The pathogenic basidiomycete *Cryptococcus neoformans* causes serious disease in immunocompromised patients. A dominant feature of *C. neoformans* is its polysaccharide capsule, which is required for virulence. Xylose is a key component of both the major polysaccharides comprising the capsule, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), and is essential for proper capsule formation and virulence (7, 16). Xylose is also a feature of *C. neoformans* glycosylinositol phosphorylceramides (GIPCs) (9), glycosphin-golipids characteristic of fungi (4, 12). Fungal GIPCs differ fundamentally from mammalian glycosphingolipids in terms of structure, and their biosynthesis is essential for normal growth and life cycle (3, 5), suggesting they could be exploited for diagnostic (18) and therapeutic strategies (6, 17, 19). Interestingly, specific structural features are shared between the GIPCs and the polysaccharides of *C. neoformans*. The GIPC core structure has the overall sequence Man₆(GalX₃(Xyl)₂)Manα2InsPCer (9). Like the structures of both GXM and GalXM, this structure includes a branching Xylβ1,2 residue linked to the reducing mannose of the Manα1,3Manα motif. In a more extensive parallel to GalXM, the xylosylated α-mannose of the GIPC core is 1,4-linked to β-galactose.

We have recently identified a cryptococcal Xylβ1,2-transferase (Cxt1p) that acts in synthesizing both capsule polysaccharides (11). Cells in which CXT1 has been deleted (cxt1Δ: NAT [10]) show a 30% reduction in β1,2-Xyl addition to GXM and more than 90% reduction in β1,2-xylose addition to GalXM (10). In light of the structural homologies mentioned above, we tested the hypothesis that this enzyme also adds xylose to GIPCs. To do this, we compared GIPCs from a wild-type strain (JEC21) with those of the cxt1Δ mutant cells. As a control, we used a strain which bears the deletion of *UXS1*, the gene encoding UDP-GlcA decarboxylase (1, 16). This strain (uxs1Δ::ADE2) cannot synthesize the xylose donor UDP-xylose and is therefore globally deficient in the xylose modification of all glycoconjugates.

The *C. neoformans* JEC21, uxs1Δ (generously provided to the Doering laboratory by Guilhem Janbon) (16), and cxt1Δ strains (10) were grown at 30°C with rotation (200 rpm). All of these strains are closely related serotype D *MATa* strains: the cxt1Δ strain was generated directly from JEC21, and the uxs1Δ strain was made from JEC155, which is derived from a related serotype D *MATa* strain (JEC20). For lipid preparations, cells were cultured in YPD medium (1% yeast extract, 2% Bacto peptone, 2% glucose) for 3 days, collected by centrifugation (6,000 rpm; 10 min; 4°C), washed once with cold water and twice with cold 20 mM sodium azide, and frozen. The frozen cell pellet (50 to 70 g [wet weight]) was then homogenized with 6 volumes of chloroform-methanol, 1:1 (vol/vol), and solvents were evaporated. Enrichment of glycosphingolipids, recov-

![FIG. 1. HPTLC profiles of GIPCs (orcinol-stained acidic lipid fractions) from the *C. neoformans* strains indicated at the top of the lanes, along with authentic Manα2InsPCer (MIPC) standard from Aspergillus fumigatus (lane S). WT, wild-type strain JEC21. The origin is indicated by the line at the bottom of the image.]
FIG. 2. Mass spectrometry of GIPC fractions. (A and B) "ESI-MS" profiles (as [M(Na)+Na]+ salt adducts) of crude GIPC fractions from the _uxsΔ_ and _cxtΔ_ strains. (C) "ESI-MS² (m/z 1,586 →) spectrum of selected [M(Li)+Li]+ salt adduct m/z 1,586 (Hex_InspCer, corresponding to the [M(Na)+Na]+ salt adduct m/z 1,618 to 1632) in panel B. (D) "ESI-MS³ (m/z 1,586 → 921 →) spectrum originating from the same molecular species.
ery of acidic fractions containing GIPCs by ion-exchange chromatography, and purification of GIPCs by high-performance liquid chromatography were then performed as described previously (2, 18). Crude acidic fractions were analyzed by high-performance thin-layer chromatography (HPTLC) on silica gel no. 60 plates (E. Merck, Darmstadt, Germany) developed in chloroform-methanol-water (60:40:9 [vol/vol/vol], containing 0.002% [wt/vol] CaCl₂), with hexose-containing components detected by Bial’s orcinol reagent.

