GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells

Gaoxiao Xu,1 Saixing Duan,2 Jianye Hou,3 Zhongxin Wei,1 and Guangwei Zhao3

1Teaching and Research Section of Biotechnology, Nanning University, Nanning City, China
2Jincheng Shuangfeng Agricultural Science and Technology Co., Ltd., Nanning City, China
3Truein Agro-Pastoral Group Co., Ltd., Zhengzhou City, China

Correspondence should be addressed to Gaoxiao Xu; xgx138@126.com

Received 14 June 2017; Revised 26 August 2017; Accepted 7 September 2017; Published 17 October 2017

1. Introduction

Milk fat is an important component of milk production and is necessary for neonatal growth and development [1]. Mammary gland epithelial cells which synthesize and secrete milk fat can be a cellular mode of research for mammary gland lipid synthesis mechanism [2]. The activator protein 1 (AP-1) family of transcription factors comprises various combinations of Fos (Gos, GosB, Fra-1, and Fra-2) and Jun (c-Jun, JunB, and JunD) which upon dimer formation regulate osteoblast differentiation and influence adipocyte commitment [3–5]. In GosB transgenic mice, the phenotype exhibits a decreased mass of adipose tissue, reduced adipocyte numbers, and abdominal fat concentrations [3, 6, 7]. The cultured bone marrow stromal cell from GosB mice exhibited few adipocytes differentiated with only few and small lipid droplets. Additionally, the expression of PPARγ2, C/EBPα, and C/EBPβ, confirmed transcription factors associated with the adipocytic phenotype, is also decreased [3]. Overexpression of GosB in the multipotential stromal cell line ST2 inhibited adipogenic differentiation, binding to and altering the DNA-binding capacity of C/EBPβ [6, 8]. To better understand the molecular mechanisms behind the fat phenotype observed in GosB mice and to determine why adipocyte numbers are low in GosB mutants, we suspect that the proliferation and the apoptosis status of adipocyte could affect the mass of adipose tissue. It has been demonstrated that GosB not only is an important regulator of lipid synthesis but also has a role in cell survival in mammary cells [9, 10], as data revealed that it can mediate cell proliferation and apoptosis [11–13]. Overexpression of GosB in goat mammary gland epithelial cells increased cell viability [9, 10]. GosB protects rat embryo cells from apoptosis and exhibits a significantly higher survival occurring in the mitochondrial pathway dependent on caspase-3 and caspase-9 [13]. However, the role of GosB in milk fat synthesis and...
cell survival remains unknown in mouse mammary epithelial cells (MEC). It has been demonstrated that activation of PPARγ in human epithelial cells inhibits AP-1 DNA-binding activity due to competition for limited amounts of the transcriptional coactivator CREB-binding protein of PPARγ with AP-1 [14, 15]. Based upon the above facts we hypothesize that pretreatment of rosiglitazone may increase cellular triglyceride content and inhibit cell survival, and these effects may be regulated by GosB in mammary gland epithelial cells.

2. Materials and Methods

2.1. Tissue Collection. Brain, mammary gland, subcutaneous fat, skeletal muscle, heart, liver, spleen, lung, kidney, and small intestine tissues were collected from six nonlactating mice (C57BL/6J genetic background). In addition, mammary gland tissue samples were collected from six C57BL/6J mice on day 5 of lactation. All tissue samples were obtained under sterile conditions and washed with diethylpyrocarbonate (DEPC) treated water and then immediately frozen in liquid nitrogen.

2.2. Cell Culture and Treatment. The primary MEC were isolated from C57BL/6J mice on day 5 of lactation as previous described [16]. Briefly, mice were killed by cervical dislocation and tissues were removed, washed 3-4 times in PBS, and minced into 1 to 2 mm pieces. The tissue fragments were suspended in DMEM containing 2 mg collagenase/ml, 20 mg BSA/ml, and 15 mM HEPES buffer, without serum, at a ratio of 12 mL medium/g wet weight of tissue. Enzymatic digestion was conducted at 37°C for 60–75 minutes. After removal of undisgested tissue pieces and large clumps of cells by sedimentation, single cells and small clumps (2–4 cells) of cells were washed twice in CMF-PBS. Viability of the cells was determined prior to their use in the suspension agglutination assay by the trypan blue dye method. The cells were washed twice in DMEM supplemented with 13% FCS, 5 μg insulin/ml, 15 mM HEPES buffer, 100 μg streptomycin/ml, and 100 U penicillin/ml. The cells were plated in either plastic flasks or Petri dishes (Corning) at concentrations varying from 5 to 50 × 10^4 cells/cm² to obtain cultures of different densities. Incubation was performed at 37°C in a 10% CO₂–90% air atmosphere. The medium was replaced 36–40 hours after seeding with DMEM in which D-valine was substituted for L-valine.

