The impact of scrubber washwater on inland waters

Johannes Teuchies¹*, Tom J.S. Cox²,³, Katrien Van Itterbeeck⁴, Filip J.R. Meysman², Ronny Blust¹

¹ University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

² University of Antwerp, Department of Biology, Ecosystem Management Research Group, Universiteitsplein 1C, B-2610 Wilrijk, Belgium

³ NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Department of Estuarine and Delta Systems P.O. box 140, 4400 AC Yerseke Netherlands

⁴ Antwerp Port Authority, Zaha Hadidplein 1, B-2030 Antwerp, Belgium

*Corresponding author: johannes.teuchies@uantwerpen.be
ABSTRACT

Background: The International Maritime Organization (IMO) has set limits on sulphur content in fuels for marine transport. However, vessels continue to use these residual high sulphur fuels in combination with exhaust gas cleaning systems (EGCS or scrubbers). Next to high sulphur, combustion of these fuels also results in higher emissions of contaminants including metals and PAHs. In scrubbers, exhaust gases are sprayed with water in order to remove SOx, resulting in acidic washwater with elevated contaminant concentrations discharged in the aquatic ecosystem. The number of vessels with scrubbers is increasing rapidly, but knowledge on washwater quality and impact are limited.

Results: The scrubber washwater is found to be acidic with elevated concentrations of e.g. zinc, vanadium, copper, nickel, phenanthrene, naphthalene, fluorene and fluoranthene. Model calculations on the effects of scrubber (20% of vessels) discharge on aquatic systems showed a decrease in pH of 0.015 units and an increase in surface water concentrations for e.g. naphthalene (110% increase) and vanadium (17% increase).

Conclusions: The IMO established sulphur regulations to mitigate the impact of high sulphur emissions of the maritime sector. However, the use of open loop scrubbers as an abatement technology will not reduce their contribution to the acidification. In addition, different types of scrubbers discharge washwater that is acute toxic for aquatic organisms. However, washwater is diluted and the compounds for which a large increase in surface water concentrations was calculated (Naphthalene > Phenanthrene > Fluorene > Acenaphthene > Vanadium) were not the compounds that already exceed their respective Water Quality Standards (WQS). Nevertheless, existing WQS exceedances of ‘priority hazardous substances’ (Water Framework Directive) that are also identified in the washwater indicate that coastal waters and estuaries, often with large
ecological value, are already under pressure. In these areas the discharge of scrubber washwater should be discouraged.

Keywords: marine traffic, pollution, EGCS, SECAs, water quality, acidification
1. Background

International shipping significantly contributes to air pollution and the emissions of SO$_x$, NO$_x$ and PM (particulate matter) from marine transport account for an increasing contribution to global anthropogenic emissions1. This has a number of environmental consequences2, such as ocean acidification3 and disturbance of climate regulation4, and also impacts human health in coastal regions through deteriorated air quality5,6. To mitigate these effects, the IMO (International Maritime Organization) has included annex VI (Prevention of Air Pollution) to the International Convention for the Prevention of Pollution from Ships (MARPOL). This has resulted in a global cap on sulphur (S) in fuel oil of 3.5% (mass percentage) from 2012 and a maximum S content of 0.1% in dedicated SO$_x$ Emission Control Areas (SECA’s) from 2015 onwards7. A new stringent global limit on fuel S content of 0.5% came into force on January 2020.

To comply, ships can use compliant low S fuel oil or alternative fuels which are low in S, such as liquefied natural gas (LNG) or methanol. The IMO S limits only apply to atmospheric emissions. Consequently, it is allowed to continue to use high S fuels in combination with an exhaust gas cleaning system (EGCS or scrubber). In scrubbers, the exhaust gases of vessels are sprayed with liquid in order to remove the SO$_x$ before it will be emitted to the air. Scrubbers are capable of removing up to 95% of the SO$_x$ in the exhaust gases and meet the IMO S exhaust limits8. Two types of scrubbers dominate the market: ‘open loop’ and ‘closed loop’ scrubbers. In an open loop system, also referred to as seawater scrubbing technology, the exhaust gases are sprayed with seawater at a high flow rate, and the SO$_x$ in the exhaust gas is trapped and converted to sulphurous acid (SO$_3^{2-}$) and sulphuric acid (SO$_4^{2-}$). The washwater generated in the scrubber is discharged in the surrounding surface water. Alternatively, closed loop systems use freshwater as the scrubbing medium, which is pre-treated with sodium hydroxide (NaOH). This washwater recirculates in the
The scrubbing capacity is maintained by dosing extra NaOH and periodically discharging smaller volumes of washwater. Often, ‘hybrid systems’ are installed, whereby vessels can shift the scrubber operation between open or closed loop mode.

Given the fairly recent changes in the IMO S regulations, the amount of vessels equipped with scrubbers is still limited, but changing rapidly. According to Clarksons Worldfleet Register, consulted in November 2019, nearly 3000 scrubbers have already been installed, which corresponds to 3% of the total number of vessels and 16% of the gross tonnage. This implies that mainly large vessels invest in a scrubber. Additionally, 15% in numbers or 35% in gross tonnage of all vessels ordered at this moment (November 2019) will have a scrubber installed. From an economical perspective, scrubbers are an attractive option, particularly for larger vessels. In order to comply, the choice between using the more expensive low S fuels or the installation of a scrubber depends largely on the price difference between both, low S fuels and common heavy fuels. Under most conditions, the scrubber installation costs are recouped within the span of maximum several years. The number of scrubbers is predicted to continue to increase after the implementation of the more restrictive global sulphur cap in 2020.

