Computing the g-dependent interfacial polarization

In this section, we derive an auxiliary analytic result that enables us to rigorously compute the protein-water interfacial tension (PWIT), as described in Methods. The physical analysis is based on two local parameters, the function $g(r)$ representing the time-averaged coordination (number of hydrogen bonds) associated with a water molecule at position r (Figure 1a), and $P=P(r)$, the polarization field generated by water dipoles as they interact with net charges on the protein surface or with the resultant electrostatic field arising from confinement of interfacial water. In this section we obtain the g-dependence of P; that is, we show that $P(r)$ is actually $P(g(r))$.

In order to determine the g-dependence of P, we introduce the electrostatic potential $\Psi=-\Phi(r)$, with $E=\nabla \Phi$. Thus, the Debye equation (Eq. 4, Methods):
\[\nabla \left[\int F^{-1}(K)(r-r')E(r')dr' \right] = \rho(r) \quad (S1) \]

reads in \(\omega \)-space\(^1\):

\[F(\Phi)(\omega) = F(\rho)(\omega)/[|\omega|^2K(\omega)] , \quad (S2) \]

where \(|\omega|^2 \) is the Fourier conjugate of \(\nabla^2 \). Thus, \(E \) is obtained from the inverse Fourier transformation of Eq. S2:

\[E(r) = \nabla F^{-1}\{ F(\rho)(\omega)/[|\omega|^2K(\omega)]\}(r) = (2\pi)^{3/2} \nabla \int d\omega e^{-i\omega \cdot r} F(\rho)(\omega)/[|\omega|^2K(\omega)] \quad (S3) \]

Given a charge density distribution of the form:

\[\rho(r) = \sum_{m \in L} 4\pi q_m \delta(r-r_m) , \quad F(\rho)(\omega) = (2\pi)^{3/2} \sum_{m \in L} 4\pi q_m \exp(i\omega \cdot r_m) , \quad (S4) \]

with \(L \)=set of charges on the protein surface labeled by index \(m \), we obtain:

\[\Phi(r) = (2\pi)^{-3} \sum_{m \in L} \int d\omega e^{-i\omega \cdot (r-r_m)} 4\pi q_m/[|\omega|^2K(\omega)] , \quad (S5) \]

which gives the explicit form of the polarization:

\[P(r) = \int F^{-1}(K_p)(r-r')E(r')dr' = \]

\[(2\pi)^{-3} \sum_{m \in L} \int d\omega e^{-i\omega \cdot (r-r_m)} 4\pi q_m/[|\omega|^2K(\omega)] , \quad (S6) \]

with \(F^{-1}(K_p)(r) = \int d\omega e^{i\omega \cdot r} ([\epsilon_b-\epsilon_o]/[1+(\tau(r)c)^2]|\omega|^2]) \).

Protein-water interfacial tension is a molecular determinant of protein interactions

In this section, we analyze protein-protein (P-P) interfaces of complexes with reported structure and, by comparing P-P interfaces with protein-water (P-W) interfaces, we show that protein associations are promoted by regions on the
surface of the free subunits that generate unstable P-W interfaces. The analysis upholds the view that PWIT is a molecular indicator of complexation propensity.

The PWIT of a protein with stable soluble structure is determined by the position \(r\)-dependent parameter \(g=g(r)\). Thus, the solvent accessible envelope of the protein surface\(^2,3\) may be covered by a minimal set \(W\) of water-confining osculating (first-order contact) spheres \(D_j\), \(j \in W\), each with its average value \(g=g_j\), which depends on the physicochemical nature of protein group(s) in the contact region.

We now unravel the nature of interfacial hot spots. Interfacial tension arises in \(D_j\) when \(\Delta G_j > 0\), where \(\Delta G_j\) is the interfacial surface tension associated with spanning contact region \(j\), computed using Eq. 2 with the integral restricted to the domain \(D_j\). To validate our results, we examined free subunits in 28 protein complexes (Supplementary Table 1) with defined contact topologies. The most common patches generating interfacial tension involve SABHBs, that is, backbone hydrogen bonds of the protein that are partially exposed to water so that the amide and carbonyl are hydrated by low density water\(^4\) (Fig. 1a). Thus, the most common osculating spheres contact polar patches arising from incomplete shielding of the backbone hydrogen bonds. These spheres constitute \(~73\pm5\%) of the interfacial spheres that fulfill \(\Delta G_j > 0\) in the database of free subunits from the 28 complexes. They are described by the range \(g_j=2.5\pm0.5\), yielding \(\Delta G_j=(1.54\pm0.40)k_BT\). Furthermore, the correlation between the PWIT for the free subunits and their structural deficiency \(\nu\), defined by the ratio of SABHBs
to BHBs, implies that SABHBs are a determinant of interfacial tension (Supplementary Fig. 1).

Nonpolar interfacial cavities with curvature radius $\theta \geq 7\text{Å}$ yield the highest interfacial tension at $\Delta G_j \approx -T \Delta S_j = 13.17 k_B T$. The same contribution is associated with each disjoint $\theta = 7\text{Å}$-sphere covering convex regions ($\theta < -2.7\text{Å}$). By contrast, the "clathrate" range $0 \geq \theta \geq -2.7\text{Å}$, where nonpolar moieties can be hydrated while preserving the tetrahedral hydrogen-bond lattice ($g=4$) do not generate tension, as expected.

To support the intuitively obvious claim that PWIT is a determinant of the propensity of the protein to associate, we examined free subunits in 28 protein complexes (Supplementary Table 1) with defined contact topologies. The total area of the P-P interfaces for each complex is computed after identification of the residues in each subunit that are engaged in intermolecular contacts. On the other hand, the protein-water (P-W) interfacial tension of each free subunit is computed by numerical integration of Eqs. 2, 6 with charge and atomic radii assigned using the program PDB2PQR. We define filtered sets $W_n = \{j \in W: \Delta G_j \geq nk_BT\}$ $(n=1,2,...)$ of contributors to the P-W interfacial tension in the free subunits $(W_n \subset W_{n'}$ for $n > n')$, with S_n, the total P-W interface associated with W_n. In all 28 complexes examined, the total P-P interface distributed among the subunits within the complex is 100% contained in S_2, and it is only 60±7% contained in S_3.

These results suggest that interfacial solvent cavities spanned at a thermodynamic cost $\Delta G \geq 2k_B T$ are the promoters of protein associations. This
conclusion is confirmed by the tight correlation ($R^2=0.83$) between A_2, the surface area of S_2, and the total P-P interfacial area of each complex (Supplementary Fig. 2a). This correlation becomes weaker for S_1 with area A_1 ($R^2=0.60$) and nearly vanishes ($R^2=0.09$) when we consider (as control) the total solvent-exposed surface area (SESA) of free subunits.

Hot spots in P-P associations were identified by scanning the interface through site-specific substitution of amino acids for alanine (effectively a side-chain truncation). The most extensively scanned interface corresponds to the 1:1 human growth hormone (hGH)-receptor complex7 (Supplementary Fig. 2b). To validate our molecular marker, the hot spots obtained by alanine scanning were contrasted with an in-silico shaving procedure that determines the reduction $\Delta \Delta G_{if} = \Delta G_{if}(m) - \Delta G_{if}(0)$ in interfacial tension introduced by site-directed mutation (0=wild type \rightarrow m=mutation). The latter materializes as side-chain truncation at the β-carbon (equivalent to alanine substitution). A strong correlation exists between $-\Delta \Delta G_{if}$ and the experimental association free energy difference $\Delta \Delta G_a$ produced by substitution of interfacial residues (Supplementary Fig. 2c). The interfacial scanning results validate the nanoscale-thermodynamics derivation of PWIT and upheld the view that this physical attribute is a selective promoter of protein associations.
Supplementary Table 1. Exhaustive catalog of representative topologies of inter-subunit contacts for protein complexes with up to six subunits reported in the protein data bank (PDB). The topology of the inter-subunit contact pattern for a complex is given by a graph where a ball represents a protein subunit and a stick between two balls represents a protein-protein (P-P) interface. The PDB accession codes for 28 nonhomologous complexes illustrating the different topologies are indicated by their PDB-accession codes (four alphanumeric characters). Each PDB entry designates the crystal structure of a protein complex. The species represented pertain to the entire spectrum of population sizes, from virus (1htg) to human (1dvz). The numbers in parentheses denote % decrease in overall PWIT upon complexation starting with free subunits. The dataset is used to unravel the role of P-W interfacial tension patches as promoters of protein associations.

Topology	PDB Accession	Topology	PDB Accession	Topology	PDB Accession
![Topology 1](image1.png)	2af7(63)	![Topology 2](image2.png)	1fr3(61)	![Topology 3](image3.png)	2siv(59)
![Topology 4](image4.png)	lub4(53)	![Topology 5](image5.png)	2alb(51)	![Topology 6](image6.png)	2c5r(40)
![Topology 7](image7.png)	4otc(57)	![Topology 8](image8.png)	1qoh(54)	![Topology 9](image9.png)	1dvz(57)
![Topology 10](image10.png)	1jtk(55)	![Topology 11](image11.png)	1hho(64)	![Topology 12](image12.png)	1nys(39)
![Topology 13](image13.png)	1uo5(54)	![Topology 14](image14.png)	1vwe(53)	![Topology 15](image15.png)	1fvu(50)
![Topology 16](image16.png)	1zij(52)	![Topology 17](image17.png)	1lufy(51)	![Topology 18](image18.png)	1wud(42)

1u4j(48) 1hpo(56) 1hvg(50) 1lve(47) 2oqq(60) 1v2z(51) 1btn(62) 2ien(59) 1ihb(57) 1p6z(72) 3orc 1b8x 2gfh 1goc 2b65 1h5m 1may 1uga 1quz
Supplementary Figure 1. Correlation between structural deficiency (\(v\), in percent) and protein-water interfacial tension for the free subunits from the 28 complexes in the database indicated in Supplementary Table 1. In the well-curated yeast (\(S.\ cerevisiae\)) interactome, structural deficiency has been shown to be a molecular indicator of interactivity\(^8\), implying that PWIT is also a good marker for complexation propensity.
Supplementary Figure 2. Protein-water interfacial tension promotes biomolecular associations.

a. Total area of the surfaces that generate protein-water (P-W) interfacial tension in the free subunits (uncomplexed state) plotted against the total protein-protein (P-P) interfacial area for 28 protein complexes (Supplementary Table 1). The total surface area of cavities with PWIT ≥ k_B T (region A₁, k_B T = baseline energy of thermal fluctuations) correlates with the P-P interfacial area with R^2 = 0.60. This correlation improves to R^2 = 0.83 when we consider region A₂, comprised only of cavities generating higher interfacial tension (PWIT ≥ 2k_B T), and virtually vanishes (R^2 = 0.09) when we consider simply the solvent-exposed surface areas (SESAs).

b. The P-P interface between the human growth hormone (hGH) and its receptor in the 1:1 complex.

c. Comparison with experimental alanine scanning of the P-P interface of the hGH receptor validates the interfacial tension computation. Correlation between association free energy differences ΔΔG_a between mutant (m) and wild type (0)
for the alanine substitution of each residue from the hGH receptor at the P-P interface and the interfacial free energy difference between wild-type and mutant for the free protein subunit (uncomplexed hGH receptor). The association free energy is computed as $\Delta G_a = -RT\ln K_a = RT\ln(K_d)$, where K_a, K_d are the association and dissociation equilibrium constants, respectively. The hot-spot residues (biggest contributors to affinity) obtained by alanine scanning were contrasted with an in-silico shaving procedure that gives the change in PWIT ($-\Delta \Delta G_{if}$) introduced by a side-chain truncation at the β-carbon. A strong correlation exists between $-\Delta \Delta G_{if}$ and the association free energy difference $\Delta \Delta G_a$ generated by site-specific substitution of interfacial residues.

PWIT is an indicator of complexation propensity: Orthologs with different levels of homo-oligomerization

In this section, we compare the level of homo-oligomerization for pairs of orthologous proteins in order to demonstrate that the PWIT of the free protein subunit is the determinant of the oligomerization complexity (Fig. 1b).

	D2 symmetry	C2 symmetry	seq. identity	P-P interface ratio	PWIT ratio
3mds	1gv3	58	86%	73%	
3pgm	1 e58	48	81%	88%	
1o58	1d6s	52	78%	71%	
1nl	1mjf	35	78%	48%	
1uwt	1cbg	24	75%	80%	
1rli	1x77	30	58%	65%	
1non	1a3c	73	55%	50%	
1eyi	1dk4	30	46%	34%	
1j2r	1nf9	27	43%	56%	
1ub3	1o0y	45	38%	51%	
1vjp	1j5p	56	37%	31%	
1x94	1nri	26	31%	27%	
D3 symmetry	C2 symmetry	seq. identity	P-P interface ratio	PWIT ratio	
------------	------------	--------------	---------------------	------------	
1pjc	1qp8	36	91%	70%	
1tzf	1vgz	36	82%	72%	
1u1z	1mka	27	73%	73%	
1cks	1puc	51	68%	71%	
1pmm	1ajr	22	65%	50%	
1nw4	1jys	28	62%	60%	
1a3g	1daa	29	60%	67%	
1tqj	1h1y	44	50%	57%	
1on3	1od2	21	50%	46%	
1kr2	1kam	40	34%	42%	
1nqb	1moe	69	18%	15%	
1k3p	1aj8	36	15%	11%	
1p8c	1knc	37	76%	69%	
1pi2	1k9b	67	50%	57%	
1mkz	1uuy	32	42%	37%	
1uiy	1jxz	34	39%	41%	
1t3d	1xat	39	14%	17%	

Supplementary Table 2. PDB-reported ortholog proteins with different levels of homo-oligomerization and different complex symmetry. The ratio of P-P interfaces (small to large)9 and the ratio of PWITs for the respective free subunits are given for pairs of orthologous proteins with different levels of oligomerization.

Species Key
PDB Complex	Species	PDB Complex	Species
3mds	Thermus thermophilus	1gva	Anabaema
3pgm	S. cerevisiae	1e58	E. coli
1058	Thermotoga maritima	1d6s	Salmonella typhimorium
1inl	Thermotoga maritima	1mjf	Pyrococcus furiosus
1uwt	Sulfolobus solfataricus	1c8g	Trifolium repens
1rli	Bacillus subtilis	1x77	Pseudomonas aeruginosa
1non	Bacillus caldolyticus	1a3c	Bacillus subtilis
			Methanocaldococcus jannaschii
1eye	Sus scrofa	1dk4	Pseudomonas aeruginosa
1j2r	E. coli	1nf9	Pseudomonas aeruginosa
1ub3	Thermus thermophilus	1o0y	Thermotoga maritima
1vjp	Thermotoga maritima	1j5p	Thermotoga maritima
1x94	Vibrio cholerae	1nri	Haemophilus influenzae
1a16	E. coli	1pv9	Pyrococcus furiosus
1sjw	Streptomyces nogalater	1ocv	Pseudomonas aeruginosa
1sru	E. coli	1se8	Deinococcus radiodurans
			Geobacillus
1b9b	Thermotoga maritima	2btm	stearothermophilus
			Geobacillus
1bj4	Homo sapiens	1kkn	stearothermophilus
1qsm	S. cerevisiae	1bo4	Serratia marcescens
1f8w	Enterococcus faecalis	1lvi	Pseudomonas putida
1pjc	Phormidium lapideum	1qp8	Pyrobaculum aerophilum
1tf8	Salmonella enterica	1vqz	Rieisseria gonorrhoeae
	Pseudomonas aeruginosa		
1u1z	E. coli	1mka	Schyzosaccharomyces pombe
1cks	Homo sapiens	1puc	
1pmm	E. coli	1ajr	Sus scrofa
			E. coli
1nw4	Plasmodium falciparum	1jys	
1a3g	E. coli	1daa	Bacillus sp. ym-1
1tqj	Synechocystis sp. Propionibacterium	1h1y	Oryza sativa
	frederichii		
1on3	E. coli	1od2	S. cerevisiae
1kr2	Homo sapiens	1kam	Bacillus subtilis
1nqb	Mus musculus	1moe	Mus musculus
1k3p	E. coli	1aj8	Pyrococcus furiosus
1p8c	Thermotoga maritima	1knc	Mycobacterium tuberculosis
1pi2	Glycine max	1k9b	Glycine max
1mkz	E. coli	1uuy	Arabidopsis thaliana
1uiy	Thermotoga maritima	1jxg	Pseudomonas sp.
1t3d	E. coli	1xat	Pseudomonas aeruginosa
Accuracy of the homology-based prediction

In this section, we test the homology-based prediction of PWIT for proteins that have orthologs with reported structure. Using as test cases proteins with reported structures possessing orthologs that can serve as homology templates, we determine the accuracy of the prediction as a function of the level of sequence identity between test and template.

Supplementary Figure 3. Accuracy of the homology-based prediction (units in both axis are percentages). A testing set was constructed based on the fact that each of the 106 ortholog groups across the 36 species examined has two PDB representatives for 2 different species (the species are typically *E. coli* and *H. sapiens*, the most representative species in PDB). Thus, the testing set consists of 106 proteins with PDB-reported structures and their respective PDB-reported orthologs were used as templates to build 106 homology models that were contrasted against the actual PDB structures. The accuracy of the homology model was assessed by computing its PWIT, denoted $\Delta G_{\text{if}}(\text{hom})$, and comparing it with the value ΔG_{if} obtained from the actual protein structure. Thus, the accuracy of the models was determined by plotting the relative deviation
$|\Delta G_{\text{dd}}(\text{hom})-\Delta G_{\text{dd}}|/\Delta G_{\text{dd}}$ ($\Delta G_{\text{dd}}>0$ for any PDB structure) expressed as % against the % sequence identity between the test protein and its orthologous template. Error bars indicate dispersions across pairs of proteins with identical % sequence identity. The results reveal that a sequence identity larger than 35% guarantees over 90% accuracy of the model.
Relative structural deficiency of orthologous proteins

In this section we establish the statistical fact that the extent of structural degradation of orthologous proteins correlates negatively with the population size of the species to which the orthologs belong.

Supplementary Figure 4. Average structural deficiency across species relative to *E. coli*, given as %. The structural deficiency S_n for species n relative to *E. coli* is defined as $S_n = \langle S_{j,n}\rangle = \langle (v_{j,n} - v_{j,1})/v_{j,1}\rangle_j$, where $v_{j,n} = \nu$-value of protein from species n in ortholog group j ($j=1,2,\ldots,106$) and the average is taken over all 106 ortholog groups.
Sequence-based identification of SABHBs

In this section, we show that the structure degradation parameter \(\psi \) can be determined from the protein sequence through a tight correlation between the extent of shielding of the backbone on a particular region of the chain and the disorder propensity of the region.

