ANALOGUES OF THE RAMANUJAN–MORDELL THEOREM

SHAUN COOPER, BEN KANE AND DONGXI YE

Abstract. The Ramanujan–Mordell Theorem for sums of an even number of squares is extended to other quadratic forms and quadratic polynomials.

1. Introduction

One of the classical problems in number theory is to determine exact formulas for the number of representations of a positive integer \(n \) as a sum of \(2k \) squares, which we denote by \(r(2k; n) \). If we set

\[
 z = z(\tau) := \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2+n^2}
\]

where, here and throughout the remainder of this work, \(\tau \) is a complex number with positive imaginary part and \(q = e^{2\pi i \tau} \), then (considering \(z \) as a power series in \(q \))

\[
 \sum_{n=0}^{\infty} r(2k; n)q^n = z^k.
\]

The function \(z^k \) is a modular form and it is well-known that

\[
 z^k(\tau) = E^*_k(\tau) + C_k(\tau),
\]

where \(E^*_k(\tau) \) is an Eisenstein series and \(C_k(\tau) \) is a cusp form. In his remarkable work, Ramanujan \[24, Eqs. (145)–(147)] stated without proof explicit formulas for \(E^*_k(\tau) \) and \(C_k(\tau) \), and hence deduced the value of the coefficients \(r(2k; n) \). Ramanujan’s result was first proved by Mordell \[20\]. To state it we need Dedekind’s eta function, which is defined by

\[
 \eta(\tau) := q^{1/24} \prod_{j=1}^{\infty} (1 - q^n).
\]

Here and throughout, we write \(\eta_m \) for \(\eta(m\tau) \) for any positive integer \(m \).

Theorem 1.1 (Ramanujan–Mordell). Suppose \(k \) is a positive integer. Let \(z \) be defined by \((1.1)\). Then

\[
 z^k = F_k(\tau) + z^k \sum_{1 \leq j \leq \left\lfloor \frac{k-1}{4} \right\rfloor} c_{j,k} x^j
\]

Date: May 24, 2016.

2010 Mathematics Subject Classification. 11F11,11F20,11F30,11E25.

Key words and phrases. Ramanujan–Mordell Theorem, theta functions, sums of squares, sums of triangular numbers, eta functions, modular forms.

The research of the second author was supported by grant project numbers 27300314 and 17302515 of the Research Grants Council.
where $c_{j,k}$ are numerical constants that depend on j and k,

$$x = x(\tau) := \frac{\eta_2^{48}}{\eta_1^{24} \eta_4^{24}},$$

and $F_k(\tau)$ is an Eisenstein series defined by:

$$F_1(\tau) := 1 + 4 \sum_{j=1}^{\infty} \frac{q^j}{1 + q^{2j}},$$

and for $k \geq 1$,

$$F_{2k}(\tau) := 1 - \frac{4k(-1)^k}{(2^{2k} - 1)B_{2k}} \sum_{j=1}^{\infty} \frac{j^{2k-1}q^j}{1 - (-1)^{k+j}q^j},$$

and

$$F_{2k+1}(\tau) := 1 + \frac{4(-1)^k}{E_{2k}} \sum_{j=1}^{\infty} \left(\frac{(2j)^{2k}q^j}{1 + q^{2j}} - \frac{(-1)^{k+j}(2j - 1)^{2k}q^{2j-1}}{1 - q^{2j-1}} \right).$$

Here B_k and E_k are the Bernoulli numbers and Euler numbers, respectively, defined by

$$\frac{ue^u - 1}{e^u - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} u^k \quad \text{and} \quad \frac{1}{\cosh u} = \sum_{k=0}^{\infty} \frac{E_k}{k!} u^k.$$

The reader is referred to [9, p. 2] for a brief account of the history of the study of Theorem 1.1 for various k.

The goal of this work is to prove the analogues of the Ramanujan–Mordell Theorem for which the quadratic form $m^2 + n^2$ in (1.1) is replaced with the quadratic form $m^2 + pn^2$, or by the quadratic polynomial

$$\frac{m(m + 1)}{2} + p\frac{n(n + 1)}{2},$$

where $p \in \{3, 7, 11, 23\}$.

This work is organized as follows. In Section 2, we set up definitions, state the main results and explicate several examples. Proofs of the main results are given in Section 3.

