Abstract
We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two neutron stars is $1.4M_{\odot}$, described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances (40, 44.3, 50, and 60 km), including up to the last 16 orbits before merger. That allows us to show the effects on the gravitational wave (GW) phase evolution, radiated energy and angular momentum due to: the use of different EOS, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where ‘tidal’ effects and missing high-order post-Newtonian coefficients also play a significant role. We test different methods for extrapolating the GW signal extracted at finite radii to null infinity. We show that an effective procedure for integrating the Newman–Penrose ψ_4 signal to obtain the GW strain h is to apply a simple high-pass digital filter to h after a time domain integration, where only the two physical motivated integration constants are introduced. That should be preferred to the more common procedures of introducing additional integration constants, integrating in the frequency domain or filtering ψ_4 before integration.

3 Author to whom any correspondence should be addressed.
1. Introduction

The recent, first, direct detection [1] of gravitational waves (GWs) from a binary black hole (BH) merger by Advanced Ligo [2] has opened a new window for the investigation of astrophysical compact objects. The new generation GW detectors Advanced LIGO and Advanced Virgo [3] are also expected to reveal an incoming gravitational transient signal from binary neutron stars (BNS) coalescence and merger, once their sensitivity at higher frequencies will increase. At design sensitivity, the rate of BNS signals detected is predicted to be in the interval (0.2–200) per year [4], making them the next target for GW detection. These expected detections present a unique way to learn about the physics of matter at the extreme conditions present in neutron stars (NS) and the equation of state (EOS) of nuclear matter above the nuclear density.

Fully general relativistic (GR) simulations of BNS started in 1998 [5–7] but it is since the crucial breakthroughs of 2005 [8–10] that numerical relativity is the main instrument to study the dynamics of the merger of compact objects. This field has developed quickly thanks to the development of community driven public software like the Einstein Toolkit [11–13] and the LORENE library [14, 15] that allow one to openly simulate such systems and in particular BNS coalescence and merger [16]. Simulation of BNS mergers, where numerical relativity is almost the only available tool, is one of the main endeavors to study the possible gravitational waveforms that will be discovered by the present detectors. For this reason there is now a considerable effort (using both public and private codes) in analyzing the effect of the EOS used to describe matter on the GW signal (see [17–27] and references therein), and to explore other directions like incorporating in the codes more microphysical ingredients, such as finite temperature nuclear EOS with neutrino emission [24, 28–32] and magnetic fields [30, 33–40], to accurately simulate the physics of the post-merger remnant (either a (hyper)massive neutron star (HMNS) [41] or a BH surrounded by an accretion disk).

However, despite all the progress, numerical modeling of BNSs should still be considered an exploratory study due to a number of not completely settled issues. Some of those issues are: the techniques for initial data generation and the determination of their accuracy; the evolution code convergence properties and the selection of the optimal numerical resolution; and, more importantly, the choice of an appropriate modeling for the neutron star EOS, still unknown from the microphysical and the experimental points of view.

This is reflected by the fact that there is also a lot of effort in trying to develop analytical techniques to compute the GW signal (to be compared and validated by numerical relativity ones) from the inspiral phase of compact binary mergers [42, 43], among which the effective one body (EOB) [44–46] approach was particularly successful. Recently, tidal effects have been included in those analytical models [18, 47–49]. From the measurements of tidal effects in the inspiral gravitational signal the EOS of the neutron star core can be distinguished [17–20, 50, 51]. To contribute to this task, many-orbits (>10) BNS simulations with nuclear EOS have been performed lately, comparing their gravitational signals to various EOB formulations with tidal effects and Taylor-expanded post-Newtonian (PN) expressions [19, 49, 51, 52]. The latter is challenging, because most of the initial data used are eccentric,
and the number of orbits used are not, in any sense, close to the ≈ 175 orbits that were used in similar studies of binary BH systems [53].

The present work improves the results of [16] focusing on the techniques to extract the GW signal from numerical simulations; the analysis of the eccentricity of the orbits obtained evolving quasi-circular initial data and its impact on the gravitational waveforms; the dependence of results on the number of simulated pre-merger orbits, and different neutron star EOS.

In detail, we present new long-term (up to 16 orbits) equal-mass BNS simulations with four different nuclear EOS, starting with four different values of the interbinary distance d (40, 44.3, 50, and 60 km). The comparison of simulations starting from different initial orbital frequencies is a necessary and fundamental test to evaluate the accuracy of current numerical BNS simulations and their ability to model tidal effects. In particular, long numerical simulations are needed to construct hybrid analytical-numerical waveforms for GW detectors data analysis where it is important to know how many orbits before merger can be effectively simulated using current numerical methods and resolutions.

The outline of this paper is the following: in section 2 we describe the numerical methods employed in our code and the initial models we choose to evolve. In section 3.1 we describe the techniques we tested for extracting, integrating and extrapolating to null infinity the GW signal. In section 3.2 we briefly comment on the eccentricity of the orbits from the evolution of quasi-circular initial data. In section 3.3 we present our results about the comparison of simulations of the same model starting with different initial frequencies. Finally, in section 4 we summarize the main results of the present work.

Throughout this paper we use a space-like signature $- + + +$, with Greek indices running from 0 to 3, Latin indices from 1 to 3, and the standard convention for summation over repeated indices. The computations are performed using the standard $3+1$ split into (usually) space-like coordinates $(x, y, z) = x^i$ and a time-like coordinate t. Our coordinate system $(x^i) = (t, x^i) = (t, x, y, z)$ (far from the origin) has, as it can be checked, almost isotropic coordinates and far from the origin they would have the usual measure unit of ‘time’ and ‘space’. In particular, t is time when measured from an observer at infinity. All computations have been done in normalized computational units (hereafter denoted as CU) in which $c = G = M_0 = 1$. We report the radius of the spheres used for GWs extraction in CUs.

2. Numerical methods and initial models

We used the exact same code setup as our previous study about BNS mergers [16], which is why we refer the interest reader to that work and the references within for details of the setup. Here we only summarize for clarity the most important components and numerical algorithms. A fundamental aspect for us is that this work has been produced using only free, open source software and as such can be reproduced and extended by anyone in the scientific community.

The dynamical evolution of the analyzed models was computed using the Einstein Toolkit [11–13]. The Einstein Toolkit is a free, publicly available, community-driven GR code based on the Cactus [54, 55] computational framework. In particular, we have chosen the eleventh release (code name ‘Hilbert’, ET_2015_05). Some local modifications and additions were necessary, all of which are open-source and freely available from the Subversion server of the Parma University gravity group [56], and all of which are planned to be proposed for the next release of the Einstein Toolkit.

The data are evolved on a Cartesian mesh with six levels of mesh refinement, each with a double resolution respect to the parent level. The outer boundary of the grid is set at 1063 km from its center, to be able to extract the gravitational signal far from the source. The standard
grid spacing on the innermost level used for this paper is \(\Delta x = 369 \text{ m} \), which in \[16\] we found sufficient to get qualitatively good results. We used a mirror symmetry across the \((x, y)\) plane consistent with the symmetry of the problem, in order to reduce the computational costs by a factor two. The grid structure and the code parallelization are handled by the Carpet code \[57, 58\]. The spacetime metric evolution is performed by the McLachlan module \[59\], implementing a 3 + 1 dimensional split of the Einstein equations using the BSSN-NOK formalism \[60–64\] and solving them with fourth-order finite differences. The general relativistic hydrodynamics (GRHD) equations are solved by the module GRHydro \[13, 65\] with high resolution shock capturing techniques using the fifth-order WENO reconstruction method \[66, 67\] and the HLLE Riemann solver \[68, 69\]. The time integration is performed with a fourth-order Runge–Kutta method \[70, 71\] with a constant Courant factor of 0.25. Kreiss–Oliger dissipation \[72\] is applied to the curvature evolution quantities in order to damp high-frequency noise.

We chose in particular the combination of the BSSN-NOK formulation of the Einstein equations and the WENO reconstruction method among the possibilities provided by the Einstein Toolkit because in \[16\] we observed that combination of algorithms to enter the convergent regime already at low resolutions, allowing us to obtain reliable results without the need to perform computationally expensive simulations at higher resolution.

Our initial data are generated with the open source LORENE library \[14, 15\], which is able to compute quasi-equilibrium configurations for binary irrotational NS in quasi-circular orbits. This is achieved imposing the presence of the helical Killing vector \(l^\mu = (\partial_t)^\mu + \Omega(\partial_\phi)^\mu \). From the imposition of this symmetry the initial data do not incorporate a radial velocity component coming from the gravitational radiation reaction. This will lead to the presence of a tangible eccentricity in the stars orbit during their evolution (see section 3.2 and \[73, 74\] for more details).

