Supplemental material for Deterministic nonlinear phase gates induced by a single qubit

Kimin Park,* Petr Marek, and Radim Filip
Department of Optics, Palacký University, 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
(Dated: December 8, 2017)

I. COMPARISON OF GATE DESIGNS

FIG. 1: (Color online) The comparison of success probability and fidelity for $\chi_3 = 0.2$ for various parameters of the Rabi interaction strength t_1. We assumed that allowed number of Rabi interactions are $nR = 1000$ in all cases. The input state is vacuum state. We can clearly see that 5 uses of Rabi interaction per round gives the closest operator to the ideal unitary cubic gate, which corresponds to the point $(P,F) = (1,1)$. (a) and (b) are the same figures for a different range of success probability and fidelity.

There are several ways in which the target unitary operator $\hat{U}_3 = \exp[i\chi_3 \hat{X}^3]$ can be approximated by using Rabi interactions. They vary in the number of uses of Rabi interactions n before the re-initialization onto the ground state of the ancillary qubit, and the strength of each individual Rabi interaction t_1, t_2. The methods presented in the main text generate operators $\hat{O}_s^{(n=2)} = G_c(g|M_1(t_1 \hat{X}, t_2)|g)$, $\hat{O}_s^{(3)} = G_c(g|M_1(t_1 \hat{X}, t_2 \hat{X})|g)$, $\hat{O}_s^{(5)} = G_c(g|M_1(t_1 \hat{X}, t_2)M_1(-t_1 \hat{X}, t_2)|g)$ and $\hat{O}_s^{(10)} = G_c^2(g|M_1(t_1 \hat{X}, t_2 \hat{X})M_1(-t_1 \hat{X}, t_2 \hat{X})|^2|g)$ as approximations to \hat{U}_3. The last two methods correspond to $k = 1$ and $k = 2$ in the main text.

When a unitary operator \hat{U}_3 acts on an arbitrary state $|\psi\rangle$, the implementation success probability $\langle \psi| \hat{U}^\dagger_3 \hat{U}_3 |\psi\rangle$ is 1 regardless of the state $|\psi\rangle$ by definition. The success probability is therefore an important measure of unitarity of the implemented operators $\hat{O}_s^{(n)}$. In Fig. 1, we compared the success probability $P = \langle \psi| \hat{O}_s^{(n)} \hat{O}_s^{(n)} |\psi\rangle$ and the fidelity $F = |\langle \psi| \hat{U}_3^\dagger \hat{O}_s^{(n)} \hat{U}_3 |\psi\rangle|^2/P$ for the generated operators $\hat{O}_s^{(n)}$ for $\chi = 0.2$. The input state is vacuum state $|0\rangle$. The experimental parameters t_1, t_2, and the number of rounds R are under the constraint $f_n(t_1, t_2) = \chi_3/R$ where the functional form of f_n depends on n. When R and χ_3 are fixed, the only free parameter is one of t_1 or t_2. Therefore, curves are drawn for various Rabi interaction strength t_1. We can clearly see that $\hat{O}_s^{(n=5)}$ and $\hat{O}_s^{(n=10)}$ gives the closest operator to the ideal unitary cubic gate which corresponds to the point $(P,F) = (1,1)$. In addition, we also notice that $\hat{O}_s^{(n=5)}$ is better than $\hat{O}_s^{(n=10)}$, therefore implying a re-initialization is beneficial.

*Electronic address: park@optics.upol.cz