Synthesis of pyrrolo[3,2-a]phenazines from 5-nitroindoles and anilines

Zbigniew Wróbel · Michał Więclaw · Robert Bujok · Krzysztof Wojciechowski

Received: 25 April 2013 / Accepted: 10 September 2013 / Published online: 10 October 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Anilines react with 5-nitroindoles in the presence of t-BuOK in N,N-dimethylformamide (DMF) to form 5-nitroso-4-arylaminoindoles that in turn when treated with N,O-bis(trimethylsilyl)acetamide cyclize to pyrrolo[3,2-a]phenazines. In an alternative approach pyrrolo[3,2-a]phenazines are formed from aminoindoles and nitroarenes.

Keywords Amines · Anions · Heterocycles · Cyclizations · Nucleophilic substitutions · Lewis acids

Introduction

Phenazine derivatives are an important class of condensed heterocycles of natural origin [1–4]. Selected methods of synthesizing the phenazine framework are presented in Scheme 1. One of the oldest methods is the reaction of anilines with nitroarenes under basic conditions (the Wohl–Aue reaction, path a) [5]. The Holliman synthesis of phenazines (path b) is a base-induced cyclization of ortho-nitrodiphenylamines [6]. In the Bamberger–Ham reaction (path c) nitrosobenzenes dimerize under acidic conditions to form phenazines [7]. Other methods are the condensation of ortho-phenylenediamines with ortho-quinones (path d) [8], reaction of benzo[1,2-c]furans and phenols (the Beirut reaction, path e) [9], and palladium-catalyzed cyclization of 2-amino-2'H-bromophenylenediamines (path f) [10].

The classic Wohl-Aue synthesis of phenazines consists in the reaction of anilines with nitroarenes under harsh basic conditions, usually by heating of both starting materials with sodium or potassium hydroxide at 200 °C [5]. In recent years we extensively studied nucleophilic aromatic substitution reactions of hydrogen in nitroarenes [11–15]. During these studies we have found that anilines react with nitrobenzene derivatives under mild conditions in the presence of t-BuOK in DMF at −50 °C to form 2-nitrosodiphenylamines that in turn upon treatment with acetic acid cyclized to phenazines (Scheme2) [16, 17].

Other transformations of 2-nitrosodiphenylamines into heterocyclic systems developed by us include reactions with benzyl aryl sulfoxones to form 1,2-diarylbenzimidazoles [18] and cyclocondensation with functionalized alkyl acetates, such as malonates, phenyl- and phosphoryl-acetates, leading to 1-arylquinoxalin-2(1H)-ones [16, 19].

1,2-Benzo- and 1,2-heteroaryl-fused phenazines are of interest owing to their potential biological activity, as intercalators [20, 21], and antimicrobial agents [22, 23]. Reports on the synthesis of pyrrolo[3,2-a]phenazines are scarce. 1-(2-Aminoethyl)pyrrolo[3,2-a]phenazine was formed from 1,2-phenylenediamine and the 4,5-indolquinone arising from electrochemical oxidation of 5-hydroxytryptamine [24]. Dipyrrrolo[3,2-a:3,2-h]phenazines were synthesized in the oxidative dimerization of 5-aminoindoles [25]. Some pyrrolo[3,2-a]phenazine-10-carboxamides, obtained from 4-aminoindole and 2-iodo-3-nitrobenzoic acid, were tested as cytotoxic agents [26].
Results and discussion

In this paper we present a simple synthesis of pyrrolo[3,2-α]phenazines from nitroindoles and anilines. Thus when we treated 5-nitroindole derivatives 1 and anilines 2 with t-BuOK in DMF at −50 °C, the expected 4-(N-arylamino)-5-nitrosoindoles 3 were formed in good yields (Scheme 3 and Table 1).

Some of these compounds (3b and 3f) proved unstable and thus after isolation without further purification they were used in the next step to form phenazines. The 1H and 13C NMR spectra of the obtained nitrosoamines 3 and 7 deserve some comments. In the spectra of some of these compounds we observed broadening of the signals corresponding to the protons and carbon atoms of the nitroso-substituted moiety and thus their full interpretation was troublesome. Such a signal broadening is probably due to a slow rotation of the nitroso group around the C–N bond. A similar phenomenon was observed in the NMR spectra of 2-(alkylamino)- and 2-(arylamino)nitrosobenzenes [27, 28].

