Behavior of hyperreflective spots noted on optical coherence tomography following intravitreal therapy in diabetic macular edema: A systematic review and meta-analysis

Pratyusha Ganne, Nagesha C Krishnappa¹, Siddharth K Karthikeyan², Rajiv Raman³

Purpose: Hyperreflective spots (HRS) are considered as spectral domain optical coherence tomography biomarkers in predicting response to intravitreal therapy (IVT) in diabetic macular edema (DME). We aimed to determine if there was a quantitative reduction in HRS following IVT in DME, if the response to antivascular endothelial growth factor (anti-VEGF) drugs was different from steroids, and if HRS-response was associated with improvement in visual acuity (VA) or reduction in central macular thickness (CMT).

Methods: PubMed/MEDLINE, Scopus, ProQuest, CINAHL, Wiley online, and Web of Science were searched (between January 1, 2011 and July 1, 2020). Publication bias and heterogeneity were assessed. Meta-analysis was done using the random-effects model. Results: Totally, 1168 eyes from 19 studies were eligible for inclusion. IVT was associated with a reduction in quantitative HRS (z = -6.3, P < 0.0001). Studies, however, showed heterogeneity (I² = 93.2%). There was no difference between anti-VEGF and steroid therapies (P = 0.23). The evidence on predicting VA and CMT outcomes were limited by the number of analyzable studies, owing to the wide variation in individual study designs, and lack of randomized controlled trials.

Conclusion: We could conclude that there is a definite reduction in quantitative HRS following either form of IVT. We highlight the lacunae in the existing literature on HRS in DME and propose goals for future studies to harness the advantage of this promising biomarker.

Key words: Biomarker; Diabetic macular edema; Hyperreflective spots; Macular thickness; Optical coherence tomography; Prognosis; Visual acuity

Intravitreal antivascular endothelial growth factor (anti-VEGF) therapy emerged as the first-line treatment for diabetic macular edema (DME) in the last decade after the landmark RISE/RIDE trials and Diabetic Retinopathy Clinical Research Network (DRCR.net) studies demonstrated a significant visual acuity (VA) improvement in ~60% of the eyes treated with IVT.[1,2] However, ~50% of the eyes in protocols I and T of DRCR.net did not respond adequately to these injections.[3,4] Intravitreal steroids are being used in such patients not responding to anti-VEGF injections.[5,6] The rationale behind using steroids is based on the role inflammation has in the pathogenesis of DME.[7,8] However, a subset of patients can show suboptimal response to steroids as well.[9] In a real-life scenario, predicting which patient will or will not respond to intravitreal treatment has become a challenging task.

Various biomarkers are being evaluated on optical coherence tomography (OCT) scans to predict responses like neurosensory detachment,[10,11] ellipsoid zone (EZ) line integrity, cystoid macular edema (CME),[10,12] hyperreflective spots (HRS),[12,13] and disorganization of retinal inner layers.[12,13] HRS are small, dot-like lesions with absent back shadowing on OCT [Fig. 1].[12-14,17] The pathogenesis of these spots is still unclear. These spots are thought to be extravasated lipoproteins (precursors of hard exudates),[10,13] inflammatory cells (leucocytes, activated microglia),[14,15,18,19] migrated retinal pigment epithelium (RPE) cells,[18,20] or photoreceptor fragments.[21] Research is underway to estimate the predictive value of this biomarker in determining the final VA, reduction in central macular thickness (CMT), and duration of action of intravitreal implants.[14,15,22-25]

The current literature on HRS in DME consists of small retrospective/prospective cohort studies with a small proportion of studies showing conflicting results. Majority of the studies, however, point that HRS could be a candidate marker in predicting response to therapy in DME. Hence, we tried to synthesize the available information on HRS to (1) investigate if there was a reduction in quantitative HRS following IVT, (2) if the HRS-response to anti-VEGF drugs...
was different from steroids, and (3) if change in posttreatment quantitative HRS/baseline HRS counts were associated with improvement in VA and/or reduction in CMT. Finally, we highlight the lacunae in the existing literature on HRS in DME and suggest goals for future studies.

Methods

A systematic review was conducted in accordance with Meta-Analyses and Systematic Reviews of Observational Studies guidelines. The protocol was registered in International Prospective Register of Systematic Reviews (CRD42020186820).

This review included all articles that described HRS as an outcome predictor after IVT in DME from peer-reviewed journals published in electronic databases (between January 1, 2011 and July 1, 2020).

We excluded studies: (1) not available in English, (2) published in books, conference abstracts, review, comments, letter to editor, case series (<5 subjects), (3) with insufficient quality, (4) where the results of DME were combined with other causes of macular edema like vein occlusion, (5) where additional interventions were done during the study period like laser, vitrectomy, etc., (6) performed in nonhuman subjects, and (7) where time-domain OCT machines were used.

Search strategy

The following databases were searched: PubMed/MEDLINE, Scopus, ProQuest, CINAHL, Wiley online, and Web of Science. PICO (participants, intervention, and comparison and outcomes) format search strategy was used to search databases mentioned.

The full search strategy for MEDLINE using keywords is detailed in Appendix 1.

Assessment of methodological quality and risk of bias

The quality and risk of bias of the articles included in the full-text review was assessed by PG and SK using the National Institute of Health Study Quality Assessment Tool. Questions with answer “yes” were scored 1 and those with an answer “no”/“cannot determined”/“not reported” were scored 0. The total score for each study = (the total number of questions answered as “yes”/the total number of questions) × 100. Studies were graded as high quality (80–100%), moderate quality (60–80%), and low quality (<60%).

Statistical analysis

Meta-analysis

We performed a random-effects meta-analysis. All the outcomes of interest (i.e., quantitative HRS reduction, difference in quantitative HRS reduction between steroid and anti-VEGF therapy, and posttreatment change in VA) were set as continuous variables. The variances of combined true effect sizes among the studies were estimated using Hedge’s g for all outcomes (with 95% CI). Heterogeneity among studies was estimated using P statistic. Subgroup analysis was performed using analysis of variance of sum of squares. Publication bias was analyzed using Begg and Mazumdar rank correlation test (Δx–y, Kendall Tau a, and CI limits).

