Full Length Research Paper

Fumigant and repellent activity of Rutaceae and Lamiaceae essential oils against *Acanthoscelides obtectus* Say

Karima Khelfane-Goucem*, Nadia Lardjane and Ferroudja Medjdoub-Bensaad

Laboratory of Entomology, Department of Biology, Faculty of Biological and Agricultural Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria.

Received 9 April, 2014; Accepted 17 February, 2016

Acanthoscelides obtectus Say, a principal pest of kidney beans *Phaseolus vulgaris* L. in the Mediterranean area, is a multivoltine and oligophagous bruchid that damages not only host plant (kidney bean) but also other *Leguminosae* species. Essential oils of Rutaceae: *Citrus reticulata* L. and *Citrus limonum* L. and of Lamiaceae *Mentha piperita* L. and *Lavandula angustifolia* L. were evaluated by fumigation upon *A. obtectus* adults using concentrations of 13.33, 40, 80 and 106.66 µL/L air. Their vapours have a toxic increasing effect depending upon concentrations and time exposure. Lamiaceae essential oils exhibited the higher fumigant activity inducing mortality of about 37.5 to 100% and 45.25 to 95% for, respectively lavender and peppermint essential oils after 24 h only. Mortality percentages of 85 and 72.5%, respectively for *C. limonum* and *C. reticulata* were recorded after exposure time of 96 h at the highest dose. Repellency activity studied at 0.105, 0.315, 0.631 and 0.842 µL/cm² concentrations showed a higher repellency percentage of 71.25% for peppermint essential oil on *A. obtectus* adults. Our results suggest that Lamiaceae essential oils more than Rutaceae ones may be useful as a seed protecting tool with fumigation effects against *A. obtectus* and could replace synthetic insecticides which are harmful to the environment.

Key words: *Acanthoscelides obtectus*, *Phaseolus vulgaris*, essential oils, repellency, fumigant toxicity.

INTRODUCTION

The bean beetle *Acanthoscelides obtectus* Say (Coleoptera, Chrysomelidae, Bruchinae) is a cosmopolitan and polyvoltin insect which attacks its host plant *Phaseolus vulgaris* L. and other Fabaceae such as those in the genus *Vigna* (Leroi and Jarry, 1981; Dobie et al., 1984). As in several other bruchids, *A. obtectus* can complete its development both in maturing seeds and in stored ones (Thiery et al., 1994). Its life cycle on stored beans can occur without returning to the field (Labeyrie, 1962) causing crop losses of about 80% after six to...
seven months of storage (Idi, 1994). Control of this stored product pest is of great importance especially in developing countries where Leguminosae seeds represent a fundamental food resource (Abate and Ampofo, 1996). The most frequently used method and economical tool for managing stored grain insect pests is a chemical one often through fumigation (Mueller, 1990). Since this method pose human health risks, there is actually claim to natural products (Isman, 2000; Huignard et al., 2011). Essential oils are produced in 17500 aromatic species of higher plants belonging mostly to a few families, including the Myrtaceae, Lauraceae, Lamiaceae and Asteraceae which hide a real insecticide arsenal capable of crop protection (Regnault-Roger et al., 2012).

Essential oils of several aromatic plants have been studied in Algeria, demonstrating their efficiency upon stored product pests Callusbruchus maculatus (F.) (Kellouche and Soltani, 2004; Kellouche, 2005), Bruchus rutilmanus (Boh.) (Medjoub-Bensad et al., 2007) and A. obtectus (Bouchikhi et al., 2008, 2010).

The present study aims to evaluate fumigant and repellent insecticidal activity of essential oils of lemon (Citrus reticulata L.), tangerine (Citrus limonum L.) (Rutaceae); peppermint (Mentha piperita L.) and lavender (Lavandula angustifolia L.) (Lamiaceae) as control alternatives against a stored product beetle A. obtectus.

