Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry

Hongqiang Lin, Hailin Zhu, Jing Tan, Han Wang, Zhongyao Wang, Pingya Li, Chunfang Zhao, Jinping Liu

School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
linhq17@mails.jlu.edu.cn (H.L.); 13578965875@163.com (H.Z.); tanjing17@mails.jlu.edu.cn (J.T.);
hanw17@mails.jlu.edu.cn (H.W.); zhongyao18@mails.jlu.edu.cn (Z.W.); lipy@jlu.edu.cn (P.L.)

Research Center of Natural Drug, Jilin University, Changchun 130021, China
Correspondence: zhaocf@jlu.edu.cn (C.Z.); liujp@jlu.edu.cn (J.L.);
Tel.: +86-1816-688-3865 (C.Z.); +86-1858-433-0726 (J.L.)

Received: 18 February 2019; Accepted: 4 March 2019; Published: 7 March 2019

Abstract: With the aim to discuss the similarities and differences of phytochemicals in Moringa oleifera leaves collected from China (CML) and India (IML) in mind, comparative ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis was performed in this study. A screening analysis based on a UNIFI platform was first carried out to discuss the similarities. Next, untargeted metabolomic analysis based on multivariate statistical analysis was performed to discover the differences. As a result, a total of 122 components, containing 118 shared constituents, were characterized from CML and IML. The structure types included flavonoids, alkaloids, glycosides, organic acids and organic acid esters, iridoids, lignans, and steroids, etc. For CML, 121 compounds were characterized; among these, 18 potential biomarkers with higher contents enabled differentiation from IML. For IML, 119 compounds were characterized; among these, 12 potential biomarkers with higher contents enabled differentiation from CML. It could be concluded that both CML and IML are rich in phytochemicals and that CML is similar to IML in the kinds of the compounds it contains, except for the significant differences in the contents of some compounds. This comprehensive phytochemical profile study provides a basis for explaining the effect of different growth environments on secondary metabolites and exists as a reference for further research into or applications of CML in China.

Keywords: Moringa oleifera leaves; analysis; UPLC-QTOF-MS; China; India

1. Introduction

Moringa oleifera, a herb native to India [1] which is also known as “miracle tree” or “the diamond in the plant”, has been widely cultivated throughout the world for its multiple uses such as its being a source of nutrients and a medical herb [2]. Most studies have focused on the leaves of the plant grown in India, Africa, or Madagascar [3,4]. The Moringa oleifera leaf (ML) have been proven to have antioxidant [5,6], anti-inflammatory [7,8], anticancer [9,10], anti-hypertensive [11], hypolipidemic [12], hypoglycemic [13,14], antimicrobial [15,16], and hepatoprotective [10,17] pharmacological activities. It has also been reported that ML contains many phytoconstituents such as flavonoids, alkaloids, steroids, saponins, glucosinolates, tannis, phenolic acids, and terpenes, etc. [18]. Certainly, its numerous pharmacological effects are due to the diversity of the phytochemicals in ML [19].
In China, as a complement to medicinal plant resources, *Moringa oleifera* was introduced from India in the 1960s and had been cultivated on a large scale in Guangdong Province, Yunnan Province, and other areas since then [20]. Additionally, ML was approved as a new food resource by the Chinese government in 2012 [21]. In China, relative research on extraction, preparation, and activity evaluation has been carried out recently, and there have been some achievements [22,23]. However, there has been a lack of profound research on the comprehensive screening and identification of the chemical constituents of ML grown in China. Furthermore, just as with other natural plants, *M. oleifera* ecotypes/cultivars differ from each other and can show many differences in leaf-mass production, growth performance, and secondary plant metabolite contents [24,25]. Therefore, with an aim to evaluate the similarities and the differences between the chemical constituents of Chinese *Moringa oleifera* leaf (CML) and Indian *Moringa oleifera* leaf (IML), a comparative analysis of the phytochemical composition of these two kinds of ML was performed in this study. On one hand, a comprehensive screening analysis of chemical components may be conducted to evaluate the similarity of CML to IML. During this section, a combination of ultra-high-performance liquid chromatography (UPLC) separation, quadrupole time-of-flight tandem mass spectrometry (QTOF-MS) detection and a UNIFI platform automated data process would be applied [26–31]. The accurate and specific mass could be provided by HR-MS when the coeluting constituents possess different \(m/z \) values. UNIFI might efficiently integrate data acquisition or mining and search libraries, and could generate reports using its comprehensive, simple, high throughput platform. The shared constituents of the Chinese and India *Moringa oleifera* leaves could be evaluated. On the other hand, with an aim to reveal the diversity of the metabolites, the untargeted metabolomics might be used to profile diverse classes of metabolites and compare the overall small-molecule metabolites of two kinds of samples [32]. This means a combination of UPLC separation, QTOF-MS detection, and multivariate statistical analyses, such as principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA), would be used to profile these two leaves.

The study in this paper comparatively analyzes the chemical constituents of *Moringa oleifera* leaves in China and India for the first time and determines the similarities and differences between these two items. Our data might support further research and the exploration of potential applications in China.

2. Materials and Methods

2.1. Materials and Reagents

CML and IML were collected from their respective cultivation areas or purchased from herbal markets in China or India (Table 1). The identity of the *Moringa oleifera* leaf was confirmed by the authors and the corresponding voucher specimens were deposited in the Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, China.

Methanol and acetonitrile (Fisher Chemical Company, USA) were used as they were suitable for UPLC-MS. Deionized water was purified using a Millipore water purification system (Millipore, Billerica, MA, USA). Formic acid for UPLC was purchased from the Sigma-Aldrich Company. All other chemicals were of analytical grade.

Standard compounds \(\alpha \)-maltose, adenosine, catechin, chlorogenic acid, rutin, quercetin, kaempferol, caffeic acid, oleic acid, epicatechin, hyperoside, kaempferol-3-O-rutinoside, isorhamnetin, isorhamnetin-3-O-rutinoside, luteolin, scutellarein, methyl palmitate, ricinoleic acid, linolenic acid, dibutyl sebacate, eugenol, azelaic acid, \((-\)-epiafzelechin, methyl myristate, and 2′-hydroxygenistein were purchased from the National Institutes for Food and Drug Control (Beijing, China). Other reference compounds including parinaric acid, quinic acid, and 1,3-dicaffeoylquinic acid were purchased from Beijing Zhongke Quality Inspection Biotechnology Co., Ltd. (Beijing, China).
Table 1. The list of the tested samples from China and India. Legend: CML, Chinese *Moringa oleifera* leaf; IML, Indian *Moringa oleifera* leaf.

Species	Sample No.	Source	Collection Time
CML	1	Pu’er City, Yunnan Province, China; market	November 2017
	2	Xishuangbanna City, Yunnan Province, China; field	March 2018
	3	Shaoguan City, Guangdong Province, China; market	January 2017
	4	Guangzhou City, Guangdong Province, China; field	December 2017
	5	Danzhou City, Hainan Province, China; market	January 2018
	6	Changjiang City, Hainan Province, China; market	March 2017
IML	1	Howrah, India; market	December 2017
	2	Howrah, India; market	November 2017
	3	Tamil Nadu, India; market	February 2018
	4	Tamil Nadu, India; market	March 2018
	5	Maharashtra, India; market	January 2018
	6	Maharashtra, India; market	January 2017

2.2. Sample Preparation and Extraction

Stalks were removed and the leaves air-dried, grinded, and sieved (Chinese National Standard Sieve No. 3, R40/3 series) to obtain a homogeneous powder. Then, the powder (1.0 g) was extracted with 80% methanol (1.0 L) at 80 °C thrice (for 3 h each time). After being filtered, the extraction solution was combined, concentrated, and evaporated to dryness. The desiccated extractions (all approximately 15 mg) were finally dissolved and diluted with 80% methanol 10.0 mL. The solution was filtered with a syringe filter (0.22 µm) and then injected into the UPLC system. Additionally, to ensure the suitability and stability consistency of MS analysis, a quality control (QC) sample was prepared by pooling the same volume (50 µL) from every sample. Through the whole worklist, 3 QC injections were performed randomly. The volume injected for the samples and QC was 2 µL for each run.

2.3. UPLC-QTOF-MS

UPLC-QTOF-MS analysis was performed on a Waters Xevo G2-XS QTOF mass spectrometer (Waters Co., Milford, MA, USA) equipped with a UPLC system through an electrospray ionization (ESI) interface. Chromatographic separation was performed on an ACQUITY UPLC BEH C18 (100 mm × 2.1 mm, 1.7 µm) column provided by Waters Corporation. The mobile phases were composed of eluent A (0.1% formic acid in water, v/v) and eluent B (0.1% formic acid in acetonitrile, v/v) with flow rate of 0.4 mL/min. The elution conditions applied were: 0–2 min, 10% B; 2–26 min, 10–100% B; 26–29 min, 100% B; 29–29.1 min, 100–10% B; 29.1–32 min, 10% B. Mixtures of 90/10 and 10/90 water/-acetonitrile were used as the weak wash solvent and the strong wash solvent, respectively. The temperatures of the column and autosampler were 30°C and 15 °C, respectively. The mass spectrum was acquired from 100 to 1500 Da in MS² mode. The positive mode conditions were as follows: capillary voltage, 2.6 kV; source temperature, 150 °C; cone voltage, 40 V; cone gas flow, 50 L/h; desolvation temperature, 400 °C; desolvation gas flow, 800 L/h. Negative mode conditions were identical to the positive mode conditions except for the capillary voltage (2.2 kV). During a single LC run, data acquisition was performed via the mass spectrometer by rapidly switching from a low collision energy (CE) scan to a high-CE scan in MS² mode. The collision energy of low energy function was set to 6 V while the ramp collision energy of high energy function was set to 20–40 V. Leucine enkephalin (LE) (m/z 554.2615 in ESI⁻ mode and 556.2771 in ESI⁺ mode), the external reference of Lock Spray™, was infused at a constant flow of 10 µL/min. During acquisition, data were collected in continuum mode for the screening analysis and in centroid mode for the metabolomics analysis. Masslynx™ V4.1 workstation (Waters, Manchester, UK) was used to record the data.

2.4. Screening Analysis of Components of CML and IML by UNIFI Platform

To quickly identify the chemical compounds, the MS raw data, compressed with Waters Compression and Archival Tool v1.10, was automatically screened and identified using the streamlined
workflow of UNIFI 1.7.0 software (Waters, Manchester, UK) [30–33]. The parameters were as follows: for 2D peak detection, 200 was set as the minimum peak area; for 3D peak detection, the peak intensities of low energy and high energy were set as over 1000 and over 200 counts, respectively; mass error in the range of ±5 ppm was set for identified compounds; retention time in the range of ±0.1 min was allowed to match the reference substance. Generated predicted fragments from the structure were identified as the matching compounds. Negative adducts containing +COOH and -H and positive adducts containing +H and +Na were selected in the analysis. Leucine enkaplin was selected as the reference compound, and [M − H]− 554.2620 was used for the negative ion and [M + H]+ 556.2766 for the positive ion. Components were further verified by comparing reference substances with retention time and by comparing characteristic MS fragmentation patterns in the literature. The chemical information database used for the components was as follows: besides the in-house Traditional Medicine Library in the Waters UNIFI platform, the investigation of chemical constituents was conducted systematically. A self-built database of compounds that were reported in ML was established by searching online databases or internet search engines such as PubMed, Full-Text Database (CNKI), ChemSpider, Web of Science, and Medline. Chemical information including the component name, structures of the components, and molecular formula were available from the database.