![Supplementary Figure 5](image)

Supplementary Figure 5. Correlation between the disorder score of a residue (\(f_d \)) and the extent of protection (\(\zeta \)) of the backbone hydrogen bond engaging that particular residue (if any). The parameters are defined in Methods. The disorder score on each individual residue was obtained for 2,806 nonredundant nonhomologous PDB domains. Residues have been independently grouped in 45 bins of 400 residues each, according to the extent of protection (\(7 \leq \zeta \leq 52 \)). The average score has been determined for each bin (square), and the error bars represent the dispersion of disorder scores within each bin. The strong correlation between the disorder score and the extent of wrapping and the dispersions obtained imply that SABHBs can be safely inferred in regions where the disorder score is \(0.35 \leq f_d \leq 0.95 \) (actually, \(f_d = 0.8 \) is the realistic threshold for disorder, hence the more realistic range is \(0.35 \leq f_d \leq 0.8 \)). The rectangle represents the region of order-disorder intermediate region where the existence of SABHBs (\(7 \leq \zeta \leq 19 \), for desolvation radius 6Å) may be inferred from disorder.
score with absolute certainty. No hydrogen bond in monomeric domains reported in PDB was found to possess less than 7 protectors, implying a threshold for structural sustainability in soluble proteins.

Cross-validation of disorder-based and homology-based inference of v-values

In this section, we validated the disorder-based estimation of v-values by comparing them with homology-based inferences.

![Graph](image)

Supplementary Figure 6. Cross-validation of disorder-based and homology-based inference of v-values (units in both axis are percentages). To cross-validate the homology-based and sequence-based v-value prediction, an exhaustive set of 2,792 homology models for the 106 orthologous groups considered was constructed using the 325 PDB-reported templates (Supplementary Tables 3, 4). Each group has on average 32 orthologous proteins. The v-value for a homology model structure, denoted v(hom) was compared with v(dis), the v-value obtained directly from the sequence-based disorder prediction (Supplementary Figure 5) for different levels of sequence identity between template and query protein. The results reveal that the homology-based inference can be assessed using the disorder score prediction with 85% reliability for >35% sequence identity.
Relative partial disorder across 105 species

In this section we compare the disorder-based inferences of structural degradation for orthologous proteins across 105 species to corroborate the broad pattern of small-population-high-degradation.

Supplementary Figure 7. Relative partial disorder across 105 species. The original set of 106 ortholog groups with PDB representatives was expanded to a set of 541 ortholog groups (most of which now lack PDB representation), so that each group contains proteins in at least 100 of the 105 species indicated below. The ν-value for each ortholog protein was determined from the sequence-based disorder score (Supplementary Figure 5) by identifying regions of partial disorder and the relative protein-complexation propensity for species n was determined as $S_n = \langle S_{i,n} \rangle_j = \langle (v_{j,n} - v_{j,1})/v_{j,1} \rangle_j$, where $v_{j,n} = \nu$-value of protein from species n in ortholog group j ($j=1,2,\ldots,541$). The relative protein-complexation propensity is
shown to increase with decreasing population size, in qualitatively agreement with the trend shown in Figure 2a. The species numbering is as follows:

species number	species name
1	Tetrahymena thermophila
2	Haloferax volcanii
3	Salmonella enterica
4	Escherichia coli
5	Yersinia pestis
6	Cyanidioschyzon merolae
7	Vibrio cholera
8	Chlamydomonas reinhardtii
9	Campylobacter jejuni
10	Cryptosporidium hominis
11	Cryptosporidium parvum
12	Ostreococcus tauri
13	Coccidioides immitis
14	Plasmodium falciparum
15	Plasmodium vivax
16	Aspergillus fumigatus
17	Theileria annulata
18	Theileria parva
19	Saccharomyces cerevisiae
20	Schizosaccharomyces pombe
21	Ustilago maydis 521
22	Magnaporthe grisea 70-15
23	Monosiga brevicollis
24	Cryptococcus neoformans
25	Trypanosoma cruzi
26	Batrachochoytrium dendrobatidis
Yarrowia lipolytica	
Entamoeba histolytica	
Kluyveromyces lactis	
Fusarium graminearum FG3	
Puccinia graminis f. sp. tritici	
Neurospora crassa	
Stagonospora nodorum SN15	
Candida albicans SC5314	
Candida glabrata	
Rhizopus oryzae	
Phytophthora sojae	
Trichomonas vaginalis	
Giardia lamblia	
Debaryomyces hansenii	
Leishmania major Friedlin	
Thalassiosira pseudonana	
Dictyostelium discoideum	
Schistosoma mansoni	
Phytophthora ramorum	
Trichoplax adhaerens	
Coprinopsis cinereus okayama7#130	
Branchiostoma floridae	
Ciona intestinalis	
Ciona savignyi	
Daphnia pulex	
Pediculus humanus	
Helobdella robusta	
Drosophila pseudoobscura	
Drosophila virilis	
Acrystosiphon pisum	
Drosophila willistoni	
Drosophila melanogaster	
	Scientific Name
---	---------------------------------------
59	*Drosophila ananassae*
60	*Drosophila grimshawi*
61	*Drosophila mojavensis*
62	*Tribolium castaneum*
63	*Sorghum bicolor*
64	*Bombyx mori*
65	*Arabidopsis thaliana*
66	*Pristionchus pacificus*
67	*Lottia gigantea*
68	*Caenorhabditis japonica*
69	*Caenorhabditis remanei*
70	*Caenorhabditis elegans*
71	*Caenorhabditis briggsae*
72	*Brugia malayi*
73	*Caenorhabditis brenneri*
74	*Capitella spI*
75	*Culex pipiens*
76	*Nasonia vitripennis*
77	*Anopheles gambiae*
78	*Ixodes scapularis*
79	*Aedes aegypti*
80	*Nematostella vectensis*
81	*Physcomitrella patens*
82	*Oryzias latipes*
83	*Oryza sativa*
84	*Apis mellifera*
85	*Populus trichocarpa*
86	*Gasterosteus aculeatus*
87	*Pinus sylvestris*
88	*Danio rerio*
89	*Fugu rubripes*
90	*Tetraodon nigroviridis*
1. Fernández, A., Sosnick, T. R. & Colubri, A. Dynamics of hydrogen-bond desolvation in folding proteins. *J. Mol. Biol.* **321**, 659-675 (2002).

2. Street, A. G. & Mayo, S. L. Pairwise calculation of solvent accessible surface areas. *Fold. Des.* **3**, 253-258 (1998).

3. Zhang, N., Zeng, C. & Wingreen, N. S. Fast accurate evaluation of protein solvent exposure. *Proteins Strct. Funct. Bioinf.* **57**, 565-576 (2004).

4. Pietrosemoli, N., Crespo, A. & Fernández, A. Dehydration propensity of order-disorder intermediate regions in soluble proteins. *J. Proteome Res.* **6**, 3519-3526 (2007).
5. Levy, E. D., Pereira-Leal, J. B., Chothia, C. & Teichmann, S. A. 3D Complex: a structural classification of protein complexes. *PLoS Comput. Biol.* **2**, e155 (2006).

6. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. *Nuc. Ac. Res.* **32**, W665-W667 (2004).

7. Clackson, T., Ultsch, M. H., Wells, J. A. & de Vos, A. M. Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. *J. Mol. Biol.* **277**, 1111-1128 (1998).

8. Fernández, A. Molecular basis for evolving self-dissimilarity in the yeast protein network. PLoS Computational Biology 3, e226 (2007).

9. Levy, E. D., Boeri Erba, E., Robinson, C. V. & S. A. Teichmann. Assembly reflects evolution of protein complexes. *Nature* **453**, 1262-1265 (2008).
Supplementary Material - Part II

Supplementary Tables 3-7

Nonadapative origins of interactome complexity

Ariel Fernández¹,² and Michael Lynch³

¹Department of Bioengineering, Rice University, Houston, TX 77005, USA
²Department of Computer Science, The University of Chicago, Chicago, IL 60637
³Department of Biology, Indiana University, Bloomington, IN 47405

Supplementary Table 3.

36 species containing orthologs in at least 90 out of 106 groups of orthologous proteins identified with OrthoMCL for which there are PDB representatives from at least 2 species.

Euryarchaeota (halobacteria)
ARCH: hvo
hvo Haloferax volcanii

Gamma proteobacteria
GAMA: eco sty sfl ype vch
eco Escherichia coli W3110 GenBank
sty Salmonella enterica
ype Yersinia pestis CO92
vch Vibrio cholerae O1 biovar eltor str. N16961

Epsilon proteobacteria
EPSILON: caj
caj Campylobacter jejuni

Ciliate
CIL: tth
tth Tetrahymena thermophila

ddi (eukaryota) Dictyostelium discoideum

Fungi (ascomycota, basidiomycota)
ASCO: sce ncr dha yli kla cgl spo
 sce Saccharomyces cerevisiae
 ncr Neurospora crassa
 dha Debaryomyces hansenii
 yli Yarrowia lipolytica
 kla Kluyveromyces lactis
 cgl Candida glabrata
 spo Schizosaccharomyces pombe

Plants and Algae
PLAL: psy osa ath cre tps cme ota
 psy Pinus sylvestris
 osa Oryza sativa
 ath Arabidopsis thaliana
 cre Chlamydomonas reinhardtii
 tps Thalassiosira pseudonana
 cme Cyanidioschyzon merolae
 ota Ostreococcus tauri

Nematodes
NEMA: cel cbr
 cel Caenorhabditis elegans
 cbr Caenorhabditis briggsae

Arthropoda
ARTH: aga dme aed ame dpu
 aga Anopheles gambiae
 dme Drosophila melanogaster
 aed Aedes aegypti
 ame Apis mellifera
 dpu Daphnia pulex

Fish and Bird
FISH: tni fru dre /gga
 tni Tetraodon nigroviridis
 fru Takifugu rubripes
 dre Danio rerio
 gga Gallus gallus

Mammals (mouse, rat, human)
MAMM: mmu rno hsa
Supplementary Table 4.
Extent of PDB representation for each ortholog group

OrthoMCL identifier	Number of species	Protein description in E. coli proteome		
OG2_71139	3	Full=UPF0076 protein yjgF		
OG2_71139	3	Full=Protein tdcF		
OG2_70953	2	Full=Dihydrolipoyl dehydrogenase		
OG2_71130	3	Full=Adenylate kinase		
OG2_71331	2	Full=GTP cyclohydrolase 1		
OG2_71036	2	Full=tRNA Delta		
OG2_70694	2	Full=Biotin carboxylase		
OG2_70752	2	Full=50S ribosomal protein L14		
OG2_70698	2	Full=Chaperone protein htpG		
OG2_71321	2	Full=Pyridoxine kinase		
OG2_71321	2	Full=Pyridoxamine kinase		
OG2_70755	2	Full=Pyruvate kinase II		
OG2_70755	2	Full=Pyruvate kinase I		
OG2_70925	3	Full=Ribonucleoside-diphosphate reductase 2 subunit alpha		
OG2_70925	3	Full=Ribonucleoside-diphosphate reductase 1 subunit alpha		
OG2_71349	2	Full=ATP-independent RNA helicase dbpA		
OG2_70922	2	Full=Carbamoyl-phosphate synthase large chain		
OG2_70928	3	Full=Signal recognition particle protein		
OG2_71657	3	Full=Ribonuclease D		
OG2_70948	3	Full=UDP-glucose 4-epimerase		
OG2_70949	2	Full=Inositol-1-monophosphatase		
OG2_71140	2	Full=UPF0001 protein yggS		
OG2_71025	3	Full=Adenylosuccinate synthetase		
OG2_70967	3	Full=Sulfite reductase [NADPH] flavoprotein alpha-component		
OG2_71999	2	Full=Uncharacterized sugar kinase ydjH		
OG2_70819	3	Full=Aromatic-amino-acid aminotransferase		
OG2_70819	3	Full=Aspartate aminotransferase		
OG2_72499	2	Full=Protein bolA		
OG2_71318	2	Full=Adenine phosphoribosyltransferase		
OG2_71403	2	Full=Galactokinase		
OG2_70765	3	Full=Serine hydroxymethyltransferase		
OG2_71569	2	Full=D-tyrosyl-tRNA		
OG2_71038	2	Full=Adenylytransferase thiF		
OG2_71038	2	Full=Molybdopterin biosynthesis protein moeB		
OG2_71565	2	Full=Aldose 1-epimerase		
OG2_71094	2	Full=DNA topoisomerase 4 subunit B		
OG2_71497	2	Full=Gamma-glutamyl phosphate reductase		
OG2_70864	2	Full=Threonyl-tRNA synthetase		
OG2_70867	4	Full=Phosphoglycerate kinase		
Accession	Count	Description		
------------	-------	---		
OG2_70861	2	Full=DNA polymerase IV		
OG2_70737	3	Full=Deoxyuridine 5'-triphosphate nucleotidohydrolase		
OG2_70862	2	Full=2-oxoglutarate dehydrogenase E1 component		
OG2_71162	3	Full=Aspartate ammonia-lyase		
OG2_70951	2	Full=Cold-shock DEAD box protein A		
OG2_71000	4	Full=Ribonucleoside-diphosphate reductase 1 subunit beta		
OG2_71007	3	Full=Glutaredoxin-3		
OG2_70708	2	Full=Thioredoxin-1		
OG2_70708	2	Full=Thioredoxin-2		
OG2_72501	2	Full=Phosphoserine aminotransferase		
OG2_71163	2	Full=GMP synthase [glutamine-hydrolyzing]		
OG2_70858	2	Full=CTP synthase		
OG2_70726	4	Full=FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase		
OG2_70726	4	Full=FKBP-type peptidyl-prolyl cis-trans isomerase fpkA		
OG2_71266	3	Full=Superoxide dismutase [Cu-Zn]		
OG2_71070	2	Full=ATP synthase subunit alpha		
OG2_70995	2	Full=ATP synthase subunit beta		
OG2_70994	3	Full=Thymidylate kinase		
OG2_71370	2	Full=Protease 3		
OG2_70996	3	Full=DNA polymerase III subunit tau		
OG2_70990	2	Full=Lysyl-tRNA synthetase, heat inducible		
OG2_70990	2	Full=Lysyl-tRNA synthetase		
OG2_70796	2	Full=30S ribosomal protein S13		
OG2_70795	2	Full=30S ribosomal protein S5		
OG2_73374	2	Full=S-formylglutathione hydrolase yeiG		
OG2_73374	2	Full=S-formylglutathione hydrolase frmB		
OG2_70963	2	Full=Spermidine synthase		
OG2_70712	2	Full=DNA mismatch repair protein mutS		
OG2_70822	3	Full=Glutathione reductase		
OG2_71067	2	Full=ATP synthase gamma chain		
OG2_71942	3	Full=Methionyl-tRNA synthetase		
OG2_71100	2	Full=Coenzyme A biosynthesis bifunctional protein coaBC		
OG2_70978	2	Full=Guanylate kinase		
OG2_70785	2	Full=S-adenosylmethionine synthetase		
OG2_70787	2	Full=30S ribosomal protein S11		
OG2_71188	3	Full=Catalase HPII		
OG2_71183	4	Full=Fructose-6-phosphate aldolase 2		
OG2_71183	4	Full=Transaldolase A		
OG2_71183	4	Full=Fructose-6-phosphate aldolase 1		
OG2_71183	4	Full=Transaldolase B		
OG2_70778	2	Full=Methionine aminopeptidase		
OG2_70856	2	Full=Chaperone protein dnaK		
OG2_70851	3	Full=Orotate phosphoribosyltransferase		
OG2_70706	2	Full=D-erythrose-4-phosphate dehydrogenase		
OG2_70706	2	Full=Glyceraldehyde-3-phosphate dehydrogenase A		
OG2_73272	3	Full=Protein cyaY		
OG2_70916	2	Full=Chaperone protein dnaJ		
OG2_70913	2	Full=Copper-exporting P-type ATPase A		
OG2_71350	2	Full=Thymidylate synthase		
OG2_71352	2	Full=Dihydroorotate dehydrogenase		
OrthoMCL identifier	Species (hsa = human i.e. Homo sapiens etc)	UniProt identifier	Protein Description	PDB entries
---------------------	--	-------------------	---------------------	-------------
OG2_71680 2	Full=Succinate-semialdehyde dehydrogenase [NADP+]			
OG2_71680 2	Full=Lactaldehyde dehydrogenase			
OG2_71201 2	Full=50S ribosomal protein L17			
OG2_70777 4	Full=Superoxide dismutase [Mn]			
OG2_70777 4	Full=Superoxide dismutase [Fe]			
OG2_70770 3	Full=Enolase			
OG2_70959 2	Full=Translation initiation factor IF-2			
OG2_70828 2	Full=Curved DNA-binding protein			
OG2_71614 2	Full=Ribokinase			
OG2_70904 2	Full=Phosphoribosylamine--glycine ligase			
OG2_70904 2	Full=Phosphoribosylformylglycinamidine cyclo-ligase			
OG2_70900 3	Full=Cystathionine gamma-synthase			
OG2_70804 3	Full=Nucleoside diphosphate kinase			
OG2_71042 2	Full=L-lactate dehydrogenase [cytochrome]			
OG2_71043 2	Full=3-oxoacyl-[acyl-carrier-protein] synthase 2			
OG2_71327 2	Full=Ribosome-recycling factor			
OG2_71048 2	Full=Nucleoside-triphosphatase rdgB			
OG2_71532 2	Full=Aminomethyltransferase			
OG2_71430 2	Full=Ribose-5-phosphate isomerase A			
OG2_70886 2	Full=Acyll carrier protein			
OG2_70885 2	Full=Aminotransferase ybdL			
OG2_71233 2	Full=D-3-phosphoglycerate dehydrogenase			
OG2_71129 3	Full=Glycogen phosphorylase			
OG2_71129 3	Full=Maltodextrin phosphorylase			
OG2_70998 4	Full=Triosephosphate isomerase			
OG2_70872 2	Full=Uncharacterized protein ycgM			
OG2_71232 2	Full=Tyrosyl-tRNA synthetase			
OG2_70651 2	Full=2,5-diketo-D-gluconic acid reductase A			
OG2_70651 2	Full=Uncharacterized protein yeaE			
OG2_70651 2	Full=2,5-diketo-D-gluconic acid reductase B			
OG2_70727 2	Full=Glutaredoxin-4			
OG2_71607 3	Full=Malate dehydrogenase			
OG2_70939 2	Full=Glucose-6-phosphate isomerase			
OG2_70931 2	Full=Fumarate reductase iron-sulfur subunit			
OG2_70931 2	Full=Succinate dehydrogenase iron-sulfur subunit			

Supplementary Table 5.

