Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse

Emma Cahill1,2,3, Marine Salery1,2,3, Peter Vanhoutte1,2,3 and Jocelyne Caboche1,2,3 *

1 UMR 7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central, Paris, France
2 UMR7224, CNRS, Physiopathologie des Maladies du Système Nerveux Central, Paris, France
3 University Pierre and Marie Curie-Paris 6, Paris, France

*Correspondence: Jocelyne Caboche, UMR 7224, Signalexikon Intracellulaire et Neuroadaptations, Université Pierre et Marie Curie-Paris 6, Paris 75005, France
e-mail: jocelyne.caboche@smj.upsse.fr

INTRODUCTION

Drug addiction can be considered as a chronic and relapsing psychiatric disorder induced by repeated pharmacological manipulation of the so-called mesolimbic reward circuitry by drugs of abuse. It can be viewed as maladaptive neural plasticity that occurs in vulnerable individuals in response to repeated exposure to drugs. Thus, addictive drugs change brain properties that normally permit us to adapt to environmental stimuli (Kelley, 2004; Everitt and Robbins, 2005). By changing motivational circuitry, addictive drugs progressively orient behavior toward drug-seeking and drug-taking strategies that are life-long behavioral changes (Hyman et al., 2006). The persistence of these behavioral changes is a critical event onto striatal plasticity in response to drugs of abuse. A major downstream target of striatal D1R is the extracellular signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. However, besides these classical signaling pathways, it now becomes evident that direct and indirect interactions between DA-R and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. The extracellular signal-regulated kinase (ERK) signaling pathway, downstream of D1R, recent evidence implicates a cAMP-independent crosstalk mechanism by which the D1R potentiates NMDAR-mediated calcium influx and ERK activation. The mounting evidence of reciprocal modulation of DA and glutamate receptors adds further intricacy to striatal synaptic signaling and is liable to prove relevant for addictive drug-induced signaling, plasticity, and behavior. Herein, we review the evidence that built our understanding of the consequences of this synergistic signaling for the actions of drugs of abuse.

Keywords: receptors, addiction, dopamine, crosstalk, signaling, ERK, GPCR, striatum

Despite their distinct targets, all addictive drugs commonly abused by humans evoke increases in dopamine (DA) concentration within the striatum. The main DA Guanine nucleotide binding protein coupled receptors (GPCRs) expressed by medium-sized spiny neurons of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. These two DA GPCRs are largely segregated into distinct neuronal populations, where they are co-expressed with glutamate receptors in dendritic spines. Direct and indirect interactions between DA GPCRs and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. The main DA GPCRs expressed by MSNs of the striatum are the D1R and D2R, which are positively and negatively coupled to cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. However, besides these classical signaling pathways, it now becomes evident that direct and indirect interactions between DA-R and glutamate receptors are the molecular basis by which DA controls striatal plasticity and behavior induced by drugs of abuse. The extracellular signal-regulated kinase (ERK) signaling pathway, which is activated in a DA-D1R signal-regulated kinase (ERK) kinase pathway. ERK activation by drugs of abuse behaves as a key integrator of D1R and glutamate NMDAR signaling. Once activated, ERK can trigger chromatin remodeling and induce gene expression that permits long-term cellular alterations and drug-induced morphological and behavioral changes. Besides the classical cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, respectively. However, besides these classical signaling pathways, it now becomes evident that direct and indirect interactions between DA-R and glutamate receptors are the molecular basis by which DA modulates glutamate transmission and controls striatal plasticity and behavior induced by drugs of abuse. The extracellular signal-regulated kinase (ERK) signaling pathway, which is activated in a DA-D1R and NMDAR dependent manner in MSNs in response to drugs of abuse, forms the central core of striatal plasticity and adaptive behaviors in response to these drugs (Girault et al., 2007). We review herein evidence from the literature indicating that D1R-glutamate convergence onto ERK signaling in the striatum is a critical event onto striatal plasticity in response to drugs of abuse.
STRIATAL MSN AT THE JUNCTION OF DA AND GLUTAMATE TRANSMISSION

THE DA AND GLUTAMATE HYPOTHESES OF ADDICTION

Despite their different principal targets of action, common drugs of abuse have a shared secondary consequence on DA transmission (Di Chiara and Imperato, 1988). Dialysis for extracellular levels of DA in the striatum reveals large increases from basal levels by administration of drugs abused by humans including cocaine, amphetamines, and morphine. This increase in DA levels is significantly higher in the ventral region, NAc, than in the dorsal part. Both regions receive dense DA afferents from the ventral tegmental area (VTA). In a physiological context, DA transmission in the striatum influences motor control, decision making, attention and working memory, and learning of reward associated stimuli (Robbins and Everitt, 2002). Therefore, it is believed to be involved in disorders where these processes are perturbed such as Parkinson’s disease (PD), Huntington’s disease, attention deficit hyperactivity disorder (ADHD), schizophrenia, Tourette’s syndrome as well as addiction. The DA hypothesis of addiction has gained significant support but the precise role of DA in reward anticipation and motivation is still under intense investigation (Wise and Bozarth, 1987). DA transmission is not believed to register the context of the drug experience, rather it is an associative learning performed by cortical and subcortical glutamatergic innervations to the striatum, which supports this (Hyman et al., 2006). While an acute treatment with drugs such as cocaine does not drastically alter the concentration of glutamate liberated in the striatum, the repeated administration of or self-administration of drugs results in a potentially glutamate availability at the synapse (Pierce et al., 1996; Zhang et al., 2001). This loss of control of glutamate transmission has been proposed to underlie the shift in behavioral control that is seen after repeated drug treatment (Kalivas, 2009). Importantly these two important transmission systems engaged by drugs of abuse, namely DA and glutamate, converge anatomically in the striatum.

