Generation of coherent states of photon-added type via pathway of eigenfunctions

K Górska1,2, K A Penson2 and G H E Duchamp3

1 Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, PL 87-100 Toruń, Poland
2 Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, CNRS UMR 7600, Tour 24—2ème ét., 4 pl. Jussieu, F 75252 Paris Cedex 05, France
3 LIPN, Institut Galilée, Université Paris XIII, CNRS UMR 7030, 99 Av. J-B Clement, F 93430 Villetaneuse, France

E-mail: dede@fizyka.umk.pl, penson@lptl.jussieu.fr and ghed@lipn-univ.paris13.fr

Received 18 April 2010, in final form 15 July 2010
Published 5 August 2010
Online at stacks.iop.org/JPhysA/43/375303

Abstract

We obtain and investigate the regular eigenfunctions of simple differential operators $x^r d^{r+1}/dx^{r+1}$, $r = 1, 2, \ldots,$ with the eigenvalues equal to 1. With the help of these eigenfunctions, we construct a non-unitary analogue of a boson displacement operator which will be acting on the vacuum. In this way, we generate collective quantum states of the Fock space which are normalized and equipped with the resolution of unity with the positive weight functions that we obtain explicitly. These states are thus coherent states in the sense of Klauder. They span the truncated Fock space without first r lowest-lying basis states: $|0\rangle, |1\rangle, \ldots, |r-1\rangle$. These states are squeezed, sub-Poissonian in nature and reminiscent of photon-added states in Agarwal and Tara (1991 \textit{Phys. Rev. A} 43 492).

PACS numbers: 03.65.-w, 42.50.Ar, 05.30.Jp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We are concerned in this work with a procedure of generating collective quantum states spanning a prescribed infinite subset of the Fock space $\{|n\rangle\}_{n=0}^{\infty}$. The basis states $|n\rangle$ are orthonormal, $\langle n|n'\rangle = \delta_{n,n'}$, and are eigenstates of the boson number operator $\hat{n} = a^\dagger a$, $\hat{n}|n\rangle = n|n\rangle$, where a and a^\dagger are the boson creation and annihilation operators satisfying $[a, a^\dagger] = 1$ and $a|0\rangle = 0$.

Our objective is to generate families of states sharing their main properties with the so-called standard coherent states (CS) in a systematic way. These states are the CS in the sense...
of Klauder [1]. It means that they are (a) normalized, (b) continuous with their label (generally a complex number \(z \)) and (c) they admit the resolution of unity with a positive weight function.

The central tools in the domain of the standard CS are the unitary displacement operator

\[
D(z) = \exp(za^\dagger - z^* a)
\]

whose action on the Fock vacuum \(|0\rangle \) generates the normalized standard CS denoted by \(|z\rangle \) [2]:

\[
|z\rangle = D(z)|0\rangle = \exp(-|z|^2/2) e^{za^\dagger} |0\rangle.
\]

Note that the state \(|z\rangle \) is the eigenstate of the annihilation operator \(a \):

\[
a|z\rangle = z|z\rangle.
\]

We expose now a series of arguments leading to a novel approach to construct families of CS. This approach lends itself to many generalizations.

First of all, let us consider quantum states similar to (1) and (2) but created with higher powers of the boson creation operator. They may be generated by powers of \(a^\dagger \) appearing in the exponential, via

\[
|z, p\rangle \sim e^{za^{\dagger p}} |0\rangle.
\]

However, the convergence arguments forbid the creation of states \(|z, p\rangle \) for \(p > 2 \), as they cannot be normalized, contradicting the requirement (a) above. Thus it is impossible to get the higher order CS in this manner [3]. A possible way out from this dilemma is to attempt to use functions other than the exponential assuring that the states are normalizable.

From now on, let us employ the formal operational equivalence [4]

\[
\left[\frac{d}{dx}, x \right] = 1 \iff [a, a^\dagger] = 1,
\]

which permits one to relate \(d/dx \) and \(x \) respectively to the annihilation \(a \) and creation \(a^\dagger \) operators. In this sense, the displacement operator acting on vacuum, see equation (2), is equivalent to \(e^{za^\dagger} \), which in turn is the eigenfunction of the operator \(d/dx \) with the eigenvalue \(z \), reminiscent of equation (3). Following this initial idea, we will seek eigenfunctions of operators more general than \(d/dx \) and attempt to construct the CS associated with them.

