Numerical Simulation of Granular Column Collapse with Fractal Particle Size Distribution Using Discrete Element Method

Zhiqiang Lai¹², Li Pan¹², Zhongmei Wang¹²*, Jiayi Wang¹² and Yanfen Ren¹²
¹Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, China
²Key Laboratory of Lower Yellow River Channel and Estuary Regulation, Ministry of Water Resources, Zhengzhou 450003, China
*Corresponding author email: yrccwzm@126.com

Abstract. This study conducts numerical simulations of the granular column collapse with Fractal Particle Size Distributions (FPSDs) via the Discrete Element Method (DEM) and investigated kinetic behaviours of dry granular flows. The aim of this paper is to explore the effects of the fractal dimension of FPSD on the kinetics of dry granular flows. When the fractal dimension of the flows consisting of granular materials increases, the horizontal particle translational velocities become greater and the mobility improves, whereas the particle rotational velocities decrease. Meanwhile, the change in the potential energy increases, and the particle kinetic energy in the rotational form reduces; thus, the particle kinetic energy in the translational form increases. The reducing particle rotational movement may be related to the reducing particle shearing behaviours because only the contact shearing can affect particle rotational motion. In conclusion, a larger fractal dimension of FPSD of a dry granular flow leads to a longer spreading distance and a smaller rotational velocity.

Keywords: Granular column collapse, particle behaviours, flow mobility, flow dynamics.

1. Introduction

1.1. Background
Complicated flow dynamics of granular media, e.g., rock avalanches, debris flows, landslides, and grains in the pharmaceutical and food industries, are typically investigated using the granular column collapse on a transversal wall. This model is effective and has been widely used by many researchers. Figure 1 illustrates the granular column collapse movement model. By moving the wall immediately in the longitudinal orientation or slowly in the transversal orientation, the collapse or quasi-static movement of granular column can be modelled.

1.2. Related Work
Many investigations have been performed via the granular column collapse model on a transversal wall. Geometric configuration parameters own the power-law function relationship with the initial geometric parameters [1-4]. The energy evolution during the collapse was obviously influenced by the aspect ratio [5]. How the factors exert effects on the dynamics of granular columns, e.g. the granular column initial porosity [6], mono-dispersed particle size [7], particle shape [8], particle friction...
coefficient [9], particle restitution coefficient [10], particle stiffness [11] and the fluid situation [12], have also been examined in detail. Deep insights into the movement mechanisms of the granular column collapse have been obtained.

Although there are many studies about the granular column collapse mechanisms, the investigations on mechanisms of how the FPSD has effects on the granular column collapse model are limited. The existing studies focused on the granular column movement with mono-dispersed [13], bi-dispersed [14], tri-dispersed [15-16] and poly-dispersed mixtures with non-fractal size distributions [17]. However, Crosta et al. [18] found that the rock blocks size distribution in natural rock avalanche deposits is fractal from field measurements. Lai et al. [19] have explored the mechanisms of how FPSD influences the runout distance and the kinetics of different sized grains. However, how FPSD affects particle motion and energy conversion in translational and rotational forms.

We analyzed the collapse processes of the granular columns with varying fractal dimensions of FPSD through DEM. The details about our DEM simulations were then given. We attempted to use the evolutions of particle motion and energy conversion in translational and rotational forms to explore how the flow mobility changes. The motive is to understand the reason why the flows consisting of granular media can own tremendous mobility.

![Diagram of granular column collapse movement model.](image)

Figure 1. Diagram of granular column collapse movement model.

2. DEM Numerical Model Setup

2.1. The Meaning of FPSD

We employed the method employed by the references [20-21] to generate the numerical samples with FPSDs. The mathematical meaning of FPSD is that the number, \(N(d) \), of \(d \)-sized particles is \(2^D \) times the \(2d \)-sized number. The parameter \(D \) indicates the fractal dimension. Then, we can use the following equation to represent the flows with FPSD.

\[
N(d) = N_0(d/d_0)^D
\]

where \(N_0 \) is the \(d_0 \)-sized particle number. On the other hand, the greater value of \(D \) means that the flow owns the larger proportion of small sized particles. If the Particle Size Distributions (PSD) of the flow is fractal, it means that the PSD is self-similar from different scales. The other uniform, multi- and poly-dispersed types of distributions don’t own this kind of character.