Structural database for the 106 ortholog groups

First column: species (hsa = human i.e. Homo sapiens etc),
second column: OrthoMCL identifier,
third column: UniProt identifier,
fourth column: protein description,
fifth column: list of PDB files and chains that represent the protein (PDB entries divided with “ | ”).
eco NP_418664.2 P0AF93 UPF0076 protein yjgF 1QU9,A/B/C=1-128|1QU9,A=1-128
eco NP_417583.4 P0AGL2 Protein tdcF 2UYJ,A/B/C=1-129|2UYK,A/B/C=1-129|2UYN,A=1-129, B/C=1-129|2UYP,A/B/C=1-129
sce YIL051C P40185 Protein MMF1, mitochondrial
sce YER057C P40037 Protein HMF1 1JD1,A/B/C/D/E/F=1-129
cel WBGene00016011 Q10121 UPF0076 protein C23G10.2
mmu ENSMUSP00000022946 P52760 Ribonuclease UK114
hsa ENSP00000254878 P52758 Ribonuclease UK114 1ONI,A/B/C/D/E/F/G/H/I=2-137|

OG2_70953
eco NP_414658.1 P0AP90 Dihydrolipoyl dehydrogenase
sce YFL018C P09624 Dihydrolipoyl dehydrogenase, mitochondrial 1JEH,A/B=22-499|1V59,A/B=22-499
cel WBGene00010794 O17953 Dihydrolipoyl dehydrogenase
mmu ENSMUSP0000002980 O08749 Dihydrolipoyl dehydrogenase, mitochondrial
hsa ENSP00000205402 P09622 Dihydrolipoyl dehydrogenase, mitochondrial 12MC,A/B/C/D/E/F/G/H=36-509|1ZMD,A/B/C/D/E/F/G/H=36-509|1ZY8,A/B/C/D/E/F/G/H/I/J=36-509|2F5Z,A/B/C/D/E/F/G/H/I/J=36-509|

OG2_71130
eco NP_415007.1 P69441 Adenylate kinase 1A6T5, mitochondrial 1A8R,A/B=1-214|1ANK,A/B=1-214|1E4V,A/B=1-214|1E4Y,A/B=1-214|2ECK,A/B=1-214|4AKE,A/B=1-214|
sce YDR226W P07170 Adenylate kinase 1 1AKY,A=3-221|1DVR,A/B=3-221|2AKY,A=3-221|3AKY,A=3-221|
cel WBGene00016205 P34346 Adenylate kinase 2, mitochondrial
mmu ENSMUSP00000030583 Q9WTP6 Adenylate kinase 2, mitochondrial
hsa ENSP00000346921 P54819 Adenylate kinase 2, mitochondrial 2C9Y,A=2-238|

OG2_71331
eco NP_416658.1 P0A6T5 GTP cyclohydrolase 1 1A8R,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O=2-222|1A9C,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O=2-222|1FBX,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O=2-222|1GTP,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O=2-222|1N3R,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O=2-222|1N3S,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O=2-222|
sce YGR267C P51601 GTP cyclohydrolase 1
cel WBGene00000298 Q19980 GTP cyclohydrolase 1
mmu ENSMUSP00000087405 Q05915 GTP cyclohydrolase 1
hsa ENSP00000254299 P30793 GTP cyclohydrolase 11FB1,A/B/C/D/E=55-250|

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
eco NP_417722.1 P24182 Biotin carboxylase 1BNC,A/B=1-449|1DV1,A/B=1-449|1DV2,A/B=1-449|1K69,A=1-447|2GPS,A/B=1-449|2GPW,A/B/C/D=1-449|2J9G,A/B=1-449|2V58,A/B=1-449|2V59,A/B=1-449|2V5A,A/B=1-449|2VR1,A/B=1-449|2W6M,A/B=1-449|2W6N,A/B=1-449|2W6O,A/C=1-449|2W6P,A/B=1-449|2W6Q,A/B=1-449|2W6Z,A/B=1-449|2W70,A/B=1-449|2W71,A/C=1-449|3G8C,A/B=1-444|3G8D,A/B=1-444|
sce YGL062W P11154 Pyruvate carboxylase 1
sce YBR218C P32327 Pyruvate carboxylase 2
sce YBR208C P32528 Urea amidolylase
cel WBGene00009319 Q45430 Protein F32B6.2, partially confirmed by transcript evidence
cel WBGene00017864 Q19842 Propionyl-CoA carboxylase alpha chain, mitochondrial
cel WBGene0004258 O17732 Pyruvate carboxylase 1
mmu ENSMUSP00000038763 Q91ZA3 Propionyl-CoA carboxylase alpha chain, mitochondrial
mmu ENSMUSP00000029259 Q99MR8 Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial
mmu ENSMUSP00000063825 Q05920 Pyruvate carboxylase, mitochondrial
hsa ENSP00000365463 B4DKY8 cDNA FLJ59564, highly similar to Propionyl-CoA carboxylase alpha chain, mitochondrial
hsa ENSP00000347900 P11498 Pyruvate carboxylase, mitochondrial
hsa ENSP00000265594 Q96RQ3 Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial 2EJM,A=640-725#
OG2_70752 # # # # #
eco NP_417769.1 P0ADY3 50S ribosomal protein L14 1P85,I=1-123|1P86,I=1-123|1VS6,K=1-123|1VS8,K=1-123|2AW4,K=1-123|2AWB,K=1-123|2GYA,I=2-123|2GYC,I=2-123|2I2T,K=1-123|2I2V,K=1-123|2J28,K=2-122|2QAM,K=1-123|2QAO,K=1-123|2QBA,K=1-123|2QBC,K=1-123|2QBE,K=1-123|2QBG,K=1-123|2QBI,K=1-123|2QBK,K=1-123|2QOV,K=1-123|2QOX,K=1-123|2QOZ,K=1-123|2QP1,K=1-123|2RDO,K=1-123|2Z4L,K=1-123|2Z4N,K=1-123|3BBX,K=1-123|3FIK,K=2-122|
sce YKL170W P35996 54S ribosomal protein L38, mitochondrial
sce YER117W P04451 60S ribosomal protein L23 1K5Y,R=7-137|1S1I,R=1-137|
sce YBL087C P04451 60S ribosomal protein L23 1K5Y,R=7-137|1S1I,R=1-137|
cel WBGene000004435 P48158 60S ribosomal protein L23
mmu ENSMUSP00000099435 P62830 60S ribosomal protein L23
hsa ENSP00000367336
OG2_70698 # # # # #
eco NP_415006.1 P0A6Z3 Chaperone protein htpG
1SF8,A/B/C/D/E/F/G/H=511-624|1Y4S,A/B=1-559|1Y4U,A/B=1-559|2GQ0,A/B=230-495|2IOP,A/B/C/D=1-624|2IOQ,A/B=1-624|2IOR,A=1-215|
sce YPL240C P02829 ATP-dependent molecular chaperone HSP82
1A4H,A=1-220|1AH6,A=1-220|1AH8,A/B=1-220|1AM1,A=2-214|1AMW,A=1-214|1BGQ,A=1-214|1HK7,A/B=273-560|1US7,A=1-214|1USU,A=273-530|1USV,A/C/E/G=272-530|1ZW9,A=1-220|1ZWH,A=1-220|2AKP,A/B=25-210|2BRC,A=1-214|2BRE,A/B=1-219|2CG9,A/B=1-677|2CGE,A/B/D=273-677|2CGF,A=1-214|2FXS,A=1-220|2IWS,A=1-214|2IWU,A=1-214|2IXW,A=1-214|2IW5,A/B/C/D=1-214|2VWC,A=1-219|2WEP,A=1-220|2WEQ,A=1-220|2WER,A/B=1-220|3C0E,A=1-220|3C11,A=1-220|
sce YMR186W P15108 ATP-dependent molecular chaperone HSC82
cel WBGene00011480 Q22235 Protein T05E11.3, confirmed by transcript evidence
cel WBGene00000915 Q18688 Heat shock protein 90
mmu ENSMUSP00000085380
mmu ENSMUSP0000052746
mmu ENSMUSP0000024739 P11499 Heat shock protein HSP 90-beta
mmu ENSMUSP0000021698 P07901 Heat shock protein HSP 90-alpha
mmu ENSMUSP0000020238 P08113 Endoplasmin
hsa ENSP00000369893 Q58FF6 Putative heat shock protein HSP 90-beta 4
hsa ENSP00000368186 Q58FF3 Putative endoplasmin-like protein
hsa ENSP00000359433 Q58FF2 Heat shock protein 94c
hsa ENSP00000369649 Q58FF7 Putative heat shock protein HSP 90-beta-3
hsa ENSP00000299767 P14625 Endoplasmin
hsa ENSP00000329390
hsa ENSP00000335153 Q14568 Putative heat shock protein HSP 90-alpha A2

################################ OG2_70755 ################################
ecO NP_416368.1 P21599 Pyruvate kinase II
eCO NP_416191.1 P0AD61 Pyruvate kinase I 1E0T,A/B/C/D=1-470|1E0U,A/B/C/D=1-470|1PKY,A/B/C/D=1-470|
sce YOR347C P52489 Pyruvate kinase 2
cel YAL038W P00549 Pyruvate kinase 1 1A3W,A/B=1-500|1A3X,A/B=1-500|
cel WBGene00014001 Q23539 Pyruvate kinase
cel WBGene00009126 B7WNA0 Pyruvate kinase
mmu ENSMUSP0000035417 P53657 Pyruvate kinase isozymes R/L
mmu ENSMUSP0000034834 P52480 Pyruvate kinase isozymes M1/M2
hsa ENSP00000271946 P30613 Pyruvate kinase isozymes R/L 2VGB,A/B/C/D=47-574|2VGF,A/B/C/D=47-574|2VGG,A/B/C/D=47-574|2VGL,A/B/C/D=47-574|
hsa ENSP00000373740

################################ OG2_70785 ################################
eco NP_417417.1 P0A817 S-adenosylmethionine synthetase 1FUG,A/B=2-384|1MXA,A=2-384|1MXB,A=2-384|1MXC,A=2-384|1P7L,A/B/C/D=2-383|1RG9,A/B/C/D=2-383|1XRA,A=2-384|1XRB,A=2-384|1XRC,A=2-384|
sce YLR180W P10659 S-adenosylmethionine synthetase 1
Organism	Accession	Gene Name	Description
sce	YDR502C	P19358	S-adenosylmethionine synthetase 2
mmu	ENSMUSP0000065081	Q6PE05	Mat2a protein
hsa	ENSP00000303147	P31153	S-adenosylmethionine synthetase isoform type-2
eco	NP_414574.1	P00968	Carbamoyl-phosphate synthase large chain
sce	YJR109C	P03965	Carbamoyl-phosphate synthase arginine-specific large chain
mmu	ENSMUSP0000027144	Q8C196	Carbamoyl-phosphate synthase [ammonia], mitochondrial
mmu	ENSMUSP0000013773	B2RQC6	Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase
hsa	ENSP00000264705	P27708	CAD protein
eco	NP_417101.1	P0AGD7	Signal recognition particle 1DUL,A=371-430
sce	YPR088C	P20424	Signal recognition particle subunit SRP54
mmu	ENSMUSP0000093400	P14576	Signal recognition particle 54 kDa protein 1RY1,W=326-434
hsa	ENSP00000216774	P61011	Signal recognition particle 54 kDa protein 1MFQ,C=323-441
eco NP_416318.1 P09155 Ribonuclease D 1YT3,A=1-375
sce YOR001W Q12149 Exosome complex exonuclease RRP6 1MOY,A=207-382|2HBJ,A=129-536|2HBK,A=129-536|2HBL,A=129-536|2HBM,A=129-536
cel WBGene00000796 Q17951 Protein C14A4.4a, confirmed by transcript evidence
mmu ENSMUSP0000017408 P56960 Exosome component 10
hsa ENSP00000366135 Q01780 Exosome component 10 2CPR,A=483-593

eco NP_415280.3 P09147 UDP-glucose 4-epimerase 1A9Y,A=1-338|1A9Z,A=1-338|1KVQ,A=1-338|1KVR,A=1-338|1KVS,A=1-338|1KVT,A=1-338|1KUT,A=1-338|1KVU,A=1-338|1LRJ,A=1-338|1LRK,A=1-338|1LRL,A=1-338|1NAH,A=1-338|1NAI,A=1-338|1UDA,A=1-338|1UDB,A=1-338|1UDC,A=1-338|1XEL,A=1-338|2UDP,A/B=1-338
sce YBR019C P04397 Bifunctional protein GAL10 1Z45,A=1-699
cel WBGene00008132 O62107 Protein C47B 2.6a, confirmed by transcript evidence
mmu ENSMUSP00000095453
hsa ENSP00000313026 Q14376 UDP-glucose 4-epimerase 1EK5,A=1-348|1EK6,A/B=1-348|1HZJ,A/B=1-348|1I3K,A/B=1-348|1I3L,A/B=1-348|1I3M,A/B=1-348|1I3N,A/B=1-348

eco NP_415728.1 P0ADG4 Inositol-1-monophosphatase 2QFL,A=1-267
sce YHR046C P38710 Inositol monophosphatase 1
sce YDR287W Q05353 Inositol monophosphatase 2
cel WBGene00008765 Q19420 Inositol monophosphatase ttx-7
mmu ENSMUSP0000006174 O55023 Inositol monophosphatase
mmu ENSMUSP0000025403 Q91UZ5 Inositol monophosphatase 2
hsa ENSP00000269159 Q14732 Inositol monophosphatase 2 2CZH,A/B=1-288|2CZI,A=1-288|2CZK,A=1-288|2DDK,A/B=1-288|2FVZ,A/B/C/D=16-288|2FVZ,A/B/C/D=16-288
hsa ENSP00000256108 Q29218 Inositol monophosphatase 1AWB,A/B=2-277|1IMA,A/B=1-277|1IMB,A/B=1-277|1IMC,A/B=1-277|1IMD,A/B=1-277|1IME,A/B=1-277|1IMF,A=1-277|2HHM,A/B=2-277

eco NP_417426.1 P67080 UPF0001 protein yggS 1W8G,A=1-234
sce YBL036C P38197 UPF0001 protein YBL036C 1B54,A=1-257|1CT5,A=2-257
cel WBGene00017286 P52057 Proline synthetase co-transcribed bacterial homolog protein
cel WBGene00017285 Q19257 Putative uncharacterized protein
mmu ENSMUSP00000033875 Q922Y8 Proline synthetase co-transcribed bacterial homolog protein
hsa ENSP00000333551 O94903 Proline synthetase co-transcribed bacterial homolog protein

eco NP_418598.1 P0A7D4 Adenylosuccinate synthetase 1ADE,A/B=2-432|1ADI,A/B/1CG0,A=2-432|1CG1,A=2-432|1CG3,A=2-432|1CG4,A=2-432|1CH8,A=2-432|1CIB,A=2-432|1G1M,A=2-432|1GIN,A=2-432|1HON,A/B=2-431|1HO0,A/B=2-431|1HOP,A/B=2-431|1JUY,A=2-432|1KJX,A=1-432|1KKB,A=1-432|1KKS,A=1-432|1NT,H,A=2-431|1QF4,A=2-432|1QF5,A=2-432|1SON,A=2-431|1SOO,A=2-431|2GCQ,A=2-431|

sce YNL220W P80210 Adenylosuccinate synthetase
cel WBGene00016509 P91134 Probable adenylosuccinate synthetase
mmu ENSMUSP00000016105 P46664 Adenylosuccinate synthetase isozyme 2

mmu ENSMUSP00000021726 P28650 Adenylosuccinate synthetase isozyme 1

hsa ENSP00000333019 Q8N142 Adenylosuccinate synthetase isozyme 1

hsa ENSP00000355493 P30520 Adenylosuccinate synthetase isozyme 2

############ OG2_71999 ##############
eco NP_416286.4 P77493 Uncharacterized sugar kinase ydjH 3H49,A/B=2-315|
sce YJR105W P47143 Adenosine kinase
cel WBGene00011128 Q93934 Protein R07H5.8, confirmed by transcript evidence

mmu ENSMUSP00000047665 P55264 Adenosine kinase

hsa ENSP00000286621 P55263 Adenosine kinase 1BX4,A=22-362|2I6A,A/B/C/D=22-362|2I6B,A/B=22-362|

############ OG2_70819 ##############
eco NP_418478.1 P04693 Aromatic-amino-acid aminotransferase 3FSL,A/B/C/D/E/F=1-397|3TAT,A/B/C/D/E/F=1-397|
eco NP_415448.1 P00509 Aspartate aminotransferase 1AAM,A=1-396|1AAW,A=1-396|1AHE,A/B=1-396|1AHF,A/B=1-396|1AHG,A/B=1-396|1AHX,A/B=1-396|1AHY,A/B=1-396|1AIA,A/B=1-396|1AIB,A/B=1-396|1AIC,A/B=1-396|1AMQ,A=1-396|1AMR,A=1-396|1AMS,A=1-396|1ARG,A/B=1-396|1ARH,A/B=1-396|1ARI,A/B=1-396|1ARS,A=1-396|1ART,A=1-396|1ASA,A=1-396|1ASB,A=1-396|1ASC,A=1-396|1ASD,A=1-396|1ASE,A=1-396|1ASF,A=1-396|1ASG,A=1-396|1ASL,A/B=1-396|1ASM,A/B=1-396|1ASN,A/B=1-396|1B4X,A=1-396|1BQA,A/B=1-396|1BQD,A/B=1-396|1C9C,A=1-396|1CQ6,A=1-396|1GCQ,A=1-396|1CQ8,A=1-396|1CZC,A=1-396|1CZE,A=1-396|1G4V,A=1-396|1G4X,A=1-396|1G7W,A=1-396|1G7X,A=1-396|1IX6,A=1-396|1IX7,A=1-396|1IX8,A=1-396|1QIR,A=1-396|1QIS,A=1-396|1QIT,A=1-396|1SPA,A=1-396|1TOE,A=1-388|1TOG,A/B=1-388|1TOI,A=1-388|1TOJ,A=1-388|1TOK,A/B=1-388|1X28,A/B=1-396|1X29,A/B=1-396|1X2A,A/B=1-396|1YOO,A=1-396|2AAT,A=1-396|2D5Y,A=1-396|2D61,A=1-396|2D63,A=1-396|2D64,A=1-396
sce YLR027C P23542 Aspartate aminotransferase, cytoplasmic
 1YAA,A/B/C/D=2-412|
cel WBGene00020146 Q22067 Probable aspartate aminotransferase, cytoplasmic
cel WBGene00016652 O01804 Aspartate aminotransferase
cel WBGene00015778 Q17994 Aspartate aminotransferase
mmu ENSMUSP00000065813
mmu ENSMUSP00000034097 P05202 Aspartate aminotransferase, mitochondrial
mmu ENSMUSP00000026196 P05201 Aspartate aminotransferase, cytoplasmic
hsa ENSP00000245206 P00505 Aspartate aminotransferase, mitochondrial
hsa ENSP00000359539 P17174 Aspartate aminotransferase, cytoplasmic

