Genome-wide association study and low-cost genomic predictions for growth and fillet yield in Nile tilapia (Oreochromis niloticus)

Grazyella M. Yoshida*, Jean P. Lhorente†, Katharina Correa‡, José Soto†, Diego Salas†,
José M. Yáñez*

* Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
† Benchmark Genetics Chile, Puerto Montt, Chile
‡ Grupo Acuacorporacion Internacional (GACI), Cañas, Costa Rica
Short running title: **GWAS and genomic predictions in tilapia**

Keywords: complex traits, cost-effectiveness, imputation accuracy, low-density panel, ssGBLUP method

Corresponding author: Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808, Santiago, Chile

E-mail: jmayanez@uchile.cl
ABSTRACT
Fillet yield (FY) and harvest weight (HW) are economically important traits in Nile tilapia production. Genetic improvement of these traits, especially for FY, are lacking, due to the absence of efficient methods to measure the traits without sacrificing fish and the use of information from relatives to selection. However, genomic information could be used by genomic selection to improve traits that are difficult to measure directly in selection candidates, as in the case of FY. The objectives of this study were: (i) to perform genome-wide association studies (GWAS) to dissect the genetic architecture of FY and HW, (ii) to evaluate the accuracy of genotype imputation and (iii) to assess the accuracy of genomic selection using true and imputed low-density (LD) single nucleotide polymorphism (SNP) panels to determine a cost-effective strategy for practical implementation of genomic information in tilapia breeding programs. The data set consisted of 5,866 phenotyped animals and 1,238 genotyped animals (108 parents and 1,130 offspring) using a 50K SNP panel. The GWAS were performed using all genotyped and phenotyped animals. The genotyped imputation was performed from LD panels (LD0.5K, LD1K and LD3K) to high-density panel (HD), using information from parents and 20% of offspring in the reference set and the remaining 80% in the validation set. In addition, we tested the accuracy of genomic selection using true and imputed genotypes comparing the accuracy obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions. The results from GWAS supports evidence of the polygenic nature of FY and HW. The accuracy of imputation ranged from 0.90 to 0.98 for LD0.5K and LD3K, respectively. The accuracy of genomic prediction outperformed the estimated breeding value from PBLUP. The use of imputation for genomic selection resulted in an increased relative accuracy independent
of the trait and LD panel analyzed. The present results suggest that genotype imputation could be a cost-effective strategy for genomic selection in tilapia breeding programs.

INTRODUCTION

Investment in selective breeding programs generates economic return because genetic selection is aimed at improving productivity of important economic traits that result in permanent, cumulative and sustainable changes in a farm’s population over generations of selection (Gjedrem 2012). In a simulation study, Ponzoni et al. (2007) estimated that the benefit/cost ratio reached a maximum of 60/1 with the implementation of family based breeding programs in Nile tilapia. Therefore, selective breeding is an important tool to increase aquaculture production and profitability, satisfying the increasing demand for animal protein (Gjedrem 2012).

The first Nile tilapia breeding program was established in 1988 and since then high levels of genetic gains have been achieved for economically important traits, e.g. genetic gains for body weight ranged from 7 to 20% per generation (Bentsen et al., 2017; Eknath et al., 1998; Gjedrem et al., 2012 and Khaw et al., 2008). However, until now the Nile tilapia breeding programs have been based only on pedigree and phenotype information for genetic evaluations. The incorporation of genomic information for genetic analysis has not been evaluated or implemented in tilapia breeding programs. This is mainly due to the fact that dense SNP panels were not available until recently (Joshi et al. 2018; Yáñez et al. 2019). The use of genomic information for the implementation of genomic selection has already been assessed in various aquaculture species, e.g. Atlantic salmon, rainbow trout, salmon coho, common carp, channel catfish and Pacific oyster (Barria et al., 2018a; Garcia et al., 2018; Gutierrez et al., 2018; Palaiokostas et al., 2018; Vallejo et al., 2018; Yoshida et al., 2018;...
As it has been demonstrated in these studies, an increase in selection accuracy when including genomic information from dense SNP panels, especially for traits which are difficult to measure in selection candidates (Yañez and Martinez 2010; Yáñez et al. 2014). Carcass quality traits (e.g. fillet yield) are considered key traits in the breeding goal for Nile tilapia genetic improvement (Nguyen et al. 2010; Ponzoni et al. 2011) and these traits could be more efficiently improved through the inclusion of genomic information in genetic evaluations.

The use of genomic information from dense SNP panels provides the opportunity to increase the rate of genetic progress in breeding programs (Meuwissen et al. 2001). However, the cost of genotyping is high and alternative methods are necessary for cost-efficient genomic applications (VanRaden, et al. 2011; Carvalheiro et al. 2014). Strategies such as selective genotyping (Sen et al. 2009; Jiménez-Montero et al. 2012; Ødegård and Meuwissen 2014), genotyping animals using low-density panels (Tsai et al. 2016; Bangera et al. 2017; Correa et al. 2017; Yoshida et al. 2018a) and genotype imputation (Cleveland and Hickey 2014; Sargolzaei et al. 2014; Chen et al. 2014) have been tested as alternative strategies for reducing costs for the practical implementation of genomic information in breeding programs.

Imputation of genotypes reduces the cost of genomic selection, by genotyping a small proportion of animals (e.g. parents or influential animals) using a dense SNP panel and selection candidates using a LD SNP panel, and then imputing (predicting) missing genotypes from the lower to the HD SNP panel (Sargolzaei et al. 2009). In aquaculture species, these cost-effective strategies have been assessed and reported to generate genomic prediction accuracies similar to those obtained when all selection
candidates are genotyped with HD SNP panels (Dufflocq et al., 2019; Tsai et al., 2017; Yoshida et al., 2018b).

The objectives of this study were: (i) to perform a genome-wide association study to dissect the genetic architecture and identify molecular markers for growth and fillet yield; (ii) to evaluate the accuracy of genotype imputation as an alternative low-cost genotyping strategy, and (iii) to assess the accuracy of genomic selection for growth and fillet yield using true and imputed SNP genotypes in farmed Nile tilapia. To our knowledge, this is the first study evaluating the incorporation of true and imputed dense genotypes for the implementation of low-cost genomic predictions in farmed Nile tilapia.

MATERIAL AND METHODS

Phenotypes

The Nile tilapia population used in the current study belongs to a breeding nucleus established by Aquacorporación Internacional group (GACI) in Costa Rica. The origin of the population is described in detail by Yoshida et al. (2019). Briefly, the eggs of each full-sib family were incubated and reared in separate hapas until tagging. A mating design of two dams per sire was used to produce full and half-families, which varied from 74 to 89 families across the year-classes (Table 1). For each year-class an average number of 18 fish/family (ranging from 5 to 49) were tagged and reared until they were an average of 13 months old, where the traits fillet yield (FY) and harvest weight (HW) were recorded for each individual fish.

