Title: Rv3737 is required for Mycobacterium tuberculosis growth in vitro and in vivo and correlates with bacterial load and disease severity in human tuberculosis

Authors: Qing Lib*, Zhangli Penga*, Xuefeng Fua, Hong Wanga, Zhaoliang Zhaoa, Yu Pangb#, Ling Chena#

*Equal first authors
*Authorship order based on contribution to manuscript revision and edits; all authors in agreement

Affiliations:
a Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
b Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital of Capital Medical University, Beijing, Beijing, China

#Address correspondence to Yu Pang, pangyupound@163.com and Ling Chen, Lingjuncd@163.com

Key Words: Rv3737; Mycobacterium tuberculosis; virulence; transporter

Abstract

Rv3737 is the sole homologue of multifunctional transporter ThrE in Mycobacterium tuberculosis (\textit{Mtb}). In this study, we aimed to investigate whether this transporter participates in vitro and in vivo survival of \textit{Mtb}. To characterize the role of Rv3737, we constructed and characterized an \textit{Mtb} H37Rv\textDelta{}Rv3737. This strain was evaluated for altered growth rate and macrophage survival using
cell model of infection. In addition, the comparative analysis was conducted to determine the
association between Rv3737 mRNA expression and disease severity in active pulmonary TB
patients. The H37RvΔRv3737 strain exhibited significant slow growth rate compared to
H37Rv-WT strain in standard culture medium. Additionally, the survival rate of H37Rv-WT strain
in macrophages was 2 folds higher than that of H37RvΔRv3737 at 72 h. A significant higher level
of TNF-α and IL-6 mRNA expression was observed in macrophages infected with
H37RvΔRv3737 as compared to H37Rv-WT. Of note, Rv3737 expression was significantly
increased in clinical Mtb isolates than H37Rv-WT. The relative expression level of Rv3737 was
positively correlated with lung cavity number in TB patients. Similarly, the higher Rv3737 mRNA
level resulted in lower C(t) value by Xpert MTB/RIF assay, demonstrating that a positive
correlation between Rv3737 expression and bacterial load in TB patients. In conclusion, our data
is the first to demonstrate that the transporter Rv3737 is required for in vitro growth and survival
of bacteria inside macrophages. In addition, the expression level of Rv3737 is associated with
bacterial load and disease severity in pulmonary tuberculosis patients.

Introduction

Tuberculosis (TB), caused by Mtb complex, constitutes a major global health threat. It is estimated
that one third of the world’s population is latently infected by the bacterium, and 10.0 million have
fallen ill with TB annually [1]. The HIV pandemic and the emergence of multidrug-resistant
tuberculosis have contributed further to its spread [2, 3]. Life cycle of Mtb involves transition
stages from infection, dormancy and reactivation, and active TB is the result of reactivation of
latent TB infection in most instances [4]. Specially, individuals with immunosuppression have
higher odds of TB reactivation compared with normal individuals [5]. Therefore, Mtb is able to
survive during periods of reduced growth and has the capacity to regrow rapidly in response to stresses encountered in the host.

Bacteria are equipped with a broad variety of transport systems [6]. Transport processes play a pivotal role in pathogen metabolism, e.g. for the uptake of nutrients and excretion of harmful agents [7]. Moreover, several amino acid transporters are indeed reported to be associated with pathogenesis [6]. For instance, threonine transporter ThrE is essential for the fitness of *Corynebacterium glutamicum* in vitro growth [8]. Inactivation of *thrE* gene shows reduced growth rate in vitro in medium supplemented with threonine. In addition to threonine, the ThrE carrier serves to export small molecules, indicating that it is a multifunctional transporter that gets rid of metabolic waste products and thus hold more importance of *thrE* in biological fitness [8].

Of note, only two homologues are identified in *Mtb* and *S. coelicolor* [8]. Rv3737 encodes a 55 Da protein with significant sequence similarity to characterized ThrE protein [9]. As a member of new translocator family that has never been reported before, it is interesting to investigate whether this potential multifunctional transporter participates in vitro and in vivo survival of *Mtb*. To characterize the role of Rv3737, we constructed and characterized an *Mtb* H37RvΔRv3737. This strain was evaluated for altered growth rate and macrophage survival using cell model of infection.

