Construction of Medical Teaching Network Based on Information Technology

Na Wang¹, Xue Jiang¹, Hongqin Li² and Jinguo Wang²*

¹ Department of Anesthesiology, First Hospital of Jilin University, Changchun, China
² Department of Urology, First Hospital of Jilin University, Changchun, China
* Corresponding author e-mail: Wangjinguolily@163.com

Abstract. Purpose: In order to facilitate students' systematic learning on the base of the existing resources. Proposed Methods: School managers should systematize the accumulated medical teaching resources into medical teaching network, according to the training requirements of medical students. Information technology has promoted the reform of medical education in teaching education concept, including teaching management, teaching reform and clinical ability training. The establishment of large clinical simulation teaching system based on the network includes digital course platform, digital resource platform, information portal, clinical simulation teaching system, remote operation teaching and remote teaching system. Results: The change of the traditional teaching structure, the expansion of the traditional teaching environment, the innovation of education and teaching ideas, the realization of the transformation of passive learning to active learning. Conclusion: Information technology has improved the information literacy of the majority of medical teachers and students.

Keywords: Medical teaching, Network, Information technology, Reform

1 Introduction
In recent years, the development of information technology in medical teaching is quite rapid, and the process of advancing to the actual classroom teaching has injected fresh blood into the medical classroom teaching reform, showing its incomparable huge role [1]. It not only optimizes the audio-visual combination, but also increases the classroom capacity and enhances the expressive force of the textbook, thus improving the teaching efficiency [2]. In addition, the application of information technology has cultivated students' abilities in various aspects, including the ability to master the way of learning in the information age, the ability of information, the attitude and ability of lifelong learning, and the ability of innovative thinking [3]. However, in view of the medical students' heavy learning tasks, tight curriculum arrangement and limited extracurricular learning time, it is found that there are some problems in the practical operation of the integration of information technology and curriculum.
2 Existing Problems

2.1 Poor Teachers' Ability in Information Technology
Even if the teacher who has participated in the training of information technology, it is still a semi-understanding of the computer, the information technology assisted teaching is very little. It can only make a courseware, the results encounter some complex, interactive strong, high technical content of the courseware is discouraged [4]. Even some teachers do not make the courseware, also dare not to compliment, operation level using the courseware, computer teachers courseware design into a sequential structure, in the class, in turn, press a key, once the play some small problems, will be hurry-scurry, at a loss, make this kind of advanced technology and information technology teaching means is difficult to play a better teaching effect. Therefore, information technology training needs to be further improved [5].

2.2 Poor Hardware Facilities
The school's hardware facilities need to be improved to facilitate the promotion and use of information technology in teachers and classrooms. Many teachers in the home has been configured with a personal computer, the information technology has also had a certain study, courseware, exercise to find a lot of, the existence of the computer, can only be an armchair strategist. It can't really be used. Clinical medicine is a subject with strong operability. Traditional clinical medicine teaching is only limited to books and classes, and teachers' classroom teaching can only be enjoyed by some students within one unit of time. The use of information technology to assist clinical medicine teaching can effectively improve the teaching effect [6]. Firstly, the use of information technology can not only enrich the teaching content and expand the classroom capacity, but also enable teachers to use multi-dimensional animation technology and video technology to make abstract and complex medical information knowledge more clear and simple, thus shortening the distance between objective objects and students [7]. Secondly, the use of information technology, the use of clinical data in combination with the characteristics of various disciplines and the teaching program, the production of high-quality computer multimedia teaching materials, can effectively save time, and can be a variety of clinical application technology and basic medical theory to show students, do a variety of types and attention, highlight the key [8]. Third, the rational use of multimedia information technology can make clinical medicine teaching get rid of the shackles of traditional teaching mode, expand the clinical medicine learning of students to a broader space, optimize the teaching atmosphere, increase the breadth, depth and visibility of teaching, and create a vibrant learning environment for students. Placed in such a harmonious teaching situation, students' learning interest and perceptual cognition will be improved to a certain extent, and finally achieve the improvement of clinical medicine teaching effect [9].

2.3 Poor Integrity of Courseware and the Teaching Content
The designed courseware is out of line with the teaching content and cannot serve the teaching well. Some teachers do not make courseware according to the teaching content and teaching objectives, but simply for the sake of multimedia and multimedia, the original concise content, must do multifariously, make students confused, at a loss what to do [10]. This deviates from the original intention of multimedia - assisted instruction [11].

It is conducive to the improvement of students' clinical thinking. Clinical thinking refers to the process in which doctors with professional accomplishment apply logical and scientific procedures and methods for clinical reasoning, establish clinical diagnosis and differential diagnosis based on existing scientific principles and knowledge, and combine with patients' clinical information, so as to make clinical strategies [12]. Medical students in clinical stage of learning, especially learning the courses such as medical imaging and surgery, more contact for CT and X-ray two-dimensional image information, such as easy to own thinking mode locked in one place, lead to what they have learned before dissection experience and theoretical knowledge in a certain extent, disconnect are directly affect the establishment of the diagnosis thinking ability [13]. It is based on the information technology of 3 D
visualization of touch-screen technology is introduced into the bed in the medical teaching to be able to plan for three-dimensional reconstruction, by selecting different preset pattern, will look at targets in three-dimensional way to show, to help medical students in clinical practice continuously senses training before operation, building three-dimensional visualization of clinical thinking ability, for his strong clinical thinking ability to lay the foundation [14].

