FUNCTOR HOMOLOGY AND HOMOLOGY OF COMMUTATIVE MONOIDS

REVAZ KURDANI AND TEIMURAZ PIRASHVILI

The aim of this work is to clarify the relationship between homology theory of commutative monoids constructed à la Quillen [16], [17] and technology of Γ-modules as it was developed in [12],[13], [14], [15].

In Section 1 we recall the basics of Γ-modules and relation with commutative algebra (co)homology. In Section 2 we construct an analogue of Kähler differentials for commutative monoids. In Section 3 we construct homology theory for commutative monoids which and then we prove that commutative monoid homology are particular case of functor homology developed in [13].

It should be pointed out that the cohomology theory of commutative monoids first was constructed by P.-A. Grillet in the series of papers [2]-[7] (see also a recent work [1]). So our results shed light on Grillet theory. For instance we relate the commutative monoid (co)homology with André-Quillen (co)homology of corresponding monoid algebra. For another application we mention the Hodge decomposition for commutative monoid (co)homology which is an immediate consequence of our main result.

1. Γ-modules and commutative algebra (co)homology

1.1. Generalities on Γ-modules. Let K be a commutative ring with unit which is fixed in the whole paper.

For any integer $n \geq 0$, we let $[n]$ be the set $\{0, 1, ..., n\}$ with basepoint 0. Let Γ be the full subcategory of the category of pointed sets consisting of sets $[n]$. A left Γ-module is a covariant functor from Γ to the category of K-modules, while a right Γ-module is a contravariant functor from Γ to the category of K-modules. The category of all left Γ-modules is denoted by Γ-mod, while the category of all right modules is denoted by mod-Γ. It is well-known that the categories Γ-mod and mod-Γ are abelian categories with sufficiently many projective and injective objects. For any $n \geq 0$ one defines the left Γ-module Γ^n by

$$\Gamma^n(X) = K[X^n].$$

Here $K[S]$ denotes the free K-module generated by a set S. It is a consequence of the Yoneda lemma that for any left Γ-module F one has natural isomorphisms

$$\text{Hom}_\Gamma(\Gamma^n, F) \cong F([n]).$$

Therefore Γ^n, $n \geq 0$, are projective generators of the category Γ-mod.

1.2. Hochschild and Harrison (co)homology of Γ-modules. The definition of these objects are based on the following pointed maps (see [9]). For any $0 \leq i \leq n + 1$, one defines a map

$$\epsilon^i : [n + 1] \rightarrow [n], \quad 0 \leq i \leq n + 1,$$
by

\[\epsilon^i(j) = \begin{cases}
 j & j \leq i, \\
 j - 1 & j > i \leq n, \\
 0 & j = i = n + 1.
\end{cases} \]

For a left Γ-module F the Hochschild homology $HH_*(F)$ is defined as the homology of the chain complex

\[F([0]) \leftarrow F([1]) \leftarrow F([2]) \leftarrow \cdots \leftarrow F([n]) \leftarrow \cdots \]

where the boundary map $\partial : F([n+1]) \to F([n])$ is given by $\sum_{i=0}^{n+1} (-1)^i F(\epsilon^i)$.

Quite similarly for a right Γ-module T one defines the Hochschild cohomology $HH^*(T)$ as the cohomology of the following cochain complex

\[T([0]) \to T([1]) \to \cdots \to T([n]) \to T([n+1]) \to \cdots \]

where the coboundary map $\delta : T([n]) \to T([n+1])$ is given by $\delta = \sum_{i=0}^{n+1} (-1)^i T(\epsilon^i)$.

We have the following obvious fact.

Lemma 1.1. Let F be a left Γ-module, then $HH_0(F) = F([0])$ and $HH_1(F) = \text{Coker}(\partial : F([2]) \to F([1]))$.

Similarly, if T is a right Γ-module, then $HH^0(T) = T([0])$ and $HH^1(T) = \ker(\delta : T([1]) \to T([2]))$.

Let S_n be the symmetric group on n letters, it acts as a group of automorphisms on $[n]$. For integers p_1, \ldots, p_k with $n = p_1 + \cdots + p_k$, we set

\[sh_{p_1, \ldots, p_k} = \sum \text{sgn}(\sigma) \sigma \in \mathbb{Z}[S_n] \]

where $\sigma \in S_n$ is running over all (p_1, \ldots, p_k)-shuffles. Each sh_{p_1, \ldots, p_k} induces a map $T([n]) \to T([n])$, called the shuffle map. Let us denote by \mathcal{T}_n the intersection of the kernels of all shuffle maps. These groups form a subcomplex of the Hochschild complex, called Harrison complex [9]. The groups $\text{Harr}^n(T)$, $n \geq 0$ are defined as the cohomology of the Harrison complex.

By duality we have also Harrison and Hochschild homology of left Γ-module.

The following is a theorem due to J.-L. Loday [9]. For alternative approach see [12].

Theorem 1.2. If K is a field of characteristic zero, then for any left Γ-module F and right Γ-module T there exist so called Hodge decompositions:

\[HH_n(F) \cong \bigoplus_{i=1}^{n} HH_n^{(i)}(F), \quad n > 0, \]

\[HH^n(F) \cong \bigoplus_{i=1}^{n} HH_n^{(i)}(T), \quad n > 0, \]

for suitable defined $HH_n^{(i)}(F)$ and $HH_n^{(i)}(T)$. Moreover, for $i = 1$ one has

\[Harr_n(F) = HH_n^{(1)}(F), \quad Harr^n(T) = HH_n^{(1)}(T), \quad n > 0. \]
1.3. André-Quillen (co)homology of Γ-modules. We recall some material from [13].

