The Family X DNA Polymerase from *Deinococcus radiodurans* Adopts a Non-standard Extended Conformation

Received for publication, December 12, 2008, and in revised form, February 20, 2009 Published, JBC Papers in Press, February 26, 2009 DOI 10.1074/jbc.M809342200

Nicolas Leulliot†1, Lionel Cladière†1, François Lecointe‡2, Dominique Durand‡, Ulrich Hübscher§3, §4, and Herman van Tilbeurgh†1, ‡2, ‡3, ‡4
From the †1Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, CNRS, UMR8619, IFR115, Bât 430, Orsay 91405 Cedex, France and the ‡3Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, Zürich CH-8057, Switzerland

Deinococcus radiodurans is an extraordinarily radioresistant bacterium that is able to repair hundreds of radiation-induced double-stranded DNA breaks. One of the players in this pathway is an X family DNA polymerase (PolX_{Dr}). Deletion of PolX_{Dr} has been shown to decrease the rate of repair of double-stranded DNA breaks and increase cell sensitivity to gamma-rays. A 3′→5′ exonuclease activity that stops cutting close to DNA loops has also been demonstrated. The present crystal structure of PolX_{Dr} solved at 2.46-Å resolution reveals that PolX_{Dr} has a novel extended conformation in stark contrast to the closed “right hand” conformation commonly observed for DNA polymerases. This extended conformation is stabilized by the C-terminal PHP domain, whose putative nuclease active site is obstructed by its interaction with the polymerase domain. The overall conformation and the presence of non standard residues in the active site of the polymerase X domain makes PolX_{Dr} the founding member of a novel class of polymerases involved in DNA repair but whose detailed mode of action still remains enigmatic.

DNA replication and repair are functions that are of vital importance for the maintenance of cellular life. These functions are carried out by various DNA replicating enzymes, most of them acting as multiprotein complexes. *Deinococcus radiodurans*, a Gram-positive bacterium, is characterized by an extraordinary resistance to ionizing radiation and desiccation. After radiation induced cutting of its 3.28-megabase genome into hundreds of small fragments, it is capable of reassembling them acting as multiprotein complexes. *Deinococcus radiodurans*, a Gram-positive bacterium, is characterized by an extraordinary resistance to ionizing radiation and desiccation. After radiation induced cutting of its 3.28-megabase genome into hundreds of small fragments, it is capable of reassembling these segments. Many of the DNA polymerases involved in this process, including non-homologous end-joining (5). It was shown that PolX_{Dr} also has strong 3′→5′ exonuclease activity that is stimulated by Mn²⁺ (6). This activity is associated with proofreading mechanisms in other polymerase families and encoded by protein domains or subunits distinct from the polymerase catalytic domain (7). Curiously the exonuclease activity of PolX_{Dr} is modulated upon encounter of a stem-loop structure.

The combination of both activities leads to the hypothesis that PolX_{Dr} might be involved in DNA repair, potentially non-homologous end-joining, by processing damaged DNA or repair intermediates, thus generating substrates for other repair proteins (6). Very recently an orthologue of PolX from *Bacillus subtilis* was characterized. It was shown that PolX_{Bs} is a template-directed DNA polymerase acting on DNA gaps with a downstream 5′ phosphate group, suggesting it may play a role in base excision repair (8).

DNA polymerases all combine a catalytic palm domain, a thumb domain, binding double-stranded DNA, and a finger domain that fixes the incoming nucleotide. The polymerase domain of the X family belongs to the Polβ-like nucleotidytransferase superfamily, sharing ~25% amino acid identity with the DNA polymerase domains of Pol_a, Pol₄, and Pol_B. PolX_{Dr} has a second domain at the C terminus called PHP, with strong sequence identity with the histidinol phosphatase involved in histidine transport in bacteria. Due to its similarity to histidinol...
phosphatase and the presence of a trinuclear zinc site, the PolX_{Dr} PHP domain is thought to function as phosphoesterase (9). In the context of DNA polymerases, this activity might be responsible for the degradation of pyrophosphate, thus driving the polymerization reaction, or contributes to a nuclease reaction that would be involved in proofreading the newly synthesized strand. The deletion of the PHP domain also had a negative effect on survival of γ-irradiated cells suggesting that this domain possesses a function in DNA repair. Unexpectedly, deletion of the PHP domain destroys structure modulated but not the general 3′→5′ exonuclease activity (6). No activity could be demonstrated for the PHP domain alone.

