An Updated List of Neuromedicial Plants of Pakistan, Their Uses, and Phytochemistry

Abdul Waheed Khan,1 Arif-ullah Khan,2 Syed Muhammad Mukarram Shah,3 Aziz Ullah,4 Muhammad Faheem,2 and Muhammad Saleem2

1Department of Pharmacy, University of Lahore, Islamabad, Pakistan
2Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
3Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa, Pakistan
4Department of Pharmacy, Forman Christian College, Lahore, Pakistan

Correspondence should be addressed to Arif-ullah Khan; arif.ullah@riphah.edu.pk

Received 12 November 2018; Revised 14 January 2019; Accepted 5 February 2019; Published 3 March 2019

Background. Almost every region of Pakistan is stacked with a large number of medicinal plants. Due to high cost and unavailability ofallopathic medicines for the neurological diseases, especially in rural areas, traditional healers prescribe phytotherapy for various neurological diseases like epilepsy, depression, anxiety, insomnia, Alzheimer, and migraine. Such treatments are considered to be most effective by the native people.

Methods. The data was collected from articles published on medicinal plants of various districts of Pakistan, using article search engines like Medline, Pubmed, Web of Science, Science Direct, and Google Scholar. Also, information regarding various neurological uses and mode of applications of medicinal plants was obtained from traditional healers, folk medicine users, and local elderly people having knowledge of medicinal plants.

Results. A total of 54 families were found to be used in various neurological diseases, of which the highest use was of Solanaceae (22.22%), Asteraceae (12.96%), Lamiaceae, Papaveraceae, and Poaceae, 9% each, and Caprifoliaceae, Cucurbitaceae, Rhamnaceae, and Rosaceae, 5.5% each. According to districts, 15% of plants that were effective in neurological affections were found in Bahawalpur, 11% in Swat, 8% in Muzaffarabad, 7% in Malakand, and 6% in Bahawalnagar, Dir, Gilgit, and Sarghoda each, with 5% in Dera ghazi khan and Jhelum each. According to the plant’s habit, out of total of 103 plants, 61.15% were found to be herbs, 22.33% trees, 11.65% shrubs, and 4.85% climbers. According to the part used of plant, whole plant, leaves, fruits, roots, seeds, and flowers were found to be used 32.03%, 24.27%, 20.38%, 16.50%, 13.59%, and 11.65%, respectively. According to disease’s types, 45.63% were found to be effective in insomnia, 31.06% in epilepsy, 12.62% in depression, 6.80% in anxiety, 77.7% in hysteria, and 5.88% in migraine.

Conclusion. Taking into consideration this useful knowledge on medicinal properties of the plants for curing neurologic diseases, it is believed that research in areas of ethnomedicine and ethnopharmacology can bring auspicious results that have potential of adding value to the very rich natural resources of Pakistan. This study will help all the researchers from diverse backgrounds working on plants based medicine for neurological diseases.

1. Introduction

Globally, neurological diseases are among the major contributors to mortality and morbidity, particularly in developing nations. The well-known manifestations of neurological diseases include mood swing, restlessness, hopelessness, poor coordination, seizures, impaired cognition, paralysis, distress of sensation, muscle weakness, pain, and confusion [1]. There are more than six hundred neurological diseases, some of which are relatively common and well known while others are rare or poorly recognized [2]. Demographic, socioeconomic, and geographic conditions are the major factors affecting epidemiology of neurological diseases. Globally, the overall burden of neurological diseases is about 6.5%. In lower income countries, neurological diseases range from 4 to 5%, as compared to high income countries where such diseases...
and maintain complete data of their patients [1]. Public health systems and health-related facilities that provide in advanced countries may be due to their more advanced range from 10 to 11%. This high ratio of neurological diseases in advanced countries may be due to their more advanced public health system and health-related facilities that provide and maintain complete data of their patients [1].

About 45 million people of the world, above 18 years of age, suffer from schizophrenia at some stage of their lives, 340 million are affected by depression, and both these diseases are accountable for 60% of all suicides, while Alzheimer and epilepsy affect about 11 and 45 million people, respectively, around the world accounting for 1% of the total disease burden in the world [3].

In Pakistan, about 10% people suffer from mental diseases, representing a foggy picture with 2% prevalence of epilepsy, 5% depression, 1% Alzheimer, and 1.5% schizophrenia [4] as shown in (Table 1). These mental morbidities are responsible for high suicidal rate. Major factors contributing to this alarming increase in mental diseases are unemployment, poverty, political unreliability, violence, and other social horrors and evils beyond the genetic and biological susceptibility [5].

Medicinal plants have been used from the very beginning in health care systems. Studies have been carried out globally to verify their efficacy and some of the findings have led to the production of plant-based medicines. Due to limited access to modern medicine, the local population uses medicinal plants to treat most diseases [6, 7]. Recent focus on plant research has increased worldwide and most evidence has been collected to determine the immense potential of medicinal plants [8]. Medical plants have therapeutic benefits and fewer side effects in comparison with synthetic drugs [9]. Drugs used for neurological diseases along with their side effects are given in (Table 2).

Herbs may provide a source of new compounds including many drugs that are derived from plant sources. For several neurological diseases, modern medicine offers symptomatic treatment that is often expensive and associated with side effects. Indian system of medicine has traditionally been used in several neurological conditions. The accessibility, cost effectiveness, and lower incidence of side effects of plant products offer considerable advantages [10].

Various plant extracts have been screened and investigated for their potential neuropharmacological activities in different experimental models of animals comprising mice and rats. Herbal extracts and natural products including Bacopa monnieri, Cannabis sativa, Solanum nigrum, Withania somnifera, Papaver somniferum, Zizyphus jujube, Tribulus terrestris, and Verbena officinalis showed different neuropharmacological activities. These agents can be used alone or as adjuncts to standard drugs, used for various neurological diseases like depression, epilepsy, schizophrenia, Alzheimer, Parkinson, hysteria, melancholia, and dementia, for increasing their efficacy and decreasing side effects.

In developing countries, plant-based medicines are being used by 75-80% of population [11]. The knowledge of indigenous medicinal plants is a part of Pakistan culture and traditionally, majority of Pakistani people use herbal medicines for various diseases [12].

In Pakistan, folk medicines have more use in rural and less developed areas for the treatment of various diseases because of easy access, cost effectiveness, less side effects, and unavailability of allopathic therapeutic agents [13]. This type of treatment, using traditional medicinal flora, is practiced regularly in homes and transferred from generation to generation as a cultural virtue. However, this tradition and associated knowledge are diminishing rapidly due to negligence and less interest of new generation to receive this gift of ethnomedicinal prosperity from their ancestors. Various parameters like industrialization, migration from rural to urban areas for education and jobs, passion towards advanced lifestyles, deforestation, and allopathic medicine might have brought this change in behavior. Therefore, before it is lost forever, this valuable traditional knowledge needs to be urgently collected and systematically documented for the interest of humanity [14].

2. Materials and Methods

First the articles published on the medicinal plants of various districts of Pakistan were searched in online research database, i.e., Medline, PubMed, Web of Science, Science
Drug Class	Subclasses	Drugs	Side effects	References
Antidepressants	TCA	Imipramine, Amitriptyline, Desipramine, Nortriptyline, Doxepin	weight gain, sedation, dry mouth, nausea, blurred vision, constipation, tachycardia, dry mouth, constipation, hypotension, increased heart rate	[92]
	MAOI	Isocarboxazid, Phenelzine, Tranylcypromine, Selegiline	weight gain, fatigue, sexual dysfunction, nausea, hypotension, dry mouth, diarrhea or constipation, headache, drowsiness, insomnia, headache, sedation, dizziness, nervousness, somnolence, extrapyramidal effects, nausea, dry mouth, diarrhea, agitation, insomnia, sexual dysfunction, weight gain	[93]
	SSRI	Fluoxetine, Paroxetine, Fluvoxamine, Sertraline, Citalopram	nausea, insomnia, dry mouth, headache, increased blood pressure, sexual dysfunction, weight gain, urinary retention, hyponatremia, tremors, vertigo, tachycardia, shock-like sensations, paresthesia, myalgia, tinnitus, neuralgia, ataxia	[92, 94]
	SNRI	Venlafaxine, Duloxetine, Desvenlafaxine, Levomilnacipran	nausea, insomnia, weight gain, urinary retention, hyponatremia, tremors, vertigo, tachycardia, shock-like sensations, paresthesia, myalgia, tinnitus, neuralgia, ataxia	[92, 94]
	Atypical	Bupropion, Mirtazapine, Trazodone, Vilazodone	headache, agitation, insomnia, sweating, sedation, increased appetite, weight gain, nausea, dizziness	[92]
Anxiolytics	BZDs	Alprazolam, Clonazepam, Lorazepam, Mida zolam, Diazepam	sedation, memory disturbances, tolerance, fatigue, dependence, drowsiness, lethargy, At higher dosages, impaired motor coordination, dizziness, vertigo, slurred speech, blurry vision, mood swings, euphoria	[95]
	Azapirones	Buspirone, Binospirone, Gepirone, Tandospirone	dizziness, drowsiness, headaches, restlessness, nausea, diarrhea	[96]
	BAR	Phenobarbital, Amobarbital, Secobarbital, Butabarbital, Pentobarbital	dizziness, drowsiness, headaches, restlessness, nausea, diarrhea	[97]
Anti-Alzheimer	AChEIs	Donepezil, Rivastigmine, Galantamine	vomiting, diarrhea, weight loss, bradycardia, insomnia, nausea, agitation, syncope	[98]
	Anti-β	Bapineuzumab, Solanezumab, Gantenerumab	microhemorrhage, vasogenic edema, arrhythmia, skin and subcutaneous tissue disorders	[99]
	NMDAR Antagonists	Memantine	psychosis, nausea, vomiting, memory impairment, and neuronal cell death, drowsiness	[99]
Anti-Parkinson	DA	Bromocriptine, Pergolide, Cabergoline, Pramipexole	nausea, hypotension, confusion, delirium, pulmonary fibrosis, vasospasm, erythro malalgia, sleep attacks	[100]
	COMT Inhibitors	Entacapone, Tolcapone	dyskinesia, nausea, confusion, urine discoloration, diarrhea, abdominal pain	[100]
	MAO-B	Selegline	confusion, delirium, hallucinations, unusual thoughts or behavior, dizziness, nausea, insomnia, trouble breathing	[99]
Antiepileptic	Sodium Channel Blockers	Phenytoin, Carbamazepine, Lamotrigin e, Lacosamide, Oxcarbazepine, Gabapentin, Lamotrigine	dizziness, drowsiness, diplopia, nausea, vomiting, fatigue, ataxia, neurotoxicity, cardiac arrhythmias, hirsutism, hepatotoxicity, steven-johnson syndrome	[101]
	Calcium Channel Blockers	Ethosuximide, Zonisamide, Valproate, Trimethadione	nausea, vomiting, headache, mental status changes, neuropathy, change in weight	[102]
	GABA transaminase Inhibitors	Vigabatrin, L-Cycloserine, Ethanolamine-O-Sulfate, Valproate	drowsiness, nystagmus, hyperexcitability, insomnia, fever, memory impairment, depression, confusion, agitation, asthma, laryngitis, weight gain, vomiting	[103]

TCA: tricyclic antidepressant; MAOI: monoamine oxidase inhibitor; SSRI: selective serotonin reuptake inhibitor; SNRI: serotonin norepinephrine reuptake inhibitor; BZDs: benzodiazepines; BAR: barbiturates; AChEIs: acetylcholinesterase inhibitors; Aβ: amyloid beta; NMDAR: N-methyl-D-aspartate receptor; DA: dopamine agonists; COMT: catechol-O-methyl transferase; MAO-B: monoamine oxidase B; GABA: gamma-aminobutyric acid.
4 Evidence-Based Complementary and Alternative Medicine

Attock
Azad Jammu & Kashmir
Bahawalnagar
Bahawalpur
Bannu
Battagram
Buner
Dera Ghazi Khan
Dir
Gilgit
Gujrat
Hafizabad
Haripur
Himalaya
Islamabad
Jhelum
Koti
Malakand
Mianwali
Muzaffarabad
Sargodha
Swat
Zairat

Figure 1: District-wise percentage of plants used for neurological diseases.

