Towards Practical Privacy-Preserving
Genome-Wide Association Study

Charlotte Bonte2,4, Eleftheria Makri2,3,4, Amin Ardeshirdavani1, Jaak Simm1, Yves Moreau1,5, Frederik Vercauteren2,5

1 STADIUS KU Leuven
2 imec-Cosic, Dept. Electrical Engineering, KU Leuven
3 ABRR Saxion University of Applied Sciences
4 Joint first authors
5 Joint last authors

Abstract. The deployment of Genome-wide association studies (GWASs) requires genomic information of a large population to produce reliable results. This raises significant privacy concerns, making people hesitate to contribute their genetic information to such studies. We propose two provably secure solutions to address this challenge: (1) a somewhat homomorphic encryption (HE) approach, and (2) a secure multiparty computation (MPC) approach. Unlike previous work, our approach does not rely on adding noise to the input data, nor does it reveal any information about the patients. To prevent any data breach, our protocols calculate the χ^2 statistic in a privacy-preserving manner, without revealing any information other than whether the statistic is significant or not; hence not even the statistic value itself. We significantly increased the efficiency of our HE protocols by introducing a new masking technique to perform the secure comparison that is necessary for determining significance. We show that full-scale privacy-preserving GWAS is practical, as long as the statistics can be computed by low degree polynomials. Our implementations demonstrated that both approaches are efficient. The secure multiparty computation technique completes its execution in approximately 2 ms for data contributed by one million subjects.

1 Introduction

The goal of a genome-wide association study (GWAS) is to identify genetic variants that are associated with traits. Large-scale sequencing provides reliable information on single nucleotide variants (SNVs). To date, researchers worked mostly on identifying genetic alterations which lead to classification of SNVs and SNPs (single nucleotide polymorphisms). Therefore, when we mention SNVs we refer to both frequent SNPs, and less frequent SNVs. A common approach is to divide the population into a disease, and a healthy group based on whether the individual has the particular disease. Each individual gives a sample DNA from which millions of genetic variants (i.e., SNVs) are identified. If a variant is more frequent in individuals with the disease, it will likely be associated with the specific genetic disorder and be classified as a potential marker of the disease.
Having a large population size is crucial for GWAS, because it allows to improve the accuracy of identified associations, especially for rare genetic disorders. Two recent developments result in a significant increase of the available data for GWAS: First, the development of cheap next generation sequencing (NGS). Second, the creation of distributed genomic databases, which enable pooling of data from many hospitals, and research centers, further increasing the population sizes of the studies by 10-50 times. Several such distributed databases have recently been proposed, including NGS-Logistics [ASD+14], Elixir, and GA4GH Beacon [IGH16].

In studies like GWAS, which use personally identifiable genetic markers of the participants as input, the privacy of the patients and protection of their sensitive data becomes of great importance. It has been shown by Malin et al. [?], that releasing the raw data even after removal of explicit identifiers, does not protect an individual from getting identified. The classical approach to solve this privacy problem involves a trusted third party who first collects both the SNV, and the trait data, then carries out the statistical test, and finally either a) only reveals the very few SNVs that have statistically significant association or b) reveals all aggregate data on SNVs but masks them with sufficient noise to guarantee differential privacy. For example, previous works by Uhlerop et al. [USF13], and by Simmons and Berger [SB16] have focused on computing a differentially private χ^2 test. However, setting up such a trusted third party has significant legal, and technical difficulties given the sensitive nature of the underlying data.

The aforementioned privacy concerns make both individuals and medical centers hesitant to share this private data. Hence, centralized (third party) datasets collected for research purposes remain small. Our goal is to address this challenge, in a way that the data can be shared without trusting an external third party. In our setup, the medical centers aggregate and encrypt or secret share the patient data before sending it to a third party for research purposes. This ensures the privacy of the input data, because the only party with access to the raw input data is the medical center which gathers it. Hence, our distributed solution allows to combine input data from different medical centers to construct a large dataset for research, while eliminating the privacy implications. Our solution can even scale up to millions of patients, and perform millions or tens of millions of hypothesis tests per day. This enables the first step towards large-scale distributed GWAS, where multiple medical centers contribute data, without relying on a trusted third party. Such large data collections would also allow association studies on rare diseases.

Another reason to opt for our secure computation solution instead of the trusted third party one, is that the latter does not provide defense against malicious agents or operating system bugs, which might result in leakage of information. In our case, such a mishap would reveal encrypted values (or shares of a value, resp.), which essentially provides no information to the adversary, as long as the secret key is not compromised (or the adversary has fewer than n shares, resp.).
Studies related to GWAS raised even more privacy concerns. Research has brought to light that releasing aggregated statistics related to GWASs leaks information in an implicit way. Therefore, it is not enough to protect only the input data; care has to be taken when releasing aggregated results to the public, as well. The work of Homer et al. [HSR+08] showed that the presence of an individual in the case group can be determined from the aggregated allele frequencies. One can argue that this attack requires an adversary to have at least 10,000 SNVs from the victim. However, we assume that with the current sequencing techniques, this is no longer a challenge and hence Homer’s attack is posing a real threat nowadays. By computing with encrypted or secret shared data, and only revealing a boolean value indicating significance, we prevent adversaries from obtaining the aggregated allele frequencies, thus protecting against Homer’s attack.

Shortly following Homer’s attack, Wang et al. [?] reported an attack based on statistical values reported in GWAS papers. Even though, the attack of Wang et al. [?] requires more statistical data than what our solution would reveal, such developments show that we need to be careful with the amount of information we publish. Our solution anticipates future statistical attacks, by not publishing any statistic values at all.

Our proposal consists of a cryptographic approach, where the trusted third party performing research is replaced by a privacy-preserving system, which receives the input in encrypted (protected) form from a set of distributed parties (e.g., hospitals), performs the χ^2 test, and only publicly discloses whether the current test is significant or not. Since nothing except the final answer is revealed during the execution of our protocols, the proposed system enjoys various security guarantees, even against malicious agents who gain access to the servers executing the system.

Even though the aforementioned attacks show it is not a good idea to reveal the χ^2 value, the value itself would be highly interesting for research purposes. Therefore, it is worth mentioning that our current system can be easily adapted to return the significance value itself. However, since revealing the values can cause privacy issues, we suggest to incorporate an authentication process to the system if the χ^2 value should be revealed. This way the access to the actual χ^2 values can be restricted to authenticated users. As such, the researchers can have access to the actual result, while it stays hidden from the public and therefore cannot be abused in an attack like the aforementioned ones.

By only revealing the yes/no answer, our system indicates whether the SNV is a possible marker. To determine whether or not this SNV is actually causally linked to the disease more statistics need to be computed. Therefore, we assume that for the selected SNVs—it indicated by our system—the researcher would request specific patient data from the different centers for further analysis. We assume this will happen with the current techniques for requesting data for GWASs. However, we expect patients to be more inclined to share their data for research, even despite the potential privacy concerns, when the researchers ex-
plain to them, with the aid of the public tables, that their data is highly relevant for the study of a specific disease.

Additionally, it is common practice in GWASs, and more general bioinformatics studies to publish only when significant results are found. This means that all the insignificant (yet identified) results are not published, despite the fact that they could also contribute in finding, or eliminating interesting correlations. In fact, a non-significant correlation between a genotype and a phenotype can serve as a proof that a certain mutation is not related to a disease. Our solution comes to bridge this gap, as we aim to construct a public table, listing all possible mutations, versus all possible phenotypes, and indicating whether the initial relationship between them (indicated by the χ^2 test) is significant or not. By publishing also the insignificant results in our public table, mutations not related to phenotypes can be immediately shown, allowing the researchers to discard them, and focus only on the significant ones.

To allow for a privacy-preserving system addressing our challenges, we propose two secure approaches: one based on homomorphic encryption (HE), and one based on multiparty computation (MPC). We also compare their security guarantees, and their efficiency in terms of execution time of practical implementations. Homomorphic encryption refers to a set of cryptographic tools that allow certain computations to take place in the encrypted domain, while the resulting ciphertext, when decrypted, is the expected (correct) result of operations on the plaintext data. Secure multiparty computation aims at allowing a similar functionality, amongst several mutually distrusting parties, who wish to compute a function without revealing their private inputs. With the latter approach, communication between the computing parties is required for the execution of the cryptographic protocols.

In the MPC setting, there are two main security models used, offering passive, or active security, respectively. Passive security, also known as security in the semi-honest model, assumes that the protocol participants are honest-but-curious. This means that they are trying to collect as much information as possible from the protocol execution, but they do follow the protocol instructions honestly. Active security, also known as malicious security, offers stronger security guarantees, assuming that adversaries or corrupted protocol participants may arbitrarily deviate from the protocol instructions. In both security models, we can build protocols assuming an honest majority of the protocol participants, or a dishonest majority. Our solution with MPC offers the highest security guarantees being built in the malicious model, with dishonest majority.

