Lateral Horizontal Head Position Approach for the Lateral and Anterior Third Ventricles: A Subependymoma Clinical Case and Literature Review

Hüseyin Doğu1 Hidayet Akdemir1 Sirma Çetin2

1 Department of Neurosurgery, Medicine Hospital, Atlas University, Istanbul, Turkey
2 Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

Address for correspondence Hüseyin Doğu, MD, Medicine Hospital, Hoca Ahmet Yesevi Cad. No 149, 34460, Bağcılar, Istanbul, Turkey (e-mail: huseyindogu@gmail.com).

AJNS 2022;17:642–646.

Abstract

Subependymomas are benign, slow-growing, noninvasive solitary lesions of World Health Organization Grade I cerebral ependymal origin that are rare compared with other types of ependymomas. Anterior third ventricle subependymomas are usually detected during autopsies in cases of sudden death due to acute or intermittent obstruction of the cerebrospinal fluid passage. Different surgical approaches are used for these cerebral lateral and third ventricular lesions. Serious complications can occur, either because of brain edema and acute intracranial pressure due to the lesion itself or the chosen head position and continuous use of brain retractors during the surgical procedure.

Keywords

► third ventricle
► transcallosal
► interhemispheric
► subependymoma

In this case report, we trust that the surgical principles we applied with the aid of two cotton pads, gravity assist, and lateral horizontal head position, and without continuous use of brain retractors in the third ventricular lesion in the transcallosal interhemispheric approach are safe and secure in preventing perioperative brain edema or early postoperative neurological complications.

Introduction

Subependymomas are rare noninvasive benign lesions of ependymal origin and were first described by Scheinker and Scheinker 1945.1 Previous studies reported that of all World Health Organization (WHO) grade I subependymomas, 50 to 60% occur in the fourth ventricle and 30 to 40% occur in the lateral ventricles, but those in the third ventricle are rare.2–5 In addition, grade I subependymomas are extremely rare in adults, whereas ependymomas in the fourth ventricle are more common in children.6 In the literature, serious complications have been reported in the early postoperative period because of the characteristics of the tumor or continuous use of brain retractors for the transcallosal interhemispheric approach used to reach the lateral ventricle.7

In the present study, we discuss the advantages of the lateral horizontal head position and transcallosal interhemispheric approach using two cotton pads in a case of acute hydrocephalus anterior third ventricle subependymoma with clinical and surgical findings consistent with those reported in the relevant literature.
Case Report

On March 15, 2021, a 40-year-old male patient was brought to the emergency department of our hospital. Physical examination revealed stable vital signs, but the patient was highly confused, had meaningless speech, and convulsions, with a Glasgow Coma Scale (GCS) score of 7. Non-contrast-enhanced brain computed tomography in the emergency department revealed unilateral asymmetric acute hydrocephalus and a suspicious lesion at the level of the foramen of Monro in the left lateral ventricle (Fig. 1). Emergent ventriculostomy was performed. In the 18th hour of cerebrospinal fluid (CSF) drainage, the patient's GCS score increased to 13 to 14 on neurological examination (NE). Brain magnetic resonance imaging (MRI) revealed a contrast-enhancing lesion extending from the third ventricle to the left lateral ventricle, with a diameter of 22 × 28 mm, and acute hydrocephalus (Fig. 2). Surgery was performed on March 17, 2021, via the transcallosal interhemispheric approach.

