Optimal Response in a Patient With CML Expressing BCR–ABL1 E6A2 Fusion Transcript With Nilotinib Therapy: A Case Report

LIVIA MANZELLA1,2, ELENA TIRRÒ1,2, SILVIA RITA VITALE1,2, ADRIANA PUMA1,2, MARIA LETIZIA CONSOLI3, LOREDANA TAMBE3, MARIA STELLA PENNISTI1,2, SANDRA DI GREGORIO1,2, CHIARA ROMANO1,2, CRISTINA TOMARCHIO1,2, FRANCESCO DI RAIMONDO3,4 and FABIO STAGNO3

1Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; 2Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy; 3Division of Hematology and Bone Marrow Transplant, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy; 4Department of Surgery, Medical and Surgical Specialities, University of Catania, Catania, Italy

Abstract. Background/Aim: The Philadelphia chromosome is considered the hallmark of chronic myeloid leukemia (CML). However, although most patients with CML are diagnosed with the e13a2 or e14a2 breakpoint cluster region (BCR–Abelson 1 (ABL1) fusion transcripts, about 5% of them carry rare BCR–ABL1 fusion transcripts, such as e19a2, e8a2, e13a3, e14a3, e1a3 and e6a2. In particular, the e6a2 fusion transcript has been associated with clinically aggressive disease frequently presenting in accelerated or blast crisis phases; there is limited evidence on the efficacy of front-line second-generation tyrosine kinase inhibitors for this genotype. Case Report: We describe a case of atypical BCR–ABL1 e6a2 fusion transcript in a 46-year-old woman with CML. Results: The use of primers recognizing more distant exons from the common BCR–ABL1 breakpoint region correctly identified the atypical BCR-ABL1 e16a2 fusion transcript. Treatment with second-generation tyrosine kinase inhibitor nilotinib was effective in this patient expressing the atypical e6a2 BCR–ABL1 fusion transcript.

Chronic myeloid leukemia (CML), is a myeloproliferative disorder characterized by the presence of the Philadelphia chromosome (Ph+) that results by the reciprocal translocation t(9;22) (q34;q11), leading to a breakpoint cluster region (BCR–Abelson 1 (ABL1) fusion transcript. This encodes BCR–ABL onco-protein, which has a constitutive tyrosine kinase activity and plays an essential role in the pathogenesis of the disease, as it transforms hematopoietic stem cells, determining survival and proliferation, and interaction with both the cell cytoskeleton and the bone marrow microenvironment (1-8). The introduction of imatinib mesylate dramatically improved the outcome of patients with CML in the chronic phase (8-13). Nevertheless, clinical evidence suggests that patients treated with imatinib mesylate may develop BCR–ABL-dependent or BCR–ABL-independent resistance to therapy (14-20).

To overcome resistance to imatinib mesylate therapy, in the past 10 years, both second- and third-generation tyrosine kinase inhibitors (TKIs) have been developed (dasatinib, nilotinib, bosutinib and ponatinib) (21-23).

Most variants result from chromosomal breaks in BCR introns 1, 13 or 14, and ABL1 exon 2 and are known as e1a2, e13a2, and e14a2 fusion transcript, respectively; and the vast majority of patients with CML have either e13a2 or e14a2 BCR–ABL1 fusion transcripts (24-26). However, several alternative transcripts have been reported, largely resulting from either BCR or ABL1 alternative exon splicing. These uncommon variant transcripts can result in phenotypic variability and affect response to TKI therapy (27). They are generated by rearrangement between BCR exons 1, 6, 8, 13, 14 and 19 and ABL1 exons 2 and 3, accounting for fewer than 1% and their clinical significance is still under investigation (28-31). The atypical e6a2 BCR–ABL1 transcript produces a rare fusion protein of 185 kDa, which confers a poor prognosis in CML due to its association with aggressive phenotype and early transformation, perhaps due to...
to the lack of an important regulatory BCR sequence within the fusion proteins (30). Here we report a case of rare CML presenting with an e6a2 fusion variant and treated with nilotinib.

Case Report

In October 2018, a 46-year-old female was admitted to the Hematology Section, because of leukocytosis and anemia (Table I). The differential white blood cell count showed the presence of immature myeloid circulating cells, while bone marrow evaluation indicated the presence of the Philadelphia-positive chromosome (32) in 95% of the analyzed metaphases (33) with no further cytogenetic abnormalities. Sokal (34), Eutos (35), Hasford (36) and ELTS (37) risk scores were categorized as low (Table I).