Figure 1. Left: mass–radius relations for non-rotating neutron stars with the four nuclear EOS we employed in this work. The horizontal gray line marks the mass of PSRJ0348+0432 \(M = 2.01M_\odot \) \[80\]. Right: initial density profiles for the stars using these four EOS, with a Baryon mass of \(1.4M_\odot \). On the x-axis it is shown the coordinate grid-distance not the physical one.
2.1. Equation of state

The true EOS for nuclear matter in an environment similar to a neutron star is still not known, not even assuming a small effect of the temperature, i.e., a cold neutron star, as expected here for initial data. We thus have to simulate the effect of different plausible EOS on observable quantities, in the hope to learn about the EOS indirectly through these observations.

The four cold EOS for nuclear matter at beta equilibrium that we employed are, in decreasing order of compactness:

- the **APR4** EOS [75], obtained using variational chain summation methods with the Argonne two-nucleon interaction and including also boost corrections and three-nucleon interactions,
- the **SLy** EOS [76, 77], based on the Skyrme Lyon effective nuclear interaction,
- the **H4** EOS [78], constructed in a relativistic mean field framework including also Hyperons contributions and tuning the parameters to have the stiffest possible EOS compatible with astrophysical data, and
- the **MS1** EOS [79], constructed with relativistic mean field theory considering only standard nuclear matter.

Each of these EOS satisfies the observational constraint of a maximum mass for a non rotating NS higher than $2.01 M_\odot$ [80]. In figures 1(a) and (b) we show the mass over radius curves and the initial density profiles, respectively, for a non rotating NS, for each of these EOSs. They have been generated solving the TOV equations with the code **rns** [81].

We followed [82] parameterizing the EOS as piecewise polytropes, with the following expressions in each density interval $[\rho_{i-1}, \rho_i]$:

$$P_{\text{cold}} = K_i \rho_i^{\Gamma_i}, \quad (1)$$

$$\epsilon_{\text{cold}} = \epsilon_i + \frac{K_i}{\Gamma_i - 1} \rho_i^{\Gamma_i - 1}. \quad (2)$$

For each EOS we used seven polytropic pieces, of which the first four (at lower densities) always adopt the prescription of [76, 77] for the stellar crust and the three remaining, instead, use the coefficient found in appendix B of [82] for each of the four EOS models described above. Characteristics of the employed EOS and of their impact on the initial models are listed in table 1.

Table 1. Characteristics of the employed EOS and of the corresponding initial models. In the first three columns we report the adiabatic Γ index of the three highest density polytropic pieces (starting with density ρ_i and separated by densities $\rho_i = 10^{14.7}$ g cm$^{-3}$ and $\rho_i = 10^{15}$ g cm$^{-3}$) taken from [82]. In the fourth column we report the density that separates the crust EOS from the NS core EOS. The last three columns show: the gravitational mass at infinite separation, the radius and the compactness $C = M_{\text{grav}}/R$ of each star, respectively.

EOS	Γ_1	Γ_3	Γ_6	ρ_1 (g cm$^{-3}$)	M_{grav} (M_\odot)	R (km)	C
APR4	2.830	3.445	3.348	1.512×10^{14}	1.2755	11.33	0.1662
SLy	3.005	2.988	2.851	1.4622×10^{14}	1.2809	11.76	0.1608
H4	2.909	2.246	2.144	0.8877×10^{14}	1.3003	14.00	0.1371
MS1	3.224	3.033	1.325	0.9416×10^{14}	1.3048	14.90	0.1293
During the evolution, the EOS is supplemented by a thermal component of the form

\[P_{\text{th}} = \Gamma_{\text{th}} \rho (\epsilon - \epsilon_{\text{cold}}), \]

choosing \(\Gamma_{\text{th}} = 1.8 \) following the results of the discussion in [83].

3. Results

We analyzed the dynamics of the inspiral phase of a BNS merger, performing numerical simulations of an equal mass binary system using four different EOS for the cold nuclear matter and starting the dynamical evolution from four different values of coordinate distance between the star centers.

Since the gravitational mass of each star is not conserved during the evolution but depends on the gravitational binding energy we decided to generate our initial models fixing the conserved baryonic mass to 1.4\(M_\odot \). This leads to small differences in the gravitational masses at infinite separation for the different EOS. Table 2 sums up the main physical characteristics of our initial models.

Models with different EOS spend a different amount of time orbiting each other before they merge. This is mainly due to the different tidal deformability of the stars. However, some finite-resolution effect could be present, because simulations of models with different EOS can have different convergence properties, as found for example in [19]. For this reason, merger time results from fixed, finite, resolution simulations must be taken with care. In table 3, we report the number of orbits evolved in each simulation from the start to the merger.

Model name	\(d_0 \) (km)	\(M_{\text{ADM}} (M_\odot) \)	\(J_{\text{ADM}} (GM_\odot^2/c) \)	\(\Omega_0 \) (rad s\(^{-1}\))
APR4(a)	40	2.5255	6.3594	2036
APR4(b)	44.3	2.5275	6.5771	1767
APR4(c)	50	2.5298	6.8603	1492
APR4(d)	60	2.5329	7.3385	1153
SLy(a)	40	2.5361	6.4051	2040
SLy(b)	44.3	2.5382	6.6233	1770
SLy(c)	50	2.5404	6.9073	1494
SLy(d)	60	2.5435	7.3876	1155
H4(a)	40	2.5744	6.5876	2056
H4(b)	44.3	2.5764	6.8024	1782
H4(c)	50	2.5787	7.0876	1504
H4(d)	60	2.5819	7.5740	1163
MS1(a)	40	2.5833	6.6434	2063
MS1(b)	44.3	2.5852	6.8503	1786
MS1(c)	50	2.5875	7.1313	1506
MS1(d)	60	2.5907	7.6164	1164

Table 2. Initial binary systems parameters. Model names are listed using the following convention: the EOS name followed by a key indicating the initial separation between the star centers (a: 40 km, b: 44.3 km, c: 50 km, d: 60 km). In this table we list the initial ADM mass of the systems, the initial total angular momentum and the initial orbital angular velocity, as reported by the output of LORENE.
In the following subsections we will first present details about the GW extraction procedure we implemented. Next, we analyze the eccentricity of the orbits obtained evolving the quasi-circular LORENE initial data, and evaluate its impact on the gravitational signal. Finally, we evaluate the effect of the choice of initial interbinary distance on the quality of the simulation results.

3.1. GW extraction

We extracted the GW signal from each simulation with the standard method of calculating during the numerical evolution the Newman–Penrose scalar ψ_4 [84, 85] (using to the Einstein Toolkit module WeylScal4), decomposed in spin-weighted spherical harmonics of spin -2 [86] by the module multipole:

$$\psi_4(t, r, \theta, \phi) = \sum_{l=2m=-l}^{\infty} \psi_4^m(t, r) Y_{lm}(\theta, \phi).$$

We extracted ψ_4 components up to $l = 6$. At null infinity, ψ_4 is linked to the GWs strain by the relation

$$\psi_4 = \bar{h}_+ - i\bar{h}_\times \equiv \hat{h},$$

where \hat{h} stands for the complex conjugation of the GW strain. In order to integrate it twice to get the strain components h^m, we used a simple trapezoidal rule, starting the integration from coordinate time $t = 0$, as suggested by [44]. We performed a polynomial fit to the obtained strain and subtracted its result to the strain itself. In order to correctly set the integration constants a linear fit is used:

$$\bar{h}_m^{(0)} = \int_0^t dr \int_0^r dr' \psi_4(t', r),$$

$$\bar{h}_m = \bar{h}_m^{(0)} - Q_1 t - Q_0.$$

Like in our previous work [16], however, we found also here that the linear fit is not sufficient to eliminate the low-frequency unphysical oscillations in the strain amplitude, caused by unresolved high-frequency noise aliased in the low-frequency signal during the integration process [87]. In [16], we found that subtracting from the strain a second order polynomial fit is sufficient to eliminate the unphysical drift from the dominant $(2, 2)$ mode, which is the one we focus on in the rest of this paper unless otherwise stated.

Unfortunately, this procedure is not able to cure the nonphysical oscillations in the subdominant modes, for which fitting with even higher order polynomials would be needed, as first recognized in [88]. Since some analysis presented later in this paper are based on the emitted

EOS	Number of orbits	$d = 60$ km	$d = 50$ km	$d = 44.3$ km	$d = 40$ km
APR4	15.5	9.5	6.5	4.5	
SLy	16	9	6	4	
H4	15	8	4.5	3	
MS1	12.5	6	3.5	2	
angular momentum, for which the contribution of sub-dominant modes is relevant (see equation (12)), we found that the standard procedure also used in \[\text{16}\] need to be improved since the use of higher-order fitting polynomials is not justified from the mathematical point of view. Here we discuss different approaches to the problem and propose a new one.

