Abstract—Deep Learning Library (DLL) is a new library for machine learning with deep neural networks that focuses on speed. It supports feed-forward neural networks such as fully-connected Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs). It also has very comprehensive support for Restricted Boltzmann Machines (RBMs) and Convolutional RBMs. Our main motivation for this work was to propose and evaluate novel software engineering strategies with potential to accelerate runtime for training and inference. Such strategies are mostly independent of the underlying deep learning algorithms. On three different datasets and for four different neural network models, we compared DLL to five popular deep learning frameworks. Experimentally, it is shown that the proposed framework is systematically and significantly faster on CPU and GPU. In terms of classification performance, similar accuracies as the other frameworks are reported.

I. INTRODUCTION

In recent years, neural networks have regained a large deal of attention with deep learning approaches. Such approaches rely on the use of bigger and deeper networks, typically by using larger input dimensions to incorporate more context and by increasing the number of layers to extract information at different levels of granularity. The success of deep learning can be attributed mainly to three factors. First, there is the advent of big data, meaning the availability of larger quantities of training data. Second, new training strategies have been developed, such as unsupervised pre-training that allows deep networks to initialize well and also to learn efficient feature extractors on large sets of unlabelled data. Finally, better and faster hardware has helped dealing with the training of such networks. Deep systems are currently improving the state-of-the-art in many domains. Successful deep learning applications include near-human performance at recognizing objects in images [1], generating detailed image descriptions [2], adding colors to grayscale images [3] or generating highly-realistic images [4]. Moreover, the availability of free and easy-to-use frameworks, as well as the availability of detailed implementation examples on public datasets, have contributed to the widespread use of deep learning technologies.

From a practical point of view, an ideal deep learning framework would be easy to use, would offer fast training with good precision and would be versatile with many configuration options. Reaching all these qualities is difficult as some are contradictory. For this reason, we may observe large differences among the available frameworks.

In this work, we report on the development of a new deep learning framework where we have clearly opted to focus on efficient computation, targeting specific network models and algorithm configurations. While we are aware of these limitations, we believe that the different optimizations we have implemented in our framework may be of interest to the scientific community. Our framework is called Deep Learning Library (DLL) and is freely available, with source code\footnote{URL https://github.com/wichtounet/dll}. The initial reason behind the development of a complete framework was the lack of Restricted Boltzmann Machine (RBM) [5] and Convolutional RBM (CRBM) [6] support in other Machine Learning frameworks. This is still the case at the time of writing. Along the way, the framework was extended with general neural network features and can now be used to train standard Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) [7] for classification.

While speedups are also observed on the GPU, the proposed library has been especially optimized for speed on Central Processing Unit (CPU). Although GPUs are beginning to be the de-facto standard for training deep networks, they are not always available and some deployments are still targeting existing CPU implementations. Moreover, inference is generally performed on CPU once the network has been trained. Therefore, we believe that it remains important to be able to both train neural networks in reasonable time and achieve fast inference on CPUs. In this work, we also report successful optimizations on GPU, but we have to note that advanced parallelization capabilities of GPU where already well used [8], [9], especially for convolutional networks [10].

Further to our speedup contributions, a special contribution of this paper is a comprehensive evaluation against several important state of the art frameworks. The evaluation is carried on four different models and three data sets. Comparisons are performed in terms of computation time on both CPU and GPU, as well as the final accuracy of the trained models.

The rest of this paper is organized as follows. The DLL library is described in details in Section II. The experimental evaluation is presented in Section III. Section IV is presenting the results of the experiments on MNIST, Section V on CIFAR-10 and Section VI on ImageNet. Finally, conclusions are drawn in Section VII.

II. DLL: DEEP LEARNING LIBRARY

Deep Learning Library (DLL) is a Machine Learning framework originally focused on RBM and CRBM support. It...
was developed and used in the context of several research work [11]–[14]. It also has support for various neural network layers and standard backpropagation techniques. It is written in C++ and its main interface is C++ (example in Section II-B). The framework can also be used by describing the task in a simple descriptor language, to make it easier for researchers.

