The effect of medium supplementation and serial passaging on the transcriptome of human adipose-derived stromal cells expanded in vitro

Carla Dessels¹, Melvin A. Ambele¹,² and Michael S. Pepper¹*

Abstract

Background: For adipose-derived stromal cells (ASCs) to be safe for use in the clinical setting, they need to be prepared using good manufacturing practices (GMPs). Fetal bovine serum (FBS), used to expand ASCs in vitro in some human clinical trials, runs the risk of xenoinmunization and zoonotic disease transmission. To ensure that GMP standards are maintained, pooled human platelet lysate (pHPL) has been used as an alternative to FBS. ASCs proliferate more rapidly in pHPL than in FBS, with no significant change in immunophenotype and differentiation capacity. However, not much is known about how pHPL affects the transcriptome of these cells.

Methods: This study investigated the effect of pHPL and FBS on the ASC transcriptome during in vitro serial expansion from passage 0 to passage 5 (P0 to P5). RNA was isolated from ASCs at each passage and hybridized to Affymetrix HuGene 2.0 ST arrays for gene expression analysis.

Results: We observed that the transcriptome of ASCs expanded in pHPL (pHPL-ASCs) and FBS (FBS-ASCs) had the greatest change in gene expression at P2. Gene ontology revealed that genes upregulated in pHPL-ASCs were enriched for cell cycle, migration, motility, and cell-cell interaction processes, while those in FBS-ASCs were enriched for immune response processes. ASC transcriptomes were most homogenous from P2 to P5 in FBS and from P3 to P5 in pHPL. FBS- and pHPL-gene-specific signatures were observed, which could be used as markers to identify cells previously grown in either FBS or pHPL for downstream clinical/research applications. The number of genes constituting the FBS-specific effect was 3 times greater than for pHPL, suggesting that pHPL may be a milder supplement for cell expansion. A set of genes were expressed in ASCs at all passages and in both media. This suggests that a unique ASC in vitro transcriptomic profile exists that is independent of the passage number or medium used.

Conclusions: GO classification revealed that pHPL-ASCs are more involved in cell cycle processes and cellular proliferation when compared to FBS-ASCs, which are involved in more specialized or differentiation processes like cardiovascular and vascular development. This makes pHPL a potential superior supplement for expanding ASCs as they retain their proliferative capacity, remain untransformed and pHPL does not affect the genes involved in differentiation in specific developmental processes.

Keywords: Adipose-derived stromal cells, Pooled human platelet lysate, Fetal bovine serum, Transcriptome
Background

Adipose-derived stromal cells (ASCs) could constitute a novel therapeutic option for the treatment of several diseases and are increasingly being assessed in clinical trials for this purpose [1–3]. Most clinical trials make use of ASCs that have been expanded ex vivo via several rounds of passaging in order to obtain adequate cell numbers [4, 5]. In the laboratory, ASCs are traditionally expanded in medium supplemented with fetal bovine serum (FBS); however, it has been reported that ASCs expanded in FBS cause immune reactions when given to human patients [2, 6–8]. However, for these cells to be considered safe for patient use, they need to adhere to good manufacturing processes (GMPs), in which non-defined and animal-related products are eliminated [2, 9]. As a result, several investigators have moved away from using FBS and have instead investigated the use of human alternatives such as pooled human platelet lysate (pHPL) [10–12]. Most studies compare the criteria as set out by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) and International Federation of Adipose Therapeutics and Sciences (IFATS) when comparing FBS to pHPL [6, 10, 13–15]. These criteria include ASC adherence to plastic, immunophenotypic surface marker expression and the ability to differentiate into bone, fat, and cartilage [5, 13]. The use of pHPL as a medium supplement has advantages over FBS. It has thus been reported that when the cells are expanded in pHPL, their innate characteristics are unaltered and proliferation is increased during expansion [10, 12, 16]. However, it is well known that experimental conditions, such as medium supplementation, can have an effect on gene expression [15, 17–19]. It is therefore important to demonstrate that the cells are safe for use in patients by measuring the effect of the medium supplementation at the level of gene expression. In this study, we assessed the changes in ASC gene expression that occur during serial passaging by comparing cells expanded in FBS versus pHPL.

Material and methods

ASC isolation and expansion

Lipoaspirate samples were collected from five individual patients undergoing elective liposuction. Stromal vascular fraction (SVF) was isolated from lipoaspirates using previously established protocols [5, 20]. SVF containing ASCs was seeded at a density of 5 × 10^5 cells/cm^2 in T80 flasks (80 cm^2; NUNC™, Roskilde Site, Kamstrupvej, Denmark) and maintained in α-MEM containing 2% (v/v) penicillin [10,000 U/mL]-streptomycin [10,000 μg/mL] (p/s; GIBCO, Life Technologies™, New York, USA) and either 10% (v/v) fetal bovine serum (FBS; GIBCO, Life Technologies™, New York, USA) or 10% pooled human platelet lysate (pHPL) supplemented with preservative-free heparin ((2 U/mL); Biochrom, Merck Millipore, Berlin, Germany). pHPL was manufactured as previously described in our laboratory and subjected to quality control checks [21, 22]. At 80 to 90% confluence, ASCs were dissociated using trypLE (Life Technologies™, New York, USA) and counted. ASCs at passage zero (P0) were expanded by plating 5 × 10^3 cells/cm^2 into T80 flasks and were maintained in α-MEM containing 2% (v/v) p/s and either 10% (v/v) pHPL or 10% (v/v) FBS at 37°C in 5% CO₂. The passaging process was repeated from P0 to P5 for ASCs expanded in FBS and pHPL. ASCs were analyzed at every passage as shown on the schematic experimental design (Additional file 1: Figure S1).

ASC characterization

ASCs were characterized by surface marker expression (immunophenotype) and the ability to differentiate into adipocytes. Immunophenotype was assessed on SVF and at each passage (P0 to P5) using methods previously described [22]. ASCs were induced to differentiate into adipocytes at P5, and adipogenesis was measured using methods previously described [17, 22]. Data and experimental design (Additional file 1: Figure S1) can be found in Additional file 1.

RNA isolation and quality

ASCs were expanded in FBS or pHPL and RNA was isolated at each passage. At confluence, the cells were dissociated using trypLE and counted. Thereafter, 1 × 10^6 cells were centrifuged (300 g) and the resultant pellet was washed using phosphate buffered saline (PBS). RNA was isolated using the RNeasy Minikit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions, and quantified on a NanoDrop® ND 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). RNA purity was assessed at an absorbance optical density (OD) ratio of 260/280 and 260/230. RNA integrity and quality were assessed using a TapeStation® 2200 (Agilent Technologies; Santa Clara, CA, USA) together with RNA ScreenTape® and Sample Buffer kit (Agilent Technologies, Santa Clara, CA, USA) according to the manufacturer’s instructions. Sample read-out was compared to a TapeStation® RNA ladder. RNA that had absorbance OD ratios greater than 2 and RIN values greater than 8 was used for downstream applications.

