Topical Review

The 4D Einstein–Gauss–Bonnet theory of gravity: a review

Pedro G S Fernandes1,∗, Pedro Carrilho1,2, Timothy Clifton1 and David J Mulryne1

1 Department of Physics & Astronomy, Queen Mary University of London, United Kingdom
2 Institute for Astronomy, The University of Edinburgh, United Kingdom

E-mail: p.g.s.fernandes@qmul.ac.uk, pedro.carrilho@ed.ac.uk, t.clifton@qmul.ac.uk and d.mulryne@qmul.ac.uk

Received 5 November 2021, revised 7 January 2022
Accepted for publication 28 January 2022
Published 28 February 2022

Abstract

We review the topic of 4D Einstein–Gauss–Bonnet (4DEGB) gravity, which has been the subject of considerable interest over the past two years. Our review begins with a general introduction to Lovelock’s theorem, and the subject of Gauss–Bonnet terms in the action for gravity. These areas are of fundamental importance for understanding modified theories of gravity, and inform our subsequent discussion of recent attempts to include the effects of a Gauss–Bonnet term in four space–time dimensions by re-scaling the appropriate coupling parameter. We discuss the mathematical complexities involved in implementing this idea, and review recent attempts at constructing well-defined, self-consistent theories that enact it. We then move on to consider the gravitational physics that results from these theories, in the context of black holes, cosmology, and weak-field gravity. We show that 4DEGB gravity exhibits a number of interesting phenomena in each of these areas.

Keywords: cosmology, gravity, general relativity

(Some figures may appear in colour only in the online journal)

∗Author to whom any correspondence should be addressed.
1. Introduction

Ever since its inception there have been attempts to provide alternatives to Einstein’s theory of general relativity (GR). This began with the proposals of Weyl [1] and Eddington [2], and has continued to the present day, where a plethora of different theories of gravity are now under active consideration in a number of different areas of physics [3, 4]. These alternatives to GR are introduced for a variety of mathematical, philosophical and observational reasons, but almost all have the common function of generalizing the theory that Einstein initially proposed.
Holding a special place amongst this zoo of possibilities is the Einstein–Gauss–Bonnet theory, initially proposed by Lanczos [5, 6] and subsequently itself generalized by Lovelock [7, 8]. These theories are unique in requiring no extra fundamental fields beyond those that go into GR, while maintaining the property that the field equations of the theory can be written with no higher than second derivatives of the metric (a sufficient condition to prevent Ostrogradsky instability [9]). They are therefore particularly well motivated, and hold a uniquely privileged position among the pantheon of alternatives to GR.

In this paper we review recent progress in determining the consequences of Einstein–Gauss–Bonnet gravity in four dimensional space–time. Although there is an obvious interest in studying gravity in four dimensions, the Einstein–Gauss–Bonnet extension of GR was for a long time thought to be trivial in this case. This changed in 2020, when Glavan and Lin proposed a re-scaling of the coupling constant of the theory that potentially allowed for the consequences of Einstein–Gauss–Bonnet to be noticed even in the four-dimensional case [10]. The theories that resulted from this idea have come to be known as ‘4D Einstein–Gauss–Bonnet’ (4DEGB) gravity, and have a number of interesting properties.

In the sections that follow we will introduce the reader to the particular theories that fall under the umbrella of 4DEGB, as well as some of their most important properties and features. This will include a detailed discussion of the re-scaling proposed by Glavan and Lin, as well as the necessary conditions required to implement it. We will then present and discuss the relevant physics that results from these theories in the cases of black holes, cosmology and weak gravitational fields. The 4DEGB theories display interesting phenomenology in each of the arenas, and we will summarize and discuss each of them as we progress. Before doing so, however, we will use the remainder of the present section to introduce some relevant concepts.

Throughout this review we will use a Lorentzian metric with signature \((-,+,+,+,...\)). Greek letters will be used to represent the space–time components of vectors and tensors in a coordinate basis, and Latin letters for spatial components. All expressions will be presented in units in which \(G = c = 1\,\), and we will use the notation \(\Box = \nabla_\mu \nabla^\mu\) where \(\nabla_\mu\) represents the covariant derivative with respect to the metric \(g_{\mu\nu}\).

1.1. Lovelock gravity

Motivated by the idea of showing the uniqueness of Einstein’s field equations, Lovelock asked which set of rank-2 tensors \(A^{\mu\nu}\) could satisfy the following three conditions:

(a) \(A^{\mu\nu} = A^{\nu\mu}(g_{\rho\sigma}, g_{\rho\gamma}, g_{\sigma\gamma})\)
(b) \(\nabla_\mu A^{\mu\nu} = 0\)
(c) \(A^{\mu\nu} = A^{\nu\mu}\).

Any such tensor would provide a plausible candidate for the left-hand side of the field equations of a geometric theory of gravity, and could be set as being proportional to the stress–energy tensor \(T^{\mu\nu}\). Indeed, this seems to be a formalized version of the rationale that led Einstein to his formulation of the field equations in 1915, but here with the explicit aim of finding all possible field equations that would have consistent conservation and symmetry properties, as well as being free from Ostrogradski instabilities [9].

The question Lovelock posed had been partially answered much earlier by Weyl [11] and Cartan [12], who showed that if \(A^{\mu\nu}\) is required to be linear in \(g_{\rho\sigma}, g_{\gamma}\), then the only possibility is that \(A^{\mu\nu}\) is a linear combination of the Einstein tensor and a cosmological constant term. By dropping the requirement of linearity, Lovelock found that there was a considerably broader class of solutions to the problem, each of which could serve as a suitable left-hand side in a
geometric theory of gravity, without introducing any extra fundamental degrees of freedom beyond those that exist in the metric.

Lovelock’s field equations can be derived from the following Lagrangian density:

$$\mathcal{L} = \sqrt{-g} \sum_j \alpha_j R^j,$$

(1)

where

$$R^j \equiv \frac{1}{2} \delta^{\mu_1 \nu_1 \ldots \mu_j \nu_j}_{\alpha_1 \beta_1 \ldots \alpha_j \beta_j} \prod_{i=1}^j R^\alpha_i \beta_i \mu_i \nu_i$$

and

$$\delta^{\mu_1 \nu_1 \ldots \mu_j \nu_j}_{\alpha_1 \beta_1 \ldots \alpha_j \beta_j} \equiv j! \delta_{\mu_1 \alpha_1 \beta_1}^{\nu_1} \ldots \delta_{\mu_j \alpha_j \beta_j}^{\nu_j}.\tag{2}$$

The g in the Lagrangian density is the determinant of the metric, the α_j are a set of arbitrary constants, $R^\mu_{\nu\rho\sigma}$ are the components of the Riemann tensor, and $\delta_{\nu\alpha\beta}^{\mu}$ is the Kronecker delta. The square brackets denote antisymmetrization in the usual way.

The tensor A^μ_{ν} that satisfies properties (a)–(c) above can be generated from the Lagrangian density in equation (1) by integrating it over a region of D-dimensional space–time Ω to construct an action S, and then by varying with respect to the inverse metric $g^{\mu\nu}$. This gives

$$\delta S = \delta \int_{\Omega} dDx \, \mathcal{L} = \int_{\Omega} dDx \, \sqrt{-g} A^\mu_{\nu} \, \delta g^{\mu\nu} + \int_{\partial\Omega} dD \, \sqrt{h} B,$$

(3)

where h is the determinant of the induced metric on $\partial\Omega$, and where

$$A^\mu_{\nu} = -\sum_j \frac{\alpha_j}{2} \delta^{\mu_{\rho_1 \sigma_1} \ldots \rho_j \sigma_j}_{\nu_{\alpha_1 \beta_1} \ldots \alpha_j \beta_j} \prod_{i=1}^j R^{\alpha_i \beta_i}_{\rho_i \sigma_i}.$$

(4)

For further discussion of the derivation of this result, and an expression for the boundary term B, the reader is referred to the original literature [7, 8] and to the review [13].

1.2. The Gauss–Bonnet term

One can immediately see that the sum in equation (4) will terminate as soon as $2j + 1 > D$, where D is the dimensionality of space–time. This follows from the definition of $\delta^{\mu_{\rho_1 \sigma_1} \ldots \rho_j \sigma_j}_{\nu_{\alpha_1 \beta_1} \ldots \alpha_j \beta_j}$ in equation (2), as the number of possible values for each index must be greater than the number of lower indices in order for the quantity to be non-zero (otherwise at least two indices would have to take the same value, which would mean that it would vanish on anti-symmetrization). For even dimensional space–times we therefore have $D/2$ possible terms appearing in the tensor A^μ_{ν}, while for odd dimensional space–times we have $(D + 1)/2$ possible terms.

This means that in dimensions $D = 1$ or 2 there is only one term possible in the Lovelock tensor A^μ_{ν}, and that this term will be of the functional form $\sim \text{(Riemann)}^0$ (i.e. a constant). In dimensions $D = 3$ and 4 there are two possible terms, corresponding to a constant and to a term of the form $\sim \text{(Riemann)}$. In fact, this latter term is exactly the Einstein tensor so that in $D = 4$

$$A^\mu_{\nu} = -\frac{1}{2} \alpha_0 \delta^{\mu}_{\nu} + \alpha_1 \left(R^\mu_{\nu} - \frac{1}{2} \delta^{\mu}_{\nu} R \right),$$

(5)

where R^μ_{ν} and R are the Ricci curvature tensor and scalar, respectively. This is clearly the left-hand side of Einstein’s equations, with the constants expressed in a slightly less familiar form. As a corollary of Lovelock’s approach to gravity, we therefore have that Einstein’s equations are the unique set of field equations that satisfy conditions (a)–(c) above, which extends the
result found by Weyl and Cartan to cases where A_{μ}^ν is allowed to be non-linear in second derivatives of the metric.

Continuing to higher dimensions, it can be shown that when $D > 4$ Einstein’s equations are not the most general set of field equations that obeys conditions (a)–(c). In particular, in the case $D = 5$ or 6 the tensor A_{μ}^ν can contain three terms, with the last being order $\sim (\text{Riemann})^2$ (i.e. corresponding to $j = 2$ in the sum in equations (1) and (4)). This gives the Lagrangian density

$$\mathcal{L} = \sqrt{-g} \left[\alpha_0 + \alpha_1 R + \alpha_2 \mathcal{G} \right],$$

(6)

where

$$\mathcal{G} = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$$

(7)

is known as the Gauss–Bonnet term. Extremization of the action associated with this Lagrangian gives the Lanczos tensor [5, 6]:

$$A_{\mu}^\nu = -\frac{1}{2} \alpha_0 \delta_{\mu}^\nu + \alpha_1 \left(R_{\mu}^\nu - \frac{1}{2} \delta_{\mu}^\nu R \right)$$

$$+ \alpha_2 \left(2R_{\nu}^{\sigma\rho\sigma}R^{\mu\rho\sigma} - 4R_{\nu}^{\sigma\rho\sigma}R_{\mu\rho\sigma} - 4R_{\nu}^{\rho\sigma}R_{\mu\rho} + 2R R_{\mu\nu} - \frac{1}{2} \delta_{\mu}^\nu \mathcal{G} \right).$$

(8)

This tensor provides an alternative set of field equations from those of Einstein, which has no higher than second derivatives of the metric, and which obeys the required symmetry and conservation properties in order for it to be set as being proportional to the stress–energy tensor T_{μ}^ν.

The additional terms in the second line of equation (8) can be seen to vanish identically in $D = 4$ and lower. This follows from the discussion above, and can also be understood as resulting from applying dimensionally-dependent identities to A_{μ}^ν [14]. However, the same result can also be seen to be a consequence of the Chern theorem applied to the action that results from integrating equation (6) [15] over the space–time manifold. In this latter case the integral of the Gauss–Bonnet term is equal to a constant with a value that depends on the Euler characteristic of the manifold, and which upon extremization contributes precisely zero to A_{μ}^ν. It is for this reason that the Gauss–Bonnet term in $D = 4$ is often referred to as a ‘topological term’, and neglected. This is despite the fact that generically $\mathcal{G} \neq 0$ in $D = 4$.

In dimensions $D > 6$ there are further terms available in the Lovelock’s theory, with the order of non-trivial new terms in powers of the Riemann tensor increasing consistently as the dimensionality of space–time increases. We will not consider these further possible terms here, but rather restrict ourselves to the Lagrangian that contains the Gauss–Bonnet term (6). Besides being the unique quadratic curvature combination appearing in the Lovelock Lagrangian, Gauss–Bonnet terms are of wide theoretical interest, as we will now describe.

1.3. Einstein–Gauss–Bonnet gravity

The combination of Einstein–Hilbert and Gauss–Bonnet terms in the gravitational action result in theories that have come to be known as Einstein–Gauss–Bonnet gravity. Such theories are of interest partly because string theory predicts that at the classical level Einstein’s equations are subject to next-to-leading-order corrections that are typically described by higher-order curvature terms in the action. As we have just seen, the Gauss–Bonnet term is the unique term that is quadratic in the curvature and that results in second-order field equations.
As an example of how Einstein–Gauss–Bonnet gravity arises, it can be shown that M-theory compactified on a Calabi–Yau three-fold down to $D = 5$ takes the effective form [16, 17]

$$S_{\text{eff}} = \int d^5x \sqrt{-g} \left(R + \frac{1}{16} c^V_2 V_1 \mathcal{G} \right), \quad (9)$$

where $c^V_2 V_1$ depends on the details of the Calabi–Yau manifold. This is nothing but the five-dimensional Lovelock theory presented in equation (6) (with suitably chosen α).

Gauss–Bonnet terms also occur in heterotic string theory [18–22], where the one-loop effective action in the Einstein frame displays couplings of the form $\alpha' e^\phi \mathcal{G}$ in the four-dimensional theory (where ϕ is a dynamical scalar field: the dilaton).

The mathematical foundations of theories containing both Einstein and Gauss–Bonnet terms have been extensively studied, with Choquet–Bruhat herself addressing the associated Cauchy problem [23], and the Hamiltonian problem being presented in reference [24]. Cosmological models have been particularly well studied in these theories, including during inflation, and in the context of ‘brane’ cosmology (see reference [25] for a review). They have also found application in the study of black hole thermodynamics and in the emergent gravity paradigm (see reference [13] for a review). The reader will note, however, that the dimensionality of the manifold over which the integration is performed in the action in equation (9) must necessarily be $D > 4$, in order for there to be non-vanishing contributions to the field equations.

The appearance of Gauss–Bonnet terms in string-inspired theories of gravity has also motivated the consideration of four-dimensional theories of the form

$$S = \int d^4x \sqrt{-g} \left(R - \frac{1}{2} (\nabla \phi)^2 + f(\phi) \mathcal{G} \right),$$

where here a kinetic term has been added for the scalar field. These scalar–tensor theories belong to the recently revived Horndeski class [26] (see reference [27] for a review), and are related to generalized Galileon theories of gravity [28–30]. In these theories it is possible to work in $D = 4$ space–time dimensions, and still have non-vanishing contributions of the Gauss–Bonnet term to the field equations, due to the existence of the dilatonic scalar field ϕ. We remark that when it comes to purely geometric terms, only couplings of the scalar field to the Ricci scalar and the Gauss–Bonnet term are allowed by Horndeski’s theory.

These scalar–tensor variants of Einstein–Gauss–Bonnet theory are also well studied, and have been found to exhibit a rich phenomenology [31–55]. In particular, they are expected to produce viable models of inflation in the early Universe, display spontaneous scalarization in compact objects, and admit novel black hole solutions that evade the no-hair theorems (see reference [56] for a review).

1.4. 4D Einstein–Gauss–Bonnet gravity

In order to circumvent the stringent requirements of Lovelock’s theory, and in an attempt to introduce the Gauss–Bonnet term in 4D gravity directly, Glavan and Lin proposed rescaling the coupling constant α_2 such that [10]

$$\alpha_2 \rightarrow \frac{\alpha_2}{(D - 4)}. \quad (11)$$

This quantity is clearly divergent in the limit $D \rightarrow 4$, but Glavan and Lin made the non-trivial suggestion that if this re-scaling were introduced into the Lanczos tensor (8) then the terms that contain this quantity as a factor might remain finite and non-zero. That is, they postulated that the divergence they introduced into α_2 might be sufficient to cancel out the fact that additional
terms in equation (8) tend to zero as $D \to 4$. If this were the case, then the Gauss–Bonnet term would be allowed to have a direct effect in the 4D theory of gravity.

Motivation for this radical new approach came from the trace of the Lanczos tensor (8), which in D dimensions gives

$$A_{\mu} = -\frac{1}{2} D \alpha_0 - \frac{1}{2} (D - 2) \alpha_1 R - \frac{1}{2} (D - 4) \alpha_2 \mathcal{G}.$$ (12)

The vanishing of the term from the Einstein tensor in $D = 2$ and the vanishing of the Gauss–Bonnet term in $D = 4$ are both made explicit here, and both can be seen to be due to a pre-factor of the form $(D - n)$ (recall that R and \mathcal{G} can be non-zero only if $D > 1$ and $D > 3$, respectively). Using the re-scaling in equation (11) can then be seen to entirely remove the factor that usually results in the contribution from the Gauss–Bonnet term vanishing, and leaves a term that can in general be non-zero in the limit $D \to 4$.

The additional term that results in the trace of the field equation (12), after the re-scaling given in equation (11), are strongly motivated from studying quantum corrections to the stress–energy tensor in the presence of gravity. In this case the renormalized vacuum expectation value for the trace of $T_{\mu\nu}$ includes terms that are proportional to \mathcal{G} [57], in just the same way that they are found in the trace of the left-hand side of the field equations in equation (12). This is known as the ‘conformal’ or ‘trace’ anomaly in the quantum field theory literature, and a natural interpretation of the Glavan and Lin re-scaling is that it is a way of accounting for the conformal anomaly in the gravitational sector of the theory. The reader may also note that a similar procedure to the re-scaling (11) has also been successfully applied to the Einstein term in the limit $D \to 2$ [58], in order to remove the factor of $(D - 2)$ that would otherwise result from Einstein’s equations being entirely absent. We will return to this particular point later on.

It is the re-scaling presented in equation (11), and the ideas, phenomenology and theories that have resulted from it, that are the subject of this review. There has been a flurry of activity surrounding this idea in the year since it was published in Physical Review Letters [58–227], and we aim to bring some of this activity together into a single source, so that the interested reader can use it as a guide to the work that has been performed, and a source of references for further reading. In particular, we aim to present a balanced guide to the ways in which the proposed re-scaling (11) can be considered a viable method of introducing the consequences of a Gauss–Bonnet term in 4D, as well as those in which it cannot. We will draw on the work of many authors for this presentation, who will be referenced as we proceed.

2. Einstein–Gauss–Bonnet theory in 4D

In this section we will discuss in more detail the proposal of Glavan and Lin to re-scale the coupling constant of the Gauss–Bonnet term [10], before discussing the concerns and criticisms that have been raised about this idea, and the theories that have resulted from it.

2.1. Glavan and Lin theory and solutions

The presentation here closely follows that of reference [10]. Let us start by considering the typical Einstein–Gauss–Bonnet action, where for the moment we neglect any contributions from matter fields, focusing on the purely gravitational sector

$$S = \frac{1}{16\pi G} \int d^Dx \sqrt{-g} (-2\Lambda + R - \alpha \mathcal{G}).$$ (13)
where \(\hat{\alpha} \) is a constant. The reader will note that the number of space–time dimensions \(D \) is not yet specified. Varying and extremizing the action with respect to the metric results in the field equations of the theory, which read

\[
G_{\mu\nu} + \Lambda g_{\mu\nu} = \hat{\alpha} H_{\mu\nu},
\]

where

\[
H_{\mu\nu} = 15\delta_{\mu\nu}[\rho^{\alpha\sigma}R_{\mu\rho\sigma}R^{\alpha\beta}],
\]

\[
= -2 \left(R R_{\mu\nu} - 2 R_{\mu \rho \nu} R^{\rho \beta} + R_{\mu \rho \nu} R_{\beta}^{\rho \sigma} - 2 R_{\mu \sigma} R_{\nu}^{\beta} - \frac{1}{4} g_{\mu\nu} G \right).
\]

The right-hand side of this equation is anti-symmetrized over five indices, and so must vanish in dimensions \(D < 5 \). Up until this point, the presentation has been that of the usual Ein-stein–Gauss–Bonnet theory. The novelty added in reference \[10\] is the possibility that the vanishing of \(H_{\mu\nu} \) in four dimensions might be cancelled by re-scaling the coupling constant of the Gauss–Bonnet term, such that

\[
\hat{\alpha} = \frac{\alpha}{D - 4},
\]

for some new finite coupling constant \(\alpha \) as we take the limit \(D \to 4 \). That this might be a viable possibility is suggested by the trace of the field equation (14), which contains a contribution from the Gauss–Bonnet term that takes the form

\[
g^{\mu\nu} H_{\mu\nu} = \frac{1}{2} (D - 4) G.
\]

It is clear that in this case the multiplicative factor of \((D - 4) \) would be precisely cancelled by the suggested re-scaling of \(\hat{\alpha} \), which would leave a non-vanishing contribution to the trace of the field equations as \(D \to 4 \).\(^3\)

\[
\hat{\alpha} g^{\mu\nu} H_{\mu\nu} = \frac{\alpha}{(D - 4)} \frac{1}{2} (D - 4) G = \frac{\alpha}{2} G.
\]

The authors of reference \[10\] suggest that this non-vanishing contribution may not be exclusive to the trace of the field equations, but could be manifest in the full theory. To support this claim they note that one can observe that the field equations written in differential form are

\[
\varepsilon_{\mu \nu \cdots D} = \sum_{p=0}^{D/2-1} \alpha_p (D - 2p) \varepsilon_{\nu \cdots \mu} R^{\rho_1 \rho_2} \wedge \cdots \wedge R^{\rho_{2p-1} \rho_{2p}} \wedge \epsilon^{\rho_{2p+1} \wedge \cdots \wedge \epsilon^{D-1}} = 0,
\]

where \(\epsilon^\rho \) is the vielbein. It may be noted here that the \((D - 4) \) factor emerges in the field equations in this case, as \(p = 2 \) for the Gauss–Bonnet contribution. While this is an intriguing suggestion, it appears that the desired result does not follow quite so straightforwardly, as we will discuss below. Nevertheless, there do exist \(D \)-dimensional space–times, which in the limit \(D \to 4 \) are well behaved under the proposed re-scaling.

