PROPERTIES OF PARABOLIC SOBOLEV AND PARABOLIC BESOV SPACES

TONGKEUN CHANG

Abstract. In this paper, we characterize parabolic Besov and parabolic Sobolev spaces in \(\mathbb{R}^{n+1} \) and \(\mathbb{R}^{n+1}_T, \ T > 0 \). We also, study the relation between parabolic Besov spaces in \(\mathbb{R}^{n}_T, \ T > 0 \) and standard Besov space in \(\mathbb{R}^n \).

AMS 2000 subject classifications: Primary 46B70; Secondary 35K15.

1. Introduction

In this paper, we study the properties of the parabolic Besov spaces \(\mathcal{B}^{\alpha, p}_{2\alpha}(\mathbb{R}^{n+1}) \) and the parabolic Sobolev spaces \(\mathcal{L}^{p}_{\alpha}(\mathbb{R}^{n+1}) \) for \(1 \leq p \leq \infty, \alpha \in \mathbb{R} \). We also, study the relation between the parabolic Besov spaces in \(\mathbb{R}^{n}_T = \{(X, t) \mid X \in \mathbb{R}^n, \ 0 < t < T\}, \ 0 < T \leq \infty \) and the standard Besov space in \(\mathbb{R}^n \).

The parabolic Sobolev spaces were studied in [9] and [17]. The authors in [9] proved the trace theorem of parabolic functions which is similar to the usual Sobolev spaces (see [2]). In fact, the parabolic Besov and the parabolic Sobolev spaces are particular case of the anisotropic Sobolev spaces and anisotropic Besov spaces, respectively, with dilation matrix \(\delta_{\varepsilon} = (\varepsilon^2, \varepsilon, \cdots, \varepsilon) \) (see [6], [7], [14] and [15]).

For the properties about the usual Besov and Sobolev spaces, we refer [2], [15], [16], [18], [20] and the references therein.

The Besov and Sobolev spaces have being used in boundary value problems of several elliptic type partial differential equations in bounded domain in \(\mathbb{R}^n \). When boundary data is given with the function in some Besov or Sobolev spaces, one can find the solutions of the boundary value problems of elliptic type partial differential equations which contained in the corresponding spaces with boundary data (see [4], [5], [8], [11]).

Like the Besov and Sobolev spaces, functions in parabolic Besov and Sobolev spaces can be used with boundary data and solutions of initial-boundary value problems of parabolic type partial differential equations in bounded cylinder (see [12] for the case heat equation).
In section 2, we introduce a parabolic Sobolev space \(\mathcal{L}_p^0(\mathbb{R}^{n+1}) \) and parabolic Besov space \(B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^{n+1}) \). The properties to the parabolic Sobolev and parabolic Besov spaces are also stated.

In section 3, we show that \(f \in \mathcal{L}_p^0(\mathbb{R}^{n+1}) \), \(1 < p < \infty \), \(\alpha \in \mathbb{R} \) is equivalent to \(f, D_k f, D_k^2 f \in \mathcal{L}_{p-1}^0(\mathbb{R}^{n+1}) \) for all \(1 \leq k \leq n \) (see Theorem 3.1), and that \(f \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^{n+1}) \), \(1 \leq p \leq \infty \), \(\alpha \in \mathbb{R} \) is equivalent to \(f, D_k f, D_k^2 f \in B_{p-1}^{\alpha,\frac{s}{p}}(\mathbb{R}^{n+1}) \) for all \(1 \leq i \leq n \) (see Theorem 3.4). Here \(D_k^2 \) is a fractional differential operator whose Fourier transform in terms of \(t \) variable is defined by \(\hat{D}^2 f(X,\tau) = |\tau|^2 \hat{f}(X,\tau) \).

Our result in section 3 can be compared with the results of V. Gopala Rao and B. Frank Jones. In [17], V. Gopala Rao showed that \(f \in \mathcal{L}_p^0(\mathbb{R}^{n+1}) \) is equivalent to \(f, D_t(f \ast h_1) \in \mathcal{L}_{p-1}^0(\mathbb{R}^{n+1}) \), where \(\ast \) is a convolution in \(\mathbb{R}^{n+1} \) and \(h_1(X,t) = c_1t^{\frac{n-1}{2}}e^{-\frac{|X|^2}{4t}} \) if \(t > 0 \) and \(h_1(X,t) = 0 \) if \(t < 0 \). In [10], B. Frank Jones induced several equivalent norms of parabolic Besov spaces. He also showed that \(f \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^{n+1}) \), \(1 \leq p \leq \infty \), \(\alpha \in \mathbb{R} \) is equivalent to \(f, D_k f \in B_{p-1}^{\alpha,\frac{s}{p}}(\mathbb{R}^{n+1}) \) and \(D_l f \in B_p^{\alpha-\frac{s}{p},\frac{s}{p}}(\mathbb{R}^{n+1}) \).

In section 4, we characterize the parabolic Besov spaces in \(\mathbb{R}^n_T = \{(X,t) \in \mathbb{R}^{n+1} | 0 < t < T \}, 0 < T \leq \infty \). We show that the parabolic Besov spaces in \(\mathbb{R}^n_T \) are also interpolation spaces and have the same properties as the Theorem 3.4.

In the section 5, we study the properties of the solution \(u \) of the heat equation with initial data \(f \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n) \). We show that \(u \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n_T) \), and we investigate an equivalent relation between the parabolic Besov norm \(\|u\|_{B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n_T)} \) and the usual Besov norm \(\|f\|_{B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n)} \). For \(0 \leq \alpha, 1 \leq p \leq \infty \) and \(f \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n) \), we define a function by

\[
(1.1) \quad u(X,t) = \langle f, \Gamma(X-\cdot,t) \rangle := \left\{ \begin{array}{ll}
< f, \Gamma(X-\cdot,t) >_\alpha, & 0 \leq \alpha < \frac{2}{p} \\
\int_{\mathbb{R}^n} \Gamma(X-Y,t)f(Y)dY, & \frac{2}{p} \leq \alpha,
\end{array} \right.
\]

where \(\Gamma(X,t) = c_n t^{-\frac{n}{2}} e^{-\frac{|X|^2}{4t}} \) if \(t > 0 \) and \(\Gamma(X,t) = 0 \) if \(t < 0 \), and \(\langle \cdot, \cdot \rangle_\alpha \) is duality pairing between \(B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n) \) and \(B_{p^{-1}}^{\alpha+\frac{s}{p}}(\mathbb{R}^n) \), \(\frac{1}{p} + \frac{1}{q} = 1 \). It is easy to see that \(u \) is a solution to the heat equation in \(\mathbb{R}^n_\infty \) with the initial value \(f \). Our main result in section 5 are stated as follows.

Theorem 1.1. Let \(f \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n) \) and \(u \) be defined by (1.1). Let \(1 \leq p \leq \infty \), \(\alpha > 0 \) and \(T < \infty \). Then \(u \in B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n_T) \) with

\[
\|u\|_{B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n_T)} \approx \|f\|_{B_p^{\alpha,\frac{s}{p}}(\mathbb{R}^n)}.
\]
The notation $A \approx B$ means that there are positive constants c and C independent of f such that $c \leq \frac{A}{B} \leq C$. Our result can be compared with the result of H. Triebel. In section 1.8.1 in [22], H. Triebel showed that for $1 < p < \infty$ and $\alpha > \frac{2}{p}$ and $m > \frac{1}{2}(\alpha - \frac{2}{p})$,

$$
\|f\|_{L^p(\mathbb{R}^n)}^p + \int_0^\infty \int_{\mathbb{R}^n} t^{mp-\frac{4p}{p}(\alpha-\frac{2}{p})}|D^{m}_t u(X, t)|^p dX dt \approx \|f\|_{\mathbb{B}_{p}^m_{\frac{2}{p}}(\mathbb{R}^n)}^p.
$$

In this paper, we denote that $A \lesssim B$ means that $A \leq cB$ for positive constant c depending only on n, p, and T. We denote $\hat{\cdot}$ as the Fourier transform in \mathbb{R}, \mathbb{R}^n or \mathbb{R}^{n+1}.

2. PARABOLIC SOBOLEV AND PARABOLIC BESOV SPACES ON \mathbb{R}^{n+1}

For $\alpha \in \mathbb{R}$, we consider a distribution $H_\alpha(\xi, \tau)$ whose Fourier transform in \mathbb{R}^{n+1} is defined by

$$
\hat{H}_\alpha(\xi, \tau) = c_\alpha (1 + 4\pi^2|\xi|^2 + i\tau)^{-\frac{\alpha}{2}}, \quad (\xi, \tau) \in \mathbb{R}^n \times \mathbb{R}.
$$

For $\alpha \in \mathbb{R}$, $1 \leq p \leq \infty$, we define the parabolic Sobolev space $\mathcal{L}_0^p(\mathbb{R}^{n+1})$ by

$$
\mathcal{L}_0^p(\mathbb{R}^{n+1}) = \{ f \in \mathcal{S}'(\mathbb{R}^{n+1}) \mid f = H_\alpha * g, \text{ for some } g \in L^p(\mathbb{R}^{n+1}) \}
$$

with norm

$$
\|f\|_{\mathcal{L}_0^p(\mathbb{R}^{n+1})} := \|g\|_{L^p(\mathbb{R}^{n+1})} (= \|H_{-\alpha} * f\|_{L^p(\mathbb{R}^{n+1})}),
$$

where $*$ is a convolution in \mathbb{R}^{n+1} and $\mathcal{S}'(\mathbb{R}^{n+1})$ is the dual space of the Schwartz space $\mathcal{S}(\mathbb{R}^{n+1})$. In particular, when $\alpha = 0$, we have that $\mathcal{L}_0^p(\mathbb{R}^{n+1}) = L^p(\mathbb{R}^{n+1})$.

