Exposure to Bisphenol A Prenatally or in Adulthood Promotes TH2 Cytokine Production Associated with Reduction of CD4+CD25+ Regulatory T Cells

Huimin Yan, Masaya Takamoto, and Kazuo Sugane

Department of Infection and Host Defense, Division of Immunology and Infectious Diseases, Shinshu University Graduate School of Medicine, Matsumoto, Japan

BACKGROUND: Bisphenol A (BPA), an estrogenic endocrine-disrupting chemical (EDC), has drawn attention because of its potential for human exposure. BPA is widely used, including in dentistry, food packaging, and lacquers to coat food cans and water pipes. It can enter the environment, resulting in chronic exposure of humans and wildlife. In fact, BPA has been detected not only in food and water (Heemken et al. 2001; Shin et al. 2001; Thomson and Grounds 2005) but also in human urine and blood samples as well as in the placenta and amniotic fluid of pregnant women (Ikezuki et al. 2002; Matsumoto et al. 2003; Schonfelder et al. 2002; vom Saal and Hughes 2005). BPA is one of the most widespread EDCs.

There is much evidence that exposure to BPA through contamination of the environment or the treatment of experimental animals disrupts developmental programs to alter sexual phenotypes and reproductive functions (Farabollini et al. 2002; Herath et al. 2004). BPA antagonizes the actions of thyroid hormone (Moriyama et al. 2002). Exposure of pregnant rats to BPA resulted in the chemical’s transplacental transfer to the fetuses (Takahashi and Oishi 2000; Welschons et al. 2006), suggesting that developing embryos or fetuses might be affected by BPA. Prenatal exposure to BPA has been shown to alter a variety of reproductive endocrine parameters, such as testosterone and luteinizing hormone levels in rats (Ramos et al. 2003; Rubin et al. 2001) and the early onset of sexual maturation of female mice (Honma et al. 2002). In addition, behavioral changes have been reported in offspring of mice exposed to BPA during pregnancy and lactation (Dessi-Fulgheri et al. 2002). BPA may also be a potentially important modulator of immune responses. It inhibits adhesion capacity and promotes cytokine production in macrophages in vitro (Segura et al. 1999; Yamashita et al. 2005). Exposure to BPA also enhances the production of autoantibodies by B1 cells (Yurino et al. 2004). Furthermore, imbalanced T-helper (Th1)1/Th12 immune responses have been demonstrated on exposure to BPA. BPA inhibits the secretion of interferon-γ (IFN-γ) in C57BL/6 and female NZB/NZW mice (Sawai et al. 2003). In contrast, BALB/c mice treated with BPA exhibit augmented Th1 immune responses alone (Alizadeh et al. 2006), or both Th1 and Th2 responses (Yoshino et al. 2003). Our previous study indicated that BPA promotes Th12 cytokine production in vitro and in vivo (Tian et al. 2003). However, the effects of prenatal exposure to BPA on immune responses have not been clarified.

In this study, we used mice infected cutaneously with Leishmania major to investigate the effect of BPA on Th11/Th12 immune responses in adulthood and prenatal stages. The model provides an excellent system with which to study the factors controlling the generation and regulation of Th11 and Th12 cells in vivo. Experimental infections of different strains of mice with L. major result in the development of either a predominant Th11 response and resistance or a predominant Th12 response and susceptibility. The early production of interferon-12 (IL-12) and IFN-γ promotes a Th11 response and healing, whereas IL-4 production is necessary for the development of a Th12 response and of progressive disease. We also focused on CD4+CD25+ regulatory T cells (Treg cells), one of the CD4+ T cell populations constitutively expressing the IL-2 receptor γ-chain (CD25) playing a central and prominent role in the maintenance of the immunologic balance (Maloy and Powrie 2001; Shevach 2002) by inhibiting the proliferation of and the production of cytokines by CD4+ and CD8+ T cells (Dieckmann et al. 2005; Stassen et al. 2004). We evaluated whether CD4+CD25+ Treg cells were affected by exposure to BPA, resulting in the alteration of cytokine production by CD4+ T cells.

Materials and Methods

Mice. Six- to 8-week-old L. major–susceptible BALB/c and L. major–resistant C57BL/6 mice were purchased from Clea Japan (Tokyo, Japan). Mice were housed in poly-methylpentene (TPX) cages and fed sterile standard chow (FR-2; Funabashi Farm, Chiba, Japan). Drinking water was provided ad libitum in glass bottles. All animals were handled according to the guidelines of the Ethics Committee for Animal Experiments of Shinnshu University. Animals were treated humanely and with regard for alleviation of suffering.