\(^3\) Note that \(G \) itself is not required to vanish in the four-dimensional limit.
Let us now focus on three important examples of physically interesting D-dimensional space–times: maximally-symmetric space–time, spherically-symmetric space–time and the homogeneous and isotropic Friedmann–Roberston–Walker (FRW) space–time. Starting with the maximally-symmetric space–time, we have

$$R_{\mu\alpha\nu\beta} = \frac{R}{D(D-1)} \left(g_{\mu\nu} g_{\alpha\beta} - g_{\mu\beta} g_{\alpha\nu} \right),$$

(20)

with the Ricci scalar R being constant. From this, one can prove that

$$H_{\mu\nu} = \frac{(D-4)(D-3)(D-2)}{2D^2(D-1)} g_{\mu\nu} R^2,$$

(21)

thus resulting in the following non-trivial contribution to the field equations under the singular re-scaling of equation (16):

$$\lim_{D \to 4} \hat{H}_{\mu\nu} = \lim_{D \to 4} \frac{\alpha}{(D-4)(D-3)(D-2)} \frac{2D^2(D-1)}{4D^2} g_{\mu\nu} R^2 = \frac{\alpha}{48} g_{\mu\nu} R^2.$$

(22)

Under these conditions, there are two branches of solutions of the field equation (14) where the constant Ricci scalar acts as an effective cosmological constant, Λ_{eff}, which obeys

$$\Lambda_{\text{eff}}^\pm = -\frac{6}{\alpha} \left(1 \pm \sqrt{1 + \frac{4\alpha \Lambda}{3}} \right).$$

(23)

The existence of two branches of solutions is well-known in the higher-dimensional Einstein–Gauss–Bonnet theory (see e.g. [228]) and remains a feature of 4DEGB that will accompany us throughout this work.

The two branches found above are fundamentally different. Assuming the Gauss–Bonnet contribution is a small correction to the theory, such that $\alpha \ll 1$, one obtains from the positive branch that

$$\Lambda_{\text{eff}}^+ \approx -\frac{12}{\alpha} - 4\Lambda + \mathcal{O}(\alpha),$$

(24)

while the negative branch gives

$$\Lambda_{\text{eff}}^- \approx 4\Lambda + \mathcal{O}(\alpha).$$

(25)

Clearly the positive branch does not possess a well-defined limit as α vanishes, whereas in the negative branch we recover the dynamics of GR. For this reason, the positive branch is dubbed the Gauss–Bonnet branch, and the negative one the GR branch.

At the level of perturbation theory, we perturb the metric as

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu},$$

(26)

around the maximally symmetric space–time $\bar{g}_{\mu\nu}$. The linear perturbations in $D = 4$ are then described by (see e.g. [229] for details)

$$\left(1 + \frac{4\alpha \Lambda}{3} \right) \left[\nabla^\mu \nabla^\nu h_{\nu\rho} + \nabla_\mu \nabla_\rho h^{\nu\rho} - \Box h^\mu_{\nu} - \nabla^\mu \nabla_\nu h_{\rho\rho} \right.$$

$$\left. + \delta^\mu_\rho \left(\Box h^\rho_{\rho} - \nabla_\rho \nabla_\rho \bar{h}^{\rho\rho} \right) + \Lambda \left(\delta^\mu_\rho h^\rho_{\rho} - 2h^\mu_{\nu} \right) \right] = 0,$$

(27)
where the correction from the Gauss–Bonnet term can be observed to amount to an overall factor in the equation of motion, while the term in brackets is the same as in GR. Thus, just as in GR, the graviton has two degrees of freedom and the Gauss–Bonnet contribution to the linearized dynamics is trivial.

The same procedure can be performed for an FRW background

\[
dx^2 = -dt^2 + a(t)^2d\mathbf{x}^2,
\]

where \(a(t)\) is the scale factor. We define the Hubble rate as \(H = \dot{a}/a\) and supplement the 4DEGB theory with matter in the form of a perfect fluid with stress–energy tensor \(T^\mu_\nu = \{-\rho, p, p, p, \ldots\}\), where \(\rho\) and \(p\) are the energy density and pressure of the matter fields. Under these conditions, the following set of (modified) Friedmann equations can be obtained

\[
H^2 + \alpha H^4 = \frac{8\pi G}{3} \rho + \frac{\Lambda}{3}, \tag{29}
\]

\[
(1 + 2\alpha H^2) \dot{H} = -4\pi G (\rho + p), \tag{30}
\]

while the matter fields obey the standard continuity equation \(\dot{\rho} + 3H (\rho + p) = 0\). Interestingly, these Friedmann equations have exactly the same form as the ones obtained in holographic cosmology \[230, 231\], from the generalized uncertainty principle \[232\], by considering quantum entropic corrections \[233\], and from gravity with a conformal anomaly \[234\].

If we now consider transverse and traceless parts of the metric fluctuations, which describe gravitational waves, by perturbing as

\[
g_{ij} = a^2 (\delta_{ij} + \gamma_{ij}), \tag{31}
\]

where \(\partial_j \gamma_{ij} = 0\) and \(\gamma_{ii} = 0\), then we obtain in the four-dimensional limit a well-defined equation of motion, as the \((D - 4)\) factors once again cancel. This gives

\[
\ddot{\gamma}_{ij} + \left(3 + \frac{4\alpha \dot{H}}{1 + 2\alpha H^2}\right)H \gamma_{ij} - \epsilon_s^2 \nabla^2 \gamma_{ij} = 0, \text{ where } \epsilon_s^2 = 1 + \frac{4\alpha \dot{H}}{1 + 2\alpha H^2}. \tag{32}
\]

We observe that the Gauss–Bonnet contribution alters the Hubble friction and the sound speed, potentially leading to some non-trivial observational effects, which should be expected to be especially relevant in the early Universe.

Employing a general static and spherically-symmetric line-element, of the form

\[
dx^2 = -f(r)e^{2\delta(r)}dr^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_{D-2}, \tag{33}
\]

the field equations reveal, once again, an overall \((D - 4)\) factor, leading to the following solution in the limit \(D \to 4\):

\[
f(r) = 1 + \frac{r^2}{2\alpha} \left(1 \pm \sqrt{1 + \frac{8GM_\alpha}{r^3}}\right), \text{ and } \delta(r) = 0. \tag{34}
\]

This solution is extremely interesting for several reasons. First, it is highly reminiscent of the Boulware–Deser black hole from the higher-dimensional Einstein–Gauss–Bonnet theory.
[228], which reads

\[f(r) = 1 + \frac{r^2}{2\alpha(D - 3)(D - 4)} \left(1 \pm \sqrt{1 + \frac{8GM\alpha(D - 3)(D - 4)}{r^{D-1}}} \right), \]

(35)

and which also has \(\delta(r) = 0 \). Second, these 4DEGB black hole solutions are exactly the same as solutions that appear in other contexts, namely by considering gravity with a conformal anomaly [235, 236], entropy corrections to the black hole entropy [237] and more interestingly as a solution to the proposed UV completion of gravity, Hořava–Lifshitz gravity [238], known as the Kehagias–Sfetsos spacetime [239].

2.2. Concerns and shortcomings

As alluded to above, the novel approach of Glavan and Lin has been met with a healthy amount of skeptical scrutiny [167–175]. Here we discuss these criticisms, and present the arguments they involve.

Let us begin with references [167–170], which have shown that the tensor resulting from the variation of the Gauss–Bonnet term, \(H_{\mu\nu} \) given in equation (15), can be written in \(D \) dimensions in terms of the Weyl tensor as

\[H_{\mu\nu} = 2 \left(H^{(1)}_{\mu\nu} + H^{(2)}_{\mu\nu} \right), \]

(36)

where

\[H^{(1)}_{\mu\nu} = C_{\mu\alpha\beta\gamma}C_{\nu}^{\alpha\beta\gamma} - \frac{1}{4} g_{\mu\nu} C_{\alpha\beta\gamma\rho} C^{\alpha\beta\gamma\rho}, \]

(37)

and

\[H^{(2)}_{\mu\nu} = \frac{(D - 4)(D - 3)}{(D - 2)(D - 1)} \left[-\frac{2(D - 1)}{(D - 3)} C_{\mu\rho\sigma\tau} R^{\rho\sigma\tau} - \frac{2(D - 1)}{(D - 2)} R_{\mu\rho} R^\rho + \frac{D}{(D - 2)} R_{\mu\rho} R^\rho \right. \]

\[+ \left. \frac{1}{(D - 2)} g_{\mu\nu} \left((D - 1) R_{\rho\sigma} R^{\rho\sigma} - \frac{D + 2}{4} R^2 \right) \right], \]

(38)

and where here the \(D \)-dimensional expression for the Weyl tensor should be understood to be taken as

\[C_{\mu\alpha\beta\gamma} = R_{\mu\alpha\beta\gamma} - \frac{2}{D - 2} \left(g_{\mu\nu} R_{\alpha\beta\gamma} - g_{\alpha\nu} R_{\beta\gamma\mu} \right) + \frac{2}{(D - 1)(D - 2)} R g_{\mu\nu} g_{\alpha\beta\gamma}. \]

(39)

Now, while it is the case that in the limit \(D \to 4 \) the \(\hat{\alpha}H^{(2)}_{\mu\nu} \) is well-defined, such that

\[\lim_{D \to 4} \frac{H^{(2)}_{\mu\nu}}{(D - 4)} = - C_{\mu\rho\sigma\tau} R^{\rho\sigma\tau} - \frac{1}{2} R_{\mu\rho} R^\rho + \frac{1}{3} R_{\mu\rho} R + \frac{1}{4} g_{\mu\nu} \left(R_{\rho\tau} R^{\rho\tau} - \frac{1}{2} R^2 \right), \]

(40)

the same limit of \(\hat{\alpha}H^{(1)}_{\mu\nu} \) is not. That is because \(H^{(1)}_{\mu\nu} = 0 \) vanishes identically in four dimensions, as the Riemann tensor loses independent components as one lowers the space–time dimension (a result analogous to \(G_{\mu\nu} = 0 \) in two dimensions, and as discussed in the introduction). The poor behaviour of \(\hat{\alpha}H^{(1)}_{\mu\nu} \) in the four-dimensional limit is problematic, but if one were to
simply ignore the above contribution to the field equations, the finite part resulting from the Gauss–Bonnet term would not be covariantly conserved, which would clearly be unacceptable.

Revisiting the arguments that employ the first-order formalism outlined in equation (19), references [167–170] argue that one cannot simply re-scale the coupling constant and take the four-dimensional limit. To see why, one can re-cast equation (19) in terms of space–time indices and take the Hodge dual of the \((D-1)\)-form obtaining (see reference [167] for details)

\[
\varepsilon_{\nu\alpha} = 2 (D - 4)! H_{\nu\alpha} = 0, \tag{41}
\]

where \(H_{\nu\alpha}\) is the Gauss–Bonnet tensor defined in equation (15). The pre-factor here no longer vanishes when \(D = 4\), and the result is therefore that this approach does not lead to a well-defined \((D - 4)\) factor in front of the field equations in the metric formulation. Again, this is obviously problematic for the proposed re-scaling procedure.

At the level of perturbation theory the Glavan and Lin approach also seems ill-defined. Although at first-order there are no divergences, as observed in equation (27), the same cannot be said about second-order perturbations. Around a Minkowski background these obey [169, 170]

\[
0 = \left[\text{GR terms of } \mathcal{O}(h^2) \right] + \frac{\alpha}{(D - 4)} \left[-2 \nabla_\gamma \nabla_\alpha h_{\nu\beta} \nabla^\gamma \nabla^\beta h^\alpha_{\nu} + 2 \nabla^\gamma \nabla^\beta h^\alpha_{\nu} \nabla_\alpha h_{\mu\gamma} + 2 \nabla^\gamma \nabla^\beta h^\alpha_{\nu} \nabla_\mu h_{\alpha\beta} - 2 \nabla^\gamma \nabla^\beta h^\alpha_{\nu} \nabla_\gamma h_{\alpha\beta} - 2 \nabla^\gamma \nabla^\beta h^\alpha_{\nu} \nabla_\gamma h_{\alpha\beta} + 2 \nabla^\gamma \nabla^\beta h^\alpha_{\nu} \nabla_\mu h_{\alpha\beta} \right], \tag{42}
\]

which can be seen to be ill-defined in the four-dimensional limit.

A hint that the original approach outlined by Glavan and Lin may be an incomplete description of a more complicated theory is given by an analysis of tree-level scattering amplitudes. These reveal that, albeit being different to those of GR, the ones obtained from the four-dimensional limit of the Glavan and Lin approach are not new. Instead, they all come from certain scalar–tensor theories, indicating the likely presence of a scalar degree of freedom, in addition to the two tensor degrees of freedom in the graviton [171]. Moreover, the on-shell action can be observed to contain divergences [173], and the field equations cannot be variationally completed in \(D = 4\), as the Lagrangian diverges [174].

Given the concerns discussed above, alternative regularizations have been sought for a well-defined version of the Einstein–Gauss–Bonnet theory in four-dimensions. These have resulted in novel scalar–tensor theories either via a conformal regularization [203, 204] (first applied in reference [58] in two-dimensions), or via a regularized Kaluza–Klein reduction [201, 202]. Later, it was shown that these approaches result in scalar–tensor theories included in the subset of Horndeski theories whose scalar-field has improved conformal properties [205]. Yet another regularization method focuses on temporal diffeomorphism breaking, instead of the inclusion of a scalar degree of freedom [206]. We will review each of these approaches in the following sections, but note that in all cases Lovelock’s theorem is respected, contrary to the aim of Glavan and Lin⁴.

⁴Note that ‘regularization’, as used here, refers to the process of producing regular field equations in the limit \(D \to 4\), and not to the process of removing divergences in boundary terms.
2.3. Counter-term regularization

The regularization procedure we wish to employ in this section, to create a well-defined version of 4DEGB, was first applied in two space–time dimensions in reference [58]. We intend to first go through this procedure in two-dimensions as an instructional demonstration of the methodology that will be used to regularize 4DEGB, which will then follow.

2.3.1. Regularization in 2D. We start by considering the following action in D dimensions:

$$S = \frac{\alpha}{(D-2)} \int d^Dx \sqrt{-g} R + S_M,$$ \hfill (43)

where a re-scaling of the coupling constant has been introduced in order to try and cancel the vanishing contribution that R gives to the field equations in $D = 2$. Now, if one were to insist on going down the Glavan and Lin route (i.e. varying the action, obtaining the equations of motion, and then taking the $2D$ limit), one would stumble upon similar problems as in the previously discussed four-dimensional case. This is because the Einstein-tensor is identically zero in two dimensions, and so the limit

$$\lim_{D \to 2} \left(\frac{\alpha}{D-2} G_{\mu\nu} - T_{\mu\nu} \right),$$ \hfill (44)

is not well-defined. Note, however, that the trace of the field equations

$$\lim_{D \to 2} g^{\mu\nu} \left(\frac{\alpha}{D-2} G_{\mu\nu} - T_{\mu\nu} \right) = -\frac{1}{2} (\alpha R - 2T) = 0,$$ \hfill (45)

is well-defined, just as in the case of 4DEGB. One can attempt to solve this indeterminacy of the field equations by adding a counter-term to the action, in order to cancel the resulting ill-defined terms. This can be done in the present case by adding to the action (43) the term [58]

$$-\frac{\alpha}{(D-2)} \int d^Dx \sqrt{-\tilde{g}} \tilde{R},$$ \hfill (46)

where the tilde denotes a quantity constructed from the conformal geometry defined by

$$\tilde{g}_{\mu\nu} = e^{2\phi} g_{\mu\nu}.$$ \hfill (47)

One may note that in D dimensions the square root of the determinant of the metric is related to its conformal counterpart by $\sqrt{-g} = e^{D\phi} \sqrt{-\tilde{g}}$, and that the Ricci scalar of the conformal metric can be specified as [240, 241]

$$\sqrt{-\tilde{g}} \tilde{R} = \sqrt{-g} e^{(D-2)\phi} \left[R - 2(D-1)\Box \phi - (D-1)(D-2)(\nabla \phi)^2 \right].$$ \hfill (48)

Substituting this all into the action produces the result

$$S = \frac{\alpha}{(D-2)} \int d^Dx \left[\sqrt{-g} R - \sqrt{-\tilde{g}} \tilde{R} \right] + S_M$$

$$= \frac{\alpha}{(D-2)} \int d^Dx \sqrt{-g} \left[2(D-1)\Box \phi + (D-1)(D-2)(\nabla \phi)^2 \right.$$

$$- (D-2) \phi R + 2(D-2)(D-1) \phi \Box \phi] + S_M,$$ \hfill (49)

Note that in two-dimensions the Ricci scalar has a topological character, much like the Gauss–Bonnet term in four-dimensions, so the problem has a similar character.
where we have expanded the exponential around $D = 2$ and discarded terms of order $O((D - 2)^2)$ or higher. After performing an integration by parts, and discarding boundary terms, we find that the factors of $(D - 2)$ cancel, allowing us to take the two-dimensional limit

$$S = -\frac{\alpha}{(D - 2)} \int d^D x \sqrt{-g} [D - 2] \left(\phi R + (D - 1) (\nabla \phi)^2 \right) + S_M$$

$$\to -\alpha \int d^2 x \sqrt{-g} \left(\phi R + (\nabla \phi)^2 \right) + S_M.$$

This action has field equations $\ddot{R} = 0$, which are equivalent to

$$R - 2 \Box \phi = 0,$$

and

$$\nabla_\mu \nabla_\nu \phi - \nabla_\mu \nabla_\nu \phi + g_{\mu \nu} \left(\Box \phi - \frac{1}{2} (\nabla \phi)^2 \right) = \frac{1}{\alpha} T_{\mu \nu},$$

where the stress–energy tensor obeys the conservation equation $\nabla^\mu T_{\mu \nu} = 0$. Of particular interest in this case is that a suitable combination of the scalar field equation (51) and the trace of the field equation (52),

$$\Box \phi = \frac{1}{\alpha} T,$$

completely decouples from the scalar field resulting in

$$\alpha R = 2 T,$$

where $T = T^\mu_\mu$, thus having the same trace equation as equation (45). Note that in two dimensions there is only a single degree of freedom in the geometry, which means that equation (54) contains all of the information about the theory.

