Enhanced Language Representation with Label Knowledge for Span Extraction

Pan Yang1,2∗, Xin Cong3,4, Zhenyun Sun1,5, Xingwu Liu6\dag

1Institute of Computing Technology, Chinese Academy of Sciences
2PCG, Tencent
3Institute of Information Engineering, Chinese Academy of Sciences
4School of Cyber Security, University of Chinese Academy of Sciences
5School of Computer Science and Technology, University of Chinese Academy of Sciences
6School of Mathematical Sciences, Dalian University of Technology

im.panyang@gmail.com, congxin@iie.ac.cn
sunzhenyu@ict.ac.cn, liuxingwu@dlut.edu.cn

Abstract

Span extraction, aiming to extract text spans (such as words or phrases) from plain texts, is a fundamental process in Information Extraction. Recent works introduce the label knowledge to enhance the text representation by formalizing the span extraction task into a question answering problem (QA Formalization), which achieves state-of-the-art performance. However, QA Formalization does not fully exploit the label knowledge and suffers from low efficiency in training/inference. To address those problems, we introduce a new paradigm to integrate label knowledge and further propose a novel model to explicitly and efficiently integrate label knowledge into text representations. Specifically, it encodes texts and label annotations independently and then integrates label knowledge into text representation with an elaborate-designed semantics fusion module. We conduct extensive experiments on three typical span extraction tasks: flat NER, nested NER, and event detection. The empirical results show that 1) our method achieves state-of-the-art performance on four benchmarks, and 2) reduces training time and inference time by 76% and 77% on average, respectively, compared with the QA Formalization paradigm. Our code and data are available at https://github.com/Akeepers/LEAR.

1 Introduction

Information Extraction (IE), a fundamental task in natural language processing, aims to extract structured knowledge from unstructured texts. It usually contains the process that extracts text spans (such as words or phrases) from plain text, e.g., NER. Span extraction is usually formulated into the sequence labeling problem that assigns a categorical label to each token in a text.

Many efforts have been devoted to span extraction. Early approaches are mainly based on handcrafted features such as domain dictionaries (Sekine and Nobata, 2004; Etzioni et al., 2005) and lexical features (Ahn, 2006). As neural networks show the effectiveness of learning text features automatically, many neural-based methods have been proposed (Huang et al., 2015; Strubell et al., 2017; Liu et al., 2018a; Cui et al., 2020). Recently, self-attention-based pre-trained language models such as BERT (Devlin et al., 2019) are widely used to boost the span extraction task (Devlin et al., 2019; Yang et al., 2019a). However, most existing methods treat labels as independent and meaningless one-hot vectors, neglecting prior information of labels (referred to as label knowl-

∗This work was done in ICT, CAS.
†Corresponding Author
edge).

Figure 2: The Visualization of attention mechanism for the token “judge” (QA Formalization). The darker color indicates the higher attention score.

To alleviate the limitation, several studies (Wang et al., 2018; Lin et al., 2019a; Chen et al., 2020) start to integrate label knowledge into span extraction. Among them, QA Formalization is especially attractive due to its effectiveness (Levy et al., 2017; Li et al., 2019, 2020b; Liu et al., 2020; Du and Cardie, 2020; Li et al., 2020a). Simply put, QA Formalization treats span extraction as a question answering problem. Taking NER as an example, to extract “PERSON” entities, it is formalized as answering the question “which person is mentioned in the text, in which a person represents a human or individual?” based on the given text. Benefiting from the label knowledge of the category-related questions, QA Formalization usually yields state-of-the-art performance in span extraction even in low-resource scenarios.

