Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming

Yuxin Chen, Yuejie Chi, and Andrea J. Goldsmith

December 24, 2013

Abstract

Statistical inference and information processing of high-dimensional data often require efficient and accurate estimation of their second-order statistics. With rapidly changing data, limited processing power and storage at the sensor suite, it is desirable to extract the covariance structure from a single pass over the data stream and a small number of measurements. In this paper, we explore a quadratic random measurement model which imposes a minimal memory requirement and low computational complexity during the sampling process, and is shown to be optimal in preserving low-dimensional covariance structures. Specifically, four popular structural assumptions of covariance matrices, namely low rank, Toeplitz low rank, sparsity, jointly rank-one and sparse structure, are investigated. We show that a covariance matrix with either structure can be perfectly recovered from a near-optimal number of sub-Gaussian quadratic measurements, via efficient convex relaxation algorithms for the respective structure.

The proposed algorithm has a variety of potential applications in streaming data processing, high-frequency wireless communication, phase space tomography in optics, non-coherent subspace detection, etc. Our method admits universally accurate covariance estimation in the absence of noise, as soon as the number of measurements exceeds the theoretic sampling limits. We also demonstrate the robustness of this approach against noise and imperfect structural assumptions. Our analysis is established upon a novel notion called the mixed-norm restricted isometry property (RIP-ℓ₂/ℓ₁), as well as the conventional RIP-ℓ₂/ℓ₂ for near-isotropic and bounded measurements. Besides, our results improve upon best-known phase retrieval (including both dense and sparse signals) guarantees using PhaseLift with a significantly simpler approach.

1 Introduction

Accurate estimation of second-order statistics of stochastic processes and data streams is of ever-growing importance to various applications that exhibit high dimensionality. Covariance estimation is the cornerstone of modern statistical analysis and information processing, as the covariance matrix constitutes the sufficient statistics to many signal processing tasks, and is particularly crucial for extracting reduced-dimension representation of the objects of interest. For signals and data streams of high dimensionality, there might be limited memory and computation power available at the sensor end to process the rapidly changing input, which requires the covariance estimation task to be performed with a single pass over the data stream, minimal memory, and low computational complexity. This is not possible unless appropriate structural assumptions are incorporated into the high-dimensional problems. Fortunately, a broad class of high-dimensional signals indeed possesses low-dimensional structures, and the intrinsic dimension of the covariance matrix can be far smaller than the ambient dimension. For different types of data, the covariance matrix may exhibit different structures; four of the most widely considered structures are listed below.

- **Low Rank**: The covariance matrix is (approximately) low-rank, which occurs when a small number of components accounts for most of the variability in the data. Low-rank covariance matrices arise in applications including traffic data monitoring, array signal processing, collaborative filtering, metric learning, etc.

Y. Chen is with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA (email: yuchen@stanford.edu).

Y. Chi is with the Department of Electrical and Computer Engineering, the Ohio State University, Columbus, OH 43210, USA (email: chi.97@osu.edu).

A. J. Goldsmith is with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA (email: andrea@ee.stanford.edu).
• **Stationarity and Low Rank:** The covariance matrix is simultaneously low-rank and Toeplitz, which arises when the random process is generated by a few spectral spikes. Recovery of the stationary covariance matrix, often equivalent to spectral estimation, is crucial in many tasks in wireless communications (e.g. detecting spectral holes in cognitive radio networks), array signal processing (e.g. direction of arrival analysis [1]), etc.

• **Sparsity:** The covariance matrix can be approximated in a sparse form [2]. This arises when a large number of variables have small pairwise correlation, or when several variables are mutually exclusive. Sparse covariance matrices arise in finance, biology and spectrum estimation.

• **Joint Sparsity and Rank-One:** The covariance matrix can be approximated in a jointly sparse and rank-one matrix. This has received much attention in recent development of sparse PCA, and is closely related to sparse signal recovery from magnitude measurements (called sparse phase retrieval).

In this paper, we wish to reconstruct an unknown covariance matrix \(\Sigma \in \mathbb{R}^{n \times n} \) with the above structure from a small number of rank-one measurements. In particular, we explore quadratic sampling methods of the form

\[
y_i = a_i^T \Sigma a_i + \eta_i, \quad i = 1, \ldots, m,
\]

where \(y := \{y_i\}_{i=1}^m \) denotes the measurements, \(a_i \in \mathbb{R}^n \) represents the sensing vector, \(\eta := \{\eta_i\}_{i=1}^m \) denotes the noise term, and \(m \) is the number of rank-one measurements. The noise-free measurements \(a_i^T \Sigma a_i \)'s are quadratic in \(a_i \) and are thereby referred to as quadratic measurements. In practice, the number of measurements one can obtain is constrained by the storage requirement at the sensors, which may be much smaller than the ambient dimension of \(\Sigma \). This sampling scheme finds applications in many practical scenarios, admits optimal covariance estimation with tractable algorithms, and brings in computational and storage advantages compared with other types of measurements, as detailed in the rest of the paper.

1.1 Motivations

The quadratic measurements in the form of (1) are motivated by several application scenarios listed below, which illustrate the practicability and benefits of the proposed quadratic measurement scheme.

1.1.1 Covariance Sketching for Data Streams

A high-dimensional data stream model represents real-time data that arrives sequentially at a high rate, where each data instance is itself high-dimensional. In many resource-constrained applications, the available memory and processing power at the sensor suite are severely limited compared with the volume and rate of the data [3]. Therefore it is desirable to extract the covariance matrix of the data instances from inputs on the fly without storing the whole stream. Interestingly, the quadratic measurement strategy can be leveraged as an effective data stream processing method to extract the covariance information from real-time data, with limited memory and low computational complexity.

Specifically, consider an input stream \(\{x_t\}_{t=1}^\infty \) that arrives sequentially, where each \(x_t \in \mathbb{R}^n \) is a high-dimensional data instance generated at time \(t \). The goal is to estimate the covariance matrix \(\Sigma = \mathbb{E}[x_t x_t^T] \in \mathbb{R}^{n \times n} \). The prohibitively high rate at which data is generated forces covariance extraction to function with as small a memory as possible. The scenario we consider is quite general, and we only impose that the covariance of a random substream of the original data stream converges to the same covariance as \(\Sigma \). No prior information on the correlation statistics between consecutive instances is assumed to be known a priori (e.g. they are not necessarily independently drawn), and hence it is not feasible to exploit these statistics to enable low sample complexity.

We propose to pool the data stream \(\{x_t\}_{t=1}^\infty \) into a small set of measurements in an easy-to-adapt fashion with a collection of sketching vectors \(\{a_i\}_{i=1}^m \). Our covariance sketching method is outlined below:

1. At each time \(t \), we randomly choose a sketch vector indexed by \(\ell_t \in \{1, \ldots, m\} \), and obtain a single linear sketch \(a_{\ell_t}^T x_t \).
2. All sketches employing the same sketching vector a_i are squared, aggregated and normalized, which converge rapidly to a measurement\(^1\)

$$y_i = E[(a_i^T x_t)^2] + \eta_i = a_i^T E[x_t x_t^T] a_i + \eta_i = a_i^T \Sigma a_i + \eta_i, \quad i = 1, \ldots, m; \quad (2)$$

where $\eta := \{\eta_i\}_{i=1}^m$ denotes the noise term.

We call this sketching method “quadratic sketching”, as the measurements y_i’s are quadratic in each relevant a_i and x_t.

There are several benefits of this covariance sketching method. First, the storage requirement is only $O(m)$, which can indeed be much smaller than the ambient dimension of Σ. The computational cost for sketching each instance is linear with respect to the dimension of the instance in the data stream. Unlike the uncompressed sketching methods where each instance one measures usually affect many stored measurements, our scheme allows each aggregate quadratic sketch to be composed by completely different instances, which allows sketching to be performed in a distributed and asynchronous manner. This arises since each randomized sketch is a compressive snapshot of the second-order statistics, while each uncompressed measurement itself is unable to preserve the correlation information. As will be shown later, this sketching scheme allows optimal covariance estimation with theoretically minimal memory complexity at the sensing stage.

1.1.2 Noncoherent Energy Measurements in Communications and Signal Processing

When communication takes place in the high-frequency regime, empirical energy measurement is often more accurate than the phase measurement. For instance, the energy measurements will be more reliable when communication systems are shifting toward extremely high carrier frequency regimes such as 60GHz communications\[4\], and also result in popular noncoherent detection methods which do not require prior information on the transmitted signal.

- **Spectral Estimation of Stochastic Processes from Energy Measurements**: A large class of wireless communication tasks in stochastic environments rely on reliable estimation of the spectral characteristics of random processes\[5\]. For instance, optimal signal transmissions are often based on the Karhunen–Loeve decomposition of a random process, which requires accurate covariance estimation\[6\]. If we employ a sampling vector a_i and observe the average energy measurements over N instances $\{x_t\}_{1 \leq t \leq N}$, then the energy measurement can similarly be expressed as

$$y_i = \frac{1}{N} \sum_{t=1}^{N} |a_i^T x_t|^2 = a_i^T \Sigma_N a_i, \quad i = 1, \ldots, m \quad (3)$$

where $\Sigma_N := \frac{1}{N} \sum_{t=1}^{N} x_t x_t^T$ denotes the sample covariance matrix, leading to the quadratic-form observations.

- **Noncoherent Subspace Detection from Energy Measurements**: Matched subspace detection\[7\] finds many applications in wireless communication, radar, and pattern recognition when the transmitted signal is encoded by the membership of subspaces. Our algorithm can also be cast as recovering the principal subspace of a dataset $\{x_t\}_{1 \leq t \leq N}$, with an energy detector obtaining m measurements in the form of (3). Thus, the noncoherent subspace detection is subsumed by the formulation (1).

1.1.3 Phaseless Measurements in Physics

Optical imaging devices are incapable of acquiring the phase of the measurements due to ultra-high frequencies associated with light. In many applications, measurements in the form of (1) arise naturally.

- **Compressive Phase Space Tomography**: Phase Space Tomography\[8\] is an appealing method to measure the correlation function of a wave field in physics. However, tomography becomes challenging when the\[1\]Note that we might only be able to obtain measurements for empirical covariance matrices instead of Σ, but this inaccuracy can be absorbed into the noise term η. In fact, for various stationary data streams, y_i converges rapidly to $a_i^T \Sigma a_i$ even with a few instances x_t.\]
dimensionality of the correlation matrix becomes large. Recently, it was proposed experimentally in [9] to recover an approximately low-rank correlation matrix, which often holds in physics, by only taking a small number of measurements in the form of (1).

- Phase Retrieval: Due to the physical constraints, one can only measure amplitudes of the Fourier coefficients of an optical object. This gives rise to the problem of recovering a signal \(x \in \mathbb{R}^n \) from magnitude measurements, which is often referred to as phase retrieval. Several algorithms (e.g. [10,12]) have been proposed that enable exact phase retrieval (i.e. recovers \(x \cdot x^T \)) from random magnitude measurements. If we set \(\Sigma := xx^T \), then our problem formulation (1) subsumes phase retrieval as a special case in the low-rank setting.

In summary, these applications require faithful covariance matrix estimation from a small number of rank-one measurements (1). In this paper, we will use the number \(m \) of measurements to denote the number of sketches in the covariance sketching problem, and the number of magnitude or energy samples in other applications, respectively. We aim to develop tractable algorithms that enable covariance estimation with near-optimal performance guarantees.

1.2 Contributions

Our main contributions are three fold. First, we have developed convex optimization algorithms for covariance estimation from a set of quadratic measurements as given in (1) for a variety of structural assumptions including low-rank, Toeplitz low-rank, sparse, and sparse rank-one covariance matrices. The proposed algorithms encourage the assumed low-dimensional structures using convex relaxation, specifically trace norm minimization for promoting low-rank structure, \(\ell_1 \) norm minimization for promoting sparsity. For a large class of sub-Gaussian sensing vectors, we derive theoretical performance guarantees (Theorems 1 – 4) for the following aspects:

1. Exact and universal recovery: once the sensing vectors are selected, then with high probability, all covariance matrices satisfying the presumed structure can be recovered;

2. Stable recovery: the proposed algorithms allow us to reconstruct the true covariance matrix within high accuracy even under imperfect structural assumptions; additionally, if the measurements are corrupted by noise, the estimate deviates from the true covariance matrix by at most a constant multiple of the noise level;

3. Near-minimal measurements: the proposed algorithms succeed as soon as the number of measurements is slightly above the theoretic sampling limits for most of the respective structure. For the special case of (sparse) rank-one matrices, our result recovers and strengthens the best-known reconstruction guarantees of (sparse) phase retrieval using PhaseLift [10,13,14] with a much simpler proof technique.

Secondly, to obtain some of the above theoretical guarantees (Theorems 1, 3, and 4), we have introduced a novel mixed-norm restricted isometry property, denoted by RIP-\(\ell_2/\ell_1 \). An operator is said to satisfy the RIP-\(\ell_2/\ell_1 \) if the strength of the signal class of interest before and after measurements are preserved when measured in the \(\ell_2 \) norm and in the \(\ell_1 \) norm, respectively. While the conventional RIP-\(\ell_2/\ell_2 \) does not hold for the quadratic sensing model for general low-rank structures as pointed out by [10], we have established that it does satisfy the RIP-\(\ell_2/\ell_1 \) after a small “debiasing” modification for the general low-rank, sparse, and simultaneously sparse and rank-one structural assumptions. This seemingly subtle change allows us to develop a significantly simpler approach without resolving to constructing complicated dual certificates as in [10,13,14].

On the other hand, we show that linear combinations of the quadratic measurements satisfy RIP-\(\ell_2/\ell_2 \) when restricted to Toeplitz low-rank covariance matrices via the entropy method [15]. This allows the establishment of near-optimal recovery guarantees for Toeplitz low-rank covariance matrices (Theorem 2). Along the way, we have also established a RIP-\(\ell_2/\ell_2 \) for bounded and near-isometric operators (Theorem 3) that strengthens previous work [16,17] to enable universal and stable low-rank matrix recovery for a broader class of operators including Fourier-type measurements.

Last but not least, our measurement schemes and algorithms may be of independent interest to high-dimensional data processing. The measurements in (1) are rank-one measurements with respect to the covariance matrix, which are much easier to implement and bear a smaller computational cost than full-rank measurement matrices with i.i.d. entries. Moreover, the performance guarantees of the measurement scheme (1) is universal, which does not require any additional incoherence conditions on the covariance matrix as for the standard matrix completion framework [16,18,19].
1.3 Related Work

In most existing work, the covariance matrix is estimated from a collection of full data samples, and fundamental guarantees have been derived on how many samples are sufficient to approximate the ground truth \[2, 20\]. In contrast, this paper is motivated by the success of Compressed Sensing (CS) \[21, 22\], which asserts that compression can be achieved at the same time as sensing without losing information. Efficient algorithms have been developed to estimate a deterministic signal from a much smaller number of linear measurements that is proportional to the complexity of the parsimonious signal model. As we will show in this paper, covariance estimation from compressive measurements can be highly robust.

When the covariance matrix is assumed to be approximately sparse, recent work \[23, 24\] explored reconstruction of second-order statistics of a cyclostationary signal from random linear measurements, by \(\ell_1\)-minimization without performance guarantees; the problem formulation is quite different from \[1\]. Another work \[25\] proposed estimating an approximately sparse covariance matrix from measurements of the form \(Y = AXA^T\), where \(A \in \mathbb{R}^{m \times n}\) denotes the sketching matrix constructed from expander graphs. Nevertheless, this scheme cannot accommodate low-rank covariance matrix estimation, and their performance guarantees do not hold universally for all sparsity patterns.

Our covariance estimation method is inspired by recent developments in phase retrieval \[10–13, 26, 27\], which is equivalent to recovering rank-one covariance matrices from quadratic measurements. In particular, our recovery algorithm coincides with PhaseLift \[10, 13\] when applied to low-rank matrices. In \[13\], it is shown that PhaseLift succeeds at reconstructing a signal of dimensionality \(n\) from \(\Theta(n)\) phaseless Gaussian measurements, and stable recovery has also been established in the presence of noise. When specializing our result to this case, we have shown that the type of theoretical guarantee holds for a much larger class of sub-Gaussian measurements, with a different proof technique that yields a much simpler proof. Moreover, when the signal is further assumed to be \(k\)-sparse, the pioneering work \[14\] showed that \(O(k^2 \log n)\) Gaussian measurements suffice; this result is extended to accommodate sub-Gaussian measurements and approximately sparse signals by our framework with a much simpler proof. More details can be found in Section 2.4.

We also put the proposed covariance sketching scheme in Section 1.1.1 into perspective. In a streaming setting, online principal component analysis (PCA) has been an active area of research for decades \[28\] using full data samples, where non-asymptotic convergence guarantees have only been recently developed \[29\]. Inspired by CS, subspace tracking from partial observations of a data stream \[30, 31\], which can be regarded as a variant of incremental PCA \[32\] in the presence of missing values, is also closely related. However, existing subspace tracking algorithms mainly aim to recover the data stream, which is not necessary if one only cares to extract the second-order statistics.

