Direct Limits on the B_s^0 Oscillation Frequency

V.M. Abazov, B. Abbott, M. Abolins, B.S. Acharya, M. Adams, T. Adams, M. Agelou, J.-L. Agram, S. Ahn, G.D. Alexeev, G. Alkhazov, A. Alton, G. Alverson, G.A. Alves, M. Anastassioaie, T. Andeen, S. Anderson, B. Andriušė, M.S. Anzelc, Y. Arnold, M. Aro, A. Askew, B. Åsman, A.C.S. Assis Jesus, O. Atamanov, A. Autermann, C. Avila, C. Ay, F. Badaud, A. Baden, L. Bagby, B. Baldin, D.V. Bandurin, P. Banerjee, S. Banerjee, E. Barberis, P. Bargassa, P. Baringer, C. Barnes, J. Barreto, J.F. Bartlett, U. Bassler, D. Bauer, A. Bean, M. Begalli, M. Begel, J. Belanger-Champagne, A. Bellavance, J.A. Benitez, B.S. Beri, R. Bernhard, L. Berntson, I. Bertram, M. Besançon, R. Beuselinck, V.P. Bhat, V. Bhatnagar, M. Biscarat, K.M. Black, I. Blackler, G. Blazy, F. Blekman, S. Blessing, D. Bloch, K. Bloom, U. Blumenschein, A. Boehler, M.A. Bolton, F. Borcherding, G. Borissov, K. Bos, T. Bose, A. Brandt, R. Brock, G. Brooijmans, J. Bross, D. Brown, B. Buchholz, M. Buehler, D. Buescher, S. Burdin, S. Burke, T.H. Burnett, E. Busato, J.M. Butler, D. Calvet, J. Cammin, S. Caron, W. Carvalho, B.C.K. Casey, N.M. Cason, H. Castilla-Valdez, S. Chakrabarti, D. Chakraborty, K.M. Chan, A. Chandra, D. Chapin, F. Charles, E. Cheu, F. Chevallier, D.K. Cho, S. Choi, B. Choudhary, L. Christofek, D. Claes, B. Clément, C. Clément, Y. Coadou, M. Cooke, W.E. Cooper, D. Copps, M. Corcoran, M.C. Cousinou, I. Cox, S. Crépé-Renaudin, D. Cutts, M. Čwik, H. da Motta, A. Das, M. Das, B. Davies, G.A. Davis, K. De Jong, S. de Jong, E. De La Cruz-Burelo, C. De Oliveira Martins, J.D. Degenhardt, F. Deliot, M. Demarteau, R. Demina, P. Demine, D. Denisov, S.P. Denisov, S. Desai, H.T. Diehl, M. Diesburg, M. Doidge, A. Domínguez, H. Dong, L.V. Dukdo, R. Duflot, S.R. Dugad, A. Duperrin, J. Dyer, B. Dyshkant, M. Eads, D. Edmunds, T. Edwards, J. Ellison, J. Elmsheuser, V.D. Elvira, S. Enò, P. Ermolov, J. Estrada, P.A. Evdokimov, V.N. Evdokimov, S.N. Fatakia, L. Feligioni, A.V. Ferapontov, T. Ferbel, F. Fiedler, F. Filthaut, W. Fisher, H.E. Fisk, I. Fleck, M. Ford, E. Fortner, H. Fox, S. Fu, F. Fuss, T. Gadfort, C.F. Galaev, E. Gallais, B. Gauss, C. Garcia, J. García-Bellido, J. Gardner, V. Gavrilov, A. Gay, P. Gay, D. Gelé, R. Gelhaus, C.E. Gerber, Y. Geshtiein, D. Giller, G. Ginther, N. Gollub, B. Gómez, K. Gounder, A. Goussiou, P.D. Grannis, H. Greenlee, Z.D. Greenwood, E.M. Gregores, G. Grenier, Ph. Gris, J.