The Roles of Epidemiologists, Laboratorians, and Public Health Agencies in Preventing Invasive Cronobacter Infection

Janine Jason*

Jason and Jarvis Associates, LLC, Hilton Head Island, SC, USA

Background: Cronobacter can cause severe, invasive infection in very young infants. These bacteria can also colonize or cause insignificant infections in immunocompromised, elderly, and/or hospitalized adults.

Methods: This editorial review highlights key points addressed in the Frontiers Research Topic on Cronobacter, discusses the clinical presentation and epidemiology of Cronobacter infections, and examines the responses of public health agencies to this problem.

Results: Cronobacter is rarely isolated from hospitalized, immunocompromised and/or elderly adults and does not cause significant disease in those patients. Certain species and strains, especially of Cronobacter sakazakii, can cause invasive illness in previously healthy infants <2 months of age. Multilocus sequence type 4 and clonal complex 4 (ST4/MLST 4) C. sakazakii are the predominant cause of Cronobacter meningitis, which occurs only in infants. These infections and this strain type are strongly linked to powdered infant formulas (PIF), which can also be contaminated with other Cronobacter strains. End-product testing is not intended to guarantee the absence of these organisms. WHO has made recommendations that can help decrease but will not eliminate the risk of this infection.

Conclusion: To further define the spectrum of Cronobacter-associated disease, all isolates should be genetically typed using every currently available method, typing results should be linked to the associated epidemiologic and clinical data, and these data should be analyzed in a scientifically sound manner. Based on currently available information, more can be done now to prevent cause invasive infection in young infants. This includes encouragement of exclusive breastfeeding and/or use of commercially sterile ready-to-feed formulas in the first 2 months of life.

Keywords: Cronobacter, sakazakii, infant formula, neonatal infection, ST4
BACKGROUND

Cronobacter are Gram-negative, non-spore-forming, enteric coliform bacteria defined as a new *Enterobacter* species in 1980 by Farmer et al. (1). Recently, polyphasic taxonomic analysis has determined that this group of organisms consists of several genomospecies, so these organisms have been reclassified as novel species and subspecies within a novel genus, *Cronobacter* gen. nov. (2). *Cronobacter* isolates vary in regard to enterotoxin production, virulence, and thermotolerance. These variations—and *Cronobacter*’s taxonomy, ecology, reservoirs in nature, and characteristics in general—are almost certainly of clinical importance but have not been adequately studied and are not fully understood. Of the strains examined, many are extremely heat tolerant and can survive for long periods of time in a dry state [e.g., Refs. (3, 4)]. At least some form biofilms and thus resist the effectiveness of disinfectants (3–5). Lag times and microbiologic incubation periods for some *Cronobacter* strains can be as low as a matter of hours (6–8). In one study, an initial concentration of only 1 colony forming unit (CFU)/ml of *Enterobacter sakazakii* in reconstituted PIF grew to 10,000,000 in 10 h, at room temperature (9). Of note, growth would be even faster at body temperature.

Cronobacter are rarely isolated from clinical specimens and, when isolated, are largely from the very young or the elderly. Some strains can be highly pathogenic in neonates, especially infants who are premature or otherwise immunocompromised. *Cronobacter* occasionally colonize immunocompromised and/or elderly adults who are infected with other, significant pathogens. In these adults, *Cronobacter* rarely, if ever, cause significant symptomatic disease. In neonates, some strains of *Cronobacter* (and, in particular, some strains of *C. sakazakii*) cause invasive infection, even though the initial isolate is often from the gastrointestinal tract. The presentations and outcomes of neonatal *C. sakazakii* infection include seizures, hydrocephalus, developmental delay, and death.

A number of gastrointestinal and immunologic characteristics can contribute to an infant’s susceptibility to invasive *C. sakazakii* infection. First, the stomach environment of newborns, especially of premature babies, is less acidic than that of adults. Gastric and pancreatic secretions, mucus, and inherent enzymes are not produced at the levels found in an adult’s gastrointestinal tract. This would more readily permit any *C. sakazakii* entering the body through the mouth to survive in a viable state as it moves from the infant’s stomach to his intestines. Second, although enteric neuronal development is generally completed at a gestational age of 32 weeks (10), ineffective, uncoordinated, erratic, or static gut motility (peristalsis) can persist at least intermittently in even full-term infants. Peristalsis is an important mechanism for moving pathogenic organisms through and out of the gut, so dysfunctional movement may be a factor in *C. sakazakii* breaching the intestinal wall. Third, a fetus’s gut is sterile but this changes with passage through the maternal birth canal and first feeding. A newborn infant’s gastrointestinal system remains functionally inert until it is activated by food intake and microbial colonization. This means that until feeding is stably established, the feedback system between an infant’s gut and gut organisms does not function properly. Until then, an infant’s gut has sub-optimal bacterial-epithelial “cross-talk,” i.e., a relative inability to differentiate pathogens from symbiotic organisms and to deal with each appropriately (11). Fourth, even if *C. sakazakii* is recognized as an enemy, an infant’s relatively permeable mucosa make him less able to retain the organism in his gastrointestinal system and remove it from his body. Last and perhaps most important, gut immunity develops gradually between fetal life and adulthood. Premature newborns, full-term newborns (born at 37–42 weeks gestation), neonates (<28 days old), and older infants (more than 28 days but <1 year old) differ significantly from one another and from older children and adults in regard to adequacy, strength, pattern, components, and rapidity of their immune response (11–13). Neutrophils can disrupt the intestinal tight junctions by releasing excessive interleukin (IL)-8 (12). Innate immunity, as represented by Natural Killer Cell (NK) production of interferon (IFN)-γ, dominates in early life (13).

The reservoirs for *Cronobacter* species are unknown. The majority of *E. sakazakii* and *C. sakazakii* isolates have come from infants, powdered infant formulas (PIFs), and factories producing milk powder (14). *Cronobacter* species have also been isolated from a number of other food substances [e.g., Refs. (4, 15)], food factories, and environments, including households (16); however, to my knowledge, no non-formula source of *E. sakazakii* or *C. sakazakii* has yet been causally linked to a case of invasive infection, although other sources have been examined in epidemiologic investigations.

