Addressing the growing opioid and heroin abuse epidemic: a call for medical school curricula

Madison C. Ratycz, Thomas J. Papadimos, and Allison A. Vanderbilt

ABSTRACT

Substance abuse is a growing public health concern in the USA (US), especially now that the US faces a national drug overdose epidemic. Over the past decade, the number of drug overdose deaths has rapidly grown, largely driven by increases in prescription opioid-related overdoses. In recent years, increased heroin and illicitly manufactured fentanyl overdoses have substantially contributed to the rise of overdose deaths. Given the role of physicians in interacting with patients who are at risk for or currently abusing opioids and heroin, it is essential that physicians are aware of this issue and know how to respond. Unfortunately, medical school curricula do not devote substantial time to addiction education and many physicians lack knowledge regarding assessment and management of opioid addiction. While some schools have modified curricula to include content related to opioid prescription techniques and pain management, an added emphasis about the growing role of heroin and fentanyl is needed to adequately address the epidemic. By adapting curricula to address the rising opioid and heroin epidemic, medical schools have the potential to ensure that our future physicians can effectively recognize the signs, symptoms, and risks of opioid/heroin abuse and improve patient outcomes. This article proposes ways to include heroin and fentanyl education into medical school curricula and highlights the potential of simulation-based medical education to enable students to develop the skillset and emotional intelligence necessary to work with patients struggling with opioid and heroin addiction. This will result in future doctors who are better prepared to both prevent and recognize opioid and heroin addiction in patients, an important step in helping reduce the number of addicted patients and address the drug overdose epidemic.

FEATURE ARTICLE

CONTACT

Madison C. Ratycz

madison.ratycz@rockets.utoledo.edu

Medical Student, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA

ARTICLE HISTORY

Received 1 August 2017
Accepted 10 April 2018

KEYWORDS

Medical education; LCME; opioid; heroin; curriculum

ABSTRACT

Substance abuse is a growing public health concern in the USA (US), especially now that the US faces a national drug overdose epidemic. Over the past decade, the number of drug overdose deaths has rapidly grown, largely driven by increases in prescription opioid-related overdoses. In recent years, increased heroin and illicitly manufactured fentanyl overdoses have substantially contributed to the rise of overdose deaths. Given the role of physicians in interacting with patients who are at risk for or currently abusing opioids and heroin, it is essential that physicians are aware of this issue and know how to respond. Unfortunately, medical school curricula do not devote substantial time to addiction education and many physicians lack knowledge regarding assessment and management of opioid addiction. While some schools have modified curricula to include content related to opioid prescription techniques and pain management, an added emphasis about the growing role of heroin and fentanyl is needed to adequately address the epidemic. By adapting curricula to address the rising opioid and heroin epidemic, medical schools have the potential to ensure that our future physicians can effectively recognize the signs, symptoms, and risks of opioid/heroin abuse and improve patient outcomes. This article proposes ways to include heroin and fentanyl education into medical school curricula and highlights the potential of simulation-based medical education to enable students to develop the skillset and emotional intelligence necessary to work with patients struggling with opioid and heroin addiction. This will result in future doctors who are better prepared to both prevent and recognize opioid and heroin addiction in patients, an important step in helping reduce the number of addicted patients and address the drug overdose epidemic.

In recent years, heroin and synthetic opioids in particular have contributed to the increased overdose rates [1,4]. In 2015, approximately 591,000 people had a heroin-use disorder in particular [6]. A heroin-use disorder is defined as an individual who uses heroin for potential drug-related euphoria, abuses heroin, or is physically dependent on heroin and struggles to stop using it. From 2010 to 2016, the number of heroin-related overdose deaths increased by 20% from 2015 to 2016 alone [7]. One factor that may account for the sharp increase in the number of heroin users is the potential association between prescription opioid misuse and heroin use [7], as roughly 80% of heroin users report first abusing prescription opioids [8]. Possible reasons for this association include the increased availability and lower cost of heroin, making it easier to obtain [7, 9–12]. Similar to increased rates of heroin overdose, rates of overdoses from synthetic opioids (excluding methadone) increased by 88% between 2013 and 2016 [2]. This significant increase seems to be primarily the result of illicitly manufactured fentanyl [13,14], which is commonly mixed into batches of heroin [15]. This is concerning given that fentanyl is 50–100 times more potent than morphine [16].

