Finding mesoscopic communities in sparse networks

I Ispolatov¹, I Mazo and A Yuryev

Ariadne Genomics Inc., 9700 Great Seneca Highway, Suite 113, Rockville, MD 20850, USA
E-mail: iispolat@lauca.usach.cl, mazo@ariadnegenomics.com and ayuryev@ariadnegenomics.com

Received 29 June 2006
Accepted 7 September 2006
Published 26 September 2006

Online at stacks.iop.org/JSTAT/2006/P09014
doi:10.1088/1742-5468/2006/09/P09014

Abstract. We suggest a fast method for finding possibly overlapping network communities of a desired size and link density. Our method is a natural generalization of the finite-T superparamagnetic Potts clustering introduced by Blatt et al (1996 Phys. Rev. Lett. 76 3251) and the annealing of the Potts model with a global antiferromagnetic term recently suggested by Reichard and Bornholdt (2004 Phys. Rev. Lett. 93 21870). Like in both cited works, the proposed generalization is based on ordering of the ferromagnetic Potts model; the novelty of the proposed approach lies in the adjustable dependence of the antiferromagnetic term on the population of each Potts state, which interpolates between the two previously considered cases. This adjustability allows one to empirically tune the algorithm to detect the maximum number of communities of the given size and link density. We illustrate the method by detecting protein complexes in high-throughput protein binding networks.

Keywords: molecular networks (experiment), random graphs, networks, genomic and proteomic networks

ArXiv ePrint: q-bio.MN/0512038

¹ Permanent address: Departamento de Fisica, Universidad de Santiago de Chile, Casilla 302, Correo 2, Santiago, Chile.
1. Introduction

A number of methods have been developed for finding clusters, or densely linked communities, in networks. To mention a few, there are clustering algorithms based on link betweenness, number of in-cluster links, random walks, spectrum of connectivity matrix (see a review [1] and [2,3]), and ordering of spin models [4]–[6]. Yet often a need arises to go beyond the existing clustering algorithms as new kinds of communities and networks are analysed.

Our initial goal was to find protein complexes and functional modules in protein–protein binding networks. Proteins in a complex link together to simultaneously perform a certain function, while members of a functional module sequentially participate in the same cellular process [5]. Clusters of both types usually consist of 10–40 proteins that are more strongly linked with each other than with the rest of the network. Since certain proteins are known to perform functions ubiquitous in several modules, network communities may overlap. We consider protein–protein binding networks of baker’s yeast and the fruit fly, each consisting of $\sim 10^3$ vertices and $\sim 10^3$–10^4 links [7]–[9]. These networks are composed from the data obtained in yeast 2-hybrid (Y2H) high-throughput experiments. Such networks are known to be rather noisy and incomplete, that is, to contain a number of links that do not occur naturally and to miss a noticeable fraction of existing links. Thus it is hard to estimate the precise number of links and nodes that comprise a given protein cluster in such a data set. Protein binding networks are sparse, so the probability for an arbitrary pair of nodes to be linked is $\sim 10^{-3}$. While it is assumed that the link density inside a cluster is higher than the average, the precise magnitude of the link density contrast is unknown. Overall, the link density contrast in these networks is relatively low: the largest completely connected subgraph, or clique, contains only four and five vertices in yeast and fly networks, correspondingly. In addition, since many proteins function on their own, there are parts of the network that do not belong to any cluster at all.

