How the radius of the screw insert core influences the flow behavior of the polymer solution

A I Kadyirov¹, J V Karaeva¹, V O Zdor¹ and E M Khusnutdinova²

¹Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences
2/31 Lobachevskogo Str., P.O. box 261, Kazan, 420111 Kazan
²Kazan (Volga Region) Federal University
18 Kremlyovskaya Str., Kazan 420008
rr-088@mail.ru

Abstract. In this paper the authors studied the 3-dimensional flow behavior of the polymer solution in the screw barrel. Numerical simulation was performed in the COMSOL Multiphysics® suite. An aqueous solution of polyacrylamide was regarded as a specific liquid. Demonstrated that, with a decrease in the gap between the outer tube and the screw insert core, the profile of the axial component of the velocity vector is aligned over the entire barrel cross-section, except for the region adjacent to the screw ribs.

Currently, it is difficult to achieve an exact analytical solution to the problem of the non-Newtonian flow in a screw barrel [1]. Known are only analytical solutions of the problem of the isothermal flow of ordinary Newtonian fluid in the barrel of a single-screw extruder [2]. In addition, most of the solutions to such problems were obtained with assumptions concerning the small curvature of the screw ribs and the consideration of the flow region in the rectangular form [3]. Moreover, the rotation of the screw insert means the rotation of the outer wall [4, 5, 6]. Generally, there are publications in which the power law is used to describe the rheological behavior of a polymer solution [7]. The disadvantage of this model is the infinite viscosity at zero shear rate. This paper uses the Cross-model [8, 9, 10], which takes into account the asymptotic values of the effective viscosity in threshold cases.

A consideration was given to the 3-D stationary laminar flow of a 0.5% aqueous solution of polyacrylamide in a round pipe with a CCW screw insert (Fig. 1). Mathematical modeling was performed considering that gravity is negligible. Due to this assumption, the distributions of hydrodynamic characteristics in two regions bounded by the screw insert ribs (Fig. 1) are identical. Therefore, one of these regions is regarded as the study area (area - i) further in the text.

The numerical solution was performed using the COMSOL Multiphysics® suite. The Navier-Stokes equations are taken as the basic equations:

\[\rho (\nabla \dot{V} - \dot{V}) = \nabla \cdot (p \mathbf{I} + \eta (\nabla \dot{V} + (\nabla \dot{V})^T)) \] \hspace{1cm} (1)\\
\n\n\n\[\nabla \cdot \dot{V} = 0 \] \hspace{1cm} (2)

where \(p \) is the pressure, Pa; \(\mathbf{I} \) is the unit tensor; \(\eta \) is the effective viscosity, Pa·s; \(\rho \) is the liquid density, kg/m³; \(\dot{V} = \{v_x, v_y, v_z\} \) is the velocity vector.
Fig. 1 Transversal (b) and longitudinal (a) section of the barrel: \(L_0 \) is the length of the rectilinear portion; \(L \) is the pitch of the screw barrel (the length of the barrel part corresponding to the 360-degree rotation of the screw ribs); \(r_1 \) is the radius of the inner pipe; \(r_2 \) is the radius of the outer pipe; \(\#1, \#2 \) are the identical fluid flow regions, limited by the outer and inner pipes and screw ribs; \(h \) is the thickness of the ribs.

The following conditions are taken as threshold conditions:

1) a developed velocity profile in the coaxial barrel is specified on the pipe inlet

\[
v_i = 2U_a \left(1 - \left(\frac{r}{r_2} \right)^2 \right) \log \left(\frac{r_1}{r_2} \right) - \left(1 - \left(\frac{r}{r_2} \right)^2 \right) \frac{\log \left(r_1/r_2 \right)}{1 + \left(\frac{r}{r_2} \right)^2} \log \left(\frac{r_1}{r_2} \right) + \left(1 - \left(\frac{r}{r_2} \right)^2 \right) \frac{\log \left(r_1/r_2 \right)}{1 + \left(\frac{r}{r_2} \right)^2} = 0, \quad v_r = 0, \quad v_\varphi = 0. \tag{3}
\]

where \(U_a \) is the mean flow velocity.

2) the conditions for adhesion of the liquid are satisfied on the barrel walls and on the surface of the screw insert ribs;

3) the condition of equality of zero pressure is given at the pipe outlet.

For describing the rheological behavior of the aqueous solution of 0.5% polyacrylamide, the authors used the Cross-model [11] with the following parameters: \(\eta_0 = 1.08 \text{ (Pa}\cdot\text{s}), \eta_\infty = 0.0023 \text{ (Pa}\cdot\text{s}) \) are the asymptotic values of the effective viscosity at \(\dot{\gamma} \rightarrow 0 \) and \(\dot{\gamma} \rightarrow \infty \), respectively; \(\lambda_c = 5 \text{ (s)} \) is the characteristic time; \(n = 0.8 \) is a coefficient that determines the viscosity reduction rate; \(\dot{\gamma} \) is the shear rate, 1/s. The density of the aqueous solution of 0.5% polyacrylamide is believed to be \(\rho = 999 \text{ kg/m}^3 \).

