Improvement of accuracy of cycle jump method for analysis under cyclic load
(Extension to finite deformation problem)

Kohmei SATOH∗1, Yasunori YUSA∗2 and Hiroshi OKADA∗3

1 Graduate School of Science and Technology, Tokyo University of Science
2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
2 Graduate School of Informatics and Engineering, The University of Electro-Communications
1-5-1 Chofugaku, Chofu-shi, Tokyo 182-8585, Japan
3 Faculty of Science and Technology, Tokyo University of Science
2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

Abstract
In this paper, a formulation and some computational results of cycle jump method for finite strain elastic-plastic problems subject to cyclic loads are presented. The cycle jump method is to shorten the total computational time. An analysis using the cycle jump method is carried out such that a combination of a few cycles of cycle-by-cycle analysis and the cycle jump by extrapolating physical quantities such as the plastic strains for many cycles based on the results of preceding cycle-by-cycle analysis. The cycle-by-cycle analysis and the cycle jump are repeated until the desired load cycle is achieved. When the method is applied to the finite strain elastic-plastic problem, it involves the finite rotation and the finite stretch. Then, both of them are decomposed into the elastic and the plastic components. This paper presents appropriate treatments on the rotation and the stretch under the multiplicative decomposition of the deformation into the plastic and the elastic parts. Then, some numerical examples are shown. It is concluded that the proposed cycle jump approach performs well under a certain conditions. Such conditions are also described in the paper.

Keywords: Cycle jump method, Finite strain elastic-plastic analysis, Cyclic load, Temporal multi-scale method, Nonlinear finite element method

1. 緒言

多くの構造は繰返し荷重の下で長期間にわたり使用される。そのため、構造設計では疲労を考慮することが重要である。多くの場合、構造は弾性範囲内で使用される。その場合、有限要素法等による線形弾性解析による評価が行われ、き裂損傷を仮定した解析が行われることがあり、多くの場合で応力拡大係数により評価が行われる。き裂進展解析による余寿命予測もしばしば行われてきた。
一方、繰返し荷重の大きさが弾性範囲を超える場合は線形弾性問題解析により評価することはできない。例えば、弾塑性解析など、非線形解析を行うことが必要になる。このとき、荷重が周期的であっても材料中に塑性ひずみや損傷が蓄積されるため、変形履歴が完全に周期的にならない、例えば、相当塑性ひずみは塑性変形に伴って

No.19-00299 [DOI:10.1299/transjsme.19-00299], J-STAGE Advance Publication date : 8 November, 2019
*1 正員, 東京理科大学大学院 理工学研究科（〒 278-8510 千葉県野田市山崎 2641）
*2 正員, 電気通信大学大学院 情報理工学研究科（〒 182-8585 東京都調布市調布ケ丘 1-5-1）
*3 正員, フェロー, 東京理科大学 理工学部
E-mail of corresponding author: kohmei.satoh@gmail.com

[DOI: 10.1299/transjsme.19-00299] © 2019 The Japan Society of Mechanical Engineers
蓄積するパラメータであるので、変形履歴とともに単調増加をするため周期的ではない。多くの場合、損傷パラメータも同様である。さらに、荷重自体が完全に周期的でないと場合も想定される。

有限要素法を使用した工学解析の様々な場面で繰返し荷重を考慮する必要がある。例えば、(社)日本溶接協会のデータベースに繰返し荷重のき裂進展挙動が公開されている（日本溶接協会, 2019）、地震荷重下における原子力機器、特に配管系の構造材料の変化を考慮する重要な材料の高まりによりこのような試験研究が行われている（日本溶接協会, 2019）。その他、例えば、文献（Takahashi et al., 2010; Benoit et al., 2012）のように、弾塑性や粘弾塑性変形のように非線形変形が発生する繰返し負荷問題は工学的に大変重要である。しかしながら、数百から数千繰返し負荷下での非線形解析を実施するためには膨大な計算量が必要となる。

そのため、解析の高速化や計算時間の削減が必要になる。前者にはマルチコアやマルチノード計算機を用いて並列計算を行う方法（宮村他, 1999など）や、ソースコードの最適化によって1コア内の計算を高速化を行う方法がある。マルチコアやマルチノード計算機を用いる手法は、主として並列計算などで用いられる比較的大規模な平行演算に向けたものである。OpenMPやMPIなどのプログラミング技術やグラフ理論などの数学的な知識に高度なものが必要だが、MUMPS（MUMPS, 2019）、METIS（METIS, 2019）、PETSc（PETSc, 2019）といったライブラリを用いることで比較的容易に利用することができる。1コア内での最適化を行う手法には積分点レベルでのベクトル・テンソル演算に向けたものである。SIMDベクトル化（Kawai et al, 2015など）やハイパフォーマンス・バターンデザイン（河合他, 2018）などを利用する方法が挙げられる。これらはいずれもライブラリAutoMT（AutoMT, 2019）などで利用することで容易に利用できる。後者は多くの場合は何らかの近似や始める数荷重サイクルの解析を行うことで代替されてきた。あるいは、1あるいは数サイクルの絶返し負荷に対する解析を実施し、その結果を用いた応力、ひずみ、塑性ひずみ等の物理量を時系列的な外挿を行い、解析を行う絶返し負荷サイクルを省略する手法が提案されている（Van Paepegem et al, 2001; Cojocaru and Karlsson, 2006など）。このような手法をサイクルジャンプ法とよぶ、筆者の知る限り、サイクルジャンプ法に関する研究報告は多くなく、さらなる研究の余地があるものと考えられる。一方、材料の微視的構造が周期的であるとし、微視的構造解析に基づき解析の効率化のための数値実験が行われるいくつかの手法が提案されている。このような手法を時系列マルチスケール解析に基づき、材料の微視的構造を考慮したサイクルジャンプ法の提案が行われている。筆者の知る限り、微視的構造を考慮したサイクルジャンプ法については多くの研究報告があり、商用有限要素法プログラムに実装されるなど、既に実用化されている一方、時系列マルチスケール解析についての研究報告の数は少なく、現時点でも研究の余地があると考えられる。

本研究の目的は、工学的に重要な繰返し負荷下での構造解析にかかる時間を短縮できる手法を開発することである。前報では、Fish and Oskay（Fish and Oskay, 2005）の時系列マルチスケール解析の考え方に基づき、繰返し負荷下での応力、ひずみ、塑性ひずみ等が時系列的に積分周期と仮定できる場合に対するサイクルジャンプ法を定式化し、微小変形弾塑性繰返し負荷問題について適用した。全周期数は、時系列的に振動する周期の数をそのままに、振動中心振幅が時間の経過とともに徐々に変化する場合である。前報では、微小変形弾塑性問題に対して弾塑性変形の計算を仮定してサイクルジャンプ法を提案した。一方で、弾塑性変形の加算分解と計算応力速度により有限変形問題への拡張が可能であるが、加算分解を用いる定式化の方が計算負荷を増やす場合に比べ、より厳密であることが知られている。また、また、加算分解を用いると、時間に応じた速度や荷重を変化させた場合、加算分解が可能になると、本研究で提案するサイクルジャンプ法の枠組みへの適用が図られる。そのために、本報では時間軸にさらに留意し、弾塑性変形を加算分解を用いた有限変形弾塑性問題に対するサイクルジャンプ法を提案する。さらに、提案手法に基づく数値解析例によりサイクルジャンプ法解析の精度に関する議論を行う。

2. 既往研究と基礎概念

以下に、本研究で提案するサイクルジャンプ法の枠組みについての Almost Periodic Temporal Homogenization operator (APTH オペレーター) とサイクルジャンプ法の考え方、さらに、前報で報告した微小変形弾塑性変形問題に対するサイクルジャンプ法の概要について述べる。
2.1 想定している繰返し負荷問題と準周期関数

