Interaction of the yeast RAD7 and SIR3 proteins: implications for DNA repair and chromatin structure

Donald W. Paetkau, Jennifer A. Riese, William S. MacMorran, Robin A. Woods, and R. Daniel Gietz

Department of Human Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3; Department of Biology, University of Winnipeg, Manitoba, Canada, R3B 2E9

We have used the two-hybrid system to identify proteins that interact with the product of RAD7, a gene involved in DNA repair. A screen of a yeast genomic DNA–GAL4 activation domain (GAD) fusion gene library allowed the isolation of plasmids containing sequences corresponding to the 3' end of the SIR3 gene. This gene is known to be involved in the production of transcriptionally silent DNA at the cryptic mating-type cassettes and at telomeres. The cloned sequences coded for amino acids 307–979 of the Sir3 protein. A sir3 deletion allele, constructed in an isogenic rad7-deletion strain, rescued approximately one-quarter of the UV sensitivity associated with the rad7 deletion, indicating that the two genes interact genetically. Radiolabeled fusion proteins, made with the glutathione S-transferase (GST) gene in the vector pGEX-2T, were purified from Escherichia coli and shown to interact in vitro. This evidence suggests that the Sir3 protein interacts with the Rad7 protein to allow the nucleotide excision repair complex access to transcriptionally inactive chromatin. The proportions of 5-FOA-resistant cells in cultures from isogenic RAD7+ and rad7-Δ strains containing a telomeric URA3 gene were similar, suggesting that the RAD7 gene is not involved in the production or structure of transcriptionally silent chromatin at the telomeres. RAD7-dependent DNA repair of transcriptionally silent chromatin was shown not to induce expression of a telomeric copy of the URA3 gene, suggesting that the RAD7 gene is not involved in the repair of DNA damage in chromatin. Expression of a telomeric copy of the URA3 gene was stimulated in a rad7-Δ mutant, suggesting that repair of lesions in the absence of Rad7 can result in the activation of transcriptionally silenced genes.

[Key Words: Saccharomyces cerevisiae; DNA repair; two-hybrid system; RAD7; SIR3]

Received April 1, 1994; revised version accepted July 19, 1994.
mating-type cassettes and at telomeres [for review, see Laureson and Rine 1992; Sandell and Zakian 1992]. Genes positioned close to or, within, these domains exhibit transcriptional repression (Klar et al. 1981; Schnell and Rine 1986; Mahoney and Broach 1989; Gottschling et al. 1990). Defects in six genes (SIR2, SIR3, SIR4, NAT1, ARD1, and HHF2) affect transcriptional silencing at HML, HMR, and telomeres [Laureson and Rine 1992; Sandell and Zakian 1992].

The SIR3 gene product is involved in the repression of gene expression at the level of transcription. The mode of action of Sir3 is currently unknown, but it is believed to be involved in the packaging of DNA into transcriptionally silent chromatin [see above reviews]. Haploid yeast strains carrying a sir3 mutant allele are unable to mate because of the expression of both α and a information in the same cell. The structure of chromatin at the telomere is also affected in a sir3 mutant [Aparicio et al. 1991; Braunstein et al. 1993]. It has been suggested that the SIR3 gene product may be a structural component of transcriptionally silent chromatin in yeast, or at least responsible for its assembly. Renaudt et al. [1993] suggested that Sir3 is the functional equivalent of histone H1, mediating the supranucleosomal structure of the genome.

Terleth et al. [1990] first showed that rad16 and rad7 yeast strains were defective in the removal of CPDs from transcriptionally silent chromatin found at HMLα, one of the cryptic mating-type loci. Thus, the rad7 and rad16 mutants are presumably defective in factors important for making CPDs in transcriptionally silent chromatin accessible to the excision repair enzymes. These investigators also showed that the defect in removal of CPDs from the HMLα locus was reversed in a sir3 mutant strain, suggesting that changes in chromatin structure mediated by the SIR3 gene product were involved in this process [Terleth et al. 1989].

We have used the two-hybrid system [Fields and Song 1989; Chien et al. 1991] to identify proteins that interact with RAD7. By use of a plasmid carrying an Escherichia coli lexA–RAD7 fusion gene, we have screened three yeast genomic DNA–GAL4 activation domain [GAD] libraries. Here, we report the identification of a number of plasmids that stimulated the transcription of the lacZ reporter gene in combination with the lexA–RAD7 fusion. Two of the pGAD fusion plasmids contained a carboxy-terminal fragment of the SIR3 gene. An interaction between the Rad7 and Sir3 proteins was also demonstrated in vitro when both proteins were produced as fusions to glutathione S-transferase [GST] in E. coli. We have also shown that a deletion mutation of sir3 shows a genetic interaction with a rad7 deletion mutation in the same strain. These results suggest that the RAD7 protein acts through an interaction with the SIR3 protein. However, deletion of the RAD7 gene had no effect on the silencing of a telomeric copy of the URA3 gene, indicating that Rad7 is not involved in the production of silent chromatin. Furthermore, RAD7-dependent NER of silent chromatin at telomeres does not appear to induce transcription.

Results

Isolation of Rad7-interacting GAD fusion proteins

In an effort to understand the role that RAD7 plays in nucleotide excision repair, we have used a modified version of the two-hybrid system [Fields and Song 1989; Chien et al. 1991] to identify interacting proteins that also function in this process. The complete RAD7 ORF was cloned into the plasmid pBTM116 (kindly supplied by Dr. S. Fields, State University of New York, Stony Brook) to produce a lexA–RAD7 fusion [see Materials and methods]. This plasmid was transformed first into the yeast strain CTY10-5D, which was then transformed with a mixture of each of the three Gal4 activation domain libraries. Approximately 400,000 colonies were replicated to medium containing X-gal, and 7 blue colonies were isolated and purified. To determine whether the production of β-galactosidase in the blue colonies was dependent on the presence of both plasmids, the plasmid containing the lexA–RAD7 fusion was lost by growth in medium selecting only for the pGAD plasmids [SC-Leu–]. Yeast colonies containing only the pGAD fusions were tested on SC-Leu– medium containing X-gal for color production. Four pGAD fusions that were dependent on the presence of the lexA–RAD7 fusion plasmid for β-galactosidase activity were analyzed further. They were isolated from yeast and transformed into Escherichia coli. The EcoRI digestion patterns of the four plasmids were different, suggesting that each contained a unique cloned DNA fragment (data not shown). When sequenced with a primer complementary to the Gal4 activation domain [see Materials and methods], and two plasmids, pGAD7B5 and pGAD7B34, proved to have the same DNA sequence from the fusion junction but differed in the length of fragment cloned. The DNA sequences generated from the four pGAD7B plasmids were compared for homologies with the DNA sequences in the GenBank data base by use of the FASTA program [Pearson and Lipman 1988]. The sequences from pGAD7B5 and pGAD7B34 were found to be identical to a portion of the SIR3 gene [Fig. 1A]. The junction of the fusion in the SIR3 gene occurred at an internal BglII site to give a fusion protein from amino acid 307 through to the end of the gene. Both plasmids contained fusions at the same site in the vector pDP4 [GAD-1F]. The other two plasmids, pGAD7B6 and pGAD7B35, both produced fusion proteins, as determined by the DNA sequence after the fusion junction, and contained unique DNA sequences not found in GenBank.

