The role of dermoscopy in dermato-oncological diagnostics – new trends and perspectives

Grażyna Kamińska-Winciorek¹, Aleksandra Pilśniak²

¹Skin Cancer and Melanoma Team, Department of Bone Marrow Transplantation and Oncohematology, M. Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
²Inpatient Department of Radiation and Clinical Oncology, M. Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland

Medical history and clinical examination are the most basic elements of medical diagnostics. Clinical examination in the context of dermatology should be combined with the taking and archiving of clinical, dermoscopic and/or video dermoscopic photographs. Dermoscopy is a non-invasive examination and is the recommended method of examining skin lesions. It requires many years of experience and extensive training, and subsequently can be very helpful in the diagnostic process since it allows for a more thorough examination than the unarmed eye. The diagnosis of malignant skin tumours has been significantly improved by noninvasive real-time diagnostic devices. Based on the data from the literature available, we discussed the most commonly used algorithms in the diagnostic process. It should be emphasized that a dermoscopic evaluation may facilitate the diagnosis and early treatment of micromelanoma and basal cell carcinoma. Finally, the role of dermoscopy in the follow-up procedure of oncologic patients should not be forgotten.

Key words: dermoscopy, dermato-oncology, skin cancer, cutaneous melanoma, skin malignancies

Introduction

Medical history and clinical examination are the most basic elements of medical diagnostics. It should be emphasized that a clinical examination in the context of dermatology should be combined with taking and archiving of clinical, dermoscopic and/or video dermoscopic photographs [1, 2]. Dermoscopy is a non-invasive examination and it is the recommended method of examining skin lesions since it allows for a more thorough examination than the unarmed eye. This diagnostic tool has several uses. The first one is self training, when a specific diagnosis is straightforward. In this case, this method provides us with an enormous amount of data. We are able to correlate our macroscopic thinking with the dermoscopic image, which consequently broadens our knowledge. In the second situation, a diagnosis is very likely and we use a dermoscope to confirm our assumptions and this ensures we can refrain from performing a biopsy. In the next case, a dermoscopy reverses the diagnosis and corrects mistakes. In the latter case, a dermoscopy can lead to a diagnosis by visualizing the feature, resulting in a list of differential diagnoses.

Diagnosis of malignant skin tumours

The diagnosis of malignant skin tumours has been significantly improved by noninvasive real-time diagnostic devices. It is obvious that such a diagnosis must be confirmed by histopathological diagnosis [3]. Dermoscopy requires several years of experience and extensive training, and subsequently can be very helpful in the diagnostic process leading to the final confirmation in the form of a histopathological examination [4]. Consequently, it is worth mentioning and characterizing the

How to cite:
Kamińska-Winciorek G, Pilśniak A. The role of dermoscopy in dermato-oncological diagnostics – new trends and perspectives. NOWOTWORY J Oncol 2021; 71: 103–110.

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
classic patterns of the most common skin cancer, i.e. basal cell carcinoma (BCC) in dermoscopy. Undoubtedly, the presence of arborizing vessels, large blue-grey ovoid nests, ulceration, leaf-like areas and spoke wheel-like structures and numerous blue-grey globules indicate the basal cell carcinoma (fig. 1A, B) [5].

The second diagnosis we should look at is melanoma. We observe an increasing number of algorithms that help in the early diagnosis of melanoma which are listed and described below. We have dealt with the differences between patients with a solitary lesion, of which a surgical excision is the best procedure. On the other hand, there are patients with numerous lesions which cannot all be cut out; in this case, a dermoscopy with computerized photo archiving is very useful. In addition to tumour diagnosis, the morphological features of the tumour may be important in designing a treatment strategy. It is suggested that the presence of multiple minor erosions or ulceration is a crucial predictor of basal cell carcinomas' response to imiquimod and the presence of pigmentation is a negative predictor of a worse response of this cancer to photodynamic therapy [6, 7].

