OKOUNKOV BODIES AND RESTRICTED VOLUMES ALONG
VERY GENERAL CURVES

SHIN-YAO JOW

Abstract. Given a big divisor D on a normal complex projective variety X, we show that the restricted volume of D along a very general complete-intersection curve $C \subset X$ can be read off from the Okounkov body of D with respect to an admissible flag containing C. From this we deduce that if two big divisors D_1 and D_2 on X have the same Okounkov body with respect to every admissible flag, then D_1 and D_2 are numerically equivalent.

Introduction

Motivated by earlier works of Okounkov [Oko96, Oko03], Lazarsfeld and Mustață gave an interesting construction in a recent paper [LM08], which associates a convex body $\Delta(D) \subset \mathbb{R}^d$ to any big divisor D on a projective variety X of dimension d. (Independent of [LM08], Kaveh and Khovanskii also came up with a similar construction around the same time: see [KK08, KK09].) This so called “Okounkov body” encodes many asymptotic invariants of the complete linear series $|mD|$ as m goes to infinity. For example, the volume of D, which is the limit

$$\text{vol}_X(D) = \lim_{m \to \infty} \frac{h^0(X, mD)}{m^d/d!},$$

is equal to $d!$ times the Euclidean volume $\text{vol}_{\mathbb{R}^d}(\Delta(D))$ of $\Delta(D)$. This viewpoint renders transparent several basic properties about volumes of big divisors.

Let us recall now the construction of Okounkov bodies from [LM08]. The construction depends upon the choice of an admissible flag on X, which is by definition a flag

$$Y_{\bullet} : X = Y_0 \supset Y_1 \supset Y_2 \supset \cdots \supset Y_{d-1} \supset Y_d = \{\text{pt}\}$$

of irreducible subvarieties of X, where $\text{codim}_X(Y_i) = i$ and each Y_i is nonsingular at the point Y_d. The purpose of this flag is that it will determine a valuation $\nu_{Y_{\bullet}}$ which maps any nonzero invariant of the complete linear series $|mD|$ as m goes to infinity. For example, the volume of D, which is the limit

$$\text{vol}_X(D) = \lim_{m \to \infty} \frac{h^0(X, mD)}{m^d/d!},$$

is equal to $d!$ times the Euclidean volume $\text{vol}_{\mathbb{R}^d}(\Delta(D))$ of $\Delta(D)$. This viewpoint renders transparent several basic properties about volumes of big divisors.

Let us recall now the construction of Okounkov bodies from [LM08]. The construction depends upon the choice of an admissible flag on X, which is by definition a flag

$$Y_{\bullet} : X = Y_0 \supset Y_1 \supset Y_2 \supset \cdots \supset Y_{d-1} \supset Y_d = \{\text{pt}\}$$

of irreducible subvarieties of X, where $\text{codim}_X(Y_i) = i$ and each Y_i is nonsingular at the point Y_d. The purpose of this flag is that it will determine a valuation $\nu_{Y_{\bullet}}$ which maps any nonzero invariant of the complete linear series $|mD|$ to a d-tuple of nonnegative integers

$$\nu_{Y_{\bullet}}(s) = (\nu_1(s), \ldots, \nu_d(s)) \in \mathbb{N}^d$$

defined as follows. Assuming that all the Y_i’s are smooth after replacing X by an open subset, we can set to begin with

$$\nu_1(s) = \text{ord}_{Y_1}(s).$$
After choosing a local equation for Y_1 in X, s determines a section

$$s_1 \in H^0(X, mD - \nu_1(s)Y_1)$$

that does not vanish identically along Y_1, so after restriction we get a nonzero section

$$s_1 \in H^0(Y_1, mD - \nu_1(s)Y_1).$$

Then we set

$$\nu_2(s) = \text{ord}_{Y_2}(s_1),$$

and continue in this manner to define the remaining $\nu_i(s)$. Once we have the valuation ν_{Y^*}, we can define

$$\Gamma(D)_m := \text{Im}((H^0(X, mD) - \{0\}) \xrightarrow{\nu_{Y^*}} \mathbb{N}^d).$$

Then the Okounkov body of D (with respect to the flag Y^*) is the compact convex set

$$\Delta(D) = \Delta_{Y^*}(D) := \text{closed convex hull} \left(\bigcup_{m \geq 1} \frac{1}{m} \cdot \Gamma(D)_m \right) \subset \mathbb{R}^d.$$

Lazarsfeld and Mustaţă have shown in [LM08, Proposition 4.1] that Okounkov bodies are numerical in nature, i.e. if D_1 and D_2 are two numerically equivalent big divisors, then $\Delta_{Y^*}(D_1) = \Delta_{Y^*}(D_2)$ for every admissible flag Y^*. It is, however, not clear whether one can read off all numerical invariants of a given big divisor from its Okounkov bodies with respect to various flags. In this paper, we give an affirmative answer to this question when X is normal:

Theorem A. Let X be a normal complex projective variety of dimension d. If D_1 and D_2 are two big divisors on X such that

$$\Delta_{Y^*}(D_1) = \Delta_{Y^*}(D_2)$$

for every admissible flag Y^* on X, then D_1 and D_2 are numerically equivalent.

We will derive Theorem A from the following Theorem B, which says that the restricted volume of D to a very general complete-intersection curve can be read off from its Okounkov body:

Theorem B. Let X be a normal complex projective variety of dimension d. Let D be a big divisor on X, and let A_1, \ldots, A_{d-1} be effective very ample divisors on X. If the A_i’s are very general, and Y^* is an admissible flag such that

$$Y_r = A_1 \cap \cdots \cap A_r, \quad \forall r \in \{1, \ldots, d-1\},$$

then the Euclidean volume (length) of

$$\Delta_{Y^*}(D)|_{0}^{d-1} := \{ x \in \mathbb{R} \mid (0, \ldots, 0, x) \in \Delta_{Y^*}(D) \}$$

is equal to the restricted volume of D to the curve Y_{d-1}, which is the limit

$$\text{vol}_{X|Y_{d-1}}(D) = \lim_{m \to \infty} \frac{\dim(H^0(X, mD)|_{Y_{d-1}})}{m}.$$
See Theorem 3.4 for a full statement, including the precise general position condition we need on the very ample divisors A_i.