In our earlier papers we have shown that cyclization of N-(2-nitrophenyl)anilines to phenazines proceeds satisfactorily in boiling acetic acid [16, 17], with K2CO3 in methanol at room temperature [17], or with N,O-bis(trimethylsilyl)acetamide (BSA) [17]. Attempted cyclization of the model nitroso compound 3d in boiling acetic acid was unsuccessful; the starting material was consumed within 90 min (TLC control) but no defined products were obtained. No reaction of 3d was observed in the presence of K2CO3 in methanol. The cyclization of 3d occurs satisfactorily in the presence of BSA in DMF at 80 °C giving the expected pyrrolophenazine 4d in good yield. These reaction conditions were adapted to reactions of other 4-(N-arylamino)indoles 3. The results are summarized in the Table 1.

Alternatively, the pyrrolo[2,3-α]phenazines can be obtained from aminoindoles and nitroarenes (Scheme 4). Thus, when we reacted 4-aminoindole 6a with 4-nitroanisole (5) under standard conditions (t-BuOK/DMF, −50 °C) the expected nitrosoaniline 7a was formed. Since the amine 7a proved unstable, it was without purification subjected to
reaction with BSA and cyclized to 9-methoxypyrrolo[3,2-a]phenazine 4g that was isolated in 90 % yield. Similarly 5-aminoindole 6b and 4-nitroanisole formed the relatively stable nitroso derivative 7b that was isolated in 40 % yield. Treatment of the compound 7b with BSA led to isomeric 8-methoxypyrrolo[3,2-a]phenazine 4h in 64 % yield.

These reactions show the versatility of the proposed approach to pyrrolphenazines enabling the synthesis of derivatives bearing substituents in the desired position of the heterocyclic system, as exemplified by the synthesis of 8- and 9-methoxy derivatives 4g and 4e that can be obtained from different nitroarene–amine pairs, namely 5-nitroindole and para-aminodine or 5-aminoindole (6b) and 4-nitroanisole (5).

In summary, a novel two-step approach to pyrrolphenazines starting from easily available nitroindoles and anilines was developed. In an alternative reaction sequence the pyrrolphenazines can be obtained from nitroarenes and aminoindoles. The simplicity of this approach makes it an interesting alternative to other procedures.

Experimental

All reactions were performed under argon atmosphere. 1H and 13C NMR spectra were recorded on Bruker 500 MHz spectrometer (500 MHz for 1H and 125 MHz for 13C spectra). Chemical shifts (δ) are expressed in ppm referred to TMS, coupling constants in Hertz. Mass spectra (EI, 70 eV) were obtained on an AMD-604 spectrometer. ESI mass spectra were obtained on SYNAPT G2-S HDMS.

Merck silica gel 60 F254 plates were used for TLC. Merck silica gel 60 (230–400 mesh) was used for flash column chromatography.

Typical procedure for synthesis of compounds 3 and 7

N-(4-Chlorophenyl)-1,2-dimethyl-5-nitroso-1H-indol-4-amine (3a, C16H14ClN3O)

