SEIBERG-WITTEN-CASSON INVARIANT OF HOMOLOGY
$S^1 \times S^3$ WITH CIRCLE ACTION

DAOYUAN HAN

Abstract. In this paper we shall compute the Mrowka-Ruberman-Saveliev invariant introduced in [17] for the case when the manifold admits a free circle action.

1. Introduction

The Mrowka-Ruberman-Saveliev invariant [17] defined for 4-manifolds with $b_2^+ = 0$ is the count of irreducible solutions plus an index of Dirac operator over end-periodical manifold. Several special cases have been computed by others, for example, when X is of the form $S^1 \times Y$ and Y is of the homology type of the three sphere S^3, Mrowka, Ruberman, Saveliev proved using Lim’s work in [9] that it coincides with Casson’s invariant. The authors of [17] computed this invariant in other cases, like mapping tori. Moreover, we want to verify a special case of the conjecture made in the paper [17], which states that the Mrowka-Ruberman-Saveliev invariant is the same as the invariant define by Furuta and Ohta in [5], which is considered as another generalization of Casson’s invariant to 4-manifold.

We shall begin this section by reviewing the definition of the Mrowka-Ruberman-Saveliev invariant introduced in [17]. Let X be an integral homology $S^1 \times S^3$, then define

$$\lambda_{SW}(X) = \#\mathcal{M}(X, g, \beta) - \omega(X, g, \beta),$$

where $\#\mathcal{M}(X, g, \beta)$ is the count of irreducible solutions in the Seiberg-Witten moduli space over X equipped with metric g and perturbation β and $\omega(X, g, \beta)$ is a correction term so that $\lambda_{SW}(X)$ is independent of g and β. The correction term $\omega(X, g, \beta)$ is defined as

$$\omega(X, g, \beta) = \text{index}D^+(Z_+, g, \beta) + \text{sign}(Z)/8,$$

where $Z_+ = Z \cup W_1 \cup W_2 \cup \cdots$, with each copy of W_i a cobordism formed by cutting along a 3-submanifold M representing generator of $H_3(X)$, and Z is a spin 4-manifold with boundary M. $D^+(Z_+, g, \beta)$ is the Dirac operator over Z_+ equipped with Spin-structure extending that over W to Z. And it is proved in [17] that this correction term is independent of Z and the way to extend the Spin structure.

This invariant can be treated as a lift of Rohlin’s invariant by Theorem A in [17], which can also be considered as a generalization of Theorem 1.2 by Chen in [16], where an integer invariant $\alpha(Y)$ for homology sphere Y is defined and equal to Rohlin’s invariant mod 2. The Chen’s invariant in [16] is also defined as a combination of Seiberg-Witten invariant and index correction term.

The proof that λ_{SW} is well-defined in [17] uses the blown-up of SW-equation and shows at first that for generic metric and perturbation (g, β), the pair is regular, meaning that the corresponding blown-up moduli space has no reducible solution.
The moduli space under regular pair of \((g, \beta)\) is a zero dimensional manifold by computing the virtual dimension. Considering a path of such regular pairs, it’s proved that the corresponding parametrized moduli space is a 1-dimensional manifold with boundary \(M(X, g_0, \beta_0) \cup M(X, g_1, \beta_1) \cup M^0_I\) where \(M^0_I\) denotes the path components approaching reducibles. Thus the change of Seiberg-Witten invariants can be expressed as the count of points in \(M^0_I\). Then the remainder of the proof shows that there is a 1-1 correspondence between the change of correction terms along the same path \((g_t, \beta_t)\) and \(M^0_I\). It is achieved by expressing the change of correction terms as a spectral flow of certain path of Dirac operators over \(X\). This new path of Dirac operators over \(X\) is derived from Laplace-Fourier transform of the end-periodic Dirac operators over \(Z^+\). Note that the spectral flow only changes when a Dirac operator on the path has nontrivial kernel and it remains to be seen that the parameters where the kernel is nontrivial are in 1-1 correspondence with the points in \(M^0_I\).

When the manifold admits a free circle action, the Seiberg-Witten invariant and the correction term can be computed more explicitly. We assume that the circle action induces a \(S^1\)-bundle \(\pi: X \to Y\) whose Euler number \(e = 1\). The submanifold \(M\) of \(X\) representing the homology generator of \(H_3(X; \mathbb{Z})\), fibers over a 2-surface \(\Sigma\). It is shown by Baldridge [4] that in this case, the Seiberg-Witten invariant of \(X\) can be related to the 3 dimensional Seiberg-Witten invariant of \(Y\), and this 3-dimensional Seiberg-Witten invariant can be further related to Alexander polynomial of a knot, surgery on which of \(S^3\) gives \(Y\). The correction term on the other hand, can be computed by using a special neck-stretching metric in [10] over \(Z^+\) with the effect of stretching \(M \times [0, R]\) by letting \(R\) be sufficiently large, and we can then use the index formula for cylindrical end manifold to compute the correction term. Thus we have the following theorem,

Theorem 1.1. Let \(X\) be a smooth 4-manifold of integral homology \(S^1 \times S^3\) with a free circle action such that \(X\) is circle bundle over \(Y\) and \(H_3(Y) = H_3(S^1 \times S^3)\). Then there exists a pair \((g_X, \beta)\) such that \(#M(X, g_X, \beta) = \Delta_Y^*(1)\), where \(\Delta_Y(t)\) denotes the normalized Alexander polynomial and the correction term \(\omega(X, g_X, \beta) = 0\).

Note that when the infinite cyclic cover \(\tilde{X}\) has the same homology as \(S^3\), we have \(#M(X, g, \beta) = 0\) as \(\Delta_Y(t)\) is trivial. Thus we can verify the following conjecture made in [17] in the case when \(X\) admits a free circle action.

Conjecture 1.2 ([17]). For any smooth oriented homology oriented 4-manifold \(X\) with the \(\mathbb{Z}[\mathbb{Z}]\)-homology of \(S^1 \times S^3\), one has \(\lambda_{SW}(X) = -\lambda_{FO}(X)\).

