Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics

Fumito Shiraishi¹, Yusaku Hanzawa¹, Tomoyo Okumura², Naotaka Tomioka³,⁴, Yu Kodama⁵, Hiroki Suga¹, Yoshio Takahashi³ & Akihiro Kano³

Although environmental changes and evolution of life are potentially recorded via microbial carbonates, including laminated stromatolites and clotted thrombolites, factors controlling their fabric are still a matter of controversy. Herein, we report that the exopolymer properties of different cyanobacterial taxa primarily control the microbial carbonates fabrics in modern examples. This study shows that the calcite encrustation of filamentous Phormidium sp. secreting acidic exopolymers forms the laminated fabric of stromatolites, whereas the encrustation of coccolid Coelosphaeriopsis sp. secreting acidic exopolymers and poor calcification of filamentous Leptolyngbya sp. secreting non-acidic exopolymers form peloids and fenestral structures, respectively, i.e. the clotted fabric of thrombolites. Based on these findings, we suggest that the rise and decline of cyanobacteria possessing different exopolymer properties caused the expansion of thrombolites around the Proterozoic/Cambrian boundary.

The formation of organosedimentary deposits known as microbialites by benthic microbial communities began perhaps as early as 3.7 billion years ago¹ and led to substantial amounts of carbonate deposits in the rock record thereafter²,³. Microbialites are classified according to their internal fabrics at the mesoscopic scale (millimetre to centimetre scale), where stromatolites (laminated fabric) and thrombolites (clotted fabric) are the dominant types⁴,⁵. However, the biogeochemical processes that control their fabrics are still a matter of controversy. Microbial carbonates were common in ancient marine environments; however, they are currently restricted to terrestrial and littoral settings possibly due to changes in seawater chemistry⁶. An example of modern microbial carbonates is identified in tufa, which is a carbonate deposit that develops along karst creeks and in lakes⁷, in which cyanobacterial photosynthesis frequently induces calcite precipitation to form stromatolites⁸,⁹. We have recently discovered a unique tufa site in Japan with deposits of not only stromatolites (tufa stromatolites⁵) but also thrombolites (tufa thrombolites), which provides an exceptional opportunity to examine the key factors affecting microbial carbonate fabrics because the development of two microbialites at the same site significantly reduces the number of factors in need of consideration¹⁰.

Results

Field settings. The Ueno tufa site (34°54′N, 133°33′E) is located on the Atetsu Limestone Plateau in southwestern Japan (Supplementary Fig. S1a,b). Here groundwater discharges from a limestone fracture and forms a small creek that is approximately 30-m long. The upper and lower reaches of the stream are dominated by moss tufa and thrombolite, respectively (Supplementary Fig. S1c,d). Stromatolite was developed along the eastern flow path of the lower reach. Potential grazers (e.g. protozoa, nematodes and gastropods) are scarce in this site.

Major mineralogy and water chemistry. Powder X-ray diffraction (XRD) patterns show that the major mineralogy for both the stromatolites and thrombolites is calcite (Supplementary Fig. S1e,f). As we move downstream, decreases in the Ca²⁺ concentration and alkalinity of the creek water coupled with increases in the pH

¹Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan. ²Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan. ³Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033, Japan. ⁴Kochi Institute for Core Sample Research, JAMSTEC, Kochi, 783-8502, Japan. ⁵Marine Works Japan Ltd., Yokosuka, 237-0063, Japan. Correspondence and requests for materials should be addressed to F.S. (email: fshirai@hiroshima-u.ac.jp)
and calcite saturation state (Ω) (Supplementary Fig. S1g), which are common features of general tufa-depositing
creeks, reflect progressive CO₂ degassing and calcite precipitation.

Bacterial composition. The composition of the bacterial community estimated by 16S rRNA gene clone
library analysis shows that the phylum Cyanobacteria is dominant in both the stromatolites and thrombolites
(Supplementary Fig. S2). However, the bacterial diversity in the stromatolites is lower than that in the thrombo-
lites possibly due to the higher flow velocity at the stromatolite surface: it is experimentally demonstrated that the
bacterial diversity in freshwater biofilms inversely correlates with the flow velocity.¹¹ This hydrodynamic effect
would also differentiate the dominant cyanobacterial genera: genus *Phormidium* is dominant in the stromatolites,
whereas genus *Leptolyngbya* is dominant in the thrombolites. This trend of cyanobacterial phylotype composition
is consistent with that of morphotypes identified by the microscopic observations described below.