MEDIUM-SIZED SPINY NEURONS INTEGRATE DA AND GLUTAMATE SIGNALS

The DA and glutamatergic inputs converge onto the dendrites of the major cell type of the striatum, the MSN. The GABAergic MSNs are generally divided into two groups, based in part on their expression of either the DA D1 receptor (the D1R) or the D2 receptor (D2R; Gerfen et al., 1990). Each MSN population controls the striatal inhibitory output to different basal ganglia structures forming the direct, D1 expressing, and indirect, D2 expressing, striatal projection pathways and are both acted on by exposure to drugs of abuse (Smith et al., 2013). The MSN of the direct pathway inhibits the substantia nigra reticulata (SNr) neurons, which are GABA neurons with high basal firing rate. The MSNs of the indirect pathway have an opposite effect because of their inhibitory link formed by projections to the external globus pallidus (GPe; GABAergic), which in turn project to the subthalamic nucleus (STN; Glutamatergic). Therefore the indirect pathway leads to the desinhibition of SNr. Activation of the direct striatonigral pathway desinhibits thalamocortical neurons. The indirect pathway has the opposite effect. DA reinforces the direct pathway and inhibits the indirect pathway, leading to harmonious functions of the basal ganglia. Recent evidence, using genetically encoded calcium sensors, has confirmed original assumptions that a balance exists between the direct and indirect pathway and that generation of movements requires the initiation and selection of wanted motor behaviors (Carlsson et al., 1998; Gui et al., 2013). This is supported by studies where either population were artificially activated using light activated Channel rodeopsin. Impressively, when the direct pathway was activated in this manner the mice produced more ambulation in an open field and, accordingly, the activation of the indirect pathway lead to an inhibition of movement (Kravitz et al., 2010). Both pathways are act on by DA, and while a combinatorial effect is undoubtedly central for the actions of drugs of abuse many studies have highlighted the antagonist relationship between them (recently reviewed Lobo and Nestler, 2011). In general terms, the activation of the D1R expressing MSNs promotes initiation of motor behaviors along with drug reward and sensitizing properties, while the D2R seem to exert an inhibitory influence on these behaviors.

STRIATAL DA RECEPTORS

Dopamine transmission is detected by G protein-couple receptors (GPCRs), also known as seven-transmembrane receptors. These are metabotropic receptors that share features such as the interaction with G-proteins, from which they gain their name, and the seven alpha-helices transmembrane domain structure that are interconnected by alternating intracellular and extracellular loops. The het erotrameric G-proteins are formed by a combination of an α-subunit and γ dimer, that can each lead to activation of signaling effectors. Exactly how the DA receptors couple to the G-proteins is not yet fully understood, but two models have been proposed (Lohse et al., 2008).

The striatum contains all the subtypes of DA GPCR to different extents (Missale et al., 1998). Since the late 1970s the DA receptors have been subdivided into two families, originally based on the prediction that one family is positively coupled to adenyl cyclase via Gs proteins and cAMP production, and the other to its inhibition via Gi proteins (Kebabian and Calne, 1979). After the identification of D1 and D2 receptors came the molecular cloning and the subsequent discovery of a D3, D4, and D5 (previously known as the D1b in the rat). The D1R, D2R (Le Moine and Bloch, 1995), and D5R (Rivera et al., 2002) are expressed both in the dorsal and ventral striatum, while the D3 is preferentially expressed in the ventral striatum (Levesque et al., 1992). The D4R, relatively speaking, is not as strongly expressed but is detectable in the striatum (Ariano et al., 1997).

Focus on striatal D1R: regulation by drugs of abuse

As already stated, there is a segregation of D1R and D2R expression in the two populations of MSNs. These two founding members of the DA receptor family are GPCR that are distinguished on the basis of their coupling to cAMP production and PKA-mediated signaling (Neve et al., 2004). Although a population of MSN exists that co-express D1R and D2R, the exact percentage seems to depend on the method of analysis, however, estimates are in the region of 17% in the ventral striatum (Bertran-Gonzalez et al., 2008). Accumulated evidence suggests that from the first
drug exposure, essential signaling, and transcriptional events necessary for drug-induced alterations in behavior are set in motion primarily in D1R + MSN of the “direct” or striato-nigral pathway (Valent et al., 2000; Bertran-Gonzalez et al., 2008).

The D1R is expressed in the major brain regions of the reinforcemen
ting reinforcement circuitry (i.e., the cerebral cortex, limbic system, thalamus) and within the striatum it is strongly expressed in both dorsal and ventral regions. At the cellular level, the D1R localizes principally along the perisynaptic neck regions of dendritic spines (Huang et al., 1992). A similar conclusion was drawn from immunohistochemical analysis of cortical tissue from humans and primates where the D1R signal was more “extrasynaptic” (Smiley et al., 1994). In striatal spines, the D1R comes into close proximity with the glutamate receptors at the post synaptic density (PSD), and they are extensively interconnected via scaffold proteins and intracellular signaling proteins.

Pre-treatment with SCH23390, a D1R antagonist, inhibited acute cocaine-induced locomotor activity and prevented the development of locomotor sensitization in a “one-shot” protocol (Fontana et al., 1993; White et al., 1998). Later studies confirmed that SCH23390 but not D2R antagonist raclopride, prevented the development of locomotor sensitization to cocaine, and furthermore a contribution of the NMDAR to this behavior was identified (Valent et al., 2000).

Two lines of D1R KO mice lacked the acute locomotor and stereotyped behaviors normally induced by cocaine (Xu et al., 1994; Miner et al., 1995). This altered response was specific to D1R homogenous knockout mice since heterozygous mice still responded (Miner et al., 1995). In a further study, the chronic effects of cocaine were also perturbed, as the animals did not show sensitization behavior after repeated cocaine administration (Xu et al., 2000). However, the D1R KO have hyper basal locomotor activity, which remained elevated in these studies, so the use of a locomotor readout for cocaine’s effects may not be as relevant as other measures. Although D1R KO mice developed a normal conditioned place preference (CPP) to cocaine (Miner et al., 1995), they did not develop self-administration of cocaine, despite having learned sufficiently the operant association for food (Caine et al., 2007). The D1R contribution to self-administration therefore appeared to be function of the reward and whether context or operant reward learning is recruited relied differentially on functional D1R.

