Phytochemical screening, antibacterial and anthelmintic activities of leaf and seed extracts of *Coix lacryma-jobi* L.

Sajan Das, Rumana Akhter, Sumana Khandaker, Sumaiya Huque, Promit Das, Md. Rafi Anwar, Kaniz Afroz Tanni, Samia Shabnaz, Mohammad Shahriar*

Phytochemistry Research Laboratory, Department of Pharmacy, University of Asia Pacific, Dhaka-1215, Bangladesh

Article Info

Objective: To evaluate the possible phytochemical constituents, antibacterial and anthelmintic activity of *Coix lacryma-jobi* L. (Job’s tears) using the chloroform leaves and seed extracts.

Methods: The test for antibacterial activity and minimum inhibitory concentration was conducted by the disc diffusion and two-fold dilution method, respectively. In anthelmintic activity test, using *Pheretima posthuma* model, vermifuge and vermicidal activity were determined by using the chloroform extract at various concentrations.

Results: The preliminary phytochemical screening of chloroform extracts of Job’s tears leaves indicated the presence of alkaloid, carbohydrate, saponin, glycosides, flavonoids, phenols, tannins and steroids whereas the seeds extract contained glycosides, flavonoids, phenols and steroids, which revealed highest antimicrobial activity against *Bacillus cereus* and *Klebsiella pneumoniae*. The lowest minimum inhibitory concentration (12.5–50 mg/mL) was observed against all selected bacteria. On the other hand, it has been observed that chloroform leaves extracts showed shortest time of paralysis (P = 8.17 min) and death (D = 18.23 min) at 100 mg/mL concentration, in comparison with seed extracts (P = 36.83 min and D = 62.33 min) at 100 mg/mL concentration and albendazole (10 mg/mL) used as reference drug (P = 20.17 min and D = 43.67 min), which indicated the plant possessed mild anthelmintic activity.

Conclusions: The chloroform extracts (leaves and seeds) showed efficacy for both bacterial infections and parasitic diseases, which ensure the traditional uses of *Coix lacryma-jobi* L.

Abstract

1. Introduction

Secondary metabolites or phytochemicals are naturally occurring and biologically active plant compounds that have potential disease inhibiting capabilities as well as believed to be effective in combating or preventing disease due to their antioxidant effect[1]. Recently, World Health Organization suggested that approximately 80% of the rural people across the world confide on herbal remedies as homeopathic medicines for their primary health care because of their easy availability, efficacy and specially cost effectiveness compared to modern drugs[2]. There are more than 500 medicinal plants growing in our country, however, the inventory is not complete and many plants with medicinal value are yet to be determined[3].

Prospective source of antimicrobial agents in different countries is plants as most of the developing countries use plant-derived products as medicines. Plants are rich in a variety of phytochemicals including tannins, saponins, alkaloids, and flavonoids[4,5] which have been found to have *in vitro* antimicrobial properties. Emergence of resistance to first-line antibiotics poses challenge in treatment of several human infections[6-8] and is prompting a revival in research of the antimicrobial role of plants against resistant strains due to comparable safety and efficacy.

Infections caused by various species of parasitic worms (helminths) of the gastrointestinal tract are the most widespread of all chronic infections of humans in developing countries including Bangladesh and produce a global burden of disease that exceeds better-known conditions, including malaria and tuberculosis[9]. The current anthelmintic therapies act by incapacitating the parasite by paralysis, damaging the worm such that the immune system can eliminate it, or by altering its metabolic processes. Because the
metabolic requirements of these parasites vary greatly from one species to another, drugs that are highly effective against one type of worm are ineffective against others and because of the prevalence of helminth infections, treatment of helminthiasis is of very great practical therapeutic importance as the synthetic drugs used in helminthiasis treatment have some potential side effects[10].

