A new bound on Erdős distinct distances problem in the plane over prime fields

A. Iosevich∗ D. Koh† T. Pham‡ C-Y. Shen§ L. Vinh¶

Abstract

In this paper we obtain a new lower bound on the Erdős distinct distances problem in the plane over prime fields. More precisely, we show that for any set \(A \subset \mathbb{F}_p^2 \) with \(|A| \leq p^{7/6} \) and \(p \equiv 3 \mod 4 \), the number of distinct distances determined by pairs of points in \(A \) satisfies

\[
|\Delta(A)| \gtrsim |A|^{1/2 + 149/4214}.
\]

Our result gives a new lower bound of \(|\Delta(A)| \) in the range \(|A| \leq p^{1+149/4065} \).

The main tools in our method are the energy of a set on a paraboloid due to Rudnev and Shkredov, a point-line incidence bound given by Stevens and de Zeeuw, and a lower bound on the number of distinct distances between a line and a set in \(\mathbb{F}_p^2 \). The latter is the new feature that allows us to improve the previous bound due Stevens and de Zeeuw.

1 Introduction

The celebrated Erdős distinct distances problem asks for the minimum number of distinct distances determined by a set of \(n \) points in the plane over the real numbers. The breakthrough work of Guth and Katz [6] shows that a set of \(n \) points in \(\mathbb{R}^2 \) determines at least \(Cn/\log(n) \) distinct distances. The same problem can be considered in the setting of finite fields.

Let \(\mathbb{F}_p \) be the prime field of order \(p \). The “distance” formula between two points \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) in \(\mathbb{F}_p^2 \) is defined by

\[
||x - y|| := (x_1 - y_1)^2 + (x_2 - y_2)^2.
\]

While this is not a distance in the traditional sense, the definition above is a reasonable analog of the Euclidean distance in that it is invariant under orthogonal transformations.

For \(A \subset \mathbb{F}_p^2 \), let

\[
\Delta(A) = \{||x - y|| : x, y \in A\}
\]

∗Department of Mathematics, University of Rochester. Email: iosevich@math.rochester.edu
†Department of Mathematics, Chungbuk National University. Email: koh131@chungbuk.ac.kr
‡Department of Mathematics, UCSD. Email: v9pham@ucsd.edu
§Department of Mathematics, National Taiwan University. Email: cyshen@math.ntu.edu.tw
¶Vietnam Institute of Educational Sciences. Email: vinhla@vnu.edu.vn
and let $|\Delta(A)|$ denote its size. It has been shown in a remarkable paper of Bourgain, Katz, and Tao \[3\] that if $|A| = p^\alpha$, $0 < \alpha < 2$, then we have

$$|\Delta(A)| \geq |A|^{\frac{1}{2} + \varepsilon},$$

for some $\varepsilon = \varepsilon(\alpha) > 0$.

This result has been quantified and improved over time. The recent work of Stevens and De Zeeuw \[11\] shows that

$$|\Delta(A)| \geq |A|^{\frac{1}{2} + \frac{1}{30}} = |A|^{\frac{8}{15}},$$

(1)

under the condition $|A| \ll p^{\frac{11}{6}}$.

Here and throughout, $X \ll Y$ means that there exists $c_1 > 0$, independent of p, such that $X \leq c_1 Y$, $X \gg Y$ means $X \gg (\log Y)^{-c_2} Y$ for some positive constant c_2, and $X \sim Y$ means that $c_3 X \leq Y \leq c_4 X$ for some positive constants c_3 and c_4.