The framework has complete support for the RBM model [5]. The model can be trained using Contri-Buttive Divergence (CD) [15]. The implementation was designed following the model from [16]. It also supports Deep Belief Network (DBN), pretrained layer by layer and then fine-tuned using gradient descent. The RBM supports a wide range of visible and hidden unit types, such as binary, Gaussian and Rectified Linear Unit (ReLU) [17]. Support for CRBM is also integrated, following the model from [6], as well as second version integrating pooling in the form of Probabilistic Max Pooling.

The framework also supports conventional neural network. As such, ANNs and CNNs can be trained. Max Pooling and Average Pooling layers are also supported for CNNs. These networks can be trained with mini-batch gradient descent. The basic learning options such as momentum and weight decay are supported. The framework also support advanced techniques such as Dropout [18] and Batch Normalization [19]. Finally, optimizers with adaptive learning rates such as Adagrad [20], Adadelta [21] and Adam [22] are also integrated. The framework also supports Auto-Encoders [23] and Convolutional Auto-Encoders [24]. They can be trained on noisy input to improve generalization, a technique known as Denoising Auto-Encoder [25].

The DLL library is available online2, free of charge, under the terms of the MIT open source license. Details of the project as well as some tutorials are available on the home page.

A. Performance

The main focus of the library is runtime performance, both for training and for inference. The DLL framework has been especially optimized for CPU execution. Nevertheless, the GPU support for most neural networks is also complete.

The implementation uses several techniques to optimize as much as possible the runtime performance for training and inference. First, all the computations are performed using single-precision floating point numbers. This leads to a better data locality and an increased potential for vectorization. On GPU, it would even be possible to use half-precision, but modern processors do not have native capabilities for such computations. Another simple optimization is that all the computations are performed on a batch rather than on one sample at the time. This has the advantage of leveraging the necessary operations to higher level computations. Since this is also generally advantageous for the quality of the training, this is currently the most common way to train a neural network.

The forward activation of a fully-connected layer for a mini-batch can be computed with a single matrix-matrix multiplication [12]. This is also possible for the backward pass, by transposing the weight matrix. Finally, the gradients for the dense layer can also be computed using one matrix-matrix multiplication. Thus, such a network mainly needs a good implementation of this operation in order to be fast.

The Basic Linear Algebra Subprograms (BLAS) interface contains a set of small and highly-optimized kernels for matrix and vector computation [26]. When using an efficient BLAS library, the matrix-matrix multiplication operation can be very efficient. Moreover, using a parallel BLAS library also leads to significantly increased performance for large layers. Moreover, although BLAS libraries are highly optimized for very large matrices, they are not as fast as possible for small matrices. Therefore, we automatically detect such cases and use custom vectorized kernels for small matrix multiplications.

Optimization is more complicated for CNNs. Indeed, the dense layers only account for a small portion of the training time. Convolutional layers use two forms of convolution. A valid convolution for the forward pass, which shrinks the representation and a full convolution for the backward pass to expand it. Every batch of \(N \) images is convolved with \(K \) kernels. It is possible to rearrange an image into columns so that a matrix-matrix multiplication can be used to compute the valid convolutions of the image and the \(K \) kernels at once [12], [27]. This proved to be very efficient for large images or large kernels. However, when images are small or kernels are very small, this is not efficient since the rearranging of the input matrix is a memory intensive operation that will reduce the gains of this reduction. Therefore, in these cases, we observed that it is more interesting to perform a real convolution using an highly-optimized implementation.

First, several floating point operations are computed during the same CPU cycle, using SSE and AVX, a technique known as Single Instruction Multiple Data (SIMD). Then, to ensure the maximum throughput, the matrices are padded so that the last dimension is a multiple of the vector size. Specialized kernels for the most used kernel sizes, such as 3x3 and 5x5, are also used. Finally, most of the convolutions can be performed in parallel since there are no dependencies between them. This proved significantly faster than the reduction to a matrix-matrix multiplication in several configurations.