In addition, the comparative analysis was conducted to determine the association between Rv3737 mRNA expression and disease severity in active pulmonary TB patients.

Materials and Methods

Bacterial strains, plasmids and cells

The bacterial strains, plasmids and cells used in this study are detailed in Table S1. *E. coli* DH5α
and *E. coli* HB101 cells were grown in Luria-Bertani (LB) broth or LB agar plates at 37°C.

Clinical isolates of *Mtb*, *Mtb* reference strain H37Rv (H37Rv-WT, ATCC27294) and *Mycobacterium smegmatis* mc² 155 cells growth on Lowenstein–Jensen (L-J) medium (Encode, Zhuhai, China), Middlebrook 7H9 broth or 7H10 agar plates containing 0.05% Tween 80, 0.5% glycerol and 10% OADC. The selective 7H9 broth or 7H10 agar plate supplemented with 75 μg/ml hygromycin was used to subculture *Mtb* Rv3737 knockout strain (H37RvΔRv3737). The bacteria with OD₆₀₀ of 0.6-1.0 were used for *in vitro* experiments. RAW264.7 cultured in DMEM complete medium containing 10% Fetal Bovine Serum.

In addition, 12 clinical *Mtb* isolates were collected from a set of sputum smear-positive and GeneXpert MTB-positive specimens from August 2016 to February 2017. The demographic and clinical characteristics were obtained from electronic medical records. This study was approved by the Ethics Committees of the Affiliated Hospital of Zunyi Medical University. All the patients were ≥18 years old and provided written informed consent prior to enrolment.

Construction of H37RvΔRv3737

Using the genomic DNA of H37Rv-WT as a template, the Rv3737 nucleic acid sequence was derived from Genbank of NCBI (https://www.ncbi.nlm.nih.gov/gene/885794). As shown in Fig. S1A, the primers for the upper and lower arms of the Rv3737 gene and verification primers were designed based on the principle of homologous recombination (Table S2). Flanking regions comprising upstream and downstream regions of the Rv3737 gene were amplified by PCR and cloned into the p0004S plasmid containing a hygromycin resistance cassette, the vector was then ligated into the phAE159 plasmid, which was electroporated into *M. smegmatis*, and the resulting
phage was amplified to obtain a high-titer stock. The high-titer phage was used to infect H37Rv-WT, which was plated onto selective 7H10 agar plates. Plates were incubated for 4–8 weeks at 37°C, which eventually led to the growth of a small number of H37RvΔRv3737 colonies. Colonies were picked, and PCR and qPCR was used to confirm the presence of the hygromycin-gene flanking region and the absence of the Rv3737 gene (Fig. S1B, S1C) [10, 11].

Growth and colonial morphology of Rv3737 knockout strain

H37RvΔRv3737 was inoculated in selective 7H9 broth medium and incubated at 37°C. Optical density at 600 nm (OD600nm) was detected at intervals of 24 h and the growth curves at 37°C were obtained. H37RvΔRv3737 was inoculated in selective 7H10 agar plates. After incubation for 3 weeks at 37°C, the colony morphology was recorded with the HP scanner. The H37Rv-WT was used as a control and the same treatment was performed. For scanning electron microscope analysis, the bacteria were harvested by centrifugation at 500 rpm for 5 minutes. Then 2.5% glutaraldehyde was added into the pellet for 24 hours for fixation purpose. Followed by treatment with 1% osmic acid and ethanol gradient, the sample were sprayed with gold film and observed in a SU8010 scanning electron microscope (Hitachi, Japan) [12].

