Cation exchange at the secondary building units of metal–organic frameworks

C. K. Brozek and M. Dinca

Cation exchange is an emerging synthetic route for modifying the secondary building units (SBUs) of metal–organic frameworks (MOFs). This technique has been used extensively to enhance the properties of nanocrystals and molecules, but the extent of its applications for MOFs is still expanding. To harness cation exchange as a rational tool, we need to elucidate its governing factors. Not nearly enough experimental observations exist for drawing these conclusions, so we provide a conceptual framework for approaching this task. We address which SBUs undergo exchange, why certain ions replace others, how the framework influences the process, the role of the solvent, and current applications. Using these guidelines, certain trends emerge from the available data and missing experiments become obvious. If future studies follow this framework, then a more comprehensive body of observations will furnish a deeper understanding of cation exchange and inspire future applications.

Key learning points

(1) The secondary building units (SBUs) that undergo cation exchange often contain metal sites that are coordinatively unsaturated, are coordinated by at least one solvent molecule, or are capable of higher coordination numbers than suggested by the crystal structures of the respective MOFs.

(2) Metal sites that are coordinatively saturated by the MOF framework/ligands can still undergo cation exchange if the ligands in the framework form a weak field ligand environment at the SBU.

(3) Although periodic trends of cation exchange are not fully established yet, \(\text{Cu}^{2+} \) ions tend to replace most other second row transition metals, but \(\text{Pb}^{2+} \), \(\text{Mn}^{2+} \), and \(\text{Cd}^{2+} \) exchange faster than \(\text{Cu}^{2+} \).

(4) The structure of the MOF may influence the extent of cation exchange; the primary reason for this may be the limited distortion allowed by any given lattice during the exchange process.

(5) Applications of cation exchange in MOFs are just emerging, but the technique has already enabled the formation of previously unknown molecular species, highlighting MOFs as new platforms for coordination chemistry and small molecule reactivity.

Introduction

Cation exchange is a powerful tool for designing new materials. Broadly defined, it is the partial or complete substitution of a metal ion at the site of another. This process offers an alternative, typically milder, route for accessing materials when conventional synthesis at high temperature fails. For decades, it has been employed to tailor the composition of zeolites and, more recently, nanocrystals. Metal–organic frameworks (MOFs) emerged decades ago, but cation exchange was only first demonstrated with them in 2007.\(^1\) In these materials, the exchange occurs at the inorganic clusters, often called the metal nodes or secondary-building units (SBUs). Although these clusters are integral to the MOF structure, the metal ions can be replaced, sometimes entirely and in a matter of hours, without compromising the structure. The details of this fascinating transformation are unknown and the bounty of MOF structures that undergo metal ion substitution present a host of curiosities to be explained.

Geochemists have long known cation exchange as diadochity.\(^2\) Minerals are rarely pure phases because minor amounts of foreign ions of similar charge and size often incorporate into the structure. The replacement of an ion for another at a particular crystalline lattice position is a diadochic transformation, and often requires high temperatures and pressures. For instance, the volcanic rocks known as the olivine series, \((\text{Mg}^{2+},\text{Fe}^{2+})\text{SiO}_4 \), differ by their relative composition of \(\text{Mg}^{2+} \) or \(\text{Fe}^{2+} \), which result from diadochic transformations in magma.\(^3\) Meanwhile, the substitution of \(\text{Na}^+ \) into porous leucite, \(\text{KAlSi}_3\text{O}_8 \), occurs at temperatures as low as 150 °C, illustrating the role of porosity in facilitating the exchange process.\(^4\) V. M. Goldschmidt developed a set of rules to explain the mutual replacement of ions in magmatic minerals.\(^5\) This contends that...
ions undergo diadochy if they possess similar charge and radii. Ions with greater charge or smaller radii are incorporated to a great degree because they form stronger, more ionic bonds. To account for the covalent components of these bonds, Ringwood’s rule states that ions with similar electronegativity replace each other. The ion with the lower value will be exchanged more because it will form bonds with greater ionic character. These trends are useful for assessing the cation exchange behavior of MOFs, though they derive from observations with minerals, which are typically densely packed structures.