Algorithms for melanocytic lesions

A dermoscopic examination performed by experienced doctors is more accurate than the clinical examination itself. In the study of the observed features visible in a dermoscopy, many algorithms have been established that allow an approximation of an accurate diagnosis. The most commonly used algorithms are discussed below. Kamińska-Winciorek et al. in their review present in detail the older algorithms widely previously used and described in literature [8].

Three-Point Checklist

The Three-Point Checklist algorithm takes into account three criteria to which it belongs:

1. asymmetry in dermoscopic structures' distribution,
2. an atypical pigmented network and
3. blue-white structures.

This Three-Point Checklist can be used by clinicians in diagnostics not only for melanoma (fig. 2A) but also basal cell carcinoma [9]. Soyer et al. showed that the presence of either of these two criteria indicates a high probability of melanoma [9].

Seven-Point Checklist

The Seven-Point Checklist algorithm includes seven characteristics, including: atypical pigment network, gray-blue areas, atypical vascular pattern, radial streaming (streaks), irregular diffuse pigmentation (blotches), irregular dots and globules, regression pattern (a presence of white scar-like depigmentation or peppering known as multiple scattered blue-grey granules) (fig. 2B). Historically, a minimum score of three for adding individual features of the above-mentioned seven is required for the diagnosis of melanoma [10]. Previously, at least...
two dermoscopic criteria (one major and one minor) must be present for a suspicious diagnosis (a score of three or more). In 2011, Argenziano et al. revised Seven-Point Checklist. They showed in their study that in order to increase the sensitivity of the assessment in the Seven-Point Checklist, the excision threshold of the lesion should be adjusted compared to the original [11]. In the revised Seven-Point Checklist, each criterion receives 1 point, the notch threshold is 1 point, not 3 points like in the earlier version [11].

Two Step Algorithm

In the previous traditional two-step algorithm, assessment is divided into two steps including the differentiation between melanocytic and non-melanocytic changes. When the lesion is classified as melanocytic, the observer then proceeds to the second stage consisting in qualifying the change as mild or malignant. During this second step a decision must be made whether the melanocytic lesion is benign, suspect, or malignant. For this purpose, the mentioned algorithms can be used, including pattern analysis, ABCD rule, Menzies method and the Seven-Point Checklist which was discussed above [12, 13].

Pattern analysis is a method that involves assessing all the dermoscopic features that a lesion shows. In general terms, malignant – suspected lesions have several colors that are disordered in structure and are asymmetrical in dermoscopic distribution. The ABCD rule of dermoscopy is based on the following criteria: asymmetry (A), border (B), colour (C) and differential structures (D) [14].

The Menzies method aims to distinguish between benign lesions and melanomas. This method includes negative features (symmetrical pattern, single color) indicating benign changes and positive features indicating melanoma. The positive features include blue-white veil, multiple brown dots, pseudopods, radial streaming, scar-like depigmentation, multiple (5–6) colors, multiple blue/grey dots, broadened network [15]. Exceptions to the two-step algorithms have been observed over the years. Moreover hybrid dermoscopes allow the user to toggle between polarized and non-polarized light and consequently a diagnosis becomes more likely. Some dermoscopic structures are more prominent in non-polarized dermoscopy (NPD) and others in polarized (PD) [16]. In 2010, an update of this 2-step algorithm was proposed, which consists in adding 2 decision levels to help doctors correctly classify some of the so-called featureless neoplasms as melanocytic or non-melanocytic tumours. In the revised two-step algorithms, the main queries of conducted analysis is to establish a specific diagnosis (step 1) and to rule out melanoma (step 2). This algorithm impedes the use of unpolarized dermoscopy [17].