A partition \(\lambda = (\lambda_1, \cdots, \lambda_k) \) is a sequence of natural numbers \(\lambda_1 \geq \cdots \geq \lambda_k \geq 1 \). The sum of partition is given by \(s(\lambda) := \lambda_1 + \cdots + \lambda_k \), while the group \(\Sigma(\lambda) \) is a product of the corresponding symmetric groups

\[
\Sigma(\lambda) := \Sigma_{\lambda_1} \times \cdots \times \Sigma_{\lambda_k},
\]

which is identified with the Young subgroup of \(\Sigma_{s(\lambda)} \). Let us observe that \(\Sigma_n = \text{Aut}_{T}([n]) \) and therefore \(\Sigma_n \) acts on \(F([n]) \) and \(T([n]) \) for any left \(\Gamma \)-module \(F \) and right \(\Gamma \)-module \(T \).

Let

\[
0 \to F_1 \to F \to F_2 \to 0
\]

be an exact sequence of left \(\Gamma \)-modules. It is called a \(\mathcal{Y} \)-exact sequence if for any partition \(\lambda \) with \(s(\lambda) = n \) the induced map

\[
F([n])^{\Sigma(\lambda)} \to F_2([n])^{\Sigma(\lambda)}
\]

is surjective. The class of \(\mathcal{Y} \)-exact sequences is proper in the sense of MacLane [11].

A left \(\Gamma \)-module \(F \) is \(\mathcal{Y} \)-projective, if the functor \(\text{Hom}_{\mathcal{Y}}(F, -) \) takes \(\mathcal{Y} \)-exact sequences to exact sequences. For example \(S^n\Gamma^1 \) is a \(\mathcal{Y} \)-projective [13]. Here \(S^n \) denotes the \(n \)-th symmetric power. According to [13] for any left \(\Gamma \)-module \(F \) there is a \(\mathcal{Y} \)-exact sequence

\[
0 \to F_1 \to F_0 \to F \to 0
\]

with \(\mathcal{Y} \)-projective \(F \). Hence one can take relative left derived functors of the functor \(HH_1 : \mathcal{Y}\text{-mod} \to \mathcal{K}\text{-mod} \). The values of these derived functors on a left \(\Gamma \)-module \(F \) is denoted by \(\pi^{\mathcal{Y}*}(F) \). So by the definition the functors \(\pi^{\mathcal{Y}*} \) are uniquely defined (up to isomorphism) by the following properties

Lemma 1.3. There exist unique family of functors \(\pi^{\mathcal{Y}*}_n : \mathcal{Y}\text{-mod} \to \mathcal{K}\text{-mod}, n \geq 0, \) such that

i) \(\pi^{\mathcal{Y}*}_0(F) = HH_1(F) \).

ii) For any \(\mathcal{Y} \)-exact sequence

\[
0 \to F_1 \to F \to F_2 \to 0
\]

there is a long exact sequence

\[
\cdots \to \pi^{\mathcal{Y}*}_{n+1}(F_2) \to \pi^{\mathcal{Y}*}_n(F_1) \to \cdots \to \pi^{\mathcal{Y}*}_0(F_1) \to \pi^{\mathcal{Y}*}_0(F) \to \pi^{\mathcal{Y}*}_0(F_2) \to 0.
\]

iii) The functor \(\pi^{\mathcal{Y}*}_n \) vanishes on \(\mathcal{Y} \)-projective objects, \(n \geq 1 \).

By a dual argument for any right \(\Gamma \)-module \(T \) one obtains \(\mathcal{K} \)-modules \(\pi^{\mathcal{Y}+*}(T) \).

1.4. \(\Gamma \)-modules and commutative algebras. The classical Hochschild cohomology (as well as the Harrison or André-Quillen (co)homology) of commutative algebras is a particular case of the cohomology of \(\Gamma \)-modules [9], [12], [13]. We recall the corresponding results. Let \(R \) be a commutative \(K \)-algebra and \(A \) be an \(R \)-module.

We have a left and right \(\Gamma \)-modules \(L_*(R, A) \) and \(L^*(R, A) \) defined on objects by

\[
L^*(R, A)([n]) := \text{Hom}(R \otimes^n A), \quad L_*(R, A)([n]) := R \otimes^n A.
\]

For a pointed map \(f : [n] \to [m] \), the action of \(L^*(R, A) \) on \(f \) is given by

\[
f^*(\psi)(a_1 \otimes \cdots \otimes a_n) = b_0 \psi(b_1 \otimes \cdots \otimes b_m)
\]

while for the functor \(L_*(R, A) \) one has:

\[
f_*(a_0 \otimes \cdots \otimes a_n) = b_0 \otimes \cdots \otimes b_m
\]

where \(b_j = \prod_{f(i) = j} a_i, \ j = 0, \cdots, n. \)

Then one has [9]:

\[
HH_*(L_*(R, A)) = HH_*(R, A), \quad HH^*(L^*(R, A)) = HH^*(R, A).
\]
\[\text{Harr}_n(\mathcal{L}_c(R, A)) = \text{Harr}_m(R, A), \quad \text{Harr}_n(\mathcal{L}_c^*(R, A)) = \text{Harr}_m^*(R, A). \]

where \(HH_*(R, A) \) and \(\text{Harr}_*(R, A) \) (resp. \(HH^*(R, A), \text{Harr}^*(R, A) \)) are the Hochschild and Harrison (co)homology of \(R \) with coefficients in \(A \).

By [13] a similar result is also true for André-Quillen (co)homology of commutative rings. In order to state this result, let us first recall the definition of André-Quillen (co)homology [17].

