Seed Dormancy Release and Germination Requirements of Cinnamomum migao, an Endangered and Rare Woody Plant in Southwest China

Jing-zhong Chen¹, Xiao-long Huang²*, Xue-feng Xiao¹, Ji-ming Liu³*, Xiao-feng Liao³, Qing-wen Sun⁴, Liang Peng¹ and Lan Zhang¹

¹College of Forestry, Guizhou University, Guiyang, China, ²Guizhou Academy of Forestry, Guiyang, China, ³Guizhou Province Institute of Mountain Resources, Guiyang, China, ⁴College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China

Seed dormancy is a complex adaptive trait of plants that are influenced by several physiological and environmental factors. The endangered plant Cinnamomum migao is also known to exhibit seed dormancy and low germination, which may influence its regeneration; however, these characteristics remain unexplored. To our knowledge, this study is the first to examine the type of dormancy and improve the germination percentage of C. migao seeds. We evaluated the structure and characteristics of the embryo and endocarp of C. migao seeds as well as the effects of endogenous inhibitors. Furthermore, we assessed the effects of light, stratification, alternating temperature, and gibberellic acid 3 (GA₃) on the dormancy release of these seeds. The embryo was well developed the endocarp was water-permeable, and no obvious mechanical hindrance to germination was observed. However, the endocarp and embryo contained phenols and other germination inhibitors. The seed extracts of C. migao delayed the germination of cabbage and ryegrass seeds, which indicates the presence of endogenous inhibitors. These findings suggest that C. migao seeds exhibit physiological dormancy. Light and an alternating temperature (15/20°C) did not influence germination. However, GA₃ pretreatment, alternating temperatures, and warm stratification relieved dormancy. GA₃ pretreatment combined with the 15°C stratification treatment was most effective in rapidly releasing the C. migao seed dormancy. Our findings may facilitate the storage and conservation of this endangered plant, which is currently underreprented in ex situ collections.

Keywords: regeneration, Cinnamomum migao, dormancy and germination trait, endogenous inhibitor, seed stratification

INTRODUCTION

Seed dormancy describes the phenomenon in which seeds with vigor and integrity fail to germinate within a certain period even when the environmental conditions (e.g., water, light, temperature, and oxygen) are suitable (Finch-Savage and Leubner-Metzger, 2006; Yan and Chen, 2020). Seed dormancy is a physiological and ecological adaptation that enables plants
to survive in complex environments. Dormancy also aids wild plant seeds in maintaining their vitality under harsh environmental conditions, thus contributing to plant survival, species continuation, and evolution (Stevens et al., 2020). Fresh seeds that do not germinate for 4–6 weeks under suitable conditions are considered dormant (Ensslin et al., 2018). Previous studies have estimated that 50–90% of wild plant seeds exhibit dormancy (Tang et al., 2004). According to the widely recognized classification system of Baskin and Baskin (2004), seed dormancy can be categorized into five classes: physiological dormancy (PD), morphological dormancy (MD), physical dormancy (PY), morphophysiological dormancy (MPD), and combinational dormancy (PY + PD). These classes are further categorized into subclasses, levels, and types (Baskin and Baskin, 2004).

Dormancy can prevent the seeds from germinating in unsuitable seasons, thus reducing species competition and ensuring reproduction without adverse conditions (Rubio de Casas et al., 2012; Nonogaki, 2019). However, this trait poses a challenge when large numbers of seedlings are required for horticultural purposes, particularly in the conservation and rapid recovery of endangered plant populations (Cho et al., 2018; Gao et al., 2021). For the restoration of endangered populations in the wild, it may take several seasons for the seeds to become nondormant, which may result in low final germination percentages. Moreover, seeds are often lost during the dormancy period because of animal foraging, microbial attack, and soil erosion; this hinders the recovery of plant populations (Kildisheva et al., 2020; Ma et al., 2020; Zida et al., 2020).

Cinnamomum migao H. W. Li—an evergreen arbor belonging to Lauraceae—is a rare endemic species in China. Its distribution is limited to the area surrounding the dry hot valley formed by a small watershed in the Guizhou, Yunnan, and Guangxi Provinces in Southwest China (Li et al., 2013). *C. migao* has been classified as near-threatened in the Red List of Biodiversity in China: Volume of Higher Plants (Ministry of Ecology and Environment, P.R.C., 2011). It produces high-quality wood that is used for making high-grade furniture and wood carvings (Shi et al., 2003). The fruit is rich in sugars, amino acids, and volatile oils and is widely used as a spice and traditional medicine in Southwest China, particularly as a substitute for Lauraceae spices such as *Litsea lancilimba* and *Litsea cubeba* (Qiu and Du, 2010; Zhou et al., 2010; Wang et al., 2016). However, the wild population of *C. migao* has been reported to be endangered and its natural regeneration faces various obstacles. The population of this arbor comprises adult trees aged >50 years and seedlings are extremely scarce. Previous evidence has confirmed seed dormancy in *C. migao* (Zhou et al., 2010; Huang et al., 2019); seed germination is very slow even in suitable environment, and the natural germination percentage is <36% (Gao et al., 2015). Our group further confirmed that seedlings germinated from *C. migao* seeds are scarce in the wild (Li, 2017; Huang et al., 2019). The low germination percentage may result from seed dormancy, which prevents the supplementation of *C. migao* seeds. This is a primary barrier of natural regeneration of *C. migao*, ultimately making it an endangered species (Shi et al., 2003; Huang et al., 2021).

However, to our knowledge, the factors responsible for the low seed dormancy of *C. migao* and effective methods for dormancy release are unknown. This study, therefore, aimed to uncover the primary factors responsible for seed dormancy, such as anatomy, morphology, and physiology. The secondary objective was to explore the most effective method for *C. migao* seed dormancy release using alternating temperature, light/dark phase, gibberellic acid 3 (GA3), and cold/warm stratification. Our ultimate goal was to determine the type of seed dormancy and find a highly effective method to release seed dormancy of this arbor. Our findings may be a point of reference for future interventions aiming at raising seedlings *ex situ* and reintroducing them into the wild.

