Canonical interpretations of the newly observed \(\Xi_c(2923)^0, \Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances

Qi-Fang Li\(^1,2,3,\ast\)

1 Department of Physics, Hunan Normal University, Changsha 410081, China
2 Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha 410081, China
3 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China

Three neutral resonances \(\Xi_c(2923)^0, \Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) have been observed in the \(\Lambda_c^+ K^- \) mass spectrum by the LHCb Collaboration. Given the \(\Xi_c \) and \(\Xi_c' \) mass spectra predicted by the constituent quark models, these three resonances are tentatively treated as the \(\lambda^- \)-mode \(\Xi_c(25), \Xi_c'(25), \Xi_c''(25) \), and \(\Xi_c'(1P) \) states, and their strong decay behaviors are calculated within the \(\Lambda_c^+ K^- \) model. Our results suggest that the \(\Xi_c(2923)^0 \) and \(\Xi_c(2939)^0 \) can be clarified into the \(J^P = 3/2^+ \) and \(5/2^+ \) \(\Xi_c(1P) \) states, and the \(\Xi_c(2965)^0 \) can be regarded as the \(\Xi_c'(2S) \) state. Other theoretical information on the missing \(\Xi_c(2S), \Xi_c''(2S) \), and \(\Xi_c'(1P) \) states may be helpful for future experimental searches.

PACS numbers:

Keywords: Strong decays; \(^3p_0 \) model; Charmed strange baryons

I. INTRODUCTION

A charmed strange baryon \(\Xi_c \) is composed of a heavy charm quark, a light up or down quark, and a strange quark. Under the classification of constituent quark model, the \(\Xi_c \) baryons can be divided into two families, the antisymmetric flavor configuration \(3_F \) and symmetric flavor configuration \(6_F \). To distinguish these two families, the states with \(3_F \) flavor part are denoted as \(\Xi_c \) states, and the notation \(\Xi_c' \) stands for the states belonging to the \(6_F \) flavor configuration. Unlike the \(\Lambda_c \) and \(\Sigma_c \) states with different isospins, both \(\Xi_c \) and \(\Xi_c' \) baryons have the same isospin \(I = 1/2 \). Since the observed resonances may belong to the flavor \(3_F \) or \(6_F \) and cannot be distinguished through the quantum numbers, it is more complicated and challenging to study these states both experimentally and theoretically.

Very recently, the LHCb Collaboration reported three new resonances \(\Xi_c(2923)^0, \Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) in the \(\Lambda_c^+ K^- \) mass spectrum [1]. The large significance indicates that these three resonances are unambiguously observed, and the measured masses and total widths are presented as follows:

\[
m[\Xi_c(2923)^0] = 2923.04 \pm 0.25 \pm 0.20 \pm 0.14 \text{ MeV},
\]

\[
\Gamma[\Xi_c(2923)^0] = 7.1 \pm 0.8 \pm 1.8 \text{ MeV},
\]

\[
m[\Xi_c(2939)^0] = 2938.55 \pm 0.21 \pm 0.17 \pm 0.14 \text{ MeV},
\]

\[
\Gamma[\Xi_c(2939)^0] = 10.2 \pm 0.8 \pm 1.1 \text{ MeV},
\]

\[
m[\Xi_c(2965)^0] = 2964.88 \pm 0.26 \pm 0.14 \pm 0.14 \text{ MeV},
\]

\[
\Gamma[\Xi_c(2965)^0] = 14.1 \pm 0.9 \pm 1.3 \text{ MeV}.
\]

The LHCb Collaboration also pointed out several equalities of mass gaps,

\[
m[\Omega_c(3050)^0] - m[\Xi_c(2923)^0] \approx 125 \text{ MeV},
\]

\[
m[\Omega_c(3065)^0] - m[\Xi_c(2939)^0] \approx 125 \text{ MeV},
\]

\[
m[\Omega_c(3090)^0] - m[\Xi_c(2965)^0] \approx 125 \text{ MeV},
\]

\[
m[\Xi_c(2923)^0] - m[\Sigma_c(2800)^0] \approx 125 \text{ MeV},
\]

which strongly suggests that the \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) should be the corresponding charmed strange partners of the \(\Omega_c(3050)^0 \), \(\Omega_c(3065)^0 \), and \(\Omega_c(3090)^0 \), respectively. Also, the \(\Sigma_c(2800)^0 \) may be the non-strange partner of the \(\Xi_c(2923)^0 \) and \(\Omega_c(3050)^0 \). A recent work with QCD sum rule suggests that these three newly observed states can be explained as \(P \)-wave \(\Xi_c' \) baryons [2].

