A NEW MULTISCALE REPRESENTATION FOR SHAPES AND ITS APPLICATION TO BLOOD VESSEL RECOVERY

BIN DONG\textsuperscript{1}, AICHI CHIEN\textsuperscript{2}, ZUOWEI SHEN\textsuperscript{3}, AND STANLEY Osher\textsuperscript{1}

Abstract. In this paper, we will first introduce a novel multiscale representation (MSR) for shapes. Based on the MSR, we will then design a surface inpainting algorithm to recover 3D geometry of blood vessels. Because of the nature of irregular morphology in vessels and organs, both phantom and real inpainting scenarios were tested using our new algorithm. Successful vessel recoveries are demonstrated with numerical estimation of the degree of arteriosclerosis and vessel occlusion.

1. Introduction

1.1. Literature Reviews and Motivations. Multiscale representation (MSR) of functions, e.g. wavelets, has been extensively studied in the past twenty years [1, 2]. However, when one deals with shapes, e.g. biological shapes in \( \mathbb{R}^3 \), most of the classical theories and algorithms cannot be directly extended. In this paper, we will propose a new MSR for shapes based on PDEs and level set method. Although we shall focus on studying 3D biological shapes/surfaces, the MSR that we introduce here applies to general shapes/surfaces in both 2D and 3D.

Many attempts have been made in the past on designing wavelet-typed MSR for 3D shapes [3, 4, 5, 6]. Among them, the method proposed by Nain et. al. [3, 4] is especially effective to study biological shapes. They first map the shape (triangulated) onto the unit sphere so that one obtains a vector-valued function \( f : S^2 \rightarrow \mathbb{R}^3 \); then apply spherical wavelet decomposition [8] to each component of \( f \). However, the wavelet coefficients are not intrinsic to the shape, but dependent on the mapping \( f \). Furthermore, finding a good mapping from a shape to the unit sphere (or to some other canonical domains) is nontrivial and in fact a popular ongoing research area (see e.g. [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]).

Another interesting approach was proposed by Pauly et. al. [7], where they introduced an MSR for point-based surfaces. Their idea was to use Moving Least Square method [22] to define a series of smoother and smoother point-based surfaces, and then define wavelet coefficients as the displacements from two successive levels. Their method only requires a local parametrization of the point-based surface which is easy to calculate. However, the application of their method is rather limited in medical image analysis, because most of the biological shapes are not point-based.

---

1. Department of Mathematics, University of California, Los Angeles, CA, (supported by NIH GRANT, P20 MH65166; NSF GRANT, DMS-0714807);
2. Division of Interventional Neuroradiology, David Geffen School of Medicine at UCLA, 10833 LeConte Ave, Los Angeles, CA, (supported by NSF GRANT, CCF-0830554);
3. Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore, 117543.
Motivated by Pauly et. al.’s work, we will propose a new MSR for shapes in Section 2. The basic idea is using level set motions via solving some properly chosen Hamilton-Jacobi (HJ) like equation to obtain a sequence of shapes that become smoother and smoother as time evolves (analogous to coarse level approximation in wavelet decomposition). Then we carefully define the so-called “details” (analogous to wavelet coefficients) of the MSR which carry important geometric information and facilitate a perfect reconstruction. While the wavelet based multi scale decomposition and reconstruction use filters, which are linear processes, the proposed new MSR for shapes uses (nonlinear) PDEs for both decomposition and reconstruction. However, the spirit is the same, i.e. separate features from smooth components of the surface. Due to the level set formulation, parametrization is no longer needed.

1.2. Shape Modelling and Evolution PDEs. Throughout this paper, shapes are defined to be smooth boundaries of domains $\Omega \in \mathbb{R}^3$ and are represented by level set functions, typically signed distance functions. We note, however, that point-based and triangulated surfaces can also be handled in a similar way, as noted in (4) of Remark 2.2.

A level set function $\phi$ that represents the shape $\partial \Omega$ is defined as follows

$$\phi(x) \begin{cases} < 0 & x \in \Omega; \\ > 0 & x \in \Omega^c. \end{cases}$$

We always assume that the function $\phi$ is at least Lipschitz continuous.

