Generic uniqueness of saddle point for two-person zero-sum differential games

1 Introduction

In the 1950s, Isaacs [1] initiated the study of two-person zero-sum differential games. Later in the 1960s and 1970s, Berkovitz [2], Elliott-Kalton [3], Fleming [4], and Friedman [5] also made contributions. Two-person zero-sum differential games were investigated extensively in the literature as they are widely used in many fields, such as biology, finance, and engineering, and also play a key role in the research of general differential games. Ramaswamy and Shaiju [6] proved convergence theorems for the approximate value functions by Yosida type approximations and constructed approximate saddle-point strategies within the sense of feedback in Hilbert Space. Berkovitz [7] defined differential games of fixed duration and showed that games of fixed duration that satisfy Isaacs condition have saddle point. Ghosh and Shaiju [8] proved the existence of saddle point equilibrium for two-player zero-sum differential games in Hilbert space. Ammar et al. [9] derived sufficient and necessary conditions for an open-loop saddle point of rough continuous differential games for two-person zero-sum rough interval continuous differential games. In particular, Sun [10] derived a sufficient condition of the existence of an open-loop saddle point for two-person zero-sum stochastic linear quadratic differential games in 2021. We refer the reader to [11,12] and references therein.

It is worth noting that uniqueness is important in both practice and theory, especially in mathematical problems including two-person zero-sum differential games. However, how many problems have a unique solution? In fact, most mathematical problems cannot guarantee the uniqueness of the solution. So, we have to settle for the second thing: generic uniqueness (see Remark 3.1).

Regarding the generic uniqueness, many results have been investigated. Kenderov [13] studied the solutions of optimization problems and obtained an important result: most optimization problems have a unique solution. Ribarska and Kenderov [14] in their work proved that most two-person zero-sum continuous games have a unique solution in the sense of Baire's category. Tan et al. [15] studied the saddle point for general functions and derived the generic uniqueness of saddle points by the set-valued analysis method. Yu et al. [16] considered the generic uniqueness of equilibrium points for general equilibrium problems.
On the other hand, Yu et al. [17] presented the existence and stability of optimal control problems using set-valued analysis theory in 2014 and showed that most of the optimal control problems are generic stable. After that, Deng and Wei [18, 19] proved that generic stability result of optimal control problems governed by semi-linear evolution equation and nonlinear optimal control problems with 1-mean equilibrium controls, respectively. In 2020, the generic stability of Nash equilibria is investigated by Yu and Peng in their work [20] on noncooperative differential games in the sense of Baire’s category.

To the best of our knowledge, there is no published result for the generic uniqueness of saddle point for two-person sum-person differential games. The purpose of this paper is to study such problems. We point out that the main idea of the present paper comes from the works of Kenderov [13], Ribarska and Kenderov [14], and Yu et al. [15, 20].

The remainder of this paper is organized as follows. The next section is devoted to formulating the game model, collecting some basic preliminary, and stating some properties of a saddle point. In Section 3, we formulate a space of problem and introduce a set-valued mapping. We then state some continuous dependence of state trajectory and cost functional and present some main results in this paper. Finally, some conclusions are given in Section 4.

2 Model and preliminaries

We begin with classical differential games governed by ordinary equations. Let R^n and R^q be Euclidean space, $U \subset R^n$ and $V \subset R^q$ be bounded closed and convex set. Let $T > 0$, for initial state $x_0 \in R^n$, consider the following control systems:

$$
\begin{align*}
\dot{X}(t) &= f(t, X(t), u(t), v(t)), \quad t \in [0, T], \\
X(0) &= x_0,
\end{align*}
$$

where $f : [0, T] \times R^n \times U \times V \rightarrow R^n$ is a given map. $X(\cdot)$ is called the state trajectory, $u(\cdot)$ and $v(\cdot)$ are control functions valued in U and V, respectively. We denote

$$
\begin{align*}
U[t, s] &= \{ u : [t, s] \rightarrow U \mid u(\cdot) \text{ is continuous} \}, \\
V[t, s] &= \{ v : [t, s] \rightarrow V \mid v(\cdot) \text{ is continuous} \}.
\end{align*}
$$

Under some mild conditions, for initial pair $(0, x_0)$ and any $(u(\cdot), v(\cdot)) \in U[0, T] \times V[0, T]$, control system (1) admits a unique solution.

Remark 2.1. It is obvious that $X(\cdot)$, which is the solution of control system (1), depends on f, u, and v. Thus, let $X(\cdot) \equiv X_{u,v}(\cdot)$. See the below section for more description with respect to continuous dependence.

We now introduce the following cost functionals which measures the performance of the control $u(\cdot)$ and $v(\cdot)$.

$$
J_i(u(\cdot), v(\cdot)) = \int_0^T \varphi_i(t, X(t), u(t), v(t))dt + \psi_i(X(T)), \quad i = 1, 2,
$$

for some given maps $\varphi_i : [0, T] \times R^n \times U \times V \rightarrow R$ and $\psi_i : R^n \rightarrow R$ $(i = 1, 2)$. The following two-person differential games is posed.