2. Definitions and Main Results

For $k \geq 1$, define the normalized Eisenstein series by

$$E_{2k}(\tau) := 1 - \frac{4k}{B_{2k}} \sum_{j=1}^{\infty} \frac{j^{2k-1}q^j}{1 - q^j}.$$

Let p be an odd prime. The generalized Bernoulli numbers $B_{k,p}$ are defined by

$$\frac{x}{e^{px} - 1} \sum_{j=1}^{p-1} \chi_p(j) e^{jx} = \sum_{k=0}^{\infty} B_{k,p} \frac{x^k}{k!},$$

where $\chi_p(j) := \left(\frac{j}{p} \right)$ is the Legendre symbol. Let k be a positive integer which satisfies

$$k \equiv \frac{p - 1}{2} \quad (\text{mod } 2).$$
The generalized Eisenstein series $E_k^0(\tau; \chi_p)$ and $E_k^\infty(\tau; \chi_p)$ at the cusps 0 and $i\infty$, respectively, are defined by

$$E_k^0(\tau; \chi_p) := \delta_{k,1} - \frac{2k}{B_{k,p}} \sum_{j=1}^{\infty} \frac{j^{k-1}}{1 - q^{pj}} \sum_{\ell=1}^{p-1} \left(\frac{\ell}{p} \right) q^{\delta_{\ell,j}}$$

and

$$E_k^\infty(\tau; \chi_p) := 1 - \frac{2k}{B_{k,p}} \sum_{j=1}^{\infty} \left(\frac{j}{p} \right) \frac{j^{k-1} q^j}{1 - q^j},$$

where $\delta_{m,n}$ is the Kronecker delta function, defined by

$$\delta_{m,n} := \begin{cases} 1 & \text{if } m = n, \\ 0 & \text{if } m \neq n. \end{cases}$$

Certain linear combinations of Eisenstein series and generalized Eisenstein series will occur in the main results, and in anticipation of this we define series $G_k(\tau; p)$, $\tilde{G}_{2k+1}(\tau; p)$, $F_k(\tau; p)$ and $\tilde{F}(\tau; p)$ as follows. For $k \geq 1$, let

$$G_{2k}(\tau; p) := E_{2k}(\tau) + (-p)^k E_{2k}(p\tau).$$

For $k \geq 0$ let

$$G_{2k+1}(\tau; p) := E_{2k+1}^\infty(\tau; \chi_p) + (-p)^k E_{2k+1}^0(\tau; \chi_p)$$

and

$$\tilde{G}_{2k+1}(\tau; p) := E_{2k+1}^\infty(\tau; \chi_p) - (-p)^k E_{2k+1}^0(\tau; \chi_p).$$

For $p = 3$ or 11 and $k \geq 0$, let

$$(2.3) \quad F_{2k+1}(\tau; p) := \frac{G_{2k+1}(\tau; p) + 2^{2k+1} G_{2k+1}(4\tau; p)}{(2^{2k} + 1)(1 + \delta_{k,0})}$$

and

$$(2.4) \quad \tilde{F}_{2k+1}(\tau; p) := \frac{(2^{2k+1} - 2) \tilde{G}_{2k+1}(\tau; p) - 2^{2k+1} G_{2k+1}(2\tau; p) + 2G_{2k+1}(\tau/2; p)}{2^{4k+2}(2^{2k+1} + 1)(1 + \delta_{k,0})}.$$

For $p = 7$ or 23 and $k \geq 0$, let

$$(2.5) \quad F_{2k+1}(\tau; p) := \frac{G_{2k+1}(\tau; p) - 2G_{2k+1}(2\tau; p) + 2^{2k+1} G_{2k+1}(4\tau; p)}{(2^{2k+1} - 1)(1 + \delta_{k,0})}$$

and

$$(2.6) \quad \tilde{F}_{2k+1}(\tau; p) := \frac{G_{2k+1}(\tau; p) - G_{2k+1}(2\tau; p)}{2^{2k+1}(2^{2k+1} - 1)(1 + \delta_{k,0})}.$$

For $p = 3, 7, 11$ or 23 and any integer $k \geq 1$, let

$$(2.7) \quad F_{2k}(\tau; p) := \frac{G_{2k}(\tau; p) - 2G_{2k}(2\tau; p) + 2^{2k} G_{2k}(4\tau; p)}{(2^{2k} - 1)(1 + (-p)^k)}$$

and

$$(2.8) \quad \tilde{F}_{2k}(\tau; p) := \frac{G_{2k}(\tau; p) - G_{2k}(2\tau; p)}{2^{2k}(2^{2k} - 1)(1 + (-p)^k)}.$$
The observant reader will notice that the series \(\tilde{G}_{2k+1} \) occurs only once in the definitions (2.3)–(2.8), and that is as one of the terms in (2.4). A reason for this will be seen later in Lemma 3.3, in which (3.6) and (3.7) imply that for \(p = 3 \) or 11

\[
G_{2k+1} \left(\frac{\tau + 1}{2}; p \right) = -G_{2k+1}(\tau; p) + \left(2 - 2^{2k+1} \right) \tilde{G}_{2k+1}(2\tau; p) + 2^{2k+1}G_{2k+1}(4\tau; p).
\]

For \(p = 3, 7, 11 \) or 23, let \(z_p \) and \(x_p \) be defined by

\[
(2.9) \quad z_p = z_p(\tau) := \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2 + pn^2},
\]

and

\[
(2.10) \quad x_p = x_p(\tau) := \frac{(\eta_1 \eta_4 p \eta_4)^{24/(p+1)}}{(\eta_2 \eta_2 p)^{18/(p+1)}}.
\]

The analogue of the Ramanujan–Mordell Theorem, and the main result of this work, is:

Theorem 2.1. Suppose \(p = 3, 7, 11 \) or 23 and let \(k \) be a positive integer. Then

\[
z^k_p = F_k(\tau; p) + z^k_p \sum_{1 \leq j < (p+1)k/8} c_{p,k,j} x^j_p,
\]

where \(c_{p,k,j} \) are numerical constants that depend only on \(p, k, \) and \(j \).

