Effects of tobacco addiction on links between early life adversities, sleep disturbance, and depression: A moderated mediation approach

Arwa Ben Salah a, Motohiro Nakajima b, Briana N DeAngelis b, Mustafa al’Absi b,∗

a Department of Community Medicine, Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
b Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, United States

ARTICLE INFO

Keywords:
Tobacco use
Addiction
Sleep quality
Early life adversities
Depression

ABSTRACT

Despite the well-established relationship between early life adversities (ELA) and depression, the underlying mechanisms for this link remain less clear and need to be developed. The aim of this study was to advance our understanding of this link by testing the mediating role of sleep disturbances and the moderating role of tobacco use in this mediation. A total of 579 smokers and non-smokers were recruited in two US communities (Duluth and Minneapolis, MN). Simple and moderated mediation analyses were performed using the PROCESS macro for SPSS, with the number of ELA as an independent variable, depression symptoms assessed by the Patient Health Questionnaire-9 (PHQ-9) as a dependent variable, sleep quality assessed by the Pittsburgh Sleep Quality Index (PSQI) as a mediator, and smoking status as a moderator variable. The study demonstrated that ELA and depressive symptoms were positively correlated; and sleep quality fully mediated this relationship. This mediation was moderated by tobacco use (index of moderated mediation = 0.10, 95%CI [0.03; 0.19]) and was more pronounced among smokers (b = 0.14, 95%CI [0.07; 0.23]) than non-smokers (b = 0.04, 95%CI [0.0002; 0.10]). Subsequent mediation analyses run separately for each component of the PSQI suggested that individuals who experienced ELA and who were smokers had greater delays in sleep onset and were more likely to sleep for a shorter duration, both of which predicted greater depressive symptoms. Sleep quality is therefore a promising ELA-related target for preventive and therapeutic interventions as well as for further research in depression and tobacco addiction.

1. Background

Depression is a global public health concern that is pervasive in the world; and in the U.S.A., it affects 7.6% of persons aged 12 or over (Pratt and Brody, 2014). It is associated with long-term morbidity and with substantial economic burden; and depression is predicted to become the world’s leading cause of disability-adjusted life –years by 2030 (Sarah-Jayne, 2019). As a consequence, there has been growing interest in identifying at-risk populations, risk factors, and underlying mechanisms in order to guide preventive and therapeutic strategies for depression. In this study, we investigate sleep quality as a potential mechanism linking early life adversities (ELA) with increased risk of depression, with a special focus on understanding the potential moderating role of tobacco use in these relationships.

1.1. ELA and depressive symptoms

ELA and childhood trauma (CT) constitute risk factors for multiple physical and mental health problems throughout the life course (Dube et al., 2003; Brown et al., 2009; Nelson et al., 2017; Duffy et al., 2018). Their relationships with depression, anxiety, and other psychiatric problems are well established (Chang et al., 2019; Heim and Nemeroff, 2001; Pirkola et al., 2005; Li et al., 2016); and several studies have demonstrated that the number, specific nature (type), timing, and other characteristics of adversities are linked to chronicity of depression, severity of its symptoms, and treatment response (Nelson et al., 2017; Schalinski et al., 2016; Gilbert et al., 2009; Mandelli et al., 2015). What remains less clear, however, are mediators and moderators of these relationships. Identifying key factors implicated in the relationships between ELA/CT and mental health outcomes is important for more effective and well-targeted health interventions to prevent and treat depression across the life course.

* Corresponding author at: University of Minnesota Medical School, Duluth, MN 55812, United States
E-mail address: malabsi@umn.edu (M. al’Absi).

https://doi.org/10.1016/j.pmedr.2020.101225
Received 6 January 2020; Received in revised form 9 September 2020; Accepted 10 October 2020
Available online 20 October 2020
2211-3355/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1.2. Sleep as a potential mediator of ELA and depression

Sleep disturbances and poor sleep quality are also prevalent health concerns that affect 50 to 70 million Americans (Colten and Altevogt, 2006); and they represent one mechanism through which ELA may contribute to risk for mental health problems. Evidence indicates that ELA are related to increased risk of a wide range of self-reported sleep disorders and disturbances, such as nightmare frequency and distress, sleep apnea, and narcolepsy (Kajeepepa et al., 2015; Brindel et al., 2018). Extant research also demonstrates that sleep disorder severity increases as the number of ELA increase (Koskenvuo et al., 2010; Chapman et al., 2011, 2009).