An almost universally applicable integration procedure is the so-called fixed frequency integration (FFI), introduced in \[\text{87}\]. It consists of integrating the signal in the frequency domain with the following prescription:

\[
\tilde{h}_{lm}(f) = - \frac{y_{4}^{lm}(f)}{(2\pi f_{0})^2} \quad \text{if} \quad f < \frac{m f_{0}}{2},
\]

\[
\tilde{h}_{lm}(f) = \frac{y_{4}^{lm}(f)}{(2\pi f)^2} \quad \text{if} \quad f \geq \frac{m f_{0}}{2},
\]

where \(\tilde{h}_{lm}\) stands for the Fourier transform of a function and \(f_{0}\) is the lowest physical frequency of the gravitational radiation emitted during the system evolution. This method is equivalent to applying a high-pass filter to \(y_{4}\), damping the part of the signal spectrum below the frequency \(\frac{m f_{0}}{2}\), by multiplying \(y_{4}\) with a transfer function \(H(f) = \frac{f_{0}}{f}\). While satisfactory for most applications, we found two shortcomings in this integration procedure:

(i) After applying the extrapolation formula of \[\text{89}\] (see section 3.1.1) to \(\psi_{4}\), the filter introduced by FFI is not strong enough to reduce the low frequency part of the signal sufficiently to avoid any visible artifact in the waves amplitude. This is due to the amplification of the low frequency components of \(\psi_{4}\) by the additional integral terms in equation (17). A possible strategy to overcome this problem is to increase the filter order, for example by changing the transfer function to \(H(f) = \frac{f_{0}}{f}\).

(ii) Performing a direct and an inverse Fourier transform to obtain the time-domain double-integrated signal needs the application of a sufficiently smooth window function to \(\psi_{4}(t)\)
before the integration to avoid problems due to the finite signal length. This means that a relevant fraction of the computed signal is not available for further analysis, requiring longer simulations, wasting computational resources.

To overcome these limitations, we integrated ψ_4 in the time domain, subtracting a linear fit to fix the two integration constants, following equations (6) and (7) (the correct procedure in absence of noise aliasing problems). Only after the integration we applied a digital high-pass Butterworth filter to $h(t)$, designed with the `signal` module of the `scipy` Python library. We created an IIR filter imposing a maximum signal suppression of -0.01 dB at the minimum physical frequency f_0 (computed as twice the initial orbital frequency) and a signal suppression of -80 dB at f_{10}, and applied it as a forward–backward filter to avoid changes to the signal phase. A filter applied to h and not to ψ_4 requires a lower order, since the low-frequency noise components of ψ_4 are greatly amplified by the double integration process. In figure 2, we show the frequency response of the applied filter and report on the frequency behavior $H(f)$ of the effective transfer functions corresponding to different integration procedures (subtracting different order polynomial fits, FFI integration and the use of our filter), expressed in decibels. They are calculated using the GW data of our simulations, with the following expression:

$$H(f) = 20 \cdot \log_{10} \left| \frac{\tilde{h}_i(f)}{\tilde{h}_0(f)} \right|,$$

(10)

where $\tilde{h}_i(f)$ are the Fourier transforms of the GW strains computed with the different integration procedures and $\tilde{h}_0(f)$ is the Fourier transform of the GW strain computed with equation (7). All the strains are computed starting from the second order extrapolated ψ_4 of equation (17). It is clearly visible that subtracting a second order polynomial fit as we did in [16] is no longer sufficient and that our filter performs better than FFI integration, in particular at the lowest frequencies.

After having obtained a clean $h(t)$ signal with our filter procedure described above, we were able to calculate the radiated energy and angular momentum fluxes [90]:

$$\frac{dE^{gw}}{dt} = \frac{R^2}{16\pi} \int d\Omega \ |\tilde{h}(t, \theta, \phi)|^2,$$

(11)

$$\frac{dJ^{gw}}{dt} = \frac{R^2}{16\pi} \text{Re} \left[\int d\Omega (\partial_\phi \tilde{h}(t, \theta, \phi)) h(t, \theta, \phi) \right],$$

(12)

where in this case

$$h(t, \theta, \phi) = \sum_{l=0}^{6} \sum_{m=-l}^{l} h_{lm}(t) Y_{lm}(\theta, \phi).$$

(13)

3.1.1. Gravitational signal extrapolation to null infinity

We already noted that the relationship between h and ψ_4 (equation (5)) is valid only at null infinity. The extraction of the gravitational signal at finite radius will therefore introduce a source of error in the computed GW strain.

Different procedures have been developed to extrapolate the ψ_4 signal computed during the numerical evolution to null infinity. The three most important ones are:

- Extracting the signal at different radii and computing a fit to a polynomial in $\frac{1}{R}$ [91];
- Propagating the signal obtained at finite radius to null infinity with an analytic formula based on the results of perturbation theory of the Schwarzschild (or Kerr) spacetime [89, 92];
Performing a characteristic evolution using as inner boundary conditions the metric and its derivatives on a timelike worldtube (CCE) \cite{93, 94}.

In this work we confront the first two possibilities, extracting ψ_4 at seven different equidistant radii from $R = 400$ CU (591 km) to $R = 700$ CU (1034 km).

For the polynomial extrapolation we calculated the phase $\phi(t_{\text{ret}})$ and amplitude $A(t_{\text{ret}})$ of $\psi_4(t_{\text{ret}}) = A(t_{\text{ret}})e^{i\phi(t_{\text{ret}})}$, where from now on we will express all wave functions with respect to the retarded time t_{ret}:

$$t_{\text{ret}} = t - R^*,$$
$$R^* = R + 2M_{\text{ADM}} \log \left(\frac{R}{2M_{\text{ADM}}} - 1 \right),$$

where t is the coordinate time and R is the radial coordinate of the extraction sphere in our numerical relativity coordinate system, which far from the stars is similar to isotropic coordinates.

Next, we fit both the amplitude and the phase of the signal extracted at different radii with a second order $\frac{1}{R}$ polynomial:

$$f(R, t_{\text{ret}}) = a_0(t_{\text{ret}}) + \frac{a_1(t_{\text{ret}})}{R} + \frac{a_2(t_{\text{ret}})}{R^2},$$

where $f(R, t_{\text{ret}})$ stands for $R \cdot A(R, t_{\text{ret}})$ or $\phi(R, t_{\text{ret}})$ and this fit is repeated for each discrete point in the time evolution of the system. The coefficient $a_0(t_{\text{ret}})$ gives, for each time, the value of the function f extrapolated to infinity. We extracted the gravitational signal at too few radii to have significant results with a higher order fit.

For the perturbative extrapolation, instead, we tested for the first time in a BNS simulation the second order correction introduced in \cite{89}, to see if it makes any substantial difference from the first order one already proposed in \cite{92} and tested in \cite{93, 95, 96}. This is also useful to have a possible estimation of the error due to finite radius extrapolation, that according to \cite{97} is the dominant source of error in numerical waveforms in the early inspiral, far from the plunge phase.

The second order perturbative extrapolation formula is:

$$r\psi^{lm}_{4} (t_{\text{ret}}) \bigg|_{r=\infty} = 1 - \frac{2M}{r} (r\psi^{lm}_{4}(t_{\text{ret}}, r)$$

$$- \frac{(l - 1)(l + 2)}{2r} \int dt \ r\psi^{lm}_{4}(t_{\text{ret}}, r)$$

$$+ \frac{(l - 1)(l + 2)(l^2 + l - 4)}{8r^2} \int dt' \int dt \ r\psi^{lm}_{4}(t_{\text{ret}}, r),$$

where r is the Schwarzschild radial coordinate:

$$r = R \left(1 + \frac{M_{\text{ADM}}}{2R} \right)^2.$$

The first coefficient $\left(1 - \frac{2M}{r} \right)$ comes from the difference between the ‘psikadelia’ tetrad \cite{85} commonly used in numerical relativity to compute ψ_4 and the Kinnersley tetrad \cite{98} used in perturbation theory. Since the authors of \cite{89} do not see a strong dependence on (the Kerr parameter) a, we decided not apply the background spin corrections \cite{89}.