In this paper, we introduce a new generalization of the boson displacement operator enabling us to construct the CS of photon-added type [5] in a systematic way.

This paper is organized as follows: in section 2 we consider the simple differential operators \(x^r d^{r+1}/dx^{r+1} \), \(r = 1, 2, \ldots \), and find their eigenfunctions. Then, in section 3 with the help of these eigenfunctions and by using relations (5), we construct a new non-unitary analogue of the displacement operator. The action of the so-obtained displacement operator on \(|0\rangle \) yields quantum states satisfying the requirements (a)–(c) above. We demonstrate that these CS bear analogy to the so-called photon-added states [5]. In section 4, we show that these CS satisfy certain eigenequation analogous to equation (3). Furthermore, we define physical and statistical properties of these states, such as the Mandel parameter, the metric factor and the squeezing. The resolution of unity and the associated Stieltjes moment problem are considered in section 5. In section 6, we present many examples of the properties of the CS which were introduced in section 4, calculated for various values of the parameter \(r \). Section 7 is devoted to discussion and conclusions. In the appendix, we discuss the nature of the Stieltjes moment problem of section 5. We demonstrate the non-unique character of solutions of the resolution of unity obtained in section 5.
2. Eigenfunctions of differential operators

The starting point of our subsequent construction of quantum states is the determination of the eigenstates of differential operators in the form \(x^d d^{r+1} \), \(r = 1, 2, \ldots \), where \(d = \frac{d}{dx} \), i.e. finding the eigenfunctions (with the eigenvalues equal to 1) denoted by \(E_q(r, x) \) satisfying

\[
x^d d^{r+1} E_q(r, x) = E_q(r, x), \quad r = 1, 2, \ldots, \quad q = 1, \ldots, r + 1. \tag{6}
\]

Equation (6) is an ordinary differential equation of order \(r + 1 \) and it possesses \((r + 1)\)-independent solutions labelled by \(q \), but only one of them is Taylor expandable at \(x = 0 \), see [6], and precisely this one, denoted by \(E(r, x) \), is of interest for our applications.

The implementation of equation (6) via the Frobenius recursive method [7] gives the explicit form:

\[
E(r, x) = x^r \cdot {}_0F_r([1], [2, 3, \ldots, r+1], x),
\]

which satisfies the following \(r + 1 \) ‘initial’ conditions at \(x = 0 \):

\[
E(r, 0) = 0, \quad \frac{d^p E(r, x)}{dx^p} \bigg|_{x=0} = 0, \quad p = 1, \ldots, r - 1, \quad \frac{d^r E(r, x)}{dx^r} \bigg|_{x=0} = r!.
\]

In equation (7), \({}_pF_q (\cdots) \) is a generalized hypergeometric function\(^4\) [8]. Note that the Taylor expansion of \(E(r, x) \) at \(x = 0 \) starts with \(x^r \). Only the lowest order case \(r = 1 \) can be written down in terms of standard functions:

\[
E(1, x) = \sqrt{x} I_1(2\sqrt{x}),
\]

where \(I_1(y) \) is the modified Bessel function of the first kind. For \(r > 1 \), the functions \(E(r, x) \) are related to the so-called hyper-Bessel functions [9–11]. (Note in passing that the irregular solutions of equation (6), \(\tilde{E}_q(r, x) \) with \(\lim_{x \to 0} \tilde{E}_q(r, x) = \infty \), are explicitly known only in the case \(r = 1 \): \(\tilde{E}_1(1, x) = \sqrt{x} K_1(2\sqrt{x}) \), where \(K_1(y) \) is the modified Bessel function of the second kind. These solutions do not enter our considerations.)

3. Generation of the coherent states \(|z\rangle_r \)

We introduce the boson creation and annihilation operators \(a^\dagger \) and \(a \), obeying the commutation relation \([a, a^\dagger] = 1\) and we associate with them the Fock space of normalized and orthogonal vectors \(|n\rangle, |n\rangle_\prime = 0, 1, \ldots, \) satisfying the usual relations \(a^\dagger |n\rangle = \sqrt{n+1} |n+1\rangle \) and \(a^\dagger a |n\rangle = \hat{\mathbb{1}} |n\rangle = n |n\rangle \), which is the eigenequation of the Hamiltonian of the harmonic oscillator.

