Neogene tectonics and climate forcing of carnivora dispersals between Asia and North America

H. Jiang¹, T. Deng², Y. Li¹,³, and H. Xu¹

¹State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
²Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
³University of Chinese Academy of Sciences, Beijing 100049, China

Received: 18 July 2015 – Accepted: 12 August 2015 – Published: 27 August 2015

Correspondence to: H. Jiang (hcjiang@ies.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Exchange records of terrestrial mammals can be combined with available tectonic and climatic documents to evaluate major biological and environmental events. Previous studies identified four carnivoran dispersals between Eurasia and North America in the Neogene, namely, at ∼20, 13–11, 8–7, and ∼4 Ma. In order to evaluate driving mechanism of these biological events, we collected, compared and analyzed a large number of published records. The results indicate that the carnivoran dispersal from Eurasia to North America at ∼20 Ma was probably caused by intense tectonic movements in Asia. During 13–11 Ma, global cooling possibly drove the mammal exchanges between Eurasia and North America. By comparison, the carnivoran dispersal from Eurasia to North America at 8–7 Ma was probably caused by the combination of global cooling and tectonic movements of the Tibetan Plateau. Similar to during 13–11 Ma, the carnivoran exchanges between Eurasia and North America at ∼4 Ma were possibly driven by global cooling.

1 Introduction

Widely distributed terrestrial mammals were highly mobile during the Cenozoic Era. They exchanged frequently between the mainland commonly corresponding to global and regional environmental changes, such as significant climate changes, major block reorganizations, and relevant biogeographic changes. Thus exchange records of terrestrial mammals can be combined with available tectonic and climatic documents to evaluate major biological and environmental events, especially about occurrence time and driving mechanism (e.g. Flynn and Swisher III, 1995; Eronen and Rook, 2004; Kohn and Fremd, 2008; Eronen et al., 2012). However, such study is usually limited by research advances of both aspects: major exchange events of mammals and remarkable environmental events.
A reliable reconstruction of faunal exchange history depends heavily on solid support from both the abundant fossil records and a stable classification. As migrants from Eurasia to America, Repenning (1967) listed 9 genera (Simocyon, Indarctos, Agriotherium, Plionarctos, Lutravus, Eomelivora, Plesiogulo, Lutra, and Machairodus) from the Hemphillian mammal faunas and 7 genera (Lynx, Trigonictis, Canimartes, Enhydra, Enhydriodon, Ursus, and Chasmaporthetes) from the Blancan mammal faunas. This is an early attempt though with some degree of uncertainty. Similar endeavors were made by Korotkevitch and Topachevskii (1986) and by Kurtén (1986). Later, Tedford et al. (1987) presented 38 North American Neogene carnivorans as exotic taxa and most of them were believed to have migrated from Eurasia. This contributed greatly in our understanding of Neogene mammal faunal exchange history. Furthermore, considerable progress has been made in the carnivoran fossil records and stable classification since Tedford et al.'s fundamental contribution (Tedford et al., 2004). Based on published fossil records, Qiu (2003) identified three major carnivoran dispersal waves of filter-bridge type between Eurasia and North America in the Neogene. The first occurred at ∼20 Ma and the carnivorans migrating from Eurasia to North America included Cynelos, Ysengrinia, Amphicyon, Cephalogale, Phoberocyon, Ursavus, Potamotherium, and Proailurus. The second wave occurred at 7–8 Ma and the carnivorans migrating from Eurasia to North America included Indarctos, Agriotherium, Simocyon, Eomelivora, Plesiogulo, and Machairodus. The last wave took place at ∼4 Ma and the Eurasian emigrants found in North America are Ursus, Parailurus, Lynx (?), Felis (?), Homotherium, and Chasmaporthetes (Tseng et al., 2013). In the meantime, Megantereon and Pannonictis migrated from North America to Eurasia. In addition, at about 13 Ma, Leptarctus migrated from North America to Eurasia while Sansanosmilus and Plithocyon migrated from Eurasia to North America (Qiu, 2003; Wang et al., 2003a). Given that Asia and Western North America became connected by land across the Bering Sea in the Mid-Cretaceous and the continents remained joined by the Bering land bridge until the Pliocene (Marincovich and Gladenkov, 1999; Sanmartin...
et al., 2001), these migrating events provide a chance to untangle major environmental events and palaeogeographic changes during the Late Cenozoic.

Recently, a growing body of advance has been made on uplift of the Tibetan Plateau and palaeoenvironmental evolution in East Asia during the Late Cenozoic (e.g. Jiang et al., 2007, 2010; Zhang et al., 2010; Jiang and Ding, 2010). This makes it possible for us to compare and analyze land mammal exchange events and significant tectonic and climatic events with an aim to evaluate occurrence timing and driving mechanism of major biological and environmental events during the Late Cenozoic. Accordingly, in this study, we systematically collect tectonic and climate records occurring at ∼ 20, 13–11, 8–7 and ∼ 4 Ma in East Asia, and compare with major carnivoran exchange events between Eurasia and North America. This will help us to gain insight about driving mechanism behind major land mammal exchange and tectonic and climate evolution in East Asia during the Late Cenozoic.

2 Carnivoran dispersal from Eurasia to North America at ∼ 20 Ma probably caused by tectonic movements

Evidence for significant exhumation and deformation of the Himalaya–Tibetan Plateau is widespread during the 25–20 Ma (e.g. Harrison et al., 1992a; Zhang et al., 2010; Xiao et al., 2012). The onset of exhumation and deformation is also reported at 25–20 Ma in the Tianshan, Altyn Tagh, Western and Eastern Kunlun regions (e.g. Jolivet et al., 2001; Sobel et al., 2006). In order to determine the most significant tectonic event during the Mid-Tertiary, we review and analyze a number of studies on the tectonic movements in East Asia (Fig. 2 and Table 1).

Many studies focused on dating the onset of accelerated crustal melting, uplift, and deformation of the Himalaya and the southern Tibet, commonly centering on ∼ 20 Ma (e.g. Zeitler, 1985; Maluski et al., 1988; Hubbard and Harrison, 1989; Noble and Searle, 1995; Hodges et al., 1996; Copeland et al., 1996; Arita et al., 1997; Lee et al., 2000; Najman and Garzanti, 2000; White et al., 2001; Murphy et al., 2002; Tobgay et al., 2004; White et al., 2006; Zhang et al., 2010; Xiao et al., 2012). In order to determine the most significant tectonic event during the Mid-Tertiary, we review and analyze a number of studies on the tectonic movements in East Asia (Fig. 2 and Table 1).
Sedimentary records on the basin flanks of the Himalaya and out into the Indian Ocean generally show a similar change around 20 Ma. About 69% of the Himalayas south of the Indus–Yarlung suture zone, or about $6.7 \times 10^6$ km$^3$, have been denuded since $\sim$ 20 Ma (Einsele et al., 1996). Records of isotopic ratio changes through time provide another window to observe the significant tectonic or environmental change in Asia around 20 Ma. The steepest rise in the strontium isotopic ratio ($^{87}$Sr/$^{86}$Sr) of seawater during the Cenozoic was from 20 to 14.4 Ma (Hodell et al., 1991; Richter et al., 1992; Hodell and Woodruff, 1994). Similarly, lithium isotopes in seawater ($\delta^7$Li$_{SW}$) increased abruptly at $\sim$ 20 Ma, then generally decreased from 20 to 15 Ma (Misra and Froelich, 2012). Hence, the Himalaya and southern Tibet was significantly uplifted and eroded at $\sim$ 20 Ma. This conclusion is consistent with a marked slowdown in the convergence rate between India and Eurasia by more than 40% since 20 Ma (Molnar and Stock, 2009).

Modeling of apatite fission track data from the Songpan–Ganzi Fold Belt suggests that exhumation accelerated $\sim$ 20 Ma in East Tibet, consistent with the mid-Tertiary timing inferred for reactivation of the Wenchuan–Maoxian Fault from zircon fission track data (Arne et al., 1997). Moreover, ages on the Anning transect suggest an early initiation of rapid cooling (ca. 20 Ma, Clark et al., 2005). Thus significant tectonic movements occurred along the eastern margin of the Tibetan Plateau at $\sim$ 20 Ma.

Along the northeastern margin of the Plateau, several basins also record significant tectonic changes around 20 Ma, such as the transitions of sedimentary facies in the Lanzhou and Qaidam Basins (Yue et al., 2001; Qiu et al., 2001; Lu and Xiong, 2009), the onset of widespread contractional deformation in the Gonghe Basin (Craddock et al., 2011; Lu et al., 2012), the initiated deposition of Xunhua Basin (Hough et al., 2011), and the transition to alluvial facies in the Hualong Basin (Lease et al., 2012). Similarly, basins and bounding mountain ranges on the northern margin of the Plateau also experienced increased deformation around 20 Ma, such as an unroofing event in the Western Kunlun range (Mock et al., 1999; Li et al., 2007, 2008). Thrusting in the southern Tianshan range probably initiated $\sim$ 20 Ma (Huang et al., 2006). Even farther...
north, deformation is also recorded in the Junggar Basin around 20 Ma (Ji et al., 2008; Tang et al., 2011, 2012).

