Abstract: We report the first observation of cascaded forward Brillouin scattering in a microresonator platform. We have demonstrated 25 orders of intramodal Stokes beams separated by a Brillouin shift of 34.5 MHz at a sub-milliwatt threshold at 1550 nm. An As$_2$S$_3$ microsphere of diameter 125 μm with quality factor 1×10^6 was used for this demonstration. Theoretical modeling is used to support our experimental observations of Brillouin shift and threshold power. We expect our work will advance the field of forward stimulated Brillouin scattering in integrated photonics.

© 2022 Optica Publishing Group

1. Introduction

Chalcogenide glasses have been recognized in the past decade as a candidate for low-threshold nonlinear optics because of their transparency in the infrared region, low glass transition temperature, and large nonlinearities [1–5]. They also exhibit many desirable photoinduced phenomena including photocrystallization [6], photopolymerization [7], photodecomposition [8], photocontraction or expansion [9], photovaporization [8], and photodissolution of metals such as silver [8,10]. These changes allow us to modify the optical characteristics of chalcogenide glasses such as electronic band gap, refractive index, and optical absorption coefficient to fabricate a wide variety of optical devices. Additionally, the low glass transition temperature of chalcogenide glasses allows fabricated devices to be reflowed to produce ultrasmooth optical surfaces [11–13].

Stimulated Brillouin scattering (SBS) is one of the strongest third-order nonlinearities in most optical media. SBS manifests through the transfer of energy from the optical pump beam to an optical Stokes beam, either in the same or opposite direction as the pump. Coupling between beams occurs via acoustic phonons once the Brillouin threshold is reached. SBS is used in narrow-linewidth lasers [14,15], slow light [16], optical cooling [17], optical isolators [18], and distributed sensing [19]. The conservation of energy and momentum requires that $\omega_a = \omega_p - \omega_s$ and $q = k_p + k_s$ where ω_a, ω_p and ω_s are the frequencies and q, k_p and k_s are the wavenumbers of the acoustic, pump and Stokes waves respectively. The sign in the momentum matching condition is positive (i.e., wavenumbers add up) for backward stimulated Brillouin scattering (BSBS) and negative for forward stimulated Brillouin scattering (FSBS). Since the pump and Stokes beams typically differ by no more than a few GHz in frequency, they are approximately equal in wavenumber, i.e. $k_p \approx k_s$. Therefore, FSBS is mediated by phonons of low wavenumber, $q \approx 0$, while BSBS is mediated by phonons of higher wavenumber, $q \approx 2k_p$. Even though FSBS is understood to be theoretically a stronger nonlinearity than BSBS with all else being equal [20], many common resonator geometries do not have resonant acoustic modes for phonons with low wavenumber. Notably, fiber ring resonators do not support strong FSBS while they are widely used for BSBS lasers [21].

A resonator that satisfies phase-matching conditions for the optical pump, optical Stokes, and
acoustic phonon waves exhibits SBS at sub-mW thresholds [22] due to the tight confinement of the optical fields. To exploit the many advantages of nonlinear optics using SBS in a small form factor, whispering gallery mode resonators are often used [23, 24]. The resonance condition for the Stokes beam can be met by matching the free spectral range (FSR) of the resonator to the SBS shift so that the pump and Stokes beams can be excited to adjacent resonances with nearby azimuthal mode orders. Such resonators with FSR matching may support cascaded SBS. In fact, cascaded BSBS with GHz-scale shifts has been demonstrated in resonators of mm-scale diameter [23, 24]. The FSR, unfortunately, scales inversely with the length of the resonator, which makes it difficult to fabricate a high-quality resonator that matches typical FSBS MHz shifts. For this reason, FSBS in a resonator has only been demonstrated between optical modes with different radial and azimuthal mode orders (i.e. intermodal FSBS) [25, 26]. This technique has the downside that it would be difficult to consistently reproduce the same Brillouin shift across devices, as the frequency difference between modes without at least one common mode order (radial or azimuthal) is highly sensitive to device geometry, placing a strict limit on fabrication tolerance. It would also not be possible to demonstrate cascaded SBS using this technique since higher-order modes with differing radial and azimuthal mode orders are not equally spaced in frequency. In this work, we avoid the technical difficulty of matching the FSR to the Brillouin shift by using intramodal Brillouin scattering (i.e., the Stokes beam is scattered within the same optical resonance as the pump beam). This is enabled by a chalcogenide glass microresonator platform with a forward Brillouin shift that is smaller than the width of the optical resonance. We rely on finite element modeling to choose a microresonator geometry that supports low-wavenumber resonant acoustic modes required to meet the phase matching condition. Using this approach, we demonstrate up to 25 orders of cascaded intramodal FSBS at a sub-mW threshold. The measured threshold for cascaded FSBS was less than half the threshold for cascaded BSBS in a previous demonstration using a BaF$_2$ resonator at 1550 nm [23].