There is an analogue of the Ramanujan–Mordell theorem that involves sum of triangular numbers instead of sums of squares; that is, replace the quadratic form \(m^2 + n^2 \) in (1.1) and Theorem 1.1 with the quadratic polynomial \(m(m+1)/2 + n(n+1)/2 \). See [24, pp. 190–191] and [10, Theorems 3.5 and 3.6]. To state the corresponding analogue of Theorem 2.1, let \(\tilde{z}_p \) and \(\tilde{x}_p \) be defined by

\[
(2.11) \quad \tilde{z}_p = \tilde{z}_p(\tau) := q^{(p+1)/8} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} q^{m(n+1)/2 + p(n+1)/2}
\]

and

\[
(2.12) \quad \tilde{x}_p = \tilde{x}_p(\tau) := \left(\frac{\eta_1 \eta_4 p}{\eta_2 \eta_2 p} \right)^{24/(p+1)}.
\]

Corollary 2.2. Suppose \(p = 3, 7, 11 \) or 23 and let \(k \) be a positive integer. Then

\[
z^k_p = \tilde{F}_k(\tau; p) + \tilde{z}^k_p \sum_{1 \leq j < (p+1)k/8} \tilde{c}_{p,k,j} \tilde{x}^j_p,
\]

where \(\tilde{c}_{p,k,j} \) are numerical constants that depend only on \(p, k, \) and \(j \) and are related to the \(c_{p,k,j} \) in Theorem 2.1 by \(\tilde{c}_{p,k,j} = 2^{-24j/(p+1)(1-j)}c_{p,k,j} \).

In the remainder of this section we describe some special cases of Theorem 2.1 and Corollary 2.2. Let \(\varphi(q) \) and \(\psi(q) \) be Ramanujan’s theta functions defined by

\[
\varphi(q) = \sum_{n=-\infty}^{\infty} q^{n^2} \quad \text{and} \quad \psi(q) = \sum_{n=0}^{\infty} q^{n(n+1)/2}.
\]

Because of the occurrence of the argument \(\tau/2 \) in one of the terms in (2.4), we have replaced \(\tau \) with \(2\tau \), and hence \(q \) with \(q^2 \), to obtain the examples (2.13), (2.18) and (2.22), below.
Example 2.3. For $k = 1$ and $p = 3, 7, 11$ or 23, Theorem 2.1 and Corollary 2.2 give

\begin{align}
(2.13) \quad \varphi(q)\varphi(q^3) &= 1 + 2\sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \left(\frac{q^j}{1 - q^j} + \frac{2q^{4j}}{1 - q^{4j}} \right), \\
(2.14) \quad q\psi(q^2)\psi(q^6) &= \sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \left(\frac{q^j}{1 - q^j} - \frac{q^{4j}}{1 - q^{4j}} \right), \\
(2.15) \quad \varphi(q)\varphi(q^7) &= 1 + 2\sum_{j=1}^{\infty} \left(\frac{j}{7} \right) \left(\frac{q^j}{1 - q^j} - \frac{2q^{2j}}{1 - q^{2j}} + \frac{2q^{4j}}{1 - q^{4j}} \right), \\
(2.16) \quad q\psi(q)\psi(q^7) &= \sum_{j=1}^{\infty} \left(\frac{j}{7} \right) \left(\frac{q^j}{1 - q^j} - \frac{q^{2j}}{1 - q^{2j}} \right), \\
(2.17) \quad \varphi(q)\varphi(q^{11}) &= 1 + \frac{2}{3}\sum_{j=1}^{\infty} \left(\frac{j}{11} \right) \left(\frac{q^j}{1 - q^j} + \frac{2q^{4j}}{1 - q^{4j}} \right) + \frac{4}{3}\eta_2\eta_{22}, \\
(2.18) \quad q^3\psi(q^2)\psi(q^{22}) &= \frac{1}{3}\sum_{j=1}^{\infty} \left(\frac{j}{11} \right) \left(\frac{q^j}{1 - q^j} - \frac{q^{4j}}{1 - q^{4j}} \right) - \frac{1}{3}\eta_2\eta_{22}, \\
(2.19) \quad \varphi(q)\varphi(q^{23}) &= 1 + \frac{2}{3}\sum_{j=1}^{\infty} \left(\frac{j}{23} \right) \left(\frac{q^j}{1 - q^j} - \frac{2q^{2j}}{1 - q^{2j}} + \frac{2q^{4j}}{1 - q^{4j}} \right) \\
& \quad + \frac{4}{3}\eta_2^3\eta_{14} - \frac{4}{3}\eta_2\eta_{46}, \\
(2.20) \quad q^3\psi(q)\psi(q^{23}) &= \frac{1}{3}\sum_{j=1}^{\infty} \left(\frac{j}{23} \right) \left(\frac{q^j}{1 - q^j} - \frac{q^{2j}}{1 - q^{2j}} \right) - \frac{1}{3}\eta_1\eta_{23} - \frac{2}{3}\eta_2\eta_{46}.
\end{align}

The identity (2.13) was first stated in an equivalent form by Lorenz [19, p. 420]. Both (2.13) and (2.14) were given by Ramanujan in his second notebook [23, Ch. 19, Entry 3]. See Berndt [8, pp. 223–224], Fine [13, p. 73, (31.16), (31.22)] and Hirschhorn [14] for proofs and further information.