Problem (DG). For a given initial pair $(0, x_0)$, Player 1 finds a control $\bar{u}(\cdot) \in U[0, T]$ and Player 2 finds a control $\bar{v}(\cdot) \in V[0, T]$ such that

$$
\begin{align*}
J_1(\bar{u}(\cdot), \bar{v}(\cdot)) &= \inf_{u(\cdot) \in U[0,T]} J_1(u(\cdot), \bar{v}(\cdot)), \\
J_2(\bar{u}(\cdot), \bar{v}(\cdot)) &= \inf_{v(\cdot) \in V[0,T]} J_2(\bar{u}(\cdot), v(\cdot)).
\end{align*}
$$
Any $(\bar{u}(), \bar{v}()) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T]$ satisfying (4) is called an open-loop Nash equilibrium control.

Now, we let cost functionals (3) satisfies
\[
\begin{align*}
\phi(t, X(t), u, v) + \psi(t, X(t), u, v) &= 0, \\
\psi(X(T)) &= 0,
\end{align*}
\]
where $\phi_t(t, X(t), u(t), v(t)) = h(t, X(t)) + Wu(t) + Zv(t)$ $(i = 1, 2)$, and W, Z are constant positive definite matrix. $h : [0, T] \times \mathbb{R}^n \to \mathbb{R}$ is the given mapping. Then, one has
\[
J(u(\cdot), v(\cdot)) + J_2(u(\cdot), v(\cdot)) = 0.
\]
In this case, Problem(DG) is a two-person zero-sum differential game. For convenience, we call it Problem(ZDG). Define
\[
\begin{align*}
\phi(t, X(t), u, v) &= -\phi_2(t, X(t), u, v), \\
\psi(X(T)) &= -\psi_2(X(T)),
\end{align*}
\]
and
\[
J(u(\cdot), v(\cdot)) = J_1(u(\cdot), v(\cdot)) = -J_2(u(\cdot), v(\cdot)).
\]
This yields that
\[
J(\bar{u}(), \bar{v}()) = \inf_{u(\cdot) \in \mathcal{U}[0, T]} J(u(\cdot), \bar{v}(\cdot)) = \inf_{u(\cdot) \in \mathcal{U}[0, T]} J_1(u(\cdot), v(\cdot)) = J_1(\bar{u}(\cdot), \bar{v}(\cdot)).
\]
and
\[
J(\bar{u}(), \bar{v}()) = \inf_{v(\cdot) \in \mathcal{V}[0, T]} J(\bar{u}(\cdot), v(\cdot)) = -\inf_{v(\cdot) \in \mathcal{V}[0, T]} J_2(\bar{u}(\cdot), v(\cdot)) = -J_2(\bar{u}(\cdot), \bar{v}(\cdot)).
\]

Remark 2.2. In this paper, our objective is to investigate generic uniqueness of Problem(ZDG) against the perturbation of the right-hand side function of control system. To this end, we assume that cost functional is linear with regard to $u(\cdot)$ and $v(\cdot)$, which does not impact our main idea.

Definition 2.1. Let initial pair $(0, x_0)$ be fixed. A control pair $(\bar{u}(\cdot), \bar{v}(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T]$ is called an open-loop saddle point of Problem(ZDG), if for any $(u(\cdot), v(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T]$, it satisfies
\[
J(\bar{u}(\cdot), v(\cdot)) \leq J(\bar{u}(\cdot), \bar{v}(\cdot)) \leq J(u(\cdot), \bar{v}(\cdot)).
\]
In this paper, $\| \cdot \|$ represents a Euclidean norm.

We make the following assumptions.

[F] The map $f : [0, T] \times \mathbb{R}^n \times U \times V \to \mathbb{R}^n$ is measured in t and continuous with respect to u and v. There exist constant $L > 0$ and $\phi_1(\cdot) \in L^p([0, T]; \mathbb{R})$ $(p \geq 1)$ such that
\[
\begin{align*}
\| f(t, x, u, v) - f(t, y, u, v) \| &\leq L\| x - y \|, \\
\| f(t, 0, u, v) \| &\leq \phi(t),
\end{align*}
\]
\[
\forall (t, x, u, v) \in [0, T] \times \mathbb{R}^n \times U \times V.
\]

[H1] The maps $\phi : \mathbb{R}^n \to \mathbb{R}$ and $\psi : [0, T] \times \mathbb{R}^n \times U \times V \to \mathbb{R}$ are continuous in $(t, x, u, v) \in [0, T] \times \mathbb{R}^n \times U \times V$. There exists constant $K > 0$ such that
\[
\phi(t, x, u, v), \psi(x) \geq -K, \quad \forall (t, x, u, v) \in [0, T] \times \mathbb{R}^n \times U \times V.
\]