Triage Amalgamated Dermoscopic Algorithm (TADA)

It is worth noting that the algorithms mentioned so far have been used to detect specific subsets of pigmented skin neoplasms – mainly pigmented melanoma. This is a limitation of these algorithms because many melanomas, basal cell carcinomas and squamous cell carcinomas do not have this pigment. Thus, compared to the above algorithms, the TADA algorithm allows the identification of pigmented and non-pigmented skin malignancies. At the very beginning, this algorithm requires the exclusion of three common and clearly benign lesions, i.e. cherry haemangioma (fig. 3A), dermatofibroma (fig. 3B) or seborrhoeic keratosis (fig. 3C. In the next step, dermoscopic patterns are taken into account, i.e. the distribution of colours and structures within the lesion. If there is an architectural disorder/disorganized pattern, a biopsy should be performed. If we have organized lesions with a starburst pattern (fig. 3D) or with any of the following features: blue-black/grey colour, shiny white structures, negative network, ulcer/erosion, vessels (fig. 3E, F) a biopsy should be performed [18, 19].

Metaphoric and descriptive terminology

According to Blum et al., the more metaphorical assessment called blink and more descriptive one colloquially called think complement each other and are used all over the world [20]. However, in a clinical and scientific context, clear and universal language should be the basis. In 2016, Kittler et al. published a consensus aimed at standardizing the dermoscopic description [21].

Early detection of micro-melanoma and basal cell carcinoma

We should pay attention to the change of the type of micro-melanoma, which, due to its size, i.e. 5 mm, does not meet the criterion D of the ABCD assessment and is often overlooked. In this case, a dermoscopic evaluation may facilitate diagnosis and early treatment. So far, there are very few published studies evaluating micro-melanomas. Megaris et al. in their retrospective study suggest features that increase the probability...
assessed solely by the naked eye [23, 24]. Moreover most melanomas are diagnosed with digital dermoscopy monitoring by side-by-side image comparison [25].

Dermoscopy can also aid early diagnosis of small basal cell carcinomas less than 5 mm in diameter, especially characterized newly arised lesions located on the skin of the head and neck [26]. They are characterized by the presence of multiple blue grey dots and large blue-grey ovoid nests [26] especially in its pigmented variants of very small BCC (3 mm-sized) (fig. 4B) [27]. Moreover the presence of arborizing vessels with the existence of shiny white blotches and strands may also help

Figure 3. At the very beginning, the Triage Amalgamated Dermoscopic Algorithm (TADA) requires the exclusion of three common and clearly benign lesions: A - cherry haemangioma (with the presence of lacunae defined as round to oval red, reddish-brown or reddish-blue areas that commonly vary in size and colour - PD); B - dermatofibroma (the peripheral network with a central white scar-like area with a pink hue and shiny white lines in polarized light) or C - seborrheic keratosis (with multiple dots or clods white disseminated in NPD). In the TADA algorithm, if we have organized lesions with D - a starburst pattern (typified by streaks, pseudopods, or finger-like projections regularly distributed on the periphery, Reed nevus in NPD) or any of the following features: E - vessels (multiple dotted and linear irregular vessels in SSM in NPD); F - blue-black/grey colour (BCC in NPD), negative network, shiny white structures, ulcer/erosion, a biopsy should be performed.

of malignancy in lesions up to 5 mm. Such features include irregular hyperpigmented areas, atypical dots/globules, and an atypical network, within a reticular or unstructured global pattern (fig. 4A) [22].

The routine use of dermoscopy allows the detection of melanomas of which patients are unaware [23]. Moreover, the digital follow-up enables recognition of early melanoma when specific structures or criteria for malignancy may not be present [24]. The combined use of total-body photography and sequential digital dermoscopy enables the detection of incipient melanomas that might have been overlooked if assessed solely by the naked eye [23, 24]. Moreover most melanomas are diagnosed with digital dermoscopy monitoring by side-by-side image comparison [25].