2. Microresonator fabrication and modeling

High-quality chalcogenide microspheres were fabricated using commercially available arsenic sulfide (As$_2$S$_3$) fiber (IRFlex – IRF-S-6.5). First, the fiber was tapered down to ~ 20 µm by heating the fiber to the glass transition temperature using a resistive heater and pulling on both sides using a motorized stage. The taper was then broken and the tapered end was molten by bringing it close to a red-hot metal plate. The surface tension caused the molten glass to form a sphere, which was then allowed to cool down. It is possible to produce microsphere resonators of Q-factor over 10^7 using this technique. This is close to the theoretical upper limit due to absorption [25, 27].

The optical and acoustic modes of the resonator were modeled using the commercial COMSOL multiphysics package [28]. Simulations were performed for intramodal SBS, where the pump mode and all Stokes orders have the same azimuthal and radial mode numbers. To satisfy this condition, the width of the resonance needs to be at least 300 MHz when the resonator is coupled to a tapered fiber (i.e. the loaded Q factor has to be less than 6.6×10^5). Therefore, measurements and simulations were performed in the overcoupled regime. Since the resonances were all at least 300 MHz wide, several Stokes orders that were separated by a few tens of MHz would fit within the same resonance. The phase-matching condition requires that the azimuthal mode of the acoustic wave is the difference in mode numbers of the pump and Stokes beams. For FSBS, we hence have a standing acoustic wave with an azimuthal mode number equal to zero. Using the electric and displacement fields from the resonant optical and acoustic modes respectively, we calculated the SBS gain in the resonator. The SBS gain of a single acoustic mode has a Lorentzian shape and a peak value of [20],

$$ \Gamma = \frac{2\omega Q_m}{\Omega^2 v_{gp} v_{gs} \langle E_p, \epsilon E_p \rangle \langle E_s, \epsilon E_s \rangle} \frac{|\langle f, u_m \rangle|^2}{\langle u_m, \rho u_m \rangle} $$

(1)
Fig. 1. (a) Simulations of optical and acoustic modes for phase-matched Brillouin scattering in an As$_2$S$_3$ microsphere of diameter 125 μm. The acoustic eigenmode oscillating at 33.2 MHz is shown on the left. Purple highlights the region with the highest deformation. Deformation is exaggerated to show the effect. The electric fields to the right correspond to optical excitation at 1550 nm with the azimuthal mode order represented by m. The colors show the strength of the electric field, and the arrows show the electric field direction. (b) Rendering of the tapered fiber coupling. κ and τ are the coupling constants normalized to $\sqrt{\kappa^2 + \tau^2} = 1$.

where $\omega = \omega_p \approx \omega_s$ is the frequency of the optical beams, Ω is the frequency of acoustic wave or the SBS shift, Q_m is the mechanical Q-factor of the resonator ($\approx 10^3$ [20]), v_{gp} is the group velocity of the pump, v_{gs} is the group velocity of the Stokes beam, ϵ is the permittivity of the material, ρ is the density, E_p and E_s are the unnormalized electric fields from the pump and Stokes beams respectively, u_m is the unnormalized displacement vector from the resonant acoustic wave, and f is the net force due to electrostriction and radiation pressure. All surface integrals are performed on a radial plane perpendicular to the direction of propagation of the optical beams.

