Bounds on the roots of the Steiner Polynomial

Madeleine Jetter

February 2, 2009

Abstract
We consider the Steiner polynomial of a C^2 convex body $K \subset \mathbb{R}^n$. Denote by ρ_{\min} the minimum value of the principal radii of curvature of ∂K and by ρ_{\max} their maximum. When $n \leq 5$, the real parts of the roots are bounded above by $-\rho_{\min}$ and below by $-\rho_{\max}$. These bounds are valid for any n such that all of the roots of the Steiner polynomial of every convex body in \mathbb{R}^n lie in the left half-plane.

1 Introduction
Let $K \subset \mathbb{R}^n$ be a (compact) convex body and let B denote the unit ball in \mathbb{R}^n. We form the outer parallel body $K + tB$ by taking the Minkowski sum of K and a ball of radius $t > 0$, that is:

$$K + tB = \{ \bar{v} + t\bar{u} \mid \bar{v} \in K, \bar{u} \in B \}. $$

Thinking of the outer parallel body as the result of the unit-speed outward normal flow applied to K at time t makes it relevant to applied problems such as combustion [1]. The volume of $K + tB$ can be written as a polynomial of degree n, the Steiner polynomial [4]:

$$V_{K+tB} = \sum_{i=0}^{n} \binom{n}{i} V(K^{n-i}, B^i) t^i$$

where the coefficient $V(K^{n-i}, B^i)$ is the mixed volume of $n - i$ copies of K and i copies of the unit ball. We will adopt the notation $S_K(t) = V_{K+tB}$ for the Steiner polynomial of K in the variable t.

In two dimensions, consideration of the roots of the Steiner polynomial leads to a Bonnesen-style inequality. When K is a convex planar region, with area A_K and perimeter L_K, we have

$$S_K(t) = A_K + L_K t + \pi t^2.$$

Since the discriminant of the Steiner polynomial in two dimensions is $L_K^2 - 4\pi A_K$, we see that the isoperimetric inequality for K is equivalent to the fact
that \(S_K(t) = 0 \) has (one double or two single) real roots. Moreover, since \(S_K \) gives the area of the region \(K + tB \), the roots must also be negative when \(A_K > 0 \).

Furthermore, it is known that

Theorem 1.1. Let \(K \) be a strictly convex region which is not a disc. Let \(R_i = \sup \{ r \mid \text{a translate of } rB \subset K \} \) be the inradius of \(K \), and let \(R_e = \inf \{ r \mid \text{a translate of } K \subset rB \} \) be the outradius. Let \(\rho_{\min} \) and \(\rho_{\max} \) denote the minimum and maximum values of the radius of curvature of \(K \). If the roots of \(S_K \) are \(t_1 < t_2 \), then

\[
-\rho_{\max} < t_1 < -R_e < -\frac{L_K}{2\pi} < -R_i < t_2 < -\rho_{\min}. \tag{1}
\]

When \(K \) is a disc, then all of the above quantities are equal, giving a version of Bonnesen’s inequality. Green and Osher provide a proof in [1].

Teissier [5], working in the setting of ample divisors on algebraic varieties, posed the following problems aimed at generalizing the appealing state of affairs in the planar case. Suppose a convex body \(K \subset \mathbb{R}^n \) is given and that the roots of \(S_K \) have real parts \(r_1 \leq r_2 \leq \cdots \leq r_n \).

P1. Is \(S_K \) stable (i.e. do all the roots lie in the left half-plane)?

P2. Let \(R_i \) indicate the inradius of \(K \), that is, the largest real number \(s \) such that a translate of \(sB \) is contained in \(K \). Does the inequality \(-R_i \leq r_n\) hold?

By the Routh-Hurwitz stability criterion and the Aleksandrov-Fenchel inequalities [4], we know that \(S_K \) is stable for all convex bodies \(K \subset \mathbb{R}^n \) provided that \(n \leq 5 \). On the other hand, Cifre and Henk construct an example in [2] to show that \(S_K \) need not be stable when \(K \subset \mathbb{R}^{15} \). Less is known about the inradius bound. However, in those cases where Teissier’s first problem has an affirmative answer, we can prove a generalization of the extreme upper and lower bounds in inequality (1) relatively easily.