2.3.2. Regularization in 4D. In this section we apply the ideas from the discussion above to the four-dimensional case with a Gauss–Bonnet term. We start by considering the Einstein–Gauss–Bonnet action in D dimensions

$$S = \int d^D x \sqrt{-g} \left(R + \frac{\alpha}{(D - 4)} G \right),$$

to which we add the counter-term

$$-\frac{\alpha}{(D - 4)} \int d^D x \sqrt{-\tilde{g}} \tilde{G},$$

where again the tilde denotes quantities constructed from a conformal geometry as in equation (47). We can write the Gauss–Bonnet term of the conformal metric in terms of the original one as [240, 241]

$$\sqrt{-\tilde{g}} \tilde{G} = \sqrt{-g} e^{(D - 4)\phi} \left[G - 8(D - 3) R^{\mu \nu} \left(\nabla_\mu \nabla_\nu \phi - \nabla_\mu \nabla_\nu \phi \right) - 2(D - 3)(D - 4) R (\nabla \phi)^2 + 4(D - 2)(D - 3)^2 \Box \phi (\nabla \phi)^2 - 4(D - 2)(D - 3) (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) + 4(D - 2)(D - 3) (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right].$$
Expanding the exponential around $D = 4$, and neglecting terms of order $(D - 4)^2$ or higher, we then obtain

$$
\sqrt{-\mathcal{G}} = \sqrt{-g} \left(\mathcal{G} - 4(D - 3)\mathbb{R}\phi + 4(D - 3)^2(D - 2)\Box\phi(\nabla\phi)^2 + 4(D - 3)(D - 2)(\Box\phi)^2 - 8(D - 3)R^\mu\nu(\nabla_\mu\phi\nabla_\nu\phi - \nabla_\mu\nabla_\nu\phi) + 8(D - 3)(D - 2)\nabla_\mu\phi\nabla_\nu\phi\nabla^\mu\phi\nabla^\nu\phi - 4(D - 3)(D - 2)(\nabla_\mu\phi)(\nabla_\nu\phi)(\nabla^\mu\nabla^\nu\phi) + (D - 4)(2D - 3)R(\nabla\phi)^2 + (D - 3)(D - 2)(\nabla\phi)^4 - (D - 3)\phi R^\mu\nu(\nabla_\mu\phi)(\nabla_\nu\phi)^2 + 4(D - 3)(D - 2)\phi(\Box\phi)^2 \mathbb{R}
\right)
$$

Integrating by parts, and making use of the identity $\Box\phi \equiv 2N^\alpha\nabla_\alpha\phi - \frac{1}{2}\nabla^\alpha(\nabla\phi)^2$, and the Bianchi identities, we can find that the action reads

$$
S = \int_M d^5x \sqrt{-g} \left[R + \frac{\alpha}{(D - 4)}(4(D - 3)\mathbb{G}\nabla_\mu\phi\nabla_\nu\phi - 2\Box\phi(\nabla\phi)^2 - (D - 5)(D - 3)(D - 2)(\nabla\phi)^4) \right] + S_M,
$$

On taking the four-dimensional limit, this becomes

$$
S = \int_M d^4x \sqrt{-g} \left[R + \alpha \left(4G^\mu\nu\nabla_\mu\phi\nabla_\nu\phi - \mathbb{G} + 4\Box\phi(\nabla\phi)^2 + 2(\nabla\phi)^4 \right) \right] + S_M,
$$

(57)

which can be seen to be a four-dimensional action free of divergences. This action belongs to the Horndeski class of theories [26, 27], with functions $G_2 = 8\alpha X^2$, $G_3 = 8\alpha X$, $G_4 = 1 + 4\alpha X$ and $G_5 = 4\alpha \ln X$ (where $X = -\frac{1}{2}\nabla_\alpha\phi\nabla^\alpha\phi$). It can also be noted that the action has a shift symmetry in the scalar field, i.e., invariance under the set of transformations $\phi \rightarrow \phi + C$, where C is an arbitrary constant.

Given the four-dimensional action (57), the variational principle can be applied to get the field equations

$$
G_{\mu\nu} + \alpha H_{\mu\nu} = T_{\mu\nu},
$$

(58)

where

$$
H_{\mu\nu} = 2G_{\mu\nu}(\nabla\phi)^2 + 4P_{\mu\nu\alpha\beta} \left(\nabla^\alpha\phi\nabla^\beta\phi - \nabla^\beta\nabla^\alpha\phi \right)
+ 4 \left(\nabla_\mu\phi\nabla_\nu\phi - \nabla_\nu\nabla_\mu\phi \right) \Box\phi
+ 4 \left(\nabla_\alpha\phi\nabla_\mu\phi - \nabla_\mu\nabla_\alpha\phi \right) \nu\phi
+ 4 \left(\nabla_\alpha\phi\nabla_\mu\phi \right) \nu\phi
\left(\nabla^\alpha\phi\nabla^\beta\phi - \nabla^\beta\nabla^\alpha\phi \right)
+ g_{\mu\nu} \left(2(\Box\phi)^2 - (\nabla\phi)^4 \right)
+ 2\nabla_\alpha\phi \left(2\nabla^\alpha\phi \nabla^\beta\phi - \nabla^\beta\nabla^\alpha\phi \right)
\right),
$$

(59)

with

$$
P_{\alpha\beta\mu\nu} \equiv \ast R_{\alpha\beta\mu\nu} = -R_{\alpha\beta\mu\nu} - g_{\alpha\nu}R_{\beta\mu} + g_{\alpha\mu}R_{\beta\nu} - g_{\beta\nu}R_{\alpha\mu} + g_{\beta\mu}R_{\alpha\nu} - \frac{1}{2} \left(g_{\alpha\mu}g_{\beta\nu} + g_{\alpha\nu}g_{\beta\mu} \right) R,
$$

(58)
being the double dual of the Riemann tensor. The corresponding scalar field equation is \(\tilde{G} = 0 \), which is equivalent to

\[
R^\mu\nu \nabla_\mu \phi \nabla_\nu \phi - G^\mu\nu \nabla_\mu \phi \nabla_\nu \phi - \Box \phi (\nabla \phi)^2 + (\nabla_\mu \nabla_\nu \phi)^2 - (\Box \phi)^2 - 2 \nabla_\mu \phi \nabla_\nu \phi \nabla^\mu \nabla^\nu \phi = \frac{1}{8} G.
\]

(60)

Interestingly, a suitable combination of the scalar field equation and the trace of the field equations results in the purely geometric condition,

\[
R + \frac{\alpha}{2} \tilde{G} = -T,
\]

(61)

which is exactly the same trace equation found in the paper by Glavan and Lin [10]. The theory also shares solutions with the original formulation of reference [10] as we will discuss in later sections.

2.3.3. Regularization with the dimensional derivative. Let us again consider the two-dimensional case, but where we employ the following regularization scheme for the Ricci scalar

\[
S = \alpha \lim_{D \to 2} \int d^D x \sqrt{-\tilde{g}} \tilde{R} - \int d^2 x \sqrt{-g} R
\]

(62)

This looks very similar to the previously presented regularization, but differs as we add a counter-term whose numerator is already evaluated in two dimensions, where all quantities are tilded. A more careful reading reveals that the expression above is nothing but a dimensional derivative:

\[
S = \alpha \lim_{D \to 2} \int d^D x \frac{d}{dD} \left(\sqrt{-\tilde{g}} \right) \tilde{R}.
\]

(63)

which one can immediately see to be free of divergences as there is no divergent factor. The dimensional derivative here plays the role of canceling the \((D - 2)\) factors appearing in the equations of motion, much like the divergent factors introduced by Glavan and Lin [10]. That is,

\[
\lim_{D \to N} \frac{d}{dD} (D - N) = 1 \quad \text{instead of} \quad \lim_{D \to N} \frac{1}{(D - N)} (D - N) = 1.
\]

(64)

To compute the action (63) we proceed by going from the tilded frame to the non-tilded frame

\[
S = \alpha \lim_{D \to 2} \int d^D x \frac{d}{dD} \left(\sqrt{-g} e^{(D-2)\phi} \left[R - 2(D-1)\Box \phi - (D-1)(D-2)(\nabla \phi)^2 \right] \right),
\]

\[
= \alpha \lim_{D \to 2} \int d^D x \sqrt{-g} \left(e^{(D-2)\phi} \left[R - 2(D-1)\Box \phi - (D-1)(D-2)(\nabla \phi)^2 \right] - e^{(D-2)\phi} \left(2\Box \phi + ((D-1) + (D-2))(\nabla \phi)^2 \right) \right),
\]

(65)

where we assumed that non-tilded quantities do not possess a dimensional dependence. Evaluating the two-dimensional limit, we observe no divergences and obtain

16
which is the same exact action as we obtained in equation (50) (apart from an overall sign that does not influence the equations of motion). The same dimensional derivative procedure can be applied in 4D to the Gauss–Bonnet invariant, resulting in the same action as the counter-term regularization of equation (57).

2.4. Regularized Kaluza–Klein reduction

In this section we review the regularization method employed in references [201, 202], which consists of performing a Kaluza–Klein compactification of D-dimensional Einstein–Gauss–Bonnet gravity on a maximally symmetric space–time of $(D - 4)$ dimensions. Here the coupling factor α is taken to have the same singular scaling, and we keep only the breathing mode characterizing the size of the internal space.

We start the Kaluza–Klein regularization process by parametrizing the D-dimensional metric as

$$
\text{d}s^2_D = \text{d}s^2_4 + e^{-2\phi} \text{d}\Sigma^2_{D-4, \lambda},
$$

where the scalar field ϕ depends only on the four-dimensional coordinates, $\text{d}s^2_4$ is the four-dimensional line-element and $\text{d}\Sigma^2_{D-4, \lambda}$ is the line-element of an internal maximally symmetric space of $(D - 4)$ dimensions whose curvature tensor is given by

$$
R_{abcd} = \lambda (g_{ac}g_{bd} - g_{ad}g_{bc}),
$$

with λ a constant representing the curvature of the internal space. Under these assumptions, the Einstein–Gauss–Bonnet action (13) reduces to

$$
S = \frac{1}{16\pi G} \int \text{d}^4x \sqrt{-g} \left(R + (D - 4)(D - 5) \left((\nabla \phi)^2 + \lambda e^{2\phi} \right) + \alpha \left(G - 2(D - 4)(D - 5) \left[2G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \phi G + 4 \nabla^2 \phi + (D - 5)(\nabla \phi)^4 \right] - (D - 4)(D - 5)(D - 6) \left[- 2(\nabla \phi)^2 \Box \phi + (D - 5)(\nabla \phi)^4 \right] + (D - 4)(D - 5)(D - 6)(D - 7) \left[2\lambda (\nabla \phi)^2 e^{2\phi} + \lambda^2 e^{4\phi} \right] \right) \right),
$$

As we are interested in taking the limit $D \to 4$ we employ a method similar to counter-term regularization, namely expand the exponential and discard terms of order $(D - 4)^2$. Moreover, we can remove the bare Gauss–Bonnet term by introducing a counter-term and re-scaling the coupling constant as $\alpha \to \alpha / (D - 4)$. In the end, the $D \to 4$ limit leaves

$$
S = \int \text{d}^4x \sqrt{-R} \left[R + \alpha \left(4G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \phi G + 4 \Box \phi (\nabla \phi)^2 + 2(\nabla \phi)^4 \right) - 2\lambda e^{2\phi} \left[R + 6(\nabla \phi)^2 + 3\lambda e^{2\phi} \right] \right].
$$

This regularized action can be seen to differ from the one obtained via the counter-term regularization by the terms proportional to λ, with $\lambda = 0$ (flat internal space) recovering the counter-term regularized theory precisely.
If one were to keep the λ-dependent terms, then the resulting field equations would take the form

$$G_{\mu\nu} + \alpha (H_{\mu\nu} - 2\lambda e^{2\phi} A_{\mu\nu} + 3\lambda^2 e^{4\phi} g_{\mu\nu}) = T_{\mu\nu}, \quad (71)$$

where

$$A_{\mu\nu} := G_{\mu\nu} + 2\nabla_\mu \phi \nabla_\nu \phi - 2\nabla_\mu \nabla_\nu \phi + g_{\mu\nu} \left(2 \Box \phi + (\nabla \phi)^2\right). \quad (72)$$

and the scalar field equation takes the form

$$4\lambda \left(6\lambda + e^{-2\phi} \left(R - 6\Box \phi - 6(\nabla \phi)^2 \right) \right) + e^{-4\phi} \left(8R_{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi - 8G_{\mu\nu} \nabla_\mu \nabla_\nu \phi \right) - 8\Box \phi (\nabla \phi)^2 + 8(\nabla_\mu \phi \nabla_\nu \phi)^2 - 8(\Box \phi)^2 - 16\nabla_\mu \phi \nabla_\nu \phi \nabla'^2 \phi - G = 0. \quad (73)$$

Again, the theory possesses the purely geometrical equation given in (61), and shares solutions with the original formulation of reference [10].

2.5. Gravity with a generalized conformal scalar field

The structure of the regularized theories described above is highly non-trivial, comprising a representative of each one of the Horndeski terms, and yet they possess an extremely simple field equation (61) that completely decouples from the scalar field, and which therefore allows for simple solutions. One is then left to wonder about the relationship that connects these threads, and why it should be that a special combination of the field equations completely decouples from the scalar field. This problem was addressed in reference [205].

A careful analysis of the scalar field equations (60) and (73) reveals that they are conformally invariant, where we define a conformal transformation as

$$g_{\mu\nu} \rightarrow g_{\mu\nu} e^{2\sigma}, \quad \phi \rightarrow \phi - \sigma. \quad (74)$$

Conformal symmetry of the matter fields is well-known to be associated with simplifications of the field equations. If the matter action is conformally invariant, then the trace of its stress–energy tensor vanishes, and the theory possesses a constant Ricci scalar. This is the case with electrovacuum, where the Maxwell action is conformally invariant, and is the property that allows us to find the Reissner–Nordström black hole (and its rotating generalization, the Kerr–Newman black hole) with relative simplicity, despite the presence of a matter source. A further example is gravity with a conformally coupled scalar field, whose matter action enjoys conformal invariance, and is of the well-known form

$$\int d^4x \sqrt{-g} \left(\frac{R}{6} \phi^2 + (\nabla \phi)^2 \right). \quad (75)$$

The simplification of the field equations due to the conformal symmetry of the matter terms allowed for the finding of the first counter-example to the no-hair theorems (see e.g. reference [56] for a review), the much-debated Bocharova–Bronnikov–Melnikov–Bekenstein black hole [242–244]. Gravity with a conformally coupled scalar field and its solutions have been the subject of many studies in recent years (see e.g. references [245–254] and references therein).

It may be noted that in the above examples the full field equations are not conformally invariant; only the matter field equations such as the Maxwell equations and the modified Klein–Gordon equation resulting from the action (75) are conformally invariant in each theory. This suggests that the previously mentioned simplification of the equations of motion...
that \(\delta \sigma \) field equation, using the example of a scalar field, following closely reference [205].

We start by considering the transformation of equation (74) in its infinitesimal form, such that \(\delta_r g_{\mu \nu} = 2 \sigma g_{\mu \nu} \) and \(\delta_r \phi = -\sigma \), where \(\delta_r \) denotes the change under an infinitesimal conformal transformation. Assuming an action principle that describes a theory that depends solely for constants \(\beta \) and \(\gamma \), such that the transformed action contains exactly the same scalar field dependence as the original one, resulting in the same scalar field equation (if one were to vary the transformed action, then the scalar field equation should be the same if it is conformally invariant). Thus, the quantity inside equation (76),

\[
-2 g_{\mu \nu} \frac{\delta S[\phi, g]}{\delta g_{\mu \nu}} + \frac{\delta S[\phi, g]}{\delta \phi},
\]

should be a purely geometric quantity constructed only out of the metric, \(g_{\mu \nu} \), and its derivatives. This purely geometric quantity might in general be different from a constant scalar curvature on-shell, while at the same time providing a simple way to find closed-form solutions of the field equations, as we observed with equation (61). In what follows, we derive the most general scalar–tensor theory with second-order equations of motion and a conformally invariant scalar field equation if this is the case, then \(\delta_r S \) should be independent of \(\phi \), such that the transformed action contains exactly the same scalar field dependence as the original one, resulting in the same scalar field equation (if one were to vary the transformed action, then the scalar field equation should be the same if it is conformally invariant). Thus, the quantity in brackets inside equation (76),

\[
\delta_r S = \int \! d^4x \left(\frac{\delta S[\phi, g]}{\delta g_{\mu \nu}} \delta_r g_{\mu \nu} + \frac{\delta S[\phi, g]}{\delta \phi} \delta_r \phi \right)
= -\int \! d^4x \left(-2 g_{\mu \nu} \frac{\delta S[\phi, g]}{\delta g_{\mu \nu}} + \frac{\delta S[\phi, g]}{\delta \phi} \right) \sigma,
\]

where the first and second terms in brackets can be identified with the trace and the scalar field equations, respectively. Recall that we are analysing the consequences of a theory possessing a conformally invariant scalar field equation; if this is the case, then \(\delta_r S \) should be independent of \(\phi \), such that the transformed action contains exactly the same scalar field dependence as the original one, resulting in the same scalar field equation (if one were to vary the transformed action, then the scalar field equation should be the same if it is conformally invariant). Thus, the quantity in brackets inside equation (76),

\[
-2 g_{\mu \nu} \frac{\delta S[\phi, g]}{\delta g_{\mu \nu}} + \frac{\delta S[\phi, g]}{\delta \phi},
\]

for constants \(\beta \), \(\gamma \) and \(\alpha \). The connection to the regularized 4DEGB theories is manifest by setting \(\beta = \gamma = 0 \), while the one obtained via the Kaluza–Klein regularization is recovered for \(\beta = 2 \lambda \alpha \) and \(\gamma = 3 \lambda^2 \alpha \). The theory again belongs to the Horndeski class with

\[
G_2 = -2 \Lambda - 2 \gamma e^{\lambda \phi} + 12 \beta e^{\lambda \phi} X + 8 \alpha X^2, \quad G_3 = 8 \alpha X,
G_4 = 1 - \beta e^{\lambda \phi} + 4 \alpha X, \quad G_5 = 4 \alpha \log X,
\]

for

\[
G_2 = -2 \Lambda - 2 \gamma e^{\lambda \phi} + 12 \beta e^{\lambda \phi} X + 8 \alpha X^2, \quad G_3 = 8 \alpha X,
G_4 = 1 - \beta e^{\lambda \phi} + 4 \alpha X, \quad G_5 = 4 \alpha \log X,
\]
where \(X = -\frac{1}{2} (\nabla \phi)^2 \). The field equations are

\[
G_{\mu\nu} + \Lambda g_{\mu\nu} + \alpha H_{\mu\nu} - \beta e^{2\phi} g_{\mu\nu} + \gamma e^{4\phi} g_{\mu\nu} = T_{\mu\nu},
\]

where \(H_{\mu\nu} \) and \(A_{\mu\nu} \) are defined in equations (59) and (72) respectively, and the scalar field equation resulting from the action (78) is equivalent to the vanishing of the tilded (conformally invariant) quantity

\[
\beta \tilde{R} + \frac{\alpha}{2} \tilde{G} + 4\gamma = 0,
\]

where the tilded quantities are defined in equations (48) and (57) in terms of \(g_{\mu\nu} \) and \(\phi \).

Unsurprisingly, the purely geometric combination (77) recovers the condition

\[
R + \frac{\alpha}{2} G - 4\Lambda = -T.
\]

The action of equation (78) can be reshaped onto a more familiar form via the field redefinition \(\Phi = e^{\phi} \), which gives

\[
S = \int d^4x \sqrt{-g} \left[R - 2\Lambda - 6\beta \left(\frac{R}{6} \Phi^2 + (\nabla \Phi)^2 \right) - 2\gamma \Phi^4
+ \alpha \left(\frac{4G_{\mu\nu} \nabla_{\mu} \Phi \nabla_{\nu} \Phi}{\Phi^4} - \log(\Phi) \tilde{G} + \frac{4(\nabla \Phi)^2}{\Phi^4} - \frac{2(\nabla \Phi)^2}{\Phi^4} \right) \right] + S_m,
\]

where we note the presence of the usual conformally-coupled scalar field action (75) with a (conformally-invariant) quartic potential. The theory is invariant under the \(\mathbb{Z}_2 \) symmetry \(\Phi \rightarrow -\Phi \).

2.6. Temporal diffeomorphism breaking regularization

Finally, let us review the alternative regularization of reference [206] in which temporal diffeomorphism symmetry is explicitly broken. We begin by performing the Arnowitt–Deser–Misner decomposition, for which the metric becomes

\[
dx^2 = -N^2 d^2t + \gamma_{ij}(dx^i + N^i dt)(dx^j + N^j dt),
\]

where \(N \) is the lapse function, \(N^i \) is the shift vector and \(\gamma_{ij} \) is the spatial metric. If one then computes the Einstein–Gauss–Bonnet Hamiltonian in \(D = d + 1 \) dimensions, this results in

\[
d_{\text{tot}}H = \int d^d x (N^d \mathcal{H}_0 + N^d \mathcal{H}_\ell + \lambda^0 \pi_0 + \lambda^i \pi_i),
\]

where \(\lambda^0 \) and \(\lambda^i \) are Lagrange multipliers, and \((\pi_0, \pi_i, \pi^{ij}) \) are canonical momenta conjugate to \((N, N^i, \gamma_{ij})\).

