Lower Bounds on Davenport-Schinzel Sequences via Rectangular Zarankiewicz Matrices

Julian Wellman* \hspace{1cm} Seth Pettie†
Greenhills School \hspace{1cm} University of Michigan
Ann Arbor, MI \hspace{1cm} Ann Arbor, MI

Abstract

An order-s Davenport-Schinzel sequence over an n-letter alphabet is one avoiding immediate repetitions and alternating subsequences with length $s + 2$. The main problem is to determine the maximum length of such a sequence, as a function of n and s. When s is fixed this problem has been settled (see Agarwal, Sharir, and Shor [1], Nivasch [12] and Pettie [15]) but when s is a function of n, very little is known about the extremal function $\lambda(s, n)$ of such sequences.

In this paper we give a new recursive construction of Davenport-Schinzel sequences that is based on dense 0-1 matrices avoiding large all-1 submatrices (aka Zarankiewicz’s Problem.) In particular, we give a simple construction of $n^{2/t} \times n$ matrices containing $n^{1+1/t}$ 1s that avoid $t \times 2$ all-1 submatrices.

Our lower bounds on $\lambda(s, n)$ exhibit three qualitatively different behaviors depending on the size of s relative to n. When $s \leq \log \log n$ we show that $\lambda(s, n)/n \geq 2^s$ grows exponentially with s. When $s = n^{o(1)}$ we show $\lambda(s, n)/n \geq \left(\frac{s}{2 \log \log n}\right)^{\log \log n}$ grows faster than any polynomial in s. Finally, when $s = \Omega(n^{1/t}(t-1)!)$, $\lambda(s, n) = \Omega(n^2s/(t-1)!)$ matches the trivial upper bound $O(n^2s)$ asymptotically, whenever t is constant.

1 Introduction

In 1965 Davenport and Schinzel [4] introduced the problem of bounding the maximum length of a sequence on an alphabet of n symbols that avoids any subsequence of the form $\ldots b \ldots a \ldots b \ldots$ of length $s + 2$. We call any sequence S which does not contain immediate repetitions and which does not contain an alternating subsequence of length $s + 2$ a Davenport-Schinzel (DS) sequence of order s. Let $|S|$ be the length of S, $\|S\|$ be the number of distinct symbols in S, and $DS(s, n)$ be the set of all Davenport-Schinzel sequences of order s on n symbols. We are interested in bounding the extremal function for DS sequences.

$$\lambda(s, n) = \max\{|S| : S \in DS(s, n)\}$$

The behavior of $\lambda(s, n)$ is well understood when s is fixed [7, 1, 12, 15], or when $s \geq n$ [17]. However, very little is known when s is a function of n and $1 \ll s \ll n$.

*Work done as part of the Advanced Research course at Greenhills School, taught by Julie Smith
†Supported by NSF grants CNS-1318294, CCF-1514383, and CCF-1637546.
1.1 Fixed-order Davenport-Schinzel Sequences

Most investigations of DS sequences has focused on the case of fixed \(s \). This is motivated by applications in computational geometry \[18, 19\], where DS sequences are used to bound the complexity of the lower envelope of \(n \) univariate functions, each pair of which cross at most \(s \) times, e.g., a set of \(n \) degree-\(s \) polynomials. The following theorem synthesizes results of Davenport and Schinzel \[4\] (\(s \in \{1, 2\} \)), Agarwal, Sharir, and Shor \[11\] (sharp bounds for \(s = 4 \), lower bounds for even \(s \geq 6 \)), Nivasch \[12\] (lower bounds for \(s = 3 \), upper bounds for even \(s \geq 6 \)), and Pettie \[15\] (upper bounds for all odd \(s \geq 3 \), lower bounds for \(s = 5 \)). Refer to Klazar \[9\] for a history of Davenport-Schinzel sequences from 1965–2002, and Pettie \[15, 14, 16\] for recent developments.