本研究では、弾塑性材料に代表される非線形性を有する材料で構成される構造に繰返し負荷が作用する問題を想定している。また、繰返し荷重は時系列的に完全に周期的かその振幅や中央値が徐々に変化するとする。いずれの場合でも、非線形性を有する材料で構成された構造の応答はその振幅や中央値が徐々に変化することを仮定すべきである。図1中のジグザク曲線は、振幅や振動中心が徐々に変化していく応力、ひずみ、塑性ひずみの時系列変数の模式図である。一方、相当塑性ひずみのように蓄積されていく量は振動させずに荷重サイクルとともに単調増加をする。なお、振幅やその中心が徐々に変化する時系列関数は準周期関数（Almost Periodic Function）（Fish and Oskay, 2005）とよばれる。本研究では、荷重がほぼ周期的であると仮定して変形履歴を追従することを考えている。そこで、それを図1に示すように準周期的であるという仮定が成立として変形履歴を追従することが近似的に可能になる。サイクル列挙法では、図1中のN_{jump}荷重サイクルで表現し、解析を省略した荷重サイクルの間でも変形履歴が準周期的に推移するものとして仮定しているので、結果として近似的にはあるが、全ての荷重サイクルの変形履歴を追従しているということになる。そのためにそれを準周期関数で表現し、議論を展開する。

準周期関数$\phi^\zeta(x,t)$を表現するために、解析全体における時刻（マクロ時間スケール）をt、1サイクル内における時刻（ミクロ時間スケール）をθで表し、tとθは次の関係を有する。

\[t = \zeta \theta, \quad 0 < \zeta < 1 \quad (1) \]

さらに、準周期関数$\phi^\zeta(x,t)$をtとθの関数$\phi(x,t,\theta)$としても表す。

\[\phi^\zeta(x,t) = \phi(x,t,\theta) \quad (2) \]

\[\phi^\zeta(x,t) = PTH(\phi(x,t,\theta)) = \frac{1}{\zeta \theta_0} \int_0^{\theta_0} \phi(x,t,\theta) d\theta \quad (3) \]

式（3）は準周期関数$\phi^\zeta(x,t)$のマクロ時間スケールに関する微係数がミクロ時間スケール周期あたりの時間導関数の平均として表現されることを表す。これを、準周期関数の平均化オペレーターとして、Almost Periodic Temporal Homogenization operator（APTH オペレーター）と定義する。さらに、ミクロ時間スケールでの単位線返し荷重周期θ_0間の平均変化率として、次式も成立する。

\[\phi^\zeta(x,t) = \frac{\phi(x,t,\theta + \theta_0) - \phi(x,t,\theta)}{\zeta \theta_0} \quad (4) \]

これらを利用しても、物理量の時間外挙を行うことを考える、ミクロ時間スケールでθから$\theta + \theta_0$にかけての解析結果を使用して、マクロ時間でΔt、ミクロ時間で$N\theta_0$の線形外挙を行う場合を次式で表すことができる。

\[\phi^\zeta(x,t + \Delta t) = \frac{\phi^\zeta(x,t) + \Delta t \phi(x,t,\theta + \theta_0) - \phi(x,t,\theta)}{\zeta \theta_0} \]

\[= \phi^\zeta(x,t) + N\zeta \theta_0 \frac{\phi(x,t,\theta + \theta_0) - \phi(x,t,\theta)}{\zeta \theta_0} \quad (\Delta t = N\zeta \theta_0) \quad (5) \]

2.2 微小変形弾塑性問題への適用

微小変形弾塑性問題では、ひずみεに対して塑性ひずみε^pと弾性ひずみε^eの次式のような算数分解が成立することを前提とする。

\[\varepsilon = \varepsilon^e + \varepsilon^p \quad (6) \]

筆者らの提案した微小変形問題におけるサイクルジャンプ法の概念図を図1に示す。図1では、$N_{CycleByCycle}$荷重サイクルについては線返し負荷を追従し、その後のN_{jump}荷重サイクルは線返し荷重を追従せず、サイクルジャンプを行うことを示している。サイクルジャンプは式（5）の線形外挙を用いて、サイクルジャンプ後の塑性ひずみや相
Fig. 1 Schematic representations of the almost periodic function and the proposed cycle jump method. The amplitude and the center of oscillation of the almost periodic function gradually change. The figure also presents the N_{IG}, N_{APTH} and N_{Jump} in the present cycle jump method.

当塑性ひずみなどの塑性変形に係る諸量を予測する。前報（佐藤他，2017）では、N をさらに式 (5) の計算に使用しない N_{IG} と式 (5) の計算に使用する N_{APTH} に分けすることが必要なことを示した。その理由は、$\phi(x,t, \theta + \theta_0)$ と $\phi(x,t, \theta)$ の値の差がわずかな場合、式 (5) で使用されるそれらの差 $\phi(x,t, \theta + \theta_0) - \phi(x,t, \theta)$ が数値誤差だけとなることを防ぐためである。1 荷重サイクルではなく、N_{APTH} 荷重サイクルで発生する差 $\phi(x,t, \theta + \theta_0) - \phi(x,t, \theta)$ を使用することが提案され、精度向上に寄与することが示されている。さらに、サイクルジャンプ後一定荷重サイクルの解析を行えば、サイクルジャンプに起因する誤差を回避できることを見出し、サイクルジャンプ後 N_{IG} 荷重サイクルの解析の後にサイクルジャンプで使用する線形外挿法の取り口を求めることを提案した。さらに、これがサイクルジャンプ解析の精度向上に寄与することが確認できている。さらに、マクロ時間が t_0 から t_1 が $N_{IG} \theta_0$ に、t_1 から t_2 が $N_{APTH} \theta_0$、t_2 から t_3 が $N_{Jump} \theta_0$ に対応している。

この考え方の下で前報（佐藤他，2017）で提案した微小変形弾塑性問題に対するサイクルジャンプ法を次のようにまとめることができる。時刻 t_0 での諸量は既知であり、物体が釣合状態にあるとする。時刻 t_0 から t_2 まで繰返し荷重下の弾性解析を行う。うち、時刻 t_1 から t_2 が N_{APTH} に対応する。次に、時刻 t_2 での塑性ひずみや相当塑性ひずみ、移動硬化則の場合の背応力をサイクルジャンプで定める。例えば、塑性ひずみのサイクルジャンプを次式で示すことができる。

$$
\varepsilon^p_{t_3} = \varepsilon^p_{t_2} + \frac{t_3 - t_2}{t_2 - t_1} (\varepsilon^p_{t_2} - \varepsilon^p_{t_1})
$$ (7)

$$
\varepsilon^\beta_{t_3} = \varepsilon^\beta_{t_2} + \frac{t_3 - t_2}{t_2 - t_1} (\varepsilon^\beta_{t_2} - \varepsilon^\beta_{t_1})
$$ (8)

$$
\beta_{t_3} = \beta_{t_2} + \frac{t_3 - t_2}{t_2 - t_1} (\beta_{t_2} - \beta_{t_1})
$$ (9)

塑性ひずみ $\varepsilon^p_{t_3}$ を初期ひずみとして弾性問題を解くことにより、時刻 t_3 での釣合状態を導き、時刻 t_3 での応力 σ_{t_3} を得る。応力 σ_{t_1} とサイクルジャンプの結果として得られた相当塑性ひずみ $\varepsilon^\beta_{t_3}$ や背応力 β_{t_3} を、続く $N_{IG} + N_{APTH}$ サイクルの繰返し荷重下での解析の初期値 σ_{t_1}, $\varepsilon^p_{t_1}$ や背応力 β_{t_1} として使用する。

これらのプロセスの繰返しにより、サイクルジャンプ法を用いた繰返し荷重問題解析を実施することができる。

3. 有限変形弾塑性問題におけるサイクルジャンプ法

本章では、はじめに本研究で使用した、弾塑性変形の乗算解法に基づく有限変形弾塑性解析手法の概要を述べる。続いて、それに基づいた有限変形弾塑性問題に対するサイクルジャンプ法を提案する。
3.1 乘算分解に基づく有限変形弾塑性有限要素法解析