Metabolic influence on CaCO₃ precipitation. Microelectrode measurements show similar trends in both
the stromatolites and thrombolites (Supplementary Fig. S3). Under light conditions, increases of O₂, CO₂⁻²
and Ω and decreases of CO₂ and Ca²⁺ are observed at the microbialite surface. Under dark conditions, a decrease
of O₂ and an increase of CO₂ are observed, whereas Ca²⁺, CO₂⁻² and Ω exhibit no detectable shift. These results
indicate that CaCO₃ precipitation at both microbialites is primarily induced by cyanobacterial photosynthesis.⁹

Depositional and mineralogical characteristics of stromatolite. The surface of stromatolites is
represented by patches of light green and purple colour, and several millimetres think laminations are recog-
nised in the cross section (Fig. 1a, b). Confocal laser scanning microscopy (CLSM) and transmission electron
microscopy (TEM) observations indicate that the dominant cyanobacterium in stromatolites is a filamentous
Phormidium sp. that secretes a thin (ca. 0.2 μm) exopolymer sheath (Fig. 1c; Supplementary Fig. S4a). Lectin
binding analysis (LBA) suggests that these sheaths contain abundant acidic sugars with carboxyl groups and the
sheath exterior is surrounded by a significant number of fine minerals (Fig. 1c). TEM and scanning transmission
X-ray microscopy (STXM) observations reveal that the minerals larger than ca. 1 μm in diameter are mostly
calcite (Fig. 1d–j). Magnesium is undetectable in these calcite crystals (Supplementary Fig. S5), which is con-
istent with the feature of carbonates precipitated around the exopolymers.²² In the vicinity of the exopolymer
sheath, minerals exhibit the characteristics of an amorphous CaCO₃ (ACC) precursor reported by ref. ²²: they
show aragonite-like NEXAFS (near edge X-ray absorption fine structure) spectra (Fig. 1g), and are mostly unstable
under an electron beam, and decompose into polycrystalline calcium oxide during TEM observations (Fig. 1i).
These features suggest that calcite nucleation occurred on the surface of a *Phormidium* sheath. Conversely, min-
erals that are ca. 200 nm in diameter are mostly clay minerals (Fig. 1h; Supplementary Fig. S4a) representing
the absorption of suspended clay from turbulent water onto the acidic exopolymers via a divergent canyon bridge.²¹
Heavy calcification of *Phormidium* filaments results in sheath encrustation, and abundant, upward oriented fil-
aments at the stromatolite surface (Fig. 1k,l) cause horizontally uniform precipitation of calcite at the mesoscopic
scale. The spaces between calcified filaments are left as growth cavities, and the alternation of porous and dense
layers forms laminations (Fig. 1m).

Depositional and mineralogical characteristics of thrombolite. The surface of thrombolites is
orange, and no laminations are observed in its cross section (Fig. 2a,b); instead, the millimetre to 1-cm-sized
fenestral structures are conspicuous (Fig. 2n). CLSM and TEM observations indicate that the dominant cyano-
bacteria are filamentous *Leptolyngbya* sp. and coccoid *Coelosphaeriopsis* sp., which secrete a thin (ca. 0.3–0.5
μm) exopolymer sheath and a relatively thick (ca. 1.5–3.0 μm) capsule, respectively (Fig. 2c,d; Supplementary
Fig. S4b,c). LBA suggests that *Leptolyngbya* sheaths lacking a detectable amount of acidic sugars are mostly free
from mineralisation (Fig. 2c), whereas *Coelosphaeriopsis* capsules containing acidic sugars are enclosed by min-
erals (Fig. 2d,e). TEM and STXM observations reveal that calcite is the encrusting mineral on *Coelosphaeriopsis*
capsules (Fig. 2f–k). In a conventional thin section, calcified *Coelosphaeriopsis* colonies exhibit peloids, which are
internally structureless microcrystalline carbonate sands (Fig. 2l–n). The peloids are scattered around tangled
Leptolyngbya filaments at the thrombolite surface (Fig. 2l,m). They become more condensed in the deeper parts
of thrombolites, and the spaces occupied by non-mineralised *Leptolyngbya* filaments are left as irregular fenestral
structures, with overall formation of clotted fabrics at the mesoscopic scale (Fig. 2n). In addition, a filamentous
cyanobacterium *Scytonema* sp. that secretes a relatively thick (ca. 3–5 μm) and acidic exopolymer sheath is locally
visible in the thrombolite, and the sheath interior is impregnated with calcite crystals (Fig. 2c)²¹,²³.

