A subsemigroup of the rook monoid

George Fikioris 1 · Giannis Fikioris 2

Received: 19 November 2021 / Accepted: 20 June 2022 / Published online: 7 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We define a subsemigroup S_n of the rook monoid R_n and investigate its properties. To do this, we represent the nonzero elements of S_n (which are $n \times n$ matrices) via certain triplets of integers, and develop a closed-form expression representing the product of two elements; these tools facilitate straightforward deductions of a great number of properties. For example, we show that S_n consists solely of idempotents and nilpotents, find the numbers of idempotents and nilpotents, compute nilpotency indexes, determine Green’s relations and ideals, and come up with a minimal generating set. Furthermore, we give a necessary and sufficient condition for the jth root of a nonzero element to exist in S_n, show that existence implies uniqueness, and compute the said root explicitly. We also point to several combinatorial aspects; describe a number of subsemigroups of S_n (some of which are familiar from previous studies); and, using rook n-diagrams, graphically interpret many of our results.

Keywords Rook monoid · Symmetric inverse semigroup · Rook n-diagrams · Inverse semigroups · Orthodox semigroups · Combinatorial semigroups

1 Introduction
For $n = 2, 3, 4, \ldots$, the rook monoid R_n, also known as the symmetric inverse semigroup \mathcal{IS}_n, consists of all partial injective transformations of $\{1, 2, \ldots, n\}$. Any such transformation can be represented as an $n \times n$ matrix whose entries are 0 or 1, and with at most one 1 in every row and every column. If we think of the matrix as an $n \times n$
chessboard with rooks placed at the nonzero matrix entries, then no rook attacks any other rook; hence the name rook monoid, coined in 2002 by Solomon [11, 15].

This paper introduces a subsemigroup S_n of R_n and studies its properties (note that the symbol S_n does not denote the permutation group). Our S_n is also a subsemigroup of POI_n, i.e., the set of all partial order-preserving injective transformations [3–5], which is itself a subsemigroup of R_n. Besides S_n, we discuss two closely related semigroups, namely the monoid $M_n = S_n \cup \{1\}$ (where 1 is the monoid identity, represented by the $n \times n$ identity matrix), as well as a semigroup of countably infinite order to be denoted by S_∞.

We refer to a number of well-known properties of R_n. They are summarized in the lemma that follows.

Lemma 1 [6]

- The order of R_n is given by $|R_n| = \sum_{k=0}^n k! (\binom{n}{k})^2$.
- R_n contains 2^n idempotents, namely the diagonal matrices belonging to R_n.
- R_n contains $\sum_{k=1}^n \frac{n!}{k!} (\binom{n-1}{k-1})$ nilpotents.
- R_n is an inverse semigroup, i.e., any $x \in R_n$ has a unique inverse $y \in R_n$. The matrices representing x and y are transposes of one another.
- The element $x \in R_n$ has an inverse in the sense of groups (i.e., there exists a $y \in R_n$ such that $xy = yx = 1$) iff x is a bijection, so that it is represented by a permutation matrix.

Example 1 For $n = 2$, the elements of $R_n = R_2$ can be represented by the following 7 = $|R_2|$ matrices,

\[
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = e, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = f, \\
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = a, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = b
\]

(see Proposition 8 for the meaning of the symbols e, f, a, and b). The group of permutations of $\{1, 2\}$ is represented by the first two matrices in our list, which are permutation matrices and represent the only two elements that have an inverse in the sense of groups. The first matrix in our list—to which we assigned no symbol—is a square root of 1 (jth roots in R_n are discussed in [1, 17]). The next 4 = 2^2 matrices are idempotent, and the last three are nilpotent with indexes 1, 2, and 2, respectively.

In Sect. 11, we use the usual maps—called rook n-diagrams [16]—to give graphical interpretations of some of the properties of M_n and S_n. The rook n-diagram of any element in the rook monoid R_n is a graph with two rows. Each row has n vertices labeled 1, 2, ..., n. The graph’s edges start from the top row and end in the bottom one; an edge from i to j means that the element maps i to j, so that the matrix entry x_{ij} equals 1. Each vertex—whether in the top or bottom row—must belong to at most one edge, with the zero matrix having no edges. See the example in Fig. 1.

In particular, a rook n-diagram corresponds to an element of the submonoid POI_n iff its edges do not intersect, such as the example in Fig. 2.
A subsemigroup of the rook monoid

Fig. 1 Rook n-diagram of an element of R_n. We specifically depict the rook 6-diagram of the matrix of R_6 whose nonzero entries are $x_{12} = x_{31} = x_{44} = x_{63} = 1$.

Fig. 2 When no edges intersect, a rook n-diagram corresponds to an element of POI_n. Here we specifically depict the matrix of POI_6 whose nonzero entries are $x_{12} = x_{33} = x_{54} = x_{66} = 1$.

Concatenation of rook n-diagrams corresponds to multiplication, as we will further discuss (for the case of M_n) in Sect. 11.

2 Notation and conventions

Throughout, $\mathbf{0}$ denotes semigroup zeros and $\mathbf{1}$ denotes monoid identities, as in Example 1. The symbol $|S|$ denotes the order of the semigroup S, i.e., the cardinal number of its set of elements. All our semigroups have at least two elements, so that $\mathbf{0} \neq \mathbf{1}$. A jth root of $x \in S$ is a $y \in S$ such that $x^j = y$ ($j \in \mathbb{N}$). We use \subseteq in place of “is a subsemigroup of.” If $\mathbf{1}$ is the identity of M_b and $\mathbf{1} \in M_a \subseteq M_b$, we say that M_a is a submonoid of M_b (in Sect. 9, we encounter monoid subsemigroups that are not submonoids because the identities differ). The term inverse element has its familiar meaning within the context of semigroups; we also use the term inverse in the sense of groups, which we defined in Lemma 1. In Sect. 7, we use the traditional notations (e.g., [10]) for Green’s relations, associated equivalence classes, and principal ideals.

The elements of our semigroups are matrices whose entries are 0 and 1, called zero and one, respectively. \mathbb{Z} is the set of integers, \mathbb{N} is the set of positive integers, and \mathbb{N}_0 is the set of nonnegative integers. An infinite matrix is one whose entries are $x_{i,j}$ with $i, j \in \mathbb{N}$. We use δ_{ij} ($i, j \in \mathbb{N}_0$) to denote the Kronecker delta. $\lceil x \rceil$ stands for the ceiling of $x \in \mathbb{R}$.

We often assume that elements of isomorphic semigroups coincide. For example, our M_n is a monoid of $n \times n$ matrices. After establishing a multiplication-preserving, one-to-one correspondence between the nonzero matrices of M_n and certain triplets of integers, we make no distinction between a matrix and its representing triplet. As another example, any multiplicative semigroup consisting of $n \times n$ matrices is isomorphic to a semigroup consisting of square matrices whose dimension is larger than n, including infinite matrices: We can regard each $n \times n$ matrix as being a submatrix of the larger one, with the remaining entries of the larger matrix all equal to zero. It is
in this sense that—in Sect. 4—we define M_n as a subsemigroup of a certain semigroup S_∞, whose elements are infinite matrices.

While we discuss M_n and S_n primarily via the aforementioned triplets (not the corresponding matrices), our proof of Theorem 1 makes use of infinite-length row and column vectors whose entries are all 0 except for at most one entry, which equals 1. In the said proof, the relevant notation is as follows. V_q ($q \in \mathbb{N}_0$) is the infinite column vector whose entries V_{qj} are

$$V_{qj} = \delta_{qj}, \quad q \in \mathbb{N}_0, \quad j \in \mathbb{N}$$

and V^T_q is the transpose of V_q. Therefore, V^T_q is an infinite row vector and V_0 and V^T_0 are the infinite zero vectors. Furthermore, the inner product $V^T_q V_p$ is well defined (there is a finite number of nonzero terms, so there are no convergence issues associated with the infinite summation) and is given by

$$V^T_q V_p = \begin{cases} 0, & p = q = 0 \text{ or } p \neq q, \\ 1, & p = q \in \mathbb{N}. \end{cases}$$

Let S be a finite semigroup, let $A \subseteq S$ be a generating set of S, and denote the cardinality of A by $|A|$. A is a minimal generating set (texts such as [6] use irreducible in place of minimal) if no proper subset of A can generate S. The rank of S, denoted throughout by $\text{rank}(S)$, is defined by [7]

$$\text{rank}(S) = \min\{|A| : A \subseteq S \text{ and } A \text{ generates } S\}.$$ (3)

This notation should not be confused with the symbol rnk, used (in Sect. 7 only) for the rank of a partial transformation.

