Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CHAPTER 16

Passive Monoclonal and Polyclonal Antibody Therapies

J. PETER R. PELLETIER, MD, FCAP, FASCP •
FAISAL MUKHTAR, MBBS, MD, FCAP, FASCP

PASSIVE POLYCLONAL ANTIBODIES THERAPY

Passive Polyclonal Antibody Treatment Overview

Polyclonal immunoglobulins have been in use since the 19th century to protect against infectious agents, toxins, and disease conditions such as those with an autoimmune etiology. These immunoglobulin preparations are made from pools of selected human donors or animals with high titers of antibodies against viruses and toxins. These antibody treatments provide passive transfer of high titer antibodies that either reduces risk or reduces severity of infection. They are used to prevent hemolytic disease of the newborn and modify inflammatory reactions. Earlier drugs were very nonselective and patients frequently succumbed to infection due to suppression of both antibody-mediated (humoral) and cell-mediated arms of the immune system. Today, the principal approach is to alter lymphocyte function using drugs or antibodies against immune proteins. However, with the advent of human organ and tissue transplantation (e.g., kidney, heart, bone marrow, and/or peripheral blood stem cells) as treatment options, these polyclonal antibody therapies in combination with other treatment regimens are being used to lower the ability of the body’s immune system to reject these transplants. However, their use is not without risk, as complications include development of immune complexes and severe allergic reactions. A summary of these polyclonal antibody therapies may be found in Table 16.2.

Immunosuppressive Agents: Disease Modifying

Antithymocyte globulin (rabbit)/thymoglobulin; antithymocyte globulin (equine)/Atgam

Description. Rabbit antithymocyte globulin (rATG) and equine antithymocyte globulin (eATG) are purified, pasteurized preparation of lymphocyte depleting polyclonal gamma immunoglobulin (IgG) raised against human thymus lymphocytes in rabbits and horses, respectively. They are used in prevention and/or treatment of renal transplant rejection worldwide.1-7

History of antibody use. rATG induction in combination with immunosuppressive therapy is more effective in preventing episodes of acute renal graft rejection in adult renal transplant recipients, in recurrent episodes of acute rejection,8,9 and those acute rejections that are not responsive to high-dose corticosteroid therapy than other monoclonal antibody preparations.10,11 rATG recipients had a lower incidence of biopsy-confirmed acute rejection episodes,12 greater event-free survival up to 10 years posttransplantation, and greater graft survival up to 5 years posttransplantation.13

Mechanisms of action. The exact mechanism of these polyclonal antibodies has not been fully understood.3,4,14-20 However, being polyclonal, they display specificity toward a wide variety of surface antigens (Ags) expressed on T and B-lymphocytes, dendritic cells, natural killer (NK) cells, and endothelial cells. However, T-cell depletion is considered to play a key role by modulating the expression of lymphocyte surface antigens involved in a wide variety of functions such as T-cell activation to endothelial adherence, activation of certain transcription factors, and interference with numerous immune cell processes, such as cytokine production, chemotaxis, endocytosis, cell stimulation, and proliferation.14-20

In vitro studies indicate that binding of eATG to cells is generally nonspecific; the drug binds to visceral tissues, including thymus and testis cell membranes and nuclear and cytoplasmic components of tissues such as tonsil, kidney, and liver,21 and is extensively bound to bone marrow cells,22 and to other peripheral blood cells besides lymphocytes.21

Diseases treated. As mentioned earlier, both antithymocyte globulins are used for treatment and prevention
of acute renal allograft rejection. More rATG recipients have been reported to achieve the endpoint of successful response (return of serum creatinine levels to baseline by end of treatment or within 14 days of treatment initiation). However, among those who achieved a successful response, fewer episodes of recurrent rejection occurred with rATG within 90 days of treatment cessation. eATG is also used for treating moderate-to-severe aplastic anemia in patients who are unsuitable for bone marrow transplantation.

Adverse effects. The most common adverse effects are fever, thrombocytopenia, leukopenia, gastrointestinal disorders, and/or concurrent infection. Cytomegalovirus (CMV) infection was generally higher with rATG except in high-risk patients. eATG therapy may result in reactivation of or infection with CMV, herpes simplex virus, or Epstein–Barr virus. The incidence of malignancies is generally lower with rATG therapy. This product is made of equine and human blood components, so it may carry a risk of transmitting infectious agents such as viruses, and theoretically, the Creutzfeldt–Jakob disease (CJD) agent.

Update. There has been recent evidence that the addition of human anti-T-lymphocyte globulin (ATLG) plus cyclosporine and methotrexate to standard graft-versus-host disease (GVHD) prophylaxis is preferred over standard GVHD prophylaxis alone because it improves the probability of survival without relapse and of chronic GVHD after myeloablative peripheral blood stem-cell transplantation from a human leukocyte antigen (HLA)-identical sibling donor for patients with acute leukemia in remission. Additionally, this therapy provides better quality of life and shorter immunosuppressive treatment compared to standard GVHD prophylaxis without ATLG.

Antitoxin and Immune Globulins: Disease Modifying

Tetanus immune globulin/Baytet/Hypertet

Description. Tetanus immune globulin (TIG) is a specific solvent-detergent-treated plasma-derived product obtained from donors immunized with tetanus toxoid. TIG contains tetanus antitoxin that provides temporary passive immunity to individuals who have low or no immunity to the toxin produced by Clostridium tetani.

Mechanisms of action. TIG contains tetanus antitoxin antibodies, which neutralize the free form of the powerful exotoxin produced by Clostridium tetani. TIG can only neutralize unbound exotoxin; it does not affect toxin already bound to nerve endings.

Diseases treated. TIG is used to provide passive immunity to tetanus as part of a postexposure prophylaxis regimen following an injury in patients whose immunization is incomplete or uncertain or if it has been more than 10 years since last dose of tetanus toxoid.

Adverse reaction. Slight soreness at injection site, mild fever, and rarely sensitization to repeated injections of human immune globulin has been reported.

Antitoxin and Immune Globulins: Disease Modifying

Cytomegalovirus immune Globulin/Cytogam

Description. Cytomegalovirus immune globulin IV (CMV-IG) is a purified immune globulin (hyperimmune globulin) that contains immunoglobulin G (IgG) derived from pooled adult human plasma selected for high titers of anti-CMV antibodies.

Mechanisms of action. CMV-IG provides relatively high concentration of antibodies directed against CMV. It provides prophylaxis against CMV infection or disease in immunocompromised individuals. Results from in vitro studies and mice indicate that anti-CMV antibodies can neutralize the pathogenic properties of CMV. As CMV usually targets a population of bone marrow-derived myeloid lineage progenitor cells, antibody-neutralization of the virus alone may not be enough to prevent or make active disease less severe in already CMV-infected individuals.

Disease treated. CMV-IG provides passive immunity to individuals who are at risk for primary CMV infection/disease, or secondary CMV disease (reactivation of CMV). It is also prescribed for the prophylaxis of CMV disease associated with transplantation of kidney, lung, liver, pancreas, and heart. With the exception of CMV-seronegative recipients of kidneys from CMV-seropositive donors, CMV-IG prophylaxis should be considered in conjunction with ganciclovir.

Adverse reactions. Most frequent adverse reactions reported are flushing, chills, muscle cramps, back pain, fever, nausea, vomiting, arthralgia, and wheezing. There is a slight risk of hemolysis, as intravenous immunoglobulin (IVIG) products can contain blood group antibodies, which may act as a hemolysin and induce
in vivo coating of red blood cells with immunoglobulin, causing a positive direct antiglobulin reaction. Transfusion-related acute lung injury (noncardiogenic pulmonary edema) and thrombotic events have been reported in patients receiving IVIG preparations.32

Similar to all other products made from human plasma, this CMV-IG also carries the possibility for transmission of blood-borne viral agents and the CJD agent. However, this IVIG is treated with a solvent detergent viral inactivation procedure to inactivate a wide spectrum of lipid-enveloped viruses, including HIV-1, HIV-2, Hepatitis B, and Hepatitis C.

Antivenin \textit{Latrodectus mactans}/black widow spider antivenin—antivenin \textit{Micrurus fulvius/eastern and Texas coral snake antivenin—crotalidae polyvalent immune Fab/Crofab

Description. These antivenins are sterile, nonpyrogenic, purified, and lyophilized preparation of specific venom-neutralizing serum globulins obtained from the blood serum of healthy horses exposed to the venom of black widow spiders and eastern coral snake (\textit{Micrurus fulvius}) venom, respectively.52–57 In contrast, crofab is an antivenin made up of ovine Fab (monovalent) immunoglobulin fragments obtained from blood of healthy sheep immunized with North American Crotalinae subfamily of venomous snakes that includes rattlesnakes, copperheads, cottonmouth, or water moccasins.56

Mechanisms of action. Mode of action of these antivenins is unknown.52 However, they probably act by neutralizing venom of black widow spiders and coral snakes.54 Crofab is a venom-specific Fab fragment of IgG that works by binding and neutralizing venom toxins, facilitating their redistribution away from target tissues and their elimination from the body.56

Disease treated. These antivenins are indicated for patients with symptoms due to bites by black widow spider (\textit{Latrodectus mactans})52 and bites of two genera of coral snakes, that is, Micrurus (including the eastern and Texas varieties) and Micruroides (the Sonoran or Arizona variety), found in southeastern Arizona and southwestern New Mexico.52,57–39 Antivenin \textit{Micrurus fulvius} (equine origin) is indicated only for treatment and management of adult and pediatric patients exposed to North American crotalid envenomation.54

Adverse effects. Immediate systemic reactions (allergic reactions or anaphylaxis) and death can occur in patients sensitive to antivenin from horse serum.52,60

Most common adverse reactions to crofab are urticaria, rash, nausea, pruritus, and back pain.61,62

High antibody titer influenza fresh frozen plasma

Description. Use of convalescent (persons who have recovered from a particular infection) donor plasma with high hemagglutination inhibition titer against certain influenza strains has been recommended as a primary therapy for severe respiratory infectious diseases including influenza, severe acute respiratory syndrome, and Middle East respiratory syndrome.63

History of antibody use. A meta-analysis of previous cohort studies during the 1918 influenza pandemic showed a case-fatality rate of 16% among subjects treated with plasma, serum, or whole blood compared to 37% among controls. Similarly, in 2009, a cohort study using convalescent plasma for the treatment of pandemic H1N1 influenza resulted in a mortality of 20% in the treatment group versus 54% in the control group.64

Mechanisms of action. Antiinfluenza convalescent plasma decreases the rate of viral shedding measured by neutralizing antibody titer and hemagglutination inhibition.65 Both preexisting immunity (previous infections and vaccinations) as well as any immune response occurring after illness onset makes this mechanism of action more complex.

Disease classifications treated. Influenza, severe acute respiratory syndrome, and Middle East respiratory syndrome.63

Adverse effects. Convalescent plasma seems safe. The serious adverse events reported are related to the underlying influenza, its complications, preexisting comorbidities, and not due to the convalescent plasma usage.

High antibody titer ebola fresh frozen plasma

Description. Antibodies to the Ebola virus (EV) in whole blood or plasma from convalescent donors may be effective in the treatment of EV infection.

History of antibody use. The World Health Organization (WHO) has stated that convalescent blood or plasma is an option in the treatment of Ebola.66 In 1999, transfusion of locally collected convalescent blood helped to decrease Ebola mortality.67 Therefore,
WHO has recommended the collection of convalescent plasma to treat patients with Ebola virus infection.

Mechanisms of action. This fresh frozen plasma (FFP) has high titers of antibodies directed against Ebola virus.68

Adverse effects. Convalescent plasma seems safe with few adverse effects.69,70

Digoxin immune Fab/DigiFab; Digibind

Description. Digoxin immune Fab is a sterile, purified, lyophilized monovalent preparation of bovine immunoglobulin Fab fragments that binds to digoxin. These Fab fragments are obtained from the blood of healthy sheep immunized with a digoxin derivative, digoxindiacarbamoylxyline, a digoxin analogue that contains the functionally essential cyclopentaperhydrophenanthrene: lactone ring moiety coupled to keyhole limpet hemocyanin. The final product is prepared by taking the immunoglobulin fraction of the ovine serum, digesting it with papain, and isolating the digoxin-specific Fab fragments by affinity chromatography.71–79

Mechanisms of action. DigiFab or Digibind have antigen-binding fragments that bind to free digoxin molecules that results in an equilibrium shift away from binding to receptors, thereby reversing the cardiotoxic effects of the glycoside.71,72,75,76,78,80–87 Subsequently, Fab-digoxin complexes are cleared by the kidney and reticuloendothelial system. Due to papain treatment, the Fab fragments lack the antigenic determinants of the Fc fragment resulting in reduced immunogenicity to patients as opposed to intact immunoglobulin products.71,72,75,76,78,79,84,88,89

Diseases treated. Digoxin immune Fab is indicated for patients with either life-threatening or potentially life-threatening digoxin toxicity or overdose.71,79,90–95 Data from clinical trials have showed that both DigiFab and Digibind reduce levels of free digoxin in the serum to below the limit of assay quantitation for several hours after Fab administration.

Adverse reactions. Digoxin immune Fab (ovine) generally is well tolerated following intravenous (IV) administration.71–73,76,78 Hypokalemia may occur, sometimes developing rapidly in patients receiving digoxin immune Fab (ovine).71,72,79,96,97 DigiFab should not be administered to patients with a known history of hypersensitivity to papaya or papain unless the benefits outweigh the risks.

Immune Globulins:antiinfectious

Hepatitis B immune globulin/HepaGam B/nabi-HB/BayHepB/HyperHEP B S/D

Description. Hepatitis B immune globulin (HBIG) is a specific immune globulin (hyperimmune globulin) that contains antibody to hepatitis B surface antigen (anti-HBs) prepared from plasma of healthy donors with high titer (>1:100,000) of anti-HBs antibody. It provides temporary passive immunity against hepatitis B virus (HBV).98–104 HepaGam-B is a solvent/detergent-treated sterile solution of purified gamma globulin containing antibody to HBs antigen that contains high titers of anti-HBs from plasma donated by healthy screened donors. Both HBIG and HepaGam-B are manufactured by a solvent/detergent (S/D) treatment procedure that is effective in inactivating lipid-enveloped viruses such as hepatitis B virus, hepatitis C virus, and human immunodeficiency virus type 1 and type 2. However, S/D is less effective against nonlipid-enveloped viruses such as hepatitis A virus and parvovirus B-19.100,101,104

Mechanisms of action. It provides passive immunization for individuals exposed to the hepatitis B virus by binding to the surface antigen and reducing rate of hepatitis B infection.

Diseases treated. HBIG provides passive prophylactic immunity to HBV infection for prevention of perinatal HBV infection in neonates born to HBs antigen-positive (HBsAg-positive) mothers,100–106 for postexposure prophylaxis in susceptible individuals exposed to HBV or HBsAg-positive materials (e.g., blood, plasma, serum),100–104,107–109 sexual exposure to HBsAg-positive persons, for household exposure to persons with acute HBV infection, and for prevention of HBV recurrence in liver transplant recipients who are HBsAg-positive (HepaGam-B only).104,110–117 HBIG is not indicated for treatment of active hepatitis B infection and is ineffective in the treatment of chronic active hepatitis B infection.105

Adverse reactions. The local adverse reactions that may occur at the site of injection after intramuscular (IM) administration are pain, tenderness, swelling, and erythema.100,101,109 The systemic effects that may occur after IM administration are urticaria, angioedema, nausea, vomiting, myalgia, headache, flu- or cold-like
symptoms, lightheadedness, and malaise have been reported. Varicella zoster immune globulin/VariZIG
Summary. Varicella zoster immune globulin (VZIG) is a specific immune globulin (hyperimmune globulin). VZIG is prepared from plasma of donors selected for high titers of antibodies to varicella zoster virus (anti-VZV) and used to provide temporary passive immunity against VZV.118

Mechanisms of action. VZIG acts by neutralizing varicella zoster virus via high titers of IgG antibodies present in the plasma used.

Diseases treated. VZIG is used for postexposure prophylaxis of varicella (chickenpox) in individuals who do not have evidence of varicella immunity and are at high risk for severe varicella infection and its complications. These high risk individuals include immunocompromised patients such as neonates whose mothers have signs and symptoms of varicella around the time of delivery (i.e., 5 days before to 2 days after), premature infants born at ≥28 weeks of gestation who are exposed during the neonatal period and whose mothers do not have evidence of immunity, premature infants born at <28 weeks of gestation or who weigh ≤1000 g at birth and were exposed during the neonatal period regardless of their mothers’ evidence of immunity status, and finally pregnant women.118,119,121,122

VZIG is now recommended for outbreak control and postexposure treatment, and the vaccine is available to children with humoral immunodeficiencies and selected children with HIV infection.122 Use of VZIG for postexposure prophylaxis in pregnant women exposed to VZV may prevent or reduce severity of varicella in the woman but does not prevent fetal infection.119,121

VZIG is not indicated for individuals who previously received age-appropriate varicella vaccination and subsequently became immunocompromised because of disease or immunosuppressive therapy later in life. Bone marrow transplant recipients should be considered susceptible to varicella regardless of previous history of varicella or varicella vaccination in themselves or their donors. However, those who develop varicella or herpes zoster after transplantation should be considered immune to varicella.119

Adverse reactions. The most common adverse effects reported with VZIG in clinical trials in pregnant women, infants, and immunocompromised adults and children were injection site pain, headache, chills, fatigue, rash, and nausea. Severe hypersensitivity reactions may occur following administration of VZIG.118

Rimabotulinumtoxin B/Myobloc
Summary. Rimabotulinumtoxin B, a type B botulinum toxin produced by fermentation of the bacterium Clostridium botulinum type B (Bean strain), is a neuromuscular blocking agent (neurotoxin) and inhibitor of acetylcholine release at motor nerve terminals.123–126

Mechanisms of action. Rimabotulinumtoxin B and other botulinum toxin serotypes act by inhibiting acetylcholine release at the neuromuscular junction via a three-step process, that is, toxin binding, toxin internalization, and inhibition of acetylcholine release into the neuromuscular junction leading to chemical denervation and flaccid paralysis.123,124,126,127

Diseases treated. Rimabotulinumtoxin B is used for management of adults with cervical dystonia (also called as spasmodic torticollis) to reduce severity of abnormal head positioning and neck pain through reduction of undesired or excessive contraction of striated or smooth (involuntary) muscle.128–131

Adverse reactions. The most common adverse effects reported with Botulinum toxin are dry mouth, dysphagia, dyspepsia, and injection site pain.123,132–134 Serious hypersensitivity reactions have been rarely reported with onabotulinumtoxin A.127

Botulism immune globulin/BabyBIG
Summary. Botulism immune globulin IV (BIG-IV) is a specific immune globulin (hyperimmune globulin) that is prepared from plasma of adult volunteer donors immunized with pentavalent botulinum toxoid, which neutralizes free botulinum toxin types A and B. It is one of the most poisonous substances known and exists in seven antigenic variants (types A to G).120,121,135

Mechanisms of action. BIG-IV is a human-derived antitoxin that neutralizes botulinum toxin. BIG-IV has a half-life of approximately 28 days in vivo and large capacity to neutralize the toxin.135

Disease treated. Infant botulism occurs when young infants ingest spores of Clostridium botulinum that then germinate, colonize the GI tract, and produce botulinum toxin. This neurotoxin causes generalized weakness and loss of muscle tone. A single infusion will neutralize the toxin for at least 6 months and toxins
type A or B that may be absorbed from the colon of an infant younger than 1 year old.121,135–139

Adverse effect. Mild, transient, blush-like erythematous rash on the face or trunk occurred in 9% –14% of infants receiving BIG-IV in clinical studies.135,140

Rabies immune globulin/bayrab/HyperRAB, imogam Rabies, KedRAB

Description. Rabies immune globulin (RIG) is a sterile solution of specific IgG that contains antibody to rabies antigen. It is used to provide temporary passive immunity to rabies infection as part of a postexposure prophylaxis regimen in unvaccinated individuals exposed to the disease or virus.141–144

Mechanisms of action. RIG is a human-derived antitoxin that neutralizes rabies virus so that virus spread is reduced and its infective or pathogenic properties are inhibited. Specific rabies antibodies present in RIG neutralizes rabies. It should be used in conjunction with rabies vaccine and can be administered through the seventh day after the first dose of vaccine is given. RIG provides immediate, temporary rabies virus-neutralizing antibodies until the patient responds to active immunization and produces virus-neutralizing antibodies.121,141–144

Diseases treated. Given to all persons suspected of exposure to rabies with one exception, those who have been previously immunized with rabies vaccine and have a confirmed adequate rabies antibody titer should receive only vaccine.

Adverse reactions. Most common local adverse effects include tenderness, pain, muscle soreness, or stiffness that may occur at the site of injection. Low-grade fever, headache, and malaise may also occur.141–143

Immune Globulins: Immunomodulation

Rho(D) immune globulin/WinRho; RhoGam; Rhophylac, MicRhoGAM, BatRhoD, HyperRho

Summary. Rho(D) immune globulin (RhIG) consists of anti-Rho(D) IgG antibodies to the red blood cell Rho(D) antigen. RhIG is prepared from human pools of plasma of Rho(D)-negative donors immunized with Rho(D)-positive red blood cells after cold alcohol fractionation, and subsequent purification and infectious disease reduction technologies.145–150

Mechanisms of action. The exact mechanism of action of Rho(D) immune globulin in the suppression of formation of anti-Rho(D) is not fully known.

In the treatment of preventing D alloimmunization, RhIG binds to Rho(D) antigen that entered the maternal circulation during fetal–maternal hemorrhage (FMH) involving an Rho(D)-positive fetus or transfusion with Rho(D)-positive blood, preventing stimulation of the mother’s primary immune response to Rho(D) antigen. Therefore, by preventing the active production of anti-Rho (D) by the mother, the risk of hemolytic disease of the fetus and newborn in future pregnancies is decreased.145–149

In the treatment of idiopathic thrombocytopenic purpura (ITP), administration of Rho(D) immune globulin to Rho(D)-positive individuals is believed to cause transient mononuclear macrophage Fc receptor (FcR) blockade by complexes within the reticuloendothelial system, particularly the spleen, which spares the patient’s IgG-coated platelets. This FcR blockade and decreased Fc-mediated phagocytosis of antibody-coated platelets result in increases of platelet counts in ITP patients.145,149,151–156

Diseases treated. Prevent D alloimmunization in D-negative women of childbearing potential if the neonate is D+, weak-D positive, or D untested, and following perinatal events associated with FMH such as abortion, ectopic pregnancy, amniocentesis, chorionic villus sampling, external cephalic version, abdominal trauma, and antepartum hemorrhage. It is also used to prevent D alloimmunization in D-negative individuals who receive D+ blood components such as whole blood-derived platelets, apheresis platelets, and/or granulocytes. Similarly, it is used for the treatment of ITP in D+ patients who had not undergone splenectomy.145–147,149,151–153,157–164

Some preparations of Rho(D) immune globulin may be administered IM or IV (Rhophylac, WinRho SDF), whereas others are labeled for IM use only (MICRhoGAM, RhoGAM, HyperRHO S/D Full Dose, HyperRHO S/D Mini-Dose).145–147,149,165 When used for ITP treatment, RhIG must be administered IV.145,149

Adverse reactions. Generally, mild with the most common being headache, fever, chills, pain at the injection site and, rarely, hypersensitivity reactions. Some degree of hemolysis is inevitable, but this is predictable and transient.146,147
Immunoglobin (generic)/Brands: Bivigam, Carimune, Cuvitru, Flebotigamma, Gammagard, GamaSTAN, Gammaked, Gammaplex, Gamunex-C, Hizentra, Hyqvia, Octagam Privigen

Summary. Immune globulin IM (IMIG), immune globulin IV (IVIG), and immune globulin subcutaneous are sterile, nonpyrogenic preparations of globulins containing many antibodies normally present in adult human blood. Immune globulins (IG) are collected either by whole blood donations as recovered plasma (20%), or by apheresis as source plasma (80%). IVIG is a highly purified product consisting mostly of IgG with a half-life of 21–28 days.

Hyperimmune globulin (Hyper-Ig) products are manufactured from donors with high Ig titers with specificity to antigenic determinant(s) of interest. High titers of these donors can be achieved by natural immunity, prophylactic immunizations, or through targeted immunizations. Hyper-Ig products should contain at least fivefold-increased titers compared to standard preparations of IVIG.

IVIG production is regulated by the IUUIS/WHO (International Union of Immunological Societies/World Health Organization), which require the following:

- Source material must be plasma obtained from a minimum pool of 10,000 donors;
- Product must be free of prekallikrein activator, kinins, plasmin, preservatives, or other potentially harmful contaminants;
- IgA content and IgG aggregate levels need to be as low as possible;
- Product must contain at least 90% intact IgG;
- IgG should maintain opsonin activity, complement binding, and other biological activities;
- IgG subclasses should be present in similar proportions to those in normal pooled plasma;
- Antibody levels against at least two species of bacteria (or toxins) and two viruses should be determined;
- Product must demonstrate at least 0.1 international units of hepatitis B antibody per mL, and hepatitis A radioimmunoassay titer of at least 1:1000;
- Manufacturer should specify the contents of the final product, including the diluent and other additives, and any chemical modification of IgG.$^{166–172}$

Mechanisms of action. The mechanisms of Ig-induced immunomodulation are incompletely understood but include macrophage Fc receptor blockage by immune complexes formed between IVIG and native antibodies, modulation of complement, suppression of antibody production, suppression of inflammatory cytokines and chemokines, and/or antiidiotypic regulation of autoreactive B-lymphocytes or antibodies.

As IVIG contains a diverse group of antibody specificities, which protects recipients against multiple infections by eliminating opsonized infectious organisms via antibody-dependent cell-mediated cytotoxicity or by complement activation. This is followed by lysis and/or neutralization of soluble infectious proteins by immune complex formation and elimination through the RES.$^{166,170,173–175}$

Diseases treated. IVIG is indicated for the treatment of primary immune deficiency, secondary immune deficiency, ITP, Kawasaki disease, and congenital hypogammaglobulinemia. Currently, there is an extensive list of diseases for which IVIG could be used. It also has immunomodulatory properties resulting in an increasing list of both FDA-approved and nonapproved indications.

IVIG is used to provide passive immunity to hepatitis A virus infection for preexposure or postexposure prophylaxis in susceptible individuals who are at risk of or have been exposed to the virus. IMIG and IVIG are used to prevent or modify symptoms of measles (rubeola) in susceptible individuals exposed to the disease <6 days. IVIG is used for replacement therapy to promote passive immunity in patients with primary humoral immunodeficiency who are unable to produce sufficient amounts of IgG antibodies and in the management of ITP to increase platelet counts, to prevent and/or control bleeding, or to allow these patients to undergo surgery.

IVIG is used for prevention of bacterial infections in patients with hypogammaglobulinemia and/or recurrent bacterial infections associated with B-cell Chronic Lymphocytic Leukemia. IVIG is used in conjunction with aspirin therapy for initial treatment of the acute phase of Kawasaki disease. IVIG is also used to treat chronic inflammatory demyelinating polineuropathy to improve neuromuscular disability and impairement, and for maintenance therapy to prevent relapse. Furthermore, IVIG is used for maintenance treatment to improve muscle strength and disability in adults with multifocal motor neuropathy.$^{166–201}$

Adverse reactions. Approximately 2%–10% of infusions are associated with adverse reactions that include those at the infusion site (erythema, pain, swelling, pruritus, heat), phlebitis, eczema, fever, chills, myalgias, malaise, flushing, rash, diaphoresis, pruritus, bronchospasm, chest pain, back pain, extremity pain, dizziness,
blood pressure changes, nausea, vomiting, and headache.167,170,172,177–179,181–183

PASSIVE MONOCLONAL ANTIBODY TREATMENT

In the late 20th century (\textasciitilde{} 1986), monoclonal antibodies were developed. The first monoclonal antibodies (Mabs) were of xenographic source and were wrought with problems of immunogenicity. These early Mabs did not gain favor until chimerization took pace in the mid-1990s, and in 1998 two Mabs were approved to treat one respiratory syncytial virus and the other certain breast cancers. Further development to humanize and then generate fully human Mab led to an evolution of therapies utilizing these agents. Mabs are being researched or approved to treat a multitude of diseases that include oncologic, inflammatory, autoimmune, cardiovascular, respiratory, neurologic, allergic, benign hematologic, infectious, orthopedic, coagulopathic, and metabolic indications and to decrease disease morbidity (diminution of pain), modify disease progression (i.e., macular degeneration, diabetes), and potentially alter anatomic development. In this section of the chapter, we will review the history of use of these passive monospecific antibody therapies, their mechanism of action, pharmacologic-therapeutic classification, particular medical indication, adverse reactions, and potential future use of these medications.201

Mechanism of action

Depending on the antigenic target of these antibodies multiple events are set into action. Immunologic changes occur as the specific antigens are presented more efficiently to effector cells. Some of these actions create decreased inflammatory and allergic responses, while other effects generate antibody-dependent cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Other actions can block receptor interaction with ligands by either binding with ligands or their cognate receptors (i.e., allow activation of NK cells). Interactions may also directly cause initiation of programmed cell death (apoptosis), cessation of growth/replication/proliferation, or lead to changes in metabolism. Moreover, there are also antibodies against infectious agents to prevent cell adhesion for entry, spread, replication, and contagion. Antibodies may also be directed against toxins leading to various methods of inactivation.201

Adverse reactions

Depending on their mode of action, Mabs are associated with a myriad of side effects. They can be associated with immunogenicity that can cause a decrease in their effectiveness. Antineoplastic antibodies can be associated with tumor lysis syndrome. Similarly, reactivation of underlying infections can occur leading to progressive multifocal leukoencephalopathy, HBV, fungal, parasitic, or tuberculosis infections. Other adverse reactions include but are not limited to initiation of autoimmune disorders, increased risk for malignancy, cardiac arrhythmia, angina/ischemia, cytopenias, hemorrhage, and allergic reactions including anaphylaxis, embryo–fetal toxicity (if can cross placental barrier), and even death.

TYPES OF ILLNESS TREATED

Oncology

Malignancies can be caused by infectious agents, toxins, or genetic mutations with changes in control of growth, proliferation, or programmed cell death. Historically these have been treated with a variety of radiation therapies to eradicate malignant cells or with chemotherapeutic agents to enhance maturity, decrease proliferation, or cause destruction of cancer cells. In some cases intense high-dose chemotherapy is used to cause cancer remission with stem cell transplants for subsequent rescue. Passive antibody therapy may replace or be additive to other pharmacology therapies and increase chances for complete remission, prolong disease-free survival, and overall survival.