THE EPIDEMIOLOGY OF CRONOBACTER INFECTION

In Dr. Farmer’s first-hand review of *Cronobacter*’s microbiologic history (17), he appropriately credits Drs. Urmenyi and Franklin with the first clinical descriptions of invasive *E. sakazakii* disease, a description provided in a 1961 report of two 1958 cases of “neonatal death from pigmented coliform infection” (18). Those infants were born within months of each other, at a single United Kingdom hospital. Both developed hemorrhagic meninitis and died within 2 days of one another. One was full term, of normal birthweight, and had been discharged home. The other was premature, had low birthweight, and was still in the birth hospital when his symptoms began. Post mortem cultures from both infants grew identical “pigmented cloaca.” The infants had no known contact with one another and had not been on the same ward or nursery (18). In 1965, Jøker et al. reported a similar case, this time in Denmark. Dr. Farmer’s review article in this Frontiers Topic symposium describes how, over the following two decades, those isolates and similar pigmented coliforms were characterized, differentiated from other *Enterobacter*, and, in 1980, officially named *Enterobacter sakazakii*, according to the rules of the *Bacteriological Code* (17).

In the subsequent two decades, *Cronobacter* microbiologic research progressed but epidemiologic studies came to the forefront, in the form of outbreak investigations of pediatric *E. sakazakii* infections in the Netherlands (1983), Greece (1987), Iceland (1989), the United States [U.S.] (1989 and 2001), Belgium (2001), Israel (2001), France (2004), and New Zealand (2004) (19–21). In the early investigations, no source
was identified. Tellingly, nutrition was not examined in those outbreaks. The investigations of subsequent outbreaks repeatedly documented a strong statistical and microbiological link between PIF and invasive *E. sakazakii* infection. The outbreak studies were increasingly elegant and thorough. In all 10 outbreaks, at least some environmental testing had been done. In the eight outbreaks in which nutrition was examined, all the infected infants had received some type of PIF and there was a statistically powerful association between *E. sakazakii* infection and consumption of a specific PIF. In five outbreaks, *E. sakazakii* was isolated from PIF but not from any environmental samples; in two, *E. sakazakii* was isolated from PIF and the blender used in blending that specific PIF; and in one, *E. sakazakii* was isolated from PIF, a dish brush, and a stirring spoon. Four outbreak reports specified that previously unopened containers of PIF were cultured; of these, three were positive. In seven of the eight outbreaks where *E. sakazakii* was typed, a PIF isolate was indistinguishable from patient isolate(s), based on the results from one or another of the typing techniques summarized in Dr. Yan’s concise article in this Frontiers symposium (22). The formula consumed by infected infants in each of these outbreaks yielded *E. sakazakii*; in two outbreaks, formula from previously unopened cans from the same manufacturing batch also yielded *E. sakazakii*. In three outbreaks, investigators were able to show both statistical and microbiological associations between *E. sakazakii* infection and the consumption of PIF (23–25). In these investigations, there was no evidence of infant-to-infant or environmental transmission; all the infected infants had consumed the implicated formula (23–25).

At the time these investigations were done, epidemiologists had reason to suspect that *E. sakazakii* infections might be caused by a nutritional substance. *Enterobacter* got that name because they have long been known to enter the body through the digestive system and reside in the intestines. There was also good reason to consider PIF as the potential nutritional source of these *E. sakazakii* infections. Infants are fed PIF and PIF is not sterile. Studies had already shown that strains of *E. sakazakii* could contaminate PIF components, become endemic in the post-pasteurization dry-processing areas of PIF processing plants, survive the dry-processing procedures, survive in a dry state for long periods of time, and become biologically active in the presence of moisture. Thus, it did not require great insight to include PIF as one of the modified PIF be avoided in newborn intensive care units unless...
Based on the accumulating epidemiologic evidence and product-testing data, the World Health Organization (WHO) acknowledged there was a problem that needed to be addressed. In 2004–2008, the Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO) held a series of advisory meetings concerning E. sakazakii (33, 34). These resulted in a risk assessment model, as well as a series of reports and recommendations [FAO/WHO1]. In this Frontiers Topic Symposium, Dr. Parra Flores applies the WHO's risk assessment tool to explore the effect of temperature on Cronobacter growth (35). In 2006, WHO stated that "contaminated PIF has been convincingly shown, both epidemiologically and microbiologically, to be the vehicle and source of infection in infants" (36). However, WHO's guidelines and model focus on decreasing the risk associated with contaminated PIF, not preventing the contamination.

Even as WHO was formulating a response to the Cronobacter problem, reports of intrinsic PIF contamination continued to be made to the European Rapid Alert System for Food and Feed (RASFF). Between 2002 and 2008, eleven lots of PIF were cleared and released for sale by their manufacturers, distributed in Europe, and subsequently reported by outside authorities to be contaminated with E. sakazakii (37). E. sakazakii infections and colonizations were reportedly associated with at least three of these contaminated products (37). At least one other lot was reported to RASFF, by France in 20092. Of note, the U.S. did not and does not have a reporting system for product contamination or infections with this organism. They are currently reportable in only one State – Minnesota (personal communication with Dr. A. Bowen, an epidemiologist at CDC, January 2012).

At the beginning of the twenty-first century, while health and regulatory agencies were developing models and guidelines, laboratory investigators were making striking advances. Their research followed two avenues: (a) typing and characterization of isolates and (b) investigating, characterizing, and statistically evaluating PIF contamination and end-product testing. These topics are addressed in this symposium's articles by Dr. Yan and Dr. Kalyantanta (22, 38) but, in the following paragraphs, this editorial review will briefly discuss what are arguably the two most significant developments to date: identification of highly stable C. sakazakii clone with a high propensity for neonatal meningitis and determination that pre-market PIF testing cannot assure an absence of clinically significant contamination.

