Superiority of rat over murine model for studies on the evolution of cancer genome

Shinya Akatsukaa, Guang Hua Lia and Shinya Toyokunia,b

aDepartment of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; bSydney Medical School, the University of Sydney, Sydney, Australia

ABSTRACT
Evolution of the species and carcinogenesis are similar in that genomic alterations are the key events. Oxidative stress derived from various etiologies is one of the major causes of carcinogenesis by inducing mutations in the genome. Persistent oxidative stress in the renal proximal tubules through Fenton reaction catalysed by ferric nitritotriacetate (Fe-NTA) generates renal cell carcinoma (RCC) in mice and rats. Here, in order to observe the species difference in oxidative stress-induced carcinogenesis and to obtain an insight regarding the characteristics of each species, we compared the genomic alterations using array-based comparative genome hybridisation among RCCs in Mutyh knockout/wild-type mice (C57BL/6 background) induced by Fe-NTA, RCCs in F1 hybrids of Brown-Norway/Fischer-344 wild-type rats and clear cell renal cell carcinoma (CCRCC)/papillary renal cell carcinoma (PRCC) of humans. The average deviated fraction of genomic segments, either loss or gain, from the standard biallelic position was 0.220 (N = 4), 0.304 (N = 11), 0.283 (N = 12), and 0.261 (N = 5), respectively, for murine RCC, rat RCC, human CCRCC, and human PRCC. Notably, gain/loss ratio was remarkably different as indicated by 0.0820, 0.161, 0.821, and 4.44, respectively. These data suggest that higher species require more genomic alterations with amplification preference for renal carcinogenesis. Further studies are necessary to identify the molecular mechanisms whether the present results depend on cellular functional differences, etiology of carcinogenesis or the target cells in carcinogenesis.

ARTICLE HISTORY
Received 15 January 2018
Revised 13 April 2018
Accepted 14 April 2018

KEYWORDS
Renal cell carcinoma; oxidative stress; iron; array-based comparative genome hybridisation; evolution

Introduction
Cancer has been one of the top causes of human mortality worldwide after the conquest of major infectious diseases, including tuberculosis (http://www.who.int/mediacentre/factsheets/fs297/en/). Cancer is the first place of mortality in Japan since 1981, and cancer mortality is still increasing according with the prolonged average lifetime (http://www.fpocr.or.jp/pdf/p21/cancer_statistics_2016.pdf). Cancer is now recognised as a disease of the genome whereas epigenetic changes are also important. We are proposing that one of the major mutational pressures on the genome when integrated during the whole life is caused by oxygen and iron that we always use [1]. Hemoglobin in red blood cells holds ~60% of iron of our body as heme to transport oxygen. Oxygen and iron easily induce oxidative stress in cases of pathologic conditions, such as iron excess [2–4], inflammation, and reperfusion [5,6].

In 1982, Okada and Midorikawa discovered ferric nitritotriacetate (Fe-NTA)-induced renal carcinogenesis model in rodents with serendipity [5,7–10]. The important three points are that (1) this model is faithfully reproducible, starting from the acute renotoxic phase [11,12], where numerous oxidative modifications in biomolecules are identified [13–19], to chronic iron excess phase [5,20]; (2) we can use wild-type rats; in the case of mice, we have to use Mutyh knockout mice because C57BL/6 strain used for knockout studies is generally cancer-resistant [21,22]; (3) this model suggests that carcinogenesis, at least some of them, can be iron addiction with ferroptosis-resistance [6,23]. Previously we reported that genomic alterations in Fe-NTA-induced rat renal cell carcinoma (RCC) as seen by array-based comparative genome hybridisation (aCGH) is prominent and is most similar to those of RCCs among human cancers [24]. Recently, we reported that the genomic alterations of Fe-NTA RCC in Mutyh knockout mouse are significantly less prominent than the rat counterparts [22]. However, nobody has thus far performed the cross-sectional comparison among murine, rat, and human RCCs on the basis of aCGH. In the present study, to
observe the species difference in oxidative stress-induced carcinogenesis and to obtain an insight regarding the characteristics of each species, we analysed the genomic alteration of RCCs among the three species in special reference to oxidative stress as etiology. We found a clear species difference, especially in the gain/loss ratio in the genome of RCCs. The implications of the results would be discussed.