From the Review of Particle Physics [3], there exist ten observed \(\Xi_c \) or \(\Xi_c' \) baryons. Plenty of theoretical works have been done to investigate their inner structures [4–34]. Three lowest structures correspond to the ground states \(\Xi_c \), \(\Xi_c' \), and \(\Xi_c'' \) undoubtedly. The \(\Xi_c(2790) \) and \(\Xi_c(2815) \) should belong to the \(\Xi_c'(1P) \) doublet, while the interpretations of other resonances are in dispute. For the resonances lying in the range of 2900 \(\sim \) 3000 MeV, there exist two resonances \(\Xi_c(2930) \) and \(\Xi_c(2970) \), which were reported by the BaBar and Belle Collaborations, respectively [35, 36]. Theoretical interpretations on \(\Xi_c(2930) \) and \(\Xi_c(2970) \) resonances include conventional charmed strange baryons [6–21] and molecular states [22–25] with various quantum numbers. The observations of LHCb Collaboration indicate that the \(\Xi_c(2930)^0 \) should be the overlap of the two narrow states \(\Xi_c(2923)^0 \) and \(\Xi_c(2939)^0 \), and whether the \(\Xi_c(2970)^0 \) and \(\Xi_c(2965)^0 \) structures are different or not needs further investigations [1]. Above 3000 MeV, the situation becomes more complicated, and the detailed explanations and discussions can be found in the reviews [37–39]. It can be seen that the low-lying \(\Xi_c \) and \(\Xi_c' \) spectra are far from being established.

\ast lvqifang@hunnu.edu.cn
The observations of \(\Xi(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances provide a good opportunity to study the low-lying \(\Xi_c \) and \(\Xi'_c \) spectra. Compared with the predictions of constituent quark models [4–8], these three resonances lie in the mass region of \(\lambda \)-mode \(\Xi_c(2S) \), \(\Xi'_c(2S) \), and \(\Xi'_c(1P) \) states. Although the strong decay behaviors of these low-lying \(\Xi_c \) and \(\Xi'_c \) states have been studied by several works within the quark models [7–14], it is essential to classify the newly observed \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances into the \(\Xi_c \) or \(\Xi'_c \) family. Due to the lack of the accurate experimental information, the previous works did not agree with each other and can hardly establish the low-lying \(\Xi_c \) and \(\Xi'_c \) spectra. In fact, the \(\Xi_c(2930)^0 \) which is absent in present experimental observation, may have caused lots of troubles in previous studies.

In this issue, we calculate the strong decay behaviors of the newly observed \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances under various assignments within the \(3P_0 \) model. Our results suggest that the \(\Xi_c(2923)^0 \) and \(\Xi_c(2939)^0 \) can be classified into the \(\lambda \)-mode \(J^P = 3/2^+ \) and \(5/2^+ \) \(\Xi_c(1P) \) states, and the \(\Xi_c(2965)^0 \) can be assigned as the \(\lambda \)-mode \(\Xi'_c(2S) \) state. Meanwhile, the strong decays of some missing partners are also presented, which may provide valuable information for future experimental searches.

This paper is organized as follows. The \(3P_0 \) model and notations are introduced in Sec. II. The strong decay behaviors of the \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances are estimated and discussed in Sec. III. A summary is given in the last section.

II. \(3P_0 \) MODEL AND NOTATIONS

In present work, the \(3P_0 \) model is adopted to estimate the strong decays of the \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances. This model has been extensively used for the strong decay behaviors of conventional hadrons and made great successes. There exist plenty of literatures on the \(3P_0 \) model and some details can be found in Refs. [8, 9, 12, 40–44]. Here, we only present the main ingredients of the \(3P_0 \) model. For a \(\Xi_c \) baryon, the transition operator \(T \) of the decay \(A \rightarrow BC \) is given by

\[
T = -3\gamma \sum_m \langle 1m1 - m00 \rangle \int d^3p_1 d^3p_5 \delta^3(p_4 + p_5) \\
\times Y^m_{1,1} \left(\frac{p_1 - p_5}{2} \right) \chi^{45}_{1,-m} \phi_0^{45} \omega_d b_d^- (p_4) d_s^d (p_5),
\]

where \(\gamma \) is a dimensionless \(q_d q_5 \) pair creation strength, and \(p_4 \) and \(p_5 \) are the momenta of the created quark \(q_4 \) and antiquark \(q_5 \), respectively. The solid harmonic polynomial \(M_0^m (p) \equiv |p| Y^m_1 (\theta_p, \phi_p) \) reflects the \(P \)-wave distribution of the \(q_d q_5 \) in the momentum space. \(\phi_0^{45} = (u \bar{u} + d \bar{d} + s \bar{s})/ \sqrt{3} \), \(\omega_d^{45} = \delta_d^i \), and \(\chi_{1,-m}^{45} \) are the flavor, color, and spin wave functions of the \(q_d q_5 \), respectively.