B-cell chronic lymphocytic leukemia

Rituximab (Rituxan) is a chimeric murine/human Mab (IgG1\k) that binds to CD20 (human B-lymphocyte-restricted differentiation antigen, Bp35 \{controlling differentiation and possible calcium ion channel\}). Its mechanism of action is not entirely clear and may involve CDC and ADCC. Many studies have shown this antibody to have an additive benefit to standard chemotherapy alone. This antibody has been approved by the FDA to treat chronic lymphocytic leukemia (CLL) since 1997. Nowadays, this medication is often combined with ibritumomab in treating CLL (to be discussed with non-Hodgkin’s lymphoma).202,203

Alemtuzumab (Campath) binds to CD52 and is a humanized rat Mab (IgG1\k) binding to receptors on both T and B cells as well as macrophages, NK cells, and neutrophils, leading to CDC and ADCC. The resultant cytopenias lead to a severe immunocompromised state. Alemtuzumab was FDA approved as a single agent in the treatment of B-cell CLL in 2001.204

Ofatumumab (Ocrevus) is a human Mab (IgG1\k) with CDC that binds to CD20 near the cellular
membrane. In phase II studies, this agent had 86% objective response rate (ORR) when used alone and with CHOP therapy had 100% ORR and 62% complete remission (CR); whereas, in phase III trials, this Mab showed ORR of 10% after rituximab relapse. This medication was approved by the FDA to treat CLL in 2009.205

Monalizumab is a humanized Mab (IgG4xk) that binds to CD94/NKG2A (an inhibitory signal receptor on NK cells). Monalizumab demonstrated blockade of NKG2A/HLA-E and restores the ability of NK cells to lyse B cells in vitro. In addition, this Mab was shown to be of benefit in murine models. Ongoing phase I/II studies will be completed in 2019.206

Oltertuzumab is a humanized Mab fragment (IgG Fab') with specificity to CD37 that induces both ADCC and caspase-independent apoptosis. In a phase II study both better progression-free survival (PFS) and ORR were observed when used with bendamustine compared to bendamustine alone.207

Urelumab is a human Mab (IgG4xk) with specificity to CD134 (an immune checkpoint inhibitor). This antibody has completed safety phase I dosing trials. Higher doses lead to significant hepatotoxicity. Safe dosing is now established in clinical phase II studies to be completed in 2020.208,209

Ulocuplumab is a human Mab with specificity to CD184 (CXCR4). In vitro studies showed apoptotic effects via production of oxygen species that was not associated with better caspase activation than AMD3100. Phase I studies were completed in 2014, no manuscripts were found for review. This medication is presently in phase II trials against acute myelocytic leukemia (AML) to be completed in 2021.210,211

Other monoclonal antibodies not demonstrating benefit in clinical trials for CLL include apolizumab, dacetuzumab, and gomiliximab (aka lumiliximab)212–215

Acute myelocytic leukemia

AML is the leading cause of leukemic mortality in the United States (US). Over the last 10 years therapy has not changed significantly for this disease. Novel therapies have been developed in the last decade, some showing temporal success and some showing a brighter tomorrow.216

AMG330 is a bispecific T-cell engager (BiTE) antibody with specificity for CD3 and CD33. This Mab is currently in clinical trials to be completed in 2020 for treatment of AML. A BiTE antibody stimulates ADCC (via T cells) in the presence of antigenic targets on cells of interest. In vitro studies have shown effective lysis of AML cells, while in animal studies it has demonstrated significant decrease in tumor burden.217

IMGN632 is an anti-CD123 antibody complexed to a DNA mono-alkylating agent. In vitro studies showed it had more potency against AML cells than to normal myeloid progenitor cells. In animal models there was an excellent response rate against tumor cells. Ongoing clinical trials will be completed in 2021.216

Talacotuzumab is a humanized monoclonal antibody (IgG1-2x) with specificity to interleukin (IL)-3 receptor subunit-α (CD123, a growth and differentiating receptor). This antibody induces ADCC both in vitro and in animal models. Phase III clinical trials were reportedly completed in 2018; published results are forthcoming.218

Samalizumab is a humanized Mab (IgG2/IgG4) with specificity to CD200 (OX-2 membrane glycoprotein) is in phase II trials to be completed in 2021.219

Ficlatuzumab is a humanized Mab (IgG1xk) in a phase I trial to treat refractory/relapsing AML to be completed in 2020.220

Other Mab not demonstrating benefit in clinical trials or withdrawn following postmarketing for AML include gemtuzumab ozogamicin (FDA approved 2000 withdrawn 2010 secondary to venoocclusive disease) and lintuzumab (no added benefit over standard chemotherapy).221–223

Multiple Myeloma

Daratumumab (Darzalex) is a human Mab (IgG1k) with specificity to CD38 (functions reportedly include receptor-mediated adhesion and signaling events, as well as important bifunctional ectoenzymatic activities that contribute to intracellular calcium mobilization. This Mab mechanism of action is thought to induce CDC, ADCC, antibody-dependent cellular phagocytosis, and apoptosis. This medication is used to treat refractory and recurrent multiple myeloma.224,225

Silutuximab (Sylvant) is a chimeric Mab (IgG1k) with specificity to IL-6. This medication was FDA approved in 2014 for multicentric Castleman’s disease (MCD) with HIV negative and HHV-8 negative. There are ongoing studies in phase II clinical trials to be completed in 2019.226,227

B-cell acute lymphoblastic leukemia (B-cell ALL)

Blinatumomab (Blincyto) is a mouse double heavy-chain fragment (Murine {scFv - kappa — heavy} – {scFv - heavy — kappa}) with specificity for CD19 and CD3 known as a BiTE. This Mab’s mode of action is by directing CD3+ effector memory T cells to CD19+ target cells leading to T-cell activation and B-
cell apoptosis. This biologic is used to treat relapsed/refractory cell ALL. In phase III trials event-free survival almost tripled and duration of remission almost doubled.228–230

Hodgkin’s lymphoma

Hodgkin’s lymphoma is a rare malignancy affecting young adults with a peak incidence in patients >55 years old. Up to 40% of these patients can develop relapsing disease. Brentuximab vedotin (Adcentrix) is a chimeric humanized Mab drug conjugate (Mab + linker + payload {IgG1κ + protease cleavage linker + monomethyl auristatin E [MMAE]}) with specificity to CD30 (a cell membrane protein of the tumor necrosis factor receptor superfamily member 8. MMAE is a microtubule-disrupting agent. The combination of this a Mab and drug conjugate disrupts the intracellular microtubule network causing cell cycle arrest at G2/M stage and apoptosis. This medication has a 43% PFS at 30 months.231

Mab to look out for in the future include Camidan-lumab tesirine (ADCT-301) a human Mab (IgG1κ). This Mab has specificity to CD25 (alpha IL-2 receptor alpha subunit) with a drug conjugate. The drug is released intracellularly and causes DNA interstrand crosslinks. This Mab is in phase I studies to be completed in 2019 for Hodgkin’s and non-Hodgkin’s T- and B-cell lymphomas. In addition, there are clinical phase I studies against multiple solid tumors to be completed in 2021.232,233

Agents abandoned or not found to be beneficial include apolizumab, denintuzumab mafodotin (HBU-12), iratumumab (MDX060), and lucatumumab (HCD122).212,234,235

Anaplastic large cell lymphoma

Brentuximab vedotin (Adcentrix) is an FDA-approved medication for patients with refractory or relapsed anaplastic large cell lymphoma who achieved CR. This Mab had 79% OS and 57% PFS at 5 years, with median response duration not reached at time of publication.236

Breast Cancer

Atezolizumab (Tecentriq) is an FcγR binding—deficient, fully humanized Mab (IgG1κ). This Mab binds to programmed death ligand 1 (PD-L1) to prevent interaction with receptors PD-1 and B7.1 (a costimulatory cell-surface protein), reversing T-cell suppression. Activation of B7.1 can potentially stimulate long-term responses through development of new immunity via priming and activation of T cells in lymph nodes. A lack of FcγR binding decreases ADCC of the T cells enabling more tumor-specific T cell to remain active. This medication was approved by the FDA in 2019 to treat triple negative (estrogen receptor, progesterone receptor, human epidermal growth factor receptor-2) unresectable or metastatic breast cancers.237,238

Colorectal Cancer

Bevacizumab (Avastin) is a humanized Mab (IgG1κ) with specificity to vascular endothelial growth factor-a (VEGF-A) that acts as an inhibitor of angiogenesis. It was FDA approved for treatment of colorectal cancer and has recently been approved for multiple other cancers including ovarian, fallopian cancers, renal cell carcinoma, and recurrent glioblastoma multiforme (GBM).239,240

Urothelial Carcinoma

Atezolizumab (Tecentriq) is FDA approved as a single agent in urothelial carcinoma and for patients with disease progression despite other chemotherapy treatment.241,242

Nonsmall cell lung cancer

Atezolizumab (Tecentriq) is FDA approved as a single agent for nonsmall cell lung cancer (NSCLC).

Bevacizumab (Avastin) is FDA approved for treatment of locally advanced, recurrent or metastatic, non-squamous NSCLC.

Nivolumab (Opdivo) is an FDA-approved human Mab (IgG4κ) immunoglobulin and blocks PD-1 preventing interaction PD-1 and its ligands PD-L1 and PD-L2. It is used to treat RCC, NSCLC, Hodgkin’s lymphoma, melanoma, small cell lung cancer, colorectal cancer, and squamous cell carcinoma of the head and neck. In phase III clinical trials, nivolumab performed better than docetaxel in the treatment of NSCLC.243–245

Ovarian/cervical fallopian cancer

Bevacizumab (Avastin) is FDA approved for treatment of locally advanced, recurrent or metastatic, ovarian, cervical, and fallopian cancers after treatment with chemotherapy regimens and surgery.246

Merkel Cell Carcinoma

Merkel cell carcinoma is a rare aggressive cutaneous malignancy caused by infection with polyoma virus and exposure to ultraviolet radiation. This cancer was classically treated with chemotherapeutic agents leading to rare durable responses. Avelumab (Bavencio) is a fully human Mab (IgG1λ) with specificity to PD-L1. This Mab was approved by the FDA for
treatment of Merkel cell carcinoma in 2017. Treatment with this Mab increases response rates to about 50% and extended durable response times approximately five times. This Mab is in clinical trial to treat other solid tumors including but not limited to hepato-cellular, ovarian, esophageal-gastric, colorectal NSCLC, testicular, urothelial, and adrenocortical carcinomas.

Neuroblastoma

Neuroblastoma is an aggressive tumor of children with a 5-year survival of about 50%. Treatment classically is high-dose intensive chemotherapy, myeloablative chemotherapy with stem cell rescue, and/or irradiation therapy. Dinutuximab (Unituxin) is a chimeric Mab (IgG1k) with specificity to GD2 ganglioside that has mechanisms of action via CDC and ADCC. This Mab is used in patients who have had at least a partial response to classic therapy.

Catumaxomab

Catumaxomab (Removab) is a trifunctional rat/murine hybrid antibody (IgG2a/IgG2b). Catumaxomab consists of one “half” (one heavy chain and one light chain) of an antiepithelial cell adhesion molecule (anti-EpCAM) antibody and one-half of an anti-CD3 antibody, so that each molecule of catumaxomab can bind both EpCAM and CD3. In addition, the Fc region can bind to an Fc receptor on accessory cells such as other antibodies, which has led to calling the drug a trifunctional antibody. This antibody’s mechanism of action is through ADCC. It is approved for use in Europe for malignant ascites from ovarian, gastric, colon, pancreatic, breast, and endometrial carcinoma and is a pending review for approval by the FDA.

Cutaneous squamous cell carcinoma

Cemiplimab (Libtayo) is a human Mab (IgG4) for treatment of cutaneous squamous cell carcinoma (CSCC) that is metastatic or locally advanced and not amenable to surgery. CSCC is second only to basal cell carcinoma as the most common skin cancer. Surgical intervention is not possible in 5% of patients. This Mab offers a treatment with less morbidity than palliative radiation or surgery, and gives an ORR in 50% of these otherwise untreatable patients. There are many additional phase II studies involving this Mab to be completed from 2020 to 23.

AUTOIMMUNE/INFLAMMATORY DISEASES

Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) pathophysiology remains unknown but may have genetic, infectious, autoimmune origins including cell-mediated immunity. These diseases may be classified as ulcerative colitis (UC), isolated to the colon, or Crohn’s disease primarily found in the colon but may involve the entire gastrointestinal tract. With long-standing active disease, malignancy is much more frequent in UC than in Crohn’s disease. Mild UC is treated with antiinflammatory agents such as sulfasalazine and glucocorticosteroids. For more severe disease, high-dose steroids may be used to maintain disease quiescent and low-dose steroids to keep disease in remission. Low-dose chemo-therapeutic agent or immunosuppressive agent may also be added if dose of corticosteroids is too high to maintain remission. Surgery may be necessary to control disease. For Crohn’s disease, medical therapy is usually less successful in managing the disease and surgery may be necessary but is not curative as in UC. For both of these disease processes, passive antibody therapy may offer not only control of disease but possible complete remission from mucosal damage.

Adalimumab (two formulations: Humira and Amje-vita) is a recombinant human Mab (IgG1) with specificity to tumor necrosis factor alpha (TNF-α). Both forms are FDA approved to treat Crohn’s disease as well as multiple types of rheumatoid arthritis. In Crohn’s disease, this medication decreases signs and symptoms of disease and is able to induce clinical remissions.

Certolizumab (Cimzia) is a recombinant humanized m fragment with TNF-α as target. It is FDA approved for both Crohn’s disease and Rheumatoid arthritis.

Vedolizumab (Entyvio) is a humanized Mab (IgG1k) that has selectivity for integrin α4β7 and is FDA approved for treatment of Crohn’s disease. This
Mab mode of action is to selectively block trafficking of memory T cells into inflamed gut tissue by inhibiting \(\alpha 4\beta 7\)-mucosal addressin cell adhesion molecule-1 (MAd-CAM-1) interaction with intestinal vasculature. This medication has shown a good safety profile with no cases of promyelocytic leukemia (PML), no increased risk of infections, malignancies compared with classically treated IBD, and low incidence of infusion-related reactions. This medication is also FDA approved for UC.270,271

Infliximab (Remicade, Inflectra, Remsima) is a chimeric Mab (IgG1\(k\)) with specificity to TNF-\(\alpha\) and is FDA approved for IBD and multiple inflammatory arthritic diseases. This medication allows for steroid-free remission within months of starting therapy.272

Natalizumab (Tysabri) is a humanized Mab (IgG2\(k\)) with selectivity to CD62L (L selectin) with selectivity to CD62L (L selectin) and a7 integrins of leukocytes, not neutrophils, VLA-4. This Mab is FDA approved for Crohn’s disease and multiple sclerosis. This medication is effective in induction of clinical remission in moderate-to-severe Crohn’s disease. This medication does have the risk of PML.273,274

Other Mab being studied for Crohn’s disease but not yet approved by the FDA include Ustekinumab, brazikumab, etrolizumab, risankizumab, and ontalimalimab. In contrast, Mabs studied but not beneficial for Crohn’s disease include andecaliximab, eldelumab, and fontolizumab. Refer to Table 16.1.

Ulcerative Colitis

Mabs being studied for UC but not yet approved by the FDA include bimekizumab, etrolizumab, golimumab, mirikizumab, ravidalimab, sacituzumab govitecan, ontalimalimab, and vatelizumab. Refer to Table 16.1.

Autoimmune Diseases

Autoimmune diseases affect many organs and tissues including liver, gall bladder, pancreas (islet cells in diabetes mellitus), nerve junctions (myasthenia gravis), thyroid, bone and joints, blood vessels, and multiorgan systems, systemic lupus erythematosus (SLE). Autoimmune arthritis is of multiple types including psoriatic, sclerosis, rheumatoid arthritis (RA), and SLE. Many of these diseases are mediated by antibody or cellular autoimmunity but ultimately appear to be secondary to an underlying abnormality in T-cell immune-regulatory control. These disease processes are historically controlled with antiinflammatory agents, immunosuppressive/immunomodulatory agents, or low-dose chemotherapy. Those with resultant hormone deficiencies are supplemented with hormones depleted by the disease process. It is hoped that passive antibody therapy will mitigate the sequelae of these inflammatory processes.

Plaque psoriasis/psoriatic arthritis

Psoriasis affects 2%–3% of the world population and is an inflammatory skin disease. Brodalumab (Siliz) is a human Mab (IgG2\(k\)) with specificity to IL-17 receptor A (IL-17RA). It is FDA approved for treatment of plaque psoriasis, and its mechanism of action is by inhibiting IL-17A, IL-17F, IL-17C, IL-25, and IL-17A/F heterodimer cytokine-induced responses including release of proinflammatory cytokines. When compared to ustekinumab, resistance rates nearly doubled with brodalumab in phase II and phase III trials during induction and maintenance therapies.275,276

Other therapies currently also approved or being studied for treatment of this disease include bermekizumab (MABp1,T2-18C3, CA-18C3, Xilonix), bimekizumab, briakinumab, certolizumab pegol (Gimzia), etanercept (Enbrel), infliximab (Remicade, Inflectra, Remsima), itolizumab (Alzumab), adalimumab (Humira, Amjvita), ustekinumab (Stelara), secukinumab (AIN457, Cosentyx), guselkumab (Tremfya), tildrakizumab (MK-3222, SCH-900,222, Illumya, Ilumetrix), risankizumab (ABBV-066, BI-655,066), mirikizumab (LY3074828), namilumab (MT203), netakimab, and vunakizumab. Refer to Table 16.1.

Withdrawn from market or ineffective for treating psoriasis include efalizumab (Raptiva), fezakinumab, bleselumab, and teplizumab (MGA031, PRV-031, hOKT3g1(Ala-Ala)) Refer to Table 16.1.

Systemic juvenile idiopathic arthritis

Abatacept (Orencia) is a recombinant soluble fusion protein of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CILA-4) linked to the modified Fc portion of human IgG1. Its mechanism of action is as selective costimulation modulator as it inhibits T lymphocyte activation by binding to CD80 and CD86, thereby blocking interaction with CD28. This interaction provides a costimulatory signal necessary for full activation of T lymphocytes. This medication is FDA approved for both juvenile idiopathic arthritis (JIA) and adult RA.277–279

Rheumatoid Arthritis

Certolizumab pegol alone or with methotrexate improves quality of life in RA and may cause disease remission and reduce joint damage.280
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
8H9			Antineoplastic	Intravenous	B7–H3
		monoclonal	Neuroblastoma, sarcoma, metastatic brain cancers		
		antibody (Murine)	Another study Sloan Kettering using I²³¹ version phase I good results		
Abagovomab		monoclonal	Antineoplastic	Subcutaneous	CA-125
		antibody (Murine)	Phase II study for ovarian cancer		
		antiidiotype mAb	Phase III good immune response but no increase RFS or OS no benefit		
Abatacept	Oencia	recombinant	Disease modifying	Subcutaneous or intravenous	
		soluble fusion protein of the extracellular domain of human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) linked to the modified Fc portion of human immunoglobulin G1 (IgG1)	Rheumatoid arthritis		
			Juvenile and adult psoriatic arthritis (phase III)		
Abciximab	ReoPro	human-murine chimera	Procedure modification	Intravenous	Platelet glycoprotein IIb/IIIa receptor (CD41 7E3)/ Integrin α-Ilb
c7Ec Fab		recombinant monoclonal IgG1 Fab	High-risk coronary intervention		
			Platelet aggregation inhibitor		
Abituzumab		humanized	Antineoplastic	Intravenous	CD51 (?integrin alpha V)
	D117E6	monoclonal	Colorectal cancer phase I 2013, phase II 2015 primary endpoint PFS not met		
	EMD25797	antibody IgG2κ	Sclerosing interstitial lung disease phase II terminated 2018 slow enrollment		
			Prostate phase II no significant increase PFS		
TABLE 16.1
Summary of Monoclonal Antibody Therapies.—cont’d

Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Abrilumab	AMG 181	Human monoclonal antibody	Phase II study discontinued development (2016)		Integrin α-4 β-7
Actoxumab	Human monoclonal antibody	Disease modifying Clostridium difficile	Phase I and II anti-CDT81 much better		Clostridium difficile toxin A
Adalimumab	Humira FDA 2002	Recombinant human IgG1 monoclonal antibody	Disease modifying Humira Rheumatoid arthritis, juvenile idiopathic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn’s disease, plaque psoriasis Amjevita Arthritis; juvenile rheumatoid arthritis; psoriatic arthritis; rheumatoid colitis; ulcerative Crohn’s disease; psoriasis; spondylitis; ankylosing Possibly hemolytic disease of newborn	Injection subcutaneous	TNF-α
Adecatumumab	MT-201	Recombinant human IgG1k monoclonal antibody	Antineoplastic Breast phase Ib+, colorectal and prostate Phase II completed Phase III soon?	Intravenous	EpCAM (CD326) epithelial cell adhesion molecule
Aducanumab	Human monoclonal antibody IgG1	Disease modifying Alzheimer’s disease Phase Ill x 2 ongoing started 2015		Intravenous	Beta-amyloid (N-terminus 3–6) soluble oligomers and insoluble fibrils
Afasevikumab	Human monoclonal antibody IgG1k	Disease modifying Multiple sclerosis Phase I completed Nothing in pubmed		Subcutaneous	IL17A and IL17F
Afelimomab	Murine F(ab’) Antibody Fab’ fragment IgG3k	Disease modifying Sepsis Phase III trial marginal benefit abandoned			TNF-α
Name	Type	Use	Route	Protein Family	
-----------------------	---	--	-----------------------------	---------------------------------------	
Alacizumab pegol	Humanized monoclonal antibody F(ab')₂	Limited information on development; Cancer	Intravenous	VEGFR2	
Alemtuzumab LDP-03	Humanized rat monoclonal antibody IgG1κ	Antineoplastic B-Cell CLL, CTCL, T cell lymphoma	Intravenous	CD52	
Campath-1H	Human monoclonal antibody IgG1κ	Disease modifying Multiple sclerosis (phase III)	Subcutaneous	Proprotein convertase subtilisin kexin type 9 (PCSK9)	
Aleirocumab	Human monoclonal antibody IgG1	Disease modifying Decrease cholesterol Phase III	Inhalation	CEA	
Altimomab pentetate In³⁸	Murine monoclonal antibody IgG1	Diagnostic purpose radiology colorectal cancer (diagnosis)	Subcutaneous	CEA	
ALX-0171	Trimeric nanobody	Antiinfectious RSV phase II 2020	Subcutaneous	RSVF	
Amatuximab MORAb-009	Chimeric murine-human monoclonal antibody IgG1κ	Antineoplastic Ovarian cancer Phase II Now research on using to treat mesotheliomas Phase I/II Pancreatic cancer	Intravenous	Mesothelin Prohibits binding of MSLN with antigen CA125/ MUC16	
AMG330	Bispecific T-cell engager (BiTE)	Antineoplastic AML phase I AML 2020	Intravenous	CD33 and CD3	
Anatumomab mafenatox	Murine monoclonal fragment Fab	Antineoplastic Nonsmall cell lung carcinoma	Intravenous	Tumor-associated glycoprotein 72 (TAG-72)	
Andecaliximab GS 5745	Chimeric monoclonal antibody IgG4κ	Antineoplastic gastric cancer phase I, II, III ongoing or gastroesophageal junction adenocarcinoma phase III ongoing Crohn phase II no response, UC	Intravenous	Gelatinase B is a matrix metalloproteinase-9 (MMP-9)	
Anetumab raptansine In³⁸	Human monoclonal antibody IgG1λ	Antineoplastic ovarian phase II, lung, pancreatic phase I, breast now research on using to treat mesotheliomas Phase II Cervical cancer preclinical	Intravenous	Mesothelin Prohibits binding of MSLN with antigen CA125/ MUC16	

Continued
Table 16.1: Summary of Monoclonal Antibody Therapies—cont’d

Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Anifrolumab		Human monoclonal antibody IgG1κ	Disease modifying	Intravenous	Interferon α/β receptor
			Systemic lupus erythematosus phase I and IIb 2018		
Anrukinzumab	(=IMA-638)	Humanized monoclonal antibody IgG1κ	Disease modifying	IL-13	
			Asthma phase II ?results UC phase II no benefit		
Apolizumab		Humanized monoclonal antibody	Antineoplastic non-Hodgkin’s lymphoma abandoned 2009 toxic effects 2009 CLL phase I/II	HLA-DRβ	
Arcitumomab	CEA-Scan	Murine monoclonal antibody IgG1 Fab’	Diagnostic imaging Gastrointestinal cancers Colorectal cancers	CEA	
	FDA 1996				
	EU 1996				
	Withdrawn EU market 2005				
Ascrinvacumab		Human monoclonal antibody	Antineoplastic mesothelioma Nothing in pub med or web search	Activin receptor-like kinase 1	
Aselizumab	Humanized monoclonal antibody	Disease modifying Severe injured patients phase II 2004, no benefit	L-selectin (CD62L)		
Atezolizumab	Tecentriq	Fc engineered, humanized monoclonal antibody IgG1κ	Antineoplastic agent, treat metastatic urothelial carcinoma, non-small cell lung cancer Phase III Bladder/urothelial cancer phase I Breast cancer phase Ib triple marker neg breast cancer	Intravenous	
	FDA 2016				
				Binds to PD-L1 and blocks interactions with the PD-1 and B7.1 receptors FDA-approved atezolizumab (TECENTRIQ, Genentech, Inc.), in combination with bevacizumab, paclitaxel, and carboplatin for the first-line treatment of patients with metastatic nonsquamous, nonsmall cell lung cancer (NSq NSCLC) with no EGFR or ALK genomic tumor aberrations	
Drug Name	Type	Use/Development	Antigen	Mode of Administration	Notes
-------------------	---	---	-------------------------------	------------------------	--
Atidortoxumab	Human monoclonal antibody IgG1κ	Limited information on use and development	Negative search PubMed-internet	Staph aureus alpha toxin	
Atinumab	Human monoclonal antibody IgG4κ	Disease modifying	RTN4		
Atorolimubab	Developed??	Disease modifying hemolytic disease of the newborn	Rhesus factor		
Avelumab	Human monoclonal antibody IgG3	Antineoplastic Cancers, ovarian, gastric, nonsmall cell lung (NSCLC), metastatic, solid tumors phase II Studies completed metastatic Merkel cell carcinoma	Intravenous	PD-L1	
Azintuxizumab vedotin	Chimeric/humanized monoclonal antibody IgG1	Antineoplastic Nothing in PubMed	CD319		
BAN-2401	Humanized monoclonal antibody IgG1λ	Disease modifying Alzheimer A phase Iib study ongoing started 2013	Intravenous	Soluble Aβ amyloid protofibrils	
Bapineuzumab	Humanized IgG1 monoclonal antibody	Disease modifying Alzheimer’s disease Phase III no more studies discontinued research 2012 ARIA-E, amyloid-related imaging abnormalities—edema	Intravenous	Beta amyloid Fibrillary and soluble β amyloid	
Basiliximab	Simulect Chimeric monoclonal antibody IgG1κ	Immunosuppressive agents Prophylaxis of acute rejection in allogenic renal transplantation	Intravenous	CD25 (a chain of IL-2 receptor)	
Bavituximab	Chimeric monoclonal antibody IgG1κ IgG3 (SUNRISE trial)	Cancer, viral infections (Hep C) phase III NSCLC failed to improve survival Sunrise trial stopped Feb 2016, phase II/III breast cancer, phase II pancreatic cancer, phase I/II trial hepatocellular carcinoma, phase I malignant melanoma + rectal cancer good response rectal; not for prostate cancer, phase II hepatitis C not resulted?	Phosphatidylserine		
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
-------------------	------------	------------------	---------------------	---------------	--------
BAY-103356	Humicade	Humanized monoclonal antibody IgG4κ	For research only Phase II 1995		TNF α
CDP 571	Senlizumab				
BCD-100		Human monoclonal antibody	Antineoplastic Phase II/III melanoma NCT03269565 (complete Dec 2019)	Intravenous	Programmed cell death-1 (PD1)
Bectumomab	LymphoScan	Fab'-IgG2κ	Antineoplastic Non-Hodgkin’s lymphoma (detection)		CD22
Begelomab	Bebedina	Murine IgG2b	Disease modifying GvHD phase II/III		DPP4 binds CD26 on T lymphocytes
Belantamab mafodotin		Humanized monoclonal antibodymab	Antineoplastic	No studies or info on clinical trial, PubMed, FDA substance	BCMA
Belatacept	Nulojix	Soluble fusion Protein consisting of the modified extracellular domain of CTLA-4 fused to Fc domain of a recombinant human monoclonal antibody IgG1	Immunosuppressive agents **Prophylaxis renal transplant rejection in adults** Phase III FDA approved	Intravenous	Selectively inhibits T-cell activation through costimulation blockade binds to both CD80 and CD86 blocking CD28
Belimumab	Benlysta	Human monoclonal antibody IgG1λ	Disease modifying Kidney transplant phase II Treat **SLE** (testing phase III for renal involvement) Phase II Rheum arthritis failure Phase II Srogren ± GVHD ongoing	Intravenous Subcutaneous	B-cell activating factor (BAFF), B-lymphocyte stimulator
Bemarituzumab	Fasenra	Humanized monoclonal antibody	Antineoplastic		
Benralizumab	Fasenra	Humanized monoclonal antibody IgG1κ	Disease-Modifying Asthma phase III completed **Severe asthma eosinophilic subtype**	Subcutaneous	Interleukin-5 (IL-5α) receptor alpha subunit-directed cytolytic (CD125)
Antibody Name	Target Protein	Mode of Action	Route of Administration	Disease/Condition	
--------------------	----------------------	--	-------------------------	--	
Berlimatoxumab	berlimat	Disease modifying psoriasis	Subcutaneous	No studies clinical, no clinical study, no PubMed	
Bermekimab	Xilonix	Disease modifying psoriasis psoriasis phase III x2 2020	Subcutaneous	IL17A	
MABp1		Ank spond II 2022			
T2-18C3		Psor arth II 2020 III 2020			
CA-18C3					
Bersanlimab	Human monoclonal	Disease modifying psoriasis	Subcutaneous	ICAM-1	
antibody IgG1κ					
Bertilimumab	CAT-214	Disease modifying psoriasis	Intravenous	CCL11 (eotaxin-1)	
		Severe allergic disorders			
		phase II atopic dermatitis			
		Ongoing studies bullous pemphigoid and ulcerative colitis phase II			
Besilesomab	Scintimun	Diagnostic use	Inflammatory lesions and	CEA-CAM8-related antigen	
	EU 2010		metastases (detection)		
	Not FDA approved				
Bevacizumab	Avastin	Antineoplastic agent	Intravenous solution or	VEGF-A anti-angiogenesis inhibitor	
	FDA 2004	Antiangiogenesis inhibitor	opthalmic injection		
	EU 2005	Colorectal cancer 2004,	May not be so good for		
		NSCLC 2006, RCC 2009,	GBM or ovarian cancer		
		GBM phase III, ovarian			
		cancer, metastatic cervical			
		cancer, fallopian			
		Breast cancer (FDA removed approval for breast cancer 2010)			
		Recurrent glioblastoma			
		multiform			
		Nonsquamous nonsmall cell			
		lung cancer			
Bezlotoxumab	Zinplava	Disease modifying phase III	Intravenous	Clostridium difficile colitis anti-B toxin	
	FDA 2016	studies done MODIFY I and II			
	EU 2017	Modify III ongoing			
		Pseudomembranous colitis			