Survival of Rv3737 knockout strain in RAW 264.7

H37RvΔRv3737 and H37Rv-WT were infected to 5 × 10^5/well RAW 264.7 cells in 6-well plate at multiplicity of infection (MOI) 10. After 4 h of incubation, all extracellular bacteria were removed
gently by washing and intracellular bacteria were harvested. At 24 h and 72 h after infection, both extracellular bacteria released from macrophage lysed in supernatant and intracellular bacteria in intact cell layer were harvested. Bacteria at 4 h, 24 h and 72 h were plated on 7H10 agar plates in triplicate, plates were incubated for 3 weeks at 37°C and CFU (colony forming unit) were counted [13].

Cytokine measurement

Culture supernatants and sediments from Mtb-infected RAW 264.7 cells were harvested at 0 h, 4 h, 8 h, 12 h, 24 h post-infection and stored at –80 °C for cytokine measurement. The concentrations of TNF-α and IL-6 in culture supernatant were detected using an enzyme-linked immunosorbent assay (ELISA) kit according to the manufacturer's instructions (Solarbio, Beijing, China)[14]. The mRNA level of TNF-α and IL-6 in Culture sediments was determined using qPCR. In simple terms, the total RNA was extracted with Trizol method according to the instructions of the manufacturers[15]. After treatment with DNaseI (TaKaRa, Dalian, China), the cDNAs were reverse-transcribed from 5 µg of total RNA with the PrimeScript™ II 1st Strand cDNA Synthesis Kit (TaKaRa, Dalian, China). Real time PCR (qPCR) was carried out in triplicates for each sample using TB Green® Premix Ex Taq™ II (TaKaRa, Dalian, China) in The CFX96 touch Real-Time PCR System (Bio-Rad) [16]. Primers for transcriptional level analysis are listed in Table S2. SigA were used as the internal control in respective qPCR experiments.

Rv3737 expression of clinical isolates and H37Rv-WT

The Mtb isolates at log phage were lysed by ultrasound and then subjected to RNA extraction. The
mRNA level of Rv3737 in clinical isolates and H37Rv-WT was determined using qPCR method as method above. Primers for transcriptional level analysis are listed in Table S2 and SigA were used as the internal control in respective qPCR experiments.

Sputum collection, bacterial growth and bacterial load measurement in sputum

Sputum specimens were collected for acid-fast staining and GeneXpert MTB/RIF assay (Cepheid, Sunnyvale, CA, United States). Acid-fast staining microscopy was performed directly on all samples as described previously [17]. One milliliter sputum was mixed with 2 ml sample reagent, and incubated at room temperature for 15 min. Then the decontaminated sample was then added to a test cartridge and loaded onto the Xpert instrument. Results were reported as cycle threshold (Ct) values that represented the minimal PCR cycles required for detection threshold [18]. The average Ct values of five probes was used to estimate bacterial load after exclusion of any delayed values due to rifampicin resistance [19]. 1.0 mL of sputum specimen with positive results by both tests were treated with N-acetyl-L-cysteine-NaOH-Na citrate (2.00% final concentration). After neutralization and centrifugation, the suspension of pellet was inoculated on Lowenstein-Jensen (L-J) medium. The visible growth of colonies on L-J medium was identified using conventional biochemical method [13].

Statistical and analysis

GraphPad Prism v7.03 (GraphPad Software, San Diego, California, USA) was used to analyze the data and generate graphs. t test was used to compare two groups of data, two-way ANOVA was
used for three or more groups of data, considering p value < 0.05 to be significant. The linear relationships were analyzed by the R squared correlation method. Spearman Coefficient was conducted to establish the relationship between the expression level of Rv3737 and the Ct value yielded by Xpert and between the expression level of Rv3737 and the number of cavities.

Results

Role of Rv3737 in the physiology of *Mtb*

At the amino acid level, Rv3737 shared 29.60% sequence identity with ThrE of *C. glutamicum* (Fig. S1). We firstly assessed whether inactivation of Rv3737 affects the *in vitro* growth and physiology of *Mtb*. As shown in Fig. 1A, the H37RvΔRv3737 strain exhibited significant slow growth rate compared to H37Rv-WT strain in standard culture medium. The colony size of H37RvΔRv3737 and H37Rv-WT strain was compared by plating the same dilution on plates after 21 days (Fig. 1B, 1C). The average colony size of H37RvΔRv3737 was 0.38± 0.02 μm, which was much smaller than that of H37Rv-WT strain (0.58± 0.02 μm, Fig. 1D).