Here the \(\lambda_{FO}(X)\) denotes the Furuta-Ohta invariant introduced in [8] defined by counting the points in the moduli space of irreducible ASD connections on a trivial \(SU(2)\) bundle \(P \to X\) and is zero when the assumptions in Theorem [11] are satisfied [15].

2. Seiberg-Witten invariant

2.1. Moduli space over circle bundle. Let \(X\) be a smooth 4-manifold admitting a free circle action and the circle bundle \(\pi: X \to Y\) has Euler number 1. We can equip \(X\) with a metric of the form \(g_X = \eta \otimes \eta \oplus \pi^* g_Y\) where \(g_Y\) is a any metric on \(Y\)
and \(i\eta\) is a connection 1-form of the circle bundle \(\pi : X \to Y\). Under these settings, Scott Baldridge proved in [4] that the \(Spin^c\)-structures \(\xi\) for which \(SW_X(\xi) \neq 0\) are pulled back from the ones on \(Y\) and the moduli space of \(Y\) equipped with the metric \(g_Y\) is homeomorphic (or orientation preserving diffeomorphic for well chosen metric and perturbation) to a component of the moduli space of \(X\) equipped with the metric \(g_X = \eta \otimes \eta \otimes \pi^* g_Y\).

Theorem 2.1. (Baldridge [4]) The pullback map induces a homeomorphism

\[
\pi'^* : \mathcal{M}^*(Y, g_Y, \delta) \to \mathcal{N}^*(X, g_X, \pi^* (\delta)^+) .
\]

There exists pairs \((g_Y, \delta)\) such that the two moduli spaces are smooth and \(\pi'^*\) is an orientation-preserving diffeomorphism.

To get an idea of the proof of this theorem, we consider the projection map \(\pi : X \to Y\) which induces a map between moduli space \(\pi^* : \mathcal{M}^*(Y, g_Y) \to \mathcal{M}^*(X, g_X)\). Given a proper perturbation 2-form \(\delta\) on \(Y\), and pull-back perturbation 2-form \(\pi^* (\delta)\) then \(\pi'^* : \mathcal{M}^*(Y, g_Y, \delta) \to \mathcal{M}^*(X, g_X, \pi^* (\delta)^+)\) is a map between smooth moduli spaces. The map \(\pi'^*\) is injective. This can be seen by considering two pairs of solutions of Seiberg-Witten equation over \(Y\) which are pulled back to solutions over \(X\), \((A, \Phi), (A', \Phi')\) which differ by a gauge transformation \(g \in \text{Map}(X, S^1)\). It remains to check that \(g\) is a pull-back from a gauge transformation \(g' \in \text{Map}(Y, S^1)\). It’s not hard to see \(g\) can be viewed as a section of \(\pi'^*(\text{End}(\text{det}(S)))\) where \(S\) is the spinor bundle over \(Y\). The connection \(\nabla_{\text{End}}\) on the bundle \(\text{End}(\pi'^*(W))\) satisfies

\[
(\nabla_{T}^\text{End}) g(\Phi) = \nabla_T^\Lambda(g\Phi) - g\nabla_T^\Lambda(\Phi) = 0 ,
\]

where \(T\) is a vertical vector field of unit length along the fiber, because \(g\Phi = \Phi'\) is a pull-back from spinor over \(Y\). By ellipticity of the first Seiberg-Witten equation \(D_A \Phi = 0\) as a function of \(\Phi\), we know \(\Phi \neq 0\) on a dense open subset. Therefore \(\nabla_{T}^\text{End} g = 0\) meaning \(g\) is constant along the fiber. This shows \(g\) is a pull-back from a gauge transformation \(g' \in \text{Map}(Y, S^1)\).

As in [4], the image of \(\pi^* : \mathcal{M}^*(Y, g_Y, \delta) \to \mathcal{M}^*(X, g_X, \pi^* (\delta)^+)\) is denoted by \(\mathcal{N}^*(X, g_X, \pi^* (\delta)^+)/\), which is the component in \(\mathcal{M}^*(X, g_X, \pi^* (\delta)^+)\) with \(Spin^c\) structures pulled back from \(Y\). To prove that \(\pi'^*\) is a diffeomorphism, we need a description of the tangent space to the moduli space at a solution \(S_0\). This is done by considering the deformation complex at \(S\) and identifying the tangent space to \(S\) with \(H^1_S\), the first cohomology group of the complex. It’s proved in [4] that \(\pi'^*(H^1_{S_0}) = H^1_S\), where \(S\) is an irreducible solution over \(X\) and \(S_0\) is a solution over \(Y\). In addition, we can see that \(\pi : X \to Y\) preserves the homology orientation. Given an ordered base of \(H^1(Y; \mathbb{R})\), we can use Gysin sequence to see that \(H^1(X; \mathbb{R})\) is isomorphic to \(H^1(Y; \mathbb{R})\), so an orientation in \(H^1(Y; \mathbb{R})\) gives one in \(H^1(X; \mathbb{R})\). Note that the homology orientation for \(X\) is an orientation for the vector space \(H^1(X; \mathbb{R}) \oplus H^0(X; \mathbb{R}) = H^1(X; \mathbb{R})\) when \(X\) is a homology \(S^3 \times S^1\).

2.2. **Seiberg-Witten invariant for \(b_1(Y) = 1\).** The Baldridge theorem above helps us understand SW-invariants over total space of circle bundle in terms of those over the base space. In this subsection, we will focus on the 3-dimensional SW-invariant over the base space of the circle bundle \(\pi : X \to Y\). Note that the Baldridge theorem has no restriction on \(b_1\). When \(b_1(Y) > 1\), the SW-invariant is a diffeomorphism invariant while in the case when \(b_1(Y) = 1\), there is a chamber
structure and we have two invariants SW_Y^+ and they are related by the following fundamental wall-crossing formula by Meng and Taubes

Theorem 2.2. (Meng-Taubes [11]) Let Y be the homology $S^2 \times S^1$ obtained from 0-framed surgery on a knot $K \subset S^3$. Then

$$SW_Y^+ \cdot (t - t^{-1})^2 = \Delta_K(t^2),$$

where $t = t_T$ for the generator T of $H^2(Y; \mathbb{Z}) = \mathbb{Z}$ satisfying $T \cdot \lambda = 1$.