Figure 1 shows the HPTLC profiles of GIPCs from the wild-type, the uxs1/H9004, and the cxt1/H9004 cells. Each of the three strains exhibits a pair of bands that comigrates with a fungal Man₂/HexInsP standard; the differences in the relative distribution of the bands between monohydroxy (upper) N-acyl forms and the dihydroxy (lower) N-acyl forms may reflect strain variation. (Consistent with this idea, the distribution of Man₂/HexInsP bands in the cxt1/H9004 strain is similar to that of the bands in JEC21, its immediate parent strain [Fig. 1, lanes 3 and 1, respectively]; distribution in the uxs1Δ strain [Fig. 1, lane 2] is somewhat altered.) Significantly, the wild-type cells also express major low-mobility components (Cn-5 and Cn-6) in a darkly stained band that is completely absent from both the cxt1Δ and the uxs1Δ cells. In contrast, the dominant product in the cxt1Δ strain is a pair of higher-mobility components (Cn-4) whose migration is consistent with that of compounds that are less polar than those of the major wild-type species. The pattern in the uxs1Δ strain, the control strain completely lacking UDP-xylose, is nearly identical. While this work was in progress, Gutierrez et al. (8) reported that the major GIPC species in the uxs1/H9004 cells is a truncated compound, Man₂/HexInsP. The production of the same species in the cxt1/H9004 strain (Fig. 1) demonstrates that Cxt1p is responsible for the transfer of all xylose to cryptococcal GIPCs.

We next performed structural studies to confirm the HPTLC comigration and identities of dominant products from the uxs1Δ and cxt1Δ mutants. We first performed electrospray ion-mass spectrometry (ESI-MS) of the GIPCs from the wild-type and mutants.

Table 1. ESI-MS and ESI-MS² data for cryptococcal GIPCs

Strain and GIPC	GIP t18:0/(fa)	MW (u) M(H)	m/z [M(2Na)+Na]⁺	[M(Li)+Li]⁺	[Cer+Li]⁺	[GIP(Li)+Li]⁺
WT (JEC21)						
Cn-1 HexInsP	(h₂4:0)	1,087	1,132	1,100	706	690
	(h₂2:4:0)	1,103	1,148	1,116	706	690
Cn-5 Hex₂PenInsP	(h₂4:0)	1,705	1,750	1,718	690	706
	(h₂2:4:0)	1,721	1,766	1,734	706	690
Cn-6 Hex₂PenInsP	(h₂4:0)	1,867	1,912	1,880	690	706
	(h₂2:4:0)	1,883	1,928	1,896	706	690
uxs1Δ and cxt1Δ mutants						
Cn-1 HexInsP	(h₂4:0)	1,119	1,132	1,100	706	690
	(h₂2:4:0)	1,135	1,148	1,116	706	690
Cn-4 Hex₂InsP	(h₂4:0)	1,573	1,618	1,586	690	706
	(h₂2:4:0)	1,589	1,634	1,602	706	690

* MW, molecular weight; M(H), protonated uncharged molecular species; WT, wild type.

** FIG. 3. Fragmentation of Mano₃Mano₄Galβ6Mano₂InsPcer (Cn-4) in the modes "ESI-MS² and "ESI-MS³.*
TABLE 2. Product ions formed in low-energy ESI-MS2 and ESI-MS3 spectraa

m/z	h$_{24}$:0	h$_{24}$:0
1,586	1,602	[M(Li)$^+$Li]$^+$
1,586	1,586	[M(Li)$^+$Li-H$_2$O]$^+$
1,424	1,440	[M(Li)$^+$Hex+Li]$^+$
1,262	1,278	[M(Li)$^+$2Hex+Li]$^+$
1,230	1,246	[J(Li)$^+$Li-H$_2$O]$^+$
1,100	1,116	[M(Li)$^+$3Hex+Li]$^+$
921		C$_{5}$PO$_3$(Li)+
903		B$_{5}$PO$_3$(Li)+
835	706	C$_{5}$+Li
690	706	Y$_2$/C$_3$+Li$^+$ or [C$_3$+Li]$^+$
673	706	[Z$_2$+Li]$^+$
672		C$_{5}$+Li
665		Y$_2$/B$_{5}$+Li$^+$ or [B$_{5}$+Li]$^+$
597		Y$_2$/C$_{5}$PO$_3$(Li)+
579		Y$_2$/B$_{5}$PO$_3$(Li)+
511		Y$_2$/C$_{5}$+Li$^+$ or [Y$_2$/C$_{5}$+Li]$^+$ or [C$_{5}$+Li]$^+$
493		Y$_2$/B$_{5}$+Li$^+$ or [Z$_2$/C$_{5}$+Li]$^+$ or [Y$_2$/B$_{5}$+Li]$^+$ or [Z$_2$/C$_{5}$+Li]$^+$ or [B$_{5}$+Li]$^+$
435		Y$_2$/C$_{5}$PO$_3$(Li)+
417		Y$_2$/B$_{5}$PO$_3$(Li)+
349		C$_{5}$+Li$^+$ or any equivalent two-residue segment
331		[C$_{5}$+Li]$^+$ or any equivalent two-residue segment