Next, we define a parabolic Besov space. Let $\phi \in \mathcal{S}(\mathbb{R}^{n+1})$ such that

$$
\begin{align*}
\hat{\phi}(\xi, \tau) &> 0 \quad \text{on } 2^{-1} < |\xi| + |\tau|^{\frac{1}{2}} < 2, \\
\hat{\phi}(\xi, \tau) & = 0 \quad \text{elsewhere}, \\
\sum_{-\infty < i < \infty} \hat{\phi}(2^{-i} \xi, 2^{-2i} \tau) & = 1 \quad ((\xi, \tau) \neq (0, 0)).
\end{align*}
$$

We define functions $\phi_i, \psi \in \mathcal{S}(\mathbb{R}^{n+1})$ whose Fourier transforms are written by

\begin{equation}
\begin{align*}
\hat{\phi}_i(\xi, \tau) & = \hat{\phi}(2^{-i} \xi, 2^{-2i} \tau) \quad (i = 0, \pm 1, \pm 2, \cdots) \\
\hat{\psi}(\xi, \tau) & = 1 - \sum_{i=1}^{\infty} \hat{\phi}(2^{-i} \xi, 2^{-2i} \tau).
\end{align*}
\end{equation}

Note that $\phi_i = 2^((2n+2)i) \phi(2^i X, 2^{2i} t)$. For $\alpha \in \mathbb{R}$ we define the parabolic Besov space $\mathcal{B}^{\alpha, \frac{1}{2}, \alpha}_{pq}(\mathbb{R}^{n+1})$ by

$$
\mathcal{B}^{\alpha, \frac{1}{2}, \alpha}_{pq}(\mathbb{R}^{n+1}) = \{ f \in \mathcal{S}'(\mathbb{R}^{n+1}) \mid \|f\|_{\mathcal{B}^{\alpha, \frac{1}{2}, \alpha}_{pq}} < \infty \}
$$

with the norms

$$
\begin{align*}
\|f\|_{\mathcal{B}^{\alpha, \frac{1}{2}, \alpha}_{pq}} & := \|\psi * f\|_{L^p} + \left(\sum_{1 \leq i < \infty} (2^{\alpha i}) \|\phi_i * f\|_{L^p} \right)^{\frac{1}{q}}, \quad 1 \leq q < \infty, \\
\|f\|_{\mathcal{B}^{\alpha, \frac{1}{2}, \alpha}_{pq}} & := \sup(\|\psi * f\|_{L^p}, \; 2^{\alpha i} \|\phi_i * f\|_{L^p})..
\end{align*}
$$
where \(*\) is a convolution in \(\mathbb{R}^{n+1}\). When \(p = q\), we simply denote \(\mathcal{B}_{p}^{\frac{1}{2},\alpha}\) by \(\mathcal{B}_{p}^{\alpha}\).

The following properties can be shown by the same argument as for the usual Sobolev space and the Besov space in \(\mathbb{R}^{n}\).

Proposition 2.1.

1. The definition of \(\mathcal{B}_{pq}^{\alpha,\frac{1}{2},\alpha}(\mathbb{R}^{n+1})\) does not depend on the choice of the function \(\phi\).
2. The real interpolation method gives
 \[
 (\mathcal{L}_{\alpha_0}^p, \mathcal{L}_{\alpha_1}^p)_{\theta, q} = \mathcal{B}_{pq}^{\alpha,\frac{1}{2},\alpha}
 \]
 for \(1 \leq p \leq \infty\), \(\alpha = (1 - \theta)\alpha_0 + \theta\alpha_1, 0 < \theta < 1\), and
 \[
 (\mathcal{B}_{pq}^{\alpha_0,\frac{1}{2},\alpha_0}, \mathcal{B}_{pq}^{\alpha_1,\frac{1}{2},\alpha_1})_{\theta, r} = \mathcal{B}_{pr}^{\alpha,\frac{1}{2},\alpha}
 \]
 for \(\alpha_0 \neq \alpha_1\), \(1 \leq p, r, q_0, q_1 \leq \infty\), \(\alpha = (1 - \theta)\alpha_0 + \theta\alpha_1\).
3. For \(0 < \alpha < 2\), the the parabolic Besov norm \(\|f\|_{\mathcal{B}_{pq}^{\alpha,\frac{1}{2},\alpha}}\) is equivalent to the norm
 \[
 \|f\|_{L^p} + \left(\int_{\mathbb{R}^n} \int_{\mathbb{R} \times \mathbb{R}} \frac{|f(X, t) - f(X, s)|^p}{|t - s|^{1 + \frac{1}{2}p\alpha}} dtds dX\right)^{\frac{1}{p}}
 \]
 if \(1 \leq p < \infty\);
 \[
 \|f\|_{L^\infty} + \sup_{X, t, s, t \neq s} \frac{|f(X, t) - f(X, s)|}{|t - s|^{\frac{1}{p}\alpha}}
 \]
 if \(p = \infty\).

4. The operator \(S_{\theta} : \mathcal{L}_{\alpha}^p \to \mathcal{L}_{\alpha + \theta}^p\), \(S_{\alpha}f = H_{\alpha} \ast f\) is isomorphism for all \(\alpha, \theta \in \mathbb{R}\) and \(1 \leq p \leq \infty\).
5. \(\mathcal{S}(\mathbb{R}^{n+1})\) is dense subset of \(\mathcal{L}_{\alpha}^p(\mathbb{R}^{n+1})\) for all \(\alpha \in \mathbb{R}\) and \(1 \leq p \leq \infty\).
6. \(\mathcal{L}_{\alpha_1}^p(\mathbb{R}^{n+1}) \subset \mathcal{L}_{\alpha_2}^p(\mathbb{R}^{n+1})\) for \(\alpha_2 < \alpha_1\).

For the details of the proof of Proposition 2.1, we refer [2] for (2) (in particular Definition 6.2.2, Theorem 6.2.4 and Theorem 6.4.5 in [2]), and refer [7] (Theorem 3) for (3). It is not difficult to derive (4) - (6) (see [2]).

For the sake of later use, we define \(L^p(\mathbb{R}^n)\)-multiplier (\(L^p(\mathbb{R}^{n+1})\)-multiplier) as follows.

Definition 2.2. We say that \(\mu \in \mathcal{S}'(\mathbb{R}^n)\) is \(L^p(\mathbb{R}^n)\)-multiplier if

\[
\|\mathcal{F}^{-1}(\mu \hat{f})\|_{L^p(\mathbb{R}^n)} \leq M \|f\|_{L^p(\mathbb{R}^n)}
\]
for all \(f \in S(\mathbb{R}^n) \), where \(F^{-1}(f) \) is the inverse Fourier transform of \(f \). We call the minimal constant \(M \) satisfying (2.4) \(L^p \)-multiplier norm of \(\mu \).

Similarly, we define \(L^p(\mathbb{R}^{n+1}) \)-multiplier. We introduce the Marcinkiewicz multiplier theorem (see Theorem 4.6' in [18]).

Proposition 2.3. Let \(m \) be a bounded function on \(\mathbb{R}^n \setminus \{0\} \). Suppose also

(a) \(| \mu(\xi) | \leq B \),

(b) for each \(0 < k \leq n \),

\[
\sup_{\xi_{k+1}, \ldots, \xi_n} \int \rho \left| \frac{\partial^k \mu}{\partial \xi_1 \partial \xi_2 \cdots \partial \xi_k} \right| d\xi_1 \cdots d\xi_k \leq B
\]

as \(\rho \) ranges over dyadic rectangles of \(\mathbb{R}^k \) (If \(k = n \), the ” sup ” sign is omitted).

(c) The condition analogous to (b) is valid for every for one of the \(n! \) permutations of the variables \(\xi_1, \xi_2, \ldots, \xi_n \).

Then \(\mu \) is \(L^p \)-multiplier, \(1 < p < \infty \) and the multiplier norm depend only on \(B, p \) and \(n \).

We denote by \(D_{X_k}^i \), \(i \in \mathbb{N} \cup \{0\} \) the \(i \) times derivatives with respect to \(X_k \). When \(i = 1 \), we denote \(D_{X_k}^1 = D_{X_k} \). We also denote \(D_{X_k}^\beta \) by the \(D_{X_1}^\beta_1 \cdots D_{X_n}^\beta_n \) for \(\beta \in (\mathbb{N} \cup \{0\})^n \).

We denote by \(D_t^\frac{1}{2} \) the pseudo-differential operator whose Fourier transform is defined by

\[
\hat{D_t^\frac{1}{2} f}(\tau) = |\tau|^{-\frac{1}{2}} \hat{f}(\tau)
\]

for complex-valued function \(f \). It is well-known that

\[
D_t^\frac{1}{2} f(t) = c \int_{\mathbb{R}} \frac{f(t) - f(s)}{|t - s|^{\frac{1}{2}}} ds
\]

for complex-value function \(f \). For non-negative integer, we also denote \(D_t^i f \) by \(i \) times derivatives of \(f \) and \(D_t^{i+\frac{1}{2}} f \) by \(D_t^\frac{1}{2} D_t^i f \), respectively. Note that \(D_t f = HD_t^\frac{1}{2} D_t^\frac{1}{2} f \).

3. The properties of parabolic Sobolev and parabolic Besov spaces

In this section, we study the properties of parabolic Sobolev and parabolic Besov spaces.

