Alignment of tree phenology and climate seasonality influences the runoff response to forest cover loss

James Knighton, Varsha Vijay and Margaret Palmer
The National Socio-Environmental Synthesis Center, Annapolis, MD, United States of America
E-mail: jknighton@sesync.org

Abstract
Trees shape the critical zone and modulate terrestrial water storage yet observed streamflow responses to forest cover change vary. Differences in catchment area, soil water storage, management practices, tree species, and climate are among the many explanations proposed for heterogeneous hydrologic responses. We addressed evidence for the hypothesis that mean annual temperature (MAT) and the phase shift between precipitation and enhanced vegetation index (EVI) peaks, \(\theta \), explain a significant amount of the variation in hydrologic response to forest cover loss. We selected 50 catchments with daily streamflow records spanning eight nations and seven climate regions. Categorical clustering of catchments was performed with MAT, \(\theta \), minimum EVI, catchment area, and percentage forest loss. Similar storm event runoff ratio responses to deforestation were best clustered by MAT and \(\theta \). High MAT tropical monsoonal catchments (Brazil, Myanmar, and Liberia) exhibited minimal evidence of increasing runoff ratios (increases observed in 9% of catchments). Low MAT subarctic, cold semi-arid, and humid continental catchments (US, Canada, and Estonia) showed consistent runoff increases around the time of snowmelt (94%). The deforestation runoff responses of temperate and subtropical catchments with Mediterranean, humid, and oceanic climates depended strongly on \(\theta \). We observe increased runoff following forest loss in a majority of catchments (90%) where precipitation peaks followed peak growing season (max EVI) (US). In contrast, where precipitation peaks preceded the growing season (South Africa and Australia) there was less evidence of increased runoff (25% of catchments). This research supports the strategic implementation of native forest conservation or restoration for simultaneously mitigating the effects of global climate change and regional or local surface runoff.

1. Introduction
Many nations face complex choices between forest removal to support local economies and food security versus forest preservation to provide a host of ecosystem services including flood control (Ellison et al. 2017), water quality (Miura et al. 2015), human health (e.g. Mapulanga and Naito 2019), and reduction of global atmospheric carbon (Griscom et al. 2017). Forest preservation competes with economic growth in developing (e.g. Ingalls and Dwyer 2016, Vijay et al. 2018, Myers et al. 2018) and developed nations (Jiang et al. 2016, Collentine and Futter 2018), thus the benefits of forest cover must be carefully defined. Observing and explaining catchment-scale hydrologic consequences of forest cover change has remained a challenge (Rogger et al. 2017, Mcdonnell et al. 2018) and has been highlighted as one of the most critical knowledge gaps facing hydrologic research (Blöschl et al. 2019).

Prior studies of forest cover change fall broadly into two categories—those that tracked changes in runoff (i.e. the partitioning of rainfall between immediate streamflow or catchment-stored water) (e.g. Hewlett and Bosch 1984, Trimble et al. 1987, Brown et al. 2013, Blöschl et al. 2015, Carrick et al. 2019, Knighton et al. 2019) versus those that analyzed total water yield (i.e. streamflow) (e.g. Farley et al. 2005, Li et al. 2017, Li et al. 2018, Zhang et al. 2017, Filoso et al. 2017, Levy et al. 2018, Pontes et al. 2019, Bladon et al. 2019, Cavalcante et al. 2019, Goeking and Tarboton 2020). Recent global meta-analyses of...
streamflow responses to forest cover change indicate that forest loss suppresses evapotranspiration and increases streamflow, though there is considerable noise in these signals indicating heterogeneous hydrologic responses among catchments (Li et al 2017, Zhang et al 2017, Wei et al 2018). Regional studies demonstrate the potential for local hydrologic variations in streamflow-transpiration partitioning (e.g. Peña-Arancibia et al 2019, Goeking and Tarbaton 2020). Together these compilations of forest change research illustrate global heterogeneity in hydrologic responses to forest cover change that has not been adequately explained.

Catchment studies focusing on runoff generation suggest that much of the variability in runoff responses, and possibly water yield, may be due to differences in the timing of annual precipitation extremes, catchment wetness, and the pheno-logy of local vegetation. Ye et al (2017) demonstrated that regions of the contiguous US (CONUS) with energy and water cycle phase shifts show a strong influence of antecedent catchment saturation on the annual maximum flood, whereas catchments with highly synchronized cycles were less sensitive to saturation. Hydrologic studies of forest cover loss across the tropics (Peña-Arancibia et al 2019, Pontes et al 2019), Eastern Africa (Guzha et al 2018), the Andes (Bonneseur et al 2019), Mediterranean regions of Europe (Preti et al 2011, Belmar et al 2018) and Northeastern US (Knighton et al 2019) suggest forest losses generate a pronounced seasonality in runoff (i.e. higher early wet season and lower dry season discharge). In contrast, studies in boreal (Geris et al 2015, Soulsby et al 2017) and temperate (Blöschl et al 2015, Carrick et al 2019) European catchments have indicated that regional forest cover change could have minimal impact on runoff dynamics due to low water use by vegetation during cool seasons.