There are several possible implementations for the full convolution. First, the operation can be expressed in terms of another operation, the Fast Fourier Transform (FFT) [28]. For this, the input image and the kernel are padded to the size of the output. Then, their transforms can be computed, in parallel. The Hadamard product of the input image with the transform of the kernel is computed. The inverse transform of this product is the full convolution. Computing several convolutions of the same image with different kernels is more efficient since the transform of the input image is only computed once. In our experiments, we observed that such implementation is very efficient for large inputs and large kernels, but it is not as interesting for small configurations. With very small kernels, it is more efficient to pad the input and the kernels and perform a valid convolution. Indeed, a full convolution is equivalent to a valid convolution with some

2URL https://github.com/wichtoune/dll
amount of padding. When the necessary padding is small enough, it becomes significantly faster than performing the FFTs. The last option is to use an optimized implementation of the full convolution. However, due to the large number of border cases, this would only be faster than the implementation as a valid convolution for large dimensions, in which case the reduction to FFT would be faster.

Unfortunately, there is no one-size-fits-all implementation for all convolution configurations. Therefore, heuristics are used to select the most suitable implementation for each possible configuration. These heuristics are based on the size of the convolution kernels and the size of the batch.

Although most of the time is contained inside the previously mentioned operations, it is still important to optimize the other operations such as activation functions and gradient computations. In our implementation, these operations are vectorized and parallelized to maximize the processor utilization.

Fortunately, when optimizing for GPU, most of the routines are already implemented in highly specialized libraries. DLL uses NVIDIA libraries in order to optimize the most used kernels. NVIDIA CUBLAS is used for the matrix-matrix multiplications and a few other linear algebra operations and NVIDIA CUDNN [29] is used for the machine learning operations such as convolutions, activation functions and gradients computation. For other operations, CUDA kernels have been written to ensure that most of the time is spent on the GPU. Indeed, when optimizing for GPU, it is most important to avoid copies between the CPU and GPU. Moreover, most of the kernels are launched asynchronously, without device synchronization. This significantly reduces the overhead of CUDA kernel calls.

B. Example

Figure 1 shows the code necessary to train a three-layer fully-connected network on the MNIST data set with the DLL library. The code starts by loading the MNIST data set in memory. Then, the network is declared layer by layer. After that, the network training parameters are set and the training is started. Finally, the accuracy on the test set is computed.

![Example code](https://github.com/wichtounet/frameworks)

Fig. 1: Example from the DLL library to train and evaluate a fully-connected network on the MNIST data set.

III. Experimental Evaluation

We compared our library against popular frameworks on several experiments. The time to train each model is compared for each framework, both on CPU and on GPU. For each experiment, the accuracy of each framework was also computed. It was shown that all the tested frameworks were all exhibiting comparable accuracy when trained with the same parameters.

We are underlying here that the goal of these experiments is not to reach state of the art performance on the tested data sets. Indeed, the models are kept simple in purpose to allow comparison with a wider range of frameworks. Moreover, the networks are not always trained for as many epochs as they would be, if achieving high accuracy was the goal. Finally and very importantly, we are not aware of the full details of all the frameworks. We did our best to have similar network architecture and training parameters, but it could be that some implementation details lead to slightly different training schemes, explaining differences in terms of execution time.

All the results presented in this chapter have been computed on a Gentoo Linux machine, with 12 GB of RAM, on an Intel® Core™ i7-2600, running at 3.4 GHz (CPU frequency scaling has been disabled for the purpose of these tests). Both SSE and AVX vectorization extensions were enabled on the machine. The BLAS operations are executed with the Intel® Math Kernel Library (MKL), in parallel mode. The GPU used for the benchmarks is a NVIDIA GeForce® GTX 960 card. CUDA 8.0.4.4 and CUDNN 5.0.5 are used. To ensure reproducibility, the source code used for these experiments is available online.

