Hurwitz’s Freeness Property

In [2] Gauss devised an algorithm to solve in integers the equation

\[a x^2 + 2 b x y + c y^2 = m, \]

(1)

where \(a, b, c, m \) are given integers.

Consider the groups

\[G := \text{GL}(2, \mathbb{Z})/\{\pm 1\} \supset \text{SL}(2, \mathbb{Z})/\{\pm 1\} =: H. \]

Let \(\Delta \) be an integer, let \(F \) be the set all quadratic forms

\[f(X, Y) := a X^2 + 2 b X Y + c Y^2 \]

(2)

with \(a, b, c \) integers and \(b^2 - ac = \Delta \), and let \(\mathcal{F} \) be the groupoid attached to the natural action of \(H \) on \(F \). In Article 169 of [2] Gauss reduces the solution of (1) to the computation of certain hom-sets in \(\mathcal{F} \) (see below).

Assume from now on that \(\Delta \) is a fixed positive nonsquare integer.

The group \(G \) acts on the set \(\mathbb{I} \) of irrational real numbers by linear fractional transformations. Let \(\mathcal{I} \) be the corresponding groupoid, and \(\mathbb{I}_\Delta \) the set of real numbers

\[\frac{-b - \sqrt{\Delta}}{a} \]

where \(f \) as in (2) runs over the elements of \(F \). Then \(H \) preserves \(\mathbb{I}_\Delta \), and we can form the restricted groupoid \(\mathcal{I}_\Delta^H \) issued from the action of \(H \) on \(\mathbb{I}_\Delta \).

In Section 73 of [1] Dirichlet notes that above formula gives a canonical groupoid isomorphism from \(\mathcal{F} \) to \(\mathcal{I}_\Delta^H \).

In Section 63 of [3] Hurwitz shows that the groupoid \(\mathcal{I} \) is free over one of its sub oriented graph, giving a very simple description of the hom-sets of \(\mathcal{I}_\Delta^H \), which Dirichlet had identified to the hom-sets of \(\mathcal{F} \), whose computation Gauss had reduced the solution of (1) to.

We wish to phrase Hurwitz’s statement in today’s language.

Say that the derivative \(x' \) of a point \(x \) in \(\mathbb{I} \) is the inverse of its fractional part, let \(g_x \) be the image in \(G \) of
\[
\begin{pmatrix} [x] & 1 \\ 1 & 0 \end{pmatrix},
\]
so that we have \(x = g_x x' \), let \(\gamma(x) \) be the corresponding morphism in \(\mathcal{I} \) from \(x' \) to \(x \), and let \(\Gamma \) be the sub oriented graph of \(\mathcal{I} \) whose vertices are the points of \(\mathbb{I} \) and whose arrows are the \(\gamma(x) \).

Then \(\mathcal{I} \) is the groupoid freely generated by \(\Gamma \) in the following sense.

Let \(\varphi \) be an oriented graph morphism from \(\Gamma \) into any groupoid \(\mathcal{G} \). Then \(\varphi \) extends uniquely to a groupoid morphism from \(\mathcal{I} \) to \(\mathcal{G} \).

The groupoid \(\mathcal{I} \) has a very simple structure, which can be described as follows. To ease notation put \(x_i := x^{(i)} \).

Let \(g \) be a nontrivial morphism in \(\mathcal{I} \) from \(x \) to \(y \). Then there is a unique pair \((i, j)\) of nonnegative integers satisfying \(x_i = y_j \),

\[
g = \gamma(y_0) \cdots \gamma(y_{j-1}) \gamma(x_{i-1})^{-1} \cdots \gamma(x_0)^{-1},
\]
and \(x_{i-1} \neq y_{j-1} \) if \(i \) and \(j \) are positive.

The composition of two such elements is tedious but easy to compute.

Let \(x \) be in \(\mathbb{I} \). Recall that the sequence \((x_i)\) is eventually periodic if and only if \(x \) has degree 2 over \(\mathbb{Q} \). This makes \(\mathcal{I}_\Delta \) computable. In particular the stabilizer in \(H \) of \(f \) in \(F \) is infinite cyclic. However, \(\mathcal{I} \) is highly uncomputable.

*

We said above that Gauss reduced the solution of (1) to the computation of certain hom-sets in \(F \). Let’s be more precise. (We only indicate some of the main statements, directing the reader to [3] for a full treatment.) Assume that \(m \) is nonzero.

Say that a solution of (1) is a representation of \(m \) by \(f \) (\(f \) being given by (2)), and that such a representation is proper of \(X \) and \(Y \) are relatively prime. It clearly suffices to describe the set \(P \) of proper representations of \(m \) by \(f \).

As a general notation, write \([a, b, c]\) for the form (2). Let \(n \) be in \(\mathbb{N} \). Put

\[
\ell_n := \frac{n^2 - \Delta}{m}, \quad f_n := [m, n, \ell_n],
\]
form the set S_n of those substitutions h in $\text{SL}(2, \mathbb{Z})$ which satisfy $f h = f_n$, and let u_n be the map from S_n to P attaching to $h \in S_n$ its first column.

Then the u_n induce a bijection form the disjoint union of the S_n onto P.

References

[1] Dirichlet, Peter Gustav; Vorlesungen über Zahlentheorie, 1863. (“Lectures on Number Theory”, AMS translation).

http://gallica.bnf.fr/
http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=159254
http://books.google.com/books?id=PycPAAAAQAAJ&output=text

[2] Gauss, Carl Friedrich; Disquisitiones Arithmeticae, 1801. I won’t try to list all the online and offline versions available.

[3] Hurwitz, Adolf; Lectures on Number Theory, Springer 1986.