Modification of the existing maximum residue levels for tau-fluvalinate in citrus fruits

European Food Safety Authority (EFSA),
Alba Brancato, Daniela Brocca, Chloé De Lentdecker, Zoltan Erdos, Lucien Ferreira,
Luna Greco, Samira Jarrah, Dimitra Kardassi, Renata Leuschner, Christopher Lythgo,
Paula Medina, Ileana Miron, Tunde Molnar, Alexandre Nougadere, Ragnor Pedersen,
Hermine Reich, Angela Sacchi, Miguel Santos, Alois Stanek, Juergen Sturma, Tarazona José,
Theobald Anne, Benedicte Vagenende, Alessia Verani and Laura Villamar-Bouza

Abstract

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Adama Irvita N.V. submitted a request to the competent national authority in Denmark to modify the existing maximum residue levels (MRLs) for the active substance tau-fluvalinate in citrus fruits. The data submitted in support of the request were found to be sufficient to derive a MRL proposal of 0.4 mg/kg for citrus fruit under consideration. Adequate analytical methods for enforcement are available to control the residues of tau-fluvalinate in the commodities under consideration. Based on the risk assessment results, EFSA concluded that the short-term and long-term intake of residues resulting from the use of tau-fluvalinate on citrus fruits according to the reported agricultural practice is unlikely to present a risk to consumer health.

© 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: tau-fluvalinate, citrus fruits, orange, mandarin, lemon, limes, grapefruit, pesticide, MRL, consumer risk assessment

Requestor: European Commission

Question number: EFSA-Q-2016-00118

Correspondence: pesticides.mrl@efsa.europa.eu
Suggested citation: EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, José T, Anne T, Vagenende B, Verani A and Villamar-Bouza L, 2017. Reasoned Opinion on the modification of the existing maximum residue levels for tau-fluvalinate in citrus fruits. EFSA Journal 2017;15(5):4771, 20 pp. doi:10.2903/j.efsa.2017.4771

ISSN: 1831-4732

© 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Summary

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Adama Irvita N.V. submitted an application to the competent national authority in Denmark (evaluating Member State (EMS)) to modify the existing maximum residue levels (MRLs) for the active substance tau-fluvalinate in citrus fruits. The EMS drafted an evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to the European Food Safety Authority (EFSA) on 5 February 2016. To accommodate for the intended uses of tau-fluvalinate on citrus fruit in the southern Europe (SEU), the EMS proposed to raise the existing MRL from 0.1 mg/kg to 0.4 mg/kg.

EFSA based its assessment on the evaluation report submitted by the EMS, the draft assessment report (DAR), the Additional report and addendum to Additional report prepared under Council Directive 91/414/EEC, the conclusion on the peer review of the pesticide risk assessment of the active substance tau-fluvalinate as well as the conclusions from a previous EFSA opinion on tau-fluvalinate.

The metabolism of tau-fluvalinate following foliar application was investigated in crops belonging to the groups of fruit crops, cereals/grass and pulses/oilseeds.

Studies investigating the effect of processing on the nature of tau-fluvalinate (hydrolysis studies) demonstrated that the active substance degrades under sterilisation and boiling conditions to diacid, 3-phenoxybenzaldehyde (3-PBAld) and anilino acid, whereas under pasteurisation process tau-fluvalinate is relatively stable.

As the proposed uses of tau-fluvalinate are on permanent crops, investigations of residues in rotational crops are not required.

Based on the metabolic pattern identified in metabolism studies, the toxicological significance of metabolites and the capabilities of enforcement analytical methods the following residue definitions were proposed by the peer review:

- for risk assessment: tau-fluvalinate in all edible crops, except cereal grain for which residue definition is ‘tau-fluvalinate plus anilino acid, including conjugates, calculated as tau-fluvalinate’, using a conversion factor of 4.
- for enforcement: fluvalinate, since the analytical enforcement methods cannot differentiate between fluvalinate and tau-fluvalinate.

These residue definitions are applicable to primary and rotational crops. For processed commodities depending on the type of processing applied, a separate residue definition for the risk assessment might be needed, considering the magnitude and toxicological relevance of degradation products. The relevant process for the processing of citrus fruits into juice and fruit preserves is pasteurisation, and therefore, the residue definition for risk assessment and enforcement in processed citrus products is the same as for raw agricultural commodities.

EFSA concluded that for the citrus fruits assessed in this application, metabolism of tau-fluvalinate in primary crops and the possible degradation in processed products has been sufficiently addressed and that the previously derived residue definitions are applicable.

Sufficiently validated analytical method based on liquid chromatography-tandem mass spectrometry detector (LC-MS/MS) is available to quantify residues at or above 0.01 mg/kg (limit of quantification) in citrus fruits according to the enforcement residue definition.

The available residue trials are sufficient to derive a MRL proposal of 0.4 mg/kg for the whole group of citrus fruits.

Specific studies investigating the magnitude of tau-fluvalinate residues in processed commodities are not required, as significant residues are not expected in raw agricultural commodity (RAC) and the total theoretical maximum daily intake (TMDI) is below the trigger value of 10% of the acceptable daily intake (ADI).