Taken together these studies led us to hypothesize that the runoff response to forest cover change may be related to the seasonality of catchment saturation, driven by precipitation and tree phenology. Given the importance of developing a mechanistic understanding of catchment runoff responses to forest cover change for forest management planning (Rogger et al 2017, Ellison et al 2017), we investigate the following questions in this research:

- Are seasonal surface runoff responses to forest cover change related to temporal alignments of precipitation peaks and tree phenology?
- Do catchments with similar climates experience similar water yield responses to forest loss?

2. Methodology

2.1. Study catchments & hydrometeorological data

We used the global forest change database of Hansen et al (2013) (version 1.6) to identify 50 continuously gaged catchments where forest loss occurred between 2000 and 2018 (figure 1; table S1 (https://stacks.iop.org/ERL/15/104051/mmedia)). To ensure that the resolution of forest change data did not result in misclassification of land covers (and therefore forest loss) (Sannier et al 2016), we visually reviewed Landsat-8 (USGS 2020) imagery for each catchment to confirm large regions of forest loss. Daily discharge for US, Canadian, and Brazilian catchments was obtained from USGS (2019), Environment Canada (2020), and Levy (2017), respectively. Streamflow data for all remaining catchments was obtained from Global Runoff Data Centre (GRDC) (2020). Discharge records before 1990 were not considered in the analysis. Global 0.5 degree daily precipitation from January 1979 through January 2019 was obtained from Xie et al (2010) and Chen and Knutson (2008). Global average 0.5 degree annual Potential EvapoTranspiration (PET) estimates (derived from 1950 to 2000 climate data) were obtained from Zomer et al (2008). Global monthly Enhanced Vegetation Index (EVI) estimates from January 2000 through January 2015 were obtained from Weiss et al (2014).

2.2. Hydrologic responses to deforestation

Baseflow-runoff separation was performed for daily stream discharge records with the algorithm of Nathan and McMahon (1990) as implemented in Fuka et al (2014). We computed event-based runoff ratios (RR, where $RR = \frac{Q_{surf}}{GP}$), where Q_{surf} is surface runoff and GP is gross precipitation, for each event exceeding 5 mm of precipitation (discussed in section S1, figure S1), generating at least 1 mm of surface runoff. A sensitivity analysis of event rainfall thresholds (5, 10, and 20 mm) indicated that results were not sensitive to threshold choices above 5 mm. Rainfall events were separated with a 48-h minimum inter-event time. We divided each streamflow record into two periods, years preceding and following the largest forest cover loss event between 2000 and 2018 as defined in Hanson et al (2013) (table S1). We tested for changes in paired (pre- and post-deforestation) storm event runoff ratios by month with a one-sided Mann-Whitney U-test. We defined results as significant when exceeding the α of 0.1 threshold. We grouped catchments into two sets of responses: catchments that experienced (1) a significant storm event runoff ratio increase in any month following forest loss, and (2) no significant increases.

The influence of forest loss on average annual water yield was analyzed in the context of the Budyko model (Budyko 1958), a prediction of catchment partitioning of gross precipitation (GP) between discharge and Actual EvapoTranspiration (AET) (i.e. the Evaporative Index [EI] = (AET/GP)) as a function of PET
Figure 1. Global distribution of runoff responses to forest cover loss (up triangle indicates a significant runoff increase in at least one month, dots indicate no significant increase in any month).

and GP (i.e. the Dryness Index \[DI = \frac{\text{PET}}{\text{GP}} \] (equation (1)).

\[
\frac{\text{AET}}{\text{GP}} = 1 + \frac{\text{PET}}{\text{GP}} - \left(1 + \frac{\text{PET}}{\text{GP}} \right)^{\frac{1}{\omega}}. \tag{1}
\]

We compare pre- and post-deforestation water partitioning with the estimated Budkyo parameter, \(\omega \), fit to each cluster (as defined by mean annual temperature (MAT) and \(\theta \)) with standard least squares.

2.3. Hierarchical clustering of catchments by climate, tree phenology, area, and forest loss

Given the size of our dataset, we used hierarchical clustering to group (Akman et al 2019) significant and non-significant runoff responses. For each catchment, we characterized local tree phenology in years before deforestation using the median month of peak EVI. We estimated the timing of annual precipitation extremes by computing the frequency of over-threshold daily rainfall events \((m = 5 \text{ mm})\) within bi-weekly intervals in each year. Sensitivity analysis indicated results were not sensitive to the choice window size (1, 2, or 4 weeks). The timing of intense precipitation was estimated as the 2-week window with the most over-threshold events across all years. Phase shift was calculated between precipitation extremes (defined by the starting Julian date of the 2-week period) and EVI (defined as the Julian date of the first day of the month), \(\theta \), for each catchment as the Julian date of peak precipitation minus the Julian date of peak EVI.