[H2] For $0 \leq t \leq T$, the map $\epsilon(t, \cdot) : \mathbb{R}^n \to 2^{\mathbb{R}^n \times \mathbb{R}^n}$ has Cesari properties, i.e.,
\[
\bigcap_{\delta > 0} \epsilon_{\delta, \epsilon}(t, O_{\delta}(x)) = \epsilon(t, x),
\]
for all $x \in \mathbb{R}^n$, where $O_{\delta}(x)$ is a δ-neighborhood of $x \in \mathbb{R}^n$, and for any $(t, x) \in [0, T] \times \mathbb{R}^n$.

\[
\varepsilon(t, x) = \begin{cases}
(z^0, z) \in \mathbb{R} \times \mathbb{R}^n & \text{if } z^0 \geq \varphi(t, x, u, v), \\
& z = f(t, x, u, v), \\
& (u, v) \in U \times V,
\end{cases}
\] (6)

[1] The following condition holds for any \((t, x) \in [0, T] \times \mathbb{R}^n,\)
\[
\inf_{u \in U} \sup_{v \in V} \langle p, f(t, x, u, v) \rangle + \varphi(t, x, u, v) = \sup_{v \in V} \inf_{u \in U} \langle p, f(t, x, u, v) \rangle + \varphi(t, x, u, v), \quad \forall p \in \mathbb{R}^n.
\]

Remark 2.3. Under the assumptions [F], [I], and [H1]–[H2], Problem(ZDG) admits open-loop saddle point (see [6–8] and references therein).

Next, we state some property on saddle point.

Property 2.1. Let \((\bar{u}(\cdot), \bar{v}(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T].\) Then \((\bar{u}(\cdot), \bar{v}(\cdot))\) is a saddle point of Problem(ZDG) if and only if (for short, iff)
\[
\inf_{u(\cdot) \in \mathcal{U}[0, T]} \sup_{v(\cdot) \in \mathcal{V}[0, T]} J(u(\cdot), v(\cdot)) = \sup_{v(\cdot) \in \mathcal{V}[0, T]} \inf_{u(\cdot) \in \mathcal{U}[0, T]} J(u(\cdot), v(\cdot)).
\] (7)

Proof. Let \((\bar{u}(\cdot), \bar{v}(\cdot))\) be a saddle point, then for any \(u(\cdot) \in \mathcal{U}[0, T]\), we have \(J(\bar{u}(\cdot), \bar{v}(\cdot)) \leq J(u(\cdot), \bar{v}(\cdot)).\) This implies that \(J(\bar{u}(\cdot), \bar{v}(\cdot)) \leq \sup_{v(\cdot) \in \mathcal{V}[0, T]} \inf_{u(\cdot) \in \mathcal{U}[0, T]} J(u(\cdot), v(\cdot)),\) which results in
\[
J(\bar{u}(\cdot), \bar{v}(\cdot)) \leq \inf_{u(\cdot) \in \mathcal{U}[0, T]} \sup_{v(\cdot) \in \mathcal{V}[0, T]} J(u(\cdot), v(\cdot)).
\]

Similarly, we can prove that
\[
J(\bar{u}(\cdot), \bar{v}(\cdot)) \geq \sup_{v(\cdot) \in \mathcal{V}[0, T]} \inf_{u(\cdot) \in \mathcal{U}[0, T]} J(u(\cdot), v(\cdot)).
\]
From the above, (7) holds.

Conversely, let \(\omega = J(\bar{u}(\cdot), \bar{v}(\cdot)),\) that is \(\omega = \inf_{u(\cdot) \in \mathcal{U}[0, T]} \sup_{v(\cdot) \in \mathcal{V}[0, T]} J(u(\cdot), v(\cdot)) = \sup_{v(\cdot) \in \mathcal{V}[0, T]} \inf_{u(\cdot) \in \mathcal{U}[0, T]} J(u(\cdot), v(\cdot)).\) Then for any \(u(\cdot) \in \mathcal{U}[0, T]\) and \(v(\cdot) \in \mathcal{V}[0, T],\) we have
\[
\omega = \inf_{u(\cdot) \in \mathcal{U}[0, T]} J(u(\cdot), \bar{v}(\cdot)) = \sup_{v(\cdot) \in \mathcal{V}[0, T]} J(\bar{u}(\cdot), v(\cdot)).
\]
So,
\[
J(\bar{u}(\cdot), v(\cdot)) \leq \omega \leq J(u(\cdot), \bar{v}(\cdot)),
\]
i.e.,
\[
J(\bar{u}(\cdot), v(\cdot)) \leq J(\bar{u}(\cdot), \bar{v}(\cdot)) \leq J(u(\cdot), \bar{v}(\cdot)).
\]
This completes the proof. □

Property 2.2. Let \((\bar{u}_1(\cdot), \bar{v}_1(\cdot)), (\bar{u}_2(\cdot), \bar{v}_2(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T]\) be saddle point of Problem(ZDG). Then \((\bar{u}_1(\cdot), \bar{v}_2(\cdot)), (\bar{u}_2(\cdot), \bar{v}_1(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T]\) are also saddle point and
\[
J(\bar{u}_1(\cdot), \bar{v}_1(\cdot)) = J(\bar{u}_2(\cdot), \bar{v}_1(\cdot)) = J(\bar{u}_2(\cdot), \bar{v}_2(\cdot)) = J(\bar{u}_1(\cdot), \bar{v}_2(\cdot)).
\] (8)

