Effects of KB-5492, a New Anti-Ulcer Agent, on Ethanol- and Acidified Aspirin-Induced Gastric Mucosal Damage In Vivo and In Vitro

Yasuo Morimoto, Shinya Oshima, Hideaki Hara and Takayuki Sukamoto

Department of Pharmacology, New Drug Research Laboratories, Kanebo Ltd., 1–5–90, Tomobuchi-cho, Miyakojima-ku, Osaka 534, Japan

Received June 30, 1993 Accepted October 12, 1993

ABSTRACT—The effects of KB-5492, a new anti-ulcer agent with selective affinity for the sigma receptor, on ethanol- and acidified aspirin-induced gastric mucosal damage were studied in vivo and in vitro and compared with those of 16,16-dimethyl prostaglandin E2 (dmPGE2). In the in vivo study, KB-5492 (200 mg/kg, p.o.) as well as dmPGE2 (0.01 mg/kg, p.o.) significantly prevented the acute macroscopic lesions in rat gastric mucosa induced by oral administration of either absolute ethanol or 80 mM aspirin in 150 mM HCl. The light microscopic examination revealed that KB-5492 almost completely prevented the deep mucosal lesions induced by these necrotizing agents. KB-5492 also prevented the exfoliation of surface epithelial cells, but its preventive effect was incomplete. In the in vitro study, gastric epithelial cells, isolated from the rat stomach, were cultured for 6 days until they reached confluency. Both 10 mM aspirin (at pH 5.0) and 12.5% ethanol (at pH 7.4) induced damage to the cells and markedly increased 51Cr release from the cells. KB-5492 at 0.3 and 1 mM and dmPGE2 at 0.3 and 1 µM significantly, but not completely, prevented both the aspirin- and ethanol-induced increases in 51Cr release from the cells. These findings indicate that KB-5492 as well as dmPGE2 may exert a direct but limited protective effect on the surface epithelial cells in vivo.

Keywords: KB-5492, Anti-ulcer agent, Prostaglandin, Gastric epithelial cell, Gastric mucosal protection

KB-5492, 4-methoxyphenyl 4-(3,4,5-trimethoxybenzyl)-1-piperazineacetate monofumarate monohydrate, is a new anti-ulcer agent previously shown to prevent various experimental gastric mucosal lesions in rats including those induced by oral administration of absolute ethanol and acidified aspirin (1, 2). Although KB-5492, at anti-ulcer doses, did not affect either basal or histamine-stimulated gastric acid secretion in rats (1, 2), it increased gastric mucosal blood flow and prevented aspirin-induced reduction of gastric mucus (2). Therefore, KB-5492 has been considered to enhance gastric mucosal defensive factors.

Recently, sigma-receptors have been reported to exist in many organs such as the brain (3), liver (4) and spleen (5). Furthermore, sigma-receptors are abundant in the mucosal and submucosal plexus of the gastric fundus and duodenum in guinea pig and human (6, 7). Sigma receptor ligand, 1,3-di(2-tolyl) guanidine (DTG), stimulates duodenal alkaline secretion and shows protective effects on various gastric lesions in rats through a sigma receptor (8, 9). Thus, sigma receptors may play an important role in the control of mucosal function. KB-5492 was found to have a selective affinity for the sigma receptor in guinea pig brain and porcine fundic mucosa (Y. Harada et al., unpublished data).

In the present study, the effects of KB-5492 on ethanol- and acidified aspirin-induced gastric mucosal damage were investigated in vivo and in vitro to clarify whether a direct protective effect on the gastric mucosal cells is involved in the mechanism of gastric mucosal protection by KB-5492.

MATERIALS AND METHODS

Animals

In the in vivo studies, male Sprague-Dawley rats weighing 210–240 g (Charles River Japan, Atsugi) were used. The animals were fasted but were allowed free access to water for 24 hr before the experiments. In the in vitro studies, 5- to 10-day-old Sprague-Dawley rats (Clea Japan, Osaka) were used.