The identities (2.15) and (2.16) also appear in Ramanujan’s second notebook [23, Ch. 19, Entry 17] and proofs have been given by Berndt [8, pp. 302–304]. The identity (2.15) has also been proved by Pall [21].

The identities (2.17) and (2.19) have been recently proved by the third author [25].

The identities (2.18) and (2.20) are new.

Example 2.4. For $p = 3$, the cases $k = 2, 3, 4$ and 6 of Theorem 2.1 and Corollary 2.2 give

\begin{align}
(2.21) \quad \varphi^2(q)\varphi^2(q^3) &= 1 + 4\sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \left(\frac{jq^j}{1 - q^j} - \frac{2jq^{2j}}{1 - q^{2j}} - \frac{3jq^{3j}}{1 - q^{3j}} + \frac{4jq^{4j}}{1 - q^{4j}} + \frac{6jq^{6j}}{1 - q^{6j}} - \frac{12jq^{12j}}{1 - q^{12j}} \right), \\
(2.22) \quad q\psi^2(q)\psi^2(q^3) &= \sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \left(\frac{jq^j}{1 - q^j} - \frac{jq^{2j}}{1 - q^{2j}} \right), \\
(2.23) \quad \varphi^3(q)\varphi^3(q^3) &= 1 + 3\sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \left(\frac{jq^j - q^{2j}}{1 - q^{3j}} + \frac{8jq^{4j} - q^{8j}}{1 - q^{12j}} \right)
\end{align}
\[-\sum_{j=1}^{\infty} \left(\frac{j}{3^3} \right) \left(\frac{j^2 q^j}{1 - q^j} + \frac{8j^2 q^{4j}}{1 - q^{4j}} \right) + 4\eta_2^3 \eta_6^3,\]

(2.24)

\[q^3 \psi^3(q^2) \psi^3(q^6) = \frac{3}{32} \sum_{j=1}^{\infty} \left(\frac{j^2 (q^j - q^{2j})}{1 - q^{3j}} - \frac{3j^2 (q^{2j} - q^{4j})}{1 - q^{6j}} - \frac{4j^2 (q^{4j} - q^{8j})}{1 - q^{12j}} \right) \]

\[-\frac{1}{32} \sum_{j=1}^{\infty} \left(\frac{j}{3} \right) \left(\frac{j^2 q^j}{1 - q^j} + \frac{3j^2 q^{2j}}{1 - q^{2j}} - \frac{4j^2 q^{4j}}{1 - q^{4j}} \right) - \frac{1}{16} \eta_2^3 \eta_6^3,\]

(2.25)

\[\varphi^4(q) \psi^4(q^3) = 1 + \frac{8}{5} \sum_{j=1}^{\infty} \left(\frac{j^3 q^j}{1 - q^j} - \frac{2j^3 q^{2j}}{1 - q^{2j}} + \frac{9j^3 q^{3j}}{1 - q^{3j}} \right) - \frac{1}{10} \eta_2^2 \eta_3 \eta_6^2,\]

(2.26)

\[q^2 \psi^4(q) \psi^4(q^3) = \frac{1}{10} \sum_{j=1}^{\infty} \left(\frac{j^3 q^j}{1 - q^j} - \frac{j^3 q^{2j}}{1 - q^{2j}} + \frac{9j^3 q^{3j}}{1 - q^{3j}} - \frac{9j^3 q^{6j}}{1 - q^{6j}} \right) - \frac{1}{10} \eta_2^2 \eta_3 \eta_6^2,\]

(2.27)

\[\varphi^6(q) \psi^6(q^3) = 1 + \frac{4}{13} \sum_{j=1}^{\infty} \left(\frac{j^5 q^j}{1 - q^j} - \frac{2j^5 q^{2j}}{1 - q^{2j}} - \frac{27j^5 q^{3j}}{1 - q^{3j}} + \frac{64j^5 q^{6j}}{1 - q^{6j}} + \frac{54j^5 q^{12j}}{1 - q^{12j}} \right) \]

\[+ \frac{152}{13} \eta_2^6 q^{18} + \frac{256}{13} \eta_2^6 \eta_6^2,\]

