GAUSS DIAGRAM FORMULAS OF VASSILIEV INVARIANTS OF SPATIAL 2-BOUQUET GRAPHS

NOBORU ITO AND NATSUMI OYAMAGUCHI

Abstract. We introduce new formulas that are Vassiliev invariants of flat vertex isotopy classes of spatial 2-bouquet graphs, which are equivalent to 2-string links. Although any Gauss diagram formula of Vassiliev invariants of spatial 2-bouquet graphs in a 3-space has been unknown, this paper gives the first and simple example.

1. Introduction

A spatial graph is a graph embedded in \mathbb{R}^3. It often becomes a model of molecule as an embedding of a molecular graph, or a coordination polymer (e.g. [1, Section 1]). In general, the interaction between topological graph theory and the investigation of chemical structures is a rich area. In particular, we would like to emphasize the following two points:

- Multicyclic polymers having shapes corresponding to rigid 4-valent graphs (e.g. flat vertex isotopy classes of spatial 2-bouquet graphs) are synthesized [5, 13].
- The difference between spatial graphs affects a condensed matter, e.g. it is shown that the dominance of the trefoil knot in the case of large excluded volumes [14].

On the other hand, Deguchi applied the Vassiliev invariant of order two to computational science to study random knotting or linking (1994, e.g. [2, 3]). One of his motivation, in practical application of the Jones polynomial, is to solve two problems: (1) Divergence occurs when we evaluate polynomials; (2) Computational time is growing exponentially with respect to the number of crossings of link diagrams.

Deguchi [2] gave a solution of two problems showing an algorithm by using the expansion at $q = 1$ for the Jones polynomial $V_K(q)$:

$$V_K(q) = 1 + v_2(K)q^2 + v_3(K)q^3 + \ldots,$$

where $v_i(K)$ is called Vassiliev invariant of degree i. We stand on the viewpoint. It is also meaningful because in general, if all Vassiliev invariants for two knots coincide, then their (Alexander, Conway, Jones, Kauffman, HOMFLY-PT, etc.) polynomial invariants coincide. Nowadays, it is known that every Vassiliev invariant is expressed by a Gauss diagram formula (2000, [4]). It seems likely that this type of formulas is the simplest for computation purposes.

In this paper, we devote ourselves to 2-component link invariants since it is known that there exists one to one correspondence between flat vertex isotopy classes of bouquet graphs to 2-string links (e.g., Figure 1 for the details of the definitions...
of bouquet graphs and flat vertex isotopy, see [9, Section 2]). In order to give the

![Figure 1](image1)

Figure 1. (a) An oriented bouquet graph (b) A 2-string link with base points (= a 2-string tangle) (c) A neighborhood of the flat vertex (d) A link obtained by ignoring the base points of (b).

statement of main results (Theorems 1 and 2), we use definitions of Gauss diagrams and arrow diagrams for links. For these definitions, please see [10]. Here, we give an example by Figure 2. In the following statements, an estimation “degree $\leq n$”

![Figure 2](image2)

Figure 2. (a) A 2-component link having components A and B, (b) A Gauss diagram of (a), (c) Another Gauss diagram of (b).

induced by n arrows is called order n.

Theorem 1. Each of $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$, $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$, $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$, and $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$ is an integer-valued nonzero function that is an invariant of order three of two-component links.

As a corollary, each of them is also an invariant of order three of spatial graphs in \mathbb{R}^3 up to flat vertex isotopy.

Theorem 2. Each of $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$, $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$, and $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle - \frac{1}{3} \langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$ is an integer-valued nonzero function that is an invariant of order three of two-component links.

As a corollary, each of them is also an invariant of order three of spatial graphs in \mathbb{R}^3 up to flat vertex isotopy.

Corollary 1 (["Ostlund-Polyak-Viro formula]). "Ostlund-Polyak-Viro formula $\langle T, \cdot \rangle$, which is $\langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle + \langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle + \langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle - \frac{1}{3} \langle \begin{array}{c} \times \\ \times \end{array}, \cdot \rangle$, becomes a link invariant of order three of two-component links.

