Original Article

Comparison of Reverse Transcription Loop-Mediated Isothermal Amplification Method with SYBR Green Real-Time RT-PCR and Direct Fluorescent Antibody Test for Diagnosis of Rabies

Elahe Naji¹, Zohreh Fadajan¹, Davoud Afshar², and Maryam Fazeli¹*

¹The National Center for Reference and Research on Rabies, Virology Department, Pasteur Institute of Iran, Tehran; and ²Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, IRAN

SUMMARY: Rabies as an endemic disease in most Asian and African countries, especially in remote areas, and requires a reliable diagnostic method. This study aimed to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid detection of rabies virus RNA in the brain samples, compared to SYBR Green real time RT-PCR test as a molecular technique and direct fluorescent antibody test as a serological method. In this study, RT-LAMP was developed to diagnose rabies. Six primers were designed based on the nucleoprotein (N) of rabies virus. The sensitivity and specificity of SYBR Green real-time RT-PCR and RT-LAMP methods were also determined. RT-LAMP was optimized at 58 °C for 60 min. The sensitivity and specificity of RT-LAMP and SYBR Green real-time RT-PCR were 91.2% and 84.2%, and 94.12% and 88.9%, respectively. The slight difference between the sensitivity and specificity of RT-LAMP and that of SYBR Green Real-Time RT-PCR demonstrated that RT-LAMP could be used as a reliable and cost-effective method for the diagnosis of rabies.

INTRODUCTION

Rabies is one of the fatal infectious diseases causing viral encephalitis in humans. This infection results from the rabies virus that belongs to Lyssavirus genus of the Rhabdoviridae family (1). Most underdeveloped countries have limitations in terms of laboratory facilities for rabies diagnosis. Therefore, without an accurate and useful risk assessment system, rabies will remain under-reported in many regions (2). The early detection of rabies in animals can enhance the prevention and control of the infection, and promote appropriate treatment that can be useful to reach prognosis and preventive care in humans. Laboratory diagnosis of rabies can also help to identify the properties of the infectious agent and its potential sources, particularly in cases with no documented evidence of contact with a rabid animal. Thus, others who have been exposed to the same source of infection can be identified (3, 4). The rapid diagnosis of the infection is essential to determine the adequate time for vaccination in rabies reservoirs. Therefore, the development of faster and more sensitive methods such as nucleic acid-based techniques requires new research (5).

The three main methods recommended by the World Health Organization (6) for the diagnosis of rabies are direct antibody fluorescent (DFA), tissue culture infection test (RTCIT), and mouse inoculation test (MIT) (7). Although the DFA test is considered as the gold standard, there are serious challenges with this method including fresh sample collection without a cold chain and requirement of specialized equipment such as fluorescent microscopes and trained staff (8). In addition, the RTCIT and MIT methods are time-consuming.

SYBR Green real-time RT-PCR has high sensitivity for pre and post-mortem diagnosis of rabies in clinical specimens; however, it relies on expensive equipment. Therefore, rabies diagnosis requires the development of a low-cost method in developing countries. The loop-mediated isothermal amplification (LAMP) method is used to detect various pathogens based on strand displacement by Bst polymerase and the formation of stem-loop structure by four specific primers that can recognize six distinct regions on the target gene sequence. This reaction is performed under isothermal conditions using a water bath or heat blocks for an hour. Since RT-LAMP method emphasizes on cheapness and simplicity (9), it is suitable for detecting the rabies virus in humans and animals in both developing and underdeveloped countries, where it is difficult to perform DFA, RT-PCR, and Real-Time PCR tests (10).

The aim of our study was to detect the RNA of rabies virus in the brain samples using the RT-LAMP method compared to SYBR Green Real-Time RT-PCR test and DFA as a serological method recommended by the WHO.
MATERIALS AND METHODS

Ethical statement: All the brain specimens used in this study were obtained from animals that had died of rabies. These samples had been forwarded to the National Center for Reference and Research on Rabies, Pasteur Institute of Iran for routine diagnostic activities. The center repository has been registered for research purposes in accordance with the license from the Iran Veterinary Organization.

