Oral Benign Fibrous Histiocytoma – A Review of Literature from 1964-2016

Prasanna Kumar*
Rajiv Gandhi University of Health Sciences, India

Submission: March 18, 2017; Published: May 17, 2018

*Corresponding author: Prasanna Kumar, Rajiv Gandhi University of Health Sciences, Dept of Oral & Maxillofacial Surgery, Sullia, Bangalore, India, Tel: 9448177525; Email: dr_prasanna_74@yahoo.co.in

Introduction

It all began way before the 1960′s, however on one fateful day in the year of 1961, Kauffman ST and Stout AP changed the way the world looked at fibrous soft tissue tumours by being the first to report about Fibrous Histiocytoma and recognising it as a separate clinical entity [1].

Benign fibrous histiocytoma designates a group of quasi-neoplastic lesions that show both fibroblastic and histiocytic differentiation. Whether the lesions originate from histiocytic or fibroblastic tissues has not been clearly determined yet [2].

Some experts hypothesize that the cells originate from the tissue histiocytes and then assume fibroblastic properties [3] while others argue that immunohistochemical evidence of factor XII a positivity favours a dermal dendrocytic cell origin [4]. In consequence of the controversies of origin, over the years, BFH has been designated by several names and classifications, such as sclerosing hemangioma, hemangioma cutis, fibroxanthoma and nodular subepidermal fibrosis [3].

BFH can be cutaneous and Non-cutaneous in nature. Cutaneous BFH commonly originates in sun exposed skin. Non cutaneous BFH represents approximately 1% of all benign FH lesions and most frequently occurs in soft tissues in the lower extremities(50%), less frequently in the upper extremities (20%), retroperitoneum (20%) [5].

Benign FH can be categorised into superficial and deep forma. Deep benign FH is very rare, comprising less than 5% [6] of all benign FH tumours. Fibrous Histiocytoma as reported in literature can present as malignant fibrous histiocytoma or benign Fibrous histiocytoma and may involve soft tissue as well as hard tissue [1].

The incidence of BFH in the oral cavity is rare, with few reported cases in the buccal spaces, tongue, gingival or alveolar ridge, mandible, maxilla, lower and upper lip, soft palate and floor of the mouth have also been described. Rare occurrences also include nasal cavity and paranasal sinuses, larynx, trachea, temporomandibular joint and submandibular and parotid glands [5,7]. The aim of this article is to trace the behaviour of Oral Benign Fibrous Histiocytoma across the literature and discuss the diagnostic techniques, current protocols in treatment and incidence of metastasis or recurrences if any.

Discussion

The oral and perioral cases of BFH, Gray et al. [8] found that the mean age of patients was 55 years ranging from 12 to 71 years. [9] Women are more frequently affected than men. Bielamowicz et al. [9] in their study of BFH in the head and neck region found M:F ratio of 2.5:1 [10].

The clinical picture as seen in literature varies significantly depending upon the location, duration and possible aetiology. Various causes have been speculated in the aetiology of BFH namely secondary to trauma, infection even immuno-suppression in some cases [11].

 Clinically these benign tumours can present as asymptomatic [5], solitary, gradually enlarging growth that is well-circumscribed, painless and does not show aggressive behaviour or damage overlying mucosa. The most common chief complaint a patient presents with is a swelling with possible facial asymmetry and in some cases pain [1].

In rare conditions a patient may complain of nasal obstruction, nasal discharge, and episodes of epistaxis in case of involvement of the maxilla,[maxilla] or dysphagia, dyspnoea and difficulty in speech if present over the lingual or palatine region [9,12].

On oral examination, it can present as an elastic soft or firm –elastic in consistency [9], demarcated and painless mass [upper lip] with no ulceration or involvement of adjacent structures. The diagnosis and analysis can be challenging and is usually based on a combination of histopathology, light microscopy and immunohistochemistry [5].

