Different cellular signal transduction pathways are often interconnected, so that the potential for undesirable crosstalk between pathways exists. Nevertheless, signaling networks have evolved that maintain specificity from signal to cellular response. Here, we develop a framework for the analysis of networks containing two or more interconnected signaling pathways. We define two properties, specificity and fidelity, that all pathways in a network must possess in order to avoid paradoxical situations where one pathway activates another pathway’s output, or responds to another pathway’s input, more than its own. In unembellished networks that share components, it is impossible for all pathways to have both mutual specificity and mutual fidelity. However, inclusion of either of two related insulating mechanisms—compartmentalization or the action of a scaffold protein—allows both properties to be achieved, provided deactivation rates are fast compared to exchange rates.

Introduction

Cells sense and respond to a wide variety of chemical messages, such as hormones like insulin and adrenalin, which originate from other cells or from the environment. Yet, cells use only a limited number of intracellular signaling proteins to transduce this multitude of signals. For instance, some key intermediate modules, such as the mitogen-activated protein kinase (MAPK) cascade, are activated by an astonishingly high percentage of known stimuli (Lewis et al., 1998). Hence, different signals are often transmitted by common components, yet elicit distinct (and appropriate) outcomes. An important unsolved problem in cell biology is to understand how specificity from signal to cellular response is maintained between different signal transduction pathways that share similar (or identical) components, particularly when this occurs in the same cell (Schaeffer and Weber, 1999; Tan and Kim, 1999; Pawson, 2004).

Results and discussion

Simple signaling networks

Figure 1A shows a schematic of a simple signaling network, composed of two pathways, X and Y. Each pathway in the network has a unique input and a unique output. The input for pathway X is designated x_0, and can be taken to represent both the signal itself and its receptor; the input for pathway Y is designated y_0. We assume that the network is exposed to only one signal at a time. The activated species of the downstream elements of pathway X are designated x_1 and x_2, those of pathway Y are y_1 and y_2. When a signal x_0 is present, x_0 'activates' (i.e. causes the production of) component x_1 (which might be a protein kinase or a kinase cascade); x_1 in turn activates x_2 (which might be a terminal kinase or a target transcription factor). Pathway components are also deactivated: proteins that are activated by being phosphorylated by a protein kinase are deactivated when that phosphate group is removed by a protein phosphatase, for instance. Figure 1B shows the typical mound-shaped curve of the time course of activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal. The area under such a curve for the final activation of a given component in response to a square-pulse input signal.
phosphorylates the incorrect target \(x_2 \). Hence, when the network is stimulated by signal \(y_0 \), in addition to the authentic output \(Y_{\text{out}}/Y_{\text{in}} \), there is some spurious output \(X_{\text{out}}/Y_{\text{in}} \).

Definitions of specificity and fidelity

We define the **specificity** of cascade \(X \) as the ratio of its authentic output to its spurious output:

\[
S_X = \frac{X_{\text{out}}/X_{\text{in}}}{Y_{\text{out}}/X_{\text{in}}} \tag{1}
\]

Thus (as in Figure 1), if pathway \(X \) is activated by a given signal and this does not affect the output from pathway \(Y \), the specificity of \(X \) with respect to \(Y \) in response to that signal is infinite, or complete.

Similarly, the specificity of cascade \(Y \) is of the form

\[
S_Y = \frac{Y_{\text{out}}/Y_{\text{in}}}{X_{\text{out}}/Y_{\text{in}}} \tag{2}
\]

In Figure 1, since the action of signal \(y_0 \) will result in some output from \(X \), the specificity of \(Y \) with respect to \(X \) is finite (see Figure 1C). Indeed, if \(S_Y \) were less than 1, it would mean that the signal for \(Y \) was actually promoting the output of pathway \(X \) more than its own output.

The **fidelity** of a pathway is its output when given an authentic signal divided by its output in response to a spurious signal (see Figure 1C):

\[
F_X = \frac{X_{\text{out}}/X_{\text{in}}}{Y_{\text{out}}/X_{\text{in}}} \quad F_Y = \frac{Y_{\text{out}}/Y_{\text{in}}}{Y_{\text{out}}/X_{\text{in}}} \tag{3}
\]

Thus, a pathway that exhibits fidelity (i.e. \(F>1 \)) is activated more by its authentic signal than by others. In contrast, if a pathway has fidelity of less than 1, it is activated more by another pathways' signal than it is by its own. In the Figure 1 network, \(F_Y \) is complete, while \(F_X \) is finite.