Given recent evidence that suggests sleep disturbances may serve as an independent risk factor for depression (Baglioni et al., 2011; Liu et al., 2018; Fang et al., 2019), predicting its onset, persistence, and recurrence (Johnson et al., 2006; Perlis et al., 2006; Zhai et al., 2015; Benca and Peterson, 2008), it is plausible that sleep mediates the relationship between ELA and depression. Indeed, there is a growing body of research suggesting that sleep mediates the relationship between trauma and poor health outcomes through multiple mechanisms at biological, cognitive, psychosocial, and behavioral levels (Spilsbury, 2009). For instance, a study by Picchioni and colleagues (Picchioni et al., 2010) found that insomnia partially mediated the link between combat-related distress and depressive symptoms among veterans. Furthermore, a recent study found that sleep partially mediated the relationship between childhood trauma and depression (Jones et al., 2018), although this investigation focused on a very specific clinical population (methamphetamine-using men). Combined, these findings suggest that ELA may indirectly impact depression through sleep quality.

1.3. Tobacco use as a moderator of the relationships among ELA, sleep, and depression

Tobacco use is also related to sleep problems (Boalke et al., 2018; Liao et al., 2019) and poorer mental health and depression (Anda et al., 1990, 1999; Glassman et al., 1990; Boden et al., 2010; Fluharty et al., 2017; Breslau et al., 1998; Mathew et al., 2017; Taylor et al., 2014); and it is possible that chronic tobacco use moderates both the relationship between ELA and sleep problems as well as the relationship between sleep problems and smoking. Tobacco products contain nicotine, which activates multiple pathways, including the central nervous system and the hypothalamic–pituitary–adrenal (HPA) axis; and evidence indicates that increased HPA activity is associated with impaired sleep quality (van Dalfsen and Markus, 2018). Thus, it is possible that the physiological effects of chronic tobacco consumption attenuates the relationship between ELA and sleep problems. Numerous studies have also shown a positive relationship between tobacco use and mental illness, including depression and anxiety disorders (Fluharty et al., 2017); however, no studies have examined the potential role of tobacco use in moderating the relationship between sleep problems and depression.

1.4. Current study

In the current study, we addressed two hypotheses and one research question. First, we predicted a positive association between ELA and symptoms of depression. Second, we hypothesized that this association would be mediated by sleep quality. We also examined whether the indirect effect of ELA on depression would vary as a function of smoking status.
is obtained by adding the seven component scores, can range from 0 to 21; and higher scores indicate poorer sleep quality. A global score greater than five is an indication of sleep impairment. Cronbach’s alpha for the 7 components was 0.65.

2.2.4. Smoking and additional measures

Smoking history (average cigarettes per day, years of smoking), nicotine dependence levels using the Fagerström Test of Nicotine Dependence (FTND) (Heatherton et al., 1991), and exhaled carbon monoxide (CO) levels were collected. We also collected sociodemographic data (age, sex, ethnicity, marital status), as well as other biometric (Body Mass Index: BMI), psychological, and behavioral measures (alcohol and caffeine consumption).

2.3. Statistical analyses

Statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) version 21.0 and Hayes’ PROCESS macro (version 3.1) for testing moderated mediation (Hayes, 2018).

2.3.1. Primary analysis:

We examined smoking status differences in sample characteristics using t-tests. Pearson’s correlations were used to test our first hypothesis and to examine the relationships among ELA, sleep variables, and depression symptoms. To test the second hypothesis and our research question, simple and moderated mediation models were used (Hayes, 2018) with the number of ELA as an independent variable (ACEs = X), depression symptoms as a dependent variable (PHQ9 score = Y), sleep quality (PSQI score = M) as a mediator, and smoking status as a moderator (W, V) (Fig. 1). The assumption related to normal distribution of residuals was checked for each model. Models were run using Hayes’ PROCESS macro (Hayes, 2018) applying models 4 (simple mediation), 8 (first stage moderated mediation), and 15 (second stage moderated mediation), with 10,000 bias-corrected bootstrap samples. A p-value of 0.05 was set as the critical level of significance. Indices of the indirect effect and of moderated mediation were considered statistically significant if the 95% CI, estimated using bootstrap method, did not include zero.

2.3.2. Secondary analysis

Additional exploratory mediation and moderated mediation analyses were performed to evaluate the indirect effect of ELA (independent variable) on depression (dependent variable) through each of the seven sleep components (mediator variables) captured by the PSQI, with smoking status as a moderator variable.

