Obstructing Visibilities with One Obstacle

Ji-won Park (KAIST)
Steven Chaplick, Fabian Lipp, Alexander Wolff
(Universität Würzburg)
Obstacle Number of a Graph

- G: a simple graph
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons
- $u \sim v$ iff uv doesn’t intersect any obstacles
Obstacle Number of a Graph

- G: a simple graph

- Place vertices freely in the plane

- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff uv doesn’t intersect any obstacles

- $\text{obs}(G) =$ smallest number of obstacles to represent G
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons
- $u \sim v$ iff uv doesn't intersect any obstacles
- $\text{obs}(G) =$ smallest number of obstacles to represent G
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons
- $u \sim v$ iff uv doesn’t intersect any obstacles
- $\text{obs}(G) =$ smallest number of obstacles to represent G
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons
- $u \sim v$ iff uv doesn't intersect any obstacles
- $\text{obs}(G) =$ smallest number of obstacles to represent G
Obstacle Number of a Graph

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons
- $u \sim v$ iff uv doesn’t intersect any obstacles
- $\text{obs}(G) =$ smallest number of obstacles to represent G
Obstacle Number of a Graph

- Outside obstacle:
 drawn in the unbounded face
Obstacle Number of a Graph

- Outside obstacle:
 drawn in the unbounded face

- Inside obstacle:
 drawn in the *complement* of the unbounded face
Obstacle Number of a Graph

- **Outside obstacle:**
 drawn in the unbounded face

- **Inside obstacle:**
 drawn in the *complement* of the unbounded face

\[
\text{obs}_{\text{out}}(G) = \text{Obstacle number using an outside obstacle}
\]

\[
\text{obs}_{\text{in}}(G) = \text{Obstacle number only using inside obstacles}
\]
Some Known Results

- \(\text{obs}(G) \leq \# \text{ of non-edges of } G = O(n^2) \)
Some Known Results

- $\text{obs}(G) \leq \# \text{ of non-edges of } G = O(n^2)$
- $\text{obs}(G) \leq O(n \lg n)$ \hspace{1cm} [Balko, Chibulka and Valtr, GD’15]
Some Known Results

- \(\text{obs}(G) \leq \# \text{ of non-edges of } G = O(n^2) \)

- \(\text{obs}(G) \leq O(n \log n) \) \hspace{1cm} [Balko, Chibulka and Valtr, GD’15]

- There are graphs that require \(\Omega(n/(\log \log n)^2) \) obstacles. \hspace{1cm} [Dujmović and Morin ’15]
Some Known Results

- \(\text{obs}(G) \leq \# \text{ of non-edges of } G = O(n^2) \)

- \(\text{obs}(G) \leq O(n \log n) \) [Balko, Chibulka and Valtr, GD’15]

- There are graphs that require \(\Omega(n/(\log \log n)^2) \) obstacles. [Dujmović and Morin ’15]

- For each \(m \), there exists a graph \(G \) s.t. \(\text{obs}(G) = m \) [Mukkamala, Pach, Sariöz, WG’10]
Questions

- Graphs of obstacle number 0 are complete graphs.
Questions

• Graphs of obstacle number 0 are complete graphs.

• What are the graphs of obstacle number 1?
Questions

• Graphs of obstacle number 0 are complete graphs.

• **What are the graphs of obstacle number 1?**

• The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
Questions

- Graphs of obstacle number 0 are complete graphs.

- **What are the graphs of obstacle number 1?**

- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.

- **What is the smallest graph of obstacle number 2?**
Questions

- Graphs of obstacle number 0 are complete graphs.

- **What are the graphs of obstacle number 1?**

- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.

- **What is the smallest graph of obstacle number 2?**

- $\text{obs}(K^*_5,5) = 2$ [Pach, Sariöz, ’11]
Questions

- Graphs of obstacle number 0 are complete graphs.

- **What are the graphs of obstacle number 1?**

- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.