MATERIALS AND METHODS

Fresh Seed Collection

Cinnamomum migao fruits were collected from Luodian County, Guizhou Province, China (25°26′40″N, 106°31′51″; 667 m altitude) in October–November 2017. The ripened fruits were transported to the laboratory immediately after collection. The fruits were then peeled, washed under running water, and placed in a ventilated dark room. The seeds enclosed by the endocarp were stored in the dark at 20 ± 2°C and approximately 60% relative humidity for 1 week before use.

Morphology of Seeds and Embryos

The transverse axis diameter, longitudinal axis diameter, and thickness of *C. migao* seeds were measured using a vernier caliper (0.01 mm). The caliper was slowly clamped along the seed ridge to separate the embryo from the endocarp, and embryo development was observed and photographed under a fluorescence microscope (Leica M205 FA). Three replicates of 30 seeds were measured.

Determination of Seed and Endocarp Characteristics

Seed Weight, Moisture Content, and Viability

In the beginning of December 2017, *C. migao* seeds were crushed and sieved through a No. 20 mesh screen, weighed accurately to 50 g, and oven-dried at 103°C for 17 h and then weighed again. Water content was determined based on the difference between fresh and dry weights. To test seed viability, embryos were placed in a 0.50% 2,3,5-triphenyltetrazolium chloride solution and then incubated in the dark at 25°C for 12 h. Embryos that had been kept in boiling water for 20 min for inactivation served as the control. Seed viability was determined based on the coloring position and depth of the embryos (Souza et al., 2010). Three replicates of 30 seeds each were used (Supplementary Figure S1: viability test results).
Imbibition Rate and Fruit Endocarp Characteristics
The seeds were categorized into three groups: first (control), seeds with the endocarp; second, seeds with partial endocarp (one-fifth of the endocarp was cut off); and third, seeds without the endocarp (Supplementary Figure S2). Seeds belonging to these three groups (50 seeds each) were placed in separate beakers with 200 ml of distilled water. They were then placed in a 25°C incubator and weighed using an electronic balance (0.0001 g) every 2 h until the weights stabilized. Before weighing, the water on the surface of the seeds was soaked using absorbent paper. Water absorption was calculated as the percentage of initial weight increase. For ultrastructural observation, the endocarps were fixed with 2.5% glutaraldehyde solution, washed with 0.1 M phosphate buffer, fixed with 1% osmic acid in 0.1 M phosphate buffer (pH 7.4) at room temperature (20°C) for 1-2 h, rinsed with 0.1 M phosphate buffer (pH 7.4), and then dehydrated using an ethanol gradient. The samples were dried in a critical point dryer (quorum K850) and sprayed with 30% gold using an ion-sputtering instrument (IXRF MSP-2S) for approximately 30 s. The endocarp ultramicrostructure was observed under a scanning electron microscope (Hitachi su8100).

Effects of H$_2$O$_2$, NaOH, and H$_2$SO$_4$ Treatments on Seed Germination
Toward the end of November, whole seeds were soaked in 15, 20, and 40% H$_2$O$_2$; 10, 20, and 40% NaOH; and 30, 50, and 98% H$_2$SO$_4$ for 10 min. Whole germination units (seed enclosed by endocarp, hereafter indicated as “seeds”) were soaked in distilled water. Subsequently, the seeds were washed under running water for 2 h, disinfected with 1% NaClO solution for 20 min at room temperature, and washed with sterile distilled water for the germination test (Chien and Lin, 1994). All seeds were disinfected after treatments to avoid seed contamination from the previous operation steps. Seeds were incubated at 25°C in dark and light (22.4 μmol m$^{-2}$ s$^{-1}$) at 40±5% humidity; the treatment temperature was 25°C. Three replicates of 50 seeds each were used for the treatments.

Inhibitory Effects of C. migao Seed Extract on Germination Extraction Method
The endocarps and embryos were separated from the C. migao seeds in the end of November; these parts were then separated and frozen using liquid nitrogen. Next, 50 g of the endocarps and embryos were weighed and extracted using the continuous reflux method. On the basis of the polarity gradient of solvents—petroleum ether (30–60°C, polarity: 0.01)<acetone (polarity: 4.3)<acetic acid (polarity: 5.4)<methanol (polarity: 6.6)<water (polarity: 10.2; 50°C extraction was used in this layer), 200 ml of each extraction solvent was added. After 12 h, the extract was concentrated to approximately 1 ml using a rotary evaporator (RE-6000A). It was then fully dried in an evacuation dish inside a water bath at 20°C; the residue was dissolved in 1 ml of ethyl acetate, and distilled water was added to increase the volume to 50 ml (containing 2% ethyl acetate). This served as a stock solution of 1 g tissue (g ml$^{-1}$) and was stored at 4°C for <5 days (Shao et al., 2016).

Evaluation of Germination Inhibition
During the end of November, the 1 g tissue (g ml$^{-1}$) extracts of endocarps and embryos were diluted to 5, 10, 15, and 20% with distilled water. Next, 10 ml of extract or distilled water was added into sterile glass petri dishes (diameter, 9 cm; 3 filter paper were placed at the bottom). Distilled water containing 2% ethyl acetate served as the control. A total of 50 Chinese cabbage (Brassica rapa var. glabra) seeds (Variety Fengkang 90, Guanhe zhuangyuan Co., Ltd., China) were added to each plate replicate, and seeds were incubated at 25°C in the dark. Germination was monitored for 3 days until no further germination was noted; at this time, the length of the seedling hypocotyls and roots were measured using a vernier caliper. After selecting the extract with the strongest inhibitory effect, ryegrass (Lolium perenne) seeds (Big boss, Royal Barenbrug Group, Netherlands) were used to confirm the inhibitory effect of this extract following the same method. Three replicates of 50 seeds were used per treatment.