The acidic sugar detected by LBA was confirmed by a lectin blocking assay (Supplementary Fig. S6) and the
fluorescence labelling of carboxyl groups (Supplementary Fig. S7).

Discussion

Factors controlling the microbial carbonate fabrics. Among the observations at the Ueno tufa site,
the spatial proximity of heavily and poorly calcified cyanobacteria that secrete acidic and non-acidic exopoly-
mers, respectively, in the thrombolites is critical toward understanding the microbial carbonate formation mecha-
nism. The crystallisation process generally comprises crystal nucleation and growth, and both the nucleation
and growth rates are proportional to mineral supersaturation¹⁸,¹⁹. Supersaturation at the microbialite surface,
which is the major crystallisation site, is elevated by the combination of CO₂ degassing in the water column and
cyanobacterial photosynthesis at the deposit surface (Supplementary Fig. S3). However, a diffusive boundary
layer (DBL) blankets the deposit surface, and a significant difference in supersaturation cannot be expected at
the mesoscopic scale. In contrast, supersaturation of water retained in the exopolymer sheaths/capsules is likely
much higher under light conditions due to a reduced diffusion rate.²¹ Very high supersaturation in the exopoly-
mers sheaths/capsules *per se* is common to most cyanobacterial taxa; however, the calcite nucleation rate on
polysaccharides is proportional to their acidity under such conditions.²² Therefore, the observed difference in the
Figure 1. Depositional and mineralogical characteristics of stromatolite. (a) Close-up view of stromatolite surface in the field, upon which water flows relatively fast. (b) Cross-section of stromatolite surface. (c) CLSM image of stromatolite surface with LBA staining. Acidic exopolymers (green fluorescence) of *Phormidium* sp. (yellow-red autofluorescence) are surrounded by minerals (white reflected light). (d) STXM-based compositional image of mineralized *Phormidium* sp. NEXAFS analysis spot is indicated (spot 1). (e) Bright-field TEM image showing a mineralized empty sheath of *Phormidium*. (f) Magnified region from (e). NEXAFS analysis spots (spots 2 and 3) and selected area electron diffraction (SAED) patterns (spots 4 and 5) are indicated. (g) Ca 2p NEXAFS spectra. (h) Combined elemental map of the region indicated in (f). (i) SAED pattern taken from spot 4. The numbers are the indices of diffraction rings from a polycrystalline aggregate of calcium oxide. Dashed circles indicate examples of overlapped diffraction spots from a calcite crystal. (j) SAED pattern of a calcite crystal taken from spot 5. (k,l) Thin section images of stromatolite surfaces showing the same microscopic field of view; (k) transmitted light image, as in (k), but showing a larger area. Porous (P) and dense (D) layers were indicated. Scale bars: (a) 5 cm; (b) 1 cm; (c,k,l) 100 μm; (d,e) 2 μm; (f) 500 nm; (m) 500 μm.
Figure 2. Depositional and mineralogical characteristics of thrombolite. (a) Close-up view of thrombolite surface in the field, covered by a thin film of water. (b) Cross-section of thrombolite surface. (c) CLSM image of thrombolite surface with LBA staining. Observed phototrophs (yellow-red autofluorescence) are *Leptolyngbya* sp. (e.g., cyan arrows), *Scytonema* sp. (red arrow), and unicellular eukaryotic microalga *Oocardium* sp. (e.g., white arrows). Minerals (white reflected light) are present as peloids and fillings of acidic exopolymers (green fluorescence) secreted by *Scytonema* sp. (d) CLSM image of *Coelosphaeriopsis* sp. with LBA staining. (e) Transmitted (top) and cross-polarized (bottom) light images of a single peloid grain acquired from an 800 nm thin section. Rounded spaces inside of peloids are occupied by *Coelosphaeriopsis* sp. (f) Bright-field TEM image showing mineralized capsules of *Coelosphaeriopsis* sp. The NEXAFS analysis spot is indicated (spot 6). (g) Magnified region from (f). NEXAFS analysis spots (spots 7 and 8) and SAED patterns (spots 9 and 10) are indicated. (h) Ca 2p NEXAFS spectra. (i) Combined elemental map of the region indicated in (g). (j,k) SAED patterns of calcite crystals taken from (j) spots 9 and (k) 10. (l,m) Thin section images of thrombolite surfaces.
degree of cyanobacterial calcification can be primarily attributed to the difference in their exopolymer acidity, i.e. the nucleation rate. This interpretation also applies to stromatolites, although cation absorption by clay minerals may affect the formation and stability of the ACC precursor. Higher flow velocity at the stromatolite-depositing site would reduce the DBL thickness; however, it reduces the hydrochemical difference between the stromatolite surface and the water column, which cannot create a significant difference of supersaturation at the mesoscopic scale. The calcification styles of acidic exopolymer sheaths/capsules, either as encrustation or impregnation, are not apparently related to their thickness, which indicates the influence of other factors such as their internal structure.