Together, these studies suggest that the most significant tectonic activities along the northern, the southern, and the eastern margins of the Plateau are temporally synchronous, perhaps as a regional delayed response to the Indo–Eurasian collision (Sun and Zheng, 1998; Zhang et al., 2010). In contrast, no obvious climate changes in East Asia are observed at ~20 Ma. For example, in the Kuche Basin of Xinjiang Province (Fig. 3a and b, Li et al., 2006; Huang et al., 2006) and the Qaidam basin of Qinghai Province (Fig. 3c–f, Lu and Xiong, 2009; Lu et al., 2014), Northwest China, most sedimentary proxies do not indicate a clear climate change at ~20 Ma, with the exception of an SUS increase of the sediments in the Kuche Basin (Fig. 3b), probably because of provenance change caused by tectonic activities on the Tian Shan at ~20 Ma (Huang et al., 2006). Widespread deformation in Central to East Asia was driven by the intense uplift of the Himalaya–Tibetan Plateau at ~20 Ma (Fig. 2 and Table 1). With such widespread deformation recorded, there also is a large impact on the faunal changes in Asia.

### 3 Mammal exchanges between Eurasia and North America during 13–11 Ma possibly driven by global cooling

At about 13 Ma, *Leptarctus* migrated from North America to Asia while *Sansanosmilus* migrated from Eurasia to North America (Fig. 1, Qiu, 2003). At 11.1 Ma (Garces et al., 1997) or 11.5 Ma (Sen, 1997), *Hipparion* migrated from North America to Eurasia. In the Linxia Basin, Gansu Province, Northwest China, the average δ¹⁸O values of tooth enamel of rhinos shows a large positive shift during 13–11 Ma (Wang and Deng, 2005), well correlated with the substantial δ¹⁸O enrichment at 12 Ma from lacustrine carbonates in the same basin (Dettman et al., 2003). The latter was believed to reflect a shift to more arid conditions and thus a major reorganization of atmospheric circulation patterns possibly caused by a significant uplift of the Tibetan Plateau. Such inference was
then supported by several studies from the Dahonggou section (changes in sedimentation facies and SUS, Lu and Xiong, 2009), the Wulan section (changes in sedimentation facies and mean declination, Lu et al., 2012), and the Huaitoutala section (changes in the $\delta^{18}O$ of lacustrine carbonates, Zhuang et al., 2011) in the Qaidam Basin. That is to say, these regions in the northeast Tibetan Plateau experienced significant tectonic movements at $\sim 12$ Ma.

Nevertheless, it is noteworthy that the East Antarctic Ice Sheet expanded significantly since 14 Ma and initiated the Mid-Miocene Climate Transition (MMCT), probably causing a marked cooling in East Asia during 14–11 Ma (Fig. 4a, Jiang and Ding, 2008). This aroused a wide curiosity about whether the Tibetan uplift or the global cooling has been the first-order driver controlling stepwise drying in Asia (e.g. Jiang et al., 2008; Lu et al., 2010; Zhuang et al., 2011; Miao et al., 2012; Lu and Guo, 2014). In order to explore the evolution of climate through the MMCT, Jiang et al. (2007, 2008) analyzed multiple proxies from the 2900-m-thick fluviolacustrine sediment sequence at Sikouzi, Ningxia, China, such as pollen humidity index (Fig. 4a), redness (Fig. 4b), Lightness (Fig. 4c), Susceptibility (Fig. 4e), TIC, and TOC. The results indicate that the palaeoclimate in East Asia has got cooler and drier since 12–11 Ma. This climate change also left imprints in many other regions of the world, probably linked with the marked expansion of the East Antarctic Ice Sheet and resultant positive feedbacks of vegetation change and greenhouse gas fluctuations (Jiang et al., 2008). This inference is supported by a good correlation of the thick eolian silt sequences of Asian drying from the Early Miocene to Late Pleistocene with global cooling (Lu et al., 2010). Later, Zhuang et al. (2011) attributed the isotope-constrained intensified aridity in the Qaidam Basin at 12 Ma to retreat of Paratethys from central Asia, blocking moisture-bearing air masses by the elevated south-central Tibetan Plateau, and enhanced isolation and outward growth of the northern Tibetan Plateau. In these contexts, Miao et al. (2012) reviewed the climate records from five separate regions (Europe, high-latitude Asia, East Asia, South Asia, Central Asia) of Eurasia during 17–5 Ma and compared them with the global deep-sea oxygen isotope records. The results indicated that compiled moisture proxy data from
the four regions surrounding Central Asia co-varied and correlated with each other (Miao et al., 2012), supporting the inference that global cooling provided a dominant driving factor for the drying of Eurasia (Jiang et al., 2008; Lu et al., 2010; Lu and Guo, 2014). Accordingly, global cooling is believed to have been responsible for the mammal exchanges between North America and Eurasia during 13–11 Ma.

Noticeably, both the climate and tectonic records and the observed mammal fauna are relatively few in East Asia during the MMCT. With further investigations and more climatic and tectonic records published in the future, the timing interval of mammal exchange between North America and Eurasia during the MMCT would be narrower and clearer.

4 Carnivoran dispersal from Eurasia to North America at 8–7 Ma probably caused by the combination of global cooling and tectonic movements of the Tibetan Plateau

The pollen record from Guyuan, Ningxia, China, indicates that the East-Asian summer monsoon declined significantly from 14.25–11.35 Ma and kept weak since 11.35 Ma (Fig. 4a, Jiang and Ding, 2008). This is well consistent with marked development of herbs and shrubs in the vast region north to the Yangtze River of South China during the late Middle to Late Miocene as synthesized by Jiang and Ding (2009), probably correlated with evident global cooling caused by significant expansion of the East Antarctic Ice Sheet during the MMCT (e.g. Woodruff and Savin, 1989; Flower and Kenett, 1994; Ohta et al., 2003; Shevenell et al., 2004; Zachos et al., 2001, 2008). Following the MMCT, the climate evolution in East Asia during 11–8 Ma is pivotal to understanding the fauna exchange between North America and Eurasia at 8–7 Ma.

In Ningxia Province, the redness (a*) record of the Sikouzi fluviolacustrine sediments showed a slight decrease from 11 to 8 Ma (Fig. 4b), possibly reflecting a declining oxidation caused by global cooling (Jiang et al., 2007, 2008). Such a declining oxidation increased magnetic minerals in the sediments, which is mirrored as a continuous in-
crease of SUS values from 11 to 8 Ma (Fig. 4e, Jiang et al., 2008). The Sikouzi light-
ness (L*) record during 11–8 Ma maintained higher values than previously (Fig. 4c),
implying high contents of carbonate in sediments and thus a more arid environment
(Jiang et al., 2008). Its slight decreasing trend from 11 to 8 Ma is possibly related to
the evident increase in sedimentation rate during this period, especially during the late
period (Jiang and Ding, 2008). Such inference is confirmed by an evident increase of
SUS during this period (Fig. 4e). Furthermore, the pollen record from the Linxia Basin
on the northeastern margin of the Tibetan Plateau indicates that, during 11–8 Ma, the
conifers showed a steep decline while the herbs and shrubs increased significantly (Ma
et al., 1998), implying a rapid drying environment. Similarly, the coniferous pollen in the
Qaidam Basin decreased while the xerophytes increased during 11–8 Ma (Miao et al.,
2011), indicating that drying in the Qaidam intensified during this period.

Therefore, it is clear that the climate evolution in East Asia during 11–8 Ma is char-
acterized by slow cooling and gradual drying. This is well correlated with further en-
richment of the integrated δ¹⁸O of marine benthic foraminifera (Fig. 5a, Zachos et al.,
2008) and the significant sea-level fall during this period (Fig. 5b, Haq et al., 1987).
Such a global declining climate during 11–8 Ma probably resulted in stepwise enhance-
ment of the East Asian winter monsoon (transporting relatively coarse dust particles)
and of the westerlies (transporting relatively fine dust particles), providing important
transporting agents and arid geographic locations for widespread dust accumulation in
North China and even the western Pacific since ∼ 8 Ma.

Previous studies indicate that the Tibetan Plateau experienced significant tectonic
movements at ∼ 8 Ma (e.g. Pan and Kidd, 1992; Harrison et al., 1995; Kirby et al.,
2002; Fang et al., 2005; Zheng et al., 2006; Lease et al., 2011; Duvall et al., 2012). As
shown in Table 2 and Fig. 6, we collected 18 records revealing that tectonic movements
occurred at 17 sites in and around the Plateau from 8.5 to 7.5 Ma. They are mainly
distributed in the eastern and northeastern Tibetan Plateau, reaching up to 11 sites.
By comparison, only 4 sites of tectonic movements were observed in the Himalaya
and southern Tibet. One location in the northern Plateau documented tectonic move-
ment at this time. Accordingly, it is speculated that tectonic activities in the eastern and northeastern Plateau generated large quantities of dust materials since 8.5–7.5 Ma and provided adequate material sources for widespread dust accumulation in North China and even the western Pacific. This is probably responsible for the significant increase of eolian deposit from 4 sites during 14–7.5 Ma to 14 sites during 7.5–3.6 Ma in North China (Lu et al., 2010). Furthermore, at some sites, red clay overlies much older rock of a different type, such as Lingtai (7.05 Ma, Ding et al., 1998a, 1999), Xifeng (7.2 Ma, Sun et al., 1998), Jiaxian (8.35 Ma, Qiang et al., 2001), and Chaona (8.1 Ma, Song et al., 2007). Almost at the same time, both sedimentation rate and mean grain-size of sediments increased clearly in North China (e.g. Lu et al., 2004, 2007; Guo et al., 2002; Qiao et al., 2006).