Models including age, sex, ethnicity, marital status, BMI, caffeine and alcohol consumption were also performed for each of the primary and secondary analyses.

3. Results

3.1. Sample characteristics

Participants ranged in age from 18 to 74 years (M = 35 years, SD = 12.6). The majority of the sample identified as White; and most were not married (see Table 1). On average, smokers smoked 15.6 cigarettes per
day (SD = 6.9) for 11.0 years (SD = 10.3); and they had a baseline CO of 16.5 parts per million (SD = 11.3). The mean Fagerström Test for Nicotine Dependence (FTND) score was 5.3 (SD = 2.1), which indicates medium dependence on nicotine (Heatherton et al., 1991). The mean number of ACEs per participant was 2.1. Over 70% of the sample reported at least one ACE, and nearly one-quarter (23.7%) reported four or more ACEs. Overall, the current sample reported minimal depression symptoms (M = 2.3, SD = 3.2) and low sleep impairment, with a mean global PSQI score of 5 (SD = 3). Smokers had higher levels of depressive symptoms, impaired sleep quality, and ACE scores (Table 1).

3.2. Primary analyses

Depression symptoms were significantly, positively associated with the number of ACEs experienced by the participants, which provides support for the first hypothesis (r = 0.11, p < 0.01). In addition, sleep quality was significantly, positively correlated with the number of ACEs (r = 0.23; p < 0.001) and with depression symptoms (r = 0.36; p < 0.001) (Table 2). Consistent with our second hypothesis, sleep quality fully mediated the relationship between the number of ACEs and depressive symptoms (Fig. 2). Two further models (first stage and second stage moderated mediation) were tested to assess the moderating role of smoking in this mediation. Only the second stage analysis was significant, index = 0.10, SE = 0.04, 95%CI [0.03; 0.19], indicating that the indirect effect of ELA on depression symptoms through their effect on sleep quality is stronger among smokers, b = 0.14, SE = 0.04, 95%CI [0.07; 0.23], than among non-smokers, b = 0.04, SE = 0.02; 95%CI [0.0002; 0.10] (Table 3). Similar results were found for mediation and moderated mediation models when adjusting for age, sex, ethnicity, marital status, BMI, caffeine, and alcohol consumption (supplementary Fig. 1 and Table 1).

3.3. Secondary analyses

Correlations for each of the sleep components with ELA, depression symptoms, and smoking status are summarized in Table 4. Subsequent

Table 1: Participant characteristics for the entire sample and by smoking status.

Variables	Full Sample	Smokers (n = 436)	Non-smokers (n = 141)	p-value
Age (range)	578 (99.8)	35.00 (12.6)	18-74	0.35
Sex	315 (54.4)	248 (56.9)	67 (47.5)	
Ethnicity	421 (72.7)	323 (74.1)	98 (69.5)	0.25
Married	115 (19.9)	82 (18.8)	33 (23.4)	0.22
Number of cigarettes/day	505 (87.2)	376 (1.3)	128 (0.65)	<0.001
Alcohol consumption				
Never	122 (21.1)	92 (21.1)	29 (20.6)	
Rarely	196 (33.9)	157 (36.0)	39 (27.7)	
Occasionally	105 (18.1)	74 (17.0)	31 (22.0)	
Sometimes	82 (14.2)	61 (14.0)	21 (14.9)	
PHQ9	577 (100)	2.30 (3.2)	0.08 (0.05)	<0.001
PSQI				
Sleep latency sub-score	558 (96.4)	418 (9.0)	140 (0.69)	<0.001
Sleep duration sub-score	554 (95.7)	417 (1.20)	137 (0.88)	0.002
Habitual sleep efficiency sub-score	544 (94.0)	416 (0.69)	138 (0.42)	<0.001
Sleep disturbances sub-score	539 (93.1)	403 (1.16)	136 (1.15)	0.70
Daytime Dysfunction sub-score	558 (96.4)	418 (0.22)	140 (0.15)	0.17
SD = Standard Deviation; BMI: Body Mass Index; ACEs = Adverse Childhood Experiences; PHQ9 = Patient Health Questionnaire-9; PSQI = Pittsburgh Sleep Quality Index.				

Table 2: Pearson’s correlations among relevant study variables.