The plasmid pGAD7B5, containing the GAD–SIR3 fusion, was then transformed back into the yeast strain CTY10-5D containing the lexA–RAD7 fusion and also CTY10-5D containing the lexA–RAD6 gene fusion plasmid. The production of β-galactosidase activity was found to be dependent on the presence of both pGAD7B5 [GAD–SIR3] and pBTM116–RAD7 [lexA–RAD7] [see Table 1]. Activity of RAD7–SIR3-stimulated β-galactosidase was 23-fold higher than in the SNF1–SNF4-positive control. Typically the RAD7–SIR3 yeast colonies turned blue on X-gal medium after an overnight incubation at
DNA repair of transcriptionally silent chromatin

30°C, whereas the SNF1–SNF4 interaction usually required 3 days for the first noticeable color development, suggesting that the interactions between the Rad7 and Sir3 portions of the fusion proteins are strong. Clearly the interaction between lexA–RAD7 and GAL4AD–SIR3 fusion proteins is not the result of nonspecific interactions of the type described by Bartel et al. (1993).

Deletion mapping of the Sir3-interacting domain

The SIR3 protein is 979 amino acids in length with a predicted molecular mass of 111,207 daltons. The GAL4AD–SIR3 fusion in pGAD7B5 was fused at the BglII site at nucleotide position 916 of the ORF, which corresponds to amino acid 307 (Fig. 1A). The location of the specific domain that interacts with Rad7 was mapped by amino- and carboxy-terminal deletion analysis of a SIR3 DNA fragment in the GAL4AD fusion plasmid pACTII (see Fig. 1A). The interacting domain appears to be contained within the last one-third of the ORF, beginning at the BstBI site at nucleotide 2055 and amino acid 687, and ending with the EcoRI site at nucleotide position 2911 and amino acid 971, 8 amino acids short of the stop codon. The carboxy-terminal deletion bounded by the Asp718 site completely removes the ability of the Sir3 fusion to interact with the lexA–Rad7 fusion. This puts the carboxy-terminal boundary of the interacting domain between the Asp718 site at amino acid 835 and the EcoRI site at amino acid 971. The method of Kyte and Doolittle (1982) was used to plot the hydrophatic index of the amino acid sequence of the identified interacting domain.

Table 1. Transcriptional activation of hybrid proteins

Yeast transformant	DNA-binding domain hybrid	activation domain hybrid	β-Galactosidase activity*
lexA[1–202]–RAD7[1–565]	—	GAL4[768–881]–SIR3[307–978]	<1
lexA[1–202]–RAD7[1–565]	GAL4[768–881]–SIR3[307–978]	GAL4[768–881]–SNF4	<1
lexA[1–202]–RAD6[1–171]	GAL4[768–881]–SIR3[307–978]	GAL4[768–881]–SIR3[307–978]	414
GAL4[1–147]–SNF1	GAL4[768–881]–SNF4	GAL4[768–881]–SNF4	18

*Expressed in Miller units [see Materials and methods]. The values are averages from three separate transformants each assayed in duplicate.
domain of SIR3. The results in Figure 1B show a hydrophobic region between amino acids 150 and 280 (835–971 of the complete Sir3 product), which could be involved in the interaction with Rad7.

Rad7 and Sir3 fusion proteins interact in vitro

To confirm that the interaction between the Rad7 and Sir3 proteins occurs at the protein level, we produced GST fusion proteins in *E. coli* with both the Rad7 protein and a carboxy-terminal portion of the Sir3 protein. This was accomplished by cloning the entire RAD7 ORF in-frame into the vector pGEX-2T. The BglII–BamHI fragment containing the Sir3 gene sequence was cloned into the BamHI site of the same vector. Both plasmids were transformed into the *E. coli* strain JM109. Transformants produced GST fusions when induced with IPTG. Maximum levels of fusion proteins were obtained following growth at 23°C in LB containing 1 mM sorbitol and 2.5 mM betaine. This suggests that fusion protein yield is being affected by problems with protein folding [Blackwell and Horgan 1991].

Radiolabeled fusion proteins were produced in M9 medium containing 1 mM sorbitol and 2.5 mM betaine and 150 μCi of [35S]methionine. Both labeled and unlabeled fusion proteins were purified by affinity chromatography with glutathione–agarose (GA) beads. To test whether the two proteins could interact in vitro, the radiolabeled fusion proteins were first cleaved from the GST portion of the proteins by thrombin protease digestion, which cuts at a thrombin cleavage site at the fusion protein junction. This liberated the Rad7 and Sir3 portions of the fusion proteins from the GA beads into the soluble fraction, referred to as thrombin-cut supernatant (TCS). The interaction between the Rad7 and the Sir3 proteins was tested by mixing [1] the [35S]methionine-labeled Rad7 TCS with unlabeled GST–Sir3 fusion protein bound to GA beads and [2] [35S]methionine Sir3 TCS with unlabeled GST–Rad7 bound to GA beads. Figure 2 shows that in both experiments radiolabeled peptides of the expected size for the thrombin-released peptides were associated with GA beads containing fusion protein of the other type. Lane C contains the radiolabeled proteins from the GST–Sir3 TCS bound to the GA beads containing nonlabeled GST–Rad7 protein. The peptide fragment of Sir3 released should be 76 kD, which corresponds to the size of the band observed. The reciprocal experiment, lane D, shows a band at ~71 kD, 7 kD larger than expected for Rad7. This is likely a property of the Rad7 proteins as the GST–Rad7 fusion protein also tends to migrate slower than expected. The estimated size of the GST–Rad7 fusion protein from a 10% SDS–polyacrylamide gel is 97 kD, also ~7 kD over the predicted size from the protein sequences. As these values are close, it appears that Rad7 migrates slower than expected during SDS-PAGE. Lanes B and E show that these radiolabeled proteins are not bound by the GA beads alone. These results demonstrate that the Rad7 and Sir3 proteins appear to interact directly.