Therefore, significant environmental events characterized by widespread dust accumulation occurred at 7–8 Ma in North China and the western Pacific (e.g. Ding et al., 1998b; Rea et al., 1998; Sun et al., 1998; Pettke et al., 2000; Guo et al., 2001; Qiang et al., 2001). Such events are responsible for the carnivoran dispersal from Eurasia to North America at 8–7 Ma, probably driven by a combination of continuous global cooling and tectonic movements of the eastern and northeastern Tibetan Plateau.

5 Carnivoran exchanges between Eurasia and North America at ~4 Ma possibly driven by global cooling

Previous studies indicate that climate was relatively warm and wet during the Early Pliocene and declined during the Late Pliocene, especially in East China (e.g. Yu and Huang, 1993; Ding et al., 2001; Guo et al., 2004; Wu et al., 2006; Jiang and Ding, 2009; Xiong et al., 2010). This arouses a wide interest in the beginning of climate recession during the Late Pliocene. The grain-size record of the Sikouzi section at Guyuan, Ningxia, China suggests that Md (median grain size) ranged from 1.6 to 47.1 µm with a low mean value of 10.9 µm during 7.0–4.2 Ma but oscillated with large amplitudes from 2.2 to 401.2 µm (average 31.0 µm) during 4.2–0.07 Ma (Fig. 4d, Jiang
and Ding, 2010). Similarly, the Sikouzi SUS curve oscillated slightly (2.6–22.4, mean 12.7) during 7.0–4.2 Ma. Since 4.2 Ma, the amplitudes increased abruptly (1.0–31.6, mean 14.0) with a distinct increase from 4.2 to 3.0 Ma, probably reflecting enhancement of magnetite concentration in sediments influenced by temperature decline and aridity increase (Fig. 4e, Jiang et al., 2008). The Sikouzi L* value was generally less than 61.6 (52.8–65.7, mean 59.8) during 7.0–4.2 Ma and higher than 61.6 (56.7–67.6, mean 62.4) during 4.2–0.07 Ma, possibly indicating an increase in carbonate content and thus growing aridity of the sedimentation environment (Fig. 4c, Jiang et al., 2008). The Sikouzi redness (a*) was generally high (8.1–12.9, mean 10.5) during 7.0–4.2 Ma and decreased distinctly (8.0–13.2, mean 10.1) during 4.2–0.07 Ma, possibly implying a stepwise decrease in temperature influencing the oxidation of iron-bearing minerals in arid to semi-arid regions (Fig. 4b, Jiang et al., 2007, 2008). These records and their inferred climate changes have similar responses for the Lingtai section (Ding et al., 1998a, 2001; Sun et al., 1998), the Xifeng section (Guo et al., 2001, 2004; Wu et al., 2006), the Chaona section (Bai et al., 2009), and the Baishui section (Xiong et al., 2002, 2003, 2010) in the Chinese Loess Plateau (CLP).

What’s more, the climate change at ∼ 4 Ma also left imprints in the low-latitude South China Sea (SCS) and the high-latitude Lake Baikal. The L* of sediments at ODP Site 1148 in the northern SCS was high (41.2–58.0, mean 50.3) during 7.0–4.0 Ma and declined distinctly (54.8–35.2, mean 44.5) since 4.0 Ma, suggesting a decrease in carbonate content, increase in terrigenous sediments and a lowering of sea level controlled by global cooling (Hay et al., 1988; Tian et al., 2008). This inference is supported by the benthic δ¹⁸O record of the same core (Tian et al., 2008) and the grain-size record at ODP Site 1146 (Wan et al., 2007). Similarly, oscillating amplitude of the grain-size record of core BDP98 (600 m) from Academician ridge (53°44.40′ N, 108°24.30′ E) in central Lake Baikal was much smaller during 7.0–4.0 Ma and increased afterwards, especially after 2.75 Ma (Kashiwaya et al., 2001, 2003). This climate recession since ∼ 4 Ma in the Northern Hemisphere agrees well with the stepwise enrichment of the integrated global δ¹⁸O record of marine benthic foraminifera since ∼ 4 Ma (Fig. 5a,
Lisiecki and Raymo, 2005; Zachos et al., 2008), and is also correlated with strengthened periodicity of sea-level fluctuations since ∼4 Ma (Fig. 5b, Haq et al., 1987).

In general, the above data suggest that Late Cenozoic global climate probably entered a new state at ∼4 Ma. The factor responsible for this significant climate change deserves further investigation. The change in depositional facies and increase in sedimentation rate of the Yechecheng section in the western Kunlun Mountains reflects the main uplift of the northwestern Tibetan Plateau ca. 4.5–3.5 Ma (Zheng et al., 2000, 2006). Nevertheless, more studies indicate that the Tibetan uplift subsequent to ca. 3.6 Ma was intense, such as the upper reaches of the Yellow River (Li et al., 1996, 1997), the Linxia Basin (Fang et al., 2005), the Guide Basin (Pares et al., 2003), the Guyuan Basin (Jiang et al., 2007; Jiang and Ding, 2010), and the Sanmenxia Basin (Wang et al., 2002). Regional unconformities at ∼4 Ma are observed in the Great Plains and western United States (Hanneman et al., 2003; Hanneman and Wideman, 2006).

However, all of these apparently could not explain the increases in sedimentation rates as well as in grain sizes of sediments at 4–2 Ma in a variety of settings around the globe (Zhang et al., 2001). Increase in erosion rates caused by global cooling is a major feature of environmental changes in various regions around the globe at ∼4 Ma (Zhang et al., 2001; Jiang et al., 2010). Recent climate modeling results suggest that the progressive closure of the Central American Seaway (CAS) initiated strengthening of Atlantic meridional overturning circulation (AMOC) between 4.8 and 4.0 Ma, leading to both warming of the Northern Hemisphere (NH) and cooling of the Southern Hemisphere (SH) (Steph et al., 2010). Cooling of the SH would induce a marked development of the Antarctic Ice Sheets at ∼4 Ma, pushing the Intertropical Convergence Zone northward. This was superimposed on warming of the NH and brought more precipitation to the middle latitudes of the NH, resulting in increases in coarse-grained sediments in the Guyuan Basin since 4.2 Ma. On the other hand, development of the Antarctic Ice Sheets would induce global cooling and enhancement of physical weathering, initiating increases in sedimentation rates as well as increases in grain size from Lake Bikal to the CLP to the SCS (Jiang et al., 2010). Therefore, the closure of the CAS
during 4.8–4.0 Ma and its influence on ocean circulation was possibly the major forcing factor for global cooling since ~ 4 Ma, which should be responsible for carnivoran exchanges between Eurasia and North America at ~ 4 Ma.

6 Conclusions

Previous studies identified four carnivoran dispersals between Eurasia and North America in the Neogene, namely, at ~ 20, 13–11, 8–7, and ~ 4 Ma. In order to evaluate driving mechanism of these biological events, we collected, compared and analyzed a large number of published records. The results indicate that the carnivoran dispersal from Eurasia to North America at ~ 20 Ma was probably caused by intense tectonic movements in Asia. During 13–11 Ma, global cooling possibly drove the mammal exchanges between Eurasia and North America. By comparison, the carnivoran dispersal from Eurasia to North America at 8–7 Ma was probably caused by the combination of global cooling and tectonic movements of the Tibetan Plateau. Similar to during 13–11 Ma, the carnivoran exchanges between Eurasia and North America at ~ 4 Ma were possibly driven by global cooling.

Acknowledgements. This work was financially supported by the National Natural Science Foundation of China (Grants 40972117) and the State Key Laboratory of Earthquake Dynamics (LED2013A03).

References

Arita, K., Dallmeyer, R. D., and Takasu, A.: Tectonothermal evolution of the Lesser Himalaya, Nepal: constraints from Ar/Ar ages from the Kathmandu Nappe, Isl. Arc, 6, 372–385, 1997.

Arne, D., Worley, B., Wilson, C., Chen, S. F., Foster, D., Luo, Z. L., Liu, S. G., and Dirks, P.: Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau, Tectonophysics, 280, 239–256, 1997.
Bai, Y., Fang, X. M., Nie, J. S., Wang, Y. L., and Wu, F. L.: A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers, Palaeogeogr. Palaeocl., 271, 161–169, 2009.