Specifically, we make the following contributions:

- We propose the first somewhat homomorphic encryption approach to withstand GWAS attacks such as the ones described by Homer et al. [HSR+08].
- We develop a multiparty computation solution for GWAS that is efficient for realistic sample sizes.
- We propose a new masking technique to allow efficient secure comparisons.
- We compare the security, and efficiency of HE and MPC on a real-life application.
- We demonstrate the practicality of our solutions, based on their short running times, which are in the range of 1.9-2.4 ms for the MPC approach.
- We show that our solution scales logarithmically in the number of subjects contributing their genetic information, allowing us to treat current population sizes, and being able to scale to larger (future) GWASs for millions of people.

2 Related Work

2.1 Homomorphic Encryption Approach

There has already been some work on using homomorphic encryption to preserve the privacy of the patients while performing statistics on genome data. Kim et al. [KL15] present the computation of minor allele frequencies and the χ^2 statistic with the use of the homomorphic BVG and YASHE encryption schemes. They use a specific encoding technique to improve on the work of Lauter et al. [LLAN14]. However, they only compute the allele counts homomorphically, and execute the other operations on the decrypted data.

Another work on GWASs using fully homomorphic encryption was published by Lu et al. [LYS15]. They also start from encrypted genotype/phenotype information that is uploaded to a cloud for each person separately. Then they perform the minimal operations necessary to provide someone with access to the decryption key with the necessary values to construct the contingency table for the requested case based on the data present on the cloud. Hence, when performing a request, the scientist gets three encrypted values, and based on those he can, after decryption, reconstruct the contingency table, and compute the χ^2 statistic in the clear. These solutions are not resistant to attacks like the one described by Homer et al. [HSR+08]. Our solution improves on these previous works by performing the χ^2 computation in the encrypted domain and revealing only whether or not the χ^2 value is significant for this case, which makes the previously mentioned attacks impossible.

Sadat et al. [SAM+17] propose a hybrid system called SAFETY to compute various statistical values over genomic data. This hybrid system consists of a combination of the partially homomorphic Paillier scheme with the secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both high efficiency, and privacy. With this hybrid system they propose a more efficient way to get the total counts of all patients for a specific case. By using the additive property of the homomorphic Paillier scheme, they reduce the computational overhead of decrypting all individual encrypted outputs received from the different servers. Afterwards it uses the Intel SGX component to perform the χ^2 computations. Even though the results of this system scale well for increasing amount of servers that provide data for the computation, the system does not provide the same functionality as our solution. Sadat et al. [SAM+17] mention that the only privacy guarantee for the final computation result against the attack described by [HSR+08] is the assumption that the researcher decrypting the result is semi-honest. This is the main difference with our work: with our
solution the researcher will only find out whether this case is significant, and not the χ^2 value itself.

Zhang et al. [ZDJ+15], construct an algorithm, which performs the whole χ^2 statistic in the homomorphic domain. To compute the division, they construct a lookup table in which they link the result of their computation with the nominator and denominator of the corresponding, simplified fraction. Therefore, an authenticated user can look up the correct fraction in the lookup table after decrypting the result, and hence recover the result of the χ^2 statistic. Even though their strategy performs well, it does not scale enough to treat the large datasets we envision in our application. Increasing the number of patients in the study would increase the circuit depth significantly, which comes with several disadvantages including increasing the parameter sizes, and hence the key size, and ciphertexts size, as well as the computation time.

2.2 Secure Multiparty Computation Approach

Kamm et al. [KBLV13] propose a solution to address the privacy challenges in genome-wide association studies. Their application scenarios, much like ours, focus on large data collections from several biobanks, and their solutions are based on the same fundamental techniques as ours. However, Kamm et al.’s [KBLV13] setting requires all raw genotype, phenotype, and clinical data to be entered to the secure shared database. To the contrary, our setting assumes that only the aggregate values, necessary to identify the significance of a gene-disease relationship (i.e., the contingency tables recording the counts of genotypes vs. phenotypes), are contributed by each biobank. This is a simpler, and more realistic setting, which not only is likely to be implemented in the near future, but also alleviates the computational cost of the proposed solutions. Unlike the approach of Kamm et al. [KBLV13], and the alternatives that they suggest, our solution achieves active security with dishonest majority (contrary to the semi-honest security suggested). This means that our protocols tolerate dishonest behavior by the majority of the computing parties, while preserving privacy, and still guarantee the correctness of accepted results. Kamm et al.’s protocols assume that the computing parties -the biobanks- cannot be corrupted, which we consider to be a strong assumption.

Constable et al. [CTW+15] present a garbled-circuit based MPC approach to perform GWAS. Their solution can compute in a privacy-preserving manner the minor allele frequency (MAF), and the χ^2 statistic. Similarly to Kamm et al.’s [KBLV13] work, the framework of Constable et al. [CTW+15] requires the raw genotype, and phenotype data, increasing the workload of the proposed privacy-preserving system. In contrast to our solution, which can scale to hundreds of medical centers contributing data to the GWAS, the solution of Constable et al. [CTW+15] only works for two medical centers. Despite the strong security guarantees that our approach offers, which generally presents itself as a tradeoff to efficiency, our proposal is faster than that of Constable et al. [CTW+15]. This is also due to the fact that we have optimized the compu-
tations of the χ^2 statistic, in such a way that the expensive computations in the privacy-preserving domain, are avoided to the maximum extent possible.

Zhang et al. [ZBA15] propose a secret-sharing based MPC approach to solve the same GWAS problem as Constable et al. [CTW+15]. Although Zhang et al.’s solution can scale to more than two medical centers contributing data to the GWAS, the approach has the same inherent limitations (e.g., requiring raw genomic data as input) that their application scenario incurs. Both the work of Zhang et al. [ZBA15], and the work of Constable et al. [CTW+15] have not considered protecting the aggregate statistic result of the private computation, which—as Homer et al. [HSR+08] showed—can be used to breach an individual’s privacy. We additionally protect the aggregate statistic result, while at the same time allowing for a public list to be created, showing which SNPs are significant for a certain disease.

3 Distributed GWAS Scenario

In this paper we aim at identifying which mutations are linked to which diseases, without compromising the privacy of the patients. Specifically, there are K centers (hospitals) who each have genotype (SNP), and phenotype (trait) data. For a single genotype-phenotype pair a center k has a 2×2 contingency table of the counts of patients for all 4 possible combinations of genotype, and phenotype (see Table 1). The goal is to perform a privacy-preserving computation that adds together all contingency tables from individual centers, then computes the Pearson’s χ^2 test statistic [Pea00], and finally reveals a boolean value indicating whether the computed statistic is larger than a predetermined significance threshold t. This threshold is chosen based on the p-value, and the correction for multiple hypothesis testing. For example, using significance level 0.01 with Bonferroni correction for 10 million tests results in $t = 37.3$, and for 100 million tests $t = 41.8$.

We propose two different methods for carrying out the χ^2 test without disclosing the input, and intermediate values. The first method performs all computations on homomorphically encrypted data, while the second applies techniques of secure multiparty computation to achieve the same goal. Both methods follow the same general outline, presented below. The first step is to encrypt (or secret share) all the input tables from the centers, and securely compute the aggregate contingency table

$$O_{ij} = \sum_{k=1}^{K} O_{ij}^{(k)},$$

where $O_{ij}^{(k)}$ is the data from k-th center. This step is straightforward in both methods.

Next to determine the significance of the relation between a mutation, and a disease, we calculate the Pearson’s χ^2 test statistic [Pea00] on the aggregated

* Our method can be also extended to contingency tables of larger size.
contingency table O, and check whether this value is above the threshold t. The Pearson’s χ^2 statistic is given by the following formula:

$$\chi^2 = \sum_{i,j \in \{1,2\}} \frac{(O_{ij} - \text{model}_{ij})^2}{\text{model}_{ij}},$$

(2)

where $\text{model}_{ij} = (\text{RT}_i \cdot \text{CT}_j)/N$ with $\text{RT}_i = O_{i,1} + O_{i,2}$ being the row total, $\text{CT}_j = O_{1,j} + O_{2,j}$ being the column total, and N the total number of patients.