Let \(\text{SCR} \) be the category of simplicial commutative rings and let \(\text{SS} \) be the category of simplicial sets and let \(U : \text{SCR} \to \text{SS} \) be a forgetful functor. According to [16] there is a unique closed model category structure on the category \(\text{SCR} \) such that a morphism \(f : X_\bullet \to Y_\bullet \) of \(\text{SCR} \) is weak equivalence (resp. fibration) if \(U(f) \) is a weak equivalence (resp. fibration) of simplicial sets. A simplicial commutative ring \(X_\bullet \) is called free if each \(X_n \) is a free commutative ring with a base \(S_n \), such that degeneracy operators \(s_i : X_n \to X_{n+1} \) maps \(S_n \) to \(S_{n+1} \), \(0 \leq i \leq n \). Thanks to [16] any free simplicial commutative ring is cofibrant and any cofibrant object is a retract of a free simplicial commutative ring.

We let \(C^*(V^*) \) be the cochain complex associated to a cosimplicial abelian group \(V^* \). Let \(R \) be a commutative ring and let \(A \) be an \(R \)-module. Then the André-Quillen cohomology of \(R \) with coefficients in \(A \) is defined by (see [17]):

\[D^*(R, A) := H^*(C^*(\text{Der}(P_\bullet, A))), \]

where \(P_\bullet \to R \) is a cofibrant replacement of the ring \(R \) considered as a constant simplicial ring and \(\text{Der} \) denotes the abelian group of all \(K \)-derivations.

The André-Quillen homology of \(R \) with coefficients in \(A \) is defined by

\[D_*(R, A) := H_*(C_*(A \otimes_{P_\bullet} \Omega^1_{P_\bullet})), \]

where \(\Omega^1_{P_\bullet} \) is the Kähler differentials of a commutative \(K \)-algebra \(R \).

The main result of [13] claims that there are natural isomorphisms

\[\pi^\mathcal{C}_*(\mathcal{L}_c(R, A)) = D_*(A, M), \quad \pi^\mathcal{C}_*(\mathcal{L}_c^*(R, A)) = D^*(A, M). \]

2. The category \(\mathcal{H}(C) \) associated to a commutative monoid \(C \)

2.1. Definition. Let \(C \) be a commutative monoid. Define the category \(\mathcal{H}(C) \) as follows. Objects of \(\mathcal{H}(C) \) are elements of \(C \). A morphism from an element \(a \in C \) to an element \(b \) is a pair \((c, a)\) of elements of \(C \) such that \(b = ca \). To simplify notations we write \(a \overrightarrow{\sim} ac \) for a morphism \((a, c) : a \to b = ac \). If \(a \overrightarrow{\sim} ac \) and \(ac \overrightarrow{\sim} acd \) are morphisms in \(\mathcal{H}(C) \), then the composite of these morphisms in \(\mathcal{H}(C) \) is \(a \overrightarrow{\sim} acd \).

It is clear that \(1 \in C \) is an initial object of \(\mathcal{H}(C) \).

A left \(\mathcal{H}(C) \)-module is a covariant functor \(A : \mathcal{H}(C) \to \text{Ab} \), similarly a right \(\mathcal{H}(C) \)-module is a contravariant functor \(A : \mathcal{H}(C)^{\text{op}} \to \text{Ab} \).

We let \(\mathcal{H}(C)_{-\text{mod}} \) be the category of left \(\mathcal{H}(C) \)-modules, while \(\text{mod-} \mathcal{H}(C) \) denotes the category of right \(\mathcal{H}(C) \)-modules. If \(M \) is a left \(\mathcal{H}(C) \)-module. Then the value of \(M \) on the element \(a \in C \) (considered as object of \(\mathcal{H}(C) \)) is denoted by \(M(a) \). Moreover if \(a, b, c \in C \) and \(b = ca \), then we have an induced map \(c_* : M(a) \to M(b) \), with obvious properties \(1_* = \text{id} \) and \((c_1c_2)_* = c_1_*c_2_* \).

Quite similarly, if \(N \) is a right \(\mathcal{H}(C) \)-module, then the value of \(N \) on the element \(a \in C \) is denoted by \(N(a) \). Moreover if \(a, b, c \in C \) and \(b = ca \), then we have an induced map \(c^* : N(b) \to N(a) \), with obvious properties \(1^* = \text{id} \) and \((c_1c_2)^* = c_2^*c_1^* \).

The categories \(\mathcal{H}(C)_{-\text{mod}} \) and \(\text{mod-} \mathcal{H}(C) \) are abelian categories with enough projective and injective objects. For any element \(a \in C \) we let \(C^a \) and \(C_a \) be respectively the left and right \(\mathcal{H}(C) \)-modules defined by

\[C^a(x) = \bigoplus_{c \in (x:a)} \mathbb{Z}, \quad C_a(x) = \bigoplus_{c \in (a:x)} \mathbb{Z}. \]
Here for elements $a, b \in C$ we let $(b : a)$ be the set of all elements $c \in C$ such that $b = ac$. By Yoneda lemma for any left $H(C)$-module A and for any right $H(C)$-module B one has isomorphisms
\[\text{Hom}_{H(C)}(C^a, A) \cong A(a), \quad \text{Hom}_{H(C)}(C_a, B) \cong B(a). \]
It follows that C^a, $a \in C$ form a family of projective generators of the category $H(C)\text{-mod}$. Similarly C_a, $a \in C$ form a family of projective generators of the category $\text{mod-}H(C)$.