Virus isolates and sample collection: The fixed RABV strain, CVS batch1 (35009_RABV_CVS, accession number LT839616.1), donated by ANSES Nancy, France, (LD50 > 10^-6) was utilized in this study. In addition, 50 specimens of the brain tissue stored at −80 °C in the archive of National Center for Reference and Research on Rabies at Pasteur Institute of Iran over a period of two years (2015–2017) were randomly selected. The result of the rabies test was 34 positive cases (68%) in terms of presence of rabies virus antigen using DFA. A healthy brain sample was considered as a negative control and a brain sample that was positive in DFA as a positive control.

RNA extraction and cDNA synthesis: Total RNAs were extracted using the Trizol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instruction. Total RNA was quantified using a Nanodrop Spectrophotometer (Nanodrop Technologies, CA) according to the manufacturer’s protocol. The fixed virus isolates and sample collection: The fixed RABV strain, CVS batch1 (35009_RABV_CVS, accession number LT839616.1), donated by ANSES Nancy, France, (LD50 > 10^-6) was utilized in this study. In addition, 50 specimens of the brain tissue stored at −80 °C in the archive of National Center for Reference and Research on Rabies at Pasteur Institute of Iran over a period of two years (2015–2017) were randomly selected. The result of the rabies test was 34 positive cases (68%) in terms of presence of rabies virus antigen using DFA. A healthy brain sample was considered as a negative control and a brain sample that was positive in DFA as a positive control.

RT-PCR amplification for controlling RNA extraction process: The quality of the RNA template was assessed by the amplification of the housekeeping gene GAPDH, in each sample using RT-PCR technique. Primer GAPDH_LONG_F1 [forward (5'-ACCACAGTCCATGCCCATC-3')] and GAPDH_LONG_R1 [reverse (5'-TCCACCCCTTGTTGCTGTA-3')] targeting the GAPDH gene were previously described (11) (2008). RT-PCR was performed using 2x EasyTaq PCR SuperMix (+dye) (Yekta Tajhiz Azma, Iran), according to the manufacturer’s protocol. The results were visualized under ultraviolet light using a transilluminator device following 2% agarose gel electrophoresis.

Real-Time RT-PCR: We developed SYBR Green real-time RT-PCR to detect rabies nucleoprotein (N) gene using 5 µl cDNA (template), 10 µl SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA), 0.25 pmol of each primers Taq5long [(forward (5'-TATGAGAAATGGAACAAAYCAYCA-3')) and Taq16revlong [reverse (5'-GAATTTTGAAGAATCATGKGTTCYCA-3')]) and distilled water to a total volume of 20 µl. Amplification was performed using Rotor-Gene Q (Qiagen, Hilden, Germany) instrument under the following conditions: 10 min hot start at 95 °C, 40 cycles of 95 °C for 15 s, 55 °C for 1 min, and 65 °C for 30 s. This was followed by one cycle each of 95 °C for 15 s, 55 °C for 1 min, and 65 °C for 10 min. In addition, analysis of the melting curve was performed to ensure false positive results, such as those due to primer and dimers were not included in any results.

Primer design, RT-LAMP set-up and optimization: We selected three different sets of primers based on the criteria described by Notomi et al (13). The primers were designed using the LAMP primer designing software Primer Explorer V5 (https://primerexplorer.jp/e/). Six primers including two external primers (F3 and B3), two loop primers (LB and LF), and two internal primers (FIP and BIP) (Table1) were designed specifically for the nucleoprotein (N) of rabies virus (35009_RABV_CVS, accession number LT839616.1) (Fig. 1). For optimizing RT-LAMP reaction conditions, the temperature range (56–61 °C), time (15 min, 30 min, 45 min, and 60 min), and template volume (2 µl, 3 µl, and 5 µl) were tested. According to the optimization results, RT-LAMP was carried out in a tube containing 0.2 µM F3 and B3, 1.6 µM FIP and BIP, 0.4 µM FLP and BLP primers, 6 µM MgSO4, 1.4 mM dNTPs, 2.5 µl 10X Bst buffer, 1 µl enzyme mixture containing avian myeloblastosis virus (AMV) reverse transcriptase and Bst DNA polymerase, 2 µl template, and distilled water up to 25 µl final volume.