Materials and methods

Comparison of the chromosomal alterations in RCCs among mice, rats, and humans

To comparatively analyse the patterns of the chromosomal alterations in RCCs of mice, rats, and humans, we used aCGH data of RCC samples from each species of those mammals. Regarding mice and rats, aCGH data from our own Fe-NTA-induced renal carcinogenesis experiments (GSE99535 and GSE636101) was used. Because we had used Agilent microarray products for our aCGH analyses [24], we also selected publicly available human aCGH data generated with Agilent microarrays, for comparison with a unified algorithm. We used aCGH data of clear cell renal cell carcinomas (CCRCCs) with metastasis in GSE43477 data set [25] and that of papillary renal cell carcinomas (PRCCs) in GSE63003 data set [26]. Agilent 60-mer oligonucleotide microarrays with 44, 180, and 185 k probes were used for the data sets (44 k for GSE43477, 180 k for GSE63003 and GSE99535, 185 k for GSE636101).

To compare the scales of the chromosomal alterations in RCC genomes among mice, rats, and humans, we calculated the percentage of chromosomal sites with a copy number aberration among all the sites in the whole genome as the quantitative measure. The copy number aberration frequency was calculated from the results of each aCGH analysis according to the following procedure: (1) compute a moving average of the signal log2 ratios for the CGH microarray probes distributed within 500 kbp from each point at every 100 kb along the chromosomes (limited to the autosomes); (2) plot values of the moving averages of the signal log2 ratios from the whole genome as a histogram and a genomic variation plot, and determine the thresholds on both sides, beyond which, the copy number aberration can be called via a visual evaluation of the histogram and the variation plot for each aCGH result; and (3) calculate the fraction of the chromosomal sites at which the copy number aberration was called according to the above defined thresholds.

We practically omitted some of the array-CGH data from the comparison analysis because the background noise levels were too high. According to the criterion, two of the 13 primary rat RCCs in GSE636101, seven of the 20 primary human CCRCCs in GSE43477 and four of the nine human PRCCs in GSE63003 were omitted from the analysis. Figure S1 shows genomic profiles of the aCGH data, plots of the moving averages of the signal log2 ratio values calculated along the autosomes of each species. The copy number aberration frequency is equivalent to the fraction of genomic sites, which corresponds to red points in each plot in Figure S1.

Results

Different patterns of chromosomal alterations in the genome of RCCs among mice, rats, and humans

We evaluated the similarities of deviation of chromosomal structures in the genome of RCCs among mice, rats, and humans.

Sample name	Number of normal loci	Number of deleted loci	Number of amplified loci	Fraction of copy number aberrations (%)
Murine RCC (total 23935 sites)	21250	2674	11	11.22
KO_1080				
KO_1134	15314	8376	245	36.02
KO_1097	19242	4679	14	19.61
WT_1179	18916	3697	1322	20.97
Mean	18680.5	4856.5	398	21.95
Rat RCC (total 25503 sites)				
FB7-1	19884	5509	110	22.03
FB7-4	19836	4551	1116	22.22
FB7-7	19702	3717	2084	22.75
FB59-1	15654	9844	5	38.62
FB14-3	16244	7643	1616	26.96
BF51-1	14756	9023	1544	42.14
FB14-6	18628	7688	9788	52.87
FB21-2	18523	5961	1788	29.34
FB45-4	19171	5939	193	37.59
FB30-5	18021	5610	1872	29.34
BF57-5	18216	5846	1441	28.57
Mean	17761.9	6669.5	1071.6	30.35
Human CCRCC (total 26778 sites)				
M3P	21955	3155	1668	18.01
M4P	18465	5248	3065	31.04
M7P	21251	6888	2639	20.64
M9P	14753	4453	7572	44.91
M11P	19233	3706	3839	28.18
M12P	17973	7382	973	32.88
M14P	10062	5678	11038	62.42
M15P	25128	733	917	6.16
M16P	22590	2607	1581	15.64
M17P	18500	4470	3808	20.91
M18P	20201	3459	3118	24.56
M20P	20286	5722	770	24.24
Mean	19199.8	4162.6	3415.7	28.3
Human PRCC (total 26945 sites)				
X2_prCC1	17928	19	8998	33.46
X13_prCC1	23224	372	3349	13.81
X15_prCC1	19478	3205	4162	22.73
X18_prCC2	19895	2120	4030	26.16
X36_uRCC	19063	647	7235	29.25
Mean	19917.6	1292.6	5734.8	26.08

RCC: renal cell carcinoma; CCRCC: clear cell renal cell carcinoma; PRCC: papillary renal cell carcinoma.

