Rate constants of dichloride radical anion reactions with molecules of environmental interest in aqueous solution: a review

László Wojnárovits 1 · Erzsébet Takács 1

Received: 22 December 2020 / Accepted: 13 May 2021 / Published online: 4 June 2021
© The Author(s) 2021

Abstract
Natural waters, water droplets in the air at coastal regions and wastewaters usually contain chloride ions (Cl⁻) in relatively high concentrations in the milimolar range. In the reactions of highly oxidizing radicals (e.g., •OH, •NO3, or SO4²⁻) in the nature or during wastewater treatment in advanced oxidation processes the chloride ions easily transform to chlorine containing radicals, such as Cl¹, Cl₂⁻, and ClO²⁻. This transformation basically affects the degradation of organic molecules. In this review about 400 rate constants of the dichloride radical anion (Cl₂⁻) with about 300 organic molecules is discussed together with the reaction mechanisms. The reactions with phenols, anilines, sulfur compounds (with sulfur atom in lower oxidation state), and molecules with conjugated electron systems are suggested to take place with electron transfer mechanism. The rate constant is high (10⁷–10⁹ M⁻¹ s⁻¹) when the reduction potential the one-electron oxidized species/molecule couple is well below that of the Cl₂⁻/2Cl⁻ couple.

Keywords One-electron oxidation · Electron transfer · Pollutant degradation · Advanced oxidation · Water treatment · Toxic organic impurities

Introduction
The presence of chloride ions in wastewaters is widespread. Therefore, the effect of chloride ions on Advanced Oxidation Processes (AOP), emerging technology for wastewater purification, is of outmost importance since Cl⁻ efficiently scavenges the reacting radicals (hydroxyl radical (•OH), sulfate radical anion (SO₄²⁻)) transforming them to chlorine containing radicals, e.g., chloride atom and dichloride radical anion (Cl⁻ and Cl₂⁻). However, the latter radicals also react with organic molecules, with altered rate constants and selectivity (Caregnato et al. 2013). In surface waters and treated wastewaters rich in Cl⁻ ions, including oceans, estuaries, and brines chloride radical anions can occur at concentrations that are orders of magnitude higher than the concentrations of other radicals such as •OH. These radicals may also form during disinfection by chlorine or during chlorine photolysis (Zhang and Parker 2018; Liu et al. 2019). Therefore, determination of the reactivity of chloride radicals, among them also that of Cl₂⁻ toward organic molecules is of environmental importance.

The standard reduction potential of the Cl₂⁻/2Cl⁻ couple has been reported to be between 2.1 and 2.3 V vs. NHE (Wardman 1989; Armstrong et al. 2015), here we use the frequently referred value: \(E^{0}(\text{Cl}_2^-/2\text{Cl}^-) = 2.1 \) V. We often compare the rate constants measured in Cl₂⁻ reactions with values measured in reactions of other one-electron oxidants. Comparison of the reduction potentials of the one-electron oxidants and those of the semioxidized and nonoxidized forms of organic molecule couples often gives possibilities for explaining the rate constant ranges of radical reactions. Table 1S in the Supplementary material lists several one-electron oxidants with reduction potentials ranging from 2.43 to 0.934 V.

Determination of the Cl₂⁻ reaction rate constants
The bimolecular rate constants of Cl₂⁻ reactions published in the literature were mainly determined in pulse radiolysis and (laser) flash photolysis experiments (Neta et al. 1988). In
contrast to other oxidizing radicals (e.g., ‘OH, SO₄²⁻, and CO₃⁻⁻), competitive techniques were rarely used in rate constant determinations (Liu et al. 2020). This is probably due to the rather complex reaction system involved in Cl₂⁻ reactions (see below). A reference compound in the solution would make further complications.

In pulse radiolysis Cl₂⁻ reactions are generally investigated in N₂O-saturated solutions Buxton et al. (1988b) at high Cl⁻ concentration relative to the compound of interest (S), where most of ‘OH are scavenged by Cl⁻, transforming the hydroxyl radical to Cl⁻ and then to Cl₂⁻ (Hasegawa and Neta 1978). The pH is adjusted to the acidic range (pH 1–4) to ensure the efficient formation of Cl₂⁻. Manifold reactions proceed in such a system (Buxton et al. 1988a, b; Brigante et al. 2014; Szala-Bilnik et al. 2014; Kazmierczak et al. 2015, 2019).

\[k_{-1} = 6.1 \times 10^9 \text{s}^{-1} \]
\[k_{2} = 1 \times 10^9 \text{s}^{-1} \]
\[k_{3} = 2.5 \times 10^9 \text{s}^{-1} \]
\[k_{4} = 6.0 \pm 0.5 \times 10^9 \text{s}^{-1} \]
\[K = \frac{k_{4}}{k_{-4}} = 1.4 \times 10^5 \text{M}^{-1} \]
\[\text{Cl}_2^{2-} + \text{H}_2\text{O} \rightarrow (\text{HOCl}^-)^+ + \text{Cl}^- k_{5} = 1300 \text{s}^{-1} \]
\[k_{5} = (8 \pm 2) \times 10^9 \text{M}^{-1} \text{s}^{-1} \]
\[\text{Cl}_2^{2-} + S \rightarrow \text{products} \]
\[\text{Cl}^- + S \rightarrow \text{products} \]

‘OH in fast reaction with Cl⁻ forms ClOH⁻ complex (Reaction 1), with an equilibrium constant of 0.70 ± 0.13 M⁻¹. In acidic media ClOHO⁻ may transform to Cl⁻ in Eq. (3). Cl⁻ is a strong oxidant that can react directly with dissolved organic material (E⁰(Cl²⁻/Cl⁻) = 2.6 V, Wardman 1989) with rate constants that are 1–5 orders of magnitude higher than those in the reactions of Cl₂⁻. However, in rapid complexation Eq. (4) with Cl⁻, Cl⁻ transforms to Cl₂⁻. The determination of rate constants of Cl₂⁻ reactions requires high Cl⁻ concentrations (0.1-1 M), and ionic strength corrections (De Laat and Stefan 2017). We mention that such corrections were made only in a few works. The complicated reaction/equilibrium system is summarized in the simplified Scheme 1. As this scheme also shows high pH pushes the reaction system in the direction of ‘OH, whereas low pH is favorable for Cl₂⁻. Therefore, in the ‘OH + Cl⁻ system, at sufficiently high Cl⁻ concentration in the acidic pH range Cl₂⁻ dominates, in the alkaline pH range ‘OH is the main reactant (Yu and Barker 2003; Yu et al. 2004).

Under suitable conditions, when a compound of interest (S) is present in the system, Cl₂⁻ decays by first-order kinetics (k₁⁻). In laboratory experiments, at the usual Cl⁻ concentration, equilibrium Eq. (4) is assumed to be attained. If so, k₁⁻ can be expressed as Eq. (8) when k₄ [Cl⁻] + k₄ >> (k₆ + k₇) [S] + k₅ + k₃ and K [Cl⁻] >> 1 (for more details see Buxton et al. 1988a):

\[k_{\text{obs}} = k_{6} + k_{-4}/(K[\text{Cl}^-]) + \{(k_{7}/K[\text{Cl}^-]) + k_{6}\}[S] \] (8)

Under the usual conditions k₇/K [Cl⁻] << k₆, and Eq. (8) simplifies to k₉obs = const. + k₆[S]. In purified water, in the absence of suitable reactants, Cl₂⁻ may disappear from the solution in disproportionation reaction (Kazmierczak et al. 2015, 2019):

\[\text{Cl}_2^{2-} + \text{Cl}_2^{2-} \rightarrow \text{Cl}_2 + 2\text{Cl}^- k_9 = 1.47 \times 10^{8} \text{M}^{-1} \text{s}^{-1} \] (zero ionic strength)
many organic radical intermediates formed in Cl$_2^*$ reaction, e.g., cyclohexadienyl or phenoxyl radicals, have absorption bands around or slightly above 340 nm. This coincidence complicates the investigation of organic radical intermediates; the mechanistic suggestions are usually based on indirect information. There are exceptions, e.g., certain dye cations (methylene blue, toluidine blue, safranine T, Kishore et al. 1989; Mahadevan et al. 1990; Guha et al. 1992) have strong absorbances out of this range which allow direct observation of product build-up. Transient products were identified only in few cases (e.g., Dwibedy et al. 2005; Osiewala et al. 2013; Caregnato et al. 2013). In mechanistic studies, instead of Cl$_2^*$, sometimes azide radical (N$_3^*$) is used, this radical does not have light absorption in the 300-500 nm range (Buxton and Janovsky 1976; Hug 1981).

When Cl$^-$ is produced in the SO$_4$$^*^- + Cl^-$ reaction, the absorbance of SO$_4$$^*-$ slightly disturbs the observation of the Cl$_2^-$* intermediate in transient measurements, since SO$_4$$^*-$ has a wide absorption band in the UV--Vis range, $\lambda_{\text{max}} = 450$ nm. The molar absorbance at 340 nm is 1600 ± 180 M$^{-1}$ cm$^{-1}$ (Yu and Barker 2003). However, at sufficiently high Cl$^-$ concentration the intense absorbance of Cl$_2^*$ builds-up practically during the pulse. Fitting to the decay curve of the 340 nm absorbance supplies the pseudo-first-order rate constants (k_{obs}). Under suitable conditions the slope of the pseudo-first-order rate constants vs. solute concentration plot gives the second order rate constants of the Cl$_2^*$ + S reaction (k_{Cl_2S}). Cl$^-$, and through the chlorine atom, Cl$_2^*$ may also be produced in VUV photolysis of Cl$^-$ containing solutions (Takahashi et al. 1985). In steady-state experiments sometimes k_{Cl_2S} is determined by fitting to complex kinetic models without applying real competitor. Generally, photon intensities, quantum yields, rate constants of some basic reactions of intermediates and the time dependence of degradation are used for k_{Cl_2S} calculation. In some works, very large set of reactions was considered, and modeling software was used for obtaining rate constants.

In this review we evaluate the rate constants and reaction mechanisms of Cl$_2^*$ reactions with about 300 organic molecules, most of which have some environmental implications either as water pollutant, or as an atmospheric contaminant in water droplets. Although in several publications larger number of rate constants were published (Hasegawa and Neta 1978; Cornelius 1998; Jacobi et al. 1999; Jasper et al. 2016; Lei et al. 2019), only a few works discussed structure effects and compared the reactions induced by several one-electron oxidants, including also Cl$_2^*$. In the tables we collected the rate constants measured around room temperature, only a few temperature dependence studies are published in the literature. The tables show also the pK* values collected from a number of publications, e.g., Babic et al. (2007), Shalaeva et al. (2008). The error bounds represent the c--level uncertainty published in the original works. The methods of k_{Cl_2} determinations are indicated by the following abbreviations: PR pulse radiolysis, FP flash photolysis, LFP laser flash photolysis, Comp. competitive method, and Complex calculations involving complicated reaction sequence in steady-state experiments.

Nonaromatic organic molecules

Molecules with interest from tropospheric point of view

In tropospheric liquid phase (e.g., in droplets), chloride is an abundant species. In Cl$^-$ containing aerosols and smaller cloud droplets Cl$_2^*$ is expected to be formed in reactions of other highly reactive radicals such as ‘OH, NO$_3$, or SO$_4$$^*-$ (Jacobi et al. 1999). Soluble oxygenated compounds, alcohols, aldehydes, terpenes, sulfoxides, etc., represent important classes of tropospheric species (Table 1). They may originate either from the gas-phase oxidation of volatile organic compounds or from direct emission (Herrmann et al. 2000, 2015).

Most rate constants of Cl$_2^*$ reactions with small oxygen containing molecules (Scheme 1S, Supplementary material) were measured by Hasegawa and Neta (1978) and by Jacobi et al. (1999). Eight of the reactions in Table 1 were investigated by both groups. All values are very small, they are in the in the 10^3--10^6 M$^{-1}$ s$^{-1}$ range. In this range the uncertainty in the transient measurements is rather large. However, in some cases (e.g., 2-propanol, acetone) the results of the two groups agree excellently. In other cases the k_{Cl_2S} values agree within one order of magnitude. The experiments of Hasegawa and Neta were carried out in the presence of 1 M NaCl, while Jacobi et al. applied one order of magnitude smaller NaCl concentration. The differences between the values determined by the two groups may also be attributed to the different experimental conditions. We suggest accepting the values of the latter authors due to the smaller ionic strength effect. The k_{Cl_2S} values show some correlation with the energy of the weakest C-H bond being ruptured. For a HROH molecule Hasegawa and Neta (1978) supposed the reaction in the following way:

$$\cdot OH + Cl^- \rightleftharpoons ClO_- + +H^+ \rightleftharpoons H_2O + Cl^-$$

```
1. Scheme 1 Simplified scheme of Cl$_2^*$ formation in 'OH reaction

@ Springer
```
Jacobi et al. (1999) in cases of compounds with high bond dissociation energy (BDE ≈ 410 kJ mol⁻¹) speculated about an addition/elimination mechanism:

\[\text{Cl}_2^- + \text{HROH} \rightarrow [\text{HCl}_2^- + \text{^1 ROH}] \rightarrow 2 \text{Cl}^- + \text{H}^+ + \text{^1 ROH} \]

(13)

1,4-Pinene may serve as a representative of terpenes. Terpenes are emitted in the atmosphere in large quantities by both anthropic and natural sources. Radical reactions are

\[\text{Cl}_2^- + \text{HROH} \rightarrow [\text{Cl}^- + \text{^1 Cl-H-ROH}] \rightarrow 2 \text{Cl}^- + \text{H}^+ + \text{^1 ROH} \]