Results

Included studies

Fig. 2 shows the flow diagram to summarize inclusion of studies.

Quality of the studies

The quality scores of the 19 studies (13 retrospective cohort studies, 3 prospective cohort studies, 2 case series, and 1 case-control study) are enumerated in Table 1.

Baseline characteristics

A total of 1168 eyes of 942 patients (mean age: 64.3 ± 4.9 years, males: 59.4%) were analyzed for HRS from the above 19 studies. Eight studies evaluated the response to anti-VEGF injections [intravitreal ranibizumab (IVR), intravitreal bevacizumab (IVB), and conbercept], 11 studies...
to dexamethasone implant,[12,14,26-30,32-34,36-40] and 2 studies to sequential use of anti-VEGF and dexamethasone.[15,17] The measurement of HRS was done over different area sizes in the macula (12 studies used 3000 µm area,[12,14-17,26,32-34,36,38,39] 4 studies used 1000 µm area,[24,30,35,40] 2 studies used 1500 µm area,[31,37] and 1 study used area between 500 and 1500 µm from the center of the fovea) [Table 1].[41]

Change in quantitative HRS with IVT

Twelve studies with HRS counts before and after IVT were analyzed. All seven studies where anti-VEGF injections were used[16,17,30-32,35,41] and six out of the seven studies where dexamethasone was used[17,26,32,34,37,40] reported a decrease in quantitative HRS. In the subgroup of patients whose macular edema did not respond to dexamethasone or IVB, there was no significant HRS reduction [Table 2].[17]

Retinal-layer-wise analysis was done in six studies. However, the definition of retinal layers was variable across the studies. Inner retina (IR) was defined as extending from internal limiting membrane (ILM) to outer nuclear layer (ONL) in three studies,[17,31,35] ILM to inner nuclear layer (INL) in one study,[26] and as INL in one study.[16] Similarly, outer retina (OR) was defined as extending from external limiting membrane (ELM) to RPE in two studies,[17,31] ELM to photoreceptors in one study,[35] and ELM to outer plexiform layer (OPL) in two studies.[16,26] One study analyzed HRS in three layers, i.e., ILM to inner plexiform layer, INL to OPL and ONL.[41]

HRS change in steroid versus anti-VEGF-treated eyes

Two studies compared the change in HRS counts between these two classes of drugs, in treatment naive eyes.[32,36] Vujosevic \textit{et al.}[32] showed a greater reduction in HRS in dexamethasone-treated eyes ($n = 15$) versus IVT-treated eyes ($n = 18$) (24.7% versus 8.0%, $P = 0.03$) when all baseline parameters were matched. In another study by the same author, the decrease in HRS was not found to be different between the two treatment groups ($P = 0.135$).[36] However, in this study, the baseline HRS counts were significantly higher in the dexamethasone group compared to the IVR group ($P = 0.003$). Hwang \textit{et al.}[17] noted that baseline HRS numbers were higher in eyes that did not respond to IVB. When such eyes were treated with dexamethasone implant, the HRS count decreased [Table 2 and Fig. 3a].

Baseline HRS and change in VA

A total of 14 studies were analyzed. Five studies made a qualitative reporting of HRS as present or absent at baseline.[12,14,24,38,39] three studies had categorized the patients into those with HRS $<$10–15 and those with HRS $>$10–15 on baseline scans.[15,33,40] In the remaining six studies, baseline HRS counts were correlated with final VA using regression/correlation statistics.[16,30,31,35,37,41] Three studies showed that higher HRS counts at baseline were associated with worse final VA.[31,35,38] Five studies showed no correlation between baseline HRS counts and final VA.[13,16,33,40,41] In a study by Cavalleri \textit{et al.},[15] dexamethasone therapy resulted in a greater gain in VA in eyes with high baseline HRS.
Figure 3:

(a) Forest plot showing the change in quantitative HRS following intravitreal injection. There were a total of 12 studies among which there were 20 effect sizes to be analyzed. The box and whisker plot for individual studies represent the effect size (Hedges’ g) and 95% confidence intervals (CI95%). Subgroup analyses for dexamethasone and anti-VEGF groups are summarized within the plot. The overall effect size is represented by the polygon.

(b) Forest plot showing the association between HRS at baseline and change in VA. [*G = Hedges’ g; LCL = lower confidence limit; UCL = upper confidence limit; WGHT = weight of the study; dotted vertical line = overall effect size; I^2 = heterogeneity of the studies; within parenthesis = therapeutic group; VEGF = vascular endothelial growth factor; DEX = dexamethasone; DRT = diffuse retinal thickening; CME = cystoid macular edema; SRD = serous retinal detachment; R = responder; NR = nonresponder; ER = early recurrence; LR = late recurrence*]
Table 1: Baseline characteristics of the studies and participants included in the systematic review