STRIATAL GLUTAMATE RECEPTORS

The striatum receives vast glutamatergic inputs from cortical and subcortical regions, which converge anatomically with the DA inputs. Early studies used various antagonists of glutamate receptors to show role for glutamate in the development of drug-induced behaviors (Kaufert et al., 1989), and lesion studies confirmed this contribution came from the glutamate circuitry coming from hippocampus, the PFC, and amygdala onto the NAc (for review, Wolf, 1996). In MSNs, ionotropic and metabotropic glutamate receptors are expressed in close proximity to the DA GPCR (Hara and Pickel, 2005). This morphological co-localization of D1 and glutamate receptors provides a matrix of possibilities for interactions, including signaling crosstalk and direct interaction in protein complexes.

Metabotropic glutamate receptors

Glutamate, like DA, can also activate GPCRs. Eight mGluRs are classified into three groups based on sequence homology and G protein interactions: group I (mGluR1, mGluR5), group II (mGluR2, mGluR3), and group III (mGluR4, mGluR6, mGluR7, and mGluR8; Ferraguti and Shigemoto, 2006).

mGluR1 and mGluR5, which are Gq protein-coupled, are mostly located postsynaptically (Mitrano and Smith, 2007). Their activation induces mobilization of intracellular Ca2+ stores and activation of phospholipase C (Schoepp and Conn, 1993). mGluR5 KO animals do not self-administer cocaine and do not display locomotor sensitization (Chiamulera et al., 2001). Systemic administration of the mGluR5 receptor antagonist, MPEP, decreased cocaine self-administration (Kenny et al., 2003, 2005; Lee et al., 2005; Platt et al., 2008) and attenuated the ability of a priming injection of cocaine (Lee et al., 2005) or cocaine-associated cues (Backstrom and Hyttna, 2007) to reinstate cocaine seeking. Administration of MPEP into the NAcc shell attenuated cocaine priming-induced reinstatement of drug seeking, an animal model of relapse (Rumaeresan et al., 2009). Along with these data clearly indicated that activation of mGluR5 specifically in the NAcc, may promote the reinstatement of drug seeking.

The activation of the presynaptic Group II mGluRs inhibits cAMP and PKA signaling as they are coupled to Gq/11 proteins. The reduction in extrasynaptic glutamate availability after chronic cocaine treatment and withdrawal, due to disruption of the cysteine-glutamate exchanger, removes the tonic activation of group 2 mGluR that would normally inhibit glutamate release. This can explain why during reinstatement, the challenge, or renewed drug experience or cue evokes a potentiated glutamate response, which is not seen with an acute injection of cocaine (Pierce et al., 1996).

The group 3 mGluR contain mGluR4, mGluR6, mGluR7, and mGluR8 and similarly to Group 2 they are negatively coupled to adenyl cyclase activity and found presynaptically in the glutamatergic terminals of the striatum. When an agonist (L-AP4) of the group 3 mGluR was administered into the striatum of cocaine-naive mice there was no effect on locomotor activity, however, in mice subsequently treated with cocaine the compound was able to prevent the induction of locomotor sensitization (Mao and Wang, 2000).

Focus on NMDAR: regulation by drugs of abuse

The ionotropic glutamate receptors are classed based on their affinity for synthetic agonists: N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate. These are ligand gated ion channels, composed of heteromeric complexes of four integral membrane protein subunits and have long intracellular cytoplasmic tails. Unlike the AMPAR or kainate receptors, the NMDAR channel is blocked by the presence of a magnesium ion in a voltage-dependent manner. In this way they respond to the binding of glutamate only when accompanied by a depolarization of the post synaptic membrane (Mayer et al., 1984). Furthermore their activation requires the binding of a co-agonist (Kleckner and Dingledine, 1988). The NMDAR are permeable to monovalent cations and calcium, and so provide a major entry point for triggering Ca2+ dependent intracellular
pathways. The NMDAR subunits are grouped into classes: GluN1, GluN2A-D, and GluN3A-B (formally denoted NR1, etc.). The different subunits contain different agonist binding sites, which infer them each with a specific pharmacology. The GluN1 or GluN3 are obligatory to form the ion channel and contain the binding site for the co-agonists glycine (Kleckner and Dingledine, 1988) or D-serine (Moh et al., 2000) and it is the GluN2 subunits that contain the site for glutamate (Laube et al., 1997).

Context-dependent sensitization induced by single exposure to cocaine is completely prevented in mice pre-treated with the selective NMDAR antagonist, MK801, in a two-injection protocol (Valjent et al., 2010), as well as in the repeated injection protocol (Schendk et al., 1993). Similarly, GluN1-knockdown mice showed an attenuation of sensitization induced by cocaine (Ramsey et al., 2008). The precise location at which NMDA receptors are critical appears not to be limited to DA neurons themselves. Mice with specific inactivation of GluN1 in DA neurons did not show alteration of short-term sensitization, but a decreased long-term sensitization (Engebll et al., 2008; Zwieda et al., 2008).

In contrast, expression of mutant NMDARs in D1-containing MSNs prevented cocaine sensitization (Hesuert and Paimon, 2005). Altogether, these observations support the hypothesis that NMDARs located in MSNs, in the striatum, and/or on their terminals in the VTA, as indicated by the effects of local infusion of antagonists (Veina and Queen, 2000), contribute to the development of sensitization.

One day after acute cocaine treatment the total expression levels of the NMDAR subunits do not change in the NAcc, however, their subcellular localization is altered, with an increased internalization (Schumnn and Yaka, 2009). After a 3-weeks withdrawal from repeated cocaine exposure, global expression levels and surface expression of the NMDAR subunits are increased, specifically in the NAcc. This indicates that during withdrawal some long-term processes are occurring to heighten the glutamatergic receptor levels in the NAcc.

SIGNALING CROSSTALK BETWEEN D1R AND GLUTAMATE RECEPTORS

D1R-MEDIATED PKA REGULATION AND ITS INFLUENCE ON GLUTAMATE RECEPTORS

An acute injection of cocaine does not increase the levels of D1R protein in the dorsal striatum but trigger intracellular signaling cascades that are capable of modulating cell excitability via interactions with ion channels, including the glutamatergic AMPAR and NMDAR. In the striatum, as the D1-like family of DA receptors are coupled to stimulatory Gαs G-proteins (see Hervé, 2011, for review), the most widely studied consequence of G-protein activation downstream of DA receptors is their influence on PKA-regulated signaling.