Direct, and Google Scholar, by using special key words “medicinal plants”, herbal plants, neurological diseases, specific districts names, antialzheimer, antiparkinson, antidepress, sedative, anxiolytic, antiepileptics, epidemiology, and prevalence, from January to March 2018, and downloaded. These entire articles were then viewed and the data of medicinal plants, which have neurological effects, were collected and tabulated in (Table 3). We have personally visited districts Bahawalpur, Bannu, Buner, Dir, Gilgit, Islamabad, Jhelum, Malakand, Mianwali, Rawalpindi, Sargodha, and Swat in April-June 2018 and collected information regarding plants local names, local use, mode of applications, and administration of these plants in neurological diseases from local traditional healers, folk medicine users, and local elderly people of those districts having knowledge of medicinal plants. Information was also collected from distant districts with the help of friends living there via social media (phone calls, text messages, WhatsApp calls and messages, and emails).

3. Results and Discussion

A total of 54 families were found to be useful in various neurological diseases, of which the highest use was of Solanaceae (22.22 %), Asteraceae (12.96 %), Lamiaceae, Papaveraceae, and Poaceae, 9 % each, and Caprifoliaceae, Cucurbitaceae, Rhamnaceae, and Rosaceae, 5.5 % each (Table 3). As per district point of view, 15% plants, effective in neurological affections, were found in Bahawalpur, 11% in Swat, 8 % in Muzaffarabad, 7% in Malakand, and 6% in Bahawalnagar, Dir, Gilgit, and Sargodha each, with 5% in Dera ghazi khan and Jhelum each (Figure 1).

This district-wise plant distribution will help the researchers, who are willing to research in neuropharmacological area, to easily collect the target plants from the regions to which the plants belong. According to the plant’s habit, out of total of 103 plants, 61.15% were found to be herbs, 22.33 % trees, 11.65% shrubs, and 4.85% climbers (Figure 2).

The habit of plants shows that herbs are most important according to neuropharmacological point of view which is another benefit for researchers working in neuropharmacological area to concentrate on herbs more while selecting neurological active plants. According to the part used of plant, whole plant, leaves, fruits, roots, seeds, flowers, and other parts (bulbs, latex, gum, tubers, and rhizome) were found to be used 32.03 %, 24.27 %, 20.38 %, 16.50 %, 13.59 %, 11.65 %, and 15.53 %, respectively (Figure 3). As some plants
have more than one part to be used for various neurological diseases, so such plants were counted into percentage of all respective parts. This division of neuropharmacological plants ensures the researchers to select the most appropriate parts of plants having specific neuropharmacological activities, for their research, as used by traditional healers and folk medicine users.

According to disease’s types, 45.63 % were found to be of therapeutic value in insomnia, epilepsy (31.06%), depression (12.62%), anxiety (6.80%), hysteria (7.77%), and migraine (5.88%) and 20.38% in other neurological diseases (neuralgia, mania, Parkinson, schizophrenia, and nerve pain) (Figure 4). As some plants are used for multiple neurological ailments, so such plants were counted into percentage of all respective diseases. This disease-wise plant division will help the local researchers to select their interest areas in the field of neuropharmacology, by selecting the neurological disease, for which most of the plant’s percentage was found to be used by traditional healers and folk medicine users in various districts of Pakistan.

The pharmacological activities of plants are due to the presence of various phytochemicals mainly alkaloids, flavonoids, tannins, saponins, resins, glycosides, terpenoids, phenols, sterols, essential oils, vitamins, and nutrients. Some of these are effective in the treatment of neurological diseases; some are useful for cardiovascular, respiratory, and gastrointestinal diseases while others have chemotherapeutic and antibacterial effects. Some of the important phytochemicals of the plants (Table 4) including alkaloids (like nicotine and scopoline) are reported to have anxiolytic, antidepressant, and anti-Parkinson activities [15–18], saponins (like bacosides) have been reported for anxiolytic, antiepileptic, anti-Alzheimer, and neuroprotective and memory enhancement activities [19–22], terpenoids (like cannabigerol, tetrahydrocannabinol, and cannabidiol) are reported for their neuroprotective effects [23], flavonoids (like kaempferol, luteolin, quercetin, rutin, and hesperidin) have been reported for their anxiolytic, antidepressant, antiepileptic, anti-Alzheimer, and neuroprotective and memory enhancement activities [24–30], glycosides (like hastatoside and verbena) are reported for sleep promoting activity [31], steroids (like sitoindosides VII–X and withaferin-A) have been reported for anxiolytic activity [32].

Bacopa monnieri plant is reported for anxiety, depressant, epilepsy, and Parkinsonism and contains alkaloids (Brahmin, nicotine, herpestine, and bacosides A & B), saponins (her-saponin and monninerin), flavonoids (luteolin and apigenin), and sterols like b-sitosterol and stigma-sterol. These constituents are already reported for such neuropharmacological properties and so might be responsible for said activities of this plant [33–36].

Cannabis sativa L. has been reported for the treatment of depression, anxiety, convulsion, Alzheimer, dementia, and insomnia and its constituents responsible for these properties are cannabigerol, tetrahydrocannabinol, and cannabidiol [37–41].

VERBENA OFFICINALIS Linn. has been reported as anxiolytic, antidepressant, anticonvulsant, and sedative and its constituents responsible for these activities are verbienin, verbena, hastatoside, kaempferol, luteolin, verbascoside, aucubin, and apigenin [42–44].

Withania somnifera has been shown to have anxiolytic, antidepressant, anticonvulsant, and anti-Parkinson effects, mainly due to the presence of withanolides, sitoindosides VII–X, and withaferin-A [45–48].

These chemical constituents of plants act on the central nervous system through various mechanisms including regulation of neurotransmitters like adrenergic, cholinergergic and serotonergic activity, acting through receptor like GABA and N-methyl-D-aspartate, and ion channels like sodium, potassium, and calcium ion channels. Some of the plant-based drugs and phytochemicals which either are approved or are under clinical trials for the treatment of neurological diseases, mechanism of actions, and their current status in clinical trials are given in (Table 5).

Taking into consideration this useful knowledge on the medicinal properties of plants for curing neurologic diseases, it is believed that the research in the areas of ethnomedicine and ethnopharmacology can bring auspicious results that have potential of adding importance to the very rich natural resources of Pakistan. Various phytochemicals from the above medicinal plants can be further researched under clinical trials and better drugs for treatment of neurological diseases can be obtained with outstanding results and lesser side effects. This study will help all the researchers, especially from Asian countries including Pakistan, China, Iran, India, Sri Lanka, and Bangladesh, working on plants based medicine for neurological diseases.

4. Conclusion

The mental illnesses are one of the major problems of the world mainly in communities presenting with poor socioeconomic conditions. In Pakistan and other countries...
Table 3: Traditionally used medicinal plants for the treatment of various neurological diseases.