(14)
Compound	k_{CD_2}, M$^{-1}$ s$^{-1}$	Method, pH	Literature
α-Pinene	1.7×10^6	Pr	Kluge et al. (1998)
Unsaturated alcohols and carboxylic acids			
Allyl alcohol	5.9×10^8	Pr, 1	Hasegawa and Neta (1978)
	5.9×10^8	Pr, 7	Hasegawa and Neta (1978)
	5.0×10^7	LFP	Padmaja et al. (1992)
	8.5×10^7	Pr, 2.3	Padmaja et al. (1992)
	5.2×10^7	LFP	Alfassi et al. (1993)
2-Buten-1-ol	1.8×10^8	LFP	Padmaja et al. (1992)
	1.9×10^8	LFP	Alfassi et al. (1993)
3-Buten-1-ol	9.9×10^7	LFP	Padmaja et al. (1992)
3-Buten-2-ol	5.2×10^7	LFP	Padmaja et al. (1992)
4-Penten-2-ol	9.6×10^7	LFP	Padmaja et al. (1992)
2-Methyl-2-propen-1-ol	3.1×10^8	LFP	Padmaja et al. (1992)
3-Methyl-3-buten-1-ol	4.7×10^8	LFP	Padmaja et al. (1992)
3-Methyl-2-buten-1-ol	7.0×10^8	LFP	Padmaja et al. (1992)
2-Cyclohexen-1-ol	1.7×10^8	LFP	Padmaja et al. (1992)
Fumaric acid	2×10^5	Pr, 1	Hasegawa and Neta (1978)
	$1.2 \pm 1.0 \times 10^5$	Pr, 1.5	Wojnárovits et al. (2008)
Fumaric acid, monoanion	2.4×10^6	Pr, 3.7	Hasegawa and Neta (1978)
	$2.0 \pm 0.3 \times 10^6$	Pr, 3.5	Wojnárovits et al. (2008)
Fumaric acid, dianion	4×10^6	Pr, 7	Hasegawa and Neta (1978)
	$4.5 \pm 0.3 \times 10^6$	Pr, 6	Wojnárovits et al. (2008)
Maleic acid	$1.7 \pm 0.2 \times 10^6$	Pr, 1.5	Wojnárovits et al. (2008)
Maleic acid, monoanion	$1.25 \pm 0.1 \times 10^6$	Pr, 4	Wojnárovits et al. (2008)
Maleic acid, dianion	3×10^6	Pr, 6.5	Hasegawa and Neta (1978)
	$3.4 \pm 0.1 \times 10^6$	Pr, 7.5	Wojnárovits et al. (2008)
Acrylic acid, 4.25	5.4×10^6	Pr, 1	Hasegawa and Neta (1978)
	1.9×10^7	Pr, 7	Hasegawa and Neta (1978)
n-Butyl acrylate	2.4×10^6	Pr, 2	Sabharwal et al. (1998)
3-Sulfo-propylmethacrylate	3.5×10^8	Pr	Panda et al. (2001)
Acrylamide	6.6×10^6	LFP	Padmaja et al. (1992)
N-Isopropyl acrylamide	2×10^7	Pr, 1	Acharya et al. (2003)
Acrylonitrile	2.2×10^6	Pr, 7	Hasegawa and Neta (1978)
Muconic acid, 3.87	2.1×10^6	Pr, 7	Hasegawa and Neta (1978)
Sorbic acid, 4.76	6.8×10^8	Pr, 7	Hasegawa and Neta (1978)
3-Hexenoic acid, 3.92	1.6×10^8	Pr, 7	Hasegawa and Neta (1978)
Small organic molecules containing halogen atoms			
Monofluoroacetic acid, 2.59	$2.2 \pm 0.2 \times 10^5$	LFP, 4–5	Maruthamuthu et al. (1995)
Difluoroacetic acid, 1.33	$<10^4$	LFP, 4–5	Maruthamuthu et al. (1995)
Trifluoroacetic acid, 0.23	$<10^4$	LFP, 4–5	Maruthamuthu et al. (1995)
Monochloroacetic acid, 2.87	$6.5 \pm 0.1 \times 10^4$	LFP, 4–5	Maruthamuthu et al. (1995)
Dichloroacetic acid, 1.35	$1.5 \pm 0.1 \times 10^4$	LFP, 4–5	Maruthamuthu et al. (1995)
Trichloroacetic acid, 0.66	4×10^4	LFP, 4–5	Maruthamuthu et al. (1995)
Trichloroethylene	1×10^7		Li et al. (2007)
1,1,1-Trifluoro-2-iodoethane	2×10^7	Pr	Mohan et al. (1994)
Diodomethane	1.7×10^9	Pr	Mohan and Moorthy (1990b)
suggested to strongly contribute to their degradation in water droplets in air. The rate constants of α-pinene reaction with Cl₂⁻, 1.7 × 10⁸ M⁻¹ s⁻¹ (Kluge et al. 1998), is several orders of magnitude higher than the values determined for the previously discussed small oxygenated molecules. The high k_Cl₂⁻ is certainly due to the double bond in α-pinene which renders Cl₂⁻ addition mechanism possible as it was suggested for reactions with acrylic type molecules (Hasegawa and Neta 1978). The reaction gives chlorinated α-pinene.

Unsaturated alcohols and carboxylic acids

Hasegawa and Neta (1978), Padmaja et al. (1992) and Alfassi et al. (1993) published several rate constants on Cl₂⁻ reactions with unsaturated alcohols (Scheme 2S). The values increase with the increasing alkyl substitution at the double bond from 5 × 10⁷ to 7 × 10⁸ M⁻¹ s⁻¹ indicating an electrophile addition mechanism. Cl-adducts were observed by ESR spectroscopy in Cl₂⁻ reaction with several compounds.

Due to the limited pH range in Cl₂⁻ reaction investigations few pH dependence studies were published in the literature. In the practically used pH range Cl₂⁻ is a single species (no protonation). Therefore, the changes in the reactivity with the pH must be attributed to the substrate molecules themselves. This is well exemplified by the reactions of maleic and fumaric acids (Hasegawa and Neta 1978; Wojnárovits et al. 2008). These acids undergo protolytic dissociations with pK_a1 = 3.02, pK_a2 = 4.39, and pK_a1 = 1.92, pK_a2 = 6.23, respectively. Therefore, in the 1–8 pH range the mole fractions of the different forms (protonated, monoanion, dianion) change continuously with pH. The k_Cl₂⁻ of fumaric acid shows the tendency protonated form<monoanion<dianion (1.2±1.0 × 10⁵, 2.0±0.3 × 10⁶ and 4.5±0.3 × 10⁸ M⁻¹ s⁻¹) in agreement with the electrophilic character of reaction. Neutral maleic acid has somewhat higher reactivity (1.7±0.2 × 10⁶ M⁻¹ s⁻¹) as the monoanion (1.25±0.1 × 10⁶ M⁻¹ s⁻¹). This is attributed to a prevalence of steric or polar effects for the monoanion. Acrylic acid, n-butyl acrylate, 3-sulfopropylmethacrylate, acrylamide, N-isopropyl acrylamide, and acrylonitrile (monomers used in polymerization reactions) have rate constants in the 10⁶–10⁷ M⁻¹ s⁻¹ range.

Muconic acid, a metabolite of benzene, is an important intermediate of chemical industry, sorbic acid is natural food preservative. These two compounds, due to the two conjugated double bonds in their structures react with rate constants in the 10⁸ M⁻¹ s⁻¹ range (Hasegawa and Neta 1978). 3-Hexenedioic acid (used e.g., in nylon production), reacts with k_Cl₂⁻ in the same order of magnitude as the previous compounds, although it has only one double bond.

Small organic molecules containing halogen atoms

Organic acids dissolve in water to form anions which can transfer an electron to oxidizing radicals (e.g., Cl₂⁻). The radical formed in the reaction undergoes decarboxylation (Maruthamuthu et al. 1995):

\[
2\text{Cl}^-\text{CH}_3-n\text{X}n\text{COO}^- + \text{Cl}_2^- \rightarrow \text{CH}_3-n\text{X}n\text{COO}^- \rightarrow \text{CH}_3-n\text{X}n^+ + \text{CO}_2
\]

Chloroacetic acids are disinfection by-products in water. Mono-, di-, and trichloroacetic acids react with Cl₂⁻ with rate constants of 1.5 × 10⁷–6.5 × 10⁸ M⁻¹ s⁻¹ (Scheme 3S). The values of fluoroacetates, except monofluoroacetate, are lower than those of chloroacetates. 1,1,1-Trifluoro-2-iodoethane reacts with Cl₂⁻ in electron transfer, but it does not react with Br₂⁻ or I₂⁻ (Mohan et al. 1994). The k_Cl₂⁻ of trichloroethylene and diiodomethane are higher by two-three orders of magnitude than those of the previously mentioned compounds (Mohan and Moorthy 1990b; Mohan et al. 1994). Cl₂⁻ oxidizes CH₂I₂ to CH₂I₂⁺.
Compound, pKₐ	k₁, M⁻¹ s⁻¹	Method, pH	Literature
Simple aromatic molecules			
Benzene	<10⁶	FP, 4	Alegre et al. (2000)
Toluene	≤10⁶	FP, 4	Mártire et al. (2001)
γ-Cyclodextrine/Co₆₀ complex	3.8 × 10⁹	Pr, ~1	Priyadarshini et al. (1994)
Chlorobenzene	≤10⁶	FP, 4	Mártire et al. (2001)
Iodobenzene	3.5 × 10⁸	Pr, 1.5	Mohan and Moorthy (1989)
Benzonitrile	<10⁵	Pr, 1-7	Hasegawa and Neta (1978)
Anisoles			
Anisole	1.62±0.09 × 10⁸	LFP, 7	Lei et al. (2019)
Thiocyanate	4.8 × 10⁹	Pr, 1	Mohan and Mittal (1997)
2-(Phenylthio)ethanol	3.5 × 10⁶	Pr, 1	Gawandi et al. (1999a)
4-Nitroanisole	2.5±0.3 × 10⁷	LFP, 7	Lei et al. (2019)
1,3,5-Trimethoxybenzene (TMB)	2.87±0.26 × 10⁹	LFP, 7	Lei et al. (2019)
Atenolol, 9.5	9.81 × 10⁹	Comp., 5.8	Mangalgiri et al. (2019)
Propranolol, 9.5	1.9±0.1 × 10⁷	LFP, 5.5–6	Jasper et al. (2016)
Napropamide			
Methylichlorophenoxyacetic acid (MCPA), 3.07	2.6±0.3 × 10⁹	Pr, 2.3	Cornelius (1998)
Triclosan, 7.9	2.48±0.14 × 10⁹	LFP, 7	Lei et al. (2019)
Gemfibrozil, 4.5	2.87±0.12 × 10⁸	LFP, 7	Lei et al. (2019)
Venlafaxine, 9.26	3.58±0.14 × 10⁹	LFP, 7	Lei et al. (2019)
Anilines			
Aniline, 4.8	1.2 × 10⁷	Pr, 1	Hasegawa and Neta (1978)
4-Toluidine, 5.0	6.79±0.45 × 10⁸	LFP, 7	Lei et al. (2019)
4-Chloroaniline, 3.98	9.47±0.52 × 10⁸	LFP, 7	Lei et al. (2019)
Acetanilide, 0.61	5.23±0.23 × 10⁸	LFP, 7	Lei et al. (2019)
3-Aminophenol, 4.3, 9.83	~2 × 10⁷	Pr, 7	Hasegawa and Neta (1978)
4-Aminophenol, 5.4, 10.4	3.6 × 10⁸	Pr, 1.0	Dwibedy et al. (2005)
Acetaminophen, 9.5	4 × 10⁹	Pr, 1.0	Dwibedy et al. (2005)
Acetaminophen, 9.5	≈5 × 10⁷	LFP, 5.5–6	Jasper et al. (2016)
2-Methylaminobenzoate, 2.12	4.32±0.07 × 10⁸	LFP, 7	Lei et al. (2019)
Diclofenac, 4.2	4.4 ± 10⁸	Complex	Wang et al. (2019)
Indomethacin, 4.2	4.0±0.3 × 10⁸	LFP, 3	Lanzafame et al. (2017)
Benzidine, 3.6, 5.7	7.0 × 10⁷	Pr, 2	Dey et al. (1994a)
Aromatic molecules

Simple aromatic molecules

Benzene practically does not react with \(\text{Cl}_2^- \), \(k_{\text{Cl}_2^-} \leq 10^5 \text{ M}^{-1} \text{ s}^{-1} \) (Alegre et al. 2000) (Table 2, Scheme 4S). Small values are suggested also for toluene, benzoic acid, chlorobenzene and benzonitrile (Hasegawa and Neta 1978; Mártire et al. 2001). In the latter two compounds the electron withdrawing group on the ring is expected to decrease the reactivity. Hasegawa and Neta attempted to find a correlation between the \(k_{\text{Cl}_2^-} \) values and the Hammett parameters including in the investigations also compounds with electron donating groups (anisole, phenol, aniline). This attempt failed because two different mechanisms appear to be involved in the reactions with \(\text{Cl}_2^- \), i.e., addition to the aromatic ring and direct oxidation by electron transfer.

The I-atom in iodobenzene has weak electron withdrawing properties: Mohan and Moorthy (1989) published much higher rate constant \((3.5 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}) \) as the \(k_{\text{Cl}_2^-} \) values of other simple aromatics. Iodobenzene reacts with \(\text{Cl}_2^- \) by one-electron oxidation:

\[
\text{Cl}_2^- + C_6H_5I \rightarrow C_6H_5I^- + 2 \text{Cl}^-
\] (17)

Similar oxidation was not observed in reaction with Br\(_2^-\); the reduction potentials of \(\text{Cl}_2^- \) and Br\(_2^-\) are published to be 2.1 and 1.60, respectively, vs. NHE (Table 1S). The reduction potential of \(C_6H_5I^-/C_6H_5I \) couple is suggested as \(\geq 2.0 \text{ V} \).

The reaction of water insoluble \(\text{Co}_{60} \) (Buckminsterfullerene) was investigated as a soluble \(\gamma \)-cyclodextrine/\(\text{Co}_{60} \) complex, the fullerene is suggested to be enclosed by two \(\gamma \)-cyclodextrine molecules. The reaction produces a transient species that was assigned as \(\gamma \)-cyclodextrine/\(\text{Cl}^- \) radical adduct (Priyadarshini et al. 1994), rate constant: \(3.8 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \).

Anisoles

The \(k_{\text{Cl}_2^-} \) of anisole and, in general of aromatic molecules with side chains connected to the ring through an O-atom (Scheme 5S) are higher than those of the simple aromatic molecules. The \(k_{\text{Cl}_2^-} \) of anisole \((1.62\pm0.09 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}) \) and 4-nitroanisole \((2.5\pm0.3 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}) \) nicely exemplify the effect of electron density on the ring. The \(k_{\text{Cl}_2^-} \) of 4-nitroanisole with electron withdrawing –NO\(_2\) group is one order of magnitude smaller than that of the molecule without this substituent. The three methoxy groups in 1,3,5-trimethoxybenzene by enhancing the electron density on the ring increase the rate constant of electrophile reactions to a high value, \(k_{\text{Cl}_2^-} = 2.87\pm0.26 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \) (Lei et al. 2019). As it will be discussed later \(\text{Cl}_2^- \) has high reactivity with sulfur atoms in lower oxidation state in organic molecules. Thioanisole and 2-(phenylthio) ethanol react with \(\text{Cl}_2^- \) with rate constants of \(4.8 \times 10^9 \) and \(3.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \), respectively (Mohan and Mittal 1997; Gawandi et al. 1999a).

