有限体上のソリトン方程式における
入れ子構造を持つソリトン解について

由良文孝
公立はこだて未来大学 複雑系知能学科

概要． 最近提案された箱玉系の類似とみなせる有限体上のソリトン力学系 [12] について、その 1-ソリトン解の形を示す。その解はフラクタル的な入れ子構造を持つことがわかった。ソリトン解としてそのような表示を持つ系はこれまでに知られていないと思われる。またそのような複雑な内部構造を持つにも関わらず、複数個の 1-ソリトン解を衝突させると衝突の前後でべきを保ち、確にソリトン系であることを数値実験により紹介する。

Solitons with Nested Structure over Finite Fields
Fumitaka YURA
Department of Complex and Intelligent Systems
Future University HAKODATE

Abstract. In this paper, we prove the one-soliton solutions to the solitonic dynamical system over finite fields [12] that may be regarded as an analogue of the box-ball systems. It turns out that the one-soliton solution has a nested structure similar to fractals, and as far as we know such a system seems to be novel. Furthermore, in spite of such a complex internal structure, numerical simulations show stable propagations before and after collisions among multiple solitons with preserving their patterns.

1. はじめに

「デジタル化」された可積分系として、箱玉系は活発に研究されてきた。超離散化の手法 [10] を通じて、他の離散可積分系との関連や保存量といった性質はかなり理解されてきたといえる。本論文では、これら箱玉系の超離散形を通して得られてきた知見をもとに最近提案された有限体上の力学系 [12] について、その解を考察する。これまでに知られている有限体上における可積分系はいくつか存在する [1−6] が、これらのアプローチとは違い、箱玉系 [9] が超離散双線形形式を持つ系であることに着目し、その数式上の類似として有限体上に構築された系である。本論文ではこの有限体上の力学系が持つ 1-ソリトン解が入れ子構造を持つことについて報告し、それらが衝突の前後でパターンを保存していることを数値実験により示す。

* E-mail : yura@fun.ac.jp

—11—
2. 箱玉系 (BBS)

本論文で扱う系は、箱玉系とその解に類似した性質を持つ。そこで、箱と箱玉系の方程式と解釈についての最低限を以下に示しておく [9,10]。箱の容量を1に限る最も簡単な場合の箱玉系は次式で表される。

\[u_{n}^{t+1} := \min \left\{ 1 - u_{n}^{t}, \sum_{k=-\infty}^{n-1} (u_{k}^{t} - u_{k+1}^{t+1}) \right\} \]

ここで\(u_{n}^{t} \)は時刻\(t \), 場所\(n \)における\((t,n \in \mathbb{Z}) \)箱の中の玉の数と解釈される従属変数である。従属変数変換

\[u_{n}^{t} = s_{n}^{t} - s_{n-1}^{t}, \quad s_{n}^{t} = g_{n}^{t-1} - g_{n}^{t} \]

を行い、適切な境界条件の下で

\[s_{n+1}^{t+1} - s_{n}^{t} = \min \{ 0, 1 - s_{n+1}^{t} + s_{n}^{t+1} \} \]
\[g_{n+1}^{t+1} + g_{n}^{t-1} = \max \{ g_{n+1}^{t} + g_{n}^{t-1} + g_{n+1}^{t+1} - 1 \} \]

と、超離散双線形形式を得る。さらにこの箱玉系の時刻\(t \)から時刻\(t+1 \)への時間発展(2.1)は、左から右へ順に抜ける「運搬車」を用いて

1. 左の玉から順に運搬車に積み込む
2. 1. の過程で空箱があり運搬車に玉が積まれていれば、その空箱に玉を1つ降ろす

と解釈できる。図1に例を示しておく。

![Fig. 1. An example of time evolution of BBS by Eq. (2.1)](image)

3. 有限体上におけるソリトン方程式 (ffBBS)

前節で見た箱玉系はこれまでよく調べられてきた系であり、その解や保存量といった重要な性質に関してはよくわかっている。従属変数\(u_{n}^{t} \)が0と1の2値を取るという著しい性質を持つ可積分ソリトン系である。そこで一方その方程式(2.1)−(2.3)を観察する
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

と、バイナリではなく整数（あるいは実数）上での式である。この事実は、運搬車の取りうる状態が整数（あるいは実数）で指定されることに由来している。式 (2.1) は運搬車の容量 (最大積載量) が無限大極限の場合であり、もし運搬車容量が0 や 1 であれば、それは自明な系しか与えない。すべての状態 (従属変数) を初めから有限集合上にとり、さらに良い代数構造を持つような系を考える動機の一つはここにある。本論文では [12] で提案された次の有限体 F_3 上の方程式 (fBBS と呼ぶ)

$$U_{n+1}^t = -M \left(-1 + U_n^t - \sum_{k=-\infty}^{n-1} (U_k^t - U_{k+1}^t) \right)$$

を扱う (素体 $p = 3$ の場合に限定する)。この式 (3.1) は陽に時間発展を定める力学系を与える。さらに、有限体 F_3 上の関数 $M : F_3 \times F_3 \rightarrow F_3$ として

$$M(a, b) := 2(a^2 + ab + b^2 + a + b)$$

を与えられるものに限ることにする。このとき式 (3.1) は多項式による発展方程式であるから、すべての初期値に対して不定などを生じない*1。次の従属変数変換

$$U_n^t = S_n^t - S_{n-1}^t, \quad S_n^t = G_n^{t-1} - G_n^t$$

は、箱玉系の場合の式 (2.1)–(2.3) に類似した

$$S_{n+1}^t - S_n^t = -M (0, S_{n+1}^t - S_{n+1}^{t+1} - 1)$$

$$G_{n+1}^{t+1} + G_n^{t-1} = M (G_{n+1}^t + G_n^t, G_{n+1}^{t+1} + G_n^{t-1} - 1)$$

という「双線形形式」を与える*2。ここで従属変数 G_n^t, S_n^t, U_n^t はすべて F_3 の元とし、独立変数 n, t は \mathbb{Z} のままである。これらの方程式の導出等は [12] に譲り、ここでは任意の $a, b, c \in F_3$ に対して次の事実が式 (3.1)–(3.3) の変換を可能にしていることのみに注意しておく。

$$M(0, 0) = 0$$

$$M(a, b) = M(b, a) : 交換則$$

$$M(a, b) + c = M(a + c, b + c) : 分配則$$

このとき $M(a, b) - M(-a, -b) = a + b$ が成立し、\max が満たす公式 ($a', b' \in \mathbb{R}$)

$$\max(a', b') - \max(-a', -b') = \max(a', b') + \min(a', b') = a' + b'$$

などとの類似から、最大値関数 \max の類似として関数 M を捉えることができる。ただし 2 項演算 M は結合則を満たせない。次の事実を示した後、ソリトン解を以下に紹介する。

事実 1

$M(0, 0) = 0, M(0, 1) = 1, M(0, 2) = 0$

*1 これは有限体上における可積分系の先行研究と比べて著しい特徴であることを付記しておく

*2 すでにまったく双線形ではないが、式 (2.3) との形式的な類似のためこう呼ぶことにする
3.1 0-ソリトン解について

箱玉系 (2.3) では通常, $g_n^1 = \text{const.}$ が 0-ソリトン解を与えている. 式 (3.3) においても同様に $G_n^1 = \text{const.}$ が与える $U_n^1 = 0$ が 0-ソリトン解となる. ただし, $U_n^0 = 0$ が $G_n^0 = \text{const.}$ を与えるとは限らないことに注意しておく.

