Increased isobutanol production in *Saccharomyces cerevisiae* by eliminating competing pathways and resolving cofactor imbalance

Fumio Matsuda¹,²,³, Jun Ishii², Takashi Kondo²,⁴, Kengo Ida⁵, Hironori Tezuka⁵ and Akihiko Kondo³,⁵*

Abstract

Background: Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker’s yeast (*Saccharomyces cerevisiae*) strains have been developed following the strategy with respect to its advantageous characteristics for cost-effective isobutanol production. However, the isobutanol yields and titers attained by the developed strains need to be further improved through engineering of *S. cerevisiae* metabolism.

Results: Two strategies including eliminating competing pathways and resolving the cofactor imbalance were applied to improve isobutanol production in *S. cerevisiae*. Isobutanol production levels were increased in strains lacking genes encoding members of the pyruvate dehydrogenase complex such as *LPD1*, indicating that the pyruvate supply for isobutanol biosynthesis is competing with acetyl-CoA biosynthesis in mitochondria. Isobutanol production was increased by overexpression of enzymes responsible for transhydrogenase-like shunts such as pyruvate carboxylase, malate dehydrogenase, and malic enzyme. The integration of a single gene deletion *lpd1Δ* and the activation of the transhydrogenase-like shunt further increased isobutanol levels. In a batch fermentation test at the 50-mL scale from 100 g/L glucose using the two integrated strains, the isobutanol titer reached 1.62 ± 0.11 g/L and 1.61 ± 0.03 g/L at 24 h after the start of fermentation, which corresponds to the yield at 0.016 ± 0.001 g/g glucose consumed and 0.016 ± 0.0003 g/g glucose consumed, respectively.

Conclusions: These results demonstrate that downregulation of competing pathways and metabolic functions for resolving the cofactor imbalance are promising strategies to construct *S. cerevisiae* strains that effectively produce isobutanol.

Keywords: Isobutanol, Ehrlich pathway, Single-gene deletion, Transhydrogenase-like shunt, *Saccharomyces cerevisiae*

Background

There is increasing interest in the production of branched higher alcohols from renewable biomass to be used as a next-generation biofuel and as a building block for commodity chemical production [1,2]. Isobutanol is an important target for biorefinery research because of its preferable properties such as lower toxicity and higher octane values than its straight-chain counterpart [3]. Metabolically engineered microbial strains to produce isobutanol have been developed by introducing the Ehrlich pathway into bacterial hosts, including *Escherichia coli*, *Corynebacterium glutamicum*, *Clostridium cellulolyticum*, *Bacillus subtilis*, and cyanobacteria [4-14]. In the recombinant strains, 2-ketoisovalerate, which is an intermediate in the valine biosynthetic pathway, is converted into isobutanol in a two-step reaction: decarboxylation of 2-ketoisovalerate to isobutyraldehyde by 2-keto acid decarboxylase (KDC), and subsequent reduction to isobutanol by alcohol dehydrogenase (ADH) [4,15]. In bacterial hosts, isobutanol production near the theoretical maximal yield have been achieved by additional metabolic modifications such as deletion of competing pathways...

*Correspondence: akondo@kobe-u.ac.jp
1RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Turumiku, Yokohama, Kanagawa 230-0045, Japan
2Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
Full list of author information is available at the end of the article

© 2013 Matsuda et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
and resolving the cofactor imbalance caused by isobutanol production [7,8,13].

Baker's yeast (*Saccharomyces cerevisiae*) has advantageous characteristics for cost-effective isobutanol production such as cell-recycling fermentation and tolerance against isobutanol and harsh conditions during fermentation [16]. Isobutanol-producing *S. cerevisiae* strains have been developed following a bacterial strategy by construction of the Ehrlich pathway in the cytosol through expression of the *kivd* gene from *Lactococcus lactis* and *ADH6* gene from *S. cerevisiae* [17]. Isobutanol production was increased by the additional activation of the innate valine biosynthetic pathway in mitochondria and by the overexpression of *Ilv2p, Ilv5p*, and *Ilv3p* in the cytosol to construct the artificial pathway [18-20]. It was recently reported that the construction of the Ehrlich pathway in mitochondria is effective to increase isobutanol production because of the compartmentalization of the isobutanol biosynthetic pathway [21]. However, the isobutanol yields and titers attained by the developed strains need to

Figure 1 Metabolic maps of the metabolically engineered *Saccharomyces cerevisiae* strains constructed in this study.