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Biciromab	FibriScint	Murine monoclonal fragment Fab' IgG1κ	Detect cardiovascular thromboembolism (diagnosis)		Fibrin II, beta chain
Bimagrumab	BYM338	Human monoclonal antibody IgG1λ	Disease modifying Myostatin inhibitor	Intravenous	Activin A receptor type IIB (ACVR2B)
			DM II decrease BMI phase II		
			Sporadic inclusion body myositis phase III not meet endpoint		
			Treat sarcopenia in older adults phase II		
Bimekizumab		Humanized monoclonal antibody IgG1κ	Disease modifying Ankylosing spondylitis (2018 II, 2022 II, +), plaque psoriasis (2021 III, 2020 III, 2019 III, +), psoriatic arthritis (2020), RA (2017 II), UC phase II	Subcutaneous	IL 17A and IL 17F
Bivatuzumab mertansine		Humanized monoclonal antibody IgG1	Antineoplastic squamous cell carcinoma, breast phase I fail x2, head/neck or esophagus phase I fail, toxicity		CD44 v6
Bleselumab		Human monoclonal antibody IgG4κ	Disease modifying organ transplant rejection phase II 2020 to prevent FSGS in kidney transplant patients Phase II psoriasis- medication tolerated with minimal reaction, no benefit to disease process	Intravenous	CD40
Blinatumomab	Blincyto FDA 2014 EU 2015	Murine(scFv - kappa - heavy) - (scFv - heavy - kappa) BiTE	Antineoplastic Ph chrom neg pre-B ALL (CD19+) phase II B-cell precursor acute lymphoblastic leukemia (ALL) initial or relapsed/refractory	Intravenous	Bispecific T-cell engager monoclonal antibody construct that directs CD-3 positive effector memory T cells to CD19-positive target cells
Blontuvetmab	Blontress	Canine monoclonal antibody IgG2 κ/λ.	Veterinary treat canine B-cell lymphoma		CD20
Drug	Antibody Type	Disease Modifying	Route/Location	Mechanism	
----------------------	--	--	---	---	
Blosozumab	Humanized IgG4κ	Disease modifying Osteoporosis 3 phase I and one phase 2 injection site reaction and antibodies to antibody	Intravenous Subcutaneous	SOST Antisclerostin	
Bococizumab RN316 PF-04950615	Humanized IgG2κ	Disease modifying Dyslipidemia Phase III 2019 Discontinued secondary to antidrug antibodies, no primary endpoint achieved	Subcutaneous intravenous	Neural apoptosis-regulated proteinase 1 PCSK9 (proprotein convertase subtilisin/kexin type 9, neural apoptosis-regulated convertase 1, NARC1, NARC-1, proproteine convertase 9, PC9)	
Brazikumab	Human monoclonal antibody IgG2κ	Disease modifying Ulcerative colitis phase II 2021 Phase I/II completed Crohn. Phase III ongoing	Subcutaneous IL23	CD30 (TNFRSF8) an antibody-drug conjugate (ADC) 3 parts: anti-CD30 (cAC10, a cell membrane protein of the tumor necrosis factor receptor), a microtubule disrupting agent monomethyl auristatin E (MMAE) and a protease-cleavable linker that attaches MMAE covalently to cAC10. The combination disrupts the intracellular microtubule network causing cell-cycle arrest and apoptotic cellular death	
Brentuximab vedotin	Adcetris FDA 2013 Breakthrough therapy status by FDA 2018 Chimeric humanized monoclonal antibody IgG1κ	Antineoplastic Hodgkin lymphoma Anaplastic large-cell lymphoma	Intravenous	CD30 (TNFRSF8) an antibody-drug conjugate (ADC) 3 parts: anti-CD30 (cAC10, a cell membrane protein of the tumor necrosis factor receptor), a microtubule disrupting agent monomethyl auristatin E (MMAE) and a protease-cleavable linker that attaches MMAE covalently to cAC10. The combination disrupts the intracellular microtubule network causing cell-cycle arrest and apoptotic cellular death	
Briakinumab	Human monoclonal antibody	Disease modifying psoriasis, Drug development stopped for psoriasis, phase IIb study in Crohn’s	Intravenous IL-12, IL-23		
Brodalumab AMG827	Siliz FDA 2016 Human monoclonal antibody IgG2κ	Disease modifying Plaque psoriasis Completed phase III	Subcutaneous Receptor IL-17RA		
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
-------------------	------------	------------------	--------------------	---------------	--------
Brolucizumab	FDA review 2018	Humanized single chain antibody fragment (scFv κ)	Disease modifying Wet or age-related macular degeneration phase III to be completed Sept 2018, 2020 HAWK (NCT02307682) and HARRIER (NCT02434328) phase III trials good results	Intravitreal https://www.novartis.com/news/media-releases/new-novartis-phase-iii-data-brolucizumab-demonstrate-reliability-12-week-treatment-interval	VEGFA
Brontictuzumab	Humanized IgG2κ	Antineoplastic Phase I Colorectal Lymphoid Adenoid cystic Solid tumors	Intravenous	Notch 1	
Burosumab	Crysvisa FDA 2018	Human monoclonal antibody IgG1κ	Disease modifying X-linked hypophosphatemia Phase III completed	Subcutaneous https://www.creativebiolabs.net/burosumab-overview.htm	FGF 23 phosphaturic hormone fibroblast growth factor 23
Cabiralizumab	Humanized monoclonal antibody IgG4κ	Antineoplastic metastatic pancreatic cancer phase II 2020 Many other cancers phase I	Intravenous	CSF1R	
Camidanlumab tesirine	ADCT-21	Human monoclonal antibody	Antineoplastic B-cell Hodgkin’s lymphoma, non-Hodgkin lymphoma, acute lymphoblastic leukemia, acute myeloid leukemia 2018 phase I Advanced solid tumors with literature evidence of CD25(+) treg content Head and neck Nonsmall cell lung Gastric, esophageal, Pancreas, bladder, Renal cell, melanoma, Triple-negative breast, ovarian phase I 2021	Intravenous	CD25
Product	Approval	Type	Indications	Route	Mechanism
-----------------------	-------------------------------	---	---	-------------------------------	-------------------------------
Sinilimab Camrelizumab	China pending approval	Humanized monoclonal antibody IgG4κ	Antineoplastic Phase III nasopharyngeal cancer 2021 Phase III esophageal cancer 2021	Programmed cell death 1 (PDCD1)	
Canakinumab ACZ885	Ilaris FDA 2009 EU 2009	Human monoclonal antibody IgG1κ	Disease modifying Cryopyrin-associated periodic syndromes Including familial cold auto-inflammatory syndrome and Muckle-Wells syndrome; tumor necrosis factor receptor-associated periodic syndrome (TRAPS); hyperimmunoglobulin D syndrome (HIDS)/mevalonate kinase deficiency (MKD) and familial Mediterranean fever (FMF) Systemic Juvenile idiopathic arthritis Treat Juvenile idiopathic arthritis phase III NSCLC 2025 phase III CVD rejected by FDA Behcet	Subcutaneous IL-1β	
Cantuzumab mertansine		Humanized monoclonal antibody IgG1κ	Antineoplastic Colorectal cancer phase I 2007	Intravenous Mucin CanAg	
Cantuzumab ravtansine		Humanized monoclonal antibody IgG1κ	Antineoplastic Cancers	MUC1	
Caplacizumab-yhdp	Cabilvi (Nanobody program) FDA 2019 EU 2018	Humanized single variable domain antibody (bivalent nanobody)	Disease modifying Inhibits interaction vWF and platelets Treat acquired TTP Phase III Hercules study completed	Intravenous Subcutaneous VWF	
TABLE 16.1
Summary of Monoclonal Antibody Therapies.—cont’d

Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Capromab pendetide	Prostascint	Murine monoclonal antibody	Diagnostic imaging Prostatic carcinoma cells detection	Intravenous	Tumor surface antigen PSMA
	FDA 1996				
Carlumab		Human monoclonal antibody IgG1κ	Antineoplastic Prostate phase II no long term benefit Pulm fibrosis phase II no benefit	Intravenous	hMCAF/MCP-1 (human macrophage/monocyte chemotactic protein-1)
Carotuximab TRC105		Chimeric monoclonal antibody IgG1κ	Antineoplastic angiosarcoma Hepatocellular car phase I/II 2020	Intravenous	Endoglin (CD105)
			Glioblastoma multi-phase II 2014 terminated poor accrual ?results Angiosarcoma phase III 2019 TAPPAS trial Prostate ca phase II 2021 NSCLC phase I 2019		
Catumaxomab	Removab	Removab: A trifunctional rat/murine hybrid antibody IgG2a/IgG2b	Antineoplastic Removab Ovarian cancer phase II, malignant ascites phase II, gastric cancer phase II (ovarian, gastric, colon, pancreatic, breast, endometrial) Proxinium Head and neck cancer	Intraperitoneal	EpCAM, CD3
	FDA approved pend 2017 (EU approved 2009)				
cBR96-doxorubicin immuno-conjugate aka SGN-15		Humanized monoclonal antibody IgG1κ	Antineoplastic Cancer Sponsorship ceased 2005		

Catumaxomab consists of one “half” (one heavy chain and one light chain) of an anti-EpCAM antibody and one half of an anti-CD3 antibody, so that each molecule of catumaxomab can bind both EpCAM and CD3. In addition, the Fc-region can bind to an Fc receptor on accessory cells like other antibodies, which has led to calling the drug a trifunctional antibody.
Drug Name	Brand Name	Type	Actions	Disease(s)	Administration	Additional Information
Cedelizumab	CIMZIA	Humanized monoclonal antibody IgG4κ	Prevent organ transplant rejection	CD4		
Cemiplimab	Libtayo	Human monoclonal antibody IgG4	Antineoplastic	Intravenous		Programmed cell death receptor PCDC1
Cergutuzumab amunaleukin Aka RO6895882, CEA-IL2v		Humanized monoclonal antibody	Antineoplastic phase I Dec 2018	Intravenous		IL2
Certolizumab pegol CDP870	Cimzia	Recombinant, humanized antibody Fab’ fragment	Disease-Modifying	Subcutaneous		Tumor necrosis factor α blocker
Cetrelimab	Relatimab	Human monoclonal antibody IgG4κ	Antineoplastic	Nothing on PubMed or creative lab Substance is registered with FDA		Programmed cell death 1
Cetuximab IMC-225	Leukeran Erbitux	Recombinant chimeric monoclonal antibody IgG1κ	Antineoplastic agent	Intravenous solution		EGFR
Citatuzumab bogatox		Humanized Fab IgG1κ	Antineoplastic ovarian cancer and other solid tumors	Study phase I terminated 2008		EpCAM

Continued
TABLE 16.1
Summary of Monoclonal Antibody Therapies.—cont’d

Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Cixutumumab		Human monoclonal antibody IgG1κ	Antineoplastic Solid tumors Sarcoma phase II Esophageal cancer phase II Rhabdomyosarcoma phase II no benefit Liver cancer phase I Low antitumor effect Pancreas no benefit 2012	Intravenous	IGF-1 receptor (CD221)
Clazakizumab	ALD–518	Humanized monoclonal antibody	Disease modifying rheumatoid arthritis phase II 2015 × 3 Crohn disease phase II 2013 Highly sensitized renal transplant candidates phase II 2020 Treat post-tx rejection kidney phase II 2020 Antibody-mediated rejection phase III 2027	Subcutaneous	IL6
Clenoliximab		Chimeric monoclonal antibody	Disease modifying Rheum Arth No study since 2003		CD4
Clivatuzumab	hPAM4-Cide	Humanized monoclonal antibody IgG1κ	Antineoplastic Pancreatic cancer Phase III 2017 PANCRIPT-1 study. Study terminated no increase improvement of overall survival		MUC1
Codrituzumab		Humanized monoclonal antibody IgG1κ	Antineoplastic HCC Phase Ib no response Phase II no response		Glypican 3
Cofetuzumab	pelidotin	Humanized monoclonal antibody IgG1κ	Antineoplastic Nothing on PubMed or creative lab Substance is not registered with FDA		Protein tyrosine kinase 7 (PTK7)
Drug Name	Description	Indication	Route	Additional Information	
-----------	-------------	------------	-------	------------------------	
Coltuximab ravtansine SAR3419	Chimeric monoclonal antibody IgG1 conjugated to DM4 (N²⁻⁻⁻⁻(4-(3-carboxypropyl)dithio)-4-methyl-1-oxopentyl)-N²⁻⁻⁻⁻deacetylmaytansine)	Antineoplastic Relapse/refractory ALL phase II 2015 low clinical response Phase II moderate response			
Conatumumab AMG655	Human monoclonal antibody IgG1κ	Antineoplastic Phase II 2019: Advanced solid tumors Carcinoid Colorectal cancer Locally advanced Lymphoma Metastatic cancer Nonsmall cell lung cancer Sarcoma Solid tumors Colon cancer phase Ib/II no benefit	Intravenous	TRAIL-R2	
Concizumab	Humanized IgG4κ	Disease modifying Hemophilia A and B phase II 2020	Subcutaneous	Kunitz-type protease inhibitor 2 domain of tissue factor pathway inhibitor (TFPI)	
Cosroviximab ZMapp	Chimeric monoclonal antibody IgG1κ Triple monoclonal antibody cocktail	Disease modifying Ebola virus Ongoing studies show benefit but not enough enrolled to power study	Intravenous	Ebola virus glycoprotein	
Crenezumab RG7412 MABT5102A	Humanized monoclonal antibody IgG4	Disease modifying Alzheimer’s disease phase III study ongoing prodromal/mild AD 2021 Phase III 2022		1-40-β-amyloid	
Crizanlizumab SelG1	FDA review possible 2019	Disease modifying Sickle cell disease phase II 2022 children Phase II adults decrease pain crisis	Intravenous	P Selectin	
Crotedumab	Human monoclonal antibody IgG4κ	Disease modifying DM type II	No results	GCGR	
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
-------------------	------------	------------------	---------------------	----------------	--------
Cusatuzumab	ARGX-110	Humanized monoclonal antibody IgG1	Antineoplastic Phase I completed safe Phase I/II CTCL dec 2018 Nasopharyngeal carcinoma 2018	Intravenous	CD70
Dacetuzumab	HU-S2C6 ASKP1240 SGN-40	Humanized monoclonal antibody IgG1	Antineoplastic Hematologic cancers Multiple myeloma phase I 2007 Large B-cell lymphoma phase II 2009 enrollment stopped no benefit CLL phase II 2006 NHL phase I Renal transplant (CIRRUS I) phase II 2022 SLE nephritis phase II 2020	Intravenous	CD40
Daclizumab	Zenapax Zinbryta FDA 1997 EU 1999 Zinbryta withdrawn from market Apr 2009 for commercial reasons Zinbryta withdrawal 2018 secondary to risk/benefit profile	Humanized monoclonal antibody IgG1κ	Disease modifying Prevention of organ transplant rejections Phase IV kidney transplants, multiple sclerosis phase III 2018 pulled from market secondary inflammatory brain disorders Biogen Heart transplant phase IV 108 studies Zanapax discontinued from market by Roche (basiliximab replace)	CDs (α chain of IL-2 receptor)	
Dalotuzumab	Humanized monoclonal antibody IgG1κ	Antineoplastic Phase I multiple Phase II breast no improvement x 2 Phase III colon no improvement Ped solid phase I	Intravenous	IGF-1 receptor (CD221)	
Drug Name	Humanized monoclonal antibody IgG1κ	Phase of Use	Route	CD Target	
-----------	-------------------------------------	--------------	-------	-----------	
Dapirolizumab pegol	Humanized monoclonal antibody IgG1κ	SLE phase II Nov 2018 Phase I safe	Intravenous	CD154 (CD40L)	
Daratumumab	Human IgG1κ	Antineoplastic agent Multiple myeloma relapse/ refractory Phase III completed	Intravenous solution	CD38 Induces CDC, ADCC, ADCP, and apoptosis	
Dectrekumab QAX576	Human monoclonal antibody IgG1κ	Cancers, asthma phase II, idiopathic pulmonary fibrosis, eosinophilic Esophagitis phase II some benefit but primary endpoint not achieved, Keloids, Crohn’s disease phase II trials 2013	Nothing on PubMed Substance is registered with FDA, creative lab	IL-13	
Demcizumab	Humanized monoclonal antibody IgG2κ	Antineoplastic NSCLC phase II 2018 Phase I safety established with 50% tumor regression response	Intravenous	Delta-like ligand 4DLL4 DLL4 and Notch1, signaling stimulated by DLL4 plays a role in development of blood vessels throughout life	
Denintuzumab mafodotin HBU-12 SGN-CD19A	Humanized monoclonal antibody IgG1κ Antibody-drug conjugate (ADC) composed of a humanized anti-CD19 monoclonal antibody conjugated to the microtubule-disrupting agent monomethyl auristatin F (MMAF)	Antineoplastic LBCL phase II terminated study by company Acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma Phase I 2017 Phase II 2018 terminated by sponsor	Intravenous	CD19	
Denosumab AMG162 Prolia	Human monoclonal antibody IgG2	Disease modifying Osteoporosis FREEDOM trial, bone metastases, etc. 186 studies Phase III completed Melanoma phase II 2022 Bone giant cell tumor phase II 2025	Subcutaneous	Receptor activator of nuclear factor kappa-B ligand (RANKL) Xgeva: Prevention of skeletal-related events (SREs) in adults with bone metastases from breast and castration-resistant prostate cancer. Prolia: Osteoporosis	

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target		
Depatuxizumab	**mofodotin**	**Chimeric humanized monoclonal antibody IgG1κ CONJUGATED TO AURISTATIN F**	Glioblastoma Phase III Nov 2019 Children phase III 2020	Intravenous	EGFR		
Derlotuximab	**biotin iodine (131 I) derlotuximab biotin**	**Chimeric monoclonal antibody IgG1κ**	Immunoassays Potential for glioblastoma multiforme	Histone complex			
Detumomab		**Murine monoclonal antibody IgG1**	Antineoplastic B-lymphoma cell	Nothing on PubMed or clinical trials Substance is not registered with FDA, is on creative lab	CD3E		
Dezamizumab	**GSK-2398852**	**Humanized monoclonal antibody IgG1κ**	Disease modifying Treat amyloidosis Transthyretin cardiomyopathy amyloidosis (ATTR-CM), suspended pending data review Aug 2018 phase I x 4	Intravenous	Serum amyloid P component		
Dinutuximab	**APN311**	**Chimeric monoclonal antibody IgG1κ**	Antineoplastic Neuroblastoma phase I 2022 SCLC phase III Nov 2019 Osteosarcoma phase II Dec 2018 **Neuroblastoma** phase II 2020	Intravenous	GD2 ganglioside		
Diridavumab	**CR6261**	**Human monoclonal antibody IgG1λ**	Disease modifying Infectious disease/influenza A Very good response in animal study mice Phase II 2019	Intravenous	Influenza A hemagglutinin		
Domagrozumab	**PF-06252616**	**Humanized monoclonal antibody IgG1κ**	Disease modifying Duchenne muscular dystrophy phase II 2018 Phase I completed	GDF-8			
Substance	Type	Spike	Target	Activity	Route	FDA Approval	Notes
-----------	------	-------	--------	---------	-------	--------------	-------
Dorlimomab aritox	F(ab')₂	Murine		Nothing on PubMed or clinical trials			
Dostarlimab TSR042 WBP285	Humanized monoclonal antibody IgG4_k	Antineoplastic	Solid tumor Phase I, II, III studies ongoing	Ovarian CA (first study) phase III 2023		Programmed cell death protein-1 (CD279) PCDP1	
Drozitumab PRO95780 rhuMAB DR5	Human monoclonal antibody IgG1_λ	Antineoplastic	Colorectal cancer Ib 2012 Preclinical rhabdomyosarcoma 2018 Chondrosarcoma not efficacious NHL results?		Intravenous	Death receptor 5 (DR5)	
Duligotuzumab MEHD7945A	Human monoclonal antibody IgG1_κ	Antineoplastic squamous head and neck phase II no benefit Colon ca phase II no benefit				Anti-EGFR × Anti-HER3 bispecific antibody	
Dupilumab Dupixent FDA 2017	Human monoclonal antibody IgG4	Disease modifying asthma, atopic dermatitis Ongoing studies		Subcutaneous			
Durvalumab Imfinzi FDA 2017	Human monoclonal antibody IgG1_κ	Antineoplastic agent Treat NSCLC stage III phase I, urothelial carcinoma		Intravenous	PD-L1 (CD274) and CD80—inhibit binding of programmed death ligand 1 to PD-1 and CD80 allowing T cell to recognize and kill tumor cells		
Dusigitumab MEDI 573	Human monoclonal antibody IgG2_λ	Antineoplastic Breast cancer phase II results? HCC phase II results?		Intravenous	ILGF2		
Duvortuxizumab MGD011	Chimeric/humanized monoclonal antibody	Antineoplastic B-cell malignancy Phase I/II Jul 2018/2020		Intravenous	CD19, CD3E		
Ecromeximab KW2871	Chimeric monoclonal antibody IgG1_κ	Antineoplastic Metastatic melanoma Phase I/II clinical activity limited		Intravenous	GD3 ganglioside		

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Eculizumab	Soliris	Humanized monoclonal antibody IgG1/4	Immuno-regulation	Intravenous	C5
			Paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (HUS) Generalized myasthenia gravis (MG) Phase II CAD		
Edobacomab E5	Panorex	Murine monoclonal antibody IgG2κ	No improved survival	Intravenous	Endotoxin
Edrecolomab	Panorex	Murine monoclonal antibody IgG1κ	Antineoplastic Colorectal carcinoma phase III 2003 no improvement	Intravenous	Glycoprotein EpCAM/17-1A
Efalizumab	Raptiva	Recombinant humanized monoclonal antibody IgG1κ	Disease modifying (2003 approved) psoriasis	Subcutaneous Voluntary withdrawal 2009	Human CD11a Increase risk progressive multifocal leukoencephalopathy (PML)
Efungumab MYC123	Mycograb C28Y	Human scFv	Antiinfectious agent Invasive Candida infection	Intravenous	Heat shock protein 90 (Hsp90)
Eldelumab Mdx 1100	Mycograb C28Y	Human monoclonal antibody IgG1κ	Crohn’s disease phase IIa no significant response, ulcerative colitis phase IIb prim endpoint not achieved Rheum arthritis phase II	Intravenous	Interferon γ-induced protein CXCL 10
Elezanumab PR-1432051 PDL063	Empliciti FDA 2015	Human monoclonal antibody IgG1κ	Spinal cord injury and multiple sclerosis phase II 2021	Intravenous	REPULSIVE GUIDANCE MOLECULE FAMILY MEMBER A (RGMA)
Elotuzumab	Empliciti	Human IgG1κ	Antineoplastic Breast gastric phase I	Intravenous	ERBB3 (HER3)
	FDA 2015				
	EU 2016				
Name	Description	Indications	Phase	Notes	
-----------------------	---	---	-------	---	
Elsilimomab B-E8	Humanized monoclonal antibody IgG1	Antineoplastic multiple myeloma	IL-6	Not effective in mice	
Emactuzumab RG7155	Humanized monoclonal antibody IgG1	ANTINEOPLASTIC		Phase I 2019 solid tumors	
		Phase II 2025 REDIRECT study		Ovarian, fallopian tube cancer	
		Pancreatic phase II 2020			
Emapalumab NI-0501	Gamifant FDA 2018 EU pending	Human monoclonal antibody IgG1α		Intravenous	
		Hemophagocytic lymphohistiocytosis		Interferon γ	
Emibetuzumab LA480	Humanized monoclonal antibody IgG4κ	Antineoplastic		Intrasavenous	
LY2875358	Bivalent antibody	NSCLC phase II 2020		Hepatocyte growth factor receptor (HHGFR) and MET signaling	
		Advanced cancer			
		Gastric safe ?effective adenocarcinoma			
		Gastroesophageal junction adenocarcinoma			
		Hepatocellular cancer			
		Renal cell carcinoma			
		Nonsmall cell lung cancer phase I Jan 2018			
		Phase I safe with tumor response			
Emicizumab ACE910	Human monoclonal antibody IgG4κ	Disease modifying		Activated F9, F10	
Hemlibra FDA 2018	Bispecific	Hemophilia A phase III 2020			
		With or without inhibitors			
Enapotamab vedotin	Human monoclonal antibody IgG1κ	Antineoplastic		Nothing on PubMed or clinical trials	
Enavatuzumab PDL192	Humanized monoclonal antibody IgG1κ	Antineoplastic		Substance is not registered with FDA, or creative lab	
		Phase I 2011		Human growth factor receptor AXL	
		No responses and liver pancreatic toxicity			
Enfortumab vedotin	FDA review pending 2019	Human monoclonal antibody		Nectin-4	
		Antineoplastic bladder cancer phase I		Anti-Nectin-4	
		Phase II ongoing		Monoclonal antibody attached to a microtubule-disrupting agent, monomethyl auristatin E (MMAE)	
TABLE 16.1
Summary of Monoclonal Antibody Therapies.—cont’d

Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Enlimomab pegol		Murine monoclonal antibody IgG2\(a\)	Disease modifying Stroke	Nothing on PubMed or clinical trials Substance is not registered with FDA	ICAM-1 (CD54)
Enoblituzumab MGA 271		Humanized monoclonal antibody IgG1\(\kappa\)	Antineoplastic Phase I 2022 children Neuroblastoma Rhabdomyosarcoma Osteosarcoma Ewing sarcoma Wilms tumor Desmoplastic small round cell tumor Phase I melanoma, NSCLC 2018 Phase II prostate 2021		CD276 (B7–H3)
Enokizumab MEDI528		Humanized monoclonal antibody IgG1\(\kappa\)	Asthma phase II No improvement	Intravenous	IL9
Enoticumab REGN421		Human monoclonal antibody IgG1\(\kappa\)	Antineoplastic Phase I 2014 ovarian cancer +		Delta-like canonical notch ligand 4 (DLL4)
Ensituximab NEO-201 NPC-1C		Chimeric monoclonal antibody IgG1\(\kappa\)	Antineoplastic Phase II pancreatic and colorectal cancer 2017	Intravenous	5AC
Enterecept RHU-TNFR:FC	**Enbril** FDA 2003	1-235-Tumor necrosis factor receptor fusion protein attached to recombinant human IgG1 Fc fragment	Disease modifying Antirheumatic drug Not effective for inflammatory bowel disease	Subcutaneous	TNF\(\alpha\)
Epitumomab cituxetan AS-1402 HuHMFG-1	**Sontuzumab**	Humanized monoclonal antibody IgG1	Antineoplastic Breast cancer phase II 2012 no benefit		Episialin MS4A1 (membrane-spanning 4-domains subfamily A member 1, CD20 (HMFG-1))
Epratuzumab HLL2 AMG412		Humanized monoclonal antibody IgG1\(\kappa\) ADCC/CDC	Antineoplastic B-ALL phase III ongoing 2018 Disease modifying SLE phase III no improvement	Intravenous	CD22
Name	FDA Approval	Type	Phase	Notes	
-------------------------------	--------------	--	-------	---	
Eptinezumab ALD403	FDA review possible 2019	Monoclonal antibody IgG1κ	Disease modifying	Migraine phase III	
Erenumab Aimovig	FDA May 2018	Human monoclonal antibody IgG2λ	Disease modifying	Migraine phase III	
Ertizumab Rhumab CD18	FDA May 2018	Humanized IgG1 F(ab′)_2 fragment	Antineoplastic (lab tests)	Immunosuppressive drug phase I study cough up blood and phase II did not meet goals Heart attack, stroke, traumatic shock ?? no successful CD18 drug to date	
Ertumaxomab Rexomun Ertumaxomab or etaratuzumab MEDI-522			Antineoplastic	Breast Gastric, esophageal Phase II studies terminated company to focus on other plans not safety concerns concentrate on catumaxomab Phase I found safe 2016	
Etracizumab or etaratuzumab MEDI-522			Intravenous	HER2/neu, CD3	
Eltigilimab		Humanized monoclonal antibody IgG2κ	Antineoplastic	Melanoma phase II 2010 not beneficial, prostate cancer, ovarian cancer small and large bowel cancer phase I and II completed results unreported 2017	
Etrolizumab PRO145223 RHUMAB BETA7		Humanized monoclonal antibody IgG1κ	Disease modifying	Inflammatory bowel disease UC phase III 2020 × 4/2023/2024/2025 Crohn phase III 2021	
Evinacumab REGN1500		Human monoclonal antibody IgG4κ	Disease modifying	Dyslipidemia Phase II 2020 Phase III 2020/2022	

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Evolocumab	Repatha	Human monoclonal antibody IgG2λ	Disease modifying hypercholesterolemia Completed phase III Heterozygous familial hypercholesterolemia, CVD	Subcutaneous	Proprotein convertase subtilisin kexin type 9 (PCSK9)
Exbivirumab		Humanized monoclonal antibody IgG1λ	Disease modifying prevent disease Hep B	Oral therapy Abstract of randomized study of 50 patients	Hepatitis B surface antigen
Fanolesomab	NeutroSpec	Murine monoclonal antibody	Diagnostic imaging Appendicitis (diagnosis only)	Nothing on PubMed or clinical trials Substance is not registered with FDA, or is not in creative lab	CD15
Faralimomab		Murine monoclonal antibody IgG1			Interferon receptor
Faricimab	RB5-IGM	Humanized monoclonal antibody IgG1mab	Disease modifying angiogenesis, ocular vascular diseases STAIRWAY, BOULEVARD, RHINE, Yosemite phase II and III studies phase III 2022 for diabetes maculae edema AMD LUCERNE phase III 2022 TENAYA phase III 2022	Intravitreous	ANTIVASCULAR ENDOTHELIAL GROWTH FACTOR/ ANTIANGIOPOIETIN 2 BISPECIFIC ANTIBODY (VEGF-A and Ang-2)
Farletuzumab	MORAB-003	Humanized monoclonal antibody IgG1κ	Antineoplastic Ovarian cancer phase III subgroup may benefit	Intravenous	Folate receptor 1
Fasinumab	REGN475	Human monoclonal antibody IgG4κ	Disease modifying acute sciatic pain phase III Knee arthritis pain phase III 2021	Subcutaneous (auto injector)	Human nerve growth factor (HNGF)
FBTA05 Bi20	Lymphomun	Rat IgG2b (CD3)/murine IgG2a (CD20) hybrid trifunc	Antineoplastic Chronic lymphocytic leukemia trial terminated recruitment too slow	Intravenous?	CD20/CD3
Antibody Name	Type of Antibody	Function/Indication	Registration Status	Other Details	
------------------	------------------	---	---------------------	---	
Felvizumab	Humanized monoclonal antibody IgG1κ	Antiinfectious agent Respiratory syncytial virus infection	Nothing on PubMed or clinical trials	Substance is not registered with FDA, but is in creative lab Respiratory syncytial virus	
Fezakinumab	Human monoclonal antibody IgG1λ	Disease modifying Rheumatoid arthritis, psoriasis (not good for) Atopic dermatitis phase IIb good results	Intravenous	IL-22	
Fibatuzumab	Humanized monoclonal antibody IgG1κ	Disease modifying Myelodysplastic syndrome Research in Australia for GBM phase I	Ephrin receptor A3	Influenza A virus hemagglutinin HEMAGGLUTININ HA	
Ficlatuzumab SCH 900105 AV 299	Humanized monoclonal antibody IgG1κ	Antineoplastic Head and neck cancer phase I 2020 Pancreatic phase I 2023 NSCLC phase II 2013 AML phase I 2020	Hepatocyte growth factor (HGF) heparoietin A	Insulin-like growth factor receptor IGF-1 receptor (CD221)	
Figitumumab CP751871	Human monoclonal antibody IgG2κ	Antineoplastic Adrenocortical carcinoma, nonsmall cell lung carcinoma etc. ?additional benefit in phase I	Intravenous	TYRP1 (glycoprotein 75)	
Firivumab	Human monoclonal antibody IgG1κ	Disease modifying Influenza A virus hemagglutinin	Nothing on PubMed or clinical trials	Substance is registered with FDA, and is in creative lab INFLUENZA A VIRUS HEMAGGLUTININ HA	
Flanvotumab IMC20D7S	Human monoclonal antibody IgG1κ	Antineoplastic Melanoma phase I 2012	Intravenous	No published data TYRP1 (glycoprotein 75)	
Fletikumab	Human monoclonal antibody IgG4	Disease modifying Rheumatoid arthritis phase IIa good, phase IIb no results	IL 20		
Flotetuzumab MGD006 S80880	Humanized di-scFv dual affinity retargeting (DART) to CD123 and CD3	Antineoplastic Hematologic malignancies (ALL, NHL) Phase II not yet recruiting 2018	Intravenous?	IL 3 receptor	

