Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess

Yi-Lei Tang (汤亦蕾)

Center for High Energy Physics, Peking University

March 4, 2016
Yi-Lei Tang
Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess
Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess

This slide is based on this paper, arxiv:1512.02899, by Yi-Lei Tang and Shou-hua Zhu
Introduction to the photon excess from the galactic center

- In Ref. arXiv:hep-ph/0508108, a γ-ray excess of 1-10 GeV from near the galactic center was studied in the EGRET era.
In Ref. arXiv:hep-ph/0508108, a γ-ray excess of 1-10 GeV from near the galactic center was studied in the EGRET era.
The Fermi Large Area Telescope (Fermi-LAT), offers data with an energy range of more than three orders of magnitude (30 MeV to 500 GeV) and a large field of view.
Introduction to the photon excess from the galactic center

- The Fermi Large Area Telescope (Fermi-LAT), offers data with an energy range of more than three orders of magnitude (30 MeV to 500 GeV) and a large field of view.
- Different analyses of the Fermi-LAT’s data have been presented.
Introduction to the photon excess from the galactic center

- The Fermi Large Area Telescope (Fermi-LAT), offers data with an energy range of more than three orders of magnitude (30 MeV to 500 GeV) and a large field of view.
- Different analyses of the Fermi-LAT’s data have been presented.
- From Tansu Daylan, et.al., arxiv:1402.6703, see Fig. 1.
Introduction to the photon excess from the galactic center

- The Fermi Large Area Telescope (Fermi-LAT) offers data with an energy range of more than three orders of magnitude (30 MeV to 500 GeV) and a large field of view.
- Different analyses of the Fermi-LAT's data have been presented.
- From Tansu Daylan, et al., arxiv:1402.6703, see Fig. 1.

Figure: Tansu Daylan, et al., arxiv:1402.6703.
What we adopt in our work are the data from Francesca Calore, Ilias Cholis, Christoph Weniger (CCW), arxiv:1409.0042.
What we adopt in our work are the data from Francesca Calore, Ilias Cholis, Christoph Weniger (CCW), arxiv:1409.0042.

Note that large correlations among the systematic errors of different bins should be considered during the fitting processes.
What we adopt in our work are the data from Francesca Calore, Ilias Cholis, Christoph Weniger (CCW), arxiv:1409.0042.

Note that large correlations among the systematic errors of different bins should be considered during the fitting processes.
In order to fit the data from arxiv:1409.0042,
Introduction to the photon excess from the galactic center

In order to fit the data from arxiv:1409.0042,

\[
\chi^2 = \left[\frac{dN}{dE} - \left(\frac{dN}{dE} \right)_{\text{obs}} \right] \cdot \Sigma^{-1} \cdot \left[\frac{dN}{dE} - \left(\frac{dN}{dE} \right)_{\text{obs}} \right].
\]

(1)
Introduction to the photon excess from the galactic center

- In order to fit the data from arxiv:1409.0042,

\[
\chi^2 = \left[\frac{dN}{dE} - \left(\frac{dN}{dE} \right)_{\text{obs}} \right] \cdot \Sigma^{-1} \cdot \left[\frac{dN}{dE} - \left(\frac{dN}{dE} \right)_{\text{obs}} \right].
\] (1)

- The data is actually on the homepage of one of the authors, http://christophweniger.com/?page_id=248.
Weak Interacting Massive Particles (WIMPs). As the temperature of the universe drops down after the Big Bang, the annihilating dark matter particles finally “freeze-out” when \(n_{eq} \langle \sigma v \rangle_{dec} \approx H \).
Weak Interacting Massive Particles (WIMPs). As the temperature of the universe drops down after the Big Bang, the annihilating dark matter particles finally “freeze-out” when $n_{eq} \langle \sigma v \rangle_{\text{dec}} \approx H$.

$\langle \sigma v \rangle_{\text{dec}}$ is calculated to be approximately $2-3 \times 10^{-26}\text{cm}^3/\text{s}$, which is said to be “coincide” with the weak interaction strength.
Weak Interacting Massive Particles (WIMPs). As the temperature of the universe drops down after the Big Bang, the annihilating dark matter particles finally “freeze-out” when $n_{eq} \langle \sigma v \rangle_{\text{dec}} \approx H$.

$\langle \sigma v \rangle_{\text{dec}}$ is calculated to be approximately $2-3 \times 10^{-26}\text{cm}^3/\text{s}$, which is said to be “coincide” with the weak interaction strength.

