Hormesis Effects of Nano- and Micro-sized Copper Oxide

Majid Keshavarzi, Forouzan Khodaei, Asma Siavashpour, Arastoo Saeedi and Afshin Mohammadi-Bardbori*

Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

The concerns about the possible risk of manufactured nanoparticles (NPs) have been raised recently. Nano- and micro-sized copper oxide (CO and CONP) are widely used in many industries. In this regard, in-vitro studies have demonstrated that CONP is a toxic compound in different cell lines. Despite their unique properties, NPs possess unexpected toxicity profiling relative to the bulk materials. This study was designed to examine and compare the toxic effects of CO and CONPs in-vivo and in isolated rat mitochondria. Male Wistar albino rats received 50 to 1000 mg/kg CO or CONP by gavage and several toxicological endpoints including biochemical indices and oxidative stress markers. Then, the pathological parameters in the multiple organs such as liver, brain, spleen, kidney, and intestine were assessed. Mitochondria were isolated from the rat liver and several mitochondrial indices were measured. The results of this study demonstrated that CO and CONP exhibited biphasic dose-response effects. CONPs showed higher toxicity compared with the bulk material. There were no significant changes in the results of CONP and CO in isolated rat liver mitochondria. The present studies provided more information regarding the hormetic effects of CO and CONPs in-vivo and in isolated rat mitochondria.

Keywords: Copper oxide; Copper oxide nanoparticles; Hormesis effects; Mitohormesis; Mitotoxicity.

Introduction

Metal oxides especially copper oxide nanoparticles (CONPs) have received growing attention due to the wide range of applications in recent years. Also, humans are constantly exposed to those particles occupationally or via consumer products. In order to lower the risk of exposure, it is necessary to have detailed accounts for proper risk assessment of chemical (1, 2).

Copper (CO) is one of the cofactors essential for various enzymes, cellular respiration, neurotransmitter regulation, collagen synthesis, and metabolism of nutrients (3). However, several studies have demonstrated that both forms of copper (CO and CONPs) provoke toxic responses at high doses in different biological systems including animals, various mammalian cell lines, plants, and bacteria (4-7).

Copper ions (CuCl₂·2H₂O) can cause severe pathological damages compared to CO in different organs of mice such as the kidney, liver, and spleen (8). Besides, high doses of CO via releasing CO ions is linked with a harmful effect on human health, living...
organisms, and environment (9). However, from in-vitro studies, it can be speculated that CONPs toxicity cannot be simply explained by the release of CO ion into the cell culture media (8, 10). CO and CONPs are able to interfere with the homeostasis of other metals and form reactive oxygen species that damage DNA and cellular components (11). CONPs have also been suggested to promote apoptosis via generation of reactive oxygen species (ROS) and activation of intracellular signaling through the mitochondrial-dependent pathway (12-16).

Particle size has a direct relationship with many of the chemical features, including surface area, solubility, and reactivity that can strongly affect the toxicity of nanoparticles (11). Therefore, reducing the size leads to an increase in the surface area of nanoparticles that not only increases the accumulation of nanoparticles but also increases the reactivity and interaction with bio-molecules (17, 18). Similar to the other inorganic metals, CONPs also exhibits size and concentration-dependent toxicity (19). In this connection, when evaluating the toxicity of CONPs only a single physicochemical property such as size cannot be a final determination of predicted chemical toxicity; rather, the morphologies and the species-specific vulnerabilities of the cells should be taken in consideration, as well (20).

More than two centuries ago, hormesis became one of the most important issues in the field of pharmacology and toxicology and the biological response to the wide range of doses was characterized (21). In the field of toxicology, hundreds of substances illustrate biphasic dose responses, also called hormetic effects (22). Hormetic effects are common in a wide variety of inorganic minerals such as arsenic, cadmium, copper, lead, mercury, selenium, and zinc (23, 24). Besides, there are many examples of unusual dose-response for a large number of nanoparticles (25, 26).

To date, a large number of in-vitro studies have reported that CONPs at relatively high doses produce toxicity mainly based on the assessment of cell viability, ROS generation, and apoptosis. However, reports of in-vivo in different organs of animals and in isolated mitochondria are limited. This study was conducted to provide more evidence on the potential biphasic effects of CO and CONPs in-vivo and in isolated rat mitochondria.

