Fast First-Order Methods for Stable Principal Component Pursuit

Donald Goldfarb
Joint work with Necdet Serhat Aybat and Garud Iyengar

Columbia University

Duke Workshop on Sensing and Analysis of High-Dimensional Data
July 26-28, 2011
Overview

- Interested in fast algorithms for solving:

\[\min_{X,S \in \mathbb{R}^{m \times n}} \left\{ \|X\|_* + \xi \|S\|_1 : \|X + S - D\|_F \leq \delta \right\}, \]

for a given data matrix \(D \in \mathbb{R}^{m \times n} \) and noise parameter \(\delta \).

- Why?

Many applications requires decomposing noisy \(D \) into low-rank and sparse components:
 - Video surveillance
 - Face recognition
 - Ranking and collaborative filtering
\[\min_{X \in \mathbb{R}^{n \times n}} \left\{ \|X\|_* : X_{ij} = D_{ij}, (i, j) \in \Omega \right\} \]

- Unknown data matrix: \(D \in \mathbb{R}^{n \times n}, \text{rank}(D) = r \ll n \)
- Observations: \(D_{ij} \) for all \((i, j) \in \Omega\)
 \[|\Omega| = \mathcal{O}(n^{1.2} \log(n)) \ll n^2. \]
- With high probability, unique optimal solution \(X^* = D \)
- Applications: Netflix problem, Sensor Localization
Robust Principal Component Analysis

Principal Component Pursuit:

$$\min_{X,S \in \mathbb{R}^{n \times n}} \left\{ \|X\|_* + \xi \|\text{vec}(S)\|_1 : X + S = D \right\}$$

- Data matrix: $D \in \mathbb{R}^{n \times n}$, $D = \bar{X} + \bar{S}$
- $\text{rank}(\bar{X}) \ll n$, $\|\bar{S}\|_0 \ll n^2$
- With high probability, unique optimal solution $(X^*, S^*) = (\bar{X}, \bar{S})$
- Applications: Video surveillance, Ranking, Face recognition

N. S. Aybat, D. Goldfarb and G. Iyengar

Fast First-Order Methods for SPCP
Stable Principal Component Pursuit (SPCP)

\[
\min_{X,S \in \mathbb{R}^{n \times m}} \left\{ \|X\|_* + \xi \|S\|_1 : \|X + S - D\|_F \leq \delta \right\}
\]

- Data matrix: \(D \in \mathbb{R}^{n \times n}, D = \bar{X} + \bar{S} + \zeta\)
- \(\zeta\) i.i.d. noise matrix, \(\|\zeta\|_F \leq \delta\)
- \(\text{rank}(\bar{X}) \ll \min\{m, n\}, \|\bar{S}\|_0 \ll mn\)
- With high probability, unique optimal solution \((X^*, S^*)\)
 satisfies: \(\|X^* - \bar{X}\|_F^2 + \|S^* - \bar{S}\|_F^2 \leq Cmn\delta^2\)
- Applications: Video surveillance, Ranking, Face recognition

N. S. Aybat, D. Goldfarb and G. Iyengar

Fast First-Order Methods for SPCP
Videos with different levels of noise

15dB:

20dB:

∞dB:
Stable Principal Component Pursuit is an SDP,

\[
\begin{align*}
\min_{X,S} & \quad \|X\|_* + \xi\|S\|_1 \\
\text{s.t.} & \quad \|X + S - D\|_F \leq \delta
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
\min_{X,S,W_1,W_2} & \quad \frac{1}{2} (\text{Tr}(W_1) + \text{Tr}(W_2)) + \langle E, S_+ + S_- \rangle \\
\text{s.t.} & \quad \|X + S_+ - S_- - D\|_F \leq \delta \\
& \quad \begin{bmatrix}
W_1 & X \\
X^T & W_2
\end{bmatrix} \succeq 0 \\
& \quad S_+ \geq 0, \quad S_- \geq 0
\end{align*}
\]
Only specialized algorithm: ASALM by Tao and Yuan.