Deletion of the SIR3 gene affects RAD7-dependent DNA repair

If the interaction between Rad7 and Sir3 has biological significance we might expect that a mutation in the SIR3 gene would affect the DNA repair phenotype of a rad7 mutant. To test this, we constructed a set of isogenic yeast strains, containing rad7-Δ, sir3-Δ, or rad7-Δ–sir3-Δ deletions and determined their survival rates after exposure to UV light. The results are shown in Figure 3A. **RAD** + and sir3-Δ stains were relatively resistant to UV. However the **rad7-Δ** strain was about four orders of magnitude more sensitive at a dose of 60 J/m². Interestingly, the **rad7-Δ–sir3-Δ** strain was significantly less sensitive than the **rad7-Δ** strain. It also appeared that the **sir3-Δ** strain was more resistant to UV than the **RAD** +. We next investigated the effect of the **sir3-Δ** deletion on the UV resistance of other DNA repair mutants. The double mutants **sir3-Δ–rad1-Δ** and **sir3-Δ–rad6-Δ** were both as sensitive as **rad1-Δ** and **rad6-Δ** mutants. The results showing **sir3-Δ** in combination with **rad1-Δ** and **rad6-Δ** are found in Figure 3B,C. This suggests that the genetic interaction between the **sir3-Δ** and the **rad7-Δ** deletions is not the result of a general increase in UV resistance, resulting from the loss of SIR3 function, but rather a specific interaction between the two gene products.

RAD7 is not involved in silent chromatin formation

The SIR3 protein is an important component of silent chromatin production at both the cryptic mating-type
to test this possibility we measured the product when plated. Normally, between 10% and 90% gene are 5-FOA resistant when grown on medium not integrated at telomere VII L. 5-FOA is lethal to yeast. Figure 3. The sir3-Δ mutation rescues part of the UV sensitivity of the rad7-Δ mutation. Isogenic strains carrying a rad7-Δ, sir3-Δ, rad1-Δ, rade-Δ or double mutants rad-Δ-sir3-Δ were assayed for their UV sensitivity as described in Materials and methods. Four individual colonies from each strain were assayed, and the results were averaged and plotted against the dose. Note: Because the differences in UV sensitivity between RAD+ and sir3-Δ are negligible, the survival curves are superimposed. (A) (Δ) RAD+, (□) rad7-Δ; (■) sir3-Δ; (▲) rad7-Δ sir3-Δ, (B) (Δ) RAD+, (〇) rad1-Δ; (■) sir3-Δ; (●) rad1-Δ sir3-Δ, (C) (Δ) RAD+, (▼) rad6-Δ; (■) sir3-Δ; (▼) rad6-Δ sir3-Δ.

Expression of URA3 in silent chromatin is stimulated in rad7-Δ but not in RAD+

The removal of CPDs from transcriptionally silent chromatin, such as the HM loci or telomeres, likely requires some form of chromatin restructuring, possibly conversion to a form similar to that found in transcribed regions of the genome. Recently, Aparicio and Gottschling (1994) showed that if the URA3 trans-activator PPR1 was present in high enough concentrations at an appropriate time in the cell cycle it could overcome silencing at telomeres. This suggests that, if the chromatin structure of a silenced telomeric URA3 were remodeled to allow DNA repair, one might expect to see an increase in the expression of this gene concomitant with an increase in DNA damage. If UV-induced DNA damage to the silent telomeric copy of URA3 is repaired without stimulation of gene expression, as a result of chromatin remodeling, then the survival curves on YPAD and 5-FOA medium should be identical. If expression of the silenced URA3 gene is induced, then those cells in which this occurs will be killed on FOA medium resulting in a lower relative survival rate than on YPAD. To test this possibility, the yeast strains UCC1001 (RAD+) and UCC1083 (rad7-Δ) were grown overnight in YPAD. Four independent cultures of each strain were harvested, washed and resuspended in sterile water, and irradiated with UV. Appropriate dilutions were plated onto YPAD and 5-FOA medium and incubated at 30°C in the dark until colonies appeared. Because telomere silencing within a culture is not absolute, the number of colony forming units (cfus) on 5-FOA medium are always lower than on YPAD. Accordingly, the relative survival rates at each dose were calculated from the number of cfus on the nonirradiated plates of each type of medium.

The mean survival at each dose on YPAD and 5-FOA was determined for the four cultures of UCC1001 (RAD+) and UCC1083 (rad7-Δ) and tested for significant differences by use of the two sample t-test. The means obtained for UCC1083 (rad7-Δ) on YPAD versus 5-FOA differed significantly at the 5% level for the 10 J/m².
dose and at the 1% level for the 20 J/m² and 40 Joules/m² doses. The results for both strains are plotted in Figure 4. The rad7Δ mutation reduces the number of FOA® cells sixfold at 40 J/m², suggesting that DNA repair of telomeric chromatin in the absence of Rad7 stimulates expression of a silenced URA3 gene.

Discussion

We have used the two-hybrid system to identify a protein–protein interaction between the products of RAD7, a gene involved in DNA repair, and SIR3, a gene involved in transcription silencing. Both the library fusion plasmids pGAD7B5 and pGAD7B34 and the lexA–RAD7 plasmid are required for the stimulation of β-galactosidase from the lacZ reporter gene construct. β-Galactosidase is not produced by the combination of the pGAD7B5 and lexA–RAD6 plasmids. These observations suggest that the interaction between Rad7 and Sir3 is not a false positive of the type described by Bartel et al. (1993). It is possible that the interaction could be mediated by a third-party protein, which could either be an artifact or a real in vivo activity, however, the demonstration that the Rad7 and Sir3 proteins interact in vitro suggests that the phenomenon is real and has biological significance in yeast.