############################ OG2_72499 ##############################

eco NP_414969.4 P0ABE2 Protein bolA 2DHM,A=1-100|
sce YAL044W-A Q3E793 Uncharacterized bolA-like protein YAL044W-A
cel WBGene00019658 P91375 Putative bolA-like protein K11H12.1
mmu ENSMUSP0000016087 Q9D8S9 BolA-like protein 1 1V60,A=13-128|
hsa ENSP00000358149 Q9Y3E2 BolA-like protein 1

############################ OG2_71036 ##############################

eco NP_418592.1 P16384 tRNA Delta 2ZM5,A/B=1-316|2ZXU,A/B=1-316|3FOZ,A/B=1-316|
sce YOR274W P07884 tRNA isopentenyltransferase 3EPH,A/B=13-421|3EPJ,A/B=13-421|3EPK,A/B=13-421|3EPL,A/B=13-421|
cel WBGene00001740 Q9GYG3 Abnormal growth rate protein 1
mmu ENSMUSP00000030406
hsa ENSP00000321810 Q9H3H1 tRNA isopentenyltransferase, mitochondrial

############################ OG2_71318 ##############################

eco NP_415002.1 P69503 Adenine phosphoribosyltransferase 2DY0,A/B=1-183|
sce YML022W P49435 Adenine phosphoribosyltransferase 11G2P,A=3-187|1G2Q,A/B=3-187|
cel WBGene00020557 P91455 Adenine phosphoribosyltransferase
mmu ENSMUSP0000006764 P08030 Adenine phosphoribosyltransferase
hsa ENSP00000355098

############################ OG2_71403 ##############################

eco NP_415278.1 P0A6T3 Galactokinase
sce YDR009W P13045 Protein GAL3
sce YBR020W P04385 Galactokinase 2AJ4,A/B=2-527|
cel WBGene00006461 O01969 Temporarily assigned gene name protein 96
mmu ENSMUSP0000092186 Q68FH4 N-acetylgalactosamine kinase
mmu ENSMUSP00000021114 Q80UL3 Galactokinase 1
hsa ENSP00000316632 Q01415 N-acetylgalactosamine kinase2A2C,A=1-458|2A2D,A=1-458|
hsa ENSP00000364334 P51570 Galactokinase 1WUU,A/B/C/D=2-392|YH7,A=1-392|

############################ OG2_70765 ##############################
eco NP_417046.1 P0A825 Serine hydroxymethyltransferase
1DFO,A/B/C/D=1-417|EQB,A/B/C/D=1-417|
sce YLR058C P37291 Serine hydroxymethyltransferase, cytosolic
sce YBR263W P37292 Serine hydroxymethyltransferase, mitochondrial
cel WBGene00003214 P50432 Serine hydroxymethyltransferase
mmu ENSMUSP00000082202
mmu ENSMUSP0000026470 Q99K87 Serine hydroxymethyltransferase
mmu ENSMUSP0000018744 P50431 Serine hydroxymethyltransferase, cytosolic
hsa ENSP00000333667 P34897 Serine hydroxymethyltransferase, mitochondrial
2A7V,A=17-504|
hsa ENSP00000318868 P34896 Serine hydroxymethyltransferase, cytosolic
1BJ4,A=11-480|

############################ OG2_71569 ##############################
eco NP_418323.1 P0A6M4 D-tyrosyl-tRNA 1JKE,A/B/C/D=1-145|
sce YDL219W Q07648 D-tyrosyl-tRNA
cel WBGene00004151 Q9XUP4 D-tyrosyl-tRNA
mmu ENSMUSP0000028917 Q9DD18 D-tyrosyl-tRNA
hsa ENSP00000366672 Q8TEA8 D-tyrosyl-tRNA 2OKV,A/B/C/D=1-209|

############################ OG2_71038 ##############################
eco NP_418420.4 P30138 Adenylyltransferase thiF 1ZFN,A/B/C/D=1-251|ZKM,A/B/C/D=1-251|ZUD,1/3=1-251|
eco NP_415347.1 P12282 Molybdopterin biosynthesis protein moeB
1JW9,B=1-249|JWA,B=1-249|JWB,B=1-249|
sce YHR111W P38820 Adenylyltransferase and sulfurtransferase UBA4
cel WBGene00018357 O44510 Adenylyltransferase and sulfurtransferase MOCS3
mmu ENSMUSP00000096670 A2BDX3 Adenylyltransferase and sulfurtransferase MOCS3
hsa ENSP00000244051 Q95396 Adenylyltransferase and sulfurtransferase MOCS3
3I2V,A=335-460|

############################ OG2_71565 ##############################
eco NP_415277.1 P0A9C3 Aldose 1-epimerase
sce YNR071C P53757 Uncharacterized isomerase YNR071C
1YGA,A/B=1-342|
sce YHR210C P38893 Uncharacterized isomerase YHR210C
cel WBGene00044734 Q9UAT6 Putative uncharacterized protein
1LUR,A/B=1-330|
cel WBGene00015270 Q9UAT6 Putative uncharacterized protein 1LUR,A/B=1-330
mmu ENSMUSP00000040580 Q8K157 Aldose 1-epimerase
hsa ENSP00000272252 Q96C23 Aldose 1-epimerase ISNZ,A/B=1-342|ISO0,A/B/C/D=1-342

############################ OG2_71094 ############################
eco NP_417502.1 P20083 DNA topoisomerase 4 subunit B 1S14,A/B=1-217|1S16,A/B=1-390
sce YNL088W P06786 DNA topoisomerase 2 21BGW,A=409-1201|1BJT,A=409-1201|1PVG,A/B=1-413|1QZR,A/B=1-413|2RGR,A=419-1177

 cel WBGene00022854 Q27537 Chromosome instability 4
 cel WBGene00019876 P34534 Putative DNA topoisomerase 2, mitochondrial
 cel WBGene00010785 Q23670 Probable DNA topoisomerase 2
 mmu ENSMUSP00000099427
 mmu ENSMUSP00000017629 Q64511 DNA topoisomerase 2-beta
 hsa ENSP00000269577 P11388 DNA topoisomerase 2-alpha 1LWZ,A=431-1200|1ZXM,A/B=29-428|1ZXN,A/B/C/D=29-428
 hsa ENSP00000264331 Q02880 DNA topoisomerase 2-beta

############################ OG2_71497 ############################
eco NP_414778.1 P07004 Gamma-glutamyl phosphate reductase
sce YOR323C P54885 Gamma-glutamyl phosphate reductase 1VLU,A/B=1-456

 cel WBGene00011938 P54889 Probable delta-1-pyrroline-5-carboxylate synthetase
 mmu ENSMUSP00000025979 Q9Z110 Delta-1-pyrroline-5-carboxylate synthetase
 hsa ENSP00000360268 P54886 Delta-1-pyrroline-5-carboxylate synthetase

 char

 s2H2G,A/B=362-795

############################ OG2_70864 ############################
eco NP_416234.1 P0A8M3 Threonyl-tRNA synthetase 1EVK,A/B=242-642|1EVL,A/B/C/D=242-642|1FYF,A/B=242-642|1KOG,A/B/C/D/E/F/G/H=242-642|1QF6,A=1-642|1TJE,A=1-224|1TKG,A=1-224|1TKY,A=1-224
sce YIL078W P04801 Threonyl-tRNA synthetase, cytoplasmic

 cel WBGene00006617 P52709 Threonyl-tRNA synthetase, cytoplasmic
 mmu ENSMUSP00000032728 Q8BLY2 Probable threonyl-tRNA synthetase 2, cytoplasmic
 mmu ENSMUSP00000029752 Q3UQ84 Threonyl-tRNA synthetase, mitochondrial
 mmu ENSMUSP00000022849 Q9D0R2 Threonyl-tRNA synthetase, cytoplasmic
 hsa ENSP00000338093 A2RTX5 Probable threonyl-tRNA synthetase 2, cytoplasmic
 hsa ENSP00000358060 Q9BW92 Threonyl-tRNA synthetase, mitochondrial
hsa ENSP00000265112 P26639 Threonyl-tRNA synthetase, cytoplasmic
1WWT,A=79-153|

#OG2_70867######
eco NP_417401.1 P0A799 Phosphoglycerate kinase 1ZMR,A=1-387|
sce YCR012W P00560 Phosphoglycerate kinase IFW8,A=2-416|1QPG,A=2-416|3PGK,A=2-416|
cel WBGene00020185 P91427 Probable phosphoglycerate kinase
mmu ENSMUSP00000088647
mmu ENSMUSP0000082884
mmu ENSMUSP0000080302 P09411 Phosphoglycerate kinase l
mmu ENSMUSP0000033585 P09041 Phosphoglycerate kinase 2
2P9Q,A/B=2-417|2P9T,A=2-417|2PAA,A/B=2-417|
hsa ENSP00000305995 P07205 Phosphoglycerate kinase 2
hsa ENSP00000362413 P00558 Phosphoglycerate kinase 1
2ZGV,A=1-417|3C3A,A/B=1-417|3C3B,A/B=1-417|3C3C,A/B=1-417|

#OG2_70861######
eco NP_414766.1 Q47155 DNA polymerase IV 1OK7,C=336-351|1UUNN,C/D=243-351|
sce YOR346W P12689 DNA repair protein REV1 2AQ4,A=305-738|3BJY,A=305-738|
cel WBGene00014066 Q09615 Protein ZK675.2, partially confirmed by transcript evidence
cel WBGene00017696 P34409 DNA polymerase kappa
mmu ENSMUSP0000027251 Q920Q2 DNA repair protein REV1
mmu ENSMUSP0000022172 Q9QUG2 DNA polymerase kappa
hsa ENSP00000258428 Q9UBZ9 DNA repair protein REV1
2EBW,A=44-133|3GQC,A/B/C/D=330-833|
hsa ENSP00000353425

#OG2_70737######
eco NP_418097.1 P06968 Deoxyuridine 5'-triphosphate nucleotidohydrolase
1DUD,A=1-151|1DUP,A=1-151|1EU5,A=1-151|1EUW,A=1-151|1RN8,A=1-151|1RNJ,A=1-151|1SEH,A=1-151|1SYL,A=1-151|2HR6,A=1-151|2HRM,A=1-151|
sce YBR252W P33317 Deoxyuridine 5'-triphosphate nucleotidohydrolase
3F4F,A/B=C=1-147|3HHQ,A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X=1-147|
cel WBGene00010609 Q001934 Protein K07A1.2, confirmed by transcript evidence
mmu ENSMUSP0000057854 Q9CQ43 Deoxyuridine triphosphatase
hsa ENSP00000370376 P33316 Deoxyuridine 5'-triphosphate
nucleotidohydrolase, mitochondrial 1Q5H,A/B/C=112-252|1Q5U,X/Y/Z=112-252|2HQU,A/B/C=94-252|3EHW,A/B/C/X/Y/Z=94-252|

#OG2_70862######
eco NP_415254.1 P0A799 2-oxoglutarate dehydrogenase E1 component
2JGD,A=1-933,B=1-933|
Species	Accession	Description	Targets	Information
sce	YJL138C	ATP-dependent RNA helicase eIF4A1	UFK,A=231-395 [1FUU,A/B=2-395]	QDE,A=9-232 [1QVA,A=2-224] VSO,A/B=1-395 [2VSX,A/B=1-395]
cel	WBGene0000283	Eukaryotic initiation factor 4A	P27639	
mmu	ENSMUSP0000074886	Eukaryotic initiation factor 4A		
mmu	ENSMUSP0000072748	Eukaryotic initiation factor 4A-I	P60843	
mmu	ENSMUSP00000009649	Eukaryotic initiation factor 4A-II	P10630	
hsa	ENSP00000309842	Eukaryotic initiation factor 4A-I	2G9N,A/B=20-236 [2ZU6,A/C/D/F=20-406]	IQIQ,A/D=1-406
hsa	ENSP00000326381	Eukaryotic initiation factor 4A-II	Q14240	
eco	NP_416738.1	Ribonucleoside-diphosphate reductase 1 subunit beta	1AV8,A/B=2-341 [1BIQ,A=2-376]	JPR,A/B=1-376 [1JQC,A/B=2-376] MRR,A/B=2-376 [1MXR,A/B=2-375] PFR,A/B=2-341 [1PM,A/B=2-375] PIU,A/B=2-375 [1PYI,A/B=2-375] IzA,B=2-375 [1PZ,A/B=2-375]
eco	NP_416913.1	Pyridoxine kinase	2DDM,A/B=1-283 [2DDO,A/B=1-283]	2DDW,A/B=1-283
eco	NP_416153.1	Pyridoxamine kinase	1TD2,A/B=1-287 [1VI9,A/B/C/D=1-287]	
sce	YNR027W	Putative pyridoxal kinase	P53727	
sce	YEL029C	Putative pyridoxal kinase	P39988	
mmu	ENSMUSP0000038540	Pyridoxal kinase	Q8K183	
mmu ENSMUSP0000002868
hsa ENSP00000029156 Q00764 Pyridoxal kinase 2AJP,A/B=6-312|2F7K,A/B=1-312|2YXT,A/B=1-312|2YXU,A/B=1-312|3FHX,A/B=1-312|3FHY,A/B=1-312

############ OG2_73272 ############

type ECO P27838 Protein cyA 1EW4,A=1-106|ISOY,A=1-106|2EFF,A=1-106|2P1X,A=1-106

type SCE YQL20W Q07540 Frataxin homolog, mitochondrial 2FQL,A=52-174|2GA5,A=53-174

type CEL WBGene00001486 Q9TY03 Frataxin homolog

mmu ENSMUSP00000008081 O35943 Frataxin, mitochondrial

hsa ENSP00000366482 Q16595 Frataxin, mitochondrial 1EKG,A=88-210|1LY7,A=91-210

############ OG2_71007 ############

type ECO NP_418067.1 P0AC62 Glutaredoxin-3 1FOV,A=2-83|1ILB,A=1-83|1UQ8,G=2-83|1UQ9,G=2-83|1UQI,G=2-83|1UQJ,G=2-83|1UQK,G=2-83|1UQL,G=2-83|1UQM,G=2-83|1UQO,G=2-83|1UQQ,G=2-83|3GRX,A=2-83

type SCE YQL513W P07695 Glutaredoxin-2, mitochondrial 3CTF,A=35-143|3CTG,A=35-143|3D4M,A=35-143|3D5J,A/B=35-143

type CEL WBGene00021331 Q9N456 Glutaredoxin protein 10

mmu ENSMUSP0000022082 Q9QUH0 Glutaredoxin-1

mmu ENSMUSP0000024500

hsa ENSP0000369314 P35754 Glutaredoxin-1 1B4Q,A=2-106|1JHB,A=1-106

hsa ENSP0000356410 Q9NS18 Glutaredoxin-2, mitochondrial 2CQ9,A=48-164|2FLS,A=56-164|2HT9,A/B=41-164

############ OG2_70708 ############

type ECO NP_418228.2 P0AA25 Thioredoxin-1 1F6M,C/D/G/H=2-109|1KEB,A/B=2-108|1MT7,A=|1OAZ,A/B=1-109|1SKR,B=2-108|1SKS,B=2-108|1SKW,B=2-108|1SL0,B/D=2-108|1SL1,B=2-108|1SL2,B=2-108|1SRX,A=2-109|1T7P,B=2-108|1T8E,B=2-108|1THO,A=2-108|1TK0,B=2-108|1TK5,B=2-108|1TK8,B=2-108|1TKD,B=2-108|1TXL,A=2-109|1X9M,B=2-108|1X9S,B=2-108|1X9W,B=2-108|1XOA,A=2-109|1XOB,A=2-109|1ZCP,A/B/C/D=2-108|1ZYO,B=2-108|1ZYY,A/B=1-109|2AJ0,B/I=2-108|2BTO,T=2-109|2EIO,A/B/C/D=2-109|2E1Q,A/B=2-109|2EIR,A/B/C/D=2-109|2FCH,A/B/C/D/E/F/G=2-108|2FD3,A/B=2-108|2H6X,A/B=2-109|2H6Y,A/B=2-109|2H6Z,A/B=2-109|2H70,A/B=2-109|2H71,A/B=2-109|2H72,A/B=2-109|2H73,A/B=2-109|2H74,A/B=4-109|2H75,A/B=2-109|2H76,A/B=2-109|2O8V,B=2-109|2TIR,A=2-109|2TRX,A/B=2-109|3D3YR,A/B=2-109

