External Memory based Distributed Generation of Massive Scale Social Networks on Small Clusters

Sandeep Gupta
San Diego Supercomputer Center
University Of California, San Diegoy
San Diego, Californai, 92093
Email: sandeep@sdsc.edu

Abstract—Small distributed systems are limited by their main memory to generate massively large graphs. Trivial extension to current graph generators to utilize external memory leads to large amount of random I/O hence do not scale with size. In this work we offer a technique to generate massive scale graphs on small cluster of compute nodes with limited main memory. We develop several distributed and external memory algorithms, primarily, shuffle, relabel, redistribute, and, compressed-sparse-row (csr) convert. The algorithms are implemented in MPI/pthread model to help parallelize the operations across multicores within each core. Using our scheme it is feasible to generate a graph of size 2^{35} nodes (scale 38) using only 64 compute nodes. This can be compared with the current scheme would require at least 8192 compute node, assuming 64GB of main memory. Our work has broader implications for external memory graph libraries such as STXXL and graph processing on SSD-based supercomputers such as Dash and Gordon [1], [2].

I. INTRODUCTION

In the last decade social networks surfaced on WWW and became immensely popular. With the advent of these graphs, massively parallel breadth first search (BFS) over scale free graphs has become an active area of study. Researchers have studied the problem under different combinations of hardware, runtime, and parallel programming model. In order to compare and contrast the various approaches, the supercomputing community initiated a Graph500 challenge recently. The challenge ranks the data intensive computing capability of supercomputers. The current data deluge has evidently marked a shift in the supercomputing needs from traditional numerical computation to data-intensive computing.

This work focuses on scalable implementations of the first of the two Graph500 kernels, namely, the graph generation kernel. There, the scheme for generating graphs utilizes the R-MAT model [3]. R-MAT model is invoked by each core to generate random edges, creating a total of $f \times n$ edges, where f is edge factor and n is the number of nodes desired in the output graph. The degree distribution of the graph thus generated is biased with respect to the node identifier, identifiers with smaller values have high degree distributions. Distribution and further processing of this graph can lead to locality both in local memory and across compute nodes that may reduce the validity of any operation or hinder performance. Therefore, the graph must be “de-biased”. This is achieved by post processing the graph using an MRG hash function. The suggested MRG hash function is fast, has no collisions, and, produces “high quality” permutations. These facts make it a good choice for main memory based graph generation. The entire scheme is main memory based: all of the graph is stored in the main memory and all the processing also happens from the main memory. We refer to this kernel as the ‘hashing based’ kernel in the rest of this paper.

The kernel requires 8 terabytes of main memory to generate a graph of size 2^{34} (scale 34) nodes. For ‘large’ graphs (scale 34 and above) the dataset size is even larger, doubling at every scale. To meet such memory demands clusters of size upwards of 4096 compute nodes, assuming 64GB memory per compute node, would be required. This has limited the generation of large graphs to select few largest supercomputers in the world, and that too, often by reserving the entire supercomputer. Smaller systems invariably fail short on both the memory and the time to generate competitive size graphs using this scheme.

One possible way to alleviate the memory limitation issue is to use external memory [4], [5]. The kernel can be extended trivially for generating graphs on external memory. However, the R-MAT model generates edges in random order. Hashing based method processes these edges in the same order as they are generated. Now, if the generated edges are stored on disk, this ordering will incur heavy amounts of random I/Os. Hence, a naive extension to graph generation over external memory would be inefficient, and infeasible for very large graphs. Caching and buffering cannot help because the main memory buffers are extremely small compared to total storage.