Theorem 3.1. Let \(1 < p < \infty \) and \(\alpha \in \mathbb{R} \). Then \(f \in \mathcal{L}_\alpha^p(\mathbb{R}^{n+1}) \) if and only if \(f, D_{X_k} f, D_t^\frac{1}{2} f \in \mathcal{L}_\alpha^p(\mathbb{R}^{n+1}) \) for all \(1 \leq k \leq n \). Furthermore,

\[
\| f \|_{\mathcal{L}_\alpha^p} \approx \| f \|_{\mathcal{L}_{\alpha-1}^p} + \sum_{1 \leq k \leq n} \| D_{X_k} f \|_{\mathcal{L}_{\alpha-1}^p} + \| D_t^\frac{1}{2} f \|_{\mathcal{L}_{\alpha-1}^p}.
\]
Proof. First, we assume $\alpha = 1$. Suppose $f \in \mathcal{L}^p_1(\mathbb{R}^{n+1})$ so that $f = H_1 \ast g$ for some $g \in L^p(\mathbb{R}^{n+1})$. Then, for $1 \leq k \leq n$, we have

\begin{equation}
\frac{\partial f}{\partial x_k} = \frac{-2\pi \xi_k}{(1+4\pi^2|\xi|^2)^{\frac{1}{2}}} \hat{g}, \quad \frac{\partial f}{\partial \tau} = \frac{|\tau|^{\frac{1}{2}}}{(1+4\pi^2|\xi|^2)^{\frac{1}{2}}} \hat{g}.
\end{equation}

Applying Proposition 2.3, we have that $\mu_{1k}(\xi, \tau) = \frac{-2\pi \xi_k}{(1+4\pi^2|\xi|^2+|\tau|^2)^{\frac{1}{2}}}$, $\mu_2(\xi, \tau) = \frac{|\tau|^{\frac{1}{2}}}{(1+4\pi^2|\xi|^2+|\tau|^2)^{\frac{1}{2}}}$ are $L^p(\mathbb{R}^{n+1})$ multipliers for $1 < p < \infty$. Then, from (3.2), we get

\begin{align*}
\|D_{\xi_k} f\|_{L^p} &= \|\mathcal{F}^{-1}(\mu_{1k}(\xi, \tau)\hat{g})\|_{L^p} \lesssim \|g\|_{L^p} = \|f\|_{L^p_1} \quad 1 \leq k \leq n, \\
\|D_\tau^\frac{1}{2} f\|_{L^p} &= \|\mathcal{F}^{-1}(\mu_2(\xi, \tau)\hat{g})\|_{L^p} \lesssim \|g\|_{L^p} = \|f\|_{L^p_1}.
\end{align*}

From (6) in Proposition 2.1 we obtain $\|f\|_{L^p} \lesssim \|f\|_{L^p_1}$. Hence, we proved the one-side of Theorem 3.1.

Now, we prove the converse inequality. Suppose f, $D_\tau^\frac{1}{2} f$, $D_{\xi_k} f \in L^p(\mathbb{R}^{n+1})$, $1 \leq k \leq n$. We claim that $f = H_1 \ast g$ for some $g \in L^p(\mathbb{R}^{n+1})$ satisfying

\begin{equation}
\|g\|_{L^p} \lesssim (\|f\|_{L^p} + \sum_{1 \leq k \leq n} \|D_{\xi_k} f\|_{L^p} + \|D_\tau^\frac{1}{2} f\|_{L^p}).
\end{equation}

If then, $f = H_1 \ast g \in \mathcal{L}^p_1(\mathbb{R}^{n+1})$ with $\|f\|_{L^p_1} \lesssim (\|f\|_{L^p} + \sum_{1 \leq k \leq n} \|D_{\xi_k} f\|_{L^p} + \|D_\tau^\frac{1}{2} f\|_{L^p})$, and this will complete the proof of Theorem 3.1.

To prove the claim, let us R_k, $1 \leq k \leq n$ be Riesz transforms in \mathbb{R}^n. Then, we have

\[\mathcal{F}^{-1}(1 + |\xi| + |\tau|^{\frac{1}{2}}\hat{f}) = f + \sum_{1 \leq k \leq n} R_k \frac{\partial f}{\partial x_k} + D_\tau^\frac{1}{2} f \in L^p(\mathbb{R}^{n+1}). \]

Set $\hat{K}(\xi, \tau) = \frac{(1+4\pi^2|\xi|^2+|\tau|^2)^{\frac{1}{2}}}{1 + |\xi| + |\tau|^{\frac{1}{2}}}$ and $g = K \ast \left(f + \sum_{1 \leq k \leq n} R_k \frac{\partial f}{\partial x_k} + D_\tau^\frac{1}{2} f\right)$. Applying Proposition 2.3, we have that $K(\xi, \tau)$ is $L^p(\mathbb{R}^{n+1})$-multiplier. Hence we have $g \in L^p(\mathbb{R}^{n+1})$. Hence, (3.1) holds for $\alpha = 1$.

For general $\alpha \in \mathbb{R}$, by (4) in Proposition 2.1 we have that $S_{\alpha-1} : \mathcal{L}^p_1 \to \mathcal{L}^p_\alpha$ and $S_{\alpha-1} : L^p \to \mathcal{L}^p_{\alpha-1}$ are isomorphism whose inverses are $S_{\alpha-1}^{-1} = S_{-\alpha+1}$. Note that $D_{\xi_k} S_{-\alpha+1} f = S_{-\alpha+1} D_{\xi_k} f$ and $D_\tau^\frac{1}{2} S_{-\alpha+1} f = S_{-\alpha+1} D_\tau^\frac{1}{2} f$. Hence, we get

\[f \in \mathcal{L}^p_\alpha \iff S_{\alpha-1}^{-1} f = S_{-\alpha+1} f \in \mathcal{L}^p_1 \]
\[\iff S_{-\alpha+1} f, D_{\xi_k} S_{-\alpha+1} f (= S_{-\alpha+1} D_{\xi_k} f), D_\tau^\frac{1}{2} S_{-\alpha+1} f (= S_{-\alpha+1} D_\tau^\frac{1}{2} f) \in L^p \]
\[\iff f, D_{\xi_k} f, D_\tau^\frac{1}{2} f \in \mathcal{L}^p_{\alpha-1}. \]

Hence, we complete the proof of (3.1). \qed
Corollary 3.2. Let $1 < p < \infty$ and $\alpha \in \mathbb{R}$. Then $f \in \mathcal{L}^p_2(\mathbb{R}^{n+1})$ if and only if $f, D_x, D_t f, D_x D_t f \in \mathcal{L}^p(\mathbb{R}^{n+1})$ for all $1 \leq k, l \leq n$. Furthermore,

\[(3.4) \quad \|f\|_{\mathcal{L}^p_2} \approx \|f\|_{\mathcal{L}^p_{n-2}} + \sum_{0 \leq k, l \leq n} \|D_x^k D_t^l f\|_{\mathcal{L}^p_{n-2}} + \|D_t f\|_{\mathcal{L}^p_{n-2}}.
\]

Proof. As the proof of Theorem 3.1 it suffices to show the Corollary when $\alpha = 2$. Suppose $f \in \mathcal{L}^2_0(\mathbb{R}^{n+1})$. Since $\mathcal{L}^p_0(\mathbb{R}^{n+1}) = \mathcal{L}^p(\mathbb{R}^{n+1})$, applying the Theorem 3.1 two times, we have

\[(3.5) \quad \|f\|_{\mathcal{L}^2_2} \approx \|f\|_{\mathcal{L}^p} + \|D_x^k D_t^l f\|_{\mathcal{L}^p} + \|D_t f\|_{\mathcal{L}^p} + \sum_{0 \leq k, l \leq n} \|D_x^k D_t^l f\|_{\mathcal{L}^p} + \|D_t f\|_{\mathcal{L}^p}.
\]

Hence, if $f \in \mathcal{L}^2_0(\mathbb{R}^{n+1})$, then we have

\[
\|f\|_{\mathcal{L}^p} + \sum_{0 \leq k, l \leq n} \|D_x^k D_t^l f\|_{\mathcal{L}^p} + \|D_t f\|_{\mathcal{L}^p} \lesssim \|f\|_{\mathcal{L}^2_2}.
\]

Conversely, suppose that $f, D_x^k D_t^l f, D_t f \in \mathcal{L}^p(\mathbb{R}^{n+1})$. Note that applying Proposition 2.3 we have that $\nu_1(\xi, \tau) = \frac{|\xi|^{\frac{1}{2}}}{1 + 4\pi^2|\xi|^2 + \tau^2}, \nu_2(\xi, \tau) = \frac{2\pi i \tau}{1 + 4\pi^2|\xi|^2 + \tau^2}, \nu_3(\xi, \tau) = \frac{2\pi i \xi}{1 + 4\pi^2|\xi|^2 + \tau^2}$. Then, we have

\[(3.6) \quad \hat{D}_t^\beta f = \nu_1(\xi, \tau)(1 + 4\pi^2|\xi|^2 + \tau^2)\hat{f}, \quad \hat{D}_x^k \hat{f} = \nu_2(\xi, \tau)(1 + 4\pi^2|\xi|^2 + \tau^2)\hat{f}, \quad \hat{D}_x^k \hat{D}_t^l f = \nu_3(\xi, \tau)(1 + 4\pi^2|\xi|^2 + \tau^2)\hat{f}.
\]

Note that $\mathcal{F}^{-1}(1 + 4\pi^2|\xi|^2 + \tau^2)\hat{f} = f + \sum_{1 \leq k \leq n} D_x^k f + D_t f$. Hence, from (3.6), we have

\[(3.7) \quad \|D_x^k D_t^l f\|_{\mathcal{L}^p} + \|D_x^k f\|_{\mathcal{L}^p} + \|D_t^l f\|_{\mathcal{L}^p} \lesssim (\|f\|_{\mathcal{L}^p} + \|D_t f\|_{\mathcal{L}^p} + \sum_{1 \leq k \leq n} \|D_x^k D_t^l f\|_{\mathcal{L}^p}).
\]

With (3.5), (3.7) and the assumption, this implies

\[
\|f\|_{\mathcal{L}^p_2} \lesssim (\|f\|_{\mathcal{L}^p} + \sum_{0 \leq k, l \leq n} \|D_x^k D_t^l f\|_{\mathcal{L}^p} + \|D_t f\|_{\mathcal{L}^p}).
\]

