Drug screening and kinase activity profiling of a novel patient-derived cell line of clear cell ovarian carcinoma

Rei Noguchi1, Yuki Yoshimatsu1, Akane Sei1, Hiroshi Yoshida2, Tomoyasu Katou3 and Tadashi Kondo1*

1 Division of Rare Cancer Research, National Cancer Center Research Institute
2 Department of Diagnostic Pathology, National Cancer Center Hospital
3 Department of Gynecology, National Cancer Center Hospital

(Received February 20, 2021; Accepted May 17, 2021)

SUMMARY

Clear cell carcinoma (CCC) is a rare subtype of ovarian cancer resistant to standard platinum chemotherapy, which leads to a poor prognosis for patients with CCC. Kinases are targets for anticancer drugs; few studies have profiled kinase activity to identify kinase inhibitors as novel anticancer drugs. In this study, we aimed to identify novel anticancer drugs for the treatment of CCC with comprehensive kinase activity assay and drug screening. Using ascites from a 51-year old patient, we established and characterized the NCC-cOV1-C1 cell line. We screened the antiproliferative effects of 152 small anticancer compounds and conducted comprehensive kinase activity assays with the PamStation12 platform. The NCC-cOV1-C1 cells harbor copy number variation of HFN1β amplification, and exhibit constant growth, spheroid formation, and invasion capability. NCC-cOV1-C1 cells responded remarkably to idarubicin HCl and vorinostat. The kinase activity assay revealed that SRC and EGFR were highly activated in NCC-cOV1-C1 cells; the SRC inhibitor dasatinib and the EGFR inhibitor lapatinib exhibited antiproliferative effects and down-regulation of downstream signaling. The NCC-cOV1-C1 cell line will be a useful tool for basic and preclinical study of CCC, and the clinical utility of idarubicin HCl, vorinostat, dasatinib, lapatinib is worthy of further investigation.

Key words: amplification, clear cell carcinoma (CCC), kinase activity, patient-derived cell line

INTRODUCTION

Clear cell carcinoma (CCC) of the ovary is one of the deadliest ovarian cancers, with a five-year survival rate <35% in patients with advanced stage more than stage III1). Unlike the most common type of ovarian cancer, high-grade serous carcinoma, CCC shows resistance to platinum-based chemotherapy as a standard treatment1–4), and the prognosis of patients with CCC remains dismal. Therefore, systematic chemotherapy agents are required to improve the poor prognosis of patients with CCC.

The success of clinical trials depends on the pre-clinical study. Patient-derived cancer cells are essential tools for developing novel therapeutic modalities, playing an important role in pre-clinical study. The functions of intriguing genes and proteins, the anticancer effects of drug candidates, and the mode-of-action of novel drugs can be examined using patient-derived cancer cells. Thus, patient-derived cancer cells are important tools at the early stage of drug development. Considering the diversity and complexity of CCC disease, multiple cancer models should be implemented in the pre-clinical study. However, only a limited number of CCC cell lines are available from public cell banks5). Thus, more cell lines should be established towards the development of novel therapy for CCC.

Kinases are essential for regulating proliferation, survival, and migration of tumor cells. Kinase dysregulation contributes to the various hallmarks of cancer6), and anticancer drugs inhibiting kinases such as BCR-ABL7), mutant BRAF8), and HER29) were developed for the treatments of various cancer types. Thus, elucidating kinase profiles is important in development of novel therapy in oncology.

Expression levels and posttranslational modifications of various kinases have been extensively investigated in on-
transcutaneous biopsy of the thickened greater omentum. After neoadjuvant chemotherapy consisting of paclitaxel and carboplatin, a total hysterectomy and bilateral salpingo-oophorectomy were conducted, with macroscopic residual diseased left (R2). The ascites obtained at the time of surgery was used to establish the cell line. Four months later, the patient died from intestinal obstruction caused by peritoneal dissemination. The ethical information was mentioned in the Supplementary methods.