When Y is homology $S^2 \times S^1$, there is no torsion element in $H_1(Y)$, the spinc-structures s over Y are classified by $c_1(s) := c_1(det(S)) \in H^2(Y, \mathbb{Z})$. We know $c_1(s)$ is an even class for it is an integral lift of Stiefel-Whitney class w_2. So there is a 1-1 correspondence between $k \in \mathbb{Z}$ and spinc-structures s_k with $c_1(s_k) = 2k$. The pullback spinc-structure π^*s_k over X are equivalent if X is homology $S^3 \times S^1$, we will denote this unique spinc structure by ξ_0. In view of Theorem 2.1 the Seiberg-Witten invariant of the spinc-structure ξ_0 over X is equal to the sum of the invariants $SW_Y(s_k)$ over all the spinc-structures on Y.

In general, there is a small-perturbation Seiberg-Witten invariant defined for 3-manifold Y with $b_1(Y) = 1$. It is defined using Seiberg-Witten equation with an exact perturbation. In the case when $b_1(Y) = 1$, the existence of reducible solution gives $FA = \delta$ where δ is the perturbation 2-form. This condition gives a codimension 1 "wall" in $H^2(Y; \mathbb{R})$ since it’s equivalent to $(2\pi c_1(s) + \delta) \cdot \lambda = 0$ for a generator of $H^1(Y; \mathbb{R})$ dual to the orientation of $H_1(Y; \mathbb{R})$. When the perturbation form δ is an exact 2-form, the small-perturbation Seiberg-Witten invariant $SW^0_Y(s_k)$ [7] is well defined for Y with $b_1(Y) = 1$. To see that the Seiberg-Witten invariant of the spinc-structure ξ_0 over X with parameter $(g_Y, \pi^*(\delta)^+)$ is equal to the sum of the invariants $SW^0_Y(s_k)$ over all the spinc-structures on Y with parameter (g_Y, δ), we need to verify first that both sides are well defined under suitable choice of (g_Y, δ). Consider the exact perturbation $\delta = da \in \Omega^2(Y; \mathbb{R})$, the pull-back $\pi^*\delta = \pi^*(da) = d\pi^*a \in \Omega^2(X; \mathbb{R})$ to X is a S^1-invariant exact perturbation 2-form after projecting to self-dual component. Since Y is three dimensional, we know the expected dimension of the moduli space is 0 and in addition, we can find metric and exact perturbation (g_Y, δ) so that the moduli space is smooth without any reducible solution. In terms of the deformation complex associated with the gauge action and Seiberg-Witten equation

$$0 \to \Omega^0(Y; i\mathbb{R}) \xrightarrow{\delta^0} \Omega^1(Y; i\mathbb{R}) \oplus \Gamma(S) \xrightarrow{\delta^1} \Omega^1(Y; i\mathbb{R}) \oplus \Gamma(S) \to 0,$$

where the first map δ^0 at a solution (A_0, Φ_0) is given by the derivative of gauge group action,

$$\delta^0(\gamma) = (2d\gamma, -\gamma \Phi_0),$$

and the second map δ^1 at a solution (A_0, Φ_0) is given by

$$\delta^1(a, \phi) = (* (da - \frac{1}{2} \sigma(\Phi_0, \phi)), D_{A_0} \phi + \frac{1}{2} a \cdot \Phi_0),$$

we know that the $H^1_{(A_0, \Phi_0)} = H^1_{(A_0, \Phi_0)} = H^2_{(A_0, \Phi_0)} = 0$ for the complex above by our assumption on (g_Y, δ). We have a corresponding complex on X

$$0 \to \Omega^0(X; i\mathbb{R}) \to \Omega^1(X; i\mathbb{R}) \oplus \Gamma(S^+) \to \Omega^1(X; i\mathbb{R}) \oplus \Gamma(S^-) \to 0$$
at a solution \((A, \Phi) = \pi^*(A_0, \Phi_0)\) defined in a similar way. By Baldridge’s theorem in [1], we know that under the parameter \((g_X, \pi^*(\delta)^+)\), \(\pi\) induces an isomorphism between \(H^1_{(A, \Phi)}\) and \(H^1_{(A_0, \Phi_0)}\), thus \(H^1_{(A, \Phi)} = 0\). When \(X\) is a 4-manifold with free circle action, the expect dimension of the moduli space is 0 by direct computation. So at each irreducible solution \((A, \Phi) \in \mathcal{M}^*(X, g_X, \pi^*(\delta)^+)\), \(H^0_{(A, \Phi)} = H^1_{(A, \Phi)} = 0\). Each equivalence class of solution in \(\mathcal{M}^*(X, g_X, \pi^*(\delta)^+)\) is then an isolated point with smooth neighborhood modeled on the zero of the Kuranishi map \(H^1_{(A, \Phi)} \to H^2_{(A, \Phi)}\). So there is a well-defined number (not an invariant) \(SW_X(\xi_0, g_X, \pi^*(\delta)^+)\) defined by taking the algebraic count of points in \(\mathcal{M}^*(X, g_X, \pi^*(\delta)^+)\).

Now using the small-perturbation Seiberg-Witten invariant, the sum of Seiberg-Witten invariant over all \(spin^c\)-structures \(\xi_k\) on \(Y\) is equal to

\[
\sum_{k \in \mathbb{Z}} SW^0_Y(\xi_k) = \sum_{k \in \mathbb{Z}} a_{1+|k|} + 2a_{2+|k|} + 3a_{3+|k|} + \cdots ,
\]

where \(a_i\)’s on the right hand side are coefficients of the normalized Alexander polynomial of \(Y\). It’s not hard to check that the right hand side is the \(\Delta_Y^c(1)\). Therefore, by the discussion above, we know that the Seiberg-Witten invariant of the \(spin^c\)-structure \(\xi_0\) over \(X\) with parameter \((g_X, \pi^*(\delta)^+)\) is equal to \(\Delta_Y^c(1)\).