3.2 1-ソリトン解について

ここでは, 孤立波として「十分な数」の'0'で分離された安定なパターンをソリトンと呼ぶ. 図 2 に定理 2 のソリトン解の例を示す. 図からはパターン '11' が速度 2, パターン '1' が速度 1, パターン '2' が速度 0 を持ち移動している様子が分かる. また, 衝突の前後で位相はずれるがその形を崩さない点は箱玉系と類似している.

Fig. 2. Examples of time evolution of ffBBS by Eq. (3.1) (White: 0, Black: 1, Gray: 2). As initial values, solitons which have velocities (a) 2, 1, 0, 0 (b) 2, 2, 1, 1, 1, 0, 0 are given at uppermost row.

定理 2 (1 ソリトン解 [12])

- 速度 0 を持つパターンは文字 '2' のみからなる
- 速度 1 を持つパターンは
 パターン中に '2' が含まれていない場合は '010', パターン中に '2' を含む場合は '012(12 + 2)*10' (正規表現) が速度 1 の解である. つまり途中に '0' を含まず, かつ速度 1 を持つパターンが無限種類存在する ('010', '01210', '012210', '0121210', '0122210', ...).
- 速度 2 を持つパターンは '11' のみ
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

Fig. 3. An example of time evolution by Eq. (3.1) (White: 0, Black: 1, Gray: 2). As initial values, three solitons that have velocity 4/3, 8/7, 16/15 respectively described in Thm. 3 are given at uppermost row. Despite complex collisions, three solitons conserve its patterns.

さらに進行波解を調べるため $S(\xi) \equiv S_0^n$, $\xi := Kn - \Omega t$ の条件を課すと, 式 (3.2) から進行波解が満たす積分式

$$(3.4) \quad S(\xi + K - \Omega) - S(\xi) = -M (0, S(\xi + K) - S(\xi - \Omega) - 1)$$

を得る。このとき次の定理 3 を示すことが、本論文の主題である。

定理 3 (分数速度の 1-ソリトン解)
上で示した速度 0, 1, 2 のソリトン解以外に、任意の $h \in \mathbb{Z}_{>0}$ に対し, $\Omega = K + 1 = 2^h + 1$ を満たす進行波解が存在する。その解はある時刻でパターン ‘12^h0^t1’ を含み、速度

$$\frac{\Omega}{K} = \frac{2^h + 1}{2^{h+1} - 1}$$

を持つ。$h = 0$ のときは上の定理でのソリトン ‘11’ に一致する。

図 3 に上記に関するソリトンの進行波とその間の散乱の様子を図示した。最上列の初期値として、それぞれ ‘1201’, ‘122001’, ‘12220001’ を与えたものである。ここでの分数速度

$$\frac{2^h + 1}{2^{h+1} - 1}$$

とは、時刻 $2^{h+1} - 1$ の後に、空間座標が 2^{h+1} ずれた場所に同じパターンがあらわれることを意味している。式 (3.1) は可逆であることに注意する。ここまでの述べた以外の 1-ソリトン解が存在するかどうかは現在のところ未証明である。数値実験の結果では、本論文に記載のパターンを除いて、いわゆる状態とみなせる解は見つかっていない。

4. 定理 3 の 1-ソリトン解について

この節では、定理 3 の 1-ソリトン解を書き下し、その解が式 (3.4) を満たすことを定理 4 として示す。定理 3 の後半は節 4.5 に示す。

—15—
4.1 解の具体形

定理3での$h \in \mathbb{Z}_{>0}$に対し，次の数列を再帰的に用意する。数字の置き換えに伴う木構造(cf.図5)を明示するため括弧つきで表示するが，数列としては括弧を無視することとする。

- $I_{h+1}^i := (2h+1-1)$
- $I_{h+1}^i := I_i^i$の中の値$2i+1$をすべて$(1,2i-1,2i-1)$に置き換える($1 \leq i \leq h$のとき)

数列I_i^iの長さは$2h-i+1-1$となるから，その各要素を明示するため順に，

$I_i^i = (I_i^i(0),I_i^i(1),\ldots,I_i^i(2h-i+1-2))$

とおく。この各数列I_i^iの総和がiによらず

\[
\sum_{k=0}^{2h-i+1-2} I_i^i(k) = 2h+1 - 1 = K (0 \leq i \leq h)
\]

であることは，下線を引いた2箇所の和がそれぞれ同じ$2i+1-1$であることから従う。

さらに数列I_i^iを次のように並べて，長さが$r := 3 \cdot 2h+1 - (h+5)$，総和が$(2h+1)2h+1 - (h+1)$の回文性を持つ(palindromic)数列$I^r$を定義する。

\[
I^r := (I^r_h, I^r_{h-1}, \ldots, I^r_1, I^r_1, \ldots, I^r_1, I^r_2, \ldots, I^r_h)
\]

(4.2)

\[
I^r := (I^r_h, I^r_{h-1}, \ldots, I^r_1, I^r_1, \ldots, I^r_1, I^r_2, \ldots, I^r_h).
\]

ここでX^Rは数列Xを逆順に並べた数列とする。式(4.3)はI^r_0が$(2h+1-1)$個の1からなることから従う。この長さrの数列I^rの要素を左から順にb_0,b_1,\ldots,b_{r-1}とおく。つまり，$0 \leq l \leq 2h+2 - (h+4)$である$l$に対して$2h-i+1-(h-i+2) \leq l < 2h-i+2 - (h-i+3)$を満たす$i$が一意に存在し

\[
0 \leq i \leq h, b_l = I^r_l(l-2h-i+1 + (h-i+2))
\]

である。$2h+2 - (h+3) \leq l \leq r-1$のときは$b_l = b_{r-l-1}$である。

さらに漸化式$a_{i+1} = a_i + b_i, a_0 = 0$から定まる数列の値を要素に持つ集合$J := \{a_0, a_1, \ldots, a_r\}$を定義する。このとき最大元は$a_r = (2h+1)2h+1 - (h+1)$である。この集合$J$を用いると，定理3の1-ソリトン解を具体的に示す次が成り立つ。
定理 4
任意に与えられた \(h \in \mathbb{Z}_{>0} \) に対し、集合 \(J \) と \(\Omega = K + 1 = 2^{h+1} \) および \(S(\xi) := \sum_{\mu \in J} \theta(\xi - \mu) \mod 3 \in \mathbb{F}_3 \) は、式 (3.4)を満たす。ここで \(\theta \) は整数 \(\xi \) のみに対し定義される
なる単位ステップ関数 \(\theta(\xi) = \begin{cases} 1 & (0 \leq \xi) \\ 0 & \text{otherwise} \end{cases} \) とする。

例 1 (\(h = 3 \) の場合)
例として \(h = 3 \) のときを示す。このとき \(K = 15, \Omega = 16, r = 40 \)である。\(I_3^{(3)} = (15), I_2^{(3)} = ((1, 7, 7)), I_1^{(3)} = ((1, (1, 3, 3), (1, 3, 3))), I_2^{(3)R} = ((7, 7, 1)) \)などから
\[
I^{(3)} := ((15), ((1, 7, 7)), ((1, (1, 3, 3), (1, 3, 3))), \overline{1, 1})
\]
となり、左から順に \(b_0 = 15, b_1 = 1, b_2 = 7, b_3 = 7, b_4 = 1, \ldots, b_{38} = 1, b_{39} = 15 \) および \(a_0 = 0, a_1 = 15, a_2 = 16, a_3 = 23, a_4 = 30, a_5 = 31, \ldots, a_{39} = 93, a_{40} = 108 \)を得る。式 (3.4) は
\[
S(\xi) - S(\xi - 1) = M(0, S(\xi + 15) - S(\xi - 16) - 1)
\]
となる。例えばさらに \(\xi = 15 \) と取ると、左辺は 1、右辺は \(0 \leq a_i \leq 30 \)を満たす \(J \)の要素が \(0 \leq i \leq 4 \)の5個であるから \(M(0, 5 - 1) = M(0, 1) = 1 \)となり、等号が成立する。

