Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Mori, Yasuo, Nobuaki Takahashi, Onur Kerem Polat, Tatsuki Kurokawa, Norihiro Takeda, and Masahiro Inoue. 2015. “Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation.” Pflugers Archiv 468 (1): 85-97. doi:10.1007/s00424-015-1716-2. http://dx.doi.org/10.1007/s00424-015-1716-2.

Published Version
doi:10.1007/s00424-015-1716-2

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24983918

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Regulation of ion channels is central to the mechanisms that underlie immediate acute physiological responses to changes in the availability of molecular oxygen (O2). A group of cation-permeable channels that are formed by transient receptor potential (TRP) proteins have been characterized as exquisite sensors of redox reactive species and as efficient actuators of electric/ionic signals in vivo. In this review, we first discuss how redox-sensitive TRP channels such as TRPA1 have recently emerged as sensors of the relatively inert oxidant O2. With regard to the physiological significance of O2 sensor TRP channels, vagal TRPA1 channels are mainly discussed with respect to their role in respiratory regulation in comparison with canonical pathways in glomus cells of the carotid body, which is a well-established O2-sensing organ. TRPM7 channels are discussed regarding hypoxia-sensing function in ischemic cell death. Also, ubiquitous expression of TRPA1 and TRPM7 together with their physiological relevance in the body is examined. Finally, based upon these studies on TRP channels, we propose a hypothesis of “O2 remodeling.” The hypothesis is that cells detect deviation of O2 availability from appropriate levels via sensors and adjust local O2 environments in vivo by controlling supply and consumption of O2 via pathways comprising cellular signals and transcription factors downstream of sensors, which consequently optimize physiological functions. This new insight into O2 adaptation through ion channels, particularly TRPs, may foster a paradigm shift in our understanding in the biological significance of O2.

Keywords TRP channels · Oxygen · Hypoxia · Vagus · Carotid body

Introduction

Molecular oxygen (O2) is an essential substrate for life, because of its role in the generation of adenosine triphosphate (ATP) which is a major source of energy in aerobic organisms. It is therefore fundamental that aerobic organisms sense and respond to hypoxia (low O2 environments), thus allowing them to adapt to variable habitats and physiological situations. Physiological responses to hypoxia can be classified into immediate acute (~s) and later (subacute to chronic) forms (~m to h). Later responses depend at least in part on hypoxia-inducible transcription factors (HIFs) [91, 112], which determine the expression of numerous gene-encoding enzymes, transporters, and growth factors. Immediate acute responses rely mainly on adaptive changes mediated by O2-regulated ion channels, which regulate cell excitability, contractility, and secretory activity. Respiratory and cardiovascular systems can adjust themselves rapidly to maintain O2 delivery to the most critical organs, such as the brain and heart. As early as 1868, Pflüger recognized that hypoxia stimulates respiration...
that there are different O2-signaling mechanisms that respond first identified redox-sensitive TRP channel, is activated by vagal nerves [115]. However, the exact channel subtypes and direct mediators responsible for hypoxia-sensing remain controversial [61].

The physiological significance and hypoxia-sensing mechanisms of the non-CB chemoreceptors remain unclear and represents an important area that requires much further research. Recently, a major advance in our understanding of the function of non-CB chemoreceptors came with the identification of transient receptor potential (TRP) cation-permeable channels, which have exquisite sensitivity to redox reactive species. Among this group of TRP channels, the TRPA1 channel has emerged as a sensor in non-CB chemoreceptors to detect deviation of O2 availability (hypoxia and hyperoxia) from normoxia in vivo [81, 101]. Given that TRPA1 channels are predominantly expressed in vagal and sensory neurons, the responses to mild hypoxia are attributable mainly to vagal nerves themselves or lung airway neuroepithelial bodies (NEBs) and aortic bodies (ABs) innervated by vagal nerves [115]. These findings further suggest that there are different O2-signaling mechanisms that respond to varying degrees of hypoxic stimulus. Thus, studies on the redox-sensitive TRP channels opened up a new avenue for studying O2-sensing organs and the O2 environment that is formed within our body.

What are redox-sensitive TRP channels?

The cellular redox status depends on a balance between the levels of intracellular antioxidants and redox reactive species, including reactive oxygen and nitrogen species and other electrophilic molecules. It was generally understood that the disruption of cellular redox homeostasis by excessive production of redox reactive species leads to oxidative damage to membrane lipids, proteins, and DNA [15]. However, in the past two decades, several lines of evidence have suggested that redox reactive species also serve as signaling molecules that regulate biological and physiological processes [26].

One particular group of TRP channels function as exquisite sensors of redox reactive species and as efficient actuators of electric and ionic signal in vivo [52]. The TRPM2 channel, the first identified redox-sensitive TRP channel, is activated indirectly by H2O2 through the production of nicotinamide adenine dinucleotide and its metabolites, ADP-ribose and cyclic ADP-ribose [35, 78]. Accumulated evidence indicates that TRPM2 mediates H2O2-activated Ca2+ influx that mediates cell death [35] and irradiation-activated Ca2+ influx that causes irreversible loss of salivary gland function [59]. TRPM2 also mediates H2O2-activated Ca2+ or cation influx that drives insulin secretion in pancreatic β-cells [104, 107]. Furthermore, studies using Trpm2 gene knockout (KO) mice have revealed that H2O2-activated Ca2+ influx through TRPM2 contributes to innate immune responses via chemo-kine production in monocytes [119], neutrophil adhesion during myocardial ischemia/reperfusion injury [39], and NLRP3 inflammasome activation in macrophages [122].