Caddick, M., Bickle, M., Harris, N., Holland, T., Horstwood, M., Parrish, R. R., and Ahmad, T.: Burial and exhumation history of a Lesser Himalayan schist: Recording the formation of an inverted metamorphic sequence in NW India, Earth Planet. Sc. Lett., 264, 375–390, 2007.

Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W.: Late Cenozoic uplift of southeastern Tibet, Geology, 33, 525–528, 2005.

Copeland, P., LeFort, P., Ray, S. M., and Upreti, B. N.: Cooling history of the Kathmandu crystalline nappe: Ar/Ar results, paper presented at the 11th Himalayan–Karakoram–Tibet Workshop, Flagstaff, Arizona, 1996.

Craddock, W., Kirby, E., and Zhang, H. P.: Late Miocene–Pliocene range growth in the interior of the northeastern Tibetan Plateau, Lithosphere, 3, 420–438, 2011.

Dai, J. G., Wang, C. S., Hourigan, J., Li, Z. J., and Zhuang, G. S.: Exhumation history of the Gangdese Batholith, Southern Tibetan Plateau: evidence from apatite and zircon (U-Th)/He thermochronology, J. Geol., 121, 155–172, 2013.

Dettman, D. L., Fang, X. M., Garzione, C. N., and Li, J. J.: Uplift-driven climate change at 12 Ma: a long $\delta^{18}O$ record from the NE margin of the Tibetan plateau, Earth Planet. Sc. Lett., 214, 267–277, 2003.

Ding, Z. L., Sun, J. M., Yang, S. L., and Liu, T. S.: Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau, Geophys. Res. Lett., 25, 1225–1228, 1998a.

Ding, Z. L., Sun, J. M., Liu, T. S., Zhu, R. X., Yang, S. L., and Guo, B.: Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China, Earth Planet. Sc. Lett., 161, 135–143, 1998b.

Ding, Z. L., Xiong, S. F., Sun, J. M., Yang, S. L., Gu, Z. Y., and Liu, T. S.: Pedostratigraphy and paleomagnetism of a $\sim 7.0$ Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution, Palaeogeogr. Palaeocl., 152, 49–66, 1999.

Ding, Z. L., Yang, S. L., Sun, J. M., and Liu, T. S.: Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma, Earth Planet. Sc. Lett., 185, 99–109, 2001.
Duvall, A. R., Clark, M. K., Avdeev, B., Farley, K. A., and Chen, Z. W.: Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry, Tectonics, 31, TC3014, doi:10.1029/2011TC002969, 2012.

Einsele, G., Ratschbacher, L., and Wetzel, A.: The Himalaya–Bengal fan denudation-accumulation system during the past 20 Ma, J. Geol., 104, 163–184, 1996.

Eronen, J. T. and Rook, L.: The Mio-Pliocene European primate fossil record: dynamics and habitat tracking, J. Hum. Evol., 47, 323–341, 2004.

Eronen, J. T., Fortelius, M., Micheels, A., Portmann, F. T., Puolamaki, K., and Janis, C. M.: Neogene aridification of the Northern Hemisphere, Geology, 40, 823–826, 2012.

Fang, X. M., Garzzone, C., Van der Voo, R., Li, J. J., and Fan, M. J.: Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China, Earth Planet. Sc. Lett., 210, 545–560, 2003.

Fang, X. M., Yan, M. D., Van der Voo, R., Rea, D. K., Song, C. H., Parés, J. M., Gao, J. P., Nie, J. S., and Dai, S.: Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China, Geol. Soc. Am. Bull., 117, 1208–1225, 2005.

Flower, B. P. and Kennett, J. P.: The Middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeoclim., 108, 537–555, 1994.

Flynn, J. J. and Swisher III, C. C.: Chronology of the Cenozoic South American Land Mammal Ages, in: Geochronology, Time-Scales, and Global Stratigraphic Correlation, edited by: Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., Society of Economic Paleontologists and Mineralogists Special Publication, vol. 54, 317–333, 1995.

Garces, M., Cabrera, L., Agusti, J., and Maria Pares, J.: Old World first appearance datum of “Hipparion” horses: Late Miocene large-mammal dispersal and global events, Geology, 25, 19–22, 1997.

Garzzone, C. N., Dettman, D. L., and Horton, B. K.: Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on paleo-elevation estimates for the Tibetan plateau, Palaeogeogr. Palaeoclim., 212, 119–140, 2004.

Gilder, S., Chen, Y., and Sen, S.: Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia, J. Geophys. Res., 106, 30505–30521, 2001.
Godard, V., Pik, R., Lavé, J., Cattin, R., Tibari, B., De Sigoyer, J., Pubellier, M., and Zhu, J.: Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: insight from (U-Th)/He thermochronometry, Tectonics, 28, TC5009, doi:10.1029/2008TC002407, 2009.

Guo, Z. T., Peng, S. Z., Hao, Q. Z., Biscaye, P., and Liu, T. S.: Origin of the Miocene–Pliocene red-earth formation at Xifeng in Northern China and implications for paleoenvironments, Palaeogeogr. Palaeocl., 170, 11–26, 2001.

Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S.: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159–163, 2002.

Guo, Z. T., Peng, S. Z., Hao, Q. Z., Biscaye, P. E., An, Z. S., and Liu, T. S.: Late Miocene–Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China, Global Planet. Change, 41, 135–145, 2004.

Hanneman, D. L. and Wideman, C. J.: Calcic pedocomplexes-Regional sequence boundary indicators in Tertiary deposits of the Great Plains and western United States, in: Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates, edited by: Alonso-Zarza, A. M. and Tanner, L. H., Geological Society of America Special Paper, vol. 416, 1–15, 2006.

Hanneman, D. L., Cheney, E. S., and Wideman, C. J.: Cenozoic sequence stratigraphy of Northwestern USA, in: Cenozoic Systems of the Rocky Mountain Region, edited by: Raynolds, R. G. and Flores, R. M., Rocky Mountain Section Society for Sedimentary Geology, Denver, USA, 135–156, 2003.

Hao, Q. Z. and Guo, Z. T.: Magnetostratigraphy of an early-middle Miocene loess-soil sequence in the western Loess Plateau of China, Geophys. Res. Lett., 34, L18305, doi:10.1029/2007GL031162, 2007.

Haq, B. U., Hardenbol, J., and Vail, P. R.: Chronology of fluctuating sea levels since the Trassic, Science, 235, 1156–1167, 1987.

Harrison, T. M., Copeland, P., Kidd, W. S. F., and Yin, A.: Raising Tibet, Science, 255, 1663–1670, 1992a.

Harrison, T. M., Chen, W. J., Leloup, P. H., Ryerson, F. J., and Tapponnier, P.: An Early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics, J. Geophys. Res., 97, 7159–7182, 1992b.
Harrison, T. M., Copeland, P., Kidd, W., and Lovera, O. M.: Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau, Tectonics, 14, 658–676, 1995.

Hay, W. W., Sloan, J. L., and Wold, C. N.: Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction, J. Geophys. Res., 93, 14933–14940, 1988.

Hodell, D. A. and Woodruff, F.: Variations in the Strontium isotopic ratio of seawater during the Miocene: stratigraphic and geochemical implications, Paleoceanography, 9, 405–426, 1994.

Hodges, K. V., Parrish, R. R., and Searle, M. P.: Tectonic evolution of the central Annapurna Range, Nepalese Himalayas, Tectonics, 15, 1264–1291, 1996.

Hough, B. G., Garzione, C. N., Wang, Z. C., Lease, R. O., Burbank, D. W., and Yuan, D. Y.: Stable isotope evidence for topographic growth and basin segmentation: implications for the evolution of the NE Tibetan Plateau, Geol. Soc. Am. Bull., 123, 168–185, 2011.

Huang, B. C., Piper, J. D. A., Peng, S. T., Liu, T., Li, Z., Wang, Q. C., and Zhu, R. X.: Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China, Earth Planet. Sc. Lett., 251, 346–364, 2006.

Hubbard, M. S. and Mark Harrison, T.: $^{40}$Ar/$^{39}$Ar age constraints on deformation and metamorphism in the main central thrust zone and Tibetan slab, eastern Nepal Himalaya, Tectonics, 8, 865–880, 1989.

Ji, J. L., Luo, P., White, P., Jiang, H. C., Gao, L., and Ding, Z. L.: Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China, J. Geophys. Res., 113, B05102, doi:10.1029/2007JB005064, 2008.

Jiang, H. C. and Ding, Z. L.: A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China, Palaeogeogr. Palaeocl., 265, 30–38, 2008.

Jiang, H. C. and Ding, Z. L.: Spatial and temporal characteristics of Neogene palynoflora in China and its implications for the spread of steppe vegetation, J. Arid Environ., 73, 765–772, 2009.