Field emission scanning electron microscopy was conducted to assess cell morphology and length of *Mtb*. Individuals cells from two strains were indistinguishable in morphology characteristics, whereas significant differences were observed in cell lengths. As noted in Fig. 2, the average cell length of the H37Rv-WT and H37RvΔRv3737s were 1.89 ± 0.04 and 1.69 ± 0.05 μm ($p<0.05$), respectively, suggesting that the latter had shorter cell length. In contrast, the average cell width of H37RvΔRv3737 was 0.41 ± 0.01 um, which was statistically higher than that of H37Rv-WT strain (0.35 ± 0.01, $p<0.05$).
Survival of H37RvΔRv3737 in macrophages

Mouse macrophages were infected with H37Rv-WT and with H37RvΔRv3737 to determine differences in capacity for intracellular growth. As shown in Fig. 3A, the infection capability of H37Rv-WT strain was approximately 2 folds higher as compared with Rv3737ΔRv3737. The intracellular survival was assessed at 24 h and 72 h after infection at 4 h as reference. The survival rate of H37Rv-WT strain was 2 folds higher than that of H37RvΔRv3737 at 72 h, respectively (Fig. 3B). Taken together, these data indicated that Rv3737 had an important role in enhancing the infection capability and intracellular survival of tubercle bacilli.

Detection of proinflammatory cytokines in macrophages

To explore the potential role of Rv3737 in modulating the innate immune response, we investigated the levels of cytokines upon infection of RAW264.7 cells with H37Rv-WT and H37RvΔRv3737. A significant higher level of TNF-α and IL-6 mRNA expression was observed in macrophages infected with H37RvΔRv3737 as compared to H37Rv-WT (Fig. 3C). Detection of cytokines in the culture supernatants of macrophages also supported the elevated secretion of proinflammatory cytokines (TNF-α and IL-6) at increasing time points (Fig. 3D).

Relationship between Rv3737 expression and disease severity

Based on the slower in vivo growth and increased host proinflammatory cytokine response, we hypothesized that the expression level of Rv3737 correlated with Mtb virulence in host. In order to test this hypothesis, we recruited 12 clinical Mtb isolates to determine whether the upregulation of Rv3737 could lead to more severe clinical symptoms. A total of 12 patients infected with
diagnosed TB were retrospectively included in our analysis (Table 1). As shown in Fig. 4A, Rv3737 expression was significantly increased in clinical *Mtb* isolates than H37Rv-WT. Of note, the relative expression level of Rv3737 was positively correlated with lung cavity number in TB patients \(r = 0.71, p < 0.01, \text{Fig. 4B} \). Similarly, the higher Rv3737 mRNA level resulted in lower C(t) value by Xpert MTB/RIF assay, demonstrating that a positive correlation between R3737 expression and bacterial load in TB patients \(r = -0.81, p < 0.01, \text{Fig. 4C} \).

