Gradual reset and set characteristics in yttrium oxide based resistive random access memory

Stefan Petzold 1, Eszter Piros 1, S U Sharath 1, Alexander Zintler 2, Erwin Hildebrandt 1, Leopoldo Molina-Luna 2, Christian Wenger 3 and Lambert Alff 1

1 Advanced Thin Film Technology Division, Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
2 Advanced Electron Microscopy Division, Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
3 IHP—Leibniz-Institut fuer innovative Mikroelektronik, 15236 Frankfurt (Oder), and Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany

E-mail: petzold@oxide.tu-darmstadt.de

Received 28 January 2019, revised 8 April 2019
Accepted for publication 16 May 2019
Published 12 June 2019

Abstract

This paper addresses the resistive switching behavior in yttrium oxide based resistive random access memory (RRAM) (TiN/yttrium oxide/Pt) devices. We report the coexistence of bipolar and unipolar resistive switching within a single device stack. For bipolar DC operation, the devices show gradual set and reset behavior with resistance ratio up to two orders of magnitude. By using nanosecond regime pulses (20 to 100 ns pulse width) of constant voltage amplitude, this gradual switching behavior could be utilized in tuning the resistance during set and reset spanning up to two orders of magnitude. This demonstrates that yttrium oxide based RRAM devices are alternative candidates for multibit operations and neuromorphic applications.

Keywords: gradual, neuromorphic, resistive random access memory, resistive switching, retention, yttria, yttrium oxide

(Some figures may appear in colour only in the online journal)

1. Introduction

Resistive random access memory (RRAM) has attracted a lot of attention for more than a decade, as a promising candidate for the next generation of non-volatile memories. Traditional flash memory has reached the lateral scaling limit [1] and current approaches for further scaling are limited to the third dimension [2]. The steadily growing market of information communication technology [3] keeps a continuous pressure on developing power efficient, high-density memories at low cost. There are several suited materials exhibiting resistive switching [4], such as TiO₂, HfO₂, TaO₅, Ga₂O₃ [5] or mixed systems like Ba₀.₆Sr₀.₄TiO₃ [6] or In-Ga-Zn-O [7]. Although belonging to the group of rare earths, yttrium is not considered to belong to the group of critical materials by representing about 31 ppm of the Earth crust [8]. Due to its dielectric constant of 14–17 [9–11], wide band gap of 5.5 to 6.2 eV [12–14], high breakdown voltage and high conduction band off-set [15], yttrium oxide was considered as a possible candidate to replace SiO₂ as gate dielectric for field effect transistors [16, 17] amongst other high-k candidates, such as HfO₂, ZrO₂, Al₂O₃, Ta₂O₅. Therefore, yttria was intensively investigated in terms of growth on Si/SiO₂ establishing different atomic layer deposition (ALD) processes [18–20] and creating the basis for complementary metal-oxide-
semiconductor-compatibility. Similar to hafnia, Y$_2$O$_3$ is described in the literature as a fast ion conductor [15]. Experiments on bulk Y$_2$O$_3$ have revealed activation energies for oxygen diffusion as low as 19.580 cal/mol (0.85 eV) [21] being related to the defective structure of the body centered sesquioxide where one fourth of the anion sublattice sites remain unoccupied. The valence state of +3 is considered to be the only stable oxidation state for yttrium. Its initially defective structure makes Y$_2$O$_3$ interesting for investigating processes due to its ability to show learning and forgetting by mimicking analog synaptic weights. In principle, a synapse resembles a two-terminal device in which the resistance can be incrementally modulated. Therefore, a possible way to mimic the functionality of the human brain is by using a network of massively parallelized memristors with high connectivity. This approach enables overcoming drawbacks of the von Neumann architecture in terms of data centric applications such as real time language or data recognition [25]. Yao et al [26] demonstrated face classification utilizing a 1024-cell-1T1R RRAM based neuromorphic network with analogously tunable resistance being x1000 (x20) more energy efficient than using an Intel Xeon processor with off-chip storage (with on-chip integrated digital RRAM). Forecasts suggest a future computational efficiency of integrated on chip memristors of over 100 trillion operations per second per Watt [27]. Even memristors on flexible substrates which are interesting for applications in wearable electronic devices or foldable displays have recently been reported to show synaptic characteristics [28]. For neuromorphic applications, the ideal candidate needs to provide gradual set and reset operations with accessibility to a high density of resistance states. In other terms, a linear analogously/continuously variable conductance in a high on/off ratio range with multi-level feasibility is desired. Additionally, due to the desired high device density, a low power consumption [29] (e.g. by low operation voltages with short pulses) while maintaining the stability of the resistance states (high temperature data retention, endurance, and immunity to noise) [30] is important, demanding further material optimization by engineering.

