LOCATING RUELLE-POLLICOTT RESONANCES

OLIVER BUTTERLEY, NILOOFAR KIAMARI, AND CARLANGELO LIVERANI

Abstract. We study the spectrum of transfer operators associated to various dynamical systems. Our aim is to obtain precise information on the discrete spectrum. To this end we propose a unitary approach. We consider various settings where new information can be obtained following different branches along the proposed path. These settings include affine expanding Markov maps, uniformly expanding Markov maps, non-uniformly expanding or simply monotone maps, hyperbolic diffeomorphisms. We believe this approach could be greatly generalized.

Contents

1. Introduction .. 1
2. Affine Expanding Markov maps 3
3. Piecewise smooth full branch expanding maps 12
4. Piecewise monotone maps 18
5. Hyperbolic maps 24
Appendix A. Proof of Theorem 3.9 41
References ... 48

1. INTRODUCTION

Transfer operators are used widely in Dynamical Systems. Their first manifestations going back, at least, to the Koopman operator, and its use by John von Neumann to prove the mean ergodic theorem. Next, the Russian school developed the spectral theory for the Koopman operator acting on L^2 and its relation to the statistical properties of the system (such as ergodicity, mixing, ...), [27]. Later attention concentrated on the adjoint of the Koopman operator, now called the Frobenius-Perron or the Ruelle-Frobenius-Perron transfer operator. First such an operator appeared after coding the system [13]. Subsequently, starting with [58, 73], the direct study of the transfer operator acting on functions and, more recently, starting with [12], acting on spaces of distributions, acquired progressively more importance.\footnote{But see [75] for precursors of this point of view.} This is the current focus.

This work was partially supported by the PRIN Grant “Regular and stochastic behaviour in dynamical systems” (PRIN 2017S35EHN). L.C. and O.B. acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. We thank Péter Bálint, Viviane Baladi, Oscar Bandtlow, Giovanni Forni, Stefano Galatolo, Daniele Galli, Thomas Gilbert, Marco Lenci, Domokos Szász and Imre Péter Tóth for useful remarks. We are grateful to the anonymous referees whose comments and suggestions greatly improved this text.
Historically research was mostly focussed on the study of the peripheral spectrum (which encodes sharp, quantitative, information on ergodicity and mixing), on establishing a spectral gap (which yields the rate of mixing) (e.g., [60, 6]), and on estimates of the essential spectrum and relations with the Ruelle zeta function (which encodes information on the spectrum of periodic orbits), see [7] for a recent review. For flows or systems with a neutral direction the study is often more involved but there is still the possibility of some type of spectral gap, e.g., [29, 16, 19, 17, 80, 23].

However, recently it has become apparent the need of a much deeper and detailed understanding of the point spectrum [40, 34, 35, 50, 48, 37, 18, 57, 49]. Possibilities include identifying the point spectrum by understanding the connection to the action of the dynamics on cohomology [37] or obtaining results related to bands of spectrum for transfer operators associated to systems with a neutral direction [36, 38, 39, 40, 18]. Additionally various works investigated the possibility of an explicit description of the spectrum for analytic expanding or hyperbolic maps [76, 10, 78] (using Blaschke products), or perturbative and generic results [56, 68, 1, 11]. Clearly, a more explicit description of the spectrum is important also in applications as it provides precise quantitative information on the invariant measures, entropy, decay of correlation, variance in the CLT and so on.

Unfortunately, no general theory exists to address this issue. One exception being the Hilbert metric technique, see [60], however such an approach can yield results only for the spectral gap and they are often far from optimal (see Remarks 3.2, 3.7 and 4.9), hence the need for an alternative approach. The special cases in which some results have been obtained seem to point to a general philosophy: to study the commutator between some type of differentiation and the transfer operator (e.g. see [33, 50, 37]). Although this idea is rather vague, we believe it can give rise to a general theory. In fact, it is surprising that this approach has not been explored in any systematic way, in spite of the vast literature devoted to transfer operators. Hence, the first step to substantiate our claim is an investigation of several concrete examples. This is the task of the present work.

We apply the above philosophy to different classes of dynamical system, starting from very simple ones and increasing progressively in complexity. For each example we obtain non trivial results that illustrate the power of this approach to the problem. Although our results fall short of a general theory, we believe they suffice to argue that walking further along this path is likely to yield interesting results in a much more general setting. Let us describe our results more in detail.

In section 2 we discuss the point spectrum for a family of transfer operators of Markov piecewise affine expanding maps. This is the simplest possible, non trivial, example. Yet, it goes a long way in illustrating our strategy.

In section 3 we address similar questions in the case of full branch piecewise smooth expanding maps of the interval. The simplest non-linear case. This is a class of maps which has been extensively studied and for which one could expect that all has been said already. Yet, we are able to obtain new interesting information. In particular, we concentrate on two transfer operators. The one associated to the SRB measure for which we obtain effective bounds on the spectral gap and fine informations about the spectra. The other is the operator associated to the measure of maximal entropy for which we establish a spectral gap of size at least $e^{h_{top}} - 1$. This illustrates the fact, seen also later in other examples, that the transfer operator associated to the measure of maximal entropy enjoys surprisingly large gaps.
In section 4 we study the spectral gap for the operator associated to the measure of maximal entropy for full branch monotone maps. This includes the case of maps with attracting periodic orbits. We show that the measures of maximal entropy are exponentially mixing with a rate, at least, h_{top}. We are not aware of similar results. Apart from the case of intermittent maps (when only neutral fixed points are present) for which it is known to exist a unique measure of maximal entropy which is exponentially mixing. However, even in this special case, nothing quantitatively precise was known on the speed of mixing.

Finally, in section 5, we study hyperbolic maps. We start, as an illustration, with automorphisms of the torus. This sheds some light on the difficulties involved in extending the approach to the general hyperbolic case. Next, we propose a possible solution to such difficulties: to study the spectrum of the action of the pushforward, for hyperbolic maps, on forms. This allows, for example, to study, again, the measure of maximal entropy. Once more we obtain a large gap. In particular, our approach provides alternative proofs, and a slight strengthening, of recent results by Baladi [8, Theorem 2.1] and Forni [41], moreover we establish a topological interpretation of the point spectrum which should hold in more generality.

2. Affine Expanding Markov maps

In this section we discuss the simplest possible case: one dimensional piecewise affine Markov maps. This allows us to show our approach in the simplest possible form and it is presented mainly for didactical purposes. Indeed, the results of this section are essentially not new (for prior results see [66, 21], [77, Section 2 & Appendix] and also Remark 2.6).

In this setting the invariant densities can be computed easily since the Frobenius-Perron operator can be represented by a finite-dimensional matrix (see [14, Chapter 9] for full details). Here we go beyond the peripheral spectrum and show that studying a particular family of matrices yields the full Ruelle-Pollicott spectrum. To this end, the smoothness of the observables is relevant. This will be a leitmotiv in the following and it is essential since it is known that even the point spectrum of the transfer operator may change drastically if one considers a class of observables that allow discontinuities (e.g., see [15, 12] and also Remark 2.3).

Let $I := [0, 1]$ and let $f : I \to I$ be a piecewise affine expanding Markov map in the following sense: there exists a collection of disjoint open intervals $\{I_i\}_{i=1}^N = \{(p_j, p_{j+1})\}_{j=1}^N$ which form a partition of a full measure subset of I and, for all i, j,

either $f(I_i) \cap I_j = \emptyset$, or $I_j \subseteq f(I_i)$.

Moreover, we suppose that f' is constant on each I_i. Finally we suppose that there exists $\lambda > 1$ such that $\forall x \in \bigcup I_i, f'(x) \geq \lambda$.

The partition $\{I_i\}_{i=1}^N$ is called a Markov partition. Let $\mathcal{I} = \bigcup_{i=1}^N I_i$ be the disjoint union of the partition elements. The $N \times N$ matrix A defined by

$$A[i, j] = 1, \text{ if } I_j \subseteq f(I_i), \text{ and } A[i, j] = 0, \text{ if } f(I_i) \cap I_j = \emptyset,$$

we consider only the transformations f which are orientation preserving. See Remark 2.8 concerning the general case $|f'| \geq \lambda.$
is called the *adjacency matrix*\(^3\) of the Markov map \(f\). For convenience let \(\lambda_j := f'_{\mid j}\) and \(\lambda = \min_j \lambda_j\). For any \(k \in \mathbb{N}_0\), let \(B_k\) be the \(N \times N\) matrix defined by

\[
B_k[i, j] := \lambda_j^{-k} A[j, i].
\]

If partition elements are equally sized then \(B_1\) is left stochastic, i.e., \(\sum_i B_1[i, j] = 1\) for each \(j\). In general there exists a diagonal matrix \(D\) such that \(D^{-1}B_1D\) is left stochastic [14, §9.3].

For simplicity, in the following theorem we additionally suppose that \(f\) is topologically transitive. This means that there exists\(^5\) a unique \(f\)-invariant probability measure which is absolutely continuous with respect to Lebesgue (denoted \(\mu_{\text{SRB}}\)) and a unique measure of maximal entropy (also known as the Bowen-Margulis measure) (denoted \(\mu_{\text{BM}}\)). We let \(h_{\text{top}}\) denote the topological entropy.

Also, we use \(\mathcal{C}^\infty(I)\) denote the set of functions on \(I\) which are \(\mathcal{C}^\infty\) when restricted to each \(I_j\).

Finally, we use \(\sigma\) to denote the spectrum of a matrix and \(\sigma_B(L)\) for the spectrum of an operator \(L\) acting on a Banach space \(B\).

We can now state a result concerning Ruelle-Pollicott resonances.

Theorem 2.1. There exists a set of complex numbers \(\Xi_1 = \{\xi_1, \xi_2, \cdots \}\) and, for each \(\xi_i \in \Xi_1\), an associated integer\(^6\) \(m_i\) such that, for any \(\phi, \varphi \in \mathcal{C}^\infty(I)\) and \(\epsilon > 0\) there is an asymptotic expansion

\[
\int_I \phi \cdot \varphi \circ f^n \, d\mu_{\text{SRB}} = \sum_{\xi_i \in \Xi_1 : |\xi_i| \geq \epsilon} \sum_{k=0}^{m_i-1} \xi_i^n n^k C_{i,k}(\phi, \varphi) + o(\epsilon^n)
\]

where \(C_{i,k}(\phi, \varphi)\) are finite rank and non-zero bilinear functions of \(\phi, \varphi\).

The set \(\Xi_1\) is equal (as a subset of \(\mathbb{C}\)) to \(\bigcup_{i=1}^{\infty} \sigma(B_i)\) and the equality holds also for the total multiplicity of each eigenvalue.\(^7\)

Similarly there exists a set of complex numbers \(\Xi_0 = \{\xi_1, \xi_2, \cdots \}\) and for each \(\xi_i \in \Xi_0\) an associated integer \(m_i\) such that, for any \(\phi, \varphi \in \mathcal{C}^\infty(I)\) and \(\epsilon > 0\) there is an asymptotic expansion

\[
\int_I \phi \cdot \varphi \circ f^n \, d\mu_{\text{BM}} = e^{-nh_{\text{top}}} \sum_{\xi_i \in \Xi_0 : |\xi_i| \geq \epsilon} \sum_{k=0}^{m_i-1} \xi_i^n n^k C'_{i,k}(\phi, \varphi) + o(\epsilon^n)
\]

where \(C'_{i,k}(\phi, \varphi)\) are finite rank and non-zero bilinear functions of \(\phi, \varphi\). The set \(\Xi_0\) is equal (as a subset of \(\mathbb{C}\)) to \(\bigcup_{i=0}^{\infty} \sigma(B_i)\) and the equality holds also for the total multiplicity of each eigenvalue.

The proof of the above Theorem is included towards the end of the section and follows from a significantly stronger result (Theorem 2.4), described in terms of transfer operators, that needs some further preliminaries to be properly stated.

\(^3\)It is also called the *incidence matrix* [14].

\(^4\)We use throughout the convention \(\mathbb{N} := \{1, 2, \ldots\}\) and \(\mathbb{N}_0 := \{0, 1, 2, \ldots\}\).

\(^5\)The existence of these invariant measures is well known in this context and also follows from the results later in this section.

\(^6\)The integer \(m_i\) is the Jordan block dimension. A given \(\xi_i\) might be repeated in \(\Xi_1\) according to the geometric multiplicity.

\(^7\)More can be said about the multiplicities and Jordan blocks, see Theorem 2.4 and Remark 2.12.
Remark 2.2. The assumption of topological transitivity means that B_1 is irreducible. Since also $D^{-1}B_1D$ is left stochastic for some diagonal matrix D it follows that 1 is the leading eigenvalue of B_1 and this eigenvalue has multiplicity 1. Moreover $C_{1,0}(.\varphi) = \int f \, d\mu_{SRB} \int \varphi \, d\mu_{SRB}$.

Remark 2.3. In the case where f has the form $x \mapsto \kappa x \mod 1$ for some $\kappa \in \{2,3,\ldots\}$ we could consider f as a smooth map of the circle. In this case, restricting our attention to observables which are smooth on the circle, the set of Ruelle-Pollicott resonances would reduce\(^8\) to $\{0\}$. However, studying these same systems for observables that are smooth on the interval, we see a much more interesting spectrum, see Remark 2.13.

Observe that for any $r \geq 0$, the Sobolev space $W^{r,1}(I)$ is the set of all $h \in L^1(I)$ such that h and all of its weak derivatives up to the r’th belong to $L^1(I)$. Consider, for any $r \geq 0$, the space $W^{r,1}(\mathcal{I})$ which is the set of all $h \in L^1(I)$ such that, for each i, the restriction of h to I_i is in $W^{r,1}(I_i)$. For convenience we write h' and $h^{(l)}$ to mean the weak derivative and l weak derivative respectively of h restricted to \mathcal{I}. For each $r \in \mathbb{N}_0$ the space $W^{r,1}(\mathcal{I})$ is a Banach space equipped with the norm

$$||h||_{r,1} = \sum_{l=0}^r \int_{\mathcal{I}} |h^{(l)}(x)| \, dx.$$

In the following, to simplify notation, we will write W_r for $W^{r,1}(\mathcal{I})$ and we will write $\| \cdot \|$ for $\| \cdot \|_{r,1}$.

Observe that W_0 coincides with $L^1(I)$.

Since, by assumption, $f|_{I_j}$ is invertible on its range, let us call g_j its inverse ($g_j := f|_{I_j}^{-1}$). The domain of g_j is the interval $f(I_j)$ which might not be equal to the unit interval. If $f(I_j) = (0,1)$ for all j then f is said to be a full branch map. We can now define our main objects of investigation: the transfer operators. For each $r \in \mathbb{N}_0$, $h \in L^1(I)$ and $x \in I_i$ we define\(^9\)

$$\mathcal{L}_k h(x) := \sum_{y \in f^{-1}(x)} \frac{h(y)}{|f'(y)|^k} = \sum_j B_k[i,j] \, h \circ g_j(x).$$

Since f preserves the Markov partition, composition with an affine transformation preserves Sobolev space and the sum consists of a finite number of terms it follows that these operators are well defined as operators $\mathcal{L}_k : W_r \to W_r$. Similarly they are well defined, by this same formula, on $C^r(\mathcal{I}) = \bigoplus_j C^r(I_j)$.

Observe that \mathcal{L}_1 coincides with the usual transfer operator: the dual of the Koopman operator.

We define $\mathcal{P}_r(\mathcal{I})$ to be the set of polynomial functions\(^10\) of degree r on each interval I_j. Since f is piecewise affine, the space $\mathcal{P}_r(\mathcal{I})$ is invariant under \mathcal{L}_k for each $r, k \in \mathbb{N}_0$. Thus, it is natural to consider the finite rank operator $\mathcal{L}_k |_{\mathcal{P}_r(\mathcal{I})}$.

Theorem 2.4. Let $k \in \mathbb{N}_0$, $r \in \mathbb{N}$. There exists a projector $\Pi_{k,r} : W_r \to \mathcal{P}_r(\mathcal{I}) \subset W_r$ such that the spectral radius of $\mathcal{L}_k (1 - \Pi_{k,r})$ on W_r is not greater than $\lambda^{-(k+r-1)}$.

\(^8\)This can be seen by considering the action of the dynamics on Fourier series.

\(^9\)The second sum here is understood in the sense that, when the summands are defined on a subset of the full integral, they are extended to the full interval by taking the value zero where not defined.

\(^10\)Studying the action on polynomials was also used for the vertical direction in the pseudo-Anosov case \cite{37}.\]
Moreover

\[\sigma(\mathcal{L}_k|\mathcal{P},(\mathcal{I})) = \bigcup_{l=0}^{r} \sigma(B_{k+l}) \]

and the multiplicity of each eigenvalue \(\xi \in \sigma(\mathcal{L}_k|\mathcal{P},(\mathcal{I})) \) is equal to the sum of the multiplicities of \(\xi \) as eigenvalues of \(B_{k+l}, \ l \in \{0, \ldots, r\} \).

The remainder of this section is devoted to the proofs of the two above theorems.

Remark 2.5. This result tells nothing about the spectrum of \(\mathcal{L}_k \) within the disk \(\{|z| \leq \lambda^{-(k+r-1)}\} \) more than the fact that the essential spectrum is contained somewhere within. Indeed a full disk of essential spectrum is expected (see [26]).

Remark 2.6. As mentioned earlier, the results of this section are essential not new although our strategy differs substantially. Indeed Theorem 2.4 can be deduced [77, Proposition A.5] by the following argument.\(^\text{11}\) First observe that the space \(\mathcal{H} \) in [77] (which is a space of holomorphic functions) is densely and continuously embedded in \(W_r \). Consequently the part of the spectrum of \(\mathcal{L}_k \) on \(W_r \) with modulus greater that the essential spectral radius coincides with the spectrum of \(\mathcal{L}_k \) on \(\mathcal{H} \) with modulus greater that the essential spectral radius. Note also that the result in the reference [77, Proposition A.5] doesn’t require \(f \) to be orientation preserving.

The next equality is our key observation. Albeit very simple, the rest of the paper relies on it and variants thereof.

Lemma 2.7. For all \(k, r \in \mathbb{N}_0, \ h \in W_r \) and \(l \in \{0, \ldots, r\} \),

\[(\mathcal{L}_k h)_{(l)} = \mathcal{L}_{k+l} h_{(l)}. \]

Proof. Fix \(k, r \in \mathbb{N}_0 \). The claimed equality holds trivially in the case \(l = 0 \). Observe that, by chain rule, for all \(x \in \mathcal{I}_i, \ h \in C^\infty(\mathcal{I}) \),

\[\bigl(\mathcal{L}_k h\bigr)'(x) = \sum_j \lambda_j B_k[i,j]h' \circ g_j(x) = \sum_j B_{k+1}[i,j]h' \circ g_j(x) = \mathcal{L}_{k+1} h'(x). \]

If we assume that, for some \(l \geq 0 \), the claimed equality holds, i.e., for all \(h \in C^\infty(\mathcal{I}) \),

\[(\mathcal{L}_k h)_{(l)}(x) = \mathcal{L}_{k+l} h_{(l)}(x), \]

then, using the previous observation,

\[(\mathcal{L}_k h)_{(l+1)}(x) = (\mathcal{L}_{k+l} h_{(l)})'(x) = (\mathcal{L}_{k+l+1} h_{(l+1)})(x). \]

The equality for all \(l \) follows by induction. Using the density of \(C^\infty(\mathcal{I}) \) in \(W_r \) we obtain the result for \(h \in W_r \). \(\Box \)

Remark 2.8. In general we could allow the \(\lambda_j \) to be positive or negative. If \(\mathcal{L}_1 \) coincides with the operator associated to the SRB measure the derivative \(\lambda_j \) occurs with absolute value in the formula. However, as is clear from the proof of the above lemma, when the derivative occurs as a result of differentiating the sign of the derivative remains. This means that, if we are interested in \(\mu_{\text{SRB}} \) then we should consider \(B_k[i,j] := \lambda_j^{-k} A[j,i] \) but, if we are interested in \(\mu_{\text{SRB}} \), then we should consider \(B_k[i,j] := \lambda_j^{-(k-1)} |\lambda_j|^{-1} A[j,i] \).

\(^{11}\)We are grateful to the anonymous referee who brought the relevant references to our attention and who suggested this argument.
To proceed we now prove a set of Lasota-Yorke inequalities for the operators $\mathcal{L}_k : W_r \to W_r$.

Let $\Gamma_0 := \|f'\|_{L^\infty}$ and, for all $k \in \mathbb{N}$, let $\Gamma_k := \lambda^{-(k-1)}$.

Lemma 2.9. Let $k \in \mathbb{N}_0$, $r \in \mathbb{N}$. For all $h \in W_r$,

$$
\|\mathcal{L}_k h\|_r \leq \Gamma_k \|h\|_r
$$

$$
\|\mathcal{L}_k h\|_r \leq \lambda^{-(k+r-1)} \|h\|_r + \Gamma_k \|h\|_{r-1}.
$$

The first inequality also holds in the case $r = 0$.

Proof. We start by considering the case $k \in \mathbb{N}$. Let $h \in W_r$. By definition of $\| \cdot \|_r$ and Lemma 2.7,

$$
\|\mathcal{L}_k h\|_r = \sum_{l=0}^r \int_I |(\mathcal{L}_k h)^{(l)}(x)| dx = \sum_{l=0}^r \int_I |\mathcal{L}_{k+l} h^{(l)}(x)| dx
$$

$$
\leq \sum_{l=0}^r \lambda^{-(k+l-1)} \int_I |\mathcal{L}_1 h^{(l)}(x)| dx.
$$

Since, by the obvious change of variables, $\int_I |\mathcal{L}_1 h^{(l)}(x)| dx = \int_I |h^{(l)}(x)| dx$ the above implies that, for all $r \in \mathbb{N}_0$,

$$
\|\mathcal{L}_k h\|_r \leq \sum_{l=0}^r \lambda^{-(k+l-1)} \int_I |h^{(l)}(x)| dx.
$$

(2.2)

That is, $\|\mathcal{L}_k h\|_r \leq \lambda^{-(k-1)} \|h\|_r$, as required to prove the first inequality. Moreover, when $r \geq 1$, the above (2.2) implies that (here we separate the term $l = r$ from the rest of the sum)

$$
\|\mathcal{L}_k h\|_r \leq \lambda^{-(k+r-1)} \int_I |h^{(r)}(x)| dx + \lambda^{-(k-1)} \sum_{l=0}^{r-1} \int_I |h^{(l)}(x)| dx
$$

$$
\leq \lambda^{-(k+r-1)} \|h\|_r + \lambda^{-(k-1)} \|h\|_{r-1}
$$

as required by the second estimate.

To conclude we must consider the case $k = 0$. First observe that, for any $h \in C^\infty(I)$,

$$
\int_I |\mathcal{L}_0 h|(x) dx = \int_I |\mathcal{L}_1 f' h|(x) \leq \int_I |\mathcal{L}_1 |f'\| |h| (x) \leq \|f'\|_{L^\infty} \int_I |h|(x) dx.
$$

Similar to the proof in the case $k \in \mathbb{N}$, by definition of the norm and Lemma 2.7,

$$
\|\mathcal{L}_0 h\|_r = \sum_{l=0}^r \int_I |(\mathcal{L}_0 h)^{(l)}(x)| dx = \sum_{l=0}^r \int_I |\mathcal{L}_1 h^{(l)}(x)| dx.
$$

This means that, for all $r \in \mathbb{N}_0$ (recall that $\Gamma_0 = \|f'\|_{L^\infty}$),

$$
\|\mathcal{L}_0 h\|_r \leq \sum_{l=0}^r \lambda^{-l} \int_I |\mathcal{L}_0 h^{(l)}(x)| dx \leq \Gamma_0 \sum_{l=0}^r \int_I |h^{(l)}(x)| dx
$$
and so proves the first inequality. On the other hand, now assuming that \(r \geq 1 \),

\[
\| \mathcal{L}_0 h \|_r = \int_{\mathcal{I}} |\mathcal{L}_r h^{(r)}(x)| dx + \sum_{l=0}^{r-1} \int_{\mathcal{I}} |\mathcal{L}_l h^{(l)}(x)| dx \\
\leq \lambda^{-(r-1)} \int_{\mathcal{I}} |h^{(r)}(x)| dx + \sum_{l=0}^{r-1} \int_{\mathcal{I}} |h^{(l)}(x)| dx.
\]

Consequently

\[
\| \mathcal{L}_0 h \|_r \leq \lambda^{-(r-1)} \int_{\mathcal{I}} |h^{(r)}(x)| dx + \Gamma_0 \sum_{l=0}^{r-1} \int_{\mathcal{I}} |h^{(l)}(x)| dx.
\]

Thus, \(\| \mathcal{L}_0 h \|_r \leq \lambda^{-(r-1)} \| h \|_r + \Gamma_0 \sum_{l=0}^{r-1} \| h \|_{r-1} \), as required. \(\square \)

Lemma 2.10. Let \(k \in \mathbb{N}_0 \), \(r \in \mathbb{N} \). The operator \(\mathcal{L}_k \) acting on \(W_r \) has spectral radius bounded by \(\Gamma_k \) and essential spectral radius bounded by \(\lambda^{-(k+r-1)} \).

