Prognostic Value of Platelet-To-Lymphocyte Ratio in Oncologic Outcomes of Gastric Cancers: What Should We Expect from a Meta-Analysis?

Jie Li1,2, Lin Yang3, Yichun Ji4, Dongfeng Chen5, Meiling Zhu6 and Wei-Hong Kuang7*

1Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
2The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
3School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
4Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
5School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
6Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
7The Second Clinical Medicine College, Guangdong Medical University, Dongguan, Guangdong, China

Abstract

Background: Platelet to lymphocyte ratio (PLR) was observed to be a marker of poor prognosis in patients with Gastric Neoplasm. However, the PLR prognostic role in Gastric Neoplasm is still inconsonant. The goal of this analysis was to understand the relation between PLR and outcomes in patients with Gastric Neoplasm by meta-analysis.

Methods: Interrelated literatures were retrieved from EMBASE, web of science, PubMed, Ovid and Cochrane library databases. Risk ratio (HR) and 95% confidence interval (CIs) were used as performance indicators for meta-analysis. Altogether 14,052 patients in 29 articles contained in the meta-analysis last. Outcomes were analyzed using random effect methodology, regression analysis, and sensitivity analyses.

Results: The summary outcomes displayed that the increase of PLR was significantly related to the decrease of OS (HR: 1.526, 95% CI: 1.268-1.836, p<0.001) in patients with Gastric Neoplasm and OS (HR: 1.01, 95% CI: 1.00-1.02, p = 0.000) in patients with Gastric Neoplasm. Subgroup analysis showed that a higher PLR values significantly indicated worse OS in Asian human populations, patients at early stage, sample size>200 and patients receiving chemotherapy. Sensitivity analysis reveal the stabilization of our consequence. The results of regression analysis of sample size display that the sample size was related to heterogeneity. The adjusted random effects pooled HRs which method of the trim-and-fill showed a statistically significant relation of OS and PLR level.

Conclusion: This meta-analysis findings revealed that elevated PLR probably indicates poor prognosis for the patients of Gastric Neoplasm.

Keywords: Gastric Neoplasm; Meta-analysis; PLR; Prognosis

Abbreviations

CI: Confidence Interval
GN: Gastric Neoplasm
HR: Risk Ratio
LVI: Lymphatic Vessels Invasion
NLR: Neutrophil to Lymphocyte Ratio
NOS: Newcastle-Ottawa Scale
OS: Overall Survival
PLR: Platelet to Lymphocyte Ratio
VPI: Visceral Pleural Invasion

Background

As the fourth most pervasive malignant illness and the second reason of cancer-related mortalities worldwide, Gastric Neoplasm (GN) have an overall poor survival [1,2]. Surgery is the only possible way to achieve results in radical gastrectomy. According to the pathological type and clinical stage of Gastric Neoplasm in advanced patients, a biologic target therapy method combining perioperative chemotherapy, radiotherapy and comprehensive treatment should be developed. Since excess treatment can extend survival time of 10-20% of cancer patients with partial or holistic progression, it is urgent to distinguish high-stake patients with worse prognosis so that new stronger programs can be initiated as early as possible to improve survival [3].

Previous studies have determined that the stage, large tumor size, presence of lymphatic vessels (LVI) or Visceral Pleural Invasion (VPI)
and other clinicopathological features are the characteristics of worse prognosis in early GN [4-6]. However, the current staging system for GN is insufficient for indicating the outcome of treatment and reflecting the underlying biological heterogeneity of the results. Except for TNM staging, other factors can only be assessed after surgery [7]. Therefore, it is of major implications to study non-invasive and readily available preconditioning variables to assess survival outcomes for Gastric Neoplasm. A growing body of evidence shows that the inflammatory response may contain a momentous part in the progress of tumors [8-11]. Inflammation factors, such as C-Reactive Protein Neutrophil to Lymphocyte Ratio (NLR), Platelet to Lymphocyte Ratio (PLR), and Glasgow Prognostic Score have assessed in multitudinous types of tumors [12-16]. PLR as an indicator of systemic inflammation was linked to worse prognostic for multifarious cancers including ovarian cancer, carcinoma of the lungs, and Lower gastrointestinal carcinoma and so on [17-20].

Recent researches have shown that PLR has potential prognostic effects in sick people with GN. However, In the light of their findings, there are still inconsistencies regarding the role of PLR in the prognosis of GN. Meta-analysis can surmount the limitations of disparate sample sizes in unit research to produce optimal estimates. So, it is especially important to explore the prognostic function of PLR comprehensively and systematically in Gastric Neoplasm by meta-analysis. In this research, our objective is to predictive the possible prognostic function of pretreatment PLR in GN by write a meta-analysis of all qualified published articles.