Cation exchange is also employed with nanocrystals to fine-tune their band structures by inserting specific ions into well-defined environments. Unlike in bulk CdSe, Cu$_2$S, or similar extended materials, cation exchange in nanocrystals occurs at room temperature at sub-second rates due to enhanced surface area and low atomic counts. The small size of these particles also facilitates atomic reorganization and diminishes lattice strain. This technique enables the synthesis of metastable phases that are not achievable by conventional “hot injection” synthesis, such as Cu$_2$S particles with turn-on plasmon resonance. Cation exchange also allows complexity to be engineered into a nanocrystal device. For instance, templating CdSe on PbSe nanorods for fixed amounts of time generates CdSe–PbSe core–shell heterostructures so that electron and hole carriers are confined within the lower band-gap PbSe core, resulting in high quantum yield excitonic emission.

In solution, metallo-cluster compounds and mononuclear complexes are also known to substitute for other cations. For decades, transmetallation has been used to replace cations in mononuclear compounds featuring multidentate ligands. The mechanism of these exchanges often involves the transfer of a ligand to a new metal ion. Cation substitution at a molecular cluster that left the anionic framework intact was first documented in 1982 for the adamantane-like cage compounds, [M$_4$-n, M$_n$", (SC$_6$H$_5$)$_{10}$]$^{2-}$ (M, M" = Fe$^{2+}$, Co$^{2+}$, Zn$^{2+}$, Cd$^{2+}$). Metal exchange in these compounds was believed to involve free ions exiting the cage before the inserting species associated. However, mechanistic studies of the simpler case of Co$^{2+}$ incorporating into [M$_4$(SPh)$_{10}$]$^{2-}$ (M = Zn or Fe) revealed a process that was quite complex. Few other reports have attempted to understand cation exchange in molecules, though metallothioneins are thought to mediate detoxification of trace metals through some version of metal ion substitution.

This article outlines the available observations of cation exchange at MOF SBUs so that general trends and future studies can be sketched. We organize data around questions that need to be answered to endow this technique with predictive capabilities. All known examples of metal ion substitution at MOF SBUs and relevant details are listed in Table 1 with pictorial representations of the SBUs in Table 2. We also note that we confined our discussion to substitution that occurs at SBUs and not in the pores or when metal ions are part of the ligands, in the so-called metalloligands. More general reviews of cation exchange in MOFs have been published elsewhere. Cation exchange has already yielded some surprising results and new materials that have not been accessible otherwise, but the extent of its use for designing new MOFs in a systematic and predictive manner depends on understanding its mechanism. This tutorial review is intended to provide a blueprint towards this goal.

Which SBUs undergo cation exchange?

If we can predict which MOFs are susceptible to cation exchange, it will become a rational tool for synthesizing new materials with intended properties. After elucidating the factors that make an SBU exchangeable, specific materials could be selected for cation exchange from among the thousands of reported MOFs, and their exact compositions could be designed beforehand. These factors are yet unknown, but surveying the reported examples of cation exchange in MOFs reveals several common features among their SBUs.

A foremost observation is that the exchangeable metal ions in an SBU are often capable of higher coordination numbers than...
Table 1 The known examples of MOF SBUs that undergo cation exchange. SBU numbers refer to structures depicted in Table 2. The exchangeable metal sites are shown in bold and presented alphabetically.

