Niche Differentiation of Sulfate- and Iron-Dependent Anaerobic Methane Oxidation and Methylotrophic Methanogenesis in Deep Sea Methane Seeps

Haizhou Li, Qunhui Yang* and Huaiyang Zhou*

State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Methane seeps are widespread seafloor ecosystems shaped by complex physicochemical-biological interactions over geological timescales, and seep microbiomes play a vital role in global biogeochemical cycling of key elements on Earth. However, the mechanisms underlying the coexistence of methane-cycling microbial communities remain largely elusive. Here, high-resolution sediment incubation experiments revealed a cryptic methane cycle in the South China Sea (SCS) methane seep ecosystem, showing the coexistence of sulfate (SO_4^{2-}) or iron (Fe)-dependent anaerobic oxidation of methane (AOM) and methylotrophic methanogenesis. This previously unrecognized methane cycling is not discernible from geochemical profiles due to high net methane consumption. High-throughput sequencing and Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) results suggested that anaerobic methane-oxidizing archaea (ANME)-2 and -3 coupled to sulfate-reducing bacteria (SRB) carried out SO_4^{2-}-AOM, and alternative ANME-2 and -3 solely or coupled to iron-reducing bacteria (IRB) might participate in Fe-AOM in sulfate-depleted environments. This finding suggested that ANME could alter AOM metabolic pathways according to geochemical changes. Furthermore, the majority of methylotrophic methanogens belonged to *Methanimicrococcus*, and hydrogenotrophic and acetoclastic methanogens were likely inhibited by sulfate or iron respiration. Fe-AOM and methylotrophic methanogenesis are overlooked potential sources and sinks of methane in methane seep ecosystems, thus influencing methane budgets and even the global carbon budget in the ocean.

Keywords: methane seeps, South China Sea, anaerobic oxidation of methane, methylotrophic methanogenesis, sulfate reduction, iron reduction

INTRODUCTION

Methane seeps are methane-dependent chemosynthetic ecosystems (Paull et al., 1984) that occur widely in the marine environment, and are considered some of the richest benthic ecosystems on the seabed (Valentine, 2011). The microbially mediated methane cycle dominates methane seeps (Boetius et al., 2000; Knittel and Boetius, 2009) and has an important impact on the global...
Methanococcoides ferrihydrite provides strong evidence for AOM coupled with Sea (Vigderovich et al., 2019). Targeted enrichment with et al., 2015), Baltic Sea (Egger et al., 2017), and Mediterranean Sea (Treude et al., 2014), North Sea Helgoland mud (Oni Argentine Basin (Riedinger et al., 2014), Alaskan Beaufort Margin shallow sediments (0–20 cm) (Vigneron et al., 2015), and Mediterranean Sea shallow sediment (0–20 cm) (Fernández et al., 2016). This is also partly supported by the microbial distribution and diversity in SCS methane seeps and a 16S rRNA gene-based survey indicated the presence of sulfur-dependent ANME (Yan et al., 2005). However, sulfate-reducing bacteria (SRB) and ANME. However, the biogeochemical evidences and were also investigated (Jiang et al., 2007; Zhang et al., 2012), and microbial lipid biomarkers (Guan et al., 2016, 2018). In addition, the microbial distribution and diversity in SCS methane seeps were also investigated (Jiang et al., 2007; Zhang et al., 2012), and a 16S rRNA gene-based survey indicated the presence of SRB and ANME. However, the biogeochemical evidences and potential activity of methane-cycling microorganisms and their niche differentiation patterns are largely unknown.

In this study, the Jialong methane seep was chosen as our research object. In 2018, a remotely operated underwater vehicle, The Remotely Operated Platform for Ocean Science (ROPOS), found a new methane seepage site in this area. Combining high-throughput sequencing, CARD-FISH, and enrichment culture methods with pore water biogeochemistry, we investigated the microbially driven metabolic processes of methane production and consumption. The coexistence of sulfate- or iron-dependent AOM and methylotrophic methanogenesis was found, and the potential rates of these processes were assessed. These results are of great importance to the understanding of the biogeochemical processes in global methane seep ecosystems.

MATERIALS AND METHODS

Collection of Sediment Samples and Geochemical Analysis

During the R/V Tan Kah Kee 1083 expedition (April–May 2018) in the northern SCS, a remotely operated underwater vehicle (ROPOS, Canadian Scientific Submersible Facility) was used to search for new undisturbed active methane seeps at a water depth of 900–1,200 m. A new active methane seep was found and...
named Jiaolong F3 site (position 22°6.9678′N, 119°17.0841′E, 1162.53 m). Two push cores with a length of 32 cm were retrieved beneath the black microbial mats by ROPOS (Figure 1). One push core was used for shipboard biogeochemical analyses, and the other push core was stored at 4°C until it was taken back to the laboratory for enrichment experiments.

Before sampling, holes were drilled at both sides of the biogeochemistry push cores to collect porewater and methane gas. Holes in one side were drilled at 2 cm intervals, in the other at 2.5 cm, and sealed with diffusion-tight tape. Porewater was extracted using Rhizons (Rhizosphere Research Products, Wageningen, Netherlands) at 2 cm intervals (Seeberg-Elverfeldt et al., 2005). Cut-off syringes were used to sample sediment at a depth interval of 2.5 cm for methane analysis. The push core was then sectioned into 2 cm thick slices and frozen at −80°C for nucleic acid extraction and CARD-FISH analysis. The collected pore water was divided into aliquots for analysis of sulfate, dissolved inorganic carbon (DIC), and dissolved iron (Fe²⁺).