Methods

Search strategy

We conducted an integrated search of the literature without date limitation as show below: Web of Science, PubMed, The Cochrane Library, Embase, Scopus, All the literatures were updated to May 31, 2020. The main search terms used to generate the search strategy included: “Stomach Neoplasms” (e.g., “Gastric Neoplasm”, “Cancer of Stomach”, “Gastric Neoplasm,” “Stomach Cancers” and “Gastric Neoplasm”) and “PLR” (e.g., “Platelet ratio of lymphocyte” and “platelet-lymphocyte ratio”). The reference of all enrolled articles was examined for correlation articles.

Inclusion and exclusion criteria

In this meta-analysis, articles were choose based on the major inclusion criteria as show below:

1. The diagnosis of Gastric Neoplasm was definite by preoperative biopsy or postoperative pathological examination.
2. Serum based methods was used to quantify PLR.
3. The PLR and overall survival (OS) were correlation.

The general exclusion criteria for our study were as show below:

1. Case reports, letters, abstracts, review articles, or nonclinical research.
2. Articles were limited to those written in English;
3. Articles was simply not enough data for 95% confidence interval (CI) and estimating hazard ratio (HR);
4. Articles with duplicate analysis or repeat data reported in other studies.

Data extraction and quality assessment

All candidate articles were carefully screened independently by two authors. The articles, which may not be categorized based on titles and abstracts were evaluated full-text search. When occurred the controversy, agreement was attained in discussion with a third author. For each article, Evaluation items were as follows: the first author’s name, total number of cases, publication year, region, gender, cut-off value, follow ups, tumor type, treatment strategy, HRs with 95% CIs and study design. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the included articles independently by two reviewers. Studies with NOS scores ≥6 was assigned for high-grade articles.

Statistical analysis

The HR and 95%CI directly obtained from each article. If HR >1, it represents that GN patients with elevator PLR expression have a poor prognosis. Higgins I-squared and Cochran’s Q test statistic were used to evaluate the heterogeneity among the enrolled trials. Sensitivity analysis was used for assessing risk of bias of individual studies. Pooled HRs, 95% CIs, and p-values were generated employing both fixed-effects (Mantel–Haenszel method) and random effects (DerSimonian–Laird method) models. A random-effects model was used for significant heterogeneity and a fixed-effects model for insignificant heterogeneity. Sources of heterogeneity were explored and explained by subgroup analysis, sensitivity analysis and meta-regression among the outcomes of different articles. Potential Publication bias was evaluated by Egger’s tests and Begg funnel plot, with p<0.05 indicating significant asymmetry. All Statistical Hypothesis Testing were two-sided and values of p<0.05 were identified as statistically significant. All the statistical calculations and analyses were done with STATA statistical software version 12.0 (Texas State University, USA).

Results

Study characteristics

Altogether 519 studies were obtained from the originally search strategies. 29 articles published between 2009 and 2020 with in all 14, 052 patients were ultimately drawn in our meta-analysis [21-49]. We have summarized the study selection process in a flow diagram (Figure 1). The majority of participants were Asian (69%) and others (31%) were Caucasian. Eleven articles were from China, four articles were from Japan, three articles were done in Korea and USA, respectively, two in UK, one in Singapore, Jordan and Turkey, respectively. All HRs and 95% CIs were founded directly in original articles. Nine of these articles enrolled ≥200 patients and about 20 articles had more than 200 patients. And the cut-off values of PLR were not consistent across included articles which varied from 80 to 200. This meta-analysis included patients at all stages of disease. Sufficient information of OS and PLR in patients with GN was offered in all of the 29 articles. Studies characteristics are summarized in Table 1, Figure 1 shows a flow chart of the search results and the number of studies contained in this meta-analysis.

PLR and OS in gastric neoplasm

Summarize the data from all the articles revealed that the increased PLR was conspicuous contact with worse OS (HR: 1.01, 95% CI: 1.00–1.02, P=0.000) and a significant heterogeneity was discovered...
To find the possible source of heterogeneity, subgroup analyses were done. The results revealed that the rise of PLR had more conspicuous prognostic function for OS in Asian populations (HR: 1.0, 95% CI: 1.0–1.01, p=0.00; I²=76.4%, PH=0.248). In addition, when classification by the processing method, increased PLR conspicuous indicated worse OS in patients take in chemotherapy (HR: 1.17, 95% CI: 0.82–1.68, P<0.001) has significant heterogeneity (I² = 92.3%, PH=0.143). But having a mixing process of patients with no prognosis efficiency: (HR 1.41, 95% CI: 1.21–1.64, p<0.00; I²=81%, PH=0.068). It is worth noting that PLR with a cutoff value greater than 160 still suggest a worse OS for GN (HR: 1.01, 95% CI: 1.00-1.02, p=0.00; I²=91.5%, PH=0.005). Interestingly, increased PLR display worse OS in patients with early cancer (Table 2).