In this report we present the crystal structure of PolX_{Dr} at 2.46-Å resolution. Surprisingly, PolX_{Dr} adopts a stretched out conformation instead of the commonly observed closed right hand conformation. In the active site of the polymerase catalytic domain, the two universally conserved aspartates are replaced by two glutamates, whereas the active site of the PHP domain is obstructed by its interaction with the polymerase domain.

EXPERIMENTAL PROCEDURES

Expression and Purification—PolX_{Dr} was expressed as previously described (3). The induced cells were harvested and resuspended in buffer A (20 mM Tris-HCl, pH 7.5, 500 mM NaCl, 10 mM imidazole, and a mixture of anti-proteases (Complete, Roche Applied Science)). After sonication and centrifugation, the supernatant was heated 10 min at 60 °C followed by 10 min cooling on ice. After a second centrifugation, the supernatant was loaded onto a nickel-affinity column (nickel-nitrilotriacetic acid-agarose, Qiagen). The bound proteins were eluted by buffer B (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 150 mM imidazole). The eluate was loaded onto a 5-ml HiTrap heparin column (Amersham Biosciences) pre-equilibrated with buffer B without imidazole. PolX_{Dr} was eluted by a linear gradient from 150 mM to 1 M NaCl on buffer B using an ÄKTA Purifier System (Amersham Biosciences). Column fractions were analyzed by SDS-PAGE, and those containing PolX_{Dr} were identified and pooled diluted to 50 mM NaCl and concentrated. The yield from 1 liter of culture was 1 mg of PolX_{Dr}. The homogeneity and integrity of the protein were finally checked by mass spectrometry (Voyager, PerkinElmer Life Sciences).

Crystallization, Data Collection, Structure Solution, and Refinement—Native protein (4 mg/ml) crystallized at 293 K by the hanging drop, vapor-diffusion method from 1:1 l-s drops of buffer A (20 mM Tris-HCl, pH 7.5, 0.1 M NaAc, pH 5, 0.2 M NaCl, 16% 2-methyl-2,4-pentanediol). Plate-like crystals were identified and pooled diluted to 50 mM NaCl and concentrated. The solution was continuously pushed into the beam using an automated injection system. In these conditions no radiation damage was detected.

The samples were prepared at concentrations of 1.1, 4.4, and 10.7 mg/ml in 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5% (v/v) glycerol. SAXS data were collected at the Swing beamline at SOLEIL, Saclay. The sample to detector distance was 1.93 m covering the range of scattering vector (q) from 0.007Å⁻¹ to 0.35Å⁻¹ (q = 4π sin θ/λ, with 2θ being the scattering angle and λ = 1.36 Å the wavelength of the x-rays). The detector used was a charge-coupled device camera from Aviex. Twenty-five successive frames of 0.75-s exposure each separated by a 1-s pause were recorded for each protein solution and buffer alike. During exposure, the solution was contained in a quartz capillary 1.5 mm in diameter under vacuum. The solution was continuously pushed into the beam using an automated injection system. In these conditions no radiation damage was detected.

The data sets were merged, scaled, and indexed using the program package PRIMUS (16). The curves recorded at the three concentrations were perfectly identical and therefore free from intermolecular interactions. Intensities were scaled using the scattering by water. The radius of gyration and the intensity at the origin were calculated using the Guinier law over the angular range qR_G < 1.3 (17). The pair distribution function P(r) was determined using the indirect Fourier transform approach as implemented in the GNOM program (18). Alternative estimates of the radius of gyration and the intensity at the origin were derived from the calculated P(r).

TABLE 1

Data collection and refinement statistics	Zinc edge	Zinc edge (high resolution)
Wavelength (Å)	1.282	1.282
Unit-cell parameters a, b, c (Å)	58.91, 138.5, 67.72	58.91, 138.5, 67.72
β (°)	92.24	92.24
Resolution (Å)	4.28–2.465	10–2.465
Total number of reflections	389,995 (37,516)	155,376 (15,356)
Total of unique reflections	37,507 (4,456)	37,234 (4,408)
Multiplicity	10.4 (8.4)	4.2 (3.2)
R₌	13.7 (69.8)	7.2 (55.1)
Δρ₀ (e Å⁻³)	150 (3.2)	133 (3.0)
Overall completeness (%)	95.3 (78.2)	95.4 (77.7)
Reflections working/test	67,975/5,579	21.2/25.3
Non-hydrogen atoms	8,427	
Water molecules	80	
Bonds (Å)	0.005	
Angles (°)	0.773	
Mean B-factor (Å²)	19.0/22.1/17.3	
protein/zinc/solvent	13.2/17.7 /17.3	
Ramachandran plot (%)	Most-favored	91.3
	Allowed	8.2
	Generously allowed	0.4
DNA Polymerase X Crystal Structure