(2.28)

\[q^3 \psi^6(q) \psi^6(q^3) = \frac{1}{208} \sum_{j=1}^{\infty} \left(\frac{j^5 q^j}{1 - q^j} - \frac{j^5 q^{2j}}{1 - q^{2j}} - \frac{27j^5 q^{3j}}{1 - q^{3j}} + \frac{27j^5 q^{6j}}{1 - q^{6j}} \right) - \frac{1}{208} \eta_2^6 \eta_3 - \frac{19}{104} \eta_2^6 \eta_6^2,\]

The identity (2.21) was first stated without proof in an equivalent form by Liouville [17, 18]. See Pepin [22], Bachmann [5], Kloosterman [15] and Alaca et al. [2] for proofs. Both (2.21) and (2.22) appear in Ramanujan’s second notebook [23, Ch. 19, Entry 3]. Proofs have been given by Fine [13, (31.4)–(31.43) and (33.2)] and Berndt [8, pp. 223–226].

A formula equivalent to (2.23) was proved by Alaca et al. in [3], where it was attributed to Berkovich and Yesilyurt.

The identity (2.25) was proved by Alaca and Williams [3]. A formula similar to (2.25), in which the coefficients in \(\eta_2^2 \eta_3 \eta_6^2 \eta_6^3\) are given as a quadruple sum, has been given by Berdide [6].

A formula equivalent to (2.27) was given by Alaca [1]; that formula involves three cusp forms on the right-hand side, while ours involves only two.

The identities (2.24), (2.26) and (2.28) are believed to be new.

Example 2.5. For \(p = 7\), the cases \(k = 2\) and \(3\) of Theorem 2.1 give

\[\varphi^2(q) \varphi^2(q^7) = 1 + \frac{4}{3} \sum_{j=1}^{\infty} \left(\frac{j q^j}{1 - q^j} - \frac{2 j q^{2j}}{1 - q^{2j}} + \frac{4 j q^{4j}}{1 - q^{4j}} - \frac{7 j q^{7j}}{1 - q^{7j}} + \frac{14 j q^{14j}}{1 - q^{14j}} - \frac{28 j q^{28j}}{1 - q^{28j}} \right)\]

\[\text{This is because, if } b(q) = \eta_2^2 \eta_6^3, \text{ then } b(q) + 12b(q^2) + 64b(q^4) + b(-q) = 0.\]
Lemma 3.1. For the Lehner involution W, we require the explicit modularity properties of the Eisenstein series on $\Gamma_0(3.2)$ as well as the Atkin–Lehner involution W_p.

(2.30) $q^2 \psi^2(q)\psi^2(q^7) = \frac{1}{3} \sum_{j=1}^{\infty} \left(\frac{jq^j}{1-q^j} \cdot \frac{jq^{2j}}{1-q^{2j}} - 7jq^{7j} + 7jq^{14j} \right)$.

(2.31) $\varphi^3(q)\varphi^3(q^7) = 1 + \frac{7}{8} \sum_{j=1}^{\infty} \frac{j^2(q^j + q^{2j} - q^{3j} + q^{4j} - q^{5j} - q^{6j})}{1-q^{7j}} - \frac{7}{4} \sum_{j=1}^{\infty} \frac{j^2(q^{2j} + q^{4j} - q^{6j} + q^{8j} - q^{10j} - q^{12j})}{1-q^{14j}} + 7 \sum_{j=1}^{\infty} \frac{j^2(q^{4j} + q^{6j} - q^{8j} - q^{10j} - q^{12j} + q^{16j} - q^{20j} - q^{24j})}{1-q^{28j}} - \frac{1}{8} \sum_{j=1}^{\infty} \left(\frac{j}{7} \right) \left(\frac{j^2q^j}{1-q^j} - \frac{2j^2q^{2j}}{1-q^{2j}} + \frac{8j^2q^{4j}}{1-q^{4j}} \right) + \frac{21}{4} \eta_2^3 \eta_4^3 \eta_8^3 \eta_{28}^3 - 6\eta_2^3 \eta_4^3$.

(2.32) $q^3 \psi^3(q)\psi^3(q^7) = \frac{7}{64} \sum_{j=1}^{\infty} \frac{j^2(q^j + q^{2j} - q^{3j} + q^{4j} - q^{5j} - q^{6j})}{1-q^{7j}} - \frac{7}{64} \sum_{j=1}^{\infty} \frac{j^2(q^{2j} + q^{4j} - q^{6j} + q^{8j} - q^{10j} - q^{12j})}{1-q^{14j}} - \frac{1}{64} \sum_{j=1}^{\infty} \left(\frac{j}{7} \right) \left(\frac{j^2q^j}{1-q^j} - \frac{j^2q^{2j}}{1-q^{2j}} \right) - \frac{3}{32} \eta_1^3 \eta_7^3 - \frac{21}{32} \eta_2^3 \eta_4^3$.

Identities equivalent to (2.29) and (2.30) have been proved in [12]. The identities (2.31) and (2.32) arise in the theory of 7-cores and were proved by Berkovich and Yesilyurt [7].