Proof. The first inequality of Lemma 2.9 implies that the spectral radius is bounded by \(\Gamma_k \). For all \(r \in \mathbb{N}, W_r \) is compactly embedded in \(W_{r-1} \). This means the Lasota-Yorke inequalities of Lemma 2.9 imply, by the argument of Hennion [51], based on the formula of Nussbaum [69] (see [28, Appendix B] for a pedagogical illustration of the Hennion–Nussbaum theory), that the essential spectral radius of \(\mathcal{L}_k \) is bounded by \(\lambda^{-(k+r-1)} \). \(\square \)

For convenience we use the notation \(\mathcal{D} : h \mapsto h' \). For any \(k \in \mathbb{N}, \nu \in \mathbb{C} \), let \(E_k(\nu) \) denote the generalised eigenspace for \(\mathcal{L}_k \) associated to the eigenvalue \(\nu \). I.e., \(E_k(\nu) \) is the set of \(h \) such that \((\mathcal{L}_k - \nu) h = 0 \) for some \(m \in \mathbb{N} \). An immediate consequence of Lemma 2.7 is the following commutation relation: For any \(l, k, m \in \mathbb{N}_0, \nu \in \mathbb{C}, h \in W_r \),

\[
\mathcal{D}^l \circ (\mathcal{L}_k - \nu)^m h = (\mathcal{L}_{k+l} - \nu)^m \circ \mathcal{D}^l h.
\]

This in turn means that

\[
(2.3) \quad \mathcal{D}^l E_k(\nu) \subset E_{k+l}(\nu).
\]

Proof of the first statement of Theorem 2.4. Let \(k \in \mathbb{N}_0, r \in \mathbb{N} \). According to Lemma 2.10 the essential spectral radius of \(\mathcal{L}_k : W_r \to W_r \) is not greater than \(\lambda^{-(k+r-1)} \). Fix some arbitrarily small \(\epsilon > 0 \) and define \(\mathcal{H}_{k,r} := \{ \nu \in \sigma_{W_r}(\mathcal{L}_k), |\nu| > \lambda^{-(k+r-1)} + \epsilon \} \). For each \(\nu \in \mathcal{H}_{k,r} \) let \(P_{\nu} \) denote the associated spectral projector and hence let \(\Pi_{k,r} := \sum_{\nu \in \mathcal{H}_{k,r}} P_{\nu} \). Consequently \(\mathcal{L}_k - \mathcal{L}_k \circ \Pi_{k,r} : W_r \to W_r \) has spectral radius not greater than \(\lambda^{-(k+r-1)} + \epsilon \). For any \(l \in \mathbb{N} \) Lemma 2.10 gives an upper bound of \(\lambda^{-(l-1)} \) for the spectral radius of \(\mathcal{L}_l : W_1 \to W_1 \) and so \(E_l(\nu) = \{ 0 \} \) whenever \(|\nu| > \lambda^{-(l-1)} \). As observed above (2.3), differentiating \(r \) times takes the generalised eigenspace \(E_k(\nu) \) to the generalised eigenspace \(E_{k+r}(\nu) \) of the operator \(\mathcal{L}_{k+r} \). However \(E_{k+r}(\nu) = \{ 0 \} \) since \(|\nu| > \lambda^{-(k+r-1)} \). This means that \(E_k(\nu) \subset \mathcal{P}_r(\mathcal{I}) \) whenever \(\nu \in \mathcal{H}_{k,r} \) and so we have shown that the image of \(\Pi_{k,r} \) is contained in \(\cup_{\nu \in \mathcal{H}_{k,r}} E_k(\nu) \subset \mathcal{P}_r(\mathcal{I}) \). The claim follows by the arbitrariness of \(\epsilon \). \(\square \)

We can identify \(\mathbb{R}^N \) with \(\mathcal{P}_0(\mathcal{I}) \), the set of functions that are constant on each partition element, in the sense that we associate the function \(\sum_i a_i 1_{I_i} \in \mathcal{P}_0(\mathcal{I}) \) to each \(a = (a_i) \in \mathbb{R}^N \) (\(1_A \) denotes the characteristic function of the set \(A \)).
Let \(r \in \mathbb{N} \). The space \((\mathbb{R}^N)^{(r+1)}\) is identified with \(\mathcal{P}_r(I)\) as follows. We use the notation \((a^0, a^1, \ldots, a^r) \in (\mathbb{R}^N)^{(r+1)}\) where \(a^j = (a^j_1, a^j_2, \ldots, a^j_N)\) for each \(j\). Let \(\mathcal{J} : \mathbb{R}^{N(r+1)} \to \mathcal{P}_r(I)\),

\[
\mathcal{J}(a^0, \ldots, a^r) : x \mapsto \sum_{i=0}^r x^i \sum_{j=1}^N a^i_j \mathbf{1}_{I_i}(x).
\]

Observe that \(\mathcal{J} : \mathbb{R}^{N(r+1)} \to \mathcal{P}_r(I)\) is onto and invertible.

For any \(k \in \mathbb{N}_0\), \(r \in \mathbb{N}\) we define the \(N(r+1) \times N(r+1)\) matrix

\[
\mathcal{T}_{k,r} := \mathcal{J}^{-1} \circ \mathcal{L}_k|_{\mathcal{P}_r(I)} \circ \mathcal{J}.
\]

In order to understand the spectrum of \(\mathcal{L}_k|_{\mathcal{P}_r(I)}\) it suffices to study the spectrum of the matrix \(\mathcal{T}_{k,r}\).

Lemma 2.11. Let \(k \in \mathbb{N}_0\), \(r \in \mathbb{N}\). Then \(\mathcal{T}_{k,r}\) has lower block triangular form

\[
\mathcal{T}_{k,r} = \begin{pmatrix}
B_k & 0 \\
F_{1,0} & B_{k+1} \\
\vdots & \vdots & \ddots \\
F_{r,0} & F_{r,1} & \ldots & B_{k+r}
\end{pmatrix},
\]

where the matrices on the diagonal are the ones previously introduced in (2.1).

Proof. Fix \(k \in \mathbb{N}_0\), \(r \in \mathbb{N}\). For any \(l \in \{0, \ldots, r\}\) we consider \((a^0, a^1, \ldots, a^r) \in \mathbb{R}^{N(r+1)}\) and suppose that \(a^j = 0\) for all \(j \neq l\). This means that \(\mathcal{J}(a^0, a^1, \ldots, a^r) = x^l a\). We wish to compute \(\mathcal{J}^{-1} \circ \mathcal{L}_k \circ \mathcal{J}(a^0, a^1, \ldots, a^r) = \mathcal{J}^{-1} \circ \mathcal{L}_k(x^l a)\). For each \(j\) let \(g_j := f(p^+_j)\) (i.e., \(\lim_{\varepsilon \to 0} f(p_j + \varepsilon)\)). Observe that, for all \(x \in I_j\), \(f(x) = \lambda_j(x - p_j) + g_j\). Consequently, for all \(x \in f(I_j)\),

\[
g_j(x) = (x - q_j)\lambda_j^{-1} + p_j.
\]

Using this inverse,

\[
\mathcal{L}_k(x^l a)(x) = \sum_{i,j} \mathbf{1}_{I_i}(x) B_k[i, j] a_j \left(x \lambda_j^{-1} - q_j \lambda_j^{-1} + p_j\right)^l
\]

\[
= \sum_{i,j} \mathbf{1}_{I_i}(x) B_{k+l}[i, j] a_j x^l + \rho(x),
\]

where \(\rho \in \mathcal{P}_{l-1}(I)\). I.e., \(\mathcal{L}_k(x^l a^l) = x^l B_{k+l}^l a^l + \rho\), where \(\rho \in \mathcal{P}_{l-1}(I)\). This proves that \(\mathcal{T}_{k,r}\) has lower triangular block form and that the diagonal elements of the block matrix are the \(B_{k+l}\). The exact form of the matrices \(F_{i,j}\) which appear below the diagonal are superfluous to our present argument and we won’t identify them further. \(\square\)

Proof of Theorem 2.4. The first statement of the theorem was proven above, it remains to prove the second statement. Recall the lower triangular block form of \(\mathcal{T}_{k,r}\) as shown in Lemma 2.11. We can assume without loss of generality that each \(B_{k+l}\) is in lower triangular form. If a matrix is in triangular form then the values on the diagonal are the eigenvalues repeated according to multiplicity. That each \(B_{k+l}\) is in triangular form means that the \(N(r+1) \times N(r+1)\) matrix \(\mathcal{T}_{k,r}\) is in triangular form. Moreover the diagonal is the union of the diagonals of the \(B_{k+l}\). This implies

\[12\]Abusing notation we will often write the same symbol for \(a \in \mathbb{R}^N\) and the corresponding \(a \in \mathcal{P}_0(I)\) with the interpretation given by context.
the claimed correspondence of the eigenvalues of $\mathcal{T}_{k,r}$ and the union of the set of eigenvalues of the $\{B_{k+i}\}_{i=0}^{l}$, including correspondence in multiplicity.

Remark 2.12. The lower triangular block form shown in Lemma 2.11 and the argument of the above proof further implies that, if some B_{k+l} has a Jordan block of dimension $m \in \mathbb{N}$, then $\mathcal{T}_{k,r}$ has a corresponding Jordan block of dimension m or greater. Indeed $\mathcal{T}_{k,r}$ has the possibility to have a Jordan block of greater dimension if a given eigenvalue appears in more than one of the B_{k+l}.

Proof of Theorem 2.1. Fix $k \in \mathbb{N}_0$. For each $r \in \mathbb{N}$ consider the finite set of eigenvalues

$$\{\xi_j\}_{j=0}^{K_r} = \sigma_{W_r}(\mathcal{L}_k) \setminus \{|z| \leq \lambda^{-(k+r-1)}\}$$

described by Theorem 2.4. We define as usual the corresponding eigenprojectors $\{\Pi_j : W_r \rightarrow W_r\}_{j=0}^{K_r}$ and eigen nilpotents $\{Q_j : W_r \rightarrow W_r\}_{j=0}^{K_r}$ which satisfy the commutation relations: $\Pi_j \Pi_k = \delta_{j,k}$, $\Pi_j Q_k = Q_k \Pi_j = \delta_{j,k} Q_k$. Let $S_r := I - (\Pi_1 + \Pi_2 + \cdots + \Pi_{K_r})$ and observe that $\mathcal{L}_k S_r$ has spectral radius not greater than $\lambda^{-(k+r-1)}$. This means that the operator $\mathcal{L}_k : W_r \rightarrow W_r$ satisfies the decomposition

$$(2.6) \quad \mathcal{L}_k = \sum_{j=1}^{K_r} (\xi_j \Pi_j + Q_j) + \mathcal{L}_k S_r.$$

Further observe that each operator we define remains defined by the same formula on W_r, for any r sufficiently large.

Now let us recall the connection between the transfer operators and invariant measures (see [61] or [6] for full details). For each $k \in \{0,1\}$ there exists $h_k \in W_r$ (the invariant density), a probability measure ν_k (the conformal measure), $\gamma_k > 0$ (the spectral radius) and a probability measure μ_k defined as $\mu_k(\varphi) := \nu_k(h_k \varphi)$ (the invariant measure). Moreover $\nu_k(\mathcal{L}_k \varphi) = \gamma_k \nu_k(\varphi)$ and $\mu_k(\varphi \circ f) = \mu_k(\varphi)$.

In our present setting μ_0 is the measure of maximal entropy μ_{max} and μ_1 is the SRB measure μ_{SRB}. Furthermore $\ln \gamma_0$ is equal to the topological entropy, $\gamma_1 = 1$ and ν_1 coincides with Lebesgue measure.

Continuing for $k \in \{0,1\}$ we observe that

$$\int_I \phi \cdot \varphi \circ f^n \, d\mu_k = \int_I (\phi \cdot h_k)(x) \cdot \varphi \circ f^n(x) \, d\nu_k(x)$$

$$= \gamma_k^n \int_I \mathcal{L}_k^n(\phi \cdot h_k)(x) \cdot \varphi(x) \, d\nu_k(x)$$

We then combine this formula with the spectral decomposition above (2.6) to produce the asymptotic expansion required.

Remark 2.13. If f is full branch, the matrices B_{k+l} are such that all the entries in any column j is equal to $\lambda_j^{-(k+l)}$. The spectrum of this type of matrix is the union of zero and the sum of entries on different columns. Consequently Theorem 2.4 implies that, outside of the disk $\{|\nu| \leq \lambda^{-(k+r-1)}\}$, the spectrum of $\mathcal{L}_k : W_r \rightarrow W_r$ is equal to $\{\xi_0, \ldots, \xi_{r-1}\}$ where $\xi_l := \sum_{j=1}^N \lambda_j^{-(k+l)}$.

- In the case $k=0$ we obtain $\xi_0 = \sum_{j=1}^N \lambda_j^0 = N$;
- In the case $k=1$ we see that $\xi_0 = \sum_{j=1}^N \lambda_j^{-1} = \sum_{j=1}^N |I_j| = 1$.

A comprehensive investigation of the resonances of $x \mapsto 2x \mod 1$ can be found in [31, §3]. The eigenfunctions for this map are the Bernoulli polynomials.

Remark 2.14. Observe that B_0 is the transpose of A and that, for any Markov map as considered in the present section, the logarithm of the spectral radius of B_0 is equal [20, §2.1] to the topological entropy.

Remark 2.15. In this section we used Sobolev spaces W_r but, with a slightly more complex argument, we could equally well have worked with $C^r(I) = \bigoplus_i C^r(I_i)$.

2.1. A Jordan block example.

In the following we construct an example of a Markov expanding map such that B_1 has a Jordan block of dimension two. Previously Driebe [30] presented an example of a linear Markov expanding map such that, for each $n \in \mathbb{N}$, the eigenvalue 3^{-2n} has a Jordan block of dimension two. However the example isn’t orientation-preserving and the mechanism giving rise to the Jordan blocks appears to depend on this. On the contrary, the example constructed here is orientation-preserving.

Let $I_1 = (0, \frac{1}{4})$, $I_2 = (\frac{1}{4}, \frac{1}{2})$, $I_3 = (\frac{1}{2}, \frac{3}{4})$, $I_4 = (\frac{3}{4}, 1)$ and let $f : I \to I$ be as shown in Figure 1, defined by

$$f(x) := \begin{cases} 3x + \frac{1}{4} & \text{if } x \in I_1 \\ 3(x - \frac{1}{4}) & \text{if } x \in I_2 \\ 2(x - \frac{1}{2}) & \text{if } x \in I_3 \\ 3(x - \frac{3}{4}) & \text{if } x \in I_4. \end{cases}$$

This means that

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & 0 & 0 & 0 \end{pmatrix}.$$

The matrix B_1 has the eigenvalues $\{-\frac{1}{3}, 0, 1\}$ and the eigenvalue $-\frac{1}{3}$ has a Jordan block of dimension two. If we let

$$a_1 := \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad a_2 := \begin{pmatrix} 3 \\ 3 \\ -6 \\ 0 \end{pmatrix}, \quad a_3 := \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad a_4 := \begin{pmatrix} 9 \\ 12 \\ 8 \\ 3 \end{pmatrix},$$

Figure 1. An orientation-preserving Markov map with Jordan block.
then \(B_1 a_1 = -\frac{1}{3} a_1, (B_1 + \frac{1}{3}I)a_2 = a_1, B_1 a_3 = 0 \) and \(B_1 a_4 = a_4 \). In particular \(\{a_1, a_2\} \) span the generalised eigenspace associated to the eigenvalue \(-\frac{1}{3}\). Since the essential spectral radius of \(L_1 \), when acting on \(W_r \), \(r \geq 2 \), is smaller than \(1/4 \), then \(L_1 \), on such spaces, has a Jordan block in the point spectrum.

Remark 2.16. Another interesting example of an affine expanding Markov map is the Baladi map studied in [25]. This is a system which exhibits non-trivial complex resonances. In the reference the connection between resonances and decay of correlation was considered and the outer set of resonances identified. Our results give a description of the full set of resonances for this system and the connection to the decay of correlations.

3. **Piecewise smooth full branch expanding maps**

In this section we discuss the simplest non-linear case: full branch maps. For such maps there exists already some general quantitative results on the spectral gap, e.g., [60, Section 2], however they are not optimal, we will comment about the comparison case by case.

Let \(f \in C^r([0,1],[0,1]), r \geq 2 \), be a full branched piecewise expanding map, \(f' > \lambda > 1 \). For \(k \in \mathbb{N}_0 \) let us consider the transfer operator

\[
L_k h(x) = \sum_{y \in f^{-1}(x)} \frac{h(y)}{|f'(y)|^k}.
\]

Observe that \(L_0 \) is the operator associated to the measure of maximal entropy while \(L_1 \) is the operator associated to the SRB measure [6].

For convenience, throughout this section, we denote the distortion by \(D_f = \left(\frac{1}{f'} \right)' \).

The key fact we wish to leverage on, in analogy with Lemma 2.7, is the formula

\[
(L_k h)' = L_{k+1} h' + kL_k (h \cdot D_f)
\]

which is obtained simply by differentiating (3.1). Notice that the distortion \(D_f \) is 0 when the map is piecewise affine and this is the reason why the treatment in Section 3 is more complicated than in Section 2 (See Lemma 2.7). Amazingly, the above formula yields several non trivial facts. To illustrate its power we start discussing the operator \(L_0 \).

3.1. **Measure of maximal entropy.**

Lemma 3.1. If \(f \) is a \(N \) covering, then \(\sigma_{C^1}(L_0) \subset \{N\} \cup \{z \in \mathbb{C} : |z| \leq 1\} \). Moreover, \(\sigma_{C^2}(L_0) \cap \{z \in \mathbb{C} : |z| \geq \lambda^{-1}\} = \{N\} \cup (\sigma_{C^1}(L_1) \cap \{z \in \mathbb{C} : |z| \geq \lambda^{-1}\}) \)

Proof. Note that \(L_0 1 = N \), so \(N \in \sigma(L_0) \). Since

\[
\left(\frac{1}{(f^n)'} \right)' = \sum_{k=0}^{n-1} \frac{D_f \circ f^k}{(f^{n-k-1})' \circ f^{k+1}}.
\]

\[\]
\[
\left| \left(\frac{1}{(T^n)^\lambda} \right) \right| \leq C = \|D_f\|_\infty (1 - \lambda^{-1})^{-1}. \]
In particular, we may use (3.2) for \(f^n \), rather than for \(f \) and \(\|\mathcal{L}_1\|_\infty \leq C. \) Using these estimates, (3.2) and a direct computation
\[
\|\mathcal{L}_0 h\|_\infty \leq N\|h\|_\infty, \\
\|\mathcal{L}_0^n h\|_\infty \leq C\|h\|_\infty.
\]
By the usual arguments the above inequalities imply that the essential spectral radius of \(\mathcal{L}_0 \), acting on \(C^1 \), is at most one. On the other hand if \(\mathcal{L}_0 h = \nu h \), with \(|\nu| > 1 \) we have, for all \(n \in \mathbb{N} \),
\[
\nu^n h' = (\mathcal{L}_0^n h)' = \mathcal{L}_1^n h'
\]
which, since \(\|\mathcal{L}_0^n\|_{L^1} = 1 \), implies \(h' = 0 \), that is, \(h \) must be constant.

To conclude observe that on the one hand, if \(\mathcal{L}_0 H = \nu H, H \in C^2 \), then \(\mathcal{L}_1 H' = \nu H' \). On the other hand, if \(\mathcal{L}_1 h = \nu h, h \in C^1 \), let \(H_0(x) = \int_0^x h(y)dy \) and observe that \(H_0 \in C^2 \) and
\[
((\nu - \mathcal{L}_0)H_0)' = (\nu - \mathcal{L}_1)h = 0.
\]
Thus \((\nu - \mathcal{L}_0)H_0 \) is a constant function. Let \(\alpha \) denote this constant value and let \(c = -(\nu - N)^{-1}\alpha \). Now let \(H_c(x) = \int_0^x h(y)dy + c \) and observe that
\[
(\nu - \mathcal{L}_0)H_c = (\nu - \mathcal{L}_0)H_0 + (\nu - \mathcal{L}_0)c = \alpha + (\nu - N)c = 0.
\]
The result follows since the essential spectrum of \(\mathcal{L}_1 \), when acting on \(C^1 \), is bounded by \(\lambda^{-1} \).

\[\square\]

Remark 3.2. Note that the proof of Lemma 3.1 implies that \(\mathcal{L}_0 h = \int h \, d\mu_{BM} + Q\nu h \), where \(\mu_{BM} \) is the measure of maximal entropy, and \(\|Q^n\|_{C^1} \leq C \). That is, \(\mathcal{L}_0 \) has a spectral gap \(N - 1 \) while the Hilbert metric technique can yield, at the very best, a spectral gap \(N - \lambda \), see [60].

The above shows that the spectrum of \(\mathcal{L}_0 \) is largely determined by the spectrum of \(\mathcal{L}_1 \). Hence, before continuing our investigation of the spectrum of \(\mathcal{L}_0 \), it is necessary to undertake an investigation of the spectrum of \(\mathcal{L}_1 \).

3.2. The SRB Measure

Note that the vector space \(\mathbb{V} = \{ h \in C^1 : \int_0^1 h = 0 \} \) is invariant under \(\mathcal{L}_1 \), we can thus restrict \(\mathcal{L}_1 \) to \(\mathbb{V} \). If we define
\[
\phi(g)(x) = \int_0^x yg(y)dy - \int_0^1 (1 - y)g(y)dy = \int_0^x yg(y)dy + \int_1^1 (y - 1)g(y)dy,
\]
then \(\phi : C^0 \to \mathbb{V} \) and \(\phi(h') = h \) for all \(h \in \mathbb{V} \). Thus, for each \(h \in \mathbb{V} \),
\[
(\mathcal{L}_1 h)' = \mathcal{L}_2 h' + \mathcal{L}_1(h'(\phi(h'))D_f) =: \mathcal{L}_* h'.
\]
The relevance of the operator \(\mathcal{L}_* \) rests in the next Lemma.

Lemma 3.3. If \(f \in C^2([0,1],[0,1]) \), then the spectrum of \(\mathcal{L}_1 : C^1 \to C^1 \) satisfies
\[
\sigma_{C^1}(\mathcal{L}_1) \cap \{ z \in \mathbb{C} : |z| > \lambda^{-1} \} = \{ 1 \} \cup \sigma_{C^0}(\mathcal{L}_*) \cap \{ z \in \mathbb{C} : |z| > \lambda^{-1} \}.
\]

Proof. It is well known that the essential spectral radius of \(\mathcal{L}_1 \), when acting on \(C^1 \) is bounded by \(\lambda^{-1} \), hence we can restrict ourselves to the point spectrum.

Since \(\int_0^1 \mathcal{L}_1 h = \int_0^1 (\phi(h')D_f)h \), it follows that the Lebesgue measure is an eigenvector, with eigenvalue one, of the dual operator, and hence \(1 \in \sigma_{C^0}(\mathcal{L}_* \mathcal{L}_1). \) In addition, \(\mathbb{V} = \{ h \in C^1 : \int_0^1 h = 0 \} \) is invariant under \(\mathcal{L}_1 \). It follows that if \(\mathcal{L}_1 h = \nu h, \)
$|\nu| > \lambda^{-1}$ and $h \in C^1$, then $h' \in C^0$ and (3.4) implies $\mathcal{L} h' = \nu h'$. On the other hand if $g \in C^0$ and $\mathcal{L} g = \nu g$, $|\nu| > \lambda^{-1}$, then $h = \phi(g) \in \mathcal{V}$ and

$$(\mathcal{L} h - \nu h)' = \mathcal{L} g - \nu g = 0.$$

Hence, there exists a constant C such that $\mathcal{L} h - \nu h = C$, but integrating we have $C = 0$, thus h is an eigenvector of \mathcal{L}_1.

Remark 3.4. Note that the above Lemma holds verbatim with $W^{1,1}$ substituted to C^1. In the following, we find more convenient to consider the spectrum of \mathcal{L}_1 when acting on $W^{1,1}$.