In addition to the indirect redox-sensing mechanism that involves TRPM2, direct sensing through cysteine (Cys) modification has emerged as a prominent mechanism underlying activation of various TRP channels [103]. Oxidative modifications of Cys residues by H2O2, nitric oxide (NO), and reactive disulfides have been demonstrated for TRPC5 [120], which was originally identified from the mouse brain as a receptor activated Ca2+-permeable cation channel linked to phospholipase C5 [74, 80]. NO and reactive disulfides directly modify Cys residues (Cys553 and Cys558) located on the N-terminal side of the pore-forming region between S5 and S6 transmembrane helices via S-nitrosylation and disulfide exchange reactions, respectively, in mouse TRPC5. In vascular endothelial cells, TRPC5 activation induced by NO via nitrosylation enhances Ca2+ influx, which induces NO production by endothelial type NO synthase (eNOS) [120]. This raises the possibility that TRPC5 mediates a positive feedback loop of NO production upon vasodilator stimulation in vascular endothelial cells [28, 120]. Interestingly, TRPC5 is also activated by the reducing agent dithiothreitol and extracellular-reduced thioredoxin [118]. The closest relatives of TRPC5 are TRPC1 and TRPC4, as well as thermosensor channels TRPV1, TRPV3, and TRPV4, which carry Cys residues corresponding to Cys553 and Cys558 on TRPC5 protein [120]. Indeed, these channels are targets of nitrosylation that leads to channel activation. TRPV1 also shows sensitivity to phenylarsine oxide and allicin from garlic through covalent modification of Cys residues located in the C-terminal and N-terminal regions [12, 87].

More recently, the TRPA1 channel has been shown to open upon oxidative Cys modification by pungent compounds and inflammatory mediators [38, 62, 102]. Originally identified TRPA1 activators are pungent natural compounds that include cinnamaldehyde, allyl isothiocyanate, and α,β-unsaturated aldehydes from plants such as mustard, onion, cinnamom, and wasabi, and the pungent garlic compound allicin (these compounds are potentially susceptible to the nucleophilic attack at the sulphhydryl group of Cys residues), cold temperature, receptor stimulation, and cannabinoids [5, 7, 47, 63, 97].
examinations of various noxious compounds finally led to the understanding that electrophilic pungent compounds that covalently modify Cys residues through mechanisms such as Michael addition, are commonly potent activators of TRPA1 channels [38, 62].

Considering the distinct redox reactivity of each oxidizing chemical species, particular redox sensitivity of TRP channels should be quantified in terms of sensitivity to these species. This was attained through systematic comparison of the responses of redox-sensitive TRP channels with a congeneric series of reactive disulfides, which show different electron acceptor (oxidation) abilities indicated as redox potentials that are obtained using rotating disc electrode voltammetry [101]. TRP channel activity was correlated with redox potentials of reactive disulfide stimuli, revealing threshold redox potentials for respective TRPs (Fig. 1). Strikingly, among the TRPs tested, only TRPA1 responded to inert oxidants/electrophiles with a redox potential of −2950 mV. The redox potential of O2 (−2765 mV) is less negative than the threshold redox potential for TRPA1 (approximately −3400 mV) but is more negative than these for the other channels investigated, suggesting that TRPA1 is activated by O2 (a weak oxidant) to function as a hyperoxia sensor. Indeed, only TRPA1 responded to hyperoxic solutions prepared by bubbling with O2 gas in a concentration-dependent manner [101]. Thus, among TRP channels, TRPA1 has the highest oxidation sensitivity, which enables TRPA1 to respond to an inert oxidant such as O2.

TRPA1 as an O2 sensor

In higher animals, particularly mammals, the respiratory and cardiovascular systems must rapidly adjust themselves to maintain O2 delivery to the most critical organs, such as the brain and heart. In mammals, it is understood that the CBs detect changes in partial O2 pressure (PO2) through K+ channel activities in arterial blood [30, 71, 115]. Sensory and vagal afferent neurons, which project nerve endings throughout the body, have also been proposed to detect hypoxia in organs, such as the airway, lungs, and heart, under ischemia and other conditions of low O2 supply [17, 32, 41, 60]. However, the characteristics and mechanisms of hypoxia detection by non-CB chemoreceptors including sensory and vagal neurons, have yet to be fully defined [60]. Recently, a major advance in our understanding of the function of non-CB chemoreceptors came with the demonstration that the TRPA1 channel, which is expressed in non-CB chemoreceptors is capable of detecting changes in O2 availability in vivo [81, 101].

As described above, systematic evaluation of TRP channels using reactive disulfides with different redox potentials led to our finding that TRPA1 can sense O2 [101]. Notably, Cys oxidation is not the only mechanism that underlies O2 sensing in TRPA1 channels. Indeed, hypoxic solutions prepared by bubbling with N2 gas induce robust TRPA1 responses; TRPA1 activation shows an inverted bell-shaped O2-dependence curve with a minimum at PO2 of 137 mmHg (18 %), which is slightly below the atmospheric PO2 of 152 mmHg (20 %).

O2 sensing by TRPA1 is based upon disparate processes, such as proline (Pro) hydroxylation by Pro hydroxylases (PHDs) and direct oxidation of Cys residues [101] (Fig. 2). During normoxia, PHDs hydroxylate conserved Pro394 within the 10th ankyrin repeat domain of human TRPA1 to inhibit its activity. During hypoxia, the decrease in O2 concentration diminishes PHD activity, relieving TRPA1 from the inhibitory action of Pro hydroxylation to lead to its activation. This recovery of TRPA1 activity is likely dependent on the insertion of fresh, unmodified TRPA1 proteins into the plasma membrane or an unidentified dehydroxylation of modified proteins through an unidentified molecular mechanism. During hyperoxia, O2 activates TRPA1 by oxidizing Cys633, Cys856, or both. Cys633 and Cys856 are located within the 17th ankyrin repeat domain and the intracellular linker region between S4 and S5, respectively, in human TRPA1. TRPA1 can take at least two oxidized forms during hyperoxia: a relatively unstable oxidized state (state 1) readily reversed by glutathione and a relatively stable oxidized state (state 2). Sulfhydryl groups on the key Cys residues (Cys633 and Cys856) may be modified to sulfenic acid (S-OH) in state 1.
and form disulfide bonds (S-S) in state 2. This oxidation mechanism overrides the inhibition by Pro hydroxylation to activate TRPA1.