図2に境界値問題を示す。変形後の領域をV、変位 \(\mathbf{u} \) が規定された境界を \(S_u \)、トラックション \(\mathbf{t} \) が規定された境界を \(S_t \) とする。満足すべき仮想仕事原理は

\[
\int_V \mathbf{\sigma} : \mathbf{\delta e} \, dV - \int_{S_t} \mathbf{t} \cdot \mathbf{\delta u} \, dS - \int_V \mathbf{b} \cdot \mathbf{\delta u} \, dV = 0
\]

である。ただし、\(\mathbf{\sigma} \) はCauchy応力、\(\mathbf{b} \) は物体力、\(\mathbf{\delta u} \) は仮想変位、\(\mathbf{\delta e} = \frac{1}{2} \left(\frac{\partial \mathbf{u}}{\partial x} + \left(\frac{\partial \mathbf{u}}{\partial x} \right)^T \right) \) である。式(10)を離散化したものを増分法およびNewton–Raphson法で求解する。未知変数は節点変位である。また、有限変形弾塑性問題では、節点変位から定まる変形こう配 \(\mathbf{F} \) に対して

\[
\mathbf{F} = \mathbf{F}^e \cdot \mathbf{F}^p
\]

のような乗算分解を仮定する。\(\mathbf{F}^e \) は弾性変形こう配、\(\mathbf{F}^p \) は塑性変形こう配である。プログラム実装では、\(\mathbf{F}^e \) と \(\mathbf{F}^p \) のいずれかを変形の履歴パラメータとして記憶しておく。あるいは、いずれかと等価な別のテンソル量を記憶してもよい。現時点の節点変位が既知であると考えれば、変形こう配 \(\mathbf{F} \) は既知であるので、式(11)を用いることで、\(\mathbf{F}^e \) と \(\mathbf{F}^p \) の一方から他方を計算することができる。応力積分アルゴリズムでは、構成モデルを用いてこれらの変形の履歴パラメータから式(10)中のCauchy応力 \(\mathbf{\sigma} \) を計算する。

次に、1例として本研究で使用したHenckyの構成モデルとその応力積分アルゴリズム(de Souza Neto et al., 2008)を示す。Henckyの構成モデルは

\[
\mathbf{\tau} = \mathbf{D} : \mathbf{e}^s = \mathbf{D} : \ln[\mathbf{V}^e] \tag{12}
\]

と表すことができる。ただし、\(\mathbf{\tau} \) はKirchhoff応力、\(\mathbf{D} \) は弾性テンソル、\(\mathbf{e}^s \) は弾性Henckyひずみ、\(\mathbf{V}^e \) は弾性左ストレッチである。本研究で使用したプログラムでは、弾性Henckyひずみ \(\mathbf{e}^e \) と弾性回転 \(\mathbf{R}^e \) を変形の履歴パラメータとして記憶している。これらから

\[
\mathbf{F}^e = \mathbf{V}^e \cdot \mathbf{R}^e = \exp[\mathbf{e}^e] \cdot \mathbf{R}^e \tag{13}
\]

のように弾性変形こう配 \(\mathbf{F}^e \) を計算することができ、これを記憶する。ただし、次節で述べるサイクルジャンプ法では弾性変形に関する変形こう配、あるいは右ストレッチを用いることから塑性変形こう配 \(\mathbf{F}^p \) を関係(11)から求め、これも必要に応じて記憶しておく。さらに、構成モデルの履歴パラメータとして相当塑性ひずみ \(\mathbf{\dot{e}}^p \)、降伏応力 \(\mathbf{\sigma}_0 \)、背応力 \(\mathbf{\beta} \) を記憶している。つまり、応力積分アルゴリズムを示す。最初に、時刻 \(t + \Delta t \) の節点変位と節点変位増分から、変形こう配 \(\mathbf{F}_{t+\Delta t}^e \) と変形こう配増分 \(\mathbf{F}_{\Delta t}^e \) を計算する、変形こう配増分 \(\mathbf{F}_{\Delta t} \) を用い、時刻 \(t + \Delta t \) の試行弾性Henckyひずみ \(\mathbf{e}^e_{t+\Delta t} \)を

\[
\mathbf{e}^e_{t+\Delta t} = \ln[\mathbf{V}^e_{t+\Delta t}^\text{trial}] = \frac{1}{2} \ln \left[\mathbf{F}^e_{t+\Delta t} \cdot (\mathbf{F}^e_{t+\Delta t})^T \right] = \frac{1}{2} \ln \left[\mathbf{F}_{\Delta t}^e \cdot (\mathbf{F}_{\Delta t}^e)^T \right] \tag{14}
\]

のように求める。ただし、\(\mathbf{V}^e_{t+\Delta t}^\text{trial} \) は試行弾性左ストレッチ、\(\mathbf{F}^e_{t+\Delta t}^\text{trial} \) は試行弾性変形こう配である。時刻 \(t \) の弾性変形こう配 \(\mathbf{F}^e_t \) は履歴パラメータであるために既知である。一方、試行背応力 \(\mathbf{\beta}_{t+\Delta t}^\text{trial} \) は

\[
\mathbf{\beta}_{t+\Delta t}^\text{trial} = \mathbf{R}^e_{t+\Delta t} \cdot (\mathbf{F}^e_{t+\Delta t}^\text{trial})^T \mathbf{\beta}_{t}^e \cdot (\mathbf{F}^e_{t}^\text{trial}) \cdot (\mathbf{R}^e_{t+\Delta t})^T \tag{15}
\]

のように求める。ただし、試行弾性回転 \(\mathbf{R}^e_{t+\Delta t}^\text{trial} \) は、式(13)を用いて試行弾性変形こう配 \(\mathbf{F}^e_{t+\Delta t}^\text{trial} \) と試行弾性Henckyひずみ \(\mathbf{e}^e_{t+\Delta t} \) から計算する。時刻 \(t \) の弾性回転 \(\mathbf{R}^e_t \) と背応力 \(\mathbf{\beta}_t^e \) は既知である。以上のように求めた試行弾性Henckyひずみ \(\mathbf{e}^e_{t+\Delta t} \) と試行背応力 \(\mathbf{\beta}_{t+\Delta t}^\text{trial} \) から、微小変形弾塑性解析のラジアルターン法と同様にして最終弾性Henckyひずみ \(\mathbf{e}^e_{t+\Delta t} \)、最終背応力 \(\mathbf{\beta}_{t+\Delta t} \)、そして、式(12)を満たすKirchhoff応力 \(\mathbf{\tau}_{t+\Delta t} \) を得る。最後に、Kirchhoff応力を \(\det \mathbf{F}_{t+\Delta t} \) で除することでCauchy応力 \(\mathbf{\sigma}_{t+\Delta t} \) を得る。
3.2 有限変形弾塑性有限要素法のサイクルジャンプ

前節で示したものように、本研究では弾塑性変形の数値解法（Hashiguchi and Yamakawa, 2013）に基づく有限変形問題解析を用いる。そこで、解算解析に基づく有限要素法解析を想定したサイクルジャンプ法を以下のように提案する。

前節、式 (11) で示したように弾塑性変形と塑性変形に関する変形こう配をそれぞれ F^e と F^p とおく。変形こう配 F をそれらの解算解析によって計算することが可能である。さらに、F^e をその左ストレッチ V^e と回転 R^e に、F^p をその回転 R^p と右ストレッチ U^p とに分解することができる。回転 R を R^e と R^p の積で表すことができるので、次式のように変形を分解することが可能になる。

\[F = (V^e \cdot R^e) \cdot (R^p \cdot U^p) \]
\[= V^e \cdot R \cdot U^p \] \hspace{1cm} (16)

