Effect of Boswellia species on the metabolic syndrome: A review

Davood Mahdian 1,2, Kazem Abbaszadeh-Goudarzi 1, Amir Raoofi 1, Ghazaleh Dadashizadeh 1, Mina Abroudi 1, Elahe Zarepour 1, Hossein Hosseinzadeh 3, 4*

1 Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
2 Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
3 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
4 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

The metabolic syndrome, a cluster of metabolic disorders, includes abdominal obesity, hypertension, dyslipidemia, and hyperglycemia leading to insulin resistance, development of diabetes mellitus, and cardiovascular diseases. For the treatment of metabolic syndrome, traditional herbal medicines such as frankincense or Boswellia species have been used due to their anti-inflammatory, anti-oxidant, anti-obesity, anti-diabetic, anti-hypertensive, and hypolipidemic properties. Based on the literature, published evidence up to 2020 about the therapeutic effects of Boswellia species on the metabolic disorder among Medline, Scopus, and Google Scholar were precisely evaluated by keywords such as obesity, diabetes, hyperglycemia, hypertension, blood pressure, dyslipidemia, metabolic syndrome, frankincense, and Boswellia. According to the results, Boswellia species have beneficial effects to control metabolic syndrome and its related disorders such as hyperglycemia, dyslipidemia, hypertension, obesity, diabetes, and its complications. Boswellia species by reducing the resistance to insulin and restoring pancreatic beta cells decrease blood glucose. Also, Boswellia species have antithrombotic and anti-agulant properties that regulate blood pressure. The anti-oxidant properties of Boswellia species modulate the blood lipid profile via reducing TNF-α, IL-1β levels, and increasing the adiponectin level. The therapeutic and protective effects of Boswellia species on metabolic disorders were remarkably confirmed regarding decreasing hyperglycemia, hyperlipidemia, hypertension, and obesity.

Keywords: Boswellia, Dyslipidemia, Frankincense, Hyperglycemia, Hypertension, Metabolic syndrome, Olibanum

Introduction

The metabolic syndrome is defined as abdominal obesity, dyslipidemia (DL), hypertension (HTN), insulin resistance with or without glucose tolerance, pro-inflammatory and pro-thrombotic state (1, 2). Moreover, metabolic syndrome is a serious problem and challenge with an ascending trend throughout the world that is caused by excessive calorie intake, urbanization, and inactive lifestyles (3). Systemic HTN that is also known as high blood pressure (HBP) and abnormal lipid profile can be observed because of the resistance to insulin, which results in atherosclerotic vascular disease. Hence, metabolic syndrome enhances myocardial infarction (MI) and stroke risks (4).

Today, studies have been focused on supplementary and substitute medicine (5-7) due to inadequate efficiency and significant complications from recent treatments for hyperlipidemia (HLP) and diabetes (8-11). Recently, researchers have paid attention to the use of medicinal plants due to the reduced complications and different efficient compounds in the herbs as recommended by the World Health Organization (WHO) (12).

Concerning the important clinical consequences of the metabolic syndrome, investigators have mainly attended to study the values of herbal medicines or herbalism. Boswellia internationally known as Indian frankincense or olibanum has been used to treat various diseases. The frankincense or olibanum, a yellowish-brown oleo-resin, is prepared from Boswellia species such as Boswellia serrata (13). Boswellia genus contains about 25 different species. A number of the prominent species consist of B. frereana, B. sacra, B. ovalifoliolata, B. carterii, B. papyrifera, B. rivae, B. neglecta, and so forth (14-17). Recent research indicated the anti-inflammatory, anti-ulcerous function, and anticancerous impacts of this plant (18). Of course, some studies demonstrated the antihyperglycemic and antihyperlipidemic impacts of Boswellia in streptozotocin-induced diabetic rats (19). Also, one of the studies indicated the protective impacts of B. serrata gum on diabetic side effects in animal models (20, 21). Moreover, this plant has useful impacts on the low-density lipoprotein (LDL), blood glucose, and high-density lipoprotein (HDL) of patients with diabetes who had received B. serrata gum at a dosage of 900 mg every day with no significant complications (22).

Numerous animal research projects demonstrated the anti-oxidant features of gum resin extracts of B. serrata (23, 24). Pandey et al. showed that the extracts of B. serrata gum resin resulted in a reduction in serum cholesterol and the enhancement of HDL in the rats (25). Another research indicated that patients with type 2 diabetes who have been supplemented with gum resin of B. serrata for six weeks experienced a remarkable decline of fasting blood glucose and the augmentation in plasma insulin level (26).
Pharmacognostical features of *Boswellia*

Boswellia belongs to the family Burseraceae, which is a deciduous tree. In general, it reaches a moderate height (4 to 5 m). As other moderate to big size trees with branches, this tree possesses a circumference of 2.4 m (average 1.5 m). The color of the thin barks of the tree changes from greenish-gray, yellow, or reddish to ash color that its peeling may be readily done. The papery barks, when peeled off or cut, release translucent lumps, tear, or droplets of white to yellow color gummy oleoresin (26).