After the binding of DA to D1R a change in G-protein association enables the activation of the Ca2+-insensitive adenyl cyclase 5 (AC5) isoform. The major target of cAMP is the cAMP-dependent PKA that has many targets including the glutamate receptor subunits. The duration of PKA activation is determined by feedback loops due to the activation of phosphodiesterases (PDEs) that are expressed in the striatum and limit cAMP production (Menniti et al., 2006). Protein kinase A rapidly phosphorylates the NMDAR (Leonard and Hell, 1997) in response to DA, even after just 30 s in presence of a DA T inhibitor (Snyder et al., 1998). This phosphorylation occurs at Ser897 of the GluN1 subunit (Tingley et al., 1997). Phosphorylation of NMDAR subunits is a well-characterized mechanism to control their trafficking to the membrane (Scott et al., 2001; Lau and Zukin, 2007). Ion channels are also targeted by PKA and their phosphorylation can alter the conductance state of the cell. PKA mediated phosphorylation of sodium channels leads to hyperpolarization of MSNs (Schifflinm et al., 1995), and can indirectly diminish N and P/Q-type channel calcium currents that are largely localized to dendrites. On the other hand, L-type currents, at the soma, are potentiated by a PKA mechanism that boosts cellular conductance (Surrinier et al., 1995). Antagonists of the L-type Ca2+ channels can prevent the reinstatement of cocaine seeking, this was linked to the activation of Ca2+/CaM-dependent kinase CaMKII and regulation of AMPAR trafficking (Anderson et al., 2008).

PKA REGULATION OF DARPP-32 AND INFLUENCE ON GLUTAMATE RECEPTORS

A number of the intermediates between PKA and its transmembrane protein targets are kinases and/or phosphatase particularly enriched in the striatum. In the late 80s, the Greengard group characterized many of these, including ARPP-16 (cAMP-regulated phosphoprotein of Mr 16), ARPP-19, ARPP-21 (regulator of calmodulin signaling), ARPP-39, and ARPP-90 (Rap1Gap, Walaas and Greengard, 1993). ARPP-16 and ARPP-19 phosphorylation was confirmed to be strictly dependent on the D1R (Dulubova et al., 2001). DA and cAMP regulated phosphoprotein of Mr 32kDa (DARPP-32) was identified before many of the ARPPs and has received more attention in the context of drugs of abuse as the expression of DARPP-32 is most evident in neurons of the ventral and dorsal striatum (Walaas et al., 1983).

In the context of addiction, the knockout mice for DARPP-32 had diminished hyper-locomotor responses at low doses of acute cocaine (Iwserg et al., 1998; Hn et al., 1999). Locomotor sensitization to cocaine was absent in the DARPP-32 knockout when a two injection protocol of sensitization (TIPS) was used (Valjent et al., 2005) but not after repeated injections (Hn et al., 1999). PKA phosphorylates the Thr27 residue of DARPP-32 that permits it to act as an inhibitor of protein phosphatase 1 (PP1, Hemmings et al., 1984). By this means, DARPP-32 supports PKA driven activity, in particular certain substrates such as the phosphorylation of GluR1 at Ser845 and GluN1 at Ser897. Additional phosphorylation sites regulate DARPP-32 activity including Thr27 by Gsk3, Ser29 by CK2, and Ser130 by CK1 (see Walaas et al., 2011, for review). The Thr27 phosphorylation allows DARPP-32 to regulate its own activity by inhibiting PKA and, in basal conditions this site is phosphorylated. The Ser29 site is located near a nuclear export signal and aids DARPP-32 to remain outside the nucleus when phosphorylated (Stephanovich et al., 2008). The Ser130 residue also allows DARPP-32 to regulate its own activity because it inhibits the dephosphorylation of the Thr27 site by protein phosphatase 2B (PP2B). The gene encoding DARPP-32, pp1r1b, is subject to polymorphisms in humans that gives rise to a truncated form.
When Wittman and colleagues investigated the potentiation of activity plus the D2R-MSN driven hyperactivity. The lack of effect on basal locomotion in the full knockout may inhibition of activity was seen in the D2R conditional knockout. by the distance traveled in an open field maze, while a dis-

The loss of DARPP-32 in either population prevented the induc-

Finally, this mouse line had a lower breaking point in a food

Importantly, it was recently shown that D1R and NMDAR co-stimulation, as well as cocaine in vivo, activated Fyn and phos-

As for the inactivation of Fyn by an interesting candidate is striatal enriched protein tyrosine phosphatase (STEP). STEP dephospho-

Using subcellular fractionation, Dunah and Standaert (2001) observed that the GluN2B and GluN2A contents of synaptosomal striatal membranes were increased after stimulation of the D1R and this was dependent on the action of protein tyrosine kinases. GluN2B can be phosphorylated by SFK/Fyn in vivo (Nakazawa et al., 2001), and D1R-induced enhancement in the synaptic con-

When Dunah and Standaert (2001) and Ser72 to alanine, DARPP-32 was unable to be exported from the nucleus to the cytoplasm and the opposite was observed if a phosphorylation-mimicking muta-

D1R modulation of NMDAR signaling via SFK

When Wittman and colleagues investigated the potentiation of NMDAR responses by clozapine (a last-resort medication for schizophrenia which has multiple actions including on the DA and Gla limbic system), they found that PFA inhibitors prevented the D1R enhancement of NMDAR transmission. Similar results were also found in presence of “P2P,” an inhibitor of the Src family kinases (SKs). They went on to show that the D1R stimulation potentiates calcium influx via NMDAR containing the GluN2B subunit (Wittmann et al., 2005). The SFK members expressed in the CNS are Src itself, Fyn, Lyn, Lck, and Yes. Src and Fyn are the most homologous in sequence and are both found in the PSD, where they potentiate NMDAR currents (Köhler and Seeburg, 1996).

