Fast Convergent Algorithms for Expectation Propagation
Approximate Bayesian Inference

Matthias W. Seeger*    Hannes Nickisch †

December 17, 2010

Abstract

We propose a novel algorithm to solve the expectation propagation relaxation of
Bayesian inference for continuous-variable graphical models. In contrast to most previ-
ous algorithms, our method is provably convergent. By marrying convergent EP ideas
from [12] with covariance decoupling techniques [19, 10], it runs at least an order of
magnitude faster than the most commonly used EP solver.

1 Introduction

A growing number of challenging machine learning applications require decision-making
from incomplete data (e.g., stochastic optimization, active sampling, robotics), which relies
on quantitative representations of uncertainty (e.g., Bayesian posterior, belief state) and
is out of reach of the commonly used paradigm of learning as point estimation on hand-
selected data. While Bayesian inference is harder than point estimation in general, it can
be relaxed to variational optimization problems which can be computationally competitive,
if only they are treated with the algorithmic state-of-the-art established for the latter.

In this paper, we propose a novel algorithm for the expectation propagation (EP; or adap-
tive TAP, or expectation consistent (EC)) relaxation [11, 8, 12], which is both much faster
than the commonly used sequential EP algorithm, and is provably convergent (the sequen-
tial algorithm lacks such a guarantee). Our method builds on the convergent double loop
algorithm of [12], but runs orders of magnitude faster. We gain a deeper understanding of
EP (or EC) as optimization problem, unifying it with covariance decoupling ideas [19, 10],
and allowing for “point estimation” algorithmic progress to be brought to bear on this
powerful approximate inference formulation.

Suppose that observations \( y \in \mathbb{R}^m \) are modelled as \( y = Xu + \varepsilon \), where \( u \in \mathbb{R}^n \) are latent
variables of interest, \( \varepsilon \sim N(0, \sigma^2 I) \) is Gaussian noise, and \( X \in \mathbb{R}^{m \times n} \) is the design matrix.
For example, \( u \) can be an image to be reconstructed from \( y \) (e.g., Fourier coefficients in
magnetic resonance imaging [18]), further examples are found in [15]. The prior distribution

*Probabilistic Machine Learning Laboratory, Ecole Polytechnique Fédérale de Lausanne, INJ 339, Station
14, CH-1015 Lausanne, (matthias.seeger@epfl.ch).
†Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen,
(hn@tuebingen.mpg.de).

arXiv:1012.3584v1 [stat.ML] 16 Dec 2010
has the form $P(u) \propto \prod_{i=1}^{q} t_i(s_i)$ with non-Gaussian potentials $t_i(\cdot)$, and $s := Bu$ for a matrix $B$. A well-known example are Laplace sparsity priors defined by $t_i(s_i) = e^{-\tau|s_i|}$ [15], where $B$ collects simple filters (e.g., derivatives, wavelet coefficients). This formal setup also encompasses binary classification ($u$ classifier weights, $\prod_{i=1}^{q} t_i(s_i)$ the classification likelihood [10]) or spiking neuron models [4]. The posterior distribution is

$$P(u|y) = Z^{-1} N(y| Xu, \sigma^2 I) \prod_{i=1}^{q} t_i(s_i),$$

(1)

$Z := \int N(y| Xu, \sigma^2 I) \prod_{i=1}^{q} t_i(s_i) du$ the partition function for $P(u|y)$, and $s = Bu$. Bayesian inference amounts to computing moments of $P(u|y)$ and/or log $Z$. Hyperparameters $f$ can be learned by maximizing log $Z(f)$ [7] (e.g., motion deblurring by blind deconvolution [6]). In Bayesian experimental design (or active learning) [10], $X$ is built up sequentially by greedily maximizing expected information scores. These applications require posterior covariance information beyond any single point estimate.

The expectation propagation relaxation along with known algorithms is described in Section 2, scalable inference techniques reviewed in Section 3. We develop our novel algorithm in Section 4, provide a range of real-world experiments (image deblurring and reconstruction) in Section 5, and close with a discussion (Section 6). Upon publication, code for our algorithm will be released into the public domain.

### 2 Expectation Propagation

Expectation propagation (EP) [8 12] stands out among variational inference approximations. First, it is more generally applicable than most others (see end of Section 3). Second, a range of empirical studies indicate that EP can be a far more accurate approximation to Bayesian inference than today’s competitors of comparable running time [5 9]. Consequently, EP has been applied to a diverse range of models [4]. On the other hand, EP is more difficult to handle than most other methods, for a number of reasons. It is not an optimization problem based on a bound on log $Z$ [1], but constitutes a search for a saddle point [12]. Moreover, its stationary equations are more complicated in structure than commonly used bounds. Finally, running EP can be numerically challenging [15 1].

In the sequel, we describe the variational optimization problem behind (fractional) EP, details can be found in [8 12 15]. The goal is to fit the posterior distribution $P(u|y)$ from (1) by a Gaussian of the form

$$Q(u|y) := Z_Q^{-1} N(y| Xu, \sigma^2 I)e^{b^T s - \frac{1}{2}s^T(\text{diag } \pi)s},$$

$$\text{Cov}[u|y]^{-1} = A := \sigma^2 X^T X + B^T(\text{diag } \pi) B,$$

(2)

where $Z_Q := \int N(y| Xu, \sigma^2 I)e^{b^T s - \frac{1}{2}s^T(\text{diag } \pi)s} du$, $s = Bu$. $Q(u|y)$ depends on the variational parameters $b$ and $\pi \succeq 0$, collected as $\theta = (\pi, b)$ below. Let marginal distributions $N(\mu_i, \rho_i)$ be indexed by moment parameters $\mu, \rho, \eta \in (0,1]$ a fractional parameter (while standard EP uses $\eta = 1$, $\eta < 1$ can strongly improve numerical stability [15]). For $i \in \{1, \ldots, q\}$, denote $\kappa_i = \kappa_i(s_i) := b_i s_i - \frac{1}{2} \tau^2 s_i^2$. The cavity marginal is