Composition

There are nearly 200 phytochemicals in the oleo-gum-resin mix in various species of *Boswellia*. These compounds contain pure resin, mucus, and essential oil (27, 28).

The essential oil compositions of each species are different and change concerning the environment, harvest condition, and geographic areas (29, 30). The gum portion is composed of pentose and hexose sugar containing a couple of oxidation and digestive enzymes. The essential oil is a mix of mono-terpenes, diterpenes, and sesquiterpenes. β-boswellic acid (Bas) is the main constituent of each species of the genus *Boswellia* (Figure1). There are 6 main Bas, including α- and β-BA (10 to 21%), acetylated α- and β-BA (0.05–6%), 11-keto-β-boswellic acid (KBA, 2.5 to 7.5%), and 3-O-acetyl-11-keto-β-boswellic acid (AKBA, 0.1– 3%), which are found in each *Boswellia* species with variable amounts. The contents of BA, which can be found in the market as the standardized extracts, change from 37.5-65% (31, 32).

Review literature

The search was performed by keywords such as diabetes or hyperglycemia, *Boswellia*, frankincense, olibanum, boswellic acid, elevated BP or HTN, hypertensive or antihypertensive, DL, and metabolic syndrome using Google Scholar, Scopus, and Medline databases. In fact, in the current research, most of the papers about the effects of *Boswellia* on metabolic disorders have been precisely evaluated. To better review, irrelevant or duplicated papers have been disregarded. Publications have been specified from their admission up to August 2020.

Dosing

Boswellia species are usually administered as a capsule, pill, or bark decoction orally. The respective dose is suggested based on historical practices or existing trials. Today, there is ambiguity on the optimum dosage for balancing a safe and efficient method. Each producer has their production method of *Boswellia*, and these results are too inconsistent to provide a standardized product. Notably, several trials applied different products manufactured by different producers. For this reason, clinical impacts cannot be compared (33).

Hypoglycemic effect of the *Boswellia species* in diabetic patients and animal models

Boswellia species tree and the corresponding gummy resin are completely known due to their useful impacts on several diseases such as diabetes mellitus (DM) (39). Azemi *et al.* showed that the extract of *B. serrata* has antidiabetic impacts and can prevent the microvascular complications of diabetes in the kidney and liver (40). Investigators showed that herbal formulations with *B. serrata* oleo-gum-resin generated considerable antidiabetic activities via influencing the hepatic gluconeogenesis, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase (41). Shehata *et al.* studied AKBA contribution to the prevention of inducing auto-immune reaction, insulins, and hyperglycemia in a model of multiple low dose streptozotocin (MLD-STZ) diabetes. The induction of hyperglycemia or high blood sugar has been done via injection of IP 40 mg/kg STZ in male mice for five days every day, whereas the second treatment group has been administered KBA with STZ for ten days. In STZ treated rats, a considerable burst of pro-inflammatory and anti-inflammatory cytokines in the blood, infiltrating lymphocytes (CD3) into pancreatic islets, and emerging peri-insular apoptotic cells have been registered. A significant increase in plasma glucose has been observed (124.4±6.65 versus 240.2±27.36 mg/dl, P<0.05). Nonetheless, concurrent treatments with AKBA and KBA indicated a significant decrease in pro-inflammatory and anti-inflammatory cytokines. Moreover, the detection of infiltrating lymphocytes into pancreatic islets and emerging peri-insular cells has not been reported (42).

Ahangarpour *et al.*, clinically studied patients with type 2 diabetes supplemented with extract of *B. serrata* gum resin for six weeks and compared them to type 2 diabetic patients. A considerable reduction of fasting blood glucose and a decrease in insulin levels have been reported (22). The researchers were satisfied with the findings, and thus developed the research and examined antidiabetic, hypolipidemic, and hepatoprotective impacts of the supplement *B. serrata* in 60 patients with type 2 diabetes from both genders. Treating diabetic patients with the extract of *B. serrata* gum resin (orally, 900 mg) for six weeks led to a considerable enhancement of the levels of HDL and significant decline of cholesterol, LDL, as well as the amounts of fructosamine SGPT and SGOT. The research indicated that the administration of 900 mg of *B. serrata* supplement daily is one of the healthy and efficient options for decreasing hazardous agents related to type 2 diabetes. Diabetic patients who receive *B. serrata* can keep fructosamine level, hepatic enzyme activity, and lipid profiles close to the standard levels and have a high-quality life (21). Herbal formulations with *B. serrata* oleo-gum-resin as an ingredient of the supplementation led to considerable antidiabetic activities on non-insulin-dependent DM in streptozocin induced diabetic rat model.

