Dendritic cell-based approaches in the fight against diseases

Rafael de Freitas e Silva1,2 *, Maria Carolina Accioly Brelaz de Castro2 and Valéria Rêgo Alves Pereira2

1 Department of Natural Sciences, University of Pernambuco, Garanhuns, Brazil
2 Department of Immunology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Brazil
*Correspondence: rafael.silva@upe.br

Keywords: dendritic cells, immunotherapy, vaccine, cancer, infectious diseases

DENDRITIC CELL ROLE IN THE IMMUNE SYSTEM AND ITS MANIPULATION

The immune system works to contain infections through activation of different molecules and cell types. Correct presentation of antigens by antigen-presenting cells (APCs) is a critical step necessary to initiate an immune response. APCs have the ability to take-up and process antigens, and express high levels of co-stimulatory and major histocompatibility complex (MHC) molecules bound to antigens (1).

Dendritic cells (DCs) are innate immune cells first characterized and reported by Ralph Steinman in 1973 (2). For their unique properties and features, DCs are the most important APCs acting at the interface of innate and adaptive immunity, which results in the activation of immune responses in the body. Distinct subsets of DCs are associated with lineage and receptor expression patterns (3).

Dendritic cells have different roles in the immune system, such as activation and regulation of adaptive immune responses, and other opposing functions in the induction of tolerance and anergy (4). During immune responses, DCs are crucial decision makers toward the development of naïve T cells to T helper type 1 (Th1) or type (Th2) profile (5).

Among the different families of molecules expressed by DC to aid in their function, one of them is the family of toll-like receptors (TLR). TLR which are expressed by different types of DCs, and bind to common molecules associated with pathogens. Once bound, molecules such as bacterial lipopolysaccharide and hypomethylated CpG DNA, can induce activation of biochemical cell pathways, resulting in over-expression of MHC, co-stimulatory molecules (CD80, CD86), and cytokines (6).

In this context, a number of methods have been available to manipulate DCs from diverse sites in the body resulting in activated cells for therapy. These methods include reinfusion of unloaded DCs; reinfusion of DCs co-cultured with peptides or proteins of interest; in vivo DC loading; DC transfection with antigen-encoding viruses or nucleic acids; and DC-DC exosomes (7, 8). After this, DCs might be ready to promote protection or treat specific diseases.

In this context, the availability of methods to manipulate DCs in laboratory, arise as an important tool for immunointerventions in different diseases. In this opinion article, we focused on the basis of DC approaches already available in the field of cancer currently in test for infectious diseases, and future interventions that are needed.

DENDRITIC CELL APPROACHES FOR CANCER

Since initial tests with murine models, activated DCs have been an attractive alternative to treat cancer as an immunostimulatory vaccine. This vaccine has the ability to induce effective cancer immunity by inducing Th1 cells and specific cytotoxic T lymphocytes to tumor antigens, as well as natural killer (NK) cells (9, 10). The potential of anti-cancer vaccines also lies on their capacity to stimulate long-lasting memory T cells against tumor antigens. Among the subsets of memory T cells, the presence of central memory (Tcm) cells has been associated with a better antitumor function than effector memory cells (11).

The first attempt of vaccination was performed with DCs derived from patients with non-Hodgkin’s lymphoma who have failed current treatment. Immunoglobulin idioype from the patient’s tumor were used to load DCs ex vivo and then were reinfused to the patient’s body – what resulted in the complete remission of the tumor (12).

To date, many clinical assays employing different methods to activate DCs have been in test for different types of cancers. Most trials were performed using autologous DCs pulsed ex vivo with tumor antigens or derived peptides, and administered to patients with or without chemotherapy or other immune agent (13). However, other types of interventions are in course in clinical trials, such as those using DCs engineered to express tumor antigens with or without molecules such as CD40 ligand, CD70, and TLR-4 (14, 15). Important results were shown in one trial performed by Tel et al. (16), who reported a strong immune-specific response against melanoma after administration of a particular subset of DCs, called plasmacytoid-DCs (pDCs) pulsed with melanoma specific antigens. pDCs have been seen as interesting players in this task, since once properly activated they are able to produce high levels of gamma-interferon (INF-γ) and elicit a robust Th1 immune response.

Most clinical assays have used ex vivo manipulation of patient’s peripheral blood monocytes cultured in the presence of interleukin (IL)-4 and recombinant granulocyte macrophage-colony stimulating factor (GM-CSF) to achieve DCs for therapy (17). In this way, a DC-based preparation of autologous cells expanded ex vivo in the presence of a prostatic acid phosphatase/GM-CSF fusion protein (sipuleucel-T, Provenge®) was approved by the US FDA and other international regulatory agencies for use in patients with advanced metastatic prostate
Dendritic cells approaches against diseases

Dendritic cell manipulation offers an interesting approach to fight against infectious diseases, and an alternative to prompt a protective immunity, since some treatments are ineffective or inexistent in those cases (32, 33). Previous studies have shown that DCs can induce protection against different pathogens, including protozoan, bacterial, and virus. DCs recognize microorganisms through TLR or C-type lectin receptors (34, 35). Vaccination works have reported protection against leishmaniasis (36, 37), Herpes simplex virus (38, 39), influenza virus (40), and Candida albicans (41), among other pathogens, such as HIV.