$X_f = \frac{m_{\text{DM}}}{T_{\text{dec}}} \approx 20$.

Popular channels, $b\bar{b}$, hh, $W^+ W^-$, ZZ. The photon mainly originate from the decay of the produced hadrons, e.g., $\pi^0 \rightarrow \gamma\gamma$.
Popular channels, $b\bar{b}$, hh, W^+W^-, ZZ. The photon mainly originate from the decay of the produced hadrons, e.g., $\pi^0 \rightarrow \gamma\gamma$.

Why not $u\bar{u}$, $d\bar{d}$?
Popular channels, $b\bar{b}$, hh, $W^+ W^-$, ZZ. The photon mainly originate from the decay of the produced hadrons, e.g., $\pi^0 \rightarrow \gamma \gamma$.

Why not $u\bar{u}$, $d\bar{d}$?

Guess... Rotate the Feynmann diagram by 90°, it is difficult to escape the direct detection experiments bounds.
Explaining the Excess from the Galactic Center

- Popular channels, $b\bar{b}$, hh, W^+W^-, ZZ. The photon mainly originate from the decay of the produced hadrons, e.g., $\pi^0 \rightarrow \gamma\gamma$.
- Why not $u\bar{u}$, $d\bar{d}$?
- Guess... Rotate the Feynmann diagram by 90°, it is difficult to escape the direct detection experiments bounds.
- $e^+e^- + \gamma$, $\mu^+\mu^- + \gamma...$
Explaining the Excess from the Galactic Center

- Popular channels, $b\bar{b}$, hh, W^+W^-, ZZ. The photon mainly originate from the decay of the produced hadrons, e.g., $\pi^0 \rightarrow \gamma\gamma$.
- Why not $u\bar{u}$, $d\bar{d}$?
- Guess... Rotate the Feynmann diagram by 90°, it is difficult to escape the direct detection experiments bounds.
- $e^+e^- + \gamma$, $\mu^+\mu^- + \gamma$...
- Sub-dominant inverse Compton scattering to the CMB, bremsstrahlung, synchrotron radiation... (Usually omitted in the hadronic final states).
Explaining the Excess from the Galactic Center

χ^2 p-val.

hh 28.2 0.17

WW 38.3 0.017

$t\bar{t}$ 43.5 0.0041

$b\bar{b}$ 24.2 0.34

ZZ 35.6 0.033
Dwarf spheroidal (dSph) galaxy candidates offer constraints.
Explaining the Excess from the Galactic Center

- Dwarf spheroidal (dSph) galaxy candidates offer constraints.
- Take the $b\bar{b}$ as an example, the best-fitted point lies slightly outside the constraints. However, due to the uncertainty of the \mathcal{J}-factor, we can still say that the GCE’s photon originated from the dark matter has not been ruled out, yet.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{energy_distribution.png}
\caption{Energy distribution of photon flux in the Galactic Center.}
\end{figure}

\textbf{Yi-Lei Tang (汤亦蕾)}

Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess.
Explaining the Excess from the Galactic Center

- Dwarf spheroidal (dSph) galaxy candidates offer constraints.
- Take the $\bar{b}b$ as an example, the best-fitted point lies slightly outside the constraints. However, due to the uncertainty of the \mathcal{J}-factor, we can still say that the GCE’s photon originated from the dark matter has not been ruled out, yet.
- It should be noted that recently, there seem to be some excesses from two dSphs, Reticulum II (See arxiv:1503.02320) and Tucana III (See arxiv:1511.09252).
See-saw Mechanisms

- Majorana mass among right-handed neutrinos.
See-saw Mechanisms

- Majorana mass among right-handed neutrinos.

\[
M = \begin{bmatrix}
0 & m_D \\
- & m_D & m_N
\end{bmatrix}
\] (2)
See-saw Mechanisms

- Majorana mass among right-handed neutrinos.

\[
M = \begin{bmatrix}
0 & m_D \\
m_D^T & m_N
\end{bmatrix}
\]

\[\rightarrow m_\nu = -\frac{m_D^2}{m_N}.\]
See-saw Mechanisms

- Majorana mass among right-handed neutrinos.

\[M = \begin{bmatrix} 0 & m_D \\ m_D^T & m_N \end{bmatrix} \] (2)

