ON THE JORDAN-KINDERLEHRER-OTTO SCHEME

PAUL W.Y. LEE

Abstract. In this paper, we prove that the Jordan-Kinderlehrer-Otto scheme for a family of linear parabolic equations on the flat torus converges uniformly in space.

1. Introduction

Diffusion equations including the heat equation, the Fokker-Planck equation, and the porous medium equation are gradient flows in the Wasserstein space, the space of all probability measures, with respect to the L^2-Wasserstein distance from the theory of optimal transportation. One way to make the above statement precise is to use a time-discretization scheme introduced in [7] which is now called the Jordan-Kinderlehrer-Otto (JKO) scheme. An interesting and insightful formal Riemannian structure of the L^2-Wasserstein distance was also found in [10]. It was also shown in [2] that the above equations are examples of generalized gradient flows on abstract metric spaces (see [1] for a quick overview, further details, and some recent developments, see also [11, 12]).

We consider, in this paper, the JKO scheme for the equation

$$
\partial_t \phi_t = \Delta \phi_t + \langle \nabla \phi_t, \nabla \Psi \rangle + f \phi_t
$$
on the flat torus \mathbb{T}^n, assuming that we have a positive solution v_0 of the equation

$$
\Delta v_0 = \langle \nabla v_0, \nabla \Psi \rangle + (\Delta \Psi - f)v_0,
$$

where Ψ and f are smooth functions on the flat torus \mathbb{T}^n.

For this, let μ_0 and μ_1 be two Borel probability measure on \mathbb{T}^n. The L^2 Wasserstein distance d between μ_0 and μ_1 is defined as follows

$$
d^2(\mu_0, \mu_1) = \inf_{\varphi: \mu_0 = \mu_1} \int_M d^2(x, \varphi(x))d\mu_0(x),
$$

where the infimum is taken over all Borel maps $\varphi: \mathbb{T}^n \to \mathbb{T}^n$ pushing μ_0 forward to μ_1. Minimizers of (1.2) are called optimal maps.
Let dx^n be the Lebesgue measure on \mathbb{T}^n, let $\mu = v_0 dx^n$, let $\rho_0 \mu$ be a probability measure \mathbb{T}^n, let $\rho_0^N = \rho_0$, and let $K > 0$ be a constant. The following minimization problem has a unique solution ρ_k^N for each $k = 1, \ldots, N$.

\[(1.3) \inf \left[\frac{1}{2} d^2(\rho_{k-1}^N, \rho \mu) + \frac{K}{N} \int_{\mathbb{T}^n} (\log \rho - \log v_0 + \Psi) \rho d\mu \right],\]

where the infimum is taken over the set of L^1 functions $\rho : \mathbb{T}^n \to [0, \infty)$ satisfying $\int \rho d\mu = 1$.

This defines, for each positive integer N, a sequence of functions $\{\rho_k^N | k = 0, 1, \ldots\}$. This discrete scheme is the so-called JKO scheme.

Let $\phi_t^N : [0, K] \times \mathbb{T}^n \to [0, \infty)$ be defined by

$\phi_t^N = \rho_k^N$

if t is in $\left[\frac{kK}{N}, \frac{(k+1)K}{N} \right)$ and $k = 0, \ldots, N - 1$.

It follows as in [7] that a subsequence of $\{\phi_t^N | N = 1, 2, \ldots\}$ converges in L^1 to the solution of the initial value problem

\[(1.4) \quad \partial_t \phi_t = \Delta \phi_t + \langle \nabla \phi_t, \nabla \Psi \rangle + f \phi_t, \quad \phi_0 = \rho_0.\]

In the case of the flat torus \mathbb{T}^n, we show that the convergence is uniform in space. More precisely,

Theorem 1.1. For each fixed t in the interval $[0, K]$ and each α satisfying $0 < \alpha < 1$, a subsequence of $\{\phi_t^N | N = 1, 2, \ldots\}$ converges in $C^{0,\alpha}$ to the solution of the initial value problem (1.4).

The rest of the sections are devoted to the proof of Theorem 1.1.

2. The optimal Transportation problem and the JKO Scheme

In this section, we recall basic results in the theory of optimal transportation and discuss the JKO scheme. Let \mathbb{T}^n be the n-dimensional torus equipped with the flat distance d. Let μ_0 and μ_1 be two Borel probability measures on \mathbb{T}^n. Recall that the L^2 Wasserstein distance d between μ_0 and μ_1 is the following minimization problem

\[(2.1) \quad d^2(\mu_0, \mu_1) = \inf_{\varphi : \mu_0 = \mu_1} \int_M d^2(x, \varphi(x)) d\mu_0(x),\]

where the infimum is taken over all Borel maps $\varphi : \mathbb{T}^n \to \mathbb{T}^n$ pushing μ_0 forward to μ_1. Minimizers of (2.1) are called optimal maps.
The minimization problem (2.1) admits the following dual problem

\[
\sup_{f(x) + g(y) \leq \frac{1}{2}d^2(x,y)} \left[\int_{\mathbb{T}^n} f d\mu_0 + \int_{\mathbb{T}^n} g d\mu_1 \right],
\]

where the supremum is taken over all pairs \((f, g)\) of continuous functions satisfying \(f(x) + g(y) \leq \frac{1}{2}d^2(x, y)\) for all \(x\) and \(y\) in \(\mathbb{T}^n\).