Citrus fruit by-products (dried pulp) can be used for livestock feed purposes. However, EFSA and the EMS agreed that for consistency reasons magnitude of tau-fluvalinate residues in the livestock will be assessed under Article 12 of Regulation (EC) No 396/2005, considering livestock dietary exposure to tau-fluvalinate residues from the intake of all feed crops on which there are currently authorised uses in Europe.

The toxicological profile of tau-fluvalinate was assessed in the framework of the EU pesticides peer review under Directive 91/414/EEC and the data were sufficient to derive an ADI of 0.005 mg/kg body weight (bw) per day and an acute reference dose (ARFD) of 0.05 mg/kg bw.
The consumer risk assessment was performed with revision 2 of the EFSA Pesticide Residues Intake Model (PRIMo). The long-term exposure assessment was performed taking into account the supervised trials median residue (STMR) values in citrus fruit pulp derived from residue trials assessed in this application; for the remaining commodities covered by the MRL regulation, the existing EU MRLs and STMR values derived in previous MRL applications were selected as input values. The estimated long-term dietary intake was in the range of 10–73% of the ADI.

The short-term exposure assessment was performed for citrus fruits using the highest residue (HR) values in citrus fruit pulp as derived from supervised field trials. The short-term exposure did not exceed the ARfD for any of the crops assessed in this application.

EFSA concluded that the proposed use of tau-fluvalinate on citrus fruits will not result in a consumer exposure exceeding the toxicological reference values and therefore is unlikely to pose a risk to consumers’ health.

EFSA proposes to amend the existing MRLs as reported in the summary table below.

Code(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Comment/justification
0100000	Citrus fruits	0.1	0.4	The submitted data are sufficient to derive a MRL proposal for the SEU use. No consumer health concern was identified. The impact of residues in citrus dried pulp to livestock dietary burden will be assessed under Article 12 of Regulation (EC) No 396/2005.

MRL: maximum residue level; SEU: southern Europe.
(a): Commodity code number according to Annex I of Regulation (EC) No 396/2005.
(F): Fat soluble.
Table of contents

Abstract ... 1
Summary ... 3
Background ... 6
Terms of Reference .. 6
The active substance and its use pattern ... 6
Assessment .. 7
1. Residues in plants .. 7
 1.1. Nature of residues and methods of analysis in plants ... 7
 1.1.1. Nature of residues in primary crops .. 7
 1.1.2. Nature of residues in rotational crops ... 7
 1.1.3. Nature of residues in processed commodities .. 7
 1.1.4. Methods of analysis in plants .. 7
 1.1.5. Stability of residues in plants .. 8
 1.1.6. Proposed residue definitions .. 8
 1.2. Magnitude of residues in plants .. 8
 1.2.1. Magnitude of residues in primary crops ... 8
 1.2.1.1. Oranges, lemon and mandarins .. 8
 1.2.2. Magnitude of residues in rotational crops .. 9
 1.2.3. Magnitude of residues in processed commodities ... 9
 1.2.4. Proposed MRLs ... 9
2. Residues in livestock .. 9
3. Consumer risk assessment ... 9
 3.1. Short-term (acute) dietary risk assessment .. 9
 3.2. Long-term (chronic) dietary risk assessment .. 9
Conclusions and recommendations .. 10
References... 10
Abbreviations ... 11
Appendix A – Summary of intended GAP triggering the amendment of existing EU MRLs 12
Appendix B – List of end points ... 13
Appendix C – Pesticide Residue Intake Model (PRIMO) .. 17
Appendix D – Input values for the exposure calculations ... 19
Appendix E – Used compound codes .. 20
Background

Regulation (EC) No 396/20051 (hereinafter referred to as the MRL regulation) establishes the rules governing the setting of pesticide maximum residue levels (MRLs) at European Union (EU) level. Article 6 of the MRL regulation lays down that any party having a legitimate interest or requesting an authorisation for the use of a plant protection product in accordance with Council Directive 91/414/EEC2, repealed by Regulation (EC) No 1107/20093, shall submit an application to a Member State to modify a MRL in accordance with the provisions of Article 7 of the MRL regulation.

The applicant Adama Irvita N.V.4 submitted an application to the competent national authority in Denmark, hereafter referred to as the evaluating Member State (EMS), to modify the existing MRLs for the active substance tau-fluvalinate in citrus fruits. This application was notified to the European Commission and the European Food Safety Authority (EFSA) and was subsequently evaluated by the EMS in accordance with Article 8 of the MRL regulation.

The EMS summarised the data provided by the applicant in an evaluation report which was submitted to the European Commission and forwarded to EFSA on 5 February 2016. The application was included in the EFSA Register of Questions with the reference number EFSA-Q-2016-00118 and the following subject:

Tau-fluvalinate: Application to modify MRL(s) in citrus fruits

The EMS proposed to raise the existing MRLs of tau-fluvalinate in citrus fruits from 0.1 mg/kg to 0.4 mg/kg.