Histiology

The histopathological picture usually show a non-infiltrating fibro histiocytic lesion composed of interlacing fasciciles of spindle cells having plump and vesicular nuclei with tapered and blunt ends arranged in a typical storiform pattern. [7],
densely proliferated histiocytes, spindle shaped tumour cells [8] or round histiocyte-like cells, lipid-containing xanthoma cells, multinucleated giant cells, and scattered lymphocytes are a frequent finding [7] (Table 1).

Table 1: Histogenesis of BFH.

Evidence in support of histiocytic origin	Evidence in support of fibroblastic origin
Presence of lysosomal and proteolytic enzymes	Appearance of the lesional cells resembles fibroblast histologically
Lesional cells exhibit phagocytic activity	Lack of expression of histiocytic marker (Langerhans granules)
Cells contain lipid	
Multinucleated osteoclasts like cells present	

The differentiation between BFH and MFH on a histopathological picture can be made in the absence of cellular atypia [9], high mitotic activity, high pleomorphism of cells [12], hyperchromasia, atypicality of the nucleus and nuclear fission [8] which are characteristic features of MFH.

Table 2: Stainability of immunohistochemical staining

Search Antibody	Stainability
S-100	-
NSE	-
α 1-ACT	+
Lysozyme	+
CD68	+
Vimentin	+

*: No stain + : positive

Due to the lack of specific markers for fibrohistiocytic lesions, the diagnosis of BFH is generally based on the absence of markers for cells of other lineages [10]. The immunohistochemistry diagnosis is carried out formalin fixed, paraffin-embedded sections using streptavidin-biotin-peroxidase complex labelling method can be used. BFH shows immunostaining for vimentin (+), CD68 (+), CD34 (+), S100 (−), CD117 (−), Leu7 (−), desmin (−), and α- SMA (−) [10,13] (Table 2).

CT scans can be of diagnostic aid in Fibrohistiocytic tumours of the bone which presents as a well defined, expansile lytic lesion may or may not be associated with thinning or breach in the cortical plates. MRI scans are used in case of Fibrohistiocytic tumours of the soft tissues which show up as heterogeneously hyper intense on T2-weighted image [14-16]. Role of PET scans is not much tapped into and may pave way for better imaging in the recent future.

There seems to be a consensus across literature on the treatment protocol of Benign Fibrous Histiocytoma. The treatment is surgical en-bloc resection of the tumour with a safe margin of 5mm and regular follow-up upto 3 years. BFH has a malignant form, which is more often encountered in the literature, Malignant Fibrous Histiocytoma and is described as having a local aggressiveness and a low rate of metastasis [12,17]. MFH is a primitive, pleomorphic sarcoma consisting partly of fibroblastic cells and partly histiocytic cells. Reported incidence of BFH to malignant transformation is 1% [18].

MFH has been an enigma since no true cell origin has been determined. WHO declassified MFH as a formal diagnostic entity and renamed it as undifferentiated pleomorphic sarcoma (WHOCT 2002).

The prognosis of oral BFH is usually very good. A rare case of metastasis has been documented with the angiomatoid variant of Oral BFH [17]. There also is a case report of a malignant transformation of oral benign Fibrous Histiocytoma lesion which was treated with aggressive surgical management and chemo/radiotherapy [18-22].

Table 3: Review of cases of BFH of Soft tissues in chronological order.

No. of cases	Authors	Age/Sex	Location	Treatment	FU time/ Recurrence	Year
1	Prisse et al. [2]	48/F	Lower lip	SE	7M/NED	2015
1	Prisse et al. [2]	75/M	Plate	SE	14M/NED	2015
1	Prisse et al. [2]	81/M	Soft and Hard Palate Junction	SE	18M/NED	2015
1	Giovani et al. [5]	36/M	Buccal Mucosa	SE	12M/NED	2010
Table: Oral Benign Fibrous Histiocytoma – A Review of Literature from 1964-2016

