Uniform measures and uniform rectifiability

Xavier Tolsa

Abstract

In this paper, it is shown that if μ is an n-dimensional Ahlfors–David regular measure in \mathbb{R}^d which satisfies the so-called weak constant density condition, then μ is uniformly rectifiable. This had already been proved by David and Semmes in the cases $n = 1, 2$ and $d - 1$, and it was an open problem for other values of n. The proof of this result relies on the study of the n-uniform measures in \mathbb{R}^d. In particular, it is shown here that they satisfy the ‘big pieces of Lipschitz graphs’ property.

1. Introduction

Given $n > 0$, a Borel measure μ in \mathbb{R}^d is said to be n-uniform if there exists some constant $c_0 > 0$ such that

$$\mu(B(x, r)) = c_0 r^n \quad \text{for all } x \in \text{supp}\mu \text{ and all } r > 0.$$ \hspace{1cm} (1.1)

For definiteness, let us remark that we assume the balls $B(x, r)$ to be open.

The study of n-uniform measures is a subject of great importance in geometric measure theory because of its applications to many other problems. In particular, this plays a fundamental role in the proof of the celebrated Preiss’ theorem [16] which states that, given a Borel measure σ on \mathbb{R}^d, the σ-almost every (a.e.) existence of the density

$$\Theta^n(x, \sigma) = \lim_{r \to 0} \frac{\sigma(B(x, r))}{r^n},$$

with $\Theta^n(x, \sigma) > 0$ σ-a.e., forces σ to vanish out of a countably n-rectifiable subset of \mathbb{R}^d. There are many other works in areas such as geometric measure theory, potential analysis or PDEs where the knowledge of the structure of n-uniform measures is an important ingredient. See, for example, [1, 4, 10, 11] or [17].

The classification of n-uniform measures in \mathbb{R}^d is a difficult problem which is solved only partially. To begin with, it is easy to check that there are no non-zero n-uniform measures for $n > d$. The first remarkable result was obtained by Marstrand [14], who showed that if μ is a non-zero n-uniform measure, then $n \in \mathbb{Z}$. Later on, Preiss proved in [16] that for $n = 1$ or $n = 2$, any n-uniform measure μ is flat, that is, it is of the form $c \mathcal{H}^n|L$, where c is some constant, L is an n-plane and $\mathcal{H}^n|L$ stands for the n-dimensional Hausdorff measure restricted to L.

Quite surprisingly, for $n \geq 3$, $d \geq 4$, there are n-uniform measures which are non-flat. This is the case, for example, for the three-dimensional Hausdorff measure restricted to the light cone in \mathbb{R}^4, defined by

$$X := \{ x \in \mathbb{R}^4 : x_4^2 = x_1^2 + x_2^2 + x_3^2 \},$$
where x_i is the ith coordinate of x. In \mathbb{R}^d with $d \geq 4$, the Cartesian product of X with any $(n - 3)$-dimensional linear subspace is also an n-uniform measure. In fact, in the codimension-1 case ($n = d - 1$) Kowalski and Preiss [13] proved that the only n-uniform measures are either flat measures or the Hausdorff measure \mathcal{H}^n restricted to some rotation and translation of $X \times \mathbb{R}^{n-3}$.

Much less information is known in the case when $n \neq 1, 2, d - 1$. In this general situation, Kirchheim and Preiss proved in [12] that the support of an n-uniform measure coincides with an analytic variety, that is, the zero set of some real analytic function, which moreover is given explicitly in terms of μ. However, from this result it is difficult to derive quantitative information which can be applied to solve other problems from geometric measure theory, such as, for example, the characterization of uniformly rectifiable measures in terms of the so-called weak constant density (WCD) condition.

We turn now to the topic of uniform rectifiability. An n-dimensional Ahlfors–David regular (AD-regular, for short) measure μ in \mathbb{R}^d is a Borel measure such that, for some constant $c_1 > 0$,\footnote{The notion of uniform n-rectifiability (or simply, uniform rectifiability) was introduced by David and Semmes in [6]. This is a kind of quantitative version of n-rectifiability. One of the many equivalent definitions is the following: μ is uniformly rectifiable if it is AD-regular and there exist constants $\theta, M > 0$ so that, for each $x \in \text{supp } \mu$ and $R > 0$, there is a Lipschitz mapping g from the n-dimensional ball $B_n(0,r) \subset \mathbb{R}^n$ to \mathbb{R}^d such that g has Lipschitz norm not exceeding M and $\mu(B(x, r) \cap g(B_n(0, r))) \geq \theta r^n$. In the language of [6], this means that $\text{supp } \mu$ has big pieces of Lipschitz images of \mathbb{R}^n. A related and more restrictive notion is the one of having ‘big pieces of Lipschitz graphs’: an AD-regular measure μ in \mathbb{R}^d has big pieces of Lipschitz graphs if there are constants $\theta, M > 0$ so that, for each $x \in \text{supp } \mu$ and $R > 0$, there is a Lipschitz function $g : \mathbb{R}^n \to \mathbb{R}^{d-n}$ with Lipschitz norm not exceeding M whose graph or a rotation of this, called Γ, satisfies $\mu(B(x, r) \cap \Gamma) \geq \theta r^n$. It is immediate to check that if μ has big pieces of Lipschitz graphs, then it is uniformly rectifiable. The converse is not true, unless $n = 1$ (see [6, Chapter I.1]). In the monographs [5, 6], David and Semmes obtained many different characterizations of uniform rectifiability. One of these characterizations is given in terms of the WCD condition mentioned above. Given μ satisfying (1.2), denote by $G(c'_1, \varepsilon)$ the subset of those $(x, r) \in \text{supp } \mu \times (0, +\infty)$ for which there exists a Borel measure $\sigma = \sigma_{x,r}$ satisfying $\text{supp } \sigma = \text{supp } \mu$, the AD-regularity condition (1.2) with the constant c'_1, and $|\sigma(B(y, t)) - t^n| \leq \varepsilon r^n$ for all $y \in \text{supp } \mu \cap B(x, r)$ and all $0 < t < r$. One says that μ satisfies the WCD if there is $c'_1 > 0$ such that the set $G(c'_1, \varepsilon)^c := [\text{supp } \mu \times (0, +\infty)] \setminus G(c'_1, \varepsilon)$ is a Carleson set for every $\varepsilon > 0$. This means that for every $\varepsilon > 0$ there is a constant $C(\varepsilon)$ such that \[\int_0^R \int_{B(x, R)} \chi_{G(c'_1, \varepsilon)^c}(y, r) d\mu(y) \frac{dr}{r} \leq C(\varepsilon) R^n \text{ for all } x \in \text{supp } \mu \text{ and all } R > 0. \] It is not difficult to show that if μ is uniformly rectifiable, then it satisfies the WCD (see [5, Chapter 6]). Conversely, it was proved by David and Semmes that, in the cases $n = 1, 2$ and $d - 1$, the only n-uniform measures are either flat measures or the Hausdorff measure \mathcal{H}^n restricted to some rotation and translation of $X \times \mathbb{R}^{n-3}$.
For $n = 1$ and 2, this implies that μ is very close to some flat measure at most locations and scales since all n-uniform measures turn out to be flat in this case. Then, by the so-called bilateral weak geometric lemma (see Theorem 2.5 for more details), μ is uniformly rectifiable. The proof for $n = d - 1$ is more complicated and it relies on the precise characterization of all the n-uniform measures by Kowalski and Preiss in the codimension-1 case, which has already been described above.

The fact that the WCD implies uniform rectifiability was open up to now for $n \neq 1, 2, d - 1$. In the present paper, we solve this problem.

Theorem 1.1. Let n be an integer with $0 < n < d$. If μ is an n-dimensional AD-regular measure in \mathbb{R}^d satisfying the WCD condition, then μ is uniformly rectifiable. Thus, uniform rectifiability is equivalent to satisfying the WCD condition, for AD-regular measures.

Our proof is also based on the fact that at most locations and scales μ is well approximated by n-uniform measures, as shown in [6]. A fundamental ingredient of our arguments is the fact, proved by Preiss [16], that if an n-uniform measure σ is ‘quite flat’ at infinity, then σ is actually a flat measure. See Theorem 2.4(b) for the precise statement. In a sense, from this result it follows that if σ is very flat at some scale and location, then it will continue to be flat in the same location at all the smaller scales (see Lemmas 3.6 and 3.7 for more details). Let us remark that a similar argument was applied in [17] to study the so-called Hölder doubling measures. Another essential property of any n-uniform measure σ is that any ball centered in $\text{supp}\, \sigma$ contains another ball with comparable radius where σ is very flat. This will be proved below by ‘touching point arguments’, which involve the n-dimensional Riesz transforms as an auxiliary tool (see Lemma 3.1).