3 Semigroup S_∞ of countably infinite order

The elements x of S_∞ are infinite matrices, see the example in Fig. 3. Element $0 \in S_\infty$ is the zero matrix. The nonzero matrices of S_∞ are those for which

(i) Each matrix entry is zero (0) or one (1).
(ii) There is a finite and nonzero number of ones, with all ones lying on a single diagonal.
(iii) Within this diagonal, the ones form an uninterrupted block, i.e., there is no zero between any two ones.

For any $x \in S_\infty \setminus \{0\}$, let $k \in \mathbb{N}$ be the row of the northwestern one; let $m \in \mathbb{N}$ be the row of the southeastern one; and let $d \in \mathbb{Z}$ be the diagonal on which the ones lie, with $d = 0$ corresponding to the main diagonal, and $d > 0$ ($d < 0$) to diagonals above (below) the main one. Then the matrix entries x_{ij} of x are given by

$$x_{ij} = \begin{cases} 1, & k \leq i \leq m \text{ and } j - i = d, \\ 0, & \text{otherwise}, \end{cases}, \quad i, j \in \mathbb{N}.$$ (4)
Conversely, as long as

\[1 - \min(0, d) \leq k \leq m, \]

we can use a triplet of integers \(d, k, m \) to represent each \(x \in S_\infty \setminus \{0\} \). We do this by letting \(\langle d, k, m \rangle \) stand for the matrix \(x \in S_\infty \setminus \{0\} \) whose entries \(x_{ij} \) are given by (4). We can thus consider the set of elements of \(S_\infty \) to be

\[S_\infty = \{0\} \cup \{\langle d, k, m \rangle : d \in \mathbb{Z}; k, m \in \mathbb{N}; 1 - \min(0, d) \leq k \leq m\}. \ \ (5) \]

Note that the number of ones in the nonzero matrix \(\langle d, k, m \rangle \) is \(m - k + 1 > 0 \).

The operation in \(S_\infty \) is matrix multiplication, which is well-defined (in the sense that there are no convergence issues) and associative. The theorem that follows shows that this operation is also closed in \(S_\infty \) and, whenever the result is nonzero, gives the triplet representing the product.

Theorem 1 \(S_\infty \) is a noncommutative semigroup of countably infinite order with \(x0 = 0x = 0 \) for every \(x \in S_\infty \). The product of any two nonzero elements \(\langle d, k, m \rangle \) and \(\langle d', k', m' \rangle \) is given by

\[
\langle d, k, m \rangle \langle d', k', m' \rangle = \begin{cases}
\langle d'', k'', m'' \rangle, & k'' \leq m'', \\
0, & k'' > m''.
\end{cases} \ \ (6)
\]

in which the parameters \(d'', k'', \) and \(m'' \) are

\[
d'' = d + d', \ \ (7)
\]

\[
k'' = \max(k, k' - d), \ \ (8)
\]

\[
m'' = \min(m, m' - d). \ \ (9)
\]

Irrespective of whether \(k'' \leq m'' \) or not, the parameters \(d'' \) and \(k'' \) satisfy

\[
1 - \min(0, d'') \leq k''. \ \ (10)
\]
Proof The equality \(x \mathbf{0} = \mathbf{0} x = \mathbf{0} \) is obvious. As \(\langle d, k, m \rangle \) and \(\langle d', k', m' \rangle \) both belong to \(S_\infty \setminus \{0\} \), (5) gives

\[
1 - \min(0, d) \leq k \quad \text{and} \quad 1 - \min(0, d') \leq k',
\]

from which it is easy to show (e.g. by distinguishing cases depending on the signs of \(d, d' \), and \(d'' \)) that the \(d'' \) and \(k'' \) defined in (7) and (8) satisfy the similar relation (10).

Each entry \(x_{ij} \) of the matrix \(x = \langle d, k, m \rangle \langle d', k', m' \rangle \) is given by the inner product

\[
x_{ij} = \langle d, k, m \rangle i^* \langle d', k', m' \rangle^* j, \quad i, j \in \mathbb{N},
\]

where \(\langle d, k, m \rangle i^* \) and \(\langle d, k, m \rangle^* j \) denote the \(i \)'th row and \(j \)'th column of \(\langle d, k, m \rangle \), respectively (our notation for rows and columns is reminiscent of the one in [12]). In terms of the vectors \(V_q \) introduced in Sect. 2, it is apparent from (4) that

\[
\langle d, k, m \rangle i^* = \begin{cases} V_0^T, & i < k \text{ or } i > m, \\ V_i^T, & k \leq i \leq m, \end{cases}
\]

and

\[
\langle d', k', m' \rangle^* j = \begin{cases} V_0, & j < k' + d' \text{ or } j > m' + d', \\ V_{j-d'}^T, & k' + d' \leq j \leq m' + d'. \end{cases}
\]

We can thus use (2) to find the inner product in (11). Specifically, (2) and (11)–(13) tell us that \(x_{ij} = 1 \) iff

\[
i + d = j - d' \in \mathbb{N} \quad \text{and} \quad k \leq i \leq m \quad \text{and} \quad k' + d' \leq j \leq m' + d',
\]

while \(x_{ij} = 0 \) in any other case. The set of conditions in (14) is equivalent to

\[
k'' \leq i \leq m'' \quad \text{and} \quad j = i + d'' \quad \text{and} \quad i + d \in \mathbb{N},
\]

where \(d'', k'', \) and \(m'' \) are defined in (7)–(9); further, it is easy to show that the condition \(i + d \in \mathbb{N} \) in (15) is superfluous. We have thus arrived at

\[
x_{ij} = \begin{cases} 1, & k'' \leq i \leq m'' \text{ and } j = i + d'', \\ 0, & \text{otherwise}. \end{cases}
\]

When \(k'' > m'' \), (16) gives \(x_{ij} = 0 \) for all \(i, j \in \mathbb{N} \), so that \(x = \mathbf{0} \) and we have proved the bottom equality in (6). On the other hand, when \(k'' \leq m'' \) we have \(x \neq \mathbf{0} \); furthermore, comparison of (16) and (10) to (4) and (5) gives the top equality, completing our proof of (6) and of closure in \(S_\infty \).

\[\square\]

Let us now use Theorem 1 to verify that \(S_\infty \) is not a monoid.
Proposition 2 The semigroup S_∞ has no 1.

Proof Suppose that $1 = \langle d, k, m \rangle$. Then (7) and $1 \langle d', k', m' \rangle = \langle d', k', m' \rangle$ implies $d = 0$, so that $1 = \langle 0, k, m \rangle$. Thus, by Theorem 1,

$$1 \langle 0, k, m + 1 \rangle = \langle 0, k, m \rangle \langle 0, k, m + 1 \rangle = \langle 0, k, m \rangle,$$

but on the other hand,

$$1 \langle 0, k, m + 1 \rangle = \langle 0, k, m + 1 \rangle,$$

implying the contradiction $m + 1 = m$.

\[\square\]

(It is tempting to say that 1 is the diagonal matrix with all entries equal to 1 but the said matrix does not belong to S_∞ by definition.)

Theorem 1 can yield further properties of S_∞. Our main focus, however, is a similar semigroup M_n of finite order, which we now proceed to deal with.

4 Monoid M_n and semigroup S_n

Although it is possible to discuss M_n directly, we avoid calculations by introducing M_n as a subsemigroup of S_∞. Specifically, for any fixed n with $n = 2, 3, \ldots$ we define

$$M_n = \{0\} \cup \{x \in S_\infty \setminus \{0\} : m \leq n - \max(0, d)\}. \quad (17)$$

Thus M_n can be regarded as a semigroup of $n \times n$ matrices, in the sense explained in Sect. 2; that is to say, any element of M_n is an $n \times n$ submatrix (on the top left) of the infinite matrix in Fig. 3.

For any $x \in M_n \setminus \{0\}$, properties (i)–(iii) of Sect. 3 continue to hold. Any nonzero $x \in M_n$ has matrix entries x_{ij} that are given by (4), but with $i, j \in \{1, 2, \ldots, n\}$, and with the meaning of the integers d, k, m remaining the same. Clearly, M_n is a subsemigroup of the rook monoid R_n.

In terms of triplets, the set of elements of M_n is

$$M_n = \{0\} \cup \{(d, k, m) : d \in \mathbb{Z}; \ k, m \in \mathbb{N}; \ 1 - \min(0, d) \leq k \leq m \leq n - \max(0, d)\}. \quad (18)$$

In addition to $k, m \in \{1, 2, \ldots, n\}$, the restrictions written in (18) imply

$$-(n - 1) \leq d \leq n - 1, \quad (19)$$

for any $(d, k, m) \in M_n \setminus \{0\}$; (19) is the range of the diagonal d, as expected.