Theorem 3 implies that invariants in Theorems 1 and 2 are strictly stronger than "Ostlund-Polyak-Viro formula (Corollary 1), which is known as a Vassiliev link invariant of degree three [12, 10] (the formula in [12] is misprinted and [10] gives the correct formula).
Theorem 3. There exists an infinitely many pairs \((i,j)\) of 2-component links \(L_i, L_j\) \((i \neq j)\) such that
\[
\langle 1++1, L_i \rangle \neq \langle 2++, L_j \rangle, \quad \langle 2+, L_i \rangle \neq \langle 1++, L_j \rangle, \quad \langle 2+, L_i \rangle \neq \langle 1++, L_j \rangle
\]
and \(\langle 1++, L_i \rangle \neq \langle 2++, L_j \rangle\) for our invariants as in Theorem 7 whereas for any pair \(i,j\),
\[
\langle T, L_i \rangle = \langle T, L_j \rangle
\]
on Östlund-Polyak-Viro formula \(\langle T, \cdot \rangle\) as in Corollary 7.

2. Preliminaries

If a reader is familiar with the brackets \(\langle \cdot, \cdot \rangle\) and \(\langle \cdot, \cdot \rangle\) introduced in [4] or treated in [10], the reader can skip this section except for Notation 2.

Definition 1. Let \(L\) be a two-component link. For \(L\), let \(D\) be a link diagram and \(G\) a (signed oriented) Gauss diagram, where each sign is a local writhe. In what follows, every Gauss diagram is signed and oriented. A sub-Gauss diagram of \(G\) is a Gauss diagram obtained by ignoring some arrows. Then, let \(\text{Sub}(G)\) be the set of sub-Gauss diagrams of \(G\). For Gauss diagrams \(A\) and \(z\), \(\langle \cdot, \cdot \rangle\) is an orthonormal scalar product, i.e. \(\langle A, z \rangle = 1\) if \(A = z\) and 0 otherwise. Then, \(\langle \cdot, \cdot \rangle\) is defined by
\[
\langle A, G \rangle = \sum_{z \in \text{Sub}(G)} \text{sign}(z)(A, z),
\]
here \(\text{sign}(z)\) is the product of the signs in \(z\). In general, let \(\langle S \rangle\) be a \(\mathbb{Q}\)-vector space generated by the set \(S\) of finitely many Gauss diagrams. Let \(\langle S \rangle\) be a vector space generated by the Gauss diagram having at most \(d\) arrows where \(d\) is sufficiently large. We extend \(\langle \cdot, \cdot \rangle\) to \(\langle S \rangle \times \langle S \rangle\) bilinearly.

Notation 1. In this paper, every circle of Gauss diagrams is oriented counterclockwise. When no confusion is likely arise, we omit an orientation on each circle, e.g. \(\xrightarrow{\circ}\).

Fact 1 (The linking number relation [12] Page 451, Theorem 5], [10] Section 4.1]). The linking number \(lk(L)\) of a two-component link \(L\) is given by
\[
lk(L) = \langle 1++, \cdot \rangle = \langle 0++, \cdot \rangle.
\]

In particular, for a Gauss diagram \(D\) of a two-component link \(L\), the above formula is also represented by
\[
\sum_{z \in \text{Sub}(D)} \sum_{\epsilon} \text{sign}(z)(1++, z) = \sum_{z \in \text{Sub}(D)} \sum_{\epsilon} \text{sign}(z)(0++, z).
\]

Notation 2. Let \(\epsilon\) be + or − and we fix the sign. Let \(1++1 = \xrightarrow{1++1} + \xrightarrow{1++1} + \xrightarrow{1++1} + \xrightarrow{1++1} \).

Notation 3 (Terminological remark for Reidemeister moves). We use the minimal generating set \(\{\Omega_{1a}, \Omega_{1b}, \Omega_{2a}, \Omega_{2a}\}\) of Reidemeister moves for oriented link diagrams by Polyak [11] Theorem 1.1]. For them, it is convenient to use Östlund’s notations because [10] Table 1 includes a version involving two component links, \(\Omega_{2a}\) and \(\Omega_{3a}\) [11] Theorem 1.1], represented by Gauss diagrams. Concretely, \(\Omega_{2a}\) corresponds to \(\Omega_{1+--}\), and \(\Omega_{3a}\) corresponds to the three presentations \(\Omega_{1+--}\), \(\Omega_{1+-++}\), and \(\Omega_{1++--}\), depending on connectedness of components, for two component links.

