Analytic Bethe Ansatz Solutions for Highest States in the $su(1|1)$ and $su(2)$ Sectors

Shijong Ryang

Department of Physics
Kyoto Prefectural University of Medicine
Taishogun, Kyoto 603-8334 Japan
ryang@koto.kpu-m.ac.jp

Abstract

We construct the integral equations by taking the thermodynamic limit of both the all-loop gauge Bethe ansatz equation and the string Bethe ansatz equation for the highest states in the $su(1|1)$ and $su(2)$ sectors of the $\mathcal{N} = 4$ super Yang-Mills theory. Using the Fourier transformation we solve the integral equations iteratively to obtain the anomalous dimensions of the highest states in the weak coupling expansion. In the $su(1|1)$ sector we analytically study the strong coupling limit of the anomalous dimension for the all-loop gauge Bethe ansatz equation by means of the Laplace transformation.

March, 2007
1 Introduction

The AdS/CFT correspondence [1] has been deeply revealed by comparing the anomalous dimensions of certain single trace operators in the planar limit of the $\mathcal{N} = 4$ super Yang-Mills (SYM) theory and the energies of certain string states in the type IIB string theory on $AdS_5 \times S^5$ [2, 3, 4]. In particular, integrability has made its appearance in both theories and has shed light on the AdS/CFT correspondence.

The spectrum of anomalous dimension for a local composite operator in the $\mathcal{N} = 4$ SYM theory has been computed by the Bethe ansatz [5] for diagonalization of the dilatation operator [6, 7] that is represented by a Hamiltonian of an integrable spin chain with length L. Further, the asymptotic all-loop gauge Bethe ansatz (GBA) equations for the integrable long-range spin chains have been proposed in the $su(2)$, $su(1|1)$ and $sl(2)$ sectors [8, 9, 10].

The integrability for the classical $AdS_5 \times S^5$ string sigma model has been investigated by verifying the equivalence between the classical string Bethe equation for the string sigma model and the Bethe equation for the spin chain [11, 12]. Combining the classical string Bethe ansatz and the asymptotic all-loop GBA, a set of discrete Bethe ansatz equations for the quantum string sigma model have been constructed [13, 14, 10], where the integrable structure is assumed to be maintained at the quantum level and the quantum string Bethe ansatz (SBA) equations are obtained by modifying the GBA equations with the dressing factor. To fix the dressing factor the SBA equation has been studied by comparing its prediction with the quantum world-sheet correction to the spinning string solution [15]. An all-order perturbative expression for the dressing factor at strong coupling has been proposed [16] such that it satisfies the crossing relation [17] and matches with the known physical data at strong coupling [18].

The spectrum of the highest state has been studied by analyzing the GBA equation in the thermodynamic limit $L \to \infty$ for the $su(2)$ sector [19] and the GBA and SBA equations for the $su(1|1)$ sector [20]. The flow of the spectrum from weak to strong coupling has been numerically derived by solving the GBA and SBA equations for the $su(2)$ and $su(1|1)$ sectors in the large but finite L [21]. The strong coupling behavior of the $su(2)$ spectrum has been investigated by using the Hubbard model which is regarded as the microscopic model behind the integrable structure of the $\mathcal{N} = 4$ SYM dilatation operator [22]. The highest states for the $su(2)$ and $su(1|1)$ sectors of the $AdS_5 \times S^5$ superstring have been studied analytically in the framework of the light-cone Bethe ansatz equations [23].

For the $sl(2)$ sector the large-spin anomalous dimension of twist-two operator has been computed by solving the GBA equation and the SBA equation in the thermodynamic limit by means of the Fourier transformation [24]. In the former integral equation which we call the ES equation, the anomalous dimension leads to the universal all-loop scaling function $f(g)$ with the gauge coupling constant g satisfying the Kotikov-Lipatov transcendentality [25], whereas in the latter integral equation $f(g)$ is modified at the three-loop order as compared to the ES equation and the transcendentality is not preserved. In the GBA equation with a weak-coupling dressing factor [26] which is an analytic continuation of a crossing-symmetric strong-coupling dressing factor [16], which is called the BES equation, the universal scaling function has been shown to be so modified at the four-loop order as to obey the Kotikov-Lipatov transcendentality and be consistent with the planar multi-gluon...
amplitude of $\mathcal{N} = 4$ SYM theory at the four-loop order \cite{27}. The strong coupling behavior of $f(g)$ for the BES equation has been studied numerically by analyzing the equivalent set of linear algebraic equation to reproduce the asymptotic form predicted by the string theory \cite{28}. By truncating the strong coupling expansion of the matrices entering the linear algebraic equation, the strong coupling limit of $f(g)$ has been extracted analytically \cite{29}. In ref. \cite{30} the ES and BES equations have been analyzed by using the Laplace transformation where the analytic properties of the solutions at strong coupling are studied and the strong coupling limit of $f(g)$ is estimated analytically by deriving a singular solution for the integral equation.

Further for the $su(2)$ and $su(1|1)$ sectors the GBA equations with the weak-coupling dressing factor have been analyzed and the anomalous dimensions of the highest states have been presented in the weak coupling expansion \cite{31}, where the anomalous dimensions of a state built from a field strength operator and a certain one-loop $so(6)$ singlet state also have been computed. The physical origin of the full weak-coupling dressing factor has been argued \cite{32}. Without resorting to the Fourier transformation the strong coupling solutions for the SBA equations in the rapidity plane have been analytically derived for the highest states in the $su(2)$ and $su(1|1)$ sectors and the strong coupling limit of the universal scaling function $f(g)$ in the $sl(2)$ sector has been estimated from the BES equation by deriving the leading density of Bethe roots in the rapidity plane \cite{33}. On the other hand the Fourier-transform of the SBA equation for the $sl(2)$ sector has been analyzed to study the strong coupling behavior of $f(g)$ \cite{34}.

We will analyze the SBA equations for the highest states in the thermodynamic limit $L \to \infty$ for the $su(1|1)$ and $su(2)$ sectors. By solving these equations through the Fourier transformation we will derive the anomalous dimensions of the highest states in the weak coupling expansion. Specially the weak coupling spectrum for the $su(1|1)$ sector derived by computing the Fourier-transformed density of Bethe roots will be compared with the result \cite{20} which was produced by analyzing the SBA equation in the large but finite L and computing the Bethe momenta. Applying the Laplace transformation prescription of ref. \cite{30} to the GBA equation for the $su(1|1)$ sector we will construct a singular solution for the integral equation at strong coupling to compute the strong coupling limit of the anomalous dimension analytically.

