Anti-gout potential of selected Malaysian local fruits

W N A Wan Aziz, M F Abu Bakar*, F I Abu Bakar, A S Dheyab, S F Sabran and F Kormin

Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM) Pagoh Campus, 84600 Muar, Johor, Malaysia.

* Corresponding author: fadzelly@uthm.edu.my

Abstract. This study aimed to investigate the in vitro xanthine oxidase (XO) inhibitory activity and phytochemical content of guava, water rose apple, Malay gooseberry, pineapple and ambarella. The xanthine oxidase inhibitory activity was measured spectrophotometrically at 295 nm. The phytochemical analysis tested were total phenolic, total flavonoid and total anthocyanin contents of each methanolic extract of the fruits. The highest amount of phenolic was found in ambarella (0.245 mg GAE/g) while guava had the highest amount of flavonoid (0.472 mg RE/g). Meanwhile, water rose apple had the highest anthocyanin content (5.001 mg c-3-gE/g). For the XO inhibitory activity, water rose apple displayed the lowest IC50 value (26.86 µg/mL), showing better anti-gout activity as compared to that of other fruit samples. Positive correlation between total phenolic content and XO inhibitory activity was also observed in this study. Further study on the isolation of bioactive compounds from the fruit samples that act as XO inhibitor is greatly needed in the future.

1. Introduction

Gout is a common metabolic disorder caused by chronic elevation of serum uric acid (SUA) levels beyond the saturation point of monosodium urate (MSU) crystal formation that lead to deposition of MSU crystal in peripheral joints and tissues [1]. This disease can be treated using allopurinol, synthetic xanthine oxidase inhibitor commonly used in the clinical management of gout. However, it gives side effect to the patients. Due to this factor, research on medicinal plants has increased worldwide and treating disease using natural sources is gaining new interest of researchers [2]. As reviewed by Abu Bakar et al. [3], many previous studies have shown the effectiveness of phytochemical compounds as source of therapeutic agents in treating gout by lowering the uric acid level and act as xanthine oxidase inhibitors.

Phytochemical compounds such as flavonoid, anthocyanins, and phenolic which known to have antioxidant and anti-inflammatory properties can be found mainly in fruits and vegetables [4, 5]. Local fruits such as guava, Malay gooseberry, water rose apple, pineapple and ambarella can be easily found and being consumed by the people. These fruits are believed to have anti-gout properties. Hence, this study aimed to evaluate the xanthine oxidase inhibitory activity and phytochemical compounds of the methanol extract of guava, Malay gooseberry, water rose apple, pineapple and ambarella pulp.
2. Materials and Methods

2.1 Preparation of sample and extract
The sample and extraction was prepared with some modifications [6]. The selected fruits (guava, ambarella, water rose apple, Malay gooseberry and pineapple) were sorted out and washed thoroughly to remove dirt. After that, they were separated into seed, pulp and fruit peels using a table knife. The edible part of fruits were cut into small pieces and stored at -80 °C before lyophilized using a freeze dryer. The lyophilized fruits were grounded into powder form using blender and kept at -20 °C. For extraction, the methanolic extract was prepared by mixing 1 g of the lyophilized fruit powder with 80 % methanol (v/v) at a ratio 1:10. The mixture was placed in a conical flask that wrapped with an aluminium foil and agitated at 200 rpm with the aid an orbital shaker for 30 min. After 30 min, the mixture was filtered through filter paper (Whatman No.4) to obtain a clear solution. The supernatant was collected and subsequently been used for determination of total phenolic, flavonoid, anthocyanin as well as XOI activity.

2.2 Determination of total phenolic content (TPC)
The phenolic content was determined using Folin-Ciocalteu method with slight modification [7]. 1 mL of pulp extract (1 mg/mL) was mixed thoroughly with 5 mL of Folin-Ciocalteu reagent solution using vortex and allowed to stand at room temperature for 5 min. Then, 4 mL of (75 g/L) sodium carbonate was added into the mixture and allowed to stand for 30 min at room temperature. The absorbance was measured at 765 nm after 30 min using spectrophotometer. Gallic acid was used as a reference standard and the total phenolic content was determined from the calibration curve. The results were expressed as milligram gallic acid equivalents 100 g dry weight.

