Supporting Information for

Trimesityltriangulene: A Persistent Derivative of Clar’s Hydrocarbon

Leoš Valenta, Maximilian Mayländer, Pia Kappeler, Olivier Blacque, Tomáš Šolomek,* Sabine Richert,* and Michal Juriček*

Table of contents

S1. Supporting figures .. S2
S2. General information .. S5
S3. Synthesis and characterization S5
S4. X-ray crystallography S11
S5. EPR spectroscopy ... S14
S6. DFT calculations .. S22
S7. Copies of NMR and HRMS spectra S34
S8. Cartesian coordinates S56
S9. References ... S79
S1. Supporting figures

Fig. S1. First attempt. An attempt to prepare a trisubstituted triangulene precursor via a nucleophilic addition of a Grignard reagent to monoarylated triangulene-4,8-dione, readily available from a hydroxy derivative developed by Clar (top). Unexpectedly, a 1,4-addition instead of the desired 1,2-addition to the ketone occurred (bottom). Even though a trisubstituted derivative could be obtained using this method, the installment of the fourth substituent led to an sp3 center, which impeded further transformations towards persistent triangulene.1

![Chemical structures](image1)

Fig. S2. Second attempt. A method reported by Johnson et al. for the synthesis of the dihydro-precursor of triangulene involving a three-fold ring-closure of a pre-functionalized precursor to dihydro-triangulene2 (top). Our attempt to prepare a tetrahydroxy precursor for the acid-catalyzed ring-closure was not successful, most likely due to the crowdedness during the formation of the desired tetraol to synthesize a trisubstituted triangulene precursor (bottom).

Ar = mesityl or 3,5-di-tert-butylphenyl
UV–vis sample preparation. A mixture of 1a + 1b (2.4 mg, 3.8 µmol) and p-chloranil (4.6 mg, 19 µmol, 5 equivalents) were placed into a Schlenk tube and the atmosphere was exchanged three times with nitrogen. Then, toluene (1.5 mL) deoxygenated by freeze-pump-thaw technique in three cycles was added. For the measurements, an aliquot sample (30 µL) was diluted with deoxygenated toluene (3.0 mL) to a concentration of 2.5×10^{-5} M in an argon-flushed fluorescence cuvette equipped with a septum.

![Anthracene vibronic progression.](image)

Fig. S3. Anthracene vibronic progression. UV–vis spectra for toluene solutions of anthracene and 1a + 1b (both 2.5×10^{-5} M).
Fig. S4. Reaction monitoring. (A) UV–vis spectra for toluene solutions of a mixture of 1a + 1b with 5 equivalents of p-chloranil recorded before and after the oxidant addition (as indicated). The oxidation was performed at 2.5 mM concentration. For the UV–vis measurements, an aliquot sample of this solution was diluted to 2.5×10^{-5} M.

(B) UV–vis spectra for toluene solutions of p-chloranil (1.25×10^{-4} M), its reduced form (2.5×10^{-5} M) and a 4:1 mixture of p-chloranil and reduced p-chloranil (tetrachlorohydroquinone).
S2. General information
Anhydrous solvents and chemical reagents were purchased from commercial sources and used without further purification unless stated otherwise. The silica-gel column chromatography was performed using Merck 60 silica gel (40–63 µm). (2,6-Bis(methoxymethyl)phenyl)boronic acid was prepared according to the literature. The NMR experiments were performed on NMR spectrometers operating at 400, 500 or 600 MHz proton frequencies. Standard pulse sequences were used. Chemical shifts (δ) are reported in parts per million (ppm) relative to the solvent residual peak (1H and 13C NMR, respectively): CDCl$_3$ ($\delta = 7.26$ and 77.16 ppm), CD$_2$Cl$_2$ ($\delta = 5.32$ and 53.84 ppm). High-resolution mass spectra (HRMS) were measured as HR-ESI-MS, HR-APCI-MS or HR-EI-MS.

S3. Synthesis and characterization

9-Mesitylanthracene (9). A solution of 2-mesitylmagnesium bromide (4.1 mL, 4.1 mmol, 1.0 M in THF) was added to a solution of anthrone (500 mg, 2.57 mmol) in dry THF (20 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 65 °C for 3 h before conc. HCl (4.3 mL) was added and the reaction mixture was stirred overnight at 65 °C. The mixture was extracted with DCM (3 × 30 mL). The combined organic layers were washed with brine, dried over anhydrous MgSO$_4$ and filtered. After evaporation of the solvents, the residue was purified by column chromatography (SiO$_2$, cyclohexane/ethyl acetate, 50:1) to afford the product (240 mg, 32%) as a white solid. 1H NMR (400 MHz, CDCl$_3$, ppm): δ 8.51 (s, 1H), 8.09 (d, $J = 8.5$ Hz, 2H), 7.53 (d, $J = 8.8$ Hz, 2H), 7.49 (ddd, $J = 8.1$, 6.4, 1.2 Hz, 2H), 7.36 (ddd, $J = 8.3$, 6.5, 1.3 Hz, 2H), 7.14 (s, 2H), 2.50 (s, 3H), 1.76 (s, 6H). 13C NMR (101 MHz, CDCl$_3$, ppm): δ 137.7, 137.2, 135.9, 134.6, 131.8, 129.9, 128.8, 128.4, 126.2, 126.1, 125.7, 125.3, 21.4, 20.1. This compound was prepared previously using a different procedure. The NMR data are in agreement with those reported.6
9-Bromo-10-mesitylanthracene (3). *N*-Bromsuccinimide (NBS; 613 mg, 3.44 mmol) was added in one portion to a solution of 9 (850 mg, 2.87 mmol) in CHCl₃ (30 mL) and the reaction mixture was stirred at 60 °C for 2 h. Upon cooling to room temperature, water (40 mL) was added and the mixture was extracted with DCM (3 × 50 mL). The combined organic phases were dried over MgSO₄ and the solvent was evaporated. The residue was purified by column chromatography (SiO₂, cyclohexane) to afford the product (790 mg, 73%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.64 (d, J = 8.9 Hz, 2H), 7.60 (ddd, J = 8.8, 6.5, 1.3 Hz, 2H), 7.52 (d, J = 8.7 Hz, 2H), 7.37 (ddd, J = 8.8, 6.5, 1.2 Hz, 2H), 7.11 (s, 2H), 2.47 (s, 3H), 1.72 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 137.60, 137.56, 136.7, 134.2, 130.7, 130.6, 128.5, 128.2, 127.2, 126.5, 126.0, 122.4, 21.4, 20.1. This compound was prepared previously using a similar procedure. The NMR data are in agreement with those reported.⁷

9-(2,6-Bis(methoxymethyl)phenyl)-10-mesitylanthracene (4). A mixture of 3 (563 mg, 1.50 mmol), (2,6-bis(methoxymethyl)phenyl)boronic acid (600 mg, 2.85 mmol), DPEPhos (81 mg, 0.15 mmol), Pd₂dba₃ (69 mg, 0.075 mmol) and K₂CO₃ (1.2 g, 9.0 mmol) in toluene (20 mL), ethanol (2 mL) and water (2 mL) was deoxygenated in a Schlenk flask by freeze-pump-thaw technique in three cycles and then stirred at 100 °C for 60 h. Upon cooling to room temperature, water (30 mL) was added and the mixture was extracted with DCM (3 × 20 mL). The combined
organic phases were dried over MgSO₄ and the solvent was evaporated. The residue was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate, 25:1) to afford the product (383 mg, 55%) as an off-white solid. \(^1\)H NMR (500 MHz, CDCl₃, ppm): \(\delta 7.68 \times 2\) (d, avg. \(J = 7.5\) Hz, 2H), 7.63 (dd, \(J = 8.7, 6.5\) Hz, 1H), 7.56–7.51 (m, 2H), 7.48–7.44 (m, 2H), 7.34–7.28 (m, 4H), 7.13 (s, 2H), 3.87 (s, 4H), 2.95 (s, 6H), 2.48 (s, 3H), 1.78 (s, 6H). \(^{13}\)C NMR (126 MHz, CDCl₃, ppm): \(\delta 138.4, 137.6, 137.4, 136.4, 135.6, 134.8, 131.9, 130.1, 129.6, 128.52, 128.46, 126.6, 126.5, 126.4, 125.7, 125.6, 72.2, 58.4, 21.4, 20.1\). HRMS (ESI) \(m/z\): \([M + Na]^+\) Calcd for C\(_{33}\)H\(_{32}\)O\(_2\) 483.22945; Found 483.22931.

9-(2,6-Bis(bromomethyl)phenyl)-10-mesitylanthracene (5). Compound 4 (300 mg, 0.651 mmol) was placed into flame-dried Schlenk flask and the atmosphere was exchanged three times with nitrogen before dry DCM (4 mL) was added. To this solution, HBr (1.2 mL, 6.5 mmol, 33% in acetic acid) was added and the reaction mixture was stirred at room temperature for 24 h. The mixture was poured into water and extracted with DCM (3 \(\times\) 20 mL). The combined organic phases were dried over MgSO₄ and the solvent was evaporated. The residue was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate, 40:1) to afford the product (250 mg, 69%) as a white solid. \(^1\)H NMR (400 MHz, CDCl₃, ppm): \(\delta 7.74 \times 2\) (d, avg. \(J = 7.7\) Hz, 2H), 7.62 (dd, \(J = 8.3, 7.1\) Hz, 1H), 7.57 (dd, \(J = 6.7, 4.0, 2.0\) Hz, 2H), 7.47–7.41 (m, 2H), 7.38–7.31 (m, 4H), 7.14 (s, 2H), 4.02 (s, 4H), 2.49 (s, 3H), 1.80 (s, 6H). \(^{13}\)C NMR (101 MHz, CDCl₃, ppm): \(\delta 138.3, 138.2, 137.6, 137.5, 137.4, 134.6, 131.2, 130.4, 130.0, 129.7, 129.4, 128.5, 126.7, 126.5, 126.0, 125.8, 31.4, 21.4, 20.1\). HRMS (EI) \(m/z\): \([M]^+\) Calcd for C\(_{31}\)H\(_{26}\)Br\(_2\) 556.03958; Found 556.03945.
(2-(10-Mesitylanthracen-9-yl)-1,3-phenylene)dimethanol (6). A solution of 5 (250 mg, 0.448 mmol), potassium acetate (440 mg, 4.48 mmol) and tetrabutylammonium bromide (144 mg, 0.448 mmol) in DMF (5 mL) was stirred at 100 °C for 16 h under a nitrogen atmosphere. Upon cooling, the reaction mixture was poured over ice and extracted with DCM (3 × 15 mL). The combined organic phases were extracted twice with an excess of water, aq. LiCl (5%) and then dried over MgSO₄. The crude pale yellow oil was dissolved in THF (4 mL) and added to a solution of KOH (252 mg, 4.50 mmol) in ethanol (4 mL) and water (2 mL), and the mixture was stirred at 80 °C for 6 h. Then, sat. NH₄Cl (10 mL) was added and the mixture was extracted with DCM (3 × 15 mL). The combined organic phases were dried over MgSO₄ and the solvent was evaporated. The residue was purified by column chromatography (SiO₂, cyclohexane/ethyl acetate, 3:1) to afford the product (190 mg, 98% over two steps) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.74 (2 × d, avg. J = 7.6 Hz, 2H), 7.68 (dd, J = 8.7, 6.4 Hz, 1H), 7.58–7.52 (m, 2H), 7.49–7.43 (m, 2H), 7.37–7.29 (m, 4H), 7.13 (s, 2H), 4.14 (s, 4H), 2.48 (s, 3H), 1.77 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 140.6, 137.6, 137.5, 137.0, 135.1, 134.5, 131.3, 130.1, 129.7, 129.1, 128.5, 127.1, 126.8, 126.5, 125.82, 125.79, 63.3, 21.4, 20.2. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₁H₂₅O₂ 455.19815; Found 455.19794.
2-(10-Mesitylanthracen-9-yl)isophthalaldehyde (7). To a cooled (−78 °C) mixture of oxalyl chloride (0.12 mL, 1.4 mmol) in dry DCM (5 mL), DMSO (0.2 mL, 3 mmol) was added dropwise and the mixture was stirred at −78 °C for 30 min before a solution of 6 (195 mg, 0.451 mmol) in dry DCM (8 mL) was added. The reaction mixture was stirred at −78 °C for 1 h, then triethylamine (3.75 mL, 27.0 mmol) was added dropwise and the mixture was stirred at −78 °C for 2 h and then at room temperature for 2 h. The mixture was quenched by the addition of aq. HCl (10 mL, 1 M) and extracted with DCM (3 × 10 mL). The combined organic phases were dried over MgSO₄ and the solvent was evaporated. The residue was purified by column chromatography (SiO₂, DCM/cyclohexane, 3:1) to afford the product (150 mg, 78%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.32 (s, 2H), 8.50 (d, J = 7.7 Hz, 2H), 7.89 (t, J = 7.7 Hz, 1H), 7.64–7.58 (m, 2H), 7.45–7.33 (m, 6H), 7.14 (s, 2H), 2.49 (s, 3H), 1.78 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 190.9, 146.2, 138.8, 137.8, 137.5, 136.4, 134.0, 133.1, 131.9, 129.3, 129.2, 128.6, 127.3, 126.9, 126.1, 126.0, 125.2, 21.4, 20.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₂₆O₂ 429.18491; Found 429.18557.