2 Weak coupling spectrum of the highest state in the $su(1|1)$ sector

We consider the highest state in the $su(1|1)$ sector which corresponds to the purely-fermionic operator $\text{tr}(\psi^L)$ \cite{20}, where ψ is the highest-weight component of the Weyl spinor from the vector multiplet. The asymptotic all-loop GBA equation \cite{10} for the highest state is given by

\begin{equation}
\left(\begin{array}{c}
x_k^+ \\
x_k^-
\end{array} \right)^L = \prod_{j \neq k} \frac{1 - g^2/2x_k^+x_j^-}{1 - g^2/2x_k^-x_j^+}, \quad g^2 = \frac{\lambda}{8\pi^2},
\end{equation}

\[3\]
where \(u_k (k = 1, \cdots, L) \) are rapidities of elementary excitations and
\[
 x_k^\pm = x^\pm(u_k) = \frac{u_\pm}{2} \left(1 + \sqrt{1 - \frac{2g^2}{u_\pm^2}} \right), \quad u_\pm = u_k \pm \frac{i}{2}.
\] (2)

The all-loop ansatz \((1)\) is a generalization of a three-loop Bethe ansatz \([9]\) and is obtained by deforming the spectral parameter \(u_k \) into \(x_k^\pm \) in such a way as \(u_k \pm i/2 = x_k^\pm + g^2/2x_k^\pm \), where the deformation parameter is the Yang-Mills coupling constant \(g \). The asymptotic all-loop energy \(E(g) \) of the highest state is
\[
 E(g) = g^2 \sum_{k=1}^{L} \left(\frac{i}{x^+(u_k)} - \frac{i}{x^-(u_k)} \right),
\] (3)
which gives its dimension \(\Delta = 3L/2 + E(g) \). Taking the thermodynamic limit in the logarithm of \((1)\) and differentiating in the rapidity \(u \) we have an integral equation for the density of Bethe roots \(\rho(u) \) \([20]\)
\[
 \frac{1}{i} \left(\frac{1}{\sqrt{u_+^2 - 2g^2}} - \frac{1}{\sqrt{u_-^2 - 2g^2}} \right) = -2\pi \rho(u) - \frac{i}{2} \int_{-\infty}^{\infty} dv \rho(v) \frac{\partial}{\partial u} \log \left(\frac{1 - g^2/2x^+(u)x^-(v)}{1 - g^2/2x^-(u)x^+(v)} \right)^2.
\] (4)
where \(u_\pm = u \pm i/2 \) and in the second term the density is integrated against the kernel
\[
 K_m(u, v) = i \frac{\partial}{\partial u} \log \left(\frac{1 - g^2/2x^+(u)x^-(v)}{1 - g^2/2x^-(u)x^+(v)} \right)^2.
\] (5)

In this continuum limit the energy shift \(E(g) \) \([3]\) is also expressed as an integral representation
\[
 \frac{E(g)}{L} = ig^2 \int_{-\infty}^{\infty} du \rho(u) \left(\frac{1}{x^+(u)} - \frac{1}{x^-(u)} \right).
\] (6)

Following the Fourier transformation procedure in ref. \([24]\), we solve the integral equation to obtain \(E(g) \). The Fourier transform of the density \(\rho(u) \) is defined by
\[
 \hat{\rho}(t) = e^{-|t|/2} \int_{-\infty}^{\infty} du e^{-iut} \rho(u).
\] (7)

We are interested in the symmetric density \(\rho(-u) = \rho(u) \) so that \(\hat{\rho}(t) \) is also symmetric \(\hat{\rho}(-t) = \hat{\rho}(t) \). Therefore the kernel \(K_m(u, v) \) in \((1)\) can be symmetrized under the exchange \(v \leftrightarrow -v \)
\[
 i\partial_u \log \left(\frac{1 - g^2/2x^+(u)x^-(v)}{1 - g^2/2x^-(u)x^+(v)} \right)^2 \to \frac{i}{2} \partial_u \log \left(\frac{(1 - g^2/2x^+(u)x^-(v))(1 + g^2/2x^+(u)x^+(v))}{(1 - g^2/2x^-(u)x^+(v))(1 + g^2/2x^-(u)x^-(v))} \right)^2,
\] (8)
which is further described by \([24]\)
\[
 g^2 \int_{-\infty}^{\infty} dt e^{iut} \int_{-\infty}^{\infty} dt' e^{iut'} |t| e^{-(|t|+|t'|)/2} \hat{K}_m(\sqrt{2}g|t|, \sqrt{2}g|t'|),
\] (9)
whose \hat{K}_m is expressed in terms of the Bessel functions as
\begin{equation}
\hat{K}_m(x, x') = \frac{J_1(x)J_0(x') - J_0(x)J_1(x')}{x - x'}.
\end{equation}

We use the expression (9) to take the Fourier transformation as $e^{-|t|/2} \int_0^\infty du e^{-itu} x$equation (10) and obtain
\begin{equation}
\hat{\rho}(t) = e^{-|t|} \left(J_0(\sqrt{2}gt) - g^2|t| \int_0^\infty dt' \hat{K}_m(\sqrt{2}g|t|, \sqrt{2}gt') \hat{\rho}(t') \right).
\end{equation}

By solving this integral equation iteratively we derive the transformed density $\hat{\rho}(t)$ expanded in even powers of g as
\begin{equation}
\hat{\rho}(t) = e^{-|t|} \left(1 - \frac{g^2}{2}(t^2 + |t|) + \frac{g^4}{16}(t^4 + 2(|t|^3 - t^2 + 8|t|)) \right.
\end{equation}
\begin{equation}
\left. - \frac{g^6}{288}(t^6 + 3(|t|^5 - 2t^4 + 26|t|^3 - 60t^2 + 348|t|))
\right.
\end{equation}
\begin{equation}
\left. + \frac{g^8}{9216}(t^8 + 4(|t|^7 - 3t^6 + 54|t|^5 - 246t^4 + 2520|t|^3 - 7200t^2 + 37296|t|)) + \cdots \right).
\end{equation}

In deriving this solution we have used the following expansion
\begin{equation}
\hat{K}_m(\sqrt{2}g|t|, \sqrt{2}gt') = \frac{1}{2} \left(1 - \frac{g^2}{4}(t^2 - |t|t' + t'^2) + \frac{g^4}{48}(t^4 - 2|t|^3t' + 4t^2t'^2 - 2|t|t'^3 + t'^4) \right.
\end{equation}
\begin{equation}
\left. - \frac{g^6}{1152}(t^6 - 3|t|^5t' + 9t^4t'^2 - 9|t|^3t'^3 + 9t^2t'^4 - 3|t|t'^5 + t'^6) + \cdots \right).
\end{equation}

