MicroRNA-21 increases cell viability and suppresses cellular apoptosis in non-small cell lung cancer by regulating the PI3K/Akt signaling pathway

TAO WANG1*, ZHENYU CAI2*, GUOLIN HONG1, GANGSEN ZHENG1, YU HUANG1, SHUN ZHANG3 and JINHUA DAI4

Departments of 4Clinical Laboratory and 2Anesthesiology, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, Fujian 361003; 3Stem Cell and Regenerative Medicine Laboratory; 4Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China

Received April 25, 2016; Accepted March 30, 2017

DOI: 10.3892/mmr.2017.7440

Abstract. MicroRNA (miRNA/miR), a type of non-coding RNA molecule, is able to inhibit the expression of target genes at multiple stage(s). There are 800-1,000 known miRNAs in the human genome, which serve important roles in cell proliferation, differentiation, apoptosis and migration. Previous studies have demonstrated that the expression of miR-21 is upregulated in numerous types of malignant tumor, and that miR-21 participates in the occurrence and development of tumors via complex regulatory mechanisms. The present study aimed to investigate the association between miR-21 expression, cell viability and apoptosis in a lung cancer cell line, and to elucidate the potential mechanisms. miR-21 or small interfering RNA against miR-21 were transfected into A549 non-small cell lung cancer cells. The mRNA expression of miR-21 was confirmed. Cell viability and apoptosis were examined using MTT and flow cytometric assays, respectively. The expression of certain apoptosis-associated proteins was detected by western blotting. The results of the present study demonstrated that miR-21 increased cell viability by inhibiting apoptosis, through regulation of Akt activation. The present study demonstrated that miR-21 may be involved in the progression of lung cancer and may be a novel therapeutic target for the disease.

Introduction

Lung cancer is a notable cause of mortality and is the 2nd most common type of cancer worldwide, of which non-small cell lung cancer (NSCLC) accounts for 80-85% of cases (1,2). The majority of patients with NSCLC are diagnosed in an advanced disease stage; therefore, the disease is associated with a poor 5-year survival rate (3). Due to advances in molecular biology, treatments for adenocarcinoma have improved; treatments for lung cancer, however, remain unsatisfactory, and the incidence and mortality rate of patients with lung cancer remain high (4,5).

MicroRNAs (miRNAs/miRs) are small, non-coding RNA molecules which serve important roles as regulatory factors in carcinogenesis (6,7). miRNAs have been reported to be involved in multiple types of tumor, including lung cancer. The discovery of miRNAs may provide a novel and powerful tool for researching the mechanism, diagnosis and treatment of lung cancer. Previous research has characterized miRNAs as a group of novel therapeutic small molecules involved in the treatment and regulation of lung cancer. Abnormal expression of miRNAs in plasma has been observed in some patients with malignant tumors, such as miR-30a, which was demonstrated to be overexpressed in NSCLC cells (8). Chen et al (9) reported that miR-206 is underexpressed in lung cancers and may be a potential target for therapy by inhibiting epithelial-mesenchymal transition and angiogenesis in lung cancer. With the aim of investigating the potential role of miR-95 in the treatment of NSCLC, Ma et al (10) and Chen et al (11) investigated the expression level of miR-95 and observed it to be overexpressed in recurrent NSCLC, and demonstrated that miR-95a is a potential therapeutic target for the treatment of NSCLC. Metastasis is recognized as a frequent cause of mortality in patients with NSCLC. Previous studies have demonstrated

Correspondence to: Dr Jinhua Dai, Department of Clinical Laboratory, Ningbo No. 2 Hospital, 41 Xibei Street, Ningbo, Zhejiang 315010, P.R. China
E-mail: daijinhua02736@126.com

*Contributed equally

Key words: non-small cell lung cancer, microRNA-21, phosphatidylinositol 3-kinase, Rac-α serine/threonine protein kinase, cellular apoptosis, cell proliferation
the roles of miR-10b and miR-145 in the invasive and metastatic capabilities of lung cancer cells, and that miR-10b upregulated the migration and invasion of lung cancer cells, while miR-145 suppressed migration and invasion (12-15). These previous results provide a potential approach for developing miRNA-based therapeutic strategies for the treatment of NSCLC. In a correlation study of miR-21 in lung cancer cells, miR-21 was investigated as a potential serum biomarker, and diagnostic and prognostic indicator for NSCLC (16-18). However, the molecular mechanism underlying the role of miR-21 in lung cancer remains to be elucidated.