The use of scrubbers result in a shift of the environmental impact of S from emissions to the atmosphere towards a direct discharge into aquatic systems. Further, the high S fuels used by vessels with scrubbers are generally heavy fuel oils (HFO), which are residual fuels incurred during the distillation of crude oil. Together with high S emissions, these fuels are known to result in higher emissions of other hazardous species including metals and polycyclic aromatic hydrocarbons (PAHs) compared to low S distillates such as marine gas oil (MGO). These contaminants originate from higher concentrations of e.g. metals and PAHs in the fuel and larger emissions during combustion of this residual fuel. In general, scrubbers are found to reduce the
atmospheric emissions of SO\textsubscript{x} or PM to a level that is comparable to emissions when operating on MGO15-19. But scrubbers are an end-of-pipe solution and a substantial part of the emitted compounds will be trapped in the scrubber washwater, discharged in the surrounding surface water with potential consequences for aquatic ecosystems17, 20-22. Existing studies are limited, mainly focus on open marine systems and conclude that the overall impact of scrubber use on pH changes and contaminant concentrations is expected to be small under most conditions21, 23-25. Yet, the long term accumulation of contaminants caused by scrubber discharges can be of concern in aquatic systems where ships are numerous and discharge into a relatively restricted water bodies including coasts, estuaries or harbours26, 27.

Data on washwater contaminant concentration are scarce, often proprietary and rarely published. In present study, an extensive dataset on washwater contaminant concentrations and acidity is compiled, based on own measurements and received and published datasets. This data allowed us to calculate the impact of scrubber use on water quality for two scenarios (10% and 20% scrubber use) for the Antwerp harbour docks and the Scheldt estuary. While the IMO regulatory framework primarily focuses on atmospheric emissions, also the discharge of washwater is regulated to a certain extent. Washwater discharge criteria were set for pH (min. of 6.5, measured at 4 m from the overboard discharge point), for PAHs (max. 50 µg L-1 PAH Phe equivalent at a flow rate of 45 m3 MWh-1) and turbidity (max. 25 NTU (Nephelometric turbidity units) above the inlet water turbidity) (IMO, Resolution MEPC.184(59) and MEPC.259(68)). No criteria for metals are included. However, in current Belgian legislation the discharge of contaminated water from ships into their surrounding surface water is only accepted in several exceptional cases (e.g. wastewater from kitchens)28. Consequently, the use of open loop scrubbers or closed loop scrubbers with bleed-off discharge are not allowed in Belgian inland waters. To comply, vessels need to operate on compliant low sulphur fuel or use scrubbers in closed loop mode with the boundary condition that
no washwater is discharged (zero discharge mode). While there is no current impact of scrubbers
on Belgian water bodies, it is important to get insight in possible consequences for European ports,
rivers, estuaries and coastal regions in order to streamline legislation. Ahead of the implementation
of the SECA’s, shipowners have already criticized the uncertainty and the inconsistency between
the Member States on the use of scrubbers in order to comply with the requirements of the Sulphur
Directive. In an open letter, the European Community Shipowners' Association (ECSA) urges that
establishing legal certainty about proper compliance and enforcement together with a fair level
playing field between shipping operators and between transport modes are a must29.

2. Methods

2.1. Sampling

Washwater samples were collected from two separate marine vessels operating a scrubber. The
first vessel was equipped with a hybrid scrubber and was sampled on two occasions in October
2014: when at berth in the port of Antwerp, operating in closed loop mode and when sailing on the
Scheldt estuary in open loop mode. The second vessel had an open loop scrubber and was sampled
twice in October 2015: when sailing at the North Sea and when manoeuvring in the port of
Antwerp. Discharge and sampling of washwater in these Belgian waters was permitted by the
Flemish Environmental Agency for present research. Detailed information on scrubber type, fuel
and operating conditions can be found in the datasheet (Table S1). Samples were taken from a tap
close to the scrubber outlet. Right after sampling the temperature (°C) and pH were measured with
a temperature-pH electrode connected to a portable multi meter (HQ30D, Hach, US). Water
samples were collected in 1 L glass bottles for PAH analysis and in 0.25 L high density
polyethylene (HDPE) bottles for metal analysis. All samples were stored cool during transport.
Metal analyses were performed after acid digestion with HCl and HNO₃ by inductively coupled
plasma optical emission spectrometry (ICP-OES) following standard method ISO 11885.

Measured metals are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), Nickel (Ni), Zinc (Zn) and Vanadium (V). PAHs were determined by gas chromatography/mass spectrometry (GC/MS) following standard method EPA 8270 D. Measured PAHs are Acenaphthene (Ace), Acenaphtylene (Acy), Anthracene (Ant), Benzo(a)anthracene (B(a)A), Benzo(a)pyrene (B(a)P), Benzo(b)fluoranthene (B(b)F), Benzo(g,h,i)perylene (B(ghi)P), Benzo(k)Fluorathene (B(k)F), Chrysene (Chr), Dibenzo(a,h)anthracene (D(ah)A), Fluoranthene (Fluoran), Fluorene (Flu), Indeno(1,2,3-c-d)pyrene (I(123cd)P, Naphtalene (Naph), Phenantrene (Phe) and Pyrene (Pyr). These results were combined with additional datasets on pH, metal and PAH concentrations: (1) received from the same shipping companies as we sampled, (2) resulting from sampling campaigns organised by the exhaust gas cleaning system association (EGCSA) and (3) from literature. All data was combined in a database (Table S1). Parameters with many values below limit of quantification (BLOQ) were excluded from further analysis (Table S2).

2.2. Scenario’s and model calculation

To calculate the impact of discharged washwater on the water quality two scenarios were defined. Scenario LOW assumed that 10% of the total ship emissions were treated by scrubbers and vessels discharged at average washwater concentrations. Scenario HIGH assumed a 20% treatment by scrubbers and discharge at 90th percentile of washwater concentrations (Table 1 for scenario HIGH, Table S3 for scenario LOW).

