Tuberculosis: an international perspective

Dermot Maher MRCP, Medical Officer
Paul Nunn FRCP, Chief
Tuberculosis Research Unit, Global Tuberculosis Programme, World Health Organization, Geneva

This article summarises a comprehensive review of the global tuberculosis (TB) epidemic and the impact of the human immunodeficiency virus (HIV)1. There is also a brief description of the World Health Organization (WHO) recommended TB control strategy, an update on the current status of TB control worldwide, and a look at future prospects for global TB control. An accompanying article by Drobniewski covers the increasingly important issue of drug resistance.

The global tuberculosis burden: notifications and estimates

Case notifications often represent only a fraction of the true incident cases, particularly in those developing countries where access to effective TB care is limited. WHO estimates of incidence2 are derived:

• for developing countries, from the annual risk of TB infection
• for low prevalence, industrialised countries, from notification data.

Figure 1 shows estimated TB incidence rates by country in 19962.

The impact of HIV on tuberculosis

HIV is the most important risk factor for progression of Mycobacterium tuberculosis infection to clinical disease3. WHO estimated that 30.6 million people were living with HIV infection worldwide at the end of 1997, 20.8 million (68%) of them in sub-Saharan Africa4. The HIV pandemic has magnified the TB epidemic where there is overlap between M. tuberculosis- and HIV-infected populations.

Using estimates of the prevalence of M. tuberculosis5 and HIV infections6 in various regions, WHO has estimated that at the end of 1997 there were about 15 million persons with M. tuberculosis and HIV co-infection worldwide, of whom the great majority were in sub-Saharan Africa (12 million) and most of the rest in South-East Asia (3 million). These estimates are likely to be conservative because the risks of infection with M. tuberculosis and HIV were assumed to be independent, but it is likely that they share common risk factors. The annual risk of progression to TB among persons infected with both HIV and M. tuberculosis is 5–15%, depending on the degree of immunocompromise7–10, compared with an estimated 10% lifetime risk in persons infected with M. tuberculosis alone.

Many countries in Eastern and Southern Africa (eg Uganda, Malawi, Zambia and Tanzania) have reported nationwide HIV seroprevalence rates among new TB patients of at least 30%11. In Asia, Northern Thailand12,13 and certain urban areas of India14 have reported rapidly-increasing HIV seroprevalence rates among TB patients. The number of reported cases of TB has increased dramatically since the 1980s in areas where HIV seroprevalence has increased among TB patients. The increased number of cases poses a challenge to health services, TB control programmes and clinicians15. Tables 1 and 2 show estimated TB incidence and deaths respectively, including those attributable to HIV16.

Studies in various regions have shown that about 25% of patients had TB during the course of HIV infection in Latin America17, Mexico18 and Haiti19,
and about 50% in Africa20-22 and Asia (India23, Thailand24). Worldwide, TB is probably the most important single cause of morbidity and mortality among HIV-infected people.

Tuberculosis in industrialised countries

TB case notifications in developed countries steadily declined long before the introduction of anti-TB chemotherapy, largely because of socioeconomic improvements. Widespread effective chemotherapy further accelerated the decline. Recently, however, several countries have seen an interruption in the expected continued decline, and others have seen the trend reversed, with case notifications increasing for the first time in many years. For example, in the USA, after 30 years of decline, case notifications increased regularly between 1985 and 199225.

Factors responsible include:

- increased poverty among marginalised groups in inner cities
- immigration from high TB prevalence countries
- the impact of HIV
- the failure to maintain the necessary public health infrastructure.

Many countries in Europe, including Denmark, the Netherlands, Sweden and the UK, also reported a failure of the expected continued decline – or even a steady rise – in case notifications26. The high percentage of cases in the foreign-born (eg France 24%, the Netherlands 51%, Sweden 54%, Switzerland 68%) suggests that immigration is the main cause of this change27. Annual case rates in foreign-born populations often exceed 50 per 100,000 (in the Netherlands, even 100 per 100,000), in contrast to rates usually below 15 per 100,000 in indigenous populations27. TB control in industrialised countries requires global TB control.

The impact of HIV on TB in Western Europe is limited to certain countries (eg Spain, Portugal) and cities (eg Paris, Amsterdam)26. In most Western European countries, the percentage of AIDS cases diagnosed with TB is low (<17%). The two notable exceptions are Spain and Portugal, where the overlap between the populations infected with both HIV and M. tuberculosis is greater than in the other countries of Western Europe. The percentage of AIDS cases diagnosed with TB in Spain and Portugal is 42% and 51%, respectively28.