The cyanobacterial exopolymer properties described so far are further responsible for the differentiation of the fabrics of the investigated microbialites. The dominance of filamentous cyanobacteria that secrete acidic exopolymers provides mesoscopically uniform nucleation sites, owing to which the laminated fabric of stromatolites is produced. In contrast, a combination of coccoid and filamentous cyanobacteria that secrete acidic and non-acidic exopolymers, respectively, provides mesoscopically heterogeneous nucleation sites, owing to which the clotted fabric of thrombolites is formed. These observations indicate that three-dimensional structures of biofilms strongly affect microbialite fabrics. The cyanobacterial cellular morphology, either coccoid or filamentous, has a subordinate influence by affecting the distribution pattern of nucleation sites. In addition, small coccoid cyanobacteria observed inside peloids (Fig. 2e) are hardly recognisable in a conventional thin section (ca. 50-μm thick; Fig. 2l–n), which potentially resolves the controversy regarding the relation between dominant cellular morphology and microbialite fabrics.

These results have improved our knowledge of the fundamental mechanisms involved in the formation of microbial carbonates, as follows:

1. Confirmation of the long-held view that cyanobacterial acidic exopolymers provide CaCO₃ mineral nucleation sites.
2. Recognition that non-acidic exopolymers are relatively unsuitable for nucleation, which outweighs the inhibitory effect of acidic exopolymers.
3. Supersaturation at crystallisation sites primarily contributes to the precipitation quantity rather than localizes the nucleation sites, which suggests that it is a prerequisite for microbial carbonate formation, as previously assumed.

Implications for the fossil record. These observations from modern examples provide significant insights into the interpretation of the fossil records of microbial carbonate, particularly from the perspective of their fabric and quantity. For example, a substantial change of microbial carbonate fabric occurred around the Proterozoic/Cambrian boundary when both thrombolites and calcified cyanobacteria first expanded. A number of factors have been proposed to explain these changes: those for thrombolites include dominant microbial cellular morphology, a framework construction mechanism and a microbial growth/calcification ratio, whereas those for calcified cyanobacteria include the ambient water Mg²⁺/Ca²⁺ ratio, temperature, CaCO₃ supersaturation, dissolved inorganic carbon (DIC) concentration and equilibrium CO₂ partial pressure (pCO₂). However, our observations from modern processes underscore the potential importance of cyanobacterial exopolymer properties to the expansions of both of thrombolites and calcified cyanobacteria around the Proterozoic/Cambrian boundary. If this is the case, an evolutionary/extinction event of cyanobacteria that drastically changed their exopolymer properties is expected at that time.

Conversely, long-term quantitative changes recognised in the fossil record would have been largely, if not entirely, controlled by supersaturation at the crystallisation sites. Indeed, this view has been experimentally corroborated. By evaluating factors other than supersaturation (such as precipitation inhibitors and metazoan competition), the quantitative records of microbial carbonate would provide a proxy for oceanic pH and DIC.

These interpretations echo the perceptive view presented in ref. that the history of microbial carbonates reflects the superimposition of prokaryote evolutionary/extinction events onto environmental fluctuations. In any case, future studies must evaluate the applicability of knowledge from freshwater microbialites to their seawater counterparts.