2. Experimental

The devices under test (DUT) consist of TiN/Y$_2$O$_3$/Pt (see figure 1(a)). The TiN layers with thickness of 70 nm were reactively deposited on (100) Si-wafers using direct current (DC) magnetron sputtering of Ti and nitrogen as reactive gas at room temperature. The 12 nm thick polycrystalline Y$_2$O$_3$-layer has been grown by elemental e-beam evaporation of yttrium at 450°C. In situ oxidation has been achieved using RF-activated oxygen radicals from a radical source allowing for oxygen engineering of the dielectric layer [31]. The top electrode (TE) was deposited by sputtering 100 nm of platinum using a DC sputter coater. After sputtering the TE, the samples were subjected to a standard lithography step using a lift-off process in order to produce metal-insulator-metal (MIM) devices of 30 x 30 μm2 size. Electrical characterization was done using a Keithley 4200 semiconductor characterization system (SCS) by biasing the TE (here Pt) and using the internal current compliance (CC) of the SCS to prevent device hard breakdown. All pulse operations were performed consistently with 20 ns for fall and rise time, respectively. Retention measurements were performed using an oven at 85°C in ambient atmosphere. Scanning transmission electron microscopy was performed using a JEOL JEM-ARM-200F.
3. Results and discussion

Shown in figure 1(a) is a bright-field scanning transmission electron microscopy (BF-STEM) image of the complete film layer stack. Figure 1(b) reveals a polycrystalline structure in the yttria film (inset of figure 1(a)). The highlighted area of figure 1(b) is shown in figures 1(c) and (d); High-resolution

...
From an application point of view, it is important to address the variability and reliability of the switching devices. Figures 1(f) (and 2(b)) show the empirical cumulative distribution function F(x) calculated as the number of observations less than or equal to x divided by the total number of observations n. Figure 1(f) (left) shows the R_{HRS} and R_{LRS} distributions taken at -200 mV readout voltage. From the cumulative distributions of the operation voltages (Figure 1(f) (right)), it is clear that set occurs mostly at ≈ -1 V and that the reset voltages show little deviation from the mean value of 0.97 V. The LRS is uniform, the off state, however, shows enhanced variability. This is most likely due to the fact that we use a limited voltage range to reduce the device hard breakdown (by setting the device in URS mode without applied CC) possibility, thus, hindering a deeper reset. This is also depicted in the endurance data (Figure 1(g)) from which it can be seen that during the first 400 DC cycles resistance values in HRS show enhanced variability. During these cycles, R_{HRS} gradually settles and fluctuations are reduced. Overall, the cycle-to-cycle variation is low for both the operation voltages and the resistance values measured in HRS and LRS during the plotted 800+ DC cycles. The resistance ratio’s average value of ≈ 640 and minimum of 80 ensure error-free data readout. By operating in pulse mode and restraining the pulse width to 100 ns, higher reset voltages could be applied without activating a unipolar set, thus enabling deeper resets as can be seen in figure 3(d). The conduction mechanism was found to show ohmic behaviour in the LRS (Figure 1(b)) and be consistent with the Schottky-mechanism in HRS (Figure 1(i)).

The same characterization was carried out for the unipolar switching mode (see Figure 2(a)). The URS has been achieved by applying positive voltage on the Pt electrode. The DUT shows uniform on-off resistance (left) and operation voltage distributions (right) (Figure 2(b)). Set happens at ≈ 2.7 V and reset at ≈ 1 V. The operation voltage distributions show overall small variations. Resistance taken at 200 mV readout voltage in the LRS is in the range of $10^2 \Omega$, while the HRS resistance falls in the range of $10^3 \Omega$. The cumulative probability plot shows narrow resistance distributions in both LRS and HRS. Figure 2(c) shows the endurance data taken for 250+ DC switching cycles. The resistance in both resistive states shows uniform performance with extremely low cycle-to-cycle variability. The average on-off-ratio was found to be ≈ 1060 and during switching a minimal ratio of 240 was maintained. The conduction behavior of the unipolar device was found to be ohmic in the LRS and to be dominated by Schottky-emission in the HRS, as shown in Figures 2(d) and (e), respectively. TRS was found to occasionally occur in the unipolar cycles. In Figure 2(f) the $I-V$ curves of such a device are depicted. During threshold switching, the current abruptly switches in response to increasing voltages, upon decreasing bias, however, this higher current level becomes unstable below a critical voltage and the device crosses over into the HRS again. As can be seen from the endurance plot depicted in Figure 2(g), unipolar switching shows an instability towards the aforementioned TRS which, however, cannot be stabilized. This instability has been attributed to insufficient heat dissipation [43] and, therefore, can be described as a write error. In 400 nm thick polycrystalline titanium oxide films, the spontaneous dissolution of the CF upon reducing the electric field was related to thermal diffusion assisted by the repelling coulombic forces of the ionized vacancies [44].