- ASALM does alternating minimizations in X, S, Z directions on the augmented Lagrangian of

$$
\min_{X \in \mathbb{R}^{m \times n}} \left\{ \|X\|_* + \xi \|S\|_1 : \ X + S + Z = D, \ \|Z\|_F \leq \delta \right\}
$$

- ASALM iterates are not feasible
- ASALM converges to an optimal solution
- Complexity of ASALM is not known

Fact: There is no specialized algorithm for SPCP with a known iteration complexity bound.

Question: Can one achieve work/iteration \propto one gradient computation with existing first-order algorithms that have low iteration complexities?
Problem: \(\min_{x \in Q} p(x) + f(x) \), where \(p, f \) are closed convex functions, \(Q \) is a closed convex set and \(\nabla f \) is \(L \)-Lipschitz continuous.

Proximal Gradient Algorithm \((x_0)\)

1: while \((k \geq 0) \) do
2: \(y_k \leftarrow \arg\min_{x \in Q} p(x) + f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{L}{2} \| x - x_k \|_2^2 \)
3: \(z_k \leftarrow \arg\min_{x \in Q} \frac{L}{2} \| x - x_0 \|_2^2 + \sum_{i=0}^{k} \frac{i+1}{2} [p(x) + f(x_i) + \langle \nabla f(x_i), x - x_i \rangle] \)
4: \(x_{k+1} \leftarrow \frac{2}{k+3} z_k + \frac{k+1}{k+3} y_k \)
5: \(k \leftarrow k + 1 \)
6: end while

Let \(x^* = \arg\min_{x \in Q} \{ p(x) + f(x) \} \). Then for all \(k \geq \sqrt{\frac{2L \| x_0 - x^* \|_2^2}{\epsilon}} \), we have \(p(y_k) + f(y_k) \leq p(x^*) + f(x^*) + \epsilon \).

(Alogous result for FISTA)

Per iteration complexity depends on the complexity of projection onto \(Q \) and computing \(\nabla f(x_k) \).
First-Order Algorithms

\[f_\mu(X) := \max \{ \langle X, U \rangle - \frac{\mu}{2} \| U \|_F^2 : \| U \|_2 \leq 1 \}, \]
\[g_\nu(S) := \max \{ \langle S, W \rangle - \frac{\nu}{2} \| W \|_F^2 : \| W \|_\infty \leq 1 \}. \]

- **Nesterov’s algorithm:**
 \[\min_{X,S} \{ f_\mu(X) + \xi g_\nu(S) : (X, S) \in \chi \} \]
 If \(\mu = \nu = \Omega(\epsilon) \), then \(\epsilon \)-optimal in \(\mathcal{O}(1/\epsilon) \) iterations

- **FISTA:**
 \[\min_{X,S} \{ f_\mu(X) + \xi \| S \|_1 : (X, S) \in \chi \} \]
 If \(\mu = \Omega(\epsilon) \), then \(\epsilon \)-optimal in \(\mathcal{O}(1/\epsilon) \) iterations

- **FALM-S algorithm with partial splitting:**
 \[\min_{X,Z,S} \{ f_\mu(X) + \xi \| S \|_1 : X = Z, (Z, S) \in \chi \} \]
 If \(\mu = \Omega(\epsilon) \), then \(\epsilon \)-optimal in \(\mathcal{O}(1/\epsilon) \) iterations

Complexity of solving subproblems?
Key Lemma:
\[\chi = \{(X, S) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} : \|X + S - D\|_F \leq \sigma\}. \]

(I) : \[\min \left\{ \|S - \tilde{S}\|_F^2 + \|X - \tilde{X}\|_F^2 : (X, S) \in \chi \right\}. \]

(II) : \[\min \left\{ \xi \|S\|_1 + \frac{\rho}{2} \|X - \tilde{X}\|_F^2 : (X, S) \in \chi \right\}. \]

Optimal solutions of (I) and (II) can be computed in \(O(mn) \) and \(O(mn \log(mn)) \), respectively.