The multiplication formula (6) remains unaltered, but M_n is associated with an additional restriction on d'' and m''. Furthermore—and even if the underlying semigroup S_∞ is not a monoid (Proposition 2)—we now have a 1:
Theorem 3 \(M_n \) is a noncommutative monoid with \(1 = \langle 0, 1, n \rangle \). The product of two nonzero monoid elements \(\langle d, k, m \rangle \) and \(\langle d', k', m' \rangle \)—see (18)—is given by

\[
\langle d, k, m \rangle \langle d', k', m' \rangle = \begin{cases}
\langle d'', k'', m'' \rangle, & k'' \leq m'', \\
0, & k'' > m'',
\end{cases}
\]

(20)
in which the parameters \(d'', k'', \) and \(m'' \) are

\[
d'' = d + d',
\]

(21)

\[
k'' = \max(k, k' - d),
\]

(22)

\[
m'' = \min(m, m' - d).
\]

(23)

Irrespective of whether \(k'' \leq m'' \) or not, we have

\[
1 - \min(0, d'') \leq k'' \quad \text{and} \quad m'' \leq n - \max(0, d'').
\]

(24)

Proof As \(\langle d, k, m \rangle \) and \(\langle d', k', m' \rangle \) belong to \(M_n \setminus \{0\} \), (18) gives

\[
m \leq n - \max(0, d) \quad \text{and} \quad m' \leq n - \max(0, d'),
\]

from which it is easy to show (e.g. by distinguishing cases depending on the signs of \(d, d', \) and \(d'' \)) that \(d'' \) and \(m'' \) satisfy the second inequality in (24). Since \(M_n \) is a subsemigroup of \(S_\infty \), (20)–(23) follow immediately from Theorem 1, as does the first inequality in (24). Since \(\langle 0, 1, n \rangle \) represents the \(n \times n \) identity matrix, the equality \(1 = \langle 0, 1, n \rangle \) is obvious. (Alternatively, we can use (20)–(23) and the restrictions in (18) to show that \(x \langle 0, 1, n \rangle = \langle 0, 1, n \rangle x = x \) for every \(x = \langle d, k, m \rangle \in M_n \setminus \{0\} \).) \(\square \)

Remark 1 Since the number of ones in the matrix \(\langle d'', k'', m'' \rangle \) equals \(m'' - k'' + 1 \), the condition \(k'' \leq m'' \) in (20) assures that the length of the block of ones (in any matrix which corresponds to a nonzero product) is positive.

Reformulating the inequality \(k'' \leq m'' \), we obtain alternative conditions for a product to be zero/nonzero.

Corollary 1 Let \(x = \langle d, k, m \rangle \in M_n \setminus \{0\} \) and \(y = \langle d', k', m' \rangle \in M_n \setminus \{0\} \), and let \(d'', k'', \) and \(m'' \) be given by (21)–(23). Then

\[
xy \neq 0 \iff k'' \leq m'' \iff k' - m \leq d \leq m' - k.
\]

(25)

Proof By (22) and (23), the \(k'' \leq m'' \) in (20) is equivalent to the four inequalities

\[
k \leq m \quad \text{and} \quad k \leq m' - d \quad \text{and} \quad k' - d \leq m \quad \text{and} \quad k' - d \leq m' - d.
\]

The first and last of the four were known beforehand from (18). The second and third give the last condition in (25). \(\square \)
A formula for powers, to be used many times in this paper, can be verified using Theorem 3, Remark 1, and induction:

Corollary 2 For \(x = \langle d, k, m \rangle \in M_n \setminus \{0\} \) and \(j \in \mathbb{N} \) we have

\[
x^j = \begin{cases}
\{ d^{(j)}, k^{(j)}, m^{(j)} \}, & \text{if } k^{(j)} \leq m^{(j)}, \\
0, & \text{if } k^{(j)} > m^{(j)}.
\end{cases}
\]

where

\[
d^{(j)} = jd, \quad k^{(j)} = k - (j - 1) \min(0, d), \quad m^{(j)} = m - (j - 1) \max(0, d).
\]

Furthermore, as long as \(x^j \neq 0 \), the number of ones in the matrix representing \(x^j \) equals \(m - k + 1 - (j - 1)|d| \).

The elements of \(M_n \) are idempotent or nilpotent. This is shown in the theorem that follows, which further gives the nilpotency index.

Theorem 4 An element \(\langle d, k, m \rangle \in M_n \setminus \{0\} \) is idempotent if \(d = 0 \) and nilpotent if \(d \neq 0 \). In the latter case, the index \(\ell \) of the nilpotent is given (in terms of \(|d|\) and the number \(m - k + 1 \) of ones in the matrix \(\langle d, k, m \rangle \)) by

\[
\ell = 1 + \left\lceil \frac{m - k + 1}{|d|} \right\rceil,
\]

where \(\lceil x \rceil \) denotes the ceiling of \(x \in \mathbb{R} \). This index satisfies \(2 \leq \ell \leq n \).

Proof For \(d = 0 \) and \(j = 2 \), Corollary 2 gives \(\langle 0, k, m \rangle^2 = \langle 0, k, m \rangle \) so that \(\langle 0, k, m \rangle \) is idempotent. Assume that \(d < 0 \). Then the \(k^{(j)} = k + |d|(j - 1) \) in (27) increases with \(j \) and will thus surpass the constant \(m^{(j)} = m \). By (26), this means that \(\langle 0, k, m \rangle^j = 0 \) for sufficiently large \(j \), so that \(\langle d, k, m \rangle \) is nilpotent. The index \(\ell \), which is the smallest \(j \) for which \(k^{(j)} > m \), is then given by (28). As \(\langle d, k, m \rangle \) is not a diagonal matrix, the numerator and denominator of \(\frac{m - k + 1}{|d|} \) both lie between 1 and \(n - 1 \). Thus \(2 \leq \ell \leq n \). (More generally, the nilpotency index of any nonzero nilpotent \(n \times n \) matrix satisfies this relation, see p. 190 of [8].) The proof for \(d > 0 \) is similar.

As expected, \(\ell \) is independent of \(n \). Eqn. (28) further shows that moving the block of ones along the underlying diagonal leaves the nilpotency index unaltered.

1 is the only permutation matrix in \(M_n \), which is a submonoid of \(R_n \). It thus follows from Lemma 1 that 1 is the only element of \(M_n \) which has an inverse in the sense of groups. We can strengthen this statement by the proposition that follows, which is not true for \(x, y \in R_n \) (but is true for any monoid consisting solely of nilpotents and idempotents).

Proposition 5 Let \(x, y \in M_n \). We have \(xy = 1 \) iff \(x = y = 1 \).
Proof Let $xy = 1$, so that $x \neq 0$. If x is nilpotent with index ℓ, then $\ell \geq 2$, so left-multiplication of $xy = 1$ by $x^{\ell-1}$ gives $x^{\ell}y = x^{\ell-1}$, implying $0 = x^{\ell-1}$ and contradicting the definition of the index. Thus x is not nilpotent. By Theorem 4, x is idempotent, so $xy = 1$ gives $xy = x$. Thus $x = xy = 1$ and $1 = xy = 1y = y$. \hfill \Box

Multiplication is thus closed within $M_n \setminus \{1\}$. Consequently,

Corollary 3 $S_n = M_n \setminus \{1\}$ is a semigroup and is a subsemigroup of R_n.

Let us note that there is some risk of confusion between four closely related entities dealt with herein; namely, the monoid $M_n = S_n \cup \{1\}$, the semigroup $S_n = M_n \setminus \{1\}$, the set $M_n \setminus \{0\}$, and the set $S_n \setminus \{0\}$. While sets (consisting of the elements that can be represented by triplets), the last two entities are not semigroups.

We close this section by providing an example that views a familiar semigroup as a subsemigroup of S_n.

Example 2 Let us specialize our multiplication formula to elements of the set B_n defined by

$$B_n = \{0\} \cup \{\langle d, k, m \rangle \in M_n \setminus \{0\} : m = k\}.$$ (29)

With the aid of Corollary 1 (take $m = k$ and $m' = k'$), we see that (20)–(23) reduce to

$$\langle d, k, k \rangle \langle d', k', k' \rangle = \begin{cases} \langle d + d', k, k' \rangle, & k' = k + d, \\ 0, & \text{otherwise}. \end{cases}$$

Thus multiplication is closed and B_n is a subsemigroup of S_n. Now set $(k, p) = \langle p - k, k, k \rangle$; in this new notation, the multiplication formula becomes

$$(k, p)(k', p') = \begin{cases} (k, p'), & k' = p, \\ 0, & \text{otherwise}. \end{cases}$$ (30)

For $1 \leq k, p \leq n$, the matrix (k, p) is, by definition, the $n \times n$ matrix x with all elements zero except for element x_{kp}, which equals 1. Therefore (30) is self-evident and B_n is the well-known combinatorial, 0-bisimple inverse semigroup associated with Brandt semigroups, see Chapter 3 of [10]. Theorem 4 corroborates that the nonzero elements of B_n are idempotent if $d = 0 (p = k)$ and nilpotent with index $\ell = 2$ if $d \neq 0 (p \neq k)$. We further note that (k, p), which is sometimes called the single-entry matrix, arises in ring theory [10], as well as other applications [14].