Cell culture procedure

Cell culture was performed using aseptic technique in a containment level II laminar flow microbiological safety cabinet (ESCO Micro Pte Ltd., Model: Airstream.pro, Beijing, China). We added 3.5 mL ascites to 3.5 mL of warmed culture medium (RPMI 1640, Gibco, Life Technologies, Scotland) supplemented with 10% heat-inactivated FBS (Gibco), 1% penicillin and streptomycin (Gibco) prewarmed to 37°C, 5% CO2, and 95% humidified air. Detailed descriptions of these procedures are given in the Supplementary methods.

Authentication and quality control of the established cell line

The cell line was authenticated by examining the short tandem repeats (STRs) in 10 loci using the GenePrint 10 System (Promega, Madison, WI), as previously described12). The tissue culture medium was examined using an e-Mycoplasm PCR Detection Kit (Intron Biotechnology, Gyeonggi-do, Korea). Detailed descriptions of these procedures are given in the Supplementary methods.

Immunohistochemical staining

Primary antibody to HNF1β (08-1211, 1:20; Nichirei, Tokyo, Japan) was used for immunohistochemistry. Detailed descriptions of these procedures are given in the Supplementary methods.

Cell proliferation assay

Cells were seeded into 96-well culture plates at a density of 3×10^3 cells/well. Tumor cell proliferation was measured at 24, 48, 72, and 96 h after plating by adding CCK-8 reagent (Dojindo Molecular Technologies, Inc., Kumamoto, Japan) and measuring the absorbance at 450 nm after 2 h using a microplate reader (Epoch, BioTek Instruments, Inc, Winooski, VT). Growth curves were constructed by plotting absorbance (y-axis) against culture time (x-axis), and the doubling time was calculated. Cell proliferation assays were performed in triplicate.

Spheroid formation assay

Spheroid formation was confirmed by placing 1×10^4 cells into a 96-well Clear Flat Bottom Ultra-Low Attachment Microplate (Corning, Inc., Corning, NY) in RPMI 1640 Me-
medium containing 10% FBS. The cells were maintained in a humidified atmosphere of 5% CO₂ at 37°C for 3 d. Spheroid formation was confirmed by Keyence BZ-9000 fluorescence microscopy (Keyence). Spheroid formation assays were conducted in duplicate.

Transwell cell invasion assay

Cell invasion characteristic for metastasis in cancer cells was assessed using BD Biocoat Matrigel Invasion Chambers (BD Biosciences, Franklin Lakes, NJ) according to the manufacturer’s instructions. Detailed descriptions of these procedures are given in the Supplementary methods.

Single nucleotide polymorphism (SNP) array

SNP array genotyping was performed using an Infinium OmniExpressExome-8 v. 1.4 BeadChip (Illumina, San Diego, CA). Genomic DNA was extracted from tumor tissues and cultured cells derived from tumor tissues and amplified. Amplified DNA was hybridized on array slides in an iScan system (Illumina). Log R ratios and B allele frequencies were calculated using Genome Studio 2011.1, with cnvPartition v3.2.0 (Illumina) and KaryoStudio Data Analysis Software v. 1.0 (Illumina). The human reference genome version hg19 (GRCh37) was used for annotation mapping. The whole-genome log 10 ratio (tumor/reference) value was smoothed excluding chromosomes X and Y, and abnormal copy number regions were detected using the circular binary segmentation algorithm using the R package ‘DNA copy’ from Bioconductor. In the tumor cells, regions with copy number >3 and <1 were defined as amplifications and deletions, respectively. Genes that showed copy number alterations were queried for “cancer related genes” using the “Cancer Gene Census” in the Catalogue Of Somatic Mutations In Cancer (COSMIC) database (GRCh37 v91).

Screening for antiproliferative effects of anticancer reagents

The antiproliferative effects of 152 small anticancer agents and United States Food and Drug Administration (FDA)-approved anticancer drugs (Supplementary Table 1) were examined using the CCK-8 assay. Dose response experiments were conducted to validate the candidate anticancer agents identified during pilot screening. Top ranking anticancer agents of the pilot screening, anticancer agents which using for CCC treatments, kinase inhibitors showing high kinase activity in our comprehensive kinase activity test were examined. The compounds were dispensed to 96-well plates with serial dilution at 10 different concentrations ranging from 0.1 and 100,000 nM, using acoustic liquid handling (Echo 555, Labcyte Inc, Sunnyvale, CA). Absorbance values were plotted against compound concentration to obtain IC₅₀ values using GraphPad Prism 8.1.0 software (GraphPad Inc., San Diego, CA). The screening was performed in duplicate. Detailed descriptions of these procedures are given in the Supplementary methods.