4-Chloroaniline (0.32 g, 2.5 mmol) in 2 cm³ DMF was added to a solution of 0.67 g t-BuOK (6 mmol) in 10 cm³ DMF cooled to −50 °C. After 5 min a solution of 0.38 g 1,2-dimethyl-5-nitroindole (2 mmol) in 3 cm³ DMF was added. The reaction was stirred at −50 to −40 °C until the starting indole disappeared (1–2 h, TLC control, SiO2, toluene/ethyl acetate 10:1). Then the reaction mixture was
poured into 100 cm3 water with 5 g NH$_4$Cl. The precipitate was dissolved in 100 cm3 EtOAc and dried with Na$_2$SO$_4$. After evaporation of solvent the product was purified by column chromatography (SiO$_2$, toluene/ethyl acetate). The product 3a was obtained as a dark red solid; m.p.: >285 °C (decomp.); R_f = 0.18 (toluene/ethyl acetate 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 2.21 (s, 3H), 3.61 (s, 3H), 5.41 (br s, 1H), 6.91 (br s, 1H), 7.15–7.26 (m, 2H), 7.37–7.38 (m, 2H), 8.14 (br s, 1H), 14.49 (s, 1H) ppm; 13C NMR (125 MHz, CDCl$_3$): δ = 12.47, 104.55, 105.57, 111.77, 127.35, 128.18, 128.99, 129.33, 132.57, 134.94, 137.38, 141.32, 153.62 ppm; MS (ESI): m/z = 300 ([M$-\text{H}$]$^-$, 100), 282 (8); HRMS (ESI): calcd. for C$_{16}$H$_{15}$N$_3$O 300.0904, found 300.0905.

1-Benzyl-N-(4-chlorophenyl)-2-methyl-5-nitroso-1H-indol-4-amine (3b, C$_{22}$H$_{18}$ClN$_3$O)

Dark red unstable semisolid; MS (EI, 70 eV): m/z = 375 (M$^+$, 42), 361 (55), 358 (38), 344 (12), 323 (33), 267 (9), 253 (32), 235 (36), 219 (19), 91 (100); HRMS (ESI): calcd. for C$_{22}$H$_{18}$ClN$_3$O 398.1031, found 398.1040.

2-Methyl-N-(4-methylphenyl)-5-nitroso-1-octyl-1H-indol-4-amine (3c, C$_{24}$H$_{31}$N$_3$O)

Dark red oil; R_f = 0.32 (toluene/ethyl acetate 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 0.88 (t, J = 7.1 Hz, 3H), 1.27–1.33 (m, 10H), 1.67–1.71 (m, 2H), 2.20 (s, 3H), 2.42 (s, 3H), 3.93 (t, J = 7.7 Hz, 2H); 6.96 (d, J = 8.4 Hz, 2H), 7.13–7.28 (m, 3H), 14.69 (br s, 1H) ppm; 13C NMR (125 MHz, CDCl$_3$): δ = 12.44, 14.02, 22.55, 26.86, 28.09, 29.19, 30.43, 31.70, 43.76, 104.95, 105.90, 121.14, 127.41, 128.91, 129.38, 132.29, 133.12, 134.46, 137.34, 140.80, 153.35 ppm; MS (ESI, MeOH): m/z = 398 ([M$-\text{H}$]$^-$, 100), 380 (10); HRMS (ESI): calcd. for C$_{24}$H$_{29}$ClN$_3$O 398.1999, found 398.1997.

N-(4-Chlorophenyl)-2-methyl-5-nitroso-1-octyl-1H-indol-4-amine (3d, C$_{23}$H$_{28}$ClN$_3$O)

Black solid; m.p.: 102–103 °C; R_f = 0.40 (toluene/ethyl acetate 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 0.88 (t, J = 7.1 Hz, 3H), 1.27–1.33 (m, 10H), 1.70–1.73 (m, 2H), 2.20 (s, 3H), 2.96 (t, J = 7.5 Hz, 2H), 5.40 (br s, 1H), 6.91 (br s, 1H), 7.24–7.29 (m, 2H), 7.34–7.42 (m, 2H), 8.13 (br s, 1H), 14.54 (s, 1H) ppm; 13C NMR (125 MHz, CDCl$_3$): δ = 12.44, 14.02, 22.55, 26.86, 28.09, 29.19, 30.43, 31.70, 43.76, 104.95, 105.90, 121.14, 127.41, 128.91, 129.38, 132.29, 133.12, 134.46, 137.34, 140.80, 153.35 ppm; MS (ESI, MeOH): m/z = 398 ([M$+\text{H}$]$^+$, 100), 380 (10); HRMS (ESI): calcd. for C$_{23}$H$_{29}$ClN$_3$O 398.1999, found 398.1997.