Electrostriction force is a deforming force experienced by all dielectrics in the presence of non-uniform electric fields. The highly localized whispering gallery mode resonances in optical microresonators hence induce electrostriction forces in the bulk of the resonator. The electrostriction force is derived from the gradient of the electrostrictive tensor given by [20],

$$\sigma_{ij} = -\frac{1}{2} \varepsilon_0 n^4 p_{ijkl} E_k E_l$$ \hspace{1cm} (2)

where n is the refractive index, p_{ijkl} is the photoelastic tensor, and E_k and E_l are the net electric fields in the direction denoted by indices k and l.

The radiation pressure on the other hand is the pressure exerted on a dielectric interface due to the exchange of momentum between the dielectric and an electromagnetic field incident on its surface. The radiation pressure is derived from the Maxwell stress tensor. The radiation pressure is known to dominate over electrostriction forces in sub-wavelength waveguides [20] and was unsurprisingly found to have a vanishingly small contribution to gain in our microspheres from our initial calculations. Hence, we excluded radiation pressure from our calculations to reduce computational complexity.

When the pump power is below the Brillouin lasing threshold, quantum fluctuations within the Brillouin gain spectrum get amplified within the resonator to give rise to a very small amount of Stokes power. In this regime, we may use the small signal approximation (SSA) that the Stokes power is much lower than the pump power. We also ignore pump depletion and nonlinear losses. When the SSA is valid, the Stokes power coupled out of the resonator P_s^{out} is related to the input Stokes power P_s^{in} (which arises from quantum fluctuations) as [22],
Fig. 2. (a) Optical microresonator of diameter 100 μm fabricated from tapered As$_2$S$_3$ fiber. (b) The experimental setup consists of a tunable diode laser at 1550 nm that was coupled into a tapered silica fiber. A 99:1 splitter was used to monitor the pump power. The resonator was brought close to the taper via a 3-axis stage with a sub-micron resolution. A function generator provides a triangle wave signal to the laser to sweep the frequency within a few tens of GHz.

\[P_{\text{out}} = \left(\frac{\tau}{1 - |\tau| G} \right)^2 P_{\text{in}} \]

(3)

where \(\tau \) is the coupling constant [Fig. 1(b)] and \(G \) is the round-trip envelope gain given by [22],

\[G = \exp \left[-\frac{\alpha L}{2} + \frac{\Gamma}{2\alpha} P_{\text{in}} (1 - e^{-\alpha L}) \right] \]

(4)

Here, \(P_{\text{in}} \) is the input pump power, \(\alpha \) is the material loss and \(L \) is the length of the cavity. At the Brillouin lasing threshold, the SSA breaks down as \(G \) approaches \(1/|\tau| \) and Eq. 3 goes to infinity. The pump power where the SSA breaks down is therefore taken to be the lasing threshold [22]. While fitting the SSA model in Eq. 3 to the experimental data, \(P_{\text{in}} \) only introduces a scaling factor in the order of \(10^{-11} \) if we assume only a single photon is generated per second per unit frequency by quantum fluctuations (\(P_{\text{in}} = v_g h f_s \approx 10^{-11} \), \(v_g \) is the group velocity, \(h \) is the Planck’s constant and \(f_s \) is the Stokes frequency [22]). Since \(\alpha \) is the material loss and \(\Gamma \) is obtained from simulations of the acoustic and optical eigenmodes of the system [Eq. 1], the only remaining free parameter in the model \(\tau \). We extract \(\tau \) from the experimental data to estimate the lasing threshold using the SSA model in Section 3.

