Solar Radio Burst Data Processing of CALLISTO and Frequency Drift Rate Determination of Solar Radio Burst Detected by CALLISTO Network in Indonesia

M Batubara*, T Manik, R Suryana, M Lathif, P Sitompul, M Zamzam, and F Mumtahana

Space Science Centre – Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung, West Java, 40173, Indonesia

*batubaramario@gmail.com

Abstract. Space Science Center of Indonesian Institute of Aeronautics and Space called LAPAN has installed several solar radio receivers named CALLISTO in various parts of Indonesia. The equipment has made some solar radio observational data which is indicate solar radio burst since its operation. All of the observational data stored in the file format of Flexible Image Transport System (FITS) which is the raw data. Therefore, it is required a such kind of related data processing to produce a data that can be used for further research. In this paper will discuss how the observational data of CALLISTO could be generated included the information of data format, CALLISTO data processing techniques used in these activities as well as some of the data processing based on data indicating solar radio bursts. As the results, a map of solar radio spectrum as spectrograph profiles and some determinations of frequency drift base on the data will also be discussed in this paper.

1. Introduction

The field of radio astronomy of the sun has become a wide of science field since in the 19 centuries. This field was initiated by the discovery of the basic components of a major of solar radio emission: the quiet sun, the slowly varying component, and various types of radio bursts including noise storm [1]. Radio burst can be classified into 5 (five) types in dynamic spectrum [2]. Its classification is based on the band width, frequency drift and duration of emission. The five classifications of radio burst are types I, II, III, IV and V. The appearance of radio burst is convinced that a burst generated by a fast excitation of electrons at the local plasma frequency level or at the level of both harmonic. In radio astronomy, bursts considered as significant characteristics of solar activity because it is generally associated with sudden acceleration of particles from the Sun [3,4].

Solar flare is one of the major events on the Sun that affect space weather and climate change [34-36]. Observations of solar radio bursts is done by using a compact astronomical Low Cost, Low Frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) of BLEIN with 7 meter telescope dish at ETH, Zurich in the frequency range of 45 to 870 MHz. [37,38]. The antenna
is a broadband log-periodic antenna, multi-element, unidirectional, narrow-beam antenna. Its impedance and radiation characteristics are regularly repetitive as a logarithmic function of the excitation frequency [27,28,36,39,40]. Another thing that these antennas can cover a frequency range of 45-870 MHz [41-44]. CALLISTO spectrometer is a cheap radio spectrometer used to monitor metrics and decametric radio bursts, and the installation has spread into several parts of the world to allow for 24-hour monitoring of solar radio activity [45,46].

In this regard, Indonesia in particular LAPAN take the focus of solar radio observation are located in Sumedang with frequency range of 45-870 MHz [47]. This area is the best area with minimal interference in local radio frequency. The data selection has been chosen from 180 MHz to 870 MHz which has a clean area with radio frequency interference is very minimal [48]. In this paper focused on the flow production of observational data following with the content of the file header. The solar radio data processing techniques within background noise elimination method is also described in detail as a methodology. As a part of this paper, some of the results and discussion of data processing based on the method above by using data indicating solar radio bursts will also be described in detail.

2. Solar Radio Burst

Radio burst type IV is an indicator of the formation of a new active region [5-7]. It shows the wave-particle and wave interactions in a magnetic trap in the solar corona [8]. However, type IV events are fully developed and very complex. At a meter wavelength, the type IV burst is usually, preceded by a burst of type II (slow-drift). There are two main categories of solar radio burst type IV, which (i) broadband radio pulsations (BBP) and (ii) the zebra patterns (ZP). The fine structure (FS) of solar radio burst type IV is the principal interest in the flare plasma diagnostics in the low corona [9]. On the other hand, the BBP sources begin close to the active region and decays away from it [10]. Both BBPs and ZPs in type IV of solar radio emissions are rather frequently observed, especially a few days before the solar flares and Coronal Mass Ejection phenomena [11-13]. Meanwhile, solar radio bursts of type III is the most dominant solar flare with the phenomenon of solar flares. Type III was first introduced in 1963 [14] at range of frequency 500-10 MHz [15-17]. On the other hand, in this stage can be considered as pre-flare which could be a signature of accelerated electrons [18] as evidenced by found that 60% of the drift (type III) bursts of solar radio synchronized at the same time with the solar flare [19]. In addition, the dynamic structure of Type III solar radio bursts known as ejection of local plasma oscillations due to interference of atoms excitation in radiation of incoherent plasma frequency such as gyro synchrotron and emission-free that appear in radio wavelengths dominant in the meter and decimeter [20,21]. Type III bursts commonly occur early in the rise of impulsive solar flares may indicate that open field lines are important parts of model for release energy by magnetic fields such as flares [22,23].