\[ A comprehensive bibliography can be found at research.microsoft.com/en-us/um/people/minka/papers/ep/roadmap.html \]
Q_{-i}(s_i) \propto N(s_i|\mu_i, \rho_i)e^{-\eta s_i},
the tilted marginal \( \hat{P}_i(s_i) \propto Q_{-i}(s_i)t_i(s_i)^\eta \). While \( \hat{P}_i(s_i) \) is not a Gaussian, its moments (mean and variance) can be computed tractably. An EP fixed point \((\pi, b)\) satisfies expectation consistency \([12]\): if \( N(\mu_i, \rho_i) = Q(s_i|y) \), then \( \hat{P}_i(s_i) \) and \( Q(s_i|y) \) have the same mean and variance for all \( i = 1, \ldots, q \). The corresponding (negative free) energy function is

\[
\phi(\pi, b, \mu, \rho) := -2\log Z_Q - \frac{2}{\eta} \sum_{i=1}^{q} \left( \log E_{Q_{-i}}[t_i(s_i)^\eta] - \log E_{Q_{-i}}[e^{\eta s_i}] \right),
\]

where \( Z_Q \) is the partition function of \( Q(u|y) \) (see Eq. [2]). If we define \( \mu, \rho \) in terms of \( \pi, b \) (by requiring that \( N(\mu_i, \rho_i) = Q(s_i|y) \)), it is easy to see that \( \nabla \pi \phi = \nabla b \phi = 0 \) implies expectation consistency. However, this dependency tends to be broken intermediately in most EP algorithms. A schematic overview of the expectation consistency conditions is as follows (notations \( \tilde{\theta}, \theta_-, s_s, z \) are introduced in subsequent sections; \( \downarrow \) denotes Gaussian moment matching):

\[
\begin{align*}
\dot{\theta} & \leftarrow (\mu, \rho) \\
N(\mu_i, \rho_i) & \rightarrow Q_{-i}(s_i) \propto N(s_i|\mu_i, \rho_i)e^{-\eta s_i} \\
Q(s_i|y) & \downarrow \hat{P}_i(s_i) \propto Q_{-i}(s_i)t_i(s_i)^\eta
\end{align*}
\]

(3)

The total criterion \( \phi(\pi, b, \mu(\pi, b), \rho(\pi, b)) \) is neither convex nor concave \([12]\).

The most commonly used sequential EP algorithm visits each potential \( i \in \{1, \ldots, q\} \) in turn, first updating \( \mu_i, \rho_i \), then \( \pi_i, b_i \) based on one iteration of \( \partial_{\pi} \phi = \partial_{b} \phi = 0 \) \([8, 12]\). For models of moderate size \( n \), a numerically robust implementation maintains the inverse covariance matrix \( A \) \([2]\) as representation of \( Q(u|y) \). A sweep over all potentials costs \( O(qn^2) \). If memory costs of \( O(n^2) \) are prohibitive, we can determine \( \mu_i, \rho_i \) on demand by solving a linear system with \( A \), in which case a sweep requires \( q \) such systems. The sequential EP algorithm is too slow to be useful for many applications. Notably, all publications for EP we are aware of (with the exception of two references discussed in the sequel) employ this method, generally known as “the EP algorithm”.

In \([3]\), a parallel variant of EP is applied to rather large models of a particular structure. They alternate between updates of all \( \mu, \rho \) and all \( \pi, b \), the latter by one iteration of \( \partial_{\pi} \phi = \partial_{b} \phi = 0 \) (these equations decouple w.r.t. \( i = 1, \ldots, q \). The most expensive step per iteration by far is the computation of marginal variances \( \rho \), which is feasible only for the very sparse matrices \( A \) specific to their application. Neither sequential nor parallel algorithm come with a convergence proof.

A provably convergent double loop algorithm for EP is given by Opper&Winther in \([12]\). For its derivation, we need to consider a natural parameterization of the problem. The underlying reason for this is that log partition functions like \( \log Z_Q \) \([2]\) are simple convex functions in natural parameters, and derivatives w.r.t. the latter result in posterior expectations. Collect \( \theta = (\pi, b) \) and recall that \( \kappa_i = b_is_i - \frac{1}{2}\pi_is_i^2 \). Let \( \tilde{\theta} = (\tilde{\pi}, \tilde{b}) \) be natural parameters corresponding to \( \mu, \rho \) \((\tilde{\pi}_i = 1/\rho_i, \tilde{b}_i = \mu_i/\rho_i)\), and \( \hat{\kappa}_i = \hat{b}_is_i - \frac{1}{2}\hat{\pi}_is_i^2 \), so that \( N(s_i|\mu_i, \rho_i) = Z_i^{-1}e^{\hat{\kappa}_i} \).

\footnote{“One iteration” means solving for \( \pi_i, b_i \), assuming that the cavity distribution \( Q_{-i}(s_i) \) is fixed (ignoring its dependence on \( \pi_i, b_i \).}
where $Z_i = \int e^{\kappa_i} ds_i$ is the normalization constant. With $\theta_- = (\pi_-, b_-) = \tilde{\theta} - \eta \theta$ and $\kappa_- = b_- s_i - \frac{1}{2} \pi_- s_i^2 = \kappa_ - \eta \kappa_i$, we have that $Q_- (s_i) \propto e^{\kappa_-}$ and $\tilde{P}_i (s_i) = Z_i^{-1} e^{\kappa_-} t_i (s_i)$. With $\tilde{Z}_i = \int e^{\kappa_-} t_i (s_i)^9 ds_i$. If $\phi_\pi (\theta_-, \tilde{\theta}) := -\frac{2}{\eta} \sum_i \log \tilde{Z}_i - 2 \log \tilde{Z}_Q$ and $\phi_{\tilde{\theta}} (\theta_-, \tilde{\theta}) := \frac{2}{\eta} \sum_i \log Z_i$, we have that $\phi (\theta_-, \tilde{\theta}) = \phi_\pi (\theta_-, \tilde{\theta}) + \phi_{\tilde{\theta}} (\theta_-, \tilde{\theta})$, where $\phi_\pi (\theta_-, \tilde{\theta})$ is jointly concave w.r.t. $\phi_{\tilde{\theta}} (\theta_-, \tilde{\theta})$ is convex. Define $\phi (\theta) := \max_{\theta_-} \phi (\theta_-, \tilde{\theta})$. The Oppenheimer-Winter algorithm (locally) minimizes $\phi (\theta)$ via two nested loops. The inner loop (IL) is the concave maximization $\theta_- \leftarrow \argmax_{\theta_-} \phi_\pi (\theta_-, \tilde{\theta})$ for fixed $\tilde{\theta}$. An outer loop (OL) iteration consists of an IL followed by an update of $\tilde{\theta}$: $\mu \leftarrow \mathbb{E}_Q (s | y), \rho \leftarrow \text{Var}_Q (s | y)$. Within the schema (3), the IL ensures expectation consistency $\leftarrow \mathbb{M} \mathbb{M}$ in the lower row, while the OL update equates marginals in the left column. While this algorithm provably converges to a stationary point of $\phi (\tilde{\theta})$ whenever the criterion is lower bounded [12], it is expensive to run, as variance computations $\text{Var}_Q (s | y)$ are required frequently during the IL optimization (convergence and properties are discussed in the Appendix). Finally, since $\theta = \eta^{-1} (\tilde{\theta} - \theta_-)$, concave maximization w.r.t. $\theta_-$ for fixed $\tilde{\theta}$ can equivalently be seen as concave maximization w.r.t. $\theta$. We will do the latter for notational convenience in the sequel.