EFSA assessed the application and the evaluation report as required by Article 10 of the MRL regulation. EFSA identified data gaps which needed further clarification, which were requested from the EMS. On June 2016 the EMS submitted the revised evaluation report (Denmark, 2016), which replaced the previously submitted evaluation report.

Terms of Reference

In accordance with Article 10 of Regulation (EC) No 396/2005, EFSA shall assess the application and the evaluation report and give a reasoned opinion on the risks to the consumer and where relevant to animals associated with the setting of the requested MRLs. The opinion shall include:

- an assessment of whether the analytical method for routine monitoring proposed in the application is appropriate for the intended control purposes;
- the anticipated limit of quantification (LOQ) for the pesticide/product combination;
- an assessment of the risks of the acceptable daily intake (ADI) and acute reference dose (ARfD) being exceeded as a result of the modification of the MRL;
- the contribution to the intake due to the residues in the product for which the MRLs was requested;
- any other element relevant to the risk assessment.

In accordance with Article 11 of the MRL regulation, EFSA shall give its reasoned opinion as soon as possible and at the latest within 3 months from the date of receipt of the application.

The evaluation report submitted by the EMS (Denmark, 2016) and the exposure calculations using the EFSA Pesticide Residues Intake Model (PRIMo) are considered as supporting documents to this reasoned opinion and, thus, are made publicly available as background documents to this reasoned opinion. Furthermore, a screenshot of the Report sheet of the PRIMo is presented in Appendix C.

The active substance and its use pattern

The detailed description of the intended uses of tau-fluvalinate in citrus fruits, which are the basis for the current MRL application, is reported in Appendix A.

1 Regulation (EC) No 396/2005 of the Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1–16.
2 Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1–32.
3 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.
4 Adama Irvita N.V., Avenue de la Cristallerie 6, 92316, Sevres Cedex, France.
Applied Chemistry (IUPAC)). Tau-fluvalinate is a 1:1 mixture of (R)-α-cyano and (S)-α-cyano isomers. The chemical structures of the active substance and its main metabolites are reported in Appendix E.

Tau-fluvalinate was evaluated in the framework of Directive 91/414/EEC with Denmark designated as rapporteur Member State (RMS) for the representative uses as foliar applications on potatoes and wheat. The draft assessment report (DAR) prepared by the RMS has been peer reviewed by EFSA (EFSA, 2010). In accordance with Commission Implementing Regulation (EU) No 540/2011 tau-fluvalinate is approved under Regulation (EC) No 1107/2009, repealing Council Directive 91/414/EEC.

Tau-fluvalinate was approved6 for the use as insecticide on 1 June 2011. The EU MRLs for tau-fluvalinate are established in Annex III A of Regulation (EC) No 396/2005. The review of existing MRLs according to Article 12 of Regulation (EC) No 396/2005 (MRL review) has not yet been completed.

Assessment

EFSA has based its assessment on the evaluation report submitted by the EMS (Denmark, 2016), the DAR (Denmark, 2006), the Additional report and addendum to Additional report (Denmark, 2009, 2010) prepared under Council Directive 91/414/EEC, the conclusion on the peer review of the pesticide risk assessment of the active substance tau-fluvalinate (EFSA, 2010), as well as the conclusions from a previous EFSA opinion on tau-fluvalinate (EFSA, 2014).

For this application, the data requirements established in Regulation (EU) No 544/20117 and the guidance documents applicable at the date of submission of the application to the EMS are applicable (European Commission, 1997a–g, 2000, 2010a,b, 2016; OECD, 2007, 2011). The assessment is performed in accordance with the legal provisions of the Uniform Principles for the Evaluation and the Authorisation of Plant Protection Products adopted by Commission Regulation (EU) No 546/2011.8

A selected list of end points of the studies assessed by EFSA in the framework of the MRL review, including the end points of studies submitted in support of the current MRL application, are presented in Appendix B.

1. Residues in plants

1.1. Nature of residues and methods of analysis in plants

1.1.1. Nature of residues in primary crops

The metabolism of tau-fluvalinate in primary corps belonging to the group of fruit crops, cereals/grass and pulses/oilseeds has been investigated in the framework of the EU pesticides peer review (Denmark, 2006, 2009; EFSA, 2010).

In all examined crops, except in wheat grain, tau-fluvalinate accounted for a major part of the residues. In wheat grain, the major residues were conjugated haloaniline and conjugated anilino acid. For the intended use on citrus fruits, the metabolic behaviour in primary crops is sufficiently addressed.

1.1.2. Nature of residues in rotational crops

As the proposed use of tau-fluvalinate is on permanent crops, investigation of residues in rotational crops is not required.

1.1.3. Nature of residues in processed commodities

The effect of processing on the nature of tau-fluvalinate was investigated in the framework of the EU pesticides peer review (Denmark, 2006, 2009). These studies showed that tau-fluvalinate is completely degraded under conditions simulating sterilisation and extensively degraded under

5 Commission Implementing Regulation (EU) No 540/2011 of 23 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 1–186.

6 Commission Directive 2011/19/EU of 2 March 2011 amending Council Directive 91/414/EEC to include tau-fluvalinate as active substance and amending Decision 2008/934/EC. OJ L 58, 3.3.2011, p. 41–58.

