A preliminary study on biological aspects of the orange-spotted grouper (Epinephelus coioides) harvested in the northern coast of Aceh, Indonesia

N Fadli1*, A Damora1, Z A Muchlisin1, I Dewiyanti1, M Ramadhaniaty1, Z Zelfi1, N F Roka1, F Fitriani1, M Rusdi2, F M Nur3, A S Batubara1 and M N Siti-Azizah4

1Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
2Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
3Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Jl. Tgk. Syech Abdul Rauf, Darussalam, Banda Aceh 23111, Indonesia
4Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia

*Email: nurfadli@unsyiah.ac.id

Abstract. Considered as the least concern (LC) based on the IUCN category, the biological information of Epinephelus coioides is limited. The present study's objective was to study some biological aspects of the orange-spotted grouper harvested in the northern coast of Aceh. The fishes were collected from June - August 2020 in several fish landing sites (TPI) and fish market located in Banda Aceh and Aceh Besar district. In total, 30 fish specimens were collected in this study. The total length (TL) of the fishes ranged from 194.1-237.6 mm. Also, the weight of the fishes ranged from 100.7-176.7 g. All the collected fishes were female with the gonad maturity levels in level one (1), with the average gonad weight of 0.01 g. This study provides a reference point of some biological aspects of the orange-spotted grouper that will help develop a practical fisheries management of the species.

1. Introduction

Aceh is a province located in Indonesia's westernmost part. Aceh region is rich in marine biodiversity, e.g., coral reefs [1-4], reef fishes [5-10], macroinvertebrates [11], etc. Like other coastal regions, Aceh depends on the fisheries sector. Capture fisheries play an essential role in Aceh's fisheries, with steadily increasing production numbers every year, including grouper fisheries. The groupers are one of the highest-priced marketed reef fishes in the world due to their delicate, desirable taste and flavor [12-14]. As a result, the groupers are regarded as one of the first fish groups to be overexploited worldwide [13]. Based on the IUCN categories, out of 160 recognized grouper species globally, 60% were considered Data Deficient and Least Concern (LC) [13].

Epinephelus coioides is one of the grouper species considered as the LC category with a decreasing population [15]. The fish is widespread in the Indo-West Pacific from the Red Sea and eastward to Palau and Fiji, north to Ryukyus Islands, the Arafura Sea, and Australia [16]. Like other groupers, E. coioides had high economic value and market demand in Indonesia, including Aceh. Nevertheless, even though they are commercially important in Aceh, there is still limited information on the biological features of E. coioides, including its bio-reproduction characteristics. The absence of the initial biological information will lead their management practices to be more problematic.
There have been very few comprehensive studies of groupers in the Aceh region and its adjacent waters. Most of the studies in this region focused on the taxonomy (mostly inventory studies of the groupers). For example, [17], utilizing molecular techniques, recorded at least 18 commercially important groupers species landed in Weh Island with *Epinephelus*, was the dominant genus found. [18] also used the molecular marker to identify grouper species in Peukan Bada, Aceh Besar, and successfully authenticated eight grouper species. In addition, [19] recognized 21 grouper species landed in Peukan Bada, Aceh Besar. Another study by [20] focused on the grouper fisheries in Weh Island, and they recorded six types of fishing gear: gillnets, encircling gillnets, hand lines, purse seines, spearguns, and troll lines used to caught grouper in this region. Limited studies documented the biological aspect of groupers in Aceh, among others, the study by [21]. Hence, the present study's objective was to study some biological aspects of the orange-spotted grouper (*E. coioides*) harvested on Aceh's northern coast.

2. Materials and Method
The fishes were collected from June - August 2020 in several fish landing sites (TPI) and fish market located in Banda Aceh and Aceh Besar district (Figure 1) and identified based on [22, 23]. Some biological parameters, i.e., total length (TL), total weight (W), sex, maturity level, fecundity, etc. were obtained at Genetics and biodiversity Laboratory in the Faculty of Marine and Fisheries, Universitas Syiah Kuala. In addition, the length-Weight relationship was analyzed used the linear allometric model (LAM) following [24] and [25]. Additionally, Fulton's condition (K) and Relative weight (Wr) were calculated based on [26]. The data were presented as tables and figures.

![Figure 1](image_url). Map of the grouper fishing ground (dashed line) on the northern coast of the Aceh region.

