Current Status of Endoscopic Endonasal Surgery for Skull Base Meningiomas: Review of the Literature

Masahiro SHIN,1 Kenji KONDO,2 and Nobuhito SAITO1

Departments of 1Neurosurgery and 2Otolaryngology, The University of Tokyo Hospital, Tokyo

Abstract
Endoscopic endonasal approach (EEA) is expected to be ideal for the paramedian ventral skull base meningiomas, allowing wide access to the ventral skull base regions and realizing early devascularization of the tumor without retraction of the brain. We searched clinical reports of EEA for skull base meningiomas, written in English language, published before October 2014, using the PubMed literature search on the website. Skull base meningiomas are subdivided by the site of occurrence, olfactory groove (8 articles including 80 cases), tuberculum sellae (14 articles, 153 cases), cavernous sinus (2 articles, 8 cases), petroclival region (4 articles, 10 cases), and craniofacial region (2 articles, 5 cases), and the surgical outcomes of EEA were analyzed. In anterior skull base regions, EEA contributed to effective improvement of the symptoms in small and round-shaped meningiomas, but 25% of the patients had postoperative cerebrospinal fluid rhinorrhea. In cavernous sinus and petroclival regions, successful surgical removal largely depended on tumor consistency, and the extent of the surgical resection proportionally increased the risks of serious complications. Thus, judicious endoscopic resection with adjuvant radiotherapy or radiosurgery remains to be the most reasonable treatment option. To decrease the risks of surgical complications, the surgeons must master the closure techniques of dural defect and meticulous microsurgical procedure under endoscopic vision. Further progress will depend on the progresses of surgical technique in neurosurgeons engaging this potentially “minimally invasive” surgery.

Key words: endoscopic endonal surgery, skull base meningioma, tuberculum sellae, olfactory groove, cavernous sinus

Introduction
Meningioma is one of the most common ventral skull base tumors, which is often fibrous, vascularized, and adherent to the surrounding anatamies, and radical surgical treatment includes the management of dural tails to completely eliminate the risks of recurrence.1,2 Despite recent progress of endoscopic technologies in the neurosurgical field, surgical resection of skull base meningiomas through narrow nasal corridors is still a challenge. While there are numerous reports about endonasal endoscopic approaches, most of them were small case series of olfactory groove meningiomas or tuberculum sellae meningiomas,3–11 and it is still unclear that, for which cases, the endonasal surgery should be preferentially recommended. Furthermore, as for the meningiomas in other skull base regions such as cavernous sinus, petroclival regions, and craniofacial regions, application of endoscopic endonasal surgery is reported in the limited cases. Thus, the role of endonasal endoscopic surgery for meningiomas is still controversial.12,13

In this article, we review the reports of endonasal endoscopic approach (EEA) for skull base meningiomas in the past literature, and its current role and future possibility to further application are discussed.

Materials and Methods
We searched the clinical reports of EEA for skull base meningiomas, written in English language, published before October 2014, using the PubMed literature search on the website (http://www.ncbi.nlm.nih.gov/pubmed). Skull base meningiomas are subdivided by the site of occurrence as the following: “olfactory groove,” “tuberculum sellae,” “cavernous sinus,” “petroclival or clival” region, and “orbit or craniofacial” region. The three keywords, “meningioma or meningiomas,” “endonasal,” “endoscopic,” and one of the site of occurrence above are selected.
as search terms, which are retrieved in the title or the abstract of the reports using the advanced search function. Each report is carefully verified, and the reports which are not related to the surgical outcome of EEA for meningioma in the location of the assigned search term are removed. Then, the surgical outcomes were analyzed.

Results

With the search term of “meningioma or meningiomas,” “endonasal,” and “endoscopic,” there are 79 articles found on the PubMed literature search, and the reports describing the clinical cases were subdivided in the following categories, by adding the site of occurrence in the search term.

