Early evoked brain activity underlies auditory and audiovisual speech recognition deficits in schizophrenia

Daniel Senkowski *, James K. Moran

Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Charitéplatz 1, 10117 Berlin, Germany

ARTICLE INFO

Keywords:
Crossmodal
Audiovisual N1 suppression
Cognition
Attention
Patients

ABSTRACT

Objectives: People with Schizophrenia (SZ) show deficits in auditory and audiovisual speech recognition. It is possible that these deficits are related to aberrant early sensory processing, combined with an impaired ability to utilize visual cues to improve speech recognition. In this electroencephalography study we tested this by having SZ and healthy controls (HC) identify different unisensory auditory and bisensory audiovisual syllables at different auditory noise levels.

Methods: SZ (N = 24) and HC (N = 21) identified one of three different syllables (/da/, /ga/, /ta/) at three different noise levels (no, low, high). Half the trials were unisensory auditory and the other half provided additional visual input of moving lips. Task-evoked mediofrontal N1 and P2 brain potentials triggered to the onset of the auditory syllables were derived and related to behavioral performance.

Results: In comparison to HC, SZ showed speech recognition deficits for unisensory and bisensory stimuli. These deficits were primarily found in the no noise condition. Paralleling these observations, reduced N1 amplitudes to unisensory and bisensory stimuli in SZ were found in the no noise condition. In HC the N1 amplitudes were positively related to the speech recognition performance, whereas no such relationships were found in SZ. Moreover, no group differences in multisensory speech recognition benefits and N1 suppression effects for bisensory stimuli were observed.

Conclusion: Our study suggests that reduced N1 amplitudes reflect early auditory and audiovisual speech processing deficits in SZ. The findings that the amplitude effects were confined to salient speech stimuli and the attenuated relationship with behavioral performance in patients compared to HC, indicates a diminished decoding of the auditory speech signals in SZs. Our study also revealed relatively intact multisensory benefits in SZs, which implies that the observed auditory and audiovisual speech recognition deficits were primarily related to aberrant processing of the auditory syllables.

1. Introduction

Many patients with schizophrenia (SZ) show impaired language functions, such as disorganized speech (de Boer et al., 2020; DeLisi, 2001). Furthermore, electrophysiological and functional neuroimaging studies in SZ have found aberrant processing of speech at the neural level (Hirano et al., 2020; Li et al., 2007). The vast majority of studies, however, examined unisensory speech processing using, e.g., articulated words or written sentences as stimuli (Javitt and Sweet, 2015; Mohr et al., 2000). In everyday life, speech usually occurs in a multisensory context – viewing lip movements and hearing words. Thus far, studies investigating audiovisual (AV) speech processing in SZ have found evidence for impaired bisensory audiovisual speech processing in SZ (De Gelder et al., 2003; Roa Romero et al., 2016a, 2016b; Ross et al., 2007b; Stekelenburg et al., 2013; Szyzik et al., 2013; Szyzik et al., 2009). However, the neural basis of these deficits, especially the temporal dynamics, are not well understood. While previous electrophysiological studies have primarily focused on alterations in late stimulus processing (Mathalon et al., 2002; Mohammad and DeLisi, 2013), much less is known about the role of early neural processing for speech recognition deficits in SZ.

Previous research in healthy individuals has shown relationships

* Corresponding author at: Dept. of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, St. Hedwig Hospital, Große Hamburger Str. 5-11, 10115 Berlin, Germany.
E-mail address: daniel.senkowski@charite.de (D. Senkowski).

https://doi.org/10.1016/j.nicl.2021.102909
Received 5 October 2021; Received in revised form 2 December 2021; Accepted 3 December 2021
Available online 8 December 2021
2213-1582/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/
between the amplitudes of the early auditory evoked N1 and P2 components in event-related potentials (ERPs) and bisensory audiovisual speech processing (Baart et al., 2014; Besle et al., 2008, 2004; Jaaskelainen et al., 2004; van Wassenhove et al., 2005). Analyzing data across various electroencephalography (EEG) experiments, Baart (2016) found a suppression of the N1 and P2 components for bisensory audiovisual compared to unisensory auditory speech stimuli. In particular, the suppression of the N1 component has been interpreted as an early multisensory facilitation of auditory speech processing (Brunelli et al., 2013; van Wassenhove et al., 2005). In SZ only one study has thus far examined audiovisual speech integration in early ERPs (Steinkrug et al., 2013). The central finding of this study is the lack of an audiovisual N1 suppression effect in Szs. The study included a simple visual catch trial task to ensure that participant attended to the visual inputs, but no active speech processing was required. Therefore, it is possible that differences in attention allocated to the speech stimuli contributed to the observed group differences in N1 suppression effects. Moreover, there is not enough information on behavioral data to determine whether the lack of audiovisual N1 suppression in Szs was related to possible speech recognition deficits. To reveal a more accurate picture on the role of early neural processing for auditory and audiovisual speech perception, an experiment with active speech-related task demands and variable levels of difficulty is required.

In this study, we examined SZ and healthy control (HC) participants by adapting a previously established paradigm that required active auditory and audiovisual speech processing under different levels of auditory noise (Schepers et al., 2013). Noise reduces the stimulus signal strength, which interferes with auditory and audiovisual speech recognition performance (Ross et al., 2007a). In contrast to a previous study in SZ, in which auditory and audiovisual words were overlayed by auditory background noise (Ross et al., 2007b), we added noise directly to the auditory stimuli. This is an important advantage because the noise in our study did not serve as a temporal cue for the onset of auditory speech. Taken together, our setup with variable levels of auditory noise that is directly added to the stimuli is well-suited to examine the effects of early neural processing on auditory and audiovisual speech recognition in SZ.

2. Materials and Methods

2.1. Sample and clinical data

A sample of 31 patients diagnosed with SZ, as defined by the diagnostic and statistical manual of mental disorders, fifth edition (DSM-5), were recruited at the outpatient units of the Charité - Universitätsmedizin Berlin. Of these, 7 had to be excluded from the final analysis (N = 5 for task performance problems, and N = 2 for EEG signal related problems, outlined below), leaving 24 patients with SZ. To minimize confounding effects of medication on the EEG (Aiyer et al., 2016), patients taking the following medications were not included in the study: Benzodiazepines, lithium, valproic acid, SSRI, and haloperidol. A total of 27 HC participants were recruited from the general population, of which 6 were excluded from the final analysis (N = 2 for task performance problems, and N = 4 EEG signal related problems, outlined below). During recruitment, the two groups were matched for handedness (Oldfield, 1971), education (measured in years), smoking.