Theorem A will follow from Theorem B because the difference between $Y_{d-1} \cdot D$ and $\text{vol}_{X|Y_{d-1}}(D)$ can also be read off from the Okounkov bodies, and that very general complete-intersection curves are enough to span $N_1(X)$, the dual of the Néron-Severi space $N^1(X)$. Theorem B in turn is proved by introducing certain graded linear series $V_*(D; a)$ on Y_{d-1} and studying its asymptotic behaviors; in particular, we will need a way to compute the volume of $V_*(D; a)$. This is accomplished by generalizing [ELMNP2, Theorem B] which computes the restricted volume by asymptotic intersection number. More precisely, recall from [LM08, Definition 2.5] that a graded linear series W_\ast on a variety X is said to satisfy condition (B) if $W_m \neq 0$ for all $m \gg 0$, and if for all sufficiently large m the rational map $\phi_m: X \dasharrow \mathbb{P}(W_m)$ defined by $|W_m|$ is birational onto its image. Then we have

Theorem C. Let X be a projective variety of dimension d, and let W_\ast be a graded linear series on X satisfying the condition (B) above. Fix a positive integer $m > 0$ sufficiently large so that the linear series W_m defines a birational mapping of X, and denote by $B_m = \text{Bs}(W_m)$ the base locus of W_m. We define the moving self-intersection number $(W_m)^{[d]}$ of W_m by choosing d general divisors $D_1, \ldots, D_d \in |W_m|$ and setting

$$(W_m)^{[d]} := \#(D_1 \cap \cdots \cap D_d \cap (X - B_m)).$$

Then the volume of W_\ast, which is by definition

$$\text{vol}(W) := \lim_{m \to \infty} \frac{\dim(W_m)}{m^d/d!},$$

can be computed by the following asymptotic intersection number:

$$\text{vol}(W) = \lim_{m \to \infty} \frac{(W_m)^{[d]}}{m^d}. $$

This paper is organized into three sections. In Section 1 we collect some definitions and notations about graded linear series in general, and define the graded linear series $V_*(D; a)$ which will play a key role in the proof of Theorem B. Then we study the properties of $V_*(D; a)$ in Section 2 and use them to prove the theorems in Section 3.

Acknowledgements. The author would like to thank Robert Lazarsfeld and Mircea Mustaţă for valuable discussions and suggestions.

1. **Graded linear series**

In this section we first introduce some basic definitions and notations about graded linear series which we will need. Then we define a graded linear series $V_*(D; a)$, which will play a key role in the proof of Theorem B. We refer the readers to [Laz04, §2.4] for more details on graded linear series.
Definition 1.1. Let X be an irreducible variety, and let L be a line bundle on X. A graded linear series on X associated to L consists of a collection

$$V_\bullet = \{V_m\}_{m \in \mathbb{N}}$$

of finite dimensional vector subspaces $V_m \subset H^0(X, L^\otimes m)$, satisfying

$$V_k \cdot V_\ell \subset V_{k+\ell} \quad \text{for all } k, \ell \in \mathbb{N},$$

where $V_k \cdot V_\ell$ denotes the image of $V_k \otimes V_\ell$ under the homomorphism

$$H^0(X, L^\otimes k) \otimes H^0(X, L^\otimes \ell) \longrightarrow H^0(X, L^\otimes (k+\ell))$$
determined by multiplication. It is also required that V_0 contains all constant functions.

Notation 1.2. Let X be a projective variety and let L be a line bundle on X. We write $C_\bullet(X, L)$ to mean the complete graded linear series associated to L, namely

$$C_m(X, L) = H^0(X, L^\otimes m) \quad \text{for all } m \in \mathbb{N}.$$

If D is a Cartier divisor on X, we will also write $C_\bullet(X, D)$ for $C_\bullet(X, \mathcal{O}_X(D))$.

Definition 1.3. Given two graded linear series V_\bullet and W_\bullet, we define a morphism $f_\bullet: V_\bullet \to W_\bullet$ of graded linear series to be a collection of linear maps $f_m: V_m \to W_m$, $m \in \mathbb{N}$, such that

$$f_{k+\ell}(s_1 \otimes s_2) = f_k(s_1) \otimes f_\ell(s_2)$$

for all $s_1 \in V_k$, $s_2 \in V_\ell$ and all $k, \ell \in \mathbb{N}$. It is also required that f_0 preserves constant functions.

Example 1.4. Let X be a projective variety and let L and M be two line bundles on X. If V_\bullet is a graded linear series associated to L, and $s \in H^0(X, M)$, then the linear maps

$$V_m \to H^0(X, L^\otimes m \otimes M^\otimes m), \quad s' \mapsto s' \otimes s^\otimes m$$

for all $m \in \mathbb{N}$ form a morphism from V_\bullet to $C_\bullet(X, L \otimes M)$. We will denote this morphism as $\mu(s)_\bullet: V_\bullet \to C_\bullet(X, L \otimes M)$.

Definition 1.5. Let U_\bullet, V_\bullet, and W_\bullet be graded linear series.

(a) We say that U_\bullet is a subseries of V_\bullet, denoted by $U_\bullet \subset V_\bullet$, if $U_m \subset V_m$ for all $m \in \mathbb{N}$.

