Title: Population Dynamics and Biological Feasibility of Sustainable Harvesting as a Conservation Strategy for Tropical and Temperate Freshwater Turtles

Short title: Biological Feasibility of Sustainable Harvesting for Freshwater Turtles

Angga Rachmansah¹, Darin Norris², James P. Gibbs¹

¹Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
²Ecology and Conservation of Amazonian Vertebrates Research Group, Federal University of Amapá, Rod. Juscelino Kubitschek Km 02, 68903-419 Macapá, Amapá, Brazil
³Postgraduate Programme in Tropical Biodiversity, Federal University of Amapá, Rod. Juscelino Kubitschek Km 02, 68903-419 Macapá, Amapá, Brazil

#A Current Address: Fauna Flora International – Indonesia Programme, Jakarta, Indonesia

*Corresponding author. Coordenação de Ciências Ambientais, Federal University of Amapá, Rod. Juscelino Kubitschek Km 02, 68903-419 Macapá, Brazil. Email: dnorris75@gmail.com

Keywords: Age; Clutch size; Fecundity; Growth rates; Isotherm; Life history; Mortality; Survival; Population dynamics; Population ecology; Reproduction; Reptile; Sexual maturity; Sustainable harvest; Turtles
Abstract

Background: Conservation strategies are urgently needed for tropical turtles. Studies conducted exclusively in the temperate zone have revealed that the suite of life history traits that characterizes turtles and includes delayed sexual maturity and high adult survivorship makes sustainable harvest programs an unviable strategy for turtle conservation. However, most turtles are tropical in distribution and the tropics have higher, more constant and more extended ambient temperature regimes that, in general, are more favorable for population growth.

Methods: To estimate the capacity of freshwater turtle species from temperate and tropical regions to sustain harvest we synthesized life history traits from 165 freshwater turtle species in 12 families (Carettochelydae, Chelidae, Chelydridae, Dermatemydidae, Emydidae, Geoemydidae, Kinosternidae, Pelomedusidae, Platysternidae, Podocnemididae, Staurotypidae and Trionychidae). The influence of climate variables and latitude on freshwater turtle life history traits (clutch size, clutch frequency, age at sexual maturity, and annual adult survival) were examined using Generalized Additive Models. The biological feasibility of sustainable harvest in temperate and tropical species was evaluated using a sensitivity analysis of population growth rates obtained from stage structured matrix population models.

Results: Turtles at low latitudes (tropical zones) exhibit smaller clutch sizes, higher clutch frequency, and earlier age at sexual maturity than those at high latitudes (temperate zone). Adult survival increased weakly with latitude and declined significantly with increasing bioclimatic temperature (mean temperature of warmest quarter). A modeling synthesis of these data indicates that the interplay of life history traits does not create higher harvest opportunity in adults of tropical species. Yet we found potential for sustainable exploitation of eggs in tropical species.

Conclusions: Sustainable harvest as a conservation strategy for tropical turtles appears to be as biologically problematic as in temperature zones and likely only possible if the focus is on limited harvest of eggs. Further studies are urgently needed to understand how the predicted population surplus in early life stages can be most effectively incorporated into conservation programs for tropical turtles increasingly threatened by unsustainable exploitation, climate change and deforestation.
Vertebrate animals are important for human welfare and wellbeing1-3, particularly as food, medicine, and cultural uses by rural and aboriginal communities3-6. Freshwater turtles are a good example — they are frequently targeted for both subsistence and commercial harvest, primarily by local communities that live in the vicinity of river and wetlands7-9. High biomass10,11, ease of capture, and extended survival with minimal care in captivity make freshwater turtles a focus for harvest7-9.

Unsustainable harvesting is recognized as one of the major factors driving global freshwater turtle decline12-15. Over 40\% of turtle species are endangered as a result of overexploitation13,15,16. Although turtles are harvested for various purposes (e.g. pets, medicine, and curios), the most heavy use of turtles is for food7,16,17. Large adult turtles18-21 and eggs18 are usually the primary target of harvesting, because these life stages are the most valuable for food7,8,16 and the easiest life stages to encounter. The greatest harvesting pressure occurs in tropical areas7,8 where the most freshwater turtles occur22. For many local people in these areas, turtle meat and eggs are not only important as sources of protein and lipid, but also support them economically7,16,23. Additionally, unsustainable exploitation in tropical areas can also lead to regional population collapse and as a consequence create pressures in other regions of the world24.

Sustainable harvesting programs have been widely promoted as a strategy for wildlife conservation25,26. Moreover, active involvement of local people in these sustainable harvest programs generally creates better outcomes for conserving wildlife26,27. However, this conservation strategy is assumed not viable for turtle conservation7,28. A corpus of research on
the topic has revealed that turtles are poor candidates for any sustainable use program29-31. In general, turtles exhibit delayed sexual maturity, high adult survivorship, low fecundity, and long life span29-34. This combination of life history traits limits their ability to compensate for additive adult mortality from harvesting9,28,32,34,35.

It is notable, however, that virtually all research on sustainability of harvest as a conservation strategy for turtles has been conducted in temperate zones. Variation in life history traits occur within and between turtle species that inhabit different environments32,36-40. Variation in clutch size36,41, clutch frequency33, growth rate, and age at sexual maturity36 in relation to latitude have been observed in turtles. The interplay of these different life history traits has been suggested to create more opportunity to harvest turtles sustainably, at least in one tropical freshwater species in Northern Australia19,42. Earlier age at sexual maturity, higher fecundity, and faster growth rates in this tropical freshwater turtle compared to other turtles42 may allow their populations to be harvested at 20% annual harvest rate19, suggesting that the widely held assumption of the biological infeasibility of sustainable harvest programs for freshwater turtles based almost entirely on temperate zone species should be reassessed given the challenges of conserving turtles in rapidly developing tropical regions where most turtle diversity occurs9,13.

In this study, we investigated global patterns of life history traits (clutch size, clutch frequency, age at sexual maturity, and adult survival) in freshwater turtles using published data and contrasted them between freshwater turtle species from temperate and tropical regions. We then developed a population projection model to estimate the capacity of freshwater turtle species from temperate and tropical regions to sustain harvest. The primary goal of this study was to evaluate the hypothesis that freshwater turtle species from tropical and temperate regions
have the same, widely speculated incapacity to absorb additive mortality caused by population harvest 29,30,35.

Materials and Methods

Data Collection

Life history traits of freshwater turtle species were quantified along with locality of each report (latitude and longitude) from the published literature. We used keywords “life history”, “clutch size”, “clutch frequency”, “reproduction”, “age at sexual maturity”, “survival”, “growth”, “natural history”, and “turtle” to explore the published literature as indexed in the databases of EBSCO, Google Scholar, and Web of Science. The mean, median, or range values of reproductive parameters (clutch size, clutch frequency), demographic parameters (age at sexual maturity, annual adult survival rate), and morphological characters (carapace length) were extracted from each report acquired. Annual adult survival values were also checked and confirmed against those available for 15 freshwater turtle species in an online demographic database COMADRE 43 (version 3.0.0, accessed 2 September 2019 http://www.comandre-db.org/Data/Comadre).

