Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
An initial report from the French SOT COVID Registry suggests high mortality due to COVID-19 in recipients of kidney transplants

Sophie Caillard1,2, Dany Anglicheau3,4, Marie Matignon5,6, Antoine Durrbach5,6, Clarisse Greze7, Luc Frimat8,9, Olivier Thaunat10,11, Tristan Legris12, Valerie Moal12, Pierre Francois Westeel13, Nassim Kamar14, Philippe Gatault15, Renaud Sanou16, Antoine Sicard17,18, Dominique Bertrand19, Charlotte Colosio20, Lionel Couzi21,22, Jonathan M. Chernouny23, Christophe Masset24, Gilles Blanco24, Jamal Bamouli25, Agnes Duveau26, Nicolas Bouvier27, Nathalie Chavarot3,4, Philippe Grimbert5,6, Bruno Moulin1,2, Yannick Le Meur28,29 and Marc Hazzan30; on behalf of the French SOT COVID Registry31

1Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France; 2INSERM, IRM UMR-S 1109, University of Strasbourg, Strasbourg, France; 3Department of Nephrology and Transplantation, Necker University Hospital – APHP, Paris, France; 4INEM INSERM U 1151- CNRS UMR 8253, Paris University, Paris, France; 5Department of Nephrology and Renal Transplantation, Henri-Mondor/Albert-Chenevier Hospital, AP-HP, Créteil, France; 6IFRNT, INSERM U 955, University of Paris-Est-Créteil, Créteil, France; 7Department of Nephrology and Transplantation, Bichat hospital, Paris, France; 8Department of Nephrology and Transplantation, CHRU-Nancy, Vandoeuvre, France; 9INERM CIC-EC CIE6, University of Lorraine, Nancy, France; 10Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices civils de Lyon, Lyon, France; 11CIRI, INSERM U1111, University Claude Bernard Lyon 1, Lyon, France; 12Department of Nephrology and Transplantation, Marseille University Hospital, Conception hospital, Aix Marseille University, Marseille, France; 13Department of Nephrology and Transplantation, University of Amiens, Amiens, France; 14Department of Nephrology and Transplantation, University of Toulouse, Toulouse, France; 15Department of Nephrology and Transplantation, University of Tours, Tours, France; 16Department of Nephrology and Transplantation, Bicêtre Hospital, Le Kremlin-Bicêtre, France; 17Department of Nephrology Dialysis and Transplantation, Pasteur 2 Hospital, Nice University Hospital, Nice, France; 18Unité de Recherche Clinique Côte d’Azur (UR2CA), University of Côte d’Azur, Nice, France; 19Department of Nephrology and Transplantation, University of Rouen, Rouen, France; 20Department of Nephrology and Transplantation, University of Reims, Reims, France; 21Department of Nephrology Dialysis, Transplantation and Apheresis, Bordeaux Pellegrin University Hospital, Bordeaux, France; 22Research Unit ImmunoConEpT CNRS 5164, University of Bordeaux, Bordeaux, France; 23Inserm UMR S 1085, EHEPS, University of Rennes, Rennes, France; 24Department of Nephrology and Transplantation, Nantes University Hospital, Nantes, France; 25Department of Nephrology and Transplantation, University of Besançon, Besançon, France; 26Department of Nephrology and Transplantation, University of Angers, Angers, France; 27Department of Nephrology and Transplantation, University of Caen, Caen, France; 28Department of Nephrology and Transplantation, Brest University Hospital, Brest, France; 29Inserm UMR1227, University of Brest, Labex IGO, Brest, France; and 30Department of Nephrology and Transplantation, University of Lille, Lille, France

Notwithstanding the ongoing coronavirus disease-2019 (Covid-19) pandemic, information on its clinical presentation and prognosis in recipients of a kidney transplant remain scanty. The aim of this registry-based observational study was to explore characteristics and clinical outcomes of recipients of kidney transplants included in the French nationwide Registry of Solid Organ Transplant Recipients with Covid-19. Covid-19 was diagnosed in symptomatic patients who had a positive PCR assay for SARS-CoV-2 or having typical lung lesions on imaging. Clinical and laboratory characteristics, management of immunosuppression, treatment for Covid-19, and clinical outcomes (hospitalization, admission to intensive care unit, mechanical ventilation, or death) were recorded. Risk factors for severe disease or death were determined. Of the 279 patients, 243 were admitted to hospital and 36 were managed at home. The median age of hospitalized patients was 61.6 years; most had comorbidities (hypertension, 90.1%; overweight, 63.8%; diabetes, 41.3%; cardiovascular disease, 36.2%). Fever, cough, dyspnea, and diarrhea were