2.2. Granular Column Collapse Processes Simulations with Different FPSDs Using DEM

The DEM has been commonly employed to model the movement process of the flows consisting of granular media [22]. The model in DEM consists of grains and walls. The number of the grains and walls is finite. It is based on a Lagrangian theory where particles are discrete and their movement trajectories are recorded according to the solutions of the Newton's motion equations. The DEM descriptions in detail can be seen in Itasca [23] and Kermani et al. [24] and hence are not presented herein.
The numerical samples with $D = 1.0, 1.5, 2.5$ and 3.5 are built according to Lai et al. [19] using DEM code. First, we utilized the disks as the particles and their thicknesses are unit. We employed six kinds of particles with varying sizes, which are small-sized particles with 0.2 and 0.4 m radii, medium-sized particles with 0.6 and 0.8 m radii, and large-sized particles with 1.0 and 1.2 m radii, respectively. Small-sized, medium-sized and large-sized particles are in blue, red and yellow, respectively. The reason why these sizes are defined is that they can describe the common rock grains in nature according to Crosta et al. [18] and the acceptable computational efficiency of DEM.

We obtained the particles with specified sizes in DEM via the equation (1). Figure 1 gives the FPSDs of the numerical samples. Then, a rectangular reservoir is built. The length of this reservoir is 40.0 m and its depth is 80.0 m, respectively. The particles with different sizes are randomly generated there. The numbers of particles are specified according to Figure 2. A linear contact model with the viscous damping in the longitudinal and transversal orientations and the slip determination represents the collision and shearing behaviours among the particles. Finally, the particles fall to accumulate stably in the rectangular under the applied gravity. All the simulation parameters are used from the reference of Lai et al. [19], which are shown in Table 1. Figure 3 illustrates the setup of the samples with varying D.

![Figure 2. The FPSDs of the samples in DEM.](image)

Table 1. DEM simulation parameters.

Parameter	Value
Sample length L_0	40.0 m
Sample height H_0	67.0 m
Density of particles ρ	2500 kg / m3
Stiffness of particles and walls	$k_n = k_t = 10^{10} N / m$
Friction of particles μ_{particle}	0.6
Friction of the left and right wall sides μ_{lateral}	0
Friction of the bottom wall side μ_{bottom}	0.6
Gravity g	9.81 m/s2
Damping β_n in the normal orientation	0.12
Damping β_t in the transversal orientation	0.12
3. DEM Simulation Results

3.1. Motion Kinematics

The right walls of the initial granular columns with varying D are deleted to trigger the collapse. The friction of the walls is set to the same value of the particles. Due to the friction, the main granular flow becomes still and the velocities in the translational and rotational forms are close to zero gradually. Figure 3 shows the accumulation shapes for the flows with the four varying D. The velocities of the grains in the frontal part of the granular flow are larger than the others, thus making them move away from the main body as shown in the granular flow with $D = 1.0$. The same trend can be seen for the other three samples. The particles that accumulate away from the main body are deleted because only the accumulation shapes of the main bodies of the flows are focused in our study.

The longitudinal and transversal orientations are built as x and y axes, individually. Then, the translational average values of v_x and v_y in the longitudinal and transversal orientations, and the average values of $\bar{\omega}$ in the rotational form are defined:

$$v_x = \frac{1}{n} \sum_{i=1}^{n} v'_x / n$$
$$v_y = \frac{1}{n} \sum_{i=1}^{n} v'_y / n$$
$$\bar{\omega} = \frac{1}{n} \sum_{i=1}^{n} \omega_i / n$$
$$t^* = t / \sqrt{H_0 / g}$$

The motion velocity distributions of v_x and v_y for the samples with $D = 1.0$ and 3.5 during the movement are given in Figure 4. The definition of t^* is chosen according to the literature of Jing et al. [11]. According to Figure 4, v_x shows a greater peak than v_y, and the peaks of v_x and v_y occur at different values of t^*. Besides, v_x increases significantly as D increases from 1.0 to 3.5, whereas v_y increases only slightly, and $\bar{\omega}$ decreases obviously.
3.2. Energy Conversion

We use the normalized energy E^t, E^r and E^p in the translational, rotational and potential forms to compare the effects of D. The energies in the translational, rotational and potential forms are divided by the initial potential energy $E^p_0 = \sum_{i=1}^{n} m^i g h^i_0$, where m^i is the particle i mass, and h^i_0 is the initial vertical distance from the bottom wall.

