Article

Limit Cycles of a Class of Polynomial Differential Systems Bifurcating from the Periodic Orbits of a Linear Center

Amor Menaceur 1, Salah Boulaaras 2,3,*1, Salem Alkhalaf 4 and Shilpi Jain 5

1 Laboratory of Analysis and Control of Differential Equations “ACED”, Department of Maths, University of Guelma, P.O. Box 401, Guelma 24000, Algeria; menaceur.amor@univ-guelma.dz
2 Department of Mathematics, College of Sciences and Arts, Al-Rass, Qassim University, Buraydah 51452, Saudi Arabia
3 Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Oran 31000, Algeria
4 Department of Computer Science, College of Sciences and Arts, Al-Rass, Qassim University, Buraydah 51452, Saudi Arabia; s.alkhalaf@qu.edu.sa
5 Department of Mathematics Poornima College of Engineering ISI-6, RIICO Institutional Area, Sitapura Jaipur 302 022 (Rajasthan), India; shilpijain1310@gmail.com

* Correspondence: S.Boulaaras@qu.edu.sa or saleh_boulaares@yahoo.fr; Tel.: +966-559618327

Received: 22 July 2020; Accepted: 8 August 2020; Published: 12 August 2020

Abstract: In this paper, we study the number of limit cycles of a new class of polynomial differential systems, which is an extended work of two families of differential systems in systems considered earlier. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of a center using the averaging theory of first and second order.

Keywords: existence; limit cycle; averaging method; Kukles system

JEL Classification: 34C29; 34C25; 47H11

1. Introduction

One of the more difficult problems in the qualitative theory of polynomial differential equations in the plane \mathbb{R}^2 is the study of their limit cycles. Thus a classical problem related to these polynomial differential systems is the second part of the unsolved 16th Hilbert problem [1,2], which essentially consists of finding a uniform upper bound for the maximum number of limit cycles that a planar polynomial differential system of a given degree can have.

The limit cycles problem and the center problem are concentrated on specific classes of systems. For instance, much has been written on Kolmogorov systems, Liénard systems and Kukles systems, that is, systems of the form

$$\dot{x} = -y, \quad \dot{y} = x + \lambda y + Q(x, y), \quad (1)$$

where $Q(x, y)$ is a polynomial with real coefficients of degree n. Bifurcation of limit cycles in Kukles systems have been tackled by several authors and by using different approaches.

In [3], Kukles gave necessary and sufficient conditions in order that (1) with $n = 3$ has a center at the origin. This cubic system without the term y^3 was also studied in [4] and the authors called it reduced. Christopher and Lloyd [5] presented some systems that yield at most five limit cycles bifurcating from the origin. In [6], Chavarriga et al. studied the maximum number of small amplitude limit cycles for Kukles systems which can coexist with some invariant algebraic curves. By averaging theory, bifurcation of limit cycles for a family of perturbed Kukles differential systems was studied
in [7–11]. In [8], Llibre and Mereu studied the maximum number of limit cycles of the Kukles polynomial differential systems

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= -x - f(x) - g(x)y - h(x)y^2 - d_0 y^3,
\end{align*}
\]

where the polynomials \(f(x), g(x) \) and \(h(x) \) have degree \(n_1, n_2 \) and \(n_3 \) respectively, \(d_0^k \neq 0 \) is a real number.

Sáez and Szántó, in [12] introduced the following system

\[
\begin{align*}
\dot{x} &= -y \\
\dot{y} &= x + \epsilon(x^2 + y^2) \left(-A + \sum_{i=1}^{n-2} q_i(x, y) - A_l \right),
\end{align*}
\]

where \(A_l > 0, q_i(0,0) \in \mathbb{R}, \) and \(\epsilon \) is a small parameter, thy proved the following result.

Theorem 1 (See [12]). If either \(n = 2k \) or \(n = 2k - 1 \) for \(k \geq 2 \), then system (2) has at most \((k - 2)\) global limit cycles bifurcated from the unperturbed Hamiltonian center.

In [13], Rabanal computed the maximum number of limit cycles of the following differential systems

\[
\begin{align*}
\dot{x} &= -y \\
\dot{y} &= x + (x^2 + y^2) \sum_{i=1}^{l} \epsilon^i (q_l(x, y) - A_l),
\end{align*}
\]

where for every \(l = 1, 2, 3, A_l > 0 \) and the polynomial \(q_l(x, y) \) has degree \(n_l - 2 \geq 1 \) with \(q_l(0,0) = 0, \) and \(\epsilon \) is a small parameter. For \(n_l = 2k_l \) or \(n_l = 2k_l - 1, k_l \geq 2, \) thy obtained the maximum number of limit cycles of the polynomial differential systems (3) bifurcating from the periodic orbits of the linear centre \(\dot{x} = y, \dot{y} = -x, \) using averaging theory

\begin{itemize}
 \item [a] of first order \(k_1 - 2, \)
 \item [b] of second order is \(\{k_2 - 2, \left\lfloor \frac{n_2 - 2}{2} \right\rfloor - 2 \}. \)
 \item [c] of third order is \(\{k_3 - 2, \left\lfloor \frac{n_3 - 2}{2} \right\rfloor - 1 \}. \)
\end{itemize}

where \(\left\lfloor . \right\rfloor \) denotes the integer part function.

Using the averaging theory, we shall study in this work the maximum number of limit cycles which can bifurcate from the periodic orbits of a linear center perturbed inside the following differential systems

\[
\begin{align*}
\dot{x} &= -y + \sum_{i=1}^{l} \epsilon^i f_n^i(x) \\
\dot{y} &= x + (x^2 + y^2) \sum_{i=1}^{l} \epsilon^i \left(-A_l + \sum_{i=1}^{m_l-2} (q_{l,i}x^i + \tilde{q}_{l,i}y^i) \right),
\end{align*}
\]

where \(A_l > 0, q_{l,i}, \tilde{q}_{l,i} \in \mathbb{R}, \) the polynomial \(f_n^i(x) \) has degree \(n_l \) and \(\epsilon \) is a small parameter. More precisely our main result is the following.