In this work, we offer a technique to generate massive scale graphs on small cluster of compute nodes (approximately 64 compute nodes). We develop several distributed and external memory algorithms, primarily, shuffle, relabel, redistribute, and, compressed-sparse-row (csr) convert. For each of these, we present a distributed, hybrid, MPI/pthread based implementation to help in parallelizing the operations across multicores within each compute node. We remark that it is possible to utilize multicores using MPI alone as well. However, the communication cost in that case is significantly higher. The relabeling algorithm resembles the sort-merge-join algorithm [6] popular in database domain. Two approaches are presented for redistribution and csr. In the first one, the edges are treated unordered. In this approach, building csr becomes expensive and we, therefore, present a parallel version. In the second approach, the edges are processed in the order

Abstract—Small distributed systems are limited by their main memory to generate massively large graphs. Trivial extension to current graph generators to utilize external memory leads to large amount of random I/O hence do not scale with size. In this work we offer a technique to generate massive scale graphs on small cluster of compute nodes with limited main memory. We develop several distributed and external memory algorithms, primarily, shuffle, relabel, redistribute, and, compressed-sparse-row (csr) convert. The algorithms are implemented in MPI/pthread model to help parallelize the operations across multicores within each core. Using our scheme it is feasible to generate a graph of size 2^{35} nodes (scale 38) using only 64 compute nodes. This can be compared with the current scheme would require at least 8192 compute node, assuming 64GB of main memory. Our work has broader implications for external memory graph libraries such as STXXL and graph processing on SSD-based supercomputers such as Dash and Gordon [1], [2].

I. INTRODUCTION

In the last decade social networks surfaced on WWW and became immensely popular. With the advent of these graphs, massively parallel breadth first search (BFS) over scale free graphs has become an active area of study. Researchers have studied the problem under different combinations of hardware, runtime, and parallel programming model. In order to compare and contrast the various approaches, the supercomputing community initiated a Graph500 challenge recently. The challenge ranks the data intensive computing capability of supercomputers. The current data deluge has evidently marked a shift in the supercomputing needs from traditional numerical computation to data-intensive computing.

This work focuses on scalable implementations of the first of the two Graph500 kernels, namely, the graph generation kernel. There, the scheme for generating graphs utilizes the R-MAT model [3]. R-MAT model is invoked by each core to generate random edges, creating a total of $f \times n$ edges, where f is edge factor and n is the number of nodes desired in the output graph. The degree distribution of the graph thus generated is biased with respect to the node identifier, identifiers with smaller values have high degree distributions. Distribution and further processing of this graph can lead to locality both in local memory and across compute nodes that may reduce the validity of any operation or hinder performance. Therefore, the graph must be “de-biased”. This is achieved by post processing the graph using an MRG hash function. The suggested MRG hash function is fast, has no collisions, and, produces “high quality” permutations. These facts make it a good choice for main memory based graph generation. The entire scheme is main memory based: all of the graph is stored in the main memory and all the processing also happens from the main memory. We refer to this kernel as the ‘hashing based’ kernel in the rest of this paper.

The kernel requires 8 terabytes of main memory to generate a graph of size 2^{34} (scale 34) nodes. For ‘large’ graphs (scale 34 and above) the dataset size is even larger, doubling at every scale. To meet such memory demands clusters of size upwards of 4096 compute nodes, assuming 64GB memory per compute node, would be required. This has limited the generation of large graphs to select few largest supercomputers in the world, and that too, often by reserving the entire supercomputer. Smaller systems invariably fail short on both the memory and the time to generate competitive size graphs using this scheme.

One possible way to alleviate the memory limitation issue is to use external memory [4], [5]. The kernel can be extended trivially for generating graphs on external memory. However, the R-MAT model generates edges in random order. Hashing based method processes these edges in the same order as they are generated. Now, if the generated edges are stored on disk, this ordering will incur heavy amounts of random I/Os. Hence, a naive extension to graph generation over external memory would be inefficient, and infeasible for very large graphs. Caching and buffering cannot help because the main memory buffers are extremely small compared to total storage.