type ECO NP_417077.1 P0AGG4 Thioredoxin-2

type SCE YLR043C P22217 Thioredoxin-1 2I9H,A=1-103

type SCE YGR209C P22803 Thioredoxin-2 2FA4,A/B=1-104|2HSY,A=1-104
species	gene_id	protein_id	description																				
cel	WBGene00021933	Q9N357	Putative uncharacterized protein																				
cel	WBGene00015062	Q09433	Thioredoxin-1																				
cel	WBGene00007099	Q17424	Probable thioredoxin-2																				
mmu	ENSMUSP00000030051	P10639	Thioredoxin																				
mmu	ENSMUSP0000005487	P97493	Thioredoxin, mitochondrial																				
hsa	ENSP00000363641	P10599	Thioredoxin 1AIU,A=1-105	1AUC,A=1-105	1CQG,A=1-105	1CQH,A=1-105	1E1T,A=1-105	1ERV,A=1-105	1E22,A=1-105	1E24,A=1-105	1E26,A=1-105	1TRU,A=1-105	1TRV,A=1-105	1TRW,A=1-105	1W1C,A=1-105	1W1E,C=1-105	2HSH,A=1-105	2HXK,A/B/C=1-105	2IFQ,A/C=1-105, B=1-105	2IIY,A=1-105	3TRX,A=1-105	4TRX,A=1-105	
hsa	ENSP00000216185	Q99757	Thioredoxin, mitochondrial																				
eco	NP_418553.1	P0A8N5	Lysyl-tRNA synthetase, heat inducible																				
eco	NP_417366.1	P0A8N3	Lysyl-tRNA synthetase 1BBU,A=2-504	1BBW,A=2-504	1KRS,A=31-149	1KRT,A=31-149																	
sce	YDR037W	P15180	Lysyl-tRNA synthetase																				
cel	WBGene00002238	Q22099	Lysyl-tRNA synthetase																				
mmu	ENSMUSP00000090808	Q99MN1	Lysyl-tRNA synthetase																				
hsa	ENSP00000325448	Q15046	Lysyl-tRNA synthetase																				
eco	NP_418628.4	P0A9L3	FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase																				
eco	NP_417806.1	P45523	FKBP-type peptidyl-prolyl cis-trans isomerase fkpA																				
sce	YNL135C	P20081	FK506-binding protein 1 1YAT,A=2-114																				
cel	WBGene00001427	Q9U2Q8	Protein Y18D10A.19, confirmed by transcript evidence																				
cel	WBGene00001431	Q45418	Protein F31D4.3, confirmed by transcript evidence																				
mmu	ENSMUSP00000032508	P30416	FK506-binding protein 4																				
mmu	ENSMUSP00000078382	Q64378	FK506-binding protein 5																				
mmu	ENSMUSP0000020964	Q9Z212	Peptidyl-prolyl cis-trans isomerase FKBP1B																				
hsa	ENSP00000370373	P68106	Peptidyl-prolyl cis-trans isomerase FKBP1B																				
hsa	ENSP00000349811	Q13451	FK506-binding protein 5 1KT0,A=1-457																				
hsa	ENSP00000371161	P62942	Peptidyl-prolyl cis-trans isomerase FKBP1A 1A7X,A/B=2-107	1B6C,A/C/E/G=2-107	1BKF,A=2-108	1BL4,A/B=2-107	1D6O,A/B=2-108	1D7H,A/B=2-108	1D7I,A/B=2-108	1D7J,A/B=2-													
108|EYM,A/B=2-108|1F40,A=2-108|1FAP,A=2-107|1FKB,A=2-108|1FKD,A=2-107|1FKF,A=2-108|1FKG,A=2-108|1FKH,A=2-108|1FKI,A/B=2-108|1FKJ,A=2-107|1FKR,A=2-108|1FKT,A=2-108|1J4H,A=2-107|1J4L,A=2-107|1J4R,A/B/D=2-107|1NSG,A=2-107|1QPF,A/D=2-107|1QPL,A/C=2-107|2DG3,A=2-108|2DG4,A=2-108|2DG9,A=2-108|2FAP,A=2-107|2FKE,A=2-107|2PPN,A=2-108|2PPP,A=2-108|3FAP,A=2-107|3H9R,B=1-108|4FAP,A=2-107|hsa ENSP0000001008 Q02790 FK506-binding protein 4 1N1A,A/B=2-139|1P5Q,A/B/C=146-458|1Q1C,A=2-259|1QZ2,A/B/C=145-458| eco NP_416171.1 P0AC69 Glutaredoxin-4 1YKA,A=1-115|2WCI,A/B=1-115| sce YPL059W Q02784 Monothiol glutaredoxin-5, mitochondrial| sce YER174C P32642 Monothiol glutaredoxin-4| sce YDR098C Q03835 Monothiol glutaredoxin-3 3D6I,A/B=37-148| cel WBGene00013029 Q9XTU9 Protein Y49E10.2, confirmed by transcript evidence| cel WBGene00017062 Q6EZG4 Putative uncharacterized protein| mmu ENSMUSP00000066621 Q9CQM9 Glutaredoxin-3 1WIK,A=241-336| mmu ENSMUSP00000021522 Q80Y14 Glutaredoxin-related protein 5| hsa ENSP00000328570 Q86SX6 Glutaredoxin-related protein 5 2WEM,A/B/C/D=35-150| hsa ENSP00000357634| eco NP_418415.1 P0AC69 DNA-directed RNA polymerase subunit beta' 2AUK,A/B/C/D/E=944-1129| sce YOR116C P04051 DNA-directed RNA polymerase III subunit RPC1| sce YDL140C P04050 DNA-directed RNA polymerase II subunit RPB1 1I3Q,A=1-1733|1I50,A=1-1733|1I6H,A=1-1733|1K83,A=1-1733|1NIK,A=1-1733|1NT9,A=1-1733|1PQV,A=1-1733|1R5U,A=1-1733|1R95,A=1-1733|1R9T,A=1-1733|1SFO,A=1-1733|1TWA,A=1-1733|1TWC,A=1-1733|1TWF,A=1-1733|1TWG,A=1-1733|1TWH,A=1-1733|1WCM,A=1-1733|1Y1V,A=1-1733|1Y1W,A=1-1733|1Y1Y,A=1-1733|1Y77,A=1-1733|2B63,A=1-1733|2B8K,A=1-1733|2E2H,A=1-1733|2E2I,A=1-1733|2E2J,A=1-1733|2JA5,A=1-1733|2JA6,A=1-1733|2JA7,A/M=1-1733|2JA8,A=1-1733|2NVQ,A=1-1733|2NVQ,A=1-1733|2NTB,A=1-1733|2NVX,A=1-1733|2NVY,A=1-1733|2NVZ,A=1-1733|2R7Z,A=1-1733|2R92,A=1-1733|2R93,A=1-1733|2VUM,A=1-1733|2YU9,A=1-1733|3CQZ,A=1-1733|3FKL,A=1-1733|3GTM,A=1-1733|3GTJ,A=1-1733|3GTK,A=1-1733|3GTL,A=1-1733|3GTM,A=1-1733|3GTO,A=1-1733|3GTP,A=1-1733|3GTLQ,A=1-1733|3H3V,B=1-1733|3HOA,A=1-1733|3HOA,A=1-1733|3HOV,A=1-1733|3HOU,A=1-1733|3HOV,A=1-1733|3HOZ,A=1-1733| cel WBGene00000123 P16356 DNA-directed RNA polymerase II subunit RPB1
cel WBGene00004411 Q18566 DNA-directed RNA polymerase
mmu ENSMUSP00000026322 B2RXC6 DNA-directed RNA polymerase
mmu ENSMUSP00000050771 P08775 DNA-directed RNA polymerase II subunit RPB1
hsa ENSP00000314949 P24928 DNA-directed RNA polymerase II subunit RPB1 2GHQ,C/D=1795-1803|2GHT,C/D=1796-1803|
hsa ENSP00000365773 Q9Y617 DNA-directed RNA polymerase III subunit RPC1

!!!!!!!!!!!!!! OG2_72501 !!!!!!!!!!!!!!!!
eco NP_415427.1 P23721 Phosphoserine aminotransferase 1BJN,A/B=3-362|1BJO,A=3-362,B=3-362|
sce YOR184W P33330 Phosphoserine aminotransferase
cel WBGene00009177 P91856 Probable phosphoserine aminotransferase
mmu ENSMUSP00000025542 Q99K85 Phosphoserine aminotransferase
hsa ENSP00000365773 Q9Y617 Phosphoserine aminotransferase 3E77,A/B/C=17-370|

!!!!!!!!!!!!!! OG2_70925 !!!!!!!!!!!!!!!!
eco NP_417161.1 P39452 Ribonucleoside-diphosphate reductase 2 subunit alpha
eco NP_416737.1 P00452 Ribonucleoside-diphosphate reductase 1 subunit alpha 1QFN,B=737-761|1R1R,A/B/C=1-761|1RLR,A=1-761|2R1R,A/B/C=1-761|3R1R,A/B/C=1-761|4R1R,A/B/C=1-761|5R1R,A/B/C=1-761|6R1R,A/B/C=1-761|7R1R,A/B/C=1-761|
sce YIL066C P21672 Ribonucleoside-diphosphate reductase large chain 2
sce YER070W P21524 Ribonucleoside-diphosphate reductase large chain 1 1ZYZ,A/B=1-888|1ZZD,A=1-888|2CVS,A=1-888|2CVT,A=1-888|2CVU,A=1-888|2CVV,A=1-888|2CVW,A=1-888|2CVX,A=1-888|2CVY,A=1-888|2EUD,A=1-888|2ZLF,A=1-888|2ZLG,A=1-888|
cel WBGene00004391 Q03604 Ribonucleoside-diphosphate reductase large subunit
mmu ENSMUSP00000033283 P07742 Ribonucleoside-diphosphate reductase large subunit
hsa ENSP00000300738 P23921 Ribonucleoside-diphosphate reductase large subunit2WGH,A/B=75-742|

!!!!!!!!!!!!!! OG2_71266 !!!!!!!!!!!!!!!!
eco NP_416163.1 P0AGD1 Superoxide dismutase [Cu-Zn] 1ESO,A=20-173|
sce YJR104C P00445 Superoxide dismutase [Cu-Zn] 1B4L,A=2-154|1B4T,A=2-154|1F18,A=1-154|1F1A,A=1-154|1F1D,A=1-154|1F1G,A/B/C/D/E/F=1-154|1JCV,A=2-154|1JK9,A/C=2-154|1SDY,A/B/C/D=2-154|1YAZ,A=2-154|1YSO,A=2-154|2JCW,A=2-154|
cel WBGene00007036 Q27538 Superoxide dismutase [Cu-Zn]
cel WBGene00004933 P34461 Extracellular superoxide dismutase [Cu-Zn]
cel WBGene00004930 P34697 Superoxide dismutase [Cu-Zn]
mmu ENSMUSP00000057271
mmu ENSMUSP0000023707 P08228 Superoxide dismutase [Cu-Zn]
212|1NMZ,A=1-212|1NN0,A=1-212|1NN1,A=1-212|1NN3,A=1-212|1NN5,A=1-212|

############ OG2_71370 ###############
eco NP_417298.1 P05458 Protease 3 1Q2L,A=24-962|
sce YLR389C Q06010 A-factor-processing enzyme
cel WBGene00013492 O62499 Protein Y70C5C.1, partially confirmed by
transcript evidence
cel WBGene00018426 Q10040 Putative zinc protease C28F5.4
cel WBGene00015360 Q17593 Putative uncharacterized protein
cel WBGene00015359 Q17592 Putative uncharacterized protein
mmu ENSMUSP00000025747 Q9JHR7 Insulin-degrading enzyme
hsa ENSP00000026598 P14735 Insulin-degrading enzyme

############ OG2_70996 ###############
eco NP_415003.1 P06710 DNA polymerase III subunit tau
 1JR3,A/B/C=1-373|1NJF, A/B/C/D=1-243|1NJG,A/B=1-243|1XXH,B/C/D/G/H=1-373|1XXI,B/C/D/G/H=1-368|2AYA,A=499-625|3GLF,B/C/D/G/H=1-373|3GLG,B/C/D/G/H=1-373|3GLH,B/C/D/G/H=1-373|3GLI,B/C/D/G/H=1-373|
sce YNL290W P38629 Replication factor C subunit 3 1SXJ,C=1-340|
cel WBGene00018409 P34429 Probable replication factor C subunit 5
mmu ENSMUSP00000083652 Q9D0F6 Replication factor C subunit 5
hsa ENSP000000229043 P40937 Replication factor C subunit 5
 1LFS,A=1-340|

############ OG2_70796 ###############
eco NP_418354.1 P0A858 Triosephosphate isomerase 1TMH,A/B/C/D=1-238|1TRE,A/B=1-255|
sce YDR050C P00942 Triosephosphate isomerase 1I45,A/B=2-247|1NEY,A/B=2-248|1NF0,A/B=2-248|1YPI,A/B=2-248|2YPI,A/B=2-248|3YPI,A/B=2-247|7TIM,A/B=2-247|
cel WBGene00006601 Q10657 Triosephosphate isomerase 1MO0,A/B=2-247|
mmu ENSMUSP00000024223 P17751 Triosephosphate isomerase
hsa ENSP00000037170 P60174 Triosephosphate isomerase 1HTI,A/B=2-249|1WY1,A/B=2-249|2IAM,P=23-37|2IAN,C/H/M/R=23-37|2JK2,A/B=2-249|2VOM,A/B/C/D=2-249|

############ OG2_70796 ###############
eco NP_417757.1 P0A759 30S ribosomal protein S13 1M5G,M=2-118|1P6G,M=2-118|1P87,M=2-118|1VS5,M=1-118|1VS7,M=1-118|2AVY,M=2-118|2AW7,M=2-118|2GY9,M=2-115|2GYB,M=2-115|2I2P,M=2-117|2I2U,M=2-117|2QAL,M=2-118|2QAN,M=2-118|2QB9,M=2-118|2QBB,M=2-
118|2QBD,M=2-118|2QBF,M=2-118|2QBH,M=2-118|2QBJ,M=2-118|2QOU,M=2-118|2QW,|2QOY,M=2-118|2QP0,M=2-118|2VHO,M=2-118|2VHP,M=2-118|2Z4K,M=2-118|2Z4M,M=2-118|3DF1,M=2-117|3DF3,M=2-117|3FIH,M=2-114
sce YNL081C P53937 37S ribosomal protein SWS2, mitochondrial
dsce YML026C P35271 40S ribosomal protein S18 1K5X,M=15-145|1S1H,M=15-146|1S1H,M=15-146|1S1H,M=15-146|1S1H,M=15-146|1S1H,M=15-146
sce YDR450W P35271 40S ribosomal protein S18 1K5X,M=15-145|1S1H,M=15-146|1S1H,M=15-146|1S1H,M=15-146|1S1H,M=15-146
sce YGL123W P25443 40S ribosomal protein S2 1K5X,E=75-223|1S1H,E=75-223|1S1H,E=75-223|1S1H,E=75-223|1S1H,E=75-223
sce YOL155C Q05164 Haze protective factor 1
sce YMR317W Q04893 Uncharacterized protein YMR317W
sce YKR102W P36170 Flocculation protein FLO10
sce YIR019C P08640 Flocculation protein FLO11
Species	Gene ID	Accession	Description
Saccharomyces cerevisiae (sce)	YIL169C	P40442	Putative uncharacterized protein YIL169C
S. cerevisiae (sce)	YHR211W	P38894	Flocculation protein FLO5
S. cerevisiae (sce)	YGR014W	P32334	Protein MSB2
S. cerevisiae (sce)	YCR089W	P25653	Factor-induced gene 2 protein
S. cerevisiae (sce)	YAR050W	P32768	Flocculation protein FLO1
S. cerevisiae (sce)	YAL063C	P39712	Flocculation protein FLO9
Candida elegans (cel)	WBGene00022536	O17084	Putative uncharacterized protein
C. elegans (cel)	WBGene000021761	Q76602	Putative uncharacterized protein
Mus musculus (mmu)	ENSMUSP00000092953	Q80T03	Mucin-6
M. musculus (mmu)	ENSMUSP00000049941	Q6PZe0	Mucin-19
M. musculus (mmu)	ENSMUSP00000039699	Q71sp1	Gastric mucin
M. musculus (mmu)	ENSMUSP00000026590	Q9Jky4	Intestinal mucin
M. musculus (mmu)	ENSMUSP00000009631	Q55225	Otagelin
M. musculus (mmu)	ENSMUSP00000001995	Q8Ciz8	von Willebrand factor
Homo sapiens (hsa)	ENSP00000351956	Q02817	Mucin-2
H. sapiens (hsa)	ENSP00000347118	Q6W4X9	Mucin-6
H. sapiens (hsa)	ENSP00000341666	Q8Wxi7	Mucin-16
H. sapiens (hsa)	ENSP00000304549	Q9Hc84	Mucin-5B
H. sapiens (hsa)	ENSP00000261405	P04275	von Willebrand factor 1A03,A/B=1686-1872,1ATZ,A/B=1685-1873,1AUQ,A=1261-1468,1FE8,A/B/C=1683-1874,1FNS,A=1271-1465,1JB,A=1263-1464,1JK,A=1263-1464,1M10,A=1261-1468,1OK,A=1271-1465,1SQ0,A=1260-1472,1U0n,A=1261-1468,1Uex,C=1260-1468,2ADF,A=1683-1874,3Gxb,A/B=1495-1671
Escherichia coli (eco)	NP_417886.1	P0AC86	Glycogen phosphorylase
E. coli (eco)	YP_026218.1	P00490	Maltodextrin phosphorylase
S. cerevisiae (sce)	YPR160W	P06738	Glycogen phosphorylase
C. elegans (cel)	WBGene00020696	Q86nc1	Phosphorylase
M. musculus (mmu)	ENSMUSP00000035743	Q8c194	Glycogen phosphorylase, brain form
M. musculus (mmu)	ENSMUSP00000047564	Q9wub3	Glycogen phosphorylase, muscle form
M. musculus (mmu)	ENSMUSP00000071231	Q9et01	Glycogen phosphorylase, liver form
H. sapiens (hsa)	ENSP00000216962	P11216	Glycogen phosphorylase, brain form
H. sapiens (hsa)	ENSP00000216392	P06737	Glycogen phosphorylase, liver form
hsa ENSP00000164139 P11217 Glycogen phosphorylase, muscle form 1Z8D,A=1-842

################### OG2_71942 ###################

eco NP_416617.1 P00959 Methionyl-tRNA synthetase 1F4L,A=1-551|1MEA,A=139-164|1MED,A=139-164|1P7P,A=2-551|1PFU,A=2-551|1PFV,A=2-551|1PFW,A=2-551|1PYF,A=2-551|1PG0,A=2-551|1PG2,A=2-551|1QQT,A=2-552
sce YGR264C P00958 Methionyl-tRNA synthetase, cytoplasmic 2HSN,A=2-159
cel WBGene00003415 Q20970 Methionyl-tRNA synthetase, cytoplasmic

mmu ENSMUSP00000034646 Q68FL6 Methionyl-tRNA synthetase, cytoplasmic 2DJV,A=2-551

hsa ENSP00000262027 P56192 Methionyl-tRNA synthetase, cytoplasmic 2O05,A/B=1-302|2O06,A/B=1-302|2O07,A/B=1-302|2O0L,A/B=1-302

################### OG2_70963 ###################

cel WBGene00003422 Q9N3T8 Spermidine synthase

mmu ENSMUSP0000006611 Q64674 Spermidine synthase

hsa ENSP00000366156 P19623 Spermidine synthase 2O05,A/B=1-302|2O06,A/B=1-302|2O07,A/B=1-302|2O0L,A/B=1-302

################### OG2_70712 ###################

eco NP_417213.1 P23909 DNA mismatch repair protein mutS 1E3M,A=B=1-800|1NG9,A/B=1-800|1OH5,A/B=1-800|1OH6,A/B=1-800|1OH7,A=B=1-800|1OH8,A/B=1-800|1W7A,A/B=1-800|1WB9,A/B=1-800|1WBB,A/B=1-800|1WBD,A/B=1-800|2OK2,A/B=1-800

cel WBGene00003422 Q9N3T8 Spermidine synthase

mmu ENSMUSP00000024967 P43247 DNA mismatch repair protein Msh2

mmu ENSMUSP0000005503 P54276 DNA mismatch repair protein Msh6

hsa ENSP00000234420 P52701 DNA mismatch repair protein Msh6 2GFU,A=68-201|2O8B,B=341-1360|2O8C,B=341-1360|2O8D,B=341-1360|2O8E,B=341-1360|2O8F,B=341-1360

hsa ENSP00000233146 P43246 DNA mismatch repair protein Msh2 2O8B,A=1-934|2O8C,A=1-934|2O8D,A=1-934|2O8E,A=1-934|2O8F,A=1-934