(b) If $f_\bullet: V_\bullet \to W_\bullet$ is a morphism of graded linear series, then the image of f_\bullet, denoted by $\text{Im}(f_\bullet)$, is the subseries of W_\bullet consisting of the images of f_m for all $m \in \mathbb{N}$. If U_\bullet is a subseries of W_\bullet, then the preimage of U_\bullet under f_\bullet, denoted by $f_\bullet^{-1}(U_\bullet)$, is the subseries of V_\bullet consisting of the preimages of U_m under f_m for all $m \in \mathbb{N}$.

(c) If V_\bullet is a graded linear series on the variety X, and Y is a subvariety of X, then the restriction of V_\bullet to Y, denoted by $V_\bullet|_Y$, is the graded linear series on Y obtained by restricting all of the sections in V_m to Y for all $m \in \mathbb{N}$.
Definition 1.6. Let W_* be a graded linear series on a variety X. The stable base locus of W_*, denoted by $B(W_*)$, is the (set-theoretic) intersection of the base loci $Bs(W_m)$ for all $m \geq 1$:

$$B(W_*) := \bigcap_{m \geq 1} Bs(W_m).$$

If $W_* = C_*(X, D)$, the complete graded linear series of a divisor D, then we will simply denote its stable base locus by $B(D)$.

It is a simple fact that for any graded linear series W_*, $Bs(W_m) = B(W_*)$ for all sufficiently large and divisible m (the proof given in [Laz04, Proposition 2.1.21] for complete graded linear series can be used without change). Hence $B(D)$ makes sense even if D is a \mathbb{Q}-divisor.

The stable base locus of a divisor D does not depend only on the numerical equivalence class of D, so it is sometimes preferable to work instead with the augmented base locus $B_+(D)$, defined as

$$B_+(D) = B(D - A)$$

for any small ample \mathbb{Q}-divisor A, this being independent of A provided that it is sufficiently small.

We will also need the following concept of asymptotic order of vanishing which was studied in [ELMNP1]:

Definition 1.7. Let X be a projective variety, and let E be a prime Weil divisor not contained in the singular locus of X. Given a graded linear series W_* on X, we define

$$\text{ord}_E(W_m) := \min \{ \text{ord}_E(s) \mid s \in W_m \}.$$

If $W_m \neq 0$ for all $m \gg 0$, then we can define the asymptotic order of vanishing of W_* along E as

$$\text{ord}_E(W_*) := \lim_{m \to \infty} \frac{\text{ord}_E(W_m)}{m}.$$

(cf. [ELMNP1] Definition 2.2) When W_* is the complete graded linear series associated to a Cartier divisor D, we will simply write $\text{ord}_E(|mD|)$ for $\text{ord}_E(W_m)$, and $\text{ord}_E(||D||)$ for $\text{ord}_E(W_*)$.

Next we want to recall conditions (A)–(C) on graded linear series introduced in [LM08 §2.3], which are mild requirements needed for most major statements in that paper. We have already seen condition (B) in the Introduction.

Definition 1.8. Let W_* be a graded linear series on an irreducible variety X of dimension d.

(a) We say that W_* satisfies condition (A) with respect to an admissible flag Y_* if there is an integer $b > 0$ such that for every $0 \neq s \in W_m$,

$$\nu_i(s) \leq mb$$
for all $1 \leq i \leq d$.

(b) We say that W_\bullet satisfies condition (B) if $W_m \neq 0$ for all $m \gg 0$, and if for all sufficiently large m the rational map
\[
\phi_m : X \dasharrow \mathbb{P}(W_m)
\]
defined by $|W_m|$ is birational onto its image.

(c) Assume that X is projective, and that W_\bullet is a graded linear series associated to a big divisor D. We say that W_\bullet satisfies condition (C) if:

- For every $m \gg 0$ there exists an effective divisor F_m on X such that the divisor $A_m := mD - F_m$ is ample; and
- For all sufficiently large p,
\[
H^0(X, \mathcal{O}_X(pmD - pF_m)) \subset W_{pm} \subset H^0(X, \mathcal{O}_X(pmD)),
\]
where the first inclusion is the natural one determined by pF_m.

In the proof of [LM08, Lemma 1.10], it was established that condition (A) holds automatically if X is projective. Hence condition (A) is insignificant for us since we will be working with projective varieties. Also note that condition (C) implies condition (B).

We will now define a graded linear series which is particularly relevant to our study of Okounkov bodies. For the basic setting, let X be an irreducible projective variety of dimension d, and let A_1, \ldots, A_{d-1} be general effective very ample divisors on X. Then by Bertini’s theorem, for each $r \in \{1, \ldots, d-1\}$,
\[
Y_r := A_1 \cap \cdots \cap A_r
\]
is an irreducible subvariety of X which is of codimension r in X and smooth away from the singular locus X_{sing} of X. Hence if we let $Y_0 := X$ and let Y_d be a point in $Y_{d-1} - X_{\text{sing}}$, then
\[
Y_\bullet : Y_0 \supset Y_1 \supset \cdots \supset Y_{d-1} \supset Y_d
\]
is an admissible flag on X. We let $\nu_\bullet = (\nu_1, \ldots, \nu_d)$ be the valuation determined by the flag Y_\bullet as described in the Introduction.

Definition 1.9. Let X and Y_\bullet be as in the preceding paragraph, and let D be a big Cartier divisor on X. Given an r-tuple of nonnegative integers $a = (a_1, \ldots, a_r)$ where $r \in \{0, \ldots, d-1\}$, the space of sections
\[
\{ s \in H^0(X, mD) \mid \nu_i(s) \geq ma_i, \ i = 1, \ldots, r \} \subset C_m(X, D), \ m \in \mathbb{N}
\]
form a subseries of $C_\bullet(X, D)$, and one can define a morphism from this subseries to $C_\bullet(Y_r, D - a_1A_1 - \cdots - a_rA_r)$ using an iterated restrictions process similar to the one we saw in the Introduction when we defined the valuation ν_\bullet. We then set
\[
V_\bullet(D; a) = V_\bullet(D; a_1, \ldots, a_r) \subset C_\bullet(Y_r, D - a_1A_1 - \cdots - a_rA_r)\
\]
to be the image of this morphism.