Besides the application to the study of the WCD in connection to uniform rectifiability, the aforementioned results concerning n-uniform measures have the following consequence.

Theorem 1.2. Let n be an integer with $0 < n < d$ and let μ be an n-uniform measure in \mathbb{R}^d. Then μ has big pieces of Lipschitz graphs. In particular, μ is uniformly rectifiable.

Recall that Kirchheim and Preiss [12] proved that if μ is n-uniform, then $\text{supp}\, \mu$ coincides with an analytic variety. One might think that then one can easily deduce that μ has big pieces of Lipschitz graphs. This is not the case, as far as the author is concerned, due to the difficulty of deriving quantitative information from the results in [12].

Finally, it is also worth comparing Theorem 1.2 to a connected result of De Pauw [9], which asserts that if μ is a Radon measure in \mathbb{R}^n such that the density $\mu(B(x, r))/r^n$ is increasing as a function of r for all $x \in \mathbb{R}^d$ and it is uniformly bounded from below for $x \in \text{supp}\, \mu$, then μ has big pieces of Lipschitz graphs.

2. Preliminaries

As usual in harmonic analysis and geometric measure theory, in this paper the letter c is used to denote a constant (often an absolute constant) which may change at different occurrences and whose value is not relevant for the arguments. On the other hand, constants with subscripts, such as c_0 or c_1, retain their values at different occurrences.

Unless stated otherwise, all the balls denoted by B in this paper are assumed to be open.
2.1. The \(\beta_\mu \) and \(b\beta_\mu \) coefficients

Given a measure \(\mu \) and a ball \(B = B(x, r) \), we consider the following Jones’ \(\beta_\mu \) coefficient of \(B \):

\[
\beta_\mu(B) = \inf_L \left(\sup_{x \in \text{supp} \mu \cap B} \frac{\text{dist}(x, L)}{r} \right),
\]

where the infimum is taken over all \(n \)-planes \(L \subset \mathbb{R}^d \). The bilateral \(\beta_\mu \) coefficient of \(B \) is defined as follows:

\[
b\beta_\mu(B) = \inf_L \left(\sup_{x \in \text{supp} \mu \cap B} \frac{\text{dist}(x, L)}{r} + \sup_{x \in L \cap B} \frac{\text{dist}(x, \text{supp} \mu)}{r} \right),
\]

where the infimum is taken over all \(n \)-planes \(L \subset \mathbb{R}^d \) again.

2.2. Weak convergence of measures

We say that a sequence of Radon measures \(\{\mu_j\} \) in \(\mathbb{R}^d \) converges to another Radon measure \(\mu \) in \(\mathbb{R}^d \) if, for all continuous functions \(f \) with compact support in \(\mathbb{R}^d \),

\[
\lim_{j \to \infty} \int f \, d\mu_j = \int f \, d\mu.
\]

We denote by \(AD(c_1, \mathbb{R}^d) \) the family of AD-regular measures in \(\mathbb{R}^d \) with constant \(c_1 \), and by \(U(c_0, \mathbb{R}^d) \) the family of uniform measures with constant \(c_0 \).

Lemma 2.1. The following conditions hold.

(a) If \(\{\mu_j\} \) is a sequence of measures from \(AD(c_1, \mathbb{R}^d) \), then there exists a subsequence which converges weakly to some Radon measure in \(\mathbb{R}^d \).

(b) If a sequence from \(AD(c_1, \mathbb{R}^d) \) converges weakly to a Radon measure \(\mu \), then either \(\mu = 0 \) or \(\mu \in AD(c_1, \mathbb{R}^d) \).

(c) If \(\{\mu_j\} \) is a sequence of measures from \(U(c_0, \mathbb{R}^d) \) such that \(0 \in \text{supp} \mu_j \) for every \(j \), then \(\mu \in U(c_0, \mathbb{R}^d) \).

The proof of this lemma is standard. See, for example, [6, Lemma III.5.8] for (a) and (b). Part (c) follows from (b) setting \(c_1 = 1 \).

Also we have the following lemma.

Lemma 2.2. Let \(\{\mu_j\} \) be a sequence from \(AD(c_1, \mathbb{R}^d) \) which converges weakly to a Radon measure \(\mu \). Then for every ball \(B \subset \mathbb{R}^d \), we have

\[
\lim_{j \to \infty} \left(\sup_{x \in B \cap \text{supp} \mu} \text{dist}(x, \text{supp} \mu_j) \right) = 0
\]

and

\[
\lim_{j \to \infty} \left(\sup_{x \in B \cap \text{supp} \mu} \text{dist}(x, \text{supp} \mu) \right) = 0.
\]

See [6, Lemma III.5.9]. The following is an easy consequence whose proof is left for the reader.

Lemma 2.3. Let \(\{\mu_j\} \) be a sequence from \(AD(c_1, \mathbb{R}^d) \) which converges weakly to a Radon measure \(\mu \), and suppose \(\text{supp} \mu_j \cap B \neq \emptyset \) for all \(j \) and \(\text{supp} \mu \cap B \neq \emptyset \). Then

\[
\frac{1}{2} \limsup_{j \to \infty} \beta_\mu_j \left(\frac{1}{2} B \right) \leq \beta_\mu(B) \leq 2 \liminf_{j \to \infty} \beta_\mu_j(2B) \tag{2.1}
\]
and
\[\frac{1}{2} \limsup_{j \to \infty} b_{\mu_j} \left(\frac{1}{2} B \right) \leq b_{\mu}(B) \leq 2 \liminf_{j \to \infty} b_{\mu_j}(2B). \]
(2.2)

2.3. Uniform measures

Given a Borel map \(T : \mathbb{R}^d \to \mathbb{R}^d \), the image measure \(T#\mu \) is defined by \(T#\mu(E) = \mu(T^{-1}(E)) \), for \(E \subset \mathbb{R}^d \). For \(x, y \in \mathbb{R}^d \) and \(r > 0 \), we denote \((y - x)/r\) by \(T_{x,r}(y) \).

In [16, Theorem 3.11], it is shown that if \(\mu \) is an \(n \)-uniform measure on \(\mathbb{R}^d \), then there exists another \(n \)-uniform measure \(\lambda \) such that
\[\lim_{r \to \infty} \frac{1}{r^n} T_{x,r}#\mu = \lambda \text{ weakly for all } x \in \mathbb{R}^d. \]

One says that \(\lambda \) is the tangent measure of \(\mu \) at \(\infty \). For more information on tangent measures, see [16] or [15, Chapters 14–17], for instance.

The following result is the classification theorem of uniform measures due to Preiss.

Theorem 2.4 [16]. Let \(\mu \) be an \(n \)-uniform measure on \(\mathbb{R}^d \). The following conditions hold.

(a) If \(n = 1 \) or \(2 \), then \(\mu \) is \(n \)-flat.

(b) If \(n \geq 3 \), then there exists a constant \(\tau_0 > 0 \) depending only on \(n \) and \(d \) such that if the tangent measure \(\lambda \) of \(\mu \) at \(\infty \) satisfies
\[\beta_\lambda(B(0,1)) \leq \tau_0, \]
then \(\mu \) is \(n \)-flat.

For the reader’s convenience, let us remark that statement (a) is in [16, Corollary 3.17]. Regarding (b), it is not stated explicitly in [16], although it is a straightforward consequence of [16, Theorem 3.14(1)] (and the arguments in its proof) and [16, Corollary 3.16]. See also [8, Propositions 6.18 and 6.19] for more details.

2.4. The \(\mu \)-cubes and uniform rectifiability

Below we will use the ‘dyadic cubes’ associated with an AD-regular measure \(\mu \) built by David in [3, Appendix 1] (see also [2] for an alternative construction). These dyadic cubes are not true cubes. To distinguish them from the usual cubes, we will call them ‘\(\mu \)-cubes’.

Given an AD-regular measure \(\mu \) in \(\mathbb{R}^d \), the properties satisfied by the \(\mu \)-cubes are the following. For each \(j \in \mathbb{Z} \), there exists a family \(D_j^\mu \) of Borel subsets of \(\text{supp} \mu \) (the dyadic \(\mu \)-cubes of the \(j \)th generation) such that the following conditions hold.

(i) Each \(D_j^\mu \) is a partition of \(\text{supp} \mu \), that is, \(\text{supp} \mu = \bigcup_{Q \in D_j^\mu} Q \) and \(Q \cap Q' = \emptyset \) whenever \(Q, Q' \in D_j^\mu \) and \(Q \neq Q' \).

(ii) If \(Q \in D_j^\mu \) and \(Q' \in D_k^\mu \) with \(k \leq j \), then either \(Q \subset Q' \) or \(Q \cap Q' = \emptyset \).