CHAPTER 16 Passive Monoclonal and Polyclonal Antibody Therapies

287 Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Fontolizumab	HuZAF	Humanized monoclonal antibody IgG	Disease modifying Treat Crohn’s clinical development stopped despite some benefit phase II ustekinumab is better		IFN-γ
FOR46		Antibody drug conjugate	Antineoplastic Phase I for multiple myeloma failed remission or relapse Phase I prostate cancer	Intravenous	CD46
Foralumab		Human monoclonal antibody IgG1κ	Disease modifying NASH phase II 2019	Oral	CD3 epsilon
Foravirumab		Human monoclonal antibody IgG1κ	Disease modifying rabies (prophylaxis)	Nothing in pub med or clinical trials	Rabies virus glycoprotein
Fremanezumab	LBR-101 RN307	Humanized monoclonal antibody IgG1κ	Disease modifying migraine and cluster headache phase III 2019	Subcutaneous	α-Calcitonin gene-related peptide
Fresolimumab	Ajovy FDA 2018	Humanized monoclonal antibody IgG4	Disease modifying Idiopathic pulmonary fibrosis (IPF), scleroderma, focal segmental glomerulosclerosis (phase 2), cancer (kidney cancer and melanoma)	Need larger study for FSGS Good response scleroderma https://newdrugapprovals.org/2016/01/30/fresolimumab/	TGF β 1
Frovocimab	LY3015014	Humanized monoclonal antibody IgG4κ	Disease modifying hypercholesterolemia Completed phase II trials 2014 good response and safe	Subcutaneous	PROPROTEIN CONVERTASE SUBTILISIN KEXIN 9 (PCSK9)
Frunevetmab	https://en.wikipedia.org/wiki/List_of_therapeutic_monoclonal_antibodies - cite note-WHOList 116-17 NV-02	Veterinary monoclonal antibody IgG1κ	Veterinary	Feline muscle nerve growth factor	
Drug Name	Therapeutic Target	Antibody Type	Disease or Condition	Route of Administration	Mechanism of Action
------------------------	--------------------	---------------	---	-------------------------	---------------------
Fulranumab AMG403		Human monoclonal antibody IgG2κ	Disease modifying Pain osteoarthritis pain phase III 2017	Subcutaneous	Nerve growth factor
Galcanezumab LY2951742		Humanized monoclonal antibody IgG4κ	Disease modifying Migraine Phase III completed Cluster HA phase III 2020	Subcutaneous	Calcitonin gene-related polypeptides (CGRPs) α and β
Galiximab IDEC-114		Chimeric monoclonal antibody IgG1κ, ADCC/CDC	Antineoplastic lymphoma phase II 2015 minimal response ORR 10.3%	Intravenous	CD80
Gancotamab MM-302		Human cFv Single chain fragment	Antineoplastic Breast cancer phase I–III	Intravenous	HER2/neu
Ganitumab AMG479		Human monoclonal antibody IgG1κ	Antineoplastic Pancreatic phase III—no increase benefit Phase III for rhabdomyosarcoma and Ewings 2021 Not beneficial in NSCLC	Intravenous	IGF-1 receptor (CD221)
Gantenerumab R04909832		Human monoclonal antibody IgG1κ	Disease modifying Alzheimers Phase III stopped for potential futility additional studies at higher dosing (DIAN in a phase II/III trial in individuals at risk For and with early-stage autosomal-dominant AD phase III 2021	Subcutaneous	Beta amyloid
Gatipotuzumab PankoMab-GEX		Humanized monoclonal antibody IgG1κ	Antineoplastic Ovarian, non-small cell lung cancer (NSCLC), colorectal cancer (CRC), breast cancer (BC), gynecological cancers (GYN) phase I used for diag/prog now	Intravenous	Musculus, antimucin (MUC1)
Gavilimomab ABX-CBL		Murine monoclonal antibody IgM	Disease modifying Graft versus host disease phase III completed 2005 less effective than antithymocyte antibody	CD147 (basigin)	

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target	
Gedivumab	RG7745	Human monoclonal antibody IgG1κ	Disease modifying influenza virus A	No studies, PubMed/clinical trials	Influenza virus hemagglutinin HA	
	RO6876802					
Gemtuzumab ozogamicin	Mylotarg AML FDA 2000 Voluntary withdrawal 2010 VOD now black box warning Returned to market with FDA approval 2017	Humanized monoclonal antibody IgG4/toxin conjugate	Antineoplastic Acute myelogenous leukemia Many ongoing and completed studies	Intravenous	CD33	
Gevokizumab	XOMA 052	Humanized monoclonal antibody IgG2κ	Disease modifying DM phase II (late stage) no results Other dz too 24 studies behcet uveitis failed primary end point phase III (Eyeguard _B) 2015	Subcutaneous	IL-1β	
Gilvetmab PD1		Veterinary monoclonal antibody IgG2κ	Antineoplastic	No studies clinical trial, pub med	CANIS FAMILIARIS PROGRAMMED CELL DEATH PROTEIN 1 (PCDC1)	
Gimsilumab	MORAb-022	Human monoclonal antibody IgG1	Disease modifying Rheumatoid arthritis Asthma Phase I poster presentation of safety results good 2016	Intravenous	HUMAN GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR (CSF2)	
Girentuximab	WX-G250	Chimeric monoclonal antibody IgG1κ	Antineoplastic Clear cell renal cell carcinoma for treatment and imaging	Intravenous	Carbonic anhydrase 9 (CA-IX)	
	CG250	Radioactive labeled ab				
Glembatumumab vedotin CR011		Human monoclonal antibody IgG2κ	Antineoplastic Melanoma phase II, breast cancer	Intravenous	Human glycoprotein NMB extracellular domain (GPNMB)	
Golimunab	Simponi FDA 2009 EU 2009	Human monoclonal antibody IgG1κ	Disease modifying *Rheumatoid arthritis, psoriatic arthritis*, juvenile rheum arth, *ankylosing spondylitis* many studies, UC, DM1 phase I (2020, 2021)	Subcutaneous, intravenous	TNF-α	
Antibody Name	Type	Monoclonal Antibody	Indications	Phase	Status	CD antigen or protein
--------------	------	---------------------	-------------	-------	--------	---------------------
Gomiliximab	Chimeric monoclonal antibody IgG1κ	Allergic asthma? Antineoplastic CLL Phase I, phase 2/3 2014 Failed efficacy	ADCC/CDC			CD23 (IgE receptor)
Lumiliximab						
ST-152						
Gosuranemab	Humanized monoclonal antibody IgG4κ	Progressive supranuclear palsy Phase I 2020 Alzheimer 2021		Intravenous	τ protein	
BIIB092	FDA orphan drug status					
IPN-007						
Guselkumab	Human monoclonal antibody IgG1λ	Disease modifying Psoriasis Adenomatous polyposis		Subcutaneous	IL23A	
CNTO 1959	Tremfya					
Hu3F8	Humanized monoclonal antibody IgG3	Antineoplastic Phase I For neuroblastoma mod tox and substantial effect on tumor Phase II ongoing		Intravenous	GD2 ganglioside	
Ianalumab	Human monoclonal antibody IgG1κ	Immunomodulation Autoimmune hepatitis			Human cytokine receptor BAFF-R	
Ibalizumab	Trogarzo Humanized monoclonal antibody IgG4	Disease modifying anti-HIV Phase III			CD4	
Ibritumomab	Human monoclonal antibody IgGκ	Antineoplastic Follicular non-Hodgkin’s lymphoma, B-cell NHL, multiple myeloma conditioning for BMT, B-cell DLCL, mantle cell Many studies			CD20 (human B-lymphocyte-restricted differentiation antigen, Bp35)	
tiuxetan	Zevalin Murine monoclonal antibody IgGκ YT77 or In111 bound	Antineoplastic Follicular non-Hodgkin’s lymphoma, B-cell NHL, multiple myeloma conditioning for BMT, B-cell DLCL, mantle cell Many studies		Intravenous		
IDEC-129	FDA 2002 EU 2004					
IDEC-IN2B8						
IDEC-Y2B8						
Icrucumab	Human monoclonal antibody IgG1κ	Antineoplastic No benefit breast phase II No benefit colon phase II No benefit urothelial phase II		Intravenous		
IMC 18F1						
Idarucizumab	Humanized monoclonal antibody Fab fragment	Antidotes Drug reversal agent Reversal of anticoagulant effects of dabigatran Phase III trial RE-VERSE AD		Intravenous	Dabigatran etexilate	
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target	
---------------------------	---------------------	------------------	--	--	--	
Igovomab	Indimacis-125	Murine F(ab\(^{2}\))	Diagnostic imaging	Ovarian cancer (diagnosis)		
Iladatuzumab vedotin	RG7986	Humanized monoclonal antibody IgG1\(\kappa\)	Antineoplastic	Nothing in PubMed or clinical trials	Human gene B29 protein (CD97B)	
Imalumab	BAX69	Human monoclonal antibody IgG1\(\kappa\)	Antineoplastic	Intraperitoneal infusion, intravenous	Macrophage migration inhibitory factor (MIF)	
Imaprelimab	Humanized IgG1\(\kappa\)	Antineoplastic	Nothing in PubMed or clinical trials	Melanoma cell adhesion molecule (MCAM)		
Imciromab pentetate	Myoscin	Murine monoclonal antibody fragment Fab IgG2a\(\kappa\)	Diagnostic Cardiac imaging	Cardiac myosin		
Imgatuzumab RG7160	HUMA-B	Humanized monoclonal antibody IgG1\(\kappa\)	Antineoplastic Colorectal 2013 Head and neck 2017 NSCLC 2017	Epidermal growth factor receptor (EGFR, HER1)		
IMGN632	Monoclonal antibody with antibody drug conjugate	Antineoplastic AML, ALL phase I 2021 NCT03386513	Intravenous	CD123		
Inclacumab RG1512	Human monoclonal antibody IgG4\(\kappa\)	Disease modifying Cardiovascular disease phase II	Intravenous	Selectin P		
Indatuiximab ravtansine	Chimeric monoclonal antibody IgG4\(\kappa\)	Antineoplastic Preclinical breast cancer	CD138 (syndecan-1) SDC1	Gastrointestinal, pancreatic, gastroesophageal Safe phase I, phase II pancreatic min response, three studies terminated by company business		
Indusatatumab vedotin TAK-264	MLN0264	Human monoclonal antibody IgG1\(\kappa\) conjugated via a mc-val-cit-PABC linker to monomethyl auristatin E (MMAE (5F9-mc-val-cit-PABC-MMAE))	Antineoplastic Gastrointestinal, pancreatic, gastroesophageal Safe phase I, phase II pancreatic min response, three studies terminated by company business	Intravenous	Guanylate cyclase C (GUCY2C)	
Name	Type	Indications	Route	CD	Other Details	
--------------------	-------------------------------	--	-------------	----	---------------	
Inebilizumab MEDI-551	Humanized monoclonal antibody IgG2κ	Antineoplastic Refractory DLBCL phase II 2016 Disease modifying systemic sclerosis, multiple sclerosis Neuromyelitis optica	Intravenous	CD19		
Infliximab Remicade	Human-murine chimera IgG1κ Human constant, murine variable region	Disease modifying Remicade Crohn’s disease; ulcerative colitis; rheumatoid arthritis; ankylosing spondylitis; psoriatic arthritis; plaque psoriasis Inflectra Spondylitis; ankylosing arthritis; rheumatoid colitis; ulcerative arthritis; psoriatic arthritis Crohn’s disease; psoriasis Remsima Spondylitis; ankylosing arthritis; rheumatoid colitis; ulcerative Crohn’s disease; arthritis; psoriatic psoriasis	Intravenous solution	TNF-α		
Inolimomab	Murine monoclonal antibody	Disease modifying GVHD phase III No better than ATG in 3 studies Abandoned not in 2017 Cochrane review	Intravenous solution	CD25 (κ chain of IL-2 receptor)		
Inotuzumab ozogamicin G544	Humanized monoclonal antibody IgG4κ ADCC/ CDC	Antineoplastic ALL phase II 2023 Multiple other studies	Intravenous	CD22		
Intetumumab CNTO095	Human monoclonal antibody IgG1κ	Antineoplastic Solid tumors (prostate cancer, melanoma) Melanoma phase II possible benefit 2011 Prostate cancer no additional benefit 2013 phase II	Intravenous	CD51		
Ipilimumab Yervoy	Human monoclonal antibody IgG1κ	Antineoplastic agent Bladder carcinoma (trials ongoing) Melanoma	Intravenous			
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target	
-------------------	------------	------------------	---------------------	----------------	--------	
Ipilimumab MDX010	Yervoy	Human monoclonal antibody IgG1κ	Antineoplastic Melanoma (checkmate 067) Renal cell carcinoma (checkmate 214) Colorectal cancer	Intravenous	CD152 cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and blocks interaction with its ligands CD80/CD86	
Ipilimumab BMS-734016						
Iratumumab MDX060		Human monoclonal antibody IgG1κ	Antineoplastic Hodgkin's lymphoma phase II completed Clinical research discontinued 2009	Intravenous	CD30 (tumor necrosis factor receptor superfamily, Member 8; TNFRSF8) aka Ki-1 Ag	
Isatuximab SAR650984	FDA review possible 2019	Chimeric monoclonal antibody IgG1κ	Antineoplastic multiple myeloma Phase I 2019 Phase II 2022 Phase III 2025	Intravenous	CD 38	
Iscalimab CFZ533		Human monoclonal antibody IgG1κ	Disease modifying Potential treat autoimmune disease Lupus nephritis phase II 2020 Myasthenia gravis GVHD Kidney transplant 2022 phase II Preclinicals	Intravenous	CD40	
Istitratumab MM-005 MM-141		Human monoclonal antibody IgG1	Antineoplastic Advanced solid tumors Pancreatic cancer phase II 2018		Insulin-like growth factor I receptor/neuregulin receptor HER3 (IGF1R, CD221)	
Itolizumab Alzumab FDA		Humanized monoclonal antibody IgG1κ	Disease modifying Psoriasis GVHS phase II 2022		CD6	
Ixekizumab Taltz		Humanized monoclonal antibody	Disease modifying Phase III radiographic axial spondyloarthritis Psoriatic arthritis	Subcutaneous	IL 17A	
Antibody	**Clinical Trials**	**Indication**	**Stage**	**Regulatory Status**	**Target**	
--------------	--------------------	---------------	-----------	----------------------	-----------	
Keliximab	Clenoliximab	Chimeric monoclonal antibody IgG1\(\lambda\)	Disease modifying		CD4	
Labetuzumab	CEA-Cide	Humanized monoclonal antibody IgG1	Antineoplastic		CEA	
Lacnotuzumab	MCS110	Humanized monoclonal antibody IgG1\(\kappa\)	Antineoplastic	Colorectal cancer	CSF1, MCSF	
Ladiratuzumab	vedotin	Humanized monoclonal antibody IgG1\(\kappa\)	Antineoplastic	Breast, pigmented villonodular synovitis (PVNS)	LIV-1	
Lampalizumab	RG7417	Humanized monoclonal fragment IgG1\(\kappa\)	Disease modifying	Geographic atrophy secondary to age-related macular degeneration	Intravitreous	
Lanadelumab	SHP643	Human monoclonal antibody IgG1\(\kappa\)	Disease modifying	Angioedema	Subcutaneous	
Landogrozumab	LY2495655	Humanized monoclonal antibody IgG4	Disease modifying	Muscle wasting disorders, i.e., after hip surgery phase II	Subcutaneous	
Laprituximab	Emtansine	Chimeric monoclonal antibody	No trials or PubMed or creative lab only in FDA registry		EGFR	
Larcaviximab	ZMAPP	Chimeric monoclonal antibody IgG1\(\kappa\)	Disease modifying	Ebola virus	No studies clinical trial or PubMed	

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Lebrikizumab	MILR1444A	Humanized monoclonal antibody IgG4κ	Disease modifying Asthma phase III Atopic dermatitis HL phase II 2007	Subcutaneous injection	Interleukin-13 (IL-13)
TXN-650	RG-3637				
PRO301444					
Lemalesomab		Murine monoclonal antibody IgG1κ	Diagnostic agent		NCA-90 (granulocyte antigen)
Lendalizumab	Olendalizumab ALXN-1007	Humanized monoclonal antibody IgGκ	Disease modifying Antiphospholipid syndrome GI GVHD	Intravenous	Anticomplement 5A
Lenvervimab		Humanized IgG1κ	Disease modifying Hepatitis B	No studies in clinical trials or PubMed	Hepatitis B surface antigen
Lenzilumab KB-003		Human monoclonal antibody	Antineoplastic chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia phase I	Intravenous	GRANULOCYTEMACROPHAGE COLONY-STIMULATING FACTOR (GM-CSF)
Lerdelimumab CAT-152	Trabio	Human monoclonal antibody IgG4	Disease modifying Phase I studies ?Cancer and fibrosis Trials stopped for fibrosis after glaucoma surgery		Transforming growth factor β 2
Leronlimab	FDA review 2018	Humanized IgG4κ	Disease modifying HIV phase III ongoing no results published good results phase II	Subcutaneous	Chemokine receptor 5 (CCR5)
PRO-140					
Lesofavumab RG70026		Human monoclonal antibody IgG1κ	Disease modifying Influenza A	No studies clinical trials or PubMed	Hemagglutinin HA
Letolizumab		Humanized synthetic light chain variable region (scFv)	Disease modifying inflammatory diseases	No studies clinical trials or PubMed or creative labs	TRAP
Lexatumumab HGS1018	HGS-ETR2	Human monoclonal antibody IgG1λ	Antineoplastic Breast Pancreatic	Intravenous	Tumor necrosis factor receptor superfamily member 10B/death receptor 5 (TRAIL-R2)
Drug Name	Antibody Type	Application	Route	Indications	
---------------------------	--------------------------------	--------------------------------------	--------	---	
Libivirumab	Humanized monoclonal antibody IgG1κ	Antiinfectious	Oral	Prevent disease Hep B	
				Abstract of randomized study of 50 patients	
				Hepatitis B surface antigen	
Lifastuzumab vedotin	Humanized monoclonal antibody	Antineoplastic	Intravenous	Ovarian cancer Phase 2	
DBNIB0600A				Phosphate-sodium cotransporter	
Ligelizumab QGE031	Humanized monoclonal antibody IgG1κ	Disease modifying	Subcutaneous	Severe asthma and chronic spontaneous urticaria phase II and III ongoing trial 2021	
				Immunoglobulin E (IGHE)	
Lilotomab satetraxetan	Betalutin	Antineoplastic		CD37	
	Murine monoclonal antibody IgG1	NHL 2020/phase II 2025 Diffuse Ig B-cell lymphoma 2019			
				CD33	
				CD37	
Lirilumab IPH2102	Human monoclonal antibody IgG4	Antineoplastic	Intravenous	Solid and hematological cancers No good aml, squam cell head neck no good, bladder cancer ongoing? May benefit MDS	
				Kill cell immunoglobulin like (KIR2D) Block the interaction between KIR2DL-1,-2,-3 inhibitory receptors and their ligands	
Lodelizumab LFU720	Humanized monoclonal antibody IgG1κ	Disease modifying	Unknown studies in clinical trials and PubMed	Proprotein convertase subtilisin/kexin type 9 (PCSK9)	
				Canis lupus familiaris IL31	
Lokivetmab	Cytopoint FDA approved for dogs only	Canis monoclonal antibody IgG2κ	Disease modifying Veterinary Clinical signs of atopic dermatitis in dogs		
Loncastuximab tesirine	Chimeric monoclonal antibody IgG1κ	Antineoplastic	Intravenous	Diffuse large B-cell lymphoma phase II 2020	
ADCT-402				CD19	
Lorvotuzumab mertansine	Humanized monoclonal antibody IgG1κ	Antineoplastic	Intravenous	SCLC Ovarian AML phase II Wilm, rhabdomyosarcoma, Neuroblast, MPNST, Synovial sarcoma 2018 phase II	
BB-10901 IMGN901				CD56	

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Losatuxizumab vedotin	ABBV-221	Chimeric/humanized monoclonal antibody IgG1	Antineoplastic		Epidermal growth factor (EGRF, ERBB1 HER1)
Lucatumumab HCD122	Discontinued development by Novartis 2013	Human monoclonal antibody IgG1κ	Antineoplastic	Intravenous	CD40
Lulizumab pegol		Human monoclonal antibody	Disease modifying SLE	Intravenous	CD28
Lumretuzumab RG7116 RO5479599		Human monoclonal antibody IgG1κ	Antineoplastic	Intravenous	CD28; receptor for tyrosine-protein kinase(erbB-3, HER3)
Lupartumab amadotin BAY-1129980		Human monoclonal antibody IgG	Phase I terminated Why?	Intravenous	GPI- anchored cell surface-associated protein C4.4A (LYPD3)
Lutikizumab ABT981		Human monoclonal antibody	Disease modifying Osteoarthritis	Subcutaneous	Interleukin 1 alpha/interleukin 1 beta
Mapatumumab HGS1012		Human monoclonal antibody IgG4λ	Antineoplastic Hepatocellular no benefit Multiple myeloma Cervical cancer NSCLC no benefit NHL Bladder cancer may be beneficial		Tumor necrosis factor receptor superfamily member 10A; cytokine receptor DR4 (death receptor 4 tumor necrosis receptor apoptosis-induced ligand (TRAIL-R1)
Margetuximab MGAH22		Chimeric/Humanized monoclonal antibody IgG1κ	Antineoplastic Breast cancer Gastric cancer/GEC phase Ib/II trial	Intravenous	erbB2/HER2
Marstacimab PF-06741086		Human monoclonal antibody IgG1λ	Disease modifying Bleeding with hemophilia phase II 2020	Subcutaneous	Tissue pathway factor inhibitor (TFPI)
Antibody	Type	Function	Target	Route	Notes
-------------------	-----------------------	-------------------------------	---	---------------	---
Maslimomab	Murine monoclonal	Immunosuppressive	Unknown no studies and not listed in creative lab or FDA	T-cell receptor	T-cell receptor
Matuzumab	Humanized monoclonal	Antineoplastic	Colorectal, lung and stomach cancer weakly beneficial	Intravenous	Epidermal growth factor receptor (EGFR)
EMD 72000	antibody IgG1κ				
Mavrilimumab	Human monoclonal	Disease modifying rheumatoid	Arthritis phase IIb good	Subcutaneous	GMCSF receptor α-chain
CAM3001	antibody IgG4κ				
MEDI565	Fab IgG1 BiTE	Antineoplastic	Gastrointestinal adenocarcinoma phase I 2018	Intravenous	CD3 and CEA
MT111 AMG211					
Mepolizumab	Human monoclonal IgG1κ	Disease modifying	No benefit in eosinophilic esophagitis	Subcutaneous	Interleukin-5 (IL-5) antagonist
SB-240563			Beneficial allergic severe asthma		
Metelimumab	Humanized monoclonal	Disease modifying	Scleroderma	Dropped from further development	TGF β 1
CAT 192	antibody IgG4				
Milatuzumab	Humanized monoclonal	Antineoplastic	Multiple myeloma	Intravenous	CD74
HLL1 IMMU-115	antibody IgG1κ		Lupus Leukemia		
Minretumomab	Murine monoclonal	Diagnostic	Tumor detection/diagnostic/prognostic	Tumor-associated glycoprotein 72 (TAG-72)	
MOAB CC49	antibody IgG1		Failed phase I clinical trials		
Mirikizumab	Humanized monoclonal	Disease modifying	Psoriasis phase III 2020	Intravenous	IL23A
LY3074828	antibody		UC phase III 2023		
Mirvetuximab	Chimeric monoclonal	Antineoplastic	Ovarian phase III 2019	Intravenous	Folate receptor alpha
soravtansine	antibody IgG1		Breast ca phase II 2020		
M9346A					
IMGN853					
Mitomomab	Murine monoclonal	Antineoplastic	SCLC phase III no benefit 2005	GD3 ganglioside	
BEC-2	antibody				
Modotuximab	Chimeric monoclonal	Antineoplastic	Colorectal	Subcutaneous	EGFR extracellular domain III/HER1
1024 DS Zatuximab	antibody IgG1κ		Colorectal Phase 2019		
Futuximab SYM004			Phase 2019 Phase III 2025		
Minretumomab					
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
------------------	---------------------	---	--	----------------	---
Mogamulizumab	Poteligeo	Humanized monoclonal antibody IgG1κ	Antineoplastic	Intravenous	CC chemokine receptor CCR4
AMG761	FDA 2018		Adult T-cell leukemia/lymphoma		
KM8761			Solid tumors		
			Many studies ongoing		
MOR202	MOR03087	Human monoclonal antibody IgG1	Antineoplastic multiple myeloma phase I 2018	Intravenous	CD38
NN8765					
IPH2201					
Monalizumab		Humanized monoclonal antibody IgG4κ	Disease modifying	Intravenous	Killer cell lectin-like receptor subfamily C member1 (NKG2A, CD159A, CD94) that recognize nonclassical HLA (i.e., HLA-E)
NN8765			Rheumatoid arthritis, antineoplastic gynecologic malignancies, and other cancers phase II 2021		
			NSCLC phase II 2022		
			s/p stem cell transplant phase I 2020		
			CLL phase II 2019		
Morolimumab		Human monoclonal antibody IgG1	?Diagnostic	No studies in pub med, creative lab or FDA substance	Rhesus factor
Mosunetuzumab		Humanized monoclonal antibody IgG1κ bispecific	Antineoplastic	Intravenous	CD3E, MS4A1, CD20
RG7828			NHL phase II 2023		
BTCT4465A			DLBCL phase II 2023		
Motavizumab	Numax	Humanized monoclonal antibody IgG1κ	Disease modifying	Intramuscular	Respiratory syncytial virus glycoprotein F
MEDI-524	FDA not approved 2010		Respiratory syncytial virus phase III completed		
			Safety concerns hives and allergic reactions		
Moxetumomab	Lumoxiti	Recombinant immunotoxin comprised of a variable fragment (Fv) of a Murine IgG4 anti-CD22 monoclonal antibody genetically Fused to a truncated fragment of Pseudomonas exotoxin A	Antineoplastic Hairy cell leukemia Phase I ALL peds	Intravenous	CD22
Muromonab-CD3	**Orthoclone OKT3**	**Humanized monoclonal antibody IgG2κ**	**Disease modifying**	**Intravenous**	**CD3**
-------------------	-------------------	--------------------------------------	----------------------	---------------	---------
Muromab	**FDA 1986**	**Prevention of kidney transplant rejection**	**Oral**		
Aka teplizimab	**EU 1986**	**Many trials GVHD, NASH and T2DM, giant cell myocarditis AbATE**			
MGA031	(country specific approval)				

Nacolomab tafenatox	**Murine monoclonal fragment Fab**	**Antineoplastic**	**No studies in clinical trial or PubMed**	**C242 antigen**
MT203				

Namilumab MT203	**Human monoclonal antibody IgG1κ**	**Disease modifying**	**Subcutaneous**	**Colony-stimulating factor 2 (CSF2)**
C242 antigen				

Naptumomab estafenatox	**Murine monoclonal antibody fragment Fab**	**Antineoplastic**	**Intravenous**	**Tumor-associated antigen 5T4**
TTS-CD3	**Non-small cell lung carcinoma, renal cell carcinoma phase III completed primary endpoint not achieved**			
ANYARA	**ABR-217620**			

Naratuximab emtansine IMGN529	**Chimeric monoclonal antibody IgG1κ**	**Antineoplastic**	**Intravenous**	**Tetraspanin-26 (CD37)**
IMGN529	**B-Cell lymphoma NHL**			

Narmatumab IMC-RON-8 Ron8	**Human monoclonal antibody IgG1κ**	**Antineoplastic**	**Intravenous**	**Human cell surface receptor RON (CD 135) macrophage-stimulating 1 receptor**
Ron8				

Natalizumab Antegran Antegren	**Humanized monoclonal antibody IgG4κ**	**Disease modifying**	**Intravenous**	**C4 selectin (CD62L) α4-subunit of α4β1 and α4β7 integrins of leukocytes (except neutrophils) (VLA-4)**	
Tysabri FDA 2004 EU 2006	**Relapsing multiple sclerosis, Crohn's disease**				

Navicixizumab OMP 305B83	**Humanized/chimeric monoclonal antibody IgG2κ**	**Antineoplastic**	**Intravenous**	**Delta-like 4 (DLL4) Vascular endothelial growth factor A (VEGF-A)**
CT-P27	**Phase I study colorectal gyn tumors**			

Navivumab CT-P27	**Human monoclonal antibody IgG1κ**	**Disease modifying**	**No studies PubMed**	**Influenza A virus hemagglutinin HA**

Naxitamab HU3F8	**Humanized monoclonal antibody IgG3**	**Antineoplastic**	**?Intravenous**	**c-Met Ganglioside anti-GD2**
	High-risk neuroblastoma and refractory osteomedullary disease study 2023			

Nebacumab	**Humanized monoclonal antibody IgM**		**Withdrawn for safety, Efficacy and commercial reasons**	**Endotoxin**

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target	
Necitumumab IMC-11F8	Portrazza FDA 2015 EU 2016	Human monoclonal antibody IgG1κ	Antineoplastic Non small cell lung carcinoma	Intravenous	EGFR	
Nemolizumab CIM331 CD14152		Humanized monoclonal antibody IgG2κ	Disease modifying Eczema phase I and II	Subcutaneous	Interleukin-31 receptor A (IL31RA)	
NEOD001 Birtamimab ELT1-01 HU2A4		Humanized monoclonal antibody IgG1κ	Disease modifying Primary systemic amyloidosis lack clinical benefit	Intravenous	Amyloid A protein/ amyloid light chain	
Nesvacumab REGN910 SAR307746		Human monoclonal antibody IgG1κ	Antineoplastic Solid tumors not as beneficial as other agents in breast cancer Disease modifying Macular degeneration	Intravenous	Angiopoietin 2	
Netakimab		Chimeric monoclonal antibody	Disease modifying Psoriasis PLANETa study (Russia, future EU and China) Disease modifying Macular degeneration		Interleukin 17A	
Nimotuzumab Theracim Teraloc		Humanized monoclonal antibody IgG1κ	Antineoplastic Squamous cell carcinoma, head and neck cancer, nasopharyngeal cancer, glioma	Intravenous	EGFR	
Nirsevimab MEDI8897		Human monoclonal antibody IgG1κ	Disease modifying Respiratory syncytial virus phase II 2018	Intramuscular	Respiratory syncytial virus fusion protein (RSVFR)	
Antibody	Trade Name	FDA Approval	Type	Target	Function	
----------	------------	--------------	------	--------	----------	
Nivolumab	Opdivo	FDA 2015 EU 2015	Human monoclonal antibody IgG4 immunoglobulin	Antineoplastic agent Programmed death receptor-1 (PD-1) blocking antibody	NSCLC, bladder cancer, renal cell cancer phase III 2021 Hodgkin lymphoma Melanoma Small cell lung cancer Squamous carcinoma head and neck Colorectal cancer GBM no added benefit 2017	
Nofetumomab merpentan	Verluma	FDA 1996 No longer marketed in USA	Murine monoclonal fragment IgG2κ Fab	Cancer diagnostic imaging SCLC		
Obiltoxaximab ETI-204	Anthim	FDA 2016	Chimeric monoclonal antibody IgG1κ	Disease modifying Bacillus anthracis anthrax phase IV 2021	Intravenous Intra muscular Bacillus anthracis spores PA component of B. anthracis toxin	
Obinutuzumab GA101HUMAB RG7159 RO5072759 Afutuzumab	Gazyvaro	FDA 2013	Humanized monoclonal antibody IgG1κ	Antineoplastic lymphoma phase II (MCL, DLBCL) Chronic lymphocytic leukemia Phase II 2021	Intravenous	CD20 Induces B-cell apoptosis
Ocaratuzumab LY2469298 AME-133V	Ocrevus	FDA 2017	Humanized monoclonal antibody IgG1κ	Antineoplastic NHL Pemphigus phase III	Intravenous	CD20
Ocrelizumab			Humanized monoclonal antibody IgG1κ	Disease modifying Multiple sclerosis	Intravenous	CD20
Odulimomab			Murine monoclonal antibody	Disease modifying Transplant rejection Only studied in mice		Lymphocyte function-associated antigen-1 (LFA-1 (CD11a))
Ofatumumab	Arzerra	FDA 2009 EU 2010	Human monoclonal antibody IgG1κ Complement-dependent cytotoxicity (CDC)	Antineoplastic CLL Phase III 10% ORR after ritux Phase II as first line 86% ORR With CHOP 100% ORR with 62% CR	Intravenous	CD20
Olaratumab IMC3G3	Lartruvo	FDA 2016 EU 2016	Human monoclonal antibody IgG1κ	Antineoplastic Sarcoma phase II 2023 Ovarian not beneficial	Intravenous	Platelet derived growth factor receptor alpha (PDGF-Rα)

