Study of the Impact of Social and Environmental Factors on the Spread of Coronavirus Infection in Russian Regions

S A Yeprintsev*, O V Klepikov*, S V Shekoyan*, E V Zhigulina*

Voronezh State University, Universitetskaya pl. 1, Voronezh, Russia, 394018

E-mail: *esa81@mail.ru, *klepa1967@rambler.ru, *shekoyan.syuzanna@mail.ru, *evkand@yandex.ru

Abstract. The spread of the dangerous Covid-19 infection caused by the SARS-CoV-2 coronavirus since the end of 2019 has become a big challenge for both the world and Russian society. Thus, on January 30, 2020, the world health organization recognized the spread of a new infection as a public health emergency of international significance. On March 11, 2020, the same organization stated that the outbreak had become a pandemic. Currently, the role of social and environmental factors (which determine the spread of many environmentally-related diseases) in the spread of coronavirus infection in the population is not fully understood. The spread of Covid-19 infection in Russia can be divided into 3 stages. Stage 1 (31.01.2020-01.04.2020) - primary distribution. At this stage, the infection occurred mainly of Russian citizens visiting other countries. Stage 2 (1.04.2020-12.05.2020) - active distribution within the country. By the end of this stage, the maximum spread of infection is recorded. Stage 3 (12.05.2020-present) - gradual decline in the appearance of new cases of coronavirus infection. To assess the specific contribution of social and environmental conditions to the spread of coronavirus infection, data from the Federal information Fund for social and hygienic monitoring of the Federal center for hygiene and epidemiology of Rospotrebnadzor on indicators of financial security of citizens, quality of health care and sanitary conditions were analyzed. Studies have shown that at the first stages, a significant contribution to the spread of infection is made by the financial security of the population. The specific contribution of the quality of medical care, which is widely differentiated within the regions of Russia, affects only the third stage of the spread of coronavirus infection. Environmental and hygiene indicators make a weak contribution to the spread of Covid-19 at all three stages of the epidemic.

1. Introduction

The spread of various diseases is determined by many factors [1; 2; 3; 4; 5; 6]. These include the genetic characteristics of the population, the quality of medical care, and recently more and more attention is paid to the socio-ecological conditions of the territory, which, according to who, make more than 25% of the specific contribution to the integral value of morbidity. This figure is growing every year [7; 8; 9; 10; 11; 12; 13].

The theoretical basis for studying the contribution of social and environmental factors to the spread of morbidity in various classes of diseases is based on the works of many leading Russian and foreign scientists-hygienists [1; 2; 14; 15; 16].

The spread of the dangerous Covid-19 infection caused by the SARS-CoV-2 coronavirus since the end of 2019 has become a big challenge for both the world and Russian society. Thus, on January 30, 2020, the world health organization recognized the spread of a new infection as a public health emergency of international significance. On March 11, 2020, the same organization stated that the outbreak had become a pandemic [17; 18; 19; 20; 21].

At the same time, the role of social and environmental factors (which determine the spread of many environmentally-related diseases) in the spread of coronavirus infection in the population is not fully understood. The study of these mechanisms will optimize the prediction of the spread of infection, as well as the development of measures to contain epidemics in the regions of Russia.
The introduction of restrictive measures in a number of regions of Russia, necessary to contain the spread of coronavirus infection, has caused huge economic damage to small and medium-sized businesses and, as a result, the population working at these facilities. This fact makes it necessary to analyze the changed socio-economic situation in the regions of Russia.

On the territory of the Russian Federation, the first cases of coronavirus infection were detected on January 31, 2020.

2. Equipment and devices used in studies

The spread of Covid-19 infection in Russia can be divided into 3 stages.

Stage 1 – 31.01.2020-01.04.2020 – the primary distribution. At this stage, the infection occurred mainly of Russian citizens visiting other countries.

Stage 2 – 1.04.2020-12.05.2020 – active distribution within the country. By the end of this stage, the maximum spread of infection is recorded.

Stage 3-12.05.2020-present (1.07.2020) - gradual decline in the appearance of new cases of coronavirus infection.