The issue of heroin and fentanyl abuse is a national public health crisis that needs to be addressed in order to counteract the devastating effects it has across the country, ranging from high numbers of overdose deaths and increasing incidences of medical conditions associated with

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
inhalation, the use of prescription opioids for pain management, is essential to consider if patients are at risk for drug-seeking behavior, the differential diagnoses, and potential misuse of medication. Finally, when physicians screen for addiction, the patient history is one of the most critical aspects for identifying addictive behavior.

Given the role of physicians in dealing with patients at risk for abuse or patients who are abusing opioids/heroin, it is of utmost importance that physicians are aware of this issue and know how to respond appropriately. Many physicians lack knowledge regarding the identification, assessment, and treatment of opioid addiction [21,22]. Increased awareness and education among physicians will enable them to identify patients at risk for substance abuse and overdose and manage patient care more effectively. Unfortunately, a report from 2012 indicated that medical school curricula do not adequately cover or spend substantial time covering addiction medicine and that most doctors fail to identify or treat patients with substance abuse problems [23–25].

Recognizing the growing importance of medical school curricula in effectively addressing the national drug overdose issue, the Association of American Medical Colleges created a statement that 74 medical schools signed in order to demonstrate their willingness toward better incorporating opioid-related topics in their training of medical students [26,27]. An AAMCNEWS article highlighted that many of these schools have developed ways to integrate such education into their curriculum [27]. For example, the University of Central Florida has implemented a module that educates students on topics related to pain management and opioid dependency and subsequently has students implement this new knowledge by developing treatment plans for patient cases that successfully prevent addiction development [27,28]. Another example is how Boston University, Harvard University, Tufts University, and University of Massachusetts medical schools now have a list of opioid-related competencies they must meet, which were developed by the governor of Boston [27,29]. The Liaison Committee on Medical Education (LCME) reports show that 136/141 medical schools had curriculum content on substance abuse and pain management in 2015 [30].

While progress has certainly been made in adapting curricula to include opioid-related components, there is still more to be done. As the nature of the prescription opioid epidemic changes and heroin and fentanyl take a more central role, they should have more focus in related curriculum as well. While many schools have adapted curriculum to focus on opioid prescription and pain management, for schools that have not yet done so, curriculum should be further enhanced by adding more material and competencies related to the shift from prescription opioids to heroin and fentanyl, as well as how to treat such addictions in order to prevent future overdoses. Due to the alarming increase in heroin use and overdose, coupled with the transition from opioid misuse to heroin use and increased fentanyl added to heroin, a heightened focus on heroin education is needed to adequately prepare medical students for dealing with issues of heroin abuse, dependence, and overdose in the future.

Medical education: opioids and heroin

The national scope of the opioid and heroin epidemic has reached a crisis among the healthcare community. In order to better prepare our future physicians, it is essential that they learn how to (1) identify patients at risk (2), recognize signs and symptoms of opioid and heroin abuse (3), follow proper opioid prescription guidelines, and (4) identify systems-based practice for referral of patients who are addicted. Therefore, when our graduates from medical schools are residents and future attending physicians, they will be prepared to effectively and efficiently respond to all situations, manage care, and prevent overdoses in the near future.

With incorporation of the opioid and heroin epidemic during medical education, the following critical aspect of curricula can be addressed: standard 7 of the National Competencies for Medical Education.

An article in the AAMCNEWS highlighted that many of these schools have developed ways to integrate such education into their curriculum [27]. For example, the University of Central Florida has implemented a module that educates students on topics related to pain management and opioid dependency and subsequently has students implement this new knowledge by developing treatment plans for patient cases that successfully prevent addiction development [27,28]. Another example is how Boston University, Harvard University, Tufts University, and University of Massachusetts medical schools now have a list of opioid-related competencies they must meet, which were developed by the governor of Boston [27,29]. The Liaison Committee on Medical Education (LCME) reports show that 136/141 medical schools had curriculum content on substance abuse and pain management in 2015 [30].