As mentioned before, the dominant conduction mechanism was investigated under both bipolar and unipolar operation. The low resistive state shows ohmic behavior for both BRS and URS as shown in Figures 1(h) and 2(d), respectively, with a slope of ≈ 1 in double-logarithmic depiction of the $I-V$ curves. The HRS, however, was found to be dominated by the Schottky-mechanism in bipolar, as well as in unipolar switching mode. The Schottky-type conduction is described by [45]

$$I = A T^2 \exp\left[\left(\beta V / 2 - \Phi\right)(kT)^{-1}\right]$$

$$\beta = \left(e^3 / 4 \pi \varepsilon \sigma \Omega \sigma r\right)^{1/2}$$

where A is the Richardson constant, T is the absolute
temperature, Φ is the barrier height, k is Boltzmann’s constant, e is the elementary charge, ε_0 is the permittivity of free space and ε_r is the relative permittivity. Typically, a Schottky-contact forms at electrodes with high work function, resulting in a rectifying behavior. For BRS, we have observed such diode-like behavior with a high non-linearity of ≈ 10 for opposite bias polarities, which is especially pronounced in the first 400 DC cycles (figure 1(e)). Here, the current is about one order of magnitude higher under positive bias than for the negative voltage direction, suggesting the formation of a dominant Schottky-barrier at the Pt electrode [46]. Similar tendencies were found for yttria-based RRAM devices with another high work function electrode, namely Ruthenium [35] and for TiN/SrTiO$_3$/Pt devices [47]. Additionally, the ln(I/Φ^α) vs $V^{1/2}$ plot shows the expected linear behavior (figures 2(i) and 2(e)) allowing for the extraction of the barrier height which was found to be ≈ 1.00 eV at the correlated Y$_2$O$_3$/Pt junction. In the case of URS, the calculated barrier height of ≈ 1.06 eV is very similar to the value obtained in BRS. The observed conduction mechanism and barrier heights are in good agreement with results obtained on Metal/Y$_2$O$_3$/Pt devices [48].

Figures 2(h) and (i) show the results of high temperature data retention measurements obtained at 85 °C for four URS and BRS devices, respectively. The ten year extrapolation shows that data is retained in the measured cells in both HRS and LRS in both switching modes. In the case of the devices which were operated in the unipolar mode, resistance is barely changed and shows almost no degradation in all measured devices. The devices operated in a bipolar mode also exhibit promising retention characteristics. The two different resistance states of the HRS seen in figure 2(i) represent devices with different stresses, where 'device 1' was cycled approximately 200 cycles more than 'device 2'.