1.4 Organization

The rest of this paper is organized as follows. We first present the convex optimization based algorithms in Section 2 and establish their theoretical guarantees. The analysis framework is based upon a novel mixed-norm restricted isometry property as well as conventional RIP for near-isotropic and bounded measurements, as elaborated in Sections 3 and 4. Section 2.4 discusses sparse phase retrieval, where the proposed proof architecture is used to recover and improve upon existing results. The proof of main theorems is deferred to the appendices. Numerical examples are provided in Sections 5 and 6. Finally, Section 6 closes the paper with a summary of our findings and a discussion of future directions.

1.5 Notations

Before proceeding, we provide a brief summary of useful notations used throughout this paper. A variety of matrix norms will be discussed; in particular, we denote by \(\|X\|, \|X\|_F\), and \(\|X\|_\ast\) the spectral norm, the Frobenius norm, and the nuclear norm (i.e. sum of all singular values) of \(X\), respectively. When \(X\) is a positive semidefinite (PSD) matrix, the nuclear norm coincides with the trace norm \(\|X\|_\ast = \text{Tr}(X)\). We use \(\|X\|_1\) and \(\|X\|_0\) to denote the \(\ell_1\) norm and support size of the vectorized \(X\), respectively. The Euclidean inner product between \(X\) and \(Y\) is defined as \(\langle X, Y \rangle = \text{Tr}(X^T Y)\). The best rank-\(r\) approximation and the best \(k\)-term approximation of \(X\) are defined by

\[
X_r = \arg \min_{M: \text{rank}(M) = r} \|X - M\|_F,
\]

\[
X_k = \arg \min_{M: \text{support}(M) \leq k} \|X - M\|_F.
\]
Suppose that \(\Sigma \) is low-rank. A natural heuristic is to perform rank minimization to encourage the low-rank structure

\[
\hat{\Sigma} = \arg \min_M \text{rank}(M) \text{ subject to } M \succeq 0, \quad \|y - A(M)\|_1 \leq \epsilon_1,
\]

where \(\epsilon_1 \) is an upper bound on \(\|\eta\|_1 \) and assumed known a priori. However, the rank minimization problem is in general NP-hard. Therefore, we replace it with trace minimization over all matrices compatible with the measurements

\[
\hat{\Sigma} = \arg \min_M \text{Tr}(M) \text{ subject to } M \succeq 0, \quad \|y - A(M)\|_1 \leq \epsilon_1.
\]

Since \(\Sigma \) is PSD, the trace norm forms a convex surrogate for the rank function, which has proved successful in matrix completion and phase retrieval problems \cite{candes2010matrix, recht2010guaranteed, candes2012phase}. It turns out that this convex relaxation approach \cite{recht2009guaranteed} admits stable and faithful estimates even when \(\Sigma \) is approximately low rank and/or when the measurements are corrupted by bounded noise. This is formally stated in the following theorem.
Theorem 1. Consider the sub-Gaussian sampling model in [1] and assume that \(\|\eta\|_1 \leq \epsilon_1\). Then with probability exceeding \(1 - \exp(-c_1m)\), the solution \(\hat{\Sigma}\) to (7) satisfies
\[
\|\hat{\Sigma} - \Sigma\|_F \leq C_1\frac{\|\Sigma - \Sigma_r\|_*}{\sqrt{m}} + C_2 \epsilon_1\frac{\epsilon_1}{m}
\]
for all \(\Sigma \in \mathbb{R}^{n \times n}\), provided that \(m > c_0nr\). Here, \(\Sigma_r\) represents the best rank-\(r\) approximation of \(\Sigma\), and \(c_0, c_1, C_1\) and \(C_2\) are some absolute constants.

Remark 1. We emphasize that the quadratic sampling operator \(A\) fails to satisfy the recovery condition RIP-\(\ell_2/\ell_2\) used in [33, 34] for the establishment of matrix recovery using full-rank measurement matrices with i.i.d. sub-Gaussian entries. This fact is formally pointed out by Candès et al. in [10], which motivates us to propose a new analysis framework.

The main implications of Theorem 1 and its associated performance bound (8) are listed as follows.

1. **Exact Recovery from Noiseless Measurements.** Consider the case where rank \((\Sigma) = r\). In the absence of noise, one can see from (8) that the trace minimization program (7) (with \(\epsilon_1 = 0\)) allows perfect covariance recovery with exponentially high probability, provided that the number \(m\) of measurements exceeds the order of \(nr\). Notice that each PSD matrix can be uniquely decomposed as \(\Sigma = LL^T\), where \(L \in \mathbb{R}^{n \times r}\) has orthogonal columns, which implies that the intrinsic degrees of freedom carried by PSD matrices is about \(nr - \frac{r(r-1)}{2}\). That said, the theoretic sampling limit for perfect recovery is \(\Theta(nr)\), indicating that our algorithm allows order-wise optimal recovery.

2. **Near-Optimal Universal Recovery.** The trace minimization program (7) allows universal recovery, in the sense that once the sensing vectors are chosen, *all* low-rank covariance matrices can be perfectly recovered in the absence of noise. This highlights the power of convex programming, which allows universally accurate estimates as soon as the number of measurements exceeds the order of theoretic limit. In addition, the universality and optimality results hold for a large class of sub-Gaussian measurements beyond the Gaussian sampling model.

3. **Robust Recovery for Approximately Low-Rank Matrices.** In the absence of noise (\(\epsilon = 0\)), if \(\Sigma\) is approximately low-rank, then by (8) the reconstruction inaccuracy is at most
\[
\|\hat{\Sigma} - \Sigma\|_F \leq O\left(\frac{\|\Sigma - \Sigma_r\|_*}{\sqrt{m}}\right)
\]
with probability at least \(1 - \exp(-c_1m)\), as soon as \(m\) is about the same order of \(nr\). One can obtain a more intuitive understanding through the following power-law covariance model. Let \(\lambda_\ell\) represent the \(\ell\)th largest singular value of \(\Sigma\), and suppose the decay of \(\lambda_\ell\)’s exhibits a power law, i.e. \(\lambda_\ell \leq \frac{\alpha}{\ell^\beta}\) for some constant \(\alpha > 0\) and decay rate exponent \(\beta > 1\). Then simple computation reveals that
\[
\frac{\|\Sigma - \Sigma_r\|_*}{\sqrt{m}} \leq \frac{1}{\sqrt{m}} \sum_{\ell=r+1}^n \frac{\alpha}{\ell^\beta} \leq \frac{\alpha}{(\beta - 1)r^{\beta-1}},
\]
which in turn implies
\[
\|\hat{\Sigma} - \Sigma\|_F = O\left(\frac{1}{r^{\beta-1}}\right).
\]
This asserts that (7) reconstructs an almost accurate estimate of \(\Sigma\) in a manner which requires no prior knowledge on the signal (other than the power law decay that is natural for a broad class of data).

4. **Stable Recovery from Noisy Measurements.** When \(\Sigma\) is exactly of rank \(r\) and the noise is bounded \(\|\eta\|_1 \leq \epsilon_1\), the reconstruction inaccuracy of (7) is bounded above by
\[
\|\hat{\Sigma} - \Sigma\|_F \leq C_2 \frac{\epsilon_1}{m}
\]
with exponentially high probability, provided that \(m\) exceeds \(\Theta(nr)\). This reveals that the algorithm (7) recovers an unknown object with an error at most proportional to the average per-entry noise level, which makes it practically appealing.
5. Phase Retrieval with Sub-Gaussian Measurements. The proposed algorithm (7) appears in the same form as the convex algorithm called PhaseLift, which was proposed in [10] for phase retrieval. It is equivalent to treating \(\Sigma \) as the rank-one lifted matrix \(xx^T \) from an unknown signal \(x \). It has been established in [13] that with high probability it is possible to recover \(x \) exactly from \(\Theta(n) \) quadratic measurements, assuming that the sensing vectors are i.i.d. Gaussian-distributed. Our result immediately recovers all results of [10,13] including exact and stable recovery. In fact, our analysis framework yields a simpler and shorter proof of all these results, and immediately extends to a broader class of sub-Gaussian sampling mechanisms. We will further discuss our improvement of sparse recovery from magnitude measurements [14,35] in Section 2.4.

2.2 Recovery of Low-Rank Covariance Matrices for Stationary Instances

Suppose that \(\Sigma \in \mathbb{R}^{n \times n} \) is low-rank and represents the covariance matrix of \(n \)-dimensional stationary data instances. Similar to recovery in the general low-rank model, we propose to seek a nuclear norm minimizer over all matrices compatible with the measurements. Since it is known \(\text{a priori} \) that \(x_i \) is stationary, we further impose a Toeplitz constraint to enforce stationarity conditions, which results in the following estimate

\[
\hat{\Sigma} = \arg \min_M \text{Tr}(M) \quad \text{subject to} \quad M \succeq 0, \quad \|y - A(M)\|_2 \leq \epsilon_2, \quad M \text{ is Toeplitz,}
\]

where \(\epsilon_2 \) is an upper bound of \(\|\eta\|_2 \).

Encouragingly, the semidefinite relaxation (11) is exact under noise-free measurements and provides stable recovery from noisy measurements, as asserted in the following theorem.

Theorem 2. Consider the sub-Gaussian sampling model in (4), and assume that \(\mu_4 \leq 3 \) and \(\|\eta\|_2 \leq \epsilon_2 \). Then with probability exceeding \(1 - 1/n^2 \),

\[
\|\hat{\Sigma} - \Sigma\|_F \leq C_2 \frac{\epsilon_2}{\sqrt{m}} \tag{12}
\]

holds for all Toeplitz covariance matrices \(\Sigma \) of rank at most \(r \), provided that \(m > c_0r \log^{10} n \). Here, \(c_0 \) and \(C_2 \) are some universal constants.

Once we obtain accurate recovery of \(\Sigma \), the underlying spectrum can be identified by conventional harmonic retrieval methods, e.g., ESPRIT [1]. We highlight some implications of Theorem 2 as follows.

1. **Exact Recovery without Noise.** By Theorem 2 exact recovery of stationary covariance matrices occurs as soon as the number \(m \) of measurements is on the theoretic sampling limit \(\Omega(r) \) (up to some poly-logarithmic factor). Note that this sampling theoretic limit \(r \cdot \text{polylog}(n) \) is \(n \) times smaller than that for general low-rank matrices, and is about \(\frac{n}{10} \) times lower than the degrees of freedom for general Toeplitz matrices.

2. **Stable and Universal Recovery from Noisy Measurements.** The proposed convex relaxation (11) returns faithful estimates in the presence of noise, as revealed by Theorem 2. This feature is universal: if \(A \) is randomly sampled and then fixed once for all, then with high probability, the error bounds (12) hold for all Toeplitz low-rank matrices. Note that the error bound (12) is stated in terms of the \(\ell_2 \) norm of \(\eta \).

This is out of mathematical convenience for this special setup, which will be discussed later.

Remark 2. Two aspects of Theorem 2 are worth mentioning. (a) Theorem 2 does not guarantee recovery with exponentially high probability as ensured in Theorem 1 which arises from our use of stochastic RIP as will be seen later. (b) We are only able to provide theoretical guarantee when \(\mu_4 \leq 3 \); roughly speaking, the tails of these distributions are typically no heavier than Gaussian measure (e.g. \(\mu_4 = 3 \) for Gaussian distribution and \(\mu_4 = 1 \) for Bernoulli distribution). We conjecture that these two aspects can be improved via other analytical approaches.

2.3 Recovery of Sparse Covariance Matrices

Assume that \(\Sigma \) is approximately sparse, we propose to seek a matrix with minimal support size that is compatible with observations:

\[
\hat{\Sigma} = \arg \min_M \|M\|_0 \quad \text{subject to} \quad M \succeq 0, \quad \|y - A(M)\|_1 \leq \epsilon_1, \tag{13}
\]
where ϵ_1 is an upper bound of $\|\eta\|_1$. However, the ℓ_0 minimization problem in (13) is also intractable, and one can instead solve a tractable convex relaxation of (13), given as

$$\hat{\Sigma} = \arg\min_M \|M\|_1 \quad \text{subject to} \quad M \succeq 0, \quad \|y - A(M)\|_1 \leq \epsilon_1.$$

(14)

Here, the ℓ_1 norm is the convex relaxation of the support size, which has proved successful in many compressed sensing algorithms [22, 36]. It turns out that the convex relaxation (14) allows stable and reliable estimates even when Σ is only approximately sparse and the measurements are contaminated by noise, as stated in the following theorem.

Theorem 3. Consider the sub-Gaussian sampling model in (4) and assume that $\|\eta\|_1 \leq \epsilon_1$. Then with probability exceeding $1 - \exp(-c_1 m)$, the solution $\hat{\Sigma}$ to (14) satisfies

$$\|\hat{\Sigma} - \Sigma\|_F \leq C_1 \frac{\|\Sigma - \Sigma_\Omega\|_1}{\sqrt{k}} + C_2 \frac{\epsilon_1}{m},$$

(15)

for all $\Sigma \in \mathbb{R}^{n \times n}$, provided that $m > c_0 k \log(n/k)$. Here, Σ_Ω denotes the best k-sparse approximation of Σ, and c_0, c_1, C_1 and C_2 are universal constants.

Theorem 3 leads to similar implications as those listed in Section 2.1, which we briefly summarize as follows.

1. **Exact Recovery without Noise:** When Σ is exactly k-sparse and no noise is present, by setting $\epsilon_1 = 0$, the solution to (14) is exactly equal to the ground truth with exponentially high probability, as soon as the number m of measurements is about the order of $k \log(n/k)$. Therefore our performance guarantee in (15) is optimal within a constant factor.

2. **Universal Recovery:** Our performance guarantee in (15) is universal in the sense that the same sensing mechanism simultaneously works for all sparse covariance matrices.

3. **Imperfect Structural Models:** The estimate (15) allows robust recovery for approximately sparse matrices (which appears in a similar form as that for CS [36]), indicating that quadratic measurements are order-wise at least as good as linear measurements.

2.4 Recovery of Jointly Sparse and Rank-One Matrices

If we set the covariance matrix $\Sigma = xx^T$ to be a rank-one matrix, then covariance estimation from quadratic measurements is equivalent to phase retrieval as studied in [10]. In addition to the general rank-one model, our approach allows simple analysis for recovering jointly sparse and rank-one covariance matrices or, equivalently, sparse signal recovery from magnitude measurements.

Specifically, suppose that the dominant component x of the matrix Σ is (approximately) sparse, and the goal is to recover xx^T from a small number of phaseless measurements. The measurements we obtain can be expressed as

$$y := \left\{ |\langle a_i, x \rangle|^2 + \eta_i \right\}_{1 \leq i \leq m}.$$

When x is sparse, the lifting matrix xx^T is simultaneously low rank and sparse, which motivates us to adapt the convex program proposed in [14] to accommodate bounded noise as follows

$$\min_{M \in S_n^{\times n}} \text{tr} (M) + \lambda \|M\|_1 \quad \text{subject to} \quad M \succeq 0, \quad \|y - A(M)\|_1 \leq \epsilon_1.$$

(16)

Here, λ is a regularization parameter that balances the two convex surrogates (i.e. trace norm and ℓ_1 norm) associated with the low-rank and sparse structural assumptions, respectively, and ϵ_1 is an upper bound of $\|\eta\|_1$. Our analysis framework ensures stable recovery of an approximately sparse signal, as stated in the following theorem.
Theorem 4. Set \(\lambda \) to be any number within the interval \(\left[\frac{1}{n}, \frac{1}{\sqrt{n}} \rho \right] \) for some quantity \(\rho \). Consider the sub-Gaussian sampling model in (1) and assume that \(\| \eta \|_1 \leq \epsilon_1 \). Then with probability at least \(1 - \exp(-c_0m) \), the solution \(\hat{X} \) to (16) satisfies
\[
\| \hat{X} - x_\Omega x_\Omega^T \|_F \leq C_1 \left\{ \| xx^T - x_\Omega x_\Omega^T \|_* + \lambda \| xx^T - x_\Omega x_\Omega^T \|_1 + \frac{\epsilon_1}{m} \right\}
\]
for all signals \(x \in \mathbb{R}^n \) satisfying \(\frac{\| x_\Omega \|_2}{\| x_\Omega \|_1} \geq \rho \), provided that \(m > \frac{C_1 \log n}{\lambda^2} \). Here, \(x_\Omega \) denotes the best \(k \)-sparse approximation of \(x \), and \(C_1, C_2 \) and \(c_0 \) are absolute constants.

Theorem 4 recovers all the theoretical performance guarantees established in [14] with a simpler proof, and improves upon them in two aspects: (i) Theorem 4 establishes the performance guarantees of the algorithm when the structural assumption is imperfect and when the samples are noisy; (ii) [14] considers only Gaussian sensing vectors, whereas we extend the results to a large class of sub-Gaussian sensing vectors. Some implications of Theorem 4 are as follows.

1. **Stable and Universal Recovery for Imperfect Models and Noisy Samples.** The recovered signal is a highly accurate estimate even when the sparsity assumption is inexact, provided that the true signal exhibits sufficiently fast decay outside the support \(\Omega \). The estimation inaccuracy due to noise corruption is also small, in the sense that it is at most proportional to the per-entry noise level. Besides, the recovery guarantee depends on the choice of \(\lambda \) and is universal over a large class of signals with \(\frac{\| x_\Omega \|_2}{\| x_\Omega \|_1} \geq \rho \).