The observation that a sir3 deletion reduces the UV sensitivity of a rad7 deletion demonstrates that both proteins are involved, in some way, in the repair of transcriptionally silent chromatin. As Sir3 is likely a component of silent chromatin (Renauld et al. 1993), Rad7 possibly acts to remodel the structure of silent chromatin, allowing the NER complex access to the CPDs in this region of the genome. Certain sir3 mutations are able to suppress a defect in transcriptional silencing because of a histone H4 mutation, suggesting that Sir3 interacts either with histone H4 or with the nucleosome (Johnson et al. 1990). The mutations in sir3 that suppress histone H4 mutants alter amino acids 86 and 205; however, the interaction with Rad7 involves a different region, spanning amino acids 687–971. There is also evidence that Sir3 may interact directly with Rap1, an essential transcriptional regulator involved in telomere length maintenance and telomeric silencing in yeast (P. Moretti, K. Freeman, and D. Shore, cited in Palladino et al. 1993). The Rad7 protein could be involved in the mediation of either of these proposed Sir3 interactions in response to DNA damage. This could then allow the remodeling of silent chromatin and repair of CPDs to occur in this region of the genome. Because only about one-quarter to one-third of the UV sensitivity of the rad7 deletion mutant is rescued by deletion of SIR3, there may be other proteins involved in chromatin structure that are an impediment to repair in a rad7 deletion strain. Alternatively, Rad7 may interact with other repair proteins to produce some repair activity important to the repair of CPDs in other regions of the genome. Recently, Verhage et al. (1994) have shown that deletion mutants of RAD7 and RAD16 are defective in the repair of DNA damage found in the nontranscribed strand of a transcriptionally active gene. This finding shows that RAD7 is involved in the repair of transcriptionally silent chromatin found at the HM loci and at telomeres as well as the repair of lesions found in transcriptionally active genes. This newly described function of RAD7 is likely responsible for the remaining UV sensitivity seen in a rad7Δ sir3Δ yeast strain.

The two other plasmids, pGAD7B6 and pGAD7B35, contain DNA sequences that code for products that interact with RAD7 in the two-hybrid system and that may represent additional genes involved in repair of the silent chromatin and/or the nontranscribed strands of active genes. These plasmids are being analyzed to determine the involvement of the cloned sequences in RAD7-dependent NER.

It is interesting that the Rad7–Sir3 interaction that occurs in the two-hybrid system and also with the GST fusion proteins in vitro does so in the absence of DNA damage. This could suggest that the interaction occurs in vivo without the need for DNA damage and that the Rad7 and Sir3 proteins may be normally associated with each other in transcriptionally silent chromatin. If so, it is possible that Rad7 is involved in the production or structure of silent chromatin. We have shown that deletion mutants of RAD7 have no effect on the proportion of 5-FOA-resistant cells in a yeast strain with a telomeric copy of the URA3 gene. This is in contrast to the severe decrease in frequency of 5-FOA-resistant colonies in a sir3 mutant strain with a similar URA3 construct (Aparicio et al. 1991). These results suggest that Rad7 is involved in the repair of DNA damage to transcriptionally silent chromatin but is not involved in the production or structure of transcriptionally silent chromatin. This
raises the possibility that Rad7 and Sir3 do not interact in the absence of DNA damage. It is likely that Sir3 normally interacts with other proteins, possibly histone H4 and/or Rap1, to allow the formation of transcriptionally silent chromatin. Following UV irradiation, Rad7 interacts with Sir3, displacing the other proteins and facilitating access of the NER complex to the damaged DNA.

The NER genes in yeast are constitutive but weakly expressed [Hoeijmakers 1993]; in addition, RAD7 shows a sixfold increase in transcript level in response to UV [Jones et al. 1990]. Sir3 is normally present at a low level in the cell at all times [Ivy et al. 1986]. The interaction observed in the two-hybrid system in the absence of DNA damage is likely a consequence of the overproduction of the Gal4AD-Rad7 and Gal4RD-Sir3 fusion proteins. Because any proteins that interact with Rad7 or Sir3 will be produced at normal levels in the two-hybrid yeast strain this overproduction would result in an interaction between the excess Gal4RD–Rad7 and Gal4AD–Sir3 fusion proteins in the absence of DNA damage.

The experiments utilizing a yeast strain containing a telomeric URA3 gene showed that DNA repair of transcriptionally silent chromatin does not stimulate transcription of silenced genes [UCC1001 in Fig. 4]. This suggests that the changes necessary to permit NER in silent chromatin are not equivalent to the chromatin structure found in transcriptionally active areas of the genome. Thus, the NER of transcriptionally silent DNA is a process that is different from the conversion to transcriptionally competent chromatin. In the isogenic rad7 deletion strain survival on 5-FOA medium was reduced after UV irradiation. We attribute this to an increase in the proportion of cells in which the telomeric copy of URA3 was expressed because of the stimulation of transcription of this gene following repair of UV-induced damage. For a UV-irradiated yeast cell to survive and form a colony, all potentially lethal DNA lesions must be repaired by one of the known repair systems. DNA repair of silenced chromatin must still occur in the absence of Rad7 but by a mechanism that does not require this gene product. There is evidence that the RAD7- and RAD6-dependent repair systems compete for the same substrate [Schiestl and Prakash 1989]. RAD6 is involved in postreplication repair [Prakash 1981]. It is likely that this repair system is responsible for dealing with some of the UV-induced lesions in a rad7-Δ strain and results in the expression of the silenced telomeric copy of URA3. It will be interesting to determine which other DNA repair genes are involved in this effect.

We propose the following model to account for our findings. Rad7 is produced constitutively and functions both in the repair of DNA damage in the nontranscribed strands of active genes and in transcriptionally silent chromatin. The interaction between Rad7 and Sir3 is directly involved in facilitating the access of the NER complex to DNA damage in transcriptionally silent chromatin. Sir3 interacts with a number of proteins, probably including histone H4 and Rap1, to maintain the structure of silent chromatin. UV damage induces transcription of RAD7. The higher levels of the Rad7 protein result in increased interactions with Sir3, displacing the other proteins involved in the maintenance of silent chromatin structure. This results in access of the NER complex to the DNA damage sites in silent chromatin but does not allow transcription of genes in these regions. After repair is complete, Rad7 dissociates from Sir3, and the silent chromatin domains are reconstituted. In the absence of Rad7, other DNA repair systems handle the damage found in silent chromatin domains, however this secondary repair process may result in the activation of transcription of genes in these domains.

We have demonstrated that the two-hybrid system is a valuable tool for the investigation of protein interactions involved in NER. We are continuing our efforts to identify additional genes and understand the mechanisms of NER in transcriptionally silent chromatin.