Discussion

Transporter systems are commonly considered as a potential tool for delivery of therapeutic agents. Recently experimental studies reveal that several transporters be required for chronic infection and expression of virulence in pathogenic bacteria [20, 21]. In this study, we attempted to understand the possible role of transporter protein Rv3737, which alters *in vitro* growth and intracellular survival of bacteria inside macrophages. Depletion of Rv3737 in *Mtb* resulted in decreased growth rate *in vitro* compared to H37Rv-WT; however, the mutant strain displayed usual rough and dry colonies as control strain, indicating that Rv3737 might be not involved in the cell wall lipid remodeling in *Mtb*. Although the exact characteristics and role of this transporter in growth profile remain unclear, we speculate that the inactivation of Rv3737 might lead to accumulation of metabolic waste products *in vivo* and consequently inhibit their growth. Further studies will be conducted to determine the change in metabolism profile between H37RvΔRv3737 and H37Rv-WT strain, which is essential to elucidate the substrate preference of this transporter. Experimental evidence from previous studies confirms that highly virulent *Mtb* isolates have faster *in vivo* doubling times [22, 23]. We found that the knockout of Rv3737 had a markedly negative
impact on intracellular survival as compared to the control. On one hand, this fact may reflect the
decreased growth rate of tubercle bacilli in macrophages, as demonstrated in in vitro observations.
On the other hand, the elevated levels of proinflammatory cytokines were noted in the culture
supernatant of macrophages infected with H37RvΔRv3737, thus promoting intracellular bacteria
clearance in macrophages. Specific mechanism behind this significant correlation are presently
unclear. On the basis of its putative transporter function, the molecules exported by Rv3737 into
extracellular substance were able to impair host defense against intracellular bacteria via inhibiting
inflammatory response. On the basis of our findings, Rv3737 may participate in modulation of
reduced or delayed host proinflammatory cytokine response, which is required for persisting
virulence and survival of Mtb within host macrophages.
Furthermore, the elevated expression level of Rv3737 was noted in clinical Mtb isolates as
compared to H37Rv-WT with attenuated virulence. This diversity supports our previous findings
that Rv3737 may be involved in virulence of Mtb. Notably, a significant positive correlation
between Rv3737 expression level and bacterial load in pulmonary TB patients raises the
possibility that the isolates with increased expression of Rv3737 are prone to escaping clearance
by alveolar macrophages, thus leading to greater bacillary multiplication in host. The high
bacterial burden always causes more lung damage and higher mortality [24, 25]. In line with
previous observation, we observed that the higher expression of Rv3737 was more likely to result
in more cavities among patients affected by pulmonary TB. In view of the strong association
between Rv3737 and lung pathology, we speculate that is could be used as a candidate biomarker
for predicting the virulence of distinct isolates, and its potential pathogenic effect in host.

We also acknowledged several obvious limitations to the present study. First, despite exhibiting
high identity in amino acid sequence with transporter ThrE, the preferential substrates of Rv3737 remains undetermined, which weaken the significance of our explanation. Second, we observed the slower growth rate and shorter length of H37RvΔRv3737; whereas the mutant had larger width than H37Rv-WT control, which may be associated with the remodeling of cytoskeleton to modulate the bacterial growth. However, the reason for this phenomenon remains unclear. Finally, although we recruited active TB cases in our analysis, the diverse courses of TB disease across patients may serve as a major challenge that biases our conclusion.

In conclusion, our data firstly demonstrate that the transporter Rv3737 is required for in vitro growth and survival of bacteria inside macrophages. In addition, the expression level of Rv3737 is associated with bacterial load and disease severity in pulmonary tuberculosis patients. Further studies will be conducted to determine the change in metabolism profile between H37RvΔRv3737 and H37Rv-WT strain, which is essential to elucidate the substrate preference of this transporter.

Potential conflicts of interest

The authors declare no conflict of interest regarding the publication of this paper.

Author contributions

QL, ZP, LC, and YP designed the experiments. QL, ZP, XF, HW, and ZZ performed the experiment. QL, ZP, LC, and ZP wrote the manuscript. QL, ZP, CL, and YP edited and approved the manuscript.

Acknowledgments

The study was supported by National Natural Science Foundation of China (81760003 and
The authors thank Shanghai Gene-Optimal Science & Technology Co., Ltd. for its technical support for gene knockout. The author wish to thank Prof. Mei Liu and Prof. Nana Li for collected and processed the clinical isolates. The author wish to thank Prof. Peng Xu for helpful discussions.

Reference:

1. World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization; 2020.

2. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J: Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 2010, 375(9728):1830-1843.

3. Canetti D, Riccardi N, Martini M, Villa S, Di Biagio A, Codecasa L, Castagna A, Barberis I, Gazzaniga V, Besozzi G: HIV and tuberculosis: The paradox of dual illnesses and the challenges of their fighting in the history. Tuberculosis (Edinb) 2020, 122:101921.