Hence, we completed the proof of Corollary 3.2. \qed

Now, we define parabolic Sobolev space $\mathcal{W}^{\alpha, \frac{1}{2}\alpha}_p(\mathbb{R}^{n+1})$ and $\mathcal{W}^{2\alpha, \alpha}_p(\mathbb{R}^{n+1})$ for positive integer α and $1 \leq p \leq \infty$ by

\[
\mathcal{W}^{\alpha, \frac{1}{2}\alpha}_p(\mathbb{R}^{n+1}) := \{f \in \mathcal{L}^p(\mathbb{R}^{n+1}) \mid D_x^\beta D_t^l f \in \mathcal{L}^p(\mathbb{R}^{n+1}), |\beta| + l \leq \alpha \},
\]

\[
\mathcal{W}^{2\alpha, \alpha}_p(\mathbb{R}^{n+1}) := \{f \in \mathcal{L}^p(\mathbb{R}^{n+1}) \mid D_x^\beta D_t^l f \in \mathcal{L}^p(\mathbb{R}^{n+1}), |\beta| + 2l \leq 2\alpha \}
\]

with norms

\[
\|f\|_{\mathcal{W}^{\alpha, \frac{1}{2}\alpha}_p} := \sum_{|\beta| + \frac{1}{2}l \leq \alpha} \|D_x^\beta D_t^l f\|_{\mathcal{L}^p}, \quad \|f\|_{\mathcal{W}^{2\alpha, \alpha}_p} := \sum_{|\beta| + 2l \leq 2\alpha} \|D_x^\beta D_t^l f\|_{\mathcal{L}^p}.
\]
Remark 3.3.
(1) From the Theorem 3.1 and Corollary 3.2, if α is non-negative integer and $1 < p < \infty$, then we have

$$(3.8) \quad \mathcal{L}_p^0(\mathbb{R}^{n+1}) = \tilde{W}_p^{\alpha, \frac{1}{2}}(\mathbb{R}^{n+1}), \quad \mathcal{L}_{2\alpha}^p(\mathbb{R}^{n+1}) = \tilde{W}_p^{2\alpha}(\mathbb{R}^{n+1}) = W_p^{2\alpha}(\mathbb{R}^{n+1})$$

with the equivalent norms.

(2) When $p = 1$ or $p = \infty$, the spaces $\mathcal{L}_p^0(\mathbb{R}^{n+1})$ and $\tilde{W}_p^{\alpha, \frac{1}{2}}(\mathbb{R}^{n+1})$ are different spaces, and $\mathcal{L}_{2\alpha}^p(\mathbb{R}^{n+1})$, $\tilde{W}_p^{2\alpha}(\mathbb{R}^{n+1})$ and $W_p^{2\alpha}(\mathbb{R}^{n+1})$ are different spaces each other.

Next, we study about the properties of parabolic Besov spaces.

Theorem 3.4. Let $1 \leq p \leq \infty$ and $\alpha \in \mathbb{R}$. Then $f \in \mathcal{B}_p^{\alpha, \frac{1}{2}}(\mathbb{R}^{n+1})$ if and only if $f, D\chi_k f, D\chi_k^2 f \in \mathcal{B}_{p-1}^{\alpha, \frac{1}{2}}(\mathbb{R}^{n+1})$ for all $1 \leq k \leq n$. Furthermore,

$$(3.9) \quad \|f\|_{\mathcal{B}_p^{\alpha, \frac{1}{2}}} \approx \|f\|_{\mathcal{B}_{p-1}^{\alpha, \frac{1}{2}}} + \sum_{1 \leq k \leq n} \|D\chi_k f\|_{\mathcal{B}_{p-1}^{\alpha, \frac{1}{2}}} + \|D\chi_k^2 f\|_{\mathcal{B}_{p-1}^{\alpha, \frac{1}{2}}}.$$

Proof. If $1 < p < \infty$, then by Theorem 3.1 and the property of interpolation spaces (see (2) of Proposition 2.1), (3.9) holds. Hence we have only to consider the critical case $p = 1$ and $p = \infty$. Since the proofs are exactly same, we only prove in the case of $p = 1$.

Suppose that $f \in \mathcal{B}_1^{\alpha, \frac{1}{2}}(\mathbb{R}^{n+1})$. Then by the definition of the parabolic Besov space, we have

$$\|f\|_{\mathcal{B}_1^{\alpha, \frac{1}{2}}} = \|f \ast \psi\|_{L^1} + \sum_{1 \leq i < \infty} 2^{\alpha i} \|f \ast \phi_i\|_{L^1} < \infty.$$

Note that by construction of ψ and ϕ_i in section 2 we have $\hat{\psi} + \hat{\phi}_1 + \hat{\phi}_2 = 1$ in $supp(\hat{\psi} + \hat{\phi}_1)$ and $\hat{\phi}_{i-1} + \hat{\phi}_i + \hat{\phi}_{i+1} = 1$ in $supp \hat{\phi}_i$ for $i \geq 2$. Hence, using $D\chi_k (f \ast g) = (D\chi_k f) \ast g = f \ast (D\chi_k g)$, we have

$$(D\chi_k f) \ast \psi = f \ast \psi \ast D\chi_k (\psi + \phi_1 + \phi_2),$$

$$(D\chi_k f) \ast \phi_1 = f \ast \phi_1 \ast D\chi_k (\psi + \phi_1 + \phi_2),$$

$$(D\chi_k f) \ast \phi_i = f \ast \phi_i \ast D\chi_k (\phi_{i-1} + \phi_i + \phi_{i+1}), \quad i \geq 2.$$

Note that $\|D\chi_k \psi\|_{L^1} \lesssim$ and $\|D\chi_k \phi_i\|_{L^1} \lesssim 2^i$. Hence, by Young’s inequality, we have

$$\|D\chi_k f \ast \psi\|_{L^1} \lesssim \|f \ast \psi\|_{L^1}, \quad \|D\chi_k f \ast \phi_1\|_{L^1} \lesssim \|f \ast \phi_1\|_{L^1},$$

$$\|D\chi_k f \ast \phi_i\|_{L^1} \lesssim \|f \ast \phi_i\|_{L^1}, \quad \|D\chi_k (\phi_{i-1} + \phi_i + \phi_{i+1})\|_{L^1} \lesssim 2^i \|f \ast \phi_i\|_{L^1}, \quad i \geq 2.$$
Hence, we have

$$\|D_{X_k}f\|_{E^{\alpha-\frac{1}{2}}_1} = \|D_{X_k}f \ast \psi\|_{L^1} + \sum_{1 \leq i < \infty} 2^{(\alpha-1)i} \|D_{X_k}f \ast \phi_i\|_{L^1}$$

$$\lesssim (\|f \ast \psi\|_{L^1} + \sum_{1 \leq i < \infty} 2^{\alpha i} \|f \ast \phi_i\|_{L^1})$$

$$= \|f\|_{E^{\alpha-\frac{1}{2}}_1}.$$

Similarly, we obtain

$$(D^\frac{1}{2}_t f) \ast \psi = f \ast \psi \ast D^\frac{3}{2}_t (\psi + \phi_1 + \phi_2),$$

$$(D^\frac{1}{2}_t f) \ast \phi_1 = f \ast \phi_1 \ast D^\frac{1}{2}_t (\psi + \phi_1 + \phi_2),$$

$$(D^\frac{1}{2}_t f) \ast \phi_i = f \ast \phi_i \ast D^\frac{1}{2}_t (\phi_{i-1} + \phi_i + \phi_{i+1}), \quad i \geq 2.$$

Note that using (2.5) and change of variables, we have

$$\|D^\frac{1}{2}_t \phi_i\|_{L^1} = c \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}} \phi_i (X,t) \ast \phi_i (X,s) dsdXdt$$

$$\lesssim 2^i \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}} |\phi_i (X,t) - \phi_i (X,s)| dsdXdt$$

$$\lesssim 2^i \|\phi_i\|_{E^{\frac{1}{2}}_1 (\mathbb{R}^{n+1})}$$

(3.10)

$$\|D^\frac{1}{2}_t \psi\|_{L^1} \lesssim \|\psi\|_{E^{\frac{1}{2}}_1 (\mathbb{R}^{n+1}).}$$

As the same reason to the case of $D_{X_k}f$, using Young’s inequality, we have $\|D^\frac{1}{2}_t f\|_{E^{\alpha-\frac{1}{2}}_1} \lesssim \|f\|_{E^{\alpha-\frac{1}{2}}_1}$. Hence, we proved one side of (3.3).