(a) BSW4 strain expressing two genes related to the Ehrlich pathway (*kivd* and *ADH6*). (b) BSW191 strain expressing genes related to the Ehrlich pathway (*kivd* and *ADH6*), mitochondrial valine biosynthetic pathway (*ILV2*), artificial valine biosynthetic pathway in the cytosol (*ILV2c, ILV5c*, and *ILV3c*), and transhydrogenase-like shunt (*PYC2, MDH2*, and *sMAE1*). Black lines indicate the overexpressed or constructed reactions in these strains. Dotted lines represent translocation between mitochondria and cytosol. Pyr, pyruvate; 2-KIV, 2-ketoisovalerate.
be further improved through engineering of *S. cerevisiae* metabolism. In this study, two strategies including eliminating competing pathways and resolving the cofactor imbalance were applied to improve isobutanol production in *S. cerevisiae*. Isobutanol production was increased by suppressing pyruvate dehydrogenase activity and by activating NADPH regeneration in the cytosol and mitochondria.

Results

Disruption of genes related to pyruvate metabolism and valine biosynthesis

The metabolic map shown in Figure 1 indicates that pyruvate is a key intermediate in isobutanol biosynthesis because pyruvate is responsible for several metabolic functions such as the TCA cycle, anaplerotic pathways, and ethanol biosynthesis. Isobutanol production in *S. cerevisiae* was increased by knock-out of the *PDC1* gene [17], suggesting that disruption of other genes related to competing pathways should activate isobutanol biosynthesis. In this study, the effects of disruption of pyruvate metabolism-related genes on isobutanol production were examined by constructing single-gene knockout strains (Figure 2a). Three genes required for isobutanol biosynthesis, including *ILV2*, *kivd*, and *ADH6*, were introduced into 12 single-gene knockout strains. The constructed strains were cultivated in 5 mL of synthetic dextrose (SD) medium under semi-anaerobic conditions. Isobutanol concentration in the medium at 72 h after the start of cultivation was determined by using gas chromatography–mass spectrometry (GC-MS). The control strain (BSW100, Table 1) was constructed by introducing pGK423-kivd, pGK425-ILV2, and pGK426-ADH6 plasmids (Table 2) into the wild-type strain (BY4741) whose isobutanol production level was 22 ± 1 mg/L (Figure 2b).

The fermentation results indicated that the five single-gene deleted strains, including BSW100 irc15Δ, BSW100

![Figure 2](image-url)
Table 1 Yeast strains constructed in this study

Strains	Genotypes
YPH499	MATa ura3-52 his2-801 ade2-101 trp1-de3 his3-Δ200 leu2-Δ1
BY4741	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
BSW100	BY4741/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pdΔ1	BY4741 pdΔ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pdbΔ1	BY4741 pdbΔ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 lΔ1	BY4741 lΔ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 lpΔ1	BY4741 lpΔ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 ircΔ1	BY4741 ircΔ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ1	BY4741 pΔ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ2	BY4741 pΔ2/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ3	BY4741 pΔ3/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ4	BY4741 pΔ4/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 lΔ1 Δ1	BY4741 lΔ1 Δ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ1 Δ1	BY4741 pΔ1 Δ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ2 Δ1	BY4741 pΔ2 Δ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ3 Δ1	BY4741 pΔ3 Δ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ4 Δ1	BY4741 pΔ4 Δ1/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 lΔ1 Δ2	BY4741 lΔ1 Δ2/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ1 Δ2	BY4741 pΔ1 Δ2/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ2 Δ2	BY4741 pΔ2 Δ2/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ3 Δ2	BY4741 pΔ3 Δ2/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ4 Δ2	BY4741 pΔ4 Δ2/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 lΔ1 Δ3	BY4741 lΔ1 Δ3/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ1 Δ3	BY4741 pΔ1 Δ3/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ2 Δ3	BY4741 pΔ2 Δ3/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ3 Δ3	BY4741 pΔ3 Δ3/pGK423-kivd/pGK425-ILV2/pGK426-ADH6
BSW100 pΔ4 Δ3	BY4741 pΔ4 Δ3/pGK423-kivd/pGK425-ILV2/pGK426-ADH6