N-(4-Methoxyphenyl)-2-methyl-5-nitroso-1-octyl-1H-indol-4-amine (3e, C$_{24}$H$_{31}$N$_3$O$_2$)

Black solid; m.p.: 77–79 °C; R_f = 0.24 (toluene/ethyl acetate 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 0.88 (t, J = 7.1 Hz, 3H), 1.26–1.32 (m, 10H), 1.67–1.71 (m, 2H), 6.96 (d, J = 8.4 Hz, 2H), 7.13–7.28 (m, 3H), 14.69 (br s, 1H) ppm; 13C NMR (125 MHz, CDCl$_3$): δ = 12.43, 14.05, 22.59, 26.90, 29.12, 29.23, 30.47, 31.73, 31.78, 43.68, 104.56, 116.11, 111.92, 126.29, 129.24, 132.25, 133.76, 134.36, 135.78, 137.02, 140.54, 153.45 ppm; MS (ESI): m/z = 378 (M$^+$, 100); HRMS (ESI): calcd. for C$_{24}$H$_{29}$N$_3$O 378.2545, found 378.2548.
8-Chloro-2,3-dimethylpyrrolo[3,2-a]phenazine (4a, C23H16ClN3)

To 200 mg 4-arylamino-5-nitrosoindole 3 (0.66 mmol) dissolved in 10 cm³ DMF was added 0.67 g N,N-O-bis(trimethylsilyl)acetamide (3.3 mmol). The reaction mixture was stirred at 80 °C for 12–24 h (TLC control, n-hexane/ethyl acetate 4:1). Then the reaction mixture was poured into 100 cm³ water. The product was separated, dissolved in 50 cm³ EtOAc, and dried with Na₂SO₄. After evaporation of the solvent the product was purified by column chromatography (SiO₂, n-hexane/ethyl acetate 4:1). Product 4a was obtained in the form of orange crystals; m.p.: >300 °C; Rf = 0.22 (n-hexane/ethyl acetate 4:1); 1H NMR (500 MHz, DMSO-d₆): δ = 2.59 (s, 3H), 3.96 (s, 3H), 7.18 (s, 1H), 7.76 (d, J = 9.4 Hz, 1H), 7.85 (dd, J = 9.0, 2.25 Hz, 1H), 8.18 (d, J = 9.4 Hz, 1H), 8.24–8.26 (m, 2H) ppm; 13C NMR (125 MHz, DMSO-d₆): δ = 12.33, 27.56, 102.93, 120.37, 121.59, 122.54, 128.28, 130.63, 131.22, 133.70, 135.48, 137.46, 140.45, 140.98, 141.86, 143.19 ppm; MS (EI, 70 eV): m/z = 281 (M⁺, 100), 266 (8); HRMS (ESI): calcd. for C₁₇₆H₁₂ClN₃ 359.2370, found 359.2371.

8-Chloro-2-methyl-3-octylpyrrolo[3,2-a]phenazine (4c, C24H30N3)

Brown–red solid; m.p.: 133–135 °C; Rf = 0.54 (n-hexane/ethyl acetate 4:1); 1H NMR (500 MHz, CDCl₃): δ = 0.87 (br s, 3H), 1.15–1.45 (m, 10H), 1.82 (m, 2H), 2.54 (s, 3H), 2.64 (s, 3H), 4.18 (m, 2H), 7.26 (s, 1H), 7.63 (br d, J = 8.0 Hz, 1H), 7.75–7.87 (m, 2H), 8.05–8.07 (m, 1H), 8.21 (br d, J = 8.0 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 12.84, 14.01, 21.99, 22.56, 26.96, 29.13, 29.26, 30.97, 31.71, 43.88, 102.79, 118.16, 121.41, 122.00, 127.54, 128.38, 132.19, 133.81, 135.17, 138.76, 139.23, 140.52, 141.27, 141.77 ppm; MS (EI, 70 eV): m/z = 359 (M⁺, 100), 344 (7), 316 (5), 288 (8), 274 (6), 260 (47), 246 (27), 233 (99); HRMS (ESI): calcd. for C₂₄H₂ₐN₃ 359.2361, found 359.2357.