We compared the predictive power of \(\theta \), MAT, median annual minimum EVI, catchment area, and percentage forest loss to explain increases in RR following forest loss. We constructed seven hierarchical clustering approaches, which are described in detail in the supplemental material. Distance between catchments in each centered and scaled multivariate space was defined by the Euclidean norm. The optimal number of clusters was determined with the Calinski-Harabasz Index (Calinski and Harabasz 1974). The ability of cluster models to identify a significant increase in RR was assessed with both the Purity Index (PI) and Normalized Mutual Information (NMI). PI and NMI are objective measures of how effectively clustering can group variables by hidden classes (i.e. significant increases in RR vs. no RR response) (Manning et al 2008). Both PI and NMI range from 0 to 1, where 0 indicates poor class characterization by clusters and 1 indicates perfect characterization. PI and NMI do not require a priori definition of which classes belong in groups. PI compares values within clusters to the mode value. NMI is similar to PI but penalizes clustering as the number of clusters increases.

3. Results

3.1. Runoff responses to deforestation

Shifts in runoff ratios following deforestation varied across countries and climate regions (figures 1 and S1). High latitude catchments in Estonia (figure 1(a)) Canada, and the US (figure 1(b)) exhibited consistent significant runoff ratio increases (increases observed in 16 of 17 of catchments, 94%). In contrast, tropical catchments in Brazil (figure 1(e)), Liberia (figure 1(d)), and Myanmar exhibited no consistent runoff ratio increases (increases observed in 1 of 11 catchments, 9%). The temperate and subtropical climates contained regions with increases (figures 1(b), (c)) and no significant increases (figures 1(f), (g)) (increases observed in 12 of 22 catchments, 54%). Monthly distributions of storm event RR and significance results are presented in figure S2. Phase shift, \(\theta \), was similar within each Köppen-Geiger climate region (figure S3). A peaks-over-threshold analysis of pre- and post-deforestation precipitation extremes suggested the frequency and magnitude of daily precipitation were largely stationary within each catchment across the study period (figure S4).
3.2. Hierarchical clustering of catchments by climate, tree phenology, area, and forest loss
On each polar plot (figures 2(a)–(d)) θ is represented by the angle, and MAT, min(EVI), ln(Area), and ln(Forest Loss) are represented by the distance from the origin. Hierarchical clustering by θ and MAT closely followed Köppen-Geiger climate classifications (section S6, figure S5) and provided the strongest grouping of similar runoff responses to deforestation by both Purity and NMI (figure 2(a)). Clustering by MAT and median annual minimum EVI provided separation between catchments with no strong annual EVI pattern, though the more complex responses of subtropical and temperate catchments (green) were not well described (figure 2(e)). Temperate and subtropical catchments exhibited significant responses to forest cover loss when annual precipitation extremes lagged the peak growing season (figure 2(a)). Minimum annual EVI highlights a similar seasonality to MAT, but fails to define coherent clusters of runoff responses (figure 2(b)). Despite previous studies emphasizing regional importance of catchment size and area of loss in predicting hydrologic responses to deforestation, this analysis of 50 catchments with continuous daily streamflow data suggests these are secondary considerations (figures 2(c), (d), (f), (g)).
Hierarchical clustering by θ and MAT (figure 2(a)) lends some interpretation of water yield and land surface energy responses to deforestation (figure 3). The clusters containing predominantly tropical (Am, figure 3(a)), Mediterranean (Csa, figure 3(c)), and cold semi-arid catchments where precipitation extremes lag the growing season (Bsk, figure 3(d)) exhibited decreases in the evaporative index in years following forest loss. In contrast, clusters containing humid subtropical (Cfa, figure 3(b)), humid continental (Dfb, figure 3(e)), and cold semi-arid catchments where precipitation extremes precede the growing season peak (Bsk, figure 3(f)) exhibited a minimal change in water yields following forest cover loss.

3.3. Global alignment of EVI and precipitation extremes
MAT is generally aligned by latitude and insolation (figure 4(a)), whereas θ (figure 4(b)) is more spatially varied, driven by global temperatures, landforms, and regional weather patterns. Spatial patterns of the month of annual maximum precipitation and peak EVI that define θ (figure 4) globally are presented in figure S5. Large-scale mechanisms of extreme precipitation such as the fall season tropical systems along the Atlantic coast of CONUS, winter tropical moisture export precipitation along the Pacific coast of CONUS, Brazilian winter and East African summer monsoonal precipitation, and South African summer precipitation define regional varied patterns of θ across landforms (figure 4(b)).