Table 1: Key characteristics of all articles in the meta-analysis.

Author	Year	Study region	Ethnicity	Sample size	Follow up (months)	Treatment	Median age	Cut off	Outcome	Stage	HR	NOS score
Weipeng Gong	2017	China	Asian	111	22	chemotherapy	60.00	161	OS	Whole	R(M)	6
Wu Lian Lian G	2015	China	Asian	162	60	Surgery	56.30	208	OS	Whole	R(U)	7
Ella Griz	2018	Vienna	Caucasian	1,469	24	Combined	61.00	264	OS	Whole	R(M)	7
Brian K.	2015	Singapore	Asian	312	43.5	Surgery	62.50	275	OS	Early	P(U)	7
Li-xiang Zhang	2018	China	Asian	904	60	Combined	60.00	160	OS	Whole	R(M)	7
Ma X	2019	China	Asian	119	75	Combined	61.00	160	OS	Whole	R(M)	8
Wenyang Pang	2015	China	Asian	492	60	Combined	63.00	155.67	OS	Whole	R(U)	6
Masayuki Urabe	2017	Japan	Asian	2054	63.3	Surgery	64.00	150.6	OS	Whole	R(M)	8
Takahiro Toyokawa	2018	Japan	Asian	240	100.5	Combined	64.50	188	OS	Advanced	R(M)	6
Shubin Song	2016	China	Asian	1,990	37	Surgery	62.00	139.12	OS	Whole	R(M)	8
Osama Abu-Shawer	2019	Jordan	Asian	502	150	Combined	54.00	150	OS	Whole	R(M)	7
Fuentes H. E	2017	United States	Caucasian	112	21.3	chemotherapy	58.00	150	OS	Whole	R(M)	6
Yoonjoo Lee, MD	2016	Korea	Asian	312	1.5	Combined	65.00	200	OS	Early	R(M)	5
Ali Guner, MD	2018	Korea	Asian	1032	12	Surgery	60.00	124.71	OS	Whole	P(U)	6
Yuka Ohe	2020	Japan	Asian	41	60	Combined	65.00	180	OS	Advanced	R(M)	7
Jennifer M	2014	Canada	Caucasian	93	39.1	Surgery	61.25	245.2	OS	Whole	P(U)	6
Xiaowei Sun	2016	China	Asian	305	24	Combined	57.00	120	OS	Whole	R(U)	8
Jin Wang	2018	China	Asian	273	6	chemotherapy	57.00	150	OS	Advanced	R(U)	6
Suee Lee	2013	Korea	Asian	174	14.9	chemotherapy	60.00	160	OS	Whole	R(M)	6
Guanghui Zhao	2020	China	Asian	110	11.6	chemotherapy	65.00	143.39	OS	Advanced	R(M)	6
Qing Wang	2014	China	Asian	439	40	Surgery	50.00	160	OS	Advanced	R(M)	7
V. P. Jagadish- sham	2016	UK	Caucasian	199	48	Combined	63.00	125.3	OS	Advanced	R(M)	6
Mehmet Aliustaoglu	2009	Turkey	Caucasian	168	45	chemotherapy	60.10	160	OS	Advanced	R(U)	6
Xin Zhou	2016	China	Asian	453	37.7	Combined	60.00	142.5	OS	Whole	R(U)	6
Manikhas G.M	2017	United States	Caucasian	32		chemotherapy	60.00	245.9	OS	Whole	R(M)	6
Nan Jiang	2014	China	Asian	850	42	Combined	64.00	184	OS	Whole	PM	6
Jiaxin Wen	2018	UK	Caucasian	723	10	Combined	66.00		OS	Advanced	P(U)	6
KENJI MI-MATSU	2017	Japan	Asian	271		Combined	68.00	150	OS	Advanced	R(U)	6
Harry E. Fuentes	2017	USA	Caucasian	112	21.3	Combined	58.00	260	OS	Advanced	R(M)	7

OS: Overall Survival; HR: Hazard Ratio; 95% CI, 95% confidence interval; p value, P values of Q test for heterogeneity test; U: Univariate; M: Multivariate. NOS: Newcastle Ottawa Quality Assessment Scale. Combined, treatment contain chemotherapy, surgery and radiotherapy.
Sensitivity analysis

A sensitivity analysis was done to identify potential sources of heterogeneity. For the sake of explore the effect of the individual data of the combined ORs, each individual research was omitted every time. Detail on sensitivity analysis are shown in Figure 3. With sequential omitted of each single article, the overall results were essentially unchanged, this further supports the stabilization of our outcomes.