With the transition operator, the helicity amplitude \(M^{M_A, M_B, M_C} \) is defined as

\[
\langle BC| T | A \rangle = \delta^3(p_A - p_B - p_C) M^{M_A, M_B, M_C},
\]

The explicit formula of the helicity amplitude can be found in Refs. [8, 9, 12, 43, 44]. Then, the decay width of \(A \rightarrow BC \) process can be obtained straightforwardly

\[
\Gamma = \pi^2 \frac{p}{M_A^2} \frac{1}{2J_A + 1} \sum_{M_{A}, M_{B}, M_{C}} |M^{M_A, M_B, M_C}|^2,
\]

where \(p = |p| \) is the momentum of the final hadrons in the center of mass system.

The notations of relevant initial states and the predicted masses from quark models are listed in Table I. Here, the \(p \)-mode quantum numbers \(n_p = l_p = 0 \) are omitted, since only the \(\lambda \)-mode \(\Xi_c(2S) \), \(\Xi'_c(2S) \), \(\Xi'_c(1P) \) states are considered. For the masses of these initial states, we first adopt the experimental values of \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) resonances by assuming that they are possible candidates. If a assignment is finally disfavored, the predicted mass of this state is applied to recalculate its strong decays. The masses of final states are taken from the Review of Particle Physics [3].

All the parameters in the \(3P_0 \) model used here are the same as our previous works [43–46], which have been employed to describe the strong decay behaviors of various singly heavy baryons successfully. More specifically, the effective value \(R = 2.5 \text{ GeV}^{-1} \) is adopted for the pseudoscalar mesons [47], while the \(\alpha_p = 400 \text{ MeV}, 420 \text{ MeV}, \) and \(440 \text{ MeV} \) are applied for the \(\Lambda_{c(b)} \), \(\Xi_{c(b)} \), and \(\Xi_{c(b)}^* \), respectively [43, 48]. The \(\alpha_A \) can be obtained

\[
\alpha_A = \left(\frac{3m_Q}{m_{q_1} + m_{q_2} + m_Q} \right)^{1/4} \alpha_p,
\]

where the \(m_Q \) and \(m_{q_1} (m_{q_2}) \) are the heavy and light quark masses, respectively. The \(m_{u/d} = 220 \text{ MeV}, m_s = 419 \text{ MeV}, \) and \(m_c = 1628 \text{ MeV} \) are introduced to explicitly take into account the quark mass differences [47, 49, 50]. The overall parameter \(\gamma \) equals to 9.83 is obtained by reproducing the well established process, and more discussions on this parameter can be found in Ref. [46]. The dependence of the harmonic parameter \(\alpha_p \) for baryons will be discussed in the following section.

III. STRONG DECAYS

A. \(\Xi_c(2S) \) state

In the constituent quark model, only one \(\lambda \)-mode \(\Xi_c(2S) \) state exists. From Table I, the predicted masses of the \(\Xi_c(2S) \) state are 2959 and 2940 MeV within the relativistic and non-relativistic quark models, respectively. The strong decay behaviors of the \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) under \(\Xi_c(2S) \) assignments are presented in Table II. It is shown that the total decay widths for the \(\Xi_c(2923)^0 \), \(\Xi_c(2939)^0 \) and \(\Xi_c(2965)^0 \) are predicted to be 2.21, 2.65, and 3.83 MeV, respectively. Compared with the experimental data, all these three assignments are disfavored. Moreover, the \(\Lambda, K \) decay mode is forbidden for the \(\Xi_c(2S) \) state due to the quantum
number conservation, which is contradict with the observations by the LHCb Collaboration. Thus, the $\Xi_c(2S)$ assignment can be totally excluded.

State	n_1	l_1	L	S_ρ	j	J^p	RM [6]	NR [8]
$\Xi_c(2S)$	1	0	0	0	0	\(1^+\)	2959	2940
$\Xi_c'(2S)$	1	0	0	1	1	\(1^+\)	2983	2977
$\Xi_c''(2S)$	1	0	0	1	1	\(2^+\)	3026	3007
$\Xi_c'(0^+)$	0	1	1	1	0	\(2^-\)	2936	2839
$\Xi_c'(1^+)$	0	1	1	1	1	\(1^-\)	2854	2900
$\Xi_c'(2^+)$	0	1	1	1	2	\(1^+\)	2935	2932
$\Xi_c'(3^+)$	0	1	1	1	2	\(1^+\)	2912	2921

TABLE II: Strong decays of the $\Xi_c(2S)$ state with a mass of 2959 MeV.