Sensitivity and specificity of RT-LAMP compared to SYBR Green Real Time RT-PCR: For establishing and validating RT-LAMP method, the results were compared to those of SYBR Green Real-Time RT-PCR as a molecular method for detecting rabies virus. Serial 10-fold dilutions of virus stock solution (10^6 FFU/
Comparative Diagnosis of Rabies

Fig. 1. Locations of the primers used in RT-LAMP based on rabies virus nucleoprotein gene (Accession number of NC_001542.1). The nucleotide sequences of primers are underlined.

Table 2. The results of SYBR Green Real-Time RT-PCR and RT-LAMP tests in comparison with DFA test

Species (Number)	DFA test	Real Time PCR	RT-LAMP
	+	+	+
Dog (24)	18	17	17
Cow (12)	8	8	7
Sheep (4)	2	2	2
Wolf (3)	2	2	2
Jackal (2)	1	1	2
Cat (2)	1	1	1
Goat (1)	0	1	0
Donkey (1)	1	0	1
Horse (1)	1	0	1
Total (50)	34	32	31

Fig. 2. The analytical sensitivity of SYBR Green Real-Time RT-PCR and RT-LAMP methods. Amplification plot (A) and melting curve of Real-Time RT-PCR (B). The results of RT-LAMP was loaded on 2% agarose electrophoresis (C). Lane M, 1000 bp DNA ladder; 1, 10⁴ particles; 2, 10⁵ particles; 3, 10⁶ particles; 4, 10⁷ particles; and 5, 10 particles. The analytical sensitivity of both assays was detected 10⁴ FFU/ml.
ml) were used for RNA extraction and were tested by both RT-LAMP and SYBR Green real-time RT-PCR to determine the detection limits of each assay. The specificity of RT-LAMP assay was evaluated using the DNA extracted from HBV and HSV-1, and the RNA extracted from HCV and HIV isolated from clinical samples.

RESULTS

Optimization of RT-LAMP reaction: Thirty-four rabies DFA positive and 16 rabies negative brain specimens from dog (24, 48%), cow (12, 24%), sheep (4, 8%), wolf (3, 6%), jackal (2, 4%), cat (2, 4%), and goat, donkey, and horse (each of them 1, 2%) were used for RNA extraction (Table 2). In this study, 32 out of 34 DFA positive samples were SYBR Green real-time RT-PCR positive and all of the control samples were negative. In RT-LAMP optimization procedures, the best results were achieved at 58°C for 60 min with 2 µL of the cDNA template.

The sensitivity and specificity of SYBR Green Real Time RT-PCR and RT-LAMP: According to the number of rabies positive and negative specimens (Table 2), the sensitivity and specificity tests were respectively obtained as 94.12% and 88.9%, for SYBR Green real-time RT-PCR, and 91.2% and 84.2% for RT-LAMP.

The analytical sensitivity and specificity of SYBR Green Real Time RT-PCR and RT-LAMP: The viral serial dilution of up to 10^3 FFU/ml could be detected by SYBR Green real-time RT-PCR as well as RT-LAMP (Fig. 2). The RT-LAMP primers amplified only rabies virus RNA; no RT-LAMP products were detected with other organisms (HBV, HSV-1, HCV, and HIV) (Fig. 3). Using the NCBI Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/), we confirmed that the sequences of the rabies virus RT-LAMP and SYBR Green real-time RT-PCR primers were matched with the rabies virus sequences circulating in Iran and some neighboring countries, as deposited in the GenBank database. The sequence similarity of the RT-LAMP and SYBR Green Real-Time RT-PCR primers with one of the sequences deposited in GenBank is shown in Table 3.