Let N be a right $H(C)$-module and M be a left $H(C)$-module. We let $N \otimes_{H(C)} M$ be the abelian group generated by elements of the form $x \otimes y$, where $x \in N(a)$, $y \in M(a)$, $a \in M$. These elements are subject to the following relations
\[(x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y, \]
\[x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2, \]
\[c^*(z) \otimes y = z \otimes c_*(y). \]
Here $c \in M$, $x, x_1, x_2 \in N(a)$, $y, y_1, y_2 \in M(a)$, $z \in N_{ca}$. Then one has
\[N \otimes_{H(C)} C^a \cong N(a), \quad C_a \otimes_{H(C)} M \cong M(a). \]

If $f : C \to C'$ is a homomorphism of monoids, then f induces a functor $H(f) : H(C) \to H(C')$ in an obvious way. Thus for any left $H(C')$-module M one has a left $H(C)$-module $f^*(M)$, which is given by
\[f^*(M)(i) = M(f(i)). \]
In this way one obtains a functor f^* from the category of (left or right) modules over $H(C')$ to the category of modules over $H(C)$.

2.2. $K[C]$-modules and $H(C)$-modules. We let $K[C]$ be the monoid algebra of the monoid C. Any $K[C]$-module A gives rise to the left $H(C)$-module $j^*(A)$ which is defined by
\[j^*(A)(a) = A \]
and for $b = ca$, the induced morphisms
\[A = j_*(A)(a) \xrightarrow{c_*} j_*(A)(b) = A \]
is simply the multiplication by c.

If M is a left $H(C)$-module, we let $j_*(M)$ be the following $K[C]$ module. As an abelian group one has
\[j_*(M) = \bigoplus_{x \in C} M(x), \]
The module structure is defined as follows: for $x \in C$, $a \in M(x)$ and $c \in C$ one has
\[ci_x(a) = i_{ca}(c_*(a)). \]
Here i_x is the canonical inclusion $M(x) \to j_*(M)$, $x \in C$.

Lemma 2.1. The functor j_* is a left adjoint functor to j^*.

Proof. For a left $H(C)$-module M and a left $K[C]$-module A an elements
\[\xi \in \text{Hom}_{H(C)}(M, j^*(A)) \]
is given by the family of K-module homomorphisms $\xi_a : M(a) \to A$, $a \in A$ such that for any $c \in C$ the following
\[
\begin{array}{ccc}
M(a) & \xrightarrow{\xi_a} & A \\
\downarrow{c_*} & & \downarrow{c} \\
M(ac) & \xrightarrow{\xi_{ac}} & A
\end{array}
\]
The homomorphisms ξ_a, $a \in C$ defines a homomorphism of K-modules
\[\hat{\xi} : j_*(M) = \bigoplus_{a \in C} M(a) \to A \]
which clearly is $K[M]$-homomorphism. So, $\xi \mapsto \hat{\xi}$ gives rise a homomorphism $\text{Hom}_{\mathcal{H}(C)}(M, j^*(A)) \to \text{Hom}_{K[C]}(j_*(M), A)$ which is obviously an isomorphism. \hfill \Box

2.3. Derivations, differentials and (co)homology in the theory of commutative algebras. Let C be a commutative monoid and let M be a left $\mathcal{H}(C)$-module. A derivation $\delta : C \to M$ with values in M is a function which assigns to each element $a \in C$ an element $\delta(a) \in M(a)$, such that
\[\delta(ab) = a_*(\delta(b)) + b_*(\delta(a)) \]
The abelian group of all derivations of C with values in M is denoted by $\text{Der}(C, M)$.
We claim that there exist a universal derivation. In fact we construct a left $\mathcal{H}(C)$-module Ω_C, called differentials of a monoid C. It is a left $\mathcal{H}(C)$-module generated by symbols $da \in \Omega_C(a)$ one for every element $a \in C$, subject to relations
\[d(ab) = a_*(d(b)) + b_*(d(a)) \]
for every a and $b \in C$. It follows from the construction that $a \mapsto da$ is a derivation, which is clearly universal one, in the sense that for any derivation $\delta : C \to M$ there is a unique homomorphism of $\mathcal{H}(C)$-modules $\delta^* : \Omega_C \to M$ such that $\delta(a) = \delta^*(da)$. Thus for any left $\mathcal{H}(C)$-module M one has a canonical isomorphism
\[\text{Der}(C, M) \cong \text{Hom}_{\mathcal{H}(C)}(\Omega_C, M). \]

Lemma 2.2. One has an isomorphism of $K[C]$-modules
\[j_*(\Omega_C) = \Omega^1_{K[C]} \]
Here $j_* : \mathcal{H}(C)\text{-mod} \to K[C]\text{-mod}$ is the functor constructed in Section 2.2 and $\Omega^1_{K[C]}$ is the Kähler differentials of the K-algebra $K[C]$.

Proof. Let A be a $K[C]$-module. Then we have
\[\text{Der}(C, j^*(A)) = \text{Hom}_{\mathcal{H}(C)}(\Omega_C, j^*(A)) = \text{Hom}_{K[C]}(j_*(\Omega), A). \]

On the other hand
\[\text{Der}(C, j^*(A)) = \text{Der}(K[C], A) = \text{Hom}_{K[C]}(\Omega^1_{K[A]}, A) \]
and the result follows from the Yoneda lemma. \hfill \Box

2.4. The case $C = \mathbb{N}$. If C is the free abelian monoid with a generator t, then a left $\mathcal{H}(C)$-module is nothing but a diagram of abelian groups
\[M = (M_0 \xrightarrow{t} M_1 \xrightarrow{t} M_2 \xrightarrow{t} M_3 \xrightarrow{t} \cdots) \]
In particular the projective object C^n corresponds to the diagram
\[0 \to 0 \to \cdots \to 0 \to \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{1} \cdots \]
where the first nontrivial group appears at the place n.

