Attribute-driven Capsule Network for Entity Relation Prediction

Jiayin Chen¹, Xiaolong Gong², Xi Chen¹, Zhiyi Ma¹

¹ Advanced Institute of Information Technology (AIIT), Peking University, Hangzhou, China
² Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China

2020/04/26
1. Motivation
2. Approach
3. Results
Motivation

Task: predict relationship between a pair of entities with common multi-attribute.

- **book datasets**
 - title & author
 - category
 - date
 - body

- **company datasets**
 - company name
 - company address
 - business scope

(Examples of datasets are shown in the image, with one book dataset and one company dataset.)
Motivation

Problem1: How to learn semantic correlations between attributes?

Entity_S{
 attribute_key1:attribute_value1,
 attribute_key2:attribute_value2,
 ...
 attribute_keyN:attribute_valueN
}

Entity_O{
 attribute_key1:attribute_value1,
 attribute_key2:attribute_value2,
 ...
 attribute_keyN:attribute_valueN
}

Problem2: How to learn relation information between common attributes of a pair entities?
Motivation

A real-world scenario CompanyRelationCollection(CRC) dataset

The relations of CRC include customer(C), provider(P), rival(R)
Approach

What we do:

- Apply capsule networks to entity relation prediction.
- Propose self-attention routing method for attribute information representation.
- Construct a new real-world multi-attribute entity relation dataset.
Approach

The whole framework of our model that consists of four layers.
Approach

self-attention

\[
\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
\]

self-attention routing (our proposed)

\[
a_i = \text{softmax}\left(\frac{E^{k_j}W^q(F_sW^k)^T}{\sqrt{d_w}}\right)
\]

\[
Q = E^{k_j}W^q \quad K = F_sW^k,
\]

\[
A = [a_1, a_2, \ldots, a_B].
\]

\[
S = C \odot A
\]

C represents attribute capsules
A represents weights of attribute capsules
Results

datasets:

- CompanyRelationCollection (CRC)
 https://github.com/cjymz886/ACNet
- BlurbGenreCollection (BGC)
 https://github.com/uhh-lt/BlurbGenreCollection-HMC

Baselines:

- CNN, PCNN,
- BLSTM, ATT-BLSTM
- BERT
- Basic-Caps (our model without self-attention routing)
- ACNet (our model with self-attention routing)

Evaluation metrics:

- Precision
- Recall
- F1

Table 1. Quantitative characteristics of both datasets

	CRC	BGC
Number of entities	58,013	91,892
Number of attributes per entity	6	3
Total number of relationships	3(C,P,R)	3(S,P,D)
Number of relational pairs	61,441	918,920
Train set	43,009	735,136
Validation set	9216	91,892
Test set	9216	91,892
Results

Our attribute-driven capsule network achieves the highest F1 scores.
The self-attention routing approach is effective.
Powerful pre-training model can achieve richful representation information.

Table 3. The results of Comparison of different methods. Best scores are in bold.

Method	CRC		BGC			
	Precision	Recall	F1	Precision	Recall	F1
CNN[10]	0.7706	0.7012	0.7343	0.8420	0.8265	0.8342
PCNN[11]	0.7825	0.7103	0.7447	0.8578	0.8299	0.8436
BLSTM[12]	0.7682	0.7066	0.7361	0.85378	0.8122	0.8324
ATT-BLSTM[13]	0.7694	0.7043	0.7359	0.8621	0.8017	0.8308
BERT[27]	**0.8067**	0.6936	**0.7459**	**0.8628**	0.8345	**0.8484**
Basic-Caps	0.7528	0.7331	0.7428	0.8534	0.8304	0.8417
ACNet	0.7662	**0.7405**	**0.7531**	0.8612	**0.8405**	**0.8507**
Convergence of capsule networks is much faster than other models.

Capsule networks get a stable training process and achieve less fluctuation.

Fig. 3. The result of training loss from all models on two datasets.
THANKS FOR YOUR ATTENTION