AKT/GSK3β Signaling in Glioblastoma

Ewelina Majewska · Monika Szeliga

Abstract Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT. In this review we focus on the function of AKT/GSK3β signaling in GBM.

Keywords Glioblastoma · AKT · GSK3β · Therapeutic target

Glioblastoma

Glioblastoma (GBM), WHO grade IV, is the most common and aggressive of primary brain tumors. The prognosis for patients with GBM is poor, as the median survival time of patients with newly diagnosed GBM is 9.7 months [1]. The standard treatment of GBM relies on surgical resection followed by radiotherapy or combined radiotherapy and treatment with alkylating agents, mainly temozolomide (TMZ) [2]. Side effects of each treatment cause a significant decrease in quality of life and despite advances in standard therapy, less than 10% of GBM patients are alive at 5 years [1]. Growing body of evidence suggests that glioma stem cells (GSCs), which possess the ability to self-renew and multilineage differentiation, play a significant role in angiogenesis, invasion, recurrence and resistance to chemotherapy and radiotherapy [3, 4]. Moreover, co-existence of different GSCs types in one GBM contributes to cellular heterogeneity, one of the causes of the failure of molecularly targeted therapies [3]. Thus, greater understanding of both GBM and GSCs biology may lead to the development of novel targeted therapies. Deregulation of many signaling pathways involved in growth, proliferation, survival, migration and apoptosis has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far (for an exhausting review see [5, 6]). Less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT.

AKT Signaling in GBM

AKT is a serine/threonine kinase activated by a dual regulatory mechanism that requires translocation to the plasma membrane and phosphorylation. AKT contains the pleckstrin homology (PH) domain that has a high affinity for the 3'-phosphorylated phosphoinositides 3,4,5-trisphosphate (PIP3). Phospholipid binding causes the translocation of AKT to the plasma membrane. PIP3 is generated by the addition of phosphate groups to phosphatidylinositol

Received: 2 June 2016 / Revised: 28 July 2016 / Accepted: 23 August 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com
4,5-bisphosphate (PIP2). This reaction is catalyzed by PI3K, thus PI3K activity is essential for the translocation of AKT to the plasma membrane [7]. PI3K can be activated by several mechanisms, all of which start with binding of a ligand to receptor tyrosine kinases (RTKs). Formation of PIP3 also results in translocation to the membrane and activation of phosphatidylinositol dependent kinases (PDK). PDK1 phosphorylates AKT on Thr308 which is both necessary and sufficient for AKT activation. However, maximal AKT activation requires additional phosphorylation at Ser473 by PDK2 or TORC2 complex of the mTOR [8–10]. The tumor suppressor phosphatase and tensin homolog (PTEN) inhibits AKT activation by dephosphorylation of PIP3 to PIP2 (Fig. 1) [11].

High level of phosphorylated AKT (p-AKT) has been reported to correlate with a poor prognosis for patients with GBM [12, 13]. A dominant mutation of genes coding for the AKT family members has not been identified in human tumor so far, therefore activation of AKT seems to be a consequence of the alterations of its upstream molecules [14]. Epidermal growth factor receptor (EGFR) belongs to RTKs and plays a crucial role in processes such as cell division, migration, adhesion, differentiation and apoptosis. EGFR amplification and/or overexpression occurs in 40–50% of GBM [15, 16] and leads to the activation of PI3K/AKT signaling pathway in these tumors [5]. Activating mutations in PIK3CA and PIK3R1 coding for subunits of PI3K have been identified in ~10% of GBM [17]. The other positive modulators of AKT activity, PDK1 and mTOR, are also upregulated in GBM, but evidence for mutations activating PDK1 and mTOR remains elusive. However, targeting of either of these molecules has emerged as a potential therapeutic strategy in GBM (Fig. 2a–c) [5, 17–20]. Uregulation of PI3K/AKT pathway has also been documented in GSCs. Preferential activation of this cascade relative to matched nonstem cells promotes the self-renewal and tumor formation of GSCs [21]. Thus, inhibition of PI3K/AKT/mTOR pathway has been proposed to be one of the strategies to target GSCs [22, 23].