2.3 Determination of total flavonoid content (TFC)
The flavonoid content was measured using aluminium chloride colorimetric assay with some modifications where rutin was used as a standard [8, 9, 10]. 1 mL of extracts of an aliquot or rutin standard solution were added to a 10 mL volumetric flask that containing 4 mL of distilled deionized water. Then, 0.3 mL of 5 % sodium nitrite solution (NaNO₂) were added into each volumetric flask. After 5 min, 0.6 mL of 10 % aluminium chloride (AlCl₃) were added. Then, 2 mL of 1M sodium hydroxide (NaOH) and 2.1 mL of distilled water were added after 6 min and mixed using vortex. The absorbance was measured against prepared reagent blank at 510 nm. The results were expressed as mg of rutin equivalents/ 100 g of dry mass.

2.4 Determination of total anthocyanin content (TAC)
Total anthocyanin content was measured using spectrophotometric pH differential method [11, 12, 13]. 0.5 mL of the extract was mixed thoroughly with 3.5 mL of 0.025 M potassium chloride buffer pH 1. Then, the mixture was mixed with vortex and allowed to stand for 15 min. After that, the absorbance was measured at 515 and 700 nm against a distilled water blank using spectrophotometer. Then, same extract was combined with 3.5 mL of 0.025 M sodium acetate buffer pH 4.5 and the absorbance was measured at the same wavelength after being allowed to stand for 15 min. The results were expressed as mg of cyanidin-3-glucoside equivalents in 100 g of dried sample (mg c-3-gE/100 g dried sample).

2.5 In vitro xanthine oxidase inhibitory (XOI) activity
The XOI activity was measured spectrophotometrically at 295 nm under an aerobic condition with some modifications [2, 14, 15, 16]. In this inhibition test, 100 µg/mL of allopurinol was used as a positive control. The mixture was prepared by mixing 300 µL of 50 mM sodium phosphate buffer (pH 7.5), 100 µL of the sample solution, 100 µL of freshly prepared enzyme solution and 100 µL of distilled water. After that, the mixture was pre-incubated at 37 °C for 15 min. Then, 200 µL of a substrate solution (0.15 mM of xanthine) was added to the mixture and incubated at 37 °C for 30 min. The reaction was stopped with the addition of 200 µL of 0.5 M HCl. Next, the absorbance was measured using UV/VIS
spectrophotometer against blank prepared in the same way but the enzyme solution was replaced with phosphate buffer. Meanwhile, another reaction mixture (control) was prepared using 100 µL of dimethylsulfoxide (DSMO) instead of test compounds in order to have maximum uric acid formation. The equation was used to evaluate the degree of XO inhibitory activity. Thus, XOI activity was calculated, in which α is the activity of XO without test extract and β is the activity of XO with test extract.

\[
\text{% XO inhibition} = (1 - \beta/\alpha) \times 100
\]

2.6 Statistical analysis

All the results were expressed as mean ± standard deviation. The data for correlation analysis between phytochemical content and xanthine oxidase inhibitory activity was analyzed using Pearson’s correlation using Statistical Package for the Social Sciences (SPSS) software version 22.0.

3. Results and Discussion

Table 3.1. Phytochemical contents and xanthine oxidase inhibitory activity of guava, water rose apple, pineapple, Malay gooseberry and ambarella.

Sample	Total phenolic content (mg GAE/g)	Total flavonoid content (mg RE/g)	Total anthocyanin (mg c-3-gE/g)	Xanthine oxidase - IC\textsubscript{50} (µg/mL)
Guava	0.101 ± 0.002	0.472 ± 0.013	4.609±0.1681	102.7
Ambarella	0.245 ± 0.062	0.046 ± 0.006	3.986±0.4081	36.1
Water rose apple	0.095 ± 0.005	0.149 ± 0.015	5.001±0.4171	26.86
Malay gooseberry	0.106 ± 0.003	0.321 ± 0.001	4.832±1.1023	44.52
Pineapple	0.244 ± 0.004	0.033 ± 0.002	1.804±0.4380	39.62

Table 3.1 shows the results for total phenolic content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC) and xanthine oxidase (XO) inhibitory activity of guava, water rose apple, pineapple, Malay gooseberry and ambarella pulp methanol extract. The range of TPC of fruit pulp extracts was from 0.095 to 0.245 mg GAE/g. The highest amount of TPC was found in ambarella, followed by pineapple, Malay gooseberry, guava and water rose apple. This might be due to the diverse phytochemical contents in the fruits. Previous study showed that the unripe fruit contained higher TPC as compared to that of ripe fruit [17]. This supported the current study where the lowest amount of TPC in water rose apple due to its maturity stage (ripe) and it also had some blemish parts on the surface. Thus, it affects the phenolic component of the fruit.