Determination of Seed Extract Components
Gas chromatography (GC)-mass spectrometry (MS) was performed using HP6890/5975c GC–MS (Agilent, United States). For sample determination, 2 μl of the extract [ethyl acetate and methanol extracts of the endocarp, 1 g tissue (g ml$^{-1}$)] was injected with a microsyringe. The chromatographic conditions were as follows: capillary column, hp-5 ms (60 m × 0.25 mm × 0.25 μm); initial temperature, 70°C (hold for 2 min), which was increased to 270°C at a rate of 5°C min$^{-1}$ and then to 310°C at a rate of 8°C min$^{-1}$ (hold for 9 min) for a total operation time of 56 min; vaporization chamber temperature, 250°C; carrier gas, high purity He (99.999%); pressure, 7.65 psi; carrier gas flow rate, 1.0 ml min$^{-1}$; split ratio, 10:1; and solvent delay time, 6.0 min. The mass spectrum conditions were as follows: EI ion source with 230°C ion source temperature, 150°C quadrupole temperature, 70-ÉV electron energy, 34.6 μA emission current, 1,894 v multiplier voltage, 280°C interface temperature, and 29–450 amu mass range (Chen et al., 2010). Peaks in the total ion flow diagram were retrieved via the MS computer data system and were compared with the National Institute of Standards and Technology 2014 and Wiley 275 standard mass spectra to identify the volatile chemical components. The relative mass fraction of each chemical component was determined using the peak area normalization method.

Seed Germination Test
Effects of Light and Temperature Treatments on Seed Germination
The in situ underground relative constant temperature, surface variable temperature, and light conditions were simulated. The light conditions were as follows: incubation in the dark (24 h) and dark/light (8/16 h), with 22.5 μmol m$^{-2}$ s$^{-1}$ light intensity.
and 40±5% humidity. The constant treatment temperatures were 10°C, 20°C, 25°C, and 30°C. The alternating temperatures were 10/20°C, 20/25°C, and 25/30°C; the period of temperature change was 8/16h. For each treatment, three replicates of 50 fresh seeds were used [fresh seeds were germinated in a sterile seed germination box (length 30 cm × width 20 cm × height 10 cm; 3 layers of filter paper were placed at the bottom) at 40±5% humidity]. The seeds were observed every day, and the criterion for germination was radicle emergence (>2 mm). The experiment began in the early days of December 2017, and the treatment period was 240 days.

Effects of Hormone Treatment on Seed Germination

Fresh, intact seeds were soaked in GA₃ aqueous solutions at concentrations of 100 mg L⁻¹, 200 mg L⁻¹, 400 mg L⁻¹, 600 mg L⁻¹, and 800 mg L⁻¹ for 8 h. Afterward, the seeds were disinfected with 1% NaClO solution for 20 min at room temperature and then washed with sterile distilled water. Three replicates of 50 seeds were used per treatment. The seeds were incubated in germination boxes at 25°C in the dark for 30 days (length 30 cm × width 20 cm × height 10 cm); the conditions were dark incubation and 40 ± 5% humidity, and the treatment temperature was 25°C. The experiment began in the early days of December 2017, and the treatment period was 240 days.

Effects of Stratification Treatment on Seed Germination

The seeds were categorized into two groups of 50 seeds each and soaked in distilled water and 200 mg L⁻¹ GA₃ solution for 8 h. After disinfection with 1% NaClO solution for 20 min at room temperature, the seeds were washed with sterile distilled water. They were then mixed with wet sand (2 mm diameter; 30% humidity) in a ratio of 1:5 and divided into two equal parts, which were incubated at 4°C and 15°C for 240 days. Every 30 days, 150 seeds from each treatment (three replicates of 50 seeds) were assessed for germination in the dark at. The experiment began in the early days of December 2017, and the treatment period was 240 days.

Data Analysis

Final germination percentage, germination energy, and germination index (GI) were calculated using the following formulas:

\[
\text{Germination percentage (\%) = number of germinated seeds / total number of seeds} \times 100%
\]

\[
\text{Germination energy (\%) = number of germinated seeds when the germination percentage peaks / total number of seeds} \times 100%
\]

\[
\text{Germination index (GI) = } \sum G_t / D_t
\]

where \(G_t\) is the number of germinated seeds per day and \(D_t\) is that of germination time (\(d\)).

The SPSS 21.0 statistical software package (IBM, Chicago, IL, United States) was used for data processing. One-way ANOVA and Duncan’s multiple comparison analysis were used to compare the treatment outcomes. All data were expressed as means ± standard deviations (SD). The data were inverse sine-transformed using the \(asin()\) function; data were expressed as means ± SDs and were analyzed using the SPSS 17.0 software (IBM, United States). Statistical differences among the treatments were analyzed using one-way ANOVA followed by Duncan’s post-hoc test. Statistical significance was set at \(p < 0.05\). Origin 2019b (Origin Lab, Northampton, Ma, United States) and Adobe Illustrator 17.0 (California, ADBE, United States) software were used for drawing and processing.

RESULTS

Characteristics of Seeds

The mature C. migao fruits (Figure 1A) were baccate, 1.2–1.3 cm in diameter, and spherical with a slightly flat top (Figure 1B); these grew on the top of a goblet-shaped receptacle (Supplementary Figures S1A–D). The fresh seeds (encapsulated by the endocarp) were black and had a unique aroma. The seeds dried in the dark were brown and pea-shaped (Figure 1C).

The transverse and longitudinal axis diameters of the seeds were 10.73 ± 0.19 mm and 9.73 ± 0.09 mm, respectively, and the seed thickness was 9.31 ± 0.20 mm. The thousand-grain weight of the dry seeds was 421.34 ± 5.32 g, moisture content was 12.19 ± 1.21%, and viability was 98.67 ± 1.15%.