QA Formalization, however, exhibits two key weaknesses: 1) **Inefficiency:** Formalizing the span extraction as QA causes a drastic reduction of training/inference efficiency. Specifically, the typical QA Formalization method concatenates question and text as the input (e.g., [CLS] question [SEP] text [SEP]) and jointly encodes question and text with a transformer-based encoder. The joint-encoding has to transform every text into |C| pairs of the form (question, text), where |C| is the size of the label category set. This transformation, which increases both the size of the sample set and the length of text sequences, finally increases the time cost of training and inference. 2) **Underutilization:** The label knowledge is integrated implicitly into text representation based on the self-attention mechanism (Vaswani et al., 2017). As Figure 2 shows, the “attention” of self-attention mechanism will be distracted by text, not entirely focus on the question part. Thus, the label knowledge is not fully exploited to enhance the text representations.

To address aforementioned two problems, we propose a novel paradigm (see in Figure 1) to integrate label knowledge. First, since joint-encoding causes low efficiency, we decompose question-text encoding process into two separate encoding modules: the text encoding module f_1 and the question encoding module f'_1. In this way, the size of the sample set is no longer expanded by $|C|$ times. Second, to fully utilize the label knowledge, a fusion module f' is designed to explicitly integrate the label and the text representations.

To instantiates the above paradigm, we further propose a model termed as LEAR to learn Label-knowledge EnhAnced Representation. A powerful encoder f'_1 is essential for understanding the label annotations. However, training the encoder f'_1 from scratch is challenging since the number of label annotations is too small. Thus we share the weights of f_1 and f'_1 (called shared encoder), which can learn the label knowledge by large pre-trained model and does not introduce extra parameters. Next, the learned label knowledge is integrated into text representations by the semantics-guided attention module. We conduct experiments in five benchmarks on three typical span extraction tasks: flat NER, nested NER, and event detection (ED). Compared with QA Formalization baselines, our model LEAR outperforms them to achieve a new state-of-the-art. Furthermore, LEAR reduces training time and inference time by 76% and 77% on average, respectively.

To sum up, our contributions are as follows:

- We propose a new paradigm to exploit label knowledge to boost span extraction, which encodes texts and label annotations independently and integrates label knowledge into text representation explicitly.
- We propose a novel model, LEAR, to instantiate the above paradigm. It designs the shared encoder and semantics-guided attention to tackle the technical challenges.
- The experiments show that our method achieves SOTA performance on four benchmarks, and it is much faster than the previous SOTA approach. Further analysis confirms the effectiveness and efficiency of our model.

2 Preliminaries

2.1 Task Formalization

We formulate the following span extraction task: given an input text $X = (x_1, x_2, \cdots, x_n)$ consisting of n tokens, find out all candidate spans in X.
and assign a label $c \in C$ to each of them, where C is a predefined set of categories (or tag types, interchangeably).

This formulation provides a uniform framework for modeling many important problems. For example, when C is the set of event types such as die, attack, marry, and so on, span extraction is exactly the event detection task. In addition, if C consists of entity types such as persons, organizations, locations, span extraction turns into the well-known named entity recognition task.

2.2 Data Construction

Task	Category	Label Annotation
ED	Die	a die Event occurs whenever the life of a person entity ends.
NER	Person	a person entity is limited to human including a single individual or a group.

Table 1: Label categories and their corresponding annotations.

QA formalization is powerful in span extraction since it incorporates label knowledge. One of its prerequisites is the existence of reasonable questions. Usually, questions are generated by a manually-designed pre-processing step, which is costly and lacks versatility and accessibility. For instance, Du and Cardie (2020) and Li et al. (2020b) use a purpose-designed template to generate questions, while Liu et al. (2020) exploits a well-designed large pretraining model.

Previous work4 (Li et al., 2020b) on flat and nested NER uses the annotations of each category (referred to as label annotations) as the questions. We follow this setting in our work for a fair comparison. Similarly, we utilize the annotations of event types in ACE 2005 event detection task5. Table 1 presents an example of those annotations.