Quite similarly a right $\mathcal{H}(C)$-module is nothing but a diagram of abelian groups
\[N = (\cdots \xrightarrow{t} N_3 \xrightarrow{t} N_2 \xrightarrow{t} N_1 \xrightarrow{t} N_0). \]

In particular the projective object C_n corresponds to the diagram
\[\cdots \to 0 \to 0 \to \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{1} \cdots \xrightarrow{1} \mathbb{Z} \]
where the first nontrivial group appears at the place n.

One easily observes that for any left $\mathcal{H}(C)$-module M one has an isomorphism
\[\text{Der}(C, M) \cong M_1 \]
which is given by $\delta \mapsto \delta(t)$. This follows from the fact that $\delta(t^n) = nt^{n-1}\delta(t)$. Thus
\[
\Omega_C = C^1 = (0 \to \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{1} \mathbb{Z} \xrightarrow{1} \cdots).
\]

2.5. **Product of two monoids.** Let C be a product of two monoids: $C = C_1 \times C_2$. Then $H(C) = H(C_1) \times H(C_2)$. Assume M_1 and M_2 are (say left) $H(C_1)$ and $H(C_2)$-modules respectively. Then one can form a $H(C)$-module $M_1 \boxtimes M_2$ as follows:
\[
M_1 \boxtimes M_2(x_1, x_2) = M_1(x_1) \otimes M_2(x_2).
\]

Lemma 2.3. For any elements $c_1 \in C_1$ and $c_2 \in C_2$, one has
\[
C^{(c_1, c_2)} = C^{c_1} \boxtimes C^{c_2}
\]
and
\[
C_{(c_1, c_2)} = C_{c_1} \boxtimes C_{c_2}.
\]

Proof. By definition one has
\[
C^{c_1} \boxtimes C^{c_2}(x_1, x_2) = C^{c_1}(x_1) \otimes C^{c_2}(x_2)
\]
\[
= \left(\bigoplus_{a_1 \in C_1; a_1c_1 = x_1} \mathbb{Z} \right) \otimes \left(\bigoplus_{a_2 \in C_2; a_2c_2 = x_2} \mathbb{Z} \right)
\]
\[
= \bigoplus_{(a_1, a_2)(c_1, c_2) = (x_1, x_2)} \mathbb{Z}
\]
\[
= C^{(c_1, c_2)}(x_1, x_2).
\]

Similarly for the second isomorphism. \qed

We have homomorphisms
\[
\iota_1 : C_1 \to C, \quad \iota(c_1) = (c_1, 1), \quad \iota_2 : C_2 \to C, \quad \iota(c_2) = (1, c_2).
\]

For any left $H(C)$-module M we set
\[
M^{(1)} = \iota_1^*(M), \quad M^{(2)} = \iota_2^*(M).
\]

Lemma 2.4. For any left $H(C)$-module M one has
\[
\text{Der}(C, M) \cong \text{Der}(C_1, M^{(1)}) \oplus \text{Der}(C_2, M^{(2)}).
\]

Proof. This easily follows from the fact $(c_1, c_2) = (c_1, 1)(1, c_2)$. \qed

We also have projections $\pi_1 : C \to C_1$ and $\pi_2 : C \to C_2$, given respectively by $\pi_i(c_1, c_2) = c_i, \ i = 1, 2$.

Lemma 2.5. For any left $H(C_i)$-module X_i, $i = 1, 2$ and any left $H(C)$-module M, one has isomorphisms
\[
\text{Hom}_{H(C)}(\pi_1^* X_1, M) \cong \text{Hom}_{H(C_i)}(X_1, M^{(1)})
\]
and
\[
\text{Hom}_{H(C)}(\pi_2^* X_2, M) \cong \text{Hom}_{H(C_i)}(X_2, M^{(2)}).
\]

Proof. Let $\eta \in \text{Hom}_{H(C)}(\pi_1^* X_1, M)$. Thus η is a collection of homomorphisms of K-modules
\[
\eta_{(a_1, a_2)} : X_{a_1} \to M_{(a_1, a_2)}
\]
such that for any elements $c_1 \in C_1, c_2 \in C_2$ the following diagram commutes
\[
\begin{array}{ccc}
X_{a_1} & \xrightarrow{\eta_{(a_1, a_2)}} & M_{(a_1, a_2)} \\
\downarrow c_1 & & \downarrow (c_1, c_2) \\
X_{a_1c_1} & \xrightarrow{\eta_{(a_1c_1, a_2c_2)}} & M_{(a_1c_1, a_2c_2)}
\end{array}
\]
it follows that $\eta(a_1, a_1) = (1, a_2)_* \circ \eta(a_1, 1)$. It is clear that the family of homomorphisms $\eta_{a_1, 1}$, $a_1 \in C_1$ defines the morphism $\tilde{\eta} \in \text{Hom}_{H(C)}(X_1, M^{(1)})$ and the previous equality shows that $\eta \mapsto \tilde{\eta}$ is really a bijection. \qed

Corollary 2.6. If $C = C_1 \times C_2$, then

$$\Omega_C = \pi_1^* \Omega_{C_1} \oplus \pi_2^* \Omega_{C_1},$$

where $\pi_i : C \to C_i$, $i = 1, 2$ is the canonical projection.