2.5. Metabonomics Analysis of CML and IML

The raw data were processed for alignment, deconvolution, and data reduction, etc., with MarkerLynx XS V4.1 software (Waters, Milford, CT, USA) [34]. A Markerlynx processing method was first created, and its main parameters included: retention time (RT) range 0–26 min, minimum intensity 5%, mass range 100–1500 Da, mass tolerance 0.10, mass window 0.10, marker intensity threshold 2000 counts, retention time window 0.20, and noise elimination level 6. After processing the data, the results were able to be shown in Extended Statistics (XS) Viewer. m/z-RT pairs with corresponding intensities for all the detected peaks from each data file were listed. The same values of RT and m/z in different batches of samples were regarded as the same component. Furthermore, multivariate statistical analysis was performed. Firstly, PCA was used to show the pattern recognition and maximum variation aiming to obtain the overview and classification. Secondly, OPLS-DA in ESI+ and ESI− modes was performed in order to get the maximum separation between the CML and IML groups and to explore the potential chemical markers that contribute to the differences. Then, S-plots were created to provide visualization of the OPLS-DA predictive component loading to facilitate model interpretation. Meanwhile, the use of variable importance for the projection (VIP) was helpful in screening the different components, and metabolites with VIP value > 1.0 and p-value below 0.05 were considered as potential markers [32]. In addition, permutation testing was performed to provide reference distributions of the R^2 / Q^2 values that could indicate statistical significance [35,36]. Simca 15.0 software (Umetrics, Malmö, Sweden) was used to show the analysis results [33,35].