Editor’s Note
This is one of several articles we think you will find of interest that are part of our special issue of Kidney International addressing the challenges of dialysis and transplantation during the COVID-19 pandemic. Please also find additional material in our commentaries and letters to the editor sections. We hope these insights will help you in the daily care of your own patients.
the most common symptoms on admission. Laboratory findings revealed mild inflammation frequently accompanied by lymphopenia. Immunosuppressive drugs were generally withdrawn (calcineurin inhibitors: 28.7%; antimetabolites: 70.8%). Treatment was mainly based on hydroxychloroquine (24.7%), antiviral drugs (7.8%), and tocilizumab (5.3%). Severe Covid-19 occurred in 106 patients (46%). Forty-three hospitalized patients died (30-day mortality 22.8%). Multivariable analysis identified overweight, fever, and dyspnea as independent risk factors for severe disease, whereas age over 60 years, cardiovascular disease, and dyspnea were independently associated with mortality. Thus, Covid-19 in recipients of kidney transplants portends a high mortality rate. Proper management of immunosuppression and tailored treatment of this population remain challenging.

Kidney International (2020) 98, 1549–1558; https://doi.org/10.1016/j.kint.2020.08.005
KEYWORDS: COVID-19; immunosuppression; kidney transplantation; mortality; prognosis
Copyright © 2020, International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created an ongoing global pandemic of major concern. Frail patients with comorbidities are at high risk of developing severe disease, as shown by initial reports from China and other countries. Although preexisting kidney disease is a predisposing factor for COVID-19 morbidity and mortality, information on its clinical presentation and prognosis in kidney transplant (KT) recipients under immunosuppressive therapy remains scant. Published data are limited to case reports and small single-center case series.

On March 1, 2020, a French nationwide registry of patients with COVID-19 and a history of solid organ transplantation was established under the auspices of the French-Speaking Society of Transplantation. As of April 21, 2020, a total of 598 patients were included in the registry—of whom 426 were KT recipients, 61 heart transplant recipients, 72 liver transplant recipients, and 39 lung transplant recipients. Here, we describe the disease presentation, immunosuppression management, clinical outcomes, and independent prognostic variables in a large sample of 279 KT recipients with COVID-19.

RESULTS
Patient characteristics
Of the 279 KT recipients included in the registry, COVID-19 was diagnosed by reverse transcriptase–polymerase chain reaction in 93% of cases. The diagnosis in the remaining 7% of the study participants was based on clinical presentation and pulmonary computed tomography findings (7%). A total of 243 patients were admitted to the hospital, and 36 were managed at home following assessment by a transplant physician (Table 1). In brief, the latter group consisted of younger patients with a lower frequency of dyspnea, fever, and gastrointestinal manifestations. One patient received home treatment with hydroxychloroquine. Antimetabolites and mammalian target of rapamycin (mTOR) inhibitors were stopped in 13 patients (36%). The general characteristics of hospitalized patients are summarized in Table 1. The median age was 61.6 years (interquartile range: 50.8–69.0 years; range: 19–93 years), and two-thirds were men. Most of them were overweight (63.8%), and the most common comorbidities were hypertension (90.1%), cardiovascular disease (36.2%), diabetes (41.3%), and a history of respiratory disease (14.8%). SARS-CoV-2 infection was identified after a median of 74.1 months (interquartile range: 27.6–138.7 months; range: 1–1943 months) from KT. The median delay between the onset of symptoms and hospital admission was 5 days (interquartile range: 3–8 days; range: 0–34 days). The most frequent symptom on admission was fever (80%), followed by cough (63.6%), diarrhea (43.5%), dyspnea (40.3%), and anosmia (14.1%). Median levels of C-reactive protein and procalcitonin were 62 mg/L and 0.20 ng/mL, respectively (Table 2). The median lymphocyte count was 0.66 × 10^9/L, whereas thrombocytopenia was identified in 54 (29%) patients. Lung infiltrates on chest computed tomography images were detected in 87% of cases.