Using subcellular fractionation, Dunah and Standaert (2001) observed that the GluN2B and GluN2A contents of synaptosomal...
of Fyn, and dephosphorylates the Tyr^{520} regulatory site but not the Tyr^{321} sites (Nguyen et al., 2002). STEF also dephosphorylates the mitogen activated protein kinase (MAPK) extracellular-signal regulated kinase (ERK; Pulido et al., 1998).

EXTRACELLULAR SIGNAL-REGULATED KINASE PATHWAY

A major consequence of drugs of abuse administration is activation of the MAP kinase/ERK (extracellular-signal regulated kinase) pathway: ERK1 and ERK2 are two closely related mitogen-activated protein kinases (MAP kinases), which are activated by phosphorylation of their activation loop by MAP-kinase and ERK-kinase (MEK 1 and 2). Valjent et al. (2000) demonstrated that acute cocaine elicits a rapid and transient increase in ERK1/2 phosphorylation within the ventral and dorsal striatum that remained after chronic administration. They further demonstrated that ERK1/2 activation was a common feature of most drugs of abuse (Valjent et al., 2001, 2004). Even if slight differences could be observed in the kinetic patterns of activation, nicotine, morphine, α9-tetrahydrocannabinol (THC) and psychostimulants, increased ERK1/2 phosphorylation occurred in the reward circuitry, including the prefrontal cortex, the striatum (dorsal part and NAc) as well as the extended amygdala. In all cases, and all structures drug-induced ERK activation was blocked by the D1R antagonist, SCH23390 (Valjent et al., 2004). 3,4-methylenedioxy-methamphetamine (MDMA, also known as ecstasy), and ethanol also activate ERK1/2 in the striatum (Salzmann et al., 2003; Iba et al., 2009). ERK1/2 activation induced by drugs of abuse is functionally relevant since S1327, a pharmacological compound that act on MEK and crosses the blood-brain barrier, prevented the long-term behavioral effects of cocaine, such as CPP, Valjent et al., 2005). A different MEK inhibitor, PD98059, injected into the NAcc either before or after CPP training sessions blocks subsequent amphetamine CPP expression (Gerdjikov et al., 2004). ERK activation is also reactivated in the reconsolidation of drug-associated memories since it was reactivated by exposure to the drug-associated context and because MEK inhibition was able to erase previously acquired CPP (Miller and Marshall, 2005; Valjent et al., 2006b).

Striatal ERK activation involves both D1R and NMDA glutamate receptors, since it is prevented by either a D1R antagonist or in D1R knock-out mice, or by an NMDA antagonist (Valjent et al., 2000, 2005). It is only observed in a subset of D1R-expressing striatonigral neurons (Bertran-Gonzalez et al., 2008). Therefore, the modulation of ERK1/2 activation in MSNs has been proposed to reflect the convergence of DA and glutamate signaling onto MSNs, thereby placing ERK1/2 as a coincidence detector, which detects the simultaneous arrival of contextual information coded by corticostriatal and thalamostriatal glutamate inputs, and the reward prediction error coded by DA neurons (Girault et al., 2007). Whether ERK1 or ERK2 is fully responsible for the molecular responses to cocaine remains to be established. Ablation of ERK1 in cultured cells resulted in a stimulus-dependent increase of ERK2 expression (Mazzucchelli et al., 2002), without altering the basal levels of ERK2 expression. This apparent competition of ERK1 with ERK2 signaling, that is removed in the knock-out mice, lends the interpretation of the independent role of each isoform complex. However, the generation of ERK1 mutant mice revealed that removal of ERK1 results in an hypersensitivity to the rewarding properties of morphine and the rewarding and psychomotor effects of cocaine (Mazzucchelli et al., 2002; Ferguson et al., 2006). Furthermore, increased synaptic plasticity L TP was observed in the NAcc, hippocampus, and lateral amygdala slices from ERK1 KO mice, an effect that was specifically reversed by U0126, a selective MEK inhibitor (Mazzucchelli et al., 2002). These findings strongly support that ERK2 is the dominant isoform for neuronal plasticity and behavioral adaptations induced by addictive drugs.

Upstream from MEK, ERK activation induced by cocaine involves the calcium-activated guanine nucleotide exchange factor Ras-GRF1 (Fasano et al., 2009; Fasano and Brambilla, 2011). Knock-out mice for Ras-GRF1 show a significant reduction, but not total inhibition, of cocaine-induced ERK activation, and locomotor sensitization. On the other hand, mice that over-expressed Ras-GRF1 were more sensitive to cocaine treatment than wildtype counterparts (Fasano et al., 2009; Fasano and Brambilla, 2011; Cerovic et al., 2013). Interestingly, Ras-GRF1 is preferentially associated with GluN2B subunits (Krapivinsky et al., 2003). The cross talk between D1R and NMDA receptors implicates a CAMP-independent pathway that increases responsiveness of GluN2B containing NMDA receptors to glutamate (Pascoli et al., 2011a). In striatal neurons, D1R stimulation leads to an increase in Ca^{2+} influx through NMDARs via SRF/Fyn-induced phosphorylation of the GluN2B subunit at Tyr^{417}. In parallel, PKA-mediated phosphorylation of DARPP-32 promotes ERK activation through an indirect inhibition of STEP. DARPP-32 thus prevents ERK dephosphorylation and contributes to enhanced glutamate mediated ERK activation (see Figure 1; Valjent et al., 2005).

As stated above, mGluR5 receptors seem to be critically involved in cocaine-induced long term behavioral alterations. A link between amphetamine-induced ERK phosphorylation and mGluR5 was found when using a mGluR5 antagonist, MPEP, which blocked amphetamine induction of ERK in the dorsal striatum (Choe et al., 2002). Surprisingly, this inhibition was not due to mobilization of intracellular Ca^{2+} stores since dantrolene – a compound that blocks intracellular Ca^{2+} release from ryanodine-sensitive stores – did not affect amphetamine effects. The Group I mGluR can modulate NMDAR signaling onto ERK activation via PKC (Niwender and Conn, 2010) and also via direct physical interactions (Perroy et al., 2008).