For Reidemeister moves involving one link component, \(\Omega_{1a}\) (\(\Omega_{1b}\), resp.) is denoted by \(\Omega_{1++}\) (\(\Omega_{1+-}\), resp.)
3. PROOF OF MAIN RESULTS

We will show Theorem 1 after proving Theorem 2. In this section, we freely use Östlund’s notation \[10\] of \(\text{arrow diagrams}\) and their moves (in particular, cf. \[10\, \text{Section 1.6 and Table 1}\]) since \[10\] is the paper giving the proof of all statements of \[12\]. If a reader is familiar with word-theoretic approach to Gauss diagrams, an advantage for computation is given as in \[6\]. Denoted by \(D_{\Omega}^{\gamma}\) (\(D_{r}^{\Omega}\), resp.) the left (right, resp.) Gauss diagram of in each Reidemeister move \(\Omega\) as in \[10, \text{Table 1}\].

3.1. Proof of Theorem 2. Since the invariance under each of \(\Omega_{1+\pm}\), \(\Omega_{3+\pm}\), and \(\Omega_{3+\pm}\) is obvious, we show the invariance under \(\Omega_{II+\pm}\), \(\Omega_{III+\pm}\), \(\Omega_{III+\pm}\), and \(\Omega_{III+\pm}\).

- \(\Omega_{II+\pm}\). First we consider \(\varnothing\).

\[
\langle \varnothing, D_{l}^{\Omega_{II+\pm}} \rangle - \langle \varnothing, D_{r}^{\Omega_{II+\pm}} \rangle = \sum_{z^{(l)} \in \operatorname{Sub}(D_{l}^{\Omega_{II+\pm}})} \operatorname{sign}(z^{(l)})(\varnothing, z^{(l)}) - \sum_{z^{(r)} \in \operatorname{Sub}(D_{r}^{\Omega_{II+\pm}})} \operatorname{sign}(z^{(r)})(\varnothing, z^{(r)}).
\]

Since \(D_{l}^{\Omega_{II+\pm}}\) has two more arrows than \(D_{r}^{\Omega_{II+\pm}}\), \(z^{(l)}\) is denoted by \(z_{2}^{(l)}\) if \(z^{(l)}\) contains these two arrows. Similarly, if \(z^{(l)}\) contains \(i\) \((i = 0, 1)\) arrow of these two arrows, \(z^{(l)}\) is denoted by \(z_{i}^{(l)}\). Then,

\[
\sum_{z^{(l)} \in \operatorname{Sub}(D_{l}^{\Omega_{II+\pm}})} \operatorname{sign}(z^{(l)})(\varnothing, z^{(l)}) - \sum_{z^{(r)} \in \operatorname{Sub}(D_{r}^{\Omega_{II+\pm}})} \operatorname{sign}(z^{(r)})(\varnothing, z^{(r)})
\]

\[
= \frac{2}{i=0} \sum_{z_{i}^{(l)} \in \operatorname{Sub}(D_{l}^{\Omega_{II+\pm}})} \operatorname{sign}(z_{i}^{(l)})(\varnothing, z_{i}^{(l)}) - \sum_{z^{(r)} \in \operatorname{Sub}(D_{r}^{\Omega_{II+\pm}})} \operatorname{sign}(z^{(r)})(\varnothing, z^{(r)}).
\]
Here, by definition, the set of elements labeled by $z_0^{(l)}$ corresponds bijectively to that of $z^{(r)}$. Then,

$$
\sum_{z_0^{(l)} \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_0^{(l)})(\bigotimes_0, z_0^{(l)}) = \sum_{z^{(r)} \in \text{Sub}(D_0^\Omega_{II+-})} \text{sign}(z^{(r)})(\bigotimes_0, z^{(r)}).
$$

In general, for any linear sum A of Gauss diagrams,

$$(3) \quad \sum_{z_0^{(l)} \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_0^{(l)})(A, z_0^{(l)}) = \sum_{z^{(r)} \in \text{Sub}(D_0^\Omega_{II+-})} \text{sign}(z^{(r)})(A, z^{(r)}).$$

