Review Article
Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal

Xiaohan Yang, Degao Liu, Haiwei Lu, David J. Weston, Jin-Gui Chen, Wellington Muchero, Stanton Martin, Yang Liu, Md Mahmudul Hassan, Guoliang Yuan, Udaya C. Kalluri, Timothy J. Tschaplinski, Julie C. Mitchell, Stan D. Wullschleger, and Gerald A. Tuskan

1Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
3Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
4Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902, USA
5Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Correspondence should be addressed to Xiaohan Yang; yangx@ornl.gov

Received 20 September 2021; Accepted 7 November 2021; Published 29 November 2021

Copyright © 2021 Xiaohan Yang et al. Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative Commons Attribution License (CC BY 4.0).

A grand challenge facing society is climate change caused mainly by rising CO₂ concentration in Earth’s atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO₂ via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO₂ removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO₂ capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.

1. Introduction

It is becoming clear that the global climate is warming [1, 2]. Climate change or global warming is rapidly emerging as the greatest threat to humanity and global ecosystems [3]. Global warming will have negative impacts on the security and provision of food [4], water [5], energy [6], health [7], environmental services [8], and the global economy [9]. Therefore, it is imperative to stabilize global climate change at 1.5°C above preindustrial levels [3] through multiple pathways related to climate change mitigation, including both clean energy technologies and large-scale CO₂ removal (CDR) from the atmosphere [10, 11]. CDR technologies are at an earlier stage of development than many clean energy technologies [11, 12]. Although CDR is nascent, it has attracted new attention because clean energy technologies lag in adoption or deployment needed to meet the goals of climate change mitigation [13].

CDR solutions can be divided into three categories: (i) natural CDR (N-CDR) solutions through growing more organisms that naturally capture CO₂, (ii) technological CDR (T-CDR) solutions that rely on machines to remove carbon from the atmosphere, and (iii) hybrid CDR (H-CDR) solutions using technologies or biological changes to
supplement the natural CDR processes [11]. N-CDR technologies based on the photosynthetic capture of CO₂ in terrestrial plants are most mature, with some applications (e.g., increasing carbon storage through reforestation and afforestation) ready for deployment at low to medium cost. However, these N-CDR solutions suffer some limitations, including risks of losing stored carbon through disturbances (e.g., fire and disease) and relatively high requirements for land and water [11, 13, 14]. T-CDR (e.g., direct air capture which pulls air into an apparatus, with CO₂ binding to a liquid solvent or solid sorbent, followed by CO₂ separation, storage, or utilization) has the advantage of having a low land footprint, yet it suffers the disadvantage of being costly [11, 15]. These challenges can be partially addressed by the development of H-CDR based on synthetic biology or biosystems design, which involves predictable modifications of existing organisms or creation of new plant cultivars [16–18].

Curation of validated biological parts is critical for a successful plant biosystems design linked to CDR [17]. Here, we review the pathways in the framework for CDR mediated by terrestrial plants and map representative biological parts to the plant-based CDR pathways. We also discuss the challenges and perspectives of future research on the biological parts for CDR biodesign in plants. In this review, we only focus on genes encoding proteins or noncoding RNAs; other types of biological parts, such as promoters, are covered by a separate review article.

2. Framework for CDR Mediated by Terrestrial Plants

In general, the CDR process in terrestrial plants starts from photosynthetic fixation of CO₂ in the leaf tissue (source), followed by translocation of fixed carbon (e.g., sucrose) from source leaves to various sinks (e.g., roots belowground, stems aboveground, and newly emerging leaves) for long-term storage or utilization (illustrated in Figure 1).

2.1. Photosynthetic Fixation of CO₂. Terrestrial plants have evolved three photosynthetic pathways to convert CO₂ and water into carbohydrates using energy from sunlight: C₃ photosynthesis, C₄ photosynthesis, and Crassulacean acid metabolism (CAM) [19]. There are approximately 295,000 flowering plant species known on Earth, of which ~90%, ~6%, and ~3% are C₃, CAM, and C₄ plants, respectively [20–22]. C₃ photosynthesis is an ancient photosynthetic pathway, from which both C₄ photosynthesis and CAM photosynthesis have been independently derived [19, 23–25]. Among the three photosynthetic pathways, C₄ photosynthesis has the highest net photosynthetic efficiency [26], whereas CAM photosynthesis has the highest water use efficiency [27]. Therefore, there have been international efforts to engineer C₄ photosynthesis and CAM photosynthesis to enhance photosynthetic efficiency (for increasing crop yield) [28, 29] and water use efficiency (for sustainable crop production on marginal lands) [30–32], respectively, in C₃ crops.

The ability of plants to capture CO₂ from the atmosphere is constrained by low photosynthetic efficiency (<1% in general) of converting the available sunlight to chemical energy [33] and limitations of the CO₂-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is not only catalytically slow for fixing CO₂ but also responsible for the loss of previously fixed CO₂ due to photorespiration [34]. Therefore, a lot of efforts have been expended to enhance CO₂ fixation by (i) engineering faster Rubisco [35], (ii) increasing Rubisco content [34], (iii) replacing Rubisco-based pathway with a more effective CO₂ fixation pathway [36], (iv) engineering CO₂ concentrating mechanisms (CCMs) [17], (v) reassimilating CO₂ released by photorespiration [37], and (vi) creating synthetic photosynthetic bypasses [17, 38–44].

Recently, a computational simulation predicted that engineering of the Calvin–Benson cycle would require balanced activities of enzymes to gain a higher efficiency because overexpression of a single enzyme could not increase the rate of photosynthetic CO₂ uptake [45]. This requirement for balanced activities of enzymes could be met through synthetic metabolic engineering using an iterative design-built-test-learn approach [17, 46], as discussed in Section 4.

In general, plants can maintain an appropriate source-sink balance through regulatory molecular feedback systems [47], as demonstrated by a recent report showing that reducing the source to sink ratio by partial defoliation or heavy shading significantly increased the photosynthetic rate in the remaining leaves in tomato [48]. Similarly, reducing the source-to-sink ratio by stem decapitation greatly increased the net photosynthetic rate in the remaining leaves of a Populus deltoides x nigra ‘DN22’ hybrid [49]. Furthermore, the higher photosynthetic rates of coppice shoots of P. maximowiczii x nigra ‘MN9’ hybrid versus comparable intact shoots of control plants were associated with greater sink demand of the coppice shoots, as indicated by their greater export of newly fixed assimilate [50]. It would be interesting to explore the potential of enhancing photosynthesis through the manipulation of source-to-sink ratio by increasing the sink capacity, along with regulation of sink-to-source signaling, using biosystems design.

2.2. Translocation of Fixed Carbon from Source to Sink. Soil plays a critical role in carbon sequestration, holding twice as much carbon as does the atmosphere, and most carbon stored in soils is derived from the translocation of carbon fixed by photosynthesis into root structures and further into the rhizosphere via root exudation [51]. From the perspective of CDR, the rhizosphere and roots are the major sinks for carbohydrates generated via photosynthesis. Phloem is a supracellular highway for transporting sugars from sources to sinks [52]. Sucrose is the predominant form of carbohydrate translocated from leaves to roots [53, 54]. The translocation of sucrose from leaves to roots follows multiple steps: (i) sucrose loading into the collection phloem, which involves symplastic and apoplastic movement of sucrose from the mesophyll cells to the companion cells, and ultimately into the sieve
elements via plasmodesmata; (ii) long-distance sucrose movement, through the transport phloem, from the collection phloem to the release phloem; and (iii) sucrose unloading from the release phloem into the roots [53]. While roots store some carbon (e.g., in the form of starch), they can release carbon into the soil and associated microbes (e.g., mycorrhizal fungi) [55–57]. Besides roots and soils being the primary carbon sink for plant-based CDR, aboveground tissues (e.g., stems, branches, and leaves) can serve as important short-term carbon sinks for CDR [58, 59].

2.3. Long-Term Carbon Storage. Soil carbon storage is a very attractive biological negative emission strategy due to several reasons: (i) soil carbon storage has a great potential for CDR, with the total size of the soil carbon reservoir exceeding the total carbon mass in vegetation and atmosphere combined [60]; (ii) carbon stocks are most depleted on agricultural lands, and thus, soil carbon sequestration can be enhanced without requirement for land use conversions (e.g., to forests) and competition for land resources [60]; (iii) increasing soil carbon sequestration can improve soil health and soil fertility, as well as reduce soil erosion and habitat conversion, providing additional incentives for adopting soil carbon sequestering practices [60, 61]; and (iv) soil carbon can be stabilized for long-term storage, in particular for carbon stored in deep soil [62]. For long-term below-ground carbon storage required by CDR, sucrose translocated from leaves to roots needs to be either biologically converted into more recalcitrant carbon-containing compounds (e.g., lignin, suberin, and phytolith) inside the roots [17, 63, 64] or delivered into the deep soil through deep root systems. In general, the depth of plant roots varies from <0.01 to >70 m, with a distribution peak at 1 m [65]. Remarkably, plant roots can reach a depth of up to 122 m below-ground, as demonstrated by a wild fig tree at Echo Caves, near Ohrigstad, Mpumalanga, South Africa [66]. Many natural plants and most agricultural crops have a rooting depth of ~1 m, and there is a great potential for increasing rooting depth to stabilize below-ground storage of carbon [51, 67]. For example, researchers at the Salk Institute for Biological Studies have initiated the CRoPS (CO₂ removal on a planetary scale) project to transform crops plants (e.g., wheat, rice, and corn) for long-term storage of carbon in the ground through increasing the biomass, depth, and suberin content of roots [68].
2.4. Conversion of Carbon for the Bioeconomy. For large-scale deployment of plant-based CDR technologies, it is important to consider the co-benefits of bioeconomy, such as production of bioenergy (e.g., biodiesel and jet fuels) and high-value biobased products (e.g., specialty or commodity chemicals) in the aboveground plant tissue [17, 69]. Recently, it was reported that genetically modified lipid-producing sugarcane (lipid-cane) with 20% lipid content had much higher biodiesel yield (~6700 L biodiesel per hectare of land) than soybean (~500 L biodiesel per hectare of land) [70]. Multigene engineering was used to achieve hyperaccumulation of triacylglycerol (TAG) in sugarcane, with TAG contents being elevated by more than 70- and 400-fold in the stem and leaf tissue, respectively, compared to nonengineered sugarcane, laying a solid foundation for commercial biodiesel production [71]. Therefore, synthetic metabolic engineering has a great potential for increasing the economic value of plant-based CDR.

3. Validated Biological Parts for Engineering CDR in Terrestrial Plants

Based on the framework discussed in Section 2, biological parts (protein-coding sequences and noncoding RNAs), which have been experimentally validated, are discussed here in four categories: (i) photosynthetic fixation of CO₂, (ii) carbon translocation, (iii) long-term carbon storage, and (iv) conversion of carbon to value-added products. Here, we focus on discussing some representative biological parts to showcase the linkage between the biological parts and the biodesign framework for plant-based CDR.

3.1. Validated Biological Parts for Photosynthetic Fixation of CO₂. The biological parts for enhancing CO₂ fixation in terrestrial plants have been derived from a wide range of organisms, including microbes, algae, plants, and humans, with representative examples listed in Table 1, and their corresponding pathways summarized in Figure 2. These biological parts have been utilized for making genetic modifications and epigenetic changes to enhance CO₂ fixation in the framework described in Section 2.1.