DISCUSSION

In this study, RNA samples (n = 50) were successfully extracted from the brain samples of dogs, cows, sheep, wolves, jackals, cats, a goat, a donkey, and a horse over a period of two years (2015–2017) from the archive of National Center for Reference and Research on Rabies at Pasteur Institute of Iran. The results of 34 (68%) samples were positive by the DFA method (Table 2). In our study, RT-LAMP assay showed 91.2% sensitivity.
Table 3. The location and differences of primers based on the conserved region of the N gene sequences of rabies virus genotypes circulating in Iran and some neighboring countries

RT-LAMP Primers

Location	Forward	Reverse
Iran Sheep	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT
Iran Wolf	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT
Iran Jackal	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT
Turkey Dog	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT
Turkey Fox	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT

SYBR Green Real Time RT-PCR Primers

Location	Forward	Reverse
Iran Jackal	TATUGAAATGGAACAAYCAYCA	GATTGTTGAAGAACTCATGKTVTC
Iran Sheep	G	A C
Iran Jackal	TATUGAAATGGAACAAYCAYCA	GATTGTTGAAGAACTCATGKTVTC
Iran Wolf	G	A C
Iran Jackal	TATUGAAATGGAACAAYCAYCA	GATTGTTGAAGAACTCATGKTVTC
Iran Jackal	TATUGAAATGGAACAAYCAYCA	GATTGTTGAAGAACTCATGKTVTC
Turkey Dog	G	A C
Turkey Fox	G	A C
Turkey Fox	G	A C
Turkey Fox	G	A C
Turkey Fox	G	A C
Turkey Fox	G	A C
Turkey Dog	G	A C
Turkey Dog	G	A C
Turkey Dog	G	A C
Turkey Dog	G	A C

Challenge Virus Standard rabies strain (LT839616)

Location	Forward	Reverse
Turkey Cow	C	

Location	Forward	Reverse
Iraq Sheep	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT
Iraq Jackal	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT
Iraq Cow	GAAGAATTCCTCTCCCAGAT	GAAGAATTCCTCTCCCAGAT

Comparative Diagnosis of Rabies
and 84.2% specificity compared to the SYBR Green real-time RT-PCR with 94.12% sensitivity and 88.9% specificity. The obtained results showed a slight difference between the clinical sensitivity and specificity to SYBR Green real-time RT-PCR, which targets the N gene in post-mortem specimens. However, RT-LAMP assay has no need for a thermocycler and expensive reagents for the diagnosis of rabies; therefore, it is more efficient in field studies and deprived areas. This reaction has fewer steps than SYBR Green real-time RT-PCR and DFA, and is therefore, a timesaving method. Moreover, the results of RT-LAMP assay are obtained within 1 h, whereas the other methods last for 2-4 h.

Rabies is prevalent in the populations with limited access to healthcare seen in developing countries. The disease is also grossly underreported in these areas because most victims die at home (14) and most of the suspected cases are not referred to healthcare centers. Animal rabies occurs in a wide variety of species and it has dispersed geographically in Iran. Thus, an accurate and rapid diagnostic method is needed to be used in remote areas. Many suspected rabies cases may not be delivered to diagnostic centers due to a wrong clinical diagnosis, lack of cooperation by livestock owners, and inaccessible delivery facilities (15).

Different methods are available for the diagnosis of rabies among animals including DFA, MIT, RT CIT (rabies tissue culture infection test), direct rapid immunohistochemical test (dRIT), and PCR (16). Some of these methods are time-consuming or require special equipment (17). Recent studies have shown that the sensitivity of PCR is much higher than the diagnostic method based on finding a specific antigen or cell culture (18). However, a qualitative study with real-time PCR can be the most reliable method to identify infectious agents. Some studies showed that molecular-based techniques for rabies identification are easy, fast, and efficient. In other reports, real-time PCR was introduced as a highly sensitive and specific method for rabies diagnosis. Although DFA is the gold standard for detecting rabies virus, some studies reported that real-time PCR has the same sensitivity as DFA (19).