In mice, exposure to hyperoxic (100% O\textsubscript{2}) or hypoxic (10, 13, and 15% O\textsubscript{2}) gas via a tracheal cannula significantly enhances discharges of afferents in the cervical vagal trunk and in the superior laryngeal vagal branch innervating the mucosa of the larynx, as shown by a multifiber neurogram. However, disruption of the \textit{Trpa1} gene abolishes the enhancement of nerve discharges by hyperoxia and mild hypoxia (15% O\textsubscript{2}) and delays that by severe hypoxia (10 and 13% O\textsubscript{2}) [101]. Notably, TRPA1 antagonism abolishes the respiratory responses to mild hypoxia (13% O\textsubscript{2}) but not to severe hypoxia (7% O\textsubscript{2}) in conscious mice [81]. These findings raise the possibility that there are different O\textsubscript{2} signaling mechanisms that respond to varying degrees of hypoxic stimulus. In mild hypoxia, the respiratory responses appear to be crucially dependent on TRPA1 channels, as TRPA1 antagonism abolishes the response. Given that TRPA1 channels are predominantly expressed in vagal and sensory neurons [68], it is possible that the responses to mild hypoxia are attributable mainly to non-CB chemoreceptors including vagal nerves, NEBs, and/or ABs in mice. Conversely, during severe hypoxia, the respiratory responses may be more dependent on hypoxia-sensitive K+ channels in the CBs, with little involvement of the TRPA1 system, in agreement with studies using \textit{Trpa1}-deficient mice [101]. The finding of O\textsubscript{2} sensitivities of TRPA1 underscores the importance of non-CB chemosensitive mechanisms in hypoxic respiratory responses in mammals.

TRPM7 as another O\textsubscript{2} sensor candidate among TRP channels

TRPM7 is an important candidate O\textsubscript{2} sensor. This TRP channel is characterized by its unique “chanzyme” structure comprising the kinase domain as well as the transmembrane ion channel pore permeable to cations such as Mg2+, Ni2+, Zn2+, and other trace metals [65, 67, 84]. Tymianski’s group originally demonstrated activation of TRPM7 by anoxic condition using cultured neurons subjected to oxygen-glucose deprivation [1]. ROS and RNS have been suggested to mediate this mode of TRPM7 activation. In our systematic evaluation of different redox-sensitive TRP channels, we also observed that TRPM7-like TRPA1 is activated by application of hypoxic solution prepared by bubbling N\textsubscript{2} gas [101]. Anoxia/hypoxia-induced activation of TRPM7 plays an important role in non-excitotoxic ischemic brain injury [99], in which large reductions in extracellular divalents, acidosis, and oxidative stress are induced [58, 94, 95]. All these conditions potentiate TRPM7 activity, although TRPM7 conducts only a few pA of inward currents under physiological pH levels, extracellular Ca2+ and Mg2+ concentrations, and low oxidative stress [53, 67, 84, 114]. The C-terminal kinase domain excised from the channel domain has been implicated in the cell death process [18, 54].

Wide expression of TRPM7 suggests its general biological importance shared by different types of cells [67, 84]. After it was reported that disruption of TRPM7 in DT-40 B cell lines affect their survival [67, 90], evidence has been accumulating...
for the involvement of TRPM7 in proliferation and metastasis of various forms of cancer cells [33, 34, 45, 123]. TRPM7 also regulates a variety of basic cellular responses, such as cell adhesion [13, 72], polarization [89], migration [13, 113], and volume regulation [73]. Moreover, TRPM7 is essential for embryonic development before day 7.5 of embryogenesis and for T cell growth needed for thymopoiesis [46]. In regulating these cellular responses, particularly in proliferation, Mg2+ permeation that controls cellular Mg2+ homeostasis and downstream phosphoinositide 3-kinase is likely an important function of TRPM7 channels [67, 86, 90]. Thus, assuming that hypoxia-induced activation is the common feature shared by TRPM7 channels in different tissues and cell types, it is possible that decreases in local O2 levels in vivo by changes in body architecture, during development, and changes in climate, can modulate TRPM7 function to modify ionic homeostasis and/or downstream signaling cascades.

Ubiquitous expression of O2 sensor TRP channels (TRPA1 and TRPM7)

TRPA1, originally named p120, was first cloned from fibroblasts by Jaquemar and colleagues when a novel mRNA was discovered in fibroblasts but was completely absent in SV40-transformed cells and mesenchymal tumor cell lines [44]. The most interesting feature of TRPA1 with many ankyrin repeats (ranging from 15 to 18 repeats) was intriguing to the investigators at that time owing to the fact that the only known similarity in structure belonged to an insect toxin called latrotoxin. Although the structure conformed to the general structure of TRP channels, phylogenetic analysis revealed it to be distant

Table 1 Expression of TRPA1 in neuronal cells and tissues, function, and method of detection, shown in chronological order