In a case study report of a male patient diagnosed with Latent Autoimmune Diabetes in Adults, *B. serrata* gum resin during 9 months treatment reduced both the levels of autoantibodies (43). Some results demonstrated the decline of the blood glucose levels in patients with diabetes by orally administrating the aqueous extracts of the leaf and root of *B. glabra*. The continuous application of the extract of the leaf and root for 28 days represented a reduction.
of cholesterol, creatinine, triglyceride, serum glucose, urea, enzyme activity with considerable hypo-glycemic impacts (44). One of the auto-immune diseases is a type 1 diabetes, in which a chronic inflammatory procedure eventually leads to beta-cell mortality and a lack of insulin production. It was indicated that extracts obtained by the gum resin of BS have anti-inflammatory features, especially via targeting agents or mediators associated with auto-immune diseases (39). The recent research demonstrated the antidiabetic impacts of BS extracts and their capability for preventing the side effects of diabetes in the kidney and liver (40).

Hypoglycemic activities in mice with type 1 diabetes have been confirmed by BS oleo-gum and respective active ingredients, KBA and AKBA by suppressing pro-inflammatory cytokines related to inducing auto-immune procedure in pancreatic islets, such as interleukin (IL)-1A, IL-1B, IL-2, IL-6, interferon (IFN)-γ, TNF-α, granulocyte colony-stimulating factor (G-CSF), and granulocyte/macrophage colony-stimulating factor (GM-CSF), and infiltrating lymphocytes into islets. Two of the major antidiabetic mechanisms include suppressing pancreatic islet tissue atrophy and peri-insular apoptotic cells mediated by anti-caspase 3 (39, 45). Rao et al. (2013) revealed the improvement of chronic diabetic side effects by oleo-gum resin and the isolated compound boswellic acid through the inhibition of polyol enzyme aldose reductase and reduction in the developed glycation end product in vivo in rat lens and rat kidneys and in vitro in human recombinant cells (20). Additionally, B. carterii oleo-gum resin showed an antidiabetic capacity by increasing the serum insulin, regenerating β-cells of Langerhans islets, enhancing glycosogenesis, and declining glycogenolysis in rats with alloxan-induced type 1 diabetes (46).

The previous study showed that blood-glucose levels increased significantly (P<0.05) in the control group in comparison to other groups that received 3 g B. serrata/l in drinking water. However, the remaining treated groups showed a significant decrease in comparison with control (47). Also, Al-Daraji et al. (47), reported that the drinking water of broiler chickens supplemented with different levels of B. carteri powder led to a significant decrease in blood glucose concentrations, at levels 0.5, 0.75, and 1 g/l. However, 0.75 and 1 g/l water supplementation reduced the values of blood plasma concentrations of glucose. 6 weeks complementarity of B. serrata to type 2 diabetic patients also produced a very significant decrease in fasting blood glucose and an increase in insulin level (48). Similarly, B. glabra aqueous extract increased the synthesis of secretory granules in the beta-cell and led to an increase in pancreatic enzyme resulting in reduced blood-sugar level (49) (Table 1).

Impact on the elevated blood pressure

Not many authors assessed the positive impacts of Boswellia species on elevated BP which is an important component of the metabolic syndrome. Recent studies have introduced some mechanisms of actions concerning B. serrata gum resin on cardiac health. There is enough knowledge of the relationship between oxidative stresses, inflammation, and thrombosis resulting in cardiovascular diseases (50, 51). Hence, the anti-oxidant and antithrombotic characteristics of B. serrata gum resin were examined. Enriching B. serrata gum resin with triterpenoids showed their anti-oxidant activities based on the respective chemical compositions (52, 54). The experiments of the anti-oxidant activities of B. serrata gum resin suggested antilipid per-oxidation actions in the liver and heart. Researchers studied the phytochemical ingredients of the crude extract of B. serrata and demonstrated that it consists of essential oils, resin, and gum. Boswellic acid, a pentacyclic triterpene, has been recognized as an active moiety of the resin portion (55). Primary phytochemical studies showed the existence of flavonoid and saponin in B. serrata Previous observations showed that several compounds, such as flavonoids, saponins, or organic acids might contribute to the herb diuretic impacts (56). Likewise, some authors revealed that specific flavonoids induce diuretic activities by attaching with adenosine A1 receptors related to the diuretic actions (57). Since B. serrata has a lot of saponins and flavonoids, the diuretic activities of the herb understudy might result from these mechanisms. It has been indicated that sodium is a prominent external agent that plays a role in primary HTN (58). Several research projects demonstrated the adverse effects of higher uptake of sodium adversely on the arterial BP (59). The higher excretion of urinary sodium in the present experimental animals revealed the antihypertensive activity of the B. serrata (Table 1).