Note also that two arrows in the difference between $D_1^\Omega_{II+-}$ and $D_0^\Omega_{II+-}$ have + and − signs, respectively. Then if $z_0^{(l)}$ includes + sign in the difference between $D_1^\Omega_{II+-}$ and $D_0^\Omega_{II+-}$, we denote it by z_1^+. Then, there exists another z_1^- with − sign in the difference, and we denote it by z_1^-. Then,

$$
\sum_{z_1^{(l)} \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_1^{(l)})(\bigotimes_0, z_1^{(l)})
= \sum_{z_1^+ \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_1^+)(\bigotimes_0, z_1^+) + \sum_{z_1^- \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_1^-)(\bigotimes_0, z_1^-)
= \sum_{z_1^+ \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_1^+)(\bigotimes_0, z_1^+) - \sum_{z_1^+ \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_1^+)(\bigotimes_0, z_1^+)
= 0.
$$

In general, for any linear sum A of Gauss diagrams,

$$(4) \quad \sum_{z_1^{(l)} \in \text{Sub}(D_1^\Omega_{II+-})} \text{sign}(z_1^{(l)})(A, z_1^{(l)}) = 0.$$

Next, by (3),

$$
(\bigotimes_0 - \frac{1}{3} \bigotimes_0, D_1^\Omega_{II+-}) - (\bigotimes_0 - \frac{1}{3} \bigotimes_0, D_0^\Omega_{II+-})
= (\bigotimes_0, D_1^\Omega_{II+-}) - \frac{1}{3} (\bigotimes_0, D_0^\Omega_{II+-}).
$$

Further, by (3),

$$
(\bigotimes_0, D_1^\Omega_{II+-}) - \frac{1}{3} (\bigotimes_0, D_1^\Omega_{II+-})
= \sum_{z_2^{(l)} \in \text{Sub}(D_1^\Omega_{II+-})} \sum_{\epsilon = +, -} \text{sign}(z_2^{(l)})(\bigotimes_2, z_2^{(l)})
- \sum_{z_2^{(l)} \in \text{Sub}(D_1^\Omega_{II+-})} \sum_{\epsilon = +, -} \text{sign}(z_2^{(l)})(\bigotimes_2, z_2^{(l)})
= 0 \quad (: \text{ The linking number relation (2)}).$$
We note also that by (3) and (4), it is easy to see that the following two formulas hold
\[\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{Ii}^{+++}} - D_{r}^{\Omega_{Ii}^{+++}} \rangle = 0, \]
and
\[\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{Ii}^{+++}} - D_{r}^{\Omega_{Ii}^{+++}} \rangle = 0. \]

Below, we discuss \(\Omega_{III}^{+++} \) \((\neq b, m, t)\). The difference between \(D_{l}^{\Omega_{III}^{+++}} \) and \(D_{r}^{\Omega_{III}^{+++}} \) is the addition of three arrows. Let \(z^{(l)} \) \((z^{(r)}, \text{resp.})\) be an element of \(\text{Sub}(D_{l}^{\Omega_{III}^{+++}}) \) \((\text{Sub}(D_{r}^{\Omega_{III}^{+++}}), \text{resp.})\). Then, if \(z^{(l)} \) \((z^{(r)}, \text{resp.})\) contains \(i \) \((i = 0, 1, 2, 3)\) arrow(s) of these three arrows, \(z^{(l)} \) \((z^{(r)}, \text{resp.})\) is denoted by \(z_{i}^{(l)} \) \((z_{i}^{(r)}, \text{resp.})\).

By the same argument as the case \(\Omega_{II}^{+} \), for \(i = 0, 1 \), we have
\[
\sum_{z_{i}^{(l)} \in \text{Sub}(D_{l}^{\Omega_{III}^{+++}})} \text{sign}(z_{i}^{(l)})(A, z_{i}^{(l)}) = \sum_{z_{i}^{(r)} \in \text{Sub}(D_{r}^{\Omega_{III}^{+++}})} \text{sign}(z_{i}^{(r)})(A, z_{i}^{(r)}).
\]

Then, we note that by (3) and (4), the following two formulas hold. For any \(\neq b, m, t \),
\[
\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} - D_{r}^{\Omega_{III}^{+++}} \rangle = 0,
\]
and
\[
\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} - D_{r}^{\Omega_{III}^{+++}} \rangle = 0.
\]

Hence, we discuss \(\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{3} \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} - D_{r}^{\Omega_{III}^{+++}} \rangle \) in the following.