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Oleclumab MEDI9447		Human monoclonal antibody IgG1λ	Antineoplastic pancreatic phase II 2021 Colorectal cancer Bladder cancer phase I 2020 Breast cancer phase II 2022 NSCLC phase II 2022	Intravenous?	5′-nucleotidase CD73
Olokizumab	Xolair	Humanized monoclonal antibody IgG4κ	Disease modifying rheumatoid arthritis Phase I 2014 phase IIb modified results IL6	Subcutaneous	IgE Fc region
Omalizumab	Xolair	Humanized monoclonal antibody IgG1κ	Disease modifying allergic asthma Urticaria	Subcutaneous	IgE Fc region
Omburtamab		Murine monoclonal antibody IgG1κ	Antineoplastic Neuroblastoma Phase III 2022 Intracerebroventricular treatment	CD276	
OMS721		Human monoclonal antibody	Disease modifying Atypical hemolytic uremic syndrome phase III 2020 Lupus nephritis phase II 2018	Intravenous	Mannan-binding lectin-associated serine protease-2 (MASP-2)
Onartuzumab PRO143966 RO5490258 METMAB		Humanized monoclonal antibody IgG	Antineoplastic	Intravenous	Human scatter factor receptor kinase
Ontuxizumab MORAB-004		Chimeric/humanized monoclonal antibody	Antineoplastic No clinical response	Intravenous	Endosialin tumor endothelial marker-1 (TEM1)
Onvatilimab		Human monoclonal antibody IgG1κ	Disease modifying multiple sclerosis Phase II 2020	Nothing in PubMed	Vista (V-domain immunoglobulin suppression of T activation (VSIR))
Opicinumab BIIB033		Human monoclonal antibody IgG1	Disease modifying multiple sclerosis Phase II 2020	Intravenous	Leucine-rich repeat and immunoglobulin domain containing neurite outgrowth inhibitor receptor interacting protein-1 (LINGO-1) LINGO-1
Drug Name	Other Names	Type	Target	Application	
-----------	-------------	------	--------	-------------	
Oportuzumab	Vicinium Proxinium	Humanized monoclonal antibody fragment scFv	Antineoplastic	Intravesical	
	VB4-845	Bladder phase III	Head and neck cancer		Epithelial cell adhesion molecule (EPCAM) and tumor-associated calcium signal transducer 1 (TACSTD1) and pseudomonas exotoxin A immunotoxin fusion protein (anti-EPCAM antibody fragment-Pseudomonas exotoxin fusion protein)
Oregovomab	OvaRex	Murine monoclonal antibody IgG1κ	Antineoplastic	Subcutaneous	
	MAB-B43.13	Antiidiopathic antibody to ovarian antigen CA-125	Ovarian cancer	Intravenous	
		Not effective in achieving increase RFS or OS	Ovarian phase I 2021 Phase II 2019	CA-125	
Orticumab	Human monoclonal antibody fragment Fab	Disease modifying	Antinflammatory	Oxidized low-density lipoprotein oxLDL	
	RG7418				
Otelixizumab	Chimeric humanized monoclonal antibody IgG1	Disease modifying	Diabetes mellitus type 1	Subcutaneous	
			TTedd phase II	CD3	
			DEFEND-1 phase III failed		
			DEFEND-2 phase III- no real benefit		
Ottilimab	Human monoclonal antibody IgG1λ	Disease modifying	Osteoarthritis, rheumatoid arthritis phase II 2012 Multiple sclerosis phase II 2014	Intravenous	
	MOR103 GSK3196165			Granulocyte-macrophage colony-stimulating factor (GMCSF)	
Otlertuzumab	Humanized monoclonal antibody IgG fragment	Antineoplastic	CLL phase I and II 2014 and 2019	Intravenous	
	TRU-016			CD37	
Oxelumab	Human monoclonal antibody IgG1κ	Disease modifying	Asthma mainly preclinical mice Many clinical studies ongoing leukemia and asthma	Intravenous	
	OX40L R4930 HUMAB OX40L		OX-40 (CD252)		
Ozanezumab	Humanized IgG1	Disease modifying	ALS phase II 2015 ALS no good	Intravenous	
	GSK1223249			Neurite outgrowth inhibitor (NOGO-A)	
TABLE 16.1
Summary of Monoclonal Antibody Therapies.—cont’d

Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Ozoralizumab	ATN 103	Humanized monoclonal antibody	Disease modifying	Subcutaneous	TNF-α
			Rheumatoid arthritis phase II 2012		
Pagibaximab		Chimeric monoclonal antibody	Disease modifying	Intravenous	Lipoteichoic acid
			Staph sepsis low birth weight infants Phase II/III studies 2010		
Palivizumab	Synagis, Abbosynagis FDA 1998 EU 1999	Humanized monoclonal antibody IgG1κ	Disease modifying	Intramuscular	F protein of respiratory syncytial virus
			RSV many phase III studies		
Pamrevlumab FG-3019		Human monoclonal antibody IgG1κ	Disease modifying	Connective tissue growth factor (CTGF)	
			Idiopathic pulmonary fibrosis (IPF), Antineoplastic		
			Pancreatic cancer		
			Muscular dystrophy phase II 2021		
			Diabetes nephropathy		
Panitumumab	Vectibix FDA 2006 EU 2007	Human monoclonal antibody IgG2κ	Antineoplastic	Intravenous	EGFR/erbB-1/HER1
			Metastatic colorectal cancer		
PankoMab-GEX Gatifotuzumab	Humanized monoclonal antibody IgG1κ	Antineoplastic	Intravenous	Tumor-specific glycosylation of MUC1	
Panobacumab 11 AR-101 KBPA-101	Human monoclonal antibody	Antimicrobial Pseudomonas aeruginosa infection	Intravenous	Pseudomonas aeruginosa serotype O11	
MAb/MAb	Description	Therapy	Notes		
---------	-------------	---------	-------		
Parsatuzumab MEGF0444A RG-7414	Human monoclonal antibody IgG1κ	Antineoplastic	Epidermal growth factor-like domain 7 (EGFL7)		
Pascolizumab Pascolizumab RG7415 PRO283698 MLTA3698A	Humanized monoclonal antibody	Disease modifying	IL-4		
Pasotuxizumab Pasotuxizumab	Chimeric/humanized monoclonal antibody fragment	Antineoplastic	No studies	Folate hydrolase/prostate-specific membrane antigen (PSMA)	
Pateclizumab RG7415 PRO283698 MLTA3698A	Humanized monoclonal antibody IgG1κ	Disease modifying rheumatoid arthritis Phase II not as efficacious as adalimumab but had response	Subcutaneous	Lymphotoxin-α	
Patritumab AMG888 U3-1287	Human monoclonal antibody IgG1κ	Antineoplastic	ErbB3 (HER3)		
Spartalizumab PDR001	FDA review possible 2019 Humanized monoclonal antibody	Antineoplastic	Intravenous	PD1, PDCD1, CD279	
Pembrolizumab MK-3475	Keytruda FDA 2014 EU 2015 FDA 2018 for metastatic Merkel cell carcinoma, HCC, NSCLC Humanized monoclonal antibody IgG4κ Humanized monoclonal antibody	Antineoplastic Squamous carcinoma trachea, NSCLC, urothelial (HCC phase II) Melanoma chL, LgB cell lymph Gastric cancer Cervical cancer Hepatocellular carcinoma Intravenous Trials for multiple myeloma discontinued by FDA	PD-1		
Pemtumomab HMFG1 antibody labeled with 90Yttrium	Murine monoclonal antibody Theragyn	Antineoplastic Phase III Europe 2009/US 2013 no benefit after 3.5 years follow-up	MUC1/human milk fat globule antigen 1 (HMFG1)		
Perakizumab	Humanized monoclonal antibody IgG1κ	Disease modifying psoriatic arthritis Phase I discontinued	IL 17A		

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Pertuzumab	Perjeta				
FDA2012	EU 2013				
Odmitarg	Humanized monoclonal antibody IgG1				
		Antineoplastic agent			
	Breast cancer				
	HER2-positive metastatic breast cancer				
	Gastric/breast cancer				
	Phase III gastric				
		Intravenous			
	Extracellular dimerization domain (subdomain II) of the human epidermal growth factor receptor 2 protein (HER2/neu)				
Pexelizumab	Humanized scFv				
	Disease modifying acute myocardial infarctions				
	APEX-AMI trial negative results				
	PRIMO-CABG I and II trials no significant benefit				
	C5				
Pidilizumab	CT-011				
	Humanized monoclonal antibody IgG1κ				
	Antineoplastic				
	Mult myeloma				
	DLBCL				
	Pontine glioma				
	Pancreas				
	Melenaoma				
	HCC				
	Antineoplastic				
		Intravenous			
	PD-1				
Pinatuzumab vedotin	Humanized monoclonal antibody ADC consisting of the microtubule-disrupting agent, monomethyl auristatin E (MMAE), conjugated to an anti-CD22 mAb via the protease-cleavable peptide linker maleimidocaproylvaline-citrulline(vc)-p-aminobenzoyloxy carbonyl				
	Antineoplastic B-cell NHL				
	Phase I study good response				
	Phase II completion 2019				
	Intravenous				
	CD22				
Pintumomab	Murine monoclonal antibody				
	Not therapeutic				
	Diagnostic imaging				
	Adenocarcinoma antigen				
Placulumab	Human monoclonal antibody V-kappa2 FC				
	Disease modifying pain and inflammatory diseases				
	Development discontinued				
	2012				
	Human TNF				
Plozalizumab	Withdrawn by company	Humanized monoclonal antibody IgG1κ	Disease modifying	Intravenous	CC chemokine receptor 2 (CCR2)
MLN1202 HU1D9			Diabetic nephropathy and arteriovenous graft patency	RA no benefit	

| Pogalizumab | MOXR0916 R07021608 Vonlerolizumab | Humanized monoclonal antibody IgG1κ | Antineoplastic | Intravenous | Tumor necrosis factor receptor superfamily member 4 (ACT35, OX40, CD134) |
| | | | Solid tumors phase I 2019 may be safe but may not be effective | No formal manuscripts yet |

| Polatuzumab vedotin | FDA review 2018 | Humanized monoclonal antibody IgG1κ | Antineoplastic | Intravenous | CD79B |
| FCU2711 RO5541077-000 | | | NHL phase II 2019 DLBCL phase III 2023 |

| Ponezumab RN1219 PF-04360365 | Humanized monoclonal antibody IgG2 | Disease modifying Alzheimer’s disease | Intravenous | Human beta-40-amyloid Aβ40 |
| | | Safe but no clinical efficacy 2013 |

| Porgaviximab C2G4 | Chimeric monoclonal IgG1κ | Antinfectious | No known ongoing studies | Zaire ebolavirus glycoprotein |
| | | Ebola virus disease |

| Prasinezumab PRX002 RG7935 RO7046015 | Humanized monoclonal antibody IgG1κ | Disease modifying Parkinson’s disease Phase II 2021 | Intravenous | Anti-alpha-synuclein (NACP) |
| | | |

| Prezalizumab AMG-557 MEDI5872 | Humanized monoclonal antibody IgG2 | Disease modifying SLE phase II 2018 Sjogren’s | Subcutaneous | B7-related protein inducible T-cell costimulator ligand (ICOSL) |

| Priliximab cMT 412 CEN 000029 | Chimeric monoclonal antibody | Disease modifying Crohn’s disease, multiple sclerosis | IN FDA no known studies | CD4 |

| Pritoxaximab | Chimeric monoclonal antibody IgG1κ | Antiinfectious | | E. coli shiga toxin type-1 |

| Pritumumab | Human monoclonal antibody IgG1κ | Antineoplastic | Brain cancer Phase II studies in Japan, could not find literature reportedly increase survivability 10 fold | Vimentin |

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Quilizumab	MEMP1972A	Humanized monoclonal antibody IgG1κ	Disease modifying Asthma phase II 2014 no great benefit Urticaria phase II 2014 no great benefit Allergic rhinitis	Subcutaneous Intravenous	M1 prime segment of membrane bound IgE (IGHE)
Racotumomab	Vaxira	Murine monoclonal antibody IgG1κ	Antineoplastic Nonsmall cell lung cancer phase III 2016 cimavax better (recombinant EGF injection) 2 more months survival over placebo Neuroblastoma phase II 2020	Intradermal Subcutaneous	N-glycolyneuraminic acid gangliosides (NGNA ganglioside)
Radretumab	F16SIP	Human monoclonal antibody Imaging study PET	Antineoplastic Lymphoma brain mets 2012 phae I Stage III NSclC		Fibronectin extra domain-B
Rafivirumab	CR57	Human monoclonal antibody IgG1λ Used in cocktail and with vaccination Antiinfectious Rabies (prophylaxis)	No known studies	Rabies virus glycoprotein	
Ralpancizumab	RN317	Humanized monoclonal antibody IgG2α	Disease modifying Dyslipidemia phase I 2017		PCSK9 (proprotein convertase subtilisin/ kexin type 9, neural apoptosis-regulated convertase 1, NARC1, NARC-1, proprotein convertase 9, PC9)
Ramucirumab	Cyramza	Human monoclonal antibody IgG1κ	Antineoplastic Urothelial phase III done Adenocarcinoma stomach and GE junction phase II 2023 Colorectal cancer NSCLC HCC phase III 2017 no additional benefit	Intravenous	VEGF2
Target	**Monoclonal Antibody**	**Disease/Condition**	**Route**	**Clinical Trials**	**Additional Information**
------------	-------------------------	-----------------------	-----------	---------------------	--------------------------
Nerve growth factor-β (NGF-β)	Veterinary monoclonal antibody IgG1κ canine	Disease modifying	Intravitreal		
Vascular endothelial growth factor A (VEGF-A)	Humanized monoclonal fragment IgG1κ Fab	Disease modifying Macular degeneration (wet form) post market studies phase II	Intravenous		
CD40	Humanized monoclonal antibody IgG1κ	Disease modifying UC phase II 2023	Subcutaneous		
Complement C5 (C5)	Humanized monoclonal antibody IgG2/ IgG4κ	Disease modifying Paroxysmal nocturnal hemoglobinuria (PNH) Phase III 2021 similar to eculizumab, atypical hemolytic uremic syndrome phase III 2021	Intravenous		
Bacillus anthracis protective antigen	Human monoclonal antibody IgG1κ	Antiinfectious Treat inhalation anthrax	Intravenous		
Myelin-associated glycoprotein	Humanized monoclonal antibody IgG1κ	Disease modifying recovery of motor function after stroke Phase II completed 2011 no benefit	Intravenous		
Cytomegalovirus infection	Human monoclonal antibody	Antiinfectious Cytomegalovirus glycoprotein B ONLY STUDIES IN RATS 1994			
Lymphocyte activation gene 3 (LAG3) CD223	Human monoclonal antibody IgG4κ	Antineoplastic Melanoma phase II 2022 Colon cancer phase II 2022 Chordoma phase II 2020 Cannot find manuscripts but company website phase II good results Glioblastoma phase I 2020	Intravenous		
Interleukin 17 alpha, TNF-α	Human monoclonal antibody	Disease modifying RA Phase II 2016 no increased benefit over adalimumab	Subcutaneous		

CHAPTER 16 Passive Monoclonal and Polyclonal Antibody Therapies

References

1. Tan, M., & Zhang, S. (2023). Passive Monoclonal and Polyclonal Antibody Therapies. In J. Smith (Ed.), Advanced Therapies: Delivering a Better Future. Academic Press. pp. 311-320.
| Generic Drug Name | Brand Name | Type of Antibody | AHFS Classification | Dosage Form(s) | Target |
|-------------------|------------|------------------|---------------------|----------------|--------|
| Reslizumab DCP 835 | Cincair FDA 2016 EU 2016 | Humanized monoclonal antibody IgG4κ | Disease modifying Inflammations of the airways asthma completed and ongoing, skin and gastrointestinal tract, polyarteritis stage II 2018 Rhino sinusitis 2020 | Intravenous Subcutaneous | IL-5 |
| Rilotumumab AMG-102 | | Human monoclonal antibody IgG2κ | Antineoplastic Gastric completed phase III 2015 not effective NSCLC phase II 2014 no benefit Glioma phase II no response | Intravenous | Hepatocyte growth factor (HGF) |
| Rinucumab REGN2176 | | Human monoclonal antibody IgG4κ | Disease modifying neovascular age-related macular degeneration phase II 2014 | Intravitreal | Platelet-derived growth factor receptor beta |
| Risankizumab ABBV-066 BI-655066 | FDA/EU pending approval | Humanized monoclonal antibody IgG1κ | Disease modifying Crohn’s disease phase II good, phase III ongoing psoriasis phase II response better than ustekinumab, psoriatic arthritis, and asthma | Subcutaneous | IL23A |
| Rituximab GP2013 IDEC-102 RG-105 | MabThera, Rituxan FDA 1997 EU 1998 | Chimeric monoclonal antibody IgG1κ | Antineoplastic Non-Hodgkin lymphomas, chronic lymphocytic leukemias, some autoimmune disorders, i.e., rheumatoid arthritis, >2K studies ongoing | Subcutaneous | CD20 |
| Rivabazumab pegol | | Humanized monoclonal antibody fragment Fab’ IgG1κ | Antiinfectious | No studies found | Pseudomonas aeruginosa type III secretion system |
| Rmab | Rabishield Made in India | Human monoclonal antibody | Antiinfectious Postexposure prophylaxis of rabies | | Rabies virus G glycoprotein |
| Name | Type | Phase | Tumor Type | Route | Target/Pathway |
|---------------------------|---|-------|------------|-------|--|
| Robatumumab | Human monoclonal antibody IgG1κ | | Antineoplastic | Intravenous | Colorectal phase II 2009 little benefit Ewings no response 2016 |
| Roledumab | Human monoclonal antibody IgG1κ | | Immunomodulation | Intravenous | RHD |
| Romilkimab | Humanized chimeric monoclonal antibody IgG4 bispecific | | Disease modifying | Subcutaneous | Interleukin 13 and IL4 |
| Romosozumab | Humanized monoclonal antibody IgG2κ | | Disease modifying | Intravenous | Sclerostin/scleroscin SOST |
| Rontalizumab rhuMAb IFNalpha | Humanized monoclonal antibody | | Disease modifying | Subcutaneous | IFN-α |
| Rosman-tuzumab OMP-131R10 | Humanized monoclonal antibody IgG1κ | | Antineoplastic | Intravenous | Root plate-specific spondin r-spondin-3 WNT? (wingless/ integrated) |
| Rovalpituzumab tesirine SC0002 SC16LD6.5 ABBV-181 | Humanized monoclonal antibody IgG1κ | | Antineoplastic | Intravenous | Delta-like ligand-3 (DLL3) |
| Rovelizumab Hu23F2G LeukArrest | Humanized monoclonal antibody IgG1κ | | Disease modifying | CD11, CD18 | Hemorrhagic shock, MI stroke phase III goals not met 2000 |
| Rozanolixizumab UCB7665 | Chimeric/humanized monoclonal antibody IgG4κ | | Thrombocytopenia ITP phase II 2019 Myasthenia gravis phase II 2018 | Subcutaneous | Neonatal Fc receptor (FCGRT) |
| Generic Drug Name | Brand Name | Type of Antibody | AHFS Classification | Dosage Form(s) | Target |
|-------------------|---------------------|-----------------------------------|--|--|--|
| Ruplizumab | Antova | Humanized monoclonal antibody | Disease modifying lupus and lupus nephritis not effective Life-threatening thromboembolism | BioDrugs. 2004; 18(2): 95–102. Costimulation blockade in the treatment of rheumatic diseases | CD154 (CD40L) |
| Sacituzumab | FDA/EU pending approval | Humanized monoclonal antibody IgG1κ | Antineoplastic agent Prostate cancer phase II 2021 | Intravenous | Tumor-associated calcium signal transducer 2 (TROP-2) inhibits topoisomerase I |
| Samalizumab | ALXN6000 | Humanized monoclonal antibody IgG2/G4κ | Antineoplastic CLL MM phase I 2010 (terminated by sponsor) AML phase II 2021 | Intravenous | OX-2 membrane glycoprotein (CD200) |
| Samrotamab | vedotin | Chimeric/humanized monoclonal antibody IgG1κ | Antineoplastic no studies found | No studies found | Leucine-rich repeat-containing protein 15 (LRRRC15) |
| Sarilumab | Kevzara | Human monoclonal antibody IgG1κ | Disease modifying rheumatoid arthritis phase III 2015/2020/2027(preg exposure); ankylosing spondylitis Juvenile idiopathic arthritis phase II 2022 | Subcutaneous | IL6 |
| Satralizumab | SA237 | Humanized monoclonal antibody IgG2κ | Disease modifying Neuromyelitis optica phase III 2019/2020 | Subcutaneous? | IL6 receptor |
| Satumomab | CR103 | Murine monoclonal antibody IgGk fragment Fab' | Diagnostic imaging Detection colorectal and ovarian cancer | Intravenous | Tumor-associated glycoprotein (TAG-72) |
| Secukinumab | Cosentyx | Human monoclonal antibody IgG1κ | Disease modifying Uveitis, rheumatoid arthritis psoriasis phase II 2019 over 100 other studies arthritis; psoriatic psoriasis; spondylitis; ankylosing | Subcutaneous | IL 17A |
| Drug Name | Type of Antibody | Use | Route | Other Information |
|----------------------|------------------|--|-----------|---|
| Selicrelumab | Human monoclonal antibody IgG2\(\kappa\) | Antineoplastic Solid tumors phase I 2020 Pancreatic cancer phase II 2020 Colon cancer phase II 2020 Mesothelioma phase I b 2015 | Subcutaneous Intravenous | Tumor necrosis factor receptor superfamily member 5 (CD40) |
| Seribantumab | Human monoclonal antibody IgG2\(\lambda\) | Antineoplastic Breast phase II 2020 Ovarian phase I 2014 | Intravenous | Receptor tyrosine-protein kinase erbB-3 (HER3) |
| Setoxaximab | Chimeric monoclonal antibody IgG1\(\kappa\) | Antinfectious E. coli | No known studies or clinical use | E. coli shiga toxin type-2 |
| Setrusumab | Human monoclonal antibody IgG2 | Disease modifying Osteogenesis imperfecta phase II 2020 | Intravenous | Sclerostin (SOST) |
| Sevirumab | Human monoclonal antibody IgG2 | Antiinfectious CMV retinitis early termination trial secondary to safety Phase II 2003 | | Cytomegalovirus infection |
| SHP647 Ontamalimab | Human monoclonal antibody IgG2\(\kappa\) | Disease modifying Crohn’s/UC phase III 2020—2025 \(\times\) 7 Phase II study 2007 better response in UC than in Crohn (?more time needed to evaluate clinical significance | Subcutaneous | Mucosal addressin cell adhesion molecule (MADCAM) |
| Sibrotuzumab | Humanized monoclonal antibody IgG1\(\kappa\) | Antineoplastic Colorectal cancer phase II 2003 failed Lung cancer 2001 | Intravenous | FAP |
| Sifalimumab | Humanized monoclonal antibody IgG1\(\kappa\) | Disease modifying SLE phase II 2015 Dermatomyositis, polymyositis | Intravenous | IFN-\(\alpha\) |
| Siltuximab | Chimeric monoclonal antibody IgG1\(\kappa\) | Antineoplastic Multiple myeloma phase II 2019 DM type I phase I 2017 Schizophrenia adjunct 2020 phase II Multicentric Castleman’s disease (MCD) with HIV negative and HHV-8 negative | Intravenous | IL-6 |
| Generic Drug Name | Brand Name | Type of Antibody | AHFS Classification | Dosage Form(s) | Target |
|-------------------|------------|------------------|---------------------|---------------|--------|
| Simtuzumab | AB0024 | Humanized monoclonal antibody IgG4κ | Disease modifying Hepatic fibrosis Phase II 2016 no benefit Pulm fibroses phase II 2017 no benefit Myelo fibr 2017 phase II | Subcutaneous | Lysyl oxidase homolog 2 (LOXL2) |
| | GS-6624 | | | Intravenous | |
| Sipilizumab | MEDI-507 | Humanized monoclonal antibody IgG1κ | Antineoplastic | CD2 T Or NK cells | |
| Sirtratumab | vedotin | Human monoclonal antibody | Antineoplastic | Nothing in PubMed or clinical trials | SLITRK6 |
| Sirukumab | vedotin | Human monoclonal antibody IgG1κ | Disease modifying Rheumatoid arthritis Phase III done good results | Subcutaneous | IL-6 |
| Sofituzumab | vedotin | Humanized monoclonal antibody | Antineoplastic Ovarian pancreatic Phase I (2014) | CA-125 | |
| Solanezumab | LY2062430 | Humanized monoclonal antibody IgG1 | Disease modifying Alzheimer’s Phase III study discontinued no effect In preclinical trial for secondary prevention 2022 Hereditary AD phase III 2021 | Intravenous | Beta amyloid |
| Solitomab | MT110-011 | Murine monoclonal antibody bispecific T-cell engager (BiTE) | Antineoplastic Gastrointestinal, lung, and other cancers Phase I 2015 | Intravenous | Epithelial cell adhesion molecule (EpCAM) CD3 |
| | AMG1110 | | | | |
| Sonepcizumab | iSONEP | Humanized monoclonal antibody | Disease modifying Choroidal and retinal neovascularization phase II 2015 not so good Antineoplastic phase II renal cancer 2017 potential | Intravenous | Sphingosine-1-phosphate (S1P) |
| | LT1009 | | | Intravitreous | |
| Stamulumab | | Humanized monoclonal antibody | Disease modifying muscular dystrophy Animal studies, minimal efficacy Phase I/II studies ongoing (no improvement) | Intravenous | Myostatin |
| Name | Code | Type | Field | Status |
|--------------------|-----------------------------|---|--|---|
| Sulesomab | IMMU-MN3 LeukoScan EU 1997 | Murine monoclonal IgG1 fragment Fab’ | Diagnostic Osteomyelitis (imaging) | NCA-90 (granulocyte antigen) |
| Suptavumab | REGN2222 SAR438584 | Human monoclonal antibody IgG1κ | Antiinfectious Medically attended lower respiratory disease phase III 2017 not meet primary endpoint Another study no data yet at 30 mg/kg dose | Intramuscular Resp sync virus fusion protein (RSVFR) |
| Sutimlimab | BIVV009 | Chimeric/humanized monoclonal antibody IgG4κ | Disease modifying cold agglutinin disease phase III 2020 | Intravenous Complement C1s (C1s) |
| Suvizumab | KD-247 | Humanized monoclonal antibody IgG1κ | Antiinfectious HIV Phase I KD-247 2007 | Intravenous Human immunodeficiency virus glycoprotein 120 third variable loop |
| Suvratoxumab | MEDI4893 | Human monoclonal antibody IgG1κ | Disease modifying Nosocomial pneumonia phase II 2018 | Intravenous Staphylococcus aureus alpha toxin |
| Tabalumab | LY2127399 | Human monoclonal antibody IgG4κ | Antineoplastic Rheum arthr phase III 2013 no signif response SLE phase III 2015 endpoints not met Mult myelo phase I 2014 may not treat but be prognostic | Subcutaneous Cytokine B-cell activating factor (BAFF) |
| Tacatuzumab | tetraxetan HAFP-31 | Humanized monoclonal antibody yttrium⁷⁷ | Antineoplastic | No studies in clinical trial or PubMed Alpha-fetoprotein |
| Tadocizumab | C4G1 YM337 | Humanized monoclonal antibody fragment IgG1κ Fab’ | Disease modifying Percutaneous coronary intervention phase I 1999 ?not further developed | Integrin αIIbβ3 |
| Talacotuzumab | CSL362 JNJ-56022473 | Humanized monoclonal antibody IgG1-2κ | Antineoplastic AML phase III 2018 MDS phase II 2019 SLE 2019 phase I | Intravenous Interleukin 3 receptor subunit-α (IL3Rα, CD123) |
| Talizumab | C21/AL-90 TNX-901 | Humanized monoclonal antibody IgG1κ | Disease modifying Peanut allergy Allergic reaction Phase II 2003 good results legal issues shelved the drug | Subcutaneous IgE |
| Generic Drug Name | Brand Name | Type of Antibody | AHFS Classification | Dosage Form(s) | Target |
|-------------------|------------|------------------|---------------------|----------------|--------|
| Tamtuvetmab AT-005 | Tactress | Canine monoclonal antibody IgG2α | Disease modifying Pain Osteoarthritis Back pain Metastatic cancer pain Phase II ~2008 | CD52 |
| Tanezumab RN624 PF-4383119 | FDA review possible 2019 | Humanized monoclonal antibody IgG2 | Disease modifying Antineoplastic Phase I glioblastoma 2020 Breast cancer phase I 2020 AMD murine no human studies found | Nerve growth factor (NGF) |
| Tanibirumab Olinvacimab TTAC-0001 | Human monoclonal antibody IgG1 | Disease modifying Antineoplastic Phase II trial NSCLC no benefit 2017 Pancreatic phase II 2017 | Intravenous | VEFR-2 |
| Taplitumomab paptox | Murine monoclonal antibody IgG1κ | Antineoplastic | No studies pub med or clinical trials | CD19 |
| Tarextumab OMP-59R5 | Human monoclonal antibody IgG2 | Antineoplastic | Intravenous | Notch2/3, Notch receptor |
| Tavolimab MEDI0562 | Chimeric/humanized monoclonal antibody IgG1κ | Antineoplastic Head and neck phase I 2024 Ovarian cancer phase II 2023 | Intravenous | Tumor necrosis factor receptor superfamily member 4 (TNFRS4) OX40L receptor (CD134) |
| Technetium (99 mTc) acritumomab | Rabbit monoclonal IgG | Not for use in humans- research purpose only | | CEA |
| Technicium (99 mTc) Fanolesomab NeutroSpec FDA2004 | Murine monoclonal IgM radiolabeled | Disease modifying osteomyelitis Sales and marketing suspended (2005) **Diagnostic scans for acute appendicitis** | Intravenous | CD15 |
| Tefibazumab INH—H2002 | Humanized monoclonal antibody IgG1κ | Antiinfectious *Staphylococcus aureus* infection Phase II 2006 | Intravenous | Clumping factor A |
| Name | Description | Indication | Status | Target |
|---------------------------|--|---|---|--------|
| Telimomab aritox (TAB-885)| Recombinant murine monoclonal antibody Fab with ricin | Antineoplastic T Cell lymphoma/leukemia | No studies in pub med or clinical trials | CD5 |
| Telisotuzumab vedotin ABT-700 | Humanized monoclonal antibody IgG1κ | Antineoplastic Phase I 2017 SCLC phase II 2022 NSCLC phase II 2021 | Intravenous | Hepatocyte growth factor receptor HGFR |
| Tenatumomab | Murine monoclonal antibody IgG2b | Antineoplastic Phase I 2017 Phase II brain tumors 2010 | Intravenous | P24821, tenascin C |
| Teneliximab | Chimeric monoclonal antibody IgG1 | Not in clinical trials 2009 | CD40 (TNF receptor superfamily member 5) | |
| Teplizumab MGA031 PRV-031 hOKT3g1(Ala-Ala) | Humanized monoclonal antibody IgG1κ | Disease modifying type I DM phase II completion AbATE trial 2019 Psoriasis phase I and II completed 2010 study stopped secondary to injection reaction severe allergy | Intravenous Subcutaneous | CD3 |
| Tepoditamab | Human monoclonal antibody IgG1κ bispecific | Antineoplastic | No studies on PubMed or clinical trials | |
| Teprotumumab RV001 R-1507 RO4858696 HZN-001 | Human monoclonal antibody | Disease modifying Thyroid eye disease phase II 2017 Graves phase III 2020 | Intravenous | |
| Tesidolumab LFG316 NOV-4 | Human monoclonal antibody | Phase I 2017 PNH phase II 2020 AMD phase II 2015 not beneficial | Intravenous Intravitreous | C5 |
| Tetulomab tetraxetan LU-177 | Humanized monoclonal antibody | Antineoplastic Animal studies 2013 | CD37 | |
| Tezepelumab MEDI9929 AMG-157 | Human monoclonal antibody IgG2λ | Disease modifying Asthma, atopic dermatitis Phase II 2017 | Subcutaneous | |