An elegant work from Pascoli et al. (2011b) recently showed that ERK activation was necessary for corticostriatal LTP induced by electrical stimulation in slices of mice treated with cocaine administration in vivo, and that this synaptic plasticity was necessary for locomotor sensitization (Pascoli et al., 2011b). Furthermore, it is now well established that this long-term behavioral adaptation to cocaine relies on gene regulation and new protein synthesis (Valjent et al., 2006a).

Under basal conditions, the unphosphorylated form of ERK1/2 is detected in the cytoplasm of neurons. Upon cocaine administration, the active di-phosphorylated ERKs translocate to the nucleus where they control both epigenetic
and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto-nuclear shuttling of ERK involves clathrin-dependent endocytosis originating from glia and genetic responses. This cyto

...
OLIGOMER FORMATION: A POTENTIAL MECHANISM FOR D1R-MEDIATED REGULATION OF GLUTAMATE TRANSMISSION

Interactions between DA-GPCR and NMDAR have been documented. The subcellular co-localization of D1R and NMDAR has been characterized in the striatum by electron microscopy (Hara and Pickel, 2005). This physical proximity supported the idea that the two receptors interact extensively. Lee et al. (2002) demonstrated that D1R interact with the GluN1 and GluN2A subunits, using co-immunoprecipitation studies from rat hippocampal cultures and transfection of Cos-7 cells and HEK293T lines (Pei et al., 2004). Three GST-peptides were constructed based on the sequence of the D1R.c-terminal tail (D1-t sequences) and interaction analyses were revealed between the D1-t2 sequence and the GluN1 subunit and D1-t3 sequence and the GluN2A subunit. Subsequent biochemical studies using synthesized peptides were able to determine, by mass spectrometry, that the interaction was likely due to electrostatic forces (Wood, et al., 2005). The GluN1 G3 cassette contains the Arg-rich epitope and the D1R contains a corresponding acidic epitope. Mass spectrometry showed that these two regions interacted and interestingly, they found that Ser397 in the D2 acidic epitope could possibly be phosphorylated by C-kinase and a phosphorylated version of the peptide bound five times more to the GluN1 Arg rich epitope. It remains to be shown in more native receptor environments if indeed this residue favors the association. The stability of the D1-2/GluN1 interaction after exposure to ligand remains unclear. In hippocampal neurons and in Cos-7 cells co-transfected with D1R and GluN1, Lee et al. (2002) saw a significant decrease in the co-immunoprecipitation of D1R or Glu after treatment with SKF-81297. However, no such changes were seen for the D3/GluN2A interaction.

The D1R/GluN1 interaction was also found in PSD enriched fractions of striatal tissue (Fiorenti et al., 2003). The authors showed that co-expression of the D1R/GluN1/GluN2B subunits allowed their trafficking to the membrane. It had previously been established that GluN1 alone is restricted to the ER and when GluN1 was co-transfected with D1R, the D1R signal also became restricted to the cytosol and ER. It is thought that oligomerization may hide ER retention signals allowing the passage of the receptor to the export machinery. Despite DA not affecting the BRET signal for association, it was shown that SKF-81297 treatment prevented the internalization of D1R but only when co-expressed with GluN1/GluN2B. This may suggest that once at the membrane in a formed complex, stimulation of the D1R stabilized its presence or association. The association of D1R with NMDAR not only alters trafficking from the ER to the plasma membrane but also along its surface. Scott and colleagues were able to observe that after just 3 mins from exposure to NMDA, Mn2+ spins contained more D1R (Scott et al., 2006). To explain how D1R signal in spines was increased by NMDA, the authors proposed that the direct interaction with NMDAR would “trap” the D1R to the synapse. They performed site-directed mutagenesis experiments and found that if Ser397 or Ser398 in the D2 domain were mutated to alanine, the GluN2A displaces CaMKII and reduced GluN2B phosphorylation at Ser1303 and calcium currents. Furthermore this interaction was shown to have functional consequences as a TAT-coupled peptide that mimicked the D2R region of interaction prevented acute horizontal activity and stereotyped behavior normally induced by cocaine. These studies suggest that direct interactions between DA-GPCR and NMDAR will provide another level for interaction, and perhaps possible interventions, with regards to addictive-drug induced signaling.

CONCLUSION PERSPECTIVES

Despite the usefulness of animal models for studies of addiction treatment the majority of therapeutic strategies for cocaine addiction still consist mostly of psychiatric therapy. For psychostimulants in general, there is a marked absence of effective treatments despite considerable neurobiological knowledge. Unlike some other “addictions” substitution regimes do not exist for cocaine. Most strategies are based on targeting the neurotransmitter receptors implicated in the reward circuitry. Dissimilar to alcohol or opiates, the withdrawal syndrome from cocaine is not as severe and thus, therapies can focus more on preventing relapse and craving rather than treating withdrawal symptoms. As DA plays a critical role in motivation, reward, and locomotion, studies have focused on modifying its functions in addicted humans. To counter the DA increase elicited by cocaine, a DA depletor reserpine was tested in humans but found to be ineffective (Winhusen et al., 2007). A D1R antagonist Ecopipam was tested...
in humans who were addicted to crack cocaine, and was found to reduce self-assessed measures of acute cocaine effects such as the “high” (Bonnah et al., 1999). However, with chronic administration, Ecopipam unfortunately failed as it actually increased chronic antagonism. Targeting solely DA transmission therefore has many caveats, in addition agonists or indeed antagonists may have non-specific effects on other DA regulated functions such as body temperature or cardiovascular function and the antagonists may alter mood and lead to non-compliance.