Theorem 2. Assume that for \(l = 1, 2 \) the constants \(A_l > 0, \) the polynomials \(f_n^i(x) \) have degree \(n_l, \) with \(n_l \geq 1. \) Suppose that \(m_l = 2k_l \) or \(m_l = 2k_l - 1 \) and \(k_l \geq 2. \) Then for \(|\epsilon| \) sufficiently small the maximum number of limit cycles of the polynomial differential systems (4) bifurcating from the periodic orbits of the linear centre \(\dot{x} = y, \dot{y} = -x, \) using averaging theory

\begin{itemize}
 \item [(a)] of first order is \(\lambda_1 = \max \left\{ \left\lfloor \frac{n_l+1}{2} \right\rfloor, k_1 - 1 \right\} \) limit cycles
(b) of second order is

\[
\lambda_2 = \max \left\{ \frac{m_1 - 2}{2}, \frac{[n_1]}{2}, \frac{[m_1 - 2]}{2} + \mu, \frac{[n_1]}{2} \right\},
\]

where

\[
\mu = \min \left\{ \frac{[n_1 - 1]}{2}, k_1 - 1 \right\}.
\]

The proof of Theorem 2 is given in Section 3. The results that we shall use from the averaging theory of first and second order for computing limit cycles are presented in Section 2.

2. The Averaging Theory of First and Second Order

Now we summarize the basic results from averaging theory that we need for proving the results of this paper.

Consider the differential system

\[
\dot{x}(t) = \varepsilon F_1(x, t) + \varepsilon^2 F_2(x, t) + \varepsilon^3 R(x, t, \varepsilon),
\]

where \(F_1, F_2 : D \times \mathbb{R} \rightarrow \mathbb{R}^n \), \(R : D \times \mathbb{R} \times (-\varepsilon_f, \varepsilon_f) \rightarrow \mathbb{R}^n \) are continuous functions, \(T \)-periodic in the first variable, and \(D \) is an open subset of \(\mathbb{R}^n \). Assume that the following hypotheses (i) and (ii) hold.

(i) \(F_1(\cdot, t) \in C^1(D) \) for all \(t \in \mathbb{R}, F_1, F_2, R \) and \(D, F_1 \) are locally Lipschitz with respect to \(x \), and \(R \) is differentiable with respect to \(\varepsilon \), where \(D, F_1 \) indicate the Jacobian matrix of \(F_1 \) with respect to \(x \).

We define \(F_{n0} : D \rightarrow \mathbb{R} \) for \(n = 1, 2 \) as

\[
F_{10}(z) = \frac{1}{T} \int_0^T F_1(z, s)ds,
\]

\[
F_{20}(z) = \frac{1}{T} \int_0^T \left[D_z F_1(z, s)y(z, s) + F_2(z, s) \right] ds,
\]

where

\[
y(z, s) = \int_0^s F_1(z, t)dt.
\]

(ii) For \(V \subset D \) an open and bounded set and for each \(\varepsilon \in (-\varepsilon_f, \varepsilon_f) \setminus \{0\} \), there exists \(a_\varepsilon \in V \) such that

\[
F_{10}(a_\varepsilon) + F_{20}(a_\varepsilon) = 0 \text{ and } d_B(F_{10} + \varepsilon F_{20}, V, a_\varepsilon) \neq 0.
\]

Then, for \(|\varepsilon| > 0 \) sufficiently small there exists a \(T \)-periodic solution \(\varphi(\cdot, \varepsilon) \) of system (5) such that \(\varphi(0, \varepsilon) = a_\varepsilon \).

The expression \(d_B(F_{10} + \varepsilon F_{20}, V, a_\varepsilon) \neq 0 \) means that the Brouwer degree of the function \(F_{10} + \varepsilon F_{20} : V \rightarrow \mathbb{R}^n \) at the fixed point \(a_\varepsilon \) is not zero. A sufficient condition for the inequality to be true is that the Jacobian of the function \(F_{10} + \varepsilon F_{20} \) at \(a_\varepsilon \) is not zero.

If \(F_{10} \) is not identically zero, then the zeros of \(F_{10} + \varepsilon F_{20} \) at mainly the zeros of \(F_{10} \) for \(\varepsilon \) sufficiently small. In this case the previous result provides the averaging theory of first order.

If \(F_{10} \) is identically zero and \(F_{20} \) is not identically zero, then the zeros of \(F_{10} + \varepsilon F_{20} \) are mainly the zeros of \(F_{20} \) for \(\varepsilon \) sufficiently small. In this case the previous result provides the averaging theory of second order. For additional information on the averaging theory see for instance [14–16].
3. Proof of Theorem 2

3.1. Proof of Statement (a) of Theorem 2

In order to apply the first order averaging method we write system (4) with \(l = 1 \), in polar coordinates \((r, \theta)\) where \(x = r \cos \theta, y = r \sin \theta, r > 0 \).

If we take \(f_{n_1}^1(x) = \sum_{i=0}^{n_1} a_i x^i \) system (4) can be written as follows

\[
\begin{align*}
\dot{r} &= \frac{\rho}{2 \pi} \int_0^{2\pi} F_1(r, \theta) d\theta, \\
\dot{\theta} &= 1 + \varepsilon \left(-\frac{1}{2} \sum_{i=0}^{n_1} a_i r^i \cos^i \theta \sin \theta + r g_1(r \cos \theta, r \sin \theta) \cos \theta \right),
\end{align*}
\]

(6)

where

\[
g_1(r \cos \theta, r \sin \theta) = -A_1 + \sum_{i=1}^{m_1-2} \left(q_{i,1} r^i \cos^i \theta + \tilde{q}_{i,1} r^i \sin^i \theta \right).
\]

Now taking \(\theta \) as the new independent variable, system (6) becomes

\[
\frac{dr}{d\theta} = \rho F_1(r, \theta) + o(r^2),
\]

where

\[
F_1(r, \theta) = \sum_{i=0}^{n_1} a_i r^i \cos^i \theta + r^2 g_1(r \cos \theta, r \sin \theta) \sin \theta.
\]

By using the notation introduced in Section 2 we have that

\[
F_{10}(r) = \frac{1}{2\pi} \int_0^{2\pi} F_1(r, \theta) d\theta,
\]

\[
F_{10}(r) = \frac{1}{2\pi} \sum_{i=0}^{n_1} a_i r^i \int_0^{2\pi} \cos^{i+1} \theta d\theta + \frac{r^2}{2\pi} \sum_{i=1}^{m_1-2} \left(q_{i,1} r^i \cos^i \theta + \tilde{q}_{i,1} r^i \sin^i \theta \right).
\]

We know that

\[
\frac{1}{2\pi} \int_0^{2\pi} \cos^i \theta \sin^j \theta d\theta = \begin{cases} 0, & \text{if } i \text{ odd or } j \text{ odd} \\ 1, & \text{if } i \text{ and } j \text{ are even.} \end{cases}
\]

(7)

Hence

\[
F_{10}(r) = r \left(\frac{1}{2\pi} \sum_{i=0}^{n_1-1} a_{2i+1} r^{2i} \int_0^{2\pi} \cos^{2i+2} \theta d\theta + \sum_{i=0}^{k_1-2} \frac{a_{i+1}}{2^{i+1} (i+1)!} q_{2i+1} r^{2i+2} \int_0^{2\pi} \sin^{2i+2} \theta d\theta \right),
\]

for every \(m_1 \in \{2k_1, 2k_1 - 1\} \).