Table 1: Representation of a contingency table containing the number of observed genotypes i per phenotype j noted by $O_{i,j}$. In the table we also calculate the Row Totals (RT_i), Column Totals (CT_j), as well as the grand total (N).

genotype	phenotype	~phenotype
$O_{i,1}$	$O_{i,2}$	$\text{RT}_1 = O_{i,1} + O_{i,2}$
$O_{2,1}$	$O_{2,2}$	$\text{RT}_2 = O_{2,1} + O_{2,2}$
$\text{CT}_1 = O_{1,1} + O_{2,1}$	$\text{CT}_2 = O_{1,2} + O_{2,2}$	$N = \text{CT}_1 + \text{CT}_2 = \text{RT}_1 + \text{RT}_2$

Since division is a costly operation in both the homomorphic domain, and secret shared domain, we will rewrite the formula of the χ^2 statistic as follows:

$$\chi^2 = \frac{\text{RT}_1 \cdot \text{CT}_1 \cdot (N \cdot O_{2,2} - \text{RT}_2 \cdot \text{CT}_2)^2 + \text{RT}_1 \cdot \text{CT}_2 \cdot (N \cdot O_{2,1} - \text{RT}_2 \cdot \text{CT}_1)^2}{N \cdot \text{RT}_1 \cdot \text{RT}_2 \cdot \text{CT}_1 \cdot \text{CT}_2} + \frac{\text{RT}_2 \cdot \text{CT}_1 \cdot (N \cdot O_{1,2} - \text{RT}_1 \cdot \text{CT}_2)^2 + \text{RT}_2 \cdot \text{CT}_2 \cdot (N \cdot O_{1,1} - \text{RT}_1 \cdot \text{CT}_1)^2}{N \cdot \text{RT}_1 \cdot \text{RT}_2 \cdot \text{CT}_1 \cdot \text{CT}_2}.$$

(3)

As a final step, we would need to compare whether $\chi^2 \geq t$. To do that, we calculate the numerator, and denominator of the fraction in Equation (3), separately. Subsequently, we multiply the denominator of the fraction with the threshold value t, and finally check inequality (4), without revealing any of the private inputs in the contingency tables.

$$\chi^2 \geq t \cdot (N \cdot \text{RT}_1 \cdot \text{RT}_2 \cdot \text{CT}_1 \cdot \text{CT}_2)$$

(4)

This computation is repeated for every phenotype-genotype pair, and the results are aggregated in a public table indicating whether a mutation is significant for a particular disease, or not. Since the price of DNA sequencing has decreased a lot, we assume new data will keep becoming available. Taking this new data into account for the computation of our public table, requires running
Towards Practical Privacy-Preserving Genome-Wide Association Study

Our protocols anew, and it will change the table results. Therefore, we propose to make the table dynamic. There will be a fixed time interval, which allows the centers to gather more data and include this data in their contingency tables. The new table values will then be encrypted/secret shared and the computation of the fresh public table will be executed, after which the new results will be published.

3.1 Efficient Masking-Based Comparison

To the best of our knowledge the state-of-the-art techniques to perform secure comparisons, both in the homomorphic, and in the secret shared domain, require bitwise operations on the secret inputs. These operations have a high total cost, as their complexity is at best logarithmic in the number of bits per input. To allow for a practically efficient implementation of our solution, we consider a masking technique to perform the comparison instead of the bit-decomposition of our inputs. By masking the values we need to compare, we can later securely reveal the masked result upon decryption, since the mask will hide the original secret value. Hence, masking allows us to perform the comparison without revealing the values we want to keep secret. Comparing two values \(x \) and \(y \) can be done by comparing their difference with zero. Our mask for the value \(x - y \) consists of multiplying this value with a positive random number. We require the multiplier to be positive to preserve the original relation of our difference \(x - y \) with zero. The second step is adding another random number (different than the previous one) to the already multiplied result. We require this random number to be smaller than the first one, again to preserve the original relation with zero. Let us denote the masked difference with \(\hat{x} - y \), then for two positive random numbers \(r \) and \(r' \), with \(r' \) in the range \([1, r)\), our proposed masking is given by \(\hat{x} - y = r \cdot (x - y) + r' \). In our setup we are working with homomorphic (or secret shared) values, so this masking has to be performed on encrypted (or secret shared) values. For an integer \(x \), we denote \(\lceil x \rceil \) either the homomorphic encryption of \(x \) or its secret shared value. Masking in the homomorphic or secret shared domain will then be computed as \(\lceil \hat{x} - y \rceil = \lceil r \rceil \cdot \lceil x - y \rceil + \lceil r' \rceil \), with \(r \) and \(r' \) random numbers satisfying the following condition: \(r \) is selected to be a positive integer number (bounded properly so as to fit the largest possible input sizes our framework can handle), and then \(r' \) is randomly selected in the range \([1, r)\) (i.e., such that \(r' < r \)). Afterwards the masked value is revealed by respectively decrypting or opening the calculated value. Depending on the sign of \((x - y) \) we can deduce the relationship between \(x \) and \(y \) (i.e., if \((x - y) > 0 \) then \(x > y \), otherwise \(x < y \)). Given properly selected \(r \), and \(r' \), the correctness of this masking-based comparison is straightforward. To ensure preservation of the security and correctness of the masking, we require one of the medical centers to properly select \(r \), and \(r' \) within suitable bounds. Note that this requirement does not increase the level of trust we need to put in the medical centers (nor does it reduce the security of the system). We already trust the medical centers to provide our privacy-preserving system with their correct inputs. Upon selection of the values \(r \), and \(r' \), the medical center in question homomorphically encrypts
these values, or secret shares them to the computation servers, along with its own contributed inputs.

The proposed type of masking, which allows us to perform the comparison, could leak information about the secret input to the inequality, which in our case is the difference $x - y$, when the system is queried multiple times with the same input. However, in our scenario, the proposed system cannot be queried at will. We suggest the calculation of a table listing all possible phenotypes, and all possible mutation positions, which will become public. This table will be computed on updated input data after a fixed time interval. While constructing the table we select r and r' at random for each contingency table, thus the random values r and r' will only be used once with certain input values. After the fixed time interval, we expect the input values to be changed, so we repeat the whole setup and select new random values for each contingency table. Hence, by recomputing the table at fixed times and not allowing users to query, we ensure that no information is leaked by our system.

4 Homomorphic Encryption Approach

4.1 Setup and security assumptions

To solve the problem described in Section 3 with homomorphic encryption, we need multiple parties, as indicated in Figure 1. The steps of the process depicted in Figure 1 are as follows. In the first step, the decryptor will select the secret key, and associated public key for the homomorphic encryption, and make the public key available to all medical centers. Then, all the medical centers will encrypt their contingency tables with the given public key, and send these encryptions to the computation server. Upon receiving all contingency tables, the computation server will first add them to construct the aggregated contingency table, and subsequently perform the operations of the Pearson χ^2 test. Then, the computation server will send the result, which is masked with the technique described in Section 3.1 to the decryptor, who uses the secret key to decrypt the masked value, and performs the comparison.

It is important to note that in this model we trust the decryptor to decrypt the masked values, and post the corresponding correct yes/no value into the public table. Since the decryptor only decrypts masked values, the decryptor can only deduce the yes/no answer which will become public, anyway. No other information about the χ^2 value is revealed to the decryptor. If the system would be adapted to reveal the actual χ^2 value, the party receiving the encrypted result would first have to authenticate itself to make sure that it is a trusted entity (like a medical doctor, for example). If this authentication is considered insufficient by the medical centers contributing their data, they could still prevent the authenticated party from being a single point of trust by introducing a multiparty computation to perform the decryption based on a secret shared decryption key. The solution based on homomorphic encryption does rely on the following two security assumptions:
Before the execution of the protocol, the decryptor generates a valid public and secret key pair for the homomorphic encryption scheme. Step 1 of the protocol is to send the generated public key pk to all participating medical centers. Then, the medical centers compute their local contingency tables, encrypt them with the received public key, and send them to computation server in step 2. Step 3 is the actual secure computation of the encrypted, and masked χ^2 value, which is then sent to the decryptor in step 4. By decrypting the masked χ^2 value (using the secret key sk), the decryptor can only determine whether the result is significant or not, which is published in a public table in step 5.
The computation server is honest but curious: It will follow the stated protocol to provide the desired functionality, and will not deviate, nor fail to return the results. The computation server can however monitor the result of every operation it performs. This assumption is reasonable for an economically motivated cloud service provider. The cloud is motivated to provide excellent service, yet it would take advantage of extra available information.

We only need the decryptor to perform the comparison. He should not be allowed to see the input values, since he has the key to decrypt them. Therefore we presume that the communication between the centers, and the computation server is hidden from the decryptor. This can be achieved by performing the communication over authenticated, secure channels. An alternative way to solve this is by introducing the multiparty computation for the decryptor. Each party only has a part of the decryption key, and hence will never be able to decrypt the values of the encrypted contingency table.

For the homomorphic evaluation of the χ^2 statistic we use the FV scheme, introduced by Fan and Vercauteren [FV12]. Moreover, we base our implementation on the FV-NFLib software library [Cry16] in which the FV homomorphic encryption scheme is implemented using the NFLib software library developed for performing polynomial arithmetic computations (as described in [MBG+16], and released in [CIQ16]).

