Detecting multimuon-jets from the Higgs exotic decays in the Higgs portal framework

Jung Chang¹, Kingman Cheung¹,²,³, Shih-Chieh Hsu³,⁴, and Chih-Ting Lu³

¹ Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan
² Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701, Republic of Korea
³ Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan
⁴ Department of Physics, University of Washington at Seattle, Seattle, WA 98195, U.S.A

(Dated: February 2, 2017)

Abstract

A muon-jet (μ-jet) is a very special feature that consists of a cluster of collimated muons from the decay of a fast moving light particle of mass about $O(1\text{ GeV})$. We will use this feature to search for very light particles from rare decays of the Higgs boson. For such a small angular separation of muons which might come from a long-lived particle, both ATLAS and CMS could have the displaced-vertexing-reconstruction capability. We use two simple models of the Higgs-portal type to explore the possibilities of event topologies with two 2µ-jets, one 2µ-jet & one 4µ-jet, and two 4µ-jets in the final state at LHC-14. We also summarize existing constraints on these models.
I. INTRODUCTION

A lepton-jet is an object that consists of a group of boosted and collimated leptons. It is a unique signature for the leptonic decay of a fast moving light particle in the mass range below about 1 GeV [1], where it was discussed in the context of light scalar bosons and gauge bosons from the dark sector.

In these dark-sector models, the Higgs boson can be connected the dark sector via Higgs-portal type interaction: \((\Phi^\dagger \Phi)(S^\dagger S)\), where \(\Phi\) is the standard model (SM) Higgs field and \(S\) is the scalar field in the dark sector. When both the Higgs field and \(S\) develop vacuum expectation values, the \(\Phi\) and \(S\) mix to form mass eigenstates, and the Higgs boson can decay into a pair of the scalar bosons if kinematically allowed. In some models, the dark sector can also be connected with the SM particles via \(Z - Z'\) mixing. In either scenarios, when the dark scalar bosons or gauge bosons are very light, say below 1 GeV, they will decay into the heaviest SM particles if kinematically allowed. For example, a 500 MeV scalar boson decays, via the mixing with the SM Higgs boson, can decay into a pair of muons, pions, electrons, or photons. The dominant modes would be pions and muons. In some other scenarios when there is a broken \(U(1)\) global symmetry in the dark sector, the scalar boson can also decay into a pair of Goldstone bosons [2]. A UV complete model, which can have one light pseudoscalar resonance \((a_1)\) decaying into a pair of muons, is the next-to-minimal supersymmetric standard model (NMSSM) [3]. Both the dark-sector models and the NMSSM have been frequently explored in the LHC experiments: ATLAS [4] and CMS [5].

In this work, we focus on the search for muon-jets from the decay of very light particles so as to identify the existence of dark sectors that are connected to the SM via the Higgs-portal. For simplicity we only consider the dark-sector models that contain either a real SM-singlet scalar field \(X\) or two real SM-singlet scalar fields \(X_1\) and \(X_2\), without imposing any extra symmetries. The dominant decay modes of the scalar boson of \(O(1 \text{ GeV})\) would then be pions and muons. It is the muons in the decay products of a fast-moving light scalar boson that form a muon-jet, for which we are searching for in experiments as a signature of the existence of very light scalar bosons. Such a light scalar boson, which originates from the mixing with the SM Higgs boson, can appear in the decay of the Higgs boson. Since the constraints on the mixing for such a light scalar boson with the SM Higgs boson are
very strong, which we will show, the very light scalar boson might be a long-lived neutral particle and so we might observe a displaced decay vertex in detectors. We are therefore interested in rare decays of the Higgs boson into a pair of very light scalar bosons of mass about \(O(1 \text{ GeV}) \), each of which in turns directly decays into a pair of collimated muons or in a cascade decay into another pair of light scalar bosons, then each of them decays into a pair of collimated muons. Let us denote a muon-jet with \(n \) collimated muons in it by \(n\mu\)-jet, e.g., a \(2\mu \)-jet is a muon-jet with 2 muons and a \(4\mu \)-jet is a muon-jet with 4 muons. Thus, the final states can consist of three different types of combinations:

1. two \(2\mu \)-jets back-to-back in the transverse plane;
2. one \(2\mu \)-jet on one side and one \(4\mu \)-jet on the other side;
3. two \(4\mu \)-jets on opposite sides of the transverse plane.

The model can be made further complicated by invoking additional light scalar bosons or gauge bosons in the dark sector such that the decay chain can involve more dark sector particles. At the end, each lepton-jet can consist of more than four leptons, like 6, 8, or more. These lepton-jets would be very interesting objects to search for in experiments because they are clear signals of new physics. The experimental resolution to tell the number of leptons in a lepton-jet becomes an important issue. Here we only consider two simple cases of two muons inside a muon-jet and four muons inside a “fat” muon-jet. We also compare these two cases to distinguish between whether the final state muon-jet is produced from direct decay of a light scalar boson or in a cascade decay.

The main goal of this work is to investigate the capability of the LHC detectors (especially the ATLAS because of its size) of observing muon-jets in search of rare decays of the Higgs bosons into a pair of very light bosons, which may decay directly into muon-jets or indirectly via subsequent decays into other lighter bosons. We found that if the light Higgs boson heavier than about 0.3 GeV, the ATLAS detector has a good chance of seeing that.

We would like to remind the readers that the model considered in this work is only a toy-model of the Higgs-portal type models. The other popular models such as dark-\(Z \) and dark-photon fall in the same category of models in the present context. Nevertheless, the search for dark-photon or dark-\(Z \) also includes the electron-jets and pion-jets. The choice depends on the branching ratios and also the capability of the detector. In the present work, we simply focus on the best capability of observing muon-jets using the tracker and muon spectrometer at the ATLAS or CMS detector.
The organization is as follows. We describe two simple Higgs-portal models in the next section, and in Sec. III the existing constraints on these two models. These constraints are quite generic on many models of this kind. We consider some kinematical distributions at the LHC for some benchmark points in Sec. IV and highlight the potential search at LHC-14 with 300 fb^{-1} in Sec. V. Finally, we conclude in Sec. VI.

II. HIGGS-PORTAL MODELS

A. Higgs-portal Model-1: Only one light scalar h_s

Here we employ a Higgs portal model in which the SM Higgs field Φ can mix with a real scalar field X. This additional scalar field does not have any SM interactions. We also impose a Z_2 symmetry which Φ is Z_2 – even and X is Z_2 – odd before both the Higgs field and X develop vacuum expectation values. The renormalizable Lagrangian density for this model is given by

$$\mathcal{L} = \frac{1}{2} \partial_\mu X \partial^\mu X + \frac{1}{2} \mu_X^2 X^2 - \frac{1}{4} \lambda_X X^4 - \frac{1}{2} \lambda_{\Phi X} (\Phi^\dagger \Phi) X^2 + \mathcal{L}_{SM},$$

where \mathcal{L}_{SM} is

$$\mathcal{L}_{SM} \supset (D_\mu \Phi)^\dagger (D^\mu \Phi) + \mu^2 (\Phi^\dagger \Phi) - \lambda (\Phi^\dagger \Phi)^2.$$

After the electroweak symmetry breaking (EWSB), the SM Higgs doublet field Φ is expanded around its vacuum-expectation value:

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \langle \phi \rangle + \phi(x) \end{pmatrix}$$

where $\langle \phi \rangle \approx 246$ GeV. The X is also expanded around its vacuum-expectation value $\langle \chi \rangle$:

$$X(x) = \langle \chi \rangle + \chi(x)$$
Two tadpole conditions can be written down using \(\partial V / \partial \phi = 0 \) and \(\partial V / \partial \chi = 0 \), where \(V \) is the scalar potential part of Eq. (1):

\[
\langle \phi \rangle^2 = \frac{4 \lambda_X \mu^2 - 2 \lambda_X \mu^2}{4 \lambda_X - \lambda_{\Phi X}^2},
\]

(5)

\[
\langle \chi \rangle^2 = \frac{4 \lambda_{\chi}^2 - 2 \lambda_{\Phi \chi} \mu^2}{4 \lambda_{\chi} - \lambda_{\Phi \chi}^2},
\]

(6)

Taking the decoupling limit \(\lambda_{\Phi X} \to 0 \) from the above equations, we recover the SM condition of \(\langle \phi \rangle^2 = \mu^2 / \lambda \) as well as \(\langle \chi \rangle^2 = \mu_{\chi}^2 / \lambda_X \).

It is easy to see that the Higgs boson field \(\phi \) will mix with the new scalar field \(\chi \) to form mass eigenstates denoted by \(h \) and \(h_s \), respectively. The mass terms for the Higgs boson and the new scalar boson are

\[
\mathcal{L}_m = -\frac{1}{2} \begin{pmatrix} \phi & \chi \end{pmatrix} \begin{pmatrix} 2 \lambda \langle \phi \rangle^2 & \lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle \\ \lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle & 2 \lambda_X \langle \chi \rangle^2 \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix},
\]

(7)

We can rotate \((\phi \chi)^T \longrightarrow (h h_s)^T \) through an angle \(\theta \)

\[
\begin{pmatrix} h \\ h_s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}
\]

(8)

Thus, the masses of the Higgs boson \(h \) and the scalar boson \(h_s \), the mixing angle \(\theta \), and the interaction governing \(h \to h_s h_s \) are given by, in terms of the parameters in Eq. (1),

\[
m_h^2 = 2 \lambda \langle \phi \rangle^2 \cos^2 \theta + 2 \lambda_X \langle \chi \rangle^2 \sin^2 \theta + \lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle \sin 2\theta
\]

\[
m_{h_s}^2 = 2 \lambda_X \langle \chi \rangle^2 \cos^2 \theta + 2 \lambda \langle \phi \rangle^2 \sin^2 \theta - \lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle \sin 2\theta
\]

\[
\mathcal{L}_{hh_h^s} = -\frac{1}{2} \left[6 \lambda_X \langle \chi \rangle \cos^2 \theta \sin \theta + 6 \lambda \langle \phi \rangle \cos \theta \sin^2 \theta + \lambda_{\Phi X} \langle \phi \rangle \langle \cos^3 \theta - 2 \cos \theta \sin^2 \theta \rangle \right]
\]

\[
+ \lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle (\sin^3 \theta - 2 \cos^2 \theta \sin \theta) \right] h_s h_s
\]

\[
\tan 2\theta = \frac{\lambda_{\Phi X} \langle \phi \rangle \langle \chi \rangle}{\lambda \langle \phi \rangle^2 - \lambda_X \langle \chi \rangle^2}
\]