Level set motions can be achieved by solving the following HJ like equation [23],

$$\phi_t + v_n(\nabla \phi)|\nabla \phi| = 0, \quad \phi(x, 0) = \phi_0(x),$$

(1.1)

where we take $(x, t) \in D \times [0, T]$ with $D$ some bounded domain in $\mathbb{R}^3$ and $T > 0$. Here $v_n(\nabla \phi)$ is the normal velocity, which essentially depends on $\nabla \phi$ while second order derivatives of $\phi$ may be involved (e.g. mean curvature). If it only depends on first order derivatives, then it is a HJ equation. We also assume that the PDE (1.1) is geometric [32, 33], which guarantees contrasts invariance. Comprehensive theoretical analysis of PDE (1.1) and surface evolution equations can be found in [32, 33, 28, 29, 30, 31, 25, 26, 34].

The choice of velocity fields is very important and yet very non-unique. We need to choose one that generates a “meaningful” MSR, e.g. a sparse representation, for a given smooth shape. Generally speaking, we want the zero level set of $u(x,t)$ becomes smoother and smoother as $t$ increases. This is in fact a typical scale space behavior that has been studied for decades (see e.g. [35, 36]). It is known [35, 36] that under some general axiomatic hypothesis and some invariance (i.e. rotation and contrast invariance) assumptions on $\{u(x,t)\}_{t \geq 0}$, $u(x, t)$ must be a viscosity solution to a PDE of the form (1.1), with the velocity field $v_n$ only depending on the principle curvatures of level sets of $u$ and time $t$. In other words, a “meaningful” velocity field must be curvature dependent.

The velocity fields that we shall focus in this paper are

$$(1.2) \quad v_n = c - \lambda \kappa, \quad \lambda > 0 \quad \text{and} \quad v_n = \kappa_a - \kappa,$$

where $c \in \mathbb{R}$ is some constant, $\kappa$ is the mean curvature defined as $\kappa := \nabla \cdot \nabla \phi$, and $\kappa_a$ is the average mean curvature [38]. Note that for $v_n = \kappa_a - \kappa$, the PDE (1.1) generates an volume preserving mean curvature motion [38, 39, 40, 41].
2. Level Set Based MSR of Shapes: Continuous Transforms and Discrete Algorithms

Let $\Omega_t \subseteq \mathbb{R}^3$ be some domain with scale $t$, and $S_t := \partial \Omega_t$ be the shape at scale $t$ represented by some time-dependent level set function $\phi(x, t)$, i.e. $\phi(x, t) < 0$ for $x \in S_t$, $\phi(x, t) > 0$ for $x \notin S_t$, and

$$S_t = \{ x \in \mathbb{R}^3 \mid \phi(x, t) = 0 \}_{t \geq 0}. \tag{2.1}$$

Here $S_0$ denotes the original shape with the corresponding level set function $\phi_0(x) = \phi(x, 0)$. Throughout the rest of the paper, the function $\phi(x, t)$ is always taken to be the solution of (1.1). For some properly chosen $v_n$ in (1.1), e.g. with $v_n = -\kappa$ or $\kappa_a - \kappa$, we can obtain a continuous series of shapes $\{S_t\}_{t \in [0, T]}$, which tends to become smoother when $t$ increases. Based on this, we define our continuous level set based MSR of $S_0$ as follows.

**Definition 2.1.** Let $\phi(x, t)$ be the solution of the PDE (1.1) and $(x, t) \in D \times [0, T]$. We now understand $x_1(t)$ as a path on the propagating $l$-th level set of $\phi$, i.e. $\phi(x_1(t), t) = l$. For simplicity, we shall omit the subscript “$l$” unless a particular level set is considered.

1. We now define the multiscale transformation (MST) of $\phi_0(x)$ as

$$\tilde{W}(x, t) := W(\phi_0) := -v_n \frac{\nabla \phi}{|\nabla \phi|} = -x'(t). \tag{2.2}$$

Vector $-x'(t)$ is the displacement vector and $w(x, t) := -v_n(x, t)$ is the detail of the MST.

2. We shall call $\tilde{W}(x, t)$ the displacement vector field at scale $t$, and denote $\tilde{W}_l(x, t)$ ($w_l(x, t)$) as the restriction of $\tilde{W}(x, t)$ ($w(x, t)$) on $S_l$.

3. The MSR for the original shape $S_0$ in terms of $\phi_0(x)$ is denoted as

$$\text{MSR}(\phi_0) = \{ \tilde{W}(x, t) \}_{t \in [0, T]}, \phi(x, T) \}. \tag{2.3}$$

4. We define the inverse multiscale transformation (IMST) via solving the following PDE

$$\psi(x, T - \tau) \cdot \nabla \psi = 0, \quad \psi(x, 0) = \phi(x, T).$$

for given $T > 0$ and $0 \leq \tau \leq T$.

