Soil Survey and Land Suitability Evaluation for Sugar Cane Production at Zagga District, Bagudo Local Government Area, Kebbi State, Nigeria

N. Abdulkadir a*, S. S. Noma b, R. A. Sanda a, D. Yato b and B. Musa a

a Department of Soil Science Faculty of Agriculture, Kebbi State University of Science and Technology Aliero, PMB 1144, Birnin Kebbi, Nigeria.

b Department of Soil Science and Agric. Engineering, Usmanu Danfodiyo University, Sokoto, Nigeria.

ABSTRACT

Semi-detail soil survey and land suitability evaluation for sugarcane production was carried out in Zagga, Bagudo LGA of Kebbi State Nigeria at scale of 1:25,000 on 8,000 ha of land. The objectives were to describe the morphological and chemical properties of the soils. The entire study area was classified in to five soil units named as ZG1, ZG2, ZG3, ZG4, and ZG5. Surface soil samples were examined and collected from 0-15cm, 15-30cm depth using soil auger at 200x200m interval. Five soil profile pits were dug, described and soils sampled from bottom up, to minimized contamination by falling debris. Each soil profile pit was described based on horizon thickness, depth, colour of matrix and mottles, consistency, included materials, roots, horizon boundary, vegetation/ land use, slope, depth to water table and drainage status. The soils are slightly acidic (6.30) to moderately acidic (5.60). The total nitrogen, organic carbon, available phosphorus, and basic cations (Ca, Mg, K, Na) were low to moderately low according to guidelines for nutrient rating and interpretation for Nigerian soils. The soils were moderately drained. According to USDA soil taxonomy classification the soils of ZG 1 and ZG 2 were classified as Dystrustepts while ZG 3, ZG 4 and ZG 5 were classified as Haplustepts and correlated with World Reference Based System as Arenosols and

*Corresponding author: E-mail: nuraabdulkadir2006@gmail.com;
Luvisols. ZG1 and ZG2 were named as moderately suitable (S2) while ZG3, ZG4 and ZG5 were marginally suitable (S3) according to the guidelines of land suitability evaluation for sugarcane production.

Keywords: Soil survey; land suitability; for sugarcane and production.

1. INTRODUCTION

Soil survey is the systematic study of the soils of an area including classification and mapping of the properties and distribution of various soil units. Systematic soil survey has been carried out for over hundred years. As in other applied sciences; conceptual and technological advances are making soil survey more reliable; cheaper and useful [1]. The practical purpose of soil survey is to enable more numerous; more accurate and more useful predictions to be made for specific purposes than could have been made otherwise [2].

Land suitability is the fitness of a given type of land for a defined use which could be considered in its present condition or after improvements. The process of land suitability classification is the appraisal and grouping of specific areas of land in terms of their suitability for defined uses. Land evaluation is a process of predicting land performance over time according to the specific types of use [3].(Rossiter; 1996; Lee and Yeh; 2009; Martin and Saha; 2009).

Agriculture land suitability assessment is defined as the process of assessment of land performance when used for alternative kinds of agriculture [4] (Mu; 2006; Prakash; 2003). Over the past three decades there have been changes in land use; which promoted continuous cultivation of soil around savanna areas for grains and vegetables for commercial benefits. Continuous cultivation may increase or decrease oxygen supply to the soil and could exert influence on soil organic matter and vital soil processes [5]. The direction and the magnitude of the changes in soil characterization; physical and chemical behavior in cropped fields have not been adequately ascertained in the study area. If farmers are made to understand the properties of their soils; better utilization and management strategies and implementation of improved technologies as well as increased yield of crops is expected. It may also reduce the damage to land and ecosystems [6]. Soil analysis and characterization allows for grouping of soils into various classes; such as very low; low; medium and high according to their various properties in the soils. It also helps to predict the probability of getting a profitable response to fertilizer; amendments application and evaluation of soil fertility status. Farmers rarely have adequate information regarding their soils in some localities within Nigeria [7].