7 Commission Regulation (EU) No 544/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the data requirements for active substances. OJ L 155, 11.6.2011, p. 1–66.

8 Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127–175.
conditions simulating brewing, baking and boiling. The major degradation products were 3-phenoxybenzaldehyde (3-PBAld), anilino acid and diacid. Under pasteurisation conditions, tau-fluvalinate is relatively stable.

The peer review did not propose the residue definition for processed commodities since the need for processing studies was not triggered (EFSA, 2010). The relevant process for the processing of citrus fruits into juice and fruit preserves is pasteurisation (OECD, 2007). Since tau-fluvalinate is stable under pasteurisation, it can be concluded that the residue definition for risk assessment and enforcement in processed citrus products is the same as for raw agricultural commodities.

1.1.4. Methods of analysis in plants

Analytical methods for the determination of tau-fluvalinate residues were assessed during the EU pesticides peer review in matrices with high starch content (potatoes, wheat) (EFSA, 2010). New study in high acid content matrices (strawberries) was submitted with the current MRL application (Denmark, 2016). A liquid chromatography–tandem mass spectrometry detector (LC–MS/MS) method was sufficiently validated for the determination of tau-fluvalinate residues in high acid content matrices at the LOQ of 0.01 mg/kg. An independent laboratory validation (ILV) for this method has been performed.

1.1.5. Stability of residues in plants

The storage stability of tau-fluvalinate in plants stored under frozen conditions was investigated in the framework of the EU pesticides peer review (EFSA, 2010). It was demonstrated that in high acid content matrices relevant for the crops assessed in the framework of this application, residues are stable for at least 18 months when stored at ≤ −18°C.

1.1.6. Proposed residue definitions

Based on the metabolic pattern identified in metabolism studies and the toxicological significance of metabolites, the capabilities of enforcement analytical methods the following residue definitions were proposed:

- Residue definition for risk assessment: tau-fluvalinate in all edible crops, except cereal grain for which residue definition is ‘tau-fluvalinate plus anilino acid, including conjugates, calculated as tau-fluvalinate’, using a conversion factor of 4.
- Residue definition for enforcement: fluvalinate since the analytical enforcement methods cannot differentiate between fluvalinate and tau-fluvalinate (EFSA, 2010).

The residue definition for enforcement in Regulation (EC) No 396/2005 is set as ‘tau-fluvalinate’. However, as only tau-fluvalinate is approved in the EU, the setting of an enforcement residue definition containing additional isomers is of low relevance for MRL enforcement.

Taking into account the proposed use on citrus fruits assessed in this application, EFSA concluded that these residue definitions are appropriate and no further information is required.

1.2. Magnitude of residues in plants

1.2.1. Magnitude of residues in primary crops

In support of the MRL application, the applicant submitted residue trials performed on lemons, oranges and mandarins. The samples were analysed for the parent compound tau-fluvalinate. According to the assessment of the EMS, the methods used were sufficiently validated and fit for purpose.

The samples of these residue trials were stored under conditions for which integrity of the samples has been demonstrated.

1.2.1.1. Oranges, lemon and mandarins

In support of the southern Europe good agricultural practices (SEU GAP), eight GAP-compliant residue trials on oranges, eight GAP-compliant residue trials on lemons and two GAP-compliant residue trials on mandarins were submitted. Trials were conducted in Spain, Greece and Italy in 2009, 2011 and 2014. Residues in citrus fruit pulp were analysed separately and were in all cases below the LOQ of 0.01 mg/kg. In accordance with the EU extrapolation rules (European Commission, 2016), the
applicant proposed to extrapolate the results to citrus fruit group. The number and quality of the trials is sufficient to derive a MRL proposal of 0.4 mg/kg for the whole group of citrus fruits.

1.2.2. Magnitude of residues in rotational crops

As the proposed use of tau-fluvalinate is on permanent crops, investigation of residues in rotational crops is not required.

1.2.3. Magnitude of residues in processed commodities

New studies investigating the effect of processing on the magnitude of tau-fluvalinate residues in processed citrus fruit commodities have not been submitted in the framework of the current application and are not necessary, as residues in citrus fruit pulp were in all trials below the LOQ of 0.01 mg/kg and the individual contribution of citrus fruits to the total theoretical maximum daily intake (TMDI) is below 10% ADI.

1.2.4. Proposed MRLs

The available data are considered sufficient to derive MRL proposals as well as risk assessment values for the commodities under evaluation. In Section 3, EFSA assessed whether residues on these crops resulting from the intended uses are likely to pose a consumer health risk.