Impact on obesity and lipid profiles

Several herbal medicines such as Ginkgo biloba can manage and improve hyperlipidemia or obesity in patients (60). Numerous academic research projects performed during recent years showed that Boswellia species would be efficient hypolipidemic agents. It has been demonstrated that the water-soluble fraction of B. serrata reduces the levels of total cholesterol (38-48%) (61) in experimental animals, which confirms its hypolipidemic potentials. Moreover, Zutshi et al. showed the antihyperlipidemic activities of Boswellia gum (19). Salami gum keeps the levels of serum cholesterol and triglyceride of animals within optimal ranges that would be received on diets with increased cholesterol and saturated fat (61). It was reported that AKBA inhibits NF-κB activity in atherosclerosis (62). Of course, AKBA has anti-adiposity properties, through which it can induce lipolysis in mature human adipocytes that have been observed by Liu et al. in the in vitro study. Moreover, this event has been followed by downregulating the expression of PPAR-γ2 and losing phenotypic markers (63). The study of Al-Yasiry et al. (46) showed that Boswellia species (3 g B. serrata/l in drinking water) reduced the cholesterol level in broiler chicken. Their findings were in agreement with those of Pandey et al (64). In this study, they showed that the supplementation of BS gum resins extract 15 mg/100 g body wt for 90 days caused a significant decrease in serum cholesterol and increased HDL in rats. It has also been reported by Al-Daraji et al. (65) that B. carterii (0.5, 0.75, and 1 g/l in drinking water) decreased significantly cholesterol, triglycerides, and LDL levels. The results of this study suggest the probability that B. serrata supplementation restores β-cells function for insulin secretion, and that insulin helps to reduce
Table 1. The efficacy of *Boswellia* species on different animal models composed of the metabolic syndrome

Study type	Metabolic syndrome component	Reference
Animal studies	↓ Blood insulin levels	39
Animal studies	↓ Hyperglycemia	42
Human studies	↓ Fasting blood glucose	22
	↓ Insulin levels	
Animal studies	↓ Hepatic gluconeogenesis, ↓ Blood glucose	41
Human studies	↓ Diabetic, Hypolipidemic, ↑ Levels of HDL	21, 65, 66
	↓ Total cholesterol, triglycerides, LDL	44, 49, 50, 61, 62, 46
Animal studies	↓ Cholesterol, creatinine, triglyceride, serum glucose, urea, enzyme activity	
Animal studies	↓ Diabetic	39, 45
	↓ Pancreatic damages	
	↓ Infiltration of lymphocytes into pancreatic islets	
Animal studies	↓ Polyol enzyme aldose reductase	20
	↓ The developed glycation	
	↓ Blood glucose	
Animal studies	↓ Blood insulin levels	40
Animal studies	↓ Blood insulin levels	36
Animal studies	↓ The serum insulin	46
	↑ Glycogenesis	
	↓ Glycogenolysis	
Animal studies	Adjusts the lipid profile	38
Animal studies	↑ Anti-oxidant defense	53, 55, 57, 58
	↑ Anti-oxidant and Anti-thrombolic effects	
	↑ Antilipid peroxidation actions in liver and heart	
	↑ Diuretic activities	
	↑ Antihypertensive factor	
	↓ High sodium absorption	
Animal studies	Modulates vascular tones	37
Animal studies	↓ Obesity	72, 75, 76
	↓ Food intake	
	↓ Concentration adiponectin	
	↓ Hyperlipidemia	
	↓ Oxidative stress and inflammation	
	↓ TNF-α, IL-1β	
	↓ Leptin resistance	
Animal studies	↓ Oxidative stress and inflammation	75, 73
	↓ TNF-α, IL-1β	
	↓ Leptin resistance	
Human studies	↓ Obesity	78