The following reference frameworks have been selected:

1. **Caffe** [30]: Caffe is a high-level Machine Learning framework that focuses on speed and expression. It is developed in C++ and is used through a text descriptor language. Caffe 1.0 was installed from the sources with GPU and MKL support.

2. **TensorFlow** [31]: This is a general low-level framework that allows expressing a data flow graph to perform numerical computation. The core of the system is written in C++, but the features are mostly available through a Python front-end. TensorFlow 1.3.1 was installed from the sources with CUDA, CUDNN and MKL support.

3. **Keras** [32]: It is a high-level Machine Learning library, providing a frontend for either TensorFlow or Theano. It is written in Python. It provides a very large number of high-level models, easing the development of Machine Learning models. The version 2.0.8 was installed using the official package with TensorFlow 1.3.1.

4. **Torch** [33]: Torch is another low-level Machine Learning framework, one of the earliest, started in 2002. It is used through a Lua front-end. Although it is a low-level framework, it also contains high-level modules for Machine Learning. It was installed from the sources, from Git commit 3e9e141 with CUDA and MKL support.

[3]https://github.com/wichtounet/frameworks
5) DeepLearning4J [34]: DeepLearning4J is a deep learning framework for Java, written in Java, C and C++. It has a very large set of features and focuses on distributed computing. The version 0.9.1 was used, from Maven.

The frameworks have been selected based on their popularity and also in order to have a broad range of programming languages. DLL is used directly from the sources, with the latest version available at this time (Git commit 2f3c62c).

IV. MNIST

The first experiment is performed on the MNIST data set [35]. It is a digit recognition task. The data set is made of 60'000 28x28 grayscale images for training and 10'000 images for testing. It is a very well-known data set and has been repeatedly used with most of the existing Machine Learning algorithms. Although it is considered an easy task, it remains an excellent problem for comparing frameworks since most of them are using it as example and make source code available.

A. Fully-Connected Neural Network

The first tested network is a fully-connected three-layer ANN with 500 units in the first layer, 250 in the second layer and 10 final output units for classification. The first two layers are using the sigmoid function. The last layer is trained using a softmax cross entropy loss. The network is trained with mini-batches of 100 images, for 50 epochs, with a learning rate of 0.1 and a momentum of 0.9. The training accuracy is computed after each epoch and the test accuracy is computed after the end of the complete training. As an example, the code using the DLL library is presented in Figure 1.

Figure 2 presents the runtime performance of each of the frameworks. In CPU mode, DLL outperforms all the other frameworks, being around 40% faster than TensorFlow and Keras. DLL is 4.5 times faster than DeepLearning4J and 5.5 times faster than Torch and Caffe. On GPU, DLL is the fastest framework, closely followed by Caffe. DLL is about 40% faster than TensorFlow and twice faster than Keras. DeepLearning4J and Torch are respectively 2.5 and 5 times slower than DLL.

B. Convolutional Neural Network

The second network, used to solve the same task, is a small CNN with six layers. The first layer is a convolutional layer using 8 5x5 kernels and followed by a max pooling layer with a 2x2 kernel. The third is again a convolutional layer with 8 kernels of dimensions 5x5 and a max pooling layer with 2x2 kernel. The last layers are fully-connected layers, the first one with 150 units and the last one with 10 units for classification. The two convolutional layers and the first fully-connected layer use a sigmoid activation function while the last layer uses a softmax activation function. The full network is trained in the same manner as the first network.

Figure 3 presents the results obtained on this experiment. Again, DLL is the fastest framework on CPU, by a significant margin, three times faster than TensorFlow and almost four times faster than Keras. DLL is more than 8 times faster than the slowest framework, DeepLearning4J. This shows the effects of the in-depth CPU optimization of the convolutions. On GPU, TensorFlow and DLL are the fastest frameworks, about 30% faster than Keras and significantly faster than Caffe (4 times), Torch (6.5 times) and DeepLearning4J (9 times).

