A Constraint Logic Programming Approach for Computing Ordinal Conditional Functions

Christoph Beierle¹, Gabriele Kern-Isberner², Karl Södler¹

¹Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
²Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany

Abstract. In order to give appropriate semantics to qualitative conditionals of the form if A then normally B, ordinal conditional functions (OCFs) ranking the possible worlds according to their degree of plausibility can be used. An OCF accepting all conditionals of a knowledge base R can be characterized as the solution of a constraint satisfaction problem. We present a high-level, declarative approach using constraint logic programming techniques for solving this constraint satisfaction problem. In particular, the approach developed here supports the generation of all minimal solutions; these minimal solutions are of special interest as they provide a basis for model-based inference from R.

1 Introduction

In knowledge representation, rules play a prominent role. Default rules of the form If A then normally B are being investigated in nonmonotonic reasoning, and various semantical approaches have been proposed for such rules. Since it is not possible to assign a simple Boolean truth value to such default rules, a semantical approach is to define when a rational agent accepts such a rule. We could say that an agent accepts the rule Birds normally fly if she considers a world with a flying bird to be less surprising than a world with a nonflying bird. At the same time, the agent can also accept the rule Penguin birds normally do not fly; this is the case if she considers a world with a nonflying penguin bird to be less surprising than a world with a flying penguin bird.

The informal notions just used can be made precise by formalizing the underlying concepts like default rules, epistemic state of an agent, and the acceptance relation between epistemic states and default rules. In the following, we deal with qualitative default rules and a corresponding semantics modelling the epistemic state of an agent. While a full epistemic state could compare possible worlds according to their possibility, their probability, their degree of plausibility, etc. (cf. [18,9,10]), we will use ordinal conditional functions (OCFs), which are also called ranking functions [18]. To each possible world ω, an OCF κ assigns a natural number κ(ω) indicating its degree of surprise: The higher κ(ω), the greater is the surprise for observing ω.

In [12,13] a criterion when a ranking function respects the conditional structure of a set R of conditionals is defined, leading to the notion of c-representation for R, and it is argued that ranking functions defined by c-representations are of particular interest for model-based inference. In [8] a system that computes a c-representation for any such R that is consistent is described, but this c-representation may not be minimal. An algorithm for computing a minimal ranking function is given in [5], but this algorithm fails to find all minimal ranking functions if there is more than one minimal one. In [15] an extension of that algorithm being able to compute all minimal c-representations for R is presented. The algorithm developed in [15] uses a non-declarative approach and is implemented in an imperative programming language. While the problem of specifying all c-representations for R is formalized as an abstract, problem-oriented constraint satisfaction problem CR(R) in [8], no solving method is given there.

In this paper, we present a high-level, declarative approach using constraint logic programming techniques for solving the constraint satisfaction problem CR(R) for any consistent R. In particular, the approach developed here supports the generation of all minimal solutions; these minimal solutions are of special interest as they provide a basis for model-based inference from R.

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft – DFG (grants BE 1700/7-2 and KE 1413/2-2).
solutions are of special interest as they provide a preferred basis for model-based inference from \mathcal{R}.

The rest of this paper is organized as follows: After recalling the formal background of conditional logics as it is given in \cite{1} and as far as it is needed here (Section 2), we elaborate the birds-penguins scenario sketched above as an illustration for a conditional knowledge base and its semantics in Section 3. The definition of the constraint satisfaction problem $CR(\mathcal{R})$ and its solution set denoting all c-representations for \mathcal{R} is given in Sec. 4. In Section 5, a declarative, high-level CLP program solving $CR(\mathcal{R})$ is developed, observing the objective of being as close as possible to $CR(\mathcal{R})$, and its realization in Prolog is described in detail; in Section 6, it is evaluated with respect to a series of some first example applications. Section 7 concludes the paper and points out further work.

2 Background

We start with a propositional language \mathcal{L}, generated by a finite set Σ of atoms a, b, c, \ldots. The formulas of \mathcal{L} will be denoted by uppercase Roman letters A, B, C, \ldots. For conciseness of notation, we will omit the logical and -connective, writing AB instead of $A \land B$, and overlining formulas will indicate negation, i.e. \overline{A} means $\neg A$. Let Ω denote the set of possible worlds over \mathcal{L}; Ω will be taken here simply as the set of all propositional interpretations over \mathcal{L} and can be identified with the set of all complete conjunctions over Σ. For $\omega \in \Omega$, $\omega \models A$ means that the propositional formula $A \in \mathcal{L}$ holds in the possible world ω.

By introducing a new binary operator \mid, we obtain the set $(\mathcal{L} \mid \mathcal{L}) = \{(B \mid A) \mid A, B \in \mathcal{L}\}$ of conditionals over \mathcal{L}. $(B \mid A)$ formalizes “if A then (normally) B” and establishes a plausible, probable, possible etc connection between the antecedent A and the consequence B. Here, conditionals are supposed not to be nested, that is, antecedent and consequent of a conditional will be propositional formulas.

A conditional $(B \mid A)$ is an object of a three-valued nature, partitioning the set of worlds Ω in three parts: those worlds satisfying AB, thus verifying the conditional, those worlds satisfying $A\overline{B}$, thus falsifying the conditional, and those worlds not fulfilling the premise A and so which the conditional may not be applied to at all. This allows us to represent $(B \mid A)$ as a generalized indicator function going back to \cite{7} (where u stands for unknown or indeterminate):

$$
(B \mid A)(\omega) = \begin{cases}
1 & \text{if } \omega \models AB \\
0 & \text{if } \omega \models A \overline{B} \\
u & \text{if } \omega \models \overline{A}
\end{cases}
$$

(1)

To give appropriate semantics to conditionals, they are usually considered within richer structures such as epistemic states. Besides certain (logical) knowledge, epistemic states also allow the representation of preferences, beliefs, assumptions of an intelligent agent. Basically, an epistemic state allows one to compare formulas or worlds with respect to plausibility, possibility, necessity, probability, etc.