pdc5Δ, BSW100 pdc6Δ, BSW100 mae1Δ, and BSW100 pyc2Δ and had no positive or negative effects on isobutanol production. Among the genes tested, the BSW100 thi3Δ strain showed slightly reduced production of isobutanol (Figure 2b). Although this finding suggests that 2-ketoisovalerate may be a substrate of the decarboxylation reaction catalyzed by Thi3p, further characterization of Thi3p is essential for more detailed functional annotation. In contrast, isobutanol production levels were slightly increased in BSW100 lΔ1 Δ1 and BSW100 pyc1Δ strains. Furthermore, isobutanol production was remarkably increased to 138–159 mg/L in BSW100 pΔ1 Δ1, BSW100 pΔ2 Δ1, BSW100 lΔ1 Δ1, and BSW100 lat1Δ1 strains (Figure 2b). The cell growth of these mutants was essentially same levels with that of wild type (data not shown). In order to estimate effects of these mutations alone on the isobutanol production, BSW101, BSW101 pΔ1 Δ1, BSW101 pΔ2 Δ1, and BSW101 lat1Δ1, and BSW101 lat1Δ1 strains were constructed by introducing the blank vectors (Table 1). The fermentation test demonstrated that isobutanol production levels were increased to 68–77 mg/L at 72 h after the fermentation start for the mutant strains (data not shown). Because the PDA1, PDB1, LDL1, and LAT1 genes encode proteins in the pyruvate dehydrogenase complex, the results indicate that pyruvate supply for isobutanol biosynthesis is increased by reducing the activity of acetyl-CoA biosynthesis in the mitochondria.

Implementation of transhydrogenase-like shunt

The metabolic pathway shown in Figure 1 also indicates that isobutanol biosynthesis requires NADPH as a cofactor for the reaction catalyzed by Ilv5p and Adh6p. For synthesis of one molecule of isobutanol from two molecules of pyruvate, reducing power has to be supplied by two molecules of NADPH. Because ethanol synthesis from pyruvate essentially uses NADH as a cofactor, the activation of isobutanol biosynthesis should cause NADPH shortage and NADH abundance. This cofactor imbalance could be relieved by the activity of pyridine nucleotide transhydrogenase catalyzing the following reaction: NADH + NADP⁺ → NAD⁺ + NADPH [22,23]. Although pyridine nucleotide transhydrogenase plays an important role in regulating the cellular redox state in many organisms, S. cerevisiae does not possess a gene encoding this enzyme [24]. Furthermore, heterologous expression of a bacterial transhydrogenase was not successful in S. cerevisiae [25].

Recently, it has been demonstrated that the metabolic shunt involving anaplerotic reactions functions similar to transhydrogenase [3,26,27]. Through this shunt, pyruvate is sequentially converted to oxaloacetate, malate, and pyruvate by the activity of pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and malic enzyme (MAE), as shown in Figure 1. The net stoichiometry of the shunt is as
Table 2 Plasmids used in this study

Plasmid	Description	Source or reference
pGK423	Yeast expression vector containing PGK1 promoter, 2 μ origin, HIS3 marker, no expression (control plasmid)	Ishii et al., 2009 [34]
pGK425	Yeast expression vector containing PGK1 promoter, 2 μ origin, LEU2 marker, no expression (control plasmid)	Ishii et al., 2009 [34]
pGK426	Yeast expression vector containing PGK1 promoter, 2 μ origin, URA3 marker, no expression (control plasmid)	Ishii et al., 2009 [34]
pATP423	Yeast three gene expression vector containing ADH1, TDH3 and PGK1 promoters, 2 μ origin, HIS3 marker, no expression (control plasmid)	Ishii et al., in submission
pATP425	Yeast three gene expression vector containing ADH1, TDH3, and PGK1 promoters, 2 μ origin, LEU2 marker, no expression (control plasmid)	Ishii et al., in submission
pATP426	Yeast three gene expression vector containing ADH1, TDH3, and PGK1 promoters, 2 μ origin, URA3 marker, no expression (control plasmid)	Ishii et al., in submission
pGK423-kivd	pGK423, expression of L. lactis 2-ketoisovalerate decarboxylase (kivd) gene	Kondo et al., 2012 [17]
pGK425-ILV2	pGK425, expression of S. cerevisiae ILV2 gene	Kondo et al., 2012 [17]
pGK426-ADH6	pGK426, expression of S. cerevisiae ADH6 gene	Kondo et al., 2012 [17]
pilVS32cytL	pATP425, co-expression of S. cerevisiae ILV5c, ILV3c, and ILV2c genes	This study
pilVS32cytM	2 μ origin, METI5 marker (pGK421-base), co-expression of S. cerevisiae ILV5c, ILV3c, and ILV2c genes	This study
pATP423-sMAE1	pATP423, expression of S. cerevisiae sMAE1 gene	This study
pATP423-MsM	pATP423, co-expression of S. cerevisiae sMAE1 and MDH2 genes	This study
pATP423-PmsM	pATP423, co-expression of S. cerevisiae sMAE1, MDH2, and PYC2 genes	This study
pATP423-MAE1	pATP423, expression of S. cerevisiae MAE1 gene	This study
pATP423-MM	pATP423, co-expression of S. cerevisiae MAE1 and MDH2 genes	This study
pATP423-PMM	pATP423, co-expression of S. cerevisiae MAE1, MDH2, and PYC2 genes	This study
pilV2L	pATP425, expression of S. cerevisiae ILV2 gene	This study
pATP426-kivd-ADH6	pATP426, co-expression of L. lactis kivd and S. cerevisiae ADH6 genes	This study
pATP426-kivd-ADH6-ILV2	pATP426, co-expression of L. lactis kivd, S. cerevisiae ADH6, and ILV2 genes	This study