The pore water sample used for analysis of DIC was quickly transferred into glass vials (2 ml), leaving no headspace for concentration measurements and stored at 4°C. In the laboratory,
pore water was measured using a CN analyzer multi N/C 3100 (Analytik Jena AG, Jena, Germany) (Oda et al., 2002). For analysis of the sulfate concentration, 1 ml of pore water was transferred into a vial containing 0.5 ml of ZnAc (5%), which was shaken well and stored at −20°C. In the laboratory, sulfate was measured using a Dionex ICS-1500 Ion Chromatograph and an IonPac AS23 column (elucent: 4.5 mM Na₂CO₃/0.8 mM NaHCO₃, flow: 1 ml/min) (Thermo Fisher Scientific, Sunnyvale, CA, United States). For measurement of dissolved iron, 1 ml of pore water was acidified with ultrapure HCl and assessed using a 797 VA Computrace as previously described (Metrohm, Herisau, Switzerland).

For ex situ measurement of the methane concentration, 3 ml of wet sediment sample was removed from the push core at an interval of 2.5 cm with a cut-off syringe and extruded into a vial (20 ml) containing 6 ml of sodium hydroxide (2.5% w/w). The vial was closed immediately with a butyl rubber stopper, sealed with an aluminum crimp, and stored upside down at 4°C until measurement by gas chromatography (Treude et al., 2005). Before measurement, the sealed bottle was vigorously shaken and headspace methane was determined using gas chromatography-flame ionization detector (Agilent, Santa Clara, CA, United States).

High-Throughput Sequencing

Environmental DNA was extracted using a modified SDS-based extraction method (Zhou et al., 1996). The final DNA concentration was determined by a NanoDrop 2000 (Thermo Scientific, Waltham, MA, United States), and DNA quality was checked by 1% agarose gel electrophoresis. The sequencing steps were conducted by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). The bacterial primers were 338F and 806R (Xu et al., 2016), targeting the 16S rDNA V4-V5 region. The archaeal primers were 524F10extF and Arch958R modR (Liu C. et al., 2016), targeting the 16S rDNA V4-V4 region. The PCR protocol was performed according to previously described methods (Liu C. et al., 2016; Xu et al., 2016). The PCR products were extracted from a 2% agarose gel and further purified using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, United States) and quantified using QuantiFluor-ST (Promega, United States). Purified amplicons were pooled in equimolar amounts and paired-end sequenced (2 × 300) on an Illumina MiSeq platform (Illumina, San Diego, CA, United States). Raw fastq files were demultiplexed, quality filtered by Trimomatic, and merged by FLASH. Operational taxonomic units (OTUs) were clustered with a 97% similarity cutoff using UPARSE (version 7.1), and chimeric sequences were identified and removed using UCHIME. Taxonomy assignment was performed using the SILVA 16S rRNA database (version 132). The distance-based maximum likelihood was used for phylogenetic analysis. Bootstrap analysis was performed using 1000 replications. Chao1 and Shannon–Weaver diversity indices and rarefaction curves were calculated by MOTHUR. Principal coordinates analysis (PCoA) was computed using PAST. Sequencing data are stored on the NCBI Sequence Read Archive (PRJNA574743, PRJNA574745).

Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH)

The CARD-FISH protocol was based on a previous study (Pernthaler et al., 2002). The probes-label peroxidase is shown in Table 1. Sediment (0.5 g) was fixed with 4% paraformaldehyde for 24 h at room temperature. The fixed sediments were washed three times by centrifugation (8,000 × g for 10 min) using PBS at 4°C and stored in ethanol/PBS buffer (1:1) at −20°C for further processing. After that, 100 μl of fixed sediments were diluted with 900 μl ethanol/PBS buffer (1:1) and dispersed using ultrasound. Then, 20 μl of dispersed sediments were diluted in 20 ml of Milli Q filtered water. The suspension sediments were filtered on polycarbonate filters, and 0.1% low melting point agarose was dripped onto the filters and dried at 46°C in an incubator. The microbes were permeabilized using 15 μg/ml proteinase K. Then, 3% H₂O₂ was used to inactivate the endogenous peroxidases.

For hybridization, filters were placed in a tube and mixed with 500 μl hybridization solution [10% dextran sulfate, 2% blocking reagent (Roche, Germany), 0.1% (w/v) sodium dodecyl sulfate, 20 mM Tris–HCl [pH 8.0], 0.9 M NaCl and formamide], and 1 μl of probe working solution (final concentration, 0.028 μM) (Eickhorst and Tippkötter, 2008). Microorganisms were hybridized for at least 60 min on a rotor at 46°C; then, the filters were washed twice using washing solution (Eickhorst and Tippkötter, 2008) (0.01% SDS, 5 mM EDTA [pH 8.0], 20 mM Tris–HCl [pH 8.0] and 3 mM NaCl) at 48°C for 20 min. After washing, filters were mixed with 1000 μl of...
amplification solution (0.0015% H\(_2\)O\(_2\), 1 × PBS [pH 7.4], 0.1% (w/v) blocking reagent) and 1 µl of Alexa488 labeled tyramides (Life TechnologiesTM, Thermo Fisher, United States). The probes were incubated at 46°C in amplification solution for at least 30 min in the dark.

For second hybridizations, the first probe-label peroxidase was inactivated by incubating the filter sections in 0.01 M HCl for 10 min at room temperature and washing the sections with 50 ml of Milli Q water. Then, the CARD-FISH protocol was repeated two times with the same filter sections by using different probes. The second hybridization used Alexa 647 labeled tyramides (Life TechnologiesTM, Thermo Fisher, United States).

Finally, all microorganisms were stained using 4',6-diamidino-2-phenylindole (DAPI) and mounted with ProLong Gold Antifade reagent (Life Technologies, Carlsbad, CA, United States). Cell counting was performed using ImageJ.

Incubation Experiments for Methane Metabolic Activity

The push core (30 cm length) stored at 4°C was processed for microbial AOM and methanogenesis activity. We determined which substrates were available for AOM and methanogenesis in the Jiaolong methane seep. Push cores were positioned vertically, and the sediment was pushed out of the liner using a plastic plunger. From the center of the push core, samples were taken and incubated for determination of AOM and methanogenesis activity.