Experimental

Chemicals and physico-chemical characterization

Bulk CO (CAS#: 1317-39-1) was purchased from Sigma-Aldrich, Germany. Spherical CONPs was purchased from US Research Nanomaterials, Inc. (CAS#: 1317-38-0). According to the manufacturer, the diameter of CONPs was 40 nm, purity was 99.9%, and the specific surface area was around 20 m2/g.

The size distributions of CONPs (200 mg/mL) were measured after suspensions preparation using a laser diffraction particle size analyzer (Shimadzu, Model SALD-2101, Japan) at room temperature.

Animals and treatments

Male Wistar albino rats (180–220 g body weight) were obtained from the Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences. The animals were housed environmentally (t = 25 °C) and in an air humidity controlled room (60%). Then, they were kept on a standard laboratory diet and were maintained in a 12 h light-dark cycle for one week before the start of the experiments. They were treated according to the guideline of the Ethics Committee of Shiraz University of Medical Sciences. The animals were allowed to feed standard laboratory chow and tap water ad libitum.

The rats were divided into 11 groups of 8 animals randomly and received phosphate buffer saline (PBS) and different doses of CO and CONPs (50, 100, 250, 500, and 1000 mg/kg b.w) by gavage. They were treated for three consecutive days and at the end of the treatments were anesthetized by injecting 60 mg/kg thiopental. Next, the blood samples were collected for biochemical examinations. The brain, intestine, kidneys,
spleen, and livers were quickly removed and homogenized for future examinations.

Preparation of mitochondria

Rats liver was removed and mitochondria were isolated in a cold mannitol solution containing 0.225 MD-mannitol, 75 mM sucrose, and 0.2 mM ethylenediaminetetraacetic acid (EDTA), as described in (27). Approximately, 30 g of the minced liver was gently homogenized in a glass homogenizer with a Teflon pestle and then centrifuged at 700 × g for 19 min at 4 °C to remove nuclei, unbroken cells, and other non-sub-cellular tissues. The supernatant was centrifuged at 7000 × g for 20 min. The heavy packed lower layer (heavy mitochondrial fraction) was re-suspended in the mannitol solution and re-centrifuged twice at 7000 × g for 20 min. The heavy mitochondrial sediments were suspended in Tris solution containing 0.05 M Tris-HCl buffer (pH 7.4) 0.25 M sucrose, 20 mM KCl, 2.0 mM MgCl₂, and 1.0 mM Na₂HPO₄ at 4 °C before the assay.

Analyses of mitochondrial viability

In our study, the quantitative colorimetric method for determination of cell viability by MTT was modified for rat liver mitochondria suspension in tubes (succinate dehydrogenase activity) (27).

Analyses of Mitochondrial membrane potential (MMP)

Rhodamine 123 was used to assess MMP (28, 29). The mitochondrial fractions were added into the reaction mixture containing 150 mM sucrose, 4 mM MgCl₂, 5 mM potassium phosphate, and 30 mM KOH–HEPES (pH 7.4) in a total volume of 1 mL at 37 °C for 5 min. The reaction was initiated by adding 10 µL of 1 µM Rhodamine 123 and fluorescence was measured with excitation at 507 nm and emission at 527 nm (28).

Analyses of lipid peroxidation

Levels of MDA were measured in different experimental groups. Briefly, the reaction mixture consists of 0.2 mL 8% SDS, 1.5 mL 20% trichloroacetic acid (TCA), and 0.6 mL of distilled water was prepared and mixed with 0.2 mL of tissue homogenate. The reaction was initiated by adding 1.5 mL of 1% thiobarbituric acid (TBA) and terminated by 10% trichloroacetic acid (TCA). The samples were centrifuged (3000 × g for 5 min) and the absorbance was measured at 532 nm (30).

Analyses of GSH and GSSG contents

Liver homogenates were mixed with 20% (w/v) trichloroacetic acid (TCA) and centrifuged at 10,000 × g for 20 min. The supernatant was removed and analyzed for reduced glutathione (31) by the 5,5’ dithiobis-2-nitrobenzoic acid (DTNB) recycling procedure (32). Total glutathione was determined in the supernatant after mixing with 1 mL of 5% sodium borohydride (NaBH₄) and incubating at 45 °C for 60 min. The mixture was neutralized with 0.5 mL of 2.7 N HCl and total GSH was measured as described above. The absorbance at 412 nm was measured immediately after mixing. The GSH values were measured by extrapolation from a standard curve and GSSG expressed as GSH equivalents (33). GSH was normalized to cellular protein content.