Scattering patterns from crystal structures were calculated using the program CRY SOL (19). Missing parts in the crystal structure, comprising 11 N-terminal residues and 5 C-terminal residues, were modeled using MOD Loft (20). The closed conformation was built by fitting the fingers and 8-kDa domains in the same orientation as the Polβ protein. To adjust the calculated scattering curve in the experimental one, PolX_{Dv} was split into three fragments comprising, respectively, the 11 N-terminal residues, the residues from Asp^6 to Arg^158, and the 412 C-terminal residues. The relative position of both domains was refined using the rigid-body modeling program SASREF (21), which uses simulated annealing to find an optimal configuration of the domains by fitting the SAXS curve. The connectivity between the two fragments was preserved during refinement by keeping the distance between the Ca atoms of Arg^158 and Gln^159 and of Pro^3 and Asp^6 shorter than 4 Å. An ultimate adjustment was performed using the program CRY SOL (19).

The goodness of fit was characterized by the χ following parameter,

$$\chi^2 = \frac{1}{N-1} \sum_j \left[\frac{I_{\text{exp}}(q_j) - I_{\text{calc}}(q_j)}{\sigma(q_j)} \right]^2 \quad \text{(Eq. 1)}$$

where N is the number of experimental points, c is a scaling factor, and $I_{\text{calc}}(q_j)$ and $\sigma(q_j)$ are the calculated intensity and the experimental error at the scattering vector q_j, respectively.

RESULTS AND DISCUSSION

Structure Determination and Overall Architecture—The crystals of PolX_{Dv} belong to space group P2_1 with two molecules per asymmetric unit. PolX_{Dv} is composed of two distinct parts: the polymerase domain, itself composed of subdomains, and the PHP domain. Sequence homology of the PHP domain of PolX with YcdX from *Escherichia coli* whose structure is known (PDB code 1M65) suggested the presence of a trinuclear zinc metal binding site. Although no zinc was added to the purification buffers of the recombinant protein, an energy scan at the zinc absorption edge showed the presence of zinc in the crystal, and a 2.46-Å dataset was recorded at the zinc absorption edge. For this crystal, the cryoprotectant solution had been supplemented with 10 mM HgCl_2 to aid phasing. Six zinc sites and two mercury sites were found from the anomalous difference structure. Visual inspection of the zinc heavy atom sites revealed that two sets of three sites had a spatial arrangement similar to the PolIII α-subunit (Fig. 1, A and B, light green). Palm domains harbor the carboxylates involved in metal binding and polymerization. The loop between β4 and β5, which is around ten amino acids long in Polα, Polβ, and the African Swine Fever Virus PolX_{ASFV}, is reduced in PolX_{Dv} to a three-amino acid β-turn. This difference is important because a longer loop would clash with the fingers subdomain of PolX_{Dv}, which has a totally different position relative to the palm domain compared with the other family X DNA polymerases (see further). It is therefore probable that the observed domain configuration is unique to PolX_{Dv}.

The finger domain is composed of four helices (F–I) (Fig. 1, A and B, light blue). Helices F and G form a helix-turn-helix motif that binds the primer strand backbone in Polα. The most noteworthy difference is the helix that provides the link between the catalytic and the fingers domain. In Polα, a kink in this helix induces a turn of ~70 degrees and is sometimes described as two helices (I and I’) (Fig. 1D). In PolX_{Dv}, helix I and I’ form a unique, long, and straight helix. The absence of this kink in PolX_{Dv} profoundly modifies the standard relative orientation of the fingers and catalytic domains (Fig. 1D), creating a unique configuration of the polymerase domain as a whole (see below).

