Estimation of Musculoskeletal Impairments in Post Chikungunya Viral Infection

Cynthia Sanjay Jagtap¹, Sandeep Babasaheb Shinde²

¹Department of Musculoskeletal Sciences, Krishna Institute of Medical Sciences (Deemed to be University), Karad, Maharashtra, India. ²Department of Musculoskeletal Sciences, Krishna Institute of Medical Sciences (Deemed to be University), Karad, Maharashtra, India.

ABSTRACT

BACKGROUND
Chikungunya is common infectious disease in tropical countries characterized by fever and arthralgia. Following chikungunya viral infection, long term arthralgia is common chronic manifestation. We wanted to study its severity on musculoskeletal system in detail to plan early rehabilitative care to improve prognosis.

METHODS
This is an observational study conducted among 66 subjects who had arthralgia post chikungunya fever. Subjects of both genders in the age group of 30 to 60 years fulfilling the inclusion and exclusion criteria participated. The outcome measure used was musculoskeletal assessment taking into consideration parameters of pain, ROM and oedema.

RESULTS
The obtained results showed a significant prevalence rate in all three components i.e. pain, ROM and oedema. Pain was found to be present in 81% of subjects, preceded with altered ROM. Presence of oedema was noted in smaller values. Oedema was absent in 43% of subjects. In that 32% subjects had grade 1 oedema, 16% subjects had grade 2 oedema and remaining 9% had grade 3 oedema. Female subjects were found to have more profound impairments with greater pain levels and altered ROM.

CONCLUSIONS
Musculoskeletal impairments like pain, stiffness, oedema, impairment in joint range of motion, are present post chikungunya viral infection. Female subjects were found to have more pain and impaired ROM than the male subjects.

KEY WORD
Chikungunya, Arthralgia, Arthritis, Pain, Musculoskeletal Impairment
BACKGROUND

Chikungunya is a tropical condition. It is commonly seen in rural areas due to poor hygiene and sanitation. It is an emerging health problem amongst public due to its ongoing transmission and its chronic sequelae. This disease has a major impact on health-related quality of life lasting for several years.\(^1\) Chikungunya virus (CHIKV) is an arthropod borne alpha virus, transmitted by Aedes aegypti and Aedes albopictus mosquitoes. It is responsible for high grade fever, maculopapular rash and severe multi-joint arthralgia. The disease although generally self-limiting, frequently evolves into a long-lasting, debilitating rheumatic disorder; which shares many clinical features with rheumatoid arthritis.\(^1\)

The underlying mechanism by which CHIKV induces persistent arthritis remains under investigation, however, currently, attention is drawn to fact, that chikungunya and rheumatoid arthritis have many common cellular and cytokines pathways involved in pathogenesis. Chikungunya virus infection triggers rapid innate immune response primarily by activation of type Interferon pro-inflammatory cytokines afterwards adaptive immune response begins with production of specific IgF and IgG antibodies.\(^2\)

Long term musculoskeletal sequelae of Chikungunya must be taken into account when dealing with disease because of its important effect on public and individual health. To study this fact the prospective, large scale, long term studies with objective assessment of signs and symptoms attributed to disease are needed to optimally quantify and qualify this problems.\(^3\) Depending on frequency, duration and predictors of post Chikungunya chronic polyarthralgia, defined as joint pains lasting longer than 6 weeks or longer than 1 year. The post-acute and chronic stages are observed only in certain patients. Persistent musculoskeletal symptoms were reported in 54 to 79% of Chikungunya infected patients.\(^4\) The mechanism states that there is in occultation through bite of infected mosquito Chikungunya virus enters directly in subcutaneous capillaries, infecting susceptible cells in skin such as microphages, fibroblast or endothelial cell then free infected cells disseminate through blood stream to host organism to peripheral organ such as liver, spleen, muscles, joints where further replication occurs. Despite the robust innate and adaptive during acute phase which results in, viral clearance from blood a substantial portion of patient experience long lasting persistent joint pain. Three theories explained these phenomena. 1. Persistent infectious virus. 2. Persistent of viral nucleic acid. 3. Triggering persistent immune activation.