In this work, we offer a technique to generate massive scale graphs on small cluster of compute nodes (approximately 64 compute nodes). We develop several distributed and external memory algorithms, primarily, shuffle, relabel, redistribute, and, compressed-sparse-row (csr) convert. For each of these, we present a distributed, hybrid, MPI/pthread based implementation to help in parallelizing the operations across multicores within each compute node. We remark that it is possible to utilize multicores using MPI alone as well. However, the communication cost in that case is significantly higher. The relabeling algorithm resembles the sort-merge-join algorithm [6] popular in database domain. Two approaches are presented for redistribution and csr. In the first one, the edges are treated unordered. In this approach, building csr becomes expensive and we, therefore, present a parallel version. In the second approach, the edges are processed in the order
determined by relabeling phase; this simplifies and expedites the csr phase considerably. Amongst all these algorithms, relabeling turns out to be the most expensive, it’s overall cost being slightly more than hashing. (On our machine, hashing 2^{30} integers required 1.34 seconds while sorting them into 65,536 sized chunks requires 5.134 seconds.) However, this cost is well compensated for by the increased efficiency obtained as a result during the redistribution and the csr phases. Except shuffle, all the phases utilize external memory.

The proposed algorithms together are able to overcome the memory limitations of the hash based kernel. They are able to generate same size graphs in much less memory (or generate much larger graphs using the same amount of memory). For example, we can generate 16 billion node (2048 GB) graph using only (256 GB memory, or 4 compute nodes) while the present approach would require at least (2048 GB memory) or (32 GB memory) compute nodes. Our implementation has been able to generate graphs as large as 2^{37} nodes using 32 compute nodes, each with 64GB memory.

II. PRELIMINARIES

We begin with describing a few preliminary notations to be used in this paper. and also review briefly the state of art sequential implementation of R-MAT based scale free graph generator.

- Vertex: A node in the graph and represented as u, v, w etc.
- Edge: An undirected pair (u, v)
- Adj(u): List of vertices adjacent to u
- Graph: G= (V,E) represents a graph with $n = |V|$ vertices and $m = |E|$ edges.
- CSR(G): compressed row representation csr of any graph G consists of two vectors namely an offset vector (offv) and an adjacency vector (adjv). The offv indexes into the adjv vector. The adjacency (edge) information is stored in adjv vector. The neighbors of node nid are stored as entries in adjv vector from range $[offv[nid], offv[nid+1]]$.
- Storage cost S: Gives the number bytes required to store a particular data object of its type. For example $S(int)$ is 8 bytes in our setup.
- Range partitioning: Given objects (vertices) with identifiers $[0:n]$ and value k, the range partitioning creates k partitions each of size $w = n/k$ such that partition p has objects with identifiers in range $[w * i: w * (i + 1)]$. We use $RP(n,k)$ to denote range partitioning into k ranges.

Steps in graph generation: The specification of the graph generator can broadly be described as consisting of four phases: 1) the permutation phase, 2) the edge generation phase, 3) the relabeling phase, and, 4) building the CSR phase. It takes as input the edge factor f and the number of graph nodes n.

The permutation phase produces P, a vector of n integers in range $[0:n]$ shuffled randomly. An edgelist consisting of $n* f$ edges is generated via call to a function $gen_rmat_edge()$. Edges are then relabeled either using the permutation vector, i.e., an edge $e = (u, v)$ in the edgelist is relabeled as $(P[u], P[v])$. Next, the edgelist is sorted using the source field. The sorted edge list is finally used to build the CSR representation as described in algorithm 1.

This is a sequential implementation of the generation. More details on it as well as a parallel distributed implementation can be found on [7] for the interested reader. In either case, generating and utilizing the permutation vector typically turns out to be very expensive at large scale. It is possible to bypass/avoid permutation by using a perfect hashing function such as MRG [8], as implemented in the Graph500 kernel [7] (and briefly discussed in the section I).

As discussed earlier, the hashing technique requires a lot of main memory making it infeasible to generate large graphs on smaller clusters. Hence, our effort is to design a scheme that can be implemented on such clusters. It turns out that following the Graph500 specifications (utilizing the permutation vector etc.) is more beneficial to this end.

```
Algorithm 1 build_csr(edgelist el)
Require: edgelist el be sorted
1: aidx = 0, offv[0] = aidx, elidx = 0, csrc = 0
2: while 1 do
3:   if csrc ≠ el[elidx].src then
4:     ++csrc
5:   offv[csrc] = elidx
6:   continue
7: end if
8: adjv[elidx] = el[elidx].des, ++elidx
9: end while
```

III. HYBRID MPI/PTHREAD R-MAT GENERATOR

We describe our implementation of the distributed R-MAT generator using the hybrid pthread/mpi framework.