- \(\Omega_{II}^{+++} \).

By (3),
\[
\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} \rangle - \frac{1}{3} \langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} \rangle = \sum_{z_{2}^{(l)} \in \text{Sub}(D_{l}^{\Omega_{III}^{+++}})} \text{sign}(z_{2}^{(l)})(\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, z_{2}^{(l)} \rangle) \delta_{++,}^{+}
- \sum_{z_{2}^{(l)} \in \text{Sub}(D_{l}^{\Omega_{III}^{+++}})} \text{sign}(z_{2}^{(l)})(\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, z_{2}^{(l)} \rangle)
\]

(for the second term, \(\frac{1}{3} \cdot 3 \) appears as in [10] Sec. 4.8.3] by symmetry of \(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \))

\[= 0 \tag{\text{3 appears as in [10] Sec. 4.8.3] by symmetry of \(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \)} \]

- \(\Omega_{II}^{++} \).

Since there is no element corresponding to \(z_{2}^{(l)} \) or \(z_{2}^{(r)} \),
\[
\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} - D_{r}^{\Omega_{III}^{+++}} \rangle = 0,
\]
and
\[
\langle \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, D_{l}^{\Omega_{III}^{+++}} - D_{r}^{\Omega_{III}^{+++}} \rangle = 0.
\]

- \(\Omega_{II}^{+} \).

Since we have the same formulas as in the above \(\Omega_{II}^{++} \) case except for replacing \(b \) with \(t \), we omit its proof. \(\square \)
3.2. Proof of Theorem 1. Since the invariance under each of $\Omega_{1+\pm}$, $\Omega_{2+\pm}$, and $\Omega_{3+--\pm}$ is obvious, we show the invariance under $\Omega_{t+\pm}$, $\Omega_{t+\pm+b}$, $\Omega_{t+\pm+m}$, and $\Omega_{t+\pm+t}$. Below, the same notations $z^{(1)}_i$, $z^{(r)}$, and z^\pm_1 as those of the proof of Theorem 2 apply.

- $\Omega_{t+\pm}$.

\[
\langle \begin{array}{c}
\sigma_0
\end{array}, D^{\Omega_{t+\pm}}\rangle - \langle \begin{array}{c}
\sigma_0
\end{array}, D^{\Omega_{t+\pm}}\rangle = \sum_{z^{(1)} \in \text{Sub}(D^{\Omega_{t+\pm}})} \text{sign}(z^{(1)})(\begin{array}{c}
\sigma_0
\end{array}, z^{(1)}) - \sum_{z^{(r)} \in \text{Sub}(D^{\Omega_{t+\pm}})} \text{sign}(z^{(r)})(\begin{array}{c}
\sigma_0
\end{array}, z^{(r)})
\]

\[
= \sum_{i=0}^{2} \sum_{z^{(1)}_i \in \text{Sub}(D^{\Omega_{t+\pm}})} \text{sign}(z^{(1)}_i)(\begin{array}{c}
\sigma_0
\end{array}, z^{(1)}_i) - \sum_{z^{(r)} \in \text{Sub}(D^{\Omega_{t+\pm}})} \text{sign}(z^{(r)})(\begin{array}{c}
\sigma_0
\end{array}, z^{(r)})
\]

\[
= \sum_{z^{(1)}_2 \in \text{Sub}(D^{\Omega_{t+\pm}})} \text{sign}(z^{(1)}_2)(\begin{array}{c}
\sigma_0
\end{array}, z^{(1)}_2) \quad (\because [\text{4}, \text{4}])
\]

\[
= 0 \quad (\because \text{there is no } z_2 \text{ that takes non-zero value}).
\]