Methods

XRD analysis. The surface part (ca. 5 mm) of microbialite samples were air-dried, powdered using a mortar and pestle, and analyzed using a powder X-ray diffractometer with Cu Kα radiation (40 kV, 40 mA) and a graphite monochromator (MultiFlex, Rigaku).

Water chemistry analysis. For characterization of the creek water chemistry, pH and temperature were measured in the field using a portable pH meter (D-51, Horiba). Alkalinity was determined by acid-base titration using a hand-held titrator and a 1.6 N H₂SO₄ cartridge (Hach). Water samples filtered through a 0.2 μm membrane (Minisart, Sartorius) were collected in plastic bottles, and anion concentrations (Cl⁻, NO₃⁻, and SO₄²⁻) were measured using ion chromatography (ICS-1100, Thermo Fisher Scientific). Aliquots of filtrated samples.
were adjusted to 2% HNO₃, and cation concentrations (Ca²⁺, Mg²⁺, Na⁺, and K⁺) were estimated using inductively coupled plasma optical emission spectroscopy (ICP-OES; iCAP7200, Thermo Fisher Scientific). The measured values were processed with the PHREEQC computer program to calculate the DIC concentration, pCO₂, and Ω.

Carbon and oxygen stable isotope analysis. Water samples were filtered through a 0.2 μm membrane and collected in gas-tight glass bottles. Tufa samples were collected by scraping the surface part (ca. 0.5 mm) with a knife, and air-drying. Carbon and oxygen isotopes were measured with a mass spectrometer, as described previously.

16 S rRNA gene analysis. Almost full-length 16 S rRNA genes of bacteria were obtained from stromatolite and thrombolite, for which the methods described previously were applied for sampling, DNA extraction, and polymerase chain reaction (PCR) amplification. The PCR products were purified, cloned into vector pTAC-1 (Biodynamics Laboratory Inc.), and then transformed into chemically competent Escherichia coli (Competent Quick DH5α, Toyobo). Inserts of randomly selected colonies were used for bidirectional sequencing with flanking vector primer M13BDFw (5′ CAG GGT TTT CCC AGT CAC GAC 3′) and M13BDRv (5′ CGG ATA ACA ATT TCA CAC AGG 3′). DNA sequencing was performed on a DNA analyzer (ABI3730, Applied Biosystems) with the BigDye terminator version 3.1 cycle sequencing kit. Closest relatives were determined using SINA online (SILVA) and the Greengenes database. The obtained sequences (76 clones from the stromatolite, and 99 clones from the thrombolite) were checked for their chimeras using the Bellerophon server. Representative gene sequences in this one cycle sequencing in the DNA Data Bank of Japan (DDBJ) database under accession numbers AB862884–AB862938, and LC215056–LC215137.

Microelectrode measurements. Microbial metabolism and CaCO₃ precipitation at the microbialite surface was evaluated using O₂, CO₂, Ca²⁺, and CO₃²⁻ microelectrodes, as described previously. Construction and handling of the CO₃²⁻ microelectrode were performed according to ref.36. Creek water collected at Site 1 was used for the measurement.

Thin section observations. Vertical sections of the microbialite surfaces were observed using thin sections. Microbialite samples were first fixed using phosphate-buffered saline (PBS) containing 3.7% formaldehyde for 2 days, after which the solution was replaced with 50% ethanol in PBS and the sample was stored at 4 °C until further processing. Thin sections were then prepared from resin-embedded samples, as described previously.

Electron microscopy. Transmitted, cross-polarized, and fluorescent light images were acquired using CLSM (LSM700, Zeiss) equipped with a CCD camera (AxioCam MRc, Zeiss) and ZEN2010 software (Zeiss). Fluorescent light images consisted of two channels, one acquired by excitation at 488 nm with a BP505-600 nm emission filter, and another by excitation at 555 nm with an LP615 nm emission filter. Composites of cross-polarized and fluorescent light images were generated by the Lighten mode of Adobe Photoshop CS6. Transmitted light images of lower magnification were acquired using a conventional microscope (Eclipse LV100 POL, Nikon).