Solar flare Type II is found roughly more than 60 years ago [24,25]. It can be divided into two main components: (i) fundamental (F) and (ii) the harmonic structure (H) and the slow drift Burst [26]. Temperatures that implied between the two classes of emissions is from 10^7 - 10^{13} K [27,28]. Time of onset of this type precludes the possibility of a CME that cause bursts of type II [29]. The shock motion through the radial plasma density profile can be observed based on signal decreasing in frequency. Type II solar radio bursts were first identified by [30] and also described by [31] and are classified as broadband which lasted from 20 minutes to several hours. Thus, CME produces a certain kinetic energy which is an indicator of the life time of the bursts of type II [32,33].

3. Instrumentation

CALLISTO system installed at locations Aerospace Observation Center (BPD) Sumedang with geographic coordinates 6.913047°S; 107.83714°E which covers the frequency range of 45 MHz - 870 MHz. An antenna Log Periodic Dipole Antenna (LPDA) is installed outside the control building. This antenna is connected to the CALLISTO through the coaxial cable. However, before connecting to CALLISTO, a Low Noise Amplifier (LNA) is used to amplify signals with low signal power without reducing the signal to noise ratio (SNR). The output feeder is connected to a main computer via RS232.
cable IO for controlling, monitoring, and maintenance as well as signal processing to generate observation data. The whole observation data are automatically saved into a standard FIT file format that represents frequency versus time profile.

4. Observation Data

The data used in this activity is the FIT file which contains two levels data where the first data is the header file and the second level is the observation data in two dimensional of frequency and observation time. The header data explain the global information of the observation as shown in Table 1.

Header Name	Values	Notes
SIMPLE	T	file does conform to FITS standard
BITPIX	8	number of bits per data pixel
NAXIS	2	number of data axes
NAXIS1	3600	Length of data axis 1
NAXIS2	200	Length of data axis 2
EXTEND	T	FITS dataset may contain extensions
COMMENT	FITS (Flexible Image Transport System) format defined in Astronomy and Astrophysics Supplement Series v44/p363, v44/p371, v73/p359, v73/p365. Contact the NASA Science Office of Standards and Technology for the FITS Definition document #100 and other FITS information.	
DATE	2016-05-03	Time of observation
CONTENT	2016/05/03	Radio flux density, e-CALLISTO (INDONESIA)
Title of instrument	SUMEDANG	Organization name
OBJECT	Sun	Type of instrument
DATE-OBS	2016/05/03	Date observation starts
TIME-OBS	02:39:03.375	Time observation starts
DATE-END	2016/05/03	Date observation ends
TIME-END	02:54:03	Time observation ends
BZERO	0	Scaling offset
BSCALE	1	Scaling factor
BUNIT	Digits	z-axis title
DATAMIN	115	Minimum element in image
DATAMAX	166	Maximum element in image
CRVAL1	9543	Value on axis 1 at reference pixel
CRPIX1	0	Reference pixel of axis 1
CTYPE1	Time [UT]	Title of axis 1
CDELT1	0.25	Step between first and second element in x-axis
CRVAL2	200	Value on axis 2 at the reference pixel
CRPIX2	0	Reference pixel of axis 2
CTYPE2	Frequency [MHz]	Title of axis 2
CDELT2	-1	Step between first and second element in axis
OBS_LAT	6.913047	Observatory latitude in degree
OBS_LAC	S	Observatory latitude code {N,S}
While data on the second level contains information on observational data in 2D array format [NAXIS1 X NAXIS2]. Each element of observational data is in the form of bit pixel data with sized 8-bit bytes (Table 2). In addition, the frequency range data used and the observational time series are stored in a data file on second level.