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Theralizumab		Humanized monoclonal antibody	Antineoplastic Solid tumors phase I 2020 Disease modifying Rheum arth, SLE phase II	Intravenous	CD28 History of cytokine storm at higher doses 2006
Tibulizumab		Humanized monoclonal antibody bispecific tetravalent	Disease modifying Autoimmune disorder Phase I 2020	Subcutaneous Intravenous	Human B-cell activating factor of the tumor necrosis factor family interleukin 17 (BAFF)
Tigatuzumab	CS-1008	Humanized monoclonal antibody IgG1κ	Antineoplastic Colon phase II 2011 no added benefit Colon phase I 2013 NSCLC phase II 2011 no benefit Pancreatic phase II 2008 benefit TN breast canc 2015 phase II no added benefit	Subcutaneous Intravenous	Cytokine receptor DR5 (death receptor 5) TRAIL-R2
Tildrakizumab	MK-3222	Humanized monoclonal antibody IgG1κ	Immunologically mediated inflammatory disorders Mod/Severe psoriasis phase III 2018-20	Subcutaneous	IL23
Timigutuzumab		Humanized monoclonal antibody IgG1κ	Antineoplastic	No studies in clinical trial or PubMed	erbB2/HER2
Timolumab	BTT-1023	Human monoclonal antibody	Disease modifying Scler cholang phase II 2019	Intravenous	AOC3
Tiragotumab	MTIG-7192A	Human monoclonal antibody IgG1κ	Antineoplastic Phase I 2020 NSCLC phase II 2021 HL phase II 2019	Intravenous	T-cell IG and immune-receptor tyrosine-based inhibitory motif (TIGIT)
Tislelizumab	China pending approval	Humanized monoclonal antibody	Antineoplastic NSCLC phase III 2020 Gastric phase III 2022 Esophageal cancer phase I 2021 NHL phase II 2020	Intravenous	PCDC1, CD279
Agent	**Type**	**Indications**	**Route**	**Target**	
----------------------------	---------------------------	---	-------------	---------------------------------	
Tisotumab vedotin	Human monoclonal antibody IgG1κ	Antineoplastic	Intravenous	Coagulation factor III	
		Ovary cancer			
		Cervix cancer			
		Endometrium cancer			
		Bladder cancer			
		Prostate cancer			
		Esophagus cancer			
		Lung cancer, NSCLC			
		Squamous cell carcinoma of the head and neck			
		Pancreatic phase II 2022/3			
Tocilizumab	Humanized monoclonal antibody IgG1κ	Disease modifying rheumatoid arthritis	Intravenous	IL-6 receptor	
MRA R-1569 RG-1569 RHPM-1		>100 studies			
R-4877533 Atlizumab		Behcet syndrome			
Tomuzotuximab E-6040	Humanized monoclonal antibody IgG1κ	Antineoplastic Phase I 2019	Subcutaneous		
IDEC-131		Disease modifying rheumatoid arthritis, lupus nephritis etc.		EGFR, HER1	
Toralizumab	Humanized monoclonal antibody IgG1κ	Phase II trials failed with TE			
Tosatoxumab	Human monoclonal antibody IgG1λ	Antiinfectious	No studies PubMed or Clin trials	Staphylococcus aureus α-hemolysin	
Tositumomab and iodine 131	Murine monoclonal antibody IgG2αλ	Antineoplastic Follicular lymphoma (NHL) >100 studies	Intravenous	CD20	
Tositumomab		Phase I/II 2012 Glialoblastoma limited clin activity			
Tovetumab MEDI-575	Human monoclonal antibody IgG2κ	Antineoplastic	Intravenous	Platelet-derived growth factor receptor α (CD140a)	
Tralokinumab CAT-354	Human monoclonal antibody IgG4	Disease modifying asthma phase IIb +/-, atopic dermatitis phase II 2016	Intravenous	IL-13	
			Subcutaneous		

Continued
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)	Target
Trastuzumab 4D5v8 R-597 SYD977	Herceptin FDA 1998 EU 2000 Herceptin Hylecta FDA 2019 — trastuzumab/hyaluronidase Herzuma 2018	Humanized monoclonal antibody IgG1κ	Antineoplastic Breast cancer Gastric and gastro-esophageal junction cancer HER2-positive phase III	Subcutaneous Intravenous	HER2/neu
Trastuzumab Deruxtecan DS-8201	Hercion FDA breakthrough therapy	Antibody drug conjugate humanized antibody IgG1κ with topoisomerase I inhibitor (DXd)	Antineoplastic breast cancer phase I study breast, gastric, colorectal, salivary, and nonsmall cell lung cancer participated in part 2 2020 phase II DESTINY-Breast01		HER2
Trastuzumab emtansine RG-3502 PRO132365	Kadcyla FDA2013 EU 2013	Humanized monoclonal antibody IgG1κ as ADC	Antineoplastic Breast cancer	Intravenous	HER2/neu
TRBS07	Ektomab	3funct	Antineoplastic Melanoma	GD2 ganglioside	Tribbles-related protein (TRB) family members are the mammalian orthologs of Drosophila tribbles. Tribbles was originally identified as a cell cycle regulator during Drosophila development. Tribbles genes are evolutionary conserved, and three TRB genes (TRB1, TRB2 and TRB3) have been identified in mammals. TRBs are considered pseudokinases because they lack an ATP binding site or one of the...
conserved catalytic motifs essential for kinase activity. Instead, TRBs play important roles in various cellular processes as scaffolds or adaptors to promote the degradation of target proteins and to regulate several key signaling pathways. Recent research has focused on the role of TRBs in tumorigenesis and neoplastic progression. In this review, we focus on the physiological roles of TRB family members in tumorigenesis through the regulation of the ubiquitin-proteasome system and discuss TRBs as biomarkers or potential therapeutic targets in cancer.

Antibody	Type	Disease	Phase	Drug Target
Tregalizumab				
BT-061	Humanized monoclonal antibody IgG1κ	Disease modifying	Subcutaneous	
Tremelimumab				
*CP-675,206				
(aka ticilimumab)	Human monoclonal antibody IgG2	Antineoplastic agent	CTLA4 (cytotoxic T lymphocyte-associated antigen 4, CD152)	
Trevogrumab				
REGN1033				
SAR391786	Human monoclonal antibody IgG4κ	Disease modifying		Myostatin, growth differentiation factor 8 (GDF8)
TRL3d3				
3D3	IgG	Studies only in mice to this point		Ati-G protein antibody (RSVG)
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)
-------------------	------------	------------------	---------------------	---------------
Tucotuzumab		Humanized monoclonal antibody IgG1	Antineoplastic Ovarian phase II 2008 Lung, kidney, bladder phase I 2000 no benefit	Intravenous
Tuvirumab		Humanized monoclonal antibody	Antiinfectious	Intravenous
Ublituximab	FDA review pending 2019	Chimeric monoclonal antibody IgG1κ	Antineoplastic Chronic lymphocytic leukemia, follicular cell lymphoma phase II 2020 Disease modifying Multiple sclerosis phase II 2019, phase III 2021 Awaiting result looks good prelim	Intravenous
Ulocuplumab		Human monoclonal antibody IgG4	Antineoplastic CLL phase I 2014 Phase I/II Waldenstrom macroglobulinemia 2025 Phase I/II AML 2021	Intravenous
Urelumab		Human monoclonal antibody IgG4κ	Antineoplastic CLL phase II 2020 Solid tumors phase II 2023	Intravenous
Urtoxazumab		Humanized monoclonal antibody IgG1κ	Disease modifying EHEC animal studies	Subcutaneous
Ustekinumab	Stelara FDA 2009 EU 2009	Human monoclonal antibody IgG1κ	Disease modifying Crohn disease Plaque psoriasis Psoriatic arthritis	Intravenous
Utomilumab		Human monoclonal antibody IgG2	Antineoplastic Diffuse large B-cell lymphoma Phase I 2021 phase II 2020 Breast phase II 2025	Intravenous
Drug Name	Monoclonal or Polyclonal Antibody	Biological Target	Clinical Indication	Route of Administration
---------------------------	----------------------------------	-------------------	--	--------------------------
Vadastuximab	Chimeric monoclonal antibody IgG1\(k\)	Antineoplastic	Acute myeloid leukemia phase II 2017 phase III 2017 MDS phase II 2017	Intravenous
Vanalimab Vanucizumab	Humanized monoclonal antibody IgG1\(\lambda\)	Antineoplastic?	No studies clinical trial or PubMed	Intravenous
Mitazalimab Vantictumab	Humanized monoclonal antibody IgG2mab	Antineoplastic	Prostate cancer	Intravenous
Vandalotuzumab Vedolizumab	Humanized monoclonal antibody IgG1\(k\)	Antineoplastic	NSCLC, breast phase I 2017	Intravenous
Vapaliximab	Chimeric monoclonal antibody IgG2\(\kappa\)	No studies in PubMed or clinical trials	Vascular adhesion protein AOC3 (VAP-1)	
Varisacumab	Human monoclonal antibody IgG1\(k\)	No studies in PubMed or clinical trials	VEGF-A	
Varilumab	Human monoclonal antibody IgG1\(k\)	Antineoplastic	Solid tumors and hematologic malignancies Phase I 2017, phase II 2019/20 Melanoma phase II 2018/21	Intravenous
Vatelizumab	Humanized monoclonal antibody IgG4	Disease modifying	UC phase II 2016 MS phase II 2016 withdrawn lack of efficacy	
Vedolizumab LDP02 MLN02	Humanized monoclonal antibody IgG1\(k\)	Disease modifying	Crohn disease Ulcerative colitis In CD resolution extraintestinal manifestations	Intravenous
Generic Drug Name	Brand Name	Type of Antibody	AHFS Classification	Dosage Form(s)
-------------------	------------	------------------	---------------------	----------------
Veltuzumab IMMU-106 HA20		Humanized monoclonal antibody IgG1κ	Antineoplastic Non-Hodgkin’s lymphoma phase II 2013 ITP phase II 2016	Subcutaneous
Vepalimomab		Murine monoclonal antibody		
Vesencumab MNRP1685A		Human monoclonal antibody IgG1mab	Antineoplastic Solid malignancies Phase I 2011 proteinuria	
Visilizumab Nuvion		Humanized monoclonal antibody IgG2	Disease modifying Prevent GVHD Not effective in UC	
Vobarilizumab		Humanize monoclonal scFv	Disease modifying inflammatory autoimmune diseases	Nothing in PubMed
Volociximab M200		Chimeric monoclonal antibody IgG4κ	Antineoplastic Solid tumors NSCLC phase I/II 2010 Disease modifying phase I AMD terminated no results	
Vopratelimab JTX-2011		Humanized monoclonal antibody IgG1κ	Antineoplastic Solid tumors phase II 2022	Intravenous
Vorsetuzumab mafodotin H1F6 SGN-70		Humanized monoclonal antibody	Antineoplastic Phase I 2017	Intravenous
Votumumab	HumaSPECT Diagnostic EU 1998 Withdrawn from market 2003	Human monoclonal antibody	Diagnostic	Human colon cancer imaging
Antibody Name	Type	Disease Type	Phase	Route
-------------------	---	-------------------------------	-------	----------------
Vunakizumab (SHR-1314)	Humanized monoclonal antibody IgG1	Disease modifying Psoriasis	Phase II 2019	Subcutaneous
Xentuzumab (BI-836845)	Humanized monoclonal antibody	Antineoplastic Breast, prostate, solid	Phase I 2019	Intravenous
XMAB-5574	Humanized monoclonal immunoglobulin fragment κ Fc	Antineoplastic Diffuse large B-cell lymphoma	Phase II 2015/18/19/22, Phase III 2022	Intravenous
Zalutumumab 2F8 (HUMAX-EGFR)	Human monoclonal antibody	Antineoplastic Squamous cell carcinoma of the head and neck	Phase II 2011, Phase III 2016	Intravenous
Zanolimumab	Humanized monoclonal antibody IgG1κ	Antineoplastic CTCL	Phase II good results Phase III suspended by company?	Intravenous
Zenocutuzumab	Humanized monoclonal antibody IgG1 bispecific epidermal growth factor receptors her2,her3	Antineoplastic	ERBB3, HER3	
Ziralimumab	Human monoclonal antibody IgM	Disease modifying immunosuppressive	No studies clinical trials or PubMed	CD147 (basigin)
Zolbetuximab IMAB362	Chimeric monoclonal antibody IgG1κ ADCC enhance antibody	Antineoplastic gastric cancer	Phase I, IIb, Phase III 2023	Intravenous
Zolimomab aritoxy H65-RTA ZX-CD5	Orthoyme CD 5 plus Human monoclonal antibody IgG1	Disease modifying	Not effective in preventing GVHD 1994	CD5

Auristatins are water-soluble dolastatin analogs of dolastatin 10. Dolastatin 10 belongs to dolastatin family and it can powerfully bind to tubulin, thus inhibiting polymerization mediated through the binding to the vinca alkaloid-binding domain, and causes cell to accumulate in metaphase arrest.
Ankylosing Spondylitis
Certolizumab pegol is also approved for use with ankylosing spondylitis.

Systemic Lupus Erythematosus
Belimumab (Benlysta) is a human Mab (IgG1) that binds to B-cell activating factor and acts as a B-lymphocyte stimulator-specific inhibitor. It was approved by the FDA in 2011 for treatment of adult patients with active, autoantibody-positive SLE receiving standard therapy. This medication also decreases episodic frequency of lupus nephritis.281–283

Cardiovascular Disease
Despite marked improvement in survival from cardiovascular disease, this illness remains the number one cause of mortality in the US. This process causes injury to the endothelium of blood vessels of the heart secondary to toxins, accumulation of cholesterol, or chronic low-grade inflammation. Treatment has been preventive, primarily during actual injury or following injury. Therapies involve changes in behavior (diet, exercise, and cessation of tobacco use), pharmacologic to control contributing underlying illness (hypercholesterolemia, hypertension, diabetes type I and II), to diminish injury through thrombolytics, stents, vasodilators, supplemental oxygen, or to control sequelae of infarctions (cardiac dysfunction/failure). Passive antibody therapies are being tried to decrease the effects of some of the contributing factors of atherosclerotic plaque formation.

Abciximab (ReoPro) is a chimeric recombinant monoclonal fragment (IgG1 Fab') with specificity to platelet glycoprotein Ib/IIa receptor (CD41 7E3)/Integrin α-Ⅱbβ3 that prevents platelets from binding to fibrinogen. This Mab also prevents coagulation factor XIII from binding to platelets allowing stabilization of clots and are more easily lysed. The Fc portion of the antibody is removed to decrease thrombocytopenias. This antibody is used during high-risk coronary interventional to prevent clot formation and cardiac ischemia.284

Alirocumab (Praluent) is a human Mab (IgG1) with specificity to proprotein convertase subtilisin/kexin type 9. This medication is used to control cholesterol levels in patients at high risk for cardiovascular events and in patients with familial hypercholesterolemia who are not controlled by other agents.285–287

Evolocumab (Repatha) is a human Mab (IgG2a) FDA approved for the treatment of hypercholesterolemia in patients with familial hypercholesterolemia or history of cardiovascular disease. This Mab has specificity to PCSK9. This medication reduced low-density lipoprotein (LDL) and cholesterol levels by 60% even after statin therapy. Hazard ratios for primary and secondary endpoints were less than one (～0.80–0.85) with fewer cardiovascular-related death or infarction and stroke.288,289

Under future watch is frovocimab (LY3015014) a humanized Mab (IgG4k) with specificity to PCSK9 that completed phase I and II trials. There was up to 50% reduction in LDL cholesterol levels. Phase III studies have yet to be performed.290

An additional antibody is lodelcizumab a humanized Mab (IgG1x); however, no studies were found in clinicaltrials.gov or in Pubmed searches.

Bococizumab is a humanized Mab (IgG2x) that was in phase III trial, which was discontinued secondary to primary endpoints not being achieved.291

NEUROLOGIC DISEASES
Besides autoimmune and malignant diseases of the neurologic system, there are also diseases of the central nervous system classified as degenerative. Such diseases include supranuclear palsy (SNP), Alzheimer’s, and Parkinson’s. Alzheimer’s is likely the most common cause of dementia first described in 1907. This disease may be depicted as presenile or senile dementia and progresses at a similar rate no matter age of onset. This disease has a genetic predisposition causing it to occur in younger age groups. Histological changes include diffuse plaques (containing amyloid), neurofibrillary plaques, and neuronal loss especially in the hippocampus and temporal regions. Medical management may reverse some of the symptoms but does not prevent disease progression. Parkinson’s is a mainly sporadic degenerative disease with a gradual progressive course mainly affecting motor function more than memory. It was first described in 1817. This is a disease of the substantia nigra characterized by loss of melanin containing nerve cells and eosinophilic intracytoplasmic inclusions. Aside from emotional support and physical therapy, medical therapy is used to decrease tremors including anticholinergic drugs for tremors at onset, beta blockers for intention tremors, and levodopa for postural imbalance and akinesia. Deep brain stimulation is also used to treat symptoms later on as disease progresses. SNP starts in the same age range as Parkinson’s (middle to later in life) that was first described in 1963 with disturbances in gait and balance secondary to rigidity of trunk muscles. Loss of neurons and gliosis is seen in the midbrain. Medical treatment is relatively unsuccessful. Multiple sclerosis is a demyelinating disease most often seen in young adults. The clinical
manifestations are diverse and the progression can be chronic, acute, or remitting and relapsing. Medications and therapeutic plasma exchange have been used to treat this debilitating disease with limited efficacy. Clinical trials are ongoing looking at Mab therapies for treatment of these four neurologic degenerative diseases.

Multiple Sclerosis

Alemtuzumab (Lemtrada) is a humanized Mab (IgG1κ) targeting CD52 that depletes lymphocytes (B and T cell) as reported earlier and is FDA approved for treatment of acute relapsing and remitting multiple sclerosis.

Ocrelizumab (Ocrevus) is a humanized Mab (IgG1κ) with specificity to CD20 (a B-cell membrane protein). In phase II trials, there were decreases in brain lesions on imaging, and decrease rate of disability decline in primary progressive multiple sclerosis.

Natalizumab (Tysabri) is a monoclonal IgG4κ humanized antibody with specificity to cell adhesion molecule (CD62L) that is FDA approved for relapsing multiple sclerosis.

The mabs to watch out for in the future and are in clinical trials include anifrolumab a human monoclonal antibody in phase I trials; elezanumab is a human Mab (IgG1λ) with specificity to repulsive guidance molecule family member-A that is in phase II trials to be completed 2021; and finally inebilizumab (MEDI-551) is a humanized monoclonal antibody (IgG2κ) with specificity to CD19 (a B-cell lymphocyte protein). This Mab mechanism of action is via ADCC and has completed phase I trials with good safety profile and response in decreasing lesions seen on contrast enhanced magnetic resonance imaging. Otilimab (MOR103) is a human Mab (IgG1λ) completing phase I studies with good safety profile that targets granulocyte-macrophage colony-stimulating factor. Ublituximab is in phase II clinical studies to be completed in 2019, and phase III studies are scheduled to be completed in 2021. This Mab is a chimeric Mab (IgG1κ) with specificity to CD20 MS2A1.

Additional Mab have serious adverse effects such as daclizumab a humanized monoclonal (IgG1κ) with specificity to (CD25 {IL-2Rα}); or are ineffective as is opicinumab a human Mab IgG1 with specificity to Leucine-rich repeat and immunoglobulin domain containing neurite outgrowth inhibitor receptor interacting protein-1 which in a phase II trial was no more beneficial than placebo in treating optic neuritis in multiple sclerosis patients.

Alzheimer’s Disease

Aducanumab is a human Mab IgG1 with specificity to β-amyloid (N-terminus 3–6) soluble oligomers and insoluble fibers. Phase III clinical trials are ongoing since 2015.

BAN-2401 is a humanized Mab IgG1 with specificity to β-amyloid fibrillary and soluble β amyloid and is in phase IIb clinical studies since 2013.

Gosuranemab (BIIB092, IPN-007) is a humanized Mab IgG4κ with specificity to the tau protein and is in clinical trials to treat Alzheimer’s disease scheduled to be completed in 2021. Gosuranemab is also in phase I studies to treat progressive suranuclear palsy and will be completed in 2020.

Crenezumab (RG7412, MABT5102A) is a humanized Mab IgG4 with specificity to 1–40 β-amyloid and is on phase III studies scheduled to be completed in 2021 and 2022.

Gantenerumab (R04909832, R1450) is a human Mab IgG1κ with targets β-amyloid. This Mab on initial phase III studies was found to be ineffective. Ongoing phase II/III trials are currently in place at higher dosing in a clinical population of people with autosomal dominant form of Alzheimer’s disease.

Solanezumab (LY2062430) is a humanized Mab IgG1 with specificity to beta amyloid. Initial phase III trials discontinued for lack of efficacy in preventing Alzheimer’s disease. Ongoing phase III trials are now in place for secondary prevention of this disease and will be completed in 2021 and 2022.

Mab antibodies studied and were ineffective include bapineuzumab, gantenerumab (R04909832, R1450), and ponezumab (RN1219, PF-04,360,365).

Parkinson’s Disease

Prasinezumab (PRX002, RG7935, RO7046015) is a humanized Mab IgG1κ with specificity to α-synuclein. This Mab is in phase II clinical trials to treat Parkinson’s and will be completed in 2021.

ALLERGIC DISEASES

Allergic reactions develop because of immunologic stimulation of IgE antibodies followed by their interaction with allergens and mast cells. Effects can be local (dermatitis) or systemic (respiratory, cardiovascular, and gastrointestinal). Treatment is either avoidance of the allergens or supportive therapy in acute allergic reactions including pharmacologic treatment with type 1 and 2 histamine blockers, glucocorticosteroids, and if life-threatening epinephrine. Passive antibody therapies are being studied and approved to curtail severe reactions.
Asthma
Asthma affects 24 million individuals in the US, and up to 10% of asthma patients have severe disease that may be uncontrolled despite high doses of standard-of-care asthma medications requiring additional use of chronic oral corticosteroids. Benralizumab (Fensensa) is a humanized Mab (IgG1k) with specificity to CD125 (IL-5Rα). This Mab is approved to treat severe asthma of the eosinophilic subtype in ages 12 and older. Its mechanism of action is to decrease the number of eosinophils via ADCC. Basophils are also depleted.303

Atopic Dermatitis
Dupilumab (Dupixent) is a human monoclonal gG4 antibody with specificity to interleukin-4 receptor subunit-alpha (IL-4Rα) that is approved to treat severe atopic dermatitis in adults.304

COAGULOPATHY AND OTHER BENIGN HEMATOLOGIC DISEASES
Coagulopathies are usually either autoimmune or genetic. In factor VIII deficiency, recombinant factor VIII is used to replace lack of this protein. However, patients may develop antibodies to factor VIII leading to high titers of inhibitors. Furthermore, patients without deficiency may also develop autoantibodies to factor VIII de novo leading to coagulopathies. Other factor combinations as well as recombinant active factors have been created to overcome these inhibitory antibodies. Mabs with bispecific binding are also being researched as another avenue for treatment.

ITP can lead to critical low platelet levels increasing risk for severe bleeding. ITP can occur in both adult and pediatric settings as it is considered an autoimmune disease. Typically, this is treated with steroids and IVIG. In addition, as mentioned earlier, RhD+ patients have benefitted from polyclonal medications directed against the D antigen. Recently, Mab to treat this disease have been developed and will be discussed next.

Thrombotic thrombocytopenic purpura (TTP) is a blood disorder that does not lead to bleeding but to development of diffuse thrombi in small blood vessels. More often, this disorder is secondary to an inherited deficiency of ADAMTS-13. This patient population with congenital deficiency is managed with transfusion of FFP to replace the deficient enzyme. Acquired TTP is typically treated with therapeutic plasma exchange (TPE). This treatment modality removes the inhibitory antibody and ultralarge vWF multimers. Similarly, TPE will replete the missing enzyme. Immunosuppressive agents may be added if only TPE is not effective. A Mab preventing interaction of vWF and platelets was recently approved for use in treating this disorder.305,306 Caplacizumab-yhdp (Cablivi) is a humanized single-variable-domain immunoglobulin (Nanobody) that inhibits the interaction between ultralarge vWF multimers and platelets and is directed against vWF. It induces a faster response to therapy with TPE and decreases relapse with continued use during TPE. This medication is then used post-TPE treatment until immunological evidence of disease is controlled to prevent relapse.305,307,308 This medication was FDA approved for use in TTP in 2019.

Atypical hemolytic uremic syndrome (aHUS) is a disorder of the complement system due to uncontrolled activation. This disorder presents with thrombocytopenia, thrombi, and renal dysfunction. Historically, this illness was treated with TPE; however, end-stage renal failure occurred in 30% of patients and about 65% mortality in subsequent relapses with increasing incidence of renal failure. There are now two monoclonal antibodies approved for the treatment of aHUS. Refer to Table 16.1.

Sickle Pain Crisis
In sickle cell disease, one of the frequent complications is pain crises. This is usually treated with analgesics, oxygen, hydration, and transfusions (simple or exchange). Monoclonal antibodies are being developed to treat pain crises in sickle cell patients in both adult and pediatric populations. Crizanlizumab is a humanized Mab (IgG2k) with specificity to selectin P. One phase II trial was completed in 2016 and three additional phase II studies will be completed between 2021 and 27 to treat vasoocclusive pain crisis. This medication may be under FDA review as early as 2019.309,310

INFECTIONS
Antimicrobials have historically been developed against a variety of viral, bacterial, fungal, and parasitic infections. These pharmaceuticals target differences from human cells of these particular organisms such as cell wall or membrane structure, genetic make-up, transcription/translation of genetic material, or metabolic pathways.
Often organisms develop resistance to entire categories of these medications. Earlier in the chapter, passive polyclonal antibodies were discussed in the treatment of some of these infectious agents and we will now discuss research in monoclonal therapies to pathogenic microorganisms.

Clostridium difficile

Enterocolitis from *Clostridium difficile* is a community or hospital acquired infection increasing morbidity and mortality in those that acquire it. Treatment is supportive or with fecal transplants or antibiotics. Bezlotoxumab (Zinplava) is a human Mab (IgG1) with specificity to *Clostridium difficile*’s B toxin. It is used to treat pseudomembranous colitis and prevent *C. difficile* re-infection.

Actoxumab, a monoclonal antibody against *C. difficile* toxin A, has shown not to be clinically significant.

Respiratory Syncytial Virus

Respiratory syncytial virus (RSV) infects almost all children by 2 years old and poses extra risk in preterm infants. Supportive therapy, RSV-IG or IVIG, and antiviral therapy have been used to mitigate the sequelae of this infection with optimal response yet to be seen. No vaccines have yet to be developed for this infection. Recently, monoclonal antibodies have been FDA approved or are undergoing preclinical trials to treat this infectious process and include palivizumab, Nirsevimab (MEDI8897), TRL3d3 (3D3), and ALX-0171.

Not beneficial or safe in use for RSV: motavizumab, Supatavumab (REGN2222, SAR438584).

Influenza virus

Influenza is a worldwide respiratory infectious problem with cyclic epidemics yearly. Supportive therapy, yearly vaccinations, and antivirals are used to decrease the morbidity and mortality caused by this sometimes virulent pathogen. Both polyclonal and monoclonal therapies are being evaluated to better treat these infections. Mabs in preclinical trials include diridavumab (CR6262), firiivumab, gedivumab (RG7745, RO6876802), lesofavumab (RG70026), and Navivumab (CT-P27).

Rabies

Rabies is a devastating viral infection with swift mortality if not treated quickly after initial exposure. Vaccines usually react too slowly and have to be combined with polyclonal IVIG infusions. Monoclonal therapy was previously studied but usually the virus mutates quickly and the infection is not controlled. More recently, in clinical trials, cocktails of Mabs are being tried to more closely mimic the benefits of polyclonal therapies. These Mabs include foravirumab, rafivirumab (CR57), and Rmab.

Hepatitis B virus

HBV is one of if not the most common infections in the world. Even though antivirals are available and effective, only recently they have they been widely used in the infant population and not just “high”-risk individuals. Mabs to treat this infection that are being investigated include libivirumab. Mab that is not found to be effective is tuvirumab.

Ebola

Ebola is a relatively rare but devastating hemorrhagic infection. Most care is supportive with various studies being performed to prevent/mitigate this disease. Vaccines are under development as well as passive polyclonal therapies. Mab therapies being developed or studied include porgaviximab (C2G4), cosfroviximab, and larcaviximab.

For these and other bacterial, fungal, and viral anti-infectious agents, information may be found in Table 16.1.

IMMUNOMODULATION

In solid organ transplants, cellular or humoral immunity can develop against the transplant leading to acute or chronic rejection. An additional complication with these and stem cell transplants is severe GVHD. In the past, these transplant complications were treated with high-dose glucocorticosteroids, immunosuppressive medication, chemotherapeutic agents, IVIG, or T-cell lymphocytic specific immunoglobulins. Recently, Mabs have been added to this armamentarium to better control these adverse reactions to transplantations.

Basiliximab (Simulect) is a chimeric Mab (IgG1κ) with specificity to CD25 IL-2α. The only FDA-approved indication for this medication is prophylaxis of acute rejection in renal transplant patients. There are multiple ongoing studies of this biological for other organ transplants including liver, lung, and heart as well as for inflammatory/immunologic diseases such as GVHD following stem cell transplantation, ulcerative colitis, and uveitis.

Belatacept (Nulojix) is a soluble fusion protein consisting of the modified extracellular domain of CTLA-4 fused to the Fc domain of a recombinant human Mab
IgG1. This Mab selectively inhibits T-cell activation through costimulation blockade binding to both CD80 and CD86 while blocking CD28 via tighter binding than its parent antibody abatacept. Refer to Table 16.1.

METABOLIC SYNDROMES
Hypercholesterolemia is associated with increased risk for cardiovascular disease/atherosclerosis secondary to inherited or dietary etiologies. Diet and exercise are used to treat mild forms of these disorders. Medications such as nicotinic acid, fibrates, bile acid binding resins, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors are used for more severe forms of these disorders. Phase III studies have been completed with monoclonal antibodies for patients’ refractory to the previously mentioned forms of therapy.

Hypophosphatemia
Burosumab (KRN23, Crysvita) is a human Mab IgG1κ with specificity to phosphaturic hormone fibroblast growth factor 23 (FGF 23). This hormone is a regulator of phosphate and vitamin D homeostasis. FGF23 inhibits the enzyme CYP27B1 and stimulates CYP24A1, thereby reducing circulating levels of 1,25-dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D. This medication is FDA approved for the treatment of X-linked hypophosphatemic rickets.320,321

Osteoporosis
Denosumab (Prolia) is an FDA-approved human Mab (IgG2) that is a receptor activator of nuclear factor κB ligand that inhibits development and activity of osteoclasts. As Prolia, this medication is used to prevent or treat osteoporosis in women.322–324 This medication under the trade name Xgeva is also used to prevent skeletal-related events in adults with bone metastasis from breast, prostate cancers, and multiple myeloma.325,326

ENDOCRINE DISORDERS
Diabetes may be classified as primary or secondary. In this chapter, we will be mainly interested in both insulin-dependent (Type I) and insulin-independent types (Type II). Type I diabetes mellitus is generally secondary to loss of β cells in the islets of Langerhans and subsequent loss of insulin production. Type II typically is secondary to decreased sensitivity to the effects of insulin. In type I, insulin is replaced exogenously depending on glucose levels. In type II, medications are given to stimulate islet cells to produce more insulin. Mabs are being developed to potentially mitigate the autoimmune process leading to Type I diabetes mellitus or the sequela of renal failure often seen with this disease. For type II, Mabs are being investigated to potentially decrease body mass index and thus decrease disease severity. Refer to Table 16.1.