Well-known qualitative, ordinal approaches to represent epistemic states are Spohn’s ordinal conditional functions, OCFs, (also called ranking functions) \cite{18}, and possibility distributions \cite{4}, assigning degrees of plausibility, or of possibility, respectively, to formulas and possible worlds. In such qualitative frameworks, a conditional $(B \mid A)$ is valid (or accepted), if its confirmation, AB, is more plausible, possible, etc. than its refutation, $A \overline{B}$; a suitable degree of acceptance is calculated from the degrees associated with AB and $A \overline{B}$.

In this paper, we consider Spohn’s OCFs \cite{18}. An OCF is a function

$$
\kappa : \Omega \rightarrow \mathbb{N}
$$

expressing degrees of plausibility of propositional formulas where a higher degree denotes “less plausible” or “more surprising”. At least one world must be regarded as being normal; therefore, $\kappa(\omega) = 0$ for at least one $\omega \in \Omega$. Each such ranking function can be taken as the representation of
a full epistemic state of an agent. Each such \(\kappa \) uniquely extends to a function (also denoted by \(\kappa \)) mapping sentences and rules to \(\mathbb{N} \cup \{\infty\} \) and being defined by

\[
\kappa(A) = \begin{cases}
\min\{\kappa(\omega) \mid \omega \models A\} & \text{if } A \text{ is satisfiable} \\
\infty & \text{otherwise}
\end{cases} \tag{2}
\]

for sentences \(A \in \mathcal{L} \) and by

\[
\kappa((B|A)) = \begin{cases}
\kappa(AB) - \kappa(A) & \text{if } \kappa(A) \neq \infty \\
\infty & \text{otherwise}
\end{cases} \tag{3}
\]

for conditionals \((B|A) \in (\mathcal{L} \mid \mathcal{L})\). Note that \(\kappa((B|A)) \geq 0 \) since any \(\omega \) satisfying \(AB \) also satisfies \(A \) and therefore \(\kappa(AB) \geq \kappa(A) \).

The belief of an agent being in epistemic state \(\kappa \) with respect to a default rule \((B|A)\) is determined by the satisfaction relation \(\models \) defined by:

\[
\kappa \models (B|A) \iff \kappa(AB) < \kappa(A\bar{B}) \tag{4}
\]

Thus, \((B|A)\) is believed in \(\kappa \) iff the rank of \(AB \) (verifying the conditional) is strictly smaller than the rank of \(A\bar{B} \) (falsifying the conditional). We say that \(\kappa \) accepts the conditional \((B|A)\) iff \(\kappa \models (B|A) \).

3 Example

In order to illustrate the concepts presented in the previous section we will use a scenario involving a set of some default rules representing common-sense knowledge.

Example 1. Suppose we have the propositional atoms \(f \) - flying, \(b \) - birds, \(p \) - penguins, \(w \) - winged animals, \(k \) - kiwis.

Let the set \(\mathcal{R} \) consist of the following conditionals:

\[
\begin{align*}
\mathcal{R} & \quad r_1 : (f|b) \quad \text{birds fly} \\
& \quad r_2 : (b|p) \quad \text{penguins are birds} \\
& \quad r_3 : (\overline{f}|p) \quad \text{penguins do not fly} \\
& \quad r_4 : (w|b) \quad \text{birds have wings} \\
& \quad r_5 : (b|k) \quad \text{kiwis are birds}
\end{align*}
\]

Figure 1 shows a ranking function \(\kappa \) that accepts all conditionals given in \(\mathcal{R} \). Thus, for any \(i \in \{1, 2, 3, 4, 5\} \) it holds that \(\kappa \models \models \mathcal{R}_i \).

\(\omega \)	\(\kappa(\omega) \)						
phfwkwk	2	phfwkwk	5	phfwkwk	0	phfwkwk	1
phf\overline{w}k	2	phf\overline{w}k	4	phf\overline{w}k	0	phf\overline{w}k	0
phfw\overline{w}k	3	phfw\overline{w}k	5	phfw\overline{w}k	1	phfw\overline{w}k	1
phf\overline{w}\overline{w}k	3	phf\overline{w}\overline{w}k	4	phf\overline{w}\overline{w}k	1	phf\overline{w}\overline{w}k	0
phf\overline{j}kwk	1	phf\overline{j}kwk	3	phf\overline{j}kwk	1	phf\overline{j}kwk	1
phf\overline{j}\overline{w}k	1	phf\overline{j}\overline{w}k	2	phf\overline{j}\overline{w}k	1	phf\overline{j}\overline{w}k	0
phf\overline{j}\overline{w}\overline{w}k	2	phf\overline{j}\overline{w}\overline{w}k	3	phf\overline{j}\overline{w}\overline{w}k	2	phf\overline{j}\overline{w}\overline{w}k	1
phf\overline{j}\overline{w}\overline{w}\overline{w}k	2	phf\overline{j}\overline{w}\overline{w}\overline{w}k	2	phf\overline{j}\overline{w}\overline{w}\overline{w}k	2	phf\overline{j}\overline{w}\overline{w}\overline{w}k	0

Fig. 1. Ranking function \(\kappa \) accepting the rule set \(\mathcal{R} \) given in Example 1.

For the conditional \((f|p)\) (\textit{"Do penguins fly?"}) that is not contained in \(\mathcal{R} \), we get \(\kappa(pf) = 2 \) and \(\kappa(p\overline{f}) = 1 \) and therefore

\[
\kappa \not\models (f|p)
\]
so that the conditional \((f|p)\) is not accepted by \(\kappa\). This is in accordance with the behaviour of a rational agent believing \(R\) since the knowledge base \(R\) used for building up \(\kappa\) explicitly contains the opposite rule \((\overline{f}|p)\).

