

Research Article

Study on the Relationship between lncRNA Gene Polymorphism and Systemic Lupus Erythematosus

Xue Guan,1 Dan Liu,1 Yuling Xing,2 and Xiuru Guan 1

1Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, 150001, China
2Clinical Laboratory, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), 266033, China

Correspondence should be addressed to Xiuru Guan; 631507020326@mails.cqjtu.edu.cn

Received 31 December 2021; Revised 7 January 2022; Accepted 11 January 2022; Published 27 February 2022

Academic Editor: Min Tang

Copyright © 2022 Xue Guan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Systemic lupus erythematosus (SLE) is an autoimmune disease that can cause damage to multiple systems of the body. A number of studies have shown that long-chain noncoding RNA (lncRNA) can participate in the occurrence and development of a variety of autoimmune diseases. This study is aimed at detecting the expression levels of 5 lncRNAs in SLE patients and healthy controls and at exploring the relationship between expression levels and clinical symptoms and laboratory indicators.

Methods. The design type of this study is a case-control study. A total of 76 SLE patients and 71 healthy controls were included in the first phase of the study. Real-time fluorescence quantitative polymerase chain reaction was used to detect the expression level of 5 kinds of lncRNAs including lnc7514, lnc0640, lncagf, nc3643, and lnc5150 in PBMCs of two groups of patients; the expression of lncRNAs in the case group and the control group was analyzed. We analyzed the differences in the expression levels of lncRNAs between case and control groups, and explored the association of expression levels with clinical manifestations and laboratory characteristics. SPSS23.0 was used to analyze the expression level and gene polymorphism results; the statistical analysis test level α = 0.05. Results. The expression level of lnc0640 in PBMCs of SLE patient group was higher than that of healthy control group (Z = −3.56, P = 0.03). However, lnc5150 was lower than in healthy controls (Z = −7.16, P < 0.001). lnc3643 expression levels were lower in SLE patients of SLE patients with pleurisy was lower than that of patients without pleurisy (Z = −4.64, P = 0.02). Low lnc3643 expression levels were observed in PBMCs with SLE patients with rash symptoms (Z = −2.75, P = 0.013). SLE expressed lower lnc3643 levels in PBMCs with SLE compared with those without pleurisy (Z = −2.42, P = 0.02). The above differences were statistically significant. Association analysis of lncRNA expression levels and clinical manifestations in SLE patients found that SLE was lower than those without rash or pleurisy (both P < 0.05); association analysis of lncRNA expression level and laboratory results found a negative correlation between lnc3643, lnc7514, and SLE disease activity score (SLEDAI-2K), blood sink (ESR), and C-reactive protein (CRP) (all P < 0.05).

Conclusions. lnc0640 was overexpressed in PBMCs in SLE patients compared with healthy controls. lnc3643 was negatively correlated with SLEDAI, and expression levels were associated with SLE patients with arthritis, rash, and pleuritis.

1. Introduction

Systemic lupus erythematosus (SLE) is a common autoimmune disease that can lead to irreversible damage to the body’s immune tolerance [1, 2]. Because clinical heterogeneity leads to different clinical manifestations and outcomes in SLE patients, clinical heterogeneity makes no certain single detection method available to confirm SLE [3]. Studies have shown that the etiology of SLE may be environmental factors, genetic factors, and hormones and interactions and that genetic factors may play a key role in the pathogenesis of SLE [4, 5].

The genetic background of SLE mainly includes encoding genes and noncoding genes (nRNA), while nRNA can be divided into short-chain nRNA and long-chain nRNA (lncRNA) based on the length size [6]. lncRNA is a class of endogenous RNA molecules with >200 bp in length and has no protein-coding function [7]. It has been found that lncRNA can bind to DNA, RNA, or proteins to form
complexes to regulate gene activation and transcriptional processes, and some lncRNAs can even encode small functional polypeptide chains [8].