4. Discussion
4.1. Variations in runoff ratios following forest cover loss
4.1.1. Alignment of climate and tree phenology
Forest cover loss can decrease total catchment transpiration (Farley et al 2005, Filosa et al 2017), and increase catchment saturation during the summer growing- and fall rewetting-seasons (e.g. Knighton et al 2019). Increased saturation (i.e. less opportunity for infiltration and storage of rainfall), will lead to a greater proportion of rainfall becoming runoff. During winter and spring months in subtropical, temperate, and boreal catchments, soils are typically saturated irrespective of the transpiration that occurred during the preceding summer months (e.g. Soulsby et al 2017, Knighton et al 2019). The cold semi-arid (Bsk) catchments of South Africa and Australia showed no consistent increase in runoff ratios to deforestation (figure 2(a)). In these catchments, precipitation peaks occurred approximately three months before peak EVI, during periods in which the magnitude of soil saturation was likely not affected by forest transpiration. In contrast, catchments in the US where precipitation peaks lagged peak EVI (i.e. where forest transpiration would have likely influenced soil saturation at the time of peak rainfall), experienced more consistent increases in runoff ratios (figure 2(a)).
Berghuijs et al (2016) proposed that the timing of daily peak discharge across CONUS (characterized by temperate and subtropical climates) is largely determined by trends in catchment storage dynamics and snowmelt. Sivapalan et al (2005) theorized this is because the sensitivity of runoff to storage is greatest when precipitation extremes are aligned with periods where catchment stored water varies (i.e. transitional seasons when soils are not always saturated or dried). Ye et al (2017) modified this by highlighting the interplay between the seasonal alignment of precipitation and energy cycles which together could offer a credible hypothesis of the dominant environmental drivers of daily runoff generation. Our analysis offers an analogous interpretation for the influence of subtropical and temperate forest loss on event runoff: rewetting season runoff is increased in subtropical and temperate catchments where the annual cycle of precipitation extremes lags the annual energy cycle (i.e. precipitation peaks align with tree dormancy and onset of fall rewetting). Importantly, forests can only increase available storage to the physical capacity provided by their canopy and underlying soils. Soil water storage determined by underlying geology likely influences the potential for forest cover loss to increase runoff.
Geographic variations in runoff responses to forest cover change in temperate and subtropical regions (e.g. Preti et al 2011, Blöschl et al 2015,
Figure 2. Clustering by (a) θ and MAT, (b) θ and median minimum annual Enhanced Vegetation Index (EVI), (c) θ and catchment area, (d) θ and percentage forest loss, (e) MAT and median minimum annual EVI, (f) MAT and catchment area, and (g) MAT and percentage forest loss. Triangles indicate a significant increase in runoff following deforestation. Circles represent no significant increase. Colors represent clusters.

Figure 3. Hierarchical clusters of study catchments by θ and MAT (colors correspond to figure 2(a)) showing pre- and post-forest loss water balance within the Budyko framework. Gray lines indicate physical limits. The dashed blue line indicates the divide between water- and energy-limited conditions. Closed circles—before the year of the greatest forest loss event. Open circles—after the year of the greatest forest loss event.

Soulsby et al 2017, Belmar et al 2018, Carrick et al 2019, Knighton et al 2019) support the conclusion that runoff change is linked to θ (figures 2(a), S2). Trimble et al (1987) examined continuous discharge records of river basins within the humid subtropical Piedmont of the US Atlantic coast following conversion from agriculture to forest. They observed decreases in annual runoff totals following afforestation; however, changes were minimal in wet years when AET losses from saturated agricultural fields were hypothesized to equal that of well-established forests, highlighting the importance of soil water storage. Further in agreement with our findings, Hewlett and Bosch (1984) and Brown et al (2013) found that afforestation of perennial catchments in South Africa yielded changes predominantly to summer season low flows, with limited impact on event-based and multi-year runoff, respectively. Liu et al (2019) suggest decreases in annual runoff coincident with decreased vegetation cover in Southeastern Australia were related to long-term declines in total precipitation, offering an alternative explanation. We observed
no consistent change in event runoff ratios in high MAT Monsoonal regions (figures 2(a), S2(a)), possibly owing to a lack of seasonality in insolation, EVI (figure S3), and therefore less annual variation in catchment saturation.

Though our study did not identify catchment size and area of deforestation as significant predictors of changes in runoff (figure 2), the hydrologic importance of these variables has been demonstrated by others (Zhang et al. 2017, Li et al. 2017, Leite-Filho et al. 2019). We propose that future research with larger datasets could consider clustering by additional variables (e.g. MAT, θ, and area of forest loss).

4.1.2. MAT influences runoff responses
We observed consistent increases in spring runoff at low MAT catchments (figure 2(a)). This may be related to the potential for increased snowpack accumulation following forest cover loss in cold-weather catchments. Increases in snowpack are likely to be followed by increased melt water, soil saturation, and possibly runoff over the subsequent spring. Increased incoming solar radiation (insolation) reaching the snowpack because of canopy loss could have a complicated influence on spring runoff. Increased radiation absorbed by the snowpack could decrease accumulation throughout winter months, reducing spring melt runoff. Conversely, increased insolation could lead to earlier and more rapid periods of melt and greater spring runoff. Our approach focused on rainfall-driven runoff and therefore neglects periods of snowmelt that occurred outside of rain-on-snow events.

Soulsby et al. (2017) and Geris et al. (2015) hypothesized that variations in tree cover would have limited influence on rainfall/runoff partitioning on snow-free soils in northern, low-energy catchments. Our study supports this; however, we note that neither set of authors directly examined the potential for forest cover loss to increase snow accumulation and spring runoff, mechanisms that appear to shift in cold weather catchments (figure S2). Mao and Cherkauer (2009) estimated that deforestation in the humid continental Great Lakes region of the US, led
to large increases in spring and summer runoff. They proposed that dense tree canopies provided interception, enhancing sublimation losses, and limiting total ground snowpack accumulation. Loss of canopy shading resulted in greater insolation, more frequent and intense melt events, increased soil wetness, and runoff. Our findings and those of Mao and Cherkauer (2009) suggest that in colder regions with snow accumulation and melt cycles, runoff may increase during periods of snowmelt (figure S2), and are less sensitive to the alignment of precipitation and energy cycles (figure 2(a)).