I. Olfactory groove meningioma

Sixteen articles were identified, in which eight were excluded because two were case reports about schwannomas, three technical reports without detailed case description, two articles about the literature review or meta-analysis, and one comment for the previous article. Thus, the outcome of endoscopic endonasal surgery for meningiomas in this region was analyzed in the remaining 8 articles including 80 cases (1 to 50 cases in each article, median 5 cases, Table 1).\(^4\)–\(^7\),\(^14\)–\(^17\) The mean diameter of treated tumors was 3.1 cm and one-third of the patients presented with visual symptoms (26 patients).

Gross total resection (GTR) or subtotal resection (STR) was achieved in 70 patients (87.5%, GTR: 49 patients, 61.2%, STR: 21 patients, 26.3%). Improvement of visual function was observed in 24 patients (92.3%), and no one showed visual deterioration occurred in 3 (2.5%).\(^10,20\) As other surgical complications, 37 patients (44.3%) had postoperative cerebrospinal fluid leak requiring additional treatments\(^5\)–\(^7\),\(^16\)–\(^23\),\(^25\)–\(^27\) and 7 (8.8%) had diabetes insipidus.\(^5\)–\(^7\),\(^10\),\(^23\),\(^27\) and 3 hyponatremia.\(^15\),\(^19\),\(^20\) Possibly fatal systemic complications occurred in two patients (1.3%), one severe hepatic dysfunction\(^21\) and one pulmonary embolism.\(^10\)

II. Tuberculum sellae meningiomas

Thirty articles were identified, of which 16 were excluded from the analysis because three were case reports about meningiomas in other regions, four about the literature review or the meta-analysis, four technical reports without the description of the clinical course of the presented case, one comment for the previous article, and one republished article in the same journal. In three articles of two authors, same subjects presented in the previous reports were reanalyzed in the subsequent reports and latest ones were adopted in this analysis. Thus, the outcome of endoscopic endonasal surgery for meningiomas in this region was analyzed in the 14 articles including 153 cases (1 to 75 cases in each article, median 5 cases, Table 2).\(^5\)–\(^7\),\(^10\),\(^15\)–\(^18\),\(^27\) The mean diameter of treated tumors was 2.4 cm and 120 patients (78.4%) presented with visual symptoms.

Of them, GTR or STR was achieved in 150 patients (98.0%, GTR: 119 patients, 77.8%, STR: 31 patients, 20.3%). Improvement of visual function was observed in 102 patients (85.0%), but on the contrary, visual deterioration occurred in 3 (2.5%).\(^10,20\) As other surgical complications, 37 patients (24.3%) had postoperative cerebrospinal fluid leak requiring additional treatments\(^5\)–\(^7\),\(^16\)–\(^23\),\(^25\)–\(^27\) and 7 (8.8%) had diabetes insipidus.\(^5\)–\(^7\),\(^10\),\(^23\),\(^27\) and 3 hyponatremia.\(^15\),\(^19\),\(^20\) Possibly fatal systemic complications occurred in two patients (1.3%), one severe hepatic dysfunction\(^21\) and one pulmonary embolism.\(^10\)

III. Cavernous sinus meningiomas

Twelve articles were found, in which seven were excluded because three were reports about other pathologies or meningiomas in the other regions, two technical reports without case description, one about the usefulness of a surgical device, and one about the experience of endonasal microsurgery. Among the remaining four articles,\(^28\)–\(^31\) two reports were about endonasal biopsy for the cavernous sinus lesions of which histological diagnosis revealed meningiomas (total 4 cases).\(^28\),\(^29\) Thus, there were two articles conducting the radical resection of the cavernous sinus meningiomas (Table 3).\(^30\),\(^31\) In one article, the authors reported their experience of endoscopic endonasal resection of various cavernous sinus tumors including 10 pituitary adenomas, 6 meningiomas, 5 schwannomas, 3 carcinomas, and 1 chondrosarcoma.\(^21\) They made a vertical incision on the medial wall of the cavernous sinus and the anterior wall was occasionally removed. The cavernous sinus and the internal carotid artery were widely exposed, and the tumors were approached medially and laterally to the internal carotid artery. In this approach, they reported excellent resection rates, 5 of 6 meningiomas were totally or subtotally resected (GTR 4, STR 1) without neurological complications. However, along with wide exposure of the cavernous sinus, the blood loss was not
Table 1 Outcomes of endoscopic endonasal surgery for olfactory groove meningiomas in the past literature