\(I_i^{(h)} \)を定義する際に用いた数値の置き換え規則は、すべての \(2^{i+1} - 1 \)を一斉に置き換えるものであるから L-system (Lindenmayer system) の一種である [7]。文法 \(G_1 = (\Sigma_1, \omega, P) \)に対して、アルファベット \(\Sigma_1 \)を \(\{A, B\} \)、初期列を \(\omega = B \in \Sigma_1 \)、ルールは \(P = \{A \to A, B \to ABB\} \)として一斉に置換する。このとき導出される文字列は \(A \to 1, B \to 2^{i+1} - 1 \)と置き換えると \(I_i^{(1)} \)である。

次に位取り記数法を導入し、導出される文字列と方程式での座標との間の対応付けをおこなう。

4.2 混合基数による位取り記数法
次の混合基数による位取り記数法 (positional numerical system with mixed radix) を用意する。\(m \in \mathbb{Z}_{\geq 1}, 0 \leq i \leq 2^{m+1} - 2 \)に対して、\(i = \sum_{k=1}^{m} d_k(2^k - 1), d_k \in \{0, 1, 2\} \subset \mathbb{Z} \)と、整数 \(i \)を展開する。つまり \(k \)桁目の仮数は \(\{0, 1, 2\} \)、基数は \(2^{k-1} \)と変化する位取り記数法である。ただしある \(k' \)が存在して \(d_{k'} = 2 \)のとき、\(d_{k'-1} = d_{k'-2} = \cdots = d_1 = 0 \)となる制約条件をつけるものとする。例を挙げると
\[m = 1 \text{ のとき, } 0 \leq i \leq 2 \text{ のそれぞれに対して } d_1 = 0, 1, 2 \]
\[m = 2 \text{ のとき, } 0 \leq i \leq 6 \text{ のそれぞれに対して } \\
(d_2, d_1) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0) \]

である。与えられた \(m \) に対して、この記数法には冗長性がないことを命題 5 に示す。一般の記数法では上位桁の 0 を省略することがあるが、本論文では省略せずにになるべく桁数も（文字列の長さとして）明記することとする。

定義

\(m \in \mathbb{Z}_{\geq 1} \) としアルファベット \(\Sigma = \{0, 1, 2\} \) 上に、次の形式言語 \(L_m \) を定義する。

\[L_m := \{d_md_{m-1} \cdots d_2d_1 \in \Sigma^m \mid 1 \leq i \leq m, d_i \in \Sigma, \\
\text{もしある } k \text{ が存在して } d_k = 2 \text{ のとき, } d_{k-1} = d_{k-2} = \cdots = d_1 = 0\} \]

ここで \(\Sigma^m \) は文字列の連結を積として \(\Sigma^n := \Sigma^{n-1} \times \Sigma \), つまりアルファベット \(\Sigma \) 上の長さ \(m \) の言語（文字列の集合）とし、\(\Sigma^0 := \{\varepsilon\} \), \(\varepsilon \) は積の単位元と定義する。また、

\(L_0 := \Sigma^0, L := \bigcup_{m=0}^{\infty} L_m \) とする。

\(m \in \mathbb{Z}_{\geq 0} \) に対して、文字列 \(\beta \in \Sigma^m \) の末尾に文字アルファベット \(a \in \Sigma \) を追加した文字列を結合積として \(\beta a \) と表記することとする。逆に文字列 \(\beta a \in \Sigma^{m+1} \) から末尾の文字を消去する演算として \(\text{del} : \Sigma^{m+1} \rightarrow \Sigma^m, \beta a \mapsto \beta \) を定義する。

命題 5

\(m \in \mathbb{Z}_{\geq 1} \) とする。次で定義される写像

\[C_m : L_m \rightarrow \{0, 1, \ldots, 2^{m+1} - 2\} \subset \mathbb{Z}, d_md_{m-1} \cdots d_1 \mapsto \sum_{k=1}^{m} d_k(2^k - 1) \]

は全単射である。ここで、\(\Sigma = \{0, 1, 2\} \) と \(\mathbb{Z} \supset \{0, 1, 2\} \) の元をそれぞれ同一視する。\(C_0 \) については、\(C_0 : \varepsilon \mapsto 0 \) と定義する。

証明 \(m = 1 \) のときは命題中の同一視する定義を指し、1 対 1 である。\(m \geq 1 \) のとき写像 \(C_m \) の全単射性を仮定すると、\(0 \leq i \leq 2^{m+2} - 2 \) に対し

\[d_{m+1} = \begin{cases}
0 & (0 \leq i \leq 2^{m+1} - 2) \\
1 & (2^{m+1} - 1 \leq i \leq 2^{m+2} - 3) \\
2 & (i = 2^{m+2} - 2)
\end{cases} \]

と定めることによって、\(C_m \) は \(i - d_{m+1}(2^{m+1} - 1) \in \{0, 1, \ldots, 2^{m+1} - 2\} \) と \(d_m, d_{m-1}, \ldots, d_1 \) を一意に対応づける。故に \(C_{m+1} \) は単射である。さらに、\(L_{m+1} \) は図 4 の示す決定性（出次数が 0 は許す）の有限オートマトンにより生成される言語のうち長さ \(m + 1 \) のものであるから隣接行列

\[A = \begin{pmatrix} 0 & 0 & 0 \\
2 & 2 & 0 \\
1 & 1 & 1 \end{pmatrix} \]

－18－
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

Fig. 4. Finite automaton that accepts the language \mathcal{L}.

を用いて，\mathcal{L}_{m+1} の要素数 $\# \mathcal{L}_{m+1}$ は $(1, 1, 1)A^{m+1}(1, 0, 0)^t = 2^{m+2} - 1$ と与えられ，写像 C_{m+1} が全単射であることがわかる。□

以降，命題中で述べたように $\Sigma = \{0, 1, 2\}$ と $Z \supset \{0, 1, 2\}$ の元をそれぞれ同一視する。

4.3 証明の準備

定理 4 の証明に必要な命題をいくつか用意する。定理 4 中の $h \in \mathbb{Z}_{\geq 0}$ は以降固定する。$0 \leq i \leq h$ である i に対し I_i^h の長さは $(2^{h-i+1} - 1)$ であるから，I_i^h の中で左から j 番目（0 から数えて $0 \leq j \leq 2^{h-i+1} - 2$）にある $I_i^h(j)$ は右から $(2^{h-i+1} - 2 - j)$ 番目にあう。このとき文字列 $\alpha_i^h(j) := C_{h-i}^{-1}(2^{h-i+1} - 2 - j) \in \mathcal{L}_{h-i}$ とおく。例を表 1 にあげる。