For the case of large sets, Iosevich and Rudnev \[5\] used Fourier analytic methods to prove that for $A \subset \mathbb{F}_q^d$, where q is not necessarily prime, with $|A| \geq q^{\frac{4d+1}{3}}$, we have $\Delta(A) = \mathbb{F}_q$. It was shown in \[7\] that the threshold $q^{\frac{4d+1}{3}}$ cannot in general be improved when d is odd, even if we wish to recover a positive proportion of all the distances in \mathbb{F}_q. In prime fields, the question is open in dimension 3 and higher. In two dimensions, Chapman, Erdogan, Koh, Hart and Iosevich (\[4\]) proved that if $|A| \geq p^{\frac{4}{5}}$, p prime, then $|\Delta(A)| \gg p$. In particular, their proof shows that if $Cp \leq |A| \leq p^{\frac{4}{3}}$ for a sufficiently large $C > 0$, then

$$|\Delta(A)| \gg \frac{|A|^{\frac{3}{2}}}{p}.$$

(2)

The 4/3 threshold was extended to all (not necessarily prime) fields by Bennett, Hart, Iosevich, Pakianathan and Rudnev (\[2\]). We refer the reader to \[5, 7\] for further details.

The main purpose of this paper is to improve the exponent $\frac{1}{2} + \frac{1}{30} = \frac{8}{15}$ on the magnitude of $\Delta(A)$ when A is a relatively small set in \mathbb{F}_p^2 with $p \equiv 3 \pmod{4}$. The main tools in our arguments are the energy of a set on a paraboloid due to Rudnev and Shkredov, a point-line incidence bound given by Stevens and de Zeeuw, and a lower bound on the number of distinct distances between a line and a set in \mathbb{F}_p^2. The following is our main result.

Theorem 1.1. Let \mathbb{F}_p be a prime field of order p with $p \equiv 3 \pmod{4}$. For $A \subset \mathbb{F}_p^2$ with $|A| \ll p^{\frac{7}{10}}$, we have

$$|\Delta(A)| \gtrsim |A|^{\frac{122}{150}} = |A|^{\frac{4}{5} + \frac{169}{150}}.$$

Remark 1.1. The Stevens-de Zeeuw exponent in \[11\] is $0.533...$, whereas our exponent is $0.535358...$. Thus our result is better than that of the Stevens-de Zeeuw in the range $|A| \ll p^{7/6}$. On the other hand, our result is superior to \(2\) in the range $|A| \leq p^{\frac{1}{2} + \frac{1}{60}} = p^{\frac{49}{120}}$. In conclusion, Theorem \[11\] improves the currently known distance results in the range $|A| \ll p^{\frac{4214}{4065}}$.

Remark 1.2. While our improvement over the Steven-de Zeeuw estimate is small, we introduce a new idea, namely the count for the number of distances between a line and a set. This should lead to further improvements in the exponent in the future.

The rest of the paper is devoted to prove Theorem \[11\] and we always assume that $p \equiv 3 \pmod{4}$.
Acknowledgments: The authors would like to thank Frank de Zeeuw for useful discussions and comments. A. Iosevich was partially supported by the NSA Grant H98230-15-1-0319. D. Koh was supported by Basic Science Research Programs through National Research Foundation of Korea funded by the Ministry of Education (NRF-2018R1D1A1B07044469). T. Pham was supported by Swiss National Science Foundation grant P400P2-183916. C-Y Shen was supported in part by MOST, through grant 104-2628-M-002-015 -MY4.

2 Proof of Theorem 1.1

To prove Theorem 1.1 we make use of the following lemmas. The first lemma is a point-line incidence bound due to Stevens and De Zeeuw in [11].

Lemma 2.1 ([11]). Let P be a set of m points in \mathbb{F}_p^2 and L be a set of n lines in \mathbb{F}_p^2. Suppose that $m^{7/8} \leq n \leq m^{8/7}$ and $m^{-2}n^{13} \ll p^{15}$. Then we have

$$I(P, L) = \# \{(p, ℓ); p \in P, ℓ \in L\} \ll m^{11/15}n^{11/15}.$$

Let P be a paraboloid in \mathbb{F}_p^3. For $Q \subset P$, let $E(Q)$ be the additive energy of the set Q, namely, the number of tuples $(a, b, c, d) \in Q^4$ such that $a - b = c - d$. Using Pach and Sharir’s argument in [9] and Lemma 2.1, Rudnev and Shkredov [8] derived an upper bound of $E(Q)$ as follows.