Methods for determining potential rates of AOM have been published previously (Segarra et al., 2015). For measurements of the potential anaerobic methane oxidation rate and mechanism, 5 g of sediment from a different depth was added to 120 ml serum bottles containing 50 ml of artificial mineral medium, with different treatments (see Table 2): (1) 5 mM sulfate, (2) 10 mM Ferrihydrite + 20 mM molybdate, (3) 5 mM Nitrite + 20 mM molybdate + 20 mM 2-bromoethanesulfonate (BES), (4) 10 mM Nitrite + 20 mM molybdate + 20 mM BES, (5) 20 mM molybdate + 20 mM BES, (6) Without any additions. Molybdate as inhibitor for sulfate reduction and BES as inhibitor for methanogenesis (Chidthisang and Conrad, 2000; Nauhaus et al., 2005) were added. Another reason for BES not inhibiting the ANME archaea (or only partially inhibiting them) could be the formation of syntrophic clusters, especially by ANME-2 archaea, that are not fully permeated by BES (Dekas et al., 2009; Haroon et al., 2013). Negative controls were incubated in parallel for each process within each depth interval so that live samples could be corrected for this ‘background’ activity. Ferrihydrite was synthesized according to protocols described previously (Cai et al., 2018). The serum bottles were sealed with butyl rubber stoppers, crimp-capped, degassed with N\(_2\), and reduced with Na\(_2\)S · 9H\(_2\)O (0.5 g/L) and L-cysteine (0.5 g/L). The bottles were filled with 10% methane and incubated for 6 months at 4°C in the dark (Beal et al., 2009). Then, the accumulation of DIC was measured by a C/N elemental analyzer (N/C\textsuperscript® 3100, Analytik Jena AG, Germany) as a response to AOM activity. Initial DIC concentrations in the medium and those at time-points DIC were determined.

Furthermore, the potential methane production rate and mechanism were assessed (Buckley et al., 2008; Xiao et al., 2018). Five grams of different depth sediments were added to 120 ml serum bottles containing 50 ml of artificial mineral medium with different treatments: (1) molybdate (20 mM), (2) hydrogen under H\(_2\)/CO\(_2\) 80/20 atmosphere + molybdate (20 mM), (3) acetate (20 mM) + molybdate (20 mM), and (4) methanol (20 mM) + molybdate (20 mM). Molybdate was used as an enzymatic inhibitor for sulfate reduction (Oremland and Capone, 1988). Samples with molybdate additions served as negative controls for sulfate-dependent methane oxidation. NaHCO\(_3\) was added to a concentration of 10 mM to make a buffer of CO\(_2\)-HCO\(_3\)-CO\(_3\)

\(^{2-}\) to maintain the pH of the medium around neutral. Measurements indicated that the pH was in the range of 7.0–7.2 at the start of the experiment. The serum bottles were sealed with butyl rubber stoppers, crimp-capped, degassed with N\(_2\), and reduced with Na\(_2\)S · 9H\(_2\)O (0.5 g/L) and L-cysteine (0.5 g/L). Then, the sediments were incubated for 6 months at 4°C in the dark. Methane production was measured by sampling the headspace of the serum vials by syringe and analyzing with GC-FID (Agilent, United States), using manual injection of 100 µl of headspace gas (Buckley et al., 2008). The needles used for sampling the serum vial headspace were flushed with N\(_2\) prior to sampling to prevent oxygen intrusion into the serum vials.

The artificial mineral medium contained (per l L): 23 g NaCl, 0.0136 g KH\(_2\)PO\(_4\), 0.0535 g NH\(_4\)Cl, 0.0147 g CaCl\(_2\) · 2H\(_2\)O, 0.0204 g Mg\(_2\)Cl\(_2\) · 6H\(_2\)O, 1 ml trace element solution (Könneke et al., 2005), and 1 ml vitamin solution (Könneke et al., 2005).

RESULTS

Geochemistry Profiles

The geochemistry results showed that the concentrations of sulfate, methane, and DIC changed rapidly in the depth range of 0–6 cm (Figure 2). The concentration of sulfate decreased from nearly 26.2 mM to 0.43 µM, that of methane increased from 30 µM to 320 µM, and that of DIC increased from 2.20 to 18.34 mM. The rapid decrease in sulfate concentration as well as increase in DIC and methane concentrations indicate that the SMTZ in Jialong methane seep area is shallow, within 6 cm below the sediment-water interface. The concentration of pore water ferrous iron was the lowest in the surface sediment (2.6 µM), peaked at a depth of 12 cm (26.6 µM), and then decreased to 10 µM. The highest concentration of ferrous iron appeared below the SMTZ, where sulfate has been exhausted.

Microbial Diversity

The vertical distribution of the microbial community was investigated in sediments from different depths (Table 3 and Supplementary Figure S1). In total, 848,371 high-quality sequences were generated from the samples (bacteria = 404662 sequences, archaea = 443709 sequences). At the 97% sequence identity level, 114480 OTUs were identified (bacteria = 57767 OTUs, archaea = 56713 OTUs). We found obvious differences in microbial structures among different sediment depths, and archaeal diversity was lower than bacterial diversity.
TABLE 2 | Incubation experiments.