**Remark 2.2.**

1. The technique of generating a sequence of the spaces $\{S_l\}$ via solving PDEs is known as scale space decomposition (see e.g. [35, 36]). However, a classical scale space analysis does not study the details as defined in (2), and does not have a reconstruction as in (4).

2. The last identity in (2.2) can be easily shown by using PDE (1.1) and the assumption that $x'(t)$ is aligned with normal directions of level sets of $\phi$.

3. The detail $w_l(x, t)$ is a function on $S_l$ that characterizes intrinsic geometric information of the shape at scale $t$. Here by intrinsic we mean that $w_l(x, t)$, as well as $\{S_l\}_{t > 0}$, does not depend on the initial embedding $\phi_0$ for a large class of functions [33], but only depends on $S_0$. Therefore, we now have an intrinsic MSR for $S_0$:

$$\text{MSR}(S_0) = \{ \tilde{W}_l(x, t) \}_{l \in (0, T)}, S_T \}. \tag{2.4}$$
Furthermore, the above MSR is invariant under translation and rotation of $S_0$.

(4) The MSR defined above can be easily adapted to a point-based or triangulated surface. One simply need to first associate the surface with a level set function and then perform the MST. For point-based surfaces, the IMST from its MSR (2.4) can be point-wise defined as $S_0 = S_T + \int_0^T \bar{W}(x,t)dt$ or equivalently $x_0(0) = x_0(T) + \int_0^T -\bar{x}_0'(t)dt$, which is obviously true.

Now the question is that if we have perfect reconstructions via (2.3). The answer is given in the following proposition, which directly follows from theories of ODEs.

**Proposition 2.3.** Assume that $\bar{W}(x,t)$ stays Lipschitz continuous for $(x,t) \in D \times [0,T]$. Then the equation (2.3) inverts the MST defined by (2.2) in the sense that $\psi(x,\tau) := \phi(x,T - \tau)$ is the unique solution of (2.3).

**Remark 2.4.**

1. The assumption in Proposition 2.3 is not always valid (e.g. $v_n = c < 0$ and $\phi_0(x)$ representing a cube). However, if we choose, for example, $v_n = -\kappa$, $v_n = \kappa_a - \kappa$ or $v_n = c - \lambda \kappa$ (for $\lambda > 0$), and choose some appropriate ending time $T > 0$ (e.g. before any topological changes occur), the above assumption will be valid and we will have a perfect reconstruction using (2.3) [33, 37].

2. Generally speaking, the vector field $\bar{W}(x,t)$ does not stay Lipschitz globally in time. This happens precisely when the corresponding surface evolution starts to develop singularities, and it is difficult to find a surface evolution that guarantees to have global smooth solutions for a general initial surface $S_0$. For some special class of initial surfaces, however, it is relatively easy to find such motion. Taking $v_n = \kappa_a - \kappa$ for example, it is shown in [38] that if the initial surface $S_0$ is close enough to a certain sphere (but not necessarily convex), then $S_t$ stay smooth and eventually converges exponentially fast to a sphere with the same volume as $S_0$.

Notice from Definition 2.1 and Proposition 2.3 that to perfectly reconstruct $\phi_0(x)$ from $\phi(x,T)$, we need to store the entire vector field $\bar{W}(x,t)$ for every $x \in D$ and all scale $t$. However, in practice, we only want a perfect reconstruction of $S_0$, and thus we do not need that much information. Therefore, only the displacement vectors within a narrow band of the zero level set of $\phi(x,t)$ need to be stored.

We can be even more “greedy” here by only storing $\bar{W}(x,t)$. When performing inverse transform, we will need to extend $\bar{W}(x,t)$ to at least a narrow band of the zero level set of $\phi(x,t)$. Note that no extension can guarantee an exact recovery of the vector field $\bar{W}(x,t)$, and hence the reconstruction of $S_0$ will not be exact. However, if the extension is conducted accurately and the mesh grid is dense enough, i.e. the resolution of the shape is high enough, the reconstruction should be more and more accurate. The extension we shall adopt here is such that the extended vectors are constant in the normal directions of each level set of $\phi(x,t)$ [42]. For simplicity, we will use a local search method to extend $\bar{W}(x,t)$ to a narrow band of the zero level set of $\phi(x,t)$.