The objective of the present study was to investigate the association between miR-21 expression, cell viability and apoptosis in lung cancer. The results of the present study demonstrated that miR-21 was able to increase the viability of A549 cells by inhibiting cellular apoptosis. In addition, the signaling pathway of miR-21 in the regulation of lung cancer cell lines was investigated, and the results demonstrated that miR-21 inhibited cellular apoptosis by modulating the activation of the phosphatidylinositol 3-kinase (PI3K)/Rac-α serine/threonine protein kinase (Akt) pathway in A549 cells. Correspondingly, inhibition of Akt using MK-2206 decreased the rate of apoptosis in miR-21 knockdown A549 cells. The results of the present study may provide a theoretical basis for, and novel insights into, the treatment of lung cancer.

Materials and methods

Cell culture and transfection. A549 cells were purchased from the American Type Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco's modified Eagle's medium (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; Invitrogen; Thermo Fisher Scientific, Inc.) at 37˚C in a humidified atmosphere with 5% CO2. The cells were transfected with miR-21 (Lipo miR-21 group), small interfering (si)RNA against miR-21 (5'-UCA ACA UCGUCUGUAAACCUA-3') or mismatch siRNA as a negative control (5'-UCUCAG UGACUGUAAACCUA-3'). All transfections were performed by using Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Inc.) according to the manufacturer's protocol. Additionally, after transfection for 48 h, certain cells that were transfected with miR-21 siRNA were treated with the Akt inhibitor MK-2206 at room temperature for 24 h (20 µM; Selleck Chemicals, Houston, TX, USA).

Cell viability assay. For transfection, cells were cultured on 12-well plates and seeded at a density of 5x10^4 cells/well for 48 h at 37°C. The cells were harvested using trypsin, re-suspended in 3 ml culture medium, and counted with a hemocytometer. Cell samples were collected at 0, 24 and 48 h after transfection for further analysis. For the MTT assays, transfected cells at a density of 5x10^4 cells/well were seeded onto 96-well culture plates. After 24 h incubation at 37°C, cell viability was assayed by adding 10% MTT (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) to 0.2 ml culture medium and incubating at 37°C for 3 h. Following removal of the medium, formazan crystals were dissolved with 100 µl dimethyl sulfoxide (Sigma-Aldrich; Merck KGaA) for 10 min at room temperature, and the optical density was measured at 590 nm with a Multiskan EX (Thermo Fisher Scientific, Inc.). The assay was repeated 3 times (19).

Cell cycle analysis using flow cytometry. Cells were harvested by trypsinization and washed with PBS. The cells were fixed with 100% ice-cold methanol at -20°C overnight. The cells were subsequently incubated for 30 min in 50 µg/ml propidium iodide with 1 mg/ml RNase. The apoptotic cells were observed at 450 nm excitation wavelength by using a FACScan flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Data were analyzed using CellQuest 3.1f software (BD Biosciences). Each condition was repeated ≥3 times (20).