A. External Memory based Distributed (hybrid mode) R-MAT Generator

We begin with the description of our setup for generating graphs using the external memory. Our setup consists of nb compute nodes each with nc cores. Following variables are used:

- Bucket size : $B = nb$
- Bin size : $b = B/nc$
- Compute node rank : bid
- Core rank : cid
- Edge block capacity : C_e. Number of edges per disk block.
- Memory per core : mmc

We range partition the nodes across the compute nodes. Each range is further partitioned and distributed across the cores. We say that the core is the “owner” of the nodes that belong in its partition range. A core also “owns” the edges whose source is from its partition range.

We assume an abstract data type edgelist that supports all the standard operations such as insert, sort, and the like, except only the delete operation. We have implemented an
external memory data structure for the edgelist. Since there is partitioning across the cores, we need the notion of chunk partitioning in addition to range partitioning.

Chunk partitioning: Given a collection C (mostly edges) and a chunk size csz, chunk partitioning is defined as decomposing the collection into $k = |C|/csz$ chunks, each of size csz. We use $CP(C, csz)$ to denote chunk partitioning.

Furthermore, we also introduce what we call the ‘$k : 1$ scatter-gather MPI/pthread communication pattern’ framework. This is the framework that we will use for implementing most of our steps requiring communication.

$k : 1$ Scatter-gather Hybrid MPI/pthread communication pattern: In this framework, each compute node has k scatter threads and 1 gather thread. The scatter threads at any given compute node i generates data for every other compute node j. The data at each compute node is collected by a gather thread which then further processes it.

We now use the notations and ideas introduced to describe our parallel, scalable, external memory implementation of the distributed R-MAT generator.

B. The algorithms

In designing our hybrid implementation of the R-MAT generator, we adhere to the same sequence of main steps described in section IV. In particular, the step by step procedure is: build a permutation of the nodes, then generate edges, then relabel the edges, and finally, build the CSR format of the graph. However, we redesign the algorithm for each step so that it is implemented using distributed processing, shared memory, parallel implementation, and the $k : 1$ communication pattern described earlier. The primary objective is scalability on smaller machines with external memory and fast communication network.

1) The driver routine: The graph generator is invoked through the main program that takes as input n and f, the number of nodes and edge factor respectively. It then launches MPI processes on each compute node with same parameters. Each MPI process executes the steps, in that order, and in sync with other processes. When necessary each MPI process also launches nc pthreads, one per core, for example, during edge generation and relabeling steps. We now describe our implementation of each of the steps.

2) Distributed Random Shuffle: Algorithms 2, 3, and 4 describe the distributed shuffle algorithm in the hybrid MPI/pthread environment.

Algorithm 2 sends()

1: for $j \in [0 : nb]$ do
2: if $j \neq bid$ then
3: MPI_Send(sbuf + $j \cdot b$, b)
4: end if
5: end for

Algorithm 3 recv()

1: for $j \in [0 : nb]$ do
2: if $j \neq bid$ then
3: MPI_Recv(rbuf + $j \cdot b$, b)
4: end if
5: end for

Algorithm 4 distributed_shuffle()

1: iter = 0
2: repeat
3: shuffle(sbuf)
4: launch send and recv threads
5: wait for send and recv threads
6: rbuf[bid * b, bid*$b + i] = sbuf[bid*$b, bid*$b + i]
7: swap(sbuf, rbuf)
8: until iter < log$_{nb} n$
9: MPI_Barrier(MPI_COMM_WORLD)

3) Generate Edge list: Our algorithm for edgelist generation is a direct extension of the sequential implementation to its parallel counterpart based on hybrid MPI/pthread framework. Each compute node generates $n \cdot f/nb = B \cdot f$ edges. The load of edge generation is distributed further among the cores, i.e., each core is responsible for $B \cdot f/nc = b \cdot f$ edges. The collection of all edgelists across all the cores forms the distributed graph. The I/O cost of this step is simply $O(B \cdot f/C_e)$ sequential I/Os.