To explain the regularization problem in this context, it suffices to analyse the ‘energy’ part of the Hamiltonian, \(d\mathcal{H}_0 \). One begins by splitting it into two terms, the regular part, \(d\mathcal{H}_{\text{reg}} \) and the Weyl part, \(d\mathcal{H}_{\text{Weyl}} \):

\[
d\mathcal{H}_0 = d\mathcal{H}_{\text{reg}} + d\mathcal{H}_{\text{Weyl}}.
\]
After performing the standard substitution $\hat{\alpha} = \alpha / (d - 3)$ one can more clearly see the issue using an expansion in powers of α, after which, one finds

$$
\mathcal{H}_{\text{reg}} := \frac{\sqrt{\gamma}}{2 \kappa^2} \left[2 \Lambda - \Pi - R + \frac{4}{d-2} \left(R_{ij} R^{ij} - 2 R_{ij} \Pi^{ij} - \frac{1}{3} \Pi R^{ij} \right) \right] + \mathcal{O}(\hat{\alpha}^2), \quad (87)
$$

$$
\mathcal{H}_{\text{Weyl}} := - \frac{\sqrt{\gamma}}{2 \kappa^2} \frac{\alpha}{d-3} \left(C_{ijkl} C^{ijkl} - 2 C_{ijkl} \Pi^{ijkl} - \frac{1}{3} \Pi^{Tijkl} \Pi^{Tijkl} \right) + \mathcal{O}(\hat{\alpha}^2),
$$

(88)

where R_{ij} and R are respectively the Ricci tensor and scalar of the d-dimensional spatial sections and γ is the determinant of the spatial metric. In addition, one represents the conjugate momenta via the variables

$$
\Pi^{ijkl} := 8 \kappa^4 \left(\tilde{\pi}^{i[j} - \frac{1}{d-1} \tilde{\gamma}^{[ik][\tilde{\pi}]} \right) \left(\tilde{\pi}^{i]} - \frac{1}{d-1} \tilde{\gamma}^{i][\tilde{\pi}] \right), \quad (89)
$$

$$
\Pi_{ij} := \Pi^{k}_{ikj}, \quad \Pi := \Pi^{i}_{i}, \quad (90)
$$

with $\tilde{\pi}^{ij} = \pi^{ij} / \sqrt{\gamma}$ and $[\tilde{\pi}] = \gamma_{ij} \tilde{\pi}^{ij}$. The Weyl pieces C_{ijkl} and Π^{T}_{ijkl} are irreducible components of the d-dimensional Riemann tensor and of the tensor Π_{ijkl}, respectively and are specified by the traceless conditions $C^{k}_{ikj} = 0 = \Pi^{T}_{ijk}$.

Now the regularization problem becomes clear: while the first term, \mathcal{H}_{reg}, appears to converge when $d \to 3$, the Weyl term, $\mathcal{H}_{\text{Weyl}}$, could diverge, or the limit might not be unique. This formulation makes it clear that this term requires the addition of counter-terms to avoid these potential issues.

We now use a simplified example shown in reference [206] to further illuminate the issue. Consider a direct product space whose $(d - 3)$-dimension component is flat:

$$
\gamma_{ij} dx^i dx^j = \gamma_{ab} dx^a dx^b + r^2 (\chi^a) \delta_{ab} dx^a dx^b, \quad (91)
$$

where the first term corresponds to the three-dimensional space and the second term corresponds to the $(d - 3)$-dimensional space and has a radius r that depends on the position in 3d space, x^a.

For this space, one finds the following for several of the components of terms \mathcal{H}_{reg} and $\mathcal{H}_{\text{Weyl}} [206]:$

$$
\gamma^{ij} R_{ij} = \gamma^{ab} R_{ab} + \mathcal{O}(d - 3),
$$

$$
R^{i} R_{ij} = R^{ab} R_{ab} + \mathcal{O}(d - 3),
$$

$$
C_{ijkl} C^{ijkl} = (d - 3) \left(4 R_{ab} R^{ab} - \frac{3}{2} (\gamma^{ab} R_{ab})^2 + F[r, \partial_x r, \ldots] \right) = \mathcal{O}(d - 3),
$$

(92)

which leads to

$$
\lim_{d \to 3} \int d^4 x \sqrt{\gamma} N \left(\frac{C_{ijkl} C^{ijkl}}{d - 3} \right) = \text{finite}. \quad (93)
$$
The components of $d\mathcal{H}_{\text{reg}}$ only depend on the three-dimensional quantities in the limit $d \to 3$ and are therefore regular, as anticipated. However, while the Weyl term remains finite, it has a dependence on $r(x)$ through the function F. This radius $r(x)$ can be interpreted as being the additional degree of freedom found in the other regularization approaches shown above, and indeed this matches the arguments used in the Kaluza–Klein approach.

In this regularization approach, one is interested in removing additional degrees of freedom via the introduction of counter-terms. The simplest choice of counter-term is the one that just eliminates the function $F(r, \ldots)$ above, but that would just lead to GR. The choice made in reference [206] is simply to eliminate the Weyl terms completely. However, the removal of these terms is not covariant, so the end result is a theory that is only invariant under spacial diffeomorphisms and therefore breaks the full 4D diffeomorphism invariance of GR.

In order to fully determine the theory, a gauge-fixing condition is necessary to choose the constant time hypersurfaces that are preferred when breaking the temporal part of the diffeomorphisms. This gauge-fixing condition is added to the Hamiltonian via

$$d\mathcal{H}_{\text{tot}} = d\mathcal{H}_{\text{reg}} + \int d^d x \lambda_{\text{GF}} \mathcal{G}(\gamma_{ij}, \pi_{ij}) + d\mathcal{H}_{\text{ct}},$$

(94)

where λ_{GF} is a Lagrange multiplier. This gauge choice is part of the definition of the theory and one could therefore define many such theories with different gauges. The choice made in reference [206] is given by

$$\mathcal{G} = \sqrt{\gamma} D^2 \tilde{\pi},$$

where D_i is the spatial covariant derivative. With this, the following Lagrangian is obtained:

$$\mathcal{L}_{\text{4D Einstein–Gauss–Bonnet}} = \frac{1}{2\kappa^2} (−2\Lambda + \mathcal{K}_{ij} \mathcal{K}^{ij} − \mathcal{K}^i_i \mathcal{K}^j_j + R + \alpha R_{\text{3D Gauss–Bonnet}}^2),$$

(95)

where

$$\mathcal{K}_{ij} = \frac{1}{2N} (\mathring{\gamma}_{ij} - 2D_i N_j - \gamma_{ij} D^2 \lambda_{\text{GF}}),$$

(96)

$$\mathcal{M}_i := R_i + \mathcal{K}_i^k \mathcal{K}_{kj} − \mathcal{K}_{ik} \mathcal{K}^j_j, \quad \mathcal{M} := \mathcal{M}_i.$$

(97)

This theory propagates the same number of degrees of freedom as GR, but breaks time diffeomorphisms and therefore is still in agreement with Lovelock’s theorem. The phenomenology of the theory has some differences with respect to the original theory, particularly regarding the propagation of gravitational waves, as will be discussed below [220, 221]. Nonetheless, the black hole and Friedmann–Lemaître–Robertson–Walker (FLRW) solutions of the original theory are present in this framework [206].

3. Black holes

The black holes of the original theory of reference [10] were briefly discussed in section 2. In this section we will analyse the black hole solutions in more detail, in the original 4DEGB theory as well as in the various regularized alternatives presented above. These solutions are of obvious interest for strong field gravity, and from the recent observations of black holes via gravitational waves and their accretion disks.
Recall that the field equations reveal the solution below, discussed in the introduction,

\[ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right), \]
(98)

\[f(r) = 1 + \frac{r^2}{2\alpha} \left(1 \pm \sqrt{1 + \frac{8M\alpha}{r^3}} \right). \]
(99)

As with maximally symmetric space–times, there are two branches: the Gauss–Bonnet branch with a plus sign, and the GR branch with the minus sign. In the far field limit, \(r \to \infty \), the GR branch solution approaches the Schwarzschild solution

\[f(r) = 1 - \frac{2M}{r} + \mathcal{O} \left(r^{-2} \right), \]
(100)

whereas the Gauss–Bonnet branch is not asymptotically flat

\[f(r) = \frac{r^2}{\alpha} + 1 + \frac{2M}{r} + \mathcal{O} \left(r^{-2} \right). \]
(101)

Furthermore, in the vanishing-\(\alpha \) limit we observe

\[f(r) = 1 - \frac{2M}{r} + \mathcal{O} \left(\alpha \right), \quad \text{(GR branch)}, \]
(102)

\[f(r) = \frac{r^2}{\alpha} + 1 + \frac{2M}{r} + \mathcal{O} \left(\alpha \right), \quad \text{(Gauss–Bonnet branch)}. \]

Thus, the Gauss–Bonnet branch is typically disregarded as a physically-interesting solution, because it is not asymptotically flat, does not present a well-defined limit as \(\alpha \) vanishes and because the mass term has the wrong sign.

A closer look at the solution presented in equation (99) reveals that there are (generically) two horizons located at

\[r_{\pm} = M \pm \sqrt{M^2 - \alpha}, \]
(103)

where we note that \(r_+ > r_- = \alpha \) and that the metric components are finite as \(r \to 0 \):

\[\lim_{r \to 0} f(r) = 1. \]
(104)

Both these features can be observed in figure 1. Even though the metric components are finite, the central singularity located at \(r = 0 \) still exists as the Ricci and Kretschmann scalars behave as

\[R \propto r^{-3/2} \quad \text{and} \quad R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \propto r^{-3}, \]
(105)

near \(r = 0 \). Note, however, that the Gauss–Bonnet term has weakened the singularity when compared to the Schwarzschild black hole from GR, where the Kretschmann scalar diverges as \(r^{-6} \) near the center. Another singularity exists if we were to consider a negative value of \(\alpha \), located at the radius for which the quantity inside the square root in the solution (99) vanishes:

\[r^3 = -8M\alpha. \]
(106)
However, the reader should bear in mind that negative values of α are tightly constrained, as we shall discuss in the next sections. On the phenomenology side, the shadow, innermost-stable-circular-orbit (ISCO) and the quasi-normal modes of these black holes have been studied in references \[59, 60\].

Charged black hole generalizations with a cosmological constant also exist and take the form \[61\]

\[f(r) = 1 + \frac{r^2}{2\alpha} \left(1 \pm \sqrt{1 + 4\alpha \left(\frac{2M}{r^3} - \frac{Q^2}{r^4} + \frac{\Lambda}{3} \right)} \right), \quad (107) \]

which is once again very similar to their higher-dimensional generalizations \[255–257\] (see reference \[258\] for a review on higher-dimensional Lovelock black holes). In this case, in the absence of the cosmological constant, the horizons are located at

\[r_{\pm} = M \pm \sqrt{M^2 - Q^2 - \alpha}. \quad (108) \]

It is interesting to note that the metric function in equation (107) can be written in dimensionless form by introducing the dimensionless quantities/variables

\[\tilde{r} \equiv \frac{r}{r_+}, \quad \tilde{\alpha} \equiv \frac{\alpha}{r_+}, \quad \tilde{Q}^2 \equiv \frac{Q^2}{r_+^4}, \quad \tilde{\Lambda} \equiv \Lambda r_+^2, \quad (109) \]

such that

\[f(\tilde{r}) = 1 + \frac{\tilde{r}^2}{2\tilde{\alpha}} \left(1 \pm \sqrt{1 + 4\tilde{\alpha} \left(\frac{1 + \tilde{\alpha}}{\tilde{r}^3} - \frac{\tilde{Q}^2}{\tilde{r}^4} (\tilde{r} - 1) + \frac{\tilde{\Lambda}}{3} \left(1 - \frac{1}{\tilde{r}^3} \right) \right)} \right). \quad (110) \]

Let us now consider how the form of black hole solution in the various alternative 4DEGB theories from section 2.
3.1. Black hole solutions of the regularized scalar–tensor theories

For the scalar–tensor regularized theories we will discuss solutions of the field equations that arise from the action in equation (83), as all other theories are subsets for appropriately chosen couplings β and γ (and Λ). We supplement the theory with an electromagnetic field for the sake of generality, thus our action is

$$S = \frac{1}{16\pi} S_{\text{DG}} - \frac{1}{4} \int d^4x \sqrt{-g} F_{\mu\nu} F^{\mu\nu}, \quad (111)$$

where S_{DG} is the action defined in equation (83). We start by employing a generic static and spherically-symmetric line-element given by equation (98), along with a four-potential

$$A_{\mu} dx^\mu = V(r) dt - \frac{Q_m}{4\pi} \cos \theta d\varphi, \quad (112)$$

where Q_m is interpreted as the magnetic charge of the solution. The Maxwell equations are straightforward to solve and reveal that

$$V(r) = -\frac{Q_e}{4\pi r} - \Psi_e, \quad (113)$$

where Q_e is interpreted as the electric charge of the solution and Ψ_e is the difference in electrostatic potential between the event horizon and infinity. For future convenience we define

$$Q^2 = Q^2_e + Q^2_m \frac{4\pi}{4\pi}. \quad (114)$$

We note that the purely geometrical field equation is independent of β and γ, which thus for the above line-element takes the remarkably simple form [205]

$$R + \frac{\alpha}{2} G - 4\Lambda = r^{-2} \left[(1 - f) \left(r^2 + \alpha (1 - f) \right) \right]' - 4\Lambda = 0 \quad (115)$$

with the primes denoting radial derivatives. This equation can be integrated to give the general solution

$$f(r) = 1 + \frac{r^2}{2\alpha} \left[1 \pm \sqrt{1 + 4\alpha \left(\frac{2M}{r^2} - \frac{q}{r^4} + \frac{\Lambda}{3} \right)} \right], \quad (116)$$

where M and q are constants. Another particularly interesting field equation results from a suitable combination of the tt and rr field equations, and factorizes into a condition equivalent to

$$\left(\frac{\Phi'}{\Phi^2} \right)' \left(f\Phi'(r^2\Phi')' + (f - 1)\Phi^2 - \frac{\beta}{2\alpha} r^2 \Phi^4 \right) = 0. \quad (117)$$
This reveals the possible scalar field profiles to be

\[
\begin{align*}
(1) \quad & \Phi = \frac{c_1}{r + c_2}, \\
(2) \quad & \Phi = \frac{\sqrt{-2\alpha/\beta} \operatorname{sech}\left(c_3 \pm \int \frac{dr}{r\sqrt{f}}\right)}{r}, \\
(3) \quad & \Phi = c_4, \\
(4) \quad & \Phi = \exp\left(c_5 \pm \int \frac{dr}{r\sqrt{f}}\right) \quad \text{if } \beta = 0,
\end{align*}
\]

where the \(c_i\)s here are all constants. Let us now consider the theories from section 2 as separate cases.

Case of section 2.3: \(\beta = \gamma = 0\). Here \(\beta = 0\), and so we employ the fourth scalar field profile in equation (118). The remaining field equations then reveal that a solution exists for \(q = Q^2\), while \(c_5\) in the scalar field is unconstrained, thus being a free parameter (this is due to the shift-symmetry of \(\phi\)). Reference [219], in particular, studied the asymptotically flat spherically symmetric solutions of this theory in detail, where a uniqueness theorem was obtained for the aforementioned black hole space–time.

Case of section 2.4: \(\beta = 2\lambda\alpha\) and \(\gamma = 3\lambda^2\alpha\). For the theory resultant from the Kaluza–Klein regularization scheme, we have a solution again given by the metric function (116) with \(q = Q^2\) for the scalar field profile number (2) in equation (118) (with \(\beta = 2\lambda\alpha\)) [201]. No other solutions are known in closed form, and numerical results suggest that other spherically symmetric solutions represent naked singularities and not black hole space–times [201].

Generic \(\beta\) and \(\gamma\) case of section 2.5. For other values of \(\beta\) and \(\gamma\), black hole solutions were found in reference [205]. First, using the scalar field profile (1) of equation (118), a black hole solution was found for the metric function (116) with

\[
q = Q^2 - 2\alpha, \quad c_1 = \sqrt{-2\alpha/\beta}, \quad c_2 = 0, \quad \frac{\gamma}{\beta^2} = \frac{1}{4\lambda^2}. \tag{119}
\]

Using the scalar field profile (2), a black hole solution similar to the Kaluza–Klein case (but with less restrictive couplings) exists. This occurs for a coupling that obeys \(\gamma/\beta^2 = 3/4\lambda\alpha\), just as in the Kaluza–Klein case, but no specific value is required for either \(\beta\) or \(\gamma\) as long as the previously stated ratio is obeyed (note that in the Kaluza–Klein case the values \(\gamma\) and \(\beta\) are fixed).

Finally, a **critical solution** with constant scalar field \(\Phi = c_4 = \sqrt{1/\beta}\) exists, as long as \(\gamma/\beta^2 = -\Lambda\). In this extreme situation the field equations become an identity, and we are left with solving only the purely geometrical condition, whose general solution is given by the metric function of equation (116) with unconstrained \(q\).

3.2. Slowly rotating solutions

In this section we briefly discuss the slowly-rotating black hole solutions. Fully rotating solutions to the 4DEGB field equations (in any of its formulations) are not yet known in closed form, and it is likely that numerical methods are necessary. However, slowly-rotating solutions can be constructed, as was done originally in reference [209] for the scalar–tensor theory of section 2.3. Treating rotation as a perturbation to the static solutions, we follow the
Hartle–Thorne formalism \[259, 260\]. At first order in the rotation parameter we parametrize the metric as

\[
dx^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 - 2\omega(r)\sin^2 \theta \, dt \, d\varphi \right),
\]

(120)

where \(\omega(r)\) is small and of order of the black hole angular velocity, to be determined by the field equations. Plugging the above ansatz into the field equations and expanding in powers of \(\omega(r)\), one observes that only the \(t\varphi\)-component of the field equations is yet to be satisfied, when provided with the background solution discussed above. The \(t\varphi\)-equation then becomes equivalent to the differential equation

\[
4 \left(r^3 + 5M\alpha \right) \omega' + r \left(r^3 + 8M\alpha \right) \omega'' = 0,
\]

(121)

with physically-interesting solution

\[
\omega(r) = \frac{J}{2M\alpha} \left(\sqrt{1 + \frac{8M\alpha}{r^3}} - 1 \right).
\]

(122)

where \(J\) is to be interpreted as the angular momentum of the black hole. Again we observe that at large distances we have

\[
\omega(r) = \frac{2J}{r^3} - \frac{4\alpha JM}{r^6} + O \left(r^{-9} \right).
\]

(123)

and for small coupling \(\alpha\) we have

\[
\omega(r) = \frac{2J}{r^3} - \frac{4\alpha JM}{r^6} + O \left(\alpha^2 \right).
\]

(124)

These solutions are therefore identical to GR at leading order in the appropriate limits. A more detailed phenomenological study of slowly rotating solutions is lacking, and presents an avenue for further research.

3.3. Thermodynamics

Let us now briefly review some of the thermodynamical properties of the static 4DEGB black holes. We will consider for starters the general metric function of equation (116). The temperature of this black hole can be computed to be \[61\]

\[
T_+ = \frac{1}{4\pi} f'(r_+) = \frac{r_+^2 \left(1 - r_+^2 \Lambda \right) - \alpha - q}{4\pi r_+ \left(r_+^2 + 2\alpha \right)}.
\]

(125)

Interestingly, the temperature vanishes as the event horizon approaches a size

\[
r_+^2 = \frac{1 - \sqrt{1 - 4 \left(q + \alpha \right) \Lambda}}{2\Lambda},
\]

(126)

which for vanishing cosmological term and \(q\) translates into the minimum horizon size \(r_+ = \sqrt{\alpha}\). The evaporation of 4DEGB black holes was studied in detail in reference \[219\], where the idea that evaporation remnants with size \(r_+ = \sqrt{\alpha}\), from primordial black holes, might constitute all dark matter was put forward. This scenario was found to be compatible with current cosmological observations provided that \(\sqrt{\alpha} \lesssim 10^{-18} \, \text{m}\).
The entropy of such black holes can be computed via the first law of thermodynamics, $dM = T dS + \sum \mu_i dQ_i$, and gives
\[
S = S_0 + \int \frac{dM}{T},
\]
(127)
for a constant S_0. Using equation (125), one can obtain
\[
S = \frac{A}{4} + 2\pi \alpha \log \left(\frac{A}{A_0} \right),
\]
(128)
where A_0 is a constant with units of area. This result is valid for any q and Λ. Logarithmic corrections to the black hole entropy are of interest as they often appear as the leading-order corrections in quantum gravity [261, 262].

4. Cosmology

In order to be viable, any theory of gravity must give rise to a cosmology that is both internally consistent, and compatible with the myriad of modern cosmological observations across a huge range of energy, distance, and time scales. It is also interesting to see what new behaviour novel theories might allow, for example at very early times where observational constraints are less stringent. In this section, we turn to these considerations for the 4DEGB theory.