Genotypes
Genomic DNA was extracted from fin clip samples from 108 parents (45 sires and 63 dams) and 1,364 offspring from year-class 2017. Samples were then genotyped using a 50K SNP Illumina BeadChip, which is described in detail by Yáñez et al. (2019). Genomic DNA was purified from all the samples using the DNeasy Blood & Tissue Kit (QIAGEN) according to the manufacturer’s protocol. Before the genome-wide association study (GWAS) and imputation analysis, genotypes and samples were filtered according to the following exclusion criteria: Hardy-Weinberg Disequilibrium (HWE, p-value < 1×10^{-6}), Minor Allele Frequency (MAF < 0.05) and genotyping call-rate for SNP and samples < 0.95.

Genome-wide association analysis

We performed the GWAS to dissect the genetic architecture and to identify regions of the Nile tilapia genome containing SNPs with important effects on FY and HW. We used the weighted single step genomic best linear unbiased prediction (wssGBLUP) method (Wang et al. 2012) implemented in postGSf90 module from BLUPf90 family programs (Misztal et al. 2016). The following model was used:

\[y = X\beta + Za + Wc + e \]

(eq. 1)

where \(y \) is a vector of phenotypes (FY or HW), \(\beta \) is a vector of contemporary group as fixed effects that comprise the year-class:sex:tank, and harvest weight or age for FY and HW as covariate, respectively; \(a \) is a vector of random additive direct genetic effects; \(c \) is a vector of common environmental effect and \(e \) is a vector of residual effect. \(X, Z \) and \(W \) are incidence matrices for \(\beta, a \) and \(c \) effects, respectively.

The wssGBLUP is similar to the pedigree-based BLUP (PBLUP) method except for the use of a combined genomic and pedigree relationship. The kinship matrix \(A^{-1} \) is
replaced by matrix H^{-1} (Aguilar et al. 2010), which combines genotype and pedigree relationship coefficients:

$$H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix},$$

where, A_{22}^{-1} is the inverse of a pedigree-based relationship matrix for genotyped animals; and G^{-1} is the inverse genomic relationship matrix. The SNPs were assumed with an initial value of one corresponding to the single-step genomic BLUP (ssGBLUP) method (Misztal et al. 2009). In the ssGBLUP the marker variances were estimated from allele frequencies and used as weights, which were updated on each iteration (Wang et al. 2014). We tested three iterations of weights, and used the second iteration to plot the manhattans plots, as suggested by Wang et al. (2012) and Zhang et al. (2016), who proposed that two iterations were sufficient to correctly identify major SNPs in ssGBLUP. The ssGBLUP included all HD genotyped animals (parents and offspring) which passed quality control ($n = 1,238$) and all the phenotyped fish present in Table 1.

To evaluate the presence of putative genes associated with the traits under study, we reported all genes between the first and last SNP position of each 20-SNP window, searched using BLAST (Basic Local Alignment Search Tool) of the SNP probes against the last version of the *Oreochromis niloticus* reference genome (Conte et al. 2018), publicly available at NCBI (GenBank assembly accession GCA_001858045.3).

Genotype imputation

Three *in silico* LD panels were constructed with SNP densities of 500 (LD0.5K), 1,000 (LD1K) and 3,000 (LD3K). The SNPs from the LD panels were selected using the option --indep-pairwise of Plink v1.9 software (Purcell et al. 2007), with a window size of 180,432 kb, a step of 1 SNPs and a variable r^2 according to chromosome. This
command produced a subset of markers that are proportional for chromosome size, are approximately evenly spaced and in low linkage disequilibrium with each other as recommended by Cleveland and Hickey (2014).

The imputations were run using genotype information from 108 parents and 20% of the offspring (n = 225) as a reference set (HD panel) and 80% of offspring (n = 904) were used as the validation set (LD panel). The assignment of the offspring to the reference and validation sets was random, and five replicates were used each time. In addition, we used pedigree information available for all individuals for imputation, consisting of eight generations of records for each genotyped animal. Imputation of genotypes was performed using the FIImpute v2.2 software (Sargolzaei et al., 2014) and the accuracy of imputation was calculated as the correlation between true and imputed genotypes for the validation set.

Genomic selection

We used true and imputed genotypes from the three LD panels (LD0.5K, LD1K and LD3K) to assess prediction accuracies using a five-fold cross validation scheme. In addition, accuracy of breeding values was also estimated using pedigree-based information (PBLUP method) and the true 32K SNPs (true markers that passed in quality control). Briefly, all genotyped animals (n = 904) with phenotypes were randomly divided into five exclusive training sets (80% of the dataset; n = 721 and SD = 5 animals) which were used to estimate the SNP effects; the remaining animals were used as validation sets (20% of the dataset; mean = 193 and SD = 5 animals), for which their phenotypes were masked and their performance was predicted based on the marker effects. This five-fold cross validation was replicated five times for each SNP panel density and the results are presented as a mean for all replications.
We used the BLUPF90 family of programs (Misztal et al. 2016) to perform the genetic evaluations using pedigree-based information and the ssGBLUP method which uses both pedigree and genomic information, and additional information of the animals with only phenotypes (Table 1) in the validation set. The statistical model fitted was the same of the eq. 1, except for PBLUP method, for which the kinship matrix used was A^{-1} instead of H^{-1} in ssGBLUP.

Prediction accuracies were calculated in the validation sets using the following equation:

$$r_{(G)EBV,BV} = \frac{r_{(G)EBV,y}}{h},$$

where $r_{(G)EBV,y}$ is the correlation between the estimated breeding value (EBV) or genomic estimated breeding values (GEBV) of a given model (predicted for the validation set using information from the training set) and the true phenotypic record, while h is the square root of the pedigree-based estimate of heritability.

Genetic parameters and heritability

The total additive genetic variance (σ^2_a) was estimated using the kinship matrix A and H for PBLUP and ssGBLUP, respectively. For all traits studied, the heritabilities were computed using the following equation:

$$h^2 = \frac{\sigma^2_a}{\sigma^2_a + \sigma^2_c + \sigma^2_e}$$

(eq. 2)

where, σ^2_c and σ^2_e is the common environmental and residual variance, respectively.

Data availability

All raw phenotypic and genotypic data used in the current study can be found at the Figshare public repository (https://figshare.com/s/9b265a22b7e138c5a839).
RESULTS

Basic statistics and genotype quality control

The total number of individuals phenotyped ranged from 5,866 to 5,909 for FY and HW, respectively, and varied per year-class with the maximum number of animals phenotyped in 2013. On average, the recorded fish were 401 days old at harvest weight. The average FY was 34.2% (SD = 2.13% g) and the average HW was 878 g (SD = 254 g) for phenotyped fish (Table 1).