In the next section, where we describe the constraints on the model, the angle \(\theta \) has to be
very small. In the small θ limit, the above relations are reduced to

$$m_h^2 \approx 2\lambda\langle\phi\rangle^2 = (125 \text{ GeV})^2$$

$$m_{h_s}^2 \approx 2\lambda X\langle\chi\rangle^2$$

$$\mathcal{L}_{hh,h_s} = -\frac{1}{2}\lambda\Phi X\langle\phi\rangle hh_h_s$$

$$\theta \approx \frac{\lambda\Phi X\langle\phi\rangle\langle\chi\rangle}{m_h^2 - m_{h_s}^2}.$$

The scalar boson h_s can decay into SM particles via the mixing with the Higgs boson. Thus, the decay widths for $h_s \to \ell^+\ell^-$ and $h_s \to \pi\pi$ are given by

$$\Gamma(h_s \to \ell^+\ell^-) = \sin^2\theta \frac{m_{h_s}^3}{8\pi\langle\phi\rangle^2} \left(1 - \frac{4m_{\ell}^2}{m_{h_s}^2}\right)^{3/2}, \quad (9)$$

$$\Gamma(h_s \to \pi\pi) = \sin^2\theta \frac{m_{h_s}^3}{216\pi\langle\phi\rangle^2} \left(1 - \frac{4m_{\pi}^2}{m_{h_s}^2}\right)^{1/2} \left(1 + \frac{11m_{\pi}^2}{2m_{h_s}^2}\right)^2, \quad (10)$$

$$\Gamma_{h_s} = \frac{1}{\tau_{h_s}} = \sum_{\ell=e,\mu} \Gamma(h_s \to \ell^+\ell^-) + \sum_{\pi\pi=\pi^+\pi^-} \Gamma(h_s \to \pi\pi), \quad (11)$$

where we have restricted $m_{h_s} \lesssim 1 \text{ GeV}$. Here $\pi\pi$ includes both $\pi^+\pi^-$ and $\pi^0\pi^0$, and $\Gamma(h_s \to \pi^+\pi^-) = 2\Gamma(h_s \to \pi^0\pi^0)$. Since the tree-level estimate of $\Gamma(h_s \to \pi\pi)$ is not adequate when m_{h_s} is not far from the pion threshold, where the strong final-state interaction becomes important, so we follow Ref. \cite{8, 9} for numerical estimates of $\Gamma(h_s \to \pi\pi)$. We show the branching ratios of the scalar boson h_s for the two most dominant modes $\mu^+\mu^-$ and $\pi\pi$ in Table I for $m_{h_s} = 0.3 - 1 \text{ GeV}$.

m_{h_s} (GeV)	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$B(\mu^+\mu^-)$	40%	12.5%	10%	8%	6%	4.5%	1.5%	0.4%
$B(\pi\pi)$	60%	87.5%	90%	92%	94%	95.5%	98.5%	99.6%

\footnote{Even though the major decay mode of $m_{h_s} = 0.3 - 1 \text{ GeV}$ is $\pi\pi$ mode, we still focus on the analysis of $\mu^+\mu^-$ mode. Since the resolution of muons are better than pions and the analysis of $\pi\pi$ mode has been researched in Ref.\cite{2, 7}.}
B. Higgs-portal model-2 : Two light scalars : h_{D_1}, h_{D_2}

We can extend our Higgs-portal model-1 to include two real scalar fields X_1 and X_2, which can mix with the SM Higgs field but do not have any SM interactions. We also impose a Z_2 symmetry which Φ is Z_2 – even and both X_1, X_2 are Z_2 – odd before these Higgs field, X_1 and X_2 develop vacuum expectation values. The renormalizable Lagrangian density for this model is given by

$$L = \frac{1}{2} \partial_{\mu} X_1 \partial^{\mu} X_1 + \frac{1}{2} \mu_1^2 X_1^2$$

$$+ \frac{1}{2} \partial_{\mu} X_2 \partial^{\mu} X_2 + \frac{1}{2} \mu_2^2 X_2^2$$

$$- \lambda_{\Phi X} (\Phi^{\dagger} \Phi)(X_1 + \alpha X_2)^2 - \lambda_{X_1 X_2}(X_1 + \beta X_2)^4$$

$$+ L_{SM}, \quad (12)$$

where the Higgs sector in the L_{SM} is

$$L_{SM} \supset (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) + \mu^2 (\Phi^{\dagger} \Phi) - \lambda (\Phi^{\dagger} \Phi)^2 \cdot (13)$$

After the electroweak symmetry breaking (EWSB), the SM Higgs doublet field Φ is expanded around its vacuum-expectation value:

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \langle \phi \rangle + \phi(x) \end{pmatrix} \quad (14)$$

where $\langle \phi \rangle \approx 246$ GeV. Both X_1 and X_2 are also expanded around their vacuum-expectation values $\langle \chi_{1/2} \rangle$:

$$X_{1/2}(x) = \langle \chi_{1/2} \rangle + \chi_{1/2}(x) \quad (15)$$

Three tadpole conditions can be written down using $\partial V/\partial \phi = 0$, $\partial V/\partial \chi_1 = 0$, and $\partial V/\partial \chi_2 = 0$, where V is the scalar potential part of Eq. (12):

$$\langle \phi \rangle^2 = \frac{\mu^2 - \lambda_{\Phi X} \langle \chi_1 \rangle^2}{\lambda} \cdot (16)$$

$$\langle \chi_1 \rangle^2 = \frac{\mu_1^2 \mu_2^2 - \lambda_{\Phi X} \langle \chi_1 \rangle^2}{\lambda_{X_1 X_2} (\mu_2^2 + \beta \mu_1^2 - (\alpha - \beta)^2 \lambda_{\Phi X} \langle \phi \rangle^2)} \cdot (\mu_2^2 - \lambda_{\Phi X} \alpha (\alpha - \beta) \langle \phi \rangle^2)^2, \quad (17)$$
\[\langle \chi_2 \rangle^2 = \frac{\mu_1^2 \mu_2^2 - \lambda_{\Phi\chi} (\alpha^2 \mu_1^2 - \mu_2^2) \langle \phi \rangle^2}{\lambda X_1 X_2 (\mu_1^2 + \beta \mu_1^2 - (\alpha - \beta)^2 \lambda_{\Phi\chi} \langle \phi \rangle^2)^3} \cdot (\beta \mu_1^2 + \lambda_{\Phi\chi} (\alpha - \beta) \langle \phi \rangle^2)^2 \] (18)

Taking the decoupling limit \(\lambda_{\Phi\chi} \rightarrow 0 \) from the above equations, we recover the SM condition of \(\langle \phi \rangle^2 = \mu^2 / \lambda \) as well as \(\langle \chi_1 \rangle^2 = \frac{\mu_1^2}{\lambda X_1 X_2 (1 + \beta \mu_1^2)^3} \) and \(\langle \chi_2 \rangle^2 = \frac{\beta^2 \mu_2^2}{\lambda X_1 X_2 (1 + \beta \mu_1^2)^3} \).

It is easy to see that the Higgs boson \(\phi \) will mix with these two new scalar bosons \(\chi_1 \) and \(\chi_2 \) to form mass eigenstates denoted by \(h, h_{D_1} \) and \(h_{D_2} \), respectively. The mass terms for the Higgs boson and these two new scalar bosons are

\[
\mathcal{L}_m = -\frac{1}{2} (\phi \chi_1 \chi_2) \left(\begin{array}{ccc} 2\lambda \langle \phi \rangle^2 & 2\lambda_{\Phi\chi} \langle \phi \rangle \langle \chi_\alpha \rangle & 2\lambda_{\Phi\chi} \alpha \langle \phi \rangle \langle \chi_\alpha \rangle \\ 2\lambda_{\Phi\chi} \langle \phi \rangle \langle \chi_\alpha \rangle & -\mu_1^2 + 12\lambda_{X_1 X_2} \langle \chi_\beta \rangle^2 & 12\lambda_{X_1 X_2} \beta \langle \chi_\beta \rangle^2 \\ 2\lambda_{\Phi\chi} \alpha \langle \phi \rangle \langle \chi_\alpha \rangle & 12\lambda_{X_1 X_2} \beta \langle \chi_\beta \rangle^2 & -\mu_2^2 + 12\lambda_{X_1 X_2} \beta^2 \langle \chi_\beta \rangle^2 \end{array} \right) \left(\begin{array}{c} \phi \\ \chi_1 \\ \chi_2 \end{array} \right),
\]

where we set \(\langle \chi_1 \rangle + \alpha \langle \chi_2 \rangle \equiv \langle \chi_\alpha \rangle \) and \(\langle \chi_1 \rangle + \beta \langle \chi_2 \rangle \equiv \langle \chi_\beta \rangle \). We can rotate \((\phi \chi_1 \chi_2)^T \rightarrow (h h_{D_1} h_{D_2})^T \) through these angles \(\theta_1, \theta_2 \) and \(\theta_3 \)

\[
\begin{pmatrix} h \\ h_{D_1} \\ h_{D_2} \end{pmatrix} = \begin{pmatrix} \cos \theta_1 & \sin \theta_1 & 0 \\ -\sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta_2 & 0 & \sin \theta_2 \\ 0 & 1 & 0 \\ -\sin \theta_2 & 0 & \cos \theta_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_3 & \sin \theta_3 \\ 0 & -\sin \theta_3 & \cos \theta_3 \end{pmatrix} \begin{pmatrix} \phi \\ \chi_1 \\ \chi_2 \end{pmatrix}
\]

(20)

\[
\begin{pmatrix} C_{\theta_1} C_{\theta_2} & (S_{\theta_1} C_{\theta_3} - C_{\theta_1} S_{\theta_2} S_{\theta_3}) & (S_{\theta_1} S_{\theta_3} + C_{\theta_1} S_{\theta_2} C_{\theta_3}) \\ -S_{\theta_1} C_{\theta_2} & (C_{\theta_1} C_{\theta_3} + S_{\theta_1} S_{\theta_2} S_{\theta_3}) & (C_{\theta_1} S_{\theta_3} - S_{\theta_1} S_{\theta_2} C_{\theta_3}) \\ -S_{\theta_2} & -C_{\theta_2} S_{\theta_3} & C_{\theta_2} C_{\theta_3} \end{pmatrix} \begin{pmatrix} \phi \\ \chi_1 \\ \chi_2 \end{pmatrix}
\]