Previous studies found that lnc0597 and lnc0949 expression was lower in peripheral blood mononuclear cells (PBMCs) in SLE patients than in healthy populations, lower lncRNA GAS5 and lnc-DC in SLE plasma than in healthy controls, and higher lnc0597 levels than in healthy populations [9, 10]. In addition, more studies have also shown lncRNA involvement in the occurrence and development of autoimmune diseases [11, 12]. This study is aimed at exploring the role of lncRNAs in the occurrence and development of SLE and at providing evidence for further exploration of SLE markers and therapeutic targets.

2. Data and Methods

This experiment was designed as a case-control study, using quantitative reverse transcriptase chain reaction (qRT-PCR) technology was used to detect the expression levels of lncRNA in PBMCs in SLE patients and healthy controls and explore the correlation of lncRNA expression with the main clinical symptoms of SLE and laboratory testing indicators. See Figure 1 for the experimental flow chart.

2.1. Subject Investigated

2.1.1. Selection of Patients with SLE. Patient inclusion criteria for this study: According to the SLE classification criteria revised by the American College of Rheumatology (ACR) as the basis for the diagnosis of SLE cases, those who meet the diagnosis can be included. Diagnostic criteria are shown in Table 1. Exclusion criteria: (1) patients with other autoimmune diseases; (2) combined systemic infected persons; (3) patients with severe heart, liver, and renal failure; (4) patients with other malignant tumors, neurodegenerative diseases, and mental diseases; and (5) unwilling to participate in the investigation. Patients diagnosed with SLE and not having any feature of the exclusion criteria could be included in this study.

2.1.2. Selection of Healthy Controls. Healthy controls were obtained from 71 healthy patients in the physical examination center of the hospital. The selected pairs should meet the following criteria: no history of autoimmune disease, combined systemic infected persons, patients with severe heart, liver, and renal failure, patients with other malignant tumors, neurodegenerative diseases, and mental diseases; and patients diagnosed with SLE and not having any feature of the exclusion criteria could be included in this study.

During the clinical classification and diagnosis process, patients meet the above four criteria before or after the onset and can be diagnosed as SLE after excluding tumor, infection, and other connective tissue disease.

2.2. Collection of Data and Samples

2.2.1. Questionnaire. Trained investigators communicate with patients meeting SLE screening criteria and with informed consent, and a unified data collection was used to design the questionnaire. The SLE questionnaire mainly includes general information (name, gender, education, contact information, etc.), clinical data (major clinical symptoms, disease activity score scale, clinical medication, etc.), and laboratory indicators (anti-ds-DNA, anti-Sm, anti-SSA/Ro, anti-SSB/La, anti-RNP, anti-Ribosomal P, C3, C4, ESR, CRP, etc.), and patient disease activity was evaluated according to the SLE disease activity score scale. General demographic data (name, gender, age) were collected from healthy controls.

2.2.2. The Quality Control of Questionnaire. (1) The quality of the questionnaire determines the quality of the survey results; preinvestigation is required to evaluate the feasibility, authenticity, and validity of the questionnaire after review by experts and reference to literature and for timely revision; (2) for the graduate students who participated in the questionnaire, carry out prejob training, unify the investigators’ understanding of the meaning of the survey indicators, clarify the purpose of the survey, and master the survey skills; (3) register and verify the collected questionnaire data, correspond the blood samples, and supplement the missing information in a timely manner. Ensure the integrity of the questionnaire.

2.2.3. Specimen Collection. 5 ml of peripheral venous blood was selected in anticoagulant vessels containing ethylenediaminetetraacetic acid (EDTA). The extracted blood samples were added to the lymphocyte isolate for 4h to separate the lymphocytes, and the total RNA was extracted and stored in the -80°C refrigerator.

2.2.4. Detection of Samples. The expression levels of lnc0640, lnc3643, lnc5150, lnc7514, and lncagf were subjected to the lnc0640, lnc3643, lnc5150, and lncagf by real-time polymerase
2.2.5. Arrangement and Entry of Data. (1) Make a one-to-one number of the questionnaire and blood samples, (2) check and logically check the questionnaire and experimental data results to ensure the authenticity and accuracy of the original data, and (3) use EpiData 3.1 double input and error detection mode into the questionnaire.