The RT-LAMP assay was initially developed by Notomi et al. (13) and was recently recommended for the diagnosis of diseases at the fields (20, 21). In the present study, we applied and evaluated RT-LAMP assay as a fast, sensitive, specific, and cost-effective method for rapid detection of rabies virus in animal brain samples. RT-LAMP is a simple diagnostic technique with the reaction occurring in a single tube containing target DNA, buffer, Bst DNA polymerase, and primers. This technique has no dependency on the thermocycler, which is expensive equipment. Therefore, a simple thermal procedure is used in performing RT-LAMP assay in a conventional laboratory water bath or heat block that maintains a constant temperature (22).

RT-LAMP assay was optimized with high sensitivity for primers. In our study, the selected range of 56–61 °C temperature in our study was related to the heat-resistant property of Bst polymerase with its maximum activity achieved at the mentioned thermal range. The optimal temperature for the tube containing RT-LAMP reaction mixture was 58 °C, which differed from the result of Boldbaatar et al. (63 °C) (10). This was probably due to the difference in the primer sequences. Suzuki et al. suggested 63–65 °C as the best temperature range for identification of cytomegalovirus (CMV) (23). In addition, Ihira et al. (24) established RT-LAMP assay at 63 °C for the identification of camel smallpox and HHV-6 viruses, respectively. According to some studies on RT-LAMP technique, a range of 55 °C-65 °C was recommended for incubating the mixture tube (25), which is in line with the current study. These results also showed that at least 45 min is required for adequate amplification of the target sequence so that its product can be detected. However, Nagamine et al. suggested that if circular primers are used, RT-LAMP reaction could be performed in 30 min (26). The study by Wang et al. also identified CMV virus at 64 °C in 30 min with RT-LAMP reaction (27).

The optimized RT-LAMP assay had high sensitivity (91.2%) and specificity (84.2%) for rabies virus RNA detection. Our results showed that the percentage of true positive cases is lower than that in the SYBR Green real-time RT-PCR assay. There are several factors, which cause low sensitivity of RT-LAMP compared to the Green real-time RT-PCR assay. The conditions that cause optimum activity of Bst polymerase enzyme may not always be maintained, leading to lower sensitivity and specificity.

In this study, we developed the RT-LAMP diagnostic method using new primers that were designed based on sequences of rabies virus circulating in the Middle East countries. According to the obtained data, like DFA, this method can be used as a rapid and cost-effective alternative method instead of SYBR Green real-time RT-PCR in rabies diagnostic laboratories and epidemiological fields worldwide, especially in developing countries.

Acknowledgments This study was supported by Pasteur Institute of Iran (grant number 1394-850). The authors would like to acknowledge the staffs of the National Center for Reference and Research on Rabies, Pasteur Institute of Iran especially Dr. Rouzbah Bashar (director of the center) and Dr. Behzad Pourhossein for their cooperation and kind supports in this project.

Conflict of interest None to declare.

REFERENCES

1. World Health Organization. WHO expert consultation on rabies: second report. Available at <http://www.who.int/iris/handle/10665/85346>. Accessed July 03, 2013.

2. Fooks A. Rabies remains a ‘neglected disease’. Euro Surveill. 2005;10:211-2.

3. Coertse J, Weyer J, Nel LH, et al. Improved PCR methods for detection of African rabies and rabies-related lyssaviruses. J Clin Microbiol. 2010;48:3949-55.

4. Gadre G, Satischandra P, Mahadevan A, et al. Rabies viral encephalitis: critical determinants in diagnosis with special reference to paralytic form. J Neurol Neurosurg Psychiatry. 2010;81:812-20.

5. Nadin - Davis SA, Sheen M, Wandeler AI. Development of real-time reverse transcriptase polymerase chain reaction methods for human rabies diagnosis. J Med Virol. 2009;81:1484-97.