Jiang, H. C. and Ding, Z. L.: Eolian grain-size signature of the Sikouzi lacustrine sediments (Chinese Loess Plateau): implications for Neogene evolution of the East Asian winter monsoon, Geol. Soc. Am. Bull., 122, 843–854, 2010.
Jiang, H. C., Ding, Z. L., and Xiong, S. F.: Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China, Palaeogeogr. Palaeoccl., 243, 223–234, 2007.
Jiang, H. C., Ji, J. L., Gao, L., Tang, Z. H., and Ding, Z. L.: Cooling-driven climate change at 12–11 Ma: multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China, Palaeogeogr. Palaeoccl., 265, 148–158, 2008.
Jiang, H. C., Mao, X., Xu, H. Y., Thompson, J., and Ma, X. L.: ~ 4 Ma coarsening of sediments from Baikal, Chinese Loess Plateau and South China Sea and implications for the onset of NH glaciation, Palaeogeogr. Palaeoccl., 298, 201–209, 2010.
Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P., Malavieille, J., Arnaud, N., and Wu, C.: Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: fission-track constraints, Tectonophysics, 343, 111–134, 2001.
Kashiwaya, K., Ochiai, S., Sakai, H., and Kawai, T.: Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal, Nature, 410, 71–74, 2001.
Kashiwaya, K., Ochiai, S., Sakai, H., and Kawai, T.: Onset of current Milankovitch-type climatic oscillations in Lake Baikal sediments at around 4 Ma, Earth Planet. Sc. Lett., 213, 185–190, 2003.
Kirby, E., Reiners, P. W., Krol, M. A., Whipple, K. X., Hodges, K. V., Farley, K. A., Tang, W. Q., and Chen, Z. L.: Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from $^{40}$Ar/$^{39}$Ar and (U-Th)/He thermochronology, Tectonics, 21, 1001, doi:10.1029/2000TC001246, 2002.
Kohn, M. J. and Fremd, T. J.: Miocene tectonics and climate forcing of biodiversity, western United States, Geology, 36, 783–786, 2008.
Korotkevich, E. L. and Topachevskii, V. A.: Related elements among the Neogene mammalian fauna of eastern Europe, Asia and North America, in: Beringia in the Cenozoic Era, edited by: Kontrimavichus, V. L., Rekha Printers, New Dehli, India, 289–295, 1986.
Kurtén, B.: Trans-beringian carnivore populations in the Pleistocene, in: Beringia in the Cenozoic Era, edited by: Kontrimavichus, V. L., Rekha Printers, New Dehli, India, 339–345, 1986.
Lease, R. O., Burbank, D. W., Gehrels, G. E., Wang, Z. C., and Yuan, D. Y.: Signatures of mountain building: detrital zircon U/Pb ages from northeastern Tibet, Geology, 35, 239–242, 2007.
Lease, R. O., Burbank, D. W., Clark, M. K., Farley, K. A., Zheng, D. W., and Zhang, H. P.: Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau, Geology, 39, 359–362, 2011.
Lease, R. O., Burbank, D. W., Hough, B., Wang, Z., and Yuan, D. Y.: Pulsed Miocene range growth in northeastern Tibet: insights from Xunhua Basin magnetostratigraphy and provenance, Geol. Soc. Am. Bull., 124, 657–677, 2012.

Lee, J., Hacker, B. R., Dinklage, W. S., Wang, Y., Gans, P., Calvert, A., Wan, J. L., Chen, W. J., Blythe, A. E., and McClelland, W.: Evolution of the Kangmar Dome, southern Tibet: structural, petrologic, and thermochronologic constraints, Tectonics, 19, 872–895, 2000.

Li, H. B., Valli, F., Liu, D. Y., Xu, Z. Q., Yang, J. S., Arnaud, N., Tapponnier, P., Lacassin, R., Chen, Y. S., and Qi, X. X.: Initial movement of the Karakoram Fault in western Tibet: constraints from SHRIMP U-Pb dating of zircons, Chinese Sci. Bull., 52, 1089–1100, 2007.

Li, H. B., Valli, F., Arnaud, N., Chen, S. Y., Xu, Z. Q., Tapponnier, P., Lacassin, R., Si, J. L., and Qiu, Z. L.: Rapid uplifting in the process of strike-slip along the Karakoram fault zone in western Tibet: evidence from \(^{40}\text{Ar}/^{39}\text{Ar}\) thermochronology, Acta Petrol. Sin., 24, 1552–1566, 2008 (in Chinese with English abstract).

Li, J. J., Fang, X. M., Ma, H. Z., Zhu, J. J., Pan, B. T., and Chen, H. L.: Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic, Sci. Chin., 39, 380–390, 1996.

Li, J. J., Fang, X. M., Van der Voo, R., Zhu, J. J., Mac Niocail, C., Cao, J. X., Zhong, W., Chen, H. L., Wang, J., and Wang, J. M.: Late Cenozoic magnetostratigraphy (11–0 Ma) of the Dongsanding and Wangjiashan sections in the Longzhong Basin, western China, Geol. Mijnbouw, 76, 121–134, 1997.

Li, S.-J., Zhang, R., and Wang, Q.-C.: Implications of the color of sediments and clay minerals for Tertiary climatic changes of Kuqa depression, Acta Sedimentologica Sinica, 24, 521–530, 2006 (in Chinese with English abstract).

Lisiecki, L. E. and Raymo, M. E.: A Pliocene–Pleistocene stack of 57 globally distributed benthic \(\delta^{18}\text{O}\) records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071, 2005.

Lu, H., Wang, X., and Li, L.: Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia, Geol. Soc. Spec. Publ., 342, 29–44, 2010.

Lu, H. J. and Xiong, S. F.: Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altytn Tagh Fault, Earth Planet. Sc. Lett., 288, 539–550, 2009.

Lu, H. J., Wang, E., Shi, X. H., and Meng, K.: Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses, Tectonophysics, 580, 150–161, 2012.
Lu, H. J., Wang, E., and Meng, K.: The Mid-Miocene tectonic uplift of southern Qilianshan: sedimentary evidence from Dahonggou section in Qaidam Basin, Chinese J. Geol., 49, 95–103, 2014 (in Chinese with English abstract).

Lu, H. Y. and Guo, Z. T.: Evolution of the monsoon and dry climate in East Asia during late Cenozoic: a review, Sci. China, 57, 70–79, 2014.

Lu, H. Y., Wang, X. Y., An, Z. S., Miao, X. D., Zhu, R. X., Ma, H. Z., Li, Z., Tan, H. B., and Wang, X. Y.: Geomorphologic evidence of phased uplift of the northeastern Qinghai–Tibet Plateau since 14 million years ago, Sci. China, 47, 822–833, 2004.

Lu, H. Y., Zhang, H. Y., Wang, S. J., Cosgrove, R., Zhao, C. F., Stevens, T., and Zhao, J.: A preliminary survey on loess deposit in Eastern Qinling Mountains (central China) and its implications for estimating age of the Pleistocene lithic artifacts, Quaternary Sciences, 27, 559–567, 2007 (in Chinese with English abstract).

Ma, Y. Z., Li, J. J., and Fang, X. M.: Pollen assemblage in 30.6–5.0 Ma redbeds of Linxia region and climate evolution, Chinese Sci. Bull., 43, 301–304, 1998.

Maluski, H., Matte, P., Brunel, M., and Xiao, X. S.: Argon-39-Argon-40 dating of metamorphic and plutonic events in the north and High Himalaya belts (southern Tibet–China), Tectonics, 7, 299–326, 1988.

Marincovich Jr., L. and Gladenkov, A. Y.: Evidence for an early opening of the Bering Strait, Nature, 397, 149–151, 1999.

Miao, Y. F., Fang, X. M., Herrmann, M., Wu, F. L., Zhang, Y., and Liu, D.: Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon, Palaeogeogr. Palaeocl., 299, 30–38, 2011.

Miao, Y. F., Herrmann, M., Wu, F. L., Yan, X. L., and Yang, S. L.: What controlled Mid–Late Miocene long-term aridification in Central Asia? Global cooling or Tibetan Plateau uplift: a review, Earth-Sci. Rev., 112, 155–172, 2012.

Misra, S. and Froelich, P. N.: Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering, Science, 335, 818–823, 2012.

Mock, C., Arnaud, N. O., and Cantagrel, J.-M.: An early unroofing in northeastern Tibet? Constraints from $^{40}$Ar/$^{39}$Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China), Earth Planet. Sc. Lett., 171, 107–122, 1999.

Molnar, P. and Stock, J. M.: Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, 28, TC3001, doi:10.1029/2008TC002271, 2009.
Murphy, M. A., Yin, A., Kapp, P., Harrison, T. M., Manning, C. E., Ryerson, F. J., Ding, L., and Guo, J. H.: Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault system, Geol. Soc. Am. Bull., 114, 428–447, 2002.

Najman, Y. and Garzanti, E.: Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India, Geol. Soc. Am. Bull., 112, 435–449, 2000.

Noble, S. R. and Searle, M. P.: Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India, Geology, 23, 1135–1138, 1995.

Ohta, S., Kaiho, K., and Takei, T.: Relationship between surface-water temperature and ice-sheet expansion during the Middle-Miocene, Palaeogeogr. Palaeocl., 201, 307–320, 2003.

Pan, Y. and Kidd, W.: Nyainqentanglha shear zone: a late Miocene extensional detachment in the southern Tibetan Plateau, Geology, 20, 775–778, 1992.