Figure 5 gives the evolutions of E^t, E^r and E^p and the average values are given in parentheses. Compared with the values of E^r and E^p of the flows with $D = 1.0$ and 3.5 are much greater. The evolutions of E^t for the flows $D = 1.0$ and 3.5 are almost the same until $t^* = 1.0$. This is in accordance with the time when the differences appear in \bar{v}_x and \bar{v}_y. It is shown that E^r reduces and E^t enlarges with the increasing D.

Figure 5 also gives the evolution of E^p during the movement. The values of E^p at $t^* = 6.0$ are shown in brackets. It can be seen that the evolutions of E^p for the flows $D = 1.0$ and 3.5 are almost the same until $t^* = 1.0$ and then the difference occurs with the continuation of the movement. According to the values in brackets, E^p enlarges as D increases. This means that more energy in potential forms is transformed into the energy in translational forms and the energy dissipated by particle friction and collision behaviours.

Figure 5. The normalized energy distributions of E^t, E^r and E^p in the translational, rotational and potential forms of the samples with $D = 1.0$ and 3.5.
4. Conclusions
The granular flow is a type of flow including rock avalanches, debris flows, landslides in nature and grains in the pharmaceutical and food industries [25-27]. Based on DEM, we performed the granular column collapse simulations with different D and analysed the influences of D on the velocities and energy in the translational and rotational forms. The FPSD affects the flow mobility significantly. As the fractal dimension D becomes greater, the spreading distance increases. When D becomes greater, the runout distance becomes greater which represents the increasing mobility. During the process of the entire movement, the translational velocity in the longitudinal orientation increases at the beginning and then the translational velocity in the transversal orientation becomes much greater at the following spreading and final stages. The velocity in the rotational form reduces obviously. This is directly responsible for the increasing runout distance of the flows with the increasing D.

More energy in potential forms is transformed into the energy in translational forms and the energy dissipated by particle friction and collision behaviours with the increasing D. Therefore, the particle velocities in the translational form increase. However, the particle velocities in the rotational form reduce. Only the particle shearing behaviours can exert the effects on the particle movement in the rotational motion. Therefore, we reckon that the decreasing particle shearing behaviours may be responsible for the decreasing particle rotational motion.

Acknowledgments
This work is supported by the National Key R&D Program of China (Grant No. 2018YFC1508403), the National Natural Science Foundation of China (Grant No. 51909102), the Central Public-Interest Scientific Institution Basic Research Fund (Grant No. HKY-JBYW-2021-01, -2020-05 and -2019-02), the Key Commonwealth Project of Henan Province (Grant No. 201300311600), the Science and Technology Development Project of Henan Province (Grant No. 212300410200).

References
[1] Lajeunesse E, Mangeney-Castelnau A, Vilotte J P. 2004. Spreading of a granular mass on a horizontal plane. Physics of Fluids, 16(7), 2371–2381.
[2] Lajeunesse E, Monnier J B, Homsy G M. 2005. Granular slumping on a horizontal surface. Physics of Fluids, 17(10), 103302-103316.
[3] Lube G, Huppert H E, Sparks R S J, Freundt A. 2005. Collapses of two-dimensional granular columns. Physical Review E, 72(4), 041301.
[4] Lube G, Huppert H E, Sparks R S J, Hallworth M A. 2004. Axisymmetric collapses of granular columns. Journal of Fluid Mechanics, 508, 175–199.
[5] Utili S, Zhao T, Houlsby G T. 2015. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power. Engineering Geology, 186, 3-16.
[6] Fern E J, Soga K. 2016. The role of constitutive models in MPM simulations of granular column collapses. Acta Geotechnica, 11(3), 659-678.
[7] Cabrera M, Estrada N. 2019. Granular column collapse: Analysis of grain-size effects. Physical Review E, 99(1), 012905. https://doi.org/10.1103/PhysRevE.99.012905.
[8] Tapiá-McClung H, Zenit R. 2012. Computer simulations of the collapse of columns formed by elongated grains. Physical Review E, 85(6), 061304. https://doi.org/10.1103/PhysRevE.85.061304.
[9] Mast C M, Arduino P, Mackenzie-Helnwein P, Miller G R. 2015. Simulating granular column collapse using the Material Point Method. Acta Geotechnica, 10(1), 101-116.
[10] Staron L, Hinch E J. 2007. The spreading of a granular mass: role of grain properties and initial conditions. Granular Matter, 9(3-4), 205-217.
[11] Jing L, Yang G C, Kwok C Y, Sobral Y D. 2018. Dynamics and scaling laws of underwater granular collapse with varying aspect ratios. Physical Review E, 98(4), 042901.
[12] Yang G C, Jing L, Kwok C Y, Sobral Y D. 2020. Pore-Scale Simulation of Immersed Granular
Collapse: Implications to Submarine Landslides. Journal of Geophysical Research: Earth Surface, 125, e2019JF005044.