3. Optical measurement

The experimental setup is shown in Fig. 2(b). An SMF-28 silica fiber was tapered to \(\sim 500 \) nm diameter by heating the fiber to above the glass transition temperature using a butane flame while stretching the fiber from both ends using motorized stages. The laser source was a single frequency mode-hop-free tunable CW laser in a 1550 nm band (Toptica CTL 1550). The resonator was mounted on a 3-axis piezo-actuated stage (Thorlabs MAX312D) with 20 nm resolution and brought within 100 nm of the tapered fiber. The system was imaged using a microscope with a long-distance objective (Mitutoyo 10X ICO 0.28 NA, 33.5 mm working distance) from the top. The system was enclosed in a chamber to minimize disturbances due to temperature fluctuations and air currents. The transmitted light was measured using an InGaAs photodetector of 1.2 GHz bandwidth (Thorlabs DET01CFC) for the spectrum in Fig. 3(a) and an InGaAs photodetector of 40 MHz bandwidth (Thorlabs DET10C) for the spectrum in Fig. 4. A 20 dB amplifier was used with the high-bandwidth detector to make up for the lower responsivity. The signal was recorded
using an oscilloscope and an RF spectrum analyzer (Keysight N9030B). A function generator provided a triangle wave signal to the laser to sweep the frequency within a few tens of GHz, and a trigger signal to the RF spectrum analyzer and the oscilloscope. The laser was tuned into resonance by scanning for the characteristic dip in transmission across the tapered fiber on the oscilloscope. The Stokes beams in the resonator are coupled back into the tapered fiber. The electrical spectrum analyzer was used to pick up beat notes between the Stokes beams and the pump that are typically too close for an optical spectrum analyzer to resolve. Using this setup, we observed the cascaded Brillouin spectrum shown in Fig. 3(a) from a 125 μm resonator of unloaded quality factor \(1 \times 10^6\) and the spectrum in Fig. 4 from a 100 μm resonator [Fig. 2(a)] of unloaded quality factor \(6.2 \times 10^5\).

Fig. 3(b) shows a plot of peak frequencies from Fig. 3(a) as a function of Stokes order. The peak frequencies were found to lie at integer multiples of 34.5 MHz, with the highest detuning observed at 25 times the Brillouin shift (i.e., 25 Stokes orders). This is consistent with our simulations [Fig. 1(a)] which show a resonant acoustic wave at 33.2 MHz. The peak frequencies in Fig. 4 were similarly found to lie at integer multiples of 19.4 MHz. This is also consistent with our simulations for a 100 μm resonator showing resonant acoustic waves at 17.4 MHz. The mismatch in frequencies (34.5 MHz in experiment vs 33.2 MHz in simulation, 19.4 MHz in experiment vs. 17.4 MHz in simulation) is attributed to the deviation in Young’s modulus of the commercial As2S3 fiber from the reported value of bulk material [29] and the perturbation in mode shape due to the stem of the resonator which was not included in the simulation. A detailed discussion of the linewidth is included in Section 4.

To estimate the lasing threshold, we used a microsphere of diameter 110 μm with quality factor \(2 \times 10^6\), showing cascaded Stokes beams separated by 18.3 MHz. As the pump power was reduced, the first Stokes line was the last to drop below the noise floor of the spectrum analyzer. We then slowly ramped up the pump power and recorded the power of the first Stokes line until we observed cascaded comb lines again.

Our experimental setup performs heterodyne measurement between the pump and Stokes beams to achieve high frequency resolution. But since the electrical spectrum analyzer was used to pick up beat notes between the pump and Stokes beams, we need to convert the measured signal \(S\) in dB to optical power units for measuring the lasing threshold. The detector current from superposing optical beams \(I_1\) of frequency \(f_1\) and \(I_2\) of frequency \(f_2\), for detector sensitivity \(R\) is [30],

\[
I(t) = R \left[I_1 + I_2 + 2\sqrt{I_1I_2}\cos(2\pi(f_1 - f_2)t) \right]
\]
(5)