Proof. Since \((\bar{u}_1(\cdot), \bar{v}_1(\cdot)), (\bar{u}_2(\cdot), \bar{v}_2(\cdot))\) are saddle points, then for any \((u(\cdot), v(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T],\) we have
\[
J(u(\cdot), \bar{v}_1(\cdot)) \geq J(\bar{u}_1(\cdot), \bar{v}_1(\cdot)) \geq J(\bar{u}_1(\cdot), v(\cdot)).
\] (9)
\[
J(u(\cdot), \bar{v}_2(\cdot)) \geq J(\bar{u}_2(\cdot), \bar{v}_2(\cdot)) \geq J(\bar{u}_2(\cdot), v(\cdot)).
\] (10)
We denote \(u(\cdot) = \bar{u}_2(\cdot), v(\cdot) = \bar{v}_2(\cdot),\) and \(u(\cdot) = \bar{u}_1(\cdot), v(\cdot) = \bar{v}_1(\cdot)\) in (9) and (10), respectively.
\[J(\tilde{u}(\cdot), \tilde{v}(\cdot)) \geq J(\tilde{u}_1(\cdot), \tilde{v}_1(\cdot)) \geq J(\tilde{u}_2(\cdot), \tilde{v}_2(\cdot)), \]
\[J(\tilde{u}_1(\cdot), \tilde{v}_1(\cdot)) \geq J(\tilde{u}_2(\cdot), \tilde{v}_2(\cdot)) \geq J(\tilde{u}_3(\cdot), \tilde{v}_3(\cdot)). \]

(11)

It follows from (11) that
\[J(\tilde{u}_3(\cdot), \tilde{v}_3(\cdot)) = J(\tilde{u}_2(\cdot), \tilde{v}_2(\cdot)) = J(\tilde{u}_1(\cdot), \tilde{v}_1(\cdot)). \]

Namely, (8) holds. From (8) and (11), we obtain that
\[J(u(\cdot), v(\cdot)) \geq J(u_1(\cdot), v_1(\cdot)) \geq J(u_2(\cdot), v_2(\cdot)), \]
\[J(u_1(\cdot), v_1(\cdot)) \geq J(u_2(\cdot), v_2(\cdot)) \geq J(u_3(\cdot), v_3(\cdot)), \]
for any \((u(\cdot), v(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \). This completes the proof. □

3 Generic uniqueness

To investigate the generic uniqueness of open-loop saddle point for Problem (ZDG), we construct the following model. Let
\[\Omega = \{ f \mid f \text{ satisfy } [F] \}. \]

(12)

We denote the following set of open-loop saddle points of Problem (ZDG).
\[E(f) = \{ (\tilde{u}(\cdot), \tilde{v}(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \mid (\tilde{u}(\cdot), \tilde{v}(\cdot)) \text{ is open-loop saddle point of Problem (ZDG), for any } f \in \Omega \}. \]

Then, the correspondence \(f \to E(f) \) yields a set-valued mapping \(E : \Omega \to 2^{U \times V} \). We shall study the generic uniqueness of \(E(f) \). The associated metric \(d : \Omega \times \Omega \to R \) is defined by
\[d(f, g) = \sup_{(t,x,u,v) \in [0,T] \times R^2, x, u, v} \| f(t,x,u,v) - g(t,x,u,v) \|, \quad \forall f, g \in \Omega. \]

Then, one can easily prove that \((\Omega, d)\) is a complete metric space.

Next, we recall a series of definitions on set-valued mapping from [21] to study the generic uniqueness of Problem (ZDG).

Let \(U \times V \) be a metric space. A set-valued mapping \(E : \Gamma \to 2^{U \times V} \) is called:
1. upper semi-continuous at \(f \in \Omega \) iff for each open set \(O \) in \(U \times V \) with \(E(f) \subseteq O \) (respectively, \(O \cap E(f) = \emptyset \)), there exists \(\delta > 0 \) such that \(E(g) \subseteq O \) (respectively, \(O \cap E(g) = \emptyset \)) for any \(g \in \Omega \) with \(\rho(f, g) < \delta \); (2) continuous at \(f \in \Omega \) iff \(E \) is both upper and lower semi-continuous at \(f \); (3) an usc mapping with compact values iff \(E \) is upper semi-continuous and \(E(f) \) is nonempty compact for each \(f \in \Omega \); and (4) closed iff \(\text{Graph}(E) \) is closed, where \(\text{Graph}(E) = \{(f, u, v) \in \Omega \times U \times V \mid (u, v) \in E(f)\} \) is the graph of \(\Omega \). Also recall that a subset \(Q \subset \Omega \) is called a residual set iff it contains countably many intersections of open and dense subsets of \(\Omega \). If \(\Omega \) is a complete space, any residual subset of \(\Omega \) must be dense in \(\Omega \) and it is a second category set.