3. Results and Discussion
In total, 30 fish specimens were collected in this study. All samples found in this study were small and young (between 194.1-237.6 mm TL and 100.7-176.7 g). Fulton's condition (K) ranged from 2.28-3.02, and relative weight ranged from 91.87-114.30 (Table 1). All the collected fishes were female with the gonad maturity levels in stage one.
Table 1. Some biological parameters of *E. coioides* harvested in Aceh's northern coast.

Parameters	Min	Max	Average
Total Length (mm)	194.1	237.6	221.6 ± 1.3
Weight (g)	100.7	176.7	147.5 ± 23.3
Fulton’s condition (K)	2.28	3.02	2.52 ± 0.21
Relative weight (Wr)	91.87	114.30	100.08 ± 4.20

The LWRs analysis results showed that fish had a *b* value of 2.76 with a correlation coefficient of 0.94 (Figure 2a). This result indicated *E. coioides* had a negative allometric growth pattern and a strong correlation between body weight and total length. In addition, the regression models showed similar growth patterns between the observed and predicted (Figure 2b).

Figure 2. The length-weight relationships (a) and comparison of observed and predicted growth of *E. coioides* (b) harvested in Aceh's northern coast.

In general, the growth pattern resulted in this study is comparable with previous studies of several grouper species: Spotted coral grouper, *Plectropomus maculatus* (*b*= 2.9694) and Yellow-edged lyretail, *Variola Louti* (*b*= 2.4881) harvested in Berau waters, East Kalimantan [27]; *Cephalopholis boenak* (*b*=2.89), *C. sonnerati* (*b*=2.98), *C. urodeta* (*b*=2.94), *Epinephelus caeruleopunctatus* (*b*=2.92) from Inshore Waters of Kenya [28]; Leopard coral grouper, *P. leopar dus* (*b*=2.6264), Blacksaddled coral grouper, *P. laevis* (*b*=2.872), Brown-marbled grouper, *E. fuscoguttatus* (*b*=2.847) and Duskytail grouper, *E. bleekeri* (*b*=2.847) fished in northern Aceh [21]; whitespotted grouper, *E. coeruleopunctatus* (*b*=2.84 for male and *b*=2.86 for female) harvested in the coastal waters of Padang City, Indonesia [29]; and several other marine fishes: Largescale mullet, *Liza macrolepis* (*b*= 2.49) from Lambada Lhok waters in Aceh Besar, Indonesia [30]. Several factors, such as environmental conditions, seasons, fish behavior, etc., could be associated with the growth pattern [25, 30].

In addition, the average Fulton's condition factor was higher than 1 (2.79 ± 1.10) and similar to earlier grouper studies [21, 29]. Additionally, the K value found in this study is higher than the White grouper, *E. aeneus* from the south-west coast of Senegal, West Africa (1.212-1.361) [31]; and other marine species: Largescale mullet, *Liza macrolepis* (1.16-1.22) and *M. engeli* (1.03 to 1.09) from Lambada Lhok waters in Aceh Besar, Indonesia [30]; and Skipjack tuna (*Katsuwonus pelamis*) fished in the western and central Pacific Ocean (1.3-1.84)[32]. Furthermore, the average relative weight was above 100 (100.08± 4.20). These results indicated that the grouper harvested in Aceh's northern coast were in excellent health [26]. Also, the region is still providing enough food for the orange-spotted grouper.
Aceh's northern coast is endowed by a healthy coral reefs ecosystem [2, 3]. Most groupers are reef-associated fishes [22, 23]. Like other reef-associated fishes, their lives also depend on the coral reefs condition. A healthy reef ecosystem provides food, protected, and spawning areas for fish and various other marine organisms [33]. In a study in Negros Oriental, central Philippines, [34], the fish biomass in the healthy reef sites was five-fold higher than poor condition reef sites.

Finally, the current study's data will be useful in developing a practical fisheries management of the orange-spotted grouper (E. coioides) in on Aceh's northern coast and can be used for reference information for future studies.

4. Conclusions
This study is providing baseline data of some biological aspects of the orange-spotted grouper (E. coioides). The results of this study showed that E. coioides had a negative allometric growth pattern. The average Fulton's condition and the average relative weight showed that the E. coioides were in good condition, indicating that Aceh's northern coast is a suitable habitat for the fish.

