Resistive Switching Memory of TiO_2 Nanowire Networks Grown on Ti Foil by a Single Hydrothermal Method

Ming Xiao¹,²,³ · Kevin P. Musselman¹,²,³ · Walter W. Duley¹,⁴ · Norman Y. Zhou¹,²,³

Received: 3 September 2016 / Accepted: 23 October 2016 / Published online: 21 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10^4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based ReRAM device in the future.

Keywords TiO_2 nanowire networks · Resistive switching memory · Ti foil · Hydrothermal process · Al electrode

1 Introduction

Resistive switching memory (ReRAM) utilizing an electric-field-induced resistance switching phenomena has attracted great attention for next-generation nonvolatile memory due to its advantages of simple sandwich structure of metal/insulator/metal, high storage density, and fast operation speed [1, 2]. Among different metal oxide...
materials that demonstrate potential for ReRAM, including NiO [3, 4], TiO$_2$ [1, 5, 6], ZnO [2, 7, 8], VO$_2$ [9], Ta$_2$O$_5$ [10, 11], CuO [12, 13], WO$_3$ [14], etc., TiO$_2$ nanomaterial-based memory has been widely studied due to its ease of fabrication [1, 15] and its ability to demonstrate both unipolar [16, 17] and bipolar [18–20] resistive switching behavior.

Compared to TiO$_2$ thin films used for ReRAM [6, 19–22], few studies based on one-dimensional TiO$_2$ nanomaterials for ReRAM have been reported. It was recently shown that a single TiO$_2$ nanowire-based resistive switching device demonstrated multilevel memory behavior [23, 24]. But the fabrication process of Au electrodes bridging a single nanowire required costly and time-consuming electron-beam lithography. Therefore, a facile way to fabricate TiO$_2$ nanowire-based ReRAM is required. Furthermore, TiO$_2$ nanorod [25, 26] and nanotube [27] arrays grown on fluorine-doped tin oxide (FTO) glass substrate by hydrothermal synthesis were also employed in resistive switching memory devices, however transparent conductive glass was required as a substrate. It was recently reported that TiO$_2$ nanowire networks could be grown directly on Ti foil via a hydrothermal method [28–31] or oxidation process [32, 33], and the applications of these nanowires in dye-sensitized solar cells [29, 30] and field emission [32] were investigated. But the suitability of these TiO$_2$ nanowires for ReRAM devices and the corresponding switching mechanism has not been reported yet.

In this paper, TiO$_2$ nanowire networks were directly grown on Ti foil by a hydrothermal method and their resistive switching behavior was investigated. Since the Ti foil serves both as the source of Ti during the synthesis of the TiO$_2$ nanowire, as well as a bottom electrode for the device, preparation of the device is straightforward, cost effective and highly reproducible. Notably, the electrical contact between the nanowires and the bottom metal substrate is ensured. According to the current–voltage (I–V) measurements of the fabricated Al/TiO$_2$ nanowire networks/Ti device, a switching mechanism based on the migration of oxygen vacancies is proposed. The reliability of the fabricated device was examined by studying its retention and endurance performance.

2 Materials and Methods

The synthesis process of TiO$_2$ nanowire networks on Ti foil is referred to [28, 29]. Briefly, a piece of Ti foil with a dimension of 1.5 × 3.0 cm × 0.127 mm (Sigma Aldrich) was ultrasonically cleaned in acetone, isopropanol and Milli-Q water for 10 min in sequence and then placed against the wall of a 125 mL Teflon-lined stainless steel autoclave filled with 40 mL of 1 M NaOH aqueous solution. Then, the sealed autoclave was put into an oven at a temperature of 220 °C for 20 h. Next the Ti foil covered with nanowires was taken out of the autoclave and immersed in 50 mL of 0.6 M HCl solution for 1 h to exchange Na$^+$ with H$^+$. Finally, the foil was annealed inside a furnace at 500 °C for 3 h in air to transform the H$_2$Ti$_2$O$_5$·H$_2$O nanowires to anatase nanowires. The color of the foil turned white after the calcination process.

During device fabrication, the top electrode was prepared by depositing an Al layer with a thickness of 150 nm through a shadow mask having circular holes (1 mm in diameter) using e-beam evaporation process (Intevac e-beam evaporation system). The pressure was $<4 \times 10^{-6}$ Torr, and the deposition rate was 1 Å s$^{-1}$. Electrical measurements were performed using a Keithley 2602A source-meter at ambient conditions. The bias voltage was applied to the top Al electrode, and the Ti foil was grounded during electrical measurement.