S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
1	Achyranthes aspera	Ayokanda	Amaranthaceae	Herb	Leaves and Shoot	Nerve tonic	Paste of dried leaves and shoots is applied on head	Sargodha	[104]
2	Ailanthus altissima	Backyanra	Simarubacea	Tree	Bark	Hysteria	Decoction of bark to make tea	Malakand	[105]
3	Albizia lebbeck	Sirin	Mimosaceae	Tree	Roots	Depression, Migraine and Anxiety	Decoction of root to make tea	Mianwali	[106]
4	Allium sativum	Ooga	Amaryllidaceae	Herb	Bulbs and Leaves	Hysteria and Epilepsy	Decoction of bulbs and leaves	Swat	[107]
5	Ahus nitida	Geiray	Betulacea	Tree	Flowers	Insomnia	Powder of dried flowers mixed with water and used orally	Dir	[108]
6	Alternanthera sessilis	Waglon	Amaranthaceae	Herb	Leaves	Neuralgia and Sedative	Sniffing of leaves sap	Bahawalpur	[109]
7	Anagallis arvensis	Billy booti	Primulaceae	Herb	Whole plant	Nervine, mania and Epilepsy	Extract of whole plant	Bahawalpur	[109]
8	Artemisia scoparia	Jaukay	Asteraceae	Herb	Roots	Epilepsy	Powder of roots taken with water	Dir	[108]
9	Asparagus officinalis	Phala-moosa	Asparagaceae	Herb	Leaves	Insomnia	Tea of leaves are used on empty stomach	Lahore	[110]
10	Atropa accuminata	Bargak	Solanaceae	Herb	Leaves	Insomnia and narcotic	Powder of leaves are taken with water	Dir	[108]
S #	Botanical Name	Local Name	Family	Part Used	Used for	Mode of Applications	Location	Reference	
-----	----------------------	------------	-------------	-----------	---------------------------------	--	----------------	-----------	
11	Avena fatua	Jodal	Poaceae	Herb	Seeds	Depression and nervous exhaustion	Dera Ghazi Khan	[111]	
12	Avena sativa	Jai	Poaceae	Herb	Seeds	Nerve tonic and Insomnia	Islamabad	[112]	
13	Bacopa monnieri	Brahmi sak	Scrophulariaceae	Herb	Whole plant	Epilepsy	Mianwali	[106]	
14	Buglossoides arvensis	Kalu	Boraginaceae	Herb	Leaves	Infusion of leaves is used orally	Kotli	[113]	
15	Caltha alba	Makanpat	Ranunculaceae	Herb	Whole plant	Insomnia	Dir	[108]	
16	Campanula pallida	Beli Flower	Campanulaceae	Herb	Flowers	Insomnia	Kotli	[113]	
17	Cannabis Sativa	Bhang	Cannabaceae	Herb	Flowers	Insomnia	Bannu	[114]	
18	Capparis decidua	kdler	Capparidaceae	Shrub	Flowers, fruits and shoots	Insomnia	Gawadar	[115]	
19	Capparis spinosa	Kawir	Capparidaceae	Shrub	Whole plant	Mental disorders	Gilgat	[116]	
20	Carthamus tinctorius	Tukhmiga-rtum	Asteraceae	Herb	Roots, oil and flowers	Insomnia	Rawalpindi	[117]	
S #	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
-----	--------------------	----------------	---------------	----------	---------------	----------------	---	-------------	-----------
21	Celtis australis	Karr	Cannabaceae	Tree	Bark	Epilepsy	Decoction of bark is used orally	Sargodha	[118]
22	Cenchrus pennisetiformis	Cheetah-gha	Poaceae	Herb	Leaves and fruits	Epilepsy	Extracts and juice of leaves and fruits	Hafizabad	[119]
23	Citrulus colocynthis	Tumma	Cucurbitaceae	Climber	Roots and fruits	Epilepsy	The extract of roots is taken with water while fruit’s powder is mixed with sugar	Jhelum	[120]
24	Citrus limon	Nimboo	Rutaceae	Tree	Whole plant	Anxiety and Depression	whole plant extract	Bahawalpur	[109]
25	Citrus medica	Khatti	Rutaceae	Tree	Leaves, seeds, latex	Insomnia	Powder of leaves, seeds and dry latex are taken orally with water	Bahawalpur	[109]
26	Colebrookia oppositifolia	Lansa	Lamiaceae	Shrub	Leaves and roots	Epilepsy	Fresh leaves extract and roots decoction tea is taken orally	Malakand	[121]
27	Commiphora wightii	Guggul, Mukul	Burseraceae	Herb	Gum	Nervous diseases	The aqueous extract of gum is used	Muzaffarbad	[122]
28	Convolvulus arvensis	Baily	Convolvulaceae	Herb	Whole plant	Epilepsy	whole plant extract	Malakand	[121]
29	Cucurbita maxima	Walayti kadoo	Cucurbitaceae	Climber	Fruits	Nervous disorders	Juice of both unripe and ripe fruits is used	Azad Jammu & Kashmir	[123]
30	Cuscuta reflexa	Bepari, Kasus	Cuscutaceae	Tree	Seeds	Insomnia	An infusion of seed is used	Muzaffarbad	[122]
31	Cymbopogon citratus	Lemon-grass	Poaceae	Herb	Oil of whole plant	Nervous system tonic	Oil is externally applied on head	Bahawalpur	[109]
S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
----	------------------------	------------	-----------	---------	-----------	--------------------------------	---	----------------------	-----------
32	*Cynodon dactylon*	Lawn grass	Poaceae	Herb	Whole plant	Epilepsy and Hysteria	Extracted juice of plant is used	Dera Ghazi Khan	[111]
33	*Cyperus rotundus*	Deela	Cyperaceae	Herb	Tubers	Epilepsy	Oil obtained from tubers are used	Bahawalnagar	[124]
34	*Datura alba*	Datura	Solanaceae	Shrub	Leaves and seeds	Neuralgia, Epilepsy, Hysteria and Insomnia	Lotion of seeds powder is applied locally for neuralgia while tea of leaves is used for Epilepsy	Bahawalpur	[109]
35	*Datura innoxia*	Datura	Solanaceae	Herb	Leaves	Epilepsy and Insomnia	Extract of leaves in water	Dir	[108]
36	*Datura metel*	Dhaturo	Solanaceae	Herb	Leaves and seeds	Epilepsy and Insomnia	Leaves extract and seed's decoction are used	Muzaffarabad	[122]
37	*Datura stramonium*	Datura	Solanaceae	Herb	Whole plant	Insomnia and Parkinson	Extraction of whole plant is used	Dera Ghazi Khan	[111]
38	*Daucus carota*	Gajar	Apiaceae	Herb	Whole plant	Nerve tonic	Eaten as a whole or its juice is used	Sargodha	[104]
39	*Eclipta alba*	Bhringaraj	Asteraceae	Herb	Roots, oil and leaves	Insomnia	Oil is externally applied while roots and leaves extract is used orally	Bahawalpur	[109]
40	*Erucasativa*	Tara meera	Cruciferace	Herb	Whole plant	Epilepsy	Fluid extraction of plant is used	Islamabad	[112]
41	*Evolvulus alsinoides*	Sankha-holi	Convolvulaceae	Herb	Whole plant	Epilepsy	Decoction of whole plant is used	Islamabad	[112]
42	*Ficus lysata*	Beeri patta	Moraceae	Tree	Leaves	Migraine	Extraction of leaves is used orally	Bahawalpur	[109]
S #	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
-----	----------------	------------	--------	---------	-----------	---------	----------------------	----------	-----------
43	Flueggea leucopyrus	Shina	Phyllanthaceae	Shrub	Roots	Epilepsy	Decoction and extraction of roots are used	Dir	[125]
44	Fumaria indica	Pitpapra	Fumariaceae	Herb	Leaves and stem	Insomnia	Fresh juice of leaves and stem is used	Rawalpindi	[117]
45	Gmelina arborea	Kumbar	Lamiaceae	Tree	Roots	Epilepsy	Extraction and decoction of roots tea is used	Sargodha	[118]
46	Hyoscyamus niger	Ajwain-i-Khurasani	Solanaceae	Herb	Leaves and seeds	Insomnia and Nervous affection	Extraction of fresh leaves and powder of seeds are used orally	Gilgat	[126]
47	Hypericum perforatum	Bulhsana	Hypericaceae	Herb	Whole plant	Depression and Insomnia	Fresh extract of whole plant is used orally	Gujrat	[127]
48	Hyssopus officinalis	Zufa, Zupa	Lamiaceae	Herb	Whole plant	Nervous affection	Extraction of fresh whole plant	Ziarat	[128]
49	Indigofera heterantha	Kainthi	Papilionaceae	Shrub	Whole plant	Epilepsy and neuropathy	Extract of whole plant is used	Gilgat	[116]
50	Jasminum grandiflorum	Chanbeli	Oleaceae	Climber	Whole plant	Anxiety, tension and Depression	Oil or tea of leaves and flowers extract are used	Bahawalpur	[109]
51	Jasminum officinale	Chanbeli	Oleaceae	Climber	Whole plant	Insomnia	Oil is rubbed on heart as nerve sedative	Swat	[107]
52	Juglans regia	Ghuz	Juglandaceae	Tree	Fruits	Depression	Fruits are taken as whole orally	Malakand	[105]
53	Lactuca serriola	Berham dandi	Asteraceae	Herb	Whole plant	Memory Enhancing	Fresh plant is ground in water along with black pepper	Jhelum	[120]
S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
----	----------------------	------------	-----------	---------	-----------	---------------------------	---	----------	-----------
54	Linum usitatissimum	Alsi	Linaceae	Herb	Stem	Depression, Schizophrenia and Anxiety	Extraction of fresh stem is used	Kodi	[113]
55	Lycopersicon esculentum	Tamator	Solanaceae	Herb	Fruits	Nervous weakness	Eaten as a whole or its juice is used	Sargodha	[104]
56	Matricaria chamomilla	Babuna	Asteraceae	Herb	Whole plant	Insomnia	Extraction of whole plant is used orally and oil massage or aromatherapy into skin of head is performed	Rawalpindi	[117]
57	Martinia annua	Bichhu-butti	Martyniaceae	Herb	Leaves and fruits	Epilepsy	Juice of leaves or leaves are cooked to make curry and fruits are taken as dry powder with water	Kodi	[113]
58	Melia azedanach	Bakyana	Meliaceae	Tree	Leaves	Hysteria	Decoction of leaves to makes tea	Malakand	[105]
59	Mimordica dioca	Jhungli karela	Cucurbitaceae	Climber	Fruits and seeds	Insomnia	Fruit's extract and seed oil are used	Mianwali	[129]
60	Moringa oleifera	Sohan-jana	Moringaceae	Tree	Seeds and bark	Migraine	Seeds oil used externally while powder of leaves	Gujrat	[127]
61	Ocimum basilicum	Niazbo	Lamiaceae	Herb	Leaves, flowers, seeds and roots	Migraine, Insomnia and Depression	Juice of fresh leaves and flowers while oil of seeds is applied externally on head	Bahawalnagar	[124]
62	Paeonia emodi	Mamaikh	Paeoniaceae	Herb	Rhizome	Epilepsy	Rhizome powder is given 1/2 teaspoon twice a day	Malakand	[105]
S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
----	----------------------	------------	--------------	---------	-----------	------------	--	----------	-----------
63	*Papaver dubium*	Koko-kanga	Papaveraceae	Herb	Flowers	Insomnia	Fluid extract of flowers is used	Kotli	[113]
64	*Papaver hybridum*	Post	Papaveraceae	Herb	Fruits	Insomnia	Fruit and its decoction are used	Jhelum	[120]
65	*Papaver nudicaule*	Zangali kashkash	Papaveraceae	Herb	Flowers	Insomnia	Fluid extract of flowers is used	Buner	[130]
66	*Papaver rhoas*	Alak jinai	Papaveraceae	Herb	Flowers	Insomnia	Fluid extract of flowers is used	Buner	[130]
67	*Papaver somniferum*	Qash-Qash	Papaveraceae	Herb	Fruit's latex	Insomnia	Latex of unripe fruit is dissolved in water and used orally	Swat	[107]
68	*Parthenium hysterophorus*	Ragweed	Asteraceae	Herb	Leaves	Insomnia	Leaves extraction is used	Buner	[130]
69	*Peganum harmala*	Harmal	Zygophyllaceae	Herb	Seeds	Hysteria	A small amount of seeds added to sufficient grapes juice, boiled to make thick solution and used orally	Dera Ghazi Khan	[111]
70	*Populus caspica*	Nakhtar	Pinaceae	Tree	Fruits	Insomnia	Whole raw fruits are consumed	Malakand	[105]
71	*Primula veris*	Cowslips	Primulaceae	Herb	Flowers	Insomnia	A tasty wine of flowers is made which is used orally	Gilgit	[126]
72	*Prunus persica*	Ardou	Rosaceae	Tree	Leaves, flowers and fruits	Insomnia	Extract of leaves & flowers and fruits are taken as such	Gilgit	[126]
S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
----	----------------	------------	-----------------	---------	-----------	---------------------------	---------------------------------------	---------------------	-----------
73	*Punica granatum*	Darrona	Punicaceae	Shrub	Fruits	Memory enhancing	Fruits' juice or fresh seeds are eaten as such	Azad Jammu & Kashmir	[123]
74	*Pyrus communis*	Nashpatai	Rosaceae	Tree	Fruits	Insomnia	Fruits are eaten as such	Dir	[131]
75	*Pyrus pashia*	Tangai	Rosaceae	Herb	Fruits	Insomnia	Fruits are eaten as such	Swat	[107]
76	*Ranunculus muricatus*	Ziar Gulay	Ranunculaceae	Herb	Whole plant	Sciatic and nerve pain	Extraction of dried whole plant is used	Swat	[132]
77	*Raphanus sativus*	Mooli	Brassicaceae	Herb	Seeds	Nervous weakness	Decoction of seeds is used	Sargodha	[104]
78	*Ricinus communis*	Arand	Euphorbiaceae	Shrub	Roots, seeds, leaves	Insomnia and as narcotic	Extract of leaves and roots while oil of seeds are used	Rawalpindi	[117]
79	*Salvadora oleoides*	Peelu	Salvadoraceae	Tree	Whole plant	Epilepsy	Fruit is eaten as raw while tea of leaves and roots are also used	Bahawalpur	[109]
80	*Schinus molle*	False pepper	Anacardiaceae	Tree	Bark and leaves	Depression	Decoction of bark and leaves to make tea	Sargodha	[118]
81	*Scutellaria chamaedrifolia*	Skullcap	Lamiaceae	Herb	Shoots	Insomnia and Depression	Decoction of shoots to make its tea	Swat	[133]
82	*Solanum minutum*	Peelak	Solanaceae	Herb	Whole plant	Insomnia	whole plant decoction is mixed with sugar	Jhelum	[120]
83	*Solanum nigrum*	Mako	Solanaceae	Herb	Whole plant	Insomnia	Juice of whole plant	Bahawalpur	[109]
84	*Solanum Surratense*	Wara-mara ghinrye	Solanaceae	Herb	Fruits	Melancholia and Depression	The paste of fruits crushed powders is applied on head externally	Bannu	[114]
S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
----	----------------------	------------	-------------	---------	--------------------	----------------	--	----------	-----------
85	*Taxus baccata*	Banhya	Taxaceae	Tree	Leaves and fruits	Epilepsy	Extraction of dried leaves and fruits are consumed as such	Swat	[134]
86	*Taxus wallichiana*	Barmi	Taxaceae	Tree	Bark, leaves and fruits	Epilepsy and Insomnia	Extract of dried bark and leaves while flesh of fruits are consumed	Battagram	[135]
87	*Terminalia arjuna*	Arjun	Combretaceae	Tree	Fruits, bark and leaves	Anxiety	Bark infusion left whole night, then its decoction taken early in the morning and used orally	Bahawalpur	[109]
88	*Tribulus terrestris*	Bakhra	Zygophyllaceae	Herb	Whole plant	Epilepsy and Depression	Powder of dried whole plant	Bahawalnagar	[124]
89	*Valeriana jatamansi*	Mushk-bala	Vahliaceae	Herb	Whole plant	Epilepsy and neurosis	Fresh extract of whole plant	Muzaffarabad	[122]
90	*Verbascum thapsus*	Jungle tambako	Scrophulariceae	Herb	Roots	Migraine	Decoction of root to make tea to use as drink	Mianwali	[106]
91	*Verbena officinalis*	Shamkay	Verbenaceae	Herb	Whole plant	Depression, Migraine and Epilepsy	Extract of dried whole plant is used	Battagram	[135]
92	*Viburnum cotinifolium*	Guch	Caprifoliaceae	Shrub	Stem's bark	Insomnia	Extract of stem's bark	Muzaffarabad	[122]
93	*Viburnum opulus*	Sunaira Phul	Caprifoliaceae	Shrub	Bark	Insomnia and Hysteria	Decoction of bark is used	Muzaffarabad	[122]
S#	Botanical Name	Local Name	Family	Habitat	Part Used	Used for	Mode of Applications	Location	Reference
----	----------------------	------------	----------------	---------	---------------	-------------------------------	---	---------------	-----------
94	*Viburnum prunifolium*	Blackhaw	Caprifoliaceae	Tree	Root’s bark	Hysteria, Anxiety and Epilepsy	Decoction of root’s bark is used	Muzaffarabad	[122]
95	*Vicia sativa*	Muttri	Papilionaceae	Herb	Flowers	Epilepsy and nervous disorders	The juice of flowers petals is used	Kotli	[113]
96	*Viola betonicifolia*	Banafsh	Violaceae	Herb	Whole plant	Epilepsy and nervous disorders	Fresh extract of whole plant orally	Malakand	[105]
97	*Viola canescens*	Banafsha	Violaceae	Herb	Whole plant	Insomnia and Epilepsy	Extract and decoction tea of whole plant	Swat	[133]
98	*Withania coagulans*	Paneer doda	Solanaceae	Herb	Fruits, roots and leaves	Nervous Exhaustion, memory loss and tension	Extract of leaves, roots and fruits are used	Bahawalnagar	[124]
99	*Withania somnifera*	Asgandh	Solanaceae	Shrub	Roots	Insomnia	Powder of roots is taken with water	Bahawalpur	[109]
100	*Xanthium strumarium*	Chota dhatura	Asteraceae	Herbs	Fruits, seeds and roots	Insomnia	Decoction of fruits, roots and seeds to make tea	Attock	[136]
101	*Ziziphus jujuba*	Beri	Rhamnaceae	Tree	Leaves, roots and fruits	Anxiety and Insomnia	Extract of leaves, decoction of roots and dried fruits are consumed	Bahawalnagar	[124]
102	*Ziziphus mauritiana*	Ber	Rhamnaceae	Tree	Roots	Nerve tonic	Decoction of roots is used as tea	Sargodha	[104]
103	*Ziziphus nummularia*	Jangli beri	Rhamnaceae	Shrub	Leaves and fruits	Insomnia	Extract of leaves while fruits are taken as such	Attock	[136]
Table 4: Phytochemical constituents and pharmacological properties of some well-known medicinal plants.