Theorem 1.2. Assume that in \(\mathbb{R}^n \), \(S_K \) is stable for every convex \(K \subset \mathbb{R}^n \). Let \(K \subset \mathbb{R}^n \) be a \(C^2 \) convex body, and suppose that the roots of \(S_K \) have real parts \(r_1 \leq r_2 \leq \cdots \leq r_n \). Denote by \(\rho_{\min} \) and \(\rho_{\max} \) the minimum and maximum values of the principal radii of curvature of \(K \). Then

\[
-\rho_{\max} \leq r_1 \leq \cdots \leq r_n \leq -\rho_{\min}.
\]

2 Technical Background

2.1 The Steiner Polynomial

A general reference for this section is Schneider’s volume [4]. The fundamental tool for what follows is the support function \(p_K : \mathbb{R}^n \to \mathbb{R} \) of a convex body \(K \subset \mathbb{R}^n \), defined as follows:
\(p_K(\vec{x}) = \sup\{\vec{x} \cdot \vec{v} \mid \vec{v} \in K\}, \)

where \(\cdot \) denotes the standard inner product. Because of the homogeneity of the support function, \(p_K \) is determined by its restriction to the unit sphere. Thus we frequently treat \(p_K \) as a function on \(S^{n-1} \).

A particularly important feature of \(p_K \) is the way in which it carries information about the curvature of \(\partial K \) when the boundary satisfies certain smoothness conditions. When \(K \) (and thus \(p_K \)) is \(C^2 \), we consider the Hessian matrix \(H(p_K) \). Given \(\omega \in S^{n-1} \), we choose a basis \(\{e_1, \ldots, e_n\} \) where \(\{e_1, \ldots, e_{n-1}\} \) is an orthonormal basis for \(TS^{n-1} \) and \(e_n = \omega \). One can show using homogeneity [4] that the eigenvalues of \(H(p_K(\omega)) \) computed with respect to this basis are 0 and the principal radii of curvature of \(K \) at \(\omega \), which we denote \(\rho_1, \ldots, \rho_{n-1} \).

Since the infinitesimal element of area on \(\partial K \) is the product of the principal radii of curvature, we may write the volume of \(K \) equivalently as

\[
V_K = \frac{1}{n} \int_{S^{n-1}} p_K \rho_1 \cdots \rho_{n-1} \, d\omega
\]

or

\[
V_K = \frac{1}{n} \int_{S^{n-1}} p_K \det H(p_K) \, d\omega
\]

where \(H \) denotes the Hessian matrix computed with respect to an orthonormal frame for \(TS^{n-1} \).

Applying this formula to \(K + tB \), noting that \(p_{K+tB} = p_K + t \), we have

\[
S_K = V_{K+tB} = \frac{1}{n} \int_{S^{n-1}} (p_K + t) \det (H(p_K) + tI) \, d\omega. \tag{2}
\]

The integrand above is a polynomial of degree \(n \) in \(t \). We can isolate the coefficient of each \(t^i \) using the Minkowski integral formulas ([4], p. 291) to obtain an integral expression for \(V(K^{n-i}, B^i) \).

\[
V(K^{n-i}, B^i) = \frac{1}{n} \int_{S^{n-1}} s_{n-i}(\rho_1, \ldots, \rho_{n-1}) \, d\omega
\]

\[
= \frac{1}{n} \int_{S^{n-1}} p_K s_{n-i-1}(\rho_1, \ldots, \rho_{n-1}) \, d\omega,
\]

where \(s_j \) is the normalized \(j^{th} \) elementary symmetric function in \(\rho_1, \ldots, \rho_{n-1} \) (ie. \(\binom{n-1}{j} s_j \) is the usual \(j^{th} \) elementary symmetric function).

2.2 Minkowski Subtraction

The proof of theorem 1.2 will also rely on the concept of Minkowski subtraction. Given convex bodies \(K, L \subset \mathbb{R}^n \), the Minkowski difference of \(K \) and \(L \) is

\[
K \sim L = \{ \vec{v} \in \mathbb{R}^n \mid L + \vec{v} \subset K \}.
\]
We may think of \(K \sim L \) as the intersection of all translates of \(K \) by opposites of vectors in \(L \). If \(K \) and \(L \) are both convex, then \(K \sim L \) is as well, but the operations of Minkowski sum and difference are not inverse to one another. Although \((K+L) \sim L = K \) holds for any convex bodies \(K \) and \(L \), \((K \sim L)+L = K\) only when there exists a convex body \(M \) such that \(L+M = K \). In this case we say that \(L \) is a Minkowski summand of \(K \), and \((K \sim L)+L = M+L = K\).

