An overview of Cu-based heterogeneous electrocatalysts for CO\textsubscript{2} reduction

Jian Zhao, Song Xue, James Barber, Yiwei Zhou, Jie Meng and Xuebin Ke

The electrochemical (EC) reduction of CO\textsubscript{2} is a promising approach for value-added fuel or chemical production. Cu-based electrodes have been extensively used as a ‘star’ material for CO\textsubscript{2} reduction to hydrocarbons. This review mainly focuses on the recent progress of Cu-based heterogeneous electrocatalysts for CO\textsubscript{2} reduction from 2013 to 2019. Various morphologies of oxide-derived, bimetallic Cu species and their activity in EC CO\textsubscript{2} reduction are reviewed, providing insights for the standardization of Cu-based heterogeneous systems. We also present a tutorial manual to describe parameters for the EC CO\textsubscript{2} reduction process, especially for the pretreatment of the reaction system. This will offer useful guidance for newcomers to the field. Aqueous and non-aqueous electrolyte effects based on Cu electrodes are discussed. Finally, an overview of reaction systems of EC/PEC CO\textsubscript{2} reduction and H\textsubscript{2}O oxidation for Cu-based heterogeneous catalysts is provided.

1. Introduction

According to the “World Energy Outlook 2015” from the International Energy Agency (IEA), global energy demand reached 18 TW in 2013 and will increase to 26 TW by 2040.1 More than 80% of this energy is derived from fossil fuels,1–3 resulting in a series of problems such as energy supply. Another aspect is environmental issues involving the continuous increase of CO\textsubscript{2} emissions from fossil fuels combustion, which will increase from 32 Gt up to 44 Gt per year.1 In terms of alleviating the energy crisis and environmental problems, therefore, there is an increasing demand for recycling CO\textsubscript{2} to produce value-added fuels and chemicals.

In recent years, CO\textsubscript{2} reduction to fuels and chemical products has been investigated by various methods, such as biochemical approaches,4 building blocks for organic synthesis,5 thermal hydrogenation,6–11 photocatalysis,12–14 electrocatalysis15–18 and dry reforming with methane.19,20 Among them, electrochemical (EC) reduction has attracted much attention.21–23 However, as researchers have acknowledged, electrochemical CO\textsubscript{2} reduction is strongly influenced by the pH24–27 and conductivity or concentration of electrolyte,23,28 applied potentials and currents,29 CO\textsubscript{2} concentration30 and flow...
rate,30,31 and temperature,32,33 making a direct, quantitative comparison of data from different groups difficult. To help provide information and to push for a more standardized “benchmark” for EC CO\textsubscript{2} reduction, we provide a tutorial manual for researchers who intend to start EC CO\textsubscript{2} reduction and clearly state the experimental parameters when comparing different systems.

EC reduction of CO\textsubscript{2} is involved in a variety of products ranging from CO, HCOO−, HCHO, CH\textsubscript{4}, CH\textsubscript{2}OH, C\textsubscript{2} hydrocarbons (e.g. C\textsubscript{2}H\textsubscript{4}, C\textsubscript{2}H\textsubscript{6}) and oxygenates, to higher hydrocarbons. The standard potentials for selected CO\textsubscript{2} reduction reactions are listed in Table 1. Since Hori’s work in 1989 (ref. 34) and 1994,35 Cu electrodes have attracted much attention due to their unique advantages for hydrocarbon production compared with other pure metallic electrodes.36–38 However, a large overpotential is required and low selectivity is observed due to the wide range of products and the competing hydrogen evolution reaction. Numerous publications on Cu-based electrodes have reported a lower overpotential and/or improved product selectivity, especially since 2013, as shown in Fig. 1. Different selectivity is sometimes reported with similar Cu-based materials. The difference may be caused by the experimental conditions and the material itself, such as the oxidation state of Cu, dimensional structure or surface roughness. Therefore, there is a need to compare these results under certain experimental conditions to further understand their differences and to provide a guide for the development of Cu-based electrocatalysts for CO\textsubscript{2} reduction.

In this review, we first provide a tutorial guide for conducting EC CO\textsubscript{2} reduction experiments. Also, various conditions such as the catalyst state, flow rate and type of electrolyte are specified when comparing studies from different research groups. CO\textsubscript{2} electrocatalysts are usually divided into two categories: homogeneous and heterogeneous systems. Some reviews on molecular electrocatalysts have covered the advantages of homogeneous systems.39–41 Readers interested in Cu-based complexes could refer to other work.42–44 Cu-based heterogeneous photocatalysts have been reviewed for direct conversion into solar fuels.45 In contrast to the reviews of Cu-based heterogeneous catalysts reported for EC CO\textsubscript{2} reduction (review
of Cu-based nanocatalysts, review of Cu-binary alloys, review mainly focused on theoretical studies, nanostructured Cu and bimetallics, our review includes a tutorial guide for newcomers, lists the parameters specified by different research groups for comparison (Table 2), summarizes the benchmark activity for special products (Section 3) and covers more types of Cu-based heterogeneous electrocatalysts. Different types of Cu-based heterogeneous electrocatalysts, including film and powder systems, will be discussed in five main categories: (1) morphology. Morphology control allows us to improve the catalytic activity by tailoring the structure of active sites and increasing the surface area/number of active sites. (2) Oxide-derived Cu. One recent method to enhance CO₂ reduction is the oxidation and subsequent reduction of Cu. Cu₅O formed by annealing, electrodeposition, Cl⁻ and plasma induction all exhibited improved performance for EC CO₂ reduction after in situ or ex situ redox processes. (3) Bimetallic species. Alloys are known to be able to tune the geometric and electronic properties of their parent metals. A bifunctional interface (separated composite) without forming an alloy could also improve the performance of each metal while showing fewer changes to the intrinsic electronic properties. The synergistic effects between different metals could create novel catalytic properties. (4) Surface modification. Modification with inorganic species to enhance durability and organic ligands to capture key intermediates is another strategy to improve the performance of Cu-based electrodes. (5) Supports. Supports or substrates are critical to uniformly deposit the catalyst and create novel catalytic features at the interface. Following these sections, as shown in Fig. 2, the electrolyte effects and the overall reaction systems coupling CO₂ reduction and H₂O oxidation will be discussed for Cu-based heterogeneous electrocatalysts.

2. A note on conducting EC CO₂ reduction

Conducting EC CO₂ reduction may be difficult for many newcomers. A slight oversight will result in the failure of the experiment. Here, we introduce several considerations for conducting EC CO₂ reduction experiments, including pre-treatment of the electrolyte, pre-treatment of the electrolysis cell, flow rate of CO₂ gas and the electrolyte, electrolysis cell type and product analysis.

2.1 Pre-treatment of electrolyte

The purpose of electrolyte pre-treatment is to remove any metallic contaminants that might be present. The deposition of metal ion impurities will poison the electrocatalytic activity and cause the deactivation of the Cu electrode. This may be also the reason why some beginners observed that almost all the products are H₂. Proper operation could suppress H₂ evolution, a competing reaction accompanying EC CO₂ reduction.

Pre-electrolysis of the electrolyte is one method, in which two platinum gauzes could be used as the working and counter electrodes in a two-electrode configuration and a negative cathodic potential was applied for certain period (e.g. –2 V for 24 h, Pt black cathode at 0.025 mA cm⁻² for more than 15 h (ref. 34)). The electrolyte could be also purified by electrolysis between two graphite rods or two high purity Ti foils (99.99%). Here, the electrodes used should be of high purity and should be removed from the solution before pre-electrolysis.
During electrolysis, there are three types of CO2 gas and electrolyte flow: (1) continuously bubbling CO2 during the process;\(^ {63,65,67,84}\) (2) CO2 bubbling plus flow electrolyte;\(^ {65,85,87}\) (the CH4/C2H4 ratio could be tuned by varying the CO2 gas and KHCO3 electrolyte flow rates);\(^ {65}\) (3) no report of any form of convection at all.\(^ {31,88}\)

The unit of flow rate is standard cubic centimetres per minute (sccm) or ml min\(^ {−1}\). Certain flow rates of CO2 gas were chosen by different research groups, such as 5 sccm,\(^ {63,67,72}\) 10 sccm,\(^ {73−76}\) 20 sccm (ref. 60, 77−84) and 30 sccm. The cell design and catalyst itself should also be considered when choosing the flow rate. The Takanabe group\(^ {73}\) chose 10 sccm to ensure sufficient CO2 supply to the electrode surface while preventing the catalyst dropping off the electrode by gas bubbles. The Koper group\(^ {11}\) investigated the influence of CO2 flow rate on the activity of 3D porous hollow fibre Cu and observed a maximum FE of 75% CO at −0.4 V vs. RHE when flow rate >30 sccm. In a flow setup, the flow rate of the CO2 gas was set to 50 sccm and that of the electrolyte was 100 sccm.\(^ {85}\) To suit a specific system, one could also choose to adjust the flow of electrolyte with the applied potential.\(^ {86}\)

With CO2 gas bubbling, the catholyte could be stirred.\(^ {62,89,90}\) The rotating rate also has an influence on the catalyst activity.\(^ {50}\) H2 evolution increased and the product selectivity switched from CH4 to CO when the rotating rate was increased, although there was increased availability of CO2 at the electrode surface. This was caused by the enhanced mass transfer of dissolved CO away from the electrode surface and then less adsorbed CO was left for further reduction.\(^ {90}\)

2.4 Electrolysis cell types

A variety of cells have been reported in the literature, but the most commonly used is a H-type cell. The total number of publications from 2007 to 2017 on selected metal-based electrocatalysts for CO2 reduction in H-cell experiments was 1083, and 21 in continuous flow reactors.\(^ {91}\) In a typical H-type cell, two compartments are separated by an activated ion exchange membrane such as a Nafion membrane (e.g. Nafion@117 with 0.180 mm thickness and >0.90 meq g\(^ {−1}\) exchange capacity). The Nafion membrane should be activated first, usually by boiling in 3−5 wt% H2O2, DI water, 0.5 M H2SO4 and DI water at 80 °C, respectively, for 0.5−1 h. The working electrode and reference electrode are in the cathode compartment with a CO2 gas inlet and outlet. The counter electrode is in the anode compartment with or without a gas inlet and outlet.

2.5 Product analysis

Gas chromatography (GC) with a thermal conductivity detector (TCD) and a flame ionization detector (FID) is a universal method for gas product analysis. FID with a methanizer is normally used to quantify CO, CH4, C2H4 and C2H6, and TCD is used to quantify H2. It is also able to detect a mixture of 100 ppm CO and 100 ppm H2 with TCD, and 50 ppm CH4, 50 ppm C2H4 and 50 ppm C2H6 with FID, as shown in Fig. 3. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) are used for detecting liquid products. For example, methanol, ethanol, formate and acetic acid products could be quantified by 1D \(^ {1\text{H}}\) NMR with DMSO as an internal standard (Fig. 4). More detailed information on gas and liquid product detection can also be found in other reviews.\(^ {92,93}\)

Faradaic efficiency (FE) is the ratio between the amount of product actually detected by an analysis technique such as GC, HPLC or NMR, and the amount of product theoretically formed based on the charge passed during electrolysis. The faradaic efficiency or selectivity for each product in EC CO2 reduction could be calculated according to the following equation:

Without CO2 gas bubbling during electrolysis:
Faradaic efficiency (FE) is the amount of product detected (number of moles, mol); \(Q \) is the total charge passed through the system, recorded during electrolysis (coulombs, C); \(F \) is the Faraday constant (96,485 C mol\(^{-1}\)/C); \(Z \) is the number of electrons required to obtain 1 molecule of the product. As shown in Table 1, the number of electrons required to form 1 molecule of CO, CH\(_3\)OH, CH\(_4\), C\(_2\)H\(_4\), and C\(_2\)H\(_6\) is 2, 6, 8, 12, and 14, respectively.

CO\(_2\) gas was continuously bubbled during electrolysis (the first and second measurements are not used to calculate faradaic efficiency to ensure that the data is from a system under equilibrium conditions):

\[
\text{Faradaic efficiency (FE)} = \frac{n}{Q/ZF} = \frac{nZF}{Q} = \frac{nZF}{It} = \frac{nZF}{IV/v}
\]

\(I \) is the recorded current (A); \(t \) is the time required to fill the sampling loop (s); \(V \) is the volume of the sampling loop (cm\(^3\)); \(v \) is the recorded flow rate (ml s\(^{-1}\)).

As stated, therefore, the most important thing for newcomers before conducting EC CO\(_2\) reduction in aqueous electrolyte is the pre-treatment of the reaction system. Otherwise, H\(_2\) may be the sole product rather than CO\(_2\) reduction products, as the potential needed for water reduction to H\(_2\) is less negative than that for CO\(_2\) reduction. In addition, attention should be paid to the flow and convection state of CO\(_2\) gas and the electrolyte to make sure that all the experiments are conducted under certain conditions for comparison.

3. Significant progress in the study of Cu-based heterogeneous electrocatalysts for EC CO\(_2\) reduction

Before a detailed summary and comparison between the work of different research groups, we provide here the benchmark activity of Cu-based heterogeneous electrocatalysts for each EC CO\(_2\) reduction product (Fig. 5). Significant progress has been made in C\(_1\) and C\(_2\) products, whereas the selectivity for C\(_3\) and C\(_4\) products is relatively low. New insights into the mechanistic study of Cu are also given in Fig. 5 (orange). According to the reported studies, C\(_3\+)\) products are rarely formed and we will focus on the mechanisms for C\(_1\) and C\(_2\) products. Most mechanisms agree that the first step involves the adsorption/activation of CO\(_2\). Various adsorption or activation geometries have been proposed, which are reduced to CO and HCOO\(^-\), respectively. The adsorption intermediate on Cu via a carbon or oxygen atom is the key distinction governing the selectivity of CO or HCOO\(^-\). Therefore, altering the adsorption site and/or the stability of the adsorption intermediate is crucial for the formation of either CO or HCOO\(^-\). On the Cu surface, CO is adsorbed long enough to react further, forming HCHO, CH\(_3\)OH, CH\(_4\), and C\(_2\)H\(_4\) and C\(_2\)H\(_6\) products. Fig. 6 shows the three most likely pathways from adsorbed *CO. Two pathways have been identified for the formation of C\(_2\) products, *CO dimerization for *C(O)(O)C* intermediates at low overpotentials and *CO hydrogenation for *CHO intermediates at high overpotentials. High pH values will favour the major C\(_2\)H\(_4\) pathway (plain red arrows) and low pH value will favour the CH\(_4\) pathway (plain blue arrows). Additionally, these intermediates are sensitive to the Cu structure and composition, supports and electrolyte, which will be discussed in detail in the next section.

4. A brief review of Cu-based heterogeneous catalysts for EC CO\(_2\) reduction

4.1 Cu with various morphologies

In order to improve the activity of Cu-based electrodes, diverse morphologies have been investigated and developed,
including nanoparticles, nanocubes, nanoneedles, and three-dimensional (3D) structures. The relevant surface roughness, size effects, interparticle spacing, nanoparticle loading level and crystal-facets are explored for these various morphologies.