MATERIALS AND METHODS

Insects
Acanthoscelides obtectus strain came from a sample collected in Tlemcen (34° 52’ 41” N 1° 18’ 53”W) (Algeria) and was reared in a dark incubator under controlled conditions (30 ± 1°C and 70 ± 5% relative humidity) on P. vulgaris dry beans (Rognon blanc cultivar). Insects were maintained into glass flasks (1 L capacity) closed at the top with a fine mesh nylon screen to allow aeration. Every two months, unsexed adults, new emerged, were transferred on fresh beans for rearing. Adult insects, of 0 to 24 h old, were removed daily from the livestock insect and used in each bioassay.

Essential oils
The plants from which essential oils were extracted were lemon (C. reticulata L.), tangerine (C. limonum L.), peppermint (M. piperita L.) and lavender (L. angustifolia L.) collected from Tizi Ouzou (36° 42’ 42”N 4° 02’ 45”E) (Algeria). Essential oils were obtained by hydrodistillation of fresh peel for Rutaceae and from peppermint leaves and lavender flowered tops for Lamiaceae.

Fumigation bioassay
Fumigation bioassays were carried out with 10 adults (5 males and 5 females of 0 to 24 h old) exposed in Plexiglas bottles (750 ml capacity). Filter papers (Whatman number 1) were attached to inner side of the bottle screw cap and impregnated with different oil doses: 10, 30, 60 and 80 µL giving calculated fumigant concentrations corresponding, respectively to 13.33, 40, 80 and 106.66 µL/L air. Four replications were made for each concentration and control. Mortality was recorded after 24, 48, 72 and 96 h until total death of individuals.

Repellency bioassay
Repellent effects of essential oils on A. obtectus adults were assessed using preferential zone method on filter paper described by Mc Donald et al. (1970). Whatman filter papers (diameter 11 cm) were cut in equal halves. Then 10, 30, 60 and 80 µL corresponding to 0.105, 0.315, 0.631 and 0.842 µL/cm² of essential oils were dissolved in 0.5 ml acetone and applied uniformly to a half filter disc; while the other half received 0.5 ml acetone alone as control. After complete evaporation of a solvent (15 mn), discs were reconstituted then placed in Petri dishes (diameter 11 cm). Ten adults beetles (5 males and 5 females of 0 to 24 h old) were introduced in the filter paper center of each Petri dish sealed immediately using four replications for each treatment. After 30 min of treatment at 25°C, number of insects present on the treated (Nt) and non treated (Nc) halves was recorded. Repellency percentage (RP) was calculated as follows: RP (%) = [(Nc-Nt) / (Nc+Nt)] x 100. Mean repellency percentages were calculated and compared with Mc Donald et al. (1970) classification which proposed five classes: class 0 (RP<0.1%), class I (0.1% ≤RP≤20%), class II (20.1%≤RP≤40%), class III (40.1%≤RP≤60%), class IV (60.1% ≤RP≤80%) and class V (RP≥80.1%).

Data analysis
The data obtained were submitted to one way analysis of variance using Statbox version 6.3 (Grimonsoft, 2004). Newman and Keuls test was performed to compare means (P < 0.05) (Dagnelie, 1975).

RESULTS

Fumigant toxicity
Fumigant activity of essential oils is shown in Table 1. It was highly dependent upon oil concentration and exposure time. Essential oils from Lamiaceae compared to Rutaceae showed the highest fumigant effect against A. obtectus. At the lowest concentration, 13.33 µL/L air, lavender and peppermint essential oils showed comparable percentage mortality of 37.5 ± 28.7% and 45 ± 25.16 after 24 h, 90 ± 14.14% and 95 ± 5.77% after 48 h and 100% after 72 h. The maximum activity (100% mortality) was recorded after only 24 h of time exposure to a highest concentration of 106.66 µL/L air. Rutaceae essential oils vapours were less toxic to A. obtectus. Percentage mortalities of 85 ± 5.77% and 72.5 ± 5% were observed, respectively for lemon and tangerine essential oils after time exposure of 96 h while only 17.5 ± 9.57% and 12.5 ± 5% of beetles died at the lowest concentration (13.33 µL/L air).