LBA. The distribution pattern of acidic sugars was investigated using a lectin from Limulus polyphemus (LPA, Cosmo Bio), which is known to have binding specificity to glucuronic acid and N-acetylmuramic acid. Either small blocks of the surface part (ca. 5 mm³) or a slurry were prepared from fresh microbialite samples (within 24 h after collection), and soaked in 50 ng μL⁻¹ of FITC-conjugated LPA lectin for 1 h at room temperature. Unbound lectin was thoroughly removed by washing with a buffer [88 mM NaCl, 20 mM Tris (pH 8.0), 0.01% (w/v) SDS], and block samples were submerged in distilled water while slurry samples were enclosed by a cover slip with mounting media (AF2, Citifluor). Fluorescent and reflected light images were then acquired using CLSM. For block samples, image stacks of optical slices were acquired, and plane views of the rough microbialite surface were generated by maximum intensity projection mode of Imaris software (Bitplane). Negative control of LBA was conducted by applying FITC-conjugated lectin from Phaseolus vulgaris (PHA, Cosmo Bio), which has binding specificity to none of the tested sugars. In addition, untreated samples were observed for comparison.

Lectin blocking assay. Binding specificity of LPA lectin was checked by lectin blocking assay. 12 competing sugars were tested: 11 were selected from 12 different monosaccharides identified from cyanobacterial exopolymers to date (glucuronic acid, galacturonic acid, arabinose, fructose, fucose, galactose, glucose, mannose, rhamnose, ribose, and xylose), and 1 was N-acetylmuramic acid. First, 50 ng μL⁻¹ of FITC-conjugated LPA lectin was pre-incubated for 15 min with competing sugars at different concentrations (0.1, 1, and 10 mg mL⁻¹), followed by LBA using stromatolite samples as described above. The same microscopic settings were applied for all samples.

Fluorescence labeling of carboxyl groups. To cross-check the results of the LBA, carboxyl groups were fluorescently labeled by modification of the procedure described previously in ref.40. Either block or slurry samples fixed with 3.7% formaldehyde/PBS were soaked in 2 mL of 0.1 M 2-morpholinoethanesulfonic acid (MES) buffer, pH 5.5, and 100 μL of 50 mM EZ-Link Pentylamine-Biotin (Thermo Fisher Scientific) was added, followed by 25 μL of 100 mg mL⁻¹ 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in 0.1 M MES buffer. Samples were incubated at room temperature for 2 h using a rotary shaker, and washed three times with PBS. Samples were then soaked in 500 μL of 1/10 fluorescein-conjugated streptavidin (GeneTex) diluted with PBS, incubated at room temperature for 1 h in the dark, and washed three times with PBS. Fluorescent and reflected light images were acquired using CLSM, as described above.
TEM analysis. Microbialite samples fixed with 2.5% glutaraldehyde/creek water were post-fixed with 1.5% OsO₄ in 100 mM cacodylate buffer, pH 7.4, for 90 min, and embedded in an epoxy resin (EPOK 812, Oken). 800 nm thin sections were first obtained using an ultramicrotome (Ultracut E, Reichert-Jung), and transmitted and cross-polarized light images were acquired after toluidine blue staining. 70–80 nm thin sections were obtained, stained with 2% uranyl acetate and lead citrate, and montage images were acquired using TEM (JEOL-1400, Jeol) operated at an accelerating voltage of 80 kV. To analyze the relationship between the exopolymers and minerals, thin-foil sections were prepared from resin embedded samples using a focused-ion beam (FIB) apparatus (SMI4050, Hitachi), and observed with TEM (JEOL-ARM200F, Jeol) operated at an accelerating voltage of 200 kV, as described previously. The elemental composition was examined using energy-dispersive X-ray spectroscopy (EDS) installed with the TEM, and combined elemental maps were generated by scanning TEM (STEM) with Analysis Station 3.8 software.

STXM analysis. STXM-based NEXAFS analysis of carbon (1s) and calcium (2p) were performed using the BL13A beamline at KEK-PF (Tsukuba, Japan), of which the general experimental setup has been described previously. Model compounds for Ca NEXAFS measurements were obtained from Nichika Inc. (calcite and aragonite) and Wako Pure Chemical Ltd. (calcium oxide), and the ground powders were deposited onto a carbon-coated copper grid (Cu 200 mesh, Jeol). For sample analysis, the surface of fresh stromatolite was scraped with a sterile knife, suspended in distilled water, dropped onto a carbon-coated copper grid, and air dried at room temperature. Sample preparation and STXM analysis were conducted within 24 h and 56 h after sampling, respectively. Compositional images were generated with the RGB composite mode of aXis 2000 software using images of specific absorption edges for protein (288.2 eV), acidic polysaccharide (288.6 eV) and calcium (352.6 eV). In addition, the same thin-foil sections used for TEM analysis were also analyzed using STXM.