RNA extraction and the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA was extracted using TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.) and reverse transcribed using an RT kit (Toyobo Co., Ltd., Osaka, Japan). miRNAs were extracted using the All-in-One miRNA RT kit (GeneCopoeia, Inc., Rockville, MD, USA). cDNA was subjected to qPCR using SYBR Premix Ex Taq (Takara Biotechnology Co., Ltd., Dalian, China) using StepOnePlus (Invitrogen; Thermo Fisher Scientific, Inc.). qPCR conditions were as follows: Initial denaturation at 95°C for 15 sec, 30 cycles of denaturation at 95°C for 30 sec, annealing at 61°C for 5 sec and extension at 72°C for 15 sec; final extension at 72°C for 10 min. miR-21 expression was normalized to U6 using the 2^(-ΔΔCt) method (21). Primers for miR-21 and U6 were purchased from GeneCopoeia, Inc. U6 primers: forward, 5'-CCCTCGGGACAGCATATCT-3'; and reverse, 5'-GAATAATGTGGAACGCTTCAG-3'. miR-21 primers: forward, 5'-ACGTGTTGTACTTGACTGTG-3'; and reverse, 5'-AATGGTGTGTTCTTCGACACTCTC-3'.

Western blot analysis. Cells were washed with PBS and lysed in a lysis buffer (pH 7.4; 20 mM Tris-HCl, 0.1 mM EDTA, 0.1% SDS, 20 mM NaF, 150 mM NaCl, 0.1% Triton X-100, 1% NP-40, 1 mM Na2VO4 and 1X protease inhibitor (Roche Diagnostics, Basel, Switzerland)). The proteins were quantified using the BCA Protein assay kit (Pierce; Thermo Fisher Scientific, Inc.). Protein samples (30 µg per lane) were separated using 10-12% SDS-PAGE and transferred to a nitrocellulose membrane (Whatman; GE Healthcare Life Sciences, Little Chalfont, UK) following boiling for 10 min in SDS sample buffer (Sigma-Aldrich; Merck KGaA). Following blocking with 5% skimmed milk in TBS with Tween-20 (TBS-T) for 1 h at room temperature, the membranes were incubated with primary antibodies against phosphorylated (p)-Akt (cat. no. 4060; 1:1,000; Cell Signaling Technology, Inc., Danvers, MA, USA), Akt (cat. no. 9272; 1:1,000; Cell Signaling Technology, Inc.), B-cell lymphoma 2 (Bcl-2; cat. no. ab32124; 1:1,000; Abcam, Cambridge, UK), Bcl-2-associated X (BAX; cat. no. ab32503; 1:1,000; Abcam), procaspase-3 (cat. no. ab32150; 1:1,000; Abcam), active caspase-3 (cat. no. ab2302; 1:1,000; Abcam) and actin (cat. no. ab8227; 1:1,000; Abcam) overnight at 4°C. Membranes were washed with TBS-T and incubated with horseradish peroxidase-conjugated goat anti-rabbit secondary antibody (cat. no. ab205718; 1:5,000; Abcam) for 2 h at room temperature. Protein bands were visualized using the WEST-ZOL-plus Western Blot Detection System (22).

Statistical analysis. Data are presented as the mean ± standard deviation. All statistical analyses were performed using GraphPad Prism 5.0 software (GraphPad Software, Inc., La Jolla, CA, USA).
miR-21 inhibits apoptosis by modulating the activation of the PI3K/Akt signaling pathway in A549 cells. The apoptosis inhibition mechanism of miR-21 in A549 cells was examined by analyzing the protein expression of associated factors. The western blotting results for p-Akt, Akt, Bcl-2, BAX, procaspase-3, active caspase-3 and actin are presented in Fig. 3. The results demonstrated that overexpression of miR-21 upregulated p-Akt and Bcl-2 expression, and downregulated the expression of BAX and procaspase-3, compared with the control group. Suppression of miR-21 demonstrated the opposite effect on these factors. There were no obvious changes in the expression of Akt and active caspase-3 following miR-21 overexpression or suppression. The results of the present study demonstrated that miR-21 inhibited apoptosis in A549 cells by modulating the activation of the PI3K/Akt signaling pathway.