Treatments	Depth (cm)	0–2	4–6	8–10	12–14	16–18	20–22	24–26	28–30
AOM (nmol g⁻¹·d⁻¹)	(1) Without any addition	0.257	1.257	2.047	1.258	0.625	0.120	0.150	0.101
	(2) Sulfate (5 mM)	10.650	401.204	902.248	801.574	780.228	750.144	600.688	580.890
	Net SO₄²⁻-AOM	10.393	399.947	900.201	800.316	779.603	750.024	600.538	580.789
	(3) BES + Molybdate	–	–	0.032	0.025	0.031	0.035	0.026	0.035
	(4) BES + Molybdate + Ferricydrite (10 mM)	–	–	30.034	38.019	20.433	35.055	35.023	30.034
	Net Fe-AOM	–	–	30.002	37.994	20.402	35.020	34.997	29.999
	(5) BES + Molybdate + Nitrite (5 mM)	–	–	0.031	0.025	0.033	0.033	0.025	0.031
	Net NO₂⁻-AOM	–	–	0	0	0.002	0	0	0
	(6) BES + Molybdate + Nitrate (10 mM)	–	–	0.030	0.020	0.029	0.031	0.024	0.037
	Net NO₃⁻-AOM	0	0	0	0	0	0	0	0.002
Methanogenesis (nmol g⁻¹·d⁻¹)	(1) Molybdate	–	0.023	0.083	0.082	0.172	0.132	0.122	0.104
	(2) Molybdate + Methanol (20 mM)	–	0.042	2.082	3.080	6.021	5.933	5.424	5.105
	Net Methyloptrophic methanogenesis	–	0.019	1.999	2.998	5.849	5.801	5.302	5.001
	(3) Molybdate + H₂/CO₂ (80/20%)	–	0.012	0.083	0.091	0.164	0.133	0.123	0.115
	Net hydrogenotrophic methanogenesis	–	0	0	0.009	0	0.001	0.001	0.011
	(4) Molybdate + Acetate (20 mM)	–	0.020	0.076	0.084	0.173	0.152	0.110	0.090
	Net acetoclastic methanogenesis	–	0	0	0.002	0.001	0.020	0	0

The PCoA of bacteria from all samples showed differences between surface sediments and deeper sediments (Figure 2). The species diversity was the lowest in surface sediments (Shannon: 2.08), and the highest species diversity was found at the depths of 4–6 cm and 12–14 cm (Shannon: 6.19 and 6.11, respectively). In surface sediments, most of the bacterial sequences were clustered in *Sulfurovum* (60.0179%), *Methyloprofundus* (11.1006%), and *Sulfurimonas* (3%). In the sediments at depths of 4–28 cm, the dominant groups belonged to SRB, including SEEP-SRB1 (12–28%), and Unclassified Desulfobulbaceae (8–20%) (Figures 3, 4). The relative abundance of SEEP-SRB4 was relatively low (0.07–0.4%). In addition, different kinds of IRB were detected including *Shewanella* (0.01–0.07%), *Pseudomonas* (0.01–0.1%), *Desulfuromonas* (0.11–0.92%), *Geobacter* (0.004–0.02%), and so on (Figure 4).

The PCoA of archaea from all samples showed differences between sediments at depths of 0–6 cm and deeper sediments (Figure 2). The species diversity was the lowest in surface sediments (Shannon: 1.23), and the highest species diversity was found at a depth of 12–14 cm (Shannon: 2.70). In surface sediments, the dominant sequence cluster included mainly *Nitrosopumilus* (70.65%) and ANME-2a/b (18.84%). As the depth of sediment increased, *Nitrosopumilus* rapidly disappeared, while ANME-2a/b became more abundant, peaking (44.5%) at the depth of 8–10 cm, and then decreased. ANME-3 appeared at the depth of 4–6 cm, and its abundance
TABLE 3 | Microbial diversity index.

Depth	Bacteria	Archaea				
	Ace	Chao1	Coverage	Shannon	Simpson	Sobs
0–2 cm	1180	982	0.9952	2.08	0.4037	669
4–6 cm	2196	2234	0.9948	6.19	0.0056	2016
8–10 cm	2010	2026	0.9892	5.02	0.0391	1695
12–14 cm	2153	2178	0.9941	6.11	0.0104	2043
16–18 cm	2215	2202	0.9927	5.80	0.0156	2008
20–22 cm	2205	2253	0.9925	5.75	0.0219	2042
24–26 cm	2182	2200	0.9944	5.79	0.0140	2049
28–30 cm	1744	1779	0.9907	5.94	0.0093	1607

increased with depth. ANME-2a/b was replaced by ANME-3 at the depth of 20–22 cm. ANME-2c appeared mainly in sediments at depths of 4–6 cm (Figure 3B). Methanogenic archaea were dominated by Methanimicrococcus at depths of 4–30 cm, whose abundance gradually increased from 0.20% to 18.00% with depth, with the highest abundance in the deepest sediments (28–30 cm) (Figures 3, 4). Furthermore, low abundance of methanogens below 4 cm depth was also detected, such as that of norank_Bathyarchaeota (0.01–7%), Methanospirillum (0.0014–0.0024%), Methanaenmethylivorans (0.0014–0.0076%), Methanosalms (0.0014–0.0024%), Methanolobus (0.0178–0.0855%), Methanohaloarchaeum (0.31–3.83%), Methanococci (0.09–2.34%), Methanococcaceae (0.004–0.05%), and Methanomassiliicoccus (0.0051–0.0136%) (Figures 3, 4).

Relative Cell Distribution and Abundance of Microorganisms

As shown in Figure 5, the distribution of bacteria, archaea, ANME, and SRB were determined by CARD-FISH. In surface sediments, the total number of cells was 1.3 × 10^8 cells g⁻¹ (3.25 × 10^7 cells g⁻¹ for archaea and 9.7 × 10^7 cells g⁻¹ for bacteria) with bacteria as the dominant type. The numbers of SRB and ANME were below the detection limit. At the depth of 2–6 cm, the number of cells increased sharply, reaching 3.0 × 10^9 cells g⁻¹ at a depth of 4 cm (2.0 × 10^9 cells g⁻¹ for bacteria and 8.0 × 10^8 cells g⁻¹ for archaea). Below 6 cm, the total number of cells decreased with increasing depth, reaching 1.0 × 10^6 cells g⁻¹ at the bottom layer (1.1 × 10^6 cells g⁻¹ for bacteria and 5.8 × 10^6 cells g⁻¹ for archaea).