Repellent activity
Repellent activity percentages evaluated for the 4 essential oils are given in Table 2. One way variance analysis showed highly significant differences for all...
Table 1. Mortality percentage (Mean±SD) of Acanthoscelides obtectus adults exposed to C. limonum, C. reticulata, L. angustifolia and M. piperita essential oils vapours.

Essential oils	Doses µL/L air	24 h	48 h	72 h	96 h
	0	0±0a	0±0a	0±0b	0±0b
C. limonum	13.33	10±0b	10±0c	10±0c	17.5±9.57c
40	7.5±5b	15±5.77bc	17.5±9.5bc	17.5±9.5c	
80	12.5±5b	20±8.16b	25±5.77b	35±5.77b	
106.66	70±0a	72.5±5a	85±5.77a	85±5.77a	
	0	0±0b	0±0a	0±0d	0±0b
C. reticulata	13.33	7.5±5b	12.5±5c	12.5±5c	12.5±5c
40	10±0d	17.5±9.5c	22.5±5b	27.5±5b	
80	10±8.16b	27.5±5b	30±8.16b	32.5±9.57b	
106.66	35±5.77a	45±5.77a	57.5±5a	72.5±5a	
L. angustifolia	13.33	37.5±28.7b	90±14.14a	100±0a	100±0a
40	80±24.49a	95±5.77a	100±0a	100±0a	
80	100±0a	100±0a	100±0a	100±0a	
106.66	100±0a	100±0a	100±0a	100±0a	
M. piperita	13.33	45±25.16b	95±5.77a	100±0a	100±0a
40	90±8.16a	100±0a	100±0a	100±0a	
80	92.5±9.57a	100±0a	100±0a	100±0a	
106.66	95±5.77a	100±0a	100±0a	100±0a	

All experiments were replicated four times. P-value: significant differences determined by a one way ANOVA. Numbers followed by the same letter in each table row are not significantly different at 0.05 level (Newman and Keuls test).

Table 2. Repulsion means percentages of M. piperita, L. angustifolia, C. reticulata and C. limonum essential oils against Acanthoscelides obtectus adults classified according to Mc Donalds et al. (1970).

Essential oils	Doses µL/cm²	0.105	0.315	0.631	0.842	Repulsion Mean %	Class
M. piperita	50±16.32	70±19.14	80±18.3	85±16.34	71.25	Repulsive (IV)	
L. angustifolia	30±11.5c	60±16.3b	75±10bc	90±11.5a	63.75	Repulsive (IV)	
C. reticulata	40±8.16c	35±5.77c	80±8.1b	100±0a	63.75	Repulsive (IV)	
C. limonum	10±4.08d	45±5.77c	55±5.7b	65±5.77a	43.75	Moderately repulsive (III)	

All experiments were replicated four times. Significant differences determined by a one way ANOVA. Numbers followed by the same letter in each table row are not significantly different at 0.05 level (Newman and Keuls test). Classes are given according to Mc Donalds et al. (1970).

essential oils except peppermint essential oil. The latter is the more strongly repulsive since at the lowest dose (0.105 µL/cm²), it induced repulsion rate of 50 ± 16.32% showing consequently the highest mean repulsion rate of 71.25% calculated according to Mc Donalds et al. (1970). Repulsion activity evaluated after a time exposure of 30 min is doses dependent. Significant differences were observed between treatments as the doses increase with a maximum of repulsion recorded at the highest concentration (0.842 µL/cm²); it was of about 85 ± 16.34, 90 ± 11.54, 100 ± 0 and 65 ± 5.77%, respectively for peppermint, lavender, tangerine and lemon essential oils.