3. Results

3.1. Identification of Components from CML and IML Based on the UNIFI Platform

As a result of screening analysis, a total of 122 compounds were identified or tentatively characterized in both ESI+ and ESI− mode from CML and IML. There were 118 shared constituents identified in CML and IML. More specifically, 121 and 119 compounds were characterized from CML and IML, respectively (Table 2). Both of the two types of Moringa oleifera leaves are rich in natural components with various structural patterns, including flavonoids, alkaloids, glycosides, organic acids and organic acid esters, iridoids, lignans, and steroids, etc. Base peak intensity (BPI) chromatograms marked with the number of compounds are shown in Figure 1. The chemical structures of the compounds are summarized in Figure 2.
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS² Fragmentation	Identification	Sources	Ref.		
1	0.59	C₇H₁₄O₅	192.0629	192.0634	-2.6	191.0542[M – H]⁻, 173.0432[M-H₂O]⁻, 145.0516[M-HCOO]⁻, 137.0232[M-H₂O-HCOO]⁻	Quinic acid	CML, IML	s		
2	0.60	C₁₂H₂₀O₁₁	342.1161	342.1162	-0.3	387.1143[M + HCOO]⁻, 179.0554[M-H-Glu]⁻	a-Maltose	CML, IML	s		
3	0.62	C₁₂H₁₈Oₙ	354.0968	354.0951	4.8	353.0895[M – H]⁻, 335.0896[M-H₂O]⁻, 190.0544[M-C₆H₅O]⁻, 190.0391[M-H₂O-C₆H₅O]⁻	Cryptochlorogenic acid	CML, IML	[37]		
4	0.72	C₁₀H₁₂N₅Oₙ	267.0968	267.0968	0.0	268.1041[M + H]⁺, 187.0620[M + H-C₆H₅N₈]⁺, 161.0744[M + H-C₆H₅N₈]⁻, 136.0612[M + H-Rib]⁺	Adenosine	CML, IML	s		
5	0.80	C₁₄H₁₆Oₙ	300.0836	300.0845	-2.9	299.0764[M – H]⁻, 178.0632[M-H₂C₆H₅O]⁻, 135.0231[M-H-Glu]⁺, 89.0347[M-H-Glu-HCOOH]⁻	Benzoic acid 4-O-f-glucoside	CML, IML	[18]		
6	1.03	C₂₀H₂₀N₄O₁₁	459.1739	459.1741	-0.2	504.1721[M + HCOO]⁻, 427.1487[M-H-NH₂-CH₃]⁺, 307.0995[M-H-C₆H₅O]⁻, 279.1081[M-H-Glu]⁻, 150.0546[M-H₂Glu]⁻	3-β-O-f-glucopyranosyl derivatives (marumoside B)	CML, IML	[36]		
7	1.04	C₁₄H₁₈N₅Oₙ	297.1210	297.1212	-0.7	342.1192[M + HCOO]⁻, 262.0758[M-H₂O-NH₂]⁻, 149.0546[M-H-Rha]⁻, 105.0430[M-H-Rha-CONH₂]⁻	1⁴-Hydroxyphenylethanamide-α-l. -rhamnopyranoside (marumoside A)	CML, IML	[36]		
8	1.18	C₁₄H₁₆Oₙ	354.0942	354.0951	-2.4	353.0869[M – H]⁻, 281.1169[M-H₄O]⁻, 190.0546[M-H₂C₆H₅O]⁻, 161.0285[M-H₂C₆H₅O]⁻, 134.0343[M-H-C₆H₅O]⁻	Neoclorogenic acid	CML, IML	[39]		
9	1.38	C₁₄H₂₀N₄O₆	341.1458	341.1475	-4.7	342.1531[M + H]⁺, 261.1188[M + H₂O-C₆H₅O]⁻, 107.0492[M + H₂O-C₆H₅O]⁻, 102.0598[M + H-Rha-C₆H₅O]⁻	O-Ethyl-4-(α-L-rhamnosyl)-benzylcarbamate	CML, IML	[18]		
10	1.47	C₁₂H₁₆O₅	154.0271	154.0266	3.2	153.0215[M – H]⁻, 135.0211[M-H₂O]⁻, 89.0340[M-H-Glu-HCOOH]⁻	3,4-Dihydroxy-benzoic acid	CML, IML	[40]		
11	1.51	C₁₃H₁₄O₇	300.0892	300.0896	-1.5	299.0819[M – H]⁻, 160.0351[M-H₂O-C₆H₅O]⁻, 90.0343[M-H-Glu-HCOOH]⁻	Benzaldehyde 4-O-f-glucoside	CML, IML	[41]		
12	1.70	C₃₂H₆₀N₅O₈₁	630.1957	630.1949	1.3	675.1692[M + HCOO]⁻, 414.1127[M-H-PH-CH₃-C₆H₅O]⁻, 353.0869[M-H₂O-C₆H₅O-C₆H₅O]⁻, 298.0797[M-H-CH₃-C₆H₅O]⁻, 222.0634[M-H-PH-Glu-C₆H₅O]⁻	Mudanpioside J	CML, IML	VIP: 2.73 p < 0.001		
13	1.71	C₃₂H₆₀N₅O₈	660.2563	660.2530	4.6	705.2545[M + HCOO]⁻, 441.1367[M-H₂O-C₆H₅O]⁻, 326.0797[M-H-Rha-C₆H₅O]⁻, 263.0856[M-H-Glu-C₆H₅O]⁻, 175.0444[M-H-Rha-Glu-C₆H₅O]⁻	Nα-1-Rhamnopyranosyl vinosamide	CML, IML	[43]		
14	1.84	C₁₄H₁₂O₇	304.0573	304.0583	-3.2	349.0061[M + HCOO]⁻, 285.0418[M-H₂O]⁻, 162.0364[M-H-C₆H₅O]⁻, 152.9691[M-H-C₆H₅O]⁻, 132.0231[M-H-H₂O-OCH₃-C₆H₅O]⁻, 130.0235[M-H-C₆H₅O]⁻	Dihydroquercetin	CML, IML	VIP: 8.20 p < 0.001		
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS^8 Fragmentation	Identification	Sources	Ref.		
-----	--------------------------	---------	---------------------	----------------------	------------------	------------------	----------------	---------	------		
15	2.07	C_{18}H_{18}O_{9}	354.0951	354.0951	0.1	[M + H]^+	353.0878[M – H]^−, 253.1035[M-H-3H_2O-HCOOH]^−, 190.0182[M-H-3H_2O-C_6H_4O_2]^−, 144.0302[M-H_2O-C_6H_4O_2]^−, 125.0251[M-H_2O-C_6H_4O_2]^−	Chlorogenic acid	CML, IML	s	
16	2.09	C_{17}H_{23}O_{8}	368.1102	368.1107	−1.5	[M + H]^+	367.1029[M – H]^−, 356.0902[M-H-OCH_3]^−, 295.1124[M-H-4H_2O]^−, 243.0591[M-H-CH_2-C_6H_4O_2]^−, 189.0549[M-H-CH_2-C_6H_4O_2]^−, 178.0384[M-H-C_6H_4O_2]^−	Methyl-3-cafeoylquinlate	CML, IML	[45]	
17	2.34	C_{16}H_{16}N_{2}O_{4}	302.1254	302.1267	−0.4	[M + H]^+	303.1327[M + H]^+, 285.1232[M + H-H_2O]^+, 212.0983[M + H-H_2O-C_6H_4O_2]^+	Tangutorid E	CML, IML	[45]	
18	2.35	C_{19}H_{26}O_{12}	448.1578	448.1581	−0.7	[M + H]^+	447.1505[M – H]^−, 417.0973[M-H-2CH_3]^−, 267.1031[M-H-Glu]^−, 245.1064[M-H-OCCOCH_3-C_6H_4O_2]^−, 167.0480[M-H-Glu-C_6H_4O_2]^−	8-O-Acetylbisanthizide methyl ester	CML, IML	[46]	
19	2.53	C_{12}H_{16}O_{4}	180.0414	180.0423	−0.5	[M + H]^+	179.0335[M – H]^−, 143.0430[M-H-2H_2O]^−, 133.0433[M-H-HCOOH]^−, 108.0269[M-H-C_6H_4O_2]^−	Caffeic acid	CML, IML	s	
20	2.62	C_{16}H_{18}N_{2}O_{4}	302.1257	302.1267	−3.1	[M + H]^+	303.1300[M + H]^+, 285.1248[M + H-H_2O]^+, 194.0881[M + H-2H_2O-C_6H_4O_2]^+, 194.0895[M + H-H_2O-C_6H_4O_2]^+, 118.0799[M + H-H_2O-C_6H_4O_2]^−	Tangutorid F	CML, IML	[45]	
21	2.87	C_{17}H_{23}O_{8}	368.1104	368.1107	−0.9	[M + H]^+	367.1031[M – H]^−, 356.0903[M-H-OCH_3]^−, 203.0653[M-H-C_6H_4O_2]^−, 188.0584[M-H-C_6H_4O_2-C_6H_4O_2]^−, 151.0384[M-H-2H_2O-C_6H_4O_2]^−	Methyl-4-cafeoylquinlate	CML, IML	[45]	
22	2.96	C_{18}H_{23}O_{8}	236.1260	236.1261	0.3	[M + H]^+	259.1153[M + Na]^+	219.1322[M + H-H_2O]^+, 176.0459[M + H-H_2O-C_6H_4O_2]^+	n-Butyl-β-D-fructopyranoside	CML, IML	[47]
23	3.00	C_{14}H_{20}O_{10}	402.1536	402.1526	2.3	[M + H]^+	425.1428[M + Na]^+, 296.1001[M + H-C_6H_4O_2]^+, 253.1061[M + H-Xyl]^+, 146.0584[M + H-Xyl-C_6H_4O_2]^+, 73.0491[M + H-Glu-Xyl]^+	Benzyl-α-D-xylopyranosyl(1→6)-β-D-glucopyranoside	CML, IML	[48]	
24	3.01	C_{19}H_{25}O_{12}	448.1587	448.1581	1.5	[M + H]^+	447.1514[M – H]^−, 398.1453[M-H-OCH_3]^−, 378.1102[M-H-3H_2O-C_6H_4O_2]^−, 291.9974[M-H-C_6H_4O_2]^−, 267.1025[M-H-Glu]^−, 193.0447[M-H-Glu-OCCOCH_3-C_6H_4O_2]^−	6-O-acetylbisanthizide methyl ester	CML, IML	[46]	
25	3.04	C_{14}H_{12}NO_{6}	295.1051	295.1056	−1.7	[M + H]^+	294.0978[M-H]^−, 268.1025[M-H-CN]^−, 162.0436[M-H-C_6H_4O_2]^−, 120.0390[M-H-Rha]^−, 104.0286[M-H-Rha-CN]^−	Niaziridin	CML, IML	[48]	
26	3.13	C_{8}H_{10}O_{3}	164.0474	164.0473	0.3	[M + H]^+	165.0544[M + H]^+, 147.0444[M + H-H_2O]^+, 119.0483[M + H-HCOOH]^+	α-Coumaric acid	CML, IML	[49]	
27	3.23	C_{10}H_{16}O_{15}	594.1590	594.1585	0.8	[M + H]^+	593.1517[M – H]^−, 575.1371[M-H-H_2O]^−, 529.0871[M-H-H_2O-Glu]^−, 394.1305[M-H-2H_2O-C_6H_4O_2]^−	Vicenin-2	CML, IML	[50]	
28	3.32	C_{8}H_{10}O_{3}	164.0471	164.0473	−1.4	[M + H]^+	165.0544[M + H]^+, 147.0442[M + H-H_2O]^+, 119.0482[M + H-HCOOH]^+	ρ-Coumaric acid	CML, IML	[49]	
29	3.34	C_{8}H_{16}O_{14}	630.1943	630.1949	−0.8	[M + H]^+	675.1939[M + HCOO]^−, 464.0735[M-H-3H_2O-C_6H_4O_2]^−, 339.0923[M-H-H_2O-C_6H_4O_2-C_6H_4O_2]^−, 223.0599[M-H-C_6H_4O_2-Glu-benzosyl]^−, 163.0386[M-H-C_6H_4O_2-Glu-benzosyl]^−	6′-O-Benzoyl-4′-hydroxy-3′-methoxyphenonin	CML, IML	[51]	
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS$^#$ Fragmentation	Identification	Sources	Ref.		
-----	----------------------------	---------	---------------------	----------------------	-----------------	---------------------	---------------	---------	-----		
30 *	3.35	C$_{14}$H$_{15}$O$_{8}$	338.997	338.1002	−1.5	337.0930[M − H]$^-$, 265.0797[M-H-C$_6$H$_5$O$_2$]$^-$, 173.0442[M-H-C$_6$H$_5$O$_2$]$^-$, 162.0386[M-H-C$_3$H$_2$O$_2$]$^-$, 127.0704[M-H-2C$_6$H$_5$OH]	3-p-Coumaroylquinic acid	CML >> IML	52		
31	3.47	C$_{27}$H$_{36}$O$_{15}$	594.1589	594.1585	0.7	593.1516[M − H]$^-$, 575.1396[M-H$_2$O] +, 411.0869[M-H$_2$O-Rha] +, 287.0536[M-H$_2$O-Rha-C$_6$H$_5$O$_2$]$^-$, 125.0302[M-Rha-Glu-C$_6$H$_5$O$_2$]$^-$	Kaempferol-3-O-rutinoside	CML, IML	s		
32	3.54	C$_{13}$H$_{16}$O$_{6}$	268.0942	268.0947	−1.6	313.0624[M + HCOO]$^+$, 213.0760[M-H$_2$O] +, 184.0768[M-H$_2$O-COOH]$^-$, 147.0540[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 103.0284[M-H-Rha]	Benzaldehyde-4-O-α-L-rhamnopyranoside	CML, IML	45		
33 *	3.55	C$_{14}$H$_{16}$O$_{7}$	318.0746	318.0740	1.9	363.0747[M + HCOO]$^+$, 208.0473[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 193.0273[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 133.0452[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 121.0284[M-H$_2$C$_6$H$_5$O$_2$]$^-$.	PadmaTin	CML, IML	s		
34	3.89	C$_{17}$H$_{20}$O$_{9}$	368.1097	368.1107	−2.7	367.1025[M − H]$^-$, 298.0367[M-H$_2$O] +, 288.1015[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 192.0489[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 191.0629[M-H$_2$C$_6$H$_5$O$_2$]$^-$.	4-Feruloylquinic acid	CML, IML	a		
35	4.02	C$_{14}$H$_{17}$NO$_{5}$	279.1100	279.1107	−2.1	324.1082[M + HCOO]$^+$, 188.0725[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 147.0543[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 88.0545[M-H$_2$C$_6$H$_5$O$_2$]$^-$.	NiaziTin	CML, IML	45		
36	4.05	C$_{27}$H$_{36}$O$_{17}$	626.1487	626.1483	0.7	625.1414[M − H]$^-$. 445.0855[M-H$_2$Glucose]$^-$, 318.0205[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 324.1075[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 265.0333[M-H$_2$O-COOH]$^-$. 275.0708[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$.	Quercetin-3-gentiobioside	CML, IML	a		
37	4.14	C$_{18}$H$_{24}$O$_{6}$	290.0784	290.0790	−1.8	335.0766[M + HCOO]$^+$, 162.0243[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 138.0291[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 120.0283[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 79.042[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$.	Epicatechin	CML, IML	s		
38 *	4.16	C$_{18}$H$_{22}$O$_{8}$	366.1324	366.1315	2.5	411.1641[M + HCOO]$^+$, 355.0765[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 232.0622[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 133.0295[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 90.0342[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$.	3-O-acetyl-2-O-β-D-methyl-D-glucosaminoyl-α-L-rhamnopyranoside	CML, IML	53		
39	4.22	C$_{21}$H$_{32}$O$_{11}$	448.0999	448.1006	−1.4	447.0926[M − H]$^-$. 429.0830[M-H$_2$O] +, 267.0395[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 143.0288[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$.	Astragaline	CML, IML	54		
40	4.47	C$_{16}$H$_{14}$O$_{6}$	290.0793	297.0790	0.6	335.0775[M + HCOO]$^+$, 147.0436[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 137.0224[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 133.0295[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 90.0342[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$.	Catechin	CML, IML	s		
41	4.49	C$_{27}$H$_{36}$O$_{12}$	464.0955	464.0949	−1.2	465.1022[M + H]$^+$, 285.0485[M + H-Glu] +, 231.0678[M + H-Glu-C$_6$H$_5$O$_2$]$^-$. 149.0310[M + H-Glu-C$_6$H$_5$O$_2$]$^-$. 152.0154[M + H-Glu-C$_6$H$_5$O$_2$]$^-$.	Hyperoside	CML, IML	s		
42	4.50	C$_{27}$H$_{36}$O$_{17}$	626.1475	626.1483	−1.3	625.1402[M − H]$^-$. 516.1277[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 396.0689[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$. 318.0746[M-H$_2$C$_6$H$_5$O$_2$]$^-$. 324.1075[M-H$_2$O-C$_6$H$_5$O$_2$]$^-$.	Quercetin-3-sophoroside	CML, IML	a		
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS® Fragmentation	Identification	Sources	Ref.		
-----	--------------------------	---------------	----------------------	----------------------	------------------	--	--	---------	------		
43	4.52	C_{26}H_{36}O_{16}	596.1400	596.1377	3.8	595.1327[M – H]^+ , 265.0264[M-H-Glu-Xyl]^- , 138.0156[M-H-Glu-Xyl-H_2O-C_H_2O_2]^- , 115.9991[M-H-Glu-Xyl-C_6H_4O_2]^-	Quercetin-3-O-β-D-xylopyranosyl (1→2)-β-D-glucopyranoside	CML, IML	a		
44	4.67	C_{21}H_{32}O_{12}	464.0939	464.0955	−3.4	463.0866[M – H]^+ , 318.0758[M-H-2H_2O-C_H_2O_2]^- , 176.0513[M-H-C_6H_2O_2]^- , 159.0379[M-H-Glu-C_6H_4O_2]^-	Isoquercetin	CML, IML	[54]		
45	4.68	C_{21}H_{32}O_{14}	578.1635	578.1636	−0.2	579.1707[M + H]^+ , 543.1664[M + H-2H_2O]^- , 415.1130[M + H-Rha]^+ , 322.0748[M + H-Rha-C_6H_4O_2]^- , 235.0580[M + H-Glu-Rha]^+	Apigenin-7-O-rutinoside	CML, IML	[39]		
46	4.71	C_{21}H_{36}O_{15}	594.1596	594.1585	2.0	593.1524[M – H]^+ , 413.0899[M-H-Glu]^+ , 338.0756[M-H-Glu-H_2O-C_H_2O_2]^- , 247.0305[M-H-Glu-Rha]^+	Kaempferol-3-O-x-L-rhamnoside (1→4)-β-D-glucoside	CML, IML	a		
47	4.82	C_{26}H_{34}O_{11}	522.2118	522.2101	3.0	567.2100[M + HCOO]^− , 461.2005[M-H-C_2H_4O_2]^- , 341.1509[M-H-Glu]^− , 401.1193[M-H-C_6H_2O_2]^-	Ligan glycoside A	CML, IML	b		
48	4.85	C_{26}H_{32}O_{14}	564.1475	564.1479	−0.7	565.1548[M + H]^+ , 418.1217[M + H-C_6H_2O_2]^- , 298.0909[M + H-Apis-C_6H_4O_2]^- , 180.0776[M + H-Apis-C_6H_4O_2]^- , 147.0590[M + H-Glu-Apis-C_6H_4O_2]^-	Apiin	CML, IML	[55]		
49	4.95	C_{18}H_{36}O_{7}	302.0429	302.0427	0.7	303.0501[M + H]^+ , 153.0162[M + H-C_6H_2O_2]^- , 151.0210[M + H-C_6H_2O_2]^-	Quercetin	CML, IML	s		
50	4.97	C_{22}H_{36}O_{16}	610.1537	610.1534	0.6	611.1652[M + H]^+ , 447.1014[M + H-Rha]^+ , 267.0509[M + H-Glu-Rha]^+ , 158.0289[M + H-Glu-Rha-C_6H_4O_2]^- , 131.0222[M + H-Glu-Rha-C_6H_4O_2]^-	Rutin	CML << IML	VIP: 8.51 p < 0.001		
51	5.01	C_{20}H_{30}O_{16}	610.1532	610.1534	−0.3	609.1472[M – H]^− , 427.0797[M-H-Rha-H_2O]^- , 336.0680[M-H-Rha-C_6H_2O_2]^- , 265.0326[M-H-Rha-C_6H_2O_2]^-	Quercetin-3-rutinoside	CML << IML	VIP: 13.28 p < 0.001		
52	5.02	C_{21}H_{32}O_{10}	432.1048	432.1056	−2.0	431.0973[M – H]^− , 395.0746[M-H-2H_2O]^- , 338.0683[M-H-C_6H_2O_2]^- , 251.0447[M-H-Glu]^- , 100.0326[M-H-Glu-C_6H_4O_2]^-	Apigenin-8-C-glucoside	CML, IML	[39]		
53	5.04	C_{21}H_{32}O_{10}	432.1069	432.1056	2.7	477.1051[M + HCOO]^− , 267.0464[M+H-Rha]^− , 163.0701[M-H-C_6H_2O_2]^- , 115.0438[M-H-Glu-C_6H_4O_2]^-	Kaempferol-3-O-x-rhamnoside	CML, IML	[41]		
54	5.08	C_{15}H_{20}NO_{5}	293.1265	293.1263	0.5	294.1337[M + H]^+ , 131.0526[M + H-OCH_3-C_6H_4O_2]^+ , 99.0646[M + H-Rha-OCH_3]^-	3-O-methyl-β-L-rhamnosylbenzyl nitrile	CML, IML	[18]		
55	5.22	C_{24}H_{26}O_{12}	464.0938	464.0955	−3.5	463.0880[M – H]^− , 283.0502[M-H-Glu]^- , 174.0278[M-H-Glu-C_6H_4O_2]^- , 150.0174[M-H-Glu-C_6H_4O_2]^-	Quercetin	CML >> IML	VIP: 7.30 p < 0.001		