4,8,12-Trimesityl-4,8-dihydrodibenzo[cd,mn]pyrene (1a) + 4,8,12-trimesityl-1,8-dihydrodibenzo[cd,mn]pyrene (1b). To a cooled (0 °C) solution of 7 in dry THF (3 mL), 2-mesitylmagnesium bromide (0.47 mL, 0.47 mmol, 1.0 M in THF) was added dropwise and the reaction mixture was allowed to warm to room temperature and then it was stirred for additional 2 h. The mixture was quenched by the addition of water (5 mL) and then extracted with DCM (3 × 5 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was evaporated. The oily residue was heated to 35 °C and kept under high vacuum for 24 h in order to remove all residual mesitylene. The crude dihydroxy intermediate was used in the next step without further purification. It was dissolved in dry DCM (10 mL) and deoxygenated by freeze-pump-thaw technique in three cycles before BF₃•Et₂O (73 µL, 0.28 mmol) was added slowly. The reaction mixture was stirred at room temperature for 15 min, then quenched by the addition of cold deoxygenated methanol (0.5 mL). The solvent was evaporated using a Schlenk line and
the residue was purified by column chromatography (SiO₂, cyclohexane/DCM, 3:1) under inert conditions using deoxygenated silica gel and solvent (see image on the right). A yellow fluorescent compound was collected into a Schlenk flask and the solvent was evaporated using a Schlenk line. The product (24 mg, 81%), which is a pale yellow solid, was obtained as a mixture of two structural isomers 1a and 1b, where isomer 1a is present as a mixture of two stereoisomers syn-1a and anti-1a (for structures, see Section S7). Because of significant overlap in the aromatic region, ¹H NMR spectrum cannot be fully described. However, analysis of the spectrum using the characteristic signals (6.42 (s, 2H, syn-1a), 6.37 (s, 2H, anti-1a), 6.60 (s, 1H, 1b), 6.24 (dt, J = 10.0, 2.2 Hz, 1H, 1b), 5.97 (dt, J = 10.1, 4.0 Hz, 1H, 1b), 3.46 (dd, J = 4.1, 2.3 Hz, 2H, 1b)) allowed us to estimate the composition of the mixture: syn-1a/anti-1a/1b ~ 1:0.4:1. Considering the rate of rotation of the mesityl groups relative to the NMR time-scale (3 × slow for syn-1a, 3 × fast for anti-1a, 2 × slow and 1 × fast for 1b), 18 methyl (Me) resonances are expected, which matches well the observation (18 Me signals in ¹H and 17 in ¹³C NMR). Considering the isomeric ratio, the aromatic signals should integrate to roughly 35H, which also matches well the observation. In addition, all 80 expected ¹³C NMR signals in the aromatic region are visible. For details, see Section S7. ¹³C NMR (151 MHz, CD₂Cl₂, ppm): δ 142.43, 142.24, 141.90, 138.43, 138.39, 138.37, 138.22, 137.98, 137.96, 137.89, 137.79, 137.75, 137.70, 137.65, 137.58, 137.54, 137.51, 137.42, 137.40, 137.39, 137.09, 136.66, 136.64, 136.59, 136.34, 136.32, 135.89, 135.84, 135.75, 135.62, 135.55, 135.52, 135.22, 132.91, 131.67, 131.64, 131.62, 131.40, 130.80, 130.24, 130.16, 129.87, 129.37, 129.28, 129.26, 129.03, 129.01, 128.87, 128.71, 128.70, 128.68, 128.66, 128.65, 128.59, 128.57, 128.50, 128.44, 127.97, 127.81, 127.23, 127.10, 126.98, 126.34, 126.26, 126.18, 126.15, 125.44, 125.09, 125.05, 124.66, 124.45, 124.25, 123.98, 123.89, 123.77, 123.71, 123.61, 123.58, 123.26, 122.62, 44.19, 44.05, 43.80, 30.10, 21.43, 21.34, 21.33, 21.30, 21.26, 21.04, 21.01, 20.64, 20.57, 20.23, 20.20, 20.07, 20.02, 19.97, 19.80, 19.79, 19.73. HRMS (APCI) m/z: [M + H]+ Calcd for C₄₉H₄₄ 633.34430; Found 633.35148.
S4. X-ray crystallography

Table S1. Crystal data for 8a

Property	Value
CCDC no.	2104838
Empirical formula	C\textsubscript{51.5}H\textsubscript{49}
Formula weight	667.90
Temperature / K	160(1)
Crystal system	triclinic
Space group	P-1
a / Å	13.0757(6)
b / Å	17.7775(8)
c / Å	18.1806(8)
α / °	80.129(4)
β / °	70.657(4)
γ / °	89.633(4)
Volume / Å\(^3\)	3922.8(3)
Z	4
ρ\(_{\text{calc}}\) / g cm\(^{-3}\)	1.131
μ / mm\(^{-1}\)	0.475
F(000)	1432.0
Crystal size / mm\(^3\)	0.14 × 0.06 × 0.02
Radiation	Cu Kα (λ = 1.54184)
2θ range for data collection / °	5.236 to 149.006
Index ranges	-16 ≤ h ≤ 16, -22 ≤ k ≤ 22, -22 ≤ l ≤ 22
Reflections collected	73678
Independent reflections	16006 [R\(_{\text{int}}\) = 0.0755, R\(_{\text{sigma}}\) = 0.0556]
Data/restraints/parameters	16006/144/901
Goodness-of-fit on F\(^2\)	1.033
Final R indexes [I ≥ 2σ (I)]	R\(_1\) = 0.0840, wR\(_2\) = 0.2320
Final R indexes [all data]	R\(_1\) = 0.1293, wR\(_2\) = 0.2680
Largest diff. peak/hole / e Å\(^{-3}\)	0.43/−0.31
X-ray diffraction. Single-crystal X-ray diffraction data were collected at 160(1) K on a Rigaku OD Synergy/Pilatus detector diffractometer using Cu Kα radiation (\(\lambda = 1.54184 \text{ Å}\)) from a micro-focus X-ray source and an Oxford Instruments Cryojet XL cooler. The selected suitable single crystal was mounted using polybutene oil on a flexible loop fixed on a goniometer head and immediately transferred to the diffractometer. Pre-experiment, data collection, data reduction and analytical absorption correction were performed with the program suite CrysAlisPro.\(^9\) Using Olex2,\(^10\) the structure was solved with the SHELXT\(^{11}\) small molecule structure solution program and refined with the SHELXL2018/3 program package\(^12\) by full-matrix least-squares minimization on F.\(^9\) PLATON\(^{13}\) was used to check the result of the X-ray analysis. For more details about the data collection and refinement parameters, see the CIF file. A solvent mask\(^{14}\) was calculated and 123 electrons corresponding to solvent molecules were found per unit cell. We considered one molecule of pentane per asymmetric unit.

Fig. S5. Crystallographic characterization of triangulene monoradical. The solid-state structure of monoradical 8a. Thermal ellipsoids are shown at the 50% probability level. The hydrogen atoms are omitted for clarity except for the C_{sp3} hydrogen atom highlighted in red. Crystals were obtained by slow evaporation of pentane under ambient conditions.
Table S2. Comparison of bond lengths obtained from XRD and DFT for 8a

Bond	DFT / Å	XRD / Å
C1–C2	1.527	1.511
C2–C3	1.387	1.395
C3–C4	1.407	1.392
C4–C5	1.376	1.375
C5–C6	1.423	1.408
C6–C7	1.426	1.442
C7–C8	1.412	1.411
C8–C9	1.424	1.439
C9–C10	1.390	1.395
C10–C11	1.390	1.390
C11–C12	1.424	1.445
C12–C13	1.412	1.393
C13–C14	1.426	1.419
C14–C15	1.423	1.418
C15–C16	1.376	1.370
C16–C17	1.407	1.402
C17–C18	1.387	1.378
C18–C1	1.527	1.522
C18–C19	1.420	1.418
C19–C14	1.436	1.434
C19–C20	1.441	1.427
C20–C21	1.441	1.444
C20–C22	1.408	1.408
C21–C2	1.420	1.410
C21–C6	1.436	1.417
C22–C8	1.446	1.423
C22–C12	1.446	1.441
C23–C1	1.534	1.535
C24–C7	1.500	1.508
C25–C13	1.500	1.507
C1–H	1.098	1.000
S5. EPR spectroscopy

EPR sample preparation. A mixture of 1a + 1b (0.4 mg, 0.6 µmol) and p-chloranil (0.8 mg, 3 µmol, 5 equivalents) were placed into separate vials with a screw-cap septum under ambient conditions. The septa were pierced with a needle and the vials were transferred into the glovebox, where p-chloranil was dissolved in deoxygenated toluene (250 µL) and then transferred into the vial with 1a + 1b. The reaction mixture was gently shaken, and after about 30 min the solution was transferred into a quartz EPR tube, which was then sealed with Critoseal®. Note that the described procedure applies to samples with a concentration of 2.5 mM. For different concentrations, the amount of solvent was adapted accordingly. For EPR measurements at the X- or Q-band, quartz EPR tubes with an outer diameter of 3.8 mm (inner diameter of ~3 mm, 125 µL of sample solution) or 1.6 mm (inner diameter of ~1 mm, 15 µL of sample solution), respectively, were used. For measurements at cryogenic temperatures, the EPR samples were rapidly frozen in liquid nitrogen before insertion into the EPR resonator.

Continuous wave EPR spectroscopy. X-band continuous wave EPR spectra were recorded on a Bruker EMXnano benchtop EPR spectrometer. The modulation frequency was set to 100 kHz and the modulation amplitude to 0.01 mT unless stated otherwise. The microwave power was adjusted for every sample to avoid saturation effects. At room temperature, a value of 0.063 mW (32 dB, 100 mW source) was found to be optimal, while much lower powers (0.0025 mW, corresponding to 46 dB) were necessary at 120 K. Room temperature cw EPR measurements at Q-band frequencies were performed on a Bruker ELEXSYS E580 spectrometer using an EN5107D2 resonator. The modulation frequency was set to 50 kHz and the modulation amplitude to 0.03 mT (32 dB microwave attenuation). After data acquisition, all spectra were baseline-corrected, frequency-corrected to either 9.75 GHz (X-band) or 34.0 GHz (Q-band) and field-corrected using a carbon fiber standard with $g = 2.002644$. The g value was calculated from the center of the experimental spectrum according to $g = \frac{h \cdot \nu}{\beta_e B_0}$ and further confirmed by numerical simulation of the spectra using EasySpin functions in MATLAB as detailed below.