\[\text{Theorem 1.1. When } s \text{ is fixed, the asymptotic behavior of } \lambda(s, n), \text{ as a function of } n, \text{ is as follows.} \]

\[
\lambda(s, n) = \begin{cases}
 n & s = 1 \\
 2n - 1 & s = 2 \\
 2n\alpha(n) + O(n) & s = 3 \\
 \Theta(n2^{\alpha(n)}) & s = 4 \\
 \Theta(n\alpha(n)2^{\alpha(n)}) & s = 5 \\
 n \cdot 2^{(1+o(1))\alpha(n)/t!} & \text{for both even and odd } s \geq 6, \ t = \left\lfloor \frac{s-2}{2} \right\rfloor.
\end{cases}
\]

Here \(\alpha(n) \) is the slowly growing inverse-Ackermann function. Observe that if we regard \(\alpha(n) \) as a constant, the dependence of \(\lambda(s, n) \) on \(s \) is \textit{doubly exponential}. This doubly exponential growth can be extended to non-constant \(s \), but the constructions of \[11, 12, 15\] only work when \(s = O(\alpha(n)) \). When \(s = \Omega(\alpha(n)) \) the existing lower bounds break down, but the upper bounds of \[11, 12, 15\] continue to give non-trivial upper bounds for \(s = o(\log n) \). They imply, for example, that \(\lambda(s, n) = O(n(\log^{s-2}(n))) \), for any fixed number of stars.\(^1\)

1.2 Large-order Davenport-Schinzel Sequences

A straightforward pigeonhole argument (see \[9\] p. 3)) gives the following upper bound on \(\lambda(s, n) \).

\[
\lambda(s, n) \leq \left(\frac{n}{2} \right) s + 1 \tag{1}
\]

For fixed \(s \) this bound is off by nearly a factor \(n \), but for fixed \(n \) this bound is quite tight as a function of \(s \). In fact, Roselle and Stanton \[17\] showed that for \(s = \Omega(n) \), \(\lambda(s, n) = \Theta(n^2s) \), and that for fixed \(n \), \(\lim_{s \to \infty} \lambda(s, n)/s = \left(\frac{n}{2} \right) \), i.e., Eqn. (1) is sharp up to the leading constant \(\left(\frac{n}{2} \right) \). Let us give a brief description of Roselle and Stanton’s construction. The sequence \(RS(s, n)[a_1, a_2, \ldots, a_n] \) is a DS(\(s, n \)) sequence constructed from the alphabet \(\{a_1, \ldots, a_n\} \) in which the first occurrences of each symbol are in the order \(a_1a_2\cdots a_n \). If omitted, take the

\(^1\)This result is not stated explicitly in \[11, 12, 15\], but it is straightforward to cobble together, e.g., from Pettie \[15\] Lemma 3.1(2,4) and Recurrence 3.3]. The \(\ast \) operator is defined for any \(f \) that is strictly decreasing on \(\mathbb{N}\setminus\{0\} \). By definition \(f^\ast(n) = \min\{i \mid f^{(i)}(n) \leq 1\} \), where \(f^{(i)} \) is the \(i \)-fold iteration of \(f \).
alphabet to be $[1, 2, \ldots, n]$. The construction is recursive, and bottoms out in one of two base cases, depending on whether $s > n$ or $s \leq n$ initially.

$$RS(2, n) = 121314 \cdots 1(n - 1)1n1$$
$$RS(s, 2) = 1212 \cdots \text{(length } s + 1\text{)}$$

When $s, n > 2$ we construct $RS(s, n)$ inductively.

$$RS(s, n) = \text{Alt}(s, n) \cdot RS(s - 1, n - 1)[n, n - 1, \ldots, 2]$$

where $\text{Alt}(s, n) = 12121313141n1n1\cdots 1n1$

In other words, with $\text{Alt}(s, n)$ we introduce the maximum number of alternations between 1 and each $k \in \{2, \ldots, n\}$, then “retire” the symbol 1 and append a copy of $RS(s - 1, n - 1)$ on the alphabet $\{2, \ldots, n\}$. Observe that it is crucial that the remaining alphabet be ‘reversed’ in the recursive invocation of $RS(s - 1, n - 1)$. In $\text{Alt}(s, n)$ the symbols 2, 3, \ldots, n appeared in this order, so to minimize the number of alternations the symbols in $RS(s - 1, n - 1)$ should make their first appearances in the order $n, n - 1, \ldots, 2$. It is easily seen that $|\text{Alt}(s, n)| = \Theta(sn)$ and $|RS(s, n)| = \Theta(\min\{n^2s, ns^2\})$, depending on whether $s > n$ or $s \leq n$. See [17] for a careful analysis of the leading constant and lower order terms.