Out of the initial 1,364 individuals and 43,272 SNPs which were effectively genotyped, a total of 1,130 animals and 32,306 SNPs (32K) passed quality control. The MAF < 0.05 parameter excluded the highest number of SNPs (~ 4.8K), whereas HWE and genotyped call-rate excluded about 2K and 4K SNPs, respectively.

Genetic parameters and heritability

For both FY and HW the additive genetic variance and heritability were slightly higher when using genomic information compared to the pedigree-based method. For instance, heritability values using ssGBLUP were 0.21 and 0.36 for FY and HW, respectively. For PBLUP heritability for FY and HW was estimated to be 0.21 to 0.31, respectively. Additionally, a reduction in error of heritability estimates was shown for ssGBLUP when compared with PBLUP.

Genome-wide association analysis

Manhattan plots for the proportion of genetic variance explained by each 20-SNP window for FY and HW are shown in Figures 1 and 2. A total of 1,624 20-SNP windows with average length of 530 kb (range from 10 to 6,690 kb) were obtained.
After the second iteration of wssGBLUP, the top five windows cumulatively explained 5.2 and 8.0% of the total genetic variance for FY and HW, respectively (Table 2).

The full list of genes located within the top five 20-SNPs windows associated with FW and HW is shown in Supplemental Table 1. Some candidate genes found within the top five most important windows have been suggested to be involved with growth-related traits in previous studies. For FY we identified genes U3 small nucleolar RNA-associated protein 6 homolog (UTP6), Ras-related protein (Rab31) and Follistatin-related protein (FLRG or FSTL3), located in chromosome 06, 18 and 23, respectively. For HW we identified the genes Natriuretic Peptide Receptor 1 (NPRI) and Exostosin Like Glycosyltransferase 3 (EXTL3) located in chromosome 22 and 15, respectively.

Accuracy of genotype imputation

We observed that imputation accuracy decreased with reduced marker density going from LD3K to LD0.5K SNP panels with values ranging from 0.98 to 0.90, respectively (Figure 3). The largest increase in imputation accuracy occurred when increasing SNP density from 0.5K to 1K, with an increase in imputation accuracy of about 6%.

Supplemental Figures 1, 2 and 3 show the correlation between observed and imputed genotypes for each SNP in all chromosomes using the LD3K, LD1K and LD0.5 panels, respectively. Imputation accuracy was not consistent across chromosomes, especially for LD0.5K. Inconsistencies may happen because of the physical position of imputed SNP and the location of the SNP on the LD panel. The imputation accuracy decreased greatly at telomeres, and increased considerably with increased SNP density.
Accuracy of PBLUP and ssGBLUP

Based on the five-fold cross validation, the prediction accuracy for GEBV from genomic methods outperformed the accuracy for EBV from PBLUP. In addition, the accuracy of genomic selection using imputed genotypes from LD to HD SNP panels outperformed both PBLUP and ssGBLUP using true LD genotypes (Table 4).

The relative increase in accuracy of predicted GEBV compared with EBV from PBLUP varied moderately between the LD panels and traits (Figure 4). Thus, the relative increase in accuracy for FY when comparing ssGBLUP to PBLUP ranged from 4 to 15% for true 0.5 and 32K genotypes, respectively and from 8 to 15% for imputed genotypes using the 0.5 and 3K LD SNP panels respectively. For HW the relative increase in accuracy when comparing ssGBLUP to PBLUP ranged from 4 to 25% for true 0.5 and 32K genotypes, respectively and from 22 to 27% for imputed genotypes using the 0.5 and 3K LD SNP panels respectively. In general, the relative increase in accuracy of predicted GEBV from all true LD SNP panels and imputed genotypes were always better than EBV from PBLUP even at the lowest marker density of 0.5 K for all traits. The relative increase in accuracies when comparing ssGBLUP to PBLUP were almost always higher for HW than for FY, except for the use of true 3K genotypes for prediction of FY (14%) which was slightly higher than for HW (13%) using the same 3K genotypes.

The genomic prediction accuracy using imputed genotypes, was identical or very similar between the LD panels compared to the 32K SNP genotypes, especially for FY (Figure 4). When comparing the use of true and imputed genotypes for genomic selection it was evident that genotype imputation resulted in a higher increase in relative accuracy independently of trait and LD SNP panel. As expected, the lowest genomic
prediction accuracy when using imputed genotypes was always observed for the SNP panel with lowest imputation accuracy (LD0.5K), which resulted in an accuracy slightly lower than the 32K SNP panel, but higher than PBLUP.

DISCUSSION

Heritability

We found moderate heritability values for FY and HW which agrees with previous estimates calculated using pedigree-based methods (Gjerde et al., 2012; Nguyen et al., 2010; and Rutten et al., 2005). HW and FY heritability values in tilapia, estimated using genomic information, are reported for the first time in this study. We found slight higher estimates of heritability when using genomic information compared to PBLUP, especially for HW, which is in accordance with what has been reported in other fish species for fillet yield and growth traits (Tsai et al. 2015; Gonzalez-Pena et al. 2016a).

Genome-wide association analysis

In the present study, we found no evidence of major quantitative trait loci for both fillet yield and harvest weight in Nile tilapia. The small effect of these loci reinforces evidence of the polygenic nature of these traits. Previous studies support our results and have shown the polygenic nature of fillet yield and growth-related traits in different aquaculture species, with no evidence of major effect genes or genomic regions assessed by GWAS (Gutierrez et al. 2015; Tsai et al. 2015; Gonzalez-Pena et al. 2016a; Yoshida et al. 2017; Garcia et al. 2018; Reis Neto et al. 2019). Furthermore, within the five 20-SNP windows that explained the higher proportion of genetic
variance, we found several genes that could potentially be involved in growth and fillet yield.

Although, it is out of the scope of the present study to discuss in detail the putative genes involved in FY and HW, we found it worthy to mention some of the most biologically relevant candidates that may be worthy of functional validation. For instance, the UTP6 gene is suggested to enhance cellular growth through an increase in the number of ribosomes in Chinese hamster ovary cells (Courtes et al. 2013). For both FY and HW, between position 24,563,797 and 24,886,884 bp, we identified the RAB31 gene, which has a role in trafficking the epidermal growth factor receptor (EGFR) gene (Chua and Tang 2014), an important receptor of tyrosine kinase in animals that functions in development, growth and tissue regeneration (Wang et al. 2018). In addition, FSTL3, present in one of the top 5 SNP windows explaining a high proportion of the genetic variance for FY, is a member of follistatin family, which has been suggested to be an inhibitory binding protein of myostatin activity (Hill et al. 2002, 2003). Rebhan and Funkenstein (2008) reported experimental evidence that myostatin activity can be inhibited by follistatin. Chu et al. (2016) observed an increase in the number of muscle fibers, satellite cell activation and decreased expression of myostatin in animals treated with FSTL3; suggesting that the gene might be involved to muscle development in the Chinese Perch (Siniperca chuatsi).