The GosB overexpression recombinant adenoviruses, Ad-GosB, and interference expression recombinant adenoviruses, Ad-siGosB, were prepared by our laboratory. The PPARγ specific ligand rosiglitazone (ROS1) was obtained from Santa Cruz Biotechnology (Santa Cruz, CA). When the MEC grew to approximately 80% confluence, the MEC were treated with (a) 10 μM ROS1; (b) 4 mM Ca²⁺; (c) Ad-GosB or Ad-siGosB, respectively; (d) Ad-GosB + ROS1; and (e) Ad-GosB + Ca²⁺. After incubation, the MEC were used for RNA extraction, Oil Red O staining assay, triglyceride content measurement, fatty acid analysis, cell proliferation, and apoptosis assay.

2.3. Total RNA Extraction and Quantitative Real-Time PCR. The MEC were lysed in 1 mL of Trizol Reagent (Invitrogen) and the total RNA was precipitated with an equal volume of isopropanol. The RNA pellet was washed twice with 75% ethanol and the cDNA was synthesized using a transcript first-strand cDNA synthesis kit (TaKaRa, Dalian, China). Quantitative real-time PCR (qPCR) primers are shown in Table S1 (in Supplementary Material available online at https://doi.org/10.1155/2017/7394869). Three genes were used as internal control genes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitously expressed transcript (UXT), and mitochondrial ribosomal protein L39 (MRPL39). The relative expression level of qPCR data was analyzed by 2^(-ΔΔCt) method.

2.4. Oil Red O Staining, Triglyceride Measurement, and Fatty Acid Analysis. The MEC were fixed for 20 min at room temperature with 4% paraformaldehyde. Cells were stained with Oil Red O solution (0.3% Oil Red O in 60% isopropanol) for 20 min. For quantification, Oil Red O staining was dissolved in isopropanol and absorbance was measured at 490 nm. Intracellular triglyceride content was assayed using a triglyceride assay kit (Applygen, China). Extraction and analyses of fatty acid (FA) were as previously described [17]. Total FA was extracted and methylated from approximately 100 mg of MEC using 2 mL of chloroform or methanol (3:1 vol/vol). Methylated samples were analyzed using gas chromatography-mass spectrometry (GC-MS) with an HP-5 column (Agilent Technologies). The relative ratios of FA were identified based on percentages of the total peak areas.

2.5. Cell Cycle Assay. Cell cycle analysis was performed using Cell Cycle Testing Kit (Multisciences, China). The MEC were grown in six-well plates (1 × 10⁶ cells/well), harvested, and centrifuged at 800 g/min for 5 minutes. The supernatant was discarded, and the cells were washed once by cold phosphate buffered saline (PBS). Then the cells were resuspended using 1 mL of reagent A and 10 μL of reagent B, subsequently blended by vortexing for 10 seconds and incubated for 30 minutes, and then analysis was done using a flow cytometry (FACS Canto™ II, BD BioSciences, USA).

2.6. Cell Proliferation Assay. Cell proliferation was determined by using the Cell Counting Kit-8 (CCK-8) assay and EdU incorporation assay. For CCK-8 assay, the cells were plated into 96-well culture plates at a density of 1 × 10⁴ cells/well in a 100 μL of culture medium per well. After 48 hours of culture, 10 μL of CCK-8 reagent was added to each well and incubated at 37°C for 2 hours. The absorbance of each sample was detected using a microplate reader (Molecular Devices, USA) at 450 nm. Cell proliferation was also assessed by Cell-Light EdU DNA cell proliferation kit (RiboBio, Guangzhou, China), in accordance with the manufacturer's instructions.

2.7. Cell Apoptosis Measurement by Annexin V-FITC/PI Staining Assays. After incubations, the MEC were washed with PBS three times and harvested by trypsinization, then washed.
with PBS again, and resuspended in 500 μL lx binding buffer. The cells were incubated for 10 minutes in the dark at room temperature in the presence of Annexin V-FITC (5 μL) and propidium iodide (PI) (10 μL, Vazyme, China). The cells were immediately analyzed using a flow cytometer.