1.3 Summary and New Results

Suppose we fix n at some very large value and let s increase. Theorem 1.1 (and a close inspection of the constructions of [1, 12, 15]) shows that $\lambda(s, n)/n$ grows doubly exponentially with s, but only up to $s = O(\alpha(n))$. For somewhat larger s the best lower bounds on $\lambda(s, n)/n$ are quadratic ($\Omega(s^2)$) [11, 17] and best upper bounds exponential ($((\log^{s-2}(n))^{s-2})$).

Eventually $s \geq n$ and $\lambda(s, n)/s$ is known to be $\Theta(n^2)$, tending to $\binom{n}{2}$ in the limit [17]. Thus, when $1 \ll s \ll n$ we know very little about the true behavior of the extremal function $\lambda(s, n)$.

In this paper we present a new construction of Davenport-Schinzel sequences that bridges the gap between the small-order ($s = O(\alpha(n))$) and large-order ($s = \Omega(n)$) regimes. It exhibits three new qualitatively different lower bounds on $\lambda(s, n)/n$.

- When $s \leq \log \log n$, $\lambda(s, n)/n = \Omega(2^s)$ grows at least (singly) exponentially in s, which improves on [1, 12, 15] when $s \geq 2^{\Omega(\alpha(n))}$.

- When $s > \log \log n$ we have $\lambda(s, n)/n = \Omega((\frac{s}{2 \log \log n})^{\log \log n})$. For example, $\lambda(\log n, n)/n > 2^{\Omega((\log \log n)^2)}$ is quasi-polylogarithmic in n.

- Suppose that $s \geq n^{1/t}(t - 1)!$ for an integer t. In this case we obtain asymptotically sharp lower bounds on $\lambda(s, n) = \Omega(n^2s/(t - 1)!)$ whenever t is constant.
1.4 Overview of the Paper

In Section 2 we give a simple construction showing that \(\lambda(s, n)/n = \Omega(2^s) \), for \(s \) up to \(\log \log n \). In Section 3 we construct an \(n^{2/t} \times n \) Zarankiewicz matrix with \(n^{1+1/t} \) 1s which avoids \(t \times 2 \) all-1 submatrices. Zarankiewicz matrices are used in Section 4 to construct Davenport-Schinzel sequences of length \(\Omega(n^2 s/(t - 1)!) \) when \(s \geq n^{1/t}(t - 1)! \). The space where \(\log \log n \ll s \ll n^{o(1)} \) is addressed in Section 5. We conclude with some remarks and open problems in Section 6.

2 A Simple Construction for Small Orders

In this section we present a simple construction for the special case \(s = \log \log n + 2 \), which can easily be scaled down to the case when \(s \leq \log \log n + 1 \). The sequence \(S(k) \) is an order-\(s(k) \) DS sequence over an \(n(k) \)-letter alphabet in which each symbol occurs \(\mu(k) \) times. We will construct \(S(k + 1) \) inductively from \(S(k) \) and thereby obtain recursive definitions for \(n(k + 1), s(k + 1), \mu(k + 1) \). Let \(S(k)[a_1, \ldots, a_{\mu(k)}] \) denote a copy of \(S(k) \) in which the letters \(a_1, \ldots, a_{\mu(k)} \) make their first appearance in that order, and let \(S \) be the reversal of \(S \). If left unspecified, the alphabet is \([1, \ldots, n(k)]\).