When the exact coordinates of locality were not described, we estimated location from the nearest locality described in a given report. The coordinates of each turtle life history report were also combined with GBIF records (accessed via GBIF.org on 2019-01-13) and published data 38 to establish species distribution across four latitudinal classes: Temperate (species with latitudinal median and range within temperate zone), Temperate-tropical (“Temp-trop”, species with latitudinal median within temperate and range overlapping tropical zone/s), Tropical-
temperate (“Trop-temp”, species with latitudinal median within tropical and range overlapping temperate zone/s), Tropical (species with latitudinal median and range within tropical zone). The tropics of Capricorn and Cancer (latitude -23.5°, 23.5°, respectively) were used to define geographic limits of temperate and tropical zones.

Two bioclimatic variables relevant to freshwater turtle biology, Mean Temperature of Warmest Quarter (bio10, °C) and Precipitation of Driest Quarter (bio17, mm) were obtained from WorldClim – Global Climate Data (5-arc ≈ 10 km resolution, www.worldclim.org, 44) and matched to the coordinates of each turtle life history report. These bioclimatic variables were selected as proxies to represent the metabolic, physiological and behavioral differences that freshwater turtles have developed to survive in regions that are not ideal for these temperature and water dependent species 10,22,32,38-41,45. Both bioclimatic variables were only weakly correlated with latitude (Spearmans correlation 0.40 and 0.04 for bio10 and bio17 respectively) and were therefore included to represent temperature and rainfall patterns distinct to those most strongly associated with latitudinal gradients.

Statistical Analysis

We used Generalized Additive Models (GAMs, 46,47) to examine the influence of climate variables and latitude on freshwater turtle life history traits (clutch size, clutch frequency, age at sexual maturity, and annual adult survival). We treated each freshwater turtle species as a replicate in this analysis (obtaining median life history values within species for species with \(n > 1 \) reports) to avoid the pitfalls of pseudoreplication associated with treating individual reports as replicates. Because comparative life history studies are not independent from phylogenetic relationships among turtles, which can lead to phylogenetic bias on inference and trait value
estimation, we treated taxonomic family as a random effect (penalized smoothed regression term) \(^{48,49}\) based on the Turtles of the World Checklist (8\(^{th}\) edition, \(^{50}\)). In addition, we used carapace length (ln-transformed) as a parametric term to control for its well-established influence on life history traits \(^{33,36,38,41}\).

A total of four models were developed for each life history trait: latitude as a continuous variable included as a parametric term, latitude as a categorical variable with four classes (Temperate, Temp-Trop, Trop-Temp and Tropical), and two bioclimatic variables (Mean Temperature of Warmest Quarter and Precipitation of Driest Quarter) included as parametric terms. All life history trait estimates were ln-transformed, except for adult survival (arcsine transformed). The mgcv package \(^{46}\) was used to perform the GAM analysis in R (www.r-project.org, \(^{51}\)). Akaike Information Criterion corrected for small sample sizes (AICc) that measures fit versus complexity of a model was used to select “best” models based on lowest AICc \(^{52,53}\).

Modelling Synthesis

To evaluate whether freshwater turtle species from tropical and temperate zones have comparable capacities to absorb additive mortality caused by population harvest, we implemented a density-independent, stage structured “Lefkovitch” matrix population model \(^{34,54,55}\). This type of model is commonly used in turtle population dynamics modelling, as age in most turtle species is often difficult to determine \(^{19,34}\). The model consisted of egg, juvenile, and adult stages (Fig 1) projected with a stable stage distribution (with an initial population of 1000, allocated in proportions of 0.544, 0.401, 0.055 to egg, juvenile and adult stages respectively).
The discrete stage based lifecycle (Fig 1) can be presented as a population projection matrix “A” as follows:

\[
A = \begin{bmatrix}
0 & 0 & F \\
G_1 & P_1 & 0 \\
0 & G_2 & P_2
\end{bmatrix}
\]

where \(P \) is the annual probability of surviving and remaining in the same stage, \(G \) is the annual probability of surviving and growing into next stage, and \(F \) is the annual fecundity. These parameters were estimated using the following equations \[^{56}\]:

\[
P = \frac{(1-p_i^{d_i})}{(1-p_i^{d_i})} p_i \\
G = \frac{p_i^{d_i}(1-p_i)}{1-p_i^{d_i}} \\
\]

Equation 1

Equation 2

where \(p_i \) is the annual survival probability of \(i \) stage and \(d_i \) is the duration of \(i \) stage. Annual fecundity (\(F \)) was estimated by multiplying clutch size with clutch frequency. The model was based on female fraction only; thus half of all eggs produced was assumed to be female \[^{29,30}\]. The stable distributions of individuals amongst stage classes, and intrinsic rate of population growth (\(r \)) were determined with functions available in the R \[^{51}\] packages “popdemo” \[^{57}\] and “popbio” \[^{58}\].
Fig 1. Conceptual diagram of population dynamics of freshwater turtles used for construction of a stage structure matrix model to estimate capacity for sustainable harvest in freshwater turtles.

Median values of clutch size, clutch frequency, age at sexual maturity and adult survival derived from the GAM predictions was used as input for this stage-structured model. Due to the sparsity of records for some traits (e.g. adult survival) predictions were aggregated across two latitudinal classes (temperate and tropical) to compare the intrinsic rate of population growth \((r)\) between stages and latitude. Predictions for each trait were obtained from a final model that included all variables in a 95% confidence subset of models \(^{52}\). This confidence set was obtained by summing the Akaike weights of the set of all candidate models ordered by Akaike weight from largest to smallest until a sum of \(\geq 0.95\) was obtained \(^{52}\) pp. 169, 176-177). We estimated the annual survival probability of juvenile stage as 13% less than the annual survival probability of adult stage \(^{59}\). Due to lack of available nest / hatchling survival data the annual survival probability of egg stage for all turtle species was set at 0.2 \(^{29,30,32}\). To simulate the impact of harvest on populations of tropical and temperate freshwater turtle species, we performed a
sensitivity analysis by varying each demographic parameter systematically while holding all other parameters constant. In addition, we performed Jackknife randomizations drawing deviates (n = 500 iterations) for each model parameter from the distributions observed in the literature (S1 Table) for these variables to estimate confidence intervals around the estimated intrinsic rates of growth of temperate and tropical species in sensitivity analysis.

Table 1. Demographic parameters in freshwater turtles. Demographic parameters used in population modelling to estimate capacity for sustainable harvest in freshwater turtles. Estimates are median values derived from the scientific literature (S1 Table) and summarized based on the species distributions across four latitudinal classes.