微小変形問題のときと同様、塑性変形に係る変数のサイクルジャンプを行うことを考える。U^p は前節で概説した有限変形弾塑性解析中で必要に応じて変形した F^p から求めることができる。しかし、微小変形問題で塑性ひずみ e^p に相当する塑性変形の右ストレッチ U^p は収束解が必要になるため、微小変形問題における式 (7) を有限変形問題に適用できず、例えば、図 1 に示したサイクルジャンプの 1 単位、t_0 から t_3 の間の塑性変形の右ストレッチ $U^p_{t_0:t_3}$ を、時刻 t_0 から t_1, t_1 から t_2 と t_2 から t_3 の変形を表す右ストレッチ $U^p_{t_0:t_1}$, $U^p_{t_1:t_2}$, $U^p_{t_2:t_3}$ に分解する場合は次式のようにそれぞれの積となる。

\[U^p_{t_0:t_3} = U^p_{t_0:t_1} \cdot U^p_{t_1:t_2} \cdot U^p_{t_2:t_3} \] \hspace{1cm} (17)

そこで、塑性変形の右ストレッチ U^p の対数である、χ を導入する。

\[\chi \equiv \ln[U^p] \] \hspace{1cm} (18)

さらに、式 (17) を式 (18) 中で使用すれば、χ は加算分解が可能であることが明らかになる。すなわち、次の関係が成立する。

\[\ln[U^p_{t_0:t_3}] = \chi_{t_0:t_3} = \chi_{t_0:t_1} + \chi_{t_1:t_2} + \chi_{t_2:t_3} \]
\[\ln[U^p_{t_0:t_2}] = \chi_{t_0:t_2} = \chi_{t_0:t_1} + \chi_{t_1:t_2} \hspace{1cm} (19) \]

ここで、$\chi_{t_0:t_1}$, $\chi_{t_1:t_2}$, $\chi_{t_2:t_3}$ と塑性右ストレッチの関係は次式で与えられる。

\[\chi_{t_0} = \ln[U^p_{t_0}], \quad \chi_{t_1} = \ln[U^p_{t_0:t_1}], \quad \chi_{t_2} = \ln[U^p_{t_1:t_2}], \quad \chi_{t_3} = \ln[U^p_{t_2:t_3}] \] \hspace{1cm} (20)

χ は加算分解が可能であることから、有限変形問題でのサイクルジャンプを χ に対して適用する。

\[\chi_{t_2:t_3} = \frac{t_3 - t_2}{t_2 - t_1} \left(\chi_{t_1:t_2} \right) \] \hspace{1cm} (21)
この結果より、

\[U_{0-3}^p = \exp \left[\mathbf{Z}_{0-3} \right] = \exp \left[\mathbf{Z}_{0-1} + \mathbf{Z}_{1-2} + \mathbf{Z}_{2-3} \right] \]

(22)

さらに、\(t_3 \) での塑性変形の右ストレッチ \(U_{0-3}^p \) は次式で与えられる。

\[U_{0-3}^p = \exp \left[\mathbf{Z}_{0-3} \right] \]

(23)

相当塑性ひずみ \(\varepsilon_p \) などのスカラ量については、微小変形問題の時と同様に式 (8) を用いた線形外挿を行う。さらに、背応力 \(\beta \) についても相当塑性ひずみ \(\varepsilon_p \) などのスカラ量と同様な線形外挿を実施するが、有限回転を考慮する。時刻 \(t_3 \) までの回転 \(R_{t_3} \) を用い、時刻 \(t_3 \) での配置上で線形外挿を行う。なお、次節では述べるように、時刻 \(t_3 \) での変形はサイクルジャンプ後の弾性回転計算により定めることができるので、\(F_{t_3} \) を既知とすれば極分解により回転 \(R_{t_3} \) を定めることができる。時刻 \(t_1 \) や \(t_2 \) から \(t_3 \) への回転を考慮したサイクルジャンプで使用する背応力を下記のようにおく。

\[\begin{align*}
\hat{\beta}_{t_3} &= R_{t_3-1} \cdot \hat{\beta}_{t_1} \\
\hat{\beta}_{t_2} &= R_{t_2-1} \cdot \hat{\beta}_{t_3}
\end{align*} \]

(24)

ここで、\(R_{t_3-1} = R_{t_3} \cdot R_{t_2}^{-1} \) である。式 (24) は、時刻 \(t_1 \) より \(t_3 \) への弾性回転を回転で代用したものである。弾性回転 \(R_{t_3}^{-1} \) と回転 \(R \) の違いが大きくなっても妥当な予測を与えると考えることができる。ただし、本論文の解析で使用した Hencky の構成モデルと応力積分アルゴリズム (de Souza Neto et al., 2008) では弾性回転 \(R_{t_3}^{-1} \) と回転 \(R \) が常に一定であるため問題とはならない。

それらを用い、背応力のサイクルジャンプを次式で行い、時刻 \(t_3 \) での背応力 \(\beta_{t_3} \) の予測値とする。

\[\beta_{t_3} = \hat{\beta}_{t_2} + \frac{t_3 - t_2}{t_3 - t_1} (\hat{\beta}_{t_3} - \hat{\beta}_{t_2}) \]

(25)

以上により、塑性変形に関する右ストレッチ \(U^p \) と他の物理量のサイクルジャンプを行うことができる。さらに、\(U^p \) を既知とした有限変形問題での弾性境界値問題を解くことで弾性変形に関する右ストレッチ \(V^p \) と回転 \(R \) を得る。ここで、塑性変形は常に体積一定の条件を満たす必要がある。前節で述べた有限変形弾塑性解析の結果として得られる \(U^p \) のデーターミニマント \(\text{det}[U^p] = 1 \) である。そのため、\(\mathbf{X} \) のトレースがゼロとなる。よって、式 (21) によって得られた \(\mathbf{X}_{0-3} \) のトレースもゼロとなる。それらを用いて式 (22) により予測された塑性変形の右ストレッチのデーターミニマントが残条件に 1 となるので、有限変形問題におけるサイクルジャンプの結果として得られる塑性変形も体積一定の条件を満たす。

3.3 サイクルジャンプ実行後の釣合計かと後続解析初期値の設定

時刻 \(t_3 \) から \(t_3 \) に対するサイクルジャンプの後、\(U_{t_3}^p \) を既知とした時刻 \(t_3 \) での物体の変形と応力分布を求めることで、物体の釣合条件を満たす。この際、物体の回転 \(R_{t_3} \) も同時に定めることができる。具体的には、3・1 節の有限変形解析の枠組みの中で初期値として、\(F^p \) を \(F^p = F_{t_3} \cdot (U_{t_3}^p)^{-1} \)、\(F \) を \(F = F_{t_3} \) として弹性解析を行う。その結果として、時刻 \(t_3 \) における変形を配 \(F_{t_3} \) を定めることができる。このとき、変形を配、弹性左ストレッチ、回転、塑性右ストレッチの間に次の関係が成立する。

\[F_{t_3} = V_{t_3}^p \cdot R_{t_3} \cdot U_{t_3}^p \]

(26)

ここで、\(R_{t_3} \) は弾性成分 \(R_{t_3}^e \) と塑性成分 \(R_{t_3}^p \) に分解することができる \(R_{t_3} = R_{t_3}^e \cdot R_{t_3}^p \)。しかし、この分解には任意性があるため、後続解析の初期値として使用する弾性変形こう配 \(F_{t_3}^e \) には \(V_{t_3}^p \cdot R_{t_3} \) を使用する。すなわち、次式で与えることもできる。

\[F_{t_3}^e = F_{t_3} \cdot (U_{t_3}^p)^{-1} \]

(27)

また、変形こう配の初期値 \(F_{t_3} \) には \(F_{t_3} \) をそのまま使用する。相当塑性ひずみ等はサイクルジャンプにより得られた \(\varepsilon_{t_3}^p \) を後続解析の初期値 \(\varepsilon_{t_3}^p \) として使用する。
4. 数値計算例（一軸応力問題）