To address the issue of Rubisco-mediated photorespiration, biological parts for C₃ and CAM photosynthesis have been used to increase photosynthetic efficiency in C₃ photosynthesis plants. For example, ectopic expression of an Agave americana gene encoding a CAM-specific phosphoenolpyruvate carboxylase (PEPC) in Nicotiana sylvestris significantly increased net CO₂ uptake [72]. Also, photosynthetic rates were increased by 4.5-26.4% in transgenic wheat plants expressing maize genes encoding C₄-type pyruvate orthophosphate dikinase (PPDK) and C₄-type PEPC, individually or in combination, relative to wild-type plants [73]. Interestingly, constitutive expression of a gene encoding PEPC derived from the C₄ photosynthesis plant Solanum tuberosum can increase the CO₂ assimilation rates in Arabidopsis thaliana [74]. However, the similar impact on net CO₂ uptake was not achieved through some earlier efforts to overexpress PEPC and PPDK in C₃ plants, which also revealed that PEPC overexpression had pleiotropic effects on stomatal opening and secondary metabolism [75]. It was also recently reported that overexpression of an Agave PEPC upregulated the expression of two genes involved in proline biosynthesis and five other CAM-related genes [72]. In the future, it is necessary to systematically compare the impacts of CAM-type, C₄-type, and C₃-type PEPC-encoding genes on photosynthetic efficiency by engineering them separately into the same C₃ photosynthesis plant species to determine the most efficient isoform of PEPC for CO₂ fixation.

In addition to C₄ and CAM-based CCM, C₂ photosynthesis is another natural CCM that is predicted by modeling studies to be able to increase net CO₂ assimilation, relative to C₃ photosynthesis, by capturing, concentrating and reassimilating CO₂ released by photorespiration [40]. However, the components of C₂ photosynthesis need to be experimentally validated as biological parts for CDR biodesign using genetic engineering approaches. Also, reassimilating CO₂ released by photorespiration has been achieved by coexpressing a Zea mays PEPC, a Glycine max aspartate aminotransferase, and a N. tabacum glutamine synthetase in transgenic A. thaliana plants, resulting in an improved photosynthetic rate and a higher flux of assimilated CO₂ toward sugars and amino acids [37].

Biological parts have been identified for engineering various synthetic photosynthetic bypasses to increase photosynthetic efficiency. The first synthetic photosynthetic bypass (i.e., bypass 1 illustrated in Figure 2) containing three Escherichia coli enzymes (glycolate dehydrogenase, glyoxylate carboligase, and tartronic semialdehyde reductase) of the glycolate catabolic pathway was engineered in A. thaliana chloroplasts [76], which was also demonstrated in the oilseed crop Camelina sativa [39]. The second synthetic photosynthetic bypass (i.e., bypass 2 illustrated in Figure 2) was introduced in chloroplasts of A. thaliana, which comprises A. thaliana glycolate oxidase (At3g14420), Cucurbita maxima (pumpkin) malate synthase, and E. coli catalase [77]. Recently, an alternative chloroplastic photosynthetic pathway (i.e., bypass 3 illustrated in Figure 2), based on a malate synthase from C. maxima and a glycolate dehydrogenase from Chlamydomonas reinhardtii (a single-cell green alga), was shown to increase the CO₂ assimilation efficiency in N. tabacum [41]. Also, a chloroplastic photosynthetic bypass (i.e., bypass 4 illustrated in Figure 2), called GOC, containing three rice-self-originating enzymes (i.e., glycolate oxidase, oxalate oxidase, and catalase) was engineered in rice to increase photosynthetic efficiency [42]. Because the performance of GOC bypass was not stable, it was recently upgraded into a more efficient chloroplastic photosynthetic bypass (i.e., bypass 5 illustrated in Figure 2), called GCGT, which includes an Oryza sativa glycolate oxidase and three additional enzymes (i.e., catalase, glyoxylate carboligase, and tartronic semialdehyde reductase) derived from E. coli [43]. Besides the chloroplastic photosynthetic bypasses, a photosynthetic bypasses shortcut (i.e., bypass 6 illustrated in Figure 2) was created by engineering E. coli glyoxylate carboligase and hydroxyxypyruvate isomerase into N. tabacum peroxisomes to convert glyoxylate to hydroxyxypyruvate [78]. However, the photorespiration issue cannot be
Name	Definition	Biological function	Source	Reference
Se-rbcL	Rubisco large chain	CO₂ fixation, photorespiration	*Synechococcus elongatus* PCC7942	[35]
Se-rbcS	Rubisco small subunit	CO₂ fixation, photorespiration	*S. elongatus* PCC7942	[35]
Se-rbcX	Rubisco chaperone RbcX	Carboxysome biogenesis	*S. elongatus* PCC7942	[35]
Se-ccmM35	Carboxysome assembly protein CcmM	Initiating carboxysome assembly by coalescing Rubisco	*S. elongatus* PCC7942	[35]
Zm-RAF1	Rubisco accumulation factor 1	Required for assembly or stability of Rubisco	Zea mays	[34]
Zm-rbcL	Rubisco large chain	CO₂ fixation, photorespiration	Z. mays	[34]
Zm-rbcS	Rubisco small subunit	CO₂ fixation, photorespiration	Z. mays	[34]
Aa-Ppc	Phosphoenolpyruvate carboxylase	CO₂ fixation	Agave americana	[72]
Zm-Ppc	Phosphoenolpyruvate carboxylase	CO₂ fixation	Z. mays	[73]
Zm-PPDK	Pyruvate orthophosphate dikinase	CO₂ fixation	Z. mays	[73]
GrGDH	Glycolate dehydrogenase	Alternative photorespiration pathway	Chlamydomonas reinhardtii	[41]
CmMS	Malate synthase	Alternative photorespiration pathway	Cucurbita maxima	[41]
OsGLO3	Glycolate oxidase 3	Photosynthetic bypass	Oryza sativa	[42]
OsOXO3	Oxalate oxidase	Photosynthetic bypass	O. sativa	[42]
OsCATC	Catalase	Photosynthetic bypass	O. sativa	[42]
OsGLO1	Glycolate oxidase 1	Photosynthetic bypass	O. sativa	[42]
EcGDH	Glycolate dehydrogenase	Photosynthetic bypass	Escherichia coli	[39]
EcCAT	Catalase	Photosynthetic bypass	E. coli	[43]
EcGCL	Glyoxylate carboligase	Photosynthetic bypass	E. coli	[39, 43]
EcTSR	Tartronic semialdehyde reductase	Photosynthetic bypass	*Paracoccus denitrificans*	[44, 79]
AGAT	Aspartate : glyoxylate aminotransferase	Photosynthetic bypass	*Paracoccus denitrificans*	[44, 79]
BHA	β-Hydroxyaspartate aldolase	Photosynthetic bypass	*P. denitrificans*	[44, 79]
BHAD	β-Hydroxyaspartate dehydratase	Photosynthetic bypass	*P. denitrificans*	[44, 79]
ISR	L-malosuccinate reductase	Photosynthetic bypass	*P. denitrificans*	[44, 79]
ZmPpc	Phosphoenolpyruvate carboxylase	Photosynthetic bypass	Z. mays	[37]
GmAspAT	Aspartate aminotransferase	Photosynthetic bypass	Glycine max	[37]
NgS	Glutamine synthetase	Photosynthetic bypass	Nicotiana tabacum	[37]
PccAB	Propionyl-CoA carboxylase	Photosynthetic pathway CETCH v7.0	Methylophilus extorquens	[86]
Epi	emC/MMC epimerase	Photosynthetic pathway CETCH v7.0	Rhodobacter sphaeroides	[86]
Mccn	Methylenalcohol-CoA mutase	Photosynthetic pathway CETCH v7.0	*R. sphaeroides*	[86]
SucD	Succinyl-CoA reductase	Photosynthetic pathway CETCH v7.0	Clostridium kluyveri	[86]
AKR7a2	Succinic semialdehyde reductase	Photosynthetic pathway CETCH v7.0	Homo sapiens	[86]
Nmnr0206	4-Hydroxybutyl-CoA synthetase	Photosynthetic pathway CETCH v7.0	Nitrosopumilus maritimus	[86]
Name	Definition	Biological function	Source	Reference
-------------	---	--	---------------	-----------
Nmar0207	4-Hydroxybutyryl-CoA dehydratase	Synthetic photosynthetic pathway CETCH v7.0	N. maritimus	[86]
Ccr	Crotonyl-CoA carboxylase/reductase	Synthetic photosynthetic pathway CETCH v7.0	M. extorquens	[86]
Ecm	Ethylmalonyl-CoA mutase	Synthetic photosynthetic pathway CETCH v7.0	R. sphaeroides	[86]
Mcd	Methylsuccinyl-CoA dehydrogenase	Synthetic photosynthetic pathway CETCH v7.0	R. sphaeroides	[86]
Etf A/B	Electron transport flavoprotein	Synthetic photosynthetic pathway CETCH v7.0		
Etf QO	Etf ubiquinone oxidoreductase	Synthetic photosynthetic pathway CETCH v7.0	Pseudomonas migulae	[86]
Mdh	Mesaconyl-CoA hydratase	Synthetic photosynthetic pathway CETCH v7.0	R. sphaeroides	[86]
Mcl1	β-Methylmalyl-CoA lyase	Synthetic photosynthetic pathway CETCH v7.0	R. sphaeroides	[86]
GhrA	Glyoxylate reductase	Synthetic photosynthetic pathway CETCH v7.0	E. coli	[86]
PhaJ	Enoyl-CoA hydratase	Synthetic photosynthetic pathway CETCH v7.0		
FTO (GenBank accession NP_001073901.1)	Alpha-ketoglutarate-dependent dioxygenase FTO isoform 3	Mediating RNA m^6A demethylation and promoting photosynthetic efficiency and drought tolerance	H. sapiens	[83]
OsmiR408	MicroRNA MIR408	Regulating photosynthesis	O. sativa	[87]
SBPase	Sedoheptulose-1,7-bisphosphatase	Regeneration of ribulose 1,5-bisphosphate during photosynthesis	Arabidopsis thaliana	[80]
AtPsbS (AT1G44575)	Photosystem II subunit S	Accelerating recovery from photoprotection	A. thaliana	[81]
AtZEP (AT5G67030)	Zeaxanthin epoxidase	Accelerating recovery from photoprotection	A. thaliana	[81]
AtVDE (At1G08550)	Violaxanthin deepoxidase	Accelerating recovery from photoprotection	A. thaliana	[81]
psbA	Photosystem II protein D1	Protecting photosystem II from oxidative damage	A. thaliana	[82]
completely solved by the above photorespiratory bypasses because these synthetic bypasses still release CO₂. To address this limitation, a CO₂-free photorespiratory bypass (i.e., bypass 7 illustrated in Figure 2) based on the β-hydroxyspartate cycle (BHAC) in the marine proteobacterium *Paracoccus denitrificans* [79] was engineered in *A. thaliana* peroxisomes to directly convert photorespiratory glycolate into a C₄ compound (i.e., oxaloacetate), without the loss of carbon resulting from decarboxylation of a photorespiratory precursor [44].

Although engineering of CCM and synthetic photorespiratory bypasses has great potential for enhancing net CO₂ fixation, it was reported that increasing the regeneration of the carbon dioxide acceptor ribulose 1,5-bisphosphate (RuBP) in the Calvin–Benson cycle through overexpressing sedoheptulose-1,7-bisphosphatase (SBPase), which was cloned from *A. thaliana*, increased CO₂ assimilation rate by 45%–65% in *N. tabacum* plants [80]. Also, genetic improvement of light capture for photosynthesis has been shown to enhance leaf CO₂ uptake. For example, it was demonstrated that coexpression of three *A. thaliana* proteins (i.e., photosystem II (PSII) subunit S, zeaxanthin epoxidase, and violaxanthin de-epoxidase), which are involved in the recovery from photoprotection via acceleration of NPQ (i.e., nonphotochemical quenching of chlorophyll fluorescence) relaxation on transfer of leaves from high light to shade, in *N. tabacum* accelerated response to natural shading events, resulting in an average increase of 9% in CO₂ fixation rates under fluctuating light [81]. In addition, nuclear expression (driven by a heat-responsive promoter in the nuclear genome) of the *Arabidopsis* chloroplast gene *psbA*, which encodes the D1 subunit protein of PSII, protects PSII from severe loss of D1 protein, and consequently enhances net CO₂ assimilation rates by 16.9–48.5% in the transgenic plants of *Arabidopsis*, tobacco, and rice under heat stress [82].