S.#	Medicinal Plants	Pharmacological Properties	Part used	Phytochemical Constituents	Chemical Compounds Identified	References
1	*Allium sativum*	1. Antidepressant 2. Anti-convulsant 3. Anti-Alzheimer	1. Dried bulbs 2. Oil 3. Whole garlic	Thiosulfinates, sapogenins phenols, saponins, volatile compounds, antioxidants, flavonoids, vitamins, minerals and proteins	Alliin, allixin, 1,2-vinylidithiin, ajoenes, S-allyl-cysteine sulfoxide, calcium, Potassium, vitamin B and vitamin C	[137–140]
2	*Bacopa monnieri*	1. Antidepressant 2. Anxiolytic 3. Anti-convulsant 4. Anti-Parkinson	1. Leaves 2. Stems and leaves 3. Leaves 4. Conc. tincture of plant	Alkaloid, tannin, saponin, phlobatannin, glycoside, terpenoid, flavonoid, sterols, phenol, steroid, anthraquinone and carbohydrate	Brahmin, nicotine, herpestine, bacosides A & B, hersaponin, beta-hydroxy acid, monnieri, apigenin, b-sitosterol, stigma-sitosterol and luteolin	[33–36, 141]
3	*Cannabis sativa*	1. Antidepressant and anxiolytic 2. Anti-convulsant 3. Anti-Alzheimer and antidementia 4. Sedative	1. Leaves 2. Leaves 3. Flowers 4. Whole plant	Alkaloid, flavonoids, tannins, phenols, resins, cardiac glucosides, terpenes, steroids, volatile oils and balsam	Cannabinoids, cannabidiol, dronabinol, cannabigerol, tetrahydrocannabinolic acid, cannabichromenic acid, cannabidiolic acid, anadamide, cannabigerolic acid and cannabichromene	[37–40, 142, 143]
4	*Hyoscyamus niger*	1. Antidepressant 2. Anti-seizure 3. Anti-Parkinson	1. Leaves 2. Seeds 3. Seeds	Alkaloids, withanolide steroids, lignanamides, tyramine derivative, steroidal saponins, glycosides, lignans, coumarinolignan, and flavonoids	Apoatropine, L-DOPA, Cuscohygrine, choline Daturamine, Hyoscine, tropine, hyoscylicpin, phytin, aphoyosine, alpha and beta belladonine and Skimmianine	[144–148]
5	*Solanum nigrum*	1. Anti-seizure 2. Sedative	1. Leaves 2. Fruits	Alkaloids, flavonoids, tannins, saponins, glycosides, proteins, carbohydrates, coumarins and phytosterols	Pinoresinol, syringaresinol, medioresinol, scopoletin, tetraoxosalic acid and beta-sitosterol	[149–152]
Table 4: Continued.

S.#	Medicinal Plants	Pharmacological Properties	Part used	Phytochemical Constituents	Chemical Compounds Identified	References
6	*Withania somnifera*	1. Anti-Parkinson	1. Whole plant	Alkaloids, steroidal lactones, saponins and iron	Withanolides, withaferins, Withanine, isopellertierine, anferine, Anahygrine, Cuscohygrine, Beta-Sisterol, Chlorogenic acid, Scopeotin, choline, Somniferiene, Somniferinine and Tropanol	[45–47, 153]
		2. Anxiolytic and antidepressant	2. Roots			
		3. Anticonvulsant	3. Stems and roots			
7	*Papaver somniferum*	1. Anticonvulsant	1. Seeds	Alkaloids, glycosides, tannins, Phytosterols, Terpenoids, Flavanoids and Carbohydrates	Morphine, Codeine, thebaïne, noscapine, papaverine, Salutarifine, meconidine, codeine, neoprene, lanthothine, rophyroxine, narcotisline and papaveramine	[154–159]
8	*Ziziphus jujube*	1. Sedative and hypnotic	1. Seeds	Triterpenic acids, flavonoids, saponins, cerebrosides, amino acids, phenolic acids, vitamins, total sugars and nucleosides	Zizybeoside I and II, Chryseoriol, Swertisin, Quercetin, Jujubasaponin IV, Lotoside I and II, Zizyphus saponin I and II	[160]
		2. Anxiolytic	2. Leaves			
		3. Anti-seizure	3. Fruits			
9	*Tribulus terrestris*	1. Anxiolytic	1. Leaves	Saponins, flavonoids, glycosides, alkaloids and tannins	Tigogenin, neotigogenin, rutin, chlorogenicin, caffeoyl, ruscogenin, kaempferol, tribulosid, terrestribisamide, quercetin, β-sitosterol, stigmasterols, harmane, norharmane and tribulusterine	[161–164]
		2. Antidepressant	2. Whole plant			
		3. Sedative	3. Whole plant			
10	*Verbena officinalis*	1. Antidepressant	1. Leaves	Alkaloids, flavonoids, diterpenes, proteins, amino acids, tannins, saponins, phytosterols and phenolic compounds	Verbenin, oleanolic acid,verbalin, hastatoside, alpha-sitosterol, ursolic acid, kaempferol, aucubin, luteolin, verbascoside, apigenin, scutellarein, limonene and spathulenol	[42, 43]
S.#	Medicinal Plants	Pharmacological Properties	Part used	Phytochemical Constituents	Chemical Compounds Identified	References
-----	------------------	----------------------------	-----------	---------------------------	------------------------------	------------
11	Albizia lebbeck	1. Anticonvulsant 2. Nootropic and anxiolytic	1. Leaves 2. Leaves	Alkaloids, flavonoids, phenols, saponins; steroids and terpenoids	Albizia saponins A, B and C, albizin, melacidin, catechin lebbecacidin, friedelin, and β-sitosterol	[165–168]
12	Avena sativa	1. Antidepressant 2. Anxiolytic	1. Seeds 2. Whole plant	Carbohydrates, alkaloids, flavonoids, steroids, glycosides, saponins, amino acids, gums and mucilage	Gramine, flavone, apigenin and luteolin, flavonolignans, saponins and ferulic acid	[169–171]
13	Capparis decidua	1. Sedative and anticonvulsant	1. Flowers and fruits	Alkaloids, glycosides, terpenoids, sterols, flavanoids, phenols and fatty acids	Capparine, cappariline, capparinine, β-sitosterol, capparidisine, capparazine, codonocarpine, Capric acid, cadabacin, quercetin and rutin l-stachydrine	[172, 173]
14	Citrus limon	1. Anticonvulsant 2. Sedative, anxiolytic and antidepressant	1. Essential oil of leaves 2. Essential oil of leaves	Phenols, flavonoids, terpenoids, essential oils, carotenoids, citric acid and ascorbic acid	Limonene, α-pinene, β-pinene, linalool, α-terpineol, linalyl acetate, acetate geranyl, nerolidol, acetate neryl, farnesol, sabinen, myrcene, cineol and geranial	[174–176]
15	Citrullus colocynthis	1. Anticonvulsant 2. Antidepressant	1. Fruits 2. Fruits	Alkaloids, flavonoids, glycosides, saponosides, Phenolic compounds and ascorbic acid	Colocynthin, colocynthin, colocolythin, Cucurbitane type triterpen glycoside, quercetin and	[15, 16, 177]
16	Datura metel	1. Antiepileptic 2. Sedative and hypnotics	1. Leaves 2. Seeds	Alkaloids, resins, flavonoids, reducing sugars, tannins, terpenoids and steroid glycosides	Hyoscyamine, scopolamine, atropine, daturabietatriene, daturasterol, b-sitosterol and Melatonin and serotonin	[17–21]
Table 4: Continued.