Author (year)	Study design	Study population	*Eyes*	**Mean age (years)**	*Follow up (months)	Macular area analyzed (µm)	Intervention	Study quality
Framme et al. (2012)[21]	Retrospective cohort	DME (previously no anti-VEGF)	51	67	1	1000	IVR=30, IVB=21	Moderate
Vujosevic et al. (2016)[41]	Prospective case control	Treatment naive DME	40	63.0	6	500-1500	IVR	High
Kang et al. (2016)[31]	Retrospective cohort	Treatment naive DME	97	60.11	6.71±3.7	1500	DEX	Moderate
Vujosevic et al. (2017)[32]	Retrospective cohort	Treatment naive DME	49	66.0	Unclear	3000	DEX (23)/ IVR (26)	Moderate
Chatziralli et al. (2017)[38]	Prospective cohort	Refractory DME	54	69.2	12	3000	DEX	Moderate
Hwang et al. (2017)[17]	Retrospective cohort	Treatment naive DME	82	55.13	3 m post IVB/1 m post DEX	3000	3 IVB; if no response add DEX	Moderate
Zur et al. (2018)[12]	Retrospective cohort	Treatment naive and refractory DME	299	64	4	3000	DEX	High
Schreur et al. (2018)[16]	Retrospective cohort	Treatment naive DME	54	67	3	3000	IVR	High
Hatz et al. (2018)[42]	Case series	Refractory DME	40	68.3	2	1000	DEX	Moderate
Bonfiglio et al. (2019)[14]	Case series	Refractory DME	44	69.7	6	3000	DEX	High
Fonollosa et al. (2019)[33]	Retrospective cohort	Naive or previously treated DME patients	64	67.5	6	3000	DEX	High
Karttunen et al. (2019)[24]	Retrospective cohort	Refractory DME	24	65.6	2	3000	DEX	Moderate
Menezo et al. (2019)[39]	Prospective cohort	Treatment naive DME	50	66.4	12	3000	DEX	Moderate
Liu et al. (2019)[23]	Retrospective cohort	DME (previously no anti-VEGF)	26	53.9	3	1000	Conbercept	High
Kim et al. (2019)[29]	Retrospective cohort	Refractory DME	29	58.3	12	3000	DEX	Moderate
Vujosevic et al. (2020)[38]	Retrospective cohort	Treatment naive DME	33	63.3	3 m post IVR/2 m post DEX	3000	DEX (15 eyes)/IVR (18)	Moderate
Cavalleri et al. (2020)[15]	Retrospective cohort	Treatment naive DME	28	72.1	12	3000	Loading dose of IVR followed by DEX	Moderate
Yoshitake et al. (2020)[24]	Retrospective cohort	DME (unspecified)	77	69	12	1000	IVR	High
Narnaware et al. (2020)[27]	Prospective cohort	Treatment naive and refractory DME	27	61.11	4	1500	DEX	Low

IVR: intravitreal ranibizumab; IVB: intravitreal bevacizumab; DEX: dexamethasone implant; *: number of eyes with respect to HRS analysis; refractory DME: diabetic macular edema unresponsive to previous anti-VEGF injections, µm: micrometers; m: months

HRS counts compared to IVB. Bonfiglio et al.[14] and Yoshitake et al.[24] compared eyes with and without HRS at baseline and showed a greater gain in VA following dexamethasone and anti-VEGF injections, respectively, in eyes with HRS. Zur et al.[12] reported a greater gain in eyes without HRS at baseline[12] and Menezo et al.[39] showed no association between gain in VA and the presence of HRS at baseline [Appendix 2 and Fig. 3b].

Baseline HRS and CMT change

A total of 10 studies were included for this analysis. Bonfiglio et al.[14] and Yoshitake et al.[24] reported greater reduction in CMT in eyes with HRS compared to those without. Menezo et al.[39] found no association between the two parameters. Two studies which evaluated the association between a decrease in HRS and change in CMT showed contrasting results, with Liu et al.[23] reporting a significant correlation between the
Table 2: Quantitative HRS change following intravitreal therapy

Author (year)	Drug (Number of eyes)	HRS (Mean±SD)	baseline	After treatment	P value
Framme et al. (2012)	IVR (30); IVB (21)		16.02±8.0	14.32±8.46	0.000*
Vujosevic et al. (2016)	IVR		16.02±8.0	8.0±2.8	0.02*
Kang et al. (2016)	IVB		16.02±8.0	14.32±8.46	0.000*
Vujosevic et al. (2017)	DEX (23); IVR (26)		16.02±8.0	14.32±8.46	0.000*
Hwang et al. (2017)	3 IVB; if no response		16.02±8.0	14.32±8.46	0.000*
Schreur et al. (2018)	IVR		16.02±8.0	14.32±8.46	0.000*
Hatz et al. (2018)	DEX		16.02±8.0	14.32±8.46	0.000*
Kim et al. (2019)	DEX		16.02±8.0	14.32±8.46	0.000*
Karttunen et al. (2019)	DEX		16.02±8.0	14.32±8.46	0.000*
Shulin Liu et al. (2019)	Conbercept		16.02±8.0	14.32±8.46	0.000*
Vujosevic et al. (2020)	DEX (15); IVR (18)		16.02±8.0	14.32±8.46	0.000*
Narnaware et al. (2020)	DEX		16.02±8.0	14.32±8.46	0.000*

IVR: intravitreal ranibizumab; IVB: intravitreal bevacizumab; DEX: dexamethasone implant; IR: inner retina; OR: outer retina; TR: total retina; SRF: subretinal fluid; ILM: internal limiting membrane; INL: inner nuclear layer; IPL: inner plexiform layer; OPL: outer plexiform layer; ONL: outer nuclear layer; DRT: diffuse retinal thickening; CME: cystoid macular edema; SRD: subretinal detachment; *P<0.05, NA=not available; †data obtained after contacting author.
reduction in inner and total retinal HRS and the decrease in CMT at 3 months (r = 0.422, P = 0.032 and r = 0.429, P = 0.029, respectively) and Framme et al.[30] reporting no significant association between the two variables at the end of 1 month. Vujosevic et al.[31] showed greater CMT reduction in eyes with more HRS (>87) at baseline than those with less HRS (<87) (p = 0.28, P = not reported). Schreur et al.[32] reported that the number of HRS at baseline was independently associated with a decrease in CMT (βstandardized = -2.61, P = 0.006). On the contrary, Fonollosa et al.[33] found that the CMT reduction was not significantly different between groups with scarce (<10) or abundant (>21) HRS. Finally, Kang et al.[34] and Vujosevic et al.[35] found no significant correlation between the baseline HRS counts and the final retinal thickness [Appendix 2].

Meta-analysis

From the systematic review, we found (i) that the qualities of the studies were moderate, (ii) result reporting was inconsistent across studies, and (iii) conflicting results across various studies. Hence, results summarized using a random effects meta-analysis on 12 studies testing the quantitative HRS change following IVT [Fig. 2a] showed high heterogeneity in the studies (I² = 93.16%) and significant publication bias (Δ = -100; Kendall’s Tau = -0.526, CI95% = -0.47 to -0.36, P = 0.001). There was no significant difference between dexamethasone (Hedges’ g = -1.1, CI95% = -1.22 to -0.57) and anti-VEGF groups (Hedges’ g = -0.69, CI95% = -0.99 to -0.38) in terms of HRS reduction (Q² = 1.4, df = 1, P = 0.23).