For the characterization of the TiO$_2$ nanowires, a field-emission scanning electron microscope (FESEM, LEO-1550) was used to check the surface morphology. Transmission electron microscopy (TEM, JEOL 2010F) was used to examine the structure and crystalline defects of TiO$_2$ nanowires. X-ray diffraction analysis (XRD, PANalytical X’pert PRO MRD) and Raman analysis (Reinshaw micro-Raman spectrometer) were used to identify the crystal structure and phase, respectively. Furthermore, X-ray photoelectron spectroscopy measurement (XPS, Thermo VG Scientific ESCALab 250) was carried out to examine the surface chemical states of the nanowires.

3 Results and Discussion

3.1 Characterization of TiO$_2$ Nanowire Networks

The SEM image illustrated in Fig. 1a demonstrates a network of TiO$_2$ nanowires with lengths of several micrometers from the top view. The statistical summary shows that the nanowires have an average diameter of 26 ± 4 nm. The uniformity of the diameter of the nanowires indicates that the growth occurred predominantly through epitaxial addition of growth units to the tips [29]. During the hydrothermal process, the TiO$_2$ nanowires grow perpendicularly to the substrate first and then the tips of nanowires appear to bend and stick together to form a network of nanowires [29]. Therefore, the top Al electrode, as deposited, makes heterogeneous contact with the nanowires, and the I–V characteristics then reflect the average contact with a large number of individual nanowires. TEM image of the TiO$_2$ nanowires (Fig. 1b) shows the (101) plane of anatase in addition to many crystalline defects. These defects could
have a significant effect on the resistive switching behavior of the fabricated devices as discussed later in this paper.

A room-temperature Raman spectrum of TiO$_2$ nanowires in Fig. 1c shows peaks at 141, 194, 395, 512, and 634 cm$^{-1}$. These peaks are characteristic of the anatase phase. The peaks at 141, 194, and 634 cm$^{-1}$ are assigned to the E_g modes, while the other two peaks at 512 and 395 cm$^{-1}$ are assigned to the B_{1g} modes in TiO$_2$ [34]. The XRD characterization results in Fig. 1d further confirm the phase of the TiO$_2$ nanowires, as the peaks of (101), (112), and (200) planes of anatase in agreement with the standard spectrum (JCPDS No. 21-1272). It should be noted that one of the anatase peaks at 38.57° overlapped with the peaks of the Ti foil (JCPDS No. 44-1294).

Moreover, the surface chemical states of the TiO$_2$ nanowires were analyzed by XPS. Figure 1e shows peaks at binding energies of 459.4 and 465.1 eV, which can be assigned to Ti 2p$_{3/2}$ and 2p$_{1/2}$, respectively. These are typical XPS spectra of Ti$^{4+}$ in TiO$_2$. The signal from Ti$^{3+}$ is too small to be detected. Furthermore, two Gaussian peaks are observed in the fit to the O 1s spectrum (Fig. 1f). The binding energy at 529.66 eV is assigned to the O$^{2-}$ bond in TiO$_2$ while the binding energy at 531.33 eV can be attributed to oxygen.
vacancies in TiO$_2$ [27]. XPS scans show that the synthesized TiO$_2$ nanowires contain locally distributed oxygen vacancies, in agreement with the high-resolution TEM (HRTEM) result in Fig. 1b.

3.2 Electrical Performance Evaluation

3.2.1 Resistive Switching Characteristics

The resistive switching behavior was examined by applying the voltages as follows: 0 V \rightarrow -10 V \rightarrow 0 V \rightarrow 10 V \rightarrow 0 V with a sweeping rate of 0.1 V s$^{-1}$. The I–V characteristic curve illustrated in Fig. 2 demonstrates a typical bipolar switching behavior. The Al/TiO$_2$ nanowire networks/Ti device was initially in the high-resistance state (HRS). During the application of the negative sweep from 0 to -10 V, the negative current increased gradually, and the device switched to low-resistance state (LRS, ON state) (SET process). The device maintained the LRS during the forward voltage sweep but switched back to the HRS during the voltage sweep back from 10 to 0 V (RESET process). Notably, the resistive switching behavior is obtained without an initial electroforming process, which was normally required for devices consisting of TiO$_2$ thin films [6, 35, 36]. This is expected to be due to the high concentration of defects (oxygen vacancies) in the TiO$_2$ nanowires after the synthesis process, as seen in the HRTEM image in Fig. 1b and the O 1s XPS spectrum in Fig. 1f. Forming-free resistive switching behavior has also been observed with metal oxide materials containing a large defect concentration [12, 37, 38]. However, some devices require forming treatments, such as hydrogen annealing [39] and Ar$^+$ irradiation [40] to generate an oxygen vacancy layer to enable or enhance the resistive switching characteristics. This electroforming-free characteristic is attractive for ReRAM since it would simplify the memory operation and enable higher density memory devices [41].