Variables	ACES	PSQI	PHQ9	Smoking status	Age	Sex	Ethnicity	Marital status
ACES	1	0.23***(n = 523)	0.11***(n = 578)	0.18*** (n = 576)	-0.01 (n = 577)	-0.08 (n = 576)	0.11***(n = 571)	0.01 (n = 560)
PSQI	1	0.36*** (n = 524)	0.17***(n = 524)	0.12** (n = 577)	-0.13** (n = 578)	-0.02 (n = 577)	0.09** (n = 571)	-0.16***(n = 560)
PHQ9	1	0.12** (n = 577)	0.04 (n = 577)	0.08 (n = 577)	-0.05 (n = 571)	-0.05 (n = 571)	-0.05 (n = 559)	-0.05 (n = 559)
Smoking status	1	0.01 (n = 577)	-0.03 (n = 571)	0.01 (n = 571)	-0.08 (n = 571)	0.30***(n = 560)	-0.08 (n = 559)	0.10*(n = 554)
Age	1	1	1	1	1	1	1	1
Sex	1	1	1	1	1	1	1	1
Ethnicity	1	1	1	1	1	1	1	1
Marital status	1	1	1	1	1	1	1	1

*p < 0.05; **<0.01; ***p < 0.001

Sex: male = 1 vs female = 0; Ethnicity: non-white = 1 vs white = 0; Marital status: married = 1 vs (single, divorced, or widowed) = 0

ACES = Adverse Childhood Experiences; PSQI = Pittsburgh Sleep Quality Index; PHQ9 = Patient Health Questionnaire-9
mediation analyses were run separately for each sleep component if assumptions related to significant correlations between variables in the models were met. Thus, mediation analyses were performed for five of the PSQI components: subjective sleep quality (Table 5: model 3), sleep latency (Table 5: model 4), sleep duration (Table 5: model 5), sleep disturbances (Table 5: model 6), and daytime dysfunction (Table 5: model 7). Each of these five components mediated partially the relationship between ELA and depression. Furthermore, there was evidence of moderated mediation for two of the five components: sleep latency (index = 0.06, SE = 0.02, 95%CI [0.01, 0.12]) and sleep duration (index = 0.06, SE = 0.03, 95%CI [0.01, 0.13]) (Table 5: models 8 and 9 respectively). For these two components, significant conditional indirect effects of ELA on depression through the sleep components were found only among smokers. Similar results were found for adjusted moderated mediation models (supplementary Table 2).

4. Discussion

Results of this study demonstrate that ELA and depression symptoms are positively associated; and sleep quality fully mediates this relationship. These findings are consistent with Jones et al. (Jones et al., 2018), and they extend previous research linking a range of adverse experiences in childhood to depression through their association with different mediators (Liu, 2017). This investigation is one of the few that has identified sleep as a potential mediator through which ELA exerts a depressogenic effect. In addition to being the first to document this mediation effect in a broader clinical population, to our knowledge, this is the first examination of this set of linkages in tobacco smokers.

The associations of sleep quality with depression and ELA are well established (Kajeepeta et al., 2015; Fang et al., 2019), as is the role of sleep as an important regulator of circadian systems and as a promoter of homeostasis and environmental adaptation (Deboer, 2018). Therefore, the mediating effect of sleep quality in the relationship between ELA and depression is not surprising. Sleep problems occurring after trauma exposure and the resulting chronodisruption, may alter the fundamental properties of brain systems regulating neuroendocrine, immune, and autonomic function; and these changes may play a crucial role in the development of stress related disorders and ELA-related comorbidities, such as depression, through impaired homeostatic balance (Morris et al., 2012; Agorastos et al., 2019; Wulff et al., 2010). The therapeutic benefit of sleep management on depression further supports the strong mechanistic links between these factors (Tchekalarova et al., 2018; Perera et al., 2016; Zhao et al., 2018; Isaac and Greenwood, 2011).

In addition to extending previous research on the relationship between ELA and depression by evaluating the mediating effect of sleep, this study sheds light on the moderating role of tobacco use in these relationships. The influence of tobacco use is novel and of significance in the context of the diverse impacts that smoking has on both sleep and depression. Our finding that tobacco use moderates the mediating relationship of sleep quality in predicting depression may be related to the ongoing and chronic effects of tobacco on various neurobiological processes, including hormonal (al’Absi et al., 2003, 2004) and stress-related systems (al’Absi et al., 2013) as well as sleep regulation processes (Jaehne et al., 2009). Such dysregulation may contribute directly or indirectly to the risk for depression (Matthew et al., 2017), enhancing the expected indirect effect of ELA on depression via sleep. While we treated smoking as a dichotomous moderator in the current study due to its chronic, exogenous pharmacological effects on sleep and depression, future studies might consider alternative roles or measures of smoking behavior in modeling the relationship between ELA and depression.