Dermoscopy can also aid early diagnosis of small basal cell carcinomas less than 5 mm in diameter, especially characterized newly arised lesions located on the skin of the head and neck [26]. They are characterized by the presence of multiple blue grey dots and large blue-grey ovoid nests [26] especially in its pigmented variants of very small BCC (3 mm-sized) (fig. 4B) [27]. Moreover the presence of arborizing vessels with the existence of shiny white blotches and strands may also help
can the BCC recognition although 1/3 of small lesions did not exhibit the typical dermoscopic criteria of BCC [28]. It is evident that in small size BCC classic dermoscopic criteria (the presence of arborizing vessels and ulceration) are often substituted by non-classical criteria [29]. Only blue-whitish veil and blue in-focus dots dermoscopic features among non-classic criteria which represent the neoplasm’s early phase indicated a good agreement among low experience observers [29].

Dermoscopic follow-up in dermato-oncology

Dermoscopic assessment of the surgical margins before excision

Preoperative digital dermoscopy is a better method for detecting tumoral margins than clinical evaluation, and is an effective, simple, non-invasive method for the pre-surgical evaluation of margins [30]. Preoperative dermoscopy is a better method to determine the margins of neoplasms than clinical evaluation alone [31]. Moreover, the preoperative dermoscopic assessment using non-classic BCC criteria including pink-white areas and short telangiectasias in the area between clinically and dermoscopically detected margins, helps define the neoplasm’s margins and to achieve a really radical excision (fig. 4C) [32].

Dermoscopic follow-up after surgical procedures

Dermoscopy, as a non-invasive method, works well in secondary prevention, i.e., early detection of neoplasms with the use of dermoscopic assessment of the entire skin, covering areas that are difficult to access during the examination. We should emphasize the importance of this method in the follow-up stages of patients after cancer treatment. These are high-risk patients at risk of relapse and should be regularly monitored using the above method along with image archiving. Dermoscopic follow-up is used in the control of post-excision malignant tumour scars enabling the diagnosis and assessment of tumour (eg. lentigo maligna melanoma – LMM) persistence after surgery (fig. 5A) [33], rapid recognition of the features of tumour recurrence among others, melanoma within the scar (fig. 5B) [34] with an assessment of its healing or leaving sutures (fig. 5C). In addition, a dermoscopic observation of the whole body of patients with diagnosed malignant neoplasms enables early detection of metastases the nature of satellitosis, in-transit or distant localized within the skin and subcutaneous tissue [35, 36] as well as allowing for additional monitoring dermoscopic effects of the therapies used in patients with, inter alia, metastatic melanoma (blood vessel morphology and distribution, degree of vascularization, ulceration, background). Dermoscopy is also used in patients diagnosed with cutaneous malignancies for the early detection of synchronous melanoma [37, 38] and basal or squamous cell carcinoma (SCC) with dermoscopic assessment of the selected therapies of skin cancers.

Dermoscopic assessment of the selected therapies of skin cancers

Moreover, patients’ response to treatment can be easily monitored with this noninvasive medical device, thus allowing further modulation of the therapy [4]. It is worth mentioning

![Figure 4](image-url)
the treatment with the use of appropriate methods that can be considered and applied in the case of BCC and SCC, characterized by low risk of recurrence or in patients with contraindications to the use of basic methods such as surgery. Imiquimod (5%) is used in the treatment of actinic keratosis, in situ SCC/Bowen’s disease, and non-invasive forms of superficial spreading BCC [39]. Based on the Husein-ElAhmed study, dermoscopic evaluation improves the accuracy of the assessment of clinical response to imiquimod in pigmented BCC [40].

Dermoscopic follow-up was useful in monitoring the therapeutic response to selected topical therapies including ingenol mebutate in BCC [41], Bowen’s disease [42] and imiquimod in LMM [33] as well as systemic therapy with vismodegib in BCC [43]. Dermoscopy was also used in monitoring BCC’s treatment effects using high dose ionizing radiation therapy [44], changes in the course of LMM radiotherapy [45], or dermoscopic margin delineation in radiotherapy planning for superficial or nodular basal cell carcinoma [46]. In addition, the dermoscope can be used to assess skin toxicity or lesions occurring in existing and newly formed melanocytic changes during the treatment of melanoma, including with the use of BRAF inhibitors [47, 48].