4.2 Preliminaries

The Fan-Vercauteren SHE scheme The Fan-Vercauteren SHE scheme is a scale invariant SHE scheme whose hardness is based on the ring learning with error problem (RLWE) [LPR13]. It operates on polynomials of the ring $R = \mathbb{Z}[X]/(f(X))$ with $f(X) = X^d + 1$ for $d = 2^n$.

The FV scheme makes use of a plaintext space R_t with R the polynomial ring defined above, and $t > 1$ a small integer modulus. Each coefficient of a plaintext polynomial is computed modulo t. The ciphertext space consists of a pair of elements of R_q with R the polynomial ring defined above, and $q > 1$, an integer modulus much larger than the plaintext modulus t. A homomorphic encryption scheme consists of a standard encryption scheme specifically constructed to enable additions, and multiplications in the ciphertext domain. The key generation, and encryption algorithms require elements sampled from two probability distributions defined on R. The secret key of our scheme is sampled from χ_{key}, and for encryption some error polynomials are sampled from an error distribution χ_{err}. These probability distributions in combination with the degree d of the defining polynomial f of R, and the size of the integer q determine the security of the FV scheme.

Given the parameters d, q, and t, and distributions χ_{key}, and χ_{err}, and using bold notation for a vector of two polynomials, we define the encryption, and decryption mechanism of the homomorphic encryption scheme introduced by Fan and Vercauteren:
Encrypt(\text{pk}, m): By multiplying the message \(m \in R_t \) with \(\Delta = \lfloor q/t \rfloor \) we transfer the message \(m \) to the ring \(R_q \). To hide the message we sample the error polynomials \(e_1, e_2 \in \chi_{err} \), and \(u \in \chi_{key} \), and compute the polynomials \(c_0 = \Delta \cdot m + bu + e_1 \), and \(c_1 = au + e_2 \). Both the polynomials \(c_0 \), and \(c_1 \) belong to \(R_q \), and together they form the ciphertext \(c = (c_0, c_1) \) of the FV scheme.

Decrypt(\text{sk}, c): First compute \(\tilde{m} = \left[c_0 + s \cdot c_1 \right]_q \), then by scaling down the coefficients of \(\tilde{m} \) by \(\Delta \), and rounding the results we recover the message \(m \).

Given a ciphertext \(c = (c_1, c_2) \) we can write the \(\tilde{m} \) of the decryption algorithm as \(\left[c_0 + c_1 s \right]_q = \Delta \cdot m + e \), with \(e \) the noise in the ciphertext. From this equation one can clearly see that if the noise \(e \) grows too large, the decryption algorithm will fail to output the original message \(m \) correctly. The property of ensuring that decryption results in the original message is called the correctness of the encryption scheme.

Every homomorphic operation will cause the noise in the ciphertexts to increase. Knowing the computations we want to perform in advance enables us to optimize the order of the computations for the sake of minimizing the noise growth. In addition it enables us to make an estimation of the noise present in the result, and hence allows us to determine parameters that can deal with this noise.

Preprocessing of the data to improve the performance of the homomorphic computations The plaintext space of the FV scheme consists of the polynomial ring \(R_t \). Hence the first thing that needs to be done is encode the given integer data values into polynomials in the ring \(R_t \). We achieve this by applying the \(w \)-NIBNAF encoding introduced in [BBB+17]. The main idea of \(w \)-NIBNAF encoding goes back to Dowlin et al. [DGBL+15] (see also [DGL+16,LAN15,NLV11]), and was analyzed in more detail by Costache et al. [CSVW16]. It consists of expanding the given number \(\theta \) with respect to a base \(b_w \), and replacing this base with the symbol \(X \). So the encoding of a number \(\theta \) is given by:

\[
\theta = a_r X^r + a_{r-1} X^{r-1} + \ldots + a_1 X + a_0 - a_{-1} X^{d-1} - a_{-2} X^{d-2} - \ldots - a_{-s} X^{d-s} .
\]

For our encoding we use a well chosen non-integral base such that the encoding of an input value results in a polynomial with coefficients in the set \(\{-1, 0, 1\} \), with the property that each set of \(w \) consecutive coefficients has no more than one non-zero coefficient. Hence encoding our inputs with \(w \)-NIBNAF leads to sparse polynomials.

Starting our computations with sparse polynomials with coefficients in the set \(\{-1, 0, 1\} \) leads to small coefficients in the resulting polynomial. Therefore it enables us to work with a smaller plaintext modulus \(t \), which improves the performance of the homomorphic encryption scheme. Bigger values for \(w \) leads to longer, and sparser encodings, which reduce the minimum size for \(t \) even further. However, we have to ensure that when all the computations are done, decoding
will still provide the correct answer. Therefore, we need to carefully select our base b_w, which also determines the value of w.

Selecting the optimal parameters The three main concepts that will affect the selection of our parameters are:

- the security of the somewhat homomorphic FV scheme
- the correctness of the somewhat homomorphic FV scheme
- the correctness of the w-NIBNAF encoding

To take the security restrictions into account, we rely on the work by Albrecht, Player, and Scott [APS15], and the open source LWE hardness estimator implemented by Albrecht [Alb04]. The latter estimates the hardness of the LWE problem based on three given parameters: the dimension d, the ciphertext modulus q, and a parameter α, which is related to the error distribution χ_{err}. It takes into account the currently known attacks on the learning with error problem.

The parameters that satisfy the restriction of the security implications of a security level of 90 bits are $q = 2^{186}$, $d = 4096$, $\sigma = 265^7$. From the description of the FV scheme in Section 4.2, we know that for a ciphertext to be decrypted correctly the error cannot grow too much. Therefore we make an estimation of the infinity norm of the error in the ciphertext resulting from computing our circuit, and select parameters that keep the error small enough. This results in an upper bound for t. Since this upper bound is constructed specifically for our circuit it will depend amongst other things on the number of centers that deliver data to the computation server.

For correctness of the w-NIBNAF decoding, it is important to estimate the size of the coefficients of the encodings after performing the necessary operations. This leads to a lower bound on the plaintext modulus t. The security, and correctness of the FV scheme on one hand, and the correctness of the w-NIBNAF encoding on the other hand, set conflicting requirements for t. In order to solve this conflict, we make use of the Chinese Remainder Theorem to decompose the plaintext space, following the idea of [BLLN13, §5.5]. This implies that we choose t to be the product of small prime numbers t_1, t_2, ..., t_n, with $\forall i \in \{1, \ldots, n\}$: $t_i \leq t_{\text{max}}$, and $t = \prod_{i=1}^{n} t_i \geq t_{\text{min}}$, where t_{max} is determined by the security, and correctness of the FV scheme, and t_{min} by the correctness of the w-NIBNAF decoding.

4.3 Privacy-Preserving Homomorphic Chi-Squared Thresholding Algorithm and Parameters

In this section, we combine all information given before in order to construct the algorithm needed to perform the privacy-preserving χ^2 thresholding in the homomorphic setting. Algorithm 1 lists the computations for the algorithm corresponding to the order in which they need to be performed, and mentions the

\footnote{σ determines the error distribution χ_{err}.}
parties that need to perform them. Hence the steps from Figure 1 are described in more detail in Algorithm 1, and the combination of these two gives a clear picture of our homomorphic solution for the privacy-preserving χ^2 thresholding.

Algorithm 1 Privacy-preserving Homomorphic Chi-squaredTest

Medical center:
- **input:** $O_{2,2}$: the observed values of the 2×2 contingency table (mutation vs. disease)

for C_k medical center k do
 1. Encode each value $O_{i,j}^k$ for $i = 1,2; j = 1,2$ using the w-NIBNAF encoding technique.
 2. Transform this encoding to the plaintext ring R_t for all i such that $t = \prod_t t_i$.
 3. Encrypt the plaintext polynomials using the Fan-Vercauteren SHE scheme to obtain ciphertexts $c_{i,j}^k$.
end for

Computation center:
- **input:** encrypted contingency table values $c_{i,j}^k$, for $k = 1, ..., N_c$, with N_c the number of centers contributing data

4. Compute the four values of the aggregated contingency table $c_{m,n} = \sum_{k=1}^{N_c} c_{m,n}^k$.
5. Compute the χ^2 numerator α and denominator β homomorphically.
6. Compute the difference of the χ^2 numerator and the product of the encrypted χ^2 threshold T and denominator, and mask the computed difference with the random values r and r': $MR = r \cdot (\alpha - T \cdot \beta) + r'$

Decryptor:
- **input:** MR the encrypted masked output value of the homomorphic circuit

7. Decrypt the masked result MR
8. Use the inverse CRT ring isomorphism to transfer the plaintext polynomials to the ring R_t.
9. Decode the w-NIBNAF polynomial, and evaluate the result in the correct basis b_w to get the value MaskedDifference of the masked result.
10. Determine the significance based on the sign of MaskedDifference:
 - if $\text{MaskedDifference} > 0$ then
 return 1
 - else
 return 0
end if

For the homomorphic solution we consider two scenarios: (1) the case in which we compute the numerator and denominator of the χ^2 statistic seperately, and decrypt them both, and (2) the case where we use the masking technique, and decode the masked value to determine the “True/False” answer to the significance question. As mentioned before, there are many parameters we need to set, and their values depend highly on the homomorphic circuit we perform and the values of other parameters. We selected parameters for different scenarios in which we fix the number of patients per center to 10000 and vary the num-
ber of centers from 20 to 100. The parameters are listed in Table 2 and 3. We use these parameters in our implementation later to assess the performance by measuring the computation time, and communication cost for each of the three parties mentioned in Algorithm 1.