Surgical Position and Technique

The patient was anesthetized and placed in the supine position. Then, the patient was turned to the left lateral decubitus position at a ratio of 2:3 from the supine position. Next, the head was lifted 45 degrees, turned 20 to 30 degrees to the left, and the neck was brought to 0 to 5 degrees flexion. The patient was then fixed with a skull-pin head holder (Fig. 3). Free craniotomy was performed in the left frontoparietal region, with two-thirds of the 3 × 3 cm free craniotomy flap on the left side encompassing the superior sagittal sinus (SSS). The dura mater base was opened in a C shape with the same length of the SSS. Upon entering the interhemispheric corridor with the falx, two 2 × 2 cm round cotton pads, which would replace intermittent brain retractors, were placed in front of and behind the craniotomy flap. With the help of the two cotton pads placed in the surgical area, the corpus callosum was reached easily by dissecting the cingulate gyrus at the free edge of

Fig. 1 Preoperative head computed tomography in the axial plane showing acute hydrocephalus and a suspicious lesion at the level of the foramen of Monro in the left lateral ventricle (red arrow).

Fig. 2 Preoperative contrast-enhanced T1-weighted axial brain magnetic resonance imaging scan showing a mild, contrast-enhancing, well-demarcated solid lesion extending from the third ventricle to the left lateral ventricle, with a diameter of 22 × 28 mm, and unilateral acute hydrocephalus (red arrow).

Fig. 3 Surgical position: The head is raised 45 degrees, turned 20 to 30 degrees to the left, and the neck is brought to 0 to 5 degrees flexion. The patient is fixed with a head holder.
the falx. A 1.5 cm callosotomy was performed in the foramen of Monro by using an intraoperative neuronavigation control. After the left lateral ventricle was opened, the following tumor surgery procedures were continued with the surgical view provided by the cotton pads that were placed on the field (►Fig. 4). Thereby, we minimized any additional trauma caused by continuous use of brain retractors. The lesion in the left lateral ventricle was clear and dirt-white in color and was at the level of the foramen of Monro, extending into the third ventricle with prominent capillaries and a cream-white-colored surface (►Fig. 5).

After confirming that it was solitary and pedunculated, the small connection was cut, and en bloc resection was performed (►Fig. 6) After the lesion was removed, the CSF passage was found to be provided by the third ventricle, and the ventriculostomy catheter was removed. Histopathological examination revealed that the lesion was a WHO grade I subependymoma (►Fig. 7A, B). The patient’s control postoperative contrast-enhanced brain MRI scan showed that the left lateral ventricle was asymmetrical larger than the right lateral ventricle (►Fig. 8). The patient did not have neurological deficits in the early postoperative period and was discharged on the 10th postoperative day. No neurological deficits were observed in the NE performed in the third and sixth month.

Discussion

The WHO grade I anterior third ventricle subependymomas are usually detected during autopsies in cases of sudden death due to acute or intermittent obstruction of the CSF passage, sometimes when neuroimaging is performed during NE for complaints of headache, amnesia, behavioral

![Fig. 4](image-url) Schematic illustration of the positioning and surgical corridor provided by the interhemispheric transcallosal approach with the help of two round cotton pads placed in the surgical area. Abbreviations: 3V, third ventricle; Tm, tumor; Rcp, round cotton pad; PcaA, pericallosal artery.

![Fig. 5](image-url) The lesion in the left lateral ventricle is clear and dirt-white in color. It is at the level of the foramen of Monro, extending into the third ventricle, with prominent capillaries, and a cream-white-colored surface.

![Fig. 6](image-url) Macroscopic appearance of the tumor.

![Fig. 7](image-url) (A, B) Histopathologic examination result showing a subependymoma with microcysts filled with myxoid substance and clusters of small uniform cells embedded in the fibrillary background (hematoxylin-eosin staining, original magnifications: A ×40, and B ×100).
Subependymomas are rare benign, slow-growing, solitary, and pedunculated intraventricular lesions. With correct diagnosis and urgent surgical treatments, as in our patient, the prognosis is excellent. We believe that by applying the principles of our preferred surgical approach (use of two cotton pads, gravity assist, lateral horizontal head position, and nonuse of continuous brain retractors), an alternative method can be created for reducing the risks of perioperative brain edema, additional postoperative neurological deficits, and complications, which are more common in standard approaches for third ventricle lesions.
Authors’ Contributions
Hüseyin Doğru was involved in conceptualization, designing, definition of intellectual content, literature search, clinical studies, data analysis, manuscript preparation and editing. Hidayet Akdemir was involved in conceptualization, definition of intellectual content, clinical studies, data analysis, and manuscript preparation. Şırma Çetin contributed to clinical studies and data acquisition. Hüseyin Doğru and Hidayet Akdemir provided guarantee.