Molecular formula	SBU	Common name	Inserted cation	Extent	Conditions	Characterization	Ref.	
Al(OH)(BDC-BT)	9	MIL-53(Al)-Br	Fe²⁺	Undetermined	H₂O, 85 °C, 5 d	PXRD, BET	34	
Co[H₂O][Co₂O(C₂O₄)₃][HMTT]	11	POST-65(Co)	Mn²⁺, Cu²⁺	Complete	DMF, RT, 1 mo	SXRD, BET	26	
Co₄(BTB)s(BP)	18	SUMOF-1-t (Co:Zn)	Zn²⁺	Complete	DMF, RT, 7 d	SXRD, PXRD	37	
[Cd₂(BTX)₂(BDC)(H₂O)₆]	2	Unknown	Pb²⁺, Dy²⁺, Nd²⁺	Complete	H₂O, RT, 7 d	SXRD, PXRD	25	
[Cd₄(BTX)₄(BDC)] +	7		Cu²⁺	50%	Complete	H₂O, RT, 7 d	IR, PXRD	39
[Cd₄(BTX)₄(BDC)] +	4	CdCd-BTT	Co²⁺, Ni²⁺, Mn²⁺, Cu²⁺, or Zn²⁺	Complete	MeOH, 80 °C, 30 d	IR, SXRD, BET	21	
[(Cd₂(BTTN)[H₂O]₂)₂[2(Fe⁺)pyrene-2(H₂O)]₈	15		Cu²⁺	Complete	MeOH, RT, 8 h	SXRD	42	
[Cu₆(BTB)₄(BPT)₄(OH)(BDC-Br)]	11	POST-65(Cu)	Mn²⁺, Cu²⁺	Complete	MeOH, RT, 10 d	SXRD	36	
Na₂[CH₂(NH₂)₂][Cd₄(H₂O)₆][Cd₁₄H₆N₈CdCl][H₂O]	25	Porph@MOM-11-Cd	Mn²⁺, Cu²⁺	Complete	MeOH, RT, 1 mo	SXRD, BET	32	
Cr₃,F(BDC)Br	13	MIL-10(1Cr)	Al³⁺, Fe²⁺	96%	MeOH, 100 °C, 3 d	PXRD, BET	27	
Mn₄(C₆H₄(C₆H₅)₃)[HMTT]	11	POST-65(Mn)	Mn²⁺	34%	Complete	MeOH, RT, 10 d	SXRD, BET	42
[Cu₆(BTB)₄(BPT)₄(OH)(BDC-Br)]	15		Cu²⁺	38%	Complete	MeOH, RT, 3 mo	PXRD, SXRD	37
[Cu₆(BTB)₄(BPT)₄(OH)(BDC-Br)]	26		Zn 20.81%, Co 14.97%	Complete	MeCN, 80 °C, 6 h	PXRD, optical photos	53	
[Cu₆(DCP)₄(DMF)(H₂O)]₂	29		Zn²⁺, Co²⁺	Complete	MeCN, 80 °C, 6 h	PXRD, optical photos	53	
Fe(OH)(BDC-BT)	9	MIL-53(Fe)-Br	Al³⁺	Undetermined	H₂O, 85 °C, 5 d	PXRD	34	
Mn₄(C₆H₄(C₆H₅)₃)[HMTT]	4	Mn₄(BTT)	Li⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺	Complete	MeOH, RT, 1 mo	SXRD, PXRD, 1, 20, 45		
Mn₄(C₆H₄(C₆H₅)₃)[HMTT]	11	POST-65(Mn)	Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺	Complete	DMF, RT, 15 d	PXRD, BET	38	
Zn₄₂,₇Ni₂,₂₈(BTB)₄(BPT)₄	18	SUMOF-1-(Ni:Zn)	Zn²⁺	Complete	DMF, RT, 7 d	SXRD, PXRD	37	
[Ni₄(C₆H₄(C₆H₅)₃)[HMTT]	11	POST-65(Ni)	Mn²⁺, Zn²⁺	Complete	MeCN, 80 °C, 4 h	SXRD, BET	53	
[Zn₄Ni₂(DCP)₄(DMF)(H₂O)]₂	29		Zn²⁺	Complete	MeCN, 80 °C, 4 h	SXRD, BET	53	
Pb₂[H₂O][Pb₂O(OH)(H₂O)]₆	2		Pb²⁺, Cd²⁺, Cu²⁺, Zn²⁺, Co²⁺, Mn²⁺, or Cr²⁺	Complete	MeOH, RT, 3 wk	SXRD, PXRD	25	
{[Zn₂O₉C₆H₄(C₆H₅)₃][H₂O]}	12		Cd²⁺, Pb²⁺, Cu²⁺	Complete	H₂O, RT, 5 d	SXRD, IR	31	
{[Zn₂O₉C₆H₄(C₆H₅)₃][Co₂O₅]}	14		Cd²⁺, Pb²⁺, Cu²⁺	Complete	H₂O, RT, 6 h	SXRD	42	
Molecular formula	SBU	Common name	Inserted cation	Extent	Conditions	Characterization	Ref.	
--	-----	------------------	-----------------	--------	----------------	---------------------------	------	
[{Zn}_2(DDCPI)(DMF)_3]_n7DMF·5H_2O	16		Cu^{2+}, not Co^{2+}, Ni^{2+}, Cd^{2+}	97%	MeOH, RT, 4 d	PXRD, IR	30	
Zn,BTC·(H_2O)_3	17	Zn-HKUST-1	Cu^{2+}	53%	MeOH, RT, 3 mo	PXRD	22	
Zn_2(OTCPEB)·(H_2O)_12	17	PMOF-2	Cu^{2+}	Complete	MeOH, RT, 3 d	Optical photos, PXRD	22	
Zn,[ETB]_3(BP)	18		Ni^{2+}, Cu^{2+}, Co^{2+}	Complete	DMF, RT, 2 d	BET, PXRD	38	
