Remarks on Interior Regularity Criterion for an Axially Symmetric Suitable Weak Solution to the Navier Stokes Equations

Adam Kubica
January 3, 2010

Faculty of Mathematics and Information Science
Warsaw University of Technology
Pl. Politechniki 1, Warsaw 00-661
A.Kubica@mini.pw.edu.pl

Abstract

We show that if v is an axially symmetric suitable weak solution to the Navier Stokes equations (in the sense of L. Caffarelli, R. Kohn & L. Nirenberg) such that the radial component of v has a higher regularity (i.e. satisfies weighted Serrin-Prodi type condition), then all components of v are regular.

Introduction. In paper [2] is proved a result concerning conditional regularity of an axially symmetric suitable weak solutions of Navier-Stokes equations. The authors show that if v_r is the radial component of the velocity and satisfies Serrin-Prodi type condition, i.e.

$$\int_0^T \left(\int_\Omega |v_r|^a \, dx \right)^\frac{b}{a} \, dt < \infty,$$

with $\frac{3}{2} + \frac{2}{b} \leq 1$, $a \in (3, \infty]$, $b \in [2, \infty]$, then v is regular. In this paper we modify the proof and obtain the same result under a more general assumption: weighted Serrin-Prodi type condition.

We suppose that Ω is either \mathbb{R}^3 or an axially symmetric bounded domain with smooth boundary and denote $Q_T = \Omega \times (0, T)$ for $T > 0$. We consider the following problem

$$\frac{\partial v}{\partial t} + (v \cdot \nabla) v = f - \nabla p + \nu \Delta v \quad \text{in} \quad Q_T \quad (1)$$

$$\text{div} \, u = 0 \quad \text{in} \quad Q_T \quad (2)$$
\(\mathbf{v} = 0 \) on \(\partial \Omega \times (0, T) \)

(3)

\(\mathbf{v}_{t=0} = \mathbf{v}_0 \).

(4)

We will further suppose for simplicity that \(\mathbf{f} = 0 \). Proceeding similarly as in [2] we can reduce the above problem to the problem on \(B_2 \times (t_0 - \tau, t_0) \). Then we have \(\mathbf{u} \) which satisfies in a classical sense the equations

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \mathbf{h} - \nabla (\eta \rho) + \nu \Delta \mathbf{u} \tag{5}
\]

\[
\text{div} \, \mathbf{u} = 0 \tag{6}
\]

in \(B_2 \times (t_0 - \tau, t_0) \). Our goal is to proved that \(\mathbf{u} \) do not blow up at \(t = t_0 \). Therefore we have to prove appropriate estimates for solution \(\mathbf{u} \) under the assumption that \(\mathbf{u} \) is axially symmetric and \(u_\rho \) (the radial component of the velocity) has a higher regularity. It is convenient to write the equation (5) in cylindrical coordinates

\[
\frac{\partial u_\rho}{\partial t} + u_\rho \frac{\partial u_\rho}{\partial \rho} + u_z \frac{\partial u_\rho}{\partial z} - \frac{1}{\rho} u_\rho^2 + \frac{\partial (\eta \rho)}{\partial \rho} = h_\rho + \nu \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u_\rho}{\partial \rho} \right) + \frac{\partial^2 u_\rho}{\partial z^2} - \frac{u_\rho}{\rho^2} \right] \tag{7}
\]

\[
\frac{\partial u_\theta}{\partial t} + u_\rho \frac{\partial u_\theta}{\partial \rho} + u_z \frac{\partial u_\theta}{\partial z} + \frac{1}{\rho} u_\theta u_\rho = h_\theta + \nu \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u_\theta}{\partial \rho} \right) + \frac{\partial^2 u_\theta}{\partial z^2} - \frac{u_\theta}{\rho^2} \right] \tag{8}
\]

\[
\frac{\partial u_z}{\partial t} + u_\rho \frac{\partial u_z}{\partial \rho} + u_z \frac{\partial u_z}{\partial z} + \frac{\partial (\eta \rho)}{\partial z} = h_z + \nu \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u_z}{\partial \rho} \right) + \frac{\partial^2 u_z}{\partial z^2} \right]. \tag{9}
\]

The equation of continuity has the following form in cylindrical coordinates

\[
\frac{\partial u_\rho}{\partial \rho} + \frac{u_\rho}{\rho} + \frac{\partial u_z}{\partial z} = 0. \tag{10}
\]

We put

\[
\omega = \text{curl} \, \mathbf{u}, \quad \mathbf{g} = \text{curl} \, \mathbf{h}. \tag{11}
\]

Then we have

\[
\omega_\rho = -\frac{\partial u_\rho}{\partial z}, \quad \omega_\theta = \frac{\partial u_\rho}{\partial z} - \frac{\partial u_z}{\partial \rho}, \quad \omega_z = \frac{1}{\rho} \frac{\partial (\rho u_\theta)}{\partial \rho} \tag{12}
\]