Inhibition of Akt decreases the rate of apoptosis in A549 cells. The expression of Akt was inhibited and the apoptosis rate of the A549 cells was measured. The miR-21 siRNA + Akt inhibitor cells exhibited a decreased apoptotic rate compared with the miR-21 siRNA group, as presented in Fig. 4. The results demonstrated that the apoptotic rates of the A549 cells in the control, miR-21, mismatch siRNA, miR-21 siRNA and miR-21 siRNA + Akt inhibitor groups were 9, 4.3, 8, 28 and 9.3%, respectively. miR-21 overexpression significantly inhibited cell apoptosis compared with the control group, whereas miR-21 suppression promoted apoptosis as apoptosis was significantly increased compared with the mismatch siRNA group. However, the promoting effect of miR-21 suppression on cell apoptosis was abolished by treatment with an Akt inhibitor, as apoptosis was significantly reduced in the miR-21 siRNA + Akt inhibitor group compared with the miR-21 siRNA-only group. These results indicated that inhibition of Akt decreased the rate of apoptosis in A549 cells when miR-21 was suppressed.

Discussion

NSCLC is one of the most common types of malignant tumor worldwide (23). It is associated with the highest incidence of morbidity and mortality, and smoking is the primary risk factor (1). A lack of effective detection methods has led to the ineffectiveness of conventional therapy. The prognosis of NSCLC is poor, due to insufficient mechanistic understanding.

As one of the most important regulators of the pathogenesis of human disease through the regulation of gene expression, miRNAs has been reported to serve roles in the progression of human lung cancer, including miR-196a, miR-200c and miR-204 (24-26). miR-21 is one of the miRNAs reported to be associated with apoptosis in human NSCLC cells (17,18). However, more research into the potential role of miR-21 is required. In order to investigate the molecular pathogenesis of NSCLC, and to verify whether miR-21 may be a molecular...
diagnostic and prognostic marker in NSCLC, the present study sought to investigate the molecular mechanisms in detail.

In the present study, miR-21 was overexpressed in A549 cells and cell viability was assayed following transfection with miR-21, mismatch siRNA or miR-21 siRNA. The results obtained in the MTT assay demonstrated that miR-21 was able to increase the viability of A549 cells. The apoptotic rate of A549 cells was investigated, and it was demonstrated that miR-21 increased viability by inhibiting cellular apoptosis. The activation of apoptotic pathway serves an important role in biological development and tissue homeostasis (27). Proteins in the Bcl-2 family, including Bcl-binding component 3, BAX and Bcl-2 homologous antagonist/killer, are downregulated by numerous anti-apoptotic miRNAs, which leads to resistance to apoptosis (28). Proteins associated with apoptotic pathways in cancer, including BAX in cervical cancer, caspase 3 in glioblastoma and squamous cell carcinoma, and caspase 9 in glioblastoma, have been studied previously (29,30). In the present
The association between miR-21 and the PI3K/Akt pathway was investigated in order to elucidate the apoptotic mechanism. The PI3Ks and Akts consist of multiple isoforms, and the PI3K/Akt signaling pathway is able to regulate cellular processes as diverse as cell growth, survival, proliferation and migration (31,32). Due to the function of signal transmission, PI3K/Akt has been associated with signaling pathways in various types of cancer, including lung cancer (33,34).

Expression of p-Akt, Akt, Bcl-2, BAX, procaspase-3, active caspase-3 and actin proteins were measured by western blotting in the present study, in order to observe the underlying mechanism of the regulatory function of miR-21. The western blotting results demonstrated that the inhibition of apoptosis mediated by miR-21 in A549 cells is associated with activation of the PI3K/Akt signaling pathway. The expression of Akt was inhibited and the apoptotic rate was measured. The results of the present study demonstrated that the inhibition of Akt decreased the apoptotic rate of lung cancer cells.

The results of the present study demonstrated that the overexpression of miR-21 increased cell viability in lung cancer cells. In addition, the present study demonstrated the underlying mechanism of apoptosis in lung cancer. The results of the present study suggest that miR-21 may be involved in the progression of lung cancer and may be a novel therapeutic target for the disease, and the present results may provide a novel therapeutic approach to target lung cancer metastasis via the PI3K/Akt signaling pathway. The present study provides a foundation for further studies into the role of miR-21 in lung cancer. Specific aspects of the underlying mechanism require further research.