As noted in Dr. Farmer's review article in this Frontiers Topic symposium (17), in 2007–2008, Iverson et al. proposed that Cronobacter be recognized as a new genus. That genus was to include organisms previously classified as E. sakazakii (2). As of this writing, 10 species and 3 subspecies of Cronobacter have been named and described. In their contribution to this symposium, Dr. Yan and Dr. Fanning succinctly describe the various and increasing number of laboratory techniques for identifying, tracking, comparing, and characterizing Cronobacter isolates (22, 38). Also in this Frontiers Topics symposium, Dr. Tall presents a pan genomic DNA microarray platform he developed and has used to document and characterize the genomic diversity among each member of the genus (39). That approach, as well as whole genome sequencing, will be powerful tools for genomic research on Cronobacter but one technique has already proved invaluable: a multi-locus sequence typing (MLST) scheme developed by Baldwin et al. (40). Application of that scheme to stored clinical, food, and environmental isolates has provided key information about the sources of various Cronobacter species and strains, the cause of Cronobacter meningitis, and the reasons why infants have severe clinical symptoms and adults do not (40–42).

Baldwin determined sequence types in relation to source and biotype, using 60 C. sakazakii and 16 C. malonaticus strains from clinical and non-clinical sources collected between 1951 and 2008 in the U.S., Canada, Europe, New Zealand, and the Far East. Twenty-two of 60 C. sakazakii isolates had sequence type 4 (ST4). Nine of those ST4 isolates were from clinical samples. Seven of the other 13 ST4 isolates were from infant formula (40). Joseph and Forsythe examined 41 C. sakazakii isolates, some of which appear to have been among those described by Baldwin (40, 41). Twenty of the 41 isolates were ST4; the remainder were one or another of nine other types. Of the 30 C. sakazakii isolates with known patient-source details, the only one from an adult patient was ST1, i.e., not ST4. Of the 20 ST4 strains, 10 were from neonates, seven from infants, one from a child, and two had no patient information. Although the seven housekeeping genes for MLST analysis are not virulence related, a large proportion of severe neonatal infections were caused by isolates with the ST4 sequence type: i.e., 9 of 12 isolates from meningitis cases were ST4 strains; the remaining ST4 strains were from a bacteremia case, necrotizing enterocolitis cases (two), and an undefined infection (one). The clinical disorders related to six of the ST4 strain isolates were unknown. Nine of 12 meningitis isolates were ST4. Joseph and Forsythe concluded that C. sakazakii ST4 and the related Clonal Complex 4 (CC4) represent a highly stable clone with a high propensity for neonatal meningitis (41, 42). They noted that C. sakazakii ST4 strains have been isolated from seven countries for >50 years and the earliest (1950) non-clinical isolate was from a can of dried milk. Joseph and Forsythe proposed that the relationships between genotypes and different age groups may reflect exposure to different genotypes of C. sakazakii according to age-related diet and lifestyle. In the context of Baldwin and Forsythe's finding of a predominance of ST4 types in C. sakazakii isolates from infant formulas, Joseph and Forsythe's results suggest that the key exposure in C. sakazakii-infected infants is intrinsically contaminated infant formula.

Of note, in an FDA investigation of 14 cases of community-acquired pediatric Cronobacter infections between May, 2010 and December, 2011, Dr. Tall et al. did ST typing. These isolates were not related to those previously studied by Dr. Baldwin et al. but they were also predominantly ST4 (43). MLST testing of isolates from numerous food and other sources from around the world is progressing at a rapid pace and indicates that MLST types vary by food and food-factory source, clinical source, and country.
As noted by Dr. Kalyantanda in this Frontiers Topic symposium, results are being posted at an online database3 (38).

By far, the most significant development related to product safety and testing was a 2011 study, done in collaboration with a European branch a formula manufacturing company (44). In it, Jongenburger et al. examined a production “lot” (also referred to as a “batch”) of PIF. That batch had passed pre-market testing and been released to market, but it was subsequently found to be contaminated with Cronobacter. The researchers compared the contaminated batch to one recalled for non-microbiologic reasons and determined that: (a) both lots were actually positive for Cronobacter but a greater number of samples from the contaminated lot were positive, (b) the contamination was not homogeneous, and (c) the recalled lot had higher levels of contamination (44). The estimated degree of contamination varied among the positive samples and included clusters of 3–560 cells. The two largest clusters, of 123 and 560 cells, originated from two product bags only, consistent with clusters being present in a limited number of servings. Thus, an individual infant can be exposed to a significant inoculum, even if the remaining product in that can, the remaining product in that lot, and the product from that lot fed to other infants are free of Cronobacter. Dr. Jongenburger concluded that “finding such clusters is like looking for a needle in a haystack” and “when these clusters end up in one or a limited number of servings of an individual consumer, they may significantly impact public health” (44).

Dr. Jongenburger’s findings are especially meaningful because the sparse research on Cronobacter’s infectious dose suggests it can quite low, i.e., on the order of 1000 cells (3, 45) and quite possibly even lower for virulent strains. Extensive research has been done on related parameters, including lag time, generation time, and growth rate. Unfortunately, this research has not yet been done using specific isolates associated with proven, invasive clinical infections, e.g., C. sakazakii ST4 or CC4 isolates associated with Cronobacter meningitis in young infants. However, using the data that are available, albeit for non-virulent isolates, we can get a sense of how quickly an infectious dose of 1000 cells can be reached when contamination is clustered or clumped. Let us take a relatively small cluster of 10 cells. (Of note, in end-product testing, that cluster would appear as one CFU, even though all 10 cells could multiply independently.) Let us be conservative and round up the generation time determined by Dr. Parra Flores in his article in this Frontiers Topic symposium (35), which is consistent with the value found by others. Using a generation time of a half hour at 35°C (a temperature roughly comparable to the 36–37°C body temperature of an afebrile neonate) and assuming virulent Cronobacter strains thrive in the neonatal gastrointestinal tract, the 10-cell cluster would reach an infectious dose of 1,000 CFU within 3.5 h, a time interval consistent with the time it takes an infant to consume and digest a formula feeding.