- \[m_\nu = - \frac{m_D^2}{m_N}. \]

- \[m_D = y_\nu \nu_{EW}, \text{ usually } y \sim 1, \text{ and } m_N \gg 1 \text{ TeV}. \]
See-saw Mechanisms

- Majorana mass among right-handed neutrinos.

\[
M = \begin{bmatrix}
0 & m_D \\
m_D^T & m_N
\end{bmatrix}
\]

- \(m_\nu = -\frac{m_D^2}{m_N} \).
- \(m_D = y_\nu v_{EW} \), usually \(y \sim 1 \), and \(m_N \gg 1 \text{ TeV} \).
- \(y_\nu \sim 10^{-7}-10^{-5} \), \(m_N < 1 \text{ TeV} \) (Naive TeV Seesaw).
See-saw Mechanisms

- Majorana mass among right-handed neutrinos.

\[
M = \begin{bmatrix}
0 & m_D \\
M_D^T & m_N
\end{bmatrix}
\] \hspace{1cm} (2)

- \(m_\nu = -\frac{m_D^2}{m_N} \).
- \(m_D = y_\nu \nu_{EW} \), usually \(y \sim 1 \), and \(m_N \gg 1 \) TeV.
- \(y_\nu \sim 10^{-7}-10^{-5} \), \(m_N < 1 \) TeV (Naive TeV Seesaw).
- For linear see-saw or inverse see-saw, \(y_\nu \) can be as large as \(10^{-3} \).
Can dark matter mainly annihilate into light right-handed neutrinos?

- Model examples,
Can dark matter mainly annihilate into light right-handed neutrinos?

- Model examples,
- NMSSM + right handed neutrinos;
Can dark matter mainly annihilate into light right-handed neutrinos?

- Model examples,
- NMSSM + right handed neutrinos;
- $U(1)_{B-L-Z'}$ extended MSSM (arXiv:0907.1486).
Can dark matter mainly annihilate into light right-handed neutrinos?

- Model examples,
- NMSSM+right handed neutrinos;
- $U(1)_{B-L-Z'}$ extended MSSM (arXiv:0907.1486).
- Build model by ourselves?
If $m_N > m_W$, simple simulation by MicrOMEGAs shows that the spectrum induced by the N's two-body decay are no better than the W^{\pm} case.
If $m_N > m_W$, simple simulation by MicrOMEGAs shows that the spectrum induced by the N's two-body decay are no better than the W^\pm case.

If $m_N < m_W$, I couldn’t find any existing tools calculating the spectrum induced by the three-body subsequent decay.
If $m_N > m_W$, simple simulation by MicrOMEGAs shows that the spectrum induced by the N’s two-body decay are no better than the W^\pm case.

If $m_N < m_W$, I couldn’t find any existing tools calculating the spectrum induced by the three-body subsequent decay.

Solution: We have used MadGraph to calculate the three-body decay, and input the event file to Pythia8 to do showering, hadronization, and particle decay processes.
γ spectrum from the N’s decay

▶ One light right-handed neutrino for simplicity. In the multi-right-handed neutrino cases, we can only linearly sum over the spectrum by each single right-handed neutrino.
γ spectrum from the N’s decay

- One light right-handed neutrino for simplicity. In the multi-right-handed neutrino cases, we can only linearly sum over the spectrum by each single right-handed neutrino.

\[
\mathcal{L} \supset \frac{1}{2} \bar{N} \gamma^\mu \partial_\mu N - \frac{1}{2} m_N \bar{N}N - (y_i \bar{l}_L \cdot \tilde{H}N + \text{h.c.}),
\]

(3)
γ spectrum from the N’s decay

- One light right-handed neutrino for simplicity. In the multi-right-handed neutrino cases, we can only linearly sum over the spectrum by each single right-handed neutrino.

\[\mathcal{L} \supset \frac{1}{2} N \gamma^\mu \partial_\mu N - \frac{1}{2} m_N \bar{N}N - (y_i \bar{l}_L i \cdot \tilde{H}N + \text{h.c.}), \]

(3)

- Eqn. (3) can summarize the features of the right-handed neutrinos in most of the right-handed neutrino models.
One light right-handed neutrino for simplicity. In the multi-right-handed neutrino cases, we can only linearly sum over the spectrum by each single right-handed neutrino.

\[\mathcal{L} \supset \frac{1}{2} \bar{N} \gamma^\mu \partial_\mu N - \frac{1}{2} m_N \bar{N}N - (y_i \bar{l}_L \cdot \tilde{H} N + \text{h.c.}), \quad (3) \]

Eqn. (3) can summarize the features of the right-handed neutrinos in most of the right-handed neutrino models.

