The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes

Yantian Ma¹, He Zhang¹, Ye Du¹, Tian Tian¹, Ting Xiang¹, Xiande Liu¹, Fasi Wu², Lizhe An¹, Wanfu Wang², Ji-Dong Gu³ & Huyuan Feng¹

¹School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China, ²The Conservation Research Institute of Dunhuang Academy, Dunhuang, Gansu 736200, People’s Republic of China, ³Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China.

In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes.

Biodeterioration is often observed on items of cultural heritage, historic artefacts and monuments, and even for modern materials, buildings, museums and private collections¹⁻⁵. Microorganisms can colonise the surfaces of a wide range of materials and niche types in ecosystems; thus, biodeterioration is observed ubiquitously. The biodeterioration of precious and culturally significant items is undesirable and a public concern. Many studies have demonstrated extensive growth of various microorganisms and resultant stains and spots on painting surfaces⁶⁻⁸. Some novel microbial species have been associated with the deterioration of rock paintings using culture-dependent methods, and high microbial diversity has been observed in different environments based on rRNA gene-PCR amplification and sequencing methods⁹⁻¹⁰. Although distinguishing the functional groups of microorganisms within the microbial communities of different environments is difficult, a common, core microbial group has been associated with biodeterioration in caves with similar climate conditions¹⁰⁻¹¹.

The Mogao Grottoes are located 25 km southeast of Dunhuang City in Gansu Province, China. Dunhuang City is a northwest oasis city located in the western Hexi Corridor and was an important strategic location on the ancient Silk Road connecting Europe and Asia. The caves of the Mogao Grottoes were built from the Northern Wei (386-534 AD) to the Mongolian-ruled Yuan Dynasty (1276-1368 AD) over a period of approximately 1,000 years, with more than 700 caves built and nearly 45,000 square meters of mural paintings completed. A total of 452 caves have survived the damage inflicted by nature and humans. The Mogao Grottoes are a famous world cultural heritage site known for its numerous caves, mural areas, and documents and its long time span. The Mogao Grottoes were added to the World Heritage List in 1987 as the only site that satisfied all six criteria for inclusion; a site must meet at least one requirement for inclusion on the World Heritage List¹¹⁻¹². The Mogao Grottoes are inland and are surrounded by desert, including the Gobi desert of Mongolia to the northeast and the Tazikaman desert to the northwest. It has an arid continental climate with an average annual temperature of 10.9 °C, average annual relative humidity of 28.5%, yearly rainfall of 39.9 mm, and mean evaporation of 2,490 mm. These dry climate conditions limit the proliferation of most microorganisms and, consequently, many of the organic materials used in the mural paintings have resisted significant damage or deterioration. Although the remote location and arid climate ensured that the Mogao Grottoes remained, visible
discoloration and damage have accumulated over a long period of time. Large areas of the mural paintings exhibit visible signs of decay due to salt precipitation and subsequent flaking, powdering or delamination. Damage due to pigmentation and discoloration induced or caused by microbial contamination, colonisation and growth is also prevalent (Figure S1). Several methods of desalination to control salt damage of mural paintings have been evaluated with promising results and are now widely used. Although the microbial biodeterioration of Dunhuang mural paintings has been studied, efficient, effective, safe, reliable measures have not been developed. Biocides were once frequently used to combat biodeterioration but have since been shown to be effective for only a short period of time. Research is now focused on analysing the characteristics of microbial community composition and structure related to biodeterioration. The microbial population on Dunhuang mural paintings was first characterised in the 1990s, providing primary insights into the microbes associated with mural decay. The culturable microorganisms from 51 discoloured samples from 6 ancient caves were identified, and several genera including Aspergillus, Cladosporium and Flavobacterium, were associated with accelerated ageing of cementing materials and the discoloration of mural paintings. Subsequent experiments in which simulated mural paintings were inoculated with the isolated microbial strains revealed that microbial metabolites (e.g., pigments and oxalate) altered the crystal shape of the paints and the chemical valence state of the metallic elements in the paints. These processes played an important role in the discoloration of the mural paintings, particularly for red pigment containing red lead (lead tetroxide). Aerial microorganisms and their seasonal dynamics were recently investigated both inside and outside of the caves at the Mogao Grottoes. The influence of tourists and environmental factors were identified as the main factors contributing to biodeterioration. In addition, microbial species with the potential to damage paintings or act as opportunistic pathogens to visitors were identified.

The objectives of the present study were to characterise and identify the microorganisms present on cave paintings with signs of damage and investigate the growth characteristics of culturable strains; to elucidate the distribution patterns of microbial communities in different caves in the context of temporal and spatial analyses of their building time and positions at the site; to assess the influence of environmental conditions on community distribution patterns; and to attempt to define the relationship between microbial distribution patterns and environmental factors.