The 8-kDa domain is composed of 5 helices (A–E) (Fig. 1, A and B, dark blue). In Polα and Polβ, this domain possesses DNA binding and recognition activity as well as a metal-independent 5’-deoxyribose 5-phosphate-lyase activity. However, despite an overall identical structure, there are important differences in the PolX_{Dv} and Polα 8-kDa domains. In Polα and Polβ, the 5’-deoxyribose 5-phosphate-lyase uses the Nε of a lysine (Lys^312 and Lys^72, respectively) as the sole Schiff base nucleophile. This lysine is located in a lysine-rich pocket that contains a 5’-phosphate binding site. In order for the lysine to act as a nucleophile, it must be deprotonated and hence the pK_a of its ε-amino group must be lowered. It is believed that the surrounding residues, notably the lysines lining the catalytic pocket, are involved in this process. In PolX_{Dv}, the catalytic lysine is replaced by a glutamate (Glu^72). The only conserved lysine in PolX_{Dv} is Lys^23, which corresponds to Arg^275 or Lys^35 in Polα and Polβ, respectively, whereas the Polβ conserved
labeled Lys60, Lys68, and Lys72 (Lys275, Lys307, and Lys312 in Pol λ) are in the vicinity of the conserved lysine in DNA binding activity. In the complex of Polλ (Polβ) with gapped DNA, Lys307 (Lys68) provides the main contribution to 5′-phosphate binding of the downstream primer. Although this conserved lysine is absent in PolXDr, Lys64, and Lys67 are in the vicinity of the hypothetical DNA binding site and could be involved in DNA binding. The conserved tyrosines Tyr279 (Polλ) and Tyr39 (Polβ), which are also implicated in phosphate binding, superpose perfectly with Tyr37 in PolXDr.

As a result, the 8-kDa domain in PolXDr seems to have lost many characteristics of a 5′-phosphate binding site. This questions the existence of 5′-deoxyribose 5-phosphate-lyase activity of PolXDr, which has not yet been documented. In any case, all these differences must contribute to a different DNA binding affinity and selectivity, which could contribute to the selection of special sites on the DNA damaged by irradiation or desiccation.

Structure of the PolXDr PHP Domain—PolXDr, has a PHP domain at its C-terminal end (Fig. 1, B and C, red), which is absent in the other family X polymerases such as Polα and Polβ but present in the replicative polymerase PolIIIα subunits (9, 24, 25). The C-terminal PHP domain of PolXDr is structurally homologous to other members of the PHP family. This domain consists of a (α/β)7 seven-stranded β barrel closed on one side of the β-barrel by a C-terminal helix. The PolXDr PHP domain superposes well with the YcdX protein from *E. coli* (root mean square deviation of 1.80 Å for 200 residues for 18% sequence identity) and with the PHP domain of the PolIII α-subunit (root mean square deviation of 2.80 Å for 136 residues for 15% sequence identity).

The PHP domain is attached to the thumb domain by a structured 30-amino acid linker, which contains a small helical region (residues 296–326) (Fig. 1, yellow). This linker packs along the α6 and α7 helices of the PHP domain and the N and M helices of the thumb domain through hydrophobic interactions, hydrogen bonds, and salt bridges (Arg299–Asp309, Glu302–Arg534, Arg304–Asp287, and Glu305–Arg190). Three zinc ions were unambiguously identified in the PolXDr PHP. In contrast to PolXDr, in the structures of YcdX or PolIIIα PHP domains, one or two zins are missing in the absence of added zinc. This might arise from the fact that the exit of the putative PHP-PolXDr catalytic site is obstructed (see below) preventing the loss the zinc atoms during purification. The three zincs are coordinated by the conserved residues of the PHP family (His332, His334, His364, His428, His456, His518, Asp339, Asp401, and Asp516).