3. Correction Term

3.1. Neck Stretching Operation. The correction term can be simplified by using the neck stretching operation discussed in detail in [10]. Let \(M\) be the 3-submanifold representing the Poincare dual to the generator of \(H^1(X; \mathbb{Z})\). The metric on \(X\) induces a metric on \(M\) by restriction. Assuming that the metric \(g_X\) is a product in a neighborhood \([-\epsilon, \epsilon] \times M\), \(\epsilon > 0\). Consider the manifold “with long neck”

\[X_R = W \cup ([0, R] \times M),\]

where \(W\) is the cobordism obtained by cutting \(X\) along \(Y\). It’s prove in [10] that under certain assumptions, this long neck manifold \(X_R\) with metric \(g_R\) obtained by gluing metric \(g_X|_W\) and product metric on the cylinder \([0, R] \times M\) can be used to compute the correction term.

Theorem 3.1 ([10]).

\[\omega(X_R, g_R) = \text{index} \mathcal{D}^+(Z_+(M), g, \beta) + \sigma(Z)/8,\]

where \(Z_+(M) = Z \cup ([0, \infty) \times M)\) and \(Z\) is a spin 4-manifold with \(\partial Z = Y\). It remains to check that the metric \(g_X = \pi^*(g_Y) + \eta \otimes \eta\) used in computing the Seiberg-Witten invariant satisfies the following assumption from [10].

Assumption 3.2. The Dirac operator

\[\mathcal{D}^+(W_\infty, g_\infty) : L^2(W_\infty; S^+) \to L^2(W_\infty; S^-)\]

is invertible, where \(W_\infty = ((-\infty, 0] \times M) \cup W \cup ([0, +\infty) \times M)\) and \(g_\infty\) is the metric on \(W_\infty\) induced by \(g_X\).

This metric in the above assumption exists in the case when \(X\) is an integral homology \(S^1 \times S^3\) by the Theorem 10.3 in [10]. So in the following sections, we will
focus on computing $\omega(X_R, g_R) = \text{index} D^+ (Z_+(M), g, \beta) + \sigma(Z)/8$. Using Atiyah-Patodi-Singer index theorem [3], the correction term can be computed as

$$\omega(X_R, g_R) = \text{index} D^+ (Z_+(M), g, \beta) + \sigma(Z)/8$$

$$= \left(\int_Z \hat{A}(p) - \frac{1}{2} h_D - \frac{1}{2} \eta_D(M) \right) + \frac{1}{8} \left(\int_Z L(p) - \eta_{\text{Sign}}(M) \right)$$

$$= -\frac{1}{2} h_D - \frac{1}{2} \eta_D(M) - \frac{1}{8} \eta_{\text{Sign}}(M).$$

Here $h_D := \dim \ker(D^+_M)$.

3.2. Eta Invariants of Dirac Operator. Let M be the restriction of the circle bundle $X \to Y$ to a closed surface Σ which generates $H_2(Y; \mathbb{Z})$. Equip Σ with a constant sectional curvature metric g_Σ such that Vol$(\Sigma) = \pi$. The induced metric on M by restriction can be written as $g_M = \pi^* g_\Sigma \oplus \eta \otimes \eta$ and using this metric we can split $T^* M = \langle \eta \rangle \oplus \pi^* T^* \Sigma$ orthogonally. By rescaling the length of the fiber, we can form a family of metrics, parametrized by fiber length, by $g_M = \pi^* g_\Sigma \oplus \eta_r \otimes \eta_r$,

where $\eta_r = r \eta$. For each g_M, there exists a Levi-Civita connection ∇^r which can be written in simple matrix form in well-chosen local frames. In [12], the local orthonormal frame for $T^* M = \langle \eta_i \rangle \oplus \pi^* T^* \Sigma$ is chosen to be (η_i, η^1, η^2) so that $\eta^i = \pi^* \theta^i$, $i = 1, 2$ where θ^i is a local orthonormal frame of $T^* \Sigma$ satisfying

$$d \theta^1 = \kappa \theta^1 \wedge \theta^2$$

and

$$d \theta^2 = 0.$$

The existence of this local frame comes from the classification of space forms. The connection 1-form under this local frame can be written in matrix form as

$$\omega_r = \begin{pmatrix}
0 & -r \eta^2 & -r \eta^1 \\
r \eta^2 & 0 & r \eta_r - \kappa \eta^1 \\
r \eta^1 & -r \eta_r + \kappa \eta^1 & 0
\end{pmatrix}.$$

In [12], Nicolaescu studied the Dirac operators of type D_r associated to the connection with local connection 1-form of the above form when r is small using the adiabatic limit technique. Note that Theorem 3.1 holds when we use the partial rescaling metrics $g_X = \pi^*(g_Y) + r^2 \eta \otimes \eta$ for arbitrarily small positive r. To see this, we use a result in [6] on the asymptotic behavior of spectrum of D_r. Let $\{\lambda_r\}$ denote the spectrum of D_r, by Dai’s result of Theorem 1.5 in [6], λ_r is analytic on r and either $|\lambda_r| \geq \frac{1}{r} \lambda_0 \gg 0$ for r sufficiently small or has the asymptotic formula below as

$$|\lambda_r| \sim \lambda_1 + \lambda_2 r + ...$$

and when $\lambda_1 \neq 0$, the spectrum of D_r satisfies

$$|\lambda_r| \geq \frac{1}{2} |\lambda_1| \text{ when } r \text{ is sufficiently close to 0.}$$

It remains to deal with the case when $\lambda_1 = 0$, in which case λ_r decays at least linearly in r. It’s sufficient to show that the first eigenvalue estimate Proposition 7.1 in [11] holds uniformly for r when r is small. By the same idea in the proof of Proposition 7.1 and the result in [6], the linear operator $T_{+,r}(\lambda, R) : V_i(Y_2) \oplus
Proposition 3.4. \(r \) independent of \(D \) is replaced with \(\ker D \) is an isomorphism for each \(D \). Now we can choose \(\epsilon > 0 \) uniformly bounded below by (3.2). Under this assumption, the polynomials \(\lambda \epsilon \geq R \geq 0 \) has no eigenvalues in the interval \([0, \frac{\lambda}{\lambda/\epsilon}] \). By (3.4), we have that since \(\lambda / \lambda_0, r \) decays to \(\lambda \) at the rate of polynomial \(P(r) \) by (3.2), then by (3.3), we have \(\lambda / \lambda_0, r \leq \epsilon_2 \), which implies that \(\lambda \leq \epsilon_2 \cdot P(r) \). By (3.3), we have \(\lambda_0, R \geq \epsilon_0 \), so \(R \geq \epsilon_0 / \lambda_0, r = \epsilon_0 / P(r) \).