Lemma 3.1. [22] Let set-valued mapping \(E : \Omega \to 2^{U \times V} \) be closed and \(U \times V \) be compact, then \(E \) is upper semi-continuous at each \(f \in \Omega \).

Lemma 3.2. [23] Let \(\Omega \) be a complete metric space, \(U \times V \) be a metric space, and \(E : \Omega \to 2^U \) be an usc mapping with compact. Then there exists a dense residual subset \(Q \) of \(\Omega \) such that \(E \) is lower semi-continuous at every point in \(Q \).

Remark 3.1. Let \(Q \subset \Omega \) be a dense residual set, if for any \(\beta \in Q \), a certain property \(P \) depending on \(\beta \) holds. Then \(P \) is called generic property on \(\Omega \). Since \(Q \) is a second category, we may say that the property \(P \) holds for most of the points of \(\Omega \) in the sense of Baire’s category.

In what follows, inspired by the literature [18] and [20], we give some basic property about continuous dependence for state trajectory.
Property 3.1. Let \(\{ f_k \} \subset \Omega \) with \(f_k \to f \in \Omega \). For any \((u_k(\cdot), v_k(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \) with \((u(\cdot), v(\cdot)) \to (\bar{u}(\cdot), \bar{v}(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \), one has \(X_{k}^{u_k, v_k}(\cdot) \to X_{u, v}(\cdot) \) as \(k \to \infty \).

Proof. For any \(t \in [0, T] \), according to control system (1), we have

\[
\begin{align*}
X_k(t) &= x_0 + \int_0^T f_k(t, X_k(t), u_k(t), v_k(t)) \, dt, \\
X(t) &= x_0 + \int_0^T f(t, X(t), u(t), v(t)) \, dt.
\end{align*}
\]

Since \(f_k \to f \), for any \(\varepsilon > 0 \), there exists \(N_1 > 0 \) such that for any \(k > N_1 \), \(d(f_k, f) < \frac{\varepsilon}{3T} \). \(X(t) \) is continuous at \([0, T] \), then there exists constant \(a_1 > 0 \) such that \(\max_{t \in [0, T]} \| X(t) \| \leq a_1 \). \(U \subset \mathbb{R}^p \) and \(V \subset \mathbb{R}^q \) are bounded closed and convex set. That is, \(U \) and \(V \) are also compact. Because \(u(\cdot) \) and \(v(\cdot) \) are continuous in \([0, T] \), there exist constants \(a_2 > 0 \) and \(a_3 > 0 \) such that \(\max_{t \in [0, T]} \| u(t) \| \leq a_2 \) and \(\max_{t \in [0, T]} \| v(t) \| \leq a_3 \). Thus, \(f \) is uniformly continuous on the set

\[
\Sigma = [0, T] \times \{ X \in \mathbb{R}^n \mid \| X(t) \| \leq a_1 \} \times \{ u \in U \mid \| u(t) \| \leq a_2 \} \times \{ v \in V \mid \| v(t) \| \leq a_3 \}.
\]

Owing to \((u_k(\cdot), v_k(\cdot)) \to (\bar{u}(\cdot), \bar{v}(\cdot))\), there exists constant \(N_2 > 0 \) such that for any \(t \in [0, T] \), when \(k \geq N_2 \), one has

\[
\| f(t, X(t), u_k(t), v_k(t)) - f(t, X(t), u(t), v(t)) \| < \frac{\varepsilon}{3T}.
\]

There exists constant \(N_3 > 0 \) such that for any \(t \in [0, T] \), when \(k \geq N_3 \), one has

\[
\| f(t, X(t), u(t), v_k(t)) - f(t, X(t), u(t), v(t)) \| < \frac{\varepsilon}{3T}.
\]

Therefore, choose \(N = \max\{N_0, N_2, N_3\} \) such that for any \(t \in [0, T] \), when \(k \geq N \), one has

\[
\| X_k(t) - X(t) \| \leq \int_0^T \| f_k(t, X_k(t), u_k(t), v_k(t)) - f(t, X(t), u(t), v(t)) \| \, dt
\]
\[
\leq \| f_k(t, X_k(t), u_k(t), v_k(t)) - f(t, X_k(t), u_k(t), v_k(t)) \| \, dt
\]
\[
+ \int_0^T \| f(t, X_k(t), u_k(t), v_k(t)) - f(t, X(t), u_k(t), v_k(t)) \| \, dt
\]
\[
+ \int_0^T \| f(t, X(t), u_k(t), v_k(t)) - f(t, X(t), u(t), v_k(t)) \| \, dt
\]
\[
+ \int_0^T \| f(t, X(t), u(t), v_k(t)) - f(t, X(t), u(t), v(t)) \| \, dt
\]
\[
\leq \int_0^T \frac{\varepsilon}{3T} \, dt + \int_0^T \| X_k(t) - X(t) \| \, dt + \int_0^T \frac{\varepsilon}{3T} \, dt + \int_0^T \frac{\varepsilon}{3T} \, dt
\]
\[
\leq \varepsilon L \int_0^T \| X_k(t) - X(t) \| \, dt.
\]

Thanks to Gronwall's inequality, we have

\[
\| X_k - X \| \leq e^{LT} \varepsilon.
\]

From the arbitrary of \(\varepsilon > 0 \), it yields \(X_{k}^{u_k, v_k}(\cdot) \to X_{u, v}(\cdot) \). \(\Box \)
From Property 3.1, the following result is easily obtained.