2.8. Hoechst33342/PI Dual Staining Assays. Besides the Annexin V-FITC/PI staining assay measured by flow cytometry, cell apoptosis was also detected with Hoechst 33342 and PI double staining analysis (Solarbio, China). In brief, after transfection, the MEC were washed with PBS and subsequently stained with Hoechst 33342 (100 μg/mL) for 15 min at room temperature. The cells were washed with PBS twice and incubated for 10 min at room temperature after 100 μg/mL PI was added. The presence of fluorescence was observed under a fluorescence microscope. Hoechst33342 /PI− cells (viable cells) appeared light blue; Hoechst33342+/PI− cells (early apoptotic cells) appeared with blue fragmentations; Hoechst33342+/PI+ cells (late apoptotic cells) appeared with red fragmentations; PI+ cells (necrotic cells) appeared with debris signals.

2.9. Measurement of Intracellular Calcium. Upon closer examination of the cytosolic and mitochondrial calcium levels in myoblasts transfected with Ad-GosB or Ad-siGosB, the data indicate that activation of intracellular Ca2+ triggers cellular dysfunction and cell death [18, 19], and GosB promotes the formation of calcium deposits [6, 7]. Intracellular calcium trafficking of the cytoplasm and mitochondria were detected using Fluo-3 AM and Rhod-2 AM (2 μM, Molecular probes, Life Technologies), respectively. Cells were treated as described previously [9, 10] and screened by means of flow cytometry and the use of a confocal laser scanning microscope (Leica, Solms, Germany).

2.10. Statistical Analyses. The results were analyzed using SPSS 19.0 (SPSS Inc., Chicago, IL) and reported as means ± standard error of the means (SEM) of at least 3 independent experiments. The quantitative real-time PCR data were analyzed using the 2−ΔΔCt method relative to the control, where Ct is the cycle threshold. Relative content of each FA is reported as a portion of the total FA, and the desaturation index was calculated as the ratio between the desaturation product and the sum of the product and the substrate [20]. Comparisons were performed by Student's t-test (unpaired and 2-tailed) for a one-way ANOVA. Significance was declared at P < 0.05.

3. Results

3.1. Effects of GosB on the Expression of Genes Related to Milk Fat Synthesis. The GosB was ubiquitously expressed in different tissues, and lung tissue had the highest expression of GosB, followed by subcutaneous fat, mammary gland, and heart tissue (Figure 1(a)). Relative to the peak lactation, the expression level of GosB during nonlactation increased by 2.3-fold (P < 0.05, Figure 1(b)). Compared with the negative control cells, the expression of GosB markedly increased after the cells were infected with overexpression recombinant adenoviruses Ad-GosB for 48 hours; the GosB expression was reduced significantly in MEC transfected with interference recombinant adenoviruses Ad-siGosB (P < 0.01; Figure 1(c)).

The role of GosB in milk lipid synthesis was confirmed by measuring the mRNA expression of genes encoding proteins associated with triglyceride (TAG) synthesis, lipid-droplet formation, FA uptake and synthesis, and transcription factor in the overexpressing GosB cells compared with MEC infected with Ad-siGosB (Figures 1(d)–1(h)). Relative to the control, qPCR results revealed that overexpression of GosB decreased the mRNA expression of stearoyl-CoA desaturase (SCD) to 57% (P < 0.05), fatty acid synthase (FASN) to 51% (P < 0.01), fatty acid binding protein 4 (FABP4) to 58% (P < 0.05), diacylglycerol acyltransferase 1 (DGAT1) to 49% (P < 0.01), perilipin 2 (PLIN2) to 55% (P < 0.05), perilipin 3 (PLIN3) to 50% (P < 0.05), and CCAAT/enhancer binding protein alpha (C/EBPα) to 61% (P < 0.05) but increased the expression of thrombospondin receptor (CD36) to 2.05-fold (P < 0.01). In contrast, the MEC transfected with Ad-siGosB exhibited marked upregulation of FASN (1.87-fold; P < 0.05), FABP4 (1.54-fold; P < 0.05), DGAT1 (1.56-fold; P < 0.05), PLIN2 (1.84-fold; P < 0.01), PLIN3 (1.79-fold; P < 0.05), and C/EBPα (1.45-fold; P < 0.05) but downregulated CD36 (0.56-fold; P < 0.05). In addition, GosB had no effect on expression of lipoprotein lipase (LPL; P > 0.05), sterol regulatory element-binding transcription factor 1 (SREBP1; P > 0.05), and 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6; P > 0.05).