At the first stage of the spread of coronavirus infection, the maximum values of infection were observed in the city of Moscow (1880 cases of infection). Also, the highest indicators were observed in the Moscow region, the city of Saint Petersburg, the Leningrad region, the Komi Republic, the Sverdlovsk region, the Republic of Buryatia, and the Krasnodar territory (table 1). In a number of regions (Kamchatka territory, Jewish Autonomous region, the Karachay-Cherkess Republic, Nenets Autonomous region, Altai Republic, Republic of Ingushetia, Republic of Karelia, Tuva, Yamal-Nenets Autonomous region) cases Covid-19 was absent.

Table 1 – Regions of Russia with the highest incidence of coronavirus infection at stage 1

№	Federal district	Region	Number of cases
1	Central Federal district	city of Moscow	1880
2	Central Federal district	Moscow region,	134
3	North-West Federal district	Saint Petersburg	125
4	North-West Federal district	Republic of Komi	54
5	Ural Federal district	Sverdlovsk region	33
6	Siberian Federal district	Republic of Buryatia	25
7	Southern Federal district	Krasnodar region	23
8	Siberian Federal district	Krasnoyarsk region	20
9	North-West Federal district	Leningrad region	20
10	Ural Federal district	Chelyabinsk region	20

At the second stage, the former "leaders" were added to the Nizhny Novgorod region, the Republic of Dagestan, the Murmansk region, and the Sverdlovsk region (table 2). At this stage, there are no regions where there are no cases of Covid-19 infection.

At the third stage, the Rostov region, Khanty-Mansi Autonomous Okrug, and Voronezh region were added to the number of regions "leading" in the incidence of coronavirus infection (table 3).

Maximum number of mortality rate from coronavirus infection observed in the Federal cities – Moscow and Saint-Petersburg and Moscow region, the Republic of Dagestan, Nizhny Novgorod region, Rostov region, Krasnoyarsk region, Tula region, Stavropol region, Sverdlovsk and Novosibirsk regions.

Comparing the number of cases of coronavirus infection in the regions of Russia with the population, it is possible to differentiate regions by the density of incidence (the number of cases per 1000 population). The highest incidence of coronavirus infection as of July 1, 2020 was recorded in the city of Moscow (17.4 cases per 1000 population), the Republic of Tuva (13.3 cases per 1000 population) and the Yamalo-Nenets Autonomous district (about 10 cases per 1000 population). Also, a high incidence of coronavirus infection is recorded in the Moscow region, the Karachay-Cherkess Republic, the Kamchatka territory, the Murmansk region, the Orel region, the Republic of Ingushetia and the Kaluga region. The incidence rates in these regions are 6-8 cases per 1000 population.
Table 2 – Regions of Russia with the highest incidence of coronavirus infection at stage 2

№	Federal district	Region	Number of cases	Number of deaths
1	Central Federal district	city of Moscow	121301	1179
2	Central Federal district	Moscow region, Saint Petersburg	22700	219
3	North-West Federal district	Nizhny Novgorod region	5087	32
4	North Caucasus Federal district	Republic of Dagestan	2888	23
5	North-West Federal district	Murmansk region	2428	5
6	Ural Federal district	Sverdlovsk region	2163	3
7	Southern Federal district	Krasnodar region	2126	22
8	Central Federal district	Tula region	1971	14
9	Southern Federal district	Rostov region	1946	24

Table 3 – Regions of Russia with the highest incidence of coronavirus infection at stage 3

№	Federal district	Region	Absolute number of cases	Number of cases per 1000 population	Number of deaths
1	Central Federal district	city of Moscow	220853	17.4	3761
2	Siberian Federal district	Republic of Tuva	4361	13.3	3
3	Ural Federal district	Yamalo-Nenets Autonomous district	5332	9.8	37
4	Central Federal district	Moscow region	57269	7.4	875
5	North Caucasus Federal district	Karachay-Cherkess Republic	3448	7.4	12
6	North-Western Federal district	Murmansk region	5093	6.9	13
7	Far Eastern Federal district	Kamchatka territory	2145	6.9	28
8	Central Federal district	Orel	4480	6.1	59
9	Central Federal district	Kaluga region	5973	6	44
10	North Caucasus Federal district	Republic of Ingushetia	3020	6	68