DISCUSSION

The four essential oils screened for fumigant activity demonstrated toxicity against *A. obtectus* adults. The
insecticidal activity varied with oil concentrations and time exposure. Results showed higher efficiency of Lamiaceae essential oils compared to Rutaceae.

Fumigant toxicity of essential oils and their major compounds, volatile monoterpenoids was largely described especially for Mediterranean species (Regnault-Roger et al., 1993; Regnault-Roger and Hamraoui, 1995; Regnault-Roger and Hamraoui, 1994). According to Regnault-Roger and Hamraoui (1993), essential oils extracted by hydrodistillation from Lamiaceae, Myrtaceae, Lauraceae and Gramineae present fumigant toxicity against A. obtectus adults especially, Thymus serpyllum, Thymus vulgaris and Lavandula angustifolia essential oils which induce a mortality of 95 to 100% after 24 and 48 h when exposed, respectively to 160, 136.1 and 145 mg/dm³.

Essential oils from Rutaceae seem to exert a low activity against A. obtectus adults. Our results corroborate with those obtained by Papachristos and Stamopoulos (2002) who showed that essential oils of Citrus sinensis have a low action on A. obtectus with LC₅₀ of 11.4 µL/L air for males and 19.54 µL/L air for females while Lavandula hybrida LC₅₀ was 1.64 µL/L air for males and 2.34 µL/L air for females in comparison to Lamiaceae (basil, peppermint and lavender) and Myrtaceae (eucalyptus) essential oils. The same authors screened 13 essential oils for their fumigant activity against A. obtectus adults and reported that Lamiaceae essential oils were more strongly toxic to males than females and noted LC₅₀ of about 1.1, 1.2, 1.6 and 2.1 µL/L air for Mentha microphylla, Mentha viridis, L. hybrida and Rosmarinus officinalis essential oils, respectively. Ayvaz et al. (2010) investigated insecticidal activity of oregano (Origanum onites L.), savory (Satureja thymbra L.) (Lamiaceae) and myrtle (Myrtus communis L.) (Myrtaceae) against three stored product insects. They reported that A. obtectus was the most tolerant to essential oils with the most toxic action attributed to M. communis (linalool) while oregano and savory essential oils were highly efficient against the Mediterranean flour moth (Ephestia kuehniella Zeller) and the Indian meal moth (Plodia interpunctella Hübner) (Lepidoptera: Pyralidae) inducing 100% mortality after 24 h exposure at 9 and 25 µL/L air for P. interpunctella and E. kuehniella, respectively. Raja et al. (2001) reported that oils derived from Mentha arvensis, M. piperita, M. spicata and Cymbopogon nardus influenced significantly adult mortality, oviposition and adult emergence of cowpea beetle (Callosobruchus maculatus (F.)).

Similar effects of volatile components of essential oils of laurel, rosemary and lavender were described by Shaaya et al. (1997) for A. obtectus and for other stored products pests like Orzyaephilus surinamensis (L.), Sitophilus oryzae (F.) and Rhysopherta dominica (L.). These authors recorded a mortality of 85 to 100% after 4 days exposure to a dose of 70 µL/L air. However, LC₅₀ values were higher than those recorded on A. obtectus adults. Rossi et al. (2012) studied insecticidal properties of Citrus bergamia L. essential oil vapours on Sitophilus oryzae adults and showed significant mortality after 96 h at 10 µL cm⁻² dose; they also observed that a dose of 0.75 µL insect⁻¹ induced a relatively high mortality of about 65 and 83% after 24 and 96 h, respectively showing LD₅₀ of 0.36 µL insect⁻¹ after 96 h.