3.2. Effects of GosB on Cellular Lipid-Droplets Accumulation and Triglyceride Synthesis. As shown in Figures 1(a)–1(c), a decrease of lipid-droplets accumulation (to 72%; P < 0.05) and triglyceride (TAG) content (to 78%; P < 0.05) was seen in the MEC transfected with Ad-GosB (Figures 2(a)–2(c)). By contrast, the accumulation of lipid droplets and content of TAG in MEC transfected with Ad-siGosB increased to 123% and 129%, respectively (P < 0.05; Figures 2(a)–2(c)).

Compared with the control, the ratios of palmitoleate (C16:1), oleate (C18:1), and linoleate (C18:2) in MEC transfected with Ad-siGosB increased at the expense of palmitate (C16:0) and stearate (C18:0). Specifically, Ad-siGosB had a significant positive effect on unsaturated fatty acid (UFA) and resulted in increases of C16:1, C18:1, and C18:2 by 6.1, 3, and 1.2%, respectively, relative to the control (Figures 2(d) and 2(e)). In contrast, GosB overexpression had a negative effect on C16:1, C18:1, and C18:2. The saturated FA (SFA) C16:0 and C18:0 increased in cells transfected with Ad-GosB (Figures 2(d) and 2(e)).

3.3. GosB Decreases PPARγ Expression in MEC. It has been demonstrated that the Gos-related antigen 2 (Fra-2) could directly bind to the PPARγ promoter and inhibit the expression of PPARγ [5]. Therefore, we also assess whether GosB could regulate the expression of PPARγ. We found GosB overexpression markedly repressed the expression of PPARγ (P < 0.05), and the PPARγ increased significantly (P < 0.05) in the MEC transfected with Ad-siGosB (Figure 3(a)). The
PPARγ gene was ubiquitously expressed in different tissues and was detected and highly expressed in mice mammary glands (Figure 3(b)). Relative to the nonlactation period, the expression level of PPARγ during lactation was greater (about 2.7-fold, Figure 3(c)). Furthermore, we analyzed whether GosB regulated the effect of PPARγ on milk fat synthesis. We found that the PPARγ specific ligand ROSI markedly promoted lipid-droplets accumulation and triglyceride synthesis, and this effect was abrogated by GosB overexpression (Figures 4(a)–4(c)).

3.4. PPARγ Mediates Antiapoptotic Effects of GosB. To assess whether the protective effects of GosB are dependent upon PPARγ, we pretreated MEC with ROSI to analyze the effects

Figure 1: Effects of GosB on the expression of genes related to milk fat synthesis in cultured mouse mammary gland epithelial cells (MEC). (a) Relative mRNA levels of GosB in various mice tissues. (b) The mRNA expression of GosB in the mouse mammary gland on day 5 of lactation or nonlactation. (c) Relative mRNA levels of GosB in MEC transfected with Ad-GosB or Ad-siGosB for 48 hours. The effect of GosB on the expression of genes related to (d) fatty acid (FA) uptake (LPL, CD36); (e) FA de novo synthesis and desaturation (SCD, FASN); (f) triacylglycerol (TAG) synthesis and hydrolysis (FABP4, AGPAT6, and DGAT1); (g) lipid-droplet formation (PLIN2, PLIN3); (h) transcription factors (C/EBPα and SREBF1) were analyzed by quantitative real-time PCR (qPCR). Values are means ± SEM for three individuals. *P < 0.05; **P < 0.01; ***P < 0.001. The abbreviations were shown in supplementary information.
of GosB on cell survival in the presence or absence of Ad-GosB or Ad-siGosB. The Hoechst33342/PI and FITC-Annexin V/PI staining assays showed that the ROSI induced MEC apoptosis, and GosB overexpression protected MEC from ROSI-induced apoptosis (Figure 5). We found that ROSI inhibited cell proliferation in MEC, and this effect was inhibited by GosB overexpression (Figures 6(a) and 6(b)). The ROSI decreased the mRNA expression of cell proliferation related genes cyclinD1 and PCNA, and this downregulation was inhibited by GosB in MEC (Figure 6(c)). Thus, these observations demonstrate that the prosurvival role of GosB in MEC is dependent on PPARγ.