Table 1

Demographics, medication status, neuropsychological assessment and symptomatology of study participants. Group differences were calculated by either parametric independent t-tests (t) or non-parametric Wilcoxon tests (w), where assumptions for parametric tests were violated. Antipsychotic dose is calculated as the percentage of a standard daily dose of Olanzapine, which is 10 mg. BACS raw scores were converted to z-scores, normalized according to age and gender.

Age	SZ m (N = 24)	HC m (N = 21)	t	p								
Cigarettes (Fagerstrom)	39.12	10.17	9.94	0.65								
Gender												
Female	39.12	10.17	9.94	0.65								
Male	10.17	0.17	0.009**									
Education (years)												
SZ med (N = 23)	12	10-19										
HC med (N = 20)	13	10-19										
Antipsychotic Dose												
SZ m (N = 22)	74%	56%										
BACS Z scores												
SZ m (N = 22)												
BACS Z Verbal	-0.52	-0.68	-0.27	-0.54	-0.98	0.30	-0.75	8.25	13.08	6.00	12.33	7.21
BACS Z Digit	0.12	0.10	0.12	0.96	1.24	0.88	1.23	4.64	5.79	2.50	4.42	3.56
BACS Z Token	0.27	0.75	0.47	0.33	0.29	0.37	0.59	0.80	3.24	2.14	0.38	0.04
BACS Z Fluency	-0.64	-0.75	-0.54	-0.33	-0.27	-0.37	-0.75	4.64	4.42	2.50	4.42	3.56
BACS Z Symbol	-0.27	0.10	0.47	1.01	0.29	0.57	0.80	3.24	2.14	0.38	0.04	
BACS Z Tower	0.27	0.75	0.47	0.33	-0.27	-0.37	-0.75	4.64	4.42	2.50	4.42	3.56
BACS Composite Z-Score	-0.64	-0.75	-0.54	-0.33	-0.27	-0.37	-0.75	4.64	4.42	2.50	4.42	3.56
PANSS												
Positive	5	13.08	6.00	12.33	7.21							
Negative	5	13.08	6.00	12.33	7.21							
Disorganized	5	13.08	6.00	12.33	7.21							
Excitement	5	13.08	6.00	12.33	7.21							
Depression	5	13.08	6.00	12.33	7.21							

*p < 0.05, **p < 0.01, ***p < 0.001; † percentage of standard daily dose of Olanzapine
(Fagerström, 2012), age and gender (Table 1). All participants were screened for comorbid psychopathology with the German version of the Structured Clinical Interview for DSM-4-TR Non-Patient Edition. For the SZ group, symptom severity at the time of measurement was assessed with the Positive and Negative Symptom Scale (PANSS; Kay et al., 1987). Items from this were grouped according to a five-factor model (Wallwork et al., 2012). It is established that cognitive capacity, including executive function, working memory and motor function are generally reduced in SZ (Dickinson et al., 2008; Kustermann et al., 2018; Sheffield et al., 2018). This has been linked to perceptual deficits (Haenschel et al., 2007), and could thus be an instrumental factor affecting performance in the perceptual tasks. Therefore, it is important to have a psychometrically detailed picture of cognitive deficits. In this study, the participant’s cognitive capacity was measured with the Brief Assessment of Cognition in Schizophrenia (BACS; Keefe et al., 2004).

Written informed consent was obtained from all participants, including information regarding European Union data protection laws. All participants had normal hearing and normal/corrected to normal vision. People with neurological disorders or head injury with loss of consciousness were excluded at the early recruitment stages, as were participants in the HC group who reported immediate family members with psychiatric or neurological disorders. Drug screening (Drug-Screen Multi 5 Test, Nal von Minden, amphetamine, benzodiazepine, cocaine, opioids, and cannabis) was carried out for all participants and all screenings were negative. The study was conducted in accordance with the 2008 Declaration of Helsinki and approved by the ethics commission of the Charité – Universitätsmedizin Berlin (Approval number: EA1/169/11).

2.2. Setup and procedure

Participants sat in an electrically and acoustically shielded chamber with low lighting. The experiment was programmed in PsychToolBox (Brainard, 1997; Pelli, 1997) and there were six experimental conditions: Three unisensory auditory (A) conditions (no, low, and high noise) and three bisensory audiovisual (AV) conditions (no, low, and high noise; see Fig. 1). Three syllables were used as stimuli: /da/, /ga/, and /ta/. At the beginning of each block, the participants were instructed to respond to a particular target syllable. Within each block, the target probability was lower than the probability of the other two standard syllables (~23% and 38.5%, respectively). This ensured a larger number of standards for the final analysis, with ~ 160 trials for each of the 6 conditions (noise: no, low, high; mode: AV, A). The visual clips had a total duration of 600 ms and they were made of 17 different frames with a duration of ~ 35 ms, (CRT monitor refresh rate was 85 Hz).

The three syllables were voiced by a female speaker. The signal had a length of 270 to 290 ms (sampled at 44.1 kHz). The program ‘Cool Edit Pro (Adobe Systems)’ was used to edit the sound files. The syllables were presented over in-ear air pressure headphones (66 dB, E-A-R tone Gold, Auditory Systems, Indianapolis, USA). For the conditions involving auditory noise, the syllable sounds were degraded with additional noise. This was generated by estimating the temporal power signal as the smoothed, rectified auditory signal (convolution with a Hanning window of a temporal width of 5.7 ms) and spectral power distribution as the smoothed power spectrum (convolution with a Hanning window of spectral width of 630 Hz). Each syllable was edited separately. Following this, syllable-specific noise with matching spectral and temporal power distributions were generated. In a final step, stimuli with different levels of degradation were generated by altering noise and audio signal with different weights whilst maintaining a constant power level. To minimize the chance that a certain pattern of noise would become recognizable by participants, ten different realizations of the noise were randomly presented for each of the two different noise levels. Since the different syllables are differentially affected by noise levels, we altered the relative weight of the noise for each syllable based on our earlier experiment (Schepers et al., 2013) as follows: /da/ low noise: M...
contained no syllable-specific information. In bisensory AV trials the onset of the lip movements always preceded the sound onset by 230 ms.