No.	Author(s) [Ref]	Age/Sex	Site	Type	Follow-up Period	Year	
1	Eu Jo et al. [6]	36/F	Buccal Mucosa	SE	7M/NED	2015	
1	Femiano et al. [7]	32/M	Buccal Mucosa	SE	*	2001	
1	George et al. [7]	37/F	Maxillary Gingiva	SE	18M/NED	2014	
1	Gray et al. [8]	45/M	Upper Lip	SE		1992	
1	Gray et al. [8]	42/M	Buccal Mucosa	SE		1992	
1	Gray et al. [8]	65/M	Buccal Mucosa	SE		1992	
1	Gray et al. [8]	37/F	Tongue	SE		1992	
1	Gray et al. [8]	50/F	Dorsum of Tongue	SE		1992	
1	Gray et al. [8]	71/F	Buccal Mucosa	SE		1992	
1	Gray et al. [8]	45/F	Lower Lip	SE		1992	
1	Gray et al. [8]	49/M	Maxillary Vestibule	SE		1992	
1	Gray et al. [8]	70/F	Buccal Mucosa	SE		1992	
1	Gray et al. [8]	60/M	Mandibular Vestibule	SE		1992	
1	Gray et al. [8]	68/F	Buccal Mucosa	SE		1992	
1	Gray et al. [8]	46/F	Mandibular Vestibule	SE		1992	
1	Gray et al. [8]	66/F	Mandibular Vestibule	SE		1992	
1	Gray et al. [8]	37/F	Maxillary Gingiva	SE		1992	
1	Bielamowicz et al. [9]	25/M	Buccal Mucosa	SE	24M/NED	1995	
1	Bielamowicz et al. [9]	49/M	Submandibular Region	SE	17years/NED	1995	
1	Menditti et al. [10]	44/M	Lingual Mucosa	SE	10years/NED	1998	
1	Menditti et al. [10]	34/M	Tongue	SE	10years/NED	1999	
1	Fielman and Morrow [13]	11/M	Soft Palate	SE	8M/NED	1989	
1	Srikanth et al. [14]	27/M	Subcutaneous-cheek	SE		2014	
1	Rullo et al. [16]	9m/M	Tongue	SE	*	2012	
2	Hoffman and Martinez [17]	8/M	Buccal Mucosa	SE	14M/NED	1981	
1	Weerapuradhast and Punyasingh [18]	50/F	Retromolar area	SE	*	1984	
1	Fletcher [19]	45/M	Subcutaneous Face	SE	*	1990	
1	Fletcher [19]	31/M	Intramuscular scalp	SE	*	1990	
1	Fletcher [19]	56/M	Intramuscular cheek	SE	*	1990	
1	Alonso del and Hayo et al. [20]	68/M	Buccal Mucosa	SE	*	12M/NED	1976
1	O’Brien and Stout [23]	50/F	Buccal Mucosa	SE	24M/NED	1964	
1	Hillis and Beasley [24]	52/M	Internal Left Cheek	SE		1975	
1	Thompson and Shear [25]	49/F	Retromolar area	SE	10M/NED	1984	
1	Thompson and Shear [25]	36/M	Maxillary Gingiva	SE	12M/NED	1984	
1	Thompson and Shear [25]	44/F	Base of Tongue	SE	11years and 7M/NED	1984	
1	Thompson and Shear [25]	49/F	Palate	SE	7M/NED	1984	
Table 4: Review of cases of BFH of Hard tissues in chronological order.

No. of cases	Authors	Age/Sex	Location	Treatment	FU time/Recurrence	Year	
1	Saluja et al. [12]	23/F	Maxilla	SE	24M/NED	2014	
1	Shoor et al. [14]	30/F	Posterior Mandible	SE	24M/NED	2015	
1	Cale et al. [42]	13/M	Posterior	Maxilla	SE	14M/NED	1983
1	Ertas et al. [43]	13/F	Anterior Mandible	SE	12M/NED	2003	
1	Hio et al. [44]	42/M	Posterior Mandible	SE	*	2004	
1	Kishino et al. [45]	49/M	Posterior Mandible	SE	7M/NED	2005	
1	Katagiri et al. [46]	48/M	Mandible-Condyle	SE	12M/NED	2008	
1	Wagner et al. [47]	41/M	Posterior Mandible	Piezoelectric assisted SE	10M/NED	2011	
1	Gupta et al. [48]	24/F	Posterior Mandible	SE	12M/NED	2011	

SE: Surgical excision; FU: Follow-up; NED: No evidence of disease.
We have carried out an exhaustive research of all the Oral Benign Fibrous Histiocytoma tumours documented in literature since 1961-2015 and we have tabulated the findings received (Table 3 & 4).