Let

$$\tau = \lambda^{-1} + \int_0^1 \left| \frac{1}{f'(y)} \right| dy = \lambda^{-1} + \|Df\|_{L^1}.$$

Lemma 3.5. The norm of \mathcal{L}_2 on L^1 is bounded by λ^{-1}. The operator $\mathcal{L}_1(g) = \mathcal{L}_1(\phi(g)Df)$, acting on L^1, is a compact operator. In addition, for all $g \in L^1$

$$\|\phi(g)\|_{L^1} \leq \frac{1}{2} \|g\|_{L^1},$$

$$\|\phi(g)\|_{L^\infty} \leq \|g\|_{L^1},$$

$$\|\phi(g)\|_{W^{1,1}} \leq \frac{3}{2} \|g\|_{L^1}.$$

In particular $\mathcal{L}_* : L^1 \to L^1$ is a well-defined operator and $\|\mathcal{L}_*\|_{L^1} \leq \tau$.

Proof. Since

$$\|\mathcal{L}_2 h\|_{L^1} \leq \lambda^{-1} \|\mathcal{L}_1 h\|_{L^1} \leq \lambda^{-1} \|h\|_{L^1},$$

the first statement follows. Moreover,

$$\int_0^1 |\phi(g)(x)| dx \leq 2 \int_0^1 |g(y)| y(1-y) dy \leq \frac{1}{2} \|g\|_{L^1},$$

$$|\phi(g)(x)| \leq \int_0^1 |g(y)| dy = \|g\|_{L^1}.$$

Finally, $\|\phi(g)'\|_{L^1} \leq \|g\|_{L^1}$ implies the last of the three inequalities and also that ϕ is compact, the compactness of \mathcal{L}_* follows.

Theorem 3.6. Let us consider \mathcal{L}_1 as an operator acting on $W^{1,1}$, then $\sigma_{ess}(\mathcal{L}_1) \subset \{z \in \mathbb{C} : |z| \leq \lambda^{-1} \}$. Moreover $\sigma(\mathcal{L}_1) \setminus \{1\} \subset \{z \in \mathbb{C} : |z| \leq \tau \}$.

Proof. If $\nu \in \mathbb{C}$ is such that $|\nu| > \lambda^{-1}$ and $\mathcal{L}_1 h = \nu h$, for some $h \in W^{1,1}$ with $\int h = 0$, then $\mathcal{L}_* g = \nu g$, for $g = h'$. Then, recalling Lemma 3.5,

$$|\nu| \|g\|_{L^1} \leq \lambda^{-1} \|g\|_{L^1} + \int_0^1 \left(\frac{1}{f'(y)} \right)^r dy \|\phi(g)\|_{L^\infty} \leq \left[\lambda^{-1} + \|Df\|_{L^1} \right] \|g\|_{L^1}.$$

This proves the theorem since $h' = 0$ implies $h = 0$.

The above lemma provides an upper bound for the spectral gap, but it is very unsatisfactory. First, such a bound is of interest only if $\tau < 1$ (for example, in the counterexample of Keller, Rugh [56] $\tau > 1$). Second, even if $\tau < 1$, it is unclear if there exists other point spectrum outside $\{z \in \mathbb{C} : |z| \leq \lambda^{-1} \}$.

Remark 3.7. For L_1 the Hilbert metric approach yields a bound of the spectral gap given by a rather cumbersome formula. However, if one considers the limit of large λ and small D_f, then, using [60, Lemma 2.3], one can check that the bound of the spectral gap cannot be better than $\lambda^{-1}(1 + 2\|D_1\|_\infty) + \|D_f\|_\infty$, which is worse than the one provided, in the same limit, by Theorem 3.6. However, for large D_f the bound of Theorem 3.6 is useless while [60, Lemma 2.3] provides an explicit, although rather poor, bound.

Very few results are known on the existence of point spectrum with the notable exception of cases when the map has been explicitly constructed to exhibit point spectrum [56] or when one restricts the map to the class of holomorphic maps, often of a special nature, as in [10, 76, 78]. No analytical technique is available to treat C^2 open classes of maps. On the contrary a lot of work exists on the side of numerical computation, mainly of the invariant measure but also, to some extent, of the spectrum, e.g., see [63] and references therein. While most of the numerical work does not track round off errors and hence it is unsatisfactory from the rigorous point of view, some notable exceptions use interval arithmetic and hence have the status of a proof, e.g., [3, 44, 52].

Hence, it is interesting to note that the present approach offers an alternative, possibly much more convenient, route to a numerical computation of the spectrum.

Remark 3.8. We conclude the section with a remark on how the above discussion can provide a numerical scheme to locate eigenvalues. Let $K := L_1(\phi(y)D_f)$, ϕ being defined in (3.3). Also, let $\alpha > 0$ and $\{\phi_i\}_1^\infty$ be a Schauder base of $W^{1,1}$ such that, calling Π_N the projection onto $\text{span}\{\phi_i\}_1^N$ along $\text{span}\{\phi_i\}_1^{N+1}$, we have $\|\Pi_N\|_{L^1} \leq C_4$ and

$$
\left\| 1 - \Pi_N \right\|_{W^{1,1}} \leq C_4 N^{-\alpha},
$$

Then, to study the spectrum of $\nu - L_\star$, $1 > |\nu| > \lambda^{-1}$ when acting on L^1, write

$$
\nu - L_\star = (\nu - L_2) \left[1 - (\nu - L_2)^{-1} K \right] = (\nu - L_2) \left[1 - \Pi_N (\nu - L_2)^{-1} \Pi_N K - \Delta_N \right] = (\nu - L_2) \left[1 - \Pi_N (\nu - L_2)^{-1} \Pi_N K \right] \left(1 - [1 - \Pi_N (\nu - L_2)^{-1} \Pi_N K]^{-1} \Delta_N \right),
$$

$$
\Delta_N = \left(1 - \Pi_N \right) (\nu - L_2)^{-1} K + \Pi_N (\nu - L_2)^{-1} (1 - \Pi_N) K.
$$

Note that Lemma 3.5 implies $\|K\|_{L^1} + \|\Pi_N K\|_{L^1} \leq C_4$, hence

$$
\|\Delta_N\|_{L^1} \leq C_4 (\lambda^{-1} - |\nu|)^{-1} N^{-\alpha}.
$$

Thus ν belongs to the resolvent of L_\star if

$$
\left\| 1 - \Pi_N (\nu - L_2)^{-1} \Pi_N K \right\|_{L^1}^{-1} \leq C_4 \left\| \left[1 - \Pi_N (\nu - L_2)^{-1} \Pi_N K \right]^{-1} \right\|_{L^1} \leq 1.
$$

Since $\Pi_N (\nu - L_2)^{-1} \Pi_N K$ is a finite rank operator, $\left[1 - \Pi_N (\nu - L_2)^{-1} \Pi_N K \right]^{-1}$ its norm can be evaluated numerically. In fact, by Neumann series, we have, for ζ small and setting $R_N = \Pi_N (\nu - L_2)^{-1} \Pi_N$,

$$
\left[1 - \zeta R_N K \right]^{-1} = 1 + \zeta \left[1 - \zeta R_N K \Pi_N \right]^{-1} R_N K,
$$

thus, by analyticity, the same holds for $\zeta = 1$. Hence, the spectrum of L_\star is close to the values of ν for which $R_N K \Pi_N$ has eigenvalue one. Since $R_N K \Pi_N$ is a $N \times N$ matrix, this provides a rather quick way to determine rigorously if L_1 has point spectrum outside the spectral radius of L_2, aside from one.
3.3. Point spectrum.

If we consider class of maps with some special features, it is possible use arguments like the ones put forward in Remark 3.8 to obtain relevant information about the point spectrum without any computer assisted method.

As an example, the next Theorem provides more precise information on the spectrum in a special class of maps. Note that the following approach can be generalised, here we present only the simplest application to illustrate the logic of the argument.

Theorem 3.9. Let \(I := [0, 1] \) and \(f : I \rightarrow I \). Consider the partition \(\{(p_i, p_{i+1})\}_{i=1}^N \) to be a partition of a full-measure subset of \([0, 1]\) such that for any \(1 \leq i \leq N \), \(f([p_i, p_{i+1}]) = [0, 1] \), \(f \in C^3([p_i, p_{i+1}], [0, 1]) \), and \(f'(p_i^+) = f'(p_i^-), i \in \{2, \ldots, N\} \).

Also assume that \(D_f \neq 0 \) and \(D_f \geq 0 \). Then,\(^{16}\) for \(\mathcal{L}_1 : W^{2,1}([0, 1]) \rightarrow W^{2,1}([0, 1]) \)

\[
\sigma(\mathcal{L}_1) \subset \left\{ z \in \mathbb{C} : |z| \leq \min \left\{ 1, \frac{2}{f'(1)} - \frac{1}{f(0)} \right\} \right\} \cup \{1\}
\]

\[
\sigma_{\text{ess}}(\mathcal{L}_1) \subset \left\{ z \in \mathbb{C} : |z| \leq \frac{1}{f'(1)} \right\}.
\]

Moreover, \(\{1\} \) is a simple eigenvalue of \(\mathcal{L}_1 \). In addition, there exists \(\mu_2 < \frac{1}{f'(1)} \) such that, setting \(\Delta = \frac{1}{f'(1)} - \frac{1}{f(0)}, \mu_* = \frac{1}{f'(1)}, \Gamma = \left(1 - \sum_{i=1}^N \frac{1}{f'(p_i)}\right) \) and

\[
A_0 = \{ a \in \mathbb{R} : \mu_2 < a < 1 \}
\]

\[
A_1 = \left\{ a + ib \in \mathbb{C} : a > \mu_*, b^2 < \frac{(a - \mu_*) \Delta}{2(1 + a^{-1} \Gamma)} \left[\sqrt{1 + 4 \left(1 + a^{-1} \Gamma\right)^2 (a - \mu_*^2)^2} - 1 \right] \right\}
\]

\[
A_2 = \left\{ a + ib \in \mathbb{R} : a < -\mu_*, b^2 < \frac{(|a| - \mu_*)^2 (a^2 - \mu_*^2 - \Delta |a|)}{a^2 - \mu_*^2 + \Delta |a|} \right\}
\]

\[
A_3 = \left\{ a + ib \in \mathbb{C} : a \geq 0, |a + ib - \mu_*|^2 > \mu_* \Delta + \mu_*^2 + \frac{\Delta + \sqrt{4 \mu_*^2 + \Delta^2}}{2} \right\}
\]

\[
A_4 = \left\{ a + ib \in \mathbb{C} : a < 0, b^2 > \mu_* \Delta + \mu_*^2 + 2|a\mu_* - a^2| \right\}
\]

we have

\[
(\cup_{i=0}^3 A_i) \cap [\sigma(\mathcal{L}_1) \setminus \{1\}] = \emptyset.
\]

The proof of the above Theorem is a boring computation using the ideas illustrate in the previous section, so we postpone it to Appendix A. Here we provide an application of the Theorem to show what can be achieved with some, moderately lengthy, hand made computations. Much more could be obtained using the assistance of a computer as mentioned in Remark 3.8.

\(^{15}\)By \(g(p^+), g(p^-) \) we mean the right and left limit, respectively, of the function \(g \) at the point \(p \). Since \(f'(p_i^+) = f'(p_i^-) \) there is no need to distinguish between \(p_i^- \) and \(p_i^+ \), so we will not do it anymore.

\(^{16}\)Note that the following provides a spectral gap if \(f'(1) \geq 2 \).
Remark 3.10. Note that if $D_f \equiv 0$, then $f'(1) = N$ and \mathcal{L}_1 has eigenvalue N^{-1} with eigenfunction $g(x) = x - \frac{1}{2}$. Indeed,

$$\mathcal{L}_1 g(x) = \sum_{i=1}^{N} N^{-1} g \left(\frac{x + i - 1}{N} \right) = \sum_{i=1}^{N} \frac{(x + i - 1)}{N^2} - \frac{1}{2N}$$

$$= N^{-1} \left(x + \frac{N - 1}{2} - \frac{N}{2} \right) = Ng(x).$$

By perturbation theory, see [55], it follows that such an eigenvalue survives for small distortion. However, the above theorem implies that, for perturbations satisfying Theorem 3.9, one cannot make it increase more than $\frac{1}{f'(a)} - \frac{1}{f'(b)}$.

Remark 3.11. As an example consider $f(x) = 4x - x^2 \mod 1$. In this case Theorem 3.9 applies with $D_f = \frac{2}{(4 - 2x)^2} > 0$, $f'(0) = 4$, $f'(1) = 2$, $\Delta = \frac{1}{4}$, $\mu_* = \frac{1}{2}$ and some $\mu_2 < \frac{1}{2}$. Moreover $p_1 = 0$, $p_2 = 2 - \sqrt{3}$, $p_3 = 2 - \sqrt{2}$, hence $f'(p_2) = 2\sqrt{3}$, $f'(p_3) = 2\sqrt{2}$ and $\Gamma = 1 - \frac{1}{4} - \frac{1}{2\sqrt{3}} - \frac{1}{2\sqrt{2}}$. Consequently, for $\mathcal{L}_1 : W^{2,1}([0,1]) \to W^{2,1}([0,1])$,

$$\sigma(\mathcal{L}_1) \subset \{ z \in \mathbb{C} : |z| \leq \frac{3}{4} \} \cup \{1\}$$

$$\sigma_{ess}(\mathcal{L}_1) \subset \{ z \in \mathbb{C} : |z| \leq \frac{1}{4} \}.$$

Moreover, the sets

$A_0 = \{ a \in \mathbb{R} : \mu_2 < a < 1 \}$

$A_1 = \left\{ a + ib \in \mathbb{C} : a > \frac{1}{2}, b^2 < \frac{(a - \frac{1}{2})}{8(1 + a^{-1}\Gamma)} \left[\sqrt{1 + 64(1 + a^{-1}\Gamma)^2(a - \frac{1}{2})^2} - 1 \right] \right\}$

$A_2 = \left\{ a + ib \in \mathbb{R} : a < -\frac{1}{2}, b^2 < \frac{(|a| - \frac{1}{2})^2(4a^2 - 1 - |a|)}{4a^2 - 1 + |a|} \right\}$

$A_3 = \left\{ a + ib \in \mathbb{C} : a \geq 0, |a + ib - \frac{1}{2}|^2 > \frac{5 + \sqrt{17}}{16} \right\}$

$A_4 = \left\{ a + ib \in \mathbb{C} : a < 0, b^2 > \frac{3}{8} + |a| - a^2 \right\}$

contain no spectrum of \mathcal{L}_1 except 1. These regions are illustrated in Figure 2.

3.3.1. Different operators. As a last comment on the present approach to the study of the spectrum of \mathcal{L}_1, let us remark that it is possible to investigate the commutator relations with different operators. As an example, let us consider the operator $A(h) = h' + \alpha h$ for some function α. Then

$$(3.5) \ A\mathcal{L}_1 h = \mathcal{L}_2 h' + \mathcal{L}_1(D_f h) + \mathcal{L}_1((\alpha \circ f) h) = \mathcal{L}_2(Ah) + \mathcal{L}_1 \left[(D_f - \frac{\alpha}{f'}) + \alpha \circ f \right] h.$$ \hspace{1cm}

In general, is not obvious what the best choice of α could be. To keep the discussion short let us consider only the special, well known, case in which $\ln f'$ is C^1 cohomologous to a constant.17 That is, there exists a C^1 function B such that

$$\ln f' + B - B \circ f = c.$$ \hspace{1cm}

17This happens if f is C^2 conjugated to a map $f_\ell(x) = \ell x \mod 1$, $\ell \in \mathbb{Z}$ with $|\ell| \geq 2.$
Then we can choose $\alpha = B'$ and obtain

$$AL_1 h = L_2(Ah).$$

Accordingly, if there exists $h \in W^{1,1}$ such that $L_1 h = \nu h$, $|\nu| > \lambda^{-1}$, then $L_2(Ah) = \nu Ah$, thus $Ah = 0$ (since the spectral radius of L_2 on L^1 is bounded by λ^{-1}). This implies that $h = e^{-B}a$, $a \in \mathbb{C}$, hence

$$L_1 e^{-B} = L_0 e^{c-B} f = e^{-c-B} L_0 1 = e^{-c} Ne^{-B}.$$

Integrating yields $e^{-c} N = 1$, hence $\nu = 1$. It follows that

$$\sigma_{W^{1,1}}(L_1) \subset \{1\} \cup \{z \in \mathbb{C} : |z| \leq \lambda^{-1}\},$$

hence, as expected, the existence of a large spectral gap.

In the general case, one could try to minimise $D_f - \frac{1}{2} + \alpha \circ f$ in order to produce estimates that improve Theorem 3.9.

4. PIECEWISE MONOTONE MAPS

Up to now we have considered uniformly expanding systems. However much of our arguments were rather general, it is then natural to ask if one can apply the present philosophy also to non-uniformly expanding maps or even maps that expand only in some part of the phase space. We believe the answer to be affirmative and to justify such a belief we discuss one of the simplest possibilities: one dimensional piecewise monotone map. Note however that we will develop the full theory only for
one dimensional full branch monotone maps (See [64] for full details on the related
time). Of course, for such more general systems one cannot expect to prove as
many results as in the previous section. Yet, some interesting and novel results can
be obtained. To illustrate such a fact we will discuss the operator associated to the
measures of maximal entropy.

Let \(\mathcal{P} = \{I_1, \ldots, I_N\} \), \(N \in \mathbb{N} \), be a partition of \([0,1]\) in the sense that the \(I_i \)
are open disjoint sets and \(\bigcup_{i=1}^N I_i = [0,1] \). Let \(f : [0,1] \to [0,1] \) be a map such
that \(f|_{I_i} \) is strictly monotone and \(f|_{I_i} \in C^1 \). Thus each point in \((0,1)\) has at most
\(N \) preimages. Suppose that \(\Lambda = \|f'\|_\infty < \infty \). We write \(\mathcal{M}_s \) for the set of maps
satisfying the above properties.

Remark 4.1. Note that maps in \(\mathcal{M}_s \) can have attracting fixed points or attracting
periodic orbits and can be multimodal.

Remark 4.2. Note that we ask only \(f|_{I_i} \in C^1 \), rather than \(f|_{I_i} \in C^{1+\alpha} \) as is
necessary when studying the SRB measure.

We start by studying the spectral and essential spectral radius of \(\mathcal{L}_0 \). For each
\(h \in L^1 \),

\[
\mathcal{L}_0 h \mathcal{L}_0 \mathcal{L}_0 h \leq \int_0^1 \mathcal{L}_0 f' h = \int \|f'\| |h| = \Lambda \|h\|_{L^1}.
\]

On the other hand, for \(h \in BV \) and \(\varphi \in C^1 \) we have, calling \(\phi_i \) the inverse of \(f|_{I_i} \),

\[
\int_0^1 \varphi'(x) \mathcal{L}_0 h(x) x = \sum_{i=1}^N \int_0^1 \varphi'(x) \mathbb{1}_{f(I_i)}(x) h(\phi_i(x)) dx
= \sum_{i=1}^N \int_{I_i} \varphi'(f(x)) \|f'(x)\| h(x) dx
= \sum_{i=1}^N \int_{I_i} \frac{d}{dx} [\text{sign}(f'(x)) \cdot \varphi \circ f(x)] h(x) dx.
\]

We can then define the countermand, recall that \(I_i = (p_i, p_{i+1}) \),

\[
\psi(x) = \sum_{i=1}^n \mathbb{1}_{I_i}(x) \text{sign}(f'(x)) \left\{ \varphi(f(p_i)) + \frac{\varphi(f(p_{i+1})) - \varphi(f(p_i))}{p_{i+1} - p_i} (x - p_i) \right\}
\]

and \(\varphi_*(x) = \text{sign}(f'(x)) \varphi(f(x)) - \psi(x) \). Note that, by construction, \(\varphi_* \) is Lipschitz,
\(\|\varphi\|_{C^0} \leq 2\|\varphi\|_{C^0} \) and

\[
\int_0^1 \varphi'(x) \mathcal{L}_0 h(x) x = \int_0^1 \varphi_*(x) h(x) dx
+ \sum_{i=1}^N \int_{I_i} \text{sign}(f'(x)) \frac{\varphi(f(p_{i+1})) - \varphi(f(p_i))}{p_{i+1} - p_i} h(x) dx.
\]

Accordingly, there exists \(C > 0 \) such that

\[
\mathcal{L}_0 h \mathcal{L}_0 \mathcal{L}_0 h \leq 2\|h\|_{BV} + C\|h\|_{L^1}.
\]
If we apply the above to the map \(f^n \), rather than \(f \), we have, since also \(f \in \mathcal{M}_r \), the Lasota-Yorke inequality
\[
\|L_0 h\|_{L^1} \leq \Lambda \|h\|_{L^1},
\]
for each \(n \in \mathbb{N} \) and some constants \(C_n > 0 \).

From (4.4) and Hennion’s Theorem [31] (see also [28, Appendix B]) it follows that the spectral radius, on \(BV \), of \(L_0 \) is bounded by \(\Lambda \) while the essential spectral radius is bounded by one.\(^{15}\)

This establishes the first step of our strategy. Next we have to consider the commutation between the derivative and \(L_0 \). Since \(BV \) functions have weak derivatives that are measures, this makes sense, however such measures can be rather singular. To simplify matters it seems convenient to restrict our functions to \(SBV \) (special bounded variation) functions, that is functions for which the singular part of the weak derivative is supported at most on countably many point, not a Cantor set. Recall that \(SBV \) is a closed subspace of \(BV \) [2, Corollary 4.3].

Lemma 4.3. It holds true \(L_0(SBV) \subset SBV \). The essential spectrum of \(L_0 \) is bounded by one. Moreover, the eigenvectors associated to eigenvalues of modulus strictly larger than one have zero absolutely continuous part. Hence, if a power of \(f \) is a Markov map, then the eigenvectors associated to eigenvalues of modulus strictly larger than one are constant on the elements of the Markov partition.

Proof. Let \(h \in SBV \), then we can write the weak derivative, seen as a measure, as \(Dh = \sum_{\alpha \in \mathcal{A}} \alpha \delta_\alpha + \text{H}\text{d}x \), for some \(\text{H} \in W^{1,1} \), a countable set \(\mathcal{A} \) and numbers \(\alpha_\alpha \in \mathbb{C} \) such that \(\sum_{\alpha \in \mathcal{A}} |\alpha_\alpha| < \infty \), see [2, Corollary 3.33]. Then (4.2) implies, setting \(A_0 = \mathcal{A} \setminus \{p_i\}_{i=1}^N \) and \(\epsilon_i = \text{sign}(f'(x)) \) for \(x \in I_i \),
\[
\int_0^1 \varphi(x)L_0 h(x)dx = - \int_0^1 \varphi(x)Dh(dx) + \sum_{i=1}^N \epsilon_i \frac{\varphi(f(p_{i+1})) - \varphi(f(p_i))}{p_{i+1} - p_i} \int_{I_i} h(x)dx
\]
\[
= - \sum_{\alpha \in A_0} \alpha_\alpha \text{sign}(f'(a)) \varphi(f(a)) - \psi(a) - \int_0^1 \varphi \circ f(x) \text{sign}(f'(x)) \text{H}(x)dx
\]
\[
+ \int_0^1 \psi(x) \text{H}(x)dx + \sum_{i=1}^N \epsilon_i \frac{\varphi(f(p_{i+1})) - \varphi(f(p_i))}{p_{i+1} - p_i} \int_{I_i} h(x)dx.
\]
Hence
\[
DL_0 h = L_1 h(x)dx + \sum_{\alpha \in A_0} \alpha_\alpha \text{sign}(f'(a)) \delta_{f(a)}
\]
\[
- \sum_{i=1}^N \sum_{\alpha \in A_0} \eta_i(\alpha) \epsilon_i \left\{ \frac{p_{i+1} - a}{p_{i+1} - p_i} \delta_{f(p_i)} + \frac{a - p_i}{p_{i+1} - p_i} \delta_{f(p_{i+1})} \right\}
\]
\[
- \sum_{i=1}^N \epsilon_i \left\{ \frac{\delta_{f(p_i)}}{p_{i+1} - p_i} \int_{I_i} h(x)dx + \frac{\delta_{f(p_{i+1})}}{p_{i+1} - p_i} \int_{I_i} h(x)dx \right\}
\]
\[
- \sum_{i=1}^N \epsilon_i \frac{\delta_{f(p_{i+1})} - \delta_{f(p_i)}}{p_{i+1} - p_i} \int_{I_i} h(x)dx
\]
\(^{15}\)In (4.4) choose \(n_0 \) such that \(2^{1/n_0} \leq \Lambda \) and iterate with steps \(n_0 \).
For this maps we want to investigate the measure of maximal entropy. To start, for some $j \in \mathbb{N}$ the above formula implies that if $f(p_i) = p_j$ for some j. Let \mathcal{A} be the set of jumps of h, $\{a_i\}_{i \in \mathcal{A}}$ the size of the jumps and set $\mathcal{A}_* = \mathcal{A} \setminus \{p_i\}_{i=1}^N$. By the Markov property if $a \in \mathcal{A}_*$ then $\mathcal{f}^{-1}(a) \notin \{p_i\}_{i=1}^N$. Hence, the above formula implies that if $\beta_n(a) = \{b \in \mathcal{A}_* : \mathcal{f}^n(b) = a\}$ then, for each $n \in \mathbb{N}$,

$$|\nu|^n|a_n| \leq \sum_{b \in \beta_n(a)} |\alpha_b| \leq \|h\|_{SBV},$$

which is possible only if $\alpha_p = 0$. Hence h can jump only at the boundaries of the partition and it is constant inside. \hfill \square

The above theorem shows that, for Markov maps, the study of the eigenvalues larger than one is reduced, as in section 2, to the study of the finite dimensional matrix B_0 defined in (2.1). However, in the general case identifying all the measures of maximal entropy requires some work that, in this generality, exceeds our scopes. To give an idea of what can be done let us restrict ourselves to the simplest Markov example: full branch maps.