Microarray gene expression analysis

Total RNA (100 ng) isolated from ASCs expanded in FBS or pHPL from P0 to P5 was used for first- and second-strand cDNA syntheses, followed by the synthesis and amplification of complementary RNA (cRNA) by in vitro transcription using an Affymetrix GeneChip® WT PLUS Reagent Kit according to the manufacturer’s protocol. Amplified cRNA was purified using magnetic purification beads. Thereafter, 15 μg of purified cRNA...
was used to synthesize second cycle single-stranded cDNA (ss-cDNA) and subsequently followed by another purification step. Purified ss-cDNA (5.5 μg) was fragmented, labeled, and used to prepare a hybridization cocktail. Hybridization was performed using the Affymetrix GeneChip® Hybridization Wash and Stain Kit according to the manufacturer's protocol. The hybridization cocktail was hybridized to Affymetrix GeneChip® Human Gene 2.0 ST arrays. Arrays were placed in an Affymetrix GeneChip® Hybridization Oven-645 rotating at 60 rpm at 45 °C for 17 h, after which they were washed and stained in an Affymetrix GeneChip® Fluidics Station-450Dx before being scanned in an Affymetrix GeneChip® Scanner-7G. The output Affymetrix CEL files, which have intensity values for all probes present on the scanned arrays, were used for further analysis. The Robust Multiarray Analysis algorithm [23] was used to perform background correction, summarization, normalization, and the calculation of probe set expression values. Finally, the Affymetrix Transcription Analysis Console™ was used to calculate the fold change of each probe set or transcript cluster identifier number and mapped to the corresponding gene. Only differentially expressed genes (DEGs) that had a fold-change ≥ 2 or ≤ -2, a p value > 0.05, and an FDR > 0.5 were used for downstream analysis. The fold-change of each gene represents the change in gene expression seen between two samples or conditions being compared and is based on the signal measured.

Functional analysis

The DEGs for the different samples were used for functional analysis to determine significantly enriched pathways and processes using the g:GOSt functional enrichment analysis tool on the g:Profiler web server [24].

Results

ASC characterization

pHPL-ASCs had a tighter, smaller elongated shape when compared to FBS-ASCs (Additional file 1: Figure S2). The immunophenotype of FBS-ASCs and pHPL-ASCs was determined at each passage. More than 90% had the expression profile CD44+CD45−CD73+CD90+CD105+, while fewer than 2% were CD31+CD73−CD105−, and this was maintained up to P5 (Additional file 1: Figure S3). FBS-ASCs and pHPL-ASCs both underwent adipogenesis as evidenced by the accumulation of lipid droplets (Additional file 1: Figure S4).

Gene expression analysis of ASCs expanded in pHPL and FBS

To compare at the effect of pHPL versus FBS on the transcriptome, we performed a microarray analysis of gene expression on ASCs serially expanded in pHPL or FBS from P0 to P5. We found that 185, 256, 811, 171, 319, and 349 genes were significantly upregulated while 127, 457, 707, 457, 575, and 567 genes were significantly downregulated in ASCs expanded in pHPL (pHPL-ASCs) compared to FBS (FBS-ASCs) at P0, P1, P2, P3, P4, and P5 respectively (Fig. 1; Additional file 1: Figure S5 and Additional file 2).

Functional analysis of the DEGs by gene ontology (GO) classification revealed that genes that were significantly upregulated at the different passages were enriched for certain biological processes (BP), cellular components (CC) and molecular functions (MF). Only the top 5 significant GO terms will be discussed here. From P0 to P5, pHPL-ASCs were enriched for GO terms such as developmental processes, cell cycle processes, cellular proliferation, and extracellular matrix and structure organization. FBS-ASCs were enriched for GO terms such as cell proliferation, adhesion, extracellular matrix and structure organization, cardiovascular and vascular development, structure morphogenesis, and other developmental processes (Table 1; Additional file 3).

We next investigated the effect of serial passaging on gene expression in pHPL-ASCs and FBS-ASCs by comparing gene expression at each passage to that of the previous passage (P1 vs P0, P2 vs P1, P3 vs P2, P4 vs P3, and P5 vs P4). For FBS-ASCs, 292, 20, 44, 2, and 9 genes were significantly upregulated while 273, 3, 56, 4, and 3 genes were significantly downregulated from P0 to P5, respectively (Fig. 2a and Additional file 4). For pHPL-ASCs, 297, 182, 22, 3, and 4 genes were significantly upregulated while 46, 360, 27, 3, and 4 genes were significantly downregulated from passages P0 to P5, respectively (Fig. 2b and Additional file 5).

GO classification of upregulated genes in FBS-ASCs revealed they were significantly enriched for cell migration and motility from P0 to P1, while those for P1 to P2 and P2 to P3 were mostly enriched for immunological responses and processes. Genes that were upregulated from P3 to P4 and P4 to P5 were not enriched for any GO terms (Table 2; Additional file 6). Genes that were downregulated from P0 to P1 and P1 to P2 were enriched for system and developmental processes, while those from P2 to P3 were enriched for immune subunit and protein assembly. In contrast, downregulated genes from P3 to P4 and P4 to P5 were not enriched for any GO terms.

For pHPL-ASCs, GO terms significantly enriched for in upregulated genes were immune responses from P0 to P1, regulation of developmental processes and stimulus responses from P1 to P2, RNA binding regulation and transcription factor activity from P2 to P3 and regulation of cardiovascular processes from P3 and P4. Genes that were upregulated from P4 to P5 were not enriched for any GO term (Table 3; Additional file 7). Genes that were downregulated from P1 to P2 were
significantly enriched for cell cycle processes, from P2 to P3 for cardiovascular processes, while downregulated genes from P0 to P1, P3 to P4, and P4 to P5 were not enriched for any GO term.

We next undertook to evaluate the extent to which the ASC transcriptome at each passage (P1 through to P5) differs from its original state (SVF) at P0 when expanded in either FBS or pHPL, and to functionally characterize such changes using GO classification. This was done by comparing gene expression at each passage (P1 to P5) to that of the “original” seeded ASCs (SVF) at P0. For FBS-ASCs, 292, 514, 591, 685, and 737 genes were significantly upregulated while 273, 288, 350, 427, and 426 genes were significantly downregulated from P1 to P5 (Fig. 3a and Additional file 8). For pHPL-ASCs, 297, 861, 848, 891, and 863 genes were significantly upregulated while 46, 700, 262, 427, and 523 genes were significantly downregulated from passage P1 to P5 (Fig. 3b and Additional file 9).

GO terms significantly enriched for in upregulated genes at each passage (P1 to P5) when compared to P0 in FBS-ASCs (Table 4; Additional file 10) or pHPL-ASCs (Table 5; Additional file 11) were specific to immune responses and processes. GO terms specific to developmental processes were enriched for in the downregulated genes in FBS-ASCs at each passage (P1 to P5) when compared to P0 (Table 4; Additional file 10). For pHPL-ASCs, downregulated genes at P1 were not enriched for any GO term, while those of all the subsequent passages (P2 to P5) were enriched for cell cycle processes and developmental processes.

We observed during serial passaging that the ASC transcriptomic profile stabilizes (minimal change in DEGs between adjacent passage numbers) from P2 for FBS (Fig. 2a) and P3 for pHPL (Fig. 2b). This could mean that ASC cultures are more homogenous from P2 to P5 and from P3 to P5 when expanded in FBS and pHPL respectively.