In order to detect BCR–ABL fusion transcripts, total RNA extracted from white blood cells derived from bone marrow was reverse transcribed by Superscript III (Invitrogen, Carlsbad, CA, USA) and the cDNA obtained used to employed reverse transcriptase polymerase chain reaction (RT-PCR) multiplex (38, 39).

Molecular analysis showed no amplification of specific products with primers for the detection of the BCR–ABL1 canonical fusion transcripts e13a2, e14a2 and e1a2. Instead, we found an atypical band at approximately 1,350 bp (Figure 1).

To better characterize this PCR product, a new PCR reaction was performed using forward primer BCR-3 (5’-TGGGTCCTTGCGGAATTCCT-3’) and reverse primer for ABL-2 (5’-GTTCGAAGCAGCGCTTCG-3’) recognizing exon 3 and exon 2 of BCR and ABL genes, respectively. Using platinum SuperFiDNA polymerase enzyme (Thermo Fisher, Carlsbad, CA, USA), we obtained a band of approximately 480 bp (Figure 2). After agarose gel purification, this DNA fragment was cloned into pcr4-TOPO-TA vector according to the manufacturer’s protocol (Invitrogen). Plasmid DNA derived from 10 individual bacterial colonies was sequenced by Sanger analysis, which detected e6a2 fusion transcript (Figure 2).

Based on clinical and laboratory findings, the patient was diagnosed as having chronic-phase CML expressing an uncommon BCR–ABL e6a2 fusion transcript. After informed consent, the patient was treated frontline with nilotinib at conventional dose (300 mg b.i.d.).

Discussion

The concept of precision medicine is based on the identification of specific therapeutic strategies targeting genes responsible for transformation of normal cells into tumor cells (32, 40-44). Hence, the development of small molecules able to target these intracellular molecules represents a useful therapeutic approach to cancer treatment (45-53).

CML is characterized in 95% of patients by the expression of BCR–ABL1 fusion transcript. Three breakpoint cluster regions have been reported to date: Major, minor and micro, which result in BCR–ABL proteins that differ in size and transforming potential, namely p210, in more than 90% of cases, p190 and p230, respectively. Different atypical breakpoints outside these cluster regions have been described. They arise from splicing between whole exons, insertion of small sequences, or genomic breakpoints within exons and often produce proteins with oncogenic potential.
In this regard, the BCR–ABL1 e6a2 fusion transcript usually occurs in the middle of the guanine nucleotide exchange factor (GEF)/DBL-like domain, which is therefore only partially contained in the resulting BCR–ABL protein. Since this region is a GEF-related domain, it mediates the interaction with guanine nucleotide-binding proteins which are involved in cell growth and signaling. Hence, it is possible that its truncation has transforming effects, enhancing the oncogenic potential of BCR–ABL1 (30).

In this report, we describe the case of a female patient with CML carrying the BCR–ABL1 e6a2 fusion transcript, which presents diagnostic and therapeutics challenges.

In fact, the use of conventional multiplex RT-PCR usually fails to detect uncommon BCR–ABL1 rearrangements due to the generation of atypical PCR products, which are often interpreted as nonspecific and this failure to recognize these may lead to a misdiagnosis of acute myeloid leukemia, which excludes the patient from targeted therapy. Therefore, we employed primers recognizing more distant exons from the common BCR–ABL1 breakpoint region, allowing the identification of the atypical BCR–ABL1 e6a2 fusion transcript.

Patients carrying atypical BCR–ABL1 e6a2 fusion transcript are depicted as having an aggressive clinical course; in fact it is reported that this transcript is associated with a poor prognosis, frequently with patients presenting in accelerated or blast crisis phases (54-56). TKI therapy outcomes have not yet been well established. Therefore as previous reports suggested a poor prognosis in patients harboring atypical BCR–ABL1 e6a2 isoform (24, 57) and because of the young age of patient, we employed nilotinib therapy from the beginning.

The patient soon achieved complete hematological response and complete cytogenetic response within 6 months of treatment, and after 14 months of nilotinib therapy she is in complete cytogenetic response and her clinical outcome is good.