The main negative regulator of AKT, PTEN, is often inactive in GBM due to gene mutation or methylation. Lack of active PTEN leads to an increased level of PIP3 and, in turn, an elevated activity of AKT [24, 25]. Latest findings indicate that a decrease in phosphorylation of AKT through PTEN may be obtained by suppression of miR-92b or miR-494-3p. Downregulation of these miRNAs increases expression of PTEN and decreases the level of phosphorylated AKT [26, 27]. Expression of both miR-92b and miR-494-3p is significantly increased in GBM tissues compared to normal brain tissues [27, 28]. Of note, loss of chromosome 10 resulting in the lack of PTEN has also been found in several GSCs lines [29].

GSK3β Pathways in GBM

Once activated, AKT translocates to the various subcellular compartments where it phosphorylates several targets, including GSK3β, another multifunctional serine/threonine kinase. Ser9 is the phosphorylation site for AKT, and the phosphorylation of this residue leads to the inactivation of GSK3β. In contrast, phosphorylation of Tyr216 by autophosphorylation or by other tyrosine kinases increases the catalytic activity of GSK3β (Fig. 1) [30, 31]. The levels of GSK3β and GSK3β phosphorylated at Tyr216 were found to be increased in GBM as compared to the nonneoplastic brain tissues [32]. A growing body of evidence indicates that this protein is an important molecule influencing

![Fig. 1 Interactions of the AKT signaling pathway with the GSK3β signaling pathways. The AKT signaling pathway is indicated in purple. The signaling pathways dependent on GSK3β are indicated in blue. High level of AKT phosphorylation triggers phosphorylation of GSK3β on Ser9 leading to its deactivation. Deactivation of GSK3β leads to translocation of accumulated β-catenin to the nucleus. By contrast, phosphorylation of GSK3β on Tyr216 causes its activation. Changes in GSK3β phosphorylation affect different downstream signaling pathways related to glycogen synthesis, proliferation, angiogenesis, apoptosis and transcription. (Color figure online)](image-url)
GSK3β binds to axin and adenomatous polyposis coli (APC) proteins. This complex phosphorylates β-catenin, thus targeting it for degradation by the ubiquitination-proteasome system (Fig. 1) [42, 43]. In the absence of nuclear β-catenin, the TCF/LEF proteins recruit Groucho-related transcriptional repressors and block expression of target genes [44]. Both axin and APC are phosphorylated by GSK3β what increases the stability of the complex and the binding of β-catenin to it. Inhibition of activity of GSK3β promotes translocation of dephosphorylated and stabilized β-catenin to the nucleus [45].

GSK3β binds to axin and adenomatous polyposis coli (APC) proteins. This complex phosphorylates β-catenin, thus targeting it for degradation by the ubiquitination-proteasome system (Fig. 1) [42, 43]. In the absence of nuclear β-catenin, the TCF/LEF proteins recruit Groucho-related transcriptional repressors and block expression of target genes [44]. Both axin and APC are phosphorylated by GSK3β what increases the stability of the complex and the binding of β-catenin to it. Inhibition of activity of GSK3β promotes translocation of dephosphorylated and stabilized β-catenin to the nucleus [45].

GSK3β/β-catenin pathway is overactivated, and levels of c-Myc, N-Myc, c-jun, and cyclin D1 proteins are upregulated in GBM [41]. Besides the role in the modulation of β-catenin activity, GSK3β can also regulate stability and activity of nuclear factor-kappa B (NF-κB), an intracellular protein complex that controls DNA transcription and acts as a prosurvival factor [46]. Moreover, GSK3β phosphorylates c-MYC, a transcription factor implicated in the regulation of cell growth and proliferation [47]. Recent study suggests that GSK3β activity plays an important role in the regulation of GSCs survival and apoptosis [48].