In order to incorporate the standard CS into a framework and notation that we develop later in this section we note that the exponential \(\exp(z, x) \) can be written as \({}_0F_0([1], [1], z, x) \) and consequently we rewrite \(D(z) \) acting on \(|0\rangle \) via equation (1) as

\[
\frac{0_F_0([1], [1], z, a^\dagger)}{0_F_0([1], [1], |z|^2/2)}|0\rangle.
\]

We extend this idea to higher order operators appearing in equations (6) and (7) by defining the analogue of the displacement operator relevant to \(x^d d^{r+1} \) as proportional to \(E(r, za^\dagger) \) given by equation (7).

\(^4\) We use a Maple® notation for the hypergeometric functions of type \({}_pF_q ([\text{list of } p \text{ upper parameters}], [\text{list of } q \text{ lower parameters}], x) \).
To do so, for a complex number z, we introduce now a continuously parametrized family of normalized quantum states. They are defined by using a non-unitary analogue $\widetilde{D}_r(z)$ of the displacement operator which is proportional to $E(r, za)$, acting on the vacuum $|0\rangle$:

$$|z\rangle_r \equiv \widetilde{D}_r(z)|0\rangle_r = \mathcal{N}_r^{-1/2}(|z|^2) \frac{E(r, za)}{z^r a} [a^\dagger a]^r |0\rangle,$$

(11)

where $b(r)$ is a numerical factor equal to $\prod_{k=0}^{r-1} k!$ and $\mathcal{N}_r(|z|^2)$ is the normalization function obtained from the condition $\langle z|z\rangle_r = 1$:

$$\mathcal{N}_r(x) = \left(r! \prod_{k=0}^{r-1} (k!)^2 \right)^{-1} \rho_{F_2}(1, 2, 3, \ldots, r, r+1, x), \quad x \geq 0$$

(13)

which is a perfectly converging function for all values of x [8]. Formule (11) and (12) are key equations of our method.

We identify the numerical factor in front of ρ_{F_2} in equation (13) as $\rho_{F_2}^{-1}(0)$ for reasons which will become clear later, see equation (22). Note that in equation (11) $\widetilde{D}_r(0) = 1$. The overlapping factor $\langle z|z'\rangle_r$, is equal to $\mathcal{N}_r(z^* \cdot z')$, which is everywhere non-vanishing, except for a set (of measure zero) of zeros of $\mathcal{N}_r(y)$ in the complex plane y. Some information about the localizations of zeros of the function $\mathcal{N}_r(y)$ can be obtained from the Hurwitz criterion [12] but this is beyond the scope of this work.

The expansion of $|z\rangle_r$ in terms of the basic states $|n\rangle$ reads from equation (12):

$$|z\rangle_r = \mathcal{N}_r^{-1/2}(|z|^2) \sum_{n=0}^{\infty} \frac{z^n}{n!(n+1)! \cdots (n+r-1)!} \sqrt{(n+r)!} |n+r\rangle,$$

(14)

from which we deduce that $|z\rangle_r$ is spanned on the Fock space without first r lowest-lying states: $|0\rangle$, $|1\rangle$, \ldots, $|r-1\rangle$. The reason for that is explained above, see the remark after equation (8).

As such, the $|z\rangle_r$’s are reminiscent of but not directly related to the so-called photon-added CS, introduced in [5] and later studied in [13–17].

For any Hermitian Hamiltonian H, in particular the harmonic oscillator Hamiltonian $H = a^\dagger a + 1/2$, the time evolution of the state $|z\rangle_r \equiv |z, t = 0\rangle_r$ is given by $|z, t\rangle_r = e^{-iHt}|z, 0\rangle_r$, which immediately implies that $\mathcal{N}_r(|z|^2)$ is constant in time.

4. Eigenproperties of the coherent states $|z\rangle_r$ and some expectation values

In full analogy with many known varieties of CS [16, 18–20] the state $|z\rangle_r$ turns out to be an eigenstate of a certain generalized boson annihilation operator. In fact, we show that this operator is equal to $(a^\dagger)^r a^{r+1}$:

$$(a^\dagger)^r a^r \cdot |z\rangle_r = z^r |z\rangle_r$$

(15)

$$= a \sum_{k=1}^{r} \sigma(r, k)(n - k)^k |z\rangle_r = a \prod_{k=1}^{r} (n - k)|z\rangle_r$$