命題 6

$0 \leq i < h, 0 \leq j \leq 2^{h-i+1} - 2$ とする。$\alpha_i^h(j) = d_{h-i}d_{h-i-1} \cdots d_1 \in \mathcal{L}_{h-i}$ の各文字 d_k は，図 5 のように木の根から葉に至る経路の，深さ $h-i-k$ での枝に対応する。また，

$$I_i^h(j) = \begin{cases} 2^{i+1} - 1 & (\alpha_i^h(j) \text{が文字 2 を含まない}) \\ 1 & (\alpha_i^h(j) \text{が文字 2 を含む}) \end{cases},$$

$$\sum_{k=1}^{h-i} d_k(2^k - 1) = C_{h-i}(\alpha_i^h(j)) = 2^{h-i+1} - 2 - j$$

Table 1. Correspondence among I_i^h, α_i^h and $C_{h-i}(\alpha_i^h)$ in the case of $h = 3, i = 1$. (cf. Fig. 5 (b))

j	0	1	2	3	4	5	6
$I_1^3(j)$	1	1	3	3	1	3	3
$\alpha_1^3(j)$	20	12	11	10	02	01	00
$C_2(\alpha_1^3(j))$	6	5	4	3	2	1	0

—19—
補題 7

\[0 \leq i < h, 0 \leq j < h - i \] となる. このとき \(d_{h-i}d_{h-i-1} \cdots d_1 = \alpha_i^{(h)}(j) \in \mathcal{L}_{h-i} \) とおくと, \(j - \sum_{k=1}^{h-i} d_k = -2 \) および \(I_i^{(h)}(j) = 1 \) である.

証明 各 \(\alpha_i^{(h)}(j)\) を \(j\) について順に具体的に書き下すと, \(\alpha_i^{(h)}(0) = 20^{h-i-1} = 20 \cdots 0\), \(\alpha_i^{(h)}(1) = 120^{h-i-2}\), \(\alpha_i^{(h)}(j) = 1120^{h-i-j-1}\), \(\alpha_i^{(h)}(h - i - 1) = 1^{h-i-2}\) を得る. アルファベット 2 と 1 の数はそれぞれ 1 個と \(j\) 個である.

補題 8

\[m \in \mathbb{Z}_{\geq 1} \] とする. 文字列 \(d_md_{m-1} \cdots d_1\) と \(d'_md'_{m-1} \cdots d'_1\) \(\in \mathcal{L}_m \) の \(\alpha_i^{(h)}(j)\) と \(I_i^{(h)}(j)\) のいずれについても成立し, \(P(1)\) は正しい. \(P(m)\) が成立するとき, \(C_{m+1}(d_md_{m-1} \cdots d_1) + C_{m+1}(d'_md'_{m-1} \cdots d'_1) = 2^{m+1} - m - 1\) を満たすとき, \(\sum_{k=1}^{m} (d_k + d'_k) = m + 1\).

証明 補題 8 を \(P(m)\) とし, 帰納法により証明する. \(m = 1\) のとき, \((d_1, d'_1) = (0, 2), (1, 1), (2, 0)\) のいずれについても成立し, \(P(1)\) は正しい. \(P(m)\) が成立するとき, \(C_{m+1}(d_md_{m-1} \cdots d_1) + C_{m+1}(d'_md'_{m-1} \cdots d'_1) = 2^{m+2} - m - 2\) を考える. このとき \(C_{m+1}(d_md_{m-1} \cdots d_1) = d_m(2^{m+1} - 1) + C_{m}(d_md_{m-1} \cdots d_1), C_{m+1}(d'_md'_{m-1} \cdots d'_1) =\)
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

\[d_{m+1}^{(2m+1)-1} + C_m(d'_m \cdots d'_1) \text{ より } (d_{m+1} + d'_m)^{(2m+1)-1} + C_m(d_m \cdots d_1) + C_m(d'_m \cdots d'_1) = 2^{m+2} - m - 2 \text{ が成立。} \]

\[\begin{itemize}
 \item d_{m+1} + d'_m = 2 のとき \quad C_m(d_m \cdots d_1) + C_m(d'_m \cdots d'_1) = -m < 0 \text{ となり条件を満たさない。}
 \item d_{m+1} + d'_m = 1 のとき \quad C_m(d_m \cdots d_1) + C_m(d'_m \cdots d'_1) = 2^{m+1} - m - 1 \text{ が成立し, } P(m) \text{ より } \sum_{k=1}^{m} (d_k + d'_k) = m + 1. \text{ 故に } \sum_{k=1}^{m+1} (d_k + d'_k) = m + 2.
 \item d_{m+1} + d'_m = 0 のとき \quad C_m(d_m \cdots d_1) + C_m(d'_m \cdots d'_1) = 2^{m+2} - m - 2 \text{ が成立する。定義より } C_m(d_m \cdots d_1), C_m(d'_m \cdots d'_1) \leq 2^{m+1} - 2 \text{ であるから, } 2^{m+1} - m \leq C_m(d_m \cdots d_1), C_m(d'_m \cdots d'_1) \text{ となる。} j := 2^{m+1} - 2 - C_m(d_m \cdots d_1), j' := 2^{m+1} - 2 - C_m(d'_m \cdots d'_1) \text{ とおくと補題7から } \sum_{k=1}^{m} d_k = j + 2, \sum_{k=1}^{m} d'_k = j' + 2 \text{ となる。} \sum_{k=1}^{m} (d_k + d'_k) = j + j' + 4 = m + 2 \text{ および } d_{m+1} + d'_m = 0 \text{ から, } \sum_{k=1}^{m+1} (d_k + d'_k) = m + 2. \end{itemize}

これらより \(P(m+1) \) が成立する。□

命題 9

1 \leq i \leq h, 0 \leq j \leq 2^h+i-2 \text{ とする。このとき文字列 } \beta := \alpha_i^{(h)}(j) \in \mathcal{L}_{h-i} \text{ の末尾に 0 を連結した } \beta' = \beta 0 \in \mathcal{L}_{h-i+1} \text{ を考える。} j' := 2^{h-i+2} - 2 - C_{h-i+1}(\beta') \text{ とおくと,}

\[(4.7) \sum_{k=0}^{j} I_i^{(h)}(k) = \sum_{k'=0}^{j'} I_{i-1}^{(h)}(k') \]

が成り立つ。

証明 1 \geq i \text{ であるから } 2^i-1 \neq 1 \text{ である。このとき式 (4.5) から, } I_i^{(h)}(j) = 2^{i+1}-1 \text{ は, } \beta = \alpha_i^{(h)}(j) \text{ が文字 2 を含まないことと同値である。数列 } I_{i-1}^{(h)} \text{ を構成するとき, } I_i^{(h)}(j) \text{ の中での値 } 2^{i+1} - 1 \text{ は } (1, 2^i-1, 2^i-1) \text{ に置き換えられる。つまり, } \beta \text{ が文字 2 を含まない場合, 数列 } I_{i-1}^{(h)} \text{ の中では, } j' \text{ によって決まる次の場所の値が定まる:}

\[\begin{cases}
 I_{i-1}^{(h)}(j'-2) = 1 \\
 I_{i-1}^{(h)}(j'-1) = 2^i - 1 \\
 I_{i-1}^{(h)}(j') = 2^i - 1
\end{cases} \]

(4.8)

\[I_i^{(h)}(j) = \sum_{k'=j'-2}^{j'} I_{i-1}^{(h)}(k') = 2^{i+1} - 1 \]

次に \(I_i^{(h)}(j) = 1 \) のときを考えると, \(\beta \) が文字 2 を含む場合であるから, 値 1 がそのまま置き換えられないときであり,

\[(4.9) I_i^{(h)}(j) = I_{i-1}^{(h)}(j') = 1 \]