Corollary 3.1. Let \(\{ f_k \} \subset \Omega \) with \(f_k \to f \in \Omega \).

1. For any \(u_k(\cdot) \in \mathcal{U}[0, T] \) with \(u_k(\cdot) \to \bar{u}(\cdot) \in \mathcal{U}[0, T] \). Then for any \(\nu(\cdot) \in \mathcal{V}[0, T] \), \(X_{\nu, u_k}(\cdot) \to X_{\nu, \bar{u}}(\cdot) \) as \(k \to \infty \).

2. For any \(v_k(\cdot) \in \mathcal{V}[0, T] \) with \(v_k(\cdot) \to \nu(\cdot) \in \mathcal{V}[0, T] \). Then for any \(u(\cdot) \in \mathcal{U}[0, T] \), \(X_{\nu, u_k}(\cdot) \to X_{\nu, \bar{u}}(\cdot) \) as \(k \to \infty \).

3. For any \((u(\cdot), \nu(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \). Then \(X_{\nu, u}(\cdot) \to X_{\nu, \bar{u}}(\cdot) \) as \(k \to \infty \).

Corollary 3.2. Let \(f \in \Omega \).

1. For any \((u_k(\cdot), \nu_k(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \) with \((u_k(\cdot), \nu_k(\cdot)) \to (\bar{u}(\cdot), \bar{\nu}(\cdot)) \in \mathcal{U}[0, T] \times \mathcal{V}[0, T] \). Then \(J_f(u_k(\cdot), \nu_k(\cdot)) \to J_f(\bar{u}(\cdot), \bar{\nu}(\cdot)) \) as \(k \to \infty \).

2. For any \(u_k(\cdot) \in \mathcal{U}[0, T] \) with \(u_k(\cdot) \to \bar{u}(\cdot) \in \mathcal{U}[0, T] \). Then for any \(\nu(\cdot) \in \mathcal{V}[0, T] \), \(J_f(u_k(\cdot), \nu(\cdot)) \to J_f(\bar{u}(\cdot), \nu(\cdot)) \) as \(k \to \infty \).

3. For any \(\nu_k(\cdot) \in \mathcal{V}[0, T] \) with \(\nu_k(\cdot) \to \nu(\cdot) \in \mathcal{V}[0, T] \). Then for any \(u(\cdot) \in \mathcal{U}[0, T] \), \(J_f(u(\cdot), \nu_k(\cdot)) \to J_f(u(\cdot), \nu(\cdot)) \) as \(k \to \infty \).

Now, we present the main results in this paper.

Theorem 3.1. Set-valued mapping \(E : \Omega \to 2^{\mathcal{U} \times \mathcal{V}} \) is an usc mapping with compact.

Proof. Since \(U \subset \mathbb{R}^p \) and \(V \subset \mathbb{R}^q \) are bounded closed and convex set, then \(U \times V \subset \mathbb{R}^{p+q} \) is also bounded closed and convex set, i.e., \(U \times V \) is compact and convex set. By Lemma 3.2, it suffices to show that the graph of \(E \) is closed, where \(\text{Graph}(E) = \{(f, u, v) \in \Omega \times U \times V \mid (u, v) \in E(f)\} \). Suppose that \(\{f_k\} \subset \Omega \) with \(f_k \to f \in \Omega \), for any \((u_k(\cdot), \nu_k(\cdot)) \in (E(f_k)) \) with \((u_k(\cdot), \nu_k(\cdot)) \to (\bar{u}(\cdot), \bar{\nu}(\cdot)) \). Let us show that \((\bar{u}(\cdot), \bar{\nu}(\cdot)) \in E(f)\).

By \((u_k(\cdot), \nu_k(\cdot)) \in (E(f_k))\), then for any \((u, v) \in (U \times V) \), we have

\[
J_{f_k}(u_k(\cdot), \nu_k(\cdot)) \geq J_f(u_k(\cdot), \nu(\cdot)) \geq J_f(u(\cdot), \nu(\cdot)).
\]

Since \((u_k(\cdot), \nu_k(\cdot)) \to (\bar{u}(\cdot), \bar{\nu}(\cdot))\), and \(f_k \to f \), by Property 3.1 and its Corollaries, we obtain that

\[
J_{f_k}(u_k(\cdot), \nu_k(\cdot)) \to J_f(u(\cdot), \nu(\cdot)),
\]

\[
J_{f_k}(u_k(\cdot), \nu(\cdot)) \to J_f(\bar{u}(\cdot), \bar{\nu}(\cdot)), \quad \text{as} \quad k \to \infty.
\]

Therefore, for any \((u(\cdot), \nu(\cdot)) \in (U \times V) \), it results in

\[
J_f(u(\cdot), \nu(\cdot)) \geq J_f(\bar{u}(\cdot), \bar{\nu}(\cdot)) \geq J_f(\bar{u}(\cdot), \nu(\cdot)),
\]

which yields \((\bar{u}(\cdot), \bar{\nu}(\cdot)) \in E(f)\). This completes the proof.