- **What is the smallest graph of obstacle number 2?**

- \(\text{obs}(K_{5,5}^*) = 2 \) \[Pach, Sariöz, '11\]

- **Can an outside obstacle and an inside obstacle do different jobs?**
 i.e. \(\{ G : \text{obs}_{\text{out}}(G) = 1 \} \) vs. \(\{ G : \text{obs}_{\text{in}}(G) = 1 \} \)
Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
Our Results

• Graphs whose longest cycle has length \(\leq 6 \) have obstacle number 1.
• Graphs with at most 7 vertices have obstacle number 1.
Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G : \text{obs}_{\text{out}}(G) = 1\}$ and $\{G : \text{obs}_{\text{in}}(G) = 1\}$ are incomparable.
Our Results

- Graphs whose longest cycle has length \(\leq 6 \) have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- \(\{ G : \text{obs}_{\text{out}}(G) = 1 \} \) and \(\{ G : \text{obs}_{\text{in}}(G) = 1 \} \) are incomparable.
- The single-obstacle graph sandwich problem is NP-hard. Given two graphs \(G \) and \(H \), it is NP-hard to decide the existence of a graph \(K \) s.t. \(G \subset K \subset H \) and \(\text{obs}(K) = 1 \).
Our Results

- Graphs whose longest cycle has length \(\leq 6 \) have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- \(\{G : \text{obs}_{\text{out}}(G) = 1\} \) and \(\{G : \text{obs}_{\text{in}}(G) = 1\} \) are incomparable.
- The single-obstacle graph sandwich problem is NP-hard.
 Given two graphs \(G \) and \(H \), it is NP-hard to decide the existence of a graph \(K \) s.t. \(G \subset K \subset H \) and \(\text{obs}(K) = 1 \).
- The following problems are all NP-hard:
 - The outside-obstacle graph sandwich problem
 - The inside-obstacle graph sandwich problem
 - The simple-polygon visibility graph sandwich problem

Graphs with at most 7 vertices have obstacle number 1.
Graphs of Obstacle Number 1

Thm. Every outerplanar graph has an outside-obstacle representation. [Alpert, Koch, Laison, '09]

Thm. Graphs represented by 1 convex polygon are non-double covering circular arc graphs. [Alpert, Koch, Laison, '09]

- Circular arc graphs: intersection graphs for arcs in a circle
- Non-double covering: No two arcs cover the whole circle.
Graphs of Obstacle Number 1

Thm. Every outerplanar graph has an outside-obstacle representation. [Alpert, Koch, Laison, ’09]

Thm. Graphs represented by 1 convex polygon are non-double covering circular arc graphs. [Alpert, Koch, Laison, ’09]

- Circular arc graphs: intersection graphs for arcs in a circle
- Non-double covering: No two arcs cover the whole circle.

Thm. Any graph whose longest cycle has length \(\leq 6 \) has an outside-obstacle representation.

Thm. Any graph with at most 7 vertices has an outside-obstacle representation.
Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\text{obs}_{\text{out}}(G) = 1$.

(A co-bipartite graph is the complement of a bipartite graph)

Obs. $\text{CH}(Z)$ and $\text{CH}(Z')$ cannot be pierced by the outside obstacle.
Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\text{obs}_{\text{out}}(G) = 1$.

Def. $\text{CH}(Z)$ and $\text{CH}(Z')$ are k-crossing if $\text{CH}(Z) \setminus \text{CH}(Z')$ consists of $k + 1$ disjoint regions.
Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\text{obs}_{\text{out}}(G) = 1$.

Def. $\text{CH}(Z)$ and $\text{CH}(Z')$ are k-crossing if $\text{CH}(Z) \setminus \text{CH}(Z')$ consists of $k + 1$ disjoint regions.

Lemma. Suppose $\text{CH}(Z)$ and $\text{CH}(Z')$ are 1-crossing. If G contains an induced 4-cycle $z_1 z'_1 z'_2 z_2$ where $\{z_1, z_2\} \subseteq Z$, $\{z'_1, z'_2\} \subseteq Z'$, then either z_1 and z_2 or z'_1 and z'_2 are in different petals.
Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\text{obs}_{\text{out}}(G) = 1$.

Def. $\text{CH}(Z)$ and $\text{CH}(Z')$ are k-crossing if $\text{CH}(Z) \setminus \text{CH}(Z')$ consists of $k + 1$ disjoint regions.

Lemma. Let A, B be a co-bipartition of K_6^*. Then $\text{CH}(A)$ and $\text{CH}(B)$ are at least 1-crossing in any outside-obstacle representation. Moreover, if G contains K_6^* as an induced subgraph, then $\text{CH}(Z)$ and $\text{CH}(Z')$ are at least 1-crossing.
Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\text{obs}_{\text{out}}(G) = 1$.