2. MATERIALS AND METHODS

2.1 Location of the Study Area

The study was conducted on a Fadama land in Zagga District Bagudo Local Government area of Kebbi State. Bagudo town lies on latitude (10-12°06N and Longitude 3-4°10E) in Sudan savanna zone of Nigeria. The climate of the area is typical of tropical climate; characterized by wet and dry seasons. The dry season is usually 7 months in most cases from November to May while the rainy season last for 4-5 months usually from June to October. The area experiences an average annual rainfall of 500 to 650mm with relative humidity in the range of 21-47% during dry season which increase more than 51% in the wet season. Average annual temperature ranged from 25-45 in the study area [8].

2.3 Field Study

Semi-detail soil survey at the scale of 1:25;000 was conducted on 8,000ha of land in Zagga District of Bagudo Local Government Area of Kebbi State. This involved establishing a baseline followed by soil augering along transects to identify soil types and their boundaries. However; Visual Soil Assessment (WSA) was conducted in order to assess and evaluate the land suitability of soils in the study area. In each soil mapping unit that was identified; a soil profile pit was dug and described followed by sampling from the bottom up to minimized contamination by falling debris. Each pit was described based on morphological characteristics according to established standard procedure [9] (Soil Survey Staff; 2012). The characteristics described include: soil depth; horizon thickness; color of matrix and mottles; texture; structure; consistence; porosity; included materials; roots and horizon boundary; records of
vegetation/land use; topography; slope; depth to water table and internal drainage status. However; following the descriptions; soil samples (disturbed and bulk) were collected from each genetic horizon for laboratory analysis. The entire study area was subdivided in to five soil units named a ZG1; ZG2; ZG3; ZG4; and ZG5.

2.3 Soil Sampling

Surface soil sampling as well as profile study and description was carried out for soil analysis and classified soil Surface sample collection in the field was done at a distance of 200x200m interval throughout the survey process in the study area.

2.4 Laboratory Methods

The samples were air-dried; carefully crushed using a wooden and pestle and then sieved though a 2mm mesh. The sieved samples were stored for physical and chemical analyses. Particle size analysis was determined using the hydrometer method [10] with sodium hexametaphosphate as the dispersing agent. Bulk density was determined by the use of core sampler method [11]. Particle density was determined by the use of pycnometer bottle method (Blake; 1965). Total porosity was calculated from particle and bulk densities using the relationship \(p = 100 \times \frac{1}{Bd/Pd} \) where \(p \) = porosity; \(Bd \) = Bulk density; \(Pd \) = Particle density and 100 and 1 are constants. Soil pH (1:1) in H₂O and CaCl₂ were determined using glass electrode pH meter [12]. Organic carbon content of the soils was determined by the acid-dichromate oxidation method of Walkley-Black [13]. Total N was determined by digestion and distillation method using micro Kjeldahl technique [14]. Available P was determined following the procedure described by IITA [15] using Bray-1 extraction method (Bray and Kurtz; 1945). Exchangeable bases (Ca; Mg; K and Na) in the soil were extracted with 1.0m ammonium acetate (NH₄OAc) extracting solution buffered at pH 7. Exchangeable Ca and Mg were determined by EDTA titration [16]. Exchangeable K and Na was determined using flame photometer. Electrical conductivity was measured using electrical conductivity meter (Simon; 2000). The CEC was determined by neutral ammonium acetate method buffered at pH 7 [17]. The exchangeable sodium percentage was calculated as proportion of CEC (NH₄OAC) occupied by sodium cations as follows: \(ESP = \frac{\text{Exch sodium}}{\text{CEC(NH₄OAC)}} \times 100 \). Soils were classified using USDA Soil Taxonomy classification and were correlated with the World Reference Base for Soil Resources. The data was analyzed using descriptive statistics such as means and weighted averages.

3. RESULTS AND DISCUSSION

The morphological; physical; chemical and taxonomic classifications of the soils are presented in Tables 1; 2; and 3 respectively.

3.1 Soil Morphological Characteristics

The morphological properties of the soils are presented in Table 1. The soil of all the pedons are generally deep with depth of >50cm. The colour of the soil varied from dark Grey (10YR7/2) in the surface horizon changing to bright (10YR7/1) in the subsurface horizon. The texture of the soil varied from loamy sand to sandy loam in the surface horizon changing to loamy sand in the subsurface horizon with strong medium angular blocky structure in the surface horizon changing to moderate medium sub-angular blocky structure in the subsurface horizon. Similar result was found by Eshett; [18]. The consistence of the soil varied from hard to very hard; firm and sticky-plastic to very sticky-plastic. The clay content increased with depth which indicates the presence of argillic horizon. The root of the soils varied from many roots changing to medium roots in the surface horizon and very few roots in the subsurface horizons.