Algorithm 5 generate_edgelist(tid)

1: call append(el, gen_rmat_edge()) for $b \cdot f$ number of times

4) Relabel Edges: Edge generation is immediately followed by relabeling. This is the step that captures the central idea of our approach. In this step, each core relabels the source and destination of the vertices as per permutation vector, i.e., node with identifier i is assigned a new label $pv[i]$. We first relabel the destination vertices of each edge and then the
source vertices. The algorithm is described for the destination field. Relabeling of source field works the same.

In order to relabel the edges efficiently, we perform chunk partitioning of el with chunk size as mmc. Let $el = CP(el, mmc)$ be the collection of chunks. The collection el is again chunk partitioned into nc groups each of size $|el|/nc$, i.e., $gl = CP(el, nc)$. Each group of chunks is then associated with a core.

The relabel algorithm, illustrated in 7 is executed by each core, which begins by sorting (based on destination field of the edge) all the chunks in its group, one chunk at a time. The cores then work in a lock step fashion. At any time step t, the cores perform a sort-merge-join style algorithm between pv_t and destinations in range rp_t. The ordered permutation chunk pv_t has the new identifiers (or labels) that lie in partition rp_t. Since, the permutation range pv_t is on remote server t, it needs to be fetched before the merge-join can take place. Core 0 fetches the permute range using operation $get_permute_range$. A $permute_server$ thread (not depicted here) is launched (after the shuffle step) on each compute node that serves the permutation ranges to the requesting compute node. Once the permutation range is in the local buffer, each core performs the sort-merge operation for each of the edgelist chunk in the group as depicted in algorithm 7 (line 12–17) and algorithm 6.

The algorithm is repeated again to relabel the source field. The I/O complexity of this step is dictated by the number of disk blocks read by each core. In the current setup, this equals $O(2bsnf + S(int)C_b)$ sequential I/Os.

Algorithm 7 label_edges(tid)

1: for each edgelist chunk ec in group $gl[tid]$ do
2: read into main memory \Comment{If chunks are stored on disk}
3: sort ec \Comment{Either on source or destination field}
4: write sorted ec on disk
5: end for
6: id = 0
7: for $s \in [0 : nb]$ do
8: if $tid == 0$ then
9: $pv_s \leftarrow get_permute_vec(s)$ \Comment{pv_s is shared across}
10: end if
11: wait(label_wait_barrier)
12: for $pv \in pv_s$, do
13: for $i \in [0 : |gl[tid]|]$, do \Comment{process each chunk in its group}
14: $elci_i \leftarrow label_chunk(id, pv, gl[tid][i], elci_i)$
15: end for
16: end for
17: wait(relabel_wait_barrier)
18: end for

Algorithm 6 label_chunk(id, pid, elc, elci)

1: while $elc[elci].des == id$ do
2: $elc[elci].des = pid$ \Comment{Assign the new identifier and labels here}
3: $++elci$ \Comment{on disk}
4: end while
5: return $elci$

Algorithm 8 redistribute_edges()

1: for $e \in el$ do
2: $d \leftarrow O(e.src)$
3: append(elp_d, e)
4: if $|elp_d| == mbk/S(e)$ then \Comment{Edge list packet is full}
5: mpi_send(d, elp_d) \Comment{Send packet to collector on compute node d}
6: end if
7: end if
8: end for
9: for $i \in [0 : nb]$ do
10: mpi_send($elp_i, i)$
11: end for

5) Redistribute Edges: Once the edges have been labeled they need to be shipped to their respective compute nodes. In our setup an edge is owned by the same compute node that owns the source of the edge. Hence, if the (relabelled) source of an edge belong in range partition rp_t, it is shipped to compute node i.