In plants NPR1 is an essential regulator of systemic acquired resistance, conferred immunity to broad-spectrum of pathogens (Cao et al. 1997; Mou et al. 2003). However, Vanacker et al. (2001) reported a novel function for NPR1, which is associated with growth control, cell division and suppressing endoreduplication during leaf development in Arabidopsis. In humans, a mutation affected the EXT13 gene causing skeletal dysplasia, immune deficiency and development delay. In zebrafish
abnormalities of cartilage development and defective formation in fin and branchial arch were reported (Norton et al. 2005). Other genes located in a 20-SNP window flanking the top five windows are presented in Supplemental Table 1.

Accuracy of genotype imputation

The imputation accuracy, on average, was above 90%, independent of the LD SNP panel used but decreased from LD3K to LD0.5K, which is in accordance with the same pattern seen by Habier et al. (2009), Hickey et al. (2012) and Yoshida et al. (2018b). The imputation errors could be higher in LD panels because they could be less efficient in capturing the linkage and linkage disequilibrium between the markers. Like previous studies we found accuracies of genotype imputation to be very similar using panels of 3K SNPs or denser (Druet et al. 2010; Zhang and Druet 2010; Duarte et al. 2013; Carvalheiro et al. 2014; Cleveland and Hickey 2014; Kijas et al. 2016; Tsai et al. 2017). However, it is likely that 3K or denser SNP panels will be considerably more expensive than 0.5K or 1K SNP panels, thus cost-effectiveness must be carefully evaluated in further studies.

Some imputation studies tested the size of the reference population (Zhang and Druet 2010; Cleveland and Hickey 2014; Tsai et al. 2017; Yoshida et al. 2018b), and have shown that the number of animals used in this study should be sufficient to not influence the imputation accuracy. Therefore, we did not include the effect of different genotyping strategies in the final results; however, in preliminary tests we found imputation accuracies lower than 90% using a small proportion of offspring (less than 10%) in the reference set when imputing genotypes from the 0.5K SNP panel (results not show). This is probably because of the small number of animals per family in the reference population, which can influence imputation accuracy (Hickey et al. 2012). In
In this case we had approximately 18 sibs genotyped/family and inclusion of 20% of offspring in addition to the parents genotyped with the 32K SNP panel as the reference set, to achieve similar accuracy values to those reported by Yoshida et al. (2018b) for *Salmo salar* where 31 sibs/family and just 10% of offspring were needed to surpass an imputation accuracy of 90%. The influence of the small number of animals per family in the reference set decreased when the density of the LD SNP panels increased (Carvalheiro et al. 2014).

Supplemental Figures 1, 2 and 3 indicate regions of the genome containing markers with high imputation errors, especially at the beginning and end of the chromosomes. This is could be an effect of recombination rates, that are known to be higher around the telomeres (Chowdhury et al. 2009; Tortereau et al. 2012). The physical location of the SNP is another factor that has been shown to be affect the imputation accuracy and to reduce the errors in these regions, some previous studies suggested increasing the coverage of SNP chromosomal extremes (Badke et al. 2012; Boichard et al. 2012; Dassonneville et al. 2012). In addition, high imputation errors far from chromosome extremes can be the result of erratic patterns of linkage disequilibrium, which suggests potential issues related to physical maps and reference genome assembly (Druet et al. 2010; Carvalheiro et al. 2014; Yoshida et al. 2018b).

Another important factor that may affect the imputation accuracy is the linkage disequilibrium between markers which is exploited to infer the missing genotypes (Hickey et al. 2012; Carvalheiro et al. 2014). A previous study, showed a more rapid decrease of linkage disequilibrium with inter-marker distance for this Nile tilapia population (Yoshida et al. 2019) when compared to other populations of different aquaculture species (Barria et al., 2018b; Gutierrez et al., 2015; Kijas et al., 2016; Vallejo et al., 2018). Nevertheless, our imputation accuracies are close to the imputation
values reported in the literature for salmonids (Kijas et al. 2016; Tsai et al. 2017; Yoshida et al. 2018b) and terrestrial species (Badke et al. 2012; Hayes et al. 2012; Duarte et al. 2013; Hozé et al. 2013; Carvalheiro et al. 2014), suggesting that the family-based imputation approach is less sensitive to linkage disequilibrium patterns by efficiently exploiting information of highly related animals.

Accuracy of genomic prediction

Our results showed that the use of genomic information for estimating breeding values achieved higher accuracies compared to using only pedigree information for FY and HW, independent of the LD SNP panel used, with or without imputation of genotypes (Figure 4). The relative increase in GEBV accuracies compared to PBLUP has been previously reported for growth (Garcia et al., 2018; Tsai et al., 2015) and for different disease resistance traits in farmed aquaculture species (Tsai et al. 2016; Vallejo et al. 2017; Bangera et al. 2017; Correa et al. 2017; Barria et al. 2018a; Yoshida et al. 2018a, 2018c).

The accuracy of GEBV depends on factors such as the number of genotyped and phenotyped individuals in the training population, the heritability and the number of loci affecting the trait (Daetwyler et al. 2008; Goddard 2009). Furthermore, the accuracy of genomic prediction is highly dependent on the genotype density used, which means that increasing marker densities tends to generate higher GEBV accuracies (Tsai et al. 2016; Bangera et al. 2017; Correa et al. 2017; Yoshida et al. 2018a). In addition, the use of different methods to estimate the GEBV can directly affect the accuracy of genomic prediction. In general, the genomic methods differ in distributional assumptions of marker effects and the calculation of the genetic relationship matrix. Here, we used the ssGBLUP method (Misztal et al. 2009), which assumed a normal distribution of marker
effects and has some of practical advantages, given that it uses information from genotyped and nongenotyped animals (Lourenco et al. 2014), and it has also been demonstrated to provide higher accuracy than the PBLUP method and other genomic methods (Chen et al. 2011; Christensen et al. 2012; Vallejo et al. 2017; Yoshida et al. 2018a).