5 jth roots

As mentioned in our Introduction, [1] and [17] discuss jth roots in the monoid R_n. In its submonoid M_n, the triplet representation renders the problem of finding roots more straightforward: Firstly, the roots of 0 can be computed via Theorem 4. Secondly,
any nonzero idempotent x has a unique jth root, namely x itself (as all $y \in M_n$ are idempotent or nilpotent, showing uniqueness is trivial). Thirdly, the roots of any nonzero nilpotent x can be found from the theorem that follows (the theorem actually holds for any $x \in M_n$, as long as $x \neq 0$). As it turns out, if a root y of a nonzero x does exist, it is unique.

Theorem 6 Let $j \in \mathbb{N}$ and let $x = \langle d, k, m \rangle \in M_n \setminus \{0\}$. Then a jth root of x exists in M_n iff d is an integer multiple of j. In this case, the jth root is unique in M_n and given by $y = \langle d', k', m' \rangle \in M_n \setminus \{0\}$, where

$$d' = \frac{d}{j}, \quad k' = k + (j - 1) \min(0, d'), \quad m' = m + (j - 1) \max(0, d'). \quad (31)$$

Proof We take $d \geq 0$. Then (18) and $x = \langle d, k, m \rangle \in M_n \setminus \{0\}$ yield

$$1 \leq k \leq m \leq n - d. \quad (32)$$

We seek $y \in M_n$ such that $x = y^j$. Since $y \neq 0$, we can set $y = \langle d', k', m' \rangle \in M_n \setminus \{0\}$. By Corollary 2, y exists iff there exist integers d', k', and m' satisfying

$$d = jd', \quad k = k', \quad m = m' - (j - 1)d', \quad (33)$$

which, because of (18), must also satisfy

$$1 \leq k' \leq m' \leq n - d'. \quad (34)$$

In (33) and (34), we took $d' \geq 0$ because no negative d' can satisfy the first equality (33). If d is not an integer multiple of j, then the first equality (33) cannot be satisfied, so no root y exists. If d is an integer multiple of j, we can uniquely solve (33) for d', k', m'; the solution thus obtained is given by (31) (when (31) is specialized to $d > 0$). Using (32), it is then easy to show that the aforementioned d', k', m' further satisfy (34). Accordingly, in this case there is a unique root y, whose triplet parameters are given by (31). The proof for $d < 0$ is similar. □

Remark 2 For $d = 0$, Theorem 6 recovers the above-stated result for nonzero idempotents. For nonzero nilpotents and for $j \geq 2$, the theorem and (19) (or, alternatively, the inequality $\ell \leq n$ of Theorem 4) imply that a jth root can exist only if $j \leq n - 1$. For example, 0 is the only nilpotent of M_2 that possesses a square root in M_2 (in fact, 0 has three square roots in M_2, namely the nilpotents of M_2, see Example 1 or Proposition 8). Needless to say, Theorem 6 does not pertain to roots in $R_n \setminus M_n$, such as the additional square root of $1 \in M_2$ that we noted in Example 1.

6 Further properties of M_n and S_n

The triplet representation and simple combinatorics allow us to find the number of elements in S_n and M_n. As expected, $|M_n|$ is much smaller than $|R_n|$ (see Lemma 1) when n is large:
Table 1 The Cayley table of S_2

	0	a	b	e	f
0	0	0	0	0	0
a	0	0	e	0	a
b	0	f	0	b	0
e	0	a	0	e	0
f	0	0	b	0	f

The symbols e, f, a, b are those used in Example 1

Proposition 7 The order $|S_n|$ of S_n equals the square pyramidal number (sequence A000330 of the OEIS [13]), while $|M_n| = |S_n| + 1$. In other words,

$$|S_n| = |M_n| - 1 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}. \quad (35)$$

Proof Each nonzero element of M_n uniquely defines the northwest/southeast diagonal of a square and vice versa. Therefore $|S_n| = |M_n| - 1$ equals the number of squares within an $n \times n$ square grid, which is [13] the square pyramidal number written in the right-hand side of (35). Alternatively, (19) and (18) give

$$|M_n| - 1 = \sum_{d=-(n-1)}^{n-1} \sum_{k=1}^{\max(0,d)} \sum_{m=k}^{\min(0,d)} 1,$$

from which (35) follows by direct summation. \hfill \Box

Example 3 For $n = 2$, $M_n = M_2$ consists of all matrices in Example 1 with the exception of the first matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (to which we assigned no symbol), so that $|M_2| = 6$ and $|S_2| = 5$, as given by (35).

The semigroup S_2 has in fact been well studied [2, 9]:

Proposition 8 The Cayley table of S_2 is depicted in Table 1. Furthermore, S_2 is isomorphic to B_2, where B_2 is the five-element Brandt semigroup.

Proof For $n = 2$, set $e = \langle 0, 1, 1 \rangle$, $f = \langle 0, 2, 2 \rangle$, $a = \langle 1, 1, 1 \rangle$, and $b = \langle -1, 2, 2 \rangle$. The table given above can then be verified using Theorem 3 (or by multiplying the corresponding matrices), and coincides with the table of B_2 in p. 32 of [9]. The isomorphism is also apparent from our description of B_n in Example 2. \hfill \Box

As seen from its Cayley table, S_2 has 3 idempotents (namely, $\mathbf{0}$, e, and f) and 3 nilpotents ($\mathbf{0}$, a, and b). More generally, the number of idempotents is the frequently-arising [4] triangular number $\frac{n(n+1)}{2}$ (sequence A000217 of the OEIS [13]):

Proposition 9 $S_n = M_n \setminus \{1\}$ has $\frac{n(n+1)}{2}$ idempotents and $\frac{n^3}{3} - \frac{n}{3} + 1$ nilpotents.
Proof Let N be the number of idempotents in $S_n = M_n \setminus \{1\}$. Then N equals the number of idempotents in $M_n \setminus \{0\}$, which is in turn equal to the number of elements $(0, k, m)$. By Theorem 4, this number is

$$N = \sum_{k=1}^{n} \sum_{m=k}^{n} 1 = \frac{n(n+1)}{2},$$

a result which can also be found using elementary combinatorics. The number of nilpotents, which is $|S_n| - N + 1$, then follows from Proposition 7. \hfill \Box

Proposition 9 tells us that R_n contains more idempotents than does M_n, see Lemma 1. As for nilpotents, all those of R_2 belong to M_2, but this is no longer true when $n \neq 2$.

In R_n, any two inverse elements are transposes of one another, in the usual sense of matrix transposition. Now $(d, k, m)^T$ belongs to M_n and its triplet parameters are obvious. We have thus arrived at the following proposition.

Proposition 10 Let $x \in M_n$. The transpose x^T of x is

$$x^T = \begin{cases} 0, & x = 0, \\ \langle -d, k + d, m + d \rangle, & x = \langle d, k, m \rangle \in M_n \setminus \{0\}. \end{cases}$$

(36)

x^T belongs to M_n and is the unique inverse of x. Therefore M_n is an inverse monoid and $S_n = M_n \setminus \{1\}$ is an inverse semigroup.

The corollary that follows will help us in the next section, where we determine Green’s relations.

Corollary 4 In M_n, the products xx^T and x^Tx of an element with its inverse are given by

$$xx^T = \begin{cases} 0, & x = 0, \\ \langle 0, k, m \rangle, & x = \langle d, k, m \rangle \in M_n \setminus \{0\}. \end{cases}$$

(37)

$$x^Tx = \begin{cases} 0, & x = 0, \\ \langle 0, k + d, m + d \rangle, & x = \langle d, k, m \rangle \in M_n \setminus \{0\}. \end{cases}$$

(38)

While R_n and S_n are not abelian semigroups, some nonzero elements do commute, e.g., e and f of S_2, see Proposition 8. What follows is a necessary and sufficient condition for two nonzero $x, y \in M_n$ to commute ($xy = yx$).