3 Approach

In this section, we first give an overall description of our LEAR architecture. LEAR consists of three crucial modules: semantics encoding module, semantics fusion module, and span decoding module. Our architecture (Figure 3) takes text X and label annotation Y of category set C as input. The two inputs are respectively processed by two encoder networks whose backbone is BERT (Devlin et al., 2019). The two encoders share weights (referred to as shared encoder) while processing the two inputs. Then the text embedding and label embedding produced by the shared encoder are fused by the semantic fusion module to derive the label-knowledge-enhanced embeddings for the text. Finally, the label-knowledge-enhanced embeddings are used to predict whether or not each token is a start or end index for some category.

4Questions are available in their open source project.

5All label annotations are available at: https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-events-guidelines-v5.4.3.pdf.
3.1 Semantics Encoding Module

Semantics encoding module aims to encode the text and the label annotation into real-valued embeddings. Since the number of label annotations is small compared with the whole sample set, it is challenging to build an encoder from scratch for the label annotations. Thus we introduce the shared encoder, which is inspired by siamese networks (Bromley et al., 1993). The shared encoder is efficient in learning the representation of label annotations and does not introduce extra parameters.

Given input text X and label annotations Y, LEAR first extracts their embeddings $h_X \in \mathbb{R}^{n \times d}$ and $h_Y \in \mathbb{R}^{[C] \times m \times d}$, where n is the length of X, m is the length of label annotation, $[C]$ is the size of the category set C, and d is the vector dimension of the encoder. We denote this operation as:

$$h_X = f_1(X)$$
$$h_Y = f'_1(Y)$$

3.2 Semantic Fusion

The semantic fusion module aims at enhancing the text representation with label knowledge explicitly. To this end, we devise a semantics-guided attention mechanism to achieve this goal.

Specifically, we first feed h_X and h_Y into a fully connected layer, respectively, to map their representations into the same feature space:

$$h'_X = U_1 \cdot h_X$$
$$h'_Y = U_2 \cdot h_Y$$

where $U_1, U_2 \in \mathbb{R}^{d \times d}$ be the learnable parameters of the fully connected layers.

Then, we apply the attention mechanism over the label annotations for each token in the text. For any $1 \leq i \leq n$, let x_i be the ith token of X, and $h'_x_{x_i} \in \mathbb{R}^d$ be the ith row of h'_X. Likewise, for any $1 \leq j \leq m$ and category $c \in C$, let y'_c_j be the jth token of the annotation of c, and $h'_y_{y'_c_j}$ be its embedding from h'_Y. We compute the dot product of $h'_x_{x_i}$ and $h'_y_{y'_c_j}$, and apply a softmax function to obtain the attention scores:

$$a_{x_i,y'_c_j} = \frac{\exp \left(h'_x_{x_i} \cdot h'_y_{y'_c_j} \right)}{\sum_j \exp \left(h'_x_{x_i} \cdot h'_y_{y'_c_j} \right)}$$

Finally, we get the fine-grained features by attention, which is in turn fused into token embedding by add operation:

$$h^c_{x_i} = h'_{x_i} + \sum_j a_{x_i,y'_c_j} \cdot h'_y_{y'_c_j}$$
$$\hat{h}^c_{x_i} = \tanh \left(V \cdot h^c_{x_i} + b \right)$$

where $\tanh(\cdot)$ is the hyperbolic tangent function, and $V \in \mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^d$ are learnable parameters. Intuitively, \hat{h}_{x_i} encodes the information related to category c.

Repeating the process for all categories, we obtain the category-related embedding $\hat{h}_{x_i} = (\hat{h}^1_{x_i}, \cdots, \hat{h}^{|C|}_{x_i})$ for each token x_i.