Continuous wave EPR simulation procedure. For the simulations of the cw EPR spectra, the calculated hyperfine coupling constants from DFT (cf. Supporting Table S10) were taken as the basis. Only couplings larger than 0.5 MHz were considered as only these are resolved in the experimental spectra. An empirically determined scaling factor of 0.93 was applied to all calculated isotropic hyperfine coupling constants since this was found to yield the best
agreement with the experimental data. The application of a global scaling factor is also in line with the observation in the literature that hyperfine coupling constants computed by DFT are typically in good agreement with the experiment, but are frequently slightly overestimated.16 The simulations were carried out using the EasySpin routine ‘pepper’ (instead of ‘garlic’). This choice, unusual for the simulation of isotropic cw EPR spectra, was motivated by the fact that common simulation routines for fast motion EPR spectra rely on the Kivelson formulas (for anisotropic linewidths), implying that only systems with $S = 0.5$ can be accounted for. All calculated isotropic hyperfine couplings larger than 0.5 MHz were entered as computed by DFT (Table S10) and multiplied by the global scaling factor. The isotropic g value obtained from DFT was adapted slightly to best match the experimental spectrum and an appropriate linewidth (~0.03–0.04 mT) was chosen to account for unresolved hyperfine couplings. Since between 14 and 18 individual protons needed to be considered, it became computationally too expensive to treat all hyperfine couplings exactly using matrix diagonalization. Instead, matrix diagonalization was only applied for the nuclei with the six largest hyperfine couplings; all other nuclei were treated using perturbation theory, making use of the ‘hybrid’ method in EasySpin.

Comments on the continuous wave EPR simulations

Using the simulation procedure described above, a near perfect fit was obtained for the spectrum with 5 equivalents of the oxidant, leaving little doubt regarding the triplet nature of the triangulene diradical Mes$_3$-Tr. In contrast, the simulation of the spectrum with 0.1 equivalents turned out to be less straightforward. In that case, the simulation is complicated by the fact that two isomers $8a$ and $8b$ are thought to contribute significantly to the spectrum of the triangulene monoradical 8 and that the exact ratio of these two contributing species is unknown. In addition, also experimentally it is challenging to obtain a spectrum of ‘pure’ monoradical. Even if a very small amount of the oxidant was added (0.1 equivalents), we observed slightly different shapes of the cw EPR spectra when the experiment was repeated several times, suggesting that a small part of the molecules nevertheless undergoes further oxidation to the diradical. However, despite these complications, the agreement between simulation and experiment is surprisingly good, especially with respect to the magnitude of the hyperfine couplings and thus confirms our assignment.

Pulse EPR spectroscopy. The pulse EPR measurements were carried out on a Bruker ELEXSYS E580 spectrometer operated at the Q-band, equipped with an EN 5107D2 resonator.
During the measurement, the sample was kept at a constant temperature of 120 K, using an Oxford Instruments nitrogen gas-flow cryostat (CF935).

Transient nutations. Transient nutation measurements used the microwave pulse sequence \(\xi - \tau - \pi - \tau - \text{echo} \) where the flip angle \(\xi \) was gradually increased by increasing the corresponding microwave pulse length in steps of 2 ns, starting at 20 ns (i.e., \(\frac{\pi}{2} \)). At every magnetic field position within the region of the EPR spectrum, the integrated echo intensity was then recorded as a function of this pulse length. The magnetic field step size was set to 0.25 G (field scan range of 50 G, 200 points). The whole data set was background corrected using a polynomial background function. The (cross-term averaged) Fourier transform was then calculated after dead-time reconstruction, windowing using a Hamming window, and zero filling to 2000 data points. The frequency spectra were normalized by division of the frequency axis by the reference frequency obtained for a species with doublet multiplicity (8a and 8b). The 2D-data set of the frequency spectra as a function of field is shown in Fig. 3.

Additional cw EPR data

On a sample of 1a + 1b with oxidant in toluene, room temperature cw EPR spectra were acquired at two different microwave frequencies (X and Q-band) to verify if additional features can be resolved in the spectra when the experiments are performed at higher microwave frequencies. These experiments were performed for 0.1 and 5 equivalents of the oxidant and are shown in Fig. S6. Since no significant differences in the spectral shape were observed, all further cw EPR spectra were recorded at X-band frequencies only.
Fig. S6. Room temperature cw EPR spectra of a 2.5 mM solution of 1a + 1b in toluene with 0.1 (left) and 5 (right) equivalents of the oxidant recorded at X- (top) and Q-band (bottom) frequencies.

To find suitable conditions for pulse EPR experiments and verify the reproducibility of the data, cw EPR spectra were recorded using different concentrations of 1a + 1b, different oxidant equivalents and different waiting times after oxidant addition. It was found that the same spectrum is obtained when either (i) adding more of the oxidant and recording the spectrum shortly after oxidant addition or (ii) adding less oxidant and leaving the sample to react for a longer time. This behavior is expected for a chemical oxidation to the diradical Mes-Tr and underlines the reproducibility of the spectral shape. An exemplary data set is shown in Fig. S7. The ‘best’ spectrum for monoradical 8 could be obtained when using low concentrations of 1a + 1b (≤ 0.5 mM) and oxidant equivalents lower or equal than one.
Fig. S7. Room temperature cw EPR spectra of a 1 mM solution of 1a + 1b in toluene at different oxidant concentrations (as indicated, left) and a 0.5 mM solution of 1a + 1b in toluene with 1 equivalent of the oxidant at different times after oxidant addition (as indicated, right).

Fig. S8 shows the cw EPR spectra for the samples of a 2.5 mM solution of 1a + 1b and oxidant in toluene that were used for the pulse EPR measurements (transient nutations). For these experiments, we deliberately employed only a short waiting time after oxidant addition since we did not want the monoradical species 8 to react any further in case of the sample with 0.1 equivalents and wanted to obtain a mixture of 8 and Mes3-Tr in the case of the sample with 5 equivalents in order to be able to use the monoradical species 8 as an internal standard. The spectra in Fig. S8 are compared with the spectra that we assigned to 8 and Mes3-Tr, respectively. The comparison clearly shows that the sample with 5 equivalents is a mixture of mono- and diradical species, as we had aimed for.

Fig. S8. Comparison of the room temperature cw EPR spectra of a 2.5 mM solution of 1a + 1b in toluene with 0.1 (left) and 5 equivalents (right) of the oxidant, recorded directly before the pulse EPR measurements, with the corresponding reference spectrum assigned to the monoradical 8 (left) and diradical Mes3-Tr (right), respectively.
If the triplet state of **Mes$_3$-Tr** corresponds to the electronic ground state of the molecule, the EPR signal intensity is expected to increase when the temperature is lowered. To demonstrate this behavior, continuous wave EPR spectra were also recorded in frozen solution between 120 and 170 K. Fig. S9 shows the corresponding spectra recorded with a sample of a 1 mM solution of **1a + 1b** with 5 equivalents of p-chloranil approximately 5 hours after oxidant addition. The microwave attenuation was set to 46 dB (0.0025 mW) and the modulation amplitude to 1 G. All experimental settings were kept the same between the measurements to assure that the relative signal intensities are comparable. From Fig. S8 it can clearly be seen that the signal intensity decreases with increasing temperature, strongly suggesting a triplet ground state. Likely due to the small expected D value, no half-field line could be detected for the diradical species **Mes$_3$-Tr** at temperatures of 100 K and above.

Fig. S9. Continuous wave EPR spectra of a 1 mM solution of **1a + 1b** with 5 equivalents of the oxidant, recorded in frozen toluene solution at variable temperatures (as indicated) using a modulation amplitude of 1 G and a microwave attenuation of 46 dB.

To verify the persistence of the formed diradical species, room temperature X-band continuous wave EPR spectra were recorded after 3 hours, 2 weeks, and 3 weeks after oxidant addition and are shown in Fig. S10. The spectra were measured using the same experimental settings. The active part of the resonator was always completely filled (same active volume) and the Q-values of the cavity were very similar (4895, 5180, and 5062 for the spectra recorded after 3 hours, 2 weeks, and 3 weeks, respectively) so that the signal intensities are directly comparable. The diradical **Mes$_3$-Tr** was generated in the glove box by chemical oxidation of a 1 mM solution of the dihydro-precursor mixture (**1a + 1b**) in toluene using 5 equivalents of p-chloranil and transferred into an EPR tube which was subsequently sealed with Critoseal®. Between the EPR measurements, the sealed EPR tube was stored at room temperature.
Fig. S10. Stability measurement of Mes$_3$-Tr. Room temperature X-band continuous wave EPR spectra were recorded after 3 hours, 2 weeks, and 3 weeks after oxidant addition. The spectra were measured using the same experimental settings so that the signal intensities are directly comparable.

Echo-detected field sweep

Echo-detected field-swept EPR spectra at the Q-band (34 GHz) were recorded using the sequence $\frac{\pi}{2} - \tau - \pi - \tau - \text{echo}$ with $\tau = 140$ ns and a π-pulse length of 40 ns. Fig. S11 shows the spectra recorded for a 2.5 mM solution of 1a + 1b with either 0.1 or 5 equivalents of p-chloranil in frozen toluene solution at 120 K. The spectra were frequency corrected to 34.0 GHz and normalized for a comparison of the spectral shape.

Fig. S11. Comparison of the echo-detected field-swept EPR spectra of frozen 2.5 mM solutions of 1a + 1b in toluene with 0.1 and 5 equivalents of the oxidant, recorded at 120 K.
Relaxation measurements

Spin coherence times (T_m) were measured using the pulse sequence $\frac{\pi}{2} - \tau - \pi - \tau - \text{echo}$, where τ was gradually increased in steps of 16 or 4 ns, for the samples with 0.1 and 5 equivalents, respectively. A fit to the experimental data was performed assuming a mono-exponential decay of the form

$$I(\tau) = A \exp\left(-\frac{2\tau}{T_m}\right)$$

For the sample with 0.1 equivalents of the oxidant, a T_m value of 2.0 μs was measured, while for the sample with 5 equivalents a value of 0.6 μs was obtained at the position of the intensity maximum of the field-swept EPR spectrum (center of the spectrum).

The decay traces measured in frozen toluene at 120 K are shown in Fig. S12. As it would be expected for a diradical system with strong coupling between the unpaired spins, the phase memory time is considerably reduced in the sample with 5 equivalents of p-chloranil.