On the other hand, for the conditional \((w|k)\) (“Do kiwis have wings?”) that is also not contained in \(R\), we get \(\kappa(kw) = 0\) and \(\kappa(k\overline{w}) = 1\) and therefore

\[
\kappa \models \omega \quad (w|k)
\]

i.e., the conditional \((w|k)\) is accepted by \(\kappa\). Thus, from their superclass \(birds\), kiwis inherit the property of having wings.

4 Specification of Ranking Functions as Solutions of a Constraint Satisfaction Problem

Given a set \(R = \{R_1, \ldots, R_n\}\) of conditionals, a ranking function \(\kappa\) that accepts every \(R_i\) represents an epistemic state of an agent accepting \(R\). If there is no \(\kappa\) that accepts every \(R_i\) then \(R\) is inconsistent. For the rest of this paper, we assume that \(R\) is consistent.

For any consistent \(R\) there may be many different \(\kappa\) accepting \(R\), each representing a complete set of beliefs with respect to every possible formula \(A\) and every conditional \((B|A)\). Thus, every such \(\kappa\) inductively completes the knowledge given by \(R\), and it is a vital question whether some \(\kappa'\) is to be preferred to some other \(\kappa''\), or whether there is a unique “best” \(\kappa\). Different ways of determining a ranking function are given by system \(Z\) \cite{9,10} or its more sophisticated extension system \(Z^\ast\) \cite{9}, see also \cite{6}: for an approach using rational world rankings see \cite{19}. For quantitative knowledge bases of the form \(R_x = \{(B_1[A_1]|x_1], \ldots, (B_n[A_n]|x_n)\}\) with probability values \(x_i\) and with models being probability distributions \(P\) satisfying a probabilistic conditional \((B_i[A_i]|x_i)\) iff \(P(B_i[A_i]) = x_i\), a unique model can be chosen by employing the principle of maximum entropy \cite{16,17,11}: the maximum entropy model is a best model in the sense that it is the most unbiased one among all models satisfying \(R_x\).

Using the maximum entropy idea, in \cite{13} a generalization of system \(Z^\ast\) is suggested. Based on an algebraic treatment of conditionals, the notion of conditional indifference of \(\kappa\) with respect to \(R\) is defined and the following criterion for conditional indifference is given: An OCF \(\kappa\) is indifferent with respect to \(R = \{(B_1[A_1], \ldots, (B_n[A_n])\}\) iff \(\kappa(A_i) < \infty\) for all \(i \in \{1, \ldots, n\}\) and there are rational numbers \(\kappa_0, \kappa_i^+, \kappa_i^- \in \mathbb{Q}, 1 \leq i \leq n\), such that for all \(\omega \in \Omega\),

\[
\kappa(\omega) = \kappa_0 + \sum_{\omega \models A_iB_i} \kappa_i^+ + \sum_{\omega \models \overline{A}_iB_i} \kappa_i^- .
\]

When starting with an epistemic state of complete ignorance (i.e., each world \(\omega\) has rank 0), for each rule \((B_i[A_i])\) the values \(\kappa_i^+, \kappa_i^-\) determine how the rank of each satisfying world and of each falsifying world, respectively, should be changed:

- If the world \(\omega\) verifies the conditional \((B_i[A_i]), \quad i.e., \omega \models A_iB_i\), then \(\kappa_i^+\) is used in the summation to obtain the value \(\kappa(\omega)\).
- Likewise, if \(\omega\) falsifies the conditional \((B_i[A_i]), \quad i.e., \omega \models A_i\overline{B}_i\), then \(\kappa_i^-\) is used in the summation instead.
- If the conditional \((B_i[A_i])\) is not applicable in \(\omega, \quad i.e., \omega \models \overline{A}_i\), then this conditional does not influence the value \(\kappa(\omega)\).

\(\kappa_0\) is a normalization constant ensuring that there is a smallest world rank 0. Employing the postulate that the ranks of a satisfying world should not be changed and requiring that changing the rank of a falsifying world may not result in an increase of the world’s plausibility leads to the concept of a \(c\)-representation \cite{13,12}.
Definition 1. Let \(R = \{(B_1|A_1), \ldots, (B_n|A_n)\} \). Any ranking function \(\kappa \) satisfying the conditional indifference condition (3) and \(\kappa_i^+ = 0, \kappa_i^- \geq 0 \) (and thus also \(\kappa_0 = 0 \) since \(R \) is assumed to be consistent) as well as
\[
\kappa(A_iB_i) < \kappa(A_i \bar{B}_i)
\]
for all \(i \in \{1, \ldots, n\} \) is called a (special) c-representation of \(R \).

Note that for \(i \in \{1, \ldots, n\} \), condition (6) expresses that \(\kappa \) accepts the conditional \(R_i = (B_i|A_i) \in R \) (cf. the definition of the satisfaction relation in (1)) and that this also implies \(\kappa(A_i) < \infty \).

Thus, finding a c-representation for \(R \) amounts to choosing appropriate values \(\kappa_1^-, \ldots, \kappa_n^- \). In [2] this situation is formulated as a constraint satisfaction problem \(CR(R) \) whose solutions are vectors of the form \((\kappa_1^-, \ldots, \kappa_n^-) \) determining c-representations of \(R \). The development of \(CR(R) \) exploits (2) and (5) to reformulate (6) and requires that the \(\kappa_i^- \) are natural numbers (and not just rational numbers). In the following, we set \(\min(\emptyset) = \infty \).

Definition 2. \(CR(R) \) Let \(R = \{(B_1|A_1), \ldots, (B_n|A_n)\} \). The constraint satisfaction problem for c-representations of \(R \), denoted by \(CR(R) \), is given by the conjunction of the constraints
\[
\kappa_i^- \geq 0
\]
(7)
\[
\kappa_i^- > \min_{\omega \models A_iB_i} \sum_{\omega \models A_i, B_i} \kappa_j^- - \min_{\omega \models A_i, \bar{B}_i} \sum_{\omega \models A_i, \bar{B}_i} \kappa_j^-
\]
(8)
for all \(i \in \{1, \ldots, n\} \).