3 Scalable Variational Inference

Scalable algorithms for a variational inference relaxation[1] different from EP have been proposed in [10, 16] (this relaxation is called VB in the sequel, for “Variational Bounding”). They can be used whenever all potentials are super-Gaussian, meaning that $t_i (s_i) = \max_{\pi_0} e^{h_i (s_i) - \frac{1}{2} \pi_0 s_i^2 - h_i (\pi_0) / 2}$ for some $h_i (\pi_0)$, which implies the bound $-2 \log Z \leq \phi_{\text{VB}} (\pi) := -2 \log Z_Q + h (\pi)$ on the log partition function of $P (u | y)$ (up to an additive constant), where $h (\pi) := \sum_i h_i (\pi_i)$. Note that in this relaxation, $b$ is fixed up front ($b = 0$ if all potentials $t_i (s_i)$ are even), and $\pi$ is the sole variational parameters. They proceed in two steps. First, $-2 \log Z_Q = \log | A | + \min_{\pi, u} R (\pi, b, u_s)$ (up to an additive constant), where $R (\pi, b, u_s) := \sigma^{-2} \| y - X u_s \|_2^2 + s_T^T (\text{diag} \pi) s_s - 2 b^T s_s, s_s = B u_s$. Second, since $\pi \rightarrow \log | A |$ is a concave function, Fenchel duality [14] ch. 12 implies that $\log | A | = \min_z z^T \pi - g^* (z)$ for some $g^* (z)$. The variational problem becomes

$$\min_{\pi \geq 0} \phi_{\text{VB}} (\pi) = \min_{z \geq 0} \min_{\pi \geq 0, u_s} z^T \pi - g^* (z) + R (\pi, b, u_s) + h (\pi).$$

It is solved by a double loop algorithm, alternating between inner loop (IL) minimizations w.r.t. $\pi, u_s$ for fixed $z$ and outer loop (OL) updates of $z$ and $g^* (z)$.

The important difference to both the double loop algorithm of [12] and the parallel algorithm of [3] lies in the decoupling transformation $\log | A | = \min_{\pi, u_s} z^T \pi - g^* (z)$. $\phi_{\text{VB}} (\pi)$ is hard to minimize due to the coupling term $\log | A |$. For example, $\nabla_\pi \log | A | = \text{diag} (B A^{-1} B^T) = \text{Var}_Q (s | y)$ requires Gaussian variance computations, which are very expensive in practice [16]. But $\log | A |$ is replaced by a fixed linear function in each IL problem, where we can eliminate $\pi$ analytically and are left with a penalized least squares problem of the form

---

[1]: Log partition functions ($\log Z_i, \log Z_Q$) are convex in their natural parameters, and $\theta = \eta^{-1} (\tilde{\theta} - \theta_-)$ is linear.

[2]: In contrast to EP, this relaxation is convex iff all $t_i (s_i)$ are log-concave [10].
\[
\min_{u_\ast} \sigma^{-2}\|y - Xu_\ast\|^2 - \sum_i \psi_i(s_{si}),
\]
easy to solve with standard algorithms that do not need Gaussian variances at all. To understand the decoupling transformation more generally, consider minimizing \([4]\) w.r.t. each variable in turn, keeping the others fixed. The solutions are \(u_\ast = \operatorname{Eq}[u|y]\) (means) and \(z = \nabla \pi \log |A| = \operatorname{Var}_Q[s|y]\) (variances). The role of decoupling is to \textit{split between computations of means and variances} \([16]\): the latter, much more expensive to obtain in general, are required at OL update points only, much less frequently than the former (means) which are obtained by solving a single linear system.

Note that several important models come with potentials which are not super-Gaussian (e.g., Poisson potentials for spiking neuron models \([4]\), or potentials like the exponential, which become zero), but can easily be handled with EP. Moreover, EP seems to be substantially more accurate as approximation to Bayesian inference \([5, 9]\). To construct an efficient EP solver, we have to make use of decoupling in a similar fashion, so to \textit{minimize the number of Gaussian variances computations}, while retaining provable convergence.

\section{4 Speeding up Expectation Propagation}

A fast and convergent EP algorithm is obtained by marrying the double loop algorithm of \([12]\) with the decoupling trick of \([10]\). During its course, \(\theta\) (or \(\mu, \rho\)) will mainly be fixed, and we will drop it from notation accordingly (but recall that the \(\tilde{Z}_i\) depend on it). Moreover, we will typically work with \(\theta = (\theta - \theta_-)/\eta\) rather than \(\theta_-\). Then,

\[
\phi_{\gamma}(\theta) = \min_{z,u_\ast} \left( z^T \pi - g^*(z) + R(\pi, b, u_\ast) - 2\eta^{-1} \sum_i \log \tilde{Z}_i \right)
= \phi_{\gamma}(v, \theta), \quad v = (z, u_\ast)
= \min_{z,u_\ast} \sigma^{-2}\|y - Xu_\ast\|^2 - \sum_i \psi_i(s_{si}, \pi_i, b_i) - g^*(z),
\psi_i := -(z_i + s_{si}^2)\pi_i + 2b_is_{si} + 2\eta^{-1}\log \tilde{Z}_i.
\]