Domain Organization—In the structures of Polβ and Polα, domains are arranged similarly to a closed right hand, which envelops both DNA and the incoming nucleotides (26, 27). Substrate binding is often accompanied by structural rearrangements of the polymerase subdomains. The structure of human Polβ, solved in complex with gapped DNA in the presence or absence of dNTP, has revealed an open and closed conformation of the enzyme. The 8-kDa domain shows significant
movement during DNA binding, while the conformational change upon dNTP binding involves a slight reorientation of the thumb subdomain (28, 29). On the contrary, the structure of the Polα family X Polymerase has shown that it does not undergo large subdomain movements during catalysis (22). The configuration of the PolX_{Dx} domains is radically different from Polα and Polβ in the open or closed conformation. The finger, palm, and thumb domains in PolX_{Dx} do not create the familiar closed right hand but, on the contrary, adopt a completely extended conformation (Fig. 1C). This suggests that the thumb and palm domain on one hand and the fingers and 8-kDa domains on the other have moved as “rigid” bodies. It is interesting to note that the PolX_{Dx} conformation does not result from a simple opening of the Polα “hand” as classically seen in the small movement of Polα upon DNA binding: the finger and 8-kDa N-domains in PolX_{Dx} are swung out by 90° compared with the Polα conformation around a hinge region centered on Arg^{158}, situated in the αl-αl loop between the palm and fingers domain (Fig. 1D). This implies that the putative DNA binding region of the 8-kDa domain and of the palm catalytic site are on opposite sides of the protein surface (Fig. 1B). The PHP domain binds across the length of the polymerase domain and makes interactions with all four polymerase domains. The PHP domain might be involved in stabilizing the observed stretched conformation of PolX_{Dx} by binding at the interface between palm and fingers (Fig. 1, B and C). However, the fingers and 8-kDa domain can be modeled in the same conformation, because they adopt in Polβ without severely clashing with the PHP domain. There is no steric hindrance preventing the polymerase to flip into a closed conformation, which would also free the entrance of the PHP domain active site. In the PolIII α-subunit the PHP domain wedges between the thumb and palm domain, but these interactions do not involve the putative active site region (25). The function of the PolIII PHP domain is also unknown.

Thermal parameter analysis of the structure using the TLS Motion Determination server indicated that the 8-kDa domain was the most obvious candidate for defining a TLS group for refinement (see Fig. 3A). This confirms the hypothesis that the 8-kDa domain is slightly flexible in one copy of PolX in the crystal structure. Further division of the structure in TLS groups identified the fingers, palm, thumb, and PHP domains. However, inclusion of up to five TLS domains for the modeling of atomic displacement parameters during refinement did not yield any improvement in the refinement statistics.

The linker and PHP domain make extensive interactions with all other subdomains. This interaction buries in total 2000 Å² and involves 7 salt bridges and 7 hydrogen bonds. Surprisingly the main interaction site is situated at the top of the PHP β-barrel, which coincides with the putative catalytic site containing the trinuclear zinc. The cavity of the PHP domain containing the zinc ions is occluded by the hinge between helix E (8 kDa) and F (fingers). The PHP βα5 loop makes extensive contacts in the groove formed between the 8-kDa and fingers domains (Fig. 1C). This loop could act as a latch that locks the 8-kDa/fingers domain in the stretched configuration.

As a result of these tight interactions, the access to the putative active site of the PHP domain is completely blocked. It cannot be excluded that binding of an appropriate substrate could provoke a substantial conformational change which would expose the PHP active site.

Catalytic Mechanism—It was shown for Polβ that the binding of the incoming nucleotide closes the active site, bringing into place the catalytic groups. These changes are characterized by rotations of thumb helices and closing in of the 8-kDa domain. Polα, however, is in a closed state before nucleotide binding, but dNTP binding shifts the DNA template strand in the active site creating crucial interactions with the minor groove of DNA. In view of the radically different relative configuration of the PolX_{Dx} domains compared with other family X members, it remains an open question whether the same mechanism is at work here. It is interesting to note that the African swine fever PolX_{ASFV} altogether lacks the finger and 8-kDa domains but is a genuine polymerase (30). Therefore the role of the positioning or even the presence of the individual subdomains on polymerase activities has not definitely been settled.