Now using the expressions of the integrals in Appendix A, we obtain

\[
F_{10}(r) = r \left(\sum_{i=0}^{n_1-1} \frac{a_{i+1}}{2^{i+1} (i+1)!} a_{2i+1} r^{2i} + \sum_{i=0}^{k_1-2} \frac{a_{i+1}}{2^{i+1} (i+1)!} \tilde{q}_{2i+1} r^{2i+2} \right).
\]

(8)

For \(n_1 \geq 1 \), the polynomial \(F_{10}(r) \) has at most \(\lambda_1 = \max \{ \left[\frac{n_1-1}{2} \right], k_1 - 1 \} \) positive roots. Hence (a) of Theorem 2 is proved.
3.2. Proof of Statement (b) of Theorem 2

For proving statement (b) of Theorem 2 we shall use the second-order averaging theory. If we write

\[f_{N_2}^2(x) = \sum_{i=0}^{n_2} b_i x^i. \]

Then system (4) with \(l = 2 \) in polar coordinates \((r, \theta), r > 0\) becomes

\[
\begin{aligned}
 r &= \varepsilon \left(\sum_{i=0}^{n_1} a_i r^i \cos^{i+1} \theta + r^2 g_1(r \cos \theta, r \sin \theta) \sin \theta \right) + \\
 &\quad + \varepsilon^2 \left(\sum_{i=0}^{n_2} b_i r^i \cos^{i+1} \theta + r^2 g_2(r \cos \theta, r \sin \theta) \sin \theta \right), \\
 \dot{\theta} &= 1 + \varepsilon \left(-\frac{1}{r} \sum_{i=0}^{n_1} a_i r^i \cos^i \theta \sin \theta + r g_1(r \cos \theta, r \sin \theta) \cos \theta \right) + \\
 &\quad + \varepsilon^2 \left(-\frac{1}{r} \sum_{i=0}^{n_2} b_i r^i \cos^i \theta \sin \theta + r g_2(r \cos \theta, r \sin \theta) \cos \theta \right),
\end{aligned}
\]

where

\[g_2(r \cos \theta, r \sin \theta) = -A_2 + \sum_{i=1}^{m_2-2} \left(q_{1,2} r^i \cos^i \theta + \tilde{q}_{1,2} r^i \sin^i \theta \right). \]

Taking \(\theta \) as the new independent variable system, (9) can be written as

\[
\frac{dr}{d\theta} = \varepsilon F_1(r, \theta) + \varepsilon^2 F_2(r, \theta) + o(\varepsilon^3),
\]

where

\[
F_1(r, \theta) = \sum_{i=0}^{n_1} a_i r^i \cos^{i+1} \theta + r^2 \sin \theta g_1(r \cos \theta, r \sin \theta),
\]

and

\[
F_2(r, \theta) = \sum_{i=0}^{n_2} b_i r^i \cos^{i+1} \theta + r^2 \sin \theta g_2(r \cos \theta, r \sin \theta)
\]

\[
+ \cos \theta \sin \theta \left(\sum_{i=0}^{n_1} a_i r^i \cos^i \theta \right)^2
\]

\[
- r^3 \sin \theta \cos \theta (g_1(r \cos \theta, r \sin \theta))^2
\]

\[
- r (2 \cos^2 \theta - 1) g_1(r \cos \theta, r \sin \theta) \sum_{i=0}^{n_1} a_i r^i \cos^i \theta.
\]

In order to compute \(F_{20}(r) \), we need that \(F_{10}(r) \) be identically zero. Then from (8), we have

\[
\begin{aligned}
 a_{2i+1} &= -\frac{2i+2}{2i+1} \bar{q}_{2i-1,1}, & & 1 \leq i \leq \mu, \\
 a_{2i+1} &= \tilde{q}_{2i-1,1}, & & 1 \leq i \leq \lambda_1, \\
 a_1 &= 0, & & i = 0,
\end{aligned}
\]

where

\[
\mu = \min \left\{ \left\lfloor \frac{n_1-1}{2} \right\rfloor, k_1-1 \right\}, \quad \lambda_1 = \max \left\{ \left\lfloor \frac{n_1-1}{2} \right\rfloor, k_1-1 \right\}.
\]

First, using (12) and, by substituting in (10), we obtain

\[
F_1(r, \theta) = -A_1 r^2 \sin \theta + \sum_{i=0}^{\left\lfloor n_1/2 \right\rfloor} a_{2i} r^{2i} \cos^{2i+1} \theta
\]

\[
+ \sin \theta \sum_{i=1}^{\left\lfloor (n_1-2)/2 \right\rfloor} \tilde{q}_{2i,1} r^{2i+2} \cos^i \theta + \sum_{i=1}^{\left\lfloor (n_1-2)/2 \right\rfloor} \tilde{q}_{2i,1} r^{2i+2} \sin^{2i+1} \theta
\]

\[
+ \sum_{i=1}^{\mu} \tilde{q}_{2i-1,1} r^{2i+1} \left(-\frac{2i+2}{2i+1} \cos^{2i+2} \theta + \sin^{2i+2} \theta \right),
\]

\[
F_2(r, \theta) = -A_2 + \sum_{i=1}^{m_2-2} \left(q_{1,2} r^i \cos^i \theta + \tilde{q}_{1,2} r^i \sin^i \theta \right).
\]
then

\[
\frac{d}{dr} F_1(r, \theta) = -2r A_1 \sin \theta + \sum_{i=0}^{m_1} 2i q_{2i, r^{2i+1} \cos^{2i+1} \theta} + \sum_{i=1}^{m_1-2} (i+2) q_{i, r^{i+1} \cos \theta} + \sum_{i=1}^{m_1-2} (2i+2) q_{2i, r^{2i+1} \sin^{2i+1} \theta} + \sum_{i=1}^{m_1-2} (2i+1) \tilde{q}_{2i-1, 1, r^{2i-1} \left(\frac{-2i+2}{2i+1} \cos^{2i+2} \theta + \sin^{2i+1} \theta \right)}.
\]

(14)