Proof. For any $H(C)$-module M one has

$$\text{Hom}_{H(C)}(\Omega_C, M) = \text{Der}(C, M) = \text{Der}(C_1, M^{(1)}) \oplus \text{Der}(C_2, M^{(2)})$$

$$= \text{Hom}_{H(C)}(\Omega_{C_1}, M^{(1)}) \oplus \text{Hom}_{H(C)}(\Omega_{C_2}, M^{(2)})$$

$$= \text{Hom}_{H(C)}(\pi_1^* \Omega_{C_1}, M) \oplus \text{Hom}_{H(C)}(\pi_2^* \Omega_{C_2}, M)$$

and the result follows from the Yoneda lemma. \qed

3. Commutative monoid (co)homology and Γ-modules

3.1. Γ-modules related to monoids. Let C be a commutative monoid and let M be a left $H(C)$-module. Define a right Γ-module $G^*(C, M)$ as follows. On objects it is given by

$$G^*(C, M)([n]) = \prod_{(a_1, \ldots, a_n) \in C^n} M_{a_1 \cdots a_n}.$$

Thus $\eta \in G(C, M)([n])$ is a function which assigns to any n-tuple of elements (a_1, \ldots, a_n) of C an element $\eta(a_1, \ldots, a_n) \in M_{a_1 \cdots a_n}$. Let $f : [n] \to [m]$ be a pointed map and $\xi \in G(C, M)([m])$. Then the function $f^*(\xi) \in G(C, M)([n])$ is given by

$$f^*(\xi)(a_1, \ldots, a_n) = b_{0*}(\xi(b_1, \ldots, b_m)).$$

Quite similarly, let N be a right $H(C)$-module. Define left Γ-module $G_*(C, N)$ as follows. On objects it is given by

$$G_*(C, N)([n]) = \bigoplus_{(a_1, \ldots, a_n) \in C^n} N(a_1 \cdots a_n).$$

In order, to extend the definition on morphism, we let

$$\iota_{(a_1, \ldots, a_n)} : N(a_1 \cdots a_n) \to G_*(C, N)([n])$$

be the canonical inclusion. Let $f : [n] \to [m]$ be a pointed map. Then the homomorphism

$$f_* : G_*(C, N)([n]) \to G_*(C, N)([m])$$

is defined by

$$f_*[a_1, \ldots, a_n](x) = \iota_{(b_1, \ldots, b_m)}((b_0)_*[x]),$$

where $x \in N(a_1 \cdots a_n)$ and

$$b_j = \prod_{f(i) = j} a_i, \quad j = 0, \ldots, n.$$

Here we used the convention that $b_0 = 1$ provided $f^{-1}([0]) = \{0\}$.

Lemma 3.1. Let $C = \mathbb{N}$ be a free commutative monoid with a generator t, and let C_n be the standard projective right $H(C)$-module, $n \geq 0$, see Section 2.4. Then one has an isomorphism of left Γ-modules

$$G_*(C, C_n) = \bigoplus_{k=0}^n S^k \circ \Gamma^1$$
In particular, $G_*(C, C_n)$ is \mathcal{Y}-projective.

Proof. Since $\Gamma^1([m])$ is a free K-module spanned on x_1, \ldots, x_m, it follows that $S^k \circ \Gamma^1([m])$ is a free K-module spanned by all monomials of degree k on the variables x_1, \ldots, x_m. On the other hand we have

$$G_*(C, C_n) ([m]) = \bigoplus_{k=0}^{n} \bigoplus_{n_1 + \ldots + n_m = k} \mathbb{Z}.$$

To see the expected isomorphism, it is enough to assign to a basis element of $\bigoplus_{n_1 + \ldots + n_m = m} \mathbb{Z}$ the monomial $x_1^{n_1} \ldots x_m^{n_m}$.

Lemma 3.2. Let $C = C_1 \times C_2$ be product of two monoids and N_i be right $\mathcal{H}(C_i)$ modules, $i = 1, 2$. Then one has

$$G_*(C, N_1 \boxtimes N_2) = G_*(C, N_1) \otimes G_*(C, N_2).$$

The proof is straightforward.

Corollary 3.3. Let C be a finitely generated free commutative monoid and let N be a projective object in the category of right $\mathcal{H}(C)$-modules. Then $G_*(C, N)$ is a \mathcal{Y}-projective left Γ-module.

Proof. Since, any projective object is a retract of a direct sum of standard projective modules C^c, it is enough to restrict ourself with the case when $C = C^c$. Assume $C = \mathbb{N}^k$. We will work by induction on k. If $k = 1$, then the result was already established, see Lemma 3.1. Rest follows from Lemma 2.4 and Lemma 3.2 and the fact that tensor product of two \mathcal{Y}-projective objects is \mathcal{Y}-projective see [13].

3.2. Homology and cohomology of commutative monoids. Let CM be the category of all commutative monoids and let SCM be the category of all simplicial commutative monoids. There is a forgetful functor $U' : SCM \to SS$. By [16] there is unique closed model category structure on the category SCM such that a morphism $f : X_\cdot \to Y_\cdot$ of SCM is a weak equivalence (resp. fibration) if $U'(f)$ is a weak equivalence (resp. fibration) of simplicial sets. A simplicial commutative monoid X_\cdot is called free if each X_n is a free commutative monoid with a base Y_n, such that degeneracy operators $s_i : X_n \to X_{n+1}$ maps Y_n to Y_{n+1}, $0 \leq i \leq n$. According to [16] any free simplicial commutative monoid is cofibrant and any cofibrant object is a retract of a free simplicial commutative monoid.

If $C' \to C$ is a morphism of commutative monoids then it gives rise to a functor $\mathcal{H}(C') \to \mathcal{H}(C)$, which allows us to consider any left or right $\mathcal{H}(C)$-module as a module over $\mathcal{H}(C')$. In particular if $P_\cdot \to C$ is an augmented simplicial monoid and M is a left $\mathcal{H}(C)$-module, one can considered M as a left $\mathcal{H}(P_k)$-module, for all $k \geq 0$. The same holds for right $\mathcal{H}(C)$-modules.