Results

Microbial diversity of clone libraries. Information on the bacterial and fungal communities was obtained by PCR amplification and the clone library method using genomic DNA extracted from samples. A total of 10 bacterial libraries and 5 fungal libraries were constructed and analysed from the 10 samples in this study. A total of 1543 bacterial and 1771 fungal clones were analysed.

Bacterial diversity was represented by the phyla Firmicutes, Alpha, Beta, and Gamma Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes and Chloroflexi (Figure S2). Firmicutes, represented by members of Bacillaceae and Clostridiaceae, was the major bacterial phylum and accounted for 54.0% of the entire community. The phylum Proteobacteria accounted for the second largest number of sequences detected from all samples, with Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria representing 10.5%, 4.0% and 15.3%, respectively. Firmicutes and Proteobacteria collectively accounted for 83.8% of all samples; the remaining seven bacterial phyla only accounted for 16.2%, with 6.0% Actinobacteria, 4.9% Acidobacteria, 2.9% Cyanobacteria, 1.7% Bacteroidetes, 0.3% Gemmatimonadetes, 0.3% Planctomycetes, and 0.2% Chloroflexi (Figure 1).

Three fungal phyla (Ascomycota, Zygomycota and Basidiomycota) were distinguished from the 1771 clones (Figure S3). Ascomycota was the dominant phylum, representing 88.4% of clones, including members of Eurotiales (Alternaria and Westerdykella), Dothideomycetes (Cladosporium and Leptosphaerulina), Eurotiomycetes (Aspergillus and Eurotium), Sordariomycetes (Chaetomiaceae, Stachybotrys, and Fusarium), Saccharomycetes (Candida), Plectomycetes (Penicillium), and Pezizomycetes (Tricharina). Two additional fungal phyla contributed 11.7% of the total clones, with Zygomycota represented by Mucoraceae and Basidiomycota by Filobasidiaceae (Figure 2).

Microbial diversity of culturable microbes. Enrichment cultures cultivated for 15–20 days under different pH values, temperatures and salinity were spread on agar plates for isolation, purification and identification. The bacterial communities exhibited substantial differences under different culture conditions, but only two fungal genera were detected in the enrichment cultures: Penicillium spp. and Cladosporium spp.

More bacterial strains were isolated at 37°C than at 15°C based on colony forming unit counts and OTU numbers (Figure 3). Bacillus and Paenibacillus dominated the bacterial communities at both 37°C and 15°C, with relative proportions of 63.6% and 75.3%, respectively. In addition, 16 genera accounted for 36.4% of the strains isolated at 37°C, and 10 genera accounted for 24.7% of the strains isolated at 15°C. Pseudomonas, Microbacterium, Planomicrobium, Sphingomonas, Brevundimonas, Arthrobacter, Acinetobacter and Roseateles each represented more than 1% of the bacterial isolates obtained at 37°C. By contrast, Planomicrobium, Sphingomonas, Microbacterium, Capriavidus and Arthrobacter each represented more than 1% of the bacterial isolates obtained at 15°C (Table S1).

The pH of the culture had an obvious effect on bacterial growth, with some strains exhibiting relatively broader pH ranges (Table S2). Bacillus grew at pH values ranging from 7 to 11 and accounted for a...
higher proportion of bacterial communities under different pH conditions, from 54.8% at pH 11 to 71.4% at pH 10. The growth characteristics of *Arthrobacter*, *Pseudomonas* and *Brevundimonas* were similar to those of *Bacillus*, and growth of these genera was detected in the same pH range. *Sphingomonas* spp. was detected at pH 7–9, while *Microbacterium* and *Micrococcus* grew at pH 7–10. *Acinetobacter*, *Roseateles*, *Psychrobacter* and *Kocuria* were only observed at pH 7 and 10, pH 7 and 11, pH 7, and pH 11, respectively. Salinity exerted a strong selection pressure on the growth of microorganisms, and few strains were detected in the high-salinity conditions.
cultures (Table S3). Bacillus was the only bacterial genus detected at salinities of 1–15%, while Micrococcus was observed at salinities of 10%–15%, indicating a halophilic nature. The growth of Paenibacillus, Sphingomonas, Planomicrobium and Pseudomonas was detected at salinities of up to 5%, while Microbacterium could tolerate salinity up to 10%.

Temporal and spatial distribution of the microbial communities. The samples were divided into different groups according to the building times of the caves and sampling positions. A total of 4 samples were collected from the ground floor, 3 from the second floor, and 3 from the third floor of the Mogao Grottoes (Table 1).