follows: ATP + NADH + NADP⁺ → ADP + Pi + NAD⁺ + NADPH, because the coenzyme preferences of MDH and MAE in S. cerevisiae are NADH and NADP⁺, respectively [28]. The transhydrogenase-like shut successfully resolved the cofactor imbalance in xylose-fermenting yeast expressing xylitol reductase and xylulose dehydrogenase [27]. In this study, two versions of transhydrogenase-like shuts were implemented to improve isobutanol production by distinct localization of malic enzyme (Mae1p), which is originally expressed in the mitochondria [29]. In the first version, Mae1p activity in the mitochondria was overexpressed to supply NADPH to the valine biosynthesis pathway. In the second version, NADPH was supplied to the Ehrlich pathway by the cytosolic expression of Mae1p (Figure 1b). For this, two plasmids, pATP423-MAE1 and pATP423-sMAE1, were constructed as shown in Figure 3a. The native MAE1 gene and its truncated fragment (sMAE1) lacking the sequence of the mitochondrial transit signal [26] was inserted into an open reading frame (ORF) of the pATP423 plasmid. Plasmids additionally harboring MDH2 and PYC2 genes are also constructed by introducing the other ORFs of pATP423 plasmids (pATP423-MsM, pATP423-PmsM, pATP423-MM, and pATP423-PMM, Figure 3b and c). Mdh2p and Pyc2p are localized to the cytosol [27] (Figure 1). The pATP423-sMAE1, pATP423-MsM, and pATP423-PmsM plasmids were introduced into the YPH499 pATP426-kivd-ADH6 strain to construct a transhydrogenase-like shunt in the cytosol. There is a significant increase in isobutanol formation in BSW 6 and BSW 7 indicating that there is a slight activation of isobutanol production by implementation of the transhydrogenase-like shunt (Figure 4a). Furthermore, the BSW8 strain overexpressing mitochondrial MAE1p through introduction of the pATP423-MAE1 plasmid showed a 1.6-fold increase in isobutanol titer (71 ± 6 mg/L) at 48 h after the start of fermentation. Isobutanol production was activated by the additional overexpression of Mdh2p and Pyc2p in the BSW10 strain, and the isobutanol titer reached 83 ± 2 mg/L (Figure 4a). The transhydrogenase-like shuts were also introduced for the strain whose isobutanol biosynthetic pathway in...
the mitochondria was activated by the overexpression of Ilv2p (Figure 4a). The isobutanol production in the control strain BSW13 (23 ± 3 mg/L, YPH499/pATP426-kivd-ADH6/pATP425/pATP423) is lower than that of BSW4 (45 ± 4 mg/L, YPH499/pATP426-kivd-ADH6/pATP423). Since the leucine biosynthesis is branched from the valine biosynthesis and thus competing with the isobutanol biosynthesis, the leu2-Δ1 allele in BSW4 strain should have positive effect on isobutanol biosynthesis. On the other hands, the BMW13 strain showed a leucine-autotrophy by an additional introduction of ATP425 encoding LEU2 gene. The isobutanol level was increased to 117 ± 6 mg/L by the overexpression of Mdh2p, Pyc2p, and cytosolic sMae1p (BSW17 strain, Figure 4a), probably because of the simultaneous upregulation of 2-ketoisovalerate and NADPH supply in cytosol for isobutanol synthesis via the Ehrlich pathway. Furthermore, activation of the NADPH supply in the mitochondria by overexpression of mitochondrial Mae1p also increased the isobutanol titer to 139 ± 4 mg/L, as shown for the BSW18 strain. The isobutanol yields of BSW17 and BSW18 strains were 0.006 ± 0.0003 and 0.007 ± 0.0002 g/g glucose consumed, respectively, since glucose was completely consumed at 48 h after the fermentation start (Figure 4b). The fermentation profiles indicated that the glucose consumption rates and the ethanol production rate of BSW17 and BSW18 were essentially identical with that of BSW13 (Figure 4b). The isobutanol titer was decreased, however, by additional introduction of the MDH2 and PYC2 genes (BSW19 and BSW20 strains), which suggests that there is an optimal balance of enzyme activities among pyruvate carboxylase, malate dehydrogenase, and malic enzyme.