Author, published year	n	M:F	Age (mean, years)	Maximum diameter (mean, cm)	Extent of resection	Visual symptom	Follow-up (mean, months)	Recurrence	Surgical complications
de Divitiis et al., 2008	4	1:3	49.3	3.7	4	0	9.8	NA	CSF rhinorrhea 1 (ROP), blood transfusion required 3
Gardner et al., 2008	15	3:12	57.9	7	3	8/8	0	0	CSF rhinorrhea 4 (ROP 3, LD 1), postoperative cerebral hemorrhage 2
Webb-Myers et al., 2008	1	1:0	46	5.8	1	0	1/1	0	None
Liu et al., 2011	3	0:3	45.3	4	2	0	5.5	0	None
Padhye et al., 2012	8	2:6	52.1	3.3	8	0	23.6	1	CSF rhinorrhea 3 (ROP 1, LD 1, OBS 1), cerebral hemorrhage 1
Khan et al., 2014	6	0:6	53.7	3.9	4	2	4	1	CSF rhinorrhea 2 (ROP 2), average blood loss was 1,000 cc
Koutourousiou et al., 2014	50	28:22	57.1	4.2	30	15	32	1	CSF rhinorrhea 15, sinus infection 5, brain abscess 3, meningitis 1, stroke 1*, hydrocephalus 1, PE or DVT 10
Total	88	35:53	55.5	3.2	57 (64.8%)	26/32	26.0	3 (3.4%)	CSF rhinorrhea 25 (28.4%), Serious neurological complications 7 (8.0%)

CSF: cerebrospinal fluid, DVT: deep venous thrombosis, F: female, GTR: gross total resection, LD: treated with lumber drainage, M: male, n: number, NA: not assessed, OBS: treated with conservative observation, PE: pulmonary embolism, ROP: surgical repair was performed, STR: subtotal resection. *: this patient suffered a stroke and transient hemiparesis after the fronto-orbital artery pseudoaneurysm rupture.
Author, published year	n	M:F	Age (mean, years)	Maximum diameter (mean, cm)	Extent of resection	Visual symptom	Follow-up (mean, months)	Recurrence	Surgical complications
Laufer et al., 200723)	3	0:3	63.3	2.7	2	1/3/0	9	NA	CSF rhinorrhea 1 (OBS), DI 1,
Prevedello et al., 200725)	1	0:1	52	2.1	1	1/1/0	0	NA	CSF rhinorrhea 1 (ROP+LD), Fatal intraventricular hemorrhage 1
de Divitiis et al., 200821)	7	3:4	58.7	6	1	5/7/0	24	NA	CSF rhinorrhea 2 (ROP),
Gardner et al., 20083)	13	1:12	52.2	2	11	11/11/0	0	24	CSF rhinorrhea 8 (ROP+LD),
Wang et al., 201027)	12	4:8	56.7	3.1	11	11/11/0	0	25.2	CSF rhinorrhea 1 (POP+LD),
Liu et al., 201124)	2	0:2	50	2.9	2	2/2/0	0	0	None, Hyponatremia 1
Attia et al., 201228)	4	2:2	54	2	3	0/1/0	19.4	0	Anosmia 1
Bohman et al., 201229)	5	2:3	53.2	2	4	1/4/0	7.8	0	CSF rhinorrhea 1 (ROP),
Chowdhury et al., 201220)	6	2:4	39.5	3.5	5	1/4/6	7	0	CSF rhinorrhea 1 (POP+LD),
Padhye et al., 201225)	2	0:2	65.5	1.7	2	2/2/0	0	3	CSF rhinorrhea 1 (OBS),
Prosser et al., 201226)	1	0:1	61	2.5	1	1/1/0	NA	0	None, Hyponatremia 1
Gadgil et al., 201322)	5	2:3	50.6	2	4	1/2/0	24	0	CSF rhinorrhea 1 (ROP),
Khan et al., 20144)	17	3:14	61.5	2.3	11	6/9/14/0	9.4	1	CSF rhinorrhea 2 (ROP),
Koutourousiou et al., 201430)	75	14:61	57.3	2.3	57	16/48/56/2	29	4	CSF rhinorrhea 19 (ROP 17, single 11, multiple 6, LD 1, OBS 1),
Total	153	33:120	56.3	2.4	120	104/122	3/155	22.8	CSF leak 37 (24.2%), DI 7 (4.6%),