SEEP-SRB1 was the dominant group among SRB, and there was a relatively low concentration of SEEP-SRB4. ANME was dominated by ANME-2 and ANME-3. ANME-1, SEEP-SRB2, and SEEP-SRB3 were not detected by CARD-FISH. The numbers of SRB and ANME were positively correlated at the depths of 0–6 cm, both increasing with depth and peaking at a depth of 6 cm (2.0 × 10^8 cells g⁻¹ for SRB and 1.4 × 10^8 cells g⁻¹ for ANME). As the depth increased, the number of SRB gradually decreased to 1.0 × 10^6 cells g⁻¹. The number of ANMEs was maintained at 9.0 × 10^7 cells g⁻¹ at depths of 6–12 cm and gradually decreased to 4.1 × 10^6 cells g⁻¹ at the bottom. Notably, there was no significant change in the abundance of ANME at depths of 6–12 cm, whereas the number of SRB decreased rapidly (Figure 5). In the surface and middle sediments, ANME-2 was dominant, while in the bottom sediments, ANME-3 was dominant (Figure 5).

Incubation Conditions of Methane-Metabolizing Microorganisms

AOM activities was assessed as shown in Table 2. With the addition of sulfate, the net rate of SO₂⁻⁻㈠
rate of methylotrophic methanogenesis reached its maximum (5.85 nmol cm\(^{-3}\) day\(^{-1}\)).

DISCUSSION

Niches and Diversity of Microbes in the Jiaolong Methane Seep

We compared the archaeal and bacterial diversity of the Jiaolong methane seep with those of 23 globally distributed methane seeps, and found that the microbial richness of the Jiaolong methane seep was at a medium level (Supplementary Figure S3). However, microbial abundance data showed that the Jiaolong methane seep hosted higher biomass (5.8 × 10^6–2.0 × 10^8 cells g\(^{-1}\) for archaea, 1.1 × 10^6–2.0 × 10^9 cells g\(^{-1}\) for bacteria) than other methane seeps in the SCS, such as the Haima methane seep (2.8 × 10^4–3.4 × 10^6 cells g\(^{-1}\) for archaea, 4.5 × 10^5–7.4 × 10^6 cells g\(^{-1}\) for bacteria) (Niu et al., 2017), the GMGS2 gas hydrate station (1.3 × 10^4–2.7 × 10^6 cells g\(^{-1}\) for archaea, 3.8 × 10^4–1.0 × 10^7 cells g\(^{-1}\) for bacteria), etc.
FIGURE 4 | Phylogenetic relationships of 200 representative microbial sequences. Colored lines represent each phylum. The red-colored genus indicates dominant microbes, such as ANME-2a-2b, ANME-2c, ANME-3, Methanimicrococcus, Sulfurovum, SEEP-SRB1, Methyloprofundus etc.

FIGURE 5 | Cell number data for different sediment samples collected from the Jiaolong methane seep.
Photomicrographs of CARD-FISH stained samples. (A) Archaeal/bacterial aggregate labeled with ARC915 (red) and EUB338 (green) probes. (B,C) ANME-2 (red, ANME-2-538) and SRB1 (green, probe: SEEP-1a-1441). (D,E) ANME-3 (red, probe: ANME-3-1249) and SEEP-SRB1 (green, probe: SEEP1a-1441). (F) ANME-2 (red, probe: ANME-3-1249) and SEEP-SRB4 (green, probe: SEEP4-583). (G) ANME-3 (red, probe: ANME-3-1249) and SEEP-SRB4 (green, probe: SEEP4-583). (H) Monospecific aggregate of ANME-2 (red, probe: ANME2–538, green probe: EUB338). (I) Monospecific aggregate of ANME-3 (red, probe: ANME3-1249, green probe: EUB338).

It was found that in the Jiaolong methane seep, the main microbes were SEEP-SRB1 coupled to ANME-2 and ANME-3, and a few SEEP-SRB4 coupled to ANME-2 and ANME-3. No ANME-1, SEEP-SRB2, or SEEP-SRB3 were observed in the sediments. In the surface layer, the dominant sequence cluster belonged mainly to Sulfurovum, Methyloprofundus, Sulfurimonas, Nitrosopumilus, and ANME-2a/b. In contrast, in the deepest sediments, the dominant sequence cluster belonged mainly to ANME-2, ANME-3, and Methanimicrococcus. The microbial diversity obtained in this study obviously differed from those in previous studies at methane seeps in the northern SCS. In June 2013, researchers found that in the Jiaolong methane seep, the majority of the microbial inhabitants at the surface layers (0–6 cm) were Sulfurimonas, Sulfurovum, and ANME-1, while SEEP-SRB1, ANME-1, and ANME-2 dominated the deepest layers (8–14 cm). The percentage of ANME-3 was the lowest in all layers, and SEEP-SRB3 and SEEP-SRB4 were not detected (Wu et al., 2018). At the Haiyang 4 hydrate station, only ANME-1 was detected, and the bacterial groups Chloroflexi and JS1 (Atribacteria) were dominant (Zhang et al., 2012).
In the GMGS2 gas hydrate station, the majority groups were ANME-1b, ANME-2c, and bacterial group Desulfobacteraceae (Cui et al., 2019). In Haima active methane seep ecosystems in the southwestern SCS, ANME-2a/b was predominant in the upper and middle layers of the SMTZ, whereas ANME-1b outnumbered ANME-2 below the SMTZ, and ANME-3 was absent (Niu et al., 2017).

Methane seeps are island-like habitats, harboring distinct microbial communities (Ruff et al., 2015). The seep communities comprise bacteria and archaea that occur worldwide but are locally selected by the environment. For example, in situ temperature, methane concentration (Knittel et al., 2005), oxygen concentration (Meulepas et al., 2009), and sulfate concentration (Yanagawa et al., 2011) can significantly affect the ANME species. A total of >1800 ANME sequences have been reported by far including three types of ANME (ANME-1, -2, and -3) across physiochemically contrasting ecological niches. Among them, ANME-1 and ANME-2 are the most widely distributed in the world and tend to be coupled with syntrophic SEEP-SRB1 bacteria. ANME-1 preferentially grows in hydrogen sulfide-rich and sulfate-depleted environments, while ANME-2 is closely associated with sulfate concentration (Yanagawa et al., 2011) and preferentially grows in sulfate-rich areas. ANME-3 is distributed mainly in methane-seeping mud volcanoes and in some methane seeps (Niemann et al., 2006). Furthermore, in marine sediments, an ecological niche separation occurs where ANME-2a/b dominates the upper layers and ANME-2c and/or ANME-1 outcompetes in deeper zones (Timmers et al., 2017). Our results showed that geochemistry could be the primary force shaping the niche differentiation of functional microbial populations associated with methane-cycling in marine environment.