Analyses of reactive oxygen species (ROS)

ROS generation was evaluated using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) dye as described previously (34). Briefly, 0.5 g of tissue was homogenized in a cold 40 mM Tris–HCl buffer (pH 7.4). For each sample, two parts containing 1 mL of 40 mM Tris–HCl buffer (pH 7.4) and 100 μL of the homogeneous mixture were prepared. In the first part, 10 µL of 1 µM DCFDA in methanol was added for ROS estimation and the same volume of methanol was added to the other part for control. The samples were incubated in a 37 °C for 30 min and fluorescence was read at excitation and emission wavelengths of 485 nm and 530 nm.

Analyses of serum biochemical changes

The animal blood samples were collected in the glass tube containing an anticoagulant substance (heparin). The
biochemical parameters including blood urea nitrogen (BUN), creatinine (Cr), aspartate aminotransferase (SGOT), alanine aminotransferase (SGPT), total bilirubin (Bili Total), and lactate dehydrogenase (LDH) were measured by Biocon standard kits using automated Mannheim’s Erba XL 200 clinical chemistry analyzer.

Protein concentration
Sample protein concentrations were determined using the method developed by Bradford (35). Briefly, 100 µL of the suspensions were added to a 96-well plate and gently mixed with Bradford reagent. After 5 min, the absorbance was measured at 595 nm.

Statistical analysis
All values were expressed as mean ± SEM. To compare more than two experimental groups, One-way ANOVA followed by Tukey multiple comparison tests were used while to compare two experimental groups, two-tailed t-tests were used. P-values < 0.05 were considered statistically significant.

Results

Physico-chemical characterization of CONPs
Figure 1 presents the size distribution of CONPs in suspension. When spherical CONPs nanopowder was suspended in the PBS, CONPs formed rapidly agglomerates. The results revealed that CONPs do not appear in the specified size according to the suppliers. It seems that in the suspension, CONPs tend to be aggregated. The mean size was 80 nm with more than 75% of particles.

Effects of CO and CONPs on mitochondrial indices
Quantitative data are presented in Figure 1. The mitochondrial succinate dehydrogenase activity decreased significantly in CO and CONPs 100 and 500 mg/kg treated groups compared with the control group. ROS formation was increased and MMP was declined by CO and CONPs 100 and 500 mg/kg approximately 78%-36%, and 13%-16%, respectively (Figure 1). There was no statistically significant difference between mito-toxicity profiling of nano- and micro-sized Copper oxide (Figure 2).

Effects of CO and CONPs on oxidative stress biomarkers
As shown in Figure 3, the ROS formation was significantly increased with all doses of CO and CONPs in liver, spleen, brain, and intestine compared with the control groups. Kidney ROS formation was seen in response to CO and CONPs 100 mg/kg and 500 mg/kg.
Figure 2. Effects of different doses of CO and CONPs on mitochondrial succinate dehydrogenase activity (SDA). Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and liver samples were collected for mitochondrial isolation. Mitochondria SDA were measured according to the materials and methods. Data are expressed as means ± SD. """"(P < 0.001) significantly different when compared with control alone. Effects of different doses of CO and CONPs on mitochondrial ROS formation. Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and liver samples were collected for mitochondrial isolation. ROS formation were measured according to the materials and methods. Data are expressed as means ± SD. """"(P < 0.001) significantly different when compared with control alone. Effects of different doses of CO and CONPs on mitochondrial membrane potential (MMP). Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and liver samples were collected for mitochondrial isolation. MMP were measured according to the materials and methods. Data are expressed as means ± SD. """"(P < 0.001) significantly different when compared with control alone.

As shown in Table 1, the GSH contents were significantly decreased and GSSG was increased with the lowest and highest dose of CO and CONPs compared with the control groups in the brain, intestine, and spleen. However, in liver and kidney, GSH was declined and GSSG was increased with CO and CONPs 100 and 500 mg/kg while in kidney GSSG was only increased with CONPs 500 mg/kg. MDA content was significantly increased with the highest and lowest doses of CO and CONPs compared with the control groups (Figure 4).

Effects of CO and CONPs on biochemical parameters

Results of the enzyme activity analysis are shown in Table 2.