To summarize, by the end of 2011, it had been determined that Cronobacter meningitis is associated with ST4 strains of C. sakazakii, these strains are found widely throughout PIF and PIF production facilities, and they appear to be stable clones present

1http://pubmlst.org/Cronobacter/
literature [e.g., Ref. (19, 20)]. My first study was an epidemiologic characterization of all reported cases of invasive E. sakazakii or Cronobacter infection occurring in previously healthy children in 1958–2010. The second was a statistical comparison of cases occurring in 1958–2003 to those occurring in 2004–2010, i.e., before and after the dissemination of the FDA’s “2002 Letter/Revised Letter to Healthcare Professionals,” in which the FDA recommended that “PIFs not be used in neonatal intensive care settings unless there is no alternative available” (31). As noted above, the FDA did not provide any guidance or recommendations to caretakers of infants living at home, even though cases had occurred in home settings by the time of the FDA’s Letter to Healthcare Professionals. The third study was a cross-sectional cost comparison of milk-based and soy-based: (a) PIF, (b) commercially sterile RTF, and (c) commercially sterile concentrates (which are to be diluted one-to-one with water prior to feeding). This study included data on a variety of brands of formula. It was done in response to statements made by the FDA, manufacturers, and others, in which they acknowledge that properly manufactured RTF cannot infect infants but insist that using RTF is not an option because it is significantly more expensive than PIF. These spokespersons provide only anecdotal statements and outdated references for their opinion [see, for example, Ref. (47)]. Therefore, my third study was intended to provide substantive, current data rather than anecdotes.

There were several striking findings in the first analytic study. First, for the entire time period examined, only one previously healthy infant who became invasively infected was older than 2 months of age at the time of symptom onset. Second, the majority of infected infants had meningitis and a third had documented bacteremia (Table 1). Third, 90% of invasively infected infants had received PIF at some point in time prior to onset of symptoms; this did not differ significantly between the two periods (Table 2). Only 4% of infants with invasive Cronobacter infection, worldwide, had been exclusively breastfed (EBF) (Figure 1). None of these breastfed infants resided in the U.S.

but, for comparison: 46% of all U.S. neonates are EBF (48). Thus the proportion breastfed is much lower than would be expected, even if all the EBF infants had lived in the U.S.

The second set of analyses documented several significant differences between cases occurring in 2004–2010 compared to 1958–2003. The proportion with necrotizing enterocolitis, a disease that occurs in hospitalized premature infants, was significantly lower in 2004–2010 (Table 1). This decrease is consistent with the following findings: in 2004–2010, a significantly higher proportion of invasively infected infants were full term, normal birthweight, and living at home when symptoms began (Table 3). Also, in 2004–2010, a significantly higher proportion of infected infants had been given multiple types of nutrition prior to onset of symptoms (Table 2). This was largely due to their receiving RTF in their birth hospital and being switched to PIF at home (data

TABLE 1 | Age and diagnoses of all reported infants without underlying disorders, invasively infected with Cronobacter, by time period.

Age at onset of symptoms	1958–2003	2004–2010	Total	P value^a
≤30 days/1 month old	53/66 (80%)	27/30 (90%)	80/96 (83%)	NS
≤60 days/2 months old	65/66 (98%)	30/30 (100%)	95/96 (99%)	NS

Diagnoses^a

- Meningitis: 38/68 (56%) | 22/30 (73%) | 60/98 (61%) | NS
- Bacteremia: 21/68 (31%) | 14/30 (47%) | 35/98 (36%) | NS
- NEC: 22/68 (32%) | 1/30 (3%) | 23/98 (23%) | P = 0.001
- UTI: 1/68 (2%) | 0/30 (0%) | 1/98 (1%) | NS

^aFisher’s exact tests. Not considered significant (NS) if P ≥ 0.05.

^bDocumented nutrition at any time prior to onset of symptoms, based on the best available information, including from medical records, CDC files, parent report, publications, and communications with publication authors. PIF, powdered infant formula; HMF, powdered human milk fortifier. Total percents may not equal 100 due to rounding. Denominators include only those for whom data were known.

^cThis includes one infant who received formulas that was likely but not definitely PIF and definitely did not receive breast milk (2000 case, personal communication, J. Burdette, October 6, 2011). This infant is included in the denominator for “any breast milk” and not in any numerators. The category also includes an infant who definitely received a recalled, contaminated lot of PIF but I could not determine if he received breast milk or other formulas as well (Belgium 2002). This infant is included in the numerator and denominator for “any PIF.” A third infant in this category is a term newborn recorded on a CDC list as not having received PIF but without information concerning what, if any, enteral feeding she did receive (AZ 2009). This infant is included in the denominator of “Any PIF or HMF” and is not included in “Any breast milk,” “Any RTF,” and “Any concentrate.”

^dCategories are not mutually exclusive; therefore, total percent is >100. Numbers are for those who had the specified nutrition noted.

^eFisher’s exact tests. Not considered significant (NS) if P ≥ 0.05.

TABLE 2 | Number and proportion of reported infants without underlying disorders, invasively infected with Cronobacter, by time period and nutrition source.

Nutrition source^{a,b}	1958–2003	2004–2010	Total	P value^d
Any PIF or HMF	51/54 (94%)	25/30 (83%)	76/84 (90%)	NS
Any breast milk	10/54 (18%)	12/29 (41%)	22/83 (26%)	P = 0.036
Any RTF	6/53 (9%)	13/29 (45%)	19/82 (23%)	P = 0.003
Any concentrate	1/53 (2%)	2/29 (7%)	3/82 (4%)	NS

^aAny concentrate

^bAny breast milk

^cAny PIF

^dAny RTF

^ePIF, powdered infant formula; HMF, powdered human milk fortifier. Total percents may not equal 100 due to rounding. Denominators include only those for whom data were known.