4.1. Background cosmology

We begin with the homogeneous and isotopic FRW line-element in D dimensions
\[
ds^2 = -dt^2 + a^2(t) \left[d\chi^2 + S_k^2(\chi) d\Omega^2 \right],
\]
(129)
where $a(t)$ is the scale factor, $d\Omega^2$ represents the line element for an $D-2$ sphere and S_k takes the form $S_k(\chi) = \sin(\chi)$ for a positively curved, $k = 1$, Universe, $S_k(\chi) = \chi$ for a flat $k = 0$ Universe, and $S_k(\chi) = \sinh(\chi)$ for a negatively curved $k = -1$ Universe. As was previously described for the flat case in section 2, considering the original theory and following the steps discussed there, the space–time given in equation (129) with perfect fluid matter source, $T_{\mu}^{\nu} = (-\rho, p, p, p, \ldots)$, gives rise to the following Friedman equation in the limit $D \to 4$:
\[
H^2 + \frac{k}{a^2} + \alpha \left(H^2 + \frac{k}{a^2} \right)^2 = \frac{8\pi G}{3} \rho,
\]
(130)
where $H = \dot{a}/a$, and the density contains all fluids present, i.e. $\rho = \sum_m \rho_m$. We assume any cosmological constant is included in ρ, and note that since the stress–energy tensor is conserved that all the components of ρ are expected to obey the same conservation equations as in GR:
\[
\dot{\rho}_m + 3H(\rho_m + p_m) = 0,
\]
(131)
where p_m represents the pressure of the fluids (i.e. we will not consider interacting fluids here).

The regularised theories of section 2 lead to the same equations as (130) and (131) when particular forms for the scalar field solution are taken, and particular parameter choices are made. We will return to more general solutions, and possible restrictions on solutions in the context of regularised theories below, and for now focus on the behaviours prescribed by equations (130) and (131).

Considering the Friedman equation (130), we find that
From this equation we see that the negative branch does not lead to a consistent cosmology, but that selecting the positive branch leads us to an equation that agrees with the standard Friedmann equation as ρ tends to zero.

For negative α, H^2 becomes complex when $\rho > 3/(32\pi G|\alpha|)$, and hence our Universe could not have existed at sufficiently high energies in our past for this case. This is problematic if this value of ρ is at or below the inflationary energy scale, placing a strong constraint on negative values of α [208] as will be discussed below. For positive α, there is no restriction on the energy scale at which equation (132) is valid, but one may note that the dynamics can be significantly altered at high energies, and hence early times, becoming closer and closer to standard cosmology as ρ decays. In this case when $\rho \gg 1/(\alpha G)$ one finds $H^2 + \frac{k}{a^2} \propto \sqrt{\rho}$, which can have interesting consequences particularly in the positively curved case.

Defining the equation of state w through the equation $\rho = \rho_0 w$, the conservation equation (131) implies $\rho \propto a^{-3(1+w)}$. This in turn means that for large ρ the right-hand side equation (132) scales as $a^{-3(1+w)/2}$. For the positively curved case, this tells us that a collapsing Universe will undergo a bounce if it is sourced by fluids with a combined equation of state that satisfies the condition $w < 1/3$ (recall that $w = 1/3$ is the equation of state for radiation). This follows because when this condition is met, the right-hand side of equation (132) grows more slowly than the curvature term as $a \to 0$. Taking the curvature term to the right-hand side of equation (132) we can see that it is negative for $k = 1$, and if it grows faster than the other, positive, term, there will come a value of a at which H^2 goes to zero. Before this point, in a collapsing Universe, H is negative, and at this point it passes through zero and becomes positive and H^2 starts to grow again. Moreover, once the condition $\rho \ll 1/\sqrt{\rho}G\alpha$ is reached in the expansion phase, the term of the right-hand side equation (132) starts to decay more rapidly than the curvature term, and once again this will lead to H passing through zero, and the Universe re-collapsing. The result is a cyclic Universe. An example is shown in figure 2 for the case of a dust cosmology.

Given the appeal of bouncing universes, and the historical interest in them, it is intriguing that 4DEGB permits cyclic cosmologies. The exotic behaviour described is, however, unlikely to have physical consequences given that the phenomena is only apparent when $\rho_0 G \gg 1$. As we will see below, for the values of α allowed by observational constraints, this condition would imply a value of ρ that corresponds to a time well into the radiation dominated era, when a bounce cannot occur.

More generally, however, we note that the modified Friedmann equation changes the relationship between energy density and the scale factor, changing the Universe’s expansion history. This change becomes significant as ρ approaches $1/(\alpha G)$ at early times, affecting for example the relation between time and temperature. This has consequences for the confrontation of the theory with observation, as we will see below.

4.2. Perturbed FRW cosmology

In order to study the origin and evolution of structure in the Universe, as well as the propagation of gravitational waves, it is necessary to introduce perturbations to the line-element (129), and to the stress–energy tensor. Specialising to the flat case and using Poisson gauge [263], we have

$$d\tau^2 = -a^2(\tau)(1 + 2\phi)d\tau^2 + a^2(\tau)(1 - 2\psi\delta_{ij} + 2\partial_i F_{ij} + \gamma_{ij})dx_j^2,$$

(133)
Figure 2. The results of numerically solving the equation of motion for \ddot{a} (which follows from differentiating equation (130)) together with equation (132) for a dust cosmology with $w = 1$. We see that the universe undergoes repeating cycles. In this example $\alpha = 100 l_{\text{pl}}$. The maximum value of a at which the simulation begins is found by fixing the initial density (which can be arbitrarily small), and finding the value of a which sets H^2 using equation (132) to be zero.

and

$$
\delta T_0^0 = -\delta \rho, \quad \delta T_i^0 = (1 + w)\rho(\partial_i v + v_i), \quad \delta T_i^j = \delta^i_j \delta P + \pi^i_j, \quad (134)
$$

where τ is conformal time, φ, ψ, and v, $\delta \rho$ and δP are perturbative scalar quantities, F_i and v_i are transverse vector quantities and γ_{ij} is taken to be transverse and trace-free, and represents gravitational waves. We have assumed a general fluid with anisotropic stress, π, whose scalar–vector–tensor decomposition is, at first order,

$$
\pi_{ij} = (\partial_i \partial_j - \frac{1}{3} \delta_{ij} \partial^2) \Pi + \partial_i \Pi_j + \Pi_{ij}. \quad (135)
$$

This line element leads to evolution equations for the perturbations which are modified from those of GR.

The propagation equation for gravitational waves $[10, 158]$ is given by

$$
\ddot{\gamma}_{ij} + \left(3 + \frac{4\alpha \dot{H}}{1 + 2\alpha H^2} \right) H \dot{\gamma}_{ij} - c_T^2 \frac{\partial^2 \gamma_{ij}}{a^2} = \frac{8\pi G}{1 + 2\alpha H^2} \Pi_{ij} \quad (136)
$$

where $c_T^2 = c^2(1 + \hat{\Gamma}/(H\Gamma))$ and $\Gamma \equiv 1 + 2\alpha H^2/c^2 = \sqrt{1 + 32\pi G \rho \alpha / 3}$. Neglecting anisotropic stress, this equation also follows from the action

$$
S_T = \frac{1}{2} \int d^3 x \, dr \, a^3 \Gamma \left(\dot{\gamma}^2 - c_T^2 \frac{(\partial \gamma)^2}{a^2} \right), \quad (137)
$$

which will be useful below.
Defining \(c_s^2 = \delta P / \delta \rho \) and \(\delta = \delta \rho / \rho \), the scalar perturbations obey the equations [122, 158, 160]

\[
\delta' = 3\mathcal{H}(w - c_s^2)\delta + (1 + w)(3\psi' - \theta), \quad \theta' + \nabla^2 \varphi = 0,
\]

\[
\times 8\pi G a^4 \rho \delta + 2a(\varphi'' - 3\mathcal{H}^2 \varphi + 3\mathcal{H} \psi') = 0,
\]

\[
\times A \varphi + (B - 4\alpha \mathcal{H}^2) \psi = -8\pi G a^4 \Pi,
\]

where a dash indicates differentiation with respect to conformal time, \(\theta = \nabla^2 \psi \), \(A = 2\alpha \mathcal{H}^2 + a^2 \) and \(B = 2\alpha \mathcal{H}^2 - a^2 \). The first two equations follow from the conservation of the stress–energy tensor and are identical to those of GR. The latter two follow from the 00- and 11-components of the field equations, respectively. For completeness, we include also the equations for vector modes. They are given by

\[
\mathcal{A} \partial^2 F_i + 16\pi G(1 + w)a^4 \rho v_i = 0,
\]

\[
v_i' + \left((1 - 3w)\mathcal{H} + \frac{w'}{1 + w} \right) v_i + \frac{\partial^2 \Pi_i}{2(1 + w)} = 0.
\]

As was the case for the background equations, the significance of deviations of equations (136)–(139) from those of GR are determined by the size of \(\rho G_a \) (or equivalently \(\alpha \mathcal{H}^2 \)) compared to unity, and hence tends to GR when this ratio is small.

4.3. Cosmology in the scalar–tensor version of 4DEGB

Let us now look at how the equations presented above arise within the scalar–tensor version of 4DEGB given by the action (57). Solving this theory with the line-element (129), one finds that the scalar field equation is given by

\[
\alpha(k + a^2(\mathcal{H} + \dot{\varphi}^2))\dot{\varphi} + \mathcal{H} + H(\dot{\varphi} + H) = 0,
\]

which is solved by

\[
\dot{\varphi} = -\mathcal{H} + \frac{K}{a},
\]

where \(K \) is a constant.

In this formulation of the theory, the Friedmann equation is

\[
H^2 + \frac{k}{a^2} = \frac{8\pi G}{3} \rho + \alpha \dot{\varphi}(2H + \dot{\varphi}) \left(2 \left(H^2 + \frac{k}{a^2} \right)^2 + 2H\dot{\varphi} + \dot{\varphi}^2 \right),
\]

which, after substitution of the solution given in equation (141), results in

\[
H^2 + \frac{k}{a^2} + \alpha \left(H^2 - \frac{K^2}{a^2} \right) \left(H^2 + \frac{K^2}{a^2} + \frac{2k}{a^2} \right) = \frac{8\pi G}{3} \rho.
\]

It can clearly be seen that this only reduces to equation (130) when \(K^2 = -k \). For the flat case, this requires \(K = 0 \), and for the positively curved case we need \(K = \pm i \). Any other
value, parametrized by $K^2 = -k + C$, where C is a free parameter, leads to an additional dark radiation term, such that the Friedmann equation can be written as

$$H^2 + \frac{k}{a^2} + \alpha \left(H^2 + \frac{k}{a^2} \right)^2 = \frac{8\pi G}{3} \rho + \frac{\alpha C^2}{a^4}. \quad (144)$$

It is interesting to note that in the positively-curved case a complex scalar field is required to set $C = 0$ and recover the Friedmann equation of the original theory, and the bouncing behaviour discussed above.

Finally, we note that for the perturbed line-element (133), taking equation (141) with $K = 0$ also recovers the perturbed equation (138) of the original theory. In more detail, the first-order equation of motion for the scalar field is, in the flat case,

$$\alpha K^2 \left(\partial^2 (\delta \phi + \varphi) + 3(\psi'' - \delta \phi'') + 3K(\psi' + \varphi') \right) = 0, \quad (145)$$

which is automatically solved when $K = 0$ and thus does not constrain the field fluctuation, $\delta \phi$. The first-order field equations are modified by the presence of a non-zero C and become

$$8\pi Ga^4 \rho \delta + 2A(-\partial^2 \psi + 3H^2 \varphi + 3H \psi') = 4\alpha K^2 \left(3K^2 \varphi + 3K(\psi' - \delta \phi') + \partial^2 (\psi - \delta \phi) \right),$$

$$A \varphi + (B - 4\alpha K') \psi = -8\pi Ga^4 \Pi + 2aK^2 (\varphi + \psi),$$

$$A \partial^2 F_i + 16\pi G(1 + w) a^4 \rho v_i = 2aK^2 \partial^2 F_i,$$

$$A \gamma'' + 2H(a^2 + 2\alpha \mathcal{H} \gamma) + (B - 4\alpha K') \partial^2 \gamma_{ij} = 8\pi Ga^4 \Pi_{ij} + 2aK^2 (\gamma''_{ij} + \partial^2 \gamma_{ij}), \quad (146)$$

where we have placed the K-dependent terms on the right-hand side, to clearly demonstrate that these equations reduce to those of the original theory when $K = 0$. Thus, the fact that, in that case, at the linear level, the field perturbation is undetermined is inconsequential, since it affects nothing else. In the general case, in which $K \neq 0$, the additional scalar degree of freedom is important and needs to be taken into account for a full description of the solutions, in addition to the extra terms depending on K. At the linear level, the additional field perturbations affect only the scalar equations, effectively sourcing the gravitational field. A clear effect of the K-dependent terms is on the propagation of gravitational waves, whose speed is now modified, since the parameter Γ is then given by $\Gamma \equiv 1 + 2\alpha (H^2 - K^2/a^2)$.

4.4. Cosmology in diffeomorphism-breaking version of 4DEGB

The version of 4DEGB that breaks temporal diffeomorphisms differs from the original version by the introduction of a counter-term dependent on the Weyl tensor of the spatial sections, C_{ijkl}, and on the Weyl part of a combination of extrinsic curvature tensors, $K_{ij}K_{ij}$ [206, 220]. For that reason, if those Weyl components vanish, the solutions of this version of the theory are the same as those for the original version.

Due to it having conformally-flat spatial sections, the flat FRW space–time is a solution of this version of the theory obeying the same Friedmann equations as the original version of the theory (equation 129), with $k = 0$. Perturbations to FRW generally break conformal flatness, but reference [220] showed that this does not happen for scalar fluctuations, since they can always be written as a perturbation to the conformal factor of the spatial metric. Vector and tensor perturbations, however, are expected to introduce a non-zero spatial Weyl tensor, and should obey different equations from those of the original theory. While vectors were not
studied yet, the evolution of tensor modes was derived in reference [220], and obeys
\begin{equation}
\ddot{\gamma}_{ij} + \left(3 + \frac{4\alpha \dot{H}}{1 + 2\alpha H^2}\right)H^2\gamma_{ij} - \epsilon^2 \frac{\partial^2 \gamma_{ij}}{a^2} + \frac{4\alpha}{1 + 2\alpha H^2} \partial^4 \gamma_{ij} = 0.
\end{equation}

The additional term here has four spatial derivatives, and therefore modifies the dispersion relation of gravitational waves, adding a k^4 term and substantially modifying the predictions of the theory.

In addition to this, reference [221] has studied gravitational waves at second-order in perturbations, as applied to the calculation of the bispectrum of tensor modes from inflation. We do not go into detail here on that scenario, but it is clear from those results that at second-order there are also contributions with four spatial derivatives, which would not be present in the original or scalar–tensor versions of the theory.

Next, we review the constraints on 4DEGB from cosmology. In most cases, the constraints apply only to the original theory or to the equivalent scalar–tensor theory with $K = 0$. However, when work has been developed in that direction, we also include constraints taking other versions of the theory into account.

4.5. Constraints on α

In principle, the background evolution, and the evolution of perturbations encoded in equations (130) and (131) and equations (136)–(138), can be used to constrain 4DEGB, by comparing predictions of the theory against observation, thereby putting constraints on allowed values of α.

Given that $H \approx 2.4 \times 10^{-18} \text{ s}^{-1}$ today, in the late Universe a very large value of α is required to make αH^2 significant. For correction terms to be of the same order as terms that arise in GR, for this value of H, for example, would require $\alpha \sim 10^{52} \text{ m}^2$. This in turn implies that we expect stronger constraints on α to be available when we observe the earlier stages of the Universe’s evolution.

4.5.1. Gravitational waves. First we consider constraints from the propagation of gravitational waves. The recently detected gravitational wave signal GW170817, together with its electromagnetic counterpart, indicate that the deviation in the speed of gravitational waves from that of light must be less than one part in 10^{15} [264–270]. From equation (137) this requires

$$\dot{\Gamma}/(H \Gamma) < 10^{-15}$$

or, equivalently,

$$- \frac{8\alpha \epsilon H^2}{c^2 \Gamma} < 10^{-15}$$

which implies

$$|\alpha| \lesssim 10^{36} \text{ m}^2,$$

(148)

where $\epsilon \equiv -\dot{H}/H^2$, and we have taken $\dot{H} \approx H^2 \approx 5.8 \times 10^{-36} \text{ s}^{-2}$, which agrees with estimates in references [158, 220]. The weakness of this constraint is expected given that is a late-time observation.

Reference [158] also produces constraints for the more general scalar–tensor version of 4DEGB with $K \neq 0$ described in section 4.3. There they conclude that constraints on α are loosened by up to an order of magnitude for particular values of $|K| \sim H_0/2$, and they place a
constraint on K of $|K| \lesssim 1.35H_0$ (see their figure 1 in reference [158] for the detailed region of $\alpha - K$ parameter space excluded, where they use variables $\tilde{\alpha} = \alpha H_0^2$ and $\tilde{A} = K/H_0$).

As shown above, the temporal diffeomorphism-breaking version of the theory has a modified equation for gravitational waves with an additional k^4 contribution to the dispersion relation. For that reason, the constraints that can be obtained there are very different from those for the original theory. Reference [220] showed that the constraint from the speed of gravitational waves is $\alpha \lesssim 10^{-10} m^2$, which is the strongest constraint for that version of the theory from any observation.

4.5.2. From the CMB to today. Next we consider the consistency of the equations with cosmological observations that inform us directly about the expansion history of the Universe, and about the evolution of structure. Such observations include supernovae, and observations of the cosmic microwave background (CMB) and of large scale structure (LSS). This has been attempted at varying degrees of sophistication by a number of authors [122, 158, 160]. All agree that the theory is consistent with observations so long as α is sufficiently small, such that the evolution of the background and perturbations is observationally indistinguishable from that in GR. The most complete analysis is contained in reference [160], which uses CMB, baryon acoustic oscillations, supernovae, and redshift space distortion observations to give the constraint $|\alpha| \lesssim 10^{36} m^2$. The authors assume a flat cosmology, modify the open-source Boltzman code CAMB with the background and perturbed equations for scalar perturbations presented above, and compare and constrain the parameters of a ΛCDM-type cosmological model together with α using the Monte Carlo Markov chain approach. The use of CMB data is key in their study, since it probes the Universe at energies much higher that those today when $\rho/(G\alpha)$ was much larger, and leads to a constraint that is orders of magnitude higher than that which can be obtained from LSS, or supernovae data alone which probe the recent Universe.

4.5.3. Nucleosynthesis. The epoch of primordial nucleosynthesis is the earliest phase of evolution in the Universe for which we have direct observational evidence. The products of this period lead to the abundances of the light elements observed in the Universe today, and these products are sensitive to the expansion of the Universe during this phase [271, 272]. The energy scale at which nucleosynthesis begins is about 1 MeV, corresponding to $H^2 \approx 0.14 s^{-2}$, and requiring that the αH^2 is less than unity at this time implies that $\alpha < 10^{18} m^2$. A more precise bound comes from simulating this epoch utilising equation (132). In reference [208] the open source code PRIMAT6 [273] was used for this purpose leading to the bound $|\alpha| \lesssim 10^{17} m^2$.

4.5.4. Inflation. At earlier times than primordial nucleosynthesis the evolution of the Universe is less well understood. Nevertheless, the very early Universe is believed to have undergone a period of accelerated expansion, known as ‘inflation’ that is the origin of structure in the Universe. The behaviour of this phase of evolution within 4DEGB was studied in reference [208] and previously in reference [98], and we now summarise the results.

Inflation leads to a flat Universe, and as noted above for a flat Universe, there is an upper limit on H given by $H^2 = 1/(2\alpha)$ when α is negative. Assuming that inflation takes place above the TeV scale, which is consistent with the lack of new physics at the Large Hadron Collider (LHC) and also the need for baryogenesis, this implies that $\alpha \gtrsim -10^{-6} m^2$, which is a very tight constraint on negative α.

Unfortunately, less can be said in the case of positive α. Assuming inflation to be driven by a single canonical scalar field χ with potential energy $V(\chi)$, reference [208] found that the

6 http://2.iap.fr/users/pitrou/primat.htm.
condition for inflation $\epsilon \equiv -\dot{H}/H^2 < 1$ translated to the requirement

$$\frac{2 V'^2 \alpha^2}{9m_{pl}^2 \Gamma_V(\Gamma_V - 1)^2} \lesssim 1,$$

(149)

where $\Gamma_V = \sqrt{1 + 4V\alpha/(3m_{pl}^2)}$, and where here a dash indicates a derivative with respect to χ. This implies that the slope of the potential (i.e. V'/V) must be shallower in 4DEGB than in GR, but that even when the correction terms in the Friedmann equation dominate (when $\alpha H^2 \gg 1$), we can always assume a sufficiently flat form of $V(\chi)$ in order to allow inflation to still proceed.