V. CIFAR-10

The second data set that is tested is CIFAR-10 [36], a data set for object recognition, consisting of 50’000 images for training and 10’000 for testing, in 10 different classes. The data set is composed of colour images of 32x32 pixels. The images are made of three colour channels. This is a significantly more complicated task than the MNIST task.

A larger CNN is used for this task. The first layer is convolutional with 12 5x5 kernels, followed by a 2x2 max pooling layer. They are followed by another convolutional layer with 24 3x3 kernels and a 2x2 max pooling layer. A
dense layer with 64 hidden units is then used, followed by a softmax layer with 10 output units. All the layers but the last one are using ReLUs. The network is trained in a similar manner as the previous networks, with a learning rate of 0.001.

In Figure 4, the training times for this task are presented. The speedups are less significant than for the previous CNN. Nevertheless, DLL still manages to be the fastest framework on CPU. It is about twice faster than TensorFlow, Keras, DeepLearning4J and Torch and about three times faster than Caffe. On GPU, DLL is also the fastest framework on this experiment, about 30% faster than TensorFlow and 40% faster than Keras. It is three times faster than Caffe and about 4.5 times faster than Torch and ten times faster than DeepLearning4J. This network is significantly larger than in the MNIST experiment. This seems to indicate that most frameworks are more optimized for larger networks. This also shows that GPU performance is better when a lot of data is available for computation.

VI. IMAGE NET

The last experiment is performed on ImageNet, a very large data set for image classification. We consider the sub part of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [37], there are 50’000 validation images, 100’000 test images, around 1.2 million training images and 1000 categories. This is often the case with this data set. The DeepLearning4J reader was based on existing official reader for structures similar to ImageNet. For Keras, TensorFlow and Torch, a simple data reader has been written with the image loading tools available in each framework.

The network is significantly larger than the previous networks. It is made of five convolutional layers, with 16 3x3 kernels for the first two layers and 32 3x3 kernels for the next three layers. Each of these layers is followed by a ReLU activation function and a 2x2 max pooling layer. All the convolutional layers are using zero-padding so that their output is the same size as their input. The last two layers are a dense layer with 2048 hidden units, with a ReLU function and a dense layer with 1000 outputs and a softmax activation function. The training is different than for the other data sets. The full network is only trained for five epochs with each framework. The networks are trained using a batch size of 128. However, Torch and DeepLearning4J models were trained with a batch size of 64, respectively 16, samples. Indeed, both of these frameworks needed more than 12GB of RAM to train with a batch size of 128 images. This may lead to some small degradation of the performance for those two frameworks.

For the sake of comparison, the average time to train one batch of samples is used as results. For Torch and DeepLearning4J, the results are the times for several batches, to make up for 128 samples. These results are presented in Figure 5. DLL shows to be again the fastest framework on CPU for training this large model, 35% faster than Keras, about 45% faster than TensorFlow and twice faster than Caffe. Torch is already more than 3 times slower than DLL and DeepLearning4J around 6 times slower. On GPU, DLL is, also, the fastest framework. Comparisons with Keras and TensorFlow show that most of the differences come from the poor performance of reading the ImageNet data from the Python code. Once this is taken into account, the three frameworks have comparable performance. DLL is more than twice faster than Caffe and almost four times faster than Torch and almost 10 times faster than DeepLearning4J.

VII. CONCLUSION AND FUTURE WORK

For all the experiments and the different neural networks models that were tested, the DLL framework has shown to be
the fastest gradient descent based framework for training the model when using CPU and GPU. For each test, the accuracies of the models trained with DLL are similar to the models trained by the other five Machine Learning frameworks.

The speedups provided by the framework on CPU mode are especially important for convolutional layers for which advanced optimization was performed. The framework was especially optimized for small convolutions, but it is still able to bring significant speedups for large images such as the images from the ImageNet data set. Moreover, while some frameworks are mostly optimized for the convolutional and fully-connected parts of the computation, every part of the training in the DLL framework was tuned.