More pedantically, \(V_\bullet(D; a) \) can be defined inductively in the following way. If \(r = 0 \), then we simply set

\[
V_\bullet(D; 0) := C_\bullet(Y_0, D).
\]

Assume that \(r > 0 \) and \(V_\bullet(D; a_1, \ldots, a_{r-1}) \) has been defined. To define \(V_\bullet(D; a_1, \ldots, a_r) \), we first pick a section \(s_r \in H^0(Y_{r-1}, \mathcal{O}_{Y_{r-1}}(A_r)) \) such that \(\text{div}(s_r) = Y_r \), and let

\[
\mu(s_r^{\otimes a_r})_* : C_\bullet(Y_{r-1}, D - a_1A_1 - \cdots - a_rA_r) \to C_\bullet(Y_{r-1}, D - a_1A_1 - \cdots - a_{r-1}A_{r-1})
\]

be the morphism as defined in Example 1.4. Then we define

\[
V_\bullet(D; a_1, \ldots, a_r) := \left(\mu(s_r^{\otimes a_r})_*(-1)(V_\bullet(D; a_1, \ldots, a_{r-1})) \right)_{Y_r}.
\]

It is obvious that the definition does not depend on the choice of \(s_r \). It will be convenient to also define \(V_\bullet(D; a) \) when \(a_1, \ldots, a_r \) are nonnegative rational numbers in the following way: let \(\ell \) be the smallest positive integer such that \(\ell a_i \in \mathbb{N} \) for all \(i \), then set

\[
V_m(D; a_1, \ldots, a_r) := \begin{cases} V_k(\ell D; \ell a_1, \ldots, \ell a_r), & \text{if } m = \ell k \text{ for some } k \in \mathbb{N}; \\ 0, & \text{otherwise}. \end{cases}
\]

Although in general this is not a graded linear series in the sense of Definition 1.9, for all of our purposes we are essentially dealing with the graded linear series \(V_\bullet(\ell D; \ell a) \), so no problem will occur.

2. Properties of \(V_\bullet(D, a) \)

In this section we will first explain the motivation behind the construction of \(V_\bullet(D; a) \) in Definition 1.9. Then we will show that \(V_\bullet(D; a) \) contains the restricted complete linear series \(C_\bullet(X, D - a_1A_1 - \cdots - a_rA_r)|_{Y_r} \). A consequence of this is that \(V_\bullet(D; a) \) satisfies the condition (C) given in [LM08, Definition 2.9] as long as \(|a| := \max\{|a_1|, \ldots, |a_r|\} \) is sufficiently small, which in turn allows us to compute its volume. We will end with giving a lower bound to the base locus of \(V_m(D; a) \) and its order of vanishing there. These ingredients will all go into the proof of Theorem B in Section 3.

As one might already notice, the construction of the graded linear series \(V_\bullet(D; a) \) is closely related to the construction of the Okounkov body of \(D \). Recall from the Introduction that given a \(d \)-dimensional projective variety \(X \) and an admissible flag \(Y_\bullet \) on \(X \), we get a valuation \(\nu_{Y_\bullet} \) which sends a nonzero global section of any line bundle on \(X \) to a \(d \)-tuple of integers. This allows us to define the graded semigroup of a graded linear series \(W_\bullet \) on \(X \) ([LM08, Definition 1.15]):

\[
\Gamma_{Y_\bullet}(W_\bullet) := \{ (\nu_{Y_\bullet}(s), m) \mid 0 \neq s \in W_m, m \geq 0 \} \subset \mathbb{N}^d \times \mathbb{N}.
\]
For any graded semigroup $\Gamma \subset \mathbb{N}^d \times \mathbb{N}$, a closed convex cone $\Sigma(\Gamma) \subset \mathbb{R}^d \times \mathbb{R}$ and a closed convex body $\Delta(\Gamma) \subset \mathbb{R}^d$ can be constructed:

$$\Sigma(\Gamma) := \text{the closed convex cone spanned by } \Gamma;$$

$$\Delta(\Gamma) := \{ x \in \mathbb{R}^d \mid (x, 1) \in \Sigma(\Gamma) \}.$$

Using these notations, the Okounkov body of a big divisor D on X is

$$\Delta(Y \cdot (D)) = \Delta_Y(C_\bullet(X, D)).$$

We will subsequently abbreviate $\Gamma_Y(C_\bullet(X, D))$ as $\Gamma_Y(D)$.

The statement of Theorem B involves the intersection of $\Delta(Y \cdot (D))$ with the last coordinate axis, so it is natural to study the following more general intersections:

Notation 2.1. Given a graded semigroup $\Gamma \subset \mathbb{N}^d \times \mathbb{N}$, and an r-tuple of nonnegative rational numbers $a = (a_1, \ldots, a_r)$ where $r \leq d$, we denote by $\Gamma|_a \subset \mathbb{N}^{d-r} \times \mathbb{N}$ the graded semigroup

$$\Gamma|_a := \{ (\nu_{r+1}, \ldots, \nu_d, m) \in \mathbb{N}^{d-r} \times \mathbb{N} \mid (a_1 m, \ldots, a_r m, \nu_{r+1}, \ldots, \nu_d, m) \in \Gamma \}.$$

Similarly for a subset $S \subset \mathbb{R}^d$, we denote by $S|_a \subset \mathbb{R}^{d-r}$ the subset

$$S|_a := \{ (\nu_{r+1}, \ldots, \nu_d) \in \mathbb{R}^{d-r} \mid (a_1, \ldots, a_r, \nu_{r+1}, \ldots, \nu_d) \in S \}.$$

Remark 2.2. Note that in general we have $\Delta(\Gamma|_a) \subset \Delta(\Gamma)|_a$. If $\Delta(\Gamma)|_a$ meets the interior of $\Delta(\Gamma)$, then $\Delta(\Gamma|_a) = \Delta(\Gamma)|_a$ by [LM08, Proposition A.1].