4. Cano-Muniz S, Anthony R, Niemann S, Alffenaar JC: New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State. Clin Microbiol Rev 2018, 31(1).

5. Fowler E, Ghamrawi RI, Ghiam N, Liao W, Wu JJ: Risk of tuberculosis reactivation during interleukin-17 inhibitor therapy for psoriasis: a systematic review. J Eur Acad Dermatol Venereol 2020, 34(7):1449-1456.

6. Garai P, Chandra K, Chakravortty D: Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2017, 8(3):297-309.

7. Burkovski A, Kramer R: Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 2002, 58(3):265-274.

8. Simic P, Sahm H, Eggeling L: L-threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 2001, 183(18):5317-5324.

9. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd et al: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393(6685):537-544.

10. Bartek IL, Woolhisler LK, Baugn AD, Basaraba RJ, Jacobs WR, Jr., Lennaerts AJ, Voskuil MI: Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. mBio 2014, 5(3):e01106-01114.

11. Lewis DL, Notey JS, Chandrayan SK, Loder AJ, Lipscomb GL, Adams MW, Kelly RM: A mutant (‘lab strain’) of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology. Extremophiles 2015, 19(2):269-281.

12. Shin SY, Bajpai VK, Kim HR, Kang SC: Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT - Food Science and Technology 2007, 40(9):1515-1519.
13. Tram TTB, Nhung HN, Vijay S, Hai HT, Thu DDA, Ha VTN, Dinh TD, Ashton PM, Hanh NT, Phu NH et al: **Virulence of Mycobacterium tuberculosis Clinical Isolates Is Associated With Sputum Pre-treatment Bacterial Load, Lineage, Survival in Macrophages, and Cytokine Response.** Front Cell Infect Microbiol 2018, 8:417.

14. Gupta PK, Kulkarni S: **Polysaccharide rich extract (PRE) from Tinospora cordifolia inhibits the intracellular survival of drug resistant strains of Mycobacterium tuberculosis in macrophages by nitric oxide induction.** *Tuberculosis* 2018, 113:81-90.

15. Franzen O, Arner E, Ferella M, Nilsson D, Respuela P, Carninci P, Hayashizaki Y, Aslund L, Andersson B, Daub CO: **The short non-coding transcriptome of the protozoan parasite Trypanosoma cruzi.** *PLoS Negl Trop Dis* 2011, 5(8):e1283.

16. Kumari B, Saini V, Kaur J, Kaur J: **Rv2037c, a stress induced conserved hypothetical protein of Mycobacterium tuberculosis, is a phospholipase: Role in cell wall modulation and intracellular survival.** *Int J Biol Macromol* 2020, 153:817-835.

17. Marais BJ, Brittle W, Painczyk K, Hesseling AC, Beyers N, Wasserman E, van Soolingen D, Warren RM: **Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum.** *Clin Infect Dis* 2008, 47(2):203-207.

18. Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, Chakravorty S, Jones M, Alland D: **Evaluation of the analytical performance of the Xpert MTB/RIF assay.** *J Clin Microbiol* 2010, 48(7):2495-2501.

19. Hai HT, Vinh DN, Thu DDA, Hanh NT, Phu NH, Srinivasan V, Thwaites GE, N TTT: **Comparison of the Mycobacterium tuberculosis molecular bacterial load assay, microscopy and GeneXpert versus liquid culture for viable bacterial load quantification before and after starting pulmonary tuberculosis treatment.** *Tuberculosis (Edinb)* 2019, 119:101864.

20. Flores-Valdez MA, Morris RP, Laval F, Daffe M, Schoolnik GK: **Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system.** *FASEB J* 2009, 23(12):4091-4104.

21. Dasgupta A, Sureka K, Mitra D, Saha B, Sanyal S, Das AK, Chakrabarti P, Jackson M, Gicquel B, Kundu M et al: **An oligopeptide transporter of Mycobacterium tuberculosis regulates cytokine release and apoptosis of infected macrophages.** *PLoS One* 2010, 5(8):e12225.