The energy shift $E(g)$ (6) can be expressed in terms of the transformed density through (7) as
\begin{equation}
\frac{E(g)}{L} = 4g^2 \int_0^\infty dt \hat{\rho}(t) \frac{J_1(\sqrt{2}gt)}{\sqrt{2}gt}.
\end{equation}

The substitution of the weak coupling solution (12) into (13) yields the anomalous dimension of the highest state
\begin{equation}
\frac{E(g)}{L} = 2g^2 - 4g^4 + \frac{29}{2}g^6 - \frac{259}{4}g^8 + \frac{1307}{4}g^{10} + \cdots,
\end{equation}
which reproduces the result of [20, 21]. In ref. [20] the most naive approximation to an exact expression for the dimension was guessed in a square-root form as
\begin{equation}
\frac{\Delta_{fit}}{L} = 1 + \frac{1}{2} \sqrt{1 + \frac{\lambda}{\pi^2}}
\end{equation}
\begin{equation}
= \frac{3}{2} + \frac{\lambda}{4\pi^2} - \frac{\lambda^2}{16\pi^4} + \frac{32\lambda^3}{1024\pi^6} - \frac{320\lambda^4}{16384\pi^8} + \cdots,
\end{equation}
\begin{equation}
\frac{\Delta}{L} = \frac{3}{2} + \frac{\lambda}{4\pi^2} - \frac{\lambda^2}{16\pi^4} + \frac{29\lambda^3}{1024\pi^6} - \frac{259\lambda^4}{16384\pi^8} + \cdots.
\end{equation}
Thus we obtain an integral equation for the transformed density
\[
\left(\frac{x_k^+}{x_k^-} \right)^L = \prod_{j \neq k} \frac{1 - g^2/2x_k^+x_j^-}{1 - g^2/2x_k^-x_j^+} \sigma^2(x_k, x_j),
\]
whose string dressing factor \(\sigma(x_k, x_j) \) is defined by
\[
\sigma(x_k, x_j) = \left(\frac{1 - g^2/2x_k^+x_j^-}{1 - g^2/2x_k^-x_j^+} \right)^{-1} \left(\frac{1 - g^2/2x_k^+x_j^-}{1 - g^2/2x_k^-x_j^+} \right)^{(u_k-u_j)}.
\]
In the thermodynamic limit the SBA equation (18) becomes an integral equation for the density \(\rho(u) \)
\[
\frac{1}{i} \left(\frac{1}{\sqrt{u^2_+ - 2g^2}} - \frac{1}{\sqrt{u^2_- - 2g^2}} \right) = -2\pi \rho(u) - \frac{1}{2} \int_{-\infty}^{\infty} dvK_m(u, v)\rho(v)
- \int_{-\infty}^{\infty} dv(K_s(u, v) - K_m(u, v))\rho(v),
\]
where the main kernel \(K_m(u, v) \) is given by (5) and
\[
K_s(u, v) = -\partial_u(u - v) \log \left(\frac{(1 - g^2/2x^+(u)x^-(v))(1 - g^2/2x^-(u)x^+(v))}{(1 - g^2/2x^+(u)x^+(v))(1 - g^2/2x^-(u)x^-(v))} \right)^2.
\]
The last term of the r.h.s. of (20) specified by \(K_s - K_m \) appears as a contribution from the dressing factor, which is compared with (1).

In the same way as (11) the Fourier transformation of (20) leads to
\[
- e^{-|t|}2\pi J_0(\sqrt{2}g|t|) = -2\pi \hat{\rho}(t) + \pi g^2|t|e^{-|t|} \int_{-\infty}^{\infty} dt' K_m(\sqrt{2}g|t|, \sqrt{2}g|t'|) \hat{\rho}(t')
- e^{-|t|/2} \int_{-\infty}^{\infty} du e^{-itu} \int_{-\infty}^{\infty} dvK_s(u, v)\rho(v).
\]
Using the \(v \leftrightarrow -v \) symmetrized form of \(K_s(u, v) \) we make the third term on the r.h.s. of (22) rewritten by (24)
\[
- 2\pi g^2|t|e^{-|t|} \int_{-\infty}^{\infty} dt' \left(\hat{K}_m(\sqrt{2}g|t|, \sqrt{2}g|t'|) + \sqrt{2}g \hat{K}(\sqrt{2}g|t|, \sqrt{2}g|t'|) \right) \hat{\rho}(t'),
\]
where
\[
\hat{K}(x, x') = \frac{x(J_2(x)J_0(x') - J_0(x)J_2(x'))}{x^2 - x'^2}.
\]
Thus we obtain an integral equation for the transformed density
\[
\hat{\rho}(t) = e^{-|t|} \left(J_0(\sqrt{2}g|t|) - g^2|t| \int_{0}^{\infty} dt' \hat{K}_m(\sqrt{2}g|t|, \sqrt{2}g|t'|) \hat{\rho}(t')
- 2g^2|t| \int_{0}^{\infty} dt' \sqrt{2}g \hat{K}(\sqrt{2}g|t|, \sqrt{2}g|t'|) \hat{\rho}(t') \right).
\]
Comparing (25) with (20) and (11) we see that the last term in (25) specified by $\sqrt{2}g\tilde{K}$ is attributed to the dressing factor so that $\sqrt{2}g\tilde{K}$ is called a dressing kernel.