3.2 Chemical Properties of the Soils

The pH of the soils is presented in Table 3. The pH values in all the pedon fall within moderately acidic range (5.93 – 6.50). The moderately acidic pH values of the soils could be attributed to downward movement of the basic cation along the slope. Similar result has reported by Jamala and Oke (2013) in the study of the soils of Northeast Nigeria. The EC of the soil is presented in Table 3. The EC values in all the pedons fall within moderately low (0.006dsm⁻¹; 0.024dsm⁻¹) indicating non-saline status of the soil. Similar result was reported by Dohnke and Whitney; (2006). The OC and OM of the soil is presented in Table 3. The OC and OM values in all the pedons fall within very low range (4.57g/kg – 5.27g/kg) and (7.90g/kg – 9.09g/kg) respectively. The very low organic carbon values of the soils could be attributed to continuous cultivation and frequent burning of residues.
Table 1. Morphological properties of the soils

Horizon	Depth (cm)	Munsell color (moist)	Texture	Structure	Mottling	Consistency (moist)	Root	Horizon Boundary
ZG1 (Haplustepts)								
Ap	0-16	10YR5/2	LS	ABK	7.5YR5/4	H	MR	SD
Btg1	16-33	10YR5/1	SL	PLY	7.5YR4/4	SH	MMR	SD
Btg2	33-55	10YR3/3	SL	SABK	7.5YR3/4	SH &FR	MMR	SD
Bc	55-75	10YR4/3	LS	SABK		SH	VFWR	SD
ZG2 (Haplustepts)								
Ap	0-22	10YR3/4	LS	ABK	10YR6/7	H	MR	D
ABg1	22-32	10YR3/3	SL	ABK	10YR6/6	V,F	MR	D
ABg2	32-49	10YR5/2	LS	Platy	10YR6/6	SH	VFR	D
Btg1	49-91	10YR6/2	SL	SABK	10YR6/6	EH	VFR	D
Bcg	91-150	10YR7/1	LS	ABK	10YR7/6	FR	VFR	D
ZG3 (Haplustalfs)								
Ap	0-19	7.5YR6/2	LS	SABK	7.5YR6/3	V.FR	MMR	D
AB1	19-59	7.5YR5/2	LS	ABK	-	V,F	VFR	D
AB2	59-91	7.5YR5/2	LS	ABK	-	FR	NR	D
ABg	91-141	10YR6/3	LS	SABK	7.5YR5/7	V.H	NR	D
Bc	141200	10YR6/7	LS	ABK	-	FR	NR	D
ZG4 (Haplustalfs)								
Ap	0-16	10YR5/3	LS	ABK	10YR7/6	L	MFR	D
AB	16-33	10YR6/4	LS	ABK	-	L	MFR	D
Bc	33-71	10YR6/3	LS	MSV	-	L	MR	D
ZG5 (Haplustalfs)								
Ap	0-13	10YR3/4	LS	ABK	10YR5/7	FR	MR	D
Bt1	13-29	10YR5/1	LS	ABK	-	V,H	NR	D
Bt2	29-53	10YR5/2	LS	Platy	-	FR	FR	D

S= sand; LS= loamy sand; SL= sandy loam; ABK = Angular Blocky; PLT = Platy; SABK = Sub-Angular Blocky; M = Massive; 10YR5/2 = yellowish brown; 7.5YR5/2 = Dull brown; 10YR7/1 = Bright brown; 7.5YR6/2 = Orange; 7.5YR3/4 = Dark brown; 10YR6/7 = Bright reddish brown; 10YR4/3 = Dark reddish brown; 10YR5/6 = Dark Yellowish; 10YR3/3 = Dark Grey brown; 10YR5/7 = 10YR6/3 = Dark Yellowish; 10YR4/2 = Light Brown; 10YR7/3 = Light Grey Brown; H = hard; VH: SH&FR = Slight Hard and Friable; SH = Slight Hard; FR= Friable; VFR = Very Friable; L = Loose; EH = Extremely Hard; MR= Medium Roots; MMR = Many Medium Roots; MFR = Many Fine Roots; VFR = Very Fine Roots; NR = No Roots. FWR = Few Roots; VFWR = Very Few Roots; SD = Slight Diffuse; D = diffuse
Table 2. Chemical Properties of the Soils