| | | | | | | | | | |

CSF: cerebrospinal fluid, DI: diabetes insipidus, F: female, GTR: gross total resection, LD: treated with lumber drainage, M: male, n: number, NA: not assessed, OBS: treated with conservative observation, PE: pulmonary embolism, ROP: surgical repair was performed.
Table 3: Outcomes of endoscopic endonasal surgery for cavernous sinus and petroclival meningiomas in the past literature

Author, published year	n	M:F	Age (mean, years)	Maximum diameter (cm)	Extent of resection	Follow-up (mean, months)	Surgical complications	
					GTR	STR		
Cavernous sinus meningiomas					4	1	37	None
Zhang et al., 2014	6	1:5	51.2		4	1	37	None
Yano et al., 2014	2				1	0		

Petroclival meningiomas								
Kassam et al., 2008	2	1:1	56		0	0		CSF rhinorrhea 1 (ROP), transient DI 1,
Prosser et al., 2012	1	1:0	21	3.9	0	1		Bilateral abducent nerve palsy
Fernandez-Miranda et al., 2014	5	1:4	47.8		0	2		Brainstem stroke resulting in hemiparesis and hearing loss 1
Khan et al., 2014	2	1:0	70.5		0	2		

CSF: cerebrospinal fluid, DI: diabetes insipidus, F: female, GTR: gross total resection, M: male, n: number, ROP: surgical repair was performed, STR: subtotal resection.

negligible, 900 ml to 2,500 ml in the illustrative cases, and in their figures of the illustrative case, they described that the enhancing mass lesion in the cavernous sinus was “completely removed,” but the postoperative magnetic resonance imaging clearly disclosed a residual enhancing mass in the cavernous sinus. Thus, their criteria of “total resection” might be controversial. In another article, the authors performed endonasal approach for nine cavernous sinus tumors, of them two were meningothelial meningiomas.30) They widely opened the sphenoid rostrum, and the cavernous sinus lesions were removed mainly under 30 degree endoscope. One was totally removed, and in another case, they found it difficult to dissect from the internal carotid artery, and the tumor was partially removed.

IV. Petroclival (clival) meningiomas
Sixteen articles were identified and 12 were excluded because 6 were reports about other pathologies or meningiomas in other regions, 5 technical reports without the description of the clinical course of the presented case, and 1 anatomic study. Thus, the outcome of endoscopic endonasal surgery for meningiomas in this region was analyzed in the 4 articles including 10 cases (1 to 5 cases in each article, median 2 cases, Table 3).26,29,32,33) Among them, two of them applied a technique of pituitary transposition to sufficiently expose the tumor.32,33) In all of them, the purpose of the surgery is “decompression of the brainstem,” and radical resection was not intended. Thus, two of the nine cases were subtotally resected, however, of whom, one patient had a brainstem stroke resulting in hemiparesis and unilateral hearing loss,29) and another suffered bilateral abducent nerve palsies after surgery.26)

V. Orbital or craniofacial meningiomas
Five articles were identified, of which one was an anatomic study and another one was a report about the usefulness of a surgical device. Among the remaining three articles, two reports were about combined cranionasal surgery for spheno-orbital meningiomas in total five patients, and endonasal approach was performed additionally to the trancranial approach to remove the tumor components extending into the parasellar sinus.34,35) Another report was about the usefulness of optic nerve decompression for eight meningiomas invading into the orbit (four spheno-orbital meningiomas, three optic nerves, one orbital apex).36) In all the reports, the role of endonasal surgery is adjunctive for transcranial approach or radiotherapy.