In conclusion, in order to define the best treatment choice for these patients with CML, it would be mandatory to investigate the molecular and hematological characterization of more patients with BCR–ABL e6a2-bearing CML to verify the true correlation of this transcript with the aggressiveness of the disease.

Conflicts of Interest

FDR and FS declare honoraria from Bristol Mayers-Squibb, Incyte, Novartis, Pfizer. All the others Authors have no competing interests.

Authors’ Contributions

LM wrote the article, designed and performed the experiments; ET, SRV, AP, MSP, SDG and CR analyzed and interpreted the data; MLC and LT performed cytogenetics; FS and FDR undertook the clinical care; FS, FDR, LM critically revised the article; LM conceived the original idea and supervised the project.

References

1. Ren R: Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3): 172-183, 2005. PMID: 15719031. DOI: 10.1038/nrc1567
2. Stella S, Tirro E, Conte E, Stagno F, Di Raimondo F, Manzella L and Vigneri P: Suppression of survivin induced by a BCR-ABL/JAK2/STAT3 pathway sensitizes imatinib-resistant CML cells to different cytotoxic drugs. Mol Cancer Ther 12(6): 1085-1098, 2013. PMID: 23536723. DOI: 10.1158/1535-7163.MCT-12-0550
3. Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P and Wang JY: Knockout serum replacement promotes cell survival by preventing bim from inducing mitochondrial cytochrome C release. PLoS One 10(10): e0140585, 2015. PMID: 26473951. DOI: 10.1371/journal.pone.0140585
4. Manzella L, Tirro E, Pennisi MS, Massimino M, Stella S, Romano C, Vitale SR and Vigneri P: Roles of interferon regulatory factors in chronic myeloid leukemia. Curr Cancer Drug Targets 16(7): 594-605, 2016. PMID: 26728039. DOI: 10.2174/1568009616666160105105857
5. Radujkovic A, Topaly J, Fruehauf S and Zeller WJ: Combination treatment of imatinib-sensitive and -resistant BCR–ABL-positive CML cells with imatinib and farnesyltransferase inhibitors. Anticancer Res 26(3A): 2169-2177, 2006. PMID: 16827161
6 Massimino M, Consoli ML, Mesuraca M, Stagno F, Tirro E, Stella S, Pennisi MS, Romano C, Buffa P, Bond HM, Morrone G, Sciacca L, Di Raimondo F, Manzella L and Vigneri P: IRF5 is a target of BCR–ABL kinase activity and reduces CML cell proliferation. Carcinogenesis 35(5): 1132-1143, 2014. PMID: 24445143. DOI: 10.1093/carcin/bgu013

7 Tirro E, Stella S, Massimino M, Zammit V, Pennisi MS, Vitale SR, Romano C, Di Gregorio S, Puma A, Di Raimondo F, Stagno F and Manzella L: Colony-forming cell assay detecting the co-expression of JAK2V617F and BCR in ABL1 in the same clone: A case report. Acta Haematol 141(4): 261-267, 2019. PMID: 30965317. DOI: 10.1159/000496821

8 Rosti G, Castagnetti F, Gugliotta G and Baccarani M: Tyrosine kinase inhibitors in chronic myeloid leukaemia: Which, when, for whom? Nat Rev Clin Oncol 14(1): 141-154, 2017. PMID: 27752053. DOI: 10.1038/nrclinonc.2016.139

9 Stagno F, Stella S, Spitaleri A, Pennisi MS, Di Raimondo F and Vigneri P: Imatinib mesylate in chronic myeloid leukaemia: Frontline treatment and long-term outcomes. Expert Rev Anticancer Ther 16(3): 273-278, 2016. PMID: 26852913. DOI: 10.1586/14737140.2016.1151356

10 Hochhaus A, Larson RA, Guhilhot F, Radich JP, Brandford S, Hughes TP, Baccarani M, Deininger MW, Cervantes F, Fujihara S, Ottmann CE, Menssen HD, Kantarjian H, O'Brien SG, Druker BJ and Investigators I: Long-term outcomes of imatinib treatment for chronic myeloid leukaemia. N Engl J Med 376(10): 917-927, 2017. PMID: 28273028. DOI: 10.1056/NEJMoa1609324

11 Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, Shah NP, Chauh C, Casanova L, Bradley-Garelik B, Manos G and Hochhaus A: Final 5-year study results of DASISION: The dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol 34(20): 2333-2340, 2016. PMID: 27217448. DOI: 10.1200/JCO.2015.64.8899