Materials and methods

Strains and DNAs

Growth and manipulation of yeast strains were done according to standard methods [Sherman 1991]. All two-hybrid system experiments were done with either the strain CTRY10-5D [MATa ade2 gal4 gal80 his3-Δ200 leu2-3,112 trpl-901 URA3–lexA op GAL1 → lacZ] or GGY1-71 [leu2-3,112 his3-Δ200 gal4-Δ gal80-Δ-pRY171 [GAL1 → lacZ]] (Chien et al. 1991). New Gal4 activation domain plasmids were constructed from pGAD1, 2, and 3 by removal of the 1.5-kb SplI DNA fragment containing the Gal4 activation domain. This was ligated into SplI-digested YEp181 [Gietz and Sugino 1988] lacking the BamHI site in the multicloning site to create pDP4, pDP7, and pDP12, respectively. Liberaries, with a complexity >1×10^6 clones, were constructed in each of the three BamHI-digested pDP vectors. Genomic DNA from a strain carrying a gal4 deletion was digested with MboI and 3- to 5-kb fragments isolated, following electrophoresis, by the method of Gritz et al. [1980]. The fragments were ligated into the vectors pDP4, pDP7, pDP12 that had been digested previously with BamHI and treated with calf intestinal alkaline phosphatase [Boehringer Mannheim]. Plasmid pool DNA repair of transcriptionally silent chromatin

DNA repair of transcriptionally silent chromatin

Response to UV irradiation. We attribute this to an increase in the proportion of cells in which the telomeric copy of URA3 was expressed because of the stimulation of transcription of this gene following repair of UV-induced damage. For a UV-irradiated yeast cell to survive and form a colony, all potentially lethal DNA lesions must be repaired by one of the known repair systems. DNA repair of silenced chromatin must still occur in the absence of Rad7 but by a mechanism that does not require this gene product. There is evidence that the RAD7- and RAD6-dependent repair systems compete for the same substrate [Schiestl and Prakash 1989]. RAD6 is involved in postreplication repair [Prakash 1981]. It is likely that this repair system is responsible for dealing with some of the UV-induced lesions in a rad7-Δ strain and results in the expression of the silenced telomeric copy of URA3. It will be interesting to determine which other DNA repair genes are involved in this effect.

We propose the following model to account for our findings. Rad7 is produced constitutively and functions both in the repair of DNA damage in the nontranscribed strands of active genes and in transcriptionally silent chromatin. The interaction between Rad7 and Sir3 is directly involved in facilitating the access of the NER complex to DNA damage in transcriptionally silent chromatin. Sir3 interacts with a number of proteins, probably including histone H4 and Rap1, to maintain the structure of silent chromatin. UV damage induces transcription of RAD7. The higher levels of the Rad7 protein result in increased interactions with Sir3, displacing the other proteins involved in the maintenance of silent chromatin structure. This results in access of the NER complex to the DNA damage sites in silent chromatin but does not allow transcription of genes in these regions. After repair is complete, Rad7 dissociates from Sir3, and the silent chromatin domains are reconstituted. In the absence of Rad7, other DNA repair systems handle the damage found in silent chromatin domains; however this secondary repair process may result in the activation of transcription of genes in these domains.

We have demonstrated that the two-hybrid system is a valuable tool for the investigation of protein interactions involved in NER. We are continuing our efforts to identify additional genes and understand the mechanisms of NER in transcriptionally silent chromatin.

Materials and methods

Strains and DNAs

Growth and manipulation of yeast strains were done according to standard methods [Sherman 1991]. All two-hybrid system experiments were done with either the strain CTRY10-5D [MATa ade2 gal4 gal80 his3-Δ200 leu2-3,112 trpl-901 URA3–lexA op GAL1 → lacZ] or GGY1-71 [leu2-3,112 his3-Δ200 gal4-Δ gal80-Δ-pRY171 [GAL1 → lacZ]] (Chien et al. 1991). New Gal4 activation domain plasmids were constructed from pGAD1, 2, and 3 by removal of the 1.5-kb SplI DNA fragment containing the Gal4 activation domain. This was ligated into SplI-digested YEp181 [Gietz and Sugino 1988] lacking the BamHI site in the multicloning site to create pDP4, pDP7, and pDP12, respectively. Liberaries, with a complexity >1×10^6 clones, were constructed in each of the three BamHI-digested pDP vectors. Genomic DNA from a strain carrying a gal4 deletion was digested with MboI and 3- to 5-kb fragments isolated, following electrophoresis, by the method of Gritz et al. [1980]. The fragments were ligated into the vectors pDP4, pDP7, pDP12 that had been digested previously with BamHI and treated with calf intestinal alkaline phosphatase [Boehringer Mannheim]. Plasmid pool DNA repair of transcriptionally silent chromatin

DNA repair of transcriptionally silent chromatin

his3-A200, fragment from pRR27 (Schiestl and Prakash 1988) which contains the GAL4-AD domain. The yeast strain GGY1-171 containing the RAD7 gene and replaces it with a 1.1-kb HindIII fragment containing the URA3 gene. The RAD7 gene in strain UCC1001 was deleted by use of the plasmid pDG759. It was constructed from plasmid pDG79 (Schiestl and Prakash 1989), by cloning the entire EcoRI fragment into pUC8 to create pDG751. This plasmid was digested with Asp718 and NruI, which cuts at positions +122 and +1824 [126 bp past the ORF] in the RAD7 gene, removing the URA3 gene. A BamHI-EcoRI fragment containing the EcoRI minus, KpnI minus, allele of the LEU2 gene (Gietz and Sugino 1988), was ligated between these sites, (with the Klenow polymerase used to form blunt ends), to create plasmid pDG759. The rad7Δ deletion in strain UCC1083 was confirmed by Southern blot analysis (D. Gottschling, pers. comm.).

The rad6 deletion was created by use of the plasmid pDG315 [Kang et al. 1992], which removes the entire ORF of the RAD6 gene and replaces it with a HpaI–AccI DNA fragment containing the LEU2 gene. The rad1 deletion was created by transformation of the plasmid pDG18, which contains the BamHI DNA fragment from pRR27 [Schiestl and Prakash 1988], which contains the 1.1-kb HindIII URA3 gene fragment replacing the RADI DNA from −212 to +3853. All gene deletions were verified by Southern blot analysis (data not shown).