Administration of all doses of CO and CONPs, except CO 250 mg/kg, to the rats caused a significant elevation in serum SGOT, SGPT, LDH, and Total Bili. Serum Cr at the highest and lowest doses of CONPs was increased compared to the control group. There was a significant difference between CO and CONPs treated groups (Table 2).
Table 1. Effects of different concentrations of CO and CONPs on reduced glutathione (31), total glutathione (Total GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio. Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and brain, intestine, kidney, spleen and livers were quickly removed and homogenized for GSH and GSSG measurement. The GSH and GSSG were measured according to the materials and methods. Values are means ± SD for three independent experiments. *P < 0.05, †P < 0.01, ‡P < 0.001 compared to control.

Group	Treatment (72 h)	GSH (nmole/mg protein)	Total GSH (nmole/mg protein)	GSSG (nmole/mg protein)	GSH/GSSG
Brain	Control	105.08 ± 16.17	117.52 ± 19.78	12.44 ± 3.64	8.66
	CO100 (mg/kg)	78.21 ± 9.34*	136.08 ± 18.47	57.88 ± 15.53*	1.43
	CO250 (mg/kg)	87.23 ± 4.41	106.55 ± 9.96	19.33 ± 6.37	4.90
	CO500 (mg/kg)	82.61 ± 10.36	131.26 ± 10.96	48.64 ± 12.79b	1.80
	CONP100 (mg/kg)	72.25 ± 6.03b	122.84 ± 11.77	50.59 ± 13.51b	1.50
	CONP250 (mg/kg)	84.10 ± 7.70	99.43 ± 8.58	15.33 ± 1.20	5.49
	CONP500 (mg/kg)	79.27 ± 1.10b	128.58 ± 12.2	49.31 ± 3.2b	1.61
Intestine	Control	47.03 ± 6.88	69.44 ± 7.49	22.44 ± 1.80	2.10
	CO100 (mg/kg)	12.01 ± 4.23†	49.93 ± 2.89	37.92 ± 7.79b	0.34
	CO250 (mg/kg)	28.26 ± 6.01	58.12 ± 11.32	29.86 ± 5.54	1.16
	CO500 (mg/kg)	15.67 ± 2.82a	54.97 ± 3.55	39.31 ± 10.24a	0.48
	CONP100 (mg/kg)	24.08 ± 4.95†	55.11 ± 4.12	31.02 ± 2.48b	0.78
	CONP250 (mg/kg)	36.06 ± 9.04	60.44 ± 11.81	24.38 ± 2.96	1.46
	CONP500 (mg/kg)	5.69 ± 4.9	51.05 ± 3.7	45.36 ± 2.4e	0.13
Kidney	Control	69.17 ± 9.03	72.48 ± 9.30	3.32 ± 0.27	20.80
	CO100 (mg/kg)	44.06 ± 1.88†	50.15 ± 0.79	6.10 ± 1.39	7.58
	CO250 (mg/kg)	60.61 ± 5.86	64.37 ± 6.58	3.76 ± 0.74	16.31
	CO500 (mg/kg)	43.75 ± 4.83†	48.98 ± 4.62	5.23 ± 0.80	8.53
	CONP100 (mg/kg)	46.36 ± 4.88†	51.79 ± 5.97	5.42 ± 1.46	8.89
	CONP250 (mg/kg)	60.79 ± 4.20	64.29 ± 4.45	3.50 ± 0.32	17.40
	CONP500 (mg/kg)	43.43 ± 2.2e	50.23 ± 3.5	6.80 ± 1.1e	6.38
Liver	Control	247.13 ± 30.94	253.90 ± 31.53	6.77 ± 0.67	36.48
	CO100 (mg/kg)	98.01 ± 14.71†	108.68 ± 15.89	10.67 ± 2.82	9.53
	CO250 (mg/kg)	193.13 ± 34.16	202.41 ± 34.49	9.27 ± 1.57	21.10
	CO500 (mg/kg)	180.51 ± 27.89†	196.34 ± 26.82	15.82 ± 1.21c	11.53
	CONP100 (mg/kg)	160.14 ± 10.73†	171.83 ± 11.87	11.69 ± 1.66a	13.83
	CONP250 (mg/kg)	226.82 ± 12.66	237.46 ± 15.34	10.64 ± 2.68	22.00
	CONP500 (mg/kg)	145.59 ± 10.55	164.58 ± 13.3	19.00 ± 2.1‡	7.66
Spleen	Control	51.39 ± 7.76	62.94 ± 3.57	11.55 ± 5.08	5.12
	CO100 (mg/kg)	13.26 ± 7.34†	41.87 ± 4.20	28.61 ± 4.04†	0.49
	CO250 (mg/kg)	35.47 ± 1.99	47.11 ± 4.08	11.64 ± 3.38	3.21
	CO500 (mg/kg)	16.69 ± 10.73‡	44.44 ± 3.92	27.74 ± 8.69‡	0.74
	CONP100 (mg/kg)	13.07 ± 3.65‡	40.81 ± 7.86	27.74 ± 5.27‡	0.47
	CONP250 (mg/kg)	37.76 ± 2.60	54.17 ± 5.90	16.41 ± 8.50	2.70
	CONP500 (mg/kg)	31.75 ± 2.5†	54.34 ± 6.5	22.59 ± 5.9†	1.41
Table 2. Effects of different concentrations of CO and CONPs on biochemical parameters. Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and blood samples were collected for biochemical examinations. Values are expressed as mean ± SD. * and † indicate significant differences (\(P < 0.05; \) \(\uparrow P < 0.01; \) \(\downarrow P < 0.01 \)) in exposed groups vs. control. BUN: blood urea nitrogen; Cr: creatinine; SGOT: aspartate aminotransferase; SGPT: alanine aminotransferase; Bili Total: total bilirubin; LDH: lactate dehydrogenase.