To analyze the association between HRS and VA, we performed a meta-analysis on three studies [Fig. 3b].[12,14,39] The presence/absence of HRS at baseline was not associated with improved VA at the end of treatment (Hedges’ g = 0.237, CI95% = -1.39 to 1.87, P = 84%, P = 0.5) [Fig. 3b].

We could not perform a meta-analysis to see the effect of HRS on CMT reduction due to heterogeneity in reporting results.

Discussion

In this review, we found that there is a definite reduction in HRS counts following IVT and no significant difference between anti-VEGF and steroid groups. The role of HRS in predicting VA outcome and CMT change was limited by the number of analyzable studies owing to the wide variation in the study designs and reporting.

Various theories have been proposed regarding the exact nature of HRS.[18-22,42] Of these, the hard exudate and inflammatory theories are most popular in DME. Cusick et al.[43] using immunochemistry found apolipoprotein-B deposits corresponding to the HRS. An inflammatory basis for HRS was postulated by Lee et al.[44]Shen et al.[45] The authors found that soluble CD14 (sCD14) levels in the aqueous humor and HRS counts in inner retina on OCT were raised in patients with DME compared to controls. Hence, they concluded that since sCD14 is released by retinal microglia, HRS might represent aggregates of activated microglial cells in DME eyes. Intravitreal dexamethasone is a potent antiinflammatory agent. Anti-VEGF injections, although not as potent as steroids in their antiinflammatory action, have been shown to have antiactivated microglial activity.[46] The reduction in HRS within 3 months of starting IVT as seen in most studies of this review strongly points toward their inflammatory origin. If HRS were to be hard exudates, we do not expect such rapid regression.

Although HRS are mainly located in the inner retina, with progressing retinopathy, HRS reach the outer retinal layers. Studies have shown that OR-HRS were associated with ELM and EZ disruption[49] and that there was a positive correlation between OR-HRS counts and final EZ and ELM disruption length.[51] Further studies have shown that HRS in OR had greater shortening of EZ line disruption following intravitreal anti-VEGF therapy than those without HRS at baseline.[24] Nishijima et al.[57] showed that HRS in OR were predictive of photoreceptor damage and poor vision after vitrectomy for DME. Kang et al.[34] found that in the DRT and CME groups, the final VA was worse in those with greater number of OR-HRS. Yoshihake et al.[24] reported that eyes with HRS in OR had greater VA improvement and greater CSF thickness reduction. HRS in the inner retinal layers were not associated with VA improvement in this study. In an observational study on treatment naive DME patients, Arthi et al.[40] found that there were no differences in CMT, BCVA, ELM, and EZ continuity between those with and without IR-HRS or OR-HRS.

A recent study showed that greater proportion of diabetics with HRS had coexistent hypertension compared to those who did not have HRS and those with higher number of HRS had significantly lower levels of serum triglycerides.[48] However, Davoudi et al.[49] showed that the presence of HRS was associated with higher total cholesterol and higher low-density lipoprotein levels. Framme et al.,[30] Wong et al.,[50] and De Benedicto et al.[18] have shown that poor glycemic control is associated with more HRS. They postulate that hyperglycemia could activate retina microglial cells in diabetic patients, which are seen as HRS on OCT. On the contrary, Arthi et al.[40] showed no association of HRS with glycemic control.

HRS noted in the inner wall of cystoid spaces have been called the “pearl necklace sign.”[71] This sign indicates the presence of lipoproteins or lipid-laden macrophages in patients with chronic CME. In a study by Ajay et al.,[52] this sign was seen in 13.1% of the eyes with DME. In 75% of such eyes, clinically visible hard exudates developed in exactly the same location as the pearl necklace sign after the resolution of DME. This could cause irreversible damage to photoreceptors if present subfoveally. Terada et al.[53] noted that HRS were accompanied by hyperreflective walls in foveal cystoid spaces. Eyes with hyperreflective walls in foveal cystoid spaces had poorer VA, more severe photoreceptor disruption, and poorer DME remissions than did those without such findings.

In DME, SD-OCT often shows HRS at the outer border of the detached neurosensory retina and/or within the subretinal space. Arthi et al.[40] showed that a greater proportion of eyes with HRS also had SRF. Ota et al.[54] compared eyes with no/few subretinal HRS and eyes with many subretinal HRS. While there was no difference in the baseline foveal thickness between the groups, foveal thickness of the group with few dots was significantly thicker than that of the group with many dots at 6 months, and this difference was abolished at 12 months. However, the VA at
12 months was significantly poorer in the groups with many HRS owing to the subfoveal deposition of hard exudates.

This meta-analysis could not bring out a significant effect of baseline HRS on the change in VA. However, on closer look, eyes with treatment naive DME as against those with refractory DME showed a positive correlation between HRS and VA gain (5/8 studies versus 0/3 studies) and CMT reduction (7/8 studies versus 1/3 studies) implying a significant role of inflammation in treatment naive DME as against a multifactorial pathogenesis in refractory-DME eyes.

The limitations of the studies included in this review include the following: retrospective designs, inadequate sample sizes, varied HRS measurements (i.e., HRS measured in different macular areas, manual versus automated counting, inconsistent definition of retinal layers), short follow-up duration, lack of adjustment for confounders (blood lipid/sugar levels), and varying statistical reporting methods and significant publication bias. Also, there has been a lack of uniform definition of HRS in these studies.

There is a need to standardize such variability in quantitative research when evaluating a biomarker to ensure reproducibility and test-retest reliability. Hence, we recommend a stage-wise approach to understand the exact nature and the role of this biomarker in DME [Table 3].

Conclusion

In conclusion, there is a definitive quantitative reduction in HRS after intravitreal anti-VEGF or intravitreal steroid therapy for DME. However, its correlation with reduction in CMT and VA change is inconclusive. HRS appear to be a promising biomarker in predicting therapeutic response to intravitreal treatment in DME.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.
References

1. Sun JK, Jampol LM. The Diabetic Retinopathy Clinical Research Network (DRCR.net) and its contributions to the treatment of diabetic retinopathy. Ophthalmic Res 2019;62:225-30.

2. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012;119:799-801.