4.2. Forest loss influence on ET and streamflow partitioning

Many previous studies have indicated the global potential for forest cover loss to increase (and afforestation to decrease) catchment water yield (e.g. Farley et al 2005, Li et al 2017, Zhang et al 2017, Filoso et al 2017). Our site selection, emphasizing representation of varied climate regions (figure 1), yielded more nuanced results (figure 3). Though our results suggest water yield responses coarsely align with climate (figure 3), we observed decreased EI in cold semi-arid (Bsk) catchments in Canada (figure 3(d)), but not in South Africa (figure 3(f)). These observations possibly indicate a more complex relationship between climate, vegetation, and watershed storage, similar to the conclusions of Rice and Emanuel (2019) and Scaife and Band (2017).

Trees influence water partitioning within the critical zone between atmospheric return (i.e. evapotranspiration) and catchment yield (i.e. streamflow). Transpiration by trees can exceed evapotranspiration from nearby non-forested regions if root water uptake (RWU) from deeper soil water is significant (Brantley et al 2017, Evaristo and McDonnell et al 2017, Barbeta and Peñuelas 2017, Knighton et al 2020). Tree canopies are seasonally dynamic reservoirs that retain precipitation and thus reduce groundwater recharge and surface runoff. In northern low-energy catchments, trees play a critical role in snow accumulation and melt through winter snowfall interception, canopy sublimation, and shielding of the land surface from solar radiation (e.g. Mao and Cherkauer 2009).

Several ecohydrological mechanisms could explain the lack of a forest cover loss effect on catchment EI, exhibited by some climate regions (figure 3). First, forest cover loss will increase alternative ET pathways. Decreases in EI following a forest cover loss would be reflective of either (1) forest tree water needs exceeding that of successional vegetation or (2) plant-accessible water by forest trees exceeding that of evaporation or successional vegetation. It has been hypothesized that RWU of deeper soil water may be a strategy of certain trees to survive periods of low shallow soil water content (e.g. Matheny et al 2017, Brinkmann et al 2019) which is most strongly expressed in arid regions (Evaristo and McDonnell et al 2017, Barbeta and Peñuelas 2017). Alternatively, depth variations in RWU may be the result of intra-species RWU competition (e.g. Volkmann et al 2016, Knighton et al 2019, De Deurwaerder et al 2020) or complementary strategies of mixed-species stands for sustaining productivity throughout periods of water limitation (Brum et al 2019, Knighton et al 2020). Cavalcante et al (2019) studied catchments in the deforestation arc of the Amazon finding that deforestation events before 1994 resulted in decreased annual EI. After 1994, deforestation had minimal influence on EI, which they attributed to changes in land management practices.

There is also some interplay between catchment storage and water yield responses (Mcdonnell et al 2018). Nijzink et al (2016) showed that deforestation significantly altered rooting zone water storage capacity in a small Mediterranean catchment dominated by Douglas fir, suggesting the influence of trees on catchment water yields includes mechanical modification of soils by roots. Preferential flow pathways may also develop along tree roots, increasing infiltration capacity (Johnson and Lehmann 2006). Within the African drylands, the presence of Vitellaria paradoxa enhanced infiltration for precipitation events exceeding 20 mm day$^{-1}$ in areas with high soil water storage (150 cm), but had minimal influence on infiltration in regions with lower soil storage (50 cm) (Bargues-Tobella 2020). Peña-Arancibia et al (2019) suggested that the hydrologic response to deforestation was related to climate seasonality, soil water storage, and the regional groundwater recession rate. The storage reservoir provided by the rooting zone must be sufficiently sized to modify land surface runoff responses to forest cover change. In the case of a shallow vadose zone, the sensitivity of runoff to RWU will be physically limited by available rooting zone water storage.

4.3. Significance

Global efforts to maintain and increase forest cover require a stronger understanding of hydrologic responses to forest loss. Our findings can inform policy related to the maintenance and conservation of existing forests (e.g. UN-REDD + [United Nations (UN) 2020]), and afforestation (e.g. the Bonn Challenge [Dave et al 2018]). Global climate change is expected on average to increase both precipitation intensity (Fischer and Knutti 2016) and flooding (Trenberth et al 2011). Conservation and afforestation offer the potential to provide a natural sink for atmospheric carbon, slowing global climate change, while potentially also offsetting regional hydrologic land surface responses to more intense precipitation (Ellison et al 2017).