To test the impact of genotype imputation errors in genomic predictions we estimated the accuracy of genomic predictions for FY and HW using imputed genotypic data and compared the data to true 32K and LD SNP genotypes (LD3K, LD1K and LD0.5K). Our results indicate that genomic prediction accuracies using imputed genotypes were always higher than those obtained using true LD genotypes and equal or slightly lower than using true 32K genotypes (Figure 4). For HW the accuracy of GEBV was substantially higher using the imputed LD0.5K than true LD0.5K, LD1K and even LD3K, whereas for FY the accuracy using imputed LD0.5K did not surpass the true LD3K panel. Our results are in accordance with previous studies in aquaculture (Dufflocq et al., 2019; Tsai et al., 2017; Yoshida et al., 2018b) and livestock species (Berry and Kearney 2011; Erbe et al. 2012); indicating that the use of genotype imputation can decrease the cost of genotyping by means of using less expensive LD SNP panels without compromising prediction accuracies. In addition, the influence of imputation error on genomic prediction accuracy depends on the genetic architecture underlying the studied traits. For traits that are influenced by few QTLs with large effect, accuracy of genomic prediction could be more sensitive to imputation errors than polygenic traits, such FY and HW (Chen et al. 2014).

Implications
The cost associated with genotyping represents a key limiting factor for the practical implementation of genomic selection in fresh water fish species. One of the main objectives of this study was to test genotyping imputation as an alternative to reduce the costs of genotyping for genomic selection in Nile tilapia breeding programs. Dufflocq et al. (2019) and Tsai et al. (2017) suggested that for aquaculture species the use of imputation strategies can reduce the cost of genotyping by at least 60% compared to genotyping all animals with a high-density panel. The genotype cost depends on the density of the SNP panel, genotyping technology and number of samples. In general the price ranges from USD $5 to USD $75 for low- (0.5K) and high-density panels (50K), respectively. The strategies used in present study for genotyping both parents and a proportion of offspring resulted in low imputations errors; suggesting that genotype imputation represents a promising strategy for the practical application of genomic selection in tilapia.

CONCLUSIONS

The GWAS indicated a polygenic architecture for fillet yield and harvest weight, with some markers explaining a small proportion of genetic variance; indicating that the implementation of marker assisted selection could not be successfully applied for these traits in the present Nile tilapia population. In contrast, the use of genomic selection could increase the response to selection and improve genetic progress. The use of genotype imputation can reduce genotyping costs and allow the implementation of genomic selection in Nile tilapia breeding programs.

ACKNOWLEDGEMENTS
This work has been funded by Corfo (project number 14EIAT-28667). The authors are grateful to Acuacorporación Internacional for providing the Nile tilapia dataset and fin samples.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. GMY, JPL and KC were hired by a commercial institution (Benchmark Genetics Chile) during the period of the study.

AUTHORS’ CONTRIBUTIONS

GMY performed the analysis and wrote the initial version of the manuscript. KC and JPL contributed with study design. JS and DS contributed to family formation and data collection. JMY conceived and designed the study; contributed to the analysis, discussion and writing. All authors have reviewed and approve the manuscript.

LITERATURE CITED

Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta et al., 2010 Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93: 743–752.

Badke, Y. M., R. O. Bates, C. W. Ernst, C. Schwab, and J. P. Steibel, 2012 Estimation of linkage disequilibrium in four US pig breeds. BMC Genomics 13: 24.

Bangera, R., K. Correa, J. P. Lhorente, R. Figueroa, and J. M. Yáñez, 2017 Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics 18: 121.
Barria, A., K. A. Christensen, G. M. Yoshida, K. Correa, A. Jedlicki et al., 2018a
Genomic predictions and genome-wide association study of resistance against
Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD
sequencing. G3 Genes, Genomes, Genet. 8:
Barria, A., K. A. Christensen, G. Yoshida, A. Jedlicki, J. P. Lhorente et al., 2018b
Whole genome linkage disequilibrium and effective population size in a coho
salmon (Oncorhynchus kisutch) breeding population.
http://dx.doi.org/10.1101/335018.
Bentsen, H. B., B. Gjerde, A. E. Eknath, M. S. P. de Vera, R. R. Velasco et al., 2017
Genetic improvement of farmed tilapias: Response to five generations of selection
for increased body weight at harvest in Oreochromis niloticus and the further
impact of the project. Aquaculture 468: 206–217.
Berry, D. P., and J. F. Kearney, 2011 Imputation of genotypes from low- to high-density
genotyping platforms and implications for genomic selection. animal 5: 1162–
1169.
Boichard, D., H. Chung, R. Dassonneville, X. David, A. Eggen et al., 2012 Design of a
Bovine Low-Density SNP Array Optimized for Imputation (Z. Liu, Ed.). PLoS
One 7: e34130.
Cao, H., J. Glazebrook, J. D. Clarke, S. Volko, and X. Dong, 1997 The Arabidopsis
NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein
Containing Ankyrin Repeats. Cell 88: 57–63.
Carvalheiro, R., S. A. Boison, H. H. R. Neves, M. Sargolzaei, F. S. Schenkel et al.,
2014 Accuracy of genotype imputation in Nelore cattle. Genet. Sel. Evol. 46: 1–11.
Chen, L., C. Li, M. Sargolzaei, and F. Schenkel, 2014 Impact of Genotype Imputation
on the Performance of GBLUP and Bayesian Methods for Genomic Prediction (Q.
Zhang, Ed.). PLoS One 9: e101544.

Chen, C. Y., I. Misztal, I. Aguilar, S. Tsuruta, T. H. E. Meuwissen et al., 2011 Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: An example using broiler chickens. J. Anim. Sci. 89: 23–28.

Chowdhury, R., P. R. J. Bois, E. Feingold, S. L. Sherman, V. G. Cheung et al., 2009 Genetic Analysis of Variation in Human Meiotic Recombination (G. P. Copenhaver, Ed.). PLoS Genet. 5: e1000648.

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su, 2012 Single-step methods for genomic evaluation in pigs. Animal 6: 1565–1571.

Chu, W., J. Cheng, X. Zhu, P. Wu, L. Chen et al., 2016 Identification and Characterization of Follistatin-Related Protein-1 Involved in the Regulation of Chinese Perch Skeletal Muscle Hyperplasia. Curr. Mol. Med. 16: 596–604.

Chua, C. E. L., and B. L. Tang, 2014 Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome. J. Biol. Chem. 289: 12375–89.

Cleveland, M. A., and J. M. Hickey, 2014 Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation 1. 3583–3592.

Conte, M. A., R. Joshi, E. C. Moore, S. P. Nandamuri, W. J. Gammerdinger et al., 2018 Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. bioRxiv 383992.

Correa, K., R. Bangera, R. Figueroa, J. P. Llorente, and J. M. Yáñez, 2017 The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet.
Courtes, F. C., J. Lin, H. L. Lim, S. W. Ng, N. S. C. Wong et al., 2013 Translatome analysis of CHO cells to identify key growth genes. J. Biotechnol. 167: 215–224.

Daetwyler, H. D., B. Villanueva, J. A. Woolliams, L. Schaeffer, and A. Crawford, 2008 Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach (M. N. Weedon, Ed.). PLoS One 3: e3395.

Dassonneville, R., S. Fritz, V. Ducrocq, D. Boichard, D. P. Berry et al., 2012 Short communication: Imputation performances of 3 low-density marker panels in beef and dairy cattle. J. Dairy Sci. 95: 4136–40.

