Kinetic equations & Boltzmann equation

Step 1-4 are same as that for Grad's moment system.

Project the convection part:

Project the time and space derivative:

Multiply velocity:

Grad's expansion:

Orthogonal polynomial expansion:

Project the time derivatives:

Gro's Moment Method

Procedure of deriving Grad's moment system (collision term is neglected):

1. Orthogonal polynomial expansion:
 \[
 f(t, x, \xi) = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} f_{\alpha}(t, x, \xi),
 \]
 where \(f_{\alpha}(t, x, \xi) \) is a set of orthogonal basis.

2. Orthogonal projection:
 \[
 p_{\alpha} = \left\{ f_{\alpha}(t, x, \xi) \mid \alpha \in \mathbb{N}^d \right\}, \quad p_{\alpha} = \{ f_{\alpha}(t, x, \xi) \mid |\alpha| \leq M \}, \quad p_{\alpha} = \left\{ f_{\alpha}(t, x, \xi) \mid \alpha \in \mathbb{N}^d \right\},
 \]

3. Grad's expansion:
 \[
 p_{\alpha}(t, x, \xi) = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} f_{\alpha}(t, x, \xi).
 \]

4. Calculate time and space derivative:
 \[
 \frac{\partial p_{\alpha}}{\partial t} = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} \frac{\partial f_{\alpha}}{\partial t}.
 \]

5. Project the time derivatives:
 \[
 \frac{\partial p_{\alpha}}{\partial t} = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} \frac{\partial f_{\alpha}}{\partial t}.
 \]

6. Multiply velocity:
 \[
 \xi \cdot \nabla p_{\alpha} = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} \xi \cdot \nabla f_{\alpha}.
 \]

7. Project the convection part:
 \[
 p_{\alpha} \xi \cdot \nabla p_{\alpha} = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} \xi \cdot \nabla f_{\alpha}.
 \]

8. Matching the coefficients of basis functions:
 \[
 g_{\alpha}^{(1)} = \sum_{\alpha \in \mathbb{N}^d} a_{\alpha} = 0, \quad |\alpha| \leq M.
 \]

 Quasi-linear form:
 \[
 \frac{\partial g_{\alpha}}{\partial t} + A_{\alpha} g_{\alpha} = 0.
 \]

Grad's Moment System

Hyperbolicity of Grad's moment system

Hyperbolicity of Grad's 13 and 20 moment system

First-order PDEs

\[
\frac{\partial U}{\partial t} + A(U) \cdot \frac{\partial U}{\partial x} = 0, \quad U \in \mathbb{R}^n
\]

is called hyperbolic in \(\mathbb{R}^n \) if \(A(U) \) is real diagonalizable for any \(U \in \mathbb{R}^n \).

Grad's moment system (

Grad's moment system is NOT hyperbolic.

Diagram of Grad's moment system

Diagram the procedure of deriving Grad's moment system as following:

Time derivative

Convection term

Even around the equilibrium, Grad's moment system is NOT hyperbolic.

Model Reduction of Kinetic Equations by Operator Projection

Yuwei Fan and Jun Li and Ruo Li
School of Mathematical Sciences, Peking University, China

Conclusion & References

Grad's moment system is not hyperbolic even around the Maxwellian.

A globally hyperbolic regularization for Grad's moment system is proposed. The problem that loss of hyperbolicity is essentially fixed.

Based on the regularization, a general framework to derive globally hyperbolic system from kinetic equations is proposed.

[1] Z. Cai, Y. Fan, and R. Li. Globally hyperbolic regularization of Grad's moment system in one dimensional space. Comm. Math. Sci., 15(5):1187–1221, 2017.

[2] Z. Cai, Y. Fan, and R. Li. Globally hyperbolic regularization of Grad's moment system. Comm. Pure Appl. Math., 70(3):417–458, 2017.

[3] Y. Fan, J. Knollmayer, J. Li, B. Li, and M. Terracini. Model reduction of kinetic equations by operator projection. J. Stat. Phys., 161(1), 2015.