Peak Effect of J_c and Nonlinear $E − J$ Characteristics of High-T_c Superconductors *

W. Wang, Z. Qi, H. Y. Xu, F. R. Wang, C. Y. Li and D. L. Yin*

Department of Physics, Peking University, Beijing 100871, China

The critical current density J_c in high-T_c superconductors (HTS) often shows a maximum at field far above the self-field. We study this peak effect (PE) with the nonlinear $I − V$ response of type-II superconductors and find analytical equation of J_c in the dependence of field and temperature. This equation is compared with some experimental data of R-Ba-Cu-O single crystals with fair agreement.

PACS: 74.60.Jg, 74.60.Ge, 74.62.b, 74.72.-h

The vortex matter becomes mobile when the driving current density exceeds some critical value J_c. In high-T_c superconductor RBa$_2$Cu$_3$O$_7$-δ (R=Y, Gd, Tm and Nd) J_c often shows a maximum at applied magnetic fields far above the self-field. This peak effect is of great interest from both fundamental and technological aspects and studied extensively [1]-[6]. Scaling behavior in the form $J_c(B, T)/J_c(B_p, T) = f(B/B_p)$ with peak field B_p has been observed in twinned and twin-free YBa$_2$Cu$_3$O$_7$-δ single crystals [3]. Prominent PE of J_c with the scaling behavior of the pinning force F_p in the form $F_p/F_{p\text{max}} = f(B/B_{irr})$ has been observed in NdBa$_2$Cu$_3$O$_7$-δ single crystals [4], where B_{irr} is the irreversibility field. Gurevich and Vinokur showed that PE could be interpreted by the nonlinear transport properties of type-II superconductors with macroscopic inhomogeneities [5]. Otterlo et al. explained PE by phase transitions between a stiffer and softer vortex phase [6]. Nevertheless, comparison of models study with pertinent experimental data is still lacking. In present work we derive the analytical functional of $J_c(B)$ from the nonlinear materials equation of HTS and compare it with experiments.

One of the central issues of physics of the mixed state in type-II superconductors is thermally activated vortex creep characterized by highly nonlinear electric-current density ($E − J$) characteristics below the critical current density $J < J_c$. This kind of characteristics is usually expressed as

$$E(J) = J \rho f e^{-U(J,B,T)/kT}$$

(1)

with $\rho f \approx \rho_n B/\ objectively$ the flux-flow resistivity estimated by Bardeen and Stephen [3].

Different models used different types of $U(J)$ which are suggested to approximate the real barrier. For instance, the Anderson-Kim model with $U(J) = U_c(1 - 1/(\gamma J_{c0}))$ [3], the logarithmic barrier $U(J) = U_c \ln(1/(\gamma J_{c0}/J))$ [3], and the inverse power-law $U(J) = U_c \ln^\mu((\gamma J_{c0}/J) - 1)$ [11] [12]. It is recently shown [4] [5], if one makes a common modification to the different model barriers $U(J)$ as

$$U(J) \rightarrow U(J_p \equiv J - E(J)/\rho f)$$

(2)

The corresponding modified materials equation. (1) leads to a common nonlinear form as

$$y = x \exp[-\gamma(1 + y - x)^p]$$

(3)

with x and y the normalized current density and electric field respectively, γ is a parameter characterizing the symmetry breaking of the pinned vortices system and p is an exponent.

In connection with the Anderson-Kim model

$$E(J) = 2\nu_0 B \exp[-U_0 - W_V]/kT \sinh(W_L/kT)$$

or

$$E(J) = J \rho f \exp[-U_0 - W_V + W_L]/kT]$$

(4)

We have in Eq. (3) $p = 1$, $\gamma = U_0/kT$, $x = W_V/kT$ and $y = W_L/kT$. W_V is the dissipation energy due to flux moving. From the result of Bardeen and Stephen [13]:

$$W_V = \eta \cdot v \cdot A = E(J) \cdot B \cdot A / \rho f$$

(5)

with the viscous drag coefficient $\eta = B \cdot B_{c2}/\rho_n = B^2/\rho f$. A is the product of the volume of vortex bundles and the range of pinning force.