Coix lacryma-jobi L. (C. lacryma-jobi), commonly known as Job’s tears, is a broad-leaved, grain-bearing tropical plant of the family Poaceae, which is considered a nutritious health food in Asian countries such as China, India, Bangladesh, Pakistan, Sri Lanka, Malaysia, Japan, the Philippines, Burma, and Thailand[11]. The plant parts can be kept in ornamental purpose, rosaries and necklace. Its roots and grain are also used as traditional medicine and supplementary medical food in China. Job’s tears are taken by people due to its beneficial effect for hay fever, high cholesterol, cancer, warts, obesity, arthritis, allergic disorder and respiratory tract infections. Many scholars have reported different biological activities of Job’s tears, including antioxidant/free radical scavenging[12], anti-inflammatory[13,14], anti-tumor[12,15,16], hypolipidemic[17], hypocholesterolemic[18], anti-allergic[19,20], hypoglycemic[21], antiobesity[22], anti-mutagenic[23], anti-ulcer[24], prebiotic activity[25], hormonal modulation[26], osteoporosis preventing[27], abortifacient[28] and antimicrobial effect[29].

In the present study, the organic soluble materials of the leaves and seed chloroform extracts of C. lacryma-jobi were evaluated for phytochemical screening, antimicrobial activity and minimum inhibitory concentrations (MICs) against some human pathogenic bacteria as well as anthelmintic activity against Pheretima posthuma.

2. Materials and methods

2.1. Collection, identification and processing of plant samples

The leaves of C. lacryma-jobi were collected from Dhaka, Bangladesh and then plant sample was submitted to the National Herbarium of Bangladesh, Mirpur-1, Dhaka for its identification and the voucher specimen was DACB-40674. Leaves were sundried for seven days in order to remove the moisture contents and then ground into coarse powder using high capacity grinding machine (Jaipan Designer Mixer Grinder, Jaipan, India) which was then stored in air-tight container with necessary markings for identification and kept in cool, dark and dry place for the investigations.

2.2. Extraction procedure

The powdered plant parts (30 g) were successively extracted in a Soxhlet extractor at elevated temperature using 500 mL of distilled chloroform (40-60 °C). After drying, all extracts were labeled and kept in refrigerator at 4 °C for future investigations.

2.3. Preliminary phytochemical screening

Chloroform extract was subjected to preliminary phytochemical screening for determining nature of phytoconstituents by using standard protocols[30].

2.4. Antibacterial activity

The antimicrobial screening, which is the first stage of antimicrobial drug discovery, was performed by the disc diffusion method against Gram positive and Gram negative bacteria (Table 1) collected as pure cultures from the Department of Microbiology, Medinova Medical Services Limited, Bangladesh. Standard disc of Ciprofloxacin (5 μg/disc) and blank discs (impregnated with solvents followed by evaporation) were used as positive and negative control, respectively. The antimicrobial activity of the test agents was determined by measuring the diameter of zone of inhibition expressed in mm[31].

2.5. Determination of MIC

The MIC of the extracted material was determined by two-fold dilution method. Subjected bacterial strains were grown in tryptone soya broth (HiMedia, India) until it reached to the exponential phase. C. lacryma-jobi extracts of different dilutions were prepared to give concentrations of 50, 25, 12.5, 6.25, 3.14, 1.56 and 0.78 mg/mL, respectively. After that, 0.5 mL extract of each concentration was added into separate test tubes containing 0.5 mL tryptone soya broth with bacterial suspension at a final concentration of 1 mL in each tube and incubated at 37 °C for 24 h. As negative control, 7% of 0.5 mL chloroform was added with 0.5 mL bacteria broth solution. After proper incubation, 100 μL of culture from each tube was transferred and spread over Mueller-Hinton agar (HiMedia, India) plate and incubated (Binder, Germany) at 37 °C overnight for bacterial count.

2.6. Experimental animal

For the experiment, earthworms were collected from moist soil at the Board of Intermediate and Secondary Education, Comilla and washed with normal saline to remove soil and fecal matter at the time of the experiment. The earthworms of 5–7 cm in length and 0.2–0.3 cm in width were used for the experimental protocol.