Meanwhile, TFC ranged from 0.033 to 0.472 mg RE/g. The highest TFC was found in guava, followed by Malay gooseberry, water rose apple, ambarella and pineapple. The lowest amount of TFC in pineapple may be due to the antioxidant capacity of flavonoids which suffer from the influence of oxygen in the atmosphere, because their easy auto-oxidation [18]. Anthocyanin content can be refer to dark red colour of fruits [19]. Water rose apple pulp extract had the highest anthocyanin content while pineapple pulp had the lowest anthocyanin content compared to other fruits. The range of total anthocyanin content of fruits in this study was from 1.804 to 5.001 mg c-3-gE/g. Few factors have been identified to affect the phytochemical contents in fruits such as radiation from sun, temperature variation and climatic conditions at a geographical location [20- 22].

In addition, water rose apple had the lowest IC\textsubscript{50} value (concentration needed to inhibit xanthine oxidase activity by 50%) with 26.86 µg/mL as compared to that of other fruit samples where the smaller
IC₅₀ value, the better inhibition of xanthine oxidase activity. Meanwhile, the highest IC₅₀ value was found in guava with 102.7 µg/mL. Based on the results obtained, it can be said that all fruits in this study had the ability to inhibit XO activity which consequently preventing the gout disease.

Table 3.2. Correlation coefficients of each analysis

	TPC	TFC	TAC	XOI activity
Pearson correlation	1	-.736**	-.685**	.180
Sig. (2-tailed)	.002	.005	.521	
Pearson correlation	-.736**	1	.571*	-.757**
Sig. (2-tailed)	.002	.026	.001	
Pearson correlation	-.685**	.571*	1	-.059
Sig. (2-tailed)	.005	.026	.833	
Pearson correlation	.180	-.757**	-.059	1
Sig. (2-tailed)	.521	.001	.833	

*Note: *. Correlation is significant at the 0.05 level (2-tailed)
**. Correlation is significant at the 0.01 level (2-tailed).

As shown in Table 3.2, negative correlation was found between TFC and XO inhibitory activity (r² = -0.757). The same result was shown between TAC and XO inhibitory activity (r² = -0.059). Meanwhile, positive correlation was found between TPC and xanthine oxidase inhibitory activity (r² = 0.189). This was in line with the previous study [23].

4. Conclusion

Ambarella had the highest amount of TPC while guava had the highest amount of TFC. Moreover, water rose apple displayed the highest amount of TAC and strongest inhibition of XO activity. Hence, further study on the isolation of bioactive compounds present in these fruits that act as XO inhibitor is greatly needed in future.

Acknowledgements

This research was financially supported by the Ministry of Higher Education of Malaysia (MOHE) under Fundamental Research Grant Scheme, FRGS Vot No. K 099 (FRGS/1/2018/WAB01/UTHM/02/1). The authors would also like to thank Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia for providing infrastructural facilities to carry out this study.

References

[1] Kuo C, Grainge M, Zhang W, & Doherty M 2015 Global epidemiology of gout: prevalence, incidence and risk factors *Nature Reviews Rheumatology* 11 649-662.
[2] Unno T, Sugimoto A, & Kakuda T 2004 Xanthine oxidase inhibitors from the leaves of *Lagerstroemia speciosa* (L.) Pers. *Journal of Ethnopharmacology* 93 286-287.
[3] Abu Bakar F I, Abu Bakar M F, Rahmat A, Abdullah N, Sabran S F, & Endrini S 2018 Anti-gout potential of Malaysian medicinal plants *Frontiers in Pharmacology* 9 261.
[4] Rahmat A, Edrini S, Akim A M, Ismail P, Hin T Y Y, & Abu Bakar M F 2006 Anticarcinogenic properties of *Strobilanthes crispus* extracts and its compounds *in vitro* *International Journal of Cancer Research* 2 (1) 47-49.
[5] Wang H, Nair M, Chang Y, Booren A, Gray J, & Dewitt D 1999 Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries *Journal of Natural Product* 62 294-296.
[6] Ikram E, Eng K, Jalil A, Ismail A, Idris S, Azlan A, Nazri H, Diton N, & Moktar R 2009 Antioxidant capacity and total phenolic content of Malaysian underutilized fruits *Journal of Food Composition and Analysis* 22 388-393.