NII-Electronic Library Service
が成立する。このとき文字列 \(\beta_1, \beta_2 \not\in \mathcal{L}_{h-i+1} \) であることに注意する。

0 \leq \forall k \leq j \) に対して \(I_i^{(h)}(k) \) の和をとるとき、\(\alpha_i^{(h)}(k) \) が文字 2 を含むかどうかによって式 (4.8) または (4.9) のいずれかが成立する。文字 2 を含まないときは \(k \) に対応する 3 つの \(k' \) が対応する。文字 2 を含むときは \(k \) に対応する 1 つの \(k' \) が対応する。逆に、

0 \leq \forall k' \leq j' \) に対して文字列 \(\gamma := \alpha_i^{(h)}(k') = C_{h-i+1}^{-1}(2^{h-i+2} - 2 - k') \in \mathcal{L}_{h-i+1} \) とおくと \(h - i + 1 \geq 1 \) であるから、長さ \(1 \) 以上の文字列 \(\gamma \) は必ず親ノードを持つ。子ノード \(\gamma \) に対応する親ノード \(\text{del}(\gamma) \) は \(I_i^{(h)} \) の中にただ 1 つ存在する (図 5 の例では (b) の葉から (a) の葉への対応)。従って命題 9 が成立する。

\[
\sum_{k=j+1}^{2^{h-i+1}-2} I_i^{(h)}(k) + \sum_{k'=0}^{j'} I_i^{(h)}(k') = K.
\]

\(j = 2^{h-i+1} - 2 \) のとき \(j' = 2^{h-i+2} - 2 \) であり、

\[
\sum_{k'=0}^{2^{h-i+2}-2} I_i^{(h)}(k') = K.
\]

証明 式 (4.1) から
\[
\sum_{k=0}^{2^{h-i+1}-2} I_i^{(h)}(k) = \sum_{k'=0}^{2^{h-i+2}-2} I_i^{(h)}(k') = K \] が成立する。この式に式 (4.7) を代入する。

この系 10 から、\(b_k \) の和が \(K \) 以下で最大となる \(k \) の範囲が定まる。この範囲について、命題 11 は右端を固定したときの左端を、逆に命題 12 は左端を固定したときの右端を与える。

命題 11

0 \leq i \leq h - 1, 0 \leq j \leq 2^{h-i+1} - 2 \) とする。\(\alpha_i^{(h)}(j) := d_{h-i}d_{h-i-1} \cdots d_1 \in \mathcal{L}_{h-i} \) とおくと

\[
\left(j + \sum_{k=1}^{h-i} d_k\right) \text{は常に偶数となる。} \quad j' := \frac{1}{2} \left(j + \sum_{k=1}^{h-i} d_k\right) - 1 \text{に対し、} \quad \text{del} \left(\alpha_i^{(h)}(j)\right) = \alpha_{i+1}^{(h)}(j') \in \mathcal{L}_{h-i-1} \] が成立す。さらに、\(j_1 := j' + 2^{h-i} - (h - i + 1), j_2 := j + 2^{h-i+1} - (h - i + 2) \) とおくと、

\[
\sum_{k=j_1+1}^{j_2+d_1} b_k = K, \quad \sum_{k=j_1}^{j_2} b_k > K
\]

が成立し、\(j_2 - j_1 = \frac{1}{2} \left(j - \sum_{k=1}^{h-i} d_k\right) + 2^{h-i} \).
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

証明 式 (4.6) から \((2^{h-i+1} - 2) - j = \sum_{k=1}^{h-i} d_k (2^k - 1) \) が成立し \(\left(j + \sum_{k=1}^{h-i} d_k \right) \) が偶数であることがわかる. この式へ \(j' = \frac{1}{2} \left(j + \sum_{k=1}^{h-i} d_k \right) - 1 \) を代入すると, \((2^{h-i} - 2) - j' = \sum_{k=1}^{h-i+1} d_k (2^k - 1) \) を得る. この右辺は \(C_{h-i-1}(\text{del}(\alpha^{(h)}_i(j))) \) に等しく, 左辺は \(C_{h-i-1} (\alpha^{(h)}_i(j')) \) に等しい. つまり \(\text{del}(\alpha^{(h)}_i(j)) = \alpha^{(h)}_i(j') \) の成立する.

後半については, 式 (4.4) から \(I^{(h)}_{i+1}(j') = b_{j_1} I_i^{(h)}(j) = b_{j_2} \) の対応とし 10 の \(j \) を \(j_1 \) に置き換え \(b_k \) で書き改めることから言える. 不等式については, \(d_1 = 0 \) なら \(b_{j_1} > 0 \) より \(\sum_{k=1}^{j_2} b_k > K \). また \(d_1 = 1 \) または 2 なら \(\text{del}(\alpha^{(h)}_i(j)) = \alpha^{(h)}_i(j') \) は 2 を含まないから \(b_{j_1} = 2^{j_2+1} - 1 > \sum_{k=1}^{d_1} b_{j_2+k} \) より \(\sum_{k=1}^{j_1} b_k > K \). □

命題 12

\[1 \leq i \leq h, \ 0 \leq j \leq 2^{h-i+1} - 2 \] とする. \(\beta := d_{h-i} d_{h-i-1} \cdots d_1 := \alpha^{(h)}_i(j) \in \mathcal{L}_{h-i}, j' = 2j + 2 - \sum_{k=1}^{h-i} d_k \) とおくと, \(\beta 0 = \alpha^{(h)}_i(j') \in \mathcal{L}_{h-i+1} \) が成立する. さらに, \(j_1 := j + 2^{h-i+1} - (h-i+2), j_2 := j' + 2^{h-i+2} - (h-i+3) \) とおくと,

\[\sum_{k=1}^{j_1} b_k = K \]

が成立し, \(j_2 - j_1 = j + 1 + 2^{h-i+1} - \sum_{k=1}^{h-i} d_k \).

証明 命題 11 において \(d_1 = 0 \) とき, \(j \) を \(j' \) について逆に解くと, この命題前半の \(i \) の \(i - 1 \) としたものを得る. このときに \(\beta 0 \in \mathcal{L}_{h-i+1} \) であるが, \(\beta \) は 2 を含むこともあるために \(\beta 0, \beta 2 \in \mathcal{L}_{h-i+1} \) とは限らないことに注意しておく. 後半は式 (4.4) を用いて, 系 10 を \(b_k \) で書き改めることから従う. □

4.4 定理 4 の証明

この節では定理 4 を証明する. \(\Omega = K + 1 = 2^{h+1} \) のとき, 式 (3.4) は

\[S(\xi) - S(\xi - 1) = M \left(0, S(\xi + K) - S(\xi - K - 1) - 1 \right) \]

である. この式は陽的な発展を定めていないことに注意する. 集合 \(J \) を用いて \(S(\xi) = \# \{ \mu \in J \mid \mu \leq \xi \} \mod 3 \) であるから,

\[S(\xi) - S(\xi - 1) = \begin{cases} 1 & (\xi \in J) \\ 0 & \text{otherwise} \end{cases} \]

NII-Electronic Library Service
\[S(\xi + \eta) - S(\xi - \eta - 1) = \# \{ \mu \in J \mid \xi - \eta - 1 \leq \mu \leq \xi + \eta \} \mod 3 \]

となり、幅 \(2K+1\) の窓の中にある集合 \(J\) の要素数を数える問題に帰着する。そこで以降

\[W(\xi) := \# \{ \mu \in J \mid \xi - K \leq \mu \leq \xi + K \} \]