Lemma 2.2 ([8]). Let P be a paraboloid in \mathbb{F}_p^3. For $Q \subset P$ with $|Q| \ll p^{26/21}$, we have

$$E(Q) \ll |Q|^{17/7}.$$

In the following theorem, we give a lower bound on the number of distinct distances between a set on a line and an arbitrary set in \mathbb{F}_p^2. This will be a crucial step in the proof of Theorem 1.1. The precise statement is as follows.

Theorem 2.3. Let l be a line in \mathbb{F}_p^2, P_1 be a set of points on l, and P_2 be an arbitrary set in \mathbb{F}_p^2. Suppose that $|P_1|^{3/8} < |P_2| \ll p^{5/8}$. Then the number of distinct distances between P_1 and P_2, denoted by $|\Delta(P_1, P_2)|$, satisfies

$$|\Delta(P_1, P_2)| \gtrsim \min \left\{ |P_1|^{3/8}, |P_2|^{3/8}, |P_1||P_2|^{1/8}, |P_2|^{7/8}, |P_1|^{-1}|P_2|^{8/7} \right\}.$$

We will provide a detailed proof of Theorem 2.3 in Section 3. The following is a direct consequence from Theorem 2.3.

Corollary 2.4. Let $A \subset \mathbb{F}_p^2$ with $|A| \ll p^{7/6}$. Suppose there is a line containing at least $|A|^{17/23} + \epsilon$ points from A. Then we have

$$|\Delta(A)| \gtrsim \min \{|A|^{17/23}, |A|^\epsilon, |A|^{17/23} - \epsilon\}.$$

The above corollary shows that the exponent $8/15$ in (1) due to Stevens and De Zeeuw is improved when A contains many points on a line.

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1: Let $\epsilon > 0$ be a parameter chosen at the end of the proof. Throughout the proof, we assume that that

$$\frac{16}{15} + 2\epsilon < \frac{8}{7},$$

which is equivalent with $\epsilon < 4/105$. If there is a line containing at least $|A|^{7/15+\epsilon}$ points from A, then we obtain by Corollary 2.4 that

$$|\Delta(A)| \gg \min\{|A|^\frac{8}{15+2}, |A|^\frac{8+\epsilon}{1+\epsilon}\}.$$ \hspace{1cm} (4)

Now we assume that there is no line supporting more than $|A|^{7/15+\epsilon}$ points from A.

For any line l in \mathbb{F}_p^2 defined by the equation $ax + by - c = 0$, the vector (a, b, c) is called a vector of parameters of l.

We first start with counting the number of triples $(z, x, y) \in A^3$ such that $||z - x|| = ||z - y||$, where $z = (a, b), x = (x_1, x_2), y = (y_1, y_2)$.

It follows from the equation $||z - x|| = ||z - y||$ that

$$(-2a)(x_1 - y_1) + (-2b)(x_2 - y_2) + (x_1^2 + x_2^2) - (y_1^2 + y_2^2) = 0.$$

This equation defines a line in \mathbb{F}_p^2 with the parameters

$$(x_1, x_2, x_1^2 + x_2^2) - (y_1, y_2, y_1^2 + y_2^2) = (x_1 - y_1, x_2 - y_2, x_1^2 + x_2^2 - y_1^2 - y_2^2).$$

Let L be the set of these lines. It is clear that L can be a multi-set.

Let Q be the set of points of the form $(x, y, x^2 + y^2)$ with $(x, y) \in A$. We have Q is a set on the paraboloid $z = x^2 + y^2$ and $|Q| = |A|$.