Table 2. Cont.
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MSg Fragmentation	Identification	Sources	Ref.		
56	5.48	C$_{10}$H$_{14}$O$_5$	274.0837	274.0841	−1.2	319.0819[M + HCOO]$^-$, 144.0281[M-H-2H$_2$O-C$_4$H$_5$O$_2$]$^-$, 137.0222[M-H-C$_6$H$_4$O$_2$]$^-$, 117.0329[M-H-H$_2$O-C$_3$H$_6$O$_3$]$^-$, 92.0344[M-H$_2$C$_4$H$_2$O$_2$]$^-$	(−)-Epiafzelechin	CML, IML	s		
57	5.55	C$_{22}$H$_{20}$O$_7$	626.1490	626.1483	1.1	625.1417[M − H]$^-$, 571.1354[M-H$_2$H$_2$O]$^-$, 303.0666[M-H-Glu2-C$_2$H$_2$O$_2$]$^-$, 265.0399[M-H-2Glu]$^-$	Quercetin-3,7-O-β-D-disglycopyranoside	CML, IML	a		
58	5.65	C$_{24}$H$_{22}$O$_{15}$	550.0957	550.0959	−0.2	549.0885[M − H]$^-$, 445.0780[M-H-malonyl]$^-$, 300.0267[M-H-malonyl-Glu2-C$_4$H$_8$O$_2$]$^-$, 160.0133[M-H-malonyl-Glu2-C$_2$H$_4$O$_4$]$^-$	Quercetin-3-O-(6″-malonyl)-glucoside	CML, IML	[49]		
59a	5.67	C$_{22}$H$_{26}$O$_{15}$	594.1579	594.1585	−1.0	595.1678[M+H]$^+$, 448.1063[M+H-H$_2$O-C$_4$H$_8$O$_2$]$^+$, 385.1333[M+H-H$_2$O-C$_4$H$_8$O$_2$]$^+$, 304.0494[M+H-H$_2$O-Glu-C$_2$H$_5$O$_2$]$^+$, 142.0169[M+H-H$_2$O-C$_2$H$_4$O$_2$]$^+$	Isovertin-3″-O-glucopyranoside	CML, IML	[57]		
60a	5.69	C$_{30}$H$_{36}$O$_{13}$	594.1355	594.1373	−3.1	593.1507[M − H]$^-$, 484.1116[M-H-C$_6$H$_4$O$_2$]$^-$, 439.0848[M-H-C$_4$H$_4$O$_4$]$^-$, 286.0394[M-H-H$_2$O-C$_3$H$_3$O$_3$]$^-$, 153.9989[M-H-C$_2$H$_2$O$_2$]$^-$	Procyanidins	CML, IML	[58]		
61	5.72	C$_{22}$H$_{26}$O$_{16}$	608.1378	608.1377	0.0	607.1305[M − H]$^-$, 543.1275[M-H$_2$HO-C$COOH$]$^-$, 504.0985[M-H-C$_4$H$_4$O$_4$]$^-$, 440.0889[M-H-H$_2$O-C$_2$H$_2$O$_2$]$^-$, 462.0686[M-H$_2$O-C$_4$H$_8$O$_2$]$^-$, 282.0267[M-H$_2$O-C$_4$H$_8$O$_2$]$^-$	Quercetin-3-O-hydroxy methylglutaryl galactoside	CML, IML	[59]		
62a	5.84	C$_{24}$H$_{28}$O$_{16}$	624.1703	624.1690	2.1	623.1611[M − H]$^-$, 590.1383[M-H$_2$H$_2$O-C$_4$H$_8$]$^-$, 466.1438[M-H$_2$H$_2$O-C$_2$H$_2$O$_2$]$^-$, 337.0986[M-H$_2$O-C$_3$H$_3$O$_3$]$^-$, 281.0460[M-H$_2$O-C$_2$H$_2$O$_2$]$^-$	Isoveratin-3-O-rutinoside	CML, IML	[60]		
63a	5.92	C$_{26}$H$_{30}$O$_{11}$	448.1003	448.1006	−0.7	447.0929[M − H]$^-$, 267.0403[M-H-Glu]$^-$, 227.0343[M-H-Glu-C$_2$O$_3$]$^-$, 134.0018[M-H-Glu-C$_2$H$_2$O$_2$]$^-$	Kaempferol-3-O-glucoside	CML, IML	[49]		
64	6.07	C$_{14}$H$_{22}$O$_7$	316.0581	316.0583	−0.6	317.0653[M+H]$^+$, 302.0412[M+H-Ch$_2$]$^+$, 299.0533[M+H-H$_2$O]$^+$, 152.0169[M+H-C$_6$H$_8$O$_3$]$^+$, 125.0388[M+H-C$_4$H$_4$O$_4$]$^+$	Isorhamnetin	CML, IML	s		
65	6.16	C$_{22}$H$_{22}$O$_{13}$	506.1068	506.1060	1.4	505.0995[M − H]$^-$, 490.0815[M-H-CH$_2$]$^-$, 428.9898[M-H$_2$O-CO-CO$_2$H]$^-$, 317.0980[M-H$_2$O-C$_2$H$_2$O$_2$]$^-$, 283.0198[M-H$_2$O-C$_2$H$_4$O$_3$]$^-$	Quercetin-3-O-(6″-O-acetyl)-β-D-glucopyranoside	CML, IML	[49]		
66	6.24	C$_{16}$H$_{16}$O$_4$	188.1045	188.1049	2.1	187.0965[M − H]$^-$, 141.1105[M-H-COCO$_2$]$^-$, 123.0957[M-H$_2$HO-COCO$_2$]$^-$, 112.0644[M-H$_2$O-C$_2$H$_4$O$_2$]$^-$	Azelaic acid	CML, IML	s		
67	6.28	C$_{24}$H$_{22}$O$_9$	430.1242	430.1264	−4.7	475.1224[M + HCOO]$^-$, 288.0536[M+H$_2$O-C$_2$H$_2$O$_2$]$^-$, 244.0915[M-H$_2$H$_2$O-C$_2$H$_2$O$_2$]$^-$, 143.0398[M-H$_2$O-C$_2$H$_2$O$_2$]$^-$, 130.0289[M-H$_2$O-C$_2$H$_2$O$_2$]$^-$	Chryseriol-7-O-rhamnoside	CML, IML	[39]		
68	6.43	C$_{30}$H$_{30}$O$_{18}$	756.1900	756.1902	−0.3	755.1827[M − H]$^-$, 737.1844[M-H$_2$O]$^-$, 575.1386[M-H-Glu]$^-$, 427.0933[M-H-Glu-C$_2$H$_4$O$_2$]$^-$, 405.0904[M-H-Glu-H$_2$O-C$_2$H$_4$O$_2$]$^-$, 247.0320[M-H$_2$O-C$_2$H$_4$O$_2$]$^-$	Allivicoside A	CML, IML	b		
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS\$ Fragmentation	Identification	Sources	Ref.		
-----	--------------------------	---------	---------------------	----------------------	-----------------	-------------------	----------------	---------	-----		
69 *	6.44	C_{34}H_{52}O_{10}	592.1387	592.1370	3.0	593.1639[M + H]^+; 483.1521[M + H-H_{2}O-C_{6}H_{5}O_{2}]^+; 266.0696[M + H-C_{6}H_{5}O_{2}-C_{6}H_{12}O_{2}]^+; 241.0502[M + H-C_{6}H_{5}O_{2}H]^+; 134.0267[M + H-C_{6}H_{5}O_{2}]^+	Mulberrofruran Q	CML >> IML	VIIP: 5.76	p < 0.001	[59]
70	6.46	C_{22}H_{42}O_{14}	534.1014	534.1010	0.8	533.0941[M – H]^−; 447.0920[M-H-malonyl]^−; 323.0962[M-H-malonyl-C_{6}H_{5}O_{2}]^−; 284.0329[M-H-malonyl-C_{6}H_{5}O_{2}]^−	Kaempferol-3-O-(6′-malonyl) glucoside	CML, IML	[49]		
71	6.74	C_{22}H_{42}O_{14}	476.0964	476.0955	1.8	475.0891[M – H]^−; 444.0736[M-H-OCH_{3}]^−; 351.0892[M-H-C_{6}H_{5}O_{2}]^−; 283.0394[M-H-C_{6}H_{5}O_{2}]^−; 172.0452[M-H-C_{6}H_{5}O_{2}]^−	Kaempferol-3-O-β-D-glucuronide-6′-methyl ester	CML, IML	[60]		
72	6.98	C_{22}H_{42}O_{14}	432.1052	432.1056	–1.1	431.0979[M – H]^−; 267.0327[M-H-Rha]^−; 249.0447[M-H-Rha-H_{2}O]^−; 157.9997[M-H-Rha-C_{6}H_{5}O_{2}]^−	Kaempferol-7-O-α-1-rhamnoside	CML, IML	[61]		
73	6.99	C_{18}H_{38}O_{6}	286.0484	286.0477	2.4	287.0557[M + H]^+; 153.0167[M + H-C_{6}H_{5}O_{2}]^+; 135.0583[M + H-C_{6}H_{5}O_{2}]^+; 124.0385[M + H-C_{6}H_{5}O_{2}]^+	Orobol	CML	[62]		
74 *	7.01	C_{22}H_{42}O_{14}	490.1108	490.1111	–0.6	489.1093[M – H]^−; 446.1001[M-H-COCH_{3}]^−; 267.0323[M-H-Glu ethyl ester]^−; 143.0443[M-H-Glu ethyl ester-C_{6}H_{5}O_{2}]^−	3-O-(6″-O-acetyl)-β-D-glucopyranoside	CML >> IML	VIIP: 6.15	p < 0.001	[63]
75	7.80	C_{16}H_{26}NO_{9}	321.1213	321.1212	0.2	366.1195[M + HCOO]^−; 249.0617[M-H-OCH_{3}+C_{2}H_{5}N]^−; 189.0517[M-H-C_{6}H_{5}O_{2}-C_{6}H_{5}N]^−; 97.0349[M-H-Rha-C_{6}H_{5}O_{2}]^−	Niaziarinin	CML, IML	[45]		
76	7.86	C_{18}H_{38}O_{6}	286.0477	286.0473	–1.7	285.0400[M – H]^−; 121.0377[M-H-C_{6}H_{5}O_{2}]^−; 183.0011[M-H-C_{6}H_{5}O_{2}]^−; 133.0415[M-H-C_{6}H_{5}O_{2}]^−; 108.0280[M-H-C_{6}H_{5}O_{2}]^−	Luteolin	CML, IML	s		
77	7.89	C_{18}H_{38}O_{7}	302.0408	302.0427	–1.8	301.0336[M – H]^−; 244.0329[M-H-COCH_{3}]^−; 190.0130[M-H-C_{6}H_{5}O_{2}-C_{6}H_{5}O_{2}]^−; 133.0269[M-H-C_{6}H_{5}O_{2}]^−; 92.0343[M-H-C_{6}H_{5}O_{2}]^−	6-Hydroxykaempferol	CML	[64]		
78 #	7.89	C_{22}H_{42}O_{17}	640.1653	640.1639	2.1	663.3153[M + Na]^+; 443.0906[M+H-H_{2}O]^+; 281.0480[M + H-2C_{2}H_{5}Glu]^+; 266.0487[M + H-2C_{2}H_{5}Glu+C_{6}H_{5}O_{2}]^+	Isohermannetin 3-O-β-gentiobioside	CML << IML	VIIP: 4.79	p < 0.001	a
79 *	8.01	C_{16}H_{38}O_{6}	286.0479	286.0477	0.6	287.0567[M + H]^+; 163.0580[M + H-C_{6}H_{5}O_{2}]^+; 147.0435[M + H-C_{6}H_{5}O_{2}H]^+; 124.0384[M + H-C_{6}H_{5}O_{2}]^+	Scutellarein	CML >> IML	VIIP: 3.69	p < 0.001	[65]
80 #	8.02	C_{22}H_{42}O_{12}	516.1266	516.1268	–0.3	515.1203[M – H]^−; 451.1465[M+H-H_{2}O+HCOOH]^−; 326.0487[M-H-3H_{2}O-C_{6}H_{5}O_{2}]^−; 219.0638[M-H-2C_{2}H_{5}O_{2}]^−; 143.0279[M-H-C_{6}H_{5}O_{2}-C_{6}H_{5}O_{2}]^−	1,3-Dicaffeoylquinic acid	CML >> IML	VIIP: 4.25	p < 0.001	s
81 #	8.26	C_{22}H_{42}O_{9}	410.1573	410.1577	–1.0	409.1504[M – H]^−; 336.0817[M-H-C_{6}H_{5}O_{2}]^−; 251.1394[M-H-2H_{2}O-C_{6}H_{5}O_{2}]^−; 202.0639[M-H-C_{6}H_{5}C_{6}H_{5}O_{2}]^−; 134.0437[M-H-C_{6}H_{5}O_{2}]^+	5-O-Caffeoylquinic acid butyl ester	CML << IML	VIIP: 4.72	p < 0.001	a
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS© Fragmentation	Identification	Sources	Ref.		
-----	--------------------------	---------	----------------------	----------------------	------------------	-------------------	---------------	---------	-----		
82	8.52	C_{30}H_{46}O_{19}	808.2757	808.2790	−3.9	853.467[M+HCOO]−, 700.217[M+H-C_{2}H_{5}O]−, 572.154[M-H-C_{2}H_{5}-Gluc]−, 438.126[M-H-C_{2}H_{5}-Rha-Ara]−, 274.1182[M-H-Glu-Ara-C_{2}H_{12}O_{4}]−	7-(α-L-Galactopyranosyl)-5-hydroxy-2-(4-methoxyphenyl)-8-(3-methyl-2-buten-1-yl)-4-oxo-4H-chromen	IML, VIP: 2.08 p < 0.001	b		
83	9.08	C_{30}H_{44}O_{15}	634.1872	634.1898	−3.7	679.1854[M+HCOO]−, 603.1579[M-H-Rha-O-CH_{3}]−, 454.10677[M-H-Rha-CH_{2}]−, 411.0979[M-H-CH_{3}-Rha ethyl ester]−, 334.0931[M-H-Rha-C_{2}H_{5}O_{2}]−, 296.0665[M-H-C_{2}H_{5}O-Rha ethyl ester]−	Kaempferol-3-O-α-L-(4-O-acetyl)-rhamnosyl-7-O-α-L-rhamnoside	CML, IML	[41]		
84	9.23	C_{13}H_{20}O_{6}	286.0473	286.0477	−1.7	285.0435[M−H]−, 228.0285[M-HCOO]−, 161.0377[M-H-C_{2}H_{5}O]−, 151.0070[M-H-C_{2}H_{5}O_{2}]−	Kaempferol	CML >> IML VIP: 4.99 p < 0.001	s		
85	9.31	C_{6}H_{12}NO_{5}S	311.0821	311.0827	−1.9	356.0830[M+HCOO]−, 252.0915[M-H-NCS]−, 162.0681[M-H-C_{2}H_{6}NS]−, 88.0495[M-H-Rha-NCS]−	4-[α-L-rhamnosyl] benzyl isothiocyanate	CML, IML	[66]		
86	9.47	C_{6}H_{12}O_{7}	316.0575	316.0583	−2.4	315.0503[M−H]−, 300.0268[M-H-CH_{3}]−, 282.0400[M-H_{2}O-CH_{2}]−, 191.0163[M-H-C_{2}H_{5}O_{2}]−, 165.0606[M-H-C_{2}H_{5}O_{3}]−	Rhamnetin	CML, IML	[18]		
87	9.54	C_{12}H_{16}O_{4}	224.1038	224.1049	−4.8	223.0969[M−H]−, 205.1027[M-H_{2}O]−, 135.0421[M-H-C_{2}H_{5}O_{2}]−, 123.0964[M-H-C_{2}H_{5}O_{2}]−,	3-Butyldiene-4,5,6,7-tetrahydro-6,7-dihydroxy-1(3H)-isobenzofuranone	CML, IML	[67]		
88	9.69	C_{30}H_{39}O_{4}	460.2612	460.2614	−0.4	505.2629[M+HCOO]−, 444.2249[M-H-C_{2}H_{5}O]−, 372.1847[M-H_{2}O-C_{2}H_{5}O-C_{2}H_{5}O_{2}]−, 240.1718[M-H_{2}O-C_{2}H_{5}O-C_{2}H_{5}O_{2}]−, 139.0822[M-H_{2}O-C_{2}H_{5}O-C_{2}H_{5}O-C_{2}H_{5}O_{2}]−	Sophorane	CML, IML	a		
89	9.94	C_{12}H_{16}O_{6}	286.0480	286.0477	1.1	287.0553[M+H]−, 153.0163[M-H-C_{2}H_{5}O_{2}]−, 135.0449[M+H-C_{2}H_{5}O_{2}]−, 124.0382[M+H-C_{2}H_{5}O_{2}]−, 110.0281[M+H-C_{2}H_{5}O_{2}]−	5,7',2',5'-Tetrahydroxiflavone	CML, IML	b		
90	9.98	C_{2}H_{2}O_{12}	544.1583	544.1581	0.4	589.1565[M+HCOO]−, 375.1268[M-H_{2}O-C_{2}H_{5}O_{2}]−, 328.0465[M-H_{2}O-2CH_{2}-C_{2}H_{5}O_{2}]−, 244.0508[M-H-C_{2}H_{5}O_{2}-C_{2}H_{5}O_{2}]−, 153.0014[M-H-C_{2}H_{5}O-2CH_{2}-C_{2}H_{5}O_{2}]−	1-O-methyl-3,5-O-dicaffeoylquinic acid methyl ester	CML, IML	a		
91	10.10	C_{30}H_{39}O_{15}	620.1741	620.1758	2.6	621.1830[M+H]−, 507.1514[M+H-C_{2}H_{5}O_{2}]−, 310.0986[M+H-Rha-C_{2}H_{5}O_{2}]−, 147.0658[M+H-Glu-ester-C_{2}H_{5}O_{2}]−	Apigenin-7-O-α-L-rhamnopyranosyl(1→4)-6"-O-acetyl-β-D-glucopyranoside	CML, IML	[68]		
92	10.30	C_{14}H_{18}O_{5}	330.2405	330.2406	−0.4	329.2332[M−H]−, 293.2084[M-H_{2}O]−, 226.1434[M-H_{2}O-C_{2}H_{5}O_{2}]−, 212.1325[M-HCOO-C_{2}H_{5}O_{2}]−, 168.1004[M-H-C_{2}H_{5}O_{2}-C_{2}H_{5}O_{2}]−, 137.1117[M-H_{2}O-C_{2}H_{5}O-C_{2}H_{5}O_{2}]−	Sanleng acid	CML, IML	[26]		
93	10.39	C_{10}H_{12}O_{2}	164.0837	164.0831	−2.8	209.1118[M+HCOO]−, 122.0433[M-H-C_{2}H_{5}O_{2}]−, 105.0495[M-H-OCH_{2}-C_{2}H_{5}]−	Eugenol	CML >> IML VIP: 2.57 p < 0.001	s		
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS® Fragmentation	Identification	Sources	Ref.		
-----	--------------------------	---------	---------------------	----------------------	-----------------	------------------	----------------	---------	------		
94	10.52	C₁₂H₁₆O₆	286.0477	286.0478	0.1	1,7-Dihydroxy-2,3-methylenedioxyxanthone	1,7-Dihydroxy-2,3-methylenedioxyxanthone	CML, IML	b		
95	10.67	C₁₂H₁₆O₆	242.2241	242.2246	−1.6	Methyl myristate	Methyl myristate	CML, IML	s		
96	10.73	C₁₂H₁₆O₆	286.0480	286.0477	0.8	2'-Hydroxygeisten	2'-Hydroxygeisten	CML, IML	s		