Our proposed discrete version of MSR is given in Algorithm 1.
Algorithm 1 Level Set Based MST and IMST

Start from the given level set function $\phi_0(x)$ representing shape $S_0$. Choose time steps $0 = t_0 < t_1 < \ldots < t_N = T$, where max$(t_{i+1} - t_i)$ is small.

Initialize: Sample a point set $X_0$ from $S_0$ (either uniformly or non-uniformly).

MST:
1. Starting from $\phi(x, t_{i-1})$, solve PDE (1.1) for $t \in [t_{i-1}, t_i]$ and obtain $\phi(x, t_i)$.
2. Orthogonally project $X_{i-1}$ onto the zero level set of $\phi(x, t_i)$ and obtain $X_i$.
3. Compute the discrete displacement vector by $\vec{W}_i = X_i - X_{i-1}$, and $i \leftarrow i + 1$.

We then obtain the discrete MSR of $S_0$: $\text{MSR}(S_0) := \{\vec{W}_1, \vec{W}_2, \ldots, \vec{W}_N, \phi(x, T)\}$.

IMST:
1. Extend the vector fields $\{\vec{W}_i\}_{i=1}^N$ such that the values are constant along normal directions of the level sets of $\phi(x, t_i)$.
2. Solve (2.3) using $\vec{W}_i$ within interval $[t_i, t_{i-1}]$ iteratively for each $i$.

Algorithm 2 Level Set Motion with Constant Normal Velocity

Start from a given shape represented by $\phi$.

while $t < T$ do
1. Define the corresponding characteristic function by $\chi = 1_{\{\phi < 0\}}$. Set $V_0$ equal to the volume of $\{\phi < 0\}$.
2. Starting from $\chi$, evolve $\bar{\chi}$ for a time $\Delta t$ by $\bar{\chi}_t = \nabla^2 \bar{\chi}$.
3. Sharpen: $\chi = \begin{cases} 1 & \text{if } \bar{\chi} > 0 \\ 0 & \text{otherwise} \end{cases}$
4. Let $t \leftarrow t + \Delta t$. Compute $\phi(x, t)$ from $\chi$ via fast sweeping method [49].
end while
We now recall the fast implementation of (1.1) with \( v_n = \kappa_a - \kappa \) proposed by Ruuth and Wetton [40] in Algorithm 3. Their algorithm is based on the diffusion-based mean curvature motion proposed by [43, 44]. Note that if we remove step 3 in Algorithm 3 and choose \( \lambda = 0.5 \) in step 4, it is exact the fast mean curvature motion proposed in [43, 44].

**Algorithm 3** Volume Preserving Mean Curvature Motion: \( v_n = \kappa_a - \kappa \).

Start from a given shape represented by \( \phi \).

**while** \( t < T \) **do**

1. Define the corresponding characteristic function by \( \chi = 1_{\{\phi < 0\}} \). Set \( V_0 \) equal to the volume of \( \{\phi < 0\} \).

2. Starting from \( \chi \), evolve \( \bar{\chi} \) for a time \( \Delta t \) by \( \bar{\chi}_t = \nabla^2 \bar{\chi} \).

3. Determine the threshold value that preserves the volume of the set: i.e. find a \( 0 < \lambda < 1 \) s.t.

   \[
   \left|\{x : \bar{\chi} < \lambda\} - V_0\right| < \varepsilon.
   \]

4. Sharpen:

   \[\chi = \begin{cases} 1 & \text{if } \bar{\chi} > \lambda \\ 0 & \text{otherwise} \end{cases}\]

5. Let \( t \leftarrow t + \Delta t \). Compute \( \phi(x, t) \) from \( \chi \) via fast sweeping method [49].

**end while**

Some numerical results of the MST and IMST in Algorithm 1 are presented in Figure 1 using the tested shape (right hemisphere of a cortex). The velocity field is chosen to be \( v_n = \kappa_a - \kappa \) and 5 levels of decomposition are conducted (first and second row of Figure 1). Details \( \bar{W}_i \) are drawn on the surface \( S_i \) (second row of Figure 1), where the value is positive, when \( \bar{W}_i \) is pointing outwards and negative when it is pointing inwards. The IMST is also presented in Figure 1 where \( \tilde{S}_i \) denotes the reconstruction of level \( i \) from level \( i + 1 \). As we can see, although the reconstructions are not exact for each level, they are quite accurate in the sense that most of the features are well reconstructed. We also illustrate sparseness of the coefficients \( \{\bar{W}_{i,j}\}_{i=1}^{5} \) in Figure 2, where one can see that the energy of \( \bar{W}_{i,j} \) are concentrated around 0, especially for the later levels.