とおく。\(a_0 = 0, a_1 = K\) に注意すると、\(\xi < -K\) のとき \(W(\xi) = 0, -K \leq \xi < 0\) のとき \(W(\xi) = 1\) となり \(\xi < 0\) のとき式 (4.10) を満たす。\(\xi \geq 0\) に対しては、\(a_l = \sum_{k=0}^{l-1} b_k, a_0 = 0\) であるから \(\xi = a_l + \eta\) とおく。数列 \(\{b_l\}_{l=0}^{r-1}\) が回文的であることに注意すると、\(0 \leq l \leq \left\lfloor \frac{r}{2} \right\rfloor\) について示せば十分である。

\[W(l, \eta) := W(\xi = a_l + \eta) \]

とおくと

\[W(l, \eta) = \# \{ \mu \in J \mid a_l + \eta - K \leq \mu \leq a_l + \eta + K \} \]

\[= \# \{ m \mid 0 \leq m \leq r, a_l + \eta - K \leq a_m \leq a_l + \eta + K \} \]

\[= \# \{ m \mid 0 \leq m \leq r, (a_m - a_l) - K \leq \eta \leq (a_m - a_l) + K \}, \]

\[a_m - a_l = \begin{cases} \sum_{k=0}^{l-1} b_k & (l < m) \\ 0 & (l = m) \\ -\sum_{k=m}^{l-1} b_k & (l > m) \end{cases} \]

であるから、\(0 \leq \eta < b_l \leq K\) に注意して

\[W(l, \eta) = 1 + \# \left\{ m \mid 0 \leq m < l \leq r, \eta \leq K - \sum_{k=m}^{l-1} b_k \right\} \]

\[+ \# \left\{ m \mid 0 \leq l < m \leq r, \sum_{k=l}^{m-1} b_k \leq K + \eta \right\} \]

を得る。次の節 4.4.1 と 4.4.2 の結果より、\(0 \leq l \leq \left\lfloor \frac{r}{2} \right\rfloor\) のとき、

\[W(l, \eta) \equiv \begin{cases} 2 & (\eta = 0) \\ 0, 1 & (1 \leq \eta < b_l) \pmod{3} \end{cases} \]

となる。このとき事実 1 から式 (4.10) が成立し、定理 4 の証明終わり。 □

4.4.1 \(\eta = 0\) の場合

\(\eta = 0\) の場合には式 (4.11) は次のようになる。

\[W(l, 0) = 1 + \# \left\{ m \mid 0 \leq m \leq r, \sum_{k=m}^{l-1} b_k \leq K \right\} + \# \left\{ m \mid 0 \leq l \leq m \leq r, \sum_{k=l}^{m-1} b_k \leq K \right\} \]

\(l = 0\) のとき \(W(0, 0) = 2\) である。\(l = 1\) のとき \(W(1, 0) = 5\) であり、例 1 で示した \(h = 3\)

\(\eta = 0\) のときの \(W(\xi = 15(= a_1)) = 5\) に相当する。
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

次に \(2 \leq l \leq 2^{h+1}-(h+2) \) のとき、\(2^{h-i+1}-(h-i+2) \leq l-1 < 2^{h-i+2}-(h-i+3) \)を満たす \(i \) は \(1 \leq i \leq h-1 \) となり \(b_{i-1} = I_1^{(h)}(c) \) が成立する。ここで \(c := (l-1) - 2^{h-i+1}+(h-i+2) \) とおいた。\(1 \leq i \leq h-1 \) であるから命題 11 と 12 が適用できる。命題 11 と 12 において \(j \) を \(c \) として、

\[
W(l,0) = 1 + \left\{ \frac{1}{2} \left(c - \sum_{k=1}^{h-i} d_k \right) + 2^{h-i} \right\} + \left\{ c + 1 + 2^{h-i+1} - \sum_{k=1}^{h-i} d_k \right\}
= 3 \left(2^{h-i+1} - \sum_{k=1}^{h-i} d_k 2^{k-1} \right) - 1
\]

となり、\(W(l,0) \equiv 2 \mod 3 \)。

次に \(2^{h+1}-(h+1) \leq l \leq 2^{h+1}-(h+2) \) のとき、\(b_l = b_{l+1} = \cdots = b_{l+2^{h+1}-2} = 1 \) が成立するから、

\[
\# \left\{ m \left| 0 \leq l < m \leq r, \sum_{k=1}^{m-1} b_k \leq K \right. \right\} = 2^{h+1} - 1 = K
\]

となる。またこの範囲の \(l \) に対しては、\(i = 0 \) としたときの命題 11 が成り立つ。ここで \(c := (l-1) - 2^{h+1}+(h+2) \) とおき、命題 11 において \(j \) を \(c \) として、

\[
\# \left\{ m \left| 0 \leq m < l \leq r, \sum_{k=1}^{l-1} b_k \leq K \right. \right\} = \frac{1}{2} \left(c - \sum_{k=1}^{h} d_k \right) + 2^h
\]

を得る。さらに \(0 \leq c < h \) が成立するから補題 7 を用いて、

\[
W(l,0) = 1 + \frac{1}{2} \left(c - \sum_{k=1}^{h} d_k \right) + 2^h + (2^{h+1} - 1)
= 3 \cdot 2^h - 1.
\]

最後に \(2^{h+1}-(h+1) \leq l \leq \left[\frac{r}{2} \right] \) のときを示す。このときは式 (4.11) の右辺第 3 項中の \(b_k \) が \(I_1^{(h)} \) にも含まれるため、\(b_k = b_{r-k+1} \) の対称性を用いて次の変形を得る。

\[
\# \left\{ m \left| 0 \leq l < m \leq r, \sum_{k=1}^{m-1} b_k \leq K \right. \right\} = \# \left\{ m \left| 0 \leq r-m < r-l \leq r, \sum_{k=r-m}^{l-1} b_k \leq K \right. \right\}
\]

\([
 c := (r-l-1) - 2^{h+1}+(h+2) \) とおくと \(b_{r-l-1} = I_0^{(h)}(c) \) となる。さらに \(d_1 \cdots d_1 := a_0^{(h)}(c) \) とおくと、\(\sum_{k=1}^{h} d_k 2^{k-1} = 2^{h+1}-2-c \)。命題 11 において \(j \) を \(c \) として、

\[
\# \left\{ m \left| 0 \leq l < m \leq r, \sum_{k=1}^{m-1} b_k \leq K \right. \right\} = \frac{1}{2} \left(c - \sum_{k=1}^{h} d_k \right) + 2^h
\]

25
となる。一方 \(c' := (l-1) - 2^{h+1} + (h+2) \) とおくと \(b_{l-1} = I_0^{(h)}(c') \) となる。 \(d'_h \cdots d'_1 := \alpha_0^{(h)}(c') \) とおくと、\(\sum_{k=1}^{h} d'_k (2^k - 1) = 2^{h+1} - 2 - c' \)。命題 11 において \(j \) を \(c' \) として、
\[
\# \left\{ m \mid 0 \leq m < l \leq r, \sum_{k=m}^{l-1} b_k = K \right\} = \frac{1}{2} \left(c' - \sum_{k=1}^{h} d'_k \right) + 2^h
\]
となる。故に
\[
W(l,0) = 1 + \left\{ \frac{1}{2} \left(c - \sum_{k=1}^{h} d_k \right) + 2^h \right\} + \left\{ \frac{1}{2} \left(c' - \sum_{k=1}^{h} d'_k \right) + 2^h \right\}
= 3 \cdot 2^h + \frac{1}{2} \left\{ h - 1 - \sum_{k=1}^{h} (d_k + d'_k) \right\}
\]
となる。\(\sum_{k=1}^{h} (d_k + d'_k) (2^k - 1) = 2^{h+1} - h - 1 \) に注意すると、補題 6 から \(W(l,0) = 3 \cdot 2^h - 1 \) を得る。