Distribution	Families	Species	Lat	Carapace Length	Clutch Size	Clutch Frequency	Age at sexual maturity	Fecundity
Temperate	6	41	34.0	181.0	8.4	2.0	8.7	7.8
Temp-Trop	6	43	29.1	221.7	11.2	1.7	8.3	6.6
Trop-Temp	10	37	18.3	197.3	6.1	2.5	6.5	6.0
Tropical	10	44	9.6	231.5	7.3	2.0	9.0	3.5
Overall	12	164	23.1	208.0	8.0	2.0	8.3	6.3

a Distribution of freshwater turtles in four latitudinal classes: Temperate (species latitudinal median and range within temperate zone), Temp-trop (species latitudinal median within temperate and range overlapping tropical zone/s), Trop-temp (species latitudinal median within tropical and range overlapping temperate zone/s), Tropical (species latitudinal median and range within tropical zone). This classification is unique for each species i.e. a species is only included in one class.

b Median latitude from species locations within each distribution class.

Results

A total of 461 reports of life history traits was obtained from 165 species (63% of living freshwater turtle species) among 12 taxonomic families (Fig 2, S1 Table). The data once
aggregated represent: 84 species from 7 families in the temperate zone (Temperate and Temperate-Tropical classes) and 81 species from 12 families in the tropical zone (Tropical-Temperate and Tropical classes). Sixty percent of these studies were from temperate areas, with most of these (73%) from North America (Fig 2). Forty percent of these data were from tropical areas, with most of these (36%) from Asia. Only 12 of these life history trait reports were from captive breeding situations while the remainder were from wild populations.

Fig 2. Distribution of freshwater turtle studies. Geographic distribution of data on freshwater turtle life history traits obtained from the literature (S1 Table) to estimate capacity for sustainable harvest in freshwater turtles. Color of study locations represent the distribution of the study species across four latitudinal classes: Temperate (species with latitudinal median and range within temperate zone), “Temp-Trop” (species with latitudinal median within temperate and range overlapping tropical zone/s), “Trop-Temp” (species with latitudinal median within tropical and range overlapping temperate zone/s), Tropical (species with latitudinal median and range within tropical zone). Dashed horizontal lines show Tropic of Cancer and Tropic of Capricorn (latitude -23.5°, 23.5°, respectively). The background map was obtained from the 1:110m Natural Earth country and geographic lines maps (http://www.naturalearthdata.com).
Latitude as continuous variable significantly influenced all life history traits, except adult survival (Table 2, Table 3). Indeed, latitude was the most informative variable for clutch size, clutch frequency and age at sexual maturity (Table 3). Natural logarithm of clutch size ($\beta = 0.13$; $P < 0.001$) and age at sexual maturity ($\beta = 0.06$; $P < 0.01$) were positively related to latitude, whereas natural logarithm of clutch frequency ($\beta = -0.09$; $P < 0.05$) exhibited a negative relationship with latitude (Fig 1, Table 2). When latitude was treated as categorical variable, only the natural logarithm of clutch size was significantly related to latitudinal zones, such that Tropical ($\beta = -0.21$; $P < 0.001$) and Tropical-Temperate ($\beta = -0.13$; $P < 0.05$) species had reduced clutch size relative to temperate species (Table 2).

Fig 3. Relationships between latitude and (A) clutch size, (B) clutch frequency, (C) age at sexual maturity, and (D) adult survival rate of freshwater turtles. Points are the median species values obtained from the literature (S1Table), colored representing ln carapace length.
values. Solid black line is the GAM prediction. Grey shaded polygons show 95% confidence bands around the prediction.

Of the two bioclimatic variables assessed, only bioclimatic temperature (Mean Temperature of Warmest Quarter) was a contributor to life history variation (Table 2) and was also the most informative variable for adult survival (Table 3). The bioclimatic temperature models were included in the 95% confidence set for all life history traits, except clutch size (Table 3). Natural logarithm of age at sexual maturity ($\beta = -0.06; P < 0.01$) and arcsine adult survival ($\beta = -0.08; P < 0.05$) were both negatively related to Mean Temperature of Warmest Quarter (Fig 4).

Fig 4. Relationships between bioclimatic temperature (Mean Temperature of Warmest Quarter) and (A) clutch size, (B) clutch frequency, (C) age at sexual maturity, and (D) adult survival rate of freshwater turtles. Points are the median species values obtained from the literature (S1 Table), colored representing In carapace length values. Solid black line is the GAM prediction. Grey shaded polygons show 95% confidence bands around the prediction.
The sensitivity analysis performed to examine the impact of harvest on freshwater turtle populations revealed that adult and juvenile survival rates had dramatically more impact on intrinsic rate of population growth than egg survival rate and fecundity (Fig 5). Tropical freshwater turtle species exhibited a moderately higher intrinsic rate of growth than temperate freshwater turtle species (Fig 5). Although, fecundity tended to be less in tropical species (Table 2, Table 4), comparing the minimum values necessary to result in positive population growth with GAM predictions showed that fecundity could be reduced by 28% in tropical compared with only 12% in temperate species (Table 4). Survival rates were estimated to be reducible by 35% in eggs, 24% in juveniles, and 5% in adults for tropical species, and 15%, 16%, and 7%, respectively for temperate species, without causing negative population growth (Table 4). However, overlap in estimations of population growth in relation to survival rates was very broad between tropical and temperate turtle species suggesting that, in aggregate the capacity for sustainable harvest of adults as an additive source of turtle mortality is constrained in tropical turtle species largely as it is in temperate zone species (Fig 5, Table 4).
Fig 5. Relationships between intrinsic rate of growth (r) and survival rates of (A) egg, (B) juvenile, and (C) adult, and (D) fecundity in freshwater turtles of tropical and temperate zones. Solid lines are the intrinsic rate of growth for temperate and tropical species, respectively.
Table 2. Influence of climate variables and latitude on freshwater turtle life history traits.

Generalized Additive Models were used to predict responses of four freshwater turtle life history traits: clutch size, clutch frequency, age at sexual maturity and adult survival.

