High field magnetization of (Benzo-TTFVS)$_2$FeBr$_4$ and (Benzo-TTFVO)$_2$FeBr$_4$

S Noguchi1,4, A Kuribayashi1,4, T Hiraoka2,4, H Fujiwara2,3,4, T Sugimoto2,3,4, S Kimura5, M Hagiwara2, K Kindo6 and T Ishida1,3,4

1Department of Physics and Electronics, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531, Japan

2Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-2, Naka-ku, Sakai, 599-8570, Japan

3Institute for Nanofabrication Research, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531, Japan

4CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Japan

5KYOKUGEN, Osaka University, Machikaneyamacho 1-3, Toyonaka, 560-8531, Japan

6ISSP, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, 277-0882, Japan

E-mail: noguchi@pe.osakafu-u.ac.jp

Abstract. We performed high field magnetization measurements up to 55 T for newly synthesized antiferromagnetic charge-transfer salts, (Benzo-TTFVS)$_2$FeBr$_4$ with $T_N = 5.8$ K and (Benzo-TTFVO)$_2$FeBr$_4$ with $T_N = 9.3$ K. A spin-flop behavior at 1.8 T and a saturation at 14.8 T were observed in the magnetization curve at 0.5 K for the (Benzo-TTFVS)$_2$FeBr$_4$ salt. For the (Benzo-TTFVO)$_2$FeBr$_4$ salt a spin-flop at 6.9 T and a saturation at 36.2 T were observed. We estimate the exchange interaction between d spins and the magnetic anisotropy for both salts from the magnetization data.

1. Introduction

Search for magnetic molecular conductors, especially ferromagnetic semiconductors and metals, has been a great issue for the development of molecular-type spintronics. We have extensively developed new charge-transfer salts composed of bent donor molecules and magnetic counter anions. We have found a ferromagnetic semiconductor based on a 2:1 salt (EDT-TTFVO)$_2$FeBr$_4$, in which the π electrons and the d spins significantly interact with each other, giving rise to a ferrimagnetic ordering at 1 K [1-3]. Subsequently we have synthesized a 1:1 salt (BEDT-TTFVS)FeBr$_4$, which exhibits a semiconducting behavior and a ferromagnetic ordering at 1.8 K [4,5]. These findings promoted us to search out FeBr$_4^{-}$ salts with other bent molecules.
(Benzo-TTFVS)$_2$FeBr$_4$ and (Benzo-TTFVO)$_2$FeBr$_4$ are recently developed by our group with bent donor molecules of benzotetrathiafulvalenothioquinone-1,3-dithiolemethide (Benzo-TTFVS) [6] and benzotetrathiafulvalenoquinone-1,3-dithiolemethide (Benzo-TTFVO) [7], respectively. The (Benzo-TTFVS)$_2$FeBr$_4$ salt shows a semiconducting behavior below 100 K with small activation energy of < 30 meV and an antiferromagnetic ordering at $T_N = 5.8$ K. The ESR experiment by Hayakawa et al. suggests that the strong fluctuation is coupled with the π-d correlation along the b-direction for which donor molecules and counter anions are stacked alternately [8]. The (Benzo-TTFVO)$_2$FeBr$_4$ salt, on the other hand, exhibits a clear metal-to-insulator transition at 166 K accompanied by a one-dimensional structural phase transition of the donor-stacked columns [7]. An antiferromagnetic ordering occurs at $T_N = 9.3$ K, which means that the exchange interaction between d spins for (Benzo-TTFVO)$_2$FeBr$_4$ is larger than that for (Benzo-TTFVS)$_2$FeBr$_4$.

The high field magnetization process towards the saturation of the magnetic moments for antiferromagnets provides us the information about the exchange interaction between d spins and the magnetic anisotropy energies. In this study, we performed the high field magnetization measurements up to 55 T to discuss the exchange interaction of the isostructural salts with the structural parameters and the band structure.

2. Experimental

The (Benzo-TTFVS)$_2$FeBr$_4$ and (Benzo-TTFVO)$_2$FeBr$_4$ salts were obtained by an electrochemical oxidation method [6,7]. The high field magnetization of (Benzo-TTFVS)$_2$FeBr$_4$ was measured up to 30 T using a homemade pulsed-magnet system combined with a 3He refrigerator by a conventional induction method. The high field magnetization measurements were performed up to 55 T for (Benzo-TTFVO)$_2$FeBr$_4$ at High Magnetic Field Laboratory of Osaka University.

3. Results and discussion

Figure 1 shows the magnetization curve of (Benzo-TTFVS)$_2$FeBr$_4$ measured at 0.5 K. Amount of the sample used in the measurements is 5.2 mg. The magnetization curve shows a positive curvature around 2 T, a linear increase with increasing field up to 14 T and a saturation at $H_c^2 = 14.8$ T. The saturation moment is 5.1 μ_B per formula unit, which means no contribution of the π electrons to the magnetic moment. A clear spin-flop was observed at $H_{c1} = 1.8$ T as shown in the inset of Fig. 1.