Tyrosine kinase activity assay

Tyrosine kinase activity was measured for various kinases using the PamChip TK peptide microarray system (PamGene International B.V., Bf's-Hertogenbosch, The Netherlands), as previously described. Detailed descriptions of these procedures are given in the Supplementary methods.

Western blotting

To define downstream targets of SRC and EGFR, expression of c-Myc and RAS were examined using western blotting. The NCC-cOV1-C1 cell line were used for western blotting. Antibodies against c-Myc (1:200; sc-70468, Santacruz, Dallas, Texas, USA), RAS (1:100; 610001, BD Biosciences, Heidelberg, Germany), and β-actin (1:2000, ab6276, abcam) were used. Detailed descriptions of these procedures are given in the Supplementary methods.

RESULTS

Cell line authentication and quality control

NCC-cOV1-C1 cells were maintained for >16 months, and were passaged >40 times under the tissue culture conditions. The STRs examined were all identical between the NCC-cOV1-C1 cells and the white blood cells (Table 1, Supplementary Fig. 2). The STR patterns of the NCC-cOV1-C1 cell line did not match those of cell lines in the public cell banks that we consulted using Cellosaurus. This, therefore, authenticated NCC-cOV1-C1 as a novel CCC cell line. The DNA sequence unique to Mycoplasma was not detected in the tissue culture medium (data not shown).

Cell line characteristics

Genotyping analysis revealed multiple allelic amplifications and deletions in the NCC-cOV1-C1 cells (Fig. 2A) (Supplementary Table 2). Copy number variants (CNVs) mostly involved partial deletions of chromosomal arms (2q and 5p) and amplifications of chromosomal arms (14p and 15p) (Fig. 2A, Supplementary Table 2). Candidate driver genes were not identified from recurrent focal CNV. HNF1β

Microsatellite (Chromosome)	NCC-cOV1-C1 (P5)	Blood cell
Amelogenin (X Y)	X,X	X,X
TH01 (5)	8	8
D21S11 (21)	30,32	30,32
D6S818 (5)	12	9,12
D13S317 (13)	8,9	8,9
D7S820 (7)	11,12	11,12
D18S529 (18)	9	9
CSF1PO (5)	11	11,12
vWA (12)	18,19	18
TPOX (2)	8,11	8,11

Cells were compared to a normal and tumor tissues from the patient. P indicates a passage number of a cell line.
amplification (17q) was identified (Fig. 2B).

NCC-cOV1-C1 cells exhibited polygonal or spindle-shaped cytoplasm arranged in a partially cohesive sheet-like structure, with enlarged and variably-sized nuclei (Fig. 3A–C). NCC-cOV1-C1 cells were positive for HNF1β, a candidate marker for CCC (Fig. 3D). The cells constantly formed spheroids in the lower attached plate (Fig. 3E). The population doubling time was 40 h, based on the growth curve (Fig. 3F). The number of invading cells increased depending on the number of seeded cells and the time after seeding (Fig. 3G) (Supplementary Fig. 3).

Sensitivity to anticancer drugs

The sensitivity of the cells to 152 small anticancer compounds and FDA approved anticancer drugs was monitored (Supplementary Tables 3). We calculated the IC$_{50}$ values of 13 of these agents including the two that the patient had taken, CPT-11 and paclitaxel, 9 that we found to have highly inhibitory effects at 10 μM: afatinib, bosutinib, daunorubi-

![Fig. 2. Single nucleotide polymorphism (SNP) array of NCC-cOV1-C1 cells.](image)

SNP genotyping copy number profile for NCC-cOV1-C1 cells (A), showing the copy numbers and each chromosome. The plot represents copy numbers and chromosomes identified using the DNACopy algorithm. Representative separated chromosome plot showing chromosome 17 (B). Red band indicates the site located HNF1β, a cancer related gene.