Again, using the integrals of Appendix A, we obtain

\[
y(r, \theta) = \int_{0}^{\theta} F_1(r, \phi) d\phi
\]

\[
= \sum_{i=0}^{m_1} \frac{a_i}{2^i} \sum_{l=1}^{i} \gamma_{l, i} \sin (2l + 1) \theta + \sum_{i=1}^{m_1-2} q_{i, r^{i+1} \frac{1}{i+1} (1 - \cos^{i+1} \theta)} + \sum_{i=1}^{m_1-2} \tilde{q}_{i, r^{i+1} \frac{1}{i+1} \cos^{i+1} \theta}
\]

\[
+ \sum_{i=1}^{m_1-2} \tilde{q}_{i, r^{i+1} \frac{1}{i+1} \cos \theta} + \sum_{i=1}^{m_1-2} \tilde{q}_{i, r^{i+1} \frac{1}{i+1} \sin \theta} - A_1 \theta^2 (1 - \cos \theta).
\]

Then, taking into account that

\[
\frac{1}{2^2l} \left(\frac{2i}{i} \right) - \frac{2i+2}{2i+1} \frac{1}{2^{2i+2}} \left(\frac{2i+2}{i+1} \right) = 0,
\]

\[
y(r, \theta) = \sum_{i=0}^{m_1} \left(a_i \sum_{l=1}^{i} \gamma_{l, i} \sin (2l + 1) \theta \right)
+ \sum_{i=1}^{m_1-2} q_{i, r^{i+1} \frac{1}{i+1} (1 - \cos^{i+1} \theta)}
+ \sum_{i=1}^{m_1-2} \tilde{q}_{i, r^{i+1} \frac{1}{i+1} \cos \theta}
+ \sum_{i=1}^{m_1-2} \tilde{q}_{i, r^{i+1} \frac{1}{i+1} \sin \theta}
- A_1 \theta^2 (1 - \cos \theta),
\]

(15)

where \(\xi_{i,j}, \gamma_{k,l}, \beta_{i,j}, \rho_{i,j} \) and \(\beta'_{i,j} \) are constants.

In order to apply the second order averaging method we need to compute the corresponding function \(F_{20}(r) \) that we rewrite as

\[
F_{20}(r) = F_{20}^1(r) + F_{20}^2(r),
\]

with

\[
F_{20}^2(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{d}{dr} F_1(r, \theta) y(r, \theta) d\theta,
\]
and

$$F_{20}^2(r) = \frac{1}{2\pi} \int_0^{2\pi} F_2(r, \theta) d\theta.$$

Lemma 1. The integral $F_{20}^1(r)$ is a polynomial in the variable r given by

$$F_{20}^1(r) = \sum_{i=1}^{[\frac{m_1}{2}]} \sum_{j=0}^{[\frac{n}{2}]} \left(W_{ij} q_{2i,1} + \tilde{W}_{ij} q_{2i,1} \right) a_{2j} r^{2j+1} + \sum_{i=0}^{\mu} V_{ij} A_{ij} q_{2j+1} r^{2j+2} + \sum_{i=0}^{\mu} Z_{ij} A_{ij} q_{2j+1} r^{2j+1},$$

where

$$W_{ij} = -\frac{2j}{2j+1} l_{2j+2,0} + (2i + 2) S_{ij}, \tilde{W}_{ij} = (2i + 2) F_{ij} + 2j Q_{ij},$$

$$V_{ij} = (2i + 3) D_{ij} + \frac{1}{i+1} K_{ij}, \tilde{V}_{ij} = (2i + 2) l_{2j+2} - (2j + 1) l_{2j,0},$$

and

$$Z_i = 2 (l_{2i+2,0} - R_i),$$

where $S_{ij}, F_{ij}, Q_{ij}, D_{ij}$ and K_{ij} are real constants and $l_{ij} = \frac{1}{2\pi} \int_0^{2\pi} \cos^i \theta \sin^j \theta d\theta$.

Proof. From (14) and (15) we have

$$F_{20}^1(r) = h_1(r) + h_2(r) + h_3(r) + h_4(r) + h_5(r),$$

where

$$h_1(r) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{i=0}^{\mu} 2ia_{2j} r^{2i-1} \cos^{i+1} \theta y(r, \theta) d\theta,$$

$$h_2(r) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{i=0}^{\mu} (i + 2) q_{ij} r^{i+1} \cos^i \theta \sin \theta y(r, \theta) d\theta,$$

$$h_3(r) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{i=0}^{\mu} (2i + 2) \tilde{q}_{2i} r^{2i+1} \cos^{i+1} \theta y(r, \theta) d\theta,$$

$$h_4(r) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{i=0}^{\mu} (2i + 2) \tilde{q}_{2i} r^{2i+1} \sin^{i+1} \theta y(r, \theta) d\theta,$$

$$h_5(r) = \frac{1}{\pi} \int_0^{2\pi} -r A_{ij} \sin \theta y(r, \theta) d\theta.$$

For simplifying the expression of the polynomial $h_1(r)$, using the integrals of Appendix A, we have

$$\left(\Delta_1\right) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=0}^{[\frac{n}{2}]} 2j a_{2j} r^{2j-1} \cos^{2j+1} \theta \right) \left(\sum_{i=0}^{[\frac{m}{2}]} a_{2i} r^{2i} \sum_{i=1}^{[\frac{n}{2}]} \gamma_{ij} \sin (2i + 1) \theta \right) \theta d\theta = 0,$$
\[(\Delta_2) \frac{2\pi}{\Xi} \int_0^{2\pi} \left(\sum_{j=1}^{2n} 2ja_j r^{2j-1} \cos^{2j+1} \theta \right) \left(\sum_{s=1}^{m-1} q_{s,1} r^{s+2} \frac{1}{s+1} (1 - \cos^{s+1} \theta) \right) d\theta \]
\[= - \sum_{j=0}^{2n} \sum_{i=1}^{m-2} \frac{2j+1}{2j+1} I_{2j+2} 2ja_j q_{2j+1} r^{2j+1}, \]

\[(\Delta_3) \frac{2\pi}{\Xi} \int_0^{2\pi} \left(\sum_{j=1}^{2n} 2ja_j r^{2j-1} \cos^{2j+1} \theta \right) \left(\sum_{i=1}^{m-2} \zeta_{i,1} \cos (2i + 1) \theta \right) d\theta \]
\[= \sum_{j=0}^{2n} \sum_{i=1}^{m-2} 2jQ_{ij} a_j q_{2i+1} r^{2j+1}, \]

where

\[Q_{ij} = \frac{1}{2\pi} \int_0^{2\pi} \left(\cos^{2j+1} \theta \right) \left(\zeta_{i,1} \cos (2i + 1) \theta \right) d\theta, \]

\[(\Delta_4) \int_0^{2\pi} \left(\sum_{j=1}^{2n} 2ja_j r^{2j-1} \cos^{2j+1} \theta \right) \left(\sum_{i=1}^{m} \zeta_{2i-1,1} r^{2i+1} \left(\sum_{l=1}^{i+1} \beta_{l,1} \sin (2l) \theta \right) \right) d\theta = 0 \]

\[(\Delta_5) \frac{2\pi}{\Xi} \int_0^{2\pi} \left(\sum_{j=1}^{2n} 2ja_j r^{2j-1} \cos^{2j+1} \theta \right) \left(-A_1 r^2 (1 - \cos \theta) \right) d\theta \]
\[= \sum_{j=0}^{2n} 2I_{2j+2} 2ja_j A_1 r^{2j+1}. \]