Table 2. Cont.

No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS® Fragmentation	Identification	Sources	Ref.
97	11.22	C₁₂H₁₆O₆	330.2393	330.2406	−4.0	CML << IML VI: 1.52 p < 0.001	CML << IML VI: 1.52 p < 0.001	CML, IML	[69]
98	11.35	C₁₂H₁₆NO₄S	353.0930	353.0933	−0.8	4(4'-O-acetyl-α-L-rhamnosyloxy) benzyl]sulfiniacylate	4(4'-O-acetyl-α-L-rhamnosyloxy) benzyl]sulfiniacylate	CML, IML	[66]
99	11.86	C₁₂H₁₆O₂	190.0988	190.0994	−2.4	CML << IML VI: 3.40 p < 0.001	CML << IML VI: 3.40 p < 0.001	CML, IML	a
100	11.95	C₁₂H₁₈O₄	658.3196	658.3201	−0.8	Ajugaside A	Ajugaside A	CML, IML	[70]
101	12.01	C₁₂H₁₆O₂	592.2544	592.2520	4.1	Syringaresinolmono-β-D-glucoside	Syringaresinolmono-β-D-glucoside	CML, IML	[71]
102	12.21	C₁₂H₁₆O₄	222.0883	222.0892	−3.9	Diethyl phthalate	Diethyl phthalate	CML, IML	[67]
103	12.22	C₁₂H₁₈NO₄S	353.0930	353.0933	−0.8	4(2'-O-acetyl-α-L-rhamnosyloxy) benzyl]sulfiniacylate	4(2'-O-acetyl-α-L-rhamnosyloxy) benzyl]sulfiniacylate	CML, IML	[49]
104	12.98	C₁₀H₂₃NO₇	473.1668	473.1659	1.9	Folinic acid	Folinic acid	CML, IML	a
105	13.10	C₁₀H₁₈O₄	354.2757	354.2770	−3.3	2-Monolinolein	2-Monolinolein	CML, IML	[26]
106	13.29	C₁₁H₂₃O₄	696.3375	696.3357	2.4	Erythrosine	Erythrosine	CML, IML	b
No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS® Fragmentation	Identification	Sources	Ref.
-----	--------------------------	------------------	----------------------	-----------------------	------------------	---	--	---------	------
107	13.40	C_{21}H_{31}NO_{11}S	489.1682	489.1669	2.8	488.1610[M − H]⁺, 473.1683[M-H-CH_{3}]²⁺, 308.1280[M-H-Glu]⁻, 293.0912[M-H-CH_{3}-H-Glu]²⁻	4-(β-D-glucopyranosyl-1-4-a-L-rhamnopyranosyl) benzyl isothiocyanate	CML, IML	a
108	13.52	C_{13}H_{16}O_{3}	220.1095	220.1099	−1.9	219.1025[M − H]⁺, 164.0378[M-H-C_{3}H_{7}]²⁻, 145.0220[M-H-OC(=O)-C_{3}H_{7}]²⁻	4-(1-Oxopentyl)-methyl ester, benzoic acid	CML, IML	a
109	14.68	C_{18}H_{26}O_{4}	314.2443	314.2457	−4.6	313.2370[M − H]⁻, 199.1107[M-H-2C_{4}H_{7}]²⁻, 184.1370[M-H-C_{3}H_{7}-C_{3}H_{7}]²⁻, 155.1048[M-H-C_{4}H_{9}-C_{3}H_{7}]²⁻, 125.1126[M-H-C_{3}H_{4}-O-C_{3}H_{7}]²⁻	Dibutyl sebacate	CML, IML	s
110	15.87	C_{14}H_{29}O_{2}	276.2099	276.2089	3.3	277.2170[M + H]⁺, 150.1315[M + H-C_{3}H_{7}]²⁻, 136.1167[M + H-C_{3}H_{7}-C_{3}H_{7}]²⁻, 107.0704[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 95.0708[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻	Parinaric acid	CML, IML	s
111	15.93	C_{18}H_{26}O_{4}	266.1506	266.1518	−3.8	265.1488[M − H]⁻, 247.1494[M-H-C_{3}H_{7}]²⁻, 211.1328[M-H-C_{3}H_{7}-C_{3}H_{7}]²⁻, 180.1365[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 169.1007[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 133.1009[M-H-OC(=O)-C_{3}H_{7}]²⁻	4α,6α-Dihydroxyedus-emasman-8β,12-olide	CML, IML	a
112	16.00	C_{17}H_{34}O_{4}	270.2556	270.2559	−0.9	315.2530[M + HCOO]⁻, 254.2160[M-H-C_{3}H_{7}]⁻, 139.1285[M-H-OC(=O)-C_{3}H_{7}]²⁻, 125.1118[M-H-OC(=O)-C_{3}H_{7}]²⁻	Methyl palmitate	CML, IML	s
113	16.49	C_{18}H_{26}O_{4}	310.2142	310.2144	−0.6	309.2090[M − H]⁺, 287.1964[M-H-C_{3}H_{7}]²⁻, 265.1928[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 245.2069[M-H-OC(=O)-C_{3}H_{7}]²⁻, 208.1397[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 198.1177[M-H-C_{3}H_{3}]²⁻, 135.0958[M-H-C_{3}H_{7}]²⁻	9,16-Dihydroxy-10,12,14-octadecatrienoic acid	CML, IML	b
114	17.88	C_{18}H_{26}O_{2}	254.2259	254.2246	4.8	277.2151[M + Na]⁺, 237.2359[M + H₂O]⁻, 97.1016[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 88.0805[M + H-C_{3}H_{2}]²⁻, 69.0716[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 53.1170[M + H-C_{3}H_{2}]²⁻	Palmitoleic acid	CML, IML	[32]
115 *	18.44	C_{18}H_{26}O_{3}	294.2198	294.2195	0.9	293.2097[M − H]⁺, 275.2090[M-H-C_{3}H_{7}]²⁻, 247.2242[M-H-HCOOH]⁻, 232.1683[M-H-OC(=O)-C_{3}H_{7}]²⁻, 152.1063[M-H-OC(=O)-C_{3}H_{7}]²⁻	(E,E)-9-Oxooctadecaa-10,12-dienoic acid	CML >> IML, VIP: 2.45 p < 0.001 [30]	
116 *	18.56	C_{18}H_{26}O_{3}	298.2494	298.2508	−4.6	297.2440[M − H]⁺, 279.2478[M-H-C_{3}H_{7}]²⁻, 224.1515[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 193.1260[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 139.1113[M-H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 119.0958[M-H-C_{3}H_{7}]²⁻	Ricinoleic acid	CML >> IML, VIP: 3.12 p < 0.001 [31]	
117	19.27	C_{18}H_{26}O_{3}	296.2339	296.2351	−4.3	295.2266[M − H]⁺, 266.1996[M-H-C_{3}H_{7}]²⁻, 249.2382[M-H-HCOOH]⁻, 184.1156[M-H-C_{3}H_{7}]²⁻, 152.1412[M-H-HCOOH-C_{3}H_{7}]²⁻, 124.0960[M-H-OC(=O)-C_{3}H_{7}]²⁻	Coronaric acid	CML, IML	[26]
118	19.71	C_{10}H_{16}O_{2}	282.2558	282.2559	−0.4	283.2631[M + H]⁺, 97.1020[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 86.1024[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻, 72.0876[M + H-C_{3}H_{2}-C_{3}H_{7}]²⁻	Oleic acid	CML, IML	s
Table 2. Cont.