![Fig. 3. Characteristics of NCC-cOV1-C1 cells.](image)

- Phase-contrast images showing epithelial morphology (A, B). Representative H&E-stained sections (C). Positive immunostaining of HNF1β (D). Spheroid formation observed in 96-well spheroid microplates (E). Growth curve; each point represents the mean and SD (n=3) (F). Invasion ability (G).

Fig. 2 Single nucleotide polymorphism (SNP) array of NCC-cOV1-C1 cells.

Fig. 3 Characteristics of NCC-cOV1-C1 cells.

- IC$_{50}$ values of 13 of these agents including the two that the patient had taken, CPT-11 and paclitaxel, 9 that we found to have highly inhibitory effects at 10 μM: afatinib, bosutinib, daunorubicin, etc.
Kinase activity assay

Active kinases in NCC-cOV1-C1 cells were identified using immobilized-substrate tyrosine kinase peptide arrays. The tyrosine kinase activity of 144 substrate peptides was measured using PamChip (Supplementary Table 4). The 20 peptides with the highest signal intensity were consistently

cin, erlotinib, homoharringtonine, idarubicin HCl, ponatinib, vincristine, and vorinostat, and 2 showing high kinase activity in the comprehensive kinase activity assay such as dasatinib and lapatinib (Fig. 4A–M).

Fig. 4. Effects of anticancer agents on NCC-cOV1-C1 cell proliferation based on CCK-8 assay.

(A–M) Cell viability of the 13 compounds (afatinib, bosutinib, dasatinib, daunorubicin HCl, erlotinib HCl, homoharringtonine, idarubicin HCl, irinotecan, lapatinib, paclitaxel, ponatinib, vincristine, and vorinostat) that inhibited cell growth (IC₅₀ values).
...phosphorylated by the kinases (Fig. 5A). Three peptides of non-receptor tyrosine kinases of the SRC family substrates, and two peptides of epidermal growth factor receptor (EGFR), were prominently phosphorylated in the cells. Dasatinib (a multi-target inhibitor of Abl1, SRC, and c-Kit) and lapatinib (a potent EGFR and ErbB2 inhibitor) significantly affected the phosphorylation of many peptides in the NCC-cOV1-C1 cells (Fig. 5B). Dasatinib and lapatinib decreased the phosphorylation of 82 and 9 peptides, respectively. The eighty-two peptides on 23 genes were significantly (P<0.05) modulated by dasatinib (Supplementary Table 5). It is noteworthy that the peptides derived from Abl, SRC, and c-Kit were dephosphorylated by dasatinib as expected. The 9 peptides on five genes were significantly (P<0.05) modulated by lapatinib (Fig. 5C). The kinase activity of the following peptide sites was inhibited: EGFR (Y100, Y1197), platelet-derived growth factor receptor precursor β-type (PDGFR-β, Y1009), SRC (Y340, Y341), fibroblast growth factor receptor1 (FGFR1, Y766), and insulin receptor (INSR, Y100) (Fig. 5C). These kinases including EGFR, PDGFR-β, SRC, FGFR1 and INSR were predicted as targets of lapatinib. It is noteworthy that the peptides derived EGFR were dephosphorylated by lapatinib as expected (Supplementary Table 5). To examine downstream of EGFR and Src, western blot verified the obvious decrease of c-Myc (Fig. 6A and B) and RAS (Fig. 6A and C) in NCC-cOV1-C1 cells by lapatinib and dasatinib.