################### OG2_70967 ###################
eco NP_417244.1 P38038 Sulfite reductase [NADPH] flavoprotein alpha-component 1DDG,A/B=226-599|1DDI,A=226-599|1YKG,A=53-218
sce YHR042W P16603 NADPH-cytochrome P450 reductase 2BF4,A/B=34-691|2BN4,A/B=34-691|2BPO,A/B=34-691|3FJO,A=44-211

mmu ENSMUSP00000005651 P37040 NADPH-cytochrome P450 reductase

hsa ENSP00000265302 P16435 NADPH-cytochrome P450 reductase 1B1C,A=61-241|3FJO,A=232-677

eco NP_417957.1 P06715 Glutathione reductase 1GER,A/B=1-450|1GES,A/B=1-450|1GET,A/B=1-450|1GEU,A/B=1-450
sce YPL091W P41921 Glutathione reductase 2HQM,A/B=17-483

cel WBGene00001262 Q09590 Abnormal embryogenesis protein 8, confirmed by transcript evidence

mmu ENSMUSP00000000561 P37040 NADPH-cytochrome P450 reductase

hsa ENSP00000265302 P16435 NADPH-cytochrome P450 reductase 1B1C,A=61-241|3FJO,A=232-677

mmu ENSMUSP00000081006 Q9JLT4 Thioredoxin reductase 2, mitochondrial 1ZDL,A=31-524|1ZKQ,A=31-524|3DGZ,A=34-521

mmu ENSMUSP0000033992 P47791 Glutathione reductase, mitochondrial

mmu ENSMUSP0000020484 Q9JMH6 Thioredoxin reductase 1, cytoplasmic

mmu ENSMUSP0000000828 Q99MD6 Thioredoxin reductase 3

hsa ENSP00000373506

hsa ENSP00000347020 Q16881 Thioredoxin reductase 1, cytoplasmic 1W1C,A/B=161-649|2CFY,A/B/C/D/E/F=151-649|2J3N,A/B/C/D/E/F=151-649

hsa ENSP00000353329 Q86VQ6 Thioredoxin reductase 3 3H8Q,A/B=162-267

hsa ENSP00000334518

hsa ENSP00000221130 P00390 Glutathione reductase, mitochondrial 1ALG,A=480-503|1BWC,A=45-522|1DNC,A=45-522|1GRA,A=45-522|1GRB,A=45-522|1GRE,A=45-522|1GRF,A=45-522|1GRG,A=45-522|1GRH,A=45-522|1GRT,A=45-522|1GRG,A=45-522|1NSN,A=45-522|1QF,A=62-522|1XAN,A=62-522|2AAQ,A=44-522|2GH5,A/B=45-522|2GRT,A=62-522|3DGJ,X=62-522|3DJJ,A=45-522|3DK4,A=45-522|3DK8,A=62-522|3DK9,A=45-522|3GRS,A=45-522|3GRT,A=62-522|4GR1,A=45-522|4GRT,A=62-522|5GRT,A=62-522

eco NP_415520.1 P36659 Curved DNA-binding protein

sce YNL007C P25294 Protein SIS1 1C3G,A=180-349|2B26,A/B/C=181-352|2O37,A=1-89

cel WBGene00001031 Q20774 Protein F54D5.8, confirmed by transcript evidence
Species	Gene ID	Accession	Description
mmu	ENSMUSP00000095716	O89114	DnaJ homolog subfamily B member 5
mmu	ENSMUSP00000059074	Q80Y75	DnaJ homolog subfamily B member 13
mmu	ENSMUSP00000053916	Q9D832	DnaJ homolog subfamily B member 4
mmu	ENSMUSP0000005620	Q9QYJ3	DnaJ homolog subfamily B member 1
hsa	ENSP00000344431	P59910	DnaJ homolog subfamily B member 13
hsa	ENSP00000359799	Q9UDY4	DnaJ homolog subfamily B member 4
hsa	ENSP00000368026	O75953	DnaJ homolog subfamily B member 5
hsa	ENSP00000254322	P25685	DnaJ homolog subfamily B member 1

1HDJ, A=1-76|2QLD, A=158-340|

OG2_70651

Species	Gene ID	Accession	Description
eco	NP_417485.4	Q46857	2,5-diketo-D-gluconic acid reductase A
eco	NP_416295.1	P76234	Uncharacterized protein yeaE
eco	NP_414743.1	P30863	2,5-diketo-D-gluconic acid reductase B
sce	YOR120W	P14065	Protein GCY
sce	YJR096W	P47137	Uncharacterized oxidoreductase YJR096W
sce	YHR104W	P38715	NADPH-dependent aldose reductase GRE3
sce	YDR368W	Q12458	Putative reductase 1
cel	WBGene00022887	Q09632	Uncharacterized oxidoreductase ZK1290.5
cel	WBGene00013896	Q23320	Protein ZC443.1, confirmed by transcript evidence
cel	WBGene00012722	Q9NAI5	Protein Y39G8B.1a, confirmed by transcript evidence
cel	WBGene00020369	Q22352	Putative uncharacterized protein T08H10.1
cel	WBGene0009980	P91997	Protein F53F1.2, confirmed by transcript evidence
cel	WBGene00016443	Q18483	Putative uncharacterized protein
cel	WBGene00015565	P91020	Putative uncharacterized protein

1QWK, A=1-317|

Species	Gene ID	Accession	Description
mmu	ENSMUSP0000093525	Q8BIV6	Putative uncharacterized protein
mmu	ENSMUSP0000039114	P21300	Aldose reductase-related protein 1
mmu	ENSMUSP0000007449	Q9DCT1	1,5-anhydro-D-fructose reductase
mmu	ENSMUSP0000048830	Q8VCX1	3-oxo-5-beta-steroid 4-dehydrogenase
mmu	ENSMUSP0000040244	P45377	Aldose reductase-related protein 2
mmu	ENSMUSP0000030455	Q9JI6	Alcohol dehydrogenase [NADP+]
mmu	ENSMUSP0000100045	P45376	Aldose reductase
hsa	ENSP00000352584	O60218	Aldo-keto reductase family 1 member B10
hsa	ENSP00000298375	Q96JD6	1,5-anhydro-D-fructose reductase
hsa ENSP00000242375 P51857 3-oxo-5-beta-steroid 4-dehydrogenase
3BUR,A/B=1-326|3B UV,A/B=1-326|3BV7,A/B=1-326|3C AQ,A/B=1-326|3C AS,A/B=1-326|3CA V,A/B=1-326|3CMF,A/B=1-326|3COT,A/B=1-326|3D OP,A/B=1-326|3G1R,A/B=1-326
hsa ENSP00000361140 P14550 Alcohol dehydrogenase [NADP+]
2ALR,A=2-325
hsa ENSP00000285930 P15121 Aldose reductase 1ABN,A=2-316|1ADS,A=2-316|1AZ1,A=2-316|1AZ2,A=2-316|1EF3,A/B=2-315|1EL3,A=1-316|1E I1,A=1-316|1MAR,A=2-316|1PWM,A=1-316|1T40,A=1-316|1T41,A=1-316|1USO,A=1-316|1X96,A=1-316|1X97,A=1-316|1X98,A=1-316|1XGD,A=2-315|1Z3N,A=1-316|1Z89,A=1-316|1Z8A,A=1-316|2ACQ,A=2-315|2ACR,A=2-315|2ACS,A=2-315|2ACU,A=2-315|2AGT,A=1-316|2DUX,A=1-316|2DUZ,A=1-316|2DV0,A=1-316|2F2K,A=1-316|2FZ8,A=1-316|2FZ9,A=1-316|2FZB,A=1-316|2FZD,A=1-316|2HV5,A=1-316|2HVN,A=1-316|2HVO,A=1-316|2I16,A=1-316|2I17,A=1-316|2IKG,A=1-316|2IKH,A=1-316|2IKI,A=1-316|2IKJ,A=1-316|2INE,A=2-315|2INZ,A=2-315|2IPW,A=2-315|2IQ0,A=2-315|2I QD,A=2-315|2IS7,A=2-315|2ISF,A=2-315|2J8T,A=1-316|2NV C,A=1-316|2P D5,A=1-316|2P D9,A=1-316|2PD B,A=1-316|2PD C,A=1-316|2PD F,A=1-316|2PD G,A=1-316|2PD H,A=1-316|2PDI,A=1-316|2PD J,A=1-316|2PDK,A=1-316|2PD L,A=1-316|2PD M,A=1-316|2PD N,A=1-316|2PD P,A=1-316|2PD Q,A=1-316|2PD U,A=1-316|2PD W,A=1-316|2PD X,A=1-316|2PD Y,A=1-316|2PEV,A=1-316|2PF8,A=1-316|2PF H,A=1-316|2PZN,A=1-316|2QWX,A=1-316|2R24,A=1-316|3BCJ,A=1-316|3DN5,A=1-316|3G5E,A=1-316|3GHR,A=1-316|3GHS,A=1-316|3GHT,A=1-316|3GHU,A=1-316|

OG2_70788

eco YP_026263.1
sce YMR190C P35187 ATP-dependent helicase SGS1
1D8B,A=1271-1351|
cel WBGene00001865 O18017 Bloom syndrome protein homolog
WBGene000019334 Q5DX50 Putative uncharacterized protein
WBGene00006944 Q19546 Probable Werner syndrome ATP-dependent helicase homolog 1

mmu ENSMUSP00000033990 O09053 Werner syndrome ATP-dependent helicase homolog 2
2E6L,A=31-238|2E6M,A=31-238|

mmu ENSMUSP0000035463

mmu ENSMUSP0000098394 Q3UFL0 Putative uncharacterized protein

hsa ENSP00000349859

hsa ENSP00000298139 Q14191 Werner syndrome ATP-dependent helicase 2
2AXL,A=949-1092|2DGZ,A=1140-1239|2E1E,A=1142-1242|2E1F,A=1142-1242|2FBT,A=38-236|2FBV,A=38-236|2FBX,A=38-236|2FBY,A=38-236|2FCO,A=38-236|
hsa ENSP00000318727 P46063 ATP-dependent DNA helicase Q1
2V1X,A/B=49-616|

OG2_70978
sce YGR088W P06115 Catalase T
sce YDR256C P15202 Peroxisomal catalase A 1A4E,A/B/C/D=15-502|
cel WBGene00000830 O61235 Catalase-2
cel WBGene00000831 Q27487 Peroxisomal catalase 1
cel WBGene00013220 Q8MYL7 Catalase
mmu ENSMUSP00000028610 P24270 Catalase
hsa ENSP00000241052 P04040 Catalase 1DG,B/A/C/D=4-501|1DG,F,A/B/C/D=5-501|1DG,G,A/B/C/D=5-501|1DG,H,A/C=4-501, B/D=4-501|1F4J,A/B/C/D=1-527|1QQW,A/B/C/D=1-527|

 OG2_73734

eco NP_416659.1 P33018 S-formylglutathione hydrolase yeiG
eco NP_414889.1 P51025 S-formylglutathione hydrolase frmB
cel YJL068C P40363 S-formylglutathione hydrolase

 OG2_71183

eco NP_418381.1 P32669 Fructose-6-phosphate aldolase 2
eco NP_416959.1 P0A867 Transaldolase A
eco NP_415346.4 P78055 Fructose-6-phosphate aldolase 1

 OG2_70778

eco NP_414710.1 P0AE18 Methionine aminopeptidase 1

cel YLR244C Q01662 Methionine aminopeptidase 1
eco NP_417402.1 P0A9B6 D-erythrose-4-phosphate dehydrogenase
eco NP_416293.1 P0A9B2 Glyceraldehyde-3-phosphate dehydrogenase A
sce YJR009C P00358 Glyceraldehyde-3-phosphate dehydrogenase 2
sce YJL052W P00360 Glyceraldehyde-3-phosphate dehydrogenase 1
sce YGR192C P00359 Glyceraldehyde-3-phosphate dehydrogenase 3
cel WBGene00001683 P04970 Glyceraldehyde-3-phosphate dehydrogenase 1

cel WBGene00001684 P17329 Glyceraldehyde-3-phosphate dehydrogenase 2

cel WBGene00001685 P17330 Glyceraldehyde-3-phosphate dehydrogenase 3

cel WBGene00001686 P17331 Glyceraldehyde-3-phosphate dehydrogenase 4

mmu ENSMUSP00000097539
mmu ENSMUSP00000097256
mmu ENSMUSP00000082931
mmu ENSMUSP00000096371
mmu ENSMUSP00000091648
mmu ENSMUSP00000090946
mmu ENSMUSP00000089510
mmu ENSMUSP00000075954 Q64467 Glyceraldehyde-3-phosphate dehydrogenase, testis-specific

hsa ENSP00000229239 P04406 Glyceraldehyde-3-phosphate dehydrogenase

hsa ENSP00000222286 Q14556 Glyceraldehyde-3-phosphate dehydrogenase, testis-specific

eco NP_414556.1 P08622 Chaperone protein dnaJ 1BQ0,A=2-104|1BQZ,A=2-78|1EXK,A=131-209|1XBL,A=2-108|
sce YFL016C P35191 DnaJ homolog 1, mitochondrial
cel WBGene00001028 Q8TA83 DnaJ homolog dnj-10

mmu ENSMUSP0000053842 Q99M87 DnaJ homolog subfamily A member 3, mitochondrial

hsa ENSP00000262375 Q96EY1 DnaJ homolog subfamily A member 3, mitochondrial 2CTT,A=213-303|2DN9,A=93-158|

eco NP_417260.1 P0A7E5 CTP synthase 1S1M,A/B=1-545|2AD5,A/B=1-545|
sce YJR103W P38627 CTP synthase 2
sce YBL039C P28274 CTP synthase 1
cel WBGene00012316 Q9XXN1 Protein W06H3.3, partially confirmed by
transcript evidence

mmu ENSMUSP00000033727 P70303 CTP synthase 2

mmu ENSMUSP00000030381 P70698 CTP synthase 1

hsa ENSP00000361699 P17812 CTP synthase 1 2VO1,A/B=1-273|

hsa ENSP00000369590 Q9NRF8 CTP synthase 2 2V4U,A=297-562|2VK,T,A=297-562|

############ OG2_70913 ###############

eco NP_415017.1 Q59385 Copper-exporting P-type ATPase A

sce YDR270W P38995 Copper-transporting ATPase 1FVQ,A=2-72|1FVS,A=2-72|1UV1,B=2-72|1UV2,B=2-72|2GGP,B=2-72|

cel WBGene000000834 B9DI72 Protein Y76A2A.2b, confirmed by transcript
evidence

mmu ENSMUSP00000058840 A2AG68 ATPase, Cu++ transporting, alpha
polypeptide

mmu ENSMUSP00000006742 Q64446 Copper-transporting ATPase 2

hsa ENSP00000355170 Q04656 Copper-transporting ATPase 1

 1AW0,A=375-446|1KVI,A=1-79|1KVJ,A=1-79|1Q8L,A=164-246|1S6O,A=169-240|1S6U,A=169-240|1Y3J,A=486-558|1Y3K,A=486-558|1YJR,A=562-633|1YJT,A=562-633|1YJU,A=562-633|1YJV,A=562-633|2AW0,A=375-446|2G9O,A=275-352|2GA7,A=275-352|2K1R,A=5-77|3CJL,B=7-77|

hsa ENSP00000242839 P35670 Copper-transporting ATPase 2

 2ARF,A=1036-1196|2EW9,A=486-633|2ROP,A=238-439|

############ OG2_71350 ###############

eco NP_417304.1 P0A884 Thymidylate synthase 1AIQ,A/B=1-264|1AJM,A=1-264|1AN5,A/B=1-264|1AOB,A=1-264|1AXW,A/B=1-264|1BDU,A=1-264|1BID,A=1-264|1BJG,A=1-264|1BQ1,A/B=1-264|1BQ2,A=1-264|1DDU,A/B=1-264|1DNA,A/B=1-264|1EV8,A=1-264|1EVF,A=1-264|1EVG,A=1-264|1F4B,A=1-264|1F4C,A/B=1-264|1F4D,A/B=1-264|1F4E,A=1-264|1F4F,A/B=1-264|1F4G,A/B=1-264|1FFL,A=1-264|1FWM,A/B=1-264|1JG0,A/B=1-264|1JTQ,A/B=1-264|1JTU,A/B=1-264|1JUT,A/B=1-264|1KCE,A/B=1-264|1KZI,A/B=1-264|1KZJ,A/B/C/D/E/F=1-264|1NCE,A/B=1-264|1QQQ,A=1-264|1SYN,A/B=1-264|1TDU,A/B=1-264|1TDS,A/B=1-264|1TRG,A=1-264|1TSD,A/B=1-264|1TNN,A=1-264|1TY5,A=1-264|1ZPR,A/B=1-264|2A9W,A/B/C/D=1-264|2BBQ,A/B=1-264|2FTN,A=1-264|2FTO,X=1-264|2FTQ,A=1-264|2G8M,A/B=1-264|2G8O,A/B=1-264|2G8X,A/B=1-264|2KCE,A/B=1-264|2TSC,A/B=1-264|2VET,A=1-264|2VF0,A/B=1-264|3B5B,A/B=1-264|3B9H,A=1-264|3BFI,A=1-264|3BGX,A=1-264|3BHL,A/B=1-264|3BHR,A=1-264|3TMS,A=1-264|

sce YOR074C P06785 Thymidylate synthase

cel WBGene00022455 Q9N588 Thymidylate synthase

mmu ENSMUSP00000026846 P07607 Thymidylate synthase
hsa ENSP00000315644 P04818 Thymidylate synthase 1HVY,A/B/C/D=26-313|1HW3,A=1-313|1HW4,A=1-313|1HZW,A/B=30-313|1100,A/B=30-313|1IU6,A/B/C/D=1-313|1IJU5,A/B/C/D=1-313|1YPV,A=1-313|2ONB,A=1-313|2RD8,A=1-313, B=1-313|2RDA,A/B/D/E/F=1-313#
OG2_71352
eco NP_415465.1 P0A7E1 Dihydroorotate dehydrogenase 1F76,A/B/D/E=1-336#
eco NP_415933.1 P25553 Lactaldehyde dehydrogenase 2HG2,A=2-478|2ILU,A=2-478|2IMP,A=2-478|2OPX,A=1-479#
sce YBR006W P38067 Succinate-semialdehyde dehydrogenase [NADP+]#
eco NP_417147.1 P25526 Succinate-semialdehyde dehydrogenase [NADP+]#
eco NP_415933.1 P25553 Lactaldehyde dehydrogenase 2HG2,A=2-478|2ILU,A=2-478|2IMP,A=2-478|2OPX,A=1-479#
sce YBR006W P38067 Succinate-semialdehyde dehydrogenase [NADP+]#
eco NP_416714.1 P25526 Succinate-semialdehyde dehydrogenase [NADP+]#
sce YBR006W P38067 Succinate-semialdehyde dehydrogenase [NADP+]#
eco NP_415933.1 P25553 Lactaldehyde dehydrogenase 2HG2,A=2-478|2ILU,A=2-478|2IMP,A=2-478|2OPX,A=1-479#
sce YBR006W P38067 Succinate-semialdehyde dehydrogenase [NADP+]#
eco NP_416173.1 P0AGD3 Superoxide dismutase [Fe] 1ISA,A/B=1-193|1SB,A/B=1-193|1SC,A/B=1-193|1SA5,A/B=2-192|2BKB,A/B/C/D=2-192|2NYB,A/B/C/D=2-192
sce YHR008C P00447 Superoxide dismutase [Mn], mitochondrial 3BFR,A=27-233|
cel WBGene00004931 P31161 Superoxide dismutase [Mn] 1, mitochondrial 3DC6,A/C=25-221|
cel WBGene00004932 P41977 Superoxide dismutase [Mn] 2, mitochondrial 3DC5,A/C=25-218|
mmu ENSMUSP0000007012 P09671 Superoxide dismutase [Mn], mitochondrial