For example, we observe that the estimated regions of land which exhibit favorable phase shifts between EVI and precipitation overlap several of
Several global programs aim to increase forest cover such as the United Nations (UN) Strategic Plan for Forests (UN 2017) and UN-REDD + (UN 2020). These efforts cite flood mitigation as a benefit of increasing forest cover; however, subject-specific policy guidance from the UN is cautious about predicting hydrologic benefits of increased tree planting (FAO 2005, Ellison et al. 2017). Guidance generally neglects variations in water uptake potential by different species (e.g. Knighton et al. 2019). The high costs and uncertain flood mitigation returns on investment possibly make afforestation and reforestation less attractive mitigation options than assumed. Our research attempts to reduce this uncertainty by furthering our mechanistic understanding of how forests influence runoff generation, guiding policy development.

Acknowledgments

This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1639145.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary information files).

ORCID iD

James Knighton
https://orcid.org/0000-0002-4162-996X

References

Akman O, Comar T, Hrozencik D and Gonzales J 2019 Data clustering and self-organizing maps in biology In Algebraic and Combinatorial Computational Biology (New York: Academic) pp 351–74
Barbeta A and Peñuelas J 2017 Relative contribution of groundwater to plant transpiration estimated with stable isotopes Sci. Rep. 7 1–10
Bargués-Tobella A, Hasselquist N J, Bazié H R, Bayala J, Laudon H and Istedt U 2020 Trees in African drylands can promote deep soil and groundwater recharge in a future climate with more intense rainfall Land Degrad. Dev. 31 81–95
Belmar O, Barquín J, Álvarez-Martínez J M, Peñas F J and Del Jesus M 2018 The role of forest maturity in extreme hydrological events Ecolhydrology 11 e1947
Berghuijs W R, Woods R A, Hutton C J and Swapala M 2016 Dominant flood generating mechanisms across the United States Geophys. Res. Lett. 43 4382–90
Bladon K D, Bywater-Reyes S, Leboldus J M, Kerri S, Segura C, Ritókóv G and Shaw D C 2019 Increased streamflow in catchments affected by a forest disease epidemic Sci. Total Environ. 691 112–23
Blöschl G, Bierkens M F, Chambel A, Cudennec C, Destouni G, Fiori A and Stumpf C 2019 Twenty-three unsolved problems in hydrology (UHP)—a community perspective Hydrol. Sci. J. 64 1141–58
Blöschl G, Gaal L, Hall J, Kiss A, Komma J, Nester T and Salinas J L 2015 Increasing river floods: fiction or reality WIREs Water 2 329–44
Bonneseour V, Locatelli B, Guariaguata M R, Ochoa-Tocachi B F, Vanacker V, Mao Z and Mathez-Stiefel S L 2019 Impacts of forests and forestation on hydrological services in the Andes: a systematic review For. Ecol. Manage. 433 569–84
Braunley S L, Eisenstat D M, Marshall J A, Godsey S E, Balogh-Brunstad Z, Karwan D L and Chadwick O 2017 Reviews and syntheses: on the roles trees play in building and plumbing the critical zone Bioscience 14 5115–42
Brinkmann N, Eugster W, Buchmann N and Kahmen A 2019 Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil Plant Biol. 21 71–81
Brown A E, Western A W, McMahon T A and Zhang L 2013 Impact of forest cover changes on annual streamflow and flow duration curves J. Hydrol. 483 39–50
Brum M, Vadeboncoeur M A, Ivanov V, Asbjornsen H, Saleska S, Alves I F and Bittencourt P 2019 Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest J. Ecol. 107 318–33
Budyko M I 1958 The Heat Balance of the Earth’s Surface US Dept Commerce (Weather Bureau Washington DC USA)
Calinsky T and Harabasz J 1974 dendrite method for cluster analysis Commun. Stat. Theory Methods 3 1–27
Carrick J, Abdul Rahim M S A B, Adjei C, Ashraa Kalee H H H, Banks S J, Bolam F C and Golicha D D 2019 Is planting trees the solution to reducing flood risk? J. Flood Risk Manage. 12 e12404
Cavalante R B L, Pontes P R M, Souza-Filho P W M and de Souza E B 2019 Opposite effects of climate and land use changes on the annual water balance in the amazon arc of deforestation Water Resour. Res. 55 3092–106
Chen C T and Knutson T 2008 On the verification and comparison of extreme rainfall indices from climate models J. Clim. 21 1605–21
Collentime D and Futter M N 2018 Realising the potential of natural water retention measures in catchment flood management: trade-offs and matching interests J. Flood Risk Manage. 11 76–84
Dave R et al. 2018 Second Bonn Challenge progress report Application of the Barometer in 2018
De Deurwaerd H, De P T, Visser M D, Detto M, Boeckx P, Dave R, Chadwick O, Balogh-Brunstad Z, Karwan D L and Chadwick O 2017 Reviews and syntheses: on the roles trees play in building and plumbing the critical zone Bioscience 14 5115–42