The glutamategic system is also implicated in cocaine addiction and therapeutic studies have turned to drugs, which should balance glutamate transmission. Unfortunately few studies have shown any promise in humans. The non-competitive glutamate receptor antagonists Amanadatine and Memantine (acting on the NMDAR) did not aid addicts to abstain from cocaine (Kampmann et al., 2006; Collins et al., 2007). Although promising in rodent cocaine studies and successful for human alcohol dependence, the drug Acamprosate (NMDA type Glu receptor antagonist and GABAa receptor agonist), proved ineffective for human cocaine addicts (Kampmann et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

Furthermore, in the early 1990s, a cocaine vaccine was developed. It was believed that the production of antibodies against the cocaine molecules could block its effects and thus help maintain abstinence. Unfortunately, getting patients to produce efficient levels of antibodies proved to be a great limit to this approach. A vaccine is currently under phase II multi-site clinical trials, but some reservations have been voiced regarding ethics of vaccines for addicts (Kampman et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

Furthermore, the early 1990s, a cocaine vaccine was developed. It was believed that the production of antibodies against the cocaine molecules could block its effects and thus help maintain abstinence. Unfortunately, getting patients to produce efficient levels of antibodies proved to be a great limit to this approach. A vaccine is currently under phase II multi-site clinical trials, but some reservations have been voiced regarding ethics of vaccines for addicts (Kampman et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

In summary, a considerable number of human and pre-clinical animal studies focus on restoring perturbations in the balance of DA and Glu transmission as a therapy for cocaine addiction, but from animal studies we now know that ERK signaling is a key coordinator in this system. We propose that D1R/GluN1 oligomers could participate also in this synergy. While blocking ERK activation by drugs is validated in animal models, its potential for human treatment is limited as it is a kinase implicated in a wide range of cellular processes. Instead, we content that targeting ERK signaling and its downstream partners (MSK-1 and histone phosphorylation, Elk-1 phosphorylation) within D1R-MSN specifically has many caveats, in addition agonists or indeed antagonists may have non-specific effects on other DA regulated functions such as body temperature or cardiovascular function and the antagonists may alter mood and lead to non-compliance.

The glutamategic system is also implicated in cocaine addiction and therapeutic studies have turned to drugs, which should balance glutamate transmission. Unfortunately few studies have shown any promise in humans. The non-competitive glutamate receptor antagonists Amanadatine and Memantine (acting on the NMDAR) did not aid addicts to abstain from cocaine (Kampmann et al., 2006; Collins et al., 2007). Although promising in rodent cocaine studies and successful for human alcohol dependence, the drug Acamprosate (NMDA type Glu receptor antagonist and GABAa receptor agonist), proved ineffective for human cocaine addicts (Kampmann et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

Furthermore, the early 1990s, a cocaine vaccine was developed. It was believed that the production of antibodies against the cocaine molecules could block its effects and thus help maintain abstinence. Unfortunately, getting patients to produce efficient levels of antibodies proved to be a great limit to this approach. A vaccine is currently under phase II multi-site clinical trials, but some reservations have been voiced regarding ethics of vaccines for addicts (Kampman et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

In summary, a considerable number of human and pre-clinical animal studies focus on restoring perturbations in the balance of DA and Glu transmission as a therapy for cocaine addiction, but from animal studies we now know that ERK signaling is a key coordinator in this system. We propose that D1R/GluN1 oligomers could participate also in this synergy. While blocking ERK activation by drugs is validated in animal models, its potential for human treatment is limited as it is a kinase implicated in a wide range of cellular processes. Instead, we content that targeting ERK signaling and its downstream partners (MSK-1 and histone phosphorylation, Elk-1 phosphorylation) within D1R-MSN specifically has many caveats, in addition agonists or indeed antagonists may have non-specific effects on other DA regulated functions such as body temperature or cardiovascular function and the antagonists may alter mood and lead to non-compliance.

The glutamategic system is also implicated in cocaine addiction and therapeutic studies have turned to drugs, which should balance glutamate transmission. Unfortunately few studies have shown any promise in humans. The non-competitive glutamate receptor antagonists Amanadatine and Memantine (acting on the NMDAR) did not aid addicts to abstain from cocaine (Kampmann et al., 2006; Collins et al., 2007). Although promising in rodent cocaine studies and successful for human alcohol dependence, the drug Acamprosate (NMDA type Glu receptor antagonist and GABAa receptor agonist), proved ineffective for human cocaine addicts (Kampmann et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

Furthermore, the early 1990s, a cocaine vaccine was developed. It was believed that the production of antibodies against the cocaine molecules could block its effects and thus help maintain abstinence. Unfortunately, getting patients to produce efficient levels of antibodies proved to be a great limit to this approach. A vaccine is currently under phase II multi-site clinical trials, but some reservations have been voiced regarding ethics of vaccines for addicts (Kampman et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

In summary, a considerable number of human and pre-clinical animal studies focus on restoring perturbations in the balance of DA and Glu transmission as a therapy for cocaine addiction, but from animal studies we now know that ERK signaling is a key coordinator in this system. We propose that D1R/GluN1 oligomers could participate also in this synergy. While blocking ERK activation by drugs is validated in animal models, its potential for human treatment is limited as it is a kinase implicated in a wide range of cellular processes. Instead, we content that targeting ERK signaling and its downstream partners (MSK-1 and histone phosphorylation, Elk-1 phosphorylation) within D1R-MSN specifically has many caveats, in addition agonists or indeed antagonists may have non-specific effects on other DA regulated functions such as body temperature or cardiovascular function and the antagonists may alter mood and lead to non-compliance.

The glutamategic system is also implicated in cocaine addiction and therapeutic studies have turned to drugs, which should balance glutamate transmission. Unfortunately few studies have shown any promise in humans. The non-competitive glutamate receptor antagonists Amanadatine and Memantine (acting on the NMDAR) did not aid addicts to abstain from cocaine (Kampmann et al., 2006; Collins et al., 2007). Although promising in rodent cocaine studies and successful for human alcohol dependence, the drug Acamprosate (NMDA type Glu receptor antagonist and GABAa receptor agonist), proved ineffective for human cocaine addicts (Kampmann et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.