Druet, T., C. Schrooten, and A. P. W. de Roos, 2010 Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle. J. Dairy Sci. 93: 5443–5454.

Duarte, J. L. G., R. O. Bates, C. W. Ernst, N. E. Raney, R. J. C. Cantet et al., 2013 Genotype imputation accuracy in a F2 pig population using high density and low density SNP panels.

Dufflocq, P., M. Pérez-Enciso, J. P. Lhorente, and J. M. Yáñez, 2019 Accuracy of genomic predictions using different imputation error rates in aquaculture breeding programs: A simulation study. Aquaculture 503: 225–230.

Eknath, A. E., B. O. Acosta, A. E. Eknath, and B. O. Acosta, 1998 Genetic Improvement of Farmed Tilapias (GIFT) Project: final report, March 1988 to December 1997.

Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman et al., 2012 Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 95: 4114–4129.
Garcia, A. L. S., B. Bosworth, G. Waldbieser, I. Misztal, S. Tsuruta et al., 2018 Development of genomic predictions for harvest and carcass weight in channel catfish. Genet. Sel. Evol. 50: 66.

Gjedrem, T., 2012 Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture 344–349: 12–22.

Gjedrem, T., N. Robinson, and M. Rye, 2012 The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 350–353: 117–129.

Gjerde, B., S. B. Mengistu, J. Ødegård, H. Johansen, and D. S. Altamirano, 2012 Quantitative genetics of body weight, fillet weight and fillet yield in Nile tilapia (Oreochromis niloticus). Aquaculture 342–343: 117–124.

Goddard, M., 2009 Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136: 245–257.

Gonzalez-Pena, D., G. Gao, M. Baranski, T. Moen, B. M. Cleveland et al., 2016 Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout (Oncorhynchus mykiss). Front. Genet. 7: 203.

Gutierrez, A. P., O. Matika, T. P. Bean, and R. D. Houston, 2018 Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction. Front. Genet. 9: 391.

Gutierrez, A. P., J. M. Yáñez, S. Fukui, B. Swift, and W. S. Davidson, 2015 Genome-Wide Association Study (GWAS) for Growth Rate and Age at Sexual Maturation in Atlantic Salmon (Salmo salar). PLoS One 10: e0119730.

Habier, D., R. Fernando, and J. Dekkers, 2009 Genomic selection using low-density marker panels. Genetics.
Hayes, B. J., P. J. Bowman, H. D. Daetwyler, J. W. Kijas, and J. H. J. van der Werf, 2012 Accuracy of genotype imputation in sheep breeds. Anim. Genet. 43: 72–80.

Hickey, J. M., J. Crossa, R. Babu, and G. de los Campos, 2012 Factors Affecting the Accuracy of Genotype Imputation in Populations from Several Maize Breeding Programs. Crop Sci. 52: 654.

Hill, J. J., M. V Davies, A. A. Pearson, J. H. Wang, R. M. Hewick et al., 2002 The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735–41.

Hill, J. J., Y. Qiu, R. M. Hewick, and N. M. Wolfman, 2003 Regulation of Myostatin in Vivo by Growth and Differentiation Factor-Associated Serum Protein-1: A Novel Protein with Protease Inhibitor and Follistatin Domains. Mol. Endocrinol. 17: 1144–1154.

Hozé, C., M.-N. Fouilloux, E. Venot, F. Guillaume, R. Dassonneville et al., 2013 High-density marker imputation accuracy in sixteen French cattle breeds. Genet. Sel. Evol. 45: 33.

Jiménez-Montero, J. A., O. González-Recio, and R. Alenda, 2012 Genotyping strategies for genomic selection in small dairy cattle populations. animal 6: 1216–1224.

Joshi, R., M. Arnyasi, S. Lien, H. M. Gjoen, A. T. Alvarez et al., 2018 Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus). bioRxiv 322826.

Khaw, H. L., R. W. Ponzoni, and M. J. C. Danting, 2008 Estimation of genetic change in the GIFT strain of Nile tilapia (Oreochromis niloticus) by comparing contemporary progeny produced by males born in 1991 or in 2003. Aquaculture 275: 64–69.

Kijas, J., N. Elliot, P. Kube, B. Evans, N. Botwright et al., 2016 Diversity and linkage
27

disequilibrium in farmed Tasmanian Atlantic salmon. Anim. Genet.

Lourenco, D. A. L., I. Misztal, S. Tsuruta, I. Aguilar, E. Ezra et al., 2014 Methods for
genomic evaluation of a relatively small genotyped dairy population and effect of
genotyped cow information in multiparity analyses. J. Dairy Sci. 97: 1742–1752.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of Total Genetic
Value Using Genome-Wide Dense Marker Maps. Genetics 157: 1819–1829.

Meuwissen, T. H. E., R. Vallejo, and U. States, 2014 Genomic prediction in an admixed
population of Atlantic salmon (Salmo salar). 5: 1–8.

Misztal, I., A. Legarra, and I. Aguilar, 2009 Computing procedures for genetic
evaluation including phenotypic, full pedigree, and genomic information. J. Dairy
Sci. 92: 4648–4655.

Misztal, I., S. Tsuruta, D. Lourenco, Y. Masuda, I. Aguilar et al., 2016 Manual for
BLUPF90 family of programs.

Mou, Z., W. Fan, and X. Dong, 2003 Inducers of Plant Systemic Acquired Resistance
Regulate NPR1 Function through Redox Changes. Cell 113: 935–944.

Nguyen, N. H., R. W. Ponzoni, K. R. Abu-Bakar, A. Hamzah, H. L. Khaw et al., 2010
Correlated response in fillet weight and yield to selection for increased harvest
weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture 305: 1–5.

Norton, W. H. J., J. Ledin, H. Grandel, and C. J. Neumann, 2005 HSPG synthesis by
zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development.

Ødegård, J., and T. H. Meuwissen, 2014 Identity-by-descent genomic selection using
selective and sparse genotyping. Genet. Sel. Evol. 46: 3.

Ødegård, J., T. Moen, N. Santi, S. A. Korsvoll, S. Kjøglum et al., 2014 Genomic
prediction in an admixed population of Atlantic salmon (Salmo salar). Front. Genet. 5: 1–8.

Palaiokostas, C., M. Kocour, M. Prchal, and R. D. Houston, 2018 Accuracy of Genomic Evaluations of Juvenile Growth Rate in Common Carp (Cyprinus carpio) Using Genotyping by Sequencing. Front. Genet. 9: 82.

Ponzoni, R. W., N. H. Nguyen, and H. L. Khaw, 2007 Investment appraisal of genetic improvement programs in Nile tilapia (Oreochromis niloticus). Aquaculture 269: 187–199.