Table 2. The information of header file in the 2nd level.

Header Name	Values	Notes
XTENSION	BINTABLE	Binary table extension
BITPIX	8	8-bit bytes
NAXIS	2	2-dimensional binary table
NAXIS1	30400	Width of table in bytes
NAXIS2	1	Number of rows in table
PCOUNT	0	Size of special data area
GCOUNT	1	One data group (required password)
TFIELDS	2	Number of fields in each row
TTYPE1	TIME	Label for field 1
TFORM1	3600D8.3	Data format of field: 8-byte DOUBLE
TTYPE2	FREQUENCY	Label of field 2
TFORM2	200D8.3	Data format of field: 8-byte DOUBLE
TSCAL1	1	
TZERO1	0	
TSCAL2	1	
TZERO2	0	

5. The Method of CALLISTO Data Processing

Since CALLISTO generate an output file with a standard FIT format within content of frequency and time. FIT data is difficult to characterize the type of solar flare. Therefore, the data processing is required to produce a specific diagram that gives a clear pattern profile of the solar flare or even CME.

The first time the data should be extracted from the header files to obtain numerical data observations. This observation data in numeric X still contains background noise (X) which is mixed in the observational data hence the noise needs to be eliminated by using equation (1) where \(\chi \) is a constant additional threshold of data:

\[
X = (X - \bar{X}) + \chi
\]

Furthermore, the data collected by the specified interval data specified to get the peak value. Up to here, the data is still in the format of 8-bit bytes and will be converted into the form of the power unit (dB). The conversion process using the following equation:

\[
X = X \left(\frac{2}{2^{-2} - 4} \right)
\]

6. Frequency Drift Determination

Frequency drift rate of solar radio bursts is a change in the frequency of solar radio bursts of maximum intensity every time occurrence. In general, the value can be determined by taking the value at the
beginning to the end of time occurrence and start frequency to the end of solar radio frequency occurrence. Mathematically, the frequency drift can be calculated by the following equation:

$$\frac{\Delta f}{\Delta t} = \frac{f_2 - f_1}{t_2 - t_1}$$ \hspace{1cm} (3)

where, f_2 and f_1 is the frequency at the start and end of solar flare occurrence, t_2 and t_1 is the start and end times of solar flare events.

Δt value is obtained by gradient constant of intensity average data linearization every time. While the value of Δf is obtained from the value of frequency difference at the maximum and minimum intensity. The problem is how to determine both starting and ending time duration of burst occurrence. The frequency range itself also could be determine to get the estimation value of equation (3) results. We use the averaging value of whole signal strength in every time scale to get the time slope during solar burst event and the results shows in fig.2. Next, the curve fitting with 3rd order of polynomial function and finding the absolute difference of each data used in this works to get the estimation of t_1 and t_2.

7. Result and Discussion

![Fig.1. Spectrograph of solar radio burst detected in Sumedang, Indonesia](image)

Fig.1 is a spectrogram of solar radio bursts were detected by the CALLISTO system in Sumedang, West Java, Indonesia in 2015. In plain view, fourth spectrogram showed solar radio bursts of type III that has the intensity and time duration in different events. Fig.1a – Fig.1d could not be obtained the exact value at the maximum intensity and time duration of bursts occurrence. Meanwhile, the recorded intensity relative above the background noise which is incorporated along with the data. The background noise elimination and the binary conversion of data into a signal strength in dB has been done in this activity using equation (1) and equation (2) respectively.

Fig.1a – Fig.1c are solar radio burst data that received by the system with similar range of frequencies between 45 MHz - 200 MHz. Concerning to the time of data collection, the entire burst occurs after several time of data storage. For example, Fig.1d, solar radio bursts occurred when about 400 samples of data after hours 02:15:03 UT.
The horizontal axis in Fig. 1 shows the time of burst occurrence that explains the number of data samples. So that, it needs to be changed and converted into a standard unit of time. Fig. 2 shows the profile duration of time during the incident of solar radio bursts. Fig. 2b is the same data as the data in Fig. 1b, which is unique where the time duration of radio burst events is about 5.5 seconds compared with long period bursts of other events such as Fig. 2a that shows the incidence of bursts in Fig. 1a for 79 seconds. Other burst events in Fig. 2c and Fig. 2d, its occurrence happened around 60 seconds of period.