The blood pressure regulators (\(\beta \)-blockers) atenolol, metoprol and propranolol have common structure of R-O-CH\(_2-\)CH(OH)-CH\(_2\)-NH-CH(CH\(_3\))\(_2\) with optical centers at the OH group on the alkyl chain (R is aromatic). At neutral pH they have positive charge on the N-atom (pK\(_a\) \(\approx 9.5 \)). The rate constants of reactions with \(\text{Cl}_2^- \) are in the \(10^6-10^7 \text{ M}^{-1} \text{ s}^{-1} \) range (Jasper et al. 2016; Lei et al. 2019; Pan et al. 2019). These values in reaction with SO\(_4\)\(^-\) are around \(1 \times 10^10 \text{ M}^{-1} \text{ s}^{-1} \), while those of reactions with CO\(_3\)\(^-\) are in the \(2 \times 10^6-5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) range (Wojnárovits and Takács 2019; Wojnárovits et al. 2020). The rate constants increasing in the CO\(_3\)\(^-\)<Cl\(_2^-\)<SO\(_4\)\(^-\) order are in agreement with the increasing reduction potential of oxidant (Table 1S). The similar rate constants of the three molecules in all three one-electron oxidations reflect reactions occurring on the same center, mainly on the aromatic rings.

Napropamide (Nap, herbicide), reacts with Cl\(_2^-\) and Br\(_2^-\), and does not react with (SCN)\(_2^-\); \(E^\circ(\text{SCN})^-/2(\text{SCN})^- = 1.30 \text{ V vs. NHE} \) and N\(_3^-\); \(E^\circ(\text{N}_3^-/\text{N}_3) = 1.33 \text{ V vs. NHE} \). Therefore, the reduction potential of the Nap\(^-\)/Nap couple must lie between 1.63 and 1.33 V vs NHE. The reduction potential of the phenoxy type herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) is expected to be between 2.1 and 1.66 V vs. NHE. It reacts with Cl\(_2^-\) \((2.6\pm0.3 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}) \), but does not react with Br\(_2^-\); \(E^\circ(\text{Br}_2^-/2\text{Br}) = 1.63 \text{ V vs. NHE} \) (Cornelius 1998). Triclosan is used to prevent or reduce bacterial contamination. Lei et al. (2019) published a relatively high rate constant for the partly ionized molecule: \(2.48\pm0.14 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \).

Gemfibrozil is used to treat abnormal blood lipid levels. It reacts with \(k_{\text{Cl}_2^-} \) of \(2.87\times10^1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \) (Lei et al. 2019) that is slightly smaller than the rate constant of reaction with SO\(_4\)\(^-\) \((7.13\pm0.78 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}) \), but much higher than the rate constant of CO\(_3\)\(^-\) reaction \((4.1\pm3.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}) \), Wols et al. 2014). Venlafaxine is used to treat depressive disorder. Its \(k_{\text{Cl}_2^-} \) is published as \(3.58\pm0.14 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \) (Lei et al. 2019). This value is between the rate constants measured in CO\(_3\)\(^-\) and SO\(_4\)\(^-\) reactions: \(4.89\pm2.31 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \) and \(3.53\pm0.05 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \), respectively (Lian et al. 2017). The \(k_{\text{Cl}_2^-} \) values of gemfibrozil and venlafaxine are close to that of anisole, the Cl\(_2^-\) attack is suggested on the benzene ring.

Anilines

Aniline cation reacts in direct oxidation with \(k_{\text{Cl}_2^-} \approx 1.2 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) (Hasegawa and Neta 1978). An OH group added to aniline in meta-position (Scheme 6S) in 3-amino-phenol (3-AP\(_H^+\)) increases \(k_{\text{Cl}_2^-} \) to \(3.6 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) (Dwibedy et al. 2005): in the reaction phenoxyl radical forms just as in reactions of other one-electron oxidants. There is no reaction
between Br₂⁻ and 3-APH⁺ indicating a reduction potential of the 3-AP⁺,H⁺/3-APH⁺ couple between 2.1 and 1.63 V vs. NHE.

The rate constant of reaction with the neutral aniline molecule is much higher, 6.79±0.45 × 10⁸ M⁻¹ s⁻¹ (Lei et al. 2019) than that with the cation. The kₐ₁ₑ₂⁻, of 4-chloroaniline, 5.23 ±0.23 × 10⁸ M⁻¹ s⁻¹ is nearly as high as that of aniline. The electron withdrawing Cl⁻ atom does not decrease the reactivity. The methyl group in 4-toluidine increases kₐ₁ₑ₂⁻ to 9.47 ±0.52 × 10⁸ M⁻¹ s⁻¹. The kₐ₁ₑ₂⁻ of anilinate is an order of magnitude smaller (~2 × 10⁷ M⁻¹ s⁻¹, Hasegawa and Neta 1978) than that of neutral aniline. The acetyl group attached to amino group decreases the reactivity also in reactions with other radicals, e.g., CO₃²⁻ (Wojnárovits et al. 2020).

Moderately high value was measured for methyl 2-methyl aminobenzoate (methyl anthranilate, flavouring agent), 4.0 ±0.3 × 10⁸ M⁻¹ s⁻¹ (Lanzafame et al. 2017). Acetaminophen (paracetamol, medicine used to relieve pain) is an aminophenol derivative. These derivatives (e.g., 2-, 3-, and 4-aminophenols, amodiaquine type antimalarial drugs) represent special cases of one-electron oxidation. In these reactions, phenoxyl radical forms in which a part of spin density is concentrated on the N-atom. This radical is also called the aminophenoxo radical (Bisby and Tabassum 1988; Bisby 1990; Szabó et al. 2012). For the acetaminophen + Cl₂⁻ reaction highly different values were published by Jasper et al. (2016) and Lei et al. (2019): <5 × 10⁸ and 4.32±0.07 × 10⁸ M⁻¹ s⁻¹, respectively. Wang et al. (2019) in a complex kinetic system estimated kₐ₁ₑ₂⁻ ≈ 4.4 × 10⁸ M⁻¹ s⁻¹. Dwibedy et al. (2005) published unusually high rate constant (4 × 10⁹ M⁻¹ s⁻¹) for Cl₂⁻ reaction with 4-aminophenol cation.

Diclofenac is a frequently used nonsteroidal antiinflammatory medicine. In the molecule aromatic rings are connected through an –NH– bridge. One-electron oxidants attack this bridge by removing an electron (Wojnárovits and Takács 2019). Due to this possibility in Cl₂⁻ reaction high rate constant was measured: 1.15±0.05 × 10⁹ M⁻¹ s⁻¹ (Lei et al. 2019). In indomethacin (also used as nonsteroidal antiinflammatory drug) an aromatic pyrrole ring is fused to a benzene ring. The radical attack is expected on this fused part of the molecule, kₐ₁ₑ₂⁻ is moderately high, 4.99 ±0.51 × 10⁹ M⁻¹ s⁻¹ (Lei et al. 2019).

Benzidine (1,1'-biphenyl-4,4'-diamine) and its derivatives are used as intermediates in dye production. They are carcinogenic and mutagenic (McClelland et al. 2000). kₐ₁ₑ₂⁻, belonging to the singly ionized form (7 × 10⁶ M⁻¹ s⁻¹, pH 7, Dey et al. 1994a) is between the values measured for protonated and nonprotonated aniline.

Phenols and benzoic acids

The rate constant of Cl₂⁻ reaction with phenol has been reported in four laboratories (Table 3, Scheme 7S), the values are close to each-other with average of 3.8±1.0 × 10⁸ M⁻¹ s⁻¹ (Willson 1973; Hasegawa and Neta 1978; Alfassi et al. 1990; Lei et al. 2019). In the reaction chlorinated phenols were observed among the final products; these highly poisonous compounds underline the importance of studying Cl₂⁻ reactions. As intermediate phenoxyl radical was identified. Alfassi et al. (1990) investigating the temperature dependence of kₐ₁ₑ₂⁻ found an increasing tendency as the temperature increased with Arrhenius parameters of Eₐ = 7.1±0.6 kJ mol⁻¹ and Log A = 9.8. Estrone, a steroid hormone with phenol part, reacts with similar kₐ₁ₑ₂⁻ (3.66±0.24 × 10⁸ M⁻¹ s⁻¹, Lei et al. 2019) as phenol (3.8±1.0 × 10⁸ M⁻¹ s⁻¹). The radical is assumed to attack the aromatic ring.

Hydroquinone is more reactive in reaction with Cl₂⁻ (1.4±0.2 × 10⁹ M⁻¹ s⁻¹, Hasegawa and Neta 1978) than catechol (5.66±0.41 × 10⁸ M⁻¹ s⁻¹, Lei et al. 2019). In hydroquinone reaction, similarly to phenol, also phenoxyl radical intermediate was observed. The rate constants of 4-methylcatechol and dopamine (3, 4-dihydroxyphenethylamine) (1.18±0.03 × 10⁹ and ~2 × 10⁹ M⁻¹ s⁻¹, respectively, Maity et al. 1994a; Lei et al. 2019), with electron donating group on the ring, are as high as that of hydroquinone. In cyano phenoxyl electron withdrawing CN decreases kₐ₁ₑ₂⁻ as compared to that of phenol by an order of magnitude (Hasegawa and Neta 1978).

Dichlorophen (fungicide, germicide, and antimicrobial agent) and ioxynil (herbicide) react with kₐ₁ₑ₂⁻ of 4.2 × 10⁹ and 1.25±0.13 × 10⁹ M⁻¹ s⁻¹, respectively. They react also with SO₄²⁻, Br₂⁻ and N₃⁻, but do not react with I₂⁻ (E°(I₂⁻/ 2I⁻) = 1.04 V vs. NHE). Therefore, their reduction potentials are between 1.33 and 1.04 V vs. NHE (Cornelius 1998). The bimolecular rate constant decreases with the oxidizing power of the attacking radical.

In 4-hydroxybenzyl alcohol a CH₂-OH, in 4-hydroxyquinic acid a CH=CH-COOH group in para-position on the ring practically does not influence the rate constant. The values, 2.3 × 10⁸ and 2.9 × 10⁸ M⁻¹ s⁻¹, respectively (Bobrowski 1984; Dhiman and Naik 2010), are close to the kₐ₁ₑ₂⁻ of phenol. The 4-hydroxybenzyl alcohol + Cl₂⁻ reaction gives phenoxy radical. Build-up of this radical was used in rate constant determination (Dhiman and Naik 2010). The mechanisms of reactions were suggested as simple electron transfer. The rate constants of the sulfur compounds, 4-methylthiophenol and 4,4'-thiodiphenol, 4.7 × 10⁹ and 6.9 × 10⁹ M⁻¹ s⁻¹, respectively, are much higher than those of phenols (Dey et al. 1999; Mohan and Mittal 1999).

Benzoic acid at the pH in the measurements of Mártil et al. (2001) was mainly in the neutral, while in the investigations of Hasegawa and Neta (1978) and Lei et al. (2019) in the anionic form (Scheme 8S). The kₐ₁ₑ₂⁻ of the anionic form (2 × 10⁶ M⁻¹ s⁻¹) is higher than that of the neutral molecule (<10⁶ M⁻¹ s⁻¹). Zhou et al. (2019) using a complex reaction system and a multicomponent fitting procedure for 3-methyl-, 4-fluoro-,...
Table 3 Phenols and benzoic acids.

Compound, pK_a	$k_{CD}, \text{M}^{-1} \text{s}^{-1}$	Method, pH	Literature
Phenol, 10.0	5×10^8	Pr, 1–2	Willson (1973)
	2.5×10^6	Pr, 1	Hasegawa and Neta (1978)
	3.2×10^6	Pr, 2.5	Alfassi et al. (1990)
	$2.2 \pm 0.1 \times 10^8$	LFP, 7	Lei et al. (2019)
4-Methoxyphenol, 10.05	$1.1 \pm 0.1 \times 10^6$	Pr, 1	Hasegawa and Neta (1978)
4-Cyanophenol, 7.97	$4.0 \pm 0.4 \times 10^7$	Pr, 1	Hasegawa and Neta (1978)
Dichlorophen, 7.6	4.2×10^6	Pr, 2.0	Cornelius (1998)
Ioxynil, 4.1	$1.25 \pm 0.13 \times 10^9$	Pr, 2.0	Cornelius (1998)
Estrone, 10.7	$3.66 \pm 0.24 \times 10^8$	LFP, 7	Lei et al. (2019)
Hydroquinone, 9.9	$1.4 \pm 0.2 \times 10^9$	Pr, 1	Hasegawa and Neta (1978)
	1×10^9	Pr	Willson (1973)
Catechol, 9.3	$5.66 \pm 0.41 \times 10^8$	LFP, 7	Lei et al. (2019)
4-Methylcatechol, 9.9	$1.18 \pm 0.03 \times 10^9$	LFP, 7	Lei et al. (2019)
Dopamine, 10.0	$\sim 2 \times 10^9$	Pr, 1.5	Maiti et al. (1994a)
4-Hydroxybenzyl alcohol, 9.8	2.3×10^6	Pr, 1	Dhiman and Naik (2010)
4-Hydroxybenzaldehyde, 4.1	2.9×10^6	Pr, 2.9	Bobrowski (1984)
Bisphenol A, 9.6	$5.82 \pm 0.62 \times 10^8$	LFP, 7	Lei et al. (2019)
	4.6×10^6	Pr	Fang et al. (2020)
4-Methylthiophenol, 6.8	4.7×10^6	Pr, 0	Dey et al. (1999)
4,4'-Thiodiphenol, 9.2	6.9×10^6	Pr, 1	Mohan and Mittal (1999)
Benzoic acid, 4.2	2×10^6	Pr, 7	Hasegawa and Neta (1978)
	$\leq 10^6$	FP, 4	Mártire et al. (2001)
	$2 \pm 0.3 \times 10^6$	LFP, 7	Lei et al. (2019)
4-Aminobenzoic acid, 2.35, 4.98	$2.2 \pm 0.2 \times 10^7$	Pr, 1	Hasegawa and Neta (1978)
4-Methoxybenzoic acid, 4.47	$2.0 \pm 0.2 \times 10^6$	Pr, 7	Hasegawa and Neta (1978)
3-Methylbenzoic acid, 4.27	6.81×10^6	Complex, 7.2	Zhou et al. (2019)
4-Methylbenzoic acid, 4.37	$5 \pm 1 \times 10^6$	Pr, 7	Hasegawa and Neta (1978)
4-Fluorobenzoic acid, 4.14	5.2×10^6	Complex, 7.2	Zhou et al. (2019)
2-Chlorobenzoic acid, 2.9	3.0×10^6	Complex, 7.2	Zhou et al. (2019)
4-Chlorobenzoic acid, 4.07	$3.0 \pm 0.6 \times 10^6$	Pr, 7	Hasegawa and Neta (1978)
4-Bromobenzoic acid, 4.0	$7 \pm 1 \times 10^6$	Pr, 7	Hasegawa and Neta (1978)
2-Iodobenzoic acid, 2.86	2.0×10^6	Complex, 7.2	Zhou et al. (2019)
4-Cyanobenzoic acid, 3.6	$5 \pm 1 \times 10^6$	Pr, 7	Hasegawa and Neta (1978)
3-Cyanobenzoic acid, 3.6	1.89×10^4	Complex, 7.2	Zhou et al. (2019)
3-Nitrobenzoic acid, 3.4	1.08×10^4	Complex, 7.2	Zhou et al. (2019)
4-Hydroxybenzoic acid, 4.5	$1.1 \pm 0.1 \times 10^8$	Pr, 1	Hasegawa and Neta (1978)
	$1.3 \pm 0.1 \times 10^8$	Pr, 3.1	
	$2.8 \pm 0.2 \times 10^8$	Pr, 7	
	$1.5 \pm 0.1 \times 10^9$	Pr, 9.5	
4-Phenoxybenzoic acid, 4.6	$1.5 \pm 0.2 \times 10^8$	Pr, 7	Hasegawa and Neta (1978)
Salicylic acid, 3.0	1.1×10^8	Pr, 1	Hasegawa and Neta (1978)
5-Aminosalicylic acid, 2.7, 5.8	$2.10 \pm 0.22 \times 10^8$	LFP, 7	Lei et al. (2019)
Acetylsalicylic acid, 3.4	$1.42 \pm 0.03 \times 10^9$	LFP, 7	Lei et al. (2019)
Gallic acid, 4.4, 8.2, 10.7, 13.1	1.9×10^7	Pr, 0	Dhibed et al. (1999)
	$7.53 \pm 0.43 \times 10^8$	LFP, 7	Lei et al. (2019)
2-chloro-, 2-iodo-, 3-cyano-, and 3-nitrobenzoate (pH 7.2) estimated \(k_{\text{Cl}2^-} \) values in the \(10^4 \text{ M}^{-1} \text{s}^{-1} \) range: \(\log k_{\text{Cl}2^-} \) linearly correlated with the Hammett substituents constants with slope −0.96. The high negative slope reflects considerable selectivity.