Nanoparticles. Compared with smooth Cu, its roughened counterpart could provide a high electrochemical surface area to enhance the current density for CO₂ reduction. By pretreating polycrystalline Cu foil via electropolishing, electrochemical cycling (50–100 nm Cu nanoparticles) and argon sputtering, I.
Chorkendorff and co-workers found that high surface roughness showed higher activity for hydrocarbon formation (CH$_4$ and C$_2$H$_4$) in KClO$_4$ electrolyte. The enhanced activity was ascribed to the greater abundance of undercoordinated sites on the roughened surfaces. The high activity of the roughened surface of Cu nanoparticles was also reported by H. M. Zhang, X. F. Li and co-workers. In their work, Cu nanoparticles with a diameter of 100 nm (thickness 47 nm) were coated on carbon paper via pulse electrodeposition. Compared with constant potential electrodeposition, pulse electrodeposition created a more roughened surface to provide abundant active sites, leading to 85% CH$_4$ formation at −2.1 V vs. RHE (0.5 M NaHCO$_3$, 1 sccm CO$_2$). According to these studies, the promoting effect of the roughened surface on C$_2$H$_4$ and/or CH$_4$ formation is independent of the catalyst preparation method and the electrolyte used for CO$_2$ reduction.

Fig. 6 Most likely reaction pathways from adsorbed *CO on Cu surface for C$_1$ and C$_2$ products. Plain red, plain blue and dashed blue routes are for major, minor and trace C$_2$ products.

Fig. 7 (a) The faradaic efficiency of reaction products during EC CO$_2$ reduction on Cu nanoparticles. (b) The faradaic efficiency as a function of interparticle distances over 4.7 nm Cu nanoparticles. (c) CO$_2$ flux obtained for Cu nanoparticles with different sizes and interparticle distances based on diffusion equations. Experimental conditions: 0.1 M KHCO$_3$, −1.1 V vs. RHE, 30 sccm CO$_2$. Reproduced from ref. 65 for (a) and ref. 119 for (b) and (c), with permission from the American Chemical Society, 2014 and 2016.
Particle size is a critical parameter in tuning the activity and selectivity of Cu nanoparticle catalysts. It may be difficult to control smaller particle sizes and interparticle distances directly via an electrochemical method. Therefore, although powder systems have to be assembled into electrodes for further application in CO₂ reduction, many studies have been reported based on Cu powder systems with a controlled small particle size. ~5 nm Cu nanoparticles embedded in a thin film of metal organic framework (MOF, used to restrict the particle size) on fluorine-doped SnO₂ (FTO) exhibited 31% [major HCOO⁻, minor CO] CO₂ reduction selectivity at −0.82 V vs. RHE (0.1 M NaClO₄, pH = 4.6). B. R. Cuenya, P. Strasser and co-workers prepared Cu nanoparticles with a mean size range of 2–15 nm on glassy carbon. The hydrocarbon production decreased as the particle size decreased and vanished for sizes ≤2 nm, as shown in Fig. 7a. Cu nanoparticles (12 nm, 19 nm, 24 nm, 37 nm)/four types of carbon support also showed higher C₂H₂/C₂H₄ production than smooth copper film, and smaller particle sizes were more favorable for C₂H₄ formation (pH = 6.8). These individual studies give different trends for product distribution, probably caused by different preparation methods, supports and pH of the electrolytes.

Another critical parameter for Cu nanoparticle catalysts is the interparticle spacing. B. R. Cuenya and co-workers designed 1.5 nm, 4.7 nm and 7.4 nm Cu nanoparticles with interparticle distances of 10–22 nm, 24–53 nm and 41–92 nm, respectively. Smaller interparticle spacing was favorable for re-adsorption of the CO intermediate and its further reduction to hydrocarbons, and with the increase of interparticle spacing the CO₂ flux increased, as shown in Fig. 7b and c. P. Strasser and co-workers also showed that C₂H₄ selectivity could be tuned by particle density caused by diffusional interparticle coupling that controlled CO desorption/re-adsorption and in turn the effective CO₃ad coverage. Recently, it was also reported that stacked small Cu nanoparticles could be formed by in situ electrochemical fragmentation during the CO₂ reduction, promoting C–C coupling reaction.

The Cu nanoparticles loading level also has a significant influence on the morphology evolution and product selectivity. P. D. Yang and co-workers assembled densely packed Cu nanoparticles (6.7 nm) on carbon paper electrode. These densely packed nanoparticles changed to cube-like structures intermixed with smaller nanoparticles (Fig. 8a). Compared with spatially separated nanoparticles and ex situ prepared nanocubes, the in situ formation of cube-like particles from densely packed nanoparticles suppressed C₁ products and improved C₂–C₄ formation (C₂H₄, C₃H₆OH, and n-C₃H₇OH 50% at −0.75 V vs. RHE, Fig. 8b).

Therefore, small interparticle distances and densely packed nanoparticles would lead to higher hydrocarbon formation. The above Cu nanoparticles are crystalline in form. Compared with the crystalline form, the amorphous form seems to be more favourable for C₂ products. J. M. Yan and co-workers synthesized amorphous Cu nanoparticles (average size 3.3 nm), and achieved 37% HCOOH and 22% C₂H₅OH at −1.0 V vs. RHE (0.1 M KHCO₃, 20 sccm CO₂). The crystalline Cu nanoparticles (average size 3.4 nm) only showed 26% HCOOH and no C₂H₅OH at the same potential. They ascribed the enhanced activity to the high electrochemically active surface area (ECSA) and CO₂ adsorption on the amorphous surface.

Similar to Cu nanoparticles formed on film in situ as an electrode, the morphology of powder nanoparticles could also have an effect on product selectivity, and a surface morphology with more defects and boundaries promotes C₂ products. Star decahedron Cu nanoparticles and branched CuO nanoparticles are reported to achieve high faradaic efficiency of ethylene (C₂H₄) up to 52% and 70% at −1.0 V vs. RHE, respectively.

Fig. 8 (a) Schematic illustration of Cu nanoparticle ensembles as an active catalyst for C₂–C₄ product formation. (b) Investigation of the parameters affecting structural transformation of Cu nanoparticle ensembles and their catalytic activity. (i) Separation of the NPs from their initial densely packed assembly, (ii) use of Cu nanocubes as starting materials, and (iii) change of support to a low surface area carbon plate. Experimental conditions: 0.1 M KHCO₃, (i) −0.84 V, (ii) −0.86 V, and (iii) −0.81 V vs. RHE, respectively. Reproduced from ref. 122.

Fig. 9 (a) Schematic of the electrogrowth process of Cu from Cu₂(OH)₃Cl. (b) Corresponding SEM images and (c) structure evolution of the key structural features after applying various potentials for at least 1 h in 0.1 M KHCO₃. Reproduced from ref. 82 with permission from Springer Nature, 2018.
Morphology evolution. The influence of other morphologies on CO₂ reduction activity may be caused by many aspects. Although the enhancement effects and mechanisms of certain products are different for different morphologies, morphologies with more edges, corners or sharp tips seem to promote C₂ and even C₃ products. B. R. Cuenya and co-workers 124 electro-deposited prism-shaped Cu catalysts which exhibited higher C₂H₄ current density than planar Cu foil. A total FE of ~73% for C₂ and C₃ products (~45% C₂H₄, 22% C₂H₅OH, 9% C₃H₇OH) at −1.0 V vs. RHE was obtained. They attributed the enhanced selectivity to the increased local pH and high abundance of defect sites on the roughed prism Cu surface. Cu pillar structure 125 achieved much higher HCOO⁻ selectivity than planar Cu foil at −0.5 V vs. RHE (0.1 M KHCO₃). Through electrodeposition, dissolution and redeposition of Cu from Cu₃(−OH)₂Cl sol-gel, E. H. Sargent and co-workers 126 prepared Cu nanoneedles with sharp tips (Fig. 9). These Cu nanoneedles with sharp tips could produce high local electric fields that concentrate electrolyte cations and CO₂ molecules at the catalyst surface, resulting in a high partial C₂H₄ current density (160 mA cm⁻² at −1.0 V vs. RHE) and C₂H₄/CH₄ ratio of up to 200 (flow cell). The effect of sharp tips was also explained from a kinetic point of view instead of a reaction barrier. 126 However, enhanced C₁ products were observed instead of C₂ products. N. F. Zheng and co-workers 127 reported a simple strategy to prepare ultrathin Cu/Ni(OH)₂ nanosheets with atomically thick ultrastable Cu nanosheets in the presence of sodium formate (HCOONa), which achieved 92% CO at −0.5 V vs. RHE. The presence of surface formate inhibited the oxidation of Cu(0) and the hybrid structure probably had an effect on the promoted CO production. Hybrid structure-enhanced C₁ product formation has been observed by other groups. 127,128

Similar trends in the role of morphology are observed for nanocube structures in powder systems, especially for C₂H₄ production. R. Buonsanti and co-workers 129 fabricated different sizes of Cu nanocrystal spheres (7.5 nm and 27 nm) and Cu nanocrystal cubes (24 nm, 44 nm, and 63 nm). There was a monotonic size-dependent trend for both shapes – the smaller, the more active. Cube-shaped copper nanocrystals showed better performance than spheres. The overall CO₂ reduction activity changed from 50% to 80% and 63% for 24 nm, 44 nm, and 63 nm, respectively, and the highest faradaic efficiency of C₂H₄ was 41% for 44 nm nanocubes at −1.1 V vs. RHE (Fig. 10). Edges and Cu(100) were responsible for maximizing C₂H₄ selectivity. However, edges were also reported to promote CH₄ selectivity in nanowire structures. P. D. Yang and co-workers 130 prepared ultrathin Cu/Ni(OH)₂ nanosheets with atomically thick ultrastable Cu nanosheets in the presence of sodium formate (HCOONa), which achieved 92% CO at −0.5 V vs. RHE. The presence of surface formate inhibited the oxidation of Cu(0) and the hybrid structure probably had an effect on the promoted CO production. Hybrid structure-enhanced C₁ product formation has been observed by other groups. 127,128

Fig. 10 TEM images of Cu cubes with an average edge length of 24 nm (A), 44 nm (B), 63 nm (C), and corresponding faradaic efficiency after subtracting the substrate signals. Experimental conditions: 0.1 M KHCO₃, −1.1 V vs. RHE, 5 sccm CO₂. Reproduced from ref. 129 with permission from Wiley, 2016.

3D structure. The importance of the influence of three-dimensional (3D) structures on local pH, retention time of intermediates, gas permeability or liquid diffusion has been demonstrated by many researchers. G. Muller, M. T. Koper and co-workers 131 designed a 3D porous hollow fibre Cu electrode, and the rate of formation of CO was one order of magnitude larger than that of C₂H₄.
than for nanocrystalline Cu. Using hydrogen bubbles as a template, G. T. R. Palmore and co-workers fabricated Cu nanofoams with connected pores of 20–50 μm (Fig. 11b). Compared with an electropolished Cu electrode, they observed increased selectivity for HCOOH, decreased selectivity for CO, CH4 and C2H4, and novel production of C2H6 and C3H6. A maximum of 37% HCOOH was obtained at 0.1 M KHCO3. They attributed these differences to the high surface roughness, hierarchical porosity, and confinement of reactive species. For the 3D nanoporous structure, the authors also showed that the inner surface area of the nanopores only becomes accessible above a critical electrolyte concentration of 0.5 M KHCO3 due to the overlapping electrical double layer (EDL). In another study, P. Broekmann and co-workers prepared oxide-derived Cu nanofoams. The faradaic efficiency of C2 (C2H4 and C2H6) could reach 55% at −0.8 V vs. RHE (0.1 M KHCO3). Compared with the copper foam prepared by the Palmore group, there was a significant difference in the production distribution, which may be caused by the formation of CuO and different pore sizes. C2 reached a maximum value for the surface pore size ranging from 50 to 100 μm, while it decreased significantly below 50 μm (Fig. 11c). The Broekmann group also found more efficient trapping of reaction intermediates (e.g. C2H4) in the presence of μm-sized pores within the Cu foam on a 3D skeleton structure, favoring fully reduced C2 products. Using a similar preparation method to the Palmore and Broekmann groups, E. H. Sargent, D. Sinton and co-workers prepared a Cu nanoflake with pore sizes in the range of microns and then oxidized it in a mixed solution of 60 mM HCl and 60 mM H2O2. They again proved that higher surface roughness and porosity favored C2H4 over CH4 (0.1 M KHCO3, 20 sccm CO2).

In addition to pore sizes on the micron scale, nano-porous structures could also change the local pH and retention time of key intermediates and, in turn, the product selectivity. Using a sputtering method on anodized aluminium oxide, as shown in Fig. 12a, the pore widths and depths of the Cu mesopore electrode could be precisely controlled. Compared with an electrode of 300 nm (width)/40 nm (depth), C2H4 formation was enhanced from 8% to 38% when the pore width was narrowed to 30 nm, whereas the major C2 product changed to C2H6 with a faradaic efficiency of 46% when the depth was increased to 70 nm at −1.3 V vs. RHE (Fig. 12b). A pH change with 3D morphology was also reported by other groups. Using Cu foil with a mixed solution of (NH4)2S2O8 and NaOH for different times, W. A. Smith and co-workers obtained Cu(OH)2 nanowires with various lengths and densities. The nanowires with high lengths and densities had an influence on the diffusion of CO2−, leading to a high local pH, since CO2− can neutralize OH− (CO2− + OH− → CO3− + H2O), as shown in Fig. 12c. With higher lengths (~2.4 ± 0.56 μm), n-C3H7OH was detected along with CO, HCOOH and C2H4. For even higher lengths (~7.3 ± 1.3 μm), C2H4 and C2H6OH could be formed. In summary, high lengths or depths of 3D nanostructures favor higher hydrocarbon formations.

Crystal facets. The crystal facet dependence of CO2 reduction for Cu foil and Cu single crystals has been widely explored by experimental and theoretical methods, especially for (111) and (100). On a single-crystal copper electrode, M. T. Koper and co-workers observed that one pathway for the formation of CH4 preferentially occurs on (111) facets, while the other pathway leads to C2H4 formation on (100) facets. The Koper group also distinguished the reactivity of (100) terraces versus (100) steps, where selective reduction of CO to C2H4 at low overpotentials occurs on terrace sites. The theoretical calculation stated that the coupling of two CO molecules

Fig. 12 (a) Scheme of Cu mesopore electrode and corresponding SEM images; (i–iii) are 30 nm/40 nm, 30 nm/70 nm and 300 nm/40 nm width/depth, respectively. (b) The faradaic efficiencies of CO2 reduction products for the prepared Cu mesopores. Experimental conditions: 0.1 M KHCO3, −1.3 V vs. RHE. (c) Schematic illustration of the diffusion of electrolytes into Cu nanowire arrays. Reproduced from ref. 133 for (a) and (b), and ref. 134 for (c) with permission from Wiley, 2016.