Next, we consider $\Omega_{t+\pm+\pm} (* = b, m, t)$. We note that $z^{(1)}_2$ corresponds to $z^{(r)}_2$ under the Reidemeister move $\Omega_{t+\pm+\pm} (* = b, m, t)$. Then, each $\Omega_{t+\pm+\pm}$ corresponds to a sum of the three canonical subtractions “$z^{(1)}_2 - z^{(r)}_2$” of pairings $(z^{(1)}_2, z^{(r)}_2)$ as in Figure 4. Further, by the definition of $(\begin{array}{c}
\sigma_0
\end{array}, \cdot)$, each term, which survives in subtractions “$z^{(1)}_2 - z^{(r)}_2$”, consists of two arrows relevant to $\Omega_{t+\pm+\pm}$ and the other one with a sign ϵ (for * = b, t) or + (for * = m) as in the case “ccw” (i.e., “counterclockwise as in $\begin{array}{c}
\sigma_0
\end{array}$” embedded in $\begin{array}{c}
\sigma_0
\end{array}$) of Figure 5.

Figure 4. Three pairings corresponding to three subtractions for each Reidemeister move $\Omega_{t+\pm+\pm}$.

- $\Omega_{t+\pm+b}$.

\[
\langle \begin{array}{c}
\sigma_0
\end{array}, D^{\Omega_{t+\pm+b}}\rangle - \langle \begin{array}{c}
\sigma_0
\end{array}, D^{\Omega_{t+\pm+b}}\rangle = \sum_{z^{(1)} \in \text{Sub}(D^{\Omega_{t+\pm+b}})} \text{sign}(z^{(1)})(\begin{array}{c}
\sigma_0
\end{array}, z^{(1)}) - \sum_{z^{(r)} \in \text{Sub}(D^{\Omega_{t+\pm+b}})} \text{sign}(z^{(r)})(\begin{array}{c}
\sigma_0
\end{array}, z^{(r)})
\]

\[
= \sum_{z^{(1)}_2 \in \text{Sub}(D^{\Omega_{t+\pm+b}})} \text{sign}(z^{(1)}_2)(\begin{array}{c}
\sigma_0
\end{array}, z^{(1)}_2) \quad (\because [\text{4}, \text{4}])
\]

\[
= 0 \quad (\because \text{there is no } z_2 \text{ that takes non-zero value}).
\]
Figure 5. This is a list of the possible terms that take non-trivial values in the form as in Figure 4, where \(\epsilon = + \text{ or } - \).
In the same way as the above, using Figure 4 and the “case ccw” as in Figure 5,
\[\langle ✐ ✐ ✲ ✲ ✲ ✲ +, D^Ω III + + + t \rangle - \langle ✐ ✐ ✲ ✲ ✲ ✲ +, D_r^Ω III + + + t \rangle = 0 \]
and
\[\langle ✐ ✐ ✲ ✲ ✲ ✲ −, D^Ω III + + + m \rangle - \langle ✐ ✐ ✲ ✲ ✲ ✲ −, D_r^Ω III + + + m \rangle = 0. \]
Hence, ✐ ✐ ✲ ✲ ✲ ✲ ± is a link invariant. This fact together with Theorem 2 implies
that ✐ ✐ ✲ ✲ ✲ ✲ − (= ✐ ✐ ✲ ✲ ✲ ✲ + ✐ ✐ ✲ ✲ ✲ ✲ −) is also a link invariant.

By Figure 4 and “case cw” (i.e. clockwise) as in Figure 5, the same argument
of the proof of the invariance of ✐ ✐ ✲ ✲ ✲ ✲ ± applies, we have a proof of case ✐ ✐ ✲ ✲ ✲ ✲ ±.
The invariance of ✐ ✐ ✲ ✲ ✲ ✲ ± implies that ✐ ✐ ✲ ✲ ✲ ✲ − (= ✐ ✐ ✲ ✲ ✲ ✲ + ✐ ✐ ✲ ✲ ✲ ✲ −) is also a link
invariant. □

4. PROOF OF THEOREM 3

Let \(m \) and \(n \) be odd positive integers. Let \(L(m, n) \) be a 2-component link with
\(m + n + 8 \) as in Figure 6 (e.g. for \(L(1, 1) \), see Figure 4).

![Figure 6](image)

Figure 6. For \(L(m, n) \) with a fixed pair \((m, n)\), the left figure is a
link diagram and the right figure is its Gauss diagram; \(m \) (\(n \), resp.)
denotes \(m \) (\(n \), resp.) crossings.