Figure 2. Profile of time duration during solar radio burst detected in Sumedang, Indonesia

Figure 3. Profile of solar radio wave frequency during solar burst detected in Sumedang, Indonesia
During the events of solar radio bursts, frequency drift depending on the radio signal frequency range of the sun. Fig.3 shows several patterns for the radio frequency range that ejected by the sun simultaneous with the burst occurred in 15th May 2015 at 05:15 UT, 9th May 2015 at 05:30 UT, 16th Oct 2015 at 06:00 UT and 15th Sept 2015 at 02:15 UT. The four images were obtained by taking the maximum value of the intensity of each frequency level. The maximum value is chosen beside in order to getting the peak value of burst intensity but also to prevent the loss of intensity information. The frequency difference during the solar burst even can be calculated by using the maximum and the minimum of selected frequency which is 0.25 above the median value. Thus, the value of the frequency range of solar radio bursts is based on the Fig.3a – Fig.3d are 255.25 MHz, 195.06 MHz, 231.88 MHz and 35.63 MHz respectively.

Referring to the equation (3), a frequency drift certainly can be calculated by using data on the above calculation. So, the solar radio bursts of data in Fig.1a to Fig.1d, the obtained frequency drift values are 3.23 MHz / s, 35.47 MHz / s, 3.86 MHz / s and 35.63 MHz / s respectively.

8. Conclusion
CALLISTO system installed in Sumedang, West Java, Indonesia have produced some data indicating FIT solar radio bursts of type III in 2015. By using solar radio bursts of data in 2015, has been done a FIT data processing in order to determine the estimation value of the frequency drift while solar radio bursts occurred. Based on drift frequency calculation process that the solar radio bursts occurred in 15th May 2015 at 05:15 UT, 9th May 2015 at 05:30 UT, 16th Oct 2015 at 06:00 UT, 15th Sept 2015 at 02:15 UT, the estimation of drift frequency are 3.23 MHz / s, 35.47 MHz / s, 3.86 MHz / s and 35.63 MHz / s respectively.

Acknowledgment
The authors thanks to the Head of Space Science Center of LAPAN Bandung for the support funding this research activity. The author is grateful also to several scientists and engineer for the discussion of the data and its analysis. The last, the authors also thanks to all staff at Sumedang observatory who give all capacity to keep the instrument and its data in good condition, performance and continuity.

References
[1] Krüger A 1979 Introduction to Solar Radio Astronomy and Radio Physics D. Reidel Publ. Comp. 128
[2] Wild J P, Smerd S F, and Weiss A A 1963 Solar Bursts. Ann. Rev. Astron. Astrophys. 1 291
[3] M R Kundu 1969 Solar Radio Astronomy (New York:Willey–Interscience)
[4] Zheleznyakov 1969 Radio Emission of the Sun and Planets (New York: Pergamon Press)
[5] Hamidi Z, Abidin Z, Ibrahim Z, Monstein C, Shariff N, Sabaghi M 2012 The Beginning Impulsive of Solar Burst Type IV Radio Emission Detection Associated with M Type Solar Flare, International Journal of Fundamental Physical Sciences 2.
[6] Hamidi Z, Shariff N, Monstein C 2014 Disturbances of Solar Eruption From Active Region AR1613 International Letters of Chemistry, Physics and Astronomy 32 77-87
[7] Hamidi Z, Shariff N 2014 Detailed Investigation of a Moving Solar Burst Type IV Radio Emission in on Broadband Frequency International Letters of Chemistry, Physics and Astronomy 7 30-36
[8] Hamidi Z, Abidin Z, Ibrahim Z, Monstein C, Shariff N 2012 Signal Detection Performed by Log Periodic Dipole Antenna (LPDA) in Solar Monitoring International Journal of Fundamental Physical Sciences 2 24-26
[9] Aurass H 1997 Coronal Physics from Radio and Space Observations, in: I.G. Trottet (Ed.), Lecture Notes in Physics, Springer, Berlin
[10] Fokker A D 1963 Type IV Solar Radio Emission Space Science Reviews 2 70-90
[11] Young CW, Spencer C L, Moreton G E, Roberts JA 1961 A Preliminary Study of the Dynamic
Spectra of Solar Radio Bursts in the Frequency Range 500-950 Mc/s Astrophys. J. 133 243