The maximizers of the above problem are given by pairs of \(c\)-concave functions. If \(f : \mathbb{T}^n \to \mathbb{R}\) is a continuous function, then the \(c\)-transform \(f^c\) of \(f\) is defined by

\[
f^c(x) = \inf_{y \in \mathbb{T}^n} \left[\frac{1}{2}d^2(x, y) - f(y) \right].
\]

The function \(f\) is \(c\)-concave if \(f^c = f\).

For the proof of following result, see, for instance, [3, 9].

Theorem 2.1. The infimum in (1.2) and the supremum in (2.2) coincide. Moreover, the supremum in (2.2) is achieved by a pair \((f, f^c)\), where \(f\) is a \(c\)-concave function.

The following existence and uniqueness result can be found in [3, 9]. Note that \(c\)-concave functions are locally semi-concave and hence twice differentiable almost everywhere (see [5]).

Theorem 2.2. Assume that the measure \(\mu_0\) is absolutely continuous with respect to the Lebesgue measure \(dx^n\). Then there is an optimal map \(\varphi\) of (1.2) pushing \(\mu_0\) forward to \(\mu_1\) which is of the form

\[
\varphi(x) = x - \nabla f(x),
\]

where \(f\) is a \(c\)-concave function. This map is unique up to a set of \(\mu_0\) measure zero.

Moreover, if \(\mu_1\) is also absolutely continuous with respect to \(dx^n\), then the map

\[
\varphi^c(x) := x - \nabla f^c(x)
\]

is the optimal map pushing \(\mu_1\) forward to \(\mu_0\), where \(f^c\) is the \(c\)-transform of \(f\).

Next, let us fix a positive constant \(h\) and a positive function \(\rho_0\) satisfying \(\int_{\mathbb{T}^n} \rho_0 d\mu = 1\) and consider the following minimization problem

\[
\inf \left[\frac{1}{2}d^2(\rho_0 \mu, \rho \mu) + h \int_{\mathbb{T}^n} (\log \rho - \log v_0 + \Psi) \rho d\mu \right],
\]

where the infimum is taken over the set of \(L^1\) functions \(\rho : \mathbb{T}^n \to [0, \infty)\) satisfying \(\int_{\mathbb{T}^n} \rho d\mu = 1\).
Theorem 2.3. There is a unique minimizer ρ of (2.4) which is locally semi-convex on the set
\[\{ x | \rho_0(x) > 0 \} \]
and satisfying the following
(2.5) \[\varphi_*(\rho \mu) = \rho_0 \mu, \]
where
\[\varphi(x) = x + h \nabla F(x) \]
is the optimal map which pushes forward $\rho \mu$ to $\rho_0 \mu$ and
\[F := \log \rho - \log v_0 + \Psi. \]
Moreover, if there is a C^2 positive solution of (2.5), then it coincides with ρ.

Proof. By the convexity of the functional in (2.4), any minimizing sequence of (2.4) converges weakly in L^1 to a unique minimizer ρ. Following [7], we let ψ_s be the flow of a vector field X and let $(\psi_s)_*(\rho \mu) = \sigma_s \mu$. It follows that
(2.6) \[\frac{d}{ds} \left[\frac{1}{2} \int_{T^n} d^2(x, \psi_s(\varphi(x)))\rho_0(x) + h \log \sigma_s(\psi_s(x))\rho(x) \right] \bigg|_{s=0} = 0, \]
where φ is the optimal map pushing $\rho_0 \mu$ forward to $\rho \mu$.

Since $\sigma_s(\psi_s)v_0(\psi_s)\det(d\psi_s) = \rho v_0$, we have
(2.7) \[\frac{d}{ds} \int_{T^n} \left[\log \sigma_s - \log v_0 + \Psi(\psi_s(x)) \right] \rho(\varphi(x))d\mu(x) \bigg|_{s=0} \]
\[= \int_{T^n} \left[-\text{div}(X(x)) + \langle X(x), \nabla(\Psi - 2 \log v_0(x)) \rangle \right] \rho(\varphi(x))d\mu(x). \]

On the other hand, we have
\[\frac{d^2(x, \psi_s(\varphi(x))) - d^2(x, \varphi(x))}{s} \]
\[\leq 2D \frac{d(x, \psi_s(\varphi(x))) - d(x, \varphi(x))}{s} \]
\[\leq 2D \frac{d(\varphi(x), \psi_s(\varphi(x)))}{s} \leq 2D ||X||c_0 \]
where D is the diameter of the torus T^n.

By Theorem 2.1, we also have
\[\int_{T^n} \left[\frac{1}{2} d^2(\varphi(x)) - f(x) - f^c(\varphi(x)) \right] \rho_0(x)d\mu(x) = 0 \]
with \(f(x) + f^c(y) \leq \frac{1}{2} d^2(x, y) \) for all \(x, y \) in \(M \). Therefore,

\[
(2.8) \quad f(x) + f^c(\bar{\phi}(x)) = \frac{1}{2} d(x, \bar{\phi}(x))^2
\]

for \(\rho_0 \mu \) almost all \(x \).

