SCRIPT: Self-Critic Pretraining of Transformers

Erik Nijkamp
UCLA
enijkamp@ucla.edu

Bo Pang
UCLA
bopang@ucla.edu

Ying Nian Wu
UCLA
ywu@stat.ucla.edu

Caiming Xiong
Salesforce Research
cxiong@salesforce.com

Abstract

We introduce Self-CRItic Pretraining Transformers (SCRIPT) for representation learning of text. The popular masked language modeling (MLM) pretraining methods like BERT replace some tokens with [MASK] and an encoder is trained to recover them, while ELECTRA trains a discriminator to detect replaced tokens proposed by a generator. In contrast, we train a language model as in MLM and further derive a discriminator or critic on top of the encoder without using any additional parameters. That is, the model itself is a critic. SCRIPT combines MLM training and discriminative training for learning rich representations and compute- and sample-efficiency. We demonstrate improved sample-efficiency in pretraining and enhanced representations evidenced by improved downstream task performance on GLUE and SQuAD over strong baselines. Also, the self-critic scores can be directly used as pseudo-log-likelihood for efficient scoring.

1 Introduction

In natural language processing, the landscape of unsupervised learning methods is dominated by masked language modeling (MLM) for bi-directional encoders, such as BERT (Devlin et al., 2018; Yang et al., 2019; Liu et al., 2019; Joshi et al., 2020; Lan et al., 2020; Lewis et al., 2019; Joanna et al., 2019), and causal masking for uni-directional auto-regressive decoders (Radford et al., 2018, 2019; Brown et al., 2020; Raffel et al., 2020; Lewis et al., 2019) such as GPT. In MLM an encoder is pre-trained on a generic corpus of text with the hope of learning universal contextual embeddings, which, then, are fine-tuned on a specific down-stream task. Whereas recent developments in causal masking aim to learn a large-scale model once and define the down-stream task as an auto-regressive manner in the form of few-shot evaluation (Brown et al., 2020). In practice, while an universal auto-regressive neural backbone model without the need for fine-tuning such as GPT-3 is desirable, the computational complexity at inference time remains an open problem. While the two-stage approach of MLM of smaller models is computationally convenient, the pretraining still incurs a substantial computational cost. Hence, in this work, we focus on learning contextual bi-directional representations with the goal of improving upon sample efficiency.

In MLM, the input sequence of tokens is perturbed by randomly masking out a small subset of the identities of tokens (Devlin et al., 2018) or attention scores to those tokens (Yang et al., 2019). Then, the generative model is learned as a denoising auto-encoder (Vincent et al., 2008) which recovers the masked out tokens. While the learned contextual representations achieve remarkable performance on down-stream tasks, the pretraining requires substantial compute. This is mainly due to learning from gradients from the restricted subset of tokens (Clark et al., 2020).

In ELECTRA (Clark et al., 2020), the input sequence is perturbed by replacing a subset of tokens by sampled tokens drawn from an auxiliary generator model in the form of a bi-directional encoder, which itself is learned by MLM. Then, the discriminative model is learned by a binary classification task which detects whether a token is unperturbed or has been replaced. This approach enjoys remarkable sample efficiency, which, we believe, stems primarily from reducing the complexity of the classification task from masked token prediction over a large set of classes (i.e., a typical vocabulary size of 30,522 classes) to replaced token detection (i.e., 2 classes).

Despite it being less efficient, MLM training guides the model to learn rich representations. ELECTRA uses MLM only in learning the auxiliary generator which is discarded after pretraining. We propose to combine MLM and discriminative
Our experiments show that SCRIPT has improved compute and sample efficiency through discriminative training, the resulting rich representations extracted through MLM training and the compute- and sample-efficiency though discriminative training, resulting in a simple yet effective pretraining approach for representation learning. Pretraining starts with replacing a small portion of tokens (e.g., 15%) in a text sequence \(\bar{x} \) with [MASK], yielding \(\hat{x} \). The architecture of SCRIPT is a transformer encoder with a softmax output layer, producing a distribution over tokens, same as any MLM models like as BERT. In the MLM forward pass, SCRIPT takes \(\hat{x} \) as input and outputs a distribution for each token. This distribution is first used to compute the MLM loss, \(L_{MLM} \), the negative log-likelihood of recovering the masked token. It is then used to construct a Gumbel-Softmax distribution, from which \(\hat{x} \) is sampled (indicated by the broken arrows in the figure). The critic forward pass takes \(\hat{x} \) as input and goes through the same model. The output softmax distribution is used to construct a binary classifier to discriminate an original versus a replaced token. And the discriminative training loss, \(L_{Disc} \), is simply cross-entropy of the derived binary classifier. Finally, a single backward pass is guided by the combination of \(L_{MLM} \) and \(L_{Disc} \).

Contributions. (1) We propose a novel pre-training approach in which the model acts as a self-critic. (2) We demonstrated improved downstream task performance over state-of-the-art under computational constraints. (3) We show the self-critic scores may serve as computationally efficient pseudo-log-likelihood for scoring tasks.