Iron-Mediated Anaerobic Oxidation of Methane

The results of incubation experiments (Table 2) showed both SO\textsubscript{4}2−-AOM and Fe-AOM occurred in Jiaolong methane seep. Fe-AOM activity appeared below SMTZ at a depth of 8–10 cm, and potential net rates ranged from 20.40 to 37.99 nmol cm−3 day−1. Compared with net SO\textsubscript{4}2−-AOM rates ranging from 10.39 to 900.20 nmol cm−3 day−1, net Fe-AOM rates were 10 times lower.

Our study is the first to discover Fe-AOM in the deep sea methane seeps of the SCS, and potential net rates are higher than those in freshwater and coastal sediments. The potential rate of Fe-AOM was 16.44 nmol cm−3 day−1 in Eel River Basin (Beal et al., 2009), 3.61 nmol cm−3 day−1 in brackish coastal sediments (Egger et al., 2015), 3.89 nmol cm−3 day−1 in coastal Georgia (Segarra et al., 2013), and 3.45 nmol cm−3 day−1 in deep lake sediment cores (Sivan et al., 2011). The higher rate of Fe-AOM in this study may result from the sufficient supply of iron oxide and massive methane flux. The slope of the northern SCS is one of the world’s most active areas of modern marine sedimentary processes (Huang and Wang, 2007; Luan et al., 2019). A large amount of river-borne terrigenous sediment input leads to exceptionally high amount of iron oxides in the sediments of the northern SCS (Zhang et al., 2007; Liu Z. F. et al., 2016; Liu et al., 2018). Previous research had suggested that different kinds of iron oxides could serve as electron acceptors for Fe-AOM (Bar-Or et al., 2017). In addition, a large amount of unconsumed methane was released into the bottom seawater (22.23 µM, unpublished data), implying a high methane flux in this area. Thus, the combination of these factors probably stimulated the enhanced rate of Fe-AOM processes in the Jiaolong methane seep.

To the best of our knowledge, there is no representative pure culture of Fe-AOM microorganisms from the marine sediment (Liang et al., 2019). But some microorganisms were suspected of being related to metal-AOM in various earlier studies, which suggested that ANME-1, ANME-3 (Beal et al., 2009), ANME-2a, 2c (Scheller et al., 2016), ANME-2d (Methanoperedens nitritoreducens) (Ettwig et al., 2016; Shen et al., 2019), Candidatus Methanoperedens ferritireducens (Cai et al., 2018), or Methanosarcina acetivorans (Yan et al., 2018) might be involved in Fe-AOM. Furthermore, it is still possible that other unknown microorganisms perform metal-AOM. Bar-Or et al. (2017) findings highlight the essential role and participation of methanogenic archaea and methanotrophic bacteria in the process of Fe-AOM. In our study, sequencing data showed that the methanotrophic bacteria (such as Candidatus Methylomirabilis oxyfera, Methylbacter, Methylosarcina, Methylophoma, and Methylococcus) were not detected. Under the condition that 20 mM BES was added to inhibit methanogens archaea in the incubation experiments, the Fe-AOM activity appeared below SMTZ. These evidences excluded the potential participation of methanogenic archaea and methanotrophic bacteria in the process of Fe-AOM. CARD-FISH data showed that there was no significant change in the number of ANME at the depth of 6–12 cm, while the number of SRB decreased rapidly, and some ANME-2 and ANME-3 were not coupled with SRB (Figures 6H,I). These results were similar to those from methane seep enrichment samples of the Eel River Basin and Santa Monica Basin, which contained high abundances of ANME-2a and ANME-3 and could decouple the AOM process from SRB activities when metal compounds were added (Beal et al., 2009; Scheller et al., 2016). So we speculated that ANME-2 and ANME-3 were probably involved in Fe-AOM.

Different kinds of IRB were also detected in the Jiaolong seep sediments, such as Shewanella (0.01–0.07%), Geobacter (0.004–0.02%), Pseudomonas (0.01–0.1%), and Desulfuromonas (0.11–0.92%). Interestingly, the abundance of IRB was relatively higher in the 12–14 cm depth. To date, two potential ways of Fe-AOM were described in previous studies. (1) ANME oxidizes methane and transfer electrons directly to soluble metal ions or complexes, or solid metal oxides (Ettwig et al., 2016; Scheller et al., 2016); (2) ANME should be partnered with metal-reducing microorganisms to perform metal-AOM, in a way similar to the ANME-SRB consortia (Fu et al., 2016; He et al., 2018).
It is worth further exploring whether ANME-2 or ANME-3 should be alone or coupled with IRB to perform Fe-AOM process in the Jiaolong methane seep. As the next step, we would like to use 14C-CH$_4$ to enrich and cultivate methane-oxidizing microbial populations from the samples. Stable-isotope probing of active AOM would likely provide more hints on AOM metabolisms.

Furthermore, nitrite/nitrate-dependent AOM activity had not been detected in Jiaolong methane seep. Generally, nitrite-dependent AOM is performed by the NC10 bacteria related to Candidatus Methylomirabilis oxyfera, and nitrate-dependent AOM is performed by the ANME-2d (Ettinger et al., 2016). In our study, no sequences of Candidatus Methylomirabilis oxyfera and ANME-2d were detected. These results suggested that Fe-AOM was probably the dominant non-sulfate AOM pathway in the Jiaolong methane seep.