Applying operator curl to equation (5) we obtain the system

\[
\frac{\partial \omega_\rho}{\partial t} + u_\rho \frac{\partial \omega_\rho}{\partial \rho} + u_z \frac{\partial \omega_\rho}{\partial z} - \frac{\partial u_\rho}{\partial \rho} \omega_\rho - \frac{\partial u_z}{\partial z} \omega_z = g_\rho + \nu \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \omega_\rho}{\partial \rho} \right) + \frac{\partial^2 \omega_\rho}{\partial z^2} - \frac{\omega_\rho}{\rho^2} \right] \tag{13}
\]

\[
\frac{\partial \omega_\theta}{\partial t} + u_\rho \frac{\partial \omega_\theta}{\partial \rho} + u_z \frac{\partial \omega_\theta}{\partial z} - \frac{u_\rho}{\rho} \omega_\rho + 2 \frac{u_\theta}{\rho} u_\rho \omega_\rho - \frac{\partial \omega_\theta}{\partial \rho} = g_\theta + \nu \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \omega_\theta}{\partial \rho} \right) + \frac{\partial^2 \omega_\theta}{\partial z^2} - \frac{\omega_\theta}{\rho^2} \right] \tag{14}
\]

\[
\frac{\partial \omega_z}{\partial t} + u_\rho \frac{\partial \omega_z}{\partial \rho} + u_z \frac{\partial \omega_z}{\partial z} - \frac{\partial u_\rho}{\partial \rho} \omega_\rho - \frac{\partial u_z}{\partial z} \omega_z = g_z + \nu \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \omega_z}{\partial \rho} \right) + \frac{\partial^2 \omega_z}{\partial z^2} \right]. \tag{15}
\]

Our result is following
Theorem 1. Let \(\mathbf{v} \) be an axially symmetric suitable weak solution to the problem (1)-(4) with \(f = 0 \). Suppose that there exists a sub-domain \(D \) of \(Q_T \) such that the radial component \(v_\rho \) of \(\mathbf{v} \) has its negative part \(v_\rho^- \) in \(L^{b,a}_\gamma(D) \) for some \(a \in \left(\frac{3}{2}, \infty \right), b \in (1, \infty) \) such that \(\frac{3}{a} + \frac{2}{b} + \gamma \leq 1 \) and \(\frac{3}{2} + \frac{2}{b} < 2 \). Then \(\mathbf{v} \) is regular in \(D \).

The condition \(v_\rho^- \in L^{b,a}_\gamma(U \times (0,T)) \) means that
\[
\int_0^T \left(\int_U |u_\rho^\gamma \cdot \rho^\gamma| \, dx \right)^\frac{a}{b} \, dt < \infty.
\]

(16)

The prove will be given in several steps.

Step 1. Assume that \(q \) is even, \(t \in (t_0 - \tau, t_0) \) and multiply equation (8) by \(u_\theta^{q-1} \) and integrate over \(B_2 \). Then we get
\[
\int_{B_2} \frac{\partial u_\theta}{\partial t} u_\theta^{q-1} + \int_{B_2} u_\rho \frac{\partial u_\theta}{\partial \rho} u_\theta^{q-1} + \int_{B_2} u_z \frac{\partial u_\theta}{\partial z} u_\theta^{q-1} + \int_{B_2} \frac{1}{\rho} u_\rho u_\theta^q
\]
\[
= \int_{B_2} h_\theta u_\theta^{q-1} + \nu \int_{B_2} \left[\frac{1}{\rho} u_\theta^{q-1} \frac{\partial}{\partial \rho} (\rho \frac{\partial u_\theta}{\partial \rho}) + u_\theta^{q-1} \frac{\partial^2 u_\theta}{\partial z^2} - \frac{u_\theta^q}{\rho^2} \right].
\]

We have
\[
\int_{B_2} \frac{\partial u_\theta}{\partial t} u_\theta^{q-1} = \frac{1}{q} \int_{B_2} u_\theta^q,
\]
\[
\int_{B_2} u_\rho \frac{\partial u_\theta}{\partial \rho} u_\theta^{q-1} = \frac{1}{q} \int_{B_2} u_\rho u_\theta^q,
\]
\[
\int_{B_2} u_z \frac{\partial u_\theta}{\partial z} u_\theta^{q-1} = \frac{1}{q} \int_{B_2} u_z u_\theta^q,
\]
\[
\int_{B_2} \frac{1}{\rho} u_\theta^{q-1} \frac{\partial}{\partial \rho} (\rho \frac{\partial u_\theta}{\partial \rho}) = \int_{B_2} u_\theta^{q-1} \frac{\partial}{\partial \rho} (\rho \frac{\partial u_\theta}{\partial \rho}) + \int_{B_2} u_\theta^{q-1} \frac{\partial^2 u_\theta}{\partial z^2} - \frac{u_\theta^q}{\rho^2} = (1 - q) \int_{B_2} \frac{\partial u_\theta}{\partial \rho} u_\theta^{q-2},
\]
\[
\int_{B_2} \nu (1 - q) \int_{B_2} \frac{\partial u_\theta}{\partial \rho} u_\theta^{q-2}.
\]

Thus we get
\[
\frac{1}{q} \frac{d}{dt} \int_{B_2} u_\theta^q + \frac{1}{q} \int_{B_2} u_\rho u_\theta^q + \frac{1}{q} \int_{B_2} u_z u_\theta^q + \frac{1}{\rho} \int_{B_2} u_\rho u_\theta^q + \nu (q - 1) \int_{B_2} \left[\left(\frac{\partial u_\theta}{\partial \rho} \right)^2 + \left(\frac{\partial u_\theta}{\partial z} \right)^2 \right] u_\theta^{q-2} + \nu \int_{B_2} \frac{u_\theta^q}{\rho^2}
\]