Table 2: Summary of the meta-analysis results.

Analysis	N	References	Random-effects model	Fixed-effects model	Heterogeneity	References		
			HR (95% CI)	p	HR (95% CI)	p		
OS	29	1-29	1.01(1.00, 1.02)	0	1.00(1.00, 1.00)	0	88.80%	0.0001
Subgroup 1: Surgery		6	1.00(1.00, 1.01)	0	1.00(1.00, 1.00)	0	79.30%	0
Chemotherapy		6	1.17(0.82, 1.68)	0	1.00(1.00, 1.00)	0	92.30%	0.1432
Combined	17	22, 24-26, 28-31, 33, 36, 41, 43, 45-49	1.41(1.21, 1.64)	0	1.29(1.22, 1.37)	0	81.00%	0.0687
Subgroup 2: Asian	21	21, 23-29, 31-33, 35-40, 42-43, 45, 47,49	1.00(1.00, 1.01)	0	1.00(1.00, 1.00)	0	76.40%	0.248
Caucasian	8	22, 30, 34, 41, 42, 44, 46, 48	1.63(1.27, 2.08)	0	1.5(1.4, 1.61)	0	84.00%	0
Subgroup 3: cutoff value>160	18	24-27, 28-30, 32, 36-43, 45-47	1.01(1.00, 1.02)	0	1.00(1.00, 1.00)	0	87.20%	0.135
cutoff value≤160	11	21-23, 31, 33-35, 44-45, 48-49	1.41(1.11, 1.81)	0	1.00(1.00, 1.00)	0	91.50%	0.005
Subgroup 4: Early stage	2	23, 31	1.70(0.81, 1.69)	0.014	1.00(1.00, 1.00)	0.014	83.40%	0.392
Advanced stage	10	33, 37, 39-42, 46-49	1.38(1.09, 1.76)	0	1.00(1.00, 1.00)	0	91.20%	0.008
Whole stage	17	21-22, 24-27, 28-30, 32, 34-36, 38, 43-45	1.29(1.12, 1.49)	0	1.00(1.00, 1.00)	0	88.80%	0.001
Subgroup 5: sample size>200	12	21, 25, 30, 33-34, 35, 38-39, 41-42, 44, 48,	1.77(1.41, 2.21)	0.004	1.8(1.62, 2.01)	0.004	59.60%	0
sample size>200	17	22-24, 26-29, 31-32, 36-37, 40, 43, 45-47	1.00(1.00, 1.01)	0	1.00(1.00, 1.00)	0	85.90%	0.173
Subgroup 6: Univariate analysis	10	23, 26, 32, 34-36, 42-43, 46-47	1.00(1.00, 1.01)	0	1.00(1.00, 1.00)	0	89.60%	0
Multivariate analysis	19	21, 22, 24-25, 27-31, 33, 37-41, 44-45, 48	1.30(1.13, 1.50)	0	1.00(1.00, 1.00)	0	89.10%	0.309

N: Number of Studies; HR: Hazard Ratio; 95% CI: 95% Confidence Interval; PH: P values of Q test for Heterogeneity Test; OS: Overall Survival.
Meta regression analysis

The regression analysis of sample size showed that sample size was related to heterogeneity, which could explain 55% of the heterogeneity. Cut off value, stage, variable, therapy, design, follow up months, age, had no obvious correlation with heterogeneity (Figure 4).

Publication bias

The publication bias was tested by the Berg Funnel Diagram and the Egger line regression. Publication bias was not detected by the funnel plot, but OS publication bias may test by Egger’s line regression test (P>|t|=0.000 for Egger’s test and Pr>|z|=0.378 for Begg’s test) (Figures 5 and 6). The dissymmetry of contour funnel plot was obvious suggested there could be publication bias (Figure 6). The hollow circles explain a number of missing articles that locate in the non-signification region of the plot, indicated that the asymmetry was partly attributed to publication bias, which was further ascertained with the Egger’s test (p<0.001). The adjusted random affects amalgamative HRs of 1.007 (95% CI, 0.998 to 1.017) achieved using the trim-and-fill method, which was concurrent with our primary analysis (Figure 7).
Discussion