A solution of \(CR(R) \) is an \(n \)-tupel \((\kappa_1^-, \ldots, \kappa_n^-) \) of natural numbers, and with \(Sol_{CR}(R) \) we denote the set of all solutions of \(CR(R) \).

Proposition 1. For \(R = \{(B_1|A_1), \ldots, (B_n|A_n)\} \) let \((\kappa_1^-, \ldots, \kappa_n^-) \) \(\in Sol_{CR}(R) \). Then the function \(\kappa \) defined by
\[
\kappa(\omega) = \sum_{1 \leq i \leq n, \omega \models A_i} \kappa_i^-
\]
(9)
accepts \(R \).

All c-representations built from (7), (8), and (9) provide an excellent basis for model-based inference [13,12]. However, from the point of view of minimal specificity (see e.g. [4]), those c-representations with minimal \(\kappa_i^- \) yielding minimal degrees of implausibility are most interesting.

While different orderings on \(Sol_{CR}(R) \) can be defined, leading to different minimality notions, in the following we will focus on the ordering on \(Sol_{CR}(R) \) induced by taking the sum of the \(\kappa_i^- \), i.e.
\[
(\kappa_1^-, \ldots, \kappa_n^-) \leq (\kappa_1'^-, \ldots, \kappa_n'^-) \quad \text{iff} \quad \sum_{1 \leq i \leq n} \kappa_i^- \leq \sum_{1 \leq i \leq n} \kappa_i'^-.
\]
(10)

As we are interested in minimal \(\kappa_i^- \)-vectors, an important question is whether there is always a unique minimal solution. This is not the case; the following example that is also discussed in [15] illustrates that \(Sol_{CR}(R) \) may have more than one minimal element.

Example 2. Let \(R_{\text{birds}} = \{R_1, R_2, R_3\} \) be the following set of conditionals:

\[
R_1 : (f|b) \quad \text{birds fly} \\
R_2 : (a|b) \quad \text{birds are animals} \\
R_3 : (a|f) \quad \text{flying birds are animals}
\]

From (8) we get
\[
\kappa_1^- > 0 \\
\kappa_2^- > 0 - \min \{ \kappa_1^-, \kappa_3^- \} \\
\kappa_3^- > 0 - \kappa_2^-
\]
and since $\kappa_i \geq 0$ according to (7), the two vectors
\[\text{sol}_1 = (\kappa_1^-, \kappa_2^-, \kappa_3^-) = (1, 1, 0) \]
\[\text{sol}_2 = (\kappa_1^-, \kappa_2^-, \kappa_3^-) = (1, 0, 1) \]
are two different solutions of $CR(\mathcal{R}_{birds})$ with $\sum_{1 \leq i \leq n} \kappa_i^- = 2$ that are both minimal in $Sol_{CR}(\mathcal{R}_{birds})$ with respect to \leq.

5 A Declarative CLP Program for $CR(\mathcal{R})$

In this section, we will develop a CLP program GenDCF solving $CR(\mathcal{R})$. Our main objective to obtain a declarative program that is as close as possible to the abstract formulation of $CR(\mathcal{R})$ while exploiting the concepts of constraint logic programming. We will employ finite domain constraints, and from (7) we immediately get a lower bound for κ_i^-. Considering that we are interested mainly in minimal solutions, due to (6) we can safely restrict ourselves to n as an upper bound for κ_i^-, yielding
\[0 \leq \kappa_i^- \leq n \] (11)
for all $i \in \{1, \ldots, n\}$ with n being the number of conditionals in \mathcal{R}.

5.1 Input Format and Preliminaries

Since we want to focus on the constraint solving part, we do not consider reading and parsing a knowledge base $\mathcal{R} = \{(B_1|A_1), \ldots, (B_n|A_n)\}$. Instead, we assume that \mathcal{R} is already given as a Prolog code file providing the following predicates variables/1, conditional/3 and indices/1:

- \texttt{variables([a$_1$, \ldots, a$_m$])} % list of atoms in Σ
- \texttt{conditional(i,⟨A$_i$⟩,⟨B$_i$⟩)} % representation of ith conditional $\langle B_i | A_i \rangle$
- \texttt{indices([1, \ldots, n])} % list of indices $\{1, \ldots, n\}$

If $\Sigma = \{a_1, \ldots, a_m\}$ is the set of atoms, we assume a fixed ordering $a_1 < a_2 < \ldots < a_m$ on Σ given by the predicate \texttt{variables([a$_1$, \ldots, a$_m$])}.

The representation of a conditional, a propositional formula A, constituting the antecedent or the consequence of the conditional, is represented by $\langle A \rangle$ where $\langle A \rangle$ is a Prolog list $\{\langle D_1 \rangle, \ldots, \langle D_l \rangle\}$. Each $\langle D_i \rangle$ represents a conjunction of literals such that $\bigvee D_1 \land \ldots \land D_l$ is a disjunctive normal form of A.

Each $\langle D \rangle$, representing a conjunction of literals, is a Prolog list $[b_1, \ldots, b_m]$ of fixed length m where m is the number of atoms in Σ and with $b_k \in \{0, 1, \bot\}$. Such a list $[b_1, \ldots, b_m]$ represents the conjunctions of atoms obtained from $\hat{a}_1 \land \hat{a}_2 \land \ldots \land \hat{a}_m$ by eliminating all occurrences of \top, where
\[\hat{a}_k = \begin{cases} a_k & \text{if } b_k = 1 \\ \overline{a_k} & \text{if } b_k = 0 \\ \top & \text{if } b_k = \bot \end{cases} \]

Example 3. The internal representation of the knowledge base presented in Example 1 is shown in Figure 2.