In the base case \(k = 0 \) we let \(S(0) = 12 \). Thus,

\[
S(0) = 2, \quad \mu(0) = 1, \quad s(0) = 1.
\]

Now we construct \(S(k + 1) \) from \(S(k) \). Arrange \(n(k)^2 \) distinct symbols in an \(n(k) \times n(k) \) matrix. Let \(C_i \) (and \(R_i \)) be the sequences of symbols in column \(i \) (and row \(i \)), \(1 \leq i \leq n(k) \), listed in increasing order of row index (and column index). The sequence \(S(k + 1) \) is constructed as follows:

\[
S(k + 1) = \overline{S(k)[C_1]} \overline{S(k)[C_2]} \cdots \overline{S(k)[C_{\mu(k)}]} \overline{S(k)[R_1]} S(k)[R_2] \cdots S(k)[R_{\mu(k)}]
\]

It follows that \(S(k + 1) \) has the following parameters.

\[
n(k + 1) = n(k)^2, \quad \mu(k + 1) = 2\mu(k), \quad s(k + 1) = \max\{3, s(k + 1)\}
\]

The expression for \(n(k + 1) \) is by construction and the expression for \(\mu(k + 1) \) follows from the fact that each symbol appears in one row and one column. The claim that \(s(k + 1) = \max\{3, s(k + 1)\} \) requires a more careful argument. Consider two symbols \(a, b \) at positions \((i, j)\) and \((i', j')\) in the \(n(k) \times n(k) \) symbol matrix. If \(i \neq i' \) and \(j \neq j' \) then we may see the subsequence \(abab \) in \(S(k + 1) \), but never \(ababa \). Suppose that \(i = i' \) and \(j < j' \). In the first half of \(S(k + 1) \), all \(a \)s (in \(S(k)[C_j] \)) precede all \(b \)s (in \(S(k)[C_{j'}] \)) and in the second half of \(S(k + 1) \), all occurrences of \(a \) and \(b \) appear in \(S(k)[R_i] \). Moreover, because \(a \) precedes \(b \) in \(R_i \), the first occurrence of \(b \) precedes the first occurrence of \(a \) in \(S(k)[R_i] \). Symmetric observations hold when \(i < i' \) and \(j = j' \). Thus, for any two symbols \(a, b \), either \(ababa \) does not appear in \(S(k + 1) \) or \(S(k + 1) \) introduces one more alternation than \(S(k) \). We conclude that \(s(k + 1) = \max\{3, s(k + 1)\} \).
By induction on k, we have the following closed form bounds on the parameters of $S(k)$.

$$n(k) = 2^{2^k}$$
$$s(k) = k + 2$$
$$\mu(k) = 2^k$$

As constructed $S(k + 1)$ contains immediate repetitions: the last symbol of $S(k)[C_{n(k)}]$ is identical to the first symbol of $S(k)[R_1]$. In order to make $S(k + 1)$ a proper order-$s(k + 1)$ DS sequence we must remove one of these copies, and apply the procedure recursively to each copy of $S(k)$. The fraction of occurrences removed is slightly more than $\frac{1}{8}$.

Theorem 2.1. For any $s \leq \log \log n + 2$, $\lambda(s, n) = \Omega(n \cdot 2^s)$.

Proof. Partition the alphabet $[n]$ into subsets of size $n' = 2^{2^s - 2}$ and concatenate $\lfloor n/n' \rfloor$ copies of $S(s - 2)$, one on each part of the alphabet. Each part has length $\Omega(n'2^{s-2})$, so the whole sequence has length $\Omega(n 2^{s-2})$.

In the case of $s = \log \log n + 2$, we can get a sequence of length $\Omega(n \log n)$, which is not known from prior constructions. The longest sequences that can be generated using [12, 15, 16] have length $O(n2^{o(n)})$.

3 Rectangular Zarankiewicz Matrices

The construction of the previous section is limited by the fact that each letter of $S(k + 1)$ appears in only two copies of $S(k)$ (corresponding to the letter’s row and column). In order to bound $s(k + 1) \leq s(k) + 1$, it was crucial that each pair of symbols appeared in only one common copy of $S(k)$. In general, one could imagine generalized constructions of $S(k + 1)$ over an n-letter alphabet that are formed by concatenating m copies of $S(k)$, each over a subset of the alphabet, with the property that two symbols do not appear in too many common subsets. Designing such a system of subsets is an instance of Zarankiewicz’s problem.