In addition to the fumigant toxicity, a studied essential oils exhibited repulsion activity against A. obtectus adults. Peppermint, lavender and tangerine essential oils were classed in the repulsive class according to Mc Donalds et al. (1970) and the Lamiaceae essential oils again were highly effective against A. obtectus adults. Essential oils showed significant variations in their repulsion activity depending upon several factors especially their chemical composition. Although the chemical analysis was not performed for the studied essential oils, the superiority of the insecticidal potential of peppermint and lavender can be attributed to their major components, menthol and menthone (Kumar et al., 2011) for the first and linalool and linalyle acetate (Rossi et al., 2012) for the second. Papachristos and Stamopoulos (2002) reported that M. viridis, E. globulus, M. microphylla, R. officinalis and L. hybrida essential oils showed high repulsive effects compared to Thuja orientalis, Citrus sinensis and Pistacia terebinthus essential oils concluding, as in our study, that the most toxic essential oils exhibited in the same time high repulsive effects and inhibited beetle reproduction. Aggarwal et al. (2001) evaluated L-menthol and seven of its acyl derivates for repellent activity against C. maculatus, T. castaneum, S. oryzae and R. dominica and found the repellent activity of 100, 82, 78 and 72%, respectively at the concentration of 20 µg in 1 ml acetone.

Conclusion

The results of fumigant and repellent activity of peppermint, lavender, tangerine and lemon essential oils against A. obtectus, a serious pest in the stocks, permitted to propose natural products of plants from Mediterranean area as alternative to chemical control. As it was studied against several stored grain pests and vectors for its fumigant and repellent activity (Kumar et al., 2011), Mentha piperita essential oil seem to be the most strongly effective. More studies should be undertaken using other doses and other indigenous plants so that a range of organic insecticides could be produced in order to preserve nutritional quality of kidney beans in the stocks, especially in developing countries where this commodity constitute a fundamental food resource.

Conflict of interests

The authors have not declared any conflict of interest.
REFERENCES

Abate T, Ampolo JKO (1998). Insect pests of beans in Africa: their ecology, management. Annu. Rev. Entomol. 43:45-73.

Aggarwal KK, Tripathi AK, Ahmad A, Prajapati V, Verma N et Kumar S (2001). Toxicity of L-menthol and its derivate against four storage insects. Insect Sci. Appl. 21:229-235.

Ayzaz A, Sagdic O, Karaborklu S, Ozurtik I (2010). Insecticidal activity of the essential oils from different plants against three stored-product insects. J. Insect Sci. 10(21):1-13.

Bouchiki TZ, Bendahou M, Khelli MA (2010). Lutte contre la bruche Acanthoscelides obtectus et la mite Tineola bisselliella per les huiles essentielles extraites de deux plantes aromatiques d’Algérie. Lebanon. Sci. J. 11(1):55-68.

Bouchiki TZ, Hassani F, Khelli MA (2008). Bioefficacy of essential oils extracted from the leaves of Rosmarinus officinalis and Artemisia herba-alba towards the bean weevil Acanthoscelides obtectus (Coleoptera : Bruchidae). J. Pure Appl. Microbiol. 2(1):165-170.

Dagorn P (1975). Théories et méthodes statistiques. Les presses agronomiques de Gembloux 2:245-249.

Dobie P, Haines CP, Hodges RJ, Prevett PF (1984). Insects and Arachnids of tropical stored products, their biology and identification: a training manual. Trop. Dev. Res. Inst. UK. 273p.

Grimmersoft (2004). StatBox version 6.5 Pro © 1993-2004, Grimmersoft, Paris France.

Hugnardin J, Giltho I, Monge J, Regnault-Roger I (2011). Insectes ravageurs des graines de légumineuses, biologie des Bruchinae et lutte raisonnée en Afrique. Edition Quae, France. 147 p.

Idi A (1994). Suivi de l’évolution des populations de bruches et de leurs parasitoïdes dans les systèmes de stockage traditionnel de niébé au Niger. Thèse Doc. Univ., Niamez. 100 p.

Isman MB (2000). Plant essential oils for pest and disease management. Crop Prot. 19:603-608.

