Wave File Features Extraction using Reduced LBP

Aws Al-Qaisi¹, Saleh A. Khawatreh², Ahmad A. Sharadqah³, Ziad A. Alqadi⁴

¹Department of Communication Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Yordania
²Department of Computer Engineering, Al-Ahliyya Amman University, Yordania
³,⁴Computer Engineering Department, Faculty of Engineering Technology, at Al-Balqa Applied University, Yordania

ABSTRACT

In this work, we present a novel approach for extracting features of a digital wave file. This approach will be presented, implemented and tested. A signature or a key to any wave file will be created. This signature will be reduced to minimize the efforts of digital signal processing applications. Hence, the features array can be used as key to recover a wave file from a database consisting of several wave files using reduced local binary patterns (RLBP). Experimental results are presented and show that the proposed RLBP method is at least 3 times faster than CSLBP method, which mean that the proposed method is more efficient.

Copyright © 2018 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:
Aws Al-Qaisi,
Department of Communication Engineering,
Faculty of Engineering Technology, Al-Balqa Applied University, Yordania.
Email: aws.alqaisi@bau.edu.jo

1. INTRODUCTION

The Digital wave file (DWF) represents the sampled and quantized sound wave which happens to be above or below the equilibrium or ambient air pressure [1], [2]. The sampled values are organized in one column (for mono DWF) or in two columns (for stereo DWF), so we can deal with DWF as a matrix which consists of positive and negative values over the entire range of samples [3], [4], [5]. Figure 1 shows some samples of a DWF, while the Figure 2 shows the wave of a DWF.

\[
\begin{array}{cccc}
-0.0156 & -0.0156 \\
-0.0156 & -0.0156 \\
-0.0156 & -0.0156 \\
-0.0076 & -0.0076 \\
-0.0076 & -0.0076 \\
0 & 0 \\
-0.0076 & -0.0076 \\
-0.0076 & -0.0076 \\
-0.0076 & -0.0076 \\
\end{array}
\]

Figure 1. Samples of DWF
One of the most used applications involved with DWF processing is voice recognition. Hence, most of these applications use the nature of DWF to extract voice feature by mean of calculating several parameters like zero-crossing, dynamic range and peak value [6], [7], [15]. Calculating these parameters require understanding the voice nature, and some time they do not give an acceptable recognition ratio if we use them to recognize the voice [6], [7], [8].

To avoid the above mentioned weakness, we propose a method which can deal with DWF using two dimensional matrix. This can be done by converting the one or two column voice array to two dimensional matrix with multiple rows and columns. Hence, the DWF can be represented as a gray image, as shown in Figure 3.

In this paper, once the DWF is converted to a matrix, then the features of DWF can be obtained using the neighborhood concepts, by considering the point in the center and the point neighbors as shown in Figure 4. This technique is called local binary pattern (LBP) [9]. LBP computes binary numbers by labeling the pixels of an image through thresholding the 3x3-neighborhood of each pixel with the center value. The procedures of calculating these patterns are shown in Figures 5 and Figure 6 [10], [11],[14]. Figure 7 shows an example of calculating LBP for a matrix.
Figure 4. Point neighborhood

Figure 5. Generating binary pattern

Figure 6. LBP calculation procedures
Using the LBP method to create features for signal recognition leads to extra efforts because the size of the generated features array is very big and it contains 256 entries (repetitions for the values from 0 to 255) [10]. To minimize the number of entries in the features array we can use center symmetric LBP (CSLBP) which can generate a features array with 16 entries [11], [12],[13]. The procedure of calculating CSLBP is shown in Figure 8, while the Figure 9 shows an example of calculating CSLBP. It can be shown from Figure 9 that the CSLBP reduces the feature array entries to 16. Hence, the CSLBP minimize the requirements needed to apply voice recognition process.

![Original Matrix](image)

Original_matrix =

15	20	30	40	15
20	100	105	30	40
50	30	105	50	50
100	10	100	150	100
15	20	20	20	20

LBP_matrix =

0	0	0	0	
0	24	32	251	
0	222	18	249	
0	255	10	0	

Figure 7. LBP calculation example

![Figure 7](image)

![Figure 8](image)

Figure 8. Procedures to calculate CSLBP

Wave File Features Extraction using Reduced LBP (Aws Al-Qaisi)
2. PROPOSED METHOD

The proposed method is based on CSLBP to create a DWF features array. The main contribution of the proposed method lay in reducing the number of entries from 16 to 4 entries. The obtained DWF features array by proposed method can be used for various applications such as:

a. Identifying the voice, because the feature array is a unique array for each DWF.

b. Using features array as a key to retrieve a wave file from a database consisting of several wave files.

c. Using features array as an input data set to any recognition or expert system.

d. Finding whether the DWF is disrupted or not, knowing the accurate features array of original DWF.