Address correspondence to M. Takamoto, Department of Infection and Host Defense, Division of Immunology and Infectious Diseases, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan. Telephone: 81-263-37-2625, Fax: 81-263-37-3092. E-mail: masaya@sch.md.shinshu-u.ac.jp

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas 14042222 from the Ministry of Education, Culture, Sports, Science and Technology.

The authors declare they have no competing financial interests.

Received 31 August 2007; accepted 25 January 2008.
Monoclonal antibodies and reagents. BPA was purchased from Nacalai Tesque (Kyoto, Japan). Phycoerythrin (PE)–conjugated anti-CD4 and fluorescein isothiocyanate (FITC)–conjugated anti-CD25 monoclonal antibodies (mAbs) were obtained from BD Biosciences (San Diego, CA, USA). The cytometric bead array (CBA) kits were also from BD Biosciences.

Leishmania major. L. major (MHOM/SU/73/5ASKH) was kept in a virulent state by continuous passage in BALB/c mice. A cell suspension of popliteal lymph node from an infected BALB/c mouse was cultured in Schneider’s medium (Gibco BRL, Gaithersburg, MD, USA) supplemented with 10% FCS (Biocell Laboratories, Carson, CA, USA). Stationary phase promastigotes were collected by centrifugation and washed with saline. Mice were infected in the right hind footpad with 5×10^6 promastigotes. The course of infection was monitored by making weekly measurements of footpad thickness with a metric caliper. The results were expressed as the difference between the thickness of the infected right footpad and that of the noninfected left one.

To prepare soluble L. major antigen, 1×10^9 promastigotes were homogenized by three cycles of freezing and thawing in phosphate-buffered saline. Aliquots were stored at $–30^\circ C$ before use.

BPA treatment. Exposure of adult male mice to BPA. BPA was dissolved in corn oil and injected subcutaneously into the right hind leg at doses of 0.625, 1.25, 2.5 and 5 μmol, which is equivalent to 5.7, 11.4, 22.8, and 45.6 mg/kg body weight (bw). These doses were based on our previous study in which 1 μmol BPA was shown to increase IL-4 and IL-10 production in Trichinella spiralis–infected mice (Tian et al. 2003). The control mice received corn oil vehicle alone. One week later, the mice were injected with L. major promastigotes in the footpad of the same leg.

Prenatal exposure to BPA. Female mice were given BPA in drinking water at doses of 1, 10, and 100 nM for 2 weeks. Each group of mice was then mated with a male and treated with BPA-containing drinking water for another week. Offspring born within 16–19 days after BPA treatment were complete were used in this experiment. The 100 nM (about 3 μg/kg bw/day) dose of BPA was based on recent studies showing that administration of low doses of BPA at 2 and 20 μg/kg bw/day to pregnant animals caused permanent changes in reproductive organs of offspring (Honma et al. 2002; Nagel et al. 1997). The mice in all groups drank approximately 3–4 mL water per day. The total dose received by each female mouse during the period of experiment was about 0.07, 0.7, or 7 nmol. Offspring of dams who received drinking water without BPA were used as controls. Male 10-week-old offspring were infected with L. major.

In vitro culture of splenocytes. A single-cell suspension containing 2×10^6 splenocytes from each mouse was incubated in 24-well tissue-culture plates (Greiner, Nurtingen, Germany) in 1 mL RPMI 1640 medium (Nissui Pharmaceutical Co., Tokyo, Japan) supplemented with 10% FCS (Biocell Laboratories), penicillin (100 IU/mL), and streptomycin (100 μg/mL) (Gibco BRL) at 37°C in a humidified atmosphere of 5% CO$_2$ and 95% air. Cells were stimulated with L. major antigen (3 μg/mL) during the cultivation. Culture supernatants were collected 48 hr later and stored frozen until used.

Cytokine analysis. Concentrations of IL-4, IL-10, IL-13, and IFN-γ in culture supernatants were determined using CBA kits according to the manufacturer’s instructions.