The lowest incidence of Covid-19 infection as of July 1 was established on the territory of the Republic of Crimea (0.4 cases per 1000 population), the city of Sevastopol (0.5 cases per 1000 population), and the Kemerovo region (0.6 cases per 1000 population). Also, a relatively low incidence of coronavirus infection was found in the Tyumen region, the Kurgan region, the Udmurt Republic, the Krasnodar territory, the Republic of Tatarstan, and the Chechen Republic. The incidence rates in these regions are 0.8-1.2 cases per 1000 population.

3. Results and Discussion

The conducted research allows us to state a significant differentiation of Russian regions in terms of the incidence of coronavirus infection in the population. Regions also differ in the rate of spread of the covid-19 virus-related disease at various stages. This fact determines the specific contribution of various factors in the spread of the Cabir-19 virus in the regions of Russia, including socio-ecological conditions.

To assess the specific contribution of social and environmental conditions to the spread of coronavirus infection, data from the Federal information Fund for social and hygienic monitoring of the
Federal center for hygiene and epidemiology of Rospotrebnadzor on indicators of financial security of citizens, quality of health care and sanitary conditions were analyzed.

An analysis of the financial security of citizens of Russian regions has shown that some of its factors may have an impact on the spread of coronavirus infection. Thus, at the 1st and 2nd stages of the spread of coronavirus infection, there are direct correlations of average strength with the volume of GDP per capita and the incidence of infection caused by the Covid-19 virus. At stage 3, the correlation coefficient for this indicator significantly weakens. In addition, at the first two stages, an inverse correlation was found between the average strength of the spread of coronavirus infection and the number of people with incomes below the subsistence minimum.

Assessment of the specific contribution of the quality of health care to the spread of coronavirus infection showed that these factors have an impact on the incidence of the population associated with the Covid-19 virus at the 3rd stage of the epidemic.

The study of the specific contribution of environmental and hygienic factors showed a small contribution of these factors to the spread of coronavirus infection at all three stages of the epidemic. Significant correlations were found between the incidence of the Covid-19 virus and the percentage of residential buildings without running water and sewerage.

4. Conclusion
Thus, the assessment of the specific contribution of social and environmental conditions to the spread of the Covid-19 virus in the regions of the Russian Federation showed that at the first stages, financial security of the population makes a significant contribution to the spread of infection. So, from the first days of the appearance of a new infection on the territory of Russia, the largest number of infected people was observed in the most prosperous regions in terms of financial support for citizens – the cities of Moscow and St. Petersburg, as well as the Moscow and Sverdlovsk regions and other regions. This fact can be explained by the fact that at the first stage of the spread of infection, most cases of infection were "imported", i.e. the infection of Russian citizens occurred mainly on the territory of other States. The higher the financial security of the population, the more mobile citizens are – they travel more often both to other countries and move more actively within the country, which contributed to the high infection of this group at the first stage of the spread of Covid-19.

The specific contribution of the quality of medical care, which is widely differentiated within the regions of Russia, affects only the third stage of the spread of coronavirus infection.

Environmental and hygiene indicators make a weak contribution to the spread of Covid-19 at all three stages of the epidemic.

The studies were carried out with the financial support of the RFFI grant (project 19-05-00660 A)

