EZ_{M}^{p} Z_{N}^{q} = \begin{cases}
\frac{p!}{(p/2)!2^{p/2} (q/2)!2^{q/2}} + O(R_{M,N}) & \text{if } p, q \text{ are even}, \\
O(R_{M,N}) & \text{otherwise},
\end{cases}
\]

where

\[
R_{M,N} = 2^{p+q}(p + q)! (\log M)^{p+q} |\Delta M|^{-1/2}.
\]

Proof. Note that \(N \leq M^{1+3\alpha/4} \) and thus, setting \(L = [\theta^{M/4}] \), relation \(p + q \leq (\log N)^{\delta} \) and \((29) \) imply

\[
p + q \leq \frac{1}{4} (\log \theta^{\sqrt{N}/4})^{\alpha} \leq \frac{1}{4} (\log \theta^{M/4})^{\alpha} \leq \omega L
\]

and by a simple calculation,

\[
(p + q) \left(\theta^{N} \right)^{2} \leq [\theta^{M/4}]^{(\log (\theta^{M/4}))^{\alpha}} \leq L^{\omega L}
\]

provided \(N \) is large enough. Applying condition \(A_{\omega} \) we get that for all solutions of the equation

\[
(30) \quad \pm j_{1} n_{k_{1}} \pm \cdots \pm j_{p} n_{k_{p}} \pm j_{p+1} n_{k_{p+1}} \pm \cdots \pm j_{p+q} n_{k_{p+q}} = 0
\]

with different indices \(k_{1}, \ldots, k_{p+q} \), where

\[
1 \leq j_{i} \leq (p + q) \left(\theta^{N} \right)^{2},
\]

the \(n_{k_{i}} \) belong to the \(\left[\theta^{M/4} \right] \) smallest elements of \((n_{k})_{k \geq 1} \). By construction not a single one of these elements is contained in \(\Delta_{M} \) or \(\Delta_{N} \). Thus the equation \((30) \) subject to \((31) \) has no solution \((k_{1}, \ldots, k_{p+q}) \), where \(k_{1}, \ldots, k_{p+q} \) are different and satisfy

\[
k_{1}, \ldots, k_{p} \in \Delta_{M}, \quad k_{p+1}, \ldots, k_{p+q} \in \Delta_{N}.
\]

Now

\[
EZ_{M}^{p} Z_{N}^{q} = \frac{2^{-p-q}}{\sigma_{M}^{-p} \sigma_{N}^{-q}} \sum_{1 \leq j_{1}, \ldots, j_{p} \leq \theta^{M/2}, \, 1 \leq j_{p+1}, \ldots, j_{p+q} \leq \theta^{N/2}} \sum_{k_{1}, \ldots, k_{p} \in \Delta_{M}, \, k_{p+1}, \ldots, k_{p+q} \in \Delta_{N}} a_{j_{1}} \cdots a_{j_{p+q}} 1 \{ \pm j_{1} n_{k_{1}} \pm \cdots \pm j_{p+q} n_{k_{p+q}} = 0 \}.
\]

If for some \(k_{1}, \ldots, k_{p+q} \) we have (note that in \((32) \) these indices need not be different)

\[
(33) \quad \pm j_{1} n_{k_{1}} \pm \cdots \pm j_{p+q} n_{k_{p+q}} = 0,
\]

then grouping the terms of the equation according to identical indices, we get a new equation of the form

\[
\sum_{i=1}^{s} j_{i}^{l_{i}} m_{i} = 0, \quad l_{1} < \ldots < l_{s}, \quad s \leq p + q, \quad j_{i}^{l_{i}} \leq (p + q) (\theta^{N})^{2}
\]

and using the above observation, all the coefficients \(j_{i}^{l_{i}} \) must be equal to 0. In other words, in any solution of \((33) \) the terms can be divided into groups such that in each group the \(n_{k_{i}} \) are equal and the sum of the coefficients is 0. Consider
solutions in (32) is since, as we noted, \(p \) and \(q \) are even, and similarly to the proof of Lemma 1 the contribution of such solutions in (32) is

\[
\frac{p!}{(p/2)!2^{p/2}} \frac{q!}{(q/2)!2^{q/2}}.
\]