Refer to ref. [22] for the details of murine and rat RCCs.
rats, and humans. Essentially, we compared our aCGH data from murine and rat RCC samples in Fe-NTA-induced renal carcinogenesis model with that from human RCC samples in the public database. The comparison analysis was based on the copy number aberration frequency, calculated from the distributions of the signal log2 ratios in each aCGH result. Overall, the copy number aberration was the most frequent in the rat RCCs and was the least frequent in the murine RCCs (Table 1 and Figure 1). Indeed, the copy number aberration frequency in the rat RCCs was closer to that of human RCCs than to murine RCCs. The average deviated fraction of genomic segments out of 44–185 k, either loss or gain, from the standard biallelic position was 21.95% (N = 4), 30.35% (N = 11), 28.30% (N = 12), and 26.08% (N = 5), respectively, for murine RCC, rat RCC, human CCRCC, and human PRCC. Notably, gain/loss ratio was remarkably different as indicated by 0.0820, 0.161, 0.821, and 4.44, respectively.

Discussion
Three distinct species in mammal (mice, rats, and humans) present RCCs of similar histology derived from renal tubules [10,22,27], which were analysed in the present study. We have compared the global genomic alterations of these RCCs in search of detectable amplification/deletion with aCGH. Strikingly, human RCCs revealed significantly higher amplification/deletion ratio than the rodent RCCs, and rat RCCs showed higher amplification/deletion ratio in the genomic alterations than murine RCCs. The genome with deletions would be more rapidly replicated than that with amplifications due to the physical length of DNA double-strands, hypothesising that the catalytic activity of DNA polymerase is similar for each species. Renal tubular cells are essential for daily metabolism to reabsorb important small molecules, such as glucose, amino acids, and cations/anions, after glomerular filtration. Thus, longer time required for DNA replication may be a critical burden for the precancerous cells containing amplifications in the genome to proliferate faster than the other cells during carcinogenesis. In contrast, cells with deletions should be easier to replicate. Interestingly, cellular size of renal tubules is almost the same among mice, rats, and humans. In this sense, the size of the organ, here cell numbers, may be a determinant in that larger organ

![Figure 1. Bar charts of the frequencies of genomic sites with a normal or aberrated copy number in each aCGH profile of RCCs from three distinct mammalian species (mouse, rat, and human). This figure corresponds to Table 1. Blue, orange, and red bars indicate fractions of the normal, deleted, and amplified genomic sites, respectively. Refer to the online version for colour.](image-url)
allows more room for more complicated processes out of physiological function in a larger population of cells. In general, larger organisms have bigger and slowly dividing cells with lower energy turnover, thus reducing the risk of cancer initiation during the long lifetime [28].

Regarding the total frequency of the genomic alterations, there was a tendency of less deviations from the biallelic standard position in the RCCs of mice than in those of rats or humans. This may be associated with a lower incidence of amplification as described above. Indeed, rat RCCs are more similar to human RCCs, though we need further studies on RCCs of other rodent models with different etiologies. This may lead to a general concern over the selection of the species for preclinical studies. In a recent study, we reported that these murine RCCs do not have homozygous deletion of p16^INK4A tumour suppressor genes nor methylation of the promoter region of the same gene [22]. These may indicate that using a murine model alone is risky when we consider the application of the preclinical results to humans. At least for the carcinogenesis of RCCs, rats are much closer to humans than mice. Thus, rat models, whether genetically engineered or not, need more attention from the researchers.

Lastly, there is a limitation in the present discussion in that etiology is usually difficult to be identified in the human spontaneous RCCs whereas etiology is oxidative stress via excess iron here in the rodent RCCs. Another limitation is that we used genetically engineered animals only for mice. This was indispensable in the present study because wild-type C57BL/6 background is cancer-resistant [22]. However, we will seek for different mouse strains with higher susceptibility of RCCs in the near future. Different average lifetime among species might be a determinant in that it is ~2 years for mice but >3 years for rats. At last, we have not used next generation sequencing yet, thus ignoring point mutations here.

In conclusion, the present results suggest that rat RCC models are more similar to actual human diseases than murine models in the light of genomic alterations, though there are several limitations. Further studies are in progress in our laboratory to answer the remaining questions.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by JSPS KAKENHI grant Number JP16K15257, JP24108008, JP16H06276 and JP17H04064 to ST, and Private University Research Branding Project to ST. This work was partly performed in the Cooperative Research Project Program of the Medical Institute of Bioregulation, Kyushu University.