We have that the sum of the integrals \((\Delta_1)-(\Delta_5)\) is the polynomial \(h_1(r)\).

From the integrals of Appendix A, we have

\[(\Delta_6) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{s=1}^{m-2} (1+2)q_{s,1} r^{s+1} \cos^s \theta \sin \theta \right) \left(\sum_{j=1}^{2n} a_j r^{2j} \sum_{i=1}^j \gamma_{i,1} \sin (2i + 1) \theta \right) d\theta \]
\[= \sum_{i=1}^{m-2} \sum_{j=0}^{2n} (2i+2)S_{ij} a_j q_{2j+1} r^{2j+1}, \]

where

\[S_{ij} = \frac{1}{2\pi} \int_0^{2\pi} \left(\cos^i \theta \sin \theta \right) \left(\sum_{i=1}^j \gamma_{i,1} \sin (2i + 1) \theta \right) d\theta. \]

\[(\Delta_7) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m-2} (j+2)q_{j,1} r^{j+2} \cos^j \theta \sin \theta \right) \left(\sum_{i=1}^{m-2} q_{i,1} r^{i+2} \frac{1}{i+1} (1 - \cos^{i+1} \theta) \right) d\theta = 0 \]

\[(\Delta_8) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m-2} (j+2)q_{j,1} r^{j+1} \cos^j \theta \sin \theta \right) \left(\sum_{i=1}^{m-2} \zeta_{i,1} \cos (2i + 1) \theta \right) d\theta = 0 \]

\[(\Delta_9) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{s=1}^{m-2} (s+2)q_{s,1} r^{s+1} \cos^s \theta \sin \theta \right) \left(\sum_{i=1}^{m-2} q_{2i-1,1} r^{2i+1} \left(\sum_{l=1}^{i+1} \beta_{l,1} \sin (2l) \theta \right) \right) d\theta \]
\[= \sum_{i=0}^{k_1-1} \sum_{j=1}^{m_1} (2i+3)D_{ij} q_{2j+1,1} \tilde{q}_{2j+1,1} r^{2j+3}, \]
where
\[
D_{ij} = \frac{1}{2\pi} \int_0^{2\pi} \left(\cos^{2i+1} \theta \sin \theta \sum_{l=1}^{j+1} \hat{p}_{ij} \sin (2l\theta) \right) d\theta.
\]

\((\Delta_{10})\) \(\frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m_1-2} (j+2)q_{j,1}r^{j+1} \cos^j \theta \sin \theta \right) \left(-A_1 r^2 (1 - \cos \theta) \right) d\theta = 0
\]

The sum of the integrals \((\Delta_6)-(\Delta_{10})\) is the polynomial \(h_2(r)\).

For finding the expression of the polynomial \(h_3(r)\), using the integrals of Appendix A, we have
\[
(\Delta_{11}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m_2} (2i+2)\tilde{q}_{2j,1}r^{2i+1} \sin^{2i+1} \theta \right) \left(\sum_{j=1}^{m_2} a_{2j}r^{2j} \sum_{l=1}^{i+1} \gamma_{ij} \sin (2l+1) \theta \right) d\theta = 0
\]

where
\[
F_{ij} = \frac{1}{2\pi} \int_0^{2\pi} \left(\sin^{2i+1} \theta \sum_{l=1}^{j+1} \gamma_{ij} \sin (2l+1) \theta \right) d\theta,
\]

\[(\Delta_{12}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m_2} (2j+2)\tilde{q}_{2j,1}r^{2j+1} \sin^{2j+1} \theta \right) \left(\sum_{j=1}^{m_2} \tilde{q}_{j,1}r^{j+2} \frac{1}{i+1} (1 - \cos^{i+1} \theta) \right) d\theta = 0
\]

\[(\Delta_{13}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m_2} (2j+2)\tilde{q}_{2j,1}r^{2j+1} \sin^{2j+1} \theta \right) \left(\sum_{j=1}^{m_2} \tilde{q}_{2j,1}r^{2j+2} \sum_{l=1}^{i+1} \tilde{\xi}_{ij} \cos (2l+1) \theta \right) d\theta = 0
\]

\[(\Delta_{14}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m_2} (2j+2)\tilde{q}_{2j,1}r^{2j+1} \sin^{2j+1} \theta \right) \left(\sum_{j=1}^{m_2} \tilde{q}_{2j-1,1}r^{2j+1} \left(\sum_{l=1}^{i+1} \tilde{\beta}_{ij} \sin (2l \theta) \right) \right) d\theta = 0
\]

\[(\Delta_{15}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{m_2} (2j+2)\tilde{q}_{2j,1}r^{2j+1} \sin^{2j+1} \theta \right) \left(-A_1 r^2 (1 - \cos \theta) \right) d\theta = 0
\]

We have that the sum of the integrals \((\Delta_{11})-(\Delta_{15})\) is the polynomial \(h_3(r)\).