Fig. 13 Schematic illustration of reaction pathways on Cu(100) and (111) single crystals. Reproduced from ref. 138 with permission from the American Chemical Society, 2016.
mediated by electron transfer to form a *C2O2 dimer is a rate-
determining step involved on Cu(100) for C2 (C2H4 and
C2H5OH) formation.149 Experiments on CO and CO2 reduction
in electrolytes with various pH values also showed a pH-
dependent pathway for CH4 mainly on Cu(111) and a pH-
independent pathway for C2H4 on Cu(100).26 Results from
other groups suggest that Cu(100) favors CHO* intermediates
and follows C2H4 formation at relatively low overpotentials
(−0.4 to −0.6 V vs. RHE), while Cu(111) favors COH* interme-
diates and CH4/C2H4 formation at high overpotentials (<−0.8 V
vs. RHE), as shown in Fig. 13.138

B. S. Yeo and co-workers141 studied Cu2O (hydrothermally
prepared)-derived Cu and Cu single-crystal surfaces. Of the
three single-crystal surfaces (100), (111) and (110), Cu(100)
exhibited the lowest energy barrier for the dimerization of CO*
A. Nilsson and co-workers157 investigated single crystal copper
(100), (111), and (211) for comparison with Cu nanocubes. The
(100) surface was the most comparable to the Cu nanocube
surface in terms of C2H4 production, whereas CH4 was not
suppressed. One possibility is that it has the ideal terrace length
or active sites for C2H4 formation. K. Chan, H. T. Wang and co-
workers39 galvanostatically cycled Cu foil in Cu(NO3)2 to obtain
a Cu3O nanocube layer with smooth (100) facets on the surface.
They also suggested that Cu(100) and stepped (211) facets
favored C2+ products over Cu(111). From the present results,
Cu(100) crystal facets favor C2+ products compared with other
facets for most reported systems.

As stated above, understanding the effects of Cu morphology
on the selectivity is highly complex since there is a combined
effect of properties, such as low-coordinated sites, catalyst
density or dispersion, CO2 flux and electrical double layers in
the electrolyte, on the activity of CO2 electrochemical reduction.
Although there is wide variation in the activity trends for Cu
with various morphologies, the selectivity for possible products
may be adjusted by tuning the particle size and interparticle
spacing/particle density of Cu nanoparticles/nanocubes, tuning
the pore size and depth/length of 3D structures, or tuning the
energy facets of Cu crystals. In addition, attention should be
paid to morphology evolution during the electrochemical CO2
reduction process.

4.2 Oxide-derived Cu electrocatalysts
Recently, oxide-derived Cu has drawn much attention in elec-
trocatalytic CO2 reduction. Various oxide-derived Cu electro-
catalysts have been designed and the mechanisms involved
have been discussed widely. Some groups88–71,142,143 suggest that
grain boundaries are the active sites. Some groups80,144,145 believe that low-coordinated atoms act as active sites. There are
also many groups85,114,146–148 which believe that the active phase
is metallic Cu0 since there is a significant driving force for Cu2O
reduction under CO2 reduction conditions. Many
groups82,95,149,150 proved that the Cu+ site is key for enhanced
activity and remained on the catalyst surface during the reac-
tion. Some groups96,151,152 found that sub-surface oxygen stabili-
zized in reduced oxide-derived Cu plays an important role and
there is synergy between surface Cu+ and surface Cu0 sub-oxide
species.

Although the true active site is still under debate, oxide-
derived Cu has shown excellent performance in decreasing
the potential required and enhancing selectivity for speci-
cific products. Most recent reports also confirmed that two (Cu+ and
Cu0) were better than one.100,154 In this section, we will discuss

Fig. 14 (a) The faradaic efficiency of CO2 reduction products for annealed Cu and polycrystalline Cu foil. 0.1 M NaHCO3, 5 sccm CO2. (b) The
specific current density of CO reduction versus the grain boundary density at −0.3 V, −0.4 V and −0.5 V, respectively. Reproduced from ref. 69
for (a) and ref. 71 for (b) with permission from the American Chemical Society, 2016.
oxide-derived Cu in detail based on the fabrication process, including annealed/oxide-derived Cu, electrodeposited/oxide-derived Cu, Cl⁻/oxide-derived Cu, plasma/oxide-derived Cu, and in situ/oxide-derived Cu. Since the wide variation in experimental conditions results in various results for similar materials, detailed experimental conditions are included for different groups.

Annealed/oxide-derived Cu. Annealing is a simple and effective strategy to enhance the activity of Cu. During this process, the annealing temperature and the following redox process all have an influence on the CO₂ reduction activity. M. W. Kanan and co-workers⁵⁸ annealed Cu foil at different temperatures in air, forming Cu₂O layers with different thicknesses. Thick Cu₂O layers formed at 500 °C (≥3 μm) exhibited higher selectivity and lower overpotential to CO (43% at –0.3 to –0.5 V vs. RHE) and HCOO⁻ (33% at –0.45 to –0.65 V vs. RHE) compared with the Cu foil counterpart (Fig. 14a). Later, using oxide-derived Cu (electrochemical reduction and thermal reduction with H₂), they⁶⁸ investigated CO electroreduction to liquid fuels in CO-saturated 0.1 M KOH (pH = 13). Engineering the grain boundaries by altering the redox process could tune the product distribution. 57% carbon oxygenated species (CH₃OH, CH₂COO⁻ and n-C₃H₇OH) were obtained at potentials ranging from –0.25 V to –0.5 V vs. RHE. Temperature-programmed desorption (TPD) experiments⁶⁸ showed that the active sites for CO reduction on oxide-derived Cu surfaces were strong CO binding sites supported by grain boundaries. The Kanan group⁷¹ also prepared electrodes of Cu nanoparticles on carbon nanotubes (Cu/CNT) with different average grain boundaries via e-beam evaporation and subsequent annealing. The CO reduction activity was directly correlated to the density of grain boundaries in Cu nanoparticles, exhibiting a linear relationship at potentials ranging from –0.3 V to –0.5 V vs. RHE (Fig. 14b). A maximum faradaic efficiency of >70% of CH₃OH and CH₂COO⁻ was obtained at –0.3 V vs. RHE. L. E. L. Stephens, I. Chorkendorff and co-workers³⁹ investigated CO electroreduction on oxide-derived Cu prepared by the Kanan group. They showed that CH₄CHO was a key intermediate in the electroreduction of CO₂ to CH₃OH and CO formation, using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical predictions of the structures and free energies, W. A. Goddard III, J. Yano, E. J. Crumlin and co-workers⁶⁸ showed that the presence of suboxide species below the Cu surface played a crucial role in the adsorption and activation of CO₂ on annealed/oxide-derived Cu. This thin layer of suboxide was essential for converting chemisorbed CO₂ in the presence of H₂O as the first step toward CO₂ reduction products such as HCOOH and CO. Quantum mechanical calculations and experimental results also showed that there was an optimized amount of subsurface oxide. More or none at all would destabilize the bent (chemisorbed) CO₂. (1)

In the case of Cu(111) without subsurface oxide (Fig. 15a), the C atom of CO₂ was chemically bonded to a Cu⁰. One of the O atoms was stabilized by hydrogen bonding to H₂Oad on another Cu⁰. (2) When the subsurface oxide was increased to 1/4 ML (Fig. 15b), the C atom was chemically bonded to two surface Cu⁰. One O atom was chemically bonded to one Cu⁰, and the other O atom was stabilized by the Cu⁺ pulled up by H₂Oad. (3) When the subsurface oxide was increased to 1/2 ML (Fig. 15c), the C atom was chemically bonded to a Cu⁺ that shares one O atom stabilized by hydrogen bonding to H₂Oad on another Cu⁺. Later they found that only surface Cu⁺ itself could not improve the performance of CO₂ reduction, and proposed Cu metal embedded in an oxidized matrix model as a partially oxidized Cu surface, where the synergy between the surface Cu⁺ and surface Cu⁰ was responsible for CO₂ activation.
Electrodeposited/oxide-derived Cu. In contrast to the annealed-redox process above, the electrodeposited/annealed and electrodeposited Cu2O film could also promote C2 products besides HCOO− or CO in CO2 reduction compared with pure Cu. P. Broekmann and co-workers133 compared two types of oxide-derived catalyst, annealed skeleton (300 °C, 12 h) and electrodeposited Cu nanofoam on 3D Cu skeleton. Both the annealed and electrodeposited skeleton catalysts showed preferential (100) texturing and profound activities toward C2 product formation (C2H4 and C2H6) in 0.5 M NaHCO3. Later, they observed electrodeposited dendritic Cu on Cu mesh via the mass control of Cu(II) ions, followed by thermal annealing at 300 °C in air. Electrodeposited dendritic Cu showed high HCOO− and C2H4 production, while the electrodeposited/annealed sample directed product selectivity toward C2 and C3 alcohols (detailed data given in Table 1) and high resistance against degradation (Fig. 16a). An identical location SEM study showed that Cu nanoparticles and nm-sized cavities and cracks on large dendritic structures were present for the annealed sample. They assigned the difference in stability to the change in reaction mechanism; namely, the electrodeposited sample relied on a coupled C2 hydrocarbon/alcohol mechanism (Fig. 16b).

Then they prepared Cu2O and CuO-derived Cu with different thicknesses via a hydrothermal method (1.3 and 11.5 μm). In contrast to other works proposing the protonation of C2H4, they showed that C2H6 and C2H5OH were likely to form via the dimerization of –CH3 intermediates on thick oxide-derived Cu (Fig. 17b). They observed that Cu2O was rapidly reduced to metallic Cu during CO2 reduction by using in situ Raman spectroscopy. The surface reoxidized in tens of seconds after the cathodic potential was removed. This is in contrast to the Lee group’s work on electrodeposited Cu2O/GDE, where they found that Cu2O was only partially reduced on the basis of ex situ XRD and Auger electron spectroscopy. Later again, the Yeo group only observed signals belonging to CO adsorbed on Cu metallic sites rather than oxide sites for electrodeposited Cu2Zn.84

Cl−/oxide-derived Cu. Although the formation mechanism may still be unclear, cycling a Cu precursor in the presence of Cl− will lead to Cu nanocubes, which will in turn favour C2H4 production. A. Nilsson and co-workers157,158 reported a simple in situ method to fabricate nanocube-covered Cu by its successive oxidative–reductive cycling in the presence of KCl. Using online electrochemical mass spectrometry (OLEMS), there was an earlier onset potential and relatively high selectivity for C2H4 over CH4 (0.1 M KHCO3). The Yeo group also observed an enhanced C2H4/CH4 ratio with Cl−/oxide-derived Cu. The Nilsson group ascribed the enhanced C2H4 formation to the large number of exposed (100) facets and the rise in the local pH for the roughed surface of Cu nanocubes. The Ager group and the
Bell group did more work to understand the effect of pH on product formation for Cl-/oxide-derived Cu nanocubes. Using in situ X-ray absorption spectroscopy (XAS), A. Nilsson and co-workers47 investigated the formation mechanism of the Cu nanocubes. Since no CuCl was observed in the Cu K-edge XAS spectra, they believed that the precursor for nanocube formation was Cu2O, not CuCl as previously assumed (A. T. Bell and J. W. Agers work is shown in Fig. 18a). CuCO3/Cu(OH)\textsubscript{2} was also prepared via cycl in the absence of KCl. The results of OLEMS during CO\textsubscript{2} reduction showed that there were no significant differences between CuCO3/Cu(OH)\textsubscript{2}-derived Cu and Cl-/CuO-derived Cu. Therefore, they pointed out that the influence of the precursor oxidation state on the selectivity toward C\textsubscript{2}H\textsubscript{4} formation was not important. They also believed that the active species was metallic Cu, since no significant concentration of residual oxide was detected on the order of a few nanometers in the thin XAS model samples. Their further study57 used in situ ambient pressure X-ray photoelectron spectroscopy (APXPS) and quasi-in situ electron energy loss spectra (EELS), which showed that there was a small amount of subsurface oxygen but no residual copper oxide. Combined with DFT simulations, they proposed that the interaction of subsurface oxygen with metal causes higher CO binding energy, resulting in higher CO coverage. Higher CO coverage kinetically favored C-C bond formation.

In contrast to the Nilsson group’s study57 and the Yeos group’s study,159 J. Lee and co-workers160 observed the preferential formation of multiconcarbon fuels, especially n-C\textsubscript{2}-H\textsubscript{4}-OH (the first report over 10% C\textsubscript{2}-C\textsubscript{4} products, 0.1 M KCl), using in situ prepared Cl--induced bi-phasic CuO/Cu-Cu. They also found that the catalyst exhibited relatively higher Cu+ coverage than oxide-derived Cu and the use of a KCl electrolyte could prolong the preservation of the Cu2O phase compared to a KHCO\textsubscript{3} electrolyte.

A. T. Bell, J. W. Ager and co-workers144 electrochemically cycled copper foil in the presence of halide anions KF, KCl, KBr, and Kl. They observed an enhanced faradaic efficiency for C\textsubscript{2}H\textsubscript{4} and C\textsubscript{2}H\textsubscript{2}OH (excluding KF). Their observation of C\textsubscript{2}H\textsubscript{2}OH was in contrast to the Nilsson group and Yeo group studies. Without electrochemical cycling in halide anions, the product distribution was not significantly changed even with the addition of halide anions in electrolyte for CO\textsubscript{2} reduction. In situ Raman spectroscopy and SEM showed that during the oxidation sweep, anodic corrosion formed a Cu2O layer, which consisted of cubic crystals \textasciitilde 150 nm. CuCl formed cuboids when precipitated in the solution at pH > 4. In neutral and basic solutions with a low Cl- concentration, CuCl could convert to Cu2O. During the reduction sweep, irregular Cu nanoparticles \textsl{(ca.} \textasciitilde 20 nm in diameter) with rounded edges were formed (Fig. 18a). They ascribed the enhancement in C\textsubscript{2}H\textsubscript{4} formation to a large number of (100) facets (similar to the Nilsson group) and the formation of grain boundaries and defects (similar to the Kanan group). Later they44 also investigated four types of oxide-derived Cu electrocatalysts: “oxide-derived nanocrystalline Cu” developed by the Kanan group, “Cu nanowire arrays” developed by the Smith group, “electrodeposited Cu2O films” developed by the Yeo group, and “electrochemical oxidation–reduction cycled Cu” developed by the Nilsson group. There was an optimal roughness factor for the oxide-derived layers to have a high local pH and maintain a high concentration of dissolved CO\textsubscript{2}. More recently, J. W. Ager and co-workers144 prepared 18O-enriched oxide-derived Cu by cycling Cu foil in the presence of KCl in H\textsubscript{2}/18O. The selectivity of C\textsubscript{2} and C\textsubscript{3} products in 0.1 M KHCO\textsubscript{3} was up to 60%. By analysis with ex situ secondary-ion mass spectrometry (SIMS), they found that <1% of the original 18O content remained in the sample after the CO\textsubscript{2} reduction reaction and believed that the grain boundary was more likely responsible for the high activity, as proposed by the Kanan group. Similarly to the Yeo group, they also observed the rapid re-oxidation of oxide-derived Cu with in situ Raman spectroscopy. They believed that this rapid re-oxidation was possibly due to the grain boundaries (Fig. 18b), since Cu film with fewer grain boundaries did not oxidize quickly.