Horizon	Depth (cm)	pH	EC (water)	OC (dsm-1)	OM	TN	AP mgkg-1	Ca cmolkg-1	Mg	K	Na	CEC	ESP %
Ap	0-16	6.50	0.055	6.60	11.38	0.70	2.92	3.60	0.80	0.07	0.04	5.80	0.69
Btg1	16-33	6.10	0.025	4.40	7.59	0.35	2.57	3.00	0.78	0.09	0.42	5.20	8.08
Btg2	33-55	5.70	0.005	5.80	10.00	0.35	2.70	3.60	0.97	0.24	0.35	6.00	5.83
BC	55-75	5.80	0.009	3.71	6.40	0.07	2.40	2.40	0.65	0.19	0.45	5.00	9.00
Mean	6.03	0.024	5.13	8.84	0.37	2.65	3.15	0.80	0.15	0.32	5.50	5.73	
ZG1													
ZG2													
ZG3													
ZG4													
ZG5													

Table 2. Chemical Properties of the Soils

AP = Available Phosphorus; Ca = Calcium; Mg = Magnesium; K = Potassium; Na = Sodium; CEC = Cation Exchange Capacity; ESP = Exchangeable Sodium Percentage

Abdulkadir et al.; ASRJ, 5(4): 54-63, 2021; Article no.ASRJ.81200
Table 3. Taxonomic classification of the soils

PEDON	Soil Series	USDA system	FAO/UNESCO LEGEND (WRB)
1	ZG1	Kwasara	Haplustepts
		Series	Arenosols Stagnic (loamic)
2	ZG2	Kohel	Haplustepts
		Series	Arenosols Stagnic (loamic)
3	ZG3	Mado	Haplustalfs
		Series	Haplic Luvisols
4	ZG4	Manga	Haplustalfs
		Series	Haplic Luvisols
5	ZG5	Gucuware	Haplustalfs
		Series	Haplic Luvisols

This finding agreed with finding of Suharta and Prasetyo [19] in the study of soil of Riau. The TN; AvP; and K values of the soils are presented in Table 3. The mean values of nitrogen at ZG1; ZG2; ZG3; ZG4; and ZG5 were 0.37g/kg; 0.43g/kg; 0.45g/kg; 0.49g/kg and 0.46g/kg respectively. The TN; AvP; Ca; Mg; and Na values in all the pedons fall within low ranged (0.37g/kg – 0.49g/kg); (2.34mg/kg – 2.69mg/kg); (2.41cmol/kg – 3.30cmol/kg); (0.72cmol/kg to 1.00cmol/kg) and (0.04cmol/kg to 0.65cmol/kg) respectively. The low TN; AvP; Ca; Mg; and Na values in all the soils could be attributed to continuous cultivation and leaching [20]. Similar result was reported by (Ekwoanya and Ojanuga; 2002; Singh et al; 2001) [21]. The exchangeable potassium is presented in Table 3. The exchangeable potassium values in all the pedons fall within moderately high range (0.13 cmol/kg – 0.31cmol/kg). The moderately high potassium values of the soil could be attributed to high Mg element in the soil which caused K deficiency in plant and soil with high Mg tends to have poor structure as primarily reported by Noma et al. [22] in the study of the soil of Sokoto State. The CEC values in all the pedons fall within low to moderate range (5.50cmol/kg – 6.90cmol/kg). This finding has agreed with finding of Yakubu et al. [23]. The ESP values in all the pedons fall within very low percentage range (4.41% - 9.52%). The very low ESP values could be attributed to dominance of other basic cations in the soil [5] in the study of sodic soils. Similar result was obtained by Sanda et al. [24].
3.3 Taxonomic Classification of the Soils

The soils were classified according to the USDA Soil Taxonomy System [25] and correlated with the FAO/UNESCO Legend of the World Reference Based (WRB) System [26]. These two systems are the most commonly used ones in Nigeria for soil classification. The five soils mapping units that were identified in the study area were designated ZG1; ZG2; ZG3; ZG4; and ZG5. The soils of ZG1 and ZG2 were classified as Haplustepts at great group for having ground water commonly fluctuates from a level near the soil surface to below a depth of 200 cm while the soils of ZG3; ZG4 and ZG5 were classified as Haplustolls because they do not have a natric or kandic horizon [27,28] and correlate with World Reference Base (WRB) as Arenosols for having texture class of loamy sand and Luvisols for having argillic horizons overlay by loamy sand.