Theorem 3.2. There exists a dense residual subset \(Q \) of \(\Omega \) such that for any \(\omega \in Q \), \(E(\omega) \) is a singleton set.

Proof. Since \(U \times V \) is compact and \((\Omega, d)\) is a complete metric space, according to Theorem 3.1, set-valued mapping \(E \) is an usc mapping with compact. By using Lemma 3.2, there exists a dense residual subset \(Q \) such that for any \(\omega \in Q \), \(E(\omega) \) is lower semi-continuous at \(\omega \), which implies \(E \) is continuous at \(\omega \).

Assume that \(E(\omega) \) is not a singleton set for some \(\omega \in Q \). Then there exists \((u_1, v_1) \neq (u_2, v_2) \in E(\omega)\), and \((u_1, v_1) \neq (u_2, v_2) \). Without loss of generality, let \(u_1 \neq u_2 \). By separation theorem of convex set, there exists continuous linear functional \(\eta \) in \(E \) such that \(\eta(u_1) \neq \eta(u_2) \), let \(g : U \to \mathbb{R} \) be defined by

\[
g(u) = \frac{\eta(u) - \eta(u_1)}{\eta(u_1) - \eta(u_2)}, \quad \text{for any} \quad u \in U.
\]

Then \(g(u_1) = 1, g(u_2) = 0 \), and \(g \) is continuous and bounded in \(U \). Take \((u, v) \in U \times V \), for any \(\varepsilon > 0 \), define a function \(\omega_\varepsilon(u, v) = \omega(u, v) - \varepsilon g(u) \). It is easy to prove that \(\omega_\varepsilon \in \Omega \) and \(\omega_\varepsilon \to \omega \) as \(\varepsilon \to 0 \).
Let $G = \{ u \in U \mid g(u) > \frac{1}{2} \} \times V$, then $G \subset U \times V$ is an open set. Since $g(u_i) = 1, (u_i, v_i) \in G, G \cap E(\omega) \neq \emptyset$. Since set-valued mapping E is lower semi-continuous, thus, when $\varepsilon > 0$ is very small, we have $G \cap E(f_\varepsilon) \neq \emptyset$.

Take $(\bar{u}, \bar{v}) \in G \cap E(\omega)$, that is, $(\bar{u}, \bar{v}) \in E(\omega)$ and $g(\bar{u}) > \frac{1}{2}$.

$$V_\varepsilon = \inf_{u \in U} \sup_{v \in V} \omega(u, v) \geq \inf_{u \in U} \sup_{v \in V} \omega(\bar{u}, v) = \omega(\bar{u}, v) = \sup_{v \in V} \omega(\bar{u}, v)$$

$$\geq \sup_{v \in V} [\omega(\bar{u}, v) - \varepsilon g(\bar{u})] = \sup_{v \in V} [\omega(\bar{u}, v) - \varepsilon g(\bar{u})]$$

$$> \inf_{u \in U} \sup_{v \in V} \omega(u, v) = \frac{\varepsilon}{2} = \omega - \frac{\varepsilon}{2}$$

where $\omega = \inf_{u \in U} \sup_{v \in V} \omega(u, v)$.

On the other hand, since $g(u_0) = 0$ and $(u_1, v_1), (u_2, v_2) \in E(\omega)$, by Property 2.2, $(u_2, v_1) \in E(\omega)$.

$$\omega = \inf_{u \in U} \sup_{v \in V} \omega(u, v) \geq \inf_{u \in U} \sup_{v \in V} \omega(\bar{u}, v) = \sup_{v \in V} \omega(\bar{u}, v)$$

$$= \sup_{v \in V} [\omega(\bar{u}, v) - \varepsilon g(\bar{u})] = \sup_{v \in V} [\omega(\bar{u}, v) - \varepsilon g(\bar{u})]$$

$$\geq \inf_{u \in U} \sup_{v \in V} \omega(\bar{u}, v) = V_\varepsilon,$$

which is a contradiction with $V_\varepsilon > \omega - \frac{\varepsilon}{2}$. Thus, the proof is complete.

\[\square\]

4 Conclusion

By constructing a complete metric space, based on the theory of set-valued mappings, this paper investigates the generic uniqueness of saddle point with respect to the right-hand side functions of the control system for two-person zero-sum differential games within the class of open-loop. That is, most of the two-person zero-sum differential games have unique saddle point in the sense of Baire’s category. However, it is great that our cost functional is linear with respect to control functions $u(\cdot)$ and $v(\cdot)$. We will investigate the corresponding stability for a general cost functional in the future.