The calculated scenarios included all fuel used by the vessels, main and auxiliary engines. For manoeuvring and berthing in harbours, auxiliary engines are typically used. As these auxiliary engines are not always connected to the scrubber, the calculated changes in metal and PAH concentrations in the harbour docks surface water could be an overestimation.
The contaminant input Jc (kg y⁻¹) to the water bodies (harbour docks and estuary) was calculated as:

\[J_c = Q_w \times P_t \times F_s \times C_c \]
(Eq. 1)

With \(Q_w \) (L MWh⁻¹) the discharge of washwater (closed or open loop) per unit of generated power of the vessel, \(P_t \) (GWh y⁻¹) is the total power generated by the vessel in a certain water body (harbour docks or Scheldt estuary), \(F_s \) the share of total emissions treated by scrubbers (0.1 for scenario LOW or 0.2 for scenario HIGH), and \(C_c \) (kg L⁻¹) is the concentration of the contaminant in the washwater. The power \(P_t \) generated by the vessels in the Scheldt estuary (182 GWh y⁻¹) and Antwerp harbour docks (472 GWh y⁻¹) is well constrained (data provided by the Antwerp port Authority). An average washwater discharge was calculated for open loop (51 ± 30 m³ MWh⁻¹, \(N=44 \)) and closed loop (0.28 m³ ± 0.17 m³ MWh⁻¹, \(N=7 \)), based on the available data (Table S1). Note however that some vessels with closed loop systems will not discharge any washwater, as they retain the washwater on board and deliver it to port reception facilities on shore (personal communication shipping companies). The concentrations of metals and PAHs measured in the inlet water were not used for the calculation because values were often below limit of quantification (BLOQ). Additionally, concentrations of e.g. zinc in inlet water samples were sometimes unrealistically high (Table S1), which can be caused by sampling inlet water from a valve on board which could have resulted in elevated metal concentrations originating from the metal tubing of the scrubber system. Instead, available data on total metal and PAH concentrations in the harbour docks were used and average values were subtracted from the outlet concentrations prior to the calculation of fluxes and changes in surface water concentrations (see Table 1 for concentrations). All outlet washwater concentrations reported as BLOQ were replaced by the respective LOQ/2 and included in the calculations.
To estimate the impact of exhaust scrubber discharge on contaminant concentrations, total alkalinity (TA) and pH in the docks, a dynamic model was set-up. In this model, the docks are considered well mixed. The water body is affected by influx of freshwater (16 m³ s⁻¹, fixed water composition based on observations), by exchange with the adjacent estuary over the locks (fixed water composition of the estuary based on observations, dispersive flux proportional to concentration difference, fixed bulk dispersion coefficient of 100 m³ s⁻¹, see appendix), by the scrubber efflux, and by gaseous exchange with the atmosphere.

Changes in contaminant concentrations are calculated as:

\[
\Delta C_c = \frac{J_c}{Q_r} \quad \text{(Eq. 2)}
\]

With \(\Delta C_c\) (µg L⁻¹) the mean concentration change in the receiving water body caused by scrubber discharge, \(J_c\) (kg y⁻¹) the contaminant input from scrubbers calculated with Eq. 1 and \(Q_r\) (L y⁻¹) is the flowrate of water through the receiving water body. The mean flow rate of the Scheldt estuary was 100 m³ s⁻¹, for the docks of the port Antwerp \(Q_r\) was the sum of the flow rate (16 m³ s⁻¹) and the dispersive exchange \(D\) through the locks (100 m³ s⁻¹). Calculation assumptions were that all discharged contaminants were evenly distributed in the water column and stayed in suspension, i.e. during their stay in the docks (average residence time = 19 days) and in the estuary (average residence time = 2.5 months). Calculated increase in concentrations were compared with surface water concentrations measured during regular water quality monitoring programs from 2015-2016 in the receiving water body (data from the Flemish Environmental Agency and Antwerp Port Authority; in the docks \(n=15\) (metals) and \(n=15\) (PAHs), and in the Scheldt estuary \(n=115\) (metals) and \(n=20\) (PAHs).
For changes in TA, SumCO₂ and H₂SO₄, the CO₂(aq) in scrubber effluent was assumed to be in equilibrium with CO₂ in flue gas, assumed to have a fixed partial pressure of 0.1 atm\(^{30}\). The carbonate balance in the scrubber effluent was computed at observed effluent water temperature (T= 25 °C). Scrubber flux of H₂SO₄ and TA were determined by assuming that all S in the exhaust is captured by the washing process. Further, 20% of vessels equipped with an open loop scrubber, 2.1% S content in fuel, and a total of 90 x 10⁶ ton fuel use per year for all vessels in the right bank of the Antwerp harbour were assumed. The model was run to steady state to assess the difference in water composition in the docks with and without scrubbers. Carbonate balances were computed with the R package AquaEnv\(^{31}\). The model was integrated with the R package deSolve\(^{32}\). The model code and scripts to run the scenario analyses are available on GitHub [link to the model will be made available upon acceptance].

3. Results and Discussion

3.1. Scrubber use

For some vessels the installation of a scrubber is considered an attractive option to comply with the IMO regulations on reduction of sulphur emissions\(^{12}\). The number of vessels with a scrubber is currently still rather limited, but increasing rapidly. Also in Belgium an increasing number of vessels with scrubbers call at the ports of Zeebrugge, Ghent and Antwerp. From January till November 2019 about 350 unique vessels equipped with a scrubber visited the port of Antwerp, with a total of approximately 1250 calls (information Antwerp Port Authority and Clarksons Worldfleet Register). This corresponds to 8.7% of the total number of vessels and 9.5% of the total number of calls. Scrubber types of vessels in the Antwerp port are evenly distributed between open loop and hybrid scrubbers.
In present study, the impact of washwater in the harbour docks is calculated with 10\% and 20\% scrubbers as two different future scenarios. It is however difficult to estimate the future use of scrubbers. Since the installation of a scrubber is economically profitable under most scenarios\(^\text{10}\), a further increase can be expected. However, the fuel marked is changing rapidly and low sulphur heavy fuels which are cheaper than distillates are becoming available and might influence scrubber interest\(^\text{1}\).