Expressed in cell and tissue	Function (including suggested function)	Species	Method of detection	Reference	Year
Dorsal root ganglion neurons	Noxious cold sensor, thermosensation	Rat, mouse	Northern blotting, in situ hybridization, calcium imaging, electrophysiology	Story et al. [97]	2003
Sympathetic superior cervical ganglion neurons	Sole cold sensor, thermosensation	Murine	Calcium imaging	Smith et al. [96]	2004
Trigeminal neurons (C-fibers)	Nociception, sensory	Rat	In situ hybridization, immunohistochemistry	Kobayashi et al. [51]	2005
Dental primary afferents	Thermosensation	Rat	Immunohistochemistry, single-cell RT-PCR, whole-cell recordings	Park et al. [77]	2006
Geniculate ganglion	Somatosensory or gustatory function, nociception, thermosensing	Rat	RT-PCR, in situ hybridization	Katsura et al. [49]	2006
Primary sensory neurons	Mechanosensory transduction, nociception	Rat	Quantitative PCR, immunofluorescence staining, cystometry	Du et al. [20]	2007
Lung afferent fibers	Respiratory, nociception	Mouse	Single-cell RT-PCR, whole-cell patch-clamp recordings	Nassenstein et al. [70]	2008
Masticatory muscle afferent fibers	Craniofacial muscle nociception, mechanical hyperalgesia	Rat	Immunohistochemistry, behavioral studies	Ro et al. [83]	2009
Trigeminal sensory afferents, spinal dorsal horn	Nociception	Rat	Electron microscopy, immunohistochemistry	Kim et al. [50]	2010
Nodose, jugular and petrosal ganglions	Putative somatic, chemo- and somato-sensation, somato and visceral sensation	Rat	In situ hybridization	Hondoh et al. [40]	2010
Inhibitory motoneurons of the intestine	Inhibition of spontaneous neurogenic contractions and transit of colon	Mouse	RT-PCR, immunofluorescence, calcium imaging	Poole et al. [82]	2011
Dura	Headache	Mouse	Immunohistochemistry	Huang et al. [42]	2012
Vestibular ganglia	Vestibular function, vertigo	Rat	RT-PCR, in situ hybridization, immunohistochemistry, calcium imaging	Kamakura et al. [48]	2013
Vagina epithelium, wall nerve fibers	Neurotransmission	Human	Immunohistochemistry, RT-PCR	Uckert et al. [108]	2015
from the currently known TRPs, thus prompting it to be placed as a separate subfamily [44]. The group also observed that the TRPA1 gene expression was relatively low and difficult to detect with northern blot analysis and required more sensitive polymerase chain reaction (PCR) technology. Despite this, TRPA1 was detected in numerous tissues [44] and was confirmed later in subsequent studies (Tables 1 and 2).

The function of TRPA1 became evident 4 years later where TRPA1 was shown to mediate sensation of noxious and painful cold and to be expressed in the dorsal root ganglion (DRG) neurons. TRPA1 co-localizes with TRPV1 (a heat-sensing TRP channel) expressing sensory neurons rather than TRPM8-positive sensory neurons, indicating separate cold-sensing modalities [97]. This was particularly interesting as TRPM8 is different from TRPA1 in responding to mild cold temperatures as well as to different sets of organic compounds [97]. Since its discovery, TRPA1 has been reported in most sensory neurons targeting vital organs (see the non-extensive Table 1 below for TRPA1 expression in neuronal populations and nociception) [20, 40, 42, 48–51, 70, 77, 82, 83, 96, 97, 108]. To date, TRPA1 has been also detected in non-neuronal cells such as hair cells of the ear, urethra, skin, olfactory epithelium, dental pulp, uvea, vagina, and pulmonary epithelial cells, and this list is still growing (Table 2) [3, 4, 8, 9, 11, 14, 19, 22, 31, 55, 56, 64, 66, 69, 105, 106]. In 2004, Corey and colleagues proposed the idea that, TRPA1 may be involved in mechanosensation in the hair cell epithelia [14]. A follow-up study nearly half a decade later performed by the same group showed later however that TRPA1 KO mice exhibited normal vestibular function, normal startle reaction following loud auditory stimuli and normal hearing [55].

TRPM7 was first cloned from the rat brain library. Ryazanova and colleagues investigated deletion of the TRPM7 kinase domain in mice [85]. They showed that homozygous mice with TRPM7 lacking the protein kinase domain (denoted as TRPM7∗Δ kinase) were embryonically lethal,

Expressed in cell and tissue	Function (including suggested function)	Species	Method of detection	Reference	Year
Hair cell of the ear	Hair cell transduction, mechanosensation (debated)	Zebrafish, mouse	In situ hybridization, siRNA	Corey et al. [14]	2004
Urethra	Tone of urethral preparations, afferent and efferent sensory signaling of the human outflow region	Human	Western blotting, immunohistochemistry, functional in vitro investigations	Gratzke et al. [31]	2009
Skin	Keratinocyte differentiation, inflammation	Human	Quantitative PCR, microarray	Atoyan et al. [4]	2009
Developing cochlea	Normal cochlear function	Mouse	Quantitative PCR	Asai et al. [3]	2010
Olfactory epithelium	Olfactory chemosensation, Olfactory adaptation, olfactory–trigeminal interaction, olfactory epithelium fluid homeostasis.	Mouse	Immunohistochemistry	Nakashimo et al. [69]	2010
Dental pulp fibroblasts	Thermosensation	Human	RT-PCR, western blotting, immunohistochemistry	Karim et al. [22]	2011
Lung fibroblasts and epithelial cells	Pathogenesis of airway diseases	Human	Calcium imaging	Mukhopadhyay et al. [66]	2011
Pancreatic beta cells	Insulin secretion	Rat	Immunohistochemistry, RT-PCR, western blotting, calcium imaging	Cao et al. [9]	2012
Astrocytes in the superficial laminae of trigeminal caudal nucleus	Inflammation	Rat	Immunelectron microscopy	Lee et al. [56]	2012
Olfactory bulb	Olfactory transduction	Mouse	RT-PCR	Dong et al. [19]	2012
Pulmonary epithelial cells	Inflammation	Human, Porcine	Immunohistochemistry	Buch et al. [8]	2013
Peridontal ligament cells	Mechanoreception	Human	DNA microarray	Tsutsumi et al. [106]	2013
Odontoblasts	Sensing membrane stretching, low-temperature stimulation	Rat	Immunohistochemistry	Tsumura et al. [105]	2013
Digestive system, enteroendocrine cells	Secretion possibly to aid digestion	Mouse	In situ hybridization, Immunofluorescence staining	Cho et al. [11]	2014
Uvea	Thermosensation	Human	Quantitative PCR, calcium imaging	Mergler et al. [64]	2014
Table 3 Expression of TRPM7 in cells and tissues, function, and method of detection, shown in chronological order