Ponzoni, R. W., N. H. Nguyen, H. L. Khaw, A. Hamzah, K. R. A. Bakar et al., 2011 Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Rev. Aquac. 3: 27–41.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira et al., 2007 PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 81: 559–575.

Rebhan, Y., and B. Funkenstein, 2008 Inhibition of fish myostatin activity by recombinant fish follistatin and myostatin prodomain: Potential implications for enhancing muscle growth in farmed fish. Aquaculture 284: 231–238.

Reis Neto, R. V., G. M. Yoshida, J. P. Lhorente, and J. M. Yáñez, 2019 Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (Oncorhynchus mykiss). Mol. Genet. Genomics 1–9.

Rutten, M. J. M., H. Bovenhuis, and H. Komen, 2005 Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture 246: 125–132.
Sargolzaei, M., J. P. Chesnais, and F. S. Schenkel, 2014 A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15: 478.

Sargolzaei, M., J. P. Chesnais, and F. S. Schenkel, 2009 Accuracy of a family-based genotype imputation algorithm. GEB Open Ind. Sess. 1–4.

Sen, Ś., F. Johannes, and K. W. Broman, 2009 Selective Genotyping and Phenotyping Strategies in a Complex Trait Context. Genetics 181:

Tortereau, F., B. Servin, L. Frantz, H.-J. Megens, D. Milan et al., 2012 A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genomics 13: 586.

Tsai, H.-Y., A. Hamilton, A. E. Tinch, D. R. Guy, J. E. Bron et al., 2016 Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet. Sel. Evol. 48: 47.

Tsai, H., A. Hamilton, A. E. Tinch, D. R. Guy, K. Gharbi et al., 2015 Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16: 1–9.

Tsai, H.-Y., O. Matika, S. M. Edwards, R. Antolín–Sánchez, A. Hamilton et al., 2017 Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon. G3 Genes, Genomes, Genet. 7:

Vallejo, R. L., T. D. Leeds, G. Gao, J. E. Parsons, K. E. Martin et al., 2017 Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet. Sel. Evol. 49: 17.

Vallejo, R. L., R. M. O. Silva, J. P. Evenhuis, G. Gao, L. Sixin et al., 2018 Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a major contributing
Vanacker, H., H. Lu, D. N. Rate, and J. T. Greenberg, 2001 A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 28: 209–216.

VanRaden, P. M., J. R. O’Connell, G. R. Wiggans, and K. A. Weigel, 2011 Genomic evaluations with many more genotypes. Genet. Sel. Evol. 43: 10.

Wang, Q., R. Hao, X. Zhao, R. Huang, Z. Zheng et al., 2018 Identification of EGFR in pearl oyster (Pinctada fucata martensii) and correlation analysis of its expression and growth traits. Biosci. Biotechnol. Biochem. 82: 1073–1080.

Wang, H., I. Misztal, I. Aguilar, A. Legarra, R. L. Fernando et al., 2014 Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front. Genet. 5: 1–10.

Wang, H., I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir, 2012 Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. (Camb). 94: 73–83.

Yáñez, J. M., R. D. Houston, and S. Newman, 2014 Genetics and genomics of disease resistance in salmonid species. Front. Genet. 5: 1–13.

Yáñez, J. M., and V. Martinez, 2010 Genetic factors involved in resistance to infectious diseases in salmonids and their application in breeding programmes. Arch. Med. Vet. 42: 1–13.

Yáñez, J. M., G. M. Yoshida, G. Cáceres, M. E. Lopez, J. P. Lhorente et al., 2019 High-throughput single nucleotide polymorphism (SNP) discovery and design of a 50K SNP chip for Nile tilapia (Oreochromis niloticus) using whole-genome sequencing of hundreds of animals. Front. Genet.

Yoshida, G. M., R. Bangera, R. Carvalheiro, K. Correa, R. Figueroa et al., 2018a
Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3 Genes, Genomes, Genet. 8:.

Yoshida, G., A. Barria, G. Caceres, K. Correa, A. Jedlicki et al., 2019 Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus). bioRxiv 519801.

Yoshida, G. M., R. Carvalheiro, J. P. Lhorente, K. Correa, R. Figueroa et al., 2018b Accuracy of genotype imputation and genomic predictions in a two-generation farmed Atlantic salmon population using high-density and low-density SNP panels. Aquaculture 491: 147–154.

Yoshida, G. M., R. Carvalheiro, F. H. Rodríguez, J. P. Lhorente, and J. M. Yáñez, 2018c Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics.

Yoshida, G. M., J. P. Lhorente, R. Carvalheiro, and J. M. Yáñez, 2017 Bayesian genome-wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.). Anim. Genet. 48:.

Zhang, Z., and T. Druet, 2010 Marker imputation with low-density marker panels in Dutch Holstein cattle. J. Dairy Sci. 93: 5487–5494.

Zhang, X., D. Lourenco, I. Aguilar, A. Legarra, and I. Misztal, 2016 Weighting Strategies for Single-Step Genomic BLUP: An Iterative Approach for Accurate Calculation of GEBV and GWAS. Front. Genet. 7: 151.
Table 1. Summary statistics for phenotyped animals by year-class.

Year-class	Fam¹	Genotyped	Age	Fillet Yield	Harvest Weight					
			Mean	SD²	Number	Mean (%)	SD²	Number	Mean (g)	SD²
2011	89	-	376.25	24.24	1,004	36.34	1.85	1,027	919.15	257.61
2012	82	-	343.48	16.33	0760	34.47	2.05	0767	730.79	235.62
2013	80	-	514.22	14.49	2,628	34.07	2.45	2,636	907.91	268.04
2017	74	1,130[*]	370.54	20.04	1,474	31.74	2.16	1,479	953.57	252.86

*The parents of year-class 2017 were genotyped using 50K SNPs panel to perform genotype imputation.

¹Family number;

²Standard deviation.
Table 2. Top five ranked 20-SNP windows that explain the largest proportion of genetic variance for fillet yield and harvest weight in Nile tilapia.

CHR	Position Initial	Position Final	Pvar (%)	Window length (bp)	Genes
Fillet Yield					
LG04	11,812,441	12,225,401	1.439	412,960	cacng3, clcn7, dctn5
LG06	25,191,450	25,573,340	0.981	381,890	adap2, rab11, utp6
LG18*	24,563,797	24,886,884	0.969	323,087	ankrd12, mtl1, rab31
LG23	40,389,783	41,076,465	0.907	686,682	armh1, atp5f1d, fstl3
LG07	61,517,871	61,850,135	0.889	332,264	
Harvest Weight					
LG16	05,380,219	05,989,612	2.082	609,393	calcrl, gulp1
LG22	34,016,287	34,585,708	1.852	569,421	dna12, ints3, npr1
LG12	37,027,113	37,559,043	1.434	531,930	endog, entr1, med27
LG15	14,423,480	14,846,999	1.383	423,519	cpsf2, extl3, fut8
LG18*	24,563,797	24,886,884	1.238	323,087	

*Coincident window for both traits.