[Zn],[TADYD]·(DMF)_3	22	NTU-101-Zn	Cu^{2+}	80%	DMF, RT, 14 d	IR, PXRD	29	
Zn,[ETTB]·(DMF)·x solvent	17	PCN-921	Cu^{2+}	Complete	DMF, RT, 4 d	SXRD	23	
Zn,[ETB]·(BP)_3	18	SUMOF-I-Zn	Cu^{2+}, Co^{2+}, Ni^{2+}	Cu complete, Co 35%, Ni 38%	DMF, RT, 3 mo	SXRD, PXRD	37	
[Zn],[PPBOTCDITC]·(H_2O)_3]_n[Zn]	17		Cu^{2+}, not Ni^{2+} or Co^{2+}	87%	MeOH, RT, 7 d	PXRD	24	
Zn,[TIAPy]·(H_2O)_4·(EGME)_3	27	JUC-118	Cu^{2+}	98.8%	2-Methoxyethanol, RT, 3 d	PXRD, optical photos	52	
[Zn],[CBAI]·(DMF)_3·2DMF	28		Cu^{2+}, not Co^{2+} or Ni^{2+}	Complete	DMF–H_2O, RT, 5 d	PXRD, FT-IR, SEM	54	
[Zn],[DCPP]·(DMF)_3·2MeCI	29		Cu^{2+}, Co^{2+}, Ni^{2+}	Cu^{2+} complete, Co^{2+} and Ni^{2+}	MeCN, 80 °C, 4 h	PXRD, optical photos	53	
Zn,Zn,[Cl]·(ETD)·2	3	MFU-4/	Co^{2+}	80% (all but central Zn^{2+})	DMF, 140 °C, 20 h	SXRD	19	
Zn+[Melim],(DMF)_3	5	ZIF-8	Mn^{3+}	12%	MeOH, 55 °C, 24 h	PXRD, BET	18	
Zn,[Cl]·(Im)	6	ZIF-71	Mn^{3+}	10%	MeOH, 55 °C, 24 h	PXRD, BET	18	
Zn,[O]·(BDC)_3	1	MOF-5	Ti^{3+}, V^{5+}, V^{4+}, Cr^{3+}, Cr^{2+}, Mn^{3+}, Mn^{4+}, Fe^{3+}, Ni^{2+}	Ti^{3+} 2.3%, V^{5+} 5%, V^{4+} 4.3%, Cr^{3+} 35%, Cr^{2+} 24%, Mn^{3+} 11%, Fe^{3+} 24%, Ni^{2+} 25%	DMF, RT, 7 d	PXRD, BET, IR	16, 17	
Zr,[O]·(OH)[BDC]·12	10	UiO-66	Ti^{4+}, Hf^{4+}	Ti^{4+} 94%, Hf^{4+} 18%	DMF, 85 °C, 5 d	PXRD, BET	34	
those observed in the X-ray crystal structures. For example, the series of materials known as [Cl]M-MOF-5 arise from Ti$^{3+}$, V$^{3+}$, V$^{2+}$, Cr$^{3+}$, Cr$^{2+}$, Mn$^{2+}$, Fe$^{2+}$, or Ni$^{2+}$ replacing a four-coordinate Zn$^{2+}$ cation in each cluster of MOF-5 (Zn$_4$O(BDC)$_3$) (see the Abbreviations section below).16,17 Similarly, the tetrahedral Zn$^{2+}$ sites in ZIF-8 (Zn-(MeIm)) and ZIF-71 (Zn-(Cl$_2$Im)) can be replaced by Mn$^{2+}$ ions,18 while the four-coordinate Zn$^{2+}$ sites in MFU-41 (Zn$_4$Zn$_4$Cl$_4$(BTDD)$_6$) can be replaced by Co$^{2+}$ ions.19
In several examples, the exchangeable metal ions contain open sites when fully evaporated, but become partially solvated when immersed in solution. The family of MOFs known as MM-BTT, M_{n}[$\{M(C\text{Cl})_{2}BTT\}_{n}$], begin with a two-coordinate C_{2v}-symmetric Mn$^{2+}$ site and five-coordinate Mn$^{2+}$ site with C_{5v} symmetry. In methanol, the latter gains a solvent ligand to become six-coordinate, while the former becomes fully solvated in the cavities of the structure. Either the fully solvated or both Mn$^{2+}$ sites exchange for Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, or Zn$^{2+}$. An inosstructural material known as Cd$_{4}$[$\{Cd(C\text{Cl})_{3}BTT\}_{2}$] contains Cd$^{2+}$ that demonstrates similar coordinative changes upon solvation and replaces for Co$^{2+}$ or Ni$^{2+}$.