In vivo studies

Effects of drugs on ethanol- and acidified aspirin-induced gastric mucosal lesions: One milliliter of absolute

In vitro studies

Effects of drugs on ethanol- and acidified aspirin-induced gastric mucosal lesions: One milliliter of absolute

Effects of drugs on ethanol- and acidified aspirin-induced gastric mucosal lesions: One milliliter of absolute
ethanol (Wako, Osaka) or 80 mM aspirin (Wako) suspended in 150 mM HCl was administered to the rat orally. After 1 hr, the animals were killed. The stomach was removed, fixed by inflation with 12 ml of 1% formalin, and then incised along the greater curvature. The length (mm) of each lesion formed on the glandular portion was measured under a dissecting microscope, and the sum of the length of the lesions in each animal was calculated. For histological examination, the stomach was spread on cardboard and immersed in 10% phosphate-buffered formalin (pH 7.0) for 48 hr. A small specimen of the tissue was cut out from a non-necrotic lesion area of the fundic mucosa. The tissue was embedded in paraffin and sliced into 4-μm sections. Subsequently, the sections were stained with hematoxylin and eosin.

KB-5492 (Kanebo, Osaka) suspended in 1% gum arabic solution, or 16,16-dimethyl prostaglandin E2 (dmPGE2, Cayman Chemical, Ann Arbor, MI, USA) dissolved initially in absolute ethanol and then diluted with 10% gum arabic solution was administered orally 30 min before ethanol or aspirin treatment.

In vitro studies
Isolation and culture of gastric epithelial cells: The experiment was performed according to the method of Terano et al. (10). The stomach of 5- to 10-day-old rats was removed, and the corpus area was isolated and then minced. The minced tissues were suspended in Coon’s modified Ham’s F-12 medium (KC Biological, Lenexa, KS, USA) containing 0.1% collagenase (Wako), 0.05% hyaluronidase (Type I-S; Sigma, St. Louis, MO, USA), 100 U/ml penicillin G potassium (Meiji Seika, Tokyo), 100 μg/ml streptomycin sulfate (Meiji Seika) and 100 μg/ml gentamicin sulfate (Sigma), and then incubated at 37°C for 1 hr. The tissues were filtered through a nylon mesh and the filtrate was washed with Hank’s balanced salt solution (HBSS; Nissui, Tokyo). The cell pellet was resuspended in Coon’s modified Ham’s F-12 medium containing 10% heat-inactivated fetal bovine serum (Gibco, Gaithersburg, MD, USA), 15 mM HEPES (Dojindo Laboratories, Kumamoto), 2 μg/ml fibronectin (Sigma) and the same antibiotics as described above. Subsequently, the cells were seeded in 96-well tissue culture plates (Corning, Corning, NY, USA) at 5 x 10⁴ cells/well and cultured at 37°C for 6 days in a humidified atmosphere containing 5% CO₂ in air until they reached confluency.

Chromium-51 loading: The experiment was also performed according to the method of Terano et al. (11). The medium was discarded and the cells were washed with HBSS. The cells were incubated at 37°C for 2 hr in HBSS containing 370 kBq/ml ⁵¹Cr (sodium chromate, 14.8–44.4 TBq/g Cr, New England Nuclear, Boston, MA, USA) and then incubated with HBSS to remove excess isotope.

Measurement of ⁵¹Cr release: Both test drugs (i.e., KB-5492 and dmPGE₂) and damaging agents (i.e., aspirin and ethanol) were dissolved in HBSS. In the study on aspirin-induced damage, ⁵¹Cr-preloaded cells were incubated at 37°C for 2 hr in the following solutions adjusted to pH 5.0: (a) HBSS plus 10 mM aspirin, (b) test drug plus 10 mM aspirin, (c) HBSS alone and (d) test drug alone. After incubation, the radioactivity of ⁵¹Cr released into the supernatant was counted with a Gamma Counter (A-5210; Packard, Meriden, CT, USA). The radioactivity of ⁵¹Cr in the cells was also counted after the cells were solubilized with 1 N NaOH. Subsequently, ⁵¹Cr release (%) was calculated as follows:

\[
\text{⁵¹Cr Release (\%) = \frac{cpm \text{ in the supernatant}}{cpm \text{ in the supernatant} + cpm \text{ in the cells}}}
\]

In the study on ethanol-induced damage, test drugs, dissolved in HBSS and adjusted to pH 7.4, were preincubated with ⁵¹Cr-preloaded cells at 37°C for 20 min, and the cells were incubated for 10 min after the exposure to 12.5% ethanol. Subsequently, ⁵¹Cr release was calculated in the same manner as described above.

Statistics
Results were expressed as the mean ± S.E. Statistical significance was determined by one-way analysis of variance followed by Dunnett’s or Duncan’s test.