3.2. Scrubber washwater quality

To get insight in the concentrations of contaminants present in scrubber washwater a large database was compiled with results from different sources, including own samples, received datasets and literature (Table S1). Metal and PAH concentrations are found to be elevated compared to surface water concentrations or Water Quality Standards (WQS) (Fig. S1, S2). The variation in concentrations within parameters is large with a concentration range of four orders of magnitude for some metals and a range of two orders of magnitude for some PAHs. The high variation in washwater concentrations can be attributed to many different factors including scrubber type, additives, fuel origin\(^\text{33}\), fuel sulphur content\(^\text{34}\), engine load\(^\text{14}\) or the presence of treatment facilities before the washwater is discharged. In general, the contaminants originate from the fuel, lubricant oil or combustion process, are transported to the smokestack, washed out by the scrubber water and end up in the washwater. Metal concentrations in fuels are found to vary substantially and are related to the crude oil origin and refinery process\(^\text{33}\). Since a substantial part of the metals in the fuel is expected to end up in the scrubber washwater\(^\text{15}, \text{17}\), the fuel origin will directly affect the washwater metal concentrations. Vessels with scrubbers usually operate on high sulphur fuel oil (HSFO). These are residual fuels that are known to contain higher concentrations of metals compared to distillate fuel (DF), e.g. MGO\(^\text{35}\). The metals V and Ni and to a lesser extend Cu are
typically tracers for residual fuel. For Zn the fuel and the lubricant oil were found to contribute equally to the emissions35, 36. Also in present study Zn, V, Ni and Cu are the metals that are measured in the highest concentrations in the scrubber washwater with average values and standard deviation (STDEV) of 1745 µg L-1 (STDEV 5460 µg L-1) for Zn, 752 µg L-1 (STDEV 2437 µg L-1) for V, 670 µg L-1 (STDEV 1533 µg L-1) for Ni and 160 µg L-1 (STDEV 417 µg L-1) for Cu. Besides, the concentration of Cr was found to be high in the washwater of several scrubbers operating in closed loop, while for most other washwater samples no elevated concentrations were measured. It is not clear where the high concentrations originate from, as Cr is generally not present in fuel35. It is possible that corrosion or abrasion of the scrubber installation, stimulated by the acidic washwater, is a source of Cr, as was previously suggested for Cu21, 23. The higher emissions originating from combusting HSFO compared to DF, as reported for metals, is even more pronounced for PAHs, with atmospheric emissions found to be 200 times higher when operating on HSFO14. In the case of HSFO, the PAHs in the exhaust generally originate directly from the fuel14. The PAH concentrations in the emissions of marine engines are found to be dominated by Phe, Naph, Fluoran and Flu37, which corresponds to the PAHs that were measured in high concentration in the washwater of present study with average values and STDEV of 2744 ng L-1 (STDEV 2895 ng L-1) for Naph, 2001 ng L-1 (STDEV 1678 ng L-1) for Phe, 708 ng L-1 (STDEV 587 ng L-1) for Flu and 186 ng L-1 (STDEV 217 ng L-1) for Fluoran. Large variation in concentrations between washwater samples could be observed and can to a large extend be explained by the differences that exist between scrubbers operating in open or closed loop (Fig. 2). As the washwater in closed loop scrubbers circulates within the system, contaminants accumulate over time, resulting in higher concentrations of metals and PAHs in the washwater compared to open loop mode (2-way ANOVA; metals: $F_{1,323} = 26.7$; $p<0.001$, PAH: $F_{1,475} = 7.27$; $p=0.007$) (Fig. 1). Metal concentrations in closed loop washwater are on average 43 times higher
for metals and 1.3 times higher for PAHs compared to open loop washwater. However, in closed loop scrubbers the scrubbing capacity is kept high by dosing sodium hydroxide resulting in a low volume of water needed to trap SO$_x$ efficiently. Closed loop systems discharge discontinuous and lower volumes of washwater (bleed off) with a calculated average volume of 0.28 m3 MWh$^{-1}$ (STDEV=0.17, N=7). In contrast, open loop systems need a large volume of surface water to ensure removal of SO$_x$ from the exhaust with discharge volumes that are roughly 200 times higher (calculated average 51 m3 MWh$^{-1}$, STDEV=30, N=44). The circulation of water and smaller washwater volumes when operating in closed loop allows efficient treatment of the washwater using a hydrocyclone with removal of particles before discharge. Hereby, contaminants are scavenged in a sludge fraction that is stored and delivered to port reception facilities resulting in a lower total discharge of contaminants to the surrounding surface water (6 times for metals and 183 times for PAHs) for scrubbers operating in closed loop mode (differences are significant for metals: 2-way ANOVA; $F_{1,323}=6.56$; $p=0.011$ and PAHs: $F_{1,475}=30.4$; $p<0.001$) (Fig. 2). The differences between metals and PAHs indicate that PAHs are trapped much more efficient in the sludge fraction than metals by hydrocyclone treatment in closed loop mode. Also for scrubbers operating in open loop, the use of washwater treatment systems is reported (Table S1). However, treatment of the large washwater flow rates is less straightforward. A vessel sailing with 15 MW engine power will discharge roughly 200 L s$^{-1}$. The large variation in concentrations and the limited number of scrubbers that reported an open loop system with treatment in the dataset does not allow to draw conclusions on differences in concentrations between open loop with and without treatment. The acidity of the washwater in closed loop mode can be controlled by dosing the scrubbing media NaOH resulting in higher average pH values in the discharged water (6.8, STDEV=1.7, n=6) compared to the average pH values in open loop mode (4.8, STDEV=1.4, n=21).
3.3. Impact on water quality

Generally, total acidifying potential and emissions of hazardous substances of vessels with scrubbers operating on HSFO are higher than from vessels operating on low sulphur compliant fuels. A substantial part of these emissions are directly discharged with the washwater into receiving aquatic ecosystems. The discharge of washwater has impacts on different spatial and temporal scales. Right after discharge there will be an impact in the immediate vicinity of the vessel (acute toxicity, small spatial and temporal scale), while on a far longer time scale, pollutants will be dispersed throughout the larger water body, which then leads to an increase in mean pollutant levels throughout the port or estuary (chronic toxicity, larger spatial and temporal scale).