The post-acute and chronic stages are observed only in certain patients. Persistent musculoskeletal symptoms were reported in 54 to 79% of Chikungunya infected patients.\(^2\) Many patients recover within several weeks, but up to 50 percent develop chronic joint pain and swelling. When rheumatic disease persists for more than 12 weeks, we refer to these symptoms as chronic Chikungunya arthritis. In the morning joint pain become severe, so the mild exercises will helpful.\(^5\) This is the first report to describe persistent joint pain and joint stiffness 40 months after viral infection. The most common type of pain reported in these patients at 40 months post-infection was pain with period of relief and subsequent reoccurrence.\(^6\)

Long term arthralgia the common chronic manifestation is usually symmetrical and polyarticular. The wrist- hand complex knee joints, ankle-foot complex are the most commonly affected joints during chronic phase. The duration pain in majority of cases is intermittent but in 35% of cases it continuous. It is also characterized by other symptoms such as joint swelling, morning stiffness, fatigue and poly-arthalgia. There are three risk factors for arthralgia female gender, obesity and high ACR score. Age above 30-50 years was a risk factor in many reports. The arthralgia is characteristic painful and deleterious resulting in major losses in productivity in addition to direct morbidity; in one part of India, chikungunya virus infection was responsible for 69% of total disability adjusted life years (DALY), a measure of debilitating disease burden.\(^7\) The rapid expansion of chikungunya fever, together with its severe morbidity and economic burden, make chikungunya virus one of the most important arthropod-borne viruses (arboviruses) and a major global health threat.\(^8\) Acetaminophen was most common medication to treat chikungunya virus related joint pain, which was taken by almost every patients.\(^9\)

Chronic arthritis which is one of the serious complications of chikungunya infection has poor response to non-steroidal anti-inflammatory drugs and is manifested by swollen joints and polyarthritis.\(^10\) Musculoskeletal symptoms such as polyarthritis is a precursor of chikungunya virus infection has resemblance autoimmune inflammatory arthritis.\(^11\) Patients with chikungunya viral infection and rheumatoid arthritis develop highly similar peripheral T cell phenotypes.\(^12\) The chikungunya word itself give rise to its symptomology means that which bends up, referring to the severe joint pain induced posture of afflicted individuals. In adults, symptomatic infections are nearly always associated with arthropathy.\(^13\)

The persistence of chikungunya viral RNA in joint associated tissues was associated with histopathological evidence of arthritis, synovitis and tendonitis.\(^14\) So for developing comprehensive treatment policy for CHIKV the complete information of musculoskeletal system involvement is required. Research in this area will improve the knowledge of understanding of this.\(^15\) The literature on long term surveillance after CHIKV infection is very much limited. More insight on this regard is necessary.

METHODS

After approval from institutional ethical committee this study was conducted among total of 66 subjects who were infected by Chikungunya virus. This study was conducted in Krishna Institute of Medical Sciences, Karad. Sample size was calculated by \(n=4pq/L^2\). Both males and females infected by chikungunya virus between age of 30 to 60 were included according to inclusion exclusion criteria. People with rheumatoid arthritis, gout and other red flag symptoms were excluded based on detailed history, clinical examination and relevant investigations. Written consent was taken from the subjects those willing to participate. The subjects were selected by simple random sampling. The outcome measures
used were musculoskeletal assessment chart primarily studying range of motion, Pain and oedema.

Procedure

After the protocol and ethical clearance, the procedure was started. Subjects were selected with age group between 30 to 60 from post Chikungunya viral infected according to the inclusion and exclusion criteria. The consent was taken from the selected subjects. The individuals selected were evaluated using musculoskeletal assessment and were instructed with all the details about the assessment they were going to undergo. The patients were assessed for pain followed by observation, palpation, inspection for ROM and oedema. Patients were assessed for pain using VAS in which patient was asked to rate their pain on scale ranging from 0 to 10. Later subjects were evaluated for presence of oedema and graded accordingly. Lasty range of motion was taken for individual joint using goniometer.

Statistical Analysis

All the parameters were noted on assessment chart and final results were obtained using Instant software. Data on all outcome measures were calculated. The arithmetic mean, and the standard deviation was calculated for each outcome measure. Demographic variables, their pain ratings according to visual analogue scale, range of motion and grades of oedema were measured and analysed. (table no. 1-4)

RESULTS

A total of 66 subjects were taken for the study. Out of 66 subjects 42 were male and 24 were female with a percentage of 36% and 64% respectively. Age group of 30-60 years were taken. 11 were in the range of 30-40, 28 were in the range of 41-50 and remaining 27 were in the range of 51-60. Percentage wise 17% were in the age group between 30-40 yrs. 42% were between 41-50 yrs. And the remaining 41% were in the age group 51-60 yrs. of age. (table no. 1) Pain was the most recorded parameter. 19% of subjects had pain at rest with remaining rest 81% having pain on activity with a mean value of 1.66 and 7.19 having p value is <0.0001. Pain was found to be significantly present. (table no. 2) ROM was recorded of various joints including shoulder, elbow, wrist, hip, knee and ankle. Almost all joints showed significant prevalence of decreased Range. Following are the estimated noted individually.