4.1. Full branch monotone maps.

Let $M = \{f \in M_* : f(I_i) = (0,1)\}$. In this case, the previous computations show that $\mathcal{L}_0 W^{1,1} \subset W^{1,1}$ and $\frac{d}{dx} \mathcal{L}_0 = \mathcal{L}_1 \frac{d}{dx}$. From now on we will thus work in $W^{1,1}$. For this maps we want to investigate the measure of maximal entropy. To start, note that, in this case, $\Lambda \geq N$ since

$$N = \sum_{i=1}^N |f(I_i)| = \sum_{i=1}^N \int_{I_i} |f'(x)| \, dx \leq \Lambda \sum_{i=1}^N |I_i| = \Lambda,$$

where the inequality is strict if f' is not constant.

Next, let us recall some well known facts (see [20] for a review).

Lemma 4.4 ([65, Theorem 1]). For $f \in M$ holds the variational principle

$$h_{top} = \ln N = \sup_{\mu \in \mathcal{M}} h_\mu(f)$$

where \mathcal{M} is the set of invariant measures of f and $h_\mu(f)$ is the Kolmogorov-Sinai entropy.
Theorem 4.5. The operator \(\mathcal{L}_0 \) when acting on \(W^{1,1} \) has the spectral decomposition

\[
\mathcal{L}_0 h = N \cdot \mu_{BM}(h) + Q(h) \quad \text{where} \quad Q \equiv 0, \quad \mu_{BM}(Q(h)) = 0, \quad \text{for all} \quad h \in W^{1,1},
\]

\[
\sigma_{W^{1,1}}(Q) \subseteq \{ z \in \mathbb{C} : |z| \leq 1 \}, \quad \text{and} \quad \mu_{BM} \text{ is a measure of maximal entropy}.
\]

Proof. We know that if \(\nu \in \sigma(\mathcal{L}_0) \) and \(|
u| > 1 \), then \(\nu \) is point spectrum. That is, there exist \(h \in W^{1,1} \) such that \(\mathcal{L}_0 h = \nu h \). But then, differentiating, we have \(\mathcal{L}_1 h' = \nu h' \) where \(h' \in L^1 \). However, \(\mathcal{L}_1 \) is a contraction on \(L^1 \), hence it must be either \(|
u| \leq 1 \), contrary to the hypothesis, or \(h' = 0 \). The latter implies that \(h \) is constant, hence, we can always normalize it so that \(h = 1 \). On the other hand \(\mathcal{L}_0 1(x) = \sum_{y \in f^{-1}(x)} 1 = N \). Hence \(\nu = N \) and has geometric multiplicity one. Indeed, if the geometric multiplicity is not one, then there must exist \(h \in W^{1,1} \) such that \(\mathcal{L}_0 h = Nh + c \) for some constant \(c \). But then, differentiating, \(\mathcal{L}_1 h' = Nh' \), so \(h \) must be constant again.

In addition, note that for each \(h \in W^{1,1} \) we have

\[
\|N^{-n} \mathcal{L}_0^n h\|_{W^{1,1}} \leq \int_0^1 N^{-n} \mathcal{L}_0^n h + \int_0^1 N^{-n} \mathcal{L}_1^n h \leq \|h\|_{C^0} + N^{-n}\|h\|_{W^{1,1}} \leq (1 + N^{-n})\|h\|_{W^{1,1}}.
\]

Hence \(N^{-n} \mathcal{L}_0^n \) is uniformly bounded on \(W^{1,1} \) and thus, by [32, Lemma VIII.8.1], \(N \) is semi-simple. It follows that the maximal eigenvalue is simple.

Accordingly, we have the spectral decomposition \(\mathcal{L}_0 = N \otimes \mu + Q \) where \(Q \) has spectral radius smaller or equal one, \(Q \equiv 0, \mu(Q) = 0 \) for all \(h \in W^{1,1}, \mu(1) = 1 \), and \(\mu \) belongs to the dual of \(W^{1,1} \). It remains to prove that \(\mu \) is a measure and, indeed, a measure of maximal entropy \(\mu_{BM} \).

Note that, for each \(h \in W^{1,1} \),

\[
|\mu(h)| = \lim_{n \to \infty} \int_0^1 N^{-n} \mathcal{L}_0^n h \leq \lim_{n \to \infty} \|h\|_{\infty} \int_0^1 N^{-n} \mathcal{L}_0^n 1 = \|h\|_{\infty}.
\]

Thus \(\mu \) is a measure. In addition, for each \(h \in C^1 \) such that \(h \geq 0 \), we have

\[
\mu(h) = \lim_{n \to \infty} \int_0^1 N^{-n} \mathcal{L}_0^n h \geq 0
\]

thus \(\mu \) is a positive measure and, since it is normalized, it is a probability measure. Next, note that

\[
\mu(\mathcal{L}_0 h) = \lim_{n \to \infty} \int_0^1 N^{-n} \mathcal{L}_0^{n+1} h = N \lim_{n \to \infty} \int_0^1 N^{-n} \mathcal{L}_0^n h = N \cdot \mu(h).
\]

It follows

\[
\mu(h \circ f) = N^{-1} \mu(\mathcal{L}_0 h \circ f) = N^{-1} \mu(h \mathcal{L}_0 1) = \mu(h).
\]

That is \(\mu \) is an invariant measure. In addition, by the above considerations, \(([0,1], f, \mu) \) is ergodic. The proof is concluded if we show \(h_{\mu}(f) \geq h_{\text{top}} \). Let \(\mathcal{P}_n \) denote the \(n^{\text{th}} \) canonical dynamical refinement of the partition \(\mathcal{P} \). Let \(p \in \mathcal{P}_n \) and \(p_- \cup p_+ \in \mathcal{P}_n \) be the elements on the left and the right of \(p \), respectively, if they exist. Let \(J = p_- \cup p_+ \), and \(h \in C^1(\mathbb{R}, [0,1]) \) be supported in \(J \) and such that \(h|_p = 1 \). Then \(\mathcal{L}_0^n h(x) \leq 3 \) and

\[
\mu(p) \leq \mu(h) = \lim_{m \to \infty} \int_0^1 N^{-m-n} \mathcal{L}_0^{m+n} h \leq \lim_{m \to \infty} 3 \int_0^1 N^{-m-n} \mathcal{L}_0^m 1 = 3N^{-n}\mu(1) = 3N^{-n}.
\]
Accordingly, calling $p_n(x)$ the element of P_n which contains x, the Shannon-McMillan-Breiman Theorem (e.g., see [70, Section 6.2, Theorem 2.3]) states that for μ almost every point

$$h_\mu(f) \geq h_\mu(P, f) = \lim_{n \to \infty} -\frac{1}{n} \ln \mu(p_n(x)) \geq \lim_{n \to \infty} \ln N^{1-1/n} = \ln N,$$

which concludes the proof by Lemma 4.4.

Remark 4.6. We do not know if μ_{BM} is unique in this case, we have just constructed a measure of maximal entropy. Look at subsection 4.2 for a case where it is easy to prove that the measure of maximal entropy is unique.

Remark 4.7. The monotone interval maps and transfer operators studied in this section fit into the framework considered in [9]. In [9] the essential spectral radius (as operators acting on BV) is obtained and consequently a spectral decomposition. Here we show that the spectral gap is large for the operator associated to the measure of maximal entropy.

We have finally the announced mixing rate estimate

Corollary 4.8. For any $\nu > \frac{1}{\nu}$ there exists $C_\nu > 0$ such that, for each $h \in W^{1,1}$ and $\varphi \in L^1(\mu_{BM})$

$$\left| \int h \varphi \circ f^n d\mu_{BM} - \int h d\mu_{BM} \int \varphi \circ f^n d\mu_{BM} \right| \leq C_\nu \nu^n \|h\|_{W^{1,1}} \|\varphi\|_{L^1(\mu_{BM})}.$$

Proof. We start assuming that $\varphi \in C^1$. Then, using Theorem 4.5,

$$\left| \int h \varphi \circ f^n d\mu_{BM} - \int h d\mu_{BM} \int \varphi d\mu_{BM} \right|$$

$$= \left| \lim_{m \to \infty} \int_0^1 N^{-m} (L_0^m h \varphi \circ f^n)(x) \, dx - \int h d\mu_{BM} \int \varphi d\mu_{BM} \right|$$

$$= \left| \lim_{m \to \infty} \int_0^1 N^{-m+n} L_0^{-n} \varphi N^{-n} L_0^n h(x) \, dx - \int h d\mu_{BM} \int \varphi d\mu_{BM} \right|$$

$$= \left| \int \varphi N^{-n} L_0^n h \, d\mu_{BM} - \int h \, d\mu_{BM} \int \varphi \, d\mu_{BM} \right|$$

$$= \left| \int \varphi N^{-n} Q^n h \, d\mu_{BM} \right| \leq C_\nu \nu^n \|h\|_{W^{1,1}} \int |\varphi| \, d\mu_{BM}.$$

The corollary follows by a simple approximation argument.

4.2. Non-uniformly expanding maps.

Let $\mathcal{E} \subset \mathcal{M}$ the set of maps such that $f' \geq 1$, $f' = 1$ at finitely many points and $\Lambda = \|f'\|_{\infty} < \infty$.

This class of maps includes the well known Manneville–Pomeau map [71, 62].

Remark 4.9. In [24] non-uniformly expanding systems are studied and the existence of a spectral gap (and hence decay of correlations) is proven for a class of equilibrium states which includes the measure of maximal entropy. The approach in [24] is based on Hilbert metrics and, although not stated explicitly, it provides a poor estimate of the spectral gap (see Remark 2.7 for similar considerations) whereas our present approach provides an explicit and close to optimal estimate.
Here, we limit ourselves to the one dimensional case to present the idea in its simpler form. It is likely that similar results can be obtained for more general non-uniformly expanding maps, e.g., the higher dimensional examples treated in [24].

Note that the maps in E have a basic property.

Lemma 4.10. Any map $f \in E$ is expansive.

Proof. Let $\kappa = \min_{I \in P} |I|$. For each $\delta > 0$ let $I_\delta = \{[a, b] \subset [0, 1] : [a, b] \subset I, I \in P : |b - a| \geq \delta \}$ and, for each $[a, b] \in I_\delta$, define $\varphi(a, b) := \frac{1}{|b - a|} \int_a^b f'(\xi) d\xi$. Note that, by hypothesis, $\varphi(a, b) > 1$, and since it depends continuously from a, b (which vary in a compact set) there must be $\tau_\delta > 1$ such $\varphi(a, b) \geq \tau_\delta$. Accordingly, $f^n(x)$ and $f^n(y)$ always belong to the same partition element we have $|f^n(x) - f^n(y)| \leq \kappa$ for all $n \in \mathbb{N}$ which is possible only for $x = y$. On the other hand, if for some $f^n(x)$ and $f^n(y)$ belong to two different partition element, then either $|f^n(x) - f^n(y)| \geq \kappa$ or they belong to contiguous elements of P. In such a case it is easy to see that there exists δ such that either $|f^n(x) - f^n(y)| \geq \delta$ or $|f^{n+1}(x) - f^{n+1}(y)| \geq \delta$, hence the expansivity. □

The above fact allows to prove that the measure of maximal entropy is unique.

Lemma 4.11. For $f \in E$ the measure of maximal entropy μ_{BM} is unique.

Proof. Since the map is expansive, there exists a map $\Phi : [0, 1] \to \{1, \ldots, d\}^\mathbb{N} =: \Sigma$ which is well defined and invertible, apart from countably many points, that conjugates f with the full shift σ. Hence, Φ induces a measurable isomorphism for each non-atomic measure. On the other hand for (Σ, σ) holds the variational principle, hence the sup of the metric entropies is the topological entropy, which is $\ln d$ and there exists a unique measure of maximal entropy. Since atomic measures have zero entropy, and since the entropy is an affine function of the measures, it follows that the sup on the measure entropies is achieved on non-atomic measures. Thus, via the isomorphism Φ and since the entropy is an invariant for measure-preserving conjugacy, it follows that measure of maximal entropy for f is unique. □

5. **Hyperbolic maps**

For hyperbolic, or partially hyperbolic maps the situation is less clear than in the expanding case and much more remains to be understood. Yet, the ghost of a general theory seems to be present. Let us start with the simplest possible case: linear maps.

In this case it is possible to study the problem using Fourier series (see [59]), however it is interesting to develop an alternative approach that does not rely on the algebraic structure of the map and thus has the potential to be applicable in greater generality.

5.1. **Automorphisms of the torus.**

Here we consider a linear map $f : \mathbb{T}^n \to \mathbb{T}^n$ defined by $f(x) = Ax \mod 1$ where $A \in SL(d, \mathbb{Z})$, i.e., a matrix with integer coefficient and det $A = 1$. Let us call E^u the unstable subspace, E^s the stable one and E^c the central one.
Note that, by hypothesis \(f \) preserves the volume, thus the volume is the SRB measure. We are interested in its statistical properties, hence in the transfer operator
\[
\mathcal{L}h = h \circ f^{-1}.
\]

Next we introduce a norm. Let \(\{v_i^v\}, \|v_i^v\| = 1, \) be a basis of \(E^v \) and \(\{u_i^u\}, \|u_i^u\| = 1, \) be a basis of \(E^u \) and define, for each \(h, \varphi \in \mathcal{C}^\infty \) and \(p, q \in \mathbb{N}_0, \partial_{i}^{p,q} h = \langle v_i^{s/u}, \nabla h \rangle, \) and
\[
\|h\|_{p,q} = \sup_{0 \leq k \leq p} \sup_{i_1,\ldots,i_k} \|\partial_{i_1}^{p_1} \cdots \partial_{i_k}^{p_k} \varphi\|_{\infty}
\]
(5.1)
\[
\|h\|_{p,q} = \sum_{0 \leq k \leq p} \sup_{i_1,\ldots,i_k} \sup_{|\varphi|^{k+q} \leq 1} \int_{\mathbb{T}^n} \varphi \partial_{i_1}^{p_1} \cdots \partial_{i_k}^{p_k} h.
\]
We call \(B^{p,q} \) the completion of \(\mathcal{C}^\infty \) with respect to the norms \(\| \cdot \|_{p,q} \).

In the following we assume \(E^u \neq \{0\} \). In addition, to simplify the exposition, we assume that \(A \) has no Jordan blocks. The general case can be treated with a slight sophistication of the following arguments. We can thus choose the \(v_i^v \) such that \(Av_i^v = \lambda_i v_i^v \), with \(\lambda_i \geq \lambda > 1 \). Also let \(\lambda \) be such that \(\|A|_{E^u}\| \leq \lambda^{-1} \).

Remark 5.1. The above norms are inspired by [4]. They are one of the many possible constructions of anisotropic Banach spaces adapted to hyperbolic maps or flows, see [7] for an extensive discussion. Given the linear structure of the invariant foliations, the norms (5.1) turn out to be especially convenient and simple to deal with, hence allowing a completely self-contained discussion. In the next section, we will use instead the norms defined in [47] in order to avoid having to redevelop the all theory (e.g. the Lasota-Yorke inequality) in the style of [4], which would certainly be possible.

The following is the equivalent of [4, Proposition 3.2].

Proposition 5.2. For each \(p, q \in \mathbb{N}_0, n \in \mathbb{N}, \) and \(\nu \in (\lambda^{-\min\{p+1,q\}}, 1) \), there exist \(A, B > 0 \) such that,
\[
\|\mathcal{L}h\|_{p,q} \leq \|h\|_{p,q}
\]
\[
\|\mathcal{L}^n h\|_{p+1,q} \leq A \nu^n \|h\|_{p+1,q} + B \|h\|_{p,q+1}.
\]

Proof. Since \(\langle v, \nabla (h \circ f^{-1}) \rangle = \langle D f^{-1} v, \nabla h \rangle \circ f^{-1} \). We have
\[
\int_{\mathbb{T}^n} \varphi \partial_{i_1}^{p_1} \cdots \partial_{i_k}^{p_k} \mathcal{L} h = \prod_{j=1}^{k} \lambda_j^{-1} \int_{\mathbb{T}^n} \varphi \circ f \partial_{i_1}^{p_1} \cdots \partial_{i_k}^{p_k} h.
\]
Since \(\|\varphi \circ f\|_{k+q} \leq \|\varphi\|_{k+q} \), the first inequality follows.

Next, note that
\[
\|h\|_{p,q} = \sup_{i_1,\ldots,i_p} \sup_{|\varphi|^p \leq 1} \int_{\mathbb{T}^n} \varphi \partial_{i_1}^{p_1} \cdots \partial_{i_p}^{p_p} h + \|h\|_{p-1,q}.
\]
Thus, by the above computations,
\[
\|\mathcal{L}^n h\|_{p,q} \leq \lambda^{-p} \|h\|_{p,q} + \|\mathcal{L} h\|_{p-1,q}.
\]

It thus suffices to consider the case \(k < p \). If \(|\varphi|^q \leq 1 \), then, for each \(\varepsilon > 0 \), let \(\varphi_\varepsilon \) be such that \(|\varphi_\varepsilon|^k \leq \varepsilon \), \(|\varphi_\varepsilon|^k \leq 2 \) and \(|\varphi_\varepsilon|^k \leq C \varepsilon^{-1} \), for some
fixed constant $C > 2$.\footnote{Such a function can be constructed by convolving with a mollifier in the space E^s.}

$$
|\int_{\mathbb{T}^n} \varphi \partial_t^u \cdots \partial_{t^{n-1}} \mathcal{L}^n h| \leq \prod_{j=1}^{k} \lambda_{j}^{-n} \left\{ \int_{\mathbb{T}^n} \left((\varphi - \varphi_{\varepsilon}) \circ f^n \partial_t^u \cdots \partial_{t^{n-1}} h \right) + C \varepsilon^{-1} \left\| h \right\|_{k,q+1} \right\}
$$

$$
\leq \prod_{j=1}^{k} \lambda_{j}^{-n} \left\{ \max \{ \varepsilon, 2 \lambda^{-(k+q)n} \} \left\| h \right\|_{k,q} + C \varepsilon^{-1} \left\| h \right\|_{k,q+1} \right\}
$$

$$
\leq 2^{-(2k+q)n} \left\| h \right\|_{k,q} + \frac{C}{2} \lambda^{(k+q)n} \left\| h \right\|_{k,q+1}
$$

where, in the last line, we have chosen $\varepsilon = 2 \lambda^{-(k+q)n}$. Accordingly,

$$
\left\| \mathcal{L}^n h \right\|_{p,q} \leq (\lambda^{-pn} + 2^{\lambda^{-an}}) \left\| h \right\|_{p,q} + C \lambda^{(q+p)n} \left\| h \right\|_{k,q+1}.
$$

Next, choose $n_0 \in \mathbb{N}$ such that $3 \lambda^{-\min(p,q)n_0} \leq \nu^{n_0}$, write $n = k n_0 + m$ with $m < n_0$ and iterate the above equation to obtain

$$
\left\| \mathcal{L}^n h \right\|_{p,q} \leq \frac{3 \lambda^{-\min(p,q)n_0}}{\nu^{n_0}} \left\| h \right\|_{p,q} + \frac{C}{1 - \nu} \lambda^{(q+p)n_0} \left\| h \right\|_{k,q+1},
$$

which proves the Proposition. □

Remark 5.3. Note that Proposition 5.2 implies that the spectral radius of \mathcal{L} when acting on any space $B^{p,q}$ is bounded by one. On the other hand, since $\mathcal{L} 1 = 1$, the spectral radius must be exactly one.

The following is the equivalent of [4, Lemma 4.1], although the proof follows a different path, easier in this particular case.

Lemma 5.4. If $E^s = \{0\}$, then, for each $p, q \in \mathbb{N}$, $\{ h \in B^{p,q} : \left\| h \right\|_{p,q} \leq 1 \}$ is relatively compact in $B^{p-1,q+1}$.

Proof. Let $d_s = \dim(E^s)$ and $d_u = \dim(E^u)$. By hypothesis $d = d_s + d_u$.

Let $U : \mathbb{R}^{d_s} \to \mathbb{R}^{d_s}$ such that $\{ v^s(v) = (v, Uv) \} \in \mathbb{R}^{d_s} = E^s$ and $V : \mathbb{R}^{d_u} \to \mathbb{R}^{d_s}$ such that $\{ v^u(v) = (Vv, v) \} \in \mathbb{R}^{d_u} = E^u$.\footnote{We can always choose coordinates in which this is possible.}

Finally, consider mollifiers $j^{s/u}_\varepsilon(x) = \varepsilon^{-(d_s/d_u)} j^{s/u}(\varepsilon^{-1} x)$, where $j^{s/u} \in C^\infty(\mathbb{R}^{d_s/d_u}, \mathbb{R}_+)$ such that $\text{supp} j^{s/u} \subset \{ \| x \| \leq 1 \}$ and $\int_{\mathbb{R}^{d_s/d_u}} j^{s/u}(x) dx = 1$. Then, for each $\| \varphi \|_{p+q} \leq 1$ and $h \in B^{p,q}$,

$$
\int_{\mathbb{T}^d} dx \varphi \partial_{t^1}^u \cdots \partial_{t^{p-1}}^u h = \int_{\mathbb{T}^d} dx \int_{\mathbb{R}^{d_s}} dv \varphi(x + v^s) j^{s}_\varepsilon(v) \partial_{t^1}^u \cdots \partial_{t^{p-1}}^u h(x) + O(\varepsilon \| h \|_{p,q})
$$

$$
= \int_{\mathbb{T}^d} dx \int_{\mathbb{R}^{d_u}} dv \int_{\mathbb{R}^{d_s}} dw \varphi(x + v^s - w^u) j^{s}_\varepsilon(v) j^{u}_\varepsilon(w) \partial_{t^1}^u \cdots \partial_{t^{p-1}}^u h(x) + O(\varepsilon \| h \|_{p,q})
$$

$$
=: \int_{\mathbb{T}^d} dx \varphi(x) \partial_{t^1}^u \cdots \partial_{t^{p-1}}^u h(x) + O(\varepsilon \| h \|_{p,q}).
$$

Note that $\| \varphi \|_{C^{p+q+1}} \leq C \varepsilon^{-p-1}$ and hence for each ε there is a set $\{ \phi_i \}_{i=1}^{N_{\varepsilon}} \subset C^{p+q}$ such that, for all φ we have $\| \varphi - \phi_i \|_{C^{p+q}} \leq \varepsilon$ for some ϕ_i. It follows that, for each ε,

$$
\| h \|_{p-1,q+1} \leq C_{\varepsilon} \| h \|_{p,q} + \sup_{i \leq N_{\varepsilon}} \left| \int_{\mathbb{T}^d} \phi_i h \right|.
$$
From the above the wanted compactness follows by a standard diagonalization argument.

We can now define the operators $D_i h = \partial_i^u h$. Then

$$D_i L h = \langle D f^{-1} u_i^v, \nabla h \circ f^{-1} \rangle = \lambda_i^{-1} \langle v_i^u, h \rangle \circ f^{-1} = \lambda_i^{-1} L D_i h.$$

The usefulness of these operators rests in the following Lemma. This is the only place in which we use Fourier series, however the result follows essentially from the accessibility property although with a more cumbersome proof.

Lemma 5.5. The D_i are bounded operators from $B^{p-1,q+1}$ to $B^{p,q}$. In addition, if we assume that A has no eigenvalues that are roots of unity, then if $h \in B^{p,q}$, $p \geq 1$ and $D_i h = 0$, for all i, then h is constant.

Proof. The fact that the D_j are bounded operators from $B^{p-1,q+1}$ to $B^{p,q}$ is a direct consequence of the definition of the norms in (5.1) and integration by parts. Next, Katznelson Lemma [54, Lemma 3] (applied to A^*) implies that there exists $C_0 > 0$ such that, for each $k \in \mathbb{Z}^n \setminus \{0\}$,

$$\text{dist}(k, (E^u \oplus E^c)^\perp) \geq C_0 \|k\|^{-n},$$

Let \hat{h}_k be the Fourier coefficient of h. Suppose that $\hat{h}_k \neq 0$ for some $k \neq 0$. Since, by hypothesis $0 = D_j \hat{h}_k = i (v_j^s, k) \hat{h}_k$, we have $\langle v_j^s, k \rangle = 0$ for all j. Thus $k \perp E^u$, contradicting (5.3). Thus h must be constant. \square

We are now ready to draw our conclusions.