To compute the Euclidean volume of $\Delta_Y(D)|_{0^{d-1}}$ in Theorem B, our plan is to study the Euclidean volume of $\Delta_Y(D)|_a$ and let a goes to 0^{d-1}. Since

$$\Delta_Y(D)|_a = \Delta(\Gamma_Y(D)|_a)$$

by Remark 2.2, it is thus desirable to realize the semigroup $\Gamma_Y(D)|_a$ as the semigroup of some graded linear series. This is precisely what motivates the definition of $V_\bullet(D; a)$.

Lemma 2.3. Let X, Y_\bullet, D, and a be as in Definition 1.9. Then

$$\Gamma_{Y_\bullet|_{Y_\bullet}}(V_\bullet(D; a)) = \Gamma_{Y_\bullet}(D)|_a,$$

where $Y_\bullet|_{Y_\bullet}$ is the admissible flag $Y_r \supset Y_{r+1} \supset \cdots \supset Y_d$ on Y_r.

Proof. $V_\bullet(D; a)$ is defined in the way that makes this true. \qed

Another important property of $V_\bullet(D; a)$ is that it satisfies the condition (C) in Definition 1.8 when $|a|$ is sufficiently small.

Lemma 2.4. The graded linear series $V_\bullet(D; a_1, \ldots, a_r)$ satisfies

$$C_\bullet(X, D - a_1 A_1 - \cdots - a_r A_r)|_{Y_\bullet} \subset V_\bullet(D; a_1, \ldots, a_r) \subset C_\bullet(Y_\bullet, D - a_1 A_1 - \cdots - a_r A_r).$$
(In the case when \(a_1, \ldots, a_r \) are rational numbers and \(\ell \) is the smallest positive integer such that \(\ell a_i \in \mathbb{N} \) for all \(i \), we interpret \(C_\bullet(X, D - a_1 A_1 - \cdots - a_r A_r) \) in the following manner:

\[
C_m(X, D - a_1 A_1 - \cdots - a_r A_r) := \begin{cases}
C_k(X, \ell D - \ell a_1 A_1 - \cdots - \ell a_r A_r), & \text{if } m = \ell k; \\
0, & \text{otherwise.}
\end{cases}
\]

And similarly for \(C_\bullet(Y_r, D - a_1 A_1 - \cdots - a_r A_r) \).)

Proof. It suffices to prove the case when \(a_1, \ldots, a_r \) are integers. The containment on the right follows from the definition. We show the containment on the left by induction on \(r \). The case \(r = 0 \) is trivial, so we assume that \(r > 0 \) and

\[
C_\bullet(X, D - a_1 A_1 - \cdots - a_{r-1} A_{r-1})|_{Y_{r-1}} \subset V_\bullet(D; a_1, \ldots, a_{r-1}).
\]

Let \(s \) be an arbitrary element in \(C_m(X, D - a_1 A_1 - \cdots - a_r A_r) \), \(m \in \mathbb{N} \). Let \(s_r \in H^0(X, \mathcal{O}_X(A_r)) \) be a section whose divisor is \(A_r \). Then

\[
\mu(s_r^{|\cdot|_{Y_{r-1}}})(s|_{Y_{r-1}}) = (s \otimes s_r^{|\cdot|_{Y_{r-1}}})|_{Y_{r-1}} \in C_m(X, D - a_1 A_1 - \cdots - a_{r-1} A_{r-1})|_{Y_{r-1}}
\subset V_m(D; a_1, \ldots, a_{r-1}),
\]

hence \(s|_{Y_r} \in V_m(D; a_1, \ldots, a_r) \) by definition. \(\square \)

Corollary 2.5. The graded linear series \(V_\bullet(D; a_1, \ldots, a_r) \) on \(Y_r \) satisfies condition (C) if \(Y_r \not\subseteq B_+(D) \) and \(|a| \) is sufficiently small. (Strictly speaking this is an abuse of terminology: as remarked toward the end of Definition 1.9, what actually satisfies condition (C) is \(V_\bullet(\ell D; \ell a) \), but this will not cause any trouble for us.)

Proof. This is because under these assumptions the restricted complete linear series contained in \(V_\bullet(D; a) \) already satisfies condition (C) by [LM08, Lemma 2.16]. \(\square \)

Next we want to give a lower bound to the base locus of \(V_m(D; a) \) and its order of vanishing there.

Lemma 2.6. Let \(X, Y_r, D, \) and \(a \) be as in Definition 1.9. If \(Y_i \) intersects \(Y_{i-1} \cap B(D) \) properly in \(Y_{i-1} \) for all \(i \in \{1, \ldots, r\} \), then

\[
B(V_\bullet(D; a)) \supset (Y_r \cap B(D)).
\]

Moreover, if \(E \) is a prime Weil divisor of \(X \) contained in \(B(D) \), and if \(F \) is an irreducible component of \(Y_r \cap E \) such that \(F \) is not contained in the singular locus of \(X \), then

\[
\text{ord}_F(V_m(D; a)) \geq \text{ord}_E(|mD|), \quad \forall m \in \mathbb{N}.
\]

