ABSTRACT: Human body temperature not only reflects vital signs, but also affects the state of various organs through blood circulation, and even affects lifespan. Here a wireless body temperature detection scheme was presented that the temperature was extracted by investigating the out-of-plane (OP) ferromagnetic resonance (FMR) field of 10.2 nm thick La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) film using electron paramagnetic resonance (EPR) technique. Within the range of 34–42 °C, the OP FMR field changes linearly with the increasing or decreasing temperature, and this variation comes from the linear responses of magnetization to the fluctuant temperature. Using this method, a tiny temperature change (< 0.1 °C) of organisms can be detected accurately and sensitively, which shows great potential in body temperature monitoring for humans and mammals.

KEYWORDS: body temperature; ferromagnetic resonance; La$_{0.7}$Sr$_{0.3}$MnO$_3$ film; linear response

1 Introduction

Body temperature is one of the four essential physiological indices of physical health, and it can provide important information for disease prevention, diagnosis, and treatment [1–3]. Right now the novel coronavirus is ravaging around the world and the temperature detection is the essential measure for health workers to screen for infected persons. In traditional body temperature detection, the measurement is carried out using a mercury thermometer mostly. Due to its potential mercury pollution, long action time, and the trouble of reset, the mercury thermometer is gradually replaced by invasive electronic thermometers and non-invasive infrared thermometer [4–6]. However,
2 Experimental

Ferromagnetic LSMO thin films were deposited onto 5 mm × 5 mm × 0.5 mm (0 0 1)-cut single-crystalline STO substrates by pulsed laser deposition (PLD) method using a commercial LSMO ceramic target. A krypton fluoride (KrF) excimer laser (Lambda Physik COMPEX PRO 205F) was employed with a 248 nm wavelength and the laser energy 250 mJ per pulse laser beam. The optimized deposition condition was achieved at the substrate temperature of 700 °C under the O2 partial pressure of 30 Pa. After the deposition, the as-grown thin films were in situ annealed for 5 min and cooled naturally to room temperature.

The crystallinity and epitaxial behavior of the LSMO film were characterized by high-resolution X-ray diffraction (HRXRD) of PANalytical X’Pert MRD. The film morphology was characterized via atomic force microscopy (AFM; Bruker, Dimension Icon). The FMR spectra were measured in the EPR spectrometer (JES-FA200, JEOL RESONANCE Inc.). The TE₀₁₁ mode microwave was 9.2 GHz.

3 Results and discussion

Figure 1 presents a HRXRD pattern of LSMO thin film grown on STO (0 0 1) substrates. It is evident that only LSMO (0 0 l) reflections appear along with STO (0 0 l) Bragg peaks. The out-of-plane lattice constant of LSMO films derived from the LSMO (0 0 2) reflection (2θ = 46.99°) is about 3.86 Å, which is smaller than the bulk value of LSMO [17]. Obviously, the relatively larger lattice constant of the STO substrate leads to an in-plane tensile strain of the LSMO film. Then left inset in Fig. 1 shows the AFM image of a representative LSMO film. The root-mean-square (RMS) roughness over a 5 μm × 5 μm scanned area is about 0.37 Å. The right inset in Fig. 1 shows the X-ray reflectometry (XRR) pattern of the 10.2 nm thick LSMO thin film. The clear interference patterns of XRR curve demonstrate the smooth surface and interface morphology. This 10.2 nm thick sample is selected to study the influence of temperature on FMR properties.

As we all known, the dynamic magnetism of LSMO films were influenced by the temperature deeply. Here the EPR technology was employed to investigate the FMR spectra, and then the FMR fields can be presented.
accurately with different temperatures and directions of the external magnetic field [18–20]. A schematic of the FMR measurements is displayed in Fig. 2(a), where the magnetic field direction is rotating from the in-plane (IP; $\theta_H = 90^\circ$) to the OP ($\theta_H = 0^\circ$) of the LSMO film, and θ_M is the angle between the magnetization vector and the film normal. The temperature fluctuates within the range of 34–42 °C. The OP FMR spectroscopy of 10.2 nm LSMO film was investigated and the results are presented in Figs. 2(b)–2(d). Figures 2(b) and 2(c) plot OP FMR spectra with increasing and decreasing temperature in the range of 34.0–42.0 °C, respectively. Simultaneously, no clear change in the line shapes of numerous spectral was observed with the up-and-down temperature.