3.5. Overexpression of GosB Inhibits Mitochondrial Calcium Overload and Mitochondrial Apoptotic Pathway. Activation of intracellular Ca\(^{2+}\) triggers cellular dysfunction and death [18, 19, 21]; GosB regulates calcium deposition [6, 7]. In order to determine whether GosB protected MEC from apoptosis via affecting cellular Ca\(^{2+}\) we examined the mitochondrial calcium levels in MEC after being transfected with Ad-GosB for 48 hours. The mitochondrial Ca\(^{2+}\) was stained with Rhod-2 AM and detected using a laser scanning confocal microscope. GosB was found to regulate mitochondrial Ca\(^{2+}\) accumulation in MEC (Figure 7(a)). Overexpression of GosB decreased the mitochondrial calcium fluorescent
Figure 3: GosB suppresses PPARγ expression in cultured mouse mammary gland epithelial cells (MEC). (a) GosB decreases PPARγ expression in MEC. (b) Relative mRNA levels of PPARγ in various mouse tissues. (c) The mRNA expression of PPARγ in the mouse mammary gland on day 5 of lactation or nonlactation. The mRNA levels of PPARγ were analyzed by qRT-PCR. Values are means ± SEM for three individuals. *P < 0.05; **P < 0.01.

Figure 4: GosB affects milk fat synthesis-induced by PPARγ. The mouse mammary gland epithelial cells (MEC) were transfected with Ad-GosB or Ad-siGosB for 48 hours, followed by exposure to 10 μM rosiglitazone (ROSI) for 24 hours. Then the lipid-droplets accumulation was determined by Oil Red O staining assays (a) and quantified by measuring absorbance at 490 nm (b), and the intracellular triglyceride content was also measured (c). Values are means ± SEM for three individuals. *P < 0.05.
intensity which remained at lower levels. Calcium overload subsequently activated the apoptotic cascade as evidenced by the inhibition of B-cell lymphoma (Bcl-2) and the activation of Bcl-2-associated X protein (Bax) (Figure 7(b)). Bcl-2 has been described as antiapoptotic protein and plays important roles in regulating apoptosis in mammary epithelial cells and breast cancer cells [22, 23]. We also found that calcium promoted the expression of cytochrome c and caspase-9, and this effect was specifically abrogated by GosB overexpression (Figure 7(c)). By contrast, cell apoptosis induced by acute increases in intracellular Ca2+ concentration was abolished by GosB overexpression (Figure 7(d)). These results demonstrate that GosB protects MEC from apoptosis and subsequent apoptotic events by a Ca2+-sensitive mechanism.

4. Discussion

It has been well established that FASN plays an important role in de novo FA synthesis in human [24], mice [25], bovine [26], and goat [2] tissue. The expression of FASN also affects TAG synthesis and accumulation [27, 28]. The present study showed that GosB inhibited the expression of FASN and suppressed lipid-droplet formation and accumulation of TAG. An unexpected upregulation of CD36, an important gene responsible for FA uptake [29], was found in MEC overexpressed GosB. Studies have shown that the downregulation of CD36 upon overexpression of THRSP, a major protein responsible for FA synthesis, was accompanied by an increase in FA synthesis [29, 30]. Therefore, our results suggested that
the decrease in FA uptake may be caused by an increase in FA synthesis.

The DGAT1 is involved in TAG synthesis during adipogenesis [31], and DGAT1-deficient mice show few and small lipid droplets in adipocytes [32]. The secretion of lipid droplets into milk occurs via a process that requires lipid-droplet formation-related genes PLIN2 and PLIN3 [33, 34]. In the present study, GosB inhibited the expression of DGAT1, FABP4, PLIN2, and PLIN3 and decreased lipid-droplets accumulation and TAG content in MEC, suggesting...
that GosB may serve as a suppressor of TAG synthesis in the mouse mammary gland.

The inhibition of SCD expression with GosB overexpression is consistent with data that GosB increased the unsaturated FA concentration. The SCD protein plays a key role in the synthesis of milk unsaturated fatty acid via catalysts C16:0 and C18:0 to C16:1 and C18:1 [35]. The C/EBPα is a key transcription factor involved in adipocyte differentiation [36], and GosB has been shown to decrease the expression of C/EBPα in the multipotential stromal cells [3]. Consistent with this, GosB in our study inhibited the mRNA expression of PPARγ in MEC, suggesting that GosB may regulate milk fat synthesis through affecting transcription factor PPARγ functions. Our study showed direct evidence that GosB promotes de novo FA synthesis and TAG synthesis in mouse mammary epithelial cells. However, some limitations should be...
considered; for instance, the protein expression and enzymes activities should be measured, and the mechanisms for how GosB affects milk fat synthesis need to be further studied.

The PPARγ is not only a master regulator of adipogenesis but also exhibits a role in cellular apoptosis signal transduction [37]. Previous studies have shown that Bcl-xl overexpression promotes prostate cancer cells survival which can be abolished by activating PPARγ [38]. PPARγ activation in breast cancer cells can inhibit cell growth and induce apoptosis through regulating the expression of caspase-9 and p53 [39]. The GosB triggers cell proliferation in mammary epithelial cells and induces a metastatic phenotype of breast cancer cells [40, 41]. Here, we indicated that the manipulation of PPARγ expression in MEC has significant effect on cell proliferation and apoptosis, showing a proapoptotic role of PPARγ in mammary gland. We also showed that GosB was found to decrease PPARγ expression and promote MEC survival by increasing the expression of Bcl-2. These findings demonstrate that GosB can promote mammary epithelial cells survival by a PPARγ-dependent mechanism.