Since the spectrum analyzer records the AC component of the signal, and taking \(I_1\) to be the pump and \(I_2\) as the Stokes and using subscripts \(p\) for pump and \(s\) for Stokes,

\[
S = 10\log_{10} \left(\frac{2R\sqrt{I_p I_b}}{I_{ref}} \right) \quad (dB)
\]
(6)

where \(S\) is the measured signal and \(I_{ref}\) is the internal reference current of the analyzer. To obtain Stokes power as a function of varying pump power given measured value of \(S\) vs. \(I_p\),

\[
I_b = \frac{1}{I_p} \left(\frac{1}{2R} I_{ref} 10^{S/10} \right)^2
\]
(7)

The power of the first Stokes line as a function of pump power is shown in Fig. 3(c). Finite element simulations of this sphere revealed a resonant acoustic mode at 16.1 MHz that satisfies the phase matching condition, close to the observed FSBS shift at 18.3 MHz. Using Eq. 1, we estimated the Brillouin gain \(\Gamma\) of the resonator to be \(5.14 \times 10^5 \text{ m}^{-1}\text{W}^{-1}\). The calculated
Fig. 3. (a) Cascaded FSBS spectrum in a 125 μm sphere with an unloaded quality factor 1×10^6. The x-axis is the detuning from the pump and the y-axis on the left shows the power of the beat note. This measurement was taken in the overcoupled regime using a 1.2 GHz bandwidth detector and the spectrum was averaged over 41 sweeps. The spectral lines were broadened because of the variation in acoustic eigenfrequency across sweeps due to thermal effects. The power of the spectral lines are uneven since the amplifier we used did not have a flat frequency response. When the gain of the amplifier (nominally 20 dB) fell below 16 dB around 300 MHz, 500 MHz and 700 MHz, the signal was buried in the noise floor of the spectrum analyzer. The red circles highlight the location of the peaks in the spectrum. A detailed discussion of the linewidth is included in Section 4. (b) The frequency shifts of the Stokes beams from the pump, which are observed to be integer multiples of 34.5 MHz. The acoustic mode simulated in Fig. 1(a) agrees well with the observed FSBS shift. (c) The power of the first Stokes beam vs. pump power for a 110 μm resonator of Q factor 2.2×10^6 showing an FSBS shift at 18.3 MHz. The experimental data is fit to the small signal approximation (SSA) model [22]. The SSA model is valid only below the Brillouin lasing threshold - therefore, the one data point above the threshold was not fit to the model. The SSA model breaks down at the threshold shown by the vertical black line, and goes to infinity. The stimulated lasing threshold was found to be 900 ± 20 μW, beyond which cascaded Stokes beams were observed.
Fig. 4. Cascaded FSBS spectrum in a 100 μm sphere with unloaded quality factor 6.2 × 10^5. We did not use an amplifier for this measurement and time averaging was not necessary. The spectrum was taken using a detector of high responsivity and 40 MHz typical bandwidth. The peaks highlighted in red are part of the cascaded spectrum, with a Brillouin shift of 19.4 MHz. The 6.5 MHz peak results from an acoustic mode having a weaker overlap with the pump and therefore does not cascade. The pump was blue-detuned from the resonance, hence the 19.4 MHz peak experiences more loss than the 38.9 MHz peak. The number of Stokes orders observed is likely bandwidth-limited by the detector. The linewidth of the Stokes beams is less than the frequency resolution at 100 kHz. A detailed discussion of the linewidth is included in Section 4.

value of Γ was used to fit the theoretical model in Eq. 3 to the experimental data to obtain the coupling constant τ and the threshold power. The small signal approximation breaks down at the Brillouin lasing regime and the theoretical model goes to infinity at the threshold [22]. From the fit, we found the Brillouin lasing threshold to be at 900 ± 20 μW, for coupling constant $\tau = 0.85$. Beyond the threshold, cascaded Stokes beams were observed. The lasing threshold was experimentally observed to be in a similar range for all spheres with a Q-factor around 10^6 with comparable coupling conditions.