2.3. EEG recordings

Data were recorded with a 128-channel passive EEG system (Easy-Cap). This included two electrooculography (EOG) electrodes (online: 1000 Hz sampling rate with a 0.016–250 Hz bandpass filter; offline: 49–51 Hz, 4th order Butterworth notch filter, 125 Hz 24th order finite impulse response (FIR) lowpass filter, downsampled to 500 Hz, 0.3 Hz 1500th order FIR highpass filter). The offline nasal reference was referenced online to the average of all the EEG electrodes. Nonstationary artifacts were identified and cut with visual inspection. There was no difference between HC and SZ groups in number of remaining trials (SZ: M = 1140.54, [SD = 117.58], HC: M = 1118.05, [SD = 109.76]). Independent component (IC) analysis was used to remove eye movement artifacts as well as heart rate artifacts (Chaumon et al., 2015; Lee et al., 1999). There was no difference between groups in number of components removed (SZ: M = 4.25, [SD = 1.98], HC: M = 4.24, [SD = 0.94], t(33.83) = -0.03, p = 0.979).

Noisy channels were cut and then interpolated with spherical interpolation. There were no different between groups in number of components removed (SZ: M = 10.92, [SD = 4.49], HC: M = 11.24, [SD = 4.19], t(42.80) = 0.25, p = 0.805). However, during preprocessing 6 participants (2 SZ, 4 HC) had to be removed from further data analysis due to excessive eye-blinks or sweat artifacts.

2.4. Analysis of behavioral data

The analysis of behavioral data focused on d-prime values and hit-rates. The d-prime values for behavioral responses were calculated from hit-rates and false-alarm rates. Hit rates were defined as the proportion of correct responses to the relevant target within each of the 6 conditions (3 noise levels by 2 mode levels). The false-alarm rate was the proportion of false responses under a given target condition within each of the 6 conditions. Behavioral responses outside of the range of 100–900 ms following the onset of the auditory syllable were removed from the d-prime calculation. Across groups, the probability of a response outside of this time range was relatively low (SZ: Med = 1.74 % [range: 0.34–7.64 %] and HC: Med = 0.69 % [range: 0.4–4.17 %], W = 133.5, p = 0.018). Seven participants were cut owing to performance problems (HC = 2, SZ = 5). In these participants the d-primes were uniformly at chance levels owing to either difficulties understanding the task or technical problems with the online registration of stimulus triggers. The d-prime values and hit-rates were analyzed separately with linear mixed effects models (Bates et al., 2015), specifically using the lmerTest package (Kuznetsova et al., 2017) in R (3.6.3), which offers approximations of p-values and degrees of freedom via Satterthwaite’s method. For both models, the independent factors Group (SZ vs. HC), Mode (AV vs. A), and Noise (no, low, high) were entered as fixed variables, with all two-way and three-way interactions. As random effects we made intercepts for individual participants. Follow-up Bonferroni-adjusted contrasts were calculated with the emmeans package.

2.5. Analysis of evoked brain activity

For the calculation of ERPs, high-pass filtering (2 Hz, 4th order Butterworth) and low-pass filtering (45 Hz, 14th order Butterworth) was applied offline to remove low frequency drifts and better define our components of interest, i.e., N1 and P2. The baseline was set at between −430 ms and −330 ms relative to auditory stimulus onset. This baseline was necessary to avoid overlapping with visual movement onset in the AV conditions, which began at −230 ms relative to auditory stimulus onset. Based on previous studies examining audiovisual speech processing in ERPs (Blairt et al., 2014; Schepers et al., 2013; Shahin et al., 2012; van Wassenhove et al., 2005), an a priori defined mediofrontal region of interest (ROI), comprising 14 electrodes, was used for the statistical analysis. To define the times of interest (TOIs) all 6 experimental conditions were combined to create group means. Then, a weighted overall mean was calculated that accounts for the unequal sample size between SZ and HC. Fig. 2 illustrates the ROI and the weighted grand-average over groups and conditions. For the grand-average ERP the minimum amplitude of the N1 was observed at 100 ms and the maximum amplitude of the P2 was found at 198 ms post auditory onset. Accordingly, the TOI for the statistical analysis of the N1 component was defined as 85–115 ms, and the TOI for the broader P2 component was defined as 178–218 ms.

LMEs (lmerTest package) were applied to the mean amplitudes at these ROIs and TOIs with fixed factors Group (SZ vs. HC), Mode (AV vs. A), and Noise (no, low, high), and all interactions, with random intercepts applied for individual participants. The mean amplitudes at these ROIs and TOIs were extracted and analyzed against independent factors Group (SZ vs. HC), Mode (AV vs. A), and Noise (no, low, high), using the lmer package in R (3.6.3) and follow-up Bonferroni-adjusted contrasts with the emmeans package. Where the interpretation of a null result was critical, Bayes Factors (BF10) were calculated to further specify the relative evidence for H0 and H1 (Aczel et al., 2017; Rouder et al., 2009). BF10s between 1 and 3 indicate anecdotal support for the alternative hypothesis (H1); BF10s from 3 to 10 suggest moderate support; and BF10 above 10 indicates strong support for H1. A BF10 of 1 indicates equal support for H1 and H0, BF10 between 1/3 and 1, 1/10–1/3, and below 1/10 suggest respectively anecdotal, moderate, and strong support for H0.

To more precisely test the relation between behavioral performance and ERPs, LMEs were applied for N1 and P2 amplitudes with d-prime, mode and group and their interactions as fixed factors and random effect of participants modelled as individual intercepts. We elected to leave noise out of the analysis in view of the sample size, and instead focus on the interactions between multisensory processing and our behavioral parameter of interest. In the same way, potential influence of SZ symptomatology, quantified through PANSs, as well as that of cognitive performance level, via BACS, upon the ERPs was also tested with LMEs. The amplitudes of event-related potentials (ERPs) were correlated with potential confounding factors (olanzapine equivalent dose, Fagerström test). Critical P-values were adjusted for multiple comparisons with Benjamini-Hochberg corrections (Benjamini and Hochberg, 1995).
3. Results