^fDocumented nutrition at any time prior to onset of symptoms, based on the best available information, including from medical records, CDC files, parent report, publications, and communications with publication authors. PIF, powdered infant formula; HMF, powdered human milk fortifier. Total percents may not equal 100 due to rounding. Denominators include only those for whom data were known.

^gThis includes one infant who received formulas that was likely but not definitely PIF and definitely did not receive breast milk (2000 case, personal communication, J. Burdette, October 6, 2011). This infant is included in the denominator for “any breast milk” and not in any numerators. The category also includes an infant who definitely received a recalled, contaminated lot of PIF but I could not determine if he received breast milk or other formulas as well (Belgium 2002). This infant is included in the numerator and denominator for “any PIF.” A third infant in this category is a term newborn recorded on a CDC list as not having received PIF but without information concerning what, if any, enteral feeding she did receive (AZ 2009). This infant is included in the denominator of “Any PIF or HMF” and is not included in “Any breast milk,” “Any RTF,” and “Any concentrate.”

^hCategories are not mutually exclusive; therefore, total percent is >100. Numbers are for those who had the specified nutrition noted.

ⁱFisher’s exact tests. Not considered significant (NS) if P ≥ 0.05.
not shown). This combination of findings supports that invasive infections can occur in healthy newborns and the proportion of cases in this group increased in the years following the FDA recommendation to avoid feeding PIF to hospitalized infants.

The third study addressed the relative costs two alternative forms of infant formula, RTF and concentrates, compared to PIF. A cross-sectional survey was done in September 2011. It compared on-line-prices for six formulas commonly used from birth to 6 or 12 months of age and available in PIF, RTF, and concentrate formulations. Prices varied relatively widely within and among brands, products, formulations, and stores. The approximate daily (four ounces of formula every 4 h) costs for feeding a neonate the least expensive formula of each type were calculated and compared. Details are provided in the footnotes to Table 4. The results support that if an infant's caretaker was not brand-committed, the cost of RTF did not differ meaningfully from the cost of PIF. Specifically, milk-based RTF costs only 84 cents more a day than milk-based PIF and soy-based RTF costs 24 cents less a day than soy-based PIF (Table 4).

The following consumer recommendation appeared on CDC's Cronobacter webpage in December 2012: "If your baby gets formula, choose infant formula sold in liquid form, especially when your baby is a newborn or very young." Unfortunately, CDC's one epidemiologic contribution to the recent Cronobacter literature, a 2014 article by Patrick et al. published in CDC's journal Emerging Infectious Diseases, not as insightful (49). It is seriously flawed and misleading in a number of respects but this editorial review will focus on a few key issues.

The 2014 Patrick/CDC study examined data collected through CDC's FoodNet Program [Foodborne Diseases Active Surveillance Network (FoodNet)] (50), an excellent laboratory isolate surveillance program but one that does not collect detailed patient information. The FoodNet data support what was previously known: with rare exception, clinical Cronobacter isolates come from the very young and the very old. Despite that bimodal distribution, Patrick et al. stated that the median age for Cronobacter disease is 59 years, a number that has been widely quoted by the lay press and formula manufacturers' representatives. As the authors surely knew, a median misrepresents a bimodal distribution, Patrick et al. stated that the median age for Cronobacter infections in children and Cronobacter infections in adults. First, evidence increasingly supports that they are caused by different Cronobacter species and strains and the sources of these strains are different. Evidence to date strongly indicates that PIF is the primary source of invasive infections in young infants. The sources of infection/colonization in adults are unknown but these infections are likely transmitted nosocomially (i.e., through exposures related to their hospitalization and hospital care) and/or through contaminated nutrition these adults are receiving. Second, Cronobacter infections occur in previously healthy infants. Virtually all Cronobacter infection and colonization of adults occur in immunocompromised, elderly, and/or hospitalized adults who are ill with more significant infections.

Table 3: Characteristics of all reported infants without underlying disorders, invasively infected with Cronobacter, by time period.

Characteristic	1958-2003	2004-2010	Total	P value
Premature	48/63 (76%)	12/29 (41%)	60/92 (65%)	
Full term	15/63 (24%)	17/29 (59%)	32/92 (35%)	P = 0.002
BW <2500 g	44/55 (80%)	10/24 (42%)	54/79 (68%)	
BW ≥ 2500 g	11/55 (20%)	14/24 (58%)	25/79 (32%)	P = 0.001

*An infant was considered full term if the records indicated that was the case and/or the gestational age was specified as being at least 37 weeks. An infant was considered premature if the records indicated that was the case and/or the gestational age was less than 37 weeks. BW, birthweight. Table excludes patients for whom the specified data are unknown; there were a total of 68 infants in 1958-2003 and 30 in 2004-2010.

Fisher's exact tests and Freeman-Halton extension of the Fisher's exact probability test for a 2 x 3 table. Not significant (NS) if P ≥ 0.05. Totals percent may not equal 100 due to rounding.

This category includes one infant who became ill 12 h after leaving the hospital and another who was noted to be ill on the day of hospital discharge and was reportedly asymptomatic while in the hospital.

Table 4: Per ounce price and price difference, by type and form of infant formula, comparing least-expensive available product in stated category.*

Formula Type	Actual cost/ounce	Actual cost differences compared to powdered
Milk-based formula: Powdered	0.121	NA
Ready-to-Feed	0.156	29%
Concentrate	0.137	13%
Soy-based formula: Powdered	0.140	NA
Ready-to-Feed	0.130	-7%
Concentrate	0.140	0%

*Costs were determined for six formulas available for neonates and young infants (and for use by a premature or immunocompromised infant as if recommended by that infant's pediatrician): Enfamil (milk-based) (five stores for PIF and RTF, two stores for concentrate); ProSobee LIPIL (soy-based) (five stores for PIF, three stores for RTF, and two stores for concentrate); good start with iron, gentle or gentle plus (milk-based) (n = 5 stores for PIF, four stores for RTF, and three stores for concentrate); Good Start soy, Supreme or Supreme Plus (four stores for PIF, three stores for RTF, and two stores for concentrate); Similac Advance (milk-based) (five stores for PIF, RTF, and concentrate); and Isomil (soy-based) (five stores for PIF, four for RTF and concentrate).