E. H. Sargent and co-workers82 applied constant potential in CO\textsubscript{2}-saturated 0.1 M KHCO\textsubscript{3} to reduce Cu\textsubscript{2}(OH)\textsubscript{2}Cl precursor on carbon paper. This dissolution and electro-redeposition process could form Cu2O nanoneedles, which exhibited excellent activity for C\textsubscript{2}H\textsubscript{4} formation (partial current density 160 mA cm-2) with a ratio of C\textsubscript{2}H\textsubscript{4}/CH\textsubscript{4} of up to 200 at –1.0 V vs. RHE (20 sccm CO\textsubscript{2}). For the first time, they used in situ Cu L-edge XAS to demonstrate that the Cu+ surface species could direct C\textsubscript{2}, product selectivity. The process of Cu2+ to Cu+ was quick (within 5 min), while Cu+ to Cu0 was much slower, and 23% Cu+ surface species still remained after 1 h electrolysis at –1.2 V vs. RHE.

In summary, Cl-/oxide-derived Cu shows excellent activity for C\textsubscript{2} and even C\textsubscript{3}–C\textsubscript{4} product formation, regardless of whether it is caused by the morphology evolution to nanocubes or the presence of Cu+.

Plasma/oxide-derived Cu. Plasma-induced CuO and Cu\textsubscript{2}O as a precursor of Cu-based electrocatalysts for efficient CO\textsubscript{2} reduction was recently reported by B. R. Cuenya and co-

![Fig. 18](image-url) (a) Proposed mechanism of Cu nanoparticle growth during electrochemical cycling in the presence of Cl-. (b) Rapid oxidation of Cl-/oxide-derived Cu with a high abundance of grain boundaries. Reproduced from ref. 142 for (a) and ref. 143 for (b) with permission from Wiley, 2016 and 2017.
workers. The plasma treatment could suppress CH4 formation while enhancing the formation of CO, HCOO− and C2H4. The onset potential towards CO and HCOO− was shifted to lower overpotentials, similar to the result observed by the Kanan group. However, the presence of strongly binding defect sites such as grain boundaries with intermediates proposed by the Kanan group could explain the early onset potential for CO2 reduction, but could not explain the suppression of C2H4 due to the H2 plasma treatment following O2 plasma treatment (Fig. 19a). Therefore, using a combination of characterization techniques, including operando X-ray absorption fine-structure spectroscopy (XAFS) and scanning transmission electron microscopy (STEM) equipped with energy dispersive X-ray spectroscopy (EDS), the authors found that the oxides in the surface layer were resistant to reduction and Cu+ species remained on the surface during the reaction. By controlling experiments with the same surface roughness (O2 plasma plus H2 and O2 plasma-treated Cu foils), they demonstrated that the roughness of oxide-derived Cu catalysts played only a partial role in determining the catalytic performance, while the presence of Cu+ was key for lowering the onset potential and enhancing C2H4 selectivity. Later, the Cuenya group used the same method to activate Cu nanocube catalysts obtained by electrochemical cycling of Cu foil in 0.1 M KCl. ~73% C2 and C3 products were achieved on Cl−-induced Cu nanocubes and O2 plasma-treated samples. High C2H5OH (~22%) and n-C3H7-OH (~9%) were also obtained for the O2 plasma-treated sample at −1.0 V vs. RHE. In their former work, they observed that Cu+ is key. Through controlled experiments in this work (Fig. 19b), they believed that the oxygen content (oxygen ions associated with Cu+ species) played a more important role in C2H4 formation than Cu(100) facets.

In situ/oxide-derived Cu. In situ formation of oxide during CO2 electrolysis is a promising method to activate Cu electrocatalysts, although the promoted products are uncertain. A. Engelbrecht and co-workers oxidized Cu in situ by using a CO2/O2 gas mixture instead of pure CO2 gas and found that the formation of CH4 was largely suppressed, while C2H4 was favored (0.1 M KHCO3, 100 sccm). J. M. Spurgeon and co-workers used a pulsed-bias technique for CO2 reduction on Cu foil. Compared with the conventional potentiostatic technique, there was a major shift in the selectivity (Fig. 20). The syngas H2:CO ratio ranged from ~32:1 to 9:16 for pulse times between 10 ms and 80 ms, respectively (0.1 M KHCO3, 20 sccm). J. Y. Lee and co-workers also indicated that Cu2O formed under the anodic cycle in the pulsed electrolysis of CO2 and this process also prevented the poisoning of carbon on the Cu surface. Using pulsed voltammetry, P. Rodriguez and co-workers observed that oxygenated products associated to the coverage of OH species on single crystal Cu(100) and Cu(111). In contrast to Spurgeon and co-workers’ work, however, the selectivity trend shifted to CH4 and C2H4.

Early last year, however, I. Chorkendorff, I. E. L. Stephens and co-workers investigated CO electrolysis on polycrystalline Cu foil in 0.1 M KOH at low overpotentials from ~0.4 to ~0.6 V vs. RHE. Compared with oxide-derived nanostructured Cu in the literature, the polycrystalline Cu foil exhibited higher selectivity for C2 and C3 aldehydes and ethylene. This indicated that future studies should focus on the intrinsic activity of Cu.

In summary, for oxide-derived Cu, various methods have been developed for the preparation of a Cu-oxide precursor (Cu2+, Cu+) and for its subsequent redox process (in situ, electrochemical and H2 reduction). As stated at the beginning of this part, the true active site of Cu-based electrocatalysts fabricated from oxidation-reduction processes is still under discussion. Using Cu-based electrocatalysts with
oxidation–reduction pretreatment, the activity and product selectivity were indeed improved, especially for the ratio of CH4 and CH2, which has been proven by many research groups as above. Further mechanism investigations may focus on in situ and operando studies to gain more insight into the subsurface oxygen, chemical state or morphology of the CuO catalyst under CO2 reduction conditions.

4.3 Cu–M bimetallic species

Combining Cu with other metals (M) to form alloys or separated Cu–M composites is another efficient approach to enhance the activity and selectivity for CO2 reduction. In this part, we summarize Cu–M alloys, including pure metallic alloys and oxide-derived alloys, as well as Cu–M bifunctional interfaces (separated Cu–M composites). For pure metallic alloys, the catalytic activity is affected by the nature of the secondary metal atom. Generally, CO selectivity is enhanced for Cu–M (M = In, Zn, Ag, Au) and HCOO- for Cu–M (M = Sn, Pd), while hydrocarbon selectivity increases with increasing Cu atoms in the alloy. When the composition of ordered or separated arrangements is precisely controlled, different behavior will be observed and Cu products could be promoted. When the alloys are formed from oxide species, different behavior could also be observed, especially for oxide-derived blended and separated composites for Cu2O2OH production. There are electronic and geometric effects for each individual component of the alloy, while the geometric effects play important roles for separated Cu–M composites. Therefore, we may expect distinct performances of Cu–M bimetallic species via precise control of their atom and phase arrangements.

Cu–M alloy. Cu-based bimetallic electrocatalysts for CO2 reduction have been utilized since 1991, as reported by Watanabe and co-workers. Cu alloys such as Cu–Ni, Cu–Sn, Cu–Pb, Cu–Zn, Cu–Cd, and Cu–Ag exhibited different catalytic activities compared to their respective elemental metals. Coupling Cu (d metal) with more oxophilic materials (sp metals) such as Sn, In, Bi, and Sb might inhibit H2 evolution while enhancing the adsorption of CO and CHO to facilitate subsequent H adduction. G. Zangari and co-workers prepared Cu–InxIny electrodes with dendritic morphology by electrodeposition. At ~1.0 V vs. RHE (0.1 M KHCO3), the selectivity of HCOO- could be up to 62% with 80 atom% In alloy, and the CO/H2 ratio could be tuned to 2.6:1 with 40 atom% In alloy. K. Takanabe and co-workers thermally oxidized a Cu metal sheet to form a hairy CuO nanowire structure on Cu2O–Cu layers. The CuIn electrode was then prepared through in situ electrochemical reduction of the oxide-derived Cu in a mixed solution of InSO4 and citric acid. High efficiency of CO was obtained (>70%) at low overpotential (~0.4 V to ~0.7 V vs. RHE), with a maximum of 95% CO at ~0.7 V vs. RHE (0.1 M KHCO3, 10 sccm CO2). Similar trends were also observed when using Sn and Zn as the second metals. DFT calculations suggested that In was preferentially located at the edges of the Cu surface (H2 evolution sites are presumably edges) and caused weakened adsorption of H over CO (high-overpotential metal for H2 formation), while the intact Cu corners might be still responsible for CO production. More importantly, there was only a slight improvement in CO selectivity for the Cu–In electrode without initial oxidation treatment of the Cu sheet. They also fabricated CuSn alloys using a similar electrodeposition method with initial oxidation. High CO selectivity with FE >90% over a wide potential range of ~0.4 V to ~0.8 V vs. RHE was achieved. According to their results, to improve the CO selectivity with CuIn or CuSn alloys, initial oxidation could be adopted. C. P. Berlinguette and co-workers investigated ternary alloys of Cu–Zn–Sn for CO2 reduction to CO and HCOO-. With an optimized ratio, >80% CO and HCOO- could be achieved with a partial current density of 3 mA cm−2 at an overpotential of 0.2 V (0.5 M NaHCO3, 5 sccm CO2).

E. H. Sargent, P. D. Yang and co-workers prepared a Cu-enriched Au nanoneedle electrode via an underpotential deposition (UPD) method with various Cu content. Designed syngas ratios were obtained (0.5 M KHCO3, 20 sccm CO2). In situ SERS and DFT calculations illustrated how the surface electronic structure could be tuned by Cu enrichment to influence CO binding. Tuning the composition of CuAu alloys from Au-rich to Cu-rich resulted in a selectivity change from CO to hydrocarbon, which was also reported in other studies. For Cu-rich alloys in another study, Au addition led to the suppression of CH4 while increasing CO production. A. T. Bell and co-workers prepared strained CuAg surface alloys via melting physical mixtures of Cu and Ag under argon in a vacuum arc furnace. The incorporation of Ag atoms onto the Cu surface modified the Cu electronic structure, where the valence band density states shifted to deeper levels. As a result, the binding energies of H and O relative to CO decreased and the ratio of CO to H2 products increased (0.05 M Cs2CO3, 5 sccm CO2). An AgCu dendritic catalyst was also electrodeposited on Cu foil and Ag57Cu43 exhibited 2.2 times higher CO production than pure Ag in terms of Ag mass activity at ~0.83 V vs. RHE (0.5 M KHCO3, 10 sccm CO2). These results indicate that by alloying Cu with Au or Ag, the ratio of CO to H2 could be tuned. Additionally, additives during the electrodeposition process and the supports applied could affect the morphology of the deposited alloy and its corresponding activity for CH4 or C2 products. Through the addition of 3,5-diamino-1,2,4-triazole into the electroplating solution, A. A. Gewirth and co-workers obtained homogeneous CuAg wire samples, which exhibited higher selectivity than their counterparts of up to 60% C2H4 and 25% C3H6OH at ~0.7 V vs. RHE (1.0 M KOH). T. Meyer and co-workers investigated ternary CuSn–Au alloys, and the CO selectivity was increased from ~85% to >95% with Au addition. A. Heeb and co-workers also reported that the CO selectivity was enhanced from ~95% to >99% with Au addition. A. B. Jones and co-workers investigated the effect of Au on the CO selectivity of Cu–Sn–Au alloys and found that Au addition led to a significant improvement in CO selectivity. These results indicate that Au addition can enhance the CO selectivity of Cu–Sn–Au alloys.

Fig. 21 General relationship between the primary product formed and CO heat of adsorption (ΔH) for pure metal and mixed metal films. Reproduced from ref. 17 with permission from Wiley, 2017.
workers electrodeposited ~6.6 nm CuPd nanoalloy on a polymeric film. 51% CH4 was obtained with CuPd in organic electrolyte at an overpotential of ~0.86 V. They believed that the enhanced CH4 formation was due to the synergistic interplay between Pd–H sites and Cu–CO sites with the polymer as a basis for local CO2 concentration. Later, they electrodeposited 6 nm CuAg nanoalloy on this polymer on glassy carbon. At 0 °C, 21% C2H3OO− was achieved with Cu2Ag3 at ~1.33 V vs. RHE in 0.5 M KHCO3 with 8 ppm benzotriazole.

As stated before, we separately summarized the electrode used after fabrication without post-treatment and the powder materials used after assembly or drop casting to form films/electrodes. The following catalysts are Cu–M powder alloys, which sometimes have to be mixed with a Nafton binder and finally cast on a conductive substrate. Based on some groups’ work, C. P. Berlinguette and co-workers provided a general relationship between the primary product formed and the metal–CO bonding strength (Fig. 21). The best CO formation catalysts often had a CO heat of adsorption (∆H) of 10 kcal mol−1. A lower value of ∆H is more favorable for HCOO− formation, whereas a higher value of ∆H favors H2 and hydrocarbon formation. A series of In–M on titanium substrate was prepared and followed the trend FeIn < CoIn < ZnIn < NiIn < CuIn for CO production.

After preparing different ratios of Au3Cu (x = 3, y = 1; x = 1, y = 1; x = 1, y = 3) alloy nanoparticles, P. D. Yang and co-workers27 obtained corresponding monolayer samples on various substrates via self-assembly by the Langmuir–Schaefer method. The monolayer samples showed great mass activity, achieving 67% CO with a partial current of ~230 mA mg−1 at ~0.73 V vs. RHE for Au3Cu. The activity for CO2 reduction exhibited a volcano shape, where Au3Cu represented the peak, as determined by the electronic and geometric effects (Fig. 22).

These effects were associated with the local atomic arrangements at the active sites. In contrast to the AuCu alloys, alloying Pd with Cu could enhance CO and/or C2 products. M. Yamau-chi, P. J. A. Kenis and co-workers86 designed CuPd nanoalloys with ordered, disordered, and phase-separated elemental arrangements (Fig. 23). With the same atomic ratio, phase-separated arrangements (more sites with neighbouring Cu atoms) favored the production of C2 products compared to the other two arrangements, with >60% (48% C2H4 and 15% C2H5OH) at ~0.7 V vs. RHE. CuPd with ordered arrangements gave 75% CO at ~0.7 V vs. RHE. Surface valence bond spectra suggested that geometric effects were key in determining the selectivity compared to electronic effects. N. Umezawa, J. H. Ye and co-workers77 electrodeposited CuPd on glassy carbon and optimized the ratio between Pd and Cu. 80% faradaic efficiency of CO was obtained with optimal Pd7Cu3 at ~0.8 V vs. RHE. DFT calculations suggested that synergistic geometric and electronic

![Fig. 22 Proposed mechanism for CO2 reduction on the surface of Au–Cu bimetallic nanoparticles. Larger arrows indicate higher turnover. Reproduced from ref. 172 with permission from Springer Nature, 2014.](image-url)
effects were responsible for the high selectivity. D. Ma, G. X. Wang and co-workers77 loaded CuPd nanoparticles (3.3 nm) on carbon black, and Pd\textsubscript{85}Cu\textsubscript{15}/C achieved 86% CO at \(-0.89\) V vs. RHE.