While progress has certainly been made in adapting curricula to include opioid-related components, there is still more to be done. As the nature of the prescription opioid epidemic changes and heroin and fentanyl take a more central role, they should have more focus in related curriculum as well. While many schools have adapted curriculum to focus on opioid prescription and pain management, for schools that have not yet done so, curriculum should be further enhanced by adding more material and competencies related to the shift from prescription opioids to heroin and fentanyl, as well as how to treat such addictions in order to prevent future overdoses. Due to the alarming increase in heroin use and overdose, coupled with the transition from opioid misuse to heroin use and increased fentanyl added to heroin, a heightened focus on heroin education is needed to adequately prepare medical students for dealing with issues of heroin abuse, dependence, and overdose in the future.

Medical education: opioids and heroin

The national scope of the opioid and heroin epidemic has reached a crisis among the healthcare community. In order to better prepare our future physicians, it is essential that they learn how to (1) identify patients at risk (2), recognize signs and symptoms of opioid and heroin abuse (3), follow proper opioid prescription guidelines, and (4) identify systems-based practice for referral of patients who are addicted. Therefore, when our graduates from medical schools are residents and future attending physicians, they will be prepared to effectively and efficiently respond to all situations, manage care, and prevent overdoses in the near future.

With incorporation of the opioid and heroin epidemic during medical education, the following critical aspect of curricula can be addressed: standard 7 of the National Competencies for Medical Education.

An article in the AAMCNEWS highlighted that many of these schools have developed ways to integrate such education into their curriculum [27]. For example, the University of Central Florida has implemented a module that educates students on topics related to pain management and opioid dependency and subsequently has students implement this new knowledge by developing treatment plans for patient cases that successfully prevent addiction development [27,28]. Another example is how Boston University, Harvard University, Tufts University, and University of Massachusetts medical schools now have a list of opioid-related competencies they must meet, which were developed by the governor of Boston [27,29]. The Liaison Committee on Medical Education (LCME) reports show that 136/141 medical schools had curriculum content on substance abuse and pain management in 2015 [30].

While progress has certainly been made in adapting curricula to include opioid-related components, there is still more to be done. As the nature of the prescription opioid epidemic changes and heroin and fentanyl take a more central role, they should have more focus in related curriculum as well. While many schools have adapted curriculum to focus on opioid prescription and pain management, for schools that have not yet done so, curriculum should be further enhanced by adding more material and competencies related to the shift from prescription opioids to heroin and fentanyl, as well as how to treat such addictions in order to prevent future overdoses. Due to the alarming increase in heroin use and overdose, coupled with the transition from opioid misuse to heroin use and increased fentanyl added to heroin, a heightened focus on heroin education is needed to adequately prepare medical students for dealing with issues of heroin abuse, dependence, and overdose in the future.
include information about proper Naloxone administration. Students should also receive information regarding the role of fentanyl in heroin overdoses and be advised that reversing a fentanyl-related overdose requires Naloxone within a shorter amount of time and possibly additional doses [32].

Over prescription of opioids is one factor often cited as contributing to the rise of the opioid epidemic [33,34]. In response, there have been national and statewide changes in regulation guidelines for opioid prescribing [33]. Given the necessity of both prescribing pain medication and understanding how to do so safely, medical school curricula related to opioids should also include appropriate instruction regarding safe prescribing practices. This is not only important to prevent over prescription of opioids but also to prevent the growing concern of under prescribing pain medications as well [35]. A better understanding of current regulations and prescribing practices can minimize students’ hesitancy to prescribe opioids in the future and promote safe management of pain.

Given the gaps in physician expertise to treat substance abusing patients [23–25], it will benefit medical students to be exposed to different treatment methods for opioid and heroin abuse early in their careers. Application of this education can be achieved through simulation-based training with a focus on opioids and heroin.

Simulation-based training: opioids and heroin

Over the past 20 years, simulation-based medical education (SBME) has become a frequently used asset in undergraduate medical education [36]. The benefits of SBME are well known, but most importantly, is its ability to provide medical students with repeatable clinical experiences that avoid patient harm [37]. Moreover, studies show that when training medical students on proper critical assessment and management of critically ill patients, students trained via an SBME method outperform students trained via a didactic lecture or problem-based learning method [38,39]. SBME has also been shown to enhance retention of training information compared to lectures [40]. While changing all aspects of medical curricula is important for preparing students to address the heroin and fentanyl crisis, simulation is a necessary component to ensure students are as best prepared as possible.