-F. Grivaz, S. Grünendahl, M.W. Grünewald, F. Guo, J. Guo, G. Gutierrez, P. Gutierrez, H. Haas, N.J. Hadley, P. Haefner, S. Hagopian, J. Haley, I. Hall, R.E. Hall, L. Han, K. Hanagaki, K. Harder, A. Harel, R. Harrington, J.M. Hauptman, R. Hauser, J. Hays, T. Hebbeker, D. Hedin, J.G. Hegeman, J.M. Heimüller, A.P. Heinsohn, U. Heintz, C. Heneghan, G. Heskel, M.D. Hildreth, R. Hirokys, S.D. Hobbs, B. Hoeneisen, M.H. Höhfeld, S.J. Hong, R. Hooper, P. Houben, Y. Hu, V. Hynek, I. Iashvili, J.-L. Agram, J.-F. Ito, S. Jabeb, M. Jafré, S. Jain, V. Jain, K. Jakobs, J. Jarvis, A. Jenkins, R. Jesik, K. Johns, C. Johnsen, M. Johnson, A. Jonckheere, P. Jonsson, A. Juste, D. Käfer, S. Kahn, E. Kajfasz, A.M. Kalinin, J.M. Kalk, J.R. Kalk, S. Kappler, D. Karmanov, J. Kasper, I. Katsanos, D. Kau, R. Kaur, 27 K. Kehoe, S. Kermiche, S. Kesisoglou, A. Khanov, A. Kharchilava, Y.M. Kharzheev, D. Khatidze, H. Kim, T.J. Kim, M.H. Kirby, B. Klima, J.M. Kohli, J.P. Konrath, M. Kopal, V.M. Korablëv, J. Korchet, B. Kothari, J. Koubarovsky, A.V. Kozelov, J. Kozmiński, A. Kryemadhi, K. Krzywyński, T. Kuhl, A. Kumar, S. Kunori, A. Kupco, T. Kurca, J. Kvitá, S. Lager, S. Lammers, G. Landsberg, J. Lazofores, A. Le Bihan, P. Lebrun, W.M. Lee, A. Leflat, F. Lehner, C. Leonidopoulos, V. Lesne, J. Leveque, P. Lewis, A.J. Li, Q.Z. Li, J.G.R. Lima, D. Lincoln, J. Linneweber, V.V. Lipaeva, R. Lipton, Z. Liu, L. Lobo, A. Lobodenko, M. Łokajíček, A. Louinis, P. Love, H.J. Lubatti, M. Lynker, A.L. Lyon, A.K.A. Maciel, J. Madaras, P. Mättig, C. Magass, A. Magerkurth, A.-M. Magnan, N. Makovec, P.K. Mal, H.B. Malbouisson, S. Malik, V.L. Malyshev, H.S. Mao, Y. Maravin, M. Martens, S. Matsuoka, E.K. Mattingly, R. McCarthy, R. McCloskey, D. Meder, A. Mehntichouk, A. Mendes, L. Mendoza, M. Merkin, K.W. Merritt, A. Meyer, J. Meyer, M. Michaut, H. Miettinen, T. Millet, J. Mitrevski, J. Molina, N.K. Mondal, J. Monk, R.W. Moore, M. Moulik, G.S. Muanza, M. Mulders, M. Mulhearn, L. Mundim, Y.D. Mutaf, E. Nagy,