OTHER CLINICAL DISORDERS
Age-related macular degeneration (AMD) is the leading irreversible cause of visual loss affecting the elderly. Two forms include a dry form with deposits in the macula or a wet form involving abnormal growth of blood vessels. The wet form, even though less frequent, is associated with more severe visual acuity loss. Antiangiogenic drugs or laser treatments are used to slow the progression or even partially reverse visual loss. Some trials have been completed while others are ongoing using Mab to treat the wet form of AMD. Brolucizumab was found as good as if not better than aflibercept in a phase III clinical trial.327

Cryopyrin-associated periodic syndromes (including familial cold auto-inflamatory syndrome and Muckle-Wells syndrome); tumor necrosis factor receptor-associated periodic syndrome (TRAPS); hyperimmunoglobulin D Syndrome (HIDS)/mevalonate kinase deficiency and familial Mediterranean fever (FMF) may also respond to canakinumab.328

POTENTIAL FUTURE USES OF MONOCLONAL ANTIBODIES AND THEIR TARGETS
Passive antibody therapy continues to be useful clinically whether polyclonal or monoclonal therapy is implemented. Increased utilization of the classic polyclonal antibody preparations continue especially in the realm of infections. In the past 3 years, monoclonal therapy has evolved and revolutionized treatment in many areas. As targets are identified to modify disease pathology no matter its genre we continue to get a better handle on morbidity and mortality. We are learning that not only is the target important but the portion of the target mediating the effect we intend to modify is also important. Importantly, modification of antibodies to be more compatible with the immune system while decreasing rapidity of clearance also allows for more consistent therapy. There are also many targets yet to be discovered or only now being developed as in the canonical wingless/integrated (WNT) signaling. This receptor family is important in a multitude of diseases not limited to: hereditary colorectal cancer,
TABLE 16.2
Summary of Polyclonal Antibody Therapies.

Generic Drug Name	Brand Name	Additional Brand Names	AHFS Classification	Dosage Form(s)	Restricted Medication
Antithymocyte globulin (equine)	Atgam		Immunosuppressive agent	Intravenous solution	
Antithymocyte globulin (rabbit)	Thymoglobulin		Immunosuppressive agent	Intravenous solution	
Antivenin *Latrodectus mactans*	Black widow Antivenin		Serums	Intravenous solution	
Antivenin *micrurus*	Eastern and Texas coral Snake Antivenin		Serums	Intravenous solution	
Botulism immune globulin	BabyBIG		Serums	Intravenous solution	
Crotalidae polyvalent immune Fab	Crofab		Serums	Intravenous solution	
Cytomegalovirus immune globulin	Cytogam		Serums	Intravenous solution	Yes
Digoxin immune Fab	Digibind		Serums	Intravenous solution	
Hepatitis B immune globulin	Hepagam-B		Serums	Intramuscular solution, Intravenous solution	
Hepatitis B immune globulin	BayHepB	HepaGam B, Hyper Hep B, Nabi-HB		Intravenous solution	
High antibody titer Ebola FFP					
High antibody titer influenza FFP					

Continued
Generic Drug Name	Brand Name	Additional Brand Names	AHFS Classification	Dosage Form(s)	Restricted Medication
Immunoglobulin (generic)	Gamunex	Vivaglobin, Cuvitru, Privigen, gammagard, octagam, gamunex, hizentra, Bivigam, Carimune, Flebogamma, Gamastan, Gamimune, Gammplex, gammar, Panglobulin, Panzyga, Sandoglobulin	Injection, Subcutaneous	Intravenous, Subcutaneous	Treat XLA, CVID, Hyper IgM syndromes, Wiskott Aldrich syndrome
Rabies immune globulin	Bayrab	HyperRAB, Imogam rabies, KedRAB			
Respiratory syncytial virus immune globulin	RespiGam				
Rho (D) immune globulin	WhinRho	Rhophylac, MicRhoGAM, BatRhoD, HyperRho	Serum,	Intravenous, intramuscular solutions	
Rimabotulinumtoxin B	Myobloc	Other Miscellaneous Therapeutic agents	Injection solution		
Rozrolimupab	Myobloc	Anti-RhD	Injection solution		
Tetanus immune globulin	Baytet	Hypertet			
Varicella zoster immune globulin	VariZIG				

Searched sites for table information. Monoclonal. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm. https://fdasis.nlm.nih.gov/srs/. https://clinicaltrials.gov/ct2/. https://www.ncbi.nlm.nih.gov/pubmed/. https://chem.nlm.nih.gov/chemidplus/m. https://druginfo.nlm.nih.gov/drugportal/. https://www.creativebiolabs.net/.
various types of sporadic cancers, intellectual disability syndrome, Alzheimer’s disease, bipolar disorder, bone diseases, and vascular diseases. One monoclonal antibody rosmantuzumab (OMP-131R10), a humanized Mab (IgG1x), is in phase I trials to treat colorectal cancer. Other disease processes have yet to find their optimal therapy (Alzheimer’s) or are advancing to fuller therapeutic benefit. The future is wide open for this newer class of pharmaceuticals as they continue to develop to full fruition.

REFERENCES
1. Sangstat Medical Corporation. Thymoglobulin; (Antithymocyte Globulin [rabbit]) Prescribing Information. Menlo Park, CA. December 1998.
2. Ormrod D, Jarvis B. Antithymocyte globulin (rabbit): a review of the use of Thymoglobulin in the prevention and treatment of acute renal allograft rejection. BioDrugs. 2000;14:255–273.
3. Kalamazoo, MI. Pharmacia. Atgam Prescribing Information. June 2000.
4. The Upjohn Company. Drug Reference: Atgam. Kalamazoo, MI. November 1981.
5. Cosimi AB. The clinical value of antilymphocyte antibodies. Transplant Proc. 1981;13:462–468.
6. Cosimi AB. The clinical usefulness of antilymphocyte antibodies. Transplant Proc. 1983;15:583–589.
7. Cho SI, Bradley JW, Carpenter CB, et al. Antithymocyte globulin, pretransplant blood transfusion, and tissue typing in cadaver kidney transplantation. Am J Surg. 1983;145:464–471.
8. Nelson PW, Cosimi AB, Delmonico FL, et al. Antithymocyte globulin as the primary treatment for renal allograft rejection. Transplantation. 1983;36:587–589.
9. Nowygrod R, Appel G, Hardy MA. Use of ATG for reversal of acute allograft rejection. Transplant Proc. 1981;13:469–472.
10. Hardy MA, Nowygrod R, Elberg A, et al. Use of ATG in treatment of steroid-resistant rejection. Transplantation. 1980;29:162–164.
11. Simonian SJ, Lyons P, Chvala R, et al. Reversal of acute cadaveric renal allograft rejection with added ATG treatment. Transplant Proc. 1983;15:604–607.
12. Gaber AO, First MR, Tesi RJ, et al. Results of the double-blind, randomized, multicenter, phase III clinical trial of Thymoglobulin versus Atgam in the treatment of acute graft rejection episodes after renal transplantation. Transplantation. 1998;66:29–37.
13. Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of Thymoglobulin versus Atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation. 1999; 67:1011–1018.
14. Lance EM. Mode of action of antilymphocyte serum. Fed Proc. 1970;29:209–211.
15. Martin WJ, Miller JFAP. Site of action of antilymphocyte globulin. Lancet. 1967;2:1285–1287.
16. Levey RH, Medawar PB. Nature and mode of action of antilymphocytic antiserum. Proc Natl Acad Sci USA. 1966;56:1130–1137.
17. Wohlman MH, Toledo-Pereyra LH, Zeichner WD. The immunosuppressive properties of antilymphocyte serum preparations: a current review. Dial Transplant. 1981;10:9–19.
18. Zimmerman B, Tsui F. Immunosuppressive antilymphocyte serum: different subpopulations of T lymphocytes are influenced at different doses of antilymphocyte serum. Transplantation. 1979;28:323–328.
19. Bach JF. Mechanism and significance of rosette inhibition by antilymphocyte serum. In: Bach JF, Dormont J, Eyquem A, et al., eds. International Symposium on Antilymphocyte Serum; Symposium Series on Immunobiology Standardization. Vol. 16. New York: S Karger; 1970:189–198.
20. Pirrofsky B, Beaulieu R, Bardana EJ, et al. Antithymocyte antiserum effects in man. Am J Med. 1974;56:290–296.
21. Greco B, Bielory L, Stephany D, et al. Antithymocyte globulin reacts with many normal human cell types. Blood. 1983;62:1047–1054.
22. Bonifazi F, Solano C, Wolchke C et al. GVHD prophylaxis plus ATLG after myeloablative allogeneic haemopoietic peripheral blood stem-cell transplantation from HLA-identical siblings in patients with acute leukaemia in remission: final results of quality of life and long-term outcome analysis of a phase 3 randomised study. The Lancet. Hematology. ISSN: 2352-3026, Vol: 6, Issue: 2. Page: e89-e99. https://doi.org/10.1016/S2352-3026(18)30214-X
23. Champlin RE. Treatment of aplastic anemia. pp. 480–483. In: Gale RP, moderator. Aplastic anemia: biology and treatment Ann Intern Med. 1981;95:477–494.
24. Champlin R, Ho W, Gale RP. Antithymocyte globulin treatment in patients with aplastic anemia. N Engl J Med. 1983;308:113–118.
25. Cheeseman SH, Rubin RH, Stewart JA, et al. Controlled clinical trial of prophylactic human-leukocyte interferon in renal transplantation: effects on cytomegalovirus and herpes simplex virus infections. N Engl J Med. 1979; 300:1345–1349.
26. Cheeseman SH, Henle W, Rubin RH, et al. Epstein-Barr virus infection in renal transplant recipients: effects of antithymocyte globulin and interferon. Ann Intern Med. 1980;93(Part 1):39–42.
27. Diethelm AG, Aldrete JS, Shaw JF, et al. Clinical evaluation of equine antithymocyte globulin in recipients of renal allografts: analysis of survival, renal function, rejection, histocompatibility, and complications. Ann Surg. 1974;180:20–28.
28. Talcercis Biotherapeutics. HyperTET S/D (Tetanus Immune Globulin [human]) Solvent/detergent Treated Prescribing Information. NC: Research Triangle Park; May 2008.
29. Centers for Disease Control and Prevention. General recommendations on immunization: recommendations of
the advisory committee on immunization practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55(RR-15):1–48.
30. Murphy TV, Slade BA, Broder KR, et al. Prevention of pertussis, tetanus, and diphtheria among pregnant and postpartum women and their infants recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2008;57:1–51.
31. Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. 11th ed. Washington, DC: Public Health Foundation; 2009.
32. CSL Behring. Cytomegalovirus Immunoglobulin Intra Venous [human] [CMV-IG] Liquid Formulation Solvent Detergent Treated Prescribing Information. Kankakee, IL: November 2010.
33. Snydman DR, McIver J, Leszczynski J, et al. A pilot trial of a novel cytomegalovirus immune globulin in renal transplant recipients. Transplantation. 1984;38:553–557.
34. Snydman DR, Werner BG, Heinez-Lacey B, et al. Use of cytomegalovirus immune globulin to prevent cytomegalovirus disease in renal-transplant recipients. N Engl J Med. 1987;317:1049–1054.
35. Snydman DR. Prevention of cytomegalovirus-associated diseases with immunoglobulin. Transplant. Proc. 1991; 23(Suppl 3):131–135.
36. Snydman DR, Werner BG, Tilney NL, et al. Final analysis of primary cytomegalovirus disease prevention in renal transplant recipients with a cytomegalovirus-immune globulin: comparison of the randomized and open-label trials. Transplant Proc. 1991;23:1357–1360.
37. Werner BG, Snydman DR, Freeman R, et al. Cytomegalovirus immune globulin for the prevention of primary CMV disease in renal transplant patients: analysis of usage under treatment IND status. Transplant Proc. 1993; 25:1441–1443.
38. Ho M. Cytomegalovirus. In: Mandell GL, Bennett JE, Dolin R, eds. Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases. 4th ed. New York: Churchill Livingstone; 1995:1351–1364.
39. Dickinson BI, Gora-Harper ML, McCrane SA, et al. Studies evaluating high-dose acyclovir, intravenous immunoglobulin, and cytomegalovirus hyperimmune globulin for prophylaxis against cytomegalovirus in kidney transplant recipients. Ann Pharmacother. 1996;30:1452–1464.
40. Snydman DR. Cytomegalovirus immunoglobulins in the prevention and treatment of cytomegalovirus disease. Clin Infect Dis. 1990;12(Suppl 7):S839–S848.
41. Patel R, Snydman DR, Rubin RH, et al. Cytomegalovirus prophylaxis in solid organ transplant recipients. Transplantation. 1996;61:1279–1289.
42. Meyers JD. Prevention of cytomegalovirus infection after marrow transplantation. Rev Infect Dis. 1989;11(Suppl 7):S1691–S1705 ([PubMed]).
43. Winston DJ, Ho WG, Champlin RE. Cytomegalovirus infections after allogeneic bone marrow transplantation. Clin Infect Dis. 1990;12(Suppl 7):S776–S787.
44. Valantine HA. Prevention and treatment of cytomegalovirus disease in thoracic organ transplant patients: evidence for a beneficial effect of hyperimmune globulin. Transplant Proc. 1995;27(Suppl 1):49–57.
45. Grundy JE. Virologic and pathogenetic aspects of cytomegalovirus infection. Clin Infect Dis. 1990;12(Suppl 7):S711–S719.
46. Bass EB, Powe NR, Goodman SN, et al. Efficacy of immune globulin in preventing complications of bone marrow transplantation: a meta-analysis. Bone Marrow Transplant. 1993;12:273–282.
47. Taylor-Wiedeman J, Sissons JG, Boycewicz IK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991;72:2059–2064.
48. Tsinontides AC, Bechtel TP. Cytomegalovirus prophylaxis and treatment following bone marrow transplantation. Ann Pharmacother. 1996;30:1277–1290.
49. Zamora MR, Fullerton DA, Campbell DN, et al. Use of cytomegalovirus (CMV) hyperimmune globulin for prevention of CMV disease in CMV-seropositive lung transplant recipients. Transplant Proc. 1994;26(Suppl 1):49–51.
50. Snydman DR, Werner BG, Dougherty NN, et al. A further analysis of the use of cytomegalovirus immune globulin in orthotopic liver transplant patients at risk for primary infection. Transplant Proc. 1994;26(Suppl 1):23–27.
51. Aguado JM, Gomez-Sanchez MA, Lumbrares C, et al. Prospective randomized trial of efficacy of ganciclovir versus that of anti-cytomegalovirus (CMV) immunoglobulin to prevent CMV-seropositive heart transplant recipients treated with OKT3. Antimicrob Agents Chemother. 1995;39:1643–1645.
52. Merck & Co. Inc. Antivenin (Latrodectus Mactans) (Black Widow Spider Antivenin) Equine Origin Prescribing Information. Whitehouse Station, NJ. February 2014.
53. Clark RF, Wether-Kestner S, Vance MV, et al. Clinical presentation and treatment of black widow spider envenomation: a review of 163 cases. Ann Emerg Med. 1992;21:782–787.
54. Wyeth Laboratories Inc. Antivenin (Micruurus fulvius) (Equine Origin) (North American Coral Snake Antivenin) Prescribing Information. Marietta, PA. August 2001.
55. The United States Pharmacopeia. 25th Rev, and the National Formulary. 20th ed. Rockville, MD: The United States Pharmacopeial Convention, Inc; 2002:158.
56. Protherics Inc Crofab. (Crotalidae Polyvalent Immune Fab [ovine]) Prescribing Information. Brentwood, TN. 2010 Sep.
57. Parrish HM. Bites by coral snakes: report of 11 representative cases. Am J Med Sci. 1967:253:561.
58. Identification and distribution of North American venomous snakes. In: Russell FE, ed. Snake Venom Poisoning. Philadelphia: JB Lippincott Company; 1980: 45–86.
59. Roze JA. New world coral snakes (Elapidae): a taxonomic and biologic summary. Mem Inst Butantan, Sao Paulo. 1982;46:305–338.
CHAPTER 16 Passive Monoclonal and Polyclonal Antibody Therapies

60. Anon. Treatment of snakebite in the USA. Med Lett Drugs Ther. 1982;24:87–89.
61. Clark RF, McKinney PE, Chase PB, et al. Immediate and delayed allergic reactions to Crotalidae polyvalent immune Fab (ovine) antivenom. Ann Emerg Med. 2002;39:671–676.
62. Lavonas EJ, Ruha AM, Banner W, et al. Unified treatment algorithm for the management of crotaline snakebite in the United States: results of an evidence-informed consensus workshop. BMC Emerg Med. 2011;11:2.
63. England PH. MERS-CoV: clinical decision making support for treatment. https://www.gov.uk/government/publications/mers-cov-clinical-decision-making-support-for-treatment (accessed Nov 8, 2016).
64. Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med. 2006;145:599–609.
65. Hung IF, To KK, lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011;52:447–456.
66. Gulland A. First Ebola treatment is approved by WHO. BMJ. 2014;349:g5539.
67. Mupapa K, Massamba M, Kibadi K, et al. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International Scientific and Technical Committee. J Infect Dis. 1999;179:S18–S23.
68. Klein HG. Should blood be an essential medicine? N Engl J Med. 2013;368:199–201.
69. Ala F, Allain JP, Bates I, et al. External financial aid to blood transfusion services in sub-Saharan Africa: a need for reflection. PLoS Med. 2012;9:e1001309.
70. Burnouf T, Emmanuel J, Mbanya D, et al. Ebola: a call for blood transfusion strategy in sub-Saharan Africa. Lancet. 2014;384:1347–1348.
71. GlaxoSmithKline. Digibind (Digoxin Immune Fab [ovine]) Prescribing Information. NC: Research Triangle Park; September 2003.
72. Smith TW, Haber E, Yeatman L, et al. Reversal of advanced digoxin intoxication with Fab fragments of digoxin-specific antibodies. N Engl J Med. 1976;294:797–800.
73. Smith TW, Butler VP, Haber E, et al. Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. N Engl J Med. 1982;307:1357–1362.
74. Cole PL, Smith TW. Use of digoxin-specific Fab fragments in the treatment of digitalis intoxication. Drug Intell Clin Pharm. 1986;20:267–270.
75. Smith TW, Butler VP, Haber E. Cardiac glycoside-specific antibodies in the treatment of digitalis intoxication. In: Haber E, Krause RM, eds. Antibodies in Human Diagnosis and Therapy. New York: Raven Press; 1977:365–389.
76. Wenger TL, Butler VP, Haber E, et al. Treatment of 63 severely digitalis-toxic patients with digoxin-specific antibody fragments. J Am Coll Cardiol. 1985;5:118–123A.
77. Larbig D, Raff U, Haasis R. Reversal of digitalis effects by specific antibodies. Pharmacology. 1979;18:1–8.
78. Smolarz A, Roesch E, Lenz E, et al. Digoxin specific antibody (Fab) fragments in 34 cases of severe digitalis intoxication. J Toxicol Clin Toxicol. 1985;23:327–340.
79. Protherics Inc. Digifab [Digoxin Immune Fab [ovine]] Prescribing Information. Brentwood, TN. September 2010.
80. Smith TW. Use of antibodies in the study of the mechanism of action of digitalis. Ann N Y Acad Sci. 1974;242:731–736.
81. Watson JF, Butler VP. Antibodies as specific antagonists of toxins, drugs, and hormones. Pharmacol Rev. 1982;34:109–114.
82. Butler VP. Antibodies as specific antagonists of toxins, drugs, and hormones. Pharmacol Rev. 1982;34:109–114.
83. Gardner JD, Kiino DR, Swartz TJ, et al. Effects of digoxin-specific antibodies on accumulation and binding of digoxin by human erythrocytes. J Clin Invest. 1973;52:1820–1839.
84. Sullivan JB. Immunotherapy in the poisoned patient. Med Toxicol. 1986;1:47–60.
85. Boucher JA, Lalonde RL. Digoxin-specific antibody fragments for the treatment of digoxin intoxication. Clin Pharm. 1986;5:826–827.
86. Schmidt DH, Butler VP. Reversal of digoxin toxicity with specific antibodies. J Clin Invest. 1971;50:1738–1744.
87. Butler VP, Schmidt DH, Smith TW, et al. Effects of sheep digoxin-specific antibodies and their Fab fragments on digoxin pharmacokinetics in dogs. J Clin Invest. 1977;59:345–349.
88. Curd JG, Smith TW, Jaton JC, et al. The isolation of digoxin-specific antibody and its use in reversing the effects of digoxin. Proc Natl Acad Sci USA. 1971;68:2401–2406.
89. Nisonoff A. Enzymatic digestion of rabbit gamma globulin and antibody and chromatography of digestion products. Methods Med Res. 1964;10:134–141.
90. Lapostolle F, Borron SW, Verdier C, et al. Digoxin-specific Fab fragments as single first-line therapy in digitalis poisoning. Crit Care Med. 2008;36:3014–3018.
91. Eyal D, Molczan KA, Carroll LS. Digoxin toxicity: pediatric survival after asystolic arrest. Clin Toxicol. 2005;43:51–54.
92. Bateman DN. Digoxin-specific antibody fragments: how much and when? Toxicol Rev. 2004;23:135–143.
93. Schaeffer TH, Mlynarchek SL, Stanford CF, et al. Treatment of chronically digoxin-poisoned patients with a newer digoxin immune fab—a retrospective study. J Am Osteopath Assoc. 2010;110:587–592.
94. Ip D, Syed H, Cohen M. Digoxin specific antibody fragments (Digibind) in digoxin toxicity. BMJ. 2009;339:b2884.
95. Flanagan RJ, Jones AL. Fab antibody fragments: some applications in clinical toxicology. Drug Saf. 2004;27:1115–1133.
96. Ware JA, Young JB, Luchi RJ, et al. Treatment of severe digoxin toxicity with digoxin-specific antibodies: a case report. Tex Med. 1983;79:57–59.
97. Nicholls DP, Murtagh JG, Holt DW. Use of amiodarone and digoxin specific Fab antibodies in digoxin overdosage. Br Heart J. 1985;53:462–464.

98. Centers for Disease Control and Prevention. General recommendations on immunization: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55(RR-15):1–47.

99. American Academy of Pediatrics. 2006 Red Book: Report of the Committee on Infectious Diseases. 27th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2006.

100. Talecris. HyperHEP B S/D (Hepatitis B Immune Globulin [human] Solvent/detergent Treated) Prescribing Information. June 2007.

101. Nabi. Nabi-HB (Hepatitis B Immune Globulin [human] Solvent/detergent Treated and Filtered) Prescribing Information. Boca Raton, FL. June 2003.

102. Centers for Disease Control and Prevention. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Part I: immunization of infants, children, and adolescents. MMWR Recomm Rep (Morb Mortal Wkly Rep). 2005;54(RR-16):1–33.

103. Centers for Disease Control and Prevention. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Part II: immunization in adults. MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55(RR-16):1–33.

104. Apotex. HepaGam B (Hepatitis B Immune Globulin Intravenous [human]) Prescribing Information. Weston, FL. April 2007.

105. American Academy of Pediatrics. 2006 Red Book: Report of the Committee on Infectious Diseases. 27th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2006.

106. Centers for Disease Control and Prevention. Recommended immunization schedules for persons 0 through 18 years—United States, 2009. MMWR Morb Mortal Wkly Rep. 2009;57:Q1-4.

107. Centers for Disease Control Immunization Practices Advisory Committee (ACIP). Protection against viral hepatitis: recommendations of the immunization practices advisory committee (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 1990;39(RR-2):1–26.

108. Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines. MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55(RR-11):1–94.

109. Centers for Disease Control and Prevention. Updated US Public Health Service guidelines for the management of occupational exposures to HBV, HCV, and HIV and recommendations for postexposure prophylaxis. MMWR Morb Mortal Wkly Rep. 2001;50(No. RR-11):1–51.

110. Coffin CS, Terrault NA. Management of hepatitis B in liver transplant recipients. J Viral Hepat. 2007;14(Suppl1):37–44.

111. Yilmaz N, Shiffman ML, Stravitz RT, et al. Prophylaxis against recurrence of hepatitis B virus after liver transplantation: a retrospective analysis spanning 20 years. Liver Int. 2008;28:72–78.

112. Gish RG, McCashland T. Hepatitis B in liver transplant recipients. Liver Transplant. 2006;12:S54–S64.

113. Anderson RD, Chinnakotla S, Guo L, et al. Intramuscular hepatitis B immunoglobulin (HBIG) and nucleosides for prevention of recurrent hepatitis B following liver transplantation: comparison with other HBIG regimens. Clin Transplant. 2007;21:510–517.

114. Gane EJ, Angus PW, Strasser S, et al. Lamivudine plus low-dose hepatitis B immunoglobulin to prevent recurrent hepatitis B following liver transplantation. Gastroenterology. 2007;132:931–937.

115. Nath DS, Kalis A, Nelson S, et al. Hepatitis B prophylaxis post-liver transplant without maintenance hepatitis B immunoglobulin therapy. Clin Transplant. 2006;20:206–210.

116. Eisenbach C, Sauer P, Mehrabi A, et al. Prevention of hepatitis B virus recurrence after liver transplantation. Clin Transplant. 2006;20(Suppl):111–116.

117. Zheng S, Chen Y, Liang T, et al. Prevention of hepatitis B recurrence after liver transplantation using lamivudine or lamivudine combined with hepatitis B immunoglobulin prophylaxis. Liver Transplant. 2006;12:253–258.

118. Cangene Corporation. Varizig Varicella Zoster Immune Globulin (Human) Lyophilized Powder for Solution for Injection for Intramuscular Administration Only Prescribing Information. Winnipeg, Canada. December 2012.

119. Centers for Disease Control and Prevention. Prevention of varicella: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2007;56(RR-4):1–40.

120. National Center for Immunization and Respiratory Diseases. General recommendations on immunization — recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2011;60:1–64.

121. American Academy of Pediatrics. Red Book: 2009 Report of the Committee on Infectious Diseases. 28th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2009.

122. Centers for Disease Control and Prevention (CDC). FDA approval of an extended period for administering Varizig for postexposure prophylaxis of varicella. MMWR Morb Mortal Wkly Rep. 2012;61:212.

123. Solstice Neurosciences. Myobloc (rimabotulinumtoxinB) Injection Prescribing Information. South San Francisco, CA. May 2010.

124. Brashear A, Lew MF, Dykstra DD, et al. Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-responsive cervical dystonia. Neurology. 1999;53:1439–1446.

125. Terranova W, Breman JG, Lacey RP, et al. Botulism type B: epidemiologic aspects of an extensive outbreak. Am J Epidemiol. 1978;108:150–156.

126. Cheng CM, Chen JS, Patel RP. Unlabeled uses of botulinum toxins: a review, part 1. Am J Health Syst Pharm. 2006;63:145–152.
127. Allergan. Botox (onabotulinumtoxinA) for Injection Prescribing Information. Irvine, CA. September 2013.
128. Bell MS, Vermeulen LC, Sperling KB. Pharmacotherapy with botulinum toxin: harnessing nature’s most potent neurotoxin. Pharmacotherapy. 2000;20:1079–1091.
129. Tsui JK. Botulinum toxin as a therapeutic agent. Pharmacol Ther. 1996;72:13–24.
130. Moore AP. Botulinum toxin A (BoNT-A) for spasticity in adults. What is the evidence? Eur J Neurol. 2002;9(Suppl 1):42–47.
131. Corry IS, Cosgrove AP, Duffy CM, et al. Botulinum toxin A compared with stretching casts in the treatment of spastic equinus: a randomised prospective trial. J Pediatr Orthop. 1998;18:304–311.
132. Figgitt DP, Noble S. Botulinum toxin type B: a review of its therapeutic potential in the management of cervical dystonia. Drugs. 2002;62:705–722.
133. Lew MF, Adornato BT, Duane DD, et al. Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology. 1997;49:701–707.
134. Anon. Botulinum toxin for cervical dystonia. Med Lett Drugs Ther. 2001;43:63–64.
135. California Department of Public Health. BabyBIG (Botulism Immune Globulin Intravenous [human]) Prescribing Information. Richmond, CA. January 2012.
136. Arnon SS. Creation and development of the public service orphan drug Human Botulism Immune Globulin. Pediatrics. 2007;119:785–789 ([PubMed]).
137. Infant Botulism Treatment and Prevention Program. Division of Communicable Disease Control, California Department of Health Services. From IBTPP website. Accessed 2012 Mar 26. [Web].
138. Underwood K, Rubin S, Deakers T, et al. Infant botulism: a 30-year experience spanning the introduction of botulism immune globulin intravenous in the intensive care unit at Childrens Hospital Los Angeles. Pediatrics. 2007;120:e1380–e1385 ([PubMed]).
139. Arnon SS. Infant botulism. In: Feigin RD, Cherry JD, Demmler-Harrison GI, et al., eds. Feigin: Feigin and Cherry’s Textbook of Pediatric Infectious Diseases. 6th ed. Philadelphia, PA: Saunders Elsevier; 2009.
140. Arnon SS, Schechter R, Maslanka SE, et al. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006;354:462–471.
141. Talecris Biotherapeutics, Inc. HyperRAB S/D (Rabies Immune Globulin [human] Solvent/detergent Treated) Prescribing Information. NC: Research Triangle Park; March 2008.
142. Sanoﬁ Pasteur. Imogam Rabies-HT (Rabies Immune Globulin [human] USP, Heat Treated) Prescribing Information. Swiftwater, PA. December 2005.
143. Centers for Disease Control and Prevention. Human rabies prevention—United States, 2008. Recommendations of the advisory committee on immunization practices. MMWR Recomm Rep (Morb Mortal Wkly Rep). 2008;57(RR-3):1–27.
144. Centers for Disease Control and Prevention. Use of a reduced (4-dose) vaccine schedule for postexposure prophylaxis to prevent human rabies. Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep (Morb Mortal Wkly Rep). 2010;59(RR-2):1–9.
145. Cangene bioPharma. WinRho SDF (Rho [D] Immune Globulin Intravenous [human]) Prescribing Information. Baltimore, MD. December 2010.
146. Grifols Therapeutics. HyperRHO S/D Mini-Dose (Rho [D] Immune Globulin [human]) Prescribing Information. NC: Research Triangle Park; September 2012.
147. Ortho-Clinical Diagnostics. Rho-GAM (Rho [D] Immune Globulin [human]) Ultra-ﬁltered PLUS and MICRhoGAM (Rho [D] Immune Globulin [human]) Ultra-ﬁltered PLUS Prescribing Information. NJ: Raritan; November 2012.
148. The United States pharmacopeia. 23rd Rev, and the National Formulary. 18th ed. Rockville, MD: The United States Pharmacopeial Convention, Inc; 1995:350.
149. CSL Behring. Rhophylac (Rho [D] Immune Globulin Intravenous [human]) Prescribing Information. IL: Kankakee; October 2012.
150. Kumar S. Universal RDH genotyping in fetuses. BMJ. 2008;336:783.
151. Bussel JB, Graziano NJ, Kimberly RP, et al. Intravenous anti-D treatment of immune thrombocytopenic purpura: analysis of efficacy, toxicity, and mechanism of effect. Blood. 1991;77:1884–1893.
152. Becker T, Kienzlen E, Salama A, et al. Treatment of childhood idiopathic thrombocytopenic purpura with Rhesus antibodies (anti-D). Eur J Pediatr. 1986;145:166–169.
153. Andrew M, Blanchette VS, Adams M, et al. A multicenter study of the treatment of childhood chronic idiopathic thrombocytopenic purpura with anti-D. J Pediatr. 1992;120:522–527.
154. Scardavou A, Woo B, Woloski BMR, et al. Intravenous anti-D treatment of immune thrombocytopenic purpura 20. Ballow M. Mechanisms of action of intravenous immunoglobulin therapy and potential use in autoimmune connective tissue diseases. Cancer. 1991;68:1430–1436.
155. Ballow M. Mechanisms of action of intravenous immunoglobulin therapy and potential use in autoimmune connective tissue diseases. Cancer. 1991;68:1430–1436.
156. Kniker WT. Immunosuppressive agents, γ-globulin, immunomodulation, immunization, and apresis. J Allergy Clin Immunol. 1989;84:1104–1107.
157. Blanchette V, Imbach P, Andrew M, et al. Randomised trial of intravenous immunoglobulin G, intravenous anti-D, and oral prednisone in childhood acute immune thrombocytopenic purpura. Lancet. 1994;344:703–707.
158. Berchtold P, McMillan R. Therapy of chronic idiopathic thrombocytopenic purpura in adults. Blood. 1989;74:2309–2317.
159. Rodeghiero F, Schiavotto C, Castaman G, et al. A follow-up study of 49 adult patients with idiopathic thrombocytopenic purpura treated with high-dose immunoglobulins and anti-D immunoglobulins. Haematologica. 1992;77:248–252.
160. Stasi R, Stipa E, Masi M, et al. Long-term observation of 208 adults with chronic idiopathic thrombocytopenic purpura. Am J Med. 1995;98:436–442.