(21)

where \(\theta_{1,2,3} \) is the mixing angle between \(\phi \) and \(\chi_1 \), between \(\phi \) and \(\chi_2 \), and between \(\chi_1 \) and \(\chi_2 \), respectively. \(C_{\theta_i} \) stands for \(\cos \theta_i \) and \(S_{\theta_i} \) stands for \(\sin \theta_i \). If we assume both \(\chi_1 \) and \(\chi_2 \) mixings with \(\phi \) are very small (\(\theta_1, \theta_2 \) are very small), then it implies that \(\lambda_{\Phi\chi} \) is small compared to other parameters. Thus, the masses of the Higgs boson \(h \) and two scalar bosons \(h_{D_1}, h_{D_2}, \) and the interaction governing \(h \rightarrow h_{D_1} h_{D_1}, h \rightarrow h_{D_2} h_{D_2}, h \rightarrow h_{D_1} h_{D_2} \), and
Here we assume $h_{D_1} \rightarrow h_{D_2} h_{D_2}$ are given by, in terms of the parameters in Eq. (12) in the small θ_1, θ_2 limit,

$$m_h^2 \simeq 2\lambda \langle \phi \rangle^2 - [(\mu_1^2 - 12\lambda_{X_1X_2} \langle \chi_\beta \rangle^2) \sin^2 \theta_1 + (\mu_2^2 - 12\lambda_{X_1X_2} \beta^2 \langle \chi_\beta \rangle^2) \sin^2 \theta_2]$$

$$+ 2\lambda \phi \langle \phi \rangle \langle \chi_\alpha \rangle (\sin 2\theta_1 + \alpha \sin 2\theta_2)$$

$$= (125 \text{ GeV})^2$$

$$m_{h_{D_1}}^2 \simeq (-\mu_1^2 + 12\lambda_{X_1X_2} \langle \chi_\beta \rangle^2) \cos^2 \theta_3 + (-\mu_2^2 + 12\lambda_{X_1X_2} \beta^2 \langle \chi_\beta \rangle^2) \sin^2 \theta_3$$

$$+ 2\lambda \langle \phi \rangle^2 \sin^2 \theta_1 - 2\lambda \phi \langle \phi \rangle \langle \chi_\alpha \rangle \sin 2\theta_1$$

$$m_{h_{D_2}}^2 \simeq (-\mu_1^2 + 12\lambda_{X_1X_2} \langle \chi_\beta \rangle^2) \sin^2 \theta_3 + (-\mu_2^2 + 12\lambda_{X_1X_2} \beta^2 \langle \chi_\beta \rangle^2) \cos^2 \theta_3$$

$$- 2\lambda \phi \langle \phi \rangle^2 \sin^2 \theta_2 - 2\lambda \phi \langle \phi \rangle \langle \chi_\alpha \rangle \sin 2\theta_2$$

$$\mathcal{L}_{h_{D_1} h_{D_1}} \simeq -\lambda \phi \langle \phi \rangle h h_{D_1} h_{D_1}$$

$$\mathcal{L}_{h_{D_2} h_{D_2}} \simeq -\lambda \phi \langle \phi \rangle h h_{D_2} h_{D_2}$$

$$\mathcal{L}_{h_{D_1} h_{D_2}} \simeq -2\lambda \langle \phi \rangle \langle \chi_\alpha \rangle h h_{D_1} h_{D_2}$$

$$\mathcal{L}_{h_{D_1} h_{D_2} h_{D_2}} \simeq -\frac{1}{2}[24\lambda_{X_1X_2} \langle \chi_\beta \rangle (\beta^2 \cos^2 \theta_3 + \beta (\beta^2 - 2) \cos^2 \theta_3 \sin \theta_3$$

$$+(1 - 2\beta^2) \cos \theta_3 \sin^2 \theta_3 + \beta \sin^2 \theta_3)] h_{D_1} h_{D_2} h_{D_2}$$

$$\equiv \frac{\mu_{HD}}{2} h_{D_1} h_{D_2} h_{D_2}$$

Here we assume $m_{h_{D_1}} > 2m_{h_{D_2}}$ and h_{D_1} decays dominantly into $h_{D_2} h_{D_2}$, i.e. $B(h_{D_1} \rightarrow h_{D_2} h_{D_2}) > 99\%$, then we can use this property to pin down the decay width of h_{D_1} as

$$\Gamma_{h_{D_1}} \approx \frac{1}{\tau_{h_{D_1}}} \approx \frac{\mu_{HD}^2}{32\pi m_{h_{D_1}}} \times \sqrt{1 - 4 \left(\frac{m_{h_{D_2}}}{m_{h_{D_1}}} \right)^2}.$$
portal model-1. Thus, the partial widths for \(h_{D_2} \rightarrow \ell^+ \ell^- \) and \(h_{D_2} \rightarrow \pi \pi \) are given by [6]

\[
\Gamma(h_{D_2} \rightarrow \ell^+ \ell^-) = \sin^2 \theta_2 \frac{m_{D_2}^2 m_{h_{D_2}}}{8\pi\langle\phi\rangle^2} \left(1 - \frac{4m_{\ell}^2}{m_{h_{D_2}}^2}\right)^{3/2},
\]

(27)

\[
\Gamma(h_{D_2} \rightarrow \pi \pi) = \sin^2 \theta_2 \frac{m_{h_{D_2}}^3}{216\pi\langle\phi\rangle^2} \left(1 - \frac{4m_{\pi}^2}{m_{h_{D_2}}^2}\right)^{1/2} \left(1 + \frac{11m_{\pi}^2}{2m_{h_{D_2}}^2}\right)^2,
\]

(28)

\[
\Gamma_{h_{D_2}} = \frac{1}{\tau_{h_{D_2}}} = \sum_{\ell=e,\mu} \Gamma(h_{D_2} \rightarrow \ell^+ \ell^-) + \sum_{\pi=\pi^+,\pi^0} \Gamma(h_{D_2} \rightarrow \pi \pi),
\]

(29)

where we have also restricted \(m_{h_{D_2}} \lesssim 1 \) GeV.

III. CONSTRAINTS

There are a number of existing constraints on these two Higgs-portal models. All these constraints are quite generic for any light scalar boson, which is originally a SM singlet but mixes with the Higgs boson and thus can decay into SM fermions and the Higgs boson can decay into a pair of such scalar bosons.

The first constraint comes from a global fit to the Higgs signal strengths and it constrains the nonstandard decay of the Higgs boson to be less than 0.94 MeV using the most current data in Summer 2014 [10]. The partial width for \(h \rightarrow h_s h_s \) is

\[
\Gamma(h \rightarrow h_s h_s) \simeq \frac{32\pi m_h}{(\lambda_{\Phi X})^2} < 0.94 \text{ MeV}.
\]

It gives a relation

\[
|\lambda_{\Phi X}| < 0.014.
\]

(30)

For the Higgs-portal model-2, we can use the same method to constrain various partial widths of \(h \rightarrow h_{D_1} h_{D_1}, h \rightarrow h_{D_2} h_{D_2} \) and \(h \rightarrow h_{D_1} h_{D_2} \) as follows.

\[
\Gamma(h \rightarrow h_{D_1} h_{D_1}) \simeq \frac{32\pi m_h}{(2\lambda_{\Phi X})^2}
\]

(32)

\[
\Gamma(h \rightarrow h_{D_2} h_{D_2}) \simeq \frac{32\pi m_h}{(2\lambda_{\Phi X} \alpha)^2}
\]

(33)

\[
\Gamma(h \rightarrow h_{D_1} h_{D_2}) \simeq \frac{16\pi m_h}{(2\lambda_{\Phi X} \alpha)^2}
\]

(34)
\[
\Gamma(h \rightarrow h_{D1}h_{D1}) + \Gamma(h \rightarrow h_{D2}h_{D2}) + \Gamma(h \rightarrow h_{D1}h_{D2}) \\
\approx \frac{\langle \phi \rangle^2}{32\pi m_h} \left(2\lambda_{\phi X}^2 (1 + \alpha^4 + 2\alpha^2)\right) < 0.94 \text{ MeV} \\
\Rightarrow \quad |\lambda_{\phi X} (1 + \alpha^2)| < 6.99 \times 10^{-3}. \quad (35)
\]

Another set of constraints come from the decays of \(B\) mesons [12, 13] summarized in Ref. [11].

- For \(100 \text{ MeV} < m_{h_s} < 210 \text{ MeV}\) the scalar boson \(h_s\) can only decay into a pair of electron and positron but the decay length is so long that it leaves no track or energy within the detector. The search for \(B \rightarrow K + \text{invisible}\) and fixed target experiments constrain \(\sin^2 \theta \lesssim 10^{-8}\).

- For \(210 \text{ MeV} < m_{h_s} < 280 \text{ MeV}\) the scalar boson \(h_s\) can decay into a pair of muons, fixed target experiments and the search for \(B \rightarrow K\mu^+\mu^-\) in LHCb and B factories constrain \(\sin^2 \theta \lesssim 10^{-10}\).

- For \(280 \text{ MeV} < m_{h_s} < 360 \text{ MeV}\) the same experiments constrain \(\sin^2 \theta \lesssim 10^{-10}\), except for a window between \(10^{-8} \lesssim \sin^2 \theta \lesssim 10^{-5}\).

- For \(360 \text{ MeV} < m_{h_s} < 4.8 \text{ GeV}\) the experimental search for \(B \rightarrow K\mu^+\mu^-\) in LHCb and B factories constrain \(\sin^2 \theta \times B(h_s \rightarrow \mu^+\mu^-) \lesssim 10^{-6}\).

For the constraint of \(B \rightarrow K\mu^+\mu^-\), we follow Ref. [11] and use the formula

\[
Br(B \rightarrow Kh_s) \times Br(h_s \rightarrow \mu^+\mu^-) \times \int_0^\pi \frac{\sin \theta d\theta}{2} (1 - \exp \left[\frac{-l_{xy}}{\sin \theta \gamma \beta c \tau} \right]) \quad (36)
\]

where \(l_{xy}\) is the maximum reconstructed transverse decay distance from the beampipe, \(\gamma\), \(\beta c\) and \(\tau\) are the boost factor, speed, and lifetime of \(h_s\).

We summarize all these constraints in Fig. 1. Here we also plot beyond the limit of the displaced muon reconstruction for decay length \(\sim 6m\) in the ATLAS (the orange region) and \(\sim 4m\) in the CMS (the yellow region) for our analysis below.

Since the properties of the scalar boson \(h_{D2}\) in Higgs-portal model-2 are the same as the scalar boson \(h_s\) in Higgs-portal model-1, we can also apply the constraints in Fig. 1 to \(m_{h_{D2}}\).