Model	ln clutch size (n = 165)	ln clutch frequency (n = 102)	ln age at sexual maturity (n = 75)	arcsine adult survival (n = 37)				
Continuous latitude								
Intercept	0.78	0.12	0.75	0.12				
Log carapace length	0.29	0.01	0.09	0.01				
Latitude	0.13	-0.09	0.06	0.04				
Smooth								
Family	8.1/11	5.0/11	0.0/10	0.0/7				
R² ajust / Dev. Exp b	0.78 / 77.6%	0.12 / 17.9%	0.19 / 20.2	0.01 / 6.7				
Categorical latitude								
Intercept	0.85	0.12	0.76	0.10				
Log carapace length	0.29	0.01	0.06	-0.01				
Latitude								
temp-trop	0.04	-0.06	0.02	0.08				
trop-temp	-0.13	0.06	-0.11	0.07				
tropical	-0.21	0.04	-0.02	-0.05				
Smooth								
Family	7.9/11	2.7/11	4.7/10	2.5/7				
R² ajust / Dev. Exp b	0.76 / 75.8%	0.03 / 9.3%	0.24 / 32.2%	0.07 / 23.8%				
Bioclimate - temp								
Intercept	0.76	0.12	0.72	0.11				
Log carapace length	0.27	0.01	0.07	0.02				
Temp. warm quarter (bio10)	-0.01	0.03	-0.06	-0.08				
Smooth								
Family	7.0 / 11	4.39 ***	3.4 / 11	0.6 .	5.4 / 10	1.2 *	0.0 / 7	0.0 .
-----------------------------	----------	----------	----------	--------	----------	--------	---------	------
R² ajust / Dev. Exp b	0.72 / 69.8%	0.05 / 9.9%	0.31 / 37.7%	0.12 / 16.7%				
Bioclimate - rain								
Intercept	0.76	0.05 ***	0.12	0.04 **	0.73	0.05 ***	0.15	0.03 ***
Log carapace length	0.27	0.02 ***	0.01	0.03	0.06	0.03 *	-0.01	0.03
Rain dry quarter (bio17)	-0.03	0.02	0.02	0.03	0.00	0.02	0.02	0.04
Smooth								
Family	7.4/11	5.71 ***	2.5 / 11	0.3	5.7 / 10	1.5 *	0.0 / 7	0.0
R² ajust / Dev. Exp b	0.72 / 70.5%	0.02 / 7.0%	0.24 / 31.6%	-0.04 / 1.4%				

Each model contained Family as a random effect (smooth GAM term specified with “re” basis) and body size (ln transformed carapace length) as a parametric term; Asterisks indicate significant level of estimated parameters (*** P < 0.001; ** P < 0.01; * P < 0.05; .' P < 0.1).

a Standardized regression coefficient (obtained by dividing the centered response values by their standard deviations) and associated standard error (SE).

b Model adjusted r-squared and deviance explained (%)
Table 3. Freshwater turtle life history model comparisons. Comparisons of the Generalized Additive Models created for each life history trait to estimate capacity for sustainable harvest in freshwater turtles. Models for each trait ordered by decreasing AICc (Akaike information criterion corrected for small sample sizes) values.

| Life history trait | Modela | Dev. Exp | Loglik | BIC | AICc | Δ AICc | Wi AICc|^b |
|--------------------|--------|----------|--------|------|------|--------|---------|
| Clutch size | | | | | | | |
| Continuous latitude| 77.6 | -69.35 | 207.05 | 168.09 | 0.00 | 1.00 | |
| Categorical latitude| 75.8 | -80.04 | 237.57 | 193.80 | 25.71 | 0.00 | |
| Bioclimate - rain | 69.8 | -95.48 | 256.12 | 218.85 | 50.77 | 0.00 | |
| Bioclimate - temp | 70.5 | -98.96 | 261.27 | 224.98 | 56.90 | 0.00 | |
| Clutch frequency | | | | | | | |
| Continuous latitude| 17.9 | -14.42 | 81.83 | 54.94 | 0.00 | 0.93 | |
| Bioclimate - temp | 9.9 | -19.25 | 85.31 | 61.22 | 6.28 | 0.04 | |
| Bioclimate - rain | 7.0 | -21.01 | 83.69 | 62.00 | 9.79 | 0.03 | |
| Categorical latitude| 9.3 | -19.61 | 91.34 | 64.84 | 12.62 | 0.01 | |
| Age at sexual maturity | | | | | | | |
| Continuous latitude| 20.2 | -28.82 | 79.24 | 68.52 | 0.00 | 0.57 | |
| Bioclimate - temp | 37.7 | -19.46 | 92.49 | 69.13 | 0.62 | 0.42 | |
| Bioclimate - rain | 31.6 | -22.86 | 99.50 | 76.08 | 7.56 | 0.01 | |
| Categorical latitude| 32.2 | -22.62 | 104.54 | 79.42 | 10.91 | 0.00 | |
| Adult survival | | | | | | | |
| Bioclimate - temp | 16.7 | 14.16 | -10.39 | -16.31 | 0.00 | 0.85 | |
| Continuous latitude| 6.7 | 12.09 | -6.27 | -12.19 | 4.12 | 0.11 | |
| Bioclimate - rain | 1.4 | 11.09 | -4.26 | -10.18 | 6.13 | 0.04 | |
| Categorical latitude| 23.8 | 15.77 | 7.28 | 0.73 | 17.04 | 0.00 | |

^a Models used to predict natural history traits. Each model contained Family as a random effect (smooth term with “re” basis) and body size (log transformed carapace length) as a parametric (not smooth) effect. Continuous latitude included median latitude from all records (Table S1). Categorical latitude included four latitudinal classes: Temperate (species with latitudinal median and range within temperate zone), “Temp-Trop” (species with latitudinal median within temperate and range overlapping tropical zone/s), “Trop-Temp” (species with latitudinal median within tropical and range overlapping temperate zone/s), Tropical (species with latitudinal median and range within tropical zone). Bioclimate - temp included Mean Temperature of Warmest Quarter (WorldClim: bio10). Bioclimate - rain included Precipitation of Driest Quarter (WorldClim: bio17). Coefficients for individual variables in all models are presented in Table 2.

^b Akaike weights (Wi) from largest to smallest. Predictions for each trait were obtained using variables from the 95% confidence subset of models, obtained by first ordering all models in the set by decreasing Akaike weight (Wi), and then sequentially summing the model Wi's in rank order.
Table 4. Demographic parameters used in population modelling to estimate capacity for sustainable harvest in freshwater turtles. Observed are median values derived from the scientific literature (S1 Table) and predicted values are from the 95% confidence set of GAM models (Table 3). “r min” are the minimum values necessary to obtain positive intrinsic rate of growth (r) as determined via sensitivity analysis (Fig 5).

Parameter	Observed	Predicted	r min			
	Temp.	Trop.	Temp.	Trop.	Temp.	Trop.
Annual egg survival rate	0.200 a	0.200 a	0.200 a	0.200 a	0.170	0.130
Annual juvenile survival rate	0.766 b	0.767 b	0.746 b	0.694 b	0.630	0.530
Annual adult survival rate	0.880	0.882	0.857	0.798	0.800	0.760
Clutch size	8.8	7.0	7.3	5.2		
Clutch frequency	2.0	2.3	2.0	2.3		
Age at sexual maturity	8.3	7.8	8.6	7.3		
Fecundity	7.3	6.0	7.3	6.0	6.4	4.3

a Values derived from previous syntheses.32
b Estimated as 13% less than the annual adult survival rates.59