Calcium is a well-known intracellular messenger that modulates many aspects of cell life [21, 42, 43]. Intracellular Ca²⁺ accumulation activates the mitochondrial apoptotic pathway with high levels of Bax and activation of caspase-3 [44–46]. The GosB is a physiologically important regulator of osteoblast differentiation and increases bone formation and bone mass, leading to osteosclerosis [3, 6, 7]. Therefore, we speculated that GosB may have an antiapoptotic effect through regulating intracellular Ca²⁺ concentration. This notion was supported by the results that GosB overexpression decreased the mitochondrial calcium fluorescence intensity at lower levels and protected MEC from apoptosis triggered by calcium accumulation.

In summary, our findings demonstrate that PPARγ agonist rosiglitazone increases cellular triglyceride content and inhibits cell survival, and these effects were abolished by GosB overexpression. Thus, GosB regulates mammary epithelial cells' lipid synthesis and apoptosis via PPARγ in mouse mammary glands. Modulation of GosB expression in mammary glands may emerge as a potent tool to control the number of MEC and milk fat levels in mouse mammary glands.

Abbreviations

AGPAT6: 1-Acylglycerol-3-phosphate O-acyltransferase 6
AP-1: Activator protein-1
Bax: Bcl-2-associated X protein
Bcl-2: B-cell lymphoma 2
C/EBPα: CCAAT/enhancer binding protein α
CCK-8: Cell counting kit-8
DGAT1: Diacylglycerol acyltransferase 1
DMEM: Dulbecco's modified Eagle's medium
FA: Fatty acid
FASN: Fatty acid synthase
FABP4: Fatty acid binding protein 4
PBS: Phosphate buffered saline
PLIN2: Perilipin 2
PLIN3: Perilipin 3
PPAR: Peroxisome proliferators-activated receptors
ROS: Rosiglitazone
PRL: Prolactin
qPCR: Quantitative real-time PCR
SCD: Stearoyl-CoA desaturase
SREBF1: Sterol regulatory element-binding transcription factor 1
TAG: Triglyceride
UXT: Ubiquitously expressed transcript.

References

[1] L. Bernard, J. Rouel, C. Leroux et al., “Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids,” Journal of Dairy Science, vol. 88, no. 4, pp. 1478–1489, 2005.

[2] J. J. Zhu, J. Luo, Y. T. Sun et al., “Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells,” Journal of Dairy Science, vol. 98, no. 5, pp. 3485–3491, 2015.

[3] G. Sabatakos, N. A. Sims, J. Chen et al., “Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis,” Nature Medicine, vol. 6, no. 9, pp. 985–990, 2000.

[4] J. Luther, F. Driessler, M. Megges et al., “Elevated Fra-1 expression causes severe lipodystrophy,” Cell Death & Differentiation, vol. 21, no. 4, pp. 655–664, 2014.

[5] J. Luther, K. Ubieta, N. Hannemann et al., “Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARγ and hypoxia,” Journal of Cell Science, vol. 124, no. 9, pp. 1465–1476, 2011.

[6] M. Kveiborg, G. Sabatakos, R. Chiusaroli et al., “ΔFosB Induces Osteosclerosis and Decreases Adipogenesis by Two Independent Cell-Autonomous Mechanisms,” Molecular and Cellular Biology, vol. 24, no. 7, pp. 2820–2830, 2004.
[7] G. C. Rowez, C. S. Choi, L. Neff, W. C. Home, G. I. Shulman, and R. Baron, “Increased energy expenditure and insulin sensitivity in the high bone mass $\Delta FosB$ transgenic mice,” Endocrinology, vol. 150, no. 1, pp. 135–143, 2009.

[8] M. Kveiborg, R. Chiusaroli, N. A. Sims et al., “The increased bone mass in $\Delta FosB$ transgenic mice is independent of circulating leptin levels,” Endocrinology, vol. 143, no. 11, pp. 4304–4309, 2002.

[9] M. A. Sawant, A. Dasgupta, M. S. Lavhale, and S. L. Sitasawad, “Novel triterpenoid AECHL-1 induces apoptosis in breast cancer cells by perturbing the mitochondria-endoplasmic reticulum interactions and targeting diverse apoptotic pathways,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1860, no. 6, pp. 1056–1070, 2016.