3 Construction and Suggestion
The construction of medical teaching network will be divided into two phases.

3.1 Phase I
Integrating school advantage resources, based on the actual needs of medical teaching, using the platform of clinical skills center, a comprehensive and systematic implementation curriculum resources and the digital teaching resources application, for the students to create an open learning environment, promoting the comprehensive level of medical teaching, covering each medical professional school students, practitioners, radiation to the various teaching unit, for medical distance education center [15].

3.2 Phase II
The objective of phase II is to realize the web-based clinical medical simulation system and examination center: to simulate the clinical diagnosis and treatment environment, including medical history inquiry, physical examination, preliminary diagnosis, laboratory examination, auxiliary examination, diagnosis, medical record summary, diagnosis and treatment, and various virtual technologies such as endoscopy teaching [16-18]. In the future teaching, the school should further strengthen the development and utilization of better quality resources, strengthen the construction of a more flexible teaching environment, and establish a clear teaching service system. Finally, digitalization is formed from environment, resources (such as books, handouts, courseware, etc.) to activities to gradually form a digital space, so that the real campus in time and space to obtain the extension of teachers and students to teach and learn to create a good space-time environment and service support [19]. At the same time, also want to give attention to discipline, course characteristic. Carry forward the advantages of traditional face-to-face classroom teaching, achieve the harmonious coexistence of traditional teaching and information teaching, and promote the improvement of teaching quality.

4 Conclusion
Modern information technology also plays an important role in clinical medicine teaching. With the deepening of the course teaching reform, the integration of modern information technology and teaching, modern education technology in education and teaching is of unprecedented importance. Many evaluation standards of open classes are also on the base of the application of information technology. It is necessary to improve teachers' ability to use modern education technology in a large scale and promote the development of education towards modernization, with obvious effects.

5 Acknowledgments
This research was financially supported by the First Hospital of Jilin University.

References
[1] Kinshuk K. Guest editorial: personalized learning. Educational Technology Research and Development. 2012 (4)
[2] G. Chabert, J. Ch. Marty, B. Caron, T. Carron, L. Vignollet, C. Ferraris. The Electronic Schoolbag, a CSCW workspace: presentation and evaluation. AI & SOCIETY. 2006 (3)
[3] Jinli Zhang, Liguo Ha. What is our current understanding of one-to-one computer projects: A systematic narrative research review. Educational Research Review. 2011 (2)
[4] Karme Shu, Raghu Raman, Prema Nedungadi. Modelling diffusion of a personalized learning
4 framework. Educational Technology Research and Development. 2012 (4)
[5]. Ueda A, Manda F, Matsushita T. Handbook of technological pedagogical content knowledge (TPCK) for educators. 2008
[6]. Abbott Chris. ICT changing education. 2001
[7]. Allen H, Richard Howell. High-impact teaching strategies for the era of education. 2010
[8]. Bert Van Oers. The transformation of learning: advances in cultural-historical activity theory. 2008
[9]. Ueda T, Yamauchi C. Handbook of Research on Student Engagement. 2012
[10]. Moazzem Hossain, Tania Bulbul. E2ML: A tool for sketching instructional designs. Botturi,L. Handbook of visual languages for instructional design: Theories and practices. 2008
[11]. Thomas Cochrane, Vickel Narayan, James Oldfield. Padgogy: Appropriating the iPad with Pedagogical Contexts. 10th World Conference on Mobile and Contextual Learning. 2011
[12]. Kamruddin Ahmed, Ziauddin Ahmed. Teaching: Theory into Practice. 1995
[13]. Distance and e-learning in transition: learning innovation, technology and social challenges. 2009
[14]. Buckingham David. Beyond technology: children’s learning in the age of digital culture. 2007
[15]. Transforming learning through Education. http://www.gsma.com/connectedliving/ gtsna-and -inkesey-transfon ning-leaining-through-meducaion. 2012
[16]. Wen-Chi Vivian Wu, Emily Petit, Ching-Huei Chen. EFL writing revision with blind expert and peer review using a CMC open forum. Computer Assisted Language Learning. 2015 (1)
[17]. Anoush Margaryan, Manuela Bianco, Allison Littlejohn. Instructional quality of Massive Open Online Courses. Computers & Education. 2015
[18]. Shona Whyte, Euline Cutrim Schmid, Sanderin van Hazebrouck Thompson, Margret Oberhofer. Open educational resources for CALL teacher education: the iTILT interactive whiteboard project. Computer Assisted Language Learning. 2014 (2)
[19]. Alan C.K. Cheung, Robert E. Slavin. The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis. Educational Research Review. 2013