\(\text{This is the ball } B_2 \text{ given in cylindrical coordinates.} \)
Using (10) we get

\[
\int_{B_2} u_\rho \frac{\partial u_\theta}{\partial \rho} + \int_{B_2} u_z \frac{\partial u_\theta}{\partial z} = \int_{B_2} (u_\rho \rho) \frac{\partial u_\theta}{\partial \rho} + \int_{B_2} u_z \frac{\partial u_\theta}{\partial z} = -\int_{B_2} (\rho \frac{\partial u_\rho}{\partial \rho} + u_\rho) u_\theta - \int_{B_2} \frac{\partial u_z}{\partial z} u_\theta^q
\]

\[
= -\int_{B_2} \left(\frac{\partial u_\rho}{\partial \rho} + \frac{u_\rho}{\rho} + \frac{\partial u_z}{\partial z} \right) u_\theta^q = 0. \tag{18}
\]

Clearly we have

\[
[(\frac{\partial u_\theta}{\partial \rho})^2 + (\frac{\partial u_\theta}{\partial z})^2] u_\theta^{-q} = (u_\theta^{q/2})^2 (\frac{\partial u_\theta}{\partial \rho})^2 + (u_\theta^{q/2})^2 (\frac{\partial u_\theta}{\partial z})^2 = (2/q) [(\frac{\partial u_\theta^{q/2}}{\partial \rho})^2 + (\frac{\partial u_\theta^{q/2}}{\partial z})^2],
\]

thus equality (17) has the following form

\[
\frac{1}{q} \frac{d}{dt} \int_{B_2} u_\theta^q + \frac{1}{q} \int_{B_2} \rho u_\rho u_\theta + \nu (q-1) (q/2) \int_{B_2} [(\frac{\partial u_\theta^{q/2}}{\partial \rho})^2 + (\frac{\partial u_\theta^{q/2}}{\partial z})^2] + \nu \int_{B_2} \frac{u_\theta^q}{\rho^2} = \int_{B_2} h_\theta u_\theta^{q-1}. \tag{19}
\]

Applying Young inequality\(^4\) we get \(\int_{B_2} h_\theta u_\theta^{q-1} \leq \frac{1}{q} (\frac{q-1}{q}) q^{-1} \int_{B_2} h_\theta^q + \int_{B_2} u_\theta^q.\) Hence from (19) we get the estimate\(^5\)

\[
\frac{d}{dt} \|u_\theta\|^q + \frac{4(q-1)}{q} \int_{B_2} [(\frac{\partial u_\theta^{q/2}}{\partial \rho})^2 + (\frac{\partial u_\theta^{q/2}}{\partial z})^2] + \nu q \int_{B_2} \frac{u_\theta^q}{\rho^2} \leq q \int_{B_2} \frac{1}{\rho} u_\rho u_\theta^q + q \|u_\theta\|^q + \|h_\theta\|^q. \tag{20}
\]

Now we shall estimate the first term on the right hand side. We set

\[
p = 1 + \frac{2a + 3b}{2ab - 2a - 3b}, \quad s = \frac{2a}{b} + 3. \tag{21}
\]

Then \(s > 3\) and \(p > 1\), because from the assumption (\(?\)) we get \(3b + 2a < 2ab\). Therefore we may write

\[
\int_{B_2} \frac{1}{\rho} u_\rho u_\theta^q = \int_{B_2} u_\rho^{-q(p-1)/p} \rho^{(2-p)/p} u_\theta^{q/p} \rho^{-2/p} \leq \left(\int_{B_2} \left| u_\rho^{-\frac{p}{p-1}} u_\theta^{\frac{p-q}{p-1}} \right|^{(p-1)/p} \right)^{1/(p-1)} \left(\int_{B_2} \frac{u_\theta^q}{\rho^2} \right)^{1/p}. \tag{22}
\]

\(^4\)\(ab \leq \frac{1}{q} (\frac{q-1}{q}) q^{-1} a^q + b^{q-1}.\)

\(^5\)\(\| \cdot \|_q\) denotes \(\| \cdot \|_{L^q(B_2)}.\)

\(^6\)\(\text{Hölder: } (\frac{p}{p-1}, p).\)
Thus we get

\[
\int_{B_2} |u_\rho|^{\frac{p}{p-1}} u_\theta |u_\rho|^{\frac{2-p}{p-1}} \leq \left(\int_{B_2} |u_\rho|^{\frac{sp}{2(p-1)}} \rho^{\frac{(2-p)s}{2(p-1)}} \right)^{2/s} \left(\int_{B_2} u_\theta^{\frac{q}{q-2}} \right)^{1-s/2} \]