Discussion

The capacity of any species to cope with additive mortality is determined by the interplay of its life history traits.61-63 Turtles are often declared to share integrated life history features that make compensation for additive mortality associated with harvest infeasible.28 Life history traits of many organisms are related to variation in environment,65,66 climate,67 and their ecological interactions,61-63,68,69 and this study revealed that turtle life history is strongly related to latitude and ambient temperature. Yet although these trends might suggest an increase in capacity of tropical freshwater turtles to absorb additional mortality due to anthropogenic sources than in temperate zone species, once integrated in a synthetic population model tropical species appear to be as unable to absorb additive mortality as are temperate zone species.
The positive relationship we observed between clutch size and latitude is consistent with earlier studies \(^{36,41}\). Turtles that inhabit higher (temperate) latitudes, have larger clutch size than turtles that inhabit low (tropical) latitudes. Similar patterns have been observed in mammals \(^{67}\) and birds \(^{68,70}\). Tokolyi, et al. \(^{67}\) and McNamara, et al. \(^{68}\) suggest this pattern is related to climate variability. Iverson, et al. \(^{41}\) concluded that higher juvenile competition due to shorter time period for development along with higher egg mortality associated with winter and climate uncertainty that creates temporary periods of low competition may make it more advantageous for temperate turtle species to produce more offspring (“more eggs in one basket” \(^{33}\)) as a “bet hedging” strategy to exploit temporary resources. In addition, temperate turtle species typically have small egg size to speed development as an adaptation to short incubation times in temperate zone \(^{17,41}\). As such, our findings support the suggestion that temperature zone turtles may have evolved to produce smaller egg size with larger clutch size than tropical species \(^{33}\).

Larger clutch size in temperate turtle species may also act as a mechanism to compensate for low nesting frequency \(^{33,41}\). We found that clutch frequency was negatively related to latitude. The general model of the interaction of environmental factors and reproductive output in turtles \(^{33}\) suggests that high latitudes yield short reproductive seasons for turtles, resulting in lower clutch frequency. In addition, timing of nesting in turtles is correlated with temperature \(^{36,71}\). Because tropical zones have a more stable warmer temperature all year long, more opportunities are available for turtles to lay eggs than in the temperate zone. Additionally, clutch mass (number of eggs x egg size) can also vary with latitude \(^{33,41}\), further studies are necessary to examine how egg size correlates to differences in population growth rates, especially as egg size has been shown to be an important predictor of age at sexual maturity \(^{32,33}\).
The relationship between age at sexual maturity and latitude observed in this study is also in agreement with the earlier studies 72-74. Turtles that inhabit high latitudes reach maturity at a later age than those inhabit low latitudes. This result is likely due to more stable and more productive climate conditions at low latitudes. As growth rate in turtles depends on temperature and food availability 75,76, thus stable warm temperature and continuous food availability in low latitudes will generate faster growth rate to reach size at sexual maturity 33. This conclusion is also supported by the inverse relationship between Mean Temperature of Warmest Quarter and age at sexual maturity. Although it has been suggested that turtles tend to have larger body size at higher latitudes 77 a recent review (compilation of 245 species) failed to uncover clear latitudinal trends in turtle body size 38. These differences between studies (for example 77) evaluated variation within species from a sample of 23 species of mainly northern hemisphere and temperate turtles) seem to support the hypothesis that body size latitude relationships (e.g. Bergmann’s rule) maybe stronger for temperate turtle species. Large body size is thought to provide evolutionary advantages for temperate turtle species to cope with unfavorable environments e.g. via a relative increase in fasting endurance 36,76. As a result, temperate turtle species require longer time to reach size at sexual maturity, but increased size may provide for increased adult survivorship 32.

Adult survival and latitude were not strongly related perhaps because all turtles share in common the unique morphological feature: a rigid shell 28,78,79. Turtle shells not only provide physical protection from predators 28, but also important physiological functions 78-80. The optimum benefits from the shell are achieved when a turtle has reached adult size 28 such that different environmental conditions at low and high latitudes may have little effect on adult survival rate because the shell ensures high survival regardless of ecological context.
It is important to note, however, that our failure to identify differences in survival rates may result from a lack of statistical power. Relatively few reports were available for survival rates of turtles at low (tropical) latitudes thereby possibly limiting the ability to detect differences might they exist. Clearly more long-term studies of turtle population biology in tropical regions are needed and would inform this analysis. This said, differences that may exist but are currently obscured by sampling variation would likely be modest and not likely to change the overall conclusions of this study.

The distinct life history characteristics of turtles at low latitudes (tropical zone) would seem to translate into greater opportunity for sustainable harvest of early stages than those at high latitudes (temperate zone, Fig 5, Table 4). However, our estimated annual sustainable harvest rate (5%) of adult turtles is considerably lower than typical thresholds for sustainable harvest rates (20%) estimated for long-lived animals. In addition, similar to previous studies, high adult survival rates are estimated to be critical to maintain population stability due to their relatively greater contribution to population recruitment than other life stages. Considering these results, harvesting wild adults would appear to present a high risk of causing population declines whether in the temperate or tropical regions, reinforcing the need to develop appropriately enforced alternate management options such as farming of captive reared turtles for meat.

Although adult harvest is clearly risky, there does appear to be some potential for sustainable exploitation of early stages of tropical freshwater turtle species. Indeed, egg harvest may be more feasible, because it has low risk of causing population declines (Fig 5). Gibbs and Amato suggest that significant additive mortality in the egg stage may not threaten population persistence and, Thorbjarnarson, et al. identified that harvesting of eggs is the most promising
strategy in the development of sustainable use programs for turtles. Integrating the conservation and harvest of eggs (for consumption, sale and/or rearing of hatchlings for the pet trade) has generated promising results for the conservation of some threatened tropical turtles e.g. *Podocnemis unifilis* in Peru \(^{89,90}\) and our analysis supports the idea that such actions could be feasible in other tropical turtle species.

We found that tropical populations could continue to grow if egg survival was reduced by up to 35%. We suggest that this surplus of eggs can be applied for both sustainable exploitation and conservation. A focus on management and sustainable exploitation of early life stages (e.g. consumption, pet trade) would also complement conservation actions that generally protect the most sensitive adult stages \(^{9,28}\). We found that the margins for additive mortality are so tight (<10% in both tropical and temperate species) that the sustainable harvest of adult turtles will likely fail unless additional management actions are incorporated into conservation programs \(^9\).

Integrated management that explicitly considers survival of all life stages is likely to generate more robust and timely increases in exploited turtle populations. Although egg survival produces a relatively small overall effect on population growth rates when compared to adult survival \(^{28,34}\), demographic simulations show that increasing survival of eggs and hatchlings can compensate for decreases in adult survival in at least one species of tropical turtle \(^91\).

Additionally, increasing survival of early stages via community-based protection of turtle nesting beaches has been shown to provide conservation success for local communities \(^{90}\), target species \(^{90-93}\) and also non-target vertebrate and invertebrate taxa \(^{92}\). Further examples are needed to understand how the predicted surplus in early life stages can be most effectively exploited so that populations can still increase to replace adults that remain widely targeted and threatened by
additional anthropogenic impacts across tropical regions including climate change, forest loss and pollution 1,9,12,18,19.