(iii) For all \(j \in \mathbb{Z} \) and \(Q \in D_j^\mu \), we have \(2^{-j} \lesssim \text{diam}(Q) \lesssim 2^{-j} \) and \(\mu(Q) \approx 2^{-jn} \).

(iv) If \(Q \in D_j^\mu \), then there exists some point \(z_Q \in Q \) (the center of \(Q \)) such that \(\text{dist}(z_Q, \text{supp} \mu \setminus Q) \gtrsim 2^{-j} \).

We denote \(\bigcup_{j \in \mathbb{Z}} D_j^\mu \) by \(D^\mu \). Given \(Q \in D_j^\mu \), the unique \(\mu \)-cube \(Q' \in D_{j-1}^\mu \) which contains \(Q \) is called the parent of \(Q \). We say that \(Q \) is a son of \(Q' \). Two cubes which are sons of the same parent are called brothers. Also, given \(Q \in D^\mu \), we denote by \(D^\mu(Q) \) the family of \(\mu \)-cubes \(P \in D^\mu \) which are contained in \(Q \).

For \(Q \in D_j^\mu \), we define the side length of \(Q \) as \(\ell(Q) = 2^{-j} \). Note that \(\ell(Q) \lesssim \text{diam}(Q) \lesssim \ell(Q) \). Actually, it may happen that a \(\mu \)-cube \(Q \) belongs to \(D_j^\mu \cap D_k^\mu \) with \(j \neq k \), because there may exist \(\mu \)-cubes with only one son. In this case, \(\ell(Q) \) is not well defined. However, this problem
can be solved in many ways. For example, the reader may think that a \(\mu \)-cube is not only a subset of \(\text{supp} \mu \), but a couple \((Q, j)\), where \(Q \) is a subset of \(\text{supp} \mu \) and \(j \in \mathbb{Z} \) is such that \(Q \in \mathcal{D}_j^\mu \).

Given a \(\mu \)-cube \(Q \), we define
\[
B_Q = B(z_Q, 3\ell(Q)).
\]
Then we define \(\beta_\mu(Q) := \beta_\mu(B_Q) \) and \(b\beta_\mu(Q) := b\beta_\mu(B_Q) \).

One says that a family \(\mathcal{F} \subset \mathcal{D}_\mu \) is a Carleson family if there exists some constant \(c \) such that
\[
\sum_{Q \in \mathcal{F}, Q \subset R} \mu(Q) \leq c \mu(R) \quad \text{for every } R \in \mathcal{D}_\mu.
\]

An AD-regular measure \(\mu \) is said to satisfy the bilateral weak geometric lemma if for each \(\varepsilon > 0 \) the family of \(\mu \)-cubes \(Q \in \mathcal{D}_\mu \) such that \(b\beta_\mu(Q) > \varepsilon \) is a Carleson family. The following deep result is due to David and Semmes (see [6, Chapter II.2]).

Theorem 2.5. Let \(\mu \) be an AD-regular measure in \(\mathbb{R}^d \). Then \(\mu \) is uniformly rectifiable if and only if it satisfies the bilateral weak geometric lemma.

3. Uniform measures

3.1. Existence of many balls with small \(\beta_\mu \)

In this section, we will prove the following.

Lemma 3.1. Let \(\mu \) be an \(n \)-uniform measure in \(\mathbb{R}^d \) satisfying \((1.1)\). Let \(z_0 \in \text{supp} \mu \) and \(r > 0 \). For all \(s > r \) and all \(x \in B(z_0, r) \cap \text{supp} \mu \), we have
\[
\left| \frac{x - z_0}{r} \cdot \mathcal{R}_{r,s} \mu(z_0) \right| \leq cc_0.
\]

The dot ‘\(\cdot \)’ in the preceding inequality denotes the scalar product in \(\mathbb{R}^d \).

Proof. Without loss of generality, we assume \(\mu \in U(1, \mathbb{R}^d) \) and \(z_0 = 0 \).

For fixed parameters \(r, s \) with \(0 < r < s \), let \(\varphi : \mathbb{R} \to \mathbb{R} \) be a non-negative radial \(C^\infty \) function such that
\[
\varphi(t) = \begin{cases}
0 & \text{if } |t| \leq \frac{r}{2} \text{ or } |t| \geq 2s, \\
1 & \text{if } r \leq |t| \leq s.
\end{cases}
\]
We also ask \(\varphi \) to satisfy

\[
|\varphi(t)| \leq \frac{1}{t^n} \quad \text{and} \quad |\varphi'(t)| \leq c \min\left(\frac{1}{r^{n+1}}, \frac{1}{t^{n+1}}\right) \quad \text{for all} \ t \in \mathbb{R}.
\]

The precise values of \(\varphi(t) \) for \(t \in (r/2, r) \cup (s, 2s) \) do not matter as long as the preceding inequalities are fulfilled.

Consider now the function \(\rho : \mathbb{R} \to \mathbb{R} \) defined by

\[
\rho(u) = -\int_u^{\infty} \varphi(t) \, dt,
\]

so that \(\rho'(t) = \varphi(t) \). Finally, for \(y \in \mathbb{R}^d \) set

\[
\Phi(y) = \rho(|y|).
\]

Note that \(\Phi \) is a radial \(C^\infty \) function which is supported on \(\bar{B}(0, 2s) \).

By Taylor’s formula, for all \(x, y \in \mathbb{R}^d \) we have

\[
\Phi(x-y) - \Phi(-y) = x \cdot \nabla \Phi(-y) + \frac{1}{2} x^T \cdot \nabla^2 \Phi(\xi_{x,y}) \cdot x,
\]

(3.1)

for some \(\xi_{x,y} \) belonging to the segment \([x-y, -y] \subset \mathbb{R}^d \). Thus, integrating with respect to \(\mu \),

\[
\Phi \ast \mu(x) - \Phi \ast \mu(0) = x \cdot \int \nabla \Phi(-y) \, d\mu(y) + \frac{1}{2} \int x^T \cdot \nabla^2 \Phi(\xi_{x,y}) \cdot x \, d\mu(y).
\]

(3.2)

Note that the measurability of \(x^T \cdot \nabla^2 \Phi(\xi_{x,y}) \cdot x \) follows from the identity (3.1). For \(0, x \in \text{supp} \mu \), we have \(\Phi \ast \mu(x) = \Phi \ast \mu(0) \) because \(\Phi \) is radial and \(\mu \) is a uniform measure. Thus the left-hand side of (3.2) vanishes. This is the crucial step where the uniformity of \(\mu \) is used in this lemma.

Observe that

\[
\nabla \Phi(z) = \rho'(|z|) \frac{z}{|z|} = \varphi(|z|) \frac{z}{|z|}.
\]

(3.3)

Thus,

\[
\nabla \Phi(z) = \frac{z}{|z|^{n+1}} \quad \text{for} \quad r \leq |z| \leq s,
\]

(3.4)

\[
|\nabla \Phi(z)| \leq \frac{c}{r^n} \quad \text{for} \quad |z| \leq r,
\]

(3.5)

\[
|\nabla \Phi(z)| \leq \frac{c}{s^n} \quad \text{for} \quad |z| \geq s.
\]

(3.6)

From (3.4), we infer that

\[
\int_{r < |y| \leq s} \nabla \Phi(-y) \, d\mu(y) = -C_{r,s} \mu(0),
\]

and so

\[
\int \nabla \Phi(-y) \, d\mu(y) = \int_{|y| \leq r} \nabla \Phi(-y) \, d\mu(y) - C_{r,s} \mu(0) + \int_{|y| > s} \nabla \Phi(-y) \, d\mu(y).
\]