The rate constants of 4-hydroxybenzoic and 4-phenoxynbenzoic acids are two orders magnitude higher than those of the previously mentioned benzoic acid derivatives due to the increased electron density on the rings. As the measurements of Hasegawa and Neta (1978) with 4-hydroxybenzoic acid show that \(k_{\text{Cl}2^-} \) is increasing with increasing pH, the highest value was measured at pH 9.5, 1.5 ±0.1 × 10⁹ M⁻¹ s⁻¹.

The neutral form of salicylic acid has also smaller \(k_{\text{Cl}2^-} \) as theionic species (1.1 × 10⁸ and 2.1 ±0.3 × 10⁸ M⁻¹ s⁻¹, respectively, Hasegawa and Neta 1978; Lei et al. 2019), similarly to benzoic acid. Both values are higher than the \(k_{\text{Cl}2^-} \) of benzoic acid due to the OH group in the ortho-position in salicylic acid. The \(k_{\text{Cl}2^-} \) of acetylsalicylic acid (aspirin, medication used to treat inflammation) is in the same order of magnitude as that of salicylic acid. The \(k_{\text{Cl}2^-} \) of 5-aminosalicylic acid (mesalazine, antiinflammator drug, drug) is high (1.42±0.03 × 10⁷ M⁻¹ s⁻¹), here the amino group increases the electron density on the ring. \(k_{\text{Cl}2^-} \) increases to 1.9 × 10⁹ M⁻¹ s⁻¹ in gallic acid (neutral molecule) with three OH groups in meta and para positions (Dwibedy et al. 1999). The \(k_{\text{Cl}2^-} \) of propyl gallate (propyl 3,4,5-trihydroxybenzoate, 2 × 10⁹ M⁻¹ s⁻¹) is similar to that of gallic acid (Willson 1973). The \(k_{\text{Cl}2^-} \) values of protocatechuic acid (3,4-dihydroxybenzoic acid, antiviral agent) and gallic acid, with dissociated carboxylic groups (5.9±0.31 × 10⁸ and 7.53±0.43 × 10⁸ M⁻¹ s⁻¹, respectively, Lei et al. 2019) are similar.

Parabens, \(\rho \)-hydroxybenzoic acid derivatives, are widely used as preservatives in cosmetic and pharmaceutical products because of their bactericidal and fungicidal properties. For the reaction of methyl paraben, Lei et al. (2019) measured a \(k_{\text{Cl}2^-} \) of 1.61±0.06 × 10⁸ M⁻¹ s⁻¹. Terephthalic acid (1,4-benzenedicarboxylic acid) is mainly used as raw material for polyester production. It reacts with a \(k_{\text{Cl}2^-} \) that is similar to that of benzoic acid (2 × 10⁹ M⁻¹ s⁻¹, Hasegawa and Neta 1978). Phthalate esters (1,2-benzenedicarboxylic acid esters) are widely used as plasticizers in the plastic industry. Some of the phthalate esters have endocrine-disrupting properties which restrict their applications. Lei et al. (2019) for dimethyl-, diethyl-, and dibutyl phthalate published \(k_{\text{Cl}2^-} \) values around 1.2 × 10⁹ M⁻¹ s⁻¹.

Ibuprofen and naproxen are used as nonsteroidal antiinflammatory drugs. The former has central benzene ether naphthalene unit. At the pH of \(k_{\text{Cl}2^-} \) determination (pH 7) in both molecules the carboxyl group is ionized. Lei et al. (2019) suggest a rate constant of ibuprofen reaction smaller than 5 × 10⁹ M⁻¹ s⁻¹, for naproxen they measured 6.77±0.43 × 10⁷ M⁻¹ s⁻¹. It is easier to ionize the naphthalene ring than the benzene ring. In reaction with SO₄²⁻, the rate constants measured for the two compounds (1.3 × 10⁸–3 × 10⁹ and 5.6 × 10⁸–(7–8) × 10⁹ M⁻¹ s⁻¹, respectively) are close to each-other (Paul et al. 2014; Kwon et al. 2015; Yang et al. 2017; Gao et al. 2017). This is due to the closeness of the diffusion controlled limit for the SO₄²⁻ reaction (6.5 × 10⁹ M⁻¹ s⁻¹, Wojnárovits and Takács 2019), which supresses the rate constant range. In CO₃⁻ reaction the rate constant of ibuprofen is also smaller than that of naproxen (~1 × 10⁶ and 5.6±1.1 × 10⁷ M⁻¹ s⁻¹, respectively) (Wols et al. 2014; Lian et al. 2017).

The rate constant of 4-(methylthio)benzoic acid (2.51 × 10⁹ M⁻¹ s⁻¹) is much higher than those of the other benzoic acid derivatives (Gawandi et al. 2003).

Sulfur compounds

The reactions of sulfur compounds (organic sulfides, sulfoxides) represent special cases in radical reactions (Table 4, continued).

Compound, pKa	\(k_{\text{Cl}2^-} \) M⁻¹ s⁻¹	Method, pH	Literature
Propyl gallate, 8.1	2 × 10⁹	Pr, 1–2	Willson (1973)
Methyl paraben, 8.2	1.61±0.06 × 10⁸	LFP, 7	Lei et al. (2019)
Protocatechuic acid, 4.4, 8.7	5.90±0.31 × 10⁸	LFP, 7	Lei et al. (2019)
Terephthalic acid, 3.51, 4.82	6×1 ± 10⁶	Pr, 7	Hasegawa and Neta (1978)
Dimethyl phthalate, 3.4	1.4±0.3 × 10⁷	LFP, 7	Lei et al. (2020)
Diethyl phthalate, 7.8	1.1±0.2 × 10⁷	LFP, 7	Lei et al. (2020)
Dibutyl phthalate, 3.8	1.1±0.2 × 10⁷	LFP, 7	Lei et al. (2020)
Ibuprofen, 4.9	<5×10⁶	LFP, 7	Lei et al. (2019)
Naproxen, 4.2	6.57±0.43 × 10⁸	LFP, 7	Lei et al. (2019)
4-(Methylthio)benzoic acid, 3.48	2.51 × 10⁹	Pr, 1	Gawandi et al. (2003)
Compound, pK_a	\(k_{\text{CTD}^-} \), M\(^{-1}\) s\(^{-1}\)	Method, pH	Literature
----------------	------------------------	------------	------------
Dimethyl sulphide	\(4.7 \times 10^8 \)	Pr, <3	Bonifacic and Asmus (1980)
Diethyl sulphide	\(1.8 \times 10^8 \)	Pr, <3	Bonifacic and Asmus (1980)
Methionine, 9.21, 9.28	\(3.9 \times 10^9 \)	Pr, 1	Hiller and Asmus (1981)
Methionine anhydride	\(5.8 \pm 1.0 \times 10^9 \)	Pr, 1	Holcman et al. (1991)
Methionine methyl ester, 9.2	\(6.1 \times 10^9 \)	Pr, 1	Shirdhonkar et al. (2006)
Thiodiglycolic acid	\(4.9 \times 10^8 \)	Pr, 1.5	Mohan and Moorthy (1990a)
2,2'-Thiodiethanol, 3.32, 4.29	\(1.1 \times 10^9 \)	Pr, 1.5	Mohan and Mittal (1991)
Dimethyl 3,3'-thio-dipropionic acid, 4.0, 5.0	\(1.2 \times 10^9 \)	Pr, 1.5	Mohan and Mittal (1992)
3,3'-Thiodipropionol	\(2.6 \times 10^9 \)	Pr, 1.5	Mohan and Mittal (1992)
Dimethyl 2,2'-thiodiethanoate	\(1.9 \times 10^9 \)	Pr, 1.5	Maity et al. (1994b)
Methylthioacetic acid, 3.4	\(2.8 \times 10^9 \)	Pr, 1	Gawandi et al. (2000)
2-(Methylthio)ethanol	\(2.1 \times 10^9 \)	Pr, 1	Gawandi et al. (1999b)
3-(Methylthio)propanol	\(2.2 \times 10^9 \)	Pr, 1	Gawandi et al. (1999b)
4-(Methylthio)butanol	\(1.9 \times 10^9 \)	Pr, 1	Gawandi et al. (1999b)
3,3'-Thiodipropionamide	\(7.1 \times 10^9 \)	Pr, 1	Gawandi et al. (1999b)
(4-Methylthiophenyl)methanol	\(3.1 \times 10^9 \)	Pr, 1	Mohan and Mittal (2001)
Dithiothreitol, 9.2, 10.1.	\(3.0 \pm 0.3 \times 10^9 \)	Pr, 2.0	Redpath (1973)
Cimetidine, 6.8	\(3.0 \pm 0.2 \times 10^9 \)	LFP, 5.5-6	Jasper et al. (2016)
	\(2.78 \pm 0.16 \times 10^9 \)	LFP, 7	Lei et al. (2019)
Famotidine, 1.8, 6.8	\(1.65 \pm 0.04 \times 10^9 \)	LFP, 7	Lei et al. (2019)
Ranitidine, 2.7, 8.2	\(4.5 \pm 0.5 \times 10^9 \)	LFP, 5.5-6	Jasper et al. (2016)
Methidation	\(1.3 \pm 0.4 \times 10^8 \)	FP, 5.5	Caregnato et al. (2013)
Dimethoxide	\(1.1 \pm 0.4 \times 10^8 \)	FP, 5.5	Caregnato et al. (2013)
Phenyl trifluoromethyl sulfide (PTS)	\(\leq 1.5 \times 10^7 \)	Pr, 1	Shirdhonkar et al. (2008)
Dimethyl sulfioxide	\(1.2 \times 10^7 \)	Pr, 1.7	Kishore and Asmus (1991)
	\(1.6 \pm 0.8 \times 10^7 \)	LFP, 5.6	Zhu et al. (2005)
Diethyl sulfide	\(2.7 \times 10^7 \)	Pr, 1.7	Kishore and Asmus (1991)
Dipropyl sulfide	\(3.9 \times 10^7 \)	Pr, 1.7	Kishore and Asmus (1991)
Dimethyl sulfoxide	\(8.2 \pm 5.5 \times 10^3 \)	LFP, 5.6	Zhu et al. (2005)
Methanesulfonate	\(3.9 \pm 0.7 \times 10^3 \)	LFP, 5.6	Zhu et al. (2005)
Methanesulfinate	\(8.0 \pm 1.0 \times 10^8 \)	LFP, 5.6	Zhu et al. (2005)
Thiazole, 2.5	\(3.9 \pm 0.2 \times 10^8 \)	LFP, 7	Lei et al. (2019)
Diethyliothiourea	\(4.0 \times 10^9 \)	Pr, 0	Dey et al. (1994c)
Phenylthiourea, 13.9	\(4.0 \times 10^9 \)	Pr, 2.0	Dey et al. (1994b)
n-Allylthiourea, 13.6	\(4.6 \times 10^9 \)	Pr, 1	Naik and Mukherjee (2006)
Selenothiourea, 8.6	\(3.6 \times 10^9 \)	Pr, 1	Mishra et al. (2004)
2-Mercapto-benzimidazole, 10.9	\(8.8 \times 10^9 \)	Pr, 0	Dey et al. (1995)
Thioacetamide	\(2.5 \times 10^9 \)	Pr, 0	Kishore et al. (1998)
Dithio-oxamide	\(4 \times 10^9 \)	Pr	Dey et al. (2000)
Thionicotinamide, 3.25	\(1.3 \times 10^9 \)	Pr, 1	Dey et al. (2003)
2,5-Dimer-captopthiadiazole, 4.1, 9.4	\(7.0 \times 10^8 \)	Pr, 0	Kishore et al. (1998)
Scheme 9S). One-electron oxidants easily oxidize the S-atom in lower oxidation state to a higher oxidation state sulfur. Sulfur radical cations show high tendency to be stabilized through three-electron bonded S.:X (X=O, S, N, Cl, Br, I) species. The \(k_{\text{Cl}_2} \) values of organic sulfide (R1R2S) reactions are in the \(10^8–10^9 \) M\(^{-1}\) s\(^{-1}\) range (Bonifacic and Asmus 1980; Mohan 1990; Mohan and Moorthy 1990a; Mohan and Mittal 1991, 1992; Maity et al. 1994b). In the experiments, Cl-adduct, R1R2S:Cl intermediates were observed. These species are characterized by a sulfur-chlorine three-electron bond with two \(\sigma \)-bonding and one \(\sigma^* \)-antibonding electron. An equilibrium exists between \(\text{Cl}_2 \) and \(R_1R_2S:Cl \) (18). Three-electron bonded complex (dimer radical cation) also forms in the \(R_1R_2S:Cl + R_1R_2S \) Reaction (19).

\[
\begin{align*}
\text{Cl}_2^- + R_1R_2S & \rightleftharpoons R_1R_2S:Cl + Cl^- \quad (18) \\
R_1R_2S:Cl + R_1R_2S & \rightleftharpoons (R_1R_2S:SR_1R_2)^+ + Cl^- \quad (19)
\end{align*}
\]

Dithiothreitol (DTT) is a small-molecule redox reagent with a very low reduction potential of 0.33 V vs. NHE at pH 7 (Redpath 1973). It is often used in racemic form in the acidic pH range. DTT reacts with \(\text{Cl}_2 \) with a rate constant of 3.0 ±0.3 × 10\(^8\) M\(^{-1}\) s\(^{-1}\).

