Biodistribution ex vivo of 213Bi-KHEDP – a promising bone-seeking agent for targeted alpha therapy

V K Tishchenko1, V M Petriev1,2, E D Stepchenkova1, I N Zavestovskaya2, S A Ivanov1 and A D Kaprin1

1Tsyb Medical Radiological Research Centre, Obninsk, Russia
2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
e-mail: petriev@mrrc.obninsk.ru

Abstract. Alpha-emitters are increasingly used for targeted alpha therapy because of their emission of high linear energy transfer (LET) particles with a relative short path length. Bismuth-213 (213Bi, $T_{1/2} = 46$ min) is one of the most suitable radiation sources for medical applications. In the present work the biodistribution of 213Bi-monopotassium salt of 1-hydroxyethylidene diphosphonic acid (213Bi-KHEDP) in intact mice was studied. It was shown that bones uptake of 213Bi-KHEDP were higher than in the most soft tissue organs throughout the study. The bone-to-soft tissue ratios for 213Bi-KHEDP were higher than the corresponding data for 213BiCl$_5$. Among the soft tissue organs, only kidneys had a high uptake of 213Bi-KHEDP and free 213Bi. In conclusion, 213Bi-KHEDP had a strong and selective bone affinity, indicating that this complex could be useful to deliver alpha-particle radiation to primary bone cancer and skeletal metastases.

1. Introduction

Targeted alpha therapy (TAT) has shown great promise in the treatment of both micrometastatic and large solid tumors in preclinical and clinical studies [1]. This term means radiopharmaceutical technology that uses α-emitting radionuclides to destroy tumor tissue. TAT offers advantages over current β-emitting conjugates radionuclide therapy of many tumors, including bone metastases. α-Particles are able to kill cancer cells due to their linear energy transfer (LET) corresponds to 60-230 keV/μm, which is more lethal to cells than LET of β-particles [2]. The primary cause for higher cell toxicity is thought to be originated from the increased frequency of DNA double strand breaks, which are difficult to repair. Besides, the cytotoxicity of α-particles is independent of both dose rate and oxygenation status of the irradiated cells [3]. Also α-particles have very short path length (< 0.1 mm), corresponding to less than 10 cell diameters, which minimizes damage from the surrounding normal tissue particularly to areas of marrow containing hematopoietic precursors [3].

The radioactive decay of bismuth-213 (213Bi, $T_{1/2} = 46$ min) results in the emission of high-LET α-particles by 213Bi self and by its daughter 213Po around 100 keV/μm. 213Bi is obtained from a 225Ac generator with acceptable activity for about 10 days [4]. Due to the relative short half-life 213Bi can deliver a high radiation dose rate to cancer cells within a relatively short period of time and with minimal damage to surrounding normal tissue. Phosphonates are ideal bone-targeting agents and suitable vehicles for α-emitters due to their high hydroxyapatite affinity. Thus, a complex of 213Bi with phosphonate could be used as a potential agent for TAT of bone tissue disorders. The aim of this study
was to evaluate *ex vivo* biodistribution of monopotassium salt of 1-hydroxyethylidene diphosphonic acid labeled with 213Bi (213Bi-KHEDP) in intact mice.

2. Materials and methods
Normal mice weighing 18-23 g were used in all studies. Animals were injected intravenously with 0.37 MBq of 213Bi-KHEDP or 213BiCl$_5$ ($n = 12$ each tracer) in a volume of 0.1 ml through the tail vein. Animals were sacrificed at 5 min, 1, and 3 h after injection. Four mice were used for each time points. The samples of tissues and organs were collected, weighed and counted in automatic gamma counter “Wizard” (PerkinElmer/Wallac). The uptake was expressed as a percentage of the injected dose per gram of tissue (%ID/g). All the biodistribution studies were carried out in strict compliance with the national laws related to the conduct of animal experiments.

Biodistribution data were expressed as mean value ± standard error of the mean (M ± m). Student’s t test was used to analyze data throughout all studies between groups at different time points, and $p<0.05$ was considered statistically significant. In addition, femur/blood and femur/muscle ratios were calculated.