Our analysis of specific sleep components of PSQI revealed that subjective sleep quality, sleep latency, sleep duration, sleep disturbances, and daytime dysfunction were associated with ELA and depression. These results were consistent with previous studies that identified a wide array of sleep problems related to depression (Liu et al., 2018; Benca and Peterson, 2008) and to ELA among general (Kajeepeta et al., 2015; Koskenvuo et al., 2010; Chapman et al., 2011; Greenfield et al., 2011) and psychiatric populations (Hamilton et al., 2018). Unlike Greenfield and colleagues (Greenfield et al., 2011), however, we did not find evidence that sleep efficiency nor use of sleep medication were significantly related to ELA. Furthermore, the results from our secondary analyses suggest that the stronger indirect effect of ELA on depression via sleep quality that we found among smokers compared to non-smokers may be attributable primarily to greater delays in sleep onset and to shorter sleep duration among smokers. The observation of mediating effects for sleep onset and sleep duration only among smokers is novel and worth further examination in prospective studies.

We note, here, some limitations in this study. First, there are potential recall biases influencing responses on the ACE questionnaire; and it is possible that current depression symptoms influence perceptions of adversities. Second, we used ACE total scores that represented overall exposure to eight categories of ELA; and a subset of our sample may have included some experiences after age 18. We did adjust for the different instructions in ancillary analyses and found no effects of the different versions of instruction on the reported findings, which confirms that the observed relationships are likely to be linked to life adversity independent of specific time of exposure. Future research should further examine this role of age of exposure in the observed relationships and whether the relationships differ across types or categories of adversities. For example, being sexually abused could have different psychological and behavioral implications than having a household with mental illness and/or substance abuse. Future research should improve assessment of life adversity to include frequency of exposure, intensity and duration of exposure, and age of exposure. Third this study did not include an objective assessment of sleep quality. Finally, as with all cross-sectional studies, this study cannot rule-out alternative causal directions in the relationships among ELA, sleep disturbances, and depression. Despite these limitations, the current study provides evidence consistent with a
have sleep problems, and who are smokers may be considered at high risk of experiencing depression symptoms and should be routinely evaluated. Our results suggest that individuals who experience ELA, who have a mediating pathway linking ELA to depression through sleep quality; and who are smokers who have experienced high levels of adversity as well as control of these modifiable risk factors may be effective ways to break the risk pathway linking ELA to depression.

5. Conclusion

The current study proposed a model in which sleep quality is a mediator of the ELA–depression relationship, with smoking as a potential moderator of this mediation. Promising targets for intervention are suggested based on model findings; and further studies are needed to provide evidence of the utility of such models in treatment.

Table 3
Moderated mediation models results (n = 523).

Model 2a (1st stage)	β	SE	t	p	95% Lower CI	95% Upper CI
X → M (a)	0.22	0.14	1.60	0.11	−0.05	0.50
W → M (a)	0.90	0.30	3.07	0.007	1.42	
X × W → M (a)	0.10	0.16	0.67	0.50	−0.20	0.41
M → Y (b)	0.37	0.05	7.80	<0.001	0.28	0.46
X → Y (c₁)	−0.003	0.15	−0.02	0.98	−0.30	0.30
W → Y (c₂)	0.40	0.41	0.97	0.33	−0.41	1.21
X’W → Y (c₃)	0.11	0.17	0.68	0.50	−0.22	0.45
Conditional direct effect for non-smokers	0.11	0.08	1.40	0.16	−0.04	0.27

Table 4
Correlations among early life adversities, depression, smoking status, and sleep variables.

ELA	Depression symptoms	Smoking status	
Subjective sleep quality	0.18*** (n = 557)	0.27*** (n = 558)	0.13** (n = 558)
Sleep latency	0.16*** (n = 554)	0.27*** (n = 554)	0.14** (n = 554)
Sleep duration	0.13** (n = 554)	0.18*** (n = 554)	0.15*** (n = 554)
Habitual sleep efficiency	0.07 (n = 543)	0.17*** (n = 554)	0.13** (n = 554)
Sleep disturbances	0.24** (n = 538)	0.20*** (n = 539)	0.01 (n = 539)
Use of sleeping medication	0.02 (n = 557)	0.10* (n = 558)	0.05 (n = 558)
Daytime dysfunction	0.12** (n = 557)	0.25*** (n = 558)	0.01 (n = 558)

Notes: * p < 0.05; ** p < 0.01; ***p < 0.001; |ELA| Early Life Adversities |

Table 5
Mediation and second stage moderated mediation models, secondary analyses.