Management of immunosuppression
On admission, calcineurin inhibitors (CNIs), antimetabolites, and steroids were being taken by 83.1%, 79.8%, and 72.8% of patients, respectively. Of note, 29 (12%) and 15 (6.2%) patients were on mammalian target of rapamycin inhibitors and belatacept, respectively. During hospitalization (Table 2), antimetabolites, CNIs, and mammalian target of rapamycin inhibitors were withdrawn in 70.8% (136 of 192), 28.7% (58 of 202), and 62.1% (18 of 29) of patients, respectively. Moreover, belatacept administration was postponed in 7 of the 15 participants taking this drug. Of note, changes in immunosuppressive drugs other than those withdrawn were not recorded.

Treatment and clinical course
Most patients received nasal oxygen therapy (72.4%) and antibiotics other than azithromycin (63%). Hydroxychloroquine and azithromycin were given to 60 (24.7%) and 71 (29.2%) patients, respectively (Table 2). CNIs were stopped in 7 of the 11 patients treated with lopinavir/ritonavir. Tocilizumab was administered to 13 (5.3%) cases. Bacterial coinfections were identified in 57 (23.5%) participants. Mechanical ventilation was required for approximately 30% of cases. Acute kidney injury occurred in 43.6% of patients, with renal replacement therapy being necessary in 11.1% of cases. A total of 88 patients (36%) required intensive
care unit (ICU) care either on admission (n = 25) or during hospitalization (n = 63). In the latter subgroup, the median interval between hospitalization and transfer to the ICU was 4 days (range: 1–25 days). The 30-day mortality rate of hospitalized patients was 22.8% (Figure 1). Nine patients lost their graft during hospitalization, 4 of whom died. The composite endpoint of severe COVID-19 within 30 days of hospital admission was reached by 46% of the study patients (Figure 2a).

Risk factors for severe COVID-19

Table 3 compares the general characteristics of hospitalized patients who developed severe COVID-19 (n = 109) versus those who did not (n = 137). Patients aged >60 years who were overweight or had diabetes were significantly over-represented in the former group. Fever and dyspnea on admission—but not cough—were associated with severe disease. However, the time elapsed between symptom onset and hospitalization was similar in the 2 groups (5 days). C-reactive protein levels >60 mg/L, procalcitonin concentrations >0.2 g/L, and a partial pressure of oxygen <95% on admission were significantly associated with severe COVID-19. No similar associations were observed with lymphocyte count, platelet count, or creatinine levels. Treatment modalities and management of immunosuppression (Table 4) were slightly different in the 2 study groups in relation to disease
presentation and the clinical evolution over time. These differences were especially evident with respect to CNI withdrawal (52% and 11% in patients with severe and nonsevere disease, respectively, \(P < 0.001 \)). Kaplan–Meier plots of severe COVID-19–free survival according to different risk factors are provided in Figure 2b–i. Multivariable analysis identified overweight, fever, and dyspnea as independent risk factors for severe disease (Figure 3a).

Risk factors for mortality

Table 5 compares the general characteristics of hospitalized patients who died (n = 43) versus those who did not (n = 200). Patients aged >60 years, who had cardiovascular disease, were receiving immunosuppressive drugs different from CNIs, and who presented with dyspnea or a partial pressure of oxygen <95% on admission, were significantly over-represented in the former group. Multivariable analysis identified age >60 years, cardiovascular disease, and dyspnea as independent risk factors for death in hospitalized patients (Figure 3b).

Subgroup analyses conducted in patients who tested negative on reverse transcriptase-polymerase chain reaction (7%) yielded similar results both in terms of severe disease and mortality (data not shown). The median follow-up time was 22 days; a total of 66 patients were still in the ICU at the time the manuscript was written.

DISCUSSION

Despite the growing literature focusing on the clinical manifestations and prognosis of COVID-19, data on certain selected clinical populations that merit special consideration—including immunocompromised patients with a history of solid organ transplantation—remain scant. To address this knowledge gap, herein we report the general characteristics and the main risk factors for adverse outcomes—including severe disease and mortality—of a large nationwide French cohort consisting of 279 KT recipients with COVID-19.

