HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Vunjak-Novakovic, Gordana, Sangeeta Bhatia, Christopher Chen, and Karen Hirschi. 2010. “HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease.” Stem Cell Research & Therapy 4 (Suppl 1): S8. doi:10.1186/scrt369. http://dx.doi.org/10.1186/scrt369.
Published Version	doi:10.1186/scrt369
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:13581276
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Introduction
The estimated cost of bringing a new drug to the clinic has increased to ~$1.2 billion, up from ~$800 million in 2003 [1]. Pharmaceutical companies face their largest losses when drugs fail late, in phase III trials and at the post-marketing stage [2]. The majority of drug recalls in the past 40 years have been due to cardiotoxicity (19% of withdrawals, including Micturin, Fen-phen, Seldane, Vioxx, Avandia), hepatotoxicity (26% of withdrawals, including Ananxyl, Alredase, Tasmar, Rezulin, Survector, Trovan, Cylert, Exanta, Prexige), or unpredicted adverse effects of drug interactions (for example, Posicor, Hismanal) [3,4]. Drug toxicities that pass through preclinical and clinical studies may result in deaths, and are highly costly. A notable example is Vioxx that has cost Merck over $5 billion in criminal and civil settlements, and has been linked to more than 27,000 deaths [5].

Existing preclinical models can provide a critical window into human physiology for determining drug safety and efficacy. However, as many as 60% of late-stage drug development failures are due to unforeseen absorption, distribution, metabolism, excretion, and toxicity profiles that might have been predicted if models of human liver tissue were available earlier in drug development [6]. Likewise, existing heart models of cardiotoxicity do not always correlate with clinical risks. For example, preclinical hERG assays are quite helpful in identifying compounds with action potential prolongation, but are not sufficient for predicting clinical QT-proarrhythmia [4]. Human microtissues platforms are now under development to improve our capability for disease modeling [7,8] and toxicology studies [9,10].

Overall, the lack of predictive drug-screening systems is a critical barrier to bringing drugs to patients. In spite of major advances, existing culture systems still lack many of the structural and signaling features of native tissues, the temporal and spatial sequences of molecular and physical regulatory factors, and the dynamic forces and systemic factors provided by blood circulation. Even in the best culture settings where distinct cell types of a specific organ system are co-cultured to promote tissue-specific transport and signaling, the effects of organ–organ interactions, metabolic/oxygen gradients, and cellular trafficking through tissues are still not included [9,11]. Also, engineered tissues have only scratched the surface in attempting to model human disease. Animal models often fail to capture human-specific features, and offer only limited control of and insight into specific mechanisms. As a result, disconnect between in vitro studies, translational animal models, and human clinical studies decreases the effectiveness of the resulting therapeutic strategies. Functional human tissue units, engineered to combine biological fidelity with the use of high-throughput platforms and real-time measurement of physiological responses, would be transformative to drug screening and predictive modeling of disease.

Modeling integrated human physiology in vitro is a formidable goal that has not been reached with any of the existing cell/tissue systems. Tissue engineering is now becoming increasingly successful in more authentically representing the actual environmental milieu of...
development, regeneration and disease progression, and in providing real-time insights into cellular and morpho-
genic events. While it is unreasonable to expect three-
dimensional tissue models to exactly match native
tissues, the models can still recapitulate certain physio-
logical functions and be used to investigate the efficacy,
safety and mode of action of therapeutic agents. Instead
of attempting to achieve the entire complexity of an
organ, we seek to identify the simplest functional tissue
unit allowing predictive in vitro studies of normal
physiology and disease. Such a minimally functional
tissue unit would replicate the tissue-specific architecture
(as a basis for function in most tissues) and a subset of
most relevant functions.

Derivation of multiple microtissues (such as heart, liver, vasculature) starting from a single population of
human induced pluripotent stem (iPS) cells allows us to
reach into a large genotype pool and use both the healthy
cells and cells with genetic mutations for drug screening
and modeling of disease. Modular microtissue platforms
can then capture the salient features of multiple human
tissues, by integrating tissue-specific cues within the
microtissue unit (to induce physiologic cell function)
with the vascular network (to assemble miniature yet
functional tissue modules). These microphysiological
platforms can be further interfaced with functional imag-
ing, to enable real-time monitoring of physiological res-
ponses at molecular, cellular and tissue levels. Such
interactive microtissue systems offer enormous com-
plexity and diversity of responses to drugs and disease
that can be modeled (for example, cardiotoxicity of drugs
metabolized by liver in a diverse genotype pool of
patients, inflammation, combinations of disease geno-
types and disease environments).