3. Gonzalez VH, Campbell J, Holekamp NM, Kiss S, Loewenstein A, Augustin AJ, et al. Early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: Analysis of Protocol I data. Am J Ophthalmol 2016;172:72-9.

4. Bressler NM, Beaulieu WT, Glassman AR, Blinder KJ, Bressler SB, Jampol LM, et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: A secondary analysis of a randomized clinical trial. JAMA Ophthalmol 2018;136:257-69.

5. Busch C, Fraser-Bell S, Iglíckí M, Lupidi M, Couturier A, Chakkitmongkol V, et al. Real-world outcomes of non-responding diabetic macular edema treated with continued anti-VEGF therapy versus early switch to dexamethasone implant: 2-year results. Acta Diabetol 2019;56:1341-50.

6. Regillo CD, Callanan DG, Do DV, Fine HF, Holekamp NM, Kuppersmann BD, et al. Use of corticosteroids in the treatment of patients with diabetic macular edema who have a suboptimal response to anti-VEGF: Recommendations of an expert panel. Ophthalmic Surg Lasers Imaging Retina 2017;48:291-301.

7. Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 2009;116:73-9.

8. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Otsuka H, Funatsu H, Noma H, Mimura T, Eguchi S, Hori S. Association of vitreous inflammatory factors with diabetic macular edema. Ophthalmology 2009;116:73-9.

9. Choi MY, Jee D, Kwon JW. Characteristics of diabetic macular edema patients refractory to anti-VEGF treatments and a dexamethasone implant. PLoS One 2019;14:e0222364.

10. Gerendas BS, Prager S, Deak G, Simader C, Lammer J, Waldstein SM, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular edema. Br J Ophthalmol 2018;102:195-203.

11. Sheu S-J, Lee Y-Y, Horng Y-H, Lin HS, Lai WY, Tsen CL. Characteristics of diabetic macular edema on optical coherence tomography may change over time or after treatment. Clin Ophthalmol Auck NZ 2018;12:1887-93.

12. Zur D, Iglíckí M, Busch C, Invernizzi A, Mariussi M, Loewenstein A; International Retina Group. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology 2018;125:267-75.

13. Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 2014;132:1309-16.

14. Bonfiglio V, Reibaldi M, Pizzo A, Russo A, Macchi I, Faro G, et al. Dexamethasone for unresponsive diabetic macular oedema: Optical coherence tomography biomarkers. Acta Ophthalmol (Copenh) 2019;97:e540-4.

15. Cavalleri M, Cicinelli MV, Parravano M, Varano M, De Geronimo D, Sacconi R, et al. Prognostic role of optical coherence tomography after switch to dexamethasone in diabetic macular edema. Acta Diabetol 2020;57:163-71.

16. Schreur V, Altay L, van Asten F, Groenewoud JMM, Fauser S, Klevering BJ, et al. Hyperreflective foci on optical coherence tomography associate with treatment outcome for anti-VEGF in patients with diabetic macular edema. PLoS One 2018;13:e0206482.

17. Hwang HS, Chae JB, Kim JY, Kim DY. Association between hyperreflective dots on spectral-domain optical coherence tomography in diabetic macular edema and response to treatment. Invest Ophthalmol Vis Sci 2017;58:5958-67.

18. De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina 2015;35:449-53.

19. Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol 2008;126:227-32.

20. Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci 2018;19:110.

21. Framme C, Wolf S, Wolf-Schnurrbusch U. Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci 2010;51:5965-9.

22. Yoshitake T, Murakami T, Suzuma K, Fujimoto M, Dodo Y, Tsujikawa A. Predictor of early remission of diabetic macular edema under as-needed intravitreal ranibizumab. Sci Rep 2019;9:7599.

23. Maggio E, Sartore M, Attanasio M, Maragone G, Guerriero M, Polito A, et al. Anti-vascular endothelial growth factor treatment for diabetic macular edema in a real-world clinical setting. Am J Ophthalmol 2018;195:209-22.

24. Yoshitake T, Murakami T, Suzuma K, Dodo Y, Fujimoto M, Tsujikawa A. Hyperreflective foci in the outer retinal layers as a predictor of the functional efficacy of ranibizumab for diabetic macular edema. Sci Rep 2020;10:1873.

25. Park YG, Choi MY, Kwon JW. Factors associated with the duration of action of dexamethasone intravitreal implants in diabetic macular edema patients. Sci Rep 2019;9:19588.

26. Kim KT, Kim DY, Chae JB. Association between hyperreflective foci on spectral-domain optical coherence tomography and early recurrence of diabetic macular edema after intravitreal dexamethasone implantation. J Ophthalmol 2019;2019:3459164.

27. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 2000;283:2008-12.

28. Study Quality Assessment Tools; National Heart, Lung, and Blood Institute (NHLBI). Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. [Last accessed on 2020 Jun 10].

29. Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of meta-essentials: A free and simple tool for meta-analysis. Res Synth Methods 2017;8:537-53.

30. Framme C, Schweizer P, Imesch M, Wolf S, Wolf-Schnurrbusch U. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci 2012;53:3814-8.

31. Kang JW, Lee H, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 2014;252:1413-21.

32. Vujosevic S, Torresin T, Bini S, Convento E, Pilotto E, Parrozzani R, et al. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular edema. Acta Ophthalmol (Copenh) 2017;95:464-71.

33. Fonollosa A, Zarranz-Ventura J, Valverde A, Becerra E, Bernal-Morales C, Pastor-Idoate S, et al. Predictive capacity of baseline hyperreflective dots on the intravitreal dexamethasone...
implant (Ozurdex®) outcomes in diabetic macular edema: A multicenter study. Graefes Arch Clin Exp Ophthalmol 2019;13:2583-90.

34. Karttunen T, Nummelin L, Kaarniranta K, Kinnunen K. Real life experience of dexamethasone implant in refractory diabetic macular oedema. Clin Ophthalmol 2019;13:157.

35. Liu S, Wang D, Chen F, Zhang X. Hyperreflective foci in OCT image as a biomarker of poor prognosis in diabetic macular edema patients treated with Conbercept in China. BMC Ophthalmol 2019;19:157.