4. Application in Blood Vessel Recovery

Evaluating missing parts in medical images provides important information as signs of diseases. One of the most common situation is the phenomenon of vessel narrowing or occlusion in angiographic images. Estimating these abnormalities can help document disease progression.

The recovery of image surfaces such as blood vessels can be regarded as a surface inpainting problem [64, 65]. Inpainting problems, for both images and surfaces, have been extensively studied in the literature [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. They occur when part of the data in an image or regions of a surface is missing or corrupted. The major task of inpainting is to fill in the missing information based on the geometry of the image/surface. In this section, we will propose a new surface inpainting algorithm based on the MSR in Section 2 for blood vessel reconstruction that arises in medical image analysis.
Figure 1. First row (left to right): MST $S_0, S_1, \ldots, S_5$. Second row shows the details of MSR on $S_1, \ldots, S_5$. Third row shows IMST $\tilde{S}_i$, $i = 0, 1, \ldots, 4$, where the Hausdorff distance between $S_i$ and $\tilde{S}_i$ are: $1.12h$, $0.74h$, $0.74h$, $0.69h$, and $0.63h$ respectively (with $h$ the mesh size).

Figure 2. Histograms of $\tilde{W}_{|i}$ for $i = 1, \ldots, 5$ (left to right).

Our surface inpainting algorithm (Algorithm 4 below) inherits the following framelet-based image inpainting structure proposed by Cai et. al. [61]:

1. Take framelet transform of the given image;
2. Truncate the framelet coefficients via soft-thresholding and reconstruct;
3. Apply the exact data outside the inpainting domains, and repeat.

Since we already have an MSR for surfaces, the first step above can be replaced by our MST. For the second step, we shall solve the following PDE for IMST instead of the PDE (2.3) that was originally proposed in Definition 2.1:

\[
\psi_t + \tilde{W}(x, T - \tau) \cdot \nabla \psi = \varepsilon \nabla^2 \psi, \quad \psi(x, 0) = \phi(x, T).
\]

The above PDE mimics thresholding in the sense that it penalizes the reconstruction from $\tilde{W}$ by introducing a vanishing viscosity $\varepsilon \nabla^2 \psi$, which forces some information outside the inpainting region flows into the inpainting regions. Also, when $\varepsilon \to 0$, the solution of (4.1) converges to the viscosity solution of (2.3) [26, 34].
Since we generally expect volumes of surfaces to increase during inpainting, we choose the following PDE for the MST,

\[
\phi_t + (c + \kappa_a - \kappa) |\nabla \phi| = 0, \quad \phi(x, 0) = \phi_0(x), \quad c > 0.
\]

Note that the PDE (4.2) generates a mean curvature motion with increasing volumes of the domains enclosed by level sets of \(\phi(x, t)\). The constant \(c\) can be regarded as a parameter that needs to be adjusted according to different surface inpainting scenarios. In our experiments, we solve PDE (4.2) via a combination of Algorithm 2 and Algorithm 3 recalled in Section 3.

**Algorithm 4 Surface Inpainting via MSR**

Start from \(\phi_0\), with inpainting region \(D\). Choose some \(\varepsilon > 0\).

while “Not converge” do

1. Perform discrete MST by solving (4.2) and acquire \(\bar{W}_{ij}\) by Algorithm 1.
2. Perform IMST by solving (4.1) and obtain \(\psi_\varepsilon\).
3. Copy the known information to \(\psi_\varepsilon\): \(\psi_\varepsilon|_{D^c} \leftarrow \psi_0|_{D^c}\).
4. Decrease amount of smoothing: \(\varepsilon \downarrow\).

end while

We test Algorithm 4 on both phantom (first two vessels in Figure 3) and real (last two vessels in Figure 3) surface inpainting scenarios. First row of Figure 3 shows four blood vessels with inpainting regions specified by red circles. For the two phantom inpainting scenarios, the inpainting regions are created manually, and the surface within those regions were chopped off. For the two real inpainting scenarios, we do not know the exact inpainting regions. Therefore in practice, we adopt a user interactive strategy to determine the inpainting regions. After several points have been selected on the surface, the inpainting regions are then generated automatically. Inpainting results are given in second and third row of Figure 3.