Conclusions

Modern perspectives regarding dermoscopy emphasize its multidisciplinary scope and nature concerning not only the preoperative diagnosis of skin cancers but also the post-operative and post-therapeutic stages – including topical and systemic implemented therapies.

Conflict of interest: none declared
Grazyna Kamińska-Winciorek
M. Skłodowska-Curie National Research Institute of Oncology Gliwice Branch
Department of Bone Marrow Transplantation and Oncohematology
ul. Wybrzeże Armii Krajowej 15
44-101 Gliwice, Poland
e-mail: grazyna.kaminskawinciorek@gmail.com

Received: 4 Jan 2021
Accepted: 11 Jan 2021

References

1. Kamińska-Winciorek G, Gajda M, Wydmanski J, et al. What do Web users know about skin self-examination and melanoma symptoms? Asian Pac J Cancer Prev. 2015; 16(7): 3051–3056, doi: 10.7314/ apcj.2015.16.7.3051, indexed in Pubmed: 25854404.

2. Forsea AM, Tschandi P, Zalaudek J, et al. Eurodermoscopy Working Group. The impact of dermoscopy on melanoma detection in the practice of dermatologists in Europe: results of a pan-European survey. J Eur Acad Dermatol Venereol. 2017; 31(7): 1148–1156, doi: 10.1111/ jevd.14128, indexed in Pubmed: 29109908.

3. Rutkowski P, Wysoki PJ, Nasirowska-Gutmejer A, et al. Cutaneous melanoma. Oncol Clin Pract. 2020; 16(4): 164–182, doi: 10.5603/ OCP.2020.0021.

4. Bakoš RM, Blumetti TR, Roldán-Marin R, et al. Noninvasive Imaging Tools in the Diagnosis and Treatment of Skin Cancers. Am J Clin Dermatol. 2018; 19(Suppl 1): 3–14, doi:10.1007/978-3-030-04326-3_3, indexed in Pubmed: 30374899.

5. Que SK. Research Techniques Made Simple: Noninvasive Imaging Technologies for the Delineation of Basal Cell Carcinomas. J Invest Dermatol. 2016; 136(4): e33–e38, doi:10.1038/jid.2016.2.002.12, indexed in Pubmed: 27012561.

6. Lallas A, Apalla Z, Argenziano G, et al. The dermatoscopic universe of basal cell carcinoma. Dermatol Pract Concept. 2014; 4(3): 11–24, doi:10.5826/dpc.0403a02, indexed in Pubmed: 25216452.

7. Russo T, Piccolo V, Lallas A, et al. Dermoscopy of Malignant Skin Tumours: What’s New? Dermatology. 2017; 233(1): 64–73, doi:10.1159/000472253, indexed in Pubmed: 28462638.

8. Kamińska-Winciorek G, Spiewak R. Basic dermoscopy of melanocytic nevi. Dermatol Pract Concept. 2014; 4(5): 23, doi:10.5826/dpc.0504a08, indexed in Pubmed: 27685248.

9. Megaris A, Lallas A, Bagolini LP, et al. Dermoscopy features of melanomas with a diameter up to 5 mm (micromelanomas): A retrospective study. J Am Acad Dermatol. 2020; 83(4): 1190–1196, doi:10.1016/j.jaad.2020.04.006, indexed in Pubmed: 32289392.

10. Argenziano G, Alonso C, Fernández-Bussy R. Multiple Primary Invasive Small-Diameter Melanomas: Importance of Dermoscopy and Digital Follow-up. Dermatol Pract Concept. 2019; 9(1): 69–70, doi:10.5826/ dpc.0901a16, indexed in Pubmed: 30775153.

11. Megaris A, Alonso C, Fernández-Bussy R. A series of small-diameter melanomas on the legs: dermoscopic clues for early recognition. Dermatol Pract Concept. 2015; 5(4): 31–36, doi:10.5826/dpc.0504a08, indexed in Pubmed: 26366319.