S.#	Medicinal Plants	Pharmacological Properties	Part used	Phytochemical Constituents	Chemical Compounds Identified	References		
17	Hypericum perforatum	1. Antidepressant 2. Anti-Parkinson 3. Neuroprotective 4. Anticonvulsant 5. Anti-Alzheimer 6. Anxiolytic and sedative	1. Flowers 2. Flowers and leaves 3. Whole plant 4. Flowers and leaves 5. Flowers 6. Flowers	Phenylpropanes, flavonoids, biflavones, phloroglucinols proanthocyanidins, amino acids, essential oil and naphthodianthrones	Hyperoside, adhyperforin Quercitrin, Rutin, Hypericin, Kaempferol, Biapigenin and Hyperforin	[22–28]		
18	Jasminum grandiflorum	1. Antidepressant 2. Anticonvulsant	1. Essential oil of plant 2. Leaves	Coumarins, steroids, cardiac glycosides, essential oils, flavonoids, phenolics and saponins	Rutin, kaempferol, quercetin, β-primeveroside, kaempferol, hesperidin Methyl jasmonate, methyl anthranilate, linalool β-rutinoside, oleuropein and daucosterol	[29–31]		
19	Lycopersicon esculentum	1. Antidepressant 2. Anticonvulsant 3. Memory enhancement 4. Anti-Parkinson	1. Fruits 2. Dried fruit extract 3. Dried fruit extract 4. Seeds	flavonoids, tannins, saponin, glycosides, Steroids, fatty acids, carbohydrates and proteins	Chlorogenic acid, rutin, naringenin, noradrenaline lycopene, dopamine, tomatin, tomatoside-A, ascorbic acid, bergapten, serotonin and adrenaline	[32, 178–180]		
20	Ocimum basilicum	1. Antidepressant 2. Anticonvulsant 3. Anxiolytic and sedative 4. Enhance memory retention	1. Essential oil 2. Leaves 3. Aerial parts 4. Leaves	Terpenoids, essential oil, polyphenols, tannins and flavonoids	Cineole, geraniol, linalool, cardanol and sabine, methyl chavicol, β-caryophyllene and neral, quercetin, myricetin, kaempferol, catechin and eugenol	[181–184]		
21	Punica granatum	1. Antidepressant 2. Anxiolytic and anticonvulsant 3. Anti-Alzheimer 4. Memory enhancement	1. Fruits 2. Leaves 3. Fruits 4. Fruit’s peel	Flavonoids, glycosides, amino acids, pectin, indoleamines, tannins, sterols, polyphenols, carbohydrates, ellagitannins, anthocyanins and triterpenoid	Catechin, rutin, quercetin epicatechin, estrid, luteolin kaempferol, anthocyanins, gallaglycidacton, stigmasterol, β-sitosterol, testosterone, tocopherol and isoflavones	[185–188]		
Sr #	Phytochemicals	Source	Family	Disease	Mechanism	Development stage	Trade Name	Reference
------	------------------	----------------------	----------------	--------------------------	--	---------------------------	----------------------------------	-----------
1	Cannabidiol	Cannabis sativa	Cannabaceae	Epilepsy	Modulation of intracellular calcium and neuronal inhibition	FDA approved, 2018	Epidiolex as 5-10 mg/kg/day	[189]
2	Cannabidiol	Cannabis sativa L.	Cannabaceae	Chronic Neuropathic pain	CB1 and CB2 receptor activation	FDA approved, 2005	Sativex Spray (CBD 25mg/ml + THC27mg/ml)	[190]
3	Capsaicin	Capsicum annum L.	Solanaceae	Postherpetic neuralgia	TRPV1 activator	FDA approved, 2010	Qutenza as Patch (179mg capsaicin)	[190]
4	Curcumin	Curcuma longa	Zingiberaceae	Dementia	Anti-amyloid, AChEI	phase II		[191]
5	Galantamine	Galanthus nivalis	Amaryllidaceae	Alzheimer	AChEI, allosteric modulation of nicotinic ACh receptor	FDA approved, 2004	Razadyne as 8-12 mg BD	[192]
6	Huperzine A	Huperzia serrata	Huperziaceae	Alzheimer	AChEI, inhibits NMDA and glutamate toxicity	approved in China		[193]
7	Ibogaine	Tabernanthe iboga	Apocynaceae	Parkinson	Dopaminergic agonist, NMDA antagonism	preclinical		[193]
8	Psychollatine	Psychotria umbellate	Rubiaceae	Parkinson	MAO inhibitor	preclinical		[193]
9	Resveratrol	Vitis vinifera L.	Vitaceae	Alzheimer	Reduces Aβ formation and promote Aβ decomposition	phase II		[194]
10	Scyllo-Inositol	Cornus florida L.	Cornaceae	Alzheimer	Breakdown of neurotoxic fibrils, allowing amyloid peptides to clear the body rather than form amyloid plaques	phase II		[195]

FDA: food and drug administration; TRPV1: transient receptor potential vanilloid 1; CB1 and CB2: cannabinoid receptor type 1 & type 2; Ach: acetylcholine; AChEI: acetylcholinesterase inhibitor; CBD: cannabidiol; THC: tetrahydrocannabinol; BD: bis in die; NMDA: N-methyl-D-aspartate; MAO: monoamine oxidase; Aβ: amyloid beta.
of this region, there is no accurate and up to date record of the neurological ailments. In order to find any treatment for these diseases, first realistic survey would be required to find out the exact percentage of various neurological diseases. Being an alarming psychiatric problem, Alzheimer opens a new area of research, affecting an enormous part of world population, but it is still untreatable. A lot of attempts have been conducted but still there is no such drug that can either slow or stop the process of Alzheimer disease. Allopathic medicines are available for psychological diseases including anxiety, depression, epilepsy, Parkinson, and Alzheimer, but these are either not so effective or costly or have serious associated adverse effects. The world is full of natural medicinal resources, of which the main source is plant. We should invest money and go for systemic scientific investigations to perceive such drug candidates’ form these plants, which are most efficacious, have minor side effects, and are cost friendly. For this purpose, this study is a gift for researchers who have interest to design and perform research based activities in the field of neuropharmacology by evaluating the unexplored medicinal plants mentioned here for their folkloric uses, determining its mechanistic pathways and identifying chemical constituents responsible for therapeutic effects.

Data Availability
No personal data was collected from the interviewees and therefore no such data is kept or shared in any form.

Consent
Prior informed consent was obtained from all participants before conducting interviews. This manuscript does not contain any individual person’s data and further consent for publication is not required.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
Abdul Waheed Khan, Arif-ullah Khan, and Syed Muham- mad Mukarram Shah designed the study, performed field work, and researched various medicinal plants articles on scientific search engines. Aziz Ullah, Muhammad Faheem, and Muhammad Saleem analyzed the data and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgments
The authors heartily thank all the contributors for taking part and sharing their valuable knowledge with us. They humbly acknowledge Mr. Muhammad Adrian, Mr. Mubashir Shahid, Mr. Rooh Ullah, Mr. Imran ul Haq, Mr. Najeeb Shah, Mr Rizwan Ullah, Ms Qurat ul Ain, Ms. Fizza Bukhari, and Ms Rubia Anwar for their continuous support in the dissemination and collection of the questionnaires in various districts of Pakistan.

References
[1] G. Hussain, H. Anwar, A. Shahzad et al., “Neurological disorder burden in faisalabad, punjab-pakistan: data from the major tertiary carecenters of the city,” Pakistan Journal of Neurological Sciences (PJNS), vol. 12, no. 3, pp. 3–10, 2017.
[2] S. Guo, “Using zebrafish to assess the impact of drugs on neural development and function,” Expert Opinion on Drug Discovery, vol. 4, no. 7, pp. 715–726, 2009.
[3] A. A. Gadit, “State of mental health in Pakistan,” Journal of the Pakistan Medical Association, vol. 51, no. 7, pp. 238-239, 2001.
[4] S. Awan, S. Shafqat, A. K. Kamal et al., “Pattern of neurological diseases in adult outpatient neurology clinics in tertiary care hospital,” BMC Research Notes, vol. 10, no. 1, p. 545, 2017.
[5] W. H. Organization, Neurological Disorders: Public Health Challenges, World Health Organization, 2006.
[6] A. Sofowora, E. Ogunbodede, and A. Onayade, “The role and place of medicinal plants in the strategies for disease prevention,” The African Journal of Traditional, Complementary, and Alternative Medicines, vol. 10, no. 5, pp. 210–229, 2013.
[7] N. H. Rakotoarivelo, F. Rakotoarivony, A. V. Ramarosandratana et al., “Medicinal plants used to treat the most frequent diseases encountered in Ambalabe rural community, Eastern Madagascar,” Journal of Ethnobiology and Ethnomedicine, vol. 11, no. 1, p. 68, 2015.
[8] J. S. C. Júnior, A. B. Ferraz, T. O. Sousa et al., “Investigation of biological activities of dichloromethane and ethyl acetate fractions of platonia insignis mart. seed,” Basic & Clinical Pharmacology & Toxicology, vol. 112, no. 1, pp. 34–41, 2013.
[9] M. Govindappa, “A review on role of plant (s) extracts and its phytochemicals for the management of diabetes,” Journal of Diabetes & Metabolism, vol. 6, no. 7, Article ID 1000565, 2015.
[10] Y. Gupta, “Indian traditional medicine in neurological disor- ders,” Planta Medica, vol. 78, no. 05, p. OPI9, 2012.
[11] H. Kanwal and B. A. Sherazi, “Herbal medicine: trend of practice, perspective, and limitations in pakistan,” Asian Pacific Journal of Health Sciences, vol. 4, no. 4, pp. 6–8, 2017.
[12] R. A. Qureshi, M. A. Ghufrán, S. Gilani, Z. Yousaf, G. A. Miана, and A. Batool, “Indigenous medicinal plants used by local women in southern himalayan regions of pakistan,” Pakistan Journal of Botany, vol. 41, no. 1, pp. 19–25, 2009.
[13] A. Mahmood, A. Mahmoood, H. Shaheen, R. A. Qureshi, Y. Sangi, and S. A. Gilani, “Ethno medicinal survey of plants from district himbher azad jammu and kashmir, pakistan,” Journal of Medicinal Plants Research, vol. 5, no. 11, pp. 2348–2360, 2011.
[14] H. Bhatia, Y. P. Sharma, R. K. Manhas, and K. Kumar, “Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India,” Journal of Ethnopharmacology, vol. 151, no. 2, pp. 1005–1018, 2014.
[15] B. Pravin, D. Tushar, P. Vijay, and K. Kishanchnad, “Review on citrullus colocynthis,” International Journal of Research in Pharmaceutical Sciences, vol. 3, no. 1, pp. 46–53, 2013.
[16] S. Mehrzadi, A. Shojaei, S. A. Pur, and M. Motevalian, “Anticon- vulsant activity of hydroalcoholic extract of citrullus colocynthis fruit: involvement of benzodiazepine and opioid receptors,” Evidence-Based Complementary and Alternative Medicine, vol. 21, no. 4, pp. NP31–NP35, 2016.
[17] M. Ali and M. Shuaib, "Characterization of the chemical constituents of datura metel linn," *Indian Journal of Pharmaceutical Sciences*, vol. 58, no. 6, pp. 243–245, 1996.

[18] S. J. Murch, A. R. Alan, J. Cao, and P. K. Saxena, "Melatonin and serotonin in flowers and fruits of datura metel L," *Journal of Pineal Research*, vol. 47, no. 3, pp. 277–283, 2009.

[19] S. Babalola, M. Suleiman, A. Hassan, and D. Adawa, "Evaluation of datura metel seed extract as a sedative/hypnotic: a preliminary study," *Journal of Veterinary Advances*, vol. 5, no. 4, p. 857, 2015.

[20] A. Tijani, U. Eyiney, I. Ibrahim, and S. Okhale, "Neurotoxicological impacts of datura metel linn. (family: solanaceae) leaves extract in mice," *The Journal of Neurobehavioral Sciences*, vol. 2, no. 3, pp. 97–101, 2015.

[21] C. Bhawana, S. Sushil, and S. Amit, "Evaluation of antiepileptic activity of datura metel leaf extract in experimental animal," *International Journal of Research in Pharmacy and Chemistry*, vol. 6, no. 3, 2016.

[22] A. Nahrstedt and V. Butterweck, "Biologically active and other chemical constituents of the herb of hypericum perforation L," *Pharmacopsychiatry*, vol. 30, no. 2, pp. 129–134, 1997.

[23] H. Hosseinzadeh, G. R. Karimi, and M. Rakhsishanzadeh, "Anticonvulsant effect of hypericum perforatum: role of nitric oxide," *Journal of Ethnopharmacology*, vol. 98, no. 1-2, pp. 207-208, 2005.

[24] A. Rezaie, K. R. Dorostkar, M. Pashazadeh, and S. M. Nejad, "Study of sedative and anxiolytic effects of herbal extract hypericum perforatum in comparison with diazepam in rats," *International Journal of Infectious Diseases*, vol. 12, p. e171, 2008.

