Stars on trees

Peter Borg

Department of Mathematics
University of Malta
Malta
peter.borg@um.edu.mt

Abstract

For a positive integer \(r \) and a vertex \(v \) of a graph \(G \), let \(\mathcal{I}_G^{(r)}(v) \) denote the set of all independent sets of \(G \) that have exactly \(r \) elements and contain \(v \). Hurlbert and Kamat conjectured that for any \(r \) and any tree \(T \), there exists a leaf \(z \) of \(T \) such that \(|\mathcal{I}_T^{(r)}(v)| \leq |\mathcal{I}_T^{(r)}(z)| \) for each vertex \(v \) of \(T \). They proved the conjecture for \(r \leq 4 \). For any \(k \geq 3 \), we construct a tree \(T_k \) that has a vertex \(x \) such that \(x \) is not a leaf of \(T_k \), \(|\mathcal{I}_{T_k}^{(r)}(z)| < |\mathcal{I}_{T_k}^{(r)}(x)| \) for any leaf \(z \) of \(T_k \) and any \(5 \leq r \leq 2k + 1 \), and \(2k + 1 \) is the largest integer \(s \) for which \(\mathcal{I}_{T_k}^{(s)}(x) \) is non-empty. Therefore, the conjecture is not true for \(r \geq 5 \).

1 Introduction

We shall use small letters such as \(x \) to denote non-negative integers or elements of a set, capital letters such as \(X \) to denote sets or graphs, and calligraphic letters such as \(\mathcal{F} \) to denote families (that is, sets whose members are sets themselves). The set \(\{1, 2, \ldots\} \) of positive integers is denoted by \(\mathbb{N} \). For any \(m,n \in \mathbb{N} \), the set \(\{i \in \mathbb{N} : m \leq i \leq n\} \) is denoted by \([m,n]\), and we abbreviate \([1,n]\) to \([n]\). For a set \(X \), the family \(\{A \subseteq X : |A| = r\} \) of all \(r \)-element subsets of \(X \) is denoted by \(\binom{X}{r} \). If \(x \in X \) and \(\mathcal{F} \) is a family of subsets of \(X \), then the family \(\{F \in \mathcal{F} : x \in F\} \) is denoted by \(\mathcal{F}(x) \) and is called a star of \(\mathcal{F} \). All arbitrary sets are assumed to be finite.

A graph \(G \) is a pair \((X,Y)\), where \(X \) is a set, called the vertex set of \(G \), and \(Y \) is a subset of \(\binom{X}{2} \) and is called the edge set of \(G \). The vertex set of \(G \) and the edge set of \(G \) are denoted by \(V(G) \) and \(E(G) \), respectively. An element of \(V(G) \) is called a vertex of \(G \), and an element of \(E(G) \) is called an edge of \(G \). We may represent an edge \(\{v,w\} \) by \(vw \). A vertex \(v \) of \(G \) is a leaf of \(G \) if there exists exactly one vertex \(w \) of \(G \) such that \(vw \in E(G) \).

If \(H \) is a graph such that \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \), then we say that \(G \) contains \(H \).
If \(n \geq 2 \) and \(v_1, v_2, \ldots, v_n \) are the distinct vertices of a graph \(G \) with \(E(G) = \{v_i v_{i+1} : i \in [n-1]\} \), then \(G \) is called a \((v_1, v_n)\)-path or simply a path.

A graph \(G \) is a tree if \(|V(G)| \geq 2 \) and \(G \) contains exactly one \((v, w)\)-path for every \(v, w \in V(G) \) with \(v \neq w \).

Let \(G \) be a graph. A subset \(I \) of \(V(G) \) is an independent set of \(G \) if \(uv \notin E(G) \) for every \(v, w \in I \). Let \(I_G^{(r)} \) denote the family of all independent sets of \(G \) of size \(r \). An independent set \(J \) of \(G \) is maximal if \(J \not\subseteq I \) for each independent set \(I \) of \(G \) such that \(I \neq J \). The size of a smallest maximal independent set of \(G \) is denoted by \(\mu(G) \).

Hurlbert and Kamat \(^8\) conjectured that for any \(r \geq 1 \) and any tree \(T \), there exists a leaf \(z \) of \(T \) such that \(I_T^{(r)}(z) \) is a star of \(I_T^{(r)} \) of maximum size.