The identification of the RAD7–SIR3 interaction by use of the two-hybrid system

The yeast strain GGY1-171 containing the GAL1→lacZ reporter construct and the plasmid pDG649 [lexA–RAD7 fusion] was transformed with a mixture of equal quantities of the three pDP[GAD] plasmid libraries by use of the method Gietz et al. (1992). Transformants (~2000–5000 per plate) were selected on SC–Trp–Leu− medium at 30°C. The colonies were grown for 3–5 days, replicated onto SC–Trp–Leu− medium containing 2% sucrose plus X-gal, and scored for β-galactosidase activity after an additional 1–5 days of incubation. Colonies turning blue were identified from the replicates, purified by streaking onto SC–Trp–Leu− medium, and restested on plates containing X-gal. Positives were picked from the SC–Trp–Leu− plates and grown overnight in 2 ml of SC–Leu− liquid medium. These cultures were then plated onto SC–Leu− plates to give ~250 colonies per plate and incubated at 30°C for 2 days, and the colonies were replicated to SC–Trp–Leu− plates. Those colonies containing only the pGAD plasmid (Leu+) were inoculated into SC–Leu− liquid medium and grown overnight at 30°C. DNA was prepared from these yeast cells following the method of Hoffman and Winston (1987), electrocompetent into electrocompetent DH5α E. coli by use of the Gene Pulser (Bio-Rad) with Pulse controller (25 μF, 400 Ω, 12.5 kV/cm field strength), and Amp packaging isolates. Plasmid DNA was prepared from at least five individual DH5α transformants, and the specificity of the interaction with the lexA–RAD7 fusion was restested by transformation back into yeast strains (CTY10–5D) lacking or containing pDG649 [lexA–RAD7 fusion]. Clones confirming the GAL1→lacZ activation phenotype were sequenced by use of the Sequenase kit (U.S. Biochemical) with the GAL4 activation domain (GAD) primer 5′-GAAGATTCCACCAAGC3′. The GenBank data base was screened for sequences showing homology to the pGAD fusions by use of the FASTA program (Pearson and Lipman 1998).

Construction of two-hybrid system SIR3 deletion plasmids

The 1.65-kb EcoRI fragment containing nucleotides +1313 to +2911 of the SIR3 ORF was cut from the plasmid pGAD7B5 and cloned into the EcoRI site of the plasmid pACTII (Durfee et al. 1993). The multicloning site of pACTII includes NcoI, SmaI, BamHI, EcoRI, and XhoI sites, and the sequence and frame is GCC ATG GAC GGC CCG GAC TTC CGA ATT CAG AGC TCG AGA. This fuses SIR3 in-frame with the GAL4 activation domain. Amino- and carboxy-terminal deletions were produced by partial digestion with the enzymes BstBI, NruI, Asp718 (Boehringer Mannheim) followed by isolation of the single-cut DNA fragment from an agarose gel by use of the method of Girvitz et al. (1980). Amino-terminal deletions were produced by digestion of this fragment with a second restriction enzyme such that the product when blunt-end ligated to the first site would create an in-frame deletion. The amino-terminal deletions were made as follows, BstBI site ligated to the blunted Xmal site of pACTII, NruI site ligated to a blunted Xmal site, Asp718 site ligated to the blunted NcoI site. The carboxy-terminal deletions were all made to the blunted XhoI site from the pACTII multicloning site, which is situated 5 bp downstream from the EcoRI site. The double-cut DNA fragments of the correct size were purified from an agarose gel. The 5′ overhangs of restriction fragments were treated with Klenow polymerase to produce blunt ends. Liguations were carried out under conditions that favored circularization. The ligations were electroporated into the E. coli strain DH5α, following the procedure of Dower et al. (1988) to allow for recovery of the appropriate plasmids. These plasmids were transformed into the yeast strain CTY10–5D containing the lexA–RAD7 fusion plasmid. Blue color production was assessed after growth on medium containing X-gal at least 24 hr.

Measurement of yeast strain UV sensitivity

Isogenic derivatives of the strain MKP [Pierce et al. 1987], containing the appropriate deletions for either RAD7, SIR3, RAD1, RAD6, and various combinations of sir3Δ with the different radΔ, were grown overnight in liquid YPAD medium. The cell titer was determined and an appropriate number of cells plated onto YPAD plates. The plates were then irradiated in the dark with 254-nm UV light by use of a General Electric G15T8 15 W germicidal lamp at a dose rate of 1 or 2 J/m² per sec, as determined by a UVX radiometer with a model UVX-25 probe (UVX Products, Inc.) The plates were incubated in the dark for 2–3 days at 30°C to determine survival rates. In experiments with strains containing a URA3 gene integrated at a telomere, yeast cells were irradiated in suspension in water, plated, and incubated in the dark to determine survival. The percentage survival at each dose was converted to degrees by an arcsine transformation and the differences between the mean survival on YPAD versus 5-FOA for each strain were tested for significance by use of the paired t-test in Quattro Pro for Windows v. 5.0.
Measurement of telomere position effect

The frequency of 5-FOA-resistant yeast cells was determined as described by Aparicio et al. [1991]. The strains UCCI001 (MATα ura3-52 lys2-801 ade2-101 trpl-Δ1 his3-A200 leu2-Δ1 adh4-URA3-TEL-VIII) and its rad7Δ derivative, UCCI083 (MATα ura3-52 lys2-801 ade2-101 trpl-Δ1 his3-d200 leu2-Δ1 adh4-URA3-TEL-VIII rad7Δ-LEU2), were kindly supplied by Dr. D. Gottschling.

Production of Rad7 and Sir3 GST-fusion proteins in E. coli

Gene fusions to the GST gene were constructed in the vector pGEX-2T, and fusion proteins were produced in E. coli according to the methods of Smith and Johnson [1988]. The RAD7 EcoRI DNA fragment and a SIR3 BglII-BamHI DNA fragment carrying amino acids 307–978 were blunt-end ligated into XmaI-digested pGEX-2T, producing in-frame GST fusions in the plasmids pDP104 and pDP107, respectively. These plasmids were transformed into E. coli strain MJ109 by electroporation, and single colonies from each transformation were grown overnight at 37°C in liquid LB plus ampicillin (50 μg/ml). The cultures were inoculated into 25 ml of LB containing ampicillin (50 μg/ml), 1 M Sorbitol, and 2.5 mM betaine (Blackwell and Horgan 1993) and were grown until an OD₆₀₀ of 1.0 was reached, at which time IPTG was added to 0.5 mM. The culture was incubated an additional 2 hr at 25°C, and then the cells were harvested via centrifugation, washed with PBS [phosphate buffered saline], and resuspended in 1 ml of PBS, 10 mM EDTA + 10 μg/ml aprotinin, 10 μg/ml leupeptin, 2 mM PMSF, and 0.1% Triton X-100 (GST buffer). The cells were lysed by sonication for 30 sec pulses, and the lysate was cleared in a microcentrifuge for 5 min at 13,000g. The GST fusion proteins were isolated from the cleared lysate by the addition of 125 μl of a 1:1 slurry of glutathione-agarose (GA) beads in GST buffer and incubation with shaking for 15 min at 4°C. The pelleted GA beads containing GST fusion protein were rinsed twice with 1 ml of PBS and resuspended in 1 volume of PBS.