From the integrals of Appendix A, we have
\[
(\Delta_{16}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{\mu} (2j+1) \tilde{q}_{2j-1,1}r^{2j} \left(-\frac{2j+2}{2j+1} \cos^{2j+2} \theta + \sin^{2j} \theta \right) \right) \left(\sum_{i=0}^{m_2} a_{2i}r^{2i} \sum_{l=1}^{i+1} \gamma_{ij} \sin (2l+1) \theta \right) d\theta = 0,
\]

\[(\Delta_{17}) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^{\mu} (2j+1) \tilde{q}_{2j-1,1}r^{2j} \left(-\frac{2j+2}{2j+1} \cos^{2j+2} \theta + \sin^{2j} \theta \right) \right) \left(\sum_{i=1}^{m_2} q_{j,1}l^{i+2} \frac{1}{i+1} (1 - \cos^{i+1} \theta) \right) d\theta
\]

\[
= \sum_{j=1}^{\mu} \sum_{i=1}^{m_2} -\frac{1}{i+1} H_{j}q_{j,1} \tilde{q}_{2j-1,1}r^{i+2} + \sum_{i=0}^{\mu} \sum_{i=1}^{m_1-2} \frac{1}{i+1} K_{ij}q_{2i+1,1} \tilde{q}_{2j-1,1}r^{2i+2} + \sum_{j=1}^{\mu} \sum_{i=1}^{k_2-2} \frac{1}{i+1} K_{ij}q_{2i+1,1} \tilde{q}_{2j-1,1}r^{2i+2} + \sum_{j=1}^{\mu} \sum_{i=1}^{k_2-2} \frac{1}{i+1} K_{ij}q_{2i+1,1} \tilde{q}_{2j-1,1}r^{2i+2} + \sum_{j=1}^{\mu} \sum_{i=1}^{k_2-2} \frac{1}{i+1} K_{ij}q_{2i+1,1} \tilde{q}_{2j-1,1}r^{2i+2} \right)\]
where
\[H_j = (2j + 2)I_{2j+2,0} + (2j + 1)I_{0,2j}, \]
and
\[K_{ij} = (2j + 2)I_{2j+2,0} - (2j + 1)I_{2j+2,2j}. \]

\[(\Delta 18) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{i=1}^{m} (2j + 1) \overline{q}_{2j-1,1}r^{2j} \left(-\frac{2j + 2}{2j + 1} \cos^{2j+2} \theta + \sin^{2j} \theta \right) \right) \times \left(\sum_{i=1}^{m} \overline{q}_{2i,1}r^{2i+2} \sum_{l=1}^{i} \xi_{i,l} \cos (2l + 1) \theta \right) \, d\theta = 0, \]

\[(\Delta 19) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{i=1}^{m} (2j + 1) \overline{q}_{2j-1,1}r^{2j} \left(-\frac{2j + 2}{2j + 1} \cos^{2j+2} \theta + \sin^{2j} \theta \right) \right) \times \left(\sum_{i=1}^{m} \overline{q}_{2i-1,1}r^{2i+2} \left(\sum_{l=1}^{i+1} \beta_{i,l} \sin (2l\theta) \right) \right) \, d\theta = 0, \]

\[(\Delta 20) \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{i=1}^{m} (2j + 2)I_{2j+2} - (2j + 1)I_{2j,0} \right) A_{2i+1}(\theta) \, d\theta = \sum_{j=1}^{\mu} \left(2j + 2 \right) I_{2j+2} - (2j + 1)I_{2j,0} A_{2j+1}(\theta) \, d\theta. \]

We have that the sum of the integrals \((\Delta 16)−(\Delta 20)\) is the polynomial \(h_4(r)\).

Finally, for computing the polynomial \(h_5(r)\), using the integrals of Appendix A, we have

\[(\Delta 21) \frac{1}{2\pi} \int_0^{2\pi} \left(-2rA_1 \sin \theta \right) \left(\sum_{i=0}^{n} a_{2i}r^{2i} \sum_{l=1}^{i} \gamma_{i,l} \sin (2l + 1) \theta \right) \, d\theta = -2 \sum_{i=0}^{n} A_1 R_{i} \, d\theta, \]

where
\[R_i = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{l=1}^{i} \gamma_{i,l} \sin \theta \sin (2l + 1) \theta \right) \, d\theta, \]

\[(\Delta 22) \frac{1}{2\pi} \int_0^{2\pi} \left(-2rA_1 \sin \theta \right) \left(\sum_{i=1}^{m} \overline{q}_{i,1}r^{i+2} \frac{1}{i+1} (1 - \cos^{i+1} \theta) \right) \, d\theta = 0, \]

\[(\Delta 23) \frac{1}{2\pi} \int_0^{2\pi} \left(-2rA_1 \sin \theta \right) \left(\sum_{i=1}^{m} \overline{q}_{2i,1}r^{2i+2} \sum_{l=1}^{i} \xi_{i,l} \cos (2l + 1) \theta \right) \, d\theta = 0, \]

\[(\Delta 24) \frac{1}{2\pi} \int_0^{2\pi} \left(-2rA_1 \sin \theta \right) \left(\sum_{i=1}^{m} \overline{q}_{2i-1,1}r^{2i+2} \left(\sum_{l=1}^{i+1} \beta_{i,l} \sin (2l\theta) \right) \right) \, d\theta = 0, \]

\[(\Delta 25) \frac{1}{2\pi} \int_0^{2\pi} \left(-2rA_1 \sin \theta \right) \left(-A_{1}r^{2} (1 - \cos \theta) \right) \, d\theta = 0. \]

We have that the sum of the integrals \((\Delta 21)−(\Delta 25)\) is the polynomial \(h_5(r)\). Hence Lemma 1 is proved. \(\Box\)
Lemma 2. The integral $F_{20}^2(r)$ is a polynomial in the variable r given by

$$F_{20}^2(r) = \sum_{s=0}^{m-1} I_{2s+2,0} b_{2s+1} r^{2s+1} + \sum_{s=0}^{k-2} I_{0,2s+2} q_{2s+1,2} r^{2s+3}$$

$$-2 \sum_{s=0}^{k-2} \sum_{j=1}^{\mu} q_{2s+1,1} \bar{q}_{2j-1,1} I_{2s+2,2j+2} r^{2i+2j+7}$$

$$+ \sum_{i=1}^{\mu} \sum_{j=1}^{\mu} (i-j+1)(2i+2) (2i+1) I_{2i+2,2j} \bar{q}_{2i-1,1} \bar{q}_{2j-1,1} r^{2i+2j+3}.$$