Ellison D, Morris C E, Locatelli B, Sheil D, Cohen J, Murdiyarso D and Gaveau D 2017 Trees, forests and water: cool insights for a hot world Glob. Environ. Change 43 51–61
Environment Canada 2020 Water Level and Flow: Historical hydrometric data (available at: https://wateroffice.ec.gc.ca/)
Evaristo J and Mcdonnell J J 2017 Provenance and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis Sci. Rep. 7 1–12
Farley K A, Jobbágy E G and Jackson R B 2005 Effects of afforestation on water yield: a global synthesis with implications for policy Glob. Change Biol. 11 1565–76
Filoso S, Bezerra M O, Weiss K C and Palmer M A 2017 Impacts of forest restoration on water yield: A systematic review PloS One 12 1–26
Fischer F M and Knutti R 2016 Observed heavy precipitation increase confirms theory and early models Nat. Clim. Change 6 986–91
FAO 2005 Forests and Floods: Drowning in Fiction or Thriving on Facts (RAP Publication 2005/03 Forest Perspectives 2)
Fuka D R, Walter M T, Archibald J A, Steenhuis T S and Easton Z M 2014 EcoHydrolology: a community modeling foundation for eco-hydraulics R Package V4 12
Geris J, Tetzlaff D, Mcdonnell J and Soulsby C 2015 The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments Hydro. Processes 29 1844–60
Global Runoff Data Centre (GRDC) 2020 River Discharge Data (available at: https://www.bafg.de/GRDC/EN/02_serces/ 21_imrs/riverdischarge_node.html)
Goekhaye S A and Tarboton D G 2020 Forests and water yield: a synthesis of disturbance effects on streamflow and snowpack in western coniferous forests J. For. 118 172–92
Grisoni B W et al 2017 Natural climate solutions Proc. Natl Acad. Sci. USA 114 11645–50
Guzha A C, Rufino M C, Okoth S, Jacobs S and Nóbrega R L B 2018 Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa J. Hydrol. Reg. Stud. 15 49–67
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A, Tyukavina A and Kommareddy A 2013 High-resolution global maps of 21st-century forest cover change Science 342 850–3
Hewlett J D and Bosch J M 1984 The dependence of storm flows on rainfall intensity and vegetative cover in South Africa J. Hydrol. 75 365–81
Ingalls M L and Dwyer M B 2016 Missing the forest for the trees? Navigating the trade-offs between mitigation and adaptation under REDD Clim. Change 136 353–66
Jiang W, Yang S, Yang X and Gu N 2016 Negative impacts of afforestation and economic forestry on the Chinese Loess Plateau and proposed solutions Quat. Int. 399 165–73
Johnson M S and Lehmann J 2006 Double-funneling of trees: stemflow and root-induced preferential flow Ecossience 13 324–33
Knighton J, Connolley J and Walter M T 2019 Possible increases in flood frequency due to the loss of Eastern Hemlock in the Northeastern United States: observational Insights and predicted impacts Water Resour. Res. 55 5342–59
Knighton J, Singh K and Evaristo J 2020 Understanding catchment-scale forest root water uptake strategies across the continental united states through inverse ecohydrological modeling Geophys. Res. Lett. 47 e2021GL095957
Leite-Filho A T, de Sousa Pontes V Y and Costa M H 2019 Effects of deforestation on the onset of the rainy season and the duration of dry spells in Southern Amazonia J. Geophys. Res. Atmos. 124 5268–81
Levy M C 2017 Curated rain and flow data for the Brazilian rainforest-savanna transition zone, HydroShare (available at: https://www.bafg.de/GRDC/EN/02_serces/ 21_imrs/riverdischarge_node.html)
Levy M C, Lopes A V, Cohn A, Larsen L G and Thompson S E 2018 Land use change increases streamflow across the arc of deforestation in Brazilian Geophys. Res. Lett. 45 3520–30
Li Q, Wei X, Zhang M, Liu W, Fan H, Zhou G and Wang Y 2017 Forest cover change and water yield in large forested watersheds: A global synthetic assessment Ecol. Hydrology 10 e1838
Li Y, Piao S, Li L Z, Chen A, Wang X, Ciais P and Wang K 2018 Divergent hydrological response to large-scale afforestation and vegetation greening in China Sci. Adv. 4 eaar4182
Liu N, Harper R J, Smettem K R J, Dell B and Liu S 2019 Responses of streamflow to vegetation and climate change in southwestern Australia J. Hydrol. 572 761–70
Manning C D, Raghavan P and Shütte H 2008 Introduction to Information Retrieval (Cambridge: Cambridge University Press)
Mao D and Cherkauer K A 2009 Impacts of land-use change on hydrologic responses in the Great Lakes region J. Hydrol. 374 71–82
Mapulanga A M and Naidu H 2019 Effect of deforestation on access to clean drinking water Proc. Natl Acad. Sci. USA 116 8249–54
Matheny A M, Fiorella R P, Bohrer G, Poulson C J, Morin T H, Wunderlich A and Curtis P S 2017 Contrasting strategies of hydraulic control in two codominant temperate tree species Ecol. Hydrology 10 e1815
Mcdonnell J, Evaristo J, Bladon K, Buttje L, Creed I, Dymond S and Maness T 2018 Water sustainability and watershed storage Nat. Sustainability 1 376–81