By (3.5), we have

\[
\left| \int_{|y| \leq r} \nabla \Phi(-y) \, d\mu(y) \right| \leq \frac{c}{r^n} \mu(B(0, r)) = c,
\]

and by (3.6), recalling that \(\Phi(|y|) = 0 \) for \(|y| \geq 2s \),

\[
\left| \int_{|y| > s} \nabla \Phi(-y) \, d\mu(y) \right| \leq \frac{c}{s^n} \mu(B(0, 2s)) = c2^n.
\]
From (3.2) and the preceding estimates, we deduce that
\[|x \cdot \mathcal{R}_{r,s} \mu(0)| \leq c|x| + \frac{1}{2} \int |x^T \cdot \nabla^2 \Phi(\xi_{x,y}) \cdot x| \, d\mu(y). \] (3.7)
We are now going to estimate the last integral above. From (3.3) and the definition of \(\varphi \), it easily follows that
\[|\nabla^2 \Phi(z)| \leq c \min \left(\frac{1}{r^{n+1}}, \frac{1}{|z|^{n+1}} \right) \quad \text{for all } z \in \mathbb{R}^d. \]
For \(|y| \leq 2r \), we use the estimate
\[|\nabla^2 \Phi(\xi_{x,y})| \leq c \frac{1}{r^{n+1}}, \]
and for \(|y| > 2r \), taking into account that \(|x| \leq r \) and \(\xi_{x,y} \in [x-y,-y] \), we deduce that \(|\xi_{x,y}| \approx |y| \), and thus we have
\[|\nabla^2 \Phi(\xi_{x,y})| \leq c \frac{1}{|\xi_{x,y}|^{n+1}} \approx \frac{1}{|y|^{n+1}}. \]
Therefore,
\[\int |x^T \cdot \nabla^2 \Phi(\xi_{x,y}) \cdot x| \, d\mu(y) \leq c \int_{|y| \leq 2r} \frac{|x|^2}{r^{n+1}} \, d\mu(y) + c \int_{|y| > 2r} \frac{|x|^2}{|y|^{n+1}} \mu(y) \leq \frac{c|x|^2}{r}, \]
where we used the fact that \(\mu(B(0,t)) = t^n \) for all \(t > 0 \) to estimate the last two integrals. So by (3.7), we get
\[|x \cdot \mathcal{R}_{r,s} \mu(0)| \leq c|x| + c \frac{|x|^2}{r} \leq cr, \]
which proves the lemma. \(\Box \)

We need now to introduce some variants of the \(\beta_\mu \) coefficients. Given \(0 \leq m \leq d \) and a ball \(B \subset \mathbb{R}^d \), we define
\[\beta_\mu^{(m)}(B) = \inf_{L} \left(\sup_{x \in \text{supp} \mu \cap B} \frac{\text{dist}(x,L)}{r(B)} \right), \]
where the infimum is taken over all \(m \)-planes \(L \subset \mathbb{R}^d \). So \(\beta_\mu(B) = \beta_\mu^{(n)}(B) \).

Lemma 3.3. Let \(\mu \) be a Radon measure in \(\mathbb{R}^d \) and let \(B \) be a ball centered in \(\text{supp} \mu \). Suppose that there exist constants \(c_1, \kappa > 0 \) such that
\[c_1^{-1} r^n \leq \mu(B(x,r)) \leq c_1 r^n \quad \text{for all } x \in B \cap \text{supp} \mu \text{ and } \kappa r(B) \leq r \leq 2r(B). \] (3.8)
Suppose also that, for some \(\varepsilon > 0 \),
\[\beta_\mu^{(d-1)}(B(x,r)) \geq \varepsilon \quad \text{for all } x \in B \cap \text{supp} \mu \text{ and } \kappa r(B) \leq r \leq 2r(B). \]
For any \(M > 0 \), if \(\kappa = \kappa(M, \varepsilon, c_1) \) is small enough, then there exist \(r \in [\kappa r(B), r(B)] \) and points \(x, z_0 \in B \cap \text{supp} \mu \) with \(|x - z_0| < \kappa r(B) \) such that
\[\left| \frac{x - z_0}{\kappa r(B)} \cdot \mathcal{R}_{\kappa r(B), r \mu(z_0)} \right| \geq M. \] (3.9)

Proof. Suppose that \(\kappa \) is small enough (depending now on \(M, c_1, n, d \)). From condition (3.8), it is not difficult to check that then there exists some open ball \(B' \) centered at some point from \(\frac{1}{2} B \) with \(r(B') \geq c_2 r(B) \) which does not intersect \(\text{supp} \mu \), with \(c_2 > 0 \) depending on \(c_1, n, d \). We assume \(\kappa \ll c_0 \). We dilate \(B' \) till we have \(\partial B' \cap \text{supp} \mu \neq \emptyset \) while \(B' \cap \text{supp} \mu = \emptyset \) still, and we keep the same notation \(B' \) for the dilated ball. Observe that \(r(B') \leq r(B)/4 \),
because otherwise B' would contain the center of B, which belongs to $\text{supp} \mu$. This implies $B' \subset \frac{1}{2} B$.

Let $z_0 \in \text{supp} \mu \cap \partial B'$. By the preceding discussion, $z_0 \in \frac{1}{2} B$. Let L be the hyperplane which is tangent to B' at z_0, and let U be the closed half-space whose boundary is L and does not contain B'. Suppose for simplicity that $z_0 = 0$ and $U = \{y \in \mathbb{R}^d : y_d \geq 0\}$, where y_d stands for the dth coordinate of y. Also, denote $\mathbb{R}^d \setminus U$ by D, that is, $D = \{y \in \mathbb{R}^d : y_d < 0\}$.

For each $j \geq 0$, let B_j be the closed ball centered in $z_0 = 0$ with radius $r(B_j) = (2/\varepsilon)^j \kappa r(B)$. It is easy to check that there exists some absolute constant c_3 such that

$$\text{dist}(y, L) = |y_d| \leq c_3 \frac{r(B_j)^2}{r(B')} \quad \text{if } y \in D \cap B_j \setminus B'.$$

(3.10)

On the other hand, since $\beta_{\mu}^{(d-1)}(B_j) \geq \varepsilon$, we infer that there exists some $y \in B_j \cap \text{supp} \mu$ such that

$$\text{dist}(y, L) \geq \varepsilon r(B_j).$$

(3.11)

Thus, if $r(B_j) < (c_3^{-1})^{1/\varepsilon} r(B')$, then the points $y \in B_j$ which satisfy (3.11) are contained in U. By the condition (3.8), it follows that

$$\mu(U \cap B_{j+1} \setminus (B_{j-1} \cup U_{\varepsilon r(B_j)/2}(L))) \geq c_3^{-1}\varepsilon r(B_j)^n,$$

for some constant $c(\varepsilon) > 0$ (here the notation $U_\delta(A)$ stands for the δ-neighborhood of A). Taking also into account that $y_d \geq 0$ for all $y \in U$, for $j \geq 1$ we deduce that

$$\int_{U \cap B_{j+1} \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) \geq \mu(U \cap B_{j+1} \setminus (B_{j-1} \cup U_{\varepsilon r(B_j)/2}(L))) \frac{\varepsilon r(B_j)}{2r(B_{j-1})^{n+1}} \geq c_3^{-1}\varepsilon c'(\varepsilon).$$

(3.12)

Also, by (3.10),

$$\left| \int_{D \setminus B_j \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) \right| \leq \mu(D \setminus B_j \setminus B_{j-1}) \frac{c_3 r(B_j)^2}{r(B') r(B_{j-1})^{n+1}} \leq c_1 c(\varepsilon) r(B_j) \frac{r(B)}{r(B')}.$$

(3.13)

Choose now an integer $N > 1$ such that $r := r(B_N) \leq r(B')$ and denote by $\mathcal{R}_{\kappa r, \mu}^d$ the dth coordinate of $\mathcal{R}_{\kappa r, \mu}$. We write

$$\mathcal{R}_{\kappa r, \mu}^d \left(z_0 \right) = \sum_{j=1}^N \int_{y \in B_j \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) \geq \sum_{j=1}^N \int_{U \cap B_j \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) - \sum_{j=1}^N \int_{D \setminus B_j \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y).$$

Note that, by (3.12),

$$\sum_{j=1}^N \int_{U \cap B_j \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) \geq \frac{1}{2} \sum_{j=1}^{N-1} \int_{U \cap B_{j+1} \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) \geq c_3^{-1}c'(\varepsilon) (N - 1).$$

Here we took into account that all the summands have a positive sign. On the other hand, from (3.13) we derive

$$\sum_{j=1}^N \int_{D \setminus B_j \setminus B_{j-1}} \frac{y_d}{|y|^{n+1}} \, d\mu(y) \leq \sum_{j=1}^N \frac{c_1 c(\varepsilon) r(B_j)}{r(B')} \leq c_1 c_4(\varepsilon).$$

Thus, setting $\bar{\nu} := (0, \ldots, 0, 1)$,

$$\bar{\nu} \cdot \mathcal{R}_{\kappa r, \mu}^d \left(z_0 \right) = \mathcal{R}_{\kappa r, \mu}^d \left(z_0 \right) \geq \frac{c_3^{-1}c'(\varepsilon)}{2} (N - 1) - c_1 c_4(\varepsilon).$$
Since $\beta_{\mu}^{(d-1)}(B(0, \kappa r(B))) \geq \varepsilon$, there are points (or vectors) $x_1, \ldots, x_d \in \text{supp } \mu \cap B(0, \kappa r(B))$ which generate \mathbb{R}^d. In fact, one can write

$$\tilde{\mu} = \sum_{i=1}^{d} a_i \frac{x_i}{\kappa r(B)},$$

and one can check $|a_i| \leq c_5(\varepsilon)$ for every i. Thus, there exists some $x_i \in \text{supp } \mu \cap B(0, \kappa r(B))$ such that

$$\left| \frac{x_i}{\kappa r(B)} \cdot \mathcal{R}_{\kappa r(B)} \mu(z_0) \right| \geq \frac{1}{dc_5(\varepsilon)} \left[\frac{c_1^{-1}c'(\varepsilon)}{2} (N - 1) - c_1c_4(\varepsilon) \right].$$

If N is taken big enough (which forces κ to be small enough), then (3.9) follows.