Acknowledgments
The research was funded by Universitas Syiah Kuala (H-Index Research Scheme, contract number: 76/UN11.2.1/PT.01.03/PNPBP/2020) and Universiti Malaysia Terengganu (Addressing Fisheries and Aquaculture Challenges in the Grouper (Family Epinephelidae) through Molecular Genetics with Special Focus on E. coioides - UMT/RMIC/STRA/53280).

References
[1] Baird A H, Campbell S J, Anggoro A W, Ardiwijaya R L, Fadli N, Herdiana Y, Kartawijaya T, Mahyiddin D, Mukminin A, Pardele S T, Pratchett M S, Rudi E and Siregar A M 2005 Acehnese Reefs in the Wake of the Asian Tsunami Current Biology 15 1926-30
[2] Rudi E, Campbell S J, Hoey A S, Fadli N, Linkie M and Baird A H 2012 The Coral Triangle Initiative: what are we missing? A case study from Aceh Oryx 46 482-5
[3] Baird A H, Campbell S J, Fadli N, Hoey A S and Rudi E 2012 The shallow water hard corals of Pulau Weh, Aceh Province, Indonesia AACL Bioflux 5 23-8
[4] Fadli N, Muchlisin Z A, Pratama F O, Mustari T R, Dewiyanti I, Purnawan S, El-Rahimi S A, Sofyan H, Affan M and Siti-Azizah M N 2019 The composition of coral reefs in Ulee Lheue breakwater, Banda Aceh, Aceh, Indonesia IOP Conference Series: Earth and Environmental Science 348 012077
[5] Allen G R and Adrim M 2003 Coral reef fishes of Indonesia Zoological Studies 42 1-72
[6] Rudi E and Fadli N 2012 Komunitas ikan karang herbivora di perairan Aceh bagian utara Depik 1 37-44
[7] Fadli N, Aidia N, Muhammad M and Rudi E 2012 Komposisi ikan karang di lokasi transplantasi karang di Pulau Rubiah, Kota Sabang, Aceh Depik Jurnal 1
[8] Rudi E and Fadli N 2012 Komunitas ikan karang herbivora di perairan Aceh bagian utara Depik Jurnal 1
[9] Fadli N, Muchlisin Z A, Sofyan H, El-Rahimi S A, Dewiyanti I, Pratama F O, Mustari T R and Siti-Azizah M N 2018 The composition of reef-associated fishes in Ulee Lheue breakwater Banda Aceh, Aceh, Indonesia IOP Conference Series: Earth and Environmental Science 216 012021
[10] Fadli N, Muchlisin Z A, Ikhsan B, Dewiyanti I, Purnawan S, Nurfadillah, Ulfah M, Sofyan H, Affan M and Siti-Azizah M N 2019 The composition and abundance of reef fish (Family Chaetodontidae) in Aceh Besar Waters, Aceh, Indonesia IOP Conference Series: Earth and Environmental Science 348 012078
[11] Fadli N, Muchlisin Z A, Soraya I, Dewiyanti I, Purnawan S, El-Rahimi S A, Sofyan H, Affan M and Siti-Azizah M N 2019 The diversity of marine macroinvertebrates in Aceh Besar waters, Aceh, Indonesia IOP Conference Series: Earth and Environmental Science 348 012076
[12] Chiu S-T, Tsai R-T, Hsu J-P, Liu C-H and Cheng W 2008 Dietary sodium alginate administration to enhance the non-specific immune responses, and disease resistance of the juvenile grouper Epinephelus fuscoguttatus Aquaculture 277 66-72

[13] Sadovy de Mitcheson Y, Craig M T, Bertoncini A A, Carpenter K E, Cheung W W L, Choat J H, Cornish A S, Fennessy S T, Ferreira B P, Heemstra P C, Liu M, Myers R F, Pollard D A, Rhodes K L, Rocha L A, Russell B C, Samoilys M A and Sanciangco J 2013 Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery Fish and Fisheries 14 119-36

[14] Alcantara S G and Yambo A V 2014 DNA barcoding of commercially important Grouper species (Perciformes, Serranidae) in the Philippines Mitochondrial DNA 1-9

[15] IUCN 2019 The IUCN Red List of Threatened Species. Version 2019-1. . (http://www.iucnredlist.org

[16] Froese R and Pauly D 2019 Editors. FishBase. World Wide Web electronic publication.: www.fishbase.org, (12/2019)

[17] Fadli N, Mohd Nor S A, Othman A S, Sofyan H and Muchlisin Z A 2020 DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia PeerJ 8 e9641