(16)

$$= a \sum_{k=1}^{r+1} \sigma(r + 1, k)(n - r - 1)^{k-1} |z\rangle_r.$$
where $\sigma(r, k)$ are the conventional Stirling numbers of the first kind [21], and $n = a^\dagger a$. In order to prove the eigenproperty of equation (15) it suffices to observe that in the expansion of equation (14) the use of relation
\begin{equation}
(a^\dagger)^r a^s |n + r\rangle = \frac{(n - 1 + r)!}{(n - 1)!} \sqrt{n + r} |n + r - 1\rangle,
\end{equation}
and a standard change of summation index immediately gives the required result. Furthermore, equation (16) is a consequence of the generating function for $\sigma(r, k)$ [21] whereas its alternative form in equation (17) comes from a slight modification of equation (11) in [4].

Since equations (16) and (17) imply that
\begin{equation}
afr(n) |z\rangle_r = z |z\rangle_r,
\end{equation}
with $f_r(x) = \sum_{k=1}^s \sigma(r, k)(x - 1)^k$, which is a simple function of x, the states $|z\rangle_r$ fall into the category of nonlinear CS, frequently discussed in the literature [19, 22–25] in different contexts.

The knowledge of the Fock-space expansion of $|z\rangle_r$ of equation (14) allows one to obtain explicitly the expectation values of many operators involving a’s and a^\dagger’s. Below we quote some of them:
\begin{equation}
r \langle z |(a^\dagger)^p a^p |z\rangle_r = \frac{x^{p-r}}{N_r(x)} \frac{d^p}{dx^p} [x^r N_r^\prime(x)], \quad x = |z|^2, \quad p = 0, 1, \ldots
\end{equation}
and
\begin{equation}
r \langle z |(a^\dagger)^p a^s |z\rangle_r = \frac{(z^*)^p z^s}{N_r(|z|^2)} \sum_{n=0}^\infty \left[\frac{(n + r)! (n + r + p - s)!}{\rho_r(n) \rho_r(n + p - s)} \right]^{1/2} \frac{|z|^{2p}}{(n + r - s)!},
\end{equation}
where $p, s = 0, 1, \ldots$ and
\begin{equation}
\rho_r(n) = \prod_{k=0}^{r-1} (n + k)!^2 (n + r)!^2, \quad \rho_r(0) = \left(\prod_{k=0}^{r-1} k! \right)^2 r!, \quad r = 1, 2, \ldots.
\end{equation}
Armed with equations (20) and (21) the following physical and statistical characteristics of the state $|z\rangle_r$ can be readily calculated:

– the probability $P_r(k, x)$ of finding the vector $|k\rangle$ in the state $|z\rangle_r$, $k \geq r$:
\begin{equation}
P_r(k, x) = \frac{1}{N_r(x)} \frac{x^{k-r}}{\rho_r(k - r)},
\end{equation}

– the average number $\bar{n}_r(x)$ of bosons in the state $|z\rangle_r$:
\begin{equation}
\bar{n}_r(x) = r \langle z |n|z\rangle_r = \sum_{k=r}^\infty k P_r(k, x).
\end{equation}

More generally $\bar{n}_r^p(x) = r \langle z |n^p|z\rangle_r$, $p = 1, 2, \ldots$.

– The Mandel parameter $Q_{M,r}(x)$, which yields information about the deviation of the probability distribution $P_r(k, x)$ from the Poisson distribution, is defined as (see [26])
\begin{equation}
Q_{M,r}(x) = \frac{\bar{n}_r^2(x) - \bar{n}_r(x)^2}{\bar{n}_r(x)} - 1 = x \left[\frac{(x^r N_r^\prime(x))'}{x^r N_r^\prime(x)} - \frac{(x^r N_r^\prime(x))'}{x^r N_r^\prime(x)} \right].
\end{equation}

As is well known [26] in the Poissonian case, relevant for the standard CS, we have $Q_{M,r}(x) = 0$ while for $Q_{M,r}(x) < 0$ (resp. $Q_{M,r}(x) > 0$) we say that the distribution is sub-Poissonian (resp. super-Poissonian).
– The metric factor $\omega_r(x)$:
\[
\omega_r(x) = \left[\frac{N_r'(x)}{N_r(x)} \right].
\] (26)

It describes the geometric features of CS: $\omega_r(x) = 1$ for the standard CS and a deviation from it measures the non-standard behaviour of states in question [27].