3.3 Span Decoding

Now we are ready to select spans. Following Li et al. (2020b), we use the start/end tagging schema to annotate the target spans to extract. Specifically, for each token x_i, we compute the following vector:

$$\text{start}_{x_i} = \text{sigmoid}(f_o(M_s \circ \hat{h}_{x_i} + b_s))$$

where $M_s \in \mathbb{R}^{[C] \times d}$ and $b_s \in \mathbb{R}^d$ are learnable parameters, \circ is the element-wise multiplication, and $f_o(\cdot)$ is the function that sums up the rows of the input matrix. Intuitively, for any $c \in C$, $\text{start}^c_{x_i}$ indicates the probability that x_i starts a span of the category c.

Likewise, we obtain the end$_{x_i}$, which indicates the probabilities that x_i ends a span, in the same prediction procedure. Then we extract the results case by case, depending on whether or not spans of the same category can be nested6.

Flat Span Decoding This is the case without nested spans in the same category.

The most widely adopted method is the nearest matching principle (Du and Cardie, 2020; Wei et al., 2020), which matches a start position of category c with the nearest next end position of c.

In contrast, we follow the heuristic matching principle (Yang et al., 2019b), which determines spans from the lens of probability. Roughly speaking, among candidate start and end positions of a category c, we only match those having high probabilities, where the probabilities are derived from vectors defined in formulas (8) For detailed information of heuristic matching, please refer to the algorithm in Appendix A.1.

The two principles for span decoding are further compared by experiments in Appendix A.2.

6Nested here represents both nested and overlapped spans, just like nested NER (Finkel and Manning, 2009).
Nested Span Decoding Now suppose that spans in the same category may be nested or overlapped.

Since the heuristic matching principle does not work anymore, we follow the solution of BERT-MRC (Li et al., 2020b). It employs a binary classifier to predict the probability that a pair of candidate start/end positions should be matched as a span. Specifically, for any category c, define the following binary classifier:

$$P_{i,j}^c = \text{sigmoid}(\mathbf{M} \cdot \text{concat}(\hat{h}_{x_i}^c, \hat{h}_{x_j}^c)) \tag{9}$$

where $1 \leq i, j \leq n$, and $\mathbf{M} \in \mathbb{R}^{1 \times 2d}$ is the learnable parameter. When $P_{i,j}^c > 0.5$, it will be predicted that x_i and x_j demarcate a span of c.

3.4 Loss Function

Given input text $X = (x_1, x_2, \cdots, x_n)$ consisting of n tokens and set C of categories, for any $c \in C$, define $S^c \in \{0, 1\}^n$ to be the vector whose ith entry $S^c_{x_i} = 1$ if and only if x_i is a ground-truth start position of c. Likewise, define $E^c \in \{0, 1\}^n$ to indicate the ground-truth end positions. Recall the vectors start^c and end^c defined in Section 3.3. Define start loss function L_s and end loss function L_e of our model as follows:

$$L_s = \frac{1}{n} \sum_{c \in C} \sum_{1 \leq i \leq n} \text{CE}(\text{start}^c, S^c_{x_i})$$

$$L_e = \frac{1}{n} \sum_{c \in C} \sum_{1 \leq i \leq n} \text{CE}(\text{end}^c, E^c_{x_i})$$

where CE stands for the cross entropy.

Flat Span Extraction The final loss function of our model is defined to be $L = L_s + L_e$.

Nested Span Extraction More notation is needed. Recall the matrix $P^c \in \mathbb{R}^{n \times n}$ defined in Formula (9). Let $M^c \in \mathbb{R}^{n \times n}$ be the binary matrix such that $M_{i,j}^c = 1$ if and only if the tokens x_i and x_j demarcate a ground-truth span of category c. Define the match loss function

$$L_{\text{match}} = \frac{1}{n^2} \sum_{1 \leq i,j \leq n} \sum_{c \in C} \text{CE}(P_{i,j}^c, M_{i,j}^c) W_{i,j}^c$$

where $W^c \in \mathbb{R}^{n \times n}$ is the binary matrix such that $W_{i,j}^c = 1$ if and only if $P_{i,j}^c > 0.5$ or $M_{i,j}^c = 1$.