3. Proofs

For any positive integer N, let us define

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1, c \equiv 0 \pmod{N} \right\}.$$

We require the explicit modularity properties of the Eisenstein series on $\Gamma_0(p)$ as well as the Atkin–Lehner involution W_p.

Lemma 3.1. For $p = 3, 7, 11$ or 23, and any integer $k \geq 0$, and for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(p)$, we have

(3.1) $E_{2k+1}^0 \left(\frac{ar + b}{ct + d} ; \chi_p \right) = \left(\frac{d}{p} \right) (ct + d)^{2k+1} E_{2k+1}^0 (\tau ; \chi_p)$,

(3.2) $E_{2k+1}^\infty \left(\frac{ar + b}{ct + d} ; \chi_p \right) = \left(\frac{d}{p} \right) (ct + d)^{2k+1} E_{2k+1}^\infty (\tau ; \chi_p)$.

Lemma 3.2. For any positive integer \(k \), we have
\[
E_{2k} \left(\tau + \frac{1}{2} \right) = -E_{2k}(\tau) + (2^{2k} + 2)E_{2k}(2\tau) - 2^{2k}E_{2k}(4\tau). \tag{3.5}
\]
For \(p = 3 \) or 11 and any nonnegative integer \(k \), we have
\[
E_{2k+1}^0 \left(\tau + \frac{1}{2}; \chi_p \right) = -E_{2k+1}^0(\tau; \chi_p) + (2^{2k+1} - 2)E_{2k+1}^0(2\tau; \chi_p) + 2^{2k+1}E_{2k+1}^0(4\tau; \chi_p), \tag{3.6}
\]
\[
E_{2k+1}^\infty \left(\tau + \frac{1}{2}; \chi_p \right) = -E_{2k+1}^\infty(\tau; \chi_p) + (2 - 2^{2k+1})E_{2k+1}^\infty(2\tau; \chi_p) + 2^{2k+1}E_{2k+1}^\infty(4\tau; \chi_p). \tag{3.7}
\]
For \(p = 7 \) or 23 and any nonnegative integer \(k \), we have
\[
E_{2k+1}^0 \left(\tau + \frac{1}{2}; \chi_p \right) = -E_{2k+1}^0(\tau; \chi_p) + (2^{2k+1} + 2)E_{2k+1}^0(2\tau; \chi_p) - 2^{2k+1}E_{2k+1}^0(4\tau; \chi_p), \tag{3.8}
\]
\[
E_{2k+1}^\infty \left(\tau + \frac{1}{2}; \chi_p \right) = -E_{2k+1}^\infty(\tau; \chi_p) + (2^{2k+1} + 2)E_{2k+1}^\infty(2\tau; \chi_p) - 2^{2k+1}E_{2k+1}^\infty(4\tau; \chi_p). \tag{3.9}
\]

Proof. First of all, from the definitions of \(E_{2k}(\tau) \), \(E_{2k+1}^0(\tau; \chi_p) \) and \(E_{2k+1}^\infty(\tau; \chi_p) \), we may deduce the Fourier expansions
\[
E_{2k}(\tau) = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^\infty \sigma_{2k-1}(n)q^n, \tag{3.10}
\]
\[
E_{2k+1}^0(\tau; \chi_p) = \delta_{2k+1,1} - \frac{4k + 2}{B_{2k+1,p}} \sum_{n=1}^\infty \left(\sum_{d|n} \left(\frac{n/d}{p} \right) d^{2k} \right) q^n \tag{3.11}
\]
and
\[
E_{2k+1}^\infty(\tau; \chi_p) = 1 - \frac{4k + 2}{B_{2k+1,p}} \sum_{n=1}^\infty \left(\sum_{d|n} \left(\frac{d}{p} \right) d^{2k} \right) q^n, \tag{3.12}
\]
where \(\sigma_k(n) = \sum_{d|n} d^k \) if \(n \) is a positive integer. For (3.10), we first observe that
\[
\sigma_k(2n) = \left(1 + 2^k \right) \sigma_k(n) - 2^k \sigma_k(n/2),
\]
where \(\sigma_k(n/2) \) is defined to be zero if \(n/2 \) is not a positive integer. Then,
\[
E_{2k} \left(\tau + \frac{1}{2} \right) + E_{2k}(\tau)
\]
\[
= 2 \left(1 - \frac{4k}{B_{2k}} \sum_{n=1}^\infty \sigma_{2k-1}(2n)q^{2n} \right)
\]
\[
= 2 \left(1 - \frac{4k}{B_{2k}} \sum_{n=1}^\infty \left((1 + 2^{2k-1})\sigma_{2k-1}(n) - 2^{2k-1} \sigma_{2k-1}(n/2) \right) q^{2n} \right)
\]
Lemma 3.3. For any positive integer \(k \), we have

\[
F_{2k} \left(-\frac{1}{4\tau} + \frac{1}{2}; p \right) = \frac{\tau^{2k}(-16p)^k (G_{2k}(2\tau) - G_{2k}(4\tau))}{(2^{2k} - 1)(1 + (-p)^k)}.
\]