From the list of DEGs obtained at each passage (P1 to P5) when compared to P0 for both the FBS- and pHPL-ASCs (Additional files 8 and 9), we observed that ASCs showed gene expression signatures that were unique at each passage (P1 to P5) which was independent of the medium supplementation (FBS or pHPL) used during in vitro expansion (Additional file 12). This unique passage-specific gene expression profile constitutes the DEGs that were common to both pHPL and FBS at each passage number. Equally, if the passage-specific gene expression profile (DEGs common to both FBS- and pHPL-ASCs at each passage) is excluded at each passage number, the remaining DEGs represent unique FBS-ASC and pHPL-ASC passage-specific gene expression profiles (Additional file 12).

Furthermore, by considering the unique FBS-ASC passage-specific gene expression profile at all passages (P1 to P5), there were 37 (AC007879.7, ADAMTS4, ADAMTS9, ALOX5, CCL11, CCL4, CHST1, CLEC5A, COL6A3, CRISPLD2, CTHRC1, DCHS1, DOCK4, FIBIN, GALNT15, HEPH, HEY2, IL3RA, MCTP1, MMP1, NPAS2, PALMD, PIM1, PLAUR, PREX1, RGS1, SNAI1, SRPX2, SYTL2, TDO2, TEAD2, THEMIS2, TNC, TNFAIP8L1, WAS, and WSB1) and 81 (ADAMTS1, AHNAK2, ALDH7A1, ANKRKD1, ANKRKD7, ARHGAP29, ARSK, ASAP2, ATP10D, ATP8B1, BAMBI, BCHE, BMP4, BST1, C11orf87, CCND1, CDH6, COMP, COX7A1, DEPTOR, FAM155A, FAM180A, FAM65B, FGF9, GLRX, GPR133, GPRC5A, GREM1, GREM2, HAPLN1, HSPB6, IGFBP5, IGFBP6, IL1RAPL2, KCTD16, KRT14, LIMCH1, LURAP1L, LL3SPC1, MKX, MYOZ2, NCKAP5, NDFIP2, NIPAL3, NLRP10, NOV, NPR3, NR3C2, NRK, NTRK3, OXTR, PAPSS2, PDE1A, PDE1C, PK16, PKP2, PPL, RCAN2, RGS7BP, RHOJ, ROR1, RP11-553K8.5, RP11-760H22.2, RP11-818F20.5, SAMD12, SBSPON, SDPR, SEMA5A, SLC1A1, SMURF2, STS, SYPL2, TIAM2,
Gene expression	Domain	P0	P1	P2	P3	P4	P5
Upregulated BP	Regulation of cell proliferation	Extracellular matrix organization	Cell cycle process	Anatomical structure development	Animal organ development	Multicellular organism development	
	Cellular developmental process	Extracellular structure organization	Cell cycle	Multicellular organism development	Multicellular organism development	Extracellular structure organization	
	System development	Multicellular organism development	Chromosome organization	System development	System development	Extracellular matrix organization	
	Regulation of developmental process	Anatomical structure development	Mitotic cell cycle process	Developmental process	Tissue development	Anatomical structure development	
	Multicellular organism development	System development	Mitotic cell cycle	Animal organ development	Anatomical structure development	System development	
	Extracellular matrix	Proteinaceous extracellular matrix	Chromosome	Proteinaceous extracellular matrix	Proteins	Extracellular matrix	
	Extracellular region	Extracellular matrix	Chromosomal part	Extracellular matrix	Extracellular matrix	Extracellular matrix	
	Extracellular region part	Extracellular region part	Nuclear lumen	Striated muscle thin filament	Cell-substrate adherens junction	Collagen trimer	
	Extracellular space	Extracellular space	Non-membrane-bounded organelle	Muscle thin filament tropomyosin	Cell-substrate junction	Extracellular region	
	Glycosaminoglycan binding	mRNA binding involved in posttranscriptional gene silencing	Protein binding	mRNA binding involved in posttranscriptional gene silencing	Oxidoreductase activity, oxidizing metal ions	Transcription factor activity, RNA polymerase ii core promoter proximal region sequence-specific binding	
	Ion binding	Collagen binding	Catalytic activity, acting on DNA	mRNA binding	Metalloendopeptidase activity	Metalloendopeptidase activity	
	Platelet-derived growth factor-activated receptor activity	Extracellular matrix structural constituent	Carbohydrate derivative binding	Growth factor binding	[heparan sulfate]-glucosamine 3-sulfotransferase 3 activity	Metal ion binding	
	Heparin binding	Platelet-derived growth factor receptor binding	Adenyl ribonucleotide binding	Transforming growth factor beta-activated receptor activity	Ionotropic glutamate receptor binding	Cation binding	
	Sulfur compound binding	Ion binding	Adenyl nucleotide binding	Oxidoreductase activity, oxidizing metal ions, NAD or NADP as acceptor	Metalloendopeptidase activity	Xylosyltransferase activity	
Downregulated BP	Cell proliferation	Biological adhesion	Anatomical structure morphogenesis	Anatomical structure morphogenesis	Cell adhesion	Regulation of multicellular organism process	
	Anatomical structure morphogenesis	Cell adhesion	Multicellular organismal process	Developmental process	Biological adhesion	Developmental process	
	Circulatory system	Multicellular organism	System	Vasculature development	Anatomical structure	Anatomical structure development	
Table 1 Top 5 enriched GO terms for pHPL-ASCs (upregulated) and FBS-ASCs (downregulated) at each passage (P0–P5). Related to Fig. 1 (Continued)

Gene expression	Domain	P0	P1	P2	P3	P4	P5
development	development	development	development	Cardiovascular system development	Signaling	Multicellular organism development	
Extracellular structure organization	Anatomical structure development	Cell adhesion	Developmental process	Anatomical structure development	Regulation of multicellular organismal process	Anatomical structure morphogenesis	
Extracellular matrix organization	Anatomical structure morphogenesis	Developmental process	Anatomical structure morphogenesis	Regulation of multicellular organismal process	Anatomical structure morphogenesis		
Extracellular region part							
CC Extracellular space	Extracellular region part	Extracellular region part	Extracellular region part	Extracellular region part			
Extracellular matrix component	Cell periphery	Extracellular space	Extracellular space	Extracellular space	Extracellular space		
Extracellular matrix component	Plasma membrane part	Extracellular matrix	Proteinaceous extracellular matrix	Extracellular matrix	Proteinaceous extracellular matrix		
Integral component of plasma membrane	Cell surface	Proteinaceous extracellular matrix	Extracellular matrix	Proteinaceous extracellular matrix	Extracellular matrix		
MF Insulin-like growth factor binding	Cell adhesion molecule binding	Growth factor binding	Glycosaminoglycan binding	Glycosaminoglycan binding	Glycosaminoglycan binding		
Collagen binding	Glycosaminoglycan binding	Receptor binding	Sulfur compound binding	Heparin binding	Sulfur compound binding		
Protein-lysine 6-oxidase activity	Growth factor binding	Extracellular matrix structural constituent	Heparin binding	Sulfur compound binding	Receptor binding		
Transition metal ion binding	Receptor binding	Glycosaminoglycan binding	Extracellular matrix structural constituent	Extracellular matrix structural constituent			
Protein binding	Integrin binding	Insulin-like growth factor binding	Growth factor binding	Growth factor binding	Heparin binding		
TINAGL1, TMEM19, TNFRSF11B, USP53, VEPH1, WEE1, and WNT2) genes that were consistently up- or downregulated respectively at all passages (Additional file 13). This represents the set of genes that were differentially expressed in ASCs as a result of them being expanded in FBS irrespective of the cell passage number. This could be reflective of an FBS-specific effect on the ASC transcriptome (FBS-ASC-specific gene expression profile). Similarly, by looking at the unique pHPL-ASC passage-specific gene expression profile at all passages (P1 to P5), there were 32 (A2M, ABLIM1, ADAMTS1, ADCYAP1R1, C10orf10, CHI3L1, EVI2B, F13A1, FAM65B, FST, GALNT12, HLA-QA1, HLA-DQA2, IL18, IL33, JAG1, MGP, MIR548I2, MT1G, MYCBP2, NTRK2, PCDHB16, PCSK1, PRELP, PRG4, RARRES1, ROR1-AS1, SFRP4, SMPDL3A, THBD, TPRG1, and ZNF727P) and 11 (CDK15, CTHRC1, EHD3, MBOAT2, MIR199A2, MIR503, MIR503HG, NT5DC2, PALLD, PPP2R3A, and RP11-08B5.2) genes that were consistently up- or downregulated respectively at all passages (Additional file 13). This represents the set of genes that are differentially expressed in ASCs as a result of them being expanded in pHPL, irrespective of the cell passage number. This could be reflective of a pHPL-specific effect on the ASC transcriptome (pHPL-ASC-specific gene expression profile).