Mode	$\Xi_c(2S)$	$\Xi_c(2S)^0$	$\Xi_c(2S)^0$
$\Xi_c^0\pi$	1.18	1.37	1.72
$\Xi_c''\pi$	1.03	1.28	1.79
$\Sigma_c\bar{K}$	\(\ldots\)	\(\ldots\)	0.32
Total width	2.21	2.65	3.83

Given the flavor symmetry, the mass gap between $\Xi_c(2S)$ and Ξ_c should be similar with the non-strange Λ_c case, that is

$$m[\Xi_c(2S)] - m[\Xi_c] = m[\Lambda_c(2S)] - m[\Lambda_c] = 480 \text{ MeV.} \quad (15)$$

With this approximate equality, the mass of $\Xi_c(2S)$ state should be around 2951 MeV, which agrees well with the quark model predictions. We adopt the 2959 MeV predicted by relativistic quark model to calculate the strong decays for the $\Xi_c(2S)$. From Table III, it can be seen that the $\Xi_c(2S)$ state should be a rather narrow state, and the branching ratios for this state are predicted to be

$$Br(\Xi_c^0\pi, \Xi_c''\pi, \Sigma_c\bar{K}) = 47.3\%, 48.2\%, 4.5\%, \quad (16)$$

which is independent with the overall strength γ. The predicted narrow width of $\Xi_c(2S)$ state here is consistent with that of the $3P_0$ model and chiral quark model [9, 10, 13], but quite different with the result of potential model [8]. The predicted branching ratios of ours are consistent with these works [8, 10, 13], which suggests that the future experiments can search for the $\Xi_c(2S)$ state in the $\Xi_c^0\pi$ and $\Xi_c''\pi$ final states.

Mode	$\Xi_c(2S)$
$\Xi_c^0\pi$	1.64
$\Xi_c''\pi$	1.67
$\Sigma_c\bar{K}$	0.16
Total width	3.47

TABLE III: Strong decays of the $\Xi_c(2S)$ state with a mass of 2959 MeV.

B. $\Xi_c'(2S)$ and $\Xi_c''(2S)$ states

The strong decays of the $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$ as $\Xi_c'(2S)$ and $\Xi_c''(2S)$ states are calculated and listed in Table IV. It is shown that the predicted widths of these assignments are slightly smaller than the experimental data. Given the uncertainties of the $3P_0$ model, these assignments seem to be acceptable. However, from Table I, the predicted masses of the $\Xi_c'(2S)$ and $\Xi_c''(2S)$ are around 2980 and 3010 MeV, which are significantly larger than the $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$ resonances. When the masses and decay widths are considered together, the $\Xi_c(2965)^0$ as $\Xi_c'(2S)$ state is favored and other assignments are disfavored.

Two factors, the harmonic oscillator parameter α_p and overall strength γ, may affect the final total decay width. We plot the decay widths of the $\Xi_c(2965)^0$ under $\Xi_c'(2S)$ assignment versus the α_p, in Fig. 1. It can be seen that when the α_p varies, the partial and total decay widths are almost unchanged. Within the reasonable range of α_p, our conclusions remain. The uncertainties arising from the overall constant γ can be eliminated when the branching ratios are concentrated. The predicted branching ratios of dominating channels for the $\Xi_c(2965)^0$ are

$$Br(\Xi_c^0\pi, \Xi_c''\pi, \Sigma_c\bar{K}) = 34.0\%, 23.4\%, 32.2\%, \quad (17)$$

which is also consistent with experimental observation in the $\Lambda_c\bar{K}$ mass spectrum.

Our predicted partial and total decay widths of the $\Xi_c'(2S)$ state agree with the results within the $3P_0$ model, where a mass about 2980 MeV is adopted to calculate the decay behaviors [13]. As mentioned in the Introduction, the $\Xi_c(2965)^0$ may be the corresponding charmed strange partner of the $\Omega_c(3090)$. Although various interpretations of the $\Omega_c(3090)$ exist, the predicted mass of $\Omega_c(2S)$ state is 3088 MeV in the relativistic quark model [6], which indicates that the $\Omega_c(3090)$ as the $\Omega_c(2S)$ state is possible. Moreover, a structure $\Sigma_c(2850)^0$ with 2846 MeV have been reported by the BaBar Collaboration [51], and the mass gap between...
This mass gap is similar with \(\sim \) varies from 380 to 460 MeV, the corresponding ones for the final \(\Xi \) states should reveal more connections among these three families.