22. Sohn H, Lee KS, Kim SY, Shin DM, Shin SJ, Jo EK, Park JK, Kim HJ: **Induction of cell death in human macrophages by a highly virulent Korean Isolate of Mycobacterium tuberculosis and the virulent strain H37Rv.** *Scand J Immunol* 2009, 69(1):43-50.

23. Smith I: **Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence.** *Clin Microbiol Rev* 2003, 16(3):463-496.

24. Ravimohan S, Kornfeld H, Weissman D, Bisson GP: **Tuberculosis and lung damage: from epidemiology to pathophysiology.** *Eur Respir Rev* 2018, 27(147).

25. Murthy SE, Chatterjee F, Crook A, Dawson R, Mendel C, Murphy ME, Murray SR, Nunn AJ, Phillips PPI, Singh KP et al: **Pretreatment chest x-ray severity and its relation to bacterial burden in smear positive pulmonary tuberculosis.** *BMC Med* 2018, 16(1):73.
Figure Legends

Figure 1 In vitro growth of H37RvΔRv3737

A. Growth curve of H37Rv-WT and H37RvΔRv3737 in 7H9 medium. B. Colonies of H37Rv-WT and H37RvΔRv3737 on 7H10 agar grown for 21 days. C. Diameter of colonies of H37Rv-WT and H37RvΔRv3737 on 7H10 agar. The difference between the wild type and the mutant was significant by Student’s t test (*, p<0.05; **, p<0.01; *** , p<0.001; ****, p<0.0001).

Figure 2 Morphological changes between the H37Rv-WT and H37RvΔRv3737 strains

A-D. Scanning electron microscope photographs of strains. Bacteria were grown in 7H9 medium. E. Length of H37Rv-WT and H37RvΔRv3737. F. Width of H37Rv-WT and H37RvΔRv3737. The difference between the wild type and the mutant was significant by Student’s t test (*, p<0.05; **, p<0.01; *** , p<0.001; ****, p<0.0001).

Figure 3 Survival of H37Rv-WT and H37RvΔRv3737 in macrophages

A. Effect of Rv3737 on infection: RAW264.7 were infected with H37Rv-WT and H37RvΔRv3737 at MOI 10 at 37 °C in CO2 incubator (5% CO2) for 4 h. B. Survival analysis of H37Rv-WT and H37RvΔRv3737 in macrophages. C. The mRNA levels of TNF-α and IL-6 in macrophages infected with H37Rv-WT and H37RvΔRv3737. D. Immunoassays for TNF-α and IL-6 in supernatants collected from macrophages infected with H37Rv-WT and H37RvΔRv3737. The difference between the wild type and the mutant was significant by Student’s t test (*, p<0.05; **, p<0.01; *** , p<0.001; ****, p<0.0001).
Figure 4 Correlation between Rv3737 mRNA level and disease severity

A. Comparison of Rv3737 mRNA levels between H37Rv-WT and clinical isolates. B. Relationship between the expression level of Rv3737 and the C(t) value yielded by Xpert. C. Relationship between the expression level of Rv3737 and the number of cavities. The difference between the wild type and the mutant was significant by Student’s t test (*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001). The relationship between the expression level of Rv3737 and the C(t) value yielded by Xpert and between the expression level of Rv3737 and the number of cavities was established by Spearman Coefficient (p < 0.01).

Figure S1 Disruption of the Rv3737 gene in M. tuberculosis
Figure A: Comparison of Rv3737 mRNA expression relative to SigA between H37Rv-WT and clinical strains. ** indicates a statistical significance at p<0.01.

Figure B: Correlation between Rv3737 mRNA expression relative to SigA and the number of lung cavities. The correlation coefficient (r) is 0.71 and statistically significant at p<0.01.