Cimitidine, famotidine and ranitidine are used to control stomach acid overproduction. All contain sulfur atom in the alkyl chain. Based on analogous reactions, this S bridge is attacked in one-electron oxidation reaction giving explanation for the unusually high rate constants: 1.65 × 10\(^8\)–4.5 × 10\(^9\) M\(^{-1}\) s\(^{-1}\) (Jasper et al. 2016; Lei et al. 2019). The use of methidation and dimethoate organophosphate insecticides are banned in several countries. In these molecules, the S-atom is connected to a thiophospha group. The \(k_{\text{Cl}_2} \) values were determined as 1.3±0.4 × 10\(^8\) and 1.3±0.4 × 10\(^8\) M\(^{-1}\) s\(^{-1}\), respectively. A mechanism involving charge transfer from the thiole groups is proposed and supported by the identified intermediates and reaction products (Caregnato et al. 2013). In the reaction \(\text{P(OCH}_3)_2\text{Cl} \) fragment forms. In phenyl trifluoromethyl sulfide (PTS) the CF\(_3\) group decreases the reactivity (Shridhonkar et al. 2008).

Dimethyl sulfide oxidation in marine atmosphere may play an important role in modifying the global climate since several of its free radical induced oxidation products are water soluble (Zhu et al. 2005) contributing to atmospheric aerosols formation. The less oxidized sulfur compounds, dimethyl-, diethyl-, and di-n-propyl sulfides react with moderate \(k_{\text{Cl}_2} \) of 1.2 × 10\(^7\)–3.9 × 10\(^7\) M\(^{-1}\) s\(^{-1}\) (Kishore and Asmus 1991; Zhu et al. 2005). In reactions with alkylessulfoxides also three-electron bonded Cl-adducts were observed as intermediates (R1R2S(O):Cl, Scheme 2). These intermediates may form in one step (20) or two steps (21) reactions.

\[
\begin{align*}
R_1R_2SO + Cl^- \rightleftharpoons R_1R_2S(O):Cl + Cl^- \quad (20) \\
R_1R_2SO + Cl^- \rightleftharpoons R_1R_2SO^+ + Cl^- \rightleftharpoons R_1R_2S(O):Cl \quad (21)
\end{align*}
\]

The rate constants of reactions with the higher oxidized sulfur compounds, dimethyl sulfone and methanesulfonate are very small, they are 8.2±5.5 × 10\(^3\) and 3.9±0.7 × 10\(^3\) M\(^{-1}\) s\(^{-1}\), respectively (Zhu et al. 2005). However, a higher \(k_{\text{Cl}_2} \) value, 8.0±1.0 × 10\(^8\) M\(^{-1}\) s\(^{-1}\), was published for methanesulfinate. As the authors mentioned, in their experiments the reactions of Cl\(^-\) might disturb the determination of the rate constant.

Thiazole is the structural unit of several drugs, e.g., sulfathiazole, it reacts with moderately high rate constant of 3.9 ±0.2 × 10\(^8\) M\(^{-1}\) s\(^{-1}\) (Lei et al. 2019). Dey et al. (1994b, c) published high \(k_{\text{Cl}_2} \) for the reaction of phenylthiourea and diethylthiourea: 4.0 × 10\(^8\) M\(^{-1}\) s\(^{-1}\). High value was also found for n-allylthiourea (4.6 × 10\(^8\) M\(^{-1}\) s\(^{-1}\), Naik and Mukherjee 2006). Electron transfer, followed by deprotonation of the intermediate radical cation is suggested as a possible mechanism. It is proposed that an intramolecular 3-electron bond is formed between sulfur and nitrogen after the deprotonation. Such sulfur–nitrogen three-electron bond was also reported, e.g., in the radical reactions of methionine (Asmus 1990). A similar mechanism is suggested for Cl\(^+\) reaction with 2-mercaptobenzimidazole, \(k_{\text{Cl}_2} \) is at the diffusion controlled limit: 8.8 × 10\(^9\) M\(^{-1}\) s\(^{-1}\) (Dey et al. 1995). High value was also published for selenoureide (Mishra et al. 2004). The radical chemistry of thiourea is similar to that of thiourea, rather than that of acetamide (2.5 × 10\(^9\) M\(^{-1}\) s\(^{-1}\), Kishore et al. 1998).

Antibiotics and model compounds

β-Lactams

In these antibiotics the biclyclo system includes a thioether moiety, an especially susceptible part of the molecules in radical reactions (Szabó et al. 2016). 6-Aminopenicillanic acid and 4-hydroxy-D-phenyl glycine (Table 5, Scheme 10S) are regarded as model compounds of the more complex β-lactam antibiotics, e.g., amoxicillin (Song et al. 2008; Rickman and Mezyk 2010; Szabó et al. 2016). The rate constant of Cl\(^+\) reaction, measured for 6-aminopenicillanic acid at pH 2 is an order of magnitude higher (1.3 × 10\(^9\) M\(^{-1}\) s\(^{-1}\)) than that determined for 4-hydroxy-D-phenyl glycine (1.8 × 10\(^8\) M\(^{-1}\) s\(^{-1}\)). The attack on the former compound is suggested to take place on the sulfur atom giving rise to formation of three-electron bonded complexes. The reaction with 4-hydroxy-D-phenyl glycine is suggested to proceed by...
one-electron oxidation at the ring yielding a radical cation: the intermediate by deprotonation rearranges to phenoxyl radical (Szabó et al. 2016). It is evident that at pH 2 the reaction with amoxicillin occurs principally with the β-lactam part of the molecule (1.6×10^9 M$^{-1}$ s$^{-1}$). Lei et al. (2019) measured much smaller value for amoxicillin reaction at pH 7 ($4.20\pm0.11 \times 10^{8}$ M$^{-1}$ s$^{-1}$).

7-Aminocephalosporanic acid may be regarded as the core part of the cephalosporin β-lactam antibiotics (Lei et al. 2019). This model compound reacts with $k_{Cl^2-} = 2.29\pm0.11 \times 10^8$ M$^{-1}$ s$^{-1}$.

Table 5 Antibiotics and model compounds

Compound, pK_a	k_{Cl^2-}, M$^{-1}$ s$^{-1}$	Method, pH	Literature
β-lactams			
6-Aminopenicillanic acid, 3.4	1.3×10^9	Pr, 2	Szabó et al. (2016)
	$3.27\pm0.31 \times 10^8$	LFP, 7	Lei et al. (2019)
4-hydroxy-D-phenyl glycine, 2.15	2.8×10^8	Pr, 2	Szabó et al. (2016)
Amoxicillin, 2.6, 7.2	1.6×10^9	Pr, 2	Szabó et al. (2016)
	$4.20\pm0.07 \times 10^8$	LFP, 7	Lei et al. (2019)
Penicillin G, 2.9	$3.30\pm0.30 \times 10^8$	LFP, 7	Lei et al. (2019)
Penicillin V, 2.7	$3.36\pm0.41 \times 10^8$	LFP, 7	Lei et al. (2019)
7-Aminocephalosporanic acid, 2.6	$2.29\pm0.11 \times 10^8$	LFP, 7	Lei et al. (2019)
Cefotaxime, 2.7	$4.91\pm0.16 \times 10^8$	LFP, 7	Lei et al. (2019)
Cephalexin, 2.6, 6.4	$5.06\pm0.29 \times 10^8$	LFP, 7	Lei et al. (2019)
Cefaclor, 1.6	$3.68\pm0.09 \times 10^9$	LFP, 7	Lei et al. (2019)
Benzenesulfonates and trimethoprim			
Benzenesulfonic acid, 2.55	$<10^5$	Pr, 7	Hasegawa and Neta (1978)
p-Cumenesulfonate, 1.34	9.4×10^8	Pr, 6.5	Osiewala et al. (2013)
p-Styrene sulfonate	3.1×10^8	Pr, 1	Bhardwaj et al. (2001)
Sulfacetamide, 5.4	8.0×10^8	Pr, 2	Sabharwal et al. (1994)
Sulfanilamide, 2.3, 10.2	$4.32\pm0.12 \times 10^8$	LFP, 7	Lei et al. (2019)
Sulfadimethoxine, 2.1, 6.1	$4.46\pm0.50 \times 10^8$	LFP, 7	Lei et al. (2019)
Sulfadiazine, 2.1, 6.9	$4.27\pm0.37 \times 10^8$	LFP, 7	Lei et al. (2019)
Sulfamethazine 2.1, 7.5,	$4.85\pm0.28 \times 10^8$	LFP, 7	Lei et al. (2019)
Sulfamethoxazole, 1.6, 5.7	$4.72\pm0.39 \times 10^8$	LFP, 7	Lei et al. (2019)
Sulfathiazole, 2.7, 6.3	$5.08\pm0.36 \times 10^8$	LFP, 7	Lei et al. (2019)
Sulfapyridine, 2.2, 8.5	$3.82\pm0.68 \times 10^8$	Comp., 5	Liu et al. (2020)
1-Naphthylamine-4-sulphonic acid	7×10^7	Pr, 1	Dwibedy et al. (2001)
Trimethoprim, 3.2, 7.1	$2.4\pm0.3 \times 10^9$	LFP, 5.5–6	Jasper et al. (2016)
	$1.88\pm0.02 \times 10^9$	LFP, 7	Lei et al. (2019)
Fluoroquinolones			
Ciprofloxacin, 6.1, 8.7	$<5 \times 10^7$	LFP, 5.5–6	Jasper et al. (2016)
	$2.19\pm0.08 \times 10^8$	LFP, 7	Lei et al. (2019)
Enrofloxacin, 6.1, 7.7	$3.27\pm0.15 \times 10^8$	LFP, 7	Lei et al. (2019)
Flumequine, 6.3	$9.4\pm0.7 \times 10^7$	LFP, 7	Lei et al. (2019)
Ofloxacin, 6.2, 8.1	$3.48\pm0.39 \times 10^8$	LFP, 7	Lei et al. (2019)
Tetracyclines and tylosin			
Tetracycline, 3.3, 7.8, 9.6	$1.18\pm0.08 \times 10^9$	LFP, 7	Lei et al. (2019)
Oxytetracycline, 3.1, 7.4, 8.9	$9.36\pm0.29 \times 10^8$	LFP, 7	Lei et al. (2019)
Doxycline, 3.0, 8.0, 9.2	$1.14\pm0.07 \times 10^9$	LFP, 7	Lei et al. (2019)
Chlorotetracycline, 3.3, 7.6, 9.6	$8.50\pm0.49 \times 10^8$	LFP, 7	Lei et al. (2019)
Tylosin, 7.73	$4.6\pm0.3 \times 10^7$	LFP, 7	Lei et al. (2019)

Jasper et al. (2016)
× 10^8 M⁻¹ s⁻¹. The rate constants of the cephalosporin antibiotics in the table are just slightly higher than this value suggesting reaction predominantly with the 7-aminocephalosporanic acid part. All values measured for β-lactams are in the same order of magnitude as measured for dimethyl- and diethyl sulfide (3.0 × 10^8 and 4.7 × 10^8 M⁻¹ s⁻¹, respectively, Bonifacic and Asmus 1980).

Benzenesulfonates and trimethoprim

In benzenesulfonates a –SO₂R group with highly oxidized sulfur atom is attached to a benzene ring. These molecules have good water solubility. They are used for numerous purposes including solubilisation or serve as starting molecules for synthesis of many drugs. Benzene sulfonic acid (Scheme 11S) is the basic molecule of the so-called sulfonic drugs, sulfacetamide is the simplest antibiotic of the group, p-cumenesulfonate may serve as a model for sulfonate type surfactants, while p-styrene sulfonate is used to produce ionic polymers. Benzensulfonic acid practically does not react with Cl₂ due to the presence of the strong electron withdrawing sulfonate group (Hasegawa and Neta 1978). Osiewala et al. (2013) published an unexpectedly high value for the molecule which has a cumene group in para position (p-cumenesulfonate, 9.4 × 10⁹ M⁻¹ s⁻¹). Cl₂ is suggested to react by electron transfer from aromatic ring and also by abstracting the tertiary H-atom of the cumene group. In the latter reaction benzyl type radical forms. The intermediate in reaction with a water molecule transforms to hydroxycyclohexadienyl radical.

Most of sulfa drugs have two pKₐ values, the first acid-base dissociation occurs at pH 2–3 at the NH₂ group attached to the benzene ring. The second one is at the –SO₂–NH–R unit (–NH– -N⁺ + H⁺) (Babic et al. 2007). In acidic solutions of sulfacetamide the transient formed in Cl₂ reaction (and also in reactions of other one-electron oxidants) was inferred to be the radical cation, k(Cl₂⁺) is 8.0 × 10⁸ M⁻¹ s⁻¹ (Sabharwal et al. 1994).

Lei et al. (2019) published k(Cl₂⁻) ≈ 5 × 10⁸ M⁻¹ s⁻¹ for several sulfonamides antibiotics. At the pH of their measurements the molecules were in the neutral/anionic form. It is assumed that there is a common reaction center in these molecules. It should be noted that the rate constants of individual sulfonamides were very close to each other also in CO₃⁻ reactions (~10⁸ M⁻¹ s⁻¹, Jasper and Sedlak 2013; Wols et al. 2014; Zhang et al. 2016). It is surprising that Liu et al. (2020) published lower value for the Cl₂⁻ + sulfapyridine reaction, 3.82±0.68 × 10⁹ M⁻¹ s⁻¹, as measured for other sulfonamide antibiotics.

Trimethoprim as antibiotic often used in combination with sulfa drugs, mainly with sulfamethoxazole. Jasper et al. (2016) and Lei et al. (2019) published similar high rate constant values with an average of 2.1 × 10⁹ M⁻¹ s⁻¹. In reaction with SO₄²⁻ a rate constant of 7.7 × 10⁹ M⁻¹ s⁻¹ was measured while the reaction with CO₃²⁻ proceeded with rate constant of 3.4 × 10⁷ M⁻¹ s⁻¹ (Zhang et al. 2015).

