Anomalous Hall Heat Current and Nernst Effect in the CuCr$_2$Se$_4$-xBr$_x$ Ferromagnet

Wei-Li Lee, S. Watauchi, V. L. Miller, R. J. Cava, and N. P. Ong

1Department of Physics, Princeton University, New Jersey 08544, USA
2Department of Chemistry, Princeton University, New Jersey 08544, USA

(Rceived 8 June 2004; published 22 November 2004)

In a ferromagnet, an anomalous Hall heat current, given by the off-diagonal Peltier term α_{xy}, accompanies the anomalous Hall current. By combining Nernst, thermopower, and Hall experiments, we have measured how α_{xy} varies with hole density and lifetime τ in CuCr$_2$Se$_4$-xBr$_x$. At low temperatures T, we find that α_{xy} is independent of τ, consistent with anomalous-velocity theories. Its magnitude is fixed by a microscopic geometric area \mathcal{A}, $\alpha_{xy} \sim 34 \AA^2$. Our results are incompatible with some models of the Nernst effect in ferromagnets.

In a ferromagnet, the anomalous Hall effect (AHE) is the appearance of a spontaneous Hall current flowing parallel to $E \times M$, where E is the electric field and M the magnetization [1]. Karplus and Luttinger (KL) [2] proposed that the AHE current originates from an anomalous-velocity term which is nonvanishing in a ferromagnet. The topological nature of the KL theory has been of considerable interest recently [3–6]. Experimentally, strong evidence for the dissipationless nature of the AHE current has been obtained in the spinel ferromagnet CuCr$_2$Se$_4$-xBr$_x$. Lee et al. [7] reported that, despite a 1000-fold increase in the resistivity ρ induced by varying the Br content, the anomalous Hall conductivity (normalized per carrier and measured at 5 K) stays at the same value, in agreement with the KL prediction. A test of the anomalous-velocity theory against the AHE in Fe has also been reported [8].

It has long been known that an anomalous heat current density J^0 also accompanies the AHE current in the absence of any temperature gradient [9,10]. In principle, J^0 can provide further information on the origin of the AHE, but almost nothing is known about its properties. A weak heat current is a challenge to measure. Instead, one often performs the “reciprocal” Nernst experiment in which a temperature gradient $-\nabla T$ produces a transverse charge current, which is detected as a Nernst electric field E_N parallel to $M \times (-\nabla T)$. However, in previous Nernst experiments on ferromagnets [9–11], J^0 was not found because other transport quantities were not measured. Combining the Nernst signal with the AHE resistivity ρ_{yx} and the thermopower, we have determined how the transport quantity α_{xy} relevant to J^0 varies in CuCr$_2$Se$_4$-xBr$_x$ as the hole density n and carrier lifetime τ are greatly changed under doping. We show that α_{xy} has a strikingly simple form, with its magnitude scaled by a microscopic geometric area \mathcal{A}.

We apply a gradient $-\nabla T$ on an electrically isolated sample in a magnetic field H [2]. Along \hat{x}, the charge current driven by $-\nabla T$ is balanced by a backflow current produced by a large E_x which is detected as the thermopower $S = E_x/|\nabla T|$. Along the transverse direction \hat{y}, however, both E_x and $-\nabla T$ generate Hall-type currents. In general, the charge current in the presence of E and $-\nabla T$ is $\mathbf{J} = \mathbf{E} + \mathbf{J}_x + \mathbf{J}_y$, with \mathbf{E} and \mathbf{J}_x the electrical and thermoelectric (“Peltier”) conductivity tensors, respectively. Setting $\mathbf{J}_y = 0$, we obtain the Nernst signal $e_N = E_y/|\nabla T| = \rho \alpha_{xy} + \rho_{yx} \alpha_x$, where $\alpha = \alpha_{xy}$ [12]. Hence, as noted, the Nernst signal results from the two distinct y-axis charge currents, $\alpha_{yx} (-\nabla T)$ and $\alpha_{xy} E_x$.