References
[1] Yeprintsev S A Shekoyan S V Lepeshkina L A Voronin A A Klevtsova M A 2019 Technologies for Creating Geographic Information Resources for Monitoring the Socio-Ecological Conditions of Cities (IOP Conference Series: Materials Science and Engineering 582(1)) pp 012012
[2] Yeprintsev S A Kurolap S A Komov I V Minnikov I V 2013 Monitoring of factors of ecological safety of urbanized territories' population (by example of settlements of Voronezh region) (Life Science Journal 10(12 SPL.ISS.)) pp 846-848
[3] Yuan Liu, Jin-Bao Liu, Wei Peng 2020 Study on novel coronavirus pneumonia (COVID-19) mechanism by Huashi Baidu Formula based on network pharmacology (Journal of Hainan Medical University. 2020;26(11)) pp 5-12
[4] Clarisa B. Palatnik-de-Sousa, Clarisa B. Palatnik-de-Sousa 2020 What Would Jenner and Pasteur Have Done About COVID-19 Coronavirus? The Urges of a Vaccinologist (Frontiers in Immunology 11)
[5] Williams Colin C., Kayaoglu Aysegul 2020 The Coronavirus Pandemic and Europe’s Undeclared Economy: Impacts and a Policy Proposa (South East European Journal of Economics and Business 15(1)) pp 80-92
[6] Hamzah Bakri 2020 Quality Improvement of Community Health Center During Covid-19 Pandemic (International Journal of Multicultural and Multireligious Understanding 7(4)) pp 345-354
[7] Yang LI, Lian-Yang Zhang 2020 The interpretation of Consensus on emergency surgery and infection prevention and control for severe trauma patients with 2019 novel corona virus pneumonia (Medical Journal of Chinese People's Liberation Army 45(2)) pp 113-117
[8] Chris Kenyon 2020 The prominence of asymptomatic superspreaders in transmission mean universal face masking should be part of COVID-19 de-escalation strategies (International Journal of Infectious Diseases 97) pp 21-22
[9] Thomas R. Martin, Mark M. Wurfel, Ivan Zanoni, Richard Ulevitch 2020 Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness (EBioMedicine 57) pp 102836
[11] Ya Wen, Huaruo Chen, Huaruo Chen, Kai Li, Xueying Gu 2020 The Challenges of Life Design Counseling in the Times of the Coronavirus Pandemic (COVID-19) (Frontiers in Psychology 11)
[12] Martin J. Tobin, Amal Jubran, Franco Laghi 2020 Misconceptions of pathophysiology of happy hypoxemia and implications for management of COVID-19 (Respiratory Research 21(1)) pp 1-2
[13] Ali Elbeddini, Aniko Yeats, Stephanie Lee 2020 Correction to: Amid COVID-19: the importance of developing an positive adverse drug reaction (ADR) and medical device incident (MDI) reporting culture for Global Health and public safety (Journal of Pharmaceutical Policy and Practice 13(1)) pp 1
[14] Lina Martinez, Isabella Valencia, Valeria Trofimoff 2020 Subjective wellbeing and mental health during the COVID-19 pandemic: Data from three population groups in Colombia (Data in Brief 32) pp 106287
[15] Huiyang Dai, Stephen X. Zhang, Kim Hoe Looi, Rui Su, Jizhen Li 2020 Perception of Health Conditions and Test Availability as Predictors of Adults’ Mental Health during the COVID-19 Pandemic: A Survey Study of Adults in Malaysia (International Journal of Environmental Research and Public Health 7(5498)) pp 5498
[16] Joseph J. Amon 2020 COVID-19 and Detention: Respecting Human Rights (Health and Human Rights 22(1)) pp 367-370
[17] Ioulia Solomou, FoGi Constantinidou 2020 Prevalence and Predictors of Anxiety and Depression Symptoms during the COVID-19 Pandemic and Compliance with Precautionary Measures: Age and Sex Matter (International Journal of Environmental Research and Public Health 17(4924)) pp 4924
[19] Zaoli Yang, Xin Li, Harish Garg, Meng Qi 2020 Decision Support Algorithm for Selecting an Antivirus Mask over COVID-19 Pandemic under Spherical Normal Fuzzy Environment (International Journal of Environmental Research and Public Health 17(3407) pp 3407
[20] Muhammad Adnan Sheereen, Suliman Khan, Abeer Kazmi, Nadia Bashir, Rabeea Siddique 2020 COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses (Journal of Advanced Research 24) pp 91-98
[21] Maurizio Salvadori, Aris Tsaiouchos 2020 The Novel Coronavirus 2019 Epidemic and the Kidneys (Journal of Renal and Hepatic Disorders 4(2))