After EWSB,

\[\mathcal{L} \supset c g_2 \sqrt{2} \theta_i (W^+_\mu \bar{N} \gamma^\mu P_L l_i^- + \text{h.c.}) + \frac{g_2}{\cos \theta_W} \theta_i Z_\mu (\bar{N} \gamma^\mu P_L \nu_i + \text{h.c.}), \quad (4) \]

where \(\theta_i \approx \frac{y_i \nu}{m_N} \).
One light right-handed neutrino for simplicity. In the multi-right-handed neutrino cases, we can only linearly sum over the spectrum by each single right-handed neutrino.

\[\mathcal{L} \supset \frac{1}{2} \bar{N} \gamma^\mu \partial_\mu N - \frac{1}{2} m_N \bar{N}N - (y_i \tilde{l}_i \cdot \tilde{H}N + \text{h.c.}), \]

Eqn. (3) can summarize the features of the right-handed neutrinos in most of the right-handed neutrino models.

After EWSB,

\[\mathcal{L} \supset c g_2 \sqrt{2} \theta_i (W^\pm_\mu \bar{N} \gamma^\mu P_L \tilde{l}_i + \text{h.c.}) + \frac{g^2}{\cos \theta_W} \theta_i Z_\mu (\bar{N} \gamma^\mu P_L \nu_i + \text{h.c.}), \]

where \(\theta_i \approx \frac{y_i v}{m_N} \).

\(N \rightarrow \nu_i Z^* \), \(N \rightarrow \tilde{l}_i^\mp W^\mp \) dominate the decay width, and \(N \rightarrow h^* \nu_i \rightarrow \text{all} + \nu_i \) is negligible due to the small \(h\text{-SM-SM} \) vertices.
γ spectrum from the N’s decay

- One light right-handed neutrino for simplicity. In the multi-right-handed neutrino cases, we can only linearly sum over the spectrum by each single right-handed neutrino.

\[
\mathcal{L} \supset \frac{1}{2} \overline{N} \gamma^\mu \partial_\mu N - \frac{1}{2} m_N \overline{N}N - (y_i \overline{l}_i \cdot \tilde{H}N + \text{h.c.}), \quad (3)
\]

- Eqn. (3) can summarize the features of the right-handed neutrinos in most of the right-handed neutrino models.

- After EWSB,

\[
\mathcal{L} \supset cg_2 \sqrt{2} \theta_i (W_i^\dagger \overline{N} \gamma^\mu P_L l_i^- + \text{h.c.}) + \frac{g_2}{\cos \theta_W} \theta_i Z_\mu (\overline{N} \gamma^\mu P_L \nu_i + \text{h.c.}), \quad (4)
\]

where \(\theta_i \approx \frac{y_i v}{m_N} \).

- \(N \rightarrow \nu_i Z^* \), \(N \rightarrow l_i^\pm W^{\mp*} \) dominate the decay width, and \(N \rightarrow h^* \nu_i \rightarrow \text{all} + \nu_i \) is negligible due to the small \(h-\text{SM-SM} \) vertices.

- \(\frac{\sum_i \text{Br}(N \rightarrow \nu_i Z^*)}{\sum_i \text{Br}(N \rightarrow l_i^\pm W^{\mp*})} \) is independent on the specific value of \(y_i \)'s.
Even in the simplest Type-I see-saw mechanisms, if, for example, $m_N = 5$ GeV, the mixing parameter

$$\theta_i = \frac{y_i v}{m_N} > 3 \times 10^{-6}.$$
Even in the simplest Type-I see-saw mechanisms, if, for example, $m_N = 5$ GeV, the mixing parameter
$$\theta_i = \frac{y_i v}{m_N} > 3 \times 10^{-6}.$$
This is beyond the ability of the searching proposals on colliders or other techniques.
Even in the simplest Type-I see-saw mechanisms, if, for example, $m_N = 5 \text{ GeV}$, the mixing parameter
$\theta_i = \frac{y iv}{m_N} > 3 \times 10^{-6}$.

This is beyond the ability of the searching proposals on colliders or other techniques.