We want to point out that during the inpainting process, topological change may occur for some cases (e.g. second vessel in Figure 3). Although it violates the assumption in Proposition 2.3, topological change is still allowed for inpainting problems. The reason is that perfect reconstruction is only required at the very last stage of inpainting (i.e. when \(\varepsilon \approx 0\)) in order to ensure convergence, while topological changes will happen during the middle of the process if the parameters (e.g. \(c\) in (4.2)) are properly chosen.

5. Conclusion

In this paper, we introduced a novel multiscale representation (MSR) for shapes which is intrinsic to the shape itself, does not need any parametrization, and the details of the MSR reveals important geometric information. Based on the MSR, we then proposed a surface inpainting algorithm and applied it to recover corrupted blood vessels. This technique is especially useful to study arteriosclerosis and vessel occlusions. Numerical results showed that the inpainting regions were nicely filled in according to the neighboring geometry of the vessels and allowed us to accurately estimate the volume loss of vessels.

There are still many interesting aspects of both the MSR itself and its applications worth discovering. For example, a rigorous analysis of how Algorithm 1 approximates the continuous version in Definition 2.1 needs to be done. Also,
A NEW MULTISCALE REPRESENTATION FOR SHAPES AND ITS APPLICATION TO BLOOD VESSEL RECOVERY

Figure 3. Blood vessel inpainting. Row 1: vessels before inpainting; row 2: vessels after inpainting; row 3: inpainted regions shown in red. The percentages of the volume of inpainted region over that of the entire shape are: 5.3%, 19.2%, 6.7% and 5.7%.

we can apply our MSR framework to other type of shape processing and analysis problems, e.g. shape registration and classification. In fact we believe that many techniques based on classical MSR (or multiresolution analysis) for functions (e.g. wavelets) can now be extended to shapes.

References

1. I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Lecture Notes nr. 61, SIAM, 1992.
2. S. Mallat. A Wavelet Tour of Signal Processing, 2nd ed. New York: Academic, 1999.
3. D. Nain, S. Hacker, A. Bobick and A. Tannenbaum. A multiscale 3D shape analysis using spherical wavelets. Proc MICCAI, 459–467 (2005)
4. D. Nain, S. Hacker, A. Bobick and A. Tannenbaum. A shape-driven 3D segmentation using spherical wavelets. Proc MICCAI, (2006)
5. I. Greenshields. 3D shape approximants via spherical wavelet decompositions. 14th Symposium on Computer-Based Medical Systems (2001) 31.
6. B. Dong, Y. Mao, I. D. Dinov, Z. Tu, Y. Shi, Y. Wang and A. W. Toga, Wavelet-based representation of biological shapes, CAM-Report 07-36 (Sep. 2007).
7. M. Pauly, L. Kobbelt and M. Gross. Point-based multiscale surface representation. ACM Trans. on Graph., 25(2) 177–193 (2006)
8. P. Schröder and W. Sweldens. Spherical wavelets: Efficiently representing functions on the sphere. SIGGRAPH 95, 161–172 (1995)
9. I. D. Dinov, J. W. Boscardin, M. S. Mega, E. L. Sowell, A. W. Toga. A Wavelet-Based Statistical Analysis of fMRI data: I. Motivation and Data Distribution Modeling, NeuroInformatics, Humana Press, 3(4), 319–343, 2005.
10. A. C. Evans, D. L. Collins, P. Neelin, D. MacDonald, M. Kamber, T. S. Marrett. Three-dimensional correlative imaging: applications in human brain mapping. In: Thatcher, R.W., Hallett, M., Zeffiro, T., John, E.R., Huerta, M. (Eds.), Functional Neuroimaging: Technical Foundations. Academic Press, San Diego, 145–162, 1994.

11. J. D. Gibbons. Nonparametric Statistical Inference, 2nd Ed., M. Dekker, 1985.

12. X. Gu, Y. Wang, T. F. Chan, P.M. Thompson and S.-T. Yau. Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping. IEEE Transaction on Medical Imaging, 23(8), 949–958, Aug. 2004.

13. Y. Wang, X. Gu, T. F. Chan, P. M. Thompson and S.-T. Yau, "Intrinsic Brain Surface Conformal Mapping using a Variational Method", Medical Imaging 2004: Image Processing, J. M. Fitzpatrick and M. Souka (Eds.) Proceedings of SPIE, Vol. 5370, 241–252, 2004.