In total therefore, there were 118 DEGs that constituted the FBS-ASC-specific gene expression profile, which is almost 3 times more than the 43 DEGs of the pHPL-ASC-specific gene expression profile (Additional file 14). Functional analysis of the pHPL-ASC-specific gene expression signature by GO classification showed that neither up- nor downregulated genes were enriched for any biological process, while the FBS-ASC-specific gene expression signature showed upregulated genes that were significantly enriched for cell migration and cell movement processes, while the downregulated genes were significantly enriched for the regulation of cell communication, signal transduction and cell proliferation processes.

Since the passage-specific gene expression profile consists of the common genes expressed by both FBS- and pHPL-ASCs at each passage, the genes that are common to all these passage-specific profiles will then constitute an ASC gene expression profile that is not affected by medium supplementation or cell passage number. There
Table 2: Top 5 enriched GO terms for significantly up- and downregulated DEGs for FBS-ASCs between subsequent passages. Related to Fig. 2a

Gene expression Domain	P0–P1	P1–P2	P2–P3	P3–P4	P4–P5
Upregulated BP					
Cell migration	Immune system process	Immune system process	Protein-carbohydrate complex subunit organization	–	–
Immune system process	Immune response	Polysaccharide assembly with MHC class II protein complex	–	–	
Leukocyte migration	Defense response	Protein-carbohydrate complex organization	–	–	
Localization of cell	Response to stimulus	Antigen processing and presentation of polysaccharide antigen via MHC class II	–	–	
Cell motility	Inflammatory response	MHC class II protein complex assembly	–	–	
CC					
Cell surface	Plasma membrane	MHC class II protein complex	–	–	
Plasma membrane	Cell periphery	Lumenal side of endoplasmic reticulum membrane	–	–	
Cell periphery	Plasma membrane part	Integral component of luminal side of endoplasmic reticulum membrane	–	–	
Integral component of membrane	Intrinsic component of plasma membrane	MHC protein complex	–	–	
Extracellular region	Integral component of plasma membrane	Crif-clcf1 complex	–	–	
MF					
Receptor binding	Receptor binding	MHC class II receptor activity	–	–	
Chemokine activity	Receptor activity	MHC class II protein complex binding	–	–	
Receptor activity	Molecular transducer activity	MHC protein complex binding	–	–	
Cytokine activity	Peptide antigen binding	Peptide antigen binding	–	–	
Molecular transducer activity	Chemokine activity	Leptomycin b binding	–	–	
Downregulated BP					
System development	Multicellular organism development	Protein-carbohydrate complex subunit organization	Spliceosomal complex disassembly	–	
Multicellular organism development	System development	Polysaccharide assembly with MHC class II protein complex	Ribonucleoprotein complex disassembly	–	
Developmental process	Anatomical structure development	Protein-carbohydrate complex organization	–	–	
Anatomical structure development	Developmental process	Antigen processing and presentation of polysaccharide antigen via MHC class II	–	–	
Tissue development	Anatomical structure morphogenesis	MHC class II protein complex assembly	–	–	
CC					
Vesicle	Extracellular region part	MHC class II protein complex	U2-type post-mRNA release spliceosomal complex	–	
Extracellular region	Extracellular region	Lumenal side of endoplasmic reticulum membrane	Post-mRNA release spliceosomal complex	–	
Extracellular region part	Extracellular space	Integral component of luminal side of endoplasmic reticulum membrane	U2-type spliceosomal complex	–	
Extracellular space	Cell periphery	MHC protein complex	–	–	
Cell periphery	Plasma membrane	Crif-clcf1 complex	–	–	
It is well documented that ASCs are a heterogeneous population as revealed by differences in transcriptome, proteome, and secretome between subpopulations within the ASC mixture [32–34]. The initial subset of adherent cells seeded in culture (P0) is a heterogeneous population; after passing and prolonged expansion, the population becomes more homogenous [35]. Work performed by several groups has shown that the heterogeneity of ASCs during the expansion process remains between subpopulations and between individual cells within the same subpopulation [32, 36, 37]. Furthermore, it has been

Table 2 Top 5 enriched GO terms for significantly up- and downregulated DEGs for FBS-ASCs between subsequent passages.

Gene expression	Domain	P0–P1	P1–P2	P2–P3	P3–P4	P4–P5
MF Glycosaminoglycan binding	Cell adhesion molecule binding	MHC class II receptor activity	–	–	–	
Cell adhesion molecule binding	Receptor binding	MHC class II protein complex binding	–	–	–	
Heparin binding	Caderhin binding	MHC protein complex binding	–	–	–	
Sulfur compound binding	Heparin binding	Peptide antigen binding	–	–	–	
Fibronectin binding	Growth factor binding	Leptomycin b binding	–	–	–	

Furthermore, it has been shown that ASCs expanded in pHPL retain their immunophenotypic characteristics and their ability to differentiate into bone, cartilage and fat [2, 6, 16]. One of the biggest advantages of using pHPL for ASC expansion is the marked increase in proliferation, which in turn makes the time required for expansion to therapeutic numbers considerably shorter [12, 22]. However, not much is known about the effect of pHPL has on the transcriptome, proteome, and secretome of these cells, which may impact on the outcome of clinical trials. This study has made use of microarray technology to examine the effect of pHPL on the ASC transcriptome during serial expansion in vitro, by comparing gene expression patterns in cells serially expanded in FBS or pHPL from P0 to P5.