3.1. Behavioral data

For behavioral data analysis LMEs were applied with the factors Group, Mode, and Noise. The analysis of d-prime values revealed a main effect of Group (F(1,43) = 4.80, p = 0.034), with HC (adj-M = 2.54, [CI: 1.97, 3.11]) having higher d-prime values than SZ (adj-M = 1.80, [CI: 1.27, 2.33]; t(43) = 2.19, p = 0.034, BF10 = 1.95) (Fig. 3A; Supplement Table S1a). The main effect of Mode did not reach significance (F (1,215) = 3.44, p = 0.065). Across groups the d-prime values were numerically higher for the AV (adj-M = 2.27, [CI: 1.86, 2.67]) compared to the A condition (adj-M = 2.07, [CI: 1.66, 2.48]). There was a main effect of Noise (F(2,215) = 180.10, p < 0.0001), with declining performance with increasing noise level. Importantly, there was also an interaction between Noise and Group (F(2,215) = 8.01, p = 0.0004). Follow-up contrasts showed that d-primes were higher in HC than in SZ, specifically in the no noise condition (HC: adj-M = 4.16 [CI: 3.55–4.78] vs. SZ: adj-M = 2.89 [CI: 2.31–3.46]; t(61.5) = 3.47, p = 0.001, BF10 = 26.87) but not for the low noise condition (HC: adj-M = 2.22 [CI: 1.61–2.84] vs. SZ: adj-m = 1.53 [CI: 0.95–2.10]; t(61.5) = 1.90, p = 0.063, BF10 = 1.23) or the high noise condition (HC: adj-M = 1.22 [CI: 0.61–1.84] vs. SZ: adj-M = 0.99 [CI: 0.41–1.57]; t(61.5) = 0.74, p = 0.527, BF10 = 0.37). No other effects were observed.

The analysis of hit rates revealed a significant effect of Group (F(1,43) = 7.78, p = 0.008), showing that HCs (adj-M = 0.60, [CI: 0.49, 0.71]) had higher hit rate probabilities than SZ (adj-M = 0.41, [CI: 0.31, 0.52]) (Fig 3B). There was also a main effect of Mode (F(1,215) = 5.42, p = 0.021), with higher hit rates in AV (adj-M = 0.53, [CI: 0.45, 0.61] compared to A (adj-M = 0.48, [CI: 0.40, 0.56]) conditions. Moreover, there was a main effect of Noise (F(2,215) = 100.06, p < 0.0001), with declining performance with increasing noise level. Importantly, the Noise level interacted with Group (F(1,215) = 6.58, p = 0.002). Follow-up contrasts showed that HC had higher hit rates than SZ in the no noise condition (HC: adj-M = 0.80 [CI: 0.68–0.92] vs. SZ: adj-M = 0.57 [CI: 0.45, 0.69]; t(59.6) = 3.07, p = 0.003, BF10 = 10.73) and the low noise condition (HC: adj-M = 0.57 [CI: 0.44, 0.69] vs. SZ: adj-M = 0.41 [CI: 0.29, 0.53]; t(59.6) = 2.14, p = 0.037, BF10 = 1.79), but not in the high noise condition (HC: adj-M = 0.38 [CI: 0.26, 0.51], SZ: adj-M = 0.29 [CI: 0.17, 0.41], t(59.6) = 1.24, p = 0.221, BF10 = 0.55). No other effects were found.

3.2. Evoked brain activity

An LME examined N1 amplitudes against factors Mode, Noise, and Group. There was a main effect of Mode (F(1,215) = 40.95, p < 0.0001), with bisensory AV stimuli (adj-M = -1.22 [CI: -1.42, -1.01]) showing less negative amplitude than unisensory A stimuli (adj-M = -1.48, [CI: -1.69, -1.28], t(215) = 6.40, p < 0.0001, BF10 = 107995) (Figs. 4-5; Supplement Table S1c). This replicates the N1 suppression effect for audiovisual compared to auditory only speech stimuli (Jasckelainen et al., 2004; van Wassenhove et al., 2005). There was also a main effect of Noise (F(2,215) = 10.99, p < 0.0001), with a decline in N1 amplitude with increasing noise level (Fig 6A). No main effect of Group was found (F(1,43) = 2.33, p = 0.134), but interestingly, there was an interaction between Group and Noise (F(1,215) = 3.46, p = 0.033). Follow-up contrasts revealed larger N1 amplitudes in HC compared to SZ in the no noise condition (HC: adj-M = -1.69, [CI: -2.00, -1.38] vs. SZ: adj-M = -1.28, [CI: -1.57, -0.99]; t(215) = -2.24, p = 0.030, BF10 = 2.12). In contrast, no group differences were found in the low noise condition (HC: adj-M = -1.43, [CI: -1.74, -1.12] vs. SZ: adj-M = -1.19, [CI: -1.47, -0.90]; t(215) = -1.33, p = 0.19, BF10 = 0.60) and in the high noise condition (HC: adj-M = -1.33, [CI: -1.64, -1.02] vs. SZ: adj-M = -1.19, [CI: -1.47, -0.90]; t(215) = -0.77, p = 0.44, BF10 = 0.38). Thus, comparable to the behavioral data, group differences in N1 amplitudes were primarily observed for the no noise condition.

Another LME tested P2 amplitudes against factors Mode, Noise, and Group. The analysis revealed a main effect of Group (F(1,43) = 4.89, p = 0.032), showing larger P2 amplitudes in HCs compared to Szs (Fig 5B; Supplement Table S1d). There were also main effect of Noise (F(2,215) = 7.58, p = 0.0007). Low noise (adj-M = 1.10, [CI: 0.935, 1.26]) had larger deflections than no noise (adj-M = 0.90, [0.736, 1.06], t(215) = 3.89, p = 0.0004, BF10 = 76.25). High noise (adj-M = 1.01, [0.84, 1.17]) showed intermediate P2 deflections, which did not significantly differ from the other two other conditions (p > 0.119, BF10 = 1.60). Furthermore, there was a main effect of Mode (F(1,215) = 4.00, p = 0.047), with bisensory AV stimuli (adj-M = 1.04, [CI: 0.88, 1.20]), showing larger P2 amplitudes than unisensory A stimuli (adj-M = 0.96, [0.80, 1.12], t(215) = 2.00, p = 0.047, BF10 = 1.43). In addition, there was an interaction of Mode by Group, which showed that the effect of Mode was specific to the HC group. The P2 amplitudes in response to bisensory AV stimuli differed significantly between groups (HC: adj-M = 1.26, [CI: 0.99, 1.52]; SZ: adj-M = 0.83, [CI: 0.58, 1.08], t(49.5) = 2.67, p = 0.010, BF10 = 4.66). No Group differences, however, were found for the unisensory A stimuli (HC: adj-M = 1.09, [CI: 0.82, 1.35], SZ: adj-M = 0.83, [CI: 0.58, 1.08], t(49.5) = 1.59, p = 0.118, BF10 = 0.81). There was also an interaction between Noise and Mode. P2 amplitudes in response to bisensory AV stimuli were smaller in the no noise condition (adj-M = 0.87, [CI: 0.65, 1.08]) compared to the low noise (adj-M = 1.16, [CI: 0.94, 1.38], t(215) = -4.13, p = 0.0002, BF10 = 142.81) and the high noise condition (adj-M = 1.10, [CI: 0.88, 1.32], t(215) = -3.29, p = 0.0035, BF10 = 17.61). There was no difference...
between P2 amplitudes to bisensory stimuli of the low and high noise condition \((t(215) = 0.88, p = 1.00) \). Moreover, no P2 amplitude differences in response to unisensory A stimuli were observed between the different noise levels (all \(p \)-values > 0.248). Hence, group differences in P2 amplitudes were specifically observed for bisensory AV stimuli, but did not depend on the noise level.

