The aptasensor for label-free detection of thrombin based on turn-on fluorescent DNA-templated Cu/Ag nanoclusters

Baozhu Zhang a and Chunying Wei b

a College of Chemistry and Chemical Engineering, Jinzhong University, Yuci 030619, Shanxi, China

b Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi, China

*Corresponding author.
E-mail address: weichunyi@sxu.edu.cn (C. Wei)
Table S1 Names and sequences of the oligonucleotides.

Oligonucleotids	Sequences (5´-3´)
TBA1	CCCTTAATCCCCTTTTTTGTTGGTGGTGGTTTTTCCCTAACTCCC
TBA2	GGTGGTGGTGGTGGTTTTTCCCTAACTCCC

Table S2 Comparison of different strategies for the detection of thrombin.

Detection methods	LOD	Linear range	References
Surface plasmon resonance	0.10 nM	0.10-75 nM	34
Fluorescence	0.18 nM	0.50-20 nM	35
Fluorescence DNA-Ag NCs	1.0 nM	0.0-50 nM	36
UV-vis absorbance	3.0 nM	5.0-30.4 nM	37
Fluorescence	30 pM	0.28-86 nM	9
Fluorescence DNA-Cu/Ag NCs	31.3 pM	62.5-187.5 PM	10

Table S3 The lifetimes of TBA1-Cu/Ag NCs in the absence and presence of different concentration of thrombin.

Samples	[TB] (nM)	\(\tau_1\) (ns)	\(\tau_2\) (ns)	\(\tau_3\) (ns)	\(\tau_{avg}\) (ns)	\(\chi^2\)
TBA1-Cu/Ag NCs	0	0.43 (50%)	2.8 (27%)	13 (23%)	3.9	1.090
	3.2	0.39 (46%)	2.6 (26%)	12 (28%)	4.1	1.093
	6.4	0.37 (44%)	2.5 (27%)	10 (29%)	3.8	1.100
	8.0	0.36 (53%)	2.5 (25%)	11 (22%)	3.3	1.096

Fig. S1 (A) UV-vis spectra of TBA2-Ag NCs without (a) and with 10 U/L thrombin (b). (B) Fluorescence emission spectra of TBA2-Cu/Ag NCs under different excitation wavelength. c(DNA) = 3 \(\mu\)M, Tris-HAc (10 mM, pH 7.0)
Fig. S2 The IR spectrum of TBA1-Cu/Ag NCs.

Fig. S3 Stability of Cu/Ag NCs. The changes of fluorescence intensities of TBA1-Cu/Ag NCs at 560 nm (A) and TBA2-Cu/Ag NCs at 575 nm (B) against the increasing time. The error bars represent the standard deviation of three independent measurements. \(c \, (\text{DNA}) = 1.5 \, \mu\text{M} \).

Fig. S4 Relative fluorescence intensity \((F/F_0) \) of different DNA-Cu/Ag NCs. \(F_0 \) and \(F \) are the maximum emission intensity of the DNA-Cu/Ag NCs before and after the addition of 8.0 nM thrombin, respectively. The error bars
represent the standard deviation of three independent measurements.

Fig. S5 Fluorescence intensity of TBA1-Cu/Ag NCs in the presence of 8.0 nM thrombin against the increasing reaction time. The error bars represent the standard deviation of three independent measurements. c(DNA) = 1.5 μM.

Fig. S6 The fluorescence lifetime curves of TBA1-Cu/Ag NCs (excitation at 405 nm and emission at 560 nm) incubating with the different concentration of Thrombin.