As further preliminaries, using conditional/3 and indices/1, we have implemented the predicates verifying_worlds/2, falsifying_worlds/2, and falsify/2, realising the evaluation of the indicator function given in Sec. 2:

- \texttt{verifying_worlds(i, Ws)} % Ws list of worlds verifying ith conditional
- \texttt{falsifying_worlds(i, Ws)} % Ws list of worlds falsifying ith conditional
- \texttt{falsify(i, W)} % world W falsifies ith conditional
variables([p,b,f,w,k]).
% p b f w k p b f w k
conditional(1,[[_,1,_,_]],[[_,_,1,_,_]]). % (f | b) birds fly
conditional(2,[[1,_,_,_]],[[_,1,_,_]]). % (b | p) penguins are birds
conditional(3,[[1,_,_,_]],[[_,0,_,_]]). % (-f | p) penguins do not fly
conditional(4,[[_,1,_,_]],[[_,_,_,1]]). % (w | b) birds have wings
conditional(5,[[_,_,_,1]],[[_,1,_,_]]). % (b | k) kiwis are birds
indices([1,2,3,4,5]).

Fig. 2. Internal representation of the knowledge base from Example 1

where worlds are represented as complete conjunctions of literals over \(\Sigma \), using the representation described above.

Using these predicates, in the following subsections we will present the complete source code of the constraint logic program GenOCF solving \(CR(\mathcal{R}) \).

5.2 Generation of Constraints

The particular program code given here uses the SICStus Prolog system\(^1\) and its clp(fd) library implementing constraint logic programming over finite domains\(^1\).

The main predicate kappa/2 expecting a knowledge base \(KB \) of conditionals and yielding a vector \(K \) of \(\kappa_i \) values as specified by (8) is presented in Fig. 3.

kappa(KB, K) :- % K is kappa vector of c-representation for KB
consult(KB),
indices(Is), % get list of indices \([1,2,...,N]\)
length(Is, N), % N number of conditionals in KB
length(K, N), % generate K = \([\kappa_1,...,\kappa_N]\) of free var.
domain(K, 0, N), % 0 <= kappa_I <= N for all I according to (11)
constrain_K(Is, K), % generate constraints according to (8)
labeling([], K). % generate solution

Fig. 3. Main predicate kappa/2

After reading in the knowledge base and getting the list of indices, a list \(K \) of free constraint variables, one for each conditional, is generated. In the two subsequent subgoals, the constraints corresponding to the formulas (11) and (8) are generated, constraining the elements of \(K \) accordingly. Finally, labeling([], K) yields a list of \(\kappa_i \) values. Upon backtracking, this will enumerate all possible solutions with an upper bound of \(n \) as in (11) for each \(\kappa_i \). Later on, we will demonstrate how to modify kappa/2 in order to take minimality into account (Sec. 5.3).

How the subgoal constrain_K(Is, K) in kappa/2 generates a constraint for each index \(i \in \{1,...,n\} \) according to (8) is defined in Fig. 4.

Given an index \(I \), constrain_Ki(I, K) determines all worlds verifying and falsifying the \(I \)-th conditional; over these two sets of worlds the two min expressions in (8) are defined. Two lists VS and FS of sums corresponding exactly to the first and the second sum, respectively, in (8) are generated (how this is done is defined in Fig. 5 and will be explained below). With the constraint variables \(V_{\text{min}} \) and \(F_{\text{min}} \) denoting the minimum of these two lists, the constraint

\[
K_i \#> V_{\text{min}} - F_{\text{min}}
\]

\(^1\) http://www.sics.se/isl/sicstuswww/site/index.html
constrain_K([],_). % generate constraints for
constrain_K([I|Is],K) :- % all kappa_I as in (8)
 constrain_Ki(I,K), constrain_K(Is,K).

constrain_Ki(I,K) :- % generate constraint for kappa_I as in (8)
 verifying_worlds(I, VWorlds), % all worlds verifying I-th conditional
 falsifying_worlds(I, FWorlds), % all worlds falsifying I-th conditional
 list_of_sums(I, K, VWorlds, VS), % VS list of sums for verifying worlds
 list_of_sums(I, K, FWorlds, FS), % FS list of sums for falsifying worlds
 minimum(Vmin, VS), % Vmin minimum for verifying worlds
 minimum(Fmin, FS), % Fmin minimum for falsifying worlds
 element(I, K, Ki), % Ki constraint variable for kappa_I
 Ki #> Vmin - Fmin. % constraint for kappa_I as in (8)

Fig. 4. Constraining the vector K representing $\kappa_{-1}, ..., \kappa_{-n}$ as in (8)

given in the last line of Fig. 4 reflects precisely the restriction on κ_{-i} given by (8).

For an index I, a kappa vector K, and a list of worlds Ws, the goal list_of_sums(I, K, Ws, Ss) (cf. Fig. 5) yields a list Ss of sums such that for each world W in Ws, there is a sum S in Ss that is generated by sum_kappa_j(Js, I, K, W, S) where Js is the list of indices $\{1, ..., n\}$. In the goal sum_kappa_j(Js, I, K, W, S), S corresponds exactly to the respective sum expression in (8), i.e., it is the sum of all Kj such that J \neq I and W falsifies the j-th conditional.

Example 4. Suppose that kb_birds.pl is a file containing the conditionals of the knowledge base \mathcal{R}_{birds} given in Ex. 2. Then the first five solutions generated by the program given in Figures 3–5 are:

```
| ?- kappa('kb_birds.pl', K).
K = [1,0,1] ;
K = [1,0,2] ;
K = [1,0,3] ;
K = [1,1,0] ;
K = [1,1,1] .
```

Note that the first and the fourth solution are the minimal solutions.