4. Results and discussion

We fabricated high-quality chalcogenide microresonators to study nonlinear effects in the transmitted light through a coupled tapered fiber. We have observed beat notes between downconverted Stokes beams and the pump beam in an RF spectrum analyzer when the narrow-linewidth tunable laser at 1550 nm was tuned into resonance in a 125 μm sphere with quality factor 1 × 10^6. The beat notes were observed at integer multiples of 34.5 MHz, up to 25 orders which suggests a cascaded nonlinear downconversion process at resonance [Fig. 3(a)]. The observation is consistent with the simulation which suggested that this was Brillouin scattering mediated by a resonant acoustic mode. The slight mismatch in frequency (33.2 MHz in simulation as compared to 34.5 MHz in the experiment) was attributed to the deviation in Young’s modulus of the commercial As$_2$S$_3$ fiber from the reported value of bulk material [29] and the perturbation in mode shape from the stem of the microsphere which was not included in the simulation. We also observed a cascaded Brillouin spectrum in a smaller resonator of diameter 100 μm with quality factor 6.2 × 10^5 (Fig. 4). The Brillouin shift was observed to be 19.4 MHz, close to its predicted value of 17.4 MHz from the simulation.

Since the amplifier raised the noise floor of the spectrum in Fig. 3(a), the spectrum was averaged over 41 sweeps to increase the visibility of the peaks. However, the spectral lines were broadened to between ~ 3 MHz and ~ 9 MHz because of the variation in acoustic eigenfrequency.
across sweeps due to thermal fluctuations. The power of the spectral lines are uneven because the amplifier we used did not have a flat frequency response. When the gain of the amplifier (nominally 20 dB) fell below 16 dB around 300 MHz, 500 MHz and 700 MHz, the signal was buried in the noise floor of the spectrum analyzer. In contrast, the spectrum in Fig. 4 was taken in one shot (i.e. no time averaging) and without using an amplifier.

An amplifier was not required for the spectrum in Fig. 4 on account of not coupling the resonator to the tapered fiber as strongly as we did for the resonator in Fig. 3(a). This is because we attempted to measure a GHz bandwidth comb with Fig. 3(a), which required the width of the resonance to be at the very least several GHz wide. This implied that we had to overcouple the resonator until the loaded Q factor fell below 5×10^4. On the other hand, we only needed the resonance for the measurement in Fig. 4 to be greater than a few 100 MHz wide. This condition was already met since the unloaded Q factor for the sphere used in Fig. 4 was 6.2×10^5. As the Brillouin gain scales inversely with approximately the square of the loaded Q factor, the resonator used in Fig. 4 had much stronger Stokes lines. We could thus obtain a high signal to noise ratio in Fig. 4 without using an amplifier or averaging across multiple measurements. The linewidths of the Stokes beams in Fig. 4 are hence less than the resolution of the spectrum analyzer at 100 kHz.

We performed threshold measurements in a 110 μm resonator with Q factor 2.2×10^6 showing spectral lines shifted from the pump by 18.3 MHz [Fig. 3(c)]. Finite element simulations of this microsphere revealed a resonant acoustic mode at 16.1 MHz, close to the observed FSBS shift. We theoretically calculated the forward Brillouin gain Γ to be 5.14×10^5 m$^{-1}$W$^{-1}$ from Eq. 1. We note that this is much higher than typical BSBS gain, as the gain is inversely proportional to the square of the Brillouin shift [Eq. 1]. For instance, a BSBS gain of 2.1×10^5 m$^{-1}$W$^{-1}$ with a Brillouin shift of 7.7 GHz has been reported in the same material using a waveguide geometry [31].

Even with a lower overlap between the optical and acoustic modes in a microsphere as compared to a waveguide, the simulated FSBS gain was over three orders of magnitude higher than the reported BSBS gain.

The calculated gain was used in the model presented in [22]. The model showed excellent agreement with the experimental data [Fig. 3(c)]. The threshold for Brillouin lasing was predicted from the model at 900 ± 20 μW. As expected, beyond the Brillouin lasing threshold, cascaded Stokes lines were observed. As the theory agrees well with the experimental results, we can reliably confirm that we are observing cascaded intramodal forward Brillouin scattering in our resonators.

