Improved quantum test for linearity of a Boolean function

Kaushik Chakraborty and Subhamoy Maitra
Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India,
Email: kaushik.chakraborty9@gmail.com, subho@isical.ac.in

Let a Boolean function be available as a black-box (oracle) and one likes to devise an algorithm to test whether it has certain property or it is ϵ-far from having that property. The efficiency of the algorithm is judged by the number of calls to the oracle so that one can decide, with high probability, between these two alternatives. The best known quantum algorithm for testing whether a function is linear or ϵ-far (0 < ϵ < $\frac{1}{2}$) from linear functions requires $O(\epsilon^{-\frac{1}{2}})$ many calls [Hillery and Andersson, Physical Review A 84, 062329 (2011)]. We show that this can be improved to $O(\epsilon^{-\frac{1}{4}})$ by using the Deutsch-Jozsa and the Grover Algorithms.

PACS numbers: 03.67.Lx

Keywords: Linearity Testing, Deutsch-Jozsa Algorithm, Grover Algorithm, Boolean Functions.

I. INTRODUCTION

Consider the model where a Boolean function is implemented inside a black box and we can obtain the output given an input in constant time. One such operation may be referred to as a query. Now we like to test several properties of the Boolean function by exploiting such queries. Naturally, we like to test the properties with as less many queries as possible. In this paper we consider algorithms to test whether a Boolean function is linear or it is ϵ-far from linear functions. The best known classical algorithm (BLR test [4]) for testing this with good success probability requires $O(\frac{1}{\epsilon})$ query complexity. Naturally, we like to test the properties with as less many queries as possible. In this paper we consider algorithms to test whether a Boolean function is linear or it is ϵ-far from linear functions. The best known classical algorithm (BLR test [4]) for testing this with good success probability requires $O(\frac{1}{\epsilon})$ query complexity. Naturally, we like to test the properties with as less many queries as possible.

A. Basics of Boolean functions

A Boolean function on n variables may be viewed as a mapping from $V_n = \{0,1\}^n$ into $\{0,1\}$. The truth table of a Boolean function $f(x_1,\ldots,x_n)$ is a binary string of length 2^n, $f = [f(0,0,\ldots,0), f(0,1,\ldots,0), f(1,0,\ldots,0), \ldots, f(1,1,\ldots,1)]$. Let Ω_n be the set of all n-variable Boolean functions and it is easy to note that $|\Omega_n| = 2^{2^n}$.

The Hamming weight of a binary string St is the number of 1’s in St denoted by $wt(St)$. An n-variable function f is said to be balanced if its truth table contains an equal number of 0’s and 1’s, i.e., $wt(f) = 2^{n-1}$. Also, the Hamming distance between equidimensional binary strings St_1 and St_2 is defined by $d(St_1, St_2) = wt(St_1 \oplus St_2)$, where \oplus denotes the addition over $GF(2)$.

An n-variable Boolean function $f(x_1,\ldots,x_n)$ can be considered to be a multivariate polynomial over $GF(2)$. This polynomial can be expressed as $GF(2)$ sum of products representation of all distinct k-th order product terms $(0 \leq k \leq n)$ of the variables. More precisely, $f(x_1,\ldots,x_n)$ can be written as

$$a_0 \oplus \bigoplus_{1 \leq i \leq n} a_i x_i \oplus \bigoplus_{1 \leq i < j \leq n} a_{ij} x_i x_j \oplus \cdots \oplus a_{12\ldots n} x_1 x_2 \cdots x_n,$$

where the coefficients $a_0, a_{ij}, \ldots, a_{12\ldots n} \in \{0,1\}$. This representation of f is called the algebraic normal form (ANF) of f. The number of variables in the highest order product term with nonzero coefficient is called the algebraic degree, or simply the degree of f and denoted by $deg(f)$.

Functions of degree at most one are called affine functions. An affine function with constant term equal to zero is called a linear function. The set of all n-variable affine functions is denoted by A_n. That is the set of affine functions contains all the linear functions and their complements.