Cascades that share components

In many cases, two signaling pathways share one or more common elements (see Figure 2A). One well-known example is in mammalian PC12 cells, where treatment with epidermal growth factor (EGF) causes the cells to proliferate, whereas treatment with nerve growth factor (NGF) causes the cells to differentiate and sprout neurites, yet both growth factors signal through the same MAPK cascade (Marshall, 1995). Another example is in baker’s and brewer’s yeast (Saccharomyces cerevisiae), where three distinct signaling pathways (mating, invasive growth and osmotic stress response) share elements of the same MAP kinase cascade (van Drogen and Peter, 2002). Experimental data indicate that pathways can be well insulated from one another despite sharing components: treatment of PC12 cells with EGF does not cause them to sprout neurites, and stimulation of yeast with mating pheromone does not activate the stress response, for example (Schaeffer and Weber, 1999; van Drogen and Peter, 2002; Vaudry et al, 2002).

This class of networks can be represented by the ‘basic architecture’ shown in Figure 2A. Here, the parameters \(a_1 \) and \(a_2 \) are activation rate constants for pathway \(X \); \(a_3 \) is the rate at which kinase \(x_1 \) activates (phosphorylates) target \(x_2 \). Similarly,
Table 1 Equations and solutions for the networks analyzed in this paper

Equation(s) for x_1	$\frac{dx_1}{dt} = a_1 x_0(t) + b_1 y_0(t) - d_1 x_1$		
Equations for x_2, y_2	$\frac{dx_2}{dt} = a_2 x_1 - d_2 x_2$, $\frac{dy_2}{dt} = b_2 x_1 - d_2 y_2$		
$x_1	X_{in}$	$\frac{dx_1}{dt} = \frac{x_0 a_1}{d_1}$	
$X_{out}	X_{in}$ ($= x_2	X_{in}$)	$\frac{x_0 a_1 a_2}{d_1 d_2}$
$Y_{out}	X_{in}$ ($= y_2	X_{in}$)	$\frac{x_0 a_1 b_2}{d_1 d_2}$
$x_1	Y_{in}$	$\frac{dy_1}{dt} = \frac{y_0 b_1}{d_1}$	
$Y_{out}	Y_{in}$	$\frac{dy_1}{dt} = \frac{y_0 b_1 a_2}{d_1 d_2}$	
$S_X = \frac{X_{out}}{X_{in}}$, $S_Y = \frac{Y_{out}}{Y_{in}}$	$\frac{a_1 d_2^2}{b_2 d_1^2}$,		
$F_X = \frac{X_{out}}{X_{in}}$, $F_Y = \frac{Y_{out}}{Y_{in}}$	$\frac{a_2 d_1^2}{b_2 d_1^2}$,		
$S_{network} = S_X S_Y$	1		

a_1, a_2, b_1, b_2, d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10} are rate constants for various transitions.

S_X and S_Y are the compartmentalization/scaffolding network (Figure 2D and E) equilibria for pathways X and Y, respectively.

F_X and F_Y are the compartmentalization/scaffolding network (Figure 2D and E) equilibria for pathways X and Y, respectively.

$S_{network}$ is the compartmentalization/scaffolding network (Figure 2D and E) equilibrium for the network as a whole.

(Note that network fidelity, the product of the pathway fidelities, is always exactly equal to network specificity.)

$S_{network}$ provides an indication of the specificity intrinsic in the network architecture. Intuitively, it would seem that the basic architecture does not possess intrinsic specificity. Indeed, it can be seen from Table I that, for the basic architecture, S_X is the reciprocal of S_Y and F_X is the reciprocal of F_Y, so that $S_{network} = F_{network} = 1$. The specificity of pathway X can be increased by changing the magnitude of certain parameters (increasing a_2 or decreasing b_2, for example), but in so doing the specificity of Y decreases correspondingly (see Figure 2B and C).

Two other useful network measurements are mutual specificity (and mutual fidelity), properties that exist if all pathways in the network have specificity (fidelity) greater than 1. The basic architecture never exhibits mutual specificity or mutual fidelity.