Figure 2(d) summarizes the OP H_r as a function of temperature. As the temperature increases from 34.0 to 42.0 °C and then decreases to 34.0 °C, the OP FMR spectrum shifts to the lower magnetic field and then go back to the original position. It is obvious that the decreasing and increasing of OP H_r are basically linear within the temperature range of 34.0–42.0 °C. The red lines in Fig. 2(d) are the results of linear fitting, and they are identical with the experimental data. All the fitting linear coefficient, constant and their errors are summarized in Table 1. For the increasing temperature, the OP H_r of 10.2 nm LSMO film as a function of temperature (t) can be fitted as the following equation:

$$H_r(t) = -93.12 \times t + 8600$$

(34.0 °C $\leq t \leq$ 42.0 °C) (1)

This expression indicates that the OP H_r will decrease by 93.1 Oe when the temperature increases by 1 °C. The adjusted determination coefficient (R_{adj}) is 0.9996, and the linear error is as low as 0.21%, which meaning that the response of the OP H_r to temperature is very close to perfect linearity within this range. The inverse function of Eq. (1) can be deduced as

$$t(H_r) = -0.0107 \times H_r + 92.33$$

(4690 Oe $\leq H_r \leq$ 5435 Oe) (2)

It means that 1 Oe decrease of OP H_r corresponds to 0.0107 °C increase in temperature and the linear error is also only 0.21%. The minimum magnetic field that the EPR spectrometer can identify is 0.05 Oe, and this means that it can capture the extremely tiny temperature fluctuation of the LSMO film theoretically, which is far beyond the current temperature detection equipment.

In the process of cooling, the relationship between OP H_r of LSMO films and temperature can be fitted as:

$$H_r(t) = -91.40 \times t + 8544$$

(34.0 °C $\leq t \leq$ 42.0 °C) (3)

The adjusted determination coefficient is 0.9992, and this indicates that the change of the resonance field still remains linear strictly. The response coefficient of -91.4 Oe/°C and the absolute value is only 1.8% different from the heating...
The inverse function of Eq. (3) was deduced as:

$$t(H_r) = -0.0109 \times H_r + 93.43$$

(4705 Oe < H_r < 5436 Oe) (4)

The response coefficient of temperature to the resonance field was -0.0109 °C/Oe, and the absolute value changed only 1.9% compared with the heating process. Therefore, it can be determined that the OP H_r of LMSO film changes linearly with the temperature in the range of 34.0–42.0 °C, and it is able to respond to the minimal temperature fluctuations sensitively and timely. Importantly, the changing temperature does not damage the magnetic performance of the LMSO film.

In order to explore the fundamental cause of the linearly varying H_r mentioned above, the angular dependences of H_r for 10.2 nm LSMO film at different temperatures were tested and fitted by the following equation:

$$(\omega/\gamma)^2 = [H_r \cos(\theta_M - \theta_H) - 4\pi M_{\text{eff}} \cos 2\theta_M]
+ H_{4r} \cos 4\theta_M + 2H_{4r} \cos^4 \theta_M$$

(5)

where ω is angular frequency for resonance; H_{4r} and $H_{4r}^{}$ are the OP and IP cubic anisotropy, respectively; γ is the gyromagnetic ratio of 2.8 MHz/Oe; $4\pi M_{\text{eff}}$ is the effective magnetization of the LSMO film. The OP H_r can be expressed by the well-known Kittel equation [21–22]:

$$f = \gamma(H_r - 4\pi M_{\text{eff}})$$

(6)

where f is the frequency, and it is fixed at 9.2 GHz in this experiment. The OP H_r has a positive linear variation tendency with $4\pi M_{\text{eff}}$, while the variation tendency of IP H_r is different totally. As shown in Fig. 3(a), the fitting curves agree very well with the experimental data. The values of M_{eff} were concluded from the theoretical curves and plotted in Fig. 3(b). It is obvious that the M_{eff} decreases linearly almost as the temperature increases from 34 to 42 °C, and the R_{adj} of the linear fitting is 0.9577. The effective magnetization M_{eff} can be given by Refs. [23–24]:

$$4\pi M_{\text{eff}} = 4\pi M_s - \frac{2K_1}{M_s}$$

(7)

where K_1 is the anisotropy constant, M_s is the saturation magnetization. To investigate temperature-induced M_s change, the OP magnetic hysteresis loops of the LSMO film at different temperatures were tested and presented in Fig. 3(c). When the temperature rises from 34.0 to 42.0 °C, the OP M_s of the LSMO film increases significantly, and the coercivity almost remains unchanged. Figure 3(d) plots the OP M_s as a function of temperature. The dots are the experimental data and the red lines are the fitting result. The linear variation of M_s with temperature is similar to that of M_{eff}. From the above experimental and fitting results, it can be concluded that the temperature fluctuations cause linear changes in the magnetization of LSMO films and further lead to the linear increase and decrease of OP H_r at the range of 34.0–42.0 °C.