DM: Diabetes Mellitus; NAFLD: Non-Alcoholic Fatty Liver Disease; HLP: Hyperlipidemia; LDL: Low-Density Lipoprotein; HDL: High-Density Lipoprotein; BP: Blood Pressure, OB: Obesity
serum lipid profiles (66). Moreover, *B. carterii* may have a protective effect on pancreatic β cells through its anti-oxidant action (67) (Table1). Obesity, a chronic disease characterized by the storage of excess energy in fat cells, is a result of abnormal metabolism. Obesity is a complex issue and its causes, consequences, and management are an area of considerable debate as a widespread disease. Several studies reported *Boswellia* species exhibited anti-obesity effects by lowering total cholesterols, triglycerides, free fatty acids, LDL concentrations, circulating adiponectin, food intake as well as elevating HDL (68-70). The study performed by Tawfik showed that boswellic acid has a promising anti-aggregatory effect by reducing the enhanced HLP, oxidative stress, and inflammation associated with a high-fat diet (HFD) (71). Gomaa et al. investigated that *B. serrata* extract is as effective as orlistat in preventing obesity, hyperlipidemia, steatosis, and insulin resistance. These actions may be mediated by the suppression of food intake and reducing the levels of TNF-α, IL-1β, and leptin resistance along with increasing adiponectin (72). *B. serrata* extract has anti-obesity effects and can be attributed to the presence of active principles such as phenolic compounds and triterpenoids (73-75). In another study, *B. serrata* extract showed a suppressive effect on cumulative food intake compared to ephedrine used as a standard anorectic drug (76).

The findings of previous studies demonstrated that the use of *B. serrata* appears safe and effective to control obesity (77). The possible mechanism of *B. serrata* reported by Singh et al. consists of the stimulation of the thyroid gland leading to an increase in metabolic rate. Thereby enhancing thyroid efficiency which in turn causes to lose weight. Regarding toxicity, *B. serrata* showed no toxic effect up to 500 mg/kg (78) (Figure1 and Table1).

The overall mechanism of *Boswellia species* in the metabolic syndrome

Several features of *Boswellia* species have been explored. The general mechanisms of the *Boswellia* species include anti-oxidant, radical scavenger, glutathione contents regulator, cellular membranes stabilizer, and cell permeability regulator. Moreover, *B. serrata* extracts enhance the regeneration of the liver and delay developing and progressing hepatic fibrosis (34, 35).

Based on numerous research projects, the major classifications of *Boswellia* mechanisms are as following: 1. *Boswellia* gum resin reduces plasma glucose in...
diabetes by decreasing the resistance to insulin and restoring pancreatic beta cells (36) (Figure 2).

2. *Boswellia* gum resin regulates BP in hypertensive conditions by modulation vascular tones, diuretic effects, and suppression platelet aggregations with antithrombotic and anticoagulant properties (37) (Figure 2).

3. *Boswellia* gum resin adjusts the lipid profile via decreasing hepatic steatosis and ameliorates liver dysfunctions tests through its anti-oxidant and cytoprotective impacts (38) (Figure 2).

4. *Boswellia* extracts suppress food intake and reduce TNF-α, IL-1β levels and leptin resistance along with increasing the adiponectin level (72) (Figure 2).

Conclusion

According to the broad range of properties of *Boswellia* species, this review described the potential effects of *Boswellia* species in either the treatment or prevention of the metabolic syndrome. The previous studies shed light on new ways of treatment for the metabolic syndrome by the exhibition of the effectiveness of *Boswellia* species in HBP, obesity, DL, and high blood glucose. Nevertheless, a series of effective clinical studies should be conducted in this regard.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Akaberi M, Hosseinzadeh H. Grapes (*Vitis vinifera*) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016;30:540-556.

2. Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (*Rosmarinus officinalis*) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn Schmiedebergs Arch Pharmacol 2016;389:931-949.

3. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of *Capsicum annuum* L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018;21:439-448.

4. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of *Berberis vulgaris* and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci 2017;20:557-568.

5. Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017;97:1679–1685.

6. Mallazadeh H, Mahdian D, Hosseinzadeh H. Medicinal plants in treatment of hypertriglyceridemia: a review based on their mechanisms and effectiveness. Phytotherapy 2019;53:43-52.

7. Rahimi R, Shams-Ardekani MR, Abdollahi M. A review of the efficacy of traditional Iranian medicine for inflammatory bowel disease. World J Gastroenterol 2010;16:4504–4514.

8. Tajmohammadi A, Razavi BM, Hosseinzadeh H. *Silybum marianum* (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: a review. Phytother Res 2018;32:1933-1949.

9. Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of *Garcinia mangostana* and its xanthones in metabolic syndrome and related complications. Phytother Res. 2017;31:1173-1182.

10. Mallazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iran J Basic Med Sci 2016;19:1258-1270.

11. Hosseini S, Jamshidi L, Mehrzadi S, et al. Effects of *juglans regia* L. leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: a randomized double-blind, placebo-controlled clinical trial. J Ethnopharmacol 2014;152:451–456.