Notice that the number of triples $(z, x, y) \in A^3$ with the property $||z - x|| = ||z - y||$ is equivalent to the number of incidences between lines in L and points in $-2A := \{(-2a_1, -2a_2) : (a_1, a_2) \in A\}$.

For each line l in L, let $f(l)$ be the size of $l \cap (-2A)$, and $m(l)$ be the multiplicity of l. Let L_1 be the set of distinct lines in L.

Thus, we have

$$I(-2A, L) = \sum_{l \in L_1} f(l)m(l)$$

$$= \sum_{l \in L_1, f(l) \leq |A|^{7/15-\epsilon}} f(l)m(l) + \sum_{l \in L_1, |A|^{7/15-\epsilon} \leq f(l) \leq |A|^{7/15+\epsilon}} f(l)m(l)$$

$$= I_1 + I_2.$$

We now bound I_1 and I_2 as follows.

One can check that the size of L is bounded by $|A|^2$, which implies that

$$I_1 \leq |A|^\frac{8}{15-\epsilon}.$$ \hspace{1cm} (3)

Let L_2 be the set of distinct lines l in L_1 such that $|A|^{\frac{8}{15-\epsilon}} \leq f(l) \leq |A|^{\frac{8}{15+\epsilon}}$.
To bound I_2, we consider the following two cases:

Case 1: Suppose

$$\sum_{l \in L_2} m(l) \leq |A|^{2-\frac{15}{11}}.$$

We see that

$$I_2 = \sum_{l \in L_2} f(l)m(l) \leq |A|^\frac{37}{11} + |A|^\frac{44}{11},$$

since any line in L_2 contains at most $|A|^{7/15+\epsilon}$ points. Thus in this case we obtain that

$$I(-2A, L) = I_1 + I_2 \leq |A|^{\frac{37}{11}} + |A|^{\frac{44}{11}} \ll |A|^{\frac{37}{11} - \frac{4}{11}}. \tag{5}$$

Now, for each $t \in \mathbb{F}_p$, let $\nu(t)$ denote the number of pairs $(x, y) \in A^2$ such that $\|x - y\| = t$. We have

$$\nu^2(t) = \left(\sum_{x, y \in A: \|x - y\| = t} 1 \right)^2 = \left(\sum_{x \in A} 1 \times \left(\sum_{y \in A: \|x - y\| = t} 1 \right) \right)^2.$$

By the Cauchy-Schwarz inequality,

$$\nu^2(t) \leq |A| \sum_{x \in A} \left(\sum_{y \in A: \|x - y\| = t} 1 \right)^2 = |A| \sum_{x, y, z \in A: \|x - y\| = \|x - z\|} 1.$$

Summing over $t \in \mathbb{F}_p$, we obtain

$$\sum_{t \in \mathbb{F}_p} \nu^2(t) \leq |A| \sum_{x, y, z \in A: \|x - y\| = \|x - z\|} 1.$$

By the Cauchy-Schwarz inequality and the above inequality, we get

$$\frac{|A|^4}{|\Delta(A)|} \leq \sum_{t \in \mathbb{F}_p} \nu^2(t) \leq |A| \# \{(x, y, z) \in A^3: \|x - y\| = \|x - z\|\} \ll |A|I(-2A, L).$$

Combining the above inequality with (5), we obtain

$$|\Delta(A)| \gg \|A\|^\frac{37}{11} + \frac{44}{11}. \tag{6}$$

Case 2: Suppose

$$\sum_{l \in L_2} m(l) \geq |A|^{2-\frac{15}{11}}.$$

By the Cauchy-Schwarz inequality and Theorem 2.2, we have

$$\# \{(a - b, ||a|| - ||b||): a, b \in A, (a - b, ||a|| - ||b||) \text{ is a vector of parameters of a line in } L_2\} \gg \frac{(\sum_{l \in L_2} m(l))^2}{E(Q)} \gg |A|^\frac{44}{11} - \frac{30}{11}. \tag{7}$$
In the next step, we are going to show that

\[|L_2| \leq |A|^{1 + \frac{15}{16}}. \]