Construction of isobutanol overproducing strains

Metabolically engineered strains overproducing isobutanol were constructed by integrating the gene disruption and the transhydrogenase-like shunts examined in this study. Isobutanol production by the BSW187 strain (BY4741/pATP426-kivd-ADH6-ILV2/pILV532cytM) possessing genes for the Ehrlich pathway, activation of the mitochondrial valine biosynthetic pathway (ILV2), and the artificial pathway for 2-ketoisovalerate biosynthesis in the cytosol was 46 ± 14 mg/L (Figure 5). The cytosolic artificial pathway was constructed by the expression of truncated ILV2c, ILV3c, and ILV5c genes in which the mitochondrial translocation signals of the ILV2, ILV3, and ILV5 genes were deleted. The details of the artificial pathway were described in our previous study [20]. It should be noted that the isobutanol production by the metabolically engineered strains with the BY4741 background were significantly lower than that by strains with the YPH499 background; the reason for this difference is unclear [17,20].

The isobutanol titer was increased by the additional introduction of transhydrogenase-like shunts as shown in BSW192 and BSW191 strains possessing pATP423-MAE1 and pATP423-PMsM plasmids, respectively. The isobutanol titer was increased to 94 ± 5 and 83 ± 2 mg/L by the activation of the NADPH supply in the cytosol and mitochondria, respectively. The cell growth was not affected by introducing pATP423-MAE1 and pATP423-PMsM plasmids (data not shown). The additional disruption of the LPD1 gene in the BSW192 and BSW191 strains further activated isobutanol biosynthesis. The isobutanol titer of the BSW205 and BSW206 strains reached 230 ± 13 and 221 ± 27 mg/L, respectively (Figure 5) that correspond to isobutanol yields at 0.012 ± 0.0007 and 0.011 ± 0.001 g/g glucose consumed, respectively. The glucose were completely consumed at 48 h after the fermentation start (data not shown).

The fermentation profile of the BSW205 and BSW206 strains was determined by batch fermentation at a 50-mL scale under semi-anaerobic conditions. The yeast cells were inoculated in 50 mL of SD medium containing 100 g/L glucose. As shown in Figure 6, the isobutanol titer reached 1.62 ± 0.11 and 1.61 ± 0.03 g/L at 24 h after the start of fermentation, which corresponded to isobutanol yields of 0.016 ± 0.001 g/g glucose consumed and 0.016 ± 0.0003 g/g glucose consumed, respectively. The fermentation
The test also demonstrated that the BSW205 and BSW206 strains actively consumed and produced glucose and ethanol, respectively. The ethanol yield of the BSW205 and BSW206 strains was 0.42 ± 0.01 and 0.42 ± 0.003 g/g glucose consumed, respectively.