3.4 Land Suitability Classes in the Study Area

Land suitability is usually evaluated using parameters; such as rainfall; texture; drainage; soil depth; slope; pH; erosion hazard; risk of flooding and accessibility. The basic land quality groups in suitability determination of soil for sugarcane production were climate; topography; soil physical and chemical properties [29]. Based on the general low fertility levels of the soils organic materials (plants and animals residues) should be applied substantially to improve fertility levels of the soils Udoh et al. [30]. The standard criteria used for sugarcane suitability is presented in Table 4. The FAO Land suitability guidelines in which land has been classified as highly suitable (S1); moderately suitable (S2); marginally suitable (S3); currently unsuitable (N1); and permanently unsuitable (N2) has been adopted. Land quality and factors rating of soil suitability classes for sugarcane production was presented in Table 2; and Table 3. Soil suitability ranged from moderately suitable (S2) in ZG 1; 2 and marginally suitable (S3) in ZG 3; 4 and 5 [31-43].

4. CONCLUSION

The physical properties of the soils indicated a relatively high bulk density; particle density and low porosity. The soil pH was slightly acidic; content of organic carbon; organic matter; total nitrogen; available phosphorus; exchangeable potassium; basic cation (Ca; Mg; K; Na); exchangeable sodium were low. The soils tend to have low water holding capacity and low cation exchange capacities but are easy to cultivate. According to USDA soil taxonomy system; two soil units were identified as ZG1 and ZG2 (Dystrustepts); ZG3; ZG4 and ZG5 (Haplustepts) and correlate with World Reference Base (WRB) as Arenosols and Luvisols. The soils of ZG1 and ZG2 were moderately suitable (S2) while soils of ZG3; ZG4 and ZG5 were marginally suitable (S3) for sugarcane production based on FAO (1983) guidelines.

5. RECOMMENDATIONS

1. The limiting factors of land suitability of the soils of Zagga Districts for sugarcane cultivation were low available P; exchangeable K; CEC and TN; therefore organic materials (plants and animals residues) should be applied substantially to improve fertility levels of the soils.
2. Liming also should be carry out going by the acidic nature of the soils to improve their conditions.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Brady NC, Weil RR. Methods of soil analysis. Part 2. ASA; 677 SegoeRd S; Madison; WI. 1996:53711.
2. FAO. Land quality indicators and their use in sustainable agriculture and rural development. FAO Land and Water Bulletin. 1997;5:212.
3. Zonneveld IS. The land unit – a fundamental concept in landscape ecology; and its applications Landscape Ecology. 1989;3:67-86
4. He Y, Yao Y, Chen L. Ongar. Land suitability assessment for tree crops using remote sensing and GIS Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM) IEEE; Changsha. 2011;354–363.
5. Brady NC, Weil R. The nature and properties of soils. 13th ed. Macmillan; New York; 2002.
6. Malami AA, Noma SS, Abubakar I. Influence of single tree and shelter belt on physic-chemical properties of soils of
Gwadabawa area Sokoto State. In: W.A. Hassan; U.B. Kyiogwum; H.M. Tukur; J.K. Ipinjolu; S.A. Maigandi; A. Singh; N.D. Ibrahim; A.U. Dikko; Y.A. Bashar and N. Muhammad (Eds) Mobilizing Agricultural Research towards Attaining Food security and Industrial growth in Nigeria. Proceedings of the 45th Annual Conference of the ASN held at UDU Sokoto. 24-28th October; 2011; 542-547.

7. Hassan AM, Raji DAR, Malgwi WB, Agbanin JO. The basaltic soils of plateau state; Nigeria: Properties classification and Management Practices. Proceeding of the 35th Annual Conference of the Soil Science Society of Nigeria. March 7-11; 2011; Minna; Nigeria; 2011.