ここまで \(\eta = 0 \) の場合をまとめると、常に \(W(l,0) \equiv 2 \mod 3 \) が成立し、\(\xi \in J \) に対し
\(M(0,W(\xi) - 1) = 1 \) となり式 (4.10) を満たす。

4.4.2 \(\eta \neq 0 \) の場合
次に、式 (4.11) において \(\eta \neq 0 \) の場合を考える。\(\xi = a_l + \eta \)、\(0 \leq \eta < b_l \) であるから \(W(l,\eta) \) として、\(b_l > 0 \) を満たす \(\eta \) のみを考えればよい。つまり \(l \) は、1 より大きい \(b_l \) を含むる \(0 \leq l \leq 2^{h+1} - (h+3) \) に限ってよいことがわかる。このとき \(2^{h-i+1} - (h-i+2) \leq l < 2^{h-i+2} - (h-i+3) \) を満たす \(i \) が存在して、\(1 \leq i \leq h \) である。この \(i \) に対して \(c := l-2^{h-i+1}+(h-i+2) \) とおくと、\(b_l = I_i^{(h)}(c) \) となる。\(b_l > 1 \) であるから式 (4.5) より \(b_l = I_i^{(h)}(c) = 2^{i+1} - 1 \)、つまり文字列 \(\alpha_i^{(h)}(c) = C_{h-i}^{-1}(2^{h-i+1} - 2 - c) \in L_{h-i} \) が文字 2 を含まない場合のみを調べればよいことになる。

まず \(i = h \) の場合、\(l = 0 \) に限られるから \(1 \leq \eta < b_l = K \) における \(W(0,\eta) \) を調べればよい。\(b_0 = K = 2^{h+1} - 1, b_1 = 1, b_2 = b_3 = 2^h - 1 \) に注意すると、式 (4.11) より
\[
W(l,\eta) = 1 + \# \left\{ m \mid 0 < m \leq r, \sum_{k=0}^{m-1} b_k \leq K + \eta \right\}
= 2 + \# \left\{ m \mid 1 < m \leq r, \sum_{k=1}^{m-1} b_k \leq \eta \right\}
= 2 + \theta(\eta - 1) + \theta(\eta - 2^h)
\]
となる。つまり \(1 \leq \eta < b_0 = K \) のとき \(W(0,\eta) \not\equiv 2 \mod 3 \) を得る。
次に \(1 \leq i \leq h-1 \) の場合を考える。このとき命題 11 と 12 が適用できることに注意して、式 (4.11) の各項を評価する。文字列 \(\alpha_i^{(h)}(c) \in L_{h-i} \) の長さは \(1 \) 以上であるから

---26---
有限体上のソリトン方程式における入れ子構造を持つソリトン解について

\(d_{h-i}d_{h-i-1} \cdots d_1 := \alpha_i^{(h)}(c) \) に対して, \(\beta := d_{h-i} \cdots d_2 = \text{del}(\alpha_i^{(h)}(c)) \) とおく．まず第2項 \(\# \left\{ m \mid 0 \leq m < l \leq r, \eta + \sum_{k=m}^{l-1} b_k \leq K \right\} \) を調べる．\(d_1 \neq 2 \) であるから

- \(d_1 = 0 \) のとき命題11より, \(\sum_{k=j_1+1}^{l+1} b_k = K \) が成立する (\(j_1 = l \) によって命題内で定まり, \(m \) の下限を与える)．このとき \(\eta < b_l \) であるから, 常に不等式 \(\eta + \sum_{k=j_1+1}^{l-1} b_k < b_l + \sum_{k=j_1+1}^{l-1} b_k = K \) が成立して \(\eta \) の値は条件に影響を与えない．

- \(d_1 = 1 \) のときは \(b_l \) が \(\beta_1(= \alpha_i^{(h)}(c)) \) に対応するから, \(b_{l+1} \) が \(\beta_0 \) に対応することがわかる．\(\beta_0 \) と \(\beta_1 \) は文字2を含まないから, \(b_l = b_{l+1} = 2^{i+1} - 1 \) である．

次に第3項 \(\# \left\{ m \mid 0 \leq l < m \leq r, \sum_{k=l}^{m-1} b_k \leq K + \eta \right\} \) を調べる．命題12において\(j_l = l - 1 \) とおくことによって \(\sum_{k=l}^{j_2} b_k = K \) が成立する (上限 \(j_2 \) は \(l \) によって命題内で定まり, \(m \) の上限を与える)．このとき \(b_{j_2} \) の右隣には順に文字列 \(\beta d_{12}, \beta d_{13}, \beta d_{10} \) に対応した箇所が並び, \(b_{j_2+1} = 1, b_{j_2+2} = b_{j_2+3} = 2^i - 1 \) である．

- \(1 \leq \eta \leq 2^i - 1 \) のとき, \(\sum_{k=l}^{j_2+1} b_k = K + 1 \leq K + \eta < \sum_{k=l}^{j_2+2} b_k \).
- \(2^i \leq \eta < b_l = 2^{i+1} - 1 \) のとき, \(\sum_{k=l}^{j_2+2} b_k = K + 2^i \leq K + \eta < \sum_{k=l}^{j_2+3} b_k \).

これらより, \(0 \leq \eta < b_l = 2^{i+1} - 1 \) に,

\[\# \left\{ m \mid 0 \leq l < m \leq r, \sum_{k=l}^{m-1} b_k \leq K + \eta \right\} = \# \left\{ m \mid 0 \leq l < m \leq r, \sum_{k=l}^{m-1} b_k \leq K \right\} + \theta(\eta - 1) + \theta(\eta - 2^i). \]

ここで \(\eta \neq 0 \) の場合をまとめると, \(0 \leq l \leq 2^{h+1} - (h + 3), 1 \leq \eta < b_l \) のとき

\[W(l, \eta) = W(l, 0) + \theta(\eta - 1) + \theta(\eta - 2^i) \equiv 2 + \theta(\eta - 1) + \theta(\eta - 2^i) \bmod 3 \]

\(\neq 2 \bmod 3 \)

である．数列 \(\{ b_l \}_{l=0}^{r-1} \) が回文的であるから, 任意の \(\xi \notin J \) に対し \(M(0, W(\xi) - 1) = 0 \) となり式 (4.10) を満たす．

\[-27 - \]
4.5 ある時刻におけるパターンについて

前節では進行波解の全体を見た。この節では定理3の後半で述べたソリトン進行波が、ある時刻でパターン”12\(h^0\)1”を含むことを示す。

前節の結果から、\(\Omega = K+1 = 2^{h+1}\)のとき進行波解 \(S(\xi) = \# \{ \mu \in J \mid \mu \leq \xi \} \pmod{3}\)が存在する。このとき式 (3.1) の従属変数は \(U_n^t = S(\xi) - S(\xi - K), \xi = Kn - \Omega t\)で与えられる。

\[
V(\xi) := S(\xi) - S(\xi - K) \\
= \# \{ \mu \in J \mid \xi - K + 1 \leq \mu \leq \xi \}
\]