Example 5. If kb_penguins.pl is a file containing the conditionals of the knowledge base \mathcal{R} given in Ex. 1, the first six solutions generated by kappa/2 are:

```
| ?- kappa('kb_penguins.pl', K).
K = [1,2,2,1,1] ;
K = [1,2,2,1,2] ;
K = [1,2,2,1,3] ;
K = [1,2,2,1,4] ;
K = [1,2,2,1,5] ;
K = [1,2,2,2,1] .
```

5.3 Generation of Minimal Solutions

The enumeration predicate labeling/2 of SICStus Prolog allows for an option that minimizes the value of a cost variable. Since we are aiming at minimizing the sum of all κ_{-i}, the constraint $\text{sum}(K, \#=, S)$ introduces such a cost variable S. Thus, exploiting the SICStus Prolog minimization feature, we can easily modify kappa/2 to generate a minimal solution: We just have to replace the last subgoal labeling([], K) in Fig. 3 by the two subgoals:
% list_of_sums(I, K, Ws, Ss) generates list of sums as in (8):
% I index from 1,...,N
% K kappa vector
% Ws list of worlds
% Ss list of sums:
% for each world W in Ws there is S in Ss s.t.
% S is sum of all kappa_J with
% J \neq I and W falsifies J-th conditional

list_of_sums(_, _, [], []).
list_of_sums(I, K, [W|Ws], [S|Ss]) :-
 indices(Js),
 sum_kappa_j(Js, I, K, W, S),
 list_of_sums(I, K, Ws, Ss).

% sum_kappa_j(Js, I, K, W, S) generates a sum as in (8):
% Js list of indices [1,...,N]
% I index from 1,...,N
% K kappa vector
% W world
% S sum of all kappa_J s.t.
% J \neq I and W falsifies J-th conditional

sum_kappa_j([], _, _, _, 0).
sum_kappa_j([J|Js], I, K, W, S) :-
 sum_kappa_j(Js, I, K, W, S1),
 element(J, K, Kj),
 ((J \neq I, falsify(J, W)) -> S #= S1 + Kj; S #= S1).

Fig. 5. Generating list of sums of κ_i^- as in (8)
sum(K, #=, S), % introduce constraint variable S
% for sum of kappa_I
minimize(labeling([], K), S). % generate single minimal solution

With this modification, we obtain a predicate \texttt{kappa_min/2} that returns a single minimal solution (and fails on backtracking). Hence calling \texttt{?- kappa_min('kb_birds.pl', K)}. similar as in Ex. 4 yields the minimal solution \(K = [1,0,1]\).

However, as pointed out in Sec. 4 there are good reasons for considering not just a single minimal solution, but all minimal solutions. We can achieve the computation of all minimal solutions by another slight modification of \texttt{kappa/2}. This time, the enumeration subgoal \texttt{labeling([], K)} in Fig. 3 is preceded by two new subgoals as in \texttt{kappa_min_all/2} in Fig. 6.

\begin{verbatim}
 kappa_min_all(KB, K) :- % K is minimal vector for KB, all solutions
 consult(KB),
 indices(Is), % get list of indices [1,2,...,N]
 length(Is, N), % N number of conditionals in KB
 length(K, N), % generate K = [Kappa_1,...,Kappa_N] of free var.
 domain(K, 0, N), % 0 <= kappa_I <= N for all I according to (11)
 constrain_K(Is, K), % generate constraints according to (8)
 sum(K, #=, S), % constraint variable S for sum of kappa_I
 min_sum_kappas(K, S), % determine minimal value for S
 labeling([], K). % generate all minimal solutions

 min_sum_kappas(K, Min) :- % Min is sum of a minimal solution for K
 once((labeling([up],[Min]),

 labeling([],K))).
\end{verbatim}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6.png}
\caption{Predicate \texttt{kappa_min_all/2} generating exactly all minimal solutions}
\end{figure}

The first new subgoal \texttt{sum(K, #=, S)} introduces a constraint variable \(S\) just as in \texttt{kappa_min/2}. In the subgoal \texttt{min_sum_kappas(K, S)}, this variable \(S\) is constrained to the sum of a minimal solution as determined by \texttt{min_sum_kappas(K, Min)}. These two new subgoals ensure that in the generation caused by the final subgoal \texttt{labeling([], K)}, exactly all minimal solutions are enumerated.

\textbf{Example 6.} Continuing Example 4 calling

\begin{verbatim}
| ?- kappa_min_all('kb_birds.pl', K).
K = [1,0,1] ? ;
K = [1,1,0] ? ;
no
\end{verbatim}

yields the two minimal solutions for \(\mathcal{R}_{\text{birds}}\).

\textbf{Example 7.} For the situation in Ex. 5 \texttt{kappa_min_all/2} reveals that there is a unique minimal solution:

\begin{verbatim}
| ?- kappa_min_all('kb_penguins.pl', K).
K = [1,2,2,1,1] ? ;
no
\end{verbatim}

Determining the OCF \(\kappa\) induced by the vector \((\kappa_1, \kappa_2, \kappa_3, \kappa_4, \kappa_5) = (1, 2, 2, 1, 1)\) according to 4 yields the ranking function given in Fig. 1.
6 Example Applications and First Evaluation

Although the objective in developing GenOCF was on being as close as possible to the abstract formulation of the constraint satisfaction problem \(CR(R) \), we will present the results of some first example applications we have carried out.