Fig. 2 Structures of the selected inhibitors of the AKT/GSK3β signaling pathway
AKT and GSK3β as Therapeutic Targets in GBM

Upregulation of AKT/GSK3β pathways suggests that both AKT and GSK3β may be attractive therapeutic targets in GBM. Perifosine, an alkylphospholipid that inhibits AKT phosphorylation and activation reduced viability and proliferation of GBM cell lines by induction of autophagy [49]. In a mouse model of GBM this was not effective as a single agent, but it enhanced antitumor activity of CCI-779, an analog of rapamycin that inhibits mTOR [50]. The other inhibitors of AKT phosphorylation, AktX (Fig. 2d) and erufosine, also caused a significant growth inhibition of GBM cell lines or GBM xenograft tumors, respectively [51, 52]. Inhibition of AKT’s kinase activity by AktX resulted in a decrease of GSK3β phosphorylation which in turn activated GSK3β [51]. Several other studies have shown that AKT inhibitors indirectly influence the activity of GSK3β. Thus, inactivation of AKT by indomethacin-loaded lipid-core nanocapsules (IndOH-LNC) decreased phosphorylation of GSK3β activating this protein. Treatment of C6 and U138-MG GBM cells with IndOH-LNC induced apoptosis and arrested cells in G0/G1 phase [53]. Similarly, diminishing the level of phosphorylated AKT by wogonin (Fig. 2e) attenuated GSK3β phosphorylation at Ser9, downregulated β-catenin expression and suppressed proliferation of GBM cells [54]. In a very recent study, a 2-oxindole derivative was shown to inhibit PI3K/AKT pathway and its downstream effectors: CHK1, GSK3α, GSK3β and treatment with this compound reduced cell growth of GBM cells. Moreover, this compound decreased GSCs self-renewal and proliferation triggering both apoptosis and differentiation of the stem cell subpopulation [55].

Silencing of GSK3β or chemical inhibition of GSK3β activity induced apoptosis and reduced survival and proliferation of GBM cells in vitro and in vivo [45, 56, 57]. At the molecular level, GSK3β inhibition increased the level of tumor suppressors p53 and p21 in the cells carrying wild type TP53 and was associated with downregulation of cyclin-dependent kinase 6 (CDK6) and decreased RB phosphorylation regardless of the cell genotype [32]. Of note, CDK6 is a component of the cyclin-D-Cdk4/6 complex initiating RB phosphorylation which deactivates RB and leads to the progression of the cell cycle [58]. Downregulation of GSK3β with siRNA or with chemical inhibitors decreased an activity of NF-kB which in turn resulted in a decreased GBM cell survival in vitro and inhibition of tumor growth in vivo [45, 56]. Moreover, such manipulations resulted in c-MYC activation leading to the induction of expression of genes coding for apoptosis related genes: BAX, BIM, DR4/DR5 and TRAIL [45]. Additionally, inhibition of GSK3β diminished the phosphorylation of GYS resulting in increased intracytoplasmic glycogen storage and decreased cytoplasmic glucose concentrations [45]. The influence of the direct inhibition of GSK3β on the phenotype of GSCs has recently been examined. TDZD-8, a non-ATP competitive inhibitor of GSK3β, inhibited GCS growth and capacity of self-renewal by the activation of the ERK/p90RSK pathway which led to the phosphorylation and inactivation of GSK3β [56].

The most promising compound reducing GSK3β activity is enzastaurin (LY317615), an inhibitor of protein kinase C-beta (PKC-β) (Fig. 2f). Enzasturin shows a direct inhibitory effect against GSK3β activity associated with the inhibition of GSK3β phosphorylation. This compound was clinically tested in a phase I and II trial in patients with recurrent GBM and it was well tolerated and presented anti-glioma activity [59, 60]. Despite these encouragements, phase III trials showed that enzastaurin is unlikely to be a useful agent in monotherapy because of its insufficient efficiency [61]. Therefore, the combination therapy of enzastaurin with radiotherapy, temozolomide and bevacizumab was investigated but showed no clear benefit for patients [62–65].