Definition 3.1. (Zarankiewicz’s Problem) Define $z(m, n; s, t)$ to be the maximum number of 1s in an $m \times n$ 0-1 matrix that contains no all-1 $s \times t$ submatrix. Define $z(n, t)$ to be short for $z(n, n; t, t)$.

The Kővári, Sós, and Turán theorem [11], explicitly proven in [8], gives the following general upper bound on $z(m, n; s, t)$.

$$z(m, n; s, t) \leq (s - 1)^{1/t}(n - t + 1)m^{1 - 1/t} + (t - 1)m$$

It is generally believed that the Kővári-Sós-Turán upper bound on $z(n, t) = O(n^{2-1/t})$ is asymptotically sharp, but this has only been established for $t \in \{2, 3\}$ [3]. Kollár, Rónyai, and Szabó [10] gave sharp bounds on $z(n, n, t! + 1, t) = \Omega(n^{2-1/t})$, where the forbidden

2It is dominated by the occurrences removed in copies of $S(1)$, which has length 8 originally and length 7 afterward.
submatrix is highly skewed. In this paper we need bounds on Zarankiewicz’s problem in which both the \(m \times n \) matrix and forbidden pattern are rectangular. The following theorem may be folklore in some quarters; nonetheless, it is not mentioned in a recent survey [5]. The only existing construction avoiding \(t \times 2 \) all-1 submatrices is tailored to square matrices [5].

Theorem 3.1. For any fixed integer \(t \geq 2 \) and large enough \(n \),

\[
z(n^{2/t}, n, t, 2) = \Theta(n^{1+1/t}).
\]

Proof. Let \(q \) a prime power and \(\mathbb{F} \) be the Galois field of order \(q \). We will show that \(z(q^2, q^t, t, 2) \geq q^{t+1} \). By [11] this bound is asymptotically sharp. It is straightforward to extend this to any \(n \) (not of the form \(q^k \)) with a constant factor loss.

We will construct a matrix \(A \in \{0, 1\}^{q^2 \times q^t} \) as follows. The columns of \(A \) are indexed by all degree-(\(t-1 \)) polynomials over \(\mathbb{F} \). A polynomial \(f_c \) is identified with its coefficient vector \(c = (c_0, c_1, \ldots, c_{t-1}) \in \mathbb{F}^t \), where

\[
f_c(x) = \sum_{i=0}^{t-1} c_i x^i.
\]

The rows of \(A \) are indexed by *evaluations* \((x, v) \in \mathbb{F}^2 \). The matrix \(A \) is generated by putting a 1 wherever we see a correct evaluation:

\[
A((x, v), c) = \begin{cases}
1 & \text{if } f_c(x) = v \\
0 & \text{otherwise.}
\end{cases}
\]

Suppose \(A \) actually contains a \(t \times 2 \) all-1 submatrix defined by rows \(\{(x_i, v_i)\}_{i \in [0,t]} \) and columns \(c, c' \). Clearly \(x_0, x_1, \ldots, x_{t-1} \) are distinct field elements. It follows from the definition of \(A \) that \(f_c(x_i) - f_{c'}(x_i) = 0 \) for each \(i \in [0, t) \). However \((f_c - f_{c'})(x) = \sum_{i=0}^{t-1} (c_i - c'_i) x^i \) is a degree-(\(t-1 \)) polynomial over \(\mathbb{F} \) and therefore has at most \(t-1 \) roots. It is impossible for \(f_c - f_{c'} \) to have \(t \) distinct roots, namely \(x_0, \ldots, x_{t-1} \).

Each row \((x, v) \) of \(A \) has precisely \(q^{t-1} \) 1s, since for any partial coefficient vector \((c_1, \ldots, c_{t-1}) \), there is some \(c_0 \) for which \(f_{(c_0,\ldots,c_{t-1})}(x) = v \). Similarly, each column \(c \) of \(A \) has precisely \(q \) 1s since there is one value \(v \) for which \(f_c(x) = v \). Thus, \(A \) contains precisely \(q^{t+1} \) 1s. \qed