Turning to perturbations, inflation produces both scalar fluctuations and gravitational waves. During inflation the scalar fluctuation most commonly studied is the uniform density curvature perturbation, an action for which is given by

$$S_{\zeta} = \frac{1}{2} \int d^3 x dt a^3 \Gamma \left(\dot{\zeta}^2 - c_s^2 \frac{(\partial \zeta)^2}{a^2} \right).$$

(150)

Equations (137) and (150), imply that as in GR, the curvature and tensorial perturbations are conserved on super-horizon scales. These equations therefore lead directly to expressions for the spectra of tensor and scalar perturbations in terms of quantities at the time a given wavenumber, k, crosses the apparent horizon, which results in

$$P_T = \frac{2}{8\pi^2 m_{pl}^4} \frac{H^2}{\Gamma} \bigg|_{k = aH},$$

$$P_\zeta = \frac{1}{8\pi^2 m_{pl}^4} \frac{H^2}{\epsilon \Gamma} \bigg|_{k = aH},$$

(151)

where the asterisk indicates quantities are to be evaluated at horizon crossing.

These expressions imply that the tensor-to-scalar ratio takes its usual form $r = 16\epsilon$, while differentiating the power spectra with respect to horizon crossing scale $k = aH$ gives the spectral indices at leading-order in slow roll as

$$\frac{\partial \log P_\zeta}{\partial \log(aH)} = n_\zeta - 1 = -2\epsilon - \dot{\epsilon}/(\epsilon H) - \dot{\Gamma}/(\Gamma H),$$

$$\frac{\partial \log P_T}{\partial \log(aH)} = n_T = -2\epsilon - \dot{\Gamma}/(\Gamma H).$$

(152)

Since $n_T \neq -r/8$, the consistency equation of canonical single field inflation is violated. The form of n_ζ, while different from its canonical form, can be made in agreement with observational constraints on this quantity [274] through a suitable choice of $V(\chi)$ even when $\alpha H^2 \gg 1$.

In the absence of a detection of gravitational waves from inflation, therefore, there is currently no way of distinguishing inflation in 4DEGB from inflation in GR, or placing constraints on positive values of α using inflation. It would be interesting to calculate higher-order correlations of the inflationary perturbations, that might also alleviate this degeneracy, but as yet such a calculation has not been attempted.

5. Weak field and constraints on α

As with any newly proposed theory of gravity, it is important to understand the weak-field behaviour of 4DEGB. It is the weak-field limit to which we have the most direct access, and in
which the vast majority of experimental and observational tests of gravitational theories have so far been performed. Such a limit is sufficient to describe almost all astrophysical systems, with the notable exceptions of neutron stars, black holes and cosmology, which have already been discussed in the preceding sections of this review.

In order to explore the weak-field behaviour of 4DEGB we will deploy the standard framework; a post-Newtonian expansion of the field equations and equations of motion of the theory order-by-order in the typical velocity of bodies in the system as a fraction of the speed of light, \(v/c \). Such an expansion is the bedrock of almost all weak-field gravity phenomenology, in the Solar System as well as in extra-solar systems such as binary pulsars [275]. We will also restrict ourselves to the scalar–tensor version on this theory, as given in equation (58).

5.1. Post-Newtonian expansions

The first step in performing a post-Newtonian analysis is to expand the metric around Minkowski space, such that the metric of space–time is approximated as

\[
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},
\]

where \(h_{\mu\nu} \) is a small perturbation to the metric of Minkowski space, \(\eta_{\mu\nu} \). The components of \(h_{\mu\nu} \) are then expanded in the order-of-smallness they are in comparison to \(v/c \), such that

\[
h_{00} = h_{00}^{(2)} + h_{00}^{(4)} + O \left(\frac{v^4}{c^4} \right), \quad h_{0i} = h_{0i}^{(3)} + O \left(\frac{v^4}{c^4} \right), \quad \text{and} \quad h_{ij} = h_{ij}^{(2)} + O \left(\frac{v^3}{c^3} \right),
\]

where the superscripts in brackets refer to the order-of-magnitude of a particular object in \(v/c \) (i.e. such that \(h_{00}^{(2)} \sim v^2/c^2 \)). The corresponding expansion for the mass density and pressure in matter fields are given by

\[
\rho = \rho^{(2)}, \quad p = p^{(4)}, \quad \text{and} \quad \Pi = \Pi^{(2)},
\]

where \(\Pi \) is the internal energy per unit mass of a body.

The remaining ingredient of the post-Newtonian expansion is then the requirement that the time-variation of any quantity associated with the geometry or stress–energy in the system does not vary more quickly than the position of the bodies themselves, such that the time-derivative of any quantity is always an order-of-smallness in \(v/c \) compared to any spatial derivative of the same quantity, which we can think of schematically as the rule:

\[
\frac{\partial}{\partial t} \sim \frac{v}{c} \frac{\partial}{\partial x}.
\]

In the case of the regularized scalar–tensor versions of 4DEGB, the only remaining object is the extra scalar degree-of-freedom, which can be expanded as

\[
\phi = \phi^{(0)} + \phi^{(2)} + O \left(\frac{v^4}{c^4} \right).
\]

Using these expansions in the field equations of the regularized scalar–tensor 4DEGB theories, one finds that the leading-order parts of the perturbations to the metric are given by [208]

\[
h_{00}^{(2)} = 2U, \quad h_{ij}^{(2)} = 2U \delta_{ij} \quad \text{and} \quad h_{0i}^{(3)} = -\frac{7}{2} V_i - \frac{1}{2} W_i,
\]

where \(U \) is the Newtonian potential that satisfies \(\nabla^2 U = -4\pi \rho \), and \(V_i \) and \(W_i \) are the standard post-Newtonian vector gravitational potentials (see e.g. [275]). At this point the metric
perturbations of the theory are all identical to those obtained from Einstein’s theory, but we will now see that this is no longer the case when we go to next-to-leading order in the metric perturbations, and in particular when $h_{00}^{(4)}$ is calculated.

In determining the post-Newtonian perturbation $h_{00}^{(4)}$, it is necessary to determine the perturbation to the scalar field, which can be found to be given by $\phi^{(2)} = \pm U$, where the \pm sign occurs due to the $\phi^{(2)}$ perturbation appearing in quadratic combinations at the required order. Using this information, one can then determine that

$$h_{00}^{(4)} = -2U^2 + 4\Phi_1 + 4\Phi_2 + 2\Phi_3 + 6\Phi_4 \mp \left(\frac{\alpha}{4\pi} \right) \Phi_G,$$ \hspace{1cm} (157)

where $\{\Phi_1, \Phi_2, \Phi_3, \Phi_4\}$ are standard post-Newtonian scalar gravitational potentials, and where Φ_G is given by

$$\Phi_G = \int \frac{G^{(4)}}{|x-x'|} d^3x' = 8 \int \frac{U_{ij} U_{ij} - (\nabla^2 U)^2}{|x-x'|} d^3x',$$

where $G^{(4)}$ is the Gauss–Bonnet term expanded to order v^4/c^4, and where α is the coupling constant of the theory. The reader may note that all post-Newtonian parameters in this theory are identical to those of GR (i.e. $\beta = \gamma = 1$ and $\xi = \alpha_1 = \alpha_2 = \alpha_3 = \zeta_1 = \zeta_2 = \zeta_3 = \zeta_4 = 0$), but that there exists an extra post-Newtonian potential in $h_{00}^{(4)}$. This new potential takes the form of the gravitational field of the Gauss–Bonnet term itself, and is proportional to the coupling constant α.

5.2. Constraints on α

After calculating the relativistic Lagrangian and Hamiltonian of the relevant two-body dynamics, it can be found that the precession of periapsis in bound orbits in this theory is given by the following expression [208]:

$$\delta \varphi = \frac{6\pi M}{\alpha(1-e^2)} \left[1 \pm \frac{\alpha(4+e^2)}{\alpha^2(1-e^2)^2} \right],$$

where a and e are the semi-major axis and eccentricity of the orbit, and M is the total mass of the two bodies. The contribution of the Gauss–Bonnet term can be seen in the second term in brackets, which is added to the usual general relativistic expression (see e.g. [276]). The \pm sign in this expression comes directly from the corresponding sign in the equation for $\phi^{(2)}$, and the extra term can be seen to vanish when $\alpha = 0$.

The theory above can be seen to give a non-negligible contribution to the precession of orbits, but the result that $\gamma = 1$ in this theory (as it does in GR) means that the deflection of light and the Shapiro time delay of radio signals cannot be used to distinguish 4DEGB from GR. These are usually two of the most discriminating observational effects of relativistic gravity, so it is notable that in this case they do not provide any way to distinguish 4DEGB from Einstein’s original theory. Instead, we must use the post-Newtonian gravitational dynamics of time-like particles in order to test the theory. We will summarize the relevant constraints that result below, which are obtained using equation (159).

First, observations of the classic perihelion precession of the planet Mercury [277] can be used to constrain the magnitude of the coupling parameter of the theory to be given by

$$|\alpha| = |(-3.54 \pm 5.31)| \times 10^{16} \text{ m}^2.$$ \hspace{1cm} (160)
Table 1. Upped bounds on α from gravitational wave events, by imposing the reality condition on the horizon of the black holes.

Event	Upper bound on α (m2)	Data from reference
GW150914	$\sim 10^9$	[282]
GW170608	$\sim 10^8$	[283]
GW190814	$\sim 10^7$	[284]
GW200115	$\sim 10^8$	[285]

Changing the set of observations used provides different constraints, but it appears that all current observations are at the level $|\alpha| \lesssim 10^{17}$ m2. Alternatively, using observations of the artificial LAGEOS satellites [278] gives the considerably more stringent bound

$$|\alpha| = |(0.23 \pm 1.74)| \times 10^{10} \text{ m}^2. \quad (161)$$

Looking further afield, the double pulsar PSR J0737-3039A/B [279] allows observations that can be used to infer [280]

$$|\alpha| = |(0.4 \pm 2.4)| \times 10^{15} \frac{\text{m}^2}{\sin i}. \quad (162)$$

where i is the angle of inclination of the system. Further discussion of these results, can be found in reference [208].

Finally we can consider the ‘table-top’ tests of gravity, which are laboratory tests of gravity that can be used to test gravitational potentials of the form

$$V = \frac{m_1 m_2}{r} \left(1 - \frac{A_n}{r^n}\right), \quad (163)$$

where A_n is a set of constants, where m_1 and m_2 are the masses of the bodies involved, and where no sum is implied over n. Comparison with the weak-field solutions presented above shows that the 4DEGB theories can be understood within this framework if we take $A_3 = \pm 2\alpha(m_1 + m_2)$ (with all other A_n vanishing). Observational constraints from experiment [281] then yield the bound [208]

$$|\alpha| \lesssim 10^{16} \text{ m}^2. \quad (164)$$

This result can be seen to be competitive with the bounds obtained from observations of the orbit of Mercury and the orbits of the double pulsar, but are weaker than those obtained from the LAGEOS satellites.

Including recent gravitational wave observations, tighter constraints can be imposed. Recall that a black hole in the 4DEGB theory has horizons given by equation (103), such that r_+ should be a real value, imposing that for any observed black hole we should have $M \geq \sqrt{\alpha}$. This reality condition imposes tight constraints on α, given that the theory should be able to reproduce the lightest observed black holes. Upper bounds on α obtained with this method are given in table 1 (see references [208, 209] for details)7.

Regarding negative values of α, reference [209] imposes a very tight constraint

$$-\alpha \lesssim 10^{-30} \text{ m}^2, \quad (165)$$

7These constraints assume all compact objects involved to be black holes. Note that estimates for the mass of the bodies rely on the extraction of the chirp mass and the mass ratio in the inspiral phase assuming GR.
by requiring that atomic nuclei should not be shielded by a horizon. For all practical purposes, negative values of the coupling can be excluded from future analysis as the associated gravitational effects would be undetectable.

6. Summary

The 4DEGB theories of gravity have sparked a very considerable amount of interest over the past couple of years, and this review is aimed at providing a balanced overview of that work. We started the review with an introduction to Gauss–Bonnet terms in the action for gravity, in the context of the work of Lovelock and Lanczos. Such terms are well-motivated from a theoretical perspective, and have appeared in very many different approaches to generalizing Einstein’s theory, as well as from more fundamental theories such as string theory.

The Gauss–Bonnet term in the gravitational action is usually taken to have no consequences for the field equations of gravity in four space–time dimensions. This result, which has been well-known since the early days of GR, was recently called into question by Glavan and Lin [10]. These authors suggested that it may be possible for the Gauss–Bonnet term to have non-trivial consequences even in $D = 4$, if the coupling constant of this term is taken to diverge in a suitable way as $D \to 4$, in a manner reminiscent of the dimensional regularization approach used in quantum field theory. The novelty of this idea, the simplicity of the space–times that result from it, and the controversies associated with it, are what has fuelled the recent interest in this area, and what we have aimed to capture in this review.

The technical details of the Glavan and Lin’s proposal are explained in section 2 of this review, along with the criticisms that followed from it. In particular, we have sought to explain why their proposal does not evade Lovelock’s theorem in the way that was envisaged in their original work, by providing citations to the primary literature on this point, and by reproducing the essence of these arguments. This is followed by a selection of the proposed theories that provide a well-motivated alternative to the original scheme of Glavan and Lin, and which share some of the features of their approach, including the intriguing solutions that they found for the geometry of space–time. All of these approaches violate the assumptions of Lovelock’s theorem, by either including extra fundamental fields, higher dimensions, or by breaking diffeomorphism invariance of the theory. Nevertheless, they provide an interesting new class of alternative theories of gravity, which themselves provide the primary focus of the remainder of our review.

Subsequently, in sections 3–5 we explore the solutions of these theories as relevant for the study of black holes, cosmology, and the weak-field limit of gravity, respectively. A large number of interesting phenomena have been discovered in these different areas of gravitational physics, and we aim to give an overview of some of that work, as well as citations to the primary literature. In particular, we discuss the existence of exact solutions, and their properties. This includes a discussion of the properties of singularities and the thermodynamics of black hole horizons in these theories.

The cosmologies of these theories, as discussed in section 4, also demonstrate an interesting set of behaviours. In particular, it can be seen that different branches exist in the solutions to the Friedmann equations, and that some ranges of values of the coupling constant are restricted if we wish to produce viable cosmological models. In the weak-field limit of these theories, discussed in section 5, we find that a lot of the gravitational phenomena that results from them is observationally indistinguishable from GR, particularly with regards to the lensing and time-delay of light, which usually provides amongst the tightest constraints on relativistic gravity. Instead, we find that the LAGEOS satellites provide the tightest bounds on the coupling parameter of these theories.
Overall, the current observational bounds on the coupling parameter of this theory indicate that

\[0 < \alpha < 10^{10} \text{ m}^2, \]

(166)

where the lower bound comes from early Universe cosmology and atomic nuclei, and the upper bound comes from constraints from the LAGEOS satellites. Indicative results from preliminary calculations show that these constraints could be even tighter if we include recent gravitational wave observations, reducing to

\[0 < \alpha \lesssim 10^7 \text{ m}^2. \]

(167)

Such tight constraints would mean that deviations from GR, of the type given by the 4DEGB theories, would be restricted to being large only in the very early Universe or in the immediate vicinity of black holes.

Looking forward, there is still plenty of work that needs to be done on these theories in order to fully understand them. In particular, numerical simulations of the merger of black holes, and the associated gravitational radiation emitted, is currently lacking. It is expected that this would provide the best way to constrain this theory, and so it would be extremely interesting to see such simulations performed. On the mathematical side, the initial value problem of these theories has not yet been proven to be well posed (despite these theories belonging to the Horndeski class, and proofs of well-posedness existing for a sub-set of these [286]). It also appears that the sub-set of regularized theories without a canonical kinetic term for the scalar might exhibit a strong coupling issue, but a more careful analysis is also required on this point. Finally, there are no exact rotating black hole solutions known to these theories, despite the simplicity of the spherically symmetric vacuum and electrovacuum cases. We also note that new approaches to 4DEGB are also still being developed, such as the intriguing study in reference [227], which considers an extra dimension of vanishing proper length [287]. All of these areas, and more, remain to be fully studied in order to have a complete understanding of this interesting collection of theories. We look forward to such developments, and to seeing where the study of 4DEGB gravity will be taken next.

Acknowledgments

PF is supported by the Royal Society Grant RGF/EA/180022 and acknowledges support from the project CERN/FISPAR/0027/2019. DJM is supported by a Royal Society University Research Fellowship. TC acknowledges financial support from the STFC under Grant ST/P000592/1. PC acknowledge support from a UK Research and Innovation Future Leaders Fellowship (MR/S016066/1).

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Pedro G S Fernandes ⓒ https://orcid.org/0000-0002-8176-7208
Timothy Clifton ⓒ https://orcid.org/0000-0001-5372-9485
References

[1] Weyl H 1918 Gravitation and electricity Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 465 1918
[2] Eddington A S 1921 A generalisation of Weyl’s theory of the electromagnetic and gravitational fields Proc. R. Soc. A 99 104–22
[3] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Modified gravity and cosmology Phys. Rep. 513 1–189
[4] Will C M 2014 The confrontation between general relativity and experiment Living Rev. Relativ. 17 4
[5] Lanczos C 1932 Elektromagnetismus als natürliche eigenschaft der riemannschen geometrie Z. Phys. 73 147–68
[6] Lanczos C 1938 A remarkable property of the Riemann–Christoffel tensor in four dimensions Ann. Math. 39 842–50
[7] Lovelock D 1970 Divergence-free tensorial concomitants Aequationes Math. 4 127–38
[8] Lovelock D 1971 The Einstein tensor and its generalizations J. Math. Phys. 12 498–501
[9] Ostrogradsky M 1850 Mémoires sur les équations différentielles, relatives au problème des isopérimètres Mem. Acad. St. Petersburg 6 385–517
[10] Glavan D and Lin C 2020 Einstein–Gauss–Bonnet gravity in four-dimensional spacetime Phys. Rev. Lett. 124 081301
[11] Weyl H et al 1922 Space–Time–Matter (New York: E P Dutton and Company)
[12] Cartan E 1922 Sur les équations de la gravitation d’einstein J. Math. Pures Appl. 1 141–204
[13] Padmanabhan T and Kothawala D 2013 Lanczos–Lovelock models of gravity Phys. Rep. 531 115–71
[14] Lovelock D 1970 Dimensionally dependent identities Math. Proc. Camb. Phil. Soc. 68 345–50
[15] Chern S-s 1945 On the curvatura integra in a Riemannian manifold Ann. Math. 46 674–84
[16] Ferrara S, Khuri R R and Minasian R 1996 M-theory on a Calabi–Yau manifold Phys. Lett. B 375 81–8
[17] Antoniadis I, Feffara S, Minasian R and Narain K S 1997 R^4 couplings in M- and type II theories on Calabi–Yau spaces Nucl. Phys. B 507 571–88
[18] Zwiebach B 1985 Curvature squared terms and string theories Phys. Lett. B 156 315–7
[19] Nepomechie R I 1985 Low-energy limit of strings Phys. Rev. D 32 3201
[20] Callan C G Jr, Klebanov I R and Perry M J 1986 String theory effective actions Nucl. Phys. B 278 78–90
[21] Candelas P, Horowitz G T, Strominger A and Witten E 1985 Vacuum configurations for superstrings Nucl. Phys. B 258 46–74
[22] Gross D J and Sloan J H 1987 The quartic effective action for the heterotic string Nucl. Phys. B 291 41–89
[23] Choquet-Bruhat Y 1988 The Cauchy problem for stringy gravity J. Math. Phys. 29 1891–5
[24] Teitelboim C and Zanelli J 1987 Dimensionally continued topological gravitation theory in Hamiltonian form Class. Quantum Grav. 4 L125
[25] Deruelle N and Madore J 2003 On the quasi-linearity of the Einstein–‘Gauss–Bonnet’ gravity field equations (arXiv:gr-qc/0305004)
[26] Horndeski G W 1974 Second-order scalar–tensor field equations in a four-dimensional space Int. J. Theor. Phys. 10 363–84
[27] Kobayashi T 2019 Horndeski theory and beyond: a review Rep. Prog. Phys. 82 086901
[28] Van Acoleyen K and Van Doorsselaere J 2011 Galileons from Lovelock actions Phys. Rev. D 83 084025
[29] Charmousis C and Tsoukalas M 2015 Lovelock galileons and black holes Phys. Rev. D 92 104050
[30] Charmousis C, Gouteraux B and Kiritis E 2012 Higher-derivative scalar–vector–tensor theories: black holes, galileons, singularity cloaking and holography J. High Energy Phys. JHEP09(2012)011
[31] Saravani M and Sotiriou T P 2019 Classification of shift-symmetric Horndeski theories and hairy black holes Phys. Rev. D 99 124004
[34] Delgado J F M, Herdeiro C A R and Radu E 2020 Spinning black holes in shift-symmetric Horndeski theory J. High Energy Phys. JHEP04(2020)0180

[35] Doneva D D and Yazadjiev S S 2018 New Gauss–Bonnet black holes with curvature-induced scalarization in extended scalar–tensor theories Phys. Rev. Lett. 120 131103

[36] Silva H O, Sakstein J, Gualtieri L, Sotiriou T P and Berti E 2018 Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling Phys. Rev. Lett. 120 131102