Let \(L_n = L(n, n) \). By Table 1 for \(L_n \), the Östlund-Polyak-Viro formula (Corol-
lar 1) takes the same value (= 0) as that of \(L_m \) even if \(m \neq n \) whereas our
invariants take values \(-n \) or \(n \), which implies the statement of Theorem 3. □

Invariants of Theorem 1	Values of \(L(m, n) \)
✐ ✐ ✲ ✲ ✲ ✲ ±	\(-n\)
✐ ✐ ✲ ✲ ✲ ✲ +	\(-n\)
✐ ✐ ✲ ✲ ✲ ✲ −	\(m\)
✐ ✐ ✲ ✲ ✲ ✲ +	\(m\)

Invariants of Theorem 2	Values of \(L(m, n) \)
✐ ✐ ✲ ✲ ✲ ✲ ±	\(m - n\)
✐ ✐ ✲ ✲ ✲ ✲ +	\(m - n\)
✐ ✐ ✲ ✲ ✲ ✲ −	0

Ostlund-Polyak-Viro formula of Corollary 1
✐ ✐ ✲ ✲ ✲ ✲ ± + ✐ ✐ ✲ ✲ ✲ ✲ + ✐ ✐ ✲ ✲ ✲ ✲ − ✐ ✐ ✲ ✲ ✲ ✲ ± ±

Table 1.

ACKNOWLEDGEMENTS

We would like to thank Professor Tetsuo Deguchi and Professor Erica Uehara for their comments. We also thank Professor Koya Shimokawa for his guidance and comments.
Figure 7. $L(1,1)$.

References

[1] S. Barthel and D. Buck, Toloidal embeddings of abstractly planar graphs are knotted or linked, *J. Math. Chem.* 53 (2015), 1772–1790.

[2] T. Deguchi, On numerical applications of Vassiliev invariants to computational problems in physics, *Proceedings of the Conference on Quantum Topology*, 87–98, *World Sci. Publ.*, River Edge, NJ, 1994.

[3] T. Deguchi and K. Tsurusaki, A statistical study of random knotting using the Vassiliev invariants, *J. Knot Theory Ramifications* 3 (1994), 321–353.

[4] M. Goussarov, M. Polyak, and O. Viro, Finite-type invariants of classical and virtual knots, *Topology* 39 (2000), 1045–1068.

[5] H. Heguri, T. Yamamoto, and Y. Tezuka, Folding construction of a pentacyclic quadruply fused polymer topology with tailored *kyklo-*telechelic precursors, *Angew. Chem., Int. Ed.*, 54 (30), 8688–8692 (2015).

[6] N. Ito, Space of chord diagrams on spherical curves, *Internat. J. Math.* 30 (2019), 1950060, 25pp.

[7] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, *Ann. of Math.* (2) 126 (1987), 335–388.

[8] H. Murakami, On the derivatives of the Jones polynomial, *Kobe J. Math.* 3 (1986), 61–64.

[9] N. Oyamaguchi, Enumeration of spatial 2-bouquet graphs up to flat vertex isotopy, *Topology Appl.* 196 (2015), part B, 805–814.

[10] O.-P. Östlund, A diagrammatic approach to link invariants of finite degree, *Math. Scand.* 94 (2004), 295–319.

[11] M. Polyak, Minimal generating sets of Reidemeister moves, *Quantum Topol.* 1 (2010), 399–411.

[12] M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, *Internat. Math. Res. Notices* 1994, 445ff., approx. 8 pp.

[13] N. Sugai, H. Heguri, T. Yamamoto, and Y. Tezuka, A programmed polymer folding: *click* and *clip* construction of doubly *fused* tricyclic and triply *fused* tetracyclic polymer topologies, *J. Am. Chem. Soc.*, 133(49):19694–19697 (2011).

[14] E. Uehara and T. Deguchi, Knotting probability of self-avoiding polygons under a topological constraint, *J. Chem. Phys.* 147, 094901 (2017).

National Institute of Technology, Ibaraki College, 866 Nakane Hitachinaka, Ibaraki 312-8508, Japan

E-mail address: nito@ibaraki-ct.ac.jp

Department of Teacher Education, 1-1 Daigaku-cho, Yachiyo City, Shumei University, Chiba 276-0003, Japan

E-mail address: p-oyamaguchi@mailg.shumei-u.ac.jp