はじめに、提案のサイクルジャンプ法の基本的精度検証を目的とした一軸繰返し荷重問題の解析結果について述べる。

4.1 解析モデル

図3(a)に示す一辺1 mmの立方体に対し、応力や塑性ひずみ振幅が徐々に変化する場合を想定した解析例題を設定した。変位振幅が徐々に、線形的に増大することで、準周期関数を仮定した定式化の基礎的検証を行う。はじめに、変形の大きさの問題により、本報告で提案している有限変形問題のサイクルジャンプ法解析結果の検討を行う。そこで、図3(b)に示すように公称ひずみの振幅を1.1σy/Eから1000荷重サイクルの間に11σy/Eまで線形的に増大するように与えた。次に、図3(c)に示すように変形が大きくなる公称ひずみの振幅を11σy/Eから1000荷重サイクルの間に110σy/Eまで線形的に増大するように与えた場合について解析を行った。それぞれの場合について、サイクルジャンプ法による解析結果とサイクルバイサイクル解析の結果を参照解とし、さらに微小変形一軸応力状態を仮定した計算結果とも比較を行う。サイクルジャンプ法解析の重要なNGとNAPTの精度におよぼす影響について検討を行った。

ヤング率Eとポアソン比νを100GPaと0.3とし、初期降伏応力σyはE/1000=100 MPa、等方硬化係数HはE/1000=100 MPa（線形硬化則）とした。なお、ヤング率と初期降伏応力や等方硬化係数の比は、金属材料の代表的な値の範囲内なものである。六面体一次要素を用い、立方体を1要素で表現した。数値積分は各要素内で体積ひずみに関する項は1点で積分、偏差ひずみに関する項は完全積分を行う選択低減積分を採用した。また、有限要素法の時間増分幅は一定とし、1サイクル20増分ステップとした。さらに、非線形有限要素法の鉛直計算に用いたNewton-Raphson法による収束判定の収束判定の残差のしきい値を10^-10とし、100回で収束しない場合は計算を打ち切った。ただし、残差は次式で計算した。

Residual \equiv \frac{\sqrt{\sum_{\text{Node}} \left(f_{\text{external}} - f_{\text{internal}} \right)^2}}{\sqrt{\sum_{\text{Node}} \left(f_{\text{external}} \right)^2}}

ここでf_{\text{external}}は規定した節点力、f_{\text{internal}}は応力から計算された節点反力である。収束判定の残差のしきい値は、サイクルジャンプ法以外の誤差を回避する目的で非常に小さく設定している。

Fig. 3 Definitions of one-dimensionnal elastic-plastic problem with cyclic applied displacement.
限要要素法解析の結果は Cycle-by-Cycle, \(N_{IG} = 30, \ N_{APTH} = 30 \) とした時のサイクルジャンプ法解析による結果は \(N_{IG} = 30, \ N_{APTH} = 30 \) で記している。一軸応力解析とサイクルバイサイクル有限要素法解析の結果による結果は僅かに差があるが、ほぼ一致している。この差は、微小変形と有限変形問題解析の差と思われる。サイクルジャンプ法解析による結果は、1 回目と 2 回目のサイクルジャンプや、それらの後続解析では理論解や一般的な有限要素法解析との差が見られるものの、最後の弾塑性解析においては概ね一致している様子が見られた。初めのうちの差はサイクルジャンプにおける式 (21) の外挿操作によるオーバーシュートが原因だが、弾塑性解析を行う中でその差が小さくなる。この挙動は微小変形問題のサイクルジャンプ法解析結果（佐藤他，2017）でも同様である。

Fig. 4 The comparison of plastic strain \(\varepsilon_{p}^{33} \) between solutions of one-dimensional problem (One-Dimensional), cycle-by-cycle FEM (Cycle-by-Cycle) and cycle jump analysis with \(N_{IG} = 30 \) and \(N_{APTH} = 30 \) (\(N_{IG} = 30, \ N_{APTH} = 30 \)). The initial amplitude of the applied nominal strain is \(1.1 \sigma /E \). After 1000 cycles it is \(11 \sigma /E \). Plots of the results of the one-dimensional analysis and the cycle-by-cycle FEM are maximum and minimum points. The result of cycle jump analysis overshoot first and approached to the reference solution.

次に、図 3(c) の変形量を大きくした場合の結果を示す。図 5 に、引張方向の塑性ひずみの履歴を示す。一軸応力状態を仮定した計算結果を One-Dimensional、サイクルバイサイクル有限要素法解析の結果は Cycle-by-Cycle、\(N_{IG} = 30, \ N_{APTH} = 30 \) とした時のサイクルジャンプ法解析による結果は \(N_{IG} = 30, \ N_{APTH} = 30 \) で記している。一軸応力解析とサイクルバイサイクル有限要素法解析の結果は初めのうちは小さいが、徐々に大きくなる。サイクルジャンプ法解析による結果は、1 回目と 2 回目のサイクルジャンプや、それらの後続解析では理論解や一般的な有限要素法解析との差が見られるものの、最後の弾塑性解析においては概ね一致している様子が見られた。初めのうちの差はサイクルジャンプにおける式 (21) の外挿操作によるオーバーシュートが原因だが、弾塑性解析を行う中でその差が小さくなる。

Fig. 5 The comparison of plastic strain \(\varepsilon_{p}^{33} \) between solutions of one-dimensional problem (One-Dimensional), cycle-by-cycle FEM (Cycle-by-Cycle) and cycle jump analysis with \(N_{IG} = 30 \) and \(N_{APTH} = 30 \) (\(N_{IG} = 30, \ N_{APTH} = 30 \)). The initial amplitude of the applied nominal strain is \(11 \sigma /E \). After 1000 cycles it is \(110 \sigma /E \). Plots of the results of the one-dimensional analysis and the cycle-by-cycle FEM are maximum and minimum points. The result of cycle jump analysis overshoot first and approached to the reference solution.
4.3 \(N_{IG}, N_{APTH} \) の影響の検討

次に、サイクルジャンプ法解析における \(N_{IG} \) と \(N_{APTH} \) が計算精度にどのような影響をもたらすのかを検討する。\(N_{IG} + N_{APTH} + N_{Jump} \) を 200 に固定し、\(N_{IG} = 1, 5, 10, 20, 30 \)、\(N_{APTH} = 1, 5, 10, 20, 30 \) と様々に変化させた。また、サイクルジャンプ直後の精度が悪いことが想定されるため、最後のサイクルジャンプのみ \(N_{Jump} - N_{IG} \) 荷重サイクルだけジャンプし、\(N_{IG} \) 荷重サイクルは通常の弾塑性解析を行うこととした。計算精度を計る指標として、次式に示す相対誤差ノルムを用いた。

\[
\text{Relative error } e = \sqrt{\frac{\sum_{\text{GaussPoint}} \left(\{ \mathbf{e}^p_{\text{CycleJump}} - \mathbf{e}^p_{\text{Reference}} \} \right)^2}{\sum_{\text{GaussPoint}} \left(\mathbf{e}^p_{\text{Reference}} \right)^2}}
\] (29)

ここで、上添字 \(\text{CycleJump} \) と \(\text{Reference} \) はサイクルジャンプ法解析による結果を参照解の結果であることを示す。この相対誤差は、一般的な有限要素法解析による解析終了時の塑性ひずみ \(\mathbf{e}^p \) のノルムを有限要素法解析モデル全体で二乗和の平方根を分母に、サイクルジャンプ法解析と一般的な有限要素法解析による解析終了時の塑性ひずみ \(\mathbf{e}^p \) の差のノルムを有限要素モデル全体で二乗和の平方根を分子に持つ。微小変形問題では 0.1 以下であれば精度が良いとした（佐藤他、2017）。様々な \(N_{IG} \) と \(N_{APTH} \) の組合せによる解析結果から得られた相対誤差ノルムの値を表 1 に示す。本報の解析でも、応力や塑性ひずみの分布図から有限変形問題でも相対誤差ノルムが 0.1 以下であれば、概ね精度良くサイクルジャンプ法解析が実施できたと判断した。そこで表 1 中では相対誤差ノルムの値が 0.1 以下の場合同じ Accurate, 0.1 を超えるものに対して Inaccurate と表すこととした。全ての場合で小さい値の 0.1 を大きく下回っており、サイクルジャンプ解析の精度が良好なことを示唆される。例えば、\(N_{IG} = 1 \) の行を見ると、\(N_{APTH} \) を大きくしていくと徐々に相対誤差ノルムが小さくなっていく。これは他の \(N_{IG} \) についても同じことが言える。また、\(N_{APTH} = 1 \) の列を見ると、\(N_{IG} \) を大きくしていくと徐々に相対誤差ノルムが小さくなっていく。これは他の \(N_{APTH} \) についても同じことが言える。一方で、\(N_{IG} = 30 \)、\(N_{APTH} = 1 \) と \(N_{IG} = 1 \)、\(N_{APTH} = 30 \) のようにあるセルと \(N_{IG} \) と \(N_{APTH} \) を入れ替えたセルを着目すると、\(N_{IG} \) が大きい方がより相対誤差ノルムが小さくなっていている。\(N_{IG} \) と \(N_{APTH} \) を大きくしていくと計算精度は上昇する。\(N_{IG} \) の効果が \(N_{APTH} \) に比べてやや大きいと言える。