Flow cytometric analysis. Single-cell suspensions containing 1×10^6 splenocytes were stained with PE-conjugated anti-CD4 mAb and FITC-conjugated anti-CD25 mAb. The cells were washed, then analyzed using fluorescence-activated cell sorting (FACS) with a FACSCalibur flow cytometer (BD Biosciences) with CellQuest software (BD Biosciences).

Figure 1. Effects of exposure to BPA in adult male BALB/c (A) and C57BL/6 (B) mice on footpad swelling after infection with L. major. Values represent mean ± SE ($n = 3–4$).

* $p < 0.05$ and ** $p < 0.01$ compared with the nonexposed control group.

Figure 2. Effects of exposure to BPA in adult male BALB/c mice on IL-4 (A), IL-10 (B), IL-13 (C), and IFN-γ (D) cytokine production after infection with L. major. Values represent mean ± SE ($n = 3–4$).

* $p < 0.05$ and ** $p < 0.01$ compared with the nonexposed control group.

Table 1. Effects of pre- and postnatal exposure to BPA on immunity

BPA administration (μmol)	IL-4 (pg/mL)	IL-10 (pg/mL)	IL-13 (pg/mL)	IFN-γ (pg/mL)
0	1,500	900	500	1,000
0.625	2,000	1,500	1,000	2,000
1.25	2,500	2,000	1,500	3,000
2.5	3,000	2,500	2,000	4,000
5	3,500	3,000	2,500	5,000

Table 2. Results are presented as the mean ± SE. The statistical significance of the values was evaluate using Student’s t-test. The significance was assessed at the $p < 0.05$ level of confidence.
The administration of BPA resulted in an increase in the production of IL-4 by L. major antigen–stimulated splenocytes from L. major–infected BALB/c mice at week 8 in a dose-dependent manner. IL-4 levels were significantly higher in mice treated with 2.5 and 5 μmol of BPA than in untreated control mice. In addition, augmented production of IL-10 and IL-13 was observed in mice exposed to 5 μmol of BPA. However, no significant differences in levels of IFN-γ were observed between the untreated and BPA-treated groups (Figure 2). No significant differences in levels of production of TH1/TH2 cytokines were observed between the untreated and BPA-treated groups (Figure 2). No significant differences in levels of production of TH1/TH2 cytokines were observed between the untreated and BPA-treated C57BL/6 mice (data not shown).

Change in the percentage of CD4⁺CD25⁺ T cell in adult male mice. The percentages of CD4⁺CD25⁺ cells among CD4⁺ T cells decreased significantly 1 week after treatment with 5 μmol of BPA in both BALB/c and C57BL/6 mice. Eight weeks after L. major infection, increased percentages of CD4⁺CD25⁺ cells were found in nonexposed susceptible BALB/c but not in resistant C57BL/6 mice. The percentages of CD4⁺CD25⁺ cells were significantly lower in BALB/c mice exposed to BPA at 2.5 and 5 μmol than in nonexposed mice. In contrast, no significant differences were seen between BPA-treated and nontreated C57BL/6 mice (Figure 3).

Effects of prenatal exposure to BPA on footpad swelling and production of IL-4 and IFN-γ in L. major–infected male offspring. Female BALB/c mice were given drinking water containing 1, 10, or 100 nM BPA for 2 weeks. They were then mated with male mice and given BPA-containing drinking water for another week. Male offspring were challenged with 5 × 10⁶ stationary-phase promastigotes of L. major in the hind footpad at week 10 after birth. The footpad swelling increased rapidly in the nonexposed as well as all the BPA-exposed groups (Figure 4A). Offspring of mice exposed to 100 nM BPA developed significantly larger swelling than controls at weeks 6 and 8 after infection. Eight weeks after infection, footpad swelling was 1.50-fold larger in offspring born to dams exposed to 100 nM BPA than in controls.

Production of IL-4 by splenocytes was significantly increased in offspring from dams exposed to 10 and 100 nM BPA but not in those born to 1 nM BPA-treated females compared with the nonexposed control mice. Similar results were observed in IFN-γ production. Mice showing increased footpad swelling demonstrated increased production of both Th1 and Th2 cytokines (Figure 4B,C).

Change in the percentage of CD4⁺CD25⁺ T cell in male mice exposed prenatally to BPA. Before infection, a dose-dependent decrease in the percentages of CD4⁺CD25⁺ cells among CD4⁺ T cells was observed in offspring of dams exposed to BPA. The percentages of CD4⁺CD25⁺ cells increased significantly after infection with L. major. The difference in the percentage of CD4⁺CD25⁺ cells became larger between offspring born to dams exposed to BPA and nonexposed mice (Figure 5).