Cu-M bifunctional interface. Compared with Cu alloys, separated Cu-M composites have shown their own advantages in tuning product selectivity. \textcopyright Via theoretical calculations, Y. S. Jung, Y. T. Kim and co-workers77s found that a Au-Cu bifunctional interface was more favorable for the stabilizing *COOH intermediate (Fig. 24a) and its intrinsic electronic properties were less affected compared to the bulk alloy. T. Takashima and co-workers176 synthesized atomic layers of Cu on Pd particles (Cu-Pd) without the formation of an alloy by underpotential deposition. They ascribed the improved CO tolerance and HCOO− production to the charge transfer from Pd to Cu and a downward shift of the d band centre to the Fermi level (0.5 M NaHCO\textsubscript{3}, 16 sccm CO\textsubscript{2}). Additionally, C\textsubscript{2}H\textsubscript{5}OH selectivity could be promoted on a Cu-M bifunctional surface \textcopyright via a two-site mechanism. B. S. Yeo and co-workers77t electrodeposited Cu-Zn oxides with various amounts of Zn dopants, which exhibited different C\textsubscript{2}H\textsubscript{5}OH selectivities. XRD did not show any alloy signals except separated Cu and Zn. The maximum faradaic efficiency of 29% C\textsubscript{2}H\textsubscript{5}OH was obtained on Cu-Zn at \(-1.05\) V vs. RHE (0.1 M KHCO\textsubscript{3}, 20 sccm CO\textsubscript{2}). J. Y. Lee and co-workers771 incorporated Ag in Cu\textsubscript{2}O by electrodeposition and found that phase blended Ag-Cu\textsubscript{2}O exhibited higher C\textsubscript{2}H\textsubscript{5}OH selectivity (34%) than its phase separated counterpart (20%), with 3 times the selectivity of Cu\textsubscript{2}O (11%) at \(-1.2\) V vs. RHE, as illustrated in Fig. 24b. This was because of the role of the Ag dopant and the closer distance between Ag and Cu was essential for the insertion of CO on Ag sites to other C\textsubscript{1} intermediates on Cu sites, as illustrated in Fig. 24c.

To design Cu-M bimetallic species, therefore, the first aspect to be considered is the group that the parent metals belong to. The preparation method also has an influence on the activity. The most important thing for mechanism investigation in this system is precise control of the composition, morphology and position of the bimetallic species.

4.4 Surface modification of Cu-based electrocatalysts

In recent years, surface modification has also been investigated for Cu-based electrocatalysts, including inorganic and organic outlayer species. Inorganic outlayers could protect the Cu surface and alter the direct contact between the electrolyte and Cu surface. Then the stability and activity could be altered compared to bare Cu-based electrocatalysts. Y. J. Liang, H. L. Wang and co-workers79 decorated Pd atoms on Cu mesh by soaking it in PdCl\textsubscript{2} + HCl solution. During CO\textsubscript{2} reduction, the foreign Pd atoms induced continuous restructuring of the Cu surface, in turn preventing the deactivation of catalysts by incorporating or desorbing accumulated carbonaceous species (Fig. 25). The deactivation of electrodes caused by the adsorption of carbon or intermediates has been reported by many researchers.24,178,179 According to their reports, the Pd content should be optimized to inhibit the deactivation of the Cu electrode and maintain the CO\textsubscript{2} reduction activity, since less Pd is not sufficient to improve catalyst durability, while more Pd will change the product selectivity and lead to more H\textsubscript{2} production. The selectivity of CH\textsubscript{4} and C\textsubscript{2}H\textsubscript{4} remained above 50% for 4 h continuous electrolysis at \(-0.96\) V vs. RHE (0.5 M KHCO\textsubscript{3}, 20 sccm). J. P. Ramirez and co-workers180 found that Cu-In nanoalloys evolved to a separated core–shell (Cu-In(OH))\textsubscript{3} structure after successive electrochemical cycles. The separated catalysts with an In(OH)\textsubscript{3} shell showed high selectivity for CO production, and In(OH)\textsubscript{3} modification plays an important role in this enhanced selectivity. Later, they also observed \(\approx80\%\) HCOO− at \(-0.8\) V vs. RHE (0.1 M KHCO\textsubscript{3}) with submicon S-modified Cu.81 J. S. Luo, M. Grätzel and co-workers81 modified the surface of CuO nanowire electrodes with SnO\textsubscript{2} via atomic layer deposition (ALD) and as high as 97% CO was achieved at \(-0.7\) V vs. RHE (10 sccm CO\textsubscript{2}). Gas phase absorption measurements confirmed the significantly decreased binding strength of both CO and adsorbed H+ after SnO\textsubscript{2} modification. However, whether the residual oxides (mainly Sn2+ with some Cu+) were active catalysts remained uncertain.

Besides modification with inorganic materials, organic ligands are coated on the Cu surface to enhance CO\textsubscript{2} reduction, especially for CH\textsubscript{4} and C\textsubscript{2}H\textsubscript{4} products through the interactions between key intermediates and the functional groups of

Fig. 24 (a) The stabilization of *COOH by introducing bi-functional effects. (b) The selectivity of C\textsubscript{2}H\textsubscript{4} and C\textsubscript{2}H\textsubscript{5}OH for Cu\textsubscript{2}O and Ag-incorporated Cu-O. Experimental conditions: \(-1.2\) V vs. RHE in 0.2 M KCl. (c) The proposed CO-insertion mechanism indicating the transfer of CO from Ag site that weakly binds CO to Cu site that binds residual C\textsubscript{1} intermediates in the case of separated and phase blended samples in (b). Reproduced from ref. 175 for (a) and ref. 177 for (b) and (c) with permission from the American Chemical Society, 2016 and 2017.

Fig. 25 Schematic diagram of Pd-induced surface restructuring that avoids the accumulation of carbonaceous species on the Cu surface. Reproduced from ref. 60 with permission from Wiley, 2017.
ligands. By properly modifying Cu(OH)2 nanowires with amino acid,185 H2 formation could be suppressed and CO2 reduction was promoted since the interaction between the key intermediate CHO* and -NH2 of the adsorbed zwiterionic glycin stabilized this key intermediate during CO2 reduction. E. Andreoli and co-workers186 modified the Cu foam surface with polyamide and obtained enhanced C2H4 production with unaffected CH4 (0.1 M NaHCO3). They ascribed this enhancement to the charge transfer to the Cu surface, stabilization of the CO dimer by the –NH2 group, and the adsorption of CO near the polymer.

4.5 Supports for Cu-based electrocatalysts

We list all the substrates and/or supports in Table 2, since supports also have an influence on activity. Supports can maintain good dispersion and stabilization of active sites, as well as creating synergistic interactions or active interfaces between supports and copper catalysts. CuO on CO2 capture material exhibited higher C2H4 faradaic efficiency than CuO on carbon black or without support.186 Supports with sufficient surface area were also critical for the high C2 – C3 products for densely packed Cu nanoparticles.187 Electrodeposited Cu gave higher activity on graphene oxide and pure graphite than on glassy carbon, which was attributed to the preferential deposition of Cu nanoparticles at defects present on the graphene layers of the former supports.57

Generally, Cu foil, Cu plate, Cu mesh, or even FTO is used as a substrate for Cu-based electrocatalysts for EC CO2 reduction, while glassy carbon is used for Cu powder electrocatalysts. Gas diffusion layers (GDL) or gas diffusion electrodes (GDE) were also chosen as substrates to enhance the performance of the corresponding loaded Cu-based electrocatalysts due to their gas/electrolyte penetrability.188,189 Polymer on FTO190 or glassy carbon179 was used as a substrate to enhance the local concentration of CO2. Polymer-based diffusion layers or electrodes have also been fabricated recently to enhance the activity and stability of Cu electrocatalysts, where as high as 76% C2H4 was obtained at –0.55 V vs. RHE.191,192

Therefore, in order to improve the performance of Cu-based electrocatalysts, supports or substrates with high surface area and high gas and liquid penetrability should be considered. More recently, it was found that Cu2N support could act as an underlying stable Cu* species to reduce the CO dimerization energy barrier.193 This might be another consideration when choosing supports for copper electrocatalysts.

5. Electrolyte effect on CO2 reduction with Cu-based heterogeneous electrocatalysts

In EC CO2 reduction, aqueous electrolytes are generally selected by researchers due to their environmentally friendly properties, low cost and potential for coupling with water oxidation. Non-aqueous electrolytes are also studied by many researchers due to their large electrochemical window, high CO2 solubility and low proton availability.

5.1 Aqueous electrolytes

In a pioneering study, Hori and co-workers187 investigated CO2 reduction on Cu sheet electrodes in various electrolytes at 5 mA cm−2. The major product was H2 with FE >70% in KH2PO4/K2HPO4, which decreased to 10% in KClO4. C2H4 and alcohols were favored in KCl, K2SO4, KClO4 and diluted KHCO3 electrolytes, whereas CH4 was favored in concentrated KHCO3 and KH2PO4/K2HPO4.

The concentration of bicarbonate and cation size both play important roles during CO2 reduction. A high concentration of bicarbonate leads to a relatively high pH, which in turn favors CH4 formation, while a big cation size promotes C2H4 and other C2 products. G. Mul and co-workers185 investigated the influence of the electrolyte on the selectivity of Cu2O-derived Cu. An increased electrolyte concentration led to a decreased C2H4/CH4 ratio (0.05 M, 0.1 M, 0.2 M KHCO3, 50 sccm CO2). P. Strasser and co-workers194 also observed that a low concentration of bicarbonate electrocatalyzed favored H2 and CH4 formation, while a high concentration of bicarbonate, which showed a high interfacial pH near the Cu surface, favored C2H4 formation [0.05 to 0.2 M KHCO3]. For various different concentrations of electrolytes, E. H. Sargent, D. Sinton and co-workers195 predicted the pH and CO2 concentration at the electrode surface using a diffusion-based model (Fig. 26). CO2 limitation occurred under high local pH conditions. In 1991, Hori and co-workers found that cationic species (Li+, Na+, K+ and Cs+) in bicarbonate solution affected the product selectivity (C2H4/CH4).187 A. T. Bell and co-workers196,197 recently also reported that there was a decrease in faradaic efficiency for H2 and CH4, and an increase in faradaic efficiency for C2H4 and C2H5OH for Cu cathodes with increasing cation size (Li+, Na+, K+, Rb+, and Cs+) (Fig. 27a). They ascribed the effect of the electrolyte cation size on CO2 reduction to cation hydrolysis in the vicinity of the cathode. The pKa for hydrolysed cations decreased and they served as buffer agents to lower the local pH, leading to an increase in the local concentration of dissolved CO2 (Fig. 27b and c). The concentration of molecular CO2 decreased with increasing pH due to its rapid consumption by hydroxyl anions to form HCO3− and CO32−. This process occurred at much higher rates than the rate of CO2 reduction. In contrast to CO2 reduction, by using single-crystal Cu(100), single-crystal Cu(111), and polycrystalline Cu electrodes, M. T. Koper, F. C. Vallejo and co-workers198 found that the cation effects were potential- and structure-dependent.
in CO reduction (Fig. 27d); the onset potential for C$_2$H$_4$ was lower for the single crystals (−0.3 V and −0.4 V vs. RHE for Cu(100) and Cu(111)) than for the polycrystalline electrode, for which the overpotential increased with increasing cation size. The onset potential for CH$_4$ (−0.65 V vs. RHE) was independent of both cation size and surface structure. When the applied potential was more negative than −0.65 V vs. RHE, larger cations enhanced CH$_4$ formation. When the applied potential was from −0.65 V to −0.3 V vs. RHE, larger cations increased C$_2$H$_4$ selectivity.

Halides are sometimes directly added into aqueous electrolytes to enhance the CO$_2$ reduction and suppress the competing H$_2$ evolution. P. Strasser and co-workers191 added various concentrations of halides into KHCO$_3$ electrolytes and observed that the addition of Cl$^-$ and Br$^-$ resulted in increased CO selectivity. The adsorbed I$^-$ exhibited a larger effect on CH$_4$ production than C$_2$H$_4$. The probable reason was the induced negative charge possessed a remarkably positive effect favoring the protonation of CO. KCl was also used as a catholyte because it resulted in a higher local pH and the formation of bi-phasic Cu$_2$O–Cu, favored for multicarbon fuel production.177

As indicated above, high concentrations, large cation sizes and halide additives could be considered for CO$_2$ reduction in bicarbonate electrolytes in order to obtain more hydrocarbon products. Moreover, regarding the role of bicarbonate aqueous electrolytes, recently M. H. Shao’s group192 directly observed that CO$_2$ molecules were mediated to the Cu surface via their equilibrium with bicarbonate anions rather than direct adsorption from the solution (Fig. 28), using attenuated total reflection surface-enhanced infrared absorption spectroscopy, isotopic labelling, and potential stepping techniques.

5.2 Non-aqueous solvents

Organic electrolytes. Organic solvents have been studied in CO$_2$ reduction since the early 1980s.193,194 Although organic solvents have environmental and safety issues, these solvents possess unique advantages in EC CO$_2$ reduction, such as (1) a large electrochemical window. For example, with 0.65 M supporting electrolyte, the reduction/oxidation potential window is +2.8 V to +3.3 V vs. SCE for acetonitrile (MeCN), −3.0 V to +1.6 V vs. SCE for dimethylformamide (DMF), and −2.9 V to +1.5 V vs. SCE for dimethyl sulfoxide (DMSO). (2) Low proton availability: thus, the application of organic solvent could suppress the competing H$_2$ evolution reaction.

![Fig. 27](https://example.com/fig27.png)

Fig. 27 (a) The selectivity of CO$_2$ reduction products in different bicarbonate electrolytes. (b) Calculated local pH. (c) CO$_2$ concentration at the Cu surface. Schematics of structure- and potential-dependent cation effects. Experimental conditions: −1.0 V vs. RHE, 0.1 M LiHCO$_3$, NaHCO$_3$, KHCO$_3$, RbHCO$_3$, and CsHCO$_3$. Reproduced from ref. 188 for (a) to (c) and ref. 190 for (d) with permission from the American Chemical Society, 2016 and 2017.