Mammals/humans can be a valuable source of biological parts for enhancing plant photosynthesis. Recently, the human RNA demethylase FTO, which does not have a homolog in plants, was transferred into rice and potato, to increase photosynthetic efficiency, resulting in ~50% increases in yield and biomass in field trials [83]. The FTO protein was found to be associated with fat mass and obesity in humans through oxidative demethylation of the abundant N6-methyladenosine (m⁶A) residues in RNA [84, 85]. These results suggest that there exists a conservation in epigenetic regulation between humans and plants, providing a new source for the identification of novel biological parts in humans/mammals for CDR engineering in plants.

Besides partial modifications of the natural photosynthetic pathways in plants, progress has been made to construct synthetic pathways to completely replace Rubisco-mediated photosynthesis. For example, a synthetic photosynthetic pathway called CETCH v7.0 was recently created from 16 biological parts derived from eight different organisms, including *Methylorubrum extorquens* (a Gram-negative bacterium), *Rhodobacter sphaeroides* (a purple bacterium), *Clostridium kluyveri* (a Gram-positive bacterium), *Mammals/humans can be a valuable source of biological parts for enhancing plant photosynthesis. Recently, the human RNA demethylase FTO, which does not have a homolog in plants, was transferred into rice and potato, to increase photosynthetic efficiency, resulting in ~50% increases in yield and biomass in field trials [83]. The FTO protein was found to be associated with fat mass and obesity in humans through oxidative demethylation of the abundant N6-methyladenosine (m⁶A) residues in RNA [84, 85]. These results suggest that there exists a conservation in epigenetic regulation between humans and plants, providing a new source for the identification of novel biological parts in humans/mammals for CDR engineering in plants.

Besides partial modifications of the natural photosynthetic pathways in plants, progress has been made to construct synthetic pathways to completely replace Rubisco-mediated photosynthesis. For example, a synthetic photosynthetic pathway called CETCH v7.0 was recently created from 16 biological parts derived from eight different organisms, including *Methylorubrum extorquens* (a Gram-negative bacterium), *Rhodobacter sphaeroides* (a purple bacterium), *Clostridium kluyveri* (a Gram-positive bacterium), *Homo sapiens* (humans), *Nitrosopumilus maritimus* (an archaeon living in seawater), *Pseudomonas migulae* (a Gram-negative bacterium), *E. coli* (a Gram-negative bacterium), and *P. aeruginosa* (a Gram-negative bacterium) [86].

Although most of the genes that have been demonstrated to influence photosynthetic efficiency encode proteins, non-coding RNAs can play important roles in the regulation of photosynthesis. For example, overexpression of microRNA OsmiR408 increases photosynthesis in *O. sativa* via down-regulating a phytocyanin gene [87].

3.2. Valied Biological Parts for Carbon Translocation

The validated biological parts for translocation of fixed carbon from leaves to roots in terrestrial plants include genes involved in sucrose synthesis, sucrose transport, root exudation, and plant-microbe symbiosis, as represented in Table 2.

Sucrose and starch are the two key components of carbon partitioning [88]. Sucrose synthesis is the key point of

Figure 2: Synthetic metabolic pathways for enhancing CO₂ fixation in terrestrial plants. The blue lines with arrowhead indicate the CO₂ concentrating mechanisms (CCMs). The orange lines with arrowhead indicate synthetic photorespiratory bypasses (i.e., bypass 1, 2, 3, 4, 5, 6, and 7) described in Section 3.1. PEPC: phosphoenolpyruvate carboxylase; Rubisco: ribulose-1,5-bisphosphate carboxylase/oxygenase; CCM1: CCM mediated by PEPC derived from *C₄* or CAM plants; CCM2: CCM mediated by C₄ photosynthesis. Adapted from [41–44, 76–78, 187, 188].
carbon partitioning because it provides the primary source material for long-distance translocation of carbon. It involves the synthesis of sucrose-6-phosphate (Suc-6-P) from fructose-6-phosphate (Fru-6-P) and UDP-glucose, which is catalyzed by Suc-6-P synthase (SPS), such as AtSPS5b (At5g20280) in *A. thaliana*, and hydrolysis of Suc-6-P to sucrose, which is catalyzed by sucrose-6-phosphate phosphatase (SPP), such as AtSPP (At2g35840) [89]. Starch acts as both a source (releasing carbon reserves in leaves) and a sink (a dedicated starch storage, or a temporary reserve of carbon contributing to sink strength) [88]. Source or sink activities can be manipulated by genetic engineering [90]. The synthesis of adenosine diphosphate-(ADP-) glucose by ADP-glucose pyrophosphorylase (AGPase) is critical for starch polymer formation [91]. It was reported that AGPase overexpression in both source (leaf) and sink (seed tissue) synergistically increased leaf starch content, total plant biomass, and seed yield in rice [92].

Sucrose transport involves various types of sucrose transporters (SUTs) or carriers (SUCs), such as AtSWEET11 (At3G48740) and 12 (At5G23660) for sucrose export from roots to other factors crucial for normal phloem function have an impact on sucrose movement through phloem, such as *Arabidopsis* type I proton-pumping pyrophosphatase (AVP1), which is localized at the plasma membrane of the sieve element-companion cell complexes, with its over-expression being able to enhance source-to-sink transport of carbon fixed by photosynthesis [97]. Efforts to engineer increased sucrose export have met with limited success, which is likely due to downstream effects on sugar signaling pathways. Sucrose is a signaling entity, and the expression of sucrose transporters at the site of phloem loading can be regulated by sucrose signaling [98]. The molecular mechanisms of sucrose signaling are largely unknown [99]. Therefore, it is necessary to gain a deep understanding of the mechanisms underlying the regulation of sucrose transport by sugar signaling for identifying biological parts which can be used to engineer enhanced sucrose transport.

Symbiosis between plants and microbes is an important channel for carbon flux from roots into the rhizosphere. Root-associated fungi, such as arbuscular mycorrhizal fungi, can create a strong carbon sink to avoid feedback downregulation of photosynthesis by preventing photosynthate accumulation [100]. Therefore, improvement of the beneficial interactions between plants and symbiotic fungi has great potential of enhancing leaf-to-root transport of carbon. Various plant genes have been found to be involved in the establishment and maintenance of symbiosis, such as a G-type lectin receptor-like kinase PtLecRLK1 (POTR_0011s13000) in *Populus trichocarpa*, which could promote symbiosis between the ectomycorrhizal fungus *Laccaria bicolor* and multiple nonhost species, such as *A. thaliana* [101] and *Panicum virgatum* [102]. Although root exudation was engineered using the natural T-DNA from *Agrobacterium rhizogenes* in *Lotus corniculatus* to influence the microbial communities in the rhizosphere [103, 104], no specific foreign genes were mentioned in the transgenic *L. corniculatus* plants. In *A. thaliana*, a loss-of-function mutation in the ABC transporter ABCG30 (At4g15230) was found to alter root exudation and consequently influence the surrounding soil microbial community [105]. In the future, more effort will be needed to identify genes for engineering novel symbiotic plant-microbe interactions as well as root exudation in plants to enhance carbon flow into the rhizosphere.

3.3. Validated Biological Parts for Long-Term Carbon Storage

As discussed in Section 2.3, long-term carbon...
storage mediated by terrestrial plants can be achieved through in-planta conversion of carbohydrates into recalcitrant carbon-containing compounds (e.g., lignin, suberin, and phytolith) inside roots and delivery of carbon into the deep soil through deep root systems. Representative biological parts for enhancing the biosynthesis of recalcitrant carbon-containing compounds and increasing rooting depth are listed in Table 3.

For enhancing long-term carbon storage, plants can be engineered to increase lignin content and/or change lignin chemistry, such as lowering the syringyl-to-guaiacyl (S/G) ratio, of the root tissue [106]. It was recently reported that overexpression of a poplar root-specific transcription factor, nuclear factor Y subunit B21 (PdNF-YB21), dramatically increased root growth as well as the lignin content and S/G ratio in the root [107, 108]. Also, overexpression of an *Eucalyptus grandis* NAC transcription factor, EgNAC141, in *A. thaliana* resulted in higher lignin content due to the up-regulation of multiple lignin biosynthetic genes [109]. Besides protein-coding genes, noncoding RNAs, such as microRNA393 (miR393), can also regulate lignin biosynthesis, as demonstrated in *Populus* clone 84 K (*P. alba × P. glandulosa*) [110]. Some genes can regulate lignin composition without any impact on lignin content. For example, overexpressing an *O. sativa* transcription factor, NAC domain protein 1 (OsSWSN1), reduced lignin S/G ratio without any impact on the lignin content in the *Populus* clone T89 (*P. tremula × P. tremuloides*) [111].

Suberin is a hydrophobic biopolymer important for the persistent storage of organic carbon [64]. Multiple transcription factors have been shown to influence the suberin biosynthesis and/or deposition in plants, such as NAC046 promoting suberin biosynthesis in *A. thaliana* roots [112], WRKY9 promoting suberin deposition in *A. thaliana* roots [113], and ShMYB78 (a sugarcane MYB transcription factor) enhancing suberin biosynthesis through activation of suberin biosynthetic genes β-ketoacyl-CoA synthase (ShKCS20) and caffeic acid-O-methyltransferase (ShCOMT) [114]. Also, it was reported that an *o sativa* Class II trehalose-phosphate synthase (OsTPS8) can enhance suberin deposition possibly through ABA signaling [115].

Many undomesticated plants and most agricultural crops have a rooting depth of ~1 m and deeper roots can have a hugely beneficial effect in stabilizing below-ground storage of carbon captured through photosynthesis [51, 67]. Previous experimental studies have identified a number of genes that have a positive impact on the rooting depth. For example, the deeper rooting 1 (*DRO1*) gene increases deep rooting in rice through increasing the root growth angle and consequently allowing roots to grow in a more downward direction [116]. Recently, an exocytosis factor, EXOCYST70A3, was shown to control the depth of the root system in *A. thaliana* via the dynamic modulation of auxin transport [117]. More recently, it was reported that a *Z. mays* MEI2-like RNA binding protein gene (*Zm00008a033967*) increased rooting depth through improving root tensile strength and enhancing penetration ability in compacted soils [118]. Also, root-specific expression of an *A. thaliana* cytokinin oxidase/dehydrogenase in *Z. mays* enhanced root growth through increasing the degradation of cytokinin, which negatively regulates root growth [119]. Besides the important roles of individual genes in the regulation of rooting depth, some other genes act collectively to promote root growth. For example, overexpressing an expansin family gene *AtEXPA5* in combination with one pectin methylesterase inhibitor family protein (PMEI) gene or one cellulase (CEL) gene increased the length of primary roots in *A. thaliana* [120].

3.4. Validated Biological Parts for Conversion of Carbon to Value-Added Products

As mentioned in Section 2.4, the co-benefits of bioeconomy, resulting from in-planta conversion of carbon to value-added products related to bioenergy (e.g., biodiesel and jet fuels) or biobased products (e.g., specialty or commodity chemicals) in the aboveground plant tissue, would facilitate the large-scale deployment of plant-based CDR technologies. Representative biological parts for in-planta conversion of carbon to value-added products are listed in Table 4.