[12] Ellis 1969 Fine Structure in the Spectra of Solar Radio Bursts Australian J. Phys. 22 167

[13] McLean D J, Labrum A N R 1985 Solar Radiophysics (Cambridge: Cambridge University Press)

[14] Wild J P, Smerd S F, and Weiss A A 1963 Solar Burst Ann. Rev. Astron. Astrophysics 1 291-366

[15] Hamidi Z, Shariff N 2014 The Propagation of An Impulsive Coronal Mass Ejections (CMEs) due to the High Solar Flares and Moreton Waves International Letters of Chemistry, Physics and Astronomy 33 118-126

[16] Hamidi Z, Ibrahim U, Salwa U F, Abidin Z, Ibrahim Z, Shariff N 2013 Theoretical Review of Solar Radio Burst III (SRBT III) Associated With of Solar Flare Phenomena International Journal of Fundamental Physical Sciences 3

[17] Hamidi Z, Shariff N, Monstein C 2014 First Light Detection of A Single Solar Radio Burst Type III Due To Solar Flare Event International Letters of Chemistry, Physics and Astronomy 30 51-58

[18] Dulk G A 2000 Type III solar radio bursts at long wavelengths Geophys. Monogr. Series

[19] Swarup G, Stone P H, Maxwell A 1960 ApJ 131 725

[20] Hamidi Z, Abidin Z, Ibrahim Z., Monstein C, Shariff N 2012 Signal Detection Performed by Log Periodic Dipole Antenna (LPDA) in Solar Monitoring International Journal of Fundamental Physical Science 2 24-26

[21] Hamidi Z, Shariff N 2014 Observations of Different Type of Bursts Associated with M 6.3 Solar Flares International Letters of Chemistry, Physics and Astronomy 4 29-36

[22] White S M 2007 Solar Radio Bursts and Space Weather Asian Journal of Physics 16 189-207

[23] Hamidi Z S, Shariff N N M 2014 Chronology of Formation of Solar Radio Burst Types III and V Associated with Solar Flare Phenomenon on 19th September 2011 International Letters of Chemistry, Physics and Astronomy 5 32-42

[24] Hamidi Z, Ibrahim U F S U, Abidin Z, Ibrahim Z, Shariff N 2013 Theoretical Review of Solar Radio Burst III (SRBT III) Associated with of Solar Flare Phenomena International Journal Physical Fundamental Sciences 3 20-23

[25] Hamidi Z, Shariff N, Monstein C 2014 Fundamental and Second Harmonic Bands of Solar Radio Burst Type II Caused by X1. 8-Class Solar Flares International Letters of Chemistry, Physics and Astronomy 14 208-217

[26] Hamidi Z S, Abidin Z, Ibrahim Z, Shariff N, Monstein C 2013 Observations of coronal mass ejections (CMEs) at low frequency radio region on 15th April 2012 American Institute of Physics Conference Proceeding 1528 55-60

[27] Hamidi Z, Shariff N 2014 Determination of Flux Density of the Solar Radio Burst Event by Using Log Periodic Dipole Antenna (LPDA) International Letters of Chemistry, Physics and Astronomy 7 21-29

[28] Hamidi Z, Shariff N, Monstein C 2014 The Different Between the Temperature of the Solar Burst at the Feed Point of the Log Periodic Dipole Antenna (LPDA) and the CALLISTO Spectrometer International Letters of Chemistry, Physics and Astronomy 11 167-176

[29] Gopalswamy, R. N., J. P., M.R. Kundu, N. Nitta, J.R. Lemen, R. Herrmann, D. Zarro, T. Kosugi 1995 ApJ 455 715

[30] Payne-Scott R, Yabsley D E, Bolton J G 1947 Relative times of arrival of bursts of solar noise on different radio frequency nature 160 256-257

[31] Boischot A 1957 Characters of a type of radio emission associated with some solar flares C. R. Acad. Sci. 244 1326

[32] Gopalswamy N, Xie H, Yashiro S, and Usoskin 2005 Coronal mass ejections and ground level enhancements 29th International Cosmic Ray Conference, Pune, India, 2005 169-172