Consider now the solutions of (33), where at least one group has cardinality \(2 \). This can happen only if both \(p \) and \(q \) are even, and similarly to the proof of Lemma 1, the contribution of such solutions cannot exceed

\[
|\Delta_M|^R |\Delta_N|^S \leq |\Delta_M|^{p/2} |\Delta_N|^{q/2} |\Delta_M|^{-1/2} \ll \sigma_M^p \sigma_N^q |\Delta_M|^{-1/2},
\]

where we used (28) and the fact that \(|\Delta_M| \leq |\Delta_N| \). Since the number of partitions of the set \(\{1, 2, \ldots, p + q\} \) into disjoint subsets is at most \((p + q)!2^{p+q}\) and since the number of choices for the signs \pm in (33) is at most \(2^{p+q}\), we see, after summing over all possible values of \(j_1, \ldots, j_{p+q} \), that the contribution of the solutions containing at least one group with cardinality \(\geq 3 \) in (32) is at most \(2^{p+q}\) \((p + q)!|\Delta_M|^{-1/2} (\log|\Delta_N|)^{p+q}\). This completes the proof of Lemma 3.

The rest of the proof of the LIL part of Theorem 2 can be modeled following the lines of Lemma 4, Lemma 5, Lemma 6 and the proof of Theorem 1 in [2].

2.3. Proof of Theorem 3 Let \(\omega_k \uparrow \infty \) and set \(\eta_k = \frac{1}{2} \omega_k^{1/2}, \eta = (\eta_1, \eta_2, \ldots) \).

Clearly

\[
(2k)^{\eta_k^2 + 2\eta_k} \leq (2k)^{\omega_k/2} \leq k^{-2} |I_k| \quad \text{for } k \geq k_0
\]

since, as we noted, \(|I_k| \geq \omega_k(k - 1)^{\omega_k - 1} \geq (k/2)^{\omega_k - 1}\) for large \(k \). We choose \(n_k, k = 1, 2, \ldots \), independently and uniformly from the integers of the intervals \(I_k \) in (31). We claim that, with probability 1, the sequence \((n_k)_{k \geq 1} \) is increasing and satisfies condition \(A_\eta \). To see this, let \(k \geq 1 \) and consider the numbers of the form

\[
(a_1 n_{i_1} + \ldots + a_s n_{i_s})/d,
\]

where \(1 \leq s \leq \eta_k, 1 \leq i_1, \ldots, i_s \leq k - 1, a_1, \ldots, a_s, d \) are nonzero integers with \(|a_1|, \ldots, |a_s|, |d| \leq k^{\eta_k} \). Since the number of values in (35) is at most \((2k)^{\eta_k^2 + 2\eta_k}\), and by (34), the probability that \(n_k \) equals any of these numbers is at most \(k^{-2} \). Thus by the Borel-Cantelli lemma, with probability 1 for \(k \geq k_1, n_k \) will be different from all the numbers in (35) and thus the equation

\[
a_1 n_{i_1} + \ldots + a_s n_{i_s} + a_{s+1} n_k = 0
\]

has no solution with \(1 \leq s \leq \eta_k, 1 \leq i_1 < \ldots < i_s \leq k - 1, 0 < |a_1|, \ldots, |a_{s+1}| \leq k^{\eta_k} \). By monotonicity, the equation

\[
a_1 n_{i_1} + \ldots + a_s n_{i_s} = 0
\]

has no solutions provided the indices \(i_\nu \) are all different, the maximal index is at least \(k \), the number of terms is at most \(\eta_k \), and \(0 < |a_1|, \ldots, |a_s| \leq k^{\eta_k} \). In other words, \((n_k) \) satisfies condition \(A_\eta \). Now using Theorem 2 we get Theorem 3.
References

[1] C. Aistleitner and I. Berkes, On the central limit theorem for $f(n_k x)$. Prob. Theory Rel. Fields 146 (2010), 267–289. MR2550364 (2010i:42015)

[2] C. Aistleitner, I. Berkes and R. Tichy, On permutations of Hardy-Littlewood-Pólya sequences. Transactions of the AMS, to appear.