Figure 2 shows the magnetization curve of (Benzo-TTFVO)$_2$FeBr$_4$ measured at 1.3 K. Amount of the sample used in the measurements is 2.6 mg. The magnetization curve shows a positive curvature around 7 T, a linear increase with increasing field up to 36 T and a saturation at $H_c^2 = 36.2$ T. In the high field region above 36 T a slight increase of the magnetization may be recognized. However, its origin is not clear at this stage of our experiment because of the small amount of the sample. A spin-flop is observed at $H_{c1} = 6.9$ T as shown in the inset of Fig. 2.

According to the mean-field theory [9], the H_{c1}’s and H_{c2}’s in the magnetization curves are given by relations of $H_{c1} = (2H_E H_A)^{1/2}$ and $H_{c2} = 2H_E$, where H_E and H_A are the exchange field and the anisotropy field, respectively. In the case of (Benzo-TTFVS)$_2$FeBr$_4$, H_E is 7.4 T and H_A is 0.22 T,
while \(H_E \) is 18.1 T and \(H_A \) is 1.32 T in the case of (Benzo-TTFVO)\(_2\)FeBr\(_4\). If we assume that the exchange interaction acts only on the nearest neighbor magnetic ions, the Hamiltonian of the exchange interaction on the \(S_i \) spin is given as \(H = -2zJ<S>S_i = g\mu_B H E S_i \), where \(J \) is the exchange integral, \(z \) being a number of the nearest neighbors, \(<S>=5/2 \), \(g=2 \), and \(\mu_B \) is the Bohr magneton. The values of \(zJ \) are
estimated to be -0.17 meV = -2.0 K for (Benzo-TTFVS)$_2$FeBr$_4$ and -0.41 meV = -4.7 K for (Benzo-
TTFVO)$_2$FeBr$_4$.

Structural analysis reveals that the Br-Br contact distance (d_{Br-Br}) between the FeBr$_4^-$ ions along the
intercolumn direction is very different between the salts. d_{Br-Br} for (Benzo-TTFVS)$_2$FeBr$_4$ is 4.10 Å
comparable to the van der Waals one, while that for (Benzo-TTFVO)$_2$FeBr$_4$ is 4.01 Å shorter than the
van der Waals one. For (Benzo-TTFVS)$_2$FeBr$_4$, both the d-d superexchange interaction between the
FeBr$_4^-$ ions through the Br atoms and the π-d interaction play an important role. On the other hand, the
superexchange interaction may be strong for (Benzo-TTFVO)$_2$FeBr$_4$, which raises the T_N as well as the
H_{c2} in the magnetization curve compared to those for (Benzo-TTFVS)$_2$FeBr$_4$.

Finally, we point out the difference in the estimation of the exchange interaction from the T_N
and the H_{c2}. In the framework of mean field theory, both the T_N and the H_{c2} are proportional to the exchange
interaction. The ratio of the T_N between (Benzo-TTFVS)$_2$FeBr$_4$ and (Benzo-TTFVO)$_2$FeBr$_4$ is
calculated to be 0.62, while the ratio of the H_{c2} between (Benzo-TTFVS)$_2$FeBr$_4$ and (Benzo-
TTFVO)$_2$FeBr$_4$ is 0.40. There may exist key parameters in the different ratio so as to reveal the
mechanism of these antiferromagnetic ordering.

Acknowledgements

This work was partly supported by a Gant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of Japan (Grant No. 17540336).

References

[1] Matsumoto T, Kominami T, Ueda K, Sugimoto T, Tada T, Noguchi T S, Yoshino H, Murata K,
Shiro M, Negishi E, Toyota N, Endo S and Takahashi K 2002 Inorg. Chem. 41 4736
[2] Noguchi S, Matsumoto A, Matsumoto T, Sugimoto T and Ishida T2004 Physica B 346-347 397
[3] Matsumoto T, Sugimoto T, Aruga Katori H, Noguchi S and Ishida T 2004 Inorg. Chem. 43 3780
[4] Wang M, Fujiwara H, Sugimoto T, Noguchi S and Ishida T 2005 Inorg. Chem. 44 1184
[5] Noguchi S, Kosaka T, Wang M, Fujiwara H, Sugimoto T and Ishida T 2006 to be published in AIP Conf. Proc. On LT24
[6] Hiraoka T, Kamada Y, Matsumoto T, Fujiwara H, Sugimoto T, Noguchi S, Ishida T, Nakazumi
H and Aruga Katori H. 2005 J. Mater. Chem. 15 3479
[7] Hiraoka T, Fujiwara H, Sugimoto T, Nakazumi H, Noguchi S, Ishida T., Yokogawa K, Murata
K, Mori T and Aruga Katori H, in preparation.
[8] Hayakawa T, Kawamata S, Hiraoka T, Fujiwara H, Sugimoto T and Ishid T, submitted to J.
Mag. Mag. Mater.
[9] Nagamiya T, Yosida K and Kubo R 1955 Adv. Phys. 4 1