LMEs of d-prime against N1 showed that overall greater deflections in N1 were associated with overall better d-prime performance \((F(1, 237.30) = 7.20, p = 0.008) \). A significant group*d-prime interaction \((F(1, 237.30) = 5.72, p = 0.0176) \) suggested that the N1 association was specific to the HC group, with the SZ group showing an undifferentiated response (Fig. 6). Follow-up LME analyses for groups separately supported this, showing that higher d-prime values were associated with greater deflections for HC \((F(1, 110.18) = 18.65, p < 0.0001) \), but not for SZ \((F(1,126.89) = 0.044, p = 0.835) \). An LME of P2 on d-prime together with group and mode factors showed an overall association of higher d-primes with greater deflections \((F(1, 243.30) = 5.98, p = 0.015) \). No interactions were significant.

A LME of N1 with the independent variables mode, group, and BACS total z-scores, showed a main effect of BACS \((F(1,39) = 4.51, p = 0.040, \beta = -0.37) \). This shows that greater cognitive capacity was related to generally higher N1 amplitude deflections (Fig. 7). There were no main effects of group \((F(1,39) = 0.28, p = 0.599, \beta = -0.09) \) or mode \((F(1,39) = 3.27, p = 0.078, \beta = -0.09) \) and no significant interactions. Two separate LMEs of N1 and also P2 on the five dimensions of the PANSS did not show any significant relations \((p > 0.064) \). Finally, potential confounds psychopharmaceutical medication (olanzapine equivalent dose) and smoking (Fagerström test) were correlated with ERP amplitudes (N1 and P2), with critical \(p \)-values adjusted for multiple comparisons. There were no significant correlations between medication and neural parameters \((adjusted p > 0.416, BF10 ranged between 0.47 and 0.64, with the exception of AV high noise and P2, with BF10 = 2.88 suggesting
recognition deficit in SZ was primarily observed in the no noise condition. Patients showed a poorer performance than controls, which indicates a relatively intact multisensory processing under different noise levels in HC and SZ. We observed reduced speech recognition performance in SZs in the no noise condition, while the performance differences were diminished or absent in the low and high noise conditions, respectively. Mirroring the behavioral results, we observed reduced N1 amplitudes to auditory and audiovisual speech stimuli in the SZ group, specifically in the no noise condition. In the HC group the N1 amplitudes were related to the behavioral performance, whereas no such relationship was found in the SZ group. In relation to multisensory processing, we observed similar N1 suppression effects for bisensory compared to unisensory speech stimuli in SZs and HCs. Finally, we observed generally positive relationships between the N1 amplitudes and cognitive performance, as obtained by the BACS, in both study groups.

4. Discussion

In this study we examined early auditory and audiovisual speech processing under different noise levels in HC and SZ. We observed reduced speech recognition performance in SZs in the no noise condition, while the performance differences were diminished or absent in the low and high noise conditions, respectively. Mirroring the behavioral results, we observed reduced N1 amplitudes to auditory and audiovisual speech stimuli in the SZ group, specifically in the no noise condition. In the HC group the N1 amplitudes were related to the behavioral performance, whereas no such relationship was found in the SZ group. In relation to multisensory processing, we observed similar N1 suppression effects for bisensory compared to unisensory speech stimuli in SZs and HCs. Finally, we observed generally positive relationships between the N1 amplitudes and cognitive performance, as obtained by the BACS, in both study groups.

4.1. Noise influences auditory and audiovisual speech recognition deficits in schizophrenia

As expected, increasing the auditory noise level led to a decline in speech recognition performance. In addition, a better performance was found for bisensory audiovisual compared to unisensory auditory speech stimuli. These observations replicate our previous findings in healthy young adults (Scheipers et al., 2013). The effects of sensory stimulation, i.e., bisensory vs. unisensory stimulation, on speech recognition did not significantly differ between groups, which indicates a relatively intact multisensory benefit in SZs (Moran et al., 2021). Across experimental conditions, patients showed a poorer performance than controls, which supports the notion of a speech recognition deficit in SZ (DeLisi, 2001).

The main finding in the behavioral data was that the speech recognition deficit in SZ was primarily observed in the no noise condition. In SZs, compared to HCs, we observed strong group differences in the no noise condition, small group differences in the low noise condition and no group differences in the high noise condition. Thus far, studies examining the effects of auditory noise on auditory and audiovisual speech recognition are sparse (Ross et al., 2007b). In a behavioral study investigating the effects of auditory background noise on auditory and audiovisual speech recognition, Ross et al., (2007b) observed a diminished multisensory benefit of viewing lip-movements in SZ compared to HC at an intermediate noise level, which fits with the principle of inverse effectiveness (Senkowski et al., 2011; Stein and Meredith, 1993; van de Rijt et al., 2019). Critically, the background noise in this study always started at a fixed interval of 520 ms prior to the auditory onset, i.e., around the onset of the lip movements. Thus, the noise in this study served as a reliable temporal cue for the auditory speech onset. Given the evidence that temporal multisensory processing is compromised in SZ (Stevenson et al., 2017), it is possible that group differences in temporal processing contributed to the findings by Ross et al. (2007b). In our study, the noise was directly added to the auditory syllable and did therefore not provide temporal information about the auditory speech onset. There are also differences in speech recognition performance between the previous findings and those of our study. In Ross et al. (2007b) the hit rate for no noise stimuli in both study groups was above 90% for bisensory stimuli and around 85% for unisensory auditory stimuli. In our study, the hit-rate for combined bisensory and unisensory stimuli in the no noise condition was on average 80% in HCs and 57% in the SZ group. Thus, in the bisensory noise condition in which SZs showed multisensory gain deficits in Ross et al. (2007b), the hit rate was comparable to the hit rate observed in the no noise condition in our study. This implies comparable processing demands, which could have contributed to the speech recognition deficits in the Ross et al. (2007b) and in the present study. In summary, our study revealed aberrant speech recognition for auditory and audiovisual speech stimuli in SZ, which, however, declined with increasing noise level.