– Squeezing in both X and P, where X- and P-quadratures are given in terms of a and a^\dagger by usual formulae:
\[
X = (a + a^\dagger)/\sqrt{2}, \quad P = -i(a - a^\dagger)/\sqrt{2}.
\] (27)

The uncertainties in X and P are given in terms of standard formulae [13]
\[
\left(\Delta X\right)^2 = \bar{X}^2 - \bar{X}^2 = \frac{1}{2} \left(1 + 2 \langle a^\dagger a \rangle + \langle a^\dagger \rangle^2 - \langle a \rangle^2 - \langle a^\dagger \rangle^2 - 2 \langle a \rangle \langle a^\dagger \rangle \right),
\] (28)
\[
\left(\Delta P\right)^2 = \bar{P}^2 - \bar{P}^2 = \frac{1}{2} \left(1 - 2 \langle a^\dagger a \rangle - \langle a^\dagger \rangle^2 + \langle a \rangle^2 + \langle a^\dagger \rangle^2 - 2 \langle a \rangle \langle a^\dagger \rangle \right),
\] (29)

where in equations (28) and (29) all the averages $\langle \cdot \cdot \cdot \rangle$ are understood to be calculated in $|z_r \rangle$. The state $|z_r \rangle$ is called the squeezed state if the uncertainty at least in one of the observables X or P is less than $1/2$ [28].

5. Resolution of unity and the Stieltjes moment problem

Since the first r Fock states are absent from $|z_r \rangle$, the appropriate unity operator relevant for this situation is [14, 17]
\[
I_r = \sum_{n=0}^{\infty} |n\rangle \langle n| = \sum_{n=0}^{\infty} |n + r\rangle \langle n + r|,
\] (30)

which is an infinite sum of orthogonal projection operators, and the resolution of unity for the states $|z_r \rangle$ will read
\[
\int_{\mathbb{C}} d^2 z |z_r \rangle W_r(|z|^2), \langle z| = I_r = \sum_{n=0}^{\infty} |n + r\rangle \langle n + r|.
\] (31)

Equation (31) is equivalent to an infinite set of integral conditions for a sought for positive function $W_r(|z|^2)$ that are obtained by performing the angular integration over θ ($z = |z|e^{i\theta}$):
\[
\int_0^\infty x^s \left[\pi \frac{W_r(x)}{N_r(x)} \right] dx = \rho_r(n), \quad n = 0, 1, \ldots, \quad x = |z|^2.
\] (32)

This is the Stieltjes moment problem [29, 30] for $\tilde{W}_r(x) = \pi W_r(x)/N_r(x)$. The positivity requirement for $\tilde{W}_r(x)$ can always be satisfied as the moment $\rho_r(n)$, see equation (22), is a product of factorials and equation (32) can be rewritten as a Mellin transform [31] of $\tilde{W}_r(x)$ with $n = s - 1$ (complex s) as follows:
\[
\int_0^\infty x^{s-1} \tilde{W}_r(x) dx = \mathcal{M} [\tilde{W}_r(x); s] = \left[\prod_{k=0}^{r-1} \Gamma(s + k) \right]^{2} \Gamma(s + r)
\] (33)
\[
= \rho_r(s - 1).
\] (34)
The formal solution of equation (34) is \(\tilde{W}_r(x) = M^{-1}[\rho_r(s - 1); x] \), or equivalently

\[
\tilde{W}_r(x) = M^{-1}\left[\prod_{k=0}^{r-1} \Gamma(s + k) \right]^{2} \Gamma(s + r); x, \quad x \geq 0.
\]

(35)

In the above formulae \(M \) and \(M^{-1} \) denote the Mellin and inverse Mellin transforms, respectively [31]. The positivity of \(\tilde{W}_r(x) \) follows from solving equation (33) by the Mellin convolution [9] which by itself conserves the positivity, see [27, 32, 33] for an elaboration of this property.