hsa ENSP00000356022 P04179 Superoxide dismutase [Mn], mitochondrial 1AP5,A/B=25-222|1AP6,A/B=25-222|1EM1,A/B=25-222|1JA8,A/B=25-222|1LLV,A/B=25-222|1LUU,A/B=25-222|1MSD,A/B=25-222|1N0J,A/B=25-222|1N0N,A/B=25-222|1PL4,A/B/C/D=25-222|1PM9,A/B=25-222|1QNM,A/B=25-222|1SXZ,A/B=25-222|1VAR,A/B=25-222|1XDC,A/B=25-222|1XI,A/B=25-222|1ZSP,A/B=25-222|1ZTE,A/B/C/D=25-222|1ZUQ,A/B=25-222|2ADP,A=25-222|2ADQ,B=25-222|2GDS,A/B/C/D=25-222|2P4K,A/B/C/D=25-222|2QKA,A/C=25-220|2QKC,A/C=25-220|3C3S,A/B=25-222|3C3T,A/B=25-222|

eco NP_417259.1 P0A6P9 Enolase 1E9I,A/B/C/D=2-432|2 FYM,A/C/D/F=2-432|
sce YPL281C Q12007 Enolase-related protein 1/2
sce YOR393W Q12007 Enolase-related protein 1/2
sce YMR323W P42222 Enolase-related protein 3
sce YHR174W P00925 Enolase 2
sce YGR254W P00924 Enolase 1 1EBG,A/B=2-436|1EBH,A/B=2-436|1ELS,A=2-436|1L8P,A/B/C/D=2-437|1NEL,A=2-436|1ONE,A/B=2-437|1P43,A/B=2-437|1P48,A/B=2-437|2AL1,A/B=2-436|2AL2,A/B=2-437|2ONE,A/B=2-437|4ENL,A=2-436|5ENL,A=2-436|6ENL,A=2-436|7ENL,A=2-436|8ENL,A=2-436|9ENL,A=2-436|
cel WBGene00011884 Q27527 Enolase

mmu ENSMUSP00000079727 P17182 Alpha-enolase
mmu ENSMUSP00000065681
mmu ENSMUSP00000075513 P17182 Alpha-enolase
mmu ENSMUSP0000004378 P17183 Gamma-enolase

hsa ENSP00000352320 B9ZVW5 Enolase
hsa ENSP00000229277 P09104 Gamma-enolase 1TE6,A/B=2-434|2AKM,A/B=2-433|2AKZ,A/B=2-433|
hsa ENSP00000324105 P13929 Beta-enolase
hsa ENSP00000234590 P06733 Alpha-enolase 2PSN,A/B/C/D=1-434|3B97,A/B/C/D=2-434|

OG2_70770 OG2_70959
Species	Accession	Description													
eco	NP_417637.1	Translation initiation factor IF-2 1ND9,A=2-50	1Z01,J=388-888												
sce	YOL023W	Translation initiation factor IF-2, mitochondrial													
cel	WBGene00009771	Translation initiation factor IF-2													
mmu	ENSMUSP00000020749	Translation initiation factor IF-2, mitochondrial 2CRV,A=621-727													
hsa	ENSP00000263629	Translation initiation factor IF-2, mitochondrial													
---------	-------------	--													
eco	NP_418189.1	ATP synthase gamma chain 1D8S,G=--	1FS0,G=19-248												
sce	YBR039W	ATP synthase subunit gamma, mitochondrial													
cel	WBGene00022089	Putative uncharacterized protein													
mmu	ENSMUSP0000026887	ATP synthase gamma chain													
hsa	ENSP00000349142	ATP synthase subunit gamma, mitochondrial													
---------	-------------	--													
eco	NP_418208.1	Ribokinase 1GQT,A/B/C/D=1-309	1RK2,A/B/C/D=1-309	1RKA,A=1-309	1RKD,A=1-309	1RKS,A=1-309									
sce	YCR036W	Probable ribokinase													
cel	WBGene00008548	Protein F07A11.5, partially confirmed by transcript evidence													
mmu	ENSMUSP0000031018	Ribokinase													
hsa	ENSP00000306817	Ribokinase 2FV7,A/B=11-322													
---------	-------------	--													
eco	NP_416994.1	Phosphoribosylformylglycinamidine cyclo-ligase	1CLI,A/B/C/D=2-345												
sce	YGL234W	Bifunctional purine biosynthetic protein ADE5,7													
cel	WBGene00018174	Putative uncharacterized protein													
mmu	ENSMUSP0000023684	Trifunctional purine biosynthetic protein adenosine-3													
hsa	ENSP00000371253	Trifunctional purine biosynthetic protein adenosine-3 1MEJ,A/B/C=810-1010	1MEN,A/B/C=810-1010	1MEO,A=808-1010	1NJS,A/B=808-1010	1RBM,A/B=808-1010	1RBQ,A/B/C/D=808-1010	1RBY,A/B/C/D=808-1010	1RBZ,A/B=808-1010	1RC0,A/B=808-1010	1RC1,A/B=808-1010	1ZLX,A=808-1010	1ZLY,A=808-1010	2QK4,A/B=1-430	2V9Y,A/B=467-794
---------	-------------	--													
eco	NP_418374.1	Cystathionine gamma-synthase 1CS1,A/B/C/D=1-386													
sce	YGL184C	Cystathionine beta-lyase													
sce	YAL012W	Cystathionine gamma-lyase 1N8P,A/B/C/D=2-393													
cel WBGene00022856 P55216 Putative cystathionine gamma-lyase
cel WBGene00009048 O45391 Protein F22B.6, confirmed by transcript
evidence
mmu ENSMUSP00000029830
hsa ENSP00000359976 P32929 Cystathionine gamma-lyase
2NMP,A/B/C/D=1-402|3COG,A/B/C/D=1-402|3ELP,A/B/C/D=1-405|
#OG2_70804#
eco NP_417013.1 P0A763 Nucleoside diphosphate kinase
2HUR,A/B/C/D/E/F=2-142|
sce YKL067W P36010 Nucleoside diphosphate kinase 3B54,A/B=1-153|
cel WBGene00009119 Q93576 Nucleoside diphosphate kinase
mmu ENSMUSP00000024978 Q9WV85 Nucleoside diphosphate kinase 3
mmu ENSMUSP00000021220 P15532 Nucleoside diphosphate kinase A
mmu ENSMUSP00000025007 Q9WV84 Nucleoside diphosphate kinase, mitochondrial
mmu ENSMUSP00000021217 Q01768 Nucleoside diphosphate kinase B
hsa ENSP00000372398 O00746 Nucleoside diphosphate kinase, mitochondrial 1EHW,A/B=36-175|
hsa ENSP00000219302 Q13232 Nucleoside diphosphate kinase 3
1IZ6,A/B/D=1-169|
hsa ENSP00000365572 P22392 Nucleoside diphosphate kinase B
1NSK,L/N/O/R/T/U=1-152|1NUE,A/B/C/D/E/F=2-152|3BBB,A/B/C/D/E/F=2-152|3BBC,A/B/C/D/E/F=2-152|3BBF,A/B/C/D/E/F=2-152|
#OG2_71042#
eco NP_418062.1 P33232 L-lactate dehydrogenase [cytochrome]
sce YML054C P00175 Cytochrome b2, mitochondrial
1FCB,A/B=81-591|1KBI,A/B=81-591|1KBJ,A/B=180-591|1LCO,A/B=81-591|1LDC,A/B=81-591|1LTD,A/B=86-591|1LCW,A/B=182-591|1HZE,A/B=81-591|1ZSF,A/B=81-591|1SZG,A/B=81-591|2OZ0,A/B=81-591|
cel WBGene00018286 B1GRK5 Putative uncharacterized protein
mmu ENSMUSP00000029464 Q9NYQ2 Hydroxyacid oxidase 2
mmu ENSMUSP00000028704 Q9WU19 Hydroxyacid oxidase 1
hsa ENSP00000358428 Q9NYQ3 Hydroxyacid oxidase 2
hsa ENSP00000368066 Q9UJM8 Hydroxyacid oxidase 1 2NZL,A=1-370|2RDT,A=1-370|2RDU,A=1-370|2RDW,A=1-370|
#OG2_71043#
eco NP_415613.1 P0AA15 3-oxoacyl-[acyl-carrier-protein] synthase 2
1B3N,A=2-413|1KAS,A=2-413|2GFX,A=2-412|2GFW,A=2-412|2GFX,A=2-412|2GFY,A=2-412|3G0Y,A=2-413|3G11,A=2-413|
sce YER061C P39525 3-oxoacyl-[acyl-carrier-protein] synthase homolog
cel WBGene00008667 Q6A1T5 Protein F10G8.9b, partially confirmed by transcript
evidence
mmu ENSMUSP00000022311 Q9D404 3-oxoacyl-[acyl-carrier-protein]
synthase, mitochondrial
hsa ENSP00000280701 Q9NWU1 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial 2C9H,A=39-459|2IWY,A/B=38-459|2IWZ,A/B=38-459#

######### OG2_71327 #########

eco NP_414714.1 P0A805 Ribosome-recycling factor 1EK8,A=1-185|1ISE,A=1-185|1ZNO,A=1-185|1ZN1,A=1-185|2RDO,8=1-185#
sce YHR038W P38771 Ribosome-recycling factor, mitochondrial
cel WBGene00020625 P91478 Probable ribosome-recycling factor, mitochondrial

mmu ENSMUSP0000028250 Q9D6S7 Ribosome-recycling factor, mitochondrial 1WIH,A=116-186#

hsa ENSP00000312608

hsa ENSP00000343867 Q96E11 Ribosome-recycling factor, mitochondrial

######### OG2_71048 #########

eco NP_417429.1 P52061 Nucleoside-triphosphatase rdgB 1K7K,A=1-197|2PYU,A=1-197|2Q16,A/B=1-197#
sce YJR069C P47119 Protein HAM1
cel WBGene00001823 Q9GYG4 HAM-1-like protein

mmu ENSMUSP0000097279

mmu ENSMUSP0000099482 Q9D892 Inosine triphosphate pyrophosphatase

hsa ENSP00000369456 Q9BY32 Inosine triphosphate pyrophosphatase 2CAR,A/B=1-194|2ISD,A=1-194|2J4E,A/B/C/D/E/F/G/H=1-194#

######### OG2_71532 #########

eco NP_417381.1 P27248 Aminomethyltransferase 1VLO,A=2-363#
sce YDR019C P48015 Aminomethyltransferase, mitochondrial
cel WBGene00017765 Q22968 Aminomethyltransferase

mmu ENSMUSP0000035230 Q8CFA2 Aminomethyltransferase, mitochondrial

hsa ENSP00000273588 P48728 Aminomethyltransferase, mitochondrial 1WSR,A/B=29-403|1WSV,A/B=29-403#

######### OG2_71430 #########

eco NP_417389.1 P0A720 Ribose-5-phosphate isomerase A 1KS2,A/B=1-219|1LKZ,A/B=1-219|1O8B,A/B=1-219#
sce YOR095C Q12189 Ribose-5-phosphate isomerase 1XTZ,A=1-258#

cel WBGene00015101 P41994 Probable-ribose 5-phosphate isomerase

mmu ENSMUSP0000064158 P47968 Ribose-5-phosphate isomerase

hsa ENSP00000283646 P49247 Ribose-5-phosphate isomerase

######### OG2_70886 #########

eco NP_415612.1 P0A6A8 Acyl carrier protein 1ACP,A=2-78|1LOH,A=2-76|1LOI,A=1-78|1T8K,A=2-77|2FAC,A/B=2-77|2FAD,A/B=2-77|2FAE,A/B=2-77|2FH5,C=1-78|2K92,A=2-78|2K93,A=2-78|2K94,A=2-78|3EJB,A/C/E/G=1-78|3EJD,A/C/E/G=1-78|3EJE,A/C/E/G=1-78#
sce YKL192C P32463 Acyl carrier protein, mitochondrial
cel WBGene00013237 Q9U241 Acyl carrier protein

mmu ENSMUSP0000033157 Q9CR21 Acyl carrier protein, mitochondrial
hsa ENSP0000007516 O14561 Acyl carrier protein, mitochondrial
 2DNW,A=71-156|

OG2_70885

eco NP_415133.1 P77806 Aminotransferase ybdL 1U08,A/B=1-386|
sce YJL060W P47039 Probable kynurenine--oxoglutarate transaminase
 BNA3 3B46,A/B=1-444|
cel WBGene00010984 Q5FC69 Protein R03A10.4b, partially confirmed by
 transcript evidence|
cel WBGene00009232 Q9XX97 Protein F28H6.3, partially confirmed by
 transcript evidence|

mmu ENSMUSP00000041675 Q8BTY1 Kynurenine--oxoglutarate
 transaminase 1

hsa ENSP0000302227 Q16773 Kynurenine--oxoglutarate transaminase 1
 1W7L,A=1-422|1W7M,A=1-422|1W7N,A=1-422|3FVS,A/B=1-422|3FVU,A/B=1-422|3FVX,A/B=1-422|

hsa ENSP0000260508 Q6YP21 Kynurenine--oxoglutarate transaminase 3

OG2_71233

eco NP_417388.1 P0A9T0 D-3-phosphoglycerate dehydrogenase
 1PSD,A/B=2-410|1SC6,A/B/C/D=7-409|1YBA,A/B/C/D=1-410|2P9C,A/B=1-410|2P9E,A/B/C/D=1-410|2P9G,A/B=1-410|
sce YIL074C P40510 D-3-phosphoglycerate dehydrogenase 2|
sce YER081W P40054 D-3-phosphoglycerate dehydrogenase 1|
cel WBGene00007836 O17626 Protein C31C9.2, confirmed by transcript
 evidence|

mmu ENSMUSP00000064755 Q61753 D-3-phosphoglycerate dehydrogenase

hsa ENSP0000358417 O43175 D-3-phosphoglycerate dehydrogenase
 2G76,A/B=4-314|

OG2_71100

eco NP_418096.4 P0ABQ0 Coenzyme A biosynthesis bifunctional protein
 coaBC 1U7U,A=181-406|1U7W,A/B/C=181-406|1U7Z,A/B/C=181-406|1U80,A/B/C=181-406|
sce YKL088W P36076 Uncharacterized protein YKL088W|
cel WBGene00009138 P91988 Protein F25H9.6, confirmed by transcript
 evidence|

mmu ENSMUSP0000082856 Q8BZB2 Phosphopantothenoylcysteine
decarboxylase|

hsa ENSP0000343190 Q96CD2 Phosphopantothenoylcysteine decarboxylase
 1QZU,A/B/C/D=1-204|

OG2_70872

eco NP_415698.1 P76004 Uncharacterized protein ycgM
 1NR9,A/B/C/D=1-219|
sce YNL168C P53889 Uncharacterized mitochondrial hydrolase FMP41
 1NKQ,A/B/C/D/E/F=1-259|
cel WBGene00022798 P34673 Uncharacterized protein ZK688.3
Species	Accession	ID	Description
mmu	ENSMUSP00000055827	Q8R0F8	Fumarylacetoacetate hydrolase domain-containing protein 1
mmu	ENSMUSP00000028848	Q3TC72	Fumarylacetoacetate hydrolase domain-containing protein 2A
hsa	ENSP00000372112	Q6P587	Fumarylacetoacetate hydrolase domain-containing protein 1
hsa	ENSP00000272610	Q6P213	Fumarylacetoacetate hydrolase domain-containing protein 2B
hsa	ENSP00000233379	Q96GK7	Fumarylacetoacetate hydrolase domain-containing protein 2A
eco	NP_416154.1	P0AGJ9	Tyrosyl-tRNA synthetase
eco	NP_415252.1	P07014	Succinate dehydrogenase iron-sulfur subunit
eco	NP_417703.1	P61889	Malate dehydrogenase
sce	YPL097W	P48527	Tyrosyl-tRNA synthetase, mitochondrial
cel	WBGene00006968	Q8MPU1	Tyrosinyl trna synthetase protein 1, isoform b
mmu	ENSMUSP0000055277	Q8BYL4	Tyrosyl-tRNA synthetase, mitochondrial
hsa	ENSP00000320658	Q9Y2Z4	Tyrosyl-tRNA synthetase, mitochondrial
eco	NP_418577.1	P0AC47	Fumarate reductase iron-sulfur subunit
eco	NP_415252.1	P07014	Succinate dehydrogenase iron-sulfur subunit
eco	NP_417703.1	P61889	Malate dehydrogenase
sce	YKL085W	P17505	Malate dehydrogenase, mitochondrial
cel	WBGene00003162	O02640	Probable malate dehydrogenase, mitochondrial
mmu	ENSMUSP0000019323	P08249	Malate dehydrogenase, mitochondrial
hsa ENSP00000327070 P40926 Malate dehydrogenase, mitochondrial
2DFD,A/B/C/D=20-338|

############################# OG2_70939 #############################

eco NP_418449.1 P0A6T1 Glucose-6-phosphate isomerase
sce YBR196C P12709 Glucose-6-phosphate isomerase
cel WBGene00013597 Q7K707 Glucose-6-phosphate isomerase
mmu ENSMUSP00000049355 P06745 Glucose-6-phosphate isomerase

1U0E,A/B=1-558|1U0F,A/B=1-558|1U0G,A/B=1-558|2CVP,A/B=1-558|2CXN,A/B=1-558|2CXO,A/B=1-558|2CXP,A/B=1-558|2CXQ,A/B=1-558|2CXR,A/B=1-558|2CXS,A/B=1-558|2CTX,A/B=1-558|2CXU,A/B=1-558|

hsa ENSP00000348877 P06744 Glucose-6-phosphate isomerase
1IAT,A=2-558|1IRI,A/B/C/D=1-558|1JIQ,A/B/C/D=1-558|1JLH,A/B/C/D=1-558|1NUH,A=1-558|

Supplementary Table 6.