Table 1 Summary of the relative error norm of \(\mathbf{e}^p \) defined by eq. (29) of cycle jump analyses for the tension-compression block. The initial amplitude of the applied nominal strain is 1.1\(\varepsilon_y \)/\(E \). After 1000 cycles it is 11\(\varepsilon_y \)/\(E \). Accuracy is labeled to be “Accurate”, “Inaccurate” or “Diverged” for the cases that the relative error norm was less than 0.1, larger than 0.1 or the solution diverged, respectively. Also, this table shows that increase of \(N_{IG} \) contribute to higher accuracy of cycle jump analysis than that of \(N_{APTH} \).

\(N_{IG} \)	\(N_{APTH} = 1 \)	\(N_{APTH} = 5 \)	\(N_{APTH} = 10 \)	\(N_{APTH} = 20 \)	\(N_{APTH} = 30 \)
Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Relative error	0.0171	0.0171	0.0170	0.0168	0.0166
\(N_{IG} = 5 \)	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Relative error	0.0170	0.0169	0.0168	0.0166	0.0163
\(N_{IG} = 10 \)	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Relative error	0.0168	0.0167	0.0166	0.0163	0.0159
\(N_{IG} = 20 \)	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Relative error	0.0161	0.0160	0.0158	0.0154	0.0150
\(N_{IG} = 30 \)	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Relative error	0.0153	0.0151	0.0149	0.0144	0.0138

次の文章で、変数を大きくした場合について示す。様々な \(N_{IG} \) と \(N_{APTH} \) の組合せによる解析結果から得られた相対誤差ノルムの値を表 2 に示す。全ての組み合わせで小さい値の 0.1 を大きく下回っており、サイクルジャンプ法解析の精度が良好なることを示唆される。例えば、\(N_{IG} = 1 \) の行を見ると、\(N_{APTH} \) を大きくしていくと徐々に相対誤差ノルムが小さくなっていく。これは他の \(N_{IG} \) についても同じことが言える。また、\(N_{APTH} = 1 \) の列を見ると、\(N_{IG} \)
を大きくしていくと徐々に相対誤差ノルムが小さくなっていく。これは他のN_{APTH}についても同じことが言える。一方で，N_{IG} = 30，N_{APTH} = 1 と N_{IG} = 1，N_{APTH} = 30 のようにあるセルと N_{IG} と N_{APTH} を入れ替えたセルに着目すると，N_{IG} が大きい方がより相対誤差ノルムが小さくなっている。N_{IG} や N_{APTH} を大きくしていくと計算精度は上昇する。N_{IG} の効果が N_{APTH} に比べてやや大きいと言える。

Table 2 Summary of the relative error norm of e^p defined by eq. (29) of cycle jump analyses for the tension-compression block. The initial amplitude of the applied nominal strain is $1\sigma_y/E$. After 1000 cycles it is $110\sigma_y/E$. Accuracy is labeled to be “Accurate”, “Inaccurate” or “Diverged” for the case that the relative error norm was less than 0.1, larger than 0.1 or the solution diverged, respectively. Also, this table shows that increase of N_{IG} contribute to higher accuracy of cycle jump analysis than that of N_{APTH}.

N_{IG}	N_{APTH}	N_{APTH}	N_{APTH}	N_{APTH}	N_{APTH}	
1	Accuracy	Accurate	Accurate	Accurate	Accurate	
	Relative error	0.00970	0.00965	0.00960	0.00946	0.00930
5	Accuracy	Accurate	Accurate	Accurate	Accurate	
	Relative error	0.00955	0.00950	0.00944	0.00928	0.00910
10	Accuracy	Accurate	Accurate	Accurate	Accurate	
	Relative error	0.00936	0.00930	0.00922	0.00903	0.00882
20	Accuracy	Accurate	Accurate	Accurate	Accurate	
	Relative error	0.00889	0.00881	0.00870	0.00847	0.00820
30	Accuracy	Accurate	Accurate	Accurate	Accurate	
	Relative error	0.00832	0.00822	0.00809	0.00781	0.00749

5. 数値計算例（円孔を有する平板）

本章では，応力集中問題を対象としたサイクルジャンプ法解析の精度検討結果について示す。

5.1 繰り返し負荷問題とサイクルジャンプ法解析の各種条件

図6(a)に示す円孔を有する有限平板に対し，図6(b)に示す振動の中心が推移しながら振幅が徐々に大きくなる繰返し変位を与える。全 200 荷重サイクルで，荷重の増加がサイクルの一次関数になるように，最終的には平板の高さの 10%の変位を与えた。また，振幅については平板の高さの 1%であり，1 荷重サイクル目の引張時に平板の一部が塑性変形するように設定した。ヤング率 E を 100 GPa, ポアソン比 ν を 0.3 とし，Swift の応力-ひずみ関係を用いた。

$$\sigma = 1000 (0.01 + e^p)^{0.5}$$ (30)

これらの値はステンレス鋼などの金属性材料を想定して設定した。ただし，応力-ひずみ関係は $e^p = 0.00, 0.01, 0.02, \ldots, 10.00, 100.00$ の値を用いた多線直近似で入力した。等方硬化則，移動硬化則，混合比 0.5 の混合硬化則の 3 種類を使用して解析を行った。

有限要素法解析モデルは図6(d)に示す，対称条件から 1/8 モデルとした，六面体一次要素を採用し，48 個，100 節点である。数値積分は各要素内で体積ひずみに関する項は 1 点で積分，偏差ひずみに関する項は完全積分を行う選択低減積分を採用した。さらに，図中示した点 A は 200 サイクル終了時に相当塑性ひずみが最も蓄積する積分点，点 B はその他の点の一例として選んだ。これらの 2 点での物理量の履歴について議論を行う。

有限要素法の時間増分幅は一定とし，1 荷重サイクル 1000 増分ステップとした。また，非線形有限要素法における解の計算には Newton-Raphson 法による収束計算を用い，式 (28) で定義した残差のしきい値を 10^{-3} とし，10 回で収束しない場合は計算打ち切りとした。

サイクルジャンプ法解析では，$N_{IG} + N_{APTH} + N_{Jump}$ を 50 に固定し，$N_{IG} = 1, 2, 4, 6, 10, 15, N_{APTH} = 1, 2, 4, 6, 10, 15$
（a）板の幾何形状および境界条件。対称条件により、1/8モデルを用いた有限要素法分析。

（b）定数的に与えた変位。振動の平均値は板の高さの10%増加し、振幅は板の高さの1%一定。

（c）硬化曲線。スウィフトの式により、

\[\bar{\sigma} = 1000 (0.01 + \bar{\varepsilon}_p)^{0.5} \]

（d）有限要素モデル。線形六面体要素から成る。要素数は48、節点数は100。点Aは板で最大の塑性ひずみ、点Bは任意の面積点。

Fig. 6 定義問題の板に円孔を有する問題を対象とした循環変位

5.2 等方硬化則の場合

等方硬化則を適用した場合の数値計算例として、参照解とする \(N_{IG} = 15 \), \(N_{APTH} = 6 \)とした時のサイクルジャンプ法解析による200サイクル終了時に応力および塑性ひずみの分布図を図7に示す。応力集中部で差があるもののサイクルジャンプ法解析の結果は参照解と概ね一致している。一方、式（29）で定義される相対誤差ノルムは0.0247であり、計算精度が良好であったことが示唆される。