In practice, the integral terms in equation (17) needs to be treated with the same procedure used for obtaining h from ψ_4 in order to eliminate any unphysical drift. To be consistent with the integration constants and not to mix filtered and unfiltered terms, we
applied equation (17) in the following form:

\[
\psi_4^{\text{lm}}(t_{\text{ret}}) \big|_{r=\infty} = \left(1 - \frac{2M}{r} \right) \left(h(t_{\text{ret}}, r) - \frac{(l-1)(l+2)}{2r} \dot{h}(t_{\text{ret}}, r) \right) + \frac{(l-1)(l+2)(l^2 + l - 4)}{8r^2} \ddot{h}(t_{\text{ret}}, r),
\]

(19)

where the GW strain \(h \) is computed from \(\psi_4 \) extracted at finite radius \(R \) with our filter procedure illustrated in section 3.1. The time derivatives are computed with a fourth order operator.

To evaluate the extrapolation formula effectiveness we computed, for the reference model SLy(d), the difference between the signal extracted at different radii, with and without applying the perturbative formula, and also compared the first order with the second order correction. The results of this comparison can be seen in figure 3, where we show the difference of the wave strain phase \(\phi(t) = \tan^{-1}\left(\frac{h(t)}{\dot{h}(t)} \right) \) extracted at different radii with the one extracted at the outermost radius \(R = 700 \) CU, for the three different extrapolation orders.

As can be seen in figure 3, applying the first order perturbative correction to \(\psi_4 \) reduces the phase difference between the signal extracted at different radii by one order of magnitude. Applying also the second order correction reduces it further by about a factor two. These phase errors are consistent with the one shown in figure 4, where we can see that through most of the binary coalescence the difference between the perturbative extrapolated signal phase and the polynomial extrapolated signal phase is around 0.01 rad and oscillates with a maximum under 0.05 rad in the merger phase. Using this figure, we like to note that these errors are much smaller than the ones typically expected from finite-resolution effects for this kind of GRHD simulations, which, in the best cases reported in the literature, are of the order
Therefore, applying only the first order term in the perturbative extrapolation is sufficient if one is only interested in the waveform phase.
On the other hand, on the contrary to what happen to the phase, we note that the difference in the emitted energy in GWs do not show any sensible difference on the extrapolation methods used or extraction radius. This is due to the fact that the correction in the GW amplitude starts at second order in $\frac{1}{R}$, as shown in [99]. Indeed even if the difference between the signals extracted at different radii, is lower for the second order extrapolated signal with the respect to the one extract using the first order extrapolated signals they are very small, with a variation of the order of tenths of percent and this is even for signal extracted at $r = 700$ CU and $r = 400$ CU without applying any extrapolation formula. We indeed report, for the rest of the present work, results obtained using the second order perturbative extrapolated signal (17) using equations (6) and (7) and applying a digital high-pass Butterworth filter. Moreover we denote as t_{merger} the time where the h_{22} amplitude as the maximum.

3.2. Orbital eccentricity

The amplitude of the GW strain shows a characteristic oscillation in all our simulations (see figures 6 and 8). This phenomenon has been interpreted in the literature as an imprint of a
small eccentricity in the orbital evolution due to the missing approaching radial velocity in the quasi-circular initial data \cite{73, 74} (see section 2). We checked the trajectories of our BNS systems, calculating their eccentricity in a simple way, and later confronted their GW strain with the one computed with a recently developed analytical model for eccentric binaries \cite{100}.

We computed the trajectories by following the dynamics of the star centers, defined as the points on the numerical grid with the maximum density ρ. Next, we computed the coordinate distance D between the star centers at each time step, and fitted its derivative (computed with a fourth order operator) with the following Newtonian approximation for the orbital evolution:

$$D(t) = A_0 + A_1 t - e D_0 \omega_e \sin(\omega_e t + \phi_e),$$

(20)

where e is the eccentricity and $D_0 = d$ the initial coordinate interbinary distance. The fit is performed in the time interval between $t_{\text{ret}} = 3 \text{ ms}$ and $t_{\text{ret}} = \frac{3}{4}t_{\text{merger}}$, to avoid the initial spurious radiation and the plunge phase but having at least one eccentricity cycle included. For the models starting from only $d = 40 \text{ km}$ it is not possible to satisfy that last requirement, which is why we excluded those simulations from the analysis in this section. We fitted the derivative of D because of the advantage of having one free parameter less in the fit. We note that this way of defining an inter-star distance is not gauge independent, and also in no way unique. However, although the distance between the stars can be computed in more accurate ways, e.g., by finding their centers using an integral weighed with the density, in analog to a Newtonian center of mass, and by calculating the proper distance along a geodesic between the stars, the spacetime and matter quantities change only slowly during a long section of the inspiral, making an approximation as simple as ours viable.

It should also be noted that there is a sudden orbit shrinking at the beginning of the evolution as it can be seen in figure 5 present for all the simulated models. This is due to the well-known ‘junk radiation’ present at the beginning of numerical relativity simulations when the initial data are constructed in the conformal flatness approximation. This is due to the fact that the initial spacetime lacks the right physical radiation content coming from the past binary evolution \cite{42, 101, 102}. The same effect of this phenomenon is also visible on the the energy-angular momentum evolution curves of figure 11 shown in section 3.3.
In table 4 we list the computed values of initial orbital eccentricity for all the simulations with \(d \geq 40 \) km. We cannot see any clear trend in the variation of the orbital eccentricity with different initial interbinary distances. We can see, instead, that the eccentricity for the more compact stars (with APR4 and SLy EOS) is about two times the one for less compact stars (with H4 and MS1 EOS).

In the last years several groups developed a technique to produce eccentricity-reduced initial data for BNS simulations, through an iterative procedure \([73, 74]\). They start a simulation from quasi-circular data, calculating its orbital eccentricity. Then they compute the radial velocity which needs to be added to the initial data to correct the eccentricity effect and they repeat the procedure with the modified initial data, until the residual eccentricity is at least less than \(\sim 10^{-3} \), as prescribed by the NRAR collaboration \([96]\). We do not have yet implemented this algorithm in our codes. Instead, we want to evaluate the effect of the error induced by an orbital eccentricity of order \(10^{-2} \), like the one we measure in this work.

In order to confirm that the measured eccentricity is indeed due to the non-ideal initial data, we compare in figure 6 our measured GW amplitude with both the standard T4 \([42]\) and the recently developed eccentric TaylorT4 approximant (eT4) \([100]\). For now their model is only accurate to the 2PN order in phase, to the Newtonian level in amplitude, and does not include tidal effects, but it is nevertheless in very good agreement with our numerical results, at least in the first part of the signal.

We also compute the difference between the eT4 approximant \([100]\) and a standard circular orbits TaylorT4 waveform \([42]\) at the same PN order. Both signals are generated with the Ligo algorithms Library\(^4\), considering binaries with the same gravitational mass and initial frequency as our \(d = 60 \) km models, reported in tables 1 and 2. In figure 7 we plot their difference in phase, starting from the initial frequency of each numerical simulation. For the less compact models with initial eccentricity 0.01 (H4 and MS1 EOS) the phase difference oscillates with an amplitude of less than 0.2 rad, lower than the typical numerical errors we presented in the right columns of table 6 (see next subsection). Another check was to calculate the detectability of the difference between the circular and the eccentric analytical waveforms,

EOS	\(e \) \(d = 60 \) km	\(e \) \(d = 50 \) km	\(e \) \(d = 44.3 \) km	\(\| h_{T4} - h_{eT4} \| \) \(R = 100 \) Mpc	\(R \) (Mpc)
APR4	0.028	0.020	0.020	0.67	67
SLy	0.025	0.019	0.020	0.58	58
H4	0.012	0.012	0.014	0.33	33
MS1	0.014	0.014	0.007	0.35	35

\(^4\) The LALSUIT LIGO/VIRGO software is publicly available (git://versions.ligo.org/lalsuite.git) at the following URL: https://hep-group.phys.uwm.edu/daswg/projects/lalsuite.html.
always considering signals starting from the frequencies of our initial data. Even if detectability computations should be done with longer signals, covering all the Advanced Ligo frequency band, to get maximum signal to noise ration, this computation will give us an indication on the importance of eccentricity in currently feasible many-orbits numerical simulations of BNS. This is in particular relevant when planning to use them to calibrate accurate analytical models including also tidal effects [47–49] or to construct hybrid waveforms for GW detectors data analysis [17, 51, 103]. We computed the distinguishability of two waveforms h_1 and h_2 using:

$$\|h_1 - h_2\| = \min_{\Delta f, \Delta \phi} \sqrt{4 \int_{f_0}^{f_1} \frac{\left| \hat{h}_{+,1}(f) - \hat{h}_{+,2}(f)e^{i(2\pi f \Delta t + \Delta \phi)} \right|^2}{S_n(f)} df}.$$ (21)

Here $\hat{h}_{+,i}(f)$ is the Fourier transform of the plus polarization of the wave strain, $f_0 = 9$ Hz and $f_1 = 7000$ Hz are the approximate limits for the Advanced Ligo sensitivity band, and $S_n(f)$ is the one sided noise power spectral density for Advanced Ligo in the zero detuning, high power configuration [2], often used to check the detectability of effects seen in numerical simulations, for example in [23, 51]. It was shown in [104], that using this norm, two detected gravitational signals will be distinguishable if $\|h_1 - h_2\| \geq 1$. In particular, in the limit of $\|h_1 - h_2\| = 1$, the so-called marginally distinguishable case, the two waveforms will be distinguishable with 1σ statistical significance.