To summarize, we looked for an a priori unknown number of possibly overlapping mesoscopic clusters in a sparse network with a low link density contrast. Unfortunately, we were unable to detect a sufficient number of such clusters using any of the existing algorithms. Crucial limitations of many of the available network clustering methods are...
Finding mesoscopic communities in sparse networks
discussed in [6]. For example, for our purposes we ruled out the \(Q \)-optimization algorithm by Newman [2] as in its earliest steps it connects all the vertices with a single neighbour (leaves) to their neighbours, thus making it impossible to select only densely linked clusters such as cliques. Similarly, the clustering algorithm based on consecutive cutting of the links with the highest betweenness [3] produces the leafy branches as the links leading to leaves having the lowest betweenness and being the last to be cut. A finite-temperature ordering of the Potts model used in [5] to detect protein communities yields in our case only very large (\(\approx 500 \) vertices) clusters. The main reason for this failure of the finite-temperature Potts model clustering is a difference in the networks: in addition to the links from Y2H experiments, the network analysed in [5] contained the data obtained using other methods such as mass spectroscopy, where protein complexes are often recorded as cliques. A clustering based on an annealing in the ferromagnetic Potts model with global antiferromagnetic term [6] performs somewhat better; yet it still did not allow us to find the expected number of mesoscopic communities. However, a generalization of the last two approaches enabled us to detect a large number of candidates for protein complexes and modules of the desired size. In the following section we discuss the methods developed in [4]–[6] in more detail and introduce our clustering algorithm. In section 3 we discuss the implementation of the algorithm, averaging, which is used to check the robustness of the complexes found, and present examples. A discussion and a brief summary conclude the paper.

2. Ordering of the Potts model on a network

First consider a \(q \)-state ferromagnetic Potts model on a network. Each vertex is assigned a state \(\sigma \) (often called a spin) that may have any integer value between one and \(q \). The energy of the system is equal to the number of links that connect pairs of vertices in the same state, so that the Hamiltonian reads

\[
H = - \sum \delta_{\sigma_i,\sigma_j},
\]

where the sum runs over all edges and the coupling constant is set equal to one. Evidently, in the ground state all connected vertices are in the same Potts state. Equilibration at a low but finite temperature \(T \) results in a mosaic of sets of the same-state vertices, interpreted as network communities [4,5]. Usually performed in the Canonical ensemble, such finite-temperature equilibration minimizes the free energy \(F = H - TS \). The entropy \(S \) can be qualitatively approximated by its mean-field form (see, for example, [10])

\[
S_{MF} = N \ln N - \sum_{s=1}^{q} n_s \ln n_s, \quad N = \sum_{s=1}^{q} n_s.
\]

Here \(n_s \) is the number of vertices in state \(s \) and \(N \) is the total number of vertices in the network. This approximation sets an upper limit on the actual entropy of the network Potts model. Yet it illustrates the process of equilibration as a competition between the energy term \(H \), that favours condensation of all spins into a single state \((n_i = N, n_j = 0, j \neq i) \), and an entropic term \(T \sum_{s=1}^{q} n_s \ln n_s \), that favours a completely disordered configuration \((n_s = N/q, s = 1, \ldots, q) \). A similar competition between ordering
and disordered trends defines the structure of the ground state of the Potts model with a global antiferromagnetic term suggested in [6],

$$H' = - \sum_{\langle i,j \rangle \in E} \delta_{\sigma_i,\sigma_j} + \gamma \sum_{s=1}^{q} \frac{n_s(n_s - 1)}{2}, \quad (3)$$

where \(\gamma \) is an antiferromagnetic coupling constant. To generalize, the ordering in both the finite-temperature Potts model and the zero-temperature model (3) corresponds to minimization of the expression

$$\tilde{H} = - \sum_{\langle i,j \rangle \in E} \delta_{\sigma_i,\sigma_j} + \sum_{s=1}^{q} n_s f(n_s), \quad (4)$$

with

$$f(x) = \begin{cases} T \ln(x) & \text{in finite-} T \text{ Potts model} \\ \gamma x/2 & \text{in the model} \ [4] \end{cases} \quad (5)$$

Terms that depend only on \(N \) are left out. The roles of the temperature in these two cases are somewhat different: in the former case the temperature is used as an effective disordering (antiferromagnetic) parameter, while in the latter case it is a means to anneal the system into a sufficiently low-energy configuration. It seems natural to interpret two forms of \(f(x) \) in (5) as two particular cases of some general antiferromagnetic penalty function with more than one parameter. Furthermore, the existence of only single adjustable parameter in both cases (5) often prevents one from controlling the properties such as size and link density of the clusters. As we observed, the Potts model [4,5] on Y2H protein networks at a certain temperature exhibits a sharp transition from a completely disordered state to a state consisting of a single large (containing \(\sim 10\% \) or more of all vertices) ordered component and the disordered remainder of the system. A possible interpretation of such a large-scale ordering is that the dependence of the disordering (entropy) term on the number of each state spin is weak (logarithmic) and the large increase in cluster size does not carry a sufficient free energy penalty. Indeed, the modified Potts model (3), where the dependence of the anti-clustering term on the number of spins in each state is stronger (linear), yielded several smaller clusters. Evidently, the form of \(f(x) \) defines the sizes of ordered clusters: the faster \(f(x) \) increases with \(x \), the more strongly large clusters are suppressed. In order to overcome the limitations of the existing Potts model clustering methods, it appears natural to go beyond two particular forms of \(f \) (5). We consider the generalized Potts Hamiltonian (4) where the global antiferromagnetic term has two adjustable parameters,