Proof. We will proceed by induction on \(r \). The case \(r = 0 \) is trivial. Assuming that \(r > 0 \), then by definition any section

\[
s \in V_m(D; a_1, \ldots, a_r) \subset H^0(Y_r, m(D - a_1 A_1 - \cdots - a_r A_r))
\]
is the restriction to Y_r of some section
\[s' \in H^0(Y_{r-1}, m(D - a_1A_1 - \cdots - a_rA_r)) \]
such that
\[s' \otimes s_r^{\otimes m} \in V_m(D; a_1, \ldots, a_{r-1}) \subset H^0(Y_{r-1}, m(D - a_1A_1 - \cdots - a_{r-1}A_{r-1})) , \]
where $s_r \in H^0(Y_{r-1}, A_r)$ is a section whose divisor is Y_r. By the induction hypothesis, $s' \otimes s_r^{\otimes m}$ vanishes on $Y_{r-1} \cap B(D)$, thus s' vanishes on $Y_{r-1} \cap B(D)$ since Y_r intersects $Y_{r-1} \cap B(D)$ properly. Hence $s = s'|_{Y_r}$ vanishes on $Y_r \cap B(D)$, proving that $Y_r \cap B(D)$ is contained in the stable base locus of $V_*(D; a_1, \ldots, a_r)$. Let $F' \subset Y_{r-1}$ be an irreducible component of $Y_{r-1} \cap E$ containing F. Then
\[\text{ord}_{F'}(s' \otimes s_r^{\otimes m}) \geq \text{ord}_E(|mD|) \]
by the induction hypothesis, hence
\[\text{ord}_{F'}(s') \geq \text{ord}_E(|mD|) \]
since Y_r does not contain F'. Therefore
\[\text{ord}_F(s) = \text{ord}_F(s'|_{Y_r}) \geq \text{ord}_{F'}(s') \geq \text{ord}_E(|mD|) . \]

\[\square \]

3. Proof of theorems

We start with the proof of Theorem C:

\textit{Proof of Theorem C.} Since W_* satisfies condition (B), it must belong to a big divisor L. Fix a positive integer $m > 0$ sufficiently large so that the linear series W_m defines a birational mapping of X. Let $\pi_m : X_m \to X$ be a resolution of the base ideal $b_m := b(W_m)$. Then we have a decomposition
\[\pi_m^*|W_m| = |M_m| + F_m , \]
where F_m is the fixed divisor (i.e. $b_mO_{X_m} = O_{X_m}(-F_m)$), and
\[M_m \subset H^0(X_m, \pi_m^*L - F_m) \]
is a base-point-free linear series. Let $M_{m,*}$ be the graded linear series on X_m associated to $\pi_m^*L - F_m$ given by
\[M_{m,k} := \text{Im} \left(S^k(M_m) \to H^0(X_m, k(\pi_m^*L - F_m)) \right) . \]
By Fujita’s approximation theorem [LM08, Theorem 3.5], for any $\epsilon > 0$, there exists an integer $m_0 = m_0(\epsilon)$ such that if $m \geq m_0$, then
\[\text{vol}(W_*) - \epsilon \leq \frac{1}{md} \cdot \lim_{k \to \infty} \frac{\dim M_{m,k}}{k^d/d!} \leq \text{vol}(W_*) . \]
Since we assume that \(m \) is sufficiently large so that the morphism defined by the linear series \(M_m \) maps \(X_m \) birationally onto its image \(X'_m \) in some \(\mathbb{P}^N \), we have

\[
\lim_{k \to \infty} \frac{\dim M_{m,k}}{k^d/d!} = (\mathcal{O}_{\mathbb{P}^N}(1)|_{X'_m})^d = (\pi^*_m L - F_m)^d = (W_m)^d.
\]

Hence the desired conclusion follows.

Before we go on to prove Theorem B, recall that in its statement the very ample divisors \(A_i \)'s are required to be very general. The precise requirement we will need is the assumptions on the flag \(Y \) in Lemma 3.2 below.

Definition 3.1. Let \(Z \) be a variety, and let \(Y \subset Z \) be a prime divisor. Let \(C \subset Z \) be a closed algebraic subset, and denote by \(C_1, \ldots, C_n \) the irreducible components of \(C \). We say that \(Y \) intersects \(C \) very properly in \(Z \) if for every \(I \subset \{1, \ldots, n\} \) such that \(\bigcap_{i \in I} C_i \neq \emptyset \), \(Y \) does not contain any irreducible component of \(\bigcap_{i \in I} C_i \).

Lemma 3.2. Let \(X, Y, D \) be as in Definition 1.9, and assume that \(X \) is normal. Let \(E_1, \ldots, E_n \) be all of the irreducible \((d-1)\)-dimensional components of \(B(D) \). Assume that \(Y_i \) intersects \(Y_{i-1} \cap B(D) \) very properly in \(Y_{i-1} \) for all \(i \in \{1, \ldots, d\} \). Then

\[
B(C_m(X, D)|_{Y_{d-1}}) = (Y_{d-1} \cap B(D)) = \prod_{i=1}^n (Y_{d-1} \cap E_i).
\]

Moreover, let \(m \in \mathbb{N} \) be sufficiently large and divisible so that \(Bs(|mD|) = B(D) \). If, in addition to the above assumptions, the curve \(Y_{d-1} \) intersects each of the \(E_i \)'s transversally at smooth points of \(X \), and none of these intersection points lies in an embedded component of the base scheme of \(|mD| \), then

\[
\text{ord}_p(C_m(X, D)|_{Y_{d-1}}) = \text{ord}_{E_i}(|mD|)
\]

for every \(p \in Y_{d-1} \cap E_i, \ i \in \{1, \ldots, n\} \).

Proof. This is obvious.