a Data show m/z of product ions formed in low-energy ESI-MS2 and ESI-MS3 spectra of lithium adducts of tetraglycosylinositol phosphorylcereamide from C. neoformans GIPC (Cn-4). Base peaks are in boldface type, and fragment designations are shown as in references 2, 13, 15 and 18 and in Fig. 3.

...}

The expression of Cn-5 almost exclusively, and strain KN99, which expressed Cn-6 almost exclusively [8, 9].

The $uxs1$Δ and cxt1Δ mutant profiles are shown in Fig. 2A and B. Both profiles exhibit pairs of [M(Na$^+$Na$^+$)] salt adduct ions consistent with the HexInsPcCer (m/z 1,132, 1,148) and HexInsPcCer (m/z 1,618, 1,634) compositions, corresponding to previously characterized GIPC sequences Man$_2$InsPcCer (Cn-1) and Man$_3$Mano$_4$Gal$_b$6Man$_2$InsPcCer (Cn-4) (8). We detected traces of components with intermediate numbers of Hex residues in the mutant GIPC profiles, but no trace of xylosylated GIPC products were detected in either mutant profile. These results are summarized in Table 1.

To confirm the lack of xylose in mutant GIPC molecular species, each molecular adduct in both profiles was selected for further fragmentation by the "ESI-MSn" mode. To improve fragmentation, we treated the samples with lithium iodide, which converts GIPC molecular species to lithium salt adducts, [M(Li)$^+$Li]$^+$ (2, 13, 15, 18); this also reduces the m/z of each molecular species by 32 compared with [M(Na$^+$Na$^+$)]$^+$ (Table 1). A "ESI-MS2" spectrum acquired from the [M(Li)$^+$Li]$^+$ peak at m/z 1,586 (corresponding to the [M(Na$^+$Na$^+$)]$^+$ m/z 1,618) of the cxt1Δ mutant profile (Fig. 2C) showed the predominant glycosylinositol phosphate (GIP) fragment pair [B$_{5}$PO$_3$(Li)+][C$_{5}$PO$_3$(Li)+] (m/z 921/903, respectively) corresponding to HexInsP and other fragments from glycolipid cleavages (Fig. 3; Table 2). A ceramide ion ([Y$_2$/C$_{5}$+Li]$^+$) was observable at m/z 690 (the h$_{24}$:0/t18:0 lipofoms, not marked). An "ESI-MS3" spectrum acquired from the [C$_{5}$PO$_3$(Li)+] ion at m/z 921 (m/z 1,586 → 921 → ...) (Fig. 2D) showed that all of the glycolipid cleavages were consistent with those of a linear HexInsP primary fragment (Fig. 3; Table 2). Essentially identical spectra were acquired from the [M(Li)$^+$Li]$^+$ salt adduct at m/z 1,602 (corresponding to the [M(Na$^+$Na$^+$)]$^+$ m/z 1,634; not shown), except that the ceramide ion was observed in the MS3 spectrum at m/z 706 (the h$_{24}$:0/t18:0 lipofoms). Essentially identical results were obtained from the corresponding pair of [M(Li)$^+$Li]$^+$ salt adducts in the $uxs1$Δ strain profile (not shown).

Our data show that the lack of a single xylosyltransferase, Cxt1p, results in the complete absence of xylose from GIPCs of cryptococcal cells. This loss of xylose yields glycolipids that are indistinguishable from those formed in the $uxs1$Δ cells, where no xylose can be added to any glycan. The absence of residual xylose-containing GIPCs in the cxt1Δ mutant further indicates that no other enzyme performs the function of xylose addition during GIPC synthesis. In agreement with findings described by Gutierrez et al. (8), we observed that the lack of xylose modification of GIPC structures is accompanied by truncation of the terminal mannose residues distal to the branch.

Using in vitro assays, we have found that Cxt1p transfers xylose in β1,2 linkage to a Man$_3$Man disaccharide (11); our recent in vivo results further show that the cxt1Δ mutant is partially deficient in the transfer of Xylβ2 to both GXM and GalXM (10). Together, these data and the current studies demonstrate that Cxt1p is an unusual multiple-function xylosyltransferase that acts in three fundamental processes of C. neoformans: GXM synthesis, GalXM synthesis, and GIPC synthesis. The critical importance of the addition of xylose to cryptococcal biology and virulence (7, 16) suggests that this...
This work was partially supported by an NIH grant (R21 RR20355) to S.B.L. Studies of cryptococcal glycan synthesis in the Doering laboratory are supported by NIH R01 awards GM71007 and GM66303 to T.L.D.