W_L is the work done by Lorentz force.

$$W_L = J \cdot B \cdot A$$

(6)

The critical current density J_c is defined by a certain criterion $E(J_c) \equiv E_c$. From upper equation. (3), (4) and (5) we get:

$$J_c = J_{c0}(1 - kT/\nu_0 B \ln\left(\frac{U_c E_c}{\rho f J_{c0}}\right))$$

(7)

*This work is supported by the Ministry of Science and Technology of China (NKBSF-G 19990640) and the Chinese NSF.
where J_{c0} is the critical current density without the help of thermal activation.

$$J_{c0} = U_0/BA,$$

(8) and $\ln(\nu_0 B/E_c)$ is a slow varying function of the magnetic field B; therefore, we set $\ln(\nu_0 B/E_c) = \ln(E_0/E_c)$ as a constant. From Eq. (7) and according to the criterion about E_c, the irreversible field B_{irr} can be defined as:

$$U_0(T, B_{irr}) = kT \ln(E_0/E_c).$$

When $B \approx B_{irr}$, $J_c \approx E_c/\rho_f$, the system will turn into flux flow region. The critical current density can be expressed as

$$J_c = J_{c0} \left[1 - \frac{U_0(T, B_{irr})}{U_0(T, B)} + \frac{E_c B_{irr}}{\rho_n BJ_{c0}}\right].$$

(9)

$$J_c = \alpha'(T) \left[1 - \zeta(C - 1)^m \left(\frac{B}{B_{irr}}\right)^{-l} \left(C - \frac{B}{B_{irr}}\right)^{-m}\right]^{-3\nu} \left(\frac{B}{B_{irr}}\right)^{l} \left(C - \frac{B}{B_{irr}}\right)^{-m} + \frac{E_c}{J_{c0}\rho_n b}$$

(12)

where $C \equiv B_{c2}/B_{irr}$ and $\alpha'(T) \equiv C^{-m} B_{irr}^{l} \alpha(T)$. The scaling form of the numerical solutions of Equation (12) are shown in Fig. 2 with prominent peaks form like that observed in Fig. 1. The comparison of Eq. (12) with the experimental data of Ref. [3] in the scaling form is shown in Fig. 2 where we see a fair agreement.

In summary, we show a common nonlinear electric field-current density $(E-J)$ characteristics equation. And from this equation we can get a clear expression of critical current density J_c. The widely observed peak effect can be well understood by this equation. Furthermore, we found that the peak effect under different temperature can be scaled as well.

This work is supported by the Ministry of Science and Technology of China (NKBRSF-G19990640) and the Chinese NSF.

We assume that the dependence of the pinning potential U_0 on temperature and field can be separated as

$$U_0(T, B) = \alpha(T) B^l (1 - b)^m, \ b \equiv B/B_{c2}.$$

(10)

and note that the factor BA in Eq. (8) has the form

$$BA \propto \left[1 - \frac{T}{T^*(B)}\right]^{-3\nu} \approx \left[1 - \zeta \left(\frac{B}{B_{irr}}\right)^{-l} \left(1 - \frac{b}{b^*}\right)^{-m}\right]^{-3\nu}$$

(11)

where $\zeta \equiv \alpha(T)/[\alpha(T^*(B))]$ is a slow variable and $b^* \equiv B_{irr}/B_{c2}$. Substitute Eqs. (10), (11) into (8), we have

* Electronic address: ydl@ibm320h.phy.pku.edu.cn

[1] For a review see Blatter G et al. Rev. Mod. Phys., 66,1125 (1994); E.H.Brandt, Rep.Prog.Phys. 58, 1465 (1995); Cohen L F et al. Rep. Prog. Phys. 60, 1581 (1997).
[2] H.Küpfer et al., Phys.Rev.B58, 2886 (1998).
[3] M.Murakami et al. Physica C 282-287 (1997) 371-374; ibid 2137 (1997).
[4] D.V.Shantsev et al., Phys.Rev.Lett. 82, 2947 (1999).
[5] A.Gurevich and V.M.Vinokur, Phys.Rev.Lett. 83, 3037 (1999).
[6] M.V.Feigel’man et al., Phys. Rev. Lett. 63, 2303 (1989).
[7] M.R.Beasley et al., Phys. Rev. 181, 682 (1969).
[8] M.P.A.Fisher, Phys.Rev.Lett. 62, 1415 (1989).
[9] E.Zeldov et al., Phys.Rev.Lett. 62, 3093 (1989).
[10] M.V.Feigel’man et al., Phys. Rev. Lett. 63, 2303 (1989).
[11] D.S.Fisher et al., Phys.Rev. B 43, 130 (1991); M.P.A. Fisher, Phys.Rev.Lett. 62, 1415 (1989).
[12] J.Bardeen and M.J.Stephen, Phys.Rev. 140, A1197(1965).
[13] H.D.Chen et al., Phys. Rev. B 61, 1468 (2000).
[14] Y.Wang et al., Eur. Phys. J. B 15, 221 (2000).
[15] G.C.Xiong et al., J.Less-Comm.Met., 164, 1316 (1990).
FIG. 1. The experimental data of the $J_c - B$ curves which is in Semi-logarithmic form [3].

FIG. 2. The numerical solutions of Eq. (12) with $3\nu = 2$, $l = 0.68$, $m = 9.8$.

FIG. 3. The scaling behavior of peak effect with B/B_{irr} and J_c/J_{cpeak}. The lines are data from Fig.1 and the open symbols are datas from Fig.2.