Expressed in cell and tissue	Function (including suggested function)	Species	Method of detection	Reference	Year
Heart, brain, spleen, lung, liver, skeletal muscle and kidney	Calcium channel, serine-threonine kinase	Mouse	Electrophysiology, northern blotting	Runnels et al. [84]	2001
Cortical neurons	Magnesium homeostasis, excitotoxicity	Mouse	Electrophysiology, radioisotope techniques	Aarts et al. [1]	2003
Vascular smooth muscle cells	Mg$^{2+}$ homeostasis	Rat, Mouse, Human	Biochemical, genetic and pharmacological tools	He et al. [36]	2005
Liver (hepatocytes)	Cell proliferation	Zebrafish, human	RT-PCR, immunocytochemistry, patch-clamp recordings, calcium imaging	Boustany et al. [21], and Elizondo et al. [23]	2008, 2005
Heart, pituitary, bone, adipose tissue	ND	Human	RT-PCR	Fonfria et al. [27]	2006
Epithelial cells	Stretch- and swell-sensitive ion channel, cell volume regulation	Human	Single channel recordings, RT-PCR	Numata et al. [73]	2007
Prostate	ND	Rat	RT-PCR	Wang et al. [111]	2007
Human lung mast cells (HLMCs), human mast cell lines (LAD2 and HMC-1)	Release of proinflammatory mediators, cell survival	Human	Electrophysiology, RT-PCR	Wykes et al. [117]	2007
Hippocampal neurons (CA1 neurons)	Excitotoxicity, Ca$^{2+}$ paradox	Mouse	Electrophysiology	Wei et al. [114]	2007
Rumen epithelial cells	Magnesium transport pathways	Ovine	RT-PCR, western blotting, flow cytometry, immunocytochemistry, magnesium imaging	Schweigel et al. [92]	2008
Human osteoblast-like cells (MG-63, SaOS and U2-OS cells)	Cell proliferation	Human	Cell proliferation, PCR, calcium and magnesium imaging	Abed et al. [2]	2009
Bone-marrow derived mesenchymal stem cells	Cell survival	Mouse	RT-PCR, immunocytochemistry, electrophysiology	Cheng et al. [10]	2010
Urothelial cells	Polymodal sensing	Mouse	RT-PCR, immunocytochemistry, patch-clamp recordings, calcium imaging	Everaerts et al. [25]	2010
Retina (cone outer segments)	Magnesium homeostasis	Mouse	RT-PCR, northern blotting, in situ hybridization	Gilliam and Wendsel [29]	2011
Atrial myocytes	Fibrogenesis	Human	Whole-cell patch-clamp recordings, RT-PCR, western blotting	Zhang et al. [121]	2012
Trigeminal neurons, dorsal root ganglion neurons	Cell proliferation, organ development, Mg$^{2+}$ homeostasis	Mouse	Quantitative PCR	Vandewauw et al. [110]	2013
Endometrial stromal cells	Cell proliferation	Human	Quantitative PCR, Immunocytochemistry, calcium imaging, whole-cell patch-clamp recordings	De Clercq et al. [16]	2015

ND not determined
while TRPM7Δkinase heterozygous mice showed impaired magnesium homeostasis. TRPM7Δkinase heterozygous mice showed low magnesium concentration in the plasma, erythrocytes, and bones. Magnesium impairment was further demonstrated with data obtained from mice fed a poor magnesium diet. Mice with TRPM7Δkinase showed clamping, tremor, and seizures consistent with impairment in magnesium homeostasis. To elucidate the complete functional profile of the TRPM channel family, Fonfria and colleagues analyzed TRPM7 temporal channel tissue distribution by quantitative PCR [27]. Their study revealed TRPM7 expression in the brain, pituitary, heart, lung, liver, fetal liver, skeletal muscle, stomach, intestine, spleen, macrophages, adipose, pancreas, prostate, placenta, cartilage, bone marrow, and bone. Highest expression was in the pituitary, heart, adipose, and bone, and lowest expression was in cartilage, liver, and bone marrow [27]. Subsequent studies employing various techniques with varying sensitivity confirmed the findings (Table 3) [1, 2, 6, 10, 16, 21, 23, 25, 27, 29, 36, 73, 84, 92, 110, 111, 114, 117, 121]. Thus, TRPA1 and TRPM7 have been shown to be ubiquitous in many tissues and cells. Since the function of these channels was shown to be tissue specific, the spatial and temporal expressions of these channels are important clues for the ever growing list of functions.

What is the significance of the ubiquity of O2 sensor TRP channels in the body?

It is important to address the primary significance of O2-sensing TRP channels that are ubiquitously expressed in the body. We suggest that these O2 sensors play key roles in the molecular mechanisms which underlie the O2-sensing ability of chemoreceptor (or chemoreceptor-like) cells localized ubiquitously in a variety of tissues and organs. It is possible that TRP O2 sensors detect local O2 availability and contribute to fine tuning of local O2 levels, which cannot be done by the CB alone, in the respective organs and tissues and in their subareas. Information of detected local O2 availability (partial pressure) may be transmitted through neurons, as discussed above and/or humoral factors to control O2 delivery to peripheral organs and tissues. Interestingly, TRPA1 acts as sensors for not only hypoxia but also for hyperoxia, suggesting that at least TRPA1 and other redox-sensitive TRP channels also transmit negative signals to suppress excessive O2 delivery responsible for harmful ROS production. These TRP channels may even contribute to a mechanism that maintains O2 availability of certain organs/tissues and their subareas at hypoxic levels compared with the atmospheric O2 level. It has indeed been reported that hypoxic levels are important in maintaining cellular conditions of certain types of cells in vivo [24, 75, 76, 98].