Firmicutes and Proteobacteria including Bacillus, Planococcus, Clostridium, Aerococcus, Paenibacillus, Shigella and Azospirillum were dominant in all samples from all three floors, accounting for 52.1% and 23.6% of all clones from the ground floor, 49.0% and 27.2% of all clones from the second floor, and 55.1% and 26.2% of all clones from the third floor, respectively. Cyanobacteria was found in all samples from all three floors and accounted for a small fraction of total strains (1.2% to 5.6%), while Acidobacteria was only detected on the ground floor (5.0%) and third floor (7.3%). Betaproteobacteria was also present in all samples from all three floors at a proportion of 1.6–6.1%, while Actinobacteria had a higher coverage of 3.2–6.2%. Flavobacteria was also detected on the ground floor (2.4%) and third floor (1.2%) but not the second floor. A small fraction of Gemmatimonadetes ranging from 0.2% to 0.4% was detected in all samples from the ground floor (2.9%) and second floor (1.8%), but Chloroflexi was only detected on the ground floor (0.5%) (Figure 4).

The fungal composition of the samples from different floors was less diverse than that of the bacterial communities, but greater variation was observed among the different floors. The three predominant fungal genera in the samples from the ground floor were Cladosporium, Alternaria and Leptosphaeria, which represented 90.0% of the fungal communities in these floor samples; an additional six genera contributed only 10.0%: Penicillium, Candida, Pezizomycotina sp., Westerdykella, Stachybotrys and Fusarium. The three predominant fungal genera in the samples from the second floor were Alternaria (62.27%), Westerdykella (16.1%) and Candida (15.0%), which represented 94.5% of the fungal population. An additional two genera, Cladosporium and Penicillium, accounted for 5.3% and 0.2%, respectively, of the population on the second floor. Mucor was the main fungal genus in the third-floor samples, accounting for 67.9%. Ten additional genera represented 32.1%: Aspergillus (7.3%), Cladosporium (6.3%), Alternaria (6.0%), Chaetomiaceae (4.6%), Penicillium (4.0%), Tricharina (2.0%), Pezizomycotina (0.7%), Candida (0.7%), Filobasidiales (0.3%) and Eurotium (0.3%) (Figure 4).

The caves sampled in the Mogao Grottoes were built during different time periods. The ten samples used in this study represented four time periods. Two samples were collected from caves built during the Northern Wei Dynasty (386-557 AD), three from the Western Wei Dynasty (535-556 AD), four from the Tang Dynasty (618-907 AD), and one from the Yuan Dynasty (1271-1368 AD) (Table 1).

Firmicutes and Proteobacteria were the dominant members in all samples from all four periods, with coverages of 61.2% and 19.5% in samples from the Northern Wei Dynasty, 49.0% and 30.0% in samples from the Western Wei Dynasty, 52.1% and 29.7% from the Tang Dynasty, and 36.6% and 51.2% from the Yuan Dynasty. The distribution of Firmicutes exhibited a decreasing trend from the earlier Northern Wei Dynasty to the later Yuan Dynasty, while Proteobacteria exhibited an increasing trend. Betaproteobacteria were detected in all samples from the four periods with the exception of the earliest, the Northern Wei Dynasty. Actinobacteria, including Blastococcus, Arthrobacter, Propionibacterium, and Kocuria, and Cyanobacteria, appeared in all samples from the four periods and contributed proportions of 3.2–8.0% and 1.2–5.6%, respectively. Flavobacteria were detected in samples from the Tang Dynasty (2.4%) and Yuan Dynasty (3.2%), while Acidobacteria were detected in all samples from the Northern Wei Dynasty (6.7%) and Tang Dynasty (7.3%). The diversity of the bacterial communities was higher in all samples from the Western Wei Dynasty than in those from the other three periods, with more unique groups, including Virgibacillus (9.5%), Desemzia (5.1%), Aerococcus (2.8%), Ochrobactrum (2.8%), Kocuria (1.8%), Renibacterium (1.5%), Streptomyces (1.3%), Carnobacterium (1.0%), Paracoccus (0.8%), Tumbacibacillus (0.5%), Oceanobacillus (0.5%), Variorovax (0.5%), Roseomomas (0.5%), Agrococcus (0.3%), Devosia (0.3%), Thermoactinomycetaceae (0.3%), Trabulsiella (0.3%), and Nocardiosis (0.3%) (Figure 4).