2.3. Statistical Analysis. (1) In the detection of IncRNAs content, $2^{-\Delta\Delta Ct}$ is used to represent the relative expression level of the target gene (Ct: the number of cycles experienced when the amplification product of the target gene or parameter reaches the set threshold; ΔCt: mean Ct value of target gene-mean Ct value of the reference gene). (2) EpiData 3.1 was used for double entry of experimental data, and SPSS 23.0 software was used for data analysis. (3) Quantitative data meeting the normal distribution are described using $(x \pm s)$; quantitative interdata comparisons were performed using t-test/ANOVA statistics; M(P25, P75) was used to describe the quantitative data that did not conform to the normal distribution, and the Mann–Whitney rank-sum test was used for the comparison between the data; the 2 tests were used for the qualitative data comparison. In the correlation analysis between the two groups, the two groups' samples were normal. Pearson's correlation was used for distribution, and Spearman's rank correlation was used when a group of samples did not conform to normal distribution. Statistical analysis of sex and age and gene sites before and after correction was analyzed by logistic regression; gene polymorphism results were analyzed using Z test, with test level =0.05.

3. Results

3.1. General Data of Both Patient Groups. We collected 76 SLE patients and 71 in the healthy control group; 69 (90.8%) women in the case group and 7 (9.2%) men; and
Table 3: The lncRNA expression levels were compared between the different clinical subgroups (x ± s).

Groups	lnc0640	lnc3643	lnc5150	lnc7514	lncagf
Arthritis					
+	0.41 ± 0.12	0.92 ± 0.05	0.47 ± 0.20	0.58 ± 0.04	0.37 ± 0.28
-	0.57 ± 0.17	0.83 ± 0.34	0.36 ± 0.21	0.69 ± 0.07	0.28 ± 0.14
Pleuritis					
+	0.58 ± 0.26	0.52 ± 0.43	0.36 ± 0.17	0.34 ± 0.31	0.38 ± 0.10
-	0.57 ± 0.27	0.80 ± 0.31	0.31 ± 0.11	0.63 ± 0.21	0.33 ± 0.15
Erythra					
+	0.56 ± 0.10	0.71 ± 0.52	0.30 ± 0.17	0.53 ± 0.34	0.28 ± 0.19
-	0.53 ± 0.23	0.95 ± 0.76	0.41 ± 0.23	0.60 ± 0.46	0.33 ± 0.14
Myositis					
+	0.42 ± 0.18	0.95 ± 0.45	0.46 ± 0.36	0.54 ± 0.25	0.39 ± 0.17
-	0.54 ± 0.25	0.82 ± 0.46	0.37 ± 0.13	0.74 ± 0.46	0.31 ± 0.11
Fever					
+	0.53 ± 0.18	0.72 ± 0.42	0.39 ± 0.23	0.55 ± 0.32	0.20 ± 0.17
-	0.53 ± 0.25	0.83 ± 0.79	0.48 ± 0.21	0.69 ± 0.32	0.36 ± 0.10

Table 4: Analysis of the correlation between the expression level of lncRNAs and laboratory indicators in SLE patients (x ± s).