4 Polynomial Order Davenport-Schinzel Sequences

Let \(q \) be a prime power and \(\hat{s} \geq q \) be a parameter. For each integer \(t \geq 1 \) we will construct an order-\(O((\hat{s}t-1)!)/t! \) sequence \(S_t(\hat{s}, q) \) over an alphabet of size \(q^t \) with length \(\Omega(q^{2t}\hat{s}) \). Phrased in terms of \(n = q^t \) and \(s = O((\hat{s}t-1)!)/t! \), this shows that \(\lambda(s, n) = \Omega(n^2 s/(t-1)! \). The construction is inductive. In the base case \(t = 1 \) we revert to Roselle and Stanton’s construction. (See Section 1.2)

\[
S_1(\hat{s}, q) = RS(\hat{s}, q^t).
\]

Now suppose that \(t \geq 2 \). Let \(A \) be the \(q^t \times q^t \) 0–1 matrix from Theorem 3.1. Each column of \(A \) is identified with a symbol in the alphabet of \(S_t(\hat{s}, q) \) and each row is identified with a
subset of its alphabet. In particular, let \(C_i, i \in [1, q^2] \), be the list of columns (symbols) in which \(A(i, *) = 1 \). We form \(S_t(\hat{s}, q) \) as follows:

\[
S_t(\hat{s}, q) = S_{t-1}(\hat{s}, q)[C_1] \cdot S_{t-1}(\hat{s}, q)[C_2] \cdots S_{t-1}(\hat{s}, q)[C_{q^2}],
\]

where \(S_{t-1}(\hat{s}, q)[X] \) is a copy of \(S_{t-1}(\hat{s}, q) \) over the alphabet \(X \). According to the proof of Theorem 3.1, \(|C_i| = q^{t-1} \), so the alphabets have the requisite cardinality. By construction we have

\[
|S_t(\hat{s}, q)| = q^2 \cdot |S_{t-1}(\hat{s}, q)|
\]

inductive hypothesis

\[
= q^2 \cdot \Omega(q^{2(t-1)}\hat{s})
\]

\[
= \Omega(q^{2t}\hat{s}).
\]

Let \(s_t = s(t, \hat{s}, q) \) be the length of the longest alternating subsequence in \(S_t(\hat{s}, q) \), which would make it an order-\((s_t - 1)\) DS sequence. We want to bound \(s_t \) in terms of \(s_{t-1} \). Pick two arbitrary symbols \(a, b \). Because \(A \) avoids all-1 \(t \times 2 \) submatrices, \(a \) and \(b \) appear in up to \(t - 1 \) common subsets among \(\{C_i\} \) and therefore at least \(q - (t - 1) \) subsets in which the other does not appear. Each subset of the first type contributes \(s_{t-1} \) alternations between \(a \) and \(b \) and each subset of the second type contributes 1, in the worst case where they happen to be interleaved. Thus, we have the following recursive expression for \(s_t \).

\[
s_1 = \hat{s} + 1
\]

\[
s_t \leq (t - 1)s_{t-1} + 2(q - t + 1)
\]

Since \(\hat{s} \geq q \), \(s_t = O((t-1)!\hat{s}) \).

Theorem 4.1. When \(s = \Omega(n^{1/t}(t-1)!), \lambda(s, n) \) is \(\Omega(n^2s/(t-1)!) \) and \(O(n^2s) \).

5 Medium Order Davenport-Schinzel Sequences

The construction of Theorem 4.1 is asymptotically sharp when \(t \) is constant (and \(s \) polynomial in \(n \)), but becomes trivial when \(t = \omega(\log n / \log \log n) \). In this section we design a simpler construction that works well when \(\log \log n < s = n^{o(1)} \).