[3] C. Aistleitner, I. Berkes and R.F. Tichy, Lacunarity, symmetry and Diophantine equations. Preprint.

[4] I. Berkes, Non-Gaussian limit distributions of lacunary trigonometric series. Canad. J. Math. 43 (1991), 948-959. MR1138574 (92k:60108)

[5] I. Berkes and W. Philipp, An a.s. invariance principle for lacunary series $f(n_k x)$. Acta Math. Acad. Sci. Hung. 34 (1979), 141-155. MR546729 (80i:60042)

[6] I. Berkes and W. Philipp, The size of trigonometric and Walsh series and uniform distribution mod 1. J. Lond. Math. Soc. 50 (1994), 454-464. MR1299450 (96e:11099)

[7] I. Berkes, W. Philipp and R.F. Tichy, Empirical processes in probabilistic number theory: the LIL for the discrepancy of $(n_k \omega)$ mod 1. Illinois J. Math. 50 (2006), 107–145. MR2247826 (2008a:60064)

[8] P. Erdős, On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kut. Int. Közl. 7 (1962), 37-42. MR145264 (26:2797)

[9] K. Fukuyama, The law of the iterated logarithm for the discrepancies of a permutation of $(n_k x)$. Acta Math. Hungar. 123 (2009), 121–125. MR2496484 (2010c:11093)

[10] I.S. Gál, A theorem concerning Diophantine approximations. Niew. Arch. Wiskunde (2) 23 (1949), 13–38. MR0027788 (10:355a)

[11] V. F. Gaposhkin, Lacunary series and independent functions. Russian Math. Surveys 21/6 (1966), 3-82. MR0206556 (34:6374)

[12] V. F. Gaposhkin, The central limit theorem for some weakly dependent sequences. Theory Probab. Appl. 15 (1970), 649-666.

[13] S. Izumi, Notes on Fourier analysis. XLIV. On the law of the iterated logarithm of some sequences of functions. J. Math. (Tokyo) 1 (1951), 1-22. MR0051962 (14:555e)

[14] M. Kac, On the distribution of values of sums of the type $\sum f(2^k t)$. Ann. of Math. (2) 47 (1946), 33–49. MR0015548 (7:436f)

[15] M. Kac, Probability methods in some problems of analysis and number theory. Ball. Amer. Math. Soc. 55 (1949), 641-665. MR0031501 (11:161b)

[16] J.F. Koksma, On a certain integral in the theory of uniform distribution. Indagationes Math. 13 (1951), 285-287. MR0045165 (13:539b)

[17] G. Maruyama, On an asymptotic property of a gap sequence. Kôdai Math. Sem. Rep. 2 (1950), 31-32. MR0038470 (12:406e)

[18] S. Takahashi, On lacunary trigonometric series, Proc. Japan Acad. 41 (1965), 503–506. MR0196377 (33:4564)

[19] S. Takahashi, On the law of the iterated logarithm for lacunary trigonometric series, Tôhoku Math. J. 24 (1972), 319–329. MR0330905 (48:9242)

[20] A. Zygmund, Trigonometric Series, Vols. I, II, Third Edition. Cambridge Mathematical Library. Cambridge University Press, 2002. MR1963498 (2004h:01041)

Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

E-mail address: aistleitner@math.tugraz.at

Institute of Statistics, Graz University of Technology, Münzgrabenstrasse 11, 8010 Graz, Austria

E-mail address: berkes@tugraz.at

Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

E-mail address: tichy@tugraz.at