A good deal of articles was reported the prognostic function of PLR standard in Gastric Neoplasm patients, but the role of it was inconclusive and inconsistent. So, we write meta-analysis to acquire a clearer estimation of the prognostic function of PLR in GN by evaluate the published articles. Our meta-analysis assembly the results of 14, 052 GN patients from 29 single articles, predicated that increased PLR significantly indicated worse OS (HR: 1.01.95%CI: 1.00–1.02, P ^ 0.001 Figure 2) of GN patients. Subgroup analyses stratified by ethnicity, tumor stage, sample size, variable analysis, treatment methods and PLR cut-off were done, the outcomes revealed that the increased PLR had higher conspicuous prognostic role for OS in Asian populations. In addition, when categorized via treatment methods, the increased PLR significantly indicated lower OS in patients accepting chemotherapy with obvious heterogeneity. It is worth noting that PLR with cutoff value greater than 160 still indicates worse OS of GN.

Sensitivity analysis showed the coincident pooled HRs did nonsignificant change when every single research was moved out. The Sensitivity analysis results clips verified the stabilization of our work. The regression analysis of sample size revealed that the sample size was related to heterogeneity (Figure 3). The regression analysis of sample size displayed that Sample size could explain 55% of the heterogeneity. (Figure 4). Publication bias is done via Begg’s funnel plot and Egger’s line regression test route. Publication bias was not discovered by the funnel plot, but OS publication bias may detect by Egger’s line regression test (Figure 5). The asymmetry of contour funnel plot was obvious, indicating that there may be exist publication bias (Figure 6). The adjusted random effects pooled HRs of 1.007(95% CI, 0.998 to 1.017) gained via the trim-and-fill method, which was coincident with our primary analysis (Figure 7). Taking all these results into account, PLR is an important marker in the prognosis of GN.

Cancer- interrelated inflammation responses play a significant role at disparate stages of cancer progression including initiation, promotion, and metastasis [50-52]. The exact mechanisms underlying the processes between tumor and inflammation in these cancer patients are remain elusive at present [53]. There has been a growing appreciation that the inflammation plays a crucial part of the progression of malignancies [54]. Platelets can enhance the tumor growth and metastasis by platelet-derived thrombospondin, platelet factor and growth factor [55]. It has been suggested that tumor-infiltrating T cells accelerate cancer growth and proliferate through the suppression by anti-tumor immune responses [56]. Therefore, PLR can mirror an improved host inflammatory reactivity to more aggressive tumor biology and higher cancer burden [57].

PLR, which can beneficial to the clinical decision-making process with respect to GN treatment and results, is a promising prognostic inflammation biomarker. There were a few limitations of this analysis need to be elaborately take into account. First, there was significant heterogeneity in the study time including sample size (12=55%, P=0.002^0.05). The origin of heterogeneity cannot be fully traced, although the use of sensitivity analysis and meta regression analysis, Second, the study was excluding the articles published not in English language, so the possibility of publication bias cannot be excluded. Furthermore, Heterogeneity may influence the explain of the outcomes of our meta-analyses. Heterogeneity could be due to a variety of factors, such as age distribution, Gender, PLR Cut-Off Value and so on.

Conclusion

In conclusion, this meta-analysis suggests that the increased PLR might be an inexpensive and effective prognostic factor of patients with GN. In future, more articles are necessary to explore these findings in the future.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This study is independent research funded by the following grants: Guangdong Provincial Science and Technology Planning Project 2014B090902002, Traditional Chinese Medicine Administration Project of Guangdong Province, China (no. 20203010), Science and Technology Program of Guangdong, China (no. 2020A151501325). The funding bodies have no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author contributions

WeiHong Kuang designed the study and had full access to all data in the study and take responsibility for the integrity of data and the accuracy of the data analysis. Jie Liu had roles in the data analysis, literature searches, and was a major contributor in writing the manuscript. Lin yang had roles inpatient management, data analysis, and data interpretation. Yichun Ji contributed to data collection. Dongfeng Chen and Meiling Zhu responsibility for the experiments designed of the study and data collection. All authors contributed to approved and reviewed the final version of the manuscript. Jie Liu and Jianjiang Hua share the first authorship; the order in which they are listed was determined by workload.

Acknowledgments

The authors thank the kindness help given by all of the people who have contributed to this study.

References

1. Marimuthu A, Jacob HKC, Jakharia A, Subbanayya Y, Keerthikumar S, et al. (2011) Gene expression profiling of gastric cancer. J Proteomics Bioinform 4: 74–82.
2. Shen L, Shan Y-S, Hu H-M, Price TJ, Sirohi B, et al. (2013) Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol 14: e535-e547.
3. Zhu YP, Sheng LL, Wu J, Yang M, Cheng XF, et al. (2018) Loss of ARID1A expression is associated with poor prognosis in patients with gastric cancer. Hum Pathol 78: 28-35.

