Abstract

We present exploratory analyses of the 3D gluon content of the proton via a study of unpolarized and polarized gluon TMDs at twist-2, calculated in a spectator model for the parent nucleon. Our approach embodies a flexible parametrization for the spectator-mass function, suited to describe both moderate and small-\(x\) effects. All these studies can serve as a useful guidance in the investigation of the gluon dynamics inside nucleons and nuclei, which constitutes one of the major goals of new-generation colliding machines, as the EIC, the HL-LHC, NICA, and the FPF.
1 Introduction

The study of the proton content via transverse-momentum-dependent (TMD) parton distribution functions represents a challenging line of research plans at current and new-generation colliding machines. While in the last years the investigation of the quark-TMD field has reached important milestones, from the deep knowledge of formal properties to the more and more accurate extraction of quark densities from global fits, the gluon-TMD sector still represents a largely unexplored territory. A first classification of unpolarized and polarized gluon TMD distributions was first made in Ref. [1] and subsequently extended in Refs. [2–4]. Recent phenomenological analyses on gluon TMDs can be found in Refs. [5–9]. A major difficulty that emerges in formal studies of gluon TMDs is their process dependence. Different kinds of reactions are sensitive to distinct gauge-link structures, and this leads to a more intricate modified universality with respect to what we observe for quark TMDs. Two main gauge links can be identified. They have been classified in the context of small-\(x\) analyses as Weiszäcker–Williams and dipole TMDs [10]. They are strictly related to gluon correlators where for \(T\)-odd TMDs the \(f_{abc}\) and \(d_{abc}\) QCD color structures respectively emerge. Therefore, they are also known among the TMD community as \(f\)-type and \(d\)-type gluon TMDs.

At low-x values and large transverse momenta, the gluon content of the proton is described by the so-called unintegrated gluon distribution (UGD), whose evolution is governed by the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [11, 12] (for recent applications see Refs. [13–23]). Its relation to the low-x limit of gluon TMDs and, more in general, to the Collins–Soper–Sterman (CSS) evolution [24, 25] has been investigated in Refs. [10] and [26, 27], respectively. In this work we present a study on leading-twist \(T\)-even gluon TMDs calculated in a spectator model for the parent proton. Our framework is suited to analyses both in moderate and small-\(x\) ranges.

2 TMD gluon distribution functions

According to the spectator-model approximation, the proton can emit a gluon with longitudinal-momentum fraction \(x\) and transverse momentum \(p_T\), and the remainders are treated as an effective colored particle with mass \(M_X\) and possessing the quantum numbers of a fermion, that we call spectator. The nucleon-gluon-spectator coupling is encoded in a effective vertex that contains two form factors, chosen as dipolar functions of \(p_T^2\). The main advantage of using dipolar form factors consists in the possibility of cancelling gluon-propagator singularities, quenching the effects of large transverse momenta where a pure TMD description is not anymore adequate, and removing logarithmic divergences emerging in \(p_T\)-integrated densities.

In Ref. [28] a pioneering study on quark TMDs was proposed, by considering different di-quark spectator polarization states and nucleon-parton-spectator form factors. In Ref. [29] the weight of azimuthal asymmetries was assessed.

In the present study we present our calculation in the spectator model of \(T\)-even gluon TMDs at twist-2. We improved the genuine spectator-model approach by allowing the spectator mass, \(M_X\), to be in a range of values weighed by the following 7-parameter spectral function

\[
\rho_{[\text{spect.}]}(M_X) = \mu^{2a} \left(\frac{A}{B + \mu^{2b}} + \frac{C}{\pi \sigma} e^{-\frac{(M_X - D)^2}{\sigma^2}} \right). \tag{1}
\]
The expression for a given TMD reads

$$\mathcal{F}^{g}(x, p_T^2) = \int_{M}^{\infty} dM_X \rho_{\text{spect.}}(M_X) \hat{\mathcal{F}}^{g}(x, p_T^2; M_X), \quad (2)$$