When we regard the \(\Xi \) as the \(\Xi \) state. When the \(\alpha \) for the \(\Xi \) varies from 380 to 460 MeV, the corresponding ones for the final non-strange states change in the range of 360 ~ 440 MeV.

\(\Xi \) and \(\Sigma \) is

\[
m[\Xi] - m[\Sigma] = 119 \text{ MeV.} \tag{18}
\]

This mass gap is similar with \(m[\Omega(3090)] - m[\Xi(2939)] \), which suggests that the \(\Sigma(2850) \) structure may be the non-strange partner of \(\Xi(2939) \). Meanwhile, the mass and strong decay behaviors of \(\Sigma(2850) \) suggests that it should correspond to the \(\Sigma(2936) \) state \([8] \). All these evidences support the \(\Xi(2936) \) as the \(\Xi(2936) \) state. Further studies on the low-lying states may reveal more connections among these three families.

When we regard the \(\Xi \) as the \(\Xi \) state, the mass of \(\Xi \) should be smaller than the corresponding \(1S \) states, that is

\[
m[\Xi] - m[\Xi] < m[\Xi] - m[\Xi] = 67 \text{ MeV,} \tag{19}
\]

which is consistent with the predicted fine splitting by the quark models. Here, we adopt the 3007 MeV to calculate the strong decays of \(\Xi(2936) \). From Table \(\text{V} \), the predicted total width is about 12 MeV, and the dominating decay modes are \(\Xi \), \(\Xi \), and \(\Lambda, \bar{K} \). The branching ratios are

\[
Br(\Xi, \Xi, \Xi, \Lambda, \bar{K}) = 34.1\%, 20.0\%, 32.7\%, \tag{20}
\]

which are independent with the quark pair creation strength \(\gamma \) and can be tested by future experiments.

C. \(\Xi \) states

Five \(\lambda \)-mode states, denoted as \(\Xi_{10}(\frac{1}{2}^-), \Xi_{12}(\frac{1}{2}^-), \Xi_{12}(\frac{3}{2}^-), \Xi_{14}(\frac{3}{2}^-), \) and \(\Xi_{14}(\frac{5}{2}^-) \), are allowed in the conventional quark model. From Table \(\text{I} \), it is shown that the predicted masses are in the range of 2854 ~ 2936 MeV, which indicates that the \(\Xi(2923) \) and \(\Xi(2939) \) are good candidates of these \(\Xi(1P) \) states. Although the \(\Xi(2936) \) lies higher than the predicted masses and can be assigned as the \(\Xi(2936) \) state, we also calculate the possible \(\Xi(1P) \) assignments here. The total decay widths with various assignments are presented in Table \(\text{VI} \). For the \(j = 0 \) state, the predicted total decay width is rather large, which can be fully excluded. For the two \(j = 1 \)

TABLE IV: Strong decays of the \(\Xi(2923)^0, \Xi(2939)^0 \) and \(\Xi(2965)^0 \) as \(\Xi(2S) \) and \(\Xi(2S) \) states in MeV.

Mode	\(\Xi(2923)^0 \)	\(\Xi(2939)^0 \)	\(\Xi(2965)^0 \)	\(\Xi(2923)^0 \)	\(\Xi(2939)^0 \)	\(\Xi(2965)^0 \)
\(\Xi, \pi \)	2.68	2.92	3.32	2.68	2.92	3.32
\(\Xi', \pi \)	1.57	1.82	2.29	0.39	0.46	0.57
\(\Xi'' \pi \)	0.34	0.43	0.60	0.86	1.07	1.49
\(\Lambda, \bar{K} \)	2.38	2.68	3.15	2.38	2.68	3.15
\(\Sigma, \bar{K} \)	\ldots	\ldots	0.43	\ldots	\ldots	0.11
Total width	6.97	7.85	9.79	6.31	7.12	8.64

TABLE V: Strong decays of the \(\Xi(2936)^0 \) state with a mass of 3007 MeV.

Mode	\(\Xi(2936)^0 \)
\(\Xi, \pi \)	3.94
\(\Xi', \pi \)	0.78
\(\Xi'' \pi \)	2.31
\(\Lambda, \bar{K} \)	3.79
\(\Sigma, \bar{K} \)	0.74
Total width	11.56
states, the total decay widths also seem larger than the experimental data and the Λ, \bar{K} decay mode is forbidden due to the quantum number conservation, which is contradictory with the experimental observations. For the two $j = 2$ states, the calculated total decay widths are about several MeV. Given the predicted masses and total decay widths together with experimental data, the $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ can be regarded as the $\Xi'_c(\frac{3}{2}^-)$ or $\Xi'_c(\frac{5}{2}^-)$ state reasonably. The $\Xi_c(2939)^0$, as these two $j = 2$ states are also possible and can not be excluded.