Since B mesons are produced with a higher boost at LHCb than B factories, the integral factor \(\int_0^\pi \frac{\sin \theta d\theta}{2} (1 - \exp \left[\frac{-l_{xy}}{\sin \theta \gamma \beta c \tau} \right])\) for the case of LHCb will be smaller than B factories as pointed out in Ref [14]. Here we simply assume these two integral factors are similar, and the results are consistent with Ref [14] within uncertainties.
FIG. 1. Existing constraints on the Higgs-portal model-1 in the plane of $\log_{10} \sin^2 \theta$ vs m_{h_s}. The green region is for $m_{h_s} < 280$ MeV which is ruled out by fixed target experiments, $B \rightarrow K^{+ invisible}$ and $B \rightarrow K\mu^+\mu^-$. The gray one for 280 MeV $< m_{h_s} < 360$ MeV, and the red one for 360 MeV $< m_{h_s} < 1$ GeV, which are ruled out by fixed target experiments and $B \rightarrow K\mu^+\mu^-$ in B factories. The black region for 280 MeV $< m_{h_s} < 1$ GeV which is ruled out by $B \rightarrow K\mu^+\mu^-$ in LHCb [12, 13]. The orange and yellow regions show beyond the limit of displaced muon reconstruction for the ATLAS and CMS detector, respectively. The white region then stands for the allowed parameter space and possible muon reconstruction inside detectors. The solid lines are contours of various decay widths of h_s.

The third constraint, which is specific to the two 2μ-jets case, comes from the recent search of $h \rightarrow 2a \rightarrow 2(\mu^+\mu^-) + X$ by the CMS at the 8 TeV LHC [15], where a is a light scalar or pseudoscalar in the mass range of $2m_{\mu} < m_a < 2m_{\tau}$. The search limits at the 95% CL is

$$\sigma(pp \rightarrow 2a + X)B^2(a \rightarrow 2\mu) \times \epsilon_{data} \times L \leq N(m_{\mu\mu}) = 3.1 + 1.2 \epsilon_{data} \exp\left(-\frac{(m_{\mu\mu} - 0.32)^2}{2 \times 0.03^2}\right), \quad (37)$$

where ϵ_{data} is the experimental data efficiency, $m_{\mu\mu}$ is the dimuon mass and $L = 20.7 fb^{-1}$, [3

3 There are a few other similar searches [15] at the LHC, but the mass ranges are outside 1 GeV and not relevant to the current work.
We follow closely the analysis performed in Ref. [15] at the 8 TeV run with $\sigma(pp \rightarrow h) = 19$ pb [19]. The branching ratio for $B(h_s \rightarrow \mu^+\mu^-)$ is shown in Table I and the branching ratio $B(h \rightarrow h_s h_s)$ is given by $\frac{\Gamma(h \rightarrow h_s h_s)}{\Gamma_h + \Gamma(h \rightarrow h_s h_s)}$, where $\Gamma_h \simeq 4.0$ MeV. The details of detector efficiencies will be shown in Sec. V. However, the new light boson is restricted to decay with transverse decay length $L_{xy} < 4.4 \text{ cm}$ and longitudinal decay length $L_z < 34.5 \text{ cm}$ in Ref. [15], which are not suitable for $m_{h_s} \sim 0.3 \text{ GeV}$ in our Higgs-portal model. Finally, we found this constraint is only applicable for $m_{h_s} = 0.4 - 0.8 \text{ GeV}$ and gives the constraint $|\lambda_{\Phi X}| < 0.007 - 0.026$ in the Higgs-portal model-1. To be conservative, we choose $|\lambda_{\Phi X}| = 0.007$ for $m_{h_s} = 0.4 - 1.0 \text{ GeV}$ in the following analysis.

Similarly, this constraint is also only applicable for $m_{h_D} = 0.4 - 0.8 \text{ GeV}$ and gives the constraint $2|\lambda_{\Phi X}|\alpha^2 < 0.007 - 0.026$ in the Higgs-portal model-2.

IV. KINEMATICAL DISTRIBUTIONS FOR THESE HIGGS PORTAL MODELS WITH BENCHMARK POINTS

A lepton-jet is a very special and unique object at colliders. In the Higgs-portal models considered in this work, the light scalars can decay into leptons and pions. We focus on the 2 or 4 muons modes in this work. Taking into account the constraints that we have presented in the previous section, we explore the signatures for a few possible benchmark points for the Higgs-portal model-1 and -2, and also show the characteristics of 2μ-jets or 4μ-jets in the final state.

While we collect most of the kinematic distributions in appendix, here we only illustrate the distributions which are the most relevant to the muon-jets, namely, the angular separation among the muons within a muon-jet.

A. Higgs-portal model-1

In the Higgs-portal model-1, there is only one light scalar boson in the dark sector. The dominant muon-jet process comes from gluon fusion into the Higgs boson, followed by the Higgs decay into a pair of light scalar bosons, $h \rightarrow h_s h_s$. Finally, each h_s decays into a pair of opposite-sign muons. The Feynman diagram for this process is shown in Fig. 2.

The final state of this signal process consists of four muons, which are organized into two
FIG. 2. The Feynman diagram for two 2μ-jets in the final state for the Higgs-portal Model-1 (SM + one light scalar h_s): $pp \to h \to h_s h_s \to (\mu^+ \mu^-) (\mu^+ \mu^-)$.

FIG. 3. The opening angle $\Delta R_{\mu^+\mu^-}$ distribution for a pair of oppositely-charged muons inside a muon-jet for each benchmark point in the Higgs-portal model-1, at LHC 14 TeV with Delphes ATLAS simulations.

dimuon pairs. Each dimuon pair consists of two extremely collimated oppositely-charged muons. The angular separation is of order $O(0.01)$. These two dimuon pairs are back-to-back in the transverse plane. We focus on $m_{h_s} = 0.4 - 1.0$ GeV for varying $\sin \theta$ as the benchmark points in Table II. Here we also include the estimates of the lab-frame decay length ($\gamma c \tau$) for h_s, where $\gamma c \tau \approx \frac{2}{\Delta R} \times c \tau$ and $\Delta R \approx 2m_{h_s}/P_{T_{h_s}}$. While we display most distributions in appendix, here we show the distribution for the opening angle $\Delta R_{\mu^+\mu^-}$ for
a pair oppositely-charged muons inside a muon-jet in Fig. 3 for each benchmark point.

The cross section for two 2μ-jets in Higgs-portal model-1 is

$$\sigma(pp \to h \to 2h_s \to 4\mu) = \sigma(pp \to h) \times B(h \to h_s h_s) \times [B(h_s \to \mu^+\mu^-)]^2,$$

(38)

where for 14 TeV $\sigma(pp \to h) = 49.97$ pb [19]. Figure 4 shows the distribution of $\Delta R_{\mu^+\mu^-}$ versus the invariant mass of the muon pair for each benchmark point in Higgs-portal model-1. We can clearly see that the opening angle for the dimuon pair is of order $O(0.01)$. As the mass of h_s increases the opening angle $\Delta R_{\mu^+\mu^-}$ between the two muons becomes wider, because the opening angle roughly scales as $m_{h_s}/p_{T_{h_s}}$.

TABLE II. Signal cross sections, total decay widths, and decay lengths for the process $pp \to h \to 2h_s \to 4\mu$ for various benchmark points of the Higgs-portal Model-1 at LHC-14. We choose $m_{h_s} = 0.4 - 1.0$ GeV for various $\sin \theta$. Note that the innermost part of the tracker system is the pixel detector, which spans from 1 few cm to about 10 cm. Therefore, it can cover $m_{h_s} \gtrsim 0.5$ GeV without problems. For lighter h_s we can use the outside muon spectrometer.

m_{h_s} (GeV)	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\sin \theta$ (10^{-3})	2.83	3.16	3.54	4.08	4.71	8.16	15.8
σ_{14TeV} (fb)	43.49	27.84	17.82	10.02	5.64	0.63	0.04
Γ_{h_s} (10^{-13} GeV)	1.13	2.69	5.56	12.2	25.7	267	4250
$\gamma c \tau$ (cm)	27.3	9.2	3.7	1.4	0.6	0.05	0.003

B. Higgs-portal model-2

1. **Event Topologies**

In the Higgs-portal model-2, there are two light scalars h_{D_1} and h_{D_2} in the dark sector. The dominant muon-jet processes come from gluon fusion into the Higgs boson, followed by the Higgs decays into two light scalars: $h \to h_{D_1} h_{D_1}$, $h \to h_{D_1} h_{D_2}$, and $h \to h_{D_2} h_{D_2}$. Here h_{D_1} denotes the slightly heavier scalar boson between the two light scalars. The h_{D_1} can decay into a pair of h_{D_2}, and we choose h_{D_2} to decay into a pair of opposite-charged muons. Thus we can have 3 final state topologies:

1. TP1: two 2μ-jets,
2. TP2: one 2μ-jet and one 4μ-jet, and
FIG. 4. The opening angle $\Delta R_{\mu^+\mu^-}$ versus invariant mass $M_{\mu^+\mu^-}$ for a pair of oppositely-charged muons in the Higgs-portal model-1, at LHC 14 TeV, luminosity 300 fb$^{-1}$ with Delphes ATLAS simulations.

3. TP3: two 4μ-jets.

The Feynman diagrams for these processes are shown in Fig. 5. The final states corresponding to the event topologies TP1, TP2, and TP3 consist of 4, 6, and 8 muons, respectively, which are organized into two back-to-back muon-jets. Each 2μ-jet is made up of a pair of oppositely-charged muons while each 4μ-jet consists of two pair of oppositely-charged muons. The angular separation between the two oppositely-charged muons in each 2μ-jet depends on the mass of the two light scalars, which is of order $O(0.01)$ in $\Delta R_{\mu^+\mu^-}$. On the other hand, the angular separation between the two oppositely-charged muons in each 4μ-jet has a longer tail because half of the times the wrong pair of muons are grouped together.

The most updated fits to the Higgs boson signal strengths [10] restrict the couplings of $hh_{D_1}h_{D_1}$, $hh_{D_1}h_{D_2}$ and $hh_{D_2}h_{D_2}$ by $\Gamma(h \rightarrow \text{nonstandard}) < 0.94$ MeV or $B(h \rightarrow \text{nonstandard}) < 19\%$. Therefore, we choose 3 different cases for different combinations.
FIG. 5. Feynman diagrams for muon-jet processes with the Higgs-portal model-2: SM + two Light Scalar h_{D_1} and h_{D_2}. Event topologies: (i) TP1: $pp \rightarrow h \rightarrow h_{D_1} h_{D_1} \rightarrow (\mu^+ \mu^-) (\mu^+ \mu^-)$; (ii) TP2: $pp \rightarrow h \rightarrow h_{D_1} h_{D_2} \rightarrow (h_{D_2} h_{D_2}) h_{D_2} \rightarrow (\mu^+ \mu^- \mu^+ \mu^-) (\mu^+ \mu^-)$; (iii) TP3: $pp \rightarrow h \rightarrow h_{D_1} h_{D_1} \rightarrow (h_{D_2} h_{D_2}) (h_{D_2} h_{D_2}) \rightarrow (\mu^+ \mu^- \mu^+ \mu^-) (\mu^+ \mu^- \mu^+ \mu^-)$. Each pair of parentheses represents a muon-jet.