No.	Retention Time (RT) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS² Fragmentation	Identification	Sources	Ref.
119	19.95	C_{21}H_{36}O_{4}	352.2620	352.2614	1.8	351.2701[M + H]^+ \text{, 335.2693}[M + H_2O]^+ \text{, 214.2202}[M + H_3O_2]^+ \text{, 150.1329}[M + H_4O]^+ \text{, 123.1012}[M + H_2O_2]^+ \text{, 83.0715}[M + H_2O_2]^+}	1-Linolenoylglycerol	CML << IML, VIP: 5.63	a
120	21.54	C_{18}H_{30}O_{2}	278.2237	278.2246	-3.0	277.2165[M – H]^+ \text{, 182.1234}[M-H_7H_11]^+ \text{, 168.1230}[M-H_8H_13]^+ \text{, 110.0795}[M-H_11H_17_2O]^+}	Linolenic acid	CML, IML	s
121	*	C_{15}H_{29}O	226.2300	226.2297	1.3	271.2274[M + HCOO]^+ \text{, 164.1118}[M-H_6H_13]^+ \text{, 108.0499}[M-H_10H_21]^+}	n-Pentadecanal	CML >> IML, VIP: 4.02	[32]
122	*	C_{17}H_{33}O	254.2616	254.2610	2.1	299.2594[M + HCOO]^+ \text{, 248.2224}[M-H_2H_15]^+ \text{, 122.0654}[M-H_11H_23]^+ \text{, 94.0506}[M-H_13H_27]^+}	n-Heptadecanal	CML >> IML, VIP: 3.12	[32]

* Characteristic component in CML; † characteristic component in IML; ‡ identified with standard; § compared with spectral data obtained from Wiley Subscription Services, Inc. (USA); b compared with NIST Chemistry WebBook.
Figure 1. The representative base peak intensity (BPI) chromatograms of CML and IML in ESI$^+$ and ESI$^-$ modes, where ESI is electrospray ionization.
| Flavonoids | Alkaloids |
|------------|-----------|
| ![Flavonoids](image1.png) | ![Alkaloids](image2.png) |

Figure 2. Cont.

The table and diagram above illustrate various compounds, including flavonoids, alkaloids, and glycosides, with chemical structures and formulas. Each compound is represented with a unique code, and some are labeled with additional information such as chemical shifts or specific functional groups. The table and diagram are part of a larger set of data, possibly for a scientific manuscript or research paper, and are intended to visually represent the chemical structures of the compounds discussed in the text. The figures and tables together provide a comprehensive overview of the chemical diversity within the study.
Organic acids and organic acid esters

No.	Chemical Structure
1	![Structure 1](image1)
2	![Structure 2](image2)
3	![Structure 3](image3)
4	![Structure 4](image4)
5	![Structure 5](image5)
6	![Structure 6](image6)
7	![Structure 7](image7)
8	![Structure 8](image8)
9	![Structure 9](image9)
10	![Structure 10](image10)
11	![Structure 11](image11)
12	![Structure 12](image12)
13	![Structure 13](image13)
14	![Structure 14](image14)
15	![Structure 15](image15)
16	![Structure 16](image16)
17	![Structure 17](image17)
18	![Structure 18](image18)
19	![Structure 19](image19)
20	![Structure 20](image20)
21	![Structure 21](image21)
22	![Structure 22](image22)
23	![Structure 23](image23)
24	![Structure 24](image24)
25	![Structure 25](image25)

Figure 2. Chemical structures of compounds identified in CML and IML.

3.2. Diversity Evaluation of CML and IML Using Metabolomics Analysis

The QC injections were clustered tightly in PCA, indicating a satisfactory stability of the system. According to their common spectral characteristics, the PCA 2D plots of the samples from CML and IML groups were able to be easily classified within two clusters (Figure 3). The CML and IML samples were clearly separated, indicating that these two samples could be easily differentiated.
3.2. Diversity Evaluation of CML and IML Using Metabolomics Analysis

The QC injections were clustered tightly in PCA, indicating a satisfactory stability of the system. According to their common spectral characteristics, the PCA 2D plots of the samples from CML and IML groups were able to be easily classified within two clusters (Figure 3). The CML and IML samples were clearly separated, indicating that these two samples could be easily differentiated.

In order to evaluate the differences between the leaves in the two areas, OPLS-DA score plot, S-plot, permutation test, and variable importance in the projection values were obtained to understand which variables were responsible for this sample separation [72]. After OPLS-DA plots (Figures 4a and 5a) in both ESI+ and ESI− modes were performed, the maximum separation between the CML and IML groups was available. With sufficient permutation testing, the lines of grouping samples were significantly located underneath the random sampling lines (Figures 4b and 5b), which indicates a definite validity for the following characteristic metabolites biomarkers identification. S-plots were then created to explore the potential chemical markers that contributed to the differences. Based on p values (p < 0.05) and VIP values (VIP > 1) [26,30] from univariate statistical analysis, 30 robust known chemical markers enabling differentiation between CML and IML were marked and listed (Figures 4c and 5c and Table 2). Additionally, a heatmap was generated from these chemical markers in order to systematically evaluate the markers (Figure 6), which visually showed the intensities of potential chemical markers between the two samples.

Figure 3. The principal component analysis (PCA) of CML and IML in ESI+ mode and ESI− mode.

Figure 4. Orthogonal partial least squares discriminant analysis (OPLS-DA) (a), permutation tests, (b) and S-plot (c) in ESI− mode.
4. Discussion

Via the screening analysis, 121 and 119 compounds were characterized in CML and IML, respectively. As the results show, 93 compounds were identified in negative mode and 29 compounds were identified in positive mode. From the BPI chromatograms, it seems that the negative ionization mode was better than the positive mode based on the quantity and the responses of the identified compounds. However, it was still necessary to have run the positive mode because some compounds showed better responses in this mode than in the negative mode. The results also showed that both these ML areas are rich in natural components.

It has been reported that there is high flavonoid content (presenting in flavanol and glycoside forms) in *M. oleifera* leaves [4,18]. In this study, flavonoids were also the main chemical composition. Besides the most common flavonoids, 36 flavonoids, such as apigenin-8-C-glucoside, quercetin 3-O-β-D-glucopyranoside, kaempferol-7-O-α-L-rhamnoside, and 5,7,2′,5′-tetrahydroxyflavone, were identified or tentatively characterized in *M. oleifera* leaves for the first time. Moreover, isothiocyanates have become a major topic of research interest regarding *Moringa* for their various biological activities [18]. In our study, there were 4 isothiocyanates which were found both in IML and CML.

A total of 118 compounds were shared constituents in CML and IML, which means that they were similar in terms of the kinds of compound contained. This comprehensive phytochemical profile study has revealed the structural diversity of secondary metabolites and the similar patterns within CML and IML.

Furthermore, in nontargeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed differences between CML and IML. Thirty robust known biomarkers enabling this differentiation were discovered. These are able to illustrate the differences between CML and IML and provide a basis for explaining the effect of different growth environments on secondary metabolites. With CML, there are 18 potential biomarkers, including seven flavonoids (14, 33, 55, 63, 74, 79, and 84), five organic acids and organic acid esters (30, 38, 80, 81, 93).
mode was better than the positive mode based on the quantity and the responses of the identified compounds. However, it was still necessary to have run the positive mode because some compounds showed better responses in this mode than in the negative mode. The results also showed that both these ML areas are rich in natural components. It has been reported that there is high flavonoid content (presenting in flavanol and glycoside forms) in M. oleifera leaves [4,18]. In this study, flavonoids were also the main chemical composition. Besides the most common flavonoids, 36 flavonoids, such as apigenin-8-C-glucoside, quercetin 3-O-β-D-glucopyranoside, kaempferol-7-O-α-L-rhamnoside, and 5, 7, 2′, 5′-tetrahydroxyflavone, were identified or tentatively characterized in M. oleifera leaves for the first time. Moreover, isothiocyanates have become a major topic of research interest regarding Moringa for their various biological activities [18]. In our study, there were 4 isothiocyanates which were found both in IML and CML. A total of 118 compounds were shared constituents in CML and IML, which means that they were similar in terms of the kinds of compound contained. This comprehensive phytochemical profile study has revealed the structural diversity of secondary metabolites and the similar patterns within CML and IML.