[7] Velioglu Y, Mazza G, Gao L, & Oomah B 1998 Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products *Journal Agriculture of Food Chemical* 46 4113-4117.

[8] Kamketar S, Vrushali K, & Vijaya P 2014 Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation *Journal of Applied Pharmaceutical Science* 4 61-65.

[9] Atanassova M, Georgieva S, & Ivancheva K 2011 Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs *Journal of the University of Chemical Technology and Metallurgy* 46 81-88.

[10] Marinova D, Ribarova F, & Atanassova M 2005 Total phenolics and total flavonoids in Bulgarian fruits and vegetables *Journal of the University of Chemical Technology and Metallurgy* 40 255-260.

[11] Giusti M, & Wrolstad R 2001 Characterization and measurement of anthocyanins by UV visible spectroscopy *Current protocols in food analytical chemistry* New York: John Wiley & Sons 44-52.

[12] Wolfe K, Wu X, & Liu R 2005 Antioxidant activity of apple peels *Journal of Agricultural and Food Chemistry* 51 609-614.

[13] Abu Bakar M, Mohamed M, Rahmat A, & Fry J 2009 Phytochemical and antioxidant activity of different parts of bambangan (*Magifera pajang*) and tarap (*Artocarpus odoratissimus*) *Food Chemistry* 113 479-483.

[14] Umamaheswari M, Asok Kumar K, Somasundaram A, Sivashanmugam T, Subhadradevi, & Ravi T K 2007 Xanthine oxidase inhibitory activity of some Indian medicinal plants *Journal of Ethnopharmacology* 109 547-551.

[15] Naseem S, Muhammad F, Muzammil H, Kouser B, & Aurangzeb H 2006 Activity of polyphenolic plant extracts as scavengers of free radicals and inhibitors of xanthine oxidase *The Journal of Basic and Applied Science* 2 1-6.

[16] Azmi S M N, Jamal P, & Amid A 2012 Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout *International Food Research Journal* 19 159-165.

[17] Ishak S, Ismail N, Noor M, & Ahmad H 2005 Some physical and chemical properties of ambarella (*Spondias cytherea Sonn.*) at three different stages of maturity *Journal of Food Composition and Analysis* 18 819-827.

[18] Chen H & Yen G 2007 Antioxidant activity and free radical-scavenging capacity of extracts from guava (*Psidium guajava L.*) leaves *Food Chemistry* 101 686–694.

[19] Abu Bakar M F, Ismail N, Isha A, & Ling A 2016 Phytochemical composition and biological activities of selected wild berries (*Rubus moluccanus L.*, *R. fraxinifolius Poir.*, and *R. alpestris Blume*) *Evidence - Based Complementary and Alternative Medicine* 2016 1-10.

[20] Horbowicz M, Kosson R, Grzesiuk A, & Debski H 2008 Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition *Vegetable Crops Research Bulletin* 68 5-22.
[21] Abu Bakar F I, Abu Bakar M F, Abdullah N, Endrini S, & Fatmawati S 2020 Optimization of extraction conditions of phytochemical compounds and anti-gout activity of Euphorbia hirta L. (ara tanah) using response surface methodology and liquid chromatography-mass spectrometry (LC-MS) analysis Evidence-Based Complementary and Alternative Medicine 2020 1-13.

[22] Abu Bakar M, Ahmad N, Karim F, & Saib S 2014 Phytochemicals and antioxidative properties of Borneo indigenous Liposu (Baccaurea lanceolata) and Tampoi (Baccaurea macrocarpa) Fruits Antioxidants 3 516-525.

[23] Owen P L, & Johns T 1999 Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout Journal of Ethnopharmacology, 64 149-160.