Fluoroquinolones

Fluoroquinolones (Scheme 12S), ciprofloxacin, enrofloxacin, flumequine and ofloxacin are used to treat both human and veterinary diseases caused by both Gram positive and Gram negative bacteria. These molecules contain a central fluoroquinolone unit and, in ciprofloxacin, enrofloxacin and ofloxacin a piperazine ring is attached to the benzene ring. Flumenique has three condensed rings. Ciprofloxacin, enrofloxacin, and ofloxacin at pH 7 are zwitterions with positive charge on the piperazine ring and negative charge on the carboxyl group. In ciprofloxacin the carboxyl group deprotonates with pK₆ 6.1 and the deprotonation of the secondary nitrogen atom occurs with pK₆ 8.7 (Jiang et al. 2016).

In the experiments of Lei et al. (2019) ciprofloxacin was a zwitterion, while in the experiments of Jasper et al. (2016) it was a cation. The k(Cl₂⁻) values were found to be highly different, 2.19±0.08 × 10⁸ and <5 × 10⁷ M⁻¹ s⁻¹, respectively. In the reactions of enrofloxacin and ofloxacin Lei et al. (2019) measured similar k(Cl₂⁻) values as in ciprofloxacin reaction. The value of Lei et al. (2019) determined for flumequine is smaller, 9.4±0.7 × 10⁷ M⁻¹ s⁻¹, than that determined for the other three fluoroquinolones. Flumequine does not have piperazine ring. Jasper et al. (2016) in reaction of the strong one-electron oxidant SO₄²⁻ suggested radical attack on this ring.

Tetracycline antibiotics and tylosin

The four fused ring tetracycline antibiotics (Scheme 13S) exhibit wide range of activity against Gram positive and Gram negative bacteria and several classes of parasites. At pH 7 they are neutral molecules or zwitterions (Babic et al. 2007). Their k(Cl₂⁻) values fall in narrow range with an average of 1.03±0.16 × 10⁹ M⁻¹ s⁻¹ (Lei et al. 2019). The macrolide antibiotic tylosin inhibits bacteria by binding to the 50S ribosome and inhibiting protein synthesis. The activity spectrum is limited primarily to Gram positive aerobic bacteria. Tylosin reacts with k(Cl₂⁻) of 4.6±0.3 × 10⁷ M⁻¹ s⁻¹ (Lei et al. 2019).

Molecules with nitrogen atom(s) in the ring

3-Hydroxy pyridine at pH 2 is protonated, and as such has low reactivity toward Cl₂⁻ (<1.6 × 10⁶ M⁻¹ s⁻¹, Table 6, Scheme 14S). At pH 6.8, it is neutral (or a zwitterion with negative charge on oxygen (O⁻) and positive charge on nitrogen (NH³+)). In the reaction, the semioxidized form is produced with k(Cl₂⁻) = 1.44 × 10⁸ M⁻¹ s⁻¹ (Naik and Moorthy 1991b).

2-Hydroxy pyridine undergoes tautomerism to give 2-
Pyridone (a carbonyl compound). Pyridones are still aromatics as the lone pair of electrons on nitrogen can be delocalized into the ring. The k_{Cl_2} of 2-hydroxy pyridine, 1.31×10^8 M$^{-1}$ s$^{-1}$, is close to the value measured for 3-hydroxy pyridine (Naik and Moorthy 1991a). The rate constants of Cl$_2^-$ reactions with 2- and 4-mercaptopyridines are in the 10^9 M$^{-1}$ s$^{-1}$ range (Naik and Kishore 2002; Kishore et al. 2002).

Imidazole, a diazole type aromatic heterocycle, shows high reactivity in one-electron oxidation: the rate constants with SO$_4^{2-}$ and Cl$_2^-$ are $1.82\pm0.17 \times 10^9$ and 1.31×10^8 M$^{-1}$ s$^{-1}$, respectively (Steenken 1989; Lei et al. 2019). The nitroimidazole type of antibiotics, dimetridazole, metridazole, ornidazole and ronidazole, have central nitroimidazole units, and substituents are added to one of the N- and C-atoms. They react with average k_{Cl_2} of $1.14\pm0.32 \times 10^8$ M$^{-1}$ s$^{-1}$ (Lei et al. 2019). This value is between the rate constants determined in CO$_3^{2-}$ and SO$_4^{2-}$ reactions: $3.34\pm0.47 \times 10^7$ and $2.72\pm0.41 \times 10^9$ M$^{-1}$ s$^{-1}$, respectively (Wojnárovits and Takács 2019; Wojnárovits et al. 2020). The trend of the average values reflects the trend of reduction potentials of the oxidants. The similar values within the group suggest that these radicals attack the same parts of the molecules, most probably the imidazole ring. The k_{Cl_2} values measured for imidazole and the nitroimidazoles practically coincide.

In reaction with one-electron oxidants, among them also with Cl$_2^-$, pyrimidine shows low reactivity (Steenken 1989; Lei et al. 2019). The reactivity is increasing when two electron donating methoxy groups are attached to the ring in 2,4-dimethoxypyrimidine. The basic structure of the bicyclic compounds in Table 7 is purine. Purine is a heterocyclic aromatic compound with a pyrimidine ring fused to an imidazole ring. Adenine and guanine nucleobases react with Cl$_2^-$ with low rate constants of <5 × 106 and 8.1 × 107 M$^{-1}$ s$^{-1}$, respectively (Ward and Kuo 1968): the pyrimidine ring deactivates the imidazole ring against radical attack. In xanthine, caffeine, and theophylline (stimulants in coffee, tea, and cola) the pyrimidine ring has no aromatic character, the k_{Cl_2} values are in the 108 M$^{-1}$ s$^{-1}$ range (Lei et al. 2019).

Carbamazepine is used in cases of neuropathic disorders. Jasper et al. (2016) suggested a k_{Cl_2} of <5 × 107 M$^{-1}$ s$^{-1}$, while the value of Lei et al. (2019) is $4.3\pm0.3 \times 10^7$ M$^{-1}$ s$^{-1}$. In SO$_4^{2-}$ reaction a rate constant of 1.92 × 109 M$^{-1}$ s$^{-1}$ was determined (Matta et al. 2011), whereas in CO$_3^{2-}$ reaction 3.3 ±1 × 106 M$^{-1}$ s$^{-1}$ (average of 4 values) was found (Wojnárovits et al. 2020).

Table 6: Molecules with nitrogen atom(s) in the ring

Compound	pK_a	k_{Cl_2}, M$^{-1}$ s$^{-1}$	Method, pH	Literature
2-Hydroxy pyridine	−1.0, 9.97	1.31×10^8 Pr, 2.5	Naik and Moorthy (1991a)	
3-Hydroxy pyridine	4.86, 8.72	1.44×10^8 Pr, 6.8	Naik and Moorthy (1991b)	
	<1.6 × 106	Pr, 2		
2-Mercaptopyridine	−1.7, 9.97	3.0×10^9 Pr, 1	Naik and Kishore et al. (2002)	
4-Mercaptopyridine	1.43	1×10^9 Pr, 0	Kishore et al. (2002)	
Imidazole	7.1, 12.7	$1.82\pm0.17 \times 10^9$ LFP, 7	Lei et al. (2019)	
Dimetridazole	2.8	$8.4\pm0.5 \times 10^7$ LFP, 7	Lei et al. (2019)	
Metronidazole	2.6	$1.24\pm0.08 \times 10^8$ LFP, 7	Lei et al. (2019)	
Omidazole	2.7	$9.3\pm0.5 \times 10^7$ LFP, 7	Lei et al. (2019)	
Ronidazole	1.3	$1.55\pm0.08 \times 10^8$ LFP, 7	Lei et al. (2019)	
Pyrimidine	<106	LFP, 7	Lei et al. (2019)	
2,4-Dimethoxypyrimidine	$3.0\pm0.2 \times 10^7$	LFP, 7	Lei et al. (2019)	
Purine	2.4, 8.9	$5.2\pm0.8 \times 10^8$ FP, 7	Takahashi et al. (1985)	
Xanthine	7.7	$1.85\pm0.11 \times 10^8$ LFP, 7	Lei et al. (2019)	
Caffeine	10.4	$9.28\pm0.52 \times 10^8$ LFP, 7	Lei et al. (2019)	
Theophylline	8.8	$8.78\pm0.34 \times 10^8$ LFP, 7	Lei et al. (2019)	
Adenine	4.1, 9.8	<5 × 106 Pr, 2.7	Ward and Kuo (1968)	
Guanine	3.3, 9.2	8.1×10^7 Pr, 2.3	Ward and Kuo (1968)	
Carbamazepine	13.9	$<5 \times 10^7$ LFP, 5.5–6	Jasper et al. (2016)	
		$4.3\pm0.3 \times 10^7$ LFP, 7	Lei et al. (2019)	
Primidone	12.3	$1.58\pm0.02 \times 10^9$ LFP, 7	Lei et al. (2019)	
2-Thiouracil	3.2	10^9 Pr, 1	Prasanthkumar et al. (2012a)	
4-Thiouracil	2.7	10^9 Pr, 1	Prasanthkumar et al. (2012b)	

2-Thiouracil 3.2 × 109 Pr, 1 Prasanthkumar et al. (2012b)
et al. 2020). The $k_{Cl^2\cdot}$ of pirimidone (epilepsy compound) was determined to be $1.58\pm0.02 \times 10^8 \ M^{-1} s^{-1}$.

In 2-thiouracil and 4-thiouracil the S-atom essentially determines their reactivity with Cl$_2\cdot$: the rate constants are 3.2×10^9 and $2.7 \times 10^9 \ M^{-1} s^{-1}$, respectively, and three-electron bonded dimer radical cation intermediates were observed as it is typical for sulfur compounds (Prasanthkumar et al. 2012a, b).

Miscellaneous compounds

Tetramethyl-, tetraethyl-, tetrapropyl, and tetrabutylammonium ions have low reactivity with Cl$_2\cdot$ (Scheme 15S, Bobrowski 1980). The reactivity is increasing with the increasing number of C-H bonds in the molecule. The values (10^3-$10^4 \ M^{-1} s^{-1}$) are in good agreement with those of the other aliphatic compounds which undergo H-abstraction. Cetyltrimethylammonium chloride (CTACl) is used as a cationic surfactant (Table 7). The molecule has 14 –CH$_2$- units, therefore, many possibilities for H-abstraction. The rate constant, $1.2 \times 10^7 \ M^{-1} s^{-1}$, is much higher than that of the previously mentioned trialkylammonium ions (Patterson et al. 1972). In vinyltrimethylammonium chloride, the reaction takes place on the styrene part of the molecule forming radical cation ($2.3 \times 10^8 \ M^{-1} s^{-1}$) (Patterson et al. 1972).

Table 7 lists also the rate constant of the cationic surfactant sodium dodecyl sulfate (NaLS) and the neutral nonylphenol ethoxylate (Igepal CO-730) surfactant (3.9×10^6 and $2.1 \times 10^8 \ M^{-1} s^{-1}$, respectively, Patterson et al. 1972). The $k_{Cl^2\cdot}$ for the latter is much higher due to the presence of the –O-CH$_2$- moiety, the rate constant is similar to that of anisole, $1.62 \pm0.09 \times 10^8 \ M^{-1} s^{-1}$ (Lei et al. 2019). When the concentrations of surfactants were above critical micelle concentrations (CMC) the rate constants decreased considerably due to aggregation.

Clenbuterol, mabuterol, salbutamol, and terbutaline are used by patients with breathing disorders. These compounds have the same –CH(OH)-CH$_2$-NH-C(CH$_3$)$_3$ side on a benzene ring. Similarly, to the previously discussed blood pressure regulators, they also have a secondary amine in the chain. In clenbuterol and mabuterol the ring is deactivated by chlorine or trifluoromethyl groups. In salbutamol and terbutaline activating –OH or –CH$_2$-OH groups are attached to the rings. Despite the activating or inactivating groups the $k_{Cl^2\cdot}$ values are close to each other, they are in the 3×10^8–$1.2 \times 10^9 \ M^{-1} s^{-1}$ range (Lei et al. 2019). Cl$_2\cdot$ probably attacks the amine containing side-chain, which is common in all of them. The $k_{Cl^2\cdot}$ values are one order of magnitude higher as measured
for CO$_3^{2-}$, and smaller by one order of magnitude as determined for SO$_4^{2-}$ reactions (Wojnárovits and Takács 2019; Wojnárovits et al. 2020)

Due to the three heavy iodine atoms, iopromide is used as a contrast material in the medical practice; k$_{Cl_2^-}$ is high, 2.05 ±0.10 × 109 M$^{-1}$ s$^{-1}$ (Lei et al. 2019). Cl$_2^-$ reacts with R)(-)(-)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BiNPO$_4$H$_2$), used as model compound of soluble aromatic molecules, in electron transfer oxidation (Shoute 1997). Metformin is used for the treatment of type 2 diabetes. This simple molecule reacts with k$_{Cl_2^-}$ =2 . 1 ± 0 . 1×1 0 7 M$^{-1}$ s$^{-1}$ (Lei et al. 2019).

Sucralose, a widely used artificial sweetener, in reaction with Cl$_2^-$ has low reactivity, k$_{Cl_2^-} <$1×1 0 6 M$^{-1}$ s$^{-1}$ (Lei et al. 2019). The radical is expected to react with sucralose in H-abstraction, such reactions are generally slow as the example of aliphatic alcohols shows. Small rate constant was measured also in SO$_4^{2-}$ reaction (Wojnárovits and Takács 2019). The value published for the hyaluronan, nonsulfated glycosaminoglycan type biopolymer, was also small, k$_{Cl_2^-}$ =6 . 9×1 0 6 M$^{-1}$ s$^{-1}$ Al-Assaf et al. (2006). Cl$_2^-$ is assumed to attack at the N-acetyl function initiating chain type depolymerisation.

The reaction of ascorbic acid with Cl$_2^-$ (and other one-electron oxidants) at pH 2 gives ascorbic acid radical, k$_{Cl_2^-}$ =6 . 4×1 0 8 M$^{-1}$ s$^{-1}$ (average, Schöneshöfer 1972; Redpath and Willson 1973). Microcystin-LR, a cyclic heptapeptide containing seven amino acids, is a strong cyanotoxin. The rate constant measured for its reaction with Cl$_2^-$ is unexpectedly small for such a large molecule: 5.58±0.42 × 10 7 M$^{-1}$ s$^{-1}$ (Zhang et al. 2019).