Lemma 3.4. Let μ be an n-uniform measure in \mathbb{R}^d and let $n < m \leq d$. For any $\varepsilon > 0$, there exist constants $\delta, \tau > 0$ such that if B is a ball centered in $\text{supp } \mu$ such that $\beta_{\mu}^{(m)}(B) \leq \delta$, then there exists another ball B' also centered in $\text{supp } \mu$ which satisfies $\beta_{\mu}^{(m-1)}(B') \leq \varepsilon$ and $r(B') \geq \tau r(B)$. Moreover, τ and δ depend only on ε, n and d.

Proof. Without lost of generality, we assume $\mu \in U(1, \mathbb{R}^d)$.

Let L be a best approximating m-plane for $\beta_{\mu}^{(m)}(B)$ and denote by Π_L the orthogonal projection onto L. Consider the image measure $\tilde{\mu} = \Pi_L\#(\mu|B)$. It is easy to check

$$r^{-n} \leq \tilde{\mu}(B(x, r)) \leq cr^n \quad \text{for } x \in \frac{1}{2}B \cap \text{supp } \tilde{\mu} \text{ and } \delta r(B) \leq r \leq r(B).$$

We claim that for all $z_0 \in \frac{1}{2}B \cap \text{supp } \tilde{\mu}$ and r_0, r with $\delta^{1/2}r(B) \leq r_0 \leq r \leq r(B)$, if δ is small enough,

$$\left| \frac{x - z_0}{r_0} \cdot \mathcal{R}_{r_0, r} \tilde{\mu}(z_0) \right| \leq c \quad \text{for } x \in B(z_0, r_0) \cap \text{supp } \tilde{\mu},$$

(3.14)

where c is some absolute constant. Assuming this for the moment, Lemmas 3.2 and 3.3 (via the identification $\mathbb{R}^m \equiv L$ and choosing $d = m$) ensure the existence of a ball $B' \subset \frac{1}{2}B$ centered in $\text{supp } \tilde{\mu}$ with $r(B') \geq \kappa r(B)$ such that $\beta_{\tilde{\mu}}^{(m-1)}(B') \leq \frac{1}{2}\varepsilon$, assuming δ small enough (in particular $\delta \leq \kappa$). Of course, κ is the constant given by Lemma 3.3 with the appropriate values of c_1, ε and M there. Together with the fact that $\text{supp } \mu \cap B \subset \mathcal{U}_{\delta r(B)}(L)$, this implies that there exists some $(m-1)$-plane $L' \subset L$ such that

$$\text{supp } \mu \cap B' \subset \mathcal{U}_{\delta r(B) + (\varepsilon/2)r(B')}\left(L' \right).$$

Thus,

$$\beta_{\mu}^{(m-1)}(B') \leq \frac{\delta r(B) + (\varepsilon/2)r(B')}{r(B')} \leq \delta^{-1} \varepsilon + 1 = \frac{1}{2}\varepsilon \leq \varepsilon,$$

if δ is taken small enough.

It remains to prove (3.14). First we will estimate the difference between $\mathcal{R}_{r_0, r} \mu(z_1)$ and $\mathcal{R}_{r_0, r} \mu(z_1)$, where $z_1 \in \text{supp } \mu \cap B$ is such that $\Pi_L(z_1) = z_0$. Denote by K the kernel of \mathcal{R}.

That is, $K(z_0 - y) = (z_0 - y)/|z_0 - y|^{n+1}$. Also, set $A(z_0, r_0, r) = \{ y \in \mathbb{R}^d : r_0 < |y - z_0| \leq r \}$.

Observe that

$$\mathcal{R}_{r_0, r} \tilde{\mu}(z_0) = \int_{A(z_0, r_0, r)} K(z_0 - y) d\Pi_L \# \mu(y) = \int_{B \cap \Pi_L^{-1}(A(z_0, r_0, r))} K(z_0 - \Pi_L(y)) d\mu(y).$$
Therefore,
\[
|\mathcal{R}_{r_0, r}\tilde{\mu}(z_0) - \mathcal{R}_{r_0, r}\mu(z_1)| \\
\leq \int_{B \cap \Pi_{L}^{-1}(A(z_0, r, 0))} |K(z_0 - \Pi_L(y)) - K(z_1 - y)| \, d\mu(y) \\
+ \int_{B \cap \Pi_{L}^{-1}(A(z_0, r, 0))} K(z_1 - y) \, d\mu(y) - \int_{A(z_1, r, 0)} K(z_1 - y) \, d\mu(y) \\
=: S_1 + S_2.
\]
To estimate \(S_1\), observe that every \(y\) in its domain of integration satisfies
\[
|z_0 - y| \geq |z_0 - \Pi_L(y)| - |y - \Pi_L(y)| \geq r_0 - \delta r(B) \geq \frac{1}{2} r_0,
\]
because \(r_0 \geq \delta^{1/2} r(B) \gg \delta r(B)\). Also, we write
\[
\left| (z_0 - \Pi_L(y)) - (z_1 - y) \right| \leq |z_0 - z_1| + |\Pi_L(y) - y| \leq 2\delta r(B) \ll |z_0 - y|.
\]
Thus,
\[
|K(z_0 - \Pi_L(y)) - K(z_1 - y)| \leq \frac{c\delta r(B)}{|z_0 - y|^{n+1}}.
\]
So we obtain
\[
S_1 \leq \int_{B \cap \Pi_{L}^{-1}(A(z_0, r, 0))} \frac{c\delta r(B)}{|z_0 - y|^{n+1}} \, d\mu(y) \\
\leq \int_{|y - z_0| \geq r_0/2} \frac{c\delta r(B)}{|z_0 - y|^{n+1}} \, d\mu(y) \leq \frac{c\delta r(B)}{r_0} \leq 1,
\]
where in the third inequality we used the fact that \(\mu(B(z_0, t)) = t^n\) for all \(t > 0\) and in the last one that \(\delta r(B) \ll r_0\).

Concerning \(S_2\), we have
\[
S_2 \leq \int_{B \cap \Pi_{L}^{-1}(A(z_0, r, 0)) \Delta A(z_1, r, 0, r)} |K(z_1 - y)| \, d\mu(y).
\]
It is easy to check that, for \(\delta\) small enough,
\[
\text{supp } \mu \cap B \cap \Pi_{L}^{-1}(A(z_0, r, 0)) \Delta A(z_1, r, 0, r) \subset A \left(z_1, \frac{r_0}{2}, 2r_0 \right) \cup A \left(z_1, \frac{r}{2}, 2r \right).
\]
Then we get
\[
S_2 \leq \int_{A(z_1, r/2, 2r)} \frac{1}{|z_1 - y|^n} \, d\mu(y) + \int_{A(z_1, r/2, 2r)} \frac{1}{|z_1 - y|^n} \, d\mu(y) \leq c.
\]
So we have shown
\[
|\mathcal{R}_{r_0, r}\tilde{\mu}(z_0) - \mathcal{R}_{r_0, r}\mu(z_1)| \leq c. \tag{3.15}
\]
Let \(x \in \text{supp } \tilde{\mu} \cap B(z_0, r_0)\), and take \(x_1 \in \text{supp } \mu \cap B\) such that \(\Pi_L(x_1) = x\). We have
\[
\left| \frac{x - z_0}{r_0} \cdot \mathcal{R}_{r_0, r}\tilde{\mu}(z_0) \right| \leq \left| \frac{x - z_0}{r_0} \cdot \left[\mathcal{R}_{r_0, r}\tilde{\mu}(z_0) - \mathcal{R}_{r_0, r}\mu(z_1) \right] \right| \\
+ \left| \frac{x - z_0}{r_0} \cdot \left(x_1 - z_1 \right) \right| \\
+ \left| \frac{x_1 - z_1}{r_0} \cdot \mathcal{R}_{r_0, r}\mu(z_1) \right|. \tag{3.16}
\]
The first term on the right-hand side is bounded by some constant due to (3.15). For the second one, we take into account that
\[
|(x - z_0) - (x_1 - z_1)| \leq |x - x_1| + |z_0 - z_1| \leq 2\delta r(B) \tag{3.17}
\]
and we use the brutal estimate
\[|R_{r_0,r}\mu(z_1)| \leq \int_{r_0 < |y-z_1| < r} |K(z_1 - y)| \, d\mu(y) \leq c \left(1 + \log \frac{r}{r_0} \right) \leq c \log \frac{r(B)}{r_0} \leq c |\log \delta|. \]