12 Stagno F, Vigneri P, Cupri A, Stella S and Di Raimondo F: Personalized strategies for CML patients considering discontinuation of tyrosine kinase inhibitors treatment. Leuk Res 36(9): 1208-1209, 2012. PMID: 22726921. DOI: 10.1016/j.leukres.2012.05.024

13 Pennisi MS, Stella S, Vitale SR, Puma A, Di Gregorio S, Romano C, Tirro E, Massimino M, Antolino A, Siragusa S, Mannina D, Impera S, Musolino C, Mineo G, Musso M, Morabito F, Molica S, Martino B, Manzella L, Muller MC, Hochhaus A and Raimondo FD: High BCR–ABL/GUS(IS) levels at diagnosis of chronic phase CML are associated with unfavorable responses to standard-dose imatinib. Clin Cancer Res 23(23): 7189-7198, 2017. PMID: 28928163. DOI: 10.1158/1078-0432.CCR-17-0962

14 Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG, Darnay BG, Lamotho B, Sun H, Talpaz M and Donato NJ: Association between imatinib-resistant BCR–ABL mutation-negative leukaemia and persistent activation of LYN kinase. J Natl Cancer Inst 109(13): 926-939, 2008. PMID: 18577747. DOI: 10.1093/jnci/djn188

15 Boscelli F, Arndt K and Gambacorti-Passerini C: Bosutinib: A review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 46(10): 1781-1789, 2010. PMID: 24479382. DOI: 10.1016/j.ejca.2010.02.032

16 Massimino M, Stella S, Tirro E, Consoli ML, Pennisi MS, Puma A, Manzella L, Zhang H, Stagno F, Di Raimondo F and Vigneri P: Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukaemia. Mol Cancer Ther 17(1): 56, 2018. PMID: 29455672. DOI: 10.1186/s12943-018-0805-1

17 Stagno F, Vigneri P, Consoli ML, Cupri A, Stella S, Tambe L, Massimino M, Manzella L and Di Raimondo F: Hyperdiploidy associated with a high BCR–ABL transcript level may identify patients at risk of progression in chronic myeloid leukaemia. Acta Haematol 127(1): 7-9, 2012. PMID: 21986290. DOI: 10.1159/000330607

18 Buffa P, Romano C, Pandini A, Massimino M, Tirro E, Di Raimondo F, Manzella L, Fraternali F and Vigneri PG: BCR–ABL residues interacting with ponatinib are critical to preserve the tumorigenic potential of the oncoprotein. FASEB J 28(3): 1221-1236, 2014. PMID: 24297701. DOI: 10.1096/fj.13-236992

19 Stella S, Zammit V, Vitale SR, Pennisi MS, Massimino M, Tirro E, Forte S, Spitaleri A, Antolino A, Siracusa S, Accurso V, Mannina D, Impera S, Molica S, Martino B, Manzella L, Fraternali F, Di Raimondo F, Manzella L, Vigneri P and Stagno F: Clinical implications of discordant early molecular responses in CML patients treated with imatinib. Int J Mol Sci 20(9): 2226, 2019. PMID: 31064152. DOI: 10.3390/ijms20092226

20 Vigneri P, Stagno F, Stella S, Cupri A, Forte S, Massimino M, Antolino A, Siragusa S, Mannina D, Impera SS, Musolino C, Malato A, Mineo G, Tomaselli C, Murgano P, Musso M, Morabito F, Molica S, Martino B, Manzella L, Muller MC, Hochhaus A and Raimondo FD: Higher BCR–ABL/GUS(IS) levels in patients at risk of progression in chronic myeloid leukemia. Acta Haematol 131(4): 233-241, 2019. PMID: 31262918. DOI: 10.1007/s10528-019-00311-x

21 Le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N, Apperley JF, Larson RA, Abruzzese E, O'Brien SG, Kuliczkowski K, Hochhaus A, Mahon FX, Saglio G, Goebi MG, Kwon YL, Baccarani M, Hughes T, Martinelli G, Radich JP, Zheng M, Shou Y and Kantarjian H: Nilotinib (formerly AMN107), a highly selective BCR–ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -tolerant accelerated-Phase chronic myelogenous leukemia. Blood 111(4): 1834-1839, 2008. PMID: 17715389. DOI: 10.1182/blood-2007-04-083196