Table 8 Dye cations

Compound, pK$_a$	k$_{Cl_2^-}$, M$^{-1}$ s$^{-1}$	Method, pH	Literature
Thionine, 0.3, 11	3.3 × 109	Pr, 1.7	Kishore et al. (1987)
Methylene blue, 3.1	8±0.5 × 109	Pr, 1.7	Kishore et al. (1989)
Toluidine blue, 2.4, 11.6	3.4 × 109	Pr, 1.8	Mahadevan et al. (1990)
Promethazine, 9.6	5 × 109	Pr, 1–2	Willson (1973)
Chlorpromazine, 9.6	5 × 109	Pr, 1–2	Willson (1973)
Acriflavine cation	–4 × 109	Pr	Prütz and Land (1970)
Acridine-1,8-dione	4.0 × 109	Pr, 1	Mohan et al. (1996)
Riboflavin, 6.97	2.1 × 1010	Pr, 1.7	Kishore et al. (1991)
Neutral red, 6.7	7.5 × 109	Pr, 1.8	Guha et al. (1993)
Safranine T, 5.8	5.5 × 109	Pr, 2	Guha et al. (1992)
Reactive Blue 81	8.98 × 108	Pr, 3	Ledakowicz et al. (2012)
Acid Red 27	6.51 × 108	Pr, 3	Ledakowicz et al. (2012)
Reactive Red-120	1 × 108	Pr	Paul et al. (2010)
Orange II	3.2±1.0 × 107	LFP, 2.8	Kiwi et al. (2000)

Dye cations

The dye cations listed in Table 8 (Scheme 16S), with the exception of the four textile dyes, are principally used for biological purposes in staining processes or as redox indicators (e.g., in titration). In one-electron oxidation an electron is removed from the aromatic system and the formed conjugated semioxidized forms have intense light absorption in the visible range with molar absorption coefficient going up to several times 104 M$^{-1}$ cm$^{-1}$.

Thionine, methylene blue, and toluidine blue have the same phenothiazine core. In thionine in 2,8-positions there are NH$_2$ groups, in methylene blue N(CH$_3$)$_2$ groups are in these positions, in toluidine NH$_2$, N(CH$_3$)$_2$ and CH$_3$ groups are added to the core. At the pH of measurements (~1.7) these dyes are in single or double ionized forms. Cl$_2^-$ reacts with these cations with k$_{Cl_2^-}$ values of 3.3 × 109, 3.4 × 109, and 8±0.5 × 109 M$^{-1}$ s$^{-1}$, respectively (Kishore et al. 1987, 1989; Mahadevan et al. 1990). The reduction potential of thionine is likely to be close to but more positive than that of the N$_3$/N$_3^-$ couple, i.e., 1.33 V vs. NHE (Kishore et al. 1987). Those of methylene blue and toluidine blue were calculated as 1.25 and 1.16 V, respectively, vs. NHE (Kishore et al. 1989; Mahadevan et al. 1990). The higher reduction potential of the Cl$_2^-$/2Cl$^-$ couple than the couples of the semioxidized/nonoxidized forms of dyes gives explanation for the high values. Promethazine and chlorpromazine are used for medical purposes as antipsychotic medications. They react with k$_{Cl_2^-}$ of 5 × 109 M$^{-1}$ s$^{-1}$ (Willson 1973).
Acridine (ACR) is an acridine type dye which exhibits chemiluminescence after reaction with free radicals. Prütz and Land (1970) estimated a k_{Cl_2}, of -4×10^9 M$^{-1}$ s$^{-1}$. ACR reacted also with (SCN)$_2-$ and Br$_2-$, but the reaction with I$_2-$ is very slow. The reduction potential of the semioxidized ACR2/ACR couple is expected to be around 1 eV vs. NHE. One-electron oxidants readily oxidize acridine-1,8-dione which has gained importance as a laser dye. They remove NHE (Kishore et al. 1991).

The Cl$_2-$ reaction with riboflavin (Rf) by removing an electron from the extended conjugated system is an equilibrium process. Using the equilibrium constant the reduction potential of Rf$^\text{+/Rf}$ couple has been evaluated to be 2.28 V vs. NHE (Kishore et al. 1991). k_{Cl_2-} was reported to be 2.1×10^{10} M$^{-1}$ s$^{-1}$. This value is unrealistically high, higher than the diffusion controlled limit (c.a. 7.0×10^9 M$^{-1}$ s$^{-1}$, Wojnárovits and Takács 2016). Neutral red, a phenazine type dye, is used for staining in histology (staining lysosomes red) and as a pH indicator. Guha et al. (1993) published high rate constants for its reaction with Cl$_2-$: 7.5×10^6 M$^{-1}$ s$^{-1}$.

High value (5.5×10^9 M$^{-1}$ s$^{-1}$) was published also for the reaction of safranine T cation (Guha et al. 1992). Safranines are azonium compounds of the symmetrical 2,8-dimethyl-3,7-diaminophenazine. The reduction potential in the one-electron oxidation is 1.15 V vs. NHE. Safranine T is as a biological stain used in histology and cytology.

Dying solutions usually contain high Cl concentrations. Cl$^-$ (depending on pH) removes a large part of OH during advanced oxidation processes transforming them to Cl$_2-$. Ledakowicz et al. (2012) measured the rate constants of Cl$_2-$ reactions with Reactive Blue 81 and Acid Red 27 azo dyes as 8.98×10^8 and 6.51×10^8 M$^{-1}$ s$^{-1}$, respectively. These values are much smaller than those found for OH reactions (1.98×10^9 and 9.17×10^8 M$^{-1}$ s$^{-1}$, respectively). $k_{\text{Cl}_2-} = 1 \times 10^8$ and $3.2 \pm 1.0 \times 10^8$ M$^{-1}$ s$^{-1}$, respectively, were published for the reactions of Reactive Red-120 and Orange II (Kiwi et al. 2000; Paul et al. 2010).

Mechanism of electron transfer

It is apparent from the discussion of Cl$_2-$ reactions with individual compounds that the authors mostly suggested electron transfer as a probable mechanism. Previously in connection with the possibility of reaction we often referred to the differences between the reduction potentials of the Cl$_2-$/2Cl$^-$ couple and those of the one-electron oxidized/nonoxidized organic molecule couples. The higher, or at least similar reduction potential value of the former couple to that of the latter one gives only a possibility for the transfer. In the Supplementary Material, using the Marcus theory, we discuss the relation between rate constant values and the reduction potential differences for the reactions of phenols and anilines with Cl$_2-$, CO$_32-$, and SO$_42-$ one-electron oxidants. The analysis shows that there is a correlation between the two quantities. However, other effects, e.g., solvent reorganization around the charged species and steric arrangement of the reactive parts of molecules, also strongly influence the rate constant values.

Concluding remarks

1. About 400 rate constants for ~300 compounds were collected from the literature, for most compounds only one value was published. Therefore, we had little possibilities to compare the values measured for the same compound, eventually by different techniques. When there were possibilities for comparison the k_{Cl_2-} values often differed considerably. This may be due to the rather complex reaction systems; it is difficult to find optimal conditions to measure k_{Cl_2-}. The large differences, in some cases are due to improper handling the transient data.

2. Practically all rate constants were measured by transient techniques, by (laser) flash photolysis or pulse radiolysis following the decay of Cl$_2-$. Rate constant determination by competitive technique was reported in few publications.

3. The measured k_{Cl_2-} values span over at least 6 orders of magnitude. The highest values are around the diffusion controlled limit ($\sim 7.0 \times 10^9$ M$^{-1}$ s$^{-1}$).

4. Most of the information about the reaction mechanism is coming from indirect sources. Actually, the authors rarely analysed the absorption spectra in transient measurements.

5. Cl$_2-$ can abstract an H-atom from aliphatic compounds (e.g., methanol, ethanol, 2-propanol) with rate constants between 10^5 and 10^7 M$^{-1}$ s$^{-1}$. The k_{Cl_2-} values were shown to relate to the energy of the bond broken during H-abstraction.

6. Olefin compounds react with Cl$_2-$ by three orders of magnitude more rapidly (10^8-10^9 M$^{-1}$ s$^{-1}$) than the saturated analogs: the reactions with olefins occur with Cl-addition. Addition to the aromatic ring may also take place with k_{Cl_2-}, of 10^7 M$^{-1}$ s$^{-1}$, but direct oxidation of the ring by electron transfer seems to be the predominant pathway.

7. The reactions with phenols, anilines, sulfur compounds (with sulfur atom in lower oxidation state), molecules with conjugated electron systems are suggested to take place with electron transfer (10^8-10^9 M$^{-1}$ s$^{-1}$). However, it is noted in some works that electron transfer and Cl$_2-$ addition to a double with eliminations of two Cl$^-$ may give the same result. The rate constant is high when the reduction potential of the one-electron oxidized species/molecule couple is...
well below that of the \(\text{Cl}_2^-/2\text{Cl}^- \) couple. However, other effects, e.g., solvent reorganization around the charged species and steric arrangement of the reactive parts of molecules, also strongly influence the values.

8. The rate constant values measured for \(\text{CO}_3^-, \text{Cl}_2^-, \) and \(\text{SO}_4^2- \) one-electron oxidants increase in this order; it is the order of increasing one-electron reduction potentials.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-14453-w.

Availability of data and materials Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author contribution László Wojnárovits: conceptualization, writing - original draft.

Erzsébet Takács: writing - original draft, writing - review and editing.

Both authors read and approved the final manuscript.

Funding Open access funding provided by ELKH Wigner Research Centre for Physics. Partial financial support was received from the National Office for Research and Development through the Hungarian-Chinese Industrial Research and Development Cooperation Project (No. 2017-2.3.6.-TET-CN-2018-00003).

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Acharya A, Mohan H, Sabharwal S (2003) Radiation chemical studies on thermosensitive N-isopropylacrylamide and its polymer in aqueous solutions. J Radiat Res 44:335–343

Al-Assaf S, Navaratnam S, Parsons BJ, Phillips GO (2006) Chain scission of hyaluronan by carbonate and dichloride radical anions: potential reactive oxidative species in inflammation? Free Radic Biol Med 40:2018–2027. https://doi.org/10.1016/j.freeradbiomed.2006.01.033

Alegre ML, Gerones M, Rosso JA, Bertolotti SG, Braun AM, Martire DO, Gonzalez MC (2000) Kinetic study of the reactions of chlorine atoms and \(\text{Cl}_2^+ \) radical anions in aqueous solutions. 1. Reaction with benzene. J Phys Chem A 104:3117–3125. https://doi.org/10.1021/jp9929768

Alfassi ZB, Huie RE, Neta P, Shoute LCT (1990) Temperature dependence of the rate constants for reaction of inorganic radicals with organic reductants. J Phys Chem 94:8808–8805. https://doi.org/10.1021/j100388a011

Alfassi ZB, Padmaja S, Neta P, Huie RE (1993) Solvent effects on the rate of reaction of \(\text{Cl}_2^- \) and \(\text{SO}_4^2- \) radicals with unsaturated alcohols. Int J Chem Kinet 25:151–159. https://doi.org/10.1002/kin.550250303

Armstrong DA, Huie RE, Koppenol WH, Lymar SV, Merényi G, Neta P, Rusie B, Stanbury DM, Steenkens S, Wardman P (2015) Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. (IUPAC Technical Report). Pure Appl Chem 87:1139–1150. https://doi.org/10.1515/pac-2014-0502

Asmus KD (1990) Sulfur-centered free radicals. Methods Enzymol 186:168–180. https://doi.org/10.1016/0076-6879(90)86107-7

Bobic B, Horvat AJM, Pavlovic DM, Kastelan-Macan M (2007) Determination of \(p_K e \) values of active pharmaceutical ingredients. Trends Anal Chem 26:1043–1061. https://doi.org/10.1016/j.trac.2007.09.004

Bhardwaj YK, Mohan B, Sabharwal S, Mukherjee T (2001) Radiation effect on poly (p-sodium styrene sulphonate) of different degrees of polymerization in aqueous solution: pulse radiolysis and steady state study. Radiat Phys Chem 62:229–242. https://doi.org/10.1016/S0969-806X(01)00196-7

Bisby RH (1990) Reactions of a free radical intermediate in the oxidation of ammodiaquine. Biochem Pharmacol 39:2051–2055. https://doi.org/10.1016/0006-2952(90)90628-X

Bisby RH, Tabassum N (1988) Properties of the radicals formed by one-electron oxidation of acetaminophen—a pulse radiolysis study. Biochem Pharmacol 37:2731–2738. https://doi.org/10.1016/0006-2952(88)90354-4

Bobrowski K (1980) Pulse radiolysis studies concerning the reactions of hydrogen abstraction from tetraalkylammonium cations. J Phys Chem 84:3524–3529. https://doi.org/10.1021/j100463a007

Bobrowski K (1984) Pulse radiolysis of p-hydroxyquinacridine in aqueous solution. J Chem Soc Faraday Trans 1(80):1377–1389. https://doi.org/10.1039/F19848001377

Bonifaci M, Asmus K-D (1980) Stabilization of oxidized sulphur centres by halide ions. Formation and properties of \(\text{R}_2\text{S}^- \)-X radicals in aqueous solutions. J Chem Soc Perkin Trans 2:758–762. https://doi.org/10.1039/P29800000758

Brigante M, Minella M, Mailhot G, Maurino V, Mineiro C, Vione D (2014) Formation and reactivity of the dichloride radical (\(\text{Cl}_2^- \)) in surface waters: a modelling approach. Chemosphere 95:464–469. https://doi.org/10.1016/j.chemosphere.2013.09.098

Broszkiewicz RK, Kozłowska-Milner E, Blum A (1981) Oxidation of \(\text{NO}_3^- \) and \(\text{Cl}^- \) by the primary solvent cation. A pulse radiolysis study. J Phys Chem 85:2258–2262. https://doi.org/10.1021/j1015061a024

Buxton GV (2008) An overview of the radiation chemistry of liquids. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry of liquid systems: from basic to applications in material and life sciences. EDP Sciences, France, pp 3–16

Buxton GV, Janovský I (1976) Mechanism of the oxidation of iron(II) by the azide radical. J Chem Soc Faraday Trans 1(72):1884–1886. https://doi.org/10.1039/F19767201884

Buxton GV, Bydder M, Salmon GA (1988a) Reactivity of chlorine atoms in aqueous solution Part 1. The equilibrium \(\text{Cl}^- + \text{Cl}^- \leftrightarrow \text{Cl}_2^- \). J Chem Soc Faraday Trans 94:653–657. https://doi.org/10.1039/A707377A

Buxton GV, Greenstock CL, Helman WP, Ross AB (1988b) Critical review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (‘OH’O’) in aqueous solution. J Phys Chem Ref Data 17:513–886. https://doi.org/10.1063/1.555805