2. Residues in livestock

Since citrus fruit by-products (dried pulp) can be used for feed purposes, the possible transfer of residues to food of animal origin should be assessed. However, considering the low residues in fresh citrus pulp (< 0.01 mg/kg), the commodity is not expected to have a major impact on the overall dietary burden. An update of the previously calculated dietary burden (EFSA, 2014) and a possible revision of the existing MRLs for food of animal origin should be performed in the framework of the MRL review under Article 12 of Regulation (EC) No 396/2005, taking into account all authorised uses on potential feed items.

3. Consumer risk assessment

EFSA performed a dietary risk assessment using revision 2 of the EFSA PRIMo (EFSA, 2007). This exposure assessment model contains food consumption data for different subgroups of the EU population and allows the acute and chronic exposure assessment to be performed in accordance with the internationally agreed methodology for pesticide residues (FAO, 2016).

The toxicological reference values for tau-fluvalinate used in the risk assessment (i.e. ADI and ARfD values) were derived in the framework of the EU pesticides peer review (EFSA, 2010).

3.1. Short-term (acute) dietary risk assessment

The short-term exposure assessment was performed, taking into account the highest residue (HR) values in the citrus fruit pulp derived from supervised field trials and the complete list of input values can be found in Appendix D.2.

The short-term exposure did not exceed the ARfD for any crops assessed in this application (see Appendix B.3).

3.2. Long-term (chronic) dietary risk assessment

The long-term exposure assessment was performed, taking into account the supervised trials median residue (STMR) values in citrus fruit pulp derived from residue trials assessed in this application; for the remaining commodities covered by the MRL regulation, the existing EU MRLs and STMR values derived in previous MRL applications were selected as input values (EFSA, 2014). The complete list of input values is presented in Appendix D.2.

The estimated long-term dietary intake was in the range of 10–73% of the ADI. The contribution of residues expected in the commodities assessed in this application to the overall long-term exposure is presented in more detail in Appendix B.3.

EFSA concluded that the long-term intake of residues of tau-fluvalinate resulting from the existing and the intended uses is unlikely to present a risk to consumer health.
Conclusions and recommendations

The data submitted in support of this MRL application were found to be sufficient to derive MRL proposals for all citrus fruits under consideration.

Adequate analytical methods for enforcement are available to control the residues of tau-fluvalinate in citrus fruits.

Based on the risk assessment results, EFSA concluded that the short-term and long-term intake of residues resulting from the use of tau-fluvalinate on citrus fruits according to the reported agricultural practice is unlikely to present a risk to consumer health.

The MRL recommendations are summarised in Appendix B.4.

References

Denmark, 2006. Draft assessment report on the active substance tau-fluvalinate prepared by the rapporteur Member State Denmark in the framework of Council Directive 91/414/EEC, September, 2006.

Denmark, 2007. Refinement of tMRLs for tau-fluvalinate. Updated version 8 June 2007, 165 pp. Available online: https://circabc.europa.eu

Denmark, 2009. Additional report on the active substance tau-fluvalinate prepared by the rapporteur Member State Denmark in the framework of Council Directive 91/414/EEC, September 2009.

Denmark, 2010. Addendum to Additional report on the active substance tau-fluvalinate prepared by the rapporteur Member State Denmark in the framework of Council Directive 91/414/EEC, January, 2010.

Denmark, 2016. Evaluation report on the modification of MRLs for tau-fluvalinate in citrus fruits. September 2015 updated on June 2016, 41 pp.

EFSA (European Food Safety Authority), 2007. Reasoned opinion on the potential chronic and acute risk to consumers' health arising from proposed temporary EU MRLs. EFSA Journal 2007;5(3):32r, 1141 pp. doi:10.2903/j.efsa.2007.32r

EFSA (European Food Safety Authority), 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance tau-fluvalinate. EFSA Journal 2010;8(7):1645, 75 pp. doi:10.2903/j.efsa.2010.1645

EFSA (European Food Safety Authority), 2014. Modification of the existing MRLs for tau-fluvalinate in various crops. EFSA Journal 2014;12(1):3548, 49 pp. doi:10.2903/j.efsa.2014.3548

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1996.

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/VI/95-rev. 6, 22 July 1997.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.

European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.

European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals. 7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs). SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.

European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.

European Commission, 2016. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev. 10.2, 23 September 2016.

FAO (Food and Agriculture Organization of the United Nations), 2016. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 3rd Ed. FAO Plant Production and Protection Paper 225, 298 pp.

OECD (Organisation for Economic Co-operation and Development), 2007. OECD Guideline 507 for the testing of chemicals. Nature of the pesticide residues in processed commodities- high temperature hydrolysis. Adopted 16 October 2007.

OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org
Abbreviations

3-PBAld 3-phenoxbenzaldehyde
a.s. active substance
ADI acceptable daily intake
AR applied radioactivity
ARfD acute reference dose
BBCH growth stages of mono- and dicotyledonous plants
bw body weight
DAR draft assessment report
DAT days after treatment
EMS evaluating Member State
EW emulsion, oil in water
FAO Food and Agriculture Organization of the United Nations
GAP Good Agricultural Practice
HR highest residue
IEDI international estimated daily intake
IESTI international estimated short-term intake
ILV independent laboratory validation
ISO International Organisation for Standardisation
IUPAC International Union of Pure and Applied Chemistry
LC liquid chromatography
LOQ limit of quantification
MRL maximum residue level
MS Member States
MS/MS tandem mass spectrometry detector
NEU Northern Europe
OECD Organisation for Economic Co-operation and Development
PBI plant back interval
PHI preharvest interval
PRIMo (EFSA) Pesticide Residues Intake Model
RA risk assessment
RAC raw agricultural commodity
RD residue definition
RMS rapporteur Member State
SEU southern Europe
STMR supervised trials median residue
TMDI theoretical maximum daily intake
WHO World Health Organization
Appendix A – Summary of intended GAP triggering the amendment of existing EU MRLs

Crop and/or situation	NEU, SEU, MS or country	F or G or I(a)	Pests or group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	Application rate per treatment g a.s./hl min-max	Water L/ha min-max	g a.s./ha min-max	PHI (days)(d)	Remarks
Citrus fruits	SEU	F	Aphididae, mites, scales, citrus flower moth	EW	240	Foliar spray	All stages	1–2	14	1.92–9.6	1,000–2,500	36–96	30	–

GAP: Good Agricultural Practice; NEU: northern Europe; SEU: southern Europe; MS: Member State; EW: emulsion, oil in water; a.s.: active substance.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI: minimum pre-harvest interval.
Appendix B – List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants

B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crop(s)	Application(s)	Sampling (DAT)
Fruit crops	Apples	Foliar spray, 4 × 144 g/ha	29	
Root crops				
Leafy crops				
Cereals/grass	Wheat	Foliar spray, 2 × 60 g/ha or 2 × 600 g/ha (BBCH 59 and 67)	53	
		Foliar spray, 2 × 65 g/ha or 2 × 510 g/ha (BBCH 47–55 and 69)	37	
Pulses/oilseeds	Alfalfa	Foliar spray, 3 plots: 1 × 167 g/ha, 1,110 g/ha and 500 g/ha	77 (forage), 81 (hay), 69 (seeds)	
Miscellaneous				
Radiolabelled active substance: [aniline-U-14C]-tau-fluvalinate and [benzyl-U-14C]-tau-fluvalinate: wheat, apples, alfalfa			(Denmark, 2006; EFSA, 2010)	

Rotational crops (available studies)	Crop groups	Crops	Application	PBI (DAT)
Root/tuber crops	Radish	Soil, 144 g/ha	28, 119	
Leafy crops	Lettuce	Soil, 144 g/ha	28, 119	
Cereal (small grain)	Wheat	Soil, 144 g/ha	28, 119, 182, 364	
Other				
Detectable residues are not expected in succeeding crops (EFSA, 2010)				

Processed commodities (hydrolysis study)	Conditions	Investigated?
	Pasteurisation (20 min, 90°C, pH 4)	Yes
	Baking, brewing and boiling (60 min, 100°C, pH 5)	Yes
	Sterilisation (20 min, 120°C, pH 6)	Yes
	Pasteurisation: tau-fluvalinate	
	Baking, brewing, boiling: tau fluvalinate, anilino acid (13% AR), diacid (22% AR)	
	Sterilisation: 3-PBAld (97% AR), diacid (90% AR) (Denmark, 2007, 2009)	

AR: applied radioactivity; BBCH: growth stages of mono- and dicotyledonous plants; DAT: days after treatment; PBI: plant back interval.
Can a general residue definition be proposed for primary crops? Yes
Rotational crop and primary crop metabolism similar? Yes
Residue pattern in processed commodities similar to residue pattern in raw commodities? No
Plant residue definition for monitoring (RD-Mo) Fluvinate (EFSA, 2010)
Tau-fluvalinate (Regulation (EC) No 396/2005)
Plant residue definition for risk assessment (RD-RA) Tau-fluvalinate
Cereals: Tau-fluvalinate + anilino acid (incl. conjugates), calculated as tau-fluvalinate
Conversion factor (monitoring to risk assessment) Cereal grain: 4
Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs) Dry (high protein/starch content) matrices (wheat, potatoes): GC-ECD, LOQ 0.01 mg/kg (EFSA, 2010)
Matrices with high acid content (strawberries): LC-MS/MS, 0.01 mg/kg. ILV available (Denmark, 2016)

B.1.1.2. Stability of residues in plants

Plant products (available studies)	Category	Commodity	T (°C)	Stability (months/years)
High water content	Tomatoes, apples, melon	≤ −18	18 months	
High oil content	Avocado, rape seed	≤ −18	18 months	
Dry/High starch	Wheat grain, straw	≤ −18	18 months	
Dry/High protein	Peas (pod and seed)	≤ −18	18 months	
High acid content	Grapes	≤ −18	18 months	
Study duration 18 months (Denmark, 2009; EFSA, 2010)				
B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials

Crop (supervised trials)	Region/indoor\(^{(a)}\)	Residue levels observed in the supervised residue trials (mg/kg)	Comments (OECD calculations)	MRL proposals (mg/kg)	HR\(_{Mo}\)\(^{(b)}\) (mg/kg)	STMR\(_{Mo}\)\(^{(c)}\) (mg/kg)	CF\(^{(d)}\)
Oranges	SEU	Mo: 0.03; 2 × 0.05; 3 × 0.06; 0.08; 0.13 RA: 0.03; 2 × 0.05; 3 × 0.06; 0.08; 0.13 Pulp: Mo: 8 × < 0.01 RA: 8 × < 0.01	Residue data combined and extrapolated to the whole group of citrus fruits	0.4	0.26	0.10	1
Lemons	SEU	Mo: 0.063; 2 × 0.12; 0.18; 0.19; 0.21; 0.25; 0.26 RA: 0.063; 2 × 0.12; 0.18; 0.19; 0.21; 0.25; 0.26 Pulp: Mo: 8 × < 0.01 RA: 8 × < 0.01					
Mandarins	SEU	Mo: 0.08; 0.12 RA: 0.08; 0.12 Pulp: Mo: 2 × < 0.01 RA: 2 × < 0.01					

MRL: maximum residue level; OECD: Organisation for Economic Co-operation and Development.
(a): NEU: Outdoor trials conducted in northern Europe; SEU: Outdoor trials conducted in southern Europe; Indoor: indoor EU trials or Country code: if non-EU trials.
(b): Highest residue according to the residue definition for monitoring.
(c): Supervised trials median residue according to the residue definition for monitoring.
(d): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.
B.1.2.2. Residues in succeeding crops

Citruses are permanent crops and therefore residues in succeeding crops are not relevant.

B.1.2.3. Processing factors

New processing studies have not been submitted in the framework of the current application.

B.2. Residues in livestock

Residues in the livestock from the intake of citrus dried pulp will be considered under Article 12 of Regulation (EC) No 396/2005, considering all uses of tau-fluvalinate on crops that can be used as a livestock feed.

B.3. Consumer risk assessment

ARfD
0.05 mg/kg bw (EFSA, 2010)

Highest IESTI, according to EFSA PRIMo
Oranges: 3 % of ARfD

Assumptions made for the calculations
The calculation is based on the highest residue levels expected in the raw agricultural commodities according to the intended use

ADI
0.005 mg/kg bw per day (EFSA, 2010)

Highest IEDI, according to EFSA PRIMo
73 % ADI (NL child diet)

Contribution of crops assessed:

- Grapefruit: 0.14 % of ADI
- Oranges: 0.8 % of ADI
- Lemons: 0.06 % of ADI
- Limes: 0.03 % ADI
- Mandarins: 0.15 % ADI

Assumptions made for the calculations
The calculation is based on the median residue levels derived for citrus and commodities previously assessed by EFSA (EFSA, 2014); for the remaining crops the existing MRL was used as input value for the risk assessment

PRIMo: (EFSA) Pesticide Residues Intake Model; ADI: acceptable daily intake; IEDI: international estimated daily intake.

B.4. Recommended MRLs

Code(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Comment/justification
0100000	Citrus fruits	0.1	0.4	The submitted data are sufficient to derive a MRL proposal for the SEU use. No consumer health concern was identified The impact of residues in citrus dried pulp to livestock dietary burden will be assessed under Article 12 of Regulation (EC) No 396/2005

MRL: maximum residue level; SEU: southern Europe.
(a): Commodity code number according to Annex I of Regulation (EC) No 396/2005.
(F): Fat soluble.
Appendix C – Pesticide Residue Intake Model (PRIMo)

Tau-fluvalinate

Code no.	ADI (mg/kg bw per day)	ARfD (mg/kg bw)
LOQ (mg/kg bw)	0.005	0.05

Source of ADI: EFSA
Source of ARfD: EFSA
Year of evaluation: 2010
Year of evaluation: 2010

Toxicological end points

Status of the active substance:	Approved
LOQ (mg/kg bw)	Proposed LOQ

Chronic risk assessment – refined calculations

Commodity/group of commodities	MS Diet	TMDI (range) in % ADI
		minimum–maximum
	73	73

Highest calculated TMDI values in % of ADI:

Commodity/group of commodities	MS Diet	TMDI (in % of ADI)
	73	73

Highest contributor to MS diet (in % of ADI):

Commodity/group of commodities	MS Diet	ADI (in % of ADI)
	73	73

2nd contributor to MS diet (in % of ADI):

Commodity/group of commodities	MS Diet	ADI (in % of ADI)
	73	73

3rd contributor to MS diet (in % of ADI):

Commodity/group of commodities	MS Diet	ADI (in % of ADI)
	73	73

Conclusion:

The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs were below the ADI. A long-term intake of residues of Tau-fluvalinate is unlikely to present a public health concern.
Acute risk assessment / children - refined calculations

The acute risk assessment is based on the ARfD.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS, an average European unit weight was used for the IESTI calculation.