TABLE VI: Total decay widths of the $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$ under various $\Xi_c(1P)$ assignments in MeV.

State	$\Xi_c(2923)^0$	$\Xi_c(2939)^0$	$\Xi_c(2965)^0$
$\Xi'_c\frac{1}{2}^-$	153.42	152.41	148.61
$\Xi'_c\frac{1}{2}^+$	47.11	49.11	124.97
$\Xi'_c\frac{3}{2}^-$	36.19	39.21	43.94
$\Xi'_c\frac{3}{2}^+$	4.28	5.33	7.51
$\Xi'_c\frac{5}{2}^-$	4.12	5.13	7.21

Experiments $7.1 \pm 0.8 \pm 1.8$ $10.2 \pm 0.8 \pm 1.1$ $14.1 \pm 0.9 \pm 1.3$

In fact, the physical structures can be the mixing of the quark model states with the same J^P, that is to say

$$
\begin{pmatrix}
|1P 1/2^+\rangle_1 \\
|1P 1/2^+\rangle_2
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}\begin{pmatrix}
|1/2^-, j = 0\rangle \\
|1/2^-, j = 1\rangle
\end{pmatrix}.
$$

In the heavy quark limit, these mixing angles should be zero and the heavy quark symmetry is preserved. However, the finite charm quark mass breaks this symmetry explicitly, and the physical states and quark model states may have a small divergence with a nonzero mixing angle. The dependence on the mixing angle θ in the range of -30° \sim 30° are presented in Figure 2. It is shown that the two $J^P = 1/2^+$ states can be excluded, while the $J^P = 3/2^-$ assignments are allowed. From the mixing scheme, all the $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$ may belong to the narrower $|1P 3/2^-\rangle_2$ state. Together with the masses and previous assignments, the $\Xi_c(2965)^0$ should be regarded as the $\Xi_c(2S)$ state, and the $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$ should be assigned as the two states, the $J^P = 5/2^-$ state and the $|1P 3/2^-\rangle_2$ state with large $j = 2$ component. The strong decay behaviors favor the $\Xi_c(2923)^0$ as the $J^P = 5/2^-$ state, while the predicted mass spectrum suggest that the $\Xi_c(2939)^0$ with a slightly large mass should be the $J^P = 5/2^-$ state. Actually, the masses and decay widths of these two states are similar, and it is difficult to perform the exact correspondence between the physical and theoretical states from current experimental information. Given the similarities among the Σ_c, Ξ'_c and Ω_c spectra, more experimental information and theoretical efforts on these flavor 6\bar{c} states are needed to solve this problem.

Furthermore, it can be noticed that there are two states, $\Xi_c(2930)$ and $\Xi_c(2970)$, in the Review of Particle Physics [3]. The $\Xi_c(2930)^+$ and $\Xi_c(2970)^0$ have total widths of 15 and 26 MeV, respectively, which can not be clarified into our present arrangement. We agree with the suggestion of LHCb Collaboration that the $\Xi_c(2930)$ is the overlap of the two structures $\Lambda_c(2923)$ and $\Xi_c(2939)$. The $\Xi_c(2970)$ has a nearly identical mass with $\Xi_c(2965)$, and the measured widths by different collaborations show quite large divergence. Theoretically, only one $\Xi_c(2S)$ in this mass region exists. Based on our calculations, we suggest that the $\Xi_c(2970)$ may be the same state as $\Xi_c(2965)$, which can be tested by future experiments.

IV. SUMMARY

In this work, we estimate the strong decays of the three newly observed resonances $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$ by the LHCb Collaboration. Given the Ξ_c and Ξ'_c spectra predicted by constituent quark models, these three resonances can be tentatively treated as the λ–mode $\Xi_c(2S)$, $\Xi'_c(2S)$, $\Xi'_c(2S')$, and $\Xi'_c(1P)$ states. Their strong decay be-
haviors are calculated within the 3P_0 model. Compared with the experimental data, our results suggest that the $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$ should be $J^P = 3/2^+$ and $5/2^+$ $\Xi_c(1P)$ states, and the $\Xi_c(2965)^0$ can be assigned as the $\Xi_c^+(2S)$ state. Other theoretical results of the missing $\Xi_c(2S)$, $\Xi_c^{0*}(2S)$, and $\Xi_c^{0+}(1P)$ states may be helpful for future experiments.

During the study, it can be noticed that the Ξ_c and Ξ_c^* systems are more complicated than other singly heavy baryons because the flavor configurations cannot be determined by the isospin quantum number. Fortunately, there exist some similarities and connections among the Σ_c, Σ_c^*, and Ω_c baryons, which can provide valuable clues for us. More theoretical and experimental studies on these three families are needed to further understand their inner structures and establish the low-lying spectra.