Lemma 5.6. If $E^c = \{0\}$, then for each $\epsilon > 0$ and p,q large enough we have $\sigma_{B^{p,q}}(L) \subset \{1\} \cup \{z \in \mathbb{C} : |z| \leq \epsilon\}$.

Proof. By Proposition 5.2 and Lemma 5.4, together with Hennion argument [51] (or [28, Appendix B]) we have that the spectrum in the considered region is only point spectrum provided $\lambda - \min\{p,q\} < \epsilon$. We thus require p,q to be such that $\lambda - \min\{p,q\} < \epsilon$.

Next, suppose that $Lh = \nu h$ with $|\nu| > \epsilon$, then, for all j, (5.2) implies

$$L(D_j^q h) = \lambda_j^q \nu(D_j^q h).$$

But since $|\lambda_j^q \nu| > 1$ it cannot be an eigenvalue of L, thus it must be $D_j^q h = 0$. But, since integrating by parts yields

$$\int_{T^d} D_j^q h = 0,$$

for all $0 < l \leq j$, Lemma 5.5 implies that h must be a constant, which, in turn, implies $\nu = 1$. \square

Remark 5.7. Lemma 5.6, by the usual arguments, implies that C^∞ observables have a super-exponential decay of correlations.

Remark 5.8. It seems reasonable to expect that a similar result should hold also if E^c is not trivial, but the map is ergodic (A does not have eigenvalues that are roots of unity). However, the proof of Lemma 5.4 fails in this case. To overcome this problem it may be necessary to use a different Banach space. Thus, at present, it is not clear how to apply this strategy to partially hyperbolic systems, even in the simplest case.
The nonlinear case is much more subtle even in the Anosov setting. The obvious idea would be to consider an unstable vector field w and the operator $D = \langle w, \nabla h \rangle$. Unfortunately, in general, unstable vector fields are only Hölder. Hence, it is not clear if D is a well defined bounded operator from $B^{p,q}$ to $B^{p-1,q+1}$. To solve this problem one should probably use different Banach spaces (for some appropriate version of such spaces such as the ones introduced in [46], see [79] for some recent progress along these lines).

Indeed, on the one hand w is smooth along unstable manifolds, on the other hand in the stable direction is only Hölder so its derivatives must be regarded as distribution, like h, and multiplication of distributions is a rather touchy business. So the situation, although not hopeless, is rather unclear.

Such issue needs further thought. Here we limit ourselves to explore an interesting alternative: considering the external derivative d as the appropriate differential operator. This simple change of perspective yields interesting results since it seems to provide a connection with the topology of the manifold. At least, this is the situation in the following where we discuss only the simplest case: two dimensional Anosov maps.

5.2. Anosov map on two dimensional manifolds.

Let M be a smooth two dimensional compact and connected Riemannian manifold and $f \in \text{Diff}^\infty(M, M)$, be a transitive Anosov map. In other words, there exists $\lambda > 1$ and two continuous strictly invariant cone fields C^s, C^u such that, for all $x \in M$,

$\|d_x f v\| \geq \lambda \|v\| \quad \forall v \in C^u(x)$

$\|d_x f^{-1} v\| \geq \lambda \|v\| \quad \forall v \in C^s(x)$.

Remark 5.9. According to the Franks-Newhouse Theorem [43, 67], every Anosov diffeomorphism of a two-dimensional compact Riemannian manifold is topologically conjugate to a hyperbolic toral automorphism. Hence, in our case, M must be homeomorphic to \mathbb{T}^2. Note however that in the following the smoothness of the map plays a fundamental role, hence one cannot in general reduce the discussion to the case $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. It is thus convenient to argue considering M a general two dimensional manifold. This has also the advantage to emphasise the possibility of a higher dimensional extension. Indeed, we will use the Franks-Newhouse Theorem only at the end of the argument (Lemma 5.21), to characterise the cohomology groups.

In analogy with the previous sections, we will obtain results on the mixing properties of the measure of maximal entropy μ_{BM}.

Theorem 5.10. The exists $r \in \mathbb{N}$, $C > 0$ and $\kappa \in (0, 1)$ such that for all $g, h \in C^\infty$ and $n \in \mathbb{N}$ we have

$$\left| \int_M g \circ f^n h d\mu_{BM} - \int_M g d\mu_{BM} \int_M h d\mu_{BM} \right| \leq C \|g\|_{C^r} \|h\|_{C^r} e^{-h_{top} n} \kappa^n.$$

This result is a corollary of the much more precise Theorem 5.12 and it is proven in section 5.6. To state Theorem 5.12 we need to first introduce several objects.

5.3. The operators.

The operator associated to the SRB measure is simply (e.g., see [45])

$$\mathcal{L}h(x) = (\det D_f^{-1}(x))^{-1} h \circ f^{-1}(x).$$
However, in the present context the interesting object to study seems to be the action of forms, or rather currents.21 Recall that the pullback on a differential form ω by a map g is defined as
\[
(g^*\omega)_x(v_1, v_2) = \omega_{g(x)}(dx_g(v_1), dx_g(v_2)).
\]
If g is a diffeomorphism we can define the pushforward as $g_*\omega = (g^{-1})^*\omega$. It is then natural to define the action of the dynamics on forms as the pushforward f_*. Let ω_0 be the Riemannian volume. Then any two form can be written as $\omega = h\omega_0$ for some function h. Then
\[
[f_*\omega(v_1, v_2)](x) = h \circ f^{-1}(x)\omega_0((dx_{f^{-1}}(v_1), dx_{f^{-1}}(v_2)))(x)
\]
\[
= h \circ f^{-1}(x)\det(D_{f^{-1}}(x)f^{-1})^{-1}\omega_0(v_1, v_2)(x)
\]
\[
= [\{\mathcal{L}h \cdot \omega_0\}](v_1, v_2)(x).
\]
That is, the operator \mathcal{L} is equivalent to the pushforward on two forms.

Recall that
\[
d(f_*h) = f_*dh.
\]
where, if h is a zero form, then $f_*dh(x) = [D_xf^{-1}]^T(\nabla h) \circ f^{-1}(x)$.

The scalar product in T^*M is canonically defined by using the canonical duality $\pi : T^*M \to TM$ defined by $\omega(v) = \langle \pi(\omega), v \rangle$, for all $v \in TM$. That is,
\[
\langle \omega_1, \omega_2 \rangle = \langle \pi(\omega_1), \pi(\omega_2) \rangle = \pi_1(\pi(\omega_2)).
\]
For each $x \in M$ and $v_1, v_2, w_1, w_2 \in T^*_xM$ we define
\[
\langle v_1 \wedge v_2, w_1 \wedge w_2 \rangle = \det(\langle v_i, w_j \rangle).
\]
Assuming bilinearity, the above formula defines uniquely a scalar product among 2-forms. Also, we define a duality from ℓ to $2 - \ell$ forms via (see \cite[Appendix A]{47} for more details)
\[
\langle v, w \rangle\omega_0 = (-1)^{\ell(2-\ell)}v \wedge *w = (-1)^{\ell(2-\ell)}w \wedge *v = *v \wedge w.
\]
Since such a formula must hold for all ℓ-forms, the $(2-\ell)$-forms $*w, *v$ are uniquely defined. The operator $"*"$ is the so called Hodge operator.

5.4. The Banach spaces and the main result.

The operators f_* have been studied for flows in \cite{47} using appropriate Banach spaces. We use the same notation and almost the same Banach spaces defined in \cite[Section 3]{47}. However, since here we consider maps rather than flows, we do not have the requirement that the forms be null in the flow direction (see \cite[equation (3.5)]{47}). Here we provide some more detail but we refer to \cite{47} for the full story.

For any $r \in \mathbb{N}$, we assume that there exists $\delta_0 > 0$ such that, for each $\delta \in (0, \delta_0)$ and $\rho \in (0, 4)$, there exists an atlas $\{(U_\alpha, \Theta_\alpha)\}_{\alpha \in A}$, where A is a finite set, such that 22
\[
\Theta(U_\alpha) = B_2(0, 3\delta_0\sqrt{1 + \rho^2}),
\]
\[
\cup_\alpha \Theta^{-1}_\alpha(B_2(0, 2\delta)) = M,
\]
\[
\|\Theta_\alpha*\|_\infty + \|\Theta^{-1}_\alpha*\|_\infty \leq 2; \quad \Theta_\alpha * \Theta^{-1}_\beta \leq 2.
\]

21The idea that currents are a relevant object to study in the context of the statistical properties of dynamical systems goes back, at least, to \cite{75}. See, for example, \cite{74} and \cite{3} for further use of k-forms in the dynamical systems context.

22We use the notation $B_d(x, r) = \{y \in \mathbb{R}^d : \|y - x\| < r\}$.
Fix $L_0 > 0$. For any $L > L_0$, let us define

$$\mathcal{F}_r(\rho, L) := \{ F \in C^r(B_1(0, 6\delta), \mathbb{R}) : F(0) = 0; \quad \|DF\|_{c^r(B_1(0, 6\delta))} \leq \rho; \quad \|F\|_{c^r(B_1(0, 6\delta))} \leq L\}.$$

Where the C^r is defined as usual, e.g. see [47, equation (3.6)]. For each $F \in \mathcal{F}_r(\rho, L)$, $x \in \mathbb{R}^2$, $\xi \in \mathbb{R}^1$, let $G_{x,F}(\xi) : B_1(0, 6\delta) \rightarrow \mathbb{R}^2$ be defined by $G_{x,F}(\xi) := x + \langle (\xi, F(\xi)) \rangle$. Let us also define $\Sigma(\rho, L) := \{ G_{x,F} : x \in B_1(0, 2\delta), F \in \mathcal{F}_r(\rho, L) \}$.

For each $\alpha \in A$ and $G \in \Sigma(\rho, L)$, we define the leaf

$$W_{\alpha,G} := \{ \Theta_\alpha^{-1} \circ G(\xi) \}_{\xi \in B_1(0,3\delta)}.$$

For each $\alpha \in A$, $G \in \Sigma(\rho, L)$, note that $W_{\alpha,G} \subset \tilde{U}_\alpha := \Theta_\alpha^{-1}(B_d(0,6\delta \sqrt{1+\rho^2})) \subseteq \tilde{U}_\alpha$. Finally, we define $\Sigma_\alpha = U_{G \in \Sigma(\rho, L)}W_{\alpha,G}$. This is the set of “almost stable” leaves that we will use to define our norms.

Given a curve $W_{\alpha,G} \in \Sigma_\alpha$, we consider $\Gamma^e_\alpha = \{x(\alpha, G)\}$ as the C^8 sections of the fiber bundle on $W_{\alpha,G}$ with fibers in $\wedge^r(T^*M)$, as defined in [47, equation (3.8)], equipped with the C^8 norm.

Following [47, Section 3] let $V^s(\alpha, G)$ be the set of uniformly $C^8(U_{\alpha,G})$ vector fields, where $U_{\alpha,G}$ is any open set such that $U_\alpha \supset U_{\alpha,G} \supset W_{\alpha,G}$.

Let ω_{vol} be the volume form induced on $W_{\alpha,G}$ by the push-forward of Riemannian volume via the chart Θ_α^{-1}. Write L_ν for the Lie derivative along a vector field ν. For all $\alpha \in A, G \in \Sigma_\alpha, g \in \Gamma^e_\alpha(\alpha, G)$, $\bar{\nu}^p = (v_1, \cdots, v_p) \in V^s(\alpha, G)^p$, let us define the functionals $J_{\alpha,G,g,\bar{\nu}^p} : C^p \rightarrow C$ by

$$J_{\alpha,G,g,\bar{\nu}^p}(h) = \int_{W_{\alpha,G}} \langle g, L_{v_1} \cdots L_{v_p} h \rangle \omega_{vol}.$$

Next, for all $p \in \mathbb{N}$, $q \in \mathbb{R}_+$, $p + q < r - 1$, $l \in \{0, 1, 2\}$, let

$$U_{\rho,L,p,q,l} = \{ J_{\alpha,G,g,\bar{\nu}^p} : \alpha \in A, G \in \Sigma_\alpha(\rho, L), g \in \Gamma^e_\alpha, \nu_j \in \nu^p + q, \nu_j \in \nu^p + q, \}$$

$$\|g\|_{\Gamma^e_\alpha, p+q(\alpha, G)} \leq 1, \|\nu_j\|_{C(\alpha, G)} \leq 1\}.$$

where, for $\nu \in V^s(\alpha, G)$, $\|\nu\|_{C^r(U_{\alpha,G})} = \sup_{\alpha,\nu} \|\nu\|_{\Theta_\alpha^{-1}} \circ \Theta_\alpha^{-1} \|C^r(U_{\alpha,G})$.

For all $p \in \mathbb{N}$, $q \in \mathbb{R}_+$, $l \in \{0, 1, 2\}$, we finally define the spaces $B^{p,q,l}$ as the closure of the $C^\infty \ell$ forms with respect to the norm

$$\|h\|_{p,q,l} = \sup_{n \leq p} \sup_{J \in U_{\rho,L,p,q,l}} J(h).$$

Note that $B^{p,q,l}$ is contained in the space of ℓ $(p + q)$ smooth currents (see [47]).

Remark 5.11. Note that $(\Theta_\alpha)_* (L_\nu h) = L_{(\Theta_\alpha)_* \nu}(\Theta_\alpha)_* h$, thus, in coordinates, $L_\nu h$ will have the form $\sum_{i=1}^{2} \alpha_i \partial_{\nu_i} h = \sum_{i=1}^{2} \alpha_i \partial_{\nu_i} h$, for some functions α_i and where $\{\nu_i\}_{i=1}^{2}$ is the standard basis of \mathbb{R}^2. If follows that restricting the vector fields in (5.10) to $\Theta_\alpha^* \epsilon_i$ yields an equivalent norm. Hence, to simplify notation, in the following we will use the notation $\partial^{\beta} h$ to designate the application of $|\beta|$ vector fields to h, where β are the usual multiindexes used in PDE.

23By $\langle \cdot, \cdot \rangle$ we mean the usual scalar product between forms.
The main result of this section consists in the following Theorem which provides a rather precise characterisation of the spectrum of the action on one forms, which is well known to be related to the measure of maximal entropy and thus plays the same role of the operators L_0 in the previous sections.

Theorem 5.12. For each $\varepsilon > 0$, for p, q large enough,
\[
\{ e^{-h_{top}}, e^{h_{top}} \} \cup \{ \sigma_{BP + q, 1} (f_*) \} \subset \{ z \in \mathbb{C} : |z| < \varepsilon \}
\]
\[
\sigma_{BP + q, 1} (f_*) \subset \{ z \in \mathbb{C} : |z| < \varepsilon \} \cup \{ e^{-h_{top}}, e^{h_{top}} \} \cup \sigma_{BP + q, 0} (f_*) \cup \sigma_{BP - q + 1, 0} (L),
\]
moreover $1 \notin \sigma_{BP + q, 1} (f_*)$.

In addition, $\sigma_{BP + q, 1} (f_*) \setminus \{ z \in \mathbb{C} : |z| < \varepsilon \}$ consists only of point spectrum and there exists $\kappa \in (0, 1)$ such that $\sigma_{BP + q, 1} (f_*) \subset \{ 1 \} \cup \{ z \in \mathbb{C} : |z| < \kappa \}$. The same holds for $\sigma_{BP - q + 1, 0} (L)$.

Remark 5.13. In fact, we conjecture that, for $\lambda_{\text{min}} (p, q) > \varepsilon^{-1},$
\[
\sigma_{BP + q, 1} (f_*) \setminus \{ z \in \mathbb{C} : |z| < \varepsilon \} = \left[\{ e^{-h_{top}}, e^{h_{top}} \} \cup \sigma_{BP + q, 1} (f_*) \cup \sigma_{BP - q + 1, 0} (L) \right] \setminus \{ 1 \},
\]
see Remark 5.23. This would be consistent with the fact that, by duality, the spectrum of L equals the spectrum of f_s^{-1} and that the spectra of f_* on forms determine the Ruelle zeta function, see [72], and the latter is described in term of periodic orbits, which are the same for f and f_s^{-1}. Accordingly, one expects a symmetry between the spectra of f_* and f_s^{-1}.\footnote{Note that if f_* acts on some Banach space, then here one considers f_s^{-1} acting on its dual, so the relation is not obvious a priori. Indeed, one does not necessarily expect f_s^{-1} to be a bounded operator when acting on a Banach space on which f_* is bounded.}

The next section is devoted to the proof of the above Theorem, while in Section 5.7 we present a minimalistic discussion of cohomology in the spaces $B^{p,q,1}$ and Section 5.8 is devoted to comments on the implications of such a Theorem and a comparison with existing results.

5.5. Proof of Theorem 5.12.

We start with some preliminary results establishing minimal information about Hodge duality and exterior differentials in our spaces of currents $B^{p,q,\ell}$.

Lemma 5.14. The Hodge duality map $\Phi h := *h = h \omega_0$, between zero forms and two forms, extends to a bounded isomorphism between $B^{p,q,0}$ and $B^{p,q,2}$ and $\Phi L = f_s \Phi$. In particular, $\sigma_{BP + q, 1} (f_*) = \sigma_{BP + q, 0} (L)$.

Proof. By equation (5.8), for each smooth zero form h, $\Phi h = h \omega_0$. Thus equation (5.4) implies $\Phi L h = f_s \Phi h$ for each smooth zero form. The injectivity follows since $B^{p,q,0}, B^{p,q,2}$ are isomorphic to a subspace of the space of currents, see [47, Lemma 3.10], and the extension of Φ to the current is an isomorphism. The result then follows by proving that Φ is a bounded operator. For each multi-index $\alpha, |\alpha| = p$, smooth two form ω and zero form h we have
\[
\left| \int_W \langle \omega, \partial^\alpha \Phi h \rangle \right| \leq \sum_{\beta + \gamma = \alpha} \left| \int_W \langle \omega, \partial^\beta \omega_0 \partial^\gamma h \rangle \right| \leq C_2 \| \omega \|_{C^{q+r}(W)} \| h \|_{p,q,0}
\]
from which the claim follows. \(\square\)
Lemma 5.15. The exterior derivative d extends to a bounded operator $\mathcal{B}^{p,q,\ell} \to \mathcal{B}^{p-1,q+1,\ell+1}$. If $h \in \mathcal{B}^{p,q,0}$, $\psi \in \mathcal{C}^\infty(M\setminus\mathbb{R}_+\setminus)$, with the interior of $\text{supp}(\psi)$ connected, and $\psi dh = 0$, then there exists $c \in \mathbb{C}$ such that $\psi(h - c) = 0$. Finally, $d(\mathcal{B}^{p,q,0})$ is closed in $\mathcal{B}^{p-1,q+1,1}$.

Proof. If h is an ℓ form, then, for each $\ell + 1$ form ω and multi-index α, $|\alpha| = p - 1$, we have that there exists a constant $C_\ell > 0$ such that

$$ \left| \int_W \langle \omega, \partial^\alpha dh \rangle \right| \leq C_\ell \|\omega\|_{\mathcal{C}^{p+1}(W)} \|h\|_{p,q,\ell} $$

from which it follows that $\|dh\|_{p-1,q+1,\ell+1} \leq C_\ell \|h\|_{p,q,\ell}$.

Next, let h, ψ be such that $\psi dh = 0$. Note that $\mathcal{B}^{p,q,0}$ is isomorphic to a subspace of the space of distributions $(\mathcal{C}^{p+q})'$, see [47, Lemma 3.10]. Let $K = \text{supp } \psi$ and $U = K$, note that U is connected by hypothesis. Thus for each smooth local function φ, $\text{supp } \varphi \subset U$, and disintegration of ω along a smooth foliation $\{W_t\} \subset \Sigma$, we have

$$ \int_W \varphi \partial_t h = \int dt \int_{W_t} \langle \varphi dx_i, \psi dh \rangle = 0. \tag{5.11} $$

It follows that $\partial_t h = 0$ as a distribution on U, hence $h = c$ on U, for some $c \in \mathbb{C}$. That is $\psi(h - c) = 0$ on M. From [47, Lemma 3.10], again, it follows that $\psi(h - c) = 0$ as an element of $\mathcal{B}^{p,q,0}$.

To conclude the Lemma we want to prove that $d(\mathcal{B}^{p,q,0})$ is closed in $\mathcal{B}^{p-1,q+1,1}$. Let us suppose that $\omega_n \to \omega$, in $\mathcal{B}^{p-1,q+1,1}$, with $\omega_n \in d(\mathcal{B}^{p,q,0})$. That is, there exists $\Xi_n \in \mathcal{B}^{p,q,0}$ such that $\omega_n = d\Xi_n$. Let $\tilde{\Xi}_n = \Xi_n - \int_M \Xi_n$. Then, for each function φ supported in a chart $(U_\alpha, \Theta_\alpha)$ we can write

$$ \int_M \varphi \tilde{\Xi}_n = \int_M \left(\varphi - \int_M \varphi \right) \Xi_n. $$

Let \bar{x} be such that $\int_M \varphi = \varphi(\bar{x})$, then

$$ \int_M \varphi \tilde{\Xi}_n = \int_{U_n} dx \int_0^1 dt \frac{d}{dt} \varphi(\bar{x} + (x - \bar{x})t) \Xi_n(x) $$

$$ = \sum_{i=1}^2 \int_M \varphi(\bar{x} + (x - \bar{x})t)((x_i - \bar{x}_i), \partial_{x_i} \Xi_n(x)). $$

Hence, setting $\Psi_t(x) = -\sum_{i=1}^2 \varphi(\bar{x} + (x - \bar{x})t)(x_i - \bar{x}_i) dx_i$, we have, recalling equation 5.6,

$$ \int_M \varphi \tilde{\Xi}_n = \int_0^1 dt \int_M \langle \Psi_t, \omega_n \rangle. $$

Arguing similarly for $\partial^\alpha \tilde{\Xi}_n$ it follows that $\tilde{\Xi}_n$ is a Cauchy sequence. Let Ξ be the limit, then, by the continuity of d, $d\Xi = \omega$, hence $\omega \in d(\mathcal{B}^{p,q,0})$. \hfill \Box

25With a slight abuse of notation we will call such an extension d as well.

26This essentially says that closed anisotropic zero currents are constant. Since for zero currents being closed and being harmonic is the same, this is a little piece of Hodge theory, all that is presently needed. Yet, it would be clearly useful to develop the Hodge theory in the context of anisotropic spaces.

27Since the foliation is smooth the Jacobian J of the disintegration is a smooth function and $\varphi = J \vartheta$. Note that $\tilde{\varphi}/\vartheta$ is a smooth function on W_t.

28To simplify notation we do not write explicitly the change of coordinates Ξ_n.
5.5.1. **Spectral radius and essential spectral radius of \(f_* \) and \(\mathcal{L} \).** The first step in the study of the operators \(f_* \), \(\mathcal{L} \) is the following.

Lemma 5.16. The action of \(f_* \) on \(\ell \)-forms extends to a linear bounded operator from \(B^{p,q,\ell} \) to itself. With a slight abuse of notation we use \(f_* \) for the action on each \(B^{p,q,\ell} \). Then, there exists a constant \(C_2 > 0 \) such that

\[
\| f_*^n h \|_{0,q,0} \leq C_2 \| h \|_{0,q,0} \\
\| f_*^n h \|_{0,q,1} \leq C_2 e^{h_{top}} \| h \|_{0,q,1} \\
\| f_*^n h \|_{p,q,0} \leq C_2 \| h \|_{p,q,0} + C_2 \| h \|_{p-1,q+1,0} \\
\| f_*^n h \|_{p,q,1} \leq C_2 e^{h_{top}} \| h \|_{p,q,1} + C_2 \| h \|_{p-1,q+1,1} \\
\| \mathcal{L}^n h \|_{p,q,0} \leq C_2 \| h \|_{p,q,0} + C_2 \| h \|_{p-1,q+1,0}.
\]

Proof. To start with let \(h \in C^\infty(M,C) \) be a function, then

\[
\int_{W} \langle \varphi, f_*^n h \rangle = \int_{W} \langle \varphi, h \circ f^{-n} \rangle = \int_{f^{-n}W} \langle \varphi \circ f^n, h \lambda_* \rangle
\]

where \(\lambda_*^n(x) \) is the contraction of \(f^n \) in the direction \(T_xW \) at the point \(x \). We can divide \(f^{-n}W \) in a collection \(\{W_i\} \subset \Sigma \). Let \(\{\theta_i\} \) be a smooth partition of unity subordinated to \(\{W_i\} \). If \(\lambda_*^n = \min_{x \in W_i} \lambda_*^n(x) \), then the usual distortion arguments implies, that for all \(x \in W_i \), \(C_2 \lambda_*^n \leq \lambda_*^n(s) \leq C_3 \lambda_*^n \), thus, integrating \(|f^n(W_i)| = \int_{W_i} \lambda_*^n \geq C_4 \lambda_*^n \delta \), where \(\delta \) is the size of the manifolds (see the beginning of Section 5.4). In addition, for all \(q \in \mathbb{N} \), \(\| \lambda_*^n(s) \|_{C^q(W_i)} \leq C_2 \lambda_*^n \).