In the IESTI 1 calculations, the variability factors were 10, 7 or 5 (according to JMPR manual 2002) for lettuce a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100 % of the ARfD.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS, an average European unit weight was used for the IESTI calculation.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100 % of the ARfD.

For processed commodities, no exceedance of the ARfD/ADI was identified.

***) The results of the IESTI calculations are reported for at least 5 commodities. If the ARfD is exceeded for more than 5 commodities, all IESTI values > 90% of ARfD are reported.

**pTMRL: provisional temporary MRL

No of commodities for which ARfD/ADI is exceeded (ESTI 1)	No of commodities for which ARfD/ADI is exceeded (ESTI 2)	No of commodities for which ARfD/ADI is exceeded (ESTI 1)	No of commodities for which ARfD/ADI is exceeded (ESTI 2)				
Highest % of ARfD/ADI Commodities pTMRL/threshold MRL (mg/kg)	Highest % of ARfD/ADI Commodities pTMRL/threshold MRL (mg/kg)	Highest % of ARfD/ADI Commodities pTMRL/threshold MRL (mg/kg)	Highest % of ARfD/ADI Commodities pTMRL/threshold MRL (mg/kg)				
3	Oranges 0.01 / -	2	Oranges 0.01 / -	0.5	Oranges 0.01 / -	0.4	Oranges 0.01 / -
2	Grapefruit 0.01 / -	2	Grapefruit 0.01 / -	0.4	Grapefruit 0.01 / -	0.3	Grapefruit 0.01 / -
1	Mandarins 0.01 / -	1	Mandarins 0.01 / -	0.3	Mandarins 0.01 / -	0.2	Mandarins 0.01 / -
1	Lemons 0.01 / -	1	Lemons 0.01 / -	0.1	Lemons 0.01 / -	0.1	Lemons 0.01 / -
0	Limes 0.01 / -	0	Limes 0.01 / -	0.1	Limes 0.01 / -	0.1	Limes 0.01 / -

No of critical MRLs (ESTI 1)

No of critical MRLs (ESTI 2)

No of commodities for which ARfD/ADI is exceeded	No of commodities for which ARfD/ADI is exceeded
Processed commodities	Processed commodities
Highest % of ARfD/ADI Processed commodities	pTMRL/threshold MRL (mg/kg)
65.8	Grape juice 0.3 / -
30.6	Apple juice 0.3 / -
16.0	Elderberry juice 0.3 / -
12.0	Raspberry juice 0.3 / -
10.7	Peach juice 0.3 / -
7.7	Wine 0.3 / -
3.9	Apple juice 0.3 / -
3.0	Orange juice 0.3 / -
1.2	Peach preserved with 0.3 / -
0.8	Raisins 1 / -

Conclusion:

For Tau-fluvalinate, IESTI 1 and IESTI 2 were calculated for food commodities for which pTMRLs were submitted and for which consumption data are available.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100 % of the ARfD.

In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002) for lettuce a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce the calculation was performed with a variability factor of 3.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS, an average European unit weight was used for the IESTI calculation.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100 % of the ARfD.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS, an average European unit weight was used for the IESTI calculation.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100 % of the ARfD.

For processed commodities, no exceedance of the ARfD/ADI was identified.
Appendix D – Input values for the exposure calculations

D.1. Livestock dietary burden calculations

Will be considered under Article 12 of Regulation (EC) No 396/2005.

D.2. Consumer risk assessment

Commodity	Chronic risk assessment	Acute risk assessment	
	Input value (mg/kg)	Comment	
Citrus fruits	0.10	STMR	
		0.26	HR
Pome fruit, peaches, apricots, table and wine grapes, tomatoes, aubergines, melons, broccoli, Brussels sprouts, kohlrabi, lettuce and similar group, globe artichokes	STMR	EFSA (2014)	
Other food commodities of plant and animal origin	MRL	Regulation (EC) No 2015/846(a)	–

HR: highest residue; STMR: supervised trials median residue; MRL: maximum residue level.
(a): Commission Regulation (EU) 2015/846 of 28 May 2015 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acetamiprid, ametoctradin, amisulbrom, bupirimate, clofentezine, ethephon, ethirimol, fluopicolide, imazapic, propamocarb, pyraclostrobin and tau-fluvalinate in or on certain products. OJ L 140, 5.6.2015, p. 1–49.
Appendix E – Used compound codes

Code/trivial name	Chemical name	Structural formula
Tau-fluvalinate	(RS)-α-Cyano-3-phenoxybenzyl-N-(2-chloro-α,α,α-trifluoro-p-tolyl)-D-valinate	![structure](image)
3-Phenoxybenzaldehyde (3-PBAld)	3-Phenoxybenzaldehyde O=Cc2cc(Oc1cccc1)ccc2	![structure](image)
Anilino acid	N-[2-Chloro-4-(trifluoromethyl)phenyl]-α-valine	![structure](image)
Diacid	4-[(1R)-1-Carboxy-2-methylpropyl]amino-3-chlorobenzoic acid	![structure](image)
Haloaniline	2-Chloro-4-(trifluoromethyl)aniline	![structure](image)