[25] J. Tian, F. Zhang, J. Cheng, S. Guo, P. Liu, and H. Wang, "Antidepressant-like activity of adhyperforin, a novel constituent of hypericum perforatum L," *Scientific Reports*, vol. 4, p. 5632, 2014.

[26] D. D. Vecchia, M. G. Schanne, M. M. Ferro et al., "Effects of hypericum perforatum on turning behavior in an animal model of parkinson’s disease," *Brazilian Journal of Pharmaceutical Sciences*, vol. 51, no. 1, pp. 111–115, 2015.

[27] A. I. Oliveira, C. Pinho, B. Sarmento, and A. C. P. Dias, "Neuroprotective activity of hypericum perforatum and its major components," *Frontiers in Plant Science*, vol. 7, p. 1004, 2016.

[28] K. Zerreouki, N. Djebli, E. E. Ozkan, N. Oszoy, O. Gul, and A. Mat, "Hypericum perforatum improve memory and learning in alzheimer’s model: experimental study in mice)," *International Journal of Pharmacy and Pharmaceutical Sciences*, vol. 8, no. 8, pp. 49–57, 2016.

[29] P. Kunhachan, C. Banchonglikitkul, T. Kajsongkram, A. Khayungarnawee, and W. Leelamanit, "Chemical composition, toxicity and vasodilatation effect of the flowers extract of jasminum sambac (L.) ait. "g. duke of tuscany"", *Evidence-Based Complementary and Alternative Medicine*, vol. 2012, Article ID 471312, 7 pages, 2012.

[30] R. K. Gupta and P. S. Reddy, "Antinociceptive and anticonvulsant activities of hydroalcoholic extract of jasminum grandiflorum (jasmine) leaves in experimental animals," *Pharmacognosy Research*, vol. 5, no. 4, pp. 286–290, 2013.

[31] S. Umukoro, A. Adebesin, G. Agu, O. Omorogbe, and S. B. Asehinde, "Antidepressant-like activity of methyl jasmonate involves modulation of monoaminergic pathways in mice," *Advances in Medical Sciences*, vol. 63, no. 1, pp. 36–42, 2018.

[32] P. Milind and M. Suman, "Eat tomato a day to keep depression at bay," *Asian Journal of Biological Sciences*, vol. 4, no. 2, pp. 258–262, 2009.

[33] S. K. Bhattacharya and S. Ghosal, "Anxiolytic activity of a standardized extract of Bacopa monniera: an experimental study," *Phytomedicine*, vol. 5, no. 2, pp. 77–82, 1998.

[34] D. Kaushik, A. Tripathi, R. Tripathi, M. Ganachari, and S. A. Khan, "Anticonvulsant activity of bacopa monniera in rodents," *Brazilian Journal of Pharmaceutical Sciences*, vol. 45, no. 4, pp. 643–649, 2009.

[35] P. Jadiya, A. Khan, S. R. Sammi, S. Kaur, S. S. Mir, and A. Nazir, "Anti-parkinsonian effects of bacopa monnieri: insights from transgenic and pharmacological caenorhabditis elegans models of parkinson’s disease," *Biochemical and Biophysical Research Communications*, vol. 413, no. 4, pp. 605–610, 2011.

[36] M. A. Mannan, A. B. Abir, and M. R. Rahman, "Anxiolipstic-like effects of methanolic extract of bacopa monniera in mice," *BMC Complementary and Alternative Medicine*, vol. 15, no. 1, p. 337, 2015.

[37] E. A. Carlini and J. M. Cunha, "Hypnotic and antiepileptic effects of cannabidiol," *The Journal of Clinical Pharmacology*, vol. 21, no. 7, pp. 8–9, pp. 4175–4275, 1981.

[38] J. T. Pickens, "Sedative activity of cannabis in relation to its Δ-2-trans-tetrahydrocannabinol and cannabidiol content," *British Journal of Pharmacology*, vol. 72, no. 4, pp. 649–656, 1981.

[39] L. Vollicer, M. Stelly, J. Morris, J. McLaughlin, and B. J. Vollicer, "Effects of dronabinol on anorexia and disturbed behavior in patients with alzheimer’s disease," *International Journal of Geriatric Psychiatry*, vol. 12, no. 9, pp. 913–919, 1997.

[40] A. R. M. de Schier, N. P. O. de Ribeiro, D. S. Coutinho et al., "Antidepressant-like and anxiolytic-like effects of cannabidiol: a chemical compound of Cannabis sativa," *CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)*, vol. 13, no. 6, pp. 953–960, 2014.

[41] S. Valdeolivas, C. Navarrete, I. Cantarero, M. L. Bellido, E. Muñoz, and O. Sagredo, "Neuroprotective properties of cannabigerol in huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice," *Neurotherapeutics*, vol. 12, no. 1, pp. 185–199, 2015.

[42] T. Jawaid, S. A. Imam, and M. Kamal, "Antidepressant activity of methanolic extract of Verbenica Officinalis Linn. plant in mice," *Asian Journal of Pharmaceutical and Clinical Research*, vol. 8, no. 4, pp. 308–310, 2015.

[43] A. W. Khan, A. –U.-I. Khan, and T. Ahmed, "Anticonvulsant, anxiolytic, and sedative activities of Verbenica officinalis," *Frontiers in Pharmacology*, vol. 7, 2016.

[44] Y. Makino, S. Kondo, Y. Nishimura, Y. Tsukamoto, Z. -L. Huang, and Y. Urade, "Hastatoside and verbenalin are sleep-promoting components in verbena officinalis," *Sleep and Biological Rhythms*, vol. 7, no. 3, pp. 211–217, 2009.

[45] S. K. Bhattacharya, A. Bhattacharya, K. Sairam, and S. Ghosal, "Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study," *Phytomedicine*, vol. 7, no. 6, pp. 463–469, 2000.

[46] M. Ahmad, S. Saleem, A. S. Ahmad et al., "Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats," *Human & Experimental Toxicology*, vol. 24, no. 3, pp. 137–147, 2005.

[47] S. K. Raju, P. L. Basavanna, H. N. Nagesh, and A. D. Shanbhag, "A study on the anticonvulsant activity of Withania somnifera (Dunal) in albino rats," *National Journal of Physiology, Pharmacology and Pharmacology*, vol. 7, no. 1, pp. 17–21, 2017.
[48] S. K. Bhattacharya, R. K. Goel, R. Kaur, and S. Ghosal, “Anti-stress activity of sitoindosides VII and VIII, new acylstererylglucosides from withania somnifera,” Phytotherapy Research, vol. 1, no. 1, pp. 32–37, 1987.

[49] R. C. Burch, S. Loder, E. Loder, and T. A. Smitheter, “The prevalence and burden of migraine and severe headache in the United States: updated statistics from government health surveillance studies,” Headache: The Journal of Head and Face Pain, vol. 55, no. 1, pp. 21–34, 2015.

[50] D. Kadojić, M. Đikanović, M. Bitunjac, V. Vuletić, L. Cencić, and B. Bijelić, “Epidemiology of Stroke,” Periodicum Biologicum, vol. 114, no. 3, pp. 253–257, 2012.

[51] G. Hussain, A. Rasul, H. Anware et al., “Epidemiological data of neurological disorders in Pakistan and neighboring countries: a review,” Pakistan Journal of Neurological Sciences (PJNS), vol. 12, no. 4, pp. 52–70, 2017.

[52] W. H. Organization, Depression and Other Common Mental Disorders: Global Health Estimates, 2017.

[53] D. M. Radhakrishnan and V. Goyal, “Parkinson’s disease: a review,” Neurology India, vol. 66, no. 7, p. 26, 2018.

[54] C. P. Ferri, M. Prince, C. Brayne et al., “Global prevalence of dementia: a Delphi consensus study,” The Lancet, vol. 366, no. 9503, pp. 2112–2117, 2005.

[55] K. P. Peng and S. J. Wang, “Epidemiology of headache disorders in the a sia-p acific region,” Headache: The Journal of Head and Face Pain, vol. 54, no. 4, pp. 610–618, 2014.

[56] N. Venketasubramanian, B. W. Yoon, J. Pandian, and J. C. Navarro, “Stroke epidemiology in south, east, and south-east Asia: A review,” Journal of Stroke, vol. 19, no. 3, pp. 286–294, 2017.

[57] S. Churl, “The worldwide prevalence of epilepsy: a systematic review and meta-analysis,” Epilepsy Currents, vol. 13, p. 322, 2013.

[58] O. Remes, C. Brayne, R. van der Linde, and L. Lafontune, “A systematic review of reviews on the prevalence of anxiety disorders in adult populations,” Brain and Behavior, vol. 6, no. 7, p. e00497, 2016.

[59] T. Pringsheim, N. Jette, A. Frolikis, and T. D. L. Steeves, “The prevalence of Parkinson’s disease: a systematic review and meta-analysis,” Movement Disorders, vol. 29, no. 13, pp. 1583–1590, 2014.

[60] Y. W. Woldeamanuel, A. P. Andreou, and R. P. Cowan, “Prevalence of migraine headache and its weight on neurological burden in Africa: A 43-year systematic review and meta-analysis of community-based studies,” Journal of the Neurological Sciences, vol. 342, no. 1-2, pp. 1–15, 2014.

[61] D. Adeloye, “An estimate of the incidence and prevalence of stroke in Africa: A systematic review and meta-analysis,” PLoS ONE, vol. 9, no. 6, p. e100724, 2014.

[62] Diseases, O.M.d.I.S.P.E.N et al., Atlas: Epilepsy Care in The World, World Health Organization, 2005.

[63] D. G. Massi, “Epidemiology of Parkinsons disease in Africa: Challenges and opportunities. Parkinsonism Related Disorders,” in Epidemiology of Parkinson’s disease in Africa: Challenges and opportunities. Parkinsonism Related Disorders, pp. 46–e10, p. e10, 46, 2018.

[64] R. B. Lipton and M. E. Bigal, “Migraine: epidemiology, impact, and risk factors for progression,” Headache: The Journal of Head and Face Pain, vol. 45, pp. S3–S13, 2005.

[65] D. Mozaffarian, E. J. Benjamin, A. S. Go et al., “Heart disease and stroke statistics—2016 update: a report from the american heart association,” Circulation, p. CIR. 0000000000000350, 2015.

[66] W. H. Theodore, S. S. Spencer, S. Wiebe et al., “Epilepsy in north america: a report prepared under the auspices of the global campaign against epilepsy, the international bureau for epilepsy, the international league against epilepsy, and the world health organization,” Epilepsia, vol. 47, no. 10, pp. 1700–1722, 2006.

[67] G. Y. Lim, W. W. Tam, Y. Lu, C. S. Ho, M. W. Zhang, and R. C. Ho, “Prevalence of depression in the community from 30 countries between 1994 and 2014,” Scientific Reports, vol. 8, no. 1, p. 2861, 2018.

[68] G. Saposnik and O. H. D. Brutto, “Stroke in South America: a systematic review of incidence, prevalence, and stroke subtypes,” Stroke, vol. 34, no. 9, pp. 2103–2107, 2003.

[69] A. J. Baxter, K. M. Scott, T. Vos, and H. A. Whiteford, “Global prevalence of anxiety disorders: a systematic review and meta-regression,” Psychological Medicine, vol. 43, no. 5, pp. 897–910, 2013.

[70] L. J. Stovner and C. Andreè, “Prevalence of headache in europe: a review for the eurolight project,” The Journal of Headache and Pain, vol. 11, no. 4, pp. 289–299, 2010.

[71] N. P. ¦ens¨oz, ¦U. T. B¨or¨u, C. B¨ol¨uk et al., “Stroke epidemiology in Karab¨uk city Turkey: Community based study,” eNeurologicaSci, vol. 10, pp. 12–15, 2018.