Discussion
Endoscopic surgery allows wide access to the ventral skull base regions and realizes detachment of the tumor from the dural attachment in the initial step of the surgical procedures without further retraction of the brain tissue.21,37) Thus, the endoscopic endonasal surgery is expected to be ideal for the paramedian ventral skull base meningiomas. However, reviewing the previous reports about the endoscopic endonasal surgery, the surgical outcomes failed to support this...
“endoscopic microsurgery” will become more important to overcome the problems. The concept of early devascularization of the tumor can be achieved in the most of the cases, whereas dissection from the ventral cerebral anatomies including the brain tissue, the important veins and arteries, which necessitates the most meticulous and careful surgical technique, becomes more difficult in the deepest part of the narrow surgical corridor. Thus, for the meningiomas in the anterior cranial bases, when the tumors are large or shaped lobar, they often break through the arachnoid membranes, and it is very important to balance between the extent of resection and the anatomical preservation to avoid vascular injuries and the serious neurological complications. Considering the current situation in endoscopic endonasal surgery for meningiomas, further refinement of surgical technique may be the key to overcome the problems. The concept of “endoscopic microsurgery” will become more important to achieve the maximal surgical resection with preservation of the important anatomies.

Ideal indication of the endonasal endoscopic surgery for the anterior skull base meningiomas is the small round-shaped tumors presenting neurological symptoms (Fig. 1). However, such small lesions are simultaneously very good candidates for transcranial surgery, and comparing the associated risks of complications between the transcranial approach and the endonasal approach, the reported risk of cerebrospinal fluid rhinorrhea associated with endonasal endoscopic surgery is hardly “less” than that of brain retraction or nerve injury associated with transcranial surgery. Also, in endonasal surgery, when the nasoseptal flap is used, postoperative nasal morbidity associated with large mucosal dissection, such as olfactory impairment, crusting, or discharge, is inevitable, which continues several months and persist even after mucosalization of the denuded mucosal surface. For the moment, despite such sacrifice, the rate of CSF leak requiring additional treatment is unacceptably high in the reports of endoscopic endonasal surgery, which may be the time to reconsider this reconstruction technique itself. Average risks of CSF leak associated with transcranial surgery are around 4–6% in patients with anterior cranial base meningiomas. Thus, if the surgeon reasonably recommends the endonasal approach for their patients with those meningiomas, they have to be sure about mastering the closure techniques of dural defect, achieving a CSF leak rate less than 5%, and meticulous microsurgical procedure under endoscopic vision. Also, the tumors should be small enough to remain outside the arachnoid membrane, otherwise, depending on the tumor consistency and adherence to the surrounding anatomy, surgery should be stopped at STR.

For the meningiomas in the other skull base lesions such as the cavernous sinus, the petroclival region, and the craniofacial region; the role of endoscopic endonasal surgery is still controversial. Only a few clinical studies included the experience of the radical resection, in which successful surgical removal largely depends on tumor consistency, and the extent of the surgical resection seems to proportionally increase the risks of serious complications. When surgical removal remained only a decompression from the cranial nerves or the brain stem, it commonly led to improved presenting symptoms, which facilitated the adjuvant radiotherapy, achieving an excellent tumor control. In these complex lesions, following the lessons from the multidisciplinary strategy of open transcranial surgery with radiosurgery in the last decade, judicious endoscopic resection or decompression with adjuvant radiotherapy or radiosurgery will be the most reasonable treatment options. On the other hand, in those areas, the internal carotid arteries are involved and in jeopardy, but it is very difficult to radiographically confirm tumor invasion to the arterial wall. Thus, techniques of intraoperative hemostasis and subsequent treatment strategy should be well established and discussed before surgery to avoid the uncommon but possibly fatal complications.

As conclusions, endoscopic endonasal surgery can contribute to effective improvement of the symptoms caused by the meningiomas in the paramedian ventral skull base regions. To decrease the risks of surgical complications including postoperative CSF leaks, the surgeons engaging this surgery must master the closure techniques of dural defect and meticulous microsurgical procedure under endoscopic vision, on which further progress of this surgical approach largely depends.

Conflicts of Interest Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this article.