Conclusions and Future Directions

In conclusion, the AKT/GSK3β signaling pathway plays a significant role in the pathogenesis of GBM. Moreover, mounting evidence suggests that it is implicated in GSCs survival. Thus, this cascade seems to be a promising target for creating new, more effective GBM therapy. Inhibitors designed to target various molecules belonging to AKT/GSK3β pathway seem to have enormous therapeutic potential. However, the modest efficacy presented by these compounds in the trials conducted so far suggests that they might be useful in the combination therapy rather than in the single-agent treatment. Clinical trials of combination of AKT/GSK3β pathway inhibitors with TMZ, radiotherapy and bevacizumab are ongoing.

Acknowledgments The study was supported by the National Scientific Leading Centre (KNOW-MMRC) project (to EM).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Weller M, Cloughesy T, Perry JR, Wick W (2013) Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol 15(1):4–27. doi:10.1093/neuonc/nos273
2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352(10):987–996. doi:10.1056/NEJMoa043330
3. Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J (2015) The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17(3):239–255. doi:10.1016/j.neo.2015.02.002
4. Yan K, Yang K, Rich JN (2013) The evolving landscape of glioblastoma stem cells. Curr Opin Neurol 26(6):701–707. doi:10.1097/WCO.0b013e32835f0032
5. Li X, Wu C, Chen N, Gu H, Yan A, Cao L, Wang E, Wang L (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. doi:10.18632/oncotarget.7961
6. Duzgun Z, Eroglu Z, Biray Avci C (2016) Role of mTOR in glioblastoma. Gene 575(2 Pt 1):187–190. doi:10.1016/j.genet.2015.08.060
7. Testa JR, Bellacosa A (2001) Akt plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98(20):10983–5. doi:10.1073/pnas.211430998
8. Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8(1):55–62. doi:10.1016/S0959-437X(98)80062-2
9. Dangelmaier C, Manne BK, Liverani E, Jin J, Bray P, Kunapuli SP (2014) PI3K1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 111(3):508–517. doi:10.1160/TH13-06-0484
10. Guerlin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871. doi:10.1016/j.devcel.2006.10.007
11. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464. doi:10.1038/sj.onc.1209085
12. Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE, Okamoto M, Suzuki Y, Itoh J, Itoh H, Ishiuchi S, Nakano T (2010) PKCalpha, but not S6K1. Dev Cell 11(6):859–871. doi:10.1016/j.devcel.2006.10.007
13. Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE, Okamoto M, Suzuki Y, Itoh J, Itoh H, Ishiuchi S, Nakano T (2010) PKCalpha, but not S6K1. Dev Cell 11(6):859–871. doi:10.1016/j.devcel.2006.10.007
14. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA 102(46):16267–16272. doi:10.1073/pnas.0508372102
15. Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D (1998) Protein kinase B (PKB/Akt) activity is elevated in glioblastomas due to mutation of the tumor suppressor PTEN/MMAC. Cancer Res 58(23):5497–5500. doi:10.1158/0008-5472.CAN-98-0303
16. Rapposelli S (2016) Locking PDK1 in DFG-out conformation reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871. doi:10.1016/j.devcel.2006.10.007
17. Signore M, Pelacchi F, di Martino S, Runci D, Biffioni M, Giannetti S, Morgante L, De Majo M, Petrocino EF, Stancato L, Larocca LM, De Maria R, Pallini R, Ricci-Vitianni L (2014) Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death Dis 5:e1223. doi:10.1038/cddis.2014.188