2. **Near-Optimal Recovery for Power-Law Sparse Signals.** In general, by setting \(\lambda = \frac{1}{k^{\alpha}} \), one can obtain universal recovery for all \(k \)-sparse signals from \(O(k^2 \log n) \) samples with exponentially high probability. Somewhat surprisingly, if the nonzero entries of \(x \) are known to be decaying, then the algorithm allows near-optimal recovery. For instance, suppose that the non-zero entries of \(x \) satisfy the power-law decay such that the magnitude of the \(l \)th largest entry of \(x_\Omega / \| x_\Omega \|_2 \) is bounded above by \(c_{pl}/l^\alpha \) for some constants \(c_{pl} \) and exponent \(\alpha > 1 \). By setting \(\lambda = \Theta \left(\frac{1}{\sqrt{k \log n}} \right) \), one can obtain accurate recovery from \(O(k \log^2 n) \) noiseless samples, which is only a logarithmic factor from the theoretic sampling limit (which is \(\Theta(k) \)).

2.5 Extension to General Matrices

Table 2 summarizes the main results of Theorems 1–3. The main results hold even when \(\Sigma \) is not PSD but a symmetric matrix. When \(\Sigma \) is not a covariance matrix but a general low-rank, Toeplitz low-rank, or sparse matrix, one can simply drop the PSD constraint in the proposed algorithms, and replace the trace norm objective by the nuclear norm in (7). As will be shown, the PSD constraint is never invoked in the proof, hence it is straightforward to extend all results to the more general cases where \(\Sigma \) is a general \(n \times n \) low-rank, Toeplitz low-rank, or sparse matrix. Note that in this more general scenario, the measurements in (1) are no longer nonnegative.

Structure	Number of Measurements	Noise	RIP
rank-\(r \)	\(O(nr) \)	\(\ell_1 \)	\(\ell_2/\ell_1 \)
Toeplitz rank-\(r \)	\(O(r \text{polylog} n) \)	\(\ell_2 \)	\(\ell_2/\ell_1 \)
\(k \)-sparse	\(O(k \log(n/k)) \)	\(\ell_1 \)	\(\ell_2/\ell_1 \)
\(k \)-sparse and rank-one	\(O(k^2 \log n) \) (general sparse); \(O(k \log^2 n) \) (power-law sparse)	\(\ell_1 \)	\(\ell_2/\ell_1 \)

Table 2: Summary of Main Results.

3 Approximate \(\ell_2/\ell_1 \) Isometry for Low-rank and Sparse Matrices

In this section, we present a novel concept called the mixed-norm restricted isometry properties (RIP-\(\ell_2/\ell_1 \)) that allows us to establish Theorems 1, 3 and 4 concerning universal recovery of low-rank, sparse and sparse rank-one covariance matrices from quadratic measurements.
Prevailing wisdom in CS asserts that perfect recovery from minimal samples is possible if the dimensionality reduction projection preserves the signal strength when acting on the class of matrices of interest \[22,33\]. While there are various ways to define the restricted isometry properties (RIP), an appropriately chosen approximate isometry leads to a very simple yet powerful theoretical framework.

3.1 Mixed-Norm Restricted Isometry (RIP-\(\ell_2/\ell_1\))

Recall that the RIP occurs if the sampling output preserves the input strength under certain metrics. The most commonly used one is RIP-\(\ell_2/\ell_2\), for which the signal strength before and after the projection are both measured in terms of the Frobenius norm \[33,36\]. This, however, fails to hold under rank-one measurements – see detailed argument by Candes et al \[10\]. Another isometry concept called RIP-\(\ell_1/\ell_1\) has also been investigated, for which the signal strength before and after the operation \(A\) are measured both in terms of the \(\ell_1\) norms\[7\]. This is initially developed to account for measurements from expander graphs \[37\], and has become a powerful metric when analyzing phase retrieval \[10,13,14\]. Nevertheless, RIP-\(\ell_1/\ell_1\) no longer holds for general low-rank matrices from minimal measurements, as we will show later. Moreover, the proof based on RIP-\(\ell_1/\ell_1\) typically relies on delicate construction of dual certificates \[10,13,14\], which is often mathematically complicated.

One of the key and novel ingredients in our analysis is a mixed-norm approximate isometry, which measures the signal strength before and after the operation \(A\) with different metrics. Specifically, we introduce RIP-\(\ell_2/\ell_1\) or RIP-\(\ell_1/\ell_1\) when analyzing phase retrieval \[10,13,14\].

Definition 1 (RIP-\(\ell_2/\ell_1\) for low-rank matrices). For the set of rank-\(r\) matrices, we define the RIP-\(\ell_2/\ell_1\) constants \(\delta^l_{r,l}\) and \(\delta^u_{r,l}\) with respect to an operator \(B\) as the smallest numbers such that for all \(X\) of rank at most \(r\):
\[
(1 - \delta^l_{r,l}) \|X\|_F \leq \frac{1}{m} \|B(X)\|_1 \leq (1 + \delta^u_{r,l}) \|X\|_F.
\]

Definition 2 (RIP-\(\ell_2/\ell_1\) for sparse matrices). For the set of \(k\)-sparse matrices, we define the RIP-\(\ell_2/\ell_1\) constants \(\gamma^l_{k}\) and \(\gamma^u_{k}\) with respect to an operator \(B\) as the smallest numbers such that for all \(X\) of sparsity at most \(k\):
\[
(1 - \gamma^l_{k}) \|X\|_F \leq \frac{1}{m} \|B(X)\|_1 \leq (1 + \gamma^u_{k}) \|X\|_F.
\]

Definition 3 (RIP-\(\ell_2/\ell_1\) for low-rank plus sparse matrices). Consider the class of index sets
\[
S_k := \{\Omega \in [n] \times [n] \mid \exists \text{ an index set } \omega \in [n] \text{ of cardinality } k : \Omega = \omega \times \omega\}.
\]

For the set of matrices
\[
M^k_{r,l} = \{X_1 + X_2 \mid \exists \Omega \in S_k, \text{ rank}(X_1) \leq r, X_1 \in \Omega, \|X_2\|_0 \leq l\},
\]
we define the RIP-\(\ell_2/\ell_1\) constants \(\delta^l_{r,l}^{b,k}\) and \(\delta^u_{r,l}^{b,k}\) with respect to an operator \(B\) as the smallest numbers such that \(\forall X \in M^k_{r,l}:\)
\[
(1 - \delta^l_{r,l}^{b,k}) \|X\|_F \leq \frac{1}{m} \|B(X)\|_1 \leq (1 + \delta^u_{r,l}^{b,k}) \|X\|_F.
\]

3.2 RIP-\(\ell_2/\ell_1\) of Quadratic Measurements for Low-rank and Sparse Matrices

Unfortunately, the original sampling operator \(A\) does not satisfy RIP-\(\ell_2/\ell_1\). This occurs primarily because each measurement matrix \(A_i\) has non-zero mean, which biases the output measurements. In order to get rid of this undesired bias effect, we introduce a set of “debiasing” auxiliary measurement matrices as follows
\[
B_i := A_{2i-1} - A_{2i}.
\]

Without loss of generality, denote \(B_i(X) := \langle B_i, X \rangle\) for all \(1 \leq i \leq m\), and let \(B(X)\) represent the linear transformation that maps \(X\) to \(\{B_i(X)\}_{i=1}^m\). Note that by representing the sensing process using \(m\) rank-2
measurements B_1, we have implicitly doubled the number of measurements for notational simplicity. This, however, will not change our order-wise results.

It turns out that the auxiliary operator B exhibits RIP-ℓ_2/ℓ_1 in the presence of minimal measurements, which can be shown by combining the following proposition with a standard covering argument as applied in [34].

Proposition 1. Let A be sampled from the sub-Gaussian model in [4]. For any matrix X, there exist universal constants $c_1, c_2, c_3 > 0$ such that with probability exceeding $1 - \exp(-c_3m)$, one has

$$c_1 \|X\|_F \leq \frac{1}{m} \|B(X)\|_1 \leq c_2 \|X\|_F.$$

(20)

Proof. See Appendix A.

Remark 3. This statement extends without difficulty to the asymmetric rank-one measurement model where $y_i = a_i^T \Sigma b_i$ for some independently generated sensing vectors a_i and b_i. This indicates that all our results hold for this asymmetric sensing model as well.

An immediate consequence of Proposition 1 is the establishment of RIP-ℓ_2/ℓ_1 provided that $m > c_4 nr$.

Corollary 1 (RIP-ℓ_2/ℓ_1 for low-rank matrices). Consider the sub-Gaussian sampling model in [4] and the universal constants $c_1, c_2 > 0$ given in [20]. There exist universal constants $c_3, c_4 > 0$ such that with probability exceeding $1 - \exp(-c_3m)$, B satisfies RIP-ℓ_2/ℓ_1 for all matrices X of rank at most r, and obeys

$$1 - \delta^b_r \geq \frac{c_1}{2}, \quad 1 + \delta^b_r \leq 2c_2,$$

(21)

provided that $m > c_4 nr$.

Corollary 2 (RIP-ℓ_2/ℓ_1 for sparse matrices). Consider the sub-Gaussian sampling model in [4] and the universal constants $c_1, c_2 > 0$ given in [20]. Then with probability exceeding $1 - \exp(-c_3m)$, B satisfies the RIP-ℓ_2/ℓ_1 for all matrices X of sparsity at most k, and obeys

$$1 - \gamma^b_k \geq \frac{c_1}{2}, \quad 1 + \gamma^b_k \leq 2c_2,$$

(22)

provided that $m > c_4 k \log(n/k)$.

Corollary 3 (RIP-ℓ_2/ℓ_1 for low-rank plus sparse matrices). Consider the sub-Gaussian sampling model in [4] and the universal constants $c_1, c_2 > 0$ given in [20]. Then with probability exceeding $1 - \exp(-c_3m)$, B satisfies the RIP-ℓ_2/ℓ_1 with respect to $\mathcal{M}^k_{r,l}$ (defined in [18]), and obeys

$$1 - \delta^b_{r,l,k} \geq \frac{c_1}{2}, \quad 1 + \delta^b_{r,l,k} \leq 2c_2,$$

(23)

provided that $m > c_4 \max \{kr \log n, l \log(n/l)\}$.

3.3 Proof of Theorems 1, 3 and 4 via RIP-ℓ_2/ℓ_1

Theorems 1 and 3 can thus be proved given that reasonably small RIP-ℓ_2/ℓ_1 constants with respect to the auxiliary operator B are guaranteed via Corollaries 1 and 2. We first present Lemma 1 which establishes Theorem 1.

Lemma 1. Consider any matrix $\Sigma = \Sigma_r + \Sigma_c$, where Σ_r is the best rank-r approximation of Σ. If there exists a number $K_1 > 2r$ such that

$$1 - \frac{\delta^b_{2r+K_1}}{\sqrt{2}} - (1 + \delta^b_{K_1}) \sqrt{\frac{2r}{K_1}} \geq \beta_1 > 0$$

(24)

holds for some absolute constant β, then the minimizer $\hat{\Sigma}$ to (7) obeys

$$\|\hat{\Sigma} - \Sigma\|_F \leq C_1 \frac{\|\Sigma_r\|_F}{\sqrt{K_1}} + C_2 \frac{\epsilon_1}{m}$$

(25)

for some constants C_1 and C_2 depending only on the restricted isometry constants and β_1.
Lemma 2. Consider any matrix $\Sigma = \Sigma_\Omega + \Sigma_{\Omega^c}$, where Σ_Ω is the best k-term approximation of Σ. If there exists a number $K_2 > 2k$ such that
\[
\frac{(1 - \gamma_{k+K_2})}{\sqrt{2}} - (1 + \gamma_{K_2}) \sqrt{\frac{k}{K_2}} \geq \beta_2 > 0
\]
holds for some absolute constant β_2, then the minimizer $\hat{\Sigma}$ to (7) obeys
\[
\|\Sigma - \hat{\Sigma}\|_F \leq C_1 \frac{\|\Sigma_{\Omega^c}\|_1}{\sqrt{K_1}} + C_2 \frac{\epsilon_1}{m}
\]
for some constants C_1 and C_2 depending only on the restricted isometry constants and β_2.

Proof. See Appendix C.

By choosing $K_2 = 4 \left(\frac{4 \epsilon_4}{c_4}\right)^2 r \geq (1 + \gamma_{K_2}) \sqrt{\frac{k}{K_2}}$, one can obtain (26) as soon as $m > c_4 (K_2 + 2k) \log n$ for some constant c_4. This establishes Theorem 4.

Furthermore, the specialized RIP-ℓ_2/ℓ_1 concept allows us to prove Theorem 4 through the following lemma.

Lemma 3. Set λ to be any number within the interval $\left[\frac{1}{n \sqrt{\epsilon}} \frac{\|x_{\Omega^c}\|_2}{\|x_{\Omega}\|_1}\right]$. Suppose that x_{Ω} is the best k-sparse approximation of x_0. If there exists a number K_1 such that
\[
\frac{1 - \delta_{\ell_1}^0}{\sqrt{K_1}} \geq \beta_3 > 0, \quad \text{and} \quad \frac{1 + \delta_{\ell_1}^0}{\sqrt{K_1}} \leq \beta_4
\]
for some absolute constants β_3 and β_4, then the solution \hat{X} to (11) satisfies
\[
\|\hat{X} - x_{\Omega} x_{\Omega}^T\|_F \leq C \left(\|X - x_{\Omega} x_{\Omega}^T\|_1 + \lambda \|X - x_{\Omega} x_{\Omega}^T\|_1 + \frac{\epsilon_1}{m}\right)
\]
for some constant C that depends only on β_3 and β_4.

Proof. See Appendix C.

By Corollary 8, one can ensure small RIP-ℓ_2/ℓ_1 constants as soon as
\[
m > c_4 \max \left\{ kK_1 \log n, \frac{K_1}{\lambda^2} \log n \right\} = c_4 \frac{K_1}{\lambda^2} \log n.
\]
This in turn establishes Theorem 4.

Finally, careful readers will notice our lack of discussions for general Toeplitz low-rank matrices. We are unaware of a rigorous approach to prove it using RIP-ℓ_2/ℓ_1. Fortunately, the analysis for Toeplitz low-rank matrices can be performed via a different method, which we detail in the next section.

4 Approximate ℓ_2/ℓ_2 Isometry for Toeplitz Low-Rank Matrices

While quadratic measurements in general do not exhibit RIP-ℓ_2/ℓ_2 (as introduced in [33]) with respect to the set of general low-rank matrices (as pointed out in [10]), a slight variant of them can indeed satisfy RIP-ℓ_2/ℓ_2 when restricted to Toeplitz low-rank matrices. In this section, we first provide a characterization of RIP-ℓ_2/ℓ_2 for general low-rank manifold under bounded and near-isotropic measurements, and then convert quadratic measurements into equivalent isotropic measurements.
4.1 RIP-ℓ_2/ℓ_2 for Near-Isotropic and Bounded Measurements

Before proceeding to the Toeplitz low-rank matrices, we investigate near-isotropic and bounded operators for general low-rank manifold as follows. For convenience of presentation, we repeat the definition of RIP-ℓ_2/ℓ_2 as follows, followed by a theorem characterizing RIP-ℓ_2/ℓ_2 for near-isotropic and bounded operators.

Definition 4 (RIP-ℓ_2/ℓ_2 for low-rank matrices). For the set of rank-r matrices, we define the RIP-ℓ_2/ℓ_2 constants δ_r w.r.t. an operator B as the smallest numbers such that for all X of rank at most r,

$$(1 - \delta_r) \|X\|_F \leq \frac{1}{m} \|B(X)\|_2 \leq (1 + \delta_r) \|X\|_F.$$

Theorem 5. Suppose that for all $1 \leq i \leq m$,

$$\|B_i\| \leq K, \quad \text{and} \quad \|EB_iB_i^* - I\| \leq \frac{c_5}{n}$$

hold for some quantity $K \leq n^2$. For any small constant $\delta > 0$, if $m > c_0 r K^2 \log^7 n$, then with probability at least $1 - 1/n^2$, one has

1. B satisfies RIP-ℓ_2/ℓ_2 w.r.t. all matrices of rank at most r and obeys $\delta_r \leq \delta$;
2. If $\|y - B(M)\|_2 \leq \epsilon_2$, then for all Σ of rank at most r, the minimizer

$$\tilde{\Sigma} = \arg\min_M \|M\|_* \quad \text{subject to} \quad \|y - B(M)\|_2 \leq \epsilon_2$$

satisfies

$$\|\tilde{\Sigma} - \Sigma\|_F \leq C_2 \frac{\epsilon_2}{\sqrt{m}}.$$

Here, $c_0, C_2, c_5 > 0$ are some universal constants.