The sensitivity and accuracy are the essential indexes of the temperature monitoring systems. For healthy person, their body temperature fluctuates between 36.8 and 37.2 °C in general. Therefore, the reversible shift of the OP FMR spectra for 10.2 nm LSMO film was tested. Figure 4(a) shows temperature induced reversible switching of OP H_r between 5207 Oe (36.8 °C) and 5158 Oe (37.2 °C). With the temperature rise and fall for several times, the variation of OP H_r maintains a precise 49 Oe consistently. Figure 4(b) shows FMR spectra at the first and the tenth change. During this process, the resonance signal presents well shapes, and the linewidth remains unchanged basically. When people get sick, their body temperature fluctuates significantly within a wide temperature range. Furthermore, the body temperature of most mammals (cows, horses, etc.) is different from humans. Therefore the OP FMR spectra under the alternant temperature of 35.0 and 41.0 °C for 5 times were tested, and the results were presented in Figs. 4(c) and 4(d). The OP H_r shifts between

| Table 1 The fitting linear coefficients, constants and their errors |
|-----------------|-----------------|------|

Equation	Value	Error	Percentage
Eq. (1)	-93.12	±0.20	0.21%
Eq. (2)	-0.0107	±2.34×10^{-5}	0.21%
Eq. (3)	-92.40	±0.28	0.19%
Eq. (4)	-0.0109	±3.37×10^{-5}	0.18%

Constant	Value	Error	Percentage
Eq. (1)	8600	±7.73	0.09%
Eq. (2)	92.33	±0.12	0.13%
Eq. (3)	8544	±10.73	0.13%
Eq. (4)	93.43	±0.17	0.18%
Fig. 3 (a) FMR field of LSMO film as the function of magnetic field direction at different temperatures. (b) Fitting effective magnetization with the increasing temperature. (c) OP hysteresis loops of LSMO film at 34 and 42 °C. (d) Measured OP magnetization of LSMO film with the increasing temperature.

Fig. 4 (a) OP FMR field responses to the alternate temperatures of 36.8 and 37.2 °C. (b) OP FMR spectra of LSMO film at 36.8 and 37.2 °C. (c) OP FMR field responses to the alternate temperatures of 35.0 and 41.0 °C. (d) OP FMR spectra of LSMO film at 35.0 and 41.0 °C.
From the repeated tests, it can be determined that the multiple temperature fluctuations have no impact on signal quality.

4 Conclusions

In summary, a wireless body temperature method based on the LSMO film was proposed. The OP H_r of 10.2 nm thick LSMO film shifts linearly within the temperature range of 34–42 °C. The shift of H_r is precise, reversible, and timely. Meanwhile, the repeated changing temperature has no impact on the quality of the signal. Through experimental tests and theoretical simulation, it is found that the linearly shifting H_r is caused by the linear change of effective magnetization with temperature. As an alternative, the resonance frequency can illustrate the change of temperature at the fixed magnetic field, which can be studied further in the future.

Disclosure of potential conflicts of interest The authors declare that they have no conflict of interest.

Acknowledgements This work was supported by the Doctoral Startup Foundation of Taiyuan University of Science and Technology (Grant No. 20202042), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 20211L03), the Excellent Doctoral Foundation of Shanxi Province (Grant No. 20212044), the National Key R&D Program of China (Grant No. 2018YFB0407601), the National Natural Science Foundation of China (Grant Nos. 11534015, 51602244 and 11804266), the National Science Foundation of China (Grant Nos. 11534015, 51602244 and 11804266), the National Natural Science Foundation of China (Grant No. B14040), and the National Doctoral Foundation of Shanxi Province (Grant No. 2021L303), the Excellent Education Institutions in Shanxi (Grant No. 20202042), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2018YFB0407601), the National Natural Science Foundation of China (Grant Nos. 11534015, 51602244 and 11804266), the National Natural Science Foundation of China (Grant No. B14040), and the Fundamental Research Funds for the Central Universities (Grant No. xzy20219069).