Proof. Using (3.3) and (3.4), and the asymptotic formula (3.2), we have that since \(\lambda_0, r \) decays to \(\lambda \) at the rate of polynomial \(P(r) \) by (3.2), then by (3.4), we have \(\lambda / \lambda_0, r \leq \epsilon_2 \), which implies that \(\lambda \leq \epsilon_2 \cdot P(r) \). By (3.3), we have \(\lambda_0, R \geq \epsilon_0 \), so \(R \geq \epsilon_0 / \lambda_0, r = \epsilon_0 / P(r) \).

Under the assumption that the Dirac operator on the base satisfies \(\ker D_Y = 0 \), then by Theorem 1.5 in [23], we know \(\lambda_1 \in \text{spec}(D_Y \otimes \ker D_{S^1}) \), thus \(\lambda_1 \neq 0 \) in (3.2). Under this assumption, the polynomials \(\epsilon_2(r) \) and \(R_0(r) \) can be chosen to be independent of \(r \), and furthermore the first eigenvalue estimate is uniform in the fiber length \(r \). See [10].

Proposition 3.4. Assuming that the spin Dirac operator
\[
D^+ : L^2(Z) \oplus \bigoplus (L^2(W_i)) \rightarrow L^2(W^\infty; S^+)
\]
is an isomorphism for each \(r \) and the Levi-Civita Dirac operator on the base satisfies \(\ker D_Y = 0 \). Then there exists constants \(R_0 > 0 \) and \(\epsilon_1 > 0 \) such that for any \(R \geq R_0 \), the operator
\[
\Delta_R = D^+ D^+ : L^2(X; S^+) \rightarrow L^2(X; S^+)
\]
has no eigenvalues in the interval \([0, \epsilon_1^2] \).

Using Proposition 3.4, we can see Theorem 3.1 holds for \(g_X^r \) with arbitrarily small \(r > 0 \) by checking the proof in [10]. In step 6 of the proof in [10],
\[
K : L^2(Z) \oplus \bigoplus (L^2(W_i)) \rightarrow L^2(Z) \oplus \bigoplus (L^2(W_i)) \oplus \bigoplus V_+(M^+) \oplus \bigoplus V_-(M^-)
\]
sending \(\phi_0 \oplus (\phi_1, \phi_2, ... \phi_n) \) to
\[
0 \oplus e^{-R \pi \cdot \phi_1} |M^+_{\phi_1}| \oplus e^{-R \pi \cdot \phi_2} |M^+_{\phi_2}| \oplus (e^{-R \pi \cdot \phi_0} + e^{-R \pi \cdot \phi_1}) \oplus (e^{-R \pi \cdot \phi_1} + e^{-R \pi \cdot \phi_2}).
\]
Now we can choose \(r = r_1 \) chosen above, then when \(g_X^r \) is replaced with \(g_X^{r_1} \), \(D \) is replaced with \(D_{r_1,M} \). If the minimum absolute value of eigenvalues of \(D \) is uniformly bounded below by \(\epsilon_1 > 0 \) for all sufficiently small \(r > 0 \), then we can
find a sufficiently large R so that e^{-Rt} is sufficiently small, so the same argument works. The following theorem gives a formula of the $\eta(D_r)$.

Theorem 3.5 (12). For all $0 < r \ll r_0$, we have

$$\frac{1}{2}\eta(D_r) = \frac{l}{12} - \text{Sign}(l)h_{1/2} + \frac{l}{12}(\bar{r}^4 - r^2).$$

Here $h_{1/2}$ is the dimension of global holomorphic sections of K^1_Σ, the square root of canonical bundle over Σ and l is the Euler number of the circle bundle $M \to \Sigma$. The proof in [12] by Nicolaescu is done by studying the variation of $\eta(D_r)$ as follows: Let $\xi_r = \frac{1}{2}(\eta(D_r) + h(D_r))$ where $h(D_r) = \dim \ker(D_r|M)$, then by Atiyah-Patodi-Singer index theorem, we can get a variation formula for ξ_r in terms of spectral flow by studying the Dirac operator D_u on cylinder $[0,1] \times M$ equipped with metric $g = du^2 \oplus g_{r(u)}$, u is a coordinate on $[0,1]$, and ∇ is the Levi-Civita connection of g. We have

$$\xi_{r_1} - \xi_{r_0} = SF(D_{r(u)}) + \int_{[0,1] \times M} \hat{A}(\nabla).$$

According to [1], $D_{r(u)}$ can be chosen to be invertible for each u, so the term $SF(D_{r(u)}) = 0$. The remaining term

$$\int_{[0,1] \times M} \hat{A}(\nabla)$$

can be explicitly computed by using Chern-Simons transgression form

$$T \hat{A}(\nabla^{r(0)}, \nabla^{r(1)}) = \frac{d + 1}{2} \int_0^1 \hat{A}(\omega, \Omega_t) dt,$$

where $\omega = \nabla^{r(0)} - \nabla^{r(1)}$ and Ω_t is curvature form of $\nabla^{r(0)} + t\omega$. We have

$$\int_{[0,1] \times M} \hat{A}(\nabla) = \int_M T \hat{A}(\nabla^{r(0)}, \nabla^{r(1)}) = \frac{d + 1}{2} \int_0^1 \hat{A}(\omega, \Omega_t) dt,$$

which follows from a general lemma below

Lemma 3.6. Let $F : g \times g \times \cdots \times g \to \mathbb{R}$ be a k-linear function on Lie algebra of G and F is invariant under adjoint action of G on g. Given a linear path of connection 1-form $\omega_t = \omega_0 + t\alpha$ on a principal G-bundle P, $\Omega_t = d\omega_t + \omega_t \wedge \omega_t$ is the curvature 2-form of ω_t, then

$$\frac{d}{dt}F(\Omega_t, ..., \Omega_t) = k dF(\alpha, \Omega_t, ..., \Omega_t).$$