In a ferromagnet, the former is our desired gradient-driven current, whereas the latter comprises the “dissipationless” AHE current and the weak ordinary Hall current.

In terms of the thermopower $S = \rho \alpha$ and Hall angle $\tan \theta_H = \rho_{yx}/\rho$, we may express α_{xy} as

$$\rho \alpha_{xy} = e_N + S \tan \theta_H. \quad (1)$$

![FIG. 1. Curves of the measured $e_N = E_x/|\nabla T|$ versus H in CuCr$_2$Se$_4$-xBr$_x$, with $x = 0.1$ (left panel) and 0.85 (right panel). In the ferromagnetic state below T_C, e_N saturates to a constant when H exceeds H_s, reflecting the M-H curve. The scaling factor Q_s increases rapidly as T increases from 10 K to T_C. In the right panel, e_N continues to scale as the M-H curve in the paramagnetic regime (275–400 K).]
Hence, to find \(\alpha_{xy} \), we need to measure \(e_N, S, \rho_{xy}, \) and \(\rho \). Knowing \(\alpha_{xy} \), we readily find the transverse heat current
\[
J_T^Q = \tilde{\alpha}_{xy} E_x,
\]
since \(\tilde{\alpha}_{xy} = \alpha_{xy} T \) by Onsager reciprocity.

The spinel CuCr$_2$Se$_4$ is a conducting ferromagnet with a Curie temperature \(T_C \sim 450 \) K. Because the exchange between local moments in Cr is mediated by superexchange through 90° Cr-Se-Cr bonds rather than the carriers, \(T_C \) is not significantly reduced even when the hole population \(n_h \) drops by a factor of 30 under Br doping (\(M \) at 5 K actually increases by 20%) [7,13]. Using iodine vapor transport, we have grown crystals with \(n_h \) increases from 0 to 1, the value of \(\rho_{xy} \) at 5 K increases by \(\sim 10^3 \), while \(\rho_{xy}'/\rho_{xy} \) increases by \(\sim 10^6 \) [7].

The tunability of \(n_h \) and the robustness of \(M \) under doping make this system attractive for studying charge transport in a lattice with broken time-reversal symmetry. The behavior of \(\rho, M, \) and \(\rho_{xy}' \) versus \(x \) are described in Ref. [7].

Figure 1 shows profiles of \(e_N \) versus \(H \) at selected \(T \) in two samples with \(x = 0.1 \) and 0.85 and \(T_C = 400 \) and 275 K, respectively. As noted above, \(e_N(T, H) \) is the sum of two terms, both of which scale as \(M \). The magnitude \(|e_N| \) initially increases as \(H \) rotates domains into alignment and then saturates to a constant for \(H > H_s \), the saturation field. The sign of \(e_N \)—negative in all samples—reflects the sign of the dominant term [14].

In the sample with \(x = 0.85 \), the curves above \(T_C \) show that the scaling also holds in the paramagnetic regime where the susceptibility has the Curie-Weiss form \(\chi \sim 1/(T - T_C) \) in weak \(H \). In analogy with the Hall resistivity \(\rho_{xy} = R_0 \mu_0 H + R_s \mu_0 M \), with \(R_0 \) and \(R_s \) the ordinary and anomalous Hall coefficients, respectively, it is customary to express the scaling between the \(e_N - H \) and \(M - H \) curves by writing

\[
e_N = Q_0 \mu_0 H + Q_s \mu_0 M.
\]

For \(T < T_C \) in all samples, the \(Q_0 \) term cannot be resolved, so that \(e_N \approx Q_s \mu_0 M \). Moreover, below 50 K, \(M \) changes only weakly with \(x \) (by 20% over the whole doping range), so that the saturated value of the Nernst signal \(e_N^{sat} \) differs from \(Q_s \) by a factor that is only weakly \(x \) dependent.