Fungal communities were extracted from the samples associated with the Western Wei Dynasty, Tang Dynasty and Yuan Dynasty but not the Northern Wei Dynasty. Only 5 fungal genera were detected in samples from the Western Wei Dynasty, while 9 and 11 genera were detected in those from the Tang Dynasty and Yuan Dynasty, respectively. The fungal communities in samples from the Western Wei Dynasty comprised Alternaria (63.3%), Westerdykella (16.1%), Candida (15.1%), Cladosporium (5.3%) and Penicillium (0.2%). Three main fungal genera contributed 90.0% of the sequences in the samples from the Tang Dynasty, including Cladosporium (44.0%), Alternaria (31.4%) and Leptosphaeria (14.5%), while the other six genera collectively contributed 10.0% of the sequences, including Penicillium (5.3%), Candida (2.9%), unidentified Pezizomycotina sp. (0.6%), Westerdykella (0.6%), Stachybotrys (0.4%), and Fusarium (0.2%). The most prevalent fungal genus in the Yuan Dynasty samples was Mucor (67.9%), Aspergillus (7.3%), Chaetomiaceae (4.6%), Tricharina (2.0%), Filobasidiales (0.3%), and Eurotium (0.3%) were also detected in these samples (Figure 4).
Influence of environment factors on the microbial community distribution. The microbial communities in the samples were assembled and assessed using statistical analysis methods; the results of principal component analysis (PCA) are shown in Figure 5. The structures of the ten bacterial communities were similar, with the exception of the control sample BNB, which was more diverse. However, five fungal communities differed distinctly from each other. There were greater differences between the control sample BNB and the other samples, primarily due to differences in the OTUs *Kocuria*, *Puenibacillus*, *Tumebacillus*, *Streptomyces*, and *Desemzia*. Although the distribution characteristics of the microbial communities differed among samples collected from different floors/levels and different time periods, no correlation between microbial community features and location could be identified. Only indistinct correlations were observed between fungal communities and floor location \(r = 0.869, p = 0.056\). The culturable bacterial communities were also subjected to PCA of the cultivation conditions (Figure 6). The structures of the bacterial communities were similar when cultured at different pH values but differed distinctly when cultured at 15°C and 37°C. The original community data and environmental characteristics were also subjected to correlation analysis (Table 2). There were three sets of community data, including the bacterial communities from the clone libraries, the bacterial communities from enrichment cultures, and the fungal communities from the clone libraries. Among the environmental characteristics of the caves investigated (e.g., temperature, relative humidity, floor location and building time), Pearson correlation analysis revealed significant correlations only between fungal communities and the time periods when the caves were built. The fungal diversity index decreased as the age of the cave paintings increased (Table 2).

Figure 4 | Distribution patterns of fungi and bacteria from caves built at different times and specific locations in the caves investigated. The cave positions increase in altitude from floor 1 on the Ground Level to floor 3 on the highest level. NW stands for Northern Wei Dynasty (386-557 AD), WW for Western Wei Dynasty (535-556 AD), T for Tang Dynasty (618-907 AD), and Y for Yuan Dynasty (1271-1368 AD).
Microorganisms play an important role in the biodeterioration of objects of cultural and historical significance, but their detailed biochemical and ecophysiological functions and roles remain unclear. Although many studies have reported that a high diversity of microorganisms participate in the biodeterioration process, no consistent conclusion has been achieved20,21. Bacteria, fungi and archaea have been mentioned in many reports, as have lichens and insects22–24. The characteristics of previously studied microbial communities were often related to the environmental conditions, with similar ecosystems (e.g., environmental parameters, geochemistry, and the availability and nature of organic matter) harbouring similar microbial compositions25. The results of these studies vary substantially depending on the methods employed; this variability makes the study of biodeterioration of cultural relics complex and challenging. Culture-independent methods are often considered more convenient.
ent and informative than cultivation-based methods, which only enable the detection of 1–5% of the total microbial community. However, increased attention has been devoted to cultivation analysis because the isolated strains can be used to further investigate the mechanisms and processes associated with specific microorganisms.

The clone library results in this study revealed a rich diversity of microbial communities on wall paintings. Some of the identified microorganisms have been reported previously at other sites. *Firmicutes* and *Proteobacteria* (particularly *Gamma-proteobacteria*) were the most predominant bacterial taxa found on the paintings. *Firmicutes* is often associated with earthy and drought environments, while *Proteobacteria* is frequently found in subterranean environments. The bacterial phyla *Actinobacteria*, *Acidobacteria*, *Cyanobacteria*, *Gemmata- monadetes*, *Bacteroidetes*, *Planctomycetes* and *Chloroflexi* are also frequently detected in caves and subterranean environments. Autotrophic microflora such as *Chloroflexi* enable the detection of 1–5% of the total microbial community. Culture-independent methods; no other genera were detected. Both the enriched cultures belonged to the genera *Aspergillus*, *Cladosporium*, *Alternaria*, *Cladosporium* and *Micrococcus* are major plant pathogens, and their spores are wind-dispersed and often extremely abundant in outdoor air. *Candida* is the most frequently found fungal genus in the order *Saccharomycetales*, while *Penicillium* and *Aspergillus* are often associated with aerobic micro-environments. Fungi can also seriously threaten the health of conservationists and visitors due to the potential for allergic reactions, mycotoxin production, and the risk of systemic infections in humans. *Aspergillus niger* and *Aspergillus flavus* have been proposed to be the causative agents of the ‘curse of the pharaoh’, a lung infection or systemic mycosis (Aspergillosis) that has been implicated in the deaths of several archaeologists. The predominant spore-forming bacteria detected in this study have frequently been detected on other historical objects, such as wall paintings, rock paintings, book papers, and oil paintings. *Penicillium* and *Aspergillus* bacteria such as *Aspergillus* and *Pseudomonas* in the air at heritage sites has been reported repeatedly. The present study also revealed that the microbial communities on the wall paintings did not differ from those in other caves in the Mogao Grottoes, and no unique genus with a vital contribution to the biodeterioration of wall paintings was identified.