Accordingly,

\[
\left| \int_{W} \langle \varphi, f_*^n h \rangle \right| \leq \sum_i \left| \int_{W_i} \langle \theta_i, \lambda_*^n \varphi \circ f^n, h \rangle \right| \\
\leq C_2 \sum_i |f^n(W_i)| \delta^{-1} \| \varphi \circ f^n \|_{C^q(W_i)} \| h \|_{0,q,0} \\
\leq C_2 \| \varphi \|_{C^q(W)} \| h \|_{0,q,0}
\]

which, by density, proves the first inequality of the Lemma. Next, recalling (5.6), we have, for each \(v = \pi(\omega) \), \(h \) a \(C^\infty \) one form,

\[
\left| \int_{W} \langle \omega, f_*^n h \rangle \right| \leq \int_{W} \left| f_*^n h(v) \right| = \int_{W} h_{f^{-n}(x)}(d_x f^{-n}v(x))dx
\]

Setting \(v_n(x) = d_{f^n(x)} f^{-n}v(f^n(x)) \), by the usual distortion arguments we have \(\|v_n\|_{C^q(W_i)} \leq C_2 (\lambda_*^n)^{-1} \|v\|_{C^q(W)} \), hence

\[
\left| \int_{W} \langle \omega, f_*^n h \rangle \right| \leq C_2 \sum_i \left| \int_{W_i} h(\theta_i \lambda_*^n v_n) \right| \leq C_2 \sum_i |W_i| \delta^{-1} \| h \|_{0,q,1} \\
\leq C_2 e^{h_{top}} \| \omega \|_{C^q(W)} \| h \|_{0,q,1}
\]

where, in the last line, we have used \(|f^{-n}W| \sim e^{h_{top}} \), see [47, Appendix D]. Taking the sup on \(W \) and \(\omega \) the second inequality of the Lemma follows.

The next two inequalities are proven, similarly, as done in [47, Lemma 4.7], while the last follows by [45, Lemma 2.2] taking into account Lemma 5.14.

We are now able to obtain a first information on the peripheral spectrum.
Lemma 5.17. For p, q large enough, the spectra of f_* on $B^{p,q,0}$ and on $B^{p,q,2}$ are contained in $\{1\} \cup \{z \in \mathbb{C} : |z| < \kappa\}$ for some $\kappa < 1$. The eigenvectors associated to the eigenvalue 1 are the constant function 1 and the measure μ_{SRB} respectively.

Proof. By Lemma 5.14 the action of f_* on $B^{p,q,2}$ is conjugated to the action of \mathcal{L} on $B^{p,q,0}$, thus they have the same spectrum. But [45] implies that there exists $\kappa \in (0, 1)$ such that $\sigma_{B^{p,q,0}}(\mathcal{L}) \subset \{1\} \cup \{z \in \mathbb{C} : |z| \leq \kappa\}$ and one is a simple eigenvalue. This proves the Lemma for $B^{p,q,2}$.

Let us discuss $B^{p,q,0}$. Lemma 5.16 and Hennion’s Theorem [51] (or see [28, Appendix B]) imply that the radius of the essential spectrum of f_* acting on $B^{p,q,0}$ is at most λ^{-1} while the spectral radius is one, moreover the operator is power bounded. Accordingly, if f_* has no eigenvalue on the unit circle apart from 1 and 1 is a simple eigenvalue, then there exists a κ that satisfies the Lemma. Thus, we need only study eigenvalues of the form $e^{i\theta}$. Since the operator is power bounded, there cannot be a (non-trivial) Jordan block associated to such a maximal eigenvalue, hence their geometric and algebraic multiplicity coincide. Hence, we have the spectral decomposition

$$f_* = \sum_j e^{i\theta_j} \Pi_j + Q$$

where $\theta_j \in \mathbb{R}$, $\Pi_i \Pi_j = \delta_{ij} \Pi_j$, $\Pi_j Q = Q \Pi_j = 0$ and $\|Q^n\|_{p,q,0} \leq C e^{\kappa^n}$. Suppose that $e^{i\theta} \in \sigma_{B^{p,q,0}}(f_*)$, $\theta \in \mathbb{R} \setminus \{0\}$, then there exists $h \in B^{p,q,0} \setminus \{0\}$ such that $f_* h = e^{i\theta} h$, and, by the spectral decomposition, there exists $h_0 \in C^\infty$ such that

$$h = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} e^{-i\theta k} f_*^k h_0.$$

It follows that, for all $\varphi \in C^\infty(M, \mathbb{C})$,

$$\int_M \varphi h \omega_0 = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_M \varphi f_*^k h_0 \omega_0 = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_M \varphi \cdot h_0 \circ f^{-k} \omega_0.$$

But f^{-1} is also a transitive Anosov diffeomorphism with its SRB measure, call it μ_{SRB}^-, then

$$\lim_{k \to \infty} \int_M \varphi \cdot h_0 \circ f^{-k} \omega_0 = \int_M \varphi \omega_0 \int_M h \mu_{SRB}^-$$

which implies

$$\int_M \varphi h \omega_0 = 0$$

and since $B^{p,q,0}$ is a space of distributions, see [47], it follows $h = 0$ contrary to the hypothesis. We are left with the case $\theta = 0$, that is the eigenvalue 1. Since $1 \circ f^{-1} = 1$, one is an eigenvalue, we want to prove that it is simple. Let $f_* h = h$, and let h_0 as before,

$$\left| \int_M \varphi h \omega_0 \right| \leq \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_M |\varphi| \cdot |h_0| \circ f^{-k} \omega_0 \leq \|\varphi\|_{L^1(\omega_0)} \|h_0\|_{C^0}.$$

Note that the integral on M can be decomposed as an integral over elements of Σ, which are continuous functionals in the $B^{p,q}$ norms, hence we can exchange the limit with the integral.
Thus $h \in L^{\infty}(\omega_0)$ (the dual of $L^1(\omega_0)$), and $h = h \circ f^{-1}$, ω_0-almost surely. On the other hand, since ω_0 is ergodic for the Anosov map, it follows that h is almost surely constant. Thus 1 is simple point spectrum for f_* acting on $B^{p,q,0}$.

5.5.2. The peripheral spectrum of f_* acting on $B^{p,q,1}$.

Here, we start a more in depth study of $\sigma_{B^{p,q,1}}(f_*)$.

Lemma 5.18. The spectrum of f_* on $B^{p,q,1}$ contains $e^{h_{top}}$, which is also the spectral radius. In addition, the essential spectral radius is bounded by $e^{h_{top}}\lambda^{-\min{p,q}}$. The eigenvector associated to $e^{h_{top}}$ is the Margulis measure and, together with the dual eigenvector defines the measure of maximal entropy.

Proof. The statement on the spectral radius and essential spectrum follows from Lemma 5.16 and Hennion’s Theorem [51] (see also [28, Appendix B]). Next, if ν is an eigenvalue of f_*, $|\nu| = e^{h_{top}}$, then, by Lemma 5.16, $\nu^{-n}f_*$ is power bounded, hence it cannot be associated to a Jordan block. Let $h \in B^{p,q,1}$ be an eigenvalue, then, by Lemma 5.16 again, $\|h\|_{p,q,1} \leq C_2\|h\|_{0,p+q,1}$.

Next, let $\tilde{v}^n(x) \in C(x)$ be a smooth normalised vector field. Then, for each $\omega \in C^{p+q}$, $W \in \Sigma$ and $n \in \mathbb{N}$ let $v = \pi(\omega)$ and $v = w + \tilde{v}^n$ where v belongs to the tangent space of W and $v^*(x) = \alpha(f^{-n}(x))df^n_{f^{-n}(x)}\tilde{v}^n(f^{-n}(x))$. Note that

$$\|\alpha\|_{C^{p+q}(f^{-n}(W))} \leq \lambda^{-n}C_4\|\omega\|_{C^{p+q}}.$$

Thus,

$$\left|\int_W \langle \omega, h \rangle \right| = \left|\int_W \langle \omega, \nu^{-n}f^n(h) \rangle \right| = \nu^{-n} \int_W f^n h(v) \leq \int_W \nu^{-n}h(f^{-n}(x))(d_x f^{-n}w(x))dx + \left|\int_W \nu^{-n}\alpha(f^{-n}(x))h_{f^{-n}(x)}(\tilde{v}^n(f^{-n}(x)))dx\right|$$

where \tilde{w}_i belongs to the tangent space of W_i and $\|\tilde{w}_i\|_{C^{p+q}} \leq \|w\|_{c^0} + \lambda^{-n}\|w\|_{C^{p+q}}$.

Thus,

$$\left|\int_W \langle \omega, h \rangle \right| \leq C_2\|f^{-n}W\|\delta^{-1} e^{-h_{top}n}\|h\|_{0,p+q,1}\|w\|_{c^0} + C_4\lambda^{-n}\|h\|_{0,p+q,1}\|v\|_{C^{p+q}} \leq C_2\delta^{-1}\|h\|_{0,p+q,1}\|\omega\|_{c^0} + C_4\lambda^{-n}\|h\|_{0,p+q,1}\|\omega\|_{C^{p+q}}$$

where, in the last line, we have used the estimate on the growth of invariant manifolds, see [47, Appendix C] for details. Taking the limit $n \to \infty$ and the sup in W and ω yields

$$\|h\|_{0,0,1} \leq C_2\|h\|_{p,q,1}.$$

Next, let v^* be the normalised stable direction. Then, setting $\tilde{\phi}(x) = \ln|d_f(x)f^{-1}v^*(f(x))|,$

$$d_x f^{-n}v^*(x) = e^{\sum_{k=0}^{n-1} \tilde{\phi}(f^{-n+k}(x))}v^*(f^{-n}(x)).$$

We can then define the transfer operator

$$L_*g(x) = g \circ f^{-1}(x)e^{\tilde{\phi}(x)}.$$

Defining the map $\Gamma : B^{0,0,1} \to \mathcal{M}$, the space of signed measures, by $\Gamma(h) = h(v^*)\omega_0$, we have

$$\int_M f_*(h)(gv^*) = \int_M gL_*\Gamma(h).$$
In [46] is proven that \mathcal{L}_s is has maximal eigenvalue $e^{-h_{top}}$ and the associated eigenvector is the Margulis measure. This concludes the Lemma.

5.5.3. **Deeper in the spectrum of f_* acting on $B^{p,q,1}$.**

By Lemma 5.15 we can extend the de Rham cohomology to the currents in the spaces $B^{p,q,\ell}$. In other words we can call closed the elements $\omega \in B^{p,q,\ell}$ such that $d\omega = 0$ and exact the ones for which it exists $\alpha \in B^{p+1,q-1,\ell-1}$ such that $\omega = d\alpha$.

Remark 5.19. By equation (5.5) and Lemma 5.15 it follows that f_* sends closed currents into closed currents and exact currents into exact currents. Hence f_* induces an action in cohomology (of the $B^{p,q,\ell}$ currents), let us call it f_*^\bullet.

The next result shows that such a cohomology (let us call it anisotropic cohomology) is relevant to our problem.

Lemma 5.20. If $\nu \in \sigma_{B^{p,q,1}}(f_*)$, and $\omega \in B^{p,q,1}$ are such that $f_*\omega = \nu\omega$ and $|\nu| > e^{h_{top}} \lambda^{-\min[p,q]}$, then either ω is not exact or $\nu \in \sigma_{B^{p+1,q-1,0}}(f_*) \setminus \{1\}$. Moreover, $\sigma_{B^{p+1,q-1,0}}(f_*) \setminus \{1\} \subset \sigma_{B^{p,q,1}}(f_*)$. If $\nu \in (\sigma_{B^{p,q,1}}(f_*) \setminus \sigma_{B^{p-1,q+1,0}}(\mathcal{L})) \cup \{1\}$, then for each $\omega \in B^{p,q,1}$ such that $f_*\omega = \nu\omega$ we have $d\omega = 0$.

Proof. To start with note that, by Lemma 5.18, ν must belong to the point spectrum.

Let $\nu \in (\sigma_{B^{p,q,1}}(f_*) \setminus \sigma_{B^{p,q,0}}(f_*) \cup \{1\})$ and $\omega \in B^{p,q,1}$ such that $f_*\omega = \nu\omega$ and suppose that ω is exact. Thus, there exists $h \in B^{-1,p+1,0}$ such that $dh = \omega$. This implies

$$\nu dh = f_* dh = df_* h.$$

That is $d(f_* h - \nu h) = 0$. It follows by Lemma 5.15 that $f_* h = \nu h + c$. By a change of variable it follows that the dual $(f_*)'$ of f_* is given by the transfer operator $\mathcal{L}_{f^{-1}}$ associated to the map f^{-1}. Since f^{-1} is Anosov in well Lemmata 5.16 and 5.17 apply and the measure μ_{SRB} associated to f^{-1} belongs to the dual of $B^{p,q,0}$. Since $f_*1 = 1$ and the space $\mathcal{V} = \{ h : \int_M h d\mu_{\text{SRB}} = 0 \}$ is invariant for f_*, it is natural to write $h = \alpha + g$ with $\alpha \in \mathcal{C}$ and $g \in \mathcal{V}$. Then, we have

$$c + \nu \alpha + \nu g = \alpha + f_* g.$$

Applying μ_{SRB} to the above implies $c = \alpha(1 - \nu)$, hence $\nu g = f_* g$. The only possibility is then $\nu = 1$ but the associated eigenvector would be $1 \notin \mathcal{V}$, it follows $g = 0$. But then $\omega = dh = d\alpha = 0$. Hence, ω cannot be exact. The inclusion of the spectra is obvious.

If $f_*\omega = \nu\omega$ and $d\omega = h\omega_0$, by Lemma 5.14 we have $\mathcal{L} h = \nu h$. Accordingly, either $\nu \in \sigma_{B^{-1,q+1,0}}(\mathcal{L})$ or $h = 0$, that is $d\omega = 0$. On the other hand, if $\nu = 1$, then $h\omega_0 = \mu_{\text{SRB}}$. Hence, $d\omega = \mu_{\text{SRB}}$ and

$$\int_M\mu_{\text{SRB}} = \int_M d\omega = 0$$

which is impossible since μ_{SRB} is a positive measure. Accordingly, it must be $d\omega = 0$, that is, again, the form is closed.

To conclude we need a theory of anisotropic de Rham cohomology, such a general theory goes a beyond our present scopes so we will develop only the minimal version needed here. This is contained in Section 5.7, and in particular in Lemma 5.26 which states that the anisotropic cohomology of one forms is isomorphic to standard de Rham cohomology. In particular, this implies that the vector space of the
equivalence classes is finite dimensional, hence f_2, defined in Remark 5.19, has only point spectrum, let us call Ω the spectrum of f_1 when acting on one forms.

Next, we want to identify Ω. As stated in Remark 5.9 this is the only place where we use that our map is topologically conjugated to the linear model.

Lemma 5.21. We have $\Omega = \{e^{-h_\omega}, e^{h_\omega}\}$.

Proof. Lemma 5.26 implies that the anisotropic de Rham cohomology for one forms is a topological invariant, hence so is f_2. Since our map is conjugated to a linear model (see [53, Section 2.6]), f_2 is conjugated to the action of the linear model on homology. The Lemma follows by a direct computation, see [53, Section 3.2-e] for details.\Box

The following Lemma concludes the proof of Theorem 5.12.

Lemma 5.22. For each $\varepsilon > 0$, if p, q are large enough, we have

\[
\left[\Omega \cup \sigma_{B^{p+1,q-1,0}}(f_*) \right] \setminus \left\{ \{1\} \cup \{z \in \mathbb{C} : |z| < \varepsilon \} \right\} \subset \sigma_{B^{p,q,1}}(f_*)
\]

\[
\sigma_{B^{p,q,1}}(f_*) \subset \left\{ \{z \in \mathbb{C} : |z| < \varepsilon \} \cup \Omega \cup \sigma_{B^{p+1,q-1,0}}(f_*) \cup \sigma_{B^{p-1,q+1,0}}(L) \right\} \setminus \{1\}.
\]

Proof. Lemma 5.18 implies that if p, q are large enough we have to worry only about point spectrum.

Thus, if $\nu \in \sigma_{B^{p+1,q-1,0}}(f_*)$ then there exists $\theta \in B^{p+1,q-1,0}$ such that $f_*\theta = \nu \theta$. This implies that $f_*d\theta = \nu d\theta$ so either $d\theta = 0$, but then by Lemma 5.15 we have h constant and $\nu = 1$, or $\nu \in \sigma_{B^{p,q,1}}(f_*)$.

If $\nu \in \Omega$, the spectrum of f_2 (defined in Remark 5.19), then it means that there exists $\omega \in B_0^{p,q,1}$ and $\psi \in B^{p+1,q-1,0}$ such that $f_*\omega = \nu \omega + d\psi$, that is $f_*[\omega] = \nu[\omega]$, where $[\omega] \neq 0$ is the equivalence class of ω. If $\nu \notin \sigma_{B^{p+1,q-1,0}}(f_*)$, we can define $\theta = (\nu - f_*)^{-1}\psi$ and

\[
(\nu - f_*)d\theta = d\psi.
\]

But then $f_*\omega + d\theta = \nu \omega + d\theta$ which implies $\nu \in \sigma_{B^{p,q,1}}(f_*)$ unless $\omega + d\theta = 0$. But the latter possibility would imply that ω is exact, that is $[\omega] = 0$, contrary to the assumption. This proves the first inclusion of the Lemma.

To prove the second inclusion note that if $f_*\omega = \nu \omega$, $\omega \in B^{p,q,1}$ and $\nu \notin \sigma_{B^{p-1,q+1,0}}(L) \setminus \{1\}$, then the last part of the Lemma 5.20 implies $d\omega = 0$. Then $f_*[\omega] = \nu[\omega]$, thus either $\nu \in \Omega$ or $[\omega] = 0$, i.e. ω is exact. But if $\nu \notin \sigma_{B^{p+1,q-1,0}}(f_*) \setminus \{1\}$ the first part of Lemma 5.20 implies that ω is not exact, hence $[\omega] \neq 0$. Since Lemma 5.21 implies $1 \notin \Omega$, the Lemma follows.\Box

Remark 5.23. It is conceivable that Lemma 5.22 could be upgraded to an equality. Indeed, suppose that for a two current $\int_M \omega = 0$ implies that there exist a one current θ such that $\omega = d\theta$.\(^{30}\) Then if $f_*\omega = \nu \omega$, $\nu \neq 1$ and $\omega \neq 0$, we have $\int_M \omega = 0$ thus we can write $\omega = d\theta$ and $d(\nu \theta - f_*\theta) = 0$. Thus $\nu \theta - f_*\theta = \psi$ with $d\psi = 0$. Hence, if $\nu \notin \sigma_{B^{p,q,1}}(f_*)$, we have $\theta = (\nu - f_*)^{-1}\psi$. Since $d(z - f_*)^{-1}\psi$ is a meromorphic function and for large z the von Neumann expansion implies the it is zero, we have $d\theta = 0$, a contradiction. Hence the second inclusion of the Lemma 5.22 would be an equality.

\(^{30}\)This is equivalent to studying the cohomology for two forms.
5.6. Application to the measure of maximal entropy. In this section we prove Theorem 5.10. Lemma 5.18 implies that there exists $\ell_* \in (B^{p,q,1})'$ and $h_* \in B^{p,q,1}$ such that $f_*h_* = e^{\ell_*}h_*$ and $\ell_*f_* = e^{\ell_*}f_*$ for all $\omega \in B^{p,q,1}$. In addition, $\ell_*(\phi h) = \mu_{BM}(\phi)$. Lemmata 5.22 and 5.17 imply that the rest of the spectrum is contained in $\{ z \in \mathbb{C} : |z| < \kappa \}$ for some $\kappa \in (0,1)$. It follows that the spectral decomposition $f_* = e^{\ell_*}h_* \otimes \ell_* + Q$ with $\ell_* Q = 0$, $Qh_* = 0$, $t(h) = 1$ and $\|Q^n\|_{p,q,1} \leq C_\varepsilon k^n$. Also note that the multiplication by a smooth function is a bounded operator. Thus
\[
\int_M g \circ f^n h d\mu_{BM} = \ell_*(g \circ f^n h_*) = e^{-nh_*} \ell_*(f_*^n(g \circ f^n h_*)) = e^{-nh_*} \ell_*(g f_*^n(h_*)) = \ell_*(g h_*) \ell_*(h_*) + e^{-nh_*} \ell_*(g Q^n(h_*)).
\]
It follows that, for r large enough,
\[
\left| \int_M g \circ f^n h d\mu_{BM} - \int_M g d\mu_{BM} \int_M h d\mu_{BM} \right| \leq C_\varepsilon \|g\|_{C^r} \|h\|_{C^r} e^{-nh_*} k^n.
\]

5.7. Anisotropic de Rham cohomology.
While to develop a theory of anisotropic de Rham cohomology as well as the relative Hodge theory may certainly be of interest, in this section we will develop only the bare minimum necessary to our needs and we will keep the arguments as elementary as possible.

Without loss of generality we can, and will, assume that there exist good covers $\{U_\alpha^+\}$ and $\{U_\alpha\}$ such that $U_\alpha^+ \supset \overline{U_\alpha}$, and a partition of unity $\{\psi_\alpha\}$ subordinated to $\{U_\alpha\}$. Also let $\{\psi_\alpha^+\}$ be such that $\text{supp}(\psi_\alpha^+) \subset U_\alpha^+$ and $\psi_\alpha^+|_{U_\alpha} = 1$. \footnote{Recall that a good cover is a cover such that, for each collection \mathcal{A} of indexes, $\cap_{\alpha \in \mathcal{A}} U_\alpha$ is contractible.}

Lemma 5.24. If $h \in B^{p,q,1}$ is closed then, for each α, there exists $H_\alpha, H_\alpha^+ \in B^{p+1,q-1,0}$ such that $dH_\alpha = h\psi_\alpha + H_\alpha^+ d\psi_\alpha$ and $H_\alpha = H_\alpha^+ \psi_\alpha$.

Proof. For each U_α, let us choose $x_\alpha \in \Theta_\alpha(U_\alpha^+ \setminus \text{supp} \psi_\alpha^+)$. We start assuming that h is a smooth one form and we define, for all $x \in U_\alpha$,
\[
(5.13) \quad H_\alpha(x) = \int_0^1 \Theta_\alpha^* h_{\alpha(1-t)+t}(x - x_\alpha) dt.
\]
Also, for simplicity of notation, we confuse h and $\Theta_\alpha^* h =: \sum_i h_idx_i$ and set $\gamma_{\text{lin},x}(t) = x_\alpha(1 - t) + tx$. Then
\[
\partial_x H_\alpha(x) = \sum_{k=1}^2 \int_0^1 \left[t(\partial_x h_k) \circ \gamma_{\text{lin},x}(t) (x - x_\alpha)_k + h_i \circ \gamma_{\text{lin},x}(t) \right] dt.
\]
\[
\partial_x H_\alpha(x) = \sum_{k=1}^2 \int_0^1 t(\partial_x h_i) \circ \gamma_{\text{lin},x}(t) (x - x_\alpha)_k + h_i \circ \gamma_{\text{lin},x}(t) dt
\]
\[
- \int_0^1 t dh(x - x_\alpha, e_i)
\]
\[
= \int_0^1 \frac{d}{dt} [h_i \circ \gamma_{\text{lin},x}(t)] - \int_0^1 t d\gamma_{\text{lin},x}(t) h(x - x_\alpha, e_i)
\]
\[
= h_i(x) - \int_0^1 t d\gamma_{\text{lin},x}(t) h(x - x_\alpha, e_i).
\]
Thus, if \(h \) is a closed form, then we have \(d\bar{H}_\alpha = h \).