12. Razavi BM, Hosseinzadeh H. A review of the effects of *Citrus paradise* (grapefruit) and its flavonoids, naringin, and naringenin in metabolic syndrome. In Bioactive food as dietary interventions for diabetes (sec edition). Eds. Watson, R. R. and Preedy, V.R. 2019, Chp.43, 515-543, London.

13. Forouzanfar F, Hosseinzadeh H, Ebrahimzadeh Bideskand A, Sadeghnia HR. Aqueous and ethanolic extracts of *Boswellia serrata* protect against focal cerebral ischemia and reperfusion injury in rats., Phytother Res 30, 1954-1967.

14. Woolley CL, Suhail MM, Smith BL, Boren KE, Taylor LC, Schreuder MF, et al. Chemical differentiation of *Boswellia sacra*
and *Boswellia carterii* essential oils by gas chromatography and chiral gas chromatography-mass spectrometry. J Chromatogr A 2012; 1261: 158-163.

15. De Rapper S, Van Vuuren SE, Kamatou GP, Viljoen AM, Dagne E. The additive and synergistic antimicrobial effects of select frankincense and myrrh oils-a combination from the pharacroic pharmacopeia. Lett Appl Microbiol 2012; 54: 352-358.

16. Blain EJ, Ali AY, Duance VC. *Boswellia freerea* (frankincense) suppresses cytokine-induced mat metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage. Phytother Res 2010; 24: 905-912.

17. Devi PR, Adilaxmamma K, Rao GS, Srilatha Ch, Raj MA. Safety evaluation of an alcoholic extract of *Boswellia ovatifolia* stembark in rats. Toxicol In Vitro 2012; 19: 115-120.

18. Ebrahimpour S, Fazeli M, Mehri S, Taherianfard M, Hosseinzadeh H. Boswellia acid improves cognitive function in a rat model through its antioxidant activity: Neuroprotective effect of boswellic acid. J Pharmac viewpoint 2010; 27:10-17.

19. Zutshi U, Rao PG, Ravi S, Singh GB, Surjeet S, Atal CK. Mechanism of cholesterol lowering effect of *Salai guggul* and *Boswellia serrata* roxb. Indian J Pharmacol 2011; 43: 182-183.

20. Rao AR, Veeresham C, Asres K. *Boswellia serrata* roxb. Mechanism of cholesterol lowering effect of *Boswellia serrata* roxb. Indian J Pharmacol 2011; 43:182-183.

21. Ahangarpour A, Heidari H, Fatemeh RA, 2013; 27: 753–760. inhibitory activities of four Indian medicinal plant extracts

22. Ahangarpour A, Akbari Fatemeh Ramezani A, Heidari H, et al. The effect of *Boswellia serrata* on blood glucose, insulin level and insulin resistance in type 2 diabetic patients. Daneshjar Med. 2013;20:11-18.

23. Sharma A, Upadhyay J, Jain A, Namdeo A, Mahadik KR. Antioxidant activity of aqueous extract of *Boswellia serrata*. J.Chem.Bio.Phys.Sci. 2011;11: 60-71.

24. Al-Awadi F, Fatania H, Shamte U: The effect of a plants mixture extract on liver gluconeogenesis in streptozocin induced diabetic rats. Diabetes Res 1991, 18:163–168.

25. Pandey RS, Singh BK, Tripathi YB: Extract of gum resins of *Boswellia serrata* L. inhibits lipopolysaccharide induced nitric oxide production in rat macrophages along with hypolipidemic property. Indian J Exp Biol 2005; 43:509–516.

26. Senghani MK, Patel PM. Pharmacognostic and phytochemical study of oleo gum resin from *Boswellia serrata*. Res J Pharmacogn Phytochem 2013; 5: 244-250.

27. Gerbeth K, Meins J, Kirste S, Momma F, Schubert-Zsilavecz M, Abdel-Tawab M. Determination of major boswellic acid levels in plasma by high-pressure liquid chromatography/mass spectrometry. J Pharm Biomed Anal 2011; 56: 998-1005.

28. Al-Harrasi A, Ali L, Rehman NU, Hussain H, Hussain J, Al- Rawahi A, et al. Nine triterpenes from *Boswellia sacra* Flückiger and their chemotaxonomic importance. Biochem Syst Ecol 2013; 51: 113-116.

29. Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med 2006; 72:100-1116.

30. Al-Harrasi A, AlSaleh S. Phytochemical analysis of the essential oil from botanically certified oleogum resin of *Boswellia sacra* (Omani Luban). Molecules 2008;13:2181-2189.