31% showed decrease in flexion, 10% in extension, 30% in abduction, 14% in internal rotation and 15% in external rotation at shoulder. 46% showed decreased in flexion, 27% in supination and 27% in pronation at elbow. 38% of subjects showed decreased flexion, 36% showed decreased extension, 9% showed decreased radial deviation and rest 17% showed decreased ulnar deviation at wrist. 43%, 7%, 14%, 9%, 11% and 16% subjects showed decreased flexion, extension, abduction, adduction, medial rotation and external rotation respectively. The study showed that 100% subjects showed reduced ROM at knee. This signifies knee is the most affected joint. Out of 66 subjects 14% showed reduced dorsiflexion, 45% showed reduced plantar flexion, 28% showed altered inversion and 13% showed altered eversion at ankle. Out of 100%, 9% shoulder, 23% elbow, 21% wrist, 7% hip, 19% knee and 21% ankle joints ROM is reduced in the patients with the history of chikungunya viral infection. The interference of ROM overall is considered extremely significant. (table no. 3) oedema was absent in 43% subjects, in that 32% subjects had grade 1 oedema, 16% subjects had grade 2 oedema and remaining 9% subjects had grade 3 oedema. Mean were 0.77 where p value is <0.0001, therefore the interference of oedema in the subjects were considered extremely significant. (table no. 4)

Variables	Frequency (n),%
Gender	
Female	42(63%)
Male	24(37%)
Age Distribution	
30-40	31(47%)
41-50	28(43%)
51-60	27(40%)
Occupation	
Farmer	22(33%)
Teacher	9(14%)
Gardener	17(25.75%)
NGO workers	4(6%)
Sweepers	14(21%)
Drugs	
Acetaminophen	23(34%)
Nimesulide	11(16%)
Naproxen	7(10%)
Diclofenac	5(7%)
Ibuprofen	5(7%)
Piroxicam	2(3%)
Repellents	13(19%)

Pain	Mean ± SD	p Value
At Rest	1.66±1.043	<0.0001
On Activity	7.19±1.056	<0.0001

ROM	Total (66)	Percentage (%)
Shoulder	8	12.12%
Elbow	21	31.81%
Wrist	19	28.78%
Hip	7	10.60%
Knee	18	27.27%
Ankle	19	26.78%

Oedema	Total	
0	24	
Grade 1	18	
Grade 2	9	
Grade 3	5	
Mean ± SD	0.77±0.9575	<0.0001

DISCUSSION

Chikungunya is responsible for high grade fever, typically accompanied by maculopapular rash and severe, multi-joint arthralgia. The disease frequently evolves into a long-lasting, debilitating rheumatic disorder; which shares many clinical features with rheumatoid arthritis.[1] This project was done in 6 months with sample size 66. This research was undertaken with the aim to study and estimate the musculoskeletal impairment in Chikungunya viral infection. This study was conducted on 66 subjects with post chikungunya viral infection.[2] The outcome measures for this study were musculoskeletal Assessment:- visual analogue scale, range of motion and oedema. The result of this study showed that