[33] Hamidi Z, Shariff N, Monstein C 2014 The Tendencies and Timeline of the Solar Burst Type II Fragmented International Letters of Chemistry, Physics and Astronomy 31 84-102
[34] Hamidi Z, Shariff N 2014 Enormous Eruption of 2.2 X-class Solar Flares on 10th June, 2014 International Letters of Chemistry, Physics and Astronomy 36 249-257

[35] Hamidi Z, Shariff N, Monstein C 2014 Understanding Climate Changes in Malaysia Through Space Weather Study International Letters of Natural Sciences 8

[36] Hamidi Z, Shariff N 2014 The Mechanism of Signal Processing of Solar Radio Burst Data in E-CALLISTO Network (Malaysia) International Letters of Chemistry, Physics and Astronomy 15 30-38

[37] Hamidi Z, Shariff N, Abidin Z, Ibrahim Z, Monstein C 2013 E-Callisto Collaboration: Some Progress Solar Burst Studies Associated with Solar Flare Research Status in Malaysia Malaysian Journal of Science and Technology Studies 9 15-22

[38] Hamidi Z S, Shariff N, Abidin Z, Ibrahim Z, Monstein C 2012 Coverage of Solar Radio Spectrum in Malaysia and Spectral Overview of Radio Frequency Interference (RFI) by Using CALLISTO Spectrometer from 1 MHz to 900 MHz Middle-East Journal of Scientific Research 12 6

[39] Hamidi Z S, Shariff N N M 2013 Evaluation of Signal to Noise Ratio (SNR) of Log Periodic Dipole Antenna (LPDA) Business Engineering and Industrial Applications Colloquium 2013, IEEE, Langkawi, Malaysia, 2013 434-438

[40] Hashim N, Abidin Z, Ibrahim U, Umar R, Hassan M, Rosli Z, Hamidi Z, Ibrahim Z 2011 Radio Astronomy in Malaysia: Current Status and Outreach Activities Astronomical Society of the Pacific Conference Series 355

[41] Hamidi Z S, Ibrahim Z, Abidin Z, Maulud M, Radzin N, Hamzan N, Anim N, Shariff N, Designing and Constructing Log Periodic Dipole Antenna Monitor Solar Radio Burst: e-Callisto Space Weather International Journal of Applied Physics and Mathematics 2 3

[42] Hamidi Z, N. Shariff, C. Monstein 2014 Evaluation of Spectral Overview and Radio Frequency Interference (RFI) Sources at Four Different Sites in CALLISTO Network at the Narrow Band Solar Monitoring Region International Letters of Chemistry, Physics and Astronomy 11 135-145

[43] Hamidi Z S, Shariff N N M, Monstein C, Ibrahim Z A 2014 Space Weather: The Significance of e-CALLISTO (Malaysia) As One of Contributor of Solar Radio Burst Due to Solar Activity International Letters of Chemistry, Physics and Astronomy 7 37-44

[44] Hamidi Z S, Shariff N N M, Ibrahim Z A, Abidin Z Z 2013 Solar Studies in Radio Emission and Optical Photometry University of Malaya Publisher 1 33-40

[45] Hamidi Z S, Chumiran S, Mohamad A, Shariff N, Ibrahim Z, Radzin N, Hamzan N, Anim N, Alias A 2013 Effective Temperature of the Sun Based on Log Periodic Dipole Antenna Performance in the Range From 45 MHz to 870 MHz American Journal of Modern Physics 2 4

[46] Hamidi Z S, Shariff N N M 2014 Determination of Isotropic Source Spectral Power of the Log Periodic Dipole Antenna (LPDA) International Journal of Science and Mathematics 2 3

[47] Manik T, Sitompul P, and Prabowo D U 2014 Development of Space Weather Observation System in Radio-Frequency-Based Using CALLISTO Proceeding of 3rd International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) 89-93

[48] Manik T, Sitompul P, and Monstein C 2015 Radio Interference Measurement for Optimum Solar Radio Observation using CALLISTO Spectrometer at Sumedang Indonesia Proceeding of The 4th International Symposium for Sustainable Humanosphere (ISSH), A Forum of Humanosphere Science School (HSS) 77-86