31. Shah BA, Qazi GN, Taneja SC. Boswellic acids: a group of medicinally important compounds. Nat Prod Rep 2009; 26: 72-89.

32. Schauss A, Milholland R, Munson S. Indian frankincense (*Boswellia serrata*) gum resin extract: a review of therapeutic applications and toxicology. Nat Med J 1999; 2: 16-20.

33. Siddiqui MZ. *Boswellia serrata*, a potential antiinflammatory agent: an overview. J Pharm Sci. 2011;73:255-261.

34. Sierra R, Vetuschi A, Cañití V, Ammanniti S, Pompili S, Melideo D, et al. *Boswellia serrata* and *Salvia miltiorrhiza* extracts reduce DMN-induced hepatic fibrosis in mice by TGF-beta1 downregulation. Eur Rev Med Pharmacol Sci 2012; 16: 1484-1499.

35. Khan MA, Singh M, Khan MS, Najmi AK, Ahmad S. Caspase mediated synergistic effect of *Boswellia serrata* extract in combination with doxorubicin against human hepatocellular carcinoma. Biomed Res Int 2014; 2014: 294143.

36. Mohammad Hosein Farzaei, Roja Rahimi, Fatemeh Farzaei and Mohammad Abdollahi. Traditional medicinal herbs for the management of diabetes and its complications: an evidence-based review. Int J Pharm 2015; 41: 874-887.

37. Kokkiri KI, Bhandhu LM, Marri S, Padmarske K, Row AT, Raghavendra AS, Tetal SD. Gum resin of *Boswellia serrata* inhibited human monocyte (THP-1) cell activation and platelet aggregation. J Ethnopharmacol 2011; 1:137:893-901.

38. Ahmed A, Zaki, Nadia E, Hashim, Mohamed A, Amer, Mohammad-Farid Lahloub. Cardioprotective and anti-oxidant effects of oleogum resin “Olibanum” from *Boswellia carteri* Burd. (Burseraceae). Chin J Nat Med 2014;12:345-350.

39. Shehata AM, Quantinilla-Fend L, Bettio S, Singh CB, Ammon HP. Prevention of multiple low-dose streptozotocin (M LD-STZ) diabetes in mice by an extract from gum resin of *Boswellia serrata* (BE). Phytomedicine 2011; 18: 1037-1044.

40. Azemi ME, Namjooyan F, Khodayar M, Ahmadvand F, Darvish Padok A, Panahi M. The antioxidant capacity and anti-diabetic effect of *Boswellia serrata* Triana and planch aqueous extract in fertile female diabetic rats and the possible effects on reproduction and histological changes in the liver and kidneys. Jundishapur J Nat Pharm Prod 2012; 7: 168-175.

41. Alawadi F, Fatania H, Shamte U. The effect of plant mixture extract on liver gluconeogenesis in streptozocin induced diabetic rats. Diabetes Res 1991; 18: 163-168.

42. Shehata AM, Quantinilla-Fend L, Bettio S, Jauch J, Scior T, Scherbaum WA, et al. 11-Keto-b-boswellic acids prevent development of autoimmune reactions, insulitis and reduce hyperglycemia during induction of multiple low-dose streptozotocin (M LD-STZ) diabetes in mice. Horm Metab Res 2015; 47: 463-469.

43. Franić Z, Franić Z, Vrklić N, Gabaj NN, Petek I. Effect of extract from *Boswellia serrata* gum resin on decrease of GAD65 beta1 downregulation. Eur Rev Med Pharmacol Sci 2012; 16: 1380-1380.

44. Kavitha JV, Rosario JF, Chandran J, Anbu P, Bakkiyanathan. Hypoglycemic and other related effects of *Boswellia glabra* in alloncinduced diabetic rats. Indian J Physiol Pharmacol 2007;51: 29-39.

45. Shehata AM, Jauch L. Quantinilla-Martinez and H.P.T. Ammon, 2012. 11-Keto-β-boswellic acid inhibits infiltration of lymphocytes into pancreatic islets in NOD-mice. Horm Metab Res 2017;49:693-700.

46. Al-Yasiry RMA, Jawad SAH3, Menati KJ, Naji SA and Lokman IH. Effects of *Boswellia carteri* and *Boswellia serrata* in drinking water on the growth performance, hematology and immune response of broiler chicken. Int J Dairy Technol 2016: 4 :27-37.

47. Al-Daraji J, Al-Yasiry RMA, Jawad SAH3, Menati KJ, Naji SA and Lokman IH. Effects of *Boswellia carteri* and *Boswellia serrata* in drinking water on the growth performance, hematology and immune response of broiler chicken. Int J Dairy Technol 2016: 4 :27-37.