J.S.K. was supported by GM F32 072341 and a William Keck Foundation postdoctoral fellowship.

We thank Hong Liu for growth of Cryptococcus neoformans and Vernon N. Reinhold for providing the MS facilities of the UNIH Center for Structural Biology (NIH/NCRR grant no. P20 RR16459) for these studies.

REFERENCES

1. Bar-Peled, M., C. L. Griffith, and T. L. Doering. 2001. Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc. Natl. Acad. Sci. USA 98:12003–12008.

2. Bennion, B., C. Park, M. Fuller, R. Lindsey, M. Momany, R. Jennemann, and S. B. Levery. 2003. Glycosphingolipids of the model fungus Aspergillus nidulans: characterization of GIPCs with oligo-s-mannose-type glycans. J. Lipid Res. 44:2073–2088.

3. Cheng, J., T.-S. Park, A. S. Fischl, and X. S. Ye. 2001. Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol. Cell. Biol. 21:6198–6209.

4. Dickson, R. C., and R. L. Lester. 1999. Yeast sphingolipids. Biochim. Biophys. Acta 1426:347–357.

5. Dickson, R. C., and R. L. Lester. 2002. Sphingolipid functions in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1583:13–25.

6. Georgopapadakou, N. H. 2000. Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase. Expert Opin. Investig. Drugs 9:1787–1796.

7. Griffith, C. L., J. S. Klutts, L. Zhang, S. B. Levery, and T. L. Doering. 2004. UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans. J. Biol. Chem. 279:51669–51676.

8. Gutierrez, A. L., L. Farage, M. N. Melo, R. S. Mohana-Borges, Y. Guerardel, B. Coddeville, J. M. Wieruszewska, L. Mendonca-Previato, and J. O. Previato. 2007. Characterization of glycoinositolphosphorylceramide structure mutant strains of Cryptococcus neoformans. Glycobiology 17:1–11C.

9. Heise, N., A. L. S. Gutierrez, K. A. Mattos, C. Jones, R. Wait, J. O. Previato, and L. Mendonca-Previato. 2002. Molecular analysis of a novel family of complex glycoinositolphosphoryl ceramide from Cryptococcus neoformans: structural differences between encapsulated and acapsular yeast forms. Glycobiology 12:409–420.

10. Klutts, J. S., and T. L. Doering. 2008. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J. Biol. Chem. 283:14327–14334.

11. Klutts, J. S., S. B. Levery, and T. L. Doering. 2007. A β-1,2-xylosyltransferase from Cryptococcus neoformans defines a new family of glycosyltransferases. J. Biol. Chem. 282:17890–17899.

12. Lester, R. L., and R. C. Dickson. 1993. Sphingolipids with inositolphosphate-containing head groups. Adv. Lipid Res. 26:253–274.

13. Levery, S. B. 2005. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol. 405:300–369.

14. Levery, S. B., M. S. Toledo, A. H. Straus, and H. K. Takahashi. 1998. Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: an immunodominant β-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37:8764–8775.

15. Levery, S. B., M. S. Toledo, A. H. Straus, and H. K. Takahashi. 2001. Comparative analysis of glycosylinositol phosphorylceramides from fungi by electrospray tandem mass spectrometry with low-energy collision-induced dissociation of Li+ adduct ions. Rapid Commun. Mass Spectrom. 15:2240–2258.

16. Moyrand, F., B. Klaproth, U. Himmelreich, F. Dromer, and G. Janbon. 2002. Isolation and characterization of capsule structure mutant strains of Cryptococcus neoformans. Mol. Microbiol. 45:837–849.

17. Nagiec, M. M., E. E. Nagiec, J. A. Baltisberger, G. B. Wells, R. L. Lester, and R. C. Dickson. 1997. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272:9898–9917.

18. Toledo, M. S., S. B. Levery, B. Bennion, L. L. Guimaraes, S. A. Castle, R. Lindsey, M. Momany, C. Park, A. H. Straus, and H. K. Takahashi. 2007. Analysis of glycosylinositol phosphorylceramides expressed by the opportunistic mycopathogen Aspergillus fumigatus. J. Biol. Chem. 282:1801–1824.

19. Zhong, W., M. W. Jeffries, and N. H. Georgopapadakou. 2000. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob. Agents Chemother. 44:651–653.