Soliton states or other low-threshold nonlinear processes were not observed due to normal dispersion both from the material [11] and the geometry [32]. Due to the high nonlinearity of chalcogenide glass, symmetry breaking is known to occur at powers of the order of a mW [27]. The damage threshold for chalcogenide microresonators is also known to be in the same range [33]. Therefore, it is likely that the power of the comb from a microsphere resonator cannot be increased dramatically without using an external amplifier. However, we note that there is room for improvement in the overlap integral between the electrostrictive force and the acoustic field in Eq. 1. It is possible that a higher overlap integral could be realized using a different resonator geometry that confines the standing acoustic wave more tightly (possibly a wedge or disc resonator [34]), leading to Brillouin combs of higher optical power. It has also been reported that the Brillouin gain can be enhanced in sub-wavelength waveguides where the radiation pressure at the air-waveguide interface dominate the electrostrictive forces [35, 36]. Exploring the prospects of cascaded FSBS combs in novel resonator geometries could be a direction for future research.

5. Conclusion

In conclusion, we demonstrate cascaded forward intramodal Brillouin scattering within a microresonator platform for the first time. We used a theoretical model to estimate the threshold
for cascaded FSBS on a resonator and verified that it agrees with the experimental results. The resonator was excited using a tunable laser at 1550 nm and beat notes between the pump and Stokes beams were observed at multiples of 34.5 MHz, corresponding to 25 orders of Stokes beams. This work could lay the foundation for future work into the SBS phenomena in near and mid-infrared using chalcogenide optics.

Funding. Air Force Office of Scientific Research (FA9550-15-1-0506), Office of Naval Research (N00014-19-1-2251, N00014-19-1-2382)

Acknowledgments. The authors gratefully acknowledge Lange Simmons (Optics and Photonics group, CU Boulder), Dr. Omkar Supekar (Optics and Photonics group, CU Boulder), Dr. Kyuyoung Bae (Senior Research Engineer at Radanta Corporation, Boulder, CO USA) and Dr. Jiangang Zhu (Senior Technology Engineer at Deepsight Technology, San Fransisco, CA USA). T. Shanavasth thanks Prof. Ethan Neil (Associate Professor, Department of Physics, CU Boulder) for offering the computational physics class (PHYS 5070) at the University of Colorado, Boulder.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. **182**, 2756–2761 (2009).

2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. photonics **5**, 141–148 (2011).

3. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Crystalline Solids **330**, 1–12 (2003).

4. R. Scheer and H.-W. Schock, *Chalcogenide photovoltaics: physics, technologies, and thin film devices* (John Wiley & Sons, 2011).

5. J.-L. Adam and X. Zhang, *Chalcogenide glasses: preparation, properties and applications* (Woodhead publishing, 2014).

6. V. Lyubin, M. Klebanov, M. Mitkova, and T. Petkova, “Polarization-dependent, laser-induced anisotropic photocrystallization of some amorphous chalcogenide films,” Appl. physics letters **71**, 2118–2120 (1997).

7. H. Fritzsch, “The origin of reversible and irreversible photostuctural changes in chalcogenide glasses,” Philos. Mag. B **68**, 561–572 (1993).

8. A. Owen, A. Firth, and P. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B **52**, 347–362 (1985).

9. K. Chopra, K. S. Harshvardhan, S. Rajagopalan, and L. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Solid State Commun. **40**, 387–390 (1981).

10. A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Crystalline Solids **184**, 44–50 (1995).

11. K. Bae, T. M. Horning, S. Pampel, M. Zohrabi, M. B. Grayson, J. T. Gopinath, and W. Park, “On-chip high-quality ge 23 sb 7 s 70 round-wedge resonators for broadband dispersion engineering,” in *2020 Conference on Lasers and Electro-Optics (CLEO)*, (IEEE, 2020), pp. 1–2.

12. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express **18**, 1469–1478 (2010).