Prices were obtained in September 2011, for the least expensive packaging options, from the following internet sites: Amazon.com, Babies-R-Us, CVS, Diapers.com, and Walmart. Not all sites carried all brands of each product but all sites carried at least one brand each of a powdered, ready-to-feed, and concentrate product. Price ranges are for any of the assessed brands at any of the assessed internet sites.

Lowest priced product of any brand, at any store. Numbers reflect actual costs and cost differences for those products.

In dollars per fluid ounce of prepared formula.

Non-applicable (NA).

http://www.cdc.gov/cronobacter/investigation.html#advice
and/or illnesses. Third, in infants, *Cronobacter* can cause meningitis, sepsis, and death. In adults, *Cronobacter* is an opportunistic organism that merely colonizes the patient or causes symptoms that are insignificant in comparison to that adult’s underlying medical problem and other infections. The authors compare apples to oranges when they state, “the highest rates occurred among persons ≥80 years of age, followed by persons 70–79 years of age and infants” (49).

Thanks to this article and CDC’s related website verbiage, the press, other authors, and public health agencies now parrot the phrase “*Cronobacter* infection occurs more frequently in adults than children.” This ignores the elephant-in-the-room, an elephant that is reflected in the very name of the genus: i.e., *Cronobacter* was named after Cronos, the Greek god who devoured his own children (Figure 2). Patrick et al’s final recommendation concerning *Cronobacter* disease in adults is that “routine, systematic surveillance and special studies will be essential for understanding these findings, identifying reservoirs of infection and vehicles of transmission, and developing effective prevention and control measures.” *Cronobacter* is a rare infection; realistically, special studies would take decades and be expensive at a time when research dollars are scarce.

Rather than start from scratch, it would behoove CDC to identify and consolidate the many *Cronobacter* isolates it has obtained over the last 60+ years. One would expect that these isolates and their associated epidemiologic data have been safely stored. Patrick’s stated goals would be better and more efficiently served by testing those isolates using Baldwin’s MLST scheme and Tall’s pan genomic DNA microarray platform and analyzing the results.

U.S. Centers for Disease Control and Prevention appears to have thus far ignored the recent *Cronobacter* research related to strain typing and contamination distribution in PIF products. What, then, has been the response of other health agencies? This Frontiers Topic editorial review will end with an examination of the related current policies of three institutions: the FDA, the U.S. Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), and the WHO.

By legal mandate, the FDA must oversee manufacturers of infant formulas and help ensure that these products are safe and support healthy growth in infants who consume them. On June 9, 2014 it finalized a rule that set standards for manufacturers of infant formula. Manufacturers had to comply with that rule as of September 8, 2014 (47). The new rules have, in general, eased FDA oversight of PIF manufacturing but the FDA has updated its protocol for testing end-products, including changing its statistical sampling plan to be in accordance with Dr. Jongenburger’s recommendations (44). The FDA notes that, with this sampling plan, “when the production aggregate (FDA’s new term for a lot or batch) is sampled and the composite is tested, if the pathogen is not detected, the manufacturer has a 95% level of confidence that there would be <1 CFU *Cronobacter* spp. in 100 g powder” (52). That, of course, continues to ignore the practical significance of *Cronobacter*’s clumping. Also, it merits noting that a 95% level of confidence means that, assuming the confidence interval/hypothesis test is one-sided, there is up to approximately a 5% chance of a type I error, i.e., that a production aggregate testing negative with FDA’s proposed testing scheme might actually contain ≥1 CFU *Cronobacter* spp. in 100 g powder but be released to market. This probability is indeed very low but since thousands of production aggregates are released to market each year, this risk is not inconsequential. If a released aggregate contains one or more contaminating clumps or clusters of a strain or sequence type that can produce invasive infection (e.g., ST4 or a virulent serogroup) and these clumps are fed to a young, susceptible infant, the consequences can be devastating.
Despite data to the contrary, on its “Consumer Update Page,” the FDA places RTF third on its list of three formula options and provides the following description of that option: “Ready-to-feed – the most expensive form of formula that requires no mixing” (47). Following the 2011 Cronobacter cases, the WIC Program reviewed its policies and decided to continue to preferentially support PIF over RTF, even in the first 2 months of life. WIC provides Federal grants to States for supplemental foods for approximately half of all U.S. infants. Parents on WIC cannot comparison shop; they must take what WIC provides them. WIC purchases infant formula at a discount, through a state-by-state exclusive contract bidding process, and provides that formula to non-breastfeeding or breast milk-supplementing mothers. WIC provides PIF to these mothers (53) and WIC programs instruct physicians to prescribe RTF only under certain, specific conditions, for their clients on WIC [e.g., Ref. (54)].

The World Health Organization’s current recommendations related to Cronobacter are that PIF be reconstituted with water that has been boiled and then cooled to 70°C, to inactivate any Cronobacter contaminating the PIF (55, 56). There are at least three problems with this recommendation, one of which was highlighted in Dr. Parra Flores’ Frontiers Topic manuscript (35). First, it is unlikely that this recommendation will be accurately followed in a home setting. Few caretakers will routinely measure the temperature of boiled water before they mix it with PIF. The time required will vary with ambient temperature. If the water is cooled too long, the previously boiled, now warm water will incubate contaminating Cronobacter, not kill it. Second, some organizations disagree with this recommendation because of concerns that it may destroy heat-sensitive nutrients, change some formulas’ physical characteristics, cannot be accurately followed in a real-world setting, and/or because the hot water could injure personnel preparing the formula (21). Third, the rehydration instructions on some PIF labels do not comply with WHO guidelines.

CONCLUSION

In an ideal world, medical, laboratory, and epidemiologic researchers and health agencies work hand-in-hand to further scientific knowledge and apply that knowledge to benefit society. In the past, in regard to Cronobacter, this interaction was more or less ideal and led to significant progress. In recent years, laboratorians have been doing more than their fair share. It is time for epidemiologists and health agencies to view this issue with fresh eyes and step up to the plate.