The construction is parameterized by a prime power \(q \) and parameter \(\hat{s} \leq q \). The sequence \(S_t(\hat{s}, q) \) will be a sequence over an alphabet of size \(q^{2t} \). In the base case \(t = 0 \) we have

\[
S_0(\hat{s}, q) = RS(\hat{s}, q)
\]

so \(|S_0(\hat{s}, q)| = \Theta(q\hat{s}^2) \). When \(t \geq 1 \) we build \(S_t(\hat{s}, q) \) using a truncated version of the Zarankiewicz matrix from Theorem 3.1. Let \(\hat{q} = q^{2t-1} \) and \(A \) be the \(\hat{q}^2 \times q^2 \) 0-1 matrix avoiding \(2 \times 2 \) all-1 submatrices. Let \(A' \) consist of the first \(\hat{q}\hat{s} \) rows of \(A \); i.e., each row of \(A' \) has \(\hat{q} \) 1s and each column of \(A' \) has \(\hat{s} \) 1s. This particular matrix could have been constructed using mutually orthogonal Latin squares, still generated based on finite fields as in [5] or [2]. As in Section 4 we identify the columns with symbols and the rows with sequences of symbols \(C_1, \ldots, C_{\hat{q}\hat{s}} \). The sequence \(S_t(\hat{s}, q) \) is formed as follows:

\[
S_t(\hat{s}, q) = S_{t-1}(\hat{s}, q)[C_1] \cdot S_{t-1}(\hat{s}, q)[C_2] \cdots S_{t-1}(\hat{s}, q)[C_{\hat{q}\hat{s}}]
\]
Assuming inductively that $|S_{t-1}(\hat{s}, q)| = \Omega(q^{2^{t-1}\hat{s}t+1})$, we have

$$|S_t(\hat{s}, q)| = q^{2^{t-1}\hat{s}}|S_{t-1}(\hat{s}, q)|$$
$$= q^{2^{t-1}\hat{s}} \cdot \Theta(q^{2^{t-1}\hat{s}t+1})$$
$$= \Theta(q^{2^t\hat{s}t+2})$$

Each symbol appears in exactly \hat{s} distinct sequences among $\{C_i\}$ and any two symbols appear in at most one common sequence among $\{C_i\}$. Thus, if s_t is the length of the longest alternating sequence in $S_t(\hat{s}, q)$, we have

$$s_0 = \hat{s} + 1$$
$$s_t = s_{t-1} + 2(\hat{s} - 1)$$

Clearly $s_t = (2t+1)(\hat{s} - 1) + 2$. In terms of the alphabet size $n = q^t$, $t = \log \log_q n$. In terms of $s = s_t$ and n, the length of $S_t(\hat{s}, q)$ is

$$\Theta(ns^{t+2}) = \Omega\left(n \left(\frac{s}{2 \log \log_q n + 1}\right)^{\log \log_q n + 2}\right) = \Omega\left(n \left(\frac{s}{2 \log \log_q n}\right)^{\log \log_q n}\right).$$

Theorem 5.1. For any $s = \Omega(\log \log n)$, $\lambda(s, n) = \Omega(n(\frac{s}{2 \log \log_q n + 1})^{\log \log_q n+1})$. For example, $\lambda(\log n, n)/n = 2^{\Omega((\log \log n)^2)}$ is quasi-polylogarithmic in n.

6 Conclusion and Open Problems

We have attained asymptotically tight bounds on $\lambda(s, n)$ when $s = n^\epsilon$. Specifically, the trivial upper bound $\lambda(s, n) = O(n^2 \cdot s)$ can be achieved asymptotically, with the leading constant depending on ϵ. Even when $s = n$ the true leading constant of $\lambda(n, n)$ is only known approximately; it is in the interval $[1/3, 1/2]$ [17, 9]. Several interesting open problems remain, among them:

- Our lower bounds on $\lambda(s, n)$ when $1 \ll s \ll n^{o(1)}$ are quite far from the best upper bounds in this range [12, 15]. It is still consistent with all published results that $\lambda(s, n)/n$ grows (at least) exponentially in s for all $s \leq \log n$, and that $\lambda(s, n) = \Theta(n^2s)$ for $s \geq \log n$.