Our implementation of redistribution is an instantiation of the hybrid pthread/MPI 1:1 scatter gather pattern as there are two threads per compute node involved to perform this task. The first thread performs the redistribution and the second thread performs collection. They are conceptually similar to map and reduce operations in map/reduce framework but implemented using mpi blocking communication primitives.

The scatter thread executes the function redistribute_edges. depicted in algorithm 8 It iterates over the (relabelled) edges placing them in the corresponding outstanding packets (denoted as elp_0, elp_1, \ldots, in the algorithm description) up on the source of the edge. If the buffer is full, it is sent to the collector thread (not depicted here) which appends it to its local edgelist. The collected edgelist at compute node i is "owned" by it, i.e., the source of the edges belongs to range rp_i in the range partitioning $RP(n, nb)$.

Assuming uniform distribution of edges across the compute nodes, the total I/O complexity of the redistribute step is $O(B*f/C_e)$. We, however, remark that a more efficient technique that deploys all the cores with I/O complexity of $O(b*f/C_e)$ is feasible.

6) Build CSR: After the redistribute step each compute node has collected its edgelist. The final step requires conversion from edgelist to CSR representation. We use a parallel approach to make this step scalable. This problem was also
Algorithm 9 collect_edges()
1: while do
2: if recv_all_packets() then ▷ Check if all packets have been collected
3: break
4: end if
5: mpi_recv(elp) ▷ MPI level details are omitted for clarity
6: append(el, elp)
7: end while

Algorithm 10 build_degv(tid)
1: for k ∈ elc do
2: for (s, d) ∈ elc_k do
3: inc(adjv_h[s], 1)
4: if S(adjv_h[s]) == mmc then
5: degv[s] = degv[s] + |adjv_h[s]| ▷ this is performed atomically
6: end if
7: end for
8: end for

Algorithm 11 build_edgev(tid)
Require: deg[i] = 0 for i ∈ [0 : B]
1: for k ∈ elc do
2: for (s, d) ∈ elc_k do
3: append(adjv_h[s], d)
4: if S(adjv_h[s]) == mmc then
5: repeat
6: do = degv[s]
7: dn = do + |adjv_h[s]|
8: until CAS(adjv_h[s], do, dn)
9: adjv[do : dn] = adjv_h[s] ▷ copy all the adjacent nodes
10: delete(adjv_h[s])
11: end if
12: end for
13: end for

IV. Experiments

The experiments presented here were performed on Trestles cluster hosted at SDSC. Each compute node contains four sockets, each with a 8-core 2.4 GHz AMD Magny-Cours processor, for a total of 32 cores per node. The nodes have 64

![Fig. 1. Sorted merge operation applied at both send and receive end of the redistribute step to generate an ordered sequence of edges. This helps parallelize the workload and significantly reduce the complexity of the build CSR step.](image-url)
GB of DDR3 RAM, with a theoretical memory bandwidth of 171 GB/s. The compute nodes are connected via QDR InfiniBand interconnect, fat tree topology, with each link capable of 8 GB/s (bidirectional).

The experiments are divided into three parts: single node experiments, strong scaling experiments, and weak scaling experiments.

A. Single Node Experiments

The single node experiments study the performance of the operations without interfering with the communication complexity involved. This allows us to project the limiting factor in scaling graph generation and the maximum size graph practically feasible on one compute node.

Figure 2 displays the compute time for each operation, normalized with respect to scale, as the problem size is increased. The normalization was done in order to be able to compare/contrast the time across scales. Specifically, the actual time value was divided by 2^{s-16}, where s denotes the corresponding scale. Hence, if the time complexity grows linearly with respect to scale then we should expect an almost flat curve. We see this behavior for all operations including complex ones such as shuffle, labeling, and redistribute. CSR is an exception. It grows exponentially with scale, thereby, also increasing the total time. We argue this because our current implementation of CSR is not optimal. The version we presented in algorithm 11 is guaranteed to scale linearly.