![Fig. 28](https://example.com/fig28.png)

Fig. 28 The proposed role of bicarbonate anions in EC CO$_2$ reduction. Reproduced from ref. 192 with permission from the American Chemical Society, 2017.
and improve the total faradaic efficiency for CO2 reduction. (3) High CO2 solubility: in 2000, Hori’s group also studied the Pt system in MeCN–H2O mixtures. They showed that the CO2 concentration could be up to 270 mM in MeCN with a low water concentration, 8 times higher than in aqueous solution (33 mM), as shown in Fig. 29. We will discuss recent work on EC CO2 reduction with Cu-based heterogeneous catalysts in organic electrolytes.196–199 In these studies, the organic electrolyte contained 0.1 M supporting electrolyte, such as tetrabutylammonium tetrafluoroborate (nBu4NBF4), tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium trifluoromethanesulfonate (TEATfO) and sodium trifluoromethanesulfonate (NaTfO), to enhance the conductivity of the organic system. V. Artero, M. Fontocave and co-workers196 electrodeposited [Cu(cyclam)][ClO4]2 complex (cyclam = 1,4,8,11-tetraazacyclotetradecane) on FTO. The composite formed (Cu, CuO complex) achieved 90% HCOO− at −2.0 V vs. Fc+/Fc in DMF/H2O (97 : 3 v/v), which is much higher than that in aqueous solution. However, the current density is only −1.15 mA cm−2. They197 also electrodeposited Cu2O on FTO and achieved almost 90% HCOO− in DMF/H2O (99 : 1, v/v) at −2.0 V vs. Fc+/Fc with current density −1.5 mA cm−2. Z. C. J. Xu and co-workers199 tuned Cu electrodeposition by the addition of phosphate buffer and obtained 80% HCOO− selectivity at −1.45 V vs. NHE in MeCN (E1/2 of Fc/Fc couple was 0.40 V vs. NHE in MeCN), with current density −1.35 mA cm−2.

Ionic liquids. In the past 15 years, ionic liquid has been emerged as a promising candidate for CO2 capture.200 Ionic liquid also possesses a large potential window. It has been reported that ionic molecules could complex with CO2− intermediates to reduce the energy barriers or potentials for Ag-based systems201 and could change the selectivity for Bi-based systems.202–204 The controlled selectivity of CO2 reduction with Cu nanoparticles-modified boron-doped diamond electrode in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM·BF4) ionic liquid was also achieved.205 Using porous (30–40 μm) dendritic copper nanofoam (10 wt% Cu2O) in ionic liquid–water mixture [EMIM][BF4]/H2O (92/8 v/v) as the electrolyte, V. Artero, M. Fontocave and co-workers206 obtained almost 90% HCOO− at −1.55 V vs. Fc/Fc with current density −5.0 mA cm−2, a much lower potential than that required in their former work without ionic liquid.196,197

Therefore, organic solvents and ionic liquids are better choices for suppressing H2 evolution in catalysis systems not suitable for aqueous solutions. In aqueous systems, alkaline conditions could promote C–C coupling during CO2 reduction.207,208 For the ultimate goal of CO2 recycling, neutral aqueous solution is the best choice and various concentrations and cations could be applied to tune the activity.

6. EC/PEC CO2 reduction and H2O oxidation as an overall reaction system for Cu-based electrocatalysts

6.1 EC

The EC CO2 reduction and H2O splitting produces carbon-based fuels and oxygen. Realizing the overall reaction with one catalyst in a single device is desirable. In such a system, the catholyte and anolyte may be different for specific half reactions. T. J. Meyer and co-workers209 combined two half reactions catalyzed by Cu(n)/Cu(0) electrode. As shown in Fig. 30, the electrode for CO2 reduction into CO/HCOO− was Cu(0) film electrodeposited on a boron-doped diamond electrode. A boron-doped diamond electrode immersed in Cu(n) was used for H2O oxidation into O2. This report demonstrates that a simple Cu(n)/Cu(0) electrode is sufficient to catalyze CO2 reduction and H2O splitting in neutral aqueous solution with a H-type cell. However, more aspects should be considered when choosing different catholytes and anolytes, for example the membrane used in the H-type cell. By using SnO2-modified CuO nanowire electrodes as both the cathode for CO2 reduction and the anode for the oxygen evolution reaction, J. S. Luo, M. Grätzel and co-workers210 constructed a complete CO2 electrolysis system with a bipolar membrane. Bipolar membranes consisting of a cation exchange layer and an anion exchange layer were also investigated in other systems for CO2 reduction and H2O oxidation with different catholytes and anolytes. Bipolar membranes needed a lower cell voltage than monopolar membranes.210

![Fig. 29](Image URL) CO2 concentration in a mixture of CH3CN and H2O versus the H2O content. Reproduced from ref. 195 with permission from the Electrochemical Society, 2000.

![Fig. 30](Image URL) Schematic diagram for overall reaction of CO2 reduction and H2O oxidation using Cu electrode in H-type cell. Reproduced from ref. 209 with permission from the Royal Society of Chemistry, 2013.
6.2 PEC

Solar energy is the largest source of renewable energy. Coupling solar irradiation with EC CO\textsubscript{2} reduction is of considerable interest211,212. In this review, we do not discuss photocatalytic (PC) CO\textsubscript{2} reduction with Cu-based materials; readers interested in this topic are directed to some recent reports, including of p-type Cu\textsubscript{i}213, Cu-decorated TiO\textsubscript{2}214, CuO nanoclusters on Nb\textsubscript{2}O\textsubscript{5} nanosheets215, Au-Cu nanolloys supported on TiO\textsubscript{2}216, carbon-decorated Cu\textsubscript{2}O mesoporous nanorods217, etc. We will focus on photoelectrochemical (PEC) CO\textsubscript{2} reduction with Cu-based catalysts, where similar photoelectrolysis cells as for PEC water splitting are made for PEC CO\textsubscript{2} reduction.

In a PEC CO\textsubscript{2} reduction system, sunlight, visible light and UV light are three options for the light source. For the purpose of solar energy utilization, sunlight irradiation without bias potential is the ultimate goal. Cu\textsubscript{2}O with a direct band gap of \(\sim 2.0 \text{ eV} \) is a promising material for enhancing CO\textsubscript{2} activity and inhibiting H\textsubscript{2} evolution in PEC CO\textsubscript{2} reduction systems. N. R. Tacconi, K. Rajeshwar and co-workers218,219 first reported the utilization of Cu\textsubscript{2}O for CO\textsubscript{2} PEC reduction. They electrodeposited Cu\textsubscript{2}O nanocrystals on CuO nanorod arrays. 95% CH\textsubscript{3}OH was formed with a bias potential of +0.17 using this CuO@Cu\textsubscript{2}O nanorod array as a photocathode (AM 1.5, \(70 \text{ mW cm}^{-2} \)). Modifying the Cu-based photocathode could lead to different enhanced CO\textsubscript{2} reduction products. L. R. Baker and co-workers220 electrodeposited Cu\textsubscript{2}O/CuO on FTO and used it as a photocathode. 80% CH\textsubscript{3}COO-- was detected with a bias potential of +0.17 using this CuO@Cu\textsubscript{2}O nanorod array as a photocathode (AM 1.5, 70 mW cm2). The photocurrent density is relatively low for the above reported systems, as listed in Table 2. One future aim is to improve the photocurrent density in PEC CO\textsubscript{2} conversion. Constructing a hybrid catalyst consisting of a molecular catalyst and semiconductor material for PEC CO\textsubscript{2} reduction could improve the performance of the overall system. J. S. Lee and co-workers227 constructed a PEC system comprising a WO\textsubscript{3} photo-anode and Cu cathode for CO\textsubscript{2} reduction. 71.6% carbonic products (65% CH\textsubscript{4}) were obtained at +0.65 V vs. RHE under visible light irradiation (\(>420 \text{ nm} \)). M. Miyaiuchi, H. Abe and co-workers228 obtained 79% HCOO-- when using Cu-Zn alloy film as a cathode in 0.1 M KHCO\textsubscript{3} and SrTiO\textsubscript{3} as a photoanode in 0.1 M KCl + 0.01 M NaOH under UV light illumination without applied bias potential. Y. S. Kang and co-workers229 engineered a (040) facet Bi\textsubscript{2}O\textsubscript{3} photoanode and integrated it with a Cu cathode for CO\textsubscript{2} PEC reduction (Cu cathode|NaCl|Bi\textsubscript{2}O\textsubscript{3} photoanode). Different products were obtained by tuning the bias potential, such as 65.4% HCOO-- (+0.75 V), 85.1% HCHO (+0.9 V), 6.89% CH\textsubscript{3}OH and 4.4% C\textsubscript{2}H\textsubscript{5}OH (+1.35 V) in 0.5 M NaCl (AM 1.5).

When using Cu\textsubscript{2}O as a photocathode or cathode, corrosion will happen. Protective layers such as TiO\textsubscript{2} were applied in studies done well by M. Grätzel’s group. J. L. Gong and co-workers230 introduced a simple strategy by using Cu\textsubscript{2}O as the cathode and TiO\textsubscript{2} nanorods as the photoanode for PEC reduction of CO\textsubscript{2}. 92.6% carbonic products (54% CH\textsubscript{4}, 30% CO, 3% CH\textsubscript{3}OH) were obtained at +0.75 V vs. RHE bias potential (AM 1.5, 100 mW cm2). Through cut-off filter experiments, they confirmed that the photogenerated electrons were not the main reason for Cu\textsubscript{2}O corrosion; instead, photogenerated holes were primarily responsible for the instability of Cu\textsubscript{2}O. As shown in Fig. 31, the photogenerated electrons were consumed at the electrode/electrolyte interface, while the holes moved to the back contact and the counter electrode. Back illumination (the travel distance of the electrons was longer than that of the holes) was favorable for the stability of Cu\textsubscript{2}O.

The photocurrent density is relatively low for the above reported systems, as listed in Table 2. One future aim is to improve the photocurrent density in PEC CO\textsubscript{2} conversion. Constructing a hybrid catalyst consisting of a molecular catalyst and semiconductor material for PEC CO\textsubscript{2} reduction could improve the selectivity and efficiency.226–228 For a hybrid system, careful design of the semiconductor is also important. As shown in Fig. 32a, M. T. Mayer, M. Grätzel and co-workers229 designed a heterogeneous catalyst system by
covalently immobolizing molecular Re(bpy)₃Cl onto a TiO₂-protected Cu₂O photocathode (Cu₂O/AZO/TiO₂) via phosphonate linkers. On the TiO₂ layer there was also a mesoporous film of 4.5 to 5 µm thickness with 18 nm TiO₂ particles. The catalyst system without mesoporous TiO₂ did not show substantial photocurrents, while mesoporous TiO₂ (enhanced roughness and catalyst loading) exhibited enhanced photocurrents (Fig. 32b). 80–95% CO was achieved under chopped light illumination with photocurrent density of 2.5 mA cm⁻² at −1.9 V vs. FeCl₂/FeCl₃.

6.3 PV cells or PV-electrolyzers

The potential bias could be supplied by other forms of energy for PEC electrocatalysis, such as solar PV panels. The first idea to apply PV cells for PEC water splitting into hydrogen and oxygen was proposed in 1995 (ref. 234) and has been widely used, whereas its use for the overall reaction of CO₂ reduction and H₂O oxidation was reported in 2008 (ref. 235) and there are very few examples for the overall reaction system. Recently, J. S. Luo, M. Grätzel and co-workers designed a triple-junction GaInP/GaInAs/Ge solar cell driving a CuO@SnO₂ photocathode/photoanode system (Fig. 33a). At a voltage of 2.38 V (AM 1.5, 100 mW cm⁻²), a solar-to-CO free-energy conversion efficiency peaking at 13.4% with 81% CO selectivity was obtained at −0.55 V vs. RHE (Fig. 33b) and the photocurrent could be up to 12 mA cm⁻².

The use of other forms of sustainable energy such as solar energy to drive the overall reaction of CO₂ reduction and water splitting is promising. Cu₂O could be used as both a cathode and photocathode after surface protection, as stated above. It is also promising to use Cu oxide species directly as cathodes and photocathodes, since the Schottky junction between Cu₂O and Cu could facilitate electron and hole separation, leading to enhanced activity. The morphology and activity evolution of Cu₂O is worthy of further investigation because the chemical changes of Cu₂O due to photocorrosion and electroreduction processes were indeed pre-activation steps for CO₂ reduction, as discussed in this review for oxide-derived Cu.

7. Summary and outlook

As part of the response to the energy crisis and environmental issues, the electrochemical reduction of CO₂ has attracted increasing attention from researchers. Until now, Cu-based materials remain the most investigated heterogeneous systems for CO₂ electrolysis due to their distinct advantages for hydrocarbon formation. The high abundance and low cost of Cu will further enable it to become a “star” material in the future.

In this review, the latest progress on Cu-based heterogeneous electrocatalysts for EC CO₂ reduction was discussed. We summarized the benchmark activity for specific products in Section 3 and various types of Cu-based materials reported by different research groups in Section 4. The H₂ evolution reaction is inevitable because its equilibrium potential is lower than that of CO₂ reduction. Apart from engineering the material, therefore, adjusting the electrolyte composition from aqueous to non-aqueous, adding ionic liquid or other additives, and careful pre-treatment of the system are also important. Through the discussions in this review, we hope we could provide useful information to newcomers to the field through detailed information about the experimental conditions, and to those already experienced in the topic through the comparison data in Table 2 and our focus on the more recent literature about Cu-based heterogeneous electrocatalysts (2013–2019).

In summary, the design of efficient and selective Cu-based electrocatalysts is inspiring but still challenging. Several considerations may also be helpful for engineering efficient systems:

(1) PEC CO₂ reduction with Cu-based materials. Here, we could manipulate two aspects, one of which is energy supply, such as solar energy and other forms of renewable and clean energy for lower applied overpotentials. Optimization of this technique may develop commercially feasible CO₂ reduction systems. Another aspect to consider is the Cu (photo)cathode. The photoanode corrosion of copper oxide species is known by many researchers and studies have been done to prolong its stability under irradiation. However, the instability should not be considered a disadvantage when using the copper.

Fig. 33 (a) Schematic of PEC CO₂ reduction with PV cell. (b) Solar-to-CO conversion efficiency and selectivity of CO versus time. Experimental conditions: 0.1 M CsHCO₃/0.25 M CsOH, −0.55 V vs. RHE, PV cell (0.5625 cm², 100 mW cm⁻², 2.38 V). Reproduced from ref. 61 with permission from Springer Nature, 2017.
oxide species as (photo)cathodes for CO₂ reduction. This is because oxide-derived Cu exhibited better performance than its parent counterpart. Moreover, Cu nanostructures possess localized surface plasmonic (LSPR) effects, which have been used for photocatalytic organic synthesis.²³⁷,²³⁸ To the best of our knowledge, there is no report yet for CO₂ reduction utilizing Cu LSPR effects. Future efforts should be made towards this.

(2) Complete systems coupling the reduction of CO₂ and H₂O oxidation, as well as other significant oxidation reactions. Studying only the half reaction (CO₂ reduction) is not sufficient to achieve a commercially feasible CO₂ reduction system. The performance of anodic reactions also needs to be investigated. It is necessary to explore Cu-based materials as both cathodes and anodes.

(3) Hybrid system of Cu-based materials and metal complexes. Metal molecular catalysts or metal complexes could coordinate CO₂ intermediates with the metal center and ligands. Covalent-attached metal complexes on Cu-based materials will combine the key features of Cu-based materials and allow molecular-level tunability. This may also address the large overpotential required for the Cu electrode and the instability issue of the molecular catalyst.