Proof. By definition

$$\Omega_t = d\omega_t + \omega_t \wedge \omega_t$$

$$= d\omega_0 + t d\alpha + (\omega_0 + t\alpha) \wedge (\omega_0 + t\alpha)$$

$$= \Omega_0 + t d\alpha + t\omega_0 \wedge \alpha + t\alpha \wedge \omega_0 + t^2 \alpha \wedge \alpha$$

$$d\Omega_t = d\omega_t \wedge \omega_t - \omega_t \wedge d\omega_t$$

$$= (\Omega_t - \omega_t \wedge \omega_t) \wedge \omega_t - \omega_t \wedge (\Omega_t - \omega_t \wedge \omega_t)$$

$$= [\Omega_t, \omega_t].$$
Using linearity of F, we have \(\frac{d}{dt} F(\Omega_t, \ldots, \Omega_t) = k F(\alpha + [\omega_t, \alpha], \Omega_t, \ldots, \Omega_t) \), and
\[
dF(\alpha, \Omega_t, \ldots, \Omega_t) = F(\alpha + [\omega_t, \alpha], \Omega_t, \ldots, \Omega_t) + (k - 1) F(\alpha, [\omega_t, \Omega_t], \ldots, \Omega_t).
\]

Since F is invariant under adjoint action,
\[
F([\omega_t, \alpha], \Omega_t, \ldots, \Omega_t) - (k - 1) F(\alpha, [\omega_t, \Omega_t], \ldots, \Omega_t) = 0,
\]
it’s immediate to get
\[
\frac{d}{dt} F(\Omega_t, \ldots, \Omega_t) = k dF(\alpha, \Omega_t, \ldots, \Omega_t).
\]

\[\square\]

3.3. Eta Invariants of Signature Operator

In [13], Ouyang computed the η-invariant of signature operator for circle bundles over surface Σ. In fact, he proved a more general theorem when Σ is orbifold.

Theorem 3.7 ([13]). Let $p : E \to \Sigma$ be a complex line bundle over surface Σ. Equip the fiber with metric \tilde{g} and let $\tilde{\nabla}$ be a \tilde{g} preserving connection in E. Assume the curvature \tilde{R} is constant on F. Then the η-invariant of the circle bundle of radius r is given by
\[
\eta(S_rE) = \frac{2}{3} l \left\{ \frac{\pi r^2}{\text{Vol}(\Sigma)} \chi - \left(\frac{\pi r^2}{\text{Vol}(\Sigma)} \right)^2 l^2 \right\} + \frac{1}{3} l - \text{Sign}(l),
\]
where l is the Euler number of the line bundle $E \to \Sigma$, χ is the Euler characteristic of Σ.

We can check that the corresponding disk bundle of the circle bundle $M \to \Sigma$ equipped with connection η and the metric $g_M = g_F \oplus \pi^* g_\Sigma = \eta \otimes \eta \oplus \pi^* g_\Sigma$ satisfies the conditions of the theorem above. First extend the metric from $M \to \Sigma$ to its disk bundle $E \to \Sigma$ by setting
\[
g_E = dr^2 + r^2 g_F + \pi^* g_\Sigma = \pi \otimes \eta + \pi^* g_\Sigma.
\]

The connection $\tilde{\nabla}$ can be defined to be of the form
\[
\tilde{\nabla} = d \oplus \pi^*(\nabla^\Sigma),
\]
where ∇^Σ is the Levi-Civita connection of g_Σ. In fact, for any local vector fields X, Y, Z on the fiber of $E \to \Sigma$, we have
\[
\tilde{\nabla}_Z(\eta \otimes \eta(X, Y)) = (d + i\eta)(Z)(\eta(X)\eta(Y)) = (Z\eta(Y))\eta(X) + \eta(X)(Z\eta(Y)) + 2i\eta(Z)\eta(X)\eta(Y) = \eta(\tilde{\nabla}_Z X)\eta(Y) + \eta(X)\eta(\tilde{\nabla}_Z Y) = \eta \otimes \eta(\tilde{\nabla}_Z X, Y) + \eta \otimes \eta(X, \tilde{\nabla}_Z Y).
\]

Therefore, we can see that $\tilde{\nabla}$ is compatible with the fiber metric. The curvature tensor of $\tilde{\nabla}$, \tilde{R} is pulled back from the curvature tensor R of ∇^Σ, so it is invariant along the fiber.
4. Result

It’s not hard to see from [3.5] and [3.6] that

\[
\omega(X, g_X, \beta) = -\frac{1}{2} h_D - \frac{1}{2} \eta(D, g) - \frac{1}{8} \eta_{\text{sign}}(M) = -\frac{1}{2} h_D + h_{1/2}
\]

Note here in \(\omega(X, g_X, \beta) \) we use the Levi-Civita connection of \(g_X \) to define the \(\eta \)-invariant of Dirac operator, however, in the definition of Seiberg-Witten invariant, the connection we used is circle bundle compatible connection of the form \(\nabla = d \otimes \pi^*(\nabla^Y) \). The idea to solve this problem is to consider a path of connections \(\nabla^t, t \in [0, 1] \) connecting the Levi-Civita connection and the bundle compatible connection \(\tilde{\nabla} \) such that \(\nabla^t \) is compatible with \(g_X \) for each \(t \in [0, 1] \), the associated Dirac operators \(D_{A^t}^r \) at time \(t \) can be viewed as a compact perturbation of \(D_{A^0}^r \), so have the same index.