6. World Health Organization. WHO Expert Consultation on Rabies: first report. Available at <http://www.who.int/iris/handle/10665/45362>. Accessed June 16, 2005.

7. Rupprecht CE, Blass L, Smith K, et al. Human infection due to recombinant vaccinia–rabies glycoprotein virus. N Engl J Med. 2001;345:582-6.
Comparative Diagnosis of Rabies

8. McElhinney LM, Marston DA, Brookes SM, et al. Effects of carcase decomposition on rabies virus infectivity and detection. J Virol Methods. 2014;207:110-3.

9. Muleya W, Namangala B, Mweene A, et al. Molecular epidemiology and a loop-mediated isothermal amplification method for diagnosis of infection with rabies virus in Zambia. Virus Res. 2012;163:160-8.

10. Boldbaatar B, Inoue S, Sugiu N, et al. Rapid detection of rabies virus by reverse transcription loop-mediated isothermal amplification. Jpn J Infect Dis. 2009;62:187-91.

11. Dai X, Sayama K, Tohyama M, et al. The NF-κB, p38 MAPK and STAT1 pathways differentially regulate the dsRNA-mediated innate immune responses of epidermal keratinocytes. Int Immunol. 2008;20:901-9.

12. Dacheux L, Larrous F, Lavenir R, et al. Dual combined real-time reverse transcription polymerase chain reaction assay for the diagnosis of lyssavirus infection. PLoS Negl Trop Dis. 2016;10:e0004812.

13. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63.

14. Hampson K, Coudeville L, Lembo T, et al. Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 2015;9:e0003709.

15. Bourhy H, Dautry-Varsat A, Hotez PJ, et al. Rabies, still neglected after 125 years of vaccination. PLoS Negl Trop Dis. 2010;4:e839.

16. Yousaf MZ, Qasim M, Zia S, et al. Rabies molecular virology, diagnosis, prevention and treatment Virol J. 2012;9:50.

17. Elden LJv, Kraaij MGv, Nijhuis M, et al. Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia. Clin Infect Dis. 2002;34:177-83.

18. Wacharapluesadee S, Sutipanya J, Damrongwatanapokin S, et al. Development of a TaqMan real-time RT-PCR assay for the detection of rabies virus. J Virol Methods. 2008;151:317-20.

19. Sirichaisinthop J, Buates S, Watanabe R, et al. Evaluation of loop-mediated isothermal amplification (LAMP) for malaria diagnosis in a field setting. Am J Trop Med Hyg. 2011;85:594-6.

20. Gandasegui J, Fernández-Soto P, Muro A, et al. A field survey using LAMP assay for detection of Schistosoma mansoni in a low-transmission area of schistosomiasis in Umbaueiro, Brazil: Assessment in human and snail samples. PLoS Negl Trop Dis. 2018;12:e0006314.

21. Pourhossein B, Soleimanjahi H, Behzadian F, et al. Loop-mediated Isothermal Amplification (LAMP) for the rapid diagnosis of herpes simplex virus type 1 (HSV-1). Iran J Virol. 2011;5:1-5.

22. Suzuki R, Yoshikawa T, Ibura M, et al. Development of the loop-mediated isothermal amplification method for rapid detection of cytomegalovirus DNA. J Virol Methods. 2006;132:216-21.

23. Ihira M, Yoshikawa T, Enomoto Y, et al. Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop-mediated isothermal amplification. J Clin Microbiol. 2004;42:140-5.

24. Kobayashi T, Yamaguchi A, Suzuki K, et al. Concurrent reactivation of herpes simplex and varicella zoster viruses confirmed by the loop-mediated isothermal amplification assay. Case Rep Dermatol. 2014;6:5-9.

25. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:223-9.

26. Wang X, Li X, Hu S, et al. Rapid detection of active human cytomegalovirus infection in pregnancy using loop-mediated isothermal amplification. Mol Med Rep. 2015;12:2269-74.