Then the final loss function of our model is defined to be $L = \alpha(L_s + L_e) + \beta L_{\text{match}}$ where α, β are hyper-parameters to control the contributions towards the overall training objective.

4 Experiments

In this section, we present LEAR results on 5 widely-used benchmarks.

4.1 Datasets

Dataset We evaluate our model on three span extraction tasks: flat NER, nested NER and event detection. For flat NER, we conduct experiments on MSRA (Levow, 2006) and Chinese OntoNote 4.0 (Pradhan et al., 2011). For nested NER, we evaluate our model on ACE 2004 (Doddington et al., 2004) and ACE 2005 (NER) datasets. For event detection, we use the ACE 2005⁷ (ED) dataset.

For MSRA and Chinese OntoNote 4.0, which contains three and four types of entities respectively, we follow the data preprocessing strategies in Li et al. (2020b) and Meng et al. (2019) for fair comparison. ACE 2005 (NER) and ACE 2004 both annotate 7 entity categories. For ACE 2005 (NER), we use the same data split as previous works (Lin et al., 2019b); for ACE 2004, we use the same setup as Katiyar and Cardie (2018). ACE 2005 (ED) annotates 33 types of events and we follow the same settings of Chen et al. (2015) and Chen et al. (2018) to split data into train, development, and test set. More statistics of datasets are listed in Appendix A.4.

4.2 Baselines

Named Entity Recognition We use the following models as baselines: (1) BiLSTM-CRF (Ma and Hovy, 2016) uses the Bi-LSTM layer as encoder. (2) Seg-Graph (Wang and Lu, 2018) proposes a segmental hypergraph representation to model overlapping entity mentions. (3) BERT-Tagger (Devlin et al., 2019) treats NER as a tagging task with a bidirectional encoder representations. (4) Lattice-LSTM (Zhang and Yang, 2018) constructs a word-character lattice for Chinese NER. (5) Glyce-BERT (Meng et al., 2019) combines glyph information with BERT pretraining for Chinese NER. (6) Seq2Seq-BERT (Shibuya and Hovy, 2020) views the nested NER as a sequence-to-sequence problem. (7) Biaffine-NER (Yu et al., 2020) predicts named entity with a biaffine network. (8) BERT-MRC (Li et al., 2020b) treats NER as a MRC/QA task, which is the state-of-the-art method on both flat and nested NER.

⁷This corpora is designed for multi-tasks, such as event detection and NER. Data source: https://catalog.ldc.upenn.edu/LDC2006T06
Event Detection We compare with the following methods: (1) DMCNN (Chen et al., 2015) builds a dynamic multi-pooling convolutional model; (2) JRNN (Nguyen et al., 2016) employs bidirectional RNN for ED; (3) ANN-AugAtt (Liu et al., 2017) uses annotated event argument information to get better attention scores; (4) JMEE (Liu et al., 2018b) enhances GCN with self-attention and highway network; (5) EE-GCN (Cui et al., 2020) learns token representation via edge-enhanced GCN with specific syntactic label incorporated. (6) EKD (Tong et al., 2020) is the state-of-the-art method on the ACE2005 dataset. (7) BERT_QA_Trigger (Du and Cardie, 2020) formalizes event detection as a QA task.

Furthermore, to compare the efficiency between QA Formalization and LEAR, we instantiate the traditional paradigm as a baseline for efficiency comparison in the simplest way, which only contains a BERT encoder and two fully connected layers as the classifiers. We denote this baseline model as Traditional Formalization.

4.3 Experimental Setups

We use BERT (Devlin et al., 2019) as the backbone to learning the contextualized representation of the texts. More specifically, we implement our model based on the BERT-large model for NER task, which is the same as BERT-MRC (Li et al., 2020b). In the event detection task, we use the BERT-base model as the backbone. We adopt the adam optimizer (Kingma and Ba, 2015) with a linear decaying schedule to train our model. The detail of hyper-parameters settings is listed in Appendix A.3.