In order to solve (25) by taking the weak coupling expansion we first split the transformed density $\hat{\rho}(t)$ into a main part $\hat{\rho}_0(t)$ and a correction part $\delta\hat{\rho}(t)$ as $\hat{\rho}(t) = \hat{\rho}_0(t) + \delta\hat{\rho}(t)$, where $\hat{\rho}_0(t)$ satisfies the GBA equation (11). Therefore we have the following integral equation for $\delta\hat{\rho}(t)$

$$\delta\hat{\rho}(t) = -2g^2|te^{-|t|}\left(\int_0^\infty dt'\sqrt{2}g\tilde{K}(\sqrt{2}g|t|,\sqrt{2}g|t'|)\hat{\rho}_0(t')\right) + \frac{1}{2}\int_0^\infty dt'\tilde{K}_m(\sqrt{2}g|t|,\sqrt{2}g|t'|)\delta\hat{\rho}_0(t') + \int_0^\infty dt'\sqrt{2}g\tilde{K}(\sqrt{2}g|t|,\sqrt{2}g|t'|)\delta\hat{\rho}_0(t'),$$

(26)

where the first term on the r.h.s. is regarded as an inhomogenous one with $\hat{\rho}_0(t')$ already known as (12). Using the expansion (13) for $\tilde{K}_m(x,x')$ and the following weak coupling expansion for $\tilde{K}(x,x')$ with $x = \sqrt{2}g|t|, x' = \sqrt{2}g|t'|$

$$\tilde{K}(x,x') = \frac{\sqrt{2}g|t|}{8}\left(1 - \frac{g^2}{6}(t^2 + t'^2) + \frac{g^4}{96}(t^4 + 3t^2t'^2 + t'^4) + \cdots\right)$$

(27)

we determine $\delta\hat{\rho}(t)$ iteratively

$$\delta\hat{\rho}(t) = e^{-|t|}\left(-\frac{g^4}{2}t^2 + \frac{g^6}{12}(t^4 + 11t^2 + 6|t|) - \frac{g^8}{192}(t^6 + 30t^4 + 24|t|^3 + 384t^2 + 704|t|) + \cdots\right).$$

(28)

Combining them we obtain the anomalous dimension $E(g)/L = E_0(g)/L + \delta E(g)/L$ where the main part $E_0(g)/L$ is given by (15) and the correction part $\delta E(g)/L$ is evaluated as

$$\frac{\delta E(g)}{L} = -2g^6 + \frac{44}{3}g^8 - \frac{268}{3}g^{10} + \cdots,$$

(29)

whose expansion starts from the three-loop order. The summation of (15) and (29) yields the dimension of the highest state

$$\frac{\Delta}{L} = \frac{3}{2} + 2g^2 - 4g^4 + \frac{25}{2}g^6 - \frac{601}{12}g^8 + \frac{2849}{12}g^{10} + \cdots,$$

(30)

which recovers the result of [20] [21]. Thus we have solved the SBA equation in the thermodynamic limit $L \to \infty$ to derive the Fourier-transformed density iteratively, whereas in [20] [21] the Bethe momenta of excitations in a finite fixed L were iteratively derived.

In [26] the universal scaling function $f(g)$ in the $sl(2)$ sector was obtained from the all-loop GBA equation with a weak-coupling dressing factor and $f(g)$ was shown to satisfy the Kotikov-Lipatov transcendentality. Since the dressing factor is universal for the three rank-one sectors, we use it for the $su(1|1)$ sector. In the $sl(2)$ sector, if we compare the integral SBA equation for the transformed density in [24] with the integral GBA equation accompanied with the weak-coupling dressing factor in [26], we note that the dressing kernel
\(\sqrt{2}gK(x, x') \) for the former case corresponds to the dressing kernel \(2\tilde{K}_c(x, x') \) for the latter case, where \(K_c(x, x') \) is given by

\[
\begin{align*}
\tilde{K}_c(x, x') &= 2g^2 \int_0^\infty dt' K_1(x, \sqrt{2}gt') e^{t'} \frac{t'}{1} K_0(\sqrt{2}gt', x'), \\
K_0(x, x') &= \frac{xJ_1(x)J_0(x') - x'J_0(x)J_1(x')}{x^2 - x'^2}, \\
K_1(x, x') &= \frac{x'J_1(x)J_0(x') - xJ_0(x)J_1(x')}{x^2 - x'^2}.
\end{align*}
\] (31)

Therefore by replacing \(\sqrt{2}g\tilde{K}(x, x') \) in (25) with \(2\tilde{K}_c(x, x') \) we obtain an integral equation for the transformed density in the \(su(1|1) \) sector

\[
\hat{\rho}(t) = e^{-|t|} \left(J_0(\sqrt{2}gt) - g^2|t| \int_0^\infty dt' \tilde{K}_m(\sqrt{2}g|t|, \sqrt{2}gt') \hat{\rho}(t') \right) - 2g^2|t| \int_0^\infty dt' 2\tilde{K}_c(\sqrt{2}g|t|, \sqrt{2}gt') \hat{\rho}(t').
\] (32)

Recently this integral equation has been presented and iteratively solved in ref. [31], where the energy modification owing to the weak-coupling dressing factor starts from the four-loop order.

3 Weak coupling spectrum of the highest state in the \(su(2) \) sector

We turn to the highest state in the \(su(2) \) sector which is described by the antiferromagnetic operator \(\text{tr}(Z^L\Phi^L) + \cdots \) where \(Z \) and \(\Phi \) are charged scalar fields in the \(\mathcal{N} = 4 \) supermultiplet. The asymptotic all-loop GBA equation for the highest state is

\[
\left(\begin{array}{c}
x_k^+ \\
x_k^-
\end{array} \right)^L = \prod_{j \neq k} \frac{x_k^+ - x_j^+}{x_k^+ - x_j^-} \left[1 - g^2/2x_k^+x_j^- \right],
\] (33)

whose thermodynamic limit leads to [19]

\[
\frac{1}{i} \left(\frac{1}{\sqrt{u^2 - 2g^2}} - \frac{1}{\sqrt{v^2 - 2g^2}} \right) = -2\pi\rho(u) - 2\int_\infty^\infty dv \frac{\rho(v)}{(u - v)^2 + 1}.
\] (34)

The Fourier transformation solves the integral equation \([34] \) to give an exact expression of the transformed density

\[
\hat{\rho}(t) = \frac{J_0(\sqrt{2}gt)}{e^{|t|} + 1},
\] (35)

which yields the dimension of the highest state \(\Delta = L + E(g) \) in a closed form

\[
\frac{E(g)}{L} = 4g^2 \int_0^\infty \frac{dt}{\sqrt{2}gt} \frac{J_0(\sqrt{2}gt)J_1(\sqrt{2}gt)}{e^t + 1}.
\] (36)
We use the following representation of the Riemann zeta function
\[\zeta(n + 1) = \frac{1}{(1 - 2^{-n})n!} \int_0^\infty \frac{dt}{t^n} \int_0^\infty \frac{dt}{e^t + 1} \] (37)
to expand (36) in \(g^2 \)
\[\frac{E(g)}{L} = 2 \log 2g^2 - \frac{9}{4} \zeta(3)g^4 + \frac{75}{8} \zeta(5)g^6
- \frac{11025}{256} \zeta(7)g^8 + \frac{112455}{512} \zeta(9)g^{10} + \cdots, \] (38)
whereas the closed expression (36) can yield \(E(g)/L = \sqrt{\lambda}/\pi^2 \) in the strong coupling limit.