Next, let \(\gamma \in \Sigma_\alpha \) and \(\varphi \in C^0(\gamma) \), and set \(H_\alpha = \psi_\alpha \bar{H}_\alpha \), \(\varphi_\alpha = \varphi \psi_\alpha \circ \gamma \), then

\[
\int_\gamma \varphi \cdot H_\alpha = \sum_{i=1}^{2} \int_a^b ds \int_0^1 dt \varphi_\alpha(s)(dx_i, \Theta_{\alpha,s}h)(x_\alpha(1-t) + t\gamma(s))(\gamma(s) - x_\alpha) \cdot \gamma(s) - x_\alpha)_i
\]

\[-= \sum_{i=1}^{2} \int_0^1 dt \int_a^b ds \varphi_\alpha(t^{-1}s)(dx_i, \Theta_{\alpha,s}h)(x_\alpha(1-t) + t\gamma(t^{-1}s))(\gamma(t^{-1}s) - x_\alpha)_i.
\]

If we define \(\gamma_t(s) = x_\alpha(1-t) + t\gamma(t^{-1}s) \), then \(\gamma_t'(s) = \gamma'(t^{-1}s) \in C^* \), and setting \(\varphi_\alpha,t = \sum_{i=1}^{2} \varphi_\alpha(t^{-1}s)(\gamma(t^{-1}s) - x_\alpha)_i dx_i \), we have, for some \(c_\alpha \in (0, 1) \),

\[
(5.15) \quad \int_\gamma \varphi \cdot H_\alpha = \int_{c_\alpha}^1 dt \int_{\gamma_t} dH_\alpha.
\]

Equation (5.15) implies that \(H_\alpha \) is a continuous functional of \(h \) hence it can be extended to all \(h \in \mathcal{B}^{0,q-1} \). By the same scheme we can define \(H_\alpha^+ = \psi_\alpha \bar{H}_\alpha \) when \(h \in \mathcal{B}^{0,q-1} \). Next, setting \(x_{t,s} = x_\alpha(1-t) + t\gamma(s) \) and using (5.14), we have

\[
(5.16) \quad \int_\gamma \varphi d_{x}H_\alpha = \int_\gamma \varphi \psi_\alpha(x_{t,s}, h) + \int_0^1 dt \int_{\gamma_t} \langle \varphi_\alpha,t, dx_i \rangle dH_\alpha^+.
\]

Hence, if \(h \) is closed, \(dH_\alpha = \psi_\alpha h + H_\alpha^+ d\psi_\alpha \). If \(h \in \mathcal{B}^{1,q-1} \) is closed, then there exist smooth forms \(h_m \) that converge to \(h \). Moreover, by Lemmata 15.15, 15.14 it follows that \(dh_m \to 0 \) in \(\mathcal{B}^{0,q+1,2} \), hence equation (5.16) implies

\[
\|H_{\alpha,n} - H_{\alpha,m}\|_{1,q-1,0} \leq \|h_m - h_m\|_{0,q,1} + C \|dh_m - dh_m\|_{0,q+1,2},
\]

thus \(H_{\alpha,n} \) is a Cauchy sequence in \(\mathcal{B}^{1,q-1,1} \). Analogously, one can prove that \(H_{\alpha,n}^+ \) is Cauchy and, calling \(H_{\alpha}, H_{\alpha}^+ \) the limits, we have \(dH_\alpha = \psi_\alpha h + H_\alpha^+ d\psi_\alpha \).

Similar arguments show that if \(h \in \mathcal{B}^{p,q-1} \) and closed then \(H_{\alpha}, H_{\alpha}^+ \in \mathcal{B}^{p+1,q-1,0} \) and \(dH_\alpha = \psi_\alpha h + H_\alpha^+ d\psi_\alpha \). \hfill \Box

Lemma 5.25. There exist constants \(c_{\alpha,\beta} \in \mathbb{C} \) such that, for all \(\alpha, \beta \),

\[
\psi_\alpha \psi_\beta [H_{\alpha}^+ - H_{\beta}^+] + c_{\alpha,\beta} = 0.
\]

Proof. By Lemma 5.24 follows

\[
d([H_{\alpha}^+ - H_{\beta}^+]\psi_\alpha \psi_\beta) = d(H_{\alpha} \psi_\beta - H_{\beta} \psi_\alpha) = H_{\alpha}^+ \psi_\beta d\psi_\alpha + H_\alpha d\psi_\beta - H_{\beta}^+ \psi_\alpha d\psi_\beta + H_\beta d\psi_\alpha = [H_{\alpha}^+ - H_{\beta}^+] d(\psi_\alpha \psi_\beta).
\]

This implies \(\psi_\alpha \psi_\beta d[H_{\alpha}^+ - H_{\beta}^+] = 0 \) and the Lemma follows thanks to the last assertion of Lemma 5.15. \hfill \Box

This fact allows to obtain our basic result.

Lemma 5.26. The anisotropic de Rham cohomology for one forms is isomorphic to the standard de Rham cohomology.
Proof: The first task is to understand when \(h \in \mathcal{B}^{p,q,1} \) is exact. Let \(\bar{c} = (c_{\alpha}) \in \mathbb{C}^N \), where \(N = \sharp \{U_\alpha\} \), and define \(H(\bar{c}) = \sum_{\alpha}(H^+_\alpha + c_{\alpha})\psi_{\alpha} \). If \(h \) is exact, then there exists \(\theta \in \mathcal{B}^{p+1,q-1,0} \) such that \(d\theta = h \) but then \(^{32}\)

\[
\psi_{\alpha}d(\theta - H^+_\alpha) = 0.
\]

Then Lemma 5.15 implies that there exists \(c_{\alpha} \) such that \(\psi_{\alpha}(\theta - H^+_\alpha - c_{\alpha}) = 0 \), hence for such a collection of constants \(\bar{c} = \{c_{\alpha}\} \) we have \(\theta = H(\bar{c}) \). It follows \(h \) is exact if and only if it is possible to choose \(\bar{c} \) so that \(dH(\bar{c}) = h \).

To start with we have thus to compute

\[
(5.17) \quad dH(\bar{c}) = \sum_{\alpha}\psi_{\alpha}h + \sum_{\alpha}(H^+_\alpha + c_{\alpha})d\psi_{\alpha} = h + \sum_{\alpha,\beta}(H^+_\alpha + c_{\alpha})\psi_{\beta}d\psi_{\alpha}.
\]

Accordingly, if

\[
(5.18) \quad (H^+_\alpha + c_{\alpha} - H^+_\beta - c_{\beta})\psi_{\beta}d\psi_{\alpha} = 0,
\]

then,

\[
\sum_{\alpha,\beta}(H^+_\alpha + c_{\alpha})\psi_{\beta}d\psi_{\alpha} = \sum_{\alpha,\beta}(H^+_\beta + c_{\beta})\psi_{\beta}d\psi_{\alpha} = \sum_{\beta}(H^+_\beta + c_{\beta})\psi_{\beta}d\left(\sum_{\alpha}\psi_{\alpha}\right) = 0,
\]

and, recalling equation (5.17), \(dH(\bar{c}) = h \). To conclude note that the problem is now reduced to the study of the Čech cohomology \(\check{H}^1(\mathcal{U}, \mathbb{C}) \) where \(\mathcal{U} = \{U_\alpha\} \).

Indeed, a 1-cochain \(f \) is a 1-coboundary iff for each 2-simplex \((U_{\alpha_0}, U_{\alpha_1}, U_{\alpha_2}) \) holds:\(^{33}\)

\[
(5.19) \quad f(U_{\alpha_1}, U_{\alpha_2}) - f(U_{\alpha_0}, U_{\alpha_2}) + f(U_{\alpha_0}, U_{\alpha_1}) = 0
\]

while it is a coboundary if there exists a 0-cochain \(g \) such that for all 1-simplex \((U_{\alpha_0}, U_{\alpha_1}) \) holds

\[
(5.20) \quad f(U_0, U_1) = g(U_0) - g(U_1).
\]

Accordingly, we can interpret the constants \(\bar{c} = \{c_{\alpha}\} \) as 0-cochain and the constants \(\bar{C} = \{c_{\alpha,\beta}\} \), in Lemma 5.25, as a 1-cochain. Then Lemma 5.25 implies that \(\bar{C} \) must be a 1-cocycle. To see it, given any 2-simplex \(\{U_{\alpha_0}, U_{\alpha_1}, U_{\alpha_2}\} \) consider any smooth function \(\varphi \) such that its support is strictly contained in \(U_{\alpha_0} \cap U_{\alpha_1} \cap U_{\alpha_2} \), then, by Lemma 5.25 and the definition of \(\{\psi_{\alpha}\} \),

\[
0 = \int_M \varphi \left[H^+_{\alpha_1} - H^+_{\alpha_2} + c_{\alpha_1,\alpha_2} - H^+_{\alpha_0} + H^+_{\alpha_2} - c_{\alpha_0,\alpha_2} + H^+_{\alpha_0} - H^+_{\alpha_1} - c_{\alpha_0,\alpha_1}\right]
= \int_M \varphi \left[c_{\alpha_1,\alpha_2} - c_{\alpha_0,\alpha_2} + c_{\alpha_0,\alpha_1}\right]
\]

which implies \(c_{\alpha_1,\alpha_2} = c_{\alpha_0,\alpha_2} + c_{\alpha_0,\alpha_1} = 0 \) by the arbitrariness of \(\varphi \).

On the other hand equation (5.18) is satisfied iff \(\bar{C} \) is a 1-coboundary. To see this, let \(\{U_{\alpha_0}, U_{\alpha_1}\} \) be a 1-simplex. We can assume w.l.o.g. that \(\psi_{\alpha_0}d\psi_{\alpha_1} \neq 0 \) otherwise \(\psi_{\alpha_1} \) would be constant different from zero and one on \(\text{supp}(\psi_{\alpha_0}) \). But then for each sufficiently small \(\theta \) such that \(\text{supp}(\theta) \subseteq \text{supp}(\psi_{\alpha_0}) \) the set \(\{\psi_{\alpha}\} \) := \(\{\psi_{\alpha}\}_{\alpha \neq \alpha_0,\alpha_1} \cap \{\psi_{\alpha} - \theta, \psi_{\alpha_1} + \theta\} \) would still be a partition of unity subordinated to \(\mathcal{U} \) and one can choose \(\theta \) such that \(\psi_{\alpha_0}d\psi_{\alpha_1} \neq 0 \). We can then find an open set \(U \subset U_{\alpha_0} \cap U_{\alpha_1} \) such that \(\psi_{\alpha_0}d\psi_{\alpha_1} \neq 0 \) in \(U \). Then, using equation (5.18) multiplied

\(^{32}\)Note that Lemma 5.24 implies that \(\psi_{\alpha}dH^+_\alpha = h\psi_{\alpha} \).

\(^{33}\)Recall that \(\{U_{\alpha_0},\ldots,U_{\alpha_q}\} \) is a \(q \)-simplex if \(\cap_{i=0}^q U_{\alpha_i} \neq \emptyset \) while a \(q \)-cochain is a function from the \(q \)-simplex to \(
\mathbb{C} \).
by $\varphi(\psi_{\alpha_0}d\psi_{\alpha_1})^{-1}$ and the statement of Lemma 5.25 multiplies by $\varphi(\psi_{\alpha_0}\psi_{\alpha_1})^{-1}$, for each φ supported in U we have

$$0 = \int_M \varphi \left[H_{\alpha_0}^+ + c_{\alpha_0} - H_{\alpha_1}^+ - c_{\alpha_1} - H_{\alpha_0}^+ + H_{\alpha_1}^+ - c_{\alpha_0,\alpha_1} \right] = \int_M \varphi \left[c_{\alpha_0} - c_{\alpha_1} - c_{\alpha_0,\alpha_1} \right]$$

which, by the arbitrariness of φ implies $c_{\alpha_0,\alpha_1} = c_{\alpha_0} - c_{\alpha_1}$.

The above discussion implies that h is exact if and only if \tilde{C} is a 1-coboundary. This implies the $B^{0,q,1}$ cohomology is isomorphic to the Čech cohomology, which is isomorphic to the de Rham cohomology.

5.8. Conclusion and comparisons.

While the results for the simple case studied in Section 2 are fully satisfactory, the results in Section 3-5 are still partial. Indeed, we show that the preset approach yields rather sharp results for the operator associated to the measure of maximal entropy, but less information is obtained, e.g., for the operator associated to the SRB measure. It is possible that considering the commutation of different operators with the transfer operator more information can be obtained, but this requires further work.

Also, in sections 3 and 4 we consider only one dimensional maps, yet the present approach seems amenable to extension to the higher dimensional setting. In particular, the arguments of section 4 should allow to considerably improve [24], at least for small potentials.

In the case of two dimensional hyperbolic maps, presented in section 5, our approach reproduces in a unified manner all the known results. Theorems 5.10 and 5.12 are a refinement of [8, Corollary 2.5], which contains slightly stronger results than [41]. In addition, for the application to toral parabolic flows, we can obtain the exact equivalent of [8, Corollary 2.3] which is sharper than the corresponding results in [41]. Indeed, if h_t is the unit speed flow along the stable manifold of an Anosov map f then our results yield (see [48] for details)

$$\left| \int_0^T g \circ h_t(x)dt - T\mu_{\text{top}}(g) \right| \leq C\|g\|_{\infty}$$

which implies that the ergodic average either grows linearly, or g is a cocycle. (See also [22] for a very recent and short proof of a logarithmic bound in a more general setting.)

We have thus seen that the present approach both reproduces the results in [8], and enlightens the connection with the action in cohomology (already present, in some form, in [41, 42]).

In conclusion, the present strategy unifies and refines the existing results in all the cases we have presented. In addition, it appears amenable to further generalisation. In particular, it seems possible to extend it to the higher dimensional case.

Another promising direction would be to apply it to Anosov flows where some hints of the relevance of some type of cohomology already exists (e.g. see [79]).

Along the same lines, it is reasonable that our ideas can yield relevant results if applied to pseudo-Anosov and partially hyperbolic maps.

Appendix A. Proof of Theorem 3.9

Before proving Theorem 3.9 we need a few preliminary lemmata.
In this case it is convenient to define \(\psi(g)(x) = \int_0^x g(y)dy \) and
\[
\mathcal{L}g = \mathcal{L}_2g + \mathcal{L}_1(Df \cdot \psi(g)).
\]
Note that \(\mathcal{L}_+ \) is a positive operator: if \(g \geq 0 \), then
\begin{equation}
\mathcal{L}_+ g \geq \mathcal{L}_1(Df \cdot \psi(g)) \geq 0
\end{equation}
(here we use the assumption that \(Df \geq 0 \)). This facilitates the study of its spectrum.

There is an obvious connection with the operator we are interested in:
\begin{equation}
\mathcal{L}_* g = \mathcal{L}_+ g - (\mathcal{L}_1 D_f) \cdot \int_0^1 (1-y)g(y)dy,
\end{equation}
that is \(\mathcal{L}_* \) is a rank one perturbation of \(\mathcal{L}_+ \).

Before proceeding further we need some information on \(\mathcal{L}_+ \). Recall that, as defined in the Theorem, \(\mu_* = \frac{1}{f(1)} \).

Lemma A.1. The spectral radius of \(\mathcal{L}_+ \), acting on \(L^1 \), is \(\mu_* \). Moreover, \(\mu_* \) is an eigenvalue of \(\mathcal{L}_* \) (the dual operator to \(\mathcal{L}_+ \)), acting on \(L^\infty \) with eigenvector given by the constant function one.

Proof. Note that, for all \(g \in L^1 \),
\begin{equation}
\int_0^1 \cdot \mathcal{L}_+ g(y)dy = \int_0^1 \left[\frac{g(y)}{f'(y)} + \left(\frac{1}{f'(y)} \right)' \psi(g)(y) \right] dy = \int_0^1 \left(\frac{\psi(g)}{f'} \right)'(y) dy
\end{equation}
\[
= \frac{1}{f'(1)} \psi(g)(1) - \frac{1}{f'(0)} \psi(g)(0) = \frac{1}{f'(1)} \int_0^1 1 \cdot g(y) dy.
\]
Hence, \(\frac{1}{f'(1)} \) is an eigenvalue of the dual of \(\mathcal{L}_+ \) and hence it belongs to the spectrum of \(\mathcal{L}_+ \). The lemma follows since
\begin{equation}
\int_0^1 |\mathcal{L}_+ g(y)| dy \leq \int_0^1 \mathcal{L}_+ |g(y)| dy = \frac{1}{f'(1)} \int_0^1 |g(y)| dy.
\end{equation}
\[\square\]

Note that the above Lemma implies that the space \(V_0 = \{ h \in L^1 \mid \int_0^1 h = 0 \} \) is invariant under \(\mathcal{L}_+ \). However, this does not give much information on the spectrum. To learn more it is convenient to study the operator \(\mathcal{L}_+ \) acting on \(W^{1,1} \).

Lemma A.2. For all \(g \in W^{1,1} \) we have
\[
\|\mathcal{L}_+ g\|_{L^1} \leq \mu_* \|g\|_{L^1},
\]
\[
\|\mathcal{L}_+ g\|_{W^{1,1}} \leq \mu_*^2 \|g\|_{W^{1,1}} + (3\|Df\|_{\infty} + \|D_{f'}\|_{L^1} + \|D_{f''}\|_{L^1} + \mu_*) \|g\|_{L^1}.
\]

Proof. The first inequality follows from (A.4). Next, for each \(g \in W^{1,1} \), using again (3.2), we have
\begin{equation}
(\mathcal{L}_+ g)' = \mathcal{L}_3 g' + 3\mathcal{L}_2 D_f g + \mathcal{L}_2 D_{f'} \psi(g) + \mathcal{L}_1 D_{f''} \psi(g).
\end{equation}

Thus (note that \(D_f \geq 0 \) implies that \(f'' \leq 0 \) and so \(f'(0) \geq f(x) \geq f'(1) \)), using also the estimates of Lemma 3.5,
\[
\|(\mathcal{L}_+ g)'\|_{L^1} \leq \mu_*^2 \|g'\|_{L^1} + (3\|D_f\|_{\infty} + \|D_{f'}\|_{L^1} + \|D_{f''}\|_{L^1} \|g\|_{L^1}.
\]
The Lemma follows using again (A.4). \[\square\]
Lemma A.3. μ_* is a simple eigenvalue of L_*. Moreover, h_+, the eigenvector associated to μ_*, is strictly positive, i.e., $h_+ > 0$. In addition, there exists $\mu_1 < \mu_*$ such that $\sigma_{W^{1,1}}(L_+) \subset \{\mu_*\} \cup \{z \in \mathbb{C} : |z| \leq \mu_1\}$.

Proof. Lemma A.2 and [51] (see also [28, Appendix B]) imply that the essential spectrum of L_+ is contained in a disk of size μ_*^2. Thus, since μ_* is an eigenvalue of L'_+, μ_* must be an eigenvalue of L_+. Moreover, Lemma A.2 implies that $\{\mu_*^n L^n_+\}$ is uniformly bounded when acting on $W^{1,1}$, hence by [32, Lemma VIII.8.1] μ_* is a semi-simple eigenvalue (no Jordan blocks).

Let $h_+ \in W^{1,1} \setminus \{0\} \subset C^0$ be a corresponding eigenvector. Next, suppose that $L_+ g = \mu_* e^{i\vartheta} g$, then $\mu_* |g| \leq L_+ |g|$, but then

$$\int_0^1 L_+ |g| - \mu_* |g| = 0$$

thus $\mu_* |g| = L_+ |g|$. Accordingly, we can assume that $h_+ \geq 0$. But then it must be $h_+ > 0$. Indeed, if there exists \bar{x} such that $h_+(\bar{x}) = 0$, then, calling y the maximal element in $f^{-1}(\bar{x})$,

$$0 = \mu_* h_+(\bar{x}) \geq \frac{1}{f'(y)} \int_0^y |h_+|.$$

Hence $h_+(x) = 0$ for all $x \leq y$. Iterating the argument we have that $h_+(x) = 0$ for all $x < 1$, and, by continuity, $h_+ \equiv 0$, contrary to the assumption. Accordingly, if there exists another h such that $L_+ h = \mu_* h$, then it cannot be zero anywhere otherwise $|h|$, which is also an eigenvector, would be identically zero. But then there exists $\alpha \in \mathbb{R}$ such that $\alpha h_+ - |h|$ has a zero and hence, since $\alpha h_+ - |h|$ also is an eigenvalue, $h = \alpha h_+$. Hence, μ_* is simple (the corresponding eigenspace has dimension one).

Therefore, if $e^{i\vartheta} \mu_* g = L_+ g$ then there must exist $\vartheta \in C^0$ such that $g = e^{i\vartheta} h_+$. It follows

$$0 = \mu_* h_+ - e^{-i\vartheta - i\vartheta} L_+(e^{i\vartheta} h_+) = L_+ h_+ - e^{-i\vartheta - i\vartheta} L_+(e^{i\vartheta} h_+) = L_2 \left[1 - e^{-i\vartheta - i\vartheta} f + i\vartheta \right] h_+ + L_1 D_f \left[\psi(g) - e^{-i\vartheta - i\vartheta} f \psi(e^{i\vartheta} h_+)\right].$$

Taking the real part and integrating yields

$$0 = \int_0^1 \frac{1 - \cos[\theta + \vartheta \circ f - \vartheta]}{f'} h_+ + \int_0^1 dx D_f(x) \int_0^x dy \left[1 - \cos[\theta + \vartheta \circ f(x) - \vartheta(y)]\right] h_+(y).$$

Since both terms are positive, the only possibility is $\theta + \vartheta \circ f(x) - \vartheta(y) = k\pi$. This implies that ϑ is constant and hence g is proportional to h_+, hence it must be $\theta = 0$. This proves that μ_* is the only peripheral eigenvalue and the spectral gap.

We can now conclude our argument.

Proof of Theorem 3.9. Equation (A.2) and Lemma A.2 imply the bound on the essential spectral radius.

Since f' is continuous on $[0,1]$ we know that

$$\int_0^1 \left|\frac{1}{f'(y)}\right| dy = \frac{1}{f'(1)} - \frac{1}{f'(0)} =: \Delta.$$

This means that the first statement of the theorem follows from Theorem 3.6 where

$$\tau = \lambda^{-1} + \int_0^1 \left|\frac{1}{f'(y)}\right| dy = \frac{2}{f'(1)} - \frac{1}{f'(0)} = \Delta + \mu_*.$$
It remains to show the absence of eigenvalues in the sets A_0, \ldots, A_4. By equation (A.2) we have that if $\mathcal{L}_* g = zg$ then

\begin{equation}
(z - \mathcal{L}_+)g = -\mathcal{L}_1D_f\int_0^1 (1-y)g(y) \, dy.
\end{equation}

Recall $\mu_1 < \mu_*$ from Lemma A.3. Let $|z| > \mu_1$ and suppose, for sake of contradiction, that the right hand side of the above equation is zero. This would mean, by Lemma A.3, that $g = h_+$ and $z = \mu_*$. However this would then imply that the integral on the right was strictly positive and, since $D_f \neq 0$, would contradict the assumption. This means that the right hand side of the above equation cannot be zero. Moreover, $z \neq \mu_*$ since, if it were, $\int_0^1 (\mu_* - \mathcal{L}_+)g = 0$ by Lemma A.1, and this would imply that the right hand side of (A.6) is zero, contrary to what we have seen.

It follows that, possibly after a normalization, for $|z| > \mu_1$ we can write $g = (z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f$, and substituting in (A.6) we have

\begin{equation}
(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(x) = -(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(x)\int_0^1 (1-y)(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy.
\end{equation}

Accordingly, if we define

\begin{equation}
\Xi(z) := 1 + \int_0^1 (1-y)(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy
\end{equation}

we have that z is an eigenvalue of \mathcal{L}_* if and only if $\Xi(z) = 0$. In the following we will repeatedly use the following facts: By Lemma A.1, the spectral radius of \mathcal{L}_* is μ_* and, for each $\varphi \in L^1$, $\int_0^1 \mathcal{L}_+ \varphi = \mu_* \int_0^1 \varphi$, while, by definition, $\int_0^1 \mathcal{L}_1 \varphi = \int_0^1 \varphi$. Also, by (A.1), \mathcal{L}_+ is a positive operator and so is, obviously, \mathcal{L}_1. Moreover we set $\int_0^1 D_f = \Delta$.

Since by Lemma A.1 we have $\|\mathcal{L}_+\|_{L^1} \leq \mu_*$, for $|z| \geq \mu_*$ we can do the trivial estimate

\begin{equation}
\left| \int_0^1 (1-y)(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy \right| \leq \sum_{n=0}^{\infty} \int_0^1 (1-y)|z|^{-n-1}\mathcal{L}_+^n\mathcal{L}_1D_f(y)dy
\end{equation}

\begin{equation}
\leq \sum_{n=0}^{\infty} \int_0^1 |z|^{-n-1}\mathcal{L}_+^n\mathcal{L}_1D_f(y)dy = \frac{\Delta}{|z| - \mu_*}.
\end{equation}

The above implies that $\Xi(z) \neq 0$ for all $|z| > \tau$, which we know already. Hence, to gain further informations we have to analyse (A.8) more in depth.