Overall, the transcriptome of ASCs expanded in pHPL or FBS was most different at P2, the point at which the maximum number of genes were differentially expressed (811 and 707, respectively; Fig. 1). Most genes that were upregulated in pHPL-ASC were significantly enriched for biological process such as cell cycle, cell division, and proliferation. This supports a previous study by Glovinski et al., in which changes in the expression of genes involved in cell proliferation and development were observed for ASCs expanded in pHPL [12]. This likewise confirms findings from other studies which have shown an increase in ASC proliferation in pHPL [16, 29]. For ASCs expanded in FBS, our findings are consistent with the observation that numerous genes involved in extracellular matrix formation are upregulated [30, 31].
Table 3 Top 5 enriched GO terms for significantly up- and downregulated DEGs for pHPL-ASCs between subsequent passages. Related to Fig. 2b

Gene expression Domain	P0–P1	P1–P2	P2–P3	P3–P4	P4–P5
Upregulated BP					
Immune system process	Regulation of multicellular organismal process	Latent virus replication	Positive regulation of heart rate by epinephrine-norepinephrine	–	
Immune response	Regulation of multicellular organismal development	Regulation of RNA binding transcription factor activity	Positive regulation of heart rate by epinephrine	–	
Inflammatory response	Animal organ morphogenesis	Modulation by host of viral RNA-binding transcription factor activity	Regulation of blood pressure	–	
Defense response	Response to external stimulus	Modulation by host of RNA binding by virus	Positive regulation of stress fiber assembly	–	
Cell surface receptor signaling pathway	Inflammatory response	Regulation of DNA strand elongation	Negative regulation of smooth muscle cell migration	–	
CC	Plasma membrane part	Proteinaceous extracellular matrix	Chloride channel complex	Muscle thin filament tropomyosin	–
	Intrinsic component of plasma membrane	Extracellular matrix	Alpha DNA polymerase:primase complex	Striated muscle thin filament	–
	Integral component of plasma membrane	Extracellular region	Ion channel complex	Sarcoglycan complex	–
	Plasma membrane	Extracellular region part	Transmembrane transporter complex	Bleb	–
	Cell surface	Extracellular space	DNA replication factor a complex	Filamentous actin	–
	Receptor activity	Receptor binding	Chloride channel activity	Prostaglandin-endoperoxide synthase activity	–
	Molecular transducer activity	Integrin binding	Anion channel activity	Actin binding	–
	Signal transducer activity	Calcium ion binding	Chloride transmembrane transporter activity	N-Acetylgalcosamine-6-sulfatase activity	–
	Signaling receptor activity	Sulfur compound binding	Alkylglycerophosphoethanolamine phosphodiesterase activity	Structural constituent of muscle	–
	Chemokine activity	Scavenger receptor activity	Inorganic anion transmembrane transporter activity	Arylsulfatase activity	–
Downregulated BP					
	–	Cell cycle	Positive regulation of heart rate by epinephrine-norepinephrine	–	–
	–	Cell cycle process	Positive regulation of heart rate by epinephrine	–	–
	–	Chromosome organization	Regulation of blood pressure	–	–
	–	Mitotic cell cycle	Positive regulation of stress fiber assembly	–	–
	–	Mitotic cell cycle process	Negative regulation of smooth muscle cell migration	–	–
CC	–	Chromosome	Muscle thin filament tropomyosin	–	–
	–	Chromosomal part	Striated muscle thin filament	–	–
	–	Chromosomal region	Sarcoglycan complex	–	–
	–	Intracellular non-membrane-bounded organelle	Bleb	–	–
	–	Non-membrane-bounded organelle	Filamentous actin	–	–
MF	–	Protein binding	Prostaglandin-endoperoxide synthase activity	–	–

Dessels et al. Stem Cell Research & Therapy (2019) 10:253
established that serial passaging affects ASC gene expression profiles [29]. Global gene expression profiles could therefore be used as a tool to study ASC heterogeneity at different passages. The more homogenous the cultures are at different passages, the fewer the number of DEGs will be between them.

We have investigated the effect of serial passaging on the ASC transcriptome by comparing FBS-ASC and pHPL-ASC cultures at each passage to those of the previous passage. We observed that the transcriptome was relatively stable from P2 to P5 for cells expanded in FBS and from P3 to P5 for cells expanded in pHPL as is evident from the relatively low number of DEGs obtained between these passages. This suggests the ASC cultures become homogenous at the transcriptome level earlier in FBS (P2) than in pHPL (P3). Interestingly, the genes upregulated significantly in FBS-ASCs were enriched for biological processes involved in immune and inflammatory responses. These findings are similar to those reported by Kim et al., where genes involved in

| Table 3 Top 5 enriched GO terms for significantly up- and downregulated DEGs for pHPL-ASCs between subsequent passages. Related to Fig. 2b (Continued) |
|---|---|---|---|---|---|
| Gene expression Domain | P0–P1 | P1–P2 | P2–P3 | P3–P4 | P4–P5 |
| – | Catalytic activity, acting on DNA | Actin binding | – | – | – |
| – | Adenyl ribonucleotide binding | N-Acetylglucosamine-6-sulfatase activity | – | – | – |
| – | ATP binding | Structural constituent of muscle | – | – | – |
| – | Adenyl nucleotide binding | Arylsulfatase activity | – | – | – |

Fig. 3 Number of differentially expressed genes when compared to P0 in FBS-ASCs (a) or pHPL-ASCs (b). Gray bars above the horizontal axis are upregulated genes and white bars below the horizontal axis are downregulated genes.
Table 4 Top 5 enriched GO terms for significantly up- and downregulated DEGs for FBS-ASCs between P0 and subsequent passages. Related to Fig. 3a

Gene expression Domain	P0–P1	P0–P2	P0–P3	P0–P4	P0–P5
Upregulated BP					
Cell migration	Immune system process				
Immune system process	Immune response	Defense response	Immune response	Immune response	Immune response
Leukocyte migration	Defense response	Immune response	Cell surface receptor signaling pathway	Defense response	
Localization of cell	Regulation of immune system process	Inflammatory response	Response to stimulus	Response to stimulus	
Cell motility	Cell surface receptor signaling pathway	Response to stimulus	Defense response	Cell surface receptor signaling pathway	
CC					
Cell surface	Plasma membrane	Plasma membrane	Plasma membrane part	Intrinsic component of plasma membrane	
Plasma membrane	Cell periphery	Cell periphery	Intrinsic component of plasma membrane	Plasma membrane	
Cell periphery	Plasma membrane part	Plasma membrane part	Integral component of plasma membrane	Plasma membrane part	
Integral component of membrane	Intrinsic component of plasma membrane	Intrinsic component of plasma membrane	Plasma membrane	Integral component of plasma membrane	
Extracellular region	Integral component of plasma membrane	Integral component of plasma membrane	Cell periphery	Cell periphery	
MF					
Receptor binding	Receptor activity	Receptor activity	Receptor activity	Receptor binding	
Chemokine activity	Molecular transducer activity	Molecular transducer activity	Molecular transducer activity	Receptor activity	
Receptor activity	Receptor binding	Chemokine activity	Receptor binding	Molecular transducer activity	
Cytokine activity	Chemokine activity	Receptor binding	Peptide antigen binding	Peptide antigen binding	
Molecular transducer activity	Chemokine receptor binding	Signaling receptor activity	Chemokine activity	Chemokine activity	
Downregulated BP					
System development	Anatomical structure development	System development	Anatomical structure development	System development	
Multicellular organism development	Multicellular organism development	Multicellular organism development	Developmental process	Developmental process	
Developmental process	Anatomical structure morphogenesis	Cell adhesion	Multicellular organism development	Multicellular organism development	
Anatomical structure development	Nervous system development	Biological adhesion	System development	Anatomical structure development	
Tissue development	System development	Developmental process	Anatomical structure morphogenesis	Anatomical structure morphogenesis	
CC					
Vesicle	Extracellular region part	Extracellular region part	Extracellular region part	Extracellular region part	
Extracellular region	Extracellular region part	Proteinaceous extracellular matrix	Extracellular region part	Cell periphery	
Extracellular region	Cell periphery	Extracellular region	Proteinaceous extracellular matrix	Proteinaceous extracellular matrix	
Extracellular space	Extracellular space	Extracellular matrix	Extracellular matrix	Extracellular region	
Cell periphery	Extracellular matrix	Extracellular space	Extracellular space	Plasma membrane	
Glycosaminoglycan binding	Cell adhesion molecule binding	Glycosaminoglycan binding	Sulfur dioxygenase activity	Cell adhesion molecule binding	
Cell adhesion molecule binding	Neuropilin binding	Heparin binding	Glycosaminoglycan binding	Cadherin binding	
Heparin binding	Transporter activity	Receptor binding	Heparin binding	Receptor binding	
regulated genes were enriched for DNA and RNA regulation processes, BMP pathway signaling, and cell cycle and cell division processes. These findings suggest that proliferation may not decrease with increased passaging as indicated by Shahdadfar et al. [15] and could provide therapeutic numbers more readily than other human alternatives and FBS.