8-Chloro-2-methyl-3-octylpyrrolo[3,2-a]phenazine (4d, C23H26ClN3)

Yellow crystals; m.p.: 157–159 °C; Rf = 0.70 (n-hexane/ethyl acetate 4:1); 1H NMR (500 MHz, CDCl₃): δ = 0.86 (t, J = 7.1 Hz, 3H), 1.26–1.40 (m, 10H), 1.79–1.85 (m, 2H), 2.55 (s, 3H), 4.19 (t, J = 7.6 Hz, 2H), 7.25 (s, 1H), 7.71 (dd, J = 9.1, 2.2 Hz, 1H), 7.78 (d, J = 9.3 Hz, 1H), 7.84 (d, J = 9.3 Hz, 1H), 8.23–8.25 (m, 2H) ppm; 13C NMR (125 MHz, CDCl₃): δ = 12.84, 14.01, 22.56, 26.95,
29.12, 29.25, 30.98, 31.71, 43.95, 103.11, 119.05, 121.41, 121.88, 127.79, 130.10, 130.46, 133.94, 134.06, 135.54, 136.68, 140.16, 141.20, 142.39 ppm; MS (EI, 70 eV): \(m/z = 379 \) (M⁺, 100), 282 (19), 281 (15), 266 (23); HRMS (EI): calcd. for \(\text{C}_{23}\text{H}_{20}\text{N}_{3}\text{O} \) 379.1815, found 379.1818.

8-Methoxy-2-methyl-3-octylpyrrolo[3,2-a]phenazine (4e, \(\text{C}_{23}\text{H}_{20}\text{N}_{3}\text{O} \))

Yellow crystals; m.p.: 122–124 °C; \(R_t = 0.38 \) (n-hexane/ethyl acetate 4:1); \(^1\)H NMR (500 MHz, CDCl₃): \(\delta = 0.86 \) (t, \(J = 7.1 \) Hz, 3H), 1.26–1.40 (m, 10H), 1.84 (m, 2H), 2.57 (s, 3H), 4.22 (t, \(J = 7.6 \) Hz, 2H), 7.29 (s, 1H), 7.82 (d, \(J = 9.3 \) Hz, 1H), 7.88 (d, \(J = 9.3 \) Hz, 1H), 7.93 (dd, \(J = 9.0, 2.0 \) Hz, 1H), 8.41 (d, \(J = 9.0 \) Hz, 1H), 8.58 (s, 1H) ppm; \(^1\)C NMR (125 MHz, CDCl₃): \(\delta = 12.87, 14.03, 22.57, 26.96, 29.13, 29.26, 31.02, 31.72, 44.03, 103.46, 119.40, 121.70, 121.75, 124.02 (q, \(J = 272 \) Hz), 124.49, 127.67 (q, \(J = 4.9 \) Hz), 129.61 (q, \(J = 32 \) Hz), 130.18, 134.47, 135.72, 139.79, 140.77, 142.42, 143.05 ppm; MS (EI, 70 eV): \(m/z = 413 \) (M⁺, 100), 315 (45), 301 (11), 300 (23), 287 (9); HRMS (EI): calcd. for \(\text{C}_{24}\text{H}_{22}\text{F}_{3}\text{N}_{3} \) 413.2079, found 413.2090.

3-Benzyl-9-methoxy-2-methylpyrrolo[3,2-a]phenazine (4g, \(\text{C}_{24}\text{H}_{22}\text{F}_{3}\text{N}_{3} \))