4. Malogolowkin M H, Katzenein H M, Krailo M, Chen Z, Quinn JJ, et al. (2008) Redefining the role of doxorubicin for the treatment of children with hepatoblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26: 2379-2383.

5. Danielsen SA, Lind GE, Kolberg M, Holand M, Bjerkehagen B, et al. (2015) Methylated RASSF1A in malignant peripheral nerve sheath tumors identifies neurofibromatosis type 1 patients with inferior prognosis. Neurol- oncology 17: 63-69.

6. Kikuchi E, Margulis V, Karakiewicz PI, Roscigno M, Mikami S, et al. (2009) Lymphovascular invasion predicts clinical outcomes in patients with node-negative upper tract urothelial carcinoma. J Clin Oncol 27: 612-618.

7. Fan S, Li T, Zhou P, Peng Q, Zhu Y (2019) Development and validation of nomogram combining serum biomarker for predicting survival in patients with resected rectal cancer. Biosci Rep 39: BSR20192636.

8. Antonio B, Vincenzo Q, Vitale DV, Falco M, Luciano A, et al. (2017) Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment. Nutrients 9: 210.

9. Guo TL, Chi RP, Hernandez DM (2007) Decreased 7,12-dimethylbenz[a]anthracene-induced carcinogenesis coincides with the induction of antitu- mor immunities in adult female B6C3F1 mice pretreated with genistin. Carcinogenesis 28: 2560-2566.

10. Hu Z, Jia C, Shen C, Shen R, et al. (2019) Prognostic nomogram incorporating inflammatory cytokines for overall survival in patients with aggressive non-Hodgkin’s lymphoma. EBioMedicine 41: 167-174.

11. Laird BJ, Fallon M, Hjermstad MJ, Tuck S, Kaasa S, et al. (2016) Quality of Life in Patients with Advanced Cancer: Differential Association with Performance Status and Systemic Inflammatory Response. J Clin Oncol 34: 2769-2775.

12. Berghoff AS, Wolpert F, Holland-Letz T, Koller R, Widhalm G, et al. (2017) Combining standard clinical blood values for improving survival prediction in patients with newly diagnosed brain metastases-development and validation of the LabBM score. Neuro Oncol 19: 1255-1262.

13. Kimura J, Kunisaki C, Makino H, Oshima T, Ota M, et al. (2015) Evaluation of the Glasgow Prognostic Score in patients receiving chemoradio-therapy for stage III and IV esophageal cancer. Dis Esophagus 29: 1071-1080.

14. Zhao Q T, Yuan Z, Zhang H, Zhang XP, Wang HE, et al. (2016) Prognostic role of platelet to lymphocyte ratio in non-small cell lung cancers: A meta-analysis including 3,720 patients. Int J Cancer 139: 164-170.

15. Takeuchi H, Abe M, Takami Y, Hashimoto T, Miyawaki M, et al. (2019) Elevated red cell distribution width to platelet count ratio predicts poor prognosis in patients with breast cancer. Sci Rep 9: 3033.

16. Jiang Y, Qu S, Pan X (2020) Prognostic Nomogram for Locoregionally Advanced Nasopharyngeal Carcinoma. Sci Rep 10: 861.

17. Ye G L, Chen Q, Chen X (2019) The prognostic role of platelet-to-lymphocyte ratio in patients with acute heart failure: A cohort study. Sci Rep 9: 10659.

18. Kim S Y, Moon C M, Yoon H J (2019) Diffuse splenic FDG uptake is predictive of clinical outcomes in patients with rectal cancer. Sci Rep 9: 1313.

19. Hui L, Hong G, Yangying C, Zhang J, Fan R, et al. (2018) Systemic inflammation biomarkers predict survival in patients of early stage non-small cell lung cancer treated with stereotactic ablative radiotherapy - a single center experience. J Cancer 9: 182-188.

20. Hamada T, Cao Y, Qian ZR, Masugi Y, Nowak JA, et al. (2017) Aspirin Use and Colorectal Cancer Survival According to Tumor CD274 (Programmed Cell Death 1 Ligand 1) Expression Status. J Clin Oncol 35: 1836-1844.

21. Gong W, Zhao L, Dong Z, Dou Y, Liu Y, et al. (2018) After neoadjuvant chemotherapy platelet/lymphocyte ratios negatively correlate with prognosis in gastric cancer patients. J Clin Lab Anal 32: e22364.