The concentrations of most PAHs and all metals in the undiluted closed loop washwater largely exceed their WQS (Table 1, 2) and are expected to be acutely toxic for most aquatic organisms. Acute toxic effects of scrubber washwater on phyto- and zooplankton are reported, even at concentrations of metals and PAHs much lower than the concentrations reported in present work20, 22. The synergistic effects caused by the mixture of metals and PAHs combined with low pH in scrubber washwater result in higher toxicity than estimated from the effect thresholds of the individual compounds20, 38. However, the effects of washwater are strongly influenced by dilution with surrounding surface water. Buhaug et al. (2006) modelled that washwater at 50 m behind the vessels will be diluted 2000 times for vessels sailing in open sea and 1750 times during port operation at lower speed. The extent of dilution will depend on vessel activity (at berth, manoeuvring, sailing) and physical characteristics of the receiving water body such as dimensions and flow rate, which complicates the prediction of scrubber washwater toxicity. When applying the dilution factor of 2000 on washwater metal and PAH concentrations almost no compounds will exceed their WQS whereby no acute toxicity is expected.
The increase in metal and PAH concentrations in aquatic ecosystems that originate from scrubber washwater is expected to be higher in inland waterbodies such as estuaries, rivers or harbours compared to large open marine systems. The accumulation of metals and PAHs in the surface water of the Antwerp harbour docks and the Scheldt estuary was calculated for a ‘scenario LOW’ (10% open loop scrubbers and average washwater concentrations) and a ‘scenario HIGH’ (20% open loop scrubbers and 90th percentile washwater concentrations) (Fig. 3). In particular the concentration of several PAHs (Flu, Naph and Phen) in the surface water of the Antwerp harbour docks was simulated to increase due to scrubber discharge. An increase in concentration of 23% under the ‘scenario LOW’ and 110% under the ‘scenario HIGH’ was calculated for naphthalene. The mean concentration of vanadium in the docks would increase with 3.4% under scenario LOW and 17% under scenario HIGH. The time vessels spend in the Scheldt estuary is shorter than in the harbour docks, which results in lower total amount of fuel use, a lower volume of scrubber washwater discharged and a smaller effect on metal and PAH concentrations in the surface water compared to the docks. For the Scheldt estuary mean naphthalene concentrations are calculated to increase with 3.0% (scenario LOW) to 14% (scenario HIGH). For vessels with scrubbers in closed loop mode a large part of the metals and PAHs is removed from the washwater, trapped in the sludge fraction and delivered on shore, with a smaller increase in pollutant concentrations as a consequence (Table 1).

Some of the pollutants that are present in scrubber washwater are already exceeding (Flu, Pyr) or close to exceedance (Ni, Zn) of their respective WQS in the surface water of the harbour docks or the Scheldt estuary (Fig 3). However, the compounds for which a large increase in concentrations was calculated (Naph>Phe>Flu>Ace>V) are not the compounds that are expected to pose the highest risk, based on the exceedances of the WQS. Nevertheless, several pollutants that are measured in elevated concentrations and discharged with the scrubber washwater are identified as...
‘priority substances’ (Fluoran, Naph, Ni) or ‘priority hazardous substances’ (Ant, B(a)P, Cd) by
the European Water Framework Directive (WFD) and as such are of major concern for European
Waters. WQS exceedances of these compounds indicate that these aquatic systems are under
pressure of high contaminant concentrations and progressive reduction of pollution from priority
substances and the cessation or phasing-out of discharges, emissions and losses of priority
hazardous substances is required. Many European coasts and estuaries are part of Natura 2000,
the largest coordinated network of protected areas in the world to safeguard valuable and threatened
species and habitats. Mainly in these areas with large ecological values the discharge of scrubber
washwater should be restricted. In addition, the use of scrubbers deflect attention from
development of cleaner fuels. However, also the emissions from vessels operating on low sulphur
fuel are variable and subject to changes. With the sulphur regulations, new types of low sulphur
heavy fuel oils (hybrid fuels, intermediate fuels or ECA fuels) have entered the market. How these
fuels influence emission of metals and PAHs is not clear yet. It will, likely be necessary to limit
the use of all low quality fuels, with high and low sulphur content and instead encourage the use
of distillate fuels, mainly in coasts, estuaries and inland water bodies with large ecological value.
384 Table 1. Summarising numbers on scrubber washwater concentrations, fluxes and impact on water
385 quality for scenario high (20% scrubbers).

Units	Conc. Docks (1)	WQS (2)	DISCHARGE CONC. (90th PERC.)	FLUX KG Y\(^{-1}\) (20% SCRUBBERS)	CONC. INCREASE DOCKS	DISCHARGE CONC. (90th PERC.)	FLUX KG Y\(^{-1}\) (20% SCRUBBERS)	CONC. INCREASE DOCKS
Cr	3.34	5	10020	266	0.073	45.0	108	0.055
Cu	8.38	7	1780	47	0.013	130	313	0.160
Ni	5.86 µg L\(^{-1}\)	4*	6060	159	0.044	127	305	0.159
Zn	32.9	20	25000	657	0.180	460	1106	0.561
V	3.94	4	9100	240	0.065	324	779	0.421
Acid	4.92	60	745	1.95E-02	5.33E-06	648	1.56	0.845
Acy	7.20	4000	185	4.68E-03	1.28E-06	536	1.29	0.695
Ant	2.67	100*	446	1.17E-02	3.19E-06	308	0.741	0.401
Fluorant	9.51	6.3*	661	1.72E-02	4.69E-06	478	1.15	0.616
Flu	3.72 ng L\(^{-1}\)	2000	2370	6.23E-02	1.70E-05	1200	2.89	1.57
Naph	8.24	2000*	6370	1.68E-01	4.58E-05	6960	16.7	9.14
Phe	7.95	100	6970	1.83E-01	5.01E-05	3700	8.90	4.85
Pyr	13.0	40	554	1.42E-02	3.89E-06	1220	2.93	1.59
Total PAH	58.1		22200	5.83E-01	1.59E-04	13620	32.7	17.8