とおくと, \(U_n^t = V(Kn - \Omega t) \pmod{3}\)である。ここで時刻を固定し整数座標 \(n\)での値を見る。適当な平行移動により \(\xi = Kn + \frac{K-1}{2}\)とおくと、次を得る。

\[
V \left(Kn + \frac{K-1}{2} \right) = \begin{cases}
0 & (n < 0) \\
1 & (n = 0) \\
3 \cdot 2^{n-1} - 1 & (1 \leq n \leq h) \\
3 \cdot 2^{2h-n} & (h + 1 \leq n \leq 2h) \\
1 & (n = 2h + 1) \\
0 & (2h + 1 < n)
\end{cases}
\]

さらに3での剰余をとることにより、ある時刻 \(t\)において

\[
\{U_n^t\}_{n \in \mathbb{Z}} = \{ \ldots, 0, 0, 1, 2, \ldots, 2, 0, \ldots, 0, 1, 0, 0, \ldots \}
\]

を得る。図3は、このパターン \((h = 1, 2, 3)\)をそれぞれ初期値に並べて数値計算した図である。

証明 まず \(h \geq 1\)に注意すると、\(b_0 = 2^{h+1} - 1, b_1 = 1, b_2 = 2^h - 1, b_3 = 2^h - 1\)であるから、\(\xi < 0\)のとき \(V(\xi) = 0, V\left(K^{\frac{K-1}{2}} \right) = \# \{ a_0 = 0 \} = 1, V \left(K + \frac{K-1}{2} \right) = \# \{ a_1 = 2^{h+1} - 1, a_2 = 2^{h+1} \} = 2\)がわかる。

次に \(2 \leq n \leq h\)のときを調べる。\(i = h - n\)とおくと、\(0 \leq i \leq h - 2\)である。\(\beta := 10^{h-i-1} \in \mathcal{L}_{h-i}, j := 2^{h-i+1} - 2 - C_{h-i}(\beta) = 2^{h-i} - 1\)とおくと、命題6から\(\beta = a_i^{(h)}(j)\)が成立する。さらに命題9を繰り返し用いて、\(\beta\)の末尾の0を削っていくことにより次を得る。

\[
\sum_{k=0}^{j} I_i^{(h)}(k) = \cdots = \sum_{k=0}^{j} I_{h-1}^{(h)}(k) = 1 + (2^h - 1) = 2^h = \frac{K + 1}{2}.
\]

—28—

NII-Electronic Library Service
ここでさらに \(l := j + 2^h - i + 1 - (h - i + 2) = 3 \cdot 2^h - i - (h - i) - 3 \) とおくと，式 (4.4) より \(b_l = I_{i}^{(h)}(j) \) となる．式 (4.1) を用いて \(I_h^{(h)} \) の部分の和を変形すると

\[
K(h - i) + \frac{K + 1}{2} = \sum_{m=1}^{h} \sum_{k=0}^{2^h-m-1} I_{m}^{(h)}(k) + \sum_{k=0}^{j} I_{i}^{(h)}(k) = \sum_{k=0}^{l} b_k = a_{l+1}
\]

を得る．\(\xi = Kn + \frac{K-1}{2} \) に対して

\[
V(\xi) = \# \{ \mu \in J | \xi - K + 1 \leq \mu \leq \xi \} = \# \{ m | 0 \leq m \leq r, \xi - K + 1 \leq a_m \leq \xi \} = \# \{ m | 0 \leq m \leq r, K(n-1) + \frac{K+1}{2} \leq a_m < Kn + \frac{K+1}{2} \} = \# \{ m | 3 \cdot 2^{n-1} - n - 1 \leq m < 3 \cdot 2^n - n - 2 \} = 3 \cdot 2^{n-1} - 1.
\]

\(h < n \) に対しても，\(b_n \) の回文性から同様に示すことができる．

5. おわりに

本論文では，箱玉系の類似とみなせる有限体上のソリトン系 [12] について，その 1-ソリトン解を具体的に構成することにより確かに解であることを示した．式 (3.1) の 1-ソリトン解は，任意の非負整数 \(h \) に対してパターン"12^h 0^h 1"を持つ，このパターンは文脈自由言語で特徴付けられるものである *3．箱玉系の保存量が Dyck 言語で記述される [8,11] ように，この事実が可積分性そのものと何らかの関係を持つ可能性があるがその意味するところは今後の課題である．

また，衝突に際して形が崩れないという数値実験が示すように，この系は何らかの保存量をある程度持っているはずである．しかしながら 1-ソリトン解であってもかなり複雑なフラクタル的入れ子構造をもつことを証明は示しており，この系における解構造の解明は超難解あるいは有限体上でのソリトン系の本質について何か新しい機構や概念の発見をもたらすと期待できる．

謝辞 本研究は科研費 (基盤 (C) 23611027) の助成を受けたものである。

参考文献

[1] M. Bialecki and A. Doliwa, The discrete KP and KdV equations over finite fields, Theor. and Math. Phys. 137 (2003), 1412-1418.

*3 各 \(I_{i}^{(h)} \) は図 4 の有限オートマトンで生成されるが，\(I^{(h)} \) は式 (4.2) のように並べて作られることに注意
[2] A. Bobenko, M. Bordemann, C. Gunn and U. Pinkall, On two integrable cellular automata, Commun. Math. Phys. 158(1993) 127-134.
[3] M. Bruschi, P. M. Santini and O. Ragnisco, Integrable cellular automata, Phys. Lett. A 169(1992), 151-160.
[4] M. Bruschi, New Cellular Automata associated with the Schroedinger Discrete Spectral Problem, J. Nonlinear Math. Phys. 13(2006) 205-210.
[5] A. Doliwa, M. Bialecki and P. Klimczewski, The Hirota equation over finite fields: algebro-geometric approach and multisoliton solutions, J. Phys. A: Math. Gen. 36(2003), 4827-4839.
[6] M. Kanki, J. Mada and T. Tokihiro, Discrete Integrable Equations over Finite Fields, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 8(2012) 054.
[7] A. Lindenmayer, Mathematical models for cellular interactions in development I. Filaments with one-sided inputs, J. Theoret. Biology 18(1968) 280-299.
[8] D. Takahashi, Proc. NEEDS ’91, Baia Verde, Gallipoli, Italy, 19-29 June 1991. Eds. M. Boiti, L. Martina, F. Pempinelli, World Scientific (1991) 245-249. ISBN: 978-9810208561.
[9] D. Takahashi and J. Satsuma, A Soliton Cellular Automaton, J. Phys. Soc. Jpn. 59(1990) 3514-3519.
[10] T. Tokihiro, D. Takahashi, J. Matsukidaira and J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure, Phys. Rev. Lett. 76(1996) 3247-3250.
[11] M. Torii, D. Takahashi and J. Satsuma, Combinatorial representation of invariants of a soliton cellular automaton, Physica D 92(1996) 209-220.
[12] 由良文孝，有限体上における箱玉系と類似したソリトン方程式について，九州大学応用力学研究所研究集会報告 25AO-S2 (2014).

由良 文孝 (正会員) 〒041-8655 北海道函館市亀田中野町 116-2
1998年東京大学工学系研究科物理工学専攻博士課程修了，博士（工学）．現在，公立はこだて未来大学システム情報科学部複雑系知能学科准教授．日本応用数理学会，日本物理学会，電子情報通信学会会員．離散可積分系と量子情報理論に興味を持つ．

（2014年3月9日受付）
（2014年7月3日最終稿受付）