We propose that human tissues with utility for micro-
physiological studies need to combine biological com-
plexity (multicellular composition, normal and disease
phenotypes, tissue-specific architectures, vasculariza-
tion, normal human biology) and compatibility with
high-throughput screening platforms (small size, easy
handling, online readouts). With this in mind, we are
developing integrated tissue platforms that faithfully
represent the human vascular network, metabolizing
liver lobule and working cardiac muscle

Project goals and objectives

In the current (UH2) phase of work, we are establishing
iPS cell-based vascular, liver and cardiac microtissues
providing tissue-specific architectures with an integrated
vascular network, microfluidic endothelialized connec-
tions between the tissue modules, functional represen-
tation of human biology of health, injury and disease
(real-time biological readouts), and compatibility with
high-throughput multi-tissue platforms for studies of
drug toxicity and over long periods of time (≥4 weeks).
The work is being done using iPS cells (to provide a large
diversity of normal and disease genotypes) with non-
destructive monitoring of the tissue architecture and
function (for real-time insights into the progression of
biological responses). In the subsequent (UH3) phase of
work, we aim to deploy an integrated cardiac–hepatic–
vascular platform and demonstrate its utility for predic-
tive studies of human physiology.

Towards these goals, we are pursuing a set of co-
ordinated aims with constant feedback and monitoring of
the milestones. Aim 1 is to develop cell-type specific
labeling and sensing systems for online assessment of
tissue architecture and cell function. Aim 2 is to develop
a perfusable branching vascular network serving as a
model of the vascular bed and for assembling
vascularized liver and cardiac tissues. Aim 3 is to develop
a liver module by assembling hepatic microtissues in
hydrogel around the vascular tree. Aim 4 is to develop a
cardiac module by assembling matured cardiac micro-
tissues in hydrogel around the vascular tree. Aim 5 is to
conduct studies of disease susceptibility, for the
individual tissue modules and in the multi-tissue
platform. Aim 6 is to investigate human physiology and
disease in multi-tissue platforms. This way, we aim to
develop a new technology for studies of drugs in human
tissue models. If successful, the proposed approach
would radically enhance the translation of drug discovery
into human applications.

Summary of current progress

Representative results for the first project year are
summarized in Figures 1 and 2, and in several publica-
tions [8,10,12-27].

**Induced pluripotent stem reporter lines of endothelial
cells, cardiomyocytes and hepatocytes**

Our laboratories have continued interest and strong
expertise in biophysical regulation of the fate and
function of stem cells and their differentiated progeny
using molecular, cellular, matrix-derived and physical
factors. We will continue to use these approaches for
directed differentiation of stem cells into endothelial,
cardiac and hepatic lineages, and maturation of the
resulting differentiated cells.

To create clinically relevant human tissue models, we
aim to generate all cell types needed for tissue con-
struction from the same batch of iPS cells. In order to
allow use of molecular and functional imaging and study
physiological processes at multiple hierarchical levels and
in real time, we are now incorporating biosensors
(reporters) into the iPS cells to monitor specific cell
phenotypes in culture (for example, distinguish between
endothelial cells and cardiomyocytes), and to monitor
functional readouts for tissue cells. Thus far, we have established culture conditions for routine and robust generation of endothelial cells that exhibit co-expression of cell surface markers (that is, CD31, VE-cadherin) and functional properties (endothelial nitric oxide synthase production, tube formation) from multiple iPS cell lines with at least 10 to 40% efficiency [19]. We have recently adopted the culture conditions used by the Bhatia and Vunjak-Novakovic laboratories to maintain the specific iPS cell line that we are using to create the reporter lines (iPS C2a). We are now optimizing the conditions for endothelial cell-specific differentiation of this specific cell line. We are now generating reporter cell lines using Talens [28] for homologous recombination in the iPS C2a cells (iPS endothelial cells, VEcad/GFP; iPS cardiomyocytes, beta-MHC/FRFP; and iPS hepatocytes, CYP3A4/RFP).