Let $x = (x_1,\ldots,x_n)$ and $a = (a_0, a_1, \ldots, a_n)$ both belong to $\{0,1\}^n$ and the inner product

$$a \cdot x = a_1 x_1 \oplus \cdots \oplus a_n x_n.$$

A Boolean function $l(x)$ is called linear if it can be written as $l(x) = a \cdot x$ for some fixed a. Testing whether a Boolean function (given as an oracle) is linear or not is an important question in the field of computational complexity [3].

Let $f(x)$ be a Boolean function on n variables. Then the Walsh transform of $f(x)$ is a real valued function over $\{0,1\}^n$ which is defined as

$$W_f(\omega) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus \omega \cdot x}.$$

One may also note the Parseval’s relation in this case, which is

$$\sum_{\omega \in \{0,1\}^n} W_f^2(\omega) = 2^n.$$
We also like to define the normalized Walsh transform as
\[NW_f(\omega) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) \cdot \omega \cdot x}. \]

It is easy to check that \(\sum_{\omega \in \{0,1\}^n} NW_f^2(\omega) = 1. \)

The non-linearity (or non-affinity) of an \(n \)-variable function \(f \) is
\[nl(f) = \min_{g \in A(n)} (d(f,g)), \]
i.e., the distance from the set of all \(n \)-variable affine functions. In terms of Walsh spectrum, the non-linearity of \(f \) is given by
\[nl(f) = 2^{n-1} - \frac{1}{2} \max_{\omega \in \{0,1\}^n} |W_f(\omega)|. \]

B. Connection of Walsh spectrum with Deutsch-Jozsa algorithm

Distinguishing constant and balanced Boolean functions with constant query complexity has been an important landmark in quantum computational framework that is well known as Deutsch-Jozsa algorithm [6]. Now let us discuss the relation between Deutsch-Jozsa algorithm and the Walsh Spectrum of a Boolean function, which is one of the important tools in our work. It is known that given a classical circuit \(f \), there is a quantum circuit of comparable efficiency which computes the transformation \(U_f \) that takes input like \(|x, y\rangle \) and produces output like \(|x, y \oplus f(x)\rangle \). Let \(|−\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \). Then \(U_f \) applied to the state \(|x|−\rangle \) will produce \((-1)^{f(x)}|x|−\rangle \). For brevity, we drop \(|−\rangle \) and by abuse of notation, we denote that \(U_f \) takes \(|x\rangle \) to \((-1)^{f(x)}|x\rangle \).

Let \(f \) be either constant or balanced and the corresponding quantum implementation \(U_f \) is available. Deutsch-Jozsa [6] provided a quantum algorithm that can decide in constant time which one it is. Let us now describe another interpretation of Deutsch-Jozsa algorithm in terms of Walsh spectrum values [11]. We denote the operator for Deutsch-Jozsa algorithm as
\[D_f = H^{\otimes n} U_f H^{\otimes n}, \]
where the Boolean function \(f \) is available as an oracle \(U_f \). As in the case of \(U_f \), for brevity, we abuse the notation and do not write the auxiliary qubit, i.e., \(|−\rangle \) and the corresponding output in this case. Now one can observe that [11]
\[D_f |0^{\otimes n}\rangle = \sum_{z \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x) \cdot 2^n} |z\rangle = \sum_{z \in \{0,1\}^n} \frac{W_f(z)}{2^n} |z\rangle = \sum_{z \in \{0,1\}^n} NW_f(z) |z\rangle. \]

Note that the associated probability with a state \(|z\rangle \) is \(\frac{W_f^2(z)}{2^{2n}} = NW_f^2(z) \).

C. Background on linearity testing

Let \(l \) be a linear \(n \)-variable Boolean function, i.e., \(l(x) = \omega \cdot x \), available in the form of an oracle and one likes to get the \(\omega \). For a linear function \(l(x) = \omega \cdot x \), \(W_l(\omega) = 2^n \) and \(W_l(z) = 0 \), for \(z \neq \omega \). Thus the observed state of \(n \) bits will clearly output \(\omega \) itself (with probability \(\frac{W^2_l(\omega)}{2^{2n}} = 1 \)). That is, the Deutsch-Jozsa algorithm solves this problem in constant time. In classical model, we need \(O(n) \) time to find out the \(\omega \). This difference and related results have been pointed out in [6].