The proposed method using reduced LBP can be implemented by applying the following steps:

a. Get DWF.

b. Get the size of the DWF array (r: row, c: columns which is always 1 for mono files or 2 for stereo one).

c. Reshape the matrix of DWF to one column array(R).

d. Get M as a multiplication of r and c.

e. Find S as a floor of the square root of M.

f. Square S to get SS.

g. Get a number of values of R equal to SS and store them in RR array.

h. Reshape RR array to a square matrix (MR) (with rows=S, and columns=S).

i. Initialize features array to zero (FA=zeros (4, 1)).

j. For each point in MR calculate the reduced LBP applying the following steps as shown in Figure 10:

1) Find a threshold value using the following formula:

\[T = \frac{(I(i,j+1) + I(i+1,j)+I(i,j-1)+I(i-1,j)+I(i+1,j+1)+I(i+1,j-1)+I(i-1,j-1)+I(i-1,j+1)-8*I(i,j))}{9}; \]

2) Find the following two binary digits

\[A0 = (I(i,j+1) + I(i+1,j)+I(i,j-1)-I(i-1,j) > T) \]
\[B0 = ((I(i+1,j+1)+I(i+1,j-1)-I(i-1,j-1)-I(i-1,j+1) > T) \]

3) Get the index of FA as:

\[IFA = A0*2^0+B0*2^1 \]

4) Increment FA(IFA=1) by 1

k. Save FA.

The following Matlab code was written to implement the proposed method:

```matlab
[aa fs]=wavread('C:\Users\win 7\Desktop\voice\horse.wav');
```

Figure 9. CSLBP calculation example
Wave File Features Extraction using Reduced LBP (Aws Al-Qaisi)

$n1 \times n2 = \text{size}(aa); a1 = \text{reshape}(aa, n1 \times n2, 1); b = n1 \times n2;
b1 = \text{floor}(\sqrt{b}); a2(:, 1) = a1(1:b1 \times b1, 1);
I = \text{reshape}(a2, b1, b1);
size(I)

$h = \text{zeros}(4, 1);
[y x] = \text{size}(I);
for i = 2:y-1
 for j = 2:x-1
 $T = \frac{(I(i, j+1) + I(i+1, j) + I(i-1, j-1) + I(i+1, j+1) + I(i+1, j-1) + I(i-1, j-1) + I(i-1, j+1) - 8 \times I(i, j))}{9};$

 % keeping $I(j, i)$ as center we compute CSLBP
 $a = (I(i, j+1) + I(i+1, j) - I(i, j-1) - I(i-1, j) > T) \times 2^0 ;$
 $b = (I(i+1, j+1) + I(i+1, j-1) - I(i-1, j-1) - I(i-1, j+1) > T) \times 2^1 ;$
 $e = a + b;$
 $h(e+1) = h(e+1) + 1;$
 end
end
h

One of the sample DWF used in the implementation process size=15547 * 2

then

fix (sqrt (15547 * 2))=176

Voice matrix size=176*176

3. RESULTS AND ANALYSIS

In this section, The proposed method was implemented several times using various DWF with different sizes, Table 1 shows some implementation samples:

Wave file	Size(byte)	Features
1(bird.wav)	1254528	44770
2(cow.wav)	495424	18148
3(cow2.wav)	279904	11499
4(dog.wav)	737104	28220
5(dolphin.wav)	628704	23706
6(donkey.wav)	1903904	73216
7(duck.wav)	3288576	122618
8(elephant.wav)	360272	14082
9(horse.wav)	248752	8910

The feature array is very sensitive to any changes in the DWF, even if we change one value in the file as shown in Table 2, so this feature array can be used as an identifier or a primary key to retrieve the wave file.

Wave file	Changes	Features
1	No change	44770
2	Wav(220)=0.0038 changed to 0.5	44772
3	Wav(220)=0.00095 changed to 0.5	18148
4	Wav(220)=0.00078 changed to 0.5	11499
5	Wav(220)=0.00019 changed to 0.5	28220
6	Wav(220)=0.0056 changed to 0.5	11496
7	Wav(220)=0.0075 changed to 0.5	28221
8	Wav(220)=0.0210 changed to 0.5	23706
9	Wav(220)=0.0156 changed to 0.5	23708

Wave File Features Extraction using Reduced LBP (Aws Al-Qaisi)
From the results of implementation, we can raise the following facts:

a. Each DWF has a unique features array.

b. FA consists of only 4 elements.

c. FA does not depend on DWF size and has always the size of 32 bytes.

d. FA can be used as a key or a signature to deal with digital wave files.

e. Using 4 element array reduces all the efforts concerning any application that deals with digital wave files.

The proposed RLBP method was implemented several times using various wave files with different sizes, the time to extract features was computed (T2), the same files were treated using CSLBP method and the features extraction time was also computed (T1). The experimental results are shown in Table 3. From Table 3, it can be seen that the speedup of the proposed method is at least 3 times faster, which mean that the proposed method is more efficient compared with CSLBP method.