Characteristics of the Endocarp and Embryo and Evaluation of Seed Imbibition

The endocarp was ossified and closely adhered to the testa, resulting in the separation of the testa from the embryo (Figure 2A).
Inside the endocarp were two thick cotyledons (Figure 2B). The radicle, hypocotyl, and germ were small and cone-shaped, connecting the two cotyledons at the apex (Figure 2C). The obvious differentiation of the radicle, hypocotyl, and each part of the embryo indicates that these parts develop completely as the seeds mature (Figure 2D). The endocarp had a layer of stone cells (Figures 2E–H).

The imbibition data of the C. migao seeds with the endocarp, with the partial endocarp, and without the endocarp are shown in Supplementary Figure S3. The seed weight rapidly increased in the first 6 h. After 2 h of imbibition, the mass increases were 10.51, 12.38, and 21.65% for the seeds with the endocarp, with the partial endocarp, and without the endocarp, respectively; after 6 h, these were 21.47, 23.58, and 32.29%, respectively (Figure 3). Mass increase began to plateau after 12 h. The seeds with the endocarp, with the partial endocarp, and without the endocarp attained saturation after 72, 60, and 48 h of imbibition, respectively. Final mass increases were 40.64, 41.21, and 41.76%, respectively, with no significant differences across treatments (p > 0.05; Figure 3).

Effects of Oxidant Treatment on Seed Dormancy and Germination

To further investigate how the endocarp influences germination, we treated the seeds with NaOH, H\textsubscript{2}SO\textsubscript{4}, and H\textsubscript{2}O\textsubscript{2} before the germination test. Owing to corrosion or oxidation by chemical solvents, the endocarp thinned or the outer structure carbonized, blackened, and peeled off. The final germination percentage of seeds pretreated with 20% H\textsubscript{2}O\textsubscript{2} was the highest at 34% (Figure 4A), which was significantly greater than that of the unstratified seeds (p < 0.05). However, pretreatment with 98% H\textsubscript{2}SO\textsubscript{4} significantly (p < 0.05) reduced the final germination percentage of the seeds.

Inhibitory Effects of C. migao Seed Extract on Cabbage and Ryegrass Seed Germination

Cinnamomum migao endocarp and embryo extracts inhibited the germination of Chinese cabbage seeds (Supplementary Figure S3). Ethyl acetate endocarp extract, when applied at concentrations of 5, 10, 15, and 20%, significantly reduced the seed germination percentage of Chinese cabbage by 8.16, 17.69, 22.45, and 33.33%, respectively, compared with the control (Figure 5A). At the 5% concentration, acetone, methanol, and water extracts significantly (p < 0.05) inhibited the germination of cabbage seeds (Figure 5B). The methanol extract had the strongest inhibitory effect; concentrations of 5, 10, 15, and 20% reduced the final germination percentages of cabbage seeds by 10.20, 21.09, 29.93, and 44.90%, respectively, compared with the control (Figure 5B). Ryegrass seeds were treated with the C. migao extract showing the strongest inhibitory effects (endocarp: ethyl acetate extract; embryo: methanol extract) to confirm the inhibitory effects. The ryegrass seeds were significantly inhibited as the extract concentration increased (Figure 5C), and even the lowest concentration (5%) significantly reduced the final germination percentages. In addition, the growth of the cabbage and ryegrass seedlings was influenced by the *C. migao* seed extracts (Supplementary Tables S1–S3), with the ethyl acetate and methanol extracts of the endocarp and embryo, respectively, displaying the strongest inhibitory effects on the growth of cabbage seedlings.
Evaluation of Endogenous Inhibitors in Seed Extract

The ethyl acetate and methanol extracts of C. migao seed endocarps were analyzed using GC-MS (Supplementary Figure S4). We identified 58 endogenous chemical compounds, including 25 in the ethyl acetate extract and 33 in the methanol extract. The primary components were as follows: 4 phenolic compounds, 11 aldehydes, 2 ethers, 8 ketones, 6 alcohols, 9 fatty acids, 11 lipids, 1 benzene, 1 pyrazine, 1 anhydride, and 1 alkene (Figure 6).

Effects of Light and Temperature on Seed Germination

The temperature and light treatments influenced the initial seed germination and resulted in significant differences ($p < 0.05$) in the final germination percentage, germination vigor, and GI of C. migao seeds (Figure 7A). Seeds incubated at 30°C did not germinate until day 46, and the final germination percentage was the lowest at 4.0% (Figure 7B). ANOVA results (Supplementary Table S5) demonstrated that light ($F = 0.706, p = 0.408$) or the interaction between light and temperature ($F = 0.157, p = 0.986$) had no significant influence on germination. Nonetheless, the effect of temperature on the final germination percentage was significant ($F = 55.33, p < 0.001$). Thus, temperature is the primary factor in seed germination.

Effects of Exogenous Hormone Treatment on Seed Germination

Pretreatment with GA$_3$, a dormancy-releasing plant hormone, can effectively reduce the initial germination time of C. migao seeds. The final germination percentage, germination vigor, and GI improved with an increase in the GA$_3$ concentration, reaching a peak at 200 mg L$^{-1}$ and then decreasing (Figure 8). After the treatment with 200 mg L$^{-1}$ GA$_3$, the initial germination time was reduced to 19 days, which was 5 days less than that of the control seeds. The final seed germination percentage, germination vigor, and GI were 44.67 ± 3.06%, 23.33 ± 1.15%, and 0.64 ± 0.05 (representing growths of 91.47, 84.14, and 113.33%), respectively, compared with the control group ($p < 0.05$).