We can offer, for any \(r \), explicit representations of \(\tilde{W}_r(x) \) in terms of Meijer’s G functions [8] which, via equations (33) and (35), are given by [8, 9]

\[
\tilde{W}_r(x) = G([\ldots, [0, 0, 1, 1, \ldots, r - 1, r - 1], [\ldots, x). \]

(36)

We use the following transparent notation for Meijer’s G function borrowed from computer-algebra systems:5

\[
G([\ldots, [\alpha_j], \Gamma(1 - \alpha_j - s) \Gamma(1 - \beta_j + s); x \prod_{j=1}^{r} \Gamma(1 - \delta_j - s) \prod_{j=1}^{r} \Gamma(1 - \gamma_j + s)]; x), x).
\]

(37)

Note that the parameter list in the third bracket in equation (36) has 2\(r \) + 1 elements. Although apparently none of the functions of equation (36) can be represented by the known special functions, we have at our disposal a rather complete knowledge about their characteristics [8, 34]. We present on figure 1 the plot of \(\tilde{W}_r(x) \) for \(r = 1, 2, 3 \). Note that all \(\tilde{W}_r(x) \) are singular at \(x = 0 \) for all \(r = 1, 2, \ldots \). The solutions specified by equation (36) are not unique, see the appendix.

We conclude that the states \(|z, r \rangle \) are the CS in the sense of Klauder. They are normalized, see equation (13), continuous with label and satisfy the resolution of unity with a positive weight function \(\tilde{W}_r(x) \).

6. Physical and statistical properties of coherent states \(|z, r \rangle \)

In this section, we shall present in detail the quantities enumerated in equations (23)–(29) calculated for different values of \(r \).

The probability \(P_r(k, x) \), defined in equation (23), is presented in figures 2 and 3 as a function of \(x \) for \(r = 1, 2, 3 \), for \(k = r \) and \(k = r + 1 \), along with the Poisson distribution originating from the standard CS.

The average numbers \(\bar{n}_r(x) \) of photons in the state \(|z, r \rangle \) are presented in figure 4. The dependence of \(\bar{n}_r(x) \) for fixed \(x \) as a function of \(r \) indicates increasing deviation downwards from the straight line \(n(x) = x \), characterizing the standard CS. This behaviour clearly differs from the results describing the photon-added states considered in [5], compare figure 2 of this reference.

The Mandel parameter \(Q_{M,r}(x) \) is presented in figure 5. For all \(r \) the non-Poissonian character of the states \(|z, r \rangle \) is explicit and increases with increasing \(r \).

In figure 6, we present the plot of the metric factor \(\omega_r(x) \) for \(r = 1, 2, 3 \). We observe the increasing deviation of \(\omega_r(x) \) with increasing \(r \) from the flat geometry of the standard CS characterized by \(\omega(x) = 1 \) [27].

5 We have made extensive use of Maple® in this work.
Figure 1. Plot of the logarithm of weight functions $\ln[\tilde{W}_r(x)]$, see equation (36), for $r = 1, 2$ and 3, as a function of $x = |z|^2$. It is seen that for $x \geq 0$ the functions of equation (36) are positive and are singular at $x = 0$.

Figure 2. Plot of the probability $P_r(r, x)$ of finding the lowest allowed state $|r\rangle$ in the CS $|z\rangle$, for $r = 1, 2$ and 3, as a function of $x = |z|^2$, see equation (23). The dashed line is the probability of finding the state $|0\rangle$ in the standard CS, i.e. e^{-x}.
Figure 3. Plot of the probability $P_r(r+1, x)$ of finding the first allowed excited state $|r+1\rangle$ in the CS $|z\rangle$, for $r = 1, 2$ and 3, as a function of $x = |z|^2$, see equation (23). All the curves display one maximum moving away from $x = 0$ for increasing r. The dashed line is the probability of finding the state $|1\rangle$ in the standard CS, i.e. xe^{-x}.

Figure 4. Plot of the average number $\bar{n}_r(x)$ of photons in the state $|z\rangle_r$, see equation (24), for $r = 1, 2$ and 3, as a function of $x = |z|^2$.
Figure 5. Plot of the Mandel parameter $Q_{M,r}(x)$ for $r = 1, 2$ and 3, as a function of $x = |z|^2$, see equation (25). The states $|z\rangle_r$ are sub-Poissonian, because $Q_{M,r} < 0$ for all $x > 0$. Since for fixed x, $|Q_{M,r+1}| > |Q_{M,r}|$, the sub-Poissonian character increases with increasing r.

Figure 6. Plot of the metric factor $\omega_r(x)$ for $r = 1, 2$ and 3, as a function of $x = |z|^2$, see equation (26).