Proof. Using (12) and, substituting in (11) we have

$$F_2(r, \theta) = g_1(r, \theta) + g_2(r, \theta) + g_3(r, \theta) + g_4(r, \theta),$$

where

$$g_1(r, \theta) = \sum_{i=0}^{\mu} h_i r^i \cos r^i \theta + r^2 \left(\sum_{i=1}^{\mu-2} \left(q_{i,2} r^{i \cos \theta} + \bar{q}_{i,2} r^{i \sin \theta} \right) - A_2 \right) \sin \theta,$$

$$g_2(r, \theta) = \frac{\cos \theta \sin \theta}{r} \left(\sum_{i=0}^{\mu} a_{2i} r^{2i} \cos 2i+\theta + \sum_{i=1}^{\mu} \frac{2i+2}{2i+1} \bar{q}_{2i-1,1} r^{2i+1} \cos 2i+2 \theta \right)^2,$$

$$g_3(r, \theta) = -r^3 \sin \theta \cos \theta \left(\sum_{i=1}^{\mu-2} q_{i,1} r^{i+2} \cos i \theta \sin \theta + \sum_{i=1}^{\mu} \bar{q}_{i,1} r^{2i+2} \sin 2i+1 \theta \right)$$

$$+ \sum_{i=1}^{\mu} \bar{q}_{2i-1,1} r^{2i+1} \sin 2i \theta - A_1 r^2 \sin \theta)^2,$$

and

$$g_4(r, \theta) = -r \left(2 \cos^2 \theta - 1 \right) \left(\sum_{i=0}^{\mu} a_{2i} r^{2i} \cos 2i+1 \theta + \sum_{i=1}^{\mu} \frac{2i+2}{2i+1} \bar{q}_{2i-1,1} r^{2i+1} \cos 2i+2 \theta \right)$$

$$\times \left(\sum_{i=1}^{\mu-2} q_{i,1} r^{i+2} \cos i \theta \sin \theta + \sum_{i=1}^{\mu} \bar{q}_{i,1} r^{2i+2} \sin 2i+1 \theta \right)$$

$$+ \sum_{i=1}^{\mu} \bar{q}_{2i-1,1} r^{2i+1} \sin 2i \theta - r^2 \sin \theta A_1 \right).$$

For an explicit expression of the polynomial $F_{20}^2(r)$, using (7), we have

$$\bar{\Lambda}_1 = \frac{1}{2\pi} \int_0^{2\pi} g_1(r, \theta) d\theta$$

$$= \sum_{s=0}^{m-1} I_{2s+2,0} b_{2s+1} r^{2s+1} + \sum_{s=0}^{k-2} I_{0,2s+2} q_{2s+1,2} r^{2s+3},$$
for every \(m_2 \in \{2k_2, 2k_2 - 1\} \),

\[
\tilde{\Delta}_2 = \frac{1}{2\pi} \int_0^{2\pi} g_2(r, \theta) d\theta \\
= \frac{1}{2\pi r} \int_0^{2\pi} \cos \theta \sin \theta \left(\sum_{i=0}^{[m_2]} a_{2i} r^{2i+1} \cos^{2i+1} \theta \right)^2 d\theta \\
+ \frac{1}{2\pi r} \int_0^{2\pi} \cos \theta \sin \theta \left(\sum_{i=0}^{[\mu]} -\frac{2i + 2}{2i + 1} \tilde{q}_{2i-1, 1} r^{2i+1} \cos^{2i+2} \theta \right)^2 d\theta \\
- \frac{1}{2\pi r} \int_0^{2\pi} \cos \theta \sin \theta \left(\sum_{i=0}^{[\mu]} \frac{2j + 2}{2j + 1} q_{2i-1, 1} r^{2i+2} \cos^{2i+3} \theta \right) d\theta \\
= 0,
\]

\[
\tilde{\Delta}_3 = \frac{1}{2\pi} \int_0^{2\pi} g_3(r, \theta) d\theta = -\frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{i=1}^{[m_1]} \sum_{j=1}^{[\mu]} q_{i, 1} \tilde{q}_{2i-1, 1} r^{i+2i+6} \cos^{i+1} \theta \sin^{2i+2} \theta \right) d\theta \\
= -2 \sum_{i=0}^{k_1 - 2} \sum_{j=1}^{[\mu]} q_{2i+1, 1} \tilde{q}_{2j-1, 1} I_{2s+2, 2j+2} r^{2s+2j+7},
\]

\[
\tilde{\Delta}_4 = \frac{1}{2\pi} \int_0^{2\pi} g_4(r, \theta) d\theta \\
= 2 \sum_{i=1}^{[\mu]} \sum_{j=1}^{[\mu]} \frac{2i + 2}{2i + 1} I_{2i+4, 2j} \tilde{q}_{2i-1, 1} \tilde{q}_{2j-1, 1} r^{2i+2j+3} \\
- \sum_{i=1}^{[\mu]} \sum_{j=1}^{[\mu]} \frac{2j + 2}{2j + 1} I_{2i+2, 2j} \tilde{q}_{2i-1, 1} \tilde{q}_{2j-1, 1} r^{2i+2j+3}.
\]

From \(I_{2i+4, 2j} = \frac{2i+3}{2i+1} I_{2i+2, 2j} \), we have that

\[
\tilde{\Delta}_4 = \sum_{i=1}^{[\mu]} \sum_{j=1}^{[\mu]} \frac{(i + 1) (2i + 2)}{(i + j + 2) (2i + 1)} I_{2i+2, 2j} \tilde{q}_{2i-1, 1} \tilde{q}_{2j-1, 1} r^{2i+2j+3}.
\]

The sum of the integrals \(\tilde{\Delta}_1, \tilde{\Delta}_2, \tilde{\Delta}_3 \) and \(\tilde{\Delta}_4 \) is the polynomial \(F_{20}^2(r) \). Hence Lemma 2 is proved. \(\square \)

By Lemmas 1 and 2, we have

\[
F_{20}(r) = r \left(\sum_{i=1}^{[n_2-2]} \sum_{j=0}^{[\mu]} (W_{ij} q_{2i+1} + \tilde{W}_{ij} \tilde{q}_{2i+1}) a_{2j} r^{2j+2} \right) \\
+ \sum_{i=0}^{k_1 - 2} \sum_{j=1}^{[\mu]} V_{ij} q_{2i+1, 1} \tilde{q}_{2j-1, 1} r^{2i+2j+2} \\
- \sum_{i=1}^{[\mu]} \sum_{j=1}^{[n_2-2]} \frac{1}{i+1} H_{ij} \tilde{q}_{i+1, 1} \tilde{q}_{2j-1, 1} r^{i+2j+1} + \sum_{i=0}^{[\mu]} Z_i A_1 a_{2i} r^{2i} \\
+ \sum_{j=1}^{[\mu]} \tilde{V}_{ij} A_1 \tilde{q}_{2j-1, 1} r^{2j+1} + \sum_{s=0}^{[n_2-1]} I_{2s+2, 2s} \tilde{q}_{2s+1, 1} r^{2s}.
\]
we conclude that F_{20} has at most

$$\lambda_2 = \max \left\{ \left[\frac{m_1 - 2}{2} \right], \left[\frac{n_1}{2} \right], \left[\frac{m_1 - 2}{2} \right] + \mu, \left[\frac{n_1}{2} \right], \left[\frac{n_2 - 1}{2} \right], k_2 - 1, k_1 + \mu + 1, 2\mu + 1 \right\},$$

positive roots. Hence (b) of Theorem 2 is proved.