Furthermore, the complexity analysis carried out in III-B7 indicates linear scaling characteristics of the alternative build CSR implementation. Hence, from the experiment observations and the complexity analysis, we can claim that the dominant limiting factor is the size of the main memory. Even at that, except for shuffle, the rest of the algorithm can work with limited memory buffer. In other words the operations can be performed with fixed amount of main memory buffer irrespective of the scale of the graph. With this limitation we can generate a 2^{32} scale graph on a single compute node (assuming 64GB of main memory) within a few hours (2 - 3 hours). This implies that using 64 such compute nodes we can generate a 2^{38} sized graphs in less than 6 hours. Furthermore, the limitation on the shuffle is artificial and can be lifted using external memory shuffle algorithm. Once this limitation is removed the only true limitation would be the number of cores available in a system and IOPS and bandwidth of the external memory system.

The current trends in multicore architecture and SSDs point towards increased number of cores on a single cpu as well as IOPS and bandwidth on SSDs. This implies that with our algorithm, in near future 2^{34} sized graph will also become feasible on a single compute node. Hence, large scale graph generation which currently is possible only on the largest supercomputers in the world would be feasible on modest computing platform in near future.

B. Strong Scaling

We conduct experiments with increasing number of compute nodes for fixed problem sizes. Figures 3 shows the total generation time while plots in figures 4 show time for individual operations for scale 16, 18, 20, 24, 28 problems sizes as we increase the number of compute nodes from 1 to 8. In order to compare the performance and to bring out the trend clearly, the y-axis values (time taken for a operation) is scaled with respect to scale 16 problem size. Specifically, the y-axis values for problem at scale s is divided by 2^{s-16}. This make sure that values are within the same range and we can compare the performance and trends across problems of varying scale.

We see that the total time decreases linearly with respect to number of compute nodes. That is our approach exhibit linearly strong scaling. However, this scalability is limited by the problem scale. For example, scale 16 graph hits the limit at 2 compute nodes while scale 18 graph scalability tapers off at 4 compute node. On the other hand scale 28 graphs shows excellent scalability when the number of compute nodes are increased from 2 to 4. Data points for scale 28 graph for 8 compute node is missing because we ran out of our quota to run experiments.

The scaling of the individual operations is shown in figure 4. We see that edge generation, sort, and, csr scale linearly. The shuffle and relabel show sublinear scalability. The redistribute operation has unique behavior. For the sizes considered here it exhibits strong scaling. However, at large scale it also exhibits sublinear scalability as shown later in section IV-C. This is due to well known skewness in degree distribution of social network graphs.

C. Weak Scaling

Except 'redistribute’ and ‘relabel’, all the operators in the generator are embarrassingly parallel and, therefore, exhibit perfect weak scaling, i.e., the computation time of the operation remains constant upon increasing the problem size if the number of compute nodes in increased proportionally.

Redistribution and relabeling do not exhibit perfect (weak) scalability. Figure 5 displays the scalability of these two operations as we increase both the problem size and the number of compute nodes proportionally, starting with scale 29 graph and 4 compute nodes. Performance at scale 28 with 2 compute nodes is abnormally high due to skewness in the
Fig. 3. Total generation time with increasing number of compute nodes for various scale graphs.

Fig. 4. Strong scaling characteristics of operations

Fig. 5. Weak scaling characteristics of labeling and redistribute operators.

V. CONCLUSIONS AND FUTURE WORK

Generating large graphs is currently possible only on select few supercomputers due to the immensely high memory requirement. The algorithms presented in this paper offer an alternative method that can be used for generating large graphs on more affordable supercomputers. We use external memory. This facilitates reducing the burden on the main memory, helping in scaling the algorithm to much larger sizes than those possible through the hash based kernel. The use of external memory is also advantageous because it is much cheaper and offers lot more storage than main memory. After this, the only true limitations for large graph generation are the number of available cores and the IOPS of the SSDs.