(4) 3D Cu porous networks. The pore length and pore size of 3D Cu porous structures will influence the diffusion of reactants and intermediates. Tailoring the pore length as well as the pore size from the macropore to mesopore, micropore, and nanopore region will tune the diffusion and, in turn, the performance of the catalyst. In addition, through designing abundant active sites in this porous network to prolong the retention time of specific intermediates, we could expect high selectivity for specific products.

(5) Cu nanoclusters. Although the size effects of Cu nanoparticles have been discussed widely, ultrasmall, atomically precisely controlled Cu nanoclusters are rarely reported. Similar to Au and Ag nanoclusters,²³⁹ investigating the reaction mechanism to get a fundamental understanding via the atomic precise control of Cu nanoclusters is critical to design highly efficient and stable Cu nanocluster electrocatalysts.

(6) Design of the flow cell. The fabrication of an efficient flow cell with a designed gas diffusion electrode (GDE) could dramatically promote the activity and stability of CO₂ electrocatalysts. More and more attention has been paid to this area over the past two years,¹⁰³,¹¹⁰,¹⁸⁵,²⁰⁸,²⁴⁰ and future efforts could be also made towards this aspect.

Table 2 Summary of Cu-based electrocatalysts for CO₂ reduction

Electrolyte saturated with CO₂, flow rate of CO₂ gas, and reference electrode used	Faradaic efficiency (FE) and current density for major products, and products distribution	All potentials are converted to versus RHE if not specified	Ref.
Morphology			
Cu sheet	0.1 M KHCO₃	CO and HCOO⁻ as main products (ΔE < -0.6 V); hydrocarbons and alcohols are favorably produced (ΔE < -0.7 V)	1989 (ref. 34)
0.1 M KHCO₃	29% CH₄, 30% C₂H₄, 7% ETOH, 9% HCOO⁻, 11% H₂ (ΔE < -0.81 V), current density 5.0 mA cm⁻²		
0.1 M KCIO₄	10% CH₄, 48% C₂H₄, 16% EtOH, 9% HCOO⁻, 7% H₂ (ΔE < -0.89 V), current density 5.0 mA cm⁻²		
0.1 M KHPO₄	17% CH₄, 5% HCOO⁻, 72% H₂ (ΔE < -0.64 V), current density 5.0 mA cm⁻²		
Cycling-derived Cu nanoparticle (50–100 nm) covered Cu foil	0.1 M KCIO₄ (pH = 6.0)	Electropolished (smooth): 14% C₂H₄ and 5% CH₄ (at -1.1 V), LSV onset potential -1.0 V	2012 (ref. 114)
		Nanoparticle covered: 36% C₃H₄ and 1% CH₄ (at -1.1 V), LSV onset potential -0.6 V	
		Sputtered: 26% C₂H₄ and 8% CH₄ (at -1.1 V), LSV onset potential -0.8 V	2014 (ref. 65)
	0.1 M KHCO₃, 30 sccm CO₂	5–15 nm: 20–25% CO, 60–70% H₂, 10–15% CH₄, 0–10% C₂H₄ (at -1.1 V), current density -48 mA cm⁻² for 2 nm	
		Cu foil: 5% CO, 20% H₂, 57% CH₄, 20% C₂H₄ (at -1.1 V), current density -23 mA cm⁻²	
	0.1 M NaHCO₃, 20 sccm CO₂	Cu nanoparticle (7–25 nm): 76% CH₄ at -1.35 V with partial current density 9.5 mA cm⁻², FE onset potential -0.95 V	2014 (ref. 77)
		Cu nanoparticle (100 nm) on carbon paper by pulse electrodeposition	
		Ag/AgCl	
	0.5 M NaHCO₃, 1 sccm CO₂	Cu foil: 44% CH₄, 35% H₂ (at -1.35 V)	2017 (ref. 115)
		85% CH₄ at -2.1 V with partial current density 38 mA cm⁻², FE onset potential -1.1 V	
		SCE	
	0.1 M KHCO₃, 20 sccm CO₂	Amorphous (3.3 nm): 37% HCOOH, 22% C₂H₅OH (ΔE < -0.8 V), partial current density 6 mA cm⁻², FE onset potential -0.6 V	2018 (ref. 78)
Electrodes	Electrolyte saturated with CO₂, flow rate of CO₂ gas, and reference electrode used	Faradaic efficiency (FE) and current density for major products, and products distribution	
------------	---	---	
Amorphous Cu nanoparticles (3.3 nm) on carbon cloth	Ag/AgCl (saturated KCl) Crystalline (3.4 nm): 26% HCOOH (–0.8 V), 6% C₂H₅OH (–1.1 V)	57% C₂H₄ at –1.1 V, current density –17.5 mA cm⁻²	
Cu nanoparticles (2–4 nm)/C on glassy carbon plate	0.1 M KHCO₃, 20 sccm CO₂	2019 (ref. 121)	
Branched CuO nanoparticles drop-casted on glass carbon	Ag/AgCl [3 M NaCl] Crystalline (3.4 nm): 26% HCOOH (–0.8 V), 6% C₂H₅OH (–1.1 V)	57% C₂H₄ at –1.1 V, current density –17.5 mA cm⁻²	
Cu nanoparticles (2–4 nm)/C on glassy carbon plate	0.1 M KHCO₃, 60 sccm CO₂	2019 (ref. 106)	
Branched CuO nanoparticles drop-casted on glass carbon	Ag/AgCl 0.1 M KHCO₃, 5 sccm CO₂	63% C₁(CO 2% + CH₄ 14%) 19%, C₂(C₂H₄)38%	
Cu mesopore (pore size/depth, 300 nm/40 nm, 30 nm/40 nm, 30 nm/70 nm)	0.1 M KHCO₃ (pH = 6.8) Major products: HCOOH, H₂, and CO	2014 (ref. 88)	
Electrodeposited Cu nanofoam (pore sizes 20–50 μm)	Ag/AgCl Minor products (<2%): C₂H₅, C₂H₆, CH₄, and C₃H₆	Not quantified (<1%): CH₃OH, C₂H₅OH	
Cu mesopore (pore size/depth, 300 nm/40 nm, 30 nm/40 nm, 30 nm/70 nm)	0.1 M KHCO₃	Cu main products: C₁(CO 2% + CH₄ 46%) 48%, C₂(C₂H₄)8%	
Nanoporous CuDAT-wire (DAT-3,5-diamino-1,2,4-triazole, additive during electrodeposition)	Ag/AgCl 0.28 mg cm⁻²	A maximum of C₂H₅ 40% with partial current density 40 mA cm⁻² and C₂H₅OH 20% with partial current density 15 mA cm⁻² at –0.5 V, FE onset potential –0.35 V	
3D porous hollow fibre Cu (hydrogenation of CuO)	0.3 M KHCO₃, 20 sccm CO₂	72% CO at –0.4 V with partial current density 5.6 mA cm⁻², FE onset potential –0.15 V	
Ag/AgCl [3 M NaCl]			
Oxide-derived Cu			
Annealed Cu foil (thick CuO, derived Cu	Ag/AgCl [3 M KCl] Cu foil: a maximum of CO 20% at –0.8 V, 33% HCOOH at –0.7 to –0.9 V	2012 (ref. 69)	
Annealed Cu gauze (CuO nanowire)-derived Cu (size 50–100 nm, length 10–50 μm)	0.5 M NaHCO₃ (pH = 7.2), 5 sccm CO₂, Ag/AgCl [3 M KCl] Annealed Cu foil: a peak of CO 45% at –0.3 to –0.5 V, 33% HCOOH at –0.45 to –0.65 V, current density 0.5–7 mA cm⁻² at –0.3 to –0.65 V	Electrochemical reduction: CO + HCOOH 70–80% at –0.3 to –0.5 V; a peak of CO 61.8% at –0.4 V, HCOOH 30.7% at –0.6 V, current density 0.5–10 mA cm⁻² at –0.3 V to –0.6 V	
		2015 (ref. 80)	
		Forming gas reduction: H₂ >90% at –0.3 to –0.5 V, FE onset potential for CO₂ reduction is –0.6 V	

Table 2 (Contd.)
Table 2 (Contd.)

Electrolytes	Electrodeposition/Substrate	CO₂, flow rate of CO₂ gas, and reference electrode used	Faradaic efficiency (FE) and current density for major products, and products distribution	All potentials are converted to versus RHE if not specified	Ref.				
Annealed Cu(OH)₂ foil (CuO nanowire)-derived Cu	0.1 M KHCO₃ (pH = 6.8)	8% C₂H₅OH (FE onset potential = −0.9 V), 4% C₂H₅OH (FE onset potential = −0.7 V), 2% C₂H₆ (FE onset potential = −0.7 V), 17% C₂H₄, 18% HCOOH, 40% H₂ at = −1.1 V	Cu foil: 3% C₂H₄, 12% HCOOH, 80% H₂ at = −1.1 V	2016 (ref. 134)					
Electrodeposited Cu₂O film on Cu plate	0.1 M KHCO₃ (pH = 6.8), 5 sccm CO₂	A maximum of C₂H₄ 33% with partial current density 12 mA cm⁻², ratio of C₂H₄/C₂H₆ (−1.1 V), FE onset potential = −0.8 V		2014 (ref. 72)					
Electrodeposited Cu₂O film on GDE	0.5 M KHCO₃	A maximum of C₂H₄ 26%, ratio of C₂H₄/C₂H₆ up to 26 (−1.2 V), current density 12.5 mA cm⁻²		2015 (ref. 150)					
Electrodeposited Cu₂O film on Cu disc	0.1 M KHCO₃, 20 sccm CO₂	A maximum of C₂H₄ 34–39% and C₂H₅OH 9–16%, ratio of C₂H₄/C₂H₆ up to 100 (−1.0 V, current density = 30 mA cm⁻²	CuO-derived (0.9 μm): 40% C₂H₄, 9% C₂H₅OH, 8% HCOO⁻ (−1.0 V)	Cu foil: 9% CO, 14% C₂H₄, 13% HCOO⁻ (−1.0 V)	Cu foil: 9% CO, 14% C₂H₄, 13% HCOO⁻ (−1.0 V)	Cu foam: 3% C₂H₄, 12% HCOOH, 80% H₂ at = −1.1 V	2014 (ref. 81)		
Electropolished Cu nanofoam	0.5 M NaHCO₃ (pH = 7.2)	Major products: H₂, CO, CH₄, C₂H₄, C₂H₆, HCOOH	Not quantified (<1%): CH₃OH, C₂H₅OH, HCOOH	FE HCOOH <6% at any potentials	2016 (ref. 131)				
Skeleton Cu (annealed, Cu foam electrodeposition)	0.5 M NaHCO₃ (pH = 7.2), 10 sccm CO₂	Electropolished Cu skeleton: at all potentials from −0.6 V to −1.3 V, CO <3%	FE onset for C₂H₄ = −0.1 V, FE onset potential = −0.9 V	2017 (ref. 132)					
Dendritic Cu (electrodeposition, annealed)	0.5 M KHCO₃ (pH = 7.2), 10 sccm CO₂	Annealed dendritic Cu: C₂H₄OH + C₂H₅OH 25% (−1.0 V, C₂H₅OH 13%) with partial current density 2.8 mA cm⁻² ECSA²; C₂H₅OH 13% (−0.9 V) with partial current density 0.9 mA cm⁻² ECSA²; FE onset potential = −0.8 V	60% C₂H₄, C₂H₅OH, n-C₃H₇OH with partial current density 42.5 mA cm⁻² at = −0.963 V, FE onset for C₂H₂ = −0.705 V and C₃H₇OH = −0.837 V	2018 (ref. 59)					
Galvanostatic cycling in Cu²⁺-(CuO) derived Cu	0.25 M KHCO₃, 50 sccm CO₂	CuO derived (1.3 μm): a maximum of C₂H₄ 27% (−1.0 V), C₂H₆ <3% (−0.5 V)	CuO derived (11.2 μm): a maximum of C₂H₄ 15% (−0.8 V), C₂H₆ 8% (−0.8 V) with FE onset = −0.6 V, current density 20 mA cm⁻²	2017 (ref. 146)					
Hydrothermally prepared CuO (1.3 and 11.2 μm) on Cu disc	0.1 M KHCO₃, 20 sccm CO₂	CuO derived (1.3 μm): a maximum of C₂H₄ 27% (−1.0 V), C₂H₆ <3% (−0.5 V)	CuO derived (11.2 μm): a maximum of C₂H₄ 15% (−0.8 V), C₂H₆ 8% (−0.8 V) with FE onset = −0.6 V, current density 20 mA cm⁻²	2017 (ref. 95)					
Plasma-treated Cu foil	0.1 M KHCO₃, 30 sccm CO₂	CuO derived (11.2 μm): a maximum of C₂H₄ 15% (−0.8 V), C₂H₆ 8% (−0.8 V) with FE onset = −0.6 V, current density 20 mA cm⁻²	CuO derived (11.5 μm): a maximum of C₂H₄ 13% (−0.8 V), C₂H₆ 11% (−0.8 V) with FE onset = −0.6 V, current density 20 mA cm⁻²	2017 (ref. 146)					
Plasma-treated Cl⁻-induced Cu₂O-Cu nanocube	0.1 M KHCO₃, 20 sccm CO₂	CuO derived (1.3 μm): a maximum of C₂H₄ 27% (−1.0 V), C₂H₆ <3% (−0.5 V)	CuO derived (11.2 μm): a maximum of C₂H₄ 15% (−0.8 V), C₂H₆ 8% (−0.8 V) with FE onset = −0.6 V, current density 20 mA cm⁻²	2017 (ref. 149)					
Cl⁻-induced Cu₂O-Cu	0.1 M KHCO₃ (catholyte), 0.1 M KHCO₃ (anolyte): 30 sccm CO₂	CuO derived (1.3 μm): a maximum of C₂H₄ 27% (−1.0 V), C₂H₆ <3% (−0.5 V)	CuO derived (11.2 μm): a maximum of C₂H₄ 15% (−0.8 V), C₂H₆ 8% (−0.8 V) with FE onset = −0.6 V, current density 20 mA cm⁻²	2017 (ref. 149)					
Table 2 (Contd.)