Name	Institution
M. Naimuddin, L. Sonnenschein, N.A. Naumann, H.A. Neal, J.P. Negret, S. Nelson, P. Neustroev, C. Noedling, A. Nomerotski, S.F. Novaes, T. Nunnemann, V. O'Dell, D.C. O'Neil, G. Obrant, V. Oguri, N. Oliveira, O. Otece, G.J. Otero y Garzón, M. Owen, P. Padley, N. Parashar, S.-J. Park, S.K. Park, J. Parsons, R. Partridge, N. Parua, A. Patwa, G. Pawloski, P.M. Perea, E. Perez, K. Peters, P. Pétreon, R. Piegza, M.-A. Pleier, P.L.M. Pedrosta-Lerma, V.M. Podstavkov, Y. Pogorelov, M.-E. Pol, A. Pompos, B.G. Pope, A.V. Popov, W.L. Prado da Silva, H.B. Prosper, S. Protopenescu, J. Qian, A. Quadt, B. Quinn, K.J. Rani, K. Ranjan, P.A. Rapidis, P.N. Ratoff, P. Renkel, S. Reucroft, M. Rijssenbeek, J. Ripp-Baudot, F. Rizatdinova, S. Robinson, R.F. Rodrigues, C. Royon, P. Rubinov, R. Ruchti, V.I. Rud, G. Sajot, A. Sánchez-Hernández, M.P. Sanders, A. Santoro, G. Savage, L. Sawyer, T. Scanlon, D. Schaile, R.D. Schamberger, Y. Scheglov, H. Schellman, P. Schieferdecker, C. Schmitt, C. Schwanenberger, A. Schwartzman, R. Schwienhorst, S. Sengupta, H. Schellman, C. Noeding, M.P. Sanders, University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France,	
We report results of a study of the B_0^s oscillation frequency using a large sample of B_0^s semileptonic decays corresponding to approximately 1 fb$^{-1}$ of integrated luminosity collected by the DØ experiment at the Fermilab Tevatron Collider in 2002–2006. The amplitude method gives a lower limit on the B_0^s oscillation frequency at 14.8 ps$^{-1}$ at the 95% C.L. At $\Delta m_s = 19$ ps$^{-1}$, the amplitude
deviates from the hypothesis $A = 0$ ($A = 1$) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, Δm_s, gives a most probable value of 19 ps^{-1} and a range of $17 < \Delta m_s < 21 \text{ ps}^{-1}$ at the 90% C.L., assuming Gaussian uncertainties. This is the first direct two-sided bound measured by a single experiment. If Δm_s lies above 22 ps^{-1}, then the probability that it would produce a likelihood minimum similar to the one observed in the interval $16 < \Delta m_s < 22 \text{ ps}^{-1}$ is $(5.0 \pm 0.3 \%)$.