TABLE III. Benchmark points for case 1, 2, and 3 of the Higgs-portal model-2.

	case 1	case 2	case 3
$m_{h_{D_1}}$ (GeV)	2.5		
$\sin \theta_1$ (10^{-3})	31.6		
$\Gamma_{h_{D_1}}$ (10^{-9} GeV)	4.25		
$m_{h_{D_2}}$ (GeV)	(1)	(2)	
$\sin \theta_2$ (10^{-3})	3.16	15.8	3.16
$\Gamma_{h_{D_2}}$ (10^{-13} GeV)	2.69	4250	2.69
μ_{HD} ($10^{-3} GeV$)	1.08	1.33	1.08

of $\lambda_{\Phi X}$ and α as follows:

- case 1: $B(h \rightarrow h_{D_1} h_{D_1}) = B(h \rightarrow h_{D_1} h_{D_2}) = 4 \cdot B(h \rightarrow h_{D_2} h_{D_2})$
 $\lambda_{\Phi X} = 4.66 \times 10^{-3}$ and $\alpha = \frac{1}{\sqrt{2}}$;

- case 2: $B(h \rightarrow h_{D_1} h_{D_1}) = 10 \cdot B(h \rightarrow h_{D_1} h_{D_2}) = 400 \cdot B(h \rightarrow h_{D_2} h_{D_2})$
 $\lambda_{\Phi X} = 6.65 \times 10^{-3}$ and $\alpha = \frac{1}{2\sqrt{5}}$;

- case 3: $B(h \rightarrow h_{D_1} h_{D_1}) = \frac{1}{10} \cdot B(h \rightarrow h_{D_1} h_{D_2}) = \frac{1}{25} \cdot B(h \rightarrow h_{D_2} h_{D_2})$
 $\lambda_{\Phi X} = 1.16 \times 10^{-3}$ and $\alpha = \sqrt{5}$.

17
We list the benchmark points for each case in Table III. We shall also display the p_T and η distributions of the benchmark points for case 1 with final states of 4, 6, and 8 muons in appendix.

2. Simulations

The Higgs-portal model-2 can produce 4, 6, or 8 muons in the final state with event topologies TP1, TP2, and TP3. Since the muons originate from the 125 GeV Higgs boson, the more the muons in the final state, the lower the transverse momentum $p_T\mu$ for each muon will be. Therefore, we would not get very energetic muons in the final states with multi-muons. The topology TP1 with two 2μ-jets in the final state suffers from the constraint of the CMS search [15] just like the Higgs-portal model-1. The other two topologies TP2 and TP3 containing one or more 4μ-jets, each of which is made up of four muons, and so the p_T of each muon is softer than that of each 2μ-jet. At the LHC, both ATLAS and CMS experiments can detect collimated and soft muons[15, 20]. In this work, we use the muon detection efficiency for soft muons (muons with $p_T < 10$ GeV) for ATLAS experiments [21, 22] in the fast detector simulation with Delphes. We use MADGRAPH v.5 [23] with parton showering by Pythia v.6 [24], detector simulations using Delphes v.3[25, 26], and the analysis tools by MadAnalysis5 [27].

The muon-jet in our Delphes simulation is defined as [20, 28]: Starting with the hardest muon we collected all muons within $\Delta R = 0.1$ around it and added their 4-vectors to the muon-jet. This was repeated until no further muons were found within $\Delta R = 0.1$ around the muon-jet 4-vector. This same 4-vector was then used to define the isolation cone $0.1 < \Delta R < 0.4$. Here we collected the muon candidates as: within a cone of $\Delta R < 0.001$ the maximum transverse momenta sum of all charge tracks with $P_T > 0.5$ GeV but the muon one is $\sum P_T < 2$ GeV. Then we use kinematic cuts to check if two (or four) muons will survive the $\Delta R_{\mu^+\mu^-} < 0.3$ (or $\Delta R_{4\mu} < 1$) cut. 4

We are going to perform simulations for the final-state topologies of TP1, TP2 and TP3 in case 1 of the Higgs-portal model-2. Note that the choice of parameters in case 1 allows all three event topologies. In the Higgs-portal model, the light scalars comes from the

4 For 4μ-jet reconstruction: (i) we used the angular separation of muon pairs with $\Delta R_{\mu^+\mu^-}$ smaller than the proper cone size ($\Delta R_{\mu^+\mu^-} \sim 2m_{hs}/P_{T_{hs}}$ for directly decaying 2μ-jet), (ii) find two oppositely charged muons within a ΔR cone with an invariant mass peaked at the lighter scalar-boson mass to reconstruct a 2μ-jet, (iii) then find a pair of these 2μ-jets within the ΔR cone, with an invariant mass peaked at the heavier scalar-boson mass to reconstruct the 4μ-jet.
Higgs boson decay, thus the Higgs-mass-window cut can be used to separate the signal from backgrounds. We show in the appendix the invariant mass of μ^{-}-jets for case 1 of the Higgs-portal model-2 to illustrate the Higgs-mass window in three final-state topologies TP1, TP2 and TP3.

3. Angular Separation, Invariant mass and Cross Sections

The cross sections for two 2μ-jets (TP1), one 2μ-jet & one 4μ-jet (TP2), and two 4μ-jets (TP3) are given by

\[
\text{TP1} : \sigma(pp \rightarrow h \rightarrow 2h_D1/D2 \rightarrow 4\mu) \\
= \sigma(pp \rightarrow h) \times B(h \rightarrow h_D1/D2h_D1/D2) \times [B(h_D1/D2 \rightarrow \mu^+\mu^-)]^2
\]

\[
\text{TP2} : \sigma(pp \rightarrow h \rightarrow h_D1h_D2 \rightarrow h_D2h_D2h_D2 \rightarrow 6\mu) \\
= \sigma(pp \rightarrow h) \times B(h \rightarrow h_D1h_D2) \times B(h_D1 \rightarrow h_D2h_D2) \times [B(h_D2 \rightarrow \mu^+\mu^-)]^3
\]

\[
\text{TP3} : \sigma(pp \rightarrow h \rightarrow h_D1h_D1 \rightarrow h_D2h_D2h_D2h_D2 \rightarrow 8\mu) \\
= \sigma(pp \rightarrow h) \times B(h \rightarrow h_D1h_D1) \times [B(h_D1 \rightarrow h_D2h_D2)]^2 \times [B(h_D2 \rightarrow \mu^+\mu^-)]^4
\]

The cross sections for three different event topologies for all benchmark points are listed in Table IV. In all three cases of the Higgs-portal model-2, the branching ratio $B(h_D1 \rightarrow h_D2h_D2)$ is about 100%. The main difference among the three cases lies in the coupling strengths of hh_D1h_D1, hh_D1h_D2 and hh_D2h_D2.

TABLE IV. Muon-jet cross sections at the LHC-14 for the event topologies TP1: two 2μ-jets; TP2: one 2μ-jet & one 4μ-jet; and TP3: two 4μ-jets in case 1, 2, and 3.

σ_{14TeV} (fb)	case 1	case 2	case 3			
	(1)	(2)	(1)	(2)	(1)	(2)
TP1	10.55	0.017	0.23	3.58 x 10^{-4}	65.93	0.11
TP2	4.18	2.67 x 10^{-4}	0.85	5.45 x 10^{-5}	2.61	1.67 x 10^{-4}
TP3	0.41	1.06 x 10^{-6}	0.84	2.16 x 10^{-6}	0.026	6.62 x 10^{-8}

In Fig. 6 we show the opening angle $\Delta R_{\mu^+\mu^-}$ distributions for a pair of oppositely-charged muons inside a muon-jet in different final-state event topologies TP1, TP2, and TP3. We show the choice of parameters for case 1 with $m_{h_D1} = 2.5$ GeV and $m_{h_D2} = 0.5/1.0$ GeV. We can see the cone sizes of all the TP1, TP2 and TP3 are within the order $O(0.1)$. For
FIG. 6. The opening angle $\Delta R_{\mu^+\mu^-}$ distributions for a pair of oppositely-charged muons inside a muon-jet. We show the choice of parameters for case 1 in the Higgs-portal model-2 with $m_{h_{D_1}} = 2.5$ GeV and $m_{h_{D_2}} = 0.5$ (left), 1.0 GeV (right). At LHC 14 TeV with Delphes ATLAS simulations.

Each 2μ-jets there is only one pair of oppositely-charged muons in the jet cone, and so the angular separation $\Delta R_{\mu^+\mu^-}$ will enlarge with increases in the mass. For each 4μ-jet there are two pairs of oppositely-charged muons inside the jet cone, and therefore the 4μ-jet is "fatter" than the 2μ-jet. The event topology TP2 can come from the Higgs decay into h_{D_1} and h_{D_2}. We can see that the $\Delta R_{\mu^+\mu^-}$ distribution has a sharp peak plus a long tail. The sharp peak comes from the decay $h_{D_2} \rightarrow \mu^+\mu^-$, which coincides with the first peak of TP1. On the other hand, the long tail comes from the decay $h_{D_1} \rightarrow h_{D_2} h_{D_2} \rightarrow \mu^+\mu^- \mu^+\mu^-$, for which half of the times the wrong pair of oppositely-charged muons are grouped together.

V. SENSITIVITY REACH AT THE LHC

The most important question is how many events for this kind of nonstandard decays of Higgs boson that the LHC-14 with 300fb^{-1} can probe via these collimated muon-jet objects. Since these topologies in the final state have very little background, we shall estimate the background event rates after applying successive levels of cuts, and then calculate the signal event rates at 95% CL. For detector efficiencies of these multimuon-jets final states, we follow Ref. [29] for the non-prompt decay of light scalar bosons.