Creating scenarios for training through the use of SBME is expanding and may hold great advantages in training medical students in future interactions during the current national and international epidemic of heroin (and other opioids). This epidemic has become a Public Health Emergency of International Concern (PHEIC) and requires serious training, awareness, and engagement. SBME allows the use of partial task trainers, standardized patients, and virtual patients, all potentially incorporated into high-fidelity simulations [41]. SMBE involves cognitive and psychomotor skills that are not only confined to hand-eye coordination, the use of naloxone, securing airways, and cardiovascular resuscitation but may also be applied to social interactions with patients and their families. Instructors, or creators, of simulation scenarios must understand the topic/choice under examination that is intended for medical simulation and have a strategy for scenario development [42]. Such an approach that incorporates a psychosocial component, in effect, deploys the important concept of emotional intelligence (EI) in the interdiction of this PHEIC, where students and others learn to manage their emotions, those of others, and become acutely aware of the surroundings and environments in which they are interacting (and the consequences of their interactions) [43–45]. In this way, EI scenarios are created that assist learners in building confidence through skills and knowledge. Instructors should never overlook the fact that multidisciplinary approaches to scenario developments are extremely important [46]. Cooperation, collaboration, and interprofessionalism go hand in hand.

Students must become cognizant of facts pertaining to the individual patient, familial factors, occupational factors, and economic factors that are related to heroin addiction and relapse [47]. Such learning tasks can be effectively accomplished through SBME [48,49]. Simulation technology has reached the point where biomonitoring through galvanic skin sensors with heart rate reporting, electroencephalograms, and respiratory rates can be summarized in algorithms as levels of stress, cognitive workload, and learning [50]. This will assist with our ability to evaluate and assess learner knowledge and performance in various complex and stressful scenarios. The advantage of developing such technology is that biomonitoring and its relation to learning and cognitive load can now be accomplished through wearable wrist sensors. While this technological approach is very effective for the evaluation of learners in EI scenarios, the wearable wrist/digital technology is now being adopted and transitioned from the learner to the recovering addict leaving rehabilitation [51]. If consent is received from the individual, parties interested in the recovering addict’s wellbeing (family and health professionals) may monitor the individual’s physiological status (and even social inputs) with a built-in alerting ability linked to health professionals and emergency medical services (this is done through feed forward-back propagating neural networks where indicators can be converted into measurable outputs through development of a machine learning-based approach) [50]. Therefore, stress and learning, in addition to cognitive workload, can be assessed and applied, not only to the learner but also the recovering addict who has graduated from a rehabilitation program. In regard to the heroin PHEIC, SBME scenarios that make future physicians and allied health professionals aware of the
predictors, situations, and reasons for relapse are extremely important and may impact patient, social, and economic outcomes [47,52–57].

Conclusion

Physicians play an essential role in addressing the public health crisis of increased overdoses across the nation. Doctors have the ability based on their interactions with patients to potentially identify who may be at risk for or who is currently suffering from an opioid or heroin addiction. Unfortunately, many physicians feel ill-prepared and lack the knowledge and expertise to effectively identify, assess, and treat opioid and heroin addiction in their patients. Adapting medical school curricula is one essential way to address this knowledge gap. With the inclusion of topics related to opioid and heroin addiction and overdose in curriculum, medical schools have the potential to educate medical students early in their careers about the pressing opioid and heroin epidemic and adequately prepare students to identify and address issues of opioid and heroin abuse in their future careers. Moreover, using SBME can further enhance the training of medical students, providing them with simulated opportunities to develop and enhance both their skillset and EI, thereby enabling them to manage opioid and heroin addiction or overdose in future patient encounters. This is important for not only limiting the number of patients who are suffering from opioid and heroin addiction and improving patient outcomes but also to save lives by preventing overdose and relapse. Incorporating opioid and heroin addiction topics into medical school curriculum and SBME will enable medical schools to train our future physicians to be capable of preventing and recognizing opioid and heroin addiction, a crucial component in addressing the rising opioid and heroin epidemic across America.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Allison A. Vanderbilt http://orcid.org/0000-0002-9758-7180