Much progress has been made towards the identification of biological parts for in-planta production of biofuels. For example, sugarcane has been converted towards oilcane for hyperaccumulation of TAG through ectopic coexpression of multiple foreign genes, including WR11 (encoding a transcription factor with the capability of upregulating the expression of genes involved in fatty acid biosynthesis) from *Sorghum bicolor*, diacylglycerol acyltransferase1-2 gene *DGAT1-2* (encoding an enzyme responsible for the addition of an acyl group to sn1-sn2-G3P, a limiting step for the production of TAG from diacylglycerol) from *Z. mays*, and OLEOSIN (encoding a lipid packaging protein which protects lipid droplets from coalescence and reduces lipid degradation) from *Sesamum indicum*, along with RNAi (RNA interference-) mediated suppression of the endogenous SUGAR-DEPENDENT1, which initiates oil breakdown and directs fatty acids for β-oxidation [71]. However, TAG hyperaccumulation may have a negative impact on the plant growth. This issue has been addressed by individual overexpression of sedoheptulose-1,7-bisphosphatase (SBPase; an important factor for RuBP regeneration in the Calvin–Benson cycle [121]), chloroplast-targeted fructose-1,6-bisphosphatase (cpFBPase; an enzyme in the Calvin–Benson cycle, contributing to the partitioning of the fixed carbon for RuBP regeneration or starch synthesis [121]), cytosolic FBPase (cytFBPase; an enzyme in the sucrose synthesis pathway [122]), and lipid-related transcription factor DOF4 (upregulating lipid metabolism) in high oil *N. tabacum* plants [123], which were previously engineered with three foreign genes (*A. thaliana* WR11, *A. thaliana* DGAT1, and *S. indicum* OLEOSIN) [124].

There is a great potential for engineering plants to produce bioplastic polyhydroxybutyrate (PHB), which is the simplest form of polyhydroxalkanoates (PHAs), a large class of biodegradable biopolymers naturally synthesized in eubacteria [125]. Plant-based production of bioplastics, directly from natural resources (e.g., CO2, soil nutrients, water, and solar energy), is a cheaper option than bacterial synthesis [126]. Successful PHB production was demonstrated in the biomass crop switchgrass (*P. virgatum*)
Table 3: Selected examples of biological parts for long-term carbon storage in terrestrial plants.

Name	Definition	Biological function	Source	Reference
EXOCYST70A3 (AT5G52350)	Exocyst subunit EXO70 family protein A3	Controlling the depth of the root system	Arabidopsis thaliana	[117]
MCS (Zm00008a033967)	ME12-like RNA binding protein	Increasing root depth	Zea mays	[118]
DRO1	Deeper rooting 1	Cell elongation in the root tip	Upland rice KP (IRG23364)	[116]
AtEXPA5	Expansin A5	Promoting root elongation	A. thaliana	[120]
PMEI (At5g62360)	Pectin methylesterase inhibitor	Promoting root elongation	A. thaliana	[120]
CEL (At2g32990)	Cellulase	Promoting root elongation	A. thaliana	[120]
CKX	Cytokinin oxidase/dehydrogenase	Promoting root growth	A. thaliana	[119]
PdNF-YB21	NUCLEAR FACTOR Y subunit B21	Regulating root growth and lignification	Populus clone NE-19 (P. nigra × (P. deltoides × P. nigra))	[107, 108]
EgNAC141	NAC transcription factor	Positively regulating lignin biosynthesis	Eucalyptus grandis	[109]
miR393	microRNA393	Negatively regulating lignin synthesis	P. alba × P. glandulosa	[110]
OsSWN1	NAM/ATAF/CUC (NAC) domain protein 1	Negatively regulating lignin S/G ratio	Oryza sativa	[111]
ANAC046	NAC domain containing protein 46	Promoting suberin biosynthesis in roots	A. thaliana	[112]
WRKY9	WRKY DNA-binding protein 9	Promoting suberin deposition in roots	A. thaliana	[113]
OtTPS8	Class II trehalose-phosphate-synthase	Enhancing suberin deposition	O. sativa	[115]
ShMYB78	MYB transcription factor	Activating suberin biosynthesis and deposition	Saccharum spp.	[114]
Name	Definition	Biological function	Source	Reference
-------	---	--	----------------------	-----------
WRI1	Wrinkled1	Fatty acid biosynthesis	Sorghum bicolor	[71]
DGAT1-2	Diacylglycerol acyltransferase1-2	Catalyzing the production of triacylglycerol	Zea mays	[71]
OLE1	Oleosin	Covering the surface of oil bodies to reduce lipid degradation	Sesamum indicum	[71]
SDP1	Sugar-dependent1	Initiating oil breakdown and directs fatty acids for β-oxidation	Saccharum spp. hybrid	[71]
TGD1	Trigalactosyl diacylglycerol	Lipid trafficking from the endoplasmic reticulum to the chloroplast	Saccharum spp. hybrid	[71]
DOF4	DNA binding with one finger 4 (Uniprot ID Q0GLE8)	Lipid-related transcription factor	Glycine max	[123]
phbA	β-Ketothiolase	Biosynthesis of polyhydroxybutyrate (PHB)	Ralstonia eutropha	[128]
phbB	Acetoacetyl-CoA reductase	Biosynthesis of PHB	R. eutropha	[128]
phbC	PHB synthase	Biosynthesis of PHB	R. eutropha	[128]
ubiC	Chorismate pyruvatelyase	Biosynthesis of 4-hydroxybenzoate (4HB)	Escherichia coli	[130]
BS	Botryococcene synthase (the fusion of squalene synthase-like 1 and 3)	Biosynthesis of botryococcene	Botryococcus braunii	[131, 186]
FPS	Farnesyl diphosphate synthase	Biosynthesis of botryococcene	Gallus gallus	[131]
CoVLP	Coronavirus-like particle, composed of recombinant spike (S) glycoprotein expressed as virus-like particles	Vaccine for coronavirus disease 2019 (COVID-19)	SARS-CoV-2 (ancestral variant)	[133]
through the engineering of three microbial genes in the PHB biosynthetic pathway, including acetoacetyl-CoA thiolase (phaA), acetoacetyl-CoA reductase (phaB), and PHA synthase (phaC); however, the polymer levels (up to 3.72% dry weight of PHB in leaf tissues) were lower than the estimated threshold (7.5% dry weight) required for the commercialization of PHB-producing switchgrass [127]. Higher yield of PHB production (~40% dry weight) was reported in transgenic A. thaliana plants expressing the three Ralstonia eutropha genes (phbA, phbB, and phbC) in leaf chloroplasts; however, the high-yield production of PHB generated severe negative impacts on both plant development and metabolism [128]. Further optimization of PHB production in plants to reach economically viable yields without significantly negative impacts on plant growth and development requires careful consideration of the timing and duration of biosynthesis for organelle-targeted PHB production, relocation, and storage [125].

Genetic manipulation of the shikimate and isoprenoid biosynthetic pathways in plants has been attempted for producing multiple valuable biochemicals [129]. For example, the E. coli gene ubiC encoding chorismate pyruvatelyase was engineered in tobacco for directly converting chorismate into 4-hydroxybenzoate (4HB), which is a precursor of shikinone, a pharmaceutical substance with antibacterial, anti-phlogistic, and wound-healing properties [130]. Botryococcene is a valuable precursor for producing chemicals and high-quality fuels (gasoline and jet fuel) [129]. High titers of botryococcene (>1 mg/g FW) were produced in Brachypodium distachyon using the cytosolic expression of a synthetic botryococcene synthase (BS), which is a fusion of squalene synthase-like 1 (SSL1) and squalene synthase-like 3 (SSL3) from Botryococcus braunii and farnesyl diphosphate synthase (FPS) from Gallus gallus [131].

The coronavirus disease 2019 (COVID-19) is a global challenge facing our society. Plant-based production of COVID-19 vaccines has received immense attention due to several advantages, such as low cost, rapidity, scalability, safety, and glycosylation of recombinant proteins, which affects the bioactivity of protein-based vaccines, not possible in an E. coli-based culture system [132]. Recently, coronavirus-like particle (CoVLP) was produced in N. benthamiana as a COVID-19 vaccine candidate, which is a self-assembling virus-like particle (VLP) with trimers of recombinant modified S protein of SARS-CoV-2 (ancestral variant) embedded in a lipid envelope [133].

4. Identification of New Biological Parts for CDR Engineering in Terrestrial Plants

The biosystems design of CDR in plants is a nascent area of research, with the appropriate strategies and efficient technologies to be developed to achieve large-scale, cost-effective deployment of plant-mediated CDR. One of the major limitations deserving immediate attention is a lack of validated biological parts for CDR engineering in plants. Although millions of genes in total have been predicted in the fast-increasing list of sequenced plant genomes, as demonstrated in the Phytozome database [134], only limited numbers of genes have been experimentally characterized and verified [17, 135], of which only a small portion are relevant to CDR engineering in plants. Therefore, a large-scale effort will be needed to systematically identify the genes that can be used as biological parts for engineering CDR traits in plants. Here, we discuss how to use an artificial intelligence-(AI-) driven design-build-test-learn (DBTL) approach to accelerate the progress in the identification of biological parts for CDR engineering, as illustrated in Figure 3.

4.1. Designing Biological Parts for CDR Engineering. Modularity is an important principle of the plant biosystems design [17]. Biological parts can be designed in the context of individual modules associated with specific CDR-related traits, such as CO₂ fixation, carbon translocation, carbon storage, and carbon conversion to value-added products. Each module contains three types of biological parts: (i) validated biological parts as demonstrated in Section 3, (ii) unknown genes in a pathway containing some validated biological parts, and (iii) unknown genes in a pathway containing no validated biological parts, as illustrated in Figure 3(a).

The quality of validated biological parts can be assessed using a data-driven method based on machine learning [136]. For functionally redundant biological parts, such as CO₂-fixation enzymes (e.g., PEPCs from C₃, C₄, and CAM plants) and different photorespiratory bypasses (Figure 2), it is necessary to compare their enzymatic properties using both computational modeling and experimental approaches.

To design new biological parts for CDR engineering in target plant species, a genome-wide association study (GWAS) approach can be used to identify candidate genes associated with CDR-related traits. For example, a GWAS analysis in Z. mays identified a candidate gene associated with multiseriate cortical sclerenchyma (MCS), which can enhance root penetration in compacted soils and increase rooting depth [118]. Also, a sorghum carbon-partitioning nested association mapping (NAM) population was recently generated, which can be exploited for identifying genes responsive for carbon partitioning and sequestration [137].

Another approach for designing new biological parts within the target plant species is to find the genes that are directly connected to the validated biological parts for CDR engineering in various gene networks (e.g., coexpression networks, protein-protein interaction networks, and gene regulatory networks). For example, a gene coexpression network analysis was used to predict new candidate genes associated with high photosynthetic efficiency in Camellia oleifera [138]. The resolution of the network in this report however was not high. It was recently reported that the gene-to-trait problem can be better addressed using a multiomics network-based approach leveraging transcriptome, protein-DNA interaction, and protein-protein interaction data, which enabled the annotation of 42.6% of unknown genes in A. thaliana [139]. Also, the multiomics association database AtMAD, which is a repository for large-scale measurements of genome × transcriptome × methylome × pathway × phenotype associations in A. thaliana [140], is very useful for linking genes to traits or phenotypes, but CDR-related phenotypic data (e.g., source activities, sink
Capacities, carbon partitioning, and translocation are not well represented in this database. Future efforts will be needed to add more phenotypic data relevant to plant-based CDR to AtMAD. Discovery of genes regulating CDR in plants requires high-quality gene regulatory networks, which can be constructed by integrative analysis of multiple data types, including transcriptome profiles, chromatin accessibility and long-range chromatin interaction, transcription factor binding site motifs, microRNAs, ribosome-associated RNAs, and proteomic profiles [141]. However, these types of multiomics and high-resolution data are currently not available for nonmodel plant species such as popular and switchgrass, which are important target species for CDR engineering. The potential solution to this challenge is discussed in Section 4.3.

New biological parts for CDR engineering beyond the target plant species can be predicted using the following strategies:

1. Exploring an extended evolutionary space to identify biological parts in other plant species that are related to or distant from the target plant species. For example, biological parts derived from cyanobacteria, microalgae, and C₄ and CAM photosynthesis plants have been identified for enhancing CO₂ fixation in C₃ photosynthesis plants, as discussed in Section 3.1.