3. Results and discussion
It was shown that bones uptake of 213Bi-KHEDP were higher than in the most soft tissue organs throughout the study. Besides, the level of 213Bi-KHEDP in bone tissue was higher as compared with 213BiCl$_5$, as shown in figures 1–4. The maximum femur uptake of 213Bi-KHEDP compared to 213BiCl$_5$ was 18.6±3.23 %ID/g versus 1.38±0.25 %ID/g at 5 min post-injection (p.i.), respectively. The amount of 213Bi-KHEDP in skull was 4.29±1.05 %ID/g at 5 min p.i., but climbed to 16.2±3.76 %ID/g at 1 h p.i., and declined to 5.28±1.21 %ID/g at 3 h p.i. The ribs uptake varied from 2.43±0.36 %ID/g to 6.15±1.76 %ID/g, spine uptake – from 1.64±0.21 %ID/g to 3.27±0.42 %ID/g. The level of activity of free 213Bi didn’t exceed 5.15±1.12 %ID/g in skull at 1 h p.i. (figures 1–4). The femur/blood and femur/muscle ratios for 213Bi-KHEDP were higher than the corresponding data for 213BiCl$_5$ (table 1).

![Figure 1. Specific amounts of radioactivity in femur of normal mice at different time after intravenous injection of 213Bi-KHEDP and 213BiCl$_5$ (in %ID/g).](image1)

![Figure 2. Specific amounts of radioactivity in ribs of normal mice at different time after intravenous injection of 213Bi-KHEDP and 213BiCl$_5$ (in %ID/g).](image2)

There are few data referring to bone-seeking complex of phosphonates and α-emitting radionuclides. For example, bone uptake of 225Ac-EDTMP in mice was approximately 10–11 %ID/g after 15 h [5]. Similar results were obtained by Hassfjell et al. [6]: the amounts of 212Pb-EDTMP and 212Bi-EDTMP in bone tissue were 10 %ID/g and 8 %ID/g after 24 h, respectively. 227Th-EDTMP also
exhibited good and stable bone accumulation in mice: femur uptake was 8.7 %ID/g at 24 h p.i. and remained stable for 14 days [7].

![Graph showing radioactivity in skull and spine](image)

Figure 3. Specific amounts of radioactivity in skull of normal mice at different time after intravenous injection of 213Bi-KHEDP and 213BiCl$_5$ (in %ID/g).

Figure 4. Specific amounts of radioactivity in spine of normal mice at different time after intravenous injection of 213Bi-KHEDP and 213BiCl$_5$ (in %ID/g).

Higher bone accumulation revealed DOTMP chelates of α-emitters. Thus, 225Ac-DOTMP demonstrated high bone uptake (up to 20 %ID/g at 4 h p.i.) and high bone-to-soft tissue ratios in mice [8]. The amount of 212Bi-DOTMP in bone tissue of Balb/c mice was as high as 22 %ID/g after 2 h. Bone-to-soft tissue ratios were higher in young mice than in old mice, indicating enhanced uptake in areas with high bone turnover [9]. The percentage of 227Th-DOTMP in femur reached 20 %ID/g at 4 h after intravenous administration [8]. Thereby, our results are in a good agreement with literature data.

Table 1. Femur/blood and femur/muscle ratios in normal mice after intravenous injection of 213Bi-KHEDP and 213BiCl$_5$.

Time after injection	Femur/blood	Femur/muscle				
	5 min	1 h	3 h	5 min	1 h	3 h
Femur/blood	4.47±0.49*	8.82±0.66	13.21±0.70	34.44±3.05	49.63±3.54	17.76±2.07
	0.11±0.02**	0.08±0.01	0.09±0.01	1.33±0.56	2.88±1.70	1.48±0.37
	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001

* – 213Bi-KHEDP
** – 213BiCl$_5$

Among the soft tissue organs, only kidneys had a high uptake of 213Bi-KHEDP and free 213Bi. Thus, the amount of 213Bi-KHEDP was 46.8±4.12 %ID/g at 5 min p.i., and then increased to
77.2±2.94 %ID/g at 3 h p.i. At contrast, kidney uptake of 213BiCl$_3$ reached 141.6±39.3 %ID/g at 1 h p.i., because kidneys are specific biological site of 213Bi deposition [10]. High kidney uptake of 213Bi-KHEDP is due to the rapid renal excretion of phosphonic acids and their derivatives [11, 12].