Funding
None.

Conflict of Interest
None declared.

References
1 Scheinker IM, Scheinker IM. Subependymoma: a newly recognized tumor of subependymal derivation. J Neurosurg 1945; 2:232–240
2 Louis DN, Ohgaki H, Wiestler OD, et al. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research in Cancer (IARC Press); 2016
3 Scheithauer BW. Symptomatic subependymoma. Report of 21 cases with review of the literature. J Neurosurg 1978;49(05): 689–696
4 Lombardi D, Scheithauer BW, Meyer FB, et al. Symptomatic subependymoma: a clinicopathological and flow cytometric study. J Neurosurg 1991;75(04):583–588
5 Rushing EJ, Cooper PB, Quezado M, et al. Subependymoma revisited: clinicopathological evaluation of 83 cases. J Neurooncol 2007;85(03):297–305
6 Nowak A, Marchel A. Surgical treatment of intraventricular ependymomas and subependymomas. Neurol Neurochir Pol 2012;46(04):333–343
7 Apuzzo MJ, Litofsky NS. Surgery in and around the anterior third ventricle. In Apuzzo MJ, ed. Brain Surgery Complication Avoidance and Management. New York, NY: Churchill Livingstone Inc.; 1993:541–577
8 Kurukumbi M, Muley A, Ramidi G, Wynn Z, Trouth AJ. A rare case of subependymoma with an atypical presentation: a case report. Case Rep Neurol 2011;3(03):227–232
9 Fujisawa H, Hasegawa M, Ueno M. Clinical features and management of five patients with supratentorial subependymoma. J Clin Neurosci 2010;17(02):201–204
10 Chiechi MV, Smirniotopoulos JG, Jones RV. Intracranial subependymomas: CT and MR imaging features in 24 cases. AJR Am J Roentgenol 1995;165(05):1245–1250
11 Ragel BT, Osborn AG, Whang K, Townsend JJ, Jensen RL, Couldwell WT. Subependymomas: an analysis of clinical and imaging features. Neurosurgery 2006;58(05):881–890, discussion 881–890
12 Mørk SJ, Morild I, Giertsen JC. Subependymoma and unexpected death. Forensic Sci Int 1986;30(04):275–280
13 Ortiz-Reyes R, Dragovic L, Eriksson A. Sudden unexpected death resulting from previously nonsymptomatic subependymoma. Am J Forensic Med Pathol 2002;23(01):63–67
14 Dandy WE. Diagnosis, localization and removal of tumors of the third ventricle. Bull Johns Hopkins Hosp 1922;33:188–189
15 Stein BM. Transcallosal approach to third ventricular tumors. In Schmidek HH, Sweet WH, eds. Current Techniques in Operative Neurosurgery. New York: Grune & Stratton; 1977:247–255
16 Winston KR, Cavazzuti V, Arkins T. Absence of Neurological and behavioral abnormalities after anterior transcallosal operation for third ventricular lesions. Neurosurgery 1979;4(05):386–393
17 Ehni G. Interhemispheric and percallosal (transcallosal) approach to the cingulate gyrus, intraventricular shunt tubes, and certain deeply placed brain lesions. Neurosurgery 1984;14(01):99–110
18 Clark K. The occipital transtentorial approach to the pineal region. In: Schmidek HH, Sweet WH, eds. Operative Neurosurgical Techniques. Orlando: Grune & Stratton, Inc; 1988:11–418
19 Shevach I, Cohen M, Rappaport ZH. Patient positioning for the operative approach to midline intracerebral lesions: technical note. Neurosurgery 1992;31(01):154–155