We considered the waveforms produced by an optimally aligned binary at $R = 100$ Mpc as reference, and we scaled the result to obtain the maximum distance of a binary to be able to marginally detect the effect of the eccentricity values present in our data. Results of this analysis are presented in table 4, where it is evident that the eccentricity effects, although visible by eye in the GW amplitude, would be difficult to detect in the GW interferometers. This is strongly influenced by the fact that current numerical simulations are much shorter than the full evolution of a compact binary system inside all the advanced detectors frequency band. We can conclude that for the spacial resolutions and the number of simulated orbits currently computationally feasible, the errors due to the orbital eccentricity of quasi-circular initial data is less important than the finite-resolution and other numerical errors for the less compact models presented here, with an eccentricity of the order of 0.01. For the more compact models, instead, with eccentricity around 0.02–0.03, the phase errors in the last orbit could be important.

All this analysis neglects the interplay between eccentricity and tidal effects, since PN approximants including both have not been yet developed. Nevertheless, eccentricity is a known source of error, and can be reduced with the procedure outlined above [73, 74], which is advisable when calibrating analytical models with long, high-resolution numerical simulations.

3.3. Comparison of BNS simulations with different starting distance

The main purpose of this work is to compare the dynamical evolution of initial BNS models with the same EOS and different starting distance between the stars (i.e. different initial frequencies). This comparison is useful to get insights on the numerical errors accumulated during many orbits and to validate the correctness of LORENE initial data, even when the two starts are close to each other and the tidal effects have a relevant impact on the system evolution from the beginning of the dynamical simulation. This can also be seen as using the full 3d numerical evolution to fill the gaps between several quasi-equilibrium configurations through which the coalescing binary must pass.
Figure 8 offers a first global overview of all the simulations we performed, showing the evolution of the GW strain polarization h^{+}. It is quite obvious from the figure that all simulations with the same EOS agree well during the first part of the coalescence, and start to diverge in the plunge phase, where simulations starting from closer interbinary distances have a faster phase evolution. It is also noticeable that, contrary to what could be expected at first, the signal amplitude after the merger is influenced by the starting frequency. We have quantitatively evaluated this effect (see figure 12), which could turn out to be important in studies investigating the merger remnant energy balance, like $[28–32, 103]$.

In order to further investigate the differences in the phase evolution, we aligned the waves from simulations starting at $d = 50$ km, $d = 44.3$ km and $d = 40$ km with the ones starting at $d = 60$ km, using the same EOS. First, we considered the GW strain with respect to the variable

$$\bar{t} = t_{\text{ret}} - t_{\text{merger}} (d),$$

namely, aligning the waveforms at the time of merger, as shown in figure 8. We define t_{merger} as the time for which the amplitude of the GW strain is largest. Then, following a standard procedure often used in the literature $[50, 105, 106]$, we found the time shift Δt and the phase
shift $\Delta \phi$, after defining

$$\phi_{\text{ah}}(t) = \phi_s(t - \Delta t) + \Delta \phi - \phi_{d=60}(t)$$

(23)

and then minimizing the following integral:

$$I(\Delta t, \Delta \phi) = \int_{t_1}^{t_2} |\phi_{\text{ah}}(\bar{t})|^2 \, d\bar{t}$$

(24)

between $t_1 = 3$ ms, to avoid the initial spurious radiation, and $t_2 = \min(20$ ms, $t_{\text{merger}} - 2$ ms), to avoid the plunge phase.

We computed the difference between the aligned waves phases and the phase of the $d = 60$ km simulation. The results can be seen in figure 9. Outside the alignment interval, the phase evolutions are quite different, with maximum differences of the order of some radiant. This effect is much more pronounced for the more compact stars with SLy and APR4 EOS, which have a maximum phase error of about four radiant, while the H4 EOS shows an intermediate behavior and the MS1 EOS has much smaller phase difference depending on the starting frequency, with a maximum phase error less than 1 rad.

Unsatisfied by these results, we tried a different alignment procedure to underline the physical reasons behind such high phase differences. Instead of allowing for an arbitrary time and phase shift as in equation (24), we allowed for a dilation of the time variable, as done in
to align waveforms of simulations with different resolutions, to compensate for their different merger times. For each simulation with $d < 60$ km we found the parameters η and $\Delta \phi_2$ which, after defining

\[
\phi_{d_0}(t) = \phi_d(\eta \cdot t) + \Delta \phi_2 - \phi_{d=60}(t)
\]

minimize the following integral:

\[
I_2(\eta, \Delta \phi_2) = \int_{t_1}^{t_2} |\phi_{d}(t)|^2 dt.
\]

Using these, we show in Figure 10 the difference of the time-dilation aligned waveforms and the one starting from $d = 60$ km. This time, the phase differences are much smaller for all the EOS (compare to figure 9), and in general do not show a growth specifically in the plunge phase, outside of the alignment time band. All values of the time dilation parameters η found using equation (26) are greater than one. These results could be interpreted as the simulations starting from a closer interbinary distance carry out more orbits compared to ones starting from further apart, when comparing over the same distance before merger.

While this is always true comparing the simulations starting from $d = 60$ km with the ones starting closer, the effective merger times of simulations starting from 50, 44.3 and 40 km, instead, do not follow always the same trend, suggesting other sources of error, especially for the smallest initial distances. In [107] it is also noted that initial BNS data computed in the conformal flatness approximation for the gravitational potential need to be evolved for more

Figure 10. The same as figure 9, but aligning the waveforms finding the time dilatation and the phase shift which minimize equation (26). The resulting phase differences between simulations with different initial frequency can be seen as a lower bound on finite-resolution numerical errors.
than three orbits to reach a true, stable, quasi-equilibrium configuration. This condition is not (or is barely) satisfied for our $d = 40$ km simulations (see table 3).

The minimizing parameters for both alignment procedures, with the effective difference in the merger time caused by the time-dilatation alignment, can be found in table 5.

The remaining phase differences after the time-dilation alignment, collected in table 6, are due to the finite resolution numerical errors, of which they could be considered a lower bound. As anticipated in section 3.1.1, they are much higher than the errors coming from the waveform extraction procedure after the application of the perturbative extrapolation formula, even in the first part of the signal, contrary to what was found in [97] for binary BH simulations.

Table 5. The first two columns represent the parameters $\Delta \tau$ and $\Delta \phi$ which minimizes equation (24) for each model with $d < 60$ km. The next two columns show the parameters η and $\Delta \phi_2$ which minimize equation (26). The last column shows the effective merger time difference between the time-dilation aligned waveform and the original one $\Delta t_{\text{merger}} = t_{\text{merger}}(\eta) - 1$.

Model	Shift alignment (equation (23))	Dilatation alignment (equation (25))			
	$\Delta \tau$ (ms)	$\Delta \phi$ (rad)	η	$\Delta \phi_2$ (rad)	Δt_{merger} (ms)
APR4(a)	1.40	6.26	1.112	−3.40	1.14
APR4(b)	1.71	6.07	1.096	−4.81	1.59
APR4(c)	1.82	5.76	1.047	−3.54	1.31
SLy(a)	1.53	6.83	1.140	−3.80	1.33
SLy(b)	2.02	7.46	1.111	−5.06	1.74
SLy(c)	2.34	7.51	1.056	−4.16	1.55
H4(a)	2.34	7.51	1.063	−1.26	0.43
H4(b)	1.56	5.82	1.075	−2.67	0.93
H4(c)	2.49	7.85	1.061	−3.92	1.52
MS1(a)	0.27	1.40	1.038	−0.30	0.17
MS1(b)	0.24	0.85	1.017	−0.51	0.17
MS1(c)	0.55	1.64	1.021	−1.16	0.42

Table 6. Maximum phase difference in the inspiral phase between waveforms from simulations starting from $d < 60$ km and simulations with $d = 60$ km, aligned according to equation (23) (first three columns) or equation (25) (second three columns).