with $\hat{\mathcal{F}}^{g}$ the corresponding TMD obtained in a pure spectator-model calculation. Model parameters were fitted to simultaneously reproduce the gluon unpolarized ($f_{g1}^{u}(x)$) and helicity ($g_{g1}^{h}(x)$) collinear parton distribution functions (PDFs), obtained in global fits at the initial scale $Q_0 = 1.64$ GeV (see Fig. 1). We performed our fit by making use of the so-called bootstrap method. We created N replicas of the central value of the NNPDF parametrization by randomly varying it with a Gaussian noise that keeps the same variance of the original parametrization uncertainty. We fitted each replica separately and we obtained N-dimensional vector for each parameter of the model. A complete description of our model together all technical details of our fit procedure can be found in Ref. [30] (see also Refs. [31–36]). We show in Fig. 2 the p_T^2-dependence of two T-even gluon TMDs calculated at $x = 0.001$ and at the same initial scale, $Q_0 = 1.64$ GeV. Each one of our TMDs exhibit a distinct shape. The unpolarized gluon density $xf_{g1}^{u}(x, p_T^2)$ (left panel) shows a non-Gaussian pattern in p_T^2, a large flattening tail in the $p_T^2 \to 1$ GeV limit, and it goes to a quite small value when $p_T^2 \to 0$. Conversely, the Boer–Mulders gluon distribution $xh_{g1}^{1h}(x, p_T^2)$ (right panel), that is connected to the density of transversely polarized gluons inside an unpolarized proton, starts from a finite value at $p_T^2 = 0$ and decreases very fast when p_T^2 grows.

Figure 1: x-dependence of the unpolarized (left) and helicity (right) gluon PDFs densities calculated in the spectator model at the initial scale $Q_0 = 1.64$ GeV. Green bands with dashed borders stand for the NNPDF3.1x [37] and the NNPDFpol1.1 [38] parametrizations. Blue curves depict the 100 replicas for our integrated TMDs. Red curve for the most representative replica #11.

3 Conclusion

We presented a model dependent calculation of all twist-2 T-even gluon TMDs based on the assumption that what remains of the proton after gluon emission can be described as an effective spin-$1/2$ spectator particle. We improved the genuine spectator-model description by weighing its mass via a versatile spectral function. We fitted model parameters to reproduce the x-shape of collinear unpolarized and helicity gluon PDFs that were extracted from global fits. At the current
level, our model does not incorporate any gauge-link dependence, and the extension to twist-2 T-odd gluon TMD distributions is underway. Another intriguing perspective is represented by encoding in the description of the unpolarized gluon TMD genuine small-x effect from the BFKL resummation [11,12]. Exploratory studies on gluon-TMD phenomenology via our model can represent a useful guidance in accessing the proton content at new-generation colliding machines, as the Electron-Ion Collider (EIC) [39], the High-Luminosity Large Hadron Collider (HL-LHC) [40], NICA [41], and the Forward Physics Facility [42,43].

References

[1] P. J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D63, 094021 (2001), doi:10.1103/PhysRevD.63.094021, hep-ph/0009343.

[2] S. Meissner, A. Metz and K. Goeke, Relations between generalized and transverse momentum dependent parton distributions, Phys. Rev. D76, 034002 (2007), doi:10.1103/PhysRevD.76.034002, hep-ph/0703176.

[3] C. Lorce’ and B. Pasquini, Structure analysis of the generalized correlator of quark and gluon for a spin-1/2 target, JHEP 09, 138 (2013), doi:10.1007/JHEP09(2013)138, 1307.4497.

[4] D. Boer, S. Cotogno, T. van Daal, P. J. Mulders, A. Signori and Y.-J. Zhou, Gluon and Wilson loop TMDs for hadrons of spin ≤ 1, JHEP 10, 013 (2016), doi:10.1007/JHEP10(2016)013, 1607.01654.

[5] U. D’Alesio, F. Murgia, C. Pisano and P. Taels, Probing the gluon Sivers function in p↑p → J/ψ X and p↑p → DX, Phys. Rev. D96(3), 036011 (2017), doi:10.1103/PhysRevD.96.036011, 1705.04169.
[6] U. D’Alesio, C. Flore, F. Murgia, C. Pisano and P. Taels, *Unraveling the Gluon Sivers Function in Hadronic Collisions at RHIC*, Phys. Rev. D **99**(3), 036013 (2019), doi:10.1103/PhysRevD.99.036013, 1811.02970.

[7] A. Bacchetta, D. Boer, C. Pisano and P. Taels, *Gluon TMDs and NRQCD matrix elements in J/ψ production at an EIC*, Eur. Phys. J. C **80**(1), 72 (2020), doi:10.1140/epjc/s10052-020-7620-8, 1809.02056.