It should be noted that this resistive switching behavior is quite different from Ref. [17], which shows that Ti/TiO$_2$ film/Al structures display linear I–V characteristic curves due to the Ohmic–Ohmic contact combination. The difference is expected to be ascribed to the reactions at the Ti/ TiO$_2$ and Al/TiO$_2$ interfaces during the synthesis of the TiO$_2$ nanowire networks and the deposition of Al layer. In general, the Ti layer is regarded as a chemically reactive contact that will reduce the TiO$_2$ and create a locally high concentration of oxygen vacancies near the Ti/TiO$_2$ interface [19, 42, 43]. The formation reaction of oxygen vacancies is expressed in the Kröger–Vink notation [44] as

$$\text{O}_0 \rightarrow \text{V}_0^- + 2e^- + \frac{1}{2} \text{O}_2$$

(1)

where O$_0$ is the oxygen on the TiO$_2$ lattice, and V$_0$ is a positively charged oxygen vacancy. The generation of oxygen vacancies near the interface between Ti and TiO$_2$ nanowires is enhanced during the calcination process due to an increase in the diffusion of Ti atoms into the TiO$_2$ layer at high temperature. Therefore, a nonstoichiometric TiO$_2$, ($x > 0$) layer with a high concentration of oxygen vacancies would be formed between the Ti foil and TiO$_2$ nanowires. Oxygen vacancies in TiO$_2$ act as n-type dopants with shallow donor states below the conduction band and would transform the insulating metal oxide into an electrically conductive semiconductor [5, 6]. In addition, oxygen vacancies in TiO$_2$ exhibit higher mobility than metal interstitials at room temperature, so that a number of oxygen vacancies in TiO$_2$ are expected to dominate resistive switching behavior [15]. The distribution of oxygen vacancies in the TiO$_2$ nanowire layer is expected to be uniform above the Ti/TiO$_2$ interface [39]. On the other hand, during the deposition of the Al layer, the high oxygen affinity of Al results in Al results in Al reacting with TiO$_2$, forming an interfacial insulating Al–Ti–O layer [1, 18, 45, 46]. Consequently, oxygen vacancies are expected to be generated underneath the interfacial layer according to Eq. 1, although a much smaller concentration of vacancies is expected compared to the Ti/TiO$_2$ interface [6]. These interfaces in the pristine state are illustrated schematically in the inset of Fig. 2. The different concentrations of oxygen vacancies distributed at the Al/TiO$_2$ interface and Ti/TiO$_2$ interface result in asymmetric barriers for charge transport, which plays an important role in the switching behavior of the device.

Furthermore, Fig. 3 shows I–V characteristic curves under different sweeping voltages and displays similar bipolar resistive switching behavior in spite of difference in the achieved SET and RESET currents. These results

![Fig. 2 I–V characteristic curves of the Al/TiO$_2$ nanowire networks/Ti device (inset, schematic diagram of the device in the pristine state)](image-url)
highlight the repeatability of the Al/TiO₂ nanowire networks/Ti device. Asymmetrical or self-rectifying resistive switching can be seen in both Figs. 2 and 3. The origin of this self-rectifying property can be attributed to effect of the Al–Ti–O layer on the migration of oxygen vacancies as discussed in the next section.