ACKNOWLEDGEMENTS

I would like to thank Xian-Hui Zhong and Wei Liang for valuable discussions on the singly heavy baryons. This work is supported by the National Natural Science Foundation of China under Grants No. 11705056 and No. U1832173.

[1] R. Aaij et al. (LHCb Collaboration), Observation of new Ξ_c^0 baryons decaying to $\Lambda_0^+K^-$, arXiv:2003.13649.
[2] H. M. Yang, H. X. Chen and Q. Mao, Identifying the Ξ_c^0 baryons observed by LHCb as P-wave Ξ_c^0 baryons, arXiv:2004.00531.
[3] M. Tanabashi et al. (Particle Data Group), Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
[4] D. Ebert, R. N. Faustov and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. B 659, 612 (2008).
[5] W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008).
[6] D. Ebert, R. N. Faustov and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84, 014025 (2011).
[7] B. Chen, K. W. Wei and A. Zhang, Assignments of Λ_0^+ and Ξ_c^0 baryons in the heavy quark-light diquark picture, Eur. Phys. J. A 51, 82 (2015).
[8] B. Chen, K. W. Wei, X. Liu and T. Matsuki, Low-lying charmed and charmed-strange baryon states, Eur. Phys. J. C 77, 154 (2017).
[9] C. Chen, X. L. Chen, X. Liu, W. Z. Deng and S. L. Zhu, Strong decays of charmed baryons, Phys. Rev. D 75, 094017 (2007).
[10] L. H. Liu, L. Y. Xiao and X. H. Zhong, Charm-strange baryon strong decays in a chiral quark model, Phys. Rev. D 86, 034024 (2012).
[11] C. Mu, X. Wang, X. L. Chen, X. Liu and S. L. Zhu, Dipion decays of heavy baryons, Chin. Phys. C 38, 113101 (2014).
[12] D. D. Ye, Z. Zhao and A. Zhang, Study of P-wave excitations of observed charmed strange baryons, Phys. Rev. D 96, 114009 (2017).
[13] D. D. Ye, Z. Zhao and A. Zhang, Study of $2S$- and $1D$-excitations of observed charmed strange baryons, Phys. Rev. D 96, 114003 (2017).
[14] K. L. Wang, Y. X. Yao, X. H. Zhong and Q. Zhao, Strong and radiative decays of the low-lying S- and P-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017).
[15] A. Valcarce, H. Garcilazo and J. Vijande, Towards an understanding of heavy baryon spectroscopy, Eur. Phys. J. A 37, 217 (2008).
[16] H. X. Chen, W. Chen, Q. Mao, A. Hosaka, X. Liu and S. L. Zhu, P-wave charmed baryons from QCD sum rules, Phys. Rev. D 91, 054034 (2015).
[17] H. Y. Cheng and C. K. Chua, Strong Decays of Charmed Baryons in Heavy Hadron Chiral Perturbation Theory, Phys. Rev. D 75, 014006 (2007).
[18] H. Y. Cheng and C. K. Chua, Strong Decays of Charmed Baryons in Heavy Hadron Chiral Perturbation Theory: An Update, Phys. Rev. D 92, 074014 (2015).
[19] T. M. Aliiev, K. Azizi and H. Sundu, On the nature of $\Xi_c(2930)$, Eur. Phys. J. A 54, 159 (2018).
[20] Z. Shah, K. Thakkar, A. K. Rai and P. C. Vinodkumar, Mass spectra and Regge trajectories of Λ_0^+, Ξ_c^0, Ξ_c^{0*} and Ω_c^0 baryons, Chin. Phys. C 40, 123102 (2016).
[21] D. J. Jia, W. N. Liu and A. Hosaka, Regge behaviors in orbitally excited spectroscopy of charmed and bottom baryons, Phys. Rev. D 101, 034016 (2020).
[22] C. E. Jimenez-Tejero, A. Ramos and I. Vidana, Dynamically generated open charmed baryons beyond the zero range approximation, Phys. Rev. C 80, 055206 (2009).
[23] J. X. Lu, Y. Zhou, H. X. Chen, J. J. Xie and L. S. Geng, Dynamically generated $J^P = 1/2^+$ ($3/2^-$) singly charmed and bottom heavy baryons, Phys. Rev. D 92, 014036 (2015).
[24] Q. X. Yu, R. Pavao, V. R. Debastiani and E. Oset, Description of the Ξ_c and Ξ_c^* states as molecular states, Eur. Phys. J. C 79, 167 (2019).