Figure 3: A design-build-test-learn (DBTL) approach for accelerating the identification of biological parts for CDR (carbon dioxide removal) engineering in terrestrial plants. (a) An illustration of pathways or modules containing validated genes and/or unknown genes to be identified and characterized. (b) An illustration of DBTL cycle for identifying new biological parts relevant to photosynthetic fixation of CO₂, and carbon translocation, and long-term carbon storage.
(2) Searching for new-to-plant biological parts in other domains of life (e.g., microbes and mammals/humans). For example, biological parts for engineering photorespiratory bypasses in higher plants have been identified from microbes (e.g., *E. coli* and *P. denitrificans*), as shown in Table 1. Also, the biological parts of a synthetic photosynthetic pathway were derived from bacteria, humans, and archaea [86].

(3) Designing synthetic biological parts that are new to nature. For example, only a fraction of the potential metabolic design space has been exploited for improving photosynthesis by natural evolution, and there are likely many opportunities to further redesign novel biological parts for photosynthesis [17, 142, 143]. Computational methods have been increasingly used for providing predictions to significantly narrow down the space of possible mutations and reduce the experimental burden for creating new enzymes [144]. Recently, two AI-based computational tools, AlphaFold and RoseTTAfold, became available for high-accuracy prediction of protein structure from sequence information alone [145, 146]. These new powerful tools will greatly facilitate the designing of entirely novel protein folds and new activities [147]. It is expected that AlphaFold and RoseTTAfold will accelerate the progress in designing new-to-nature proteins for CDR engineering.

4.2. Building Gene Constructs into Plants for CDR Engineering. The biological parts designed using computational approaches, as discussed in Section 4.1, need to be engineered into plants through a two-step process: assembling the biological parts into gene constructs (or gene circuits) and engineering the gene constructs into plants. Assembling the biological parts into gene constructs has become facile due to the technological advances in DNA synthesis and DNA fragment assembly, as discussed in recent reviews [17, 148]. The remaining challenge lies in engineering gene constructs into plants. While some plant species (e.g., sugarcane) are almost exclusively transformed by particle bombardment, engineering of gene constructs into plants (e.g., sugarcane) are almost exclusively transformed by tissue culture-based, *Agrobacterium*-mediated plant transformation, which has two major limitations: (i) not all plant species are *Agrobacterium*-infectable and (ii) in vitro regeneration of shoots or embryos from transformed cells is very slow and genotype-dependent [17]. The development of new plant transformation technologies is urgently needed to enable the engineering of CDR biological parts into various plant species, including those that are very difficult to be transformed through tissue culture-based, *Agrobacterium*-mediated approaches. The potential of *in planta* gene transformation mediated by nanoparticles [149–151] or viruses [152] can be exploited to address this challenge in the future. CDR engineering in plants requires synchronization of increase in source activities, sink capacities, and source-to-sink C transport through simultaneous expression of multiple genes. However, current plant transformation technologies allow only one or several genes to be engineered at a time due to the upper size limit of plasmids. One possible solution to this challenge is to construct plant artificial mini-chromosomes, which has a great potential for engineering a large number of genes [153, 154].

4.3. Testing Transgenic Plants Expressing the Biological Parts for CDR Engineering. Transgenic plants expressing the biological parts for CDR engineering can be used to test if the biological parts can influence different aspects of CDR, including net CO$_2$ fixation in the leaf tissue, carbon translocation from leaves to roots, root depth and biomass accumulation, contents of recalcitrant carbon-containing compounds and polymers (e.g., lignin, suberin) in root tissue, and the yield of value-added products derived from the captured carbon. Also, it is important to determine whether the biological parts have negative impacts on plant growth and development. Multiomics (e.g., transcriptomics, proteomics, metabolomics, and phenomics) data can be generated from the transgenic plants for computational modeling, as described in Section 4.4. The biological parts having significant impact on any of the CDR-related traits, without any negative impact on plant growth and development, can be selected as validated biological parts for CDR engineering, as illustrated in Figure 3(b).

As mentioned in Section 4.1, there is a lack of multiomics and high-resolution data for nonmodel plant species. This challenge can be addressed by generating multiomics data at the cellular, tissue, and whole plant levels. Bulk-cell and bulk-tissue omics (e.g., transcriptomics, proteomics, and metabolomics) have been widely used to capture the average expression of a gene product within a cell population or tissue, masking the inherent heterogeneity of expression within single cells in complex multicellular organisms like plants [155]. The single-cell transcriptomics technology has been well established in plants, but the application of single-cell proteomics and single-cell metabolomics in plants is lagging behind because proteins and metabolites cannot be amplified, yielding considerably less sensitive detection than transcriptomics [155, 156]. To address the limitation of single-cell proteomics, single-cell type proteomics facilitated by fluorescent activated cell sorting was developed in plants [157]. Therefore, single-cell transcriptomics and single-cell type proteomics can be used for testing the transgenic plants engineered with CDR-related genes.

Tracking the carbon flux in transgenic plants is critical for understanding the function of CDR-related genes. To investigate the impact of sucrose synthase on carbon allocation and carbon flow at the tissue and whole tree levels, the source leaves, phloem, developing wood, and roots of transgenic hybrid aspen (*P. tremula × P. tremuloides*) lines, with the expression of sucrose synthase gene repressed by RNAi, were analyzed using a combination of metabolite profiling, 13CO$_2$ pulse labelling experiments, and long-term field tests [158]. These types of data can be very useful for metabolic modeling in the “learn” phase of a DBTL cycle.

High-throughput phenotypic analysis of CDR traits in transgenic plants can accelerate the design of biological parts for CDR engineering. Recently, a semiautomated
multichamber whole-canopy system was used for gas exchange analysis to determine the net photosynthetic rate [159]. Phenotypic analysis of root growth and architecture is very important for determining the capacities of C sink. A high-throughput phenotyping system called Chrono-Root, which integrated machine intelligence methods and a 3D-printed device, was developed for studying the temporal parameters of plant root system architecture [160]. Also, an automated image segmentation method based on the DeepLabv3+ convolutional neural network was developed for high-throughput analysis of in situ cotton root images obtained with a micro root window root system monitoring system [161]. These high-throughput phenotyping approaches have great potential for accelerating the identification of biological parts for bioengineering to enhance source activities and sink capacities.

4.4. Learning from Transgenic Plants Expressing the Biological Parts for CDR Engineering. As the last step of a DBTL cycle, experimental data generated from testing transgenic plants can be used for learning, with the aid of computational tools similar to the Automated Recommendation Tool (ART) which was designed for microbes [162], to provide recommendations on the design of biological parts in the next DBTL cycle. Although ART cannot be directly applied in complex multicellular organisms like plants, its framework of leveraging machine learning and probabilistic modeling techniques to guide synthetic biology in a systematic fashion, without a full mechanistic understanding of the biological system [162], can be adopted for future effort to develop new AI-aided learning capabilities for informing the design of biological parts in plants. One bottleneck in the development of ART-like tools for plants is a lack of high-resolution multiomics data. One potential solution to this challenge is the Plant Cell Atlas framework conceived by the Plant Cell Atlas Consortium, which is aimed at linking genes to phenotypes at a single-cell resolution [163].

Over the recent years, advancements have been made in the learning phase of the DBTL cycle to help improve bioengineering designs in plants through genome-scale metabolic network reconstructions, large-scale plant context-specific metabolic models, and increased prediction performance of computational methods for designing and testing synthetic metabolic pathways [164]. For example, the predictive power of genome-scale metabolic model of carbon metabolism in cassava storage roots was improved through incorporating gene expression data of developing storage roots into the basic flux-balance model to minimize infeasible metabolic fluxes [165]. As discussed in Section 3.1, multiple synthetic photorespiratory bypasses have been created for enhancing net CO₂ assimilation rate in plants. The impacts of two different synthetic photorespiratory bypasses in A. thaliana were predicted using constraint-based modeling, demonstrating that metabolic modeling can qualitatively reproduced the condition-dependent growth phenotypes of one of the engineered bypasses [166]. Recently, metabolic modeling was performed to determine the impact of rerouting photorespiratory pathway in C₃ plants, showing that the cyanobacterial glycolate decarboxylation bypass model exhibited a 10% increase in the net photosynthetic rate in C₃ plants [167]. This type of metabolic modeling can be used to inform optimization of biological parts to maximize the capacity of photosynthesis-mediated CO₂ capture.

Multiscale plant modeling, with partial- or full-integration of transcriptomics, proteomics, metabolomics, and phenomics data, has a great potential for identifying candidate genes for plant engineering [17, 168, 169] and should be considered as a key approach for identifying new biological parts relevant to CDR engineering. Multiscale modeling has been successfully used for informing genetic engineering in plants [167]. For example, multiscale modeling, with an integration of gene network, metabolic, and leaf-level models, was able to identify transcription factors (TFs) that matched the up- and down-regulation of genes needed to improve photosynthesis in soybean under rising CO₂ [170].

A balanced maximization of both source activities and sink capacities is critical for plant-based CDR, which requires synchronization of the developmental, molecular, and metabolic aspects of source–sink interactions [171]. There has been a great success in the modeling of plant photosynthesis from metabolism to canopy structure [172, 173]. However, future modeling efforts are needed to support system-level design of plant-based CDR through connecting models of various CDR-related biological processes, such as photosynthesis, root growth, and sucrose transport.

5. Conclusion

The main goal of engineering CDR traits in plants is to design better plant biosystems that have a much higher capacity for capturing and storing CO₂. Identification and curation of biological parts, such as protein-encoding genes and noncoding RNAs involved in CO₂ capture, translocation, storage, and conversion, are critical for the development of plant-based CDR technologies. It would be ideal to engineer a minimum number of biological parts in plants for capturing and transporting atmospheric CO₂ through an expanded “phloem highway” into the soil for long-term storage, as well as deriving fuels and biobased products that displace petroleum-based sources.

In this review, we first outline a general framework for engineering terrestrial plants to enhance the removal of atmospheric CO₂ with a focus on increasing the photosynthetic fixation of CO₂ in the leaves, enhancing the translocation of fixed carbon from leaves to the roots and rhizosphere for long-term belowground storage of carbon, and maximizing the co-benefits of bioeconomy through in planta conversion of carbon to value-added products in aboveground tissues. We highlight representative biological parts (e.g., protein-coding genes and noncoding RNAs) that have been proven to be effective for engineering CDR traits in plants. Although the enzymes listed in this review have been well characterized by molecular genetic studies, one area of future research is to better characterize their biochemical properties under a range of conditions (e.g., temperatures) and their posttranslational regulation, including metabolite
inhibition, as these are not well understood and will be vital for predictable control.

The items listed in Tables 1–4 serve as the starting point for continuing community efforts to generate a more comprehensive catalog of biological parts for CDR engineering. We propose the following strategies for identification and curation of more biological parts for CDR engineering:

(1) Selecting genes as validated biological parts for CDR engineering from scientific publications based on two criteria: (i) showing significant impact on CDR and (ii) showing no significantly negative impact on plant growth, development, or stress tolerance

(2) Generating new natural or synthetic biological parts for CDR engineering in terrestrial plants using the DBTL approach

(3) Assigning the biological parts onto the framework of CDR engineering, as illustrated in Figure 1

(4) Describing the biological parts and their functional properties electronically using FAIR data principles [174] to ensure ease of access for CDR practitioners

Although this review focuses on identification and curation of genes as biological parts for CDR engineering, the importance of regulatory elements (e.g., promoters, enhancers, and terminators) cannot be underestimated. Engineering of plant-based CDR requires targeted gene expression in different tissues, each of which represents potentially unique regulatory or developmental contexts [175]. To minimize unintended effects, cell-type- or tissue-specific promoters should be used to maintain the correct spatial pattern of gene expression. For example, CDR engineering involves the modification of plant form, such as changing root architecture with less nodal root number and more deep roots in maize [176], which requires precise control of gene expression by tissue-specific promoters [177]. Leaf-specific promoters [178] can be used for driving the expression of genes involved in CO₂ fixation; phloem tissuespecific promoters [179] can be used for genes involved in phloem-mediated translocation of sugars; and root-specific promoters [180, 181] can be used for genes involved in root growth and development. Besides tissue-specific promoters, cell-type-specific promoters [182, 183] can be used for high-precision control of the spatial expression pattern of CDR-related genes.