EOS	Shift alignment (equation (23)) $\xi_{\phi_{ab}}$ (rad)	Dilatation alignment (equation (25)) $\xi_{\phi_{2}}$ (rad)				
	$d = 50$ km	44.3 km	40 km	$d = 50$ km	44.3 km	40 km
APR4	4.12	2.79	2.40	0.98	0.09	0.49
SLy	5.01	2.79	1.77	0.40	0.25	0.37
H4	3.41	2.06	1.85	0.33	0.35	0.20
MS1	0.91	0.19	0.41	0.09	0.23	0.10
This picture is consistent with what can be found analyzing the radiated energy and angular momentum, computed from simulations starting at different interbinary separations. In figure 11 we plotted for each model the gauge invariant relation between the reduced, adimensional binding energy \(E = \frac{E_{\text{ADM}} - E_{\text{gw}}}{M_{\text{GW}}} \) and the reduced, adimensional angular momentum \(J = \frac{J_{\text{ADM}} - J_{\text{gw}}}{J_{\text{GW}}} \), often used in the literature to compare numerical and analytical waveforms \([49, 50, 108]\). Here \(E = M_{\text{ADM}} - E_{\text{gw}} \) and \(J = J_{\text{ADM}} - J_{\text{gw}} \), where the ADM quantities refer to the initial data and are reported in table 2, and \(E_{\text{gw}}, J_{\text{gw}} \) are the radiated energy and angular momentum along the rotation axis, calculated integrating equation (12) in time. \(M = M_1 + M_2 \) is the sum of the gravitational masses of the two stars in isolation, and \(\nu \) is the reduced mass divided by \(M : \nu = \frac{M_1 M_2}{M^2} \).

For all EOS, \(E(J) \) of the simulations with different starting frequency agrees very well, at least until the start of the simulation with \(d = 40 \) km. After that point the simulations with \(d = 60 \) km start to diverge, resulting in a merger at a higher energy and angular momentum. The other three simulations, instead, agree much better until the merger, and their merger energies and angular momenta are also close to each other. This has the natural interpretation that the simulations with a shorter effective merger time emit more energy and angular momentum during their faster approach to the merger, in which they carry out more orbits.

![Figure 11. Reduced adimensional energy versus reduced adimensional angular momentum curves (see text for definitions) for each model simulated. The merger time values are marked with a filled dot the same color of the corresponding curve. All the curves show very good agreement in the inspiral phase and a small departure in the plunge phase.](image)
In all the simulations starting from $d < 60 \ \text{km}$ we observe a good agreement of the initial energy and angular momentum, after the short relaxation period, with the simulations starting from a larger interbinary distance, with a maximum difference of a few tenths of percent. This means that, at least in the inspiral phase, our numerical evolutions, even at this resolution, are able to join the sequence of quasi-equilibrium states generated by the LORENE library. However, in the late inspiral and plunge phase, when the tidal effects start to be relevant, there are important differences. In principle, this could be due to higher finite-resolution numerical errors accumulated by the longer simulations.

However another possible contribution or explanation to differences between simulations starting from different interbinary distances may come from tidal effects, which are already important at the start of the $d = 40 \ \text{km}$ simulations. As we have shown before, we see higher deviations in the $d = 60 \ \text{km}$ simulations with respect to the ones starting from further inward in the more compact stars.

Tidal deformations developed in the dynamical evolution of models starting from a lower frequency could be different from the ones present in close binaries initial data, which are computed, with an approximate gravitational potential, by a spectral code and then interpolated in our cartesian grid. On the other hand, small tidal deformations could be present also in the $d = 60 \ \text{km}$ initial configurations, but they could be under-resolved when we interpolate those initial data in our evolution code grid at our resolution. In [109] has been shown that even small difference in initial data could be amplified during the evolution of the highly non-linear equations need to describe BNS mergers in full general relativity, and this is particularly important for the evolution of initial models with the higher merger times. We infact see much greater effect in the GW phase evolution between the models with the highest initial interbinary distance and the others. However one should keep in mind that these effects are much less important that the effect due to different choiche of the EOS used to describe the evolution.

The role of dynamical tidal effects was recently also underlined in [48]. These effects develop from the interaction of the tidal field with the star’s quasi-normal modes of oscillation. These dynamic tides could be developed during a many orbits evolution, but are not considered in the calculation of the initial data used here. However, they should be more important for the less compact stars. Only further investigations with higher resolutions and different EOS can give a definitive answer on the physical reasons behind the differences in numerical simulations of BNS starting with different frequencies and on the cheapest acceptable initial interbinary distance to perform accurate studies of the merger and post-merger phases.

In particular, new simulations with more accurate numerical methods could help reducing the numerical errors accumulated during the longer simulations with $d > 50 \ \text{km}$, making them reliable also at the modest resolutions employed here, if that turns out to be the biggest source of error. Possible improvements over the numerical methods employed in this work are the use of the Z4 family of formulations for the Einstein equations [110, 111] (due to their constraint violations damping capabilities), and the use of higher-than-second order convergent schemes for hydrodynamics, as introduced in [112]. These studies are beyond our current computational capabilities, but we plan to implement them in future works.

Finally, we analyzed the effect of the different initial interbinary distance on the post-merger gravitational signal. We computed the energy radiated by the different simulations in different time intervals around the merger. The results are plotted in figure 12. We see for all EOS that even in the first part of the post-merger phase, where most of the GW energy is emitted according to [29], there are big differences in the energy radiated by simulations.
starting with different initial frequencies. In particular, all simulations with \(d = 60 \) km emit less energy than the others. These differences in the immediate post-merger phase are higher than the ones in the late inspiral phase. This could have an important impact in the studies on the energy balance in the post-merger phase [28–32, 103].

In addition, new simulations involving more microphysical ingredients such as finite-temperature nuclear EOS, neutrino emission and magnetic fields are needed to quantify the impact of the initial orbital frequency on the post-merger physical observables.

We also analyzed the spectrum of the GWs emitted in the post-merger phase by the deformed, differentially rotating HMNS. EOS effects were already reported in studies about single NS bar-deformed due to dynamical instabilities [113, 114]. In several recent works [17, 21, 23, 24, 115, 116], the spectral peaks of the post-merger BNS gravitational signal were correlated with stellar characteristics linked with the EOS (compactness, tidal deformability). In figure 13 we show the amplitude spectral density of the GWs from our simulations \(|\tilde{h}| \sqrt{f/2} \), where

\[
|\tilde{h}| = \sqrt{\frac{|\tilde{h}_+|^2 + |\tilde{h}_\times|^2}{2}}.
\]

We compute it in the interval between 8 ms before the merger and 8 ms after it, applying first a Blackman window function to the signal. All simulations show a dominant peak, corresponding to the fundamental \(m = 2 \) oscillation mode of the bar-deformed rotating neutron star created after the merger.
Models with more compact stars (APR4, SLy EOS) have the dominant peak f_2 (also referenced as f_{peak} in the literature [16, 117]) at higher frequencies and show two, less clearly identifiable, secondary peaks f_1 and f_3 (also called $-f_2$ and $+f_2$) to both sides of f_2, almost equidistant. The subdominant peaks, in particular the one at f_3, are broad and difficult to identify because of the low resolution of our Fourier transform (62 Hz for models covering the $[t_m - 8, t_m + 8]$ interval), since in this work we concentrated more on the inspiral dynamics and did not simulate for a long time the post-merger evolution. Less compact stars (H4 and MS1 EOS), instead, show only one clear, secondary peak at lower frequency than f_2, with no apparent corresponding peak at higher frequency.

There is a debate in the recent literature about the physical origin of these secondary peaks. They are interpreted as being generated by the modulation of the oscillation of the two rotating stellar cores [23, 24, 115], or as coupling between the fundamental $m = 2$ mode and the quasiradial $m = 0$ mode [117], or, in the low frequency peak case, for the less compact stars, as due to the faster rotation of the spiral arms with respect to the inner double-core structure [21]. Our simulations are too short to be able to differentiate between these proposals, which is made more difficult by the fact that the theoretical values for the frequencies of these proposed effects are often close [115].

Figure 13. Amplitude spectral densities of the gravitational wave signal from 8 ms before the merger to 8 ms after it, for a source at 100 Mpc. For some models the total signal power is lower either because the simulations were shorter in the post-merger phase (H4(d), APR4(a)), or because their merger time was less than 8 ms (H4(a), MS1(a)). The black dashed curve represents the sensibility of Advanced Ligo in the Zero detuning-high power configuration [2].