For \(n \geq 1 \), we generated synthetic knowledge bases \(kb_{synth<\text{n}>.<c<2n-1>.pl} \) according to the following schema: Using the variables \(\{f\} \cup \{a_1, \ldots, a_n\} \), \(kb_{synth<\text{n}>.<c<2n-1>.pl} \) contains the \(2 * n - 1 \) conditionals given by:

\[
\begin{align*}
(f[a_i]) & \quad \text{if } i \text{ is odd, } i \in \{1, \ldots, n\} \\
(f[a_i]) & \quad \text{if } i \text{ is even, } i \in \{1, \ldots, n\} \\
(a_i[a_{i+1}]) & \quad \text{if } i \in \{1, \ldots, n-1\}
\end{align*}
\]

For instance, \(kb_{synth4.c7.pl} \) uses the five variables \(\{f, a_1, a_2, a_3, a_4\} \) and contains the seven conditionals:

\[
\begin{align*}
(f[a_1]) \\
(f[a_2]) \\
(f[a_3]) \\
(f[a_4]) \\
(a_1[a_2]) \\
(a_2[a_3]) \\
(a_3[a_4])
\end{align*}
\]

The basic idea underlying the construction of these synthetic knowledge bases \(kb_{synth<\text{n}>.<c<2n-1>.pl} \) is to establish a kind of subclass relationship between \(a_{i+1} \) and \(a_i \) for each \(i \in \{1, \ldots, n-1\} \) on the one hand, and to state that every \(a_{i+1} \) is exceptional to \(a_i \), with respect to its behaviour regarding \(f \), again for each \(i \in \{1, \ldots, n-1\} \). This sequence of pairwise exceptional elements will force any minimal solution of \(CR(kb_{synth<\text{n}>.<c<2n-1>.pl}) \) to have at least one \(\kappa^- \) value of size greater or equal to \(n \).

From \(kb_{synth<\text{n}>.<c<m>.pl} \), the knowledge bases \(kb_{synth<\text{n}>.<c<m-j>.pl} \) are generated for \(j \in \{1, \ldots, m-1\} \) by removing the last \(j \) conditionals. For instance, \(kb_{synth4.c5.pl} \) is obtained from \(kb_{synth4.c7.pl} \) by removing the two conditionals \{\((a_2[a_3]), (a_3[a_4])\}\).

Figure 7 shows the time needed by GenOCF for computing all minimal solutions for various knowledge bases. The execution time is given in seconds where the value 0 stands for any value less than 0.5 seconds. Measurements were taken for the following environment: SICStus 4.0.8 (x86-linux-glibc2.3), Intel Core 2 Duo E6850 3.00GHz. While the number of variables determines the set of possible worlds, the number of conditionals induces the number of contraints. The values in the table in Fig. 7 give some indication on the influence of both values, the number of variables and the number of conditionals in a knowledge base. For instance, comparing the knowledge base \(kb_{synth7.c10.pl} \), having 8 variables and 10 conditionals, to the knowledge base \(kb_{synth8.c10.pl} \), having 9 variables and also 10 conditionals, we see an increase of the computation time by a factor 2.3. Increasing the number of conditionals, leads to no time increase from \(kb_{synth7.c10.pl} \) to \(kb_{synth7.c11.pl} \), and to a time increase factor of about 1.6 when moving from \(kb_{synth8.c10.pl} \) to \(kb_{synth8.c11.pl} \), while for moving from \(kb_{synth8.c10.pl} \) to \(kb_{synth9.c10.pl} \) and \(kb_{synth10.c10.pl} \), we get time increase factors of 3.3 and 11.0, respectively.

Of course, these knowledge bases are by no means representative, and further evaluation is needed. In particular, investigating the complexity depending on the number of variables and conditionals and determining an upper bound for worst-case complexity has still to be done. Furthermore, while the code for GenOCF given above uses SICStus Prolog, we also have a variant of GenOCF for the SWI Prolog system\(^2\). In our further investigations, we want to evaluate GenOCF also using SWI Prolog, to elaborate the changes required and the options provided when moving between SICStus and SWI Prolog, and to study whether there are any significant differences in execution that might depend on the two different Prolog systems and their options.

\(^2\) http://www.swi-prolog.org/index.html
knowledge base	variables	conditionals	minimal solutions	time
kb_birds.pl	3	3	[1,0,1],[1,1,0]	0
kb_penguins.pl	5	5	[1,2,2,1,1]	0
kb_synth7_c1.pl	7	1	[1]	0
kb_synth7_c2.pl	7	2	[1,1]	0
kb_synth7_c3.pl	7	3	[1,1,1]	0
kb_synth7_c4.pl	7	4	[1,1,1,1]	0
kb_synth7_c5.pl	7	5	[1,1,1,1,1]	0
kb_synth7_c6.pl	7	6	[1,1,1,1,1,1]	1
kb_synth7_c7.pl	7	7	[1,1,1,1,1,1,1]	0
kb_synth7_c8.pl	7	8	[1,2,1,1,1,1,1,2]	1
kb_synth7_c9.pl	7	9	[1,2,2,1,1,1,1,2]	2
kb_synth8_c10.pl	7	10	[1,2,2,1,1,1,1,2,3]	3
kb_synth7_c11.pl	7	11	[1,2,2,2,1,1,1,2,3,4,5]	3
kb_synth7_c12.pl	7	12	[1,2,2,2,2,1,2,3,4,5,6]	6
kb_synth7_c13.pl	7	13	[1,2,2,2,2,2,2,3,4,5,6,7]	8
kb_synth8_c14.pl	8	14	[1,2,2,2,2,2,2,3,4,5,6,7,8]	38
kb_synth8_c15.pl	8	15	[1,2,2,2,2,2,2,3,4,5,6,7,8]	60
kb_synth9_c16.pl	9	16	[1,2,2,2,2,2,2,1,2,3,4,5,6,7,8]	256
kb_synth9_c17.pl	9	17	[1,2,2,2,2,2,2,3,4,5,6,7,8]	361

Fig. 7. Execution times of Gen0CF under SICStus Prolog for various knowledge bases
7 Conclusions and Further Work

While for a set of probabilistic conditionals \((B_i|A_i)[x_i]\) the principle of maximum entropy yields a unique model, for a set \(R\) of qualitative default rules \((B_i|A_i)\) there may be several minimal ranking functions. In this paper, we developed a CLP approach for solving \(CR(R)\), realized in the Prolog program \texttt{GenOCF}. The solutions of the constraint satisfaction problem \(CR(R)\) are vectors of natural numbers \(\vec{r} = (\kappa_1, \ldots, \kappa_n)\) that uniquely determine an OCF \(\kappa_{\vec{r}}\) accepting all conditionals in \(R\). The program \texttt{GenOCF} is also able to generate exactly all minimal solutions of \(CR(R)\); the minimal solutions of \(CR(R)\) are of special interest for model-based inference.