ASCs showed passage and serum-specific gene expression profiles. The passage-specific gene expression profile which is comprised of the DEGs that are common to both pHPL and FBS at each passage might reflect the in vitro serial passaging effect on the ASC transcriptome. The serum-specific gene expression signature at each passage (P1 to P5) may be reflective of the FBS or pHPL effect on the ASC transcriptome at that time period in culture (passage number) during the serial expansion process.

There were 118 and 43 genes that were differentially expressed in ASCs throughout the serial expansion process in FBS and pHPL respectively. This might indicate an ASC transcriptome profile that is specific to the medium supplementation (FBS or pHPL) used during cell expansion, irrespective of passage number. Thus, a serum-specific signature could potentially be used to identify the medium supplement (FBS or pHPL) in which the cells were previously expanded. This in turn could inform decision making in terms of the downstream clinical/research applications of these cells. There were fewer DEGs obtained for the pHPL-ASC-specific gene expression signature (43 genes), which is 1/3 the number of DEGs observed in FBS-ASCs (118 genes). The pHPL-ASC-specific gene expression signature was not enriched for any biological processes unlike the FBS-ASC-specific expression signature. This could mean that pHPL has no significant effect on the ASC transcriptome during in vitro serial passaging and suggests that pHPL might be a better medium supplement than FBS for in vitro cell expansion. Furthermore, downregulated genes in the FBS-ASC-specific gene expression signature were enriched for cell proliferation processes. This supports the observation that ASCs grow slower in FBS when compared to cell-expanded pHPL.

Finally, we observed that ASCs have a unique in vitro transcriptome profile, which is independent of cell passage number and/or medium supplementation. This consists of a set of genes that are always expressed by ASCs in vitro at any given time in culture during the

Gene expression Domain	P0–P1	P0–P2	P0–P3	P0–P4	P0–P5
Sulfur compound binding	Cadherin binding	Sulfur compound binding	Cell adhesion molecule binding	Neuropilin binding	
Fibronectin binding	Protein tyrosine kinase activator activity	Ion binding	Cadherin binding	Actin binding	
Gene expression Domain	P0–P1	P0–P2	P0–P3	P0–P4	P0–P5
------------------------	-------	-------	-------	-------	-------
Upregulated BP					
Immune system process	Immune system process	Immune system process	Immune system process	Immune system process	Immune system process
Immune response	Immune response	Immune response	Immune response	Immune response	Immune response
Inflammatory response	Inflammatory response	Response to external stimulus			
Defense response	Defense response	Defense response	Defense response	Defense response	Defense response
Cell surface receptor signalling pathway	Cellular response to chemical stimulus	Cellular response to chemical stimulus	Inflammatory response	Cellular response to chemical stimulus	
CC					
Plasma membrane part	Extracellular region				
Intrinsic component of plasma membrane part	Extracellular region part	Plasma membrane	Intrinsic component of plasma membrane	Extracellular region part	Plasma membrane part
Integral component of plasma membrane part	Plasma membrane part	Cell periphery	Integral component of plasma membrane	Plasma membrane part	Extracellular space
Plasma membrane	Intrinsic component of plasma membrane	Intrinsic component of plasma membrane	Plasma membrane part	Extracellular region part	Plasma membrane
Cell surface	Extracellular space	Plasma membrane part	Extracellular region part	Plasma membrane	
MF					
Receptor activity	Receptor activity	Receptor activity	Receptor activity	Receptor activity	Receptor activity
Molecular transducer activity	Receptor binding	Glycosaminoglycan binding	Molecular transducer activity	Receptor activity	Molecular transducer activity
Signal transducer activity	Molecular transducer activity	Molecular transducer activity	Receptor binding	Glycosaminoglycan binding	Glycosaminoglycan binding
Signaling receptor activity	Glycosaminoglycan binding	Receptor binding	Glycosaminoglycan binding	Glycosaminoglycan binding	
Chemokine activity	Cytokine binding	Sulfur compound binding	Peptide binding	Signal transducer activity	
Downregulated BP					
–	Cell cycle process	Anatomical structure morphogenesis	Cell cycle process	Cell cycle process	
–	Cell cycle	Developmental process	Cell division	Cell division	
–	Mitotic cell cycle	Anatomical structure development	Chromosome segregation		
–	Mitotic cell cycle process	System development	Nuclear chromosome segregation		
–	Chromosome organization	Tissue development	Mitotic cell cycle process	Sister chromatid segregation	
CC					
–	Chromosome	Plasma membrane raft	spindle	Chromosome, centromeric region	
–	Chromosomal part	Postsynapse	Condensed chromosome outer kinetochore	Condensed chromosome, centromeric region	
–	Chromosomal region	Caveola	Cytoskeleton	Spindle	
–	Chromosome, centromeric region	Z disc	Mitotic spindle	Kinetochore	
–	Nuclear lumen	Postsynaptic density	Condensed chromosome kinetochore	Condensed chromosome kinetochore	
MF					
–	Catalytic activity, acting on DNA	2-Aminoadipate transaminase activity	Microtubule binding	ATP binding	
–	Protein binding	Protein-lysine 6-oxidase activity	Cell adhesion molecule binding	Adenyl ribonucleotide binding	
–	DNA-dependent binding	Tubulin binding	Adenyl nucleotide		
and that ASCs expanded in pHPL are likely to retain capacity of ASCs is likely to be greater at earlier passages. Our findings suggest that the differentiation pHPL were enriched for cell cycle, proliferation, and cell inflammatory responses, whereas ASCs expanded in FBS were enriched for immune and development processes. Furthermore, we found that even though ASCs expanded in pHPL had a greater proliferation capacity, they were not enriched for genes specific to transformation. While these findings provide novel insights into potential markers for ASCs, some of the individual genes and groups of genes mentioned in this study need to be further investigated. Finally, to further compliment these findings, we believe that the proteome and the secretome of ASCs expanded in pHPL or FBS should also be studied.