The major background after selection cuts dominantly comes from the charmonium and
bottomonium production. Multiple muons can come off cascade semileptonic or leptonic decays, which are taken as non-prompt. There could easily be 4 or more muons in the final state. On the other hand, multiple muons which come from the low-mass Drell-Yan process \(pp \rightarrow Z/\gamma^* \rightarrow 4\mu \) and the one via Higgs boson production \(pp \rightarrow h \rightarrow ZZ^* \rightarrow 4\mu \) and even \(t\bar{t} \) production are taken as prompt. They are totally suppressed by the selection cuts. The event rates for various backgrounds are very low. We shall show them momentarily.

In Ref. [29], the ATLAS Collaboration searched for lepton-jets in the 8 TeV data with a luminosity of \(20\,3 fb^{-1} \) in two different FRVZ models [1], which predict non-SM Higgs boson decays into lepton-jets. The process for the first model is

\[
h \rightarrow f_d f_d \rightarrow (\gamma_d HLSP)(\gamma_d HLSP) \rightarrow (l^+l^-)HLSP(l^+l^-)HLSP.
\]

where \(f_d, \gamma_d \) and \(HLSP \) are the hidden fermion, the dark photon and the hidden lightest stable particle in the first FRVZ model. The final state of this model consists of two \(2\mu \)-jets + mET. The process for the second model is

\[
h \rightarrow f_d f_d \rightarrow (s_{d1} HLSP)(s_{d1} HLSP) \rightarrow (\gamma_d \gamma_d)HLSP(\gamma_d \gamma_d)HLSP
\]

\[
\rightarrow (l^+l^-)(l^+l^-)HLSP(l^+l^-)(l^+l^-)HLSP.
\]

where \(s_{d1} \) is the hidden scalar in the second FRVZ model. The final state of this model is two \(4\mu \)-jets + mET.

In the first model, for \(m_{\gamma_d} = 0.4 - 0.9 \) GeV, the reconstruction efficiency of muon-jets as a function of the transverse momentum \(p_T \) and the transverse decay distance \(L_{xy} \) of the \(\gamma_d \) for the \(2\mu \)-jet is about 9% - 12%. In the second model, for \(m_{s_{d1}} = 2 \) GeV and \(m_{\gamma_d} = 0.4 - 0.9 \) GeV, the reconstruction efficiency of muon-jets as a function of \(p_T \) of the \(s_{d1} \) for the \(4\mu \)-jet is about 17% - 20%. Finally, the muon trigger efficiency for \(m_{\gamma_d} = 0.4 - 0.9 \) GeV as a function of \(p_T \) of the \(\gamma_d \) for \(\gamma_d \rightarrow \mu^+\mu^- \) is about 40%. Note that triggering the event by seeing at least one muon is enough.

Since the final states of our Higgs-portal models are similar to these two FRVZ models except for the mET, we will use the relevant reconstruction efficiencies and muon trigger efficiency to simply estimate the detector efficiencies for the non-prompt decay of light scalar bosons. For the reconstruction efficiencies, we use 10% for the \(2\mu \)-jet case and 20% for the
4µ-jet case for our benchmark points. For the muon trigger efficiency, we also use 40% for both \(h_s \rightarrow \mu^+\mu^- \) and \(h_{D2} \rightarrow \mu^+\mu^- \). We summarize the detector efficiencies for different topologies TP1, TP2 and TP3 as follows

\[
\begin{align*}
\text{TP1} : & & \epsilon \approx (10\%)^2 \times [1 - (1 - (40\%))^4] = 8.7 \times 10^{-3} \\
\text{TP2} : & & \epsilon \approx (10\%) \times (20\%) \times [1 - (1 - (40\%))^6] = 0.019 \\
\text{TP3} : & & \epsilon \approx (20\%)^2 \times [1 - (1 - (40\%))^8] = 0.039
\end{align*}
\]

We first look at the Higgs-portal model-1 with only one light scalar \(h_s \). The scalar \(h_s \) can decay into a pair of collimated muons. Therefore, the final state consists of two 2µ-jets, corresponding to the topology TP1. We show the observable events in Table V for benchmark points in Table II at LHC-14 with 300\(fb^{-1} \). The number of events decreases gradually from 114 at \(m_{h_s} = 0.4 \text{ GeV} \) down to 2 at \(m_{h_s} = 0.9 \text{ GeV} \), which is mainly because of the decrease in branching ratio \(B(h_s \rightarrow \mu^+\mu^-) \) (see Table I). Note that the decay lengths of \(h_s \) for \(m_{h_s} = 0.4 - 0.9 \text{ GeV} \) are longer than the criterion of prompt decay length (0.15 mm), and so we use detector efficiencies of non-prompt decay for \(m_{h_s} = 0.4 - 0.9 \text{ GeV} \). However, for \(m_{h_s} = 1.0 \text{ GeV} \) the decay length is shorter than 0.15 mm and thus considered prompt decay, and we use the efficiencies for prompt decays.\(^5\) The number of events rises to 6 for \(m_{h_s} = 1.0 \text{ GeV} \).\(^6\)

\(m_{h_s} \) (GeV)	0.4	0.5	0.6	0.7	0.8	0.9	1.0
# of events	114	73	47	26	15	2	6

Next we consider the Higgs-portal model-2. Since the number of parameters involved are many, we first fix \(\mu_{HD} \) which controls the branching ratio \(B(h_{D1} \rightarrow h_{D2}h_{D3}) \). The branching ratio \(B(h_{D1} \rightarrow h_{D2}h_{D3}) \) is shown in Fig. 7 for fixed \(m_{h_{D2}} = 2.5 \text{ GeV} \) with various values of \(\mu_{HD} \). For \(\mu_{HD} = (1.0 - 1.5) \times 10^{-3} \) the branching ratio is almost above 0.99 in the mass range shown.

\(^5\) Since the efficiencies for the decay length around 0.15 mm between non-prompt and prompt decays are a complicated continuous function, here we just want to simply show the major differences of numerical values between these two kinds of efficiencies.

\(^6\) We used the same selection cuts as in Table VII for calculation of the efficiencies for prompt decays with Delphes, and got \(\epsilon = 0.460 \).
FIG. 7. The branching ratio $B(h_{D1} \to h_{D2}h_{D2})$ versus $m_{h_{D2}}$ for various μ_{HD} with fixed $m_{h_{D2}} = 2.5$ GeV. The purpose of the graph is to show how large μ_{HD} is required to give a branching ratio larger than 0.99 for $m_{h_{D2}} = 2.5$ GeV.

The topology TP2 (one 2μ-jet and one 4μ-jet) and topology TP3 (two 4μ-jets) can come from case 1, 2 and 3 of the Higgs-portal model-2. We show the observable events in Table VI for benchmark points in Table III at LHC-14 with 300 fb$^{-1}$. Here we only show number of events larger than 1.

# of events	case 1	case 2	case 3			
	(1)	(2)	(1)	(2)	(1)	(2)
TP1	28	2	1	–	172	15
TP2	24	–	5	–	15	–
TP3	5	–	10	–	–	–

Similarly, We also used the same selection cuts as in Table VII for calculation of the efficiencies for prompt decays with Delphes to TP1, TP2, and TP3, and got $\epsilon = 0.46$ for TP1, $\epsilon = 0.194$ for TP2, and $\epsilon = 0.145$ for TP3.
We perform background calculations for 4, 6, 8 muons to form muon-jets under successive cuts. The charmonium and bottomonium are the dominant backgrounds. We start with 3.18×10^6 events (corresponding to the background cross section with 300 fb^{-1}), and show the subsequent numbers after each level of cuts in Table VII. At the end of the cut flow, the number of background events remaining are $8.49, 21.22$ and 27.59 for TP1, TP2, and TP3, respectively. Thus, the 95%CL upper limits (roughly $Z = 2$) for signal event numbers are $6.46, 9.86, 11.15$, respectively. We then use these signal event rates to show the sensitivity reach in the parameter space.

We can now compare the sensitivity reach by the topologies TP1, TP2, and TP3. The more muons to be seen, the higher the price has to be paid for detection efficiency. Nevertheless, the signature of one 2μ-jet and one 4μ-jet in the final state is one of the most striking decays of the Higgs boson that we can imagine. It implies the existence very light particles involved in the decay chain. Similarly, two 4μ-jets in the final state also signal multiple light scalar bosons in the dark sector.

First, we start from the Higgs-portal model-1. After adding all the constraints described in Sec. III shown in Fig. 1, we can further use the 95%CL upper limits (roughly $Z = 2$) in our analysis of LHC-14 with 300 fb^{-1} to show the sensitivity reach for $\langle \chi \rangle = 10 \text{ GeV}$ and for $\langle \chi \rangle = 100 \text{ GeV}$ in Fig. 8. Note that in Fig. 8 the orange and yellow regions show beyond the limit of the displaced muon reconstruction for decay length for ATLAS and CMS, respectively. The gray hatched region is where our analysis can cover. We can see from these figures, LHC-14 with 300 fb^{-1} in our analysis could cover all the parameter space.

\[Z = \sqrt{2 \cdot (s + b) \cdot \ln(1 + s/b) - s}, \]

where s and b are the expected number of signal and background events, respectively.

\[\text{TABLE VII. Number of background events for TP1, TP2 and TP3 at LHC-14 with 300fb}^{-1}.\]

Cuts/# of BG events	TP1	TP2	TP3		
$N(\mu) = 4, (6, 8)$	485452	236522	82104		
$p_T(\mu) > 5\text{GeV}$	50667	34724	15138		
$	\eta(\mu)	< 2.4$	50667	34724	15138
$p_T(\mu_1) > 20\text{GeV}$	23873	17441	7936		
$115\text{GeV} <	M_{\Sigma\mu_i}	< 135\text{GeV}$	28	59	28
$M_{2\mu} < 3\text{GeV}, \Delta R_{2\mu} < 0.3$	8.49	21.22			
$M_{4\mu} < 3\text{GeV}, \Delta R_{4\mu} < 1$		27.59			
of $m_{h_s} < 0.5$ GeV within possible muon reconstruction inside the detectors.

While the parameter space in the plane of $\log_{10} \sin^2 \theta$ vs m_{h_s} for the Higgs-portal model-1 depends on the choice of $\langle \chi \rangle$, we can also show the parameter space in the plane of $\log_{10} |\lambda_{\Phi X}|$ vs m_{h_s} in Fig. 9, which is independent of the choice of $\langle \chi \rangle$. This plot can allow us to have more direct comparison with the plots for Higgs-portal model-2.