The Nernst signal has very different characteristic behaviors below and above \(T_C \). As an example, Fig. 2 shows \(e_N^{sat} \) measured at 2 T in the sample with \(x = 1.0 \) (\(T_C = 210 \) K). Between 5 and 100 K, \(e_N^{sat} \) increases linearly with \(T \). Above 100 K, \(e_N^{sat} \) rises more steeply to a sharp peak 200 K, and then falls steeply above \(T_C \). As noted, in the paramagnetic regime, the Nernst signal matches the behavior of \(M \) as a function of both \(T \) and \(H \). Figure 2 shows that the \(T \) dependence of \(e_N \) closely follows that of \(M = \chi H \) (both are measured at 2 T). The experiment shows that, in a gradient, fluctuations of the paramagnetic magnetization lead to a significant transverse electrical current that is proportional to the average magnetization (this has not been noted before, to our knowledge). We express the proportionality as

\[
\alpha_{xy} = \beta M \quad (T > T_C),
\]

where \(\beta \) is only weakly \(T \) dependent (it decreases by 5% between 250 and 400 K). The parameter \(\beta \) plays the important role of relating the magnitudes of the paramagnetic \(M \) and the transverse electronic current (through the Nernst signal). Its minuscule value \((\beta \approx 2 \times 10^{-7} \text{ K}^{-1} \) at 250 K) reflects the strikingly weak coupling between the fluctuating \(M \) and \(e_N \) in a

![FIG. 2. The \(T \) dependence of the Nernst signal \(e_N \) (solid triangles) measured at 2 T in the sample with \(x = 1.0 \). Above \(T_C, e_N \) is compared with the paramagnetic magnetization \(M \) at 2 T (open circles).](image)

![FIG. 3. (a) Curves of \(e_N \) versus \(T \) below 150 K in five samples with doping 0.1 \(\leq x \leq 1.0 \) showing nominal \(T \)-linear behavior at low \(T \) (\(H = 2T \)). The slopes vary nonmonotonically with \(x \). (b) shows the Hall-current term \(S \tan \theta_H \) measured in the same samples at \(H = 2T \). For \(x > 0.3, S \tan \theta_H \) is opposite in sign from \(e_N \) [the symbol key applies to both (a) and (b)]. (c) shows the sharp change in the \(\rho-T \) profiles in the samples with \(x = 0.85 \) and 1.0 (\(H = 0.0 \)). At low \(T, \rho \) at 0.85 is metallic, but at 1.0 \(\rho \) reveals hopping between strongly localized states.](image)
increases to 1.0. (b) compares how the slope b versus x increases from 0.1 to 1.0 (Fig. 4). In all samples except $x = 0.1$ and 1.0, the change is sudden and striking. At $x = 0.85$, ρ is T independent below 100 K consistent with a disordered metal. By contrast, at 1.0, ρ rises monotonically with decreasing T [Fig. 3(c)]. Between 300 and 4.2 K, ρ increases from 6.3 to 32 mΩcm. At low T, conductivity proceeds by hopping between strongly localized states in an impurity band. Figure 5 confirms that we reach the extremum of the hole band near $x = 0.85$. Further removal of carriers ($x \rightarrow 1$) affects states within the impurity band.

Knowing n_h and ρ at each x, we may determine the mean-free path ℓ_0 in the impurity-scattering regime. Between $x = 0.1$ and 1.0, ℓ_0 decreases by a factor of 40. This steep decrease has no discernible influence on $b(x)$. Combining these factors then, we have $\alpha_{xy} = gT\mathcal{N}_F$, where g is independent of ℓ_0. We may boil down α_{xy} to the measurement of an “area” \mathcal{A} by writing $\Delta\alpha_{xy}/T = g\mathcal{N}_F^0$.
\[\alpha_{xy} = A \frac{e^{k_{B}T}}{h} N_F \quad (T \ll T_C), \tag{4} \]

with \(k_B \) Boltzmann’s constant and \(e \) the electron charge. The value of \(g \) gives \(A = 33.8 \text{ Å}^2 \) if we assume \(N_F \sim N_F \). As the anomalous Hall heat current produced by \(E | \mathbf{k} \rangle = \alpha_{xy} E \mathbf{F} \), it shares the simple form in Eq. (4). The ratio \(J_y^0/J_y \sim T^2 \), as expected for a Fermi gas.