4.2. Early evoked brain activity relates to speech recognition deficits in schizophrenia

In agreement with previous studies emphasizing the role of early evoked brain activity for auditory and audiovisual speech processing in healthy individuals (Baart, 2016; Baart et al., 2014; Bernstein et al., 2008), our analysis focused on the N1 and P2 components triggered by the onset of the auditory syllables. In parallel with our behavioral results, we observed group differences in N1 amplitudes for both auditory and audiovisual speech stimuli in SZ, primarily in the no noise condition.
In contrast, group differences in N1 amplitude were attenuated in the low and high noise conditions. Previous studies using non-speech unisensory auditory stimuli (Gallinat et al., 2002; Leicht et al., 2010) as well as speech stimuli (Ford et al., 2001; Ford and Mathalon, 2004; Mathalon et al., 2019; Perez et al., 2012) have shown reduced N1 amplitudes in SZ. Given that alterations in N1 amplitudes in response to non-speech auditory stimuli have been found in first-episode SZs as well as clinically unaffected first-degree relatives, it has been hypothesized that reduced auditory N1 amplitudes are an endophenotype of SZ (Foxe et al., 2011; Salisbury et al., 2010). However, a study by Ford et al. (2013) has found reduced N1 amplitudes in response to auditory speech stimuli in SZ patients, but not in relatives. Further research is required to examine speech-related auditory N1 amplitudes in SZ relatives.

Our observation of reduced N1 amplitudes in the no noise condition in SZs raise questions regarding the neural basis of this finding. The majority of studies reporting reduced N1 amplitudes in SZ have used salient auditory stimuli like sinusoidal tones (Rosburg et al., 2008). As such, our finding of reduced N1 responses to salient no noise auditory and audiovisual speech stimuli fits with these previous studies. Enhanced trial-by-trial fluctuations of neural activity in sensory and higher order cortical areas have been consistently observed in SZ (Javitt and Sweet, 2015; Rolls et al., 2008). Furthermore, it is likely that excitation/inhibition (E/I) imbalance in neural circuits contributes to the enhanced fluctuations in neural activity (Anticevic and Lisman, 2017; Uhlhaas and Singer, 2015), which, in turn, could be a factor contributing to reduced evoked brain responses (Hall et al., 2015; Winterer et al., 2000). It is possible that enhanced trial-by-trial fluctuations in neural activity primarily affected the processing of the salient speech stimuli in SZs. In our study, we found positive relationships between the N1 amplitudes and behavioral performance in the HC group but not in SZs. Hence, it may be that the N1 amplitudes in SZs reflect a stronger bias of non-speech related factors, such as variations in attention or memory-related processing. The correlations with speech recognition performance also indicate a better decoding of the speech signals in the N1...
amplitudes, which are generated in the auditory cortex and to some extent in higher order areas in HCs compared to SZs (Bernstein et al., 2008; Besle et al., 2008; Campbell, 2008). Future research implementing multivariate decoding approaches could provide further insight into this interesting question (Bae et al., 2020). Finally, in both groups we observed positive relationships between the N1 amplitudes and cognitive performance, as obtained by the BACS total score. In a recent study, positive relationships with the BACS total score have been found for the auditory discrimination threshold but not for clinical symptoms in SZs with psychosis (Ramsay et al., 2020). This suggests a link between basic auditory processing, as reflected in the evoked N1 component and auditory discrimination threshold, with general cognitive performance that is not explained by clinical symptoms. Taken together, the findings of reduced N1 amplitudes for no noise auditory and audiovisual stimuli in SZs mirror the behavioral results. This indicates that the early speech processing deficits in SZs primarily relates to salient stimuli.

The findings for the P2 component were more complex than for the N1 component and they were confined to bisensory audiovisual stimuli. In both study groups, the amplitude of the audiovisual P2 component was larger for the no noise compared to the two noise conditions. This observation resembles our previous finding in young healthy adults (Schepers et al., 2013). Moreover, for all three noise conditions, we observed larger audiovisual P2 amplitudes for HCs compared to SZs. Given that no such effects were found for the unisensory stimuli, this indicates later group differences in the processing of audiovisual speech. In addition, we did find positive relationships between the P2 amplitudes and speech recognition performance. However, these relationships did not differ between groups or stimulation conditions. This indicates that they could reflect more general differences in attention across participants, which has a general effect, i.e., independent of sensory modality and noise level, on auditory and auditory speech recognition performance. Finally, we did not find any relationships between the P2 amplitudes with cognitive functions. Hence, the observed group differences on the bisensory P2 were relatively unspecific. Our study also revealed evidence that the P2 amplitudes could reflect more general attention-related processing that equally affects speech recognition performance in patients and controls.

4.3. Multisensory benefits are comparable in SZs and HCs

Another important aspect of our study is the question regarding multisensory integration differences between SZs and HCs. Reduced N1 and P2 amplitudes for bisensory compared to unisensory stimuli are consistent findings in audiovisual speech research (Baart et al., 2014; Besle et al., 2004; Jaaskelainen et al., 2004; van Wassenhove et al., 2005). Previously, Stekelenburg et al. (2013) examined the N1
suppression effect for no audiovisual vs. auditory stimuli in SZs and HC s. In contrast to our study, the authors did not find an N1 suppression effect in SZs. Recently, we observed a close interplay of top-down attention and multisensory integration in SZ (Moran et al., 2021), which fits with the notion that top-down mechanisms can influence basic integrative sensory processing (Senkowski et al., 2005; Talma et al., 2010; Talma et al., 2007). In line with this notion, we proposed that differences in attentional demands could have contributed to previous seemingly contradictory findings on multisensory integration in SZs. As such, it could be that the differences in findings between Stekenburg et al. (2013) and our study relate to differences in attention demands.

In our study there are several findings that suggest a relatively intact multisensory benefit in SZs. First, across the different noise levels the multisensory benefit in speech recognition performance was comparable for SZs and HC s. Second, across the different noise levels there were no differences in bisensory N1 amplitude suppression effects between groups. Third, the behavioral deficits and N1 reductions in the no noise condition in SZs were comparable for unisensory and bisensory stimuli. In summary, our study suggests a relatively intact multisensory benefit in SZ. This implies that the observed deficits in audiovisual speech processing mainly relate to aberrant processing of the auditory syllables.