[8] U. D’Alesio, F. Murgia, C. Pisano and P. Taels, *Azimuthal asymmetries in semi-inclusive $J/\psi +$ jet production at an EIC*, Phys. Rev. D **100**(9), 094016 (2019), doi:10.1103/PhysRevD.100.094016, 1908.00446.

[9] D. Boer, U. D’Alesio, F. Murgia, C. Pisano and P. Taels, *J/ψ meson production in SIDIS: matching high and low transverse momentum*, JHEP **09**, 040 (2020), doi:10.1007/JHEP09(2020)040, 2004.06740.

[10] F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, *Universality of Unintegrated Gluon Distributions at small x*, Phys. Rev. D **83**, 105005 (2011), doi:10.1103/PhysRevD.83.105005, 1101.0715.

[11] V. S. Fadin, E. Kuraev and L. Lipatov, *On the Pomeranchuk Singularity in Asymptotically Free Theories*, Phys. Lett. B **60**, 50 (1975), doi:10.1016/0370-2693(75)90524-9.

[12] I. Balitsky and L. Lipatov, *The Pomeranchuk Singularity in Quantum Chromodynamics*, Sov. J. Nucl. Phys. **28**, 822 (1978).

[13] A. D. Bolognino, F. G. Celiberto, D. Yu. Ivanov and A. Papa, *Unintegrated gluon distribution from forward polarized ρ-electroproduction*, Eur. Phys. J. C **78**(12), 1023 (2018), doi:10.1140/epjc/s10052-018-6493-6, 1808.02395.

[14] F. G. Celiberto, *Unraveling the Unintegrated Gluon Distribution in the Proton via ρ-Meson Leptoproduction*, Nuovo Cim. C **42**, 220 (2019), doi:10.1393/ncc/i2019-19220-9, 1912.11313.

[15] A. D. Bolognino, A. Szczurek and W. Schaefer, *Exclusive production of ϕ meson in the $\gamma^*p \rightarrow \phi p$ reaction at large photon virtualities within k_T-factorization approach*, Phys. Rev. D **101**(5), 054041 (2020), doi:10.1103/PhysRevD.101.054041, 1912.06507.

[16] D. Brzeminski, L. Motyka, M. Sadzikowski and T. Stel, *Twist decomposition of Drell-Yan structure functions: phenomenological implications*, JHEP **01**, 005 (2017), doi:10.1007/JHEP01(2017)005, 1611.04449.

[17] F. G. Celiberto, D. Gordo Gómez and A. Sabio Vera, *Forward Drell-Yan production at the LHC in the BFKL formalism with collinear corrections*, Phys. Lett. B **786**, 201 (2018), doi:10.1016/j.physletb.2018.09.045, 1808.09511.

[18] F. G. Celiberto, *Hunting BFKL in semi-hard reactions at the LHC*, Eur. Phys. J. C **81**(8), 691 (2021), doi:10.1140/epjc/s10052-021-09384-2, 2008.07378.

[19] A. D. Bolognino, F. G. Celiberto, M. Fucilla, D. Yu. Ivanov and A. Papa, *High-energy resummation in heavy-quark pair hadroproduction*, Eur. Phys. J. C **79**(11), 939 (2019), doi:10.1140/epjc/s10052-019-7392-1, 1909.03068.
[20] F. G. Celiberto, D. Yu Ivanov, M. M. A. Mohammed and A. Papa, *High-energy resummed distributions for the inclusive Higgs-plus-jet production at the LHC*, Eur. Phys. J. C **81**(4), 293 (2021), doi:10.1140/epjc/s10052-021-09063-2, 2008.00501.

[21] F. G. Celiberto, M. Fucilla, D. Yu Ivanov and A. Papa, *High-energy resummation in Λc baryon production*, Eur. Phys. J. C **81**(8), 780 (2021), doi:10.1140/epjc/s10052-021-09448-3, 2105.06432.

[22] F. G. Celiberto, M. Fucilla, D. Yu Ivanov, M. M. A. Mohammed and A. Papa, *Bottom-flavored inclusive emissions in the variable-flavor number scheme: A high-energy analysis*, Phys. Rev. D **104**(11), 114007 (2021), doi:10.1103/PhysRevD.104.114007, 2109.11875.