An important caveat is that the population dynamics of temperate and tropical species in this study were evaluated using the same survival rate values for eggs due to lack of available published data on these parameters both in temperate and tropical species. Mechanisms of protection of egg and juvenile stages do not produce as large an effect on population growth as protecting adult survival 28, so our conclusions are likely to remain valid despite this untested assumption. That said, until data are available on typical nest and juvenile survival in temperate and tropical zones, the relative impact of harvest on populations of temperate and tropical species we estimated must remain tentative.

Together the results of this study imply that sustainable harvesting is difficult to apply as a conservation strategy, both in temperate and tropical turtle species, due to the biological limitations on turtle population growth imposed by their life history strategy everywhere. This said, Eisemberg, et al. 18 suggests that complete prohibition of harvesting as a conservation strategy in turtles will not be possible to implement in tropical areas and developing countries, where local communities have long history in using turtle meat and eggs. Conservation strategies that exclude local communities in their practices are often unsuccessful at protecting wildlife 94. We reject the assumption often employed in temperate-zone turtle research that “all turtles are the same” yet also note that demographic differences we observed between temperate and tropical turtles do not translate into obviously greater opportunity for sustainable harvest of adults and juveniles in the tropics. Therefore, carefully constructed sustainable harvest programs may present greater opportunities to succeed in the tropics if based on egg and hatchling stages, and should be considered further but cautiously for the regions that have a long history of
harvesting turtles for subsistence use, particularly when the species possess density dependent mechanisms to compensate harvest, such as shown in \textit{C. oblonga} 19,42.

\textbf{Acknowledgments}

We thank N. E. Karraker, B. Underwood, and P. R. Sievert for discussions on ideas and their comments on this draft manuscript and to Y-H. Sung for providing life history data for the big-headed turtle. We thank Jordi Moya-Larano and two anonymous reviewers for their comments on an earlier version of the text.

\textbf{Author Contributions}

Conceived and designed the experiments: AR, JPG. Performed the experiments: AR, DN, JPG. Analyzed the data: AR, DN, JPG. Contributed reagents/materials/analysis tools: AR, DN, JPG. Wrote the paper: AR, DN, JPG.

\textbf{Supporting Information}

S1 Table. The life history traits data obtained from literature review. Available from the corresponding author on request.

\textbf{References}

1. Gibbons, J. W. \textit{et al}. The Global Decline of Reptiles, Deja Vu Amphibians. \textit{Bioscience} \textbf{50}, 653 - 666, doi: \url{https://doi.org/10.1641/0006-3568(2000)050[0653:TGORD]2.0.CO;2} (2000).
2. Milner-Gulland, E. J. & Bennett, E. L. Wild Meat: The Bigger Picture. \textit{TRENDS in Ecology and Evolution} \textbf{18}, 351 - 357, doi: \url{https://doi.org/10.1016/S0169-5347(03)00123-X} (2003).
3. Santos-Fita, D., Naranjo, E. J. & Rangel-Salazar, J. L. Wildlife Uses and Hunting Patterns in Rural Communities of the Yucatan Peninsula, Mexico. \textit{Journal of Ethnobiology and Ethnomedicine} \textbf{8}, 38 (2012).
4. Altrichter, M. Wildlife in the Life of Local People of the Semi-Arid Argentine Chaco. \textit{Biodiversity and Conservation} \textbf{15}, 2719 - 2736, doi: \url{https://doi.org/10.1007/s10531-005-0307-5} (2006).
5. Mena, P., Stallings, J. R., Regalado, J. & Cueva, R. in \textit{Hunting for Sustainability in Tropical Forests} (eds J. G. Robinson & E. L. Bennett) (Columbia University Press, 2000).
Townsend, W. R. in *Hunting for Sustainability in Tropical Forests* (eds J. G. Robinson & E. L. Bennett) (Columbia University Press, 2000).

Moll, D. & Moll, E. O. *The Ecology, Exploitation, and Conservation of River Turtles.* (Oxford University Press, 2004).

Thorbjarnarson, J., Lagueux, C. J., Bolze, D., Klemens, M. W. & Meylan, A. B. in *Turtle Conservation* (ed M. W. Klemens) (The Smithsonian Institution, 2000).

Spencer, R. J., Dyke, J. U. & Thompson, M. B. Critically evaluating best management practices for preventing freshwater turtle extinctions. *Conservation Biology* 31, 1340-1349, doi:https://doi.org/10.1111/cobi.12930 (2017).

Congdon, J. D., Greene, J. L. & Gibbons, J. W. Biomass of Freshwater Turtles: A Geographic Comparison. *American Midland Naturalist* 115, 165 - 173, doi:https://doi.org/10.2307/2425846 (1986).

Iverson, J. B. Biomass in Turtle Populations: A Neglected Subject. *Oecologia* 55, 69 - 76, doi:https://doi.org/10.1007/BF00386720 (1982).

He, F. et al. Freshwater megafauna diversity: Patterns, status and threats. *Diversity and Distributions* 24, 1395-1404, doi: https://doi.org/10.1111/ddi.12780 (2018).

Saha, A. et al. Tracking global population trends: Population time-series data and a living planet index for reptiles. *Journal of Herpetology* 52, 259-268, doi: https://doi.org/10.1670/17-076 (2018).

Rhodin, A. G. et al. Global conservation status of turtles and tortoises (Order Testudines). *Chelonian Conservation and Biology* 17, 135-161, doi: https://doi.org/10.2744/CCB-1348.1 (2018).

Klemens, M. W. & Thorbjarnarson, J. B. Reptiles as a Food Resource. *Biodiversity and Conservation* 4, 281 - 298, doi:https://doi.org/10.1007/BF00055974 (1995).

Moll, E. O. & Moll, D. in *Turtle Conservation* (ed M. W. Klemens) (The Smithsonian Institution, 2000).

Eisenberg, C. C., Rose, M., Yaru, B. & Georges, A. Demonstrating Decline of an Iconic Species Under Sustained Indigenous Harvest - The Pig - Nosed Turtle (*Carettochelys insculpta*) in Papua New Guinea. *Biological Conservation* 144, 2282 - 2288, doi:https://doi.org/10.1016/j.biocon.2011.06.005 (2011).

Fordham, D. A., Georges, A. & Brook, B. W. Indigenous Harvest, Exotic Pig Predation and Local Persistence of a Long - Lived Vertebrate: Managing a Tropical Freshwater Turtle for Sustainability and Conservation. *Journal of Applied Ecology* 45, 52 - 62, doi: https://doi.org/10.1111/j.1365-2664.2007.01414.x (2008).

Gamble, T. & Simons, A. M. Comparison of Harvested and Nonharvested Painted Turtle Populations. *Wildlife Society Bulletin* 32, 1269 - 1277, doi:https://doi.org/10.2193/0091-7648(2004)032[1269:COHANP]2.0.CO;2 (2004).