4.4. Limitations

We tested for evidence of the impact of nicotine consumption or current medication on N1 and P2 findings. Although no results were significant even with a less conservative Benjamini-Hochberg adjustment for multiple comparisons, Bayes Factor calculations suggested anecdotal support for a relation in some P2 correlations. In particular, between nicotine consumption and the two higher noise conditions in the HC group, and the two higher AV noise conditions and medication in the SZ group. It should be noted here, that they are not related to our central findings relating to N1. We found no relation between SZ psychopathology, as measured by the PANSS, with behavioral or EEG parameters. It is possible that any such relations require a larger sample size than that of our experiment, which was primarily designed to uncover differences between groups. Our measurement of the PANSS was prior to the EEG measure, rather than during the measurement, so any potentially interesting relation between, e.g., auditory hallucinations and task performance and EEG, could not be assessed. Future studies could employ the Audio-Visual Abnormalities Questionnaire (AVAQ: Nikitova et al., 2019), to relate experimental findings to this standardized measure of everyday experiences of audiovisual abnormalities in people with SZ. This interesting instrument was not available at the time of data collection. Finally, it is possible that long-term medication effects in SZs contributed to our findings. Thus, as with other experiments examining chronic SZ patients, a replication of findings in a sample of first-episode and ideally unmedicated patients would be desirable.

4.5. Conclusion

Our study demonstrates that impaired early neural processing, as reflected in reduced N1 amplitudes, relates to auditory and audiovisual speech processing deficits in SZ. Our findings also suggest that this impairment is confined to salient speech input. In our study we did not find evidence for alterations in integrative multisensory processing in SZs. In fact, bisensory N1 suppression effects and comparably better speech recognition performance for bisensory compared to unisensory stimuli was consistent across both groups. This suggests a relatively intact multisensory benefit in SZs, which indicates that the observed deficits in auditory and audiovisual speech recognition were primarily related to aberrant processing of auditory speech.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was funded by a grant to DS from the German Research Foundation (SE1859/4-1). We would like to thank Julian Keil for his help in programming of the experiment and Alex Masurovsky, Teresa Ramme, Lisa Renziehausen, Marianne Bröker, and Joseph Wooldridge for their assistance gathering the data.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jicl.2021.102909.

References

Aczel, B., Pañi, B., Szasz, N., Wicherts, J.M., 2017. Estimating the evidential value of significant results in psychological science. PLoS One 12 (8), e0182651.
Ayer, R., Novakovíc, V., Barkin, R.L., 2016. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad. Med. 128 (7), 656–664.
Antevcic, A., Lismán, J., 2017. How Can Global Alteration of Excitation/Inhibition Balance Lead to the Local Dysfunctions That Underlie Schizophrenia? Biol. Psychiatry 81, 818–820.
Baart, M., 2016. Quantifying lip-read-induced suppression and facilitation of the auditory N1 and P2 reveals peak enhancements and delays. Psychophysiol. 53 (9), 1295–1306.
Baart, M., Stekenburg, J.J., Vroomen, J., 2014. Electrophysiological evidence for speech-specific audiovisual integration. Neuropsychologia 53, 115–121.
Bae, G.-Y., Leonard, C.J., Hahn, B., Gold, J.M., Luck, S.J., 2020. Assessing the information content of ERP signals in schizophrenia using multivariate decoding methods. Neuroimage. Clin. 25, 102179. https://doi.org/10.1016/j.nicl.2020.102179.
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48.
Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57 (1), 289–300.
Bernstein, L.E., Auer, E.T., Wagner, M., Ponton, C.W., 2008. Spatiotemporal dynamics of audiovisual speech processing. Neuroimage. Clin. 1914, 423–435.
Besle, J., Fischer, C., Bidet-Caulet, A., Locagnard, F., Bertrand, O., Giard, M.-H., 2008. Visual activation and audiovisual interactions in the auditory cortex during speech perception: intracranial recordings in humans. J. Neurosci. 28 (52), 14301–14310.
Besle, J., Fort, A., Delpuech, C., Giard, M.-H., 2004. Bimodal speech: Early suppressive visual effects in human auditory cortex. Eur. J. Neurosci. 20 (8), 2225–2234.
Brainard, D.H., 1997. The Psychophysics Toolbox. Spatial Vis. 10 (4), 433–436.
Brunelli, A., Sánchez-García, C., Ikumi, N., Soto-Faraco, S., 2013. Visual information constrains early and late stages of spoken-word recognition in sentence context. Int. J. Psychophysiol. 89 (136–147).
Campbell, R., 2008. The processing of audio-visual speech: empirical and neural bases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363 (1493), 1001–1010.
Chaunon, M., Bishop, D.V.M., Bunsh, N.A., 2015. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 250, 47–63.
de Boer, J.N., Brederoo, S.G., Voppel, A.E., Sommer, I.E.C., 2020. Anomalies in language as a biomarker for schizophrenia. Curr. Opin. Psychiatry 33 (3), 212–218.
de Gelder, B., Vroomen, J., Annen, L., Masthof, E., Hodiamont, P., 2003. Audio-visual integration in schizophrenia. Schizophr. Res. 59 (2-3), 211–218.
DeLain, L.E., 2001. Speech disorder in schizophrenia: review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophr. Bull. 27 (3), 481–496.
Dickinson, D., Ragland, J.D., Gold, J.M., Gur, R.C., 2008. General and specific cognitive deficits in schizophrenia: Goliath defeats David? Biol. Psychiatry 64, 823–827.
Fagerstrom, K., 2012. Determinants of tobacco use and renaming the FTND to the Fagerstrom Test for Cigarette Dependence. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 14 (1), 75–78.
Ford, J.M., Mathalon, D.H., Kalba, S., Whitfield, S., Faustman, W.O., Roth, W.T., 2001. Cortical responsiveness during inner speech in schizophrenia: an event-related potential study. Am. J. Psychiatr. 158 (11), 1914–1916.
Ford, J.M., Mathalon, D.H., 2004. Electrophysiological evidence of corollary discharge dysfunction in schizophrenia during talking and thinking. J. Psychiatr. Res. 38 (1), 37–46.
Ford, J.M., Mathalon, D.H., Roach, B.J., Keedy, S.K., Reilly, J.L., Gershon, E.S., Sweeney, J.A., 2013. Neurophysiological evidence of corollary discharge function during vocalization in psychotic patients and their nonpsychotic first-degree relatives. Schizophr Bull. 39, 1272–1280.
NeuroImage: Clinical 33 (2022) 102909

Foxe, J.J., Yeap, S., Snyder, A.C., Kelly, S.P., Thakore, J.H., Molholm, S. 2011. The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping of clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients. Eur. Arch. Psychiatry Clin. Neurosci. 261 (5), 331–339.