First, we demonstrate that the clinical presentation of COVID-19 in KT recipients is similar to that reported in the general population—with fever and cough being the 2 more common symptoms. These findings are in line with those from initial large reports showing fever in 77%–94% and cough in 68%–79% of cases, respectively.\(^1\) However, the occurrence of gastrointestinal symptoms (mainly diarrhea) was as high as 42% in our patients (i.e., significantly more frequent than that previously reported in general population studies conducted in both China [3%–5%]\(^2\)^ and the United States [24%]).\(^3\) Patients with a history of solid organ transplantation are at high risk of gastrointestinal disorders—which may be exacerbated by immunosuppressive drugs. Importantly, anosmia was present in 14% of our patients, and in accordance with previous findings obtained in the general population,\(^22\) tended to be associated with more favorable survival figures. We also demonstrate that some immunocompromised patients with COVID-19 were manageable at home with a favorable outcome, as described in an Italian cohort from Brescia.\(^23\) This decision was made on a case basis and was chiefly implemented for young patients without

Table 2 | Laboratory data, management of immunosuppression, treatment modalities, and outcomes of kidney transplant recipients hospitalized with COVID-19

Variable	Value	n
Laboratory data		
CRP, mg/l	62 [27–114]	186
Procalcitonin, ng/ml	0.20 [0.14–0.48]	90
Lymphocyte count, \(\times 10^9/\text{l} \)	0.66 [0.40–0.96]	184
Platelet count, \(\times 10^9/\text{l} \)	178 [145–238]	188
Thrombocytopenia \(<150 \times 10^9/\text{l} \)	54 [29]	188
SaO_2	96 [91–98]	176
Creatinine, µmol/l	176 [131–244]	200
Immunosuppression management		
CNI withdrawal	58 (28.7)	202
Antimetabolite withdrawal	136 (70.8)	192
mTOR inhibitor withdrawal	18 (62.1)	29
Belatacept withdrawal	7 (46.7)	15
COVID-19 treatment modalities		
Azithromycin	71 (29.2)	243
Other antibiotics	153 (63.0)	243
Antifungal drugs	6 (2.5)	243
Remdesivir	2 (0.8)	243
Lopinavir/ritonavir	11 (4.5)	243
Oseltamivir	6 (2.5)	243
Hydroxychloroquine	60 (24.7)	243
Tocilizumab	13 (5.3)	243
Outcome		
Bacterial coinfection	57 (23.5)	243
Viral coinfection	5 (2.1)	243
Fungal coinfection	6 (2.5)	243
Oxygen therapy	152 (72.4)	210
Mechanical ventilation	72 (29.6)	243
Vasopressor support	27 (11.1)	243
Acute kidney injury	106 (43.6)	243
Renal replacement therapy	27 (11.1)	243

CNIs, calcineurin inhibitors; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; mTOR, mammalian target of rapamycin; SaO_2, arterial oxygen saturation. Data are expressed as median [interquartile range] or count (%), as appropriate, unless otherwise indicated. Laboratory tests were performed on admission.
dyspnea and high fever. This patient subgroup was offered daily teleconsultation surveillance until disease resolution, a strategy that has been successfully implemented in a recent report from the United States.21 The laboratory findings of our patients on admission are also in line with previous studies. In general, there was evidence of mild inflammation—with lymphopenia being present in most patients, and thrombocytopenia in approximately one third. Notably, high procalcitonin levels were identified in 16\% of our study participants—a markedly lower prevalence compared with that previously reported in KT recipients (42\%).13

The initially reported mortality rate for COVID-19 in the general population of Wuhan, China, was 1.4\%.1 Higher mortality figures have been published for hospitalized patients in New York (10\%),1 and for Italian patients admitted to the ICU (26\%).1 Previous data obtained in small-sized series of transplanted patients indicated a death rate similar to that observed in our cohort.24 Here, the 30-day mortality rate of our hospitalized KT recipients with COVID-19 was 22.8\%, a value similar to that reported for Italian patients admitted to the ICU.1 The high mortality rate observed in these patients may reflect the frailty of KT recipients and/or a high burden of comorbidities. Mechanical ventilation and ICU transfer were required in 36\% of our patients—a slightly higher percentage than that reported for immunocompetent subjects (16\%—33\%).1,3