The many lines of experimental evidence thus far have led us to propose the concept of “O2 remodeling” (Fig. 3). In O2 remodeling, O2-sensing chemoreceptors detect deviation of O2 availability and transmit this information to neurons and/or humoral factors, such as vascular endothelial growth factor [57, 93] to control O2 delivery. Also, according to the types, location, and condition (including O2 availability itself) of the tissues in the body, mitochondrial O2 consumption [88] is regulated by mechanisms such as the Pasteur effect, which switches O2 dependence of ATP production [109]. In the mechanism underlying O2 remodeling, O2 sensor TRP channels and redox-sensitive TRP channels play important roles, together with signaling cascades controlled by HIF/PHD [91, 112] and also by polysulfide redox factors [43]. Compared with the roles of HIF/PHD, those of TRP channels in controlling O2-triggered signaling cascades via signals of ions such as Ca2+ are still very elusive. As a readout of the signaling mechanism, O2 availability is adjusted to optimal levels, which enable sufficient cellular O2 supply for the activity and function of corresponding organs and tissues and at the same time, minimized production of excessive ROS and cellular condition of tissues in the body, mitochondrial O2 consumption is regulated by mechanisms such as the Pasteur effect, which switches O2 dependence of ATP production.
damage. It is interesting to speculate that such “active” (not passive) optimization by O2 remodeling leads to the formation of a local O2 environment, in which population of cells behave as a unit for homeostasis that is responsible for the regulation of metabolism and development of organs and tissues in aerobic organisms, including as human beings (Fig. 4). We should note that TRPA1 and TRPM7 are not necessarily associated with control of O2 supply in all organs and tissues, considering their well-known ability to detect substances other than O2. However, we still consider it reasonable to expect modification by changes in O2 availability for cellular responses via these TRP channels activated by these other triggers.

Conclusion

Identification of O2-sensing TRP channels opens a new area of oxygen physiology. In particular, wide tissue expression of O2-sensing TRPA1 and TRPM7 channels is indicative of “acute” O2-sensing capacity in diverse types of cells, tissues, and organs. This constitutes a considerable departure from the classical concept of respiratory physiology ascribing the powerful hypoxic chemoreflex solely to CB chemoreceptor excitation [81, 100]. In the case of TRPA1, hyperoxia-induced activation has been shown through the quantitative characterization of oxidation sensitivity of redox-sensitive TRP channels. The O2-sensing mechanisms involving TRPA1 and other oxidation-sensitive mechanisms may be important for maintaining O2 availability at certain hypoxic levels to avoid unnecessary and excessive production of ROS. In this review, we have suggested that “O2 remodeling,” in which cells comprising organs and tissues actively form a local in vivo O2 environment optimal for their function in the body, emerges as a new central concept for oxygen biology. This concept may allow us to systematically understand numerous physiological phenomena affected by O2 availability in aerobic organisms. In studying O2 remodeling, it is a tantalizing prospect to discover whether O2-sensing TRP channels are involved in the mechanisms underlying ‘chronic’ forms of hypoxic adaptation. Breakthrough studies on the time-dependent aspects (acute vs. chronic), as well as the concentration-dependent aspects (hypoxic vs. hyperoxic) of O2 remodeling would eventually result in a paradigm shift in our understanding of the biology of O2.

Acknowledgments This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Oxygen biology: a new criterion for integrated understanding of life” (No. 26111004) of The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
References

1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877. doi:10.1016/S0092-8674(03)01017-1

2. Abed E, Labelle D, Martineau C, Loghin A, Moreau R (2009) Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol 26:146–158. doi:10.1080/09687600802612721

3. Atsma M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877. doi:10.1016/S0092-8674(03)01017-1

4. Atsma M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877. doi:10.1016/S0092-8674(03)01017-1

5. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, EARLY TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857. doi:10.1016/S0896-6278(04)00150-3

6. Barritt GJ, Chen J, Rychkov GY (2008) Ca2+-permeable channels in the mouse intestine. Cell Tissue Res 356:77–82. doi:10.1007/s10162-009-0193-8

7. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Gudermann T, Steinritz D, Schmidt A (2013) Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells. Chem Biol Interact 206:462–471. doi:10.1016/j.chembiol.2013.08.012

8. Buch TR, Schafer EA, Demmel MT, Boekhoff I, Thiermann H, Beck A (2010) Transient receptor potential melastatin type 7 channel expression of transient receptor potential channels in human endometrial stromal cells during the luteal phase of the menstrual cycle. Hum Reprod 30:1421–1436. doi:10.1093/humrep/dev068

9. Cao DS, Zhong L, Hsieh TH, Abooj M, Bishnoi M, Hughes L, Henion PD, Cornell RA, Parichy DM (2005) Defective skeleogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15:667–671. doi:10.1016/j.cub.2005.02.050

10. Cheng H, Feng JM, Figueredo ML, Zhang H, Nelson PL, Marigo V, Boustan C, Davis JC, Ding S, Nai Q, Zhou FM, Ennis M (2012) Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb. Neurosci Lett 509:82–86. doi:10.1016/j.neulet.2012.07.013

11. Cho HJ, Callaghan B, Bron R, Bravo DM, Furness JB (2014) Identification of enteroendocrine cells that express TRPA1 channels in anoxic neuronal death. Cell 115:863–877. doi:10.1016/j.cell.2008.06.016

12. Chuang HH, Lin S (2009) Oxidative challenges sensitize the cationic transient receptor potential channels TRPV1 and TRPV2 to anesthetic agents. PLoS One 7, e38005. doi:10.1371/journal.pone.0038005

13. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Mooallem WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301. doi:10.1038/sj.emboj.7600931

14. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Gehlert DS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPM7 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730. doi:10.1038/nature03066

15. Cross CE, Hallwell B, Borish ET, Pyyor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545. doi:10.7326/0003-4819-107-4-526