Let \(x \) be a point where \(f \) is twice differentiable at \(x \), \(f^c \) is twice differentiable at \(\bar{\phi}(x) \), and \((2.8) \) holds. Then \(\bar{\phi}(x) \) is a minimizer of \(g_1(y) := \frac{1}{2} d(x, y)^2 - f^c(y) \). On the other hand, if \(y_0 \) is another minimizer of \(g_1 \), then \(x \) is a minimizer of \(g_2(y) := \frac{1}{2} d^2(y, y_0) - f(y) \). Note that

\[
\inf_{y \in M} \left[\frac{1}{2} d^2(y, y_0) - f(y) \right] = \inf_{\gamma(1) = y_0} \left[\int_0^1 \frac{1}{2} |\gamma(t)|^2 dt - f(\gamma(0)) \right],
\]

where the infimum on the right side is taken over all smooth paths \(\gamma : [0, 1] \to M \) such that \(\gamma(1) = y_0 \). Moreover, if \(\gamma \) is a minimizer of the infimum on the right side, then the Euler-Lagrange equation implies that \(\gamma \) is a geodesic and \(\dot{\gamma}(0) = -\nabla f(\gamma(0)) \). It follows that \(y_0 = x - \nabla f(x) = \bar{\phi}(x) \). Therefore, \(\bar{\phi}(x) \) is the unique minimizer of \(g_1 \).

Moreover, \(t \mapsto x - t \nabla f(x) \) is the unique geodesic joining \(x \) and \(\bar{\phi}(x) \). Hence, for \(\rho_0 dx^n \) almost all \(x, y \mapsto d^2(x, y) \) is differentiable at \(\bar{\phi}(x) \).

Therefore,

\[
\frac{d^2(x, \psi_s(\bar{\phi}(x))) - d^2(x, \bar{\phi}(x))}{s}
\]

converges, as \(s \to 0 \), to \(\langle \nabla d^2_x, X \rangle_{\bar{\phi}(x)} \) for \(\rho_0 dx^n \) almost all \(x \), where \(d_z(\cdot := d(z, \cdot) \). Therefore, by the bounded convergence theorem, we have

\[
\frac{d}{ds} \left[\frac{1}{2} \int_{\mathbb{T}^n} d^2(x, \psi_s(\bar{\phi}(x))) \rho_0(x) d\mu(x) \right] \bigg|_{s=0} = \int_{\mathbb{T}^n} \left\langle \nabla d^2_x, X \right\rangle_{\bar{\phi}(x)} \rho_0(x) d\mu(x).
\]

By combining this with \((2.6) \) and \((2.7) \), we have

\[
\int_{\mathbb{T}^n} \text{div}(X) \rho d\mu
\]

\[
= \int_{\mathbb{T}^n} \left\langle \frac{1}{2h} \nabla d^2_{\bar{\phi}^{-1}}(x) + \nabla (\Psi - 2 \log v_0), X \right\rangle_x \rho(x) d\mu(x).
\]

It follows that \(\rho \) is Lipschitz and

\[
-h \nabla \log \rho(x) + h \nabla \log v_0 - h \nabla \Psi(x) = \frac{1}{2} \nabla d^2_{\bar{\phi}^{-1}}(x)
\]

holds \(\rho \mu \) almost everywhere. Therefore,

\[
x + h \nabla F(x) = \bar{\phi}^{-1}(x)
\]
\(\rho \mu \) almost everywhere. (2.5) follows from this and Theorem 2.2.

It also follows from the above discussion that
\[
t \mapsto x + th \nabla F(x)
\]
is the unique minimizing geodesic between its endpoints for \(\rho \mu \) almost all \(x \). Therefore,
\[
h \nabla F(x) = -\nabla f^c(x)
\]
for \(\rho \mu \) almost all \(x \).

Since \(c \)-concave functions are locally semi-concave, \(\log \rho \) is locally semi-convex on the open set \(\{ x \in M | \rho(x) > 0 \} \). It follows that the following equation holds Lebesgue almost everywhere on the same set
\[
(2.11) \quad \rho_0(\varphi(x))v_0(\varphi(x)) \det(d\varphi(x)) = \rho(x)v_0(x)
\]
where \(\varphi(x) = x + h \nabla F(x) \).

Let \(\rho \) be a positive \(C^2 \) solution of (2.11). Let \(\bar{\rho} = \log \rho - \log \rho_0 \) and let \(x' \) be the maximum point of \(g \). Since \(g \) is locally semi-convex, there is a sequence of points \(x_i \) where \(g \) is twice differentiable and the followings hold
\[
\lim_{i \to \infty} x_i = x', \quad \lim_{i \to \infty} \nabla g(x_i) = 0, \quad \nabla^2 g(x_i) \leq \epsilon_i I
\]
for some sequence \(\epsilon_i \to 0 \) as \(i \to \infty \). It follows that
\[
\rho(x_i)v_0(x_i) = \rho_0(\varphi(x_i))v_0(\varphi(x_i)) \det(I + h \nabla^2 F(x_i))
\]
\[
\leq \rho_0(\varphi(x_i))v_0(\varphi(x_i)) \det((1 - \epsilon_i)I + h \nabla^2 (\log \rho - \log v_0 + \Psi)(x_i)).
\]

By letting \(i \to \infty \) and using (2.11), we obtain \(\rho \leq \bar{\rho} \) everywhere. On the other hand, \(\int \rho v_0 = \int \bar{\rho} v_0 \). Therefore, \(\rho \equiv \bar{\rho} \). \(\square \)

3. Regularity of Minimizers

In this section, we show \(C^2 \) regularity and positivity of the minimizers in (1.3). More precisely, we have the following result.