With \(v = (z, u_\ast)\) and \(\phi_{\gamma}(\theta) = \min_v \phi_{\gamma}(\theta, v)\), the IL problem of \([12]\) is \(\max_{\theta} \min_v \phi_{\gamma}\). As shown in the Appendix, \(\phi_{\gamma}(\theta, v)\) is a closed proper \textit{concave-convex function} (convex in \(v\) for each \(\theta\), concave in \(\theta\) for each \(v\)) \([14]\). Strong duality holds: \(\max_\theta \min_v \phi_{\gamma} = \min_v \max_\theta \phi_{\gamma}\), so the IL problem is equivalent to

\[
\min_{z, u_\ast} \left( \min_{u_\ast} \sigma^{-2}\|y - Xu_\ast\|^2 - \sum_i \psi_i(s_{si}) \right) - g^*(z),
\psi_i(s_i) := \min_{\pi_i, b_i} \psi_i(s_i, \pi_i, b_i).
\]

This problem is jointly convex in \(z, u_\ast\) (note that \(\psi_i(s_{si})\) is concave as minimum of concave functions, and the minimization over \(\pi_i, b_i\) is a jointly convex problem). Solving the inner problem of \([6]\) for fixed \(z\) is a simple and very efficient penalized least squares building block, denoted by \((u_\ast, \theta) \leftarrow \text{PLS}(z, \hat{\theta})\) in the sequel. Note that at its solution, \(u_\ast = \operatorname{Eq}[u|y]\), where \(Q(u|y)\) is indexed by \(\theta\).

This means that the problem addressed in \([12]\) can be written in the form \(\min_{z, \hat{\theta}} \phi(z, \hat{\theta})\). The significance is the same as in Section \([3]\) both \(\phi(z, \hat{\theta})\) and \(\min_{\theta} \phi(z, \hat{\theta})\) (local minimum) for fixed \(z\) can be determined very efficiently. The dominating cost of computing Gaussian
To flesh out this notion, denote\footnote{In the sequel, we will eliminate $u_*$ by minimization in our notation. Since strong duality holds, we can move $\min_u$ outside when solving PLS (6) at any time (for fixed $z, \bar{\theta}$).} $\phi(\theta, z, \bar{\theta}) = z^T \pi - g^*(z) + (\min_u, R(\pi, b, u_*)) - 2\eta^{-1} \sum_i \log Z_i$, and $\phi(z, \bar{\theta}) = \max_{\theta} \phi(\theta, z, \bar{\theta})$. Note that $\phi(\theta, \bar{\theta}) = \min_{\theta} \phi(\theta, z, \bar{\theta})$, moreover $\max_{\theta} \phi(\theta, \bar{\theta}) = \min_{z} \max_{\theta} \phi(\theta, z, \bar{\theta})$ by strong duality. First, $\phi(\bar{\theta}) \leq \phi(z, \bar{\theta})$, so that $\phi(z, \bar{\theta})$ is lower bounded if $\phi(\bar{\theta})$ is (which, like [12], we assume). Next, as shown in the Appendix, we can very efficiently minimize $\phi(z, \bar{\theta})$ locally w.r.t. $\bar{\theta}$ by setting $\rho \leftarrow z$, then iterating between $(u_*, \theta) \leftarrow \text{PLS}(z, \bar{\theta})$ and $\mu \leftarrow s_* = Bu_* = E_Q[s|y]$. In the sequel, we denote this subalgorithm by $\theta' \leftarrow \text{updateTTil}(z, \bar{\theta})$. While updateTTil may call PLS multiple times, it does not require expensive Gaussian variance computations. An “optimistic” step of our algorithm updates $z^* \leftarrow \text{Var}_Q[s|y]$, then $\bar{\theta}' \leftarrow \text{updateTTil}(z^*, \bar{\theta})$, at the cost of one variance computation. Within the schema (3), we update $z$, set $\rho \leftarrow z$, then attempt expectation consistency and $\mu = E_Q[s|y] = s_* = Bu_*$ for fixed variances $z, \rho$.

Suppose we are at a point $z, \bar{\theta}$ (and $\theta$), so that $\bar{\theta}$ is a local minimum point of $\phi(z, \bar{\theta})$. How can we descend: $\phi(z', \bar{\theta}') < \phi(z, \bar{\theta})$ unless $\bar{\theta}$ is a stationary point of $\phi(\bar{\theta})$? Let $\theta^{(1)} = \theta$. The optimistic step would be $z^{(1)} = \text{Var}_Q[s|y]$, then $\bar{\theta}' \leftarrow \text{updateTTil}(z^{(1)}, \bar{\theta})$. If $\phi(z^{(1)}, \bar{\theta}')$ is sufficiently smaller than $\phi(z, \bar{\theta})$, we are done with our descent step: $z' = z^{(1)}$. Otherwise, we run one iteration $\theta^{(1)} \rightarrow \theta^{(2)}$ of the inner optimization $\max_{\theta} \phi(\theta, \bar{\theta})$ of [12]. This requires variance computations, while $z^{(1)}$ can be reused (and $z^{(2)}$ may already be computed). We set $\theta \leftarrow \theta^{(2)}$ and attempt another optimistic step: $z^{(2)} = \text{updateTTil}(z^{(2)}, \bar{\theta})$. Without intervening descent, we would eventually obtain $\theta^{(k)} = \max_{\theta} \phi(\theta, \bar{\theta})$, thus $z^{(k)} = \arg\min_{z'} \phi(z', \bar{\theta})$. If no descent happens from there, $\bar{\theta}$ must be a stationary point of $\phi(\bar{\theta})$ (see [12] and Appendix).

Note that in most cases in practice, our algorithm does not run into the inner optimization of [12] even once (unless to confirm final convergence). Yet the possibility of doing so is what makes our convergence proof work. Algorithm [1] provides a schema.