Structural analysis and sequence analysis strongly suggest that the phosphoryl transfer reaction of all polymerases is catalyzed by a two metal ion mechanism (31). The structure of Polβ in complex with gapped DNA and deoxymerase showed that the two metal ions are bound by three carboxylates of the palm domain (32). Superposition of the PolIIIα and Polβ palm domains aligns all three catalytic aspartates. Strikingly, superposition of these palm domains with the PolX_{Dx} palm domain reveals the replacement of two of these metal binding aspartates (for instance Asp^{529} and Asp^{490} in Polα numbering) by two glutamate residues Glu^{199} and Glu^{234} (Fig. 2A). The third aspartate (Asp^{627} in Polα numbering), which bridges the two catalytic metal ions is absent in PolX_{Dx}. No other obvious residue is present in the vicinity to complete the coordination of the metal ions in PolX_{Dx}. In the polymerases of family C and X, the loop between strands β1 and β2 is part of the incoming nucleotide binding pocket and contains a conserved glycine-serine/glycine motif (Gly^{179} and Ser^{180} in Polβ) involved in hydrogen bonding to the β and γ phosphates of the nucleotide. In PolX_{Dx}, the glycine is conserved (Gly^{168}), but the serine/glycine is replaced by an aspartate (Asp^{182}). The presence of an aspartate in this position is surprising and probably leads to important changes in the binding mode of the incoming nucleotide. However, the two Polβ arginines Arg^{149} and Arg^{182}, which are involved in binding the phosphates of the incoming nucleotide, are conserved in PolX_{Dx} (Arg^{160} and Arg^{196}), whereas the Gly^{190}, which is hydrogen bonded to the γ-phosphate is replaced by Arg^{196}. The positively charged residues that bind the 3’-phosphate in the primer strand in Polα, Polβ, and PolIII (Arg^{254}, Arg^{488}, and Lys^{616}, respectively) are replaced in PolX_{Dx} by a proline (Pro^{252}) but possibly Arg^{196} could take over this role.

Clearly, because the polymerase activity of PolX_{Dx} is strongly stimulated by Mn^{2+}, we expected a participation of this metal in the reaction mechanism. The supposed metal binding site in the palm, however, deviates from what is observed in other members of the family X polymerases. This suggests that the active site may be organized differently in PolX_{Dx} and/or that a variant of the canonical two-metal catalytic step is operating in
PolX_{Dr}. Complexes with nucleotides and metals are needed to settle these questions.

Exonuclease Activity—Many DNA polymerases contain a 3′→5′ exonuclease activity that is part of a proofreading mechanism (Polγ, -δ, and -ε) while it is lacking in others (Polα and -β and the eukaryotic polymerases of the Y family). In some polymerases, this exonuclease is embedded in a separate domain (Polδ and -ε) while in others it is associated to a separate subunit of the replicative complex (e.g. E. coli PolIII). It has recently been shown that the PHP domain of Thermus thermophilus Polβ is in complex with incoming nucleotide and DNA. The DNA, fingers, and 8-kDa domains have been omitted for clarity. The incoming nucleotide is in sticks. The two magnesium atoms bound to the two catalytic aspartates are shown as yellow spheres.

Mutations of two conserved glycines 104 and 106 does not affect the 3′→5′ exonuclease activity on homopolymeric DNA but leads to a complete loss of the pausing site on stem-loop oligonucleotides (6). These glycines are part of the conserved GXG motif shown to interact with the DNA phosphate backbone in Polβ (27). These glycines are situated at the entrance of the fingers and the interaction with DNA requires the cusp configuration (where they are located at ~15-Å distance from the catalytic carboxylates). In the stretched PolX_{Dr} configuration, this glycine motif is far removed (31 Å) from the palm catalytic carboxylates, and it is hard to imagine how it could interact with stem loop DNA without a drastic rearrangement of the domains.

We have tested whether the conserved glutamates of the palm domain of Polymerase active site might be important for exonuclease activity. The E199A, E234A, and E253A mutants exhibited the same structure modulated exonuclease activity as the wild-type enzyme, indicating that the polymerase active site is not involved (results not shown). It was recently shown that PolX_{Bs} contains a 3′→5′ exonuclease activity that resides in its PHP domain (34). Mutation of two evolutionary conserved histidines (His³³⁹ and His⁴⁴¹) belonging to a motif predicted to bind putative catalytic zinc ions abolished the 3′→5′ exonuclease activity. The equivalent histidines of PolX_{Dr} (His³⁵¹ and His³⁵⁵) are direct ligands of the zinc cluster, and mutagenesis results of PolX_{Bs} seem therefore compatible with the PolX_{Dr} structure. As mentioned the zinc cluster is totally inaccessible in our present PolX_{Dr} structure, which probably represents an inactive conformation as far as the exonuclease activity concerns. The PHP domain in PolX_{Dp} makes two direct salt bridges with the 3′→5′ exonuclease activity that may act as an additional proofreading exonuclease (33). Surprisingly, the strong Mn²⁺-dependent 3′→5′ exonuclease activity of PolX_{Dp} is located in the polymerase domain, because deletion of the PHP domain does not abolish canonical 3′→5′ exonuclease activity. The streched conformation of PolX_{Dp} further shows that the putative active site of the PHP domain is obstructed by its interaction with the polymerase domain. Therefore the PHP domain cannot be active as a nuclease in this conformation of the full-length protein. The only known biochemical effect of deletion of the PHP domain is to reduce the structure modulated nuclease activity of PolX_{Dp}. Because the PHP seems to participate in stabilizing the streched conformation of PolX_{Dp}, it is tempting to speculate that the streched conformation is involved in the stem-loop-specific nuclease activity of PolX_{Dp}.