(1) Average values for total concentrations in the harbour docks
(2) Water Quality Standards (WQS) from the EU WFD (*) or Flanders (dissolved concentrations for metals, total concentrations for PAHs)

3.4. Acidification

Marine transport related emissions of NO\(_x\) and SO\(_x\) cause acidification of terrestrial and marine ecosystems\(^{41}\). The contribution of anthropogenic N and S depositions to ocean acidification account only for a few percent of the acidifying impact of the global anthropogenic emissions (mainly caused by CO\(_2\))\(^{42}\). However, in certain restricted areas such as coastal waters with important shipping lanes or large harbours, the acidifying effect caused by NO\(_x\) and SO\(_x\) can exceed the effect of overall anthropogenic CO\(_2\) emissions\(^{41}\). In open loop scrubber systems the natural buffering capacity (alkalinity) of the sea or river water is used to neutralize the acid ions. Mean alkalinity in coastal waters varies between 2100 and 2400 µmol/l\(^{43}\) and is high enough to guarantee high SO\(_x\) removal efficiencies. Due to a calcium rich bedrock, the mean alkalinity in the surface water of the Scheldt estuary (4400 µmol L\(^{-1}\)) and the docks (3400 µmol L\(^{-1}\)) is high. In closed loop systems the acidity of the washwater is buffered by dosing NaOH to the circulating washwater in order to have a bleed of that is neutral (pH around 6-8). Since vessels with scrubbers operate on
high sulphur fuel (up to 3.5%) and the acidifying sulphur compounds are discharged directly into the surface water, their acidifying capacity is much larger then vessels operating on low sulphur fuel (0.1% in SECAs). In addition, the elevated concentrations of CO$_2$ in the exhaust gas result in elevated dissolved inorganic carbon concentrations in the washwater with additional acidification of the receiving water bodies. Model simulations with scenario HIGH (20% open loop scrubbers) show a decrease in pH of 0.015 units caused by washwater discharge (Fig. 4). The alkalinity will comparably decrease slightly with 6 µmol L$^{-1}$ or 0.16% and total sulphate concentrations will increase with 3 µmol L$^{-1}$ or 0.08%. For the Baltic Sea, the water pH was calculated to decrease by open loop scrubber use with roughly 0.0015 units (50% scrubbers scenario) to 0.003 units (100% scrubbers scenario41).

Since preindustrial times global ocean pH decreased with approximately 0.1 units with related negative consequences for marine ecosystems44. Among many other sources, SO$_x$ emissions of marine transport contributes to this acidification. The IMO established sulphur regulations to mitigate the impact of high sulphur emissions of the maritime sector. However, the use of open loop scrubbers as an abatement technology will not reduce their contribution to the acidification.

4. Conclusions

The number of vessels with a scrubber is increasing rapidly. These vessels usually operate on high sulphur residual fuels that are known to result in higher emissions of hazardous substances such as metals and PAHs compared to compliant low sulphur distillates. In scrubbers, sulphur, metals and PAHs are washed out of the atmospheric exhaust resulting in discharge of acidic washwater with elevated contaminant concentrations. This washwater is found to be acute toxic for aquatic organisms and a substantial long term increase in the concentrations of Naph, Phe, Flu, Ace and V following scrubber washwater discharge was calculated for inland waterbodies such as estuaries,
rivers or harbours. The compounds for which a large increase in concentrations was calculated (Naph>Phe>Flu>Ace>V) are not the compounds that are expected to pose the highest risk, based on the exceedances of the WQS. Nevertheless, several pollutants that are discharged with the scrubber washwater are identified as ‘priority substances’ or ‘priority hazardous substances’ by the European Water Framework Directive and as such are of major concern for European Waters. WQS exceedances of these compounds indicate that many European aquatic systems are already under pressure. As such, mainly in coast and estuaries with large ecological values the discharge of scrubber washwater should be restricted.
Figure Legends

Figure 1. Metal (A) and PAH (B) concentrations (µg L\(^{-1}\)) in washwater from scrubbers operating in closed loop (shaded boxes) and open loop (grey boxes). Boxplots with 5\(^{th}\) and 95\(^{th}\) percentile (whiskers), 25\(^{th}\), median and 75\(^{th}\) percentile and outliers (dots). Y-axis in logarithmic scale.

Figure 2. Total discharge (g MWh\(^{-1}\)) of metals (A) and PAHs (B) in washwater from scrubbers operating in closed loop (shaded boxes) and open loop (grey boxes). Boxplots with 5\(^{th}\) and 95\(^{th}\) percentile (whiskers), 25\(^{th}\), median and 75\(^{th}\) percentile and outliers (dots). Y-axis in logarithmic scale.

Figure 3. Increase in metal and PAH surface water concentrations (%) in the harbour docks (A) and the Scheldt estuary (B) caused by open loop scrubber discharge compared to current concentrations (grey, 100%) calculated with the scenario LOW (white) and scenario HIGH (black). The ratio between water quality standards (WQS) and current (grey) metal and PAH surface water concentrations in the docks (C) and the Scheldt estuary. The calculated concentration increase caused by open loop scrubber discharge calculated by the scenario LOW (white) and scenario HIGH (black).