A word of warning about the inner optimization $\max_{\theta} \phi(\theta, \bar{\theta})$. From (6), it is tempting to iterate between $z \leftarrow \text{Var}_Q[s|y]$ and $(u_*, \theta) \leftarrow \text{PLS}(z, \bar{\theta})$. However, this does not lead to descent and typically fails in practice. As seen in Section 3 the update of $z$ serves to refit an upper bound, suitable for minimizing, but not maximizing over $\theta$. In our algorithm, this problem is compensated by the minimization over $\bar{\theta}$: optimistic steps seem to always descend.
Algorithm 1 Double loop EP algorithm.
The part shaded in grey was never accessed in our experiments (see text for comments).

\[ \Delta(a, b) := (b - a) / \max\{|a|, |b|, 10^{-9}\}. \]
Iterate over \( z, \theta \leftrightarrow (\mu, \rho) \).

repeat

\[ \pi^{(1)} = \pi. \]

for \( k = 1, 2, \ldots \) do

\[ z^{(k)} = \text{Var}_Q[s | y]. \]

\( (\hat{\theta}', \tilde{\theta}') \leftarrow \text{updateTTil}(z^{(k)}, \hat{\theta}). \)

if \( \Delta(\phi(z^{(k)}), \phi(z, \tilde{\theta})) > \varepsilon \) then

Sufficient descent: \( z \leftarrow z^{(k)}, \tilde{\theta} \leftarrow \hat{\theta}'. \)
\( \theta \leftarrow \tilde{\theta}'. \) Leave loop over \( k. \)

else

Run iteration of \( \max_{\theta} \phi(\theta, \hat{\theta}): \)
\( \theta^{(k)} \rightarrow \theta^{(k+1)}. \) Set \( \theta \leftarrow \theta^{(k+1)}. \)

if \( |\Delta(\phi(\theta^{(k+1)}), \hat{\theta}), \phi(\theta^{(k)}), \tilde{\theta})| < \varepsilon \) then

Converged to stationary point \( \hat{\theta} \): Terminate algorithm.

end if

end if

end for

until Maximum number of iterations done

4.1 Computational Details

In this section, we provide details for computational primitives required in Algorithm 1. First, we show how to efficiently compute PLS, i.e. solve the inner problem in [6] for fixed \( z > 0. \) As all \( \psi_i(s_{si}) \) are concave, this is a convex penalized least squares problem, for which many very efficient solvers are available. A slight technical challenge comes from the implicit definition of the regularizer: evaluating \( \psi_i \) and its derivatives entails a bivariate convex minimization.

In our experiments, we employ a standard gradient-based Quasi-Newton optimizer. Suppose we are at \( u_* \) and have determined the maximizer \( \theta = (\pi, b). \) If \( f(u_*) = \sigma^{-2}\|y - X u_*\|^2 - \sum_i \psi_i(s_{si}), \) then \( \psi'_i(s_{si}) = \partial_{s_{si}} \psi_i(s_{si}, \pi_i, b_i) = 2(b_i - \pi_i s_{si}), \) so that \( \nabla_{u_*} f(u_*) = 2\sigma^{-2}X^T(X u_* - y) + 2B^T(\pi \circ s_* - b), \) at the cost of one matrix-vector multiplication (MVM) with \( X^T X, B^T, B \) respectively (here, "\( \circ \)" denotes the componentwise product). For the bivariate minimizations, the derivatives are \( \partial_b \psi_i = 2(s_{si} - E_{\hat{P}_1}[s_i]), \) \( \partial_{\pi_i} \psi_i = -(z_i + s_{si}^2) + E_{\hat{P}_1}[s_i^2]: \) we have to adjust \( b_i, \pi_i \) so that mean and variance of \( \hat{P}_i \) coincides with \( s_{si} \) and \( z_i. \) Details for the computation of \( \hat{P}_i \) are given in [15]. In our implementation, we initialize the minimization by two standard EP updates, then run Newton’s algorithm (details are given in a longer paper). Even for large \( q, \) these bivariate minimizations can often be done more rapidly than MVMs with \( X^T X. \) Moreover, they can be solved in parallel on graphics hardware.

The inner optimization \( \max_{\theta} \phi(\theta, \hat{\theta}) \) of [12] can be addressed by any convex solver. We employ Quasi-Newton once more. The gradients are \( \partial_b \phi(\pi, b, \hat{\theta}) = 2((E_{\hat{P}_1}[s_i]) - (E_Q[s_i])), \) \( \partial_{\pi} \phi(\pi, b, \hat{\theta}) = (E_Q[s_i^2]) - (E_{\hat{P}_1}[s_i^2]). \) This computation entails \( z = \text{Var}_Q[s | y]. \) Note that
with a standard solver, a sufficient increase in $\phi(\theta, \tilde{\theta})$ (for fixed $\tilde{\theta}$) may require a number of $\text{Var}_Q[s|y]$ computations. We are not aware of an effective way to decouple this problem as in Section 3.

**Gaussian Variances**

Finally, how do we compute Gaussian variances $z = \text{Var}_Q[s|y] = \text{diag}(BA^{-1}B^T)$? This is by far the most expensive computation in all EP algorithms discussed here: our main contribution is a novel convergent algorithm which requires few of these calls. In our experiments, $n$ is a few thousand, $q \approx 3n$, and we can maintain an $n \times n$ matrix in memory. We use the identity

$$z = \text{diag} \left( BA^{-1} \sum_i \delta_i \delta_i^T B \right) = \sum_i (BA^{-1} \delta_i) \circ (B \delta_i),$$

where $\delta_i = (I_{j=i})_j$. We compute the Cholesky decomposition $A = LL^T$, then $A^{-1}$ from $L$, using LAPACK code, then accumulate $z$ by $2n$ MVMs with $B$.

If $n$ is larger than $10^4$ or so, this approach is not workable anymore. If $A$ is very sparse, it may possess a sparse Cholesky decomposition which can be determined efficiently, in which case $z$ is determined easily. However, for typical image reconstruction models, $X$ is dense. For the VB relaxation of Section 3, variances have been approximated by the Lanczos algorithm [18, 10]. It is noted in [16] that variances are strongly (but selectively) underestimated in this way, and consequences for the VB double loop algorithm are established there: in a nutshell, while outcomes are qualitatively different, the algorithm behaviour remains reasonable. In contrast, if any of the EP algorithms discussed in this paper are run with Lanczos variance approximations, they exhibit highly erratic behaviour. Parallel EP [3] rapidly diverges, our variant ends in numerical breakdown. While we are lacking a complete explanation for these failures at present, it seems evident that the expectation consistency conditions, whose structure is more complicated than the simple VB bound, do not tolerate strong variance errors. Our observation underlines the thesis of [16]. Robustness to variance errors of the kind produced by Lanczos becomes an important asset of variational inference relaxations, at least if large scale inference is to be addressed. The EP relaxation, as it stands, does not seem to be robust in this sense. Explaining this fact, and possibly finding a robust modification of the expectation consistency conditions, remain important topics for future research.