The value of w and the splitting degree are dependent on the size of the numbers we need to encode, but independent of the number of centers included in the calculation. Therefore the value of w and the splitting degree will be the same for all scenarios. Without comparison, they are respectively $w = 271$, and splitting degree $= 3166$. The parameters that differ for different number of centers in scenario (1) is the value for t, and its CRT factors. These are listed in Table 2. For scenario (2) in which we perform the masked comparison, the value of w will be different for each different number of centers participating in the computations, because we have to encode the random variables r and r', which have sizes depending on the number of centers included in the computations. The parameters for the second scenario are listed in Table 3.

Table 2: Parameter selection for scenario (1)

Centers	Patients	t
20	200000	$17431 \cdot 17443 \cdot 17449$
40	400000	$1718713 \cdot 1718719 \cdot 1718723$
60	600000	$1558103 \cdot 1558129 \cdot 1558177$
80	800000	$1453043 \cdot 1453057 \cdot 1453061$
100	1000000	$1376213 \cdot 1376231 \cdot 1376237$

Table 3: Parameter selection for scenario (2)

Centers	Patients	Bit-length random value	w	splitting degree	t
20	200000	100	118	3625	$12253 \cdot 12263 \cdot 12269$
40	400000	106	113	3629	$885127 \cdot 885133 \cdot 885161$
60	600000	110	111	3644	$802651 \cdot 802661 \cdot 802667$
80	800000	112	110	3653	$747811 \cdot 747827 \cdot 747829$
100	1000000	114	108	3651	$707801 \cdot 70813 \cdot 707827$

4.4 Implementation and performance analysis

In order to assess the practical performance, and verify the correctness of the selected parameters of the homomorphic scenario, we implemented the privacy-preserving χ^2 computation using the FV-NFLlib software library [Cry16]. Our presented timings are obtained by running the implementation on a computer.
equipped with an Intel Core i5-4590 CPU, running at 3.30 GHz. We executed
the program 10 times per case, and calculated the average execution time for
our timing results. To evaluate the scalability of our protocol we have considered
the cases where our system receives data from 20, 40, 60, 80, and 100 medical
centers, respectively. We assume each medical center to contribute data of 10000
subjects (i.e., the total number of subjects per case is 200000, 400000, 600000,
800000, and 1000000, respectively). In order to measure these timings we used
the parameter set corresponding to the same scenario, so Table 2 for scenario
(1) and Table 3 for scenario (2).

For scenario (1) we compute the numerator and denominator separately, and
do not perform the masked comparison with the threshold value. The CPU time
needed for the hospitals to encrypt the four values of the contingency table
is the same for any number of centers considered in the experiment. For our
selected parameters this is 15.2 ms. Also the time to decrypt the numerator and
denominator of the χ^2 value is the same for any number of centers contributing
to the experiment. The average time we measured during our experiments is 38.8
ms. The timings of the computation server in scenario (1) are the times needed
to perform the calculations for computing the numerator and denominator of the χ^2
statistic. These timings are dependent on the number of centers that
participate in the computation. Therefore we list them in Table 4. We see that
the timings for increasing centers do not differ significantly. This is consistent
with the fact that homomorphic additions are not the most time consuming
part of our computations.

For scenario (2) the encryption time does not depend on the number of centers
either, since the centers can perform the encryption in parallel. The measured
encryption time for one contingency table in scenario (2) is 17.1 ms. The time
to decrypt the result does not depend on the number of centers participating in
the computation either. However it is smaller than for scenario (1), since now we
only have to decrypt one value instead of two. The measured decryption time
for scenario (2) is 21.1 ms. The timings for the computation server are listed
in Table 4, since these timings are dependent on the number of medical centers
participating. Here we see the same trend as for scenario (1): the timings do not
increase linearly in the number of medical centers.

From Table 4 one sees that the timings for the computation server do not
differ much between both scenarios. This is because addition and multiplication
with a constant (which are the extra operations we need to compute the masked
value) are not the most time consuming homomorphic operations. Hence our
masked comparison gives an efficient solution for keeping the χ^2 value private.
We can also conclude that considering CPU time, our solution scales really well
for increasing number of medical centers participating in the computation.

For the homomorphic setup, there is no communication cost during the com-
putations. The communication cost comes from sending values from each of the
three parties to the next. We have three points of communication: the public
key has to be sent from the decryptor to the medical centers; the encrypted
values of the contingency tables have to be sent from the medical centers to the
Table 4: CPU time computation server

Centers	Patients scenario (1)	scenario (2)	
20	200000	1.40 s	1.48 s
40	400000	1.48 s	1.52 s
60	600000	1.44 s	1.53 s
80	800000	1.47 s	1.56 s
100	100000	1.49 s	1.56 s

computation server; and the result has to be sent from the computation server to the decryptor. The communication cost is similar for both scenarios since for both scenarios the size of one ciphertext will be the same, and we only need to sent ciphertexts form one party to another. The size of the public key that needs to be sent to the different medical centers is 186 kB. The data needed to send one contingency table to the computation server is 2.1 MB. The communication cost between the medical centers, and the computation server is the number of centers participating times the number of data needed to send one contingency table. So this communication cost increases linearly in the number of centers contributing to the computation. In scenario (1) we send both the numerator as the denominator from the computation server to the decryptor, which results in a communication cost of 1.8 MB. In scenario (2) we only have to send one value, which gives a communication cost of 0.54 MB.

5 Secure Multiparty Computation Approach

To address the challenge of disease gene identification using secure multiparty computation techniques, in the setting described in Section 3, we deploy MASCOT [KOS16]. We selected MASCOT [KOS16] as the most suitable multiparty computation solution, because it is currently the most efficient proposal, offering malicious static security with a dishonest majority. This means that any number of the computing parties may deviate from the protocol execution, and this will be detected without leaking information, other than what the correct protocol execution would reveal. Corruption may only occur prior to the beginning of the protocol execution, affecting up to $n - 1$ (out of the n) computing parties.

5.1 Setup and Security Assumptions

For our multiparty computation approach, we first need to determine the number of computation servers n ($n \geq 2$) that we have at our disposal. Given that the underlying protocol offers security against any coalition of $n - 1$ computation servers, we consider the security of the whole system to increase as the number of computation servers increases. However, the number of computation servers is inversely proportional to the efficiency of the solution. Therefore, we consider that three computation servers is an adequate number of servers, both from an
efficiency/plausibility perspective, and from a security perspective. If any two of the three computation servers that we assume get compromised, or otherwise behave dishonestly, or even collude, the solution still guarantees input privacy, and does not accept incorrect results.

We assume a preprocessing phase that can take place offline, at any moment prior to the actual protocol execution. This is to create the necessary randomness for the medical centers to contribute their inputs in a secret shared manner to the computation servers. In addition, the preprocessing phase creates authenticated randomness to be used in the online phase, so as to boost the efficiency of computing multiplications on the shares, which requires interaction amongst the servers.

The medical centers that wish to contribute their private inputs, first need to agree on a common format for this data (e.g., what is the order of sending the contingency tables). Then, they need to secret share their contingency tables to the three computation servers, which can also be pushed to an offline, preprocessing phase. Given that all contributing medical centers have shared their private contingency tables to the computation servers, the online phase starts. During the online phase the servers perform both local, and interactive secure computations, and they finally reveal per contingency table whether the relationship between a mutation at a certain DNA position, and a disease is significant or not, without disclosing further information on the underlying data. A schematic representation of this approach is presented in Figure 2.

5.2 Preliminaries

Additive Secret Sharing A secret sharing scheme is a protocol, which allows (some of) the protocol participants to share their secret inputs amongst all other protocol participants, in such a way that nothing is revealed to the individual participants about the secret input. In some instances of secret sharing schemes, a subset of the protocol participants, called the qualified set, can reconstruct the original secret input, when they engage in the reconstruction protocol. Other schemes, such as additive secret sharing, require all protocol participants to contribute their shares for the reconstruction protocol to work.