In the former socialist block, annual case notification rates are higher in central and eastern Europe and in countries of the former Soviet Union than in western Europe, with rates ranging from 18 per 100,000 (Czech Republic) to 102 per 100,000 (Romania).
Table 1. Estimated tuberculosis (TB) incidence and HIV-attributable TB cases in 1990, 1995 and 2000.

Region	1990 Total TB cases	1990 Rate*	1995 Total TB cases	1995 Rate	2000 Total TB cases	2000 Rate	1990 - 2000 Increase
South-East Asia	3,106,000	237	3,499,000	241	3,952,000	247	571,000
Western Pacific**	1,839,000	136	2,045,000	140	2,255,000	144	416,000
Africa	992,000	191	1,467,000	242	2,079,000	293	604,000
Eastern Mediterranean	641,000	165	745,000	168	870,000	168	38,000
Americas+	569,000	127	606,000	123	645,000	120	7,000
Eastern Europe++	194,000	47	202,000	47	210,000	48	6,000
Industrialised countries†	196,000	23	204,000	23	211,000	24	6,000
Total	**7,537,000**	**143**	**8,768,000**	**152**	**10,222,000**	**163**	**1,410,000**

Increase since 1990 16.3% 35.6%

* Crude incidence rate per 100,000 population.
** Includes all countries of the Western Pacific Region of the World Health Organization (WHO), except Japan, Australia and New Zealand.
† Includes all countries of the American Region of WHO, except USA and Canada.
+++ Eastern European and independent states of the former USSR.
†† Western Europe, USA, Canada, Japan, Australia and New Zealand.

Table 2. Estimated total tuberculosis (TB) deaths and HIV-attributable TB deaths in 1990, 1995 and 2000. (Estimates assume regional treatment coverage rates remain at their 1990 level).

Region	1990 Total	1990 Attributed to HIV	1995 Total	1995 Attributed to HIV	2000 Total	2000 Attributed to HIV
South-East Asia	1,087,000	23000	1,225,000	88,000	1,383,000	200,000
Western Pacific*	644,000	7,000	716,000	11,000	789,000	24,000
Africa	393,000	77,000	581,000	150,000	823,000	239,000
Eastern Mediterranean	249,000	4,000	290,000	6,000	338,000	15,000
Americas**	114,000	4,000	121,000	9,000	129,000	19,000
Eastern Europe+	29,000	<200	30,000	<600	32,000	<900
Industrialised countries†	14,000	<500	14,000	1,000	15,000	2,000
All regions	**2,530,000**	**116,000**	**2,977,000**	**266,000**	**3,509,000**	**500,000**

Increase since 1990 17.7% 38.7%

* Includes all countries of the Western Pacific Region of the World Health Organization (WHO), except Japan, Australia and New Zealand.
** Includes all countries of the American Region of WHO except USA and Canada.
† Eastern Europe and independent states of former USSR.
†† Western Europe, USA, Canada, Japan, Australia and New Zealand.

In 1995, and exceeding 30 per 100,000 in 19 of 27 countries in many countries, the previous decline in case notifications has stopped or reversed. For example, annual case notification rates increased in Russia by 70% from 1991 to 1995, and in Romania by 81% from 1985 to 1995, with an increased percentage of cases in young adults. With the recent dramatic social changes, reversal of the previous trend is due to increased poverty and poor living conditions (resulting in malnutrition, crowding and stress), deteriorating health services and lack of drugs and, in some cases, civil conflicts and wars. In most of these countries TB mortality rates have also stopped declining, and in some are increasing. For example, TB mortality rates increased in Russia from 7.7 per
100,000 to 14.4 per 100,000 between 1989 and 1994, probably because of the collapse of public health infrastructure and shortages in first-line drugs.

World Health Organization strategy for tuberculosis control

The global TB burden is increasing for several reasons:

- poverty, including that in inner-city populations in developed countries
- poor TB control
- changing demography
- the impact of the HIV pandemic

Developing countries suffer the brunt of the TB epidemic, with 95% of estimated TB cases and 98% of estimated TB deaths. These deaths comprise 25% of all avoidable deaths in developing countries.

TB is the only disease which WHO has declared a global emergency and, as a response, has adopted an available, effective and affordable strategy: the 'directly observed treatment, short course' (DOTS) strategy. DOTS consists of a five-point policy package which provides the organisational and management framework for case-detection and cure:

1. Government commitment to the national TB control programme.
2. Case-finding by sputum smear examination of TB suspects in general health services.
3. Standardised short-course chemotherapy, at least for all smear-positive cases, under proper case management conditions.
4. Regular, uninterrupted supply of all essential drugs.
5. Standardised recording and reporting system.