Groups	Biochemical parameters					
	BUN (mg/dL)	Cr (mg/dL)	SGOT (U/L)	SGPT (U/L)	Total Bili (mg/dL)	LDH (U/L)
Control	28.3 ± 3.05	0.60 ± 0.11	115.33 ± 1.22	68.00 ± 7.21	0.20 ± 0.001	129.66 ± 28.53
CO100 (mg/kg)	21.2 ± 3.40	0.62 ± 0.05	133.75 ± 2.70*	59.5 ± 1.28*	0.30 ± 0.001*	597.00 ± 5.69*
CO250 (mg/kg)	23.5 ± 5.97	0.57 ± 0.12	128.00 ± 1.07*	63.21 ± 1.27*	0.23 ± 0.05	371.5 ± 28.11*
CO500 (mg/kg)	20.2 ± 4.11	0.65 ± 0.05	133.25 ± 2.42*	77.50 ± 1.27*	0.30 ± 0.001*	606.5 ± 14.75*
CONP100 (mg/kg)	21.2 ± 3.27	0.70 ± 0.01*	151.23 ± 2.03*	74.33 ± 1.85a	0.28 ± 0.008*	710.6 ± 8.44*
CONP250 (mg/kg)	25.0 ± 3.55	0.57 ± 0.05	126.00 ± 3.04*	76.00 ± 1.70*	0.24 ± 0.005*	425.75 ± 18.95*
CONP500 (mg/kg)	24.0 ± 4.24	0.75 ± 0.05*	133.25 ± 2.70*	76.00 ± 1.50*	0.25 ± 0.007*	700.75 ± 23.23*

Figure 3. Effects of different doses of CO and CONPs rat organ ROS formation. Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and brain, intestine, kidney, spleen and livers were quickly removed and homogenized for ROS measurement. ROS formation were measured according to the materials and methods. Data are expressed as means ± SD. ***(\(P < 0.001 \)) significantly different when compared with control alone.
Discussion

In this study, the toxicity profiling of a micro and nano-sized copper oxide was evaluated in different organs of rat including liver, kidney, intestine, brain, and spleen using several oxidative stress biomarkers and biochemical parameters. In addition, mitotoxicity of CO and CONPs was evaluated in isolated mitochondria from the rat liver. We observed that CO and CONPs exhibited to some extent a U shape dose-response pattern (Figures 2-4 and Tables 1 and 2).

In addition, their effects on isolated rat mitochondria, which include MTT assay, mitochondrial membrane potential, and ROS formation, were studied and similar mitohormesis effects were observed (Figure 2). Overall, in-vivo experiments showed a significant difference between toxicity profiling of CO and CONPs but mitotoxicity profiling of CONPs and CO was similar (Figures 2-4 and Tables 1 and 2).

Figure 4. Effects of different doses of CO and CONPs rat organ MDA. Animals were exposed to PBS, 100, 250 and 500 mg/kg CO and CONPs for three consecutive days and at the end of the treatments, animals were anaesthetized and brain, intestine, kidney, spleen and livers were quickly removed and homogenized for MDA measurement. MDA were measured according to the materials and methods. Data are expressed as means ± SD. ***(P < 0.001) significantly different when compared with control alone.