$$f(x) = \gamma x^\alpha, \quad \alpha > 0. \quad (6)$$

The clustering methods of [4,5] and [6] correspond to \(\alpha \rightarrow +0 \) and \(\alpha = 1 \) cases, respectively. In a smaller \(\alpha \) case larger communities are produced, while a larger \(\alpha \) results in a higher number of smaller clusters. In either case \(\gamma \) should be sufficiently small to observe any ordering at all.

To illustrate the clustering, consider the evolution of a single ordered mesoscopic community of \(n_1 \) vertices. We assume that the number of Potts states \(q \) is much larger than the number of communities and the bulk of the network remains disordered, so that
Finding mesoscopic communities in sparse networks

\[n_i = (N - n_1)/(q - 1), \; i = 2, \ldots, q. \]

The antiferromagnetic term for this configuration reads

\[H_{AF} = \gamma \sum_{s=1}^{q} n_{s}^{\alpha+1} = \gamma \left[n_{1}^{\alpha+1} + (q - 1) \left(\frac{N - n_1}{q - 1} \right)^{\alpha+1} \right]. \] (7)

The community continues to grow while the number of links \(\Delta L \) brought into the community by \(\Delta n_1 \) added vertices (usually \(\Delta n_1 = 1 \)) exceeds the antiferromagnetic cost of such vertex addition, that is,

\[\frac{\Delta L}{\Delta n_1} \geq \gamma (\alpha + 1) \left[n_{1}^{\alpha} - \left(\frac{N - n_1}{q - 1} \right)^{\alpha} \right]. \] (8)

Adjusting \(\gamma \) and \(\alpha \) it is possible to detect communities of a desired size and link density.

Evidently, any finite-temperature system has a certain degree of disorder and consequently, non-zero entropy. However, the contribution of the entropy term to the free energy (1) can be made arbitrary small by annealing the system to a sufficiently low temperature. Comparing the entropy and the antiferromagnetic terms, we estimate the threshold temperature \(T^* \approx \gamma n^{\alpha}/\ln n \). Below \(T^* \) the equilibrium ordering of clusters of size \(n \) and larger is controlled by competition between only the ferromagnetic and antiferromagnetic couplings, leaving the entropic term irrelevant. This is of course only a qualitative estimate as it is based on a mean-field approximation for the entropy (2).

3. Implementation and averaging

To make the antiferromagnetic term work, the disordered equilibrium population of a state \(N/q \) should be significantly less than a size of the smallest cluster we need to detect. We set \(N/5 \leq q \leq N/3 \), and experimentally determine the optimal values of \(\gamma \) and \(\alpha \). For the Y2H networks \([7]–[9]\) these numbers are \(0.002 \leq \gamma \leq 0.02 \) and \(1 \leq \alpha \leq 2 \). In general, we observed that for a typically sparse protein binding network where \(2L/N^2 \approx 10^{-3} \), it is convenient to start with \(\alpha = 1 \) as in \([6]\), adjust \(\gamma \sim 10^{-2} \) to produce a reasonable number of clusters, and then fine-tune both \(\alpha \) and \(\gamma \) to focus on the desired cluster size and link density. To illustrate this process, cluster abundance versus cluster size plots are presented in figure 1 for three sets of \((\alpha, \gamma)\). Like in \([6]\), the network is initialized with randomly assigned spins and then gradually annealed to \(T \ll T^* \). At an annealing step a state of a randomly picked spin is evolved according to the Metropolis rules; each spin is approached at average \(Cq \) times with \(C \sim 10 \). After such isothermal equilibration the temperature is reduced by a small fraction (usually 1–2%). The algorithm is fairly rapid; its performance scales as \(Nq \).