References

[1] Rudd RA, Aleshire N, Zibbell JE, et al. Increases in drug and opioid overdose deaths—USA, 2000–2014. MMWR Morb Mortal Wkly Rep. 2016;64(50):1378–1382.
[2] Hedegaard H, Warner M,Minino AM. Drug overdose deaths in the USA, 1999–2016 [Internet]. National Center for Health Statistics. 2017 [cited 2018 Apr 1]. NCHS data brief, no 294. Available from: https://www.cdc.gov/nchs/data/db294.pdf.
[3] Drug Enforcement Administration. 2016 national drug threat assessment summary [Internet]. Washington (DC): US Department of Justice, Drug Enforcement Administration; 2016. [cited 2017 Jul 20]. DEA-DCT-DIR-001-17. Available from: https://www.dea.gov/divisions/hq/2016/hq062716_attach.pdf.
[4] Rudd RA, Seth P, David F, et al. Increases in drug and opioid-involved overdose deaths—USA, 2010–2015. MMWR Morb Mortal Wkly Rep. 2016;65:1445–1452.
[5] Centers for Disease Control and Prevention. Opioid overdose – drug overdose death data [Internet]. Centers for Disease Control and Prevention. 2017 [cited 2018 Apr 1]. Available from: https://www.cdc.gov/drugoverdose/data/statdeaths.html.
[6] Center for Behavioral Health Statistics and Quality. Key substance use and mental health indicators in the USA: results from the 2015 national survey on drug use and health (HHS Publication No. SMA 16-4984, NSDUH Series H-51) [Internet]. 2016 [cited 2017 Jun 22]. Available from: https://www.samhsa.gov/samhsa-data-outcomes-quality/major-data-collections/reports-detailed-tables-2015-NSDUH.
[7] Centers for Disease Control and Prevention. Opioid overdose – heroin overdose data [Internet]. Centers for Disease Control and Prevention. 2017 [cited 2018 Apr 1]. Available from: https://www.cdc.gov/drugoverdose/data/heroin.html.
[8] Muhuri PK, Gfroerer JC, Davies CM. Associations of nonmedical pain reliever use and initiation of heroin use in the USA [Internet]. CBHSQ Data Rev. 2013 [cited 2017 Jun 23]. Available from: https://www.datafiles.samhsa.gov/study-publication/associations-nonmedical-pain-reliever-use-and-initiation-heroin-use-united-states.
[9] Cicero TJ, Ellis MS, Surratt HL, et al. The changing face of heroin use in the USA: a retrospective analysis of the past 50 years. JAMA Psychiatry. 2014;71(7):821–826.
[10] Siegal HA, Carlson RG, Kenne DR, et al. Probable relationship between opioid abuse and heroin use. Am Fam Physician. 2003;67(5):942–945.
[11] Cicero TJ, Ellis MS, Surratt HL, et al. Effect of abuse-deterrent formulation of oxycodone. N Engl J M. 2012;367(2):187–189.
[12] Compton WM, Jones CM, Baldwin GT. Relationship between nonmedical prescription-opioid use and heroin use. N Engl J Med. 2016;374(2):154–163.
[13] Peterson AB, Gladden RM, Delcher C, et al. Increases in fentanyl-related overdose deaths — Florida and Ohio, 2013–2015. MMWR Morb Mortal Wkly Rep. 2016;65(33):844–849.
[14] Gladden RM, Martinez P, Seth P. Fentanyl law enforcement submissions and increases in synthetic-opioid-involved overdose deaths – 27 States, 2013-2014. MMWR Morb Mortal Wkly Rep. 2016;65:837–843.
[15] Drug Enforcement Administration. National heroin threat assessment summary – updated [Internet]. Washington (DC): US Department of Justice, Drug Enforcement Administration; 2016. [cited 2017 Jul 20]. DEA-DCT-DIR-031-16. Available from: https://www.dea.gov/divisions/hq/2016/hq062716_attach.pdf.
[16] Centers for Disease Control and Prevention. Increases in fentanyl drug confiscations and fentanyl-related overdose fatalities [Internet]. CDC Health Alert Network; 2015. [cited 2017 Jul 20]. CDCCHAN-00384. Available from: https://emergency.cdc.gov/han/han00384.asp.
[17] Peters PJ, Pontones P, Hoover KW, et al. HIV infection linked to injection use of oxymorphone in Indiana, 2014–2015. N Engl J Med. 2016;375(3):229–239.