Conclusion

To the best of our understanding, oral BFH tumours have excellent prognosis and lesser chances of recurrences on management with complete surgical en bloc resection. These benign tumours show good loco regional behaviour post-surgical management. Chemo or Radiotherapy currently has no role in their management.

Thorough clinical history, prompt and correct diagnosis, complete excision with pathological margin clearance and regular follow up is imperative in the management of BFH. However complete understanding, knowledge and awareness of the innate behaviour of these tumours is an indispensable trait in a Head and Neck Surgeon.

References

1. Kumar P, Umesh, Rathi T, Jain V (2016) Benign Fibrous Histiocytoma: A Rare Case Report and Literature Review. J Oral Maxillofac Surg 15(1): 116-120.
2. Prisse LA, Jayasooriya PR, Mendis BR, Lombardi T (2015) Benign Fibrous Histiocytomas of the Oral Mucosa: Report on Three Cases and Review of the Literature Dermatopathology (Basel) (2): 52-60.
3. Neville BW, Damm DD, Allen CM, Bouquot JE (2001) Oral and Maxillofacial Pathology, (5th edn), Philadelphia, WB Saunders, Elsevier, USA pp. 368-369.
4. Weiss S, Goldblum J (2008) Enzinger and Weiss's Soft Tissue Tumors, (5th edn) St Louis, Mosby, pp. 331-348.
5. Giovanni P, Patrikiodou A, Ntomouchtsis A, Meditskou S, Thuau H, et al. (2010) Benign fibrous histiocytoma of the buccal mucosa: case report and literature review. Case Rep Med 2010: 306148.
6. Priya NS, Rao K, Umadevi HS, Smith T (2013) Benign fibrous histiocytoma of the tongue. Indian J Dent Res 24(2): 635-636.
7. Ferrario, C Sculli, G Laino, G Battista (2001) Benign fibrous histiocytoma (BHF) of the cheek: CD 68-KP1 positivity. Oral Oncology 37(8): 673-675.
8. Gray PB, Miller AS, Loftus MJ (1992) Benign fibrous histiocytoma of the oral/perioral regions: Report of a case and review of 17 additional cases. J Oral Maxillofac Surg 50(11): 1239-1242.
9. Helmowicz S, Dauer MS, Chang B, Zimmerman MC (1995) Noncutaneous benign fibrous histiocytoma of the head and neck. Otalaryngol Head Neck Surg 113(1): 140-146.
10. Manditto D, Laino L, Mezzogiorno A, Sava S, Bianchi A, et al. (2009) Oral benign fibrous histiocytoma: two case reports. Cases J 2: 9343.
11. Del Hoyo JA, Contreras F, Gonzalez (1976) FD: Fibro-histiocytome de la cavité buccale. Rev Stomatol Chir Maxillofac 77: 481-483.
12. Saluja H, Kasat WD, Rudagi BM, Dehane V, Kalburge JV, et al. (2014) Benign fibrous histiocytoma of the maxilla: a case report and review of literature. Indian J Dent Res 25(1): 115-118.
13. Fieldman RJ, Morrow TA (1998) Fibrous histiocytoma of the soft palate. Int J Pediat Otorhinolaryngol 18: 171-179.
14. Srikanth D, Devi V, Pishoty V, Singh D (2015) Subcutaneous Benign Fibrous Histiocytoma: Rare Presentation on Cheek-Case Report and Review of Literature. J Maxillofac Oral Surg 15(Suppl 2): 282-286.
15. Vuyyuru B, Dogdan S, Gurugay K, Sapi Z, Nemeth Z (2013) Pathol Oncol Res 19(4): 605-609.