Yield 90 %; yellow crystals; m.p.: >250 °C; \(R_t = 0.18 \) (n-hexane/ethyl acetate 4:1); \(^1\)H NMR (500 MHz, DMSO-d₆): \(\delta = 2.48 \) (s, 3H), 4.03 (s, 3H), 5.65 (s, 2H), 7.04–7.08 (m, 2H), 7.18 (s, 1H), 7.23–7.35 (m, 3H), 7.52 (dd, \(J = 9.3, 2.5 \) Hz, 1H), 7.57 (d, \(J = 2.5 \) Hz, 1H), 7.72 (d, \(J = 9.0 \) Hz, 1H), 8.08 (d, \(J = 9.3 \) Hz, 1H), 8.10 (d, \(J = 9.0 \) Hz, 1H) ppm; \(^1\)C NMR (125 MHz, DMSO-d₆): \(\delta = 13.05, 46.82, 56.37, 102.99, 105.45, 118.18, 121.75, 121.94, 123.76, 126.66, 127.77, 129.22, 132.80, 135.02, 136.36, 138.05, 138.43, 139.43, 140.03, 143.53, 160.72 ppm; MS (ESI): \(m/z = 354 \) ([M + H⁺]); HRMS (ESI): calcd. for \(\text{C}_{24}\text{H}_{22}\text{F}_{3}\text{N}_{3} \) 354.1601, found 354.1615.

Acknowledgments

This research was supported by the National Scientific Center, Grant NN 204 193 038.

References

1. Laursen JB, Nielsen J (2004) Chem Rev 104:1663
2. Beifuss U, Tietze M (2005) Top Curr Chem 244:77
3. Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W (2009) ChemBioChem 10:2295
4. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Annu Rev Phytopathol 44:417
5. Wohl A, Aue W (1901) Chem Ber 34:2442
6. Gaertner G, Holliman FG, Gray A (1962) Tetrahedron 18:1105
7. Bamberger E, Ham W (1911) Liebigs Ann Chem 382:82
8. Kehrmann F, Mermod C (1927) Helv Chim Acta 10:62
9. Haddadin MJ, Issidorides CH (1993) Heterocycles 35:1503
10. Emoto T, Kubosaki N, Yamagiwa Y, Kamikawa T (2000) Tetrahedron Lett 52:6484
11. Mąkosza M (2011) Synthesis 2341
12. Mąkosza M, Wojciechowski K (2011) Nucleophilic substitution of hydrogens—an efficient tool in synthesis of heterocyclic compounds. In: Attanasi O (ed) Targets in heterocyclic systems: chemistry and properties, vol 14. Societa Chimica Italiana, Rome, p 19
13. Mąkosza M (2010) Chem Soc Rev 39:2855
14. Mąkosza M, Wojciechowski K (2004) Chem Rev 104:2631
15. Mąkosza M, Wojciechowski K (2001) Heterocycles 54:445
16. Wrobel Z, Kwast A (2007) Synlett 250
17. Kwast A, Stachowska K, Trawczynski A, Wrobel Z (2011) Tetrahedron Lett 52:6484
18. Wrobel Z, Stachowska K, Grudzierek K, Kwast A (2011) Synlett 1439
19. Wrobel Z, Stachowska K, Kwast A, Gośick K, Królakiewicz M, Pawlowski R, Turska I (2013) Helv Chim Acta 96:956
20. Cimmino A, Evidente A, Mathieu V, Andolfi A, Lefranc F, Kornienko A, Kiss R (2012) Nat Prod Rep 29:487
21. Vicker N, Burgess L, Chuckowree IS, Dodd R, Folkes AJ, Hardick DJ, Hancock TC, Miller W, Milton J, Sohal S, Wang S, Wren
22. Hussain H, Specht S, Sarite SR, Saefel M, Hoerauf A, Schulz B, Krohn K (2011) J Med Chem 54:4913
23. Saleh O, Flinspach K, Westrich L, Kulik A, Gust B, Fiedler H-P, Heide L (2012) Beilstein J Org Chem 8:501
24. Wrona MZ, Dryhurst G (1987) J Org Chem 52:2817
25. Meesala R, Nagarajan R (2010) Synlett 2808
26. Gamage SA, Spicer JA, Rewcastle GW, Milton I, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) J Med Chem 45:740
27. Lipilin DL, Churakov AM, Ioffe SL, Strelenko YA, Tartakovsky VA (1999) Eur J Org Chem 29
28. Wirth S, Wallek AU, Zernickel A, Feil F, Sztiller-Sikorska M, Lesiak-Mieczkowska K, Bräuchle C, Lorenz I-P, Czyz M (2010) J Inorg Biochem 104:774