14. X. Gu, Y. Wang, T. F. Chan, P. M. Thompson and S.-T. Yau. Brain Surface Conformal Mapping, Human Brain Mapping, 2003.

15. M. Jin, F. Luo and X. Gu. Computing General Geometric Structures on Surfaces Using Ricci Flow. Computer-Aided Design, Vol. 39 (8), 663–675, August 2007.

16. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro and M. Halle. Conformal surface parameterization for texture mapping. IEEE Trans Vis Comput Graph, 6(2):181-9, 2000.

17. C. Gotsman, X. Gu and A. Sheffer. Fundamentals of spherical parameterization for 3D meshes. ACM Trans Graph, 22(3):358-63, 2003.

18. X. Gu and S.-T. Yau. Global conformal parameterization. Symposium on geometry processing, 127-37, 2003.

19. M. Jin, Y. Wang, S.-T. Yau and X. Gu. Optimal global conformal surface parameterization. IEEE Visualization, 267C74, 2004.

20. Y. Shi, P. M. Thompson, I. Dinov, S. Osher, A. W. Toga. Direct cortical mapping via solving partial differential equations on implicit surfaces, Medical Image Analysis, 11(3), 207–223, 2007.

21. E. Praun and H. Hoppe. Spherical parameterization and remeshing. ACM Trans Gr. Vol. 22 (3), July 2003.

22. D. Levin, Mesh-independent surface interpolation. Geometric Modeling for Scientific visualization, Springer-Verlag, 37–50, 2003.

23. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithm based on Hamilton-Jacobi formulation. J. Comput. Physics, 79 12–49 (1988).

24. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, 2003.

25. M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277, 1–42, 1983.

26. M. G. Crandall and P. L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comput., 43(167), 1–19, 1984.

27. M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282, 487–502, 1984.

28. L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. J. Differential Geom., 33(3), 635–681, 1991.

29. L. C. Evans and J. Spruck. Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330(1), 387–428, 1991.

30. L. C. Evans and J. Spruck. Motion of level sets by mean curvature. III. J. Geom. Anal., 22(2):121C150, 1992.

31. L. C. Evans and J. Spruck. Motion of level sets by mean curvature. IV. J. Geom. Anal., 5(1), 77–114, 1995.

32. Y. Giga. Surface evolution equations Ca level set method. Vorlesungsreihe, 44. Rheinische Friedrich-Wilhelms-Universität, Bonn, 2002.

33. Y. Giga. Surface evolution equations Ca level set method. Vorlesungsreihe, 44. Rheinische Friedrich-Wilhelms-Universität, Bonn, 2002.

34. M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1), 1–67, 1991.

35. L. Alvarez, F. Guichard, P-L Lions and J.M. Morel, Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis., 169(2), 200–257, 1993.

36. F. Guichard and J.-M. Morel. Image Analysis and P.D.E.’s, IPAM GBM Tutorials, March 27 - April 6, (2001)
37. Escher, J. and Simonett, G.: The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc., 126(9) 2789–2796 (1998)

38. J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc., 126(9), 2789–2796, 1998.

39. L. Bronsard and B. Stoth, Volume preserving mean curvature flow as a limit of nonlocal Ginsburg-Landau equation. Technical Report 94-NA-008, Center for Nonlinear Analysis, Carnegie Mellon University, 1994.

40. Ruuth, S. and Wetton, B.: A simple scheme for volume preserving motion by mean curvature, J. Sci Comput, 19 373–384 (2003)

41. J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation,IMA J. Appl. Math. 48, 248–264, 1992.

42. Bertalmío, M., Cheng, L.T., Sapiro, G. and Osher, S.: Variational problems and partial differential equations on implicit surfaces, J. Comp. Phys., Vol. 112, 334–363, 1994.

43. B. Merriman, J. Bence and S. Osher, Motion of multiple junctions, a level set approach, J. Comput Phys, Vol. 112. 334–363, 1994.

44. B. Merriman, J. Bence and S. Osher. Diffusion generated motion by mean curvature. In J.E. Taylor, editor, Computational Crystal Growers Workshop, AMS, Rhode Island, 73–83 (1992)

45. H. Ishii. A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature. In A. Damlamian, J. Spruck, and A. Visintin, editors, Curvature Flows and Related Topics, 111–127, GakkÔ tosho, Tokyo, 1995.