The microbial community structures observed in this study varied depending on the detection method. The culture-dependent method enabled the detection of spore-forming bacteria, while the culture-independent method favoured the detection of the predominant groups/members of the microflora. *Bacillus* spp. accounted for 31.67% of all sequences but 51.60% of species detected using enrichment cultures. This discrepancy is likely attributed to the reduced susceptibility of spores to DNA extraction. In contrast to the results of Lopez-Miras et al., we observed that spore-forming bacteria on wall paintings in the Mogao Grottoes were partially active and may represent crucial members of the community. Two genera, *Deinococcus* and *Psychrobacter*, were only detected in enrichment cultures. Many of the isolates were resistant to low temperature, high salinity and high pH. These results may reflect the conditions on the wall paintings, which are characterised by low temperature, high salinity and dryness. Consistent with a previous study of oil paintings, the most predominant fungal members belonged to the phylum *Ascomycota*, as determined by both culture-dependent and culture-independent methods. These may due to the similar organic materials contained in both paintings. All fungal isolates in the enriched cultures belonged to the genera *Penicillium* and *Cladosporium*, which were also detected in the clone libraries using culture-independent methods; no other genera were detected. Both of these genera are known biodeteriogens responsible for the biodeterioration of complex polymeric materials. The enrichment cultivation results revealed that most strains belonged to *Penicillium*, whereas the molecular-based results revealed a dominance of *Alternaria*. This discrepancy is most likely due to low DNA extraction from *Penicillium* spores; fungal spores are likely dominant on the wall paintings. The enrichment conditions may also have contributed to this discrepancy by facilitating the rapid germination and enrichment of spores of *Cladosporium* and *Penicillium* over other fungi, resulting in the quick establishment of these two genera.

Some genera in this study have been reported previously on other heritage sites and paintings. For example, *Arthrobacter* and *Acinetobacter* have been shown to contribute to the biodeterioration of various art works. Other genera, including *Bacillus*, *Kocuria*, and *Penicillium*, have been identified in various environments, including soil, water, buildings and aerosols. These genera are known for their cosmopolitan and widespread distribution and are important components of the environment. Thus, the genera colonising wall paintings may have comprehensive origins, either as indigenous species in painting materials or foreign species transported by airflow. The biodeterioration of wall paintings suggests that small fractions of the detected microbial community may grow and cause damage. These microbes may have the ability to survive under harsh climate conditions using the extremely limited organic matter available or have special metabolic capabilities. The enrichment culture results in this study demonstrated that some strains had

Table 2	The α-diversity indices of different communities and environmental characteristics determined by Pearson correlation analysis			
α-Diversity Shannon_H Simpson_1-D	Temperature (°C)	RH (%)	Floor	Time
Clone-bacteria	0.082	0.265	0.237	−0.071
Clone-fungi	−0.058	0.126	0.210	−0.062
Culture-bacteria	−0.106	−0.470	−0.170	0.721*
	−0.108	0.513	−0.278	0.651*
	−0.606	−0.607	−0.321	0.426
	−0.833	−0.832	−0.838	−0.100

*Correlation is significant when p < 0.05 (two-tailed).
high levels of resistance to various stresses, including low temperature, high pH and high salinity. These strains may be able to grow on wall paintings and damage paintings due to their specialised biochemical functions and capabilities.

The microbial community structures differed among the samples, and the distribution patterns of the various microorganisms were temporally or spatially irregular among the investigated caves. The alpha-diversity of microbial communities in this study was estimated and characterised as a function of environmental parameters via correlation analysis. However, only the building time of the caves was positively correlated with the diversity index of the fungal community, and this correlation relationship did not exhibit a positive association with the temperature and relative humidity of the caves. Differences in building techniques and materials may affect the characteristics of wall paintings as substrates for microbial growth. In addition, the fungi were frequently present in the form of dormant spores, from which genomic DNA is more difficult to extract. The bacteria community from sample BNB exhibited higher diversity than all other communities, suggesting that diversity is lost as biodeterioration progresses and those specialised members of the community are responsible for the biodeterioration of wall paintings.

In summary, high microbial diversity was detected on the wall paintings of the Mogao Grottoes using both culture-dependent and culture-independent methods. The microbial distribution characteristics were assessed as a function of the temporal and spatial patterns of the caves. The distribution patterns were not dependent on environmental parameters (e.g., temperature and relative humidity). The enrichment culture results revealed that many of the strains were highly resistant to various stresses and may inflict damage on paintings. The microbial damage observed on the wall paintings of the Mogao Grottoes was serious but did not reflect the diversity of microbes detected in this study, which suggests that most of these microorganisms are dormant or metabolically slow. Such conditions are dangerous to wall paintings because appropriate environmental conditions, particularly increased moisture, can result in a microbial outbreak. These results highlight the difficulties in heritage conservation and risk monitoring works. More attention should be paid to the cautious management of microbial threat and heritage conservation.