2.7. Anthelmintic activity

The anthelmintic assay was carried out as per the method of Ajayieoba et al.[32] with minor modifications. In this experiment, Pheretima posthuma were used because of its anatomical and physiological similarity with intestinal roundworm parasites of human beings and they belonged to same group of Annelida. All the test solutions and standard drug solutions were prepared freshly before starting the experiment. Albendazole (10 mg/mL) was used as reference standard while saline water served as a control. Thirty-six earthworms were divided into six groups with equal size, each group containing six worms. 60 mL formulations containing two different concentrations of chloroform extract of C. lacryma-jobi leaves and seeds (50 and 100 mg/mL in distilled water) were prepared. All the test solution and standard solution were prepared
freshly before starting the experiments. The time for paralysis (in min) was noted when no movement of any sort could be observed except when the worms were shaken vigorously. The time of death of the worms (in min) was recorded after ascertaining that worms neither moved when shaken vigorously nor when dipped in warm water (50 °C).

2.8. Statistical analysis

In case of anthelmintic activity test, the experimental data were calculated as mean ± SEM, evaluated by unpaired One-way ANOVA. Test values of P < 0.01 were considered statistical significant.

3. Results

3.1. Preliminary phytochemical screening

In primary phytochemical screening, leaf extract of C. lacryma-jobi was found to contain alkaloid, carbohydrate, saponin, glycosides, flavonoids, phenols, tannins and steroids whereas the seed extract contained glycosides, flavonoids, phenols and steroids.

3.2. Determination of antibacterial activity

Chloroform leaf extract of C. lacryma-jobi showed a wide range of antibacterial activity against Staphylococcus epidermis (S. epidermis), Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), Bacillus subtilis (B. subtilis), Pseudomonas aeruginosa (P. aeruginosa), Vibrio cholerae (V. cholerae) and Klebsiella pneumoniae (K. pneumoniae) at the concentration of 800 μg/mL although Escherichia coli (E. coli) and Shigella dysenteriae (S. dysenteriae) showed resistance at the same concentration whereas the range of zone of inhibition was within 9–14 mm (Table 1). On the other hand, when chloroform seed extract of C. lacryma-jobi was subjected to antibacterial screening at 800 μg/disc, it revealed antibacterial activity against B. cereus, B. subtilis, P. aeruginosa, V. cholerae and K. pneumoniae having the zone of inhibition ranging from 6 to 8 mm whereas the remaining tested microorganisms were found to be resistant at the same concentration (Table 1).

Bacterial isolates	MIC of leaf extracts (mg/mL)					
	50	12.5	6.25	3.14	1.56	0.78
Gram positive bacteria	S. epidermis	0 0 5 13 45 84				
	S. aureus	0 0 7 12 38 92				
	B. cereus	0 0 5 18 46 94				
	B. subtilis	0 0 4 14 25 64				
Gram negative bacteria	E. coli	0 5 25 64 102 162 218				
	P. aeruginosa	0 0 4 19 42 98				
	V. cholerae	0 2 5 7 25 67 112				
	S. dysenteriae	0 9 21 57 83 112 176				
	K. pneumoniae	0 0 2 5 14 44				

Table 2

MICs of the leaf extracts of C. lacryma-jobi against different bacteria.

Bacterial isolates	MIC of seed extracts (mg/mL)					
	50	12.5	6.25	3.14	1.56	0.78
Gram positive bacteria	S. epidermis	0 3 11 27 63 73 111				
	S. aureus	0 2 8 17 32 88 142				
	B. cereus	0 0 9 23 51 83 134				
	B. subtilis	0 0 4 17 61 87 134				
Gram negative bacteria	E. coli	0 9 31 59 83 133 198				
	P. aeruginosa	0 0 3 12 37 88 133				
	V. cholerae	0 0 3 11 44 93 157				
	S. dysenteriae	0 7 21 67 111 162 203				
	K. pneumoniae	0 0 2 6 19 43 102				

Table 3

MICs of the seed extracts of C. lacryma-jobi against different bacteria.