Now let us come to the question of testing linearity of a Boolean function. This is a problem in the area of property testing and we refer to [2 3 6] for further pointers in this specific area. There is huge literature in the area of property testing in general, e.g., one may also refer to [1] towards ideas in quantum property testing for bounded-degree graphs.

Given two \(n \)-variable Boolean functions \(f, g \), we define \(f, g \) as \(\epsilon \)-far if \(\frac{d(f, g)}{2^n} \geq \epsilon \), i.e., if the Hamming distance between the truth tables of \(f \) and \(g \) is at least \(\epsilon 2^n \). Further, an \(n \)-variable Boolean function \(f \) will be called \(\epsilon \)-far from a subset \(S \) of \(n \)-variable Boolean functions if \(f \) is \(\epsilon \)-far from all the functions \(g \in S \).

The probabilistic classical test for linearity is well known as the BLR test [3] that exploits the condition \(l(x \oplus y) = l(x) \oplus l(y) \) for a linear function \(l \), where \(a_0 = 0 \). However, if \(a_0 = 1 \) for an affine function \(t \), then we have the condition \(t(x \oplus y) = t(x) \oplus t(y) \). One may note that one can easily decide whether \(a_0 = 0 \) or 1 by checking the output of the function at the all-zero, i.e., \((0,0,\ldots,0) \) input. Thus the probabilistic classical algorithm for testing whether an \(n \)-variable Boolean function \(f \) is affine or not works as follows.

Algorithm 1.

1. Let \(a_0 = f(0,0,\ldots,0) \).

2. For \(t \) many times
 (a) Randomly choose distinct \(x, y \in \{0,1\}^n \).
 (b) Check the condition \(f(x \oplus y) = a_0 \oplus f(x) \oplus f(y) \).
 (c) If the condition is not satisfied, report that \(f \) is not affine and terminate.

3. Report that the function is affine and terminate.

It is well known that if the algorithm reports that \(f \) is non-affine, then it is non-affine with probability 1, but if it reports that \(f \) is affine, then it succeeds with some probability depending on the number of iterations \(t \).
simple analysis shows that if one needs to decide whether a function is ϵ-far from the set of affine functions, then the probability of success is greater than or equal to $\frac{1}{2} - \frac{1}{2\epsilon^2}$ (or any constant c, such that $\frac{1}{2} < c < 1$) where t is $O\left(\frac{1}{\epsilon^2}\right)$. However, the detailed analysis of this probability of success is quite involved and one may refer to [2, 9] in this direction.

Consider that an n-variable function f is ϵ-far from A_n, the set of all n-variable affine functions. That means, $n\ell(f) \geq c2^n$. Using Parseval’s result, it is easy to note that $n\ell(f) \leq 2^{n-1} - \frac{2^2}{n}$. The upper bound can be achieved for functions on even number of variables where the functions are known as bent functions. However, the problem is yet to be settled for the cases on odd number of variables. This tells a function on n variables can be ϵ-far from the set of affine functions where $0 \leq \epsilon \leq \frac{1}{2} - \frac{1}{2\epsilon^2}$. For details of combinatorial, cryptographic and coding theoretic results related to Boolean functions, one may see [10] and the references therein. In general, as $\frac{1}{2\epsilon^2}$ tends to 0 for large n, we will consider $0 < \epsilon < \frac{1}{2}$ throughout this document.

Towards solving many computational problems, quantum algorithms provide improved query complexity and in that line a quantum algorithm is described in [3], that achieves an improved query complexity $O\left(\frac{1}{\epsilon^2}\right)$. We noted that this problem is related to different variants of satisfiability problem [2, 9] and thus it may be natural to obtain a quadratic speed-up over the classical paradigm using Grover algorithm [7]. We find that this is indeed true and present a probabilistic quantum algorithm that works in $O\left(\frac{1}{\epsilon^2}\right)$ query complexity.

II. OUR PROPOSAL

We first present our basic idea using Deutsch-Jozsa [4] algorithm.

Algorithm 2.