We briefly sketch the anomalous-velocity theory [2–4]. In a periodic lattice, the position operator for an electron is the sum \(\mathbf{x} = \mathbf{R} + \mathbf{X}(\mathbf{k}) \), where \(\mathbf{R} \) locates a unit cell, while \(\mathbf{X}(\mathbf{k}) \) locates the intracell position \[15\]. A finite \(\mathbf{X}(\mathbf{k}) \) implies that \(\mathbf{x} \) does not commute with itself. Instead, we have \[15\] \[x_j, x_k \] = \(i e^{i k m} \Omega_{mn} \), with \(e^{i k m} \) the antisymmetric tensor, which implies the uncertainty relation \(\Delta x_j \Delta x_k \sim \Omega \). The “Curry curvature” \(\Omega(\mathbf{k}) = \nabla_R \times \mathbf{X} \) is analogous to a magnetic field in space \[16\]. In the presence of \(E, \Omega \) adds a term that is the analog of the Lorentz force to the velocity \(v_k \), viz.

\[h v_k = \mathbf{E}(\mathbf{k}) - E \times \mathbf{\Omega}(\mathbf{k}). \tag{5} \]

The anomalous-velocity term in Eq. (5) immediately implies the existence of a spontaneous Hall current \(J_H = -2e \sum_k \Re E \times \mathbf{\Omega}(k) \), where \(J_H \) is the unperturbed distribution [2–4, 8–15]. The unconventional form of the current—notably the absence of any lifetime dependence—has made the KL theory controversial for decades \[1, 17\]. However, strong support has been obtained from the measurements of Lee et al. \[7\] showing that the normal AHE conductivity \(\sigma_{xy}/n_h \) in CuCr\(_2\)Se\(_4\)–Br\(_x\) is unchanged despite a 1000-fold increase in \(p \).

In general, the off-diagonal term \(\alpha_{xy} \) is related to the derivative of \(\sigma_{xy} \) at the chemical potential \(\mu \), viz. \(\alpha_{xy} = (\pi^2/3)(k_B^2 T/e) [\partial \sigma_{xy}/\partial \mu]_\mu \) \[12\]. Using the result \[7\] that \(\sigma_{xy} \) is linear in \(n_h \) but independent of \(\ell_0 \), and \(\partial n_h/\partial \mu = N_F \), we see that \(\alpha_{xy} \sim T \partial N_F \), consistent with Eq. (4). (By contrast, we note that the skew-scattering model \[17\] would predict \(\sigma_{xy} \sim n_h \ell_0 \) and \(\alpha_{xy} \sim T \partial N_F \ell_0 \).

Finally, \(A \) in Eq. (4) has the value 34 Å\(^2\). If Eq. (5) is indeed the origin of \(\alpha_{xy} \), \(A \) must be roughly the scale of \(\Omega \sim \Delta x_j \Delta x_k \). Hence the value \(A \sim 1 \times \) the unit-cell area seems reasonable (the lattice spacing here is 10.33 Å). While a quantitative comparison requires knowledge of \(\mathbf{\Omega}(\mathbf{k}) \) over the Brillouin zone, the simple form of Eq. (4) seems to provide valuable insight on the anomalous heat current.