5 Experiments

5.1 Expectation Propagation vs. VB

In the following experiment, we compare approximate inference outcomes of EP (Section 2) and VB (Section 3), complementing previous studies [5, 9]. We address the (non-blind) deconvolution problem for image deblurring (details ommitted here are found in [6]): $u \in \mathbb{R}^n$ represent the desired sharp image, $X = (\text{diag } f)F_n$, where $F_n$ is the $n \times n$ discrete Fourier transform (DFT) of $f$, $\tilde{f} = F_n f$ the spectrum of the blur kernel $f$, and $y = F_n \tilde{y}$. $\tilde{y}$ the...
blurry image. Our model setup is similar to what was previously used in [16]: $P(u)$ is a Laplace sparsity prior (see Section 1), the transform $B$ consists of an orthonormal wavelet transform $B_a$ and horizontal/vertical differences $B_r$ (“total variation”), corresponding prior parameters are $\tau_a$, $\tau_r$. Recall that $b$ is fixed depending on the $t_i(\cdot)$ in VB: since they are even, $b = 0$. In contrast, they are free variational parameters in EP. Posterior marginals, as approximated by EP and VB, are shown in Figure 1 while we compare parameters $b$, $\pi$ in Figure 2.

The EP and VB approximations are substantially different. While the means are visually similar, EP’s posterior variances are larger and show a more pronounced structure. An explanation is offered by the striking differences in final parameters $b$, $\pi$. Roughly, $\pi_i$ scales the degree of penalization of $s_i$ [15]. While both EP and VB strongly penalize certain coefficients, VB (in contrast to EP) seems to universally penalize all $s_i$ (all $\pi_{VB,i} > 10$), thus may produce small variances simply by overpenalization. EP clearly makes use of $b$, which allow to control the posterior mean independent of the covariance: a mechanism not available for VB. It is important to note that our findings are in line with those in [9], who found that VB strongly underapproximated marginal variances (they obtained the ground truth by expensive Monte Carlo simulations). As noted in Section 1, it is often the posterior uncertainty estimates (covariances) which give Bayesian decision-making an edge over point estimation approaches.

5.2 EP Timing Comparison

In this section, we provide timing comparisons between EP algorithms discussed in this paper. Our setup is much the same as in Section 5.1, but both the choice of $X$ and data is taken from [16]. The problem is inference over images $u \in \mathbb{R}^n$ from “Cartesian MRI” measurements (discrete Fourier coefficients) $y \in \mathbb{C}^m$, so that $X = I_J F_n$, where $J$ is an index selecting acquired coefficients (in fact, complete columns in DF space (“phase encodes”) are sampled, according to a design optimized for natural images). The prior is the same as used above.

In our first experiment, we use $64 \times 64$ images ($n = 4096$, $q = 12160$) and a design $X$ sampling 16 columns ($m = 1024$, 4 times undersampled). We compare the sequential and parallel EP algorithms with our novel fast (convergent) EP method. We chose not to include results for the double loop algorithm of [12], since it runs even slower than the sequential method (see comments in Section 4.1). Our results are averaged over 20 different images (the $y$ vectors are noisy acquisitions, $\sigma^2 = 10^{-3}$, but the same across methods). Moreover, $\tau_a = 0.04/\sigma$, $\tau_r = 0.08/\sigma$ (same values as in [16]). Timing runs were done on an otherwise unloaded standard desktop machine. For each run, we stored tupels $(T_j, \phi_j)$ at the end of each outer iteration (for sequential EP, this is a sweep over all potentials), $T_j$ elapsed time (in secs), $\phi_j$ the EP energy value attained. On a fixed image, all methods eventually attained the same energy value (say, $\phi_\ast$), and we show $(T_j, |(\phi_j - \phi_\ast)/\phi_\ast|)$. Results are presented in Figure 3 left. First, the sequential algorithm is not competitive with the others. At a time when the others converged, it is roughly 1/4 through its first sweep (while requiring about four sweeps to converge). Second, the parallel and our fast EP algorithm converge...
in about the same time. However, ours does so much more smoothly and attains a near optimal solution more quickly.

In a second experiment, we use a single $128 \times 128$ image ($n = 16384$, $q = 48896$) and a design $X$ sampling 36 columns ($\approx 3.5$ times undersampled). We compare the parallel with our fast EP algorithm, since the sequential method is clearly infeasible at this scale. Here, $\sigma^2 = 2 \cdot 10^{-4}$, $\tau_a = 0.04/\sigma$, $\tau_r = 0.08/\sigma$. Results are presented in Figure 3, right. On this larger problem, our algorithm converges significantly faster.

Our method (fast EP in Figure 3) is provably convergent, while parallel EP (and sequential EP) lacks such a guarantee. Beyond, the main difference between fast and parallel EP lies in how thoroughly variance computations are exploited. Fast EP spends more effort between them, solving $\min_{\bar{\theta}} \phi(z, \bar{\theta}) = \min_{\bar{\theta}} \max_{\theta} \phi(\theta, z, \bar{\theta})$, while parallel EP simply does a single EP update. Our method therefore incurs an overhead, which motivates the results for $64 \times 64$ images. However, this overhead is modest (each step of PLS costs $O(q + n \log n)$), while the cost for variances, at $O(n(n^2 + q))$, grows very fast. The overhead for fast EP pays off in the $128 \times 128$ image example, due to the fact that it requires about two variance computations less than parallel EP to attain convergence. Notably, the overhead cost can still be greatly reduced by running different algorithms (see Section 6) or parallelizing the computations of the $\psi_i(s_{si})$, which is not done in our implementation.