GST fusion proteins labeled with [35S]methionine were produced as follows: Cells from a 25-ml culture were washed three times with 20 ml of M9 medium minus methionine containing 0.5 mM IPTG. The cells were then incubated at 25°C, washed twice with PBS, and lysed as above. The radiolabeled GST fusion proteins were purified and digested with the protease thrombin to release the Rad7 and Sir3 peptides into the supernatant. The GA beads were rinsed once with PBS containing BSA [10 μg/ml], twice with thrombin buffer (10 mM Tris-HCl at pH 8.0, 10 mM CaCl₂), resuspended in 100 μl of the same buffer containing 0.25 units of thrombin, and incubated at 25°C for 2 hr. The reaction was terminated by the addition of EDTA to 20 mM, 0.1% Triton X-100 to 1%, and the TCS removed and pooled with 100 μl of the PBS EDTA used to rinse the thrombin-cut beads. The Rad7 TCS, 80 μl was mixed with 50 μl of a 1:1 slurry of GA beads containing GST–Sir3, and 80 μl of the Sir3 TCS was mixed with 50 μl of a 1:1 slurry of GA beads containing GST–Rad7. The mixtures were incubated on ice for 2 hr, and then the GA beads were washed three times with PBS containing 20 mM EDTA, 0.1% Triton X-100, and 50 μg/ml BSA. The GA beads were then mixed with 50 μl of SDS loading buffer, heated to 95°C for 5 min, and electrophoresed on a 10% acrylamide SDS-PAGE gel. The gel was fixed with 10% acetic acid for 1 hr, washed with 20 volumes of water for 1 hr, treated with 1.0 M Na salicylate [Chamberlain 1979] for 30 min, and dried with a Bio-Rad vacuum gel dryer.

DNA repair of transcriptionally silent chromatin

Other methods

All E. coli methods were performed as described in Maniatis et al. [1982]. Restriction enzymes were purchased from either Gibco BRL, or New England Biolabs, unless otherwise specified, and digests were done according to the manufacturer’s specifications.

The activity of β-galactosidase in yeast was assayed by use of a modification of the method of Guarente [1983]. Four individual transformants were assayed after growth overnight in liquid SC lacking of the appropriate nutrients, utilizing 2% raffinose as a carbon source. The cells were pelleted by centrifugation, washed with water, and resuspended in Z buffer [100 mM Na₂HPO₄ at pH 7.0, 10 mM KCl, 1 mM MgSO₄·7H₂O, 38 mM β-mercaptoethanol]. The OD₆₀₀ was determined for the washed cells, 40 μl of 0.1% SDS was added to 500 μl of cell suspension and mixed vigorously for 15 sec, followed by the addition of 60 μl of chloroform with repeated vortexing. ONPG [100 μl of a 4 mg/ml stock] was added, and the reaction was incubated at 30°C, until a yellow color began to appear, or for 15 min after which 0.5 ml of 1.0 N Na₂CO₃ was added to terminate the reaction. The reaction was centrifuged for 1 min in a microcentrifuge and the absorbance at 420 nm was determined. The activity of β-galactosidase in Miller units was calculated by use of the formula Units = A₄₂₀ x 1000/(volume[time][OD₆₀₀]) (Miller 1972).

Acknowledgments

We thank Drs. Barbara Triggs-Raine for critically reading this manuscript and Bernard A. Kunz for the yeast strain MKP². We also thank Ms. Sharon Rennie for expert technical assistance and Mr. Kevin C. Graham for verifying all deletion constructs in strains with Southern blot analysis. We also thank Dr. Daniel E. Gottschling for the generous gift of the yeast strains UCCI001 and UCCI083 and for sharing unpublished results. The work done by J.A.R. was performed in partial fulfillment of a undergraduate thesis for the University of Winnipeg. This work was supported by a studentship from the Manitoba Health Research Council to D.W.P. and a Manitoba Health Research Council Scholarship and a grant from the Medical Research Council of Canada (MT-11373) to R.D.G.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Aparicio, O.M. and D.E. Gottschling. 1994. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes & Dev. 8: 4133–4146.

Aparicio, O.M., B.L. Billington, and D.E. Gottschling. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66: 1279–1287.

Bang, D.D., R. Verhage, N. Goosen, J. Brouwer and P. van de Putte. 1992. Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res. 20: 3925–3931.

Barret, P., C.-T. Chien, R. Senglanz, and S. Fields. 1993. Elimination of false positives that arise in by use of the two-hybrid system. BioTechniques 14: 920–924.

Birnboim, H.C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513–1517.
Blackwell, J.R. and R. Horgan. 1991. A novel strategy for production of a highly expressed recombinant protein in an active form. *FEBS Letts.* 295: 10–12.

Boeke, J.D., J. Trueheart, G. Natsoulis, and G.R. Fink. 1987. 5-Fluoroorotic acid is a selective agent in yeast molecular genetics. *Methods Enzymol.* 154: 164–175.

Braunstein, M., A.B. Rose, S.G. Holmes, C.D. Allis, and J.R. Broach. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. *Genes & Dev.* 7: 592–604.

Chamberlain, J.P. 1979. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. *Anal. Biochem.* 98: 132–135.

Chien, C.-T., P.L. Bartel, R. Sternglanz, and S. Fields. 1991. The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. *Proc. Natl. Acad. Sci.* 88: 9578–9582.

Dower, W. J., J.F. Miller, and C.W. Ragsdale. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. *Nucleic Acids Res.* 16: 6127–6145.

Durfee, T., K. Becherer, P-L. Chen, S-H. Yeh, Y. Yang, A.E. Kilburn, W-H. Lee, and S.J. Elledge. 1993. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. *Genes & Dev.* 7: 555–569.

Feaver, W.J., J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Burnatowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg. 1993. Dual roles of a multiprotein complex from *S. cerevisiae* in transcription and DNA repair. *Cell* 75: 1379–1387.

Fields, S. and O.K. Song. 1989. A novel genetic system to detect protein-protein interactions. *Nature* 340: 245–246.