16. De Clercq K, Held K, van Bree R, Meuleman C, Peerar K, Tomassetti C, Voets T, D’Hooghe T, Vriens J (2015) Functional expression of transient receptor potential channels in human endometrial stromal cells during the luteal phase of the menstrual cycle. Hum Reprod 30:1421–1436. doi:10.1093/humrep/dev068

17. De Sanctis GT, Green FH, Remmers JE (1991) Ventilatory responses to hypoxia and hypercapnia in awake rats pretreated with capsaicin. J Appl Physiol (1985) 70:1168–1174

18. Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasan Y, Clapham DE (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22:1149–1162. doi:10.1016/j.devcel.2012.04.006

19. Dong HW, Davis JC, Ding S, Nai Q, Zhou FM, Ennis M (2012) Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb. Neurosci Lett 524:49–54. doi:10.1016/j.neulet.2012.07.013

20. Du S, Araki I, Yoshiyama M, Nomura T, Takeda M (2007) Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 70:826–831. doi:10.1016/j.urology.2007.06.1110

21. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47:2068–2077. doi:10.1002/hep.22263

22. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Lundy FT (2011) Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity. Pigment Cell Melanoma Res 24:1221–1223. doi:10.1111/j.1755-148X.2010.00916.x

23. Everaerts W, Vriens J, Owssianik G, Appendino G, Voets T, De Ridder D, Nilius B (2010) Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol 298:F692–701. doi:10.1152/ajprenal.00599.2009

24. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. doi:10.1083/jcb.201010295

25. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM7 gene: implications for trpm7. Curr Biol 16:672–676. doi:10.1016/j.cub.2005.12.050

26. Foster MW, Hess DT, Stamler JS (2006) S-nitrosylation TRiPs a calcium switch. Nat Chem Biol 2:570–577. doi:10.1038/nchembio1106-570

27. Gilliam JC, Wensel TG (2011) TRP channel gene expression in the mouse retina. Vision Res 51:2440–2452. doi:10.1016/j.visres.2011.10.009

28. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898

29. Gratze C, Steng P, Waldkirch E, Sigl K, Stief C, Andersen KE, Hedlund P (2009) Transient receptor potential A1 (TRPA1) activity in the human urethra—evidence for a functional role for TRPA1 in the outflow region. Eur Urol 55:696–704. doi:10.1016/j.eururo.2008.04.042

30. Grass M, Ettorre G, Stehr AJ, Henrich M, Hempelmann G, Scholz A (2006) Modulate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurons. Mol Pain 2:12. doi:10.1186/1744-8069-2-12