Male sex has been previously linked to severe COVID-19.25 However, no significant association between male sex and severe disease or mortality was observed in our cohort—possibly because of the high burden of comorbidities. Conversely, overweight, fever, and dyspnea were independent risk factors for severe disease in our cohort. The association between overweight/obesity and severe COVID-19—which has been shown here for the first time in transplant recipients—is in accordance with previous data obtained in the general population.1 In our study, age, cardiovascular disease, and dyspnea were independent risk factors for mortality. Age2,25 and comorbidities have been reported to have an

Figure 2 | Probability of reaching the composite endpoint of severe disease. (a) The 30-day severe disease–free survival in the entire study cohort was 54.2\% (48\%—61.4\%). Kaplan–Meier plots stratified according to (b) age (<60 years vs. >60 years), (c) diabetes (yes vs. no), (d) body mass index (BMI; <25 kg/m2 vs. >25 kg/m2), (e) fever on admission (yes vs. no), (f) dyspnea on admission (yes vs. no), (g) arterial oxygen saturation (SaO\textsubscript{2}) on admission (>95\% vs. <95\%), (h) C-reactive protein (CRP) level on admission (<60 mg/l vs. >60 mg/l), and (i) procalcitonin level on admission (<0.2 ng/ml vs. >0.2 ng/ml). PCT, procalcitonin.
adverse prognostic significance in previous general population studies. The lack of prognostic significance of hypertension in our sample may be explained by its high prevalence (90%). In accordance with previous studies, severe inflammation on admission was found to have an adverse prognostic significance. Procalcitonin and C-reactive protein levels were higher in patients in the United States requiring mechanical ventilation, whereas procalcitonin levels were an unfavorable predictor of mortality in Chinese patients. However, in contrast to previous studies, lymphopenia did not predict severe COVID-19 or mortality in our sample. A potential explanation may lie in the fact that lymphopenia occurs commonly in KT patients and thus might not be invariably linked to SARS-CoV-2 infection. The debate on the management of immunosuppression in transplant recipients following SARS-CoV-2 infection remains unresolved. Published case reports and small-size series of KT recipients diagnosed with COVID-19 have consistently documented a reduction in maintenance immunosuppression, and this approach is currently being recommended by guidelines. However, precise guidance on the management of CNIs, antimetabolites, and steroids is still

Table 3 | Baseline characteristics of kidney transplant recipients with severe versus nonsevere COVID-19