- Our constructions are not very robust to slight variants in the definition of the extremal function $\lambda(s, n)$. For example, if we insist that the sequence be 3-sparse (every three consecutive symbols must be distinct) rather than 2-sparse (merely avoiding immediate repetitions), the Roselle-Stanton construction no longer works and we cannot claim that when $s > n^\epsilon$, $\lambda(s, n) = \Omega(n^2s)$ is witnessed by some 3-sparse sequence. This is in sharp contrast to the fixed-s world [12, 15], which are highly robust to different notions of sparseness.
• A popular way to constrain DS sequences is to specify the number blocks \([12, 15]\). A block is a sequence of distinct symbols. Let \(\lambda(s, n, m)\) be the length of an order-\(s\) DS sequence over an \(n\)-letter alphabet that is partitioned into \(m\) blocks. In the fixed-\(s\) world \([12, 15]\), \(\lambda(s, n)\) is roughly \(\lambda(s, n, n)\); see, e.g., [15, Lemma 3.1]. Our constructions for \(s\) in the “small” and “medium” range do give non-trivial bounds on \(\lambda(s, n, n)\), but say nothing interesting when \(s = n^\epsilon\). Bounding \(\lambda(s, n, n)\) is essentially identical [13] to bounding the number of 1s in an \(n \times n\) 0-1 matrix avoiding \(2 \times (s + 1)\) alternating submatrices of the following form.

\[
\begin{pmatrix}
1 & \cdots & 1 \\
1 & \cdots & 1 \\
\end{pmatrix}
\]

Clearly the extremal function \(\lambda(s, n, n)\) tends to \(n^2\) as \(s \to n\), but we know very little about the rate of convergence. For example, how large must \(s\) be in order for \(\lambda(s, n, n) = \Omega(n^{2-o(1)})\)?

References

[1] P. Agarwal, M. Sharir, and P. Shor. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences. *J. Combin. Theory Ser. A*, 52:228–274, 1989.

[2] R.C. Bose. On the application of the properties of galois fields to the problem of construction of hyper-græco-latin squares. *Sankhyā: The Indian Journal of Statistics (1933-1960)*, 3(4):323–338, 1938.

[3] W. G. Brown. On graphs that do not contain a Thomsen graph. *Canad. Math. Bull.*, 9:281–285, 1966.

[4] H. Davenport and A. Schinzel. A combinatorial problem connected with differential equations. *American J. Mathematics*, 87:684–694, 1965.

[5] Z. Füredi. New asymptotics for bipartite Turán numbers. *J. Combin. Theory Ser. A*, 75(1):141–144, 1996.

[6] Z. Füredi and M. Simonovits. The history of degenerate (bipartite) extremal graph problems. In *Erdős Centennial*, pages 169–264. 2015.

[7] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes. *Combinatorica*, 6(2):151–177, 1986.

[8] C. Hyltén-Cavallius. On a combinatorial problem. *Colloq. Math. 6*, pages 59–65, 1958.

[9] M. Klazar. Generalized Davenport-Schinzel sequences: results, problems, and applications. *Integers*, 2:A11, 2002.

[10] J. Kollár, L. Rónyai, and T. Szabó. Norm-graphs and bipartite Turán numbers. *Combinatorica*, 16(3):399–406, 1996.
[11] T. Kövari, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. *Colloquium Math.*, 3:50–57, 1954.

[12] G. Nivasch. Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations. *J. ACM*, 57(3), 2010.

[13] S. Pettie. Degrees of nonlinearity in forbidden 0-1 matrix problems. *Discrete Mathematics*, 311:2396–2410, 2011.

[14] S. Pettie. Generalized Davenport-Schinzel sequences and their 0-1 matrix counterparts. *J. Comb. Theory Ser. A*, 118(6):1863–1895, 2011.

[15] S. Pettie. Sharp bounds on Davenport-Schinzel sequences of every order. *J. ACM*, 62(5):36, 2015.

[16] S. Pettie. Three generalizations of Davenport-Schinzel sequences. *SIAM J. Discrete Mathematics*, 29(4):2189–2238, 2015.

[17] D. P. Roselle and R. G. Stanton. Some properties of Davenport-Schinzel sequences. *Acta Arithmetica*, XVII:355–362, 1971.

[18] M. Sharir and P. Agarwal. *Davenport-Schinzel Sequences and their Geometric Applications*. Cambridge University Press, 1995.

[19] M. Sharir, R. Cole, K. Kedem, D. Leven, R. Pollack, and S. Sifrony. Geometric applications of Davenport-Schinzel sequences. In *Proceedings 27th IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 77–86, 1986.