8. Anon. Influence of land use on soil properties in northern Nigeria. Soil Use Manage. 2009; 8:121-12.

9. FAO. Guidelines for soil descriptions 4th Edition. Food and Agricultural Organization of United Nation FAO); Rome; Italy. Gaines TP and GA; 2006.

10. Bouyoucos GJ. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal. 1962; 43:434-43.

11. Blake GR, Hartge KH. Bulk density. In: Klute; A.; Ed.; Methods of Soil Analysis; Part 1—Physical and Mineralogical Methods; 2nd Edition; Agronomy Monograph 9; American Society of Agronomy—Soil Science Society of America; Madison. 1986; 363-382.

12. Adesanwo OO, Lasisi AA, Otwande OB. Phosphorus availability from thermally Phosphate rock. Negerian Journal of Soil Science. 2013; 23(1):63-73.

13. Walkley A, Black GA. An examination of a Degtjareff NHO for determining soil organic matter and a proposed modification of acronich acid titrate. Soil Sci. 1934; 37:238.

14. Nottidge DO. Effect of animal manure on soil chemical properties and Productivity of pepper (Capsicum annum L)in derived savannah ultisol In: W.A.hassan;U.B.kyiogwum; H.M.tukur;J.K.; 2011.

15. IITA. Selected methods for soils and plant Analysis Manual series No. 1 IITA. International Institute for Tropical Agriculture; 1979.

16. Ahukaemere CM, Tshett E, Ahiwe C. Characterization and fertility status of wetland soils in Abia State agro ecological zone of southeastern Nigeria. Nigerian Journal of Soil Science. 2014; 24(10):147-157.

17. Rhoades JDCation exchange capacity.In: A.L. Page (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd ed.) Agronomy. 1982; 9:149-157.

18. Eshett ET. The basaltic Soils of South Eastern Nigeria: Properties; Classification and constrains to productivity. Journal of Soil Science. 2003; 38:565-571.

19. Suharta N, Prasetyo BH. Mineral composition and physiochemical properties of orest vegetated soils from acidic sedimentary rocks in Riau province. Land and climactic Journal. 2007; 28:1-14.

20. Yakubu M, Baraya S, Noma SS. Assessment of soil and water quality along river Kadarko in Sanyinna District; Sokoto State. In Hassan; W.A. Kyiogwum; U.B. Tukur; H.M. Ipinjolu; J.K. Maigandi; S.A. Singh; A.; Ibrahim; N.D.; Dikko; A.U.; 2011.

21. Adepetu JA. A Preliminary Survey of fertility status of some soils in Ondo State; under traditional cultivation. Ife Journal of Agriculture. 1979; 1:134-149.

22. Noma SS, Ojanuga AG, Ibrahim SA, Iliya MA. Detailed soil survey of the sokoto rima flood plain at Sokoto; Nigeria. In Salako; F.K.; Adefunji; M.T.; Ojanuga; A.G; Arowolo; T.A. and Ojeniyi; S.O. (Eds).Managing Soil Resources for Food Security and Sustainable EnvironmentProceeding of the 29th annual conf. of SSSN/University of AgricultureAbeokuta; Nigeria; Dec.6-10; 2004.

23. Yakubu M. Genesis and classification of soils over different geological formations and surface in the Sokoto plains; Nigeria. PhD thesis. Soil Science and Agricultural Engineering Department Usman Danfodiy University Sokoto (unpublished); 2006.

24. Sandra AR, Ogunwale JO, Oluwasemire KO, Raji BA. Effects of D rainage water recycles and irrigation scheduling on soil properties and yield of tomato under a high water table in Northern Nigeria. In Uyovbisere; E.O; Raji; Schoeneberger; P.J; Wysocki; D.A; Benham; E.C. and Broderson; W.D. (Eds) (2002). Field book
for describing and sampling soils; version 2.0 Nat. Soil Survey Centre. NRCS; USDA; Lincoln; NE; 2007.

25. USDA. Keys to Soil Taxonomy. 12thEdn; United Department ofAgriculture;Washington; Dc; pages: 36; 2014.

26. FAO/ISSSS. Guidelines for Soil Descriptions 4thEdition. Food and Agricultural Organization of United Nation FAO); Rome; Italy. Gaines TP and GA; 2006.