Characteristics	Nonsevere (n = 137)	Severe (n = 106)	HR [95% CI]	P	n
Baseline					
Age, yr	59.5 [48.7–67.8]	63.5 [54.7–69.6]	1.02 [1.00–1.04]	0.013	243
Age >60 yr	67 (48.9)	67 (63.2)	1.63 [1.10–2.43]	0.015	243
Male	90 (65.7)	72 (67.9)	1.07 [0.71–1.61]	0.740	243
BMI > 25 kg/m²	78 (57.8)	72 (72.0)	1.80 [1.16–2.79]	0.008	235
Blood group					
A	65 (48.5)	40 (38.1)	Ref	Ref	
AB	6 (4.48)	6 (5.71)	1.52 [0.64–3.59]	0.340	
B	16 (11.9)	13 (12.4)	1.27 [0.68–2.38]	0.449	
O	47 (35.1)	46 (43.8)	1.32 [0.86–2.02]	0.198	
Transplanted organ					
Kidney	129 (94.2)	104 (98.1)	Ref	Ref	
Kidney–heart	2 (1.46)	2 (1.89)	1.36 [0.34–5.51]	0.668	
Kidney–liver	2 (1.46)	0 (0.00)	0.00 [-]	0.997	
Kidney–pancreas	4 (2.92)	0 (0.00)	0.00 [-]	0.996	
Time from Tx to COVID-19, mo	73.4 [30.9–151.1]	77.8 [25.4–131.1]	1.00 [1.00–1.00]	0.660	243
Tx within 1 yr	19 (13.9)	16 (15.1)	0.97 [0.57–1.65]	0.912	243
Hypertension	112 (89.6)	89 (90.8)	1.14 [0.57–2.25]	0.717	223
RAS blockers	58 (47.2)	39 (41.1)	0.83 [0.55–1.29]	0.377	218
Cardiovascular disease	41 (32.5)	40 (40.8)	1.32 [0.88–1.98]	0.176	224
Respiratory disease	19 (15.2)	14 (14.3)	0.96 [0.54–1.69]	0.865	223
Diabetes	42 (33.6)	50 (51.0)	1.73 [1.16–2.57]	0.007	223
Cancer	17 (13.4)	18 (18.2)	1.33 [0.80–2.21]	0.276	226
Smoking	16 (14.8)	14 (16.3)	0.99 [0.56–1.76]	0.977	194
CNIs	115 (83.9)	87 (82.1)	0.96 [0.58–1.58]	0.868	243
Mycophenolate acid	102 (74.5)	81 (76.4)	1.08 [0.69–1.69]	0.743	243
Azathioprine	5 (3.65)	6 (5.66)	1.32 [0.58–3.01]	0.509	243
mTOR inhibitors	15 (10.9)	14 (13.2)	1.08 [0.62–1.90]	0.785	243
Steroids	96 (70.1)	81 (76.4)	1.24 [0.79–1.94]	0.347	243
Belatacept	8 (5.84)	7 (6.60)	1.08 [0.50–2.33]	0.844	243
On admission					
Cough	81 (62.3)	64 (65.3)	1.20 [0.79–1.82]	0.390	228
Rhinitis	12 (9.76)	8 (8.70)	0.82 [0.40–1.69]	0.592	215
Dyspnea	42 (30.7)	56 (52.8)	2.28 [1.55–3.34]	>0.001	243
Anosmia	19 (16.1)	10 (11.4)	0.71 [0.37–1.38]	0.315	206
Fever	98 (75.4)	82 (86.3)	1.77 [0.99–3.19]	0.055	225
Headache	25 (19.5)	14 (14.7)	0.75 [0.43–1.32]	0.322	223
Diarrhea	59 (46.1)	38 (40.0)	0.86 [0.57–1.30]	0.486	223
Time from symptom onset to admission, d	5.00 [3.00–9.00]	5.00 [3.00–7.00]	1.00 [0.96–1.04]	0.873	219
C-reactive protein >60 mg/l	51 (46.4)	49 (64.5)	2.07 [1.29–3.31]	0.003	186
Procalcitonin > 0.2 ng/ml	21 (37.5)	23 (67.6)	3.19 [1.55–6.57]	0.002	90
Lymphocyte count, ×10³/l	0.70 [0.40–0.95]	0.60 [0.40–0.96]	1.10 [0.74–1.64]	0.627	184
Platelet count, ×10⁹/l	176 [146–229]	178 [145–247]	1.00 [1.00–1.00]	0.742	188
Thrombocytopenia < 150 × 10⁹/l	31 (28.7)	23 (28.7)	0.98 [0.60–1.58]	0.923	188
SăO₂ < 95%	26 (26.8)	40 (50.6)	2.47 [1.59–3.84]	<0.001	176
Creatinine, μmol/l	173 [126–230]	182 [132–251]	1.00 [1.00–1.00]	0.378	200

BMI, body mass index; CNI, calcineurin inhibitor; COVID-19, coronavirus disease 2019; HR, hazard ratio; mTOR, mammalian target of rapamycin; RAS, renin–angiotensin system; Ref, reference; Tx, transplantation.

Data are expressed as median [interquartile range] or count (%), as appropriate, unless otherwise indicated.
lacking. In our registry, CNIs and antimetabolites were withdrawn in 28.7% and 70.8% of the study patients, respectively. Similar figures have been reported in United States case series. These management strategies have been chiefly informed by alterations in T-cell responses induced by SARS-CoV-2. Although CNIs may exert an inhibitory effect against the replication of coronaviruses in vitro, whether or not this effect can have clinical implications is arguable. In our study, patients who were free from CNIs on admission had a lower risk of mortality in univariable but not multivariable analysis (probably because of their older age; data not shown). No firm conclusions can therefore be drawn on the potential beneficial or detrimental effects of CNIs in KT recipients with COVID-19.