Conjecture 1.1 (\(^8\) Conjecture 1.25) For any \(r \geq 1 \) and any tree \(T \), there exists a leaf \(z \) of \(T \) such that \(|I_T^{(r)}(v)| \leq |I_T^{(r)}(z)| \) for each \(v \in V(T) \).

Hurlbert and Kamat \(^8\) also showed that the conjecture is true for \(r \leq 4 \). In the next section, we show that the conjecture is not true for \(r \geq 5 \). For any \(k \geq 3 \), we construct a tree \(T_k \) that has a vertex \(x \) such that \(x \) is not a leaf of \(T_k \), \(|I_{T_k}^{(r)}(z)| < |I_{T_k}^{(r)}(x)| \) for any leaf \(z \) of \(T_k \) and any \(r \in [5, 2k+1] \), and \(2k+1 \) is the largest integer \(s \) for which \(I_{T_k}^{(r)}(x) \) is non-empty.

Conjecture \(^1\) was motivated by a problem of Holroyd and Talbot \(^3\) \(^7\). A family \(\mathcal{A} \) is intersecting if every two sets in \(\mathcal{A} \) intersect. We say that \(I_G^{(r)} \) has the star property if at least one of the largest intersecting subfamilies of \(I_G^{(r)} \) is a star of \(I_G^{(r)} \). Holroyd and Talbot introduced the problem of determining whether \(I_G^{(r)} \) has the star property for a given graph \(G \) and an integer \(r \geq 1 \). The Holroyd–Talbot (HT) Conjecture \(^7\) claims that \(I_G^{(r)} \) has the star property if \(\mu(G) \geq 2r \). By the classical Erdős–Ko–Rado Theorem \(^4\), the HT Conjecture is true if \(G \) has no edges. The HT Conjecture has been verified for certain graphs \(^2\) \(^3\) \(^6\) \(^7\) \(^8\) \(^9\) \(^10\). It is also verified in \(^1\) for any graph \(G \) with \(\mu(G) \) sufficiently large depending on \(r \); this is the only result known for the case where \(G \) is a tree that is not a path (the problem for paths is solved in \(^3\)), apart from the fact that \(I_G^{(r)} \) may not have the star property for certain values of \(r \) (indeed, if \(G \) is the tree \(([0] \cup [n], \{0, i : i \in [n]\}) \) and \(2 \leq n/2 < r < n \), then \(I_G^{(r)} = \binom{n}{2} \) and \(\binom{n}{r} \) is intersecting). One of the difficulties in trying to establish the star property lies in determining a largest star. Our counterexample to Conjecture \(^1\) indicates that the problem for trees is more difficult than is hoped.

2 The counterexample

Let \(x_0 = 0, x_1 = 1 \) and \(x_2 = 2 \). For any \(k \in \mathbb{N} \), let \(y_i = 2 + i \) for each \(i \in [2k] \), let \(z_i = 2k + 2 + i \) for each \(i \in [2k] \), and let \(T_k \) be the graph whose vertex set is

\[
\{x_0, x_1, x_2\} \cup \{y_i : i \in [2k]\} \cup \{z_i : i \in [2k]\}
\]

and whose edge set is

\[
\{x_0x_1, x_0x_2\} \cup \{x_1y_i : i \in [k]\} \cup \{x_2y_i : i \in [k+1, 2k]\} \cup \{y_iz_i : i \in [2k]\}.
\]
Theorem 2.1 Let $k \in \mathbb{N}$.
(a) The graph T_k is a tree, and the leaves of T_k are z_1, \ldots, z_{2k}.
(b) The largest integer s such that $I^{(s)}_{T_k}(x_0) \neq \emptyset$ is $2k + 1$.
(c) If $k \geq 3$, then $|I^{(r)}_{T_k}(z)| < |I^{(r)}_{T_k}(x_0)|$ for any leaf z of T_k and any $r \in [5, 2k + 1]$.