Applying Hölder inequality we get

\[
\int_{B_2} |u_\rho|^{\frac{p}{p-1}} u_\theta |u_\rho|^{\frac{2-p}{p-1}} \leq \left(\int_{B_2} |u_\rho|^{\frac{sp}{2(p-1)}} \rho^{\frac{(2-p)s}{2(p-1)}} \right)^{2/s} \left(\int_{B_2} u_\theta^{\frac{q}{q-2}} \right)^{1-s/2}
\]

\[
\leq \left(\int_{B_2} |u_\rho|^{\frac{sp}{2(p-1)}} \rho^{\frac{(2-p)s}{2(p-1)}} \right)^{2/s} \|u_\theta\|_q^{\frac{q}{q-2}} \|u_\theta\|_3^2
\]

\[
\leq 3 \epsilon_2 \|u_\theta\|_q^2 + \frac{s - 3}{s} \epsilon_2^{\frac{s}{q}} \left(\int_{B_2} u_\rho^{\frac{sp}{2(p-1)}} \rho^{\frac{(2-p)s}{2(p-1)}} \right)^{2/(s-3)} \|u_\theta\|_q^2.
\]

Thus we get

\[
\int_{B_2} \frac{1}{\rho} u_\rho^q u_\theta \leq \frac{3(p-1)}{sp} \epsilon_1^{1/(1-p)} \epsilon_2 \|u_\theta\|_q^2 + \frac{(p-1)(s-3)}{sp} \epsilon_1^{1/(1-p)} \epsilon_2^{\frac{3}{q}} \left(\int_{B_2} u_\rho^{\frac{sp}{2(p-1)}} \rho^{\frac{(2-p)s}{2(p-1)}} \right)^{2/(s-3)} \|u_\theta\|_q^2 + \|h_\rho\|_q^2.
\]

From Sobolev embedding theorem we have

\[
\|u_\theta\|_3^2 \leq c(q) \int_{B_2} \left[\left(\frac{\partial u_\theta^{q/2}}{\partial \rho} \right)^2 + \left(\frac{\partial u_\theta^{q/2}}{\partial z} \right)^2 \right],
\]

thus using (20) and (22) we get

\[
\frac{d}{dt} \|u_\theta\|_q^q + \nu \frac{4(q-1)}{q} \int_{B_2} \left[\left(\frac{\partial u_\theta^{q/2}}{\partial \rho} \right)^2 + \left(\frac{\partial u_\theta^{q/2}}{\partial z} \right)^2 \right] + \nu q \int_{B_2} \frac{u_\theta^q}{\rho^2}
\]

\[
\leq \frac{3(p-1)qc(q)}{sp} \epsilon_1^{1/(1-p)} \epsilon_2 \int_{B_2} \left[\left(\frac{\partial u_\theta^{q/2}}{\partial \rho} \right)^2 + \left(\frac{\partial u_\theta^{q/2}}{\partial z} \right)^2 \right] + q \|u_\theta\|_q^q + \|h_\theta\|_q^q.
\]

\[
^7 \text{Young: } ab \leq \frac{1}{p} a^{p/(p-1)} + \frac{1}{p} b^p.
\]

\[
^8 \text{Hölder: } (\frac{q}{2}, \frac{s}{2} - 1).
\]

\[
^9 \text{Hölder: } (\frac{q}{2}, \frac{s}{2} - 2).
\]

\[
^{10} \text{Young: } (\frac{q}{2}, \frac{s}{2}).
\]
Now we choose \(\varepsilon_1 \) and \(\varepsilon_2 \) small enough and we obtain
\[
\frac{d}{dt} \| u_\theta \|_q^q + \frac{2(q-1)}{q} \int_{B_2} \left[\left(\frac{\partial u_\theta^q/2}{\partial \rho} \right)^2 + \left(\frac{\partial u_\theta^q/2}{\partial z} \right)^2 \right] + \nu q/2 \int_{B_2} \frac{u_\theta^q}{\rho^2} \leq \| h_\theta \|_q^q + d(t) \| u_\theta \|_q^q. \tag{23}
\]
From \[21\] and the assumption \[16\] we know, that function \(d(t) \) in integrable on \((t_0 - \tau, t_0)\). In particular we have
\[
\frac{d}{dt} \| u_\theta \|_q^q \leq \| h_\theta \|_q^q + d(t) \| u_\theta \|_q^q.
\]
If we multiply the sides by \(\exp(-\int_{t_0-\tau}^t d(s) ds) \) and integrate over \((t_0 - \tau, t)\), then we obtain the following estimate
\[
\| u_\theta(t) \|_q^q \leq e^{\int_{t_0-\tau}^t d(s) ds} \| u_\theta(t_0 - \tau) \|_q^q + \int_{t_0-\tau}^t d(s) ds \| h_\theta \|_q^q e^{\int_{t_0-\tau}^t d(s) ds},
\]
i.e.
\[
\| u_\theta(t) \|_q \leq \text{const \ for \ } t \in (t_0 - \tau, t_0). \tag{24}
\]
Step 2. We take \(\varepsilon \in (0, 1) \) and we multiply the sides of \[14\] by \(\frac{\omega_\theta}{\rho^{2-\varepsilon}} \) and integrate over \(B_2 \)
\[
\int_{B_2} \rho^{2-\varepsilon} \frac{\omega_\theta}{\rho^{2-\varepsilon}} + \int_{B_2} \rho^{2-\varepsilon} \frac{\partial \omega_\theta}{\partial \rho} \frac{\omega_\theta}{\rho^{2-\varepsilon}} + \int_{B_2} \rho^{2-\varepsilon} \frac{\partial \omega_\theta}{\partial z} \frac{\omega_\theta}{\rho^{2-\varepsilon}} - \int_{B_2} \rho \frac{\partial \omega_\theta}{\partial \rho} \frac{\omega_\theta}{\rho^{2-\varepsilon}} - 2 \int_{B_2} \rho^{2-\varepsilon} \frac{\omega_\theta}{\rho^{2-\varepsilon}}
\]
\[
= \int_{B_2} g_\theta \frac{\omega_\theta}{\rho^{2-\varepsilon}} + \nu \int_{B_2} \rho \frac{\partial}{\partial \rho} \left(\frac{\partial \omega_\theta}{\partial \rho} \right) \frac{\omega_\theta}{\rho^{2-\varepsilon}} + \nu \int_{B_2} \rho \frac{\partial^2 \omega_\theta}{\partial z^2} \frac{\omega_\theta}{\rho^{2-\varepsilon}} - \nu \int_{B_2} \rho^{2-\varepsilon} \frac{\omega_\theta}{\rho^{2-\varepsilon}}.
\]
Now we can calculate
Now we shall estimate the right hand side. We recall that