Effects of Stratification Period on Seed Germination

The results of the stratification experiment revealed that the final germination percentage of C. migao seeds was higher under the cold/warm stratification + GA$_3$ treatment than that under the stratification treatment alone (Figure 9). In addition, the germination percentage was higher in the warm-temperature stratification treatment (15°C) than that in the cold-temperature treatment (4°C). The germination ability of the seeds treated at 15 and 4°C with GA$_3$ peaked at 60 (13 days for initial
germination) and 90 (12 days for initial germination) days of stratification, respectively, which was significantly less than that of the unstratified seeds (Figure 9A). The final germination percentage, germination vigor, and GI were significantly higher (p<0.05) in the 15°C+GA3- and 4°C+GA3-treatment groups than in the unstratified seeds by 73.11, 89.96, and 128.13%, respectively (Figures 9B–D). The germination ability of seeds treated at 15 and 4°C peaked after 120 and 150 days of stratification, respectively. The initial germination time in both treatments was 15 days, which was 9 days less than that of the unstratified seeds. When 15°C+GA3 and 4°C+GA3 treatment compared with treatment in the absence of GA3, the final germination percentage, germination vigor, and GI of the unstratified seeds increased significantly by 188.60, 216.67, and 333.33% and 174.32, 194.63, and 306.67%, respectively (p<0.05). After reaching the peak, the germination of the seeds under different treatments exhibited a downward trend with prolonged stratification time. The final germination percentage and vigor of seeds in 120–180 days declined in a nonsignificant manner (p>0.05). In the stratification of 180–240 days, the seeds in each treatment group showed different degrees of reduction in the germination. Seeds in the 15°C+GA3 and 4°C+GA3 treatment groups had significantly reduced final germination percentages than those in the same temperature treatment groups but without GA3. Overall, stratification can effectively increase the final germination percentage of C. migao seeds, and GA3 treatment can significantly shorten the stratification
period and can thus reduce the initial germination time. The warm-temperature (15°C) treatment was more effective in releasing the dormancy of the seeds than the low-temperature (4°C) treatment, and adding GA3 (15°C + GA3) to the warm-temperature stratification treatment further increased the final germination percentage.

DISCUSSION

Dormancy Class and Potential Factors

The complex and diverse factors responsible for seed dormancy are associated with changes in the pericarp, seed coat, and embryo (Meyer, 2008). Therefore, we systematically investigated the possible causes of C. migao seed dormancy from the aspects of morphology, anatomy, and physiology.

MD refers to the dormancy due to the small embryo size, incomplete development, or lack of differentiation after seed maturation. The morphology of the seed embryo is generally spatulate, rudimentary, or linear; in some species, it occupies ≤1% of the seed volume (Jaganathan, 2020; Liu et al., 2020). For example, the Lamprocapnos spectabilis seed endosperm comprises the entire internal tissue of the seed, and the embryo is almost invisible (Cho et al., 2020). Similarly, the Acer yangiuechi seed embryo exhibits poor development and low vigor, which lead to a germination failure under suitable conditions (Chen et al., 2017). However, our results show that the mature embryos of C. migao seeds are fully developed, indicating the absence of MD (Figure 2; Supplementary Figure S1).

The endocarp of C. migao is water-permeable, and thus they do not have PY (Figure 2). Furthermore, no significant difference in the final percentages of imbibition was detected among the
FIGURE 6 | Types and relative percentages of the identified compounds in Cinnamomum migao fruits. (A), Methanol extract of the C. migao embryo, concentration: 1 g tissue (g ml⁻¹). (B), Ethyl acetate extract of the C. migao endocarp, concentration: 1 g tissue (g ml⁻¹).

FIGURE 7 | Effects of temperature and light treatments on the germination characteristics of Cinnamomum migao seeds. Data are presented as means ± standard deviations (n=3), and the values marked with different letters in different treatments vary significantly (p < 0.05). Three replicates of 50 seeds were used in the germination test. (A) Initial germination time, (B) germination percentage, (C) germination energy, (D) germination index.
seeds with the endocarp, with the partial endocarp, and without the endocarp (Figure 3). The imbibition of *C. migao* seeds was similar to that of *Phoebe bournei* seeds belonging to the same family, in which the pericarp does not hinder imbibition (Li and Min, 2020). *C. migao* seeds with the partial endocarp absorbed water faster than those with the intact endocarp; seeds without the endocarp absorbed water even faster than those with the partial endocarp. This finding is similar the results obtained for the endocarp of *Prunus mahaleb* (Murphy et al., 2010) and *Phillyrea angustifolia* (Mira et al., 2015). However, in the present study, the intact seeds were capable of absorbing the same amount of water as that of the seeds without the endocarp, although the imbibition was slower. Hence, the endocarp was not impermeable, which eliminated the PY of *C. migao* (Figure 3).

To assess PD, we examined whether the *C. migao* endocarp and embryo extracts contain compounds that inhibit the germination of cabbage and ryegrass seeds. Specifically, the ethyl acetate extract of the endocarp and the methanol extract of the embryo showed significant inhibitory effects. The methanol extract completely inhibited ryegrass germination at concentrations of $>0.05 \text{g ml}^{-1}$ (Figure 5B). The primary components of the extracts with the strongest inhibitory effects were lipids, fatty acids, ketones, aldehydes, and phenolic compounds. Previous studies have demonstrated that inhibitory compounds in the endocarp or the hard middle layer of the testa contribute to low and unstable seed germination (Hamilton and Carpenter, 1976; Richmond and Ghisalberti, 1994; Wu and Shen, 2021). Phenolic and lipid compounds present in the seeds have been widely shown to induce seed dormancy and prevent germination (Graeber et al., 2012; Inácio et al., 2013; Smykal et al., 2014). Inhibitory compounds present in the seeds can cause physiological inhibition by hindering the growth potential or breakthrough ability of the embryo; as a result, it fails to break the mechanical resistance of the endocarp, thereby negatively influencing seed germination (Baskin and Baskin, 2014). Similarly, previous studies have reported that phenolic compounds present in *Lycopersicon esculentum* (tomato), *Fagus sylvatica*, and *Pinus laricio* in the seeds inhibit the metabolism of key enzymes involved in seed germination (Muscolo et al., 2001; El-Araby et al., 2006). Therefore, according to the classification system of Baskin and Baskin (2004), we determined that *C. migao* seed dormancy is physiological in nature and is due to endogenous inhibitors and low growth potential of the embryo.
Effects of Various Treatments on *C. migao* Seed Dormancy

For seeds with obvious dormancy, its release involves changes in the external environment and the physiology and biochemistry of the seed. The release of seed dormancy primarily occurs through the regulation of light, temperature, hormones, and stratification (Cosmas et al., 2019; Hou et al., 2019; Yang et al., 2019). Therefore, we evaluated the effects of light, temperature, an exogenous hormone, and stratification on *C. migao* seed dormancy and germination.