![Figure 4](image-url)
The mode of action of CO and CONPs has already been explained by chemical interaction with biomolecules and induction of oxidative stress (36, 37). Increasing ROS formation leads to the degradation of DNA, increased expression of the death receptors and cause mitochondrial dysfunction (37). In addition, as a very reactive redox chemical, CO in the presence of iron can give rise to hydroxyl radicals formation through Fenton reaction (38).

In line with this result, studies have demonstrated that CONPs through the mitochondrial-dependent pathway in HepG2 cells can induce apoptosis cascade (39). In agreement with our data, caspase-3 apoptotic genes have shown to be up-regulated by exposure to CONPs along with reducing the mitochondrial membrane potential (39). From our mitochondrial experiments and the other relevant studies, it can be speculated that mitochondria are target organelle of CO and CONPs toxicity (Figure 2) (40). We suggest that CO and CONPs can interact directly with the mitochondria that are the main source of free radicals formation in the cells and cause oxidative damages (41). However, low intensity of ROS may lead to activation of signal transmission paths to initiate defense responses (42). Indeed, NPs can also impair the transfer of ions and electrons from the cell membrane and membrane of mitochondria (43-45).

It has been found that metals cause biphasic dose-response in cell culture and animal models (46-48). Our results are consistent with a previous finding on the U pattern dose response of NPs (49). The mechanisms that mediate hormesis effects are not well known. It has been suggested that the heat shock protein 70 (HSP70) family (50), as well as metallothionein (MT) proteins, are mediators of hormesis because the levels of those proteins are increased in response to heavy metals exposure (51, 52). Our results demonstrated that GSH/GSSG ratio is changed after CO and CONPs exposure. Glutathione is an important antioxidant enzyme that has a functional thiol group. In this connection, previous studies have shown that copper poisoning results from the reaction of metal with glutathione (53). Although some studies proposed the copper-catalyzed oxidation of glutathione (45), but the exact mechanism is unclear (54).

The toxicity of the metal ions in mammalian systems is due to the chemical reaction of the ions with the cellular components such as structural proteins, enzymes, and membrane systems (55-57).

The severity of toxicity is usually dependent on the metals accumulation in the target organs (55, 58). Comparison of bioavailability of copper ion and copper nanoparticles in a single oral dose (500 mg/kg) in the rats has indicated that both nanoparticles and copper ions in liver, kidney, and spleen can be accumulated (59). Heavy metals are able to accumulate in the vital organs such as the heart, brain, kidney, liver (60, 61), and bone (62, 63) and cause different clinical characteristics (64) such as growth retardation (55), various types of cancer (65, 66), kidney and liver damages (31), and impairment of immune system (67) and the other disorders (68-70). NPs also can cause harmful effects on the respiratory (71, 72), cardiovascular, and nervous systems (73).

In this study, we did not focus on the all aspect of CO and CONPs toxicity. It seems that CONPs cause more organ toxicity compared with bulk materials. Similar studies have demonstrated that NPs with the size smaller than 100 nm can easily enter the cell while those smaller than 40 and 30 nm can readily enter the nucleus and cross the blood-brain barrier, respectively (74). Small NPs have a tendency to form aggregation rather than single units, particularly under physiological conditions (75). NPs larger than 100 nm can be readily engulfed by the alveolar macrophages and those particles that are smaller than 100 nm tend to be aggregated and engulfed by the phagocytosis (76, 77). However, in non-phagocytes, size, shape, and the other physiochemical properties such as molecule surface charge can facilitate its internalization and affect NPs induce organ toxicity (77-81).
Conclusion

The present studies provided information regarding the hormetic effects of CO and CONPs in-vivo and in isolated rat mitochondria. We found that CONPs and CO have a similar pattern of toxicity. ROS formation was an early event leading to oxidative damage by CONPs and CO in different organs of the rats. The results of this study may provide more accurate information for a proper risk assessment of CONPs.

Acknowledgement

The authors of this manuscript wish to express their appreciation to Shiraz University of Medical Sciences, Shiraz, Iran. This work was supported by the Research Grants from the Shiraz University of Medical Sciences, Iran (Grant numbers 94-01-36-9525; 94-01-36-9649; 94-01-36-10272).