Analysis of insulating mechanisms: compartmentalization

Real cellular signaling networks that share components typically contain one or more insulating mechanisms that...
are thought to contribute to specificity and fidelity (Tan and Kim, 1999; Schwartz and Madhani, 2004). In compartmentalization, different pathways are localized to different cellular compartments, or to different spatial locations within the cell (Figure 2D) (Smith and Scott, 2002; White and Anderson, 2005). The extent of leaking between the two pathways is determined by the efficiency of compartmentalization. For example, assume that the pathway-specific components of pathway X are localized to the nucleus, while those of pathway Y are localized to the cytosol. Although the shared kinase, x_1, is found in both compartments (x_1^N is the nuclear pool and x_1^C is the cytosolic pool), x_1 activated by x_0 in the nucleus is likely to encounter target x_2, which is also in the nucleus; it will only encounter target y_2 if it diffuses into the cytosol before it is deactivated. Thus, crossover between the two pathways happens when kinase x_1 leaks in or out of the nucleus. D_x is the coefficient for the rate at which x_1 exits the nucleus and enters the cytosol, and D_y is the rate constant for x_1 leaving the cytosol and entering the nucleus. D_x and D_y can be considered as pseudo-diffusion rate constants, or exchange rate constants. The parameters d_1^x and d_1^y are the deactivation constants for x_1 in the nucleus and cytosol, respectively.

Again, assuming weak activation, the network can be modeled with linear ODEs and precise solutions for specificity and fidelity obtained (see Table I and Supplementary information). The specificity of this network is

$$S_{\text{network}} = F_{\text{network}} = \frac{(d_1^x + D_y)(d_1^y + D_x)}{D_x D_y} > 1$$ (5)

It can be seen that network specificity is greater than in the basic architecture, and is maximized if the exchange rates D_x and D_y are small compared to the deactivation rates d_1^x and d_1^y. Compartmentalization can also provide both mutual specificity and mutual fidelity, as long as the exchange rates balance each other (see Table I). The limiting case where $D_x = D_y = 0$ is equivalent to two noninteracting cascades with complete specificity and fidelity. If the leakage coefficients become very large ($D_x, D_y \to \infty$), we again have a fully connected system with a shared element, equivalent to the basic architecture, and $S_{\text{network}} = F_{\text{network}} = 1$.

Role of scaffold proteins

Scaffold proteins, defined here as proteins that bind to two or more consecutively acting components in a pathway, have been shown to enhance the efficiency of signaling, and have also been proposed to augment specificity by several mechanisms (Whitmarsh and Davis, 1998; Levchenko et al, 2000; Burack et al, 2002; Flatauer et al, 2005). In particular, by binding to multiple components of a given pathway, scaffolds may create the equivalent of ‘micro-compartment’ (Harris et al, 2001). That is, if the reactions between those components can only happen on the scaffold (or are much more efficient on the scaffold), then it is as if these scaffolded reactions occur in their own compartment, sequestered away from reactions occurring off-scaffold. In this way, scaffolds may prevent their bound components that are shared with other pathways from straying into those pathways, and protect them from intrusions from those pathways.

To model this sequestration mechanism, we use the equations for compartmentalization, with the meaning of some of the terms interpreted differently (see Figure 2E and Table I). First, x_1^N (aNchored x_1) is interpreted to represent kinase x_1 bound to the scaffold and x_1^C (Cytosolic x_1) is unbound x_1, free in solution in the cytosol. The equation for dx_1^N/dt then indicates that the activation of kinase x_1 by signal x_0 occurs on the scaffold and not in solution, while the equation for dx_1^C/dt indicates that the activation of target x_2 by kinase x_1 also occurs only on the scaffold. In contrast, the corresponding reactions for pathway Y can occur only in solution and not on the scaffold. D_x is the rate constant for the dissociation of x_1 from the scaffold, and D_y is a first-order association constant for the binding of cytosolic x_1 to the scaffold complex. Leaking between pathways X and Y can occur if x_0-activated x_1 dissociates from the scaffold and encounters y_2, or if x_1 that was activated by y_0 in the cytosol binds to the scaffold (see Figure 2E).