Conclusion

This study highlights differences in the transcriptome of ASCs expanded in pHPL versus FBS, which could be used to guide their application in the clinical setting. ASCs expanded in FBS were enriched for immune and inflammatory responses, whereas ASCs expanded in pHPL were enriched for cell cycle, proliferation, and cell division. Our findings suggest that the differentiation capacity of ASCs is likely to be greater at earlier passages and that ASCs expanded in pHPL are likely to retain their proliferative capacity during prolonged expansion. These findings also suggest pHPL may be a superior supplement for expanding ASCs to therapeutic numbers without influencing the expression of genes involved in differentiation of specific developmental processes. Furthermore, the expression of CD14 by ASCs in this study suggests the presence of a heterogeneous population of ASCs that contains this novel subpopulation of ATMs which persisted beyond P3 in culture.

The entire process of obtaining a product for clinical purposes should adhere to the GMP guidelines. The use pHPL for the expansion of ASCs in vitro is one of many steps required. In this study, we made use of defined, clinical-grade reagents and the expansion of the ASCs was performed under sterile conditions. Isolation and expansion of ASCs in a closed system to further reduce the risk of contamination would provide a robust clinical GMP-compliant process.

Table 5

Gene expression Domain	P0-P1	P0-P2	P0-P3	P0-P4	P0-P5
ATPase activity	–	–	–	–	–
Chromatin binding	–	–	–	–	–
Kynurenine aminotransferase activity	–	–	–	–	–
Cytoskeletal protein binding	–	–	–	–	–
Microtubule binding	–	–	–	–	–
Kynurenine-oxoglutarate transaminase activity	–	–	–	–	–
Kinase activity	–	–	–	–	–
Cell adhesion molecule binding	–	–	–	–	–

Additional files

- **Additional file 1:** ASC characterization methods and results and volcano plots of DEGs between ASCs expanded in FBS and pHPL. ASC morphology, immunophenotype and differentiation, results and materials and methods, and volcano plots of DEGs between ASCs expanded in FBS and pHPL. (DOCX 2659 kb)
- **Additional file 2:** Up- and downregulated gene list for ASCs expanded in FBS and pHPL. Complete list of up- and downregulated genes for ASCs expanded in FBS or pHPL. (XLSX 193 kb)
- **Additional file 3:** Gene ontology terms for ASCs expanded in FBS and pHPL. Complete list of enriched GO terms for ASCs expanded in pHPL or FBS (P0 – P5). This data relates to Fig. 1. (XLSX 1017 kb)
- **Additional file 4:** Up- and downregulated gene list for ASCs expanded in FBS between subsequent passages. Complete list of up- and downregulated genes for ASCs expanded in FBS between subsequent passages (P0 - P1, P1 - P2, P2 - P3, P3 - P4, P4 - P5). This data relates to Fig. 2a. (XLSX 88 kb)
- **Additional file 5:** Up- and downregulated gene list for ASCs expanded in pHPL between subsequent passages. Complete list of up- and downregulated genes for ASCs expanded in pHPL between subsequent passages (P0 - P1, P1 - P2, P2 - P3, P3 - P4, P4 - P5). This data relates to Fig. 2b. (XLSX 58 kb)
- **Additional file 6:** Gene ontology terms for ASCs expanded in FBS between subsequent passages. Complete list of enriched GO terms for ASCs expanded in FBS between subsequent passages (P0 - P1, P1 - P2, P2 - P3, P3 - P4, P4 - P5). This data relates to Table 2. (XLSX 516 kb)
- **Additional file 7:** Gene ontology terms for ASCs expanded in pHPL between subsequent passages. Complete list of enriched GO terms for ASCs expanded in pHPL between subsequent passages (P0 - P1, P1 - P2, P2 - P3, P3 - P4, P4 - P5). This data relates to Table 3. (XLSX 349 kb)
- **Additional file 8:** Up- and downregulated gene list for ASCs expanded in FBS between P0 and subsequent passages. Complete list of up- and downregulated genes for ASCs expanded in FBS between P0 and subsequent passages. (XLSX 349 kb)
passages (P0 - P1, P0 - P2, P0 - P3, P0 - P4, P0 - P5). This data relates to Fig. 3b. (XLSX 206 kb)

Additional file 10: Gene ontology terms for ASCs expanded in FBS between P0 and subsequent passages. Complete list of enriched GO terms for FBS-ASCs between P0 and subsequent passages (P0 - P1, P0 - P2, P0 - P3, P0 - P4, P0 - P5). This data relates to Table 4. (XLSX 1145 kb)

Additional file 11: Gene ontology terms for ASCs expanded in pHPL between P0 and subsequent passages. Complete list of enriched GO terms for pHPL-ASCs between P0 and subsequent passages (P0 - P1, P0 - P2, P0 - P3, P0 - P4, P0 - P5). This data relates to Table 5. (XLSX 1289 kb)

Additional file 12: FBS and pHPL-ASC passage specific gene expression profile. A complete list of genes comprising the FBS and pHPL-ASC passage specific gene expression profile. (XLSX 89 kb)

Additional file 13: FBS and pHPL-ASC medium supplementation specific gene expression profile. A complete list of genes comprising the FBS and pHPL-ASC medium supplementation specific gene expression profile. (XLSX 67 kb)

Additional file 14: ASC gene signature irrespective of cell passage number and/or media supplement used. A complete list of genes comprising the ASC gene signature irrespective of cell passage number and/or media supplement used. (XLSX 20 kb)

Acknowledgements

We would like to thank Prof. P. Coetsee (Head of Plastic Surgery, Steve Biko Academic Hospital) and Dr. D. Hoffman (private practice) for their assistance with sample collection, Stephen Marrs and the team at Heamotec (South Africa) for the consumables and donation of their equipment, and the South African National Blood Service (SANBS) for the blood products provided for the pHPL alternatives.

Authors’ contributions

CD performed the in vitro experiments (isolation, expansion, and ASC characterization) and the RNA isolation. MAA performed the hybridization. CD and MAA performed the transcriptome analysis. CD, MAA, and MSP conceptualized, wrote, and edited the article. MSP obtained funding for the project. All authors read and approved the final manuscript.

Funding

This work was supported by grants from the South African Medical Research Council University Flagship Project (SAMRC-RFA-UFSF-01-2013/STEM CELLS), the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article (and its additional files). The microarray data files of this study will be deposited in NCBI GEO (Gene Expression Omnibus).

Ethics approval and consent to participate

Signed informed consent was obtained prior to the procedure and approval for the study was granted by the University of Pretoria Health Sciences Research Ethics Committee (approval number 421/2013).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Immunology, Institute for Cellular and Molecular Medicine, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa.

2. Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, PO Box 1266, Pretoria 0001, South Africa.

Received: 15 June 2019 Revised: 31 July 2019 Accepted: 1 August 2019 Published online: 14 August 2019

References

1. Toyserkani NM, Jargensen MG, Tabatabaiefa S, Harken Jensen C, Sheikh SP, Sørensen JA. Concise review: a safety assessment of adipose-derived cell therapy in clinical trials: a systematic review of reported adverse events. Stem Cells Transl Med. 2016;5(9):1786–94.