6 Discussion

We proposed a novel, provably convergent algorithm to solve the expectation propagation relaxation of Bayesian inference. Based on the insight that the most expensive computations by far in any variational method concern Gaussian variances, we exploit a decoupling trick previously used in [19, 10] in order to minimize the number of such computations. Our method is at least an order of magnitude faster than the commonly used sequential EP algorithm, and improves on parallel EP [3], the previously fastest solver we are aware of, both in running time and guaranteed convergence. Moreover, it is in large parts similar to recent algorithms for other relaxations [10], which allows for transfer of efficient code. While the sequential EP algorithm is most widely used today, our results indicate that this is wasteful even for small and medium size problems and should be avoided in the future.

There are numerous avenues for future work. First, for problems of the general form discussed in Section 5, the central penalized least squares primitive PLS could be solved more efficiently by employing modern augmented Lagrangian techniques, such as the ADMM algorithm reviewed in [2] (today’s most efficient sparse deconvolution algorithms are based on this technique), and by parallelizing the innermost bivariate optimization problems leading to $\psi_i(s_{si})$ and its derivatives. Such measures would bring down the (already modest) overhead of our technique, compared to parallel EP. Moreover, we aim to resolve whether the “optimistic steps” our algorithm is mainly based on, provably lead to descent by themselves (this would render the fallback on [12], shaded in Algorithm 1, obsolete, thus simplify the code).

Known EP algorithms (including ours presented here) break down in the presence of substantial Gaussian variance approximation errors, in contrast to algorithms for simpler relaxations which behave robustly. If real-world Bayesian image applications such as those in
Section 5 are to be run at realistic sizes, variance errors cannot be avoided. The most important future direction is therefore to understand the reason for this non-robustness of EP algorithms (or even the expectation-consistency conditions as such) and to seek for alternatives which combine the accuracy of this relaxation with good behaviour in the presence of typical Gaussian variances approximation errors [16].

Appendix

We start by reviewing the convergence proof for the EP double loop algorithm of Section 2 [12]. The problem is minimizing $\max_{\theta, z} f_{\pi}(z - \theta) + \phi_{\pi}(\theta)$. Now, $\phi_{\pi}(\theta) = \max_{\theta, z} f_{\pi}(z - \theta)$ is concave. If $\theta = \argmin_{\theta} f_{\pi}(z - \theta)$, then $f'(\theta) = \log |\theta - \theta| = -\partial_{\theta} f_{\pi}(\theta - \theta) + \phi_{\pi}(\theta)$, where $g = -\nabla_{\theta} f_{\pi}(\theta) = -\partial_{\theta} f_{\pi}(\theta - \theta)$ [14, ch. 12]. If $\theta = \eta^{-1}(\theta - \theta)$, then $g = \partial_{\theta} \log Q = \eta^{-1}(E_{Q}[s|y], \frac{1}{2} E_{Q}[s^2|y])$. Now, $\phi_{\pi}(\theta) = \log Q(\theta)$, and $\partial_{\theta} f_{\pi}(\theta)$ is convex, its minimum defined by $\nabla_{\theta} f_{\pi}(\theta) = g$. Therefore, minimizing $\log Q(\theta)$ leads to $f'(\theta) < \phi_{\pi}(\theta)$, unless $g = \partial_{\theta} f_{\pi}(\theta)$, thus $\nabla_{\theta} f_{\pi}(\theta) = 0$. Since the sequence $f_{\pi}(\theta)$ is nonincreasing and lower bounded, it must converge to a stationary point. To determine $g$, note that if $u_*$ is the minimizer in $\log Q$, then $E_{Q}[s|y] = s_*$ and $E_{Q}[s^2|y] = s^2_* + \text{Var}_{Q}[s|y]$. Moreover, since $\phi(\theta)$ is the sum of log partition functions of $N(\mu_i, \rho_i)$, the equation $\nabla_{\theta} \phi_{\pi}(\theta) = g$ is solved by $\mu' = s_*$, $\phi' = \text{Var}_{Q}[s|y]$.

Importantly, exactly the same argument establishes the convergence (to a stationary point) of $\min_{\theta} \phi_{\pi}(\theta, \theta')$ for any fixed $\theta > 0$, thus the computation of updateTcl in Section 4. We only have to replace $|A(\pi)|$ by $z^T \pi - g''(z)$ (both are concave in $\theta$), therefore concave in $(\theta, \theta)$, noting that the gradient w.r.t. $\pi$ changes from $\nabla_{\pi} \log |A| = \text{Var}_{Q}[s|y]$ to $\nabla_{\pi} (z^T \pi - g''(z)) = z$. The only difference to the algorithm of [12] just discussed is that $\rho$ is updated to $z$, not to $\text{Var}_{Q}[s|y]$, so that variances do not have to be computed.

Next, we establish the properties of the inner loop problem $\max_{\theta} \phi_{\pi}(\theta, \theta)$ (Eqs. 3). In particular, we prove that strong duality holds. Recall that $v = (z, u_*)$ and $\phi_{\pi}(\pi, \theta)$ from [3]. We begin by extending $\phi_{\pi}(\pi, \theta)$ for all values of $\pi$ and $\theta$ [14]. First, $g''(z) = \inf_{z^T \pi} z^T \pi - \log |A(\pi)|$ is the concave dual function of $|A(\pi)|$. Since $\log |A| \rightarrow \infty$ whenever any $\pi_i \rightarrow \infty$ [17], then $g''(z) \rightarrow -\infty$ as any $z_i \rightarrow 0$, and $\phi_{\pi} := +\infty$ if any $z_i \leq 0$. Moreover, $\phi_{\pi} := -\infty$ if $\pi > 0$ and any $\pi_i < 0$, and $\phi_{\pi}(\pi, \pi, b) := \lim_{\pi \rightarrow \infty} \phi_{\pi}(\pi, \pi, b)$ for any $\pi > 0$. With these extensions, it is easy to see that $\phi_{\pi}(\pi, \theta)$ is a closed proper concave-convex function [14, ch. 33]: convex in $\pi$ for each $\theta$, concave in $\theta$ for each $\pi$. Note that we always have that $\max_{\pi} \min_{\pi} \phi_{\pi} \leq \min_{\pi} \max_{\pi} \phi_{\pi}$ (weak duality). In order to establish equality (strong duality), we show that $\phi_{\pi}(\pi, \theta)$ do not have a common nonzero direction of recession. Given that, strong duality follows from [14, Theorem 37.3].