Specializing to a situation relevant to the proof, when we know that \(cB \) is a Minkowski summand of \(K \), we have that \((K \sim cB) + cB = K \) and it follows that \(p_{K \sim cB} = p_K - c \). This allows us to compute \(S_{K \sim cB} \) fairly easily using Equation (2).

We will make use of the following lemma appearing in [3] and [4], which gives a condition under which \(L \) is a Minkowski summand of \(K \).

Lemma 2.1. Suppose \(K, L \subset \mathbb{R}^n \) are convex. If the maximum of all the principal radii of curvature of \(L \) is bounded above by the minimum of the principal radii of curvature of \(K \) at each \(\omega \in S^{n-1} \), then \(L \) is a Minkowski summand of \(K \) — i.e. there is a convex body \(M \) such that \(L + M = K \).

3 Proof of Theorem 1.2

We first establish the upper bound, which is the easier of the two. Since \(K \) is convex, each \(\rho_i \geq 0 \). We may assume that \(K \) is \(C^2_+ \), (in other words the principal radii of curvature are all strictly positive and hence \(\rho_{\text{min}} > 0 \)) since otherwise there is nothing to prove. If \(0 \leq c \leq \rho_{\text{min}} \), then let \(K' = K \sim cB \). \(cB \) is a Minkowski summand of \(K \) by Lemma 2.1, so

\[
S_{K'}(t) = \frac{1}{n} \int_{S^{n-1}} (p_K - c + t) \det(\overline{\Pi}(p_K) + (-c + t)I) \, d\omega = S_K(t - c).
\]

The roots of \(S_{K'} \) have real parts \(r_i + c \), so the stability assumption implies \(r_i + c < 0 \), hence \(r_i < -c \) for any \(c \leq \rho_{\text{min}} \). Letting \(c = \rho_{\text{min}} \) yields the claimed upper bound.

Turning to the lower bound, let \(c \geq \rho_{\text{max}} \). Then \(K \) is a Minkowski summand of \(cB \) and we write \(K' = cB \sim K \). Writing \(p_K \) for the support function of \(K \), we have \(p_{K'} = c - p_K \). Expanding the Steiner polynomial of \(K' \),

\[
\frac{1}{n} \int_{S^{n-1}} (-p_K + c + t) \det(\overline{\Pi}(-p_K) + (c + t)I) \, d\omega,
\]

in the case \(n = 3 \) we have \(S_{K'} = - (V_K - A_K(c + t) + H_K(c + t)^2 - V_B(c + t)^3) \), and in general \(S_{K'} = (-1)^n S_K(-t-c) \). The roots of \(S_{K'} \) have real parts \(-(r+c) \), so by stability \(-r-c < 0 \) and we conclude that \(-c < r \). The lower bound follows by taking \(c = \rho_{\text{max}} \).

Corollary 3.1. The real parts of the roots of \(S_K \) are bounded by \(-\rho_{\text{min}} \) and \(-\rho_{\text{max}} \) for any \(C^2 \) convex body \(K \subset \mathbb{R}^n \) where \(n \leq 5 \).
Proof. It is known [5] that for \(n \leq 5 \), \(S_K \) is stable for every convex body \(K \subset \mathbb{R}^n \). This follows from the Routh-Hurwitz stability criterion and the Aleksandrov-Fenchel inequalities.

\[\square \]

References

[1] Mark Green and Stanley Osher. Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. *Asian J. Math.*, 3(3):659–676, 1999.

[2] Maríá A. Hernández Cifre and Martin Henk. Notes on the roots of steiner polynomials. 2007, *arXiv:math/0703373v1*.

[3] G. Matheron. La formule de Steiner pour les érosions. *J. Appl. Probability*, 15(1):126–135, 1978.

[4] Rolf Schneider. *Convex bodies: the Brunn-Minkowski theory*, volume 44 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, 1993.

[5] B. Teissier. Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem. In *Seminar on Differential Geometry*, volume 102 of *Ann. of Math. Stud.*, pages 85–105. Princeton Univ. Press, Princeton, N.J., 1982.