1. Let $|\Psi\rangle = D_f(|0\rangle^{\otimes n})$.
2. Measure $|\Psi\rangle$ in computational basis and let the measured state be $a^{(0)}$ (an n-bit pattern).
3. For t many times ($i = 1$ to t)
 (a) Let $|\Psi\rangle = D_f(|0\rangle^{\otimes n})$.
 (b) Measure $|\Psi\rangle$ in computational basis and let the measured state be $a^{(i)}$ (an n-bit pattern).
 (c) If $a^{(i)} \neq a^{(0)}$, report that the function is not affine and terminate.
4. Report that the function is affine and terminate.

If Algorithm 2 reports that a function is not affine, then it reports this correctly. However, if it reports that the function is affine, that may or may not be correct. If the function is affine, then Algorithm 2 reports it correctly. However, there may be cases where the function is not affine, but still the algorithm reports it as an affine function. Consider that the function is ϵ-far from A_n. Then one can check that $|NW_f(\omega)| = 1 - 2\epsilon$ for any $\omega \in \{0, 1\}^n$. Thus, $|NW_f(a^{(0)})| \leq 1 - 2\epsilon$. To wrongly report the function is affine, Algorithm 2 must report $a^{(i)} = a^{(0)}$ for all $i = 1$ to t. This happens with probability $\leq (1 - 2\epsilon)^t$. Thus, it is easy to note that with $O\left(\frac{1}{\epsilon^2}\right)$ many iterations, we can reduce the error probability below $\frac{1}{2}$, i.e., the success probability will be greater than or equal to $\frac{1}{2}$.

In terms of query complexity, this is same as the case for the classical BLR [4] test. We will now improve this algorithm towards better query complexity.

A. Use of Grover Algorithm for further improvement

Consider that a function is ϵ-far from A_n. In line of Grover algorithm [7], we will try to reduce the amplitude corresponding to the state $|a^{(0)}\rangle$ and increase the amplitude of the other states so that we can quickly obtain an $a^{(0)}$ after measurement, which is not equal to $a^{(0)}$.

Our idea is as follows. Instead of equal superposition $H^\otimes n(|0\rangle^{\otimes n}) = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0, 1\}^n} |x\rangle$ in Grover algorithm, we will use the state of the form $|\Psi\rangle = D_f(|0\rangle^{\otimes n}) = \sum_{x \in \{0, 1\}^n} W_{NW_f(a^{(0)})}(x) |x\rangle$.

Further, towards inverting the phase, we will use another n-variable Boolean function $g(x)$, different from $f(x)$, where $g(x) = 0$, when $x = a^{(0)}$, and $g(x) = 1$, otherwise. Based on $g(x)$, we implement the inversion operator as O_g, that inverts the phase of the states $|x\rangle$ where $x \in \{0, 1\}^n$: $x \neq a^{(0)}$. Note that one can efficiently implement $g(x)$ in classical domain with $O(n)$ many gates and thus we can also implement O_g efficiently. Finally, we consider the operator

$$G_t = ([2|\Psi\rangle\langle\Psi| - I)O_g)^t$$

on $|\Psi\rangle$ to get $|\Psi_t\rangle$.

Consider the n-qubit state $|\Psi\rangle = \sum_{s \in S} s_u |s\rangle + \sum_{s \in \{0, 1\}^n \setminus S} u_s |s\rangle$, where u_s, v_s are real and $\sum_{s \in S} u_s^2 + \sum_{s \in \{0, 1\}^n \setminus S} v_s^2 = 1$. For brevity, let us represent $|\Psi\rangle = \sum_{s \in S} u_s |s\rangle + \sum_{s \in \{0, 1\}^n \setminus S} v_s |s\rangle = u |X\rangle + v |Y\rangle$. That is, $w^2 = \sum_{s \in S} u_s^2$ and $v^2 = \sum_{s \in \{0, 1\}^n \setminus S} v_s^2$. In this general framework, consider that $g(x) = 1$, when $x \in S$ and $g(x) = 0$ otherwise. Now we have the following technical result.