Experiments demonstrate good strong and weak scaling of our approach in presence of limited main memory. Further experiments could not be carried out due to limited time availability constraints. Based up the current performance and the observed linear scaling of the approach, we project that 2^{38} sized graph possible using only modest 64 compute nodes in a reasonable time duration (less than 6 hours) as compared to upwards of 8192 compute nodes required with memory based approach.

A comparison of our approach with that of one implemented using map/reduce engine would be interesting. More so, because several operations in the graph generation phase can belong to its partition. Hence, one would expect the time taken by it to be constant. Unfortunately, the time taken increases with the increase in problem size. This is because the degree distribution of R-MAT graph is a skewed distribution. As we weak scale the problem there are some compute nodes have unfairly high number of edges they own, thereby increasing time complexity.

We remark that, this aspect does not in any way limit the scalability of our approach in terms of size. The use of the external memory allows for sufficient room to accommodate for the skewness in the edge distribution.
naturally be expressed using map and reduce operators. Such a comparison would inform us about relative importance of using low latency interconnects, pipelining, and will bring out the advantages and disadvantages of map/reduce framework over the MPI/pthread framework. We are investigating this aspect and will address it in the follow up work.

Finally, the sorted merge based distributed processing ideas developed here have implications on external memory parallel graph libraries such as [10] and external memory graph processing algorithms [11].

VI. ACKNOWLEDGMENTS

I would like to thank the reviewers for their time and insightful comments. I thank John Feo for discussions external memory and distributed memory shuffle algorithm, Allan Snavely for relentlessly pursuing massive scale graph processing using SSDs and giving me the opportunity to work on this problem, and Chaitan Baru for discussions on labeling problem and it’s connection with join operator in DB2. I also thank Mahidhar Tatineni and Robert Sinkovits for helping with installation, running, and debugging issues on Trestles. The experiments were supported through XSEDE startup award for allocations on several supercomputers.

REFERENCES

[1] M. L. Norman and A. Snavely, “Accelerating data-intensive science with gordon and dash,” in Proceedings of the 2010 TeraGrid Conference, ser. TG ’10. New York, NY, USA: ACM, 2010, pp. 14:1–14:7. [Online]. Available: http://doi.acm.org/10.1145/1838574.1838588

[2] S. M. Strande, P. Cicotti, R. S. Sinkovits, W. S. Young, R. Wagner, M. Tatineni, E. Hocks, A. Snavely, and M. Norman, “Gordon: design, performance, and experiences deploying and supporting a data intensive supercomputer,” in Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond, ser. XSEDE ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:8. [Online]. Available: http://doi.acm.org/10.1145/2335755.2335789

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for graph mining,” in SDM, M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, Eds. SIAM, 2004.

[4] J. He, A. Jagatheesan, S. Gupta, J. Bennett, and A. Snavely, “Dash: a recipe for a flash-based data intensive supercomputer,” in Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online]. Available: http://dx.doi.org/10.1109/SC.2010.16

[5] R. Pearce, M. Gokhale, and N. Amato, “Multithreaded asynchronous graph traversal for in-memory and semi-external memory,” in High Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for, nov. 2010, pp. 1 –11.

[6] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts, 5th ed. New York, NY, USA: McGraw-Hill, Inc., 2006.

[7] T. G. Committee, “The Graph500 Benchmark,” http://www.graph500.org/, 2010.

[8] P. L’Ecuyer, F. Blouin, and R. Couture, “A search for good multiple recursive random number generators,” ACM Trans. Model. Comput. Simul., vol. 3, no. 2, pp. 87–98, Apr. 1993. [Online]. Available: http://doi.acm.org/10.1145/169702.169698

[9] K. Madduri, “Snap (small-world network analysis and partitioning) framework,” in Encyclopedia of Parallel Computing, D. A. Padua, Ed. Springer, 2011, pp. 1832–1837.

[10] D. Ajwani and U. Meyer, “Algorithmics of large and complex networks,” J. Lerner, D. Wagner, and K. A. Zweig, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. Design and Engineering of External Memory Traversal Algorithms for General Graphs, pp. 1–33.