Numerical results are presented for a stationary flow of 0.5% polyacrylamide in a barrel with the three types of screw inserts. The geometry of the screw inserts: \(L/D_2 = 3 \), \(r_1 = 0.013 \text{ (m)} \), \(r_2 = 0.0195 \text{ (m)} \), \(h = 0.004 \text{ (m)} \). The diameter of the outer pipe \(D_2 = 0.039 \text{ (m)} \), the length of the upstream section \(L_0 = 1.5 \cdot D_2 \), the length of the screw insert along the z-axis is equal to \(L_e = 7.5 \cdot D_2 \).

As can be seen from Fig. 2, a steady-state velocity behavior is formed on the initial hydrodynamic portion of the barrel containing the screw insert. Here \(A_i \ (i = 45...360) \) are the planes spaced apart from \(A_0 \) at the distance corresponding to the rotation of the screw insert by \(i \) degrees. \(A_0 \) is the cross-section of the barrel from which the screw insert starts [12].

\[A_0 \]
Fig. 2 Curves of the dimensionless axial component of the velocity vector in various runs of the barrel with screw insert around the circumference with radius $r = r_3$ and $U_a = 0.05$ (m/s): 1 – A_{35}, 2 – A_{30}, 3 – A_{35}, 4 – A_{30}, 5 – A_{360}, 6 – A_{360} (dashed black line), 7 – A_{15}

The velocity trends shown in Figure 3 are built around the circumference with radius $r_3 = (r_1 + r_2)/2$ (Fig. 3). The results obtained illustrate that the length of the initial hydrodynamic run does not exceed the distance limited by the plane A_{360}, i.e. $L_1 = 3D_2$. In this event, the velocity trend is getting packed and tends to the line showing a constant velocity throughout the barrel cross-section with a decrease in the gap between the coaxial cylinders (Fig. 4).

Fig. 3 The fluid flow region in the barrel cross-section: $r_3 = (r_1 + r_2)/2$, β is the current angle value, α is the sector size

Fig. 4 Trends of the dimensionless axial component of the velocity vector in the cross-section A_{360} around the circumference with radius r_3

Conclusion

Numerical results show that the initial hydrodynamic portion in the screw insert barrel for the aqueous solution of 0.5% polyacrylamide is limited by the distance $L_1 = 3D_2$. The gap between the outer pipe and the radius of the screw insert core was found to be less in order to ensure the same residence time of the polymer solution flow throughout the barrel cross-section.

This work was possible with the backing of the project No. 19-11-00220 by the Russian Science Foundation.

References

[1] Marschik C, Roland W, Löw-Baselli B and Miethlinger J 2017 A heuristic method for modeling three-dimensional non-Newtonian flows of polymer melts in single-screw extruders. Journal of Non-Newtonian Fluid Mechanics Vol. 248. pp. 27–39

[2] Li Y and Hsieh F 1996 Modeling of Flow in a Single Screw Extruder. Journal of Food Engineering Vol. 27. pp. 353-375
[3] Marschik C, Roland W and Miethlinger J 2018 A Network-Theory-Based Comparative Study of Melt-Conveying Models in Single-Screw Extrusion: A. Isothermal Flow. Polymers. Vol. 10, 929

[4] Bessonova M P, Ponomareva M A and Yakutenok V A 2019 Numerical solution to the problem of polymer melt flow in a single screw extruder. Chemical Physics and Mesoscopy Vol. 21. No. 2. pp. 198-217

[5] Cruz D O A and Pinho F T 2012 Analysis of isothermal flow of a Phan-Thien-Tanner fluid in a simplified model of a single-screw extruder. Journal of Non-Newtonian Fluid Mechanics Vol. 167-168. pp. 95-105

[6] Roland W, Marschik C, Krieger M, Low-Baselli B and Miethlinger J 2019 Symbolic regression models for predicting viscous dissipation of three-dimensional non-Newtonian flows in single-screw extruders. Journal of Non-Newtonian Fluid Mechanics Vol. 268. pp. 12-29

[7] Suresh K, Selvam K and Karunanithi B 2019 CFD Simulation Studies on the Flow Behavior of Power-law Fluids used to extrude the Polymeric Hollow Fiber Membrane through an Angular Spinneret. AIP Conference Proceedings Vol. 2112, 020160

[8] Xie J and Jin Y C 2016 Parameter determination for the Cross rheology equation and its application to modeling non-Newtonian flows using the WC-MPS method. Engineering Applications of Computational Fluid Mechanics Vol 10. Is. 1. pp. 111-129

[9] Cross M M 1965 Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. Vol. 20. Is. 5. pp. 417 – 437

[10] Welahettige P, Lie B and Vaagsaether K 2019 Computational Fluid Dynamics Study of Shear Thinning Fluid (Drilling Fluid) Viscosity Models in an Open Venturi Channel. International Journal of Petroleum Science and Technology Vol. 13, No 1. pp. 9-20

[11] Balan C M and Balan C 2010 μPIV measurement and numerical computation of the velocity profiles in microchannels. U.P.B. Sci. Bull. Ser. D. Vol. 72. pp. 121–128

[12] Kashapov LN, Kashapov NF, Kashapov RN 2013 Research of the impact acidity of electrolytic cathode on the course of the plasma – electrolytic process Journal of Physics: Conference Series, Vol. 479, Iss. 1, Art. № 012011