Proposition 1. Let $u = \sin \theta$, $v = \cos \theta$. The application of $([2|\Psi\rangle\langle\Psi| - I)O_g)^t$ operator on $|\Psi\rangle$ produces $|\Psi_t\rangle$, in which the amplitude of $|X\rangle$ is $\sin(2t + 1)\theta$.

Proof: For $t = 1$, one can check that $|\Psi_1\rangle = ([2|\Psi\rangle\langle\Psi| - I)O_g)|\Psi\rangle = ([2|\Psi\rangle\langle\Psi|O_g])|\Psi\rangle = O_g|\Psi\rangle$. Now substituting the values of u, v, we get that $|\Psi_1\rangle = \sin 3\theta |X\rangle + \cos 3\theta |Y\rangle$.

Now we will use induction. Let the application of
\((2|\Psi\rangle\langle\Psi| - I)O_g^t\) operator on \(|\Psi\rangle\) updates the amplitude
of \(|X\rangle\) as \(\sin(2\theta + \delta)\), for \(t = k\). From the assumption
we have \([(2|\Psi\rangle\langle\Psi| - I)O_g^k]|\Psi\rangle = \sin(\theta + 2k\delta)|X\rangle +
cos(\theta + 2k\delta)|Y\rangle\). Now, for \(t = k + 1\), it can be checked that
\([(2|\Psi\rangle\langle\Psi| - I)O_g^{k+1}](|\Psi\rangle) = \sin(\theta + (2(k + 1)\delta)|X\rangle +
cos(\theta + 2(k + 1)\theta)|Y\rangle\). Thus, the proof.

In our case, \(S = \{0, 1\}^n \setminus \{a(0)\}\). Let us now present
our improved algorithm.

Algorithm 3.

1. Let \(|\Psi\rangle = D_f((0)^n)\).

2. Measure \(|\Psi\rangle\) in computational basis and let the
measured state be \(a(0)\) (an \(n\)-bit pattern).

3. Consider a Boolean function \(g\) such that \(g(x) = 0\),
when \(x = a(0)\), and \(g(x) = 1\), otherwise.

4. Obtain \(|\Psi_f\rangle = ([2|\Psi\rangle\langle\Psi| - I)O_g^t(|\Psi\rangle)\). (Note that
\(t\) is the significant complexity parameter in this
algorithm.)

5. Measure \(|\Psi_f\rangle\) in computational basis and let the
measured state be \(a(t)\) (an \(n\)-bit pattern).

6. If \(a(t) \neq a(0)\), report that the function is not affine
and terminate.

7. Report that the function is affine and terminate.

In this case, we use the state \(|\Psi_f\rangle\) for measurement
in computational basis. Consider that after the Deutsch-
Jozsa algorithm we obtain an \(n\)-qubit state \(|\Psi_0\rangle\) (before
the measurement) and observed \(a(0)\) after measurement.
In case the function in consideration is indeed affine, i.e.,
of the form \(a_0 \oplus a(0)\), then \(g(x) = 0\). Hence, amplitude of
\(|X\rangle\) (the quantum state which is the superposition of all
states except \(|a(0)\rangle\)), after \(t\) many iterations will remain
as \(\sin(2t + 1)\theta\). Hence the measurement of the state
\(|\Psi_f\rangle\) in computational basis will provide \(a(0)\) again.
In case \(f\) is not affine, we have \(\sin \theta > 0\). Thus, with proper
choice of \(t\), it is possible to obtain \(\sin^2(2t + 1)\theta \geq \frac{2}{\pi}\)
and hence the measurement of the state \(|\Psi_f\rangle\) will provide
\(a(t) \neq a(0)\) with probability \(\geq \frac{2}{\pi}\).