Indeed, since each line in \(L_2 \) contains at least \(|A|^{7/15-\epsilon}\) points, the size of \(L_2 \) is at most \(|A|^{16/15+2\epsilon} \ll |A|^{8/7}\). The last inequality follows from our assumption (3). Hence, we are able to apply Theorem 2.1 so that we have

\[|A|^{\frac{11}{15}} |L_2| \leq I(-2A, L_2) \leq |A|^{11/15} |L_2|^{11/15}, \]

which gives us that

\[|L_2| \ll |A|^{1 + \frac{15}{16}}. \quad (8) \]

For each line \(l \in L_2 \), let \(m'(l) \) be the number of distinct vectors \((a - b, ||a|| - ||b||)\) with \((a, b) \in A^2\) such that \((a - b, ||a|| - ||b||)\) is a vector of parameters of \(l \).

It follows from (7) and (5) that there exists \(l \in L_2 \) such that

\[m'(l) \gg |A|^\frac{4 - \frac{8}{15} - \frac{15}{16}}{30}. \quad (9) \]

We now claim that \(|\Delta(A)| \gg m'(l)|. Indeed, suppose that \(l \) is determined by \(m'(l) \) distinct vectors \((a_1 - b_1, ||a_1|| - ||b_1||), \ldots, (a_{m'(l)} - b_{m'(l)}, ||a_{m'(l)}|| - ||b_{m'(l)}||)\). Then we have

\[
(a_2 - b_2, ||a_2|| - ||b_2||) = \lambda_2 \cdot (a_1 - b_1, ||a_1|| - ||b_1||), \\
(a_3 - b_3, ||a_3|| - ||b_3||) = \lambda_3 \cdot (a_1 - b_1, ||a_1|| - ||b_1||), \\
\vdots \\

(a_{m'(l)} - b_{m'(l)}, ||a_{m'(l)}|| - ||b_{m'(l)}||) = \lambda_{m'(l)} \cdot (a_1 - b_1, ||a_1|| - ||b_1||),
\]

for some \(\lambda_2, \ldots, \lambda_{m'(l)} \in \mathbb{F}_p \). Since the vectors \((a_1 - b_1, ||a_1|| - ||b_1||), \ldots, (a_{m'(l)} - b_{m'(l)}, ||a_{m'(l)}|| - ||b_{m'(l)}||)\) are distinct, we have \(\lambda_2, \ldots, \lambda_{m'(l)} \) are distinct. On the other hand, we also have

\[||a_2 - b_2|| = \lambda_2^2 \cdot ||a_1 - b_1||, \ldots, ||a_{m'(l)} - b_{m'(l)}|| = \lambda_{m'(l)}^2 \cdot ||a_1 - b_1||, \]

which gives us \(|\Delta(A)| \geq \frac{m'(l)-1}{2} \), and the claim is proved.

Hence, it follows from the equation (9) that

\[|\Delta(A)| \gg |A|^\frac{4 - \frac{8}{15} - \frac{15}{16}}{30}. \quad (10) \]

By (3) of Case 1 and (10) of Case 2, it follows that if no line contains more than \(|A|^{\frac{11}{15}+\epsilon}\) points in \(A \), then

\[|\Delta(A)| \gg \min \left\{ |A|^{\frac{11}{15}+\frac{15}{16}}, |A|^{\frac{4 - \frac{8}{15} - \frac{15}{16}}{30}} \right\}. \]

Finally, combining this fact with (10) yields that

\[|\Delta(A)| \gg \min \left\{ |A|^{\frac{11}{15}+\frac{15}{16}}, |A|^{\frac{4 - \frac{8}{15} - \frac{15}{16}}{30}}, |A|^{\frac{4 - \frac{8}{15} - \frac{15}{16}}{30}} \right\}. \]