46. S. Ruuth, Efficient Algorithms for diffusion-generated motion by mean curvature. Ph.D. thesis, University of British Columbia, Vancouver, Canada, 1996.

47. S. Ruuth and B. Merriman, Convolution generated motion and generalized Huygens’ principles for interface motion. SIAM J. Appl. Math., 60 (3), 868–890, 2000.

48. S. Ruuth, B. Merriman and S. Osher, Convolution generated motion as a link between cellular automata and continuum pattern dynamics. J. Comput. Phys., 151, 836–861, 1999.

49. R. Tsai, L.-T. Cheng, S. J. Osher, and H. K. Zhao. Fast sweeping method for a class of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41, 673–694, 2003.

50. K. Ni, D. Roble and T. Chan, A Texture Synthesis Approach to Elastica Inpainting, ACM SIGGRAPH 2007.

51. T. F. Chan, S. H. Kang and J. Shen. Eulers elastica and curvature based inpainting, SIAM journal on Applied Mathematics 63(2), 564–592, 2002.

52. M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester. Image inpainting. SIGGRAPH, Computer Graphics Proceedings, 417–424, 2000.

53. M. Bertalmio, A. L. Bertozzi and G. Sapiro. Navier-stokes, fluid dynamics, and image and video inpainting. Proceedings of the International Conference on Computer Vision and Pattern Recognition, 355–362, 2001.

54. T. Chan and J. Shen, Variational image inpainting, Communications on Pure and Applied Mathematics, 58, 579–619, 2005.

55. A. Bertozzi, S. Esedoglu and A. Gillette. Inpainting of binary images using the cahn-hilliard equation. IEEE Trans. Image Proc. 60(2), 285–291, 2007.

56. A. Bertozzi, S. Esedoglu and A. Gillette. Analysis of a two-scale cahn-hilliard model for image inpainting. Multiscale Modeling and Simulation 6(3), 913–936, 2007.

57. S. Esedoglu and J. Shen. Digital inpainting based on the mumford-shah-euler image model. European J. Appl. Math. 13, 353–370, 2002.

58. J. A. Dobrosotskaya and A. Bertozzi. A wavelet-laplace variational technique for image deconvolution and inpainting. IEEE Trans. Imag. Proc. 17(5), 657–663, 2008.

59. M. Bertalmio, L. Vese, G. Sapiro and S. Osher. Simultaneous texture and structure image inpainting. Proceedings of the International Conference on Computer Vision and Pattern Recognition, 707–712, 2003.

60. J. Cai, R. Chan, L. Shen and Z. Shen, Convergence analysis of tight framelet approach for missing data recovery. Advances in Computational Mathematics, preprint.

61. J. Cai, R. Chan and Z. Shen, A framelet-based image inpainting algorithm, Applied and Computational Harmonic Analysis, 24, 131–149, 2008.

62. M. Elad, J.-L. Starck, P. Querre, and D. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Applied and Computational Harmonic Analysis, 19, 340–358, 2005.
63. T. F. Chan, J. Shen and H.-M. Zhou, Total variation wavelet inpainting, J. Math. Imaging Vision, 25, 107–125, 2006.
64. J. Davis, S. Marschner, M. Garr and M. Levoy. Filling holes in complex surfaces using volumetric diffusion. First International Symposium on 3D Data Processing, Visualization, and Transmission, June 2002.
65. J. Verdera, V. Caselles, M. Bertalmio and G. Sapiro. Inpainting surface holes. Proc. Intl Conf. Image Processing, 2003.
66. N. Amenta, M. Bern, M. Kamvysselis. A New Voronoi-Based Surface Reconstruction Algorithm. Proc. SIGGRAPH’98, ACM, 1998.
67. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and G. Taubin. The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics, October-December, 1999.
68. R. Whitaker. A Level-set Approach to 3D Reconstruction from range data. International Journal of Computer Vision, Vol. 29, No. 3, October, 1998.
69. M.D. Wheeler, Y. Sato, K. Ikeuchi. Consensus Surfaces for Modeling 3D Objects from Multiple Range Images. Proc. ICCV’98, 1998.
70. H.K. Zhao, S. Osher, B. Merriman, and M. Kang, Implicit and non-parametric shape reconstruction from unorganized points using variational level set method, Computer Vision and Image Understanding, 80 (3), 295–319 2000.