Consider a path of connections \(\nabla^t \) by generalizing the method in [12] to 4-manifolds: first define a sequence of bundle metrics parameterized by the length of fiber \(g_X^{(r)} = r^2 \eta \otimes \eta \otimes \pi^* g_Y \) where \(\eta \) be the globally defined connection 1-form of length 1 with respect to the metric \(g_X = g_X^{(1)} \). Then we complete \(r \eta \) to form a local orthonormal coframe of the form \(\{ e^0 = r \eta, e^1, e^2, e^3 \} \) and let \(\{ e_0, e_1, e_2, e_3 \} \) be the corresponding local dual orthonormal frame with respect to the metric \(g_X^{(r)} \). We define as in [12] a family of bundle maps \(L_t : TX \to TX \) locally by

\[
e_0 \to t e_0, \quad e_i \to e_i, \quad i = 1, 2, 3
\]

where \(e_i \) is the vector field of the free circle action defined earlier. \(L_t \) defines an isometry from \((TX, g_X^{(rt)}) \) to \((TX, g_X^{(r)}) \) for \(r > 0 \) and \(t \in (0, 1] \). Now the connection defined by

\[
\nabla^{r,t} = L_t \nabla^t L_t^{-1}
\]

is compatible with \(g_X^{(r)} \). To see this, let \(X, Y, Z \) be local vector field on \(X \) and compute the derivative of \(g^{(r)}(Y, Z) \) in the direction \(X \).

\[
X g^{(r)}(Y, Z) = X g^{(rt)}(L_t^{-1}Y, L_t^{-1}Z) = g^{(rt)}(\nabla_X^{(r)} L_t^{-1}Y, L_t^{-1}Z) + g^{(rt)}(L_t^{-1}Y, \nabla_X^{(r)} L_t^{-1}Z)
\]

We will choose \(\nabla^{r,t}, t \in [0, 1] \) as our path of connections. Using the local frame defined earlier, we can write down the matrix of connection 1-form \(\omega \) as follows

\[
\omega_{r,t} = \begin{bmatrix}
0 & r a_{12}^{(t)} e^2 + r a_{13}^{(t)} e^3 & -r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 & -r a_{21}^{(t)} e^1 - r a_{23}^{(t)} e^3 \\
-r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 & 0 & -r a_{12}^{(t)} e^2 + r a_{13}^{(t)} e^3 & -r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 \\
-r a_{12}^{(t)} e^1 + r a_{23}^{(t)} e^2 & -r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 & 0 & -r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 \\
-r a_{12}^{(t)} e^1 + r a_{23}^{(t)} e^2 & -r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 & -r a_{12}^{(t)} e^2 - r a_{13}^{(t)} e^3 & 0
\end{bmatrix},
\]

where \(a_{ij}^{(t)} = t a_{ij} \) and \(a_{ij} \) is defined by

\[
d\eta = e^1 \wedge (a_{12} e^2 + a_{13} e^3) + e^2 \wedge (-a_{12} e^1 + a_{13} e^3) + e^3 \wedge (-a_{12} e^1 - a_{23} e^2).
\]

The connection 1-form matrix of \(\tilde{\nabla} \) is

\[
\omega = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & \omega^1 & \omega^2 & \omega^3 \\
-\omega^1 & 0 & \omega^2 & 0 \\
-\omega^1 & -\omega^2 & 0 & 0
\end{bmatrix}.
\]
We can see from the connection matrix above that $\nabla^{r,t} \to \tilde{\nabla}$ as $t \to 0$. When $t = 1$, $L_t = id$, $\nabla^{r,t}$ is just the Levi-Civita connection of $g_X^{(r)}$. The path of corresponding Dirac operators can be written down as

Lemma 4.1.

$$D^r_t A = D_A - \frac{1}{2} r^2 t^2 \sigma(\eta \wedge d\eta),$$

where $D^r_t A$ is the Dirac operator associated to the Levi-Civita connection $\nabla^{r,t}$ and D_A is the Dirac operator associated to the connection $\tilde{\nabla}$.

Proof. The proof is essentially the same as the proof given in [4]. It follows by writing down the local connection 1-form matrix $\omega^{r,t}$ and $\tilde{\omega}$ for $\nabla^{r,t}$ and $\tilde{\nabla}$ respectively using a local frame as we did above and take the difference 1-form $\omega = \omega^{r,t} - \tilde{\omega} \in \Omega^1(\mathfrak{so}(T^*X))$. Then the local difference of the two corresponding Dirac operators D^r_A and D_A can be written as the Clifford multiplication by ω

$$D^r_A - D_A = \sigma(\omega)$$

here $\omega \in \Omega^1(\mathfrak{so}(T^*X)) \cong \Omega^1(\Lambda^2 T^*X)$, where the latter is the space of 1-forms with value in the exterior square of T^*X. Using the isomorphism

$$(a^k_j) \mapsto \frac{1}{2} \sum_{j < k} a^j_k e^j \wedge e^k$$

from $\mathfrak{so}(4)$ to $\Lambda^2 T^*X$, we can write ω as an element in $\Omega^1(\Lambda^2 T^*X)$

$$\omega = \frac{1}{2} \sum_{i=1}^3 e^i \otimes (r \eta) \wedge \iota_{e_i}(d(r \eta)) + \frac{1}{2} r \eta \wedge d(r \eta),$$

then

$$\sigma(\omega) = -\frac{1}{2} r^2 t^2 \sigma(\eta \wedge d\eta). \quad \Box$$

It remains to show that the index of D^r_A is unchanged along the path $t = 0$ to $t = 1$. As we can see from the lemma above, D^r_A can be thought of as zero order perturbation of D_A and by the theory in compact operator, it’s sufficient to prove the following lemma

Proposition 4.2. If $\omega \in \Omega^1(\Lambda^2 T^*X)$, and i is the Sobolev embedding $L^2_1(W^\infty; S^+) \subset L^2(W^\infty; S^-)$, $\sigma(\omega)$ is the Clifford multiplication, then the composition

$$i \circ \sigma(\omega) : L^2_1(W^\infty; S^+) \to L^2(W^\infty; S^-)$$

is compact.