To deduce the desirable result, we consier the common solutions \((\epsilon, \delta)\) to the system of the following three inequalities:

\[
\frac{8}{15} + \frac{4\epsilon}{11} \geq \delta, \quad \frac{8}{15} + \frac{1}{7} - \epsilon \geq \delta, \quad \frac{4}{7} - \frac{30\epsilon}{11} - \frac{15\epsilon}{4} \geq \delta.
\]
By a direct computation, we can obtain the largest \(\delta = \frac{1128}{2107} \) for \(\epsilon = \frac{176}{31605} \). Thus, choosing \(\epsilon = \frac{176}{31605} \) gives

\[
|\Delta(A)| \gg |A|^\delta = |A|^{\frac{1128}{2107}},
\]

which completes the proof. \(\square \)

3 Distances between a set on a line and an arbitrary set in \(\mathbb{F}_p^2 \)

In this section, we will prove Theorem 2.3. We first start with an observation as follows: if

\[
|\Delta(P_1, P_2)| \gg \min \left\{ |P_2|^{8/7}|P_1|^{-1}, |P_2|^{7/8} \right\},
\]

then we are done. So WLOG, we assume that

\[
|\Delta(P_1, P_2)| \ll \min \left\{ |P_2|^{8/7}|P_1|^{-1}, |P_2|^{7/8} \right\}. \tag{11}
\]

Hence, to prove Theorem 2.3, it is sufficient to show that

\[
|\Delta(P_1, P_2)| \gtrsim \min \left\{ |P_1|^{1/11}|P_2|^{1/8}, |P_1||P_2|^{1/8} \right\}.
\]

Since the distance function is preserved under translations and rotations, we can assume that the line is vertical passing through the origin, i.e. \(P_1 \subset \{0\} \times \mathbb{F}_p \). For the simplicity, we identify each point in \(P_1 \) with its second coordinate. The following lemma on a point-line incidence bound is known as a direct application of the Kővari–Sós–Turán theorem in [1].

Lemma 3.1. Let \(P \) be a set of \(m \) points in \(\mathbb{F}_p^2 \) and \(L \) be a set of \(n \) lines in \(\mathbb{F}_p^2 \). We have

\[
I(P, L) \leq \min \{ m^{1/2}n + m, n^{1/2}m + n \}.
\]

For \(x \in P_1 \) and \(P_2 \subset \mathbb{F}_p^2 \), we define

\[
\mathcal{E}(P_2, x) := \# \left\{ ((a, b), (c, d)) \in P_2^2 : a^2 + (b - x)^2 = c^2 + (d - x)^2 \right\},
\]

as the number of pairs of points in \(P_2 \) with the same distance to \(x \in P_1 \). In the next lemma, we will give an upper bound for \(\sum_{x \in P_1} \mathcal{E}(P_2, x) \).

Lemma 3.2. Let \(P_1, P_2 \) be sets as in Theorem 2.3. Suppose that \(|P_1|^{4/7} < |P_2| \) and \(|P_2| \ll p^{7/6} \). Then we have

\[
\sum_{x \in P_1} \mathcal{E}(P_2, x) \lesssim |P_1|^{7/11}|P_2|^{18/11} + |P_2|^{15/8}.
\]

Proof. For \(x \in P_1 \) and \(\lambda \in \mathbb{F}_p \), let \(r_{P_2}(x, \lambda) \) be the number of points \((a, b) \) in \(P_2 \) such that \(a^2 + (b - x)^2 = \lambda \). Then we have