Methylotrophic Methanogenesis

Generally, there are three major methanogenic pathways: the acetoclastic, hydrogenotrophic, and methylotrophic pathways (Zhuang et al., 2018). Hydrogenotrophic and acetoclastic methanogenesis are often considered the primary pathways in marine deep sediment (Zhe et al., 2018). Based on thermodynamic laws, SRB and IRB outcompete methanogens for both acetate and hydrogen. Therefore, these methanogens are inhibited during active sulfate reduction and iron reduction (Reeburgh, 2007; Reiche et al., 2010; Zhou et al., 2014; Zhuang et al., 2018). In our study, hydrogenotrophic and acetoclastic methanogenesis were not detected due to active sulfate or iron reducing respiration in the Jiaolong methane seep. However, methylotrophic methanogenesis using non-competitive substrates (methanol) appeared below the 4–6 cm sediment layer, and coexisted with SO$_4^{2-}$-AOM and Fe-AOM. Most methanogens clustered with the genus *Methanimicrococcus*. It is an obligatory methylotrophic methanogen, that is, it utilizes only non-competitive substrates, such as methanol or methylated compounds (Sprenger et al., 2000; Zeng et al., 2007; Niemann et al., 2009; Wang et al., 2019). Non-competitive substrates, such as methanol, trimethylamine, methylamines, dimethylsulfide, and dimethylsulfoniopropionate are ubiquitous in the marine environment (Oremland et al., 1982).

To date, research on the methylotrophic methanogenesis process has been intensively investigated on non-seep sediments, such as those in the Peruvian Margin (with methanol as the substrate, 0.6–1.95 nmol cm$^{-3}$ d$^{-1}$) (Maltby et al., 2016), Aarhus Bay (with methanol or trimethylamine as the substrate, 0.83–1.11 nmol cm$^{-3}$ d$^{-1}$) (Xiao et al., 2017, 2018), and the Western Mediterranean Sea (with methanol as the substrate, 0.03 nmol cm$^{-3}$ d$^{-1}$) (Zhuang et al., 2018). This process is poorly understood in deep sea methane seep ecosystems due to the technical challenges to discern methane production against the overall high background of net methane consumption in methane seeps ecosystem. To the best of our knowledge, there is only one report in the Sonora Margin cold seep showing methane production by *Methanococcosides burtonii* on non-competitive substrates (with trimethylamine as the substrate, 180–560 pmol cm$^{-3}$ day$^{-1}$) (Vigneron et al., 2015) in shallow sediments above the SMTZ. The rate of methylotrophic methanogenesis in the Jiaolong methane seep reached a maximum of 5.85 nmol cm$^{-3}$ day$^{-1}$, which was higher than those observed in other areas. Future study is warranted to elucidate the thermal kinetics underlying this microbially mediated process.

In summary, the incubation experiments revealed the coexistence of sulfate-driven AOM, iron-driven AOM, and methylotrophic methanogenesis in Jiaolong methane seep sediments of the northern SCS where terrigenous sediments rich in iron oxide are imported in large quantities. Fe-AOM and methylotrophic methanogenesis are overlooked potential sources and sinks of methane in SCS methane cycle. Globally, large amounts of iron (≈3Tg/year) from rivers are transported to ocean continental margins (Jickells et al., 2005), and methane seeps are common along continental margins in areas of high primary productivity and tectonic activity. How this methane cycle, which is affected by the large input of iron oxides, will influence the global carbon cycle is worthwhile to study further.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the NCBI, PRJNA574743 and PRJNA574745.

AUTHOR CONTRIBUTIONS

HL, QY, and HZ designed the research and wrote the manuscript. HL performed the experiments and analyzed the data. All authors commented on the manuscript.

FUNDING

This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 91428207).

ACKNOWLEDGMENTS

We greatly appreciate the efforts and assistance of the R/V Tan Kah Kee and ROPOS team. We also greatly appreciate the efforts and assistance of Dr. Zhongjun Jia (Chinese Academy of Sciences) and Xin Dai (Chinese Academy of Sciences) in revising our manuscript. We thank Dr. Hu Wang and Dr. Fuwu Ji (Tongji University) for collecting samples.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01409/full#supplementary-material
Nieumann, H., Fischer, D., Graffe, D., Knittel, K., Montiel, A., Heilmeyer, O., et al. (2009). Biogeochemoestry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Bioscience 6, 2388–2395. doi: 10.1194/bg-6-2388-2009

Nieumann, H., Losekann, T., De Beer, D., Elvert, M., Nadagai, T., Knittel, K., et al. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854–858. doi: 10.1038/nature05227

Niu, M., Fan, X., Zhuang, G., Liang, Q., and Wang, F. (2017). Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol. Ecol. 93, 3108.3108

Oda, Y., Sakamoto, M., Iwasaki, Y., Nagasaka, S., Ha, J.-Y., Chang, K.-H., et al. (2019). Inter-clonal variation in copper sensitivity in Bosmina longirostris with different exposure histories. Water Air Soil Poll. 230:109.

Offre, P., Spang, A., and Schleper, C. (2013). Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457. doi: 10.1146/annurev-micro-092412-155614

Oni, O., Miyatake, T., Kasten, S., Richter-Heinemann, T., Fischer, D., Wagenknecht, L., et al. (2015). Distinct microbial populations are tightly linked to the profile of dissolved iron in the methane sediments of the Helgoland mud area. North Sea. Front. Microbiol. 6:365. doi: 10.3389/fmicb.2015.00365

Orcutt, B. N., Joye, S. B., Kleinodienst, S., Knittel, K., Ramette, A., Reitz, A., et al. (2010). Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 2008–2021. doi: 10.1016/j.dsr2.2010.05.014

Oremland, R. S., and Capone, D. G. (1988). Use of “Specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285–383. doi: 10.1007/978-1-4684-5409-3_8

Oremland, R. S., Marsh, L. M., and Polcin, S. (1982). Methane production and anaerobic methane oxidation to denitrification. Ettwig, K. F., Rijpstra, W. I., et al. (2006). A microbial consortium couples electron acceptor availability on the anaerobic oxidation of methane in coastal sediments. FEMS Microbiol. Ecol. 513. doi: 10.1111/j.1574-6941.2008.00523.x