2 Method

We propose a pretraining approach which combines masked token recovery and replaced token detection and does not introduce any additional parameters compared to a regular BERT. In the following sections, we first introduce MLM training which is the same as that in BERT, and then present self-critic training.

Suppose \(\bar{x} = \{x_1, ..., x_t, ..., x_T\} \) is a text sequence where \(x_t \) is the th token. In MLM training, a portion of tokens (e.g., 15%) are replaced with a special token [MASK]. Let \(\hat{x} \) be the sequence after the mask replacement and \(e(\hat{x}) = \{e_t \in \mathbb{R}^d | t \in T\} \) be the contextual representations computed by the transformer. Let \(W' \in \mathbb{R}^{V \times d} \) be the weight matrix of a softmax layer where \(V \) is the vocabulary size. The logit or score for token \(t \) is \(s_t = W' e_t \in \mathbb{R}^V \).

Then the log-likelihood of the sequence \(\bar{x} \) is,

\[
\log p_\theta(\bar{x}) = \sum_{t=1}^T m_t \log p_\theta(x_t|\bar{x})
\]

where \(m_t \in \{0,1\} \) indicates whether \(x_t \) is a masked token [MASK]. The loss function for MLM is the negative log-likelihood \(L_{MLM}(\theta) = -\mathbb{E}_{p_{data}(\bar{x})} \log p_\theta(\bar{x}|\bar{x}) \) where \(p_{data} \) is the empirical data distribution.

Besides defining the log-likelihood for MLM training, \(p_\theta(x_t|\bar{x}) \) naturally provides a conditional distribution of \(x_t \) with which we can construct a sampled sequence, \(\bar{x} = \{\bar{x}_1, ..., \bar{x}_T\} \), by replacing \(x_t \) with \(\bar{x}_t \), a token sampled from \(p_\theta(x_t|\bar{x}) \). \(x_t \) is replaced only if it is masked in \(\bar{x} \) (i.e., \(m_t = 1 \)). In particular, the replacement token is sampled from a Gumbel-Softmax distribution (Jang et al., 2016).

Let \(\pi = \{\pi_v\}_{v=1}^V \) denote \(p_\theta(x_t|\bar{x}) \) for notational clarity. Then the probability of sampling the \(v \)th token in the vocabulary for \(x_t \) is,

\[
\frac{\exp((\log \pi_v + g_v)/\tau)}{\sum_{v'=1}^V \exp((\log \pi_{v'} + g_{v'}/\tau)}
\]
while the probability being a positive token is, $t \in \{g_{\nu'}\}_{\nu'=1}^{V}$ and τ is the temperature for sampling. The Gumbel-Softmax distribution π approaches one-hot when τ is small (e.g., $\tau = 0.1$) and uniform when τ is large (e.g., $\tau = 10.0$).

To apply discriminative training to the model, we derive a discriminator from the existing model. Hence, we train and evaluate two SCRIPT models “small” and “base” with an encoder of the 14M and 110M parameters, respectively. For a direct comparison, the models are trained on the OpenWebText corpus (Gokaslan and Cohen, 2019) with identical pre-processing and optimization procedures as in (Devlin et al., 2018) and (Clark et al., 2020). We refer to the Appendix for details.

3 Experiments

In the subsequent empirical evaluations, we shall address the following questions: (1) Does the learning as self-critic lead to competitive downstream task performance? (2) Can we treat the self-critic scores as pseudo-log-likelihoods? (3) Is the sample efficiency improved over state-of-the-art baselines?

Hence, we train and evaluate two SCRIPT models “small” and “base” with an encoder of the 14M and 110M parameters, respectively. For a direct comparison, the models are trained on the OpenWebText corpus (Gokaslan and Cohen, 2019) with identical pre-processing and optimization procedures as in (Devlin et al., 2018) and (Clark et al., 2020). We refer to the Appendix for details.

3.1 Transfer to Downstream Tasks

We evaluate the efficacy of our method on the GLUE natural language understanding benchmark (Wang et al., 2018) and the SQuAD 1.1 and 2.0 question answering dataset (Rajpurkar et al., 2016a). We report mean scores of GLUE tasks over 8 fine-tuning runs with varying random seed. For the evaluation on SQuAD, we re-trained the “small” models with a sequence length of 512 tokens. Table 1 depicts improved scores across the benchmarks. The task specific GLUE scores are shown in Table 2.

Model	GLUE	SQuAD 1.1	SQuAD 2.0
Electra-small	80.38	74.13	81.65
Script-small	81.32	76.84	82.43
Electra-base	85.06	84.57	90.72
Script-base	85.76	85.43	91.56

Table 1: GLUE and SQuAD dev-set scores for models pre-trained on OpenWebText with identical pre-processing and optimization.

3.2 Efficient Pseudo-Log-Likelihood Scoring

In contrast to MLM and ELECTRA pretraining, SCRIPT allows for efficient computation of
Table 2: Comparison of small and base models on the GLUE dev set. The models were trained on the OpenWebText corpus (Gokaslan and Cohen, 2019) for 1,000,000 and 766,000 steps, respectively. The GLUE task scores are means of 8 runs over a set of random seeds. SCRIPT outperforms ELECTRA while enjoying a simple architecture and learning algorithm.