Neurol Med Chir (Tokyo) 55, September, 2015
Fig. 1 Ideal case of endoscopic transnasal surgery for tuberculum sellae meningioma in an 80-year-old woman with significant visual deterioration of the left eye. A–C: Magnetic resonance imaging (MRI, T₁-weighted image with gadolinium enhancement: A, axial section; B, coronal section, T₂-weighted image: C, axial section) showed an enhanced lesion on the tuberculum sellae (white arrows in A–C), compressing the left optic nerve (black arrow in C). D: After wide sphenoidotomy, the anatomical indexes were disclosed in the sphenoid sinus under the vision of 0 degree scope. E: Skull base bone of the sella and the planum sphenoidale were removed, and the intercavernous sinus (int.cav.s) was coagulated with bipolar forceps. F: After coagulation of the dura matter, it was opened to reveal the devascularized tumor (T) on the tuberculum sellae. G, H: Under the vision of 30-degree scope, the tumor was carefully dissected and removed piece by piece along the arachnoid membrane in front of the optic chiasma (OC). After complete removal, the OC, the left optic nerve (Lt.ON), and the pituitary stalk (St) were clearly observed. I, J: Fascia lata (*) was harvested and was placed in and out of the dural defect. The balloon catheter was inserted in the sphenoid sinus and the outlaid fascia was compressed by the inflated balloon for several days. K, L: After the surgery, T₁-weighted MRI (A, axial section; B, coronal section) with gadolinium enhancement showed total removal of the tumor, and her visual symptom completely improved. CL: clivus, OT: optic canal, PS: planum sphenoidale, S: sella turcica, black arrows: carotid prominence.
References

1) Fukushima Y, Oya S, Nakatomi H, Shibahara J, Hanakita S, Tanaka S, Shin M, Kawai K, Fukayama M, Saito N: Effect of dural detachment on long-term tumor control for meningiomas treated using Simpson grade IV resection. J Neurosurg 119: 1373–1379, 2013

2) Oya S, Kawai K, Nakatomi H, Saito N: Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg 117: 121–128, 2012

3) Cappabianca P, Cavallo LM, Esposito F, De Divitiis O, Messina A, De Divitiis E: Extended endoscopic endonasal approach to the midline skull base: the evolving role of transsphenoidal surgery. Adv Tech Stand Neurosurg 33: 151–199, 2008

4) Liu JK, Christiano LD, Patel SK, Tubbs RS, Eloy JA: Surgical nuances for removal of olfactory groove meningiomas using the endoscopic endonasal transcribriform approach. Neurosurg Focus 30: E3, 2011

5) Gardner PA, Kassam AB, Thomas A, Snyderman CH, Carrau RL, Mintz AH, Prevedello DM: Endoscopic endonasal resection of anterior cranial base meningiomas. Neurosurgery 63: 36–52; discussion 52–54, 2008

6) Koutourousiou M, Fernandez-Miranda JC, Wang EW, Snyderman CH, Gardner PA: Endoscopic endonasal surgery for olfactory groove meningiomas: outcomes and limitations in 50 patients. Neurosurg Focus 37: E8, 2014

7) Khan OH, Krischek B, Holliman D, Klironomos G, Kucharczyk W, Vescan A, Gentili F, Zadeh G: Pure endoscopic expanded endonasal approach for olfactory groove and tuberculum sellae meningiomas. J Clin Neurosci 21: 927–933, 2014

8) de Divitiis E, Cavallo LM, Esposito F, Stella L, Messina A: Extended endoscopic transsphenoidal approach for tuberculum sellae meningiomas. Neurosurgery 61(5 Suppl 2): 229–237; discussion 237–238, 2007

9) Fernandez-Miranda JC, Pinheiro-Nieto C, Gardner PA, Snyderman CH: Endoscopic endonasal approach for a tuberculum sellae meningioma. J Neurosurg 32(Suppl): E8, 2012

10) Koutourousiou M, Fernandez-Miranda JC, Steifo ST, Wang EW, Snyderman CH, Gardner PA: Endoscopic endonasal surgery for suprasellar meningiomas: experience with 75 patients. J Neurosurg 120: 1326–1339, 2014

11) Wang Q, Lu XJ, Li BJ, Ji WY, Chen KL: Extended endoscopic endonasal transsphenoidal removal of tuberculum sellae meningiomas: a preliminary report. J Clin Neurosci 16: 889–893, 2009