[72] M. d. de Rijk, C. Tzourio, M. M. Breteler et al., “Prevalence of Parkinsonism and Parkinson’s disease in Europe: the Europarkinson collaborative study. European community concerted action on the epidemiology of Parkinson’s disease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 62, no. 1, pp. 10–15, 1997.

[73] E. Shao, J. Hughes, and R. Eley, “The presenting and prescribing patterns of migraine in an Australian emergency department: a descriptive exploratory study,” World Journal of Emergency Medicine, vol. 8, no. 3, p. 170, 2017.

[74] W. A. D. o. Health, Epidemiology Profile of Neurological Conditions in Western Australia, Health Strategy and Networks Branch, Australia, 2015.

[75] M. Bellon, R. J. Panelli, and F. Rillota, “Epilepsy-related deaths: An Australian survey of the experiences and needs of people bereaved by epilepsy,” Seizure, vol. 29, pp. 162–168, 2015.

[76] P. Mehta, A. Kifley, J. J. Wang, E. Rochtchina, P. Mitchell, and C. M. Sue, “Population prevalence and incidence of Parkinson’s disease in an Australian community,” Internal Medicine Journal, vol. 37, no. 12, pp. 812–814, 2007.

[77] M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, and C. P. Ferri, “The global prevalence of dementia: a systematic review and metaanalysis,” Alzheimer’s & Dementia, vol. 9, no. 1, Article 1D e2, pp. 63–75, 2013.

[78] B. Ray, N. Paul, A. Hazra et al., “Prevalence, burden, and risk factors of migraine: a community-based study from eastern India,” Neurology India, vol. 65, no. 6, pp. 1280–1288, 2017.

[79] M. I. Khan, J. I. Khan, S. I. Ahmed, and U. U. Haq, “The epidemiology of stroke in a developing country (Pakistan),” Journal of Neurology & Stroke, vol. 8, no. 1, p. 2018.

[80] H. Ebrahimi, M. Shafa, and S. H. Asl, “Prevalence of active stroke statistics—2016 update: a report prepared under the auspices of the global campaign against stroke, the international bureau for stroke, the international league against stroke, and the world health organization,” Stroke, vol. 47, no. 10, pp. 1700–1722, 2006.

[81] A. K. Verma, J. Raj, V. Sharma, T. B. Singh, S. Srivastava, and R. Srivastava, “Epidemiology and associated risk factors of Parkinson’s disease among the north Indian population,” Clinical Epidemiology and Global Health, vol. 5, no. 1, pp. 8–13, 2017.
[82] P. S. Mathuranath, A. George, N. Ranjith et al., “Incidence of alzheimer’s disease in india: a 10 years-follow up study,” Neurology India, vol. 60, no. 6, p. 625, 2012.

[83] S.-M. Fereshetehejnad, M. Shafieesabet, A. Rahmani, A. Delbari, and J. Lökök, “Medium-to-high prevalence of screening-detected parkinsonism in the urban area of Tehran, Iran: Data from a community-based door-to-door study,” Neuropsychiatric Disease and Treatment, vol. 11, pp. 321–332, 2015.

[84] S. Gholamzadeh, B. Heshmati, A. Manni, P. Petramfar, and Z. Baghery, “The prevalence of Alzheimer’s disease; its risk and protective factors among the elderly population in Iran,” Shiraz E Medical Journal, vol. 18, no. 9, 2017.

[85] J. Ni, F. Han, J. Yuan et al., “The discrepancy of neurological diseases between china and western countries in recent two decades,” Chinese Medical Journal, vol. 131, no. 8, pp. 886–891, 2018.

[86] L. J. Stovner, E. Nichols, T. J. Steiner et al., “Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the global burden of disease study 2016,” The Lancet Neurology, vol. 17, no. 11, pp. 954–976, 2018.

[87] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi et al., “Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010,” The Lancet, vol. 383, no. 9913, pp. 245–255, 2014.

[88] P. Ventevogel, W. van de Put, H. Faiz, B. van Mierlo, M. Siddiqi, and I. H. Komroek, “Improving access to mental health care and psychosocial support within a fragile context: a case study from afghanistan,” PLoS Medicine, vol. 9, no. 5, e1001225, 2012.

[89] S.-M. Shin, H. I. Kim, L. Lw, and S. Kim, “Depression and PTSD in pshtun women in Kandahar, afghanistan,” Asian Nursing Research, vol. 3, no. 2, pp. 90–98, 2009.

[90] E. R. Dorsey, A. Elbaz, E. Nichols et al., “Global, regional, and national burden of parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016,” The Lancet Neurology, vol. 17, no. 11, pp. 939–953, 2018.

[91] G. Miller, “A battle no soldier wants to fight,” American Association for the Advancement of Science, vol. 333, no. 6042, pp. 517-518, 2011.

[92] D. Santarsieri and T. L. Schwartz, “Antidepressant efficacy and side-effect burden: a quick guide for clinicians,” Drugs in Context, vol. 4, 2015.

[93] J. M. Ferguson, “SSRI antidepressant medications: adverse effects and tolerability,” Primary Care Companion to the Journal of Clinical Psychiatry, vol. 3, no. 1, pp. 22–27, 2001.

[94] A. F. Carvalho, M. S. Sharma, A. R. Brunoni, E. Vieta, and G. A. Fava, “The safety, tolerability and risks associated with the use of newer generation antidepressant drugs: a critical review of the literature,” Psychotherapy and Psychosomatics, vol. 85, no. 5, pp. 270–288, 2016.

[95] C. E. Griffin III, A. M. Kaye, F. R. Bueno, and A. D. Kaye, “Benzodiazepine pharmacology and central nervous system-mediated effects,” Ochsner Journal, vol. 13, no. 2, pp. 214–223, 2013.

[96] F. Batool, “Buspirone and anxiety disorders: a review with pharmacological and clinical perspectives,” The Internet Journal of Pharmacology, vol. 5, no. 2, 2007.

[97] H. M. Kwon, J. W. Baek, S. P. Lee, and J. I. Cho, “A fatal adverse effect of barbiturate coma therapy; dyskalemia,” Korean Journal of Neurotrauma, vol. 12, no. 2, pp. 156–158, 2016.

[98] F. Stella, M. Radanovic, P. R. Canineu, V. J. R. de Paula, and O. V. Forlenza, “Anti-dementia medications: current prescriptions in clinical practice and new agents in progress,” Therapeutic Advances in Drug Safety, vol. 6, no. 4, pp. 151–165, 2015.

[99] Y.-J. Huang, C.-H. Lin, H.-Y. Lane, and G. E. Tsa, “NMDA neurotransmission dysfunction in behavioral and psychological symptoms of Alzheimer’s disease,” Current Neuropharmacology, vol. 10, no. 3, pp. 272–285, 2012.

[100] V. S. C. Fung, M. A. Hely, G. De Moore, and J. G. L. Morris, “Drugs for parkinson’s disease,” Australian Prescriber, vol. 24, no. 4, pp. 92–95, 2001.

[101] M. J. Brodie, “Sodium channel blockers in the treatment of epilepsy,” CNS Drugs, vol. 31, no. 7, pp. 527–534, 2017.

[102] B. J. Kopeccky, R. Liang, and J. Bao, “T-type calcium channel blockers as neuroprotective agents,” Pflügers Archiv - European Journal of Physiology, vol. 466, no. 4, pp. 757–765, 2014.

[103] J. T. Lerner, N. Salamon, and R. Sankar, “Clinical profile of vigabatrin as monotherapy for treatment of infantile spasms,” Neuropsychiatric Disease and Treatment, vol. 6, p. 731, 2010.

[104] R. Qureshi, M. Ilyas, G. Rahim, W. Ahmad, H. Shaheen, and K. Ullah, “Ethnobotanical study of bhera, district sargodha, pakistan,” Archives Des Sciences, vol. 65, no. 11, pp. 690–707, 2012.

[105] T. A. Alamgeer, M. Rashid, M. N. H. Malik, and M. N. Mushtaq, “Ethnomedicinal survey of plants of valley alhad dehri, tehsil batkhela, district malakand, pakistan,” International Journal of Basic Medical Sciences and Pharmacy (IJBMSP), vol. 3, no. 1, 2013.

[106] A. Shah, S. K. Marwat, and F. Gohar, “Ethnobotanical study of medicinal plants of semi-tribal area of Makkwal & Gujja Kheel (lying between Khyber Pakhtunkhwa and Punjab Provinces), Pakistan,” American Journal of Plant Sciences, vol. 4, no. 01, p. 98, 2013.

[107] I. Iqbal and M. Hamayun, “Studies on the traditional uses of plants of malam jaba valley, district swat, pakistan,” Ethnobotanical Leaflets, vol. 2004, no. 1, p. 15, 2004.

[108] A. Hazrat, M. Nisar, J. Shah, and S. Ahmad, “Ethnobotanical study of some elite plants belonging to dir, kohistan valley, Khyber Pakhtunkhwa and Pakistan,” Pakistan Journal of Botany, vol. 43, no. 2, pp. 787–795, 2011.

[109] M. Haider and L. Zhong, “Ethno-medical uses of plants from district bahawalpur, pakistan,” Current Research Journal of Biological Sciences, vol. 6, pp. 183–190, 2014.

[110] A. A. Shah, M. Ramzan, and R. Saba, “Ethnobotanical studies of herbs and shrubs of miami sahib graveyard, lahore city, pakistan,” Journal of Bioresource Management, vol. 3, no. 2, p. 5, 2016.

[111] A. B. Gulshan, A. A. Dasti, S. Hussain, M. I. Atta, and M. Amin-Din, “Indigenous uses of medicinal plants in rural areas of Dera Ghazi Khan, pakistan,” Journal of Agricultural & Biological Science, vol. 7, no. 9, pp. 750–762, 2012.

[112] S. S. Ahmad, “Medicinal wild plants from lahore-islamabad motorway(M-2),” Pakistan Journal of Botany, vol. 39, no. 2, pp. 355–375, 2007.

[113] M. Ajiaib, Z. Khan, and A. Zikria, “Ethnobotanical survey of some important herbaceous plants of district kotli, azad jammu & kashmir,” Biologia (Pakistan), vol. 60, no. 1, pp. 11–22, 2014.

[114] S. U. Khan, R. U. Khan, I. Ullah, S. Mehmood, A. Muhammad, and M. Ullah, “Morpho-anatomical study of selected plants of district bannu, khyber pakhtunkhwa, pakistan,” Pakistan Journal of Weed Science Research, vol. 19, no. 4, pp. 447–464, 2013.
T. Sengupta, J. Vinayagam, N. Nagashayana, B. Gowda, P. Jaisankar, and K. P. Mohanakumar, "Antiparkinsonian effects of aqueous methanolic extract of *Hyoscyamus niger* seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency," *Neurochemical Research*, vol. 36, no. 1, pp. 177–186, 2011.

J. Talairach and P. Tournoux, *Co-Planar Stereotaxic Atlas of the Human Brain*, Thieme Medical Publishers, Stuttgart, Germany, 1988.

K. Aparna, A. Joshi, and M. Vyas, "Adverse reaction of Parasika Yavani (Hyoscyamus niger Linn): Two case study reports," *AYU (An International Quarterly Journal of Research in Ayurveda)*, vol. 36, no. 2, p. 174, 2015.

R. M. Perez G., J. A. Perez L., L. M. Garcia D., and H. Sossa M., "Neuropharmacological activity of Solanum nigrum fruit," *Journal of Ethnopharmacology*, vol. 62, no. 1, pp. 43–48, 1999.

N. N. Wannang, J. A. Anuka, H. O. Kwanashie, S. S. Gyang, and A. Auta, "Anti-seizure activity of the aqueous leaf extract of *Solanum nigrum* Linn. (solanaceae) in experimental animals," *African Health Sciences*, vol. 8, no. 2, pp. 74–79, 2008.