No significant differences in dormancy release were observed in the seeds under the same temperature but different light treatments. Light neither reduced the initial germination time nor influence the final germination percentage, germination vigor, or GI (Supplementary Table S5). Light-requiring seeds are generally small (Koutsovoulou et al., 2014; Yang et al., 2020), which allows the external light to be perceived by the seed pigments, integrating the metabolism and signal transduction of abscisic acid and GA to control seed dormancy and germination (Bentsink and Koornneef, 2008; Shu et al., 2016). However, *C. migao* seeds are relatively large and are encapsulated by the firm endocarp (Figures 1, 2), which prevents the internal pigments from perceiving external light (Liu and Lin, 1995).

The low constant temperature and alternating temperatures reduced the initial germination time and significantly increased the final germination percentage, germination vigor, and GI, with the treatment effect being the strongest at 10/20°C. Compared with the interaction of light and temperature, temperature alone significantly promoted the release of dormancy (Figure 7). The natural distribution of *C. migao* is limited to dry and hot valleys, and the 10/20°C alternating temperature condition is similar to the habitat temperature in spring (Tian et al., 2015). The changing

FIGURE 9 | Effects of stratification on the germination characteristics of *Cinnamomum migao* seeds. Data are presented as means ± standard deviations (*n*= 3), and the values marked with different letters in different treatments vary significantly (*p* < 0.05). Three replicates of 50 seeds were used in the germination test. (A) Initial germination time, (B) germination percentage, (C) germination energy, (D) germination index.
temperature stimulates enzymatic activities in these seeds, which in turn promotes the transformation of the stored materials and releases the dormancy. The 10/20°C alternating temperature treatment may be in line with the natural temperature change in the environment (Chahtan et al., 2016; Kildisheva et al., 2019).

The role of the exogenous hormone GA$_3$ in releasing seed dormancy and increasing the final germination percentage has been extensively studied (Linkies and Leubner-Metzger, 2012). GA$_3$ treatment has been demonstrated to effectively enhance the final germination percentage of Buglossoides arvensis and Cyclocarya palirius seeds (Fang et al., 2006; de Las Mercedes et al., 2021). GA$_3$ improves α-amylase hydrolysis and glyoxylate cycle enzymatic activities in seeds, thereby activating energy metabolism and enhancing the growth potential of the embryo (Song et al., 2019). In addition, the cold/warm stratification treatment has been shown to release PY (Wolkis et al., 2020). Similar to physical polishing, stratification increases the growth potential of the embryo, thus allowing it to overcome the mechanical resistance to its growth (Baskin and Baskin, 2014). Our results showed that seed treatment with 200 mg L$^{-1}$ pure exogenous GA$_3$ significantly reduces the initial germination time and the final germination percentage (Figure 8). The 15°C stratification was significantly better than the 4°C stratification, and stratification after GA$_3$ pretreatment resulted in earlier germination peaks than those observed with stratification alone. The combination of 15°C + GA$_3$ was particularly effective, inducing initial germination 6 days earlier than the control seeds. The final germination percentage was as high as 77.33 ± 4.16%, which is significantly higher than those noted in the alternating temperature, light, single hormone, and single stratification treatments (Figure 9). Therefore, combining GA$_3$ pretreatment with stratification was most effective in the rapid release of C. migao seed dormancy (Figure 9B). The hormone treatment activates and accelerates the metabolic activities of the seeds, promoting cell division and radicle growth (Yang et al., 2019), and the stratification treatment influences the hormone contents and metabolic processes. The combination of exogenous hormones and stratification treatment thus accelerated the physiological and biochemical processes.

Conclusions

Cinnamomum migao seeds absorb water easily, and the embryo is well developed; no obvious mechanical hindrance to the germination process was identified. However, the seed embryo and endocarp were rich in phenols, aldehydes, which reduced the final germination percentages of cabbage and ryegrass seeds. These compounds may inhibit the germination of fresh C. migao seeds and thus induce/enhance dormancy. The abovementioned results suggest that C. migao seeds exhibit PD. Our findings demonstrated that seed dormancy release was not influenced by light; however, an exogenous hormone, temperature, and stratification treatments influenced seed dormancy release. Overall, GA$_3$ pretreatment followed by a 15°C stratification treatment for 60 days was most effective in relieving C. migao seed dormancy.

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author Contributions

X-IH and X-fl: conceptualization and data curation. J-zC: writing—original draft preparation. Q-wS and J-mL: methodology. X-fl, LP, and LZ: writing—review and editing. All authors have read and approved the final version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of Unite Project, China (grant number: U1812403-2) and the Guizhou Science and Technology Program [Qiankehe (2019) 2774].
We express our sincere gratitude toward the three reviewers for their insightful comments that greatly improved the quality of our manuscript.

REFERENCES

Baskin, J. M., and Baskin, C. C. (2004). A classification system for seed dormancy. Seed Sci. Res. 14, 1–16. doi: 10.1079/SSR2003150

Baskin, C. C., and Baskin, J. M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA: Elsevier.