Conformation of PolX_{Dp} in Solution—To study the extent of the flexibility and to establish whether or not the crystal structure corresponds to the conformation in solution, we have investigated its structure by SAXS measurements. The radius of gyration value derived from the pair distribution function is 27.9 ± 0.1 Å, close to the value 27.8 ± 0.1 Å obtained from the Guinier law. The maximal extension of the protein is estimated...
from the pair distribution function: \(D_{\text{max}} = 88 \pm 3 \) Å. These values of \(R_g \) and \(D_{\text{max}} \) are very close to the values corresponding to the crystal structure (27.5 Å and 91 Å, respectively). Fig. 3B shows that the calculated scattering curve from the crystal structure does not fit the experimental curve (the best adjustment gives \(\chi = 5.2 \)). Thus the protein in solution adopts a conformation different from the crystal structure. We have also tried to adjust the experimental curve to the curve calculated from a model of PolX_{DP} in the closed conformation (see “Experimental Procedures” for modeling details), but this conformation does account neither for the data in solution (\(\chi = 11.3 \)). The orientations of the different PolX_{DP} domains were therefore adjusted by rigid-body refinement (see “Experimental Procedures” for details). Optimizing the orientation of the 8-kDa domain could not account for the experimental data (not shown). However, optimized models where both the fingers and 8-kDa domains were both reoriented (as rigid bodies around the link between Arg_{158} and Gln_{159} (Fig. 1)) gave good fits to the experimental data with typical value of \(\chi = 1.3 \) (Fig. 3). Several independent runs starting from either the crystal structure or the closed conformation converged to very similar models where the first domain has started of \(\sim 20° \) from the twisted conformation (Figs. 1D and 3). The results demonstrate that the conformation of PolX_{DP} is different from the crystal structure but is close to the twisted conformation. One can expect that the structure is dynamic, and the model shown in the Fig. 3 must be regarded as an “average” rather than as a unique conformation adopted by the protein.

CONCLUSION

The extended conformation observed in our crystal structure raises interesting questions as to the function of PolX_{DP}. At first sight, our observations suggest that the stretched conformation does not represent a (near) catalytically competent state of the enzyme and that, for polymerase activity, the enzyme must undergo drastic structural rearrangements to adopt the canonical Pol\(\beta \) cusp-like arrangement. The present PolX_{DP} configuration for which the fingers and 8-kDa domains are far removed from the palm catalytic domain could be compared with the polymerase of the African swine fever virus (PolX_{ASFV}), an X family polymerase, which consists uniquely of a thumb and palm domain. PolX_{ASFV} binds gapped DNA as efficiently as does Pol\(\beta \) (35). The lack of the fingers and 8-kDa domain in this polymerase is thought to contribute to the low fidelity of nucleotide insertion. The crystal structure and conformation in solution of PolX_{DP} enrich the structural diversity of family X polymerases with a new twisted conformation and suggest that polymerases can explore a much greater conformational space than was previously thought. The twisted conformation of PolX_{DP} might present specific advantages in the repair of some specific subsets of DNA lesions. Alternatively, PolX_{DP} might adopt different conformations, for example in the presence of specific structures in damaged DNA, which might expose either polymerase or exonuclease activities. The presence of non-standard residues in the active site might indicate that proteins with polymerase activities might have been overlooked in sequence data base based on search against the canonical motifs.

Acknowledgments—We thank I. Shevelev and M. Blasius for participating in the initial work. We thank J. Perez and G. David (SOLEIL synchrotron) for help with the SAXS data collection.