Figure 4. Changes in total alkalinity (TA, µmol L\(^{-1}\)), H\(_2\)SO\(_4\) (µmol L\(^{-1}\)) and pH in the surface water from the Antwerp harbour docks caused by open loop scrubber discharge calculated with scenario HIGH (20% open loop scrubbers).
List of abbreviations

IMO: International Maritime Organization

EGCS: exhaust gas cleaning systems

PM: particulate matter

MARPOL: International Convention for the Prevention of Pollution from Ships

S: sulphur

SOx: sulphur (x)oxide

SECA Emission Control Area

LNG: liquefied natural gas

NaOH: sodium hydroxide

HFO: heavy fuel oil

PAH: polycyclic aromatic hydrocarbons

MGO: marine gas oil

ECSA: European Community Shipowners' Association

HDPE: high density polyethylene

ICP-OES: inductively coupled plasma optical emission spectrometry

GC/MS: gas chromatography/mass spectrometry
As: Arsenic
Cd: Cadmium
Cr: Chromium
Cu: Copper
Hg: Mercury
Pb: Lead
Ni: Nickel
Zn: Zinc
V: Vanadium
Ace: Acenaphthene
Acy: Acenaphthylene
Ant: Anthracene
B(a)A: Benzo(a)anthracene
B(a)P: Benzo(a)pyrene
B(b)F: Benzo(b)fluoranthene
B(ghi)P: Benzo(g,h,i)perylene
B(k)F: Benzo(k)fluoranthene
Chr: Chrysene

D(ah)A: Dibenzo(a,h)anthracene

Fluoran: Fluoranthene

Flu: Fluorene

I’123cd)P: Indeno(1,2,3-c-d)pyrene

Naph: Naphtalene

Phe: Phenantrene

Pyr: Pyrene

EGCSA: exhaust gas cleaning system association

BLOQ: below limit of quantification

TA: total alkalinity

WQS: Water Quality Standards

HSFO: high sulphur fuel oil

DF: distillate fuel

STDEV: standard deviation

WFD: Water Framework Directive
DECLARATIONS

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material: All data generated or analysed during this study are included in this published article and its supplementary information files.

Competing interests: The authors declare that they have no competing interests.

Funding: This research was funded by the Antwerp Port Authority.

Authors' contributions: JT collected samples, performed chemical analysis, interpreted the data and drafted the manuscript. TJSC contributed to the calculations and revised the manuscript. KVI provided additional datasets and organized sampling campaigns. FJRM modelled the acidification and revised the manuscript. RB contributed to the study design and revised the manuscript. All authors have given approval to the final version of the manuscript.

Acknowledgements: We acknowledge the Antwerp Port Authority for cooperation, proving data and financial support. We are very grateful to the participating shipping companies for the fruitful cooperation and sharing of their data, to the EGCSA and Euroshore to make the data of their washwater sampling campaign available, to the Flemish Environmental Agency for their advice and data on the water quality and to the Royal Belgian Institute of Natural Sciences for their advice.
Supporting Information.

File 1: TableS1: an Excel file that contains the compiled database on scrubber use and washwater quality. A total of 127 samples, based on own sampling, received datasets and literature.

File 2: A Word document with information on calculations, 2 Tables and 2 Figures.

Table S2: all measured parameters with number of values below the limit of quantification

Table S3: Summarising numbers on scrubber washwater concentrations, fluxes and impact on water quality for scenario low (10% scrubbers). The numbers of scenario high (20% scrubbers) are included in the manuscript (Table 1).

Figure S1: All scrubber washwater metal concentrations

Figure S2: All scrubber washwater PAH concentrations
1. Andersson, K.; Brynolf, S.; Lindgren, J. F.; Wilewska-Bien, M., *Shipping and the Environment: Improving Environmental Performance in Marine Transport*. Springer: Berlin, 2016; p 425.

2. Claremar, B.; Haglund, K.; Rutgersson, A., Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea. *Earth System Dynamics* 2017, 8, (4), 901-919.

3. Hassellöv, I.-M.; Turner, D. R.; Lauer, A.; Corbett, J. J., Shipping contributes to ocean acidification. *Geophysical Research Letters* 2013, 40, (11), 2731-2736.

4. Capaldo, K.; Corbett, J. J.; Kasibhatla, P.; Fischbeck, P.; Pandis, S. N., Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. *Nature* 1999, 400, 743.

5. Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; Vlieger, I. d.; van Aardenne, J., Impact of maritime transport emissions on coastal air quality in Europe. *Atmospheric Environment* 2014, 90, 96-105.

6. Corbett, J. J.; Winebrake, J. J.; Green, E. H.; Kasibhatla, P.; Eyring, V.; Lauer, A., Mortality from ship emissions: A global assessment. *Environmental Science & Technology* 2007, 41, (24), 8512-8518.

7. EC, The sulphur content of marine fuels 2012/33/EU. 2012.

8. Andreasen, A.; Mayer, S., Use of Seawater Scrubbing for SO2 Removal from Marine Engine Exhaust. *Energy & Fuels* 2007, 21, (6), 3274-3279.

9. Lindstad, H. E.; Rehn, C. F.; Eskeland, G. S., Sulphur abatement globally in maritime shipping. *Transportation Research Part D: Transport and Environment* 2017, 57, 303-313.

10. Nikopoulou, Z., Incremental costs for reduction of air pollution from ships: a case study on North European emission control area. *Maritime Policy & Management* 2017, 44, (8), 1056-1077.

11. Panasiuk, I.; Turkina, L., The evaluation of investments efficiency of SOx scrubber installation. *Transportation Research Part D: Transport and Environment* 2015, 40, 87-96.

12. Carr, E. W.; Corbett, J. J., Ship Compliance in Emission Control Areas: Technology Costs and Policy Instruments. *Environmental Science & Technology* 2015, 49, (16), 9584-9591.

13. Sippula, O.; Stengel, B.; Sklorz, M.; Streibel, T.; Rabe, R.; Orasche, J.; Lintelmann, J.; Michalke, B.; Abbassade, G.; Radischat, C.; Gröger, T.; Schnelle-Kreis, J.; Harndorf, H.; Zimmermann, R., Particle Emissions from a Marine Engine: Chemical Composition and Aromatic Emission Profiles under Various Operating Conditions. *Environmental Science & Technology* 2014, 48, (19), 11721-11729.

14. Fridell, E.; Salo, K., Measurements of abatement of particles and exhaust gases in a marine gas scrubber. *Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment* 2014, 230, (1), 154-162.

15. Di Natale, F.; Carotenuto, C., Particulate matter in marine diesel engines exhausts: Emissions and control strategies. *Transportation Research Part D: Transport and Environment* 2015, 40, 166-191.