Let us consider the SBA equation for the highest state
\[(\frac{x_k^+}{x_k}) \bigg|_L = \frac{L/2}{x_k^+ - x_j^+} \cdot \frac{1 - g^2/2x_k^+x_j^+}{1 - g^2/2x_k^+x_j^+} \sigma(x_k, x_j), \] (39)
where the string dressing factor \(\sigma(x_k, x_j) \) is given by (19). The thermodynamic limit of (39) yields an integral equation for the density
\[\frac{1}{i} \left(\frac{1}{\sqrt{u_1^2 - 2g^2}} - \frac{1}{\sqrt{u_2^2 - 2g^2}} \right) = -2\pi \rho(u) - 2 \int_{-\infty}^{\infty} dv \frac{\rho(v)}{(u - v)^2 + 1} \]
\[- \int_{-\infty}^{\infty} dv (K_m(u, v) - K_s(u, v))\rho(v), \] (40)
where the kernels \(K_m(u, v) \) and \(K_s(u, v) \) are given by (5) and (21) respectively. The Fourier transformation of (10) through (23) gives an integral equation for the transformed density
\[(1 + e^{-|t|})\hat{\rho}(t) = e^{-|t|} \left(J_0(\sqrt{2}gt) - 2g^2|t| \int_0^\infty dt' \sqrt{2}g\tilde{K}(\sqrt{2}gt, \sqrt{2}gt')\hat{\rho}(t') \right), \] (41)
whose last term is the same as the last one in (23) for the \(su(1|1) \) sector. By using the expansion (27) of \(K(x, x') \) the transformed density is iteratively solved as \(\hat{\rho}(t) = \hat{\rho}_0(t) + \hat{\delta}\hat{\rho}(t) \) where the main part \(\hat{\rho}_0(t) \) is given by (35) and the correction part \(\hat{\delta}\hat{\rho}(t) \) has the following weak coupling expansion
\[\hat{\delta}\hat{\rho}(t) = \frac{1}{e^{|t|} + 1} \left(\frac{g^4}{2} \log 2t^2 + \frac{g^6}{12} \log 2t^4 + 6\zeta(3)t^2 \right)
- \frac{g^8}{384} \left(2\log 2t^6 + 33\zeta(3)t^4 + 675\zeta(5)t^2 - 144\log 2\zeta(3)t^2 \right) + \cdots. \] (42)
The substitution of (35) and (42) into (14) leads to a separation \(E(g)/L = E_0(g)/L + \delta E(g)/L \) where the main part \(E_0(g)/L \) takes the expression (38) and the correction part \(\delta E(g)/L \) is estimated as
\[\frac{\delta E(g)}{L} = -\frac{3}{2} \log 2\zeta(3)g^6 + \left(\frac{75}{8} \log 2\zeta(5) + \frac{3}{2} \zeta(3) \right) \frac{g^8}{128} \]
\[- \left(\frac{6615}{128} \log 2\zeta(7) + \frac{945}{64} \zeta(5)\zeta(3) - \frac{9}{8} \log 2\zeta(3)^2 \right) \frac{g^{10}}{128} + \cdots. \] (43)
Thus it is noted that the weak coupling expansion of the energy correction induced by the string dressing factor starts from the three-loop order in the same way as [29].

Now for $\sigma(x_k, x_j)$ in [30] we use the weak-coupling dressing factor of the BES equation in ref. [26]. From the expression (11) we replace the dressing kernel $\sqrt{2}g\tilde{K}(x, x')$ by the dressing kernel $2\tilde{K}_c(x, x')$ to obtain

$$
(1 + e^{-|t|})\hat{\rho}(t) = e^{-|t|} \left(J_0(\sqrt{2}gt) - 2g^2|t| \int_0^\infty dt'2\tilde{K}_c(\sqrt{2}gt', \sqrt{2}gt')\hat{\rho}(t') \right),
$$

whose last term is the same as the last one in [32]. Recently this integral equation has been derived and solved in ref. [31], where the energy correction also starts from the four-loop order and a kind of transcendental is observed if a degree of transcendentality is assigned to both the "bosonic" ζ-function [37] and the "fermionic" ζ_a-function defined by $\zeta_a(n + 1) = (1 - 2^{-n})\zeta(n + 1)$. On the other hand, the summation of (38) and (43) expressed in terms of $\zeta_a(1) = \log 2$ leads to the following dimension of the highest state

$$
\frac{\Delta}{L} = \frac{3}{2} + 2\zeta_a(1)g^2 - \frac{9}{4}\zeta(3)g^4 + \left(\frac{75}{8}\zeta(5) - \frac{3}{2}\zeta_a(1)\zeta(3) \right)g^6
$$

$$
+ \left(\frac{-11025}{256}\zeta(7) + \frac{75}{8}\zeta_a(1)\zeta(5) + \frac{3}{2}\zeta(3)^2 \right)g^8
$$

$$
+ \left(\frac{112455}{512}\zeta(9) - \frac{6615}{128}\zeta_a(1)\zeta(7) - \frac{945}{64}\zeta(3)\zeta(5) + \frac{9}{8}\zeta_a(1)\zeta(3)^2 \right)g^{10} + \cdots,
$$

which shows that the kind of transcendental is not preserved for the SBA equation.

4 Strong coupling solution for the GBA equation in the $su(1|1)$ sector

Here using the Laplace transformation prescription in ref. [30] we analyze the strong coupling behavior of all-loop GBA equation for the $su(1|1)$ sector. The eq. (11) can be written in terms of $\hat{\rho}(t) = \epsilon f(x), t = \epsilon x, \epsilon = 1/\sqrt{2}g$ as

$$
\epsilon f(x) = e^{-t} \left(J_0(x) - \frac{t}{2} \int_0^\infty dx'\tilde{K}_m(x, x')f(x') \right)
$$

for $t > 0$. The energy shift (14) is extracted by taking the following $t \to 0$ limit

$$
\frac{E(g)}{L} = -4\lim_{t \to 0} \frac{\epsilon f(x)e^t - J_0(x)}{t}.
$$

We use the expansion $\tilde{K}_m(x, x') = 2\sum_{n=1}^\infty nJ_n(x)J_n(x')/xx'$ and perform the Laplace transformation of (16) through $\phi(j) = \int_0^\infty dx e^{-\epsilon x}f(x)$ to have

$$
\epsilon\sqrt{j^2 + 1}\phi(j - \epsilon) = 1 - \epsilon\int_{-i\infty}^{i\infty} \frac{dj'}{2\pi i} \phi(j') \sum_{n=1}^\infty \left(\frac{-\sqrt{j'^2 + 1} + j'}{\sqrt{j^2 + 1} + j} \right)^n
$$

$$
= 1 - \epsilon\int_{-i\infty}^{i\infty} \frac{dj'}{2\pi i} \phi(j') \frac{-\sqrt{j'^2 + 1} + j'}{\sqrt{j^2 + 1} + j + \sqrt{j^2 + 1} - j'}.
$$