Proof. See Appendix. \hfill \square

In fact, the bound on $\|B_i\|$ can be as small as $\Theta(\sqrt{n})$, and we say a measurement matrix B_i is *well-bounded* if $K = O(\sqrt{n \log n})$. Simultaneously well-bounded and near-isotropic operators (i.e. those satisfying 30) subsume the Fourier-type basis as discussed in 16, which admits a small RIP-ℓ_2/ℓ_2 constant as soon as $m = \Omega(n \log n)$. Theorem 5 strengthens the result in 16 by justifying RIP-ℓ_2/ℓ_2, universal and stable recovery, which are not revealed by the approach of 16.

Unfortunately, Theorem 5 cannot be directly applied to the class of Toeplitz low-rank matrices for the following reasons: i) The sampling operator A is neither isotropic nor well-bounded; ii) Theorem 5 requires $m > c_0 r K^2 \log(n) = \Omega(n \log(n))$ measurements, which far exceeds the measurement complexity stated in Theorem 2. This motivates us to construct another set of equivalent sampling operators that satisfy the assumptions of Theorem 5, which is the focus of the following subsection.

4.2 Construction of RIP-ℓ_2/ℓ_2 Operators for Toeplitz Low-rank Matrices

Note that the quadratic measurement matrices $A_i = a_i \cdot a_i^T$ are neither non-isotropic nor well bounded. For instance, when $a_i \sim N(0, I_n)$, simple calculation reveals that

$$\|A_i\| = \Theta(\sqrt{n}), \quad \text{and} \quad \mathbb{E} A_i (A_i, X) = 2X + \text{tr}(X) \cdot I,$$

precluding A_i’s from being isotropic and well-bounded. In order to facilitate the use of Theorem 5 we generate a new set of measurement matrices B_i through the following procedure.

1. Define a set of matrices B_i of rank at most 3

$$B_i := \begin{cases} \frac{1}{2} (A_{2i-1} - A_{2i}), & \text{if } \mu_4 = 3, \\ \alpha A_{3i} + \beta A_{3i-1} + \gamma A_{3i-2}, & \text{if } \mu_4 < 3, \end{cases}$$

where α, β, γ are specified in Lemma 4.

The proof of Theorem 3 follows the entropy method introduced in 15. The $\log^7 n$ factor is a consequence of the entropy method, which might be refined a bit by generic chaining due to Talagrand 39 as employed in 40. But we are unaware of an approach that can get rid of the logarithmic factor.
2. Generate M matrices independently such that

$$
\hat{B}_i = \begin{cases}
\sqrt{n} T(B_i), & \text{with probability } \frac{1}{n}, \\
\sqrt{\frac{n}{n-1}} T^\perp(G_i), & \text{with probability } \frac{2}{n-1},
\end{cases}
$$

(35)

where G_i is a random matrix with i.i.d. standard Gaussian entries.

3. Define a truncated version \tilde{B}_i of \hat{B}_i as follows

$$
\tilde{B}_i := \hat{B}_i 1\{\|\hat{B}_i\| \leq c_{10} \log^{3/2} n\}, \quad 1 \leq i \leq M.
$$

(36)

We will demonstrate that \tilde{B}_i's are nearly-isotropic and well-bounded, and hence by Theorem 5 the associated operator \tilde{B} enables exact and stable recovery for all rank-r matrices when M exceeds $n r \text{polylog}(n)$. This in turn establishes Theorem 2 through an equivalence argument, detailed below.

4.2.1 Isotropy Trick

While A_i's are in general non-isotropic, a linear combination of them can be made isotropic when restricted to Toeplitz matrices. This is stated in the following lemma.

Lemma 4. Consider the sub-Gaussian sampling model in (1).

1) When $\mu_4 = 3$, then for any X, the matrix

$$
B_i = \frac{1}{2} (A_{2i} - A_{2i}),
$$

(37)

satisfy

$$
\mathbb{E} B_i \langle B_i, X \rangle = X.
$$

(38)

2) When $\mu_4 < 3$, take any constant $\xi > 0$ obeying $\xi^2 > 1.5 \cdot (3 - \mu_4)$ and set

$$
B_i = \alpha A_{3i} + \beta A_{3i-1} + \gamma A_{3i-2},
$$

(39)

with the choice of $\Delta := - \left(1 - \frac{\xi}{\sqrt{n}}\right)^2 - 2 + \frac{2\xi^2}{3 - \mu_4}$,

$$
\alpha = \sqrt{\frac{3 - \mu_4}{2\xi^2}}, \quad \beta := \frac{1 - \frac{\xi}{\sqrt{n}} + \sqrt{\Delta}}{2} \alpha, \quad \text{and} \quad \gamma := \frac{1 - \frac{\xi}{\sqrt{n}} - \sqrt{\Delta}}{2} \alpha.
$$

(40)

Then, for any norm $\|\cdot\|_n$ and any X that satisfies $X_{11} = X_{22} = \cdots = X_{nn}$, one has

$$
\begin{aligned}
\mathbb{E} B_i &= \sqrt{\frac{3 - \mu_4}{2n}}, \\
\mathbb{E} B_i \langle B_i, X \rangle &= X; \\
\|B_i\|_n &= \sqrt{3} \max_{1 \leq i \leq m} \|A_i\|_n.
\end{aligned}
$$

(41)

Proof. See Appendix [F].

Lemma 4 asserts that a large class of measurement matrices can made isotropic when restricted to the class of matrices with equal diagonal entries (e.g. Toeplitz matrices). This immediately implies that the operator \tilde{B} associated with \tilde{B}_i's (defined in (35)) are isotropic. Specifically, for any symmetric X,

$$
\mathbb{E} \tilde{B}_i \left\langle \tilde{B}_i, X \right\rangle = T(B_i) \left\langle B_i, T(X) \right\rangle + \mathbb{E} T^\perp(G_i) \left\langle G_i, T^\perp(X) \right\rangle = T(X) + T^\perp(X) = X,
$$

(42)

which is a consequence of Lemma 4.

3We choose M to be about $\Theta(\text{nm})$, which will be made clear later.
4.2.2 Truncation of \tilde{B} is near-isotropic

The operators associated with \hat{B}_i’s are in general not well-bounded. Fortunately, \hat{B}_i’s are well-bounded with high probability, which follows from the following lemma whose proof can be found in Appendix C.

Lemma 5. Consider z follows the sub-Gaussian sampling model in (4). There exists an absolute constant $c_{10} > 0$ such that

$$\|T(zz^T)\| \leq c_{12} \log^2 n$$

holds with probability exceeding $1 - n^{-10}$.

As $\|B_i\|$ can be bounded above by $\max_{1 \leq i \leq m} \|A_i\|$ up to some constant factor, Lemma 5 provides a tight estimate (within some logarithmic factor) of $\|T(B_i)\|$ for sub-Gaussian vectors, i.e.

$$\|T(B_i)\| \leq c_{10} \log^2 n, \quad 1 \leq i \leq m$$

with probability exceeding $1 - 3n^{-8}$. Similarly, classical results in random matrices (e.g. [41]) assert that $\|G_i\|$ can also be bounded above by $O(\sqrt{n} \log n)$ with overwhelming probability. These bounds taken collectively suggest that

$$\|\tilde{B}_i\| \leq K := c_{10} \sqrt{n} \log^2 n, \quad 1 \leq i \leq m$$

for some constant $c_{10} > 0$ with probability exceeding $1 - n^{-7}$.

The above stochastically boundedness property motivates us to study the truncated version \tilde{B}_i of B_i as defined in (36). Interestingly, \tilde{B}_i is near-isotropic, a consequence of the following lemma whose proof can be found in Appendix G.

Lemma 6. Suppose that the restriction of B_i to Toeplitz matrices is isotropic. Consider any event E obeying $P(E) \geq 1 - \frac{1}{n^2}$. Then there is some constant $c_5 > 0$ such that

$$\|E(T \tilde{B}_i^* B_i T^1_e) - T\| \leq \frac{c_5}{n^2}.$$

(46)

The truncated version of G_i can be easily bounded as in [40], which we omit for simplicity of presentation. This combined with (46) indicates that

$$\|E(\tilde{B}_i^* \tilde{B}_i) - I\| \leq \|E(T \tilde{B}_i^* B_i T) - T\| + \|E(T^1 G_i^* G_i T) - T^1\| \leq \frac{c_5}{n}.$$

(47)

4.3 Proof of Theorem 2

So far we have demonstrated that \tilde{B}_i’s are near-isotropic and satisfy $\|\tilde{B}_i\| = O\left(\sqrt{n} \log^2 n\right)$. Suppose that $\|y - \tilde{B}(\Sigma)\|_2 \leq \tilde{\epsilon}_2$. Theorem 6 implies that if M exceeds $\Theta\left(nr \log^2(n)\right)$, then the solution

$$\hat{\Sigma} := \arg\min_M \|M\|_* \text{ subject to } \|y - \tilde{B}(M)\|_2 \leq \tilde{\epsilon}_2$$

satisfies

$$\|\hat{\Sigma} - \Sigma\|_F \leq C_2 \frac{\tilde{\epsilon}_2}{\sqrt{M}}$$

(48)

for all rank-r matrix Σ. This in turn establishes Theorem 2 through the following simple argument:

1. By (35) and Chernoff bound, \tilde{B} entails $\Theta\left(\frac{M}{n}\right) = \Theta\left(r \log^2 n\right)$ independent copies of $\sqrt{n}T(B_i)$, and all other measurements are on the orthogonal complement of Toeplitz space.

2. For any rank-r Toeplitz matrix X, the original A entails $\frac{m}{3} > \Theta\left(r \log^2 n\right)$ measurement matrices of the form $T(B_i)$, and any non-Toeplitz component of X is perfectly known (i.e. equal to 0). This indicates that the convex program (11) dominates (48) when $\tilde{\epsilon}_2 = \Theta(\sqrt{n}\epsilon_2)$. This combined with (49) establishes Theorem 2.
5 Numerical Examples

To demonstrate the practical applicability of the proposed convex relaxation under quadratic sensing, we present a variety of numerical examples for low-rank or sparse covariance matrix estimation.

5.1 Recovery of Low-Rank Covariance Matrices

We conduct a series of Monte Carlo trials for various parameters. Specifically, we choose \(n = 50 \), and for each \((m, r)\) pair, we repeat the following experiments 20 times. We generate \(\Sigma \), an \(n \times n \) PSD matrix via \(\Sigma = LL^T \), where \(L \) is a randomly generated \(n \times r \) matrix with independent Gaussian components. The sensing vectors are generated as i.i.d. Gaussian vectors and Bernoulli vectors, and we obtain noiseless quadratic measurements \(y \). We use the off-the-shelf SDP solver SDPT3 with the modeling software CVX, and declare a matrix \(y \) to be recovered if the solution \(\hat{\Sigma} \) returned by the solver satisfies \(\| \Sigma - \hat{\Sigma} \|_F / \| \Sigma \|_F < 10^{-3} \). Figure 1 illustrates the empirical probability of success recovery in these Monte Carlo trials, which is reflected through the color of each cell. In order to compare the optimality of the practical performance, we also plot the theoretic limit in red lines, i.e. the fundamental lower limit on \(m \) required to recover all rank-\(r \) matrices, which is \(nr - \frac{r(r-1)}{2} \) in our case. It turns out that the practical phase transition curve is very close to the theoretic sampling limit, which demonstrates the optimality of our algorithm.

![Figure 1: Recovery of covariance matrices from quadratic measurements when \(n = 50 \). For each \((m, r)\) pair, we repeated Monte Carlo trials 20 times. A PSD matrix \(\Sigma \) and \(m \) sensing vectors are selected at random. The colormap for each cell indicates the empirical probability of success, and the red line reflects the fundamental information theoretic limit. The results are shown for (a) Gaussian sensing vectors and (b) symmetric Bernoulli sensing vectors.](image)

In the second numerical example, we consider a random covariance matrix generated via the same procedure as above but with \(n = 40 \). We let the rank \(r \) vary as \(1, 3, 5, 10 \) and the number of measurements \(m \) vary from 20 to 600. For each pair of \((r, m)\), we perform 10 independent experiments where in each run the sensing matrix is generated with i.i.d. Gaussian entries. Fig. 2(a) shows the average Normalized Mean Squared Error (NMSE) defined as \(\| \Sigma - \hat{\Sigma} \|_F^2 / \| \Sigma \|_F^2 \) with respect to \(m \) for different ranks when there is no noise. We further introduce additive bounded noise to each measurement by letting \(\lambda_i \) be generated from \(\sigma \cdot \mathcal{U}[-1, 1] \), where \(\mathcal{U}[-1, 1] \) is a uniform distribution on \([-1, 1]\), \(\sigma \) is the noise level. Fig. 2(b) shows the average NMSE when \(r = 5 \) for different noise levels by setting \(\epsilon = \sigma m \) in (5).

Interestingly, [3][42] showed that when the covariance matrix is rank-one, if \(m = O(n) \), the intersection of two convex sets, namely \(S_1 = \{ M : A(M) = y \} \) and \(S_2 = \{ M : M \succ 0 \} \) is a singleton, with high probability. For the low-rank case, if the same conclusion holds, we can find the solution via alternating projection between two convex sets. Therefore, we experiment on the following Projection Onto Convex Sets (POCS) procedure:

\[
\Sigma_{t+1} = P_{S_2} P_{S_1} \Sigma_t,
\]

(50)
Figure 2: The NMSE of the reconstructed covariance matrix via trace minimization versus the number of measurements when $n = 40$: (a) for different ranks when no noise is present; (b) for different noise levels when $r = 5$.

where P_{S_2} denotes the projection onto the PSD cone, and

$$P_{S_2} \Sigma_t := \Sigma_t - A^*(AA^*)^{-1}(A(\Sigma_t) - y).$$

Fig. 3 (a) shows the NMSE of the reconstruction with respect to the number of iterations for $r = 3$ and different $m = 200, 250, 300, 350$. By comparing Fig. 2, we see that it requires more measurements for the POCS procedure to succeed, but the computational cost is much lower than the trace minimization. This is further validated from Fig. 3 (b), which is obtained under the same simulation setup as Fig. 2 by repeating POCS with 2000 iterations.

Figure 3: The NMSE of the reconstructed covariance matrix via POCS for $n = 40$: (a) the NMSE versus the number of iterations for different numbers of measurements when $r = 3$; (b) the NMSE versus the number of measurements for different ranks when running 2000 iterations.

5.2 Recovery of Toeplitz Low-rank Matrices

To justify the convex heuristic for Toeplitz low-rank matrices, we perform a series of numerical experiments for matrices of dimension $n = 50$. By Caratheodory’s theorem, each PSD Toeplitz matrix can be uniquely decomposed into a linear combination of line spectrums [43]. Thus, we generate the PSD Toeplitz matrix by randomly generating the frequencies and amplitudes of each line spectra. In the real-valued situation, the underlying spectral spikes occur in conjugate pairs (i.e. $(f_1, -f_1), (f_2, -f_2), \cdots$). We independently generate $r/2$ frequency pairs within the unit disk uniformly at random, and the amplitudes are generated as the absolute
values of i.i.d. Gaussian variables. Figure 4 illustrates the phase transition diagram for varying choices of \((m, r)\). Each trial is declared successful if the estimate \(\hat{\Sigma}\) satisfies \(\|\hat{\Sigma} - \Sigma\|_F / \|\Sigma\|_F < 10^{-3}\). The empirical success rate is calculated by averaging over 50 Monte Carlo trials, and is reflected by the color of each cell. While there are in total \(r\) degrees of freedom, our algorithm exhibits approximately linear phase transition curve, which confirms our theoretical prediction in the absence of noise.

Figure 4: Phase transition plots where frequency locations are randomly generated. The plot corresponds to the situation where \(n = 50\). The empirical success rate is calculated by averaging over 50 Monte Carlo trials.

5.3 Recovery of Sparse Matrices

We perform a series of Monte Carlo trials for various parameters for matrices of dimensions 50 \(\times\) 50. We first generate PSD sparse covariance matrices in the following way. For each sparsity value \(k\), we generate a \(\sqrt{k} \times \sqrt{k}\) matrix via \(\Sigma_k = LL^T\), where \(L\) is a \(\sqrt{k} \times \sqrt{k}\) matrix with independent Gaussian components. We then randomly select \(\sqrt{k}\) rows and columns of \(\Sigma\) and embed \(\Sigma_k\) into the corresponding \(\sqrt{k} \times \sqrt{k}\) submatrix; all other entries of \(\Sigma\) are set to 0. In addition, we also conduct numerical simulations for general symmetric sparse matrices, where the non-zero entries are drawn from i.i.d. Gaussian distribution and the support are randomly chosen. For each \((m, k)\) pair in each scenario, we repeated the experiments 20 times, and solve it using CVX. Again, a matrix \(\Sigma\) is claimed to be recovered if the solution \(\hat{\Sigma}\) returned by the solver satisfies \(\|\hat{\Sigma} - \Sigma\|_F / \|\Sigma\|_F < 10^{-3}\). Figure 5 illustrates the empirical success probability in these Monte Carlo experiments. For ease of comparison, we also plot the degrees of freedom in red lines, which is \(\sqrt{k}(\sqrt{k} + 1)/2\) in our case. It turns out that the practical phase transition curve is close to the theoretic sampling limit, which demonstrates the optimality of our algorithm.

