Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Don’t forget arterial thrombosis in patients with COVID-19: A case series

Daniel D. Gold a,*, Ramzi Kurd b, Sharon Einav c

a Emergency Department, Shaare Zedek Medical Center and Hebrew University, Faculty of Medicine, Jerusalem, Israel
b Department of Internal Medicine, Shaare Zedek Medical Center and Hebrew University, Faculty of Medicine, Jerusalem, Israel
c Surgical Intensive Care Unit, Shaare Zedek Medical Center and Hebrew University, Faculty of Medicine, Jerusalem, Israel

ARTICLE INFO

Keywords: COVID-19
SARS COV-2
Thromboembolism
Arterial thrombosis
Arterial occlusion

ABSTRACT

Introduction: The acute disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS COV-2) is accompanied by a hypercoagulable state. Multiple publications have described the venous thromboembolic events associated with coronavirus disease 2019 (COVID-19) but arterial thromboembolic events have yet to be described.

Cases description: We describe five COVID-19 patients that developed severe morbidity as a result of occlusive arterial thromboembolic events occurring despite treatment with low molecular weight heparin. All cases presented with an acute confusional state and were accompanied by rapid elevations of lactate and D-dimers and leukocytes. The end organs involved were the kidneys, spleen, liver, lungs, central nervous system, intestines and limbs. Only one of the five patients survived.

Conclusion: COVID-19 is associated with not only venous but also arterial thromboembolic events. Further research is required to clarify the incidence, causes and possible modes of prevention of this potentially lethal disease complication.

1. Introduction

The hypercoagulable condition accompanying COVID-19 patients has been reported extensively and is associated with high morbidity and mortality [1,2]. The literature describes mainly venous thromboembolic events (VTE) and pulmonary embolism [3,4]. Yet patients with COVID-19 have been described to suffer high rates of venous thrombosis despite anticoagulation [5]. Recently these phenomena have been proposed to occur due to thrombosis in situ rather than discrete embolic events [6]. Attention has thus far been focused on venous thromboembolic events in this context and administration of anticoagulants is largely targeted to prevent this process. We present five critically ill patients with COVID-19 that developed severe morbidity as a result of occlusive arterial thromboembolic events occurring despite treatment with low molecular weight heparin. (see Figs. 1 and 2)

2. Case descriptions (Table 1)

Case 1. initially received home therapy following diagnosis with COVID-19 but nine days after symptoms onset and six days after diagnosis he was referred to the hospital due to worsening diffuse abdominal pain and constipation. His physical examination revealed a slightly tender abdomen with no signs of peritonitis. Computed tomography (CT) was performed due to elevated lactate levels and revealed bilateral complete occlusion of both renal arteries, the superior mesenteric artery and the celiac trunk.

Case 2. was hospitalized due to worsening symptoms one week after diagnosis. Despite treatment with therapeutic-dose LMWH, increasing hypoxemia led to endotracheal intubation and veno-venous extracorporeal mechanical oxygenation (ECMO) with therapeutic heparinization (activated clotting time 180–220 seconds). Shortly thereafter the patient developed culture negative hemodynamic instability and leukocytosis and was sent to CT which revealed extensive thrombosis of the aorta, celiac trunk, hepatic and splenic arteries.

Case 3. was hospitalized with worsening respiratory symptoms and was intubated eight days after admission despite treatment with therapeutic-dose LMWH and non-invasive respiratory support. Post

Abbreviations: ARDS, acute respiratory distress syndrome; COVID-19; coronavirus disease 2019; CT; computed tomography; ED, emergency department; LMWH; low molecular weight heparin; SARS COV-2, severe acute respiratory syndrome coronavirus 2; VTE, Venous thromboembolic event.
* Corresponding author. Emergency Department Shaare Zedek Medical Center Shmu’el Bait St. 12, Jerusalem, 9103102, Israel.
E-mail address: gdaniel@szmc.org.il (D.D. Gold).

https://doi.org/10.1016/j.tru.2021.100065
Received 15 May 2021; Received in revised form 30 June 2021; Accepted 3 August 2021
Available online 4 August 2021
2666-5727/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
intubation, electrocardiography revealed inferior-lateral ST segment elevation and blood tests showed increasing troponin levels. Treatment with heparin and dual antiplatelet therapy was initiated. Worsening hemodynamic instability, elevated lactate and white cell counts led to performance of CT which revealed extensive brain, lung, spleen and kidney infarctions.