DISCUSSION

To identify candidate anticancer drugs for CCC, we conducted a series of experiments including establishment of a novel patient-derived CCC cell line, anticancer drug screening, and kinase profiling. Currently, copy number variants (CNV) of CCC were revealed, which included deletion of cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B), amplifications of zinc finger protein 217 (ZNF217), protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D), AKT Serine/Threonine kinase 2 (AKT2), and MET Proto-Oncogene, Receptor Tyrosine Kinase (MET). In our cell line, amplification of the 17q23.2 encompassing hepatocyte nuclear factor-1 β (HNF1β) was detected (Supplementary Table 2 and Fig. 2). HNF1β is a member of HNF1 family, a group of transcription factors, which plays important roles in regulation of transcription of the liver specific genes. Tsuchiya et al. reported that the expression of HNF1β is significantly upregulated in CCC cell lines, whereas non-CCC cell lines rarely express HNF1β, which was consistent with our finding. In addition, they also reported that reduction of HNF1β induced apoptotic cell death in CCC cell lines. Yamamoto et al. reported that incidence of HNF1β immunoreactivity differed significantly between CCCs and other subtypes of ovarian cancer, which suggested that HNF1β would be an excellent marker for discriminating CCCs from the other subtypes. Our immunohistochemistry of NCC-cOV1-C1 cells and the tumor tissue were positive for HNF1β, which was consistent with their reports. We found that the standard daily CAP regimen for ovarian epithelial carcinoma (4-hydroperoxy cyclophosphamide, doxorubicin, and cisplatin) and the standard regimen for CCC (paclitaxel and carboplatin) were not effective for NCC-cOV1-C1 cells. These observations were consistent with the patient’s clinical course. The proliferation of NCC-cOV1-C1 cells was inhibited by idarubicin HCl, vincristine, and vorinostat at relatively low concentrations (Fig. 3G, L, and M). Idarubicin HCl is an anthracycline antineoplastic drug that inserts itself into DNA and prevents it from unwinding by interfering with the enzyme topoisomerase II. Vincristine is a chemotherapy medication for acute lymphocytic leukemia, acute myeloid leukemia, Hodgkin’s disease, neuroblastoma, and small cell lung cancer. Vorinostat is an inhibitor of histone deacetylases (HDAC) and is used for cutaneous T-cell lymphoma. Consistent with our observations, Cooper et al. reported that vorinostat reduced cell viability and increased apoptosis in vitro models of ovarian cancer. We also found that NCC-cOV1-C1 cells did not respond to CPT-11, which was consistent with Okamoto et al. report. Okamoto et al. demonstrated that no significant survival benefit was found for CPT-11 and cisplatin in randomized phase III CCC-specific clinical trial. NCC-cOV1-C1 cells are a valuable resource for representing real feature with resistant to standard CCC drugs such as paclitaxel and CPT-11 and offering new drug candidates.

Comprehensive kinase activity assays on PamChip peptide microarrays enable rapid drug target screening, and kinase inhibitors account for the majority of molecular target drugs. We found that SRC and EGFR were highly activated in NCC-cOV1-C1 cells; and dasatinib and lapatinib inhibited kinase activity of those kinases and gene expression of the downstream gene such as c-Myc and RAS. Mutations or overexpression of SRC is associated with a variety of tumorigenic phenotypes such as angiogenesis, proliferation, invasion, motility, and chemoresistance. Manek et al. demonstrated that SRC expression was most common in CCC in which 58.5% of cases expressed SRC. They also reported that SRC expression was associated with shorter overall survival (log rank P=0.002). Parsons et al. reported that SRC protein and intrinsic SRC tyrosine kinase activity were significantly elevated in tumors and cell lines of CCC. These observations were consistent with the patient’s molecular profiles and clinical course. Additionally, in SRC-expressing cells, in vitro inhibition of SRC signaling reduced growth, suggesting that active SRC signaling could be a novel therapeutic target for CCCs. Consistent with previous findings, we found that SRC kinase activity was activated in NCC-cOV1-C1 cells, and was significantly suppressed by dasatinib with decrease of downstream gene, c-Myc. This identification consisting of inhibition of SRC...
consistent with these previous reports; we also found that the EGFR inhibitor lapatinib selectively inhibited five kinases (EGFR, INSR, FGFR1, PDGFR-β, and SRC) relative to treatment with DMSO (the control) in NCC-cOV1-C1 cells. Our findings suggest that inhibition of EGFR kinase activity and decrease of expression in RAS could be used as a therapeutic intervention for patients with CCCs.

We demonstrated that the patient-derived cancer cells are a useful resource in drug screening and kinase profiling. Kinase activity and decrease of expression in downstream gene, c-Myc may provide suitable targets for therapeutic intervention in CCCs.