22. Grizl E, Posch F, Königsbrügge O, Schwarzsinger I, Lang JM, et al. (2018) Association of Platelet-to-Lymphocyte Ratio and Neutrophil-to-Lympho- cyte Ratio with the Risk of Thromboembolism and Mortality in Patients with Cancer. Thromb Haemost 118: 1875-1884.Aa

23. Goh BKP, Chok AV, Allen Jr JC, Quek R, Teo MCC, et al. (2016) Blood neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios are independent prognostic factors for surgically resected gastrointestinal stromal tu- mors. Surgery 159: 1146-1156.

24. Zhang LX, Wei ZJ, Xu AM, Zhang JH (2018) Can the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio be beneficial in predicting lymph node metastasis and promising prognostic markers of gastric cancer pa- tients? Tumor maker retrospective study. Int J Surg 56: 320-327.

25. Ma X, Zhao W, Zhuang C, Wang X, Tu L, et al. (2017) Clinicopathologi- cal classification and prognostic factors of gastrointestinal neuroendocrine neoplasms an analysis of 119 cases. Zhonghua Wei Chang Wai Ke Za Zhi 20: 997-1001.

26. Pang W, Lou N, Jin C (2016) Combination of preoperative platelet/lym- phocyte and neutrophil/lymphocyte rates and tumor-related factors to pre- dict lymph node metastasis in patients with gastric cancer. Eur J Gastroen- terol Hepatol 28: 493-502.

27. Urabe M, Yamashita H, Watanabe T, Seto Y (2018) Comparison of prog- nostic abilities among preoperative laboratory data indices in patients with resectable gastric and esophagogastric junction adenocarcinoma. World J Surg 42: 185-194.

28. Song S, Li C, Li S, Gao H, Lan X, et al. (2017) Derived neutrophil to lym- phocyte ratio and monocyte to lymphocyte ratio may be better biomarkers for predicting overall survival of patients with advanced gastric cancer. Onco Targets Ther 10: 3145-3154.

29. Abu-Shawer O, Abu-Shawer M, Haimour A, Alhouri A, Alkhatib AA, et al. (2019) Hematologic markers of distant metastases in gastric cancer. J Gastrointest Oncol 10: 529-536.

30. Fuentes HE, Oramas DM, Paz LH, Wang Y, Andrade XA, et al. (2017) Ve- nous Thromboembolism Is an Independent Predictor of Mortality Among Patients with Gastric Cancer. J Gastrointest Oncol 49: 415-421.

31. Lee Y, Kim YW, Park DK, Hwang IC (2017) Inverse Association between Platelet-Lymphocyte Ratio and Prognosis in Terminally Ill Cancer Pa- tients: A Preliminary Study. J Palliat Med 20: 533-537.

32. Guner A, Kim SY, Yu JE, Min IK, Roh YH, et al. (2018) Parameters for predicting surgical outcomes for gastric cancer patients: simple is better than complex. Ann Surg Oncol 25: 3239-3247.

33. Ohe Y, Fushida S, Yamaguchi T, Kinoshita J, Saito H, et al. (2020) Pe- ripheral Blood Platelet-Lymphocyte Ratio Is Good Predictor of Chemo- sensitivity and Prognosis in Gastric Cancer Patients. Cancer Manag Res 12: 1303-1311.

34. Racx JM, Cleghorn MC, Jimenez MC, Atenauf EG, Jackson TD, et al. (2015) Predictive ability of blood neutrophil-to-lymphocyte and plate- let-to-lymphocyte ratios in gastrointestinal stromal tumors. Ann Surg On- col 22: 2343-2350.