Case 4. underwent intubation three days after admission due to severe hypoxemia and cognitive impairment despite therapeutic-dose LMWH. On the day after intubation physical examination revealed a cold and discolored left hallux. Dorsalis pedis and posterior tibial pulses were normal. However, blood lactate levels and the white cell count increased and the patient was therefore send to a CT scan that showed lung, spleen and kidney infarctions.

Case 5. had been discharged from another hospital after convalescing from COVID-19. Three days after discharge he began to suffer from left forearm pain, paresthesias and discoloration which led him to self-refer to our ED. Physical examination revealed tender, pale and cold left arm and fingers. Doppler examination diagnosed occluded radial and ulnar arteries. Urgent vascular surgery revealed multiple thromboses in the brachial, radial and ulnar arteries. The thrombi were removed with a Fogarty catheter, arterial flow was reestablished with evidence of good reperfusion and the patient was referred to a completion CT scan.

All of the presented patients manifested with life or limb threatening arterial occlusions despite treatment with LMWH (see Table 1) and four of these five patients did not survive the event.

3. Discussion

Mortality from COVID-19 occurs mainly due to pulmonary disease involvement. However, contrary to classical acute respiratory distress syndrome (ARDS), which involves the alveolar component of the lung, the pulmonary damage of COVID-19 has both alveolar and vascular occlusive elements [2]. Publications describing the pro-thrombotic state in critically-ill COVID-19 patients have also led to the realization that these vascular occlusions are a systemic rather than a local pulmonary phenomenon. Approximately one third of hospitalized critically-ill patients with COVID-19 develop thrombotic complications, mostly VTEs but also ischemic strokes and myocardial infarctions [7]. Autopsies of deceased COVID-19 patients found micro-angiopathy and thrombosis in the lungs [8] and cases of arterial thrombosis causing mesenteric ischemia have also been reported [9].

This series included patients that arrived from home with the arterial thrombotic event as their initial presentation as well as patients already critically ill at the time thrombosis was diagnosed. The threshold for performing computed tomography imaging should therefore be low for outpatients presenting with elevated lactate levels and leukocytosis and inpatients with sudden obtundation.
The cytokine storm that accompanies the response to SARS-CoV-2 infection may activate the coagulation system, cause endothelial damage and release tissue factors \[10,11\]. A correlation has been observed between D-dimer and fibrinogen levels and the levels of pro-inflammatory cytokine IL-6 in patients with severe COVID-19 \[12\]. Although both venous and arterial thrombi are affected by inflammation and the immune system, there are important differences between the two.

Venous thrombosis typically stems from diminished venous flow, endothelial injury and a hypercoagulable state. Plasma fibrinogen, factor VIII and antiphospholipid antibody levels are often elevated in severe COVID-19 patients, while anti-coagulant factors such as antithrombin, protein C and protein S are decreased \[13\]. All of these constitute evidence of a hypercoagulable state and probably contribute to the increased risk of venous thrombosis in COVID-19.

Arterial thrombosis occurs in a rapid blood flow environment and often occurs after an atherosclerotic plaque rupture or vascular injury that exposes thrombogenic elements to the blood. Platelets, which possess unique adherence capabilities in high shear forces, are a major contributor to arterial thrombosis \[14\]. Changes in platelet function, found in COVID-19 patients, might explain these arterial thrombotic events. Platelets are activated at lower thresholds than normal in COVID-19 patients \[15\], and an increase in platelet aggregate formation has also been shown \[16\]. COVID-19 patients may therefore benefit from antiplatelet treatment.