Pares, J. M., Van der Voo, R., Downs, W. R., Yan, M. D., and Fang, X. M.: Northeastward growth and uplift of the Tibetan Plateau: magnetostratigraphic insights from the Guide Basin, J. Geophys. Res., 108, 2017, doi:10.1029/2001JB001349, 2003.

Pettke, T., Halliday, A. N., Hall, C. M., and Rea, D. K.: Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr, Earth Planet. Sc. Lett., 178, 397–413, 2000.

Qiang, X. K., Li, Z. X., Powell, C. McA., and Zheng, H. B.: Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet, Earth Planet. Sc. Lett., 187, 83–93, 2001.

Qiao, Y. S., Guo, Z. T., Hao, Q. Z., Yin, Q. Z., Yuan, B. Y., and Liu, T. S.: Grain-size features of a Miocene loess-soil sequence at Qinan: implications on its origin, Sci. China, 49, 731–738, 2006.

Qiu, Z. X.: Dispersals of Neogene carnivorans between Asia and North America, B. Am. Mus. Nat. Hist., 279, 18–31, 2003.

Qiu, Z. X., Wang, B. Y., Qiu, Z. D., Heller, F., Yue, L. P., Xie, G. P., Wang, X. M., and Engesser, B.: Land mammal geochronology and magnetostratigraphy of mid-Tertiary deposits in the Lanzhou Basin, Gansu Province, China, Eclogae Geol. Helv., 94, 373–385, 2001.
Rea, D. K., Snoeckx, H., and Joseph, L. H.: Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere, Paleoceanography, 13, 215–224, 1998.

Repenning, C. A.: Palaeartic–Nearctic mammalian dispersals in the late Cenozoic, in: The Bering Land Bridge, edited by: Hopkins, D. M., Stanford University Press, Stanford, USA, 288–311, 1967.

Richter, F. M., Rowley, D. B., and DePaolo, D. J.: Sr isotope evolution of seawater: the role of tectonics, Earth Planet. Sc. Lett., 109, 11–23, 1992.

Ritts, B. D., Yue, Y., Graham, S. A., Sobel, E. R., Abbink, O. A., and Stockli, D.: From sea level to high elevation in 15 million years: uplift history of the northern Tibetan Plateau margin in the Altun Shan, Am. J. Sci., 308, 657–678, 2008.

Sanmartin, I., Enghoff, H., and Ronquist, F.: Patterns of animal dispersal, vicariance and diversification in the Holarctic, Biol. J. Linn. Soc., 73, 345–390, 2001.

Sen, S.: Magnetostratigraphic calibration of the European Neogene mammal chronology, Palaeogeogr. Palaeoclim., 133, 181–204, 1997.

Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene southern ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766–1770, 2004.

Sobel, E., Chen, J., and Heermance, R.: Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations, Earth Planet. Sc. Lett., 247, 70–81, 2006.

Song, Y. G., Fang, X. M., Torii, M., Ishikawa, N., Li, J. J., and An, Z. S.: Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau, J. Asian Earth Sci., 30, 324–332, 2007.

Steph, S., Tiedemann, R., Prange, M., Groeneveld, J., Schulz, M., Timmermann, A., Nurnberg, D., Ruhlemann, C., Saukel, C., and Haug, G. H.: Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue, Paleoceanography, 25, PA2202, doi:10.1029/2008PA001645, 2010.

Sun, D. H., Shaw, J., An, Z. S., Cheng, M. Y., and Yue, L. P.: Magnetostratigraphy and palaeoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau, Geophys. Res. Lett., 25, 85–88, 1998.

Sun, H. L. and Zheng, D.: Formation, Evolution and Development of the Qinghai–Xizang (Tibetan) Plateau, Guangdong Science and Technology Press, Guangzhou, 1–350, 1998 (in Chinese).
Tang, Z. H., Ding, Z. L., White, P. D., Dong, X. X., Ji, J. L., Jiang, H. C., Luo, P., and Wang, X.: Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan, Earth Planet. Sc. Lett., 302, 439–447, 2011.

Tang, Z. H., Huang, B. C., Dong, X. X., Ji, J. L., and Ding, Z. L.: Anisotropy of magnetic susceptibility of the Jingou River section: implications for late Cenozoic uplift of the Tian Shan, Geochem. Geophy. Geosy., 13, Q03022, doi:10.1029/2011GC003966, 2012.

Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., Macdonald, J. R., and Webb, S. D.: Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through earliest Pliocene epochs) in North America, in: Cenozoic Mammals of North America, edited by: Woodburne, M. O., University of California Press, Berkeley–Los Angeles–London, 153–210, 1987.

Tedford, R. H., Albright III, L. B., Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt Jr., R. M., Storer, J. E., Swisher III, C. C., Voorhies, M. R., Webb, S. D., and Whistler, D. P.: Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene Epochs), in: Late Cretaceous and Cenozoic Mammals of North America, edited by: Woodburne, M. O., Columbia University Press, New York, USA, 169–231, 2004.

Tian, J., Zhao, Q. H., Wang, P. X., Li, Q. Y., and Cheng, X. R.: Astronomically modulated Neogene sediment records from the South China Sea, Paleoceanography, 23, PA3210, doi:10.1029/2007PA001552, 2008.

Tobgay, T., McQuarrie, N., Long, S., Kohn, M. J., and Corrie, S. L.: The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya, Earth Planet. Sc. Lett., 319/320, 146–158, 2012.

Tseng, Z. J., Li, Q., and Wang, X. M.: A new cursorial hyena from Tibet, and analysis of biosstratigraphy, paleozoogeography, and dental morphology of chasmaporthetes (mammalia, carnivora), J. Vertebr. Paleontol., 33, 1457–1471, 2013.

Wan, S. M., Li, A. C., Clift, P. D., and Stuut, J.-B. W.: Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma, Palaeogeogr. Palaeoclim. Palaeoecol., 254, 561–582, 2007.

Wang, E., Kirby, E., Furlong, K. P., van Soest, M., Xu, G., Shi, X., Kamp, P. J., and Hodges, K.: Two-phase growth of high topography in eastern Tibet during the Cenozoic, Nat. Geosci., 5, 640–645, 2012.

Wang, S. M., Wu, X. H., Zhang, Z. K., Jiang, F. C., Xue, B., Tong, G. B., and Tian, G. Q.: Sedimentary records of environmental evolution in the Sanmen Lake Basin and the Yellow
River running through the Sanmenxia Gorge eastward into the sea, Sci. China, 45, 595–608, 2002.

Wang, W.-M. and Deng, T.: Palynoflora from the stratotype section of the Neogene Xiejian stage and its significance, Acta Palaeontologica Sinica, 48, 1–8, 2009 (in Chinese with English abstract).

Wang, X. M., Qiu, Z.-D., and Opdyke, N. O.: Litho-, bio-, and magnetostratigraphy and paleoenvironment of Tunggur Formation (middle Miocene) in central Inner Mongolia, China, Am. Mus. Novit., 3411, 1–31, 2003a.

Wang, X. M., Wang, B. Y., Qiu, Z. X., Xie, G. P., Xie, J. Y., Downs, W., Qiu, Z. D., and Deng, T.: Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau, Earth Planet. Sc. Lett., 208, 253–269, 2003b.

Wang, Y. and Deng, T.: A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau, Earth Planet. Sc. Lett., 236, 322–338, 2005.

White, N. M., Parrish, R. R., Bickle, M. J., Najman, Y. M. R., Burbank, D., and Maithani, A.: Metamorphism and exhumation of the NW Himalaya constrained by U-Th-Pb analyses of detrital monazite grains from early foreland basin sediments, J. Geol. Soc. London, 158, 625–635, 2001.

Wobus, C., Pringle, M., Whipple, K., and Hodges, K.: A Late Miocene acceleration of exhumation in the Himalayan crystalline core, Earth Planet. Sc. Lett., 269, 1–10, 2008.

Woodruff, F. and Savin, S. M.: Miocene deepwater oceanography, Paleoceanography, 4, 87–140, 1989.

Wu, N. Q., Pei, Y. P., Lu, H. Y., Guo, Z. T., Li, F. J., and Liu, T. S.: Marked ecological shifts during 6.2–2.4 Ma revealed by a terrestrial mollusc record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution, Palaeogeogr. Palaeoclim. Palaeoecol., 233, 287–299, 2006.

Xiao, G. Q., Guo, Z. T., Dupont-Nivet, G., Lu, H. Y., Wu, N. Q., Ge, J. Y., Hao, Q. Z., Peng, S. Z., Li, F. J., Abels, H. A., and Zhang, K. X.: Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China, Earth Planet. Sc. Lett., 317/318, 185–195, 2012.