[18] Zibbell JE, Iqbal K, Patel RG, et al. Increases in hepatitis C virus infection related to injection drug use among persons aged ≤ 30 years-Kentucky, Tennessee, Virginia, and West Virginia, 2006-2012. MMWR Morb Mortal Wkly Rep. 2015;64(17):453–458.

[19] Laderman M, Martin L. Health care providers must act now to address the prescription opioid crisis [Internet]. NEJM Catalyst. Institute for Healthcare Improvement; 2017. [cited 2017 Jun 22]. Available from: http://catalyst.nejm.org/act-now-prescription-opioid-crisis/

[20] Kolodny A, Courtwright DT, Hwang CS, et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu Rev Public Health. 2015;36:559–574.

[21] Gordon AJ, Harding JD. From education to practice: addressing opioid misuse through health care provider training: A special issue of substance abuse journal. Subst Abuse. 2017;38(2):119–121.

[22] Binswanger IA, Gordon AJ. From risk reduction to implementation: addressing the opioid epidemic and continued challenges to our field. Subst Abuse. 2016;37(1):1–3.

[23] CASA Columbia. Addiction medicine: closing the gap between science and practice [Internet]. New York (NY): The National Center on Addiction and Substance Abuse (CASA) at Columbia University; 2012 [cited 2017 Jul 16]. Available from: https://www.centeronaddiction.org/addiction-research/reports/addiction-medicine-closing-gap-between-science-and-practice

[24] Miller NS, Sheppard LM, Magnen J. Barriers to improving education and training in addiction medicine. Psychiatr Ann. 2001;31(11):649–656.

[25] CASA Columbia. Missed opportunity: national survey of primary care physicians and patients on substance abuse [Internet]. New York (NY): The National Center on Addiction and Substance Abuse (CASA) at Columbia University; 2000 [cited 2017 Jul 14]. Available from: https://www.centeronaddiction.org/addiction-research/reports/national-survey-primary-care-physicians-patients-substance-abuse

[26] Association of American Medical Colleges. AAMC statement on addressing the opioid epidemic [Internet]. [cited 2017 Jun 23]. Available from: https://www.aamc.org/download/457660/data/aamcsstatementonaddressingtheopioidepidemic.pdf

[27] Krisberg K. Medical schools confront opioid crisis with greater focus on pain, addiction education [Internet]. Association of American Medical Colleges. [cited 2017 Jun 23]. Available from: https://www.aamc.org/newsroom/newsreleases/464576/medicalschoolsconfrontopioidcrisis_08042016.html

[28] AAMC Webinar Features Med School’s Opioid Curriculum [Internet]. University of central Florida college of medicine. University of Central Florida College of Medicine. 2017 [cited 2017 Jun 23]. Available from: https://med.ucf.edu/news/aamc-webinar-features-med-schools-opioid-curriculum/

[29] Antman KH, Berman HA, Flotte TR, et al. Developing core competencies for the prevention and management of prescription drug misuse: a medical education collaboration in Massachusetts. Acad Med. 2016;91(10):1348–1351.

[30] Association of American Medical Colleges. Educating future physicians on substance abuse and pain management [Internet]. 2016 [cited 2017 Jul 20]. Available from: https://www.aamc.org/download/453538/data/20160129_educatingfuturephysiciansonsubstanceabuseandpainmanage.pdf

[31] Liaison Committee on Medical Education. Functions and structure of a medical school: standards for accreditation of medical education programs leading to the MD degree [Internet]. Washington (DC): Liaison Committee on Medical Education; 2016 [cited 2017 Jun 26]. Available from: http://lcme.org/publications/

[32] Frank RG, Pollack HA. Addressing the fentanyl threat to public health. N Engl J Med. 2017;376(7):605–607.

[33] Guy GP Jr., Zhang K, Bohm MK, et al. Vital signs: changes in opioid prescribing in the USA, 2006–2015. MMWR Morb Mortal Wkly Rep. 2017;66:697–704.

[34] Rauenzahn S, Fabbro ED. Opioid management of pain: the impact of the prescription opioid abuse epidemic. Curr Opin in Support and Palliat Care. 2014;8(3):273–278.

[35] Garcia AM. State laws regulating prescribing of controlled substances: balancing the public health problems of chronic pain and prescription painkiller abuse and overdose. J Law, Med Ethics. 2013;41:42–45.