To make results comparable in the efficiency comparison experiment (as shown in Table 3), all models take the BERT-base as the backbone and set all hyperparameters to the same except max_seq_len of QA Formalization. The higher max_seq_len meets the requirement of taking the question as extra input for QA Formalization.

Effectiveness Evaluation We use micro-average precision, recall, and F1 as evaluation metrics. A prediction is considered correct only if both its boundary and category are predicted correctly.

Efficiency Evaluation We use the time costs (in seconds) of training and inference to evaluate the efficiency of different models. Specifically, 1) Training: the time cost of training in one epoch; 2) Inference: the time cost for the model to get all prediction results of the test set.

4.4 Main Results

Effectiveness Table 2 shows the performance of our LEAR compared with the above state-of-the-art methods on the test sets. We can see that our LEAR outperforms all other models on four benchmarks, i.e., +3.01%, +0.84%, +0.21%, +0.17%, respectively on ACE 2005 (ED), OntoNote 4.0, MSRA and ACE 2004. This improvement indicates that the explicit fusion with a dedicated module is better than the implicit fusion based on the self-attention mechanism. Since the joint-encoding of QA Formalization, the “attention” of self-attention mechanism will be distracted by text, not entirely focus on the question. Thus the label knowledge introduced by label annotation is not fully exploited. By con-
Table 3: The efficiency comparison of different methods. (·) indicates the relative efficiency compare with the Traditional Formalization (e.g., $\frac{T_{\text{LEAR}}}{T_{\text{Traditional Formalization}}}$).

Table 4: The time complexity of different model architectures during inference.

To summarize, the fundamental starting points of the proposed paradigm include: 1) decomposing question-text joint encoding into two separate encoding modules; 2) explicitly integrating label knowledge by a dedicated module. The above experiments confirm that our LEAR, an instantiation of the proposed paradigm, outperforms previous SOTA methods in effectiveness and efficiency.
Table 5: The performance of the model variants. The values in table are F1 scores on test sets.

6 Related Work

Event Detection (ED). Event Detection aims at extracting event triggers from a text and classifying them. It is dominantly solved in a representation-based manner, where triggers are represented by embedding. In case of no extra information, the representation can be obtained by a powerful text encoder which is usually based on CNN (Chen et al., 2015), RNN (Nguyen et al., 2016), or attention mechanism (Yang et al., 2019b; Tong et al., 2020). Besides, the representation can be enhanced by extra information. Examples of typical extra information include syntactic information (Liu et al., 2018b; Cui et al., 2020) and knowledge base (Liu et al., 2016; Chen et al., 2017). In particular, label knowledge is attracting more and more attention (Li et al., 2020a; Du and Cardie, 2020), which usually formalizes ED as a QA problem.

Named Entity Recognition (NER). Named entity recognition seeks to locate named entities in an unstructured text and classify them into pre-defined categories such as person, organization, location, etc. Traditional methods treat it as a classification task and use CRFs (Lafferty et al., 2001; Sutton et al., 2007) as the backbone. Then neural networks become a prevalent tool in NER with the development of deep learning. Recently, the performance of NER has been further improved by large-scale language models such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019). When label knowledge is available, state-of-the-art performance can be obtained by formulating NER as a QA problem.

7 Conclusion

In this paper, we propose a novel paradigm to exploit label knowledge to boost the span extraction task and further instantiate a model named LEAR. Unlike the existing QA Formalization methods, LEAR first encodes the text and label annotations independently, and uses a semantic fusion module to integrate label knowledge into the text representation explicitly. In this way, we can overcome the
inefficiency and underutilization problems of QA Formalization. Experimental results show that our model outperforms the previous works and enjoys a significantly faster training/inference speed.