1Chromosome;
2Percentage of genetic variance explained by each 20-SNP window;
3*Oreochromis niloticus* used as reference species (full list of genes available in Supplemental Table 1).
Table 3. Estimates of variance components and heritability for fillet yield and harvest weight in Nile tilapia.

Traits	PBLUP	ssGBLUP*			
	σ_a^2	σ_c^2	σ_e^2	h^2	SE
Fillet yield	0.972	0.174	3.498	0.209	0.053
Harvest weight	19.312	4.296	39.522	0.306	0.073

*Estimated for true 32K genotype panel.

1 Additive genetic variance;

2 Common environment variance;

3 Residual variance;

4 Heritability;

5 Standard error.

Table 4. Mean accuracy of EBV and GEBV for fillet yield and harvest weight in Nile tilapia using true and imputed genotype SNPs.

Traits	PBLUP	True genotypes	Imputed genotypes
		32K 3K 1K 0.5K	3K 1K 0.5K
Fillet yield	0.539	0.621 0.612 0.574 0.560	0.621 0.620 0.585
Harvest weight	0.479	0.601 0.539 0.537 0.500	0.607 0.600 0.586
Figure 1. Manhattan plot of genetic variance explained by 20-SNP windows for fillet yield in the 2nd iteration of wssGBLUP.

Figure 2. Manhattan plot of genetic variance explained by 20-SNP windows for harvest weight in the 2nd iteration of wssGBLUP.

Figure 3. Imputation accuracy from low-density (LD3K, LD1K and LD0.5K) to high-density (HD) panel in Nile tilapia using parents (n = 108) and 20% of offspring (n = 226) genotyped with the HD panel as the reference set and 80% of offspring (n = 904) as the validation set.

Figure 4. Relative increase in accuracy of different genomic selection methods for fillet yield, harvest weight and waste weight compared to PBLUP in Nile tilapia using true and imputed genotypes.
Supplemental Table 1. Full list of genes located within the top five 20-SNP windows associated with fillet yield and harvest weight in Nile tilapia.

CHR	Genes
	Fillet Yield
	cacng3, clcn7, dctn5, drg2, gfer, myo15a, ndufab1, ptx4, rbbp6, rpusd1, slc25a17, syng3, tnrc6a, usp7, znf598, LOC100708739, LOC100709278, LOC100709546,
04	LOC106099013, LOC109194329, LOC109194368, LOC109202072, LOC112846722, LOC112846774, LOC112846775, LOC112846776, LOC112846777
06	adap2, rab11fip4, rhbdl3, suz12, tefm, utp6, LOC100692714, LOC100694065, LOC100702459, LOC100702728, LOC102078754, LOC102079736, LOC102080579, LOC102081387, LOC106098444, LOC106098445, LOC109202587
18*	ankrd12, mtcl1, ndufv2, rab12, rab31, ralbp1, twsg1, vapa, LOC100689759, LOC100697261, LOC100712112, LOC100712380, LOC112842925, LOC112842946
23	armh1, atp5f1d, bsg, fgf22, fstl3, hcn2, polrmt, rnf126, yjefn3, LOC100689822, LOC100691436, LOC100691703, LOC100691973, LOC100692241, LOC100692510, LOC100692779, LOC100693053, LOC100693138, LOC100693321, LOC100693591, LOC100694214, LOC100701614, LOC100710294, LOC100710826, LOC100711090, LOC100711361, LOC100711633, LOC100711902, LOC100712172, LOC100712441, LOC102083054, LOC112843764, LOC112843838, LOC112843928, LOC112843936, LOC112844020, LOC112844021
LOC100693441, LOC100693700, LOC100693969, LOC100694244, LOC100694510, LOC100700474, LOC100700740, LOC102080922, LOC109202944, LOC109202945, LOC112847395	

Harvest weight	
calcrl, gulp1, LOC100708152, LOC100708695, LOC100709501, LOC100710924, LOC100711189, LOC100712002, LOC102082249, LOC109197478, LOC109197703, LOC112844144	
LOC100708518, LOC100708787, LOC100709056, LOC10207820, LOC102078460, LOC102078532, LOC102078821, LOC102082218, LOC102082787	
dnai2, ints3, npr1, LOC100695994, LOC100696257, LOC100696522, LOC100708518, LOC100708787, LOC100709056, LOC10207820, LOC102078460, LOC102078532, LOC102078821, LOC102082218, LOC102082787	
LOC100708518, LOC100708787, LOC100709056, LOC10207820, LOC102078460, LOC102078532, LOC102078821, LOC102082218, LOC102082787	
LOC106098120, LOC106098122, LOC109196337, LOC112841743, LOC112843434, LOC112843499, LOC112843500, LOC112843592, LOC112843649, LOC112843656, LOC112843662, LOC112843664	
endog, entr1, med27, phf19, sohlh1, ttf1, LOC100699959, LOC100700504, LOC100709101, LOC100709370, LOC100710177, LOC100710439, LOC100710705, LOC100711238, LOC100711509, LOC100711782, LOC100712047, LOC102080147, LOC102080679, LOC106096498, LOC109195001, LOC109195513, LOC109195514, LOC109195515, LOC109195516, LOC109195529, LOC1091955287, LOC112841840, LOC112841872, LOC112841898, LOC112848298, LOC112848299, LOC112848300	
cpsf2, extl3, fut8, riox1, slc24a4, tmem121, LOC100694334, LOC100711926, LOC106098308	
LOC106098308	
798	

*Coincident window for both traits.
Supplemental Figure 1. Correlations between observed and imputed genotypes for each SNP for imputation from low-density (LD3K) to high-density (HD) panel in Nile tilapia using parents (n = 108) and 20% of offspring (n = 226) genotyped with the HD panel as the reference set and 80% of offspring (n = 904) as the validation set. The black line indicates the mean imputation accuracy.

Supplemental Figure 2. Correlations between observed and imputed genotypes for each SNP for imputation from low-density (LD1K) to high-density (HD) in Nile tilapia using parents (n = 108) and 20% of the offspring (n = 226) genotyped with the HD panel as the reference set and 80% of the offspring (n = 904) as the validation set. The black line indicates the mean imputation accuracy.

Supplemental Figure 3. Correlations between observed and imputed genotypes for each SNP for imputation from low-density (LD0.5K) to high-density (HD) in Nile tilapia using parents (n = 108) and 20% of offspring (n = 226) genotyped with the HD panel as the reference set and 80% of the offspring (n = 904) as the validation set. The black line indicates the mean imputation accuracy.
Imputation 1K SNPs