\[\int \frac{\partial \omega_0}{\partial t} \omega_0 \rho^{2-\varepsilon} = \frac{1}{2} d \int \frac{\omega_0^2}{\rho^{2-\varepsilon}}, \]

\[\int \frac{u}{\rho} \frac{\partial \omega_0}{\partial \rho} \frac{\omega_0}{\rho^{2-\varepsilon}} = \frac{1}{2} \int \frac{u}{\rho} \frac{\partial \omega_0^2}{\partial \rho} = \frac{1}{2} \int \frac{u}{\rho^{1-\varepsilon}} \frac{\partial \omega_0^2}{\partial \rho} = -\frac{1}{2} \int \frac{1}{\rho^{1-\varepsilon}} \frac{\partial u}{\rho} \left(\frac{\varepsilon-1}{2} \right) \frac{\omega_0^2}{\rho^{2-\varepsilon}}, \]

\[\int u_z \frac{\partial \omega_0}{\partial z} \frac{\omega_0}{\rho^{2-\varepsilon}} = \frac{1}{2} \int u_z \frac{\partial \omega_0^2}{\partial z} = -\frac{1}{2} \int \frac{\partial u_z}{\partial z} \frac{\omega_0^2}{\rho^{2-\varepsilon}}, \]

\[\int \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\frac{\partial \omega_0}{\partial \rho} \frac{\omega_0}{\rho^{2-\varepsilon}} \right) = \int \frac{\vartheta}{\rho^{2-\varepsilon}} \frac{\partial \omega_0}{\partial \rho} \frac{\omega_0}{\rho^{2-\varepsilon}} = -\int \frac{1}{\rho^{1-\varepsilon}} \left(\frac{\partial \omega_0}{\partial \rho} \right)^2 - \frac{1}{2} (\varepsilon-2) \int \frac{\partial \omega_0^2}{\partial \rho} \frac{1}{\rho^{1-\varepsilon}} = -\int \frac{1}{\rho^{2-\varepsilon}} \left(\frac{\partial \omega_0}{\partial z} \right)^2. \]

Then we get

\[\frac{1}{2} \frac{d}{dt} \int \frac{\omega_0^2}{\rho^{2-\varepsilon}} - \frac{1}{2} \int \left[\frac{\partial u}{\partial \rho} + \frac{u}{\rho} + \frac{\partial u_z}{\partial z} \right] \frac{\omega_0^2}{\rho^{2-\varepsilon}} - \frac{\varepsilon}{2} \int \frac{u}{\rho^{1-\varepsilon}} \frac{\omega_0^2}{\rho^{2-\varepsilon}} - 2 \int \frac{u}{\rho} \frac{\omega_0^2}{\rho^{2-\varepsilon}} \]

\[= \int g \frac{\omega_0}{\rho^{2-\varepsilon}} + \nu \left[\frac{1}{2} (2 - \varepsilon) - 1 \right] \int \frac{\omega_0^2}{\rho^{4-\varepsilon}} - \nu \int \left[\left(\frac{\partial \omega_0}{\partial \rho} \right)^2 + \left(\frac{\partial \omega_0}{\partial z} \right)^2 \right] \frac{1}{\rho^{2-\varepsilon}}. \]

If we use (10), then we have

\[\frac{1}{2} \frac{d}{dt} \int \frac{\omega_0^2}{\rho^{2-\varepsilon}} + \nu \int \left[\left(\frac{\partial \omega_0}{\partial \rho} \right)^2 + \left(\frac{\partial \omega_0}{\partial z} \right)^2 \right] \frac{1}{\rho^{2-\varepsilon}} = 2 \int \frac{u}{\rho} \frac{\omega_0}{\rho^{2-\varepsilon}} \frac{\omega_0}{\rho^{2-\varepsilon}} + \frac{\varepsilon}{2} \int \frac{u}{\rho} \frac{\omega_0^2}{\rho^{2-\varepsilon}} = \nu \left[\frac{1}{2} (2 - \varepsilon) - 1 \right] \int \frac{\omega_0^2}{\rho^{4-\varepsilon}} + \int g \frac{\omega_0}{\rho^{2-\varepsilon}}. \]