16. Rullo R, Ferracchio F, Serpico R, Addabbo F, Mazzarella N, et al. (2012) Oral fibrous histiocytoma and its angiomatoid variant. J Cranio Maxillofac Surg 40(5): 435-438.
17. Hoffman S, Martinez MG (1981) Fibrous histiocytoma of the oral mucosa 52: 277-283.
18. Weerapradit W, Punyasangh J (1984) Fibrous histiocytoma: report of a case of the oral mucosa. J Dent Assoc Thai 34: 263-269.
19. Shrier DA, Wang AR, Patel U, Monajati A, Chess P, et al. (1998) Benign fibrous histiocytoma of the nasal cavity in a newborn: MR and CT findings. Am J Neuroradiol 19(6): 1166-1168.
20. Lisle DA, Monsour PA, Maskell CD (2008) Imaging of craniofacial fibrous dysplasia. J Med Imagin Radiat Oncol 52(2): 325-332.
21. Falone, C Montel, CDM Fletcher (1994) Cellular benign fibrous histiocytoma: clinicopathologic analysis of 74 cases of a distinctive variant of cutaneous fibrous histiocytoma with frequent recurrence. Am J Surg Pathol 18(7): 668-676.
22. Bali A, Singh MP, Padmavathi, Khorate M, Ahmed J (2010) Malignant Fibrous Histiocytoma - An Unusual Transformation from Benign to Malignant Cancer Sci Ther 2: 053-057.
23. O'Brien JF, Stout AP (1964) Malignant Fibrous Xanthomas. Cancer 17: 1445-1455.
24. Hillis RE, Beasley JD (1975) Fibrous histiocytoma of the lip: report of a case. J Oral Med 30: 81-83.
25. Thompson SH, Shear M (1984) Fibrous histiocytomas of the oral and maxillofacial regions. J Oral Pathol 13(3): 282-294.
26. Triantafyllou AG, Sklavounou AD, Laskaris GG (1985) Benign fibrous histiocytoma of the oral mucosa. J Oral Med 40: 36-38.
27. McLeod SPR, Jones JL (1992) Fibrous histiocytoma of the lip secondary to trauma: report of a case. J Oral Maxillofac Surg 50(10): 1091-1093.
28. Hong KH, Kim YK, Park JK (1999) Benign fibrous histiocytoma of the floor of the mouth. J Otalaryngol Head Neck Surg 121: 330-333.
29. Ide F, Kusaka K (2002) Benign fibrous histiocytoma: an additional case richly endowed with factor XIIIa cells. Oral Oncol 38(3): 321-322.
30. Yamada H, Ishii H, Kondoh T, Seto K (2002) A case of benign fibrous histiocytoma of the upper lip in a 6-month-old infant. J Oral Maxillofac Surg 60(4): 451-454.
31. Alves FA, Vargas PA, Coelho Sicueira SA, Coletta RD, De Alemida OP (2010) Benign fibrous histiocytoma of the buccal mucosa: case report with immunohistochemical features. J Oral Maxillofac Surg 61(2): 269-271.
32. Hidaka M, Yamashita A, Sakamoto K, Mukaisho K, Hattori T, et al. (2008) Benign fibrous histiocytoma of the floor of the mouth. J Otalaryngol Head Neck Surg 113(1): 140-146.
33. Dehane V, Kalburge JV, Saluja H, Kasat WD, Rudagi BM, et al. (2014) Benign fibrous histiocytoma of the maxilla: a case report and review of literature. Indian J Dent Res 25(1): 115-118.
34. Lee H, Lee JW, Han TY, Li K, Hong CK, et al. (2010) A case of dermatofibroma of the upper lip. Ann Dermatol 22: 333-336.
35. Bage AM, Bylappa K, Kumar MV (2010) A rare case of fibrous histiocytoma of subepidermal soft tissue of cheek (buccal mucosa). Internet J Otorhinolaryngol 13: 11.

36. Lopez Jornet P, Camacho Alonso E, Gomez Garcia FJ (2011) Oral lesion of the dorsum of the tongue. J Can Dent Assoc 77: b117.