Another numerical example concerns recovery of a random symmetric sparse matrix (not necessarily PSD). We randomly generated a symmetric sparse matrix of sparsity level \(k\) with \(n = 40\), and sketched it with i.i.d. Gaussian vectors. For each pair of \((r, m)\), we perform 10 independent runs where in each run the sensing matrix is generated with i.i.d. standard Gaussian entries. Fig. 6 (a) shows the average NMSE with respect to \(m\) for different sparsity levels when there is no noise. We further introduce additive bounded noise to each measurement by letting \(\lambda_i\) be generated from \(\sigma \cdot U[-1, 1]\), and run 10 trials for each pair of \((\sigma, m)\). Fig. 6 (b) shows the average NMSE when \(k = 240\) for different noise levels by setting \(\epsilon = \sigma m\) in (14).

6 Conclusions and Future Work

In this paper, we investigate a general covariance estimation problem under a quadratic sampling model. This sampling model acts as an effective signal processing method for real-time data with limited processing power and memory at the sensor side, and subsumes many sampling strategies where we can only obtain magnitude or energy samples. Three of the most popular covariance structures, i.e. sparsity, low rank, and jointly Toeplitz and low-rank structure, have been explored as well as sparse phase retrieval.

Our results indicate that covariance matrices under the above structural assumptions can be perfectly recovered from a small set of quadratic measurements and minimal storage, as long as the sensing vectors are i.i.d. drawn from sub-Gaussian distributions. The recovery can be achieved via efficient convex programming
\begin{align}
\| \hat{\Sigma} - \Sigma \|_2 & \leq C_1 \sqrt{K_1} + C_2 \epsilon m
\end{align}

Figure 5: Reconstruction of sparse matrices from Gaussian quadratic measurements when \(n = 50 \). For ease of comparison, we let \(k_u \) denote the number of non-zero entries above or on the main diagonal, which represents the degrees of freedom for symmetric matrices. For each \((m, k_u) \) pair, we conducted Monte Carlo experiments 20 times. A PSD matrix \(\Sigma \) and \(m \) sensing vectors are selected at random. The colormap for each cell and the red line reflects the empirical probability of success and the information theoretic limit, respectively. The results are shown for (a) sparse PSD matrices, and (b) sparse symmetric matrices.

Figure 6: The NMSE of the reconstructed sparse matrix via \(\ell_1 \) minimization versus the number of measurements when \(n = 40 \): (a) for different sparsity level when no noise is present; (b) for different noise levels when \(k = 240 \).
as soon as the number of measurements exceeds the fundamental sampling theoretic limit. We also observe universal recovery phenomena, in the sense that once the sensing vectors are chosen, all covariance matrices possessing the presumed structure can be recovered. Our results highlight the stability and robustness of the convex program in the presence of noise and imperfect structural assumptions. The performance guarantees for low-rank, sparse and jointly rank-one and sparse models are established via a novel notion of a mixed-norm restricted isometry property (RIP-\(\ell_2/\ell_1\)), which significantly simplifies the proof. Our innovation also includes a systematic approach to analyze Toeplitz low-rank structure, which relies on RIP-\(\ell_2/\ell_2\) under near-isotropic and bounded operators.

Several future directions of interest are as follows.

- Another covariance structure of interest is an approximately sparse inverse covariance matrix rather than a sparse covariance matrix. In particular, when the signals are jointly Gaussian, the inverse covariance matrix encodes the conditional independence, which is often sparse. It remains to be seen whether the measurement scheme in (1) can be used to recover a sparse inverse covariance matrix.

- It will be interesting to explore whether more general types of sampling models satisfy RIP-\(\ell_2/\ell_1\). For instance, when the sensing vectors do not have i.i.d. entries, more delicate mathematical tricks are necessary to establish RIP-\(\ell_2/\ell_1\).

- In the case where RIP-\(\ell_2/\ell_1\) does not hold or is difficult to evaluate (e.g. the case with random Fourier sampling vectors), it would be interesting to develop an RIP-less theory as the one developed for linear measurement models [40].

Acknowledgments

The authors would like to thank Prof. Emmanuel Candès for stimulating discussions, especially for his help in analyzing random Toeplitz matrices. We would also like to thank Prof. Yihong Wu for his helpful comments and suggestions on Theorem 4, and Dr. Yudong Chen for fruitful discussions about statistical consistency. The work of Y. Chen and A. J. Goldsmith is supported in part by the NSF Center for Science of Information, and the AFOSR under MURI Grant FA9550-09-1-0643. The work of Y. Chi is partially supported by a Google Faculty Research Award.

A Proof of Proposition 1

To prove Proposition 1 we will first derive an upper bound and a lower bound on \(E|\langle B_i, X \rangle|\), and then apply the Bernstein-type inequality [44, Proposition 5.16] to establish the large deviation bound.

In order to derive an upper bound on \(E|\langle B_i, X \rangle|\), the key step is to apply the Hanson-Wright inequality [45,46], which characterizes the concentration of measure for quadratic forms in sub-Gaussian random variables. We adopt the version in [46] and repeat it below for completeness.

Lemma 7 (Hanson-Wright Inequality). Let \(X = (X_1, \ldots, X_n) \in \mathbb{R}^n\) be a random vector with independent components \(X_i\) which satisfy \(\mathbb{E}X_i = 0\) and \(\|X_i\|_{\psi_2} \leq K\). Let \(A\) be an \(n \times n\) matrix. Then for any \(t > 0\),

\[
P \left\{ \left| X^TAX - \mathbb{E}X^TAX \right| > t \right\} \leq 2 \exp \left[-c \min \left(\frac{t^2}{4K^4\|A\|^2_{\psi_2}}, \frac{t}{K^2\|A\|} \right) \right] \tag{52} \]

Observe that \(\langle B_i, X \rangle\) can be written as a symmetric quadratic form in \(2n\) i.i.d. sub-Gaussian random variables:

\[
\langle B_i, X \rangle = \begin{bmatrix} a_{2i-1}^T & a_{2i}^T \end{bmatrix} \begin{bmatrix} X \\ -X \end{bmatrix} \begin{bmatrix} a_{2i-1} \\ a_{2i} \end{bmatrix}.
\]

The Hanson-Wright inequality (52) then asserts that: there exists an absolute constant \(c > 0\) such that for any matrix \(X\), \(|\langle B_i, X \rangle| \leq t\) with probability at least

\[
1 - 2 \exp \left[-c \min \left(\frac{t^2}{4K^4\|X\|^2_{\psi_2}}, \frac{t}{K^2\|X\|} \right) \right].
\]

21
This indicates that $\langle \mathbf{B}, \mathbf{X} \rangle$ is a sub-exponential random variable [441] satisfying
\[
\mathbb{E} |\langle \mathbf{B}, \mathbf{X} \rangle| \leq c_1 \| \mathbf{X} \|_F
\]
for some positive constant c_1.

On the other hand, to derive a lower bound on $\mathbb{E} |\langle \mathbf{B}, \mathbf{X} \rangle|$, we notice that for a random variable ξ, repeatedly applying the Cauchy-Schwartz inequality yields
\[
(\mathbb{E} \xi^2)^2 \leq \mathbb{E} |\xi| \mathbb{E} |\xi|^3 \leq \mathbb{E} |\xi| \sqrt{\mathbb{E} \xi^2 \mathbb{E} \xi^4},
\]
which further leads to
\[
\mathbb{E} |\xi| \geq \sqrt{\frac{(\mathbb{E} \xi^2)^3}{\mathbb{E} \xi^4}}.
\]

Let $\xi := \langle \mathbf{B}, \mathbf{X} \rangle$, of which the second moment can be expressed as
\[
\mathbb{E} \xi^2 = \mathbb{E} |\langle \mathbf{B}, \mathbf{X} \rangle|^2 = \langle \mathbf{X}, E(\mathbf{B}^* \mathbf{B}) \mathbf{X} \rangle.
\]
Simple algebraic manipulation yields
\[
\mathbb{E} (\mathbf{B}^* \mathbf{B}) (\mathbf{X}) = 4 \mathbf{X} + 2 (\mu_4 - 3) \text{diag} (\mathbf{X}),
\]
and hence
\[
\mathbb{E} \xi^2 = 4 \| \mathbf{X} \|_F^2 + 2 (\mu_4 - 3) \sum_{i=1}^n |X_{ii}|^2 \geq \min \{4, 2(\mu_4 - 1)\} \| \mathbf{X} \|_F^2 = c_2 \| \mathbf{X} \|_F^2,
\]
where $c_2 := \min \{4, 2(\mu_4 - 1)\}$. Furthermore, since $\xi := \langle \mathbf{B}, \mathbf{X} \rangle$ has been shown to be sub-exponential with sub-exponential norm $O (\| \mathbf{X} \|_F)$, one can derive [441]
\[
\mathbb{E} \xi^4 = \left(4 \| \xi \|_{\psi_1} \right)^4 \leq c_3 \| \mathbf{X} \|_F^4
\]
for some constant $c_7 > 0$. This taken collectively with (54) and (55) gives rise to
\[
\mathbb{E} |\langle \mathbf{B}, \mathbf{X} \rangle| \geq \sqrt{\frac{c_2^2 \| \mathbf{X} \|_F^6}{c_3 \| \mathbf{X} \|_F^4}} = c_4 \| \mathbf{X} \|_F
\]
for some constant $c_4 > 0$.

Now, we are ready to characterize the concentration of $\langle \mathbf{B}, \mathbf{X} \rangle$, which is a simple consequence of the following sub-exponential variant of Bernstein inequality.

Lemma 8. [441 Proposition 5.16] Let X_1, \ldots, X_m be independent sub-exponential random variables with $\mathbb{E} X_i = 0$ and $K = \max_i \| X_i \|_{\psi_1}$. Then for every $t > 0$, we have
\[
\mathbb{P} \left\{ \frac{1}{m} \sum_{i=1}^m X_i \geq t \right\} \leq 2 \exp \left[-c m \min \left(\frac{t^2}{K^2}, \frac{t}{K} \right) \right]
\]
where c is an absolute constant.

For any matrix \mathbf{X}, let $X_i = |\langle \mathbf{B}, \mathbf{X} \rangle| - \mathbb{E} |\langle \mathbf{B}, \mathbf{X} \rangle|, i = 1, \ldots, m$. It is apparent that X_i’s satisfy the conditions in Lemma 8, therefore for any $\epsilon > 0$, we have
\[
\left| \frac{1}{m} \| \mathcal{B}(\mathbf{X}) \|_1 - \frac{1}{m} \mathbb{E} \| \mathcal{B}(\mathbf{X}) \|_1 \right| \leq \epsilon \| \mathbf{X} \|_F
\]
with probability exceeding $1 - 2 \exp(-c m \epsilon)$ for some absolute constant $c > 0$. This yields
\[
\frac{1}{m} \| \mathcal{B}(\mathbf{X}) \|_1 \leq \frac{1}{m} \mathbb{E} \| \mathcal{B}(\mathbf{X}) \|_1 + \epsilon \| \mathbf{X} \|_F \leq (c_1 + \epsilon) \| \mathbf{X} \|_F
\]
and
\[
\frac{1}{m} \| \mathcal{B}(\mathbf{X}) \|_1 \geq \frac{1}{m} \mathbb{E} \| \mathcal{B}(\mathbf{X}) \|_1 - \epsilon \| \mathbf{X} \|_F \geq (c_4 - \epsilon) \| \mathbf{X} \|_F
\]
with probability at least $1 - 2 \exp(-c m \epsilon)$, where the constants c, c_1 and c_4 depend only on the sub-Gaussian norm of a_i. Renaming the universal constants establishes Proposition 1.
B Proof of Theorem 5

The proof of Theorem 5 follows the entropy method introduced in [15]. Specifically, the RIP-\ell_2/\ell_2 constant can be bounded by

\[
\delta_r = \sup_{\|X\|_p \leq 1, \text{rank}(X) \leq r} \left\| \sum_{i=1}^m (B_i^* X) \right\|^2 = \sup_{T \in M_2^2, \|X\|_p \leq 1} \left\| \langle X, \sum_{i=1}^m \tilde{B}_i^* B_i - I \rangle \right\| \leq \sup_{T \in M_2^2} \left\| \frac{1}{m} \sum_{i=1}^m (B_i^* B_i - E B_i^* B_i) \right\| \leq \frac{C_5}{n},
\]

where

\[
M_2^2 := \{ \text{tangent space with respect to } M \mid \forall M : \text{rank} (M) \leq r \},
\]

and the last inequality follows from the near-isotropic assumption of \(B_i \) (i.e., [30]).

The first step is to prove that \(E \delta_r \leq \epsilon \) for some small constant \(\epsilon > 0 \). For sufficiently large \(n \), it suffices to prove that

\[
E := E \sup_{T \in M_2^2} \left\| \frac{1}{m} \sum_{i=1}^m (B_i^* B_i - E B_i^* B_i) \right\| \leq \delta.
\]

This can be established by a Gaussian process approach as follows.

Observe that \(\frac{1}{m} \sum_{i=1}^m (B_i^* B_i - E B_i^* B_i) \) is a zero-mean operator, which can be reduced to symmetric operators via the symmetrization argument (see, e.g. [41]). Specifically, let \(\tilde{B}_i \) be an independent copy of \(B_i \). Conditioning on \(B_i \) we have

\[
E \left(\frac{1}{m} \sum_{i=1}^m B_i^* B_i - \frac{1}{m} \sum_{i=1}^m \tilde{B}_i^* B_i \right) = \frac{1}{m} \sum_{i=1}^m B_i^* B_i - E B_i^* B_i.
\]

Since the function \(f (X) := \sup_{T \in M_2^2} \| P_T X P_T \| \) is convex in \(X \), applying Jensen’s inequality yields

\[
\sup_{T \in M_2^2} \left\| P_T \left(\frac{1}{m} \sum_{i=1}^m (B_i^* B_i - E B_i^* B_i) \right) \right\| \leq \sup_{T \in M_2^2} \left\| E \left(\frac{1}{m} \sum_{i=1}^m B_i^* B_i - \frac{1}{m} \sum_{i=1}^m \tilde{B}_i^* B_i \right) \right\| \leq \frac{1}{m} \sum_{i=1}^m \left\| E \left(\frac{1}{m} \sum_{i=1}^m B_i^* B_i - \frac{1}{m} \sum_{i=1}^m \tilde{B}_i^* B_i \right) \right\|.
\]

By undoing conditioning over \(B_i \) we derive

\[
\sup_{T \in M_2^2} \left\| P_T \left(\frac{1}{m} \sum_{i=1}^m (B_i^* B_i - E B_i^* B_i) \right) \right\| \leq \sup_{T \in M_2^2} \left\| P_T \left(\frac{1}{m} \sum_{i=1}^m B_i^* B_i - \frac{1}{m} \sum_{i=1}^m \tilde{B}_i^* B_i \right) \right\| \leq 2 \sup_{T \in M_2^2} \left\| \frac{1}{m} \sum_{i=1}^m \epsilon_i P_T B_i^* B_i \right\|.
\]

where \(\epsilon_i \)'s are i.i.d. symmetric Bernoulli random variables. Moreover, if we generate a set of i.i.d. random variables \(g_i \sim \mathcal{N} (0, 1) \), then the conditional expectation obeys

\[
E \left(\frac{1}{m} \sum_{i=1}^m |g_i| \epsilon_i P_T B_i^* B_i \right) \leq \sqrt{2} \frac{1}{m} \sum_{i=1}^m \epsilon_i P_T B_i^* B_i P_T.
\]
Similarly, by convexity of \(f(X) := \sup_{T \in \mathcal{M}^2} \| P_T X P_T \| \), one can obtain

\[
E \sup_{T \in \mathcal{M}^2} \left\| \frac{1}{m} \sum_{i=1}^m \epsilon_i P_T B_i^* B_i P_T \right\| = \sqrt{\frac{\pi}{2}} E \sup_{T \in \mathcal{M}^2} \left\| E \left(\frac{1}{m} \sum_{i=1}^m |g_i| \epsilon_i P_T B_i^* B_i P_T \right| \epsilon_i, B_i \ (1 \leq i \leq m) \right\|
\leq \sqrt{\frac{\pi}{2}} E \sup_{T \in \mathcal{M}^2} \left\| \frac{1}{m} \sum_{i=1}^m g_i P_T B_i^* B_i P_T \right\|.
\]

(63)

Putting (62) and (63) together we obtain

\[
E \sup_{T \in \mathcal{M}^2} \left\| P_T \left(\frac{1}{m} \sum_{i=1}^m (B_i^* B_i - \mathbb{E}B_i^* B_i) \right) P_T \right\|
\leq \sqrt{2\pi} E \sup_{T \in \mathcal{M}^2} \left\| \frac{1}{m} \sum_{i=1}^m g_i P_T B_i^* B_i P_T \right\|
= \sqrt{2\pi} E \sup_{T \in \mathcal{M}^2, X \in T, \|X\|_p = 1} \left| \frac{1}{m} \sum_{i=1}^m |B_i(X)|^2 \right|,
\]

(64)

which converts the problem into bounding the supremum of a Gaussian process.

We would like to prove the following lemma.