So recalling that \(r_0 \geq \delta^{1/2} r(B) \), we obtain
\[\left| \frac{(x - z_0) - (x_1 - z_1)}{r_0} \cdot R_{r_0,r}\mu(z_1) \right| \leq c \frac{\delta r(B)}{r_0} |\log \delta| \leq c \delta^{1/2} |\log \delta| \leq c. \]

To estimate the last term on the right-hand side of (3.16), we wish to apply Lemma 3.2. Since the assumption \(x_1 \in B(z_1,r_0) \) is not guaranteed, a direct application of the lemma is not possible. Anyway this issue does not cause any significant difficulty. Indeed, from (3.17) it follows that
\[|x_1 - z_1| \leq |x - z_0| + 2\delta r(B) \leq r_0 + 2\delta^{1/2} r_0 \leq 2r_0. \]

Then we set
\[\left| \frac{x_1 - z_1}{r_0} \cdot R_{r_0,r}\mu(z_1) \right| \leq 2 \left| \frac{x_1 - z_1}{2r_0} \cdot R_{2r_0,r}\mu(z_1) \right| + \left| \frac{x_1 - z_1}{r_0} \cdot R_{r_0,2r_0}\mu(z_1) \right|. \]

By Lemma 3.2, the first summand on the right-hand side is uniformly bounded. The last summand does not exceed \(|R_{r_0,2r_0}\mu(z_1)| \), which is also uniformly bounded. So the claim (3.14), and thus the lemma, is proved.

\[\square \]

Proof of Lemma 3.1. We just have to apply Lemma 3.4 repeatedly. Indeed, since \(\beta^{(d)}_{\mu}(B) = 0 \), we infer that there exists some ball \(B_1 \subset B \) centered in \(\text{supp} \mu \) with \(r(B_1) \approx r(B) \) such that \(\beta^{(d-1)}_{\mu}(B_1) \leq \varepsilon_1 \). Again, assuming \(m < d - 1 \) this implies that there exists some ball \(B_2 \subset B_1 \) centered in \(\text{supp} \mu \) with \(r(B_2) \approx r(B_1) \) such that \(\beta^{(d-2)}_{\mu}(B_1) \leq \varepsilon_2 \), and so on. At the end, we will find some ball \(B_{d-n} \subset B_{d-n-1} \) centered in \(\text{supp} \mu \) with \(r(B_{d-n}) \approx r(B_{d-n-1}) \approx \cdots \approx r(B) \) such that \(\beta^{(n)}_{\mu}(B_{d-n}) \leq \varepsilon_n \). The constant \(\varepsilon_n \) can be taken arbitrarily small if the constants \(\varepsilon_1, \ldots, \varepsilon_{n-1} \) are chosen suitably small too.

\[\square \]

3.2. A stability lemma for the \(\beta_{\mu} \) coefficients and some consequences

Lemma 3.5. Let \(\mu \) be an \(n \)-uniform measure in \(\mathbb{R}^d \). For any \(\varepsilon > 0 \), there exists some \(\delta > 0 \) such that for \(x \in \text{supp} \mu \) and \(r > 0 \), if \(\beta_{\mu}(B(x, \delta^{-1}r)) \leq \delta^2 \), then \(b\beta_{\mu}(B(x, r)) \leq \varepsilon \). Moreover, \(\delta \) only depends on \(\varepsilon \), \(n \) and \(d \).

Proof. Suppose that the lemma does not hold. So there exists some \(\varepsilon > 0 \) and a sequence of \(n \)-uniform measures \(\mu_j \in U(1, \mathbb{R}^d) \) and balls \(B_j \) centered in \(\text{supp} \mu_j \) such that \(\beta_{\mu_j}(jB_j) \leq 1/j^2 \) and \(b\beta_{\mu_j}(B_j) \geq \varepsilon \). After renormalizing, we may assume \(B_j = B(0,1) \). Consider a weak limit \(\nu \) of some subsequence of \(\{\mu_j\} \). Redefining \(\{\mu_j\} \) if necessary, we may assume that it converges weakly to \(\nu \). Observe that \(\nu \) is non-zero (because \(0 \in \text{supp} \mu_j \) for all \(j \)) and \(n \)-uniform.

Note that for \(1 \leq k \leq j \),
\[\beta_{\mu_j}(B(0,k)) \leq \frac{j}{k} \beta_{\mu_j}(B(0,j)) \leq \frac{1}{jk} \to 0 \quad \text{as} \quad j \to \infty. \]

Then it follows from Lemma 2.2 that \(\beta_{\nu}(B(0,\frac{1}{2}k)) = 0 \) for all \(k \geq 1 \). Thus, \(\nu \) is supported on some \(n \)-plane. Then by Theorem 2.4(b), it turns out that \(\nu \) is flat.

However, from the fact that \(b\beta_{\mu_j}(B(0,1)) \geq \varepsilon \) for all \(j \geq 1 \), it follows that \(b\beta_{\nu}(B(0,2)) \geq \frac{1}{2}\varepsilon \) too, and thus \(\nu \) is not flat. So we get a contradiction.

\[\square \]
The next lemma can be understood as some kind of stability condition for the β_{μ} coefficients. This is a variant of [17, Lemma 4.5], with a very similar (and simple) proof. For the reader’s convenience, we will show the detailed arguments.

Lemma 3.6 (Stability lemma). Let μ be an n-uniform measure in \mathbb{R}^d and let $\varepsilon > 0$. There exists some constant δ_0 depending only on n and d and an integer $N > 0$ depending only on ε, n and d such that if B is a ball centered in $\text{supp}\mu$ satisfying

$$\beta_{\mu}(2^k B) \leq \delta_0 \quad \text{for} \quad 1 \leq k \leq N, \quad \text{then} \quad b\beta_{\mu}(B) \leq \varepsilon. \quad (3.18)$$

A key point in this lemma is that δ_0 does not depend on ε. Indeed, in order to guarantee $b\beta(B)$ small enough it suffices to take a sufficiently big N.

Proof. It is enough to show $\beta_{\mu}(B) \leq \varepsilon$. The full lemma follows by combining this partial result with Lemma 3.5 and adjusting appropriately the parameters ε and N.

Suppose that the integer N does not exist. Then there is a sequence of n-uniform measures on \mathbb{R}^d, $\{\mu_j\}_{j \geq 1}$ and balls $B_j = B(x_j, r_j)$ centered in $\text{supp}\mu_j$ such that for any j,

$$\beta_{\mu_j}(2^k B_j) \leq \delta_0 \quad \text{for} \quad 1 \leq k \leq j, \quad \text{but} \quad \beta_{\mu_j}(B_j) > \varepsilon.$$

For each $j \geq 1$, consider the renormalized measure $\tilde{\mu}_j$ defined by

$$\tilde{\mu}_j(A) = \frac{\mu_j(r_j A + x_j)}{\mu(B_j)}.$$

That is, $\tilde{\mu}_j = T_{x_j, r_j} \# \mu_j$, where T_{x_j, r_j} is a homothety such that $T_{x_j, r_j}(B_j) = B(0, 1)$. Note that $\tilde{\mu}_j \in U(1, \mathbb{R}^d)$ and $0 \in \text{supp}\tilde{\mu}_j$ for every j. Extracting a subsequence if necessary, we may assume that $\{\tilde{\mu}_j\}$ converges weakly to another measure ν, which is n-uniform. Observe that, by (2.1),

$$\beta_{\nu}(B(0, 2)) \geq \frac{1}{2} \limsup_{j \to \infty} \beta_{\tilde{\mu}_j}(B(0, 1)) = \frac{1}{2} \limsup_{j \to \infty} \beta_{\mu_j}(B_j) \geq \frac{1}{2} \varepsilon, \quad (3.19)$$

and, for all $k \geq 0$,

$$\beta_{\nu}(B(0, 2^k)) \leq 2 \liminf_{j \to \infty} \beta_{\tilde{\mu}_j}(B(0, 2^{k+1})) = 2 \liminf_{j \to \infty} \beta_{\mu_j}(2^{k+1} B_j) \leq 2\delta_0. \quad (3.20)$$

By (2.1), the latter estimate implies that the tangent measure λ of ν at ∞ satisfies

$$\beta_{\lambda}(B(0, 1)) \leq 2 \liminf_{k \to \infty} \beta_{\nu}(B(0, 2^k)) \leq 4\delta_0.$$

Thus, if we assume $\delta_0 \leq \tau_0/4$ (where τ_0 is the constant in (2.3)), then ν is flat, by Theorem 2.4. This contradicts (3.19), and the lemma follows. \hfill \square

An easy consequence of the preceding lemma is the following.