Gallant, J., Mulert, C., Bajouj, M., Herrmann, W.M., Schunter, J., Senkowski, D., Moukhireva, K., Krondfeld, D., Winterer, G. 2002. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. NeuroImage 17 (1), 110–127.

Haenschel, C., Bittner, R.A., Haertling, F., Rotsaerts-Jagiela, A., Maurer, K., Singer, W., Linden, D.E.J. 2007. Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging. Arch. Gen. Psychiatry 64 (11), 1229. https://doi.org/10.1001/archpsyc.64.11.1229.

Hall, M.H., Jensen, J.E., Da, F., Smoller, J.W., O’Connor, L., Spencer, K.M., Öngür, D. 2015. Frontal P3 event-related potential is related to brain glutamate/glutamine ratio measured in vivo. NeuroImage 111, 186–191.

Hirano, S., Spencer, K.M., Onitsuka, T., Hirano, Y. 2020. Language-Related Neurophysiological Deficits in Schizophrenia. Clin. EEG Neurosci. 51 (4), 222–233.

Jaakelainen, I.P., Ojanen, A., Abivenen, J., Auranen, T., Levannen, S., Mottonen, R., Tarnanen, I., Sams, M. 2004. Adaptation of neuromagnetic N1 responses to phonetic stimuli by visual speech in humans. Neuroreport 15, 2741–2744.

Javitt, D.C., Sweet, R.A. 2015. Auditory dysfunction in schizophrenia: Integrating clinical and basic features. Nat. Rev. Neurosci. 16 (9), 535–550.

Kay, S.R., Fixtein, A., Opler, L.A. 1987. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13 (2), 261–276.

Keele, R.S.E., Goldberg, T.E., Harvey, P.D., Gold, J.M., Poe, M.P., Coughenson, L. 2004. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neuropsychiatric battery. Schizophr. Res. 68, 283–297.

Kustermann, T., Popov, T., Miller, G.A., Rockstroh, B. 2018. Verbal working memory-related neural network communication in schizophrenia. Psychopharmacology 55 (9), e13088.

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B. 2017. immerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26.

Lee, T.W., Girolami, M., Sejnowski, T.J. 1999. An extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput. 11 (2), 417–441.

Leicht, G., Kirsch, V., Giegling, I., Hantschk, I., Moller, H.-J., Vogl, A., Hegertl, U., Rujescu, D., Mulert, C. 2010. Reduced early auditory evoked gamma-band response in patients with schizophrenia. Biol. Psychiatry 67 (3), 224–231.

Li, X., Branch, C., Ardekani, B., Bertisch, H., Hicks, C., DeLisi, L., 2007. fMRI study of numbers into movies. Spat. Vis. 10 (4), 437–442.

Mathalon, D.H., Roach, B.J., Ferri, J.M., Loewy, R.L., Stuart, B.K., Perez, V.B., Trujillo, T.H., Foxe, J.M., 2019. Deficient auditory predictive coding during vocalization in the psychosis risk syndrome and in early illness schizophrenia: the final expanded sample. Psychol. Med. 49 (11), 1897–1904.

Mohr, B., Pulvermüller, F., Cohen, R., Rockstroh, B. 2000. Interhemispheric cooperation during word processing: evidence for callosal transfer dysfunction in schizophrenic patients. Schizophr. Res. 46 (2–3), 231–239.

Moor, J.K., Keil, J., Masurovsky, A., Gutwinski, S., Montag, C., Senkowski, D., Stekenburg, J.J., Maes, J.P., Van Gool, A.R., Sitskoorn, M., Vroomen, J., 2013. Deficient multisensory integration in schizophrenia: An event-related potential study. Schizophr. Res. 147 (2–3), 253–261.

Ramsay, I.S., Schallmo, M.-P., Bigiagio, B., Fisher, M., Vinogradov, S., Sponheim, S.R. 2020. Deficits in auditory and visual sensory discrimination reflect a genetic liability for psychosis and predict disturbances in global cognitive functioning. Front. Psychiatry 11, 638.

Roma Romero, Y., Keil, J., Balz, J., Galliant, J., Senkowski, D. 2016a. Reduced frontal theta oscillations indicate altered crossmodal prediction error processing in schizophrenia. J. Neurophysiol. 116 (3), 1396–1407.

Roma Romero, Y., Keil, J., Balz, J., Niedeggen, M., Galliant, J., Senkowski, D. 2016b. Alpha-Band Oscillations Reflect Altered Multisensory Processing of the McGurk Illusion in Schizophrenia. Front. Hum. Neurosci. 10, 41.

Rolls, E.T., Ish, M., Deco, G., Winterer, G. 2008. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9 (9), 696–709. https://doi.org/10.1038/nrn2462.

Rosburg, T., Bourtou, N.N., Ford, J.M., 2008. Reduced auditory evoked potential component N100 in schizophrenia–a critical review. Psychiatry Res. 161 (3), 259–274.

Roa, L.A., Schallmo, M.-P., Schaffer, M., Uhlhaas, P.J., 2021. Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale. Psychiatry Res. 161 (3), 442–448.

Sheffield, J.M., Karcher, N.R., Barch, D.M. 2018. Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. Neuropsychol. Rev. 28 (4), 509–533.

Shahin, A.J., Kerlin, J.R., Bhat, J., Miller, L.M. 2012. Neural restoration of degraded audiovisual speech. NeuroImage 60 (1), 250–331.

Shin, M.K., Hong, S.-J., Kim, J.-M., Ha, J.-O. 2020. Oscillatory neuronal dynamics in schizophrenia: the principle of inverse effectiveness. Psychiatry Res. 282 (3), 112541.

Stekelenburg, J.J., Maes, J.P., Van Gool, A.R., Sitskoorn, M., Vroomen, J., 2013. Deficient multisensory integration in schizophrenia: An event-related potential study. Schizophr. Res. 147 (2–3), 253–261.

Tarnanen, I., Sams, M. 2004. Adaptation of neuromagnetic N1 responses to phonetic stimuli by visual speech in humans. Neuroreport 15, 2741–2744.

Thakore, J.H., Molholm, S., Spencer, K.M., Onitsuka, T., Hirano, Y. 2020. Language-Related Neurophysiological Deficits in Schizophrenia. Clin. EEG Neurosci. 51 (4), 222–233.