18. Flynn P, Wongdagger M, Zavar M, Dean NM, Stokoe D (2000) Inhibition of PDK-1 activity causes a reduction in cell proliferation and survival. Curr Biol 10(22):1439–1442. doi:10.1016/S0960-9822(00)00801-0
19. Sestito S, Daniele S, Nesi G, Zappelli E, Di Maio D, Marielli N, Digiacomo M, Lapucci A, Martini C, Novellino E, Rapposelli S (2016) Locking PDK1 in DFG-out conformation through 2-oxo-indole containing molecules: another tools to fight glioblastoma. Eur J Med Chem 118:47–63. doi:10.1016/j.ejmech.2016.04.003
20. Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, Zhou LF (2013) The evolving landscape of glioblastoma stem cells. Curr Opin Neurol 26(6):701–707. doi:10.1097/WCO.0b013e32835f0032
21. Li X, Wu C, Chen N, Gu H, Yan A, Cao L, Wang E, Wang L (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. doi:10.18632/oncotarget.7961
22. Wei Y, Jiang Y, Zhou F, Liu Y, Wang S, Xu N, Xu W, Cui X, Xing Y, Liu Y, Cao B, Liu C, Wu G, Ao H, Zhang X, Jiang J (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA 110(46):20126–20131. doi:10.1073/pnas.1311969110
23. Jhanwar-Uniyal M, Labagnara M, Friedman M, Kwansicki A, Murali R (2015) Glioblastoma: molecular pathways, stem cells and therapeutic targets. Cancers (Basel) 7(2):538–555. doi:10.3390/cancers7020538
24. Song H, Zhang Y, Liu N, Wan C, Zhang D, Zhao S, Kong Y, Yuan L (2016) miR-92b regulates glioma cells proliferation, migration, invasion, and apoptosis via PTEN/Akt signaling pathway. J Physiol Biochem 72(2):201–211. doi:10.1007/s13105-016-0470-z
25. Li XT, Wang HZ, Wu ZW, Yang TQ, Zhao ZH, Chen GL, Xie XS, Li B, Wei YX, Huang YL, Zhou YX, Du ZW (2015) miR-494-3p regulates cellular proliferation, invasion, migration, and apoptosis by PTEN/AKT signaling in human glioblastoma cells. Cell Mol Neurobiol 35(5):679–687. doi:10.1007/s10571-015-0163-0
26. Wu ZB, Cai L, Lin SJ, Lu JL, Yao Y, Zhou LF (2013) The miR-92b functions as a potential oncogene by targeting on Sema3d in glioblastomas. Brain Res 1529:16–25. doi:10.1016/j.brainres.2013.07.031
27. Baronechelli S, Bentivegna A, Redaelli S, Riva G, Butta V, Paolotta L, Isimboldi G, Miozzo M, Tabano S, Daga A, Marubbi D, Cataneo M, Biunno I, Dalprà L (2013) Delineating the cytogenomic and epigenomic landscapes of glioma stem cell lines. PLoS One 8(2):e57462. doi:10.1371/journal.pone.0057462
28. ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8(7):593–596. doi:10.1038/98624
29. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102. doi:10.1016/j.tibs.2003.12.004
30. Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, Hayashi Y, Hamada Y, Minamoto J (2009) Potential therapeutic effect of glycogen synthase kinase 3beta inhibition
against human glioblastoma. Clin Cancer Res 15(3):887–897. doi:10.1158/1078-0432.CCR-08-0760

33. Embri N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107(2):519–527. doi:10.1111/j.1432-1033.1980.tb06059.x

34. Lee J, Kim MS (2007) The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract 77(Suppl 1):S49–S57

35. Rousset M, Chevalier G, Rousset JP, Dussaulx E, Zewbaum A (1979) Presence and cell growth-related variations of glycogen in human colorectal adenocarcinoma cell lines in culture. Cancer Res 39(2 Pt 1):531–534

36. Rousset M, Zewbaum A, Fogh J (1981) Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 41(3):1165–1170

37. He TC, Sparks AB, Rago C, Hermeking M, Zawel L, da Costa MCB. 2003. Expression of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas. J Clin Neurosci 10(1):75–80. doi:10.1016/j.jocn.2007.08.003