Also, to optimize the performance of a plant system for CDR, it is necessary to fine-tune the expression of genes involved in different processes (e.g., CO₂ fixation, carbon partitioning and translocation, and carbon storage) to achieve an optimal balance between source and sink activities. The level of gene expression can be controlled by using rationally designed synthetic promoters [184], which can potentially overcome the difficulties with cross-species functionality of natural promoters. To avoid impeding or being impeded by the native genes of the target plants to be engineered, it is better to consider orthogonal regulatory systems, which consist of synthetic activators, synthetic repressors, and synthetic promoters, for enabling the concerted expression of multiple genes in a tissue-specific and environmentally responsive manner [185].

Disclosure

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this article.

Authors' Contributions

XY planned and drafted the manuscript. All authors read and revised the manuscript.

Acknowledgments

The writing of this manuscript was supported by the Center for Bioenergy Innovation, a U.S. Department of Energy (DOE) Bioenergy Research Center supported by the Biological and Environmental Research (BER) program, and the Laboratory Directed Research and Development program of Oak Ridge National Laboratory. DL acknowledges financial support through the National Science Foundation (NSF) under Award Number 1833402.

References

[1] S. Sippel, N. Meinshausen, E. M. Fischer, E. Székely, and R. Knutti, "Climate change now detectable from any single day of weather at global scale," *Nature Climate Change*, vol. 10, no. 1, pp. 35–41, 2020.

[2] IPCC, "Climate Change 2021: The Physical Science Basis," *Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, Eds., Cambridge University Press, 2021.

[3] O. Hoegh-Guldberg, D. Jacob, M. Taylor et al., "The human imperative of stabilizing global climate change at 1.5 °C," *Science*, vol. 365, no. 6459, 2019.

[4] T. Wheeler and J. von Braun, "Climate change impacts on global food security," *Science*, vol. 341, no. 6145, pp. 508–513, 2013.
[5] L. C. Stringer, A. Mirzabaev, T. A. Benjaminsen et al., “Climate change impacts on water security in global drylands,” *One Earth*, vol. 4, no. 6, pp. 851–864, 2021.

[6] M. D. King and J. Guldde, “Climate change and energy security: an analysis of policy research,” *Climate Change*, vol. 123, no. 1, pp. 57–68, 2014.

[7] A. Defor and T. V. Oheneba-Dornyo, “Is climate change hampering global health security?: a review of the evidence,” *Global Health Governance*, pp. 39–51, 2020.

[8] Q. Yazdanpanah Dero, E. Yari, and Z. Charrab, “Global warming, environmental security and its geo-economic dimensions case study: Caspian Sea level changes on the balance of transit channels,” *Journal of Environmental Health Science and Engineering*, vol. 18, no. 2, pp. 541–557, 2020.

[9] N. S. Diffenbaugh and M. Burke, “Global warming has increased global economic inequality,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 116, no. 20, pp. 9808–9813, 2019.

[10] J. Rogelj, D. Shindell, K. Jiang et al., “Mitigation pathways compatible with 1.5°C in the context of sustainable development,” in *Global Warming of 1.5°C*, V. Masson-Delmotte, Ed., pp. 93–174, Intergovernmental Panel on Climate Change (IPCC), 2018.

[11] S. Naimoli, *Carbon dioxide removal solutions*, Center for Strategic and International Studies (CSIS), 2021, https://www.jstor.org/stable/resrep29325.

[12] R. Zhang and S. Fujimori, “The role of transport electrification in global climate change mitigation scenarios,” *Environmental Research Letters*, vol. 15, no. 3, article 034019, 2020.

[13] T. J. Zelikova, “The future of carbon dioxide removal must be transdisciplinary,” *Interface Focus*, vol. 10, no. 5, article 20200038, 2020.

[14] C. B. Field and K. J. Mach, “Rightsizing carbon dioxide removal,” *Science*, vol. 356, no. 6339, pp. 706–707, 2017.

[15] C. Beutler, L. Charles, and J. Wurzbacher, “The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions,” *Frontiers in Climate*, vol. 1, p. 10, 2019.

[16] C. DeLisi, A. Patrinos, M. MacCracken et al., “The role of synthetic biology in atmospheric greenhouse gas reduction: prospects and challenges,” *BioDesign Research*, vol. 2020, article 1016207, pp. 1–8, 2020.

[17] X. Yang, J. I. Medford, K. Markel et al., “Plant biosystems design research roadmap 1.0,” *BioDesign Research*, vol. 2020, article 8051764, pp. 1–38, 2020.

[18] X. Yang, L. S. Qi, A. Jaramillo, and Z. M. (M.). Cheng, “Bio-design research to advance the principles and applications of biosystems design,” *BioDesign Research*, vol. 2019, article 9680853, 4 pages, 2019.

[19] M. J. West-Eberhard, J. A. C. Smith, and K. Winter, “Photosynthesis, reorganized,” *Science*, vol. 332, no. 6027, pp. 311–312, 2011.

[20] K. Silvera, K. M. Neubig, W. M. Whitten, N. H. Williams, K. Winter, and J. C. Cushman, “Evolution along the crassulacean acid metabolism continuum,” *Functional Plant Biology*, vol. 37, no. 11, pp. 995–1010, 2010.

[21] R. F. Sage, “A portrait of the C4photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame,” *Journal of Experimental Botany*, vol. 68, no. 2, pp. 4039–4056, 2017.

[22] M. J. M. Christenhusz and J. W. Byng, “The number of known plants species in the world and its annual increase,” *Phytotaxa*, vol. 261, no. 3, pp. 201–217, 2016.

[23] H. Yin, H.-B. Guo, D. J. Weston et al., “Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in agave,” *BMC Genomics*, vol. 19, no. 1, p. 588, 2018.

[24] X. Yang, R. Hu, H. Yin et al., “The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism,” *Nature Communications*, vol. 8, no. 1, p. 1899, 2017.

[25] X. Yang, D. Liu, T. J. Tschaplinski, and G. A. Tuskan, “Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants,” *Journal of Experimental Botany*, vol. 70, no. 22, pp. 6539–6547, 2019.

[26] P. S. Nobel, “Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants,” *New Phytologist*, vol. 119, no. 2, pp. 183–205, 1991.

[27] A. M. Borland, H. Griffiths, J. Hartwell, and J. A. C. Smith, “Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands,” *Journal of Experimental Botany*, vol. 60, no. 10, pp. 2879–2896, 2009.

[28] M. Ermakova, F. R. Danila, R. T. Furbank, and S. Caemmerer, “On the road to C4rice: advances and perspectives,” *The Plant Journal*, vol. 101, no. 4, pp. 940–950, 2020.

[29] S. von Caemmerer, W. P. Quick, and R. T. Furbank, “The development of C4rice: current progress and future challenges,” *Science*, vol. 336, no. 6089, pp. 1671–1672, 2012.

[30] X. Yang, J. C. Cushman, A. M. Borland et al., “A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world,” *New Phytologist*, vol. 207, no. 3, pp. 491–504, 2015.

[31] A. M. Borland, J. Hartwell, D. J. Weston et al., “Engineering crassulacean acid metabolism to improve water-use efficiency,” *Trends in Plant Science*, vol. 19, no. 5, pp. 327–338, 2014.

[32] G. Yuan, M. M. Hassan, D. Liu et al., “Biosystems design to accelerate C3-to-CAM progression,” *BioDesign Research*, vol. 2020, article 3686791, pp. 1–16, 2020.

[33] P. McKeand, “Energy production from biomass (part 1): overview of biomass,” *Bioresource Technology*, vol. 83, no. 1, pp. 37–46, 2002.

[34] C. E. Salesse-Smith, R. E. Sharwood, F. A. Busch, J. Kromdijk, V. Bardal, and D. B. Stern, “Overexpression of Rubisco subunits with RAFl increases Rubisco content in maize,” *Nature Plants*, vol. 4, no. 10, pp. 802–810, 2018.

[35] M. T. Lin, A. Occhialini, P. J. Andralojc, M. A. J. Parry, and M. R. Hanson, “A faster Rubisco with potential to increase photosynthesis in crops,” *Nature*, vol. 513, no. 7519, pp. 547–550, 2014.

[36] K. Weigmann, “Fixing carbon,” *EMBO Reports*, vol. 20, no. 2, article e47580, 2019.

[37] A. Kaachra, S. K. Vats, and S. Kumar, “Heterologous expression of key C and N metabolic enzymes improves re-assimilation of photorespired CO2 and NH3, and growth,” *Plant Physiology*, vol. 177, no. 4, pp. 1396–1409, 2018.

[38] D. L. Trudeau, C. Edlich-Muth, J. Zarzycki et al., “Design and in vitro realization of carbon-conserving photospiration,” *Proceedings of the National Academy of Sciences*, vol. 115, no. 49, pp. E11455–E11464, 2018.
[39] J. Dalal, H. Lopez, N. B. Vasani et al., “A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa,” Biotechnology for Biofuels, vol. 8, no. 1, p. 175, 2015.

[40] M. R. Lundgren, “C2photosynthesis: a promising route towards crop improvement?,” New Phytologist, vol. 228, no. 6, pp. 1734–1740, 2020.

[41] P. F. South, A. P. Cavanagh, H. W. Liu, and D. R. Ort, “Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field,” Science, vol. 363, no. 6422, 2019.

[42] B.-R. Shen, L.-M. Wang, X.-L. Lin et al., “Engineering a new chloroplastic photosynthetic bypass to increase photosynthetic efficiency and productivity in rice,” Molecular Plant, vol. 12, no. 2, pp. 199–214, 2019.

[43] L.-M. Wang, B.-R. Shen, B.-D. Li et al., “A synthetic photosynthetic carbon pool bypass increases photosynthesis to boost biomass and grain yield in rice,” Molecular Plant, vol. 13, no. 12, pp. 1802–1815, 2020.

[44] M.-S. Roel, L. Schada von Borzsowski, P. Westhoff et al., “A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants,” Proceedings of the National Academy of Sciences, vol. 118, no. 21, article e2002307118, 2021.

[45] H. Zhao, Q. Tang, T. Chang, Y. Xiao, and X. G. Zhu, “Why an increase in activity of an enzyme in the Calvin–Benson cycle does not always lead to an increased photosynthetic CO₂ uptake rate?—a theoretical analysis,” in silico Plants, vol. 3, no. 1, 2021.

[46] N. J. Patron, “Beyond natural: synthetic expansions of botanical form and function,” The New Phytologist, vol. 227, no. 2, pp. 295–310, 2020.

[47] A. C. White, A. Rogers, M. Rees, and C. P. Osborne, “How can we make plants grow faster? A source–sink perspective on growth rate,” Journal of Experimental Botany, vol. 67, no. 1, pp. 31–45, 2016.

[48] N. Glanz-Idan, P. Tarkowski, V. Turečkóvá, and S. Wolf, “Root–shoot communication in tomato plants: cytokinin as a signal molecule modulating leaf photosynthetic activity,” Journal of Experimental Botany, vol. 71, no. 1, pp. 247–257, 2020.

[49] T. J. Tschaplinski and T. J. Blake, “Photosynthetic reinvigoration of leaves following shoot decapitation and accelerated growth of coppice shoots,” Physiologia Plantarum, vol. 75, no. 2, pp. 157–165, 1989.

[50] T. J. Tschaplinski and T. J. Blake, “The role of sink demand in carbon partitioning and photosynthetic reinvigoration following shoot decapitation,” Physiologia Plantarum, vol. 75, no. 2, pp. 166–173, 1989.

[51] D. B. Kell, “Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 367, no. 1595, pp. 1589–1597, 2012.

[52] N. M. Holbrook and M. Knoblauch, “Editorial overview: physiology and metabolism: phloem: a supracellular highway for the transport of sugars, signals, and pathogens,” Current Opinion in Plant Biology, vol. 43, pp. iii–vii, 2018.