Caregnato P, Rosso JA, Soler JM, Arques A, Martire DO, Gonzalez MC (2013) Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl− radical. Water Res 47:351–362. https://doi.org/10.1016/j.watres.2012.10.018

Cornelius K (1998) Radiolytic degradation of organic pesticides: a pulse radiolysis study. University of Adelaide, PhD https://digital.library.adelaide.edu.au/dspace/handle/2440/19313

De Laat J, Stefan M (2017) UV/Chlorine process. In: Stefan MI (ed) Advanced oxidation processes for water treatment, vol 16. IWA Publishing, London, pp 283–428. https://doi.org/10.2166/9781780407197

Dey GR, Naik DB, Kishore K, Moorthy PN (1994a) Pulse radiolysis study of benzine in aqueous solutions. Radiat Phys Chem 43:481–485. https://doi.org/10.1016/0969-806X(94)90065-5

Dey GR, Naik DB, Kishore K, Moorthy PN (1994b) Kinetic and spectral characteristics of transients formed in the pulse radiolysis of phenylthiourea in aqueous solution. Radiat Phys Chem 43:365–369. https://doi.org/10.1016/0969-806X(94)90029-9

Dey GR, Naik DB, Kishore K, Moorthy PN (1995) Nature of the transient species formed in the pulse radiolysis of some thiourea derivatives. J Chem Soc Perkin Trans 2:1625–1629. https://doi.org/10.1039/P29940001625

Dey GR, Naik DB, Kishore K, Moorthy PN (1999) Kinetic and spectral properties of the intermediates formed in the pulse radiolysis of 2-mercaptobenzimidazole. Res Chem Interned 21:47–58. https://doi.org/10.1161/156856795X000062

Dey GR, Naik DB, Kishor K, Moorthy PN (1999) Pulse radiolysis study of some substituted thiophenols in aqueous solutions. Radiat Phys Chem 54:19–27. https://doi.org/10.1016/S0969-806X(98)00200-X

Dey GR, Naik DB, Dwibedy P, Kishore K (2000) Pulse radiolysis study of dithio-oxamide in aqueous solutions. Res Chem Interned 29:309–318. https://doi.org/10.1161/1568567600X00264

Dey GR, Naik DB, Kishore K (2003) Pulse radiolysis of thionicotinamide in aqueous solutions: formation of resonance stabilized species on one electron oxidation. Res Chem Interned 29:147–156. https://doi.org/10.1161/156856760321505049

Dhiman SB, Naik DB (2010) Nature of the transient species formed in the pulse radiolysis of 4-hydroxybenzyl alcohol in aqueous solutions: observation of equilibrium in the reaction of OH-adducts with HPO42− ions. J Phys Org Chem 23:48–55. https://doi.org/10.1002/poc.1583

Dwibedy P, Dey GR, Naik DB, Kishore K, Moorthy PN (1999) Pulse radiolysis studies on redox reactions of gallic acid: one electron oxidation of gallic acid by OH- adduct. Phys Chem Chem Phys 1:1915–1918. https://doi.org/10.1039/A809147A

Dwibedy P, Dey GR, Naik DB, Kishore K (2001) Pulse radiolysis study on one-electron oxidation of 1-naphthylamine-4-sulfonic acid in aqueous solutions. Res Chem Interned 27:927–935. https://doi.org/10.1161/156856701753536660

Dwibedy P, Dey GR, Naik DB, Kishore K (2005) Radiation-induced redox reactions of 2-, 3- and 4-amino-phenols in aqueous solutions. Radiat Phys Chem 74:12–20. https://doi.org/10.1016/j.radphyschem.2004.12.007

Fang Q, Xu Z-H, Liu N-Y, Zhao Q, Tian S-L, Li Y-J (2020) Photo-degradation kinetics of bisphenol A in estuarine water. China Environ Sci 40:1659–1666 http://www.zghjkx.com.cn/EN/Y2020/V40/I4/1659

Feldman VI, Popov VI, Belevskii VN, Bugaenko LT, Moralev VM (1986) Early ionic processes in the radiolysis of liquid methanol. High Energy Chem 20:102–107

Gao Y-Q, Gao N-Y, Yin D-Q, Chen J-X (2017) Comparative study of naproxen in water by UV/percursor and UV/H2O2 processes. Desalinization Water Treatment 80:317–325. https://doi.org/10.5004/dwt.2017.20943

Gawandi VB, Mohan H, Mittal JP (1999a) Investigations on the nature and redox properties of the transients formed on pulse radiolysis of aqueous solutions of 2-phenylthioethanol. Phys Chem Chem Phys 1:1919–1926. https://doi.org/10.1039/A809900F

Gawandi VB, Mohan H, Mittal JP (1999b) Role of solute structure on the stability of the OH-adduct of substituted organic sulfides and its transformation to a radical cation. Chem Phys Lett 314:451–458. https://doi.org/10.1016/S0009-2614(99)00046-X

Gawandi VJ, Mohan H, Mittal JP (2000) Evidence for the role of electron-withdrawing power of functional groups and [H+] for electron-transfer reaction in substituted alkyl sulfides. J Phys Chem A 104:11877–11884. https://doi.org/10.1021/jp0026639

Gawandi VB, Mohan H, Mittal JP (2003) Investigations on the nature of the transient species formed on pulse radiolysis of a aqueous solution of 4-(methylthio)benzoic acid. Res Chem Interned 29:51–62. https://doi.org/10.11613/15685670321328406

Guha SN, Moorthy PN, Mittal JP (1992) Pulse radiolysis study of redox reactions of safranine T in aqueous solutions: one electron oxidation. Radiat Phys Chem 39:183–190. https://doi.org/10.1016/1359-0197(92)90039-I

Guha SN, Moorthy PN, Mittal JP (1993) Redox reactions of neutral red. A pulse radiolysis study. J Chem Soc Perkin Trans 2:409–415. https://doi.org/10.1039/P29930000409

Hasegawa K, Neta P (1978) Rate constants and mechanisms of reaction of Cl2− radicals. J Phys Chem 82:854–857. https://doi.org/10.1021/j100497a003

Henglein A (1982) Colloidal TiO2 catalyzed photo- and radiation chemical processes in aqueous solution. Ber Bunsens-Physikalische Chemie 86:241–246. https://doi.org/10.1002/bbpc.19820860313

Herrmann H, Evrens B, Jacobi HW, Wolke R, Nowacki P, Zellner R (2000) CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry. J Atmos Chem 36:231–284. https://doi.org/10.1023/A:1006318622743

Herrmann H, Schaefer T, Tilgner A, Styler SA, Weller C, Teich M, Otto T (2015) Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chem Rev 115:4259–4334. https://doi.org/10.1021/acs.chemrev.5b00477

Hiller K-O, Asmus K-D (1981) Optical spectra of nonmetallic inorganic transient species. J Chem Soc Japan 58:2751–2755. https://doi.org/10.1080/0158

Holcman J, Bobrowski K, Schiöneck C, Asmus KD (1991) OH-induced transformation to a radical cation. Chem Phys Lett 314:1919–1926. https://doi.org/10.1016/0009-2614(91)85536-6

Horii H, Abe Y, Taniguchi S (1985) Oxidation of triose reductone by oxidizing inorganic radicals generated by pulse radiolysis. Bull Chem Soc Japan 58:2751–2755. https://doi.org/10.1246/bcsj.58.2751

Hug GL (1981) Optical spectra of nonmetallic inorganic transient species in aqueous solution. NSRDS-NBS-09 Report

Jacobi H-W, Wicktor F, Herrmann H, Zellner R (1999) A laser flash photolysis kinetic study of reactions of the Cl2− radical anion with oxygenated hydrocarbons in aqueous solution. Int J Chem Kinet 31:169–181. https://doi.org/10.1002/sicj1999046131.3c169;AID-KIN2>3.0.CO;2-K

Jasper JT, Sedlak DL (2013) Photoratetransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands. Environ Sci Technol 47:10781–10790. https://doi.org/10.1021/es40334w

Jasper JT, Shafaat OS, Hoffmann MR (2016) Electrochemical transformation of trace organic contaminants in latrine wastewater. Environ
Mohan H (1990) Intra- and inter-molecular electron transfer reactions in 3,3'-thiodipropionic acid. J Chem Soc Perkin Trans 2:1821–1824. https://doi.org/10.1039/P29900001821

Mohan H, Mittal JP (1991) Electron transfer reactions in aqueous solutions of 2,2'-thiodiethanol: a pulse radiolysis study. Radiat Phys Chem 38:45–50. https://doi.org/10.1016/1359-0197(91)90043-2

Mohan H, Mittal JP (1992) Pulse radiolysis investigations on electron-transfer reactions in aqueous solutions of substituted alkyl sulfides. J Chem Soc Perkin Trans 2:207–212. https://doi.org/10.1039/P29920000207

Mohan H, Mittal JP (1997) Spectral, kinetic, and redox studies on the transients formed on reaction of hydroxyl radicals with thioanisole. J Phys Chem A 101:10012–10017. https://doi.org/10.1021/jp972571s

Mohan H, Mittal JP (1999) Spectral, kinetic, and redox properties of the transients formed on one electron oxidation of 4,4'-thiodiphenol: a pulse radiolysis study. Int J Chem Kinet 31:603–610. https://doi.org/10.1002/(SICI)1097-4610(199913)9:6<603::AID-KIN2>3.0.CO;2-B

Mohan H, Mittal JP (2001) Spectral, kinetic, and redox studies on the transients formed on pulse radiolysis of aqueous solution of 4-methylthiophenylmethanol. Bull Chem Soc Japan 74:1649–1659. https://doi.org/10.1246/bcsj.74.1649

Mohan H, Moorthy PN (1989) Pulse radiolysis investigations on the oxidation of iodobenzene in aqueous solutions. Radiat Phys Chem 33:211–217. https://doi.org/10.1016/1359-0197(89)90141-0

Mohan H, Moorthy PN (1990a) Oxidation reactions of thioglycolic acid: a pulse radiolysis study. J Chem Soc Perkin Trans 2:413–416. https://doi.org/10.1039/P29900000413

Mohan H, Moorthy PN (1990b) Formation of radical cations of polyiodomethanes: a pulse radiolysis study. J Chem Soc Perkin Trans 2:277–282. https://doi.org/10.1039/P29820000805

Mohan H, Maity DK, Mittal JP (1994) Effect of fluorine substitution on the OH-radical-induced electron-transfer reaction in aqueous solutions of fluorinated alkyl iodides. Chem Phys Lett 220:455–460. https://doi.org/10.1016/0009-2614(94)90197-9

Mohan H, Srividya N, Ramamurthy P, Mittal JP (1996) Kinetics and spectral characteristics of transient species formed on one-electron oxidation of acridine-1.8-dione in aqueous solution: Pulse radiolysis study. J Chem Soc Faraday Trans 92:2353–2359 https://doi.org/10.1039/FT9969202353

Naik DB, Kishore K (2002) Nature of sulfur centered radicals formed in UV/chlorine process. Chem Eng J 391:123606. https://doi.org/10.1016/j.cej.2019.123606

Patton S, Li W, Couch KD, Mezyk SP, Ishida KP, Liu H (2016) Impact of the ultraviolet photolysis of monochloramine on 1,4-dioxane removal: new insight into potable water reuse. Environ Sci Technol Letters 4:26–30. https://doi.org/10.1021/acs.estlett.6b00444

Paul J, Naik DB, Sarkar SK, Sahbarwal S (2010) One electron oxidation and reduction of Reactive Red-120 dye in aqueous solution: a steady state and pulse radiolysis study. Radiat Phys Chem 79:1225–1233. https://doi.org/10.1016/j.radphyschem.2010.07.016

Paul J, Naik DB, Bhardwaj BK, Varshney L (2014) Studies on oxidative radiolysis of ibuprofen in the presence of potassium persulfate. Radiat Phys Chem 100:38–44. https://doi.org/10.1016/j.radphyschem.2014.03.016

Prasanthkumar KP, Suresh CH, Aravinthakumar CT (2012a) Oxidation reactions of 2-thiouracil: a theoretical and pulse radiolysis study. J Phys Chem A 116:10712–10720. https://doi.org/10.1021/jp303808r

Prasanthkumar KP, Suresh CH, Aravinthakumar CT (2012b) Dimer radical cation of 4-thiouracil: a pulse radiolysis and theoretical study. J Phys Org Chem 26:510–516. https://doi.org/10.1002/poc.3116

Priyadarshini KJ, Mohan H, Mittal JP, Guldí DM, Asmus K-D (1994) Pulse radiolysis studies on the redox reactions of aqueous solution of γ-cyclodextrine/C60 complexes. J Phys Chem 98:9565–9569. https://doi.org/10.1021/jp940101e

Püttz WA, Land EJ (1970) Chemiluminescent reactions after pulse radiolysis. J Phys Chem 74:2107–2114. https://doi.org/10.1021/jp100909a010

Redpath JL (1973) Pulse radiolysis of dithiothreitol. Radiat Res 54:364–374. https://doi.org/10.2307/3573731

Redpath JL, Willson RL (1973) Reducing compounds in radioprotection and radiosensitization: model experiments using ascorbic acid. Internat J Radiat Biol Relat Stud Phys Chem Med 23:51–65. https://doi.org/10.1093/ijsr/55.3.359

Rickman KA, Mezyk SP (2010) Kinetics and mechanisms of sulfate radical oxidation of β-lactum antibiotics in water. Chemosphere 81:359–365. https://doi.org/10.1016/j.chemosphere.2010.07.015

Sahbarwal S, Kishore K, Moorthy PN (1994) Pulse radiolysis study of oxidation reactions of sulphacetamide in aqueous solutions. Radiat Phys Chem 44:499–506. https://doi.org/10.1016/0969-806X(94)90047-7

Sahbarwal S, Das TN, Chaudhari CV, Bhardwaj YK, Majali AB (1998) Mechanism of n-butyl acrylate sensitization in radiation vulcanization of natural rubber latex. Radiat Phys Chem 51:309–315. https://doi.org/10.1016/S0969-806X(97)00062-5

Schöneshöfer M (1972) Pulse radiolysis studies of the oxidation of ascorbic acid by OH-s radicals and halide radical anion complexes in aqueous solution. Z Naturforschung B 27:649–659. https://doi.org/10.1515/znb-1972-0613

Shalaeva M, Knesseth J, Lombardo F, Bastin A (2008) Measurement of dissociation constants (pKₐ values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci 97:2581–2606. https://doi.org/10.1016/j.jps.21287

Shridhonkar M, Maity DK, Mohan H, Rao BMS (2006) Oxidation of methionine methyl ester in aqueous solution: a combined pulse radiolysis and quantum chemical study. Chem Phys Lett 417:116–123. https://doi.org/10.1016/j.cplett.2005.09.128