Proof. The Sobolev inequality may fail for non-compact manifold. So i may not be a compact operator in general. We use instead the Laplace-Fourier transform introduced in [17]. Consider the following diagram,

$$\begin{align*}
L^2_1(W^\infty; S^+) \xrightarrow{\Psi} & L^2(W^\infty; S^-) \\
L^2_1(X; S^+) \xrightarrow{\hat{\Psi}} & L^2(X; S^-) \\
\end{align*}$$

\begin{align*}
\Psi & \\
\hat{\Psi} & \\
\end{align*}$$

\begin{align*}
\xrightarrow{F} & \\
\xrightarrow{F} & \\
\end{align*}$$

\begin{align*}
\psi & \\
\hat{\psi} & \\
\end{align*}$$

\begin{align*}
\xrightarrow{F} & \\
\xrightarrow{F} & \\
\end{align*}$$
Here $Ψ$ is the composition $i \circ σ(ω)$ defined above, and F is the Laplace-Fourier transform. To prove the compactness of $Ψ$, consider a bounded sequence of sections $\{u_k\} \in L^2_1(W^\infty; S^+)$ and we need to prove $\{Ψ(u_k)\}$ has a convergent subsequence. To show this, we apply Laplace-Fourier transform to $\{u_k\}$ and get a sequence $\{F(u_k)\}$ of sections in $L^2_1(X; S^+)$, which is bounded by proposition 4.1 in [17]. By direct computation, $Ψ$ has the same form as $Ψ = i \circ σ(ω) : L^2_1(X; S^+) \to L^2(X; S^-)$, which is a compact operator when X is compact by the Rellich theorem. So $\{Ψ(F(u_k))\}$ has a convergent subsequence. We obtain a corresponding subsequence by taking the inverse transform as is defined in [17]

$$v_k(x + n) = \frac{1}{2\pi i} \int \frac{e^{-\mu(f(x)+n)}Ψ(F(u_k))(x)}{I(ν)} \, dy.$$

We can prove that $v_k(x)$ is convergent by showing that the inverse Laplace transform

$$L^2(X; S^-) \to L^2(W^\infty; S^-)$$

is bounded. This can be seen by

$$\int_{W^\infty} |g| \cdot |v_k| \, dx = \frac{1}{2\pi i} \int \int_{W^\infty} |g| \cdot \left| \int \frac{e^{-\mu(f(x)+n)}Ψ(F(u_k))(x)}{I(ν)} \, dx \right| \, dx$$

$$\leq \frac{1}{2\pi i} \int \int_{W^\infty} |g| \cdot \|Ψ(F(u_k))(x)\|_{L^2(X)} \cdot \left(\int \left| e^{-\mu(f(x)+n)} \right|^2 \right)^{1/2}$$

$$\leq \frac{1}{2\pi i} \|g\|_{L^2(W^\infty)} \cdot \left(\int \left| e^{-\mu(f(x)+n)} \right|^2 \right)^{1/2} \cdot \|Ψ(F(u_k))\|_{L^2(X)}$$

and the fact that the integral

$$\int_{W^\infty} \int |e^{-\mu(f(x)+n)}|^2 < \infty$$

In particular, we can use the above result to prove the correction term (4.1) is 0.

$$ω(X, gX, β) = -\frac{1}{2}h_D + h_{1/2} = -\frac{1}{2}h_D + h_{1/2}$$

and in [12], Nicolescu claimed the last term is 0.

REFERENCES

1. Ammann, Bernd.; Dahl, Mattias.; Humbert, Emmanuel. Surgery and harmonic spinors. Adv. Math. 220 (2009), 523539.
2. Atiyah, Michael; Hirzebruch, Friedrich. Spin-manifolds and group actions. 1970 Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham) pp. 18-28 Springer, New York
3. Atiyah, M. F.; Patodi, V. K.; Singer, I. M. Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
4. Baldridge, Scott Jeremy, Seiberg-Witten Invariants, Orbitfolds, and Circle Actions. Trans. Amer. Math. Soc. 355 (2003), no. 4, 1669-1697
5. Chern, S. S.; Hirzebruch, F.; Serre, J.-P. On the index of a fibered manifold. Proc. Amer. Math. Soc. 8 (1957), 587-596.
6. Dai, Xianzhe. Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence. J. Amer. Math. Soc. 4 (1991), no. 2, 265321.
7. Fintushel, Ronald; Stern, Ronald J. Knots, links, and 4-manifolds. Invent. Math. 134 (1998), no. 2, 363-400.
8. Furuta, Mikio, Ohta, Hiroshi, *Differentiable structures on punctured 4-manifolds*, Topology Appl. 51 (1993), no. 3, 291-301.
9. Lim, Yuhan, *The equivalence of Seiberg-Witten and Casson invariants for homology 3-spheres*, Math. Res. Lett. 6 (1999), no. 5-6, 631-643
10. Lin, Jianfeng; Ruberman, Daniel; Saveliev, Nikolai, *A Splitting Theorem for the Seiberg-Witten Invariant of a Homology $S^1 \times S^3$*. arXiv:1702.04117 [math.GT]
11. Meng, Guowu; Taubes, Clifford Henry, *SW=Milnor torsion*, Math. Res. Lett. 3 (1996), no. 5, 661-674.
12. Nicolaescu, Liviu I. *Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg-Witten moduli spaces*. Israel J. Math. 114 (1999), 61-123.
13. Ouyang, Mingqing *Geometric invariants for Seifert Fibered 3-manifold*. Trans. Amer. Math. Soc. 346 (1994), no. 2, 641659.
14. Rohlin, V. A. *New results in the theory of four-dimensional manifolds*. (Russian) Doklady Akad. Nauk SSSR (N.S.) 84, (1952). 221-224.
15. Ruberman, Daniel; Saveliev, Nikolai, *Casson-Type Invariants in Dimension Four*. arXiv:math/0501090
16. Taubes, Clifford Henry. *Casson’s invariant and gauge theory*. J. Differential Geom. 31 (1990), no. 2, 547-599.
17. Tomasz Mrowka, Daniel Ruberman, Nikolai Saveliev, *Seiberg-Witten Equations, End-Periodic Dirac Operators, and a Lift of Rohlin’s Invariant*, J. Differential Geom. Volume 88, Number 2 (2011), 333-377
18. Weimin Chen. *Casson’s invariant and Seiberg-Witten gauge theory*. Turkish J. Math. 21 (1997), no. 1, 6181.

Department of Mathematics, Brandeis University, Waltham, Massachusetts 02453

Current address: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015

E-mail address: dah517@lehigh.edu