(25)

Now we shall estimate the right hand side. We recall that \(\omega_\rho = -\frac{\partial \omega_0}{\partial z} \) and we get

\[2 \int \frac{u}{\rho} \frac{\omega_0}{\rho^{2-\varepsilon}} = -2 \int \frac{u}{\rho} \frac{\partial u}{\partial z} \frac{\omega_0}{\rho^{2-\varepsilon}} = -\int \frac{\partial u^2}{\partial z} \frac{\omega_0}{\rho^{3-\varepsilon}} = \int \frac{u^2}{\rho^{3-\varepsilon}} \frac{\partial \omega_0}{\partial z}. \]
We notice that

\[
\int_{B_2} \left(\frac{\partial}{\partial \rho} \frac{\omega_\theta}{\rho^{1-\epsilon}} \right)^2 \frac{1}{\rho^\epsilon} = \int_{B_2} \left[\frac{1}{\rho^{1-\epsilon}} \frac{\partial \omega_\theta}{\partial \rho} + (\epsilon - 1) \frac{\omega_\theta}{\rho^{2-\epsilon}} \right]^2 \frac{1}{\rho^\epsilon}
\]

\[
= \int_{B_2} \frac{1}{\rho^{2-\epsilon}} \left(\frac{\partial \omega_\theta}{\partial \rho} \right)^2 + (\epsilon - 1) \int_{B_2} \frac{1}{\rho^{2-\epsilon}} \frac{\partial \omega_\theta^2}{\partial \rho} + (\epsilon - 1)^2 \int_{B_2} \frac{\omega_\theta^2}{\rho^{4-\epsilon}}
\]

\[
= \int_{B_2} \frac{1}{\rho^{2-\epsilon}} \left(\frac{\partial \omega_\theta}{\partial \rho} \right)^2 + (\epsilon - 1) \int_{B_2} \frac{\omega_\theta^2}{\rho^{4-\epsilon}}.
\]

If we notice that

\[
\int_{B_2} \frac{1}{\rho^{2-\epsilon}} \left(\frac{\partial \omega_\theta}{\partial \rho} \right)^2 = \int_{B_2} \left[\frac{\partial}{\partial z} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 \frac{1}{\rho^\epsilon},
\]

then from (25) we get

\[
\frac{1}{2} \frac{d}{dt} \int_{B_2} \frac{\omega_\theta^2}{\rho^{2-\epsilon}} + \nu \int_{B_2} \left\{ \left[\frac{\partial}{\partial \rho} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 + \left[\frac{\partial}{\partial z} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 \right\} \frac{1}{\rho^\epsilon}
\]

\[
\leq \frac{\nu}{2} \int_{B_2} \frac{1}{\rho^{2-\epsilon}} \left(\frac{\partial \omega_\theta}{\partial z} \right)^2 + \frac{1}{2 \nu} \int_{B_2} \frac{u_\theta^4}{\rho^{4-\epsilon}} + \frac{\epsilon}{2} \int_{B_2} \frac{|u_\rho| \omega_\theta^2}{\rho^{2-\epsilon}}
\]

\[
+ \nu \frac{\epsilon}{2} (\epsilon - 2) \int_{B_2} \frac{\omega_\theta^2}{\rho^{4-\epsilon}} + \int_{B_2} |g_\theta| \frac{|\omega_\theta|}{\rho^{2-\epsilon}}.
\]

(26)

Clearly we have

\[
\int_{B_2} |g_\theta| \frac{|\omega_\theta|}{\rho^{2-\epsilon}} \leq \| g_\theta \|_{L^6/5} \| \omega_\theta \|_{L^6} \leq c_1 \| \nabla (\omega_\theta) \|_{L^6} \leq c_1 \left(\int_{B_2} \left[\frac{\partial}{\partial \rho} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 + \left[\frac{\partial}{\partial z} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 \right) \frac{1}{\rho^\epsilon} \right)^{1/2}
\]

\[
\leq c_3 + \frac{\nu}{4} \int_{B_2} \left\{ \left[\frac{\partial}{\partial \rho} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 + \left[\frac{\partial}{\partial z} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 \right\} \frac{1}{\rho^\epsilon}.
\]

If we use this estimate in (26), then we obtain

\[
\frac{1}{2} \frac{d}{dt} \int_{B_2} \frac{\omega_\theta^2}{\rho^{2-\epsilon}} + \frac{\nu}{4} \int_{B_2} \left\{ \left[\frac{\partial}{\partial \rho} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 + \left[\frac{\partial}{\partial z} \left(\frac{\omega_\theta}{\rho^{1-\epsilon}} \right) \right]^2 \right\} \frac{1}{\rho^\epsilon}
\]

8
\[\leq \frac{1}{2\nu} \int_{B_2} \frac{u_\theta^4}{\rho^{4-e}} + \frac{\varrho}{2} \left(\int_{B_2} \frac{|u_\rho|^2}{\rho} \frac{\omega_\theta^2}{\rho^{2-e}} + \frac{\nu}{2} (\varepsilon - 2) \int_{B_2} \frac{\omega_\theta^2}{\rho^{4-e}} + c_3. \right) \quad (27) \]