References

1. Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).
2. Burne, R. V. & Moore, L. S. Microbialites: organosedimentary deposits of benthic microbial communities. Palaeo. 2, 241–254 (1987).
3. Riding, R. Microbial carbonate abundance compared with fluctuations in maerovolcanic diversity over geological time. Sediment. Geol. 185, 229–238 (2006).
4. Riding, R. & James, N. P. Thrombolites and stromatolites: two distinct types of microbial structures. Palaeo. 1, 492–503 (1986).
5. Riding, R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47, 179–214 (2000).
6. Riding, R. In Calcareous Algae and Stromatolites (ed. Riding, R.) 55–87 (Springer, 1991).
7. Ford, T. D. & Pedley, H. M. A review of tufa and travertine deposits of the world. Earth-Sci. Rev. 41, 117–175 (1996).
8. Shiraiishi, F., Reitner, A., Bissett, A., de Beer, D. & Arp, G. Microbial effects. Flocfilm calcification, ambient water chemistry and stable isotope records (Westphöfer Bach, Germany). Palaeoecology, Palaeoclimatol. Palaeoecol. 262, 91–106 (2008).
9. Shiraiishi, F. Chemical conditions favoring photosynthesis-induced CaCO₃ precipitation and implications for microbial carbonate formation in the ancient ocean. Geochim. Cosmochim. Acta 77, 157–174 (2012).
10. Ferris, F. G., Thompson, J. B. & Beveridge, T. J. Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaeo. 12, 213–219 (1997).
11. Obst, M. Precipitation of amorphous CaCO₃ (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochim. Cosmochim. Acta 73, 4180–4198 (2009).
12. Saunders, P., Rogerson, M., Wadhawan, J. D., Greenway, G. & Pedley, H. M. Mg/Ca ratios in freshwater microbial carbonates: Thermodynamic, kinetic and vital effects. Geochim. Cosmochim. Acta 147, 107–118 (2014).
13. Grotzinger, J. & Knoll, A. H. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).
14. Bar-Or, Y. & Shilo, M. The role of cell-bound flocculants in coflocculation of benthic cyanobacteria with clay particles. FEMS Microbiol. Ecol. 53, 169–174 (1988).
15. Pentecost, A. & Riding, R. In Biomineralization in Lower Plants and Animals (eds. Leadbeater, R. S. C. & Riding, R.) 73–90 (Clarendon Press, 1986).
16. Tremain, A. & Wright, V. P. Carbonate Sedimentology (Blackwell Science, 1990).
17. Jones, B. & Peng, X. Multiphase calcification associated with the atmospheric cyanobacterium. Scytonema julianum. Sediment. Geol. 313, 91–104 (2014).
18. Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (John Wiley & Sons, 1996).
19. Strickland, J. D. H., Miller, V. H. & Zaneveld, J. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).
20. Ark, G., Reitner, A. & Reitner, J. User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99–4259, U.S. Geological Survey (1999).
31. Sone, T. et al. Two modes of climatic control in the Holocene stalagmite record from the Japan Sea side of the Japanese islands. Island Arc 24, 342–358 (2015).
32. Okumura, T. et al. Microbial processes forming daily lamination in an aragonite travertine, Nagano-yu hot spring, southwest Japan. Geomicrobiol. J. 28, 135–148 (2011).
33. Pruesse, E., Peplies, J. & Göhlich, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinfo. 28, 1823–1829 (2004).
34. DeSantis, T. Z. et al. Greenegenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
35. Huber, T., Faulkner, G. & Hugenholtz, P. Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinfo. 20, 2317–2319 (2004).
36. de Beer, D. et al. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 6, 532–541 (2008).
37. Shiraiishi, F. et al. Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: implications for biogeochemical cycles. Earth Planet. Sci. Lett. 447, 10–20 (2016).
38. Böckelmann, U., Manz, W., Neu, T. R. & Szewzyk, U. Investigation of lotic microbial aggregates by a combined technique of fluorescent in situ hybridization and lectin-binding analysis. J. Microbiol. Methods 49, 75–87 (2002).
39. Pereira, S. et al. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 33, 917–941 (2009).
40. Kawaguchi, T. & Decho, A. W. In situ analysis of carboxyl and sulfhydryl groups of extracellular polymeric secretions by confocal laser scanning microscopy. Anal. Biochem. 304, 266–267 (2002).
41. Hagino, K. et al. Extracellular calcification of Braurudophyra bigelowii deduced from electronic microscopic observations of cell surface structure and elemental composition of pentaliths. Mar. Micropaleontol. 125, 85–94 (2016).
42. Sugá, H. et al. Characterization of particulate matters in the Pripyat River in Chernobyl related to their adsorption of radioecosium with inhibition effect by natural organic matter. Chem. Lett. 43, 1128–1130 (2014).
43. Hitchcock, A. P. aXis2000 is written in Interactive Data Language (IDL), http://unicorn.mcmaster.ca/aXis2000.html (2009).
44. Mitsunobu, S. et al. Direct detection of Fe(II) in extracellular polymeric substances (EPS) at the mineral-microbe interface in bacterial pyrite leaching. Microbes Environ. 31, 63–69 (2016).
45. Naka, T., Kano, A., Sakuma, K. & Ibara, T. Tufas in the Atetsu Plateau, Okayama Prefecture, Japan—geological, geographical, and geochemical conditions and processes of tufa deposition. Bull. Geol. Surv. Japan 50, 91–116 (1999).
46. Kano, A., Kawai, T., Matsuoka, J. & Ibara, T. High-resolution records of rainfall events from clay bands in tufa. Geology 32, 793–796 (2004).
47. Kawai, T., Kano, A., Matsuoka, J. & Ibara, T. Seasonal variation in water chemistry and depositional processes in a tufa-bearing stream in SW-Japan, based on 5 years of monthly observations. Chem. Geol. 232, 33–53 (2006).
48. Shiraiishi, F., Okumura, T., Takahashi, Y. & Kano, A. Influence of microbial photosynthesis on tufa stromatolite formation and ambient water chemistry; SW Japan. Geochim. Cosmochim. Acta 74, 5289–5304 (2010).
49. Kano, A., Matsuoka, J., Kojo, T. & Fujii, H. Origin of annual laminations in tufa deposits, southwest Japan. Palaeoecogr. Palaeoclimatol. Palaeoecol. 191, 243–262 (2003).