Groups	lnc0640	lnc3643	lnc5150	lnc7514	lncagf
dsDNA					
+	0.41 ± 0.11	0.81 ± 0.04	0.48 ± 0.10	0.48 ± 0.24	0.38 ± 0.18
-	0.48 ± 0.18	0.83 ± 0.34	0.36 ± 0.11	0.68 ± 0.28	0.18 ± 0.14
SM					
+	0.48 ± 0.16	0.41 ± 0.43	0.36 ± 0.18	0.34 ± 0.31	0.38 ± 0.10
-	0.48 ± 0.18	0.80 ± 0.31	0.31 ± 0.11	0.63 ± 0.11	0.33 ± 0.14
SSA					
+	0.46 ± 0.10	0.81 ± 0.41	0.30 ± 0.18	0.43 ± 0.34	0.18 ± 0.18
-	0.43 ± 0.13	0.84 ± 0.86	0.41 ± 0.13	0.60 ± 0.46	0.33 ± 0.14
SSB					
+	0.41 ± 0.18	0.84 ± 0.44	0.46 ± 0.36	0.44 ± 0.14	0.38 ± 0.18
-	0.44 ± 0.14	0.81 ± 0.46	0.38 ± 0.13	0.84 ± 0.46	0.31 ± 0.11
RNP					
+	0.43 ± 0.18	0.81 ± 0.41	0.38 ± 0.13	0.44 ± 0.31	0.10 ± 0.18
-	0.43 ± 0.14	0.83 ± 0.88	0.48 ± 0.11	0.68 ± 0.31	0.36 ± 0.10
62 (87.3%) women in the control group and 9 (12.7%) men. The mean age in the case group was 37.54 ± 9.68 years, and the median age in the control group was 39.32 ± 5.32 years. The average disease course of SLE patients was 2.21 ± 4.26 years, and the average SLEDAI score was 12.60 ± 3.07. Basic data were not statistically significant in both groups (P > 0.05) (see Table 2).

3.2. lncRNA Expression Level. lnc0640 expression levels were higher in SLE than in healthy controls (HC) (Z = -2.23, P = 0.03), while lnc5150 was lower in SLE than in HC (Z = -6.02, P < 0.001), and the remaining genes between SLE and healthy controls are (see Figure 3).

3.3. Analysis of the Association between lncRNA Expression Level and Clinical Manifestations in SLE Patients. SLE patients were divided into groups according to whether they had arthritis, rash, myositis, pleurisy, fever, and other clinical manifestations. Mann–Whitney rank-sum test was used to compare the differences in the expression levels of five lncRNAs among subgroups. The difference was statistically significant (Z = -2.44, P = 0.02). The lnc3643 expression levels were low in PBMCs of patients with SLE with rash symptoms compared with patients with no rash symptoms. The level difference between the two groups was statistically significant (Z = -2.75, P = 0.01); SLE with SLE expressed lower PBMCs in SLE compared with those without pleurisy, and the difference was statistically significant (Z = -2.42, P = 0.02). The expression levels of lncRNAs were different between myositis and febrile subgroups. However, the difference was not significantly significant (all with P > 0.05) (see Table 3).

3.4. Analysis of the Correlation between the Expression Level of lncRNAs and Laboratory Indicators in SLE Patients. Mann–Whitney rank-sum test is shown in Table 4. The results showed that lnc7514 expression levels were lower in dsDNA (+) than in dsDNA (-), significant (Z = -2.70, P = 0.01), SSA (+), negative (Z = -2.381, P = 0.017). Incagf expression levels are between different groups of RNP (Z = -2.01, P = 0.05); there is no association of the expression levels of laboratory indicators Sm and SSB (all P > 0.05).

3.5. Analysis of the Correlation between IncRNA Expression Level and SLE Disease Activity. Spearman rank correlation was used to analyze the correlation between IncRNA expression levels and complement C4 levels, blood sink (ESR) levels, SLEDAI score, C-reactive protein (CRP) levels, and course of disease, as shown in Table 5. The Inc3643 expression levels were negatively correlated with the levels of ESR, CRP, and SLEDAI (rs = -0.46, P < 0.001; rs = -0.42, P < 0.001; rs = -0.25, P = 0.03). Inc5150 expression levels were negatively correlated with ESR levels (rs = -0.39, P = 0.01). The expression levels of Inc7514 were negatively correlated with the levels of ESR, CRP, and SLEDAI (rs = -0.38, P < 0.001; rs = -0.25, P = 0.03; rs = -0.31, P = 0.01). The level of Incagf expression was also negatively correlated with ESR levels (rs = -0.27, P = 0.02). No association was found between Inc0640 expression levels and each disease activity index (all with P > 0.05).