Discussion

In the metabolic engineering of microbial cell factories, elimination of competing pathways and resolution of the cofactor imbalance are essential to improve production of target compounds, as has been demonstrated in the
construction of recombinant *E. coli* and *C. glutamicum* overproducing isobutanol [3,4,13]. In this study, these strategies were applied to increase isobutanol production in *S. cerevisiae*. The metabolic simulation of single gene-deletion strains demonstrated that suppression of ethanol biosynthesis by the deletion of alcohol dehydrogenase genes is effective to increase isobutanol yield [28]. Although a recombinant *S. cerevisiae* strain lacking five alcohol dehydrogenase genes has recently been constructed [30], this strategy is unlikely to be effective because the Ehrlich pathway for isobutanol biosynthesis also requires an alcohol dehydrogenase gene (*ADH6*). Thus, to find other gene deletion targets, the isobutanol production of 12 single gene-deletion mutants expressing genes for isobutanol biosynthesis was experimentally investigated (Figure 2). A fermentation test showed that isobutanol production was significantly increased in strains lacking genes responsible for the pyruvate dehydrogenase (PDH) complex. In these strains, PDH activity was reduced but not eliminated by the deletion of a single protein of the complex, which resulted in increased carbon flux into isobutanol biosynthesis. These results highlight mechanisms regulating isobutanol biosynthesis in *S. cerevisiae* that could not be identified by computer simulation of metabolism based on metabolic flux balance analysis.

In the second part of this study, the cofactor imbalance in isobutanol-producing *S. cerevisiae* strains was resolved by introducing transhydrogenase-like shunts (Figure 4 and 5). The transhydrogenase-like shunt consisted of *Pyc2p*, *Mdh2p*, and *Mae1p* originally existing in *S. cerevisiae* (Figure 1) [26,31]. However, the shunt was hardly functional in *S. cerevisiae* because the deletion of these genes showed no negative effect on isobutanol production (Figure 2). The recombinant strains overexpressing *Mae1p* showed improved production of isobutanol (Figure 4a), which indicates that increased NADPH and pyruvate supply in mitochondria through the activation of mitochondrial malic enzyme (*Mae1p*) could be a driving force to increase isobutanol biosynthesis. It was...
also demonstrated that isobutanol production in \textit{S. cerevisiae} was increased by the expression of malic enzyme in the cytosol (sMae1p) to supply NADPH in the cytosol (Figure 4a). The effect of the transhydrogenase-like function on NADH/NAD$^{+}$ and NADPH/NADP$^{+}$ levels was confirmed in xylose-fermenting \textit{S. cerevisiae} overexpressing the shunt [27]. The improvement of isobutanol production in \textit{S. cerevisiae} by resolving the cofactor imbalance was demonstrated for the first time in this study.

The integration of PDH suppression by \textit{lpd1Δ} and activation of the transhydrogenase-like shunt in BSW205 and BSW206 strains successfully increased the isobutanol levels to 230 ± 13 and 221 ± 27 mg/L, respectively (Figure 6). In the batch fermentation test at the 50-mL scale from 100 g/L glucose using these recombinant strains, the isobutanol titer reached 1.62 ± 0.11 and 1.61 ± 0.03 g/L at 24 h after the start of fermentation (Figure 6). The titer corresponds to the yield at 0.016 ± 0.001 and 0.016 ± 0.0003 g/g glucose consumed, respectively.

\textbf{Conclusions}

All recombinant strains constructed in this study chiefly produced ethanol. For instance, the ethanol yield from glucose of BSW205 and BSW206 strains in the batch fermentation test at the 50-mL scale was 0.42 ± 0.01 and 0.42 ± 0.003 g/g glucose consumed, respectively (Figure 6), which indicates that restriction of ethanol biosynthesis by pyruvate is unavoidable to drastically improve isobutanol yield. However, it has been demonstrated that downregulation of ethanol biosynthesis by deleting the pyruvate decarboxylase and alcohol dehydrogenase genes seriously hampers active cell growth [30,32]. In this regard, identification of the \textit{MTH1ΔT} allele is promising because the mutation enables \textit{S. cerevisiae} strains lacking three pyruvate dehydrogenase genes to actively grow with reduced ethanol production [33]. Recombinant \textit{S. cerevisiae} strains effectively producing isobutanol will be constructed by integrating further activation of pathways for isobutanol biosynthesis [19-21], the down-regulation of competing pathways for acetyl-CoA and ethanol synthesis, and metabolic functions for resolving the cofactor imbalance as demonstrated in this study.