PACS numbers: 12.15.Ff, 12.15.Hh, 13.20.He, 14.40.Nd

Measurements of flavor oscillations in the B^0_d and B^0_s systems provide important constraints on the CKM unitarity triangle and the source of CP violation in the standard model (SM) 1). The phenomenon of B^0_s oscillations is well established 2), with a precisely measured oscillation frequency Δm_d. In the SM, this parameter is proportional to the combination $|V_{tb}V_{td}|^2$ of CKM matrix elements. Since the matrix element V_{ts} is larger than V_{td}, the expected frequency Δm_s is higher. As a result, B^0_s oscillations have not been observed by any previous experiment and the current 95% C.L. lower limit on Δm_s is 16.6 ps$^{-1}$ 3). A measurement of Δm_s would yield the ratio $|V_{ts}/V_{td}|$, which has a smaller uncertainty than $|V_{td}|$ alone due to the cancellation of certain theory uncertainties. If the SM is correct, and if current limits on B^0_s oscillations are not included, then global fits to the unitarity triangle favor $\Delta m_s = 20.9^{+4.5}_{-4.2} \text{ ps}^{-1}$ 4) or $\Delta m_s = 21.2 \pm 3.2 \text{ ps}^{-1}$ 5).

In this Letter, we present a study of B^0_d-B^0_s oscillations carried out using semileptonic $B^0 \to \mu^+ \mu^- X$ decays 6) collected by the DØ experiment at Fermilab in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. In the B^0_d-B^0_s system there are two mass eigenstates, the heavier (lighter) one having mass M_H (M_L) and decay width Γ_H (Γ_L). Denoting $\Delta m_s = M_H - M_L$, $\Delta \Gamma_s = \Gamma_L - \Gamma_H$, $\Gamma_s = (\Gamma_L + \Gamma_H)/2$, the time-dependent probability P that an initial B^0_s decays at time t as $B^0_s \to \mu^+ X$ (P_{norm}) or $B^0_s \to \mu^- X$ (P_{pseud}) is given by $P_{\text{norm/pseud}} = e^{-\Gamma_s t} (1 \pm \cos \Delta m_s t)/2$, assuming that $\Delta \Gamma_s/\Gamma_s$ is small and neglecting CP violation. Flavor tagging a b (\bar{b}) on the opposite side to the signal meson establishes the signal meson as a B^0_s (\bar{B}^0_s) at time $t = 0$.

The DØ detector is described in detail elsewhere 6). Charged particles are reconstructed using the central tracking system which consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2-T superconducting solenoidal magnet. Electrons are identified by the preshower and liquid-argon/uranium calorimeter. Muons are identified by the muon system which consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8-T iron toroids, followed by two similar layers after the toroids 7).

No explicit trigger requirement was made, although most of the sample was collected with single muon triggers. The decay chain $B^0_s \to \mu^+ D^- \pi^-$, $D^- \to \phi \pi^-$, $\phi \to K^+ K^-$ was then reconstructed. The charged tracks were required to have signals in both the CFT and SMT. Muons were required to have transverse momentum $p_T(\mu^+) > 2 \text{ GeV}/c$ and momentum $p(\mu^+) > 3 \text{ GeV}/c$, and to have measurements in at least two layers of the muon system. All charged tracks in the event were clustered into jets 8), and the D^-_τ candidate was reconstructed from three tracks found in the same jet as the reconstructed muon. Oppositely charged particles with $p_T > 0.7 \text{ GeV}/c$ were assigned the kaon mass and were required to have an invariant mass $M(K^+ \pi^- < 1.004 < M(K^+ \pi^-) < 1.034 \text{ GeV}/c^2$, consistent with that of a ϕ meson. The third track was required to have $p_T > 0.5 \text{ GeV}/c$ and charge opposite to that of the muon charge and was assigned the pion mass. The three tracks were required to form a common D^-_τ vertex using the algorithm described in Ref. 9). To reduce combinatorial background, the D^-_τ vertex was required to have a positive displacement in the transverse plane, relative to the $p\bar{p}$ collision point (or primary vertex, PV), with at least 4σ significance. The cosine of the angle between the D^-_τ momentum and the direction from the PV to the D^-_τ vertex was required to be greater than 0.9. The trajectories of the muon and D^-_τ candidates were required to originate from a common B^0_s vertex, and the $\mu^+ D^-_\tau$ system was required to have an invariant mass between 2.6 and 5.4 GeV/c^2.

To further improve B^0_s signal selection, a likelihood ratio method 10) was utilized. Using $M(K^+ K^- \pi^-)$ sideband (B) and sideband-subtracted signal (S) distributions in the data, probability density functions (pdfs) were found for a number of discriminating variables: the helicity angle between the D^-_τ and K^\pm momenta in the ϕ center-of-mass frame, the isolation of the $\mu^+ D^-_\tau$ system, the χ^2 of the D^-_τ vertex, the invariant masses $M(\mu^+ D^-_\tau)$ and $M(K^+ K^- \tau)$, and $p_T(K^+ K^- \tau)$. The final requirement on the combined selection likelihood ratio variable, y_{sel}, was chosen to maximize the predicted ratio $S/\sqrt{S + B}$. The total number of D^-_τ candidates after these requirements was $N_{\text{tot}} = 26,710 \pm 556$ (stat), as shown in Fig. 11 (a).