[25] J. Nieves, R. Pavao and L. Tolos, Ξ_c and Ξ_c^* excited states within a SU(6)$_{6s}$×HQSS model, Eur. Phys. J. C 80, 22 (2020).
[26] Z. Zhao, D. D. Ye and A. Zhang, Nature of charmed strange baryons $\Xi_c(3055)$ and $\Xi_c(3080)$, Phys. Rev. D 94, 114020 (2016).
[27] Y. X. Yao, K. L. Wang and X. H. Zhong, Strong and radiative decays of the low-lying D-wave singly heavy baryons, Phys. Rev. D 98, 076015 (2018).
[28] X. Liu, C. Chen, W. Z. Deng and X. L. Chen, A Note on $\Xi_c(3055)^+$ and $\Xi_c(3123)^+$, Chin. Phys. C 32, 424 (2008).
[29] B. Chen, X. Liu and A. Zhang, Newly observed $\Lambda_c(2860)^+$ at LHCb and its D-wave partners $\Lambda_c(2880)^+$, $\Xi_c(3055)^+$ and $\Xi_c(3080)^+$, Phys. Rev. D 95, 074022 (2017).
[30] X. H. Guo, K. W. Wei and X. H. Wu, Some mass relations for mesons and baryons in Regge phenomenology, Phys. Rev. D 78, 056005 (2008).
[31] H. X. Chen, Q. Mao, A. Hosaka, X. Liu and S. L. Zhu, D-wave charmed and bottomed baryons from QCD sum rules, Phys. Rev. D 94, 114016 (2016).
[32] J. R. Zhang and M. Q. Huang, Heavy baryon spectroscopy in QCD, Phys. Rev. D 78, 094015 (2008).
[33] Z. G. Wang, Analysis of the 1/2$^-$ and 3/2$^-$ heavy and doubly heavy baryons with QCD sum rules, Eur. Phys. J. A 47, 81 (2011).
[34] Y. Kawakami and M. Harada, Singly heavy baryons with chiral partner structure in a three-flavor chiral model, Phys. Rev. D 99, 094016 (2019).
[35] B. Aubert et al. (BaBar Collaboration), A Study of $\bar{B} \to \Xi_c^-\bar{\Lambda}$ and $\bar{B} \to \Lambda_c^+\Lambda_c^-\bar{K}$ decays at BABAR, Phys. Rev. D 77, 031101 (2008).
[36] R. Chistov et al. (Belle Collaboration), Observation of new states decaying into $\Lambda^+_c K^-\pi^+$ and $\Lambda^+_c K^0_S\pi^-$, Phys. Rev. Lett. 97, 162001 (2006).
[37] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80, 076201 (2017).
[38] V. Crede and W. Roberts, Progress towards understanding baryon resonances, Rept. Prog. Phys. 76, 076301 (2013).
[39] H. Y. Cheng, Charmed baryons circa 2015, Front. Phys. (Beijing) 10, 101406 (2015).
[40] L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10, 521, (1969).
[41] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, *Hardon Transitions in the quark model* (Gordon and Breach, New York, 1988).
[42] W. Roberts and B. Silverstr-Brac, General method of calculation of any hadronic decay in the 3P_0 model, Few-Body Syst. 11, 171 (1992).
[43] Q. F. Lü, L. Y. Xiao, Z. Y. Wang and X. H. Zhong, Strong decay of $\Lambda_c(2940)$ as a $2P$ state in the Λ_c family, Eur. Phys. J. C 78, 599 (2018).
[44] W. Liang, Q. F. Lü and X. H. Zhong, Canonical interpretation of the newly observed $\Lambda_b(6146)^0$ and $\Lambda_b(6152)^0$ via strong decay behaviors, Phys. Rev. D 100, 054013 (2019).
[45] Q. F. Lü and X. H. Zhong, Strong decays of the higher excited Λ_c and Σ_c baryons, Phys. Rev. D 101, 014017 (2020).
[46] W. Liang and Q. F. Lü, Strong decays of the newly observed narrow Ω_b structures, Eur. Phys. J. C 80, 198 (2020).
[47] S. Godfrey and K. Moats, Properties of Excited Charm and Charm-Strange Mesons, Phys. Rev. D 93, 034035 (2016).
[48] X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008 (2008).
[49] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189 (1985).
[50] S. Capstick and N. Isgur, Baryons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 34, 2809 (1986).
[51] B. Aubert et al. (BaBar Collaboration), Measurements of $B(B^0 \to \Lambda_c^+\bar{p})$ and $B(B^- \to \Lambda_c^-\bar{p}\pi^-)$ and Studies of $\Lambda_c^+\pi^-$ Resonances, Phys. Rev. D 78, 112003 (2008).