Acknowledgements

The present study was supported by the Demonstration Project of Ningbo Science and Technology Service Industry (grant no. 2014F10026).
References

1. Lysov Z, Dwivedi DJ, Gould TJ and Liaw PC: Procoagulant effects of lung cancer chemotherapeutic agents: Impact on microparticles and cell-free DNA. Blood Coagul Fibrinolysis 28: 72-82, 2017.

2. Sherwood JL, Loracor C, Brown H, Sharpe AD, Musiello M and Kohliamann A: Optimised pre-analytical methods improve KRAS mutation detection in circulating tumour DNA (ctDNA) from patients with non-small cell lung cancer (NSCLC). PLoS One 11: e0150197, 2016.

3. Taverna S, Giallombardo M, Gil-Bazo I, Carreca AP, Castiglia M, Chacarrétegui J, Araujo A, Alessandro R, Pauwel P, Peeters M and Rolfo C: Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: Critical analysis of evidence and potential role in clinical practice. Oncotarget 7: 28748-28760, 2016.

4. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D and Bray F: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer 49: 1374-1403, 2013.

5. Tian Y, Liu Q, He X, Yuan X, Chen Y, Chu Q and Wu K: Emerging roles of Nrf2 signal in non-small cell lung cancer. J Hematol Oncol 9: 14, 2016.

6. Yongchun Z, Linwei T, Xicai W, Lianhua Y, Guangqiang Z, Ming Y, Guanjian L, Yuje L and Yunhao H: MicroRNA-195 inhibits non-small cell lung cancer cell proliferation, migration and invasion by targeting MYB. Cancer Lett 347: 65-74, 2014.

7. Xie Z, Cai L, Li R, Zheng J, Wu H, Yang X, Li H and Wang Z: Down-regulation of miR-489 contributes into NSCLC cell invasion through targeting SUZ12. Tumor Biol 36: 6497-6505, 2015.

8. Sun L, Chen Y, Su Q, Tang X, Liang Y, Che G and Luo F: Increased plasma mRNA-30a as a biomarker for non-small cell lung cancer. Med Sci Monit 22: 647-655, 2016.

9. Chen QY, Jiao DM, Wu YQ, Chen J, Wang J, Tang XL, Mou H, Hu HZ, Song J, Yan J and Wu L: miR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via e-Met /PI3K/Akt/mTOR pathway. Oncotarget 7: 18247-18261, 2016.

10. Ma W, Ma CN, Li XD and Zhang YJ: Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther 23: 66-71, 2016.

11. Chen X, Chen S, Hang W, Huang H and Mo H: MiR-95 induces proliferation and chemoradioresistance through directly targeting sorting nexin1 (SNX1) in non-small cell lung cancer. Biomed Pharmacother 68: 589-595, 2014.

12. Li Y, Li Y, Liu J, Fan Y, Li X, Dong M, Liu H and Chen J: Expression levels of microRNA-145 and microRNA-10b are associated with metastasis in non-small cell lung cancer. Cancer Gene Ther 21: 17: 27-29, 2014.

13. Xia W, Chen Q, Wang J, Xiao Q, Dong G, Shi R, Zheng Y, Xu L and Jiang F: BNA methylation mediated silencing of microRNA-145 is a potential prognostic marker in patients with lung adenocarcinoma. Sci Rep 5: 6901, 2015.

14. Zhang Y and Chen Q: microRNA-145 in cancer migration and invasion by down-regulating FSCN1 in lung cancer. Int J Clin Exp Med 8: 8794-8802, 2015.

15. Zhang Y, Yang X, Wu H, Zhou W and Liu Z: MicroRNA-145 inhibits migration and invasion via inhibition of fascin 1 protein expression in non-small-cell lung cancer cells. Mol Med Rep 12: 6193-6198, 2015.

16. Zhao W, Zhao JJ, Zhang L, Xu QF, Zhao YM, Shi XY and Xu AG: Serum miR-21 level: A potential diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Biol 7: 1479-1483, 2015.