References

[1] Song C, Zeng P, Wang Z, et al. Wearable continuous body temperature measurement using multiple artificial neural networks. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4395–4406

[2] Nilsson J A, Molokwu M N, Olsson O. Body temperature regulation in hot environments. PLoS One, 2016, 11(8): e0161481

[3] Oguz F, Yildiz I, Varkal M A, et al. Axillary and tympanic temperature measurement in children and normal values for ages. Pediatric Emergency Care, 2018, 34(3): 169–173

[4] Rehman M, Abdeljalal B, Arshad M R. Development of an electro-optic technique for the measurement of temperature rise of hot bodies. Sensors and Actuators A: Physical, 2008, 141(1): 97–100

[5] Mavalankar A, Chorley S J, Griffiths J, et al. A non-invasive electron thermometer based on charge sensing of a quantum dot. Applied Physics Letters, 2013, 103(13): 133116

[6] Fallis W M, Christiani P. Neonatal axillary temperature measurements: a comparison of electronic thermometer predictive and monitor modes. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 1999, 28(4): 389–394

[7] Meyer C W, Ootsuka Y, Romanovsky A A. Body temperature measurements for metabolic phenotyping in mice. Frontiers in Physiology, 2017, 8: 520

[8] Imhoff M, Mühlsteff J, Wartzek T. Measurement of body temperature in infants. Biomedical Engineering-Biomedizinische Technik, 2013, 58(Suppl. 1): doi:10.1515/bmt-2013-4209

[9] Skvortsov L A, Kirillov V M. Measurement of the body surface temperature by the method of laser photothermal radiometry. Quantum Electronics, 2003, 33(12): 1113–1117

[10] Nazaretski E, Thompson J D, Movshovich R, et al. Temperature-dependent magnetic resonance force microscopy studies of a thin permalloy film. Journal of Applied Physics, 2007, 101(7): 074905

[11] Lofland S E, Ray V, Kim P H, et al. Temperature-tuned natural ferromagnetic resonances in La$_{0.67}$Sr$_{0.33}$MnO$_3$. Journal of Physics: Condensed Matter, 1997, 9(49): L633–L639

[12] O’Shea K J, MacLaren D A, McGrouther D, et al. Nanoscale mapping of the magnetic properties of (111)-oriented La$_{0.7}$Sr$_{0.3}$MnO$_3$ Nano Letters, 2015, 15(9): 5868–5874

[13] Urushibara A, Moritomo Y, Arima T, et al. Insulator-metal transition and giant magnetoresistance in La$_1-x$Sr$_x$MnO$_3$. Physical Review B, 1995, 51(20): 14103–14109

[14] Gong J, Zheng D, Li D, et al. Lattice distortion modified anisotropic magnetoresistance in epitaxial La$_{0.67}$Sr$_{0.33}$MnO$_3$ thin films. Journal of Alloys and Compounds, 2018, 735: 1152–1157

[15] Rasic D, Sachan R, Temizer N K, et al. Oxygen effect on the properties of epitaxial (110) La$_{0.7}$Sr$_{0.3}$MnO$_3$ by defect engineering. ACS Applied Materials & Interfaces, 2018, 10(24): 21001–21008

[16] Cui B, Song C, Mao H, et al. Magnetoelectric coupling induced by interfacial orbital reconstruction. Advanced Materials, 2015, 27(42): 6651–6656

[17] Kwon C, Robson M, Kim K C, et al. Stress-induced effects in epitaxial (La$_{0.7}$Sr$_{0.3}$)MnO$_3$ films. Journal of Magnetism and Magnetic Materials, 1997, 172(3): 229–236

[18] Zhao S, Hou W, Zhou Z, et al. Ionic liquid gating control of spin wave resonance in La$_{0.7}$Sr$_{0.3}$MnO$_3$ thin film. Advanced Electronic Materials, 2020, 6(1): 1900859

[19] Hou W, Zhou Z, Zhang L, et al. Low-voltage-manipulating spin dynamics of flexible Fe$_3$O$_4$ films through ionic gel gating for wearable devices. ACS Applied Materials & Interfaces, 2019,
[20] Xue X, Zhou Z, Dong G, et al. Discovery of enhanced magneto-electric coupling through electric field control of two-magnon scattering within distorted nanostructures. ACS Nano, 2017, 11(9): 9286–9293

[21] Liu M, Obi O, Cai Z, et al. Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering. Journal of Applied Physics, 2010, 107(7): 073916

[22] Liu M, Obi O, Lou J, et al. Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Advanced Functional Materials, 2009, 19(11): 1826–1831

[23] Yuan H, Zheng J G, Yin Y, et al. Effect of Zn substitution in (1 1 1)- textured ZnFe3_2_xO4 thin films on magnetization dynamics. Journal of Alloys and Compounds, 2017, 690: 369–375

[24] Lindner J, Barsukov I, Raeder C, et al. Two-magnon damping in thin films in case of canted magnetization: theory versus experiment. Physical Review B, 2009, 80(22): 224421