37. Bindhu PR, Padmakumar SK, Priya T, Jacob J (2012) A rare case of benign fibrous histiocytoma in the submucosal soft tissue of the hard palate: a case report and review of the literature. Oral Maxillofac Pathol J 3: 215-217.

38. Caldeira PC, Ribeiro DC, Almeida OP, Mesquita RA, Do Carom MAV (2012) Tumour of the hard palate. Oral Surg Oral Med Oral Pathol Oral Radiol 113(6): 722-727.

39. Rajathi P, Jacob M, Priyadarshani I, Sekar B (2013) Benign fibrous histiocytoma of the gingiva. J Pharm Bioallied Sci 5 (suppl 2): S166-S168.

40. Priya NS, Rao K, Umadevi HS, Smith T (2013) Benign fibrous histiocytoma of the tongue. Indian J Dent Res 24: 635-638.

41. Pandey NK, Sharma SK, Banerjee S (2013) A rare case of fibrous histiocytoma of the tongue. Indian J Surg 75(suppl 1): 1-5.

42. Gale AE, Freedman PD, Kerpel SM, Lummerman H (1989) Benign fibrous histiocytoma of the maxilla. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 68(4): 444-450.

43. Ertas U, Buyukkurt MC, Cicek Y (2003) Benign fibrous histiocytoma: report of case. J Contemp Dent Pract 4(2): 74-79.

44. Heo MS, Cho HJ, Kwon KJ, Lee SS, Choi SC (2004) Benign fibrous histiocytoma in the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(2): 276-280.

45. Kishino M, Murakami S, Toyosawa S, Nakamata A, Ogawa Y, Ishida T et al. (2005) Benign fibrous histiocytoma of the mandible. J Oral Pathol Med 34(3): 190-192.

46. Katagiri W, Nakazawa M, Kishimo N (2008) Benign fibrous histiocytoma in the condylar process of the mandible: case report. Br J Oral Maxillofac Surg 46(1): e1-e2.

47. Wagner ME, Rana M, Traenkenschuh W, Kokemueller H, Eckardt AM, et al. (2011) Piezoelectric-assisted removal of a benign fibrous histiocytoma of the mandible: an innovative technique for prevention of dentoalveolar nerve injury. Head Face Med 7:20.

48. Gupta P, Godhi SS, Kukreja P, Bhatnagar S, Lall AB, et al. (2011) Fibrous histiocytoma of the mandible—a case report. J Indian Dent Assoc 5: 994-995.

49. Shrier DA, Wang AR, Patel U, Monajati A, Chess P, et al. (1998) Benign fibrous histiocytoma of the nasal cavity in a newborn: MR and CT findings. Am J Neuroradiol 19(6): 1166-1168.

50. Dardo M, Luigi L, Antonio M, Sara S, Alexander B, et al. (2009) Oral benign fibrous histiocytoma: two case reports. Cases J 2: 9343.

51. Skoulakis CE, Papadakis CE, Datseris GE, Drivas EL, Kyrizakis DE, et al. (2007) Subcutaneous benign fibrous histiocytoma of the cheek: Case report and review of the literature. Acta Otorhinolaryngol Ital 27(2): 90-93.

52. Pia LJ, Fabio C, Francisco J (2011) Oral lesion on dorsum of tongue. J Can Dent Assoc 77: b117.

53. Nur HA, Bee S, Fauzah A, Lokman S (2012) Benign fibrous histiocytoma of the external auditory canal: case report and literature review. Bangladesh J Otorhinolaryngol 18(1): 77-80.

54. Himanshu S, Sarwar A, Sonal U, Harsh Y, Paankhi L, et al. (2013) Benign fibrous histiocytoma of buccal mucosa. J Dental Sci Oral Rehabil p. 38-40.

55. Narendra K, Sushant K, Sandip B (2013) A rare case of fibrohistiocytic tumor of the tongue. Indian J Surg 75(Suppl 1): S1-S5.

56. Pradipita K, Gopalakrishnan S, Sivaraman G (2013) Benign fibrous histiocytoma of submandibular space. Pak J Otologyngol 29: 96-98.