3.2.2 Switching Mechanism Analysis

Based on the discussed I–V characteristic results, the resistive switching mechanism of the Al/TiO₂ nanowire networks/Ti device is proposed. As explained, the concentration of oxygen vacancies at the Al/TiO₂ interface and Ti/TiO₂ interface is different. These oxygen vacancies are mobile under external electrical field [47]. When the Al top electrode is under a negative bias, the oxygen vacancies in the pristine state (Fig. 4b) migrate towards the top electrode, forming pathways with high electrical conductivity. It is expected that the geometry of the confined TiO₂ nanowire provides a large surface area and a direct pathway for the migration of oxygen vacancies for stable switching behavior [12]. Simultaneously, electrons would be injected from the Al electrode and drift to the bottom Ti electrode. Once one or more conductive pathways are formed from the top electrode to bottom electrode, the device is switched ON, as illustrated in Fig. 4a. Moreover, some oxygen vacancies may accumulate at the Al–Ti–O layer, which functions as an insulating layer to inhibit out-diffusion of oxygen [45]. This insulating layer may play an important role in the switching behavior since the formation and dissociation of this layer is expected to be closely related to the migration of oxygen vacancies under electric field [1, 46]. Under negative bias, the migration of oxygen vacancies to the Al electrode may result in the partial dissolution of this insulating layer, whereas this layer would be widened when the Al top layer is under a positive bias.

In the ReSET process, the oxygen vacancies in the TiO₂ matrix are repelled towards the bottom electrode, leading to the recovery of a higher concentration of oxygen vacancies near the Ti bottom layer, and widening of the Al–Ti–O layer as oxygen vacancies drift away from this layer [6]. The presence of a potential barrier in the Al/Al–Ti–O interfacial layer would suppress electron tunneling through the interface and inhibit the formation of conductive channels. Conversely, as oxygen vacancies migrate to the top Al electrode under an applied negative bias, the interfacial layer begins to thin, increasing the probability of electron tunneling and enhancing the formation of conductive channels. As a result, the final current flowing at $+10$ V is much less than that at -10 V. This is characteristic of asymmetrical or self-rectifying resistive switching behavior, as seen in Figs. 2 and 3. To verify the source of the self-rectifying performance, an identical device was measured without the top electrode, that is, the probe tip (which is made of tungsten) is directly in contact with the top surface of the TiO₂ nanowire layer. We found the bipolar resistive switching performance existed for the device as well, but no self-rectifying feature was observed.

Further insight into the role of the Al–Ti–O interfacial layer on the resistive switching performance can be obtained by investigating the effect of the thickness of the TiO₂ nanowire network. This thickness can be varied by changing the hydrothermal growth time. The effect of different growth times (different thickness) on the I–V characteristics is illustrated in Fig. 5. These data can be compared with those in Fig. 2 which was obtained for a hydrothermal growth time of 20 h. A self-rectifying resistive switching response was also observed for growth time of 4, 12, and 16 h in addition to 20 h, and the rectification ratio diminishes as the growth time is increased. As discussed, the interfacial Al–Ti–O layer plays an important role in determining the asymmetrical response. The relative effect of this component increases with decreasing thickness of the TiO₂ nanowire layer so that an increase in
growth time to 24 h results in bipolar resistive switching with no obvious self-rectifying feature. The data in Fig. 5a suggests that self-rectifying resistive switching of our Al/TiO\textsubscript{2} nanowire networks/Ti could, after further optimization, be used to mitigate sneak-current issues in the crossbar-based integration system for ReRAM devices [8].

In order to understand the conduction mechanism of the fabricated Al/TiO\textsubscript{2} nanowire networks/Ti device, the \(I-V\) curves in Fig. 2 were fitted on a double-logarithmic scale, as shown in Fig. 6. The overall curve is in good agreement with the trap-associated space charge limited current (SCLC) theory [12, 18, 45]. For the positive sweeping (Fig. 6a), the LRS follows an Ohmic conduction with a slope of \(\sim 1\), which is consistent with the presence of conductive pathways formed by the migration of oxygen vacancies in the device after the SET process [39]. The \(I-V\) characteristics in the HRS consist of three regions: the Ohmic region (\(I-V\)) with a slope of \(\sim 1\) at low bias, the Child’s square law region \(*(I \sim V^2)*\) with a slope of 2.44 at higher bias and a region with rapidly changing current near the RESET point (slope: 4.23). The higher slope (>2) compared with the Child’s law in which the current is proportional to the square of the voltage might be due to the expected variation in thickness of the insulating Al–Ti–O layer. This large slope can also be found in similar ReRAM devices in which Al acts as an electrode [18, 45, 48].