[37] Antoniou G, Bakopoulos A and Kanti P 2018 Evasion of No-hair theorems and novel black-hole solutions in Gauss–Bonnet theory Phys. Rev. Lett. 120 131101

[38] Cunha P V P, Herdeiro C A R and Radu E 2019 Spontaneously scalarized Kerr black holes in extended scalar–tensor–Gauss–Bonnet gravity Phys. Rev. Lett. 123 011101

[39] Collodel L G, Kleihaus B, Kunz J and Berti E 2020 Spinning and excited black holes in Einstein–Gauss–Bonnet gravity Phys. Rev. Lett. 123 011102

[40] Dima A, Barausse E, Franchini N and Sotiriou T P 2020 Spin-induced black hole spontaneous scalarization Phys. Rev. Lett. 125 231101

[41] Herdeiro C A R, Radu E, Silva H O, Sotiriou T P and Yunes N 2021 Spin-induced scalarized black holes Phys. Rev. Lett. 125 011103

[42] Berti E, Collodel L G, Kleihaus B and Kunz J 2021 Rotating black holes in dilatonic Einstein–Gauss–Bonnet theory Phys. Rev. Lett. 106 151104

[43] Kleihaus B, Kunz J, Mojica S and Radu E 2016 Spinning black holes in Einstein–Gauss–Bonnet–Dilaton theory: nonperturbative solutions Phys. Rev. D 93 044047

[44] Kleihaus B, Kunz J and Radu E 2011 Rotating black holes in dilatonic Einstein–Gauss–Bonnet physics Phys. Rev. Lett. 106 151101

[45] Kleihaus B, Kunz J and Radu E 2015 Spinning black holes in Einstein–Gauss–Bonnet–Dilaton theory: nonperturbative solutions Phys. Rev. D 93 044047

[46] Konoplya R A and Zinhailo A F 2020 Quasinormal modes, stability and shadows of a black hole in the 4D Einstein–Gauss–Bonnet–Dilaton gravity Eur. Phys. J. C 80 104908

[47] Blázquez-Salcedo J L, Khoo F S and Kunz J 2017 Quasinormal modes of Einstein–Gauss–Bonnet–Dilaton black holes Phys. Rev. D 96 044039

[48] Nojiri S, Odintsov S D and Sasaki M 2005 Gauss–Bonnet dark energy Phys. Rev. D 71 123509

[49] Jiang P-X, Hu J-W and Guo Z-K 2013 Inflation coupled to a Gauss–Bonnet term Phys. Rev. D 88 123508

[50] Kanti P, Gannouji R and Dadhich N 2015 Gauss–Bonnet inflation Phys. Rev. D 92 041302

[51] Chakraborty S, Paul T and SenGupta S 2018 Inflation driven by Einstein–Gauss–Bonnet gravity Phys. Rev. D 98 083539

[52] Odintsov S D and Oikonomou V K 2018 Viable inflation in scalar-Gauss–Bonnet gravity and reconstruction from observational indices Phys. Rev. D 98 044039

[53] Odintsov S D and Oikonomou V K 2019 Inflationary phenomenology of Einstein Gauss–Bonnet gravity compatible with GW170817 Phys. Lett. B 797 134874

[54] Odintsov S D and Oikonomou V K 2020 Swampland implications of GW170817-compatible Einstein–Gauss–Bonnet gravity Phys. Lett. B 805 135437

[55] Kanti P, Rizos J and Tamvakis K 1999 Singularity free cosmological solutions in quadratic gravity Phys. Rev. D 59 083512

[56] Herdeiro C A R and Radu E 2015 Asymptotically flat black holes with scalar hair: a review Int. J. Mod. Phys. D 24 1542014

[57] Duff M J 1994 Twenty years of the Weyl anomaly Class. Quantum Grav. 11 1387

[58] Mann R B and Ross S F 1993 The D → 2 limit of general relativity Class. Quantum Grav. 10 1405–8

[59] Konoplya R A and Zinhailo A F 2020 Quasinormal modes, stability and shadows of a black hole in the 4D Einstein–Gauss–Bonnet gravity Eur. Phys. J. C 80 104908

[60] Guo M and Li P-C 2020 Innermost stable circular orbit and shadow of the 4D Einstein–Gauss–Bonnet black hole Eur. Phys. J. C 80 588

[61] Fernandes P G S 2020 Charged black holes in AdS spaces in 4D Einstein–Gauss–Bonnet gravity Phys. Lett. B 805 135468

[62] Wei S-W and Liu Y-X 2021 Testing the nature of Gauss–Bonnet gravity by four-dimensional rotating black hole shadow Eur. Phys. J. Plus 136 436

[63] Konoplya R A and Zhidenko A 2020 Black holes in the four-dimensional Einstein–Lovelock gravity Phys. Rev. D 101 084038
[64] Hegde K, Naveena Kumara A, Rizwan C L A, Ajith K M and Ali M S 2020 Thermodynamics, phase transition and Joule Thomson expansion of novel 4-D Gauss Bonnet AdS black hole (arXiv:2003.08778)

[65] Casalino A, Colléaux A, Rinaldi M and Vicentini S 2021 Regularized Lovelock gravity Phys. Dark Universe 31 100770

[66] Ghosh S G and Maharaj S D 2020 Radiating black holes in the novel 4D Einstein–Gauss–Bonnet gravity Physics Dark Universe 30 100687

[67] Doneva D D and Yazadjiev S S 2021 Relativistic stars in 4D Einstein–Gauss–Bonnet gravity Physics Dark Universe 30 100687

[68] Zhang Y-P, Wei S-W and Liu Y-X 2020 Spinning test particle in four-dimensional Einstein–Gauss–Bonnet–Bonnet black holes Universe 6 103

[69] Ghosh S G and Kumar R 2020 Generating black holes in 4D Einstein–Gauss–Bonnet gravity Class. Quantum Grav. 37 245008

[70] Konoplya R A and Zhidenko A 2020 BTZ black holes with higher curvature corrections in the 3D Einstein–Lovelock gravity Phys. Rev. D 102 064004

[71] Konoplya R A and Zhidenko A 2020 (In)stability of black holes in the 4D Einstein–Gauss–Bonnet and Einstein–Lovelock gravities Phys. Dark Universe 30 100697

[72] Kumar R and Ghosh S G 2020 Rotating black holes in 4D Einstein–Gauss–Bonnet gravity and its shadow J. Cosmol. Astropart. Phys. JCAP07(2020)053

[73] Kumar A and Kumar R 2020 Bardeen black holes in the novel 4D Einstein–Gauss–Bonnet gravity (arXiv:2003.13104)

[74] Zhang C-Y, Li P-C and Guo M 2020 Greybody factor and power spectra of the Hawking radiation in the 4D Einstein–Gauss–Bonnet de-Sitter gravity Eur. Phys. J. C 80 874

[75] Hosseini Mansoori S A 2021 Thermodynamic geometry of the novel 4D Gauss–Bonnet AdS black hole Phys. Dark Universe 31 100776

[76] Wei S-W and Liu Y-X 2020 Extended thermodynamics and microstructures of four-dimensional charged Gauss–Bonnet black hole in AdS space Phys. Rev. D 101 104018

[77] Singh D V, Ghosh S G and Maharaj S D 2020 Clouds of strings in 4D Einstein–Gauss–Bonnet black holes Phys. Dark Universe 30 100730

[78] Churilova M S 2021 Quasinormal modes of the Dirac field in the consistent 4D Einstein–Gauss–Bonnet gravity Phys. Dark Universe 31 100748

[79] Islam S U, Kumar R and Ghosh S G 2020 Gravitational lensing by black holes in the 4D Einstein–Gauss–Bonnet gravity J. Cosmol. Astropart. Phys. JCAP09(2020)030

[80] Mishra A K 2020 Quasinormal modes and strong cosmic censorship in the regularised 4D Einstein–Gauss–Bonnet gravity Gen. Relativ. Gravit. 52 106

[81] Kumar A and Ghosh S G 2020 Hayward black holes in the novel 4D Einstein–Gauss–Bonnet gravity (arXiv:2004.01131)

[82] Nojiri S and Odintsov S D 2020 Novel cosmological and black hole solutions in Einstein and higher-derivative gravity in two dimensions Europhys. Lett. 130 10004

[83] Singh D V and Siwach S 2020 Thermodynamics and $P–V$ criticality of Bardeen–AdS black hole in 4D Einstein–Gauss–Bonnet gravity Phys. Lett. B 808 135658

[84] Li S-L, Wu P and Yu H 2020 Stability of the Einstein static Universe in 4D Gauss–Bonnet gravity (arXiv:2004.02080)

[85] Heydari-Fard M, Heydari-Fard M and Sepangi H R 2021 Bending of light in novel 4D Gauss–Bonnet–de Sitter black holes by the Rindler–Ishak method Europhys. Lett. 133 50006

[86] Konoplya R A and Zinhailo A F 2020 Grey-body factors and Hawking radiation of black holes in 4D Einstein–Gauss–Bonnet gravity Phys. Rev. D 810 135793

[87] Jin X-H, Gao Y-X and Liu D-J 2020 Strong gravitational lensing of a 4-dimensional Einstein–Gauss–Bonnet black hole in homogeneous plasma Int. J. Mod. Phys. D 29 2050065

[88] Liu C, Zhu T and Wu Q 2021 Thin accretion disk around a four-dimensional Einstein–Gauss–Bonnet black hole Chin. Phys. C 45 015105

[89] Zhang C-Y, Zhang S-J, Li P-C and Guo M 2020 Superradiance and stability of the regularized 4D charged Einstein–Gauss–Bonnet black hole J. High Energy Phys. JHEP08(2020)105

[90] Eslam Panah B, Jafarzade K and Hendi S H 2020 Charged 4D Einstein–Gauss–AdS black holes: shadow, energy emission, deflection angle and heat engine Nucl. Phys. B 961 115269