12) Schwartz TH: Should endoscopic endonasal surgery be used in the treatment of olfactory groove meningiomas? Neurosurg Focus 37: E9, 2014

13) Schroeder HW: Indications and limitations of the endoscopic endonasal approach for anterior cranial base meningiomas. World Neurosurg 82: S81–S85, 2014

14) de Divitiis E, Esposito F, Cappabianca P, Cavallo LM, de Divitiis O, Esposito I: Endoscopic transnasal resection of anterior cranial fossa meningiomas. Neurosurg Focus 25: E8, 2008

15) Padhye V, Naidoo Y, Alexander H, Floreani S, Robinson S, Santoreneos S, Wickremesekera A, Brophy B, Harding M, Vroodos N, Wormald PJ: Endoscopic endonasal resection of anterior skull base meningiomas. Otolaryngol Head Neck Surg 147: 575–582, 2012

16) Rosen MR, Rabinowitz MR, Farrell CJ, Schaberg MR, Evans J: Septal transposition: a novel technique for preservation of the nasal septum during endoscopic endonasal resection of olfactory groove meningiomas. Neurosurg Focus 37: E6, 2014

17) Webb-Myres R, Wormald PJ, Brophy B: An endoscopic endonasal technique for resection of olfactory groove meningioma. J Clin Neurosci 15: 451–455, 2008

18) Attia M, Kandasamy J, Jakimovski D, Bedrosian J, Alimi M, Lee DL, Anand VK, Schwartz TH: The importance and timing of optic canal exploration and decompression during endoscopic endonasal resection of tuberculum sella and planum sphenoidale meningiomas. Neurosurgery 71(1 Suppl Operative): 58–67, 2012

19) Bohman LE, Stein SC, Newman JG, Palmer JN, Adappa ND, Khan A, Sitterley TT, Chang D, Lee JY: Endoscopic versus open resection of tuberculum sellae meningiomas: a decision analysis. ORL J Otorhinolaryngol Relat Spec 74: 255–263, 2012

20) Chowdhury FH, Haque MR, Goel AH, Kawsar KA: Endoscopic endonasal extended transsphenoidal removal of tuberculum sellae meningioma (TSM): an experience of six cases. Br J Neurosurg 26: 692–699, 2012

21) de Divitiis E, Esposito F, Cappabianca P, Cavallo LM, de Divitiis O: Tuberculum sellae meningiomas: high route or low route? A series of 51 consecutive cases. Neurosurgery 62: 556–563; discussion 556–563, 2008

22) Gadgil N, Thomas JG, Takashima M, Yoshor D: Endoscopic resection of tuberculum sellae meningiomas. J Neurol Surg B Skull Base 74: 201–210, 2013

23) Laufer I, Anand VK, Schwartz TH: Endoscopic, endonasal extended transsphenoidal, transplanum transtuberculum approach for resection of suprasellar lesions. J Neurosurg 106: 400–406, 2007