Proposition 11 Let $x, y \in M_n \setminus \{0\}$ with $x = \langle d, k, m \rangle$ and $y = \langle d', k', m' \rangle$. Then

- **Case 1**: $xy = yx \neq 0$ iff

 $$\max(k, k' - d) = \max(k', k - d') \leq \min(m, m' - d) = \min(m', m - d').$$

(39)
Case 2: \(xy = yx = 0 \) iff

\[
\max(k, k' - d) > \min(m, m' - d) \quad \text{and} \quad \max(k', k - d') > \min(m', m - d').
\]

(40)

Proof Apply Corollary 1, interchange the roles of \(x \) and \(y \), and apply again. \(\square \)

In the special case \(d = d' = 0 \), the conditions of either Case 1 or Case 2 are satisfied for all \(k, m, k', m' \) (as expected, because diagonal matrices commute, see also Sect. 9.1). Thus the idempotents of \(M_n \) and \(S_n \) commute, which is tantamount to saying that \(M_n \) and \(S_n \) are orthodox semigroups. This was known beforehand, because all inverse semigroups are orthodox.

7 Green’s relations on \(M_n \); Ideals of \(M_n \)

The theorem below gives Green’s relations on \(M_n \). For a matrix \(x \in M_n \), it is helpful to use \(\text{rnk}(x) \) to denote the length of the block of ones, which equals the rank of the corresponding partial injective transformation. We thus define

\[
\text{rnk}(x) = \begin{cases}
0, & x = 0, \\
m - k + 1, & x = \langle d, k, m \rangle \in M_n \setminus \{0\},
\end{cases}
\]

(41)

with \(0 \leq \text{rnk}(x) \leq n \). By Theorem 3 (or by the identical result in \(R_n \) [6]),

\[
\text{rnk}(xy) \leq \min(\text{rnk}(x), \text{rnk}(y)) \quad x, y \in M_n.
\]

(42)

Theorem 12 In the inverse monoid \(M_n \), Green’s relations for any two nonzero elements \(x = \langle d, k, m \rangle \) and \(y = \langle d', k', m' \rangle \) are as follows.

\[
x \mathcal{R} y \iff k = k' \quad \text{and} \quad m = m',
\]

(43)

\[
x \mathcal{L} y \iff k + d = k' + d' \quad \text{and} \quad m + d = m' + d',
\]

(44)

\[
x \mathcal{H} y \iff x = y,
\]

(45)

\[
x \mathcal{D} y \iff x \mathcal{J} y \iff m - k = m' - k' \iff \text{rnk}(x) = \text{rnk}(y).
\]

(46)

In all cases, \(0 \) forms a class of its own,

\[
R_0 = L_0 = H_0 = D_0 = J_0 = \{0\}.
\]

(47)

Proof By the definitions of \(\mathcal{R} \) and \(\mathcal{L} \) in inverse semigroups [10], \(x \mathcal{R} y \iff xx^T = yy^T \), and \(x \mathcal{L} y \iff x^T x = y^T y \). Thus (43) and \(R_0 = \{0\} \) follow from (37), while (44) and \(L_0 = \{0\} \) follow from (38). The definition \(\mathcal{H} = \mathcal{R} \cap \mathcal{L} \) then implies \(H_0 = \{0\} \). It further implies that \(x \mathcal{H} y \iff \text{the conditions in (43) and (44) hold simultaneously} \). Thus \(d = d' \) which, together with (43), gives (45).

\(\square \) Springer
Alternatively, (43)–(45) (as well as the pertinent relations in (47)) can be shown via the corresponding Green’s relations on the inverse semigroup R_n [6, 10], which are inherited [9, 10] by the inverse subsemigroup M_n.

We now turn to the condition for D in (46). As long as $m - k = m' - k'$, we can define a triplet $z = \langle d'', k'', m'' \rangle$ by

$$z = \langle k + d - k', k', m' \rangle = \langle m + d - m', k', m' \rangle.$$ \hfill (48)

Now write the conditions in (18) for d, k, m, and again for d', k', m'. Upon invoking $m - k = m' - k'$, we can easily deduce identical conditions for d'', k'', m''. Thus $z \in M_n$. Furthermore, our z satisfies $z \mathcal{R} y$ by (43) and $x \mathcal{L} z$ by (44). By the definition of D, the existence of such a z means $x \mathcal{D} y$.

In the case $x = 0$, the equalities $R_0 = L_0 = \{0\}$ tell us that $x \mathcal{L} z$ and $z \mathcal{R} y$ can only hold when $z = y = 0$. Thus $D_0 = \{0\}$.

The assertions concerning J follow from the equality $J = D$, which holds because the semigroup M_n is of finite order [9].

Theorem 12 implies that the inverse monoid M_n is combinatorial (as \mathcal{H} is the equality relation [10]), and states that $x \mathcal{R} y$ ($x \mathcal{L} y$) amounts to a horizontal (vertical) translation of the block of ones in the matrices representing x and y. Furthermore, the z of (48) has a block of ones which is, concurrently, a horizontal translation of the block of y and a vertical translation of the block of x. This explains (46), which states that all D- (or J-) related matrices have blocks of ones with equal lengths, i.e., identical ranks.

The theorem that follows (see [6] for similar results pertaining to R_n) uses Theorem 12 and (42) to describe all ideals of M_n.

Theorem 13 M_n has $n + 1$ (two-sided) ideals I_0, I_1, \ldots, I_n, all of which are principal. Ideal I_r can be found from

$$I_r = M_n x M_n = \{ y \in M_n : \text{rnk}(y) \leq r \}, \quad r = 0, 1, \ldots, n,$$ \hfill (49)

where x is any element of M_n with $\text{rnk}(x) = r$. The ideals form a chain according to

$$\{0\} = I_0 \subset I_1 \subset \ldots \subset I_n = M_n.$$ \hfill (50)

Proof The results on J-classes in Theorem 12 imply $M_n x M_n = M_n y M_n$ for any y with $\text{rnk}(y) = \text{rnk}(x)$. Consequently, the principal ideal $M_n x M_n$ is completely specified by $r = \text{rnk}(x)$, justifying the notation $I_r = M_n x M_n$ that we used in (49).

In particular, we can choose a diagonal matrix y whose block of ones starts at the top left. Thus there are $n + 1$ principal ideals I_r, which can be written as

$$I_r = \begin{cases} \{0\}, & r = 0, \\ M_n (0, 1, r) M_n, & r = 1, 2, \ldots, n. \end{cases} \hfill (51)$$

\hfill \square
Relation (50) is a consequence of (51) and
\[\langle 0, 1, r - 1 \rangle = \langle 0, 1, r \rangle \langle 0, 1, r - 1 \rangle, \quad r = 2, 3, \ldots, n. \]

In (50), we wrote strict inclusions as (51) and (42) give \(\text{rk}(x) \leq r \) for any \(x \in I_r \), so
\[(0, 1, r) \not\in I_{r-1}, \quad r = 1, 2, \ldots, n. \] (52)

\(I_r = \{ y \in M_n : \text{rk}(y) \leq r \} \) follows easily from (50)–(52). Finally, any ideal \(I \) is the union of some \(I_r \) because \(I = \bigcup_{x \in I} M_n x M_n \). Thus, by (50), all ideals are principal. \(\Box \)

Example 4 \(M_2 \) has three ideals. By the second expression in (49), they are given by
\[I_0 = \{ 0 \}, \quad I_1 = \{ 0, e, f, a, b \}, \quad I_2 = \{ 0, e, f, a, b, 1 \} = M_2, \]
where we used the notation of Example 1 and Proposition 8 for the monoid elements. Note that Theorem 12, (51), \(e = \langle 0, 1, 1 \rangle \), and \(1 = \langle 0, 1, 2 \rangle \) additionally imply
\[I_0 = J_0, \quad I_1 = M_2 e M_2 = I_0 \cup J_e, \quad I_2 = M_2 1 M_2 = I_1 \cup J_1. \]

8 On the numbers of zero and nonzero products

The set \(S_2 \setminus \{ 0 \} \), which has 4 elements, gives rise to \(4^2 = 16 \) possible products. The last four rows and columns of the table in Proposition 8 tell us that 8 of these products are zero and 8 are nonzero. This case \((n = 2) \) seems to be the only one in which the numbers of zero and nonzero products are equal; e.g. \(S_3 \setminus \{ 0 \} \), which has 13 elements, gives rise to 91 nonzero products, about \(r(3) = 53.9\% \) of the total. We have investigated the more general ratio \(r(n) \) in the following manner.