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding information: This work was supported by the Natural Science Foundation of China (Grant No. 12061021).

Author contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

References

[1] R. Isaacs, Differential Games, Wiley, New York, 1965.

[2] L. D. Berkovitz, A variational approach to differential games, Advances in Game Theory, Princeton University Press, Princeton, 1964.
[3] R. J. Elliott and N. J. Kalton, *The Existence of Value in Differential Games*, American Mathematical Society, Providence, 1972.

[4] W. H. Fleming, *The convergence problem for differential games*, J. Math. Anal. Appl. 3 (1961), no. 1, 102–116.

[5] A. Friedman, *Differential Games*, Wiley-Interscience, New York, 1971.

[6] M. Ramaswamy and A. J. Shaiju, *Construction of approximate saddle-point strategies for differential games in a Hilbert spaces*, J. Optim. Theory Appl. 141 (2009), 349–370, DOI: https://doi.org/10.1007/s10957-008-9478-z.

[7] L. D. Berkovitz, *The existence of value and saddle point in games of fixed duration*, SIAM J. Control Optim. 23 (1985), no. 2, 172–196, DOI: https://doi.org/10.1137/0323015.

[8] M. K. Ghosh and A. J. Shaiju, *Existence of value and saddle point infinite-dimensional differential games*, J. Optim. Theory Appl. 121 (2004), no. 2, 301–325, DOI: https://doi.org/10.1023/B:JOTA.0000037407.15482.72.

[9] E. S. Amar, M. G. Brikaa, and E. A. Rehim, *A study on two-person zero-sum rough interval continuous differential games*, OPSEARCH 56 (2019), 689–716, DOI: https://doi.org/10.1007/s12597-019-00383-2.

[10] J. Sun, *Two-person zero-sum stochastic linear-quadratic differential games*, SIAM J. Control Optim. 59 (2021), no. 3, 1804–1829, DOI: https://doi.org/10.1137/20M1340368.

[11] P. Bernhard, *Linear quadratic, two-person, zero-sum differential games: Necessary and sufficient conditions*, J. Optim. Theory Appl. 27 (1979), no. 1, 51–69, DOI: https://doi.org/10.1007/BF00933325.

[12] J. Yong, *Differential Games: A Concise Introduction*, World Scientific, New York, 2014.

[13] P. S. Kenderov, *Most of the optimization problems has unique solutions*, In: B. Brosowski, F. Deutsch, (eds), Parametric Optimization and Approximation, International Series of Numerical Mathematics, vol. 72, Birkhäuser, Basel, 1984, pp. 203–216, DOI: https://doi.org/10.1007/978-3-0348-6253-0_13.

[14] N. Ribarska and P. S. Kenderov, *Most of the two person zero-sum games have unique solutions*, In: Workshop/ Miniconference on Functional Analysis and Optimization, Australian National University, Mathematical Sciences Institute, Australia, 1988, pp. 73–82.

[15] K. K. Tan, J. Yu, and X. Yuan, *The uniqueness of saddle points*, Bull. Pol. Acad. Sci. Math. 43 (1995), 119–129.

[16] J. Yu, D. Peng, and S. Xiang, *Generic uniqueness of equilibrium points*, Nonlinear Anal. 74 (2011), 6326–6332, DOI: https://doi.org/10.1016/j.na.2011.06.011.

[17] J. Yu, D. Peng, D. Xu, and Y. Zhou, *Existence and stability analysis of optimal control*, Optimal Control Appl. Methods 35 (2014), no. 6, 721–729, DOI: https://doi.org/10.1002/oca.2096.

[18] H. Deng and W. Wei, *Existence and stability analysis for nonlinear optimal control problems with 1-mean equilibrium controls*, J. Ind. Manag. Optim. 11 (2015), no. 4, 1409–1422, DOI: https://doi.org/10.3934/jimo.2015.11.1409.

[19] H. Deng and W. Wei, *Stability analysis for optimal control problems governed by semilinear evolution equation*, Adv. Differential Equations 2015, 103, DOI: https://doi.org/10.1186/s13662-015-0443-5.

[20] J. Yu and D. Peng, *Generic stability of Nash equilibrium for noncooperative differential games*, Oper. Res. Lett. 48 (2020), no. 2, 157–162, DOI: https://doi.org/10.1016/j.orl.2020.02.001.

[21] D. Peng, J. Yu, and N. Xiu, *Generic uniqueness theorems with some applications*, J. Global Optim. 56 (2013), 713–725, DOI: https://doi.org/10.1007/s10898-012-9903-6.

[22] M. K. Fort, *Essential and nonessential fixed points*, Amer. J. Math. 72 (1950), no. 2, 315–322, DOI: https://doi.org/10.2307/2372035.

[23] M. K. Fort, *Points of continuity of semicontinuous functions*, Publ. Math. Debrecen 2 (1951), 100–102.