次に、参照解として \(N_{IG} = 6 \), \(N_{APTH} = 6 \)としたときのサイクルジャンプ法解析、及び、\(N_{IG} = 15 \), \(N_{APTH} = 6 \)としたときのサイクルジャンプ法解析における評価点A、Bにおける引張方向の塑性ひずみの歴史を図8に示す。ただし、参照解は最大引張時、最大圧縮時、各サイクル終了時での値の推移を示した。\(N_{IG} = 6 \), \(N_{APTH} = 6 \)の組合せの場合、点Aでは参照解から大きく離れている。これは式（8）や式（21）による外挿操作によるものと考えられる。\(N_{IG} = 15 \), \(N_{APTH} = 6 \)の組合せの場合、点Aでは初めのうちは参照解とは小さな差が見られるが、最終的には参照解に近づいていく、このことから \(N_{IG} \)を大きくすると参照解と近い値が得られることがわかる。

最後に、\(N_{IG} \)と \(N_{APTH} \)の組合せと計算精度の関係や塑性ひずみの相対誤差の関係について表3に示す。相対誤差ノルムは一軸応力問題と同様に式（29）で定義したものを探用した。また、200サイクル目まで計算が成されなかった。
Fig. 7 The distribution of plastic strain ε_{22}^{p} at the end of 200th cycle, when the isotropic hardening law is adopted, and the difference is calculated by $\varepsilon_{22}^{p,\text{Reference}} - \varepsilon_{22}^{p,\text{CycleJump}}$. The distribution of cycle jump analysis is similar to that of reference solution (cycle-by-cycle FEM analysis).

Fig. 8 The history of plastic strain ε_{22}^{p} at integration points shown in Fig. 6(d). The isotropic hardening law was adopted. Plots of the results of the reference solution (cycle-by-cycle FEM) are at the maximum and minimum points. These are shown that cycle jump analysis with $N_{IG} = 6$ and $N_{APTH} = 6$ overshot largely. And also, cycle jump analysis with $N_{IG} = 15$ and $N_{APTH} = 6$ slightly overshot, and approached to reference solution.
Table 3 Summary of the relative error norm of ε_p defined by eq. (29) of cycle jump analyses for the plate with the circular hole. The isotropic hardening law was adopted. Accuracy is labeled to be “Accurate”, “Inaccurate” or “Diverged” for the cases that the relative error norm was less than 0.1, larger than 0.1 or the solution diverged, respectively.

Also, this table shows that increase of N_{IG} contribute to higher accuracy of cycle jump analysis than that of N_{APTH}.

N_{IG}	N_{APTH}	Accuracy	Relative error
1	1	Inaccurate	0.786
	2	Inaccurate	0.310
	4	Inaccurate	0.330
	6	Inaccurate	0.335
	10	Inaccurate	0.403
	15	Inaccurate	0.260
2	1	Inaccurate	0.326
	2	Inaccurate	0.341
	4	Inaccurate	0.372
	6	Inaccurate	0.478
	10	Inaccurate	0.283
	15	Inaccurate	0.263
4	1	Diverged	0.506
	2	Inaccurate	0.304
	4	Inaccurate	0.300
	6	Inaccurate	0.257
	10	Inaccurate	0.316
	15	Inaccurate	0.316
6	1	Inaccurate	0.367
	2	Inaccurate	0.313
	4	Inaccurate	0.300
	6	Inaccurate	0.257
	10	Inaccurate	0.300
	15	Accurate	0.130
10	1	Inaccurate	0.461
	2	Inaccurate	0.430
	4	Inaccurate	0.369
	6	Inaccurate	0.300
	10	Inaccurate	0.130
	15	Accurate	0.0222
15	1	Accurate	0.110
	2	Accurate	0.0767
	4	Accurate	0.0427
	6	Accurate	0.0247
	10	Accurate	0.0121
	15	Accurate	0.0106

Fig. 9 The distribution of plastic strain ε_p at the end of 200th cycle, when the kinematic hardening law was adopted, and the difference is calculated by $\varepsilon_p^{Reference} - \varepsilon_p^{Cycle Jump}$. The distribution of cycle jump analysis is similar to that of reference solution (cycle-by-cycle FEM analysis).

(a) Reference. (b) Cycle jump analysis with $N_{IG} = 15$, $N_{APTH} = 6$. (c) Difference between (a) and (b).
Fig. 10 The history of plastic strain ε_p^{22} at integration points shown in Fig. 6(d). The kinematic hardening law is adopted. Plots of the results of the reference solution (cycle-by-cycle FEM) are at the maximum and minimum points. These are shown that cycle jump analysis with $N_{IG} = 6$ and $N_{APTH} = 6$ is diverged. On the other hand, accuracy of cycle jump analysis with $N_{IG} = 15$ and $N_{APTH} = 6$ is good.

よりも N_{IG} の効果が高いことが示唆される。

Table 4 Summary of the relative error norm of ε_p defined by eq. (29) of cycle jump analyses for the plate with the circular hole. The kinematic hardening law was adopted. Accuracy is labeled to be “Accurate”, “Inaccurate” or “Diverged” for the cases that the relative error norm was less than 0.1, larger than 0.1 or the solution diverged, respectively. Also, this table shows that increase of N_{IG} contribute to higher accuracy of cycle jump analysis than that of N_{APTH}.

N_{IG}	N_{APTH}	$N_{APTH} = 1$	$N_{APTH} = 2$	$N_{APTH} = 4$	$N_{APTH} = 6$	$N_{APTH} = 10$	$N_{APTH} = 15$
$N_{IG} = 1$	Accuracy	Diverged	Diverged	Diverged	Diverged	Diverged	Diverged
Relative error	—	—	—	—	—	—	—
$N_{IG} = 2$	Accuracy	Diverged	Diverged	Diverged	Diverged	Diverged	Diverged
Relative error	—	—	—	—	—	—	—
$N_{IG} = 4$	Accuracy	Diverged	Diverged	Diverged	Diverged	Diverged	Diverged
Relative error	—	—	—	—	—	—	—
$N_{IG} = 6$	Accuracy	Diverged	Diverged	Diverged	Diverged	Accurate	Accurate
Relative error	—	—	—	—	0.0807	0.0596	—
$N_{IG} = 10$	Accuracy	Accurate	Inaccurate	Diverged	Accurate	Accurate	Accurate
Relative error	0.0867	0.104	—	0.0639	0.0664	0.0540	—
$N_{IG} = 15$	Accuracy	Accurate	Accurate	Accurate	Accurate	Accurate	Accurate
Relative error	0.0550	0.0584	0.0650	0.0555	0.0437	0.0420	—

5.4 複合硬化則の場合

混合比を 0.5 とした時の混合硬化則を適用した場合の数値計算例として、参照解と $N_{IG} = 15, N_{APTH} = 6$ とした時のサイクルジャンプ法解析による引張方向の塑性ひずみの分布図を図11に示す。ただし、200荷重サイクル終了時のものである。参照解とサイクルジャンプ法解析はほぼ一致しており、サイクルジャンプ法解析が精度良く計算できている。また、式(29)で定義される相対誤差ノルムは 0.0195 であり、サイクルジャンプ法解析の計算精度が良好であったことが示唆される。

次に、参照解、$N_{IG} = 6, N_{APTH} = 6$ とした時のサイクルジャンプ法解析、そして、$N_{IG} = 15, N_{APTH} = 6$ とした時のサイクルジャンプ法解析の引張方向の塑性ひずみの履歴を図12に示す。ただし、評価点 A, B は図6(d)に示す。
Fig. 11 The distribution of plastic strain ε_{p22} at the end of 200th cycle, when the combined hardening law is adopted, and the difference is calculated by $\varepsilon_{p22}^{\text{Reference}} - \varepsilon_{p22}^{\text{Cycle Jump}}$. The distribution of cycle jump analysis is similar to that of reference solution (cycle-by-cycle FEM analysis).