Corollary 3.3. If the very ample divisors \(A_1, \ldots, A_{d-1} \) are very general so that Lemma 3.2 holds for all \(m \) such that \(Bs(|mD|) = B(D) \), then

\[
\text{vol}_{X|Y_{d-1}}(D) = Y_{d-1} \cdot D - \sum_{i=1}^n \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_{E_i} \|D\|.
\]
Proof. Let m be sufficiently large and divisible so that $\text{Bs}(|mD|) = B(D)$. By Theorem C and Lemma 3.2,

$$\frac{\text{vol}_{X|Y_{d-1}}(D)}{Y_{d-1} \cdot (mD) - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_p(C_m(X, D)|_{Y_{d-1}}) m} = Y_{d-1} \cdot D - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \lim_{m \to \infty} \text{ord}_{E_i}(|mD|) m = Y_{d-1} \cdot D - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_{E_i} D.$$

We will now prove Theorem B by proving the following more precise statement:

Theorem 3.4. Let X, Y_\bullet, and D be as in Definition 1.9. Assume that $Y_r \not\subseteq B_+(D)$ for all $r \in \{0, \ldots, d-1\}$.

(a) If D is ample, then for any $r \in \{0, \ldots, d-1\},$

$$\text{vol}_{R^{d-r}}(\Delta_{Y_\bullet}(D)|_{0^r}) = \frac{\text{vol}_{X|Y_r}(D)}{(d-r)!} = \frac{Y_r \cdot D^{d-r}}{(d-r)!},$$

where 0^r denotes $(0, \ldots, 0)$.

(b) If D is big but not necessarily ample, and assume that X is normal and that the very ample divisors A_1, \ldots, A_{d-1} are very general so that Lemma 3.2 and Corollary 2.3 hold, then the first equality in (a) still holds when $r = d-1$, i.e.

$$\text{vol}_{R^{1}}(\Delta_{Y_\bullet}(D)|_{0^{d-1}}) = \frac{\text{vol}_{X|Y_{d-1}}(D)}{(d-r)!}.$$

Proof. Since $Y_{d-1} \not\subseteq B_+(D)$, we have $\text{vol}_{X|Y_{d-1}}(D) > 0$. Hence

$$\text{vol}_{R^{1}}(\Delta_{Y_\bullet}(D)|_{0^{d-1}}) = \text{vol}_{R^{1}}(\Delta(\Gamma_{Y_r}(D))|_{0^{d-1}}) \geq \text{vol}_{R^{1}}(\Delta(\Gamma_{Y_r}(D)|_{0^{d-1}})) = \frac{\text{vol}_{X|Y_{d-1}}(D) > 0}. $$

This implies we can find $a \in \mathbb{Q}_{+}^r$ with arbitrarily small norm $|a|$ such that $\Delta_{Y_\bullet}(D)|_{a}$ meets the interior of $\Delta_{Y_r}(D)$. Hence by [LM08, Proposition A.1],

$$\Delta_{Y_\bullet}(D)|_{a} = \Delta(\Gamma_{Y_r}(D))|_{a} = \Delta(\Gamma_{Y_r}(V_r(D; a))) = \Delta(\Gamma_{Y_r}|_{Y_r}(V_r(D; a)))$$,

where the last equality follows from Lemma 2.3. By Corollary 2.3 $V_r(D; a)$ satisfies condition (C) as long as $|a|$ is sufficiently small, hence we can calculate the Euclidean volume of $\Delta(\Gamma_{Y_r}|_{Y_r}(V_r(D; a))) = \Delta_{Y_r}(V_r(D; a))$ by [LM08, Theorem 2.13]:

$$\text{vol}_{R^{d-r}}(\Delta_{Y_r}|_{Y_r}(V_r(D; a))) = \frac{\text{vol}(V_r(D; a))}{(d-r)!}. $$
Combining the above equalities gives us

\[(*) \quad \text{vol}_{R^{d-r}}(\Delta_{Y_\bullet}(D)|_a) = \frac{\text{vol}(V_\bullet(D; a))}{(d-r)!}.\]

If \(D \) is ample, then \(D - \sum_{i=1}^{r} a_i A_i \) is also ample as long as \(|a| \) is sufficiently small, and hence

\[C_m(X, D - \sum_{i=1}^{r} a_i A_i) \big|_{V_r} = C_m(Y_r, D - \sum_{i=1}^{r} a_i A_i)\]

for all sufficiently large \(m \). So by Lemma [2.4],

\[\text{vol}(V_\bullet(D; a)) = \text{vol}(C_\bullet(Y_r, D - \sum_{i=1}^{r} a_i A_i)) = Y_r \cdot (D - \sum_{i=1}^{r} a_i A_i)^{d-r}.\]

Substituting this back into \((*)\), we get

\[\text{vol}_{R^{d-r}}(\Delta_{Y_\bullet}(D)|_a) = \frac{Y_r \cdot (D - \sum_{i=1}^{r} a_i A_i)^{d-r}}{(d-r)!},\]

and letting \(a \) goes to \(0^r \) proves part (a).

Now suppose that \(D \) is big but not necessarily ample, and \(r = d - 1 \). Then as long as \(|a| \) is sufficiently small, \(D - \sum_{i=1}^{d-1} a_i A_i \) is also big, and \(V_\bullet(D; a) \) satisfies condition (C) by Corollary [2.5]. Let \(E_1, \ldots, E_n \) be all of the irreducible \((d-1)\)-dimensional components of \(B(D) \). By Theorem C, Lemma [2.6] and Lemma [3.2].