Perfusable vascular networks

By this time, we have developed a general approach to rapidly construct perfusable vascular networks to

Figure 1. HeLiVa platform design. (A) Modular design of the culture platform, with interlocking culture chambers (the same external design, different internal designs) connected to each other and the microfluidic channels for medium perfusion. A single top and bottom plate are formed by connecting the individual chamber tops and bottoms, and sealed together to form a culture platform. (B) Chamber design for a cardiac microtissue forming around a sugar lattice (that dissolves to leave vascular network channels) and two posts (designed to subject cardiac tissue to mechanical strain, and also to serve for optical measurement of force generation by the cells), between two electrodes for electrical stimulation (the whole row of chambers shares a single pair of electrodes). (C) Chamber design for a liver microtissue, also forming around a sugar lattice (that dissolves to leave vascular network channels). For all chambers, ports are provided for fluid inlets and outlets and sample retrieval. (D) Platforms with cardiac microtissues. (E) Liver chamber. (F) Sugar lattices. (G) Contractile cardiac microtissue grown from induced pluripotent stem (iPS) cells after 4 weeks of cultivation. (H) Even propagation of electrical signals through cardiac tissue obtained from human endothelial stem cells cultured in a hydrogel derived from porcine heart tissue, measured by printed microelectrodes. (I) Vascular channels were generated by three-dimensional printing of sugar-based sacrificial filaments and coated by human endothelial cells. (J) The endothelium forms a tight barrier between lumen and interstitium (not shown), and when exposed to a gradient of angiogenic factors undergoes angiogenic sprouting that leads to new perfusable vascular networks. (K) Mature sprout stained for podocalyxin (red). Below are cross-sections of the tip cell (showing no lumen or spatial podocalyxin localization) and stalk (showing podocalyxin staining at the apical side). (L) Neovessel (M) iPS cell-derived endothelial cells cultured on an OP9 feeder layer, staining for VE-cadherin (VE-Cad) and CD31 (merged image) and 4',6'-diamino-2-phenylindole (DAPI; blue). (K), (L) Images reproduced with permission [23].
support three-dimensional culture of tissues. We printed three-dimensionally the rigid filament networks of a carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate networks lined with endothelial cells and perfused with blood under high-pressure pulsatile flow [20-23]. We have developed several methods to generate channel architectures within matrix scaffolds using either sacrificial filaments printed in sugars [20] or gelatin [22], or using needles that are withdrawn from the material [23]. We have observed intraluminal flows at high rates relative to extraluminal flow, and identified tight junctions that were permeable to transmural leakage only when cells are exposed to vasoactive permeating factors.

To facilitate assembly of the HeLiVa platform, we have also developed a mechanism that allows easy plug-in of input and output microfluidic tubing to ultimately drive the perfusion within the vascular bed and connect multiple organ systems [22]. In parallel, we have begun to explore methods to integrate the vascular perfusion approaches with the cardiac microtissue platform.

Liver microtissues
We initially focused on generating hepatic microtissues from cryopreserved human hepatocytes, and then extended the established methods to a variety of cell types including iPSC cell-derived hepatocytes. An integral part of this effort was the development of platforms for scalable control of tissue architectures [24,27]. To help maintain hepatocyte phenotype, we first co-cultured the primary hepatocytes with supportive fibroblasts by seeding the two cell types into an array of pyramidal...
microwells. Defined clusters of hepatocytes and fibroblasts (approximately five hepatocytes and five fibroblasts) in each microwell formed multicellular aggregates over 24 hours. These primary hepatocyte aggregates were then removed, encapsulated in microfluidically generated droplets of polyethylene glycol diacrylate prepolymer, and photopolymerized to form hepatocyte-laden hydrogel microtissues. Resulting liver microtissues are viable as evaluated by live–dead staining, and exhibit stable phenotypic function, secreting albumin for over 2 weeks. Towards an iPS cell-derived liver module, we have generated morphologically identifiable hepatocytes from human iPS cells with differentiation efficiencies >90%, as quantified by albumin and α₁-antitrypsin immunofluorescence, and identified small molecules for human hepatocyte expansion and iPS cell differentiation [16]. iPS cell-derived hepatocytes were additionally validated through characterization of urea production, albumin and α₁-antitrypsin secretion, and phase I drug metabolism activity. Notably, liver microtissues were successfully used to model hepatitis C infection [25].