Lemma 9. Suppose that \(g_i \sim \mathcal{N}(0, 1) \) are i.i.d. random variables, and that \(K \leq n^2 \). Conditional on \(B_i \)'s, we have

\[
E \sup_{T \in \mathcal{M}^2} \left\| P_T \left(\frac{1}{m} \sum_{i=1}^m g_i B_i^* B_i \right) P_T \right\| \leq C_{14} \sqrt{rK \log^3 n} \sup_{T \in \mathcal{M}^2} \left\| \frac{1}{m} \sum_{i=1}^m P_T B_i^* B_i P_T \right\|.
\]

(65)

Proof. See Appendix I. \(\square \)

Combining Lemma 9 with (64) and undoing the conditioning on \(B_i \)'s yield

\[
E \sup_{T \in \mathcal{M}^2} \left\| P_T \left(\frac{1}{m} \sum_{i=1}^m (B_i^* B_i - \mathbb{E}B_i^* B_i) \right) P_T \right\|
\leq \frac{C_{15} \sqrt{rK \log^3 n}}{m} \left(\sqrt{E} \sup_{T \in \mathcal{M}^2} \left\| \frac{1}{m} \sum_{i=1}^m P_T B_i^* B_i P_T \right\| \right)
\leq \frac{C_{15} \sqrt{rK \log^3 n}}{\sqrt{m}} \sqrt{E} \sup_{T \in \mathcal{M}^2} \left\| \frac{1}{m} \sum_{i=1}^m P_T B_i^* B_i P_T \right\|
\]

for some numerical constant \(C_{15} > 0 \), where the last inequality follows from Jensen’s inequality. Recall the definition of \(C_1 \) in (61), then the above inequality implies

\[
E \leq C_{15} \left(\frac{\sqrt{rK \log^3 n}}{\sqrt{m}} \right) \sqrt{E + 1},
\]

or more concretely,

\[
E \delta_r \leq E \leq 2C_{15} \frac{\sqrt{rK \log^3 n}}{\sqrt{m}} < 1
\]

(66)

as soon as \(m > (2C_{15} \sqrt{rK \log^3 n})^2 \).

Now that we have established that \(E \delta_r \) can be a small constant if \(m > 4C_{15}^2 rK^2 \log^6 n \), it remains to show that \(\delta_r \) sharply concentrates around \(E \sigma_r \). To this end, consider the Banach space \(\mathcal{Y} \) of operators \(\mathcal{H} : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n} \) equipped with the norm

\[
\| \mathcal{H} \|_{\mathcal{Y}} := \sup_{T \in \mathcal{M}^2} \| P_T H P_T \|.
\]
Let ϵ_i’s be i.i.d. symmetric Bernoulli variables, then the symmetrization trick yields
\[
\mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i - \mathbb{E} B_i \right\|_\mathcal{Y} \leq \mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} \leq 2 \mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i - \mathbb{E} B_i \right\|_\mathcal{Y},
\]
and
\[
P \left\{ \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i - \mathbb{E} B_i \right\|_\mathcal{Y} > 2 \mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i - \mathbb{E} B_i \right\|_\mathcal{Y} + u \right\} \leq \mathbb{P} \left\{ \left\| \frac{1}{m} \sum_{i=1}^{m} \left(\epsilon_i B_i - \mathbb{E} B_i \right) \right\|_\mathcal{Y} > u \right\} \leq 2 \mathbb{P} \left\{ \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} > \frac{u}{2} \right\},
\]
where \tilde{B}_i is an independent copy of B_i. Note that $\epsilon_i B_i$’s are i.i.d. zero-mean random operators.

Besides, for any $1 \leq i \leq m$, we know that
\[
\left\| \epsilon_i B_i \right\|_\mathcal{Y} = \max_{T \in \mathcal{M}_2} \mathbb{E} \left\| P_T \epsilon_i B_i P_T \right\| = \max_{T \in \mathcal{M}_2, \|X\|_p=1} |\langle B_i, P_T(X) \rangle|^2 \leq \max_{T \in \mathcal{M}_2, \|X\|_p=1} \|B_i\|^2 \left\| P_T(X) \right\|^2 \leq K^2 r.
\]
[15. Theorem 3.10] asserts that there is a universal constant $C_{12} > 0$ such that
\[
P \left\{ \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} > 8q \mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} + \frac{2K^2 r}{m} + t \right\} \leq \left(\frac{C_{12}}{q} \right)^t + 2 \exp \left(-\frac{t^2}{256q \left(\mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} \right)^2} \right).
\]
If we take $q = 2C_{12}$, $l = C_{13} \log n$ and $t = C_{14} \sqrt{\log n} \mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y}$, then for sufficiently large C_{13} and C_{14}, there exists an absolute constant $C_{20} > 0$ such that if $m > C_{20} r K^2 \log^2 n$, then for any small positive constant δ we have
\[
\left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} < C_{15} \sqrt{\log n} \mathbb{E} \left\| \frac{1}{m} \sum_{i=1}^{m} \epsilon_i B_i \right\|_\mathcal{Y} < \delta
\]
with probability exceeding $1 - n^{-2}$.

Now that we have ensured a small RIP-ℓ_2/ℓ_2 constant, repeating the argument as in [33][34] implies
\[
\| \tilde{\Sigma} - \Sigma \|_F \leq C_2 \frac{\epsilon_2}{\sqrt{m}}
\]
for all Σ of rank at most r. This concludes the proof.

C Proof of Lemma 1

We first introduce a few mathematical notations before proceeding to the proof. Let the singular value decomposition of a rank-r matrix Σ be $\Sigma = U \Lambda V^T$, then the tangent space T at the point Σ is defined as $T := \{ U M_1 + M_2 V^T \mid M_1 \in \mathbb{R}^{n \times n}, M_2 \in \mathbb{R}^{n \times n} \}$. We denote by \mathcal{P}_T and \mathcal{P}_{T^\perp} the orthogonal projection onto T and its orthogonal complement, respectively. For notational simplicity, we denote $H_T := \mathcal{P}_T(H)$ and $H_{T^\perp} := H - \mathcal{P}_{T^\perp}(H)$ for any matrices $H \in \mathbb{R}^{n \times n}$.

Write $\Sigma := \Sigma_r + \Sigma_c$, where Σ_r represents the best rank-r approximation of Σ. Denote by T the tangent space with respect to Σ_r. Suppose that the solution to (7) is given by $\hat{\Sigma} = \Sigma + H$ for some matrix H. The optimality of $\hat{\Sigma}$ yields
\[
0 \geq \| \Sigma + H \|_* - \| \Sigma \|_* \\
\geq \| \Sigma_r + H \|_* - \| \Sigma_c \|_* - \| \Sigma \|_* \\
\geq \| \Sigma_r + H_{T^\perp} \|_* - \| H_T \|_* - \| \Sigma_r \|_* - 2 \| \Sigma_c \|_* \\
= \| \Sigma_r \|_* + \| H_{T^\perp} \|_* - \| H_T \|_* - \| \Sigma_r \|_* - 2 \| \Sigma_c \|_* ,
\]
for all Σ of rank at most r. This concludes the proof.
which leads to
\[\| H_{T^\perp} \|_* \leq \| H_T \|_* + 2 \| \Sigma_c \|_* . \] (68)

We then divide \(H_{T^\perp} \) into \(M = \left\lfloor \frac{n-r}{K_1} \right\rfloor \) orthogonal matrices \(H_1, H_2, \cdots, H_M \) satisfying the following: (i) the largest singular value of \(H_{i+1} \) does not exceed the smallest non-zero singular value of \(H_i \), and (ii)
\[\| H_{T^\perp} \|_* = \sum_{i=1}^M \| H_i \|_* \] (69)
and rank \((H_i) = K_1 \) for \(1 \leq i \leq M - 1 \). Along with the bound (68), this yields that
\[\sum_{i\geq 2} \| H_i \|_F \leq \frac{1}{\sqrt{K_1}} \sum_{i\geq 2} \| H_{i-1} \|_* \leq \frac{1}{\sqrt{K_1}} \| H_{T^\perp} \|_* \]
\[\leq \frac{1}{\sqrt{K_1}} (\| H_T \|_* + 2 \| \Sigma_c \|_*). \] (70)

It then follows that \(\frac{1}{m} \| B(H) \|_1 \leq \frac{2}{m} \| A(\Sigma) - y \|_1 \leq \frac{2\epsilon_1}{m} \), and that
\[\frac{2\epsilon_1}{m} \geq \frac{1}{m} \| B(H) \|_1 \]
\[\geq \frac{1}{m} \| B(H_T + H_1) \|_1 - \frac{1}{m} \| B(H_i) \|_1 \]
\[\geq (1 - \delta_{2r+K_1}^h) \| H_T + H_1 \|_F - (1 + \delta_{K_1}^h) \sum_{i\geq 2} \| H_i \|_F \]
\[\geq \frac{(1 - \delta_{2r+K_1}^h)}{\sqrt{2}} (\| H_T \|_F + \| H_1 \|_F) - \frac{(1 + \delta_{K_1}^h)}{\sqrt{K_1}} (\| H_T \|_* + 2 \| \Sigma_c \|_*). \]

By reorganizing the terms and \(\| H_T \|_* \leq \sqrt{2r} \| H_T \|_F \), one can derive
\[\left[\frac{(1 - \delta_{2r+K_1}^h)}{\sqrt{2}} - \frac{(1 + \delta_{K_1}^h)}{\sqrt{K_1}} \right] \| H_T \|_F + \frac{(1 - \delta_{2r+K_1}^h)}{\sqrt{2}} \| H_1 \|_F \leq \frac{2(1 + \delta_{K_1}^h)}{\sqrt{K_1}} \| \Sigma_c \|_* + \frac{2\epsilon_1}{m}. \] (71)

The bound (71) allows us to see that if \(\frac{1 - \delta_{2r+K_1}^h}{\sqrt{2}} - \frac{(1 + \delta_{K_1}^h)}{\sqrt{K_1}} \geq \beta_1 > 0 \) for some absolute constant \(\beta_1 \), then one has
\[\| H_T \|_F + \| H_1 \|_F \leq \frac{2}{\beta_1} \left(\frac{(1 + \delta_{K_1}^h)}{\sqrt{K_1}} \| \Sigma_c \|_* + \frac{\epsilon_1}{m} \right). \] (72)

On the other hand, (70) allows us to bound
\[\sum_{i\geq 2} \| H_i \|_F \leq \frac{1}{\sqrt{K_1}} (\| H_T \|_* + 2 \| \Sigma_c \|_*) \]
\[\leq \sqrt{2r} \| H_T \|_F + \frac{2}{\sqrt{K_1}} \| \Sigma_c \|_* . \] (73)

This taken collectively with (72) establishes
\[\| H \|_F \leq C_1 \| \Sigma_c \|_* + C_2 \frac{\epsilon_1}{m} \]
for some absolute constants \(C_1 \) and \(C_2 \).
D Proof of Lemma 2

For an index set \(\Omega \), let \(P_\Omega \) as the orthogonal projection onto the index set \(\Omega \). We denote \(H_\Omega \) as the matrix supported on \(H_\Omega = P_\Omega(H) \) and \(H_{\Omega^c} \) as the projection onto the complement support set \(\Omega^c \). Write \(\Sigma = \Sigma + H \), and \(\Sigma = \Sigma_{\Omega_0} + \Sigma_{\Omega_0^c} \), where \(\Omega_0 \) denotes the support of the \(k \) largest entries of \(\Sigma \). The feasibility constraint yields

\[
\frac{1}{m} \| B(H) \|_1 \leq \frac{2}{m} \| A(\Sigma) - A(\Sigma) \|_1 \leq \frac{2\epsilon_1}{m}.
\]

The triangle inequality of \(\ell_1 \) norm gives

\[
\| \Sigma - \Sigma \|_1 \leq \| \Sigma - \Sigma_{\Omega_0} \|_1 + \| \Sigma_{\Omega_0^c} \|_1.
\]

Decompose \(H_{\Omega_0^c} \) into a collection of \(M_2 \) matrices \(H_{\Omega_1}, H_{\Omega_2}, \ldots, H_{\Omega_M} \), where \(\| H_{\Omega_i} \|_0 = K_2 \) for all \(1 \leq i < M_2 \), \(H_{\Omega_i} \) consists of the \(K_2 \) largest entries of \(H_{\Omega_0^c} \), \(H_{\Omega_i} \) consists of the \(K_2 \) largest entries of \(H_{(\Omega_0,\Omega_1)^c} \), and so on. A similar argument as in (36) implies

\[
\sum_{i \geq 2} \| H_{\Omega_i} \|_F \leq \frac{1}{\sqrt{K_2}} \sum_{i \geq 1} \| H_{\Omega_i} \|_1 = \frac{1}{\sqrt{K_2}} \| H_{\Omega_0^c} \|_1.
\]

The optimality of \(\hat{\Sigma} \) yields

\[
\| \Sigma \|_1 \geq \| \Sigma + H \|_1 = \| \Sigma_{\Omega_0} + H \|_1 - \| \Sigma_{\Omega_0^c} \|_1
\]

\[
\geq \| \Sigma_{\Omega_0} \|_1 + \| H_{\Omega_0} \|_1 - \| H_{\Omega_0} \|_1 - \| \Sigma_{\Omega_0^c} \|_1,
\]

which gives

\[
\| H_{\Omega_0^c} \|_1 \leq \| H_{\Omega_0^c} \|_1 + 2\| \Sigma_{\Omega_0^c} \|_1.
\]

Combining the above bound and (74) leads to

\[
\sum_{i \geq 2} \| H_{\Omega_i} \|_F \leq \frac{1}{\sqrt{K_2}} (\| H_{\Omega_0} \|_1 + 2\| \Sigma_{\Omega_0^c} \|_1)
\]

\[
\leq \frac{1}{\sqrt{K_2}} (\sqrt{k} \| H_{\Omega_0} \|_F + 2\| \Sigma_{\Omega_0^c} \|_1).
\]

It then follows that

\[
\frac{2\epsilon_1}{m} \geq \frac{1}{m} \| B(H) \|_1
\]

\[
\geq \frac{1}{m} \| B(H_{\Omega_0} + H_{\Omega_1}) \|_1 \frac{1}{m} \sum_{i \geq 2} \| B(H_{\Omega_i}) \|_1
\]

\[
\geq (1 - \gamma_{k+K_2}^b) \| H_{\Omega_0} + H_{\Omega_1} \|_F - (1 + \gamma_{K_2}^b) \sum_{i \geq 2} \| H_{\Omega_i} \|_F
\]

\[
\geq \frac{1 - \gamma_{K_2}^b}{\sqrt{2}} \left(\| H_{\Omega_0} \|_F + \| H_{\Omega_1} \|_F \right) - \frac{1 + \gamma_{K_2}^b}{\sqrt{2}} \left(\sqrt{k} \| H_{\Omega_0} \|_F + 2\| \Sigma_{\Omega_0^c} \|_1 \right).
\]

Reorganizing the above equation yields

\[
\left[\frac{1 - \gamma_{K_2}^b}{\sqrt{2}} - \frac{1 + \gamma_{K_2}^b}{\sqrt{2}} \sqrt{k} \right] \| H_{\Omega_0} \|_F + \frac{1 - \gamma_{K_2}^b}{\sqrt{2}} \| H_{\Omega_1} \|_F \leq \frac{2 + \gamma_{K_2}^b}{\sqrt{2}} \| \Sigma_{\Omega_0^c} \|_1 + \frac{2\epsilon_1}{m}.
\]

When Assumption (26) is satisfied, one has

\[
\| H_{\Omega_0} \|_F + \| H_{\Omega_1} \|_F \leq \frac{2}{\beta_2} \left[\frac{1 + \gamma_{K_2}^b}{\sqrt{2}} \| \Sigma_{\Omega_0^c} \|_1 + \frac{\epsilon_1}{m} \right].
\]

This along with (75) gives

\[
\| H \|_F \leq C_1 \| \Sigma_{\Omega_0^c} \|_1 + C_2 \frac{\epsilon_1}{m}
\]

for some constants \(C_1 \) and \(C_2 \).
Proof of Lemma 3

Before proceeding to the proof, we introduce a few notations for convenience of presentation. Let $X := xx^T$, $X_\Omega := x_\Omega x_\Omega^T$ and $X_c := X - X_\Omega$, where x_Ω denotes the k-sparse approximation of x whose support is denoted by Ω. We set $u := \frac{1}{\|x_\Omega\|_2}x_\Omega$, and hence the tangent space T with respect to X_Ω and its orthogonal complement T^\perp are characterized by

$$T := \{uz^T + zu^T \mid z \in \mathbb{R}^n\},$$
$$T^\perp := \{(I - uu^T) M (I - uu^T) \mid M \in \mathbb{R}^{n \times n}\}.$$

We adopt the notations introduced in [14] as follows: let Ω denote the support of X_Ω, and decompose the entire matrix space into the direct sum of 3 subspaces as

$$(T \cap \Omega) \oplus (T^\perp \cap \Omega) \oplus (\Omega^\perp).$$ \tag{76}$$

In fact, one can verify that

$$T \cap \Omega = \{uz^T + zu^T \mid z_{\Omega^c} = 0\},$$

and that both the column and row spaces of $T^\perp \cap \Omega$ can be spanned by a set of $k - 1$ orthonormal vectors that are supported on Ω and orthogonal to u. As pointed out by [14], T and Ω are compatible in the sense that

$$P_T P_\Omega = P_\Omega P_T = P_{T \cap \Omega}.$$ \tag{77}$$

Additionally, for simplicity of notation, we use $\delta_{r,l}^{ib}$ and $\delta_{r,l}^{ik}$ to represent $\delta_{r,l}^{lb}$ and $\delta_{r,l}^{bk}$ in short whenever there is no ambiguity.