Conversely, we suppose that $\|f\|_{E^{\alpha-\frac{1}{2}}_1} \|D_{X_k}f\|_{E^{\alpha-\frac{1}{2}}_1} < \infty$. Since ϕ is supported in $\{(\xi, \tau) \in \mathbb{R}^{n+1} \mid 2^{-1} < |\xi| + |\tau|^\frac{1}{2} < 2\}$, we have that $\frac{1}{(-4\pi^2|\xi|^2 + 1)\phi(\xi, \tau)} \in \mathcal{S}(\mathbb{R}^{n+1})$. We define Φ and Φ_i by the functions whose Fourier transforms are written by $\hat{\phi}(\xi, \tau) = \frac{1}{4\pi^2|\xi|^2 + 1}\phi(\xi, \tau)$ and $\hat{\phi}_i(\xi, \tau) = \hat{\phi}(2^{-i}\xi, 2^{-2i}\tau)$. Then, for $i \geq 2$, we have

$$\int \hat{f} \ast \phi_i = \int \hat{f} \phi_i (\xi, \tau) dsdX$$

$$= \int \hat{f} \phi_i (\xi, \tau) dsdX$$

$$= 2^{-2i} \sum_{1 \leq k \leq n} \int D_{X_k}f \hat{\phi}_i (\xi, \tau) dsdX$$

(3.11)
where \(H \) is the Hilbert transform. We used the fact that \(D_t \Phi = HD_t^{\frac{1}{2}} D_t^{\frac{1}{2}} \Phi \). Note that
\[\|D_X \Phi_i\|_{L^1} \lesssim 2^i. \]
Moreover,
\[
HD_t^{\frac{1}{2}} \Phi_i(X, t) = \lim_{\epsilon \to 0} \int_{|t-s| < \epsilon^\frac{1}{2}} \frac{\text{sign}(t-s)}{|t-s|^\frac{1}{2}} \Phi(t, s) ds
\]
\[= \lim_{\epsilon \to 0} \int_{|t-s| < \epsilon^\frac{1}{2}} \frac{\text{sign}(t-s)}{|t-s|^\frac{1}{2}} (\Phi_i(X, s) - \Phi_i(X, t)) ds,
\]
where \(\text{sign}(t) = 1 \) if \(t > 0 \) and \(\text{sign}(t) = -1 \) if \(t < 0 \). Hence, using change of variables (see [3.11]), we get
\[
\|HD_t^{\frac{1}{2}} \Phi_i\|_{L^1} \lesssim \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}} \frac{\|\Phi_i(X, s) - \Phi_i(X, t)\|}{|t-s|^\frac{1}{2}} ds dt \lesssim 2^i \|\Phi\|_{L^\frac{1}{2}(\mathbb{R}^{n+1})}.
\]
Hence, applying Young’s inequality in (3.11), we have
\[
(3.12) \quad \|f * \phi_i\|_{L^1} \leq 2^{-i} \left(\sum_{1 \leq k \leq n} \|D_X f \phi_i\|_{L^1} + \|D_t^{\frac{1}{2}} f * \phi_i\|_{L^1} \right) \quad i \geq 2.
\]
Hence by (3.12), we have
\[
\|f\|_{B_1^{\alpha, \frac{1}{2}}} = \|f * \psi\|_{L^1} + \sum_{1 \leq i < \infty} 2^\alpha_i \|f * \phi_i\|_{L^1}
\]
\[\lesssim \left(\|f * \psi\|_{L^1} + \|f * \phi_1\|_{L^1} + \sum_{2 \leq i < \infty} 2^{(\alpha - 1)i} \left(\sum_{1 \leq k \leq n} \|D_X f \phi_i\|_{L^1} + \|D_t^{\frac{1}{2}} f * \phi_i\|_{L^1} \right) \right)
\]
\[\lesssim \left(\|f\|_{B_1^{\alpha-1, \frac{1}{2}}} + \|D_X f\|_{B_1^{\alpha-1, \frac{1}{2}}} + \|D_t^{\frac{1}{2}} f\|_{B_1^{\alpha-1, \frac{1}{2}}} \right) \]
Hence, we completed the proof of Theorem 3.4. □

By (2.2), (2.3) and Theorem 3.4, we get the following Corollary;

Corollary 3.5.

1. Let \(1 \leq p \leq \infty \) and \(\alpha \in \mathbb{R} \) such that \(2i < \alpha < 2i + 2 \) for positive integer \(i \). Then \(f \in B_\alpha^{\frac{1}{2}}(\mathbb{R}^{n+1}) \) if and only if \(f, D_X f, D_t f \in B_\alpha^{\alpha-2i} \mathbb{R}^{n+1} \) for all \(|\beta| = 2i \). Furthermore,
\[
\|f\|_{B_\alpha^{\frac{1}{2}}} \approx \|f\|_{B_\alpha^{\alpha-2i}} + \sum_{|\beta| = 2i} \|D_X^\beta f\|_{B_\alpha^{\alpha-2i}} + \|D_t^\beta f\|_{B_\alpha^{\alpha-2i}}.
\]

2. In particular, for \(1 \leq p < \infty \), we have
\[
\|f\|_{p}^{\alpha, \frac{1}{2}} \approx \|f\|_{p}^{\alpha-2i} + \int_{\mathbb{R}^{n+2}} \int_{\mathbb{R}} \frac{|D_t^\beta f(X, t) - D_t^\beta f(X, s)|^p}{|t-s|^{1+p(\alpha-2i)/2}} dt ds dX
\]
\[+ \sum_{|\beta| = 2i} \int_{\mathbb{R}^{n+2}} \int_{\mathbb{R}^{n+2}} \frac{|D_X^\beta f(X + Y, t) - 2D_X^\beta f(X, t) + D_X^\beta f(X - Y, t)|^p}{|Y|^{1+p(\alpha-2i)/2}} dX dY dt.
\]
and
\[
\|f\|_{B^{rac{\alpha}{2},\alpha}_p} \approx \|f\|_{W^{2i,i}_p} + \sup_{X,i,s,t\neq s} \frac{|D^i_{X}f(X,t) - D^i_{X}f(X,s)|}{|t-s|^{\frac{1}{2}(\alpha - 2i)}} + \sum_{|\beta|=2i, t,s,X,Y,Y' \neq 0} \frac{|D^i_{X}f(X+Y,t) - 2D^i_{X}f(X,t) - D^i_{X}f(X-Y,t)|}{|Y|^{\alpha - 2i}}.
\]

Proof. Applying Theorem 3.4 two times, we obtain one side of (1). To show that the right side of (2) implies the left side of (3), we replace \(\frac{1}{4\pi^2|\xi|^2+|\eta|^2}\phi(\xi,\tau) \) by \(\frac{1}{(-4\pi^2|\xi|^2+|\eta|^2)^{i}t}\phi(\xi,\tau) \) in (2.14) and apply the proof of Theorem 3.4 (2) holds because of (1) and (2.1). \(\square \)

4. Parabolic Sobolev and parabolic Besov space in \(\mathbb{R}^n_T \)

If \(i \) is non-negative integer, we define the parabolic Sobolev space \(W^{2i,i}_p(\mathbb{R}^n_T), 0 < T < \infty \)
by
\[
W^{2i,i}_p(\mathbb{R}^n_T) = \{ f | D^i_{X}f \in L^p(\mathbb{R}^n_T), 0 \leq |\beta| + 2l \leq 2i \},
\]
so that the norm in \(W^{2i,i}_p(\mathbb{R}^n_T) \) is defined by
\[
\|f\|_{W^{2i,i}_p(\mathbb{R}^n_T)} = \left(\sum_{2l+|\beta| \leq 2i} \left(\int_{\mathbb{R}^n_T} |D^i_{X}f(X,t)|^p dXdt \right)^{\frac{1}{p}} \right), \quad 1 \leq p < \infty,
\]
\[
\|f\|_{W^{2i,i}_\infty(\mathbb{R}^n_T)} = \sum_{2l+|\beta| \leq 2i} \sup_{(X,t) \in \mathbb{R}^n_T} |D^i_{X}f(X,t)|, \quad p = \infty.
\]

Let \(2i < \alpha < 2i + 2 \). We would like to define parabolic Besov space \(B^{\alpha,\frac{1}{2},\alpha}_p(\mathbb{R}^n_T) \). We say that \(f \in B^{\alpha,\frac{1}{2},\alpha}_p(\mathbb{R}^n_T) \) if and only if
\[
\|f\|_{W^{2i,i}_p(\mathbb{R}^n_T)} + \sum_{|\beta| + 2l = 2i} \left(\int_{\mathbb{R}^n_T} \int_{0}^{T} \int_{0}^{T} \frac{|D^i_{X}D^i_{f}(X,t) - D^i_{X}D^i_{f}(X,s)|^p}{|t-s|^{1+\frac{1}{2}(\alpha - 2i)}} dtds dX \right)^{\frac{1}{p}} < \infty
\]
\[
+ \int_{0}^{T} \int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|D^i_{X}D^i_{f}(X+Y,t) - 2D^i_{X}D^i_{f}(X,t) - D^i_{X}D^i_{f}(Y-t)|^p}{|Y|^{\alpha + p(\alpha - 2i)}} dXdY dt < \infty
\]
if \(1 \leq p < \infty \) and
\[
\|f\|_{W^{2i,i}_\infty(\mathbb{R}^n_T)} + \sum_{|\beta| + 2l = 2i} \sup_{X,t,s,t \neq s} \frac{|D^i_{X}D^i_{f}(X,t) - D^i_{X}D^i_{f}(X,s)|}{|t-s|^{\frac{1}{2}(\alpha - 2i)}} + \sup_{t,X,Y,Y' \neq 0} \frac{|D^i_{X}D^i_{f}(X+Y,t) - 2D^i_{X}D^i_{f}(X,t) - D^i_{X}D^i_{f}(Y-t)|}{|Y|^{\alpha - 2i}} < \infty.
\]

Proposition 4.1. Let \(1 \leq p \leq \infty \). Suppose that there is a bounded linear operator \(E_{\mathbb{R}^n_T} : W^{2i,i}_p(\mathbb{R}^n_T) \rightarrow L^p(\mathbb{R}^{n+1}) \) for all non-negative integer \(i \) and \(1 \leq p \leq \infty \) such that \(E_{\mathbb{R}^n_T}f = f \) in \(\mathbb{R}^n_T \). Then for \(0 < \theta < 1, i < l \), we get \((W^{2i,i}_p(\mathbb{R}^n_T), W^{2i,i}_1(\mathbb{R}^n_T))_{p,\theta} = L^{\alpha,\frac{1}{2},\alpha}_p(\mathbb{R}^n_T) \), where \(\alpha = (1-\theta)2i + \theta2l \).
Then, for $i \in \mathbb{N}, 1 \leq p \leq \infty$ and $0 < \theta < 1$, we obtain that $(L^p_\theta((\mathbb{R}^{n+1}), W^{2i,\theta}_p((\mathbb{R}^{n+1})))_{\theta p} = B^{2i,\theta,\theta}_{p}(\mathbb{R}^{n+1})$. Using the Proposition 2.4 and the Proposition 2.17 in [1], we obtain Proposition 4.1.