The performance of the opposite-side flavor tagger (OST) 11) is characterized by the efficiency $\epsilon = N_{\text{tag}}/N_{\text{tot}}$, where N_{tag} is the number of tagged B^0_s mesons; tag purity η_s, defined as $\eta_s = N_{\text{cos}}/N_{\text{tag}}$, where N_{cor} is the number of B^0_s mesons with correct flavor identification; and the dilution D, related to purity as $D = 2\eta_s - 1$. Again, a likelihood ratio method was used. In the construction of the flavor discriminating variables $x_1, ..., x_n$ for each event, an object, either a lepton ℓ
After flavor tagging, the proper decay time of candidates is needed; however, the undetected neutrino and other missing particles in the semileptonic B_s^0 decay prevent a precise determination of the meson’s momentum and Lorentz boost. This represents an important contribution to the smearing of the proper decay length in semileptonic decays, in addition to the resolution effects. A correction factor K was estimated from a Monte Carlo (MC) simulation by finding the distribution of $K = p_T(D^-)/p_T(B)$ for a given decay channel in bins of $M(\mu^+D^-)$. The proper decay length of each B_s^0 meson is then $c\tau = l_M/K$, where $l_M = M(B_s^0)(\bar{L}_T \cdot \vec{p}_T / \langle p_T^2 \rangle)^2$ is the measured visible proper decay length (VPDL), \bar{L}_T is the vector from the PV to the B_s^0 decay vertex in the transverse plane and $M(B_s^0) = 5.3696$ GeV/c^2. All flavor-tagged events with $1.72 < M(K^+K^-\pi^-) < 2.22$ GeV/c^2 were used in an unbinned fitting procedure. The likelihood, L, for an event to arise from a specific source in the sample depends event-by-event on l_M, its uncertainty σ_{lM}, the invariant mass of the candidate $M(K^+K^-\pi^-$), the predicted dilution $D(d_{\text{tag}})$, and the selection variable y_{sel}. The pdfs for σ_{lM}, $M(K^+K^-\pi^-)$, $D(d_{\text{tag}})$ and y_{sel} were determined from data. Four sources were considered: the signal $\mu^+D^-\to\phi\pi^-$; the accompanying peak due to $\mu^+D^-\to\phi\pi^-$; a small (less than 1%) reflection due to $\mu^+D^-\to K^+\pi^-$; and the kaon mass is misassigned to one of the pions; and combinatorial background. The total fractions of the first two categories were determined from the mass fit of Fig. 4(b).

For an initial b (\bar{b}) quark, the pdf for a given variable x_i is denoted $f_i^{b}(x_i)$ ($f_i^{\bar{b}}(x_i)$), and the combined tagging variable is defined as $d_{\text{tag}} = (1 - z)/(1 + z)$, where $z = \prod_{i=1}^n (f_i^{b}(x_i)/f_i^{\bar{b}}(x_i))$. The variable d_{tag} varies between -1 and 1. An event with $d_{\text{tag}} > 0$ (<0) is tagged as a b (\bar{b}) quark.

The OST purity was determined from large samples of $B^+\to \mu^+D^0\pi^0$ (non-oscillating) and $B^0\to \mu^+D^+\pi^-\bar{K}$ (slowly oscillating) semileptonic candidates. An average value of $D^2 = [2.48 \pm 0.21 \text{ (stat)} \pm 0.08 \text{ (syst)}] \%$ was obtained [11]. The estimated event-by-event dilution as a function of $|d_{\text{tag}}|$ was determined by measuring D in bins of $|d_{\text{tag}}|$ and parametrizing with a third-order polynomial for $|d_{\text{tag}}| < 0.6$. For $|d_{\text{tag}}| > 0.6$, D is fixed to 0.6.