The previous results (see equation (5) and Table I) for specificity and fidelity under compartmentalization also apply to scaffolding; S_X is promoted by a low rate of dissociation of kinase x_1 from the scaffold and a high rate of re-binding; however, these factors reduce S_Y. Obtaining network specificity again requires that deactivation rates be fast relative to exchange rates, so that, for instance, any x_1 that dissociates from the scaffold will be deactivated before it encounters y_2. In this model, d_1^y represents the deactivation of kinase x_1 on the scaffold. Interestingly, one way in which it has been proposed that scaffold proteins might enhance signal transmission is by protecting their bound kinases from the action of phosphatases (Levchenko et al, 2000; Heinrich et al, 2002), equivalent to lowering d_1^y to close to or equal to zero. Although this might indeed enhance the speed, duration and amplitude of X signaling (Heinrich et al, 2002), it would lower both S_X, F_Y and network specificity.

Conclusion

Here, we presented a framework for the analysis of interconnected biochemical pathways. We defined the specificity of a pathway as the ratio of its authentic output to its spurious output, and the fidelity of a pathway as its output when given an authentic signal divided by its output in response to a spurious signal. These definitions express commonsense notions that a pathway should stimulate its own output more than another pathway’s output, and respond to its own input more than to another’s. Moreover, they are simple ratios of pathway output, a property that is readily measurable by modeling or experiment. We also defined the informative metric of network specificity, the product of pathway specificities or fidelities. We demonstrated the utility of these metrics by calculating them for simple networks that share components, revealing the limited specificity inherent in simple architectures devoid of specificity-promoting enhancements. Finally, we showed how the insulating mechanisms of compartmentalization and scaffolding are related, and how both require slow exchange rates and fast deactivation rates in order to promote high levels of specificity.
Supplementary information
Supplementary information is available at Molecular Systems Biology website (www.nature.com/msb).

Acknowledgements
This work was supported by a National Institutes of Health/National Science Foundation joint initiative on Mathematical Biology through National Institute of General Medical Sciences grant GM75309 (LB, NK, QN), by NIGMS grant P20-GM66051 (LB, QN), by a grant from the National Academies of Sciences Keck Futures Initiative and by NIGMS research grants GM05866 and GM09013 (LB) and by NIGMS grant GM67247 (QN). XZ is supported by Chinese National Natural Science Foundation grant no. 60573168.

References
Burack WR, Cheng AM, Shaw AS (2002) Scaffolds, adaptors and linkers of TCR signaling: theory and practice. Curr Opin Immunol 14: 312–316
Chaves M, Sontag ED, Dinerstein RJ (2004) Optimal length and signal amplification in weakly activated signal transduction cascades. J Phys Chem B 108: 15311–15320
Flatauer LJ, Zadeh SF, Bardwell L (2005) Mitogen-activated protein kinases with distinct requirements for Ste5 scaffolding influence signaling specificity in Saccharomyces cerevisiae. Mol Cell Biol 25: 1793–1803
Harris K, Lamson RE, Nelson B, Hughes TR, Marton MJ, Roberts CJ, Boone C, Pryciak PM (2001) Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins. Curr Biol 11: 1815–1824
Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal transduction. Mol Cell 9: 957–970
Levchenko A, Bruck J, Sternberg P (2000) Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci USA 97: 5818–5823
Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74: 49–139
Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185
Pawson T (2004) Specificity in signal transduction: from phosphotyrosine–SH2 domain interactions to complex cellular systems. Cell 116: 191–203
Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435–2444
Schwartz MA, Baron V (1999) Interactions between mitogenic stimuli, or, a thousand and one connections. Curr Opin Cell Biol 11: 197–202
Schwartz MA, Madhani HD (2004) Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38: 725–748
Smith FD, Scott JD (2002) Signaling complexes: junctions on the intracellular information super highway. Curr Biol 12: R32–R40
Tan PB, Kim SK (1999) Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet 15: 145–149
van Drogen F, Peter M (2002) MAP kinase cascades: scaffolding signal specificity. Curr Biol 12: R53–R55
Vaudry D, Stork PJ, Lazarovic P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296: 1648–1649
White MA, Anderson RG (2005) Signaling networks in living cells. Annu Rev Pharmacol Toxicol 45: 587–603
Whitmarsh AJ, Davis RJ (1998) Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23: 481–485