\[
\text{vol}(V_\bullet(D; a)) = \lim_{m \to \infty} \frac{1}{m} \left(Y_{d-1} \cdot m(D - \sum_{i=1}^{d-1} a_i A_i) - \sum_{p \in Bs(V_m(D; a))} \text{ord}_p(V_m(D; a)) \right)
\]

\[
\leq \lim_{m \to \infty} \frac{1}{m} \left(Y_{d-1} \cdot m(D - \sum_{i=1}^{d-1} a_i A_i) - \sum_{p \in Y_{d-1} \cap B(D)} \text{ord}_p(V_m(D; a)) \right)
\]

\[
= \lim_{m \to \infty} \frac{1}{m} \left(Y_{d-1} \cdot m(D - \sum_{i=1}^{d-1} a_i A_i) - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_p(V_m(D; a)) \right)
\]

\[
\leq \lim_{m \to \infty} \frac{1}{m} \left(Y_{d-1} \cdot m(D - \sum_{i=1}^{d-1} a_i A_i) - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_{E_i}(|mD|) \right)
\]

\[
= Y_{d-1} \cdot (D - \sum_{i=1}^{d-1} a_i A_i) - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_{E_i}(|D|).
\]
Substituting this back into (3), we get
\[\text{vol}_{R^1}(\Delta_{Y^*}(D)|_a) \leq Y_{d-1} \cdot (D - \sum_{i=1}^{d-1} a_i A_i) - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_{E_i}(\|D\|), \]
and letting \(a \) goes to \(0^{d-1} \) gives
\[\text{vol}_{R^1}(\Delta_{Y^*}(D)|_{0^{d-1}}) \leq Y_{d-1} \cdot D - \sum_{i=1}^{n} \sum_{p \in Y_{d-1} \cap E_i} \text{ord}_{E_i}(\|D\|) = \text{vol}_{X|Y_{d-1}}(D) \]
by Corollary 3.3. Since we saw that \(\text{vol}_{R^1}(\Delta_{Y^*}(D)|_{0^{d-1}}) \geq \text{vol}_{X|Y_{d-1}}(D) \) in the beginning of the proof, part (b) is thus established. \(\Box \)

Finally to prove Theorem A, we need the following lemma:

Lemma 3.5. Let \(X \) be a smooth projective variety of dimension \(d \), and let \(Y \subset X \) be a transversal complete intersection of \((d - 2) \) very ample divisors. If \(D_1, \ldots, D_\rho \) are ample divisors on \(X \) whose numerical classes form a basis of \(N^1(X)_{\mathbb{Q}} \), then the curve classes
\[\{ C_i := Y \cdot D_i \mid i = 1, \ldots, \rho \} \]
form a basis of \(N_1(X)_{\mathbb{Q}} \).

Proof. By the Lefschetz hyperplane theorem, the numerical classes of \(D_1|_Y, \ldots, D_\rho|_Y \) are linearly independent in \(N^1(Y)_{\mathbb{Q}} \), hence by the Hodge index theorem for surfaces, the intersection matrix
\[(D_i|_Y \cdot D_j|_Y) = (C_i \cdot D_j) \]
is nondegenerate. \(\Box \)

Proof of Theorem A. We first prove the theorem assuming that \(X \) is smooth. We start with an observation that for any admissible flag \(Y^* \) on \(X \) and any big divisor \(D \) on \(X \), the asymptotic order of vanishing \(\text{ord}_{Y^*}(\|D\|) \) equals the minimum of the projection of \(\Delta_{Y^*}(D) \) to the first coordinate axis. From this we see that for every prime divisor \(E \) on \(X \),
\[\text{ord}_E(\|D_1\|) = \text{ord}_E(\|D_2\|), \]
since we can always extend \(E \) into an admissible flag. By Lemma 3.5 we can choose \(\rho \) admissible flags \(Y^*_1, \ldots, Y^*_\rho \), such that each one is sufficiently general to make Corollary 3.3 and Theorem 3.4 (b) hold, and the numerical classes of the curves \(Y^*_{d-1}, \ldots, Y^*_d \) form a basis of \(N_1(X)_{\mathbb{Q}} \). It then follows that \(Y^*_i \cdot D_1 = Y^*_d \cdot D_2 \) for all \(i \in \{1, \ldots, \rho\} \), hence \(D_1 \) and \(D_2 \) are numerically equivalent.

When \(X \) is just normal but not smooth, we let \(\pi: X' \to X \) be a resolution of singularities which is an isomorphism over \(X - X_{\text{sing}} \). Then
\[H^0(X, D) = H^0(X', \pi^*D) \]
for any big divisor D on X, and therefore if Y' is an admissible flag on X' such that $\pi(Y'_d) \notin X_{\text{sing}}$, then

$$\Delta_{Y'}(\pi^*D) = \Delta_{\pi(Y')} (D).$$

It thus follows from the previous paragraph on the smooth case that π^*D_1 and π^*D_2 are numerically equivalent, and hence so are D_1 and D_2. \hfill \Box

References

[ELMNP1] Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, *Asymptotic invariants of base loci*, Ann. Inst. Fourier 56, 6 (2006), 1701–1734.

[ELMNP2] Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, *Restricted volumes and base loci of linear series*, Amer. J. Math. 131 (2009), no. 3, 607–651.

[KK08] Kiumars Kaveh and Askold Khovanskii, *Convex bodies and algebraic equations on affine varieties*, preprint, arXiv:0804.4095

[KK09] Kiumars Kaveh and Askold Khovanskii, *Newton convex bodies, semigroups of integral points, graded algebras and intersection theory*, preprint, arXiv:0904.3350

[Laz04] Robert Lazarsfeld, *Positivity in Algebraic Geometry I–II*, Ergeb. Math. Grenzgeb., vols. 48–49, Berlin: Springer, 2004.

[LM08] Robert Lazarsfeld and Mircea Mustaţă, *Convex bodies associated to linear series*, to appear in Ann. Sci. École Norm. Sup., arXiv:0805.4559

[Oko96] Andrei Okounkov, *Brunn-Minkowski inequality for multiplicities*, Invent. Math. 125 (1996), 405–411.

[Oko03] Andrei Okounkov, *Why would multiplicities be log-concave?*, The orbit method in geometry and physics, Progress in Mathematics vol. 213, Boston, MA: Birkhäuser Boston, 2003, pp. 329–347.