Let \(\psi(n) \) be the number of nonzero products arising from the set \(M_n \setminus \{ 0 \} \). By (18) and Corollary 1, \(\psi(n) \) is given by
\[\psi(n) = \sum_{d=1}^{n-1} \sum_{k=1}^{\text{min}(0,d)} \sum_{m=k}^{n-\text{max}(0,d)} \sum_{m'=\text{max}(k',k+d)}^{n-\text{max}(0,d')} 1. \] (53)

Now \(2|S_n| - 1 \) of these nonzero products involve \(1 \), so that \(S_n \setminus \{ 0 \} = M_n \setminus \{ 0, 1 \} \) gives rise to \(\psi(n) - 2|S_n| + 1 \) nonzero products. As the total number of products is \((|S_n| - 1)^2 \), the ratio \(r(n) \) is
\[r(n) = \frac{\psi(n) - 2|S_n| + 1}{(|S_n| - 1)^2}. \] (54)
Although we were not able to analytically evaluate the sextuple sum giving $\psi(n)$, numerical evaluation and use of the On-Line Encyclopedia of Integer Sequences (OEIS) suggested a connection to the so-called Polynexus numbers (sequence A083200 of the OEIS [13]), as stated in the following conjecture.

Conjecture 1 For $n \in \mathbb{N}$, $\psi(n)$ equals the $(n+1)$th Polynexus number of order 7 [13], so that

$$\psi(n) = \frac{(n+1)^7 - n^7 - (n+1)^3 + n^3}{120}. \quad (55)$$

This conjecture was verified for all $n \leq 70$. Provided that it is true, (54), (35), and (55) give a closed-form expression for $r(n)$:

Conditional Proposition 1 If Conjecture 1 is true, then the ratio $r(n)$ of nonzero products in $S_n \setminus \{0\}$ to the total number of products in $S_n \setminus \{0\}$ is given by

$$r(n) = \frac{3(7n^5 + 28n^4 + 63n^3 + 18n^2 - 84n - 120)}{10(n-1)(2n^2 + 5n + 6)^2}. \quad (56)$$

Accordingly, as $n \to \infty$,

$$r(n) = \frac{21}{40} + \frac{147}{160} \frac{1}{n^2} + O\left(\frac{1}{n^3}\right). \quad (57)$$

Thus when n is large, $r(n)$ approaches 52.5% = $\frac{21}{40}$ monotonically from above. Numerical results are given in Fig. 4, where we observe a peak at $n = 4$.

Remark 3 The three sums in the second line of (53) form a triple sum which depends on n, d, k, m. Given an $x = \langle d, k, m \rangle \in M_n \setminus \{0\}$, the triple sum is the number of $y = \langle d', k', m' \rangle \in M_n \setminus \{0\}$ for which $xy \neq 0$. Conversely, if we are given a y, it is easy to formulate a similar triple sum yielding the number of x for which $xy \neq 0$.

Fig. 4 The ratio $r(n)$ for $n = 2, 3, \ldots, 70$
Table 2 Subsets of M_n which, by Theorem 14, are subsemigroups of M_n

Symbol for subset of M_n	Matrices of M_n representing nonzero elements	Restrictions on d, k, m
UT_n	Upper triangular	$d \geq 0$
SUT_n	Strictly upper triangular	$d > 0$
UF_n	Upper full	$d \geq 0, k = 1, \text{ and } m = n - d$
$SU F_n$	Strictly upper full	$d > 0, k = 1, \text{ and } m = n - d$
LT_n	Lower triangular	$d \leq 0$
SLT_n	Strictly lower triangular	$d < 0$
LF_n	Lower full	$d \leq 0, k = 1 - d, \text{ and } m = n$
SLF_n	Strictly lower full	$d < 0, k = 1 - d, \text{ and } m = n$
D_n	Diagonal	$d = 0$

9 Submonoids and subsemigroups

This section examines certain subsemigroups of M_n. To begin with, it can be verified from Theorem 3 that, for $n \geq 3$, the following subset of M_n

$$\{0\} \cup \{\langle d, k, m \rangle \in M_n \setminus \{0\} : m < n - \max(0, d)\}$$

is closed under multiplication. This set consists of $n \times n$ matrices whose elements in the n’th row and the n’th column are all zero. Thus closure alternatively follows from the general discussions in Sect. 2 and amounts to

$$M_j \subseteq M_n, \quad 2 \leq j < n,$$

(58)

where \subseteq means “is a subsemigroup of”. Note that the 1 of M_n does not belong to M_j (M_j has a different 1 than does M_n) so that the monoids M_2, \ldots, M_{n-1} are not submonoids of M_n.

Next consider the subsets of M_n that are described in Table 2.

Each subset named in our table’s first column consists of 0 together with the elements $\langle d, k, m \rangle$ of $M_n \setminus \{0\}$ that satisfy the restrictions in the third column. As an example,

$$SUT_n = \{0\} \cup \{\langle d, k, m \rangle \in M_n \setminus \{0\} : d \geq 1\}$$

$$= \{0\} \cup \{\langle d, k, m \rangle : d, k, m \in \mathbb{N}; \ k \leq m \leq n - d\},$$

(59)

where the second expression follows from (18). As another example,

$$SLF_n = \{0\} \cup \{\langle d, 1 - d, n \rangle \in M_n \setminus \{0\} : d < 0\}.$$

(60)

Any nonzero element of M_n corresponds to a matrix with only one nonzero diagonal. The term “full” appearing in the table means that *all* entries of this diagonal are nonzero.
Table 3 Transposes of the semigroups in Theorem 14, together with their orders

Subsemigroup A of M_n	Transpose A^T of A is	A and A^T are	Order of A and A^T
UT_n	LT_n	Noncommutative	$1 + \frac{1}{6}n(n+1)(n+2)$
$SU T_n$	SLT_n	Noncommutative	$1 + \frac{1}{6}(n-1)n(n+1)$
UF_n	LF_n	Commutative	$1 + n$
$SU F_n$	SLF_n	Commutative	n
D_n	D_n	Commutative	$1 + \frac{1}{2}n(n+1)$

(and equal to 1). The terms upper/lower triangular, strictly triangular, etc. are used in the usual sense of matrix analysis.

Theorem 14 All nine sets written in Table 2 are subsemigroups of M_n. The semigroups $UT_n, UF_n, LT_n, LF_n,$ and D_n contain 1 and are submonoids of M_n; removing 1 from any of these five sets gives a subsemigroup of $S_n = M_n \setminus \{1\}$. Finally, $SUT_n, SU F_n, SLT_n,$ and SLF_n consist solely of nilpotents, whose indexes are given by (28).

Proof The first statement is evident from Theorem 3 and the table’s third column, or from elementary matrix theory and the second column. The second statement follows from $1 = \langle 0, 1, n \rangle$ and Corollary 3. The third is a consequence of the table’s third column and Theorem 4.

We now let A^T denote the set of transposes (see Proposition 10) of the subset A, viz.,

$$A^T = \{ x^T : x \in A \subseteq M_n \}. \tag{61}$$

When A is a subsemigroup of M_n, it follows from $(xy)^T = y^T x^T$ that A and A^T are anti-isomorphic.

Further properties of the above-discussed subsemigroups are given in the proposition that follows.

Proposition 15 Table 3 gives the transposes A^T of semigroups A, states whether A and A^T are commutative or not, and gives semigroup orders.

Proof The orders can be found by direct summation, similarly to the proofs of Propositions 7 and 9.

It is evident that

$$SU F_n \subseteq UF_n \subseteq UT_n \subseteq M_n, \quad SUT_n \subseteq UT_n \subseteq M_n, \tag{62}$$

and that the same relations hold when U is replaced by L. It is also evident that

$$D_n = UT_n \cap LT_n = UF_n \cap LF_n. \tag{63}$$

We proceed to give some additional properties of $D_n, SU F_n, SLF_n,$ and SUT_n.

 Springer
9.1 Idempotents of M_n; diagonal matrices

As already discussed, D_n is the semilattice of idempotents of M_n and has order $\frac{n^2}{2} + \frac{n}{2} + 1$. Multiplication in D_n is given by

$$\langle 0, k, m \rangle \langle 0, k', m' \rangle = \begin{cases} \langle 0, \max(k, k'), \min(m, m') \rangle, & \max(k, k') \leq \min(m, m'), \\ 0, & \max(k, k') > \min(m, m'). \end{cases}$$

(64)

and corresponds to the intersection of the corresponding diagonal vectors.