Proof. (a) is straightforward.
Let $G = T_k$. Let $Y = \{y_i : i \in [2k]\}$ and $Z = \{z_i : i \in [2k]\}$.
We have $\{x_0\} \cup Z \in I_G^{(2k+1)}(x_0)$. Suppose that S is a set in $I_G^{(s)}(x_0)$. Then $S \setminus \{x_0\} \in (Y \cup Z)$ and $|(S \setminus \{x_0\}) \cap \{y_i, z_i\}| \leq 1$ for each $i \in [2k]$. Thus $s - 1 \leq 2k$, and hence $s \leq 2k + 1$. Hence (b).
Suppose $k \geq 3$ and $r \in [5, 2k + 1]$. Let $J = I^{(r)}_G$. Let $E = \{I \in J : x_0, z_1 \in I\}$. Let
$$
\begin{align*}
A_1 &= \{I \in J(x_0) : y_1 \in I\}, \\
A_2 &= \{I \in J(x_0) : y_1, z_1 \notin I\}, \\
B_1 &= \{I \in J(z_1) : x_0 \notin I, x_1 \in I, x_2 \notin I\}, \\
B_2 &= \{I \in J(z_1) : x_0 \notin I, x_1 \notin I, x_2 \in I\}, \\
B_3 &= \{I \in J(z_1) : x_0 \notin I, x_1, x_2 \in I\}, \\
B_4 &= \{I \in J(z_1) : x_0, x_1, x_2 \notin I\}.
\end{align*}
$$
We have $J(x_0) = E \cup A_1 \cup A_2$ and $J(z_1) = E \cup B_1 \cup B_2 \cup B_3 \cup B_4$. Since $y_1, z_1 \in E(G)$, $\{y_1, z_1\} \not\subset I$ for each $I \in J$. Thus E, A_1 and A_2 are pairwise disjoint, and hence
$$
|J(x_0)| = |E| + |A_1| + |A_2|.
$$
(1)
Since E, B_1, B_2, B_3 and B_4 are pairwise disjoint,
$$
|J(z_1)| = |E| + |B_1| + |B_2| + |B_3| + |B_4|.
$$
(2)
Let $Y' = Y \setminus \{y_1\}$ and $Z' = Z \setminus \{z_1\}$. Since $x_0x_1, x_0x_2 \in E(G)$, we have $\{x_0, x_1\}$, $\{x_0, x_2\} \not\subset I$ for each $I \in J$. Thus $A \setminus \{x_0\} : A \in A_2 = I^{(r-1)}_G \cap (Y' \cup Z') = \{B \setminus \{z_1\} : B \in B_4\}$, and hence
$$
|A_2| = |B_4|.
$$
(3)
Let $Y_1 = \{y_i : i \in [2, k]\}$ and $Y_2 = \{y_i : i \in [k + 1, 2k]\}$. Let
$$
\begin{align*}
A_1' &= \{A \setminus \{x_0, y_1\} : A \in A_1\}, \\
B_1' &= \{B \setminus \{z_1, x_1\} : B \in B_1\}, \\
B_2' &= \{B \setminus \{z_1, x_2\} : B \in B_2\}, \\
B_3' &= \{B \setminus \{z_1, x_1, x_2\} : B \in B_3\}.
\end{align*}
$$
We have $A_1' = I^{(r-2)}_G \cap (Y' \cup Z')$, $B_1' = I^{(r-2)}_G \cap (Y' \cup Z')$, $B_2' = I^{(r-2)}_G \cap (Y' \cup Z')$ and $B_3' = (Z')$. Let $C = \{I \in I^{(r-2)}_G \cap (Y' \cup Z') : I \cap Y_1 \neq \emptyset \neq I \cap Y_2\}$. Thus $A_1' = B_1' \cup B_2' \cup C$. We have $(B_1' \cup B_2') \cap C = \emptyset$ and $B_1' \cap B_2' = (Z')$. Thus
$$
|A_1'| = |B_1' \cup B_2'| + |C| = |B_1'| + |B_2'| - |B_1' \cap B_2'| + |C| = |B_1'| + |B_2'| - \binom{2k - 1}{r - 2} + |C|.
$$
Let \(a = |A'_1| - (|B'_1| + |B'_2| + |B'_3|) \). Then
\[
a = |C| - \binom{2k-1}{r-2} - \binom{2k-1}{r-3} = \sum_{i=1}^{k-1} \sum_{j=1}^{k} \binom{|Y_1|}{i} \binom{|Y_2|}{j} \binom{|Z'| - i - j}{r - 2 - i - j} - \binom{2k-1}{r-2} - \binom{2k-1}{r-3}.
\]

\[
= \sum_{i=1}^{k-1} \sum_{j=1}^{k} \binom{k - 1}{i} \binom{k}{j} \binom{2k - 1 - i - j}{r - 2 - i - j} - \binom{2k-1}{r-2} - \binom{2k-1}{r-3}.
\]

