Superfluid Expansion of a Rotating Fermi Gas

C.H. Schunck, M.W. Zwierlein, A. Schirotzek, and W. Ketterle

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,
MIT, Cambridge, MA 02139

(Dated: May 20, 2018)

We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the rotating gas is used to distinguish superfluid and normal parts of the expanding cloud. We find that the superfluid pairs survive during the expansion until the density decreases below a critical value. Our observation of superfluid flow at this point extends the range where fermionic superfluidity has been studied to densities of 1.2×10^{13} cm$^{-3}$, about an order of magnitude lower than any previous study.

PACS numbers: 03.75.Ss, 03.75.Hh, 05.70.Fh

Ultracold atomic gases have been used to create novel quantum many-body systems ranging from Bose-Einstein condensates, Mott insulators in optical lattices, to high-temperature superfluids of strongly interacting fermions. These systems offer a high degree of control over physical parameters including interaction strength and density. Many important features in these gases have a spatial scale too small to be resolved while the gas is trapped. A standard technique to reveal this physics is to switch off the confining potential and release the gas from the trap. A non-interacting gas expands ballistically and the expansion reveals its momentum distribution. The expansion dynamics of an interacting gas is modified by the effect of collisions. This can result in classical hydrodynamic flow and in this case the expansion serves as a (not necessarily linear) magnifying glass for the trapped state. In contrast to classical hydrodynamics, superfluid hydrodynamic flow does not rely on collisions. When a weakly interacting Bose-Einstein-Condensate (BEC) is released from an anisotropic trapping potential, superfluid hydrodynamics leads to an inversion of the aspect ratio, often regarded as a hallmark of Bose-Einstein condensation.

The expansion dynamics of strongly interacting Fermi gases has been the subject of a longstanding debate. For a weakly interacting ultracold Fermi gas anisotropic expansion has been proposed as a probe for superfluidity, analogous to the case of weakly interacting BECs. Anisotropic expansion has been experimentally observed in strongly interacting Fermi gases. In this case, however, the inversion of the aspect ratio can occur due to collisions between the expanding atoms even if they were initially at zero temperature. So far experiments have not been able to discriminate between superfluid and collisional hydrodynamics, and indeed one would expect both effects to contribute: In the BCS-regime, the superfluid transition temperature T_C depends exponentially on the density. Starting at $T < T_C$, the superfluid gas should first expand according to superfluid hydrodynamics. As the density drops, T approaches T_C and superfluidity cannot be maintained. From this point on, the gas should expand according to collisional hydrodynamics or enter a regime intermediate between collisional hydrodynamic and collisionless expansion.

In this paper we study the expansion of a superfluid Fermi gas, in the regime where pairing is purely a many-body effect. We have observed superfluid flow even after 5 ms of expansion, when the cloud size had increased by more than a factor of 4 and the peak density had dropped by a factor of 17 compared to the in-trap values.

Superfluidity in Fermi gases has previously been established through the observation of vortex lattices. To detect vortices in a rotating fermion pair condensate the pairs are transferred into stable molecules by sweeping an external magnetic field across a Feshbach resonance shortly after the gas is released from the trap. Vortices can be observed only when the gas is still a superfluid at the moment of the magnetic field sweep. At the final magnetic field (on the BEC side of the Feshbach resonance) the interactions are much weaker. Therefore the vortex core has higher contrast and is larger than near resonance. If the gas is no longer superfluid at the time of the field ramp, we expect the vortex core to fill in quickly and disappear. The observed vortex cores therefore serve as markers for the regions which are superfluid at the time of the magnetic field ramp.