Lemma 3.7. Let μ be an n-uniform measure in \mathbb{R}^d. For any $\eta > 0$, there exists $\delta > 0$ depending only on η, n and d such that if B is a ball centered in $\text{supp}\mu$ with $\beta_{\mu}(B) \leq \delta$, then $b\beta_{\mu}(B') \leq \eta$ for any ball $B' \subset \frac{1}{2}B$ centered in $\text{supp}\mu$.

The arguments to prove this lemma are very similar to those of [17, Theorem 4.2]. Also, this is a particular case of the more general result that will be shown in Lemma 4.3. For these reasons, we will skip the proof.

Proof of Theorem 1.2. Clearly, we may assume $\mu \in U(1, \mathbb{R}^d)$. Let $\varepsilon > 0$. From Lemmas 3.1 and 3.7, it follows that there exists some constant $c(\varepsilon) > 0$ such that any ball B centered in
supp µ contains another ball B' with r(B') ≥ c(ε)r(B) centered in supp µ such that all the balls B'' contained in 1/2 B' and centered in supp µ satisfy bβµ(B'') ≤ ε.

Consider a µ-cube Q ∈ Dµ such that Q ⊂ 1/2 B' and ℓ(Q) ∼ r(B'). Then µ is locally cε-Reifenberg flat on Q. That is, bβµ(P) ≤ cε for any µ-cube P ∈ Dµ contained in Q. This implies that if ε is small enough, then µ ∩ Q has big pieces of Lipschitz graphs (see [7, Theorem 15.2]). In particular, there exists an n-dimensional (possibly rotated) Lipschitz graph Γ such that

μ(B ∩ Γ) ≥ μ(Q ∩ Γ) ≥ τµ(Q) ≥ τ′ µ(B),

with τ, τ' > 0, and the bound on the slope of Γ depending on ε, n, d only.

4. The WCD condition implies uniform rectifiability

Throughout this section, µ will be an n-dimensional AD-regular measure in Rd.

Given a ball B and two Radon measures ν and σ such that B ∩ supp ν = ∅ and B ∩ supp σ ≠ ∅, we define

d_B(ν, σ) = sup x∈B ∩ supp ν dist(x, supp σ) + sup x∈B ∩ supp σ dist(x, supp ν).

Given some small ε > 0, we denote by N0(ε) the family of balls B ⊂ Rd such that there exists an n-uniform measure σ in Rd satisfying

d_B(µ, σ) ≤ εr(B).

Further, we let N(ε) be the set of µ-cubes Q ∈ Dµ such that BQ ∈ N0(ε).

In [6, Chapter III.5], the following is proved.

Proposition 4.1. If µ satisfies the WCD condition, then Dµ \ N(ε) is a Carleson family for all ε > 0.

The next lemma is a simple consequence of Lemmas 3.1 and 3.5, and the definition of N(ε).

Lemma 4.2. For all η > 0, there are constants ε, τ > 0 such that if Q ∈ N(ε), then there exists some µ-cube Q' ∈ Dµ with Q' ⊂ Q such that bβµ(Q') ≤ η and ℓ(Q') ≳ τℓ(Q).

Proof. Suppose ε ≪ 1 and let σ be an n-uniform measure in Rd such that

d_{BQ}(µ, σ) ≤ εr(BQ) = 3εℓ(Q).

Consider x ∈ supp σ such that |x - zQ| ≤ 3εℓ(Q) (recall that zQ stands for the center of Q). By Lemmas 3.1 and 3.5, there exists some ball B = B(x, r) such that bβσ(B) ≤ η, with B ∩ supp µ ⊂ Q and r ∼ diam(Q) (with the comparability constant depending on η). We assume ε small enough so that zQ ∈ 1/2 B. Then we deduce

bβµ B zQ, 1/2 r ≤ CB B(zQ, r) + c dist B(zQ, r) (µ, σ) r ≤ cη + cεℓ(Q) r ≤ cη + c(η)ε.

So if ε is assumed to be small enough (for η fixed), then bβµ B(xQ, 1/2 r) ≤ cη.
If we take a μ-cube $Q' \in D^\mu$ such that $B_{Q'} \subset B(z_Q, \frac{1}{2}r)$ with $\ell(Q') \approx r$, then we have
\[b\beta_\mu(Q') \leq c b\beta_\mu(B(z_Q, \frac{1}{2}r)) \leq c\eta. \]

Lemma 4.3. For all $\eta > 0$, there are constants $\varepsilon > 0$ and $\delta_1 > 0$ (both small enough depending on η) such that if, for a given $k \geq 0$, B is a ball centered in supp μ with $b\beta_\mu(B) \leq \delta_1$ such that
\[2^{-j}B \in N_0(\varepsilon) \text{ for all } 0 \leq j \leq k, \]
then $b\beta_\mu(2^{-k}B) \leq \eta$.

Proof. Let δ_0 be as in Lemma 3.6 and set $\varepsilon_0 = \frac{1}{4} \min(\delta_0/4, \eta)$. Consider the integer $N = N(\varepsilon_0) > 0$ given by Lemma 3.6 (with ε replaced by ε_0 in the statement of that lemma).

For $j \geq 0$, we denote $2^{-j}B$ by B_j. We will prove by induction on j that
\[b\beta_\mu(B_j) \leq \min\left(\frac{\delta_0}{4}, \eta\right) \text{ for } 0 \leq j \leq k. \]

For $0 \leq j \leq N + 2$, this follows easily if δ_1 is assumed to be small enough. Indeed, we just write
\[b\beta_\mu(B_j) \leq r(B_0) \beta_\mu(B_0) \leq 2^{N+2}\delta_1 \leq \min\left(\frac{\delta_0}{4}, \eta\right), \]
assuming $\delta_1 \leq 2^{-N-2}\min(\delta_0/4, \eta)$ for the last inequality.

Suppose now that
\[b\beta_\mu(B_{j-N-2}), \ldots, b\beta_\mu(B_j) \leq \min\left(\frac{\delta_0}{4}, \eta\right), \]
and let us see that
\[b\beta_\mu(B_{j+1}) \leq \min\left(\frac{\delta_0}{4}, \eta\right) \]
too. Let σ_{j-N-2} be an n-uniform measure such that
\[d_{B_{j-N-2}}(\mu, \sigma_{j-N-2}) \leq \varepsilon r(B_{j-N-2}). \]
Assuming ε small enough (depending on δ_0, η, N), from (4.1) and (4.2) we infer that
\[b\beta_\sigma(B_{j-N-2}), \ldots, b\beta_\sigma(B_{j-1}) \leq \delta_0, \]
and thus by Lemma 3.6,
\[b\beta_\sigma(B_j) \leq \varepsilon_0 = \frac{1}{4} \min\left(\frac{\delta_0}{4}, \eta\right). \]
Assuming ε small enough again, together with condition (4.2) this implies
\[b\beta_\mu(B_{j+1}) \leq \min\left(\frac{\delta_0}{4}, \eta\right). \]

The next result is the analogue of the preceding one with balls replaced by μ-cubes.

Lemma 4.4. For all $\eta > 0$, there are constants $\varepsilon > 0$ and $\delta_1 > 0$ (both small enough depending on η) such that if $P \in D^\mu$ with $P \subset Q$, $S \in N(\varepsilon)$ for all $S \in D^\mu$ with $P \subset S \subset Q$, and moreover $b\beta_\mu(Q) \leq \delta_1$, then $b\beta_\mu(P) \leq \eta$.

\[\square \]
The proof follows easily from Lemma 4.3 and is left for the reader.

Proof of Theorem 1.1. By Theorem 2.5, \(\mu \) is uniformly rectifiable if and only if, for all \(\eta > 0 \), the family \(\mathcal{B}(\eta) \) of the \(\mu \)-cubes \(Q \in \mathcal{D}^\mu \) such that \(b\beta_\mu(Q) > \eta \) is a Carleson family. We will prove that the latter condition holds by using Lemmas 4.2 and 4.4.

For a fixed \(\eta > 0 \), let \(\varepsilon_1 > 0 \) be the constant named \(\varepsilon \) in Lemma 4.4, and consider the constant \(\delta_1 \) given in that lemma. Let now \(\varepsilon_2 > 0 \) be the constant named \(\varepsilon \) in Lemma 4.2 with \(\eta \) replaced by \(\delta_1 \) there. Set

\[
\varepsilon = \min(\varepsilon_1, \varepsilon_2).
\]

Consider a \(\mu \)-cube \(R \in \mathcal{D}^\mu \). We are going to split the family of \(\mu \)-cubes from \(\mathcal{N}(\varepsilon) \) which are contained in \(R \) into disjoint subfamilies which we will call ‘trees’. A collection of \(\mu \)-cubes \(T \subset \mathcal{D}^\mu \) is a tree if it verifies the following properties.