To apply the Proposition 4.1, we define extension operators from $W^{2i}_p((\mathbb{R}^{n+1})$ to $\mathbb{L}^p_\theta((\mathbb{R}^{n+1})$ and from $W^{2i}_p((\mathbb{R}^{n+1})$ to $\mathbb{L}^p_\theta((\mathbb{R}^{n+1})$. For $f \in W^{2i}_p((\mathbb{R}^{n+1})$ we define extension E_2f of f by

$$E_2f(X,t) = \begin{cases} f(X,t), & t \geq 0, \\ \sum_{1 \leq j \leq 2i+1} \lambda_j f(X,-jt), & t \leq 0, \end{cases}$$

where the coefficients $\lambda_1, \ldots, \lambda_{2i+1}$ are the unique solution of the $(2i + 1) \times (2i + 1)$ system of linear equations

$$\sum_{1 \leq j \leq 2i+1} (-j)^l \lambda_j = 1, \quad l = 0, 1, \ldots, 2i.$$

Then $E_2f \in W^{2i}_p((\mathbb{R}^{n+1})$ with $E_2f|_{\mathbb{R}_T} = f$, $\|E_2f\|_{W^{2i}_p((\mathbb{R}^{n+1})} \leq c\|f\|_{W^{2i}_p((\mathbb{R}^{n+1})}$ (see Theorem 4.26 in [1]).

We apply (4.1) to define the extension operator in $W^{2i}_p((\mathbb{R}^{n+1})$. Let $g \in W^{2i}_p((\mathbb{R}^{n+1})$. We define an extension E_3 by

$$E_3g(X,t) = \theta(t) \begin{cases} \sum_{1 \leq j \leq 2i+1} \lambda_j g(X,-jt), & -T < t < 0, \\ g(X,t), & 0 < t < T, \\ \sum_{1 \leq j \leq 2i+1} \lambda_j g(X,-(2T-t)), & T < t < 2T, \end{cases}$$

and $E_3g(X,t) = 0$ otherwise, where $\theta \in C^\infty_0(\mathbb{R})$ such that $\theta \equiv 1$ in $(0, T)$ and $\text{supp} \theta \subset (-T, 2T)$. Then $E_3g|_{\mathbb{R}^n_T} = g$ and $\|E_3g\|_{W^{2i}_p((\mathbb{R}^{n+1})} \lesssim \|g\|_{W^{2i}_p((\mathbb{R}^{n+1})}$.

By Proposition 4.1, we have the following theorem.

Theorem 4.2. Then, for $0 < \alpha$ and $1 \leq p \leq \infty$, $B^{\alpha,\alpha}_{p}((\mathbb{R}^{n+1})$ is real interpolation space, that is, $(L^p_\theta((\mathbb{R}^{n+1}), W^{2i,\theta}_p((\mathbb{R}^{n+1})))_{\theta p} = B^{2(1-\theta)i,1-\theta\theta}_{p}(\mathbb{R}^{n+1}), 0 < T \leq \infty$.

Theorem 4.3. Then, for $\alpha \geq 2$, and $1 \leq p \leq \infty$, $f \in B^{\alpha,\alpha\alpha}_{p}((\mathbb{R}^{n+1})$ if and only if $f, D_k f, D_k D_k f, D_k f \in B^{\alpha-2,2\alpha-1}_{p}((\mathbb{R}^{n+1}), 0 < T \leq \infty$.

Proof. Because of the similarity of the proof, we consider only the case of \mathbb{R}^{n+1}. We define extension operator,

$$E_4f(X,t) = \begin{cases} f(X,t), & t > 0, \\ \sum_{1 \leq j \leq 2i+1} (-j)^l \lambda_j f(X,-jt), & t < 0. \end{cases}$$

Then, $E_4 : W^{2i-2,L}_p((\mathbb{R}^{n+1}) \rightarrow W^{2i-2,L}_p((\mathbb{R}^{n+1}), 0 \leq L \leq i$ is bounded operator and so by (1.2), we get $E_4 : B^{\alpha,\alpha\alpha}_{p}((\mathbb{R}^{n+1}) \rightarrow B^{\alpha,\alpha\alpha}_{p}((\mathbb{R}^{n+1}), \alpha > 0, 1 \leq p \leq \infty$ is bounded operator. Note that

$$D_k(E_2f) = E_2(D_k f), \quad D_k D_k(E_2f) = E_2(D_k D_k f), \quad D_k(E_2f) = E_4(D_k f).$$
Let \(f \in B^{\alpha, \frac{1}{2}, \alpha}_p (\mathbb{R}^{n+1}_{+}) \). Then \(E_2 f \in B^{\alpha, \frac{1}{2}, \alpha}_p (\mathbb{R}^{n+1}) \) and by Corollary 3.2 we have
\[
E_2 f, \ D_{X_k} (E_2 f), \ D_{X_i} X_k (E_2 f), \ D_t (E_2 f) \in B^{\alpha - 2, \frac{1}{2}, \alpha - 1}_p (\mathbb{R}^{n+1}).
\]

Hence by (4.2), we have
\[
f, \ D_{X_k} f, \ D_{X_i} D_{X_k} f, \ D_t f \in B^{\alpha - 2, \frac{1}{2}, \alpha - 1}_p (\mathbb{R}^{n}).
\]

Conversely, suppose that (4.3) is true. Then
\[
E_2 f, \ E_2 D_{X_k} f, \ E_2 D_{X_i} D_{X_k} f, \ E_4 D_t f \in B^{\alpha - 2, \frac{1}{2}, \alpha - 1}_p (\mathbb{R}^{n+1}).
\]

By (4.2) and Corollary 3.5 we have \(E_2 f \in B^{\alpha, \frac{1}{2}, \alpha}_p (\mathbb{R}^n) \). Hence \(E_2 f |_{\mathbb{R}^{n}} = f \in B^{\alpha, \frac{1}{2}, \alpha}_p (\Omega) \).

Remark 4.4. Let \(\alpha \geq 1 \). If \(u \in B^{\alpha, \frac{1}{2}, \alpha}_p (\mathbb{R}^{n+1}_T), \ 0 < T \leq \infty \). Combining Theorem 4.2 and Theorem 4.3 we obtain the estimate
\[
\|D_X u\|_{B^{\alpha - 1, \frac{1}{2}, \frac{1}{2}}_p (\mathbb{R}^{n+1}_T)} \lesssim \|u\|_{B^{\alpha, \frac{1}{2}}_p (\mathbb{R}^n)}.
\]

5. **Proofs of Theorem 1.1**

In this section, we study the relation of usual Besov spaces \(B^{\alpha, \frac{1}{2}}_p (\mathbb{R}^n) \) and parabolic Besov spaces \(B^{\alpha, \frac{1}{2}}_p (\mathbb{R}^n_T) \).

Theorem 5.1. Let \(0 < T < \infty \). Let \(f \in B^{\alpha, \frac{1}{2}}_p (\mathbb{R}^n) \) and \(u \) be defined by (1.1). Then, for \(1 \leq p \leq \infty \), we have
\[
\|u\|_{L^p(\mathbb{R}^n)} \lesssim \left\| f \right\|_{B^{\alpha, \frac{1}{2}}_p (\mathbb{R}^n)}.
\]

(Compare with the section 1.8.1 in [22]).

We introduce a function \(\phi' \in S (\mathbb{R}^n) \), the Schwartz space in \(\mathbb{R}^n \), such that
\[
\begin{cases}
\hat{\phi}' (\xi) > 0, & \text{on } 2^{-1} < |\xi| < 2, \\
\hat{\phi}' (\xi) = 0, & \text{elsewhere},
\end{cases}
\]
\[
\sum_{-\infty < i < \infty} \hat{\phi}' (2^{-i} \xi) = 1, \quad (\xi \neq 0).
\]

We define functions \(\phi_i', \psi' \in S (\mathbb{R}^n) \) whose Fourier transforms are written by
\[
\hat{\phi}_i' (\xi) = \hat{\phi}' (2^{-i} \xi), \quad i = 0, \pm 1, \pm 2, \cdots ,
\]
\[
\psi' (\xi) = 1 - \sum_{1 \leq i < \infty} \hat{\phi}' (2^{-i} \xi).
\]

As we defined the parabolic Besov space, we define a Besov space in \(\mathbb{R}^n \). For \(\alpha \in \mathbb{R} \) we define the Besov space \(B^{\alpha, \frac{1}{2}, \alpha}_{pq} (\mathbb{R}^n) \) by
\[
B^{\alpha, \frac{1}{2}, \alpha}_{pq} (\mathbb{R}^n) = \{ f \in S' (\mathbb{R}^n) \mid \| f \|_{B^{\alpha, \frac{1}{2}, \alpha}_{pq}} < \infty \}.
\]
with the norms
\[
\|f\|_{L^q_{\mathbb{R}^n}^{\frac{1}{\alpha}}} := \|\hat{\psi}^* f\|_{L^q} + \left(\sum_{1 \leq i < \infty} (2^{2\alpha_i} \|\hat{\phi}_i^* f\|_{L^q})^q \right)^{\frac{1}{q}}, \quad 1 \leq q < \infty,
\]
\[
\|f\|_{L^\infty_{\mathbb{R}^n}^{\frac{1}{\alpha}}} := \sup(\|\hat{\psi}^* f\|_{L^p}, 2^{2\alpha_i} \|\hat{\phi}_i^* f\|_{L^p}),
\]
where * is a convolution in \(\mathbb{R}^n\). When \(p = q\), we simply denote \(L^p_{\mathbb{R}^n}^{\frac{1}{\alpha}}\) by \(L^p_{\mathbb{R}^n}^{\alpha}\).