Discussion

In the present article, we clearly demonstrate the effects of exposure to BPA on immune responses using mice infected with L. major. Mice exposed to BPA prenatally or in adulthood showed a dose-dependent increase in footpad swelling after being infected with L. major. BPA promoted the production of IL-4 and other cytokines in each case. Similar results were seen in adult mice infected with a nematode, T. spiralis (Tian et al. 2003). Especially, a smaller amount of BPA could affect the immune responses of the next generation. Promotion of cytokine production was associated with decreases in CD4⁺CD25⁺ Treg cells, indicating that BPA exerted its effects by reducing the number of Treg cells.

Exposure to BPA by subcutaneous injection in adulthood significantly promoted antigen-stimulated production of IL-4, IL-10, and IL-13 in Th2-skewed BALB/c mice infected with L. major. However, oral administration with BPA resulted in an insignificant increase of Th2 cytokine production and footpad swelling after infection with L. major (data not shown). Subcutaneous injection in the leg with BPA more effectively altered immune responses after L. major infection in the footpad than did oral administration.

BPA exposure comes from multiple sources. Although oral delivery appears to be most relevant for extrapolation to humans, other delivery routes may reveal effects of BPA (Richter et al. 2007). BPA has been reported to leach from hemodialyzers into the serum (Haishima et al. 2001). The concentration of BPA was much higher in sera of dialysis patients than in those of healthy subjects (Murakami et al. 2007). Our observation
EDCs, such as tributyltin and related cytokine production.

(A) Footpad swelling *p < 0.05 and **p < 0.01 compared with the control group.

Effects of prenatal exposure to BPA on the immune system in embryos or fetuses have not been elucidated. BPA can leak from the placenta and accumulate in the fetus (Miyakoda et al. 1999; Takahashi and Oishi 2000; Zalko et al. 2003). Additionally, there is increasing evidence that the development of the fetal immune system is regulated by the maternal immune system (Warner 2004). BPA influences the immune responses in adult mice; it is therefore possible that maternal exposure to BPA may affect the immune function of the next generation. In this study, we investigated whether exposure to low doses of BPA during the early periods of immune development could induce immunotoxic effects. We showed that prenatal exposure to BPA increased the production of a TH1 cytokine, IFN-γ, and a TH2 cytokine, IL-4, after the offspring developed, suggesting that prenatal exposure to BPA can induce persistent immunologic effects lasting into adulthood. These results are consistent with a previous report that fetal exposure to BPA augmented TH1 and TH2 immune responses (Yoshino et al. 2004). Although prenatal exposure to BPA led to increased IFN-γ production, these offspring failed to control disease progression following challenge with L. major. This may be due to the antagonistic effects of IL-4. The higher IL-4 production inhibited the protective role of IFN-γ in the prenatally exposed mice. The present study showed that exposure to BPA promoted the production of TH2 cytokines only in adult mice, but both TH1 and TH2 cytokines in mice exposed prenatally, although percentages of CD4+CD25+ cells decreased in either case. A possible explanation is that BPA might directly act on TH2 cells to promote cytokine production in adult mice as demonstrated in vitro. This together with the decrease in Treg cells promoted the production of TH2 cytokines alone. In contrast, not enough BPA existed in prenatally exposed mice to promote the production of TH2 cytokines alone. Further study is necessary to clarify this mechanism.