Sample	Concentration (mg/mL)	Time taken for paralysis in min	Time taken for death in min
Control	-	-	-
Standard	10	20.17 ± 0.54	43.67 ± 1.12
C. lacryma-jobi	50	18.33 ± 0.80	37.67 ± 1.15
leaf extracts	100	8.17 ± 0.79	18.33 ± 1.31
C. lacryma-jobi	50	44.17 ± 0.73	83.67 ± 0.99
seed extracts	100	36.83 ± 0.60	62.33 ± 0.88

3.3. Determination of MIC

Inhibition of microorganism’s growth at the lowest concentration of plant extract is known as MIC. In MIC test, the leaves extracts of chloroform of C. lacryma-jobi was capable of inhibiting all types of Gram positive and Gram negative (P. aeruginosa, K. pneumoniae) bacteria at the concentration of 12.5–50 mg/mL except E. coli, V. cholerae and S. dysenteriae which were able to survive at 25 mg/mL concentration (Table 2). On the other hand, B. cereus, B. subtilis, P. aeruginosa, V. cholerae and K. pneumoniae were inhibited at the concentration 25–50 mg/mL of C. lacryma-jobi chloroform seeds extract, whereas, the MIC value of S. epidermis, S. aureus, E. coli and S. dysenteriae was 50 mg/mL (Table 3).

Table 4

Anthelmintic activities of chloroform leaf and seed extracts of C. lacryma-jobi.

Sample	Concentration (mg/mL)	Time taken for paralysis in min	Time taken for death in min
Control	-	-	-
Standard	10	20.17 ± 0.54	43.67 ± 1.12
C. lacryma-jobi	50	18.33 ± 0.80	37.67 ± 1.15
leaf extracts	100	8.17 ± 0.79	18.33 ± 1.31
C. lacryma-jobi	50	44.17 ± 0.73	83.67 ± 0.99
seed extracts	100	36.83 ± 0.60	62.33 ± 0.88

3.4. Anthelmintic activity

Time taken for paralysis and death of earthworms for both leaf and seed extracts and reference drug are given in Table 4. The chloroform extracts of the leaves of C. lacryma-jobi demonstrated paralysis and death of worms in a significant dose dependent manner as compared to seed extracts and albendazole especially at higher concentration of 100 mg/mL. Statistical variance of analysis on anthelmintic activity of C. lacryma-jobi leaf and seed extracts has been shown in Table 5.
forms of the parasites, thereby, depleting glycogen storage. Paralysis and death of susceptible gastrointestinal parasites occur slowly due to insufficient energy for the production of adenosine triphosphate and their clearance from the gastrointestinal tract may not be complete until several days after treatment[10]. Anthelmintic effects of plants are normally ascribed to secondary metabolites such as essential oils[36], flavonoids, alkaloids, terpenoids[37] or polyphenols such as proanthocyanidins[38], also known as condensed tannins. Presence of such secondary metabolites in the present study might be responsible for such kind of effect. Moreover, direct anthelmintic effects of purified condensed tannins have been confirmed in in vitro assays against, amongst others, Haemonchus contortus[39], Ostertagia ostertagi[40] and Ascaris suum[41] as tannins can bind to free proteins in the gastrointestinal tract of host animal or glycoprotein on the cuticle of the parasite and cause death[10,42].

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This paper is supported by Department of Pharmacy, University of Asia Pacific (Grant No. Pharm 07/2016-17).