Theorem 3.1. Let
\[
\lambda := \sup_{\{w \in T^n \mid |w| = 1\}} \nabla^2 F(w, w).
\]
Assume that \(\rho_0 \) is a positive \(C^{r,\alpha} \) function for some \(r \geq 2 \) and \(\alpha > 0 \). Assume also that \(h\lambda \leq \frac{1}{8} \). Then there is a constant \(h_0 > 0 \) depending on \(\Psi, v_0, \) and \(\rho_0 \) such that the minimizer of (2.4) with \(h < h_0 \) is a \(C^{r+2,\alpha} \) solution of (2.11).

First, we prove the following a priori estimates for solutions of the equation (2.11).
Lemma 3.2. Let ρ be a C^4 positive solution of the equation (2.11). If $I + h\nabla^2 F \geq 0$, then

\begin{enumerate}
 \item \[(1 + h||\nabla^2(\Psi - \log v_0)||_{\infty})^n \sup_{T^n}(\rho_0v_0)\geq \rho_0v_0 \geq (1 - h||\nabla^2(\Psi - \log v_0)||_{\infty})^n \inf_{T^n}(\rho_0v_0),\]
 \item \[(1 - h||\nabla^2(\Psi - 2\log v_0)||_{\infty})||\nabla F||_{\infty} \leq ||\nabla F_{0}||_{\infty},\]
 \item \[0 \leq h||\nabla^3(\Psi - 2\log v_0)||_{\infty}||\nabla F||_{\infty} + \lambda_0\]
\end{enumerate}

where $|S|$ is the norm of the tensor S, $||S||_{\infty} = \sup_{T^n} |S|$,

\[\lambda_0 = \sup_{\{w \in T^n \mid \|w\| = 1\}} \nabla^2 F_0(w, w)\]

and $F_0 = \log \rho_0 - \log v_0 + \Psi$.

Proof. The first assertion follows immediately from (2.11) and the maximum principle.

For each fixed x in the torus T^n and each vector w in \mathbb{R}^n, we let $\gamma(s) = x + sw$ and let $\varphi(x) = x + h\nabla F(x)$. It follows from (2.11) that

\[
\log \rho_0(\varphi(\gamma(s))) + \log v_0(\varphi(\gamma(s))) + \log \det(I + h\nabla^2 F(\gamma(s)))
\]

\[
= \log \rho(\gamma(s)) + \log v_0(\gamma(s)).
\]

By differentiating this equation with respect to s, we obtain

\[
\langle \nabla(\log \rho + \log v_0)(\gamma(s)), w \rangle = \langle \nabla(\log \rho_0 + \log v_0)(\varphi(\gamma(s))), w + h\nabla^2 F(\gamma(s))w \rangle
\]

\[
+ h\text{tr}((I + hS(s))^{-1}S'(s)).
\]

where $S(s)$ is the matrix defined by $S_{ij}(s) = \nabla^2 F(\gamma(s))(\partial_x^i, \partial_x^j)$.

If x is a point where $||\nabla F||^2$ achieves its maximum, then $\nabla^2 F(x)(\nabla F(x)) = 0$ and $\nabla^3 F(x)(\nabla F(x), v, v) \leq -||\nabla^2 F(x)||^2$ for any vector v.

By combining this with (3.2), we obtain

\[
\langle \nabla(\log \rho + \log v_0)(x), \nabla F(x) \rangle - \langle \nabla(\log \rho_0 + \log v_0)(\varphi(x)), \nabla F(x) \rangle
\]

\[
\leq -h\text{tr}((I + hS(0))^{-1}S(0)^2) \leq 0.
\]

Therefore,

\[
||\nabla F(x)|| - \left\langle \nabla(\log \rho_0 - \log v_0 + \Psi)(\varphi(x)), \frac{\nabla F(x)}{||\nabla F(x)||} \right\rangle
\]

\[
\leq \left\langle \nabla(-2\log v_0 + \Psi)(x) - \nabla(-2\log v_0 + \Psi)(\varphi(x)), \frac{\nabla F(x)}{||\nabla F(x)||} \right\rangle
\]

\[
\leq h||\nabla^2(-2\log v_0 + \Psi)||_{\infty}||\nabla F(x)||
\]
and the second assertion follows from this.

By differentiating (3.2), we obtain
\[
\nabla^2 (\log \rho + \log v_0)(x)(w, w) \leq \nabla^2 (\log \rho_0 + \log v_0)(\varphi(x))(d\varphi(w), d\varphi(w)) + h\nabla^3 F(x)(w, w, \nabla (\log \rho_0 + \log v_0)(\varphi(x))) - h^2 \text{tr}
((I + hS(0))^{-1}S'(0))^2) + h^2 \text{tr}
((I + hS(0))^{-1}S''(0)).
\]

(3.3)

If \((x, w)\) achieves the supremum in (3.1), then
\[
\nabla^3 F(x)(w, w, v) = 0,
\]
\[
\langle S''(0)v, v \rangle = \nabla^4 F(x)(w, w, v, v) \leq 0
\]
for any vector \(v\).