[23] F. G. Celiberto and M. Fucilla, *Inclusive production of a J/ψ or a Υ from single-parton fragmentation plus a jet in hybrid factorization*, under revision in Eur. Phys. J. C (2022), 2202.12227.

[24] J. Collins, *Foundations of perturbative QCD*, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. **32**, 1 (2011).

[25] J. C. Collins and D. E. Soper, *Back-To-Back Jets in QCD*, Nucl. Phys. B**193**, 381 (1981), doi:10.1016/0550-3213(81)90339-4, [Erratum: Nucl. Phys.B213,545(1983)].

[26] M. Nefedov, *Sudakov resummation from the BFKL evolution*, Phys. Rev. D **104**(5), 054039 (2021), doi:10.1103/PhysRevD.104.054039, 2105.13915.

[27] M. Hentschinski, *Transverse momentum dependent gluon distribution within high energy factorization at next-to-leading order*, Phys. Rev. D **104**(5), 054014 (2021), doi:10.1103/PhysRevD.104.054014, 2107.06203.

[28] A. Bacchetta, F. Conti and M. Radici, *Transverse-momentum distributions in a diquark spectator model*, Phys. Rev. D**78**, 074010 (2008), doi:10.1103/PhysRevD.78.074010, 0807.0323.

[29] A. Bacchetta, M. Radici, F. Conti and M. Guagnelli, *Weighted azimuthal asymmetries in a diquark spectator model*, Eur. Phys. J. A**45**, 373 (2010), doi:10.1140/epja/i2010-11016-y, 1003.1328.

[30] A. Bacchetta, F. G. Celiberto, M. Radici and P. Taels, *Transverse-momentum-dependent gluon distribution functions in a spectator model*, Eur. Phys. J. C **80**(8), 733 (2020), doi:10.1140/epjc/s10052-020-8327-6, 2005.02288.

[31] F. G. Celiberto, *3D tomography of the nucleon: transverse-momentum-dependent gluon distributions*, Nuovo Cim. **C44**, 36 (2021), doi:10.1393/ncc/i2021-21036-3, 2101.04630.

[32] A. Bacchetta, F. G. Celiberto and M. Radici, *Toward twist-2 T-odd transverse-momentum-dependent gluon distributions: the f-type Sivers function*, PoS **EPS-HEP2021**, 376 (2022), doi:10.22323/1.398.0376, 2111.01686.

[33] A. Bacchetta, F. G. Celiberto and M. Radici, *Toward twist-2 T-odd transverse-momentum-dependent gluon distributions: the f-type linearity function*, PoS **PANIC2021**, 378 (2022), doi:10.22323/1.380.0378, 2111.03567.

[34] A. Bacchetta, F. G. Celiberto and M. Radici, *Towards leading-twist T-odd TMD gluon distributions* (2022), 2201.10508.
[35] A. D. Bolognino, F. G. Celiberto, M. Fucilla, D. Yu. Ivanov, A. Papa, W. Schäfer and A. Szczurek, Hadron structure at small-x via unintegrated gluon densities, In 19th International Conference on Hadron Spectroscopy and Structure (2022), 2202.02513.

[36] F. G. Celiberto, Phenomenology of the hadronic structure at small-x (2022), 2202.04207.

[37] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo and L. Rottoli, Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data, Eur. Phys. J. C78(4), 321 (2018), doi:10.1140/epjc/s10052-018-5774-4, 1710.05935.

[38] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi and J. Rojo, A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B887, 276 (2014), doi:10.1016/j.nuclphysb.2014.08.008, 1406.5539.

[39] R. Abdul Khalek et al., Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report (2021), 2103.05419.

[40] E. Chapon et al., Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122, 103906 (2022), doi:10.1016/j.ppnp.2021.103906, 2012.14161.

[41] A. Arbuzov et al., On the physics potential to study the gluon content of proton and deuteron at NICA SPD, Prog. Part. Nucl. Phys. 119, 103858 (2021), doi:10.1016/j.ppnp.2021.103858, 2011.15005.

[42] L. A. Anchordoqui et al., The Forward Physics Facility: Sites, experiments, and physics potential, Phys. Rept. 968, 1 (2022), doi:10.1016/j.physrep.2022.04.004, 2109.10905.

[43] J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC (2022), 2203.05090.