Segarra, K. E. A., Comerford, C., Slaughter, J., and Joyce, S. B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim. Cosmochim. Acta 115, 15–30. doi: 10.1016/j.gca.2013.03.029

Shen, L. D., Ouyang, L., Zhu, Y., and Trimmer, M. (2019). Active pathways of anaerobic methane oxidation across contrasting riverbeds. ISME J. 13, 752–766. doi: 10.1038/s41396-018-0302-y

Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., et al. (2011). Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56, 1536–1544. doi: 10.4319/lo.2011.56.4.1536

Sprunger, W. W., Van Belzen, M. C., Rosenberg, J., Hackstein, J. H., and Keltjens, J. T. (2000). Methanocarboxic acid bacteria gen. nov., sp. nov., a methanol and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 6, 1989–1999. doi: 10.1099/0200713-50-6-1989

Timmers, P. H., Welte, C. U., Koehorst, J. J., Plugg, C. M., Jetten, M. S., and Stams, A. J. (2017). Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017:654237.

Trede, T., Krause, S., Malby, J., Dale, A. W., Coffin, R., and Hamdan, L. J. (2014). Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: implications for deep sulfur cycling. Geochim. Cosmochim. Acta 144, 217–237. doi: 10.1016/j.gca.2014.08.018

Wang, B., Liu, F., Zheng, S., and Hao, Q. (2013). Trophic strategy of diverse methanotrophic archaea (ANME-1 and-2) in marine sediments of the NW South China Sea. Extremophiles 17, 67, 437ñ457. doi: 10.1007/s00792-012-0380-3

Wang, B., Liu, F., Zheng, S., and Hao, Q. (2013). Trophic strategy of diverse methanotrophic archaea (ANME-1 and-2) in marine sediments of the NW South China Sea. Extremophiles 17, 67, 437ñ457. doi: 10.1007/s00792-012-0380-3

Wang, B., Liu, F., Zheng, S., and Hao, Q. (2013). Trophic strategy of diverse methanotrophic archaea (ANME-1 and-2) in marine sediments of the NW South China Sea. Extremophiles 17, 67, 437ñ457. doi: 10.1007/s00792-012-0380-3

Wallner, G., Amann, R., and Beisker, W. (1993). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 156–163. doi: 10.1002/cyto.990140205

Wang, B., Liu, F., Zheng, S., and Hao, Q. (2019). Trophic strategy of diverse methanogens across a river-to-sea gradient. J. Microbiol. 57, 470–478. doi: 10.1007/s12275-018-0488-2

Wu, Y., Qiu, J., Qian, P. Y., and Wang, Y. (2018). The vertical distribution of prokaryotes in the surface sediment of Jialong cold seep at the northern South China Sea. Extremophiles 22, 1–12.

Xiao, K. Q., Beilug, F., Kjeldsen, K. U., Jørgensen, B. B., and Risgaard-Petersen, N. (2017). Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front. Microbiol. 8:111. doi: 10.3389/fmicb.2017.00119

Xiao, K. Q., Beilug, F., Roy, H., Jørgensen, B. B., and Risgaard-Petersen, N. (2018). Methylophilic methanogenesis fuels cryptic methane cycling in marine surface sediment. Limnol. Oceanogr. 63, 1519–1527. doi: 10.1002/lno.10778

Xu, N., Tan, G. C., Wang, H. Y., and Gai, X. P. (2016). Effect of biochar additions for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Soil Biol. Biochem. 93:fix101.

Yanagawa, K., Sunamura, M., Lever, M. A., Morono, Y., Hiruta, A., Ishizaki, O., et al. (2011). Niche separation of methanotrophic archaea (ANME-1 and-2) in
methane-seep sediments of the eastern Japan Sea offshore Joetsu. *Geomicrobiol. J.* 28, 118–129. doi: 10.1080/01490451003709334

Zeng, Y., Li, H., and Jiao, N. (2007). Phylogenetic diversity of planktonic archaea in the estuarine region of East China Sea. *Microbiol. Res.* 162, 26–36. doi: 10.1016/j.mires.2006.03.007

Zhang, Y., Su, X., Chen, F., Wang, Y. Y., Jiao, L., Dong, H. L., et al. (2012). Microbial diversity in cold seep sediments from the northern South China Sea. *Geosci. Front.* 3, 301–316. doi: 10.1016/j.gsf.2011.11.014

Zhang, Y. G., Ji, J., Balsam, W. L., Liu, L., and Chen, J. (2007). High resolution hematite and goethite records from ODP 1143, South China Sea: co-evolution of monsoonal precipitation and El Niño over the past 600,000 years. *Earth Planet. Sci. Lett.* 264, 136–150. doi: 10.1016/j.epsl.2007.09.022

Zhe, L., Shao, N., Akinyemi, T., and Whitman, W. B. (2018). Methanogenesis. *Curr. Biol.* 28, 727–732.

Zhou, J., Bruins, M. A., and Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. *Appl. Environ. Microbiol.* 62, 316–322. doi: 10.1128/aem.62.2.316-322.1996

Zhou, S., Xu, J., Yang, G., and Zhuang, L. (2014). Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances. *FEMS Microbiol. Ecol.* 88, 107–120. doi: 10.1111/1574-6941.12274

Zhuang, G. C., Elling, F. J., Nigro, L. M., Samarkin, V., Joye, S. B., Teske, A., et al. (2016). Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. *Geochim. Cosmochim. Acta* 187, 1–20. doi: 10.1016/j.gca.2016.03.005

Zhuang, G. C., Heuer, V. B., Lazar, C. S., Goldhammer, T., Wendt, J., Samarkin, V. A., et al. (2018). Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. *Geochim. Cosmochim. Acta* 224, 171–186. doi: 10.1016/j.gca.2017.12.024

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Li, Yang and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.