One possible way to achieve higher data density is the realization of multi-bit storage in RRAM. This is usually carried out by stabilizing multiple current levels by either varying current compliance during the set or controlling the reset voltages. The gradual reset seen in the bipolar device allows for reproducible control of the transition from LRS to HRS through stable intermediate high resistance states. One method to achieve these states is shown in figure 3(a). First, the DUT was brought into LRS with a negative voltage sweep to -2.5 V. Then, starting from this LRS, the voltage was swept from $+1.3$ V to $+2.5$ V in 0.3 V increments (‘write’ operation, reset process in BRS mode) with a consecutive voltage sweep to -2.5 V after each positive sweep to enter the LRS state again (‘erase’ operation, set process in BRS mode). During this operation sequence, the intermediate resistance states were found to be stable and well reproducible. When plotting the data in linear scale (figure 3(b)) in the range up to 1.9 V for the reset voltage the gradual character becomes obvious not only in the reset process, but also in the set process. As shown in figure 3(b), this behavior can be used to access intermediate states also by consecutively varying the set voltage. Thereby, the devices can be operated by systematically increasing set steps followed by consecutive individual resets. Overall, this allows for accessing different resistance states by set and reset processes, enabling multilevel operations. This gradual switching behavior can also be accessed by using pulse stimuli as employed for practical memory as well as neuromorphic applications as shown in figures 3(c)–(e), respectively. Here, the resistance could be modulated by applying pulse stimuli with constant voltage amplitudes (2.8 V for set and -1.6 V for reset). Resistance ratios of over more than two orders of magnitude for reset and almost two orders of magnitude for set could be achieved. In the experiment, only the pulse width is varied from as low as 20 ns up to 105 ns pulses as displayed in figures 3(c) and (d), respectively. For synaptic applications, the synaptic weight, here resistance, could also be changed reproducibly as a function of fixed numbers of pulse stimuli with constant pulse width for potentiation (40 pulses with -1.8 V for 30 ns) and depression (50 pulses with 2.8 V for 20 ns). In this example (figure 3(e)), the device is shown to run through 5 consecutive cycles of weight increase followed by weight decrease with an overall resistance ratio of about 5.

4. Conclusion

In this study, we report for the first time the coexistence of bipolar resistive switching and unipolar resistive switching within one stack combination based on yttrium oxide. The URS is characterized by a high on-off-ratio with low switching variability, excellent data retention and DC endurance. In both BRS and URS, the conduction behavior of LRS and HRS have been identified as ohmic conduction and Schottky emission, respectively. The BRS is characterized by low variability, good data retention, high DC endurance, and average on-off-ratio above 100. Additionally, the obtained concurrent gradual transitions during BRS set and reset which have been employed in pulse depression and potentiation operations with shown plasticity over about two orders of magnitude make RRAM based on yttrium oxide an interesting alternative candidate for neuromorphic synapses. Combined with its characteristic of being forming-free and having low operation voltages, RRAM based on yttrium oxide is highlighted as a suitable material candidate for new high density non-volatile memory technologies. The reported forming-free behavior has been related to a preferential defect chain along the [110] direction of the cubic yttria phase and should be further investigated in future.

Acknowledgments

This work was supported by the Deutscher Akademischer Austauschdienst (DAAD) and the Deutsche Forschungsgemeinschaft under project AL 560/13-2. Funding by the Federal Ministry of Education and Research (BMBF) under contract 16ES0250 and 16ESE0298, and by ENIAC JU within the project PANACHE is gratefully acknowledged. The work leading to this publication has been undertaken in the framework of the WAKEMeUP project which received funding from the Electronic Components and Systems for
European Leadership Joint Undertaking in collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 783176. Also, funding from DFG grant MO 3010/3-1 and the European Research Council (ERC) ‘Horizon 2020’ Program under Grant No. 805359-FOXON are gratefully acknowledged.