$\tau_N \lesssim 10^{-3} \text{ sec} \ll 1 \text{ sec}$. It might fly for a distance of 10^5 m, which is far below the radius of the Milky Way.
For simplicity, we only consider the following two scenarios,
For simplicity, we only consider the following two scenarios,

- $y_1 = y_2 = 0$, $y_3 \neq 0$. Then 100% of the right-handed neutrinos decay through $\tau + W^*/\nu_\tau + Z^*$ channels. The tau leptons also contribute to the gamma-ray spectrum;
For simplicity, we only consider the following two scenarios,

- $y_1 = y_2 = 0$, $y_3 \neq 0$. Then 100% of the right-handed neutrinos decay through $\tau + W^*/\nu_{\tau} + Z^*$ channels. The tau leptons also contribute to the gamma-ray spectrum;

- $y_3 = 0$, $y_1^2 + y_2^2 \neq 0$. Since muons and electrons do not produce photons, and the ratios
 \[
 \frac{Br(N \rightarrow \nu_e Z^*)}{Br(N \rightarrow l_e^\pm W^{\mp*})} = \frac{Br(N \rightarrow \nu_\mu Z^*)}{Br(N \rightarrow l_\mu^\pm W^{\mp*})}
 \]
 are fixed at a given $m_N \gg m_\mu$, the gamma-ray spectrum should be independent on concrete values of $y_{1,2}$.
For simplicity, we only consider the following two scenarios,

- $y_1 = y_2 = 0$, $y_3 \neq 0$. Then 100% of the right-handed neutrinos decay through $\tau + W^*/\nu_\tau + Z^*$ channels. The tau leptons also contribute to the gamma-ray spectrum;

- $y_3 = 0$, $y_1^2 + y_2^2 \neq 0$. Since muons and electrons do not produce photons, and the ratios $\frac{Br(N \rightarrow \nu_e Z^*)}{Br(N \rightarrow l_e^\pm W^{\mp*})} = \frac{Br(N \rightarrow \nu_\mu Z^*)}{Br(N \rightarrow l_\mu^\pm W^{\mp*})}$ are fixed at a given $m_N \gg m_\mu$, the gamma-ray spectrum should be independent on concrete values of $y_{1,2}$.

The gamma-ray spectrum by general values of $y_{1,2,3}$ are just linear-combinations of the above two cases.
The best-fitted points are $m_N = 32.0$ GeV, $m_\chi = 44.2$ GeV, with $\chi^2 = 24.22$ and the best-fitted $\langle \sigma v \rangle = 2.63 \times 10^{-26}\text{cm}^3/\text{s}$ for the $y_1 = y_2 = 0, y_3 \neq 0$ case, and $m_N = 27.0$ GeV, $m_\chi = 45.4$ GeV, with $\chi^2 = 23.81$ and the best-fitted $\langle \sigma v \rangle = 3.37 \times 10^{-26}\text{cm}^3/\text{s}$ for the $y_3 = 0, y_1^2 + y_2^2 \neq 0$ case.
Numerical Results

Figure: The $\Delta \chi^2$ figures. The blue, green, yellow areas are corresponding to the 1, 2 and 3 σ areas respectively. $\langle \sigma v \rangle$ is adjusted in order to acquire the best-fitted result. The left panel indicates the $y_1 = y_2 = 0$, $y_3 \neq 0$ case. The right-panel indicates the $y_3 = 0$, $y_1^2 + y_2^2 \neq 0$ case.
Numerical Results

Figure: The best-fitted $\langle \sigma v \rangle = \langle \sigma v \rangle_{\text{real}} J$, in the unit of cm3/s. The left panel indicates the $y_1 = y_2 = 0, y_3 \neq 0$ case. The right-panel indicates the $y_3 = 0, y_1^2 + y_2^2 \neq 0$ case.
Figure: The best-fitted gamma-ray spectrum together with the observed central values and the errorbars. In the case of $y_1 = y_2 = 0, y_3 \neq 0$, $\chi^2 = 24.22$, with the p-value 0.336. In the case of $y_3 = 0, y_1^2 + y_2^2 \neq 0$, $\chi^2 = 23.81$, with p-value 0.357.
Future Plan

- Build a well-motivated model including this scenario. I wish it would also contain the elements of the leptogenesis.
Future Plan

- Build a well-motivated model including this scenario. I wish it would also contain the elements of the leptogenesis.
- Study the two existing model I have listed before.
Thank You!