J. Evolution Med. Dent. Sci./eISSN- 2278-4802, pISSN- 2278-4748/ Vol. 9/ Issue 12/ Mar. 23, 2020
was significant pain and reduction in ROM of all joint with presence of oedema. The 19% subjects were having pain at rest and remaining 81% were having pain on activity, p value (0.0001). Female subjects were found to have more pain and affected joints than the male. In a previous study named Long term sequelae of Chikungunya Virus disease: A systemic review, author Van Aalst M found similar results. The results in that study also support the evidence of persisting arthralgia/arthritis (arthralgia/joint stiffness plus joint swelling) as frequently encountered problem. Also, Female gender, older age was found to be associated with persistent arthralgia in the same study.\(^{(3)}\) Out of 100%, 9% shoulder, 23% elbow, 21% wrist, 7% hip, 19% knee and 21% ankle joints ROM is reduced in the patients with the history of chikungunya viral infection. 57% subjects developed oedema. Fingers, wrist, elbows, knees, ankle and toes are the most frequently affected areas in post chikungunya viral infection. Therefore, result of this present study showed that there is musculoskeletal impairment in post chikungunya viral infections subjects. Also in a similar study named Chikungunya virus infection in Aurbia, by author Ralph Huits stated similar findings with involvement of knees (66%), ankles (50%), fingers (52%), feet (46%), shoulders (36%), elbows (34%), wrists (35%), hips (31%), toes (28.1%), and spine (28.1%). Also, inflammatory signs, oedema and redness were frequent (71%, 39% and 21% respectively).\(^{(4)}\) These findings majorly correlate with the findings of the current study adding to the efficacy of results obtained. There is important need for developing correct treatment and early rehabilitation programme for post chikungunya viral infected subjects to improve activities of daily living and quality of life. If the musculoskeletal impairments remain untreated that would affect physical and psychological health and shows many irreversible changes in muscle strength, pain, posture, impingement syndrome. Hence early physiotherapy will help the patients to make pain free activities of daily living.\(^{(5)}\) There is definitive need for problem based therapeutic exercise programme for late musculoskeletal impairments after CHIKV infection. Similarly, Therapeutic exercise programme was specifically designed to address all possible health in adults with early Rheumatoid arthritis.\(^{(6)}\)

CONCLUSIONS

Musculoskeletal impairments like pain, stiffness, oedema, impairment in joint range of motion, are present post chikungunya viral infection. Female subjects were found to have more pain and impaired ROM than the male subjects.

REFERENCES

[1] Elsinga J, Grobusch MP, Tami A, et al. Health-related impact on quality of life and coping strategies for Chikungunya: a qualitative study in Curacao. PLoS Negl Trop Dis 2017;11(10):e0005987.

[2] Runowska M, Majewski D, Niklas K, et al. Chikungunya virus a rheumatologist’s perspective. Clinical Experimental Rheumatol 2018;36(3):494-501.

[3] Van Aalst M, Nelen CM, Goorhuis A, et al. Long term sequelae of Chikungunya virus disease: a systemic review. Travel Medicine and Infectious Disease 2017;15:8-22.

[4] Huits R, De Kort J, Van Den Berg R, et al. Chikungunya virus infection in Aruba: diagnosis, clinical features and predictors of post Chikungunya chronic polyarthritis. PLoS One 2018;13(4):e0196630.

[5] Md. Monoarul H. Role of physiotherapy in post Chikungunya musculoskeletal pain management. Bangladesh Physical Therapy Association (BPA), Bangladesh. J Clinical and Experimental Traumatology 2016;1(1):4.

[6] Tritsch SR, Encinales L, Pacheco N, et al. Chronic joint pain 3 years after Chikungunya virus infection largely characterized by relapsing remitting symptoms. J Rheumatol 2019.

[7] Tsetsarkin KA, Chen R, Sherman MB, et al. Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol 2011;1(4):310-17.

[8] Chen R, Puri V, Fedorova N, et al. Comprehensive Genome Scale phylogenetic study provides new insights on the global expansion of Chikungunya virus. J Virol 2016;90(23):10600-11.

[9] Chang AY, Encinales L, Porras A, et al. Frequency of chronic joint pain following Chikungunya virus infection: a Colombian Cohort Study. Arthritis & Rheumatology 2018;70(4):578-84.

[10] Sharma SK, Jain S, Chikungunya: a rheumatologist’s perspective. Int J Rheum Dis 2018;21(3):584-601.

[11] Pathak H, Mohan MC, Ravindran V. Chikungunya arthritis. Clin Med (Lond) 2019;19(5):381-5.

[12] Miner JJ, Aw-Yeang HX, For JM, et al. Brief report: Chikungunya viral arthritis in the United States: a mimic of seronegative rheumatoid arthritis. Arthritis Rheumatol 2015;67(5):1214-20.

[13] Nakaya HI, Gardner J, Yee-Susan P, et al. Gene profiling of Chikungunya virus arthritis in a Mouse model reveals significant overlap with rheumatoid arthritis. Arthritis Rheum 2012;64(11):3553-63.

[14] Hawman DW, Stoermer KA, Montgomery SA, et al. Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J Virol 2013;87(24):13878-88.

[15] Katz JN, Wright EA, Baron JA, et al. Development and validation of an index of musculoskeletal functional limitations. BMC Musculoskeletal Disord 2009;10:62.

[16] Shinde SB, Varadarajulu G. Effect of therapeutic exercise programme in adults with early rheumatoid arthritis. Indian J Physiotherapy and Occupational Therapy 2017;11(3):77-80. www.ijpot.com.