Let M be a left $\mathcal{H}(C)$-module. Then the Grillet cohomology of C with coefficients in M is defined by

$$D^*(C, M) := H^*(\mathcal{D}(P_\cdot, M)),$$

where $P_\cdot \to C$ is a cofibrant replacement of the monoid C considered as a constant simplicial monoid.

Let N be a right $\mathcal{H}(C)$-module. Then the Grillet homology of C with coefficients in N is defined by

$$D_*(C, N) := H_*(C_\cdot(\Omega P_\cdot \otimes_{\mathcal{H}(P_\cdot)} N)),$$

where $P_\cdot \to C$ is a cofibrant replacement of the monoid C considered as a constant simplicial monoid.

The definition of the cohomology essentially goes back to Grillet (see [2]-[5]), but the definition of the Grillet homology is new.

By comparing the definition we obtain the following basic fact, which is missing in (see [2]-[5]).
Lemma 3.4. Let C be a commutative monoid and A be a \(K[C] \)-module. Then one has the isomorphisms:

\[
\begin{align*}
\mathcal{D}^*(C,j^*(A)) & \cong \mathcal{D}^*(K[C],A), \\
\mathcal{D}_*(C,j^*(A)) & \cong \mathcal{D}_*(K[C],A).
\end{align*}
\]

Proof. The isomorphism in the dimension zero is obvious, compare with Lemma 2.2. Rest follows from the fact that if \(P_\ast \rightarrow C \) is a cofibrant replacement of \(C \) in the category \(\text{SCR} \), then \(K[P_\ast] \rightarrow K[C] \) is a cofibration replacement of \(K[C] \) in the category \(\text{SCR} \).

3.3. The main Theorem. Now we are in the situation to state our main theorem, which relates Grillet (co)homology of the monoid \(M \) with the Andre-Quillen (co)homology of the \(\Gamma \)-modules \(\mathcal{G}_*(C,N) \) and \(\mathcal{G}^*(C,M) \).

Theorem 3.5. Let \(C \) be a commutative monoid, \(M \) be a left and \(N \) be a right \(\mathcal{H}(C) \)-modules. Then one has the following isomorphisms

\[
\begin{align*}
\mathcal{D}^*(C,M) & = \pi \mathcal{H}^*(\mathcal{G}^*(C,M)), \\
\mathcal{D}_*(C,M) & = \pi \mathcal{H}_*(\mathcal{G}_*(C,N)).
\end{align*}
\]

The proof is based on several steps. The idea is to reduce the theorem to the case when \(M \) is a free commutative monoid with one generator. In this case, the theorem is proved using direct computation. We give proof only for homology, a dual argument works for cohomology.

We need some lemmata.

Lemma 3.6. Let \(C \) be a commutative monoid, \(N \) be a right \(\mathcal{H}(C) \)-module. Then one has natural isomorphisms

\[
\mathcal{H}H_1(\mathcal{G}_*(C,N)) \cong N \otimes_{\mathcal{H}(C)} \Omega_C.
\]

Proof. Thanks to Lemma 1.1 one has \(\mathcal{H}H_1(\mathcal{G}_*(C,N)) \) is isomorphic to the cokernel of the map

\[
\partial : \bigoplus_{a,b \in C} N(ab) \rightarrow \bigoplus_{a \in C} N(a)
\]

As usual, we let \(i_a : N(a) \rightarrow \bigoplus_{a \in C} N(a) \) be the canonical inclusion. For an element \(x \in N(a) \), the class of \(i_a(x) \) in \(\mathcal{H}H_1(\mathcal{G}_*(C,N)) \) is denoted by \(\text{cl}(a;x) \). Then

\[
\text{cl}(a;x) \mapsto x \otimes da
\]

defines the isomorphism \(\mathcal{H}H_1(\mathcal{G}_*(C,N)) \cong N \otimes_{\mathcal{H}(C)} \Omega_C \).

Lemma 3.7. Let \(C \) be a commutative monoid and let

\[
0 \rightarrow N_1 \rightarrow N \rightarrow N_2 \rightarrow 0
\]

be a short exact sequence of right \(\mathcal{H}(C) \)-modules, then

\[
0 \rightarrow \mathcal{G}_*(C,N_1) \rightarrow \mathcal{G}_*(C,N) \rightarrow \mathcal{G}_*(C,N_2) \rightarrow 0
\]

is a \(\mathcal{Y} \)-exact sequence of left \(\Gamma \)-modules.

Proof. For a partition \(\lambda \) of \(n \) and a set \(P \) we denote by \(P^\lambda \) the set of orbits of the cartesian product \(P^n \) under the action of the group \(\Sigma(\lambda) \subset \Sigma_n \). In particular we have a set \(C^\lambda \). For any element \(\mu \in C^\lambda \) we put \(N_\mu := N(a_1 \cdots a_n) \), where \((a_1, \cdots, a_n) \in \mu \). Since

\[
\mathcal{G}_*(C,N)([n])^{\Sigma(\lambda)} = \bigoplus_{\mu \in C^\lambda} N_\mu
\]

the result follows. \(\square \)

By the same argument we have also the following.
Lemma 3.8. Let \(f : D \to C \) be a surjective homomorphism of commutative monoids, then for any right \(\mathcal{H}(C) \)-module \(N \) the induced morphism of left \(\Gamma \)-modules
\[
G_* (D, M) \to G_* (C, M)
\]
is a \(\mathcal{Y} \)-epimorphism.