![Decay traces](image)

Fig. S12. Measurement of the spin coherence time (T_m) of frozen 2.5 mM solutions of 1a + 1b with 0.1 and 5 equivalents of the oxidant, recorded at 120 K at a magnetic field position corresponding to the intensity maximum (center) of the respective EPR spectra.
S6. DFT calculations

Calculations for the triangulene precursors 1, the generated monoradicals 8 and triangulene were performed with the Gaussian 09 (Revision D.01)17 suite of electronic structure programs. The geometries of the individual molecules were simplified by replacing the mesityl groups by hydrogen atoms. In addition, a pair of molecules with mesityl groups, 1a and 1b, were calculated to validate the effect of the peripheral substituents on the electronic transitions. The geometries were optimized at the B3LYP/6-31G(d) level of theory with the standard ultrafine integration grid. In the case of 1a and 1b, a finer integration grid (Superfine grid in Gaussian) was necessary to converge the optimization process to the local minimum. This grid was then used for all calculations of molecules with mesityl groups. The unrestricted formalism was used in calculations of open-shell molecules (doublet and triplet states). A frequency analysis was performed to confirm that the located stationary points represented local energy minima. Single point energies were computed with the B3LYP functional and cc-pVTZ basis set, the level of theory that successfully reproduced the experimental relative energies of 1a' and 1b' (for structures, see Supporting Tables 3 and 4) determined previously.18 The reported final energies are at 0 K, that is, they represent the sum of the electronic energy and the zero-point vibrational energy correction. The latter was used unscaled. The electronic transitions were estimated with time-dependent DFT using B3LYP, PBE0 and BMK functionals and the 6-31G(d) basis set, considering 30 transitions to reduce the integration noise in the important low-energy excitations. Transitions with oscillator strengths $f > 0.01$ are reported unless stated otherwise. We found that the mesityl groups do not significantly affect either the energies or the oscillator strengths of individual electronic transitions in the triangular chromophores of 1, 8 or triangulene.
Table S3. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only \(f > 0.01 \) are shown) for 1a'

![Dihydro-precursor 1a'](image)

Relative energy = 1.3 kcal mol\(^{-1}\)

	B3LYP	BMK	PBE0						
	Energy / eV	Wavelength / nm	Oscillator strength \(f \)	Energy / eV	Wavelength / nm	Oscillator strength \(f \)	Energy / eV	Wavelength / nm	Oscillator strength \(f \)
\(S_1 \)	2.7668	448.11	0.1753	3.0230	410.14	0.2155	2.8376	436.93	0.1856
\(S_5 \)	4.1369	299.70	0.0174	4.4826	276.59	0.0175	4.2802	289.67	0.0275
\(S_7 \)	4.3912	282.35	0.0573	4.6325	267.64	0.0829	4.5293	273.74	0.0553
\(S_9 \)	4.8780	254.17	0.8244	4.8843	253.84	0.0447	4.7055	263.49	0.0158
				4.9955	248.19	0.1241	4.9917	248.38	0.8715
Table S4. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only $f > 0.01$ are shown) for 1b'

Dihydro-precursor 1b'
![Dihydro-precursor](image)

Relative energy = 0.0 kcal mol$^{-1}$

	Energy / eV	Wavelength / nm	Oscillator strength f
B3LYP			
S3	3.7886	327.25	0.1625
S4	4.0305	307.61	0.4806
S5	4.3379	285.81	0.0126
S6	4.4823	276.61	0.0101
S7	4.6456	266.88	0.0188
S9	4.8616	255.03	0.0569
BMK			
S3	4.2764	289.93	0.2946
S4	4.3935	282.20	0.5904
S5	4.6958	264.03	0.0117
S6	5.0110	247.42	0.0160
PBE0			
S3	3.9211	316.20	0.1873
S4	4.1323	300.03	0.5135
S5	4.4428	279.07	0.0136
S6	4.6229	268.19	0.0115
S7	4.8059	257.98	0.0204
S9	5.0075	247.60	0.0489
Table S5. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only \(f > 0.01 \) are shown) for 1a

	B3LYP syn-1a	B3LYP anti-1a				
	Energy / eV	Wavelength / nm	Oscillator strength \(f \)	Energy / eV	Wavelength / nm	Oscillator strength \(f \)
S1	2.6997	459.26	0.2625	2.7060	458.19	0.2633
S15	4.3625	284.20	0.0347	3.7731	328.60	0.0133
S17	4.4533	278.41	0.0347	4.3554	284.67	0.0143
S18	4.4940	275.89	0.0610	4.3855	282.72	0.0291
S19	4.5353	273.38	0.0226	4.4583	278.10	0.0457
S20	4.6049	269.25	0.0110	4.4821	276.62	0.0512
S21	4.7832	259.21	0.7509	4.5471	272.67	0.0224
				4.5914	270.03	0.0112
				4.7841	259.16	0.7520

Relative energy (syn) = 6.6 kcal mol\(^{-1}\) Relative energy (anti) = 6.5 kcal mol\(^{-1}\)
Table S6. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only $f > 0.01$ are shown) for 1b

B3LYP	Energy / eV	Wavelength / nm	Oscillator strength f
S2	3.5530	348.95	0.0159
S3	**3.7421**	**331.33**	**0.2310**
S4	**3.9447**	**314.31**	**0.6022**
S6	4.2893	289.06	0.0248
S7	4.3203	286.98	0.0127
S11	4.5093	274.95	0.0186
S12	4.5193	274.34	0.0135
S25	4.8379	256.28	0.0535
S27	4.8864	253.73	0.0154
S30	4.9563	250.15	0.0324

Relative energy = 0.0 kcal mol$^{-1}$
Table S7. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only $f > 0.01$ are shown) for 8a'

Monoradical 8a'

![Chemical Structure of 8a']

Relative energy (8a') = -2.3 kcal mol$^{-1}$
Relative energy (8a) = -3.4 kcal mol$^{-1}$

	B3LYP	BMK	PBE0
S2	2.4652	2.7794	2.6306
S7	3.2076	3.4860	3.3539
S8	3.3752	3.6531	3.5340
S10	3.6383	4.0335	3.8186
S12	3.9346	4.3015	4.0497
S15	4.2365	4.6524	4.8390
S22	4.6804		
S26	4.8537		

Energy / eV | **Wavelength / nm** | **Oscillator strength f**

2.4652 | 502.93 | 0.0566
3.2076 | 386.54 | 0.0484
3.3752 | 367.34 | 0.0900
3.6383 | 340.77 | 0.1001
3.9346 | 315.11 | 0.3539
4.2365 | 292.66 | 0.0108
4.6804 | 264.90 | 0.0161
4.8537 | 255.44 | 0.2241

2.7794 | 446.09 | 0.0716
3.4860 | 355.67 | 0.0675
3.6531 | 339.40 | 0.2046
4.0335 | 307.38 | 0.0724
4.3015 | 288.23 | 0.4292
4.6524 | 266.49 | 0.0179

2.6306 | 471.31 | 0.0603
3.3539 | 369.67 | 0.0474
3.5340 | 350.83 | 0.1219
3.8186 | 324.68 | 0.0714
4.0497 | 306.16 | 0.3815
4.8390 | 256.22 | 0.0220

S27
Table S8. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only $f > 0.01$ are shown) for 8b’

Monoradical 8b’
![Diagram](image)

Relative energy (8b’) = 0.0 kcal mol$^{-1}$
Relative energy (8b) = 0.0 kcal mol$^{-1}$

	B3LYP	BMK	PBE0						
	Energy / eV	Wavelength / nm	Oscillator strength f	Energy / eV	Wavelength / nm	Oscillator strength f	Energy / eV	Wavelength / nm	Oscillator strength f
S$_2$	2.4132	513.77	0.1377	2.4132	513.77	0.1377	2.4132	513.77	0.1377
S$_6$	3.2157	385.55	0.0430	3.2157	385.55	0.0430	3.2157	385.55	0.0430
S$_7$	3.3861	366.15	0.0222	3.3861	366.15	0.0222	3.3861	366.15	0.0222
S$_9$	3.4685	357.46	0.0196	3.4685	357.46	0.0196	3.4685	357.46	0.0196
S$_{10}$	3.6547	339.24	0.0305	3.6547	339.24	0.0305	3.6547	339.24	0.0305
S$_{11}$	3.7784	328.14	0.0712	3.7784	328.14	0.0712	3.7784	328.14	0.0712
S$_{19}$	4.3762	283.31	0.0220	4.3762	283.31	0.0220	4.3762	283.31	0.0220
S$_{26}$	4.8973	253.17	0.1184	4.8517	255.55	0.0694	4.8517	255.55	0.0694
Table S9. TD-DFT-calculated relative energies, absorption maxima and corresponding oscillator strengths (only $f > 0.01$ are shown) for triangulene

S	B3LYP	Energy / eV	Wavelength / nm	Oscillator strength f
S1	2.6461	468.56	0.0004	
S2	2.6472	468.35	0.0004	
S3	2.9103	426.02	0.0018	
S4	2.9111	425.91	0.0018	
S8	3.2289	383.98	0.0184	
S9	3.2290	383.97	0.0186	
S10	3.2908	376.76	0.0082	
S11	3.2920	376.62	0.0082	
S12	3.4227	362.24	0.0122	
S13	3.4235	362.15	0.0126	
S15	3.9160	316.61	0.4307	
S16	3.9162	316.60	0.4308	

S	BMK	Energy / eV	Wavelength / nm	Oscillator strength f
S1	2.8626	433.12	0.0004	
S2	2.8643	432.87	0.0004	
S3	3.1045	399.37	0.0020	
S4	3.1053	399.27	0.0020	
S7	3.5433	349.91	0.0321	
S8	3.5437	349.88	0.0319	
S10	3.7185	333.43	0.0203	
S11	3.7200	333.29	0.0208	
S12	3.8195	324.61	0.0466	
S13	3.8197	324.59	0.0476	
S14	4.2291	293.17	0.5181	
S15	4.2300	293.11	0.5173	
DFT calculations of hyperfine coupling constants and spin densities

Calculations for the generated monoradicals 8 and the triplet diradical Mes-Tr were performed using the ORCA program package (Version 4.0). For the calculation of the spin densities, the structures were first optimized in their doublet or triplet ground states using the B3LYP functional in combination with the def2-TZVP basis set. The RI approximation was employed (RIJCOSX) using the def2/J auxiliary basis set. Magnetic property calculations in the doublet or triplet states used the B3LYP functional in combination with the EPR-II basis set. DFT predicts near identical g values for all three structures of 2.0026. A visual representation of the optimized molecular structures and calculated spin densities (iso value of 0.001) is shown in Fig. S13. Fig. S14 shows a visual representation of the calculated anisotropic proton hyperfine coupling tensors for the three structures and gives an overview over the corresponding isotropic values which were used in the simulations. A summary of the isotropic values is provided in Table S10. All hyperfine couplings smaller than 0.5 MHz were neglected here since they are not resolved in the experimental spectra and only contribute to the linewidth.
Fig. S13. Visualization of the spin density in the doublet state of 8a and 8b (left and center, respectively) and in the triplet state of **Mes**⁻⁻**Tr** (right) as predicted by DFT calculations.

Fig. S14. Visualization of the calculated proton hyperfine coupling tensors associated with the doublet state of 8a and 8b (left and center, respectively) and the triplet state of **Mes**⁻⁻**Tr** (right). The tensors are placed at the position of the individual protons and have been scaled by the same value in all cases for illustration purposes. The illustration below shows the corresponding isotropic hyperfine coupling constants as needed for the simulations of the room temperature cw EPR spectra. Similar values have been grouped and only calculated hyperfine coupling constants larger than 0.5 MHz are considered. All smaller couplings are assumed to contribute to the linewidth only.
Table S10. Overview of the calculated isotropic 1H hyperfine coupling constants for 8a, 8b and Mes$_3$-Tr as used in the simulations

Set	Monoradical 8a	Monoradical 8b	Diradical Mes$_3$-Tr
1	$-22.9 \text{ MHz (x} \times 1)$	$-17.4 \text{ MHz (x} \times 1)$	$-10.9 \text{ MHz (x} \times 1)$
2	$-22.7 \text{ MHz (x} \times 1)$	$-17.1 \text{ MHz (x} \times 1)$	$-10.8 \text{ MHz (x} \times 4)$
3	$-16.4 \text{ MHz (x} \times 1)$	$-16.0 \text{ MHz (x} \times 1)$	$-10.7 \text{ MHz (x} \times 1)$
4	$8.1 \text{ MHz (x} \times 1)$	$-15.6 \text{ MHz (x} \times 1)$	$4.0 \text{ MHz (x} \times 3)$
5	$-7.0 \text{ MHz (x} \times 1)$	$-13.7 \text{ MHz (x} \times 1)$	$0.6 \text{ MHz (x} \times 6)$
6	$-6.9 \text{ MHz (x} \times 1)$	$-12.6 \text{ MHz (x} \times 1)$	—
7	$-6.2 \text{ MHz (x} \times 1)$	$6.1 \text{ MHz (x} \times 1)$	—
8	$-6.1 \text{ MHz (x} \times 1)$	$5.7 \text{ MHz (x} \times 1)$	—
9	$3.5 \text{ MHz (x} \times 2)$	$2.5 \text{ MHz (x} \times 1)$	—
10	$1.0 \text{ MHz (x} \times 1)$	$-1.5 \text{ MHz (x} \times 1)$	—
11	$0.97 \text{ MHz (x} \times 1)$	$1.4 \text{ MHz (x} \times 1)$	—
12	$0.96 \text{ MHz (x} \times 1)$	$1.3 \text{ MHz (x} \times 1)$	—
13	$0.95 \text{ MHz (x} \times 1)$	$0.66 \text{ MHz (x} \times 3)$	—
14	—	$0.60 \text{ MHz (x} \times 3)$	—