1. The collection \(T \) has a maximal element (with respect to inclusion) \(Q(T) \) which contains all the other elements of \(T \) as subsets of \(\mathbb{R}^d \). The \(\mu \)-cube \(Q(T) \) is the ‘root’ of \(T \).
2. If \(Q, Q' \) belong to \(T \) and \(Q \subset Q' \), then any \(\mu \)-cube \(P \in \mathcal{D}^\mu \) such that \(Q \subset P \subset Q' \) also belongs to \(T \).
3. If \(Q \in T \), then either all the sons belong to \(T \) or none of them do.

We denote by \(\text{Stop}(T) \) the (possibly empty) family of \(\mu \)-cubes from \(T \) whose sons do not belong to \(T \).

We proceed now to describe the algorithm for the construction of the family of trees \(T_i, i \in I \). Let \(Q_1 \) be a cube from \(\mathcal{D}^\mu(R) \cap \mathcal{N}(\varepsilon) \) with maximal side length. This will be the root of the first tree \(T_1 \), which is defined recursively by the following rules.

1. \(Q_1 \in T_1 \).
2. If \(P \in T_1 \) and all its sons belong to \(\mathcal{N}(\varepsilon) \), then all of them belong to \(T_1 \) too.

Suppose now that \(T_1, \ldots, T_i \) have already been defined. Consider now a cube \(Q_{i+1} \) with maximal side length from \(\mathcal{D}^\mu(R) \setminus \bigcup_{1 \leq j \leq i} T_j \) (if it exists). This is the root of the next tree \(T_{i+1} \), which is defined recursively by the same rules as \(T_1 \), replacing \(Q_1 \) by \(Q_{i+1} \) and \(T_1 \) by \(T_{i+1} \).

The family of trees \(T_i, i \in I \) constructed above satisfies the following properties.

1. We have \(\mathcal{N}(\varepsilon) \cap \mathcal{D}^\mu(R) = \bigcup_{i \in I} T_i \), and \(T_i \cap T_j = \emptyset \) if \(i \neq j \).
2. If \(Q \in T_i \) and one son of \(Q \) lies out of \(\mathcal{N}(\varepsilon) \), then no son of \(Q \) is in \(T_i \).
3. If \(Q_i \equiv Q(T_i) \) is the root of \(T_i \), then either some parent or some brother of \(Q(T_i) \) does not belong to \(\mathcal{N}(\varepsilon) \cap \mathcal{D}^\mu(R) \). In any case, we denote by \(pb(Q(T_i)) \) this parent or brother of \(Q(T_i) \).

From the latter condition, recalling that \(\mathcal{D}^\mu \setminus \mathcal{N}(\varepsilon) \) is a Carleson family and using that each \(\mu \)-cube \(Q \in \mathcal{D}^\mu \) has a bounded number of sons, it follows that

\[
\sum_{i \in I} \mu(Q(T_i)) \leq c \sum_{i \in I} \mu(pb(Q(T_i))) \leq c \left(\mu(R) + \sum_{Q \in \mathcal{D}^\mu(R) \setminus \mathcal{N}(\varepsilon)} \mu(Q) \right) \leq c \mu(R). \quad (4.3)
\]

We have

\[
\sum_{Q \in \mathcal{D}^\mu(R) \setminus \mathcal{B}(\eta)} \mu(Q) \leq \sum_{Q \in \mathcal{D}^\mu(R) \setminus \mathcal{N}(\varepsilon)} \mu(Q) + \sum_{Q \in \mathcal{D}^\mu(R) \setminus \mathcal{N}(\varepsilon) \cap \mathcal{B}(\eta)} \mu(Q) \\
\leq c \mu(R) + \sum_{i \in I} \sum_{Q \in T_i \cap \mathcal{B}(\eta)} \mu(Q).
\]
So from (4.3), we see that the theorem will be proved if we show
\[
\sum_{Q \in T_i \cap B(\eta)} \mu(Q) \leq c \mu(Q(T_i)) \quad \text{for each} \quad i \in I.
\] (4.4)

Given a fixed tree T_i, consider the family F_i (which may be empty) of μ-cubes $P \in T_i$ with $b(\eta)(P) \leq \delta_1$ which are maximal with respect to inclusion, where δ_1 is given by Lemma 4.4. This lemma ensures $b(\eta)(Q) \leq \eta$ if $Q \in T_i$ is contained in some μ-cube $P \in F_i$. In other words, if we denote by \mathcal{H}_i the μ-cubes $Q \in T_i$ which are not contained in any μ-cube $P \in F_i$, then we have $T_i \cap B(\eta) \subset \mathcal{H}_i$. Thus
\[
\sum_{Q \in T_i \cap B(\eta)} \mu(Q) = \sum_{Q \in \mathcal{H}_i} \mu(Q). \tag{4.5}
\]

To each μ-cube $Q \in \mathcal{H}_i$, we assign a μ-cube $P \in F_i \cup \text{Stop}(T_i)$ contained in Q with maximal side length (if P is not unique, then the choice does not matter), and we set $P = f(Q)$. By Lemma 4.2, $\ell(P) \geq \tau \ell(Q)$. Therefore, the number of μ-cubes Q such that $P = f(Q)$ for a fixed μ-cube P is bounded above (by some constant depending on τ, n, d, and the AD-regularity constant of μ). Thus
\[
\sum_{Q \in \mathcal{H}_i} \mu(Q) \leq c \sum_{Q \in \mathcal{H}_i} \mu(f(Q)) \leq c \sum_{P \in F_i \cup \text{Stop}(T_i)} \mu(P) \leq c \sum_{P \in F_i} \mu(P) + c \sum_{P \in \text{Stop}(T_i)} \mu(P) \leq c \mu(Q(T_i)),
\]

taking into account for the last inequality that both F_i and $\text{Stop}(T_i)$ are families whose elements are pairwise disjoint μ-cubes (within each family). Together with (4.5), this gives (4.4) and proves the theorem.

\[
\square
\]

Acknowledgements. I would like to thank Vasileios Chousionis for his careful reading of this paper, finding several typos and making some suggestions.

References

1. M. Badger, ‘Harmonic polynomials and tangent measures of harmonic measure’, Rev. Mat. Iberoamericana 27 (2011) 841–870.
2. M. Christ, ‘A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral’, Colloq. Math. 60/61 (1990) 601–628.
3. G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics 1465 (Springer, Berlin, 1991).
4. G. David, C. Kenig and T. Toro, ‘Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing constant’, Comm. Pure Appl. Math. 54 (2001) 385–449.
5. G. David and S. Semmes, ‘Singular integrals and rectifiable sets in \mathbb{R}^n: Au-delà des graphes lipschitziens’, Astérisque 193 (1991).
6. G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs 38 (American Mathematical Society, Providence, RI, 1993).
7. G. David and T. Toro, Reifenberg parameterizations for sets with holes, Memoirs of the American Mathematical Society 215 (American Mathematical Society, Providence, RI, 2012) vi+102.
8. C. De Lellis, Rectifiable sets, densities and tangent measures, Zurich Lectures in Advanced Mathematics (European Mathematical Society, Zürich, 2008).
9. T. De Pauw, ‘Nearly flat almost monotone measures are big pieces of Lipschitz graphs’, J. Geom. Anal. 12 (2002) 29–61.
10. C. Kenig, D. Preiss and T. Toro, ‘Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions’, J. Amer. Math. Soc. 22 (2009) 771–796.
11. C. Kenig and T. Toro, ‘Free boundary regularity for harmonic measures and Poisson kernels’, Ann. of Math. (2) 150 (1999) 369–454.
12. B. Kirchheim and D. Preiss, ‘Uniformly distributed measures in Euclidean spaces’, Math. Scand. 90 (2002) 152–160.
13. O. Kowalski and D. Preiss, ‘Besicovitch-type properties of measures and submanifolds’, J. reine angew. Math. 379 (1987) 115–151.
14. J. M. Marstrand, ‘The (φ, s) regular subsets of n-space’, Trans. Amer. Math. Soc. 113 (1964) 369–392.
15. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics 44 (Cambridge University Press, Cambridge, 1995).
16. D. Preiss, ‘Geometry of measures in \mathbb{R}^n: distribution, rectifiability, and densities’, Ann. of Math. 125 (1987) 537–643.
17. D. Preiss, X. Tolsa and T. Toro, ‘On the smoothness of Hölder doubling measures’, Calc. Var. Partial Differential Equations 35 (2009) 339–363.

Xavier Tolsa
Departament de Matemàtiques
Institució Catalana de Recerca i Estudis Avançats (ICREA)
Universitat Autònoma de Barcelona
08193 Catalonia
xtolsa@mat.uab.cat