12. Babino G, Lallas A, Agozzino M, et al. Melanoma diagnosed on digital dermoscopy monitoring: A side-by-side image comparison is needed to improve early detection. J Am Acad Dermatol. 2020 [Epub ahead of print], doi:10.1016/j.jaad.2020.07.013, indexed in Pubmed: 32652193.

13. Longo C, Specchio F, Ribero S, et al. Dermoscopy of small-size basal cell carcinoma: a case-control study. J Eur Acad Dermatol Venereol. 2017; 31(6): e273–e274, doi:10.1111/jdv.13988, indexed in Pubmed: 26693087.

14. Takahashi A, Hara H, Aikawa M, et al. Dermoscopic features of small size pigmented basal cell carcinomas. J Dermatol. 2016; 43(5): 543–546, doi:10.1111/1346-8138.13173, indexed in Pubmed: 26458728.

15. Liopyris K, Navarrete-Dechent C, Yelamos O, et al. Clinical, dermoscopic and reflectance confocal microscopy characterization of facial basal cell carcinomas presenting as small white lesions on sun-damaged skin. Br J Dermatol. 2019; 180(1): 229–230, doi:10.1111/bjd.17241, indexed in Pubmed: 30239981.

16. de Mee N, Daimiani G, Vichi S, et al. Interobserver agreement on dermoscopic features of small size basal cell carcinomas (<5 mm) among low-experience dermatoscopists. J Eur Acad Dermatol Venereol. 2016; 43(10): 1221–1226, doi:10.1111/1346-8138.13426, indexed in Pubmed: 27219742.

17. Carducci M, Bozzetti M, de Marco G, et al. Preoperative margin detection by digital dermoscopy in the traditional surgical excision of cutaneous squamous cell carcinomas. J Dermatol Treat. 2013; 24(3): 221–226, doi:10.3109/09546634.2012.672771, indexed in Pubmed: 22390630.

18. Carducci M, Bozzetti M, de Marco G, et al. Usefulness of margin detection by digital dermoscopy in the traditional surgical excision of basal cell carcinomas of the head and neck including infiltrative/morpheaform type. J Dermatol. 2012; 39(4): 326–330, doi:10.1111/1346-8138.2012.01449.x, indexed in Pubmed: 22150661.

19. Conforti G, Guiffrida B, Zalaudek I, et al. Dermoscopic Findings in the Presurgical Evaluation of Basal Cell Carcinoma. A Prospective Study. Dermatol Surg. 2021; 47(2): e37–e41, doi:10.1097/DSS.0000000000002471, indexed in Pubmed: 32804889.

20. Hamilko de Barros M, Conforti G, Guiffrida R, et al. Clinical usefulness of dermoscopy in the management of lentigo maligna melanoma treated with topical imiquimod: A case report. Dermatol Ther. 2019; 32(5): e13048, doi:10.1111/dth.13048, indexed in Pubmed: 31365514.

21. Blum A, Hofmann-Wellenhof R, Marghooob AA, et al. Recurrent melanocytic nevi and melanomas in dermoscopy: results of a multicenter study of the International Dermoscopy Society, JAMA Dermatol. 2014; 150(2): 138–145, doi:10.1001/jamadermatol.2013.6908, indexed in Pubmed: 24226788.

22. Avilés-Izquierdo JA, Ciudad-Blanco C, Sánchez-Herrero A, et al. Dermoscopy of cutaneous melanoma metastases: A color-based pattern
classification. J Dermatol. 2019; 46(7): 564–569, doi: 10.1111/1346-8138.14926, indexed in Pubmed: 31120139.

36. Farnetani F, Manfredini M, Longhitano S, et al. Morphological classification of melanoma metastasis with reflectance confocal microscopy. J Eur Acad Dermatol Venereol. 2019; 33(4): 676–685, doi: 10.1111/jdv.15329, indexed in Pubmed: 30394598.