Our experimental setup has been described earlier. Quantum degenerate fermionic 6Li was prepared in an optical dipole trap after laser cooling and sympathetic cooling by 23Na. An equal spin mixture of the two lowest 6Li hyperfine states was created by a radio-frequency sweep at a magnetic bias field of 885 G. These states, labeled $|1\rangle$ and $|2\rangle$, exhibit a broad Feshbach resonance centered at a magnetic field $B_0 \approx 834$ G. At magnetic fields below (above) B_0, on the BEC (BCS) side, the scattering length a is positive (negative) and a nearby molecular bound state exists (does not exist). A fermion pair condensate containing about 5×10^6 fermion pairs was obtained by evaporatively cooling the spin mixture while ramping the magnetic field to 812 G. Note that at this magnetic field, the bond length of the molecular state is larger than the interatomic spacing, and the fermion pairs are bound by many-body effects. The final radial
FIG. 1: Superfluid expansion of a strongly interacting rotating Fermi gas. Shown are absorption images for different expansion times on the BCS-side of the Feshbach resonance at 910 G (0.0, 1.0, 2.0, 3.0, 3.5, 4.0, and 4.5 ms) and 960 G (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3 ms), before the magnetic field was ramped to the BEC-side for further expansion. The vortices served as markers for the superfluid parts of the cloud. Superfluidity survived the expansion for several milliseconds and was gradually lost from the low density edges of the cloud towards its center. Compared to 910 G \((a = -7200 \ a_0) \) superfluidity decayed faster at 960 G \((a = -5000 \ a_0) \) due to the reduced interaction strength. The total expansion time remained constant \[13\]. The field of view of each image is 1.2 mm \(\times \) 1.2 mm.

and axial trapping frequencies were \(\omega_r = 2\pi \times 120 \ \text{Hz} \) and \(\omega_a = 2\pi \times 23 \ \text{Hz} \), respectively. To observe vortices as a probe of superfluid flow, the gas was set in rotation: two blue-detuned laser beams were rotated symmetrically around the cloud for 1 s at an angular frequency of \(2\pi \times 80 \ \text{Hz} \) \[8\]. We allowed 500 ms of equilibration before the magnetic field was ramped (in 500 ms) to several probe fields on the BCS side of the resonance. Finally, we studied the expansion of the rotating superfluid: The gas was released from the optical trap and expanded at the probe field for a variable “BCS-expansion” time \(t_{\text{BCS}} \). To transfer the remaining fermion pairs into stable molecules the magnetic field was then lowered in 400 \(\mu s \) to 680 G \[12\]. Here, the cloud was given several milliseconds of “BEC-expansion”. For absorption imaging the magnetic field was raised to 730 G in 500 \(\mu s \) before the last 2 ms of time-of-flight. For most of the data the total time-of-flight was chosen to be 11 ms \[12\]. An absorption image of the gas was obtained separately at \(t_{\text{BCS}} \) to determine the peak density and the peak Fermi momenta \(k_F \) before the magnetic field sweep.

Fig. 1 shows absorption images taken as outlined above for seven different BCS-expansion times at both 910 G and 960 G. The presence of vortices proves that superfluid fermion pairs survived in the expanding gas for several milliseconds. As the density of the gas dropped during the BCS-expansion the vortices were gradually lost from the low density edges of the cloud towards its center. After 4.5 ms time-of-flight at 910 G and 3 ms at 960 G all of the vortices had decayed. If we regard the number of vortices as an indicator of the superfluid fraction of the gas, we can draw the “phase diagram” of Fig. 2. Here the

FIG. 2: (color online) “Phase diagram” of an expanding, rotating Fermi gas: At a given magnetic field the number of vortices served as a measure for the size of the superfluid region in the gas. The number of vortices is plotted versus \(1/k_F \) and \(1/|a| \). The contour plot was created from a total of 53 data points. In this diagram lines of constant \(k_F a \) correspond to hyperbolas. The vortices decayed when the density (increasing \(1/k_F \)) or the scattering length (increasing \(1/|a| \)) was reduced. For weaker interactions, at smaller scattering lengths \(|a| \), vortices were lost already at higher densities. The four data points shown mark the breakdown of superfluidity and are the same as those given in Fig. 1 (filled circles).
number of vortices is shown as a function of the inverse scattering length $1/a$ and the inverse peak Fermi momentum $1/k_F$. As $1/k_F$ increases at a given magnetic field, corresponding to the decrease in density during time-of-flight, vortices are lost. The reduction in the number of vortices for decreasing $|a|$ reflects the decrease of the superfluid fraction for smaller attractive interactions at a given temperature. In addition, the increase in the normal fraction leads to higher damping of the remaining vortex number.8 Most importantly, however, we see that vortices are lost earlier in time-of-flight as the interactions are reduced.