Human immunodeficiency virus has different mechanisms of evasion from the immune system, and nowadays the main source of treatment to infected patients is to follow combination antiretroviral therapy (cART) for life. However, attention was drawn to promising results obtained by the use of DC-based vaccine against HIV. Lu et al. (42) performed the first success clinical trial described, and found a significant reduction in plasma viral load (VL) after administration of autologous DCs loaded with inactivated autologous virus in HIV-1 infected patients. At least 12 studies have achieved interesting results, and evolved to clinical trials with HIV-1 infected patients and reported HIV-1 specific-immunological responses (43). Recently, Garcia et al. (44) observed a significant decrease in VL in HIV-1 chronic infected patients who have interrupted cART treated with autologous monocyte-derived DCs pulsed with autologous heat-inactivated whole HIV. Previously, Garcia et al. (45) also showed promising results with significant drop in VL in HIV-1 infected patients off-cART treated with the same vaccine preparation. Based on this, it is expected that in the next few years good results will be achieved, enhancing the chances to develop an immunointervention that could help infected individuals.

Although now it is possible to target vaccine antigens to DCs in T and B areas and to modulate their function with adjuvants, there is still no currently approved DC therapy for infectious diseases, and most experimental approaches are especially with animal models (46). One good example is leishmaniasis, which is one of the most important neglected diseases that cause deaths and morbidity in more than 88 countries. Current human anti-leishmania vaccines available are limited by their inefficiency to confer protection against the different species and also by their safety, which is contested. DCs approaches for leishmaniasis were proposed by different groups of research with remarkable results showing low levels of parasite burden and high levels of Th1 cytokines in animals treated (47, 48). However, results from studies with animal models might be difficult to translate the results to humans, and it will remain a goal for further investigations. DCs therapy for leishmaniasis and other infectious diseases would aid mainly refractory patients to current treatments due to high toxic drugs that are available for use or the increasing number of resistant pathogens. Furthermore, immunocompromised individuals, such as those with AIDS or grafted, would be benefited by more safety and effective treatments against different pathogens.

CONCLUSION

In the last couple of years, DC therapies approaches have been shown to be feasible and secure. Successful results were and are being obtained with cancer patients and animal models. DCs have an extraordinary capacity to orchestrate the host’s immune response, which offers new perspectives for the development of vaccines and immunotherapeutic strategies against cancer and infectious diseases among others. However, due to the success that is been observed with cancer and also due to the efforts that is being put by many research groups in the development of antigens and adjuvants with good immunological stimulatory capacities, we believe that in a closer future DC therapies will be also a viable approach to treat and/or prevent infectious diseases.

REFERENCES

1. Adema GJ. Dendritic cells from bench to bedside and back. Immunol Lett (2009) 122:128–30. doi:10.1016/j.imlet.2008.11.017
42. Lu W, Arraes LC, Ferreira WT, Andrieu JM. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med (2004) 10:1359–65. doi:10.1038/nm1147

43. García F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine (2011) 29(38):6454–63. doi:10.1016/j.vaccine.2011.07.043

44. García F, Plana M, Climent N, León A, Gatell JM, Gallart T. Dendritic cell based vaccines for HIV infection: the way ahead. Hum Vaccin Immunother (2013) 9(11):2445–52. doi:10.4161/hv.25876

45. García F, Climent N, Assoumou I, Gil C, González N, Alcami J, et al. A therapeutic dendritic cell-based vaccine for HIV-1 infection. J Infect Dis (2011) 203(4):473–8. doi:10.1093/infdis/jiq077

46. Masic A, Hurdaya R, Nieuwenhuizen NE, Brombacher F, Moll H. Dendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice. PLoS Negl Trop Dis (2012) 6(7):e1721. doi:10.1371/journal.pntd.0001721

47. Matos I, Mizzenina O, Lubkin A, Steinman RM, Idoyaga J. Targeting Leishmania major antigens to dendritic cells in vivo induces protective immunity. PLoS One (2013) 8(6):e67453. doi:10.1371/annotation/5149b8fe-3843-4865-a726-0ca28204e8f8

48. Schwarz T, Remer KA, Nahrendorf W, Masic A, Siewe L, Müller W, et al. T cell-derived IL-10 determines leishmaniasis disease outcome and is suppressed by a dendritic cell based vaccine. PLoS Pathog (2013) 9(6):e1003476. doi:10.1371/journal.ppat.1003476

Received: 04 February 2014; accepted: 13 February 2014; published online: 26 February 2014. Citation: Freitas-Silva R, Brelaz-de-Castro MC and Pereira VR (2014) Dendritic cells-based approaches in the fight against diseases. Front. Immunol. 5:78. doi: 10.3389/fimmu.2014.00078

This article was submitted to Immunotherapies and Vaccines, a section of the journal Frontiers in Immunology. Copyright © 2014 Freitas-Silva, Brelaz-de Castro and Pereira. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.