48. Al-Daraji J, et al. Effect of supplementation of different levels frankincense to drinking water on certain hematological traits of broiler. J Biol Chem Environ 2013;8:589-601.

49. Kavitha JV, Rosario JF, Chandran J, Anbu P, Bakkiyanathan. Hypoglycemic and other related effects of *Boswellia glabra*...
in alloxan-induced diabetic rats. Indian J Physiol Pharmacol 2007;51:29-39.
49. Helal EGE, Mostafa AM, Ashour FA, Kawkash AA. Effect of boswellia carterii birdw on carbohydrate metabolism in diabetic male albino rats. Egypt J Hosp Med 2005; 20: 38-45.
50. Boos CJ, Lip GYH. Blood clotting inflammation and thrombosis in cardiovascular events: perspectives. Frontiers in Bioscience 2006; 11: 328–336.
51. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 14:340: 115-126.
52. Assimopoulou AN, Zlatanos SN, Papageorgiou VP. Antioxidant activity of natural resins and bioactive triterpenes in oil substrates. Food Chemistry 2005; 92:721–727.
53. Bushra, S, Farooq, A, Roman, P. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chemistry 104:1106-1114.
54. Maghesh V, Raman D, Pudupalayam KT. Genotoxicity studies of dry extract of Boswellia serrata. Trop J Pharm Res 2008; 7:1129–1135.
55. Sharma A, Mann A, Gajbiye V and Kharya M. Phytochemical profile of Boswellia serrata: an overview. Pharmacogn 2007; 1: 137.
56. Singh S, Khajuria A, Taneja S, Johri R, Singh J and Qazi G. Methoxy flavonoids from Boswellia serrata L. Indian J Pharm 1980; 12: 59.
57. Yuliana N, Khatib A, Link-Struensee A, Ijzerman A, Rungkat-topical application in inflammatory disorders. Phytomedicine 2009; 7:1129–1135.
58. Asif M, Atif M, Amin MS, Zahari CD, Irshad A and Ashfaq A. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27:549–559.
59. Horacio J, Adrogue MD, Nicolaos E and Madias MD. Cholesterol lowering effect of Salai guggal Boswellic acids: A leukotriene inhibitor also effective through systemic metabolic alterations, adipose tissue inflammation, hepatic steatosis, and oxidative stress in gerbils (Meriones unguiculatus). Peer J 2017 2;5:e2967.
60. Eisvand F, Razavi BM, Hosseinzadeh H. The effects of Ephedra sinica on obesity and glucose intolerance in high-fat diet-fed mice. Exp Ther Med 2012; 3:707–712.
61. Xu BJ, Han LK, Zheng YN, Lee JH, Sung CK. In vitro inhibitory effect of triterpenoidal saponins from Platycodi radix on pancreatic lipase. Arch Pharm Res 28:180–185.
62. A 90 day gavage safety assessment of Boswellia serrata et al. Comparative study of (Diaphoresis) in the upper gastrointestinal tract as a treatment for obesity. Med Hypotheses 2009; 72:1354–1361.
63. Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27:549–559.
64. Austin C, Stewart D, Allwood JW, McDougall GJ Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components. Food Funct 2018, 9:502–510.
65. Umar S, Umar K, Sarwar AH, Khan A, Ahmad N, Ahmad S, Katiyar CK, Husain SA, Khan HA, Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytothérapie 2014, 21:847–856.
66. Ventura LL, Fortes NC, Santiago HC, Caliari MV, Gomes MA, Oliveira DR. Obesity-induced diet leads to weight gain, systemic metabolic alterations, adipose tissue inflammation, hepatic steatosis, and oxidative stress in gerbils (Meriones unguiculatus). Peer J 2017 2;5:e2967.
67. Song M, Um J, Jang H, Lee B. Beneficial effect of dietary Greenway FLV. Stimulation of sympathetic innervation in the upper gastrointestinal tract as a treatment for obesity. Med Hypotheses 2009; 72: 706-710.
68. Fatima S, Ahmad T, Shahid M et al. Comparative study of Kundur (Boswellia serrata) and Tareeq (Diaphoresis) in the management of Samne Mufrit (Obesity) - a randomised clinical trial. Int J Health Sci Res 2017; 7:186-196.
69. Staphila S, Ahmad T, Shahid M et al. Comparative study of Kundur (Boswellia serrata) and Tareeq (Diaphoresis) in the management of Samne Mufrit (Obesity) - a randomised clinical trial. Int J Health Sci Res 2017; 7:186-196.