[10] H. Zheng, H. Li, L. Li, S. Ma, and X. Liu, “$\Delta FosB$ regulates Ca2$^+$ release and proliferation of goat mammary epithelial cells,” Gene, vol. 545, no. 2, pp. 241–246, 2014.

[11] H. Kurushima, M. Ohno, T. Miura et al., “Selective induction of $\Delta FosB$ in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of $\Delta FosB$ and galectin-1 in neuroprotection and neurogenesis,” Cell Death & Differentiation, vol. 12, no. 8, pp. 1078–1096, 2005.

[12] T. Miura, Y. Ohnishi, H. Kurushima, H. Horie, T. Kadoya, and Y. Nakabeppu, “Regulation of the neuronal fate by $\Delta FosB$ and its downstream target, galectin-1,” Current Drug Targets, vol. 6, no. 4, pp. 437–444, 2005.

[13] K. Tahara, D. Tsuchimoto, Y. Tominaga et al., “$\Delta FosB$, but not FosB, induces delayed apoptosis independent of cell proliferation in the Rat1a embryonic cell line,” Cell Death & Differentiation, vol. 10, no. 5, pp. 496–507, 2003.

[14] S. E. Step, H.-W. Lim, J. M. Marinis et al., “Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redirecting transcription to PPARγ-driven enhancers,” Genes & Development, vol. 28, no. 9, pp. 1018–1028, 2014.

[15] K. Subbaramaiah, D. T. Lin, J. C. Hart, and A. J. Dannenberg, “Peroxisome proliferator-activated receptor γ ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for involvement of activator protein-1 and CREB-binding protein/p300,” The Journal of Biological Chemistry, vol. 276, no. 15, pp. 12440–12448, 2001.

[16] B. Asch and D. Medina, “Concanavalin A-Induced Agglutinability of Normal, Preneoplastic, and Neoplastic Mouse Mammary Cells,” Journal of the National Cancer Institute, vol. 61, no. 6, pp. 1423–1430, 1978.

[17] H. Wang, J. Luo, Z. Chen et al., “MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene,” Journal of Dairy Science, vol. 98, no. 12, pp. 9001–9014, 2015.

[18] R. M. L. La Rovere, G. Roest, G. Bultynck, and J. B. Parys, “Intracellular Ca$^{2+}$ signaling and Ca$^{2+}$ microdomains in the control of cell survival, apoptosis and autophagy,” Cell Calcium, vol. 60, no. 2, pp. 74–87, 2016.

[19] H. Li, X. Wang, N. Zhang, M. K. Gottipati, V. Parpura, and S. Ding, “Imaging of mitochondrial Ca$^{2+}$ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: Mitochondrial Ca$^{2+}$ uptake and cytosolic Ca$^{2+}$ availability via the endoplasmic reticulum store,” Cell Calcium, vol. 56, no. 6, pp. 457–466, 2014.

[20] J. J. Loor and J. H. Herbein, “Reduced fatty acid synthesis and desaturation due to exogenous trans10,cis12-CLA in cows fed oleic or linoleic oil,” Journal of Dairy Science, vol. 86, no. 4, pp. 1354–1369, 2003.

[21] B. Zhivotovsky and S. Orrenius, “Calcium and cell death mechanisms: A perspective from the cell death community,” Cell Calcium, vol. 50, no. 3, pp. 211–221, 2011.

[22] K. Schorr, M. Li, S. Krajewski, J. C. Reed, and P. A. Furth, “Bel-2 Gene Family and Related Proteins in Mammary Gland Involution and Breast Cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 4, no. 2, pp. 153–164, 1999.

[23] J. D. Levenson, D. C. Phillips, M. J. Mitten et al., “Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy,” Science Translational Medicine, vol. 7, no. 279, Article ID 279ra40, 2015.

[24] S. S. Chirala, A. Jayakumar, Z.-W. Gu, and S. J. Waxil, “Human fatty acid synthase: Role of interdomain in the formation of catalytically active synthase dimers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3104–3108, 2001.

[25] J. Suburu, L. Shi, J. Wu et al., “Fatty acid synthase is required for mammary gland development and milk production during lactation,” American Journal of Physiology-Endocrinology and Metabolism, vol. 306, no. 10, pp. E1132–E1143, 2014.

[26] C. A. Morris, N. G. Cullen, B. C. Glass et al., “Fatty acid synthase effects on bovine adipose fat and milk fat,” Mammalian Genome, vol. 18, no. 1, pp. 64–74, 2007.