Electrodes	Electrolyte saturated with CO₂, flow rate of CO₂ gas, and reference electrode used	Faradaic efficiency (FE) and current density for major products, and products distribution	Ref.
Halide-induced Cu₂O–Cu	0.1 M KHCOS [pH = 6.8], 5 sccm CO₂	All potentials are converted to versus RHE if not specified	2016 (ref. 142)
	Ag/AgCl (saturated KCl)		
	0.1 M KHCOS, 5 sccm CO₂		2017 (ref. 143)
	Ag/AgCl		
	0.1 M KHCOS, 20 sccm CO₂		2018 (ref. 82)
	Ag/AgCl (saturated KCl)		
	Ag/AgCl		
Pd atoms-modified Cu mesh	0.5 M KHCOS, 20 sccm CO₂		2017 (ref. 61)
	Ag/AgCl (saturated KCl)		
	0.1 M NaHCO₃ [pH = 6.75), 10 sccm CO₂		2017 (ref. 143)
	Ag/AgCl (saturated KCl)		
	0.1 M KHCOS, 10 sccm CO₂		2015 (ref. 73)
	Ag/AgCl (saturated KCl)		
	0.1 M KHCOS, 30 sccm CO₂		2014 (ref. 172)
	Ag/AgCl		
	0.1 M KHCOS, 20 sccm CO₂		2016 (ref. 84)
	Ag/AgCl (saturated KCl)		
	0.1 M KHCOS, 30 sccm CO₂		
	Ag/AgCl (1 M KCl)		
Surface modification	Amino acid-modified Cu(OH)₃ nanowire derived Cu (diameter 100–200 nm, length tons of μm)		2016 (ref. 182)
	0.1 M KHCOS		
	Ag/AgCl (saturated KCl)		
	0.1 M KHCOS, 5 sccm CO₂		
	Ag/AgCl		
	0.1 M NaHCO₃ [pH = 6.75), 10 sccm CO₂		
	Ag/AgCl (saturated KCl)		
	0.1 M KHCOS, 10 sccm CO₂		
	Ag/AgCl		
	0.1 M KHCOS, 10 sccm CO₂		
	Ag/AgCl		
Bimetallic species	Dendritic Cu–In electrode (dendrite tips of ~50 nm width)		2017 (ref. 166)
	0.1 M KHCOS		
	Ag/AgCl		
	Cu–In alloy (in situ reduction of annealed/oxide-derived Cu in In solution)		
	0.1 M KHCOS, 10 sccm CO₂		
	Ag/AgCl (saturated KCl)		
	Cu–Sn alloy (in situ reduction of oxide-derived Cu in Sn solution)		2016 (ref. 74)
	0.1 M KHCOS, 10 sccm CO₂		
	Ag/AgCl (saturated KCl)		
	Electrodeposited Cu₄Zn oxides film		
	0.1 M KHCOS, 20 sccm CO₂		
	Ag/AgCl (saturated KCl)		
	Au, Cu, alloy nanoparticles assembled on glassy carbon		
	0.1 M KHCOS		
	Ag/AgCl		
	Au, Cu: 67% CO with a partial current –230 mA mg⁻¹ at –0.73 V, current density 2.6 mA cm⁻²		
Electrodes	Electrolyte used	Faradaic efficiency (FE) and current density for major products, and products distribution	
------------	------------------	--	
Ag-Cu alloy \{Ag-CuO derived\} & 0.2 M KCl \{catholyte\} \{0.1 M KHCO_3 \{anolyte\} Ag/AgCl & Au_Cu_O; 15\% CO with a partial current -40 mA cm\(^{-2}\) at -0.73 V, current density 1.4 mA cm\(^{-2}\).\nCu: 2-3\% CO with a partial current -10 mA cm\(^{-2}\) at -0.73 V, current density 0.7 mA cm\(^{-2}\).\nPhase-separated Ag-Cu_O: 20\% C_2H_5OH at -1.2 V, FE onset potential -1.0 V. 2017 (ref. 177)\nPhase blended Ag-Cu_O: 34\% C_2H_5OH at -1.2 V, FE onset potential -0.9 V.\nPure Cu_O: 11\% C_2H_5OH, FE onset potential -1.0 V. 6\% Ag in CuAg alloy: 60\% C_2H_4 with a partial current density -180 mA cm\(^{-2}\) and 25\% C_2H_5OH with a partial current density -90 mA cm\(^{-2}\) at -0.7 V.			
Electrodeposited Cu-Ag alloy on carbon paper \{GDL\} with the addition of 3,5-diamino-1,2,4-triazole & 1 M KOH, 7 sccm CO_2 & 21\% CH_3COO\^- at -1.33 V, FE onset potential -1.1 V. 2018 (ref. 170)			
Electrodeposited Cu-Ag alloy \{~6 nm\} on polymer on glassy carbon & Ag/AgCl \{0 \^C, 0.5 M KHCO_3 (8 ppm benzotriazole)\} & Cu_Pd: 51\% CH_4 at with an overpotential 0.86 V, current density -6.0 mA cm\(^{-2}\). 2015 (ref. 169)\nPd_Cu_4; 80\% CO at -0.8 V, current density -1.0 mA cm\(^{-2}\); FE onset potential -0.7 V.			
Electrodeposited Cu-Pd alloy \{~6.6 nm\} on polymer on FTO & 0.1 M TBAPF_6/CH_3CN \{1 M H_2O\}, Ag/AgNO_3; 0.1 M KHCO_3, SCE & Cu_Pd: 48\% C_2H_4, 15\% C_2H_5OH, 15\% CO at -0.7 V, FE C_2H_4 2016 (ref. 86)\nDisordered CuPd: 12\% C_2H_5, 5\% C_2H_5OH, 50\% CO, 4\% CH_4 at -0.7 V, FE C_2H_5OH onset -0.6 V.\nOrdered CuPd: 75\% CO, 2\% CH_4 at -0.7 V, FE C_2H_4 onset -0.7 V, FE C_2H_5OH onset -0.9 V.			

Aqueous Electrolyte

Electrodes	Electrolyte used	Faradaic efficiency (FE) and current density for major products, and products distribution
Cu foil & 0.1 M MHCO_3 \{M = Li, Na, K, Rb, Cs, pH = 6.8\}, 5 sccm CO_2 Ag/AgCl \{saturated KCl\} & C_2H_5OH \{Rb\(^{+}\)0.6%, Cs\(^{+}\)11.4\%\} -1.0 V, current density increased from 2.5 mA cm\(^{-2}\) to 5.5 mA cm\(^{-2}\) with the increase of cation size.\nDisordered CuPd: 12\% C_2H_5, 5\% C_2H_5OH, 50\% CO, 4\% CH_4 at -0.7 V, FE C_2H_5OH onset -0.6 V.\nOrdered CuPd: 75\% CO, 2\% CH_4 at -0.7 V, FE C_2H_4 onset -0.7 V, FE C_2H_5OH onset -0.9 V.		
Cu foil & 0.1 M KHCO_3, 30 sccm CO_2 Ag/AgCl \{saturated KCl\} & 15\% CH_4, 10\% C_2H_4, 8\% CO, 22\% H_2COO\^-, 40\% H_2 \{(-0.95 V\}, current density 2.5 mA cm\(^{-2}\). 2016 (ref. 191)\n5\% CH_4, 7\% C_2H_4, 27\% CO, 18\% H_2COO\^-, 40\% H_2 \{(-0.95 V\}, current density 2.5 mA cm\(^{-2}\).\n41\% CH_4, 17\% C_2H_4, 5\% CO, 10\% H_2COO\^-, 30\% H_2 \{(-0.95 V\}, current density 9.5 mA cm\(^{-2}\).		
Electrolytes	Electrolyte used	Faradaic efficiency (FE) and current density for major products, and products distribution
-------------	-----------------	--
Non-aqueous electrolyte		
Cu–Cu₂O-[Cu(cyclam)][ClO₄]₂ composite on FTO	0.1 M n-BuBF₄ in DMF/H₂O (97 : 3 v/v)	90% HCOO⁻ at −2.0 V vs. Fe⁺/Fe⁺, current density −1.15 mA cm⁻²
Electrodeposited Cu₂O on FTO	Ag/AgCl (3 M KCl)	90% HCOO⁻ at −2.0 V vs. Fe⁺/Fe⁺, current density −1.5 mA cm⁻²
Cu foil	0.1 M n-BuBF₄ in DMF/H₂O (99 : 1 v/v)	
	Ag/AgCl (3 M KCl)	CO, carbonate, bicarbonate as main products
Porous dendritic Cu nanofoil (pore size 30–40 μm, 10 wt% Cu₂O) on Cu plate	Ionic liquid [EMIM][BF₄] H₂O (98 : 2 v/v)	Porous dendritic Cu: 83% HCOO⁻ at −1.55 V vs. Fe⁺/Fe⁺, current density −5.0 mA cm⁻²
Phosphate modified dendritic Cu	Ag/AgCl (3 M KCl)	Cu foil: 45% HCOO⁻ at −1.55 V vs. Fe⁺/Fe⁺
	0.1 M supporting electrolyte in MeCN	81% HCOO⁻ at −1.45 V vs. NHE, current density −1.35 mA cm⁻²
PEC		
CuO nanocrystal/CuO nanorod (photocathode)/Pt (anode)	0.1 M Na₂SO₄, simulated AM 1.5 illumination (70 mW cm⁻²)	95% CH₃OH, +0.17 V bias potential, photocurrent density 0.2 mA cm⁻²
Cu₂O/AlO/İTO (photocathode)/Pt (anode)	MeCN, 0.1 M Bu₄NPF₆, under filtered 450 W Xe arc lamp (1 sun)	80–95% CO at −1.9 V vs. Fe⁺/Fe⁺, photocurrent density 2.5 mA cm⁻²
CuFe₂O₄/CuO (photocathode)/Pt (anode)	Ag/AgCl wire	80% CH₃COO⁻, +0.2 V bias potential, photocurrent density 0.15 mA cm⁻²
Cu (cathode)/WO₃ (photoanode)	0.1 M NaHCO₃ + KPi, white-light LED illumination (100 mW cm⁻²)	71.6% carbonic product (65% CH₄), +0.65 V bias potential, photocurrent density 0.25 mA cm⁻²
Cu₂O (cathode)/TiO₂ (photocathode)	0.1 M KOHCO₃ (pH = 6.9), AM 1.5G illumination (100 mW cm⁻²)	92.6% carbonic products (54% CH₄, 30% CO, 3% CH₃OH), +0.75 V bias potential, photocurrent density 1.34 mA cm⁻²
Cu–Zn alloy (cathode)/SrTiO₃(photocathode)	0.1 M KHCO₃ (pH = 6.8), 0.1 M KCl + 0.01 M NaOH (anolyte), UV light Hg-Xe lamp (240–300 nm)	79% HCOO⁻ without bias potential
Cu (cathode)/BiVO₄ (photoanode)	0.5 M NaCl, 300 W Xe arc lamp with AM 1.5G filter (100 mW cm⁻²)	65.4% HCOO⁻ at 0.75 V bias potential, photocurrent density 0.1 mA cm⁻²; 85.1% HCHO at 0.9 V bias potential, photocurrent density 0.35 mA cm⁻²; 6.89% CH₂O at 0.9 V bias potential, photocurrent density 0.75 mA cm⁻²
PV cell (GaInP/GaInAs/Ge)/CuO[SnO₂ (cathode and anode)	0.1 M CsHCO₃ (pH = 6.75, catholyte)/0.25 M CsOH (pH = 13.3, anolyte), AM 1.5G illumination (100 mW cm⁻²) and a voltage of 2.38 V	13.4% solar to CO efficiency at +0.55 V, photocurrent density 12 mA cm⁻²

* The potential applied for EC CO₂ reduction versus RHE is calculated according to the equation E [vs. RHE] = E° [vs. Ag/AgCl] + E [vs. Ag/AgCl] + 0.0591pH − η(IEcrop) in aqueous solution. E° [vs. Ag/AgCl] = 0.21 V, 0.197 V, and 0.21 V for 3 M KCl, saturated KCl, and 3 M NaCl, respectively.
Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Financial support of this work by the National Science Foundation of China (NSFC, 21703154) and the Natural Science Foundation of Tianjin (18JCYBJC43100) is gratefully acknowledged. X. K. thanks the EPSRC (EP/S025537/1) for financial support.

Notes and references

1. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov and T. F. Jaramillo, Science, 2017, 355.
2. E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal and J. Pérez-Ramírez, Energy Environ. Sci., 2013, 6, 3112–3135.
3. R. J. Lim, M. Xie, M. A. Sk, J.-M. Lee, A. Fisher, X. Wang and K. H. Lim, Catal. Today, 2013.
4. A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. Dubois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, Chem. Rev., 2013, 113, 6621–6658.
5. Q. W. Song, Z. H. Zhou and L. N. He, Green Chem., 2017, 19, 3707–3728.
6. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. H. Hummelshøj, S. Dahl, I. Chorkendorff and J. K. Norskov, Nat. Chem., 2014, 6, 320–324.
7. S. Kattel, P. Liu and J. G. Chen, J. Am. Chem. Soc., 2013, 135, 9739–9754.
8. M. Bersani, K. Gupta, A. K. Mishra, R. Lanza, S. F. R. Taylor, H. U. Islam, N. Hollingsworth, C. Hardacre, N. H. de Leeuw and J. A. Darr, ACS Catal., 2016, 6, 5823–5833.
9. B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, J. Phys. Chem. C, 2017, 121, 10406–10412.
10. K. Kohlb, S. Thomas, Y. Zimmermann, K. Parkhomenko and A. C. Roger, Catal. Today, 2016, 270, 31–42.
11. W. Tu, Y. Zhou and Z. Zou, Adv. Mater., 2014, 26, 4607–4626.
12. S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano, 2010, 4, 1259–1278.
13. J. R. Han, M. Jaroniec and S. Z. Qiao, Adv. Mater., 2018, 30, 1704649.
14. D. Gao, F. Cai, G. Wang and X. Bao, Curr. Opin. Green Sustain. Chem., 2017, 3, 39–44.
15. B. Kherzi, A. C. Fisher and M. Pumera, J. Mater. Chem. A, 2017, 5, 8230–8246.
16. Q. Lu, J. Rosen and F. Jiao, ChemCatChem, 2015, 7, 38–47.
17. T. Ma, Q. Fan, H. Tao, Z. Han, M. Jia, Y. Gao, W. Ma and Z. Sun, Nanotechnology, 2017, 28, 472001.
Y. Yan, T. W. Shaw, E. Abelev and A. B. Bocarsly, *Chem. Rev.*, 2015, **115**, 12888–12935.

234 A. J. Bard and M. A. Fox, *Acc. Chem. Res.*, 1995, **28**, 141–145.

235 C. Delacourt, P. L. Ridgway, J. B. Kerr and J. Newman, *J. Electrochem. Soc.*, 2008, **155**, B42.

236 C. Janáky, D. Hursán, B. Endrődi, W. Chanmanee, D. Roy, D. Liu, N. R. de Tacconi, B. H. Dennis and K. Rajeshwar, *ACS Energy Lett.*, 2016, **1**, 332–338.

237 A. Marimuthu, J. Zhang and S. Linic, *Science*, 2013, **339**, 1590–1593.

238 X. Guo, C. Hao, G. Jin, H. Y. Zhu and X. Y. Guo, *Angew. Chem., Int. Ed.*, 2014, **53**, 1973–1977.

239 S. Zhao, R. Jin and R. Jin, *ACS Energy Lett.*, 2018, **3**, 452–462.

240 D. S. Ripatti, T. R. Veltman and M. W. Kanan, *Joule*, 2018, **3**, 1–7.

241 Y. Mun, S. Lee, A. Cho, S. Kim, J. W. Han and J. Lee, *Appl. Catal., B*, 2019, **246**, 82–88.