Suppose that $\hat{X} = xx^T + H$ is the solution to (16). Then for any $W \in T^\perp$ and $Y \in \Omega^\perp$ satisfying $\|W\|_* \leq 1$ and $\|Y\|_\infty \leq \infty$, the matrix $uu^T + W + \lambda \text{sign} (u) \text{sign} (u)^T + \lambda Y$ forms a subgradient of the function $\|\cdot\|_* + \lambda \|\cdot\|_1$ at point X_Ω. If we pick W and Y such that $Y = \text{sign} (H_{\Omega^\perp})$ and $(W, H) = \|H_{T \cap \Omega}\|_*$, then

$$0 \geq \|X + H\|_* + \lambda \|X + H\|_1 - \|X\|_* - \lambda \|X\|_1$$

$$\geq \|X_\Omega + H\|_* - \|X_c\|_* + \lambda \|X_\Omega + H\|_1 - \|X_\Omega\|_* - \|X_\Omega\|_1 - \|X_c\|_* - \lambda \|X_\Omega\|_1 - \|\lambda H_{\Omega^\perp}\|_1$$ \tag{78}$$

$$\geq \langle uu^T + W, H \rangle + \langle \lambda \text{sign} (u) \text{sign} (u)^T + \lambda Y, H \rangle - 2 \|X_c\|_* - 2 \|X_c\|_1$$ \tag{79}$$

$$\geq \langle uu^T, H_T \rangle + \lambda \langle P_T \left(\text{sign} (u) \text{sign} (u)^T\right), H_T \rangle + \lambda \langle P_{T^\perp} \left(\text{sign} (u) \text{sign} (u)^T\right), H_{T^\perp} \rangle$$

$$+ \|H_{T \cap \Omega}\|_* + \lambda \|H_{\Omega^\perp}\|_1 - 2 \|X_c\|_* - 2 \|X_c\|_1$$ \tag{80}$$

$$\geq \langle uu^T + \lambda P_T \left(\text{sign} (u) \text{sign} (u)^T\right), H_{T \cap \Omega} \rangle + \|H_{T \cap \Omega}\|_* + \lambda \|H_{\Omega^\perp}\|_1 - 2 \|X_c\|_* - 2 \|X_c\|_1,$$ \tag{81}$$

where (78) follows from the optimality of \hat{X}, (79) follows from the definitions of X_Ω and X_c and the triangle inequality, (80) follows from the definition of subgradient. Finally, (81) follows from the following two facts:

(i) $H_{T^\perp} \geq 0$, a consequence of the feasibility constraint of (16). This further gives

$$\langle P_{T \cap \perp} \left(\text{sign} (u) \text{sign} (u)^T\right), H_{T^\perp} \rangle = \text{sign} (u)^T H_{T^\perp} \text{sign} (u) \geq 0.$$

(ii) It follows from (77) and the fact $\text{sign} (u) \text{sign} (u)^T \in \Omega$ that

$$\langle P_T \left(\text{sign} (u) \text{sign} (u)^T\right), H_T \rangle = \langle P_{T \cap \Omega} \left(\text{sign} (u) \text{sign} (u)^T\right), H_{T \cap \Omega} \rangle.$$ \tag{82}$$

Since any matrix in T has rank at most 2, one can bound

$$\|P_T \left(\text{sign} (u) \text{sign} (u)^T\right)\|_*^2 \leq 2 \|P_T \left(\text{sign} (u) \text{sign} (u)^T\right)\|_F^2 \leq 4 \|uu^T \text{sign} (u) \text{sign} (u)^T\|_F^2$$

$$= 4 \|u, \text{sign} (u)\|^2 \|\text{sign} (u)\|^2_\infty$$

$$\leq 4k \|u\|_1^2 \|\text{sign} (u)\|_\infty^2 \leq 4 \|u\|_1^2 \leq \frac{4}{\lambda^2},$$ \tag{83}$$
where (83) follows from the assumption on \(\lambda \). Combining (83) with (81) yields
\[
\|H_{T^\perp \cap \Omega}\|_* + \lambda \|\Omega^\perp\|_1 \leq - \langle uu^T, H_{T^\perp \cap \Omega} \rangle - \lambda \mathcal{P}_T \left(\text{sign}(u) \text{sign}(u)^T \right) , H_{T^\perp \cap \Omega} \rangle + 2 \|X_c\|_* + 2\lambda \|X_c\|_1
\]
\[
\leq \|u^T H_{T^\perp \cap \Omega} u\| + \lambda \mathcal{P}_T \left(\text{sign}(u) \text{sign}(u)^T \right) \|H_{T^\perp \cap \Omega}\| + 2 \|X_c\|_* + 2\lambda \|X_c\|_1
\]
\[
\leq 3 \|H_{T^\perp \cap \Omega}\| + 2 \|X_c\|_* + 2\lambda \|X_c\|_1 , \tag{84}
\]
where (84) results from \(\|u\|_2 = 1 \) and (83).

Divide \(H_{T^\perp \cap \Omega} \) into \(M_1 := \left\lfloor \frac{n^2 - k^2}{K^2} \right\rfloor \) orthogonal matrices \(H^{(1)}_{T^\perp \cap \Omega}, H^{(2)}_{T^\perp \cap \Omega}, \ldots, H^{(M_1)}_{T^\perp \cap \Omega} \in T^\perp \cap \Omega \) satisfying the following: (i) the largest singular value of \(H^{(i+1)}_{T^\perp \cap \Omega} \) does not exceed the smallest non-zero singular value of \(H^{(i)}_{T^\perp \cap \Omega} \), and (ii)
\[
\|H^{(i)}_{T^\perp \cap \Omega}\|_* = \sum_{i=1}^{M_1} \|H^{(i)}_{T^\perp \cap \Omega}\|_* \quad \text{and} \quad \text{rank} \left(H^{(i)}_{T^\perp \cap \Omega}\right) = K_1 \quad (1 \leq i \leq M_1 - 1).
\]
In the meantime, divide \(H_{\Omega^\perp} \) into \(M_2 = \left\lfloor \frac{n^2 - k^2}{K^2} \right\rfloor \) orthogonal matrices \(H^{(1)}_{\Omega^\perp}, H^{(2)}_{\Omega^\perp}, \ldots, H^{(M_2)}_{\Omega^\perp} \in \Omega^\perp \) of non-overlapping support such that (i) the largest entry magnitude of \(H^{(i+1)}_{\Omega^\perp} \) does not exceed the magnitude of the smallest non-zero entry of \(H^{(i)}_{\Omega^\perp} \), and (ii)
\[
\|H^{(i)}_{\Omega^\perp}\|_0 = K_2 \quad (1 \leq i \leq M_2 - 1).
\]
This decomposition gives the following bound
\[
\sum_{i=2}^{M_1} \|H^{(i)}_{T^\perp \cap \Omega}\|_F \leq \sum_{i=2}^{M_1} \frac{1}{\sqrt{K_1}} \|H^{(i-1)}_{T^\perp \cap \Omega}\|_* \leq \frac{1}{\sqrt{K_1}} \|H_{T^\perp \cap \Omega}\|_* ,
\]
which combined with the RIP-\(\ell_2/\ell_1 \) property of \(B \) yields
\[
\sum_{i=2}^{M_1} \frac{1}{m} \|B \left(H^{(i)}_{T^\perp \cap \Omega}\right)\|_1 \leq \frac{(1 + \delta_{K_1, K_2})}{\sqrt{K_1}} \|H_{T^\perp \cap \Omega}\|_* , \tag{85}
\]
and, similarly,
\[
\sum_{i=2}^{M_2} \frac{1}{m} \|B \left(H^{(i)}_{\Omega^\perp}\right)\|_1 \leq \frac{(1 + \delta_{K_1, K_2})}{\sqrt{K_2}} \|H_{\Omega^\perp}\|_1 . \tag{86}
\]
Set \(K_2 := \left\lfloor \frac{K}{3\alpha} \right\rfloor \), and hence \(\sqrt{\frac{K_1}{K_2}} \leq \lambda \). Recalling \(H = H_{T \cap \Omega} + H_{T^\perp \cap \Omega} + H_{\Omega^\perp} \), one can proceed as follows
\[
\frac{2\ell_1}{m} \geq \frac{1}{m} \|B(H)\|_1
\]
\[
\geq \frac{1}{m} \|B \left(H_{T \cap \Omega} + H^{(1)}_{T^\perp \cap \Omega} + H^{(1)}_{\Omega^\perp}\right)\|_1 - \sum_{i=2}^{M_1} \frac{1}{m} \|B \left(H^{(i)}_{T^\perp \cap \Omega}\right)\|_1 - \sum_{i=2}^{M_2} \frac{1}{m} \|B \left(H^{(i)}_{\Omega^\perp}\right)\|_1
\]
\[
\geq \left(1 - \frac{\delta_{2K_1, 2K_2}}{\sqrt{3}}\right) \|H_{T \cap \Omega} + H^{(1)}_{T^\perp \cap \Omega} + H^{(1)}_{\Omega^\perp}\|_F - \frac{(1 + \delta_{K_1, K_2})}{\sqrt{K_1}} \|H_{T^\perp \cap \Omega}\|_* - \frac{(1 + \delta_{K_1, K_2})}{\sqrt{K_2}} \|H_{\Omega^\perp}\|_1
\]
\[
\geq \left(1 - \frac{\delta_{2K_1, 2K_2}}{\sqrt{3}}\right) \|H_{T \cap \Omega}\|_F + \|H^{(1)}_{T^\perp \cap \Omega}\|_F + H^{(1)}_{\Omega^\perp}\|_F \|H_{T^\perp \cap \Omega}\|_* + \lambda \|H_{\Omega^\perp}\|_1
\]
\[
\geq \left(1 - \frac{\delta_{2K_1, 2K_2}}{\sqrt{3}}\right) \left(\|H_{T \cap \Omega}\|_F + \|H^{(1)}_{T^\perp \cap \Omega}\|_F + H^{(1)}_{\Omega^\perp}\|_F \right) - \frac{(1 + \delta_{K_1, K_2})}{\sqrt{K_1}} (\|H_{T^\perp \cap \Omega}\|_* + \lambda \|H_{\Omega^\perp}\|_1) .
\]
This taken collectively with \((84)\) gives

\[
\frac{2 (1 + \delta_{l,K_2})}{\sqrt{K_1}} \left(\|X_c\|_* + \lambda \|X_c\|_1 \right) + \frac{2\epsilon}{m} \\
\geq \left(\frac{1 - \delta_{l,K_2}}{\sqrt{3}} - 3 \frac{(1 + \delta_{l,K_2})}{\sqrt{K_1}} \right) \left(\|H_{T \cap \Omega}\|_F + \|H_{T \cap \Omega}^{(1)}\|_F + \|H_{\Omega}^{(1)}\|_F \right).
\]

Therefore, if we know that

\[
\frac{1 - \delta_{l,K_2}}{\sqrt{3}} - 3 \frac{(1 + \delta_{l,K_2})}{\sqrt{K_1}} \geq \beta_3 > 0
\]

for some absolute constant \(\beta_3\), then

\[
\|H_{T \cap \Omega}\|_F + \|H_{T \cap \Omega}^{(1)}\|_F + \|H_{\Omega}^{(1)}\|_F \leq \frac{1}{\beta_3} \left(\|X_c\|_* + \lambda \|X_c\|_1 + \frac{\epsilon}{m} \right). \tag{87}
\]

On the other hand, we know from \((85)\) and \((86)\) that

\[
\sum_{i=2}^{M_1} \|H_{T \cap \Omega}^{(i)}\|_F + \sum_{i=2}^{M_2} \|H_{\Omega}^{(i)}\|_F \leq \frac{1}{1 - \frac{\delta_{l,K_2}}{\sqrt{K_1}}} \sum_{i=2}^{M_1} \|\mathbb{E} \left(H_{T \cap \Omega}^{(i)} \right) \|_1 + \sum_{i=2}^{M_2} \|\mathbb{E} \left(H_{\Omega}^{(i)} \right) \|_1 \\
\leq \left(1 + \frac{\delta_{l,K_2}}{\sqrt{K_1}} \right) \|H_{T \cap \Omega}\|_* + \frac{(1 + \delta_{l,K_2})}{\sqrt{K_2}} \|H_{T \cap \Omega}^{(1)}\|_1 \\
= \left(1 + \frac{\delta_{l,K_2}}{\sqrt{K_1}} \right) \left(\|H_{T \cap \Omega}\|_* + \frac{\delta_{l,K_2}}{\sqrt{K_2}} \|H_{T \cap \Omega}^{(1)}\|_1 \right) \\
\leq \left(1 + \frac{\delta_{l,K_2}}{\sqrt{K_1}} \right) \left(3 \|H_{T \cap \Omega}\| + 2 \|X_c\|_* + 2\lambda \|X_c\|_1 \right),
\]

where the last inequality arises from \((84)\). This together with \((87)\) completes the proof.

F Proof of Lemma 4

Simple calculation yields that

\[
\mathbb{E} A_i \langle A_i, X \rangle = 2X + \left(1 + \frac{\mu_4 - 3}{n} \right) \text{tr} (X) \cdot I. \tag{88}
\]

When \(\mu_4 = 3\), one can see that

\[
\mathbb{E} B_i \langle B_i, X \rangle = \frac{1}{4} \mathbb{E} (A_{2i} - A_{2i+1}) \langle A_{2i} - A_{2i+1}, X \rangle = X. \tag{89}
\]

When \(\mu_4 \neq 3\), consider the linear combination

\[
B = aA_1 + bA_2 + cA_3,
\]

where we aim to find the coefficients \(a, b\) and \(c\) that makes \(B\) isotropic. If we further require

\[
\mathbb{E} B = a + b + c = \frac{\epsilon}{\sqrt{n}}, \tag{90}
\]

then one can compute

\[
\mathbb{E} B \langle B, X \rangle = 2 (a^2 + b^2 + c^2) X + \left(1 + \frac{\mu_4 - 3}{n} \right) (a^2 + b^2 + c^2) + 2(ab + bc + ac) \text{tr} (X) \cdot I.
\]
Our goal is thus to determine a, b and c that satisfies

$$\left(1 + \frac{\mu_4 - 3}{n}\right) \left(a^2 + b^2 + c^2\right) + 2(ab + bc + ac) = 0,$$

which combined with (90) gives

$$\frac{\mu_4 - 3}{n} \left(a^2 + b^2 + c^2\right) + \frac{\epsilon^2}{n} = 0. \quad (91)$$

If we set $a = 1$, then (91) reduces to

$$\frac{\mu_4 - 3}{n} \left(1 + b^2 + \left(\frac{\epsilon}{\sqrt{n}} - 1 - b\right)^2\right) + \frac{\epsilon^2}{n} = 0.$$

Solving this quadratic equation yields

$$b = \frac{-1 - \frac{\epsilon}{\sqrt{n}} + \sqrt{\Delta}}{2}; \quad c = \frac{-1 - \frac{\epsilon}{\sqrt{n}} - \sqrt{\Delta}}{2}, \quad (92)$$

where

$$\Delta := \left(1 - \frac{\epsilon}{\sqrt{n}}\right)^2 - 4 \left(\frac{1}{2} \left(1 - \frac{\epsilon}{\sqrt{n}}\right)^2 + \frac{1}{2} + \frac{\epsilon^2}{2 (\mu_4 - 3)}\right) = -\left(1 - \frac{\epsilon}{n}\right)^2 - 2 - \frac{2\epsilon^2}{\mu_4 - 3}.$$

Note that $\Delta > 0$ when $\epsilon^2 > 1.5 \cdot |3 - \mu_4|$. Also, b and c satisfies

$$1 + b^2 + c^2 = \frac{\epsilon^2}{3 - \mu_4}. \quad (93)$$

By choosing $\alpha = \sqrt{\frac{3 - \mu_4}{2\epsilon^2}}$, $\beta = \beta_0$, and $\gamma = \gamma_0$, we derive the form of B_i as introduced in (40), which satisfies

$$\mathbb{E}B_i \langle B_i, X \rangle = X.$$

Finally, we remark that for any norm $\|\cdot\|_n$. This can be easily bounded as follows

$$\|B_i\|_n \leq \sqrt{\frac{3 - \mu_4}{2\epsilon^2}} (1 + |b| + |c|) \max_{i: 1 \leq i \leq m} \|A_i\|_n$$

$$\leq \sqrt{3} \frac{3 - \mu_4}{2\epsilon^2} (1 + b^2 + c^2) \max_{i: 1 \leq i \leq m} \|A_i\|_n \quad (94)$$

$$= \sqrt{3} \max_{i: 1 \leq i \leq m} \|A_i\|_n. \quad (95)$$

This concludes the proof.