RESULTS

Effects of drugs on ethanol- and acidified aspirin-induced gastric mucosal lesions
As shown in Fig. 1, oral administration of absolute

Drug	Dose (mg/kg, p.o.)	No. of rats	Lesion length (mm)	Inhibition (%)
(1) Absolute ethanol-induced lesions				
Control	—	6	159 ± 18	—
KB-5492	200	6	27 ± 4**	83
16,16-dmPGE₂	0.01	6	13 ± 4**	92
(2) Acidified aspirin-induced lesions				
Control	—	6	143 ± 14	—
KB-5492	200	6	20 ± 8**	86
16,16-dmPGE₂	0.01	6	14 ± 6**	90

One milliliter of absolute ethanol or 80 mM aspirin in 150 mM HCl was administered orally and the stomach was removed 1 hr later. Drugs were administered orally 30 min before ethanol or acidified aspirin treatment. Values are expressed as the mean ± S.E. **P < 0.01, significantly different from the control (Dunnett’s test).
ethanol and that of 80 mM aspirin in 150 mM HCl both induced macroscopic lesions in the gastric mucosa 1 hr later. KB-5492 and dmPGE2, administered orally at 200 and 0.01 mg/kg, respectively, prevented these lesions. As shown in Table 1, both drugs significantly reduced the lesion length as compared with the control.

Light microscopic observations

Figures 2 and 3 show the typical microscopic appearances of the gastric mucosa obtained 1 hr after the oral administration of absolute ethanol and acidified aspirin, respectively. Not only the exfoliation of surface epithelial cells, but also lesions reaching the deeper layers were observed in the gastric mucosa exposed to absolute ethanol and acidified aspirin. KB-5492 and dmPGE2, administered orally at 200 and 0.01 mg/kg, respectively, almost completely prevented the deep mucosal lesions. Both drugs also prevented the exfoliation of surface epithelial cells, but their preventive effects were incomplete.

Effects of drugs on ethanol- and aspirin-induced damage to cultured gastric epithelial cells

More than 90% of the cultured cells were histochemically identified as mucus-producing epithelial cells by periodic acid-Schiff staining, which was consistent with the result obtained by Terano et al. (10-12).
As shown in Fig. 4, 12.5% ethanol markedly increased the 51Cr release from cultured gastric epithelial cells. KB-5492 at 0.3 and 1 mM significantly and concentration-dependently prevented the ethanol-induced increase in 51Cr release from the cells. DmPGE$_2$ slightly but significantly prevented the increase in 51Cr release at 0.1, 0.3 and 1 μM.

As shown in Fig. 5, 10 mM aspirin also markedly increased the 51Cr release from the cells. KB-5492 at 0.3 and 1 mM and dmPGE$_2$ at 0.3 and 1 μM slightly but significantly and concentration-dependently prevented the aspirin-induced increase in 51Cr release.

Neither 1 mM KB-5492 nor 1 μM dmPGE$_2$ alone affected the 51Cr release from the cells.

DISCUSSION

In the present study, KB-5492 at an anti-ulcer dose of 200 mg/kg (1, 2), as well as dmPGE$_2$ at 0.01 mg/kg (13, 14), prevented the acute macroscopic lesions in rat gastric

Fig. 2. Light microscopy of rat gastric mucosa 1 hr after the oral administration of absolute ethanol. The exfoliation of surface epithelial cells is indicated by arrows. A: normal, B: vehicle + absolute ethanol, C: KB-5492 (200 mg/kg) + absolute ethanol, D: dmPGE$_2$ (0.01 mg/kg) + absolute ethanol. Hematoxylin and eosin staining (x 300).
mucosa induced by oral administration of either absolute ethanol or 80 mM aspirin in 150 mM HCl. However, in the light microscopic examination, the preventive effects of KB-5492 and dmPGE₂ on the exfoliation of surface epithelial cells induced by these necrotizing agents were incomplete. Our result that dmPGE₂ did not completely prevent the ethanol-induced damage to surface epithelial cells is consistent with those obtained by Lacy and Ito (15), Tarnawski et al. (16) and Schmidt et al. (17). However, our result that dmPGE₂ did not completely prevent aspirin-induced damage to surface epithelial cells is inconsistent with that obtained by Ohno et al. (18). This discrepancy may be due to the difference in experimental conditions between our study and theirs; the gastric mucosa was exposed to 30 or 100 mg/kg of aspirin suspended in 1% carboxymethylcellulose for 10 min in the study by Ohno et al. (18), whereas the mucosa was exposed to 80 mM (72 mg/kg) aspirin suspended in 150 mM HCl for 60 min in our study.