38. Zhang T, Otevrel T, Gao Z, Gao E, Ehrlich SM, Fields JZ, Boman BM (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61(24):8664–8667

39. Shima H, Igawa M, Breault J, Ribeiro-Filho L, Poobot D, Urakami S, Terashima M, Deguchi M, Yamanaka M, Shirai M, Kaneshi M, Kane CJ, Daihiri Y (2003) The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. Clin Cancer Res 9(6):2121–2132

40. Liu C, Tu Y, Sun X, Jang J, Jin X, Bo X, Li Z, Biam A, Wang X, Liu D, Wang Z, Ding L (2011) Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin Exp Med 11(2):105–112. doi:10.1007/s10238-010-0110-9

41. Sareddy GR, Panigrahi M, Challa S, Mahadevan A, Babu PP (2009) Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int 55(5):307–317. doi:10.1016/j.neuint.2009.03.016

42. Camilli TC, Weeraratna AT (2010) Striking the target in Wnt-y conditions: intervening in Wnt signaling during cancer progression. Biochem Pharmacol 80(5):702–711. doi:10.1016/j.bcp.2010.03.002

43. Paul I, Bhattacharya S, Chatterjee A, Ghosh MK (2013) Current understanding on EGFR and Wnt/beta-catenin signaling in glioma and their possible crosstalk. Genes Cancer 4(11–12):427–446. doi:10.1177/1947601913503341

44. Cong F, Schweizer L, Chamorro M, Varmus H (2003) Requirement for a nuclear function of beta-catenin in Wnt signaling. Mol Cell Biol 23(23):8462–8470. doi:10.1128/MCB.23.23.8462-8470.2003

45. Kotliarova S, Pastorino S, Koval LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA (2009) Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 69(16):6643–6651. doi:10.1158/0008-5472.CAN-08-0850

46. Demarchi F, Bertoli C, Sandy P, Schneider C (2003) Glycogen synthase kinase-3 beta regulates NF-kappaB B1/p105 stability. J Biol Chem 278(41):39583–39590

47. Gregory MA, Qi Y, Hain SR (2003) Phosphorylation by glycogen synthase kinase-3 controls c-myc protein synthesis and subnuclear localization. J Biol Chem 278(51):51606–51612

48. Gürsel DB, Banu MA, Berry N, Marongiu R, Burkhardt JK, Kobylarz K, Kaplitt MG, Rafii S, Boockvar JA (2015) Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling. J Neurooncol 121(1):19–29. doi:10.1007/s11060-014-1602-3

49. Qin LS, Yu ZQ, Zhang SM, Sun G, Zhu J, Xu J, Guo J, Fu LS (2013) The short chain cell-permeable ceramide (C6) restores cell apoptosis and perifosine sensitivity in cultured glioblastoma cells. Mol Biol Rep 40(10):5645–5655. doi:10.1007/s11033-013-2666-4 (Epub 2013 Sep 25)

50. Pitter KL, Galbán CJ, Galbán S, Tehrani OS, Li F, Charles N, Bradbury MS, Becher OJ, Chenevert TL, Rehmentulla A, Ross BD, Holland EC, Hambardzumyan D (2011) Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS One. 6(1):e14545. doi:10.1371/journal.pone.0014545. Erratum in: PLoS One 2011 6(1). doi:10.1371/annotation/66641aad-a9b9-4d3c-a6d6-73ed5ab0b61

51. Atkins RJ, Dimou J, Paradiso L, Morokoff AP, Kaye AH, Drummond KJ, Hovens CM (2012) Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas. J Clin Neurosci 19(11):1558–1563. doi:10.1016/j.jocn.2012.07.002