\[
T := \sum_{x \in P_1} \mathcal{E}(P_2, x) = \sum_{(x, \lambda) \in P_1 \times \mathbb{F}_p} r_{P_2}(x, \lambda)^2.
\]
Let \(t = |P_2|^{7/11} > 1 \), and let \(R_t \) be the number of pairs \((x, \lambda) \in P_1 \times \mathbb{F}_p\) such that \(r_{P_2}(x, \lambda) \geq t \). We have
\[
T = \sum_{(x, \lambda) \notin R_t} r_{P_2}(x, \lambda)^2 + \sum_{(x, \lambda) \in R_t} r_{P_2}(x, \lambda)^2 = I + II.
\]
Since \(\sum_{(x, \lambda) \notin R_t} r_{P_2}(x, \lambda) \leq |P_1||P_2| \) and \(r_{P_2}(x, \lambda) < t \) for any pair \((x, \lambda) \notin R_t\), we have
\[
I \leq t|P_1||P_2| = |P_1|^{7/11}|P_2|^{18/11}.
\]

In the next step, we will bound \(II \).

From the equation \(\lambda = a^2 + (b - x)^2 \), we have
\[
a^2 + b^2 = 2bx - x^2 + \lambda.
\]
Let \(P \) be the set of points \((b, a^2 + b^2)\) with \((a, b) \in P_2\), and \(L \) be the set of lines defined by \(y = 2ux - u^2 + v \) with \((u, v) \in R_t\). We have \(|L| = |R_t|\) and \(|P| \sim |P_2|\).

With these definitions, we observe that \(II \) can be viewed as the number of pairs of points in \(P \) on lines in \(L \).

We partition \(L \) into at most \(\log(|P|) \) sets of lines \(L_i \) as follows:
\[
L_i = \{l \in L: 2^it \leq |l \cap P| < 2^{i+1}t\},
\]
and let \(II(L_i) \) denote the number of pairs of points in \(P \) on lines in \(L_i \).

For each \(i \), we now consider the following cases:

Case 1: \(|P|^{1/2} < |L_i| \leq |P|^{7/8}\). It follows from Lemma 3.1 that
\[
2^i|L_i| \leq I(P, L_i) \leq |P|^{1/2}|L_i| + |P| \ll |P|^{1/2}|L_i|,
\]
which leads to that \(2^i t \leq |P|^{1/2} \). Thus
\[
II(L_i) \ll |L_i| \left(|P|^{1/2}\right)^2 \ll |P|^{15/8} \sim |P_2|^{15/8}.
\]

Case 2: \(|P|^{7/8} \leq |L_i| \leq |P|^{8/7}\). It follows from Lemma 2.1 that
\[
2^i|L_i| \leq I(P, L_i) \leq |L_i|^{11/15}|P|^{11/15}.
\]
This implies that
\[
|L_i| \leq \frac{|P|^{11/4}}{(2^i t)^{13/4}}.
\]
In this case, we have
\[
II(L_i) \leq \frac{|P|^{11/4}}{(2^i t)^{13/4}} \cdot 2^{2i+2t^2} \ll \frac{|P|^{11/4}}{(2^i t)^{7/4}} \sim \frac{|P_2|^{11/4}}{(2^i t)^{7/4}}.
\]
One can check that the condition \(m^{-2}n^{13} \ll p^{15} \) in the Theorem 2.1 is satisfied once \(|P| \leq p^{7/6}\).

Case 3: \(|L_i| \leq |P|^{1/2}\). Applying Lemma 3.1 again, we obtain
\[
2^i|L_i| \leq I(P, L_i) \leq |P|^{1/2}|L_i| + |P| \ll |P|.
\]
By the Cauchy-Schwarz inequality, we have
\[|\Delta(P_1, P_2)| \gg |P_2|^{7/8}, \]
which contradicts to our assumption (11).
Thus, we can assume that \(2t < |P|^{7/8}\). With this condition, we have
\[H(L_i) \ll |L_i|(2t)^2 \ll 2t \cdot (|L_i|(2t)) \ll |P|^{15/8} \sim |P_2|^{15/8}, \]
where we have used the inequality (12) in the last step.