\textbf{Methods}

\textbf{Strains, plasmids, and yeast transformation}

The yeast strains used in this study are listed in Table 1. \textit{S. cerevisiae} YPH499 (\textit{MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1}, purchased from Stratagene, La Jolla, CA, USA) (Sikorski and Hieter, 1989), BY4741 (\textit{MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0}) and the single gene deletion mutants (purchased from Thermo Scientific) were used for yeast host strains. The plasmids and primers used in this study are summarized in Tables 2 and 3, respectively. All plasmids were derived from the \textit{pGK} and \textit{pATP} vector series, in which gene expression is controlled by the \textit{pGK1} promoters and \textit{ADH1}, \textit{TDH1}, and \textit{PGK1} promoters, respectively [34] (Ishii et al., in submission). The \textit{kivd} gene from \textit{Lactococcus lactis} was synthesized by Invitrogen Life Technologies Corp.

\begin{table}[h]
\centering
\begin{tabular}{lll}
\hline
Target genes & Primers & Restriction enzymes \\
\hline
ILV3c (fw) & 5’-ttttCCAGGAtgtggtaaaactcagtacctgtactctgt & AvrII \\
ILV3c (rv) & 5’-ttttGCGGCCGCTattgctgtcattggctgtc & FseI \\
ILV2c (fw) & 5’-aaaaGCGGCCCGGcgggtaaaactcagtacctgtactgt & Sall \\
ILV2c (rv) & 5’-cccccGTCGACatgcttagaaccagactatc & XmaI \\
ILV3c (rv) & 5’-aaaaCCCGGGatgccagagcctgctccaagtttcaatgtt & XmaI \\
MDH2 (fw) & 5’-aaaaACTAGGtagcgccctcactcagtac & AvrII \\
MDH2 (rv) & 5’-aaaaGGCGCCCGGttaaagatgacgatcctc & FseI \\
mMAE1 (fw) & 5’-ttttGTGCAAtgtgcctattgcacatgacg & Sall \\
mMAE1 (rv) & 5’-ttttGCGGCCCGGCtattgctgtcattggctgtc & Sall \\
MAE1 (fw) & 5’-aaaaGCGGCCCGGttaaagatgacgatcctc & FseI \\
MAE1 (rv) & 5’-aaaaCCCGGGatgccagagcctgctccaagtttcaatgtt & XmaI \\
PYC2 (fw) & 5’-aaaaGCGGCCCGGcgggtaaaactcagtacctgtactgt & Sall \\
PYC2 (rv) & 5’-aaaaGGCGCCCGGttaaagatgacgatcctc & FseI \\
ADH6 (fw) & 5’-aaaaGCGGCCCGGcgggtaaaactcagtacctgtactgt & Sall \\
ADH6 (rv) & 5’-aaaaGCGGCCCGGcgggtaaaactcagtacctgtactgt & Sall \\
kivd (fw) & 5’-aaaaGCGGCCCGGcgggtaaaactcagtacctgtactgt & Sall \\
kivd (rv) & 5’-aaaaGCGGCCCGGcgggtaaaactcagtacctgtactgt & Sall \\
\hline
\end{tabular}
\caption{Primers used in this study}
\end{table}
Isobutanol fermentation

The transformants were cultured for 72 h at 30°C in 5 mL of SD minimal medium (6.7 g/L yeast nitrogen base without amino acids and 20 g/L glucose) containing the required amino acids. Following centrifugation at 3,000 rpm for 5 min and removal of supernatant, the yeast cells were cultured in 5 mL of fresh SD minimal medium containing the required amino acids. The concentrations of isobutanol and ethanol in the medium at 48 and 72 h after the start of fermentation were determined using GC-MS (GCMS-QP2010 Plus; Shimadzu) following a previously described procedure [17]. The glucose concentrations were determined by Glucose C-II Test Wako Kit (Wako Pure Chemicals, Tokyo, Japan).

For flask-scale fermentation, the yeast transformants were aerobically cultivated in SD minimal medium containing the required amino acids for 48 h at 30°C. The cells were collected by centrifugation at 1,000 × g for 5 min at 4°C and washed twice with sterile water. The cell pellets were then inoculated into 50 mL of YP medium (containing 10 g/L yeast extract and 20 g/L peptone) with 100 g/L glucose. The initial cell concentration was adjusted to 30 g of wet cells per liter (corresponding to OD 20 and 6.7 g of dry cells per liter). All fermentations were performed at 30°C with mild agitation in 100-mL closed bottles equipped with a bubbling CO₂ outlet.

Competing interests

We declare that the authors have no conflicts of interest in connection with this paper.

Authors’ contributions

JI, TK, FM, HT, and KI performed the experiments. FM, JI, and TK analyzed the data. FM, JI, TK, and AK designed the study. JI, FM, and JI wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

This work was financed by the Industrial Technology Research Grant Program for 2011 of the New Energy and Industrial Technology Development Organization (NEDO) of Japan and Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan. This work is also supported in part by Grants in Aid for Scientific Research (B) No 25820400.