36. Vujosevic S, Toma C, Villani E, Muraca A, Torti E, Florimbi G, et al. Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids. Acta Diabetol 2020;57:287-96.

37. Narnaware SH, Bawankule PK, Raje D. Short-term outcomes of intravitreal dexamethasone in relation to biomarkers in diabetic macular edema. Eur J Ophthalmol 2020;31:1185-91.

38. Chatziralli I, Theodossiadis P, Parikakis E, Dimitriou E, Xirou T, Theodossiadis G, et al. Dexamethasone intravitreal implant in diabetic macular edema: Real-life data from a prospective study and predictive factors for visual outcome. Diabetes Ther 2017;8:1393-404.

39. Menezo M, Roca M, Menezo V, Pascual I. Intravitreal dexamethasone implant Ozurdex in the treatment of diabetic macular edema in patients not previously treated with any intravitreal drug: A prospective 12-month follow-up study. Curr Med Res Opin 2019;35:2111-6.

40. Hatz K, Ebner A, Tuerkevser C, Pruente C, Zinkernagel M. Repeated Dexamethasone Intravitreal Implant for the Treatment of Diabetic Macular Oedema Unresponsive to Anti-VEGF Therapy: Outcome and Predictive SD-OCT Features. Ophthalmologica. 2018;239:205-14.

41. Vujosevic S, Berton M, Bini S, Casciano M, Cavarzeran F, Midena E. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina 2016;36:1298-308.

42. Chatziralli IP, Sergentanis TN, Sivaprakas S, Hyperreflective foci as an independent visual outcome predictor in macular edema due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina 2016;36:2319-28.

43. Cusick M, Chew EY, Chan C-C, Kruth HS, Murphy RP, Ferris FL 3rd. Histopathology and regression of retinal hard exudates in diabetic retinopathy after reduction of elevated serum lipid levels. Ophthalmology 2003;110:2126-33.

44. Lee H, Jang H, Choi YA, Kim HC, Chung H. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Invest Ophthalmol Vis Sci 2018;59:715-21.

45. Forstreuter F, Lucius R, Mentlein R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 2002;132:93-8.

46. Uji A, Murakami T, Nishijima K, Akagi T, Hori T, Arakawa N, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol 2012;153:710-7, 717.e1.

47. Nishijima K, Murakami T, Hirashima T, Uji A, Akagi T, Hori T, et al. Hyperreflective foci in outer retina predictive of photoreceptor damage and poor vision after vitrectomy for diabetic macular edema. Retina 2014;34:732-40.

48. Arthi M, Sindal MD, Rashmita R. Hyperreflective foci as biomarkers for inflammation in diabetic macular edema: Retrospective analysis of treatment naïve eyes from south India. Indian J Ophthalmol 2021;69:1197-202.

49. Davoudi S, Papavasileiou E, Roshipoor R, Cho H, Kudrimoti S, Hancock H, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes. Retina 2016;36:1622-9.

50. Wong BS, Sharanjeet-Kaur S, Ngah NF, Savri RR. The correlation between hemoglobin A1c (HbA1c) and hyperreflective dots (HRD) in diabetic patients. Int J Environ Res Public Health 2020;17:3154.

51. Gelman SK, Freund KB, Shah VP, Sarraf D. The pearl necklace sign: A novel spectral domain optical coherence tomography finding in exudative macular disease. Retina 2014;34:2088-95.

52. Ajay K, Mason F, Gonglore B, Bhatnagar A. Pearl necklace sign in diabetic macular edema: Evaluation and significance. Indian J Ophthalmol 2016;64:829-34.

53. Terada N, Murakami T, Uji A, Dodo Y, Mori Y, Tsujikawa A. Hyperreflective walls in foveal cystoid spaces as a biomarker of diabetic macular edema refractory to anti-VEGF treatment. Sci Rep 2020;10:7299.

54. Ota M, Nishijima K, Sakamoto A, Murakami T, Takayama K, Hori T, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology 2010;117:1996-2002.
Appendix 1: Pubmed search strategy (searched on July 4, 2020)