Near identical values were grouped to form sets of equivalent protons and only couplings larger than 0.5 MHz were considered. The couplings of the methyl group protons on the mesityl side groups were averaged since the methyl group is assumed to be freely rotating. The number of equivalent protons is given in parentheses and the couplings of protons on the mesityl side groups are marked in gray. In the simulations of the spectra, shown in Fig. 3, a scaling factor of 0.93 was applied to all proton couplings listed above.
Calculation of the singlet–triplet energy gap for Mes$_3$-Tr

The exchange coupling parameter J was calculated by comparing the energies of triplet and broken-symmetry (singlet) wavefunctions, using the Yamaguchi formalism20,21

$$J = \frac{E_{BS} - E_T}{\langle S^2 \rangle_T - \langle S^2 \rangle_{BS}}$$

where E_{BS} is the energy of the broken-symmetry (singlet) state, E_T is the energy of the triplet state, and $\langle S^2 \rangle_{BS}$ and $\langle S^2 \rangle_T$ are the expectation values of S^2 for the broken symmetry and triplet states. The SCF convergence criteria were set to 10^{-8} (default) and 10^{-12} for the geometry optimizations and single-point calculations, respectively.

From an initial converged triplet geometry and wavefunction, a broken symmetry guess at the triplet geometry was converged to generate the singlet solution. This yielded a J value of 2235 cm$^{-1}$.

Since the DFT calculations make use of the following Hamiltonian

$$\mathcal{H}_J = -2J \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2$$

a positive J value indicates ferromagnetic coupling ($E_T < E_S$), in agreement with the experimental observations. From this calculation, the singlet–triplet gap ($2J$) is thus estimated to be about 12.8 kcal mol$^{-1}$.

Using the same procedure for the parent triangulene molecule without the three mesityl side groups, a value of 13.2 kcal mol$^{-1}$ is obtained, which is in good agreement with previous literature results.22
S7. Copies of NMR and HRMS spectra

1H NMR / 400 MHz / CDCl$_3$
1H NMR / 400 MHz / CDCl$_3$
13C NMR / 101 MHz / CDCl$_3$

![NMR spectrum with chemical shifts and chemical structure](image)

δ / ppm
1H NMR / 500 MHz / CDCl$_3$
13C NMR / 126 MHz / CDCl$_3$

![NMR spectrum](image)

Chemical shifts (δ in ppm):

- 138.89
- 139.92
- 139.27
- 135.92
- 135.78
- 133.85
- 128.07
- 126.92
- 125.7
- 123.61
- 120.61
- 120.64
- 67.06
- 2.16
- 1.36

CDCl$_3$

Chemical structure: ![Structure](image)
Sample: LV_417

Client: 20_juQEx_1527

Solvent: MeOH/CHCl3 3:2

RT: 0.00 - 1.00

m/z	Intensity	Relative Abundance	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
483.22931	189361728.0	100.00	483.22931	0.00	21.1	C_{21}H_{34}O_{2}Na
483.22945	0.30	17.5	C_{21}H_{34}O_{2}Na			
483.22968	0.78	3.5	C_{21}H_{34}O_{2}Na			
483.22996	2.35	5.0	C_{21}H_{34}O_{2}Na			
483.22962	1.41	0.0	C_{21}H_{34}O_{2}Na			
483.22958	1.43	0.0	C_{21}H_{34}O_{2}Na			
483.22934	1.99	0.0	C_{21}H_{34}O_{2}Na			
483.22911	2.48	0.0	C_{21}H_{34}O_{2}Na			
483.23051	2.50	21.0	C_{21}H_{34}O_{2}Na			
483.22783	3.04	16.5	C_{21}H_{34}O_{2}Na			
483.23302	3.55	8.5	C_{21}H_{34}O_{2}Na			
483.23103	3.56	3.0	C_{21}H_{34}O_{2}Na			
483.23130	4.13	4.5	C_{21}H_{34}O_{2}Na			
483.22782	4.19	5.0	C_{21}H_{34}O_{2}Na			

AV: 4

SB: 24 0.03-0.23 , 0.70-0.95

RT: 0.40 - 0.46

m/z	Intensity	Relative Abundance	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
483.23047	4.26	4.5	C_{21}H_{34}O_{2}Na			
483.23064	4.24	5.0	C_{21}H_{34}O_{2}Na			

T: FTMS + p ESI Full lock ms [100.0000-1500.0000]
1H NMR / 400 MHz / CDCl$_3$
Sample: 6340cohr-cmass2 #14-20 RT: 0.98-1.43 AV: 7 NL: 1.32E6
T: + c EI Full ms [527.56-583.56]

m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	Composition
556.03945	655784.0	100.00	556.03958	-0.24	C_{31}H_{26}Br_{2}
556.03930	559.04068	558.03766	557.04268	0.25	C_{42}H_{26}O_{2}N
1H NMR / 400 MHz / CDCl$_3$
13C NMR / 101 MHz / CDCl$_3$
\(^1\text{H NMR / 400 MHz / CDCl}_3\)
13C NMR / 101 MHz / CDCl$_3$
Sample: LV_421

Client: (+)-HR-ESI-MS

Solvent: MeOH/CHCl3 3:2

RT: 0.00 - 1.00

m/z	Intensity	Relative Abundance	Theo. Mass	Delta (ppm)	RDB	Composition
429.18557	51330596.0	100.00	429.18541	0.36	7.0	C17H27O8N5
429.18491	1.54	6.5	C31H25O2	19.5	H2O:O2	
429.18676	-2.77	1.5	C19H29O9N2	20.0	H2O:O	20.0%
429.18408	3.47	1.0	C16H31O12N	20.0	H2O:O2	20.0%
429.18356	4.67	1.0	C29H23ON3	20.0	H2O:O2	20.0%

RT: 0.40 - 0.47

m/z	Intensity	Relative Abundance	Theo. Mass	Delta (ppm)	RDB	Composition
429.18579	411.17479	100.00	429.18624	0.36	7.0	C17H27O8N5
429.18649	1.24	6.5	C31H25O2	19.5	H2O:O2	
429.18881	-2.77	1.5	C19H29O9N2	20.0	H2O:O	20.0%
429.20124	3.47	1.0	C16H31O12N	20.0	H2O:O2	20.0%
429.18357	4.67	1.0	C29H23ON3	20.0	H2O:O2	20.0%

RT: 0.40 - 0.46

m/z	Intensity	Relative Abundance	Theo. Mass	Delta (ppm)	RDB	Composition
429.18579	411.17479	100.00	429.18624	0.36	7.0	C17H27O8N5
429.18649	1.24	6.5	C31H25O2	19.5	H2O:O2	
429.18881	-2.77	1.5	C19H29O9N2	20.0	H2O:O	20.0%
429.20124	3.47	1.0	C16H31O12N	20.0	H2O:O2	20.0%
429.18357	4.67	1.0	C29H23ON3	20.0	H2O:O2	20.0%

RT: 0.40 - 0.47

m/z	Intensity	Relative Abundance	Theo. Mass	Delta (ppm)	RDB	Composition
429.18579	411.17479	100.00	429.18624	0.36	7.0	C17H27O8N5
429.18649	1.24	6.5	C31H25O2	19.5	H2O:O2	
429.18881	-2.77	1.5	C19H29O9N2	20.0	H2O:O	20.0%
429.20124	3.47	1.0	C16H31O12N	20.0	H2O:O2	20.0%
429.18357	4.67	1.0	C29H23ON3	20.0	H2O:O2	20.0%
13C NMR / 151 MHz / CD$_2$Cl$_2$
The sample of a 2.5 mM solution of Mes-Tr in toluene was evaporated to dryness using a Schlenk line, re-dissolved in acetonitrile, and measured. The desired $[M + H]^+ = 631.3555$ peak is observed and the isotopic distribution is in an agreement with the simulated pattern.
Measured m/z vs. theoretical m/z

Meas. m/z	#	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e¯	Conf	z
631.3355	1	C 49 H 43	100.00	631.335	0.4	0.7	2.0	28.5	even	1+	

Mass list

#	m/z	I %	I
1	144.9820	2.9	8847
2	157.0834	4.6	13803
3	171.0991	4.6	13727
4	185.1146	15.2	45814
5	186.0684	2.8	8359
6	199.1302	5.0	15045
7	205.0599	50.2	151380
8	206.0634	3.5	10593
9	213.1459	10.3	31165
10	215.1251	4.9	14643
11	217.0468	4.6	13860
12	217.1046	6.8	20565
13	226.9514	2.9	8852
14	227.1251	9.7	29363
15	229.1409	18.9	56879
16	239.0887	7.9	23747
17	241.0679	6.2	18612
18	241.1771	2.4	7337
19	245.0785	63.3	100848
20	246.0816	8.6	26002
21	251.1250	4.8	14371
22	254.2474	2.4	7350
23	256.2631	4.4	13288
24	257.1357	2.4	7134
25	261.1305	3.5	10421
26	271.1875	2.4	7243
27	273.1669	3.6	10937
28	280.2631	3.0	9053
29	282.2786	37.5	112995
30	283.2820	7.2	21574
31	301.1406	12.2	36896
32	304.2606	9.6	28811
33	318.2398	4.3	12992
34	320.2552	3.1	9237
35	336.2503	3.3	9967
36	405.2603	3.6	10910
37	413.2654	4.4	13407
38	449.2863	4.1	12232
39	480.5128	3.9	11816
40	485.1120	2.4	7364
41	493.3122	2.6	7729
42	504.5125	5.9	17700
43	506.5288	51.1	153958
44	507.5319	18.7	56480
45	508.5386	4.9	14755
46	523.3234	5.2	15674
47	528.5102	9.9	29838
48	529.5138	3.7	11076
49	536.1643	2.7	8267
50	541.1202	28.6	85316
51	542.1206	13.6	40870
52	543.1181	10.0	30137
53	544.1180	3.4	10254
54	559.1301	2.5	7678
55	610.1839	10.2	30834
56	611.1837	5.7	17205
57	612.1819	4.4	13375
58	615.1388	28.5	86067
59	616.1395	16.4	49607
60	617.1368	11.5	34738
61	628.1366	5.1	15433
62	630.3264	3.2	9720
#	m/z	I %	l
---	---------	------	-----
63	526.4850	2.4	14383
64	528.5108	13.4	75209
65	529.5139	5.1	29923
66	530.5195	1.2	7346
67	535.5186	1.4	8103
68	537.5342	1.5	8984
69	557.5007	1.4	8491
70	559.5163	2.3	13599
71	561.5341	2.3	13650
72	563.5501	11.1	65806
73	564.5533	4.5	26747
74	565.5567	1.4	8294
75	585.5324	15.4	91097
76	586.5355	6.3	37117
77	587.5417	1.9	11446
78	613.4901	1.4	8105
79	615.5057	1.6	9396
80	617.5211	1.6	9269
81	631.3350	4.2	24929
82	631.5012	2.4	13952
83	632.3383	2.3	13617
84	633.5159	1.9	11019
85	645.4798	1.3	7822
86	647.4952	1.8	10466
87	649.5110	2.0	11642
88	663.4903	1.5	9160
89	679.4857	1.3	7717
90	783.7664	1.4	8226
91	787.8022	4.0	23418
92	788.8038	2.2	12837
93	807.7669	1.3	7923
94	809.7826	8.0	47251
95	810.7862	4.5	26551
96	811.7919	1.9	11187
97	823.7618	1.6	9232
98	825.7764	1.4	8550
99	841.7719	2.2	12900
100	842.7759	1.3	7677