[53] O. O. Aluko, C. Li, Q. Wang, and H. Liu, “Sucrose utilization for improved crop yields: a review article,” International Journal of Molecular Sciences, vol. 22, no. 9, p. 4704, 2021.

[54] R. Lemoine, “Sucrose transporters in plants: update on function and structure,” Biochimica et Biophysica Acta, vol. 1465, no. 1-2, pp. 246–262, 2000.

[55] K. E. Clemmensen, A. Bahr, O. Ovaskainen et al., “Roots and associated fungi drive long-term carbon sequestration in boreal forest,” Science, vol. 339, no. 6127, pp. 1615–1618, 2013.

[56] K. K. Treseder and S. R. Holden, “Fungal carbon sequestration,” Science, vol. 339, no. 6127, pp. 1528–1529, 2013.

[57] N. Henion, M. Durand, C. Vriet et al., “Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere,” Physiologia Plantarum, vol. 165, no. 1, pp. 44–57, 2019.

[58] A. Favero, A. Daigneau, and B. Sohngen, “Forests: carbon sequestration, biomass energy, or both?,” Science Advances, vol. 6, no. 13, article eaa6792, 2020.

[59] M. Ganané, P. Bayen, K. Dimobe, I. Ouédraogo, and A. Thombiano, “Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso,” Helijon, vol. 6, no. 4, article e03805, 2020.

[60] K. Paustian, E. Larson, J. Kent, E. Marx, and A. Swan, “Soil C sequestration as a biological negative emission strategy,” Frontiers in Climate, vol. 1, p. 8, 2019.

[61] D. A. Bossio, S. C. Cook-Patton, P. W. Ellis et al., “The role of soil carbon in natural climate solutions,” Nature Sustainability, vol. 3, no. 5, pp. 391–398, 2020.

[62] M. Lyu, A. Noormets, L. Ukonmaanaho, Y. Li, Y. Yang, and J. Xie, “Stability of soil organic carbon during forest conversion is more sensitive in deep soil than in topsoil in subtropical forests,” Pedobiologia, vol. 84, article 150706, 2021.

[63] C. Jansson, S. D. Wullschлегer, U. C. Kalluri, and G. A. Tuskan, “Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering,” Biocience, vol. 60, no. 9, pp. 685–696, 2010.

[64] A. E. Harman-Ware, S. Sparks, B. Addison, and U. C. Kalluri, “Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bioderived energy and materials,” Biotechnology for Biofuels, vol. 14, no. 1, p. 75, 2021.

[65] Y. Fan, G. Miguez-Macho, E. G. Jobbágy, R. B. Jackson, and C. Otero-Casal, “Hydrologic regulation of plant rooting depth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 10, pp. 10572–10577, 2017.

[66] “United Nations Environment Programme,” 2005, http://webarchive.loc.gov/all/20050723150643/http://www.unep.org/documents/multilingual/default.asp?DocumentID=445&ArticleID=4852&l=en.

[67] D. B. Kell, “Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration,” Anals of Botany, vol. 108, no. 3, pp. 407–418, 2011.

[68] “Harnessing Plants Initiative,” Salk Institute for Biological Science,” 2021, https://www.salk.edu/harnessing-plants-initiative.

[69] U. C. Kalluri, X. Yang, and S. D. Wullschлегer, “Plant biosystems design for a carbon-neutral bioeconomy,” BioDesign Research, vol. 2020, article 7914051, pp. 1–5, 2020.

[70] H. Huang, S. Long, and V. Singh, “Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane,” Biofuels, Bioproducts and Biorefining, vol. 10, no. 3, pp. 299–315, 2016.
[71] S. Parajuli, B. Kannan, R. Karan et al., “Towards oilcane: engineering hyperaccumulation of triacylglycerol into sugarcane stems,” *GCB Bioenergy*, vol. 12, no. 7, pp. 476–490, 2020.

[72] D. Liu, R. Hu, J. Zhang et al., “Overexpression of an *Agave* phosphoenolpyruvate carboxylase improves plant growth and stress tolerance,” *Cell*, vol. 10, no. 3, p. 582, 2021.

[73] Y.-M. Wang, W.-G. Xu, L. Hu, L. Zhang, Y. Li, and X. H. du, “Expression of maize gene encoding C4-pyruvate orthophosphate dikinase (PPDK) and C4-phosphoenolpyruvate carboxylase (PEPC) in transgenic *Arabidopsis*,” *Plant Molecular Biology Reporter*, vol. 30, no. 6, pp. 1367–1374, 2012.

[74] R. Kebeish, M. Niessen, M. Oksaksin, C. Blume, and C. Peterhansel, “ Constitutive and dark-induced expression of *Solanum tuberosum* phosphoenolpyruvate carboxylase enhances stomatal opening and photosynthetic performance of *Arabidopsis thaliana*,” *Biotechnology and Bioengineering*, vol. 109, no. 2, pp. 536–544, 2012.

[75] R. E. Häusler, H. J. Hirsch, F. Kreuzaler, and C. Peterhäuser, “Overexpression of C4-cycle enzymes in transgenic C4 plants: a biotechnological approach to improve C4-photosynthesis,” *Journal of Experimental Botany*, vol. 53, no. 369, pp. 591–607, 2002.

[76] R. Kebeish, M. Niessen, K. Thiruveedhi et al., “Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in *Arabidopsis thaliana*,” *Nature Biotechnology*, vol. 25, no. 5, pp. 593–599, 2007.

[77] A. Maier, F. Hafenstich, S. von Caemmerer et al., “Transgenic introduction of a glycine oxidase cycle into *A. thaliana* chloroplasts leads to growth improvement,” *Frontiers in Plant Science*, vol. 3, p. 38, 2012.

[78] J. d. F. C. Carvalho, P. J. Madgwick, S. J. Powers, A. J. Keys, P. J. Lea, and M. A. J. Parry, “An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photospiration,” *BMC Biotechnology*, vol. 11, no. 1, p. 111, 2011.

[79] L. Schada von Borzyszkowski, F. Severi, K. Krüger et al., “Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle,” *Nature*, vol. 575, no. 7783, pp. 500–504, 2019.

[80] S. Lefebvre, T. Lawson, M. Fryer, O. V. Zakhleniuk, J. C. Lloyd, and C. A. Raines, “Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development,” *Plant Physiology*, vol. 138, no. 1, pp. 451–460, 2005.

[81] J. Kromdijk, K. Glowacka, L. Leonelli et al., “Improving photosynthesis and crop productivity by accelerating recovery from photoprotection,” *Science*, vol. 354, no. 6314, pp. 857–861, 2016.

[82] J.-H. Chen, S.-T. Chen, N.-Y. He et al., “Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield,” *Nature Plants*, vol. 6, no. 5, pp. 570–580, 2020.

[83] Q. Yu, S. Liu, L. Yu et al., “RNA demethylation increases the yield and biomass of rice and potato plants in field trials,” *Nature Biotechnology*, 2021.

[84] T. M. Frayling, N. J. Timpson, M. N. Weedon et al., “A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity,” *Science*, vol. 316, no. 5826, pp. 889–894, 2007.

[85] G. Jia, Y. Fu, X. Zhao et al., “N-6-Methylenadenosine in nuclear RNA is a major substrate of the obesity-associated FTO,” *Nature Chemical Biology*, vol. 7, no. 12, pp. 885–887, 2011.

[86] T. E. Miller, T. Beneyton, T. Schwander et al., “Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts,” *Science*, vol. 368, no. 6491, pp. 649–654, 2020.

[87] J.-P. Zhang, Y. Yu, Y.-Z. Feng et al., “miR408 regulates grain yield and photosynthesis via a phytocyanin protein,” *Plant Physiology*, vol. 175, no. 3, pp. 1175–1185, 2017.

[88] G. J. MacNeill, S. Mehrpouyan, M. A. A. Minow, J. A. Patterson, I. J. Tetlow, and M. J. Emes, “Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation,” *Journal of Experimental Botany*, vol. 68, no. 16, pp. 4433–4453, 2017.

[89] V. J. Maloney, J.-Y. Park, F.inda, and S. D. Mansfield, “Sucrose phosphate synthase and sucrose phosphate phosphatase interact in plants and promote plant growth and biomass accumulation,” *Journal of Experimental Botany*, vol. 66, no. 14, pp. 4383–4394, 2015.

[90] T.-G. Chang, X.-G. Zhu, and C. Raines, “Source–sink interaction: a century old concept under the light of modern molecular systems biology,” *Journal of Experimental Botany*, vol. 68, no. 16, pp. 4417–4431, 2017.

[91] J. R. Lloyd and J. Kossmann, “Starch trek: the search for yield,” *Frontiers in Plant Science*, vol. 9, p. 1930, 2019.

[92] A. J. Oiestad, J. M. Martin, and M. J. Giroux, “Overexpression of ADP-glucose pyrophosphorylase in both leaf and seed tissue synergistically increase biomass and seed number in rice (*Oryza sativa* ssp. *japonica*),” *Functional Plant Biology*, vol. 43, no. 12, pp. 1194–1204, 2016.

[93] L.-Q. Chen, X.-Q. Qu, B.-H. Hou et al., “Sucrose efflux mediated by SWEET proteins as a key step for phloem transport,” *Science*, vol. 335, no. 6065, pp. 207–211, 2012.

[94] N. Gould, M. R. Thorpe, J. Pritchard et al., “AtSUC2 has a role for sucrose retrieval along the phloem pathway: Evidence from carbon-11 tracer studies,” *Plant Science*, vol. 188-189, pp. 97–101, 2012.

[95] Q. Xu, S. Yin, Y. Ma et al., “Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2,” *Proceedings of the National Academy of Sciences*, vol. 117, no. 11, pp. 6223–6230, 2020.

[96] D. Wang, H. Liu, H. Wang, P. Zhang, and C. Shi, “A novel sucrose transporter gene *IbSUT4* involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in Sweetpotato,” *BMC Plant Biology*, vol. 20, no. 1, p. 157, 2020.

[97] G. A. Pizzio, J. Paez-Valencia, A. S. Khadilkar et al., “*Arabidopsis* type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthetic partitioning,” *Plant Physiology*, vol. 167, no. 4, pp. 1541–1553, 2015.

[98] S. Sakr, M. Wang, F. Dédaldéchamp et al., “The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network,” *International Journal of Molecular Sciences*, vol. 19, no. 9, p. 2506, 2018.

[99] J. Yoon, L.-H. Cho, W. Tum, J. S. Jeon, and G. An, “Sucrose signaling in higher plants,” *Plant Science*, vol. 302, article 110703, 2021.