Next we can use the similar approach to show the parameter space in the plane of $\log_{10} |\lambda_{\Phi X}|$ vs m_{h_D} for case 1, 2 and 3 in the Higgs-portal model-2 in Fig. 10. An interesting observation is that there are some crossovers among different hatched regions in the figure of case 2. To further explore this property, we fix $m_{h_D} = 0.5$ GeV and vary different values of $|\alpha|$ in the plane of $\log_{10} |\lambda_{\Phi X}|$ vs $|\alpha|$ in Fig. 11. We can see when $|\alpha| \lesssim 0.18$ the best sensitivity reach of LHC-14 with 300 fb$^{-1}$ is using the TP3 topology, then in the range of 0.18 $\lesssim |\alpha| \lesssim 0.24$ turns out to be TP2, finally after $|\alpha| \gtrsim 0.24$ the best reach is given by TP1. Such a feature can also be observed for other values of m_{h_D}. Another observation is that when $|\alpha|$ becomes small, the constraint on $|\lambda_{\Phi X}|$ will also be less stringent.

9 The fundamental parameters in the Higgs-portal model-1 are λ, λ_X, $\lambda_{\Phi X}$, $\langle \phi \rangle$, and $\langle \chi \rangle$. θ can be derived from these fundamental parameters.
VI. CONCLUSIONS

Muon-jets are interesting and clean signatures at colliders, provided the angular resolution of muons are fine enough to differentiate them. The current designs of the ATLAS and CMS have such capabilities of probing angular separation as small as 10^{-3}. In general, muon-jets arise from the decay of fast-moving light particles. In this work, we have demonstrated a couple of dark-sector models, in which there are a number of very light scalar bosons, which can be accessed via the Higgs boson decays. We have investigated the signatures of 2μ-jets and 4μ-jets, which consist of, respectively, one and two pairs of oppositely-charged muons in a very narrow cone defined by $\Delta R \lesssim 0.01$.

In the Higgs-portal model-1 that we considered, the final state consists of two 2μ-jets. The current experimental search for such a final state has put on it a tight constraint, such that the allowable cross section becomes very small. On the other hand, in the Higgs-portal model-2 that we considered the final-state event topologies can have (i) two 2μ-jets (TP1), (ii) one 2μ-jet and one 4μ-jet (TP2), or (iii) two 4μ-jets (TP3). Even though the topologies TP2 and TP3 are still not yet fully constrained from either ATLAS or CMS, their allowable cross sections are yet small. We have also looked at the invariant mass and
FIG. 10. Existing constraints and the sensitivity reach of LHC-14 with 300 fb$^{-1}$ for the Higgs-portal model-2 in the plane of $\log_{10} |\lambda_{\Phi X}|$ vs $m_{A_{D2}}$ for case 1 (upper left panel), case 2 (upper right panel), and case 3 (lower panel). The yellow region is from the first constraint, the blue region is from the third constraint, and the hatched shading lines are to display the 95%CL upper limits (roughly $Z = 2$) in our analysis of LHC-14 with 300 fb$^{-1}$ for TP1 (Blue), TP2 (Red), and TP3 (Green).

the angular separation of the oppositely-charged muon pair, which show interesting features that can help distinguishing various topologies. Thus, it helps to pin down the masses of the underlying light scalar bosons.

Before we close we offer the following comments.

1. Since the topologies TP2 and TP3 still allow sizeable cross sections and almost back-
ground free, we encourage our experimental groups to focus on these kind of final states and these results will let us know more about the structure of more general dark sector.

2. For the Higgs-portal model-2, if we use much heavier h_{D_1}, say $m_{h_{D_1}} \gtrsim 10$ GeV, then we will just see some very collimated muon pairs instead of a ”fat” muon-jet without substructure inside it. So it is more interesting to analyze both h_{D_1} and h_{D_2} are of mass about $\mathcal{O}(1 \text{ GeV})$.

3. For the Higgs-portal model-2, if $m_{h_{D_2}} < m_{h_{D_1}} < 2m_{h_{D_2}}$, then h_{D_1} can decay into 4μ-jet by one on-shell and one off-shell h_{D_2} which will have different substructure inside 4μ-jet from the case of $m_{h_{D_1}} > 2m_{h_{D_2}}$, but its cross section is also suppressed.

4. In this work we just investigated the signatures of 2μ-jets and 4μ-jets for three different final-state event topologies. However, if we take into account the three-body decay of $h \rightarrow h_{D_{1/2}}h_{D_{1/2}}h_{D_{1/2}}$ and $h_{D_1} \rightarrow h_{D_2}h_{D_2}h_{D_2}$, then we will have more different final-state event topologies, including 6μ-jets, which can enrich the analysis but are seriously suppressed by the phase space.

5. Our simple models are quite generic for any more complicated models, which include
either one or more very light scalar bosons mixing with the SM Higgs boson. There are at least one long-lived neutral particle(s) in this kind of models, which are still testable below 1 GeV for both the ATLAS and CMS as shown in Fig. 1. Therefore, we encourage our experimental groups to perform the analysis of real detector effects of the displaced muon reconstruction efficiency of this kind of scenario to further confirm this possibility.

We have demonstrated that the existence of muon-jets such as 2µ-jets or 4µ-jets would signal the presence of very light scalar bosons, perhaps coming from dark sectors. We therefore suggest our experimental colleagues to look into the nµ-jets with n > 2. The findings of such objects are definitely signals of new physics and help us to understand the dark sector connecting to the Higgs sector.

Appendix A: Kinematical Distributions

Here we collect all the kinematical distributions for model-1 and model-2

1. Higgs-portal model-1

![Graphs showing distribution of pTµ and ηµ](image)

FIG. 12. Transverse momentum $p_{T\mu}$ (left panel) and rapidity η_{μ} (right panel) distributions for the four final state muons arranged in p_T in the Higgs-portal model-1 at LHC-14, $m_{h_s}=0.5$ GeV, at LHC 14 TeV with Delphes ATLAS simulations.
FIG. 13. The opening angle $\Delta R_{\mu^+\mu^-}$ (left panel) and the invariant mass distribution $M_{\mu^+\mu^-}$ (right panel) for a pair of oppositely-charged muons inside a muon-jet for each benchmark point in the Higgs-portal model-1, at LHC 14 TeV with Delphes ATLAS simulations.

In the Higgs-portal model-1, there is only one light scalar boson in the dark sector. We display the benchmark point $m_{h_s}=0.5$ GeV to show the p_T and η_d distributions in Fig. 12 for the final state of two 2μ-jets, and the invariant mass distribution $M_{\mu^+\mu^-}$ and the opening angle $\Delta R_{\mu^+\mu^-}$ for a pair oppositely-charged muons inside a muon-jet in Fig. 13 for each benchmark point.

2. Higgs-portal model-2

We have explained the various event topologies in the current work and they are

1. TP1: two 2μ-jets,
2. TP2: one 2μ-jet and one 4μ-jet, and
3. TP3: two 4μ-jets.

Note that the choice of parameters in case 1 allows all three event topologies. We show the $p_T\mu$ and η_μ distributions for TP1, TP2, and TP3 using the case 1 parameters for the Higgs-portal model-2 in Fig. 14. In the Higgs-portal model, the light scalars comes from the Higgs boson decay, thus the Higgs-mass-window cut can be used to separate the signal from backgrounds. In Fig. 15 we show the invariant mass of $\mu-$jets for case 1 of the Higgs-portal
model-2 to illustrate the Higgs-mass window in three final-state topologies TP1, TP2 and TP3.

In Fig. 16, we show the invariant mass distribution $M_{\mu^+\mu^-}$ for a pair of oppositely-charged muons inside a muon-jet in different final-state event topologies TP1, TP2, and TP3. We show the choice of parameters for case 1 with $m_{h_{D_1}} = 2.5$ GeV and $m_{h_{D_2}} = 0.5/1.0$ GeV. The invariant mass distributions in each case shown in Fig. 16 clearly show the mass peaks of the light dark scalars for different topologies. For final-state topologies TP2 and TP3 the h_{D_1} will mostly decay into $h_{D_2}h_{D_2}$, and so we can only see one mass peak at $m_{h_{D_2}}$ plus a long tail because half of the times a wrong pair of oppositely-charged muons are group together.

Appendix B: Some detailed information about detectors

The pixel detector of ATLAS or CMS is made up of a few layers of silicon pixels organized at radii of about a few cm to about 10 cm. The spatial resolution of the pixels ranges from $10 - 100\mu m$ depending on direction. Taking conservatively $100\mu m$ as the spatial resolution and divide it by the radius of the tracker, the angular resolution is of order $100\mu m/10cm \sim 10^{-3}$. This resolution is already better than the angle 0.01 that we estimated above, so that the pixel detector can separate the very collimated muon-jet that we consider in this work. However, there is no guarantee that the pattern recognition algorithms would be able to reconstruct two distinct tracks, especially in the presence of large number of pile-up events.

Besides the inner pixel detector, the muon spectrometer is also very important to identify and measure the momentum of muons. The design of muon spectrometer in ATLAS and CMS is different. The *Muon Spectrometer* of ATLAS is large in size but low in magnetic field. The advantages of this kind of design are its excellency in stand-alone capabilities and safer for high multiplicities. Thus, the ATLAS muon detector performance is excellent over the whole η range and its resolution is nearly constant with η. On the other hand, the CMS muon spectrometer is smaller in size but high in magnetic field. The advantages of this kind of design are its superior combined momentum resolution in the central region and muons can be tracked and pointed back to the primary vertex. Therefore, the CMS muon performance driven by the tracker is better near $\eta \sim 0$. We specifically describe the ATLAS muon spectrometer in the following. It is an extremely large tracking system,
FIG. 14. In the left panels: the $p_T\mu$ distributions with the parameters of case 1, and $m_{h_D1}=2.5$ GeV, $m_{h_D2}=0.5$ GeV for final state topologies of TP1(upper), TP2(medium), and TP3(bottom) with muons arranged in p_T. In the right panels: the corresponding η distributions. At LHC 14 TeV with Delphes ATLAS simulations.
FIG. 15. The invariant mass distribution for the muon-jets, illustrated for the Higgs-portal model-2, case 1: $m_{h_D^1} = 2.5$ GeV, $m_{h_D^2} = 1.0$ GeV, at LHC 14 TeV with Delphes ATLAS simulations.