16. Endres, S.; Maes, F.; Hopkins, F.; Houghton, K.; Mårtensson, E. M.; Oeffner, J.; Quack, B.; Singh, P.; Turner, D., A New Perspective at the Ship-Air-Sea-Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge. *Frontiers in Marine Science* 2018, 5, (139).

17. Bengtsson, S.; Andersson, K.; Fridell, E. *Life cycle assessment of marine fuels. A comparative study of four fossil fuels for marine propulsion*; Technical report no 11:125; Chalmers University of Technology: Gothenburg, Sweden, 2011.

18. Andersson, K.; Brynolf, S., Fuels in the Baltic Sea after SECA, Report Trafikanalys. 2016.
20. Koski, M.; Stedmon, C.; Trapp, S., Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa. *Marine Environmental Research* 2017, 129, 374-385.

21. Kjølholt, J.; Aakre, S.; Jürgensen, C.; Lauridsen, J., Assessment of possible impacts of scrubber water discharges on the marine environment. Report of The Danish Environmental Protection Agency. 2012.

22. Ytreberg, E.; Hassellöv, I.-M.; Nylund, A. T.; Al-Handal, A. Y.; Wulf, A., Effects of scrubber washwater discharge on microplankton in the Baltic Sea. *Marine Pollution Bulletin* 2019, 145, 316-324.

23. Hufnagl, M.; Liebezeit, G.; Behrends, B., Effects of Sea Water Scrubbing. Final report. 2005.

24. Buhaug, O.; Fløgstad, H.; Bakke, T., MARULS WP3: Washwater Criteria for seawater exhaust gas-Sox scrubbers. MARINTEC REPORT. 2006.

25. USEPA, Exhaust Gas Scrubber Washwater Effluent. Regulatory Document. US Environmental Protection Agency. 2011.

26. Lange, B.; Markus, T.; Helfst, L., Impacts of scrubbers on the environmental situation in ports and coastal waters. *Dessau-Roßlau* 2015.

27. den Boer, E.; 't Hoen, M., Scrubbers – An economic and ecological assessment. *Delft, CE Delft* 2015.

28. Belgian Government, Wet oppervlaktewateren. 26 maart 1971 - Wet op de bescherming van de oppervlaktewateren tegen verontreiniging. 1971.

29. ECSA, European Community Shipowners' Association Open letter to EU Member States and the European Commission. 18/06/2014. Implementation of the EU Sulphur Directive must be harmonised and realistic. 2014.

30. Gotze, H.; S., N.; E., U., Onboard Measurements Of Diesel Engine Exhaust Gas Components. *Transactions on the Built Environment* 1997, 24.

31. Hofmann, A. F.; Soetaert, K.; Middelburg, J. J.; Meysman, F. J. R., AquaEnv: An Aquatic Acid–Base Modelling Environment in R. *Aquatic Geochemistry* 2010, 16, (4), 507-546.

32. Soetaert, K.; Petzoldt, T.; Setzer, R. W., Solving Differential Equations in R: Package deSolve. *Journal of Statistical Software* 2010, 33, (9), 1-25.

33. Agrawal, H.; Eden, R.; Zhang, X.; Fine, P. M.; Katzenstein, A.; Miller, J. W.; Ospital, J.; Teffera, S.; Cocker, D. R., Primary Particulate Matter from Ocean-Going Engines in the Southern California Air Basin. *Environmental Science & Technology* 2009, 43, (14), 5398-5402.

34. Winnes, H.; Moldanova, J.; Anderson, M.; Fridell, E., On-board measurements of particle emissions from marine engines using fuels with different sulphur content. *Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment* 2016, 230, (1), 45-54.

35. Celo, V.; Dabek-Zlotorzynska, E.; McCurdy, M., Chemical Characterization of Exhaust Emissions from Selected Canadian Marine Vessels: The Case of Trace Metals and Lanthanoids. *Environmental Science & Technology* 2015, 49, (8), 5220-5226.

36. Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulié, S.; Bladt, H.; Ileva, N. P.; Niessner, R., Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas. *Atmos. Meas. Tech. 2013, 6*, (12), 3577-3596.

37. Contini, D.; Gambaro, A.; Belosi, F.; De Pieri, S.; Cairns, W. R. L.; Donateo, A.; Zanotto, E.; Citron, M., The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice. *Journal of Environmental Management* 2011, 92, (9), 2119-2129.
38. Gauthier, P. T.; Norwood, W. P.; Prepas, E. E.; Pyle, G. G., Metal–PAH mixtures in the aquatic environment: A review of co-toxic mechanisms leading to more-than-additive outcomes. *Aquatic Toxicology* **2014**, *154*, 253-269.

39. EC, Water Framework Directive on priority substances 2013/39/EU. **2013**.

40. Lindstad, H. E.; Eskeland, G. S., Environmental regulations in shipping: Policies leaning towards globalization of scrubbers deserve scrutiny. *Transportation Research Part D: Transport and Environment* **2016**, *47*, 67-76.

41. Turner, D. R.; Edman, M.; Gallego-Urrea, J. A.; Claremar, B.; Hassellöv, I.-M.; Omstedt, A.; Rutgersson, A. J. A., The potential future contribution of shipping to acidification of the Baltic Sea. **2018**, *47*, (3), 368-378.

42. Doney, S. C.; Mahowald, N.; Lima, I.; Feely, R. A.; Mackenzie, F. T.; Lamarque, J.-F.; Rasch, P. J., Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. **2007**, *104*, (37), 14580-14585.

43. Lee, K.; Tong, L. T.; Millero, F. J.; Sabine, C. L.; Dickson, A. G.; Goyet, C.; Park, G. H.; Wanninkhof, R.; Feely, R. A.; Key, R. M., Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. *Geophysical Research Letters* **2006**, *33*, (19).

44. Doney, S. C.; Fabry, V. J.; Feely, R. A.; Kleypas, J. A., Ocean Acidification: The Other CO2 Problem. *Annual Review of Marine Science* **2009**, *1*, 169-192.