Not all structures can be desolvated as MM-BTT, but the metal sites in many other SBUs typically feature bound solvent molecules. The materials known as Zn-HKUST-1 [$\{Zn_{3}BTC_{2}(H_{2}O)_{2}\}$]$_{n}$, P-MOF-2 (Zn$_{24}$TCDCPEB$_{8}$(H$_{2}$O)$_{13}$), PCN-921 (Zn$_{9}$ETTB-4DMF:solvent), and [Zn$_{3}$([PPBOTCDITC]$_{3}$)(H$_{2}$O)$_{2}$][Zn$_{15}$([PPBOTCDITC]$_{3}$)(H$_{2}$O))$_{12}$]$_{n}$ solvent contain SBUs with “paddlewheel” structures. Each of the metal sites in these clusters is bound to four carboxylates from the framework and one solvent molecule at the axial position. Cd$_{3}$(H$_{2}$O)$_{3}$(HMTT)$_{5}$6H$_{2}$O25 and POST-65(Mn) [Mn(H$_{2}$O)[$\{Mn_{4}Cl_{3}(HMTT)_{3}\}$]6 have the sodalite topology, like MM-BTT, with similar partially solvated SBUs. The metal sites in the planar Cd$_{3}$O$_{3}$ clusters of Cd$_{3}$($\{Cd(OH)(HMTT)_{6}\}$6H$_{2}$O are each bound to a solvent molecule and exchange for Pb$^{2+}$. The Mn$_{2}$Cl clusters of POST-65(Mn) are partially solvated, as in MM-BTT, and can be replaced by Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$. In the case of Fe$^{3+}$ exchange, the [M(OH)$_{2}$]$^{2+}$ SBU transforms into [Fe(OH)]$^{1+}$, with two µ$_{2}$-P providing additional charge balance. Similar to the metal sites in the “paddlewheel” and the planar MCl/O clusters, the exchangeable Cr$^{2+}$ sites in MIL-101[Cr]($\{CrF_{2}(H_{2}O)_{2}O(BDC)_{4}\}$)$_{n}$ would be coordinatively unsaturated if not for a pendent solvent ligand in the axial position. Similarly, the SBU of the series [Co$^{3+}$Co$^{5+}$O(BTT)$_{2}$(H$_{2}$O)$_{2}$[DMF]]$_{n}$zDMF-nH$_{2}$O (x = y + 1, z = 7.5, n = 12; x = 2, y = 0, z = 8.5, n = 8; x = 2, y = 1, z = 7, n = 8) contains a cobalt site with a bound solvent molecule and all three Co$^{2+}$ sites exchange to form an entirely new structure. In another case of partial solvation, the exchangeable di-zinc sites in NTU-101-Zn$_{4}$ [Zn$_{4}$([TADYD]$_{3}$[DMF]))$_{n}$] and [Zn$_{4}$([BDCPP$_{3}$][DMF])$_{7}$DMF-5H$_{2}$O]$_{n}$ contain a Zn$^{2+}$ ion held to the framework by only three bonds, with its remaining coordination sphere filled by three solvent molecules. The material [Zn$_{4}$[[OCCIC$_{4}$H$_{10}$Fe$_{2}$(H$_{2}$O)$_{2}$]$_{n}$]$_{n}$ features [Zn$_{5}^{2+}$O$^{3-}$-Zn$_{2}^{3+}$]$_{n}$ chains with each Zn$_{2}^{3+}$ site bound to two bridging carboxylates that are oriented trans from each other. These otherwise four-coordinate Zn$^{2+}$ ions include two ligated water molecules and can be replaced by Pb$^{2+}$, Cd$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Co$^{2+}$, Mn$^{2+}$, or Cr$^{3+}$.