In recent years, attention has focused on the low-dose effects of EDCs. Xenobiotics even at low levels were reported to exert estrogenic activity to affect the endocrine system (von Saal and Hughes 2005). Our results showed that BPA at 2.5 and 5 μmol promoted TH2 cytokine production and decreased the percentages of CD4+CD25+ cells in adult mice. Similar effects were induced in offspring of dams with significantly lower doses of BPA, showing that the immune system in developing mice is affected by lower doses of BPA than that in adult mice. Prenatal exposure to EDCs in laboratory animals may cause more severe effects on the immune system than exposure during gestation.
Therefore, peripheral CD4⁺CD25⁺ cells induction is low and only transient in C57BL/6 (et al. 2005; Skapenko et al. 2005). IL-4 production decreased numbers of CD4⁺CD25⁺ T cells in normal rodents cytokines in TH1 and T H2 cells (Xu et al. 2003), decreasing numbers of CD4⁺CD25⁺ cells before infection did not result in the activated T cells. The decrease of CD4⁺CD25⁺ cells was induced by IL-4 (Pace et al. 2005). IL-4 modulation of CD4⁺CD25⁺ T cells in mice. The course of infection with Leishmania major and the resulting Th2 cell maturation increasing progressive disease in BALB/c mice are subject to the control of regulatory CD4⁺CD25⁺ T cells. J Immunol 169:3233–3241. Bommel H, Li-Weber M, Serfling E, Duschl A. 2000. The environmental cytokine pyrroline induces the production of IL-4. J Allergy Clin Immunol 105:796–802. Desi-Fulgheri F, Porrini S, Farabollini F. 2002. Effects of perinatal exposure to bisphenol A on play behavior of female and male juvenile rats. Environ Health Perspect 110(suppl 1):403–407. Dieckmann D, Plattner H, Dettwiler S, Schuler G. 2005. Activated CD4⁺CD25⁺ T cells suppress antigen-specific CD4⁺ and CD8⁺ T cells but induce a suppressive phenotype in CD4⁺ T cells. Immunology 115:305–314. Farabollini F, Porrini S, Della Seta D, Bianchi F, Desi-Fulgheri F. 2002. Effects of perinatal exposure to bisphenol A on socio-sexual behavior of female and male rats. Environ Health Perspect 110(suppl 1):399–414. Hashima Y, Hayashi Y, Yamagi T, Nakamura A. 2001. Elution of bisphenol-A from hemodialysis consisting of polycarbonate and polysulphone resins. J Biomater Res 65:209–216. Hennekens CH, Reichen-Neumann KZ. 2001. The occurrence of xenoestrogens in the Elbe River and the North Sea. Chemosphere 45:245–250. Herath CB, Jin W, Watanabe G, Arai K, Suzuki AK, Taya K. 2004. Adverse effects of environmental toxicants, oestrogen and bisphenol A, on male reproductive functions in rats. Reprod Toxicol 18:331–337. Homma S, Suzuki A, Buchman DL, Katsu Y, Watanabe H, Iuchi T. 2002. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol 16:117–122. Ikeuchi Y, Tsutsui O, Takai Y, Kamei Y, Taketani Y. 2002. Determination of bisphenol A and metabolites concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17:2839–2841. Iwata M, Ishiya E, Kagauchi H, Miyaura C. 2004. The endocrine disrupting monophenol and oestrogenic act directly effects on T cells to suppress Th1 development and enhance Th2 development. Immunol Lett 94:135–139. Katoh T, Uchikawa R, Yamada M, Arizono N, Oikawa S, Kawanishi S, et al. 2004. Environmental pollutant tributyltin promotes Th2 polarization and exacerbates airway inflammation. Eur J Immunol 34:1312–1321. Launon P, Swihart KG, Milon G, Louis JA. 1997. Early production of IL-4 in susceptible mice infected with Leishmania major rapidly induces IL-12 unresponsiveness. J Immunol 159:3317–3324. Matoby KJ, Powrie F. 2001. Regulatory T cells in the control of immune pathology. Nat Immunol 2:816–822. Matsutomo A, Kunugita N, Kitagawa K, Isse T, Oyama T, Fourlen GM, et al. 2003. Bisphenol A levels in human urine. Environ Health Perspect 111:101–104. Miyakoda H, Tabata M, Onodera S, Takeda K. 1999. Passage of bisphenol A into the fetus of the pregnant rat. J Health Sci 45:318–323. Moriyama K, Tagami T, Akazumi T, Utsui T, Saio M, Kamatomo N, et al. 2002. Thyroid hormone action is disrupted by bisphenol A as a antagonist. J Clin Endocrinol Metab 87:5185–5190. Murakami K, Dhar A, Hiby M, Shoji Y, Kunisaki M, et al. 2007. Accumulation of bisphenol A in hemodialysis patients. Blood Purif 