AUTHOR CONTRIBUTIONS

JJ was responsible for the concept, literature review, and manuscript preparation.

REFERENCES

1. Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ, The Enterobacteriaceae Study Group (USA). Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol (1980) 30:569–84. doi:10.1099/00207713-30-3-569
2. Iversen C, Mullan N, McCredell B, Tall BD, Lehner A, Fanning S, et al. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muenjensis sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. laussanensis subsp. nov. and Cronobacter dublinensis subsp. lactaris subsp. nov. Int J Syst Evol Microbiol (2008) 58:1442–7. doi:10.1099/ijsem.0.65577-0
3. Iversen C, Lane M, Forsythe S. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett Appl Microbiol (2004) 38:378–82. doi:10.1111/j.1472-765X.2004.01007.x
4. Kucerova E, Joseph S, Forsythe S. The Cronobacter genus: ubiquity and diversity. Qual Assur Saf Crops Foods (2011) 3:104–22. doi:10.1111/j.1757-837X.2011.00104.x
5. Lehner A, Riedel K, Ebeli L, Breeuwer P, Diep B, Stephan R. Biofilm formation, growth rate of Enterobacter sakazakii in reconstituted powdered infant formula. Appl Environ Microbiol (2006) 72:2721–9. doi:10.1128/AEM.72.4.2721-2729.2006
6. Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg (2002) 37:551–67. doi:10.1053/jpsu.2002.31610
7. Friedemann M. Effects of preculturing conditions on lag time and specific infectivity and enterotoxin production in vitro and in vivo. J Food Prot (2003) 66:370–5.
8. Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg (2002) 37:551–67. doi:10.1053/jpsu.2002.31610
9. Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res (2007) 61:2–8. doi:10.1203/01.pdr.0000250274.68571.18
10. Forchelli ML, Walker WA. The effect of protective nutrients on mucosal defense in the immature intestine. Acta Paediatr (2005) 94(Suppl 449):74–83. doi:10.1111/j.1651-2227.2005.tb02159.x
11. Pettiford JN, Jason J, Nwananywu OC, Archibald LK, Kazembe PN, Dobbie H, et al. Age-related differences in cell-specific cytokine production by acutely ill Malawian patients. Clin Exp Immunol (2002) 128:110–7. doi:10.1046/j.1365-2249.2002.01813.x
12. Iversen C, Forsythe S. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol (2004) 21:771–6. doi:10.1016/j.fm.2004.01.009
13. Friedemann M. Enterobacter sakazakii in food and beverages other than infant formula and milk powder. Int J Food Microbiol (2007) 116:1–10. doi:10.1016/j.ijfoodmicro.2006.12.018
14. Kandhai MC, Reij MW, Gorris LG, Guillaume-Gentil O, van Schothorst E, Laurens M. Epidemiology of Invasive Cronobacter Infection. Front Pediatr (2015) 3:84. doi:10.3389/fped.2015.00084
15. Farmer JJ III. My 40-year history with Cronobacter/Enterobacter sakazakii – lessons learned, myths debunked, and recommendations. Front Pediatr (2015) 3:84. doi:10.3389/fped.2015.00084
16. Urmenyi A, Franklin A. Neonatal death from pigmented coliform infection. Lancet (1961) 1(7172):313–5. doi:10.1016/S0140-6736(61)91481-7
19. Drudy D, Mullane NR, Quinn T, Wall PG, Fanning S. Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clin Infect Dis (2006) 42(7):996–1002. doi:10.1086/501019
20. Bowen AR, Braden CR. Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis (2006) 12(8):1185–9. doi:10.3202/eid1208.015059
21. Jason J. Prevention of invasive Cronobacter infections in young infants fed powdered infant formulas. Pediatrics (2012) 130(5):e1076–84. doi:10.1542/peds.2011-3855
22. Yan Q, Fanning S. Strategies for the identification and tracking of Cronobacter species: an opportunistic pathogen of concern to neonatal health. Front Pediatr (2015) 3:38. doi:10.3389/fped.2015.00038
23. Centers for Disease Control and Prevention (CDC). Enterobacter sakazakii infections associated with the use of powdered infant formula – Tennessee, 2001. MMWR Morb Mortal Wkly Rep (2002) 51:297–300.
24. Simmons BP, Gelfand MS, Haas M, Metts L, Ferguson J. Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infect Control Hosp Epidemiol (1989) 10:398–401. doi:10.2307/30144207
25. van Acker J, de Smet F, Myuldernans G, Bougaté A, Naessens A, Lauwers S. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol (2001) 39:293–7. doi:10.1128/JCM.39.1.293-297.2001
26. Muytjens HL, Zanen HC, Sonderkamp HJ, Kollee LA, Wachsmuth IK, Farmer JJ. Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J Clin Microbiol (1988) 18:115–20.
27. Muytjens HL, Roelofs-Willensme H, Jaspar GH. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J Clin Microbiol (1983) 26:743–6.
28. Nazarowec-White M, Farber JM. Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J Food Prot (1997) 60:226–30.
29. Zink DL. FDA Field Survey of Powdered Formula Manufacturing. U.S. FDA Document Obtained Through Freedom of Information Act. US Freedom of Information Act (2011).
30. Food Advisory Committee (FAC)/FDA. Transcript of the Meeting of the Contaminants and Natural Toxins Subcommittee of the Food Advisory Committee, FDA. (2003). Available from: http://www.fda.gov/ohrms/dockets/ac/03/transcripts/3939t1.htm
31. FDA. Health Professionals Letter on Enterobacter sakazakii Infections Associated with Use of Powdered (Dry) Infant Formulas in Neonatal Intensive Care Units. 2002. (2002). Formerly Available from: http://www.fda.gov/Food/FoodSafety/Product-SpecificInformation/InfantFormula/AlertsSafetyInformation/ucm112999.htm
32. CDC and the U.S. Food and Drug Administration (FDA). Infant Feeding Practices Study II. (2008). Available from: http://www.cdc.gov/foodsafety/diseases/cronobacter/index.htm
33. Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). (2000) Enterobacter sakazakii and Other Microorganisms in Powdered Infant Formula. Meeting report. [FAO/WHO, Geneva, 2004 February 2–5; Microbiological Risk Assessment Series, No. 6, ISBN 92 4 156262 5 (WHO)]; Enterobacter sakazakii in Powdered Infant Formula (INFOSAN Information Note No. 1/2005, 2005 January 13); Update of the Expert Meeting, February 23rd, 2007 (The Food and Agriculture Organization of the United Nations and the World Health Organization). Available from: http://www.fao.org/3/a-y5502e.pdf
34. FAO/WHO (2008). Enterobacter sakazakii (Cronobacter spp.) in Powdered Follow-Up Formulae. Annex 1. Meeting held in Washington DC, USA, on 2008 July 15–18; Microbiological Risk Assessment Series No. 15, Rome. 90pp.). Available from: http://www.fao.org/3/a-ai0453e.pdf
35. Parra-Flores J, Rodriguez A, Riffo F, Arvizu-Medrano SM, Arias-Rios EV, Aguirre J. Investigation on the factors affecting Cronobacter sakazakii contamination levels in reconstituted powdered infant formula. Front Pediatr (2015) 3:72. doi:10.3389/fped.2015.00072
36. FAO/WHO. Enterobacter sakazakii and Salmonella in Powdered Infant Formula: Meeting report. [FAO/WHO, Geneva, 2006 January 16–20; Microbiological Risk Assessment Series, No. 10, ISBN 92-5-105574-2(WHO)], (2006). Available from: http://www.who.int/foodsafety/publications/micro/mra10/en/
37. Friedemann M. Epidemiology off invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis (2009) 28:1297–304. doi:10.1007/s10096-009-0779-4
38. Kalyantanda G, Shumyak L, Archibald I.K. Cronobacter species contamination of powdered infant formula and the implications for neonatal health. Front Pediatr (2015) 3:56. doi:10.3389/fped.2015.00056
39. Tall BD, Gangrieda J, Gopinath GR, Yan Q, Chase HR, Lee B, et al. Development of a custom-designed, pan genomic DNA microarray to characterize strain-level diversity among Cronobacter spp. Front Pediatr (2015) 3:36. doi:10.3389/fped.2015.00036
40. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, et al. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonicatus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol (2009) 9:223. doi:10.1186/1471-2180-9-223
41. Joseph S, Forsythe SJ. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg Infect Dis (2011) 17(9):1713–5. doi:10.3202/ eid1709.110260
42. Forsythe SJ, Dickens B, Jolley KA. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genomics (2014) 2014(15):1121. doi:10.1186/1471-2164-15-1121
43. Tall BD, Franco AX, Jarvis KG, et al. Plasmidotyping, LPS Determination, Optical Map, PFGE and Whole Genome Sequencing Analyses of Cronobacter Isolates Associated with Community-Acquired Infantile Disease in the USA. (2012). Poster Board P2-07.
44. Jongenburger I, Reiij MW, Boer EPI, Gorris LGM, Zwiering MH. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies. Int J Food Microbiol (2011) 151:62–9. doi:10.1016/j.ijfoodmicro.2011.08.003
45. Richardson A, Lambert S, Smith MA. Neonatal mice as models for Cronobacter sakazakii infection in infants. J Food Prot (2009) 72:2363–7.
46. CDC. (2011) Media Statement for Immediate Release: December 30, 2011, 6 p.m.: FDA and CDC Update: Investigation of Cronobacter Bacteria Illness in Infants. [Available from: http://www.cdc.gov/media/releases/2011/s1230_Cronobacter.html]; CDC Update: Investigation of Cronobacter Infections Among Infants in the United States. 2012 January 13. [Available from: http://www.cdc.gov/foodsafety/diseases/cronobacter/investigation.html]
47. FDA. FDA Takes Final Step on Infant Formula Protection. FDA Consumer Health Information/U. S. Food and Drug Administration. (Vol. 9). (2014). Available from: http://www.fda.gov/consumers/consumerupdates/ucm1048694.htm
48. National Center for Health Statistics (NCHS). Breastfeeding Among U.S. Children Born 2000–2008, CDC National Immunization Survey. (2015). Available from: http://www.cdc.gov/breastfeeding/data/NIS_data/index.htm
49. Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, et al. Incidence of Cronobacter spp. infections, United States, 2003-2009. Emerg Infect Dis (2014) 20(9):1520–3. doi:10.3201/eid2009.140545
50. CDC. Foodborne Diseases Active Surveillance Network (FoodNet). (2015). Available from: http://www.cdc.gov/foodnet/index.html
51. CDC. Cronobacter: People at Risk. (2015). Available from: http://www.cdc.gov/cronobacter/
52. FDA. Current Good Manufacturing Practices, Quality Control Procedures, Quality Factors, Notification Requirements, and Records and Reports, for Infant Formula A Rule by the Food and Drug Administration on 02/10/2014. (2014). Available from: https://www.federalregister.gov/articles/2014/02/10/2014-02148/current-good-manufacturing-practices-quali ty-control-procedures-quality-factors-notification
53. United States Department of Agriculture (USDA). FDA Takes Final Step on Infant Formula Protections. (2015). Available from: http://www.fns.usda.gov/sites/default/files/03-04-14_WIC-Food-Packages-Final-Rule.pdf
54. State of Maine. WIC Provision of Ready to Feed Formulas. (2015). Available from: https://www1.maine.gov/dhhs/mecd/health-equity/wic/documents/health-RTFristarchformulas.pdf.
Conflict of Interest Statement: The author has not received any funding for this study. She has acted as an expert witness in legal cases related to Cronobacter infection; therefore, if this study leads to preventive action, it is, in a practical sense, contrary to her personal financial interests.

Copyright © 2015 Jason. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.