Ortholog groups from alpha-proteobacteria [endosymbionts (*) and free species]

* Rickettsia typhi_wilmington
* Orientia
* Anaplasma
* Wolbachia
Rhodospirillum
Magnetospirillum_magneticum_AMB-1
Silicibacter_TM1040
Erythrobacter_litoralis_HTCC2594

Functional groups for proteins with orthologs in all 8 species

ORF	gene in Rickettsia typhi wilmington				
	TRANSLATION				
1	gi	51473841	ref	YP_067598.1	
51	gi	51474009	ref	YP_067766.1	
80	gi	51473231	ref	YP_066988.1	
129	gi	51473332	ref	YP_067089.1	
	RIBOSOMAL PROTEIN				
4	gi	51473838	ref	YP_067595.1	
5	gi	51473837	ref	YP_067594.1	
6	gi	51473836	ref	YP_067593.1	
7	gi	51473835	ref	YP_067592.1	
	RIBOSOME BIOGENESIS				
368	gi	51473248	ref	YP_067005.1	
400 gi|51473858|ref|YP_067615.1|

REPLICATION
60 gi|51473761|ref|YP_067518.1|
223 gi|51474004|ref|YP_067761.1|
285 gi|51473779|ref|YP_067536.1|
286 gi|51473607|ref|YP_067364.1|
332 gi|51473371|ref|YP_067128.1|
390 gi|51473372|ref|YP_067529.1|
487 gi|51473946|ref|YP_067703.1|
551 gi|51474034|ref|YP_067790.1|
573 gi|51473426|ref|YP_067183.1|
619 gi|51473901|ref|YP_067658.1|
652 gi|161610765|ref|YP_067311.2|

DNA REPAIR
329 gi|51473311|ref|YP_067068.1|
338 gi|51474012|ref|YP_067769.1|

tRNA MODIFICATION
54 gi|51473604|ref|YP_067361.1|
598 gi|51474015|ref|YP_067772.1|
605 gi|51473287|ref|YP_067044.1|
1091 gi|51473501|ref|YP_067258.1|
1260 gi|51473927|ref|YP_067684.1|

tRNA SYNTHETASE
243 gi|51473351|ref|YP_067108.1|
244 gi|51473350|ref|YP_067107.1|
261 gi|51473521|ref|YP_067278.1|
389 gi|51473803|ref|YP_067560.1|
425 gi|51473344|ref|YP_067101.1|
428 gi|51473609|ref|YP_067366.1|
607 gi|51473263|ref|YP_067020.1|
623 gi|51473951|ref|YP_067708.1|

TRANSCRIPTION
27 gi|51473815|ref|YP_067572.1|
208 gi|51473610|ref|YP_067367.1|
355 gi|51473296|ref|YP_067053.1|
426 gi|51473650|ref|YP_067407.1|
592 gi|51473499|ref|YP_067256.1|
593 gi|51474029|ref|YP_067786.1|
596 gi|51474026|ref|YP_067783.1|

CELL DIVISION
123 gi|51473844|ref|YP_067601.1|
602 gi|51473284|ref|YP_067041.1|
603 gi|51473285|ref|YP_067042.1|
685 gi|51474010|ref|YP_067767.1|
AMINO ACID BIOSYNTHESIS

FATTY ACID BIOSYNTHESIS

REGULATION AND SENSING

HOST RESISTANCE

RESISTANCE

STRESS RESPONSE
Supplementary Table 7.

Ortholog groups from gamma-proteobacteria [endosymbionts (*) and free species]

- Buchnera sp. (Acyrthosiphon pisum)*
- Wigglesworthia brevipalpis*
- Candidatus Blochmannia pennsylvanicus*
- Marinomonas MWYL1
- Escherichia coli
- Pseudomonas aeruginosa

Functional groups for proteins with orthologs in all 6 species

ORF / gene in Buchnera sp. / description
Translation
393 gi
491 gi
443 gi
239 gi
492 gi
507 gi
295 gi
219 gi
160 gi
179 gi
406 gi
116 gi
19 gi
180 gi
459 gi
353 gi
Ribosomal protein
490 gi
489 gi
488 gi
487 gi
486 gi
485 gi
484 gi
483 gi
482 gi
480 gi
479 gi
478 gi
477 gi
476 gi
475 gi
474 gi
Ribosome biogenesis

221 | 15616850| ref| NP_240063.1 | ribosome recycling factor
376 | 15617005| ref| NP_240218.1 | ribosomal large subunit pseudouridine synthase D
402 | 15617031| ref| NP_240244.1 | GTPase EngB
563 | 15617192| ref| NP_240405.1 | GTP-binding protein EngA
22 | 15616652| ref| NP_239864.1 | hypothetical protein BU023
240 | 15616869| ref| NP_240082.1 | ribonuclease III
131 | 15616761| ref| NP_239973.1 | dimethyladenosine transferase
348 | 15616977| ref| NP_240190.1 | ATP-dependent RNA helicase DeaD
370 | 15616999| ref| NP_240212.1 | 16S rRNA processing protein RimM
358 | 15616987| ref| NP_240200.1 | cell division protein FtsJ
383 | 15617012| ref| NP_240225.1 | hypothetical protein BU410

Replication

10 | 15616640| ref| NP_239852.1 | DNA gyrase subunit B
11 | 15616641| ref| NP_239853.1 | DNA polymerase III beta chain
510 | 28952059| ref| NP_240352.2 | replicative DNA helicase
225 | 15616854| ref| NP_240067.1 | DNA polymerase III alpha chain
424 | 15617053| ref| NP_240266.1 | exodeoxyribonuclease V 135 kDa
555 | 15617184| ref| NP_240397.1 | ATP-dependent DNA helicase Rep
ID	gi	15616799	ref	NP_240011.1	DNA gyrase subunit A
512	gi	15617141	ref	NP_240354.1	hypothetical protein BU548

DNA repair

ID	gi	15616739	ref	NP_239951.1	endonuclease III
516	gi	15617145	ref	NP_240358.1	A/G-specific adenine glycosylase

tRNA modification

ID	gi	15616818	ref	NP_240030.1	tRNA pseudouridine synthase A
161	gi	15616791	ref	NP_240003.1	HemK protein
308	gi	15616937	ref	NP_240150.1	hypothetical protein BU328
101	gi	15616731	ref	NP_239943.1	cell cycle protein MesJ
16	gi	28952039	ref	NP_239858.2	tRNA modification GTPase TrmE
351	gi	15616980	ref	NP_240193.1	tRNA pseudouridine 55 synthase

tRNA synthetase

ID	gi	15617007	ref	NP_240220.1	alanyl-tRNA synthetase
229	gi	15616858	ref	NP_240071.1	arginyl-tRNA synthetase
501	gi	15617130	ref	NP_240343.1	tryptophanyl-tRNA synthetase
63	gi	15616693	ref	NP_239905.1	glutamyl-tRNA synthetase
385	gi	15617014	ref	NP_240227.1	glutaminyl-tRNA synthetase
296	gi	15616925	ref	NP_240138.1	aspartyl-tRNA synthetase
336	gi	15616965	ref	NP_240178.1	asparaginyl-tRNA synthetase
407	gi	15617036	ref	NP_240249.1	lysyl-tRNA synthetase
543	gi	15617172	ref	NP_240385.1	lysyl-tRNA synthetase
414	gi	15617043	ref	NP_240256.1	leucyl-tRNA synthetase
455	gi	15617084	ref	NP_240297.1	cysteinyl-tRNA synthetase
293	gi	15616922	ref	NP_240135.1	seryl-tRNA synthetase
100	gi	15616730	ref	NP_239942.1	methionyl-tRNA synthetase
119	gi	15616749	ref	NP_239961.1	phenylalanyl-tRNA synthetase subunit
120	gi	15616750	ref	NP_239962.1	phenylalanyl-tRNA synthetase beta chain
115	gi	15616745	ref	NP_239957.1	threonyl-tRNA synthetase

Transcription

ID	gi	15617093	ref	NP_240306.1	DNA-directed RNA polymerase subunit alpha
38	gi	15616668	ref	NP_240880.1	transcription antitermination protein NusG
33	gi	15616663	ref	NP_239875.1	DNA-directed RNA polymerase subunit beta
32	gi	15616662	ref	NP_239874.1	DNA-directed RNA polymerase subunit beta'
509	gi	15617138	ref	NP_240351.1	single-strand binding protein
553	gi	15617182	ref	NP_240395.1	transcription termination factor Rho
330	gi	15616959	ref	NP_240172.1	DNA polymerase III delta' subunit
450	gi	15617079	ref	NP_240292.1	DNA polymerase III subunits gamma and tau
24	gi	15616654	ref	NP_239866.1	RNA polymerase factor sigma-32
359	gi	15616988	ref	NP_240201.1	transcription elongation factor GreA
51	gi	15616681	ref	NP_239893.1	DNA primase
50	gi	15616680	ref	NP_239892.1	RNA polymerase sigma factor RpoD
231	gi	15616860	ref	NP_240073.1	DNA polymerase III epsilon chain

Cell division

ID	gi	15616831	ref	NP_240043.1	cell division protein FtsZ
306	gi	15616935	ref	NP_240148.1	septum site-determining protein MinD
Amino acid biosynthesis

42 gi|15616672|ref|NP_239884.1| acetylornithine deacetylase
86 gi|15616716|ref|NP_239928.1| succinyl-diamino-pimelate desuccinylase
550 gi|28952060|ref|NP_240392.2| diaminopimelate epimerase
87 gi|15616717|ref|NP_239929.1| dihydrodipicolinate synthase

Fatty acid biosynthesis

247 gi|15616876|ref|NP_240089.1| enoyl-[acyl-carrier-protein] reductase (NADH)
327 gi|15616956|ref|NP_240169.1| 3-oxoacyl-[acyl-carrier protein] reductase
328 gi|15616957|ref|NP_240170.1| acyl carrier protein
83 gi|15616713|ref|NP_239925.1| 3-oxoacyl-[acyl-carrier-protein] synthase I

Regulation and sensing

302 gi|15616931|ref|NP_240144.1| cold shock-like protein CspC
457 gi|15617086|ref|NP_240299.1| cold shock protein CspE
242 gi|15616871|ref|NP_240084.1| GTP-binding protein LepA
267 gi|15616896|ref|NP_240109.1| extragenic suppressor protein SuhB

Stress response

178 gi|15616808|ref|NP_240020.1| superoxide dismutase
171 gi|15616801|ref|NP_240013.1| alkyl hydroperoxide reductase
403 gi|15617032|ref|NP_240245.1| GTP-binding protein BipA
176 gi|15616806|ref|NP_240018.1| hypothetical protein BU187
554 gi|15617183|ref|NP_240396.1| thioredoxin
Supplementary Material – Part III

Protocol to compute relative complexation propensities

Nonadaptive origins of interactome complexity

Ariel Fernández¹,² and Michael Lynch³

¹Department of Bioengineering, Rice University, Houston, TX 77005, USA
²Department of Computer Science, The University of Chicago, Chicago, IL 60637
³Department of Biology, Indiana University, Bloomington, IN 47405

To determine the complexation propensity of a protein subunit relative to its ortholog in *E. coli* (species 1, control) we take advantage of the scaling/proportionality shown in Supplementary Figure 1. Thus, we estimate \(M_{j,n} = \frac{[\Delta G_{if}]_{j,n} - [\Delta G_{if}]_{j,1}}{[\Delta G_{if}]_{j,1}} \) as \(M_{j,n} \approx \frac{\nu_{j,n} - \nu_{j,1}}{\nu_{j,1}} \), where \(\nu_{j,n} \) = \(\nu \)-value of protein from species \(n \) in ortholog group \(j \) (\(j=1,2,\ldots,106 \)). The protein sequences in each of the 106 ortholog groups for the 36 species are provided in FASTA format upon request. The estimation proved to be adequate as inferred from the similarity of the trends shown in Fig. 2a and Supplementary Fig. 7 and from the tight correlation shown in Supplementary Fig. 1. In accord with this proportionality, the free energy increment \(\Delta G_{if} \) associated with spanning the P-W interface is estimated at \(\Delta G_{if} = (3.91 \text{kJ/mol})B \nu \), where \(B \) = number of backbone hydrogen bonds in the protein, and therefore, \(B \nu \) = number of SABHBs. The physical quantity -(3.91±0.67)kJ/mol is the experimentally obtained free energy release upon exogenous wrapping of a single SABHB¹, hence the contribution of each individual SABHB to the over-all interfacial free energy cost is (3.91±0.67)kJ/mol.

To compute the \(\nu \)-value of a free protein subunit, we use the program YAPview also known as *Dehydron Calculator* (dehydron is an alternative name for SABHB), whose executable can be obtained upon request or can be freely
The code for the program uses **OpenGL®** for rendering, and the interface was done with **Borland Delphi®**. YAPview is a Windows® application that identifies SABHBs by evaluating the bond microenvironments determined by the structural coordinates of the protein chain contained in a PDB text file. The SABHBs are identified by loading the PDB file in text format or the homology model in the same format of a PDB file (Methods), choosing a protein chain within the PDB entry, a suitable structure display/representation, and enabling the desolvation calculation that becomes operative within the structural representation. The latter is needed to determine the extent of intramolecular dehydration of BHBs. The desolvation computation becomes active through the YAPview selection sequence: Configuration → General Options → Desolvation. Thereafter, one needs to enable the desolvation calculator and select the appropriate parameters, especially desolvation radius and desolvation threshold ζ_{thr}, according to the specifications provided in Methods. Unless otherwise specified, the computation will use default values for all parameters. The only acceptable defaults are those describing the geometric constraints of the hydrogen bond (bond angles, bond lengths, etc.). YAPview identifies SABHBs using the criterion $\zeta \leq \zeta_{\text{thr}}$, where ζ is a local parameter quantifying the extent of protection of a BHB that YAPview computes based on the structural coordinates of the side-chain groups contained in the uploaded PDB text file.

By selecting an adequate representation of the protein structure, YAPView displays the SABHBs directly on the protein surface. The easiest and clearest rendering to visualize SABHBs can be obtained by representing residues solely by their alpha carbons, while the backbone conformation is displayed in a simplified manner using virtual bonds joining alpha carbons (see Fig. 2b for illustration). Compatible with this simplified rendering, the BHBs can be displayed as segments (bars) joining the alpha carbons of the residues paired by the BHB. The hydrogen bonds that are poorly dehydrated intramolecularly, that is, below the pre-selected threshold ($\zeta \leq \zeta_{\text{thr}}$) are shown in green in the structure display.
while the well-wrapped ones ($\zeta > \zeta_{\text{thr}}$) are shown in light grey. Higher levels of structural detail are possible, for example full atomistic display of backbone hydrogen-bond donor (amide) and acceptor (carbonyl). In this all-atom backbone rendering, the BHBs should be represented as lines joining the specific atoms O and H, rather than the more schematic representation suited for the alpha-carbon-only residue representation.

For a given set of parameters defining the desolvation threshold, SABHBs and well-wrapped BHBs can be identified using YAPview to yield the parameter ψ.

Template-based three-dimensional structures for orthologs lacking PDB-reported structure are constructed using MODELLER, with side chains directly positioned with SCWRL as indicated in Methods, using as templates the PDB-reported structures indicated in Supplementary Table 5. Once the PDB-text file has been generated for the highest ranked homology model, it is uploaded and interrogated in YAPview exactly in the same way as for any text file extracted from PDB, and the computed structural deficiency given by wrapping parameter ψ may be cross-validated against a sequence-based computation of ψ, as described below.

The sequence-based computations require that we upload protein sequences from the ortholog groups stored in FASTA format into the predictor of native disordered regions (PONDR®)2,3. The latter can be operated upon registration from the website: http://www.pondr.com/

For our analysis presented in Fig. 2a,c and Supplementary Fig. 7, the sequence-based identification of SABHBs and relative complexation propensities of proteins with no reported structure are derived from reliable scores of native disorder propensity generated by PONDR-VLXT®. SABHBs belong to a twilight zone between order and native disorder and hence can be obtained from the disorder score ($0 \leq f_d \leq 1$) assigned to each residue within a sliding window, representing the propensity of the residue to be in a disordered region ($f_d=1$, certainty of disorder; $f_d=0.8$=disorder threshold; $f_d=0$, certainty of order). The strong correlation (Supplementary Fig. 5) between the disorder score of a residue and extent of protection of the hydrogen bond engaging the residue (if
any) provides a sequence-based method of inference of SABHBs. Thus, for residues below the disorder threshold $f_d=0.8$, defined by PONDR (tutorial in http://www.pondr.com/), SABHBs occur in regions where the disorder score lies in the range $0.35 \leq f_d < 0.8$ for twilight regions spanning between order ($f_d << 0.5$) and disorder ($f_d >> 0.5$). These regions are loosely structured but with marginal BHB protection at $\zeta \leq 19$ (Supplementary Fig. 5). The wrapping parameter ν is extracted from the PONDR computation by determining the disorder-based counterpart: $\nu \approx \nu_d = J(\text{twilight})/J$, where $J(\text{twilight}) = \text{number of residues in twilight region } 0.35 \leq f_d < 0.8$, and $J = \text{number of “structured” residues below the disorder threshold } f_d < 0.8$.

As an illustration, the complexation propensities of two orthologs in the first group OG2_70651 (2,5 diketo-D-gluconic acid reductase B) corresponding to E. Coli (ECO ortholog) and H. sapiens (HSA ortholog) are compared using the sequence-based disorder analysis. The PONDR results for the two orthologs are shown below, giving $\nu_d=0.17$ and 0.37 for the E. coli and human protein, respectively.
The thermodynamic parameter ΔG_f is also accessible from the sequence-based computation on account of the fact that $\Delta G_f = (3.91 \text{kJ/mol})B \approx (3.91 \text{kJ/mol})B_v\phi_d$ which gives the operational equation:

$$\Delta G_f = (3.91 \text{kJ/mol}).B.J(\text{twilight})/J$$
This equation combines disorder-propensity information with the experimentally obtained free energy associated with exogenous wrapping of a SABHB\(^1\) and is used to compute complexation propensities, notwithstanding the absence of PDB-reported protein structures.

1. Fernández, A. & Scott, R. Adherence of packing defects in soluble proteins. *Phys. Rev. Lett.* **91**, 018102 (2003).

2. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J. & Dunker, A. K. Sequence complexity of disordered protein. *Proteins* **42**, 38–48 (2001).

3. Garner, E., Romero, P., Dunker, A. K., Brown, C. & Obradovic, Z. Predicting binding regions within disordered proteins, *Genome Informatics* **10**, 41-50 (1999).