![Graph showing GLUE mean scores over training steps.]

Table 3: WERs on LibriSpeech after rescoring. Baseline, SANLM, and oracle numbers are from Shin et al. (2019).

Model	clean	other	clean	other
baseline (1-best)	7.17	19.79	7.26	20.37
oracle (100-best)	2.85	12.21	2.81	12.85
uni-SANLM	6.08	17.52	6.11	18.13
bi-SANLM	5.52	16.61	5.65	17.44
BERT-small	5.65	16.97	5.80	17.70
SCRIPT-small	5.79	17.02	6.12	17.83

![Graph showing WERs on LibriSpeech after rescoring.]

3.3 Computational Efficiency

Wall-clock time. We compare the number of training steps per second. For direct comparison, we modify the ELECTRA reference code\(^2\). For TPU v3 with 8 TPU cores, ELECTRA and SCRIPT achieve 31.3 and 22.7 training iterations per sec-

\(^2\)https://github.com/google-research/electra
References

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Itziar Lopez-Gazpio, and Lucia Specia. 2017. Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In SemEval.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020. Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

William B. Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In IWP@IJCNLP.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B. Dolan. 2007. The third pascal recognizing textual entailment challenge. In ACL-PASCAL@ACL.

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext corpus. http://Skylion007.github.io/OpenWebTextCorpus.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. 2017. First Quora dataset release: Question pairs.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: Improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8:64–77.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language representations. In International Conference on Learning Representations.

Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, and Luke Zettlemoyer. 2020. Pre-training via paraphrasing. Advances in Neural Information Processing Systems, 33.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016a. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy S. Liang. 2016b. Squad: 100,000+ questions for machine comprehension of text. In EMNLP.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrina Kirchhoff. 2019. Masked language model scoring. arXiv preprint arXiv:1910.14659.

Joonho Shin, Yoonhyung Lee, and Kyomin Jung. 2019. Effective sentence scoring method using bert for speech recognition. In Asian Conference on Machine Learning, pages 1081–1093.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. 2008. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages 1096–1103.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.
Appendix

4.1 Experiment Details

We describe the configuration used for pre-trained and fine-tuning below.

Pre-Training Hyperparameters. We largely use the same hyperparameters as BERT and ELECTRA. The coefficient for discriminative learning, α, is set to be 50. We use dynamic token masking with the masked positions decided on-the-fly. Among the 15% tokens selected for masking, 80% are replaced with [MASK], 10% are kept to be the same, 10% are replaced with a random token. The full set of hyperparameters are displayed in Table 4.

Fine-Tuning Hyperparameters. We follow the fine-tuning hyperparameters used in ELECTRA. The full set of hyperparameters is listed in Table 5.

4.2 GLUE Description

Each subtask of GLUE is described below.

MNLI. Multi-genre Natural Language Inference (Williams et al., 2018). Given a pair of sentences, the task is to predict whether whether the second sentence is an entailment, contradiction, or neutral with respect to the first one.

QQP. Quora Question Pairs (Iyer et al., 2017). The task is to determine whether a pair of questions asked on Quora are semantically equivalent.

QNLI. Question Natural Language Inference. It is a binary classification task constructed from SQuAD (Rajpurkar et al., 2016b). The task is to predict whether a context sentence contains the answer to a question sentence.

SST. Stanford Sentiment Treebank (Socher et al., 2013). This task is binary task to determine if a sentence is positive or negative in sentiment.

STS. Semantic Textual Similarity (Cer et al., 2017). The tasks is to predict how similar two sentences are on a 1-5 scale in terms of semantic meaning.

CoLA. Corpus of Linguistic Acceptability (Warstadt et al., 2018). The task is to determine whether a given sentence is linguistically "acceptable".

MRPC. Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005). The task is to predict whether two sentences are semantically equivalent.

RTE. Recognizing Textual Entailment (Giampiccolo et al., 2007). Given a premise and a hypothesis, the task is to predict whether the premise entails the hypothesis.
Table 4: Pre-train hyperparameters.

Hyperparameter	Small	Base
Number of layers	12	12
Hidden Size	256	768
FFN inner hidden size	1024	3072
Attention heads	4	12
Attention head size	64	64
Embedding Size	128	768
Mask percent	15	15
Learning Rate Decay	Linear	Linear
Warmup steps	10000	10000
Learning Rate	5e-4	2e-4
Adam ϵ	1e-6	1e-6
Adam β_1	0.9	0.9
Adam β_2	0.999	0.999
Attention Dropout	0.1	0.1
Dropout	0.1	0.1
Weight Decay	0.01	0.01
Batch Size	128	256

Table 5: Fine-tune hyperparameters.

Hyperparameter	Value
Learning Rate	3e-4 for Small, 1e-4 for Base
Adam ϵ	1e-6
Adam β_1	0.9
Adam β_2	0.999
Layerwise LR decay	0.8
Learning rate decay	Linear
Warmup fraction	0.1
Attention Dropout	0.1
Dropout	0.1
Weight Decay	0
Batch Size	32
Train Epochs	10 for RTE and STS, 2 for SQuAD, 3 for other tasks