References

(1) Hao Y, Liu J, Feng Y, Yu S, Zhang W, Li L, Min L, Zhang H, Shen W and Zhao Y. Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles. Toxicol. Appl. Pharmacol. (2017) 329: 318-25.
(2) Arujoa V, Dubourguier HC, Kasemets K and Kahrnu A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total. Environ. (2009) 407: 1461-8.
(3) Gaetke LM and Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology (2003) 189: 147-63.
(4) Moschini E, Gualtieri M, Colombo M, Fascio U, Camatini M and Manteca P. The modality of cell-particle interactions drives the toxicity of nanosized CuO and TiO2 in human alveolar epithelial cells. Toxicol. Lett. (2013) 222: 102-16.
(5) Hou J, Wang X and Hayat T. Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ. Pollut. (2017) 221: 209-17.
(6) Alaraby M, Hernandez A and Marcos R. Copper oxide nanoparticles and copper sulphate act as antigenotoxic agents in drosophila melanogaster. Environ. Mol. Mutagen. (2017) 58: 46-55.
(7) Nations S, Long M, Wages M, Maul JD, Theodorakis CW and Cobb GP. Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis. Chemosphere (2015) 135: 166-74.
(8) Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B and Wan L. Acute toxicological effects of copper nanoparticles in-vivo. Toxicol. Lett. (2006) 163: 109-20.
(9) Hanna SK, Miller RJ and Lenihan HS. Accumulation and toxicity of copper oxide engineered nanoparticles in a marine mussel. Nanomaterials (Basel) (2014) 4: 535-47.
(10) Karlsson HL, Cronholm P, Gustafsson J and Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. (2008) 21: 172-36.
(11) Angele-Martinez C, Nguyen KV, Ameer FS, Anker JN and Brumaghim JL. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology (2017) 11: 278-88.
(12) Tang Y, He R, Zhao J, Nie G, Xu L and Xing B. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ. Pollut. (2016) 212: 605-14.
(13) Karlsson HL, Gustafsson J, Cronholm P and Moller L. Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol. Lett. (2009) 188: 112-8.
(14) Niska K, Santos-Martinez MJ, Radomski MW and Inkelewiecz-Stepniak I. CuO nanoparticles induce apoptosis by impairing the antioxidant defense and detoxification systems in the mouse hippocampal HT22 cell line: protective effect of crocetin. Toxicol. In-vitro (2015) 29: 663-71.
(15) Rodhe Y, Skoglund S, Odnevall Wallinder I, Potacova Z and Moller L. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol. In-vitro (2015) 29: 1711-9.
(16) Thit A, Selck H and Bjerregaard HF. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicol. In-vitro (2015) 29: 1053-9.
(17) Iavicoli I, Fontana L and Nordberg G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol. (2016) 46: 490-560.
(18) Anderson A, McLean JE, Jacobson AR and Britt DW. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production: a review. J. Agric. Food Chem. (2017) 66: 6513-24.
(19) Prabhu BM, Ali SF, Murdock RC, Hussain SM and Srivatsan M. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology (2010) 4: 150-60.
(20) Song L, Connolly M, Fernandez-Cruz ML, Vrijver MG, Fernandez M, Conde E, de Snoo GR, Peijnenburg WJ and Navas JM. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology (2014) 8: 383-93.
(21) Calabrese EJ. Once marginalized, evidence now supports hormesis as the most fundamental dose
response. In: Mattson MP and Calabrese EJ. (eds.) *Hormesis: A Revolution in Biology, Toxicology and Medicine*. 1st ed. Humana Press, New York, USA (2010) 15–56.

(22) Calabrese EJ, Calabrese V and Giordano J. The role of hormesis in the functional performance and protection of neural systems. *Brain Circ.* (2017) 3: 1-13.

(23) Calabrese EJ and Baldwin LA. Inorganics and hormesis. *Crit. Rev. Toxicol.* (2003) 33: 215-304.

(24) Schmidt CM, Cheng CN, Marino A, Konsoulia R and A Barile F. Hormesis effect of trace metals on cultured normal and immortal human mammary cells. *Toxicol. Ind. Health* (2004) 20: 57-68.

(25) Jiao ZH, Li M, Feng YX, Shi JC, Zhang J and Shao B. Hormesis effects of silver nanoparticles at non-cytotoxic doses to human hepatoma cells. *PloS One* (2014) 9: e102564.

(26) Javicoli I, Calabrese EJ and Nascarella MA. Exposure to nanoparticles and hormesis. *Dose Response* (2010) 8: 501-17.

(27) Mohammad- Bardboria A and Ghazi-Khansari M. Nonthiol ACE inhibitors, enalapril and lisinopril are unable to protect mitochondrial toxicity due to paraquat. *Pestic. Biochem. Phys.* (2007) 89: 163-7.