No.	Search no	Query	Results
1.	#S1	Search ((("DMO" OR "DME" OR "macular oedema" OR "Macular edema" OR "Center-involving" OR "Maculopathy")) OR (("DMO"[Title/Abstract] OR "DME"[Title/Abstract] OR "macular oedema"[Title/Abstract] OR "Macular edema"[Title/Abstract] OR "Center-involving"[Title/Abstract] OR "Maculopathy" [Title/Abstract])) OR (("DMO" OR "DME" OR "macular oedema" OR "Macular edema" OR "Center-involving" OR "Maculopathy")[MeSH Terms]) Filters: Humans	14561
2.	#S2	Search ((("DMO" OR "DME" OR "macular oedema" OR "Macular edema" OR "Center-involving" OR "Maculopathy")) OR (("DMO" OR "DME" OR "macular oedema" OR "Macular edema" OR "Center-involving" OR "Maculopathy") OR "Optical coherence tomography" OR "Anti VEGF" OR "ranibizumab" OR "SD-OCT" OR "Intravitreal" OR "antiangiogenic endothelial growth factor" OR "OCT" OR "BVZ" OR "dexamethasone" OR "steroid" OR "Intra vitreal" OR "avastin" OR "Lucentis" OR "accentrix" OR "Aflibercept" OR "Eyelea" OR "ozurdex" OR "Triamcinolone acetonide" OR "IVTA" OR "Conbercept" OR "Anti-VEGF" OR "AntiVEGF") OR ("Bevacizumab" OR "Optical coherence tomography" OR "Anti VEGF" OR "ranibizumab" OR "SD-OCT" OR "Intravitreal" OR "antiangiogenic endothelial growth factor" OR "OCT" OR "BVZ" OR "dexamethasone" OR "steroid" OR "Intra vitreal" OR "avastin" OR "Lucentis" OR "accentrix" OR "Aflibercept" OR "Eyelea" OR "ozurdex" OR "Triamcinolone acetonide" OR "IVTA" OR "Conbercept" OR "Anti-VEGF" OR "AntiVEGF")[MeSH Terms]) Filters: Humans	1738178
3.	#S3	Search ((("Hyper" OR "reflective" OR "foci" OR "central macular thickness" OR "macular volume" OR "CST" OR "CMT" OR "FT" OR "hyperreflective" OR "foveal thickness" OR "spots" OR "HRS" OR "HF" OR "Small" OR "Dense" OR "Best" OR "Corrected" OR "Visual" OR "acuity" OR "BCVA" OR "outcomes" OR "Hyper-reflective" OR "dots" OR "material" OR "points" OR "aggregates" OR "particles" OR "clumps" OR "retinal" OR "HRF" OR "HS" OR "HRD" OR "inflammatory" OR "biomarkers" OR "Prognostic" OR "markers") OR ("Hyper" OR "reflective" OR "foci" OR "central macular thickness" OR "macular volume" OR "CST" OR "CMT" OR "FT" OR "hyperreflective" OR "foveal thickness" OR "spots" OR "HRS" OR "HF") OR "Small" OR "Dense" OR "Best" OR "Corrected" OR "Visual" OR "acuity" OR "BCVA" OR "outcomes" OR "Hyper-reflective" OR "dots" OR "material" OR "points" OR "aggregates" OR "particles" OR "clumps" OR "retinal" OR "HRF" OR "HS" OR "HRD" OR "inflammatory" OR "biomarkers" OR "Prognostic" OR "markers")[MeSH Terms]) Filters: Humans	3886156
4.	#S1 AND S2 AND S3	Search ((("DMO" OR "DME" OR "macular oedema" OR "Macular edema" OR "Center-involving" OR "Maculopathy")) OR ("DMO"[Title/Abstract] OR "DME"[Title/Abstract] OR "macular oedema"[Title/Abstract] OR "Macular edema"[Title/Abstract] OR "Center-involving"[Title/Abstract] OR "Maculopathy"[Title/Abstract])) OR ("DMO" OR "DME" OR "macular oedema" OR "Macular edema" OR "Center-involving" OR "Maculopathy")[MeSH Terms] AND Humans[Mesh]) AND ((("Bevacizumab" OR "Optical coherence tomography" OR "Anti VEGF" OR "ranibizumab" OR "SD-OCT" OR "Intravitreal" OR "antiangiogenic endothelial growth factor" OR "OCT" OR "BVZ" OR "dexamethasone" OR "steroid" OR "Intra vitreal" OR "Intra-vitreal" OR "avastin" OR "Lucentis" OR "accentrix" OR "Aflibercept" OR "Eyelea" OR "ozurdex" OR "Triamcinolone acetonide" OR "IVTA" OR "Conbercept" OR "Anti-VEGF" OR "AntiVEGF") OR ("Bevacizumab" OR "Optical coherence tomography" OR "Anti VEGF" OR "ranibizumab" OR "SD-OCT" OR "Intravitreal" OR "antiangiogenic endothelial growth factor" OR "OCT" OR "BVZ" OR "dexamethasone" OR "steroid" OR "Intra vitreal" OR "Intra-vitreal" OR "avastin" OR "Lucentis" OR "accentrix" OR "Aflibercept" OR "Eyelea" OR "ozurdex" OR "Triamcinolone acetonide" OR "IVTA" OR "Conbercept" OR "Anti-VEGF" OR "AntiVEGF")[MeSH Terms]) OR ("Bevacizumab"[Title/Abstract] OR "Optical coherence tomography"[Title/Abstract] OR "Anti VEGF"[Title/Abstract] OR "ranibizumab"[Title/Abstract] OR "SD-OCT"[Title/Abstract] OR "Intravitreal"[Title/Abstract] OR "antiangiogenic endothelial growth factor" OR "OCT" OR "BVZ" OR "dexamethasone" OR "steroid" OR "Intra vitreal" OR "Intra-vitreal" OR "avastin" OR "Lucentis" OR "accentrix" OR "Aflibercept" OR "Eyelea" OR "ozurdex" OR "Triamcinolone acetonide" OR "IVTA" OR "Conbercept" OR "Anti-VEGF" OR "AntiVEGF")[Title/Abstract])	888178

Contd...
Appendix 1: Contd...

No.	Search no	Query
		"ranibizumab"[Title/Abstract] OR "SD-OCT"[Title/Abstract] OR "Intravitreal"[Title/Abstract] OR "antivascular endothelial growth factor"[Title/Abstract] OR "OCT"[Title/Abstract] OR "BVZ"[Title/Abstract] OR "dexamethasone"[Title/Abstract] OR "steroid"[Title/Abstract] OR "Intra vitreal"[Title/Abstract] OR "avastin"[Title/Abstract] OR "Lucentis"[Title/Abstract] OR "accentrix"[Title/Abstract] OR "Allibercept"[Title/Abstract] OR "Eyelea"[Title/Abstract] OR "ozurdex"[Title/Abstract] OR "Triamcinolone acetonide"[Title/Abstract] OR "IVTA"[Title/Abstract] OR "Conbercept"[Title/Abstract] OR "Anti-VEGF"[Title/Abstract] OR "AntiVEGF"[Title/Abstract]) AND Humans[Mesh]) AND ((((("Hyper" OR "reflective" OR "foci" OR "central macular thickness" OR "macular volume" OR "CST" OR "CMT" OR "FT" OR "hyperreflective" OR "foveal thickness" OR "spots" OR "HRS" OR "HF" OR "Small" OR "Dense" OR "Best" OR "Corrected" OR "Visual" OR "acuity" OR "BCVA" OR "outcomes" OR "Hyper-reflective" OR "dots" OR "material" OR "points" OR "aggregates" OR "particles" OR "clumps" OR "retinal" OR "HRF" OR "HS" OR "HRD" OR "inflammatory" OR "biomarkers*" OR "Prognostic" OR "markers")) OR ((("Hyper" OR "reflective" OR "foci" OR "central macular thickness"[Title/Abstract] OR "macular volume"[Title/Abstract] OR "CST"[Title/Abstract] OR "CMT"[Title/Abstract] OR "FT"[Title/Abstract] OR "hyperreflective"[Title/Abstract] OR "foveal thickness"[Title/Abstract] OR "spots"[Title/Abstract] OR "HRS"[Title/Abstract] OR "HF"[Title/Abstract] OR "Small"[Title/Abstract] OR "Dense"[Title/Abstract] OR "Best"[Title/Abstract] OR "Corrected"[Title/Abstract] OR "Visual"[Title/Abstract] OR "acuity"[Title/Abstract] OR "BCVA"[Title/Abstract] OR "outcomes"[Title/Abstract] OR "Hyper-reflective"[Title/Abstract] OR "dots"[Title/Abstract] OR "material"[Title/Abstract] OR "points"[Title/Abstract] OR "aggregates"[Title/Abstract] OR "particles"[Title/Abstract] OR "clumps"[Title/Abstract] OR "retinal"[Title/Abstract] OR "HRF"[Title/Abstract] OR "HS"[Title/Abstract] OR "HRD"[Title/Abstract] OR "inflammatory"[Title/Abstract] OR "biomarkers*" OR "Prognostic" OR "markers")[Title/Abstract]) OR ((("Hyper" OR "reflective" OR "foci" OR "central macular thickness" OR "macular volume" OR "CST" OR "CMT" OR "FT" OR "hyperreflective" OR "foveal thickness" OR "spots" OR "HRS" OR "HF" OR "Small" OR "Dense" OR "Best" OR "Corrected" OR "Visual" OR "acuity" OR "BCVA" OR "outcomes" OR "Hyper-reflective" OR "dots" OR "material" OR "points" OR "aggregates" OR "particles" OR "clumps" OR "retinal" OR "HRF" OR "HS" OR "HRD" OR "inflammatory" OR "biomarkers*" OR "Prognostic" OR "markers")[MeSH Terms]) AND Humans[Mesh]) Filters: Journal Article; Publication date from 2011/01/01 to 2020/06/01; Humans; English