Fig. 12 The history of plastic strain ε_{p22} at integration points shown in Fig. 6(d). The combined hardening law was adopted. Plots of the results of the reference solution (cycle-by-cycle FEM) are at the maximum and minimum points. It is shown that results of the cycle jump analyses overshoot during the first cycle jump, but gradually approach to the reference solution.
Table 5 Summary of the relative error norm of ε Defined by eq. (29) of cycle jump analyses for the plate with the circular hole. The combined hardening law is adopted. Accuracy is labeled to be “Accurate”, “Inaccurate” or “Diverged” for the cased that the relative error norm was less than 0.1, larger than 0.1 or the solution diverged, respectively.

Also, this table shows that increase of N_{IG} contribute to higher accuracy of cycle jump analysis than that of N_{APTH}.

N_{IG}	N_{APTH} = 1	N_{APTH} = 2	N_{APTH} = 4	N_{APTH} = 6	N_{APTH} = 10	N_{APTH} = 15
Accuracy	Diverged	Diverged	Diverged	Inaccurate	Accurate	Accurate
Relative error	—	—	0.150	0.0493	0.0270	
N_{IG} = 2	Diverged	Inaccurate	0.157	0.0949	0.0955	Accurate
Relative error	—	0.0949	0.0267	0.0226		
N_{IG} = 4	Inaccurate	Accurate	Accurate	Accurate	Accurate	Accurate
Relative error	0.133	0.0325	0.0269	0.0235	0.218	
N_{IG} = 6	Accurate	Accurate	Accurate	Accurate	Accurate	Accurate
Relative error	0.0273	0.0261	0.0231	0.0221	0.0211	
N_{IG} = 10	Accurate	Accurate	Accurate	Accurate	Accurate	Accurate
Relative error	0.0213	0.0223	0.0212	0.0205	0.0197	
N_{IG} = 15	Accurate	Accurate	Accurate	Accurate	Accurate	Accurate
Relative error	0.0184	0.0177	0.0182	0.0195	0.0192	0.0162

文　献

AutoMT, available from (https://adventure.sys.t.u-tokyo.ac.jp/lexadv/AutoMT.html), (参照日 2019年7月30日).

Benoit, A., Maitournam, M. H., Rémy, L. and Oger, F., Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds, International Journal of Fatigue, Vol. 38 (2012), pp. 65–74, DOI: 10.1016/j.ijfatigue.2011.11.012.

Cojocaru, D. and Karlsson, A. M., A simple numerical method of cycle jumps for cyclically loaded structures, International Journal of Fracture, Vol. 28 (2006), pp. 1677–1689, DOI: 10.1016/j.ijfract.2006.01.010.

de Souza Neto, E. A., Perić, D. and Owen, D. R. J., Computational methods for plasticity: theory and applications, John Wiley & Sons Ltd. (2008). (寺田賢二郎監訳，非線形有限要素法-弾塑性解析の理論と実践-, 森北出版 (2012).)

Fish, J. and Oscay, C., A nonlocal multiscale fatigue model, Mechanics of Advanced Materials and Structures, Vol. 12, No. 6 (2005), pp. 485–500, DOI: 10.1080/15376490500259319.
Hashiguchi, K., Subloading surface model in unconventional plasticity, International Journal of Solids and Structures, Vol. 25, No. 8 (1989), pp. 917–945, DOI: 10.1016/0020-7683(89)90038-3.

Hashiguchi, K. and Yamakawa, Y., Introduction to finite strain theory for continuum elasto-plasticity, John Wiley & Sons Ltd. (2013).

Kawai, K., Satoh, K., Uomoto, T., Yusa, Y., Shioya, R. and Okada, H., AutoMT, a library for tensor operations and its performance evaluation for solid continuum mechanics applications, Mechanical Engineering Letters, Vol. 1 (2015), DOI: 10.1299/mel.15-00349.

METIS, available from ⟨http://glaros.dtc.umn.edu/gkhome/views/metis⟩, (accessed on 30 July, 2019).

Benoit, A., Maitournam, M. H., Rémy, L. and Oger, F., Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds, International Journal of Fatigue, Vol. 38 (2012), pp. 65–74, DOI: 10.1016/j.ijfatigue.2011.11.012.

Cojocaru, D. and Karlsson, A. M., A simple numerical method of cycle jumps for cyclically loaded structures, International Journal of Fracture, Vol. 28 (2006), pp. 1677–1689, DOI: 10.1016/j.ijfracture.2006.01.010.

de Souza Neto, E. A., Perić, D. and Owen, D. R. J., Computational methods for plasticity: theory and applications, John Wiley & Sons Ltd. (2008).

Fish, J. and Oscay, C., A nonlocal multiscale fatigue model, Mechanics of Advanced Materials and Structures, Vol. 12, No. 6 (2005), pp. 485–500, DOI: 10.1080/15376490500259319.

Hashiguchi, K., Subloading surface model in unconventional plasticity, International Journal of Solids and Structures, Vol. 25, No. 8 (1989), pp. 917–945, DOI: 10.1016/0020-7683(89)90038-3.

Hashiguchi, K. and Yamakawa, Y., Introduction to finite strain theory for continuum elasto-plasticity, John Wiley & Sons Ltd. (2013).
Kawai, K., Satoh, K., Uomoto, T., Yusa, Y., Shioya, R. and Okada, H., AutoMT, a library for tensor operations and its performance evaluation for solid continuum mechanics applications, Mechanical Engineering Letters, Vol. 1 (2015), DOI: 10.1299/mel.15-00349.

Kawai, H., Yusa, Y., Okada, H., Shioya, R., Yamada, T. and Yoshimura, S., Effective implementation of tensor operation library for continuum mechanics based on high performance design pattern, Transactions of JSCES, Vol. 2018 (2018), DOI: 10.11421/jsces.2018.20180012 (in Japanese).

METIS, available from ⟨http://glaros.dtc.umn.edu/gkhome/views/metis⟩, (accessed on 30 July, 2019).

Miyamura, T., Noguchi, H., Shioya, R., Yoshimura, S. and Yagawa, G., Massively parallel elastic-plastic finite element analysis using the hierarchical domain decomposition method, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol. 65, No. 634 (1999), pp. 1201-1208, DOI: 10.1299/kikaia.65.1201 (in Japanese).

MUMPS, available from ⟨http://mumps.enseeiht.fr/⟩, (accessed on 30 July, 2019).

PETSc, available from ⟨https://www.mcs.anl.gov/petsc/⟩, (accessed on 30 July, 2019).

Satoh, K., Yusa, Y. and Okada, H., Improvement of accuracy of cycle jump method for analysis under cyclic load, Transactions of the JSME (in Japanese), Vol. 83, No. 854 (2017), DOI: 10.1299/transjsme.17-00300.

Takahashi, K., Tsunoi, S., Hara, T., Ueno, T., Mikami, A., Tagada, M. and Ando, K., Experimental study of low-cycle fatigue of pipe elbows with local wall thinning and life estimation using finite element analysis, International Journal of Pressure Vessels and Piping, Vol. 87 (2010), pp. 211–219.

The Japan Welding Engineering Society, Data base on fatigue and ductile fracture under multi-axial load, available from ⟨http://www-it.jwes.or.jp/fatigue_db/fatiguedb_fracture.jsp⟩, (accessed on 18 July, 2019).

The Japan Welding Engineering Society, Subcommittee for Important Knowledge of Multi-axial Fatigue and Ductile Fracture, available from ⟨http://www-it.jwes.or.jp/fatigue_db/pdf/fatiguedb_committee/ mdf.pdf⟩, (accessed on 18 July, 2019).

Van Paepegem, W., Degrieck, J. and De Daets, P., Finite element approach for modelling fatigue damage in fibre-reinforced composite materials, Composites Part B: Engineering, Vol. 32, No. 7 (2001), pp. 575-588, DOI: 10.1016/S1359-8368(01)00038-5.