(28) Zhang F, Xu Z, Gao J, Xu B and Deng Y. *In-vitro* effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. *Environ. Toxicol. Pharmacol.* (2008) 26: 232-6.

(29) Mohammad-Bardbori A, Najibi A, Amirzadegan N, Gharibi R, Dashti A, Omidi M, Saedci A, Ghafarian-Bahreman A and Niknahad H. Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins. *Eur. J. Pharmacol.* (2015) 762: 270-4.

(30) Mihara M and Uchiyama M. Determination of malonialdehyde precursor in tissues by thiobarbituric acid test. *Anal. Biochem.* (1978) 86: 271-8.

(31) Gong L, Wang Y and Liu J. Bioapplications of renal-clearable luminescent metal nanoparticles. *Biomater. Sci.* (2017) 5: 1393-406.

(32) Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. *Anal. Biochem.* (1969) 27: 502-22.

(33) Mohammad-Bardbori A and Ghazi-Khansari M. Comparative measurement of cyanide and paraquat mitochondrial toxicity using two different mitochondrial toxicity assays. *Toxicol. Mech. Methods* (2007) 17: 87-91.

(34) Wang H and Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. *Free Radic. Biol. Med.* (1999) 27: 612-6.

(35) Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* (1976) 72: 248-54.

(36) Angelé-Martínez C, Nguyen KV, Ameer FS, Anker JN and Brumaghim JL. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. *Nanotoxicology* (2017) 11: 278-88.

(37) Ivask A, Juganson K, Bondarenko O, Mortimer M, Araujo V, Kasemets K, Blinova I, Heilman A, Slaveykova V and Kahru A. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells *in-vitro*: A comparative review. *Nanotoxicology* (2014) 8 (Suppl 1): 57-71.

(38) Saporito-Magríñá C, Musacco-Sebio R, Acosta JM, Bajicoff S, Paredes-Fletias P, Reynoso S, Boveris A and Repetto MG. Copper (II) and iron (III) ions inhibit respiration and increase free radical-mediated phospholipid peroxidation in rat liver mitochondria: effect of antioxidants. *J. Inorg. Biochem.* (2017) 172: 94-9.

(39) Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J and Ahamed M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. *PloS One* (2013) 8: e69534.

(40) Wang Y, Yang F, Zhang HX, Zi XY, Pan XH, Chen F, Luo WD, Li JX, Zhu HY and Hu YP. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. *Cell Death Dis.* (2013) 4: e783.

(41) Bulcke F, Thiel K, Dringen R. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. *Nanotoxicology* (2014) 8: 775-85.

(42) Sfar S, Jawed A, Braham H, Amor S, Laporte F and Kerkeni A. Zinc, copper and antioxidant enzyme activities in healthy elderly Tunisian subjects. *Exp. Gerontol.* (2009) 44: 812-7.

(43) Manke A, Wang L and Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. *BioMed Res. Int.* (2013) 2013: 1-15.

(44) Vogel CFA, Charrrier JG, Wu D, McFall AS, Li W, Abid A, Kennedy IM and Anastasio C. Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical. *Free Radic. Res.* (2016) 50: 1153-64.

(45) Neubauer N, Palomaeki J, Karisola P, Alenius H and Kasper G. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments – An indication for the catalytic nature of their interactions. *Nanotoxicology* (2015) 9: 1059-66.

(46) Calabrese EJ. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. *Environ. Pollut.* (2005) 138: 379-411.

(47) Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X, Wang S and Xing G. Hormetic effects of acute methylmercury exposure on grp78 expression in rat brain cortex. *Dose Response* (2013) 11: 109-20.

(48) Hayes DP. Nutritional hormesis. *Eur. J. Clin. Nutr.*
(78) Yue H, Wei W, Yue Z, Wang B, Luo N, Gao Y, Ma D, Ma G and Su Z. The role of the lateral dimension of graphene oxide in the regulation of cellular responses. *Biomaterials* (2012) 33: 4013-21.

(79) Chatterjee N, Eom HJ and Choi J. A systems toxicology approach to the surface functionality control of graphene–cell interactions. *Biomaterials* (2014) 35: 1109-27.

(80) Jarosz A, Skoda M, Dudek I and Szukiewicz D. Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. *Oxid. Med. Cell. Longev.* (2015) 2016: 5851035.

(81) Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG and Ma GH. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. *Biomacromolecules* (2011) 12: 2440-6.

This article is available online at http://www.ijpr.ir