At all magnetic fields, we find that the peak interaction strength at the point where all vortices were lost is about constant, $k_F a \sim -0.8$ (see Fig. 3). As shown in Fig. 3, the loss of vortices occurred gradually and the surviving vortices were located within a circle of decreasing radius. We assume that the critical value of $k_F a$ for which superfluidity was lost, was first reached at the edge of the cloud and subsequently further inward. However, we were not able to confirm this picture quantitatively without a model that describes how the shape of the cloud and the bimodality develop during and after the magnetic field sweep.

It is remarkable that the observation of superfluidity and fermion pair condensation for trapped gases has also been limited to values of $k_F |a|$ larger than 1.8 14 17 This suggests that the underlying reason for this limitation is the same for a trapped and an expanding gas. One obvious scenario for the decay of the vortex lattice during expansion is the breakdown of superfluidity when a critical interaction strength is reached. As the density decreases, T_C/T_F drops while T/T_F remains constant (since the phase space density $n \times T^{-3/2}$ is invariant during expansion). Therefore T_C eventually becomes smaller than T everywhere in the cloud and superfluidity is lost. This scenario implies that the superfluid state evolves adiabatically during expansion, which is plausible: Even when the critical $k_F a$ is reached, the pair binding energy still changes at a slower rate, Δ/Δ, than the rate at which the pairs can respond to this change, Δ/\hbar.18 Here $\Delta = (2/e)^{7/3}E_F \exp(-\pi/2k_F |a|)$ is the pairing gap in the BCS limit (valid for $k_F |a| \lesssim 1$).19, where the peak Fermi energy $E_F = \hbar^2 k_F^2/2m$ and k_F are density dependent. When superfluidity is lost, superfluid hydrodynamics is probably replaced by an expansion intermediate between collisional hydrodynamic and collisionless. For weakly interacting BECs, the decay of vortex lattices at finite temperature was studied theoretically in,20 and remarkably similar structures are found.

Another explanation for the loss of vortices is a possible failure of the transfer of correlated fermion pairs into molecules since the size of the fermion pairs increases with decreasing density. When the fermion pair size becomes larger than the interparticle spacing, molecules might be formed out of uncorrelated nearest neighbors rather than out of correlated pairs. The magnetic field sweep then destroys the coherent many-body wavefunction.

Vortices,8 14 and bimodal density distributions16 17 have been used as indicators for superfluidity and pair condensation, respectively. If a fermion pair condensate is transferred to the BEC side before its interaction energy has been converted into kinetic energy, it continues to expand with the drastically reduced mean-
field energy of a molecular BEC at 680 G. This results in a clear separation of condensate and thermal cloud after further BEC-expansion. If the transfer of fermion pairs into molecules is delayed after releasing the gas from the trap, the fermion pair condensate initially expands just like the normal part of the cloud. This eventually leads to a loss of bimodality in the density profiles after the transfer.

We can now study how the two indicators, vortices and bimodality, are related in this experiment. For short BCS-expansion t_{BCS} our data showed bimodality as well as vortices. However, the bimodality was gradually lost and could not be discerned after a longer BCS-expansion although vortices were still visible (see Fig. 4 for details). The absence of bimodality therefore does not indicate a breakdown of superfluidity.