Acknowledgements
We thank K. Nakao, Y. Matsumura, K. Kuroshima, T. Omori, J. Ando, T. Yamamoto, C. Miyamoto, J. Kusumi, E. Moritsuka, H. Tachibana, and J. Asada for technical and informational supports, K. Koike for TEM analysis via JSPS Grants-in-Aid for Scientific Research Nos. 25800280 and 16H06022 to F.S., and Nos. 09J02649 and 14J10363 for T.O.

Author Contributions
F.S. planed this study and wrote initial draft. All authors reviewed and edited the manuscript. F.S., Y.H., T.O., and A.K. conducted the fieldwork. F.S. conducted XRD analysis, microelectrode measurements, lectin blocking assay, and fluorescence-labeling of carboxyl group. F.S. and Y.H. performed water chemistry analysis, thin section observations, and LBA. Y.H. and T.O. conducted 16S rRNA gene analysis. F.S., N.T., and Y.K. conducted FIB processing and TEM analysis. F.S. conducted XRD analysis, microelectrode measurements, lectin blocking assay, and fluorescence-labeling of carboxyl group. F.S. and Y.H. performed water chemistry analysis, thin section observations, and LBA. Y.H. and T.O. conducted 16S rRNA gene analysis. F.S., Y.H., T.O., and A.K. conducted the fieldwork. F.S. conducted XRD analysis, microelectrode measurements, lectin blocking assay, and fluorescence-labeling of carboxyl group. F.S. and Y.H. performed water chemistry analysis, thin section observations, and LBA. Y.H. and T.O. conducted 16S rRNA gene analysis. F.S., N.T., and Y.K. conducted FIB processing and TEM analysis. F.S. conducted STXM analysis. A.K. conducted carbon and oxygen stable isotope analysis.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12303-9.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017