Model 3: M → subjective sleep quality (n = 557)	β	p	95% Lower CI	95% Upper CI
X → Y (c')	0.13	0.05	−0.001	0.22
X → M → Y (a'b)	0.07	0.03	0.13	

Model 4: M → sleep latency (n = 553)	β	p	95% Lower CI	95% Upper CI
X → Y (c')	0.15	0.03	0.02	0.28
X → M → Y (a'b)	0.07	0.03	0.12	

Model 5: M → sleep duration (n = 553)	β	p	95% Lower CI	95% Upper CI
X → Y (c')	0.17	0.01	0.04	0.31
X → M → Y (a'b)	0.03	0.01	0.07	

Model 6: M → sleep disturbances (n = 558)	β	p	95% Lower CI	95% Upper CI
X → Y (c')	0.15	0.03	0.02	0.30
X → M → Y (a'b)	0.07	0.03	0.13	

Model 7: M → daytime dysfunction (n = 557)	β	p	95% Lower CI	95% Upper CI
X → Y (c')	0.16	0.02	0.02	0.29
X → M → Y (a'b)	0.05	0.01	0.09	

Model 8: M → sleep latency (n = 553)	β	Boot 95% Lower CI	Boot 95% Upper CI
X → Y (c')	0.19	−0.01	0.05

| Conditional indirect effect for non-smokers | 0.08 | 0.03 | 0.13 |

| Index of moderated mediation | 0.10 | 0.04 | 0.03 | 0.19 |

Notes: X = ACEs total score; Y = Depressive symptoms assessed by PHQ9 score; M = Sleep quality assessed by PSQI global score [Moderator]; W/V = Smoking status [Moderator].

Boot SE: Bootstrapped standard errors; Boot 95%LLCI and Boot 95% ULCI: 95% bootstrapped confidence intervals.
Funding
This research was supported in part by grants from the National Institute of Health (R01DA016351 and R01DA027232).

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.pmedr.2020.101225.