52. Henke G, Meier V, Lindner LH, Eibl H, Bamberg M, Belka C, Budach W, Jendrossek V (2012) Effects of ionizing radiation in combination with Erufosine on T98G glioblastoma xenograft tumours: a study in NMRI nu/nu mice. Radiat Oncol 7:172. doi:10.1186/1748-717X-7-172

53. Bernardi A, Frozza RL, Hoppe JB, Salbego C, Pohlmann AR, Battistini AM, Gutieres SS (2013) The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways. Int J Nanomedicine 8:711–728. doi:10.2147/IJN.S40284

54. Wang Y, Zhang Y, Qian C, Cai M, Li Y, Li Z, You Q, Wang Q, Hu R, Guo Q (2013) GSK3β/β-catenin signaling is correlated with the differentiation of glioma cells induced by wogonin. Toxicol Lett 222(2):212–223. doi:10.1016/j.toxlet.2013.07.013

55. Sestito S, Nesi G, Daniele S, Mercato P, Breschi MC, Macchia M, Martini C, Rapposelli S (2013) Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme. Eur J Med Chem 105:274–288. doi:10.1016/j.ejmech.2015.10.020

56. Aguilar-Morante D, Morales-Garcia JA, Sanz-SanCristobal M, Garcia-Cabezas MA, Santos A, Perez-Castillo A (2010) Inhibition of glioblastoma growth by the thiazolidinone compound TDZD-8. PLoS One 5(1):e13879. doi:10.1371/journal.pone.0013879

57. Horber R, Huber RM, Sivasankaran B, Petrich M, Morin P Jr, Hemmings BA, Merlo A, Lino MM (2009) GSK3b regulates differentiation and growth arrest in glioblastoma. PLoS One 4(10):e7443. doi:10.1371/journal.pone.0007443

58. Sheppard KE, McArthur GA (2013) The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res 19(19):5320–5328. doi:10.1158/1078-0432.CCR-13-0259

59. Kreisl TN, Kim L, Moore K, Duic P, Kotliarov S, Walling J, Musib L, Thornton D, Albert PS, Fine HA (2009) A phase I trial of enzastaurin in patients with recurrent gliomas. Clin Cancer Res 15(10):3617–3623. doi:10.1158/1078-0432.CCR-08-3071

60. Kreisl TN, Kotliarov S, Butman JA, Albert PS, Kim L, Musib L, Thornton D, Fine HA (2010) A phase II trial of enzastaurin in patients with recurrent high-grade gliomas. Neuro Oncol 12(2):181–189. doi:10.1093/neuonc/nop042
62. Butowski N, Chang SM, Lamborn KR, Polley MY, Parvataneni R, Hristova-Kazmierski M, Musib L, Nicol SJ, Thornton DE, Prados MD (2010) Enzastaurin plus temozolomide with radiation therapy in glioblastoma multiforme: a phase I study. Neuro Oncol 12(6):608–613. doi:10.1093/neuonc/nop070

63. Butowski N, Chang SM, Lamborn KR, Polley MY, Pieper R, Costello JF, Vandenberg S, Parvataneni R, Nicole A, Sneed PK, Clarke J, Hsieh E, Costa BM, Reis RM, Hristova-Kazmierski M, Nicol SJ, Thornton DE, Prados MD (2011) Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma. Neuro Oncol 13(12):1331–1338. doi:10.1093/neuonc/nor130

64. Rampling R, Sanson M, Gorlia T, Lacombe D, Lai C, Gharib M, Taal W, Stoffregen C, Decker R, van den Bent MJ (2012) A phase I study of LY317615 (enzastaurin) and temozolomide in patients with gliomas (EORTC trial 26054). Neuro Oncol 14(3):344–350. doi:10.1093/neuonc/nor221

65. Odia Y, Iwamoto FM, Moustakas A, Fraum TJ, Salgado CA, Li A, Kreisl TN, Sul J, Butman JA, Fine HA (2016) A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J Neurooncol 127(1):127–135. doi:10.1007/s11060-015-2020-x