10
whose integration contour can be enclosed around the cut which is located to the right of it at the interval $-i < j' < i$. The anti-symmetrization of the integral kernel to extract the square-root singularity yields

$$
\epsilon \sqrt{j^2 + 1} \phi(j - \epsilon) = 1 + \epsilon \int_{-i}^{i} \frac{dj'}{2\pi i} \phi(j') \left(\frac{-\sqrt{j'^2 + 1} + j'}{\sqrt{j^2 + 1} + j + \sqrt{j'^2 + 1} - j'} - \frac{\sqrt{j^2 + 1} + j'}{\sqrt{j^2 + 1} + j - \sqrt{j'^2 + 1} - j'} \right).
$$

This integral equation is further expressed in terms of the variable $z = \sqrt{j^2 + 1} + j$ and the new function $\chi(z) = \phi(j)$ as

$$
\epsilon \frac{z^2 + 1}{2z} \chi(z) = 1 - \frac{\epsilon}{2} \int_{-i}^{i} \frac{dz'}{2\pi i} \frac{z'^2 + 1}{z'^2} \chi(z') \left(\frac{z'}{z - z'} + \frac{1/z'}{z + 1/z'} \right),
$$

(50)

where the integration over z' is taken along a unit circle in the anti-clock direction from $-i$ to i, and z_ϵ is defined by

$$
z_\epsilon = \left(\left(\frac{z^2 - 1}{2z} \right)^2 + 1 \right)^{1/2} + \frac{z^2 - 1}{2z} - \epsilon.
$$

(51)

The transformation $z = z(j)$ provides the conformal mapping from two sheets of the Riemann surface in the j-plane for $\phi(j)$ to one sheet in the z-plane for $\chi(z)$. The eq. (50) is rewritten by

$$
\epsilon \frac{z^2 + 1}{2z} \chi(z_\epsilon) = 1 - \frac{\epsilon}{2} \int_L \frac{dz'}{2\pi i} \frac{z'^2 + 1}{z'} \chi(z'),
$$

(52)

where the integration contour L is given by a unit circle in the anti-clock direction and \tilde{z} is defined by $\tilde{z}_{\text{Rez}>0} = z$, $\tilde{z}_{\text{Rez}<0} = -z^{-1}$. Here we assume that $\chi(\tilde{z}') = \chi(z')$ in (52), that is, the symmetry of $\chi(z')$ under the substitution $z' \to -1/z'$ which means an analytic continuation of the function $\phi(j')$ on the second sheet of the j'-plane with the substitution $\sqrt{j'^2 + 1} \to -\sqrt{j'^2 + 1}$. Then we have

$$
\epsilon \frac{z^2 + 1}{2z} \chi(z_\epsilon) = 1 - \frac{\epsilon}{2} \int_L \frac{dz'}{2\pi i} \frac{z'^2 + 1}{z'} \chi(z').
$$

(53)

For the singular part of $\chi(z)$ inside the circle $|z| < 1$ we obtain the following relation

$$
\epsilon \frac{z^2 + 1}{2z} \chi(z_\epsilon) = 1 - \epsilon \frac{z^2 + 1}{2z} \chi(z)_{\text{sing}}.
$$

(54)

In the strong coupling limit $\epsilon \to 0$ the eq. (51) becomes $z_\epsilon = z - 2z^2 \epsilon/(1 + z^2) + \cdots$ which makes the relation (54) transformed into a first-order differential equation

$$
- \epsilon^2 \frac{\partial \chi(z)_{\text{sing}}}{\partial z} + \epsilon \frac{z^2 + 1}{z^2} \chi(z)_{\text{sing}} = \frac{1}{z}.
$$

(55)
The particular solution for this inhomogeneous differential equation is obtained in the form of the expansion

$$\chi(z)_{inhom} = \sum_{n=1}^{\infty} \frac{d_n}{z^n},$$

(56)

where there is no regular term with \(n = 0\) and the coefficients are specified by \(d_1 = 1/\epsilon\), \(d_2 = -1\), \(d_3 = 2\epsilon - 1/\epsilon\), \(\cdots\). The homogeneous differential equation for (55) gives a solution

$$\chi(z)_{hom} = C e^{\frac{t}{\epsilon}(z - \frac{1}{\epsilon})} = C \sum_{n=-\infty}^{\infty} z^n J_n(2\epsilon^{-1}),$$

(57)

where \(C\) is an integral constant. The singular part of the solution \(\chi(z)_{hom}\) is described by

$$\chi(z)_{sing} = C \sum_{n=-\infty}^{\infty} z^n J_n(2\epsilon^{-1}),$$

(58)

Therefore the general solution for the first-order differential equation (55) is represented by \(\chi(z)_{sing} = \chi(z)_{hom} + \chi(z)_{inhom}\) which is translated into

$$\phi(j) = \sum_{n=1}^{\infty} h_n j^n,$$

(59)

where

$$h_1 = \frac{1}{2} \left(\frac{1}{\epsilon} - CJ_1(2\epsilon^{-1})\right), \quad h_2 = \frac{1}{4} \left(-1 + CJ_2(2\epsilon^{-1})\right), \cdots.$$

(60)

The inverse Laplace transformation leads back to

$$f(x) = \int_{-i\infty}^{i\infty} \frac{dj}{2\pi i} e^{jt} \phi(j)$$

$$= \frac{1}{2} \left(\frac{1}{\epsilon} - CJ_1(2\epsilon^{-1})\right) + \frac{1}{4} \left(-1 + CJ_2(2\epsilon^{-1})\right) \frac{t}{\epsilon} + \cdots.$$

(61)

The integral constant \(C\) is fixed by the requirement that \(E(g)/L\) in (57) should take a finite value in the limit \(t \to 0\)

$$C = -\frac{1}{\epsilon J_1(2\epsilon^{-1})}.$$

(62)