Now the final point left is to show that \(t\) is \(O(\sqrt{\frac{1}{\varepsilon}})\).
As we considered, let \(|\Psi\rangle = u|X\rangle + v|Y\rangle\). Here \(|Y\rangle =
|a(0)\rangle\), i.e., \(u \leq 1 - 2\varepsilon\). Thus, \(u \geq \sqrt{1 - (1 - 2\varepsilon)^2} =
\sqrt{4\varepsilon - 4\varepsilon^2} \geq \sqrt{2}\varepsilon\) as \(\varepsilon < \frac{1}{2}\). We take \(u = \sin \theta\), \(v = \cos \theta\).
That is \(\sin \theta \geq \sqrt{2}\varepsilon\). Considering \(\theta\) small, we can write
\(\sin \theta \approx \theta\) and we want \(t\) such that \((2t + 1)\theta \approx \frac{\pi}{\theta}\).
In this case, \(\sin(2t + 1)\theta\) becomes close to 1 (it is enough to get
\(\sin^2(2t + 1)\theta \geq \frac{2}{\pi}\) or some constant greater than \(\frac{1}{\pi}\).
Thus, it is immediate to note that \(t\) should be \(O(\sqrt{1/\varepsilon})\).
This completes the analysis for the query complexity of
Algorithm 3.

III. CONCLUSION AND OPEN PROBLEMS

In this paper we present a quantum algorithm to test
whether a function is affine or it is \(\varepsilon\)-far \((0 < \varepsilon < \frac{1}{2})\)
from the set of affine functions. While the best known
classical algorithm \([4]\) requires \(O(\frac{1}{\varepsilon^2})\) query complexity and
the existing quantum algorithms \([5,6,8]\) takes \(O(\frac{1}{\varepsilon})\), the
query complexity of our proposal is \(O(\frac{1}{\varepsilon^2})\).

One important issue is how the complexity is related to
\(n\), the number of input variables to the Boolean function
in question. As we have discussed earlier, while testing
for whether a function is \(\varepsilon\)-far from the set of \(n\)-variable
affine functions \(A_n\), we have \(0 \leq \varepsilon \leq \frac{1}{2} - \frac{1}{\sqrt{2\pi n}}\). If a
function is at a constant distance \(\delta\) from \(A_n\), then \(\varepsilon =
\frac{\delta}{\sqrt{2\pi n}}\) and thus the Algorithm 3 will require \(O(2^{\frac{n}{\delta}})\) time
complexity. If \(\delta = \frac{\alpha^2}{\zeta(n)}\), then the algorithm will require
order of \(\sqrt{\zeta(n)}\) time. That is, if \(\zeta(n)\) is polynomial in \(n\), then
we have a quantum probabilistic polynomial-time
algorithm here. The algorithm will require constant time
for highly nonlinear functions where \(\delta = O(2^n)\), i.e., when
\(\varepsilon\) is constant.

Informally speaking, it is natural from the optimality results
\([4]\) of the Grover algorithm, that lesser quantum
query complexity than what we propose here for linearity
testing may not be achievable. It is interesting to
explore how this kind of technique using Walsh spectrum
of Boolean functions, associated with the Deutsch-Jozsa
and the Grover Algorithms, can be exploited for testing
some other properties of Boolean functions.

[1] A. Ambainis, A. M. Childs, Y. -K. Liu, Proceedings of RANDOM 2011, Lecture Notes in Computer Science 6845, pp. 365-376, [arXiv:1012.3174] [quant-ph]
[2] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi and M. Sudan, IEEE Trans. Inform. Theory, 42, 1781 (1996).
[3] E. Bernstein and U. Vazirani, Proceedings of the 25th Annual ACM Symposium on Theory of Computing, (ACM Press, New York, 1993), pp. 11–20.
[4] M. Blum, M. Luby and R. Rubinfeld, J. Comput. Syst. Sci. 47(3), 549 (1993).
[5] M. Boyer, G. Brassard, P. Hoeyer and A. Tapp, Fortsch. Phys. 46: 493506 (1998).
[6] D. Deutsch and R. Jozsa, Proceedings of Royal Society of London A, 439, 553–558 (1992).
[7] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[8] M. Hillery and E. Andersson, Physical Review A 84, 062329 (2011).
[9] T. Kaufman, S. Litsyn and N. Xie, Siam J. Comput., 39(5), 1988 (2010).
[10] S. Kavut, S. Maitra and M. D. Yucel, IEEE Trans. Inform. Theory, 53(5), 1743 (2007).
[11] S. Maitra and P. Mukhopadhyay, International Journal on Quantum Information, 3(2), 359 (2005).