25:290–294. Nagel SC, vom Saal FS, Thayer KA, Dhar MG, Boecker M, Welshons WV. 1997. Relative binding affinity-serum modified access (RBA-2MA) assessing the relative in vivo bioactivity of the xenoestrogens bisphenol A and oestriol. Environ Health Perspect 105:70–76. Pace P, Ploil C, Doria G. 2005. IL-4 modulation of CD4⁺CD25⁺ T regulatory cell-mediated suppression. J Immunol 174:7656–7653. Ramos JG, Varayoud J, Kass L, Rodriguez H, Costabel L, Munoz-De-Toro M, et al. 2003. Bisphenol A induces both transient and permanent histological alterations of the hypothalamus-pituitary-gonadal axis in prematurely exposed male rats. Endocrinology 144:3206–3215. Richer CA, Birnbaum LS, Farabollini F, Nebovold RR, Rubin BS, Talness CE, et al. 2007. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. 2001. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 109:675–680. Sawai C, Anderson K, Walzer-Kuntz D. 2003. Effect of bisphenol A on murine immune function: modulation of interferon gamma, IgG2a, and disease symptoms in NZB × NZW F1 mice. Environ Health Perspect 111:1883–1887. Schonfelder G, Witttoft W, Hopp H, Talness CE, Paul M, Chahoud I. 2002. Parent bisphenol A accumulation in the human maternal-fetal–placental unit. Environ Health Perspect 110:A703–A707. Segura JJ, Jimenez-Rubio A, Pulgar O, Oles N, Guerrero JM, Calvo JR. 1999. In vitro effect of the resin component bisphenol A on substrate adherence capacity of macrophages. J Endocrinol 159:341–344. Shevach EM. 2002. CD4⁺CD25⁺ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400. Shin HS, Park CH, Park SJ, Pyo H. 2001. Sensitive determination of bisphenol A in environmental water by gas chromatography with nitrogen-phosphorus detection after cyanomethylation. J Chromatogr A 912:119–125. Skapenko A, Kalden JR, Lipsky PE, Schulze-Koops H. 2005. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3 expressing CD4⁺CD25⁺ regulatory T cells from CD4⁺CD25⁻ precursors. J Immunol 175:6107–6116. Stassen M, Jonuleit H, Muller C, Klein M, Richter C, Bopp T, et al. 2004. Differential regulatory capacity of CD4⁺CD25⁻ regulatory cells and preactivated CD4⁺CD25⁻ regulatory cells on development, functional activation, and proliferation of Th2 cells. J Immunol 173:267–274. Takahashi O, Oishi S. 2000. Disposition of orally administered 2,2-bis(4-hydroxyphenyl)propene (bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 108:301–305. Thompson BM, Grounds PR. 2005. Bisphenol A in canned foods in New Zealand: an exposure assessment. Food Addit Contam 22:65–72. Tian X, Takahama M, Sugane K. 2003. Bisphenol A promotes IL-4 production by Th2 cells. Int Arch Allergy Immunol 132: 240–247. Valmori D, Merla A, Souleimenan NE, Hesdorffer CS, Ayyoub M. 2005. A peripheral circulating compartment of natural naive CD4⁺ Tregs. J Clin Invest 115:1953–1962. vom Saal FS, Hughes C. 2005. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113:926–933. Warner JD. 2004. The early life origins of asthma and related allergic disorders. Arch Dis Child 89:97–102. Welshons WV, Nagel SC, vom Saal FS. 2008. Large effects from small exposure. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147(suppl 6):S56–S69.
Xu D, Liu H, Komai-Koma M, Campbell C, McSharry C, Alexander J, et al. 2003. CD4+CD25+ regulatory T cells suppress differentiation and function of Th1 and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol 170:394–399.

Yamashita U, Sugiura T, Yoshida Y, Kuroda E. 2005. Effect of endocrine disrupters on macrophage function in vitro. J UOEH 27:1–10.

Yoshino S, Yamaki K, Li X, Sai T, Yanagisawa R, Takano H, et al. 2004. Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. Immunology 112:489–495.

Yoshino S, Yamaki K, Yanagisawa R, Takano H, Hayashi H, Mari Y. 2003. Effects of bisphenol A on antigen-specific antibody production, proliferative responses of lymphoid cells, and TH1 and TH2 immune responses in mice. Br J Pharmacol 138:1271–1276.

Yurino H, Ishikawa S, Sato T, Akadegawa K, Ito T, Ueha S, et al. 2004. Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. Toxicol Sci 81:139–147.

Zalko D, Soto AM, Dolo L, Dorio C, Rathahao E, Debrauwer L, et al. 2003. Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ Health Perspect 111:309–319.