Figure C: Correlation between Ct value of Xpert MTB and Rv3737 mRNA expression relative to SigA. The correlation coefficient (r) is -0.81 and statistically significant at p<0.01.
Table 1. Demographic and clinical characteristics of clinical cases

Characteristics	No. (%) of subjects	
Total	12(100.00)	
Sex		
Male	9(75.00)	
Female	3(25.00)	
Age, years		
>16	4(33.33)	
>34	6(50.00)	
>64	2(16.67)	
BMI, kg/m²		
<18.5	9(75.00)	
18.5–23.9	3(25.00)	
>23.9	0(0.00)	
HIV		
0(0.00)		
Symptom		
Fever	1(8.33)	
Night sweat	2(16.67)	
Fatigue	3(25.00)	
Cough	10(83.33)	
Haemoptysis	0(0.00)	
Chest pain	4(33.33)	
Severe dyspnoea	2(16.67)	
Treatment history		
New case	5(41.67)	
Previously treated case	7(58.33)	
Complications		
COPD	2(16.67)	
HBV	1(8.33)	
Heart disease	1(8.33)	
Xpert MTB/RIF		
MTB + / RIF -	7(58.33)	
MTB + / RIF +	5(41.67)	
Number of cavities (Chest CT)		
0	2(16.67)	
1	1(8.33)	
2	2(16.67)	
3	3(25.00)	
≥4	4(33.33)	
Strains/plasmids/cells	Description	source/reference
------------------------	-------------	------------------
Strains		
Wild-type *Mtb* H37Rv	Pathogenic; for amplifying *M. tuberculosis* Rv3737 gene	Guizhou provincial Center For Disease Control And Prevention
M. smegmatis mc^2 155	Nonpathogenic; for amplifying *M. tuberculosis* Rv3737 gene and achieving homologous recombination at *rmlA* locus	Wuhan Institute of Virology, CAS
E. coli DH5α	For constructing plasmids	Tsingke biological technology
E. coli HB101	For constructing plasmids	Tsingke biological technology
H37RvΔRv3737	*M. tuberculosis* Rv3737 knockout strain	This work
Clinical *Mtb* isolates	Collected from a cohort of participants with pulmonary TB	Affiliated Hospital of Zunyi Medical University
Plasmids		
p0004s	For constructing plasmids	Wuhan Institute of Virology, CAS
phAE159	For constructing plasmids	Wuhan Institute of Virology, CAS
p0004s-LR	For constructing plasmids	This work
phAE159-p0004s-LR	For constructing plasmids	This work
Cells		
RAW264.7	Mouse mononuclear macrophage leukemia cells	Affiliated Hospital of Zunyi Medical University
S1.No	Name of primer	Sequence (5'→3')
-------	----------------	-----------------
1*	LFP	TTTTTTTGGCCTAAATGGCCCCAGTTATCGCCATCCG
2*	LRP	TTTTTTTGGCCTTTCTGGGCAATGGCCCTGTGTATCAG
3*	RFP	TTTTTTTGGCCTAGATGGCCCAAGGAGCAGCACAGCCGA
4*	RRP	TTTTTTTGGCCTTTTTGGGCTTCTTTGCGGTTCCTGGC
5#	LYZFP	CAATGGATTTCGGGAGAC
6#	LYZRP	GTGGACCTCGACGACCCTAG
7#	RYZFP	TGGATCTCTCCGCTTCACC
8#	RYZRP	TACTGTTCACGCGCGGTG
9&	Rv3737 For	GTTCGCCGTCAATGACACAC
10&	Rv3737 Rev	CAATGGTGAGGCGAGGAAT
11*	M.tb-sigA For	CTCGTTCCGCCTACCTCA
12*	M.tb-sigA Rev	GCGCTCGCTAAAGCTCGGT
13*	TNF-α For	AAGCCTGTAACCGAGTGTA
14*	TNF-α Rev	GGCACCAGTGGTGTCTGTCTG
15*	IL-6 For	ACAACCAGGCTTCCTACCT
16*	IL-6 Rev	CACGATTTCCAGAACAGATGT

Note:
* Primers are used in PCR to construct the left and right arms of the target gene
Primers are used in PCR to verify the successful construction of the knockout strain
& Primers are used in qPCR to verify the successful construction of the knockout strain
※ Primers are used in qPCR to detect inflammatory factor expression