37. Moscarella E, Rabinovitz H, Puig S, et al. Multiple primary melanomas: do they look the same? Br J Dermatol. 2013; 168(6): 1267–1272, doi: 10.1111/bjd.12260, indexed in Pubmed: 23374221.

38. De Giorgi V, Salvini C, Sestini S, et al. Triple synchronous cutaneous melanoma: a clinical, dermoscopic, and genetic case study. Dermatol Surg. 2007; 33(4): 488–491, doi: 10.1111/j.1524-4725.2007.33098.x, indexed in Pubmed: 17430385.

39. Rutkowski P, Owczarek W, Nejc D, et al. Skin carcinomas. Oncol Clin Pract. 2018; 14(3): 129–147, doi: 10.5603/OCP.2018.0019.

40. Husein-ElAhmed H, Fernandez-Pugnaire MA. Dermatoscopy-guided therapy of pigmented basal cell carcinoma with imiquimod. An Bras Dermatol. 2016; 91(6): 764–769, doi: 10.1590/abd1806-4841.20165255, indexed in Pubmed: 28099598.

41. Diluvio L, Bavetta M, Di Prete M, et al. Dermoscopic monitoring of efficacy of ingenol mebutate in the treatment of pigmented and non-pigmented basal cell carcinomas. Dermatol Ther. 2017; 30(1), doi: 10.1111/dth.12438, indexed in Pubmed: 27860083.

42. Manetti C, Guilled C, Leoni-Parex S. Successful Treatment of Relapsing Bowen's Disease with Ingenol Mebutate: The Use of Dermoscopy to Monitor the Therapeutic Response. Dermatology. 2016; 232 Suppl 1: 9–13, doi: 10.1159/000447389, indexed in Pubmed: 27513936.

43. Tognetti L, Cinotti E, Fiorani D, et al. Long-term therapy of multiple basal cell carcinomas: Clinico-dermoscopic score for monitoring of intermittent vismodegib treatment. DermatolTher. 2019; 32(6): e13097, doi: 10.1111/dth.13097, indexed in Pubmed: 31612619.

44. Navarrete-Dechent C, Cordova M, Liopyris K, et al. In vivo imaging characterization of basal cell carcinoma cutaneous response to high dose ionizing radiation therapy: A prospective study of reflectance confocal microscopy, dermoscopy, and ultrasound. J Am Acad Dermatol. 2020 (Epub ahead of print), doi: 10.1016/j.jaad.2020.07.130, indexed in Pubmed: 32827607.

45. Richtig E, Arzberger E, Hofmann-Wellenhof R, et al. Assessment of changes in lentigo maligna during radiotherapy by in-vivo reflectance confocal microscopy: a pilot study. Br J Dermatol. 2015; 172(1): 81–87, doi: 10.1111/bjd.13141, indexed in Pubmed: 24889911.

46. Ballester Sánchez R, Pons Llanas O, Pérez Calatayud J, et al. Dermoscopy margin delineation in radiotherapy planning for superficial or nodular basal cell carcinoma. Br J Dermatol. 2015; 172(4): 1162–1163, doi: 10.1111/bjd.13402, indexed in Pubmed: 25204461.

47. Rajczykowski M, Kaminska-Winciorek G, Nowara E, et al. Dermoscopic assessment of skin toxicities in patients with melanoma during treatment with vemurafenib. Postepy Dermatol Alergol. 2018; 35(1): 39–46, doi: 10.5114/ada.2018.73163, indexed in Pubmed: 29599670.

48. Cohen PR, Bedikian AY, Kim KB. Appearance of New Vemurafenib-associated Melanocytic Nevi on Normal-appearing Skin: Case Series and a Review of Changing or New Pigmented Lesions in Patients with Metastatic Malignant Melanoma After Initiating Treatment with Vemurafenib. J Clin Aesthet Dermatol. 2013; 6(5): 27–37, indexed in Pubmed: 23710269.

49. https://dermoscopedia.org/.