So far we have studied the expansion of the gas on the BCS side of the Feshbach resonance. On the BEC side and on resonance, T_C is proportional to T_F so that T/T_C is constant during expansion. Therefore, one would not expect to observe a breakdown of superfluidity in expansion. Fig. 5 shows absorption images that were obtained after an initial expansion of the cloud on resonance at 834 G. In contrast to the situation on the BCS-side of the resonance no vortices were lost. Instead, the vortex contrast decreased uniformly across the cloud for longer expansion times. Vortices have been detected at total densities as low as $1.2 \times 10^{11} \text{ cm}^{-3}$ in the wings of the expanded cloud. Here the critical temperature T_C of approximately 0.2 T_F was below 20 nK ($k_B T_F$ is the local Fermi energy). We believe that the reduction in the vortex contrast is due to the low density of the gas after long BCS-expansion: after the magnetic field sweep the vortex cores cannot adjust quickly enough to the high contrast and large size they would have in equilibrium on the BEC-side. This loss of contrast limited our study of the breakdown of superfluidity to magnetic fields above 880 G.

In conclusion we have shown that superfluid pairs can survive during the expansion of a strongly interacting Fermi gas. This is the first observation of non-equilibrium superfluid flow in such systems. It has allowed us to observe fermionic superfluidity at total densities as low as $1.2 \times 10^{11} \text{ cm}^{-3}$. An intriguing question for future studies is whether fermion pairs expanding from two clouds can coherently interfere.

We thank Gretchen Campbell for a critical reading of the manuscript. This work was supported by the NSF, ONR, and NASA.

[1] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn (IOS Press, Amsterdam, 1999), pp. 67–176.
[2] C. Menotti, P. Pedri, and S. Stringari, Phys. Rev. Lett. 89, 250402 (2002).
[3] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Science 308, 2179 (2002).
[4] C. A. Regal and D. S. Jin, Phys. Rev. Lett. 90, 230404 (2003).
[5] T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003).
[6] S. Gupta, Z. Hadzibabic, J. R. Anglin, and W. Ketterle, Phys. Rev. Lett. 92, 100401 (2004).
[7] B. Jackson, P. Pedri, and S. Stringari, Europhys. Lett. 67, 524 (2004).
[8] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Nature 435, 1047 (2005).
[9] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006).
[10] The sweep time is much faster than the formation time of a vortex lattice in the trap, which is several hundred milliseconds. Detection of vortices after the ramp therefore proves their presence before the ramp [8].
[11] Z. Hadzibabic et al., Phys. Rev. Lett. 91, 160401 (2003).
[12] The ramp time was 200 µs for the data taken at 834, 865 and 885 G. We have checked that the rate of the magnetic field sweep to 680 G had no influence on the number of observed vortices within our measurement accuracy.
[13] To increase the visibility of the vortices for $t_{\text{BCS}} = 0$ and 500 µs the total time-of-flight was increased to up to 15 ms and/or the power of the optical trap was increased by a factor of 4.5 during the last 2 ms of trapping [8].
[14] A. Bulgac, J. E. Drut, and P. Magierski, Phys. Rev. Lett. 96, 090404 (2006).
[15] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, Phys. Rev. Lett. 96, 160402 (2006).
[16] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004).
[17] M. W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004).
[18] We find \(\frac{\hbar}{\Delta^2} = \frac{\hbar}{\Delta} \times \left(\frac{2}{3} + \frac{\omega}{\omega_F |a|} \right) \). Since the gas expands to a very good approximation only radially, we assume that the density varies as \(n(t) = n_0 / (1 + \omega^2 t^2) \), and obtain \(\frac{\hbar}{\Delta^2} = \frac{\hbar}{\Delta} \times \left(\frac{2}{3} + \frac{\omega}{\omega_F |a|} \right) \). For the experimental parameters when the vortices in the center of the cloud are lost we find that \(\hbar \Delta / \Delta^2 \leq 0.4 \).

[19] L. P. Gor’kov and T. K. Melik-Barkhudarov, Sov. Phys. JETP \textbf{13}, 1018 (1961).
[20] S. Kragset, E. Babaev, and A. Sudbo, preprint, cond-mat/0604416.