Results: 524
Appendix 2: Summary of studies reporting association between HRS and VA/CMT

Author (Year)	Results
Association between HRS and VA/CMT	
Framme et al. (2012)[21]	No correlation between the HRS reduction and the course of VA/decrease in CMT
Vujosevic et al. (2016)[41]	Weak correlation between the number of HRS and BCVA ($r = -0.37$)/CMT (data not shown)
Kang et al. (2016)[31]	Positive association between baseline number of HRS in OR and final VA (LogMAR) in DRT ($\beta_{\text{standardized}}$=0.037; $P=0.004$) and CME groups ($\beta_{\text{standardized}}$=0.048; $P=0.002$) and between baseline number of HRS in IR and OR and final VA (LogMAR) in the SRD group ($\beta_{\text{standardized}}$=0.014, 0.024, respectively; $P<0.04$)
The final foveal thickness showed no association with the baseline HRS counts ($P>0.2$ in all three groups)	
Chatziralli et al. (2017)[38]	Presence of HRS at baseline was associated with poorer visual outcomes (coefficient = - 6.02; CI 95% = -10.12 to -2.21; $P<0.001$)
Zur et al. (2018)[12]	Absence of HRS at baseline predicted increased odds to gain >10 letters after 4 months (OR=5.33; CI 95% = 1.81-15.72; $P=0.002$) and good clinical response at 4 months (absent vs. present HRS: OR=3.66; CI 95% = 1.40-9.62; $P=0.01$)
Schreur et al. (2018)[16]	No effect of baseline number of HRS on change in VA (3 m) ($\beta_{\text{standardized}}$ = -0.002; CI 95% = -0.009 to -0.004; $P=0.473$)
The number of HRS at baseline was independently associated with a decrease in CMT (3 m) ($P=0.006$) Adequate responders had higher numbers of HRS at baseline than insufficient responders (21.6±9.5 versus 12.7±8.8; OR=1.106; CI 95% = 1.012-1.210; $P=0.030$)	
Hatz et al. (2018)[40]	HRS <15 HRS >15 P
Change in VA	8.0±7.7 3.1±12.0 0.163
Fonollosa et al. (2019)[33]	HRS<10 HRS>21
Change in VA	4.1 (0.3-7.9) 4.4 (1.3-7.5) 0.336
Change in CMT	-106.3 (59.8-152.7) - 94.2 (34.7-153.7) NA
Cavalleri et al. (2020)[15]	HRS<13 HRS>13
IVR (VA)	Baseline
63.3±24.2	76.3±17.1
DEX (VA)	HRS present at baseline
79±15.4	84.1±15
Bonfiglio et al. (2019)[14]	VA
HRS present at baseline	HRS absent at baseline
52.3±6.4	55.2±8.4
Menezes et al. (2019)[39]	CMT
HRS present at baseline	HRS absent at baseline
607±69	493±123
Yoshitake et al. (2020)[26]	HRS present at baseline
Change in VA (LogMAR) (6 m)	0.140±0.0138
Change in VA (LogMAR) (12 m)	0.179±0.150
Change in CMT	171±138
Shulin Liu et al. (2019)[35]	Positive correlation between the baseline number of HRS in OR and baseline VA ($r=0.42$; $P=0.034$) Positive correlation between the baseline number of HRS in the IR, OR, and SRD and final VA ($r=0.571$, $P=0.002$; $r=0.464$, $P=0.017$; $r=0.405$, $P=0.04$, respectively) No correlation between the HRS reduction in OR and TR and increase in VA ($r=0.40$, $P=0.043$ and $r=0.393$, $P=0.04$, respectively) Positive correlation between the HRS reduction in IR and TR and decrease in CMT ($r=0.422$, $P=0.032$ and $r=0.429$, $P=0.029$, respectively)
Narnaware et al. (2020)[37]	Positive but not significant correlation between the change in HRS and change in VA (LogMAR) ($r=0.3343$; $P=0.05$)
Vujosevic et al. (2017)[32]	Inverse correlation between the HRS number at baseline and CMT change ($q = -0.28$, $P=NA$)

All CMT values are measured in micrometers, VA measured in ETDRS letters unless specified; m: months; IVR: intravitreal ranibizumab; DEX: dexamethasone implant; IR: inner retina; OR: outer retina; TR: total retina; DRT: diffuse retinal thickening; CME: cystoid macular edema; SRD: subretinal detachment; NA: not available