Several studies have noted that treatment with aspirin before diagnosis with COVID-19 may correlate with favorable outcomes; milder disease, less ICU admission and reduced mortality rates \[17–19\]. Mortality was also lower among COVID-19 patients who received aspirin during hospitalization \[20\]. However, while this evidence would seem to suggest a possible beneficial effect of aspirin, all of these studies were retrospective which precludes drawing conclusions regarding causation.

This case series adds to the emerging evidence of diffuse systemic arterial occlusion in COVID-19 patients, often despite therapeutic anticoagulation. It raises important questions regarding the physiological processes underlying this disease component and whether it is at all preventable with standard anticoagulation or antiplatelet regimes.

Clinicians tend to extrapolate from prior knowledge and experience. It was misleading to believe the pulmonary manifestations of COVID-19 are similar to classic ARDS as this led to the belief that we can save patients solely by treatment of the pulmonary disease. It may be similarly misleading to believe the thromboses observed in COVID-19 stem from a classic prothrombotic state; precious time that could have been used to seek the cause of this condition may be lost when trying to prove we can save lives with anticoagulation alone.

Fig. 2. Thromboembolic events of patients 2,3,5. A- Abdominal CT angiography of patient 2 demonstrating celiac trunk and splenic artery thrombosis and splenic infarct. B Brain CT scan of patient 3 demonstrating multiple supra and infra-tentorial brain infarcts C –Thromboses extracted from the brachial, radial and ulnar arteries of patient 5 D – Chest CT scan of patient 5 showing left subclavian artery thrombosis.
Table 1
Characteristics and laboratory analysis of the presented five patients with severe COVID-19.

	Case 1	Case 2	Case 3	Case 4	Case 5
Age	68	59	70	78	58
Sex	Male	Male	Male	Male	Male
BMI	–	30	24.5	25	28.5
Medical history	None	HTN, DM, hyperlipidemia	None	HTN	DM, prior DVT after neck of femur fracture
Symptoms before diagnosis	weakness, fever, dyspnea	fever, cough, dyspnea	fever, cough, loss of appetite	fever, cough, dyspnea	fever, cough, dyspnea, anosmia
Days of symptoms before admission	9	7	2	4	12
Medications before admission	–	–	–	–	–
Respiratory support	–	–	–	–	Non-invasive respiratory support in another hospital until withdrawal Dexa
Steroids	–	–	Dexa	Dexa	Dexa
Anti-platelet	–	–	–	Aspirin	–
Anti-coagulation	LMWH- Prophylactic dose	–	LMWH - therapeutic dose	LMWH - Intermediate dose	–
Body temperature	36.5	38.2	36.9	38.2	36.9
Room air saturation on admission (%)	80	64	94	64	94
Blood tests on admission	–	–	–	–	–
Platelets (x10^9/l)	274	168	189	233	323
Leucocytes (x10^9/l)	15.6	5.1	8.2	8.5	16.8
Lymphocytes (x10^9/l)	0.53	1.17	0.64	0.34	4
CRP (mg/dL)	24	11.6	21	29	0.59
D-dimer (ng/ml)	109189	577	1449	1856	1098
Lactate (mmol/L)	13	1.5	2	–	2.4
Medications on admission	–	–	–	–	–
Steroids	Dexa	Dexa	Dexa	Dexa	–
Anti-platelet	–	–	–	Aspirin	–
Anti-coagulation	LMWH - therapeutic dose	–	LMWH - therapeutic dose	LMWH - therapeutic dose	–
Days from admission to event	–	10	8	4	–
Blood tests on day of event	–	–	–	–	–
Platelets (x10^9/l)	274	236	91	139	323
Leucocytes (x10^9/l)	15.6	38.6	32.6	17.6	16.8
Lymphocytes (x10^9/l)	4.4	4.4	0.54	0.7	4
C reactive protein (mg/dL)	24	14.3	16.5	29	0.59
D-dimer (ng/ml)	109189	3270	50074	19041	1098
Fibrinogen (mg/dL)	520	627	349	454	469
INR	2.21	0.96	1.7	1.33	1
hsTroponin (ng/L)	41	84	2900	4368	6
Lactate (mmol/L)	13	1.7	6.6	3	2.4
Autoantibodies	–	–	–	–	–
Anti-Beta 2GP1 IgG	weakly positive	negative	negative	negative	negative
Anti Cardiolipin IgG	negative	negative	negative	negative	negative
Anti Cardiolipin IgM	negative	negative	negative	negative	negative