**Theorem 1** Let $\phi(\pi, \theta)$ be defined as in [3], and extended to a closed proper concave-convex function. If $\theta = (\pi, b)$ is such that $\pi > 0$ and $A(\pi)$ is positive definite, then $\phi(\cdot, \theta)$ has no nonzero direction of recession. For any $d \neq 0$ and any $\pi$ so that $\phi(\pi, \theta) < \infty$:

$$\lim_{t \rightarrow \infty} \frac{\phi(v + td, \pi) - \phi(v, \pi)}{t} > 0.$$

**Proof** Write $F(v) = \phi_{\pi}(v, \theta)$ for brevity, and pick any $d \neq 0$. $d$ is a direction of recession iff $\lim_{t \rightarrow \infty} (F(v + td) - F(v))/t \leq 0$ for some $v$ [14, Theorem 8.5]. Pick any $v = (z, u_*)$,
If \( z > 0 \), and let \( d = (d_z, d_u) \). If \( d_u \neq 0 \), then \( F(v + td) = \Omega(t^2) \) by the positive definite quadratic part. If \((d_z)_i < 0\) for any \( i \), then there is some \( t_0 > 0 \) so that \((z + td_z)_i \) is negative and \( F(v + td) = \infty \) for all \( t \geq t_0 \). This leaves us with \( d_u = 0, d_z \succeq 0 \), so that \((d_z)_i > 0\) for some \( i \). Let \( \tilde{\pi} = \pi - (\pi_i/2)\delta_i \). By definition, \( g^*(z + td_z) \leq (z + td_z)^T\tilde{\pi} - \log |A(\tilde{\pi})| \), therefore

\[
\frac{F(v + td) - F(v)}{t} = d_z^T\pi + \frac{g^*(z) - g^*(z + td_z)}{t} \\
\geq d_z^T(\pi - \tilde{\pi}) + \frac{g^*(z) + \log |A(\tilde{\pi})| - z^T\tilde{\pi}}{t} \\
= \pi_i(d_z)_i/2 + \frac{g^*(z) + \log |A(\tilde{\pi})| - z^T\tilde{\pi}}{t},
\]

which is positive as \( t \to \infty \).

References

[1] D. Barber. Expectation correction for smoothing in switching linear Gaussian state space models. *Journal of Machine Learning Research*, 7:2515–2540, 2006.

[2] P. Combettes and J. Pesquet. Proximal splitting methods in signal processing. In H. Bauschke, R. Burachik, P. Combettes, V. Elser, D. Luke, and H. Wolkowicz, editors, *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*. Springer, 2010.

[3] M. van Gerven, B. Cseke, F. de Lange, and T. Heskes. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. *Neuroimage*, 50:150–161, 2010.

[4] S. Gerwinn, J. Macke, M. Seeger, and M. Bethge. Bayesian inference for spiking neuron models with a sparsity prior. In Platt et al. [13].

[5] M. Kuss and C. Rasmussen. Assessing approximate inference for binary Gaussian process classification. *Journal of Machine Learning Research*, 6:1679–1704, 2005.

[6] A. Levin, Y. Weiss, F. Durand, and W. Freeman. Understanding and evaluating blind deconvolution algorithms. In *Computer Vision and Pattern Recognition*, 2009.

[7] D. MacKay. *Information Theory, Inference, and Learning Algorithms*. Cambridge University Press, 2003.

[8] T. Minka. Expectation propagation for approximate Bayesian inference. In J. Breese and D. Koller, editors, *Uncertainty in Artificial Intelligence 17*. Morgan Kaufmann, 2001.

[9] H. Nickisch and C. Rasmussen. Approximations for binary Gaussian process classification. *Journal of Machine Learning Research*, 9:2035–2078, 2008.

[10] H. Nickisch and M. Seeger. Convex variational Bayesian inference for large scale generalized linear models. In L. Bottou and M. Littman, editors, *International Conference on Machine Learning 26*, pages 761–768. Omni Press, 2009.
[11] M. Opper and O. Winther. Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling. *Physical Review E*, 64(056131), 2001.

[12] M. Opper and O. Winther. Expectation consistent approximate inference. *Journal of Machine Learning Research*, 6:2177–2204, 2005.

[13] J. Platt, D. Koller, Y. Singer, and S. Roweis, editors. *Advances in Neural Information Processing Systems 20*. Curran Associates, 2008.

[14] R. Rockafellar. *Convex Analysis*. Princeton University Press, 1970.

[15] M. Seeger. Bayesian inference and optimal design for the sparse linear model. *Journal of Machine Learning Research*, 9:759–813, 2008.

[16] M. Seeger. Gaussian covariance and scalable variational inference. In J. Fürnkranz and T. Joachims, editors, *International Conference on Machine Learning 27*. Omni Press, 2010.

[17] M. Seeger and H. Nickisch. Large scale Bayesian inference and experimental design for sparse linear models. To appear in *SIAM Journal of Imaging Sciences* (arXiv:0810.0901v2), 2010.

[18] M. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf. Bayesian experimental design of magnetic resonance imaging sequences. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, *Advances in Neural Information Processing Systems 21*, pages 1441–1448. Curran Associates, 2009.

[19] D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In Platt et al. [13], pages 1625–1632.
Figure 1: Deconvolution setting and resulting marginals (variances on $u$, not on $s$). $u$ is $48 \times 73$, pixels, the kernel $f$ is $22 \times 25$ ($n = 3504$, $q = 10512$, $\tau_a = \tau_r = 15$, $\sigma^2 = 10^{-5}$).
Figure 2: Final parameters for deconvolution. Left: $b$ sorted ($b_{VB} = 0$ by construction). Right: $\pi$. 

$\pi_{EP}$
Figure 3: Timing comparison of EP algorithms for inference over greyscale images. Left: 64 x 64 images. Right: 128 x 128 image. Shown is relative distance to EP energy stationary point $|\phi - \phi_\ast|/\phi_\ast$ as function of running time (left: mean, two std. over 20 different images). Algorithms: sequential EP (Section 2 left only), parallel EP (Section 2), and fast EP (our method).