G Proof of Lemma 5

Let M represent the symmetric Toeplitz matrix as follows

$$M = [M_{|i-j|}]_{1 \leq i, j \leq n} := T (zz^*),$$

and hence

$$M_k := \frac{1}{n-k} \sum_{l=k+1}^{n} z_l z_{l-k}, \quad 0 \leq k < n.$$
is constructed such that for any $t > 0$

\[
E_i = \exp \left(\frac{2\pi i}{2n-1} \cdot i \right),
\]

it then follows that

\[
\sum_{t} |E_i| \leq 2n
\]

which satisfies $E\lambda_i = EM_0 = 1$. This leads to an upper bound as follows

\[
\|M\| \leq \|CM\| \leq \max_{0 \leq i \leq 2n-2} |\lambda_i|.
\]

Note that λ_i is a quadratic form in $\{z_1, z_2, \ldots, z_n\}$. Define the symmetric coefficient matrix $G^{(i)}$ such that

\[
\forall \alpha, \beta \ (1 \leq \alpha, \beta \leq n) : \ G^{(i)}_{\alpha, \beta} = \frac{1}{n - |l|} \cos \left(\frac{2\pi i |l|}{2n-1} \right), \text{ if } \alpha - \beta = l,
\]

which satisfies

\[
\lambda_i = EM_0 + \sum_{1 \leq \alpha, \beta \leq n} G^{(i)}_{\alpha, \beta} (z_{\alpha} z_{\beta} - E z_{\alpha} z_{\beta}) = 1 + \sum_{1 \leq \alpha, \beta \leq n} G^{(i)}_{\alpha, \beta} (z_{\alpha} z_{\beta} - E z_{\alpha} z_{\beta}).
\]

When z are drawn from a sub-Gaussian measure, Lemma 7 asserts that there exists an absolute constant $c_{10} > 0$ such that

\[
\mathbb{P} (|\lambda_i - 1| \geq t) \leq \exp \left(-c_{10} \min \left\{ \frac{t}{\|G^{(i)}\|}, \frac{t^2}{\|G^{(i)}\|^2} \right\} \right)
\]

holds for any $t > 0$.

It remains to compute $\|G^{(i)}\|_F$ and $\|G^{(i)}\|$. Since $G^{(i)}$ is a symmetric Toeplitz matrix, we have

\[
\|G^{(i)}\|_F^2 = \sum_{\alpha, \beta=1}^{n} |G^{(i)}_{\alpha, \beta}|^2 \leq 2 \sum_{l=0}^{n-1} \frac{1}{n - l} \leq 2 \log n.
\]

It then follows that

\[
\|G^{(i)}\| \leq \|G^{(i)}\|_F \leq \sqrt{2 \log n}.
\]

Substituting these two bounds into (97) immediately yields that there exists a constant $c_{12} > 0$ such that

\[
\lambda_i \leq c_{12} \log^2 n, \quad 1 \leq i \leq 2n - 2
\]

holds with probability exceeding $1 - \frac{1}{n^2}$. This taken collectively with (96) concludes the proof.
Proof of Lemma 6

For technical convenience, we introduce another collection of events

\[\forall 1 \leq i \leq m : \quad F_i := \{ \| B_i \|_F \leq 20n \log n \} . \]

Since the restriction of \(B_i \) to Toeplitz matrices is isotropic and \(TB_i^* B_i T \succeq 0 \), we have \(T = E(TE_i^* B_i T) \geq E(TE_i^* B_i T 1_{F_i}) \succeq E(TE_i^* B_i T 1_{F_i \cap E_i}) \), which yields

\[\| E(TE_i^* B_i T 1_{E_i}) - T \| \leq \| E(TE_i^* B_i T 1_{E_i \cap F_i}) - T \| . \] (101)

Thus, it is sufficient to evaluate \(\| E(TE_i^* B_i 1_{E_i \cap F_i}) - T \| . \) To this end, we adopt an argument of similar spirit as [40] Appendix B. Write

\[T = E(TE_i^* B_i T) = E(TE_i^* B_i T 1_{E_i \cap F_i}) + E(TE_i^* B_i T 1_{E_i \cup F_i}) , \]

and, consequently,

\[\| E(TE_i^* B_i T 1_{E_i \cap F_i}) - T \| = \| E(TE_i^* B_i T 1_{E_i \cup F_i}) \| \leq \| E(TE_i^* B_i T 1_{E_i \cap F_i}) \| + \| E(TE_i^* B_i T 1_{F_i}) \| , \] (102)

which allows us to bound \(\| E(TE_i^* B_i 1_{E_i \cap F_i}) \| \) and \(\| E(TE_i^* B_i 1_{F_i}) \| \) separately.

First, it follows from the identity \(\| B_i \|_F \geq c_{20} (n + 2\sqrt{nt} + 2t) \) (103) that

\[\| E(TE_i^* B_i 1_{E_i \cap F_i}) \| \leq (20n \log n)^2 P(E^c) < \frac{1}{n^2} . \]

Second, applying the tail inequality on the quadratic form (e.g. [47] Proposition 1.1)) yields

\[P \left(\| A_i \|_F \geq c_{20} (n + 2\sqrt{nt} + 2t) \right) \leq e^{-t} . \] (104)

Thus, for any \(t > (20n \log n)^2 \), one has

\[P \left(\| A_i \|_F \geq \sqrt{\frac{t}{3}} \right) \leq e^{-c_{21} \sqrt{t}} \] (105)

for some absolute constant \(c_{21} > 0 \). Recall that \(\| B_i \|_F \leq \sqrt{3} \max \{ \| A_{3i-2} \|_F , \| A_{3i-1} \|_F , \| A_{3i} \|_F \} \), which indicates

\[P \left(\| B_i \|_F^2 \geq t \right) \leq P \left(\| A_{3i-1} \|_F^2 \geq \frac{t}{3} \right) + P \left(\| A_{3i-2} \|_F^2 \geq \frac{t}{3} \right) + P \left(\| A_{3i} \|_F^2 \geq \frac{t}{3} \right) \leq 3P \left(\| A_i \|_F \geq \sqrt{\frac{t}{3}} \right) \leq 3e^{-c_{21} \sqrt{t}} := g(t) . \]

A similar approach as introduced in [40] Appendix B] gives

\[\| E(TE_i^* B_i 1_{F_i}) \| \leq E \left(\| B_i \|_F^2 1_{F_i} \right) \leq (20n \log n)^2 g \left((20n \log n)^2 \right) + \int_{(20n \log n)^2}^{\infty} g(t) \frac{1}{n^2} dt \leq \frac{c_{15}}{n^2} \] (106)

for some absolute constant \(c_{15} > 0 \). This taken collectively with (101), (102), and (105) yields

\[\| E(TE_i^* B_i T 1_{E}) - T \| \leq \| E(TE_i^* B_i T 1_{E_i \cap F_i}) - T \| \leq \frac{\hat{c}_{15}}{n^2} \]

for some absolute constant \(\hat{c}_{15} > 0 \).
I Proof of Lemma 9

Dudley’s inequality [48, Theorem 11.17] allows us to bound the supremum of the Gaussian process as follows

$$E \sup_{T \in M_f} \left| g_t \sum_{i=1}^{m} |B_i (X)|^2 \right| \leq 24 \int_{0}^{\infty} \log^{\frac{1}{2}} N \left(D_2^2, d (\cdot, \cdot), u \right) du,$$

where $D_r^2 := \{X \mid \|X\|_F = 1, \text{rank} (X) \leq 2r \}$. Here, $N (Z, d (\cdot, \cdot), u)$ denotes the smallest number of balls of radius u centered in points of Z needed to cover the set Z, under the pseudo metric $d (\cdot, \cdot)$ defined as follows

$$d (X, Y) := \sqrt{\sum_{i=1}^{m} \left(|B_i (X)|^2 - |B_i (Y)|^2 \right)^2}.$$

For any (X, Y) that satisfy $\|X\|_F = \|Y\|_F = 1$, rank $(X) \leq r$ and rank $(Y) \leq r$, the pseudo metric satisfies

$$d (X, Y) \leq \sqrt{2 \sum_{i=1}^{m} |B_i (X) - B_i (Y)|^2 \max_{i=1}^{m} |B_i (X)|,}$$

where the last inequality relies on the observation that $\|X\|_F = \|Y\|_F = 1$.

If we introduce the quantity

$$R := \sup_{T \in M_f} \left\| \sum_{i=1}^{m} P_T B_i^* B_i T \right\|,$$

and define another pseudo metric $\|\cdot\|_B$ as

$$\|X\|_B := \max_{i=1}^{m} |\langle B_i, X \rangle|,$$

then $d (X, Y) \leq 2 \sqrt{R} \|X - Y\|_B$, which allows us to bound

$$\int_{0}^{\infty} \log^{\frac{1}{2}} N \left(D_2^2, d (\cdot, \cdot), u \right) du \leq \int_{0}^{\infty} \log^{\frac{1}{2}} N \left(D_2^2, 2 \sqrt{2R} \|\cdot\|_B, u \right) du$$

$$= \int_{0}^{\infty} \log^{\frac{1}{2}} N \left(\frac{1}{\sqrt{2r}} D_2^2, \|\cdot\|_B, \frac{u}{4R \sqrt{r}} \right) du$$

$$\leq \int_{0}^{\infty} \log^{\frac{1}{2}} N \left(D_1^1, \|\cdot\|_B, \frac{u}{4R \sqrt{r}} \right) du \leq 4R \sqrt{r} \int_{0}^{\infty} \log^{\frac{1}{2}} N \left(D_1^1, \|\cdot\|_B, u \right) du.$$

Here,

$$D_1^1 := \{X \mid \|X\|_* \leq 1, \text{rank} (X) \leq r \}, \quad \text{and} \quad D^1 := \{X \mid \|X\|_* \leq 1 \},$$

and we have exploited the containment $\frac{1}{\sqrt{2r}} D_2^2 \subseteq D^1 \subseteq D_1^1$. Hence it suffices to bound

$$E_2 := 4R \sqrt{r} \int_{0}^{\infty} \log^{\frac{1}{2}} N \left(D_1^1, \|\cdot\|_B, u \right) du.$$
It remains to bound the covering number (or metric entropy) of the nuclear-norm ball D^1. Repeating the well-known procedure as in [49, Page 1113] yields
\[
\int_0^\infty \sqrt{\log N (D^1, \|\cdot\|_B, u)} \, du \leq C_{10} K (\log n)^{5/2} \sqrt{\log m}
\leq C_{11} K \log^3 n
\]
for some constants $C_{10}, C_{11} > 0$. This taken collectively with (108) and (112) gives that conditioning on B_i’s, one has
\[
\mathbb{E} \sup_{T \in \mathcal{M}^2_r} \left\| P_T \left(\sum_{i=1}^m q_i B_i^* B_i \right) P_T \right\| \leq C_{14} \sqrt{r} K \log^3 n \sqrt{\sup_{T : T \in \mathcal{M}^2_r} \left\| \sum_{i=1}^m P_T B_i^* B_i P_T \right\|}. \tag{113}
\]
for some absolute constant $C_{14} > 0$.

References

[1] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no. 7, pp. 984–995, Jul 1989.

[2] N. Karoui, “Operator norm consistent estimation of large-dimensional sparse covariance matrices,” The Annals of Statistics, pp. 2717–2756, 2008.

[3] S. Muthukrishnan, Data streams: Algorithms and applications. Now Publishers Inc, 2005.

[4] R. C. Daniels and R. W. Heath, “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine, vol. 2, no. 3, pp. 41–50, 2007.

[5] A. Jung, G. Taubock, and F. Hlawatsch, “Compressive spectral estimation for nonstationary random processes,” IEEE Transactions on Information Theory, vol. 59, no. 5, May 2013.

[6] R. G. Gallager, “Information theory and reliable communication,” 1968.

[7] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp. 2146–2157, 1994.

[8] M. Raymer, M. Beck, and D. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Physical review letters, vol. 72, no. 8, p. 1137, 1994.

[9] L. Tian, J. Lee, S. B. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Optics Express, vol. 20, no. 8, p. 8296, 2012.

[10] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming,” Communications on Pure and Applied Mathematics, 2012.

[11] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” arXiv preprint arXiv:1206.0102, 2012.

[12] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” Advances in Neural Information Processing Systems (NIPS), 2013.

[13] E. J. Candes and X. Li, “Solving quadratic equations via PhaseLift when there are about as many equations as unknowns,” Foundations of Computational Mathematics, 2013.

[14] X. Li and V. Voroninski, “Sparse signal recovery from quadratic measurements via convex programming,” SIAM Journal on Mathematical Analysis, 2013.

[15] M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier and Gaussian measurements,” Communications on Pure and Applied Mathematics, vol. 61, no. 8, pp. 1025–1045, 2008.
[16] D. Gross, “Recovering low-rank matrices from few coefficients in any basis,” IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1548–1566, March 2011.

[17] Y.-K. Liu, “Universal low-rank matrix recovery from pauli measurements,” in Advances in Neural Information Processing Systems, 2011, pp. 1638–1646.

[18] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foundations of Computational Mathematics, vol. 9, no. 6, pp. 717–772, April 2009.

[19] Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured matrix completion,” IEEE Trans. on Information Theory, 2013, submitted.

[20] I. M. Johnstone, “High dimensional statistical inference and random matrices,” in Proceedings of the International Congress of Mathematicians: Madrid, August 22-30, 2006: invited lectures, 2006, pp. 307–333.

[21] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[22] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[23] Z. Tian, Y. Tafesse, and B. M. Sadler, “Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 1, pp. 58–69, 2012.

[24] G. Leus and Z. Tian, “Recovering second-order statistics from compressive measurements,” in Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011, pp. 337–340.

[25] G. Dasarathy, P. Shah, B. N. Bhaskar, and R. Nowak, “Sketching sparse matrices,” arXiv preprint arXiv:1303.6544, 2013.

[26] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization: Optimality conditions and algorithms,” to appear in SIAM Optimization, 2013.

[27] K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery of sparse 1-D signals from the magnitudes of their Fourier transform,” in IEEE ISIT, 2012, pp. 1473–1477.

[28] E. Oja, Subspace methods of pattern recognition. Research Studies Press England, 1983, vol. 4.

[29] I. Mitliagkas, C. Caramanis, and P. Jain, “Memory limited, streaming PCA,” Advances in Neural Information Processing Systems (NIPS), 2013.

[30] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking of subspaces from highly incomplete information,” Proc. Allerton 2010, 2010.

[31] Y. Chi, Y. Eldar, and R. Calderbank, “Petrels: Parallel subspace estimation and tracking by recursive least squares from partial observations,” Signal Processing, IEEE Transactions on, vol. 61, no. 23, pp. 5947–5959, 2013.

[32] M. Brand, “Incremental singular value decomposition of uncertain data with missing values,” in ECCV 2002. Springer, 2002, pp. 707–720.

[33] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization,” SIAM Review, vol. 52, no. 3, pp. 471–501, 2010.

[34] E. Candès and Y. Plan, “Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements,” IEEE Transactions on Information Theory, vol. 57, no. 4, pp. 2342–2359, 2011.

[35] H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, “Compressive phase retrieval from squared output measurements via semidefinite programming,” arXiv preprint arXiv:1111.6323, 2011.

[36] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9, pp. 589–592, 2008.
[37] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank, “Efficient and robust compressed sensing using optimized expander graphs,” IEEE Transactions on Information Theory, vol. 55, no. 9, pp. 4299–4308, 2009.

[38] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[39] M. Talagrand, “Majorizing measures: the generic chaining,” The Annals of Probability, pp. 1049–1103, 1996.

[40] E. Candes and Y. Plan, “A probabilistic and RIPless theory of compressed sensing,” IEEE Transactions on Information Theory, vol. 57, no. 11, pp. 7235–7254, 2011.

[41] T. Tao, Topics in Random Matrix Theory, ser. Graduate Studies in Mathematics. Providence, Rhode Island: American Mathematical Society, 2012.

[42] L. Demanet and P. Hand, “Stable optimizationless recovery from phaseless linear measurements,” arXiv preprint arXiv:1208.1803, 2012.

[43] U. Grenander and G. Szegö, Toeplitz forms and their applications. Univ of California Press, 1958.

[44] R. Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” Compressed Sensing, Theory and Applications, pp. 210 – 268, 2012.

[45] D. L. Hanson and F. T. Wright, “A bound on tail probabilities for quadratic forms in independent random variables,” The Annals of Mathematical Statistics, vol. 42, no. 3, pp. 1079–1083, 1971.

[46] M. Rudelson and R. Vershynin, “Hanson-Wright inequality and sub-Gaussian concentration,” arXiv preprint arXiv:1306.2872, June 2013.

[47] D. Hsu, S. M. Kakade, and T. Zhang, “A tail inequality for quadratic forms of sub-Gaussian random vectors,” Electronic Communications in Probability, vol. 17, no. 52, 2012.

[48] M. Ledoux and M. Talagrand, Probability in Banach Spaces: isoperimetry and processes. Springer, 1991, vol. 23.

[49] G. Aubrun, “On almost randomizing channels with a short Kraus decomposition,” Communications in Mathematical Physics, vol. 288, no. 3, pp. 1103–1116, 2009.