(continued on next page)
D.D. Gold et al.

Case 1

Computed tomography findings: Multiple segmental and sub-segmental pulmonary emboli with infarctions, bilateral lower lobes of the left lung, bilateral complete occlusion of both renal arteries, the superior mesenteric artery and the celiac trunk, large spleen, bilateral infarctions, sub-segmental infarctions, splenic and kidney infarctions.

Heparin (therapeutic dose) Decayed 3 days after event

Outcome: Deceased

Case 2

Computed tomography findings: Multiple supra- and infra-aortic brain infarctions, bilateral upper and lower lobes of the left lung, bilateral complete occlusion of both renal arteries, the superior mesenteric artery and the celiac trunk, large spleen, bilateral infarctions, sub-segmental infarctions.

LMWH (therapeutic dose) Decayed 2 weeks after event

Outcome: Deceased 2 days after event

Case 3

Computed tomography findings: Proximal thrombosis of the descending thoracic and pulmonary arteries with near complete occlusion of the lung of both lungs; spleen and infarctions.

Heparin Decayed from appendix 1 month after event

Outcome: Deceased from sepsis 1 month after event

Case 4

Computed tomography findings: Post-surgery proximal thrombosis of the right lower lobe pulmonary embolism.

Heparin Decayed 2 days after event

Outcome: Regained good sensory and motor function of the operated hand

Case 5

Computed tomography findings: Left subclavian artery disease.