Models with more compact stars (APR4, SLy EOS) have the dominant peak f_2 (also referenced as f_{peak} in the literature [16, 117]) at higher frequencies and show two, less clearly identifiable, secondary peaks f_1 and f_3 (also called $-f_2$ and $+f_2$) to both sides of f_2, almost equidistant. The subdominant peaks, in particular the one at f_3, are broad and difficult to identify because of the low resolution of our Fourier transform (62 Hz for models covering the $[t_m - 8, t_m + 8]$ interval), since in this work we concentrated more on the inspiral dynamics and did not simulate for a long time the post-merger evolution. Less compact stars (H4 and MS1 EOS), instead, show only one clear, secondary peak at lower frequency than f_2, with no apparent corresponding peak at higher frequency.

There is a debate in the recent literature about the physical origin of these secondary peaks. They are interpreted as being generated by the modulation of the oscillation of the two rotating stellar cores [23, 24, 115], or as coupling between the fundamental $m = 2$ mode and the quasiradial $m = 0$ mode [117], or, in the low frequency peak case, for the less compact stars, as due to the faster rotation of the spiral arms with respect to the inner double-core structure [21]. Our simulations are too short to be able to differentiate between these proposals, which is made more difficult by the fact that the theoretical values for the frequencies of these proposed effects are often close [115].
We verified, however, that the frequencies of the peaks for our $d = 44.3$ km simulations remarkably agree (within our frequency errors) with the ones reported in [23, 115] (where a much higher resolution is used), for their models APR4-q10-M1275, SLy-q10-M1275, H4-q10-M1300, which start from an interbinary distance of $d = 45$ km.

Focusing on the dominant peak, we noticed that its frequency has a dependence on the initial simulation frequency, with differences between simulations with the same EOS higher than our Fourier transform uncertainties. We list these results in table 7. Models starting from $d = 60$ km have a consistently lower frequency of the dominant spectral peak than models starting closer together. This is linked with their lower instantaneous frequency at the time of the merger, when the deformed HMNS is formed. These differences could also be related to the higher accumulated numerical errors in the longer simulations, as hypothesized before to explain the phase differences in the inspiral part of the signal. This post-merger effect should be checked again in simulations with higher resolutions and post-merger simulated time, to measure f_2 in the quasi-stationary phase of the HMNS evolution, after the relaxation of all the other modes. That is, however, outside the scope of this work, concentrating on the coalescent phase.

4. Conclusions

We presented results from numerical simulations of BNS mergers using four different nuclear EOS for the NS interior and starting from four different values for the interbinary distance.

Table 7. Results from the spectral analysis. In the first column we show the frequency of the dominant post-merger peak, calculated taking the frequency of the maximum of the amplitude spectral density after interpolation with a cubic spline. The second column shows the frequency of the left secondary peak f_1. In the third column we report the instantaneous frequency at merger (f_{max}) i.e., the frequency at the maximum of the gravitational waves amplitude, computed taking the derivative of the phase evolution. The uncertainty of the Fourier transform frequencies are in the interval [62, 75] Hz. Some models have a higher frequency uncertainty because they either have shorter post-merger simulations (APR4(a), H4(d)) or they have a merger time less than 8 ms (H4(a), MS1(a)).

Model	f_2 (kHz)	f_1 (kHz)	f_{max} (kHz)
APR4(a)	3.34	2.14	1.97
APR4(b)	3.26	2.08	1.97
APR4(c)	3.29	2.02	1.94
APR4(d)	3.19	2.02	1.87
SLy(a)	3.19	2.15	1.92
SLy(b)	3.24	2.08	1.88
SLy(c)	3.13	2.03	1.87
SLy(d)	3.07	1.92	1.72
H4(a)	2.38	1.64	1.44
H4(b)	2.39	1.66	1.46
H4(c)	2.35	1.64	1.44
H4(d)	2.24	1.58	1.41
MS1(a)	2.05	1.42	1.29
MS1(b)	2.05	1.43	1.33
MS1(c)	2.07	1.39	1.32
MS1(d)	1.93	1.37	1.26

We presented results from numerical simulations of BNS mergers using four different nuclear EOS for the NS interior and starting from four different values for the interbinary distance.
We tested different procedures for the extrapolation of the GW signal ψ_4, extracted at finite radii, to null infinity. In particular, we used for the first time in BNS simulations the second order perturbative extrapolation of [89], show-casing advantages in reducing the extraction errors with respect to the first-order extrapolation [92]. We also showed that the error of the wave extraction procedure, after the extrapolation, is smaller than the typical numerical errors reported for this kind of BNS simulations, even in the first part of the signal.

We proposed a simple procedure to integrate the Newman–Penrose scalar ψ_4 to obtain the GW strain h, based on applying a high-pass digital filter to h after a time-domain integration, instead of filtering ψ_4 before a frequency domain integration, which currently is the most common procedure in numerical relativity [87]. Our procedure gives the cleanest signal when applying it after the extrapolation formula, whose integral terms introduce additional low-frequency noise.

We computed the small orbital eccentricity due to the quasi-circular initial data for all models, showing a dependence on the NS EOS but not being able to show any clear dependence on the starting distance between the stars. We compared the amplitude of our simulations with a recently developed analytical model for eccentric binaries [100], showing good agreement in the first part of the signal. This is a confirmation of the fact that the GW amplitude oscillations are really an imprint of the orbital eccentricity and of the quality of the simple, approximate, eccentricity calculation procedure we used. This result confirms also that initial data eccentricity is, until the very last few orbits, the main source of discrepancy between GWs computed with numerical relativity and point-particle PN approximations.

In order to understand the relevance of this measured initial data eccentricity, we compared two analytical waveforms at the same PN order, with the same mass and initial frequency of our $d = 60$ km models, one with the same eccentricity of our numerical simulations. Their difference in phase is almost always below typical numerical errors in current BNS simulations, except for the last orbit of models with the same eccentricity of our most compact ones (with APR4 and SLy EOS). The detectability of their difference in Advanced Ligo is small, requiring a maximum distance of 33–67 Mpc for its detection at 1σ. This is due to the shortness of current numerical simulations with respect to the whole frequency band of interferometric detectors. The effect of eccentricity will be more important when longer numerical simulations will be performed for GW detector data analysis. Techniques for reducing initial data eccentricity have been developed by some groups in the last couple of years [73, 74]. Since the recent beginning of the advanced detector era, we see an urgent need for public low-eccentricity BNS initial data in the numerical relativity community.

We compared the results of simulations with the same NS EOS and different starting interbinary distance. Their emitted gravitational signals show large phase differences in the last orbits before merger, when aligning them with the standard formula, allowing only for a relative shift in the time variable. When we aligned them allowing for a time dilation, to account for the shorter effective merger time of simulations with $d < 60$ km, the remaining phase differences were close to the expected numerical errors. This effective merger time difference was found to be higher for more compact stars. Investigating the post-merger spectrum, we found that simulations starting from $d = 60$ km have the dominant peak at a somewhat lower frequency (but still consistent with the error) than the others, while we found a very good agreement with the results of [23, 115] for simulations starting from a distance of $d = 44.3$ km. Our results also suggest that additional effects can be present in BNS simulations with more than 10 orbits, but an investigation on these is left for future work.
Summarizing, our results show and emphasize that: (i) in the extraction of the GW signal the use of polynomial fitting or fft integration is not justified and the use of pass-band filter should be preferred and that should be combined with perturbative extrapolation at infinite radius; (ii) in the study of the dynamics of BNS mergers it is important to improve initial data in order to control and reduce their eccentricity since eccentricity has a measurable not negligible effect on the waveform; (iii) the number of simulated orbits before merger has an effect on the overall dynamics even if it is much lower that the one due to the chosen EOS.

Acknowledgments

This project greatly benefited from the availability of public software that enabled us to conduct all simulations, namely ‘LORENE’ and the ‘Einstein Toolkit’. We express our gratitude the many people that contributed to their realization. This work would have not been possible without the support of the SUMA INFN project that provided the financial support of the work of AF and the computer resources of the CINECA ‘GALLLEO’ HPC Machine, where part of the simulations were performed. Other computational resources were provided by the Louisiana Optical Network Initiative (QB2, allocations loni_hyrel15, and loni_hyrel16), and by the LSU HPC facilities (SuperMike II, allocations hpc_hyrel15 and hpc_hyrel16). FL is directly supported by, and this project heavily used infrastructure developed using support from the National Science Foundation in the USA (Grants No. 1212401, No. 1212426, No. 1212433, No. 1212460). Partial support from INFN ‘Iniziativa Specifica TEONGRAV’ and by the ‘NewCompStar’, COST Action MP1304, are kindly acknowledged.