The amount of 213Bi-KHEDP in blood was 4.16±0.39 %ID/g at 5 min p.i., but then declined rapidly to 1.52±0.36 %ID/g at 1 h and 0.39±0.08 %ID/g at 3 h. The activity of 213BiCl$_3$ in blood was 3–10 times higher than that of 213Bi-KHEDP and varied from 3.98±0.48 to 14.8±2.90 %ID/g.

The radioactivity of 213Bi-KHEDP in liver was 4.17–5.33 %ID/g, whereas the uptake of 213BiCl$_3$ reached 15.3±3.40 %ID/g at 1 h p.i. In other organs the amounts of 213Bi-KHEDP were: 0.57–1.67 %ID/g in thyroid gland, 0.99–3.64 %ID/g in lungs, 1.02–2.61 %ID/g in spleen, 0.31–2.19 %ID/g in heart, and 0.73–1.44 %ID/g in skin. The uptake of 213Bi-KHEDP in stomach and small intestine varied from 0.62±0.14 to 1.69±0.30 %ID/g and from 0.53±0.16 to 3.72±1.11 %ID/g, respectively. Low level of activity revealed in brain: 0.10–0.29 %ID/g.

4. Summary

In conclusion, 213Bi-KHEDP had a strong and selective bone affinity, indicating that this complex could be useful to deliver α-particle radiation to primary bone cancer and skeletal metastases.

References

[1] Makvandi M, Dupis E, Engle J W, Nortier F M, Fassbender M E, Simon S, Bimbaum E R, Atcher R W, John K D, Rixe O and Norenberg J P 2018 Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations Target Oncol. 13 189–203

[2] Hassfjell S and Brechbiel M W 2001 The development of the alpha-particle emitting radionuclides 213Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications Chem. Rev. 101 2019–36

[3] Allen B J, Huang C Y and Clarke R A 2014 Targeted anticancer therapies: Update and future prospects Biol. Targets Ther. 8 255–67

[4] Wadas T J, Pandya D N, Sai K K S and Mintz A 2014 Molecular targeted α-particle therapy for oncologic applications A.J.R. Am. J. Roentgenol. 203 253–60

[5] Beyer G J, Offord R, Künzi G, Alexandrova Y, Ravn U, Jahn S, Barker J, Tengblad O and Lindroos M 1997 The influence of EDTMP-concentration on the biodistribution of radiolanthanides and 225-Ac in tumor-bearing mice. The ISOLDE Collaboration. Nucl. Med. Biol. 24 367–72

[6] Hassfjell S, Hoff P, Bruland Ø S and Alstad J 1994 212Pb/212Bi-EDTMP – synthesis and biodistribution of a novel bone seeking alpha-emitting radiopharmaceutical J. Label. Compd. Radiopharm. 34 717–34

[7] Washiyama K, Amano S, Sasaki J, Kinuya S, Tonami N, Shiokawa Y and Mitsugashira T 2004 227Th-EDTMP: a potential therapeutic agent for bone metastasis Nucl. Med. Biol. 31 901–8

[8] Henriksen G, Bruland O S and Larsen R H 2004 Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents Anticancer Res. 24, 101–5

[9] Hassfjell S, Bruland O S and Hoff P 1997 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted therapy Nucl. Med. Biol. 24, 231–7

[10] Brechbiel M W 2007 Targeted alpha-therapy: past, present, future? Dalton Trans. 43 4918–28

[11] Shiryaeva V K, Petriev V M, Bryukhanova A A, Smoryzanova O A and Skvortsov V G 2011 Comparative analysis of pharmacokinetic characteristics of radiopharmaceuticals based on the monopotassium salt of 1-hydroxyethylidenediphosphonic acid labeled by 99mTc and 188Re Pharm. Chem. J. 45 333–40

[12] Lin W Y, Lin C P, Yeh S J, Hsieh B T, Tsai Z T, Ting G, Yen T C, Wang S J, Knapp F F Jr and Stabin M G 1997 Rhenium-188 hydroxyethylidene diphosphonate: a new generator-produced radiotherapeutic drug of potential value for the treatment of bone metastases Eur. J. Nucl. Med. 24 590–5