For $z > \mu_*$,

\begin{equation}
\int_0^1 (1-y)(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy = \sum_{n=0}^{\infty} \int_0^1 (1-y)z^{-n-1}\mathcal{L}_+^n\mathcal{L}_1D_f(y)dy > 0,
\end{equation}

which implies $\Xi(z) > 1$, hence non zero. Moreover, by Lemma A.3 we get the spectral representation $\mathcal{L}_+ h = \mu_* h_+ + \int_0^1 h + Qh$ where for all $\mu \in (\mu_1, \mu_*)$ there exists C_μ such that $\|Q^n\|_{W^{1,1}} \leq C_\mu \mu^n$. Thus, for $z \in (\mu, \mu_*)$,

\begin{equation}
\int_0^1 (1-y)(z - \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy = \int_0^1 (1-y)(z - \mu_*)^{-1}h_+(y)dy \left(\int_0^1 \mathcal{L}_1D_f\right) + \sum_{n=0}^{\infty} \int_0^1 (1-y)z^{-n-1}Q^n\mathcal{L}_1D_f(y)dy.
\end{equation}
Thus, for some $C > 0$,
\[
\left| \Xi(z) - 1 - (z - \mu_\ast)^{-1} \left[\frac{1}{f'(1)} - \frac{1}{f'(0)} \right] \int_0^1 (1 - y)h_+ \right| \leq C_\mu C(|z| - \mu)^{-1}
\]
Hence, there exists $\mu_2 \in (\mu_1, \mu_\ast)$ such that $\Xi(z) = 0$ has no solution for $z > \mu_2$.\(^{34}\)
This establishes the fact that the set A_0 does not belong to the spectrum.
To study non positive z, note that $\Xi(z) = \Xi(\bar{z})$ and that $(\bar{z} - L_\ast)_-^{-1} = (\bar{z} - L_\ast)_+^{-1}(\bar{z} - L_\ast)^{-1}$. Hence, if $z = a + ib$, we have
\[
\Im(\Xi(z)) = ib \int_0^1 (1 - y)(\bar{z} - L_\ast)^{-1}(z - L_\ast)^{-1}L_1D_f(y)dy
\]
(A.9)
\[
\Re(\Xi(z)) = 1 + \int_0^1 (1 - y)(a - L_\ast + |b|^2)^{-1}L_1D_f(y)dy.
\]
Note that if $a > \mu_\ast$, then, by Lemma A.1 and (A.1), $[a - L_\ast]^{-1} = \sum_{n=0}^\infty a^{-n-1}L_\ast^n$ is a positive operator. Hence, if $b \neq 0$, $\Xi(z) = 0$ implies
\[
0 = 1 + \int_0^1 (1 - y)(1 + [a - L_\ast]^{-2}b^2)^{-1}[a - L_\ast]^{-1}L_1D_f(y)dy
\]
(A.10)
\[
= 1 + \int_0^1 (1 - y)[a - L_\ast]^{-1}L_1D_f(y)dy
\]
Next we want to estimate the two integrals on the right hand side of (A.10). Let us start with the first integral, assuming $a > \mu_\ast$:\(^{35}\)
\[
\int_0^1 (1 - y)[a - L_\ast]^{-1}L_1D_f(y)dy \geq a^{-1} \int_0^1 (1 - y)L_1D_f(y)dy
\]
\[
= a^{-1} \sum_{i=1}^N \int_{p_{i+1}}^{p_i} (1 - f(y)) \left(\frac{1}{f'(y)} \right)' dy
\]
\[
= a^{-1} \left(1 - \sum_{i=1}^N \frac{1}{f'(p_i)} \right) = : a^{-1} \Gamma.
\]
To estimate the second integral note that, for each $g \geq 0$ and $|b| < a - \mu_\ast$, we can write
\[
(1 + [a - L_\ast]^{-2}b^2)^{-1}g = \sum_{n=0}^\infty (-1)^n[a - L_\ast]^{-2n}b^{2n}g
\]
(A.11)
\[
\leq \sum_{n=0}^\infty |a - L_\ast|^{-4n}b^{4n}g.
\]
\(^{34}\)With some further work one could estimate μ_2, but we believe the above suffices to show how to proceed.
\(^{35}\)Note that in this computation we are sacrificing optimality of the result to the simplicity of the formulae.
Hence
\[
\int_0^1 (1 - y)(1 + [a - \mathcal{L}_+]^{-2}b^2)^{-1}[a - \mathcal{L}_+]^{-3}b^2\mathcal{L}_1D_f(y)dy \leq \\
\leq \sum_{n=0}^{\infty} \int_0^1 [a - \mathcal{L}_+]^{-4n-3}b^{4n+2}\mathcal{L}_1D_f(y)dy \\
= \sum_{n=0}^{\infty} [a - \mu_*]^{-4n-3}b^{4n+2}\Delta = \frac{(a - \mu_*)b^2\Delta}{(a - \mu_*)^4 - b^4}.
\]

The above implies that \(\Xi(z) = 0 \) has no solution if \(a > \mu_* \), \(|b| < a - \mu_* \) and
\[
1 + a^{-1}\Gamma > \frac{b^2(a - \mu_*)\Delta}{(a - \mu_*)^4 - b^4}
\]
which is implied by \(a > \mu_* \) and
\[
(A.12) \quad b^2 < \frac{(a - \mu_*)\Delta}{2(1 + a^{-1}\Gamma)} \left[1 + 4\frac{(1 + a^{-1}\Gamma)(a - \mu_*)^2}{\Delta^2} - 1 \right].
\]
This establishes that \(A_1 \) is disjoint from the spectrum (apart from 1).

If \(a < -\mu_* \), we cannot easily use positivity arguments since
\[
\mathbb{R}(\Xi(z)) = 1 - \int_0^1 (1 - y)(|a| + \mathcal{L}_+)((|a| + \mathcal{L}_+)^2 + b^2)^{-1}\mathcal{L}_1D_f(y)dy.
\]
We are thus left with the cruder estimate, \(|(|a| + \mathcal{L}_+)^{-1}g| \leq \sum_{n=0}^{\infty} |a|^{-n-1}\mathcal{L}_+^n|g| = ((|a| - \mathcal{L}_+)^{-1}|g| \]. Hence, for \(|b| \leq |a| - \mu_* \) and recalling the computation for \(b = 0 \), we have
\[
\int_0^1 (1 - y)(|a| + \mathcal{L}_+)((|a| + \mathcal{L}_+)^2 + b^2)^{-1}\mathcal{L}_1D_f(y)dy \leq \int_0^1 (1 - y)(|a| + \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy \\
+ \sum_{n=1}^{\infty} \int_0^1 b^{2n}|a|^{-2n-1}\mathcal{L}_1D_f(y)dy.
\]
The above decomposition allows to still use some positivity argument for the first term after the inequality. Indeed,
\[
\int_0^1 (1 - y)(|a| + \mathcal{L}_+)^{-1}\mathcal{L}_1D_f(y)dy = \sum_{n=0}^{\infty} |a|^{-1-n}(-1)^n \int_0^1 (1 - y)\mathcal{L}_+^n\mathcal{L}_1D_f(y)dy \\
\leq \sum_{n=0}^{\infty} |a|^{-1-2n} \int_0^1 \mathcal{L}_+^n\mathcal{L}_1D_f(y)dy \\
\leq \sum_{n=0}^{\infty} |a|^{-1-2n}\mu_*^{2n}\Delta = \frac{|a|\Delta}{a^2 - \mu_*^2}.
\]
Accordingly,
\[
\int_0^1 (1 - y)(|a| + \mathcal{L}_+)((|a| + \mathcal{L}_+)^2 + b^2)^{-1}\mathcal{L}_1D_f(y)dy \leq \frac{|a|\Delta}{a^2 - \mu_*^2} \]
\[
+ \frac{\Delta b^2}{(|a| - \mu_*)((|a| - \mu_*)^2 - b^2)}.\]
which implies that \(\Xi(x) = 0 \) has no solutions if \(a < -\mu_* \) and
\[
(A.13) \quad b^2 < \frac{(|a| - \mu_*)^2 (a^2 - \mu_*^2 - \Delta |a|)}{a^2 - \mu_*^2 + \Delta |a|}. \]

This establishes that \(A_2 \) is disjoint from the spectrum.

On the other hand, for \(b \neq 0 \), the equations (A.9) and \(\Xi(z) = 0 \) imply also
\[
(A.14) \quad 0 = 1 - \int_0^1 (1 - y) \mathcal{L}_+ ([a - \mathcal{L}_+]^2 + b^2)^{-1} \mathcal{L}_1 D_f(y) dy. \]

If \(|z|^2 > 2|a|\mu_* \), then
\[
\int_0^1 (1 - y) \mathcal{L}_+ (|z|^2 - 2a\mathcal{L}_+ + \mathcal{L}_+^2)^{-1} \mathcal{L}_1 D_f(y) dy =
\leq \int_0^1 (1 - y) \mathcal{L}_+ (1 + (|z|^2 - 2a\mathcal{L}_+)^{-1} \mathcal{L}_+^2)^{-1} (|z|^2 - 2a\mathcal{L}_+)^{-1} \mathcal{L}_1 D_f(y) dy.
\]

Note that if \(a \geq 0 \), then \((|z|^2 - 2a\mathcal{L}_+)^{-1}\) is a positive operator, hence
\[
\int_0^1 (1 - y) \mathcal{L}_+ (|z|^2 - 2a\mathcal{L}_+ + \mathcal{L}_+^2)^{-1} \mathcal{L}_1 D_f(y) dy =
= \sum_{n=0}^{\infty} (-1)^n \int_0^1 (1 - y) \mathcal{L}_+ (|z|^2 - 2a\mathcal{L}_+)^{-n-1} \mathcal{L}_+^n \mathcal{L}_1 D_f(y) dy
\leq \sum_{n=0}^{\infty} \mu_* \Delta (|z|^2 - 2a\mu_*) \mu_*^4 \mathcal{L}_+ \mathcal{L}_1 D_f(y) dy.
\]

It follows that equation (A.14) has no solution if \(a > 0, |z - \mu_*| > \mu_* \) and
\[
\mu_* \Delta (|z - \mu_*|^2 - \mu_*^2) \leq (|z - \mu_*|^2 - \mu_*^2)^2 - \mu_*^4;
\]
that is \(a > 0 \) and
\[
(A.15) \quad |z - \mu_*|^2 > \mu_*^2 + \mu_* \Delta + \sqrt{4\mu_*^4 + \Delta^2}. \]

This establishes that \(A_3 \) is disjoint from the spectrum.

If \(a < 0 \), again it is harder to take advantage of the positivity, hence, for simplicity, we content ourselves with a cruder estimate
\[
\int_0^1 (1 - y) \mathcal{L}_+ (|z|^2 - 2a\mathcal{L}_+ + \mathcal{L}_+^2)^{-1} \mathcal{L}_1 D_f(y) dy =
= \sum_{n=0}^{\infty} |z|^{-2-2n} \int_0^1 (1 - y) \mathcal{L}_+ (2a\mathcal{L}_+ - \mathcal{L}_+^2)^n \mathcal{L}_1 D_f(y) dy
\leq \sum_{n=0}^{\infty} |z|^{-2-2n} \int_0^1 \mathcal{L}_+ (\mathcal{L}_+^2 + 2|a|\mathcal{L}_+)^n \mathcal{L}_1 D_f(y) dy
\leq \sum_{n=0}^{\infty} |z|^{-2-2n} \mu_* (\mu_*^2 + 2|a|\mu_*) \Delta = \frac{\mu_* \Delta}{|z|^2 - \mu_*^2 - 2|a|\mu_*}. \]
It follows that equation (A.14) has no solution if
\[(A.16) \quad b^2 > \mu_\Delta + \mu_\Delta^2 + 2|a|\mu_* - a^2.\]
Finally, this establishes that \(A_4\) is disjoint from the spectrum.
Collecting (A.12), (A.13), (A.15) and (A.16) completes the proof of Theorem 3.9.
\[\square\]

Remark A.4. The previous proof is not optimal. We refrain from walking this road further as our purpose was only to show that the study of the spectrum can be reduced to the study of a concrete function (A.7), which plays the role of a determinant but may be easier to study than the dynamical determinant.

References

[1] A. Adam. Generic non-trivial resonances for Anosov diffeomorphisms. *Nonlinearity* 30 (2017) 1146–1164.

[2] Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

[3] W. Bahsoun, S. Galatolo, I. Nisoli & X. Niu. Rigorous approximation of diffusion coefficients for expanding maps. *J. Stat. Phys.* 163 (2016), no. 6, 1486–1503.

[4] W. Bahsoun & C. Liverani, Anosov diffeomorphisms, anisotropic BV spaces and regularity of foliations. Preprint arXiv:2003.06811.

[5] M. Baillif & V. Baladi. Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. *Ergodic Theory Dynam. Systems* 25, 1437–1470 (2005).

[6] V. Baladi. *Positive transfer operators and decay of correlations. Advanced Series in Nonlinear Dynamics*, 16. World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[7] V. Baladi. *Dynamical zeta functions and dynamical determinants for hyperbolic maps. A functional approach*. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 68. Springer, Cham, (2018).

[8] V. Baladi. *There are no deviations for the ergodic averages of the Giulietti-Liverani horocycle flows on the two-torus*. To appear in *Ergodic Theory Dynam. Systems*, (2020).

[9] V. Baladi & G. Keller. Zeta Functions and Transfer Operators for Piecewise Monotone Transformations. *Commun. Math. Phys.* 127, 459–477 (1990).

[10] O.F. Bandtlow, W. Just & J. Slipantschuk. Spectral structure of transfer operators for expanding circle maps. *Ann. Inst. H. Poincaré Anal. Non Linéaire* 34 (2017), 31–43.

[11] O.F. Bandtlow & F. Naud. Lower bounds for the Ruelle spectrum of analytic expanding circle maps. *Ergodic Theory Dynam. Systems*, 39(2), 289–310 (2019).

[12] M. Blank, G. Keller & C. Liverani. Ruelle-Perron-Frobenius spectrum for Anosov maps. *Nonlinearity* 15 (2002), no. 6, 1905–1973.

[13] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math., Vol. 470. Springer-Verlag, Berlin-New York, (1975).

[14] A. Boyarsky & P. Góra. Laws of chaos. Invariant measures and dynamical systems in one dimension. Probability and its Applications, Birkhäuser, Boston, MA, 1997.

[15] F. Brînî, S. Siboni, G. Turchetti & S. Vaienti. Decay of correlations for the automorphisms of the torus \(T^2\). *Nonlinearity*, 10, 1257–1268 (1997).

[16] O. Butterley. A Note on Operator Semigroups Associated to Chaotic Flows. *Ergod. Th. & Dynam. Sys.*, 36:1396–1408, 2016 (Corrigendum: 36:1409–1410, 2016).

[17] O. Butterley & P. Eslami. Exponential Mixing for Skew Products with Discontinuities. *Trans. Amer. Math. Soc.*, 369:783–803, 2017.

[18] O. Butterley & L.D. Simonelli. Parabolic Flows Renormalized by Partially Hyperbolic Maps. *Boll. Unione Mat. Ital.*, 13, 341–360 (2020).

[19] O. Butterley & K. War. Open Sets of Exponentially Mixing Anosov Flows. *J. Eur. Math. Soc.*, 22, 2253–2285 (2020).

[20] J. Buzzi. Entropy theory on the interval. *École de Théorie Ergodique, 39–82, Sémin. Congr.*, 20, Soc. Math. France, Paris, (2010).
[21] S. Byon Chol, N. Yoshitake, H. Okamoto & H. Mori. Correlations and spectra of an intermittent chaos near its onset point. *J. Stat. Phys.* 36 (1984) 367–400.

[22] J. Carrand. Logarithmic bounds for ergodic averages of constant type rotation number flows on the torus: a short proof. Preprint (2020) arXiv:2012.07481.

[23] R. Castorrini & C. Liverani. Quantitative statistical properties of two-dimensional partially hyperbolic systems. Preprint (2020) arXiv:2007.05602.

[24] A. Castro & P. Varandas. Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability. *Ann. Inst. H. Poincaré Anal. Non Linéaire* 30 (2013), no. 2, 225–249.

[25] P. Collet & J.-P. Eckmann. Liapunov Multipliers and Decay of Correlations in Dynamical Systems. *J. Stat. Phys.*, 115 (2004), 217–254.

[26] P. Collet & S. Isola. On the Essential Spectrum of the Transfer Operator for Expanding Markov Maps. *Commun. Math. Phys.* 139, 551–557 (1991).

[27] P. Cornfeld, S.V. Fomin & Ya.G. Sinai. *Ergodic theory*. Translated from the Russian by A. B. Sosinskii. *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*, 245. Springer-Verlag, New York, (1982).

[28] M. Demers, N. Kiamari & C. Liverani. Transfer operators in Hyperbolic Dynamics An introduction. 33 Colloquio Brasilero de Matematica. Editora do IMPA. pp.252 (2021). ISBN 978-65-89124-26-9.

[29] D. Dolgopyat. On decay of correlations in Anosov flows. *Ann. of Math. (2)*, 147(2):357–390, 1998.

[30] D.J. Driebe. Jordan blocks in a one-dimensional Markov map. *Computers & Mathematics with Applications*, 34 (1997) 103–109.

[31] D.J. Driebe. Fully Chaotic Maps and Broken Time Symmetry. Kluwer Academic Publishers, Dordrecht (1999).

[32] N. Dunford & J.T. Schwartz. *Linear Operators, Vol 1*, Interscience Publishers, New York, 1958.

[33] S. Dyatlov, F. Faure & C. Guillarmou. Power spectrum of the geodesic flow on hyperbolic manifolds. *Anal. PDE*, 8 (2015), no. 4, 923–1000.

[34] S. Dyatlov & M. Zworski. Dynamical zeta function for Anosov flows via microlocal analysis. *Annales de l’ENS*, 49 (2016), 543–577.

[35] S. Dyatlov & M. Zworski. Ruelle zeta function at zero for surfaces. *Invent. Math.*, 210 (2017), 211–229.

[36] F. Faure. Prequantum chaos: resonances of the prequantum cat map. *J. Mod. Dyn.* 1 (2007) 255–285.

[37] F. Faure, S. Gouëzel & E. Lanneau. Ruelle spectrum of linear pseudo-Anosov maps. (2018) *J. l’École polytechnique – Mathématiques* 6 (2019) 811–877.

[38] F. Faure & M. Tsujii. Band structure of the Ruelle spectrum of contact Anosov flows. *C. P. Math. Acad. Sci. Paris 351* (9-10) (2013) 385–391.

[39] F. Faure & M. Tsujii. Prequantum transfer operator for symplectic Anosov diffeomorphism. *Asterisque* v.375 Société Mathématique de France (2015).

[40] F. Faure & M. Tsujii. The semiclassical zeta function for geodesic flows on negatively curved manifolds. *Invent. Math.* 208 (2017) 851–998.

[41] G. Forni. On the equidistribution of unstable curves for pseudo-Anosov diffeomorphisms of compact surfaces. Preprint (2020) arXiv:2007.03144.

[42] G. Forni. Ruelle resonances from cohomological equations. Preprint (2020) arXiv:2007.03116.

[43] J. Franks. Anosov diffeomorphisms. *Proc. of Symposia in Pure Math.*, (1970) 61–93.

[44] S. Galatolo & I. Nisoli. Rigorous computation of invariant measures and fractal dimension for maps with contracting fibers: 2D Lorenz-like maps. *Ergodic Theory Dynam. Systema* 36 (2016), no. 6, 1865–1891.

[45] S. Gouëzel & C. Liverani. Banach spaces adapted to Anosov systems. *Ergodic Theory Dynam. Systema* 26 (2006), no. 1, 189–217.

[46] S. Gouëzel & C. Liverani. Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. *J. Differential Geom.* 79 (2008), no. 3, 433–477.

[47] P. Giulietti, C. Liverani & M. Pollicott. Anosov flows and dynamical zeta functions. *Ann. of Math. (2)* 178 (2013), no. 2, 687–773.

[48] P. Giulietti & C. Liverani. Parabolic dynamics and anisotropic Banach spaces. *J. Eur. Math. Soc.* 21, no. 9, 2793–2858 (2019).
[49] Y. Guedes Bonthroneau, C. Guillarmou, J. Hilgert, T. Weich. Ruelle-Taylor resonances of Anosov actions. Preprint arXiv:2007.14275.
[50] C. Guillarmou & F. Faure. Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3. Math. Res. Lett. 25 (2018), no. 5, 1405–1427.
[51] H. Hennion. Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118 (1993), no. 2, 627–634.
[52] O. Ippel. Computer-assisted verification method for invariant densities and rates of decay of correlations. SIAM J. Appl. Dynam. Syst., 10, (2011), 788–816.
[53] H. Katok & B. Hasselblatt. Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendosa. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.
[54] Y. Katznelson. Ergodic automorphisms of T^n are Bernoulli shifts. Israel J. Math. 10 (1971), 186–195.
[55] G. Keller & C. Liverani. Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 1, 141–152.
[56] G. Keller & H.H. Rugh. Eigenfunctions for smooth expanding circle maps. Nonlinearity 17 (2004), no. 5, 1723–1730.
[57] B. Kästner & T. Weich. Pollicott-Ruelle resonant states and Betti numbers. To appear in Comm. Math. Phys., (2020).
[58] A. Lasota & J. Yorke. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974).
[59] D.A. Lind. Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory Dynam. Systems 2 (1982), no. 1, 49–68.
[60] C. Liverani. Decay of correlations. Ann. of Math. (2) 142 (1995), no. 2, 239–301.
[61] C. Liverani, B. Saussol & S. Vaienti. Conformal Measure and Decay of Correlations for Covering Weighted Systems. Ergodic Theory Dynam. Systems 18 (1998) 1399–1420.
[62] C. Liverani, B. Saussol & S. Vaienti. A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19 (1999), no. 3, 671–685.
[63] C. Liverani. Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study. Nonlinearity 14 (2001), no. 3, 463–490.
[64] J. Milnor, W. Thurston, On iterated maps of the interval. Dynamical Systems (College Park, MD, 1986–87), Lecture Notes in Mathematics, Springer-Verlag, Berlin 1342 (1988), 465–563.
[65] M. Misiurewicz & W. Szlenk. Entropy of piecewise monotone mappings. Studia Math. 67 (1980), no. 1, 45–63.
[66] H. Morii, B.-C. So & T. Ose. Time correlation functions of one-dimensional transformations. Progress Th.Phys. 66 (1981) 1266-1283.
[67] S. Newhouse. On codimension-one Anosov diffeomorphisms. Amer. J. of Math. 92 (1970) 761–770.
[68] F. Naud. The Ruelle spectrum of generic transfer operators. Discrete Contin. Dyn. Syst., 32, 2012, 7, 2521–2531.
[69] R.D. Nussbaum. The radius of the essential spectrum. Duke Math. J. 37 (1970), 473–478.
[70] K. Petersen. Ergodic theory. Corrected reprint of the 1983 original. Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, (1989).
[71] Y. Pomeau & P. Manneville. Intermittent Transition to Turbulence in Dissipative Dynamical Systems. Comm. Math. Phys. 74, 189–197 (1980).
[72] D. Ruelle. Zeta-functions for expanding maps and Anosov flows. Invent. Math., 34, 231–242, 1976.
[73] D. Ruelle. The thermodynamic formalism for expanding maps. Comm. Math. Phys. bf 125 (1989), no. 2, 239–262.
[74] D. Ruelle. An extension of the theory of Fredholm determinants. Pub. math. de l’I.H.É.S., 72 (1990), 175–193.
[75] D. Ruelle & D. Sullivan. Currents, flows and diffeomorphisms. Topology 14 (1975), no. 4, 319–327.
[76] J. Slipantschuk, O.F. Bandtlow & W. Just. Analytic expanding circle maps with explicit spectra. Nonlinearity 26 (2013), no. 12, 3231–3245.
[77] J. Slipantschuk, O.F. Bandtlow & W. Just. On the relation between Lyapunov exponents and exponential decay of correlations. J.Phys. A: Math. Theor. 46 (2013) 075101.
[78] J. Slipantschuk, O.F. Bandtlow & W. Just. Complete spectral data for analytic Anosov maps of the torus. *Nonlinearity* 30 (2017), no. 7, 2067–2086.
[79] M. Tsujii. On cohomological theory of dynamical zeta functions. *Preprint* (2018) arXiv:1805.11992.
[80] M. Tsujii & Z. Zhang. Smooth mixing Anosov flows in dimension three are exponential mixing. *Preprint* (2020) arXiv:2006.04293.

Oliver Butterley, Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italy.
Email address: butterley@mat.uniroma2.it

Niloofar Kiamari, Dipartimento di Matematica e Fisica, III Università di Roma, Largo San Leonardo Murialdo, 1 – 00146 Roma, Italy.
Email address: niloofar.kiamari@uniroma3.it

Carlangelo Liverani, Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica – 00133 Roma, Italy.
Email address: liverani@mat.uniroma2.it