Furthermore, the early 1990s, a cocaine vaccine was developed. It was believed that the production of antibodies against the cocaine molecules could block its effects and thus help maintain abstinence. Unfortunately, getting patients to produce efficient levels of antibodies proved to be a great limit to this approach. A vaccine is currently under phase II multi-site clinical trials, but some reservations have been voiced regarding ethics of vaccines for addicts (Kampman et al., 2011). Some success was had with N-acetylcysteine, which promotes the replacement of intracellular glutamate for cysteine via anti-porters and so reduced glutamate transmission. In a pilot study, it was found to diminish the taking of cocaine by the majority of patients after treatment in the study (Marlèiskan et al., 2007). This may encourage future studies aiming to tone down Glu transmission in cocaine addiction.
ERK1 and ERK2 by association through a kinase interaction motif. *EMBO J.* 17, 7357–7360. doi: 10.1093/emboj/17.24.7357
Ramos, A., L. Aldaco, A. C., Pina-Carreira, F., Salmon, P. A., Soderlund, P., et al. (2008). Genetic NMDA receptor deficiency disrupts acute and chronic effects of cocaine but not amphetamine. *Neuropharmacology* 55, 2750–2714. doi: 10.1016/j.neuropharm.2008.04.019
Rosen, A., Alberti, I., Arman, A. R., Nazon, A. A., De la Calle, A., and Moral, I. R. (2002). Molecular phototaxis of cut retinal neurons expressing the dopamine D3 receptor subtype. *J. Neurosci.* 18, 2049–2058. doi: 10.1523/JNEUROSCI.18-05-2049.2002.05.0582
Robinson, T., and Furtick, B. J. (2002). Limbic–striatal memory systems and drug addiction. *Neurobiol. Learn. Mem.* 78, 625–635. doi: 10.1016/S0741-5471(02)00111-5
Ronnekilde, M. K., Glass, P., Kampf, C., Blakely, H. L., Summer, G. B., Folles, S., et al. (1999). Attenuation of the epileptic effects of cocaine by the dopamine D3/D5 antagonist SCH 39166. *Arch. Gen. Psychiatry* 56, 1103–1108. doi: 10.1001/archpsyc.56.12.1101
Salter, M. W., and Kalia, L. V. (2004). Src kinases: a hub for NMDA receptor adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). *Front. Neuroanat.* 5:50. doi: 10.3389/fnana.2011.00050
Schumann, J., and Yaka, R. (2009). Prolonged withdrawal from repeated cocaine but not amphetamine. *Eur. J. Neurosci.* 30, 2932–2937. doi: 10.1111/j.1460-9568.2009.07010.x
Schiffmann, S. N., Lledo, P. M., and Vincent, J. D. (1995). Dopamine D1 receptor immunoreactivity in human and monkey cerebral cortex: predominant extrasynaptic localization in dendritic spines. *Brain Res. Mol. Brain Res.* 33, 2701–2714. doi: 10.1016/0169-328X(95)00089-9
Schoepf, D. D., and Conn, P. J. (1993). Metabotropic glutamate receptors in brain function and pathology. *Trends Pharmacol. Sci.* 14, 19–20. doi: 10.1016/0165-6146(93)90122-U
Schulz, W. (2010). Dopamine signals for toward and value: rule and basic and recent data. Brain. Behav. Evol. 64, 794–816. doi: 10.1159/000329681
Schumann, J., and Yaka, R. (2009). Prolonged withdrawal from repeated noncontingent cocaine exposure increases NMDA receptor expression and ERK activity in the nucleus accumbens. *J. Neurosci.* 29, 6955–6965. doi: 10.1523/JNEUROSCI.1229-09.2009
Scott, D. B., Blanpied, T. A., Swanson, G. T., Zhang, C., and Ehlers, M. D. (2001). An allosteric change of the NMDA receptor trap diffusible dopamine D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein 32 kiloDalton basal ganglion-enriched substrate for cyclic AMP-dependent protein kinase/phosphatase cascade in rat ventral tegmental area. *Psychopharmacology* 151, 164–171. doi: 10.1007/s002130100463
Schoo, P., Nakajima, T., Nakayama, K., Dobhnya, S., Park, J. B., Riley, C. T., et al. (1997). Characterization of protein kinases A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. *J. Biol. Chem.* 272, 3151–3156. doi: 10.1074/jbc.272.8.3157
Tribelli, F., Lanne, J., Possem, V., Karpe, V., Brann-Cherrier, R., Pagés, C., et al. (2009). Induction control glutamate–induced nuclear accumulation of ERK. *Mol. Cell. Neurosci.* 41, 325–336. doi: 10.1016/j.mcn.2009.04.006
Valente, E., Bertran-Gonzalez, J., Abreu, R., Geurgeur, P., Hervi, D., and Girard, J. A. (2010). Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. *Neuropharmacology* 59, 461–475. doi: 10.1016/j.neuropharm.2009.10.045
Valente, E., Corvol, J. C., Pagés, C., Benso, M. J., Maldonado, R., and Caboche, J. (2000). Involvement of the extracellular signal–regulated kinase cascade for cocaine– rewarding properties. *J. Neurosci.* 20, 8701–8709
Valente, E., Corvol, J. C., Traveno, J. M., Giraud, J. A., and Hervi, D. (2006a). Role of the ERK pathway in prefrontal cortex–induced locomotor sensitization. *BMC Neurosci.* 7:20. doi: 10.1186/1471-2202-7-20
Valente, E., Corvol, A. G., Benso, M. J., Giraud, J. A., and Hervi, D. (2006b). Importance of ERK activation in behavioral and biochemical effects induced by nicotine. *Brain Res. Mol. Brain Res.* 144, 155–168. doi: 10.1016/j.brainresmolres.2006.01.005
Vezina, P., and Queen, A. L. (2000). Induction of locomotor sensitization by the dopamine D1 receptor antagonist ecopipam (SCH 39166). *J. Neurosci.* 20, 8701–8709.

“fphar-04-00172” — 2014/1/8 — 11:44 — page 12 — #12
Cahill et al. Dopamine and glutamate crosstalk onto ERK activation in response to drugs of abuse. Front. Pharmacol. 4:172. doi: 10.3389/fphar.2013.00172

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 29 October 2013; paper pending published: 22 November 2013; accepted: 19 December 2013; published online: 08 January 2014.

Citation: Cahill E, Salery M, Vanhoutte P and Caboche J (2014) Convergence of dopamine and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Front. Pharmacol. 4:172. doi: 10.3389/fphar.2013.00172

This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology.

Copyright © 2014 Cahill, Salery, Vanhoutte and Caboche. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

www.frontiersin.org

January 2014 | Volume 4 | Article 172 | 13