9.2 Shift matrices and subsemigroups they generate

The monoid elements $\langle 1, 1, n - 1 \rangle$ and $\langle -1, 2, n \rangle$ represent the usual backward and forward shift matrices [8], which are transposes of one another. Their products are given by

$$\langle 1, 1, n - 1 \rangle \langle -1, 2, n \rangle = \langle 0, 1, n - 1 \rangle \in D_n$$

(65)

and

$$\langle -1, 2, n \rangle \langle 1, 1, n - 1 \rangle = \langle 0, 2, n \rangle \in D_n.$$

(66)

Corollary 2 gives the respective powers as

$$\langle 1, 1, n - 1 \rangle^j = \begin{cases} \langle j, 1, n - j \rangle, & j = 1, 2, \ldots, n - 1, \\ 0, & j = n, \end{cases}$$

(67)

and

$$\langle -1, 2, n \rangle^j = \begin{cases} \langle -j, 1 + j, n \rangle, & j = 1, 2, \ldots, n - 1, \\ 0, & j = n. \end{cases}$$

(68)

The powers in (67) and (68) are precisely the elements of $SU F_n$ and $SL F_n$, respectively; see the table in Theorem 14. We have thus reached the following conclusion.

Proposition 16 $SU F_n$ is the monogenic subsemigroup generated by $\langle 1, 1, n - 1 \rangle$, and $SL F_n = SU F_n^T$ is the monogenic subsemigroup generated by $\langle -1, 2, n \rangle = \langle 1, 1, n - 1 \rangle^T$.

Proposition 16 and eqns. (67) and (68) can be recognized as well-known properties of the two shift matrices; in fact, these properties make clear why the set of upper (or lower) Toeplitz matrices of size n form a commutative algebra [8].
The subsemigroup of the rook monoid SUT_n

9.3 Minimal generating set for SUT_n; rank of SUT_n

The semigroup SUT_n was defined in (59). The theorem that follows provides a minimal generating set (called A_n) for SUT_n, gives rank(SUT_n) (see Sect. 2), and uses the triplet representation to find (non-unique) closed-form expressions for all $x \in \text{SUT}_n$. The generating set A_n consists of all matrices of SUT_n whose ones lie on the diagonal $d = 1$.

Theorem 17 The subset A_n of SUT_n defined by

$$A_n = \{\langle 1, k, m \rangle : 1 \leq k \leq m \leq n - 1 \}$$ \hspace{1cm} (69)

is a minimal generating set for SUT_n, with

$$\text{rank} (\text{SUT}_n) = |A_n| = \frac{1}{2} n(n - 1).$$ \hspace{1cm} (70)

In fact, any $x \in \text{SUT}_n$ can be found explicitly as a power of some $y \in A_n$ via

$$x = \begin{cases} (1, 1, 1)^2, & x = 0, \\ (1, k, m + d - 1)^d, & x = \langle d, k, m \rangle \in \text{SUT}_n \setminus \{0\}. \end{cases}$$ \hspace{1cm} (71)

Proof By Theorem 4, $\langle 1, 1, 1 \rangle$ is a square root of 0; and by Theorem 6, $\langle 1, k, m + d - 1 \rangle$ is the (unique in M_n) dth root of $x = \langle d, k, m \rangle \in \text{SUT}_n$. Therefore (71) holds. Since both $\langle 1, 1, 1 \rangle$ and $\langle 1, k, m + d - 1 \rangle$ belong to A_n, (71) explicitly demonstrates that A_n generates SUT_n.

We now turn to minimality and rank. If $x_i = \langle d_i, k_i, m_i \rangle \in \text{SUT}_n \setminus \{0\}$, then $\sum_{i=1}^{p} d_i \geq p$ by (59); eqn. (69) and Theorem 3 then show that the product $\prod_{i=1}^{p} x_i$ can belong to A_n only if $p = 1$ and $x_1 \in A_n$. In other words, any $y \in A_n$ can be written as a finite product of elements of SUT_n only in a trivial manner (i.e., the product can only have one factor, equal to y), implying that any generating set must contain this y. We have thus shown that

$$(B_n \subseteq \text{SUT}_n \text{ and } B_n \text{ generates } \text{SUT}_n) \implies A_n \subseteq B_n.$$ \hspace{1cm} \Box

It follows that no proper subset of A_n can generate SUT_n, proving minimality of the generating set A_n. It also follows that $|A_n| \leq |B_n|$ for any B_n generating SUT_n, so that the rank of SUT_n equals the cardinality of its generating set A_n. Computing $|A_n|$ via (69), we arrive at (70).

By taking transposes, one can immediately re-state Theorem 17 so as to apply to $\text{SLT}_n = \text{SUT}_n^T$. In this case, the generating set is A_n^T, where

$$A_n^T = \{\langle -1, k, m \rangle : 2 \leq k \leq m \leq n \}$$ \hspace{1cm} (72)
9.4 More subsemigroups of \(M_n \)

We close Sect. 9 by listing some additional subsemigroups of \(M_n \) that can be studied by specializing the triplet representation developed in this paper. The said subsemigroups are obtained by adjoining \(\{0\} \) to any one of the following sets,

- The matrices of \(M_n \) with \(d \) = integer multiple of \(d_0 \), where \(1 \leq d_0 \leq n - 1 \).
- The matrices of \(M_n \) with \(d \geq d_0 \), where \(1 \leq d_0 \leq n - 1 \).
- The matrices of \(M_n \) whose first row and first column are zero.
- The matrices of \(M_n \) whose first row and last column are zero.
- The matrices of \(M_n \) that have at most \(j \) nonzero elements, where \(2 \leq j \leq n \) (see Example 2 for the case \(j = 1 \)).

10 Generating systems for \(S_n \) and \(M_n \)

Based on our findings in Sect. 9, the present section determines several generating sets for \(S_n \) and \(M_n \), both as semigroups and as inverse semigroups. Since \(M_n = SUT_n \cup D_n \cup SLT_n \), \(M_n \) is generated as a semigroup by \(A_n \cup D_n \cup A_n^T \) (see Theorem 17 and (72)). In fact, \(A_n \cup \{1\} \cup A_n^T \) suffices:

Proposition 18 \(S_n \) is generated by \(A_n \cup A_n^T \), and \(M_n \) is generated by \(A_n \cup \{1\} \cup A_n^T \).

Proof For the assertion pertaining to \(S_n = M_n \setminus \{1\} \), it suffices to show that \(A_n \cup A_n^T \) generates \(D_n \setminus \{1\} \). This is apparent from (69), (72), and the equalities

\[
\langle 0, k, m \rangle = \langle 1, k, m \rangle \langle -1, k + 1, m + 1 \rangle, \quad 1 \leq k \leq m \leq n - 1,
\]

\[
\langle 0, k, n \rangle = \langle -1, k, n \rangle \langle 1, k - 1, n - 1 \rangle, \quad 2 \leq k \leq n,
\]

which are consequences of Theorem 3. By Proposition 5, any set generating \(M_n \) must further include \(1 \). Thus \(M_n \) is generated by \(A_n \cup \{1\} \cup A_n^T \). \(\square \)

Corollary 5 \(S_n \) is generated, as an inverse semigroup, by \(A_n \). The monoid \(M_n \) is generated, as an inverse semigroup, by \(A_n \cup \{1\} \).

One might think \(A_n \cup A_n^T \) is minimal (as a semigroup-generating set for \(S_n \)). By the theorem that follows, this is far from true; for any \(n \), two elements are enough, a stark difference compared to the \(\frac{1}{2}n(n - 1) \) elements needed to generate \(SUT_n \).

Theorem 19 The subset \(\{p, q\} \) of \(S_n \), where

\[
\langle 1, 1, n - 1 \rangle = p = q^T = \langle -1, 2, n \rangle^T
\]

is a minimal generating set for \(S_n \).

Proof By Proposition 18, all we need to prove is that \(\{p, q\} \) generates the sets \(A_n \) and \(A_n^T \). For any \(1 \leq k \leq m \leq n - 1 \) we notice that

\[
\langle 1, k, m \rangle = p^{n-m} q^{n-m+k-1} p^k
\]
A subsemigroup of the rook monoid 213

$$
\begin{array}{cccccccccccc}
1 & k-1 & k & k+1 & k+d-1 & k+d & m-1 & m & m+1 & m+d-1 & m+d & m+d+1 & n \\
\vdots & \vdots \\
1 & k-1 & k & k+1 & k+d-1 & k+d & m-1 & m & m+1 & m+d-1 & m+d & m+d+1 & n \\
\end{array}
$$

Fig. 5 Rook n-diagram representation of the element $\langle d, k, m \rangle$ belonging to $M_n \setminus \{0\}$

$$
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \\
\end{array}
$$

Fig. 6 Graphical multiplication in M_n via rook n-diagrams: Here, we depict $\langle 1, 1, 3 \rangle \langle 2, 3, 4 \rangle = \langle 3, 2, 3 \rangle$

which follows from Theorem 3 and Corollary 2. This proves that we can generate A_n; as $\{p, q\} = \{p, q\}^T$, it also proves that we can generate A_n^T. Minimality follows from $p^j \neq q$ and $q^j \neq p$ for all $j \in \mathbb{N}$. □

Corollary 6 The subset $\{p, q, 1\}$ of M_n is a minimal generating set for M_n.