While the library is highly optimized for small images, its performance should be improved further for large images. As potential improvement we believe that different optimized kernels should be taken not only depending on the size of the kernel but also on the size of the image. Also, a few DLL routines are not optimized enough for GPU, such as Dropout and Batch Normalization. Future work could also include better support for Recurrent Neural Networks (RNNs), which would be a great advantage for the library. Finally, the library has currently been optimized only on few machines and especially consumer grade processors and graphics cards. It would be greatly beneficial to take advantage of more threads or advanced vectorization capabilities such as those provided by the latest Intel® Xeon processors or more recent and powerful NVIDIA graphics cards.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[2] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image descriptions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3128–3137.

[3] Z. Cheng, Q. Yang, and B. Sheng, “Deep colorization,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 415–423.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems, 2014, pp. 2672–2680.

[5] P. Smolensky, “Information processing in dynamical systems: Foundations of harmony theory,” 1986.

[6] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations,” in Proceedings of the 25th Annual International Conference on Machine Learning. ACM, 2009, pp. 609–616.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[8] S. R. Upadhyaya, “Parallel approaches to machine learning: A comprehensive survey,” Journal of Parallel and Distributed Computing, vol. 73, no. 3, pp. 284–292, 2013.

[9] N. Lopes and B. Ribeiro, “Towards adaptive learning with improved convergence of Deep Belief Networks on Graphics Processing Units,” Pattern Recognition, vol. 47, no. 1, pp. 114–127, 2014.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[11] B. Wicht, A. Fischer, and J. Hennebert, “Deep learning features for handwritten keyword spotting,” in Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE, 2016, pp. 3434–3439.

[12] ——, “On cpu performance optimization of restricted boltzmann machine and convolutional rbn,” in IAPR Workshop on Artificial Neural Networks in Pattern Recognition. Springer International Publishing, 2016, pp. 163–174.

[13] B. Wicht and J. Hennebert, “Mixed handwritten and printed digit recognition in sudoku with convolutional deep belief network,” in Document Analysis and Recognition (ICDAR), 2015 13th International Conference on. IEEE, 2015, pp. 861–865.

[14] B. Wicht, “Deep learning features for image processing,” Ph.D. dissertation, University of Fribourg, 2018.

[15] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[16] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Neural Networks: Tricks of the Trade (2nd ed.), set Lecture Notes in Computer Science. Springer, 2012, vol. 7700, pp. 599–619.

[17] V. Nair and G. E. Hinton, “Rectified Linear Units improve Restricted Boltzmann Machines,” in Proceedings of the Int. Conf. on Machine Learning, 2010, pp. 807–814.

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[20] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization.” Journal of Machine Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[21] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[23] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[24] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction. Springer Berlin Heidelberg, 2011, pp. 52–59.

[25] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th international conference on Machine learning. ACM, 2008, pp. 1096–1103.

[26] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear algebra subprograms for fortran usage,” ACM Transactions on Mathematical Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[27] J. S. Ren and L. Xu, “On vectorization of deep convolutional neural networks for vision tasks,” arXiv preprint arXiv:1501.07338, 2015.

[28] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks through ftfs,” arXiv preprint arXiv:1312.5851, 2013.

[29] S. Chetlur and al., “cudnn: Efficient primitives for deep learning,” CoRR, vol. abs/1410.0759, 2014. [Online]. Available: http://arxiv.org/abs/1410.0759

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[31] M. Abadi and al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[32] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.

[33] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[34] D. D. Team, “Deeplearning4j: Open-source distributed deep learning for the JVM,” 2015. [Online]. Available: http://deeplearning4j.org

[35] Y. LeCun, C. Cortes, and C. J. C. Burges, “The mnist database of handwritten digits,” 1998.

[36] A. Krizhevsky and G. E. Hinton, “Learning multiple layers of features from tiny images,” 2009.

[37] O. Russakovsky and al., “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.