Current status of tuberculosis control achievements worldwide

TB control falls in many programmes because only about half the infectious cases are detected, and only about half those detected are cured. A TB epidemic, which is out of control in many parts of the world, demands increased global attention and funding. There has been some — so far inadequate — progress. Figure 2 shows the status of implementation of WHO-recommended TB control strategy by reporting countries. This strategy had been adopted by 96 of the 181 countries reporting to WHO in 1996. The number of countries adopting it is steadily increasing, but at present only a fraction (32%) of the world’s population lives in areas where this strategy is available.

Future prospects for global tuberculosis control

In the absence of wide implementation of the recommended TB control strategy in high TB prevalence countries, the global epidemic is likely to worsen. Unless there is considerable improvement in global control, WHO has estimated that a cumulative total of nearly 90 million new cases and over 30 million deaths can be expected to occur in the last decade of this century.

The future of the TB epidemic hinges on the balance between the implementation of effective control and those factors promoting the epidemic, including HIV, war and natural disasters, demographic changes, and increasing anti-TB drug resistance. Research efforts are crucial to facilitate the widespread implementation of the recommended TB control strategy and to develop new tools to combat the epidemic, for example new drugs and a better vaccine.

Government expenditure on health, including TB control, is falling in many developing countries. TB control globally is still underfunded, despite an increase in external aid flows to developing countries from $16 million in 1990 to $40–50 million in 1995 (A Kochi; personal communication). The expression of the necessary political will for global TB control is the commitment of governments to provide adequate funds both to implement effective TB control programmes and to invest in research. All concerned with TB control have a part to play in mobilising this political will.

References

1. Maher D, Raviglione M. The global epidemic of tuberculosis: a World Health Organization perspective. In: Schlossberg D (ed). Tuberculosis, 4th edn. Philadelphia, PA: WB Saunders Company, 1998 (in press).
2. World Health Organization. Global Tuberculosis Programme. Global Tuberculosis Control. WHO/TB/98.237. Geneva: WHO, 1998.

Key Points

- Previous efforts to control the global TB epidemic have failed — the means exist for diagnosis and cure but the organisational capacity to deliver TB control has been lacking
- The HIV epidemic and increasing drug-resistance pose additional challenges for global TB control
- The internationally recommended TB control strategy relies on an organisational framework to ensure the diagnosis and cure of the infectious cases
- TB does not respect national boundaries — controlling TB in the Western world is impossible without controlling TB in developing countries
- Political will is necessary to ensure the mobilisation of resources for implementing effective national TB programmes worldwide
Figure 2. Implementation status of World Health Organization (WHO) tuberculosis (TB) 'directly observed treatment, short course' (DOTS) control strategy by reporting countries, 1996.