EGFR is a cell-surface receptor tyrosine kinase capable of activating both mitogen-activated protein kinase and the PI3K/AKT pathway. Its activation causes phosphorylation of BAD and Bcl-2, and finally inhibits chemotherapy-induced apoptosis in CCCs. Fujimura et al. detected EGFR expression in 61% of CCC tumors. Our results are consistent with these previous reports; we also found that the EGFR inhibitor lapatinib selectively inhibited five kinases (EGFR, INSR, FGFR1, PDGFR-β, and SRC) relative to treatment with DMSO (the control) in NCC-cOV1-C1 cells. Our findings suggest that inhibition of EGFR kinase activity and decrease of expression in RAS could be used as a therapeutic intervention for patients with CCCs.

We demonstrated that the patient-derived cancer cells are a useful resource in drug screening and kinase profiling.
However, the results of this study were obtained from only a single cell line; more cell lines from different patients are needed to generate concrete results. In addition, our results should be validated in other patient-derived cancer models such as organoids and xenografts, before clinical trials. Further, evaluation of highly phosphorylated kinases and the relevant molecular pathway should be investigated by other proteomics techniques such as mass spectrometry. Our findings, along with future validations, will provide a deeper understanding of CCC, suggesting the possible utility of kinase activity profiling in drug development.

ABBREVIATIONS

AKT2, AKT Serine/Threonine kinase 2; Abl, ABL proto-oncogene; BAD, BCL2 associated agonist of cell death; BCR-ABL, breakpoint cluster region protein-ABL proto-oncogene; BRAF, Braf proto-oncogene; Bel-2, BCL2 apoptosis regulator; CCC, clear cell carcinoma; CCK8, cell counting kit-8; CNV, copy number variants, CPT-11, irinotecan; DMEM, Dulbecco’s Modified Eagle’s Medium; EGFR, epidermal growth factor receptor; FBS, Fetal Bovine Serum; FDA, United States Food and Drug Administration; FGFR1, fibroblast growth factor receptor 1; FIGO, international federation of Gynecology and Obstetrics; HDAC, histone deacetylase, HFN1B, hepatocyte nuclear factor-1B; IC50, half maximal inhibitory concentration; INSR, insulin receptor; MET, MET proto-oncogene receptor tyrosine kinase; MRI, magnetic resonance imaging; PDGFR-b, platelet-derived growth factor receptor precursor b-type; PI3K/AKT, phosphatidylinositol 3-kinase/Akt; PPM1D, protein phosphatase, Mg2+/Mn2+ dependent 1D; RPMI1640, Roswell Park Memorial Institute 1640; SNP, Single Nucleotide Polymorphism; STR: Short Tandem Repeats; ZNF217, zinc finger protein 217

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.jp) for English-language editing and their constructive comments on the manuscript. This research was supported by Japan Agency for Medical Research and Development under Grant Number 20ck010637h0001, “Study to Overcome the Limits of Cancer Genome-based Medicine using Patient-derived “Rare Cancer” Model” and the National Cancer Center Research and Development Fund (grant no. 30-A-2), Japan.