The \(I-V\) characteristic curve for the negative voltage in Fig. 6b also demonstrates SCLC-like behavior but the fitted slope values in different regions are generally larger than those under positive voltage sweeping. This could be due to the concentration gradient of oxygen vacancies that exists in the pristine state (high concentration of vacancies at the bottom Ti/TiO\textsubscript{2} interface and low concentration underneath the Al–Ti–O layer), which would lead to diffusion of these oxygen vacancies. The diffusion combined with the drift of the oxygen vacancies under an applied negative bias could lead to accelerated migration of vacancies, resulting in higher slopes when transitioning from the HRS to LRS, as compared to the transition from LRS to HRS under positive sweeping. Furthermore, dissociation of the insulating Al–Ti–O layer due to migration of oxygen vacancies under negative bias also decreases the overall resistance of the device, which would contribute to

![Fig. 5](image)

\(I-V\) characteristic curves of the Al/TiO\textsubscript{2} nanowire networks/Ti device with different thicknesses of the nanowire layers via the control of the hydrothermal growth time. \(a\) 4 h growth time, \(b\) 12 h growth time, \(c\) 16 h growth time, and \(d\) 24 h growth time.
higher values of the slopes. This SCLC-like behavior for both positive and negative sweeping voltages can also be found with increasing sweeping cycles of the device.

The above analysis indicates that Al/TiO$_2$ nanowire networks/Ti device as fabricated exhibits a similar I–V response and switching mechanism as that seen in devices using a uniform TiO$_2$ layer coated with an Al electrode. Such devices were fabricated by time-consuming and costly reactive sputtering [18] or plasma-enhanced atomic layer deposition [1, 45, 46, 48, 49] processes. Therefore, our results indicate that the TiO$_2$ nanowire networks grown on Ti foil by a single-step hydrothermal process have potential in the application of ReRAM devices.

3.2.3 Endurance and Retention Study

To determine the electrical stability of the fabricated Al/TiO$_2$ nanowire networks/Ti device, an endurance study was performed by applying a cycling sweeping process. The results illustrated in Fig. 7a show that the resistance for the OFF state remains stable beyond 60 cycles, while the resistance for the ON state undergo a fluctuation. Nevertheless, the calculated OFF/ON resistance ratio is around 70, large enough to serve as a feasible memory element in ReRAM. Study of endurance under pulsed operation is planned for future work, together with characterization of the device in relation to stability. Furthermore, a data retention test was performed by examining the resistance change with a reading voltage of 1 V for a long period of time after switching the device to ON and OFF states at −10 and 10 V, respectively. The retention results for the ON and OFF states in Fig. 7b demonstrated no remarkable degradation up to 10^4 s with a high resistance ratio, confirming the nonvolatile nature of the device. The endurance and retention results emphasize good stability of the fabricated Al/TiO$_2$ nanowire networks/Ti device for future use as ReRAM.