Acquisition Parameter

| General | | | | |
|---------|-----------|--------|--------|
| Source | Set Nebulizer 0.4 Bar | Set Dry Heater 180 °C | Set Capillary 3600 V | Set End Plate Offset -500 V |
| Quadrupole | Set Ion Energy (MS only) 4.0 eV | | Set Collision Cell RF 350.0 Vpp | 100.0 Vpp |
| Coll. Cell | Collision Energy 8.0 eV | | | |
| Ion Cooler | Set Ion Cooler Transfer Time 75.0 µs | | Set Ion Cooler Pre Pulse Storage Time 10.0 µs | |
S8. Cartesian coordinates

1a’, $E_d = -846.826514$ Hartree

	3.557730	1.202350	-0.074584
C	2.165225	1.215267	0.017674
C	1.450303	-0.000003	0.045274
C	2.165220	-1.215275	0.017674
C	3.557725	-1.202364	-0.074584
C	4.258826	-0.000008	-0.128761
C	-0.023222	0.000000	0.068403
C	-0.733462	-1.226213	0.047939
C	-0.733457	1.226216	0.047939
C	-0.053840	2.488060	0.047485
C	-0.779630	3.656498	-0.003988
C	-2.198162	3.649762	-0.039635
C	-2.879954	2.462456	-0.029992
C	-2.177087	1.220709	0.007136
C	-2.177092	-1.220700	0.007136
C	-2.879964	-2.462444	-0.029992
C	-2.198177	-3.649754	-0.039635
C	-0.779645	-3.656495	-0.003988
C	-0.053850	-2.488060	0.047485
C	-2.858070	0.000006	-0.007542
C	1.453581	2.543042	0.136023
C	1.453571	-2.543048	0.136023
H	4.096027	2.147570	-0.101464
H	4.096019	-2.147586	-0.101465
H	5.342681	-0.000010	-0.206406
H	-0.254136	4.609356	-0.011475
H	-2.736231	4.593281	-0.075309
H	-3.966636	2.442287	-0.056581
H	-3.966645	-2.442272	-0.056581
H	-2.736249	-4.593270	-0.075309
H	-0.254155	-4.609355	-0.011475
\begin{verbatim}
H -3.945468 0.000008 -0.040896
H 1.841892 3.235311 -0.623604
H 1.732785 2.995540 1.100847
H 1.841880 3.235311 -0.623604
H 1.732773 2.995540 1.100847

1b', \textit{E}_d = -846.828300 \text{ Hartree}

C -0.550462 3.547950 0.091806
C -0.595141 2.164069 0.039420
C 0.617550 1.426344 0.050974
C 1.861305 2.122762 0.116368
C 1.863476 3.536974 0.168545
C 0.675450 4.237598 0.156383
C 0.621015 -0.011405 -0.001920
C 1.843003 -0.712650 0.011241
C -0.627281 -0.735462 -0.068489
C -1.870799 -0.056958 -0.083163
C -3.047750 -0.789817 -0.147787
C -3.030148 -2.194634 -0.199057
C -1.826640 -2.871711 -0.185599
C -0.606320 -2.161276 -0.120412
C 1.840597 -2.157167 -0.042092
C 3.115750 -2.867335 -0.027559
C 4.294543 -2.233684 0.033420
C 4.412406 -0.738701 0.092308
C 3.087239 0.004463 0.077411
C 0.650160 -2.835950 -0.105149
C -1.931019 1.454950 -0.029315
C 3.073085 1.373522 0.127444
H -1.481052 4.111970 0.082843
H 2.815352 4.060177 0.218262
H 0.679618 5.323635 0.196511
H -4.001317 -0.265710 -0.158908
\end{verbatim}
syn-1a, $E_{el} = -1893.817329$ Hartree

C	2.333637	3.680572	1.208025
C	2.174755	3.692545	-0.198553
C	2.703929	4.769248	-0.941216
C	3.375150	5.804184	-0.275059
C	3.539429	5.809398	1.108926
C	3.010545	4.733659	1.828388
C	1.439250	2.553898	-0.917839
C	2.162043	1.214272	-0.835111
C	1.444846	-0.001507	-0.770423
C	-0.019818	-0.000148	-0.605926
C	-0.723993	1.225569	-0.495088
C	-0.046201	2.488825	-0.581125
C	-0.726209	-1.224536	-0.494588
C	-0.050706	-2.489061	-0.580073
C	1.434584	-2.556934	-0.916992
C	2.159823	-1.218612	-0.834706
C	3.554848	1.198471	-0.939358
C	4.253445	-0.004105	-0.984154
C	3.552642	-1.205383	-0.939133
C	-2.153054	1.222455	-0.269339
C	-2.854050	0.002515	-0.162685
	X	Y	Z
-----	--------	--------	--------
H	3.779623	6.627589	-0.860529
H	3.128040	4.710557	2.910452
H	-3.273820	-0.870595	2.583609
H	-3.273796	0.889497	2.580324
H	-4.498478	0.011145	3.512575
H	-5.531160	0.010530	-3.168919
H	-4.082105	0.889015	-2.650197
H	-4.082947	-0.870881	-2.653014
H	-8.896244	0.484173	1.665623
H	-9.166933	0.473692	-0.086111
H	-9.000652	-1.047548	0.794207
H	4.976524	6.567983	2.543258
H	4.781440	7.583710	1.104819
H	3.540460	7.576046	2.364265
H	2.230552	1.593174	1.798155
H	2.022130	2.745870	3.125053
H	0.708671	2.460960	1.973142
H	3.048455	5.772326	-2.819929
H	3.063532	4.013548	-2.958713
H	1.531258	4.872737	-2.780269
C	2.327901	-3.684387	1.208916
C	3.000401	-4.740039	1.829707
C	3.527364	-5.816812	1.110374
C	3.357858	-5.814447	-0.272987
C	2.690912	-4.777014	-0.939559
C	1.790150	-2.564232	2.071443
H	3.114274	-4.719097	2.912202
C	4.266160	-6.932673	1.811789
H	3.753666	-6.642727	-0.857498
C	2.557526	-4.867823	-2.448161
H	2.017366	-2.749289	3.125909
H	2.226468	-1.597029	1.798806
H	0.703833	-2.463393	1.974247
-----	-----	-----	-----
H	3.046414	-4.029734	-2.960666
H	3.021287	-5.787989	-2.816630
H	1.509655	-4.879000	-2.773465
H	4.425135	-7.787457	1.146445
H	5.251966	-6.600507	2.163245
H	3.715896	-7.287771	2.691130

anti-1a, $E_{el} = -1893.817395$ Hartree

C	2.351157	3.982119	1.105279
C	2.287690	3.669874	-0.274020
C	2.889365	4.542741	-1.205105
C	3.538203	5.698761	-0.749043
C	3.609504	6.022187	0.604745
C	3.008521	5.145600	1.513031
C	1.575331	2.401679	-0.762454
C	2.255452	1.113275	-0.313660
C	1.504602	-0.041560	0.000948
C	0.031712	-0.000928	0.000427
C	-0.648593	1.216533	-0.253208
C	0.067833	2.428866	-0.535727
C	-0.714859	-1.179003	0.253684
C	-0.066562	-2.429069	0.536318
C	1.440054	-2.485219	0.763673
C	2.190413	-1.235980	0.316155
C	3.651222	1.060542	-0.309965
C	4.319956	-0.119090	0.002460
C	3.586980	-1.260137	0.314018
C	-2.093951	1.259546	-0.216290
C	-2.835062	0.078246	-0.000175
C	-2.160380	-1.142166	0.216173
C	-2.887201	-2.357761	0.414082
C	-2.233263	-3.537537	0.643982
C	-0.818962	-3.568935	0.712089
C -2.752505 2.513384 -0.414617			
C -2.034340 3.655208 -0.644508			
C -0.620441 3.608469 -0.712093			
C -4.335998 0.119484 -0.000397			
C -5.049642 -0.054930 -1.205410			
C -6.447680 -0.009763 -1.183527			
C -7.162462 0.201790 -0.001498			
C -6.437337 0.376826 1.180239			
C -5.039167 0.337779 1.203661			
C -4.325038 -0.285316 -2.512895			
C -8.673660 0.215323 0.002971			
C -4.303121 0.534033 2.510323			
C 2.864673 4.280619 -2.699255			
C 4.295707 7.282091 1.078807			
C 1.731833 3.094695 2.162165			
H 4.215323 1.957655 -0.546652			
H 4.100585 -2.186964 0.551204			
H 5.406269 -0.148991 0.003086			
H -0.068161 4.522324 -0.909517			
H -2.544870 4.604160 -0.786499			
H -3.835880 2.541764 -0.378253			
H -3.970468 -2.326196 0.377294			
H -2.795439 -4.456900 0.785578			
H -0.318032 -4.511934 0.909446			
H 1.682170 2.390515 -1.855282			
C 2.081491 -3.790395 0.274331			
H 1.546938 -2.480934 1.856540			
H -6.991346 -0.142272 -2.117272			
H -6.972828 0.549976 2.112060			
H 3.999329 6.362212 -1.478122			
H 3.051806 5.372690 2.576879			
H -3.626494 1.395511 2.465801			
H -5.005810 0.698484 3.333162			
----	----	----	----
H	-3.68220	-0.338615	2.760002
H	-5.035452	-0.408880	-3.336257
H	-3.663885	0.553720	-2.759604
H	-3.695921	-1.182209	-2.471335
H	-9.066789	0.861271	0.795491
H	-9.074579	0.569540	-0.952876
H	-9.081250	-0.790527	0.172681
H	4.969589	7.080006	1.919768
H	4.884590	7.742241	0.278760
H	3.567820	8.028347	1.423648
H	2.183878	2.096840	2.169362
H	1.866985	3.531433	3.156564
H	0.657632	2.957687	1.998285
H	3.377589	5.084879	-3.235412
H	3.365229	3.341320	-2.966172
H	1.842621	4.226350	-3.094750
C	2.632564	-4.696595	1.204904
C	3.216520	-5.886379	0.748000
C	3.271176	-6.211595	-0.606140
C	2.720998	-5.301745	-1.513899
C	2.129062	-4.103935	-1.105305
C	2.620807	-4.435394	2.699375
H	3.639158	-6.575402	1.476687
C	3.886444	-7.507290	-1.081101
H	2.752743	-5.529563	-2.577999
C	1.561784	-3.181826	-2.161712
H	3.118204	-8.212134	-1.425560
H	4.569789	-7.342433	-1.922536
H	4.449627	-7.999522	-0.281643
H	3.087315	-5.267758	3.235025
H	3.172800	-3.525900	2.968091
H	1.602930	-4.324539	3.093822
H	2.071737	-2.212270	-2.169481
\begin{align*}
H & \quad 1.670094 & \quad -3.625832 & \quad -3.156179 \\
H & \quad 0.497674 & \quad -2.981868 & \quad -1.996845 \\
\end{align*}