Additive secret sharing is essentially masking the input of a protocol participant x by subtracting a random value r from it. Given that the value of r is only known to the inputting participant, and that the rest of the participants hold shares $[r]$ of this value (which can be done in a preprocessing stage), secure shares of x can be created as follows: The inputting party computes $\epsilon = x - r$, and broadcasts it to the rest of the participants. All other parties can now compute their own shares of the input x as $[x] = [r] + \epsilon$. It is easy to see that this scheme enjoys an additively homomorphic property, allowing additions of shares, and linear functions to be directly computed locally on the shares. Hence, no communication amongst the protocol participants is required to perform additions on these additively secret shared values.
Fig. 2: A schematic representation of the multiparty computation scenario
Any time prior to the protocol execution each of the medical centers computes their local contingency tables, and secret shares them to the three computation servers, as indicated in step 1 of the protocol. In step 2, the computation servers securely compute the χ^2 value, and perform a secure comparison to determine whether the value is significant or not. This reveals no information about the inputs, or the actual χ^2 value to the individual computation servers. In step 3 the computation servers reconstruct the final result, which indicates significance or non-significance, by combining their individual secret shares, and they publish this result in the public table.
Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive, which allows a sender to transfer only one (or none) out of many values to a receiver, while remaining oblivious as to which value has been received (if any). Oblivious transfer was introduced by Rabin [Rab81] in 1981. Basic OT constructions make use of public key encryption primitives to allow the aforementioned functionality. More precisely, an 1-out-of-2 OT requires the sender to be in possession of a public/private key pair, generate, and send two random messages to the receiver, decrypt two messages, and send two messages to the receiver. The receiver obtains the public key of the sender, along with the two random messages that the latter has selected, performs one encryption, and one blinding, sends the resulting message to the sender, and finally inverts the blinding to retrieve the desired message. For more information on basic OT, we refer the reader to the work of Even et al. [EGL85].

Many works have considered extending OT so as to make it practically efficient, with the most notable work of Ishai et al. [IKNP03]. Under the assumption that a random oracle \(H \), which can be instantiated by a hash function family, exists, Ishai et al. [IKNP03] show how to perform only a few OTs from scratch, and then be able to perform many additional OTs at the cost of a constant number of invocations of the random oracle. The actively secure version of their protocol comes with an increase at the cost of the protocol by a factor \(\sigma \), for \(\sigma \) a statistical security parameter. More recently, Keller et al. [KOS15] presented an actively secure OT extension protocol, where malicious security comes at negligible extra cost.

Correlated Oblivious Product Evaluation - COPE

The Correlated Oblivious Product Evaluation (COPE) protocol presented by Keller et al. [KOS16] is essentially a generalization of Ishai et al.’s protocol [IKNP03] to the arithmetic case (instead of the original binary). The protocol is executed between two parties, and allows them to obtain an additive sharing of the product \(x \cdot \Delta \), where the sender holds \(x \in \mathbb{F} \), and the receiver holds \(\Delta \in \mathbb{F} \). COPE is based on Gilboa’s oblivious product evaluation [Gil99], where the parties run \(k \) sets of 1-out-of-2 OTs, on \(k \)-bit inputs. The proposed product evaluation is correlated in the sense that the one party’s input \(\Delta \) is fixed at the beginning of the protocol for many protocol runs. After a one-time expensive initialization of the COPE protocol, the extension step, generating fresh OTs without the public-key crypto extensive costs, can be repeated several times on new inputs \(x \).

MASCOT Online Phase

The online phase of MASCOT [KOS16] is essentially the same as the one of the SPDZ protocol [DPSZ12,DKL+13]. This family of protocols uses additive secret sharing, allowing additions, and linear functions to be computed locally by the protocol participants, without requiring communication. To achieve active security, information-theoretic MACs are being used, which provide authenticity, and integrity of the messages. A secret shared value \(x \), shared amongst \(n \) parties, is represented as follows:

\[
[x] = (x^{(1)}, \ldots, x^{(n)}, m^{(1)}, \ldots, m^{(n)}, \Delta^{(1)}, \ldots, \Delta^{(n)}),
\]

(5)
where, \(x^{(i)} \) is the random share, \(m^{(i)} \) is the random MAC share, and \(\Delta^{(i)} \) is the MAC key share, such that \(m = x \cdot \Delta \).

To perform multiplications of secret shared values, multiplication triples à la Beaver [Bea91] from the preprocessing phase are required, with which the parties can compute shares of the required product. The multiplication triples are of the form: \((\[a\], \[b\], \[c\])\), with \(a, b\) uniformly random, and \(c = a \cdot b\). More precisely, to compute \([z] = [x \cdot y]\), on input \([x], [y]\), and given a multiplication triple \((\[a\], \[b\], \[c\])\), the parties compute \(\epsilon = [x] - [a]\), and \(\rho = [y] - [b]\), and open these two values. Then, they compute \([z] = [c] + \epsilon \cdot [b] + \rho \cdot [a] + \epsilon \cdot \rho \).

MASCOT Offline Phase - Preprocessing The goal of the preprocessing phase is to generate random values for the parties who wish to contribute inputs—so as to allow them to mask their inputs in an authenticated manner—and multiplication triples—so that multiplication of secret shared values can be efficiently implemented in the online phase.

The preprocessing is based on Oblivious Transfer techniques, and more precisely the authors of MASCOT [KOS16], have generalized the OT extension idea presented by Ishai et al. [IKNP03] to the arithmetic circuit case. For every party that wishes to contribute an input, the COPE protocol is executed, to create an authenticated version of the input, based on the global MAC key \(\Delta\). Creation of (authenticated) additive shares is straightforward. Recall that both the shares, and their MACs are linear. Hence, computing linear functions on (authenticated) shared values is also straightforward. To ensure active security, the party that wishes to contribute an input first authenticates a random input \(x_0\) together with the actual inputs \(m\). Then, the party opens a random linear combination of the inputs including \(x_0\), and all other parties check the MAC on this linear combination. This way the party contributing input is committed to them, and the actual inputs are masked by the random input \(x_0\).

For the triple generation, the parties invoke an OT to compute the secret sharing of \(b \in \mathbb{F}\), and \(a \in \mathbb{F}_\tau\), where \(\tau \geq 3\) is a security related parameter, meaning that they run \(\tau\) copies of the basic two-party COPE per pair of parties. This ensures that \(a\) has enough randomness to produce a triple. To protect against malicious behavior, the parties sample two sets of random coefficients \(r\), and \(\hat{r} \in \mathbb{F}_\tau\), from which they generate two triples with the same \(b\) component. Upon authentication of their shares, the parties ensure correctness of one of the triples, by sacrificing the other triple.

5.3 Privacy-Preserving Chi-Squared Thresholding Protocol

Our protocol calculates the units of inequality (4) using MASCOT [KOS16]. For the inequality check, we apply the masking technique described in Section 3.1. In addition to the masking-based comparison, we have also implemented the protocol using the standard, bit-decomposition based secure comparison, as implemented in SPDZ-2 [Bri16]. We have also made a non-secure implementation avoiding completely the comparison. All these cases are presented in Section 5.4,
analyzing their performance. The online phase of the masking-based version of our protocol is detailed in Algorithm 2.

Algorithm 2 \(v \leftarrow \text{Chi-squaredTest}(Nc, N[Nc], [O[4][Nc]], t, [r], [r']) \)

1: Input: \(Nc \): number of centers contributing data,
2: \(N[Nc] \): a table of size \(Nc \) containing the total sample size \(N_i \) of every center \(i \),
3: \([O[4][Nc]] \): secret shared observed values of the 2 x 2 contingency table (mutation vs. disease), contributed by each of the \(Nc \) centers,
4: \(t \): \(\chi^2 \) threshold value for the significance test,
5: \([r], [r']\): secret shared random values \(r \) and \(r' \)
6: Output: \(v = 0 \) or \(1 \); \(0 \rightarrow \) non-significant relationship between mutation, and disease, \(1 \rightarrow \) significant relationship between mutation, and disease