Y. Zhao, F. Liu, and H.-X. Lou, "[Studies on the chemical constituents of Solanum nigrum]," *Zhong Yao Cai = Zhongyaozai = Journal of Chinese medicinal materials*, vol. 33, no. 4, pp. 555–556, 2010.

M. A. B. Nyeem, "Solanum nigrum (Maku): A review of pharmacological activities and clinical effects," *IJAR*, vol. 3, no. 1, pp. 12–17, 2017.

S. C. Kaul and R. Wadhwa, *Science of Ashwagandha: Preventive and Therapeutic Potentials*, Springer International Publishing, Cham, 2017.

W.-H. Peng, M.-T. Hsieh, Y.-S. Lee, Y.-C. Lin, and J. Liao, "Anxiolytic effect of seed of *Ziziphus jujuba* in mouse models of anxiety," *Journal of Ethnopharmacology*, vol. 72, no. 3, pp. 435–441, 2000.

J.-G. Jiang, X.-J. Huang, and J. Chen, "Comparison of the sedative and hypnotic effects of flavonoids, saponins, and polysaccharides extracted from Semen Ziziphus Jujubae," *Natural Product Research (Formerly Natural Product Letters)*, vol. 21, no. 4, pp. 310–320, 2007.

M. Pahuja, J. Mehla, K. H. Reeta, S. Joshi, and Y. K. Gupta, "Hydroalcoholic extract of *Zizyphus jujuba* ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats," *Epilepsy & Behavior*, vol. 21, no. 4, pp. 356–363, 2011.

S. Kumaravel and K. Alagusundaram, "Antimicrobial activity and Phytochemical analysis of selected Indian spices," *Journal of Pure and Applied Microbiology*, vol. 8, no. 5, pp. 413–416, 2014.

R. Sabbaghzadeh and M. Asadbegi, "Effects of Methanolic extracts of Papaver Somniferum on Picrotixin induced seizure in mice," *Advances in Environmental Biology*, vol. 8, no. 10, pp. 740–743, 2014.

I. Rayment, H. M. Holden, M. Whittaker et al., "Structure of the actin-myosin complex and its implications for muscle contraction," *Science*, vol. 261, no. 5157, pp. 58–65, 1993.

S. Wang, J. Zhang, Z. Zhang et al., "Identification of chemical constituents in the extract and rat serum from *Ziziphus Jujuba* mill. By HPLC-PDA-ESI-MS^n,* *Iranian Journal of Pharmacognosy*, vol. 13, no. 3, pp. 1055–1064, 2014.

Z. Wang, D. Zhang, S. Hui, Y. Zhang, and S. Hu, "Effect of tribulus terrestris saponins on behavior and neuroendocrine in chronic mild stress depression rats," *Journal of Traditional Chinese Medicine*, vol. 33, no. 2, pp. 228–232, 2013.

S. Ahmed, S. Lutfullah, I. Ahmed, R. Farooq, and J. Iqbal, "Anxiolytic activity of *Tribulus terrestris* on elevated plus maze," *Journal of Applied Pharmaceutical Science*, vol. 4, no. 2, pp. 126–128, 2014.

S. Chhatre, T. Nesari, G. Somani, D. Kanchan, and S. Sathaye, "Phytopharmacological overview of *Tribulus terrestris*," *Pharmacognosy Reviews*, vol. 8, no. 15, pp. 45–51, 2014.

O. A. Phillips, K. T. Mathew, and M. A. Oriowo, "Antihypertensive and vasodilator effects of methanolic and aqueous extracts of *Tribulus terrestris* in rats," *Journal of Ethnopharmacology*, vol. 104, no. 3, pp. 351–355, 2006.

V. S. Kasture, C. T. Chopde, and V. K. Deshmukh, "Anticonvulsant activity of *Albizia lebbek*, Hibiscus rosas sinesis and Butea monosperma in experimental animals," *Journal of Ethnopharmacology*, vol. 71, no. 1–2, pp. 65–75, 2000.

H. D. Une, V. P. Sarveiya, S. C. Pal, V. S. Kasture, and S. B. Kasture, "Nootropic and anxiolytic activity of saponins of *Albizia lebbek* leaves," *Pharmacology Biochemistry & Behavior*, vol. 69, no. 3–4, pp. 439–444, 2001.

V. Padamanabhan, M. Ganapathy, and V. K. Evanjelene, "Preliminary phytochemical and anti-bacterial studies on flowers and pods of *Albizia lebbek* (Benth)," *International Journal of Emerging Technology and Advanced Engineering*, vol. 3, no. 9, pp. 541–544, 2013.

S. Desai, P. Tatke, and S. Gabhe, "Isolation of catechin from stem bark of *Albizia lebbek*," *International Journal of Analytical, Pharmaceutical and Biomedical Sciences*, vol. 3, no. 2, pp. 31–35, 2014.

R. Singh, S. De, and A. Belkheir, "*Avena sativa* (oat), a potential neurotrceutical and therapeutic agent: an overview," *Critical Reviews in Food Science and Nutrition*, vol. 53, no. 2, pp. 126–144, 2013.

K. Usha Rani, M. Ramaiah, K. Nagaphani, V. Preethi, and M. Srinadh, "Screening for antidepressant-like effect of methanolic seed extract of *Avena sativa* using animal models," *Pharmacognosy Journal*, vol. 6, no. 3, pp. 86–92, 2014.

D. Kaur, A. Kamboj, and R. Shri, "Comparative evaluation of anxiolytic effects of various extracts of oats (*Avena sativa*), rice bran (Oryza sativa) and spinach (Spinacia oleracea) in experimental animals," *International Journal of Pharmaceutical Sciences and Research*, vol. 7, no. 10, p. 4110, 2016.

M. Goyal, B. P. Nagori, and D. Sasmal, "Sedative and anticonvulsant effects of an alcoholic extract of *Capparis decidua*," *Journal of Natural Medicines*, vol. 63, no. 4, pp. 373–379, 2009.

P. D. Verma, R. D. Dangar, K. N. Shah, D. M. Gandhi, and B. N. Suhagia, "Pharmacognostical potential of *Capparis decidua* Edgew,* *Journal of Applied Pharmaceutical Science*, vol. 1, no. 10, pp. 6–11, 2011.

L. M. Campelo, S. G. Lima, C. M. Feitosa, and R. M. Freitas, "Evaluation of central nervous system effects of Citrus limon essential oil in mice," *Revista Brasileira de Farmacognosia*, vol. 21, no. 4, pp. 668–673, 2011.

L. M. Lopes Campelo, C. Gonçalves e Sá, A. A. C. de Almeida et al., "Sedative, anxiolytic and antidepressant activities of Citrus limon (Burn) essential oil in mice," *Die Pharmazie-An International Journal of Pharmaceutical Sciences*, vol. 66, no. 8, pp. 623–627, 2011.

A. Ben Hsouna, N. Ben Halima, S. Smaoui, and N. Hamdi, "Citrus lemon essential oil: Chemical composition, antioxidant..."
Evidence-Based Complementary and Alternative Medicine

and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat,” *Lipids in Health and Disease*, vol. 16, no. 1, 2017.

[177] S. Najafi, N. Sanadgol, B. S. Nejad, M. A. Beiragi, and E. Sanadgol, “Phytochemical screening and antibacterial activity of Citrullus colocynthis (Linn.) schrad against Staphylococcus aureus,” *Journal of Medicinal Plants Research*, vol. 4, no. 22, pp. 2321–2325, 2010.

[178] V. Kumar, S. K. Sharma, K. Nagarajan, and P. K. Dixit, “Effects of lycopene and sodium valproate on pentylenetetrazol-induced kindling in mice,” *Iranian Journal of Medical Sciences*, vol. 41, no. 5, pp. 430–436, 2016.

[179] K. Gokul, “Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson’s disease,” *Neurochemical Research*, vol. 39, no. 7, pp. 1382–1394, 2014.

[180] J. Bae, M. Han, H. Shin et al., “Lycopersicon esculentum extract enhances cognitive function and hippocampal neurogenesis in aged mice,” *Nutrients*, vol. 8, no. 11, p. 679, 2016.

[181] J. S. Oliveira, L. A. Porto, and C. S. Estevam, “Phytochemical screening and anticonvulsant property of Ocimum basilicum leaf essential oil,” *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, vol. 8, no. 3, 2009.

[182] S. Sarahroodi, S. Esmaeili, Z. Hemmati, P. Mikaili, and Y. Saberi, “The effects of green Ocimum basilicum hydroalcoholic extract on retention and retrieval of memory in mice,” *Ancient Science of Life*, vol. 31, no. 4, p. 185, 2012.

[183] M. Rabbani, S. E. Sajjadi, and A. Vaezi, “Evaluation of anxiolytic and sedative effect of essential oil and hydroalcoholic extract of Ocimum basilicum L. and chemical composition of its essential oil,” *Research in Pharmacognosy*, vol. 10, no. 6, pp. 535–543, 2015.

[184] S. S. Ali, M. G. Abd El Wahab, N. N. Ayub, and M. Sulaiman, “The antidepressant-like effect of Ocimum basilicum in an animal model of depression,” *Biotechnic & Histochemistry*, vol. 92, no. 6, pp. 390–401, 2017.

[185] S. Adiga, P. Trivedi, V. Ravichandra, D. Deb, and F. Mehta, “Effect of Punica granatum peel extract on learning and memory in rats,” *Asian Pacific Journal of Tropical Medicine*, vol. 3, no. 9, pp. 687–690, 2010.

[186] S. Das and P. Sarma, “A study on the anticonvulsant and antianxiety activity of Ethanolic extract of punica granatum linn,” *International Journal of Pharmacy and Pharmaceutical Sciences*, vol. 6, no. 2, pp. 389–392, 2014.

[187] T. Yuan, H. Ma, W. Liu et al., “Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites,” *ACS Chemical Neuroscience*, vol. 7, no. 1, pp. 26–33, 2015.

[188] R. Shastry, A. Sharma, V. Sayeli, and U. S. Dinkar, “Screening of antidepressant activity of punica granatum in mice,” *Pharmaceutical Journal*, vol. 9, no. 1, pp. 27–29, 2017.

[189] J. Wise, “FDA approves its first cannabis based medicine,” *British Medical Journal Publishing Group*, 2018.

[190] A. G. Atanasov, B. Waltenberger, E. M. Pferschy-Wenzig et al., “Discovery and resupply of pharmacologically active plant-derived natural products: a review,” *Biotecnology Advances*, vol. 33, no. 8, pp. 1582–1614, 2015.

[191] N. Brondino, S. Re, and A. Boldrini, “Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies,” *The Scientific World Journal*, vol. 2014, Article ID 174282, 6 pages, 2014.

[192] N. Gurnani, D. Mehta, M. Gupta, and B. k. Mehta, “Natural Products: source of potential drugs,” *African Journal of Basic & Applied Sciences*, vol. 6, pp. 171–186, 2014.

[193] S. Girdhar, A. Girdhar, S. K. Verma, V. Lather, and D. Pandita, “Plant derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials,” *Journal of Ayurvedic and Herbal Medicine*, vol. 1, no. 3, pp. 91–100, 2015.

[194] C. Sawda, C. Moussa, and R. S. Turner, “Resveratrol for Alzheimer’s disease,” *Annals of the New York Academy of Sciences*, vol. 1403, no. 1, pp. 142–149, 2017.

[195] M. S. Rafii, B. G. Skotko, M. E. McDonough et al., “A randomized, double-blind, placebo-controlled, phase II study of oral ELND005 (scyllo -inositol) in young adults with down syndrome without dementia,” *Journal of Alzheimer’s Disease*, vol. 58, no. 2, pp. 401–411, 2017.