Therefore, by combining this with (3.3), we obtain
\[
\nabla^2 (\log \rho + \log v_0)(x)(w, w) \leq \nabla^2 (\log \rho_0 + \log v_0)(\varphi(x))(d\varphi(w), d\varphi(w)) + h\nabla^3 F(x)(w, w, \nabla (\log \rho_0 + \log v_0)(\varphi(x))) - h^2 \text{tr}
((I + hS(0))^{-1}S'(0))^2) + h^2 \text{tr}
((I + hS(0))^{-1}S''(0)).
\]

Since \(d\varphi(w) = w + h\nabla^2 F(x)(w) = w + h\lambda w\), it also follows that
\[
\lambda - (1 + h\lambda)^2 \lambda_0 = \nabla^2 (\Psi - 2 \log v_0)(x)(w, w) - \nabla^2 (\Psi - 2 \log v_0)(\varphi(x))(d\varphi(w), d\varphi(w)) \leq \int_0^1 d\frac{dt}{dt} \nabla^2 (\Psi - 2 \log v_0)(\varphi(t))(\varphi(t) d\varphi(t)(\varphi(t)(w))(dt)
\]
\[
\leq h||\nabla^3 (\Psi - 2 \log v_0)||_\infty ||\nabla F||_\infty \left(1 + h\lambda + \frac{1}{3}h^2 \lambda^2\right)
\]
\[
+ h||\nabla^4 (\Psi - 2 \log v_0)||_\infty (2\lambda + h\lambda^2),
\]
where \(\Phi_t(x) = tx + (1 - t)\varphi(x)\).

The last assertion follows from this. \(\square\)

Proof of Theorem 3.1. Let \(C\) be a constant such that
\[
\int_M Ce^{\log v_0 - \Psi} \mu = 1.
\]

First, if \(\rho_0 = Ce^{\log v_0 - \Psi}\), then \(\rho = Ce^{\log v_0 - \Psi}\) is a smooth positive solution of (2.11). For more general \(\rho_0\), let us consider the following family of equations
\[
\text{det}(I + h\nabla^2 F(x)) = \frac{\rho(x)v_0(x)}{(Ce^{\log v_0 - \Psi})^{1-s}(\rho_0)^s v_0(x + h\nabla F(x))}.
\]

(3.4)

Let \(s_0\) be the supremum over the set of all \(s\) in \([0, 1]\) for which (3.4) has a \(C^1\) solution \(\rho_\ast\). By Theorem 2.3, \(\rho_\ast\) is a minimizer of (2.4) with \(\rho_0\) replaced by \((Ce^{\log v_0 - \Psi})^{1-s}(\rho_0)^s\). It follows that \(I + h\nabla^2 (\log \rho_\ast - \log v_0 + \Psi) \geq 0\). Let us choose \(h_0\) such that \(1 - h_0 ||\nabla^2 (\Psi - 2 \log v_0)||_\infty > 0\).
Then, by Theorem 3.2, the set of solutions \(\{ \log \bar{\rho}_s | 0 \leq s < s_0 \} \) has a uniform \(C^1 \) bound depending on \(\rho_0 \).

Let \(\lambda(s) = \sup_{x \in \mathbb{T}^n, |w|=1} \nabla^2 ((C e^{\log v_0 - \Psi})^{1-s}(\rho_0)^s) - \log v_0 + \Psi)(x)(w, w) \).

Since
\[
\sup_{x \in \mathbb{T}^n, |w|=1} \nabla^2 (\log \rho_0 - \log v_0 + \Psi)(x)(w, w) = s \lambda_0 < \lambda_0,
\]
we can apply Theorem 3.2 and conclude that there are positive constants \(h_0 \) and \(C \) depending only on \(\rho_0, v_0, \) and \(\Psi \) such that
\[
0 \leq h^2 C + h \lambda_0 + (hC + 2h \lambda_0 - 1) h \lambda(s) + (hC + h \lambda_0) (h \lambda(s))^2
\]
for all \(h < h_0 \).

By assumption, we have \(h \lambda_0 \leq \frac{1}{8} \). Therefore, by choosing a smaller \(h_0 \),
\[
 h^2 C + h \lambda_0 + (hC + 2h \lambda_0 - 1) x + (hC + h \lambda_0) x^2
\]
has real root.

Since \(\lambda(0) = 0 \), \(\lambda(s) \) has an upper bounded independent of \(s \). Therefore, \(\lambda(s) \) is bounded above independent on \(s \) (again by assuming \(h_0 \) small enough).

This, together with (3.4), also gives a uniform positive lower bound of \(I + h \nabla^2 (\log \bar{\rho}_s - \log v_0 + \Psi) \). Higher order estimates follow from standard elliptic theory [6]. Therefore, there is a solution \(\bar{\rho}_{s_0} \) of (3.4) with \(s = s_0 \). By elliptic theory and the implicit function theorem, we must have \(s_0 = 1 \).