Xiong, S. F., Jiang, W. Y., Yang, S. L., Ding, Z. L., and Liu, T. S.: Northwestward decline of magnetic susceptibility for the red clay deposit in the Chinese Loess Plateau, Geophys. Res. Lett., 29, 2162, doi:10.1029/2002GL015808, 2002.
Xiong, S. F., Ding, Z. L., Jiang, W. Y., Yang, S. L., and Liu, T. S.: Damped fluctuations in Chinese loess grain size, Geophys. Res. Lett., 30, 2007, doi:10.1029/2003GL018187, 2003.
Xiong, S. F., Ding, Z. L., Zhu, Y. J., Zhou, R., and Lu, H. J.: A 6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess-red clay deposit, Quaternary Sci. Rev., 29, 1911–1922, 2010.
Xu, Z. Q., Hou, L. W., Wang, Z. X., Fu, X. F., and Huang, M. H.: Orogenic progresses of the Songpan–Garze Orogenic Belt of China, Geological Publishing House, Beijing, 1–190, 1992 (in Chinese with English abstract).
Xu, Z. Q., Li, H. Q., Hou, L. W., Fu, X. F., Chen, W., Zeng, L. S., Cai, Z. H., and Chen, F. Y.: Uplift of the Longmen–Jinping orogenic belt along the eastern margin of the Qinghai–Tibet Plateau: large-scale detachment faulting and extrusion mechanism, Geological Bulletin of China, 26, 1262–1276, 2007 (in Chinese with English abstract).
Yu, Z. J. and Huang, D. C.: Neogene stratigraphy and its pollen sequences from the Huaibei Plain, China, Journal of Stratigraphy, 17, 202–209, 1993 (in Chinese with English abstract).
Yue, L. P., Heller, F., Qiu, Z. X., Zhang, L., Xie, G. P., Qiu, Z. D., and Zhang, Y. X.: Magnetostratigraphy and paleoenvironmental record of Tertiary deposits of Lanzhou Basin, Chinese Sci. Bull., 46, 770–774, 2001.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008.
Zeitler, P. K.: Cooling history of the NW Himalaya, Pakistan, Tectonics, 4, 127–151, 1985.
Zhang, H. P., Craddock, W. H., Lease, R. O., Wang, W. T., Yuan, D. Y., Zhang, P. Z., Molnar, P., Zheng, D. W., and Zheng, W. J.: Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north-eastern Tibetan Plateau, Basin Res., 24, 31–50, 2012.
Zhang, K. X., Wang, G. C., Ji, J. L., Luo, M. S., Kou, X. H., Wang, Y. M., Xu, Y. D., Chen, F. N., Chen, R. M., Song, B. W., Zhang, J. Y., and Liang, Y. P.: Paleogene–Neogene stratigraphic realm and sedimentary sequence of the Qinghai–Tibet Plateau and their response to uplift of the plateau, Sci. China, 53, 1271–1294, 2010.
Zhang, P. Z., Molnar, P., and Downs, W. R.: Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates, Nature, 410, 891–897, 2001.

Zhang, Y., Xiong, S. F., Ding, Z. L., Lu, H. J., and Jiang, W. Y.: Carbon-oxygen isotope records of pedogenic carbonate from the Early Miocene–Pleistocene loess-red clay in the vicinity of the Liupanshan region and its implications for the early origin of C4 plants in the Chinese Loess Plateau, Quaternary Sciences, 31, 800–811, 2011 (in Chinese with English abstract).

Zheng, D. W., Zhang, P. Z., Wan, J. L., Li, C. Y., and Cao, J. X.: Late Cenozoic deformation subsequence in northeastern margin of Tibet–Detrital AFT records from Linxia Basin, Sci. China, 46, 266–275, 2003.

Zheng, D. W., Zhang, P.-Z., Wan, J. L., Yuan, D. Y., Li, C. Y., Yin, G. M., Zhang, G. L., Wang, Z. C., Min, W., and Chen, J.: Rapid exhumation at~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin, Earth Planet. Sc. Lett., 248, 198–208, 2006.

Zheng, D. W., Clark, M. K., Zhang, P. Z., Zheng, W. J., and Farley, K. A.: Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau), Geosphere, 6, 937–941, 2010.

Zheng, H. B., Powell, C. M., An, Z. S., Zhou, J., and Dong, G. R.: Pliocene uplift of the northern Tibetan Plateau, Geology, 28, 715–718, 2000.

Zheng, H. B., Huang, X. T., and Butcher, K.: Lithostratigraphy, petrography and facies analysis of the Late Cenozoic sediments in the foreland basin of the West Kunlun, Palaeogeogr. Palaeocl., 241, 61–78, 2006.

Zhuang, G. S., Hourigan, J. K., Koch, P. L., Ritts, B. D., and Kent-Corson, M. L.: Isotopic constraints on intensified aridity in Central Asia around 12 Ma, Earth Planet. Sc. Lett., 312, 152–163, 2011.
Table 1. Locations of 20 sites with significant tectonic and/or environmental events around ~ 20 Ma.

| No. | Site | Location | Elevation (m) | Duration (Ma) | Inferred environment change or tectonic movement | Evidence |
|-----|------|----------|---------------|---------------|-------------------------------------------------|----------|
| 1   | Zanskar, India, western Himalaya (Noble and Searle, 1995) | 33°25'N, 76°35'E (Zanskar); 34°05'N, 76°15'E (Shafat) | ~ 20 | 21–19.5 | Crustal melting occurred at 21–19.5 Ma and anatectic occurred along the Himalaya at least from Kashmir–Zanskar to eastern Nepal at 24–19.5 Ma. | U-Pb age data |
| 2   | Ailao Shan/Red River metamorphic belt (Harrison et al., 1992b) | 25°20'–23°20'N, 100°30'–102°E | ~ 20 | 21–19.5 | Left-lateral, strike-slip ductile deforma-tion had ceased by ~ 20 Ma. | 40Ar/39Ar age spectrums |
| 3   | Red River Fault (Harrison et al., 1992a) | 22°40’–26°40’N, 99°30’–103°E | ~ 20 | 25–20 | Left-lateral, strike-slip ductile deforma-tion appears to have ceased by ~ 20 Ma. | 40Ar/39Ar, K-Ar |
| 4   | Xianshiuine fault (Xu et al., 1992, 2007) | 30°0’–30°24’N, 100°40.8’–101°58’E | 2500–3169 | Mio-Pleistocene | Onset of displacement at ~ 20 Ma | Nearll synchronously early Miocene initiation of cooling/denudation phase evidenced by zircon and apatite fission track ages thermochronological analysis from deep river gorges that are cut into the relict landscape |
| 5   | Anning River fault (Clark et al., 2005) | 29°16’–27°53.9’N, 102°17’–102°13.3’E | 1600–3000 | ~ 20 | an early initiation of rapid cooling | |
| 6   | Songpan–Ganzi Fold Belt (Arne et al., 1997) | 31°37’–32°38’N, 100–103°36’E | ~ 20 | 30.6–5.0 | cooling and onset of variation between open and closed lake condi-tions at ~ 20 Ma | significant increase in coniferous pollen and high frequency alternation between negative and positive values of δ18O and δ13C since ~ 20 Ma |
| 7   | Linxia Basin (Ma et al., 1998; Fang et al., 2003; Dettman et al., 2003; Garzione et al., 2004) | 35°10’–35°51’N, 102°30’–104°E | 2000–2400 | ~ 20 | Initial sedimentation at ca. 20 Ma as a significant depocenter | the portion older than 19.6 Ma being partially water-reworked |
| 8   | Zhuanglang section, Gansu Province (Zhang et al., 2011) | 35°13.56’N, 106°4.18’E | 1405–2857 | ~ 20 | The sizable deserts must have ex-isted in the interior of Asia by ~ 20 Ma and maintained from that time to present. | tracing of C4 ecosystem back to as early as ~ 20 Ma |
| 9   | Qin'an-III (Hao and Guo, 2007) | 35°01’N, 105°48’E | ~ 1880 | 21.4–11.4 | Onset of loess accumulation at ~ 19.6 Ma influenced by the uplift of the Ti-betan Plateau at ~ 20 Ma. | the portion older than 19.6 Ma being partially water-reworked |
| 10  | Yongdeng section, Lanzhou Basin (Yue et al., 2001; Qiu et al., 2001) | 36°23’N, 103°30’E | ~ 1800 | 51.0–16.5 | Influenced by the uplift of the Ti-betan Plateau at ~ 20 Ma. | Onset of white thick sandstone deposition since ~ 20 Ma |
| 11  | Sikouzi, Ningxia (Jiang et al., 2007, 2008; Jiang and Ding, 2010) | 36°16’N, 105°59’E | ~ 1550 | 20–0 | Initial sedimentation at ca. 20 Ma | parallel unconformity; from brick-red fluvial sandstones to dark brownish fluvio-lacustrine fine sediments |
| 12  | Dahonggou section, Qaidam basin (Lu and Xiong, 2009) | 37°24.38’N, 95°13.82’E | 3140 | 34–8.5 | Rejuvenation of nearby fold and thrust belts at 21–20 Ma | Conglomerate deposits; from lacustrine to alternations of lake, overbank and alluvial fan de-posits at 21–20 Ma |
| 13  | Gonghe Basin, north-eastern TP (Craddock et al., 2011; Lu et al., 2012) | 35°69–35°77’N, 100.23–100.43’E | 2000–8.0 | 20.0–8.0 | Initial sedimentation at ca. 20 Ma as a significant depocenter | Singular unconformity; from fluvio-lacustrine to fluvial-floodplain |
| 14  | Xunhua Basin in Qinghai Province (Hough et al., 2011) | 35°50.4’N, 102°27.6’E | ~ 2300 | 20.3–3.5 | Significant tectonic movement at ~ 20.3 Ma | The deposition of the Xunhua Basin initiated at ~ 20.3 Ma with a set of dark red coarse-grained sandstones lying unconformably over Cretaceous sandstones and conglomerates in the east and on Proterozoic granodiorites in the west. |
Table 1. Continued.