Furthermore, in nontargeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed differences between CML and IML. Thirty robust known biomarkers enabling this differentiation were discovered. These are able to illustrate the differences between CML and IML and provide a basis for explaining the effect of different growth environments on secondary metabolites. With CML, there are 18 potential biomarkers, including seven flavonoids (14, 33, 55, 63, 74, 79, and 84), five organic acids and organic acid esters (30, 38, 80, 115, and 116), two glycosides (12 and 29), and four others (69, 93, 121, and 122). Among these biomarkers, compounds 14, 33, and 38 were detected only in CML under experimental conditions, and the others’ contents in CML were greater than those in IML. Among these potential biomarkers, components 14, 33, 55, 74, 79, 30, and 80 were identified or tentatively characterized in M. oleifera leaves for the first time. It has been reported that M. oleifera leaves which originate from China have the maximum antioxidant activity when compared alongside those from Faisalabad, Multan, and India [73]. As is known, biological activity is caused by the high contents of phytochemicals. Correlation studies between potential markers and biological activities should be performed in the future. For IML, there are 12 potential biomarkers, including six flavonoids (50, 51, 59, 62, 78, and 82), three organic acids and organic acid esters (81, 97, and 119), one glycoside (100), one alkaloid (104), and one lignan (60). Among these, compound 82 was detected only in IML under experimental conditions, and the other 11 compounds’ contents were greater in IML than those in CML.

Based on the above results, it could be concluded that some of the secondary plant metabolite contents of CML and IML differ from each other. This is just as it is with other natural plants.

In summary, a total of 122 components, including 118 shared constituents, were characterized from CML and IML. For CML, 121 compounds were characterized, and among these, 18 potential biomarkers with higher contents enabled differentiation from IML. For IML, 119 compounds were characterized, and among these, 12 potential biomarkers with higher contents enabled differentiation from CML.

Even so, several unresolved issues still remain. For example, in the future, potential chemical markers’ and identified compounds’ pharmacological activities should be screened. In addition, there are still some unidentified components, despite 122 compounds being identified, as shown in the BPI chromatograms. Further research should be performed on these unknown components.

5. Conclusions

In this study, 121 and 119 chemical compounds, including 118 shared constituents, were respectively identified or tentatively characterized from CML and IML by combining UPLC-QTOF-MS and a UNIFI platform. Both CML and IML, which originate from two separate countries, are rich in phytochemicals and are similar in the kinds of compounds they contain. Moreover, a metabolomics study based on UPLC-QTOF-MS combined with multivariate statistical analysis has shown the
significant differences in the contents of an amount of the compounds in these two accessions. A total of 30 robust known biomarkers enabling differentiation were discovered. For CML and IML, 18 and 12 potential biomarkers were identified, respectively. This study provides further data to make up for the deficient amount of study performed on the chemical constituents of *Moringa oleifera* leaves and can help with planning strategies focused on the proper utilization of this resource, as well as providing a reference for the further application of CML in China.

Author Contributions: Data curation, investigation, and writing—original draft, H.L.; methodology and software, H.Z.; formal analysis and writing—original draft, J.T.; formal analysis, writing, and editing, H.W.; conceptualization and methodology, Z.W.; funding acquisition, P.L.; data curation and methodology, C.Z.; supervision, J.L.

Funding: This research was supported by the Graduate Innovation Fund of Jilin University [Grant No. 101832018C085].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Makita, C.; Madala, N.E.; Cukrowska, E.; Abdelgadir, H.; Chimuka, L.; Steenkamp, P.; Ndhlala, A.R. Variation in pharmacologically potent rutinoside-bearing flavonoids amongst twelve *Moringa oleifera*, Lam. cultivars. *S. Afr. J. Bot.* 2017, 112, 270–274. [CrossRef]

2. Khalafalla, M.M.; Abdellatef, E.; Dafalla, H.M. Active principle from *Moringa oleifera* Lam leaves effective against two leukemias and a hepatocarcinoma. *Afr. J. Biotechnol.* 2010, 9, 8467–8471.

3. Mahmood, K.T.; Mugal, T.; Haq, I.U. *Moringa oleifera*: A natural gift-a review. *J. Pharm. Sci. Res.* 2010, 2, 775–2781.

4. Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive Components in *Moringa oleifera* Leaves Protect against Chronic Disease. *Antioxidants* 2017, 6, 91. [CrossRef] [PubMed]

5. Shih, M.C.; Chang, C.M.; Kang, S.M.; Tsai, M.L. Effect of Different Parts (Leaf, Stem and Stalk) and Seasons (Summer and Winter) on the Chemical Compositions and Antioxidant Activity of *Moringa oleifera*. *Int. J. Mol. Sci.* 2011, 12, 6077–6088. [CrossRef] [PubMed]

6. Cheenpracha, S.; Park, E.J.; Yoshida, W.Y.; Barit, C.; Wall, M.; Pezzuto, J.M.; Chang, L.C. Potential anti-inflammatory phenolic glycosides from the medicinal plant *Moringa oleifera* fruits. *Bioorg. Med. Chem.* 2010, 18, 6598–6602. [CrossRef] [PubMed]

7. Sreelatha, S.; Jeyachitra, A.; Padma, P.R. Antiproliferation and induction of apoptosis by *Moringa oleifera* leaf extract on human cancer cells. *Food Chem. Toxicol.* 2011, 49, 1270–1275. [CrossRef] [PubMed]

8. Kajihara, R.; Nakatsu, S.; Shiono, T.; Ishihara, M.; Sakamoto, K.; Muto, N. Antihypertensive Effect of Water Extracts from Leaves of *Moringa oleifera* Lam on Spontaneously Hypertensive Rats. *Nippon Shokuhin Kagaku Kaishi* 2008, 55, 183–189. [CrossRef]

9. Helmy, S.A.; Nis, M.; Elaby, S.M.; Ghally, M.A.A. Hypolipidemic Effect of *Moringa oleifera* Lam Leaf Powder and its Extract in Diet-Induced Hypercholesterolemic Rats. *J. Med. Food* 2017, 20, 755–762. [CrossRef] [PubMed]

10. Dharmendra, S.; Vrat, A.P.; Prakash, A.V.; Radhey, S.G. Evaluation of Antioxidant and Hepatoprotective Activities of *Moringa oleifera* Lam. Leaves in Carbon Tetrachloride-Intoxicated Rats. *Antioxidants* 2014, 3, 569–591.
14. Villarruel-López, A.; Mora, L.L.; Vázquez-Paulino, O.D.; Puebla-Mora, A.G.; Torres-Vitela, M.R.; Guerrero-Quiroz, L.A.; Nuño, K. Effect of Moringa oleifera consumption on diabetic rats. *BMC Complement. Altern. Med.* 2018, 18, 127. [CrossRef] [PubMed]

15. Singh, R.S.G.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. *J. Funct. Foods* 2013, 5, 1883–1891. [CrossRef]

16. Pal, S.K.; Mukherjee, P.K.; Saha, K.; Pal, M.; Saha, B.P. Antimicrobial action of the leaf extract of Moringa oleifera lam. *Anc. Sci. Life* 1995, 14, 197–199. [PubMed]

17. Selvakumar, D.; Natarajan, P. Hepato-Protective activity of Moringa oleifera Lam Leaves in Carbon tetrachloride induced Hepato-Toxicity in Albino Rats. *Pharmacogn. Mag.* 2008, 4, 97–98.

18. Abd-Rani, N.Z.; Husain, K.; Kumolosasi, E. *Moringa* Genus: A Review of Phytochemistry and Pharmacology. *Asian Pac. J. Trop. Biomed.* 2014, 66, 246–254. [CrossRef] [PubMed]

19. Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or Pharmacological Potential of Moringa oleifera. *Front. Pharmacol.* 2018, 9, 108. [CrossRef] [PubMed]

20. Chen, R.J.; Zhu, B.F.; Wang, Y.Z.; Liu, Z. Extraction and hypolycemic effect of the total flavonoid from leaves of Moringa oleifera. *J. Food Sci. Biotechnol.* 2007, 26, 42–45.

21. The Minister of Health of the People’s Republic of China (MOHC). Announcement on the Approval of New Resource Foods Such as *Chlorella vulgaris* (No. Nineteenth 2012). [EB/OL]. (12 November 2012). Available online: http://www.nhfpc.gov.cn/sps/s7891/201212/5d4c82e89a9e4713aba8f782eca51e09.shtml (accessed on 17 December 2018).

22. Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from *Moringa oleifera* Lam leaves. *Ind. Crop. Prod.* 2015, 66, 246–254. [CrossRef]

23. Sheikh, A.; Yeasmin, F.; Agarwal, S.; Rahman, M.; Islam, K.; Hossain, E.; Hossain, S.; Karim, M.D.; Nikkon, F.; Saud, Z.A.; et al. Protective effects of *Moringa oleifera* Lam. leaves against arsenic-induced toxicity in mice. *Asian Pac. J. Trop. Biomed.* 2014, 4, S353–S358. [CrossRef] [PubMed]

24. Ndhlala, A.R.; Mulaudzi, R.; Ncube, B.; Abdelgadir, H.A.; Flooy, C.P.; Van-Staden, J. Antioxidant, antimicrobial and phytochemical variations in thirteen *Moringa oleifera* Lam. cultivars. *Molecules* 2014, 19, 10480–10494. [CrossRef] [PubMed]

25. Förster, N.; Ulrichs, C.; Schreiner, M.; Arndt, N.; Schmidt, R.; Mevis, I. Ecotype Variability in Growth and Secondary Metabolite Profile in *Moringa oleifera*: Impact of Sulfur and Water Availability. *J. Agric. Food Chem.* 2015, 63, 2852–2861. [CrossRef] [PubMed]

26. Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Rapid characterization of chemical constituents of Platycodon grandiflorum and its adulterant Adenophora stricta by UPLC-QTOF-MS/MS. *J. Mass Spectrom.* 2017, 52, 643–656. [CrossRef] [PubMed]

27. Zhang, F.X.; Li, M.; Qiao, L.R.; Yao, Z.H.; Li, C.; Shen, X.Y.; Wang, Y.; Yu, K.; Yao, X.S.; Dai, Y. Rapid characterization of *Ziziphi Spinosae Semen* by UPLC/Q-tof MS with novel informatics platform and its application in evaluation of two seeds from *Ziziphus* species. *J. Pharm. Biomed. Anal.* 2016, 122, 59–80. [CrossRef] [PubMed]

28. Deng, L.; Shi, A.M.; Liu, H.Z.; Meruva, N.; Liu, L.; Hu, H.; Yang, Y.; Huang, C.; Li, P.; Wang, Q. Identification of chemical ingredients of peanut stems and leaves extracts using UPLC-QTOF-MS coupled with novel informatics UNIFI platform. *J. Mass Spectrom.* 2016, 51, 1157–1167. [CrossRef] [PubMed]

29. Tang, J.F.; Li, W.X.; Tan, X.J.; Li, P.; Xiao, X.H.; Wang, J.B.; Zhu, M.J.; Li, X.L.; Meng, F. A novel and improved UHPLC-QTOF/MS method for the rapid analysis of the chemical constituents of Danhong Injection. *Anal. Methods* 2016, 8, 2904–2914. [CrossRef]

30. Wang, Y.R.; Wang, C.Z.; Lin, H.Q.; Liu, Y.H.; Li, Y.M.; Zhao, Y.; Li, P.Y.; Liu, J.P. Discovery of the Potential Biomarkers for Discrimination between *Hedyotis diffusa* and *Hedyotis corymbosa* by UPLC-QTOF/MS Metabolome Analysis. *Molecules* 2018, 23, 1525. [CrossRef] [PubMed]

31. Tan, J.; Wang, C.Z.; Zhu, H.L.; Zhou, B.S.; Xiong, L.X.; Wang, F.; Li, P.Y.; Liu, J.P. Comprehensive Metabolomics Analysis of Xueshuan Xinmaining Tablet in Blood Stasis Model Rats Using UPLC-Q/TOF-MS. *Molecules* 2018, 23, 1650. [CrossRef] [PubMed]

32. Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zhu, H.L.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Nontargeted Metabolomic Analysis of Four Different Parts of Platycodon grandiflorum Grown in Northeast China. *Molecules* 2017, 22, 1280. [CrossRef] [PubMed]
33. Zhu, H.L.; Lin, H.Q.; Tan, J.; Wang, H.; Wu, F.L.; Dong, Q.H.; Liu, Y.H.; Li, P.Y.; Liu, J.P. UPLC-QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain- and Garden-Cultivated Ginseng of Different Ages in Northeast China. *Molecules* 2019, 24, 33. [CrossRef] [PubMed]