13. Y. Zhao, C. Li, P. Guo, W. Zhang, P. Xu, and P. Zhang, “Exploration of lift-off ge–as–se chalcogenide waveguides with thermal reflow process,” Opt. Mater. **92**, 206–211 (2019).

14. W. Loh, S. Yegnanarayanan, F. O’Donnell, and P. W. Juodawlkis, “Ultra-narrow linewidth brillouin laser with nanokelvin temperature self-referencing,” Optica **6**, 152–159 (2019).

15. W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth brillouin laser,” Optica **2**, 225–232 (2015).

16. A. Zadok, A. Eyal, and M. Tur, “Stimulated brillouin scattering slow light in optical fibers,” Appl. Opt. **50**, E38–E49 (2011).

17. G. Bahri, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous brillouin cooling,” Nat. Phys. **8**, 203–207 (2012).

18. J. Ma, J. Wen, S. Ding, S. Li, Y. Hu, X. Jiang, L. Jiang, and M. Xiao, “Chip-based optical isolator and nonreciprocal parity-time symmetry induced by stimulated brillouin scattering,” Laser & Photonics Rev. **14**, 1900278 (2020).

19. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using brillouin scattering,” J. lightweight technology **13**, 1296–1302 (1995).
20. W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljačić, and Z. Wang, “Stimulated brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating sbs gain,” Opt. express 21, 31402–31419 (2013).

21. K. Hill, B. Kawasaki, and D. Johnson, “Cw brillouin laser,” Appl. Phys. Lett. 28, 608–609 (1976).

22. S. R. Mirnazyi, C. Wolff, M. Steel, B. Morrison, B. J. Eggleton, and C. G. Poulton, “Lasing in ring resonators by stimulated brillouin scattering in the presence of nonlinear loss,” Opt. Express 25, 23619–23633 (2017).

23. G. Lin and Y. K. Chen, “Opto-acoustic phenomena in whispering gallery mode resonators,” Int. J. Optomechatronics 10, 32–39 (2016).

24. P. Del'Haye, S. A. Diddams, and S. B. Papp, “Laser-machined ultra-high-q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).

25. J. Yu, Z. Shen, Z. Yang, S. Qi, Y. Jiang, G. Brambilla, C.-H. Dong, and P. Wang, “The investigation of forward and backward brillouin scattering in high-q chalcogenide microspheres,” IEEE Photonics J. 14, 1–5 (2022).

26. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. communications 2, 1–6 (2011).

27. J. Zhu, M. Zohrabi, K. Bae, T. M. Horning, M. B. Grayson, W. Park, and J. T. Gopinath, “Nonlinear characterization of silica and chalcogenide microresonators,” Optica 6, 716–722 (2019).

28. C. Multiphysics, “Introduction to comsol multiphysics®,” COMSOL Multiphysics, Burlington, MA, accessed Feb 9, 2018 (1998).

29. M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Natl. Bureau Standards 59, 83 (1957).

30. K. Razdan and D. Van Baak, “Demonstrating optical beat notes through heterodyne experiments,” Am. J. Phys. 70, 1061–1067 (2002).

31. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated brillouin scattering,” Opt. express 19, 8285–8290 (2011).

32. X. Jin, J. Wang, M. Wang, Y. Dong, F. Li, and K. Wang, “Dispersion engineering of a microsphere via multi-layer coating,” Appl. Opt. 56, 8023–8028 (2017).

33. J. Zhu, T. M. Horning, M. Zohrabi, W. Park, and J. T. Gopinath, “Photo-induced writing and erasing of gratings in as 2 s 3 chalcogenide microresonators,” Optica 7, 1645–1648 (2020).

34. G. Kang, M. R. Krogstad, M. Grayson, D.-G. Kim, H. Lee, J. T. Gopinath, and W. Park, “High quality chalcogenide-silica hybrid wedge resonator,” Opt. Express 25, 15581–15589 (2017).

35. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).

36. Z. Yu and X. Sun, “Giant enhancement of stimulated brillouin scattering with engineered phoxonic crystal waveguides,” Opt. Express 26, 1255–1267 (2018).