1b, $E_{el} = -1893.826979$ Hartree

\begin{align*}
C & \quad -2.649728 & \quad -0.987746 & \quad -0.085497 \\
C & \quad -2.443577 & \quad 0.425815 & \quad -0.255801 \\
C & \quad -1.115801 & \quad 0.935352 & \quad -0.389592 \\
C & \quad -0.000039 & \quad 0.028823 & \quad -0.314835 \\
C & \quad -0.226732 & \quad -1.349252 & \quad -0.131724 \\
C & \quad -1.573986 & \quad -1.851309 & \quad -0.032201 \\
C & \quad -3.536159 & \quad 1.327917 & \quad -0.299741 \\
C & \quad -3.324204 & \quad 2.679749 & \quad -0.466084 \\
C & \quad -2.017624 & \quad 3.178955 & \quad -0.604807 \\
C & \quad -0.920827 & \quad 2.331947 & \quad -0.574521 \\
C & \quad 1.351525 & \quad 0.532038 & \quad -0.390815 \\
C & \quad 1.609863 & \quad 1.915811 & \quad -0.576622 \\
C & \quad 0.470842 & \quad 2.895008 & \quad -0.848967 \\
C & \quad 2.448397 & \quad -0.373939 & \quad -0.258143 \\
C & \quad 2.197913 & \quad -1.782565 & \quad -0.085528 \\
C & \quad 0.899455 & \quad -2.256270 & \quad -0.030714 \\
C & \quad -1.832397 & \quad -3.338910 & \quad 0.139914 \\
C & \quad -0.603751 & \quad -4.186629 & \quad 0.216461 \\
C & \quad 0.634579 & \quad -3.683952 & \quad 0.140184 \\
C & \quad 3.769616 & \quad 0.134523 & \quad -0.304699 \\
C & \quad 3.999305 & \quad 1.484438 & \quad -0.473834 \\
C & \quad 2.920416 & \quad 2.371721 & \quad -0.611376 \\
H & \quad -1.862440 & \quad 4.246091 & \quad -0.733358 \\
H & \quad -4.543762 & \quad 0.939173 & \quad -0.199152 \\
H & \quad -4.167539 & \quad 3.364830 & \quad -0.493611 \\
H & \quad 3.110987 & \quad 3.432814 & \quad -0.742039 \\
H & \quad 5.017039 & \quad 1.864665 & \quad -0.503905 \\
H & \quad 4.601770 & \quad -0.553531 & \quad -0.204279 \\
H & \quad 1.493243 & \quad -4.344052 & \quad 0.204554
\end{align*}
Atom	X	Y	Z
H	-0.750353	-5.257481	0.341606
H	-2.446278	-3.507181	1.038316
H	-2.472264	-3.700234	-0.680689
C	3.366475	-2.719778	0.032180
H	0.493068	3.032739	-1.937879
C	0.699102	4.282120	-0.234903
C	-4.050270	-1.517362	0.031738
C	-4.762513	-1.899692	-1.124680
C	-6.061966	-2.400717	-0.992052
C	-6.679468	-2.534031	0.254481
C	-5.962722	-2.136411	1.386407
C	-4.661369	-1.630592	1.298567
C	-4.148939	-1.757450	-2.500287
H	-6.606790	-2.690337	-1.888879
C	-8.071631	-3.109169	0.376576
H	-6.429213	-2.217387	2.366632
C	-3.937208	-1.197248	2.554277
C	3.915203	-3.012399	1.298898
C	5.012594	-3.875772	1.384776
C	5.583249	-4.461435	0.251513
C	5.028261	-4.155384	-0.993997
C	3.931494	-3.296914	-1.124992
C	3.333300	-2.408320	2.557519
H	5.432771	-4.094150	2.364974
C	6.748833	-5.415897	0.371362
H	5.460707	-4.594599	-1.891278
C	3.367321	-3.001596	-2.496909
H	-8.600599	-2.699101	1.243690
H	-8.671566	-2.900829	-0.515879
H	-8.043121	-4.200251	0.500585
H	-2.997071	-1.744111	2.693868
H	-3.677396	-0.132580	2.519062
H	-4.557880	-1.364081	3.440106
---	---	---	---
H	-4.836495	-2.114676	-3.273223
H	-3.903888	-0.712089	-2.722674
H	-3.214715	-2.324089	-2.592435
H	7.385143	-5.386094	-0.519759
H	7.372235	-5.180753	1.240808
H	6.405263	-6.452542	0.489737
H	3.910178	-2.709231	3.437624
H	3.328025	-1.313024	2.513743
H	2.294307	-2.723477	2.711249
H	3.370288	-1.926498	-2.710872
H	3.950905	-3.503301	-3.275138
H	2.327478	-3.338354	-2.584996
C	0.730757	4.458758	1.169167
C	0.939022	5.737479	1.692584
C	1.120723	6.858462	0.877386
C	1.083263	6.666771	-0.502713
C	0.877390	5.403065	-1.073324
C	0.543329	3.306544	2.131110
H	0.958568	5.859745	2.774179
C	1.366283	8.223706	1.476361
H	1.217030	7.522865	-1.161206
C	0.852769	5.298712	-2.586701
H	0.601365	3.657955	3.165985
H	-0.428123	2.818904	1.995830
H	1.309410	2.535626	1.994681
H	-0.104473	4.915764	-2.962262
H	1.008053	6.283045	-3.038770
H	1.639086	4.636869	-2.971035
H	1.240637	9.016144	0.731396
H	0.678786	8.427876	2.305507
H	2.385404	8.307086	1.876783
$8a', E_{el} = -846.215774$ Hartree

C	2.234066	3.016926	-0.067709
C	1.837711	1.656347	-0.057702
C	0.434248	1.349774	-0.037035
C	-0.526441	2.400471	-0.026864
C	-0.076146	3.743570	-0.037430
C	1.285540	4.036601	-0.057563
C	-0.002314	-0.005607	-0.026644
C	-1.393731	-0.306631	-0.006198
C	0.960048	-1.061034	0.036672
C	2.361666	-0.754387	-0.057314
C	3.290465	-1.825108	-0.066966
C	2.855075	-3.146224	-0.056530
C	1.493585	-3.447806	-0.036400
C	0.526244	-2.417397	-0.026185
C	-1.814850	-1.682195	0.004200
C	-3.245473	-1.975599	0.025182
C	-4.175843	-1.011311	0.035047
C	-3.836268	0.451972	0.025481
C	-2.347912	0.755450	0.003794
C	-0.874131	-2.687905	-0.005699
C	2.768752	0.597446	-0.067383
C	-1.908840	2.061371	-0.006438
H	3.294560	3.255014	-0.083515
H	-0.809478	4.545927	-0.029589
H	1.611964	5.073249	-0.065463
H	4.353436	-1.598227	-0.082728
H	3.583759	-3.952556	-0.064150
H	1.162053	-4.483039	-0.028330
H	-3.539102	-3.023210	0.032730
H	-5.232135	-1.270816	0.050670
H	-4.298142	0.935661	0.901114
H	-4.322275	0.929812	-0.840245
-----	-----	-----	-----
H	-1.201082	-3.725784	0.002280
H	3.831577	0.828168	-0.082741
H	-2.636165	2.871721	0.001242

8b', $E_{el} = -846.219465$ Hartree

C	2.198123	3.034445	-0.004917
C	1.824428	1.698795	-0.004591
C	0.449167	1.357474	-0.025644
C	-0.534902	2.400788	-0.047039
C	-0.106545	3.754896	-0.046576
C	1.235498	4.063706	-0.025868
C	0.021318	-0.018490	-0.026027
C	-1.352389	-0.325363	-0.047201
C	0.993647	-1.081687	-0.004837
C	2.383431	-0.805300	0.016721
C	3.289611	-1.855049	0.036634
C	2.856189	-3.196211	0.035969
C	1.510322	-3.487846	0.015294
C	0.546879	-2.444631	-0.005594
C	-1.793709	-1.699568	-0.047866
C	-3.190003	-1.975601	-0.069618
C	-4.124819	-0.944780	-0.090317
C	-3.717350	0.386016	-0.089836
C	-2.336316	0.730387	-0.068531
C	-0.838114	-2.719908	-0.027063
C	2.889060	0.622144	0.018253
C	-1.905337	2.060512	-0.068009
H	3.255188	3.291765	0.011316
H	-0.857232	4.541130	-0.062867
H	1.558751	5.101248	-0.025587
H	4.355703	-1.638138	0.053114
H	3.589991	-3.997616	0.051849
H	1.165267	-4.518834	0.014586
\[
\begin{align*}
H & \quad -3.516278 \quad -3.012325 \quad -0.069463 \\
H & \quad -5.185370 \quad -1.181813 \quad -0.106603 \\
H & \quad -4.453567 \quad 1.185401 \quad -0.105652 \\
H & \quad -1.167817 \quad -3.756534 \quad -0.027425 \\
H & \quad 3.557753 \quad 0.764107 \quad -0.843341 \\
H & \quad 3.528764 \quad 0.772465 \quad 0.900202 \\
H & \quad -2.644664 \quad 2.858263 \quad -0.084219
\end{align*}
\]

\[8a, \quad E_{\text{el}} = -1893.223777 \text{ Hartree}\]

\[
\begin{align*}
C & \quad 2.201126 \quad 1.790569 \quad -0.000049 \\
C & \quad 0.862575 \quad 2.313992 \quad -0.000062 \\
C & \quad -0.242577 \quad 1.412577 \quad -0.000047 \\
C & \quad -0.008080 \quad 0.007646 \quad -0.000029 \\
C & \quad 1.323558 \quad -0.493678 \quad -0.000033 \\
C & \quad 2.424288 \quad 0.421260 \quad -0.000042 \\
C & \quad 0.610009 \quad 3.708751 \quad -0.000084 \\
C & \quad -0.692842 \quad 4.195672 \quad -0.000096 \\
C & \quad -1.778735 \quad 3.327089 \quad -0.000077 \\
C & \quad -1.588505 \quad 1.921702 \quad -0.000046 \\
C & \quad -1.114005 \quad -0.895488 \quad -0.00002 \\
C & \quad -2.458702 \quad -0.387096 \quad 0.000015 \\
C & \quad -2.689205 \quad 1.019251 \quad -0.000009 \\
C & \quad -0.881623 \quad -2.303230 \quad 0.000015 \\
C & \quad 0.470436 \quad -2.801526 \quad 0.000000 \\
C & \quad 1.541810 \quad -1.919177 \quad -0.000022 \\
C & \quad 3.852260 \quad -0.097704 \quad -0.000039 \\
C & \quad 3.976924 \quad -1.588665 \quad -0.000038 \\
C & \quad 2.919709 \quad -2.410408 \quad -0.000031 \\
C & \quad -1.992887 \quad -3.179226 \quad 0.000051 \\
C & \quad -3.293363 \quad -2.682445 \quad 0.000075 \\
C & \quad -3.532264 \quad -1.314097 \quad 0.000059 \\
H & \quad -2.789606 \quad 3.719924 \quad -0.000083 \\
H & \quad 1.448392 \quad 4.396746 \quad -0.000094
\end{align*}
\]
C	5.564509	4.515932	0.000030
C	4.999370	4.069476	-1.197601
C	3.909850	3.192239	-1.220254
C	3.324108	2.755215	2.545008
H	5.413981	4.415590	2.142747
C	6.762627	5.436955	0.000075
H	5.414057	4.415637	-2.142689
C	-0.241141	-3.714300	2.634965
H	0.766637	-4.967452	3.380161
H	1.508484	-3.527929	2.661606
H	1.844405	-8.919156	0.886315
H	0.329177	-9.106835	0.000069
H	1.844370	-8.919175	-0.886241
H	0.766505	-4.967524	-3.380127
H	-0.241244	-3.714355	-2.634919
H	1.508380	-3.527986	-2.661633
H	-3.153963	2.142308	2.645532
H	-4.728350	1.794596	3.380860
H	-3.772874	0.494595	2.647943
H	-4.728643	1.794044	-3.380830
H	-3.154188	2.141801	-2.645666
H	-3.773169	0.494115	-2.647781
H	-8.369740	3.662867	0.887684
H	-8.368066	3.667482	-0.884896
H	-8.878294	2.225877	-0.002875
H	6.774300	6.080232	-0.886410
H	6.773747	6.080865	0.886110
H	7.702638	4.868622	0.000580
H	3.882904	3.187952	3.380601
H	2.277051	3.066106	2.641568
H	3.338209	1.664732	2.659164
H	3.338172	1.664799	-2.659199
H 2.277165 3.066287 -2.641689
H 3.883075 3.187952 -3.380624