[100] M. E. Gavito, I. Jakobsen, T. N. Mikkelsen, and F. Mora, “Direct evidence for modulation of photosynthesis by an
arbuscular mycorrhiza-induced carbon sink strength,” New Phytologist, vol. 223, no. 2, pp. 896–907, 2019.
[101] J. Labbé, W. Muchero, O. Czarnecki et al., ”Mediation of plant-mycorrhizal interaction by a lectin receptor-like kinase,” Nature Plants, vol. 5, no. 7, pp. 676–680, 2019.
[102] Z. Qiao, T. B. Yates, H. K. Shrestha et al., ”Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptor-like kinase,” Plant Biotechnology Journal, 2021.
[103] P. M. Oger, H. Mansouri, X. Nesme, and Y. Dessaux, ”Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere,” Microbial Ecology, vol. 47, no. 1, pp. 96–103, 2004.
[104] A. Petit, J. Stougaard, A. Kühle, K. A. Marcker, and J. Tempé, ”Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation,” Molecular and General Genetics MGG, vol. 207, no. 2-3, pp. 245–250, 1987.
[105] D. V. Badri, N. Quintana, E. G. el Kassas et al., ”An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota,” Plant Physiology, vol. 151, no. 4, pp. 2006–2017, 2009.
[106] J. K. Whalen, S. Gul, V. Poirier et al., ”Transforming plant carbon into soil carbon: process-level controls on carbon sequestration,” Canadian Journal of Plant Science, vol. 94, no. 6, pp. 1065–1073, 2014.
[107] Y. Zhang, S. Lin, Y. Zhou et al., ”PdNF-YB21 positively regulated root lignin structure in poplar,” Industrial Crops and Products, vol. 168, article 113609, 2021.
[108] Y. Zhou, Y. Zhang, X. Wang et al., ”Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport inPopulus,” The New Phytologist, vol. 227, no. 2, pp. 407–426, 2020.
[109] Y. Sun, C. Jiang, R. Jiang, F. Wang, Z. Zhang, and J. Zeng, ”A novel NAC transcription factor from Eucalyptus, EgNAC141, positively regulates lignin biosynthesis and increases lignin deposition,” Frontiers in Plant Science, vol. 12, p. 494, 2021.
[110] L. Chu, X. He, W. Shu, L. Wang, and F. Tang, ”Knockdown of miR393 promotes the growth and biomass production in poplar,” Frontiers in Plant Science, vol. 12, p. 1426, 2021.
[111] Y. Nuoendagula, N. T. Tsuji, N. Takata et al., ”Change in lignin structure, but not in lignin content, in transgenic poplar overexpressing the rice master regulator of secondary cell wall biosynthesis,” Physiologia Plantarum, vol. 163, no. 2, pp. 170–182, 2018.
[112] K. Mahmood, V. V. Zeisler-Diehl, L. Schreiber, Y. M. Bi, S. J. Rothstein, and K. Ranathunge, ”Overexpression of ANAC046 promotes suberin biosynthesis in roots of Arabidopsis thaliana,” International Journal of Molecular Sciences, vol. 20, no. 24, p. 6117, 2019.
[113] P. KrishnaMurthy, B. Vishal, A. Bhal, and P. P. Kumar, ”WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis,” Physiologia Plantarum, vol. 172, no. 3, pp. 1673–1687, 2021.
[114] R. Figueiredo, J. P. Portilla Llerena, E. Kiyota et al., ”The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana,” Plant Molecular Biology, vol. 104, no. 4-5, pp. 411–427, 2020.
[115] B. Vishal, P. Krishnamurthy, R. Ramamoorthy, and P. P. Kumar, ”OsFTP5 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition,” New Phytologist, vol. 221, no. 3, pp. 1369–1386, 2019.
[116] Y. Uga, K. Sugimoto, S. Ogawa et al., ”Control of root system architecture by DEEPER ROOTING 1, increases rice yield under drought conditions,” Nature Genetics, vol. 45, no. 9, pp. 1097–1102, 2013.
[117] T. Ogura, C. Goeschl, D. Filiault et al., ”Root System Depth in Arabidopsis Is Shaped by EXOCCYST70A3 via the Dynamic Modulation of Auxin Transport,” Cell, vol. 178, no. 2, pp. 400–412.e16, 2019.
[118] H. M. Schneider, C. F. Strock, M. T. Hanlon et al., ”Multisite cleavage of the scelrenchyma enhance root penetration in compacted soils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 118, no. 6, article e2012087118, 2021.
[119] E. Ramireddy, H. Nelissen, J. E. Leudendorf, M. van Lijsbettens, D. Inzé, and T. Schmülling, ”Root engineering in maize by increasing cytokinin degradation causes enhanced root growth and leaf mineral enrichment,” Plant Molecular Biology, vol. 106, no. 6, pp. 555–567, 2021.
[120] P. Xu, X.-T. Cai, Y. Wang, L. Xing, Q. Chen, and C. B. Xiang, ”HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis,” Journal of Experimental Botany, vol. 65, no. 15, pp. 4285–4295, 2014.
[121] M. Tamoj, M. Nagoaka, Y. Miyagawa, and S. Shigeoka, ”Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants,” Plant and Cell Physiology, vol. 47, no. 3, pp. 380–390, 2006.
[122] M. Stitt, J. Lunn, and B. Usadel, ”Arabidopsis and primary photosynthetic metabolism – more than the icing on the cake,” The Plant Journal, vol. 61, no. 6, pp. 1067–1091, 2010.
[123] M. C. Mitchell, J. Pritchard, S. Okada et al., ”Increasing growth and yield by altering carbon metabolism in a transgenic leaf oil crop,” Plant Biotechnology Journal, vol. 18, no. 10, pp. 2042–2052, 2020.
[124] T. Vanhercke, A. el Tahchy, Q. Liu et al., ”Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves,” Plant Biotechnology Journal, vol. 12, no. 2, pp. 231–239, 2014.
[125] H. Lu, G. Yuan, S. H. Strauss et al., ”Reconfiguring plant metabolism for biodegradable plastic production,” BioDesign Research, vol. 2020, article 9078303, pp. 1–13, 2020.
[126] A. K. Khan, I. Anjum, C. Hano, B. H. Abbasi, and S. Anjum, ”An overview on feasible production of bioplastic polyhydroxalkanoate (PHA) in transgenic plants,” in Bioplastics for Sustainable Development, M. Kuddus and Roohi, Eds., pp. 555–579, Singapore, Springer Singapore, 2021.
[127] M. N. Somleva, K. D. Snell, J. J. Beaulieu, O. P. Peoples, B. R. Garrison, and N. A. Patterson, ”Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop,” Plant Biotechnology Journal, vol. 6, no. 7, pp. 663–678, 2008.
[128] K. Bohnert, I. Balbo, J. Kopka et al., ”Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight,” Plant, vol. 211, no. 6, pp. 841–845, 2000.
[129] C.-Y. Lin and A. Eudes, ”Strategies for the production of biocarriers for Sustainable Development,” Biotechnology for Biofuels, vol. 13, no. 1, p. 71, 2020.
tool for synthetic biology,” *Nature Communications*, vol. 11, no. 1, p. 4879, 2020.

[163] Plant Cell Atlas Consortium, J. Ahmed, O. Alaba et al., “Vision, challenges and opportunities for a Plant Cell Atlas,” *eLife*, vol. 10, p. e66877, 2021.

[164] A. Küken and Z. Nikoloski, “Computational approaches to design and test plant synthetic metabolic pathways,” *Plant Physiology*, vol. 179, no. 3, pp. 894–906, 2019.

[165] R. Kamsen, S. Kalapanulak, P. Chiewchankaset, and T. Saithong, “Transcriptome integrated metabolic modeling of carbon assimilation underlying storage root development in cassava,” *Scientific Reports*, vol. 11, no. 1, p. 8758, 2021.

[166] G. Basler, A. Küken, A. R. Fernie, and Z. Nikoloski, “Photorespiratory bypasses lead to increased growth in Arabidopsis thaliana: are predictions consistent with experimental evidence?,” *Frontiers in Bioengineering and Biotechnology*, vol. 4, p. 31, 2016.

[167] G. Khurshid, A. Z. Abbassi, M. F. Khalid et al., “A cyanobacterial photorespiratory bypass model to enhance photosynthesis by rerouting photorespiratory pathway in C₃ plants,” *Scientific Reports*, vol. 10, no. 1, article 20879, 2020.

[168] M. L. Matthews and A. Marshall-Colón, “Multiscale plant modeling: from genome to phenome and beyond,” *Emerging Topics in Life Sciences*, vol. 5, no. 2, pp. 231–237, 2021.

[169] B. Benes, K. Guan, M. Lang et al., “Multiscale computational models can guide experimentation and targeted measurements for crop improvement,” *The Plant Journal*, vol. 103, no. 1, pp. 21–31, 2020.

[170] K. Kannan, Y. Wang, M. Lang, G. S. Challa, S. P. Long, and A. Marshall-Colón, “Combining gene network, metabolic and leaf-level models shows means to future-proof soybean photosynthesis under rising CO₂,” *in silico Plants*, vol. 1, no. 1, 2019.

[171] A. R. Fernie, C. W. B. Bachem, Y. Helariutta et al., “Synchronization of developmental, molecular and metabolic aspects of source-sink interactions,” *Nature Plants*, vol. 6, no. 2, pp. 55–66, 2020.

[172] X. G. Zhu, Y. Wang, D. R. Ort, and S. P. Long, “e-photosynthesis: a comprehensive dynamic mechanistic model of C₃ photosynthesis: from light capture to sucrose synthesis,” *Plant, Cell & Environment*, vol. 36, no. 9, pp. 1711–1727, 2013.

[173] S. Hartzell, M. S. Bartlett, and A. Porporato, “Unified representation of the C₃, C₄, and CAM photosynthetic pathways with the Photo3 model,” *Ecological Modelling*, vol. 384, pp. 173–187, 2018.

[174] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg et al., “The FAIR guiding principles for scientific data management and stewardship,” *Scientific Data*, vol. 3, no. 1, article 160018, 2016.

[175] D. M. McCarthy and J. I. Medford, “Quantitative and predictive genetic parts for plant synthetic biology,” *Frontiers in Plant Science*, vol. 11, p. 1510, 2020.

[176] H. Guo and L. M. York, “Maize with fewer nodal roots allocates mass to more lateral and deep roots that improve nitrogen uptake and shoot growth,” *Journal of Experimental Botany*, vol. 70, no. 19, pp. 5299–5309, 2019.

[177] J. A. N. Brophy, T. LaRue, and J. R. Dinneny, “Understanding and engineering plant form,” *Seminars in Cell & Developmental Biology*, vol. 79, pp. 68–77, 2018.

[178] S. S. Alotaibi, “Developing specific leaf promoters tools for genetic use in transgenic plants towards food security,” *Saudi Journal of Biological Sciences*, vol. 28, no. 9, pp. 5187–5192, 2021.

[179] V. P. Nguyen, J.-S. Cho, J.-H. Lee et al., “Identification and functional analysis of a promoter sequence for phloem tissue specific gene expression from *Populus trichocarpa*,” *Journal of Plant Biology*, vol. 60, no. 2, pp. 129–136, 2017.

[180] H. Xun, X. Zhang, J. Yu et al., “Analysis of expression characteristics of soybean leaf and root tissue-specific promoters in Arabidopsis and soybean,” *Transgenic Research*, vol. 30, no. 6, pp. 799–810, 2021.

[181] Y. Li, C. Li, L. Cheng, S. Yu, C. Shen, and Y. Pan, “Overexpression of OsPT2 under a rice root specific promoter Os03g01700,” *Plant Physiology and Biochemistry*, vol. 136, pp. 52–57, 2019.

[182] T. Radoeva, C. A. ten Hove, S. Saiga, and D. Weijers, “Molecular characterization of Arabidopsis GAL4/UAS enhancer trap lines identifies novel cell-type-specific promoters,” *Plant Physiology*, vol. 171, no. 2, pp. 1169–1181, 2016.

[183] R. Siligato, X. Wang, S. R. Yadav et al., “Multisite gateway-compatible cell type-specific gene-inducible system for plants,” *Plant Physiology*, vol. 170, no. 2, pp. 627–641, 2016.

[184] Y.-M. Cai, K. Kallam, H. Tidd, G. Gendarini, A. Salzman, and N. J. Patron, “Rational design of minimal synthetic promoters for plants,” *Nucleic Acids Research*, vol. 48, no. 21, pp. 11845–11856, 2020.

[185] M. S. Belcher, K. M. Vuu, A. Zhou et al., “Design of orthogonal regulatory systems for modulating gene expression in plants,” *Nature Chemical Biology*, vol. 16, no. 8, pp. 857–865, 2020.

[186] T. D. Niehaus, S. Okada, T. P. Devarenne, D. S. Watt, V. Srivapa, and J. Chappell, “Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 108, no. 30, pp. 12260–12265, 2011.

[187] W. Yamori, “Strategies for engineering photosynthesis for enhanced plant biomass production,” in *Rice Improvement: Physiological, Molecular Breeding and Genetic Perspectives*, J. Ali and S. H. Wani, Eds., pp. 31–58, Springer International Publishing, Cham, 2021.

[188] J. Mallmann, D. Heckmann, A. Bräutigam et al., “The role of photorespiration during the evolution of C₄ photosynthesis in the genus Flaveria,” *eLife*, vol. 3, article e02478, 2014.