Sung, Y. H., Karraker, N. E. & Hau, B. C. H. Demographic Evidence of Illegal Harvesting of an Endangered Asian Turtle. *Conservation Biology* 27, 1421 - 1428, doi: https://doi.org/10.1111/cobi.12102 (2013).

Iverson, J. B. Golbal Correlates of Species Richness in Turtles. *The Herpetological Journal* 2, 77 - 81 (1992).

Mittermeier, R. A. South America's River Turtles: Saving Them by Use *Oryx* 14, 222 - 230, doi: https://doi.org/10.1017/S0030605300015532 (1978).

Mali, I., Vandeweghe, M. W., Davis, S. K. & Forstner, M. R. J. Magnitude of the Freshwater Turtle Exports from the US: Long Term Trends and Early Effects of Newly Implemented Harvest
Management Regimes. *PLOS ONE* **9**, e86478, doi:https://doi.org/10.1371/journal.pone.0086478 (2014).

McNeely, J. A., Miller, K. R., Reid, W. V., Mittermeier, R. A. & Werner, T. B. *Conserving the World's Biological Diversity*. (IUCN, Gland, Switzerland, WRI, CI, WWF - US, and the World Bank, 1990).

Webb, G. J. Conservation and Sustainable Use of Wildlife - An Evolving Concept. *Pacific Conservation Biology* **8**, 12 - 26 (2002).

Fitzgerald, L. A. Tupinambis Lizards and People: A Sustainable Use Approach to Conservation Development. *Conservation Biology* **8**, 12 - 15 (1994).

Gibbs, J. P. & Amato, G. D. in *Turtle Conservation* (ed M. W. Klemens) (The Smithsonian Institution, 2000).

Congdon, J. D., Dunham, A. E. & van Loben Sels, R. C. Delayed Sexual Maturity and Demographics of Blanding's Turtles (*Emydoidea blandingii*): Implications for Conservation and Management of Long-Lived Organisms. *Conservation Biology* **7**, 826 - 833, doi:https://doi.org/10.1046/j.1523-1739.1993.740826.x (1993).

Congdon, J. D., Dunham, A. E. & van Loben Sels, R. C. Demographics of Common Snapping Turtles (*Chelydra serpentina*): Implications for Conservation and Management of Long-Lived Organisms. *American Zoologist* **34**, 397 - 408, doi:https://doi.org/10.1093/icb/34.3.397 (1994).

Doroff, A. M. & Keith, L. B. Demography and Ecology of an Ornate Box Turtle (*Terrapene ornata*) Population in South-Central Wisconsin. *Copeia* **1990**, 387 - 399, doi:https://doi.org/10.2307/1446344 (1990).

Iverson, J. B. Patterns of survivorship in turtles (order Testudines). *Canadian Journal of Zoology* **69**, 385 - 391, doi:https://doi.org/10.1139/z91-060 (1991).

Iverson, J. B. Correlates of Reproductive Output in Turtles (Order Testudines). *Herpetological Monographs* **6**, 25 - 42, doi:https://doi.org/10.2307/1466960 (1992).

Heppell, S. S. Application of Life History Theory and Population Model Analysis to Turtle Conservation. *Copeia* **1998**, 367 - 375, doi:https://doi.org/10.2307/1447430 (1998).

Burke, V. J., Gibbons, J. W. & Greene, J. L. Prolonged Nesting Forays by Common Mud Turtles (*Kinosternon subrubrum*). *American Midland Naturalist* **131**, doi:https://doi.org/10.2307/2426622 (1994).

Iverson, J. B., Higgins, H., Sirulink, A. & Griffiths, C. Local and Geographic Variation in the Reproductive Biology of the Snapping Turtle (*Chelydra serpentina*). *Herpetologica* **53**, 96 - 117 (1997).

Shine, R. & Iverson, J. B. Patterns of survival, growth and maturation in turtles. *OIKOS* **72**, 343 - 348, doi:https://doi.org/10.2307/3546119 (1995).

Angielczyk, K. D., Burroughs, R. W. & Feldman, C. R. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution* **324**, 270-294, doi:https://doi.org/10.1002/jez.b.22602 (2015).

Santilli, J. & Rollinson, N. Toward a general explanation for latitudinal clines in body size among chelonians. *Biological Journal of the Linnean Society* **124**, 381-393, doi:https://doi.org/10.1093/biolinnean/bly054 (2018).

Storey, K. B. & Storey, J. M. Molecular physiology of freeze tolerance in vertebrates. *Physiological Reviews* **97**, 623-665, doi:https://doi.org/10.1152/physrev.00016.2016 (2017).

Iverson, J. B., Balgooyen, C. P., Byrd, K. K. & Lyddan, K. K. Latitudinal Variation in Egg and Cutch Size in Turtles. *Canadian Journal of Zoology* **71**, 2448 - 2461, doi:https://doi.org/10.1139/z93-341 (1993).
Fordham, D. A., Georges, A. & Brook, B. W. Demographic Response of Snake-Necked Turtles Correlates with Indigenous Harvest and Feral Pig Predation in Tropical Northern Australia. *Journal of Animal Ecology* **76**, 1231 - 1243, doi:https://doi.org/10.1111/j.1365-2656.2007.01298.x (2007).

Salguero-Gómez, R. et al. COMADRE: a global data base of animal demography. *Journal of Animal Ecology* **85**, 371-384, doi:https://doi.org/10.1111/1365-2656.12482 (2016).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* **37**, 4302-4315, doi: https://doi.org/10.1002/joc.5086 (2017).

Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. *Proceedings of the Royal Society B: Biological Sciences* **278**, 1823-1830, doi: https://doi.org/10.1098/rspb.2010.1295 (2010).

Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **73**, 3-36, doi: https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).

Wood, S. N. Generalized additive models: an introduction with R. (Chapman and Hall/CRC, 2017).

Wood, S. N. A simple test for random effects in regression models. *Biometrika* **100**, 1005-1010, doi: https://doi.org/10.1093/biomet/ast038 (2013).

Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. *PeerJ* **7**, e6876, doi: https://doi.org/10.7717/peerj.6876 (2019).

Rhodin, A. et al. Turtles of the world: annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation status. *Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs* **7**, 1-292, doi:10.3854/crm.7.checklist.atlas.v8.2017 (2017).

R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

Burnham, K. P. & Anderson, D. R. *Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach*. 2 edn, (Springer, 2002).

Zuur, A. F., Ieno, E. N. & Smith, G. M. *Analysing Ecological Data*. (Springer, 2007).

Caswell, H. *Matrix population models: construction, analysis, and interpretation*. (Sinauer Associates, 1989).

Lefkovitch, L. The study of population growth in organisms grouped by stages. *Biometrics*, 1-18 (1965).

Crouse, D. T., Crowder, L. B. & Caswell, H. A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation. *Ecology* **68**, 1412 - 1423, doi: https://doi.org/10.2307/1939225 (1987).

popdemo: Demographic Modelling Using Projection Matrices v. R package version 0.2-3 (2016).

Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. *Journal of Statistical Software* **22**, 1-23 (2007).

Pike, D. A., Pizzato, L., Pike, B. A. & Shine, R. Estimating Survival Rates of Uncatchable Animals: The Myth of High Juvenile Mortality in Reptiles. *Ecology* **89**, 607 - 611, doi: https://doi.org/10.1890/06-2162.1 (2008).

Manly, B. F. *Randomization, bootstrap and Monte Carlo methods in biology*. (Chapman and Hall/CRC, 2018).
Benton, T. G., Plaistow, S. J. & Coulson, T. N. Complex Population Dynamics and Complex Causation: Devils, Details and Demography. *Proceedings of The Royal Society B* 273, 1173 - 1181, doi:https://doi.org/10.1098/rspb.2006.3495 (2006).

Stearns, S. C. *The Evolution of Life Histories.* (Oxford University Press, 1992).

Stearns, S. C. The evolution of life history traits: a critique of the theory and a review of the data. *Annual Review of Ecology and Systematics* 8, 145-171, doi:https://doi.org/10.1146/annurev.es.08.110177.001045 (1977).

Congdon, J. D. & Gibbons, J. W. in *Life History and Ecology of the Slider Turtle* (ed J. W Gibbons) (Smithsonian Institution Press, 1990).

Jonsson, B., Jonsson, N., Brodtkorb, E. & Ingebrigtsen, P. J. Life‐history traits of brown trout vary with the size of small streams. *Functional Ecology* 15, 310 - 317, doi:https://doi.org/10.1046/j.1365-2435.2001.00528.x (2001).

Macip-Ríos, R., Ontiveros, R. N., Sánchez-León, A. T. & Casas-Andreu, G. Evolution of reproductive effort in mud turtles (Kinosternidae): the role of environmental predictability. *Evolutionary Ecology Research* 18, 539 - 554 (2017).

Tokolyi, J., Schmidt, J. & Barta, Z. Climate and Mammalian Life Histories. *Biological Journal of the Linnean Society* 111, doi: https://doi.org/10.1111/bij.12238 (2014).

McNamara, J. M., Barta, Z., Wikelski, M. & Houston, A. I. A Theoritical Investigation of the Effect of Latitude on Avian Life Histories. *The American Naturalist* 172, 331 - 345, doi: https://doi.org/10.1086/589886 (2008).

Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. *Ecological Applications* 22, 1061 - 1067, doi:https://doi.org/10.1890/11-1313.1 (2012).

Galbraith, D. A., Brooks, R. J. & Obbard, M. E. Nesting Migrations of the Common Snapping Turtle *Chelydra serpentina*. *Herpetologica* 36, 158 - 162 (1980).

Spencer, R. J. Geographic Variation in Reproduction, Size, Sex Ratio and Maturity of *Sternotherus odoratus* (Testudinata: Chelydridae). *Ecology* 42, 68 - 76, doi:https://doi.org/10.2307/1933268 (1961).

Dunham, A. E. & Gibbons, J. W. in *Life History and Ecology of the Slider Turtle* (ed J. W Gibbons) Ch. 10, 135 - 145 (Smithsonian Institution Press, 1990).

Tinkle, D. W. Geographic Variation in Production, reproduction, sex ratio and maturity of *Sternotherus odoratus* (Testudinata: Chelydridae). *Ecology* 42, 68 - 76, doi: https://doi.org/10.2307/1933268 (1961).
Zug, G. R., Vitt, L. J. & Caldwell, J. P. *Herpetology: An Introductory Biology of Amphibians and Reptiles*. 2nd edn, (Academic Press, 2001).

Jackson, D. C. How a Turtle’s Shell Helps It Survive Prolonged Anoxic Acidosis. *News Physiological Science* 15, 181 - 185, doi:https://doi.org/10.1152/physiologyonline.2000.15.4.181 (2000).

Crawley, M. J. *The R Book*. (John Wiley & Sons, Ltd., 2007).

Robinson, J. G. & Bennett, E. L. in *Hunting for Sustainability in Tropical Forests* (eds J. G. Robinson & E. L. Bennett) (Columbia University Press, 1990).

Robinson, J. G. & Bodmer, R. E. Towards Wildlife Management in Tropical Forests. *The Journal of Wildlife Management* 63, 1 - 13, doi:https://doi.org/10.2307/3802482 (1999).

Blamires, S. J., Spencer, R. J., King, P. & Thompson, M. B. Population Parameters and Life - Table Analysis of Two Coexisting Freshwater Turtles: Are the Bellinger River Turtle Populations Threatened? *Wildlife Research* 32, 339 - 347, doi:https://doi.org/10.1071/WR04083 (2005).

Macip-Rios, R., Brauer-Robleda, P., Zuniga-Vega, J. J. & Casas-Andreu, G. Demography of two populations of the Mexican mud turtle (*Kinosternon integrum*) in central Mexico. *Herpetological Journal* 21, 235 - 245 (2011).

Spencer, R. J. & Thompson, M. B. Experimental Analysis of the Impact of Foxes on Freshwater Turtle Populations. *Conservation Biology* 19, 845 - 854, doi:https://doi.org/10.1111/j.1523-1739.2005.00487.x (2005).

Sinovas, P., Price, B., King, E., Hinsley, A. & Pavitt, A. Wildlife trade in the Amazon countries: an analysis of trade in CITES listed species. 112 (Technical report prepared for the Amazon Regional Program, Cambridge, UK, 2017).

Harju, E., Sirén, A. H. & Salo, M. Experiences from harvest-driven conservation: Management of Amazonian river turtles as a common-pool resource. *Ambio* 47, 327, doi:https://doi.org/10.1007/s13280-017-0943-5 (2017).

Norris, D., Peres, C. A., Michalski, F. & Gibbs, J. P. Prospects for freshwater turtle population recovery are catalyzed by pan-Amazonian community-based management. *Biological Conservation* 233, 51-60, doi:https://doi.org/10.1016/j.biocon.2019.02.022 (2019).

Campos-Silva, J. V., Hawes, J. E., Andrade, P. C. & Peres, C. A. Unintended multispecies co-benefits of an Amazonian community-based conservation programme. *Nature Sustainability* 1, 650, doi:https://doi.org/10.1038/s41893-018-0170-5 (2018).

Norris, D., Michalski, F. & Gibbs, J. P. Community involvement works where enforcement fails: conservation success through community-based management of Amazon river turtle nests. *PeerJ* 6, e4856, doi:https://doi.org/10.7717/peerj.4856 (2018).

Pimhert, M. P. & Pretty, J. N. in *Communities and Conservation: Natural Resource Management in South and Central Asia* (eds A. Kothari, N. Pathak, R. V. Anuradha, & B. Taneja) 58 - 77 (New Delhi, India, 1998).