A minority of our patients received specific antiviral drugs. The lopinavir/ritonavir combination has strong pharmacological interactions with CNIs and mammalian target of rapamycin inhibitors, which have been related to the onset of acute renal failure in solid organ transplant recipients. Only 25% of our patients received hydroxychloroquine. The lower usage of this drug compared with the usage level in other cohorts may be explained by low-quality evidence on its effectiveness and the potential risk of severe adverse events in KT recipients. The potential benefits of interleukin-6 inhibition merit comment. A hyperinflammatory state characterized by the release of massive amounts of cytokines (cytokine storm) has been reported in patients with severe or catastrophic forms of COVID-19. Because interleukin-6 plays a central role in the cytokine storm, interleukin-6–targeting therapies have been proposed to tackle its occurrence. Trials of tocilizumab have been already attempted in nontransplanted and transplanted patients, and this drug was given to 13 patients included in our registry. Of them, 11 had favorable outcomes despite severe COVID-19. Although no firm conclusions can be drawn because of the retrospective, nonrandomized nature of our study, our results are in line with those by Alberici et al. who demonstrated a 50% reduction in the oxygen therapy requirement and a significant improvement in imaging features of pulmonary lesions upon tocilizumab administration.

Our findings need to be interpreted in the context of several limitations. First, we acknowledge that some baseline clinical, laboratory, and imaging data were missing. Similarly, information on the exact management of immunosuppression (i.e., dose reduction) and changes in laboratory parameters over time is lacking. Second, we

Therapy	Nonsevere	Severe	P	n
Azithromycin	38 (27.7)	33 (31.1)	0.790	243
Other antibiotics	81 (59.1)	72 (67.9)	0.190	243
Antifungal drugs	1 (0.7)	5 (4.7)	0.060	243
Remdesivir	0 (0.0)	2 (1.9)	0.035	243
Lopinavir/ritonavir	2 (1.5)	9 (8.5)	0.002	243
Oseltamivir	3 (2.2)	3 (2.8)	0.708	243
Hydroxychloroquine	28 (20.4)	32 (30.2)	0.168	243
Tocilizumab	4 (2.9)	9 (8.5)	0.077	243

Immunosuppression management

CNI withdrawal	13 (11.3)	45 (51.7)	<0.001	202
Antimetabolite withdrawal	73 (68.2)	63 (74.1)	0.376	192
mTOR inhibitor withdrawal	8 (53.3)	10 (71.4)	0.187	29
Belatacept withdrawal	4 (50.0)	3 (42.9)	0.549	15

COVID-19, coronavirus disease 2019; CNI, calcineurin inhibitor; mTOR, mammalian target of rapamycin.

Values are n (%), unless otherwise indicated.
are aware that the follow-up time is limited, and 88 patients were still being hospitalized at the time of analysis. We cannot exclude the possibility that some of these cases will ultimately develop severe disease and eventually die. We also acknowledge that some patients with severe disease did not qualify for admission to the intensive care unit. Third, we are aware that representativeness can affect the generalizability of our registry data and that our findings need external validation. However, efforts to address potential sources of bias in our registry included the prospective data collection and the controlling for potential confounders in multivariable analysis. Notwithstanding the potential caveats, this study is by far the largest so far to provide a comprehensive description of KT recipients with COVID-19.

Conclusion

COVID-19 in KT recipients portends a high risk of mortality. Proper management of immunosuppression and tailored treatment of this fragile population remain challenging. Overweight, fever, and dyspnea were independent risk factors for severe COVID-19 in this patient group, whereas age >60 years, cardiovascular disease, and dyspnea were independently associated with mortality.
PATIENTS AND METHODS