References

[1] Abbott B P et al (Virgo, LIGO Scientific) 2016 Phys. Rev. Lett. 116 061102
[2] Aasi J et al (LIGO Scientific) 2015 Class. Quantum Grav. 32 074001
[3] Acernese F et al (VIRGO) 2015 Class. Quantum Grav. 32 024001
[4] Aasi J et al (LIGO Scientific Collaboration, Virgo Collaboration) 2013 Living Rev. Rel. 19 1
[5] Nakamura T and Oohara K I 1998 A way to 3D numerical relativity: coalescing binary neutron stars Numerical Astrophysics 1998 (NAP 98) (Tokyo, Japan, 10–14 March 1998) (arXiv:gr-qc/9812054)
[6] Oohara K I and Nakamura T 1999 Prog. Theor. Phys. Suppl. 136 270–86
[7] Shibata M and Uryu K 2000 Phys. Rev. D 61 064001
[8] Pretorius F 2005 Phys. Rev. Lett. 95 121101
[9] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett. 96 111101
[10] Baker J G, Centrella J, Choi D I, Kop Dit M and van Meter J 2006 Phys. Rev. Lett. 96 111102
[11] Einstein Toolkit: Open software for relativistic astrophysics http://einstein Toolkit.org/
[12] Löffler F et al 2012 Class. Quantum Grav. 29 115001
[13] Motta P, Mundim B C, Faber J A, Haas R, Noble S C, Bode T, Löffler F, Ott C D, Reisswig C and Schnetter E 2014 Class. Quantum Grav. 31 015005
[14] LORENE: Langage Objet pour la RELativité NumériquE http://lorene.obspm.fr/
[15] Gourgoulhon E, Grandclement P, Taniguchi K, Marck J A and Bonazzola S 2001 Phys. Rev. D 63 064029
[16] De Pietri R, Feo A, Maione F and Löffler F 2016 Phys. Rev. D 93 064047
[17] Read J S, Baiotti L, Creighton J D E, Friedman J L, Giacomazzo B, Kyutoku K, Markakis C, Rezzolla L, Shibata M and Taniguchi K 2013 Phys. Rev. D 88 044042
[18] Hotokezaka K, Kyutoku K and Shibata M 2013 Phys. Rev. D 87 044001
[19] Hotokezaka K, Kyutoku K, Okawa H and Shibata M 2015 Phys. Rev. D 91 064060
[20] Baiotti L, Damour T, Giacomazzo B, Nagar A and Rezzolla L 2011 Phys. Rev. D 84 024017
[21] Bauswein A and Stergioulas N 2015 Phys. Rev. D 91 124056
[22] Bauswein A, Stergioulas N and Janka H T 2016 Eur. Phys. J. A 52 56
[23] Takami K, Rezzolla L and Baiotti L 2015 Phys. Rev. D 91 064001
[24] Kastaun W and Galeazzi F 2015 Phys. Rev. D 91 064027
[25] Bauswein A, Stergioulas N and Janka H T 2014 Phys. Rev. D 90 023002
[26] Hotokezaka K, Kiuchi K, Kyutoku K, Muranushi T, Sekiguchi Y I, Shibata M and Taniguchi K 2013 Phys. Rev. D 88 044026
[27] Lehner L, Liebling S L, Palenzuela C, Caballero O L, O’Connor E, Anderson M and Neilsen D 2016 (arXiv:1603.00501)
[28] Foucart F, Haas R, Duez M D, O’Connor E, Ott C D, Roberts L, Kidder L E, Lippuner J, Pfeiffer H P and Scheel M A 2016 Phys. Rev. D 94 024023
[29] Bernuzzi S, Radice D, Ott C D, Roberts L F, Moesta P and Galeazzi F 2015 Phys. Rev. D 94 024023
[30] Palenzuela C, Liebling S L, Neilsen D, Lehner L, Caballero O L, O’Connor E and Anderson M 2015 Phys. Rev. D 92 044045
[31] Sekiguchi Y, Kiuchi K, Kyutoku K and Shibata M 2015 Phys. Rev. D 91 064059
[32] Sekiguchi Y, Kiuchi K, Kyutoku K, Shibata M and Taniguchi K 2016 Phys. Rev. D 93 124046
[33] Kiuchi K, Cerdá-Durán P, Kyutoku K, Sekiguchi Y and Shibata M 2015 Phys. Rev. D 92 124034
[34] Dionysopoulou K, Alic D and Rezzolla L 2015 Phys. Rev. D 92 084064
[35] Ponce M, Palenzuela C, Lehner L and Liebling S L 2014 Phys. Rev. D 90 044007
[36] Giacomazzo B, Zrake J, Duffell P, MacFadyen A I and Perna R 2015 Astrophys. J. 809 39
[37] Kiuchi K, Sekiguchi Y, Kyutoku K, Shibata M, Taniguchi K and Wada T 2015 Phys. Rev. D 92 064034
[38] Palenzuela C, Lehner L, Ponce M, Liebling S L, Anderson M, Neilsen D and Motl P 2013 Phys. Rev. Lett. 111 061105
[39] Rezzolla L, Giacomazzo B, Baiotti L, Granot J, Kouveliotou C and Aloy M A 2011 Astrophys. J. 732 L6
[40] Ruiz M, Lang R N, Paschalidis V and Shapiro S L 2016 Astrophys. J. 824 L6
[41] Baumgarte T W, Shapiro S L and Shibata M 2000 Astrophys. J. 528 L29
[42] Boyle M, Barrow D A, Kidder L E, Mroué A, Pfeiffer H P, Scheel M A, Cook G B and Teukolsky S A 2007 Phys. Rev. D 76 124038
[43] Blanchet L 2014 Living Rev. Relativ. 17 2
[44] Damour T, Nagar A, Hannam M, Husa S and Brügmann B 2008 Phys. Rev. D 78 044039
[45] Buonanno A and Damour T 1999 Phys. Rev. D 59 084006
[46] Buonanno A, Pan Y, Baker J G, Centrella J, Kelly B J, McWilliams S T and van Meter J R 2007 Phys. Rev. D 76 104049
[47] Damour T and Nagar A 2010 Phys. Rev. D 81 084016
[48] Hinderer T et al 2016 Phys. Rev. Lett. 116 181101
[49] Bernuzzi S, Nagar A, Dietrich T and Damour T 2015 Phys. Rev. Lett. 114 161103
[50] Bernuzzi S, Nagar A, Thierfelder M and Brugmann B 2012 Phys. Rev. D 86 044030
[51] Hotokezaka K, Kyutoku K, Sekiguchi Y i and Shibata M 2016 Phys. Rev. D 93 064082
[52] Haas R et al 2016 Phys. Rev. D 93 124062
[53] Szilágyi B, Blackman J, Buonanno A, Taracchini A, Pfeiffer H P, Scheel M A, Chu T, Kidder L E and Pan Y 2015 Phys. Rev. Lett. 115 031102
[54] Cactus Computational Toolkit http://cactuscode.org/
[55] Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E and Shalf GJ 2003 /cct.lsu.edu\/~carpet/Research - Carpet: Adaptive Mesh Refinement for the Cactus Framework http://carpetcode.org/
[56] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav. 21 1465–88
[57] McLachlan, a public BSSN code http://cct.lsu.edu/~eschnett/McLachlan/
[58] Nakamura T, Oohara K and Kojima Y 1987 Prog. Theor. Phys. Suppl. 90 1–218
[59] Shibata M and Nakamura T 1995 Phys. Rev. D 52 5428–44
[60] Baumgarte T W and Shapiro S L 1999 Phys. Rev. D 59 024007
[61] Alcubierre M, Brügmann B, Dralitsch T, Font J A, Papadopoulos P, Seidel E, Stergioulas N and Takahashi R 2000 Phys. Rev. D 62 044034
[110] Alic D, Bona-Casas C, Bona C, Rezzolla L and Palenzuela C 2012 *Phys. Rev.* D **85** 064040
[111] Weyhausen A, Bernuzzi S and Hilditch D 2012 *Phys. Rev.* D **85** 024038
[112] Radice D and Rezzolla L 2012 *Astron. Astrophys.* **547** A26
[113] De Pietri R, Feo A, Franci L and Löf fl er F 2014 *Phys. Rev.* D **90** 024034
[114] Löf fl er F, De Pietri R, Feo A, Maione F and Franci L 2015 *Phys. Rev.* D **91** 064057
[115] Rezzolla L and Takami K 2016 *Phys. Rev.* D **93** 124051
[116] Bernuzzi S, Dietrich T and Nagar A 2015 *Phys. Rev. Lett.* **115** 091101
[117] Stergioulas N, Bauswein A, Zagkouris K and Janka H T 2011 *Mon. Not. R. Astron. Soc.* **418** 427