For \(p = 3 \) or 11 and any non-negative integer \(k \), we have

\[
F_{2k+1} \left(-\frac{1}{4\tau} + \frac{1}{2}; p \right) = (2i\tau \sqrt{p})^{2k+1} \times \frac{(2^{2k+1}G_{2k+1}(4\tau;p) - 2(2^{2k} - 1)G_{2k+1}(2\tau;p) - 2G_{2k+1}(1;p))}{(2^{2k+1} - 1)(1 + \delta_{k,0})}.
\]

For \(p = 7 \) or 23 and any non-negative integer \(k \), we have

\[
F_{2k+1} \left(-\frac{1}{4\tau} + \frac{1}{2}; p \right) = (4i\tau \sqrt{p})^{2k+1} \times \frac{(G_{2k+1}(4\tau;p) - G_{2k+1}(2\tau;p))}{(2^{2k+1} - 1)(1 + \delta_{k,0})}.
\]

Proof. These follow immediately from the definitions of \(F_k(\tau;p) \) together with Lemmas 3.1 and 3.2 and the weight 2k modularity of \(E_{2k} \) on \(SL_2(\mathbb{Z}) = \Gamma_0(1) \). □

Now we are ready for

Proof of Theorem 2.1. Let \(p = 3, 7, 11 \) or 23, and let \(k \) be a positive integer. Let \(\ell \) be the smallest integer that satisfies

\[
\ell \geq \begin{cases}
\frac{(p+1)k}{8} - \frac{1}{2}, & \text{if } p = 3 \text{ or 11 and } k \text{ is odd}, \\
\frac{(p+1)k}{8} - 1, & \text{otherwise}.
\end{cases}
\]

Consider the functions

\[
f(\tau) = f_{k,p}(\tau) = \frac{F_k(\tau;p)}{z_p(\tau)^k x_p(\tau)^{\ell}} \quad \text{and} \quad g(\tau) = g_p(\tau) = \frac{1}{x_p(\tau)}.
\]
Clearly, both $f(\tau)$ and $g(\tau)$ are analytic on \mathbb{H}. And we may verify that both $f(\tau)$ and $g(\tau)$ are invariant under $\Gamma_0(4p)$ and

$$W_e = \left\{ \begin{pmatrix} ae & b \\ 4pc & de \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \text{ the determinant is } e \right\}$$

for $e \in \{4, p, 4p\}$. Therefore, both $f(\tau)$ and $g(\tau)$ are invariant under $\Gamma_0(4p)^+$, the group obtained from $\Gamma_0(4p)$ by adjoining all of its Atkin-Lehner involutions W_e. Let us analyze the behavior at $\tau = i\infty$. By observing the q-expansions, we find that

$$f(\tau) = \frac{1 + O(q)}{(1 + O(q))^{\frac{1}{2}}(1 + O(q))^\ell} = q^{-\ell} + O(q^{-\ell+1}).$$

Therefore $f(\tau)$ has a pole of order ℓ at $i\infty$. Similarly, we note that $g(\tau)$ has a simple pole at $\tau = i\infty$. It implies that there exist constants $a_1, \ldots, a_\ell \in \mathbb{C}$ such that the function

$$h(\tau) := f(\tau) - \sum_{j=1}^\ell a_j g(\tau)^j$$

has no pole at $\tau = i\infty$, that is,

$$h(\tau) = a_0 + O(q) \quad \text{as } \tau \to i\infty$$

for some constant a_0. Let us consider the behavior of $h(\tau)$ at $\tau = \frac{1}{2}$. By Lemma 3.3 and the transformation formula for Dedekind’s eta function, we find that

$$f \left(-\frac{1}{4p\tau} + \frac{1}{2} \right) = \begin{cases} C_0 q^{2\ell - \frac{(p+1)k}{4} + 1}(1 + O(q)), & \text{if } p = 3 \text{ or } 11 \text{ and } k \text{ is odd,} \\
C_1 q^{2\ell - \frac{(p+1)k}{4} + 2}(1 + O(q)), & \text{otherwise,} \end{cases}$$

and

$$g \left(-\frac{1}{4p\tau} + \frac{1}{2} \right) = C_3 q^2(1 + O(q))$$

for some constants C_0, C_1 and C_2 as $\tau \to i\infty$. Therefore, $h(\tau) \to a_0$ as $\tau \to \frac{1}{2}$. Since the only cusps of $\Gamma_0(4p)^+$ are at $i\infty$ and $\frac{1}{2}$, it follows that $h(\tau)$ is holomorphic on $X(\Gamma_0(4p)^+)$, and thus $h(\tau)$ is a constant, that is, $h(\tau) \equiv a_0$. Therefore, we have

$$f(\tau) = \sum_{j=0}^\ell a_j g(\tau)^j,$$

which is equivalent to

$$F_k(\tau; p) = z_p^k \sum_{j=0}^\ell a_j x_p^{\ell-j} = z_p^k \sum_{j=0}^\ell b_j x_p^j,$$

where $b_j := a_{\ell-j}$. By the choice of ℓ and comparing the constant terms on both sides, we conclude that $b_0 = 1$ and