REFERENCES

1. Blasius, M., Hubschler, U., and Sommer, S. (2008) Crit. Rev. Biochem. Mol. Biol. 43, 221–238
2. Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A. B., and Radman, M. (2006) Nature 443, 569–573
3. Lecointe, F., Shevelev, I. V., Bailone, A., Sommer, S., and Hubscher, U. (2004) Mol. Microbiol. 53, 1721–1730
4. Hubscher, U., Maga, G., and Spadari, S. (2002) Annu. Rev. Biochem. 71, 133–163
5. Ramadan, K., Shevelev, I. V., Maga, G., and Hubscher, U. (2004) J. Mol. Biol. 339, 395–404
6. Blasius, M., Shevelev, I., Jolivet, E., Sommer, S., and Hubscher, U. (2006)
DNA Polymerase X Crystal Structure

M. Microbiol. 60, 165–176
7. Shevelev, I. V., and Hubbscher, U. (2002) Nat. Rev. Mol. Cell Biol. 3, 364–376
8. Banos, B., Lazaro, J. M., Villar, L., Salas, M., and de Vega, M. (2008) J. Mol. Biol. 384, 1019–1028
9. Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746–3752
10. Leslie, A. (1992) Joint CCP4 and EACMB Newsletter Protein Crystallography, Daresbury Laboratory, Warrington, UK
11. Kabsch, W. (1993) J. Appl. Crystallogr. 26, 795–800
12. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) Acta Crystallogr. Sect. D Biol. Crystallogr. 58, 1948–1954
13. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M., and Paciorek, W. (2003) Acta Crystallogr. Sect. D Biol. Crystallogr. 59, 2023–2030
14. Terwilliger, T. (2004) J. Synchrotron Radiat. 11, 49–52
15. Adams, P. D., Gopal, K., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Pai, R. K., Read, R. J., Romo, T. D., Sacchettini, J. C., Sauter, N. K., Storoni, L. C., and Terwilliger, T. C. (2004) J. Synchrotron Radiat. 11, 53–55
16. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) J. Appl. Crystallogr. 36, 1277–1282
17. Guinier, A., and Fournet, G. (1955) Small Angle Scattering of X-Rays, Wiley, New York
18. Svergun, D. I. (1992) J. Appl. Crystallogr. 25, 495–503
19. Svergun, D. I., Barberato, C., and Koch, M. H. (1995) J. Appl. Crystallogr. 28, 768–773
20. Fiser, A., and Sali, A. (2003) Bioinformatics 19, 2500–2501
21. Petoukhov, M. V., and Svergun, D. I. (2005) Biophys. J. 89, 1237–1250
22. Garcia-Diaz, M., Bebenek, K., Gao, G., Pedersen, L. C., London, R. E., and Kunkel, T. A. (2005) DNA Repair 4, 1358–1367
23. Sawaya, M. R., Pelletier, H., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Science 264, 1930–1935
24. Bailey, S., Wing, R. A., and Steitz, T. A. (2006) Cell 126, 893–904
25. Lamers, M. H., Georgescu, R. E., Lee, S. G., O’Donnell, M., and Kuriyan, J. (2006) Cell 126, 881–892
26. Garcia-Diaz, M., Bebenek, K., Krahn, J. M., Kunkel, T. A., and Pedersen, L. C. (2005) Nat. Struct. Mol. Biol. 12, 97–98
27. Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., and Kraut, J. (1996) Biochemistry 35, 12742–12761
28. Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J., and Pelletier, H. (1997) Biochemistry 36, 11205–11215
29. Beard, W. A., and Wilson, S. H. (2000) Mutat. Res. 460, 231–244
30. Maciejewski, M. W., Shin, R., Pan, B., Marintchev, A., Denninger, A., Mullen, M. A., Chen, K., Gryk, M. R., and Mullen, G. P. (2001) Nat. Struct. Biol. 8, 936–941
31. Steitz, T. A. (1999) J. Biol. Chem. 274, 17395–17398
32. Beard, W. A., Osheroff, W. P., Prasad, R., Sawaya, M. R., Jaju, M., Wood, T. G., Kraut, J., Kunkel, T. A., and Wilson, S. H. (1996) J. Biol. Chem. 271, 12141–12144
33. Stano, N. M., Chen, J., and McHenry, C. S. (2006) Nat. Struct. Mol. Biol. 13, 458–459
34. Banos, B., Lazaro, J. M., Villar, L., Salas, M., and de Vega, M. (2008) Nucleic Acids Res. 36, 5736–5749
35. Showalter, A. K., Byeon, I. J., Su, M. I., and Tsai, M. D. (2001) Nat. Struct. Biol. 8, 942–946