FIG. 16. The invariant mass distribution $M_{\mu^+\mu^-}$ for a pair of oppositely-charged muons inside a muon-jet. We show the choice of parameters for case 1 in the Higgs-portal model-2 with $m_{h_D^1} = 2.5$ GeV and $m_{h_D^2} = 0.5$ (left), 1.0 (right). At LHC 14 TeV with Delphes ATLAS simulations.
consisting of three parts: (i) a magnetic field provided by three toroidal magnets, (ii) a set of 1200 chambers measuring with high spatial precision the tracks of the outgoing muons, and (iii) a set of triggering chambers with accurate time-resolution. The extent of this sub-detector starts at a radius of 4.25 m close to the calorimeters out to the full radius of the detector (11 m). Its tremendous size is required to accurately measure the momentum of muons, which first go through all the other elements of the detector before reaching the muon spectrometer. It was designed to measure, stand-alone, the momentum of 100 GeV muons with 3% accuracy and of 1 TeV muons with 10% accuracy. It also serves the function of simply identifying muons – very few particles of other types are expected to pass through the calorimeters and subsequently leave signals in the Muon Spectrometer.

ACKNOWLEDGMENT

This work was supported the MoST of Taiwan under Grants No. NSC 102-2112-M-007-015-MY3 and MOST 105-2112-M-007-028-MY3. S.C.H. is supported in parts by the National Science Foundation.

[1] M. J. Strassler and K. M. Zurek, Phys. Lett. B 651, 374 (2007) doi:10.1016/j.physletb.2007.06.055 [hep-ph/0604261].
T. Han, Z. Si, K. M. Zurek and M. J. Strassler, JHEP 0807, 008 (2008) doi:10.1088/1126-6708/2008/07/008 [arXiv:0712.2041 [hep-ph]].
S. Gopalakrishna, S. Jung and J. D. Wells, Phys. Rev. D 78, 055002 (2008) doi:10.1103/PhysRevD.78.055002 [arXiv:0801.3456 [hep-ph]].
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner, Phys. Rev. D 79, 015014 (2009) [arXiv:0810.0713 [hep-ph]].
N. Arkani-Hamed and N. Weiner, JHEP 0812, 104 (2008) doi:10.1088/1126-6708/2008/12/104 [arXiv:0810.0714 [hep-ph]].
M. Baumgart, C. Cheung, J. T. Ruderman, L. -T. Wang and I. Yavin, JHEP 0904, 014 (2009) [arXiv:0901.0283 [hep-ph]].
M. Reece and L. T. Wang, JHEP 0907, 051 (2009) doi:10.1088/1126-6708/2009/07/051 [arXiv:0904.1743 [hep-ph]].

C. Cheung, J. T. Ruderman, L. T. Wang and I. Yavin, JHEP 1004, 116 (2010) doi:10.1007/JHEP04(2010)116 [arXiv:0909.0290 [hep-ph]].

A. Falkowski, J. T. Ruderman, T. Volansky and J. Zupan, JHEP 1005, 077 (2010) [arXiv:1002.2952 [hep-ph]].

A. Falkowski, J. T. Ruderman, T. Volansky and J. Zupan, Phys. Rev. Lett. 105, 241801 (2010) doi:10.1103/PhysRevLett.105.241801 [arXiv:1007.3496 [hep-ph]].

S. Andreas and A. Ringwald, arXiv:1008.4519 [hep-ph].

Y. F. Chan, M. Low, D. E. Morrissey and A. P. Spray, JHEP 1205, 155 (2012) doi:10.1007/JHEP05(2012)155 [arXiv:1112.2705 [hep-ph]].

[2] S. Weinberg, Phys. Rev. Lett. 110, no. 24, 241301 (2013) [arXiv:1305.1971 [astro-ph.CO]]; K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. D 89, 015007 (2014) [arXiv:1308.4235 [hep-ph]]; C. F. Chang, E. Ma and T. C. Yuan, JHEP 1403, 054 (2014) [arXiv:1308.6071 [hep-ph], arXiv:1308.6071].

[3] R. Dermisek and J. F. Gunion, Phys. Rev. D 81, 075003 (2010) doi:10.1103/PhysRevD.81.075003 [arXiv:1002.1971 [hep-ph]].

A. Belyaev, J. Pivarski, A. Safonov, S. Senkin and A. Tatarinov, Phys. Rev. D 81, 075021 (2010) doi:10.1103/PhysRevD.81.075021 [arXiv:1002.1956 [hep-ph]].

S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, JHEP 1008, 003 (2010) doi:10.1007/JHEP08(2010)003 [arXiv:1005.3978 [hep-ph]].

[4] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 719, 299 (2013) doi:10.1016/j.physletb.2013.01.034 [arXiv:1212.5409].

G. Aad et al. [ATLAS Collaboration], JHEP 1411, 088 (2014) doi:10.1007/JHEP11(2014)088 [arXiv:1409.0746 [hep-ex]].

G. Aad et al. [ATLAS Collaboration], arXiv:1511.05542 [hep-ex].

[5] S. Chatrchyan et al. [CMS Collaboration], JHEP 1107, 098 (2011) doi:10.1007/JHEP07(2011)098 [arXiv:1106.2375 [hep-ex]].

S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 726, 564 (2013) doi:10.1016/j.physletb.2013.09.009 [arXiv:1210.7619 [hep-ex]].
[6] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front. Phys. 80, 1 (2000).

[7] J. Chang, K. Cheung and C. T. Lu, Phys. Rev. D 93, no. 7, 075013 (2016) doi:10.1103/PhysRevD.93.075013 [arXiv:1512.06671 [hep-ph]].

[8] J. F. Donoghue, J. Gasser and H. Leutwyler, Nucl. Phys. B 343, 341 (1990). doi:10.1016/0550-3213(90)90474-R

[9] F. Bezrukov and D. Gorbunov, JHEP 1005, 010 (2010) doi:10.1007/JHEP05(2010)010 [arXiv:0912.0390 [hep-ph]].

[10] K. Cheung, J. S. Lee and P. Y. Tseng, Phys. Rev. D 90, 095009 (2014) doi:10.1103/PhysRevD.90.095009 [arXiv:1407.8236 [hep-ph]].

[11] J. D. Clarke, R. Foot and R. R. Volkas, JHEP 1402, 123 (2014) [arXiv:1310.8042 [hep-ph]].

[12] LHCb Collaboration, LHCb-CONF-2015-002; P. del Amo Sanchez et al. [BaBar Collaboration], Phys.Rev. D82, 112002 (2010), arXiv:1009.1529 [hep-ex]; R. Aaij et al. [LHCb collaboration], JHEP 1308, 117 (2013), arXiv:1306.3663 [hep-ex]; J. Lees et al. [BaBar collaboration], Phys.Rev. D87, 031102 (2013), arXiv:1210.0287 [hep-ex]; J. Lees et al. [BaBar Collaboration], (2012), arXiv:1210.5669 [hep-ex]; J. Lees et al. [BaBar Collaboration], Phys.Rev. D88, 031701 (2013), arXiv:1307.5306 [hep-ex].

[13] R. Aaij et al. [LHCb Collaboration], JHEP 1302, 105 (2013), arXiv:1209.4284 [hep-ex]; J.-T. Wei et al. [Belle Collaboration], Phys.Rev.Lett. 103, 171801 (2009), arXiv:0904.0770 [hep-ex]; B. Aubert et al. [BaBar Collaboration], Phys.Rev.Lett. 102, 091803 (2009), arXiv:0807.4119 [hep-ex]; K.-F. Chen et al. [Belle Collaboration], Phys.Rev.Lett. 99, 221802 (2007), arXiv:0707.0138 [hep-ex]; H. Hyun et al. [Belle Collaboration], Phys.Rev.Lett. 105, 091801 (2010), arXiv:1005.1450 [hep-ex];

[14] K. Schmidt-Hoberg, F. Staub and M. W. Winkler, Phys. Lett. B 727, 506 (2013) doi:10.1016/j.physletb.2013.11.015 [arXiv:1310.6752 [hep-ph]].

[15] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 726, 564 (2013) [arXiv:1210.7619 [hep-ex]]. V. Khachatryan et al. [CMS Collaboration], arXiv:1506.00424 [hep-ex].

[16] S. Chatrchyan et al. [CMS Collaboration], JHEP 1107, 098 (2011) [arXiv:1106.2375 [hep-ex]].
[17] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 92, no. 5, 052002 (2015) doi:10.1103/PhysRevD.92.052002 [arXiv:1505.01609 [hep-ex]].

[18] Some information can be found at http://atlas.ch/inner.detector1.html and http://cms.web.cern.ch/news/silicon-pixels.

[19] LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

[20] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 719, 299 (2013) [arXiv:1212.5409].

[21] ATLAS Collaboration, Fig. 6 of G. Aad et al. [ATLAS Collaboration], “Muon reconstruction efficiency and momentum resolution of the ATLAS experiment in proton-proton collisions at $\sqrt{s} = 7$ TeV in 2010,” Eur. Phys. J. C 74, no. 9, 3034 (2014) [arXiv:1404.4562 [hep-ex]]; G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 74, no. 11, 3130 (2014) [arXiv:1407.3935 [hep-ex]].

We used the CB+ST muon efficiency in our Delphes simulation, and the definition of the CB and ST muon efficiencies were listed in Eur. Phys. J. C 74, no. 9, 3034 (2014) [arXiv:1404.4562 [hep-ex]].

[22] CMS Collaboration, soft ID for "CMS Performance Note : Muon ID performance: low–p_T muon efficiencies", CMS DP -2014/020.

[23] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106, 128 (2011) [arXiv:1106.0522 [hep-ph]].

[24] J. Alwall and the CP3 development team, The MG/ME Pythia-PGS package; the Madgraph at http://madgraph.hep.uiuc.edu/; Pythia at https://pythia6.hepforge.org/; and PGS at http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm.

[25] J. de Favereau et al. [DELPHES 3 Collaboration], JHEP 1402, 057 (2014) [arXiv:1307.6346 [hep-ex]].

[26] For long-lived particle fast detector simulation, we followed the delphes ticket #406 with the TrackVertexSmearing module implemented by Pavel Demin. https://cp3.irmp.ucl.ac.be/projects/delphes/ticket/406.

[27] E. Conte, B. Fuks and G. Serret, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599 [hep-ph]]; E. Conte, B. Dumont, B. Fuks and C. Wymant, arXiv:1405.3982 [hep-ph].

[28] C. Cheung, J. T. Ruderman, L. T. Wang and I. Yavin, JHEP 1004, 116 (2010) doi:10.1007/JHEP04(2010)116 [arXiv:0909.0290 [hep-ph]].
There are also some other discussions of the efficiency for the displaced muon reconstruction. V. Khachatryan et al. [CMS Collaboration], Phys. Rev. D 91, no. 5, 052012 (2015) doi:10.1103/PhysRevD.91.052012 [arXiv:1411.6977 [hep-ex]]. G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 92, no. 7, 072004 (2015) doi:10.1103/PhysRevD.92.072004 [arXiv:1504.05162 [hep-ex]].