Finally, if we take the limit \(\varepsilon \to 0^+ \), then we have
\[\frac{1}{2} \frac{d}{dt} \int_{B_2} \omega_\theta^2 \rho^2 + \nu \left[\frac{\partial}{\partial \rho} \left(\frac{\varrho}{2} \omega_\theta^2 \rho^2 \right) \right]^2 + \nu \left(\frac{\partial}{\partial z} \left(\frac{\varrho}{2} \omega_\theta^2 \rho^2 \right) \right)^2 \leq \frac{1}{2\nu} \int_{B_2} u_\theta^4 + c_3. \quad (28) \]

Step 3. We multiply (28) by \(\frac{u_\theta^4}{\rho^2} \) and integrate over \(B_2 \)
\[\int_{B_2} \frac{\partial u_\theta u_\theta^3}{\partial t} \rho^2 + \int_{B_2} \frac{u_\rho}{\rho} \frac{\partial u_\theta u_\theta^3}{\partial \rho} \rho^2 + \int_{B_2} \frac{u_z}{\rho} \frac{\partial u_\theta u_\theta^3}{\partial z} \rho^2 + \int_{B_2} \frac{u_\theta^5}{\rho^3} u_\theta = \int_{B_2} \frac{h_\theta u_\theta^3}{\rho^2} + \nu \int_{B_2} \frac{u_\theta^3}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u_\theta}{\partial \rho} \right) + \nu \int_{B_2} \frac{\partial^2 u_\theta u_\theta^3}{\partial z^2 \rho^2} - \nu \int_{B_2} \frac{u_\theta^5}{\rho^3}. \]

Now we calculate
\[\int_{B_2} \frac{\partial u_\theta u_\theta^3}{\partial t} \rho^2 = \frac{1}{4} \int_{B_2} \frac{d}{dt} \int_{B_2} u_\theta^4, \]
\[\int_{B_2} \frac{u_\rho}{\rho} \frac{\partial u_\theta u_\theta^3}{\partial \rho} \rho^2 = \frac{1}{4} \int_{B_2} \frac{u_\rho u_\theta^4}{\rho \rho^2} = -\frac{1}{4} \int_{B_2} \frac{\partial u_\theta u_\theta^4}{\partial \rho} \rho^2, \]
\[\int_{B_2} \frac{u_z}{\rho} \frac{\partial u_\theta u_\theta^3}{\partial z} \rho^2 = -\frac{1}{4} \int_{B_2} \frac{\partial u_z u_\theta^4}{\partial z} \rho^2, \]
\[\int_{B_2} \frac{u_\theta^3}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u_\theta}{\partial \rho} \right) = \int_{B_2} \frac{u_\theta^3}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u_\theta}{\partial \rho} \right) = -3 \int_{B_2} \frac{u_\theta^2}{\rho^2} (\frac{\partial u_\theta}{\partial \rho})^2 + \int_{B_2} \frac{u_\theta^4}{\rho^2}, \]
\[\int_{B_2} \frac{\partial^2 u_\theta u_\theta^3}{\partial z^2 \rho^2} = -3 \int_{B_2} \frac{u_\theta^2}{\rho^2} (\frac{\partial u_\theta}{\partial \rho})^2. \]

Thus we have
\[\frac{1}{4} \frac{d}{dt} \int_{B_2} \frac{u_\theta^4}{\rho^2} = \int_{B_2} \frac{h_\theta u_\theta^3}{\rho^2} - 3\nu \int_{B_2} \frac{u_\theta^2}{\rho^2} (\frac{\partial u_\theta}{\partial \rho})^2 + \nu \int_{B_2} \frac{u_\theta^4}{\rho^2} - 3 \int_{B_2} \frac{u_\theta^2}{\rho^2} (\frac{\partial u_\theta}{\partial \rho})^2, \]

hence
\[\frac{1}{4} \frac{d}{dt} \int_{B_2} \frac{u_\theta^4}{\rho^2} = \frac{1}{4} \int_{B_2} \left(\frac{\partial u_\theta}{\partial \rho} + \frac{u_\theta}{\rho} + \frac{\partial u_z}{\partial z} \right)^4 \rho^2 + 3 \int_{B_2} \frac{u_\theta^4 u_\rho}{\rho^3} + 3\nu \int_{B_2} \left(\frac{\partial u_\theta}{\partial \rho} \right)^2 + \left(\frac{\partial u_\theta}{\partial z} \right)^2 \frac{u_\theta^2}{\rho^2} = \int_{B_2} h_\theta u_\theta^3. \]
If we use (10) then we have

\[
\frac{1}{4} \frac{d}{dt} \int_{B_2} u_\theta^4 \rho^2 + 3 \int_{B_2} \frac{u_\theta^4 u_\rho}{\rho^3} + 3 \nu \int_{B_2} \left((\frac{\partial u_\theta}{\partial \rho})^2 + (\frac{\partial u_\theta}{\partial z})^2 \right) \frac{u_\theta^2}{\rho^2} = \int_{B_2} h_\theta \frac{u_\theta^3}{\rho^2}. \tag{29}
\]