4 Conclusions

In summary, electroforming-free bipolar resistive switching behavior was successfully demonstrated in TiO$_2$ nanowire networks directly grown on Ti foil by a one-step hydrothermal process.
hydrothermal process. The prepared Al/TiO$_2$ nanowire networks/Ti device exhibited reproducible and stable electrical performance with a high OFF/ON ratio that persisted for up to 10^5 s. We found that the interaction of Ti foil with the TiO$_2$ nanowires during the synthesis process results in the generation of large density of oxygen vacancies at the Ti/TiO$_2$ interface, which is likely responsible for the forming-free resistive switching behavior. The switching mechanism of the device is proposed to be the migration of oxygen vacancies under electric field. These results provide an easy way to prepare nanowire-based ReRAM devices with good electrical performance.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The financial support of the State Scholarship Fund of China (No. 201506160061) is greatly acknowledged. M. Xiao would like to thank Carmen Andrei from the Canadian Center for Electron Microscopy, McMaster University, for help with TEM.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Interface-engineered amorphous TiO$_2$-based resistive memory devices. Adv. Funct. Mater. 20(22), 3912–3917 (2010). doi:10.1002/adfm.201001254
2. B. Wang, T. Ren, S. Chen, B. Zhang, R. Zhang, J. Qi, S. Chu, J. Huang, J. Liu, Resistive switching in Ga- and Sh-doped ZnO single nanowire devices. J. Mater. Chem. C 3, 11881–11885 (2015). doi:10.1039/C5TC02102B
3. K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J.S. Kim, B.H. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132(19), 6634–6635 (2010). doi:10.1021/ja101742f
4. K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.-S. Kim, B.H. Park, Spatial nonuniformity in resistive-switching memory effects of NiO. J. Am. Chem. Soc. 133(12), 12482–12485 (2011). doi:10.1021/ja206063m
5. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). doi:10.1038/nature06932
6. J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008). doi:10.1038/nnano.2008.160
7. C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO$_x$ nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1DIR application. ACS Nano 6(9), 8407–8414 (2012). doi:10.1021/nn303233r
8. Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012). doi:10.1063/1.3701722
9. T. Sasaki, H. Ueda, T. Kanki, H. Tanaka, Electrochemical gating-induced reversible and drastic resistance switching in VO$_2$ nanowires. Sci. Rep. 5, 17080 (2015). doi:10.1038/srep17080
10. S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, F. Pan, Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta$_2$O$_5$/Ta system. Phys. Chem. Chem. Phys. 17(19), 12849–12856 (2015). doi:10.1039/C5CP01235J
11. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta$_2$O$_5$/TaO$_x$/bilayer structures. Nat. Mater. 10(8), 625–630 (2011). doi:10.1038/nmat3070
12. K.D. Liang, C.H. Huang, C.C. Lai, J.S. Huang, H.W. Tsai et al., Single CuO nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6(19), 16537–16544 (2014). doi:10.1021/am502741m
13. K. Park, J.S. Lee, Flexible resistive switching memory with a Ni/CuO/Ni structure using an electrochemical deposition process. Nanotechnology 27(12), 125203 (2016). doi:10.1088/0957-4484/27/12/125203
14. T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). doi:10.1021/nn202983n
15. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser, TiO$_2$-a prototypical memristive material. Nanotechnology 22(25), 254001(2011). doi:10.1088/0957-4484/22/25/254001
16. S.C. Oh, H.Y. Jung, H. Lee, Effect of the top electrode materials on the resistive switching characteristics of TiO$_2$ thin film. J. Appl. Phys. 109(12), 124511 (2011). doi:10.1063/1.3596576
17. E. Hernández-Rodríguez, A. Márquez-Herrera, E. Zalea-Alejandre, M. Meléndez-Lira, Wld Cruz, M. Zapata-Torres, Effect of electrode type in the resistive switching behaviour of TiO$_2$ thin films. J. Phys D-Appl. Phys. 46(4), 045103 (2013). doi:10.1088/0022-3778/46/4/045103
18. X.L. Shao, L.W. Zhou, K.J. Yoon, H. Jiang, J.S. Zhao, K.L. Zhang, S. Yoo, C.S. Hwang, Electronic resistance switching in the Al/TiO$_2$/Al structure for forming-free and area-scalable memory. Nanoscale 7(25), 11063–11074 (2015). doi:10.1039/C4NR06417H
19. C. Hu, M.D. McDaniel, A. Posadas, A.A. Demkov, J.G. Ekerdt, E.T. Yu, Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO$_2$ resistive memory on silicon. Nano Lett. 14(8), 4360–4367 (2014). doi:10.1021/nl501249q
20. Y. Du, H. Pan, S. Wang, T. Wu, Y.O. Feng, J. Pan, A.T.S. Wee, Symmetrical negative differential resistance behavior of a resistive switching device. ACS Nano 6(3), 2517–2524 (2012). doi:10.1021/nn204907t
21. L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodomakis, Memory impedance in TiO$_2$ based metal-insulator-metal devices. Sci. Rep. 4, 4522 (2014). doi:10.1038/srep04522
22. D. Jana, S. Samanta, S. Roy, Y.F. Lin, S. Maikap, Observation of resistive switching memory by reducing device zize in a new Cr/CrO$_x$/TiO$_2$/TiN structure. Nano-Micro Lett. 7(4), 392–399 (2015). doi:10.1007/s40820-015-0055-3
23. C. O’Kelly, J.A. Fairfield, J.J. Boland, A single nanoscale junction with programmable multilevel memory. ACS Nano 8(11), 11724–11729 (2014). doi:10.1021/nn505139m
24. L. Lin, L. Liu, K. Musselman, G. Zou, W.W. Duley, Y.N. Zhou, Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory. Adv. Funct. Mater. 26, 5979–5986 (2016). doi:10.1002/adfm.201601143
25. F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, R. Yang, Realization of rectifying and resistive switching behaviors of TiO$_2$ nanorod arrays for nonvolatile memory.