Among the extensions of the approach described here we are currently working on, is the investigation and evaluation of alternative minimality criteria. Instead of ordering the vectors \(\vec{r}\) by the sum of their components, we could define a componentwise order on \(Sol_{CR}(R)\) by defining \((\kappa_1, \ldots, \kappa_n) \preceq (\kappa'_1, \ldots, \kappa'_n)\) iff \(\kappa_i \preceq \kappa'_i\) for \(i \in \{1, \ldots, n\}\), yielding a partial order \(\preceq\) on \(Sol_{CR}(R)\).

Still another alternative is to compare the full OCFs \(\kappa_{\vec{r}}\) induced by \(\vec{r} = (\kappa_1, \ldots, \kappa_n)\) according to [9], yielding the ordering \(\preceq\) on \(Sol_{CR}(R)\) defined by \(\kappa_{\vec{r}} \preceq \kappa_{\vec{r}}'\) iff \(\kappa_{\vec{r}}(\omega) \preceq \kappa_{\vec{r}}'(\omega)\) for all \(\omega \in \Omega\).

In general, it is an open problem how to strengthen the requirements defining a \(c\)-representation so that a unique solution is guaranteed to exist. The declarative nature of constraint logic programming supports easy constraint modification, enabling the experimentation and practical evaluation of different notions of minimality for \(Sol_{CR}(R)\) and of additional requirements that might be imposed on a ranking function. Furthermore, in \[8\] the framework of default rules considered here is extended by allowing not only default rules in the knowledge base \(R\), but also strict knowledge, rendering some worlds completely impossible. This can yield a reduction of the problem’s complexity, and it will be interesting to see which effects the incorporation of strict knowledge will have on the CLP approach presented here.

References

1. C. Beierle and G. Kern-Isberner. A verified AsmL implementation of belief revision. In E. Börger, M. Butler, J. P. Bowen, and P. Boca, editors, Abstract State Machines, B and Z, First International Conference, ABZ 2008, London, UK, September 16-18, 2008. Proceedings, volume 5238 of LNCS, pages 98–111. Springer, 2008.
2. C. Beierle and G. Kern-Isberner. On the computation of ranking functions for default rules – a challenge for constraint programming. In Proc. Deklarative Modellierung und effiziente Optimierung mit Constraint-Technologie. Workshop at GI Jahrestagung 2011, 2011. (to appear).
3. C. Beierle, G. Kern-Isberner, and N. Koch. A high-level implementation of a system for automated reasoning with default rules (system description). In A. Armando, P. Baumgartner, and G. Dowek, editors, Proc. of the 4th International Joint Conference on Automated Reasoning (IJCAR-2008), volume 5195 of LNCS, pages 147–153. Springer, 2008.
4. S. Benferhat, D. Dubois, and H. Prade. Representing default rules in possibilistic logic. In Proceedings 3rd International Conference on Principles of Knowledge Representation and Reasoning KR’92, pages 673–684, 1992.
5. R. A. Bourne. Default reasoning using maximum entropy and variable strength defaults. PhD thesis, Univ. of London, 1999.
6. R.A. Bourne and S. Parsons. Maximum entropy and variable strength defaults. In Proceedings Sixteenth International Joint Conference on Artificial Intelligence, IJCAI’99, pages 50–55, 1999.
7. B. DeFinetti. Theory of Probability, volume 1.2. John Wiley & Sons, 1974.
8. T. Eiter and T. Lukasiewicz. Complexity results for structure-based causalitly. Artif. Intell., 142(1):53–89, 2002.
9. M. Goldszmidt, P. Morris, and J. Pearl. A maximum entropy approach to nonmonotonic reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3):220–232, 1993.
10. M. Goldszmidt and J. Pearl. Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artificial Intelligence, 84:57–112, 1996.
11. G. Kern-Isberner. Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artificial Intelligence, 98:169–208, 1998.
12. G. Kern-Isberner. *Conditionals in nonmonotonic reasoning and belief revision*. Springer, Lecture Notes in Artificial Intelligence LNAI 2087, 2001.
13. G. Kern-Isberner. Handling conditionals adequately in uncertain reasoning and belief revision. *Journal of Applied Non-Classical Logics*, 12(2):215–237, 2002.
14. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver. In H. Glaser, P. H. Hartel, and H. Kuchen, editors, *Programming Languages: Implementations, Logics, and Programs*, (PLILP’97), volume 1292 of LNCS, pages 191–206. Springer, 1997.
15. C. Müller. Implementierung von Default-Regeln durch optimale konditionale Rangfunktionen. Abschlussarbeit Bachelor of Science in Informatik, FernUniversität in Hagen, 2004.
16. J.B. Paris. *The uncertain reasoner’s companion – A mathematical perspective*. Cambridge University Press, 1994.
17. J.B. Paris and A. Vencovska. In defence of the maximum entropy inference process. *International Journal of Approximate Reasoning*, 17(1):77–103, 1997.
18. W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic states. In W.L. Harper and B. Skyrms, editors, *Causation in Decision, Belief Change, and Statistics, II*, pages 105–134. Kluwer Academic Publishers, 1988.
19. E. Weydert. System JZ - How to build a canonical ranking model of a default knowledge base. In *Proceedings KR’98*. Morgan Kaufmann, 1998.
20. J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. *CoRR*, abs/1011.5332, 2010. (to appear in *Theory and Practice of Logic Programming*).