Surprisingly, SBUs with metal sites that are octahedrally coordinated by the framework ligands and have no terminal solvent species typically do not undergo cation exchange. For instance, of the two crystallographically distinct Zn$^{2+}$ sites in MFU-4l, the ion attached through six bonds to the framework does not exchange for Co$^{2+}$. In the MOF known as porph@MOM-10-Cd ([Cd$_{6}$[BPT]$_{3}$][Cl$_{3}$(H$_{2}$O)$_{6}$][Cu$_{4}$H$_{2}$N$_{4}$CdCl]$_{2}$[H$_{2}$O]), one Cd$^{2+}$ is coordinatively saturated in octahedral fashion by framework ligands, while the other site contains a solvent ligand. Cu$^{2+}$ only exchanges the latter completely. Unlike the previous two examples where the extent of cation exchange could be compared between two types of coordination environments within the same MOF, we do not have this vantage point for analysing [(CH$_{3}$)$_{n}$NH$_{2}$]$_{2}$[Cd$_{2}$(TAPTPT)$_{3}$]$_{12}$DMF-18H$_{2}$O, where a single nine-coordinate Cd$^{2+}$ ion is present in the asymmetric unit. Consistent with the generally small degree of exchange for more highly coordinated ions, Cd$^{2+}$ centers in this structure exchange with Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$, and Zn$^{2+}$, but only to a small degree. Finally, the MOFs known as UiO-66 [Zr$_{4}$O$_{2}$(OH)$_{4}$(BDC)$_{12}$] and MIL-53(Al)-Br$_{34}$ [Al(OH)(BDC-Br)] also contain SBUs with metals bound to the framework in high coordination and do not exchange for other ions completely. Given that Zr$^{4+}$ and Al$^{3+}$ form some of the strongest metal–oxygen bonds among the metals incorporated into MOFs, it is remarkable that they undergo any extent of cation exchange.