Def. $\text{CH}(Z)$ and $\text{CH}(Z')$ are k-crossing if $\text{CH}(Z) \setminus \text{CH}(Z')$ consists of $k + 1$ disjoint regions.

Lemma. Let A, B be a co-bipartition of K_6^*. Then $\text{CH}(A)$ and $\text{CH}(B)$ are at least 1-crossing in any outside-obstacle representation. Moreover, if G contains K_6^* as an induced subgraph, then $\text{CH}(Z)$ and $\text{CH}(Z')$ are at least 1-crossing.
Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\text{obs}_{\text{out}}(G) = 1$.

Def. $\text{CH}(Z)$ and $\text{CH}(Z')$ are k-crossing if $\text{CH}(Z) \setminus \text{CH}(Z')$ consists of $k + 1$ disjoint regions.

Lemma. Let A, B be a co-bipartition of K^*_6. Then $\text{CH}(A)$ and $\text{CH}(B)$ are at least 1-crossing in any outside-obstacle representation. Moreover, if G contains K^*_6 as an induced subgraph, then $\text{CH}(Z)$ and $\text{CH}(Z')$ are at least 1-crossing.
Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.
Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 1) $\text{obs}(G) \leq 2$.
2) Every graph with at most 7 vertices has obstacle number 1.
Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are at least 1-crossing.
The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.
Theorem. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.
Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) \(\text{obs}_{\text{out}}(G) > 1 \)

\(\text{CH}(A) \) and \(\text{CH}(B) \) are 1-crossing.
The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.

Consider $G - \{v_4, v_8\}$.
Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.
The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.

Cannot add v_4, v_8.
Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof.

3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.

Cannot add v_4, v_8.

Induced 4-cycle $v_1v_4v_8v_7$
Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

CH(A) and CH(B) are 1-crossing.

Cannot add v_4, v_8.

Induced 4-cycle $v_1v_4v_8v_7$
Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $\text{obs}_{\text{out}}(G) > 1$

$\text{CH}(A)$ and $\text{CH}(B)$ are 1-crossing.

Cannot add v_4, v_8.

Induced 4-cycles $v_1v_4v_8v_7$, $v_1v_4v_8v_5$, $v_2v_4v_8v_6$, $v_2v_4v_8v_7$
Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

![Graph Diagram]

Proof. 4) $\text{obs}_{\text{in}}(G) > 1$

The convex hull of $V(G)$ forms a cycle.

Case analysis on vertices on CH
\[\{ G : \text{obs}_{\text{out}}(G) = 1 \} \not\subset \{ G : \text{obs}_{\text{in}}(G) = 1 \} \]
\{ G : \text{obs}_{\text{out}}(G) = 1 \} \not\supset \{ G : \text{obs}_{\text{in}}(G) = 1 \}

Thm. There is a graph G such that $\text{obs}_{\text{in}}(G) = 1$ but $\text{obs}_{\text{out}}(G) > 1$.
\(\{ G : \text{obs}_{\text{out}}(G) = 1 \} \not\supset \{ G : \text{obs}_{\text{in}}(G) = 1 \} \)

Thm. There is a graph \(G \) such that \(\text{obs}_{\text{in}}(G) = 1 \) but \(\text{obs}_{\text{out}}(G) > 1 \).
\{G : \text{obs}_{\text{out}}(G) = 1\} \not\supset \{G : \text{obs}_{\text{in}}(G) = 1\}

Thm. There is a graph G such that $\text{obs}_{\text{in}}(G) = 1$ but $\text{obs}_{\text{out}}(G) > 1$.

$\text{CH}(A)$ and $\text{CH}(B)$ are at least 1-crossing.
\[\{ G : \text{obs}_{\text{out}}(G) = 1 \} \not\supset \{ G : \text{obs}_{\text{in}}(G) = 1 \} \]

Thm. There is a graph \(G \) such that \(\text{obs}_{\text{in}}(G) = 1 \) but \(\text{obs}_{\text{out}}(G) > 1 \).