34. Zhao, Y.Y.; Cheng, X.L.; Wei, F.; Xiao, X.Y.; Sun, W.J.; Zhang, Y.M.; Lin, R.C. Serum metabonomics study of adenine-induced chronic renal failure in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. *Biomarkers* 2012, 17, 48–55. [CrossRef] [PubMed]

35. Pang, Z.Q.; Wang, G.Q.; Ran, N.; Lin, H.Q.; Wang, Z.Y.; Guan, X.W.; Yuan, Y.Z.; Fang, K.Y.; Liu, J.P.; Wang, F. Inhibitory Effect of Methotrexate on Rheumatoid Arthritis Inflammation and Comprehensive Metabolomics Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (UPLC-Q/TOF-MS). *Int. J. Mol. Sci.* 2018, 19, 2894. [CrossRef] [PubMed]

36. Kuligowski, J.; Pérez-Guaita, D.; Escobar, J.; Guardia, M.D.; Vento, M.; Ferrer, A.; Quintáse, Q. Evaluation of the effect of chance correlations on variable selection using Partial Least Squares-Discriminant Analysis. *Talanta* 2013, 116, 835–840. [CrossRef] [PubMed]

37. Makita, C.; Chimuka, L.; Cukrowska, E.; Steenkamp, P.A.; Kandawa-Schutz, M.; Ndhlalae, A.R.; Madala, N.E. UPLC-qTOF-MS profiling of pharmacologically important chlorogenic acids and associated glycosides in Moringa ovalifolia, leaf extracts. *S. Afr. J. Bot.* 2017, 108, 193–199. [CrossRef]

38. Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Unusual glycosides of pyrrole nitrile glycoside(s) in drumstick (*Moringa oleifera*). *Bioorg. Med. Chem. Lett.* 2013, 23, 959–962. [CrossRef] [PubMed]

39. Guo, X.R.; Chen, X.H.; Li, L.; Shen, Z.D.; Wang, X.L.; Zheng, P.; Duan, F.X.; Ma, Y.F.; Bi, K.S. LC-MS determination and pharmacokinetic study of six phenolic components in rat plasma after taking traditional Chinese medicinal-preparation: Guanxinning lyophilized powder for injection. *J. Chromatogr. B* 2008, 873, 51–58. [CrossRef] [PubMed]

40. Manguro, L.O.A.; Lemmen, P. Phenolics of *Moringa oleifera* leaves. *Nat. Prod. Res.* 2007, 21, 56–68. [CrossRef] [PubMed]

41. Zhao, W.J.; Lin, Y.; Li, P.F.; Liu, Y. Analysis of chemical constituents of Moutan cortex by HPLC-QTOF-MS. *J. Pharm. Pract.* 2014, 32, 261–265.

42. Panda, S.; Kar, A.; Sharma, P.; Sharma, A. Cardioprotective potential of Nα-t-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of *Moringa oleifera* in isoproterenol induced cardiotoxic rats: In vivo and in vitro studies. *Biorg. Med. Chem. Lett.* 2013, 23, 959–962. [CrossRef] [PubMed]

43. Lee, E.H.; Kim, H.J.; Yun, S.S.; Jin, C.; Lee, K.T.; Cho, J.; Lee, Y.S. Constituents of the stems and fruits of *Opuntia ficus-indica* var. saboten. *Arch. Pharm. Res.* 2003, 26, 1018–1023. [CrossRef] [PubMed]

44. Li, F.H.; Wang, H.Q.; Su, X.M.; Li, C.K.; Li, B.M.; Chen, R.Y.; Kang, J. Constituents isolated from n-butanol extract of leaves of *Moringa oleifera*. *China J. Chin. Mater. Med.* 2018, 43, 114–118.

45. Bianco, A.; Melchioni, C.; Ramunno, A. Iridoïd glucosides from *Lamium gargaricum* flowers. *Nat. Prod. Lett.* 2003, 17, 225–227. [CrossRef] [PubMed]

46. Lee, S.Y.; Choi, S.U.; Lee, J.H. A new phenylpropane glycoside from the rhizome of *Sparganium stoloniferum*. *Arch. Pharm. Res.* 2010, 33, 515–521. [CrossRef] [PubMed]

47. Shanker, K.; Gupta, M.M.; Srivastava, S.K.; Bawankule, D.U.; Pal, A.; Khanuja, S. Determination of bioactive nitrile glycoside(s) in drumstick (*Moringa oleifera*) by reverse phase HPLC. *Food Chem.* 2007, 105, 376–382. [CrossRef]

48. Alessandro, L.; Giovanni, F.; Franca, C.; Stefano, R.; Laura, S.; Gelsomina, E.; Angela, S.; Alberto, B.; Alberto, S.; Federica, P.; et al. Nutritional Characterization and Phenolic Profiling of, *Moringa oleifera* Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti. *Int. J. Mol. Sci.* 2015, 16, 18923–18937.

49. Abubakar, A.M.; Sharida, F.; Palanisamy, A.; Pike, S.C.; Farida, A.; Sharida, F. Evaluation of wound healing properties of bioactive aqueous fraction from *Moringa oleifera* Lam on experimentally induced diabetic animal model. *Drug Des. Devel. Ther.* 2016, 10, 1715–1730.

50. Zhang, K.; Zuo, Y. GC-MS Determination of Flavonoids and Phenolic and Benzoic Acids in Human Plasma after Consumption of Cranberry Juice. *J. Agric. Food Chem.* 2004, 52, 222–227. [CrossRef] [PubMed]
52. Ma, C.M.; Kully, M.; Khan, J.K.; Hattori, M.; Daneshtalab, M. Synthesis of chlorogenic acid derivatives with promising antifungal activity. *Biores. Med. Chem.* 2007, 15, 6830–6833. [CrossRef] [PubMed]

53. Nguyen, A.T.; Fontaine, J.; Malonne, H.; Claeyx, M.; Luhmer, M.; Duz, P. A sugar ester and an iridoid glycoside from Scrophularia ngopensis. *Phytochemistry* 2005, 36, 1186–1191. [CrossRef] [PubMed]

54. Vongsak, B.; Sithisarn, P.; Gritsanapan, W. Simultaneous HPLC quantitative analysis of active compounds in leaves of *Moringa oleifera* Lam. *J. Chromatogr. Sci.* 2014, 52, 641–645. [CrossRef] [PubMed]

55. Cuyckens, F.; Shahat, A.A.; Pieters, L.; Claeys, M. Direct stereochemical assignment of hexose and pentose residues in flavonoid O-glycosides by fast atom bombardment and electrospray ionization mass spectrometry. *J. Mass Spectrom.* 2002, 37, 1272–1279. [CrossRef] [PubMed]

56. Zhang, W.J.; Xu, M.; Yu, C.Q.; Zhang, G.F.; Tang, X. Simultaneous determination of vitexin-4′-O-glucoside, vitexin-2′-O-rhamnoside, rutin and vitexin from hawthorn leaves flavonoids in rat plasma by UPLC-Q-TOF-MS/MS. *J. Chromatogr. B* 2010, 878, 1837–1844. [CrossRef] [PubMed]

57. Deng, X.Y.; Gao, G.H.; Zheng, S.N.; Li, F.M. Qualitative and quantitative analysis of flavonoids in the leaves of *Isatis indigotica* Fort. by ultra-performance liquid chromatography with PDA and electrospray ionization tandem mass spectrometry detection. *J. Pharm. Biomed. Anal.* 2008, 48, 562–567. [CrossRef] [PubMed]

58. Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Bartsch, H.; Owen, R.W. Evaluation of the Polyphenol Content and Antioxidant Properties of Methanol Extracts of the Leaves, Stem, and Root Barks of *Moringa oleifera* Lam. *J. Med. Food* 2010, 13, 710–716. [CrossRef] [PubMed]

59. Zhang, L.; Tu, Z.C.; Wang, H.; Fu, Z.E.; Wen, Q.H.; Chang, H.X.; Huang, X.Q. Comparison of different methods for extracting polyphenols from *Ipomoea batatas*, leaves, and identification of antioxidant constituents by HPLC-QTOF-MS². *Food Res. Int.* 2015, 70, 101–109. [CrossRef]

60. Hasan, A.; Hussain, A.; Khan, M.A. Flavonol glycosides from leaves of *Bergenia hinulaica*. *Asian J. Chem.* 2005, 17, 822–828.

61. Polasek, J.; Queiroz, E.F.K. On-line identification of phenolic compounds of *Trifolium*, species using HPLC-UV-MS and post-column UV-derivationisation. *Phytochem. Anal.* 2007, 18, 13–23. [CrossRef] [PubMed]

62. Sun, F.; Shen, L.M.; Ma, Z.J. Screening for ligands of human aromatase from mulberry (*Mori alba*) leaf by using high-performance liquid chromatography/tandem mass spectrometry. *Food Chem.* 2011, 126, 1337–1343. [CrossRef]

63. Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A.H. Isolation and Structure Elucidation of New Nitrile and Mustard Oil Glycosides from *Moringa oleifera* and Their Effect on Blood Pressure. *J. Nat. Prod.* 1994, 57, 1256–1261. [CrossRef] [PubMed]

64. Wang, S.P.; Liu, L.; Wang, L.L.; Hu, Y.H.; Zhang, W.D.; Liu, R.H. Structural characterization and identification of major constituents in *Jitai* tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry. *Molecules* 2012, 17, 10470–10493. [CrossRef] [PubMed]

65. Wang, Y.F.; Hu, L.M.; Liu, Y.N. A rapid method for qualitative and quantitative analysis of major constituents in *dengzhanxixin* injection by LC-DAD-ESI-MS². *Chromatographia* 2010, 71, 845–853. [CrossRef]

66. Tumer, T.B.; Rojas-Silva, P.; Poulev, A.; Raskin, L.; Waterman, C. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from *Moringa oleifera*. *J. Med. Food* 2010, 710–716. [CrossRef] [PubMed]

67. He, C.M.; Cheng, Z.H.; Chen, D.F. Qualitative and quantitative analysis of flavonoids in *Sophora tonkinensis* by LC/MS and HPLC. *Chin. J. Nat. Med.* 2013, 11, 690–698. [CrossRef] [PubMed]

68. Yan, G.L.; Zou, D.; Zhang, A.H.; Tan, Y.L.; Sun, H.; Wang, X.J. UPLC-Q-TOF-MS/MS fingerprinting for rapid identification of chemical constituents of *Ermiao Wan*. *Anal. Methods* 2015, 7, 846–862. [CrossRef]

69. Mekonnen, A. Chemical Investigation of the Leaves of *Moringa* Stenopetala. *Bull. Chem. Soc. Ethiopi.* 2000, 14, 197–201. [CrossRef]

70. Strutt, K.D.; Keay, S.; Millett, M. The Hinterland of Portus. Integrated Analysis of Geophysical Survey Data and Remotely Sensed Imagery in the Tiber Delta. *Chem. Pharm. Bull.* 2012, 39, 1551–1555.

71. Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of *Moringa oleifera* Lam. in nutrition and animal food products: A review. *Food Res. Int.* 2018, 106, 317–334. [CrossRef] [PubMed]
72. Xu, X.F.; Cheng, X.L.; Lin, Q.H.; Li, S.S.; Jia, Z.; Han, T.; Lin, R.C.; Wang, D.; Wei, F.; Li, X.R. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. *J. Ginseng Res.* 2016, 40, 344–350. [CrossRef] [PubMed]

73. Rai, A.; Hameed, A.; Noreen, R. Antioxidant Potential and Biochemical Analysis of *Moringa oleifera* Leaves. *Int. J. Agric. Biol.* 2017, 19, 941–950. [CrossRef]

Sample Availability: Not available.