[36] Okuda Y, Bryson EO, DeMaria S Jr, et al. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med. 2009;76:330–343.

[37] Ziv A, Wölpe PR, Small SD, et al. Simulation-based medical education: an ethical imperative. Simul Healthc. 2006;1:252–256.

[38] McCoy CE, Menchine M, Anderson C, et al. Prospective randomized crossover study of simulation vs. Didactics for teaching medical students the assessment and management of critically ill patients. J Emerg Med. 2011;40(4):448–455.

[39] Steadman RH, Coates WG, Huang YM, et al. Simulation-based training is superior to problem-based learning for the acquisition of critical assessment and management skills. Crit Care Med. 2006;34(1):151–157.

[40] Maddry JK, Varney SM, Sessions D, et al. A comparison of simulation-based education versus lecture-based instruction for toxicology training in emergency medicine residents. J Med Toxicol. 2014;10(4):364–368.

[41] Lipps JA, Bhandary SP, Meyers LD. The expanding use of simulation for undergraduate preclinical medical education. Int J Acad Med. 2017;3:59–65.

[42] Bhandary SP, Lipps JA, Ramadan ME, et al. Scenario development strategies and process for simulation-based education in anesthesiology. Int J Acad Med. 2017;3:72–77.

[43] Uchino R, Yanagawa F, Weigand B, et al. Focus on emotional intelligence in medical education: from problem awareness to systems-based solutions. Int J Acad Med. 2015;19:9–20.

[44] Papadimos TJ, Sipes AC, Lyaker MR, et al. The importance of emotional intelligence to leadership in an academic health center. Int J Acad Med. 2016;2:57–67.

[45] McKinley SK, Phitayakorn R. Emotional intelligence and simulation. Surg Clin North Am. 2015;95:855–867.

[46] Stroud JM, Jenkins KD, Bhandary SP, et al. Putting the pieces together: the role of multidisciplinary simulation in medical education. Int J Acad Med. 2017;3:104–109.

[47] Afkar A, Resvani SM, Sigaroudi AE. Measurement of factors influencing the relapse of addiction: a factor analysis. Int J Hight Risk Behav Addict. 2016;6:32141 in press. Doi:10.5812/ijhrba.32141
[48] Shin S, Park JH, Kim JH. Effectiveness of patient simulation in nursing education: meta-analysis. Nurse Educ Today. 2015;35:176–182.

[49] Bilotta FF, Werner SM, Bergese SD, et al. Impact and implementation of simulation-based training for safety. Sci World J. 2013. DOI:10.1155/2013/652956

[50] Pappada SM, Papadimos TJ, Lipps SA, et al. Establishing an instrumented training environment for simulation-based training of health care providers: an initial proof of concept. Int J Acad Med. 2016;2 (1):32–40.

[51] Michard F, Gan TJ, Kelet H. Digital innovations and emerging technologies for enhanced recovery programs. Br J Anaesth. 2017;119(1):31–39.

[52] Evren C, Karabulut V, Can Y, et al. Predictors of outcome during a 6-month follow up among heroin dependent patients receiving buprenorphine/naloxone maintenance treatment. Klinik Psikofarmakoloji Buletani. 2014;24:311–322.

[53] Rong C, Jiang HF, Zhang RW, et al. Factors associated with relapse among heroin addicts: evidence from a two-year community-based follow-up study in China. Int J Environ Res Public Health. 2016;13(2):177.

[54] Cox J, Allard R, Maruais E, et al. Predictors of methadone program non-retention for opioid analgesic dependent patients. J Subst Abuse Treat. 2013;44:52–60.

[55] Marcovitz DE, Mchugh RK, Volpe J, et al. Predictors of early dropout in outpatient buprenorphine/naloxone treatment. Am J Addict. 2016;25:472–477.

[56] Naji L, Dennis BB, Bawor M, et al. A prospective study to investigate predictors of relapse among patients with opioid use disorder treated with methadone. Subst Abuse. 2016;10:9–18.

[57] Lions C, Carriere MP, Michel L, et al. Predictors of non-prescribed opioid use after one year of methadone treatment: an attributable-risk approach (ANRS-Methaville trial). Drug Alcohol Depend. 2014;135:1–8.