References
Agorastos, A., Pervanidou, P., Chrousos, G.P., Baker, D.G., 2019. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological and Psychosocial Aspects Beyond Stress System Dysregulation. Front. Psychiatry 10, 118.
A’Hern, A.B., de Witte, L.S., Kjaersgaard, J., Matsunaga, K., Crouse, B. 2005. Prevalence estimation of effects of smoking abstinence on cortisol and withdrawal symptoms as predictors of early smoking relapse. Drug Alcohol Depend. 73(3), 267-78.
A’Hern, A.B., Nakajima, M., Grabowski, J. 2013. Stress response dysregulation and stress-induced analgesia in nicotine dependent men and women. Biol. Psychol. 93(1):1-8.
Anda, R.F., Williamson, D.F., Escobedo, L.G., Mast, E.E., Giovino, G.A., Remington, P.L., 1990. Depression and the dynamics of smoking. A national perspective. JAMA 264 (12), 1541-1545.
Anda, R.F., Croft, J.B., Felitti, V.J., Nordenberg, D., Giles, W.H., Williamson, D.F., et al., 1999. Adverse childhood experiences and smoking during adolescence and adulthood. JAMA 282 (17), 1652-1658.
American Psychiatric Association., American Psychiatric Association, DSM-5 Task Force, Diagnostic and statistical manual of mental disorders : DSM-5. 5th ed. Washington, D.C.: American Psychiatric Association; 2013. xiv, 947 p. p.
Baglioni, C., Battagliese, G., Feige, B., Spiegelhalder, K., Nissen, C., Voderholzer, U., et al. 2019. Insomnia and depression. Sleep Med. 9 (Suppl 1), e0211850.
Breslau, N., Peterson, E.L., Schultz, L.R., Chilcoat, H.D., Andreski, P., 1998. Major depression in the National Health Interview Survey. Res. Rep. 119 (3), 519-33.
Brown, D.W., Anda, R.F., Tiemeier, H., Felitti, V.J., Edwards, V.J., Croft, J.B., et al., 2013. et al. Chapman DP, Liu Y, Presley-Cantrell LR, Edwards VJ, Wheaton AG, Perry GS, 2013. et al.
Duffy, K.A., McLaughlin, K.A., Green, P.A., 2018. Early life adversity and health-risk behaviors: proposed psychological and neural mechanisms. Ann. N. Y. Acad. Sci. 1428 (1), 151-169.
Fang, H., Tu, S., Sheng, J., Shao, A., 2019. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell Mol. Med. 23 (4), 2324-2332.
Feltin, V.J., Anda, R.F., Nordenberg, D., Williamson, D.F., Spitz, A.M., Edwards, V., et al., 1998. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 14 (6), 245-254.
Flaharty, M., Taylor, A.E., Grabski, M., Munafò, M.R., 2017. The Association of Cigarette Smoking With Depression and Anxiety: A Systematic Review. Nicotine Tob. Res. 19 (1), 3-13.
Gilbert, R., Widom, C.S., Browne, K., Ferguson, D., Webb, E., Janson, S., 2009. Burden and consequences of child maltreatment in high-income countries. Lancet 373 (9657), 68-81.
Glassman, A.H., Helzer, J.E., Covey, L.S., Cottler, L.B., Steiner, F., Tipp, J.E., et al., 1990. Smoking, smoking cessation, and major depression. JAMA 264 (12), 1546-1549.
Greenfeld, E.A., Lee, C., Friedman, E.L., Springer, K.W., 2011. Childhood abuse as a risk factor for sleep problems in adulthood: evidence from a U.S. national study. Ann. Behav. Med. 42 (2), 245-256.
Hilton, J.J., Brindle, R.C., Alloy, L.B., Liu, R.T., 2018. Childhood Trauma and Sleep Among Young Adults With a History of Depression: A Daily Diary Study. Front. Psychiatry 9, 673.
Hayes AF. 2018. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Second edition. ed. Oxon. UK:Routledge; 2018. 412 p.
Heatherington, T.F., Kozlowski, L.T., Frecker, R.C., Fagerstrom, K.O., 1991. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. J. Addict. Dis. 9 (6), 1119-1127.
Heim, C., Nemeroff, C.B., 2000. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49 (12), 1023-1039.
Isaac, F., Greenwood, K.M., 2011. The relationship between insomnia and depressive symptoms: genuine or artefact? Neuropsychiatr. Dis. Treat. 7, 57-63.
Jahne, A., Loeld, B., Bartki, Z., Riemann, D., Hornyk, M., 2009. Effects of nicotine on sleep during consumption, withdrawal and replacement therapy. Sleep Med. Res. 13 (5), 363-377.
Johnson, E.O., Roth, T., Breslau, N., 2006. The association of insomnia with anxiety disorders and depression: exploration of the direction of risk. J. Psychiatr. Res. 40 (8), 700-708.
Jones, D.L., Rodriguez, V.J., De La Rosa, A., Dietch, J., Kumar, M., 2018. The role of sleep dysregulation in the relationship between trauma, neglect and depression in methamphetamine using men. Neuropsychiatr Brain Res. 30, 30-34.
Kajeepepa, S., Gelaye, B., Jackson, C.L., Williams, M.A., 2015. Adverse childhood experiences are associated with adult sleep disorders: a systematic review. Sleep Med. 16 (3), 320-330.
Klein, D.N., Aronow, B.A., Barkin, J.L., Dowling, F., Kocsis, J.H., Leon, A.C., et al., 2009. Early adversity in chronic depression: clinical correlates and response to pharmacotherapy. Depress Anxiety. 26 (8), 701-710.
Koskenvuo, K., Hulkin, C., Partinen, M., Paunio, T., Koskenvuo, M., 2010. Childhood adversities and quality of sleep in adulthood: A population-based study of 26,000 Finns. Sleep Med. 11 (1), 17-22.
Li, M., Argy, C., Meng, X., 2016. Maltreatment in childhood substantially increases the risk of adult depression and anxiety in prospective cohort studies: systematic review, meta-analysis, and proportional attributable fractions. Psychol. Med. 46 (4), 717-736.
Liao, Y., Xie, L., Chen, X., Kelly, B.C., Qi, C., Pan, C., et al., 2019. Sleep quality in cigarette smokers and non-smokers: findings from the general population in central China. BMC Public Health. 19 (1), 808.
Liu, R.T., 2017. Childhood Adversities and Depression in Adulthood: Current Findings and Future Directions. Clin Psychol (New York). 24 (2), 140-153.
Liu, Y., Peng, T., Zhang, S., Tang, K., 2018. The relationship between depression, daytime napping, daytime dysfunction, and snoring in 0.5 million Chinese populations: exploring the effects of socio-economic status and age. BMC Public Health. 18 (1), 794.
Mandelli, L., Petrelli, C., Serretti, A., 2015. The role of specific early trauma in adult depression: A meta-analysis of published literature. Childhood trauma and adult depression. Eur Psychiatry. 30 (6), 665-680.
Marinelli, A.A., Hogarth, L., Leventhal, A.M., Cook, J.W., Hitsman, B., 2017. Cigarette smoking and depression comorbidity: systematic review and proposed theoretical model. Addiction. 112 (3), 401-412.
Morris, C.J., Aeschbach, D., Scheer, F.A., 2012. Circadian system, sleep and endocrinology. Mol. Cell. Endocrinol. 349 (1), 91-104.
Nanni, V., Uher, R., Danese, A., 2012. Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis. Am. J. Psychiatry 169 (2), 141-152.
Nelson, A.J., Blumenshend, A., Doebler, P., Ehring, T., 2017. Childhood maltreatment and characteristics of adult depression: meta-analysis. Br. J. Psychiatry 210 (2), 96-104.
Perera, S., Eisen, R., Bhatt, M., Bhattanagar, N., de Souza, R., Thabane, L., et al., 2016. Light therapy for non-seasonal depression: systematic review and meta-analysis. J. Am. Pharm. Assoc. Open. 2 (2), 116-126.
Perlis, M.L., Smith, L.J., Lynes, J.M., Matess, S.R., Pigeon, W.R., Jungquist, C.R., et al., 2006. Insomnia as a risk factor for onset of depression in the elderly. Behav. Sleep Med. 4 (2), 104-113.
Picchioni, D., Cabrera, O.A., McGurk, D., Thomas, J.L., Castro, C.A., Balkin, T.J., et al., 2010. Sleep Symptoms as a Partial Mediator Between Combat Stressors and Other Mental Health Symptoms in Iraq War Veterans. Military Psychol. 22 (3), 349–355.