Bentsink, L., and Koornneef, M. (2008). Seed dormancy and germination. Arabidopsis Book 6:e0119. doi: 10.1199/tab.e0119

Chahtane, H., Kim, W., and Lopez-Molina, L. (2016). Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J. Exp. Bot. 68, erw577–erw869. doi: 10.1093/jxb/erw577

Chen, X., Liu, Y., Zhao, M., and Tu, S. (2017). Embryo development and seed tuber releasing of Acer yangguieschi, the extremely endangered plant. Sci. Silvae Sin. 53, 65–73. doi: 10.11707/j.1001-7488.201701040

Chen, D. L., Luo, X. P., Yuan, Z., Bai, M. J., and Hu, X. W. (2020). Seed dormancy release of Helalia elliptica in response to stratification temperature, duration and soil moisture content. BMC Plant Biol. 20:352. doi: 10.1186/s12870-020-02560-8

Chen, M. L., Zhou, T., Jiang, W. K., Jin, Y. L., and Yang, Z. N. (2010). Researches on relationship between genetic differentiation and chemical variation of Cinnamomum migao. China J. Chin. Mater. Med. 36, 1409–1415. doi: 10.4268/cjcm20111101

Chien, C. T., and Lin, T. P. (1994). Mechanism of hydrogen peroxide in improving the germination of Cinnamomum camphora seed. Seed Sci. Technol. 35, 85–86.

Cho, J. S., Jang, B. K., and Lee, C. H. (2018). Seed dormancy and germination characteristics of the endangered species Cisica viroa L. in South Korea. Hortic. Environ. Biotechnol. 59, 473–481. doi: 10.1007/s13580-018-0065-7

Cho, J. S., Jang, B. K., Lee, S. M., Lee, I. J., and Lee, C. H. (2020). Factors affecting the dormancy and germination of bleeding heart [Lamprocapnos spectabilis (L.) Fukuhara] seeds. Plant Biol. 22, 514–521. doi: 10.1111/plb.13089

Cosmas, P., Agathar, K., Ronald, M., John, C. T., and Simon, M. (2019). Preliminary evaluation of different seed dormancy breaking methods in wild tuber cowpea (Vigna vexillata). Can. J. Agric. Crops 4, 33–40. doi: 10.20448/803.4.1.33.40

de Las Mercedes, L. M., Ricardo, S. M., Diego, B., and Rubén, C. G. (2021). Hormone requirements of Elaeagnus angustifolia by endogenous growth substances. Can. J. Bot. 54, 1068–1073. doi: 10.1139/b76-113

Dou, T., Yang, Z., Wang, H., and Mao, P. (2018). Physiological and proteomic analyses for seed dormancy and release in the perennial grass of Leymus chinensis. Environ. Exp. Bot. 162, 95–102. doi: 10.1016/j.envexpbot.2019.02.002

Huang, X. L., Chen, Z. J., Liu, J. M., Li, J., Wu, M., and Tong, B. (2019). Autotoxicity hinders the natural regeneration of Cinnamomum migao H.W. Li in Southwest China. Forests 10:919. doi: 10.3390/f10100919

Kildisheva, O. A., Dixon, K. W., Silveira, F. A. O., Chapman, T., Di Sacco, A., Mondoni, A., et al. (2020). Dormancy and germination: making every seed count in restoration. Restor. Ecol. (Suppl. 3), S256–S265. doi: 10.1111/rec.13140

Kildisheva, O. A., Erickson, T. E., Kramer, A. T., Zeldin, J., and Merritt, D. J. (2019). Optimizing physiological dormancy break of understudied cold desert perennials to improve seed-based restoration. J. Arid. Environ. 170:104001. doi: 10.1016/j.jaridenv.2019.104001

Li, L. X. (2017). Study on Cinnamomum migao population characteristics in Guizhou. Guizhou University.

Li, X. W., Li, J., and Henk, W. (2013). Flora of China. Beijing: Science publishing house Missouri botanical garden publishing house. Available at: http://www.iplant.cn/info/Cinnamomum%20migao?tf=fc

Li, T., and Min, X. H. (2020). Dormancy characteristics and germination requirements of Phoebe bournei seed. Sci. Hortic. 260:108903. doi: 10.1016/j.scienta.2019.108903

Lindke, A., and Leubner-Metzger, G. (2012). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 31, 253–270. doi: 10.1007/s00299-011-1180-1

Liu, N., and Lin, T. (1995). Micromorphological characteristics of endocarp and testa of four Cinnamomum medicinal plants in Guizhou. J. Guizhou Nor. Univ. 3, 22–26.

Liu, N. H., Zhang, K. L., Zhao, D. Q., Sun, J., Meng, J. S., and Tao, J. (2020). Advances in studies of seed dormancy and germination. Mol. Plant Breed. 18, 621–627. doi: 10.13271/mpp.000621

Ma, M., Collins, S. L., and Du, G. (2020). Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan plateau. Ecol. Appl. 30:02096. doi: 10.1002/epa.2096

Meyer, S. E. (2008). “Rosa L.: Rose, briar” in The Woody Plant Seed Manual, Agriculture Handbook No. 727. eds. F. T. Bonner and R. P. Karrfalt (Washington, DC: US Department of Agriculture, Forest Service), 974–980.

Ministry of Ecology and Environment, P.R.C. (2011). The list of red species of biodiversity in China: higher plants volume.

ACKNOWLEDGMENTS

We express our sincere gratitude toward the three reviewers for their insightful comments that greatly improved the quality of our manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.770940/full?supplementary-material
Chen et al. Seed Dormancy Release and Germination

Mira, S., Veiga-Barbosa, L., and Pérez-García, F. (2015). Seed germination characteristics of Phyllerya angustifolia L. and P. latifolia L. (Olacaceae), two Mediterranean shrub species having lignified endocarp. *Ann. For. Res.* 38, doi: 10.1016/j.aff.2012.04.007.

Murphy, K., Bradley, J., and James, H. E. (2010). Effect of endocarp removal, gibberellin, stratification and sulfuric acid on germination of mahaleb (*Prunus mahaleb* L.) seeds. *Am. Eurasian J. Agric. Environ. Sci.* 49, 27–33. doi: 10.1111/plb.13094.

