Fast Learning for Big Data Using Dynamic Function

T Alwajeeh¹, A F Alharthi³, R F Rahmat², R Budiarto³

¹Dept. of Computer Science & Engineering, College of CS&IT, Albaha University, Albaha P.O. Box 1988, Saudi Arabia
²Department of Information Technology, Faculty of Computer Science and Information Technology, University of Sumatera Utara, Medan, Indonesia
³Dept. of Computer Information System, College of CS&IT, Albaha University, Albaha P.O. Box 1988, Saudi Arabia

taa.2000@hotmail.com, afalharthi@bu.edu.sa, romi.fadillah@usu.ac.id, rahmat@bu.edu.sa

Abstract. This paper discusses an approach for fast learning in big data. The proposed approach combines momentum factor and training rate, where the momentum is a dynamic function of the training rate in order to avoid overshoot weight to speed up training time of the back propagation neural network engine. The two factors are adjusted dynamically to assure the fast convergence of the training process. Experiments on 2-bit XOR parity problem were conducted using Matlab and a sigmoid function. Experiments results show that the proposed approach significantly performs better compare to the standard back propagation neural network in terms of training time. Both, the maximum training time and the minimum training time are significantly faster than the standard algorithm at error threshold of 10^{-5}.

1. Introduction

Recently, we are entering the era of “big-data”, and as the development of high-speed signal processing, fast and efficient learning and signal representation is becoming an emergent research topic. Extreme learning machine (ELM) [1] is one of the leading trends for fast learning. Unlike the other traditional learning algorithms, for example, Back Propagation-based neural networks, or support vector machine (SVM)], the parameters of hidden layers of ELM are randomly established and need not be tuned, thus the training of hidden nodes can be established before the inputs are acquired.

Feedforward neural networks have been widely used in various areas of machine learning. Hidden nodes in a neural network architecture work as universal approximation provided that all the parameters of the networks are adjustable. The most representative training method for Artificial Neural Networks is back propagation (BP) algorithm. BP calculates the gradient of a loss function with respect to all the weights in the network and updates the weights for minimizing the loss function. Nevertheless, the parameter tuning of BP-based neural networks is usually time consuming and cannot handle the overfitting problem.
2. Related Works

Research on fast learning started from back-propagation algorithm, introduced by Werbos [2], and later popularized by Rumelhart et al. [3], which calculates the error function based on the weights of every data in the neural network, and then updates the weight with a new value, based on the activation function, in order to minimize the value of error function. However, back-propagation is known for the slow computing time, also inefficient for maintaining data in big size [4].

Researches have been done to improve learning time in neural network. Chandra and Sharma [5] introduces parameterized multilayer perceptron to process big data, with trigonometric functions. They also proposed parameterized deep neural network to reduce time usage of the learning process, by applying periodic function to parameterize the neural network weights [6]. Wong and Xu proposed hierarchical fast learning artificial neural network, which process data using feature compression based on canonical covariance [7]. Hinton and Teh [8] proposed a learning algorithm to improve learning speed of deep belief nets. Another strategy to improve learning time also proposed by Pasha [9] and Rahmat [10] by using distributed adaptive nested neural network.

3. Proposed Design

This paper uses standard back propagation artificial neural network (BP-ANN) as illustrated in Figure 1. The input layer has i neurons. The hidden layer consists of four neurons with two weights, while the output layer has one neuron with one weight. A sigmoid function is used as activation function.

![Figure 1. The BP-ANN model.](image)

3.1. Momentum factor and training rate

Computing weights changes in neuron k of output layer and neuron j of hidden in BP-ANN involves two parameters; momentum factor (α) and training rate (η). The larger value of η the faster the ANN converges. Usually, the value for η is randomly chosen by try and error from the value between 0 and 1. However, too big value of η may lead to oscillated training curve. The value of momentum factor α is also chosen randomly between 0 and 1. New weight adjustment Δw_{jk} at time t for each neuron j of hidden layer and neuron k of output layer is defined in equation (1).

$$\Delta w_{jk}(t + 1) = w_{jk}(t) - \eta \frac{\partial E}{\partial w_{jk}(t)} + \alpha \Delta w_{jk}(t - 1)$$ \hspace{1cm} (1)

One important factor to speed up BP algorithm is the monotonicity of the error function during training for every epoch or iteration [11]. This paper uses an exponential function of error E for the dynamic training rate as defined in equation (2).

$$\eta_{DR}(E) = 1 + e^{(1+\sin(2E))}$$ \hspace{1cm} (2)

Furthermore, in order to avoid overshoot weight in applying the training rate and momentum term as a dynamic function, a new approach is proposed by defining a relationship between the dynamic
training rate and the dynamic momentum factor [12]. The momentum factor \(\alpha_{DM} \) as an explicit function of training rate \(\eta_{DR} \) is defined in (3).

\[
\alpha_{DM} = \sin(x + \epsilon) + \frac{1}{\eta_{DR}}
\]

(3)

where \(x = E \times f'(O_r) \), \(f'(O_r) \) is the first derivation of activation function \(f \) which is defined as \(f'(O_r) = O_r(1 - O_r) \) and \(\epsilon \) is an absolute value, \(0 < \epsilon < 1 \). We have investigated the best value of \(\epsilon \) is 0.73. Substituting \(\eta_{DR} \) in equation (2) into equation (3) yield a new dynamic momentum factor as shown in equation (4).

\[
\alpha_{DM} = \sin(E(O_r(1 - O_r)) + \epsilon) + \frac{1}{1 + \epsilon(1 + \sin(2\theta))}
\]

(4)

This approach maintains the weights are small as possible. Meanwhile, the momentum factor \(\alpha \) and the training rate standard back propagation, SBP, manually train the training rate and momentum, where \(\eta \) and \(\alpha \) are in the range of \([0, 1]\).