Tarnawski et al. (16) have suggested that the integrity
of sub-epithelial proliferative zone and rapid restoration
of the surface epithelium by the migration from this zone
is important to the protective effect of dmPGE2 against
ethanol-induced gastric mucosal damage. In the present
study, KB-5492 as well as dmPGE2 almost completely
prevented both ethanol and acidified aspirin-induced le-
sions in the deeper layers corresponding to the prolifera-
tive zone (16), which may partly contribute to the mecha-
anism of gastric mucosal protection by KB-5492.

Terano et al. (11) have reported that aspirin-induced
damage to cultured gastric epithelial cells evaluated by
51Cr release from 51Cr-preloaded cells is highly correlated
with that evaluated by the cell viability determined by the
trypan blue exclusion test. In addition, using both
methods, they demonstrated the protective effect of
dmPGE2 against aspirin-induced damage to cultured gas-
tric epithelial cells (11). In the present study, dmPGE2
slightly prevented the aspirin-induced increase in 51Cr re-
lease from cultured gastric epithelial cells, which is consis-
tent with the result obtained by Terano et al. (11). In addi-
tion, dmPGE2 slightly prevented the ethanol-induced
increase in 51Cr release from the cells at the same concen-
trations as in aspirin-induced damage. These findings
confirm that dmPGE2 directly protects the gastric epitheli-
al cells in vitro regardless of damaging substances. In a
similar manner to dmPGE2, KB-5492 slightly prevented
both the aspirin- and ethanol-induced increases in 51Cr re-

Fig. 4. Effects of KB-5492 (KB) and 16,16-dimethyl prostaglandin
E$_2$ (PG) on ethanol-induced increase in 51Cr release from cultured rat
gastric epithelial cells. Test drugs, dissolved in Hank’s balanced salt
solution (HBSS, pH 7.4), were added to the cultured cells, and the
cells were incubated at 37°C for 20 min. Subsequently, ethanol
(12.5% final) was added to the cells, and the cells were incubated at
37°C for 10 min. Each column represents the mean±S.E. of 9
cultures. *P<0.05 and **P<0.01 represent significant differences
(Duncan’s test).

Fig. 5. Effects of KB-5492 (KB) and 16,16-dimethyl prostaglandin
E$_2$ (PG) on aspirin-induced increase in 51Cr release from cultured rat
gastric epithelial cells. Test drugs plus aspirin (10 mM final), both
dissolved in Hank’s balanced salt solution (HBSS, pH 5.0), were
added to the cultured cells. Subsequently, the cells were incubated at
37°C for 2 hr. Each column represents the mean±S.E. of 9 cultures. *P<0.05 and **P<0.01 represent significant differences (Duncan’s test).
lease from the cells. Therefore, KB-5492 is also considered to exert a direct protective effect against the damage to the gastric epithelial cells induced by these necrotizing agents in vitro. However, KB-5492 and dmPGE₂ incompletely prevented both the aspirin- and ethanol-induced increases in 51Cr release from the cells. This may explain the incomplete protection by KB-5492 and dmPGE₂ against the microscopic damage to surface epithelial cells in vivo induced by both absolute ethanol and acidified aspirin. Taking these considerations collectively, KB-5492 as well as dmPGE₂ may exert a direct but limited protective effect on the surface epithelial cells in vivo.

Recently, Lippe and Szabo (19) demonstrated that dmPGE₂ delays the absorption of ethanol and aspirin from the gastric mucosa, and they suggested that this is involved in the mechanism by which dmPGE₂ protects the gastric mucosa against these damaging agents. Therefore, the effect of KB-5492 on the absorption of these damaging agents from the gastric mucosa also must be studied in the future.

In conclusion, KB-5492 as well as dmPGE₂ protects the gastric mucosa in vivo against the damage induced by both ethanol and acidified aspirin. However, KB-5492 does not seem to play a key role in the mechanism of gastric mucosal protection by a direct protective effect on the surface epithelial cells.

Acknowledgments
The authors are grateful to Miss Y. Sakita and Miss K. Tanaka for their technical assistance.