Wave file size(byte)	CSLBP features extraction time (Sec.) T1	Proposed RLBP features extraction time (Sec.) T2	Speedup
2880000	1.953460	0.589395	3.3143
1903904	0.939946	0.290760	3.2327
1254528	0.418782	0.120215	3.4836
737104	0.338388	0.098481	3.4361
628704	0.100056	0.044843	2.2313
495424	0.030078	0.009357	3.2145
360272	0.030955	0.008587	3.6049
3288576	0.030710	0.008232	3.7306
279904	0.030672	0.007565	4.0545
248752	0.028529	0.006089	4.6853

4. CONCLUSION

A new method of digital wave file feature extraction was proposed, implemented and tested. The proposed method has some advantages comparing with other existing method and it can suit any application dealing with wave files. The extracted features were unique to a wave file and they can be used as an excellent key or signature for a digital wave file.

REFERENCES

[1] Ashraf Abu-Ein, et al., "A Technique of Hiding Secrete Text in Wave File," International Journal of Computer Applications, vol. 2, pp. 0975 – 8887, 2016.
[2] R. Arulmozhiyal and K. Baskaran, "Experimental Investigation of Wave File Compression-Decompression," The International Journal of Computer Science and Information Security, vol.14, pp. 774, 2016.
[3] Jihad Nadir, et al., "A Technique to Encrypt-decrypt Stereo Wave File," International Journal of Computer and Information Technology, Vol 5, pp. 465-470, 2016.
[4] Zhihua Cui, et al., "Training artificial neural networks using APPM", International Journal of Wireless and Mobile Computing, Vol 5, pp. 168-174, 2012.
[5] Z. Yinhai, et al., "Jigsaw-based secure data transfer over computer networks," in Int. Conference on Information Technology: Coding and Computing, 2004, pp. 2-6.
[6] Khaled Matrouk, et al., "Speech Fingerprint to Identify Isolated Word-Person," World Applied Sciences Journal, vol. 31, pp. 1767-1771, 2014.
[7] Bin Wu, et al., Dynamic range estimation for nonlinear systems," in IEEE/ACM International Conference on Computer-Aided Design, 2004.
[8] Timo O, et al., "Multi resolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 971 - 987, 2002.
[9] Marko H, et al., "Description of interest regions with local binary patterns," Pattern Recognition, vol. 42, pp425-436, 2009.
[10] T. Ojala, et al., "A comparative study of texture measures with classification based on feature distributions," Pattern Recognition, vol. 29, pp. 51-59, 1996.
[11] K. J. Priya and R. S. Rajesh, "A Local Min-Max Binary Pattern Based Feature Recognition Using Single Sample per Class," International Journal of Advanced Science and Technology, vol. 36, pp. 41-50, 2011.
[12] Zhang J, et al., "Local features and kernels for classification of texture and object categories: A comprehensive study," International Journal of Computer Vision, vol.73 , pp. 213-238, 2007.
[13] Sabina Yasmin, et al., "Performance Study of Soft Local Binary Pattern over Local Binary Pattern under Noisy Images," International Journal of Electrical and Computer Engineering, vol.6 , pp. 1161-1167, 2015.
[14] Taha H. Rassem, et al., "Face Recognition Using Completed Local Ternary Pattern (CLTP) Texture Descriptors," *International Journal of Electrical and Computer Engineering*, vol. 7, pp. 1594-1601, 2017.
[15] Fooad Jalili, et al., "Speech Recognition Using Combined Fuzzy and Ant Colony Algorithm," *International Journal of Electrical and Computer Engineering*, vol. 7, pp. 2205-2210, 2016.

BIOGRAPHIES OF AUTHORS

Dr. Aws Al-case is an associated professor in the Communication Engineering Department, Faculty of Engineering and Technology, Al-Balqa’ Applied University, Jordan. Tudor was received his PhD and MSc in communication and signal processing from Newcastle university in 2006 and 2010 respectively. Dr. Aws research interest includes Digital signal processing, seismic signal processing, Wireless communication, Digital communication and wireless sensor network. He served as reviewer in many international journals where he has published more than 16 scientific papers in the field of communication and signal processing.

Dr Saleh A.Khawatreh is Assistant Professor in Computer Engineering Departement, Faculty of Engineering, Al-Ahliyya Amman University. Dr Saleh A.Khawatreh research interest includes Computer Networks, computer Application and signal processing.

Dr. Ahmed A.M Sharadqh received his PhD Degree in Computer, computing system and networks from National Technical of Ukraine “Kyiv Polytechnic Institute Ukraine in 2007. Since 2009, Dr. Ahmed sharadqh has been an Associate professor in the Computer Engineering Department, Faculty of Engineering Technology, at Al-Balqa Applied University. His research interests include Performance of network, Quality services, security network, image processing, digital systems design, operating system, and Microprocessors.

Dr Ziad A.A.Alqadi has been professor in the Computer Engineering Department, Faculty of Engineering Technology, at Al-Balqa Applied University. He is the Head of Computer engineering department. His research interests include Signal processing, parallel processing, image processing.