Misra A, Amaclair M, Holte T, San-Miguel-Ayan J and Thackwitz R 2015 Protective functions and ecosystem services of global forests in the past quarter-century For. Ecol. Manage. 352 35–46
Myers R, Larson A M, Ravikumar A, Kowler L F, Yang A and Trench T 2018 Messiness of forest governance: how technical approaches suppress politics in REDD+ and conservation projects Glob. Environ. Change 50 314–24
Nathan R J and Mcmalton T A 1990 Evaluation of automated techniques for base flow and recession analyses Water Resour. Res. 26 1465–73
Nijzink R, Hutton C, Pechlivanidis I, Capell R, Arheimer B, Freer J and Hrachowitz M 2016 The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change Hydrol. Earth Syst. Sci. 20 4775–99
Peña-Aranzábal J J, Brujinzeed A J L, Mulligan M and van Dijk A I 2019 Forests as ‘sponges’ and ‘pumps’: assessing the impact of deforestation on dry-season flows across the tropics J. Hydrol. 749 946–63
Pontes P R, Cavalcante R B, Sahoo P K, da Silva J R O, da Silva M S, Dall’Agnol R and Siqueira J O 2019 The role of protected and deforested areas in the hydrological processes of Itacaiunas River Basin, eastern Amazonia J. Environ. Manage. 235 499–509
Preti F, Forzieri G and Chirico G B 2011 Forest cover influence on regional flood frequency assessment in Mediterranean catchments Hydrol. Earth Syst. Sci. 15 3077–3090
Rice J S and Emanuel R E 2019 Ecohdrology of interannual changes in watershed storage Water Resour. Res. 55 8238–51
Rogger M, Agnoletti M, Alauxi A, Bathurst J C, Bodner G, Borga M and Holden J 2019 Long-term land use change impacts on floods at the catchment scale: challenges and opportunities for future research Water Resour. Res. 53 5209–19
Sannier C, Mcroberts R E and Fichtet L-V 2016 Suitability of global forest change data to report forest cover estimates at national level in Gabon. Remote Sens Environ 173 326–38
Scaife C I and Band L E 2017 Nonstationarity in threshold response of stormflow in southern Appalachian headwater catchments Water Resour. Res. 53 6579–96
Sivapalan M, Blöschl G, Merz R and Gutiaknecht D 2005 Linking flood frequency to long-term water balance: incorporating effects of seasonality Water Resour. Res. 41 1–17
Soulsby C, Dick J, Scheliga B and Tetzlaff D 2017 Taming the flood–how far can we go with trees Hydro. Processes 31 3122–6
Trenberth K E 2011 Changes in precipitation with climate change Clim. Res. 47 123–38
Trimble S W, Weirich F H and Hoag B L 1987 Reforestation and the reduction of water yield on the Southern Piedmont since circa 1940 Water Resour. Res. 23 425–37
United Nations (UN) 2017 Resolution Adopted by the Economic and Social Council on 20 April 2017: United Nations Strategic Plan for Forests 2017–2030 and Quadrennial Programme of Work of the United Nations Forum on Forests for the Period 2017–2020 E/RES/2017/4 (available at: http://daccessods.un.org/access.nsf/Get)
United Nations (UN) 2020 UN-REDD Programme Collaborative Workspace (available at: www.unredd.net/about/what-is-redd-plus.html)
US Geological Survey (USGS) 2019 USGS Surface-Water Historical Instantaneous Data for the Nation (available at: https://waterdata.usgs.gov/nwis/uv/?referred_module=sw)
US Geological Survey (USGS) 2020 Landsat-8 Bands 1, 2, 3 (available at: https://www.usgs.gov/land-resources/nli/landsat/landsat-8?qt-science_support_page_related_con=0qt-science_support_page_related_con)
Vijay V, Reid C D, Finer M, Jenkins C N and Pimm S L 2018 Deforestation risks posed by oil palm expansion in the Peruvian Amazon Environ. Res. Lett. 13 114010
Volkman T H, Haberer K, Gessler A and Weiler M 2016 High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface New Phytol. 210 839–49
Wei X, Li Q, Zhang M, Giles-Hansen K, Liu W, Fan H and Liu S 2018 Vegetation cover—another dominant factor in determining global water resources in forested regions Glob. Change Biol. 24 786–95
Weiss D J, Atkinson P M, Bhatt S, Mappin B, Hay S I and Gething P W 2014 An effective approach for gap-filling continental scale remotely sensed time-series ISPRS J. Photogramm. Remote Sens. 98 106–18
Xie P, Chen M and Shi W 2010 CPC unified gauge-based analysis of global daily precipitation In Preprints, 24th Conf. on Hydrology (Atlanta, GA, Amer Meteor Soc) vol 2
Ye S, Li H Y, Leung L R, Guo J, Ran Q, Demissie Y and Sivapalan M 2017 Understanding flood seasonality and its temporal shifts within the contiguous United States J. Hydrometeorol 18 1997–2009
Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X and Liu S 2017 break A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime J. Hydrol. 546 44–59
Zomer R J, Trabucco A, Bossio D A and Verchot L V 2008 Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation Agric. Ecosyst. Environ. 126 67–80