(4)

We show that \(a > 0 \). If \(r = 2k + 1 \), then
\[
a = \sum_{i=1}^{k-1} \binom{k - 1}{i} \sum_{j=1}^{k} \binom{k}{j} - 2k = (2k-1)(2k-1) - 2k > 0.
\]

Suppose \(r \leq 2k \). We have
\[
a \geq \binom{k - 1}{1} \binom{k}{1} \binom{2k - 3}{r - 4} - \binom{2k-1}{r-2} - \binom{2k-1}{r-3} = \binom{2k - 3}{r - 4} \binom{k}{1} \binom{2k - 1}{r - 3} - \frac{(2k - 1)(2k - 2)}{(r - 2)(r - 3)} - \frac{(2k - 1)(2k - 2)}{(r - 3)(2k + 2 - r)}.
\]

If \(r \geq 6 \), then
\[
a \geq \binom{2k - 3}{r - 4} \binom{k}{1} \binom{2k - 1}{r - 4} - \frac{(2k - 1)(2k - 2)}{(4)(3)} - \frac{(2k - 1)(2k - 2)}{(3)(2)} > 0.
\]

If \(r = 5 \) and \(k \geq 5 \), then
\[
a \geq \binom{2k - 3}{r - 4} \binom{k}{1} \binom{2k - 1}{r - 4} - \frac{(2k - 1)(2k - 2)}{(3)(2)} - \frac{(2k - 1)(2k - 2)}{(2)(7)} > 0.
\]

If \(r = 5 \) and \(3 \leq k \leq 4 \), then \(a > 0 \) is easily obtained from (4).

Since \(a > 0 \), \(|A'_1| > |B'_1| + |B'_2| + |B'_3| \). Now \(|A'_1| = |A_1|, |B'_1| = |B_1|, |B'_2| = |B_2| \) and \(|B'_3| = |B_3| \). Thus \(|A'_1| > |B_1| + |B_2| + |B_3| \). By (1), (2) and (3), it follows that \(|J(x_0)| > |J(z_1)| \). Clearly, for each \(i \in [2k] \), we have \(|J(z_i)| = |J(z_1)| \), and hence \(|J(z_i)| < |J(x_0)| \). By (a), (c) follows.

If \(I \) is a maximal independent set of \(T_k \), then \(|I \cap \{x_0, x_1, x_2\}| \geq 1 \) and \(|I \cap \{y_i, z_i\}| = 1 \) for each \(i \in [2k] \). Thus \(\mu(T_k) = 2k + 1 \). Therefore, if \(5 \leq r \leq (2k + 1)/2 \), then the condition \(\mu(T_k) \geq 2r \) of the HT Conjecture is satisfied, but, by Theorem 2.1, no leaf of \(T_k \) yields a star of \(T^{(r)}_{k} \) of maximum size.
References

[1] P. Borg, Extremal t-intersecting sub-families of hereditary families, *J. London Math. Soc.* 79 (2009), 167–185.

[2] P. Borg and F. Holroyd, The Erdős–Ko–Rado properties of set systems defined by double partitions, *Discrete Math.* 309 (2009), 4754–4761.

[3] P. Borg and F. Holroyd, The Erdős–Ko–Rado property of various graphs containing singletons, *Discrete Math.* 309 (2009), 2877–2885.

[4] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math. Oxford (2)* 12 (1961), 313–320.

[5] F. Holroyd, Problem 338 (BCC16.25), Erdős-Ko-Rado at the court of King Arthur, *Discrete Math.* 197/198 (1999), 812.

[6] F. Holroyd, C. Spencer and J. Talbot, Compression and Erdős-Ko-Rado graphs, *Discrete Math.* 293 (2005), 155–164.

[7] F. Holroyd and J. Talbot, Graphs with the Erdős-Ko-Rado property, *Discrete Math.* 293 (2005), 165–176.

[8] G. Hurlbert and V. Kamat, Erdős–Ko–Rado theorems for chordal graphs and trees, *J. Combin. Theory Ser. A* 118 (2011), 829–841.

[9] J. Talbot, Intersecting families of separated sets, *J. London Math. Soc.* 68 (2003), 37–51.

[10] R. Woodrooffe, Erdős–Ko–Rado theorems for simplicial complexes, *J. Combin. Theory Ser. A* 118 (2011), 1218–1227.