31. Guilbert A, Gauthier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch I (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297:1436–1441. doi:10.1152/ajpcell.00624.2008
34. Hanano T, Hara Y, Shi J, Morita H, Umebayashi M, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+-entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419. doi:10.1254/jphs.FP00040273
35. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173. doi:10.1016/S1097-0675(01)00438-5
36. Heymans JF, Bouckaert JJ, Dauteubande L (1931) Sinus carotidien et reflexes respiratoires; sensibilité sinus carotidien aux substances chimiques. Action stimulante respiratoire reflexe du sulfate de sodium, du cyanure de potassium, de la nicotine et de la lobeline. Arch Int Pharmacodyn Ther 40:54–91
37. Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568. doi:10.1073/pnas.0609598103
38. Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, Mori Y, Shimizu S (2013) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 97:271–281. doi:10.1093/cvr/cvs332
39. Huang D, Li S, Dhaka A, Story GM, Cao YQ (2012) Expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Res 1319:60–69. doi:10.1016/j.brainres.2010.01.016
40. Hondoh A, Ishida Y, Ugawa S, Ueda T, Shibata Y, Yamada T, Shikano M, Murakami S, Shimada S (2010) Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Res 1319:60–69. doi:10.1016/j.brainres.2010.01.016
41. Howe A, Pack RJ, Wise JC (1981) Arterial chemoreceptor-like activity in the abdominal vagus of the rat. J Physiology 320:309–318. doi:10.1113/jphysiol.1981.sp013951
42. Huynh A, Chuang HH, Bautista DM, Julius D (2012) Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Mol Pain 8:66. doi:10.1186/1744-8069-8-66
43. Ida T, Sawa T, Iwara H, Tsuchiya Y, Watanabe Y, Kamagai Y, Suematsu M, Motohashi H, Fuji S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111:7666–7671. doi:10.1073/pnas.1321233111
44. Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic ANKTM1. Nature 427:260–265. doi:10.1038/363493a
45. Katsura H, Tsuzuki K, Noguchi K, Sakagami M (2006) Differential expression of capsaicin-, menthol-, and mustard oil-sensitive receptors in naive rat geniculate ganglion neurons. Chem Senses 31:681–688. doi:10.1093/chemse/bji009
46. Kim YS, Son JY, Kim TH, Paik SK, Dai Y, Noguchi K, Ahn DK, Bae YC (2010) Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol 518:678–697. doi:10.1002/cne.22238
47. Kobayashi K, Fukushima O, Kobayashi T, Yamakaka H, Dai Y, Tokunaga A, Noguchi K (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606. doi:10.1002/cne.20794
48. Koizumi D, Ogawa N, Mori Y (2014) Redox regulation of transient receptor potential channels. Antioxid Redox Signal 21:971–986. doi:10.1089/ars.2013.5616
49. Koizumi JA, Kerschbaum HH, Cahanal MD (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol 120:221–235. doi:10.1085/jgp.2002601
50. Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE (2014) The TRPM7 channzyme is cleaved to release a chromatin-modifying kinase. Cell 157:1061–1072. doi:10.1016/j.cell.2014.03.046
51. Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819. doi:10.1523/jneurosci.5380-08.2009
52. Lee SM, Cho YS, Kim TH, Jin MU, Ahn DK, Noguchi K, Bae YC (2012) An ultrastructural evidence for the expression of transient receptor potential ankyrin 1 (TRPA1) in astrocytes in the rat trigeminal caudal nucleus. J Chem Neuroanat 45:45–49. doi:10.1016/j.jchemneu.2012.07.003
53. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309. doi:10.1126/science.2479896
54. Lin MC, Chuang HY, Liu HW, Yang DY, Lee JB, Cheng FC (2004) Microdialysis analyzer and flame atomic absorption spectrometry in the determination of blood glucose, lactate and magnesium in gerbils subjected to cerebral ischemia/reperfusion. J Am Coll Nutr 23:556S–560S. doi:10.1080/07317524.2004.10719403
55. Liu X, Cotrim A, Teos L, Zheng C, Swaim W, Mitchell J, Mori Y, Ambudkar I (2013) Loss of TRPM2 function protects against irradiation-induced salivary gland dysfunction. Nat Commun 4:1515. doi:10.1038/ncomms2526
56. Longhurst JC, Tjen ALSC, Fu LW (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes. Ann N Y Acad Sci 940:265–281. doi:10.1111/j.1749-6632.2001.tb03668.x
57. Lopez-Boaro J, Ortega-Saenz P, Pardal R, Rasouli A, Pirat JL, Duran R, Gomez-Diaz R (2009) Oxygen sensing in the carotid body. Ann N Y Acad Sci 1177:119–131. doi:10.1111/j.1749-6632.2009.05033.x
58. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545. doi:10.1038/nature05544
59. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934. doi:10.1016/j.cub.2005.04.018
60. Mergler S, Derckx R, Reinach PS, Garreis F, Bohn A, Schmelzer L, Skosyris S, Ramesh N, Abdelmehssat S, Polat OK, Khajavi N, Riechardt AI (2014) Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal 26:56–69. doi:10.1016/j.cellsig.2013.09.017
65. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60. doi:10.1085/jgp.200228740
66. Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Kannik P, Damle M, Kuruganti S, Thorat S, Khairatkar-Joshi N (2011) Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res 31:350–358. doi:10.3109/10501732.2011.602413
67. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zou Q, Stokes AJ, Kuroasaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg-ATP-regulated divergent cation channel required for cell viability. Nature 411:590–595. doi:10.1038/35079092
68. Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061. doi:10.1523/jneurosci.0013-05.2005
69. Nakashima Y, Takumida M, Fukui T, Anniko M, Hirakawa K (2010) Expression of transient receptor potential channel vanilloid (TRPV) 1-4, melastatin (TRPM) 5 and 8, and ankyrin (TRPA1) in the normal and methimazole-treated mouse olfactory epithelium. Acta Otolaryngol 130:1278–1286. doi:10.3109/00016489.2010.489573
70. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglishan DM, Braun A, Undem BJ (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 586:1595–1604. doi:10.1113/jphysiol.2007.148379
71. Neubauer JA, Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons: implication for tooth pain. J Biol Chem 281:17304–17311. doi:10.1074/jbc.M411446200
72. Pfüger E (1868) Uber die Ursache der Athembewegungen, sowie der Dyspnoe und Apnoe. Pfügers Arch Gesamte Physiol Meschen Tiere I:61–106
73. Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavaille A, Flotherz V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282. doi:10.1093/emboj/17.15.4274
74. Pokorski M, Takeda K, Sato Y, Okada Y (2014) The hypoxic ventilatory response and TRPA1 antagonism in conscious mice. Acta Physiol (Oxf) 210:928–938. doi:10.1111/apha.12202
75. Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, Bron R, Furness JB, Grady EF, Bunnnett NW (2011) Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology 141:565–575. doi:10.1053/j.gastro.2011.04.049, 575 e561-564
76. Ro JY, Lee JS, Zhang Y (2009) Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain 144:270–277. doi:10.1016/j.pain.2009.04.021
77. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047. doi:10.1126/science.1058519
78. Ryazanova LV, Rondon L, Zierler S, H, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg2+ homeostasis in mammals. Nat Commun 1:109. doi:10.1038/ncomms11108
79. Sahni J, Scharenberg AM (2008) TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab 8:84–93. doi:10.1016/j.cemt.2008.06.002
80. Schilling T, Miralles F, Eder C (2014) TRPM7 regulates proliferation and polarisation of macrophages. J Cell Sci 127:4561–4566. doi:10.1242/jcs.151068
81. Schmitt C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kuroasaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200. doi:10.1016/S0092-8674(03)00556-7
82. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354. doi:10.1038/nrm1366
83. Schwiegel M, Kuchek M, Nikolic Z, Kuzinski J (2008) Expression and functional activity of the Na/Mg exchanger, TRPM7 and Mag1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells. Magnes Res 21:1252–1253. doi:10.1074/jbc.M107.5194738
84. Schilling T, Miralles F, Eder C (2014) TRPM7 regulates proliferation and polarisation of macrophages. J Cell Sci 127:4561–4566. doi:10.1242/jcs.151068
85. Schmitt C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kuroasaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200. doi:10.1016/S0092-8674(03)00556-7
86. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354. doi:10.1038/nrm1366
87. Schwiegel M, Kuchek M, Nikolic Z, Kuzinski J (2008) Expression and functional activity of the Na/Mg exchanger, TRPM7 and Mag1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells. Magnes Res 21:1252–1253. doi:10.1074/jbc.M107.5194738
88. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985. doi:10.1126/science.6823562
89. Siesjo BK, Katsura K, Tibor K (1996) Acidosis related brain damage in advances in neurology. In: Siesjo BK, Wieloch T (eds) Cellular and molecular mechanisms of ischemic brain damage. Raven, New York, pp 209–236
90. Silver IA, Erechinska M (1990) Intracellular and extracellular changes of $[Ca^{2+}]$ in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866. doi:10.1085/jgp.95.5.837
91. Smith MP, Beacham D, Ensor E, Koltzenburg M (2004) Cold-sensitive, menthol-insensitive neurons in the murine sympathetic nervous system. Neuroreport 15:1399–1403. doi:10.1097/01.wnr.0000126559.3561.54
92. Story RM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, Mcintyre