Heart microtissues
We established protocols for differentiation of iPS cell lines into contractile cardiomyocytes, for three lines of iPS cells. Over the last 6 months we focused on one specific line, iPS C2a, which is now shared between all four laboratories. After systematically investigating several variations of staged molecular induction in three different settings (embryoid bodies, monolayers and pseudo-monolayers), we came to our protocol of choice that yields ~65% of differentiated cardiomyocytes (as evaluated by Troponin staining and contractile function). By micromanipulation (picking of beating areas), the yield of the protocol can be increased to >80%, as compared with our target go–no–go criterion of >30%. Simple microfluidic platforms [12,27] were instrumental in the development of protocols for directed differentiation of stem cells.

The resulting iPS cardiomyocytes, although functional, remain immature. To promote cardiomyocyte maturation, we applied electromechanical conditioning, following molecular induction (7 days, 5 V/cm, 2 ms square waves, frequency = 0, 0.5 Hz, 1 Hz, 2 Hz). The protocols were fully established for human embryonic stem cell cardiomyocytes and are now translated to iPS C2a cardiomyocytes. Electrical stimulation increased the strain of contractions in cardiac microtissues. In parallel, the contractions became synchronized and the strain generated by cardiac microtissues increased as the stimulation frequency increased.

Platform integration
We have developed the second working prototype of our platform, in which we have tested the assembly and perfusion of cardiac microtissues formed from iPS C2a cells, and recently started testing with iPS hepatocytes. The culture chambers have a space for the formation of cardiac microtissues from a suspension of iPS cardiomyocyte micro-aggregates in hydrogel. The hydrogel forms around the sugar lattice, between two electrodes, and around two posts (that at the same time stretch the cardiac microtissues, and enable optical measurement of the force generated by the cells from the deflection of the posts). To design the posts (material composition, geometry) we conducted analyses of the strain distribution in contracting cardiac organoids. We are now assembling subsections of the integrated microphysiologic platform, for further testing and for obtaining feedback to the individual chamber design.

Future directions
We have established methods to derive, starting from the same population of iPS cells (using the line C2a as the main experimental model), functional endothelial cells, cardiomyocytes and hepatocytes of high fidelity. We have also developed methods for maturation of differentiated cells, using small molecules (for hepatocytes) and physical signals (for cardiomyocytes). The first prototypes of microfluidic platforms for the formation and culture of vascular, cardiac and hepatic microtissues are now being used to demonstrate utility of human iPS cell-derived microtissues for physiological and pharmacological studies. Our immediate goals are to refine our microtissues by incorporating the vascular bed, to establish modular multi-tissue platforms, and to use these platforms in studies of interactive responses of cardiac, vascular and hepatic microtissues to pharmacological agents, physiological and pathological stimuli.

Abbreviations
iPS, induced pluripotent stem.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The work summarized here has been planned and conducted in close collaboration of the four laboratories at Columbia University, Massachusetts Institute of Technology, University of Pennsylvania (the PI now relocated to Boston University and Wys Institute), and Yale University, within the Microphysiological Systems Initiative and with funding support from the National Institutes of Health (grant UH2 EB017103). The publication costs for this article were funded by NIH grant UH2 EB 17103.

Declarations
Publication of this supplement has not been supported by sponsorship. Articles have undergone the journal’s standard review process. The Editors declare that they have no competing interests.

This article has been published as part of Stem Cell Research & Therapy Volume 4 Supplement 1, 2013: Stem cells on bioengineered microphysiologic platforms for disease modeling and drug testing. The full contents of the supplement are available online at http://www.stemcellres.com/supplements/4/S1.
Author details
Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA. *Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 76-453, Cambridge, MA 02139, USA. †Boston University and Wyss Institute for Biologically Inspired Engineering, Harvard University, 36 Cummington Mall, Room 201, Boston, MA 02215, USA. *Yale University, 10 Amistad Street, POB 208089, New Haven, CT 06520, USA.