\(\text{CH}(A) \) and \(\text{CH}(B) \) are exactly 1-crossing.
\[
\{ G : \text{obs}_{\text{out}}(G) = 1 \} \not\supset \{ G : \text{obs}_{\text{in}}(G) = 1 \}
\]

Thm. There is a graph G such that $\text{obs}_{\text{in}}(G) = 1$ but $\text{obs}_{\text{out}}(G) > 1$.
\[
\{ G : \text{obs}_{\text{out}}(G) = 1 \} \not\supset \{ G : \text{obs}_{\text{in}}(G) = 1 \}
\]

Thm. There is a graph G such that $\text{obs}_{\text{in}}(G) = 1$ but $\text{obs}_{\text{out}}(G) > 1$.
NP-hardness

Def. In a graph sandwich problem for a property Π, given two graphs $G \subseteq H$ with the same vertex set, we ask for a graph K s.t. $G \subseteq K \subseteq H$ and K has the property Π.

Thm. The outside-obstacle graph sandwich problem is NP-hard. In other words, given two graphs $G \subseteq H$ with the same vertex set, it is NP-hard to decide if there is a graph K s.t. $G \subseteq K \subseteq H$ and $\text{obs}_{\text{out}}(K) = 1$.
NP-hardness

Def. In a graph sandwich problem for a property Π, given two graphs $G \subseteq H$ with the same vertex set, we ask for a graph K s.t. $G \subseteq K \subseteq H$ and K has the property Π.

Thm. The outside-obstacle graph sandwich problem is NP-hard. In other words, given two graphs $G \subseteq H$ with the same vertex set, it is NP-hard to decide if there is a graph K s.t. $G \subseteq K \subseteq H$ and $\text{obs}_{\text{out}}(K) = 1$.

Thm. The inside-obstacle graph sandwich problem and the single-obstacle graph sandwich problem are NP-hard.

Def. The simple-polygon visibility graph problem asks to recognize the visibility graph of a simple polygon where the obstacle is the complement of the polygon.

Thm. The simple-polygon visibility graph sandwich problem is NP-hard.
NP-hardness

Reduction from MonotoneNotAllEqual3Sat where each clause contains 3 variables, not all of which are equal.
NP-hardness

Reduction from \textsc{MonotoneNotAllEqual3Sat} where each clause contains 3 variables, not all of which are equal.
NP-hardness

Reduction from $\text{MONOTONE NOT ALL EQUAL 3SAT}$ where each clause contains 3 variables, not all of which are equal.
NP-hardness

Reduction from \textsc{MonotoneNotAllEqual3Sat} where each clause contains 3 variables, not all of which are equal.

\[
C_1 = \{v_1, v_2, v_4\} \\
C_2 = \{v_2, v_3, v_4\} \\
C_3 = \{v_1, v_4, v_5\}
\]
Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- \(\{ G : \text{obs}_{\text{out}}(G) = 1 \} \) and \(\{ G : \text{obs}_{\text{in}}(G) = 1 \} \) are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
Summary and Open Problems

• Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
• Smallest graph of obstacle number 2 has 8 vertices.
• \(\{G : \text{obs}_{\text{out}}(G) = 1\} \) and \(\{G : \text{obs}_{\text{in}}(G) = 1\} \) are incomparable.

• All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.

• Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- \(\{ G : \text{obs}_{\text{out}}(G) = 1 \} \) and \(\{ G : \text{obs}_{\text{in}}(G) = 1 \} \) are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number \(o \) for \(o > 2 \)?
Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- \(\{G : \text{obs}_{\text{out}}(G) = 1\} \) and \(\{G : \text{obs}_{\text{in}}(G) = 1\} \) are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number \(o \) for \(o > 2 \)?
- An upper bound for \(\text{obs}_{\text{in}}(G) \) in terms of \(\text{obs}_{\text{out}}(G) \)?
Summary and Open Problems

• Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
• Smallest graph of obstacle number 2 has 8 vertices.
• \(\{G : \text{obs}_{\text{out}}(G) = 1\} \) and \(\{G : \text{obs}_{\text{in}}(G) = 1\} \) are incomparable.
• All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
• Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
• What is the smallest graph of obstacle number \(o \) for \(o > 2 \)?
• An upper bound for \(\text{obs}_{\text{in}}(G) \) in terms of \(\text{obs}_{\text{out}}(G) \)?
 Shown to be tight: \(\text{obs}(G) \leq \text{obs}_{\text{out}}(G) \leq \text{obs}(G) + 1 \)
 \(\text{obs}_{\text{in}}(G) \geq \text{obs}_{\text{out}}(G) - 1 \)