[18] Yulianto I, Wiryawan B and A. Taurusman A 2013 Responsible grouper fisheries in Weh Island, Aceh Province, Indonesia Galaxea, Journal of Coral Reef Studies 15 269-76

[19] Muchlisin Z A, Musman M and Siti Azizah M N 2010 Length-weight relationships and condition factors of two threatened fishes, Rasbora tawarensis and Poropuntius tawarensis, endemic to Lake Laut Tawar, Aceh Province, Indonesia Journal of Applied Ichthyology 26 949-53

[20] Nuraini S 2007 Jenis Ikan Kerapu (Serranidae) Dan Hubungan Panjang Berat Diperairan Berau, Kalimantan [Grouper Species and Length-weight Relationship in Berau Waters, East Kalimantan] Jurnal Iktiologi Indonesia 7 61-5

[21] De Robertis A and Williams K 2008 Weight-Length Relationships in Fisheries Studies: The Standard Allometric Model Should Be Applied with Caution Transactions of the American Fisheries Society 137 707-19

[22] Craig M T, Sadovy de Mitcheson Y and Heemstra P C 2011 Groupers of the World: A Field and Market Guide (Grahamstown, South Africa: NISC)

[23] Heemstra P C and Randall J E 1993 FAO species catalogue vol. 16 groupers of the world (family serranidae, subfamily epinephelinae): An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper, and lyretail species known to date (Rome: Food and Agriculture Organization of the United Nations)

[24] De Robertis A and Williams K 2008 Weight-Length Relationships in Fisheries Studies: The Standard Allometric Model Should Be Applied with Caution Transactions of the American Fisheries Society 137 707-19

[25] Muchlisin Z A, Musman M and Siti Azizah M N 2010 Length-weight relationships and condition factors of two threatened fishes, Rasbora tawarensis and Poropuntius tawarensis, endemic to Lake Laut Tawar, Aceh Province, Indonesia Journal of Applied Ichthyology 26 949-53

[26] Blackwell B G, Brown M L and Willis D W 2000 Relative Weight (Wr) Status and Current Use in Fisheries Assessment and Management Reviews in Fisheries Science 8 1-44

[27] Nuraini S 2007 Jenis Ikan Kerapu (Serranidae) Dan Hubungan Panjang Berat Diperaikan Berau, Kalimantan Timur [Grouper Species and Length-weight Relationship in Berau Waters, East Kalimantan] Jurnal Iktiologi Indonesia 7 61-5

[28] Atembe S, Mlewa C M and Kaunda-Arara B 2010 Catch composition, abundance and length-weight relationships of groupers (Pisces: Serranidae) from inshore waters of Kenya Western Indian Ocean Journal of Marine Science 9 91-102

[29] Bulanin U, Masrizal M and Muchlisin Z A 2017 Length-weight relationships and condition factors of the whitespotted grouper Epinephelus coeruleopunctatus Bloch, 1790 in the coastal waters of Padang City, Indonesia Aceh Journal of Animal Science 2 23-7
[30] Yulianto D, Indra I, Batubara A, Efizon D, Nur F, Rizal S, Elvyra R and Muchlisin Z 2020 Length-weight relationships and condition factors of mullets Liza macrolepis and Moolgarda engeli (Pisces: Mugilidae) harvested from Lambada Lhok waters in Aceh Besar, Indonesia [version 2; peer review: 2 approved] F1000Research 9

[31] Ndiaye W, Diouf K, Samba O, Ndiaye P and Panfili J 2015 The length-weight relationship and condition factor of white grouper (Epinephelus aeneus, Geoffroy Saint Hilaire, 1817) at the South-West Coast of Senegal, West Africa International Journal of Advanced Research 3 145-53

[32] Jin S, Yan X, Zhang H and Fan W 2015 Weight–length relationships and Fulton’s condition factors of skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean PeerJ 3 e758

[33] Buddemeier R W, Kleypas J A and Aronson R B 2004 Coral reefs & global climate change. Potential contributions of climate change to stresses on coral reef ecosystems. (USA, 56 pp: Pew Center on Global Climate Change, Arlington)

[34] Raymundo L J, Maypa A P, Gomez E D and Cadiz P 2007 Can dynamite-blasted reefs recover? A novel, low-tech approach to stimulating natural recovery in fish and coral populations Marine Pollution Bulletin 54 1009-19