35. Lian L, Xia YY, Zhou C, Shen XM, Li XL, et al. (2015) Application of platelet/lymphocyte and neutrophil/lymphocyte ratios in early diagnosis and prognostic prediction in patients with resectable gastric cancer. Cancer Biomark 15: 899-907.
36. Sun X, Liu X, Liu J, Xu D, Li W, et al. (2016) Preoperative neutrophil-to-lymphocyte ratio plus platelet-to-lymphocyte ratio in predicting survival for patients with stage I-II gastric cancer. Chin J Cancer 35: 57.
37. Wang J, Qu J, Che X, Li Z, Liu J, et al. (2018) Pretreatment platelet-to-lymphocyte ratio is associated with the response to first-line chemotherapy and survival in patients with metastatic gastric cancer. J Clin Lab Anal 32: e22185.
38. Lee S, Oh SY, Kim SH, Lee JH, Kim MC, et al. (2013) Prognostic significance of neutrophil lymphocyte ratio and platelet-lymphocyte ratio in advanced gastric cancer patients treated with FOLFOX chemotherapy. BMC Cancer 13: 350-350.
39. Zhao G, Liu N, Wang S, Guo J, Song X, et al. (2020) Prognostic significance of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in patients with metastatic gastric cancer. Medicine (Baltimore) 99: e19405.
40. Wang Q, Yang Y, Zhang YP, Zou Z, Qian X, et al. (2014) Prognostic value of carbohydrate tumor markers and inflammation-based markers in metastatic or recurrent gastric cancer. Med Oncol 31: 289.
41. Jagadesham VP, Lagarde SM, Immanuel A (2017) Systemic inflammatory markers and outcome in patients with locally advanced adenocarcinoma of the oesophagus and gastro-oesophageal junction. Br J Surg 104: 401-407.
42. Aliaustaoglu M, Bilici A, Ustaaliaoglu BB (2010) The effect of peripheral blood values on prognosis of patients with locally advanced gastric cancer before treatment. Med Oncol 27: 1060-1065.
43. Zhou X, Xu L, Huang Z, Zhang L, Zhang H, et al. (2016) The hematologic markers as prognostic factors in patients with resectable gastric cancer. Cancer Biomark 17: 359-367.
44. Martinez-Lago N, Lesta-Mellid R, Rendo CR (2018) The prognostic value of systemic inflammatory factors in patients with HER2-positive metastatic gastric cancer. Ann Oncol 29.
45. Jiang N, Deng JY, Liu Y, Ke B, Liu H-G, et al. (2014) The role of preoperative neutrophil-lymphocyte and platelet-lymphocyte ratio in patients after radical resection for gastric cancer. Biomarkers 19: 444-451.
46. Wen J, Bedford M, Begum R, Mitchell H, Hodson J, et al. (2018) The value of inflammation based prognostic scores in patients undergoing surgical resection for oesophageal and gastric carcinoma. J Surg Oncol 117: 1697-1707.
47. Mimatsu K, Fukino N, Ogasawara Y, Saino Y, Oida T, et al. (2017) Utility of inflammatory marker- and nutritional status-based prognostic factors for predicting the prognosis of stage iv gastric cancer patients undergoing non-curative surgery. Anticancer Res 37: 4215-4222.
48. Takahiro T, Kazuya M, Tatsuro T, Sakurai K, Amano R, et al. (2018) Comparison of the prognostic impact and combination of preoperative inflammation-based and/or nutritional markers in patients with stage II gastric cancer. Oncotarget 9: 29351-29364.
49. Qian H, Chao X, Ding WX (2018) A PINK1-mediated mitophagy pathway decides the fate of tumors-to be benign or malignant? Autophagy 14: 563-566.
50. Sun B, Karin M (2014) The therapeutic value of targeting inflammation in gastrointestinal cancers. Trends Pharmacol Sci 35: 349-357.
51. Li J, Maruyama T, Zhang P, Konkel JE, Hoffman V, et al. (2010) Mutation of inhibitory helix-loop-helix protein Id3 causes y6 T-cell lymphoma in mice. Blood 116: 5615-5621.
52. Ilagumumaran S, Briol A, Hoessli DC (1998) CD44 selectively associates with active Src family protein tyrosine kinases Lck and Fyn in glycosphin-golipid-rich plasma membrane domains of human peripheral blood lymphocytes. Blood 91: 3901-3908.
53. Qin H, Yu H, Sheng J, Zhang D, Shen N, et al. (2019) PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly (I-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. Adv Sci 6: 1900327.
54. Li K, Duan WC, Zhao HB, Wang L, Wang W, et al. (2019) Preoperative Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio are Associated with the Prognosis of Group 3 and Group 4 Medulloblastoma. Sci Rep 9: 13239.
55. Kohlhppe FJ, Broucek JR, Hughes T, Huelsmann EJ, Lusciks J, et al. (2015) NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade. J Immunother Cancer 3: 18.
56. Huang XZ, Chen WJ, Zhang X, Wu CC, Zang CY, et al. (2017) An Elevated Platelet-to-Lymphocyte Ratio Predicts Poor Prognosis and Clinicopathological Characteristics in Patients with Colorectal Cancer: A Meta-Analysis. Dis Markers 2017: 1053125.
57. Huang XZ, Chen WJ, Zhang X, Zheng S (2017) Preoperative neutrophil-to-lymphocyte ratio and tumor-related factors to predict lymph node metastasis in nonfunctioning pancreatic neuroendocrine tumors. Sci Rep 7: 17506.
Submit Your Manuscript: https://www.heraldopenaccess.us/submit-manuscript