4. \(C^{0,\alpha} \)-Convergence of the JKO Scheme

In this section, we show the \(C^{0,\alpha} \)-convergence of the JKO scheme. For each fixed positive integer \(N \), let \(h = \frac{K}{N} \), where \(K \) is a positive constant to be fixed later which depends only on \(\rho_0, v_0, \) and \(\Psi, \) and dimension. Let \(\rho_0 : \mathbb{T}^n \to (0, \infty) \) be a smooth function. Then (1.3) defines a sequence of functions \(\rho_N^0 := \rho_0, \rho_1^N, ..., \rho_N^N \). Let \(F^N_k := \log \rho_N^N - \log v_0 + \Psi \). Then the followings are consequences of Lemma 3.2.

Lemma 4.1. There are positive constants \(C \) and \(K \) depending only on \(\rho_0, v_0, \Psi, \) and dimension such that

1. \(\frac{1}{C} \leq \rho_k^N \leq C, \)
2. \(||\nabla F_k^N||_\infty \leq C, \)
3. \(\lambda_k^N := \sup_{x \in M, |w|=1} \nabla^2 F_k^N(x)(w, w) \leq C, \)
4. \(K \lambda_k^N \leq \frac{1}{8}, \)
for all positive integer \(N \) and all \(k = 1, \ldots, N \).

Proof. We proceed by induction. Assume that the estimates hold and \(\frac{K_N}{N} \lambda_k \leq \frac{1}{8} \) for all \(k \leq m - 1 \). Then \(\rho_m^N \) is smooth. Assume that \(K \) satisfies

\[
K < \max \left\{ \frac{1}{\|\nabla^2(\Psi - 2 \log v_0)\|_\infty}, \frac{1}{\|\nabla^2(\Psi - \log v_0)\|_\infty} \right\}.
\]

It follows from Lemma 3.2 that

\[
e^{-C\|\nabla^2(\Psi - \log v_0)\|_\infty} \sup(\rho_0 v_0)
\leq \left(1 + \frac{K_N}{N} \|\nabla^2(\Psi - \log v_0)\|_\infty \right)^{\frac{1}{nN}} \sup(\rho_0 v_0)
\]

\[
\geq \rho_m^N v_0 \geq \left(1 - \frac{K_N}{N} \|\nabla^2(\Psi - \log v_0)\|_\infty \right)^{\frac{1}{nN}} \inf(\rho_0 v_0)
\]

\[
\geq e^{-K\|\nabla^2(\Psi - \log v_0)\|_\infty} \inf(\rho_0 v_0) > 0
\]

and

\[
\|\nabla F_m^N\|_\infty \leq \frac{1}{\left(1 - \frac{K_N}{N} \|\nabla^2(\Psi - 2 \log v_0)\|_\infty \right)^{\frac{1}{nN}}} \|\nabla F_0^N\|_\infty
\leq e^{-K\|\nabla^2(\Psi - 2 \log v_0)\|_\infty} \|\nabla F_0\|_\infty.
\]

This proves the first two assertions.

By the above estimates and Lemma 3.2, there are positive constants \(C \) and \(h_0 \) depending only on \(\Psi, v_0 \), and \(\rho_0 \) such that

\[
0 \leq h^2 C + h \lambda_k^N + (hC + 2h \lambda_{k-1}^N - 1)h \lambda_k^N + \left(hC + h \lambda_{k-1}^N \right)(h \lambda_k^N)^2
\]

for all \(h < h_0 \).

Assume that \(K \leq \frac{1}{6C} \). It follows as in the proof of Theorem 3.1 that

\[
h \lambda_k^N \leq \frac{2(h^2 C + h \lambda_k^N)}{1 - hC - 2h \lambda_{k-1}^N + \sqrt{1 + h^2 C^2 - 2h C - 4h^3 C^2 - 4h \lambda_{k-1}^N - 4h^3 C \lambda_{k-1}^N}}
\]

\[
\leq \frac{2(h^2 C + h \lambda_k^N)}{1 - hC - 2h \lambda_{k-1}^N + \sqrt{1 - 3hC - 4h \lambda_{k-1}^N}}
\]

\[
\leq \frac{h^2 C + h \lambda_{k-1}^N}{1 - 2hC - 3h \lambda_{k-1}^N}.
\]

for all \(k \leq m - 1 \). Note that \(1 - 3hC - 4h \lambda_{k-1}^N > 0 \) since \(K \leq \frac{1}{6C} \) and \(\frac{K_N}{N} \lambda_{k-1} = h \lambda_{k-1} \leq \frac{1}{8} \).
By assuming that the constant C is large enough, we have
\[
ph^2 C + \frac{h^2 C + h \lambda_N}{1 - 2hC - 3h \lambda_N} \quad \leq \quad \frac{ph^2 C (1 - 2hC - 3h \lambda_N^k) + h^2 C + h \lambda_N^k}{1 - 2phC (1 - 2hC - 3h \lambda_N^k) - 3ph^2 C - 3ph \lambda_N^k} \quad \leq \quad \frac{(p + 1)h^2 C - 2ph^2 C + 3ph^2 C \lambda_N^N + h \lambda_N^N}{1 - 2(p + 1)hC - 2ph^2 C^2 - 3ph^2 C \lambda_N^N + h \lambda_N^N}.
\]