ORBIC IDs

Stefan Petzold @ https://orcid.org/0000-0002-4994-9781

References

[1] Iwai H 2008 Cmos technology after reaching the scale limit Junction Technology, 2008. IWJT’08. Extended Abstracts- 8th International workshop on (IEEE) 1–2
[2] Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Proc. IEEE 100 1951–70
[3] Bez R 2005 Microelectron. Eng. 80 249–55 14th biennial Conference on INFOS2005
[4] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R Rep. 83 1–59
[5] Yan X, Hao H, Chen Y, Li Y and Banerjee W 2014 Appl. Phys. Lett. 105 093502
[6] Yan X, Li Y, Zhao J, Li Y, Bai G and Zhu S 2016 Appl. Phys. Lett. 108 033108
[7] Yan X, Hao H, Chen Y, Shi S, Zhang E, Lou J and Liu B 2014 Nanoscale Res. Lett. 9 548
[8] Cotton S A 2006 Encyclopaedia of Inorganic Chemistry (https://doi.org/10.1002/0470862106.in211)WorldCat: https://www.worldcat.org/title/scandium-yttrium-the-lanthanides-inorganic-coordination-chemistry/oclc/7321828802
[9] Gurvitch M, Manchanda L and Gibson J 1987 Appl. Phys. Lett. 51 919–21
[10] Pal S, Ray S, Chakraborty B, Lahiri S and Bose D 2001 J. Appl. Phys. 90 4103–7
[11] Gusev E, Cartier E, Buchanan D, Gribelyuk M, Copel M, Okorn-Schmidt H and D’Emic C 2001 Microelectron. Eng. 59 341–9
[12] de Rouffignac P, Park J S and Gordon R G 2005 Chem. Mater. 17 4808–14
[13] Marsella L and Fiorentini V 2004 Phys. Rev. B 69 172103
[14] Wallace R M and Wilk G 2002 MRS Bull. 27 186–91
[15] Robertson J 2000 J. Vac. Sci. Technol. B 18 1785–91
[16] Sharma R K, Kumar A and Anthony J M 2001 JOM 53 53–5
[17] He G, Zhu L, Sun Z, Wan Q and Zhang L 2011 Prog. Mater. Sci. 56 475–572
[18] Niinistö J, Putkonen M and Niinistö L 2004 Chem. Mater. 16 2953–8
[19] Putkonen M, Sajaavaara T, Johansson L S and Niinistö L 2001 Chem. Vap. Deposition 7 44–50
[20] Park I S, Jung Y C, Seong S, Ahn J, Kang J, Noh W and Lanzalot-Matras C 2014 J. Mater. Chem. C 2 9240–7
[21] Berard M, Wirkus C and Wilder D 1968 J. Am. Ceram. Soc. 51 643–7
[22] Yan X, Zhou Z, Ding B, Zhao J and Zhang Y 2017 J. Mater. Chem. C 5 2259–67
[23] Yan X, Zhang L, Chen H, Li X, Wang J, Liu Q, Lu C, Chen J, Wu H and Zhou P 2018 Adv. Funct. Mater. 28 1803728
[24] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 2979–301
[25] Burr G W et al 2017 Advances in Physics: X 2 89–124
[26] Yao P et al 2017 Nat. Commun. 8 15199
[27] Hu M et al 2018 Adv. Mater. 30 1705914
[28] Yan X, Zhou Z, Zhao J, Liu Q, Wang H, Yuan G and Chen J 2018 Nano Res. 11 1183–92
[29] Rajendran B, Liu Y, Seo J S, Gopalakrishnan K, Chang L, Friedman D J and Ritter M B 2013 IEEE Trans. Electron Devices 60 246–53
[30] Ielmini D 2018 Microelectron. Eng. 190 44–53
[31] Sharath S U, Kurian J, Komissinskiy P, Hildebrandt E, Bernta T, Walczyk C, Calka P, Schroeder T and Alff L 2014 Appl. Phys. Lett. 105 073505
[32] Koch C T 2002 Determination of core structure periodicity and point defect density along dislocations PhD Thesis Arizona State University https://ui.adsabs.harvard.edu/abs/2002PhDT........50K/ https://www.worldcat.org/title/determination-of-core-structure-periodicity-and-point-defect-density-along-dislocations/oclc/52148964
[33] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272–6
[34] Pi C, Ren Y, Liu Z Q and Chim W K 2012 Electrochem. Solid State Lett. 15 G5–7
[35] Pan T M, Chen K M and Lu C H 2011 Electrochem. Solid State Lett. 14 H27–9
[36] Valov I 2017 Semicond. Sci. Technol. 32 093006
[37] Guan X et al 2012 IEEE Trans. Electron Devices 59 1172–82
[38] Sharath S U et al 2017 Adv. Funct. Mater. 27
[39] Kamiya K, Yang M Y, Nagata T, Park S G, Magyari-Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y and Shiraishi K 2013 Phys. Rev. B 87 155201
[40] Sharath S U, Joseph M, Vogel S, Hildebrandt E, Komissinskiy P, Kurian J, Schröder T and Alff L 2016 Appl. Phys. Lett. 109 173503
[41] Sharath S U et al 2014 Appl. Phys. Lett. 104 063502
[42] Ruschanskii K Z, Blügel S and Ležaič M 2019 Faraday discussions 213 321
[43] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[44] Hossein-Baabei F and Alaei-Sheini N 2016 Sci. Rep. 6 29624
[45] Basak D and Sen S 1995 Thin Solid Films 254 181–6
[46] Yan X, Xia Y, Xu H, Gao X, Li H, Li R, Yin J and Liu Z 2010 Appl. Phys. Lett. 97 112101
[47] Fleck K, La Torre C, Aslam N, Hoffmann-Eifert S, Böttger U and Menzel S 2016 Phys. Rev. Applied 9 064015
[48] Mikhaelevich V, Betzer Y, Prudnikov I, Orenstein M, Ritter D and Eisenstein G 1998 J. Appl. Phys. 84 6747–52