In figure 7, we present the uncertainty $(\Delta X)^2$ for several values of r. For sufficiently large x for every $r (\Delta X)^2$ becomes smaller than $1/2$ (i.e. we observe squeezing in x), although in
Figure 7. Plot of $(\Delta X)^2 = X^2 - \bar{X}^2$ as a function of $x = |z|^2$, for $r = 1, 2$ and 3, see equation (28). The averages are calculated in the states $|z\rangle_r$.

Figure 8. Plot of $(\Delta X)^2 = X^2 - \bar{X}^2$ for $|z\rangle_1$ as a function of $z = x + iy$.

In figure 7 it is only visible for the $r = 1$ case. In figures 8 and 9, we present the squeezing in the complex plane for X and P quadratures, respectively. As a guide for eye the squeezed regions are coloured in blue. The Heisenberg uncertainty relation $\Delta X \cdot \Delta P \geq 1/2$ is evidently satisfied for all values of r. It can be already seen in figures 8 and 9, for $r = 1$, by reading off the appropriate values for a given x. A similar behaviour persists for other values of r and corresponding schemes are not reproduced here.
7. Discussion and conclusion

We have initiated in this work a method of generating collective quantum states of the Fock space via the action of certain non-unitary analogues of the conventional boson displacement operator. The prescription involves first finding eigenfunctions $E_r(x)$ of simple classical differential operators. Then the non-unitary analogue of the displacement operator is obtained by putting the boson creation operator as the argument in those eigenfunctions $E_r(z a^\dagger)$ with complex z. This procedure allows the construction of quantum states $|z\rangle_r$ via the action $E_r(z a^\dagger)|0\rangle$ in a systematic way, see equation (11) which is the lynchpin of this method. In other words, we depart from the exponential as a vehicle to create the states and look for other related families of functions (here of hypergeometric type) for that purpose. In this paper, we have limited ourselves to an operator of the form $x^r d^{r+1}$ which quite naturally produces eigenfunctions of $(a^\dagger)^r a^{r+1}$ with the eigenvalue z. The fact that the quantum CS so obtained almost automatically fulfil the criteria of Klauder is quite satisfying and may give rise to many possible extensions.

Since our state $|z\rangle_r$ is reminiscent of photon-added state of Agarwal et al, it is natural to compare the properties of $|z\rangle_r$ with those of states of [5]. Since their Fock space expansions are different (compare our equation (14) with equation (2.6) of [5]), one expects that their physical and statistical properties differ too. In fact this is the case and it appears that there is no way to relate these two families of CS. However, there are some common features: both states are squeezed, sub-Poissonian in nature and possess the resolution of unity (unique for states of [5], see [14] and non-unique for states considered in the present work). It is interesting to observe that the eigenproperties of these families can be obtained exactly: the relevant operator in our case is quite natural as is given by the boson form of a differential operator whose eigenfunctions we consider. In the other case, the appropriate operator is quite involved and has been obtained some time after the states were proposed [13].
Acknowledgments

The authors acknowledge support from Agence Nationale de la Recherche (Paris, France) under Program no ANR-80-BLAN-0243-2 and from PAN/CNRS Project PICS no 4339 (2008–2010).

Appendix

A special feature of the solutions of the Stieltjes moment problem, equation (32), is the fact that the \(\tilde{W}_r(x) \) defined by equations (35) and (36) and visualized in figure 1 are not unique solutions for all \(r = 1, 2, \ldots \). It means that there exist other positive solutions \(V_r(x) \neq \tilde{W}_r(x) \) such that \(\int_0^\infty x^n V_r(x) \, dx = \rho_r(n), \) \(n = 0, 1, \ldots \). In order to prove the non-unique character of solutions of equation (32), we apply the following sufficient condition for non-uniqueness of the Stieltjes moment problem; it involves both the moments \(\rho_r(n) \) and the solution \(\tilde{W}_r(x) \) [33]: if

(a) \(S_r = \sum_{n=0}^{\infty} [\rho_r(n)]^{-1/2n} < \infty \), and
(b) the function \(\psi_r(x) = -\ln[\tilde{W}_r(\exp(x))] \) is convex for \(x > 0 \),

then \(\tilde{W}_r(x) \) is non-unique [33, 35–37].

Concerning (a): we establish, via the logarithmic test of convergence [8], that \(S_r < \infty \) for all \(r = 1, 2, \ldots \). For (b) it suffices to prove that for fixed \(r \) the condition \([\psi_r(x)]'' \geq 0 \) is fulfilled. In the general case, it is difficult to show it analytically, but it can be performed relatively easy with the help of computer algebra systems (see footnote 5).