The second term in (61) yields the leading anomalous dimension

$$\frac{\Delta}{L} = \frac{1}{\epsilon} \frac{J_2(2\epsilon^{-1})}{J_1(2\epsilon^{-1})},$$

(63)

which is the contribution from the homogeneous differential equation and is approximately expressed in the strong coupling region as

$$\lim_{g \to \infty} \frac{\Delta}{L} = \frac{\sqrt{\lambda}}{2\pi} \tan \left(\frac{2}{\epsilon} - \frac{3}{4\pi}\right).$$

(64)

The resulting expression where the \(g \to \infty\) limit is taken after the \(L \to \infty\) limit is compared with the estimation of ref. [21], where the Bethe momenta were computed at
the fixed L and strong g region and then the strong anomalous dimension was evaluated numerically by choosing large L

$$\frac{\Delta}{L} = c_L \sqrt{\lambda}, \quad c_L \rightarrow 0.1405 \text{ as } L \rightarrow \infty. \quad (65)$$

Thus in the strong coupling limit we obtain the anomalous dimension which rapidly oscillates around the estimation of ref. [21]. This result for the GBA equation in the $su(1|1)$ sector resembles the strong coupling behavior of the universal scaling function $f(g)$ for the GBA equation in the $sl(2)$ sector presented in ref. [30] where $f(g)$ oscillates around the value predicted from the string theory. Further we note that the factor $\sqrt{\lambda}/2\pi$ in (64) coincides with the strong coupling limit of the conjectured square-root formula [16].

5 Conclusion

We have investigated the SBA equations for the highest states in the $su(1|1)$ and $su(2)$ sectors by applying the Fourier transformation procedure in the rapidity plane and using the expression of the Fourier-transformed dressing kernel. We have computed the anomalous dimensions of the highest states iteratively from the Fourier-transformed SBA equations and presented the alternative derivation of the anomalous dimension in the $su(1|1)$ sector which agrees with the result of [20, 21]. The SBA equation in the thermodynamic limit $L \rightarrow \infty$ has been treated and the Fourier-transformed density has been derived iteratively from the integral equation, while in [20, 21] the SBA equation in the large but finite L has been analyzed and the Bethe momenta have been computed iteratively from the SBA equation in the momentum plane.

In the same manner as the SBA equation for the universal scaling function in the $sl(2)$ sector, we have demonstrated that for the SBA equation in the $su(2)$ sector the contribution from the string dressing factor to the anomalous dimension starts from the three-loop order and there is a violation of the kind of transcendentality presented in ref. [31] for the GBA equation with the weak-coupling dressing factor.

Following the Laplace transformation prescription we have analytically studied the strong coupling behavior of the GBA equation for the highest state in the $su(1|1)$ sector. The Laplace-transformed GBA equation expressed as an integral equation has been changed into a first-order differential equation in the strong coupling limit. By constructing a singular solution for the differential equation and taking the particular $t \rightarrow 0$ limit we have extracted the strong coupling behavior of the anomalous dimension and observed that it is mainly determined from the homogenous part of the differential equation. It has been shown that the analytically obtained dimension oscillates around the value evaluated numerically from the GBA equation in the momentum plane at large but finite L in ref. [21] and also the value estimated from the square-root formula in ref. [21] conjectured by the extrapolation of the weak-coupling expanded expression.
References

[1] J.M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200]; S.S. Gubser, I.R. Klebanov and A.M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B428 (1998) 105 [hep-th/9802109]; E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150].

[2] D. Berenstein, J.M. Maldacena and H. Nastase, “Strings in flat space and pp waves from $\mathcal{N}=4$ super Yang Mills,” JHEP 04 (2002) 013 [hep-th/0202021].

[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, “A semi-classical limit of the gauge/string correspondence,” Nucl. Phys. B636 (2002) 99 [hep-th/0204051].

[4] S. Frolov and A.A. Tseytlin, “Semiclassical quantization of rotating superstring in $AdS_5 \times S^5$,” JHEP 06 (2002) 007 [hep-th/0204226]; “Multi-spin string solutions in $AdS_5 \times S^5$,” Nucl. Phys. B668 (2003) 77 [hep-th/0304255]; “Rotating string solutions: AdS/CFT duality in non-supersymmetric sectors,” Phys. Lett. B570 (2003) 96 [hep-th/0306143]; A.A. Tseytlin, “Spinning strings and AdS/CFT duality,” [hep-th/0311139].

[5] J.A. Minahan and K. Zarembo, “The Bethe-ansatz for $\mathcal{N}=4$ super Yang-Mills,” JHEP 03 (2003) 013 [hep-th/0212208].

[6] N. Beisert, C. Kristjansen and M. Staudacher, “The dilatation operator of conformal $\mathcal{N}=4$ super Yang-Mills theory,” Nucl. Phys. B664 (2003) 131 [hep-th/0303060]; N. Beisert, “The complete one-loop dilatation operator of $\mathcal{N}=4$ super Yang-Mills theory,” Nucl. Phys. B676 (2004) 3 [hep-th/0307015].

[7] N. Beisert, “The dilatation operator of $\mathcal{N}=4$ super Yang-Mills theory and integrability,” Phys. Rept. 405 (2005) 1 [hep-th/0407277]; K. Zarembo, “Semiclassical Bethe ansatz and AdS/CFT,” Comptes Rendus Physique 5 (2004) 1081, Fortsch, Phys. 53 (2005) 647 [hep-th/0411191]; J. Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” Living Rev. Relativity 8 (2005) 9 [hep-th/0507136].

[8] N. Beisert, V. Dippel and M. Staudacher, “A novel long range spin chain and planar $\mathcal{N}=4$ super Yang-Mills,” JHEP 07 (2004) 075 [hep-th/0405001].

[9] M. Staudacher, “The factorized S-matrix of CFT/AdS,” JHEP 05 (2005) 054 [hep-th/0412188].

[10] N. Beisert and M. Staudacher, “Long-range PSU(2,2|4) Bethe ansatze for gauge theory and strings,” Nucl. Phys. B727 (2005) 1 [hep-th/0504190].