Lemma 5.2. Let \(\hat{\Psi}'(\xi) = \hat{\psi}'(\xi) + \hat{\phi}'(2^{-1}\xi) + \hat{\phi}'(2^{-2}\xi)\) and \(\hat{\Phi}'(\xi) = \hat{\phi}'(2^{-1}\xi) + \hat{\phi}'(\xi) + \hat{\phi}'(2\xi)\).

Let \(\hat{\Phi}'_i(\xi) = \hat{\Phi}'(2^{-i}\xi), i \geq 2\) and let \(\rho_{ti}(\xi) = \hat{\Phi}'_i(\xi)e^{-\xi|\xi|^2}\) for each integer \(i \geq 2\). Then, \(\rho_{ti}(\xi)\)'s are \(L^p(\mathbb{R}^n)\)-multipliers with norms \(M(t, i)\) for \(1 \leq p \leq \infty\). Furthermore, for \(t > 0\)
\[
M(t, i) \lesssim e^{-\frac{1}{4}t2^{2i}} \sum_{0 \leq l \leq L} t^l2^{2il} \lesssim e^{-\frac{1}{8}t2^{2i}},
\]
where \(L = \left[\frac{n}{2}\right] + 1\).

Proof. Let \(t > 0\). The \(L^p(\mathbb{R}^n)\)-multiplier norms \(M(t, i)\) of \(\rho_{ti}(\xi)\) are equal to \(L^p(\mathbb{R}^n)\)-multiplier norms of \(\rho_{ti}'(\xi) = \hat{\Phi}'_i(\xi)e^{-\xi|\xi|^2}\) (see Theorem 6.1.3 in [2]). To prove our lemma, we make use of the Lemma 6.1.5 in [2]. Let \(\beta = (\beta_1, \cdots, \beta_n)\), where \(\beta_i\) are non-negative integers. Then, we have
\[
|D_\xi^{\beta} \rho_{ti}(\xi)| \lesssim e^{-\frac{1}{4}t2^{2i}} \sum_{0 \leq l \leq |\beta|} t^l2^{2il} \chi_{|\xi| < 4}(\xi),
\]
where \(\chi\) is a characteristic function. Let \(L = \left[\frac{n}{2}\right] + 1\) and \(\theta = \frac{n}{2L}\). Then by Lemma 6.1.5 in [2], the \(L^p(\mathbb{R}^n)\)-multiplier norms of \(\rho_{ti}'\) are dominated by
\[
\|\rho_{ti}'\|_{L^2(\mathbb{R}^n)}^{\frac{1}{\theta}} \sup_{|\beta| = L} \|D_\xi^{\beta} \rho_{ti}'\|_{L^2(\mathbb{R}^n)}^{\theta} \lesssim e^{-\frac{1}{8}t2^{2i}} \sum_{0 \leq l \leq L} l^t2^{2il}.
\]
This completes the proof. \(\square\)

Proof of Theorem 5.1. Since the proof is similar, we only show in the case \(1 \leq p < \infty\). To prove Theorem 5.1 we use \(\hat{\psi}'(\xi) + \sum_{1 \leq i < \infty} \hat{\phi}'(2^{-i}\xi) = 1\) for all \(\xi \in \mathbb{R}^n\). Note that \(\hat{u}(\xi, t) = (\hat{\psi}'(\xi)\hat{\psi}'(\xi) + \hat{\psi}'(\xi)\hat{\phi}'(2^{-1}\xi))e^{-t|\xi|^2 \hat{f}} + \sum_{i=2}^{\infty} \hat{\psi}'(2^{-i}\xi)\hat{\phi}'(2^{-i}\xi)e^{-t|\xi|^2 \hat{f}}\), where \(\hat{u}\) is the Fourier transform in \(\mathbb{R}^n\). Hence, we have
\[
\int_0^T \int_{\mathbb{R}^n} |u(X, t)|^p dX dt \leq c_p \int_0^T \int_{\mathbb{R}^n} |\mathcal{F}^{-1}\left((\hat{\psi}'(\xi)(\hat{\psi}'(\xi)) + \hat{\psi}'(\xi)\hat{\phi}'(\xi))e^{-t|\xi|^2 \hat{f}}\right)|^p dX dt
\]
\[
+ c_p \int_0^T \int_{\mathbb{R}^n} |\mathcal{F}^{-1}\left(\sum_{2 \leq i < \infty} \hat{\phi}'(\xi)e^{-t|\xi|^2 \hat{f}}\right)|^p dX dt.
\]
Note that by Young’s inequality, we have

\[
\int_{\mathbb{R}^n} |\Gamma(\cdot, t) \ast \Psi'| dX \leq \int_{\mathbb{R}^n} |\Psi'(X)| dX < \infty, \tag{5.4}
\]

Applying Young’s inequality again, the first term is dominated by

\[
\int_0^T \left(\| f \ast \psi' \|_{L^p(\mathbb{R}^n)}^p + \| f \ast \phi'_1 \|_{L^p(\mathbb{R}^n)}^p \right) dt. \tag{5.5}
\]

Since \(\Phi_i'(\xi)e^{-t|\xi|^2} \) are \(L^p(\mathbb{R}^n) \)-multipliers with norms \(M(t, i) \) (see lemma 5.2), we have

\[
\int_0^T \int_{\mathbb{R}^n} |\mathcal{F}^{-1} \left(\sum_{1 \leq i < \infty} \psi_i''(\xi)e^{-t|\xi|^2}\phi'_i(\xi)\hat{f} \right)|^p dX dt \\
\leq \int_0^T \left(\sum_{t^{2^i} \leq 1} M(t, i)\| f \ast \phi'_i \|_{L^p} \right)^p dt \\
+ \int_0^T \left(\sum_{t^{2^i} \geq 1} M(t, i)\| f \ast \phi'_i \|_{L^p} \right)^p dt \\
= I_1 + I_2.
\]

By Lemma 5.2 for \(t^{2^i} \leq 1 \), we have \(M(t, i) \lesssim 1 \). Since \(\alpha < \frac{2}{p} \), we take \(a \in \mathbb{R} \) satisfying \(\alpha - \frac{2}{p} < a < 0 \) and using Hölder inequality, we have

\[
I_1 \lesssim \int_0^T \left(\sum_{t^{2^i} \leq 1} 2^{-\frac{p}{2}t^{2^i}a} \right)^{p-1} \sum_{t^{2^i} \leq 1} 2^{2^i a} \| f \ast \phi'_i \|_{L^p} dt \\
\lesssim \int_0^T t^{\frac{1}{2}pa} \sum_{t^{2^i} \leq 1} 2^{2^i a} \| f \ast \phi'_i \|_{L^p} dt \\
\lesssim \sum_{1 \leq i < \infty} 2^{2^i a} \| f \ast \phi'_i \|_{L^p} \int_0^{2^{-2i}} t^{\frac{1}{2}pa} dt \\
= c \sum_{1 \leq i < \infty} 2^{-2i} \| f \ast \phi'_i \|_{L^p}.
\]

Now, we estimate \(I_2 \). By Lemma 5.2 we have that \(M(t, i) \lesssim (t^{2^i})^{-m} \sum_{0 \leq i \leq L} t^{i}2^{2ii} \lesssim 2^{(2L-2m)i}t^{-m} \) for \(t^{2^i} \geq 1 \) and \(m > 0 \). Let us take \(m \) and \(b \) satisfying \(b > 0 \) and \(\frac{b}{2}(2L-2m) > \frac{p}{2} \).
2m) + \frac{1}{2} pb + 1 < 0. \) Then, we get

\[
I_2 \lesssim \int_0^T \left(\sum_{l2^i \geq 1} 2^{(2L-2m)i} t^{-m} \| f \ast \phi_i' \|_{L^p} \right)^p dt
\]
\[
\lesssim \int_0^\infty t^{\frac{p}{2}(2L-2m)} \left(\sum_{l2^{i+1} \geq 1} 2^{\frac{p}{p-1} i} \sum_{l2^i \geq 1} 2^{pbi} 2^{p(2L-2m)i} \| f \ast \phi_i' \|_{L^p} \right) dt
\]
\[
\lesssim \sum_{1 \leq i < \infty} 2^{pbi} 2^{p(2L-2m)i} \| f \ast \phi_i' \|_{L^p} \int_2^{-2i} t^{\frac{p}{2}(2L-2m) + \frac{1}{2} pb} dt
\]
\[
= c \sum_{1 \leq i < \infty} 2^{-2i} \| f \ast \phi_i' \|_{L^p}.
\]

Hence, we complete the proof of Theorem 5.1.

Theorem 5.3. Let \(1 \leq p \leq \infty \) and \(i \) be a non-negative integer. Let \(f \in B^{2i-\frac{2}{p}} (\mathbb{R}^n) \) and \(u \) be defined by \((\ref{b1})\). Then, for \(T > 0 \), we have

\[(5.6) \quad \| u \|_{W^{2i,1}(\mathbb{R}^n)} \lesssim \| f \|_{B^{2i-\frac{2}{p}} (\mathbb{R}^n)}.
\]

Proof. From Theorem 5.1 \((5.6)\) holds for \(i = 0 \).

Let \(i > 0 \). We denote \(\Delta = \sum_{1 \leq k \leq n} D^2_{X_k} \) and \(\Delta^l \Delta^{l+1} = \Delta^l \Delta^{l+1} \) for \(l \geq 2 \). Since \(D_l D_X^\beta u(X, t) = \Delta^l D_X^\beta u(X, t) = \Delta^l D_X^\beta f, \Gamma(X-\cdot, t) > 0 \) for \(|\beta| + 2l \leq 2i \), by Theorem 5.1 we have

\[
\| D_l D_X^\beta u \|_{L^p} \lesssim \| \Delta^l D_X^\beta f \|_{B^{2i-\frac{2}{p}} (\mathbb{R}^n)} \lesssim \| f \|_{B^{2i-\frac{2}{p}} (\mathbb{R}^n)}.
\]

For the last inequality, we used the well-known fact

\[(5.7) \quad \| f \|_{B^{\alpha} (\mathbb{R}^n)} \approx \| f \|_{B^{\alpha-1} (\mathbb{R}^n)} + \| D_X f \|_{B^{\alpha-1} (\mathbb{R}^n)}
\]

for each \(\alpha \in \mathbb{R} \) and \(1 \leq p \leq \infty \) (see \cite{2}). This completes the proof of Theorem 5.3.