Acknowledgments

We would like to thank all reviewers for their insightful comments and suggestions. This work is partially supported by Key-Area Research and Development Program of Guangdong Province (NO.2020B010164003), the National Natural Science Foundation of China (62072433,62090020), the Fundamental Research Funds for the Central Universities (No. DUT21LAB302), Youth Innovation Promotion Association of Chinese Academy of Sciences (2013073), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC05030200).

References

David Ahn. 2006. The stages of event extraction. In Proceedings of the Workshop on Annotating and Reasoning about Time and Events, pages 1–8.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger, and Roopak Shah. 1993. Signature verification using a “siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7(04):669–688.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and Jun Zhao. 2017. Automatically labeled data generation for large scale event extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 409–419, Vancouver, Canada. Association for Computational Linguistics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi-pooling convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 167–176, Beijing, China. Association for Computational Linguistics.

Yubo Chen, Hang Yang, Kang Liu, Jun Zhao, and Yantao Jia. 2018. Collective event detection via a hierarchical and bias tagging networks with gated multi-level attention mechanisms. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1267–1276, Brussels, Belgium. Association for Computational Linguistics.

Yunmo Chen, Tongfei Chen, Seth Ebner, Aaron Steven White, and Benjamin Van Durme. 2020. Reading the manual: Event extraction as definition comprehension. In Proceedings of the Fourth Workshop on Structured Prediction for NLP, pages 74–83, Online. Association for Computational Linguistics.

Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang, Xuebin Wang, and Jinqiao Shi. 2020. Edge-enhanced graph convolution networks for event detection with syntactic relation. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2329–2339, Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie Strassel, and Ralph Weischedel. 2004. The automatic content extraction (ACE) program – tasks, data, and evaluation. In Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04), Lisbon, Portugal. European Language Resources Association (ELRA).

Xinya Du and Claire Cardie. 2020. Event extraction by answering (almost) natural questions. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 671–683, Online. Association for Computational Linguistics.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. 2005. Unsupervised named-entity extraction from the web: An experimental study. Artificial intelligence, 165(1):91–134.

Jenny Rose Finkel and Christopher D. Manning. 2009. Nested named entity recognition. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 141–150, Singapore. Association for Computational Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01991.

Arzoo Katiyar and Claire Cardie. 2018. Nested named entity recognition revisited. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 861–871, New Orleans, Louisiana. Association for Computational Linguistics.
Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus, Martha Palmer, Ralph Weischedel, and Nianwen Xue. 2011. CoNLL-2011 shared task: Modeling unrestricted coreference in OntoNotes. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task, pages 1–27, Portland, Oregon, USA. Association for Computational Linguistics.

Satoshi Sekine and Chikashi Nobata. 2004. Definition, dictionaries and tagger for extended named entity hierarchy. In LREC. Lisbon, Portugal.

Takashi Shibuya and Eduard Hovy. 2020. Nested named entity recognition via second-best sequence learning and decoding. Transactions of the Association for Computational Linguistics, 8:605–620.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neural architectures for nested NER through linearization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5326–5331, Florence, Italy. Association for Computational Linguistics.

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. 2017. Fast and accurate entity recognition with iterated dilated convolutions. arXiv preprint arXiv:1702.02098.

Charles Sutton, Andrew McCallum, and Khashayar Rohanimanesh. 2007. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. Journal of Machine Learning Research, 8(Mar):693–723.

Meihan Tong, Bin Xu, Shuai Wang, Yixin Cao, Lei Hou, Juanzi Li, and Jun Xie. 2020. Improving event detection via open-domain trigger knowledge. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5887–5897, Online. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS.

Bailin Wang and Wei Lu. 2018. Neural segmental hypergraphs for overlapping mention recognition. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 204–214, Brussels, Belgium. Association for Computational Linguistics.

Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen, Weinan Zhang, Shaoqian Zhang, Yimei Gao, Gen Gu, Ken Chen, and Yong Yu. 2018. Label-aware double transfer learning for cross-specialty medical named entity recognition. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1–15, New Orleans, Louisiana. Association for Computational Linguistics.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and Yi Chang. 2020. A novel cascade binary tagging framework for relational triple extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1476–1488, Online. Association for Computational Linguistics.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and Dongsheng Li. 2019a. Exploring pre-trained language models for event extraction and generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5284–5294, Florence, Italy. Association for Computational Linguistics.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and Dongsheng Li. 2019b. Exploring pre-trained language models for event extraction and generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5284–5294, Florence, Italy. Association for Computational Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020. Named entity recognition as dependency parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6470–6476, Online. Association for Computational Linguistics.

Yue Zhang and Jie Yang. 2018. Chinese NER using lattice LSTM. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1554–1564, Melbourne, Australia. Association for Computational Linguistics.
Algorithm 1 contains a finite state machine, which changes from one state to another in response to start^c, end^c. There are three states totally: 1) Neither start nor end has been detected; 2) Only a start has been detected; 3) A start as well as an end have been detected. Specially, the state changes according to the following rules: State 1 changes to State 2 when the current token is a start; State 2 changes to State 3 when the current token is an end; State 3 changes to State 2 when the current token is a new start. Notably, if there has been a start and another start arises, we will choose the one with higher probability, and the same for end.

A.2 Effect of Span Decoding Strategy

Table 7 shows the effect of the different span decoding strategies. All of them use the BERT encoder as backbone. The differences are (1) Strategy A treats span decoding as a multi-label classification problem with 2 × |C| binary classifiers, which aims to predict the boundary of a span. This strategy is inspired by the QA task and is adopted in BERT-span and our LEAR. BERT-span_v1 employs the heuristic match principle, and BERT-span_v2 uses the nearest match principle, both mentioned in section 3.3. (2) The most commonly-used Strategy B treats span decoding as a multi-class classification problem with BIO or BIOS schema, and is adopted in BERT-softmax and BERT-crf. Compared with BERT-softmax, BERT-crf adds a conditional random field (CRF) layer to model the dependencies between predictions, usually yielding better performance but worse efficiency.

The results show that: (1) The strategy used by LEAR has better performance than the traditional way. The reason might be that, the span decoding strategy in our approach is start/end position matching, which only needs to predict the span’s boundary. In contrast, the strategy adopted in previous methods needs to predict both boundary and internal words, which is much harder, especially for a longer span. (2) The comparison between BERT-span_v1 and BERT-span_v2 shows that, the heuristic match principle could achieve better results by making the most of information from probability. (3) Besides, there is an extra benefit for Strategy A. It naturally tackles the nested span issue, which means that candidate span overlaps with different categories.

A.3 Details of Hyper-Parameters Settings

All hyper-parameters of our model are listed in Table 8 in detail.

A.4 Statistics of the datasets used in the experiments

Table 9 shows the statistics of the datasets used in the experiments. For ACE2005 (ED), we refer to
Table 8: Hyper-parameter settings for each experiment.

experiment	random seed	max_seq_len	batch size	epoch	dropout rate	learning rate	encoder layer	task layer
ACE 2005 (ED)	1	256	32	30	0.1	1e-5	2e-4	
ACE 2005 (NER)	42	128	32	20	0.1	3e-5	6e-5	
ACE 2004	42	128	32	30	0.1	3e-5	3e-4	
OntoNotes 4.0	42	128	32	5	0.1	8e-6	8e-5	
MSRA	42	128	32	20	0.1	3e-5	6e-5	

Table 9: Statistics of the datasets used in the experiments. Spans are considered nested only if they are overlapped or nested in the different category.

the previous work\(^9\) to process raw data, which follows standard data splitting strategy. NER datasets we used are provided in the previous SOTA work\(^10\).

\(^9\)https://github.com/thunlp/HMEAE
\(^10\)https://github.com/ShannonAI/mrc-for-flat-nested-ner