4. Discussion

SLE is an autoimmune disease with a complex etiology and with a genetic tendency and familial aggregation [13]. Recent studies have found that IncRNA can be involved in many cellular functional processes, such as gene imprinting, functional protection, lineage submission, and apoptosis [14]. It has also been shown that IncRNAs can be involved in the development of autoimmune diseases such as SLE, rheumatoid arthritis, and scleroderma [15, 16]. Identifying the role of IncRNAs in SLE disease contributes to the better diagnosis and treatment of SLE disease.

In this study, the relationship between five IncRNAs and SLE, including Inc0640, Inc3643, Inc5150, Inc7514, and Incagf, were explored. It mainly investigated the differences in IncRNA expression levels between SLE and healthy controls and explored the relationship between IncRNA expression levels and clinical symptoms, laboratory examination, etc. Previous studies found higher plasma levels of Inc0640 in SLE patients than in healthy controls and that Inc5150 was upregulated in PBMCs compared with healthy controls [17, 18]. This study found higher Inc0640 expression levels in PBMCs in the SLE patient group compared with healthy controls, which is consistent with the above study. However, the results of this study found that Inc5150 has lower expression in SLE patients, probably due to intracellular to extracellular release through efflux, leading to higher extracellular Inc5150 levels than in the normal state. In addition, this study found a negative correlation of Inc5150 expression levels with ESR levels. The above results suggest that Inc5150 may be associated with the occurrence and development of SLE.

In this study, a study in SLE with symptoms found that Inc3643 expression levels were lower in PBMCs of patients with rash or pleurisy than in those without this clinical symptom, and association analysis studies found inverse correlation in patients with rash or pleurisy compared with patients with no rash symptoms.
expression levels of ESR, CRP, SLEDAI, and Inc3643. The above results suggest that Inc3643 may be related to the occurrence of SLE inflammation and that Inc3643 may be used as an indicator to monitor SLE condition and guide treatment, which needs further investigation.

Inc7514 and Incagf expression levels did not differ in SLE patients and healthy controls, further research on the relationship between clinical symptoms and laboratory test results in SLE patients found that the expression level of Inc7514 decreased in patients with anti-dsDNA and Inc7514 was inversely associated with ESR, CRP, and SLEDAI, suggesting that Inc7514 may be related to the occurrence of SLE inflammation and disease activity. The expression levels of Incagf were downregulated in patients with anti-SSB and anti-RNP compared with those without two laboratory examinations and were negatively correlated with ESR.

The feature and innovation of this study is that it is the first time to investigate the expression of Inc0640, Inc3643, Inc5150, Inc7514, and Incagf genes and their association with clinical characteristics in Chinese Han population. However, this study also has some limitations. First, this study was a hospital-based case-control study with selection bias and confounding bias. Second, fewer subjects in this experiment failed to analyze the association between expression level and gene polymorphism. Moreover, due to the related problems of department management, no patients were included in this study. It is hoped that the subsequent experimental research can make up for the above shortcomings, further explore the association of genetic loci and genetic susceptibility to SLE more deeply, and provide strong evidence for the study of this gene in other diseases or populations.

5. Conclusion

(1) Compared to normal controls, the expression levels of Inc3643, Inc7514, and Incagf in PBMCs in SLE patients may not be associated with SLE occurrence, while Inc0640 and Inc5150 expression levels may be associated with SLE occurrence

(2) Inc0640 and Inc5150 had no association with genetic susceptibility to SLE; Inc3643 expression levels were associated with arthritis, rash, and SLE pleuritis

Data Availability

Our data are public and available, and you can query the original data in our database.

Ethical Approval

This study was approved by the ethics committee of our hospital, and all participants had informed consent.

Conflicts of Interest

The authors claim no conflicts of interest.