[27] E. De Schrijver, K. Brusselmans, W. Heyns, G. Verhoeven, and J. V. Swinnen, “RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells,” Cancer Research, vol. 63, no. 13, pp. 3799–3804, 2003.

[28] T. Moriyama, K. Kishimoto, K. Nagai et al., “Soybean β-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of β-oxidation, down-regulation of fatty acid synthase, and inhibition of triglyceride absorption,” Bioscience, Biotechnology, and Biochemistry, vol. 68, no. 2, pp. 352–359, 2004.

[29] P. Steneberg, A. G. Sykaras, F. Backlund, J. Straseviciene, I. S¨oderstr¨om, and H. Edlund, “Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance,” The Journal of Biological Chemistry, vol. 290, no. 31, pp. 19034–19043, 2015.

[30] D. W. Yao, J. Luo, Q. Y. He et al., “Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells,” Journal of Dairy Science, vol. 99, no. 4, pp. 3124–3133, 2016.

[31] C. A. Harris, J. T. Haas, R. S. Streper et al., “DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes,” Journal of Lipid Research, vol. 52, no. 4, pp. 657–667, 2011.

[32] S. J. Smith, S. Cases, D. R. Jensen et al., “Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat,” Nature Genetics, vol. 25, no. 1, pp. 87–90, 2000.

[33] B. M. Chong, P. Reigan, K. D. Mayle-Combs, D. J. Orlicky, and J. L. McManaman, “Determinants of adipophilin function in milk lipid formation and secretion,” Trends in Endocrinology & Metabolism, vol. 22, no. 6, pp. 211–217, 2011.

[34] N. E. Wolins, B. Rubin, and D. L. Brasaemle, “TIP47 Associates with Lipid Droplets,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 5101–5108, 2001.
[35] M. Miyazaki and J. M. Ntambi, “Role of stearoyl-coenzyme A desaturase in lipid metabolism,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 68, no. 2, pp. 113–121, 2003.

[36] E. D. Rosen, Hsu. C.-H., X. Wang et al., “C/EBPalpha induces adipogenesis through PPARGamma: a unified pathway,” Genes & Development, vol. 16, no. 1, pp. 22–26, 2002.

[37] C. D. Wrann, J. Eguchi, A. Bozec et al., “FOSL2 promotes leptin gene expression in human and mouse adipocytes,” The Journal of Clinical Investigation, vol. 122, no. 3, pp. 1010–1021, 2012.

[38] C.-W. Shiau, C.-C. Yang, S. K. Kulp, C.-F. Chen, C.-S. Chen, and J.-W. Huang, “Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma,” Cancer Research, vol. 65, no. 4, pp. 1561–1569, 2005.

[39] D. Bonofiglio, E. Cione, H. Qi et al., “Combined low doses of PPARgamma and RXR ligands trigger an intrinsic apoptotic pathway in human breast cancer cells,” The American Journal of Pathology, vol. 175, no. 3, pp. 1270–1280, 2009.

[40] N. Selvamurugan, S. Kwok, and N. C. Partridge, “Smad3 interacts with JunB and Cbfal/Runx2 for transforming growth factor-beta-stimulated collagenase-3 expression in human breast cancer cells,” The Journal of Biological Chemistry, vol. 279, no. 26, pp. 27764–27773, 2004.

[41] C. Detry, V. Lamour, V. Castronovo, and A. Bellahcene, “CREB-1 and AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression in human breast cancer cells,” Bone, vol. 42, no. 2, pp. 422–431, 2008.

[42] H. Chen, W. Gao, Y. Yang et al., “Inhibition of VDAC1 prevents Ca2+-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages,” Apoptosis, vol. 19, no. 12, pp. 1712–1726, 2014.

[43] L. N. Cruz, Y. Wu, H. Ulrich, A. G. Craig, and C. R. S. Garcia, “Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1860, no. 7, pp. 1489–1497, 2016.

[44] M. Lam, G. Dubyak, L. Chen, G. Nuñez, R. L. Miesfeld, and C. W. Distelhorst, “Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 14, pp. 6569–6573, 1994.

[45] Y. Rong and C. W. Distelhorst, “Bcl-2 protein family members: Versatile regulators of calcium signaling in cell survival and apoptosis,” Annual Review of Physiology, vol. 70, pp. 73–91, 2008.

[46] E. F. Greenberg, A. R. Lavik, and C. W. Distelhorst, “Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: Potential new target for cancer treatment,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1843, no. 10, pp. 2205–2210, 2014.