3.2. The Proposed Training algorithm

The training algorithm of the proposed approach is given in Figure 2.

Figure 2. The training algorithm.

4. Experimental Results and Analysis

In this section we report the results obtained when experimenting our proposed method with 2-bits XOR Parity Problem. We use Matlab software running on Windows 8 machine with Intel Core i7 processor. The weights were generated randomly between [-0.4, 0.6] using equations (1-4). The obtained weights for \(w1 \), \(w2 \), \(b1 \), \(b2 \) of hidden layer and \(w3 \), \(b3 \) of output layer are:

\[w1 = [-0.3883; 0.4175; -0.0872; 0.2232]; \quad w2 = [0.4575; -0.4463; 0.1567; 0.3496]; \quad b1 = [0.2566; 0.2429]; \quad b2 = [0.1101; 0.1566]; \quad w3 = [0.4341; 0.2878]; \quad b3 = [-0.3266]. \]

The experiments were run 10 times for each value of error threshold and the average value is taken. The best results is shown in Table 1.
Table 1. The Best Result

Average Time (sec)	Average MSE	Average Epoch
0.4598	8.77E-06	269

Comparison to the standard BP training algorithm is depicted in Table 2. The value of α and η are varied between 0 and 1.

Table 2. The backpropagation training algorithm results.

Time (sec)	MSE	Epoch	Value of η	α
588.6040	1.0000e-05	551105	0.1	0.1
279.0730	1.0000e-05	269082	0.2	0.2
154.2040	1.0000e-05	150827	0.3	0.3
97.0920	1.0000e-05	91009	0.4	0.4
63.9200	9.9999e-06	59658	0.5	0.5
15.1220	9.9998e-06	11911	0.6	0.6
3590	0.0657	1501828	0.7	0.7
3590	0.0661	3250451	0.8	0.8
57.0780	9.9999e-06	52445	0.9	0.4
33.9220	1.0000e-05	23760	1	0.5
27.6790	9.9998e-06	28389	0.8	0.5
56.6350	9.9998e-06	50429	0.8	0.4
32.0330	1.0000e-05	23765	1	0.5

The best time for the standard BP is 15.1220 seconds, which means that the proposed training algorithm is 30 times faster than the standard BP training algorithm.

Furthermore, the proposed training algorithm converges fast to the global minimum and provides the best results at $\epsilon = 0.75$ as shown in Figure 3.

Figure 3. The convergence of the proposed training algorithm.

The proposed algorithm performs much better compared to the standard BP due to the fact that the weights are automatically adjusted for every epoch in every layer through the dynamic dynamic momentum factor a_{DM} as defined in equation (4) as well as training rate η_{DR} as defined in equation (2). The use of implicit momentum function in the training rate in equation (3) makes the proposed algorithm able to control the growth of the weights. The dynamic momentum factor and training rate affect the weight for each hidden layer and output layer and eliminate the saturation training in the
proposed algorithm. In addition, it uses an initial weight from interval [-0.4, 0.6] that narrows the search space compare to the standard Back Propagation.

5. Conclusion
An approach for fast learning on big data is proposed. The approach introduced a training algorithm to speed up the training time of Back Propagation neural network. The proposed algorithm considers a incorporates a dynamic function for auto-adjust two parameters: the momentum factor and the training rate. The proposed dynamic function eliminates the saturation of training time in Back Propagation artifical neural networks. In future, the proposed training algorithm can be applied for analyzing big data which needs extreme learning algorithm.

Acknowledgment
The author would like to thank Albaha University for the research funding under research contract number 1437/02.

References
[1] Deng C W, Huang G B, Xu J 2015 Science China Information Sciences 58 020301(16), doi: 10.1007/s11432-014-5269-3.
[2] Werbos P 1974 Beyond regression: new tools for prediction and analysis in the behavioral sciences, (Cambridge MA: Harvard University Press).
[3] Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323, pp. 533-536.
[4] Huang G B, Deng C W, Xu J and Tang J X 2015 Science China Information Sciences 58 020301 pp 1-16.
[5] Chandra B and Sharma R K 2014 Proc. of IEEE International Conference on Big Data (Anchorage, Alaska, USA) pp 17-22.
[6] Chandra B and Sharma R K 2016 Neurocomputing 171 pp. 1205-1215.
[7] Wong L P and Xu J 2006 Proc. of Int. Joint Conf. on Neural Networks (Montreal, Canada) pp
[8] Hinton G E and Teh Y W 2006 Neural Computation 18 pp 1527-1554.
[9] Pasha M F, Rahmat R F, Budiarto R, and Syukur M 2010 Int. Journal of Innovative Computing, Information and Control 6 pp 1005-1022.
[10] Rahmat R F, Pasha M F, Syukur M, Budiarto R 2015 Int. Arab Journal of Information Technology 12 6 pp 532-539.
[11] Li J, Lian L and Jiang Y 2010 3rd Int. Conf. on Information and Computing (Wuxi, China), 4 pp 292–295.
[12] Shao H and Zheng G 2011 Neurocomputing 74 5 pp 749–752.