The OST was applied to the $B_s^0\to \mu^+D^-\pi^0$ data sample, yielding $N_{\text{tag}} = 5601 \pm 102$ (stat) candidates having an identified initial state flavor, as shown in Fig. 4(b). The tagging efficiency was $(20.9 \pm 0.7)\%$.
GEANT v3.15 \cite{14} modeling of the detector response and event reconstruction. Other backgrounds considered were decays via $B^0 \rightarrow D^+_s D^-_s X$ and $B^0 \rightarrow B^- \rightarrow D^- \pi^+$, followed by $D^+_s \rightarrow \mu^+ X$, with a real D^-_s reconstructed in the peak and an associated real μ^+. Another background taken into account occurs when the D^-_s meson originates from one b or c quark and the muon arises from another quark. This background peaks around the PV (peaking backgrounds). The uncertainty in each channel covers possible trigger efficiency biases. Translation from the true VPDL, ℓ, to the measured l_M for a given channel, is achieved by a convolution of the VPDL detector resolution, of K factors over each normalized distribution, and by including the reconstruction efficiency as a function of VPDL. The lifetime-dependent efficiency was found for each channel using MC simulations and, as a cross check, the efficiency was also determined from the data by fixing τ_{B^0} and fitting for the functional form of the efficiency. The shape of the VPDL distribution for peaking backgrounds was found from MC simulation, and the fraction from this source was allowed to float in the fit.

The VPDL uncertainty was determined from the vertex fit using track parameters and their uncertainties. To account for possible mismodeling of these uncertainties, resolution scale factors were introduced as determined by examining the pull distribution of the vertex positions of a sample of $J/\psi \rightarrow \mu^+\mu^-$ decays. Using these scale factors, the convolving function for the VPDL resolution was the sum of two Gaussians with widths (fractions) of 0.998σ_{l_M} (72\%) and 1.775σ_{l_M} (28\%). A cross check was performed using a MC simulation with tracking errors tuned according to the procedure described in \cite{13}. The 7\% variation of scale factors found in this cross check was used to estimate systematic uncertainties due to decay length resolution.

Several contributions to the combinatorial backgrounds that have different VPDL distributions were considered. True prompt background was modeled with a Gaussian function with a separate scale factor on the width; background due to fake vertices around the PV was modeled with another Gaussian function; and long-lived background was modeled with an exponential function convoluted with the resolution, including a component oscillating with a frequency of Δm_d. The unbinned fit of the total tagged sample was used to determine the various fractions of signal and backgrounds and the background VPDL parametrizations.

Figure 2 shows the value of $-\Delta \log \mathcal{L}$ as a function of Δm_s, indicating a favored value of 19 ps$^{-1}$, while variation of $-\log \mathcal{L}$ from the minimum indicates an oscillation frequency of $17 < \Delta m_s < 21$ ps$^{-1}$ at the 90\% C.L. The uncertainties are approximately Gaussian inside this interval. The plateau of the likelihood curve shows the region where we do not have sufficient resolution to measure an oscillation, and if the true value of $\Delta m_s > 22$ ps$^{-1}$, our measured confidence interval does not make any statement about the frequency. Using 100 parametrized MC samples with similar statistics, VPDL resolution, overall tagging performance, and sample composition of the data sample, it was determined that for a true value of $\Delta m_s = 19$ ps$^{-1}$, the probability was 15\% for measuring a value in the range $16 < \Delta m_s < 22$ ps$^{-1}$ with a $-\Delta \log \mathcal{L}$ lower by at least 1.9 than the corresponding value at $\Delta m_s = 25$ ps$^{-1}$.

The amplitude method \cite{17} was also used. Equation 1 was modified to include the oscillation amplitude A as an additional coefficient on the $\cos(\Delta m_s \cdot K \ell/c)$ term. The unbinned fit was repeated for fixed input values of Δm_s and the fitted value of A and its uncertainty σ_A found for each step, as shown in Fig. 3. At $\Delta m_s = 19$ ps$^{-1}$ the measured data point deviates from the hypothesis $A = 0$ ($A = 1$) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1\% (10\%), and is in agreement with the likelihood results. In the presence of a signal, however, it is more difficult to define a confidence interval using the amplitude than by examining the $-\Delta \log \mathcal{L}$ curve. Since, on average, these two methods give the same results, we chose to quantify our Δm_s interval using the likelihood curve.