DNA extraction and clone library construction. Whole genomic DNA was extracted using the Power Soil™DNA Isolation Kit (MO BIO Laboratories, Inc., CA, USA) according to the recommended procedure for all samples. The 16S rRNA genes were amplified using the primer set: 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-TACGGGCTACCTTGTTACGACTT-3’). Fungal ITS regions were amplified with the primers ITS1 and ITS4. The reaction mixture (25 μL) consisted of 1x PCR buffer, 2.5 mM MgCl₂, 0.2 μM each primer, and 2.5 μL (approximately 10 ng) of DNA template. The PCR amplification procedure for the 16S rRNA gene was as follows: initial denaturation at 94°C for 5 min; 30 cycles at 94°C for 40 s, annealing at 58°C for 40 s, and extension at 72°C for 40 s; and a final extension for 10 min at 72°C. The PCR amplification procedure for fungal ITS was as follows: initial denaturation at 94°C for 5 min; 30 cycles at 94°C for 40 s, annealing at 55°C for 40 s, and extension at 72°C for 40 s; and a final extension for 10 min at 72°C. PCR products were detected by electrophoresis in 1% agarose gels and purified using a Gel Extraction Kit (Tiangen Co., Beijing, China).

The purified PCR products were used for clone library construction. Cloning was performed with the pGEM-T Vector System (Tiangen Co., Beijing, China) following the manufacturer’s protocol. The ligation products were subsequently transferred into Escherichia coli DH5α cells for blue-white screening. Transformants were plated onto LB medium containing ampicillin (100 mg ml⁻¹), X-Gal (20 mg ml⁻¹) and IPTG (200 mg ml⁻¹). Positive clones were identified by PCR amplification with pGEM-T vector-specific primers (T7/Sp6) using the same amplification conditions used for bacterial and fungal amplification. The positive clones were first screened by double digestion (BsuRI and CviⅣ for bacteria, BsuRI and HinfⅠ for fungi; BGI, Fermentas), and the clones with different patterns were used for sequencing.

The sequences obtained were analysed using the National Center for Biotechnology Information (NCBI) Blast program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The most similar sequences were extracted from the GenBank database. A phylogenetic neighbour-joining tree, including the obtained sequences and their closest relatives, was constructed using MEGA software 4.0. The sequences retrieved from this study can be accessed under EMBL (European Nucleotide Archive) accession numbers HG917219-HG917279 for bacteria and HG917280-HG917306 for fungi.

Environmental data collection. Long-term meteorological data were provided by the Dunhuang Academy. A wireless monitoring system is installed in each sampled cave. Computerised hourly data are available for statistical analysis. Environmental parameters subjected to statistical analysis included temperature (T) and relative humidity (RH). We used the monthly average of the environmental parameter for each month.

Statistical analysis. All experimental data were analysed using IBM SPSS Version 19.0 (SPSS, Standard Version). PCA was conducted using PAlaeontologicalSTatisitcs (PAST) version 2.03 (http://folk.uio.no/ohammer/past/). The relationships between the diversity index of the microbial community and environmental parameters were tested using the Pearson correlation.

Methods

Sampling description. Ten samples were collected from five different caves of the Mogao Grottoes in which various degrees of damage to the wall paintings were apparent. All samples were collected as aseptically as possible. Approximately 50 mg of surface materials was collected into a sterile tube and stored at −20°C until further treatment or analysis. The sampling process was supervised by administrative staff of the Dunhuang Academy, and the sampling sites were restricted to the edges of damaged paintings. The collected samples consisted of fragments of painting layers and their substratum soil layers; these fragments could not be restored or reused. The detailed sampling sites and sample descriptions are shown in Table 1.

Enrichment cultivation. All sample materials were divided into two parts. The first part, approximately 10 mg, was inoculated into sterilised PYGV medium in a culture flask and incubated at 15°C for 15–20 days for microbial enrichment. The second part, approximately 20 mg, was used for genomic DNA extraction. The PYGV broth mimicked the nutritional conditions found in the wall paintings; the average temperature in the Mogao Grottoes is approximately 15°C. The enriched cultures were subsequently spread on LB agar plates for bacteria and PDA plates for fungi. The resulting colonies were isolated, purified and identified by PCR amplification and sequencing of the 16S or ITS gene. In general, all isolates were cultured in LB broth individually and then harvested for DNA extraction. The primers 27F/1492R for bacteria or ITS1/ITS4 for fungi was used to amplify the different isolates by PCR. The PCR products were sequenced and blasted against an online database. Each isolate was compared with known taxa.