27. Soil Survey Staff. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys; 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook. 1999:436.

28. Soil Survey staff. Crop rotations and nitrogen fertilization to management. 2014:72-74.

29. Sys C, Van Ranst E, Debaveye J. Land evaluation. Part3: Crop requirements. Agricultural Publications 7:3. General Admiration of Development Cooperation of Belgium; Brussels. 1993:199.

30. Udoh BT, Henry HB, Akpan US. Suitability evaluation of alluvial soils for rice (Oryza sativa) and Cocoa (Theobroma cacao) cultivation in an acid sand area of south-east Nigeria. Journal of innovative Research in Engineering and Science. 2011;2(3):148-161.

31. Dahnke WC, Whitney DA. Measurement of Soil Salinity. In recommendation Soil chemical test procedure for the North Central Region; NGR Publ. 2006;221: 32-34.

32. Dikko AU, Ahmed I, Ado I, Noma SS. Organic carbon; Totalnitrogen; and available P distribution the soil particles; GidanJaja Grazing Reserved; Zamfara state; Nigeria. Best Journal. 2011;2(3):64-69.

33. Elsheik ET, A.R. Elsheik; N. Ahmad; A. Shariff; S. Balasundra; S. Yahaya An agricultural investment map based on geographic information system and multi-criteria method Journal of Applied Sciences. 2010;10:1596-1602.

34. Esu IE Characterization; Classification and Management problems of themajor soilorder in Nigeria; 25th inaugural lecture; University of Calabar. FAO/UNESCO; (2014). Soil Map of the World 1,500;000-Legend Sheet and Memoirs. The United Nations Educational; Scientific and Cultural Organization.Pp: Embrechts; J.V.M, PoeloenganZulkarnain& SYS; C.C. (1989). Comparison of physical land evaluation using a parametric method with land characteristics and with land qualities. Application on oil palm plantation in North-Sumatra (Indonesia). In: J. Bouna& A.K. Bregt (Eds.): Land qualities in space and time. Pudoc; Wageningen. 2005;313-316.

35. FAO. Land evaluation towards a revised framework. Food and Agriculture Organization of the United Nations; Rome; Italy; 2007.

36. Fetter CW. Applied hydrogeology; Macmillan publishing co. New York. Gee; G.W. and Bauder; J.W. (1986). Particle–size analysis. In methods of soil analysis. A Klute (Ed). Part 1. 2nd ed. Agron. ASA and SSSA; Madison WI. 1998:383.

37. Idoga S, Tbanga IJ, Malgwi WB. Variation in soil toposequence in Samaru area; Nigeria. Pp. 19-25. In proceeding of the 31st annual conference of Soil Science Society of Nigeria. Ahmadu Bello University Zaria; Nigeria. 2006;November 13-17.

38. Jamalu GY, Oke DO. Soil Profile Characteristics as affected by Land use system in the Southeast Adamawa state; Nigeria. Journal of Agriculture and Veterinary Science. 2013;6(4): 04-11.

39. Maniyunda LM, Malgwi WB. Physico-chemical properties and management strategies for soil along river Galma; Zaria; Nigeria. In: Adebayo; M.K.A,Odofin; A.J. Osunde; A.O, Balia; A. and Oyeniyi; S.O. (Eds). Soil Resources Management Global Climate Change and Food Security. Proceeding of the 35th annual conference of SSSN/Minna; Niger State; march 7th – 11th 2011; 2011.

40. Odunze AC. Soil properties and management strategies for some subhumid savanna zone alfisols in Kaduna State; Nigeria. Samaru Journal of Agricultural Research. 2006;22-3-14.

41. Schoeneberger PJ, Wysocki DA, Benham EG, Broderson WD. (Eds).Field book for describing and sampling soils; version 2.0 Nat. Soil survey center. NRCS; USDA; Lincoln; NE; 2002.

42. Sims T. Soil fertility evaluation. P .D 113-D-153. In summer. M.E. ed(ed). Handbook of soil Science; CRC Press; Washing ton DC; 2000.
43. Soil Survey Staff. Ninth edition. United States Department of Agriculture. Natural Resources Conservation Service. 2004:9:659.