REFERENCES
1. Shimohara, K., Niida, H. and Okabe, S.: Effects of KB-5492, 1-(3,4,5-trimethoxybenzyl)-4-[(4-methoxyphenyl)oxycarbonylmethyl]piperazine monofumarate monohydrate, on gastric lesions and gastric secretion in rats. Jpn. J. Pharmacol. 53, 275-279 (1990)
2. Morimoto, Y., Shimohara, K., Oshima, S. and Sukamoto, T.: Effects of the new anti-ulcer agent KB-5492 on experimental gastric mucosal lesions and gastric mucosal defensive factors, as compared to those of teprenone and cimetidine. Jpn. J. Pharmacol. 57, 495-505 (1991)
3. Weber, E., Sonders, M., Quarum, M., McLean, S., Pou, S. and Keana, J.F.W.: 1,3-Di-[2-[5-3H]tolyl]guanidine: a selective ligand that labels σ-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc. Natl. Acad. Sci. USA. 83, 8784-8788 (1986)
4. Samovilova, N.N., Nagornaya, L.V. and Vinogradov, V.A.: (+)-[3H]SKF 10,047 binding sites in rat liver. Eur. J. Pharmacol. 147, 259-264 (1988)
5. Su, T.-P., Schell, S.E., Ford-Rice, F.Y. and London, E.D.: Correlation of inhibitory potencies of putative antagonists for μ receptors in brain and spleen. Eur. J. Pharmacol. 148, 467-470 (1988)
6. Roman, F.J., Pascaud, X., Chomette, G., Bueno, L. and Junien, J.L.: Autoradiographic localization of sigma opioid receptors in the gastrointestinal tract of the guinea pig. Gastroenterology 97, 76-82 (1989)
7. Roman, F.J., Pascaud, X., Salmon, R., Chomette, G. and Junien, J.L.: Localization and characterization of sigma receptors in the human gastrointestinal tract (abstract). Gastroenterology 100, A662 (1991)
8. Pascual, X., Defaux, J.P., Roze, C. and Junien, J.L.: Effect of selective sigma ligands on duodenal alkaline secretion in the rat. J. Pharmacol. Exp. Ther. 255, 1354-1359 (1990)
9. Pascual, X.B., Chovel, M., Soulard, P., Chevalier, E., Roze, C. and Junien, J.L.: Effects of a new σ ligand, JD 1784, on cytochrome P450 activity in the small intestine of rats. Gastroenterology 104, 427-434 (1993)
10. Terano, A., Ivey, K.J., Stachura, J., Sekhon, S., Hosojima, H., McKenzie, W.N., Krause, W.J. and Wyche, J.H.: Cell culture of rat gastric fundic mucosa. Gastroenterology 83, 1280-1291 (1982)
11. Terano, A., Mach, T., Stachura, J., Tarnawski, A. and Ivey, K.J.: Effects of 16,16 dimethyl prostaglandin E₂ on aspirin-induced damage to rat gastric epithelial cells in tissue culture. Gut 25, 19-25 (1984)
12. Terano, A., Ota, S., Mach, T., Hiraishi, H., Stachura, J., Tarnawski, A. and Ivey, K.J.: Prostaglandin protects against taurocholate-induced damage to rat gastric mucosal cell culture. Gastroenterology 92, 669-677 (1987)
13. Robert, A., Nezamis, J.E., Lancaster, C. and Hanchar, A.J.: Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 77, 433-443 (1979)
14. Takeuchi, K., Nishiwaki, H., Niida, H. and Okabe, S.: Different effects of cytoprotective drugs on ethanol- and aspirin-induced gastric mucosal injury in pylorus-ligated rats. Dig. Dis. Sci. 35, 178-185 (1990)
15. Lacy, E.R. and Ito, S.: Microscopic analysis of ethanol damage to rat gastric mucosa after treatment with a prostaglandin. Gastroenterology 83, 619-625 (1982)
16. Tarnawski, A., Hollander, D., Stachura, J., Krause, W.J. and Gergely, H.: Prostaglandin protection of the gastric mucosa against alcohol injury—A dynamic time-related process. Role of the mucosal proliferative zone. Gastroenterology 88, 334-352 (1985)
17. Schmidt, K.L., Henagan, J.M., Smith, G.S., Hilburn, P.J. and Miller, T.A.: Prostaglandin cytoprotection against ethanol-induced gastric injury in the rat. A histologic and cytopathologic study. Gastroenterology 88, 649-659 (1985)
18. Ohno, T., Ohnishi, H. and Okabe, S.: Effects of 16,16-dimethyl prostaglandin E₂ on ethanol-induced and aspirin-induced gastric damage in the rat. Scanning electron microscopic study. Gastroenterology 88, 353-361 (1985)
19. Lippe, I.T. and Szabo, S.: New mechanism of mucosal protection: Gastroprotective prostaglandin and sulfhydryls delay the absorption of ethanol and 14C-aspirin from the rat stomach. Gastroenterology 98, A79 (1990)