The actual construction of such non-unique solutions, i.e. finding the functions \(V_r(x) \) referred to above, is still an open and challenging problem, see [33] and the references therein.

References

[1] Klauder J R and Skagerstam B-S 1985 Coherent States, Application in Physics and Mathematical Physics (Singapore: World Scientific)
[2] Ballentine L E 1998 Quantum Mechanics: A Modern Development (Singapore: World Scientific)
[3] Fisher R A, Nieto M M and Sandberg V D 1984 Phys. Rev. D 29 1107
[4] Penson K A, Blasiak P, Horzela A, Duchamp G H E and Solomon A I 2009 J. Math. Phys. 50 083512
[5] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[6] Bourbaki N 2003 Elements of Mathematics. Functions of a Real Variable (Berlin: Springer)
[7] Arfken G 1985 Mathematical Methods for Physicists 3rd edn (Orlando: Academic)
[8] Prudnikov A P, Brychkov Yu A and Marichev O I 1998 Integrals and Series, Vol 3: More Special Functions (New York: Gordon and Breach)
[9] Marichev O I 1983 Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables (Chichester: Ellis Horwood Ltd)
[10] Ben Cheikh Y 1998 J. Comput. Appl. Math. 99 55
[11] Kryukovka Y S 1993 Generalized Fractional Calculus and Applications (New York: Chapman and Hall)
[12] Krantz S G 1999 Handbook of Complex Variables (Boston: Birkhäuser)
[13] Sivakumar S 1999 J. Phys. A: Math. Gen. 32 3441
[14] Sixdeniers J-M and Penson K A 2001 J. Phys. A: Math. Gen. 34 2859
[15] Daoud M 2002 Phys. Lett. A 305 135
[16] Hounkonnou M N and Ngompe Nkouankam E B 2009 J. Phys. A: Math. Theor. 42 025206
[17] Popov D 2002 J. Phys. A: Math. Gen. 35 7205
[18] Hounkonnou M N and Ngompe Nkouankam E B 2009 J. Phys. A: Math. Theor. 42 065202
[19] Solomon A I 1994 Phys. Lett. A 196 29
[20] Quesne C 2002 J. Phys. A: Math. Gen. 35 9213
[21] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)
[22] Man’ko V I, Marmo G, Sudarshan E C G and Zaccaria F 1997 Phys. Scr. \textbf{55} 528
[23] Sivakumar S 1998 Phys. Lett. A \textbf{250} 257
[24] Roy B and Roy P 2000 \textit{J. Opt. B: Quantum Semiclass. Opt.} \textbf{2} 65
[25] Hounkonnou M N and Ngompe Nkouankam E B 2007 \textit{J. Phys. A: Math. Theor.} \textbf{40} 7619
[26] Mandel L and Wolf E 1995 \textit{Optical Coherence and Quantum Optics} (Cambridge: Cambridge University Press)
[27] Klauder J R, Penson K A and Sixdeniers J-M 2001 \textit{Phys. Rev. A} \textbf{64} 013817
[28] Scully M O and Zubairy M S 1997 \textit{Quantum Optics} (Cambridge: Cambridge University Press)
[29] Simon B 1998 \textit{Adv. Math.} \textbf{137} 82
[30] Akhiezer N I 1965 \textit{The Classical Moment Problem and Some Related Questions in Analysis} (London: Oliver and Boyd)
[31] Sneddon I A 1972 \textit{The Use of Integral Transforms} (New Delhi: Tata McGraw-Hill)
[32] Sixdeniers J-M, Penson K A and Solomon A I 1999 \textit{J. Phys. A: Math. Gen.} \textbf{32} 7543
[33] Penson K A, Blasiak P, Duchamp G H E, Horzela A and Solomon A I 2010 \textit{Discrete Math. Theor. Comput. Sci.} \textbf{12} 295
[34] Springer M D 1979 \textit{The Algebra of Random Variables} (New York: Wiley)
[35] Pakes A G 2001 \textit{J. Aust. Math. Soc.} \textbf{71} 81
[36] Pakes A G 2007 \textit{J. Math. Anal. Appl.} \textbf{326} 1268
[37] Gut A 2002 \textit{Bernoulli} \textbf{8} 407