Muscolo, A., Panuccio, M., and Sidari, M. (2001). The effect of phenols on respiratory enzymes in seed germination—enzyme respiratory activities during germination of pinus larioce seeds treated with phenols extracted from different forest soils. *Plant Growth Regul.* 35, 31–35. doi: 10.1023/A:1013897321852.

Nonogaki, H. (2019). Seed germination and dormancy: the classic story, new puzzles, and evolution. *J. Integr. Plant Biol.* 61, 541–563. doi: 10.1111/jipb.12762.

Qi, D. W., and Du, M. D. (2010). Research and industrialization of the subsystem of Guizhou specialty medicinal *Cinnamomum migao* of fruit. *Guiyang Coll. J. Tradit. Chin. Med.* 25, 48–51. doi: 10.16588/j.cnki.issn1002-1108.2003.01.030.

Richmond, G. S., and Ghishalberti, E. L. (1994). Seed dormancy and germination mechanisms in *Eremophila* (Myoporaceae). *Aust. J. Bot.* 42:705. doi: 10.1071/BT9940705.

Rubio de Casas, R. R., Kovach, K., Dittmar, E., Barua, D., Barco, B., and Donohue, K. (2012). Seed after-ripening and dormancy determine adult life history independently of germination timing. *New Phytol.* 194, 868–879. doi: 10.1111/j.1469-8131.2012.03962.x.

Shao, C., Liu, J. Y., Zhang, S. N., and Zhang, Y. Y. (2016). Bioassay of endogenous germination inhibitors in *Trillium kamtschaticum* seed. *Seed Sci. Technol.* 44, 224–232. doi: 10.15258/sst.2016.44.1.16.

Shi, H., Shi, Q., Wang, T., Qin, J., and Wang, Y. (2003). “Cinnamomum migao, an endemic the miao nationality plant.” in Special Edition of National Miao Medicine Symposium in China. China.

Shu, K., Liu, X. D., Xie, Q., and He, Z. H. (2016). Two faces of one seed: hormonal regulation of dormancy and germination. *Mol. Plant* 9, 34–45. doi: 10.1016/j.molp.2015.08.010.

Snykal, P., Vernoud, V., Blair, M. W., Soukup, A., and Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. *Front. Plant Sci.* 5:351. doi: 10.3389/fpls.2014.00351.

Song, Q., Cheng, S., Chen, Z., Nie, G., Xu, F., Zhang, J., et al. (2019). Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in *Fraxinus laxephenensis*. *BMC Plant Biol.* 19:199. doi: 10.1186/s12870-019-1801-3.

Souza, V. C., Polhyanna, F. M. A., Leonaldo, A. A., Irenece, G. O., and Lamartine, S. O. (2010). Germination of seeds of the invasive plant Sesbania virgata (Cav.) Pers. under effects of light, temperature, and dormancy overcoming. *Senina Ciências Agrárias* 31, 889–894. doi: 10.5433/1679-0359.2010v31n4p889.

Stevens, A. V., Nicotra, A. B., Godfure, R. C., and Guja, L. K. (2020). Polyplody affects the seed, dormancy and seedling characteristics of a perennial grass, conferring an advantage in stressful climates. *Plant Biol.* 22, 500–513. doi: 10.1111/plb.13094.

Tian, Y. C., Liang, M. Z., and Hu, B. Q. (2015). Analysis on characteristics of extra- me temperature changes in red river basin from 1961 to 2011. *Res. Devel. Mar.* 31, 312–315. doi: 10.3969/j.issn.1005-8141.2015.03.014.

Wang, J. H., Zhang, N., Wang, J., and Wu, K. Y. (2016). Main nutritional components in *Cinnamomum migao* seed. *Guizhou Agric. Sci.* 44, 117–119.

Wolks, D., Blackwell, B., and Villanueva, S. K. (2020). Conservation seed physiology of the ciéndega endemic, *Eryngium sparganophyllum* (Apiaceae). *Conserv. Physiol.* 8:coa017. doi: 10.1093/conphys/coa017.

Wright, B. R., and Clarke, P. J. (2009). Fire, aridity and seed banks. What does seed bank composition reveal about community processes in fire-prone desert. *J. Vegetation Sci.* 20, 663–674. doi: 10.1111/j.1654-1103.2009.01051.x.

Yan, A., and Chen, Z. (2020). The control of seed dormancy and germination by temperature, light and nitrate. *Bot. Rev.* 86, 39–75. doi: 10.1007/s12229-020-09220-4.

Yang, B., Cheng, J., Wang, J., Cheng, Y., He, Y., Zhang, H., et al. (2019). Physiological characteristics of cold stratification on seed dormancy release in rice. *Plant Growth Regul.* 89, 131–141. doi: 10.1007/s10725-019-00516-z.

Yang, L., Liu, S., and Lin, R. (2020). The role of light in regulating seed dormancy and germination. *J. Integr. Plant Biol.* 62, 1310–1326. doi: 10.1111/jipb.13001.

Zhou, T. (2003). Study on molecular Pharmacognosy of *Cinnamomum migao*. Guiyang College of Traditional Chinese Medicine. H.W. Li of Miao minority nationality herbs and its related species.

Zhou, T., Yang, Z. N., Jiang, W. K., Ai, Q., and Guo, L. P. (2010). Variation and regularity of volatile oil constituents in fruits of national medicine *Cinnamomum migao*. *China J. Chin. Mat. Med.* 35, 852–856. doi: 10.4268/cjcm20100710.

Zida, D., Sanou, L., Diawara, S., Savadogo, P., and Thiombiano, A. (2020). Herbaceous seeds dominates the soil seed bank after long-term prescribed fire, grazing and selective tree cutting in savanna-woodlands of West Africa. *Acta Oecol.* 108:103607. doi: 10.1016/j.actao.2020.103607.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.