References

[1] Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants and human diseases. Where are we now? J Lab Clin Med 1992; 119: 598-620.
[2] Khandaker S, Das S, Opo FADM, Akhter R, Shahriar M. In vivo pharmacological investigations of the crude extracts of Calamus viminalis (L.). J Pharmacogn Phytochem 2016; 5(3): 263-9.
[3] Laboni FR, Sultana T, Kamal S, Karim S, Das S, Harun-Or-Rashid M, et al. Biological investigations of the ethanol extract of the aerial part (leaf) of Coccinia grandis L. J Pharmacogn Phytochem 2017; 6(2): 134-8.
[4] Siddique KI, Uddin MMN, Islam MS, Parvin S, Shahriar M. Phytochemical screenings, thrombolytic activity and antimicrobial properties of the bark extracts of Averrhoa bilimbi. J Appl Pharm Sci 2013; 3(3): 94-6.
[5] Parvin D, Uddin MMN, Islam MS, Parvin S, Shahriar M. Phytochemical screenings, thrombolytic activity and antimicrobial properties of the leaf extract of Lablab purpureus. Am J Res Commun 2013; 1(2): 49-55.
[6] Soma IJ, Shahriar M, Narjish SN, Bhuiyan MA. Antimicrobial resistance pattern of bacteria isolated from ICU patients with respiratory tract infections. Dhaka Univ J Pharm Sci 2014; 13(2): 193-7.
[7] Ferdousi R, Narjish SN, Chowdhury D, Shahriar M. Antimicrobial resistance pattern of bacteria isolated from ICU patients with urinary tract infections. Int J Pharm 2015; 5(4): 1079-86.
[8] Das S, Shahriar M, Narjish SN, Akhter R. In vitro investigation on antimicrobial sensitivity pattern of enteric fever causing bacteria isolated from different clinical sources in Dhaka City, Bangladesh. Int J Med Health Res 2016; 2(5): 33-7.
[9] Hohez PJ, Molynieux DH, Fenwick A, Ottesen E, Sachs SE, Sachs JD. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med 2006; 3(5): e102.

[10] Udavant PB, Satyanarayana SV, Upasani CD. In vitro anthelmintic activity of stems of Cuscuta reflexa. Int J Biosci 2012; 1(8): 18-9.

[11] Kutschera M, Krasaekoopt W. The use of job’s tear (Coix lacryma-jobi L.) flour to substitute cake flour in butter cake. Assumption Univ J Technol 2012; 15(4): 233-8.

[12] Kuo CC, Shih MC, Kuo YH, Chuang W. Antagonism of free-radical-induced damage of adlay seed and its anti-proliferative effect in human histolytic lymphoma U937 mononuclear cells. J Agric Food Chem 2001; 49: 1564-70.

[13] Huang DW, Chung CP, Kuo YH, Lin YL, Chiang W. Identification of compounds in adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide induced inflammation in RAW 264.7 macrophages. J Agric Food Chem 2009; 57: 10651-7.

[14] Huang DW, Kuo YH, Lin FY, Lin YL, Chiang W. Effect of Adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) Testa and its phenolic components on Cu2+-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. J Agric Food Chem 2009; 57: 2259-66.

[15] Chung CP, Hsu HY, Huang DW, Hsu HH, Lin JT, Shih CK, et al. Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncoxygen expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway. J Agric Food Chem 2010; 58: 7616-23.

[16] Li SC, Chen CM, Lin SH, Chiang W, Shih CK. Effects of adlay bran and its ethanolic extract and residue on preneoplastic lesions of the colon in rats. J Sci Food Agric 2011; 91(3): 547-52.

[17] Yu F, Gao J, Zeng Y, Liu CX. Effects of adlay seed oil on blood lipids and antioxidant capacity in hyperlipidemic rats. J Sci Food Agric 2011; 91(10): 1843-8.

[18] Wang L, Sun Y, Yi Q, Wang X, Ju X. Protective effect of polyphenols extract of adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) on hypercholesterolemia-induced oxidative stress in rats. Molecules 2012; 17: 8867-96.

[19] Hsu HY, Lin BE, Lin YJ, Kuo CC, Chiang W. Suppression of allergic reactions by dehulled adlay in association with the balance of TH1/TH2 cell responses. J Agric Food Chem 2003; 51(13): 3763-9.

[20] Chen HJ, Lo YC, Chiang W. Inhibitory effects of adlay bran (Coix lacryma-jobi L. var. ma-yuen Stapf) on chemical mediator release and cytokine production in rat basophilic leukemia cells. J Ethnopharmacol 2012; 141: 119-27.

[21] Lin MHA, Wu MC, Lu S, Lin J. Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World J Gastroenterol 2010; 16(39): 4973-9.