7: for all \(P_j \) do
8: \{Each party \(P_j \) engages in the protocol\}
9: for all \(C_i \) do
10: \([O_{k,l}] \leftarrow \sum_{i=1}^{Nc} O_{k,l}, k, l = 1, 2; i = 1, 2\)
11: end for
12: \(N \leftarrow \sum_{i=1}^{Nc} N_i \)
13: \([RT_k] \leftarrow [O_{1,k} + O_{2,k}], i = 1, 2\)
14: \([CT_l] \leftarrow [O_{1,l} + O_{2,l}], i = 1, 2\)
15: \([\text{model}_{k,l}] \leftarrow [RT_k \cdot CT_l], k, l = 1, 2\)
16: \([\text{square}] \leftarrow [(N \cdot O_{1,1} - \text{model}_{1,1})^2]\)
17: \([U_{i,j}] \leftarrow [\text{square} \cdot \text{model}_{i,j}], i = 1, 2; j = 1, 2\)
18: \([\text{numerator}] \leftarrow \sum_{i=1}^{2} \sum_{j=1}^{2} U_{i,j}\)
19: \([\text{denominator}] \leftarrow N \cdot \sum_{i=1}^{2} \sum_{j=1}^{2} \text{model}_{i,j}\)
20: \([\text{difference}] \leftarrow [\text{numerator}] - t \cdot [\text{denominator}]\)
21: \([\text{MaskedDifference}] \leftarrow [\text{difference} \cdot r + r']\)
22: \(\text{MaskedDifference} \leftarrow \text{Open}(\text{MaskedDifference})\)
23: if \(\text{MaskedDifference} > 0 \) then
24: return 1
25: else
26: return 0
27: end if
28: end for

In our setting, we consider the computing parties that actually execute our protocol (i.e., the computation servers), different from the parties contributing their inputs (i.e., the medical centers), as shown in Figure 2. For the offline phase, together with the preparation of the triples, and randomness discussed in Section 5.2, we wish to perform the required preprocessing that will allow the medical centers to correctly contribute their inputs, without compromising privacy. To do that, we use the protocols proposed by Damgård et al. [DDN+15]. First we use the Output Delivery protocol to reveal a preprocessed random value \(r \) only to the inputting party, who can then broadcast his masked input \(x - r \) to the computing parties. Based on this value, and the preprocessed randomness \(r \), the servers can locally compute their share of \(x \), as \([x] = (x - r) + [r] \).
5.4 Implementation and Performance Analysis

We have built a proof of concept implementation of our MPC approach using the platform provided by the authors of MASCOT [KOS16] in SPDZ-2 [Bri16]. We ran our experiments for timing the execution of our protocol on a desktop computer equipped with an Intel(R) Core(TM) i5-3570K processor, at 3.40GHz, with 16.00 GB RAM, and the Ubuntu 17.04 operating system.

We have only considered the online phase of the protocol, as the preprocessing is protocol-independent, and can be executed at any moment, well before the execution of the online phase. We note, however, that the offline phase is also practically efficient, and we refer the reader to MASCOT [KOS16] for more details on the throughput of the offline phase. To give an indication of the cost of the offline phase of the protocol, we estimate the triple generation throughput, based on the experiment results presented by Keller et al. [KOS16]. For three computation servers, equipped with eight-core i7 3.1 GHz CPU, and 32 GB RAM, in a local network with a 1 Gbit/s link per party, and a field \mathbb{F}_p, with p a 128-bit prime, approximately 2200 triples per second can be generated. Every time we recorded timings, before the execution of the online phase, we ran the setup script provided with the SPDZ-2 [Bri16] software. This script simulates the offline phase, and creates all the necessary randomness for the execution of the online phase. The fact that the offline phase is simulated does not affect the performance, or efficiency of the online phase.

Our experiments were conducted on localhost with three computation servers. Hence, we do not take the network latency into account in the timing results we report. We do present the size of the data that each server has to send, as well as the communication rounds, and we consider this information to be sufficient for the reader to calculate the additional communication cost, based on the available network bandwidth.

For our performance analysis we have considered the following three scenarios: (1) the case where we calculate the numerator, and denominator of the χ^2 statistic in the secret shared domain, and then open these two results; (2) the case where the secure comparison is implemented as described in Section 3; and (3) the case where we perform the secure comparison in the secret shared domain, and then open only the “True/False” answer to this question, as implemented in MASCOT. We selected these three scenarios, as the secure comparison is the most costly operation we need to carry out, and we wish to assess its impact on the performance of our protocol. Thus, with scenario (1) we completely avoid the secure comparison by opening the numerator, and denominator separately; with scenario (2) we perform the secure comparison using our randomization approach; and with scenario (3) we use the most popular method to carry out a secure comparison (see [CDH10]), which is based on bit-decomposition –an inherently inefficient approach--. Note that scenario (1) does not satisfy the security requirements of our application, and is presented only for the sake of performance comparison.

For all our timing results we have executed our protocol 10 times per case, and calculated the average execution time. The communication cost of the protocol is
constant. For our experiments we have established that all input data is shared by one of the computation servers (namely Server 1), instead of the medical centers that would contribute the data in a real setting. This is reflected in the communication cost of the protocol for Server 1, which has to secret share all input data. Note, that in practice the secret sharing step can be pushed to an offline preprocessing phase.

In Table 5 we present the execution times of our approach, as well as the data sent by Server 1 (including the sharing of the original inputs), without performing a secure comparison (scenario 1). Server 1 is presented separately, because it has to do some extra tasks, such as sharing the inputs, collect all the final results, and print them, which is reflected in its execution times. The other two servers are grouped together, as their execution times are similar. Although we would expect the execution times to grow with the number of medical centers contributing data, this is not the case. This is because the execution times are so small that they can be highly affected by the computing environment. Furthermore, the communication cost of Server 1 includes also the secret sharing of the inputs. This is how all three scenarios have been executed. Recall, however, that the sharing of the inputs can be performed in a preprocessing phase, prior to the actual protocol execution, allowing the online phase to be less communication intensive. The communication cost for the other two servers is constant –1228 bytes–, since they do not share any inputs. The protocol completes its execution in 4 communication rounds, and consumes 9 triples, and 1 square from the preprocessing.

Centers	Patients	CPU Time	Sent Data	CPU Time
20	200000	1.6 ms	4152 bytes	1.3 ms
40	400000	1.6 ms	6712 bytes	1.4 ms
60	600000	1.5 ms	9272 bytes	1.3 ms
80	800000	1.7 ms	11832 bytes	1.4 ms
100	1000000	1.7 ms	14392 bytes	1.4 ms

In Table 6 we provide the execution times of our alternative secure approach, which is based on randomizing the difference of the two numbers to be compared (scenario 2). Note that in the previously presented scenario (1) it is sufficient to work in a prime field of 128 bits, as the numbers we operate with never grow larger than 114 bits. To perform the randomization of the difference of our numbers securely, however, we need to multiply them with a (random) number of roughly the same size. This implies that we need to work in a field of 256 bits to be able to handle the size of our quantities. More precisely, we calculated the largest that our quantities can grow in all cases, and we selected the random numbers to be upper bounded by these sizes. Our numbers can grow up to
100, 106, 110, 112, and 114 bits for 20, 40, 60, 80, and 100 medical centers, respectively. For this scenario, and the case of 20 centers, Server 1 has to send 82 (256-bit) elements (instead of 128-bit elements) to the two other servers. The two additional elements that have to be sent are the randomness r, and r', which is used to mask the difference that facilitates the execution of the secure comparison. The communication cost for Server 1 is analyzed in Table 6, while for the other two servers is constant and equal to 1632 bytes. The protocol completes its execution in 5 communication rounds, and consumes 10 triples, and 1 square from the preprocessing.

Table 6: Performance with Randomized Secure Comparison

Centers	Patients	CPU Time	Data Sent	CPU Time
20	200000	1.7 ms	7616 bytes	1.4 ms
40	400000	1.7 ms	12736 bytes	1.5 ms
60	600000	1.9 ms	17856 bytes	1.7 ms
80	800000	2.1 ms	22976 bytes	1.8 ms
100	1000000	2.2 ms	28096 bytes	1.9 ms

In Table 7 we display the execution times of our protocol, using the standard, bit-decomposition based, secure comparison (scenario 3). Similarly to the second scenario, due to the size of our inputs (up to 114 bits), we need to scale our inputs representation to 256 bits field elements, so as to achieve adequate statistical security (always ≥ 40 bits). The protocol communication cost of Server 2, and 3 is constant ~4244 bytes~, while for Server 1 it varies, based on the number of inputs it has to share, as shown in Table 7. The protocol completes its execution in 10 communication rounds, and consumes 50 triples, 1 square, and 31 bits from the preprocessing. As expected, this is the most inefficient of the three scenarios, both in terms of communication, and in terms of computational cost.

Table 7: Performance with Standard Secure Comparison

Centers	Patients	CPU Time	Data Sent	CPU Time
20	200000	2.2 ms	12712 bytes	1.9 ms
40	400000	2.3 ms	17832 bytes	2.0 ms
60	600000	2.3 ms	22952 bytes	2.0 ms
80	800000	2.5 ms	28072 bytes	2.2 ms
100	1000000	2.4 ms	33192 bytes	2.1 ms
6 Conclusion

Our work shows that full-scale privacy-preserving GWAS deployment has become practical. Our solutions provide provable security guarantees, while being efficient for realistic sample sizes, and number of medical centers contributing data to the studies. Moreover, our solutions scale logarithmically in the number of subjects contributing data to the study, which means that as GWAS population sizes grow, our approach will remain suitable. We also propose a new masking-based comparison method, and show that in certain application scenarios, such as the GWAS scenario at hand, comparisons can be executed efficiently, without leaking information about the underlying data.

From the setup description of both suggested techniques, one can determine the first significant difference: in the homomorphic setting, the medical centers only have to encrypt, and share their data with one party, namely the computation server; while for the multiparty computation they have to share their data with two or more computation servers. The execution times resulting from our experiments show that the MPC approach is significantly faster than the homomorphic approach. Even if we assume the encryption of the contingency tables by the medical centers to be part of a preprocessing phase, the homomorphic approach will take more than a second to complete its execution, while the computations in the MPC setup take only a few milliseconds. In terms of communication cost, the homomorphic setup has the advantage that it needs no communication during the computations. However, in terms of total amount of data that has to be transferred between the different parties, the MPC setup outperforms the homomorphic setup once more. We therefore recommend the MPC approach, as it is the most efficient out of the two approaches, and it does not rely on the strong assumption of semi-honest parties participating in the protocol.

Acknowledgements

This work was supported by the European Commission under the ICT programme with contract H2020-ICT-2014-1 644209 HEAT. Additionally, Yves Moreau, Jaak Simm, and Amin Ardeshirdavani were funded by Research Council KU Leuven: CoE PFV/10/016 SymBioSys; Flemish Government: IWT: Exaptation; O&O ExaScience Life Pharma; Exaptation, PhD grants Industrial Research fund (IOF): IOF/KP (Identification and development of new classes of immunosuppressive compounds and discovery of new key proteins involved in the T and B-cell activation); FWO 06260 (Iterative and multi-level methods for Bayesian multi-relational factorization with features); imec strategic funding 2017.

References

[Alb04] Martin Albrecht. Complexity Estimates for Solving LWE. https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py, 2000–2004.
[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the Concrete Hardness of Learning with Errors. *J. Mathematical Cryptology*, 9(3):169–203, 2015.

[ASD+14] Amin Ardeshirdavani, Erika Souche, Luc Dehaspe, Jeroen Van Houdt, Joris Robert Vermeseech, and Yves Moreau. NGS-Logistics: Federated Analysis of NGS Sequence Variants Across Multiple Locations. *Genome medicine*, 6(9):71, 2014.

[BBB+17] Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliaishenko, and Frederik Vercauteren. Faster Homomorphic Function Evaluation using Non-Integral Base Encoding. Cryptology ePrint Archive, Report 2017/333, 2017. http://eprint.iacr.org/2017/333.

[Bea91] Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In *Annual International Cryptology Conference*, pages 420–432. Springer, 1991.

[BBLN13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. In Martijn Stam, editor, *Cryptography and Coding 2013*, volume 8308 of LNCS, pages 45–64. Springer, 2013.

[Bri16] Bristol Crypto. SPDZ-2: Multiparty Computation with SPDZ Online Phase and MASCOT Offline Phase. https://github.com/bristolcrypto/SPDZ-2, 2016.

[CDH10] Octavian Catrina and Sebastiaan De Hoogh. Improved Primitives for Secure Multiparty Integer Computation. In *International Conference on Security and Cryptography for Networks*, pages 182–199. Springer, 2010.

[CIQ16] CryptoExperts, INP ENSEEIHT, and Quarkslab. NFLlib. https://github.com/quarkslab/NFLlib, 2016.

[Cry16] CryptoExperts. FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib, 2016.

[CSVW16] Anamaria Costache, Nigel P Smart, Srinivas Vivek, and Adrian Waller. Fixed Point Arithmetic in SHE Schemes. In *SAC 2016*, LNCS. Springer, 2016.

[CTW+15] Scott D Constable, Yuzhe Tang, Shuang Wang, Xiaojian Jiang, and Steve Chapin. Privacy-Preserving GWAS Analysis on Federated Genomic Datasets. *BMC medical informatics and decision making*, 15(5):S2, 2015.

[DDN+15] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas Toft. Confidential Benchmarking based on Multiparty Computation. *IACR Cryptology ePrint Archive*, 2015:1006, 2015.

[DGBL+15] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing. Manual for Using Homomorphic Encryption for Bioinformatics. Technical report, November 2015.

[DGL+16] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John Wernsing. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, *International Conference on Machine Learning*, volume 48, pages 201–210. JMLR.org, 2016.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart. Practical Covertly Secure MPC for Dishonest Majority—or: Breaking the SPDZ Limits. In *European Symposium on Research in Computer Security*, pages 1–18. Springer, 2013.
Towards Practical Privacy-Preserving Genome-Wide Association Study

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty Computation from Somewhat Homomorphic Encryption. In *Advances in Cryptology—CRYPTO 2012*, pages 643–662. Springer, 2012.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Protocol for Signing Contracts. *Communications of the ACM*, 28(6):637–647, 1985.

[GH16] The Global Alliance for Genomics and Health. A Federated Ecosystem for Sharing Genomic, Clinical Data. *Science*, 352(6291):1278–1280, Jun 2016.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption. *IACR Cryptology ePrint Archive*, 2012:144, 2012.

[Gil99] Niv Gilboa. Two Party RSA Key Generation. In *Annual International Cryptology Conference*, pages 116–129. Springer, 1999.

[HSR+08] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W Craig. Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures using High-Density SNP Genotyping Microarrays. *PLoS genetics*, 4(8):e1000167, 2008.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious Transfers Efficiently. In *Annual International Cryptology Conference*, pages 145–161. Springer, 2003.

[KBLV13] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A New Way to Protect Privacy in Large-Scale Genome-Wide Association Studies. *Bioinformatics*, 29(7):886–893, 2013.

[KL15] Miran Kim and Kristin Lauter. Private Genome Analysis through Homomorphic Encryption. 15:S3, 12 2015.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively Secure OT Extension with Optimal Overhead. In *Annual Cryptology Conference*, pages 724–741. Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security*, pages 830–842. ACM, 2016.

[LLAN14] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private Computation on Encrypted Genomic Data. In *International Conference on Cryptology and Information Security in Latin America*, pages 3–27. Springer, 2014.

[LLAN15] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. *Private Computation on Encrypted Genomic Data*, pages 3–27. Springer International Publishing, Cham, 2015.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over Rings. *J. ACM*, 60(6):Art. 43, 35, 2013.

[LYS15] Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma. Privacy-Preserving Genome-Wide Association Studies on Cloud Environment using Fully Homomorphic Encryption. 15:S1, 12 2015.

[MBG+16] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-Based Fast Lattice Library. In Kazue Sako, editor, *CT-RSA 2016*, volume 9610 of *LNCS*, pages 341–356. Springer, 2016.

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can Homomorphic Encryption be Practical? In Christian Cachin and Thomas
Ristenpart, editors, *ACM Cloud Computing Security Workshop - CCSW*, pages 113–124. ACM, 2011.

[Pea00] Karl Pearson. X. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be Reasonably Supposed to have Arisen from Random Sampling. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 50(302):157–175, 1900.

[Rab81] Michael O Rabin. How to Exchange Secrets with Oblivious Transfer. Technical report, Aiken Computation Lab, Harvard University, 1981.

[SAM+17] Md Nazmus Sadat, Md Momin Al Aziz, Noman Mohammed, Feng Chen, Shuang Wang, and Xiaoqian Jiang. SAFETY: Secure GWAS in Federated Environment through a Hybrid Solution with Intel SGX and Homomorphic Encryption. *CoRR*, abs/1703.02577, 2017.

[SB16] Sean Simmons and Bonnie Berger. Realizing Privacy Preserving Genome-Wide Association Studies. *Bioinformatics*, 32(9):1293–1300, 2016.

[USF13] Caroline Uhlerop, Aleksandra Slavković, and Stephen E Fienberg. Privacy-Preserving Data Sharing for Genome-Wide Association Studies. *The Journal of privacy and confidentiality*, 5(1):137, 2013.

[ZBA15] Yihua Zhang, Marina Blanton, and Ghada Almashaqbeh. Secure Distributed Genome Analysis for GWAS and Sequence Comparison Computation. *BMC medical informatics and decision making*, 15(5):S4, 2015.

[ZDJ+15] Yuchen Zhang, Wenrui Dai, Xiaoqian Jiang, Hongkai Xiong, and Shuang Wang. Foresee: Fully outsourced secure genome study based on homomorphic encryption. In *BMC medical informatics and decision making*, volume 15, page S5. BioMed Central, 2015.