3 Rieder HL, Cauthen FM, Comstock GW, Snider DE. Epidemiology of tuberculosis in the United States. Epidemiol Rev 1989;11:79–98.
4 World Health Organization and Joint United Nations Programme on HIV/AIDS. Report on the global HIV/AIDS epidemic. Geneva: WHO, 1997.
5 Sudre P, ten Dam G, Kochi A. Tuberculosis: a global overview of the situation today. Bull WHO 1992;70:149–59.
6 Selwyn PA, Hartel D, Lewis VA, Schoenbaum EE, et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 1989;320:545–50.
7 Selwyn PA, Skell BM, Alcubes P, Friedland GH, et al. High risk of active tuberculosis in HIV-infected drug users with cutaneous anergy. JAMA 1992;268:504–9.
8 Allon S, Batungwanayo J, Kerlikowske K, Lifson AR, et al. Two-year incidence of tuberculosis in cohorts of HIV-infected and uninfected Rwandan women. Am Rev Respir Dis 1992;146:1439–44.
9 Guelar A, Gatell JM, Verdejo J, Podzamczer D, et al. A prospective study of the risk of tuberculosis among HIV-infected patients. AIDS 1993;7:1345–9.
10 Antonucci G, Girardi E, Raviglione MC, Ippolito G. Risk factors for tuberculosis in HIV-infected persons. JAMA 1995;274:143–8.
11 Narain JP, Raviglione MC, Kochi A. HIV-associated tuberculosis in developing countries: epidemiology and strategies for prevention. Tuberc Lung Dis 1992;73:311–21.
12 Payanandana V, Barmungrtrakul T, Konjanart S, Sribhataya N. Report of an internal evaluation of the National Tuberculosis Programme, Thailand. Bangkok, Thailand: Tuberculosis Division, Department of Communicable Disease Control, Ministry of Public Health, 1993.
13 Yanai H, Uthaihoravat W, Panich V, Sawarapanayalert P, et al. Rapid increase in HIV-related tuberculosis, Chiang Rai, Thailand, 1990–1994. AIDS 1996;10:527–31.
14 Mohanty KC, Sundarami RM, Pasi RB. Changing trend of HIV Infection in tuberculosis and pulmonary diseases patients, since 1988, at Bombay. In: Programme and abstracts of the 17th Eastern Regional Conference on Tuberculosis and Respiratory Diseases of the IUATLD, Eastern Region, November 1–4, 1993, Bangkok, Thailand. Abstract OP 49.
15 Harries AD, Maher D. TB/HIV: a clinical manual. WHO/TB/96.200. Geneva: World Health Organization, 1996.
16 Dolin PJ, Raviglione MR, Kochi A. Global tuberculosis incidence and mortality during 1990–2000. Bull WHO 1994;72:213–20.
17 Preti Dalcolmo M, Kritski AL. Tuberculosis y co-infecci6n por VIH. Revista Argentina Torax 1993;43:29–34.
18 Jessurum J, Angeles-Angelides A, Gasman N. Comparative demographic and autopsy findings in acquired immunodeficiency syndrome in two Mexican populations. J Acquir Immune Defic Syndrome 1990;3:579–83.
19 Pape JW, Lautaud B, Thomas F, Mathurin Jr, et al. The acquired immunodeficiency syndrome in Haiti. Ann Intern Med 1985;103:674–8.
20 Mbaiga JM, Pallangyo KJ, Bakari M, Aris EA. Survival time of patients with acquired immunodeficiency syndrome: experience with 274 patients in Dar-Es-Salaam. East Afr Med J 1990;67:95–9.
21 Lucas SB, Noufou A, Peacock C, Beaumel A, et al. The mortality and pathology of...
Drug resistant tuberculosis in adults and its treatment

Francis Drobniowski MA MSc MRBS PhD, Director and Consultant Clinical Microbiologist, PHLs Mycobacterium Reference Unit, King's College Hospital, London

Mycobacterium tuberculosis (MTB), the bacterium that causes tuberculosis (TB), is estimated to have infected almost one-third of the world's population, producing eight million new clinical cases each year and leading to almost three million deaths. Over 95% of the cases occur in the developing world.

Drug resistance

Drug resistance develops spontaneously in bacteria. Combinations of drugs are used to make clinically significant resistance, and thus treatment failure, unlikely. Non-adherence to therapy, inappropriate prescribing, malabsorption of drugs, and deterioration of the clinical and public health infrastructure necessary for adequate supervision of treatment are all associated with the selection of drug resistant strains and treatment failure. Overall trends in drug resistance are also a crude indicator of the effectiveness of a national TB programme. NTP. High rates of multiple drug resistant TB (MDRTB) — that is, resistant at least to isoniazid and rifampicin, two of the major first line drugs — are indicative of poorly functioning programmes. Recent outbreaks of MDRTB in the USA and Europe, particularly in HIV-infected patients, have focused attention on the emergence of drug resistance.

The worldwide level of drug resistance in TB is not known, and methodological problems in many studies have prevented the development of a clear global picture. These include:

- the selection bias of many surveys
- the absence of high quality culture facilities.

In 1994, the World Health Organisation (WHO) and the International Union Against Tuberculosis and Lung Disease began the Global Project on Anti-tuberculosis Drug Resistance Surveillance. The recently published results of surveys and surveillance programmes from 35 countries report drug resistance in all countries. MDRTB was found to be widespread, with one-third of the countries surveyed having levels above 2% in new patients (median prevalence 1–4%; range 0–14%). High rates were found in former countries of the USSR, the Baltic Republics, Argentina, India and China. In general, countries with poor NTPs had a higher prevalence of drug resistance, especially MDRTB.

A laboratory-based surveillance programme, MYCOBNET, was created in the UK in 1994 to monitor drug resistance in TB. Preliminary trend analysis published for the period 1993–1996 showed that in initial isolates, resistance to isoniazid over this period rose from 4.6% to 6.1%, mono-resistance to rifampicin from 0.6% to 1.8%, and multidrug resistance from 0.6% to 1.6%. During the same period, the combined clinical prevalence of MDRTB (the total level of resistance occurring in a year) rose from 0.6% to 1.7%.

Treatment of tuberculosis

The principles underlying the treatment of TB have not changed since chemotherapy became possible in the 1940s: that is, combination chemotherapy in standardised regimens for the appropriate period of time.