| No. | Site                                      | Location                        | Elevation (m) | Duration (Ma) | Inferred environment change or tectonic movement                                                                 | Evidence                                                                                           |
|-----|------------------------------------------|---------------------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 15  | Hualong Basin in the Qinghai Province    | 36°36.6’N, 102°18’E           | ~ 2850        | 30–9.3        | Significant tectonic movement at ~ 20 Ma                                                                        | a transition to alluvial facies at 20 Ma that was coincident with intensified erosion of basement     |
|     | (Lease et al., 2012)                     |                                 |               |               |                                                                                                                  | source terranes in the Laji–Jishi Shan by 19 Ma                                                  |
| 16  | Xiejia Formation in the eastern Qinghai | 36°31.73’N, 101°50.98’E        | 2388          | 23.03–20.43   | a cooling climate                                                                                               |                                                                                                    |
|     | Province (Wang and Deng, 2009)           |                                 |               |               |                                                                                                                  |                                                                                                    |
| 17  | Tashan, Xiejia and Shuiwan sections in   | 36.5–36.65° N,                 | ~ 2400        | 19.7–25.3     | a significant change in provenance during this peculiar period                                                  | unstable accumulation and a marked permanent increase in magnetite content of the sediments       |
|     | the Xinjing Basin (Xiao et al., 2012)    | 101.8–101.9° E                 |               |               |                                                                                                                  |                                                                                                    |
| 18  | Xishuigou section, Danghe area, Subei    | 39°27’–30’ N, 94°37’–46’ E    | 2500–3000     | 20–9.3        | Onset of fine sediments at 20 Ma                                                                               | angular unconformity; cut off by the ramp fault F0                                                 |
|     | (Gilder et al., 2001; Wang et al., 2003b) |                                 |               |               |                                                                                                                  |                                                                                                    |
| 19  | Kuche Depression of the Tarim Basin      | 42°0’–10’ N, 83°5’–20’ E      | 1500–3000     | 31–5.5        | Initiation of thrusting in the south of the Tian Shan at ~ 20 Ma                                               | Marked increase of Km at ~ 20 Ma suggesting influx of magnetite-rich detritus.                    |
|     | (Huang et al., 2006)                     |                                 |               |               |                                                                                                                  |                                                                                                    |
| 20  | Jingouhe section, Xinjiang               | 44°10.94’N, 85°27.18’ E       | 1000–1500     | 30.5–4.6      | Significant uplift of the Tian Shan at 23.3–20.0 Ma                                                            | Increased strain evidenced by more tightly grouped Kmax directions and Kmin largely distributed     |
|     | (Ji et al., 2008; Tang et al., 2012)     |                                 |               |               |                                                                                                                  | within a clear N–S girdle                                                                         |
Table 2. Locations of 18 sites with significant tectonic and/or environmental events at 8.5–7.5 Ma.

| No. | Sites        | Lat. | Long. | Age (Ma) | Age control | Evidence                                                                 | References                       |
|-----|--------------|------|-------|----------|-------------|---------------------------------------------------------------------------|----------------------------------|
| 1   | Altun shan   | 39   | 89    | 15–0     | NAFT, (U-Th)/He             | coarse conglomerate, mean surface uplift rate of nearly 100 m/Ma           | Ritts et al. (2008)              |
| 2   | Eastern Tibet| 32   | 97    | 11–4     | (U-Th)/He                 | erosion rates increase by an order of magnitude                           | Duval et al. (2012)              |
| 3   | Qilian Shan  | 39   | 99.5  | 10–0     | (U-Th)/He                 | vertical and horizontal fault slip rates of 3.3–0.5 mm/yr                 | Zheng et al. (2010)              |
| 4   | Chaka        | 38.6 | 101   | 11–3.8   | Mag.                     | paleocurrent, conglomerate provenance, lithostratigraphic character of the basin fill increases in accumulation rates, gravel content and sizes of its components, changes of bedding dips and source rock types, and marginal growth faults | Zhang et al. (2012)              |
| 5   | Guide        | 36.1 | 102   | 8–1.8    | Mag.                     | increases in accumulation rates, gravel content and sizes of its components, changes of bedding dips and source rock types, and marginal growth faults | Fang et al. (2005)               |
| 6   | Laji Shan    | 36.3 | 103   | 8        | U/Pb Zircon               | differential rock uplift and progressive erosion that began ca. 8 Ma in the Laji Shan granite conglomerate, the dip angle decreases progressively since 7 Ma | Lease et al. (2007)              |
| 7   | Linxia       | 34.5 | 103   | 8–5.4    | AFT                      | AFT data are clustered and yield intervals of accelerated cooling, and significant change in thrust-fault orientation | Zheng et al. (2003)              |
| 8   | Jishi Shan   | 32   | 103   | 13–0     | (U-Th)/He                 | the erosional response reflected by rapid cooling to the deformation of the Tibetan Plateau margin | Lease et al. (2011)              |
| 9   | Longmen Shan | 31.5 | 104   | 11–5     | $^{40}$Ar/$^{39}$Ar, 5–3, $^{39}$Ar/$^{38}$Ar, 3.4–0.07 | high exhumation inferred from modelings and rapid exhumation estimated from composite age–elevation transect | Kirby et al. (2002)              |
| 10  | Longmen Shan | 31.3 | 104   | 10–0     | FT, (U-Th)/He             | rapid exhumation estimated from composite age–elevation transect           | Wang et al. (2012)               |
| 11  | Longmen Shan | 31.3 | 104   | 11–8     | (U-Th)/He                 | high exhumation inferred from modelings                                  | Godard et al. (2009)             |
| 12  | Sikouzi      | 36.2 | 106   | 10.5–8, 3.4–0.07 | (U-Th)/He | high exhumation inferred from modelings and rapid exhumation estimated from composite age–elevation transect | Godard et al. (2009)             |
| 13  | Liupan Shan  | 35.7 | 106   | 7.3–8.2  | Mag.                     | high exhumation inferred from modelings                                  | Godard et al. (2009)             |
| 14  | Sutlej       | 31.5 | 78    | 10–6     | AFT                      | a rapid cooling event revealed by AFT ages                               | Caddick et al. (2007)            |
| 15  | Langtang     | 28   | 85.5  | 10–7     | $^{40}$Ar/$^{39}$Ar, 3.4–0.07 | phase-equilibria constraints, mineral structures and compositions, and in-situ monazite geochronology | Wobus et al. (2008)              |
| 16  | Yarlung Zangbo| 29.3 | 89    | 11–8     | (U-Th)/He                 | AFT data are clustered and yield intervals of accelerated cooling, and significant change in thrust-fault orientation | Dai et al. (2013)                |
| 17  | Nyainqentanglia | 30  | 90.5  | 11–5     | $^{40}$Ar/$^{39}$Ar, 3.4–0.07 | metamorphosed granitic rocks involved, developed triangular facet geomorphology, a major low-angle ductile shearing deformation | Pan and Kidd (1992)              |
| 18  | Nyainqentanglia | 30  | 90.5  | 8–3      | $^{40}$Ar/$^{39}$Ar, 3.4–0.07 | The form of the isotopically derived thermal histories are similar to general form predicted by the thermal model, implying that the significant movement proceeded at ~ 3 mm/yr | Harrison et al. (1995)            |
**Figure 1.** Migration events of Neogene carnivores between Eurasia and North America, adapted from Qiu (2003).
Figure 2. Distribution of 20 Early Miocene sites within and around the Himalaya–Tibetan Plateau discussed in this study, detailed information referring to Table 1 and text.
Figure 3. Comparison of (a) $a^*$ (Li et al., 2006) and (b) SUS of the Kuche Basin in Xinjiang Province (Huang et al., 2006) with (c) SUS (Lu and Xiong, 2009), (d) quartz content (Lu et al., 2014), (e) feldspar content (Lu et al., 2014), and (f) lithic fragments (Lu et al., 2014) of the Qaidam Basin in Qinghai Province, Northwest China.
Figure 4. Comparison of (a) pollen humidity index (Jiang and Ding, 2008), (b) redness (a*, Jiang et al., 2007), (c) lightness (L*, Jiang et al., 2008), (d) median grain-size (Md, Jiang and Ding, 2010), and (e) susceptibility (SUS, Jiang et al., 2008) from the Sikouzi section at Guyuan, Ningxia Province, China.
Figure 5. Correlation of (a) the composite oxygen isotope curve from Zachos et al. (2008) and (b) the Neogene sea-level record from Haq et al. (1987).
Figure 6. Distribution of 18 sites within and around the Himalaya–Tibetan Plateau revealing significant tectonic movements at 8.5–7.5 Ma, detailed information referring to Table 2 and text.