Author Contributions: The authors contributed equally in this article. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of this manuscript. The authors declare that they have no competing interests.

Appendix A. Formulae

In this appendix we recall some formulae that will be used during the paper, (see [17]). For $i, j, k \geq 0$ we have

\[
\int_0^\theta \cos^{2i+1} \phi d\phi = \sum_{l=1}^{i} \gamma_{i,l} \sin (2l+1) \theta, \\
\int_0^\theta \cos^i \phi \sin \phi d\phi = \frac{1}{i+1} (1 - \cos^{i+1} \theta), \\
\int_0^\theta \sin^{2i+1} \phi d\phi = \sum_{l=1}^{i} \beta_{i,l} \cos (2l+1) \theta, \\
\int_0^\theta \cos^{2i+2} \phi d\phi = \frac{1}{2^{i+2}} \left(\begin{array}{c} 2i+2 \\ i+1 \end{array} \right) \theta + \sum_{l=1}^{i+1} \beta_{i,l} \sin (2l\theta), \\
\int_0^\theta \sin^{2i} \phi d\phi = \frac{1}{2^i} \left(\begin{array}{c} 2i \\ i \end{array} \right) \theta + \sum_{l=1}^{i} \rho_{i,l} \sin (2l\theta),
\]

where $\gamma_{i,l}, \beta_{i,l}, \beta'_{i,l}$ and $\rho_{i,l}$ are non-zero constants.

\[
\int_0^{2\pi} \sin^{2i} \theta d\theta = \int_0^{2\pi} \cos^{2i} \theta d\theta = \frac{\pi \alpha_i}{2^i-1},
\]

where $\alpha_i = 3.5...(2i-1), \alpha_{i+1} = (2i+1)\alpha_i$,

\[
\int_0^{2\pi} \sin^i \theta \cos (2l+1) \theta d\theta = \int_0^{2\pi} \cos^i \theta \sin (2l+1) \theta d\theta = 0, l \geq 0,
\]
\[\int_{0}^{2\pi} \sin^l \theta \sin (2l \theta) d\theta = \int_{0}^{2\pi} \cos^l \theta \sin(2l \theta)d\theta = 0, l \geq 0,\]

\[\int_{0}^{2\pi} \sin^l \theta \sin (2l+1 \theta)\theta d\theta = \begin{cases} 0, & \text{if } i = 2k \\ \Gamma_{k,l}, & \text{if } i = 2k+1 \end{cases}, l \geq 0,\]

\[\int_{0}^{2\pi} \cos^l \theta \cos (2l+1 \theta)\theta d\theta = \begin{cases} 0, & \text{if } i = 2k \\ \Lambda_{k,l}, & \text{if } i = 2k+1 \end{cases}, l \geq 0,\]

\[\int_{0}^{2\pi} \cos^l \theta \sin \theta \sin (2l \theta)d\theta = \begin{cases} 0, & \text{if } i = 2k+1 \\ \Gamma_{k,l}, & \text{if } i = 2k \end{cases}, l \geq 1,\]

\[\int_{0}^{2\pi} \cos^l \theta \sin \theta \cos(2l+1 \theta)d\theta = 0, l \geq 0,\]

where \(\Gamma_{k,l}, \Lambda_{k,l}, \Gamma_{k,l}\) and \(\Lambda_{k,l}\) are real constants.

References

1. Hilbert, D. Mathematische Problems, Lecture in: Second Internat. Congr. Math. Paris, 1900. Nachr. Ges. Wiss. Göttingen Math. Phys. kl 1900, 5, 253–297; English transl. Bull. Am. Math. Soc. 1902, 8, 437–479.
2. Smale, S. Mathematical problems for the next century. In Mathematics: Frontiers and Perspectives; Amer. Math. Soc.: Providence, RI, USA, 2000; pp. 271–294.
3. Kukles, I.S. Sur quelques cas de distinction entre un foyer et un centre. Dokl. Akad. Nauk. SSSR 1944, 42, 208–211.
4. Rousseau, C.; Schlomiuk, D.; Thibadeau, P. The centres in the reduced Kukles system. Nonlinearity 1995, 8, 541–569. [CrossRef]
5. Christopher, C.J.; Lloyd, N.G. On the paper of X. Jin and D. Wang concerning the conditions for a centre in certain cubic systems. Bull. Lond. Math. Soc. 1990, 22, 5–12. [CrossRef]
6. Chavarriga, J.; Sáez, E.; Szántó, I.; Grau, M. Coexistence of limit cycles and invariant algebraic curves on a Kukles system. Nonlinear Anal. 2004, 59, 673–693. [CrossRef]
7. Agarwal, R.P.; Gala, S.; Ragusa, M.A. A regularity criterion in weak spaces to Boussinesq equations. Mathematics 2020, 8, 920. [CrossRef]
8. Llibre, J.; Mereu, A.C. Limit cycles for generalized Kukles polynomial systems. Nonlinear Anal. 2011, 74, 1261–1271. [CrossRef]
9. Makhlouf, A.; Menaceur, A. On the Limit cycles of a class of generalized Kukles polynomial differential systems via averaging theory. Int. J. Differ. Equ. 2015, 2015, 325102. [CrossRef]
10. Liu, Z.; Szanto, I. Limit cycles and invariant centers for an extended Kukles system. Miskolc Math. Notes 2017, 18, 947–952. [CrossRef]
11. Rebolledo-Perdomo, S.; Vidal, C. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discret. Contin. Dyn. Syst. 2018, 38, 4189–4202. [CrossRef]
12. Sáez, E.; Szántó, I. Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse. Appl. Math. Lett. 2012, 25, 1695–1700. [CrossRef]
13. Rabanal, R. On the limit cycles of a class of Kukles type differential systems. Nonlinear Anal. 2014, 95, 676–690.
14. Buică, A.; Llibre, J. Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 2004, 128, 7–22. [CrossRef]
15. Sanders, J.A.; Verhulst, F. Averaging Methods in Nonlinear Dynamical Systems; Springer: New York, NY, USA, 1985; Volume 59.
16. Verhulst, F. *Nonlinear Differential Equations and Dynamical Systems*, Universitex; Springer: Berlin, Germany, 1996.

17. Abramowitz, M.; Stegun, I. *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*; National Bureau of Standards Applied Mathematics Series, no.55; US Government Printing Office: Washington, DC, USA, 1964.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).