REFERENCES

1) Takano M, Kikuchi Y, Yaegashi N, et al. Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical staging. Br J Cancer. 2006;94:1369–1374.
2) Aure JC, Hoeg K, Kolstad P. Mesonephroid tumors of the ovary. Clinical and histopathologic studies. Obstet Gynecol. 1971;37:860–867.
3) Sugiyama T, Kamura T, Kigawa J, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer. 2000;88:2584–2589.
4) Itamochi H, Kigawa J, Sugiyama T, et al. Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary. Obstet Gynecol. 2002;100:281–287.
5) Bairoch A. The Cellosaurus, a Cell-Line Knowledge
Resource. J Biomol Tech. 2018;29:25–38.
6) Ulrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–212.
7) Hunter T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest. 2007;117:2036–2043.
8) Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–2516.
9) Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007;23:657–663.
10) Olshen AB, Venkatraman ES, Lucito R, et al. Circular binary segmentation to array CGH data for downstream analyses. Bioinformatics. 2005;21:4084–4091.
11) Anderson JC, Willey CD, Mehta A, et al. High throughput kinomic profiling of human clear cell renal cell carcinoma identifies kinase activity dependent molecular subtypes. PLoS One. 2015;10:e0139267.
12) Ho Y, Takahashi M, Yoshida A, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Sci Rep. 2017;7:4712.
13) Oyama R, Takahashi M, Yoshida A, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Sci Rep. 2017;7:4712.
14) Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–2516.
15) Willenbrock H, Fridlyand J. A comparison study: applying segmentation algorithm for the analysis of array CGH data. Biostatistics. 2004;5:557–572.
16) Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–D947.
17) Sikkema AH, Diks SH, den Dunnen WF, et al. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res. 2009;69:5987–5995.
18) O′Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65:4500–4505.
19) Tsunemi T, Doi K, Akiyama K, et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther. 2001;1:85–94.
20) Kuo KT, Mao TL, Chen X, et al. DNA copy numbers profiles in affinity-purified ovarian clear cell carcinoma. Clin Cancer Res. 2010;16:1997–2008.
21) Yamashita Y, Akatsuka S, Shinjo K, et al. Met is the most frequently amplified gene in endometriosis-associated ovarian clear cell adenocarcinoma and correlates with worsened prognosis. PLoS One. 2013;8:e57724.
22) Tsuchiya A, Sakamoto M, Yasuda J, et al. Expression profiling in ovarian clear cell carcinoma: identification of hepatocytic nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol. 2003;163:2503–2512.
23) Yamamoto S, Tsuda H, Aida S, et al. Immunohistochemical detection of hepatocyte nuclear factor 1beta in ovarian and endometrial clear-cell adenocarcinomas and nonneoplastic endometrium. Hum Pathol. 2007;38:1074–1080.
24) Orlandi P, Barbara C, Bocci G, et al. Idarubicin and idarubicinol effects on breast cancer multicular spheroids. J Chemother. 2005;17:663–667.
25) Gidding CE, Kellie SJ, Kamps WA, et al. Vincristine revisited. Crit Rev Oncol Hematol. 1999;29:267–287.
26) Richon VM, Emiliani S, Verdin E, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998;95:3003–3007.
27) Cooper AL, Greenberg VL, Lancaster PS, et al. In vitro and in vivo histone deacetylase inhibitor therapy with suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer. Gynecol Oncol. 2007;104:596–601.
28) Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–2516.
29) Shih I, Boccia G, et al. Idarubicin and idarubicinol effects on breast cancer multicular spheroids. J Chemother. 2005;17:663–667.
30) Richon VM, Emiliani S, Verdin E, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A. 1998;95:3003–3007.
31) Cooper AL, Greenberg VL, Lancaster PS, et al. In vitro and in vivo histone deacetylase inhibitor therapy with suberoylanilide hydroxamic acid (SAHA) and paclitaxel in ovarian cancer. Gynecol Oncol. 2007;104:596–601.
32) Sugiyma T, Okamoto A, Enomoto T, et al. Randomized phase III trial of irinotecan plus cisplatin compared with paclitaxel plus carboplatin as first-line chemotherapy for ovarian clear cell carcinoma: JOGOG3017/GCIG Trial. J Clin Oncol. 2016;34:2881–2887.
33) Okamoto A, Glasspool RM, Mabuchi S, et al. Gynecologic Cancer Intergroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014;24:S20–S25.
34) Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500:415–421.
35) Verese M, Talloen W, Rockx C, et al. Response prediction to a multitargeted inhibitor in cancer cell lines and xenograft tumors using high-content tyrosine kinase peptide arrays with a kinetic readout. Mol Cancer Ther. 2009;8:1846–1855.
36) Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4:470–480.
37) Duxbury MS, Ito H, Zinner MJ, et al. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res. 2004;10:2307–2318.
38) Manek R, Pakzamir E, Mhawech-Fauceglia P, et al. Targeting src in endometriosis-associated ovarian cancer. Oncogenesis. 2016;5:e251.
39) Parsons JT, Parsons SJ. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr Opin Cell Biol. 1997;9:187–192.
40) Matsuzaki S, Yoshino K, Ueda Y, et al. Potential targets for ovarian clear cell carcinoma: a review of updates and future perspectives. Cancer Cell Int. 2015;15:117.
41) Fujimura M, Hidaka T, Saito S. Selective inhibition of the novel, reversible epidermal growth factor receptor by ZD1839 decreases endometrial clear-cell adenocarcinoma: a review of updates and future perspectives. Cancer Cell Int. 2015;15:117.