Friedberg, E.C. 1988. Deoxyribonucleic acid repair in the yeast *S. cerevisiae*. *Microbiol. Rev.* 52: 70–102.

Gietz, R.D. and A. Sugino. 1988. New yeast-*Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. *Gene* 74: 527–534.

Gietz, D., A. St. Jean, R.A. Woods, and R.H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. *Nucleic Acids Res.* 20: 1425.

Girvitz, S.C., S. Bacchetti, A.J. Rainbow, and F.L. Graham. 1980. Improved method for high efficiency transformation of *S. cerevisiae*. *Microbiol. Rev.* 44: 205–211.

Gottschling, D.E., O.M. Aparicio, B.L. Billington, and V.A. Zakian. 1990. Position effect at *S. cerevisiae* telomeres: Reversible repression of Pol II transcription. *Cell* 63: 751–762.

Guarente, L. 1983. Yeast promoters and RNA polymerase II transcription. *Cell* 30: 1133–1145.

Hoffman C.S. and F. Winston. 1987. A ten minute DNA prep method for yeast. *Methods Enzymol.* 154: 305–311.

Johnson, L.A., P.S. Kayne, E.S. Kahn, and M. Grunstein. 1990. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci.* 87: 6286–6290.

Jones, J.S., L. Prakash, and S. Prakash. 1990. Regulated expression of the *Saccharomyces cerevisiae* DNA repair gene RAD7 in response to DNA damage and during sporulation. *Nucleic Acids Res.* 18: 3281–3285.

Kang, X., F. Yadao, R.D. Gietz, and B.A. Kunz. 1992. Elimination of the yeast RAD6 conjugase enhances base-pair transitions and G:C → T:A transversions as well as transposition of the Ty element: Implications for the control of spontaneous mutation. *Genetics* 130: 285–294.

Klar, A.J.S., J.N. Strathern, and J.B. Hicks. 1981. A position-effect control for gene transposition: State of expression of yeast mating-type genes affect their ability to switch. *Cell* 25: 517–524.

Kyte, J. and R.F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* 157: 105–132.

Laurenson, P. and J. Rine. 1992. Silencers, silencing, and heritable transcriptional states. *Microbiol. Rev.* 56: 543–560.

Maloney, D.J. and J.R. Broach. 1989. The HML mating-type cassette of *Saccharomyces cerevisiae* is regulated by two separate but functionally equivalent silencers. *Mol. Cell. Biol.* 9: 4621–4630.

Maniatis, T., E.F. Fritsch, and J. Sambrook. 1982. *Molecular cloning: A laboratory manual.* Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Miller, J.H. 1972. *Experiments in molecular genetics.* Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Miller, R., L. Prakash, and S. Prakash. 1982. Defective excision of pyrimidine dimers and intersand DNA crosslinks in rad7 and rad23 mutants of *Saccharomyces cerevisiae*. *Mol. Gen. Genet.* 188: 235–239.

Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and S.M. Gasser. 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. *Cell* 75: 543–555.

Pearson, W.R. and D.J. Lipman. 1988. Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci.* 85: 2444–2448.

Perozzi, G. and S. Prakash. 1986. *RAD7* gene of *Saccharomyces cerevisiae*: Transcripts, nucleotide sequence analysis, and functional relationship between the *RAD7* and *RAD23* gene products. *Mol. Cell. Biol.* 6: 1497–1507.

Pierce, M.K., C.N. Giroux, and B.A. Kunz. 1987. Development of a yeast system to assay mutational specificity. *Mutat. Res.* 182: 65–74.

Prakash, L. 1981. Characterization of postreplication repair in *Saccharomyces cerevisiae* and effects of rad6, rad18, rev3, and rad52 mutations. *Mol. Gen. Genet.* 184: 471–478.

Renauld, H., O.M. Aparicio, P.D. Zierath, B.L. Billington, S.K. Chhablani, and D.E. Gottschling. 1993. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and SIR3 dosage. *Genes & Dev.* 7: 1133–1145.

Reynolds, R.J. and E.C. Friedberg. 1981. Molecular mechanism of pyrimidine dimer excision in *Saccharomyces cerevisiae*: Incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. *J. Bacteriol.* 146: 692–704.

Rothstein, R.J. 1983. One-step gene disruption in yeast. *Methods Enzymol.* 101: 202–211.

Sandell, L.E. and V.A. Zakian. 1992. Telomere position effect in yeast. *Trends Cell Biol.* 2: 10–14.
DNA repair of transcriptionally silent chromatin

Schiestl, R.H. and S. Prakash. 1988. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8: 3619–3626.

———. 1989. The interactions of the RAD7 and RAD23 excision repair genes of the Saccharomyces cerevisiae with DNA repair genes in different epistasis groups. Curr. Genet. 16: 219–223.

Schiestl, R.H., S. Prakash, and L. Prakash. 1990. The srs2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124: 817–831.

Schneider, R. and M. Schweiger. 1991. The yeast DNA repair proteins RAD1 and RAD7 share similar putative functional domains. FEBS Letts. 283: 203–206.

Schnell, R. and J. Rine 1986. A position effect on the expression of a tRNA gene mediated by the SIR genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6: 494–501.

Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194: 3–21.

Smith, D.B. and K.S. Johnson. 1988. Single step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40.

Terleth, C., C.A. van Sluis, and P. van de Putte. 1989. Differential repair of UV damage in Saccharomyces cerevisiae. Nucleic Acids Res. 17: 4433–4439.

Terleth, C., P. Schenk, R. Poot, J. Brouwer, and P. van de Putte. 1990. Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: A possible function of G2 arrest upon UV irradiation. Mol. Cell. Biol. 10: 4678–4684.

Verhage, R., A-M. Zeeman, N. De Groot, F. Gleig, D. Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes that are essential for pyrimidine dimer removal from the silent mating type loci are also required for repair of the non-transcribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. (In press.)

Wilcox, D.R. and L. Prakash. 1981. Incision and post-incision steps of pyrimidine dimer removal in excision defective mutants. J. Bacteriol. 148: 618–623.
Interaction of the yeast RAD7 and SIR3 proteins: implications for DNA repair and chromatin structure.

D W Paetkau, J A Riese, W S MacMorran, et al.

Genes Dev. 1994, 8:
Access the most recent version at doi:10.1101/gad.8.17.2035

References
This article cites 52 articles, 18 of which can be accessed free at:
http://genesdev.cshlp.org/content/8/17/2035.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.