A previous calculation of the Nernst coefficient was based on the “side-jump” model \[18\]. On scattering from an impurity, the carrier suffers a small sideways displacement \(\delta \) to give on average \(\tan \mu \gamma = \delta / \ell_0 \). This was used to derive \(Q_y = (k_r/F \ell)^{-1} \). In our experiment, \(k_r \ell \) falls monotonically, with increasing \(x \), while \(e_N \) rises to a broad maximum near 0.25 before falling. Hence our experiment is in essential conflict with the side-jump model. From earlier experiments \[11\], an empirical form \(Q_y = -(a + b') T \) has been inferred \(a, b' \) are constants. This is not borne out in our data.

Combining Nernst, Hall, and thermopower experiments on the ferromagnet CuCr\(_2\)Se\(_4\)–Br\(_x\), we have determined how \(\alpha_{xy} \) changes as a function of \(n_h \) and \(T \). At low \(T \), we find that \(\alpha_{xy} \) follows the strikingly simple form \(\alpha_{xy} \sim AT N_F \), consistent with the anomalous-velocity theory for the AHE (Fig. 4). In addition, a direct relation [Eq. (3)] between \(M \) and \(\alpha_{xy} \) is observed in the paramagnetic regime above \(T_C \).

We acknowledge support from the U.S. National Science Foundation (Grant No. DMR 0213706).

*Permanent address: Center for Crystal Science and Technology, University of Yamanashi, 7 Miyamae, Kofu, Yamanashi 400-8511, Japan.

[1] For a review, see The Hall Effect in Metals and Alloys, edited by Colin Hurd (Plenum, New York, 1972), p. 153.
[2] R. Kaprus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954); J. M. Luttinger, Phys. Rev. 112, 739 (1958).
[3] Ganesh Sundaram and Qian Niu, Phys. Rev. B 59, 14915 (1999).
[4] M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002).
[5] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
[6] T. Jungwirth, Qian Niu, and A. H. MacDonald, Phys. Rev. Lett. 88, 207208 (2002).
[7] Wei-Li Lee, Satoshi Watauchi, R. J. Cava, and N. P. Ong, Science 303, 1647 (2004).
[8] Yuguai Yao et al., Phys. Rev. Lett. 92, 037204 (2004).
[9] Alpheus W. Smith, Phys. Rev. 17, 23 (1921); R. P. Ivanova, Fiz. Met. Metalloved. 5, 851 (1959).
[10] For a table of Nernst data, see Handbook of Physical Quantities, edited by Igor S. Grigoriev and Evgenii Z. Meilikhov (CRC Press, Boca Raton, FL, 1997), p. 904.
[11] E. I. Kondorskii, Sov. Phys. JETP 18, 351 (1964); E. I. Kondorskii and R. P. Vasileva, Sov. Phys. JETP 18, 277 (1964).
[12] Yagu Wang et al., Phys. Rev. B 64, 224519 (2001).
[13] K. Miyatani et al, J. Phys. Chem. Solids 32, 1429 (1971).
[14] In our convention, the sign of \(e_N \) is that of the Nernst signal of vortex flow in a superconductor \[12\]; viz., \(e_N \) is positive if \(E_N \mathbf{H} \times (\nabla \mathbf{T}) \).
[15] E. N. Adams and E. I. Blount, J. Phys. Chem. Solids 10, 286 (1959).
[16] In terms of Bloch functions \(\phi_{nk} = e^{i \mathbf{k} \cdot \mathbf{r}_{nk}} \), the matrix element of the intracell operator \(\mathbf{X}(\mathbf{k}) = i \int d^3 r u_{nk} \nabla_n \mathbf{X}(\mathbf{k}) \) has the form of a Berry gauge potential whose line integral gives a phase accumulation \(\gamma = \oint dk \cdot \mathbf{X}(\mathbf{k}) \) that reflects motion in an effective magnetic field \(\mathbf{N} = \nabla_n \times \mathbf{X}(\mathbf{k}) \) existing in \(\mathbf{k} \) space.
[17] J. Smit, Physica (Amsterdam) 21, 877 (1955); Phys. Rev. B 8, 2349 (1973).
[18] L. Berger, Phys. Rev. B 2, 4559 (1970); 5, 1862 (1972).