On the other hand we can write

\[
\int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 = \int_{B_2} \frac{1}{\rho^2} \left(\frac{\partial u_\theta^2}{\partial \rho} \right)^2 = 4 \int_{B_2} \frac{u_\theta^2}{\rho^2} \left(\frac{\partial u_\theta}{\partial z} \right)^2 \\
\int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 = \int_{B_2} \left(\frac{1}{\rho^2} \left(\frac{\partial u_\theta^2}{\partial \rho} \right)^2 \right) - \int_{B_2} \frac{1}{\rho^2} \left(\frac{\partial u_\theta^2}{\partial \rho} \right)^2 + \int_{B_2} \frac{u_\theta^4}{\rho^2} = 4 \int_{B_2} \frac{u_\theta^2}{\rho^2} \left(\frac{\partial u_\theta}{\partial z} \right)^2 - \int_{B_2} \frac{u_\theta^4}{\rho^2}.
\]

Thus using these equalities in (29) we get

\[
\frac{1}{4} \frac{d}{dt} \int_{B_2} u_\theta^4 \rho^2 + 3 \int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 + \frac{3}{4} \nu \int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 + \frac{3}{4} \nu \int_{B_2} \frac{u_\theta^4}{\rho^2} = \frac{3}{2} \int_{B_2} \frac{u_\theta^4 u_\rho}{\rho^3} + \int_{B_2} h_\theta \frac{u_\theta^3}{\rho^2}. \tag{30}
\]

From Young inequality we have

\[
\int_{B_2} h_\theta \frac{u_\theta^3}{\rho^2} = \int_{B_2} \frac{u_\theta^3}{\rho^2} \cdot \rho h \leq \frac{\nu}{4} \int_{B_2} \frac{u_\theta^4}{\rho^2} + c \int_{B_2} \rho^4 h_\theta^4,
\]

hence

\[
\frac{1}{4} \frac{d}{dt} \int_{B_2} u_\theta^4 \rho^2 + \frac{3}{4} \nu \int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 + \frac{1}{2} \nu \int_{B_2} \frac{u_\theta^4}{\rho^2} \leq \frac{3}{2} \int_{B_2} \frac{u_\theta^4 |u_\rho|}{\rho^3} + c. \tag{30}
\]

Remark 0.1. In steps 2 and 3 we do not use the assumption on higher regularity of \(u_\rho\).

Step 4. We multiply (30) by \(\frac{2}{\rho^2} \)

\[
\frac{1}{2\nu^2} \frac{d}{dt} \int_{B_2} u_\theta^4 \rho^2 + \frac{3}{2\nu} \int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 + \frac{1}{\nu^2} \int_{B_2} \frac{u_\theta^4}{\rho^2} \leq \frac{3}{\nu^2} \int_{B_2} \frac{u_\theta^4 |u_\rho|}{\rho^3} + c
\]

We add this inequality to (28) and we obtain

\[
\frac{1}{2\nu^2} \frac{d}{dt} \int_{B_2} u_\theta^4 \rho^2 + \frac{1}{2\nu} \frac{d}{dt} \int_{B_2} \omega_\theta^2 \rho^2 + \frac{3}{2\nu} \int_{B_2} \left(\frac{\partial}{\partial \rho} \left(\frac{u_\theta^2}{\rho} \right) \right)^2 + \frac{1}{\nu^2} \int_{B_2} \frac{u_\theta^4}{\rho^2} \leq \frac{3}{\nu^2} \int_{B_2} \frac{u_\theta^4 |u_\rho|}{\rho^3} + c
\]

\[
+ \frac{1}{2\nu} \int_{B_2} \frac{u_\theta^4}{\rho^2} \leq \frac{3}{\nu^2} \int_{B_2} \frac{u_\theta^4 |u_\rho|}{\rho^3} + c
\]

10
Proceeding similarly as in [2] we deduce that $\|\omega\|_{L^2}$ is integrable on $(t_0 - \tau, t_0)$, thus it implies the boundedness of $\|Du\|_{L^2}$ on $(t_0 - \tau, t_0)$, therefore (x_0, t_0) cannot be a singular point for u.

Remark 0.2. The Theorem can be proved also in the case $b = \infty$. Then we have to assume that $\frac{3}{a} + \gamma < 1$. In the proof we put $p = \frac{2a}{2a - \delta a - 3}$, $s = 3 + \delta a$, where δ is such that $\frac{3}{a} + \gamma = 1 - \delta$ and $\delta \in (0, \frac{2a - 3}{a})$.

References

[1] D. Chae, J. Lee, *On the regularity of the axisymmetric solutions of the Navier-Stokes equations*, Math. Z. 239 (2002), no. 4, 645–671.

[2] J. Neustupa, M. Pokorný, *An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations*, J. Math. Fluid Mech. 2 (2000), no. 4, 381-399.

[3] M. Pokorný, *A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations*, Elliptic and parabolic problems (Rolduc/Gaeta, 2001), 233–242, World Sci. Publ., River Edge, NJ, 2002.

[4] G. Seregin, W. Zajączkowski, *A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations*, SIAM J. Math. Anal. 39 (2007), no. 2, 669–685.