161. Landonio G, Galli M, Nosari A, et al. HIV-related severe thrombocytopenia in intravenous drug-users: prevalence, response to therapy in a medium-term follow-up, and pathogenetic evaluation. AIDS. 1990;4:29–34.

162. Hoffman DM, Caruso RF, Miranda T. Human immunodeficiency virus-associated thrombocytopenia. Dicp Ann Pharmacother. 1989:157–160.

163. Food and Drug Administration. FDA Application: Search Orphan Drug Designations and Approvals. Silver Spring, MD. From FDA website (http://www.accessdata.fda.gov/scripts/opdlisting/opdp/index.cfm). Accessed 2013 Jul 2.

164. Oksenhendler E, Bierling P, Brossard Y, et al. Anti-RH immunoglobulin therapy for human immunodeficiency virus-related immune thrombocytopenic purpura. Blood. 1988;71:1499–1502.

165. Okwundu CI, Afolabi BB. Intramuscular versus intravenous anti-D for preventing Rhesus alloimmunization during pregnancy. Cochrane Database Syst Rev. 2013;1:CD007885.

166. CSL Behring. Carimune NF, Nanofiltered (Immune Globulin Intravenous [human] Lyophilized for Solution) Prescribing Information. IL: Kankakee; November 2016.

167. Baxalta US Inc. Gammagard S/D (Immune Globulin Intravenous [human] IgA Less than or Equal to 2.2 mg/mL in a 5% Solution) Prescribing Information. Westlake Village, CA. September 2016.

168. Grifols USA. GamaSTAN S/D (Immune Globulin IM [human]) Prescribing Information. NC: Research Triangle Park; June 2017.

169. Octapharma USA. Octagam (Immune Globulin Intravenous [human] 5% Liquid) Prescribing Information. Hoboken, NJ. August 2015.

170. Grifols Therapeutics Inc. Gamunex-C (Immune Globulin Intravenous [human] 10% Caprylate/chromatography Purified) Prescribing Information. NC: Research Triangle Park; September 2016.

171. Baxalta US Inc. Gammmagard S/D (Immune Globulin Intravenous [human] IgA Less than 1 mg/mL in a 5% Solution) Prescribing Information. Westlake Village, CA. September 2016.

172. CSL Behring. Privigen (Immune Globulin Intravenous [human] 10% Liquid) Prescribing Information. Kankakee, IL. October 2016.

173. American Academy of Pediatrics. Red Book: 2015 Report of the Committee on Infectious Diseases. 30th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2015.

174. NIH Consensus Development Conference. Intravenous immunoglobulin: prevention and treatment of disease. J Am Med Assoc. 1990;264:3189–3193.

175. Hughes RA, Donofrio P, Bil V, et al. Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol. 2008;7:136–144.

176. CSL Behring. Hizentra (Immune Globulin Subcutaneous [human] 20% Liquid) Prescribing Information. Kankakee, IL. October 2016.

177. Bio Products Laboratory (distributed by BPL Inc). Gammavex (Immune Globulin Intravenous [human] 5% Liquid for Intravenous Use) Prescribing Information. Hertfordshire, UK. September 2015.

178. Biotest Pharmaceuticals. Biuvigam (Immune Globulin Intravenous [human] 10% Liquid) Prescribing Information. Boca Raton, FL. April 2014.

179. Grifols USA. Flebogamma 10% DIF (Immune Globulin Intravenous [human] Solution for Intravenous Administration) Prescribing Information. Los Angeles, CA. January 2016.

180. Octapharma USA. Octagam (Immune Globulin Intravenous [human] 10% Liquid) Prescribing Information. Hoboken, NJ. November 2015.

181. Baxalta US Inc. Hyqvia (Immune Globulin [human] 10% with Recombinant Human Hyaluronidase Solution for Subcutaneous Administration) Prescribing Information. Westlake Village, CA. April 2016.

182. Baxalta US Inc. Cuvitru (Immune Globulin Subcutaneous [human] 20% Solution) Prescribing Information. Westlake Village, CA. September 2016.

183. Kedrion Biopharma. Gammahrod (Immune Globulin Intravenous [human] 10% Caprylate/chromatography Purified) Prescribing Information. Fort Lee, NJ. September 2016.

184. Advisory Committee on Immunization Practices (ACIP). Fiore AE, Wasley A, et al. Prevention of hepatitis A through active or passive immunization: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55(RR-7):1–23.

185. Centers for Disease Control and Prevention. Update: prevention of hepatitis A after exposure to hepatitis A virus and in international travelers. Updated recommendations of the advisory committee on immunization practices (ACIP). MMWR Morb Mortal Wkly Rep. 2007;56:1080–1084.

186. Nelson NP. Updated dosing instructions for immune globulin (human) GamaSTAN S/D for hepatitis A virus prophylaxis. MMWR Morb Mortal Wkly Rep. 2017;66:959–960.

187. Centers for Disease Control and Prevention. CDC Health Information for International Travel. Atlanta, GA: US Department of Health and Human Services; 2018 (Updates may be available at: CDC website).

188. McLean HQ, Fiebelkorn AP, Temte JL, et al. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: summary recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2013;62(RR-04):1–34.

189. Gardulf A, Nocolay U, Asensio O, et al. Rapid subcutaneous IgG replacement therapy is effective and safe in children and adults with primary immunodeficiencies—a prospective, multi-national study. J Clin Immunol. 2006;26:177–185.
doxorubicin, vincristine and prednisolone: a randomized, double-blind, placebo-controlled phase 2b trial. *Leuk Lymphoma*. 2015;56(9):2569–2578. https://doi.org/10.3109/10428194.2015.1007504. PMID: 25651427.

215. Awan FT, Hillmen P, Hellmann A, et al. A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia. *Br J Haematol*. 2014;167:466–477. https://doi.org/10.1111/bjh.13061. PMID:25130401.

216. Kovtun Y, Jones GE, Adams S, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. *Blood Adv*. April 24, 2018;2(8):848–858. https://doi.org/10.1182/bloodadvances.2018017517. PMID:29661755.

217. Aigner M, Feulner J, Schaffer S, et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. *Leukemia*. April 2013;27(5):1107–1115. https://doi.org/10.1038/leu.2012.341. Epub 2012 Nov 26. PMID:23178753.

218. Xie LH, Biondo M, Busfield SJ, et al. CD123 target validation and preclinical evaluation of ADCC activity of anti-CD123 antibody CSL632 in combination with NKs from AML patients in remission. *Blood Canc J*. 2017;7:e567. https://doi.org/10.1038/bcj.2017.52. published online 2 June 2017. PMID:28574487. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520399/.

219. NIH: National Library of Medicine at Clinicaltrials.gov Clinical trial; Study of Biomarker-Based Treatment of Acute Myeloid Leukemia. Available at: https://clinicaltrials.gov/ct2/show/NCT03013998?term=samali&rank=3.

220. NIH: National Library of Medicine at Clinicaltrials.gov Clinical trial; Ficlatuzumab With High Dose Cytarabine in Relapsed and Refractory AML available at: https://clinicaltrials.gov/ct2/show/NCT02109627?term=Ficlatuzumab&rank=3.

221. Egan PC, Reagan JL. The return of gemtuzumab ozogamicin: a humanized anti-CD33 monoclonal antibody—drug conjugate for the treatment of newly diagnosed acute myeloid leukemia. *Onco Targets Ther*. 2018;11:8265–8272. https://doi.org/10.2147/OTT.S150807. eCollection 2018. PMID:30538495.

222. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, Lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. *J Clin Oncol*. June 20, 2005;23(18):4110–4116. https://doi.org/10.1200/JCO.2005.09.133. PMID: 15961759.

223. Sekeres MA, Lancet JE, Wood BL, et al. Randomized, phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. *Haematologica*. January 2013;98(1):119–128. https://doi.org/10.3324/haematol.2012.066613. Epub 2012 Jul 16. PMID: 22801961.

224. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematologic tumors. *J Immunol*. 2011;186(3):1840–1848. https://doi.org/10.4049/jimmunol.1003032. Epub 2010 Dec 27. PMID:21187443. Available at: http://www.jimmunol.org/content/186/3/1840.

225. HIGHLIGHTS OF PRESCRIBING INFORMATION DARZALEX (daratumumab) injection. Revised 11/2016 Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761036s004lbl.pdf.

226. Shah JJ, Feng L, Thomas SK, et al. Siltuximab (CNT303) with lenalidomide, bortezomib and dexamethasone in newly-diagnosed, previously untreated multiple myeloma: an open-label phase I trial. *Blood Canc J*. 2016;6:e396. https://doi.org/10.1038/bcj.2016.4. published online 12 February 2016. PMID:26871714.

227. CENTER FOR DRUG EVALUATION AND RESEARCH; Approval Package for: APPLICATION NUMBER: 125496Orig1s000 Trade Name: Sylvant, Generic Name: siltuximab, Sponsor: Janssen Biotech, Inc, Approval Date: April 23, 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125496Orig1s000Approv.pdf.

228. Le Jeune C, Thomas X. Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia. *Drug Des Dev Ther*. February 18, 2016;10:757–765. https://doi.org/10.2147/DDDT.S83848. eCollection 2016. PMID:26937176.

229. Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. *N Engl J Med*. March 02, 2017;376(9):836–847. https://doi.org/10.1056/NEJMoa1609783. PMID: 28249141.

230. HIGHLIGHTS OF PRESCRIBING INFORMATION; BLINCYTO (blinatumomab) for injection, for intravenous use; Initial U.S. Approval: 2014 Revised 7/2017https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125557s008lbl.pdf.

231. Scott LJ. Brentuximab vedotin: a review in CD30-positive Hodgkin lymphoma. *Drugs*. 2017;77:435–445. https://doi.org/10.1007/s40265-017-0705-5. Published online: 11 February 2017. PMID:28190142.

232. Flynn MJ, Zammarchi F, Tyer PC, et al. ADCT-301, a pyrolorenzodiazepine (PBD) dimer—containing antibody—drug conjugate (ADC) Targeting CD25-expressing hematological malignancies. *Mol Cancer Ther*. November 2016;15(11):2709–2721. Epub 2016 Aug 17. PMID:27535974.

233. Study of ADCT-301 in Patients With Relapsed or Refractory Hodgkin and Non-Hodgkin Lymphoma. Available at: https://clinicaltrials.gov/ct2/show/NCT02432235?term=Camidanlumab+tesirine&rank=3.

234. Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in
Hodgkin’s Lymphoma and anaplastic large-cell lymphoma. *J Clin Oncol*. 2007;25:2764–2769. https://doi.org/10.1200/JCO.2006.07.8972. PMID:17515574.

235. Fanale M, Assouline S, Kuruvilla J, et al. Phase IA/II, multicentric, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. *Br J Haematol*. January 2014;164(2):258–265. https://doi.org/10.1111/bjh.12630. PMID:24219359.

236. Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. *Blood*. July 26, 2018;132(4):458–459. https://doi.org/10.1182/blood-2018-05-853192. PMID:30049735.

237. Schmider P, Adams S, Rugo HS, et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. *N Engl J Med*. 2018;379:2108–2121. https://doi.org/10.1056/NEJMa1809615. Available at: https://www.nejm.org/doi/full/10.1056/NEJMa1809615.

238. Adams S, Diamond JR, Hamilton E, et al. Atezolizumab Plus nab-Paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up of a phase 1b clinical trial. *JAMA Oncol*. October 19, 2018. https://doi.org/10.1001/jamaoncol.2018.5152 [Epub ahead of print]. PMID:30347025.

239. Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. *Lancet Oncol*. 2015;16:1306–1315. Available at: https://doi.org/10.1016/S1470-2045(15)00122-9.

240. HIGHLIGHTS OF PRESCRIBING INFORMATION; AVASTIN (bevacizumab) injection, for intravenous use; Initial U.S. Approval: 2004 Revised 12/2017; Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf.

241. Inman BA, Longo TA, Ramalingam S, et al. Atezolizumab: a PD-L1-blocking antibody for bladder cancer. *Clin Cancer Res*. 2017;23:1886–1890. https://doi.org/10.1158/1078-0432.CCR-16-1417. Published OnlineFirst November 30, 2016. PMID:27903674.

242. Petrylak DP, Powles T, Bellmunt J, et al. Atezolizumab (MPDL3280A) monotherapy for patients with metastatic urothelial cancer long-term outcomes from a phase 1 study. *JAMA Oncol*. April 1, 2018;4(4):537–544. https://doi.org/10.1001/jamaoncol.2017.5440. PMID:29423515.

243. Horn L, Spigel DR, Vokes EE, et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). *J Clin Oncol*. 2017;35:3924–3933. Available at: DOI: https://doi.org/10.1200/JCO.2017.74.3062.

244. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. *Lancet Oncol*. 2018;19(11):1480–1492. https://doi.org/10.1016/S1470-2045(18)30700-9. Epub 2018 Oct 22. PMID:30361170.

245. Cella D, Grünwald V, Escudier B, et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. *Lancet Oncol*. February 2019;20(2):297–310. https://doi.org/10.1016/S1470-2045(18)30778-2. Epub 2019 Jan 15. PMID:30658932.

246. Coleman RL, Brady MF, Herzog TJ, et al. Bevacizumab and paclitaxel–carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. *Lancet Oncol*. June 2017;18(6):779–791. https://doi.org/10.1016/S1470-2045(17)30279-6. Epub 2017 Apr 21. PMID:28438473.

247. Kaufman HL, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. *Lancet Oncol*. October 2016;17(10):1374–1385. https://doi.org/10.1016/S1470-2045(16)30364-3. Epub 2016 Sep 1. PMID:27592805.

248. HIGHLIGHTS OF PRESCRIBING INFORMATION; BAVENCIO (avelumab) injection, for intravenous use Initial U.S. Approval: 2017 Revised 3/2017; Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf.

249. NIH: National Library of Medicine at Clinicaltrials.gov for 175 Studies found for: Avelumab; Also searched for MSB0010718C and Bavencio. See search details available at: https://clinicaltrials.gov/ct2/results?cond=&term=Avelumab&nct=&city=&state=&country=&dist=.

250. Ploessl C, Pan A, Maples KT, et al. Dinutuximab: an anti-CD137 monoclonal antibody for high-risk neuroblastoma. *Ann Pharmacother*. May 2016;50(5):416–422. https://doi.org/10.1177/1060028016632013. Epub 2016 Feb 25. PMID:26917818.

251. Dhillon S. Dinutuximab: GD2 monoclonal antibody for high-risk neuroblastoma. *Invest New Drugs*. October 2016;75(8):923–927. https://doi.org/10.1007/s40265-015-0399-5. PMID:25940913.

252. Diaz RJ, Ali S, Qadir MG, et al. The role of bevacizumab in the treatment of glioblastoma. *J Neuro Oncol*. July 2017;133(3):455–467. https://doi.org/10.1007/s11060-017-2477-x. Epub 2017 May 19. PMID:28527008.

253. NIH: National Library of Medicine at Clinicaltrials.gov for Clinical trial; Anti-LAG-3 Alone & in Combination with/Nivolumab Treating Patients w/Recurrent GBM (Anti-CD137 Arm Closed 10/16/18) Available at: https://www.clinicaltrials.gov/ct2/show/NCT02658981?rank=1.

254. Lee SJ, Lee SY, Lee WS, et al. Phase I trial and pharmacokinetic study of tanibirumab, a fully human monoclonal antibody to vascular endothelial growth factor receptor 2, in patients with refractory solid tumors. *Investig New Drugs*. December 2017;35(6):782–790. https://doi.org/
CHAPTER 16 Passive Monoclonal and Polyclonal Antibody Therapies

281. Navarra SV, Guzmán RM, Gallacher AE, et al. Ef pegol (CDP870) for rheumatoid arthritis in adults (Review). Cochrane Database Syst Rev. 2017;(9):CD007649. https://doi.org/10.1002/14651858.CD007649.pub4. PMID:28884785.

282. Chao YS, Adcock L. ORENCIA (abatacept) for injection for intravenous use in patients with active systemic polyarticular JIA: development, clinical utility, and place in therapy. Drugs. 2011;5:61–70. https://doi.org/10.2147/DDDT.S16489. PMID:21340039.

283. Goldzweig O, Hashkes PJ. Abatacept in the treatment of inflammatory disease. Int J Clin Pract. 2018;72:1098–1108. https://doi.org/10.1111/ijcp.13515. PMID:29658591.

284. Shahawy ME, Cannon CP, Blom DJ, et al. Efficacy and safety of alefacept in patients with complex regional pain syndrome type 1 (CRPS1) (Review). Pain Pract. 2017;17(4):312–320. https://doi.org/10.1111/pain.13146. PMID:28270509.

285. Shahawy ME, Cannon CP, Blom DJ, et al. Efficacy and safety of alefacept in patients with complex regional pain syndrome type 1 (CRPS1) (Review). Pain Pract. 2017;17(4):312–320. https://doi.org/10.1111/pain.13146. PMID:28270509.

286. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–1722. https://doi.org/10.1056/NEJMoa1615666. PMID:28304224.

287. HIGHLIGHTS OF PRESCRIBING INFORMATION: REPALAN (reparixin) injection for parental use. Initial U.S. Approval: 2002. Revised: 12/2013. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125522s013lbl.pdf.

288. Kastelein JJP, Nissen SE, Rader DJ, et al. Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): a randomized, placebo-controlled Phase 2 study. Eur Heart J. 2015;36(17):1360–1369. https://doi.org/10.1093/eurheartj/ehv707. Epub 2016 Jan 12. PMID:26757788.

289. Agius MA, Kłodowska-Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–731. https://doi.org/10.1016/S0140-6736(10)61354-2. Epub 2011 Feb 4. PMID:21296403.

290. Ruiz Garcia V, Burls A, Cabello JB, et al. Certolizumab pegol (CDP870) for rheumatoid arthritis in adults (Review). Cochrane Database Syst Rev. 2017;(9):CD007649. https://doi.org/10.1002/14651858.CD007649.pub4. PMID:28884785.

291. Navarra SV, Guzmán RM, Gallacher AE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–731. https://doi.org/10.1016/S0140-6736(10)61354-2. Epub 2011 Feb 4. PMID:21296403.

292. Chao YS, Adcock L. CADTH RAPID RESPONSE REPORT: Belimumab Treatment for Adults with Systemic Lupus Erythematosus: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines. Ottawa: CADTH; May 2018 (CADTH rapid response report: summary with critical appraisal). Publication Date: May 23, 2018. Available at: https://www.cadth.ca/sites/default/files/pdf/htis/2018/RC0989%20Benlysta%20for%20Systemic%20Lupus%20Erythematosus%20CADTH%20RAPID%20RESPONSE%20REPORT%2C%20May%202018.pdf. doi.org/10.1093/eurheartj/ehv707. Epub 2016 Jan 12. PMID:26757788.

293. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. January 19, 2017;376(3):209–220. https://doi.org/10.1056/NEJMoa1606468. Epub 2016 Dec 21. PMID:28002688.

294. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. January 19, 2017;376(3):209–220. https://doi.org/10.1056/NEJMoa1606468. Epub 2016 Dec 21. PMID:28002688.

295. Voortman MM, Greiner P, Moser D, et al. The effect of disease modifying therapies on CD62L expression in multiple sclerosis. Mult Scler J Exp Transl Clin. September 20, 2018;4(3). https://doi.org/10.1177/2055217318800810. eCollection 2018 Jul-Sep, 2055217318800810. PMID:30263146.

296. Usta C, Turgut NT, Bedel A. How abciximab might be clinically useful. Int J Cardiol. November 1, 2016;222:1074–1078. https://doi.org/10.1016/j.ijcard.2016.07.213. Epub 2016 Aug 4. Review. PMID:27519521.

297. Hovingh GK, Guyton JR, Langslet G, et al. Alirocumab dosing patterns during 40 months of open-label treatment in patients with heterozygous familial hypercholesterolemia. J Clin Lipidol. 2018 Nov-Dec;12(6):1463–1470. https://doi.org/10.1016/j.jclil.2018.08.011. Epub 2018 Aug 30. PMID:30287210.

298. Shahawy ME, Cannon CP, Blom DJ, et al. Efficacy and safety of alefacept versus etzezumab over 2 years (from ODYSSEY COMBO II). Am J Cardiol. September 15, 2017;120(6):931–939. https://doi.org/10.1016/j.amjcard.2017.06.023. Epub 2017 Jun 28. PMID:28750828.
replacing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. *Mult Scler.* February 2019;25(2):235–245. https://doi.org/10.1177/135258517740641. Epub 2017 Nov 16. PMID:29143550.

299. Constantinescu CS, Asher A, Fryze W, et al. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. *Neuro Immunol Neuroinflamm.* May 21, 2015;2(4):e117. https://doi.org/10.1212/NXI.0000000000000117. eCollection 2015 Aug. PMID: 26185773.

300. NIH: National Library of Medicine at Clinicaltrials.gov Clinical trial; A Phase 3, Randomized, Multi-center, Double-blinded, Active-controlled Study to Assess the Efficacy and Safety/Tolerability of Ublituximab (TG-1101; UTX) as Compared to Teriflunomide in Subjects With Relapsing Multiple Sclerosis (RMS) (ULTIMATE 1). Available at: https://www.clinicaltrials.gov/ct2/show/NCT03277261?term=ublituximab&rank=3.

301. Connick P, De Angelis F, Parker RA, et al. Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MSSMART): a multi-arm phase Ib randomised, double-blind, placebo controlled clinical trial comparing the efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis. *BMJ Open.* August 30, 2018;8(8):e021944. https://doi.org/10.1136/bmjopen-2018-021944. PMID:30166303.

302. Cadavid D, Balcer L, Galetta S, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. *Lancet Neurol.* March 2017;16(3):189–199. https://doi.org/10.1016/S1474-4422(16)30377-5. Epub 2017 Feb 15. PMID: 28229892.

303. Bleeker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. *Lancet.* October 29, 2016;388(10056):2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1. Epub 2016 Sep 5. PMID: 27609408.

304. HIGHLIGHTS OF PRESCRIBING INFORMATION:

301. Connick P, De Angelis F, Parker RA, et al. Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MSSMART): a multi-arm phase Iib randomised, double-blind, placebo controlled clinical trial comparing the efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis. *BMJ Open.* August 30, 2018;8(8):e021944. https://doi.org/10.1136/bmjopen-2018-021944. PMID:30166303.

302. Cadavid D, Balcer L, Galetta S, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. *Lancet Neurol.* March 2017;16(3):189–199. https://doi.org/10.1016/S1474-4422(16)30377-5. Epub 2017 Feb 15. PMID: 28229892.

303. Bleeker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. *Lancet.* October 29, 2016;388(10056):2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1. Epub 2016 Sep 5. PMID: 27609408.

304. HIGHLIGHTS OF PRESCRIBING INFORMATION: DURIEUXT (dupilumab) injection, for subcutaneous use Initial U.S. Approval: 2017 Last revised: Dec 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761055lbl.pdf.

305. Duggan S. Caplacizumab: first global approval. *Drugs.* October 2018;78(15):1639–1642. https://doi.org/10.1007/s40265-018-0898-0. Erratum in: Drugs. 2018 Dec;78 (18): 1955. PMID:30298461.

306. Peyvandi F, Scully M, Hovinga JAK, et al. Caplacizumab reduces the frequency of major thromboembolic events, exacerbations and death in patients with acquired thrombotic thrombocytopenic purpura. *J Thromb Haemost.* July 2017;15(7):1448–1452. https://doi.org/10.1111/jth.13716. Epub 2017 Jun 5. PMID:28445600.

307. Peyvandi F, Scully M, Hovinga JAK, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura.

308. Scully M, Cataland SR, Peyvandi F, et al. Caplacizumab treatment for acquired thrombocytopenic thrombocytopenic purpura. *N Engl J Med.* January 24, 2019;380(4):335–346. https://doi.org/10.1056/NEJMoa1806311. Epub 2019 Jan 9. PMID:30625070.

309. Ataga KI, Kutlar A, Kanter J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. *N Engl J Med.* February 2, 2017;376(5):429–439. https://doi.org/10.1056/NEJMoa1611770. Epub 2016 Dec 3. PMID:27959701.

310. NIH: National Library of Medicine at Clinicaltrials.gov Clinical trial; Study of Dose Confirmation and Safety of Crizanlizumab in Pediatric Sickle Cell Disease Patients. Available at: https://clinicaltrials.gov/ct2/show/NCT03474965?term=crizanlizumab&rank=1.

311. Johnson S, Gerding DN. Bezlotoxumab. *Clin Infect Dis.* February 1, 2019;68(4):699–704. https://doi.org/10.1093/cid/ciy577. PMID:30020417.

312. Navalkele BD, Chopra T. Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent *Clostridium difficile* infection. *Biologics.* January 18, 2018; 12:11–21. https://doi.org/10.2147/BTT.S127099. eCollection 2018. Review. PMID:29403263.

313. Simões EAF, Bont I, Manzoni P, et al. Past, present and future approaches to the prevention and treatment of respiratory syncytial virus infection in children. *Infect Dis Ther.* March 2018;7(1):87–120. https://doi.org/10.1007/s40121-018-0188-z. Epub 2018 Feb 22. Review. PMID:29470837.

314. Tripp RA, Power UF, Openshaw PJM, et al. Respiratory syncytial virus: targeting the G protein provides a new approach for an old problem. *J Virol.* January 17, 2018; 92(3):e01302–e01317. https://doi.org/10.1128/JVI.01302-17. Print 2018 Feb 1. PMID:29118126.

315. NIH: National Library of Medicine at Clinicaltrials.gov Clinical trial; 155 Studies found for: basiliximab. Available at: https://clinicaltrials.gov/ct2/results?cond=&term=basiliximab&ctry=&state=&city=&dist= .

316. Sun ZJ, Du X, Su LL, et al. Efficacy and safety of basiliximab versus daclizumab in kidney transplantation: a meta-analysis. *Transplant Proc.* October 2015;47(8): 2439–2445. https://doi.org/10.1016/j.transproceed.2015.08.009. PMID: 26518947.

317. Rostainga L, Salibab F, Calmusc Y, et al. Review article: use of induction therapy in liver transplantation. *Transplant Rev.* October 2012;26(4):246–260. https://doi.org/10.1016/j.trre.2012.06.002. Epub 2012 Aug 3. Review. PMID:22863028.

318. Kütüpaybul V, Tantrachoti P, Ongharit P, et al. Low-dose basiliximab induction therapy in heart transplantation. *Clin Transplant.* December 2017;31(12). https://doi.org/10.1111/ctr.13132. Epub 2017 Nov 3. PMID:28990220.

319. Butts RJ, Dipchand AI, Sutcliffe D, et al. Comparison of basiliximab vs antithymocyte globulin for induction in pediatric heart transplant recipients: an analysis of the
International Society for Heart and Lung Transplantation database. Pediatr Transplant. June 2018;22(4):e13190. https://doi.org/10.1111/petr.13190. PMID:29878688.

320. Kutilek S. Burosumab: a new drug to treat hypophosphatemic rickets. Sudan J Paediatr. 2017;17(2):71–73. https://doi.org/10.24911/SJP.2017.2.11. PMID:29545670.

321. Insogna KL, Briot K, Imel EA, et al. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J Bone Miner Res. August 2018;33(8):1383–1393. https://doi.org/10.1002/jbmr.3475. Epub 2018 Jun 26. PMID:29947083.

322. Cummings SR, San Martin J MD, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. August 20, 2009;361(8):756–765. https://doi.org/10.1056/NEJMoA0809493. Epub 2009 Aug 11. Erratum in: N Engl J Med. 2009 Nov 5; 361(19): 1914. PMID:19671655.

323. Zaheer S, LeBoff M, Lewiecki EM. Denosumab for the treatment of osteoporosis. Expert Opin Drug Metabol Toxicol. March 2015;11(3):461–470. https://doi.org/10.1517/17425255.2015.1000860. Epub 2015 Jan 22. PMID:25614274.

324. Deeks ED. Denosumab: a review in postmenopausal osteoporosis. Drugs Aging. February 2018;35(2):163–173. https://doi.org/10.1007/s40266-018-0525-7. Review. Erratum in: Drugs Aging. 2018 Mar 9. PMID:29435849.

325. Gül G, Sendur MA, Aksoy S, et al. A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin. 2016;32(1):133–145. https://doi.org/10.1185/03007995.2015.1105795. Epub 2015 Nov 25. Review. PMID:26451465.

326. Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. March 2018;19(3):370–381. https://doi.org/10.1016/S1470-2241(18)30072-X. Epub 2018 Feb 9. PMID:29429912.

327. Dugel PU, Jaffe GI, Sallスタ皮 P, et al. Brolucizumab versus Aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. September 2017;124(9):1296–1304. https://doi.org/10.1016/j.ophtha.2017.03.057. Epub 2017 May 24. PMID:28551167.

328. HIGHLIGHTS OF PRESCRIBING INFORMATION: ILA-RIS (canakinumab) injection, for subcutaneous use. Initial U.S. Approval: 2009. Last revised 12/2016. Available at: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/ilaris.pdf.

329. Katoh M. Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. August 2018;42(2):713–725. https://doi.org/10.3892/ijmm.2018.3689. Epub 2018 May 17. PMID:29786110.

330. KATOH M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med. September 2017;40(3):587–606. https://doi.org/10.3892/ijmm.2017.3071. Epub 2017 Jul 19. PMID:28731148.

331. Department of Health and Human Services. Food and Drug Administration, Center for Biologics Evaluation and Research (CBER). Guidance for Industry. Revised Preventive Measures to Reduce the Possible Risk of Transmission of Creutzfeldt-Jacob Disease (CJD) and Variant Creutzfeldt-Jacob Disease (vCJD) by Blood and Blood Products. January 2002. From the US Food and Drug Administration (FDA) website.

FURTHER READING

1. Centers for Disease Control Immunization Practices Advisory Committee (ACIP). Diphtheria, tetanus, and pertussis: recommendations for vaccine use and other preventive measures. MMWR Recomm Rep (Morb Mortal Wkly Rep). 1991;40(RR-10):1–28.

2. Centers for Disease Control. Update on adult immunization: recommendations of the immunization practices advisory committee (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 1991;40(RR-12), 18,49,70,87.

3. Kretzinger K, Broder KR, Cortese MM, et al. Preventing tetanus, diphtheria, and pertussis among adults: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine recommendations of the Advisory Committee on Immunization Practices (ACIP) and recommendation of ACIP, supported by the Healthcare Infection Control Practices Advisory Committee (HICPAC), for use of Tdap among health-care personnel. MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55:1–37.

4. Broder KR, Cortese MM, Iskander JK, et al. Preventing tetanus, diphtheria, and pertussis among adolescents: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccines recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep (Morb Mortal Wkly Rep). 2006;55:1–34.

5. Snyderman DR, Werner BG, Dougherty NN, et al. Cytomegalovirus immune globulin prophylaxis in liver transplantation. J Infect Dis. 1993;169:984–991.

6. Bowden RA, Sayers M, Flournoy N, et al. Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N Engl J Med. 1986;314:1006–1010.

7. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211:80–90.

8. US Food and Drug Administration. Guidance for Industry Influence: Developing Drugs for Treatment And/or Prophylaxis. Silver Spring, MD: US Food and Drug Administration; 2011.
9. Ohmit SE, Petrie JG, Cross RT, Johnson E, Monto AS. Influenza hemagglutination-inhibition antibody titer as a correlate of vaccine-induced protection. *J Infect Dis*. 2011;204:1879–1885.

10. Arnon SS, Schechter R, Inglesby TV, et al. for the Working Group on Civilian Biodefense. Botulinum toxin as a biologic weapon: medical and public health management. *J Am Med Assoc*. 2001;285:1059–1070.