Patients
Data from all French patients with COVID-19 and a history of KT included in a nationwide registry—termed French Solid Organ Transplant (SOT) COVID—between March 4 and April 21, 2020, were retrieved. Inclusion criteria were age ≥18 years at the diagnosis of COVID-19 and presence of a functioning kidney graft. Patients who received double solid organ transplantation (kidney with pancreas, liver, or heart transplantation) were deemed eligible. The diagnostic criteria for COVID-19 were as follows: (i) evidence of SARS-CoV-2 infection on reverse transcriptase–polymerase chain reaction testing performed on nasopharyngeal swab specimens; or (ii) presence of typical respiratory symptoms accompanied by evocative pulmonary lesions on low-dose chest computed tomography even when reverse transcriptase–polymerase chain reaction yielded negative results. Clinical and laboratory variables were extracted from medical records. In case of hospitalization, data on presentation and other clinical and biological variables (including ongoing immunosuppressive therapy) were collected on admission. Changes in immunosuppression during the course of hospitalization were thoroughly recorded. Patients were divided into 2 groups according to their need for hospitalization (admitted to hospital vs. managed at home). Severe COVID-19 was defined as admission (or transfer) to an intensive care unit (ICU), need for mechanical ventilation, or death. All other patients were considered nonsevere cases. Acute kidney injury was defined according to the Kidney Disease Improving Global Outcomes guidelines as an increase in serum creatinine of >50%. The creation of the French SOT COVID Registry was approved by the Institutional Review Board of Strasbourg University (approval number 02.26) and registered at clinicaltrials.gov (NCT04360707). The need for informed consent was waived. However, all patients were informed about their inclusion in the registry.

Statistical analysis
Categorical data are presented as counts and percentages. Continuous variables are expressed as medians and interquartile ranges upon verification of their skewed distribution with the Shapiro-Wilk test. Two time-dependent variables served as the outcome measures. The first was a composite endpoint of severe COVID-19 (including admission/transfer to an ICU, need for mechanical ventilation, or death), whereas the second was a hard endpoint consisting of death, stroke, acute kidney failure, or unplanned hospitalization.

REFERENCES
1. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720.
2. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
3. Goyal P, Choi JJ, Piñeiro LC, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. 2020;382:2372–2374.
11. The Columbia University Transplant Program. Early description of COVID-19 in kidney transplant recipients.

12. Fernandez Ruiz M, Andres A, Lopez-Medrano F, San Juan R. COVID-19 in kidney transplant recipients.

13. Akalin E, Azzi Y, Bartash R, et al. COVID-19 and kidney transplantation.

14. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region.

15. Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state.

16. Guillen E, Pineiro GJ, Revuelta I, et al. Case report of COVID-19 in a kidney transplant recipient: Does immunosuppression alter the clinical presentation?

17. Nair V, Jandovitz N, Hirsch JS, et al. COVID-19 in kidney transplant recipients: initial report of the US epicenter.

18. Zhu L, Gong N, Liu B, et al. Coronavirus disease 2019 pneumonia in immunosuppressed renal transplant recipients: a summary of 10 confirmed cases in Wuhan, China.

19. Chén TY, Farghaly S, Cham S, et al. COVID-19 pneumonia in kidney transplant recipients: focus on immunosuppression management.

20. Hoek RAS, Manintveld OC, Betjes MGH, et al. COVID-19 in solid organ transplant recipients: a single-center experience.

21. Husain SA, Dube G, Morris H, et al. Early outcomes of outpatient management of kidney transplant recipients with coronavirus disease 2019.

22. Kim GU, Kim MJ, Ra SH, et al. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19.

23. Bossini N, Alberici F, Delbarba E, et al. Kidney transplant recipients with SARS-CoV-2 infection: The Brescia Renal Covid task force experience.

24. Maggiore U, Abramowicz D, Crespo M, et al. How should I manage immunosuppression in a kidney transplant patient with COVID-19?

25. Willcombe M, Thomas D, McAdoo S. COVID-19 and calcineurin inhibitors: Should they get left out in the storm?

26. French guidelines for COVID-19 management in solid organ transplant recipients. A collegial statement endorsed by the Société Francophone de Transplantation (SFT), the Société Francophone de Néphrologie, Dialyse et Transplantation (SFNDT) the Groupe Infection et Immunosuppression and the Société de pathologie infectieuse de langue française (SPIFL).

27. Willicombe M, Thomas D, McAdoo S. COVID-19 and calcineurin inhibitors: Should they get left out in the storm? J Am Soc Nephrol. 2020;31:1145–1146.