Systematic uncertainties were addressed by varying inputs, cut requirements, branching ratios, and pdf modeling. The branching ratios were varied within known uncertainties \cite{11} and large variations were taken for those not yet measured. The K-factor distributions were varied within uncertainties, using measured (or smoothed) instead of generated momenta in the MC simulation. The fractions of peaking and combinatorial backgrounds were varied within uncertainties. Uncertainties in the reflection contribution were considered. The functional form to determine the dilution $D(d_{\text{tag}})$ was varied. The lifetime τ_{B^0} was fixed to its world average value, and ΔT_s was allowed to be non-zero. The scale factors on the sig-
FIG. 3: B^0_s oscillation amplitude as a function of oscillation frequency, Δm_s. The solid line shows the $A = 1$ axis for reference. The dashed line shows the expected limit including both statistical and systematic uncertainties.

The probability that B^0_s-\bar{B}^0_s oscillations with the true value of $\Delta m_s > 22$ ps$^{-1}$ would give a $-\Delta \log L$ minimum in the range $16 < \Delta m_s < 22$ ps$^{-1}$ with a depth of more than 1.7 with respect to the $-\Delta \log L$ value at $\Delta m_s = 25$ ps$^{-1}$, corresponding to our observation including systematic uncertainties, was found to be (5.0 ± 0.3)%. This range of Δm_s was chosen to encompass the world average lower limit and the edge of our sensitive region. To determine this probability, an ensemble test using the data sample was performed by randomly assigning a flavor to each candidate while retaining all its other information, effectively simulating a B^0_s oscillation with an infinite frequency. Similar probabilities were found using ensembles of parametrized MC events.

In summary, a study of B^0_s-\bar{B}^0_s oscillations was performed using $B^0_s \rightarrow \mu^+ D^- \pi^-$ decays, where $D^- \rightarrow \phi \pi^-$ and $\phi \rightarrow K^+ K^-$, an opposite-side flavor tagging algorithm, and an unbinned likelihood fit. The amplitude method gives an expected limit of 14.1 ps$^{-1}$ and an observed lower limit of $\Delta m_s > 14.8$ ps$^{-1}$ at the 95% C.L. and the edge of our sensitive region. This is the first report of a direct two-sided bound measured by a single experiment on the B^0_s oscillation frequency.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

[*] On leave from IEP SAS Kosice, Slovakia.

[1] Visitor from Helsinki Institute of Physics, Helsinki, Finland.

[1] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

[2] E. Barberio et al. (Heavy Flavor Averaging Group), hep-ex/0603003. Note that we take $h = c = 1$, hence the units on Δm_s.

[3] J. Charles et al. (CKMfitter Group), Eur. Phys. J. C41, 1 (2005).

[4] M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 07(2005) 028.

[5] Charge conjugate states are assumed throughout.

[6] V. Abazov et al. (DØ Collaboration), hep-ex/0507191 [Nucl. Instrum. Methods Phys. Res. Sect. A (to be published)].

[7] V.M. Abazov et al., Nucl. Instrum. Methods Phys. Res. Sect. A 552, 372 (2005).

[8] S. Catani et al., Phys. Lett. B 269, 432 (1991), “Durham” jets with the p_T cut-off parameter set at 15 GeV/c.

[9] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 32, 185 (2004).

[10] G. Borisov, Nucl. Instrum. Methods Phys. Res. Sect. A 417, 384 (1998).

[11] V. Abazov et al. (DØ Collaboration), Phys. Rev. D (to be published); DØ Note 5029, available from http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/BS2/.
[12] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).

[13] D.J. Lange, Nucl. Instrum. Methods Phys. Res. Sect. A 462, 152 (2001).

[14] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013 (unpublished).

[15] G. Borisov and C. Mariotti, Nucl. Instrum. Methods Phys. Res. Sect. A 372, 181 (1996).

[16] H.G. Moser and A. Roussarie, Nucl. Instrum. Methods Phys. Res. Sect. A 384, 491 (1997).