Solutions if (I) or (II) are needed depending on whether Nesterov, FISTA or FALM-S is used.
Euclidean Projection onto χ in $O(mn)$:

Let $(X^*, S^*) = \arg\min_{X, S} \left\{ \|S - \tilde{S}\|^2_F + \|X - \tilde{X}\|^2_F : (X, S) \in \chi \right\}$

When $\delta > 0$,

$$X^* = \left(\frac{\theta^*}{1 + 2\theta^*} \right) (D - \tilde{S}) + \left(\frac{1 + \theta^*}{1 + 2\theta^*} \right) \tilde{X},$$

$$S^* = \left(\frac{\theta^*}{1 + 2\theta^*} \right) (D - \tilde{X}) + \left(\frac{1 + \theta^*}{1 + 2\theta^*} \right) \tilde{S},$$

$$\theta^* = \max \left\{ 0, \frac{1}{2} \left(\frac{\|\tilde{X} + \tilde{S} - D\|^F}{\delta} - 1 \right) \right\}.$$

When $\delta = 0$,

$$X^* = \frac{1}{2} \left(D - \tilde{S} \right) + \frac{1}{2} \tilde{X} \text{ and } S^* = \frac{1}{2} \left(D - \tilde{X} \right) + \frac{1}{2} \tilde{S}.$$
\(\ell_1 \)-Euclidean Projection onto \(\chi \) in \(\mathcal{O}(mn \log(mn)) \):

Let \((X^*, S^*) = \arg\min_{X,S} \left\{ \xi \|S\|_1 + \frac{\rho}{2} \|X - \tilde{X}\|_F^2 : (X, S) \in \chi \right\} \)

When \(\delta > 0 \),

\[
S^* = \text{sign} \left(D - \tilde{X} \right) \odot \max \left\{ |D - \tilde{X}| - \xi \frac{(\rho + \theta^*)}{\rho \theta^*} E, \ 0 \right\},
\]

\[
X^* = \frac{\theta^*}{\rho + \theta^*} (D - S^*) + \frac{\rho}{\rho + \theta^*} \tilde{X},
\]

\[
\theta^* = \begin{cases}
0, & \|D - \tilde{X}\|_F \leq \delta; \\
\phi^{-1}(\delta), & \text{otherwise}.
\end{cases}
\]

where \(\phi(\theta) := \| \min \left\{ \frac{\xi}{\theta} E, \frac{\rho}{\rho + \theta} |D - \tilde{X}| \right\} \|_F \) and \(\text{dom}(\phi) = \mathbb{R}^{++} \).

When \(\delta = 0 \),

\[
S^* = \text{sign} \left(D - q(\tilde{X}) \right) \odot \max \left\{ |D - q(\tilde{X})| - \frac{\xi}{\rho} E, \ 0 \right\},
\]

\[
X^* = D - S^*.
\]
Non-Smooth Augmented Lagrangian (NSA) algorithm

Split X and apply alt. direction augmented Lagrangian method to

Equivalent problem:

$$\min_{X,S,Z} \{ \|X\|_* + \xi \|S\|_1 : \ X = Z, \ (Z, S) \in \chi \}$$

NSA Algorithm (X_0, S_0)

1: while ($k \geq 0$) do
2: \(X_{k+1} \leftarrow \min_X \{ \|X\|_* + \langle Y_k, X - Z_k \rangle + \frac{\rho_k}{2} \|X - Z_k\|_F^2 \} \)
3: \((Z_{k+1}, S_{k+1}) \leftarrow \arg\min_{Z,S} \{ \xi \|S\|_1 + \langle Y_k, X_{k+1} - Z \rangle + \frac{\rho_k}{2} \|X_{k+1} - Z\|_F^2 : (Z, S) \in \chi \} \)
4: \(Y_{k+1} \leftarrow Y_k + \rho_k (X_{k+1} - Z_{k+1}) \)
5: Choose ρ_{k+1} such that $\rho_{k+1} \geq \rho_k$
6: \(k \leftarrow k + 1 \)
7: end while
Theorem: Let $\{X_k, Z_k, S_k, Y_k\}_{k \in \mathbb{Z}_+}$ be the sequence produced by Algorithm NSA and let (X^*, S^*) be a solution to SPCP.

(i) If $\sum_{k \in \mathbb{Z}_+} \frac{1}{\rho_k} = \infty$, then $X_k \rightarrow X^*$, $Z_k \rightarrow X^*$, $S_k \rightarrow S^*$.