[22] Kim SO, Yun SJ, Lee EH. The water extract of adlay seed (Coix lacryma-jobi L. var. ma-yuen) exhibits anti-obesity effects through neuroendocrine modulation. Am J Chin Med 2007; 35: 297-308.

[23] Chen HH, Chiang W, Chang YJ, Chien YL, Lee CK, Liu KJ, et al. Antimitogenic constituents of adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) with potential cancer chemopreventive activity. J Agric Food Chem 2011; 59: 6444-52.

[24] Chung CP, Hsia SM, Lee MY, Chen HJ, Cheng F, Chan LC, et al. Gastroprotective activities of adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) on the growth of the stomach cancer AGS cell line and indomethacin-induced gastric ulcers. J Agric Food Chem 2011; 59: 6025-33.

[25] Chiang W, Cheng C, Chiang M, Chung KT. Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. J Agric Food Chem 2000; 48: 829-32.

[26] Hsia SM, Tseng YW, Wang SW, Kuo YH, Huang DW, Wang PS, et al. Effect of adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) hull extracts on testosterone release from rat Leydig cells. Phytother Res 2009; 23: 687-95.

[27] Yang RS, Chiang W, La YH, Liu SH. Evaluation of osteoporosis prevention by adlay using a tissue culture model. Asia Pac J Clin Nutr 2008; 17(Suppl 1): 143-6.

[28] Tseng HP, Chiang W, Ueng TH, Liu SH. The abortifacient effects from the seeds of Coix lacryma-jobi L. var. ma-yuen Stapf. J Toxicol Environ Health A 2005; 68(17-18): 1557-65.

[29] Ishiguro Y, Okamoto K, Sakamoto H, Sonoda Y. Antimicrobial substances coixindens A and B in etiolated seedlings of adlay. Nippon Nogei Kagaku Kaishi 1993; 67: 1405-10.

[30] Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: a review. Int Pharm Sci Res 2011; 1: 98-106.

[31] Bauer AW, Kirby WM, Sherris JC, Tuck M. Antibiotic susceptibility testing by a standardized disc diffusion method. Am J Clin Pathol 1966; 45: 493-6.

[32] Ajayeebo EA, Onoaka PA, Olanrewaju OT. In vitro anthelmintic properties of Buchholzia coriacea and Gynandropsis gynandra extract. Pharm Biol 2001; 39: 217-20.

[33] Doughari JH, Manzara S. In vitro antibacterial activity of crude leaf extracts of Mangifera indica Linn. Afr J Microbiol Res 2008; 2: 67-72.

[34] Devi KS, Damayanti M, Velmurugan D, Singh NR. Analysis of kidney stones by PXRD and evaluation of the antiluotropic potential of Coix lacryma jobi. Int J Sci Res Publ 2015; 5(7): 1-5.

[35] Chhabra D, Gupta RJ. Formulation and phytochemical evaluation of anthelmintic substances coixindens A and B in etiolated seedlings of adlay. Phytother Res 2005; 19(11): 951-5.

[36] Pessoa LM, Morais SM, Bevilaqua CM, Luciano JH. Anthelmintic activity of essential oil of Ocimum gratissimum Linn. against Haemonchus contortus. Vet Parasitol 2002; 109: 59-63.

[37] Lahlou M. Potential of Origanum compactum as a cercaricide in Morocco. Ann Trop Med Parasitol 2002; 96: 587-93.

[38] Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4): 564-82.

[39] Brunet S, Jackson F, Hoste H. Effects of sainfoin (Onobrychis vicifolia) extract and monomers of condensed tannins on the association of abomasal nematode larvae with fundic explants. Int J Parasitol 2008; 38(7): 783-90.

[40] Novobilsik A, Mueller-Harvey I, Thamsborg SM. Condensed tannins act against cattle nematodes. Vet Parasitol 2011; 182(2-4): 213-20.

[41] Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One 2014; 9: e97938.

[42] Tandon V, Pal P, Roy B, Rao HSP, Reddy KS. In vitro anthelmintic activity of root tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitol Res 1997; 83: 492-8.