8b, $E_{el} = -1893.219439$ Hartree

C 2.484574 -1.391885 -0.083771
C 2.486692 0.023062 -0.257010
C 1.246986 0.735959 -0.389685
C 0.000109 0.017935 -0.311508
C 0.008277 -1.377285 -0.123698
C 1.260960 -2.093448 -0.022682
C 3.706305 0.754150 -0.307570
C 3.701922 2.119731 -0.478170
C 2.485203 2.813038 -0.615325
C 1.270962 2.143452 -0.578862
C -1.255099 0.721258 -0.390006
C -1.295563 2.128350 -0.579315
C -0.016854 2.916714 -0.851496
C -2.486385 -0.006152 -0.257679
C -2.467691 -1.420965 -0.084344
C -1.235936 -2.108105 -0.022942
C 1.229542 -3.507380 0.147463
C 0.024781 -4.195280 0.225652
C -1.187956 -3.521567 0.147231
C -3.714495 0.710533 -0.308763
C -3.726121 2.076034 -0.479691
C -2.517592 2.783575 -0.616519
H 2.494583 3.890839 -0.747202
H 4.642674 0.216316 -0.207755
H 4.639549 2.668424 -0.510451
H -2.539548 3.861140 -0.748844
H -4.670139 2.613628 -0.512521
H -4.644507 0.161738 -0.209192
H -2.120524 -4.070058 0.217672
H 0.031103 -5.274584 0.354669
H 2.168468 -4.044889 0.218087
C -3.758939 -2.175692 0.032650
C -0.025412 4.321725 -0.235709
H -0.017560 3.057321 -1.940184
C 3.784568 -2.131402 0.033505
C -4.394061 -2.676551 -1.123975
C -5.596405 -3.379289 -0.992093
C -6.192221 -3.598616 0.252853
C -5.545816 -3.097748 1.386134
C -4.342265 -2.390030 1.299875
C -3.790317 -2.468299 -2.495026
H -6.078681 -3.766102 -1.888067
C -7.508354 -4.332409 0.367738
H -5.988247 -3.262225 2.367042
C -3.682375 -1.870930 2.557927
C 4.370072 -2.338938 1.300869
C 5.581824 -3.032466 1.387384
C 6.234342 -3.525658 0.254227
C 5.636295 -3.313284 -0.990843
C 4.425802 -2.624706 -1.122984
C 3.703844 -1.827647 2.558779
H 6.025920 -3.191785 2.368394
C 7.558954 -4.243975 0.369448
H 6.123298 -3.694361 -1.886716
C 3.819997 -2.423479 -2.494174
H -3.557487 -0.782167 2.526665
H -4.279007 -2.117095 3.441809
H -2.682843 -2.300320 2.694381
H -4.419134 -2.916406 -3.270664
H -3.675803 -1.402743 -2.726228
H -2.792510 -2.916806 -2.567673
H -7.591494 -4.859928 1.324105

S73
Atoms	Coordinates	Cartesian Coordinates
H	-8.358278, -3.639362, 0.304868	
H	-7.629844, -5.066673, -0.435950	
H	4.302978, -2.067057, 3.442825	
H	3.566474, -0.740385, 2.527617	
H	2.709269, -2.268511, 2.694846	
H	2.827472, -2.883520, -2.567047	
H	3.693190, -1.359321, -2.725409	
H	4.454145, -2.864266, -3.269664	
H	7.690346, -4.974952, -0.435668	
H	8.400649, -3.540711, 0.309408	
H	7.646983, -4.772592, 1.324778	
C	-0.029117, 5.457641, -1.072783	
C	-0.035268, 6.737331, -0.500470	
C	-0.039622, 6.930770, 0.879807	
C	-0.033153, 5.794095, 1.693682	
C	-0.026996, 4.499270, 1.168717	
C	-0.024186, 5.352620, -2.586315	
H	-0.036069, 7.604630, -1.157839	
C	-0.066030, 8.316680, 1.481047	
H	-0.031925, 5.916579, 2.775426	
C	-0.019726, 3.330757, 2.129240	
H	0.864278, 2.698511, 1.992829	
H	-0.021801, 3.685667, 3.164515	
H	-0.896174, 2.688040, 1.992980	
H	-0.026821, 6.349661, -3.037141	
H	0.861764, 4.827186, -2.964527	
H	-0.903958, 4.820421, -2.969489	
H	0.673588, 8.420081, 2.283781	
H	0.144571, 9.083438, 0.728500	
H	-1.047273, 8.544236, 1.918108	
Triangulene, $E_{el} = -845.611885$ Hartree

C 2.827647 -2.478299 0.000000
C 2.827647 2.478299 0.000000
C 0.730027 -3.689033 0.000000
C 0.730027 3.689033 0.000000
C 0.710571 -1.233519 0.000000
C 0.710571 1.233519 0.000000
C 2.122598 -3.679240 0.000000
C 2.122598 3.679240 0.000000
C 2.143882 -1.232629 0.000000
C 2.143882 1.232629 0.000000
C -2.141959 -1.241941 0.000000
C -2.141959 1.241941 0.000000
C -0.007029 2.474650 0.000000
C -0.007029 -2.474650 0.000000
C -1.426266 0.000000 0.000000
C 2.827857 0.000000 0.000000
C -4.250127 0.000000 0.000000
C -0.001840 0.000000 0.000000
C -3.562793 -1.210959 0.000000
C -3.562793 1.210959 0.000000
C -1.416515 -2.450324 0.000000
C -1.416515 2.450324 0.000000
H 3.915519 0.000000 0.000000
H -5.336973 0.000000 0.000000
H 0.188706 -4.631692 0.000000
H 0.188706 4.631692 0.000000
H 2.665855 -4.620514 0.000000
H 2.665855 4.620514 0.000000
H 3.914561 2.479737 0.000000
H 3.914561 -2.479737 0.000000
H -4.108366 -2.151078 0.000000
H -4.108366 2.151078 0.000000
Mes₃-Tr, $E_{el} = -1892.620998$ Hartree

C 2.755601 0.761098 -0.000002
C 1.742695 1.760124 0.000001
C 0.358105 1.378489 0.000002
C 0.000061 0.000062 0.000000
C 1.014798 -0.999227 -0.000004
C 2.398989 -0.616176 -0.000005
C 3.387510 -1.638350 -0.000009
C 3.027339 -2.981174 -0.000012
C 1.690198 -3.361865 -0.000010
C 0.653007 -2.389135 -0.000005
C -1.372715 -0.379078 0.000001
C -1.733075 -1.769347 0.000000
C -0.718628 -2.766819 -0.000002
C -3.112555 -2.114364 0.000002
C -4.095396 -1.131043 0.000004
C -3.756524 0.217306 0.000004
C -2.395522 0.629195 0.000003
C -0.665723 2.385711 0.000004
C -2.036783 2.005914 0.000003
C 2.066497 3.144731 0.000003
C 1.068233 4.112383 0.000006
C -0.274770 3.752884 0.000006
C -1.095428 -4.218325 0.000000
H 1.341488 5.164445 0.000007
H -4.533151 0.974049 0.000005
H 4.434276 -1.355315 -0.000011
H -5.143135 -1.420433 0.000005
H 3.801825 -3.743851 -0.000016
H 1.423122 -4.412809 -0.000012
H -3.390799 -3.162417 0.000002
H -1.043289 4.517878 0.000007
H 3.110174 3.438933 0.000003
C -3.105477 3.057928 0.000001
C 4.201040 1.160527 -0.000001
C -1.275888 -4.903413 -1.220747
C -1.630988 -6.256252 -1.197735
C -1.810434 -6.953590 0.000005
C -1.630975 -6.256251 1.197742
C -1.275874 -4.903413 1.220749
C -1.095015 -4.194708 -2.544652
H -1.772067 -6.777477 -2.142921
C -2.162616 -8.423208 0.000007
H -1.772043 -6.777476 2.142929
C -1.094987 -4.194708 2.544652
C 4.884563 1.346795 1.220749
C 6.233711 1.715659 1.197742
C 6.927351 1.908905 0.000001
C 6.233713 1.715658 -1.197741
C 4.884565 1.346794 -1.220750
C 4.180317 1.149187 2.544640
H 6.755647 1.854083 2.142928
C 8.376182 2.336674 0.000002
H 6.755650 1.854082 -2.142927
C 4.180321 1.149185 -2.544642
C -3.608657 3.556638 -1.220748
C -4.602980 4.540300 -1.197743
C -5.117333 5.044209 -0.000004
C -4.602982 4.540303 1.197738
C -3.608659 3.556642 1.220748
C -3.085144 3.045809 -2.544638
H -4.983936 4.922984 -2.142930
C -6.214295 6.083672 -0.000006

S77
S9. References

1. P. Ribar, L. Valenta, T. Šolomek and M. Juriček, *Angew. Chem. Int. Ed.*, 2021, **60**, 13521–13528.

2. C. J. Holt, K. J. Wentworth and R. P. Johnson, *Angew. Chem. Int. Ed.*, 2019, **58**, 15793–15796.

3. Y. Gu, X. Wu, T. Y. Gopalakrishna, H. Phan and J. Wu, *Angew. Chem. Int. Ed.*, 2018, **57**, 6541–6545.

4. L. A. van de Kuil, H. Luitjes, D. M. Grove, J. W. Zwikker, J. G. M. van der Linden, A. M. Roelofsen, L. W. Jenneskens, W. Drenth and G. van Koten, *Organometallics*, 1994, **13**, 468–477.

5. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.

6. G.-Q. Li, Y. Yamamoto and N. Miyaura, *Synlett*, 2011, **2011**, 1769–1773.

7. T. J. Boyd and R. R. Schrock, *Macromolecules*, 1999, **32**, 6608–6618.

8. R. C. Clark and J. S. Reid, *Acta Crystallogr. Sect. A*, 1995, **51**, 887–897.

9. R. O. D. Ltd, CrysAlisPro (Version 1.171.40.68a), Yarnton, Oxfordshire, England 2019.

10. O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.

11. G. M. Sheldrick, *Acta Crystallogr. Sect. A*, 2015, **71**, 3–8.

12. G. M. Sheldrick, *Acta Crystallogr. Sect. C*, 2015, **71**, 3–8.

13. A. L. Spek, *Acta Crystallogr. Sect. D*, 2009, **65**, 148–155.

14. A. L. Spek, *Acta Crystallogr. Sect. C*, 2015, **71**, 9–18.

15. K. Herb, R. Tschaggelar, G. Denninger and G. Jeschke, *J. Magn. Reson.*, 2018, **289**, 100–106.

16. R. Improta and V. Barone, *Chem. Rev.*, 2004, **104**, 1231–1254.

17. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J. R. Cheeseman, G. Scalone, V. Barone, B. Mennucci, G. A. Petersson, H.Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R.Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
18 P. Ribar, T. Šolomek and M. Juriček, *Org. Lett.*, 2019, **21**, 7124–7128.
19 F. Neese, *WIREs Comput. Mol. Sci.*, 2018, **8**, e1327.
20 K. Yamaguchi, H. Fukui and T. Fueno, *Chem. Lett.*, 1986, **15**, 625–628.
21 M. Nishino, S. Yamanaka, Y. Yoshioka and K. Yamaguchi, *J. Phys. Chem. A*, 1997, **101**, 705–712.
22 A. Das, T. Müller, F. Plasser and H. Lischka, *J. Phys. Chem. A*, 2016, **120**, 1625–1636.