22 Massimino M, Stella S, Tirro E, Romano C, Pennisi MS, Puma A, Manzella L, Zhang H, Stagno F, Di Raimondo F and Vigneri P: Non-ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer Ther 17(1): 56, 2018. PMID: 29455672. DOI: 10.1186/s12943-018-0805-1

23 Massimino M, Stella S, Tirro E, Consoli ML, Pennisi MS, Puma A, Vitale SR, Romano C, Zammit V, Stagno F, Di Raimondo F and Manzella L: Rapid decline of Philadelphia-positive metaphases after nilotinib treatment in a CML patient expressing a rare e14a3 BCR–ABL fusion transcript: A case report. Oncol Lett 18(3): 2648-2653, 2019. PMID: 31404304. DOI: 10.3892/ol.2019.10558
Manzella et al.: Detection of a Rare BCR-ABL e6a2 Fusion Transcript in CML

25 Stella S, Gottardi EM, Favout V, Barragan Gonzalez E, Errichietto S, Vitale SR, Fava C, Luciano L, Stagno F, Grimaldi F, Pironi L, Sargas Simarro C, Vigneri P and Izzo B: The Q-lamp method represents a valid and rapid alternative for the detection of the BCR-ABL rearrangement in Philadelphia-positive leukemias. Int J Mol Sci 20(24): 6106, 2019. PMID: 31817063. DOI: 10.3390/ijms20246106

26 Stella S, Massimino M, Tirro E, Vitale SR, Accurso V, Puma A, Pennisi MS, S DIG, Romano C, F DIR, Siragusa S and Manzella L: Detection and clinical implications of a novel BCR-ABL e12a2 insertion/deletion in a CML patient expressing the e13a2 isoform. Anticancer Res 39(12): 6965-6971, 2019. PMID: 31810968. DOI: 10.21873/anticancerres.13918

27 Langabeer SE: Is the BCR-ABL transcript type in chronic myeloid leukemia relevant? Med Oncol 30(2): 508, 2013. PMID: 23430446. DOI: 10.1007/s12032-013-0508-9

28 Hochhaus A, Reiter A, Skladny H, Melo JV, Sick C, Berger U, Guo JQ, Airling RB, Hehlmann R, Goldman JM and Cross NC: A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. Blood 88(6): 2236-2240, 1996. PMID: 8822944.

29 Branford S, Rudzki Z and Hughes TP: A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron 1b in a patient with Philadelphia-positive chronic myeloid leukemia. Br J Haematol 109(3): 635-637, 2000. PMID: 10886215. DOI: 10.1046/j.1365-2141.2000.02042.x

30 Schultheis B, Wang L, Clark RE and Melo JV: BCR-ABL with an e6a2 fusion in a CML patient diagnosed in blast crisis. Leukemia 17(10): 2054-2055, 2003. PMID: 10886215. DOI: 10.1038/sj.leu.2403079

31 Massimino M, Stella S, Tirro E, Consoli ML, Pennisi MS, Puma A, Vitale SR, Romano C, Zammitt V, Stagno F, F DIR and Manzella L: Efficacy of dasatinib in a very elderly CML patient expressing a rare e13a3 BCR–ABL fusion transcript: A case report. Anticancer Res 39(7): 3949-3954, 2019. PMID: 31262926. DOI: 10.21873/anticancerres.13548

32 Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, K C, J Reardon B, Ng PK, Jeong KJ, Cao S, Wang Z, Gao Q, Wang F, Liu EM, Mularoni L, Rubio-Perez C, Nagarajan N, Cortes-Ciriano I, Zhou DC, Liang WW, Hess JM, Yellapantula VD, Tamborero D, Gonzalez-Perez A, Saphiulaiil C, Ko YJ, Khurana E, Park PJ, Van Allen EM, Liang H, Group MCW, Cancer Genome Atlas Research Network, Lawrence MS, Godzik A, Lopez-Bigas N, Stuart J, Wheeler D, Getz G, Chen K, Lazar AJ, Mills GB, Karchin R and Ding L: Comprehensive characterization of cancer driver genes and mutations. Cell 173(2): 371-385 e318, 2018. PMID: 29625053. DOI: 10.1016/j.cell.2018.02.060