Proof 1 cannot be generated by $\{p, q\}$ (Proposition 5), so the assertion follows immediately from Theorem 19 and $M_n = S_n \cup \{1\}$. □

11 Graphical interpretations

This section examines the rook n-diagrams associated with M_n. As we already did in Figs. 1 and 2, we assume that the two rows of vertices form an $n \times 2$ orthogonal grid.

A rook n-diagram represents an element of M_n iff its lines (edges) are parallel, equispaced, and uninterrupted, as in Fig. 5. Note that the said requirements guarantee non-intersecting lines, so that $M_n \subseteq \mathcal{POI}_n$.

Multiplication of two elements in M_n is done graphically in the usual manner, as illustrated in Fig. 6.

It is evident that many of our previous results can be depicted and explained graphically, and that graphical methods can help one discover further properties of M_n and its subsemigroups. We thus proceed to give some indicative graphical interpretations (there are many more). In the discussions that follow, we conveniently refer to the parameter d as the (positive, negative, or zero) inclination of the rook n-diagram representing $\langle d, k, m \rangle$.

- It is apparent (e.g. from Fig. 5) that 1 is the only element of M_n that has n lines. This fact and the graphical interpretation of multiplication make it easy to understand
why the “if” part of Proposition 5 \((xy = 1 \implies x = y = 1)\) is true: The number of lines in the product of two elements is at most the minimum number of the two elements’ lines. Thus if \(xy = 1\), then both \(x\) and \(y\) must have \(n\) lines, so that \(x = y = 1\).

- The subsets \(D_n\) and \(SUT_n\) correspond to a zero or positive inclination, respectively. It is apparent that multiplication again leads to a zero or positive inclination, explaining why \(D_n\) and \(SUT_n\) are subsemigroups. It is also apparent why the elements of \(D_n\) are the idempotents of \(M_n\).

- The elements of the subset \(UF_n\) are those whose first (leftmost) line starts at vertex 1 of the top row, and whose last (rightmost) line ends at vertex \(n\) of the bottom row. Evidently multiplication retains these properties, so that \(UF_n\) is a subsemigroup. The subsemigroup’s \(n\) elements correspond to the \(n\) possible inclinations \(d = 0, 1, \ldots, n - 1\).

- Figure 6 helps one understand why multiplication adds inclinations and why taking the \(j\)th power multiplies the inclination by \(j\), as expressed by (21) and (27). We can further understand formula (28) for the index of a nonzero nilpotent: Let \(x = \langle d, k, m \rangle\) with \(d > 0\). The first line of \(x^j\) starts at (top) vertex \(k\) and ends at (bottom) vertex \(k + jd\). However, the last line of \(x^j\) cannot end after vertex \(m + d\). This means that the index \(\ell\) of \(x\) is the smallest \(j\) such that \(x^j\’s\) first line would have been after \(m + d\), i.e. the minimum \(j\) for which \(k + jd \geq m + d + 1\). When \(d < 0\), we can find the index in an analogous manner.

- In a similar manner, we can perceive when the product of two elements is zero: The first line of \(\langle d, k, m \rangle \langle d', k', m' \rangle\) ends on vertex \(k + d + d'\) or to the right of that vertex, but it cannot end to the right of vertex \(m' + d'\). Therefore \(k + d + d' > m' + d'\) is a sufficient condition for the product to be 0, as asserted by Corollary 1.

- Much of Theorem 6 can be explained in the following manner. The inclination of \(\langle d', k', m' \rangle\) is \(jd'\). Thus \(x = \langle d, k, m \rangle\) can have a \(j\)th root only if \(d\) is a multiple of \(j\). Assume now that \(d > 0\). The first line of the \(j\)th root of \(\langle d, k, m \rangle\), must start at \(k\) and its last line must end at \(m + d\). This means that \(y = \langle d', k', m' \rangle\) and \(y^j = x\) imply \(k' = k\) and \(m' + d' = m + d\), as illustrated in Fig. 7.
12 Summary

In this paper, we defined a noncommutative, inverse monoid M_n; showed that the nonzero elements of M_n can be represented as $\langle d, k, m \rangle$, where $d, k,$ and m are properly defined integers; and used this “triplet representation” to study numerous properties of M_n. Both M_n and the set $S_n = M_n \setminus \{1\}$ (where 1 is the monoid identity, corresponding to the $n \times n$ identity matrix) are inverse subsemigroups of the well-known rook monoid R_n, also known as the symmetric inverse semigroup. The monoid M_n consists of those elements of R_n whose ones lie on a single diagonal and form an uninterrupted block (i.e., no zero lies between any two ones). Equivalently, the rook-n diagram of any monoid element has the form shown in Fig. 5.

In Sects. 3 and 4, we regarded M_n as a subsemigroup of a certain semigroup S_∞ of countably infinite order; this helped us find the triplet representation of the product of two monoid elements (Theorem 3). Our results on M_n include:

- A simple formula for powers (Corollary 2).
- A proof that any element is idempotent or nilpotent (Theorem 4). Proposition 9 further gives the numbers of idempotents and nilpotents.
- A formula (in Theorem 4) for the index ℓ of any nonzero nilpotent in terms of $d, k,$ and m.
- A proof that the jth root of any given nonzero element either does not exist; or does exist, is unique, and has the triplet representation given explicitly in Theorem 6.
- Green’s relations (Theorem 12), enabling a determination of all ideals (Theorem 13).
- An investigation of the $(n$-dependent) number of nonzero products in $S_n \setminus \{0\}$; this number is 50% of the total number of products when $n = 2$, and appears to be slightly larger than 50% for all other n (Conditional Proposition 1 and Fig. 4).
- The use of rook-n diagrams to give graphical interpretations of many of our results (Sect. 11).
- An investigation of some subsemigroups of M_n (Sect. 9). Two of these are the familiar monogenic subsemigroups generated by the well-known backward and forward shift matrices (Proposition 16). For another subsemigroup—denoted by SUT_n and consisting of all strictly upper triangular matrices of M_n—we found a minimal generating set A_n, gave a (non-unique) explicit formula for any $x \in SUT_n$, and computed the rank of SUT_n (Theorem 17).
- The surprising result (Theorem 19) that, irrespective of n, two elements suffice to generate S_n.
- Section 9.4, finally, lists more subsemigroups that can be investigated along similar lines.

Acknowledgements We thank the reviewer, whose comments and suggestions notably improved this paper. Theorem 19, in particular, is due to the reviewer. The work of Giannis Fikioris was supported in part by National Science Foundation (NSF) Grant CCF-1408673 and Air Force Office of Scientific Research (AFOSR) grant FA9550-19-1-0183.
References

1. Annin, S., Cannon, T., Hernandez, C., Torres, L.: On kth roots in the symmetric inverse monoid. Pi Mu Epsilon Journal, 321–331 (2012)
2. ´Ciri´c, M., Bogdanovi´c, S.: The five-element Brandt semigroup as a forbidden divisor. Semigroup Forum 61(3), 363–372 (2000)
3. East, J.: A presentation of the singular part of the symmetric inverse monoid. Comm. Algebra 34(5), 1671–1689 (2006)
4. East, J.: Presentations for singular subsemigroups of the partial transformation semigroup. Int. J. Algebra Comput. 20(1), 1–25 (2010)
5. Fernandes, V.H.: The monoid of all injective order preserving partial transformations on a finite chain. Semigroup Forum 62, 178–204 (2001)
6. Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: an Introduction. Springer, London (2008)
7. Gray, R.D.: The minimal number of generators of a finite semigroup. Semigroup Forum 89(1), 135–154 (2014)
8. Horn, R.A., Johnson, C.R.: Matrix Analysis. 2nd edn. Cambridge University Press, New York, NY (2013)
9. Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, Oxford, UK (1995)
10. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, Singapore (1998)
11. Li, Z., Li, Z., Cao, Y.: Representations of the symplectic rook monoid. Int. J. Algebra Comput. 18(5), 837–852 (2008)
12. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, USA (2000)
13. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences. http://oeis.org (2022)
14. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)
15. Solomon, L.: Representations of the rook monoid. J. Algebra 256, 309–342 (2002)
16. Xiao, Z.: On tensor spaces for rook monoid algebras. Acta Math. Sinica English Series 32, 607–620 (2016)
17. York, C.: Enumerating kth roots in the symmetric inverse monoid. arXiv preprint arXiv:1709.03603 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.