Kellouche A (2005). Etude de la bruche du poêle chiche Callosobruchus maculatus (Coleoptera : Bruchidae) : Biologie, physiologie, reproduction et lutte. Thèse Doctorat d’état en entomologie. Univ. Tizi-ouzou, Algérie. 154 p.

Kellouche A, Soltani N (2004). Activité biologique des poudres de cinq plantes et de l’huile essentielle d’une d’entre elles sur Callosobruchus maculatus (F). Int. J. Trop. Insect Sci. 24(1):184-191.

Kumar P, Mishra S, Malik A, Satya S (2011). Insecticidal properties of Mentha species: a review. Ind. Crop Prod. 34:802-817.

Labeirie V (1962). Les Acanthoscelides. In: Balachowsky AS. Editor. Entomologie appliquée à l’agriculture. 1. Masson. pp. 469-490.

Leroi B, Jarry M (1981). Relations d’Acanthoscelides obtectus Say (Coleoptères Bruchidae) avec différentes espèces de Phaseolus: influence sur la fécondité et les possibilités de développement larvaire. Entomol. Exp. Appl. 30:73-82.

Mc Donald LL, Guy RH, Speirs RD (1970). Preliminary evaluation of new candidate materials as toxicants, repellents and attractants against stored product insects. Marketing Research Report. n° 882. Washington: Agricultural Research Service, United States Department of Agriculture. 183 p.

Medjid-Bensaad F, Khelli MA, Hugnardin J (2007). Bio-ecology of broad bean bruchid Bruchus Rufimanus Boh.(Coleoptera: Bruchidae) in a region of Kabylia in Algeria. Afr. J. Agric. Res. 2(9):412-417.

Mueller DK (1990). Fumigation. In: Mallis A (Ed.). Handbook of pest control. Franzak and Foster, Cleveland, Ohio, USA. pp. 901-939.

Papachristos DP, Stamopoulos DC (2002). Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 38:117-125.

Raja N, Albert S, Ignacimuthu S, Dorn S (2001). Effect of plant volatile oils in protecting stored cowpea Vigna unguiculata (L.) Walp. Against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) infestation. J. Stored Prod. Res. 37(2):127-132.

Regnault-Roger C, Hamraoui A (1994). Inhibition of reproduction of Acanthoscelides obtectus Say (Coleoptera) a kidney bean (Phaseolus vulgaris L.) bruchid, by aromatic essential oils. Crop Prot. 13:624-628.

Regnault-Roger C, Hamraoui A (1995). Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera) a bruchid of kidney bean (Phaseolus vulgaris L.). J. Stored Prod. Res. 31:291-299.

Regnault-Roger C, Hamraoui A, Hotelman M, Theron E, Pineal R (1993). Insecticidal effect of essential oils from Mediterranean plants upon Acanthoscelides obtectus Say (Coleoptera: Bruchidae) a pest of Kidney bean (Phaseolus vulgaris L). J. Chem. Ecol. 19:1233-1244.

Regnault-Roger C, Vincent C, Arnason JT (2012). Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 57:405-424.

Rossi E, Cosimi S, Loni A (2012). Bioactivity of essential oils from Mediterranean plants: Insecticidal properties on Sitophilus zeamais and effects on seed germination. J. Entomol. 39(23):1-10.

Shaya E, Kostjukovski M, Elberg J, Sukprakarn C (1997). Plant oils as fumigants and contact insecticides for the control of stored product insects. J. Stored Prod. Res. 33:7-15.

Thierry D, Jarry M, Pouzat J (1994). To penetrate or not to penetrate? A behavioral choice by bean beetle first-instar larvae in response to Phaseolus vulgaris seeds surface quality. J. Chem. Ecol. 20(8):1867-1875.

Regnault-Roger C, Hamraoui A (1993). Efficiency of plants from the south of France used as traditional protectants of Phaseolus vulgaris L. against its bruchid Acanthoscelides obtectus (Say). J. Stored Prod. Res. 29(3):259-264.