33 Stella S, Massimino M, Tirro E, Vitale SR, Scalisie L, Leotta S, Pennisi MS, Puma A, Romano C, Stagno F, Sapienza G, Milone G and Manzella L: B-ALL relapses after autologous stem cell transplantation associated with a shift from e1a2 to e14a2 BCR–ABL transcripts: A case report. Anticancer Res 39(1): 431-435, 2019. PMID: 30591941. DOI: 10.21873/anticancerres.11310

34 Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE, Tso CY, Braun TJ, Clarkson BD, Cervantes F, Rozman C, and the Italian Cooperative CML Study Group: Prognostic discrimination in "good-risk" chronic granulocytic leukemia. Blood 63(4): 789-799, 1984. PMID: 6584184. DOI: 10.1182/blood.V63.4.789.789

35 Hoffmann V, Baccarani M, Hasford J, Guilhot J, Sauselle S, Rosti G, Guilhot F, Porrka K, Ossenkoppele G, Lindoerde D, Simonsson B, Pifiirrmann M and Hehlmann R: The EUUTOS CML score aims to support clinical decision-making. Blood 119(12): 2966-2967, 2012. PMID: 22442336. DOI: 10.1182/blood-2012-01-402511

36 Hasford J, Pifiirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, Alimena G, Steegmann JL and Ansari H: A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst 90(11): 850-858, 1998. PMID: 9625174. DOI: 10.1093/jnci/90.11.850

37 Pifiirrmann M, Baccarani M, Sauselle S, Guilhot J, Cervantes F, Ossenkoppele G, Hoffmann VS, Castagnetti F, Hasford J, Hehlmann R and Simonsson B: Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 30(4): 48-56, 2016. PMID: 26414662. DOI: 10.1038/leu.2015.261

38 Cross NC: Detection of BCR-ABL in hematological malignancies by RT-PCR. Methods Mol Med 6: 25-36, 1996. PMID: 21380694. DOI: 10.1385/0-89603-341-4:25

39 Stella S, Tirro E, Massimino M, Vitale SR, Russo S, Pennisi MS, Puma A, Romano C, S DIG, Innao V, Stagno F, F DIR, Musolino C and Manzella L: Successful management of a pregnant patient with chronic myeloid leukemia receiving standard dose imatinib. In Vivo 33(5): 1593-1598, 2019. PMID: 31471409. DOI: 10.21873/invivo.11641

40 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr. and Kinzler KW: Cancer genome landscapes. Science 339(6127): 1546-1558, 2013. PMID: 23539594. DOI: 10.1126/science.1235122

41 Massimino M, Vigneri P, Fallica M, Fidilio A, Aloisi A, Frasca F and Manzella L: IRF5 promotes the proliferation of human thyroid cancer cells. Mol Cancer 11: 21, 2012. PMID: 22507190. DOI: 10.1186/1476-4598-11-21

42 Vella V, Malaguarnera R, Nicolosi ML, Palladino C, Spoleti C, Massimino M, Vigneri P, Purrello M, Ragusa M, Morriane A and Belfiore A: Discoidin domain receptor 1 modulates insulin receptor signaling and biological responses in breast cancer cells. Oncotarget 8(26): 43248-43270, 2017. PMID: 28591735. DOI: 10.18632/oncotarget.18020

43 Vella V, Nicolosi ML, Cantafio P, Massimino M, Lappano R, Vigneri P, Ciuni R, Gangemi P, Morriane A, Malaguarnera R and Belfiore A: DDR1 regulates thyroid cancer cell differentiation via IGF-2/IR-A autocrine signaling loop. Endocr Relat Cancer 26(1): 197-214, 2019. PMID: 30121624. DOI: 10.1530/ERC-18-0310

44 Pirosa MC, Leotta S, Cupri A, Stella S, Martino EA, Scalisie L, Sapienza G, Calafiore V, Mauro E, Spadaro A, Vigneri P, Di Raimondo F and Milone G: Long-term molecular remission achieved by antibody anti-CD22 and ponatinib in a patient affected by Ph+ acute lymphoblastic leukemia relapsed after second allogeneic hematopoietic stem cell transplantation: A case report. Chemotherapy 63(4): 220-224, 2018. PMID: 30372691. DOI: 10.1159/000492941