In fact, for \(i \geq 1, 1 < p < \infty \) the Theorem 5.3 is known result before (see \cite{13}).

Theorem 5.4. Let \(f \in B^{\frac{2}{p}} (\mathbb{R}^n) \) and \(u \) be defined by \((\ref{b1})\). Then, for \(1 \leq p \leq \infty \),

\[(5.8) \quad \| f \|_{B^{\frac{2}{p}} (\mathbb{R}^n)} \lesssim \| u \|_{L^p (\mathbb{R}^n)}.
\]

Proof. Since the proof of the case \(p = \infty \) is similar, we only prove the case \(1 \leq p < \infty \). Note that the \(L^p (\mathbb{R}^n) \)-multiplier norms of \(\hat{\phi}'(2^{-i} \xi) |2^{-i} \xi|^2 \) are equal to the \(L^p (\mathbb{R}^n) \)-multiplier norm of \(\hat{\phi}'(\xi) e^{\xi^2} \), where \(\hat{\phi}' \) is defined in \((\ref{b2})\) (see Theorem 6.1.3 in \cite{2}). Using Lemma 6.1.5
in [2], we have the $L^p(\mathbb{R}^n)$-multiplier norm of $\hat{\phi}'(\xi)e^{\frac{1}{2}|\xi|^2}$ is finite. Hence, for $1 \leq p < \infty$, we have

$$(2^{-\frac{2}{p^*}}\|f * \phi'_t\|_{L^p(\mathbb{R}^n)})^p = 2^{-2i} \int_{\mathbb{R}^n} |F^{-1}((2^{-i}\xi) e^{2^{-2i}|\xi|^2} e^{-2^{-2i}|\xi|^2}f)|^p dX$$

$$\lesssim 2^{-2i} \int_{\mathbb{R}^n} |u(X, 2^{-2i})|^p dX$$

$$\lesssim \int_{2^{-2i}}^{2^{-2i+2}} \int_{\mathbb{R}^n} |u(X, 2^{-2i})|^p dX dt$$

$$\lesssim \int_{2^{-2i}}^{2^{-2i+2}} \int_{\mathbb{R}^n} (2^{-i(n+2)} \int_{J_{2^{-i-1}}(X, 2^{-2i})} u(Y, s) dY ds)^p dX dt$$

$$\lesssim \int_{2^{-2i}}^{2^{-2i+2}} \int_{\mathbb{R}^n} |u(X, t)|^p dX dt,$$

where $J_r(X, t) = \{(Y, s) \in \mathbb{R}^{n+1} \mid |X - Y| < r, |t - s|^\frac{1}{2} < r\}$. Hence, we have

$$\sum_{1 \leq i < \infty} (2^{-\frac{2}{p^*}}\|f * \phi'_t\|_{L^p(\mathbb{R}^n)})^p \lesssim \sum_{1 \leq i < \infty} \int_{2^{-2i}}^{2^{-2i+2}} \int_{\mathbb{R}^n} |u(X, t)|^p dX dt$$

$$\lesssim \int_0^1 \int_{\mathbb{R}^n} |u(X, t)|^p dX dt$$

$$\lesssim \int_0^1 \int_{\mathbb{R}^n} |u(X, t)|^p dX dt.$$

Similarly, the $L^p(\mathbb{R}^n)$-multiplier of $\hat{\psi}'(\xi)e^{\frac{1}{2}|\xi|^2}$ is finite. Hence, we have

$$\|f * \psi'_t\|_{L^p(\mathbb{R}^n)}^p \lesssim \int_{\mathbb{R}^n} |F^{-1}(\psi'_t e^{\frac{1}{2}|\xi|^2} e^{-\frac{1}{2}|\xi|^2}f)|^p dX$$

$$\lesssim \int_{\mathbb{R}^n} |u(X, \frac{1}{2})|^p dX$$

$$\lesssim \int_{\mathbb{R}^n} \int_{J_{\frac{1}{2}}(X, \frac{1}{2})} |u(Y, s)|^p dY ds dX$$

$$\lesssim \int_0^1 \int_{\mathbb{R}^n} |u(Y, s)|^p dY ds.$$

Hence, we proved Theorem 5.4 when $T = 1$. For general $T > 0$, we use scaling. Note that

$$v(X, t) = u(T^{-\frac{1}{2}}X, Tt) = \int_{\mathbb{R}^n} \Gamma(X - Y, t) f_T(Y) dY,$$

where $f_T(Y) = f(T^{-\frac{1}{2}}Y)$. Hence, we have

$$\|f_T\|_{\dot{B}_{p, \frac{1}{p}}^s} \lesssim \int_0^T \int_{\mathbb{R}^n} |v(X, t)|^p dX dt = cT^{-\frac{n+r}{2}} \int_0^T \int_{\mathbb{R}^n} |u(X, t)|^p dX dt.$$

Since $\|f\|_{\dot{B}_{p, \frac{1}{p}}^s} \lesssim_T \|f_T\|_{\dot{B}_{p, \frac{1}{p}}^s}$, we obtain Theorem 5.4 for general $0 < T < \infty$.

\[\square\]
Theorem 5.5. Let \(1 \leq p \leq \infty \) and \(i \) be a non-negative integer. Let \(f \in B_p^{2i-\frac{2}{p}}(\mathbb{R}^n) \) and \(u \) is defined by (1.1). Then
\[
\|f\|_{B_p^{2i-\frac{2}{p}}(\mathbb{R}^n)} \lesssim \|u\|_{W_p^{2i,\ell}(\mathbb{R}^n)}.
\]

Proof. In Theorem 5.4, we have (5.9) for \(i = 0 \). Let \(i > 0 \). Notice that for \(|\beta| \leq 2i \), we have
\[
D^\beta X u(X,t) = c_n \int_{\mathbb{R}^n} t^{-\frac{n}{2}} e^{-\frac{|X-Y|^2}{4t}} D^\beta Y f(Y) \, dY.
\]
By (5.7) and (5.8), we have
\[
\|f\|_{B_p^{2i-\frac{2}{p}}(\mathbb{R}^n)} \lesssim \sum_{|\beta| \leq 2i} \|D^\beta f\|_{B_p^{2i}(\mathbb{R}^n)} \lesssim \sum_{|\beta|+2\ell \leq 2i} \|D^\beta X^\ell u\|_{L_p(\mathbb{R}^{n+1})} \lesssim \|u\|_{W_p^{2i,\ell}(\mathbb{R}^n)}.
\]
This completes the proof of Theorem 5.5. \(\square \)

Combining Theorem 5.1-Theorem 5.5 and by the real interpolation property, we obtain the result of Theorem 1.1.

References

[1] R. Adams, Sobolev Spaces, Academic Press, 1975.
[2] J. Bergh and J. Lofstrom, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, 1976.
[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
[4] R. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz domains, Indiana Univ. Math. J., 44, no. 4, 1183-1206 (1995).
[5] T. Chang and H. Choe, Estimates of the Green's functions for the elasto-static equations and Stokes equations in a three dimensional Lipschitz domain, Potential Anal., 30, no. 1, 85-99 (2009).
[6] H. Dappa and W. Trebels, On hypersingular integrals and anisotropic Sobolev spaces, Trans. Amer. Math. Soc., 286 (1984), 419-429.
[7] H. Dappa and Trebels, On anisotropic Besov and Bessel Potential spaces, Approximation and function spaces (Warsaw, 1986), 69-87, Banach Center Publ., 22, PWN, Warsaw, 1989.
[8] E. Fabes, O. Mendez and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159, no. 2, 323-368 (1998).
[9] B. Frank Jones Jr and C. Tu, Embedding and continuation theorems for parabolic function spaces, Amer. J. Math., 92, (1970), 857-868.
[10] B. Jones Jr, Lipschitz spaces and the heat equation, J. Math. Mech., 18, (1968), 379-409.
[11] D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. of Funct. Anal., 130, (1995), 161-219.
[12] Tunde Jakab and Marius Mitrea, Parabolic initial boundary value problems in nonsmooth cylinders with data in anisotropic Besov spaces, Math. Res. Lett., 13, (2006) no. 5, 825-831.
[13] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tceva, Linear and quasi-linear equations of parabolic type, American Math. Soc. Providence, 1968.
[14] P. I. Lizorkin, Description of the spaces \(L_p^\ell(\mathbb{R}^n) \) in terms of singular difference integrals, Math. USSR-Sb., 10 (1970), 77-89.
[15] S. M. Nikol’skii, Approximation of functions of several variables and imbedding theorems, Springer, Berlin 1975.
[16] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, Durham 1976.
[17] V. Gopala Rao, A characterization of parabolic function spaces, Amer. J. math, 99, (1977), no.5, 985-993.
[18] E. Stein, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, NJ, 1971.
[19] M. Taibleson, On the theory of Lipschitz spaces of distributions in Euclidean n-space. I. Principal properties, J. Math. Mech., 13, (1964), 407-476.
[20] H. Triebel, Theory of Function Spaces, Monographs in Math, Birkh"{a}user, Base 1983.
[21] H. Triebel, *Characterizations of Besov-Hardy-Sobolev spaces*, J. Approx. Theory, **52**, no. 2, 162-203 (1988).

[22] H. Triebel, *Theory of function spaces. II*, Birkhauser Verlag, Basel, 1992.

Department of Mathematics, Yonsei University, Seoul, South Korea

E-mail address: chang7357@yonsei.ac.kr