2. Riis S, Zachar V, Boucher S, Vemuri MC, Pennisi CP, Fink T. Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy. Expert Rev Mol Med. 2015;17:1–11 Available from: http://www.journals.cambridge.org/abstract_S1462399415000101.

3. Gimble JM, Ray SP, Zanata F, Wade J, Khoobei K, Wu X, et al. Adipose derived cells and tissues for regenerative medicine. ACS Biomater Sci Eng. 2016;acsbiomaterials.6b00261. Available from: http://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.6b00261.

4. Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JW, et al. Concise review: fat and fumerus: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2016;5:1096–108.

5. Züik PA, Zhu M, Mizuno H, Huang J, Futerri JW, Katz AJ, et al. Multilineage cells from human adipose tissue implications for cell-based therapies. Tissue Eng. 2001;7:211–28 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11304456.

6. Dessels C, Potgieter M, Pepper MS. Making the switch: alternatives to fetal bovine serum for adipose-derived stromal cell expansion. Front Cell Dev Biol. 2016;4:1–10 Available from: http://journals.frontiersin.org/article/10.3389/fcell.2016.00115/full.

7. Sundin M, Ringdén O, Sundberg B, Nava S, Götherström C, Le Blanc K. No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica. 2007;92:1208–15.

8. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7:e47559.

9. Becherucci V, Picconi L, Casarassima S, Bisin S, Gori V, Gentile F, Ceccantini R, De Renzo E, Bindi B, Pavan P, et al. Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience. Stem Cell Res Ther. 2018;9(1):124.

10. Koelensperger E, Bollinger N, Dehremeyer V, Gämley F, Germann G, Leimer U. Choosing the right type of serum for different applications of human adipose tissue-derived stem cells influence on proliferation and differentiation abilities. Cytotherapy. 2014;16:789–99 [cited 2014 Oct 16] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24642018.

11. Trojahn Kølle S-F, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382:1113–20 [cited 2014 Oct 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24075051.

12. Glovinski PV, Herly M, Mathiasen AB, Svalgaard JD, Borup R, Talman MLM, et al. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: a comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates. Cytotherapy. 2017;19:222–34 Available from: https://doi.org/10.1016/j.jcyt.2016.10.014.

13. Bourin P, Bunnell BA, Castella I, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived vascular fraction and culture expanded adipose tissue-derived stromal cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the
International So. Cytotherapy. 2013;15:641–8 [cited 2013 Jun 16] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23570660.

14. Riis S, Nielsen F, Pennisi C, Zachar V, Fink T. Comparative analysis of media and supplements on initiation and expansion of adipose-derived stem cells. Stem Cells Transl Med. 2016;5:314–24.

15. Shahdadfar A, Fransdal K, Haug T, Reinhold FP, Brichmann JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23:1357–66 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16081661.

16. Trojahn Kalle S, Oliveri RS, Govinovski PV, Kirchhoff M, Mathiassen AB, Elberg JG, et al. Pooled human lysate versus fetal bovine serum — investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use. Cytotherapy. 2013; 15:1086–97 Available from https://doi.org/10.1016/j.jcyt.2013.01.217.

17. Tratwal J, Follin B, Ekblond A, Kastrup J, Haack-Sørensen M. Identification of a common reference gene pair for qPCR in human mesenchymal stromal cells from different tissue sources treated with VEGF. BMC Mol Biol. 2014;15:1–11.

18. Ambele MA, Dessels C, Durandt C, Pepper MS. Genome-wide analysis of gene expression during adipo genesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16:725–34 Available from: http://www.embase.com/search/results/subtab/searchviewrecord&from=export&aid=L61001556965Cbr; http://dx.doi.org/10.1016/j.scr.2016.04.011&Scrn; http://mum-primo.hosted.exlibrisgroup.com/openurl?&sid=MUN1:01MUN1-_SERVICES?sid=EMBRE&bissn=18767753&did=10.1016/j.scr.2016.04.

19. Kim DS, Lee MW, Yoo KH, Lee T-H, Kim HJ, Jang IK, et al. Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density. PLoS One. 2014;9:e83563 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3882096&tool=pmcentrez&rendertype=abstract.

20. van Vollenstee FA, Dessels C, Kallmeyer K, de Villiers D, Potgieter M, Durandt C, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2003;31:402–16.

21. Cho K-A, Park M, Kim Y-H, Woo S-Y, Ryu K-H. RNA sequencing reveals a transcriptional portrait of human mesenchymal stem cells from bone marrow, adipose tissue, and palatine tonals. Sci Rep. 2017;7:17114 Available from: http://www.nature.com/articles/s41598-017-16888-2.

22. Baer PC, Geiger H. Adipose-derived mesenchymal stromal / stem cells - tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012; 1–11 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22577397.

23. Januszky M, Rennert R, Sorlin M, Maan Z, Wong L, Whittam A, et al. Evaluating the effect of cell culture on gene expression in primary tissue samples using microfluidic-based single cell transcriptional analysis. Microarrays. 2015;4:540–50 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4107265&tool=pmcentrez&rendertype=abstract.

24. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997; 64:278–94 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9027588.

25. Donnenberg AD, Meyer EM, Rubin JP, Donnenberg VS. The cell-surface proteome of cultured adipose stromal cells. Cytom Part A J Int Soc Anal Cytol. 2015;665–74 Available from: https://www.ncbi.nlm.nih.gov/pubmed/25929697.

26. Crespo-diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J, et al. Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLoS one. 2013;8(3):e57892–e57892.

27. Wagner W, Feldmann RE, Seckinger A, Maurer MH, Weinh F, Blake J, et al. The heterogeneity of human mesenchymal stem cell preparations - evidence from simultaneous analysis of proteins and transcriptomes. Exp Hematol. 2006;34:536–48.

28. Vogel A, Imaizumi T, Schimmer DM, Hume DA, Miljanich GP, Sturgeon F, et al. Adipose-derived stromal cell expansion. Platelets. 2018;00:1–6 Available from: https://www.ncbi.nlm.nih.gov/pubmed/30534080.

29. Wagner W, Feldmann RE, Seckinger A, Maurer MH, Weinh F, Blake J, et al. Adipose-stem cell derived mesenchymal stem cells: isolation, characterization, and differentiation potential. Cell Transplant. 2013;22:701–9.

30. Mieczkowska A, Schumacher A, Filippowicz N, Wardowska A, Zieliński M, Madenape Di, et al. Immunophenotyping and transcriptional profiling of in vitro cultured human adipose tissue derived mesenchymal stem cells. Sci Rep. 2018;8:11339 Available from: https://doi.org/10.1038/s41598-018-29477-5.

31. Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, et al. Plasticity of adipose tissue derived stem cells and regulations of angiogenesis. Front Physiol. 2018;9:1656 Available from: https://www.ncbi.nlm.nih.gov/pubmed/30534080.

32. Huang SJ, Fu RH, Shyu WC, Liu SP, Jong GP, Chiu YW, et al. Adipose-derived stem cells: isolation, characterization, and differentiation potential. Cell Transplant. 2013;22:701–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.