References

[1] S. Caielli, J. Cardenas, A. A. de Jesus et al., “Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE,” Cell, vol. 184, no. 17, pp. 4464–4479.e19, 2021.
[2] T. Dörner and R. Furie, “Novel paradigms in systemic lupus erythematosus,” Lancet, vol. 393, no. 10188, pp. 2344–2358, 2019.
[3] D. Nehar-Belaid, S. Hong, R. Marches et al., “Mapping systemic lupus erythematosus heterogeneity at the single-cell level,” Nature Immunology, vol. 21, no. 9, pp. 1094–1106, 2020.
[4] A. Yafasova, E. L. Fosbøl, M. Schou et al., “Long-term cardiovascular outcomes in systemic lupus erythematosus,” Journal of the American College of Cardiology, vol. 77, no. 14, pp. 1717–1727, 2021.
[5] Schizophrenia Working Group of the Psychiatric Genomics Consortium, N. Kamitaki, A. Sekar et al., “Complement genes contribute sex-biased vulnerability in diverse disorders,” Nature, vol. 582, no. 7813, pp. 577–581, 2020.
[6] A. Khatiwada, B. J. Wolf, A. S. Yilmaz et al., “GPA-tree: statistical approach for functional-annotation-tree-guided prioritization of GWAS results,” Bioinformatics, 2021.
[7] D. Andergassen and J. L. Rinn, “From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo,” Nature Reviews. Genetics, 2021.
[8] F. Fasolo, H. Jin, G. Winski et al., “Long noncoding RNA-MIAT controls advanced atherosclerotic lesion formation and plaque destabilization,” Circulation, vol. 144, no. 19, pp. 1567–1583, 2021.
[9] C. H. Liu, Y.-L. Lu, H.-T. Huang et al., “Association of IncRNA-GAS5 gene polymorphisms and PBMC IncRNA-GAS5 level with risk of systemic lupus erythematosus in Chinese population,” Journal of Cellular and Molecular Medicine, vol. 25, no. 7, pp. 3548–3559, 2021.
[10] Q. Liu, Y. Deng, C. Li et al., “IncRNA GAS5 suppresses CD4+ T cell activation by upregulating E4BP4 via inhibiting miR-92a-3p in systemic lupus erythematosus,” Immunology Letters, vol. 227, pp. 41–47, 2020.
[11] H. Hao, S. Nakayama, N. Ohkubo et al., “Involvement of IncRNA IL21-AS1 in interleukin-2 and T follicular regulatory cell activation in systemic lupus erythematosus,” Arthritis Research & Therapy, vol. 23, no. 1, 2021.
[12] Q. Cheng, M. Chen, X. Chen et al., “Novel long non-coding RNA expression profile of peripheral blood mononuclear cells reveals potential biomarkers and regulatory mechanisms in systemic lupus erythematosus,” Frontiers in cell and developmental biology, vol. 9, article 639321, 2021.
[13] Y. Ghodke-Puranik, Z. Jin, K. D. Zimmerman et al., “Single-cell expression quantitative trait loci (eQTL) analysis of SLE risk loci in lupus patient monocytes,” Arthritis Research & Therapy, vol. 23, no. 1, 2021.
[14] S. Ghafoori-Fard, T. Azimi, B. M. Hussen, M. Taheri, and R. Jalili Khoshnoud, “A review on the role of non-coding RNAs in the pathogenesis of myasthenia gravis,” International Journal of Molecular Sciences, vol. 22, no. 23, article 12964, 2021.
[15] W. Song, J. Qiu, L. Yin et al., “Integrated analysis of competing endogenous RNA networks in peripheral blood mononuclear cells of systemic lupus erythematosus,” Journal of Translational Medicine, vol. 19, no. 1, 2021.
[16] X. Chen, X. Luo, Y. Wei et al., “LncRNA H19 induces immune dysregulation of BMMSCs, at least partly, by inhibiting IL-2 production,” Molecular Medicine, vol. 27, no. 1, 2021.

[17] W. Guocui, “The immunomodulatory effect of long non-coding RNA in rheumatic diseases,” Chinese Journal of Disease Control, vol. 20, no. 11, pp. 1165–1171, 2016.

[18] G. C. Wu, Y. Hu, S. Y. Guan, D. Q. Ye, and H. F. Pan, “Differential plasma expression profiles of long non-coding RNAs reveal potential biomarkers for systemic lupus erythematosus,” Biomolecules, vol. 9, no. 6, p. 206, 2019.