Different culture conditions were designed to identify specific microbial isolates. The enriched cultures were inoculated on LB agar plates at different temperatures, 15°C or 37°C. LB agar plates with different pH gradients were prepared to examine microbial growth at pH 7, 8, 9, 10 and 11. The salt tolerance of the enriched cultures was investigated by culturing in media with salinities of 5%, 10% and 15%. For each culture condition, 3–20 parallel plates were prepared and repeated at least 3 times.

1. Pepe, O. et al. Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol. Res. 165, 21–32 (2010).
2. Cuezva, S. et al. The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol. 81, 281–290 (2012).
3. Lan, W., Li, H., Wang, W.-D., Katayama, Y. & Gu, J.-D. Microbial community analysis of wall paintings of the Mogao Grottoes in Dunhuang, China. Int. Biodeter. Biodegr. 83, 45–46 (2013).
4. Gu, J.-D. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community (Springer-Verlag, New York, 2013).
5. Gu, J.-D., Kigawa, R., Sato, Y. & Katayama, Y. Addressing the microbiological problems of cultural property and archive documents after earthquake and tsunami. Int. Biodeter. Biodegr. 83, 345–346 (2013).
6. Bastian, F. & Alabouvette, C. Lights and shadows on the conservation of a rock art cave: The case of Lascaux Cave. Int. J. Speleo. 38, 55–60 (2009).
7. Saiz-Jimenez, C., Miller, A. Z., Martin-Sanchez, P. M. & Hernandez-Marine, M. Uncovering the origin of the black stains in Lascaux Cave in France. Naturwissenschaften 96, 1027–1034 (2009).
8. Sáiz-Jiménez, M., Sáiz-Jiménez, C. & Gonzalez, J. M. Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave, Spain. Res. Microbiol. 160, 41–47 (2009).
9. Portón, E., Jurado, V., Zúñiga-Bertok, D., Sáiz-Jiménez, C. & Pasic, L. Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microbiol. Ecol. 81, 255–266 (2012).
10. Stone, R. Shielding a Buddhist Shrine From The Howling Desert Sands. Science 321, 1035–1038 (2008).
11. Li, Z. Conservation of the wall paintings and colored statues of the grottoes on the silk road (Science Press, Beijing, 2005).
12. Sáiz-Jiménez, C. et al. Paleolithic Art in Peril: Policy and Science Collide at Altamira Cave. Science 334, 42–43 (2011).
14. Feng, Q., Ma, X., Zhang, X., Li, Z. & Li, S. Study on microbial factor on color change of Dunhuang mural: I. Classification of microbes on color-changed mural and property of some typical species. Acta Microbiol. Sin. 38, 52–56 (1998).

15. Feng, Q., Zhang, X., Ma, Q. & Ma, X. Study on microbial factor in colour change of Maogao Grottoes’ mural II. Effect of microorganism on the pigment of imitative mural. Acta Microbiol. Sin. 38, 131–136 (1998).

16. Xiao, W. et al. Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeter. Biodegr. 64, 461–466 (2010).

17. Wang, W. et al. Seasonal variations of airborne bacteria in the Mogao Grottoes, Dunhuang, China. Int. Biodeter. Biodegr. 64, 309–315 (2010).

18. Wang, W. et al. Molecular characterization of airborne fungi in caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeter. Biodegr. 65, 726–731 (2011).

19. Wang, W. et al. Diversity and seasonal dynamics of airborne bacteria in the Mogao Grottoes, Dunhuang, China. Aerobiologia 28, 27–38 (2012).

20. Daik, T. C. & Arora, P. K. Evaluation of potential of molecular and physical techniques in studying biodeterioration. Rev. Environ. Sci. Biotechnol. 11, 71–104 (2012).

21. Krakova, L. et al. A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. Int. Biodeter. Biodegr. 70, 117–125 (2012).

22. Bastian, F., Jurado, V., Alabouvette, C. & Saiz-Jimenez, C. The microbiology of Lascaux Cave. Microbiology 156, 644–652 (2010).

23. Coutinho, M. L. et al. Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal). Int. Biodeter. Biodegr. 84, 322–332 (2013).

24. Zucconi, L. et al. Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int. Biodeter. Biodegr. 70, 40–46 (2012).

25. Lee, S. et al. Life at Extreme Environments, Organisms, and Strategies for Survival (CAB International, London, 2012).

26. De Leo, F., Iero, A., Zammit, G. & Urzi, C. E. Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int. J. Speleol. 41, 125–136 (2012).

27. Hsieh, P., Pedersen, J. Z. & Bruno, L. Photoinhibition of Cyanobacteria and its Application in Cultural Heritage Conservation. Photochem. Photobiol. 90, 533–543 (2014).

28. Ettenauer, J., Sterflinger, K. & Piñar, G. Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme environment presented by a salt-attacked monument. Int. J. Astrobiol. 9, 55–72 (2010).

29. Sterflinger, K. Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev. 24, 47–55 (2010).

30. Hu, H. et al. Occurrence of Aspergillus alhahabadi on sandstone at Bayon temple, Angkor Thom, Cambodia. Int. Biodeter. Biodegr. 76, 112–117 (2013).