[13] Ng C W W, Choi C E, Liu L H D, Wang Y, Song D, Yang N. 2017. Influence of particle size on the mechanism of dry granular run-up on a rigid barrier. Géotechnique Letters, 7(1), 1-11.

[14] Degaetano M, Lacaze L, Phillips J C. 2013. The influence of localised size reorganisation on short-duration bidispersed granular flows. European Physical Journal E, 36(4), 36.

[15] Zhou W, Lai Z, Ma G, Yang L, Chen Y. 2016. Effect of base roughness on size segregation in dry granular flows. Granular Matter, 18(4), 83.

[16] Zhou W, Lai Z, Yang L, Ma G, Chen Y, Qi T. 2017. Influence of base roughness on kinematic and mechanical characteristics of debris flows. In Proceedings of the 7th International Conference on Discrete Element Methods, 188, 1047–1054. https://doi.org/10.1007/978-981-10-1926-5_109.

[17] Cagnoli B, Romano G P. 2012. Effects of flow volume and grain size on mobility of dry granular flows of angular rock fragments: A functional relationship of scaling parameters. Journal of Geophysical Research, 117, B02207-B02219.

[18] Crosta G B, Frattini P, Fusi N. 2007. Fragmentation in the Val Pola rock avalanche, Italian Alps. Journal of Geophysical Research, 112, F01006.

[19] Lai Z, Vallejo L E, Zhou W, Ma G, Espitia J M, Caicedo B, Chang X. 2017. Collapse of Granular Columns with Fractal Particle Size Distribution: Implications for Understanding the Role of Small Particles in Granular Flows, Geophysical Research Letters, 44(24), 12181-12189.

[20] Palmer A C, Sanderson T J O. 1991. Fractal crushing of ice and brittle solids. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences., 433(1889), 469–477.

[21] Hooke R L, Iverson N R 1995. Grain-size distribution in deforming subglacial tills: Role of grain fracture. Geology, 23(1), 57.

[22] Cundall P. A., and Strack O. D. L. (1979). “A discrete numerical model for granular assemblies.” Geotechnique, 29(1), 47–65.

[23] Itasca. (2008). Particle flow code, PFC3D 4.0, Itasca Consulting Group, Inc., Minneapolis.

[24] Kermani E, Qiu T, Li T. 2015. Simulation of collapse of granular columns using the discrete element method. International Journal of Geomechanics, 15(6), 04015004.

[25] Aaron J, & Hungr O. 2016. Dynamic analysis of an extraordinarily mobile rock avalanche in the Northwest Territories, Canada. Canadian Geotechnical Journal, 53(6), 899–908.

[26] Robinson T R., Davies, T. R., Reznichenko, N. V., & De Pascale, G. P. (2015). The extremely long-runout Komansu rock avalanche in the Trans Alai range, Pamir Mountains, southern Kyrgyzstan. Landslides, 12(3), 523–535.

[27] Lai Z, Chen D, Jiang E, et al. Effect of fractal particle size distribution on the mobility of dry granular flows[J]. AIP Advances, 2021, 11(9): 095113.