[91] Naveena Kumara A, Rizwan C L A, Hegde K, Ali M S and Ajith K M 2021 Rotating 4D Gauss–Bonnet black hole as a particle accelerator Ann. Phys. 434 168599
[92] Aragón A, Bécar R, González P A and Vásquez Y 2020 Perturbative and nonperturbative quasinormal modes of 4D Einstein–Gauss–Bonnet black holes Eur. Phys. J. C 80 773
[93] Malafarina D, Toshmatov B and Dadhich N 2020 Dust collapse in 4D Einstein–Gauss–Bonnet gravity Phys. Dark Universe 30 100598
[94] Yang S-J, Wan J-J, Chen J, Yang J and Wang Y-Q 2020 Weak cosmic censorship conjecture for the novel 4D charged Einstein–Gauss–Bonnet black hole with test scalar field and particle Eur. Phys. J. C 80 937
[95] Cuyubamba M A 2021 Stability of asymptotically de Sitter and anti-de Sitter black holes in 4D regularized Einstein–Gauss–Bonnet theory Phys. Dark Universe 31 100789
[96] Ying S 2020 Thermodynamics and weak cosmic censorship conjecture of 4D Gauss–Bonnet–Maxwell black holes via charged particle absorption Chin. Phys. C 44 125101
[97] Shu F-W 2020 Vacua in novel 4D Einstein–Gauss–Bonnet gravity: pathology and instability? Phys. Lett. B 811 135907
[98] Casalino A and Sebastiani L 2021 Perturbations in regularized Lovelock gravity Phys. Dark Universe 31 100771
[99] Rayimbaev J, Abdujabbarov A, Turimov B and Atamurotov F 2020 Magnetized particle motion around 4-D Einstein–Gauss–Bonnet black hole (arXiv:2004.10031)
[100] Liu P, Niu C and Zhang C-Y 2020 Instability of the novel 4D charged Einstein–Gauss–Bonnet de-Sitter black hole (arXiv:2004.10620)
[101] Zeng X-X, Zhang H-Q and Zhang H 2020 Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole Eur. Phys. J. C 80 872
[102] Ge X-H and Sin S-J 2020 Causality of black holes in 4-dimensional Einstein–Gauss–Bonnet–Maxwell theory Eur. Phys. J. C 80 695
[103] Jusufi K, Banerjee A and Ghosh S G 2020 Wormholes in 4D Einstein–Gauss–Bonnet gravity Eur. Phys. J. C 80 698
[104] Churilova M S 2021 Quasinormal modes of the test fields in the consistent 4D Einstein–Gauss–Bonnet–(anti)de Sitter gravity Ann. Phys. 427 168425
[105] Kumar R, Islam S U and Ghosh S G 2020 Gravitational lensing by charged black hole in regularized 4D Einstein–Gauss–Bonnet gravity Eur. Phys. J. C 80 1128
[106] Alkac¸ G and Devecioglu D O 2020 Three dimensional modified gravities as holographic limits of Lancszo–Lovelock theories Phys. Lett. B 807 135597
[107] Ghosh S G and Maharaj S D 2021 Noncommutative inspired black holes in regularized 4D Einstein–Gauss–Bonnet theory Phys. Dark Universe 31 100793
[108] Yang K, Gu B-M, Wei S-W and Liu Y-X 2020 Born–Infeld black holes in 4D Einstein–Gauss–Bonnet gravity Eur. Phys. J. C 80 662
[109] Liu P, Niu C, Wang X and Zhang C-Y 2020 Traversable thin-shell wormhole in the novel 4D Einstein–Gauss–Bonnet theory (arXiv:2004.14267)
[110] Devi S, Roy R and Chakrabarti S 2020 Quasinormal modes and greybody factors of the novel four dimensional Gauss–Bonnet black holes in asymptotically de Sitter space time: scalar, electromagnetic and Dirac perturbations Eur. Phys. J. C 80 760
[111] Jusufi K 2020 Nonlinear magnetically charged black holes in 4D Einstein–Gauss–Bonnet gravity Ann. Phys. 421 168285
[112] Konoplya R A and Zhidenko A 2020 4D Einstein–Lovelock black holes: hierarchy of orders in curvature Phys. Lett. B 807 135607
[113] Qiao X, OuYang L, Wang D, Pan Q and Jing J 2020 Holographic superconductors in 4D Einstein–Gauss–Bonnet gravity J. High Energy Phys. JHEP12(2020)192
[114] Samart D and Channuie P 2020 Generalized gravitational phase transition in novel 4D Einstein–Gauss–Bonnet gravity (arXiv:2005.02826)
[115] Banerjee A and Singh K N 2021 Color–flavor locked strange stars in 4D Einstein–Gauss–Bonnet gravity Phys. Dark Universe 31 100792
[116] Narain G and Zhang H-Q 2020 Cosmic evolution in novel-gauss bonnet gravity (arXiv:2005.05183)
[117] Dadhich N 2020 On causal structure of 4D-Einstein–Gauss–Bonnet black hole Eur. Phys. J. C 80 832
[118] Chakrabarty S and Dadhich N 2020 Limits on stellar structures in Lovelock theories of gravity Phys. Dark Universe 30 100658
[119] Ghosh S G, Singh D V, Kumar R and Maharaj S D 2021 Phase transition of AdS black holes in 4D EGB gravity coupled to nonlinear electrodynamics Ann. Phys. 424 168347
[120] Banerjee A, Tangphati T and Channuie P 2021 Strange Quark stars in 4D Einstein–Gauss–Bonnet gravity *Astrophys. J.* **909** 14
[121] Narain G and Zhang H-Q 2020 Lorentzian quantum cosmology in novel Gauss–Bonnet gravity from Picard–Lefschetz methods (arXiv:2006.02298)
[122] Haghani Z 2020 Growth of matter density perturbations in 4D Einstein–Gauss–Bonnet gravity *Phys. Dark Universe* **30** 100720
[123] Lin Z-C, Yang K, Wei S-W, Wang Y-Q and Liu Y-X 2020 Equivalence of solutions between the four-dimensional novel and regularized EGB theories in a cylindrically symmetric spacetime *Eur. Phys. J. C* **80** 1033
[124] Shaymatov S, Vrba J, Malafarina D, Ahmedov B and Stuchlík Z 2020 Charged particle and epicyclic motions around 4D Einstein–Gauss–Bonnet black hole immersed in an external magnetic field *Phys. Dark Universe* **30** 100648
[125] Sadjadi H M 2020 On cosmic acceleration in four-dimensional Einstein–Gauss–Bonnet gravity *Phys. Dark Universe* **30** 100728
[126] Banerjee A, Tangphati T, Samart D and Channuie P 2021 Quark stars in 4D Einstein–Gauss–Bonnet gravity with an interacting quark equation of state *Astrophys. J.* **906** 114
[127] Švarc R, Podolšký J and Hruška O 2020 Kundt spacetimes in the Einstein–Gauss–Bonnet theory *Phys. Rev. D* **102** 084012
[128] Hegde K, Naveena Kumara AN, Rizwan C L A, Ali M S and Ajith K M 2021 Null geodesics and thermodynamic phase transition of four-dimensional Gauss–Bonnet AdS black hole *Ann. Phys.* **429** 168461
[129] Li H-L, Zeng X-X and Lin R 2020 Holographic phase transition from novel Gauss–Bonnet AdS black holes *Eur. Phys. J. C* **80** 652
[130] Wang Y-Y, Su B-Y and Li N 2021 Hawking–Page phase transitions in four-dimensional Einstein–Gauss–Bonnet gravity *Phys. Dark Universe* **31** 100769
[131] Gao C, Yu S and Qiu J 2021 Nonsingular black holes and nonsingular universes in the regularized Lovelock gravity *Phys. Dark Universe* **31** 100754
[132] Zhang M, Zhang C-M, Zou D-C and Yue R-H 2021 Phase transition and quasiuniversal modes for charged black holes in 4D Einstein–Gauss–Bonnet gravity *Chin. Phys. C* **45** 045105
[133] Jafarzade K, Zangeneh M K and Lobo F S N 2020 Optical features of AdS black holes in 4D Einstein–Gauss–Bonnet gravity coupled to nonlinear electrodynamics (arXiv:2009.12988)
[134] Ghaffarnejad H, Yaraie E and Farsam M 2020 Quantum state dependence of thermodynamic phase transition in 4D AdS Gauss–Bonnet quantum black holes surrounded with cloud of strings (arXiv:2010.07108)
[135] Jafarzade K, Zangeneh M K and Lobo F S N 2021 Shadow, deflection angle and quasiuniversal modes of Born–Infeld charged black holes *J. Cosmol. Astropart. Phys.* JCAP01(2021)008
[136] Farsam M, Yaraie E, Ghaffarnejad H and Ghasami E 2020 Cooling–heating phase transition for 4D AdS Bardeen Gauss–Bonnet black hole (arXiv:2010.05697)
[137] Colléaux A 2020 Dimensional aspects of Lovelock–Lanczos gravity (arXiv:2010.14174)
[138] Ma B, Liang J and Guo X 2020 Thermodynamics with pressure and volume of 4D Gauss–Bonnet AdS black holes under the scalar field (arXiv:2011.00273)
[139] Donnez O 2021 Bondi–Hoyle accretion around the non-rotating black hole in 4D Einstein–Gauss–Bonnet gravity *Eur. Phys. J. C* **81** 113
[140] Hansraj S, Banerjee A, Moody L and Jasim M K 2021 Isotropic compact stars in 4D Einstein–Gauss–Bonnet gravity *Class. Quantum Grav.* **38** 035002
[141] Lima H C D, Benone C L and Crispino L C B 2020 4D Einstein–Gauss–Bonnet gravity: massless particles and absorption of planar spin-0 waves *Phys. Lett. B* **811** 135921
[142] Abdubjabarov A, Rayimbaev J, Turimov B and Atamurotov F 2020 Dynamics of magnetized particles around 4-D Einstein Gauss–Bonnet black hole *Phys. Dark Universe* **30** 100715
[143] Li R and Wang J 2020 Energy and entropy compensation, phase transition and kinetics of four dimensional charged Gauss–Bonnet anti-de Sitter black holes on the underlying free energy landscape (arXiv:2012.05424)
[144] Zhang C-M, Zou D-C and Zhang M 2020 Triple points and phase diagrams of Born–Infeld AdS black holes in 4D Einstein–Gauss–Bonnet gravity *Phys. Lett. B* **811** 135955
[145] Li Z, Duan Y and Jia J 2021 The deflection of charged massive particles by a 4-dimensional charged Einstein–Gauss–Bonnet black hole *Class. Quant. Grav.* **39** 0150022020
[146] Lin H-Y and Deng X-M 2021 Rational orbits around 4D Einstein–Lovelock black holes Phys. Dark Universe 31 100745
[147] Zahid M, Khan S U and Ren J 2021 Shadow cast and center of mass energy in a charged Gauss–Bonnet–AdS black hole Chin. J. Phys. 72 575
[148] Kruglov S I 2021 4D Einstein–Gauss–Bonnet gravity coupled with nonlinear electrodynamics Symmetry 13 204
[149] Liu P, Niu C and Zhang C-Y 2021 Instability of regularized 4D charged Einstein–Gauss–Bonnet de-Sitter black holes Chin. Phys. C 45 025104
[150] Liu P, Niu C and Zhang C-Y 2021 Linear instability of charged massless scalar perturbation in regularized 4D charged Einstein–Gauss–Bonnet anti de-Sitter black holes Chin. Phys. C 45 025111
[151] Zhang M, Zhang C-M, Zou D-C and Yue R-H 2021 P–V criticality and Joule–Thomson Expansion of Hayward–AdS black holes in 4D Einstein–Gauss–Bonnet gravity (arXiv: 2102.04308)
[152] Meng K, Cao L, Zhao J, Zhou T, Qin F and Deng M 2021 Dyonic Born–Infeld black hole in four-dimensional Horndeski gravity Phys. Lett. B 819 136420
[153] Ding C, Chen X and Fu X 2021 Einstein–Gauss–Bonnet gravity coupled to bumblebee field in four dimensional spacetime (arXiv:2102.13335)
[154] Babar G Z, Atamurotov F and Babar A Z 2021 Gravitational lensing in 4-D Einstein–Gauss–Bonnet gravity in the presence of plasma Phys. Dark Universe 32 100798
[155] Wu C-H, Hu Y-P and Xu H 2021 Hawking evaporation of Einstein–Gauss–Bonnet AdS black holes in $D \geq 4$ dimensions Eur. Phys. J. C 81 1
[156] Donmez O 2021 Dynamical evolution of the shock cone around 4D Einstein–Gauss bonnet rotating black hole (arXiv:2103.03160)
[157] Chen D, Gao C, Liu X and Yu C 2021 The correspondence between shadows and test fields in four-dimensional charged Einstein–Gauss–Bonnet black holes (arXiv:2103.03624)
[158] Feng J-X, Gu B-M and Shu F-W 2021 Theoretical and observational constraints on regularized 4D Einstein–Gauss–Bonnet gravity Phys. Rev. D 103 064002
[159] García-Aspeitia M A and Hernández-Almada A 2021 Einstein–Gauss–Bonnet gravity: is it compatible with modern cosmology? Phys. Dark Universe 32 100799
[160] Wang D and Mota D 2021 4D Gauss–Bonnet gravity: cosmological constraints, H_0 tension and large scale structure Phys. Dark Universe 32 100813
[161] Motta V, García-Aspeitia M A, Hernández-Almada A, Magaña J and Verdugo T 2021 Taxonomy of dark energy models Universe 7 163
[162] Kruglov S I 2021 Einstein–Gauss–Bonnet gravity with nonlinear electrodynamics Ann. Phys. 428 168449
[163] Li J, Chen S and Jing J 2021 Tidal effects in 4D Einstein–Gauss–Bonnet black hole spacetime (arXiv:2105.01267)
[164] Atamurotov F, Shymyatov S, Sheoran P and Siwach S 2021 Charged black hole in 4D Einstein–Gauss–Bonnet gravity: particle motion, plasma effect on weak gravitational lensing and centre-of-mass energy (arXiv:2105.02214)
[165] Bousder M and Bennai M 2021 Particle–antiparticle in 4D charged Einstein–Gauss–Bonnet black hole Phys. Lett. B 817 136343
[166] Övgün A and Guendelman E I 2021 Black hole with confining electric potential in 4D novel Einstein–Gauss–Bonnet gravity (arXiv:2105.05035)
[167] Gürses M, Şişman T Ç and Tekin B 2020 Is there a novel Einstein–Gauss–Bonnet theory in four dimensions? Eur. Phys. J. C 80 647
[168] Gürses M, Şişman T Ç and Tekin B 2020 Comment on ‘Einstein–Gauss–Bonnet gravity in four-dimensional spacetime’ Phys. Rev. Lett. 125 149001
[169] Arrechea J, Delhom A and Jiménez-Cano A 2021 Inconsistencies in four-dimensional Einstein–Gauss–Bonnet gravity Chin. Phys. C 45 013107
[170] Arrechea J, Delhom A and Jiménez-Cano A 2020 Comment on ‘Einstein–Gauss–Bonnet gravity in four-dimensional spacetime’ Phys. Rev. Lett. 125 149002
[171] Bonifacio J, Hinterbichler K and Johnson L A 2020 Amplitudes and 4D Gauss–Bonnet theory Phys. Rev. D 102 024029
[172] Ai W-Y 2020 A note on the novel 4D Einstein–Gauss–Bonnet gravity Commun. Theor. Phys. 72 095402
[173] Mahapatra S 2020 A note on the total action of 4D Gauss–Bonnet theory Eur. Phys. J. C 80 992
[174] Hohmann M, Pfeifer C and Voicu N 2021 Canonical variational completion and 4D Gauss–Bonnet gravity *Eur. Phys. J. Plus* **136** 180
[175] Cao L-M and Wu L-B 2021 On the ‘Einstein–Gauss–Bonnet gravity in four dimension’ (arXiv:2103.09612)
[176] Heydari-Fard M, Heydari-Fard M and Sepangi H R 2021 Thin accretion disks around rotating black holes in 4D Einstein–Gauss–Bonnet gravity *Eur. Phys. J. C* **81** 1
[177] Kruglov S I 2021 Einstein–Gauss–Bonnet gravity with rational nonlinear electrodynamics *Europhys. Lett.* **133** 69001
[178] Ghorai D and Gangopadhyay S 2021 Analytical study of holographic superconductor with backreaction in 4d Gauss–Bonnet gravity (arXiv:2105.09423)
[179] Ghaffarnejad H 2021 4D AdS Gauss–Bonnet black holes in presence of cloud of strings with harmonic horizons countless (arXiv:2105.12729)
[180] Zhang C-M, Zhang M and Zou D-C 2021 Joule–Thomson expansion of Born–Infeld AdS black holes in 4D Einstein–Gauss–Bonnet gravity (arXiv:2106.00183)
[181] Mishra A K, Shweta and Sharma U K 2021 Non-exotic wormholes in 4-DEinstein–Gauss–Bonnet gravity (arXiv:2106.04369)
[182] Shah H, Ahmad Z and Shah H H 2021 Quintessence background for 4D Einstein–Gauss–Bonnet black holes *Phys. Lett. B* **818** 136383
[183] Kruglov S I 2021 New model of 4D Einstein–Gauss–Bonnet gravity coupled with nonlinear electrodynamics *Universe* **7** 249
[184] Prentel J M Z, Pradhan A and Banerjee A 2021 Electrically charged quark stars in 4D Einstein–Gauss–Bonnet gravity (arXiv:2108.07459)
[185] Kong S-B, Abdusattar H, Yin Y and Hu Y-P 2021 P–V criticality of the FRW universe in the novel 4D Gauss–Bonnet gravity (arXiv:2108.09411)
[186] Mina Ghodsi Y, Behnamfard A, Fakhry S and Firouzjaee J T 2022 The integrated Sachs–Wolfe effect in 4D Einstein–Gauss–Bonnet gravity *Phys. Dark Universe* **35** 100918
[187] Liu L, Jin S and Tian Y-R 2021 Quasibound states, stability and wave functions of the test fields in 4D Einstein–Gauss–Bonnet gravity (arXiv:2107.02065)
[188] Badia J and Eiroa E F 2021 Shadow of axisymmetric, stationary and asymptotically flat black holes in the presence of plasma (arXiv:2106.07601)
[189] Tangphati T, Pradhan A, Banerjee A and Panotopoulos G 2021 Anisotropic stars in 4D Einstein–Gauss–Bonnet gravity *Phys. Dark Universe* **33** 100877
[190] Singh K N, Maurya S K, Dutta A, Rahaman F and Aktar S 2021 Quark stars in 4-dimensional Einstein–Gauss–Bonnet gravity (arXiv:2109.08921)
[191] Li G-Q, Mo J-X and Zhuang Y-W 2021 Corrections to Hawking radiation and Bekenstein–Hawking entropy of novel four-dimensional black holes in Gauss–Bonnet gravity *Gen. Relativ. Gravit.* **53** 97
[192] Chatterjee B 2021 Black holes in Einstein–Gauss–Bonnet gravity: dynamical and 4-dimensional novel stationary black hole (arXiv:2110.13850)
[193] Singh D V, Singh B K and Upadhyay S 2021 4D AdS Einstein–Gauss–Bonnet black hole with Yang–Mills field and its thermodynamics *Ann. Phys.* **434** 168642
[194] Lü H and Pang Y 2020 Horndeski gravity as $D \rightarrow 4$ limit of Gauss–Bonnet *Phys. Lett. B* **809** 135717
[202] Kobayashi T 2020 Effective scalar–tensor description of regularized Lovelock gravity in four dimensions J. Cosmol. Astropart. Phys. JCAP07(2020)013
[203] Fernandes P G S, Carrilho P, Clifton T and Mulryne D J 2020 Derivation of regularized field equations for the Einstein–Gauss–Bonnet theory in four dimensions Phys. Rev. D 102 024025
[204] Hennigar R A, Kubizňák D, Mann R B and Pollack C 2020 On taking the $D \to 4$ limit of Gauss–Bonnet gravity: theory and solutions J. High Energy Phys. JHEP07(2020)027
[205] Fernandes P G S 2021 Gravity with a generalized conformal scalar field: theory and solutions Phys. Rev. D 103 104065
[206] Aoki K, Gorji M A and Mukohyama S 2020 A consistent theory of $D \to 4$ Einstein–Gauss–Bonnet gravity Phys. Lett. B 810 135843
[207] Shahidi S and Khosravi N 2021 Constrained 4D Gauss–Bonnet gravity and its cosmological implications (arXiv:2105.02372)
[208] Clifton T, Carrilho P, Fernandes P G S and Mulryne D J 2020 Observational constraints on the regularized 4D Einstein–Gauss–Bonnet theory Phys. Rev. D 102 084005
[209] Charmousis C, Lehébel A, Smyrniotis E and Stergioulas N 2021 Astrophysical constraints on compact objects in 4D Einstein–Gauss–Bonnet gravity and Horndeski gravity for Bianchi type I metric (arXiv:2004.09954).
[210] Tian X and Zhu Z-H 2020 Non-full equivalence of the four-dimensional Einstein–Gauss–Bonnet gravity and Horndeski gravity for Bianchi type I metric (arXiv:2004.09954).
[211] Hennigar R A, Kubizňák D, Mann R B and Pollack C 2020 Lower-dimensional Gauss–Bonnet gravity and BTZ black holes Phys. Lett. B 808 135597
[212] Lü H and Mao P 2021 Asymptotic structure of Einstein–Gauss–Bonnet theory in lower dimensions Chin. Phys. C 45 013110
[213] Ma and Lü H 2020 Vacua and exact solutions in lower-D limits of EGB Eur. Phys. J. C 80 1209
[214] Gabadadze G and Tukhashvili G 2020 Conformal/Poincaré coset, cosmology, and descendants of Lovelock terms Phys. Rev. D 102 024054
[215] Easson D A, Manton T and Svesko A 2020 The stringy origins of galileons and their novel limit J. Cosmol. Astropart. Phys. JCAP05(2021)031
[216] Fernandes P G S, Carrilho P, Clifton T and Mulryne D J 2021 Black holes in the scalar–tensor formulation of 4D Einstein–Gauss–Bonnet gravity: uniqueness of solutions, and a new candidate for dark matter Phys. Rev. D 104 044029
[217] Aoki K, Gorji M A and Mukohyama S 2020 Cosmology and gravitational waves in consistent $D \to 4$ Einstein–Gauss–Bonnet gravity J. Cosmol. Astropart. Phys. JCAP09(2020)014
[218] Aoki K, Gorji M A, Mizuno S and Mukohyama S 2021 Inflationary gravitational waves in consistent $D \to 4$ Einstein–Gauss–Bonnet gravity J. Cosmol. Astropart. Phys. JCAP01(2021)054
[219] Yao Z-B, Oliosi M, Gao X and Mukohyama S 2021 Minimally modified gravity with an auxiliary constraint: a Hamiltonian construction Phys. Rev. D 103 024032
[220] Pan J, Qiao X, Wang D, Pan Q, Nie Z-Y and Jing J 2021 Holographic superconductors in 4D Einstein–Gauss–Bonnet gravity with backreactions Phys. Lett. B 823 136755
[221] Heydari-Fard M and Heydari-Fard M 2021 Null geodesics and shadow of 4D Einstein–Gauss–Bonnet black holes surrounded by quintessence (arXiv:2109.02059)
[222] Banerjee A, Hansraj S and Moodly L 2021 Charged stars in 4D Einstein–Gauss–Bonnet gravity Eur. Phys. J. C 81 790
[223] Narzilloev B, Shaimatov S, Hussain I, Abdajabbarov A, Ahmedov B and Bambi C 2021 Motion of particles and gravitational lensing around $(2 + 1)$-dimensional BTZ black holes in Gauss–Bonnet gravity Eur. Phys. J. C 81 1
[224] Sengupta S 2021 4D Einstein–Gauss–Bonnet gravity generated by invisible extra dimensions (arXiv:2109.10388)
[225] Boulware D G and Deser S 1985 String-generated gravity models Phys. Rev. Lett. 55 2656–60
[226] Fan Z-Y, Chen B and Li H 2016 Criticality in Einstein–Gauss–Bonnet gravity: without graviton Eur. Phys. J. C 76 542
[227] Apostolopoulos P S, Siopsis G and Tetradis N 2009 Cosmology from an anti-de Sitter–Schwarzschild black hole via holography Phys. Rev. Lett. 102 151301
[231] Bilić N 2016 Randall–Sundrum versus holographic cosmology Phys. Rev. D 93 066010
[232] Lidsey J E 2013 Holographic cosmology from the first law of thermodynamics and the generalized uncertainty principle Phys. Rev. D 88 103519
[233] Cai R-G, Cao L-M and Hu Y-P 2008 Corrected entropy-area relation and modified Friedmann equations J. High Energy Phys. JHEP08(2008)090
[234] Lidsey J E 2009 Thermodynamics of anomaly-driven cosmology Class. Quantum Grav. 26 147001
[235] Cai R-G, Cao L-M and Ohta N 2010 Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy J. High Energy Phys. JHEP04(2010)082
[236] Cai R-G 2014 Thermodynamics of conformal anomaly corrected black holes in AdS space Phys. Lett. B 733 183–9
[237] Cognola G, Myrzakulov R, Sebastiani L and Zerbini S 2013 Einstein gravity with Gauss–Bonnet entropic corrections Phys. Rev. D 88 024006
[238] Hořava P 2009 Quantum gravity at a Lifshitz point Phys. Rev. D 79 084008
[239] Kehagias A and Sfetsos K 2009 The black hole and FRW geometries of non-relativistic gravity Phys. Lett. B 678 123–6
[240] Carneiro D F, Freirãas E A, Goncalves B, de Lima A G and Shapiro I L 2004 On useful conformal transformations in general relativity Grav. Cosmol. 10 305–12
[241] Dabrowski M P, Garecki J and Blaschke D B 2009 Conformal transformations and conformal invariance in gravitation Ann. Phys. 18 13–32
[244] Bekenstein J D 1974 Exact solutions of Einstein-conformal scalar equations Ann. Phys. 82 535–47
[245] Martinez C, Troncoso R and Zanelli J 2003 De Sitter black hole with a conformally coupled scalar field in four-dimensions Phys. Rev. D 74 044028
[246] Martinez C, Staforelli J P and Troncoso R 2006 Topological black holes dressed with a conformally coupled scalar field and electric charge Phys. Rev. D 74 044028
[247] Padilla A, Stefanyzyn D and Tsoukalas M 2014 Generalised scale invariant theories Phys. Rev. D 89 065009
[248] de Haro S, Papadimitriou C and Petkou A C 2007 Conformally coupled scalars, instantons, and vacuum instability in 4D anti-de Sitter space Phys. Rev. Lett. 98 231601
[249] Dotti G, Gleiser R J and Martinez C 2008 Static black hole solutions with a self-interacting conformally coupled scalar field Phys. Rev. D 77 104035
[250] Gunzig E, Faraoni V, Figueiredo A, Filho T M R and Brenig L 2000 What can we learn from nonminimally coupled scalar field cosmology? Int. J. Theor. Phys. 39 1901–32
[251] Anabalon A and Maeda H 2010 New charged black holes with conformal scalar hair Phys. Rev. D 81 041501
[252] Oliva J and Ray S 2012 Conformal couplings of a scalar field to higher curvature terms Class. Quantum Grav. 29 205008
[253] Cisterna A, Neira-Gallegos A, Oliva J and Rebolloledo-Caceres S C 2021 Plebański–Demiański solutions in quadratic gravity with conformally coupled scalar fields Phys. Rev. D 103 064050
[254] Caceres N, Figueroa J, Oliva J, Oyarzo M and Stuardo R 2020 Quadratic gravity and conformally coupled scalar fields J. High Energy Phys. JHEP04(2020)157
[255] Wiltshire D L 1988 Black holes in string-generated gravity models Phys. Rev. D 38 2445
[256] Wiltshire D L 1986 Spherically symmetric solutions of Einstein–Maxwell theory with a Gauss–Bonnet term Phys. Lett. B 169 36–40
[257] Cai R-G 2002 Gauss–Bonnet black holes in AdS spaces Phys. Rev. D 65 084014
[258] Garrett C and Gribbin J 2008 The Lovelock black holes Mod. Phys. Lett. A 23 1801–18
[259] Hartle J B 1967 Slowly rotating relativistic stars. I. Equations of structure Astrophys. J. 150 1005–29
[260] Hartle J B and Thorne K S 1968 Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars Astrophys. J. 153 807
[261] Sen A 2013 Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions J. High Energy Phys. JHEP04(2013)156
[262] Malik K A and Wands D 2009 Cosmological perturbations Phys. Rep. 475 1–51
[263] Abbott B P et al 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral Phys. Rev. Lett. 119 161101
[265] Goldstein A et al 2017 An ordinary short gamma-ray burst with extraordinary implications: Fermi–GBM detection of GRB 170817A Astrophys. J. 848 L14

[266] Savchenko V et al 2017 INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817 Astrophys. J. 848 L15

[267] Baker T, Bellini E, Ferreira P G, Lagos M, Noller J and Sawicki I 2017 Strong constraints on cosmological gravity from GW170817 and GRB 170817A Phys. Rev. Lett. 119 251301

[268] Creminelli P and Vernizzi F 2017 Dark energy after GW170817 and GRB 170817A Phys. Rev. Lett. 119 251302

[269] Ezquiaga J M and Zumalacárregui M 2017 Dark energy after GW170817: dead ends and the road ahead Phys. Rev. Lett. 119 251304

[270] Sakstein J and Jain B 2017 Implications of the neutron star merger GW170817 for cosmological scalar–tensor theories Phys. Rev. Lett. 119 251303

[271] Carroll S M and Kaplinghat M 2002 Testing the Friedmann equation: the expansion of the Universe during big bang nucleosynthesis Phys. Rev. D 65 063507

[272] Arbey A 2012 AlterBBN: a program for calculating the BBN abundances of the elements in alternative cosmologies Comput. Phys. Commun. 183 1822–31

[273] Pitrou C, Coc A, Uzan J-P and Vangioni E 2018 Precision big bang nucleosynthesis with improved helium-4 predictions Phys. Rep. 754 1–66

[274] Akrami Y et al 2018 Planck 2018 results. X. Constraints on inflation Astron. Astrophys. 641 A10

[275] Will C M 2018 Theory and Experiment in Gravitational Physics (Cambridge: Cambridge University Press)

[276] Landau L D and Lifschitz E M 1975 The Classical Theory of Fields: Volume 2. Course of Theoretical Physics (Cambridge: Cambridge University Press)

[277] Pitjeva E V and Pitjev N P 2013 Relativistic effects and dark matter in the solar system from observations of planets and spacecraft Mon. Not. R. Astron. Soc. 432 3431–7

[278] Lucchesi D M and Peron R 2010 Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-Newtonian gravity Phys. Rev. Lett. 105 231103

[279] Lyne A G et al 2004 A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics Science 303 1153–7

[280] Kramer M et al 2006 Tests of general relativity from timing the double pulsar Science 314 97–102

[281] Tan W-H et al 2016 New test of the gravitational inverse-square law at the submillimeter range with dual modulation and compensation Phys. Rev. Lett. 116 131101

[282] Abbott B P et al 2017 The basic physics of the binary black hole merger GW150914 Ann. Phys. 529 1600209

[283] Abbott B P et al 2017 GW170608: observation of a 19-solar-mass binary black hole coalescence Astrophys. J. Lett. 851 L35

[284] Abbott R et al 2020 GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object Astrophys. J. Lett. 896 L44

[285] Abbott R et al 2021 Observation of gravitational waves from two neutron star–black hole coalescences Astrophys. J. Lett. 915 L5

[286] Papallo G and Reall H S 2017 On the local well-posedness of Lovelock and Horndeski theories Phys. Rev. D 96 044019

[287] Sengupta S 2020 Gravity theory with a dark extra dimension Phys. Rev. D 101 104040