17. Li X, Zang A, Jia Y, Zhang J, Fan W, Feng J, Duan M, Zhang L, Hou R, Jiao J and Zhu X: Trichoptile reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21. Mol Med Rep 13: 2763-2768, 2016.

18. Tian L, Shan W, Zhang Y, Lv X, Li X and Wei C: Erratum to: Up-Regulation of miR-21 expression predicts advanced clinicopathological features and poor prognosis in patients with non-small cell lung cancer. Pathol Oncol Res 22: 439, 2016.

19. Li Z, Li N, Wu M, Li X, Luo Z and Wang X: Expression of mir-126 suppresses migration and invasion of colon cancer cells by targeting CXCR4. Mol Cell Biochem 381: 233-242, 2013.

20. Zhang N, Su Y and Xu L: Targeting PKCα by miR-143 regulates cell apoptosis in lung cancer. FEBS Lett 587: 3661-3667, 2013.

21. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.

22. Nam K, Oh S, Lee KM, Yoo SA and Shin I: CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 27: 1882-1894, 2015.

23. Zhang Y, Zhao J, Qiu L, Zhang P, Li J, Yang D, Wei X, Han Y, Nie S and Sun Y: Co-expression of IFT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and IFT4/HLA-G interaction activates ERK signalling. Tumour Biol 37: 11187-11198, 2016.

24. Li Q, Yang Z, Chen M and Liu Y: Downregulation of microRNA-196a enhances the sensitivity of non-small cell lung cancer cells to cisplatin treatment. Int J Mol Med 37: 1067-1074, 2016.

25. Jiao A, Sui M, Zhang L, Sun P, Geng Q, Zhang W and Li J: MicroRNA-26a inhibits the metastasis of non-small cell lung cancer cells by targeting ZEB2, an epithelial-mesenchymal transition regulator. Mol Med Rep 13: 3349-3355, 2016.

26. Zhang S, Gu L, Tian H, Shao F, Deng J, Wang T, Liang Y, Liu J, Chen M and Ren H: microRNA-204 suppresses human nonsmall cell lung cancer by targeting AT2F2. Tumour Biol 37: 11167-11176, 2016.

27. Lindsten T, Roso A, King A, Zong WX, Rathmell JC, Shisla HA, Ulrich E, Waymire KO, Mahar P and Fawrith K: The combined functions of proapoptotic Bcl-2 family members bax and bax are essential for normal development of multiple tissues. Mol Cell 6: 1385-1399, 2000.

28. Fixxa T, Donzelli S and Blandino G: Oncogenic microRNAs: Key players in malignant transformation. Cancers (Basel) 7: 2466-2485, 2015.

29. Floyd OH, Zhang Y, Dey BK, Kefas B, Breit H, Marks K, Dutta A, Hegad-Mende C, Synowitz M and Glass R: Novel anti-apoptotic microRNAs 582-5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9 and Bim. PLoS One 9: e96239, 2014.

30. Li JH, Xiao X, Zhang YN, Wang YM, Feng LM, Wu YM and Zhang YX: MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells, Gynecol Oncol 120: 145-151, 2011.

31. Ye Y, Tang X, Sun Z and Chen S: Upregulated WDR26 serves as a scaffold to coordinate PI3K/AKT pathway-driven breast cancer cell growth, migration, and invasion. Oncotarget 7: 17854-17869, 2016.

32. Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y and Farajnia S: Natural inhibitors of PI3K/AKT signaling in breast cancer: Emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 93: 1-10, 2015.

33. Yakisich JS, Azad N, Venkatadri R, Kulkarni Y, Wright K, Kaushik V and Iyer AK: Formation of tumourspheres with increased stemness without external mitogens in a lung cancer model. Stem Cells Int 2016: 5603135, 2016.

34. Sun Y, Tu Y, He Li, Ji C and Cheng BO: High mobility group box 1 regulates tumor metastasis in cutaneous squamous cell carcinoma via the PI3K/AKT and MAPK signaling pathways. Oncol Lett 11: 59-62, 2016.