Author details

1Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan. 2Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-dō, Nada, Kobe 657-8501, Japan. 3RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. 4Division of Natural Environment and Information, Faculty of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan. 5Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-dō, Nada, Kobe 657-8501, Japan.

Received: 8 July 2013 Accepted: 5 November 2013

Published: 5 December 2013

References

1. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subit T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87:1303–1315.
2. Connor MR, Liao JC: Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 2009, 20:307–315.
3. Bronbch B, Eikmanns BJ: Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Biogens Bugs 2011, 21:346–350.
4. Atsumi S, Hana T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451(7174):86–89.
5. Atsumi S, Higashide W, Liao JC: Direct photosynthetic recycling of carbon dioxide to isobutryraldehyde. Nat Biotechnol 2009, 27(12):1177–1180.
6. Atsumi S, Li Z, Liao JC: Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 2009, 75(18):6306–6311.
7. Atsumi S, Wu TY, Ehl EM, Hawkins SD, Buelter T, Liao JC: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85(3):651–657.
8. Baez A, Cho KM, Liao JC: High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011, 90(3):1681–1690.
9. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH: Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13(3):345–352.
10. Bronbch B, Riester T, Wieschalka S, Zient C, Youn JW, Wendisch VF, Eikmanns BJ: Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 2011, 77(10):3300–3310.
11. Higashide W, Li Y, Yang Y, Liao JC: Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 2011, 77(8):2727–2733.
12. Smith KM, Cho KM, Liao JC: Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87(3):1045–1055.
13. Yamamoto S, Suda M, Nishi S, Inui M, Yukawa H: Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 2013, 110(10):2988–2984.
14. Li S, Wen J, Jia X: Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 2011, 91(3):577–589.
15. Hazelwood LA, Daran JM, van Mars AJ, Pronk JT, Dickinson JR: The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 2008, 74(8):2559–2566.
16. Kondo A, Iishi J, Hara KY, Hasunuma T, Matsuda F: Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 2013, 163(2):204–216.
17. Kondo T, Tezuka H, Iishi J, Matsuda F, Ogino C, Kondo A: Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 2012, 159(1):2–12.
18. Chen X, Nielsen KF, Buelter T, Liao JC: Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 2011, 4:21.
19. Brat D, Weber C, Lorenzen W, Bode H, Boles E: Cytoplasmic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5(1):55.
20. Matsuda F, Kondo T, Ida K, Tezuka H, Ishii J, Kondo A: Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae. Bioi Biotechnol Biochem 2012, 76(1):2139–2141.

21. Avalos JL, Fink GR, Stephanopoulos G: Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013, 31:335–341.

22. Arkblad EL, Betsholtz C, Rydstrom J: The DNA sequence of proton-pumping nicotinamide nucleotide transhydrogenase from man and mouse. Biochim Biophys Acta 1996, 1273(3):203–205.

23. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdHA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004, 279(16):16136–4619.

24. Anderlund M, Nissen TL, Nielsen J, Villadsen J, Hahn-Hagerdal B, Kielland-Brandt MC: Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 1999, 65(8):2333–2340.

25. Katahira S, Mizuike A, Fukuda H, Kondo A: Characterization of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18(1):19–32.

26. Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J: Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 2004, 6(4):352–363.

27. Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A: Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012, 96(4):1669–1678.

28. Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A: Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Fact 2011, 10(1):70.

29. Boles E, de Jong-Gubbels P, Pronk JT: Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 1998, 180(11):2875–2882.

30. Ida Y, Furusawa C, Hirasawa T, Shimizu H: Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 2005, 99(4):1669–1678.

31. Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Bluthgen N, Borger S, Costenoble R, Heinemann M, et al: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008, 26(10):1155–1160.

32. Hohmann S: Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Biol Chem 1991, 266(24):7963–7969.

33. Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ: An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase-negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131.

34. Ishii J, Izawa K, Matsumura S, Wakamura K, Tanino T, Tanaka T, Ogino C, Fukuda H, Kondo A: Simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. J Biochem 2009, 145(6):701–708.

35. Ito H, Fukuda Y, Murata K, Kimura A: Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983, 153(1):163–168.

36. Katahira S, Mizuike A, Fukuda H, Kondo A: Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellobiose-oxidase-encoding yeast strain. Appl Microbiol Biotechnol 2006, 72(6):1136–1143.

Cite this article as: Matsuda et al.: Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microbial Cell Factories 2013 12:119.