Proof. In the notation of the proof Lemma 3.7 the map \(D^\lambda \to C^\lambda \) is surjective and the result follows. \(\square \)

Lemma 3.9. Let \(\epsilon : X_* \to C \) be a simplicial resolution in the category of commutative monoids and \(N \) be a right \(\mathcal{H}(C) \)-module. Then the associated chain complexes of the simplicial left \(\Gamma \)-module \(G_* (X_* , N) \to G_* (C, N) \) is a \(\mathcal{Y} \)-resolution.

Proof. Since \(X_*^\lambda \to C^\lambda \) is a weak equivalence the result follows. \(\square \)

3.4. Proof of Theorem 3.5. Thanks to Lemma 3.6 Theorem is true for \(i = 0 \). First we consider the case, when \(C = \mathbb{N} \) is the free commutative monoid with a generator \(t \). In this case \(D_i (C, -) = 0 \), if \(i > 0 \). On the other hand \(G_* (C, C_n) \) is \(\mathcal{Y} \)-projective thanks to Lemma 3.1. Therefore the result is true in this case. It follows from Lemma 2.3, Lemma 3.2 and Lemma 4.2 of [13] that the result is true if \(C \) is a free commutative monoid and \(N \) is projective. By Lemma 3.7 the functor \(\pi^\lambda_0 (G_* (C, -)) \) assigns the long exact sequence to a short exact sequence of right \(\mathcal{H}(C) \)-modules. Therefore we can consider such an exact sequence associated to a short exact sequence of right \(\mathcal{H}(C) \)-modules
\[
0 \to N_1 \to F \to N \to 0
\]
with projective \(F \). Since the result is true if \(i = 0 \) one obtains by induction on \(i \), that \(AQ_i (G_* (C, -)) = 0 \) provided \(i > 0 \) and \(C \) is free commutative monoid.

Now consider the general case. Let \(P_* \to C \) be a free simplicial resolution in the category of commutative monoids. Then we have
\[
N \otimes_{\mathcal{H}(P)} \Omega \cong \pi^\lambda_0 (G_* (C, N))
\]
Thanks to Lemma 3.9 \(C_* (G_* (P_* , N)) \to G_* (C, N) \) is a \(\mathcal{Y} \)-resolution consisting with \(AQ_* \)-acyclic objects and the result follows.

3.5. Applications. Let \(C \) be a commutative monoid, \(M \) be a left \(\mathcal{H}(C) \)-module and \(N \) be a right \(\mathcal{H}(C) \)-module. For the \(\Gamma \)-modules \(G_* (C, N) \) and \(G^* (C, M) \) one can apply the reach theory of functor homology developped in [9], [12], [13]. For example if one applies the Hochschild and Harrison theories one gets groups \(HH_*(C, N) \), \(Harr_*(C, N) \) and \(HH^*(C, M) \), \(Harr^*(C, M) \). Comparing with definitions one sees that \(HH^*(C, M) \) is nothing but Leech cohomology [8]. If \(K \) is a field of characteristic zero, then we have
\[
D_* (C, N) = Harr_{*+1} (C, N), \quad D^* (C, M) = Harr^{*+1} (C, M)
\]
this follows from general results valid for arbitrary \(\Gamma \)-modules [12], [13]. In particular this solves the cocycle problem for Grillet cohomology [6]. By theorem 1.2 we also obtain that the Grillet cohomology is a direct summand of Leech cohomology.

References

[1] M. Calvo-Cervera, A. M. Cegarra, B. A. Heredia. On the third cohomology group of commutative monoids. arXiv: 1406. 6835.
[2] P. A. Grillet. Commutative semigroup cohomology. Semigroup Forum 43(1991) 247–252.
[3] P. A. Grillet. The commutative cohomology of nilsemigroups, J. Pure and Appl. Algebra, 82(1992), 233–251.
[4] P. A. Grillet. Commutative semigroup cohomology. Comm. algebra, 23(1995), 3573–3587.
[5] P. A. Grillet. The commutative cohomology of finite semigroup. J. Pure and Appl. Algebra, 102(1995), 25–47.
[6] P. A. Grillet. Cocycles in commutative semigroup cohomology. Comm. Algebra 25(1997) 3425–3462.
[7] P. A. Grillet. The commutative cohomology of two-generator semigroups. Semigroup forum 60(2000), 4–15.
[8] J. Leech. Two papers: H-coextensions of monoids and the structure of a band of groups. Memoirs A.M.S. 157 (1975).
[9] J. - L. Loday. Opérations sur l’Homologie cyclique des algèbres commutatives. Invent. math. 96(1989), 205–230.
[10] J. - L. Loday. Cyclic Homology, Grund. Math. Wiss. vol. 301, 2nd edition. Springer, 1998.
[11] S. MacLane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. x+422 pp.
[12] T. Pirashvili. Hodge decomposition of higher order Hochschild homology. Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 151–179.
[13] T. Pirashvili. André-Quillen homology via functor homology. Proc. AMS 131(2002) 1687-1694.
[14] T. Pirashvili. Dold-Kan type theorem for Γ-groups. Math. Ann. 318 (2000), no. 2, 277–298.
[15] T. Pirashvili and B. Richter. Robinson-Whitehouse complex and stable homotopy. topology 29(2000), 525-530.
[16] D. G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43 Springer-Verlag, Berlin-New York 1967 iv+156 pp.
[17] D. G. Quillen. On the (co)homology of commutative rings. AMS Proc. Sym. Pure Math. XVII (1970), 65–87.

IVANE JAVAKISHVILI TIBLISI STATE UNIVERSITY, GEORGIA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LEICESTER, UNIVERSITY ROAD, LEICESTER, LE1 7RH, UK
E-mail address: tp59@le.ac.uk