By iterating the two inequalities above, we obtain
\[
\frac{K \lambda_0^N}{N} \leq \frac{K}{N} \frac{\lambda_0 + \frac{km}{N} C}{1 - \frac{2CKm}{N} - \frac{3Km \lambda_0}{N}} \leq \frac{K}{N} \frac{\lambda_0 + KC}{1 - 2CK - 3K \lambda_0},
\]
where $\lambda_0 = \sup_{x \in M, |w| = 1} \nabla^2 F_0(x)(w, w) \leq C$ and $F_0 = \log \rho_0 - \log v_0 + \Psi$.
Assume that the constant K satisfies $\frac{K(\lambda_0 + KC)}{1 - \frac{2CK - 3K \lambda_0}{N}} < \frac{1}{8}$ and $K < \frac{1}{2C + 3\lambda_0}$. Then the last two assertions follow.

Finally, we finish the proof of Theorem 1.1. The arguments are mild modifications of the ones in [7, 10, 2] combined with the estimates in Lemma 4.1.

Proof. Let $\phi^N_t : [0, K] \times M \to \mathbb{R}$ be defined by
\[
\phi^N_t = \rho^N_k
\]
if t is in $[\frac{kk}{N}, \frac{(k+1)K}{N})$ and $k = 0, ..., N - 1$.

By (1.3),
\[
\frac{1}{2} \mathbf{d}^2(\rho^N_k \mu, \rho^N_{k+1} \mu) + \frac{K}{N} \int_M F^N_{k+1} d\mu \leq \frac{K}{N} \int_M F^N_k d\mu.
\]

Therefore,
\[
\frac{1}{2} \sum_{k=0}^{N-1} \mathbf{d}^2(\rho^N_k \mu, \rho^N_{k+1} \mu) \leq \frac{K}{N} \left(\int_M F^N_0 \rho_0 d\mu - \inf \int_M (\log \rho - \log v_0 + \Psi) \rho d\mu \right),
\]

(4.1)
where the infimum is taken over all $\rho : \mathbb{T}^n \to [0, \infty)$ satisfying
\[\int_{\mathbb{T}^n} \rho \, d\mu = 1. \]

Therefore, we obtain
\[
\int_0^K \int_{\mathbb{T}^n} |\nabla \log \phi_t^N(x) - \nabla \log v_0 + \nabla \Psi(x)|^2 \phi_t^N(x) \, d\mu dt \\
= \frac{K}{N} \sum_{k=0}^{N-1} \int_{\mathbb{T}^n} |\nabla F_k^N|^2 \rho_k^N \, d\mu \\
= \sum_{k=0}^{N-1} d^2(\rho_k \mu, \rho_{k+1} \mu) \leq C.
\]

Hence, $t \mapsto \sqrt{\int_{\mathbb{T}^n} |\nabla \log \phi_t^N(x) - \nabla \log v_0 + \nabla \Psi(x)|^2 \phi_t^N(x) \, d\mu}$ converges weakly in L^2 to a function $A : [0, K] \to \mathbb{R}$. On the other hand, we have
\[
d(\phi_{\tau_0}^N, \phi_{\tau_1}^N) \leq \sum_{k=m_0}^{m_1-1} d(\rho_{k-1}^N, \rho_k^N) \\
= \frac{K}{N} \sum_{k=m_0}^{m_1-1} \sqrt{\int_{\mathbb{T}^n} |\nabla F_{k-1}^N|^2 \rho_{k-1}^N \, d\mu} \\
= \int_{\frac{(m_1-1)K}{N}}^{\frac{m_1K}{N}} \sqrt{\int_{\mathbb{T}^n} |\nabla \log \phi_t^N(x) - \nabla \log v_0 + \nabla \Psi(x)|^2 \phi_t^N(x) \, d\mu \, dt,
\]
where $\frac{(m_1-1)K}{N} \leq \tau_i < \frac{m_1K}{N}$, $i = 0, 1$.

By letting $N \to \infty$, we obtain
\[
\liminf_{N \to \infty} d(\phi_{\tau_0}^N, \phi_{\tau_1}^N) \leq \int_{\tau_0}^{\tau_1} A(t) \, dt.
\]

Let D be a dense subset of $[0, K]$. By Lemma 4.1 and a diagonal argument, there is a subsequence $\phi_{t_k}^N$ such that $\phi_{t_k}^N$ converges uniformly on \mathbb{T}^n to a continuous function ϕ_t for all t in D. By Lemma 4.1 and (4.2), we can extend $\{\phi_t | t \in D\}$ to a unique curve $\{\phi_t | t \in [0, K]\}$ contained in $C^{0, \alpha}(\mathbb{T}^n)$ by continuity. Next, we show that $\phi_{t_k}^N$ converges to ϕ_t uniformly for all t in $[0, K]$. By Lemma 4.1, it is enough to show that any convergence subsequence (say $\phi_{t_k}^{N_{km}}$) converges uniformly to
\(\phi_t \). Suppose that the uniform limit of \(\phi_t^{N_{km}} \) is \(\phi_t \). Then, by (4.2),
\[
\mathbf{d}(\phi_s \mu, \phi_t \mu) = \lim_{m \to \infty} \mathbf{d}(\phi_s^{N_{km}} \mu, \phi_t^{N_{km}} \mu) \leq \int_s^t A(\tau) d\tau
\]
for all \(s \) in \(\mathcal{D} \). It follows from this and the definition of \(\phi_t \) that \(\phi_t = \phi_t \).