Published: 20 December 2013

References
1. DiMasi JA, Hansen RW, Grabowski HG: The price of innovation: new estimates of drug development costs. J Health Econ 2003, 22:151-185.
2. Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP: Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 2011, 8:949-955.
3. Recalls, Market Withdrawals, & Safety-Alerts, in Archives. US Food and Drug Administration, 2012 [http://www.fda.gov/safety/recalls/archive/recalls/default.htm].
4. Piccini JP, Whellan DJ, Berridge BR, Finkle JK, Pettit SD, Stockbridge N, Valentin 6. Kaplowitz N: Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc Natl Acad Sci U S A 2010, 107:13141-13146.
5. Graham DJ, Campen D, Hui R, Spence M, Cheetham C, Levy G, Shoor S, Ray WA: Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 2005, 365:475-481.
6. Kaplowitz N: Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 2005, 4:489-499.
7. Huesch N, Mooney DJ: Inspiration and application in the evolution of biomaterials. Nature 2009, 462:426-432.
8. Plass A, Khetani SR, Jones CT, Syder AJ, Trehan K, Gaysinskaia VA, Mu K, Ritola K, Rice CM, Bhatia SN: Persistent hepatitis C virus infection in micorscale primary human hepatocyte cultures. Proc Natl Acad Sci U S A 2010, 107:13141-13146.
9. Sung JH, Kam C, Shuler ML: A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 2010, 10:446-453.
10. Khetani SR, Bhatia SN: Microscale culture of human liver cells for drug development. Nat Biotechnol 2008, 26:20-126.
11. Gilbert P, Blau H: Engineering a stem cell house into a home. Stem Cell Res Ther 2011, 2:3.
12. Cimetta E, Sirabella D, Yeager K, Davidson K, Simon J, Moon RT, Vunjak-Novakovic G: Dynamic regulation of early mesodermal commitment in human pluripotent stem cells using microfluidic technologies. Lab on a Chip 2013, 13:355-364.
13. Duan Y, Liu Z, O’Neill J, Wan L, Freytes DO, Vunjak-Novakovic G: Hydrogel derived from native heart matrix induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res 2011, 4:605-615.
14. Eng GM, Lee WB, Parsa H, Chin C, Schneider J, Linkov G, Vunjak-Novakovic G: Engineering complex three-dimensional cell microenvironments using docking hydrogel shapes. Proc Natl Acad Sci U S A 2013, 110:4551-4556.
15. Kosztin I, Vunjak-Novakovic G, Forgacs G: Multiscale modeling of multicellular systems: Application to tissue engineering. Rev Mod Phys 2012, 84:1791-1805.
16. Shan J, Schwartz RE, Ross NT, Logan DJ, Thomas D, Duncan SA, North TE, Goessling W, Carpenter AE, Bhatia SN: Identification of small molecules for human hepatocyte expansion and iPSC differentiation. Nat Chem Biol 2013, 9:514-520.
17. Tandon N, Marolt D, Cimetta E, Vunjak-Novakovic G: Bioreactor engineering of stem cell environments, Biotechnol Adv 2013, 31:1020-1031.
18. Zhang Y, Sevilla A, Wan LQ, Lerniscka I, Vunjak-Novakovic G: Patternning pluriopity of embryonic stem cells. Stem Cells 2013, 31:806-810.
19. Chaudhury H, Goldie LC, Hirschki KK: Vascular precursor cells. Genes Cancer 2012, 2:1081-1084.
20. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DT, Cohen DM, Toro E, Chen SS, Galie PA, Yu X, Chatuvredi R, Bhatia SN, Chen CS: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012, 11:768-774.
21. Baranski JD, Chatuvredi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD, Yang MT, Miller JS, Bhatia SN, Chen CS: Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A 2013, 110:7586-7591.
22. Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS: Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 2013, 13:3246-3252.
23. Nguyen DHT, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS: Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 2013, 110:6712-6717.
24. Stevens KR, Ungirn MD, Schwartz RE, Ng S, Carvalho B, Christie KS, Chatuvredi RR, Lu CY, Zandstra PW, Chen CS, Bhatia SN: InVERT molding for scalable control of tissue microarchitecture. Nat Commun 2013, 4:1847.
25. Schwartz RE, Trehan K, Andrus L, Sheehan TP, Plass A, Duncan SA, Rice CM, Bhatia SN: Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012, 109:2544-2548.
26. Marcelo RL, Goldie LC, Hirschki KK: Endothelial cell differentiation and specification. Circ Res 2013, 112:1272-1287.
27. Cimetta E, Godier-Furnément A, Vunjak-Novakovic G: Bioengineering heart tissue for in vitro testing. Curr Opin Biotechnol 2013, 24:926-932.
28. Hockemeyer D, Wang H, Kiani S, Lai SS, Gao Q, Cassidy JP, Cost GJ, Zhang L, Santiago Y, Miller JS, Hirschi KK: Genetic engineering of human pluripotent stem cells using TALE nucleases. Nat Biotechnol 2011, 29:731-734.

Cite this article as: Vunjak-Novakovic G, et al. HeLiVa platform: integrated heart–liver–vascular systems for drug testing in human health and disease. Stem Cell Research & Therapy 2013, 4(Suppl 1):S8.