24) Liu JK, Christiano LD, Patel SK, Tubbs RS, Eloy JA: Surgical nuances for removal of tuberculum sellae meningiomas with optic canal involvement using the endoscopic endonasal extended transsphenoidal...
transplanum transtuberculum approach. Neurosurg Focus 30: E2, 2011
25) Prevedello DM, Thomas A, Gardner P, Snyderman CH, Carrau RL, Kassam AB: Endoscopic endonasal resection of a synchronous pituitary adenoma and a tuberculum sellae meningioma: technical case report. Neurosurgery 60(4 Suppl 2): E401; discussion E401, 2007
26) Prosser JD, Vender JR, Alleyne CH, Solares CA: Expanded endoscopic endonasal approaches to skull base meningiomas. J Neurol Surg B Skull Base 73: 147–156, 2012
27) Wang Q, Lu XJ, Ji WY, Yan ZC, Xu J, Ding YS, Zhang J: Visual outcome after extended endoscopic endonasal transsphenoidal surgery for tuberculum sellae meningiomas. World Neurosurg 73: 694–700, 2010
28) Graillon T, Fuentes S, Metellus P, AdetcheSSI T, Gras R, Dufour H: Limited endoscopic transsphenoidal approach for cavernous sinus biopsy: illustration of 3 cases and discussion. Neurochirurgie 60: 42–47, 2014
29) Khan OH, Anand VK, Schwartz TH: Endoscopic endonasal resection of skull base meningiomas: the significance of a “cortical cuff” and brain edema compared with careful case selection and surgical experience in predicting morbidity and extent of resection. Neurosurg Focus 37: E7, 2014
30) Yano S, Hide T, Shinojima N, Hasegawa Y, Kawano T, Kuratsu J: Endoscopic endonasal skull base approach for parasellar lesions: Initial experiences, results, efficacy, and complications. Surg Neurol Int 5: 51, 2014
31) Zhang Q, Wang Z, Guo H, Kong F, Chen G, Bao Y, Ling F: Resection of anterior cranial base meningiomas with intra- and extracranial involvement via a purely endoscopic endonasal approach. ORL J Otorhinolaryngol Relat Spec 74: 199–207, 2012
32) Fernandez-Miranda JC, Gardner PA, Rastelli MM Jr, Peris-Celda M, Koutourousiou M, Peace D, Snyderman CH, Rhoton AL Jr: Endoscopic endonasal transcavernous posterior clinoidectomy with interdural pituitary transposition. J Neurosurg 121: 91–99, 2014
33) Kassam AB, Prevedello DM, Thomas A, Gardner P, Mintz A, Snyderman C, Carrau R: Endoscopic endonasal pituitary transposition for a transdorsum sellae approach to the interpeduncular cistern. Neurosurgery 62(3 Suppl 1): 57–72; discussion 72–74, 2008
34) Nakao N, Ohkawa T, Miki J, Ogura M, Itakura T: Surgical treatment and outcome of skull base meningiomas with extracranial extensions. Clin Neurol Neurosurg 112: 40–46, 2010
35) Attia M, Patel KS, Kandasamy J, Stieg PE, Spinelli HM, Riina HA, Anand VK, Schwartz TH: Combined cranial surgery for sphen-orbital meningiomas invading the parasanal sinuses, pterygopalatine, and infratemporal fossa. World Neurosurg 80: e367–e373, 2013
36) Berhouma M, Jacquesson T, Abouaf L, Vighetto A, Jouanneau E: Endoscopic endonasal optic nerve and orbital apex decompression for nontraumatic optic neuropathy: surgical nuances and review of the literature. Neurosurg Focus 37: E19, 2014
37) Jho HD, Ha HG: Endoscopic endonasal skull base surgery: Part 1—The midline anterior fossa skull base. Minim Invasive Neurosurg 47: 1–8, 2004
38) Komotar RJ, Starke RM, Raper DM, Anand VK, Schwartz TH: Endoscopic endonasal versus open transcranial resection of anterior midline skull base meningiomas. World Neurosurg 77: 713–724, 2012
39) Maruyama K, Shin M, Kurita H, Kawahara N, Morita A, Kirino T: Proposed treatment strategy for cavernous sinus meningiomas: a prospective study. Neurosurgery 55: 1068–1075, 2004
40) Natarajan SK, Sekhar LN, Schessel D, Morita A: Petroclival meningiomas: multimodality treatment and outcomes at long-term follow-up. Neurosurgery 60: 965–979; discussion 979–981, 2007
41) Seifert V: Clinical management of petroclival meningiomas and the eternal quest for preservation of quality of life: personal experiences over a period of 20 years. Acta Neurochir (Wien) 152: 1099–1116, 2010
42) dos Santos MA, de Salcedo JB, Gutiérrez Díaz JA, Calvo FA, Sambilás J, Marsiglia H, Sallabanda K: Long-term outcomes of stereotactic radiosurgery for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 81: 1436–1441, 2011
43) Rangel-Castilla L, McDougall CG, Spetzler RF, Nakaji P: Urgent cerebral revascularization bypass surgery for iatrogenic skull base internal carotid artery injury. Neurosurgery 10(Suppl 4): 640–647; discussion 647–648, 2014

Address reprint requests to: Masahiro Shin, Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-8655, Japan.
e-mail: SHIN-NSU@h.u-tokyo.ac.jp