We also know that \(T < \infty \) with compact support, then we have
\[
\sum_{k=1}^{\infty} \int_{T_n} \xi_t(\rho^N_k - \rho^N_{k-1}) d\mu + \frac{K}{N} \int_{T_n} \langle \nabla \xi_t, \nabla F^N_k \rangle \rho^N_k d\mu
\]
\[
= \left| \int_{T_n} \xi_t(\Phi^N_k) \rho^N_k d\mu - \int_{T_n} \xi_t \rho^N_k d\mu - \frac{K}{N} \int_{T_n} \langle \nabla \xi_t, \nabla F^N_k \rangle \rho^N_k d\mu \right|
\]
\[
\leq \frac{K^2}{2N^2} \int_{T_n} \langle \nabla^2 \xi_t(\nabla F^N_k), \nabla F^N_k \rangle \rho^N_k d\mu
\]
\[
\leq \frac{1}{2} \| \nabla^2 \xi \|_{C^0} \frac{K^2}{N^2} \int_{T_n} |\nabla F^N_k|^2 \rho^N_k d\mu.
\]

On the other hand, by (2.6), (2.7), and (2.9), we have
\[
\int_M [-\text{div}(X) + \langle X, \nabla(\Psi - 2 \log v_0) \rangle - \langle \nabla F^N_k, X \rangle] \rho_k d\mu = 0.
\]
Therefore, by choosing \(X = \nabla \xi_t \), we obtain
\[
\left| \int_{T_n} [-\Delta \xi_t + \langle \nabla \xi_t, \nabla(\Psi - 2 \log v_0) \rangle] \rho^N_k d\mu
\]
\[
+ \int_{T_n} \frac{N}{K} \xi_t(\rho^N_k - \rho^N_{k-1}) d\mu \right| \leq \frac{1}{2} \| \nabla \xi \|_{C^0} \frac{K}{N} \int_{T_n} |\nabla F^N_k|^2 \rho^N_k d\mu.
\]

For each fix time \(T \) in \([0, K] \), let \(k_N \) be the integer satisfying \(\frac{(k_N - 1)K}{N} \leq T < \frac{k_N K}{N} \). By applying (4.1), we obtain
\[
\sum_{k=1}^{k_N} \int_{T_n} \xi_t \frac{(\rho^N_k - \rho^N_{k-1})}{N} d\mu
\]
\[
= \sum_{k=1}^{k_N} \frac{K}{N} \int_{T_n} \left[\xi_t \left(\rho^N_k - \rho^N_{k-1} \right) \right] d\mu + o \left(\frac{K}{N} \right)
\]
\[
\to \int_0^T \int_{T_n} \left[\Delta \xi_t - \langle \nabla \xi_t, \nabla(\Psi - 2 \log v_0) \rangle \right] \phi_t d\mu dt
\]
as \(N \to \infty \).
On the other hand, we have

\[\sum_{k=1}^{k_N} \int_{T^n} \xi^{(k-1)K} N^N \rho_k N - \xi^{(k-1)K} N^N \rho_k N' \, d\mu
= \sum_{k=1}^{k_N} \int_{T^n} \xi^{(k-1)K} N^N \rho_k N \, d\mu - \sum_{k=0}^{k_N-1} \int_{T^n} \xi^{(k-1)K} N^N \rho_k N \, d\mu
= \int_{T^n} \xi^{(k_N-1)K} N^N \rho_k N \, d\mu - \int_{T^n} \xi^{(K)N} N^N \rho_k N \, d\mu
\rightarrow \int_{T^n} \xi_T \phi_T \, d\mu - \int_{T^n} \xi_0 \phi_0 \, d\mu - \int_0^T \int_{T^n} \partial_t \xi_t \phi_t \, d\mu \, dt \]

as \(N \to \infty \).

Finally, by the combining the above discussions with (1.1), we see that \(\phi \) is a weak solution (and hence the unique classical solution, see [8]) to the equation \(\dot{\phi} = \Delta \phi + \langle \nabla \phi, \nabla \Psi \rangle + f\phi \) on \([0, K] \times T^n\). This gives the result for a short time. The result for long time follows from \(C^2 \) estimate for linear parabolic equations (see [8]). \(\square \)

References

[1] L. Ambrosio, N. Gigli: A user's guide to optimal transport. Modelling and optimisation of flows on networks, 1-155, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013
[2] L. Ambrosio, N. Gigli, G. Savaré: Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.
[3] Y. Brenier: Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375–417.
[4] P. Cannarsa, C. Sinestrari: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston, Inc., Boston, MA, 2004.
[5] L.C. Evans, R.F. Gariepy: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[6] D. Gilbarg, N. Trudinger: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[7] R. Jordan, D. Kinderlehrer, F. Otto: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.
[8] G.M. Lieberman: Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
[9] R.J. McCann: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001), no. 3, 589–608.
[10] F. Otto: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 (2001), no. 1-2, 101-174.
[11] C. Villani: Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.
[12] C. Villani: Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009

E-mail address: wylee@math.cuhk.edu.hk

Room 216, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong