Antibacterial Compounds in Predominant Trees in Finland: Review

Sari Metsämuuronen1 and Heli Siren2*

1Lappeenranta University of Technology, PO Box 20, FI-53851 Lappeenranta, Finland
2Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 University of Helsinki, Finland

Abstract

The extracts of Scots pine, Norway spruce, silver and white birches stem, bark, roots, leaves and needles contain several useful bioactive compounds that exhibit antibacterial activity against pathogens. Both phenolic extracts and essential oils are bacteriostatic against several bacteria. The main individual antibacterial phenolic compounds in Scots pine are pinosylvin that effectively inhibit growth of pathogens such as Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes. From other phenolic compounds lignans appeared to be the least bacteriostatic and flavonoids tend to occur as glycosylated forms which have lower antibacterial activity than their aglycones. Gram-positive bacteria are generally more susceptible to plants bioactive compounds than gram-negative bacteria.

Keywords: Antibacterial compounds; Norway spruce; Extract; Hydrolysis; Fermentation

Introduction

Plants synthesise low molecular mass compounds, phytoalexins, which protect them against attacks by fungi, bacteria and insects [1,2]. Several studies of these plants used as traditional folk medicine have recently been published [3-10]. Interest in natural bioactive compounds has arisen for their multiple biological effects, including antioxidant, antifungal and antibacterial activity. The potential use of these compounds in food preservation and pharmaceutical applications as oxidants and for cancer chemoprevention has been investigated [1,11,12]. Their potential use against pathogenic microorganisms and infections that are currently difficult to treat because of the resistance that microorganisms have built against antibiotics would be one interesting application. Essential oils and phenolic extracts have been tested against multi-drug-resistant human pathogens and intestinal bacteria, like meticillin-resistant Staphylococcus aureus (MRSA) [8,13-19].

Essential oils are very complex natural mixtures which can contain about 20-60 components at quite different concentrations [20]. They are characterised by two or three major components at fairly high concentrations (20-70%) compared to others components present in trace amounts. The main group is composed of terpenes and terpenoids.

The main groups of bioactive phenolic compounds in plants are simple phenols and phenolic acids, stilbenoids, flavonoids and lignans, which are derivatives of phenylpropanoid metabolism via the shikimate and acetate pathways [11,12,21,22]. These secondary metabolites are often bound to a mono- or oligosaccharide or to uronic acid [2]. The saccharide or uronic acid part is called glycone and the other part the aglycone. Flavonoids, phenolic acids, stilbenoids, tannins and lignans are especially common in leaves, flowering tissues and woody parts such as stems and barks. In bark and knots they are especially important defence against microbial attack after injury. Hence, the bark and knot extracts have been observed to be more active against bacteria than the wood extracts [23]. The effectiveness of the defence varies among plant species. The long-lived and slow growing plants have been observed to be more active than the fast growing ones [24].

The aim of this literature review is to clarify the antibacterial compounds present in the predominant tree species in Finland, Scots pine (Pinus sylvestris), Norway spruce (Picea abies), silver birch (Betula pendula) and white birch (Betula pubescens). The extraction of these valuable compounds from forest biomass is of special interest as they are available in different wood harvesting and industrial residues, such as bark, knots, stump and roots.

Phenolic Compounds

The bioactive compounds are present in wood and, thus, they can be solubilised by different solvents [12]. In published studies phenolic compounds have been most often obtained through ethanol, methanol or acetone extraction as alone or after hexane extraction (Table 1). The most frequently used method to determine the total phenols in the extracts is colorimetric measurement with the Folin-Ciocalteu reagent. However, this reagent may react with any reducing substances other than phenols and therefore measures the total reducing capacity of a sample. By this method total phenol content is expressed in terms of gallic acid (GAE) or tannic acid (TAE) equivalents. The individual components have been identified by using gas (liquid) chromatography (GC, GLC) and mass spectrometry (MS) or high-performance liquid chromatography (HPLC).

The evaluation methods for antibacterial activity can be divided into diffusion, dilution and optical density methods. The most commonly used screen to evaluate antimicrobial activity is the agar diffusion technique. In this method, the diameter of inhibition zone is measured at the end of incubation time. The usefulness of diffusion method is limited to the generation of preliminary data only [25]. With respect to that, the activity values are not comparable, since the studies are made with different procedures and chemicals. Thus, extracts, extraction methods, assay of antimicrobial activity and strains of test organisms vary in the publications.

The minimal inhibiting (MIC) and bactericidal (MBC) concentrations are defined as the lowest concentrations of tested compounds present in the medium that inhibits the growth of the tested bacteria.

*Corresponding author: Heli Siren, University of Helsinki, Department of Chemistry, PO Box 55, FI-00014 University of Helsinki, Finland, Tel: 358-2941-5010; E-mail: heli.m.siren@helsinki.fi, helimmsiren@gmail.com

Received June 04, 2014; Accepted July 04, 2014; Published July 12, 2014

Citation: Metsämuuronen S, Siren H (2014) Antibacterial Compounds in Predominant Trees in Finland: Review. J Bioprocess Biotech 4: 167 doi: 10.4172/2155-9821.1000167

Copyright: © 2014 Metsämuuronen S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
compounds which completely inhibited bacterial growth and which results in more than 99.9% killing of the bacteria being tested, respectively. The MIC and MBC have been determined by the liquid dilution method.

Scots pine

Antioxidant, antifungal and antibacterial [26-34] activity of phenolic extracts of Scots pine growing in Finland have been investigated during the last decades. In most of these studies activity of knotwood extracts were detected and heartwood extracts were detected only against brown-rot fungus. The total phenolic concentration has been observed to vary a lot between the different parts of the tree: 76.0, 57.0, 17.5 and 6.7-13.6 mg TAE g⁻¹ for dried bark, needles and cork, respectively [35-38]. For the heartwood the total phenolic concentration of 4.55-17.5 and 1.1 mg GAE g⁻¹ for dried bark, needles and cork, respectively, have been reported.

Tree species	Part	Drying method, Solvent extraction	Compounds	Identification	Ref.
Scots pine	heartwood	Oven-dried 60 °C, 48h, 80% acetone	Total phenolics 6.7-13.6 mg TAE⁺¹	Folin-Ciocalteau	[26]
	heartwood	Oven-dried 60 °C 48h, acetone	Total pinosylvins 4.7-7.5 mg⁻¹	GLC-MS	[26]
	heartwood	Oven-dried 60 °C 48h, 80% acetone	Total phenolics 4.55-4.66 mg TAE cm⁻³	Folin-Ciocalteu	[27]
	heartwood	Oven-dried 60 °C 48h, acetone	Pinosylvin, PMME and PDME 2.07-3.16 mg cm⁻³	GLC-MS	[27]
	knotwood	Freeze-dried, 1. hexane, 2. acetone water	pinosylvin, PMME, DHPMME chromatographic purification, crystallization	GC after	[28]
	knotwood	Freeze-dried, 1. Hexene, 2. Acetone	Nortrachelogenin fractionated by flash chromatography	GC-MS	[29,30]
	knotwood	N.a., 1. Hexane, 2. Acetone water (95:5)	Lingnans, stilbenes and flavonoids	GC-FID	[30]
	knotwood	N.a., 1. hexane, 2. acetone	Pinosylvin, PSME Fractionation by flash chromatography	GC-MS	[30]
	knotwood, bark	Freeze-dried, 1. Hexane, 2. Acetone	Pinosylvin Fractionation using flash chromatography	GC-FID HPSEC	[31]
	knotwood, bark	Resin, Methyl-tert-buty ether	Pinoserinol Purification with flash chromatography	GC-FID HPSEC	[31]
	phloem, bark	Freeze/vacuum dried, 80% methanol	22 phenolic compounds	HPLC-DAD HPLC-ESI-MS	[33]
	phloem, bark	Air-dried, 1. 2.	70% acetone Chloroform	GC-FID	[30]
	needle, cork,	Air dried, 80% methanol	Phenolics	Folin-Ciocalteau	[34]
	bark	Distillation	Essential oil (mainly terpenes and terpenoids)	GC	[35]
Norway	knotwood	1. Hexane, 2. Acetone water (95:5)	Lingnans, stilbenes and flavonoids	GC-FID	[30]
spruce	knotwood	Freeze-dried, 1. Hexane, 2. Acetone water (95:5)	Hydroxymatairesinol	GC-MS	[30]
	phloem	Freeze-dried, 80% ethanol	Isorhapontin, astringin, piceid	GC-MS	[37]
	phloem	Freeze-dried, 80% methanol	Isorhapontin, astringin, piceid, taxifolin guloside, (+)-catechin	HPLC	[38]
Silver birch	bark	1. Hexane, 2. Acetone water (95:5)	Lingnans, stilbenes and flavonoids	GC-FID	[30]
	phloem, bark	Air dried, 80% methanol	Phenolics	Folin-Ciocalteau	[34]

Table 1: Extraction and identification methods of antibacterial substances.

AE = accelerated solvent extractor, DHPMME = dihydroxyinosylvin monomethyl ether, FID = flame ionization detector, PDME = pinosylvin dimethyl ether, PMME = pinosylvin monomethyl ether, TAE = tannic acid equivalent.
been observed to be stilbenes, lignans (31%) nortrachelogenin being the most abundant lignan (30%) and oligolignans (6%) [31]. In the heartwood of the brown-rot fungus resistant and susceptible trees, the average total stilbenes concentration 6.4-7.5 mg g⁻¹ and 4.7-5.0 mg g⁻¹ of dry weight, respectively, have been measured [26].

Stilbenes (Figure 1) are 1,2-diarylethenes, the A ring usually having two hydroxyl groups in the m-position, while B ring is substituted by hydroxy and methoxy groups in the o-, m- and/or p-positions [11]. Stilbenes are synthesised mainly by forest trees [12], in monomeric form and as dimeric, trimeric and polymeric stilbenes, the so-called viniferins. They are commonly found in the roots, barks, rhizomes and leaves [11]. The most abundant stilbenes in Scots pine extracts are pinosylvins: 38% in knotwoods [31] and 6-7% in heartwoods [27], whereas in the bark extracts they have not been found [40]. Pinosylvin and pinosylvin monomethyl ether (PMME) are the main pinosylvins, pinosylvin dimethyl ether (PDME) being less abundant [26,28,31,41]. Dihydropinosylvin monomethyl ether (DHPMME) has been isolated from Pinus strobus knotwood [30]. The pinosylvin-3-O-methyltransferase enzyme catalyses the conversion of pinosylin to the monomethyl ether that plays a role in the resistance of the plant to stress including ozone and infection [41]. Hence, a high concentration of PMME relative to pinosylvin may be an indication of high stress levels of the trees.

The highest antimicrobial activities of the pure compounds present in Scots pine have been observed with pinosylvin and PMME, followed by DHPMME and flavanone pinocembrin [30] (Table 3). Very strong inhibition effects (62-100%) have been observed against human pathogens B. cereus, S. aureus and L. monocytogenes. Pinosylvin, DHPMME, PMME and flavonoid pinocembrin (from P. cembra) have shown a very similar activity against bacteria as the Pinus extracts where they have been isolated [30]. Both Välismaa et al. [30] and Lindberg et al. [28] have observed that the antibacterial activity correlate with the stilbene content of the extracts and, hence, stilbenes have been concluded to be the main antibacterial compounds of hydrophilic extracts of Scots pine.

The precise mechanism of antibacterial action of stilbenes is unclear. One possibility is that they destroy the membrane structure resulting in burst of the cell [42]. Välismaa et al. [30] suggested that two hydroxyl groups in meta position in one of the aromatic rings and the double bond in the carbon chain between the rings may play an important role. From phenolic acids chlorogenic acid has shown stronger activity against E. coli than ferulic acid [43].

Flavonoids consist of a central three-ring structure (Table 4). Their activity is proposed to be due to their ability to complex with extracellular and soluble proteins and to complex with bacterial cell walls [1]. Flavonoids and oligomers of flavonoids and proanthocyanidins, frequently occur as glycosides [2]. Different flavonol glycosides are typical in pine needles and the sugar residues are found to be

Tree species	Bacteria	Activity	Method	Ref.
Scots pine, knotwood	Escherichia coli	5 ± 13%	Well microplates	[30]
	Salmonella infantis	0 ± 4%	and turbidity reader	
	Pseudomonas fluorescens	13 ± 2%		
	Bacillus cereus	79 ± 3%		
	Staphylococcus aureus	30 ± 23%		
	Listeria monocytogenes	47 ± 20%		
	Lactobacillus plantarum	0 ± 3%		
Scots pine, knotwood extract	Burkholderia multivorans	strong, > 20 mm	Agar diffusion	[28]
	Bacillus coagulans	strong, > 20 mm		
	Alcaligenes xylosoxydans	moderate, 16-19 mm		
Scots pine, phloem	Escherichia coli	slight, 1-3 mm	Cylinder diffusion	[32]
	Staphylococcus aureus	clear, 4-10 mm		
Norway spruce, knotwood	Burkholderia multivorans	0	Agar diffusion	[28]
	Bacillus coagulans	0 small, 11-15 mm		
Norway spruce, knotwood and bark	Escherichia coli	0	Well microplates	[30]
	Salmonella infantis	0 knotwood 38%, bark 0%	and turbidity reader	
	Pseudomonas fluorescens	knotwood 15%, bark 0%		
	Bacillus cereus	0 0 0 0		
	Staphylococcus aureus	0		
	Listeria monocytogenes	0		
	Lactobacillus plantarum	0		
Norway spruce, needles	Escherichia coli	slight, 1-3 mm	Cylinder diffusion	[32]
	Staphylococcus aureus	clear, 4-10 mm		
Silver birch, knotwood	Burkholderia multivorans	0	Cylinder diffusion	[32]
	Bacillus coagulans	0 small, 11-15 mm		
Silver birch, knotwood and bark	Escherichia coli	0	Well microplates	[30]
	Salmonella infantis	0 knotwood 20%, bark 22%	and turbidity reader	
	Pseudomonas fluorescens	knotwood 14%, bark 0%		
	Bacillus cereus	0 0 0 0		
	Staphylococcus aureus	0		
	Listeria monocytogenes	0		
	Lactobacillus plantarum	0		
White birch, leaf	Escherichia coli	slight, 1-3 mm	Cylinder diffusion	[32]
	Staphylococcus aureus	clear, 4-10 mm		

MBC = minimal bactericidal concentration, MIC = minimal inhibiting concentration

Table 2: Antibacterial activity of wood extracts and essential oils against selected bacteria.
 bonded mainly at the 3-position [28,44-48] (Appendix 1). However, the glycoside contents on other parts than needles are not available. Dihydro-flavonol type taxifolin and flavanone type pinocembrin were the main flavonoids in knotwood [29]. Pinocembrin has been observed to inhibit growth of several bacteria, the strongest activity being against B. cereus [30] (Table 3).

Lignans isolated from knotwoods of conifers are strong antioxidants [29], but their antibacterial activity is observed to be low. Purified lignans (Figure 2), maatiresinol, hydroxymatairesinol, lariciresinol and secoisolaricinol, have not shown activity against any of the tested bacteria and isolariciresinol and nortrachelogenin have shown slight activity only against B. cereus [30] (Table 3).

Norway spruce

The average amount of extractable phenolic compound in Norway spruce knotwood is around 15% (w/w), but as high values as nearly 30% (w/w) have been detected [49]. The amount of phenolic compounds in the stem wood has been observed to be much lower, usually 0.15-0.3%. Malá et al. [50] observed that in Norway spruce the soluble glycoside-bound forms of phenolic acids accounted for ~85% of the total content, followed by the methanol-insoluble cell wall-bound phenolic esters (7%-8%). The amount of methanol soluble esters and free phenolic acids were low, accounting for ~2 and 4.5% of total phenolic contents, respectively [50]. Free, ester-bound (released after alkaline hydrolysis) and glycoside-bound (released after acid hydrolysis) phenolic acids were obtained from a methanol extract [50]. Two cinnamic acid derivatives, p-coumaric and ferulic acids and five benzoic acid derivatives (anisic, p-hydroxybenzoic, vanillic and syringic acids) were found in the Norway spruce cells. p-Hydroxybenzoic acid glucoside and native ferulic acid have been reported in the extracts of roots [51].

Several stilbenes and stilbenes glucosides have been detected in different parts of Norway spruce. Astrinigin and isorhapontin are the main constitutive stilbenes glucosides in Norway spruce [36,37,50]. Zeneli et al. [36] detected the contents of astrinigin and isorhapontin of 20.2 and 71.8% in sapwood phenolics and 38.8 and 46.5% in bark phenolics, respectively, in trees growing in Norway. Wood phenolics contained also 5.1% piceid and bark phenolics 7.7% piceid and 0.4% piceatannol. Viiri et al. [37] have detected stilbene glucoside concentration of ~7-8 µg mg⁻¹ in fresh phloem tissue. Over half of it was isorhapontin and rest astrinigin and piceid, while resveratrol was the most abundant aglycone (~0.5 µg mg⁻¹). These stilbenes aglycones and glucosides have been detected also in bark extracts [31]. In healthy phloem stilbenes typically occur as glucosides. Piceoside, piceatannol and its glucoside, isorhapontin have been detected in roots [51]. On the contrary, Willför et al. [49] have not found stilbenes in the hydrophilic knotwood extractives of Norway spruce. They reported that more than a half of the knotwood extracts are lignans, the rest being mainly oligolignans. The most abundant lignan was hydroxymatairesinol [29,31]. Its two isomers constitute over 70% of the lignans [29].

Shan et al. [45] evaluated antibacterial activity of resveratrol and its glucoside piceid against five bacteria (Table 3). In general, efficacy of aglycone and glucoside appeared to be almost the same. The MIC values of both compounds were 313-625 mg L⁻¹ and in the case of L. monocytogenes MIC was also bacteriostatic concentration.

Needles have considerably high content of phenolic substances: 155.3 mg GAE g⁻¹ dry weight of the original sample [34]. Five types of flavonoids (flavones, flavonols, flavanones, dihydro-flavonols

Figure 1: Chemical structures of stilbenes and stilbenes glucosides found in conifers.
Substance class	Substance	Bacteria	Inhibitory effect, %	Method	Ref.		
Hydroxycinnamic acid	Ferulic acid (commercial)	*Escherichia coli*	Slight	Agar well diffusion	[43]		
		Salmonella enterica	Slight				
		Enterococcus faecalis	No inhibition				
	Escherichia coli Bacillus licheniformis	*Micrococcus luteus*	MIC 375 mg L⁻¹	Not announced	[44]		
Chlorogenic acid	Escherichia coli	*Salmonella enterica*	Clear	Agar well diffusion	[43]		
		Enterococcus faecalis	No inhibition				
	Pinosylvin (Scots pine knotwood)	*Escherichia coli*	54 ± 8	Well microplates and turbidity reader	[30]		
		Salmonella infantis	42 ± 20				
		Pseudomonas fluorescens	50 ± 15				
		Bacillus cereus	101 ± 6				
		Staphylococcus aureus	76 ± 2				
		Listeria monocytogenes	62 ± 15				
		Lactobacillus plantarum	0 ± 0				
	Stilbene	Pinosylvin monomethyl ether (Scots pine knotwood)	*Burkholderia multivorans*	Disc diffusion and liquid culture	[28]		
		Bacillus coagulans	29-34 mm				
		Acaligenes xylosoxydans	21 mm				
		Stilbene glucoside	Dihydropinosylvin monomethyl ether (Scots pine knotwood)	*Burkholderia multivorans*	Disc diffusion and liquid culture	[28]	
		Bacillus coagulans	15-17 mm				
		Acaligenes xylosoxydans	18 mm				
		Resveratrol (C. baiesii)	MRSA	Liquid microdilution	[15]		
	Resveratrol (commercial)	*Escherichia coli*	MIC 313 mg L⁻¹	Agar well diffusion	[45]		
		Salmonella anatum	MIC 313 mg L⁻¹				
		Bacillus cereus	MIC 313 mg L⁻¹				
		Listeria monocytogenes	MIC 625 mg L⁻¹				
		Staphylococcus aureus	MIC 313 mg L⁻¹				
		Stilbene glucoside	Piceid (commercial)	*Escherichia coli*	MIC 625 mg L⁻¹		
		Salmonella anatum	MIC 313 mg L⁻¹				
		Bacillus cereus	MIC >2500 mg L⁻¹				
		Listeria monocytogenes	MIC 625 mg L⁻¹				
		Staphylococcus aureus	MIC 313 mg L⁻¹				
		Flavone	Apigenin	*Escherichia coli*	No inhibition	Agar well diffusion	[43]
			Salmonella enterica	No inhibition			
			Enterococcus faecalis	No inhibition			
	Flavanone	Pinocebrin (Pinus cembra knotwood)	*Escherichia coli*	15 ± 2	Well microplates and turbidity reader	[30]	
			Salmonella infantis	14 ± 8			
			Pseudomonas fluorescens	7 ± 3			
			Bacillus cereus	74 ± 6			
			Staphylococcus aureus	30 ± 9			
			Listeria monocytogenes	55 ± 16			
			Lactobacillus plantarum	4 ± 5			
and flavans [22]) occur in Norway spruce (Appendix 1). Several glycosides of quercetin, isorhamnetin, kaempferol, myricetin, 3-caffeoylquinic acid and syringetin have been identified in needles of Norway spruce [52]. Glucose at the 3- or 7-position is the most common glycone part of the glycosides. However, majority of the antibacterial activity data concerns aglycones and only limited data on glycosides are available.

Table 3: Pure antibacterial substances and their activity against selected bacteria.

Flavonoid	MIC	Method	
Quercetin (commercial)	500 µg	Escherichia coli, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis	Slight-moderate inhibition
			Hole-plate diffusion
Quercetin	Staphylococcus aureus	MIC 20-400 mg L⁻¹	Hole-in-plate
Isoquercetin (quercetin-3-glycoside) (commercial)		Escherichia coli, Salmonella enterica, Enterococcus faecalis	No activity
		Staphylococcus aureus, Staphylococcus epidermidis	No activity
		Bacillus subtilis, Staphylococcus aureus	No activity
Kaempferol (commercial)		Escherichia coli, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis	No activity
			Hole-plate diffusion
Myricetin	Escherichia coli, Salmonella enterica, Enterococcus faecalis	MIC 25-400 mg L⁻¹	Agar dilution
Flavanone	Naringenin (commercial)	Escherichia coli, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis	Moderate-clear inhibition
			Hole-plate diffusion
Flavan	Catechin	Escherichia coli, Salmonella enterica, Enterococcus faecalis	No activity
Tannins	Gallic acid	Escherichia coli, Proteus mirabilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus	No inhibition
Lignans	Matairesinol (synthesized), Hydroxymatairesinol (Norway spruce), Lariciresinol (balsam fir), Secoisolariciresinol (Brazilian pine)	Escherichia coli, Salmonella infantis, Pseudomonas fluorescens, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Lactobacillus plantarum	MIC 125 mg L⁻¹
			MIC 62 mg L⁻¹
			MIC 31 mg L⁻¹
			MIC 62 mg L⁻¹
Isolariciresinol, Nortrachelogenin (Scots pine knotwood)	Escherichia coli, Salmonella infantis, Pseudomonas fluorescens, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Lactobacillus plantarum	0	Well microplates and turbidity reader

MIC = minimal inhibiting concentration, MRSA = methicillin-resistant Staphylococcus aureus
The leaf extracts of white birch have been observed to inhibit clearly the growth of gram-positive bacteria *S. aureus* [54]. Omar et al. [23] found that the bark extract of *Betula papyrifera* was active against gram-positive bacteria *S. aureus*, *Bacillus subtilis*, *Enterococcus faecalis* and *Mycobacterium phlei*, whilst the wood extract showed activity only against *S. aureus*. None of the extracts inhibited growth of gram-negative pathogens *E. coli*, *Pseudomonas aeruginosa*, *Salmonella typhimurium* and *Klebsiella pneumonia*.

The growth of *S. aureus* was inhibited very effectively by quercetin, kaempferol and naringenin [32,54], whereas *+/- -catechin and (+)-catechin were inactive against it. In addition, Tsuchiya et al. [19] observed the antibacterial activity of kaempferol and naringenin against methicillin-resistant *S. aureus* (MRSA).

Essential Oils

The primary constituents of the essential oils of conifers are terpenes [55] and when they contain additional elements, usually oxygen, they are termed terpenoids [1,20]. Monoterpenes are the most representative molecules constituting 90% of the essential oils [20]. Terpenes are derived through isoprenoid pathway in plants [21] and

Structure	Compound	R1	R2	R3	R4	Trees
![Flavanones](image1.png)	Pinocembrin	H	H	P		P
	Naringenin	H	OH	B		B
	Eriodictyol	OH	OH	S		S
![Flavones](image2.png)	Apigenin	H	H	H	S, B	B
	Luteolin	OH	H	H	B	B
![Flavonols](image3.png)	Kaempferol	H	H	OH	P,S,B	P,S,B
	Quercetin	OH	H	OH	P,S,B	P,S,B
	Isorhamnetin	OMe	H	OH	P,S	P,S
	Myricetin	OH	OH	OH	S	S
	Laricitrin	OMe	OH	OH	OH	S
	Syringetin	OMe	OMe	OH	OH	S
	Chrysirin	H	H	H	H	H
	Acacetin	H	OMe	H	H	B
![Dihydro-flavanol](image4.png)	Aromadendrin	H	H	OH	S	S
	Taxifolin	H	OH	OH	P,S	P,S
	Ampelopsin	OH	OH	OH	S	S
![Flavans](image5.png)	Catechin	OH	H	P,S,B		P,S,B
	Epicatechin	H	OH	S		S
	3’-Me-Catechin	OMe	H	S		S
	Galloacetin	OH	OH	S		S
![Anthocyanins](image6.png)	Pelargonidin	H	H	S		S
	Cyanidin	OH	H	S		S
	Peonidin	OMe	H	S		S
	Delphinidin	OH	OH	S		S

Table 4: Flavonoids found in extracts of Scots pine (S), Norway spruce (S) and silver birch (B).
The leaf extracts of white birch have been observed to inhibit clearly the growth of gram-positive bacteria S. aureus [54]. Omar et al. [23] found that the bark extract of Betula papyrifera was active against gram-positive bacteria S. aureus, Bacillus subtilis, Enterococcus faecalis and Mycobacterium phlei, whilst the wood extract showed activity only against S. aureus. None of the extracts inhibited growth of gram-negative pathogens E. coli, Pseudomonas aeruginosa, Salmonella typhimurium and Klebsiella pneumonia.

The growth of S. aureus was inhibited very effectively by quercetin, kaempferol and naringenin [32,54], whereas +/- -catechin and (+)-catechin were inactive against it. In addition, Tsuchiya et al. [19] observed the antibacterial activity of kaempferol and naringenin against methicillin-resistant S. aureus (MRSA).

Essential Oils

The primary constituents of the essential oils of conifers are terpenes [55] and when they contain additional elements, usually oxygen, they are termed terpenoids [1,20]. Monoterpenes are the most representative molecules constituting 90% of the essential oils [20]. Terpenes are derived through isoprenoid pathway in plants [21] and they are based on an isoprene structure (Figure 3). Different conifer species often contain the same terpenes but in different portions [55] (Appendix 2). They can be obtained by expression, fermentation, extraction or by steam distillation that is the most commonly used method for commercial production of essential oils [56]. However, greater antibacterial activity has been observed with essential oils extracted by hexane than the corresponding steam distilled essential oils.

Essential oils of pine needles and spruce have been reported to be inactive against gram-negative bacteria but to have significant activities against gram-positive bacteria S. aureus, E. faecalis and B. subtilis. L. monocytogenes and Listeria ivanovii [35,57] (Table 5). On the contrary, Hammer et al. [25] have noticed stronger activity against gram-negative E. coli than S. aureus.

Few studies have been published at the antimicrobial activity of terpenes present in conifer extracts. β-Pinene (from nutmeg) has been found to be particularly effective against E. coli O157:H7. Mourey and Canillac [55] studied activity of commercial terpenes, α-pinene, β-pinene, 1,8-cineole, R-limonene, S-limonene and borneol, against L. monocytogenes serovars, which is one of the most dangerous food pathogens. The terpenes studied had a significant anti-Listeria activity (Table 5). α-Pinene was the most active compound with an average MIC of 0.019-0.025% against L. monocytogenes, while 1,8-cineole was the least inhibitory and had the lowest activity against bacteria being 0.375-0.417%, although this concentration was directly bactericidal.
Furthermore, 1,8-cineole has exhibited low antibacterial activity against MRSA and vancomycin-resistant enterococci (VRE) E. faecalis [18].

Non-oxygenated monoterpene hydrocarbons, α-pinene, p-cymene and γ-terpinene have shown the least antibacterial activity among essential oil components [58-60]. Furthermore, these compounds may produce antagonistic effects and therefore, lower the antimicrobial activity of essential oil. Terpinen-4-ol from tea tree oil has been active on its own against P. aeruginosa and S. aureus, but reduced efficacy has been observed in combination with either γ-terpinene or p-cymene due to lowered aqueous solubility [61]. Also minor components in essential oil may play a role in antibacterial activity of the main component as interactions between components may lead to additive, synergistic or antagonistic effects [20,56].

Mechanisms of Activity

In general, the extracts were more active against gram-positive bacteria than gram-negative bacteria [23,28,58-66]. The main difference between gram-positive and gram-negative bacteria is the structure of their cell walls. Therefore it seems that the main target of the antibacterial activity is to destroy the cell walls of the bacteria. The gram-negative cell envelope is made up of lipopolysaccharide that renders the surface highly hydrophilic whereas the lipophilic structure of the cell membrane of gram-positive bacteria may facilitate penetration by hydrophobic compounds [13,57,66]. Thus, flavonoids and stilbenes with lower hydroxylation should be more active against bacteria than those with the several hydroxyl groups. However, there is no clear comparability between the degree of hydroxylation and toxicity to bacteria. Either the mechanism of action of terpenes is not fully understood but is speculated to involve membrane disruption by the lipophilic compounds [1,67,68].

Conclusions

The extracts of Scots pine, Norway spruce, silver and white birches stem, bark, roots, leaves and needles contain several useful bioactive compounds that exhibit antibacterial activity against pathogens. Both phenolic extracts and essential oils are bacteriostatic against several bacteria. The main individual antibacterial phenolic compounds in Scots pine are pinosylvins that effectively inhibit growth of pathogens such as B. cereus, S. aureus and L. monocytogenes. From other phenolic compounds lignans appeared to be the least bacteriostatic and flavonoids tend to occur as glycosylated forms which have lower antibacterial activity than their aglycones. Gram-positive bacteria are generally more susceptible to plants bioactive compounds than gram-negative bacteria.
Substance	Bacteria	Inhibitory effect, %	Ref.
Scots pine, needles	Escherichia coli	MIC > 100 mg L⁻¹	Agar diffusion and liquid dilution methods
	Pseudomonas aeruginosa	MIC > 100 mg L⁻¹	
	Proteus mirabilis	MIC > 100 mg L⁻¹	
	Klebsiella pneumoniae	MIC > 100 mg L⁻¹	
	Staphylococcus aureus	MIC 25 mg L⁻¹,	
		MBC >50 mg L⁻¹	
	Staphylococcus aureus	MIC > 100 mg L⁻¹	
	Staphylococcus aureus	MIC 12.5 mg L⁻¹,	
		MBC > 50 mg L⁻¹	
	Enterococcus faecalis	MIC 3.1 mg L⁻¹	
	Bacillus subtilis	MIC 50 mg L⁻¹	
	Pseudomonas aeruginosa	MIC 2.0 % (v/v)	
	Klebsiella pneumoniae	MIC > 2.0 % (v/v)	
	Klebsiella oxytoca	MIC > 2.0 % (v/v)	
	Enterobacter cloacae	MIC > 2.0 % (v/v)	
	Staphylococcus aureus	MIC > 2.0 % (v/v)	
	Staphylococcus aureus	MIC > 2.0 % (v/v)	
	Listeria monocytogenes	MIC 0.022-0.061%,	
	Serratia marcescens	MIC 0.25%	
		MIC 0.015-0.087%,	
		MBC 0.20%	
		MIC 0.025%,	
		MBC 0.27 %	
	Pseudomonas aeruginosa	MIC > 100 mg L⁻¹	
	Klebsiella pneumoniae	MIC 2.0 % (v/v)	
	Klebsiella oxytoca	MIC > 2.0 % (v/v)	
	Enterobacter cloacae	MIC > 2.0 % (v/v)	
	Staphylococcus aureus	MIC > 2.0 % (v/v)	
	Staphylococcus aureus	MIC > 2.0 % (v/v)	
	Listeria monocytogenes	MIC 0.019-0.025%,	
		MBC 0.192-0.354%	
Norway spruce, essential oil commercial	Listeria ivanovii	MIC 0.022-0.061%,	
		MBC 0.25%	
		MIC 0.015-0.087%,	
		MBC 0.20%	
		MIC 0.025%,	
		MBC 0.27 %	
g-Pinene	Escherichia coli	MBC > 900 mg L⁻¹	Broth dilution, visible growth
	Pseudomonas aeruginosa	MBC > 900 mg L⁻¹	
	Salmonella typhimurium	MBC > 900 mg L⁻¹	
	Yersinia enterocolitica	MBC > 900 mg L⁻¹	
	Staphylococcus aureus	MBC > 900 mg L⁻¹	
	Staphylococcus epidermis	MBC > 900 mg L⁻¹	
	Enterococcus faecalis	MBC > 900 mg L⁻¹	
	Bacillus cereus	MBC > 900 mg L⁻¹	
	Listeria monocytogenes	MIC 0.019-0.025%,	Broth dilution, visible growth
		MBC 0.192-0.354%	
	Several bacteria	No activity	Vapour diffusion test
			Agar test
β-Pinene	Listeria monocytogenes	MIC 0.041-0.060%,	Broth dilution, visible growth
		MBC 0.55-1.167%	
R Limonene	Listeria monocytogenes	MIC 0.047-0.052%,	Broth dilution, visible growth
		MBC 0.208-0.45%	
S Limonene	Listeria monocytogenes	MIC 0.028-0.062%,	Broth dilution, visible growth
		MBC 0.15-0.45%	
Borneol	Listeria monocytogenes	MIC 0.039-0.094%,	Broth dilution, visible growth
		MBC 0.039-0.156%	
1,8-Cineole	Listeria monocytogenes	MIC 0.375-0.417%,	Broth dilution, visible growth
		MBC 0.375-0.417%	
Escherichia coli	Pseudomonas aeruginosa	MIC > 8 mg mL⁻¹	Broth microdilution
	Klebsiella pneumoniae	MIC > 8 mg mL⁻¹	
	Acinetobacter baumannii	MIC > 8 mg mL⁻¹	
	Bacillus subtilis	MIC 8 mg mL⁻¹	
	Staphylococcus saprophyticus	MIC 32 mg mL⁻¹	
	Staphylococcus aureus, MRSA	MIC > 8 mg mL⁻¹	
	Staphylococcus epidermis	MIC 8 mg mL⁻¹	
	Staphylococcus agalactiae	MIC > 8 mg mL⁻¹	
	Staphylococcus pyogenes	MIC 16 mg mL⁻¹	
	Enterococcus faecalis, VRE	MIC > 8 mg mL⁻¹	

Substances and Bacteria:
- Scots pine, needles
- Norway spruce, essential oil commercial
- g-Pinene
- β-Pinene
- R Limonene
- S Limonene
- Borneol
- 1,8-Cineole

Inhibitory Effects:
- MIC (Minimal Inhibitory Concentration)
- MBC (Minimal Bactericidal Concentration)

Methods:
- Agar diffusion and liquid dilution methods
- Broth dilution
- Vapour diffusion test
- Agar test
Table 5: Essential oils of conifers and pure monoterpenes and -terpenoids with their activity against selected bacteria.

Species	MIC or MBC	Method	Ref
Bacillus acereus	Not active	Vapour diffusion	[59]
Escherichia coli	MIC 1% v/v		
Pseudomonas aeruginosa	MIC >8% v/v		
Staphylococcus aureus	MIC 0.5% v/v		
Escherichia coli	MIC >8% v/v		
Pseudomonas aeruginosa	MIC >8% v/v		
Staphylococcus aureus		Vapour diffusion	[61]
p-Cymene		Broth microdilution	[58]
Escherichia coli	MBC > 900 mg L⁻¹	Broth	
Pseudomonas aeruginosa	MBC > 900 mg L⁻¹	Broth	
Salmonella typhimurum	MBC > 900 mg L⁻¹	Microdilution	[58]
Yersinia enterocolitica	MBC > 900 mg L⁻¹	Microdilution	[58]
Staphylococcus aureus	MBC > 900 mg L⁻¹	Microdilution	[58]
Staphylococcus aureus	MBC > 900 mg L⁻¹	Microdilution	[58]
Enterococcus faecalis	MBC > 900 mg L⁻¹	Microdilution	[58]
Listeria monocytogenes	MBC > 900 mg L⁻¹	Microdilution	[58]
Bacillus cereus	MBC > 900 mg L⁻¹	Microdilution	[58]
Staphylococcus, Micrococcus,	MBC > 1 mg mL⁻¹	Agar	[60]
Bacillus, Enteropacter sp.			
γ-Terpinene		Broth microdilution	[58]
Escherichia coli	MBC > 900 mg L⁻¹	Broth	
Pseudomonas aeruginosa	MBC > 900 mg L⁻¹	Broth	
Staphylococcus aureus	MBC > 900 mg L⁻¹	Broth	
Staphylococcus, Micrococcus,	MBC > 1 mg mL⁻¹	Agar	[60]
Bacillus, Enteropacter sp.			
α-Terpineol		Broth dilution, visible growth	[58]
Escherichia coli	MBC 450 mg L⁻¹	Broth	
Escherichia coli O157:H7	MBC > 900 mg L⁻¹	Broth	
Pseudomonas aeruginosa	MBC > 900 mg L⁻¹	Broth	
Salmonella typhimurum	MBC > 900 mg L⁻¹	Broth	
Yersinia enterocolitica	MBC > 900 mg L⁻¹	Broth	
Staphylococcus aureus	MBC 900 mg L⁻¹	Broth	
Staphylococcus, Micrococcus,	MBC > 1 mg mL⁻¹	Agar	[60]
Bacillus, Enteropacter sp.			
Staphylococcus, Micrococcus,	MBC > 1 mg mL⁻¹	Agar	[60]
Bacillus, Enteropacter sp.			

Na. = not announced

References

1. Cowan MM (1999) Plant Products as Antimicrobial Agents. Clin Microbiol Rev 12: 564-582.
2. Bernhoft A (2008) A brief review on bioactive compounds in plants. Bioactive compounds in plants - benefits and risks for man and animals. The Norwegian Academy of Science and Letters, Oslo, Norway.
3. Pesewu GA, Cutler RR, Humber DP (2008) Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. J Ethnopharmacol 116: 102-111.
4. Ao C, Li A, Elzaawely AA, Xuan TD, Tawata S (2008) Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. Extract. Food Control 19: 940-948.
5. Aremu AO, Ndhlala AR, Fawole OA, Light ME, Finnie JF, et al., (2010) In vitro pharmacological evaluation and phenolic content of ten South African medicinal plants used as anthelmintics. S Afr J Bot 76: 558-566.
6. Kumar VP, Chauhan NS, Path H, Rajani M (2006) Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 107: 182-188.
7. Navarro V, Villarreal ML, Rojas G, Lozoya X (1996) Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol 53: 143-147.
8. Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74: 113-123.
11. Essawi T, Mancini S (2003) Antioxidant Activity of Knotwood Extractives and Phenolic Compounds from Picea abies. J Agric Food Chem 51: 7600-7606.

12. Hanley B, Lamuela-Raventos RM (2000) Isoflavones, lignans and stilbenes – origins, metabolism and potential importance to human health. J Sci Food Agric 80: 1044-1062.

13. Kähkönen M, Nieminen R, Klika KD, Loponen J, et al., (2004) Bioactive Polyphenols from Healthy Diets and Forest Biomass. Current Nutrition & Food Science 5: 264-295.

14. Willför SM, Smeds AI, Sundell FJ, Sjöholm RE, et al., (2004) A New Antimicrobial Property of Phenolic Compounds from Coniferous Bark. J Appl Microbiol 90: 494-507.

15. Baurhoo B, Ruiz-Feria CA, Zhao X (2008) Purified lignin: Nutritional and health impacts on farm animals—A review. Anim Feed Sci Technol 144: 175-184.

16. Baptista RAM, Espinosa ME, Moletta R, Mazza G, et al., (2007) Anthocyanins and Other Polyphenols in Black Grapes: Varietal Differences and Impact on Human Health. J Agric Food Chem 55: 3885-3891.

17. Lundgren LN (1995) Phenolic Extractives from Root Bark of Picea abies. Food Chem 47: 3954-3962.

18. Nebel M, Fischer P, Lützeler C, Hartmann B, et al., (2007) Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J Agric Food Chem 45: 3954-3962.

19. Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasomate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 26: 977-988.

20. Willför SM, Smeds AI, Sundell FJ, Sjöholm RE, et al., (2004) A New Antimicrobial Property of Phenolic Compounds from Coniferous Bark. J Appl Microbiol 90: 494-507.

21. Huang L, Ahmad B, Li P, Li J, et al., (2005) Screening of Antimicrobial Compounds from Floristic Resources of China. J Biopharm Biotech 6: 127-134.

22. Willför SM, Ahotupa MO, Hemming JE, Holmbom BR (2006) Knotwood and bark extracts: strong antioxidants from waste materials. Journal of Wood Science 52: 436-444.

23. Dierckx R, Van Nuffel A, Devlieghere F, et al., (2005) Antioxidant Activity of Oregano Extract. J Agric Food Chem 53: 371-376.

24. Willför SM, Hemming JE, swing D, et al., (2005) Antioxidant Activity of Bark Extracts from Coniferous Trees. J Agric Food Chem 53: 371-376.

25. Willför SM, Ahotupa MO, Hemming JE, Holmbom BR (2006) Knotwood and bark extracts: strong antioxidants from waste materials. Journal of Wood Science 52: 436-444.

26. Willför SM, Ahotupa MO, Hemming JE, Holmbom BR (2006) Knotwood and bark extracts: strong antioxidants from waste materials. Journal of Wood Science 52: 436-444.
52. Slimestad R, Hostettmann K (1996) Characterisation of Phenolic Constituents from Juvenile and Mature Needles of Norway Spruce by Means of High Performance Liquid Chromatography–Mass Spectrometry. Phytochem Anal 7: 42-48.

53. Ossipov V, Nurmi K, Loponen J, Prokopiev N, Haukoja E, et al. (1995) HPLC isolation and identification of flavonoids from white birch Betula pubescens leaves. Biochem Syst Ecol 23: 213-222.

54. Chu X, Zhen Z, Tang Z, Zhuang Y, Chu J, et al. (2012) Introduction of Extra Copy of Oxytetracycline Resistance Gene otrB Enhances the Biosynthesis of Oxytetracycline in Streptomyces rimosus. J Bioprocess Biotechniq 2: 117.

55. Mourey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13: 289-292.

56. Burt C (2004) Essential oils: their antibacterial properties and potential applications in foods—a review Int. J Food Microbiol 94: 223-253.

57. Canillac N, Mourey A (2001) Antibacterial activity of the essential oil of Picea excelsa on Listeria, Staphylococcus aureus and coliform bacteria. Food Microbiol 18: 261-268.

58. Cosentino S, Tuberoso CIG, Pisano B, Satta M, Mascia V, et al. (1999) In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29: 130-135.

59. López P, Sánchez C, Battle R, Nerín C (2007) Vapor-Phase Activities of Cinnamon, Thyme, and Oregano Essential Oils and Key Constituents against Foodborne Microorganisms. J Agric Food Chem 55: 4348-4356.

60. Moleyar V, Narasimhan P (1992) Antibacterial activity of essential oil components. Int J Food Microbiol 16: 337-342.

61. Cox SD, Mann CM, Markham JL (2001) Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 91: 492-497.

62. Takikawa A, Keiko A, Yamamoto M, Ishimaru S, Yasui M, et al. (2002) Antimicrobial activity of Nutmeg against Escherichia coli O157. Journal of Bioscience and Bioengineering 94: 315-320.

63. Cinanga K, Kambe K, Tona I, Apers S, De Bruyne T, et al., (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol 79: 213-220.

64. Eyles A, Davies NW, Mohammed C (2003) Novel Detection of Formylated Phloroglucinol Compounds (FPCs) in the Wound Wood of Eucalyptus globulus and E. nitens. Journal of Chemical Ecology 29: 881-898.

65. Gilles M, Zhao J, Min A, Agboola S (2010) Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem 110: 731-737.

66. Tyagi AK, Malik A (2011) Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem 126: 228-235.

67. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, et al., (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88: 170-175.

68. Lambert RJW, Skandamis PN, Coote PJ, Nychas GE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91: 453-462.