$$F_k(\tau; p) = z_p^k + z_p^k \sum_{1 \leq j < \frac{p+1}{2}} b_j x_p^j.$$

Now take $b_j = -c_{p,k,j}$ to complete the proof. \hfill \Box

Proof of Corollary 2.2. It follows directly from Theorem 2.1 together with the following observations:

$$\tilde{z}_p(\tau) = \frac{i}{4\sqrt{p\tau}} z_p \left(-\frac{1}{2p\tau} + \frac{1}{2} \right),$$
\[
\tilde{x}_p(\tau) = -2^{-24/(p+1)} \tilde{x}_p \left(-\frac{1}{2p\tau} + \frac{1}{2} \right),
\]
\[
\tilde{F}_k(\tau; p) = \left(\frac{i}{4\sqrt{p\tau}} \right)^k F_k \left(-\frac{1}{2p\tau} + \frac{1}{2} \right).
\]

(3.16)

\[\square\]

References

[1] A. Alaca, On the number of representations of a positive integer by certain quadratic forms in twelve variables, J. Combin. Number Theory, 3 (2011), 167–177.
[2] A. Alaca, S. Alaca, M. F. Lemire and K. S. Williams, Nineteen quaternary quadratic forms, Acta Arith. 130 (2007), 277–310.
[3] A. Alaca, S. Alaca and K. S. Williams, Some new theta function identities with applications to secentenary quadratic forms, J. Combin. Number Theory, 1 (2009), 89–98.
[4] S. Alaca and K. S. Williams, The number of representations of a positive integer by certain octonary quadratic forms, Functiones et Approximatio, 43 (2010), 45–54.
[5] P. Bachmann, Niedere Zahlentheorie, Chelsea, New York, 1968.
[6] R. I. Berndt, The representation of numbers by certain quadratic forms in eight variables, Thbilis. Univ. Šrom. A, 1 (1971), 5–16.
[7] A. Berkovich and H. Yesilyurt, On the representations of integers by the secentenary quadratic form \(x^2 + y^2 + z^2 + 7(s^2 + t^2 + u^2)\) and 7-cores, J. Number Theory, 129 (2009), 1366–1378.
[8] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[9] H. H. Chan and S. Cooper, Powers of theta functions, Pacific J. Math., 235 (2008), 1–14.
[10] S. Cooper, On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan's \(\psi_3\) summation formula. In: q-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), 115–137, Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001.
[11] S. Cooper, Construction of Eisenstein series for \(\Gamma_0(p)\), Int. J. Number Theory 5 (2009), 765–778.
[12] S. Cooper and D. Ye, Level 14 and 15 analogues of Ramanujan’s elliptic functions to alternative bases, Trans. Amer. Math. Soc., DOI: http://dx.doi.org/10.1090/tran6658
[13] N. Fine, Basic Hypergeometric Series and Applications, AMS, Providence, RI, 1988.
[14] M. D. Hirschhorn, Three classical results on representations of a number, Sém. Lothar. Combin. 42 (1999), art. B42f, 8 pp.
[15] H. D. Kloosterman, On the representation of numbers in the form \(ax^2 + by^2 + cz^2 + dt^2\), Proc. London Math. Soc. 25 (1926), 143–173.
[16] O. Kolberg, Note on the Eisenstein series of \(\Gamma_0(p)\), Arbok Univ. Bergen Mat.-Natur. Ser. 1968 (1968), 20 pp. (1969).
[17] J. Liouville, Sur la form \(x^2 + y^2 + 3(z^2 + t^2)\), J. Math. Pures Appl. 5 (1860), 147–152.
[18] J. Liouville, Remarque nouvelle sur la form \(x^2 + y^2 + 3(z^2 + t^2)\), ibid. 6 (1861), 296.
[19] L. Lorenz, Oeuvres Scientifiques, Revues et annotées par H. Valentiner, Tome second, la Fondation Carlsberg, Librarie Lehmann & Stage, Copenhagen, 1904.
[20] L. J. Mordell, On the representation of numbers as the sum of \(2r\) squares, Quart. J. Pure and Appl. Math., Oxford 48 (1917), 93–104.
[21] G. Pall, On the application of a theta formula to representation in binary quadratic forms, Bull. Amer. Math. Soc., 37 (1931), 863–869.
[22] T. Pepin, Sur quelques formes quadratiques quaternaires, J. Math. Pures Appl. 6 (1890), 5–67.
[23] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
[24] S. Ramanujan, Collected Papers, AMS Chelsea Publishing, Providence, Rhode Island, 2000.
[25] D. Ye, Representations of certain binary quadratic forms as a sum of Lambert series and eta-quotients, Int. J. Number Theory 11 (2015), 1073-1088

Institute of Natural and Mathematical Sciences, Massey University-Albany, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand, E-mail: s.cooper@massey.ac.nz

Department of Mathematics, University of Hong Kong, Pokfulam, Hong Kong, E-mail address: bkane@maths.hku.hk