Case 4: \(|L_i| \geq |P|^{8/7}\). In this case, by the pigeon-hole principle, there is a point \(x\) in \(P_1\) that determines at least \(|P_2|^{8/7}/|P_1|\) lines, and each of these lines contains at least one point from \(P\). This implies that
\[|\Delta(P_1, P_2)| \gg |P_2|^{8/7}|P_1|^{-1}, \]
which contradicts to our assumption (11).

Putting these cases together, and taking the sum over all \(i\), we obtain
\[T \lesssim |P_1|^{7/11}|P_2|^{18/11} + |P_2|^{15/8}. \]
This completes the proof of the lemma.

We are ready to prove Theorem 2.3.

Proof of Theorem 2.3: As in the beginning of this section, if
\[|\Delta(P_1, P_2)| \gg \min\{|P_2|^{8/7}|P_1|^{-1}, |P_2|^{7/8}\}, \]
then we are done. Thus, we might assume that
\[|\Delta(P_1, P_2)| \ll \min\{|P_2|^{8/7}|P_1|^{-1}, |P_2|^{7/8}\}. \]
Let \(N\) be the number of quadruples \((p_1, p_2, p'_1, p'_2) \in P_1 \times P_2 \times P_1 \times P_2\) such that
\[||p_1 - p_2|| = ||p'_1 - p'_2||. \]
Let \(T\) be the number of triples \((p_1, p_2, p'_2) \in P_1 \times P_2 \times P_2\) such that \(||p_1 - p_2|| = ||p_1 - p'_2||\).

As in the proof of Lemma 3.2, we have
\[T \lesssim |P_1|^{7/11}|P_2|^{18/11} + |P_2|^{15/8}. \]
By the Cauchy-Schwarz inequality, we have
\[N \ll |P_1|T \lesssim |P_1|^{18/11}|P_2|^{18/11} + |P_1||P_2|^{15/8}. \]
By the Cauchy-Schwarz inequality again, one can show that \(\frac{|P_2||P_2|}{|\Delta(P_1, P_2)|} \leq N\). Thus we have
\[|\Delta(P_1, P_2)| \gtrsim \min\{|P_1|^{4/11}|P_2|^{4/11}, |P_1||P_2|^{1/8}\}. \]
This ends the proof of the theorem.
References

[1] B. Bollobas, Modern Graph Theory, Springer-Verlag, 1998.

[2] M. Bennett, D. Hart, A. Iosevich, J. Pakianathan, M. Rudnev, Group actions and geometric combinatorics in \mathbb{F}_q^d, Forum Math. 29 (2017), no. 1, 91-110.

[3] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications, Geometric & Functional Analysis, 14(1) (2004): 27–57.

[4] J. Chapman, M. B. Erdogan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates, Math Z. 271 (2012), 63-93.

[5] A. Iosevich, M. Rudnev, Erdős distance problem in vector spaces over finite fields, Transactions of the American Mathematical Society, 359(12) (2007): 6127–6142.

[6] L. Guth, N. H. Katz, On the Erdős distinct distances problem in the plane, Annals of mathematics, 181(1) (2015): 155–190.

[7] D. Hart, A. Iosevich, D. Koh, M. Rudnev, Averages over hyperplanes, sum–product theory in vector spaces over finite fields and the Erdős–Falconer distance conjecture, Transactions of the American Mathematical Society, 363(6), 3255–3275.

[8] M. Rudnev, I. D. Shkredov, On the restriction problem for discrete paraboloid in lower dimension, Adv. Math. 339 (2018) 657–671.

[9] J. Pach, M. Sharir, Repeated angles in the plane and related problems, J. Combinatorial Theory Se. A 59 (1992) 12–22.

[10] T. Pham, L. A. Vinh, F. De Zeeuw, Three-variable expanding polynomials and higher-dimensional distinct distances, Combinatorica, DOI: 10.1007/s00493-017-3773-y, 2018.

[11] S. Stevens, F.De Zeeuw, An improved pointline incidence bound over arbitrary fields, Bulletin of the London Mathematical Society 49(5) (2017): 842–858.