[11] V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, “Classical/quantum integrability in AdS/CFT,” JHEP 05 (2004) 024 [hep-th/0402207].
[12] V.A. Kazakov and K. Zarembo, “Classical/quantum integrability in non-compact sector of AdS/CFT,” JHEP 10 (2004) 060 [hep-th/0410105]; N. Beisert, V.A. Kazakov and K. Sakai, “Algebraic curve for the SO(6) sector of AdS/CFT,” Commun. Math. Phys. 263 (2006) 611 [hep-th/0410253]; S. Schäfer-Nameki, “The algebraic curve of 1-loop planar $\mathcal{N} = 4$ SYM,” Nucl. Phys. 714 (2005) 3 [hep-th/0412254]; N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, “The algebraic curve of classical superstrings on $AdS_5 \times S^5$,” Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226].

[13] G. Arutyunov, S. Frolov and M. Staudacher, “Bethe ansatz for quantum strings,” JHEP 10 (2004) 016 [hep-th/0406256].

[14] N. Beisert, “Spin chain for quantum strings,” Fortschr. Phys. 53 (2005) 852 [hep-th/0409054].

[15] S. Schäfer-Nameki, M. Zamaklar and K. Zarembo, “Quantum corrections to spinning strings in $AdS_5 \times S^5$ and Bethe ansatz: A comparative study,” JHEP 09 (2005) 051 [hep-th/0507189]; N. Beisert and A.A. Tseytlin, “On quantum corrections to spinning strings and Bethe equations,” Phys. Lett. B629 (2005) 102 [hep-th/0509084]; S. Schäfer-Nameki and M. Zamaklar, “Stringy sums and corrections to the quantum string Bethe ansatz,” JHEP 10 (2005) 044 [hep-th/0509096]; S. Schäfer-Nameki, M. Zamaklar and K. Zarembo, “How accurate is the quantum string Bethe ansatz?,” JHEP 12 (2006) 020 [hep-th/0610250].

[16] N. Beisert, R. Hernandez and E. Lopez, “A crossing-symmetric phase for $AdS_5 \times S^5$ strings,” JHEP 11 (2006) 070 [hep-th/0609044].

[17] R.A. Janik, “The $AdS_5 \times S^5$ superstring worldsheet S-matrix and crossing symmetry,” Phys. Rev. D73 (2006) 086006 [hep-th/0603038].

[18] R. Hernandez and E. Lopez, “Quantum corrections to the string Bethe ansatz,” JHEP 07 (2006) 004 [hep-th/0603204]; G. Arutyunov and S. Frolov, “On $AdS_5 \times S^5$ string S-matrix,” Phys. Lett. B639 (2006) 378 [hep-th/0604043]; L. Freyhult and C. Kristjansen, “A universality test of the quantum string Bethe ansatz,” Phys. Lett. B638 (2006) 258 [hep-th/0604069].

[19] K. Zarembo, “Antiferromagnetic operators in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory,” Phys. Lett. B634 (2006) 552 [hep-th/0512079].

[20] G. Arutyunov and A.A. Tseytlin, “On highest-energy state in the $su(1|1)$ sector of $\mathcal{N} = 4$ super Yang-Mills theory,” JHEP 05 (2006) 033 [hep-th/0603113].

[21] M. Beccaria and L. Del Debbio, “Bethe ansatz solutions for highest states in $\mathcal{N} = 4$ SYM and AdS/CFT duality,” JHEP 09 (2006) 025 [hep-th/0607236].

[22] A. Rej, D. Serban and M. Staudacher “Planar $\mathcal{N} = 4$ gauge theory and the Hubbard model,” JHEP 03 (2006) 018 [hep-th/0512077]; J.A. Minahan, “Strong coupling from the Hubbard model,” J. Phys. A39 (2006) 13083 [hep-th/0603175]; M. Beccaria and
C. Ortix, “Strong coupling anomalous dimensions of $\mathcal{N} = 4$ super Yang-Mills,” JHEP 09(2006) 016 [hep-th/0606138]; G. Feverati, D. Fioravanti, P. Grinza and M. Rossi, “Hubbard’s adventures in $\mathcal{N} = 4$ SYM-land? Some non-perturbative considerations on finite length operators,” J. Stat. Mech. 02 (2007) P001 [hep-th/0611186].

[23] M. Beccaria, G.F. De Angelis, L. Del Debbio and M. Picariello, “Highest states in light-cone $AdS_5 \times S^5$ superstring,” [hep-th/0701167].

[24] B. Eden and M. Staudacher, “Integrability and transcendentality,” J. Stat. Mech. 11 (2006) P014 [hep-th/0603157].

[25] A.V. Kotikov and L.N. Lipatov, “DGLAP and BFKL equations in the $\mathcal{N} = 4$ supersymmetric gauge theories,” Nucl. Phys. B661 (2003) 19; Erratum. ibid. B685 (2004) 405 [hep-ph/0208220]; A.V. Kotikov, L.N. Lipatov and V.N. Velizhanin, “Anomalous dimensions of Wilson operators in $\mathcal{N} = 4$ SYM theory,” Phys. Lett. B557 (2003) 114 [hep-ph/0301021]; S. Moch, J.A.M. Vermaseren and A. Vogt, “The three-loop splitting functions in QCD: The non-singlet case,” Nucl. Phys. B688 (2004) 101 [hep-ph/0403192].

[26] N. Beisert, B. Eden and M. Staudacher, “Transcendentality and crossing,” J. Stat. Mech. 01 (2007) P021 [hep-th/0610251].

[27] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, “The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory,” [hep-th/0610248]; F. Cachazo, M. Spradlin and A. Volovich, “Four-loop cusp anomalous dimension from obstructions,” [hep-th/0612309].

[28] M.K. Benna, S. Benvenuti, I.R. Klebanov and A. Scardicchio, “A test of the AdS/CFT correspondence using high-spin operators,” [hep-th/0611135].

[29] L.F. Alday, G. Arutyunov, M.K. Benna, B. Eden and I.R. Klebanov, “On the strong coupling scaling dimension of high spin operators,” [hep-th/0702028].

[30] A.V. Kotikov and L.N. Lipatov, “On the highest transcendentality in $\mathcal{N} = 4$ SUSY,” [hep-th/0611204].

[31] A. Rej, M. Staudacher and S. Zieme, “Nesting and dressing,” [hep-th/0702151]

[32] K. Sakai and Y. Satoh, “Origin of dressing phase in $\mathcal{N} = 4$ super Yang-Mills,” [hep-th/0703177].

[33] I. Kostov, D. Serban and D. Volin, “Strong coupling limit of Bethe ansatz equations,” [hep-th/0703031].

[34] M. Beccaria, G.F. De Angelis and V. Forini, “The scaling function at strong coupling from the quantum string Bethe equations,” [hep-th/0703131].