ORCID
Shinya Toyokuni http://orcid.org/0000-0002-5757-1109

References
[1] Toyokuni S. Oxidative stress as an iceberg in carcinogenesis and cancer biology. Arch Biochem Biophys. 2016;595:46–49.
[2] Toyokuni S. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci. 2009;100:9–16.
[3] Toyokuni S. Iron as a target of chemoprevention for longevity in humans. Free Radic Res. 2011;45:906–917.
[4] Ohara Y, Chew SH, Shibata T, et al. Phlebotomy as a preventive measure for crocidolite-induced mesothelioma in male rats. Cancer Sci. 2018;109:330–339.
[5] Toyokuni S. The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol Int. 2016;66:245–259.
[6] Toyokuni S, Ito F, Yamashita K, et al. Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis. Free Radic Biol Med. 2017;108:610–626.
[7] Okada S, Midorikawa O. Induction of rat renal adenocarcinoma by Fe-nitrilotriacetate (Fe-NTA). Jpn Arch Intern Med. 1982;29:485–491.
[8] Ebina Y, Okada S, Hamazaki S, et al. Nephrotoxicity and renal cell carcinoma after use of iron- and aluminium-nitrilotriacetate complexes in rats. J Natl Cancer Inst. 1986;76:107–113.
[9] Li JL, Okada S, Hamazaki S, et al. Subacute nephrotoxicity and induction of renal cell carcinoma in mice treated with ferric nitrilotriacetate. Cancer Res. 1987;47:1867–1869.
[10] Nishiyama Y, Suwa H, Okamoto K, et al. Low incidence of point mutations in H-, K- and N-ras oncogenes and p53 tumor suppressor gene in renal cell carcinoma and peritoneal mesothelioma of Wistar rats induced by ferric nitrilotriacetate. Jpn J Cancer Res. 1995;86:1150–1158.
[11] Hamazaki S, Okada S, Ebina Y, et al. Acute renal failure and glucosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol. 1985;77:267–274.
[12] Hamazaki S, Okada S, Ebina Y, et al. Nephrotoxicity of ferric nitrilotriacetate: an electron-microscopic and metabolic study. Am J Pathol. 1986;123:343–350.
[13] Toyokuni S, Uchida K, Okamoto K, et al. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA. 1994;91:2616–2620.
Toyokuni S, Mori T, Dizdaroglu M. DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer. 1994;57:123–128.

Toyokuni S, Mori T, Hiai H, et al. Treatment of Wistar rats with a renal carcinogen, ferric nitrilotriacetate, causes DNA-protein cross-linking between thymine and tyrosine in their renal chromatin. Int J Cancer. 1995;62:309–313.

Uchida K, Fukuda A, Kawakishi S, et al. A renal carcinogen ferric nitrilotriacetate mediates a temporary accumulation of aldehyde-modified proteins within cytosolic compartment of rat kidney. Arch Biochem Biophys. 1995;317:405–411.

Fukuda A, Osawa T, Oda H, et al. Oxidative stress response in iron-induced renal carcinogenesis: acute nephrotoxicity mediates the enhanced expression of glutathione S-transferase Yp isozyme. Arch Biochem Biophys. 1996;329:39–46.

Toyokuni S, Tanaka T, Hattori Y, et al. Quantitative immunohistochemical determination of 8-hydroxy-2. Lab Invest. 1997;76:365–374.

Toyokuni S, Luo XP, Tanaka T, et al. Induction of a wide range of C2,12 aldehydes and C7,12 acyloins in the kidney of Wistar rats after treatment with a renal carcinogen, ferric nitrilotriacetate. Free Radic Biol Med. 1997;22:1019–1027.

Tanaka T, Kondo S, Iwasa Y, et al. Expression of stress-response and cell proliferation genes in renal cell carcinoma induced by oxidative stress. Am J Pathol. 2000;156:2149–2157.

Miller YE, Dwyer-Nield LD, Keith RL, et al. Induction of a high incidence of lung tumors in C57BL/6 mice with multiple ethyl carbamate injections. Cancer Lett. 2003;198:139–144.

Li GH, Akatsuka S, Chew SH, et al. Fenton reaction-induced renal carcinogenesis in Mutyh-deficient mice exhibits less chromosomal aberrations than the rat model. Pathol Int. 2017;67:564–574.

Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017; 171:273–285.

Akatsuka S, Yamashita Y, Ohara H, et al. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS One. 2012;7:e43403.

Narimatsu T, Matsuura K, Nakada C, et al. Downregulation of NDUFB6 due to 9p24.1-p13.3 loss is implicated in metastatic clear cell renal cell carcinoma. Cancer Med. 2015;4:112–124.

Marsaud A, Dadone B, Ambrosetti D, et al. Dismantling papillary renal cell carcinoma classification: the heterogeneity of genetic profiles suggests several independent diseases. Genes Chromosomes Cancer. 2015;54:369–382.

Moch H, Cubilla AL, Humphrey PA, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol. 2016;70:93–105.