45 Massimino M, Tirro E, Stella S, Frasca F, Vella V, Sciacca L, Pennisi MS, Vitale SR, Puma A, Romano C and Manzella L: Effect of combined epigenetic treatments and ectopic NIS expression on undifferentiated thyroid cancer cells. Anticancer Res 38(12): 6653-6662, 2018. PMID: 30504373. DOI: 10.21873/anticancerres.13032
46 Chan BA and Hughes BG: Targeted therapy for non-small cell lung cancer: Current standards and the promise of the future. Transl Lung Cancer Res 4(1): 36-54, 2015. PMID: 25806345. DOI: 10.3978/j.issn.2218-6751.2014.05.01

47 Manzella L, Massimino M, Stella S, Tirro E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, Di Gregorio S, Russo M, Malandrino P and Vigneri P: Activation of the IGF axis in thyroid cancer: Implications for tumorigenesis and treatment. Int J Mol Sci 20(13): E3258, 2019. PMID: 31269742. DOI: 10.3390/ijms20133258

48 Pelster MS and Amaria RN: Combined targeted therapy and immunotherapy in melanoma: A review of the impact on the tumor microenvironment and outcomes of early clinical trials. Ther Adv Med Oncol 11: 1758835919830826, 2019. PMID: 30815041. DOI: 10.1177/1758835919830826

49 Tirro E, Martorana F, Romano C, Vitale SR, Motta G, Di Gregorio S, Massimino M, Pennisi MS, Stella S, Puma A, Giano F, Russo M, Manzella L and Vigneri P: Molecular alterations in thyroid cancer: From bench to clinical practice. Genes 10(9), 2019. PMID: 31540307. DOI: 10.3390/genes10090709

50 Touat M, Idbaih A, Sanson M and Ligon KL: Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol 28(7): 1457-1472, 2017. PMID: 28863449. DOI: 10.1093/annonc/mdx106

51 Peters GJ: From ‘targeted therapy’ to targeted therapy. Anticancer Res 39(7): 3341-3345, 2019. PMID: 31262854. DOI: 10.21873/anticancerres.13476

52 Palumbo GA, Stella S, Pennisi MS, Pirova C, Ferino E, Fabris S, Cattaneo D and Iurlo A: The role of new technologies in myeloproliferative neoplasms. Front Oncol 9: 321, 2019. PMID: 31106152. DOI: 10.3389/fonc.2019.00321

53 Tirro E, Massimino M, Romano C, Pennisi MS, Stella S, Vitale SR, Fidilio A, Manzella L, Parrinello NL, Stagno F, Palumbo GA, La Cava P, Romano A, Di Raimondo F and Vigneri PG: CHK1 inhibition restores inotuzumab ozogamicin citotoxicity in CD22-positive cells expressing mutant p53. Front Oncol 9: 57, 2019. PMID: 30834235. DOI: 10.3389/fonc.2019.00057

54 Beel KA, Lemmens J, Vranckx H, Maertens J and Vandenberghe P: CML with e6a2 BCR–ABL transcript: An aggressive entity? Ann Hematol 90(10): 1241-1243, 2011. PMID: 21302112. DOI: 10.1007/s00277-011-1169-4

55 Colla S, Sammarelli G, Voltolini S, Crugnola M, Sebastio P and Giuliani N: E6a2 BCR–ABL transcript in chronic myeloid leukemia: Is it associated with aggressive disease? Haematologica 89(5): 611-613, 2004. PMID: 15136228.

56 Zagaria A, Anelli L, Coccaro N, Tota G, Casieri P, Cellamare A, Impera L, Brunetti C, Minervini A, Minervini CF, Delia M, Cumbo C, Orsini P, Specchia G and Albano F: BCR–ABL e6a2 transcript in chronic myeloid leukemia: Biological features and molecular monitoring by droplet digital PCR. Virchows Arch 467(3): 357-363, 2015. PMID: 26149409. DOI: 10.1007/s00428-015-1802-z

57 Liu B, Zhang W and Ma H: Complete cytogenetic response to nilotinib in a chronic myeloid leukemia case with a rare e13a3(b2a3) BCR–ABL fusion transcript: A case report. Mol Med Rep 13(3): 2635-2638, 2016. PMID: 26847385. DOI: 10.3892/mmr.2016.4826

Received February 7, 2020
Revised March 10, 2020
Accepted March 11, 2020