Heparin Decayed 3 days after event

Outcome: Deceased 2 weeks after event

Prior abstract publication/presentation

None.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] J.M. Connors, J.H. Levy, Thrombolysis and the hypercoagulability of COVID-19, J. Thromb. Haemostasis 18 (2020) 1559–1561, https://doi.org/10.1111/jth.14849.
[2] J. Helms, C. Tascuard, F. Severac, I. Leonard-Lorrant, M. Ohana, X. Delabranche, et al., High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study, Intensive Care Med. 46 (2020) 1089–1098, https://doi.org/10.1007/s00134-020-00606-2.
[3] J. Helms, F. Severac, H. Merdji, M. Schenck, P. Clerc-Jehl, M. Baladacini, et al., Higher anticoagulation targets and risk of thrombotic events in severe COVID-19 patients: bi-center cohort study, Ann. Intensive Care 11 (2021) 14, https://doi.org/10.1186/s13613-021-00809-5.
[4] W.J. Jenner, R. Kanji, S. Mirsadraee, Y.X. Gue, S. Price, S. Prasad, et al., Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review, J. Thromb. Thrombolysis (2021) 1–13, https://doi.org/10.1007/s11239-021-02394-7.
[5] F.A. Klok, M.J.H.A. Kruip, N.J.M. van der Meer, M.S. Arbous, D. Gommers, K. M. Kant, et al., Confirmation of the high cumulative incidence of the thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis, Thromb. Res. 191 (2020) 148–150, https://doi.org/10.1016/j.thromres.2020.04.041.
[6] J. Thachil, A. Srivastava, SARS-2 coronavirus-associated hemostatic lung abnormality in COVID-19: is it pulmonary thrombosis or pulmonary embolism? Semin. Thromb. Hemost. 46 (2020) 777–780, https://doi.org/10.1055/s-0040-1712155.
[7] G. Piazza, U. Campia, S. Hurwitz, J.E. Snyder, S.M. Rizzo, M.B. Pfeferman, et al., Registry of arterial and venous thromboembolic complications in patients with COVID-19, J. Am. Coll. Cardiol. 76 (2020) 2060–2072, https://doi.org/10.1016/j.jacc.2020.08.070.
[8] S.E. Fox, A. Akmatbekov, J.L. Harbert, G. Li, J. Quinn Brown, R.S. Vander Heide, Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans, Lancet Respir Med 8 (2020) 681–686, https://doi.org/10.1016/j.thermop2020.04.041.
[9] R.M. Rodriguez-Nakamura, M. Gonzalez-Galantay, A.R. Martinez-Martinez, Acute mesenteric thrombosis in two patients with COVID-19. Two cases report and literature review, Int J Surg Case Rep 76 (2020) 409–414, https://doi.org/10.1016/j.ijscr.2020.10.040.
[10] B.V. Chernyak, A.S. Popova, A.P. Prikhodko, O.A. Grebenchikov, I.L. Khalki, et al., High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study, Intensive Care Med. 46 (2020) 1089–1098, https://doi.org/10.1007/s00134-020-00606-2.
[11] T. Quinaglia, M. Shabani, I. Breder, H.A. Silber, J.A.C. Lima, A.C. Sposito, et al., The distinctive structure and composition of arterial and venous thrombi and thrombotic complications in patients with COVID-19, J. Thromb. Thrombolysis 50 (2020) 580–586, https://doi.org/10.1007/s11239-020-02182-9.
[12] J. Helms, C. Tacquard, F. Severac, I. Leonard-Lorant, M. Ohana, X. Delabranche, et al., Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19 patients, J. Thromb. Haemostasis 18 (2020) 1559–1561, https://doi.org/10.1111/jth.14849.
[13] Y. Zhang, W. Cao, W. Jiang, M. Xiao, Y. Li, N. Tang, et al., Platelets and coagulation factor and anti-phospholipid antibody in critically ill COVID-19 patients, J. Thromb. Thrombolysis 50 (2020) 580–586, https://doi.org/10.1007/s11239-020-02182-9.
[14] J.N. Chernykh, C. Nagasvami, S. Kosolapova, A.D. Peskhova, A. Cuker, D.B. Cines, et al., The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli, Sci. Rep. 10 (2020) 1–12, https://doi.org/10.1038/s41598-020-59526-z.
[15] Y. Zaid, F. Puhin, I. Alayza, A. Naya, M. Oudghiri, L. Khalki, et al., Platelets can associate with SARS-CoV-2 RNA and be hyperactivated in COVID-19, Circ. Res. (2020) 1404, https://doi.org/10.1161/CIRCRESAHA.120.317701.18.
[16] E.D. Hottz, I.G. Azevedo-Quintanilha, L. Palhinha, L. Teixeira, E.A. Barreto, C.R. Piao, et al., Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19, Blood 136 (2020) 1330–1341, https://doi.org/10.1182/blood.2020007252.
[17] J.H. Chow, A.K. Khanna, S. Kethireddy, D. Yamane, A. Levine, M.A. Jackson, et al., Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019, Anesth. Analg. (2021) 930–941, https://doi.org/10.1213/ANE.0000000000005292.
[18] T.F. Osborne, Z.P. Veigalis, D.M. Arreola, S.M. Mahajan, E. Roosli, C.M. Curtin, Association of mortality and aspirin prescription for COVID-19 patients at the
[19] E. Merzon, J. Green, S. Vinker, A. Golan-Cohen, A. Gorohovski, E. Avramovich, et al., The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID-19 infection, FEBS J. (2021), https://doi.org/10.1111/febs.15784.

[20] M.L. Meizlish, G. Goshua, Y. Liu, R. Fine, K. Amin, E. Chang, et al., Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: a propensity score-matched analysis, Am. J. Hematol. 96 (2021) 471–479, https://doi.org/10.1002/ajh.26102.