31. Crook, B. & Burton, N. C. Indoor moulds, sick building syndrome and building related illness. Fungal Biol. Rev. 24, 106–113 (2010).

32. Sterflinger, K. & Pinzari, F. The revenge of time: fungal deterioration of cultural heritage structures. Int. Biodeter. Biodegr. 65, 644–652 (2010).

33. Michaelsen, A., Pinzari, G., Montanari, M. & Pinzari, F. Biodeterioration and conservation of antique paintings. Int. Biodeter. Biodegr. 65, 117–125 (2010).

34. Santos, A. et al. Application of molecular techniques to the elucidation of the microbial community structure of antique paintings. Microb. Ecol. 58, 692–702 (2009).

35. Niesler, A. et al. Microbial contamination of storerooms at the Auschwitz-Birkenau Museum. Aerobiologia 26, 125–133 (2010).

36. Asanhakumar, A., DeAraujo, A., Mazurek, J., Schilling, M. & Mitchell, R. Microbiological survey for analysis of the brown spots on the walls of the tomb of King Tutankhamun. Int. Biodeter. Biodegr. 79, 56–63 (2013).

37. Michaelsen, A., Pinzar, G. & Pinzari, F. Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the thirteenth century. Microb. Ecol. 60, 69–80 (2010).

38. Peleg, Y., Stiegitz, B. & Goldberg, I. Malic acid accumulation by Aspergillus flavus. Appl. Environ. Microb. 28, 69–75 (1988).

39. Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).

40. Pasquarella, C. et al. Proposal for an integrated approach to microbial environmental monitoring in cultural heritage: experience at the Correggio Grottoes. Int. Biodeter. Biodegr. 76, 65–72 (2010).

41. Lai, L., Piñar, G., Lubitz, W. & Saiz-Jimenez, C. Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ. Microbiol. 5, 72–74 (2003).

42. López-Miras, M. et al. Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29, 301–314 (2013).

43. Battista, J. R. Againstalloods: The Survival Strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51, 203–224 (1997).

44. del Mar López-Miras, M. et al. Contribution of the Microbial Communities Detected on an Oil Painting on Canvas to Its Biodeterioration. PloSone 8, e60198 (2013).

45. Gu, J.-D. Microbiological deterioration and degradation of synthetic polymer materials: recent research advances. Int. Biodeter. Biodegr. 52, 69–91 (2003).

46. Capodicasa, S., Fed, S., Porcelli, A. M. & Zannoni, D. The microbial community dwelling on a biodeteriorated 16th century painting. Int. Biodeter. Biodegr. 64, 727–733 (2010).

47. Jroundi, F., Fernández-Vivas, A., Rodriguez-Navarro, C., Bedmar, E. J. & Gonzalez-Munoz, M. T. Bioconservation of deteriorated monumental calcareous stoneworks and identification of bacteria with carboxigenic activity. Microb. Ecol. 60, 39–54 (2010).

48. Piñar, G. et al. Bacterial community dynamics during the application of a Myxococcus xanthus-inoculated culture medium used for consolidation of ornamental limestone. Microb. Ecol. 60, 15–28 (2010).

49. Ettenauer, J., Pinzar, G., Sterflinger, K., Gonzalez-Munoz, M. T. & Jroundi, F. Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bioconsolidation treatments. Sci. Total Environ. 409, 5337–5352 (2011).

50. Pangalo, D. et al. Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodiagnostic assays. World J. Microbiol. Biotechnol. 28, 2025–2027 (2012).

51. Proia, L., Cassíss, F., Pascoal, C., Tili, A. & Romani, A. M. Emerging and Priority Pollutants in Rivers (Springer, Berlin Heidelberg, 2012).

52. Kusumi, A. et al. Bacterial Communities in Pigmented Biofilms Formed on the Sandstone Bas-Relief Walls of the Bayon Temple, Angkor Thom, Cambodia. Microbes Environ. 28, 422–431 (2013).

53. Lee, C., Kim, Y., Nagayoshi, P. C., Thammalangsy, S. & Goung, S. J. Cultural heritage: a potential pollution source in museum. Environ. Sci. Pollut. Res. Int. 18, 743–755 (2011).

54. Abruci, C. et al. Isolation and identification of bacteria and fungi from cinematographic films. Int. Biodeter. Biodegr. 56, 58–68 (2005).

55. Viles, H. A. & Coulter, N. A. Global environmental change and the biology of cultural heritage structures. Int. Biodeter. Biodegr. 56, 58–68 (2005).

56. Amann, R. L., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

57. White, T. J., Bruns, T., Lee, S. & Taylor, J. [Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.] PCR protocols: a guide to methods and applications[Innis, M. A., Gelfland, D. H., Sninsky, J. J. & White, T. J. (eds)] [315–322] (Academic Press, San Diego, 1990).