(ii) If $\sum_{k \in \mathbb{Z}_+} \frac{1}{\rho_k^2} = \infty$ and $\|D - X^*\|_F \neq \delta$, then $Y_k \rightarrow Y^*$ (optimal Lagrangian multiplier).
Experimental Setup

Data Matrix: \(D = \tilde{X} + \tilde{S} + \zeta, \)

(i) \(\tilde{X} = U V^T, \) where \(U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{n \times r} \)
\(U_{ij} \sim N(0, 1), V_{ij} \sim N(0, 1) \) for all \(i, j \)

(ii) \(\Lambda \subset \{(i, j) : i, j = 1, \ldots, n\}, |\Lambda| = p \) chosen randomly

(iii) \(\tilde{S}_{ij} \sim U[-100, 100] \) for all \((i, j) \in \Lambda \)

(iv) \(\zeta_{ij} \sim \sigma N(0, 1) \) for all \(i, j \)

Create 10 random \(D \in \mathbb{R}^{n \times n} \) s.t. \(r = c_r n, p = c_p n^2. \)

- \(n \in \{500, 1000, 1500, 2000\} \)
- \(c_r \in \{0.05, 0.1\} \)
- \(c_p \in \{0.05, 0.1\} \)
- \(\sigma = 10^{-3} \)
Table: Average $\#$ svd/cpu(sec) for decomposing $D = \bar{X} + \bar{S} + \zeta$

n	$c_r = 0.05$	$c_r = 0.1$	$c_r = 0.05$	$c_r = 0.1$
	$c_p = 0.05$	$c_p = 0.1$	$c_p = 0.05$	$c_p = 0.1$
	$\#$ svd/cpu	$\#$ svd/cpu	$\#$ svd/cpu	$\#$ svd/cpu
500	11/5.7	11.9/6.4	12.2/6.5	13/6.9
1000	11.8/21.7	12.7/24	13/31.4	14.1/36.1
1500	12.8/54.6	12.9/52.2	14/95.1	15/100.4
2000	12.9/115.7	13/114.3	14/206.6	15/223.9

The solution accuracy:

$$\frac{\|X^{sol} - \bar{X}\|_F}{\|\bar{X}\|_F} = 5 \times 10^{-5}, \quad \frac{\|S^{sol} - \bar{S}\|_F}{\|\bar{S}\|_F} = 2 \times 10^{-5}$$
Figure: $D \in \mathbb{R}^{n \times n}$, $n = 1500$, $\sigma = 1 \times 10^{-3}$, $SNR \approx 80dB$
Figure: $D \in \mathbb{R}^{n \times n}$, $n = 1500$, $\sigma = 1 \times 10^{-1}$, $SNR \approx 40dB$
Numerical Results: NSA vs ASALM

Average # svd for decomposing $D = \bar{X} + \bar{S} + \zeta$, $n = 1500$, $\sigma = 1 \times 10^{-3}$, $SNR \approx 80 dB$
Average CPU (sec) for decomposing $D = \tilde{X} + \tilde{S} + \zeta$, $n = 1500$, $\sigma = 1 \times 10^{-3}$, $SNR \approx 80dB$
Video Surveillance Example

T: number of frames
$N \equiv m \times n$ is the frame resolution

To detect moving objects

i. Form i-th column of $D \in \mathbb{R}^{N \times T}$ by stacking the columns of i-th frame.

ii. Solve $\min \{ \| X \|_* + \frac{1}{\sqrt{\max\{N, T\}}} \| S \|_1 : \| X + S - D \|_F \leq \delta \}$

Suppose there is no noise, i.e. $\delta = 0$, $\bar{X} + \bar{S} = D$. Then

i. i-th column of \bar{S} is the moving object in the i-th frame

ii. i-th column of \bar{X} is the background in the i-th frame

Note that \bar{X} is a low-rank matrix.
Noiseless Video

\[D(t) : \]

\[X(t) : \]

\[S(t) : \]
Videos with Different Noise Levels

15dB:

20dB:

∞dB:
References

- N. S. Aybat, D. Goldfarb, G. Iyengar, Fast First-Order Methods for Stable Principal Component Pursuit
 http://arxiv.org/abs/1105.2126

Thank You