Naturally, each run produces a distinct set of clusters. In some sense, all clusters of the expected size that contain a sufficient number of links are good as is, since their high link density makes them equally good candidates for protein complexes. However, certain communities are reproduced practically in all runs, while the others are not so robust. Such lack of robustness often has the following explanation: there may exist a set of vertices that contribute similar numbers of links if brought into a cluster. However, in each run only a fraction of these vertices are included into a cluster due to the rapidly growing antiferromagnetic cost (8). Alternating membership of such vertices in a cluster results in its poor reproducibility.
To study the robustness of clusters more systematically, we average the results of many annealing runs. Along with the averaging methods and cluster merging algorithms used in [4, 6], we utilize the following procedure. In each run the ‘ordered’ links that connect the same-state vertices are marked. As a result, each link carries an order parameter $\psi \leq 1$ equal to the fraction of runs in which this link was ordered. For a community obtained in a particular annealing run, the order parameter $\bar{\psi}$ averaged over all in-community links characterizes the reproducibility of the community. It was not uncommon to see communities with $\bar{\psi} = 0.5$ and higher.

In each run we were able to detect 5–15 (in the baker’s yeast network) and 15–30 (in the fruit fly network) communities of $n > 10$ vertices and $L \geq 2n$ in-community links. Examples of candidates for protein complexes revealed by this algorithm are shown in figure 2.

4. Discussion and conclusions

Revealing the intrinsic connection between the finite-T Potts ordering and zero-T Potts clustering with the additional antiferromagnetic coupling [6], we developed a fast method for detecting mesoscopic size communities in sparse networks. Our method is a natural generalization of the algorithms introduced in [4, 6] and is based on the Potts model with a two-parameter global antiferromagnetic term (4), (6). Applying the method to the protein binding networks of the fruit fly and baker’s yeast, we were able to detect more than a hundred densely interlinked communities that included strong candidates for not yet annotated protein complexes and functional modules.
Figure 2. Top to bottom: An mRNA splicing complex in a yeast network. Two examples of densely linked clusters in the fly network. On top is the mini-chromosome maintenance complex. Clustered vertices, marked with blue haloes, are shown together with their nearest neighbours. Note only a single link between the neighbours. On the bottom is a cluster, formed around five recently duplicated and thus highly similar (paralogous) heat-shock proteins. The large link density is produced by the duplicated (paralogous) links from heat-shock proteins to their partners. The yeast network is a union of data from [7, 8] and consists of $N = 3689$ vertices and $L = 5551$ links. The fly network is taken from [9] and spans $N = 6954$ vertices with $L = 20435$ links.

The form of antiferromagnetic term that allows us to achieve the desired mesoscopic clustering is by no means limited to the power law suggested here. In principle, any monotonically increasing function with a tunable rate of growth will suffice. Yet the form (6) has a strong advantage of being probably the simplest one and having explicit growth control in the form of the exponent α.

Acknowledgment

This work was supported by a 1 R01 GM068954-01 grant from NIGMS.

References

[1] Newman M E J, 2004 Eur. Phys. J. B 38 321
doi:10.1088/1742-5468/2006/09/P09014
Finding mesoscopic communities in sparse networks

[2] Newman M E J, 2004 Phys. Rev. E 69 066133
[3] Newman M E J and Girvan M, 2004 Phys. Rev. E 69 026113
[4] Blatt M, Wiseman S and Domany E, 1996 Phys. Rev. Lett. 76 3251
[5] Spirin V and Mirny L E, 2003 Proc. Nat. Acad. Sci. 100 12123
[6] Reichard J and Bornholdt S, 2004 Phys. Rev. Lett. 93 21870
[7] Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M and Sakaki Y, 2001 Proc. Nat. Acad. Sci. 98 4569
[8] Uetz P et al, 2000 Nature 403 623
[9] Giot L et al, 2003 Science 302 1727
[10] Wu F W, 1982 Rev. Mod. Phys. 54 235

doi:10.1088/1742-5468/2006/09/P09014