Pirkola, S., Isometsä, E., Aro, H., Kestila, L., Hämäläinen, J., Veijola, J., et al., 2005. Childhood adversities as risk factors for adult mental disorders: results from the Health 2000 study. Soc. Psychiatry Psychiatr. Epidemiol. 40 (10), 769–777.

Pratt LA, Brody DJ. 2014. Depression in the U.S. household population, 2009-2012. NCHS Data Brief. (172):1-8.

Sarah-Jayne, B., 2019. Adolescence and mental health. The Lancet 393 (10185), 2030–2031.

Schalinski, I., Teicher, M.H., Nischl, D., Hinderer, E., Müller, O., Rockstroh, B., 2016. Type and timing of adverse childhood experiences differentially affect severity of PTSD, dissociative and depressive symptoms in adult inpatients. BMC Psychiatry. 16, 295.

Spilsbury, J.C., 2009. Sleep as a mediator in the pathway from violence-induced traumatic stress to poorer health and functioning: a review of the literature and proposed conceptual model. Behav. Sleep Med. 7 (4), 223–244.

Taylor, A.E., Fluharty, M.E., Bjørngaard, J.H., Gabrielsen, M.E., Skorpen, F., Marioni, R.E., et al., 2014. Investigating the possible causal association of smoking with depression and anxiety using Mendelian randomisation meta-analysis: the CARTA consortium. BMJ Open. 4 (10), e006141.

Tchekalarova, J., Stoyanova, T., Ilieva, K., Mitreva, R., Atanasova, M., 2018. Agomelatine treatment corrects symptoms of depression and anxiety by restoring the disrupted melatonin circadian rhythms of rats exposed to chronic constant light. Pharmacol. Biochem. Behav. 171, 1–9.

van Daal, J.H., Markus, C.R., 2018. The influence of sleep on human hypothalamic-pituitary-adrenal (HPA) axis reactivity: A systematic review. Sleep Med. Rev. 39, 187–194.

Wulff, K., Gatti, S., Wetstein, J.G., Foster, R.G., 2010. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11 (8), 589–599.

Zhai, L., Zhang, H., Zhang, D., 2015. Sleep duration and depression among adults: a meta-analysis of prospective studies. Depress Anxiety. 32 (9), 664–670.

Zhao, X., Ma, J., Wu, S., Chi, L., Bai, Z., 2018. Light therapy for older patients with non-seasonal depression: A systematic review and meta-analysis. J. Affect. Disord. 232, 291–299.