Metal sites that are coordinately saturated by the framework and undergo complete cation exchange might do so because their weak field ligands dissociate readily. A ligand field analysis of Ni-MOF-5 indicates that the MOF-5 framework is a stronger ligand than halides, but is significantly weaker than coordinating solvents such as DMSO or DMF. Considering that in MOF-5 the ligand field is weak despite the presence of an O$^{2-}$ in the coordination sphere, this study suggests that SBUs comprised of only carboxylates form weak bonds with late transition metal ions. For example, the metal sites in both Na$_{4}$[CH$_{3}$]$_{2}$NH$_{2}$[Zn$_{2}$Cl$_{3}$(TATPT)$_{4}$]$_{n}$Solvate ($M = Cd$ or Cu$^{2+}$) and porph@MOM-11-Cd$_{6}$[(Cd$_{4}$BPT)$_{3}$][Cd$_{4}$H$_{2}$Na$_{2}$S]$_{3}$S (S = MeOH, H$_{2}$O) are bound to six carboxylate ligands, yet exchange for Cu$^{2+}$ at 96% of the sites, virtually quantitatively. Here, the weak field carboxylates might dissociate and permit cation exchange despite the metal sites being octahedrally coordinated. The almost complete exchange of seemingly coordinatively saturated ions is also observed with ligands other than carboxylates. Unlike [(CH$_{3}$)$_{n}$NH$_{2}$]$_{2}$[Cd$_{2}$(TAPTPT)$_{3}$]$_{12}$DMF-18H$_{2}$O or MIL-53(Al)-Br, which exchange partially, the environments of these SBUs typically do not contain single atom µ$_{2}$ ligands, such as O$^{2-}$ or Cl$^{-}$. The “paddlewheel” SBUs of PCN-921, SUMOF-1-Zn (Zn$_{4}$[BTTB]$_{3}$)[BP])$_{3}$, and M$_{6}$[BTTB]$_{3}$(BP) [M = Co, Cu, Ni] contain 4,4′-bipyridine bridging to an adjacent SBU, rather than a solvent molecule at the axial position. Despite lacking solvent ligands, the metal sites in these materials exchange for Cu$^{2+}$ completely. Metal ions in the SBUs of [Zn$_{4}$(4,4′-BP)$_{2}$-FcppSO$_{3}$]$_{2}$ [(Cd(BP)$_{2}$)(FcppSO$_{3}$)]$_{2}$(CH$_{3}$OH)$_{2}$, and [M(BTTN)$_{2}$(H$_{2}$O)$_{2}$][2PF$_{6}$]pyrene-2(H$_{2}$O)$_{2}$]$_{n}$ (ref. 42) (M = Cd$^{2+}$, Zn$^{2+}$) can be entirely replaced by Cu$^{2+}$, despite being bound to four 4,4′-bipyridine ligands and two carboxylates. Similarly, the six-coordinate metal sites in [Cd$_{2}$(BTX)$_{3}$(BDC)$_{3}$][H$_{2}$O]$_{n}$ and [Co$_{2}$(BTX)$_{3}$(BDC)$_{3}$(H$_{2}$O)]$_{n}$ (ref. 39) can be replaced by Cu$^{2+}$, even though they are bound to bridging carboxylates and triazole ligands. None of these examples contain chains bridged by single atom µ$_{2}$ ligands, and undergo complete exchange despite being coordinatively saturated by framework ligands. Importantly, the family of MOFs known as M-MOF-74 feature SBUs with [−M$^{2+}$O$^{2-}$−M$^{2+}$]$_{n}$ chains and is conspicuously absent from the known examples of cation exchange.
Taken together, these observations begin to reveal the factors that enable cation exchange at certain SBUs. The pervasiveness of partially solvated SBUs among these examples and the coordination changes that MM-BTT undergoes upon solvation call into question whether the metal sites in MOF-5, ZIF-8, and MFU-4 are indeed unsaturated when surrounded by a solvent. If geometric flexibility and the ability of metal sites to interact with the solvent are requisites for cation exchange, then we can begin to sketch a mechanism for this process (see Scheme 1). Perhaps the metal ion does not readily leave the cluster as a dissociated cation. Instead, solvent molecules might associate step-wise to the exiting metal ion as it remains partially bound to the cluster. Furthermore, since cation exchange occurs in “paddlewheel” structures with either a solvent or 4,4’-bipyridine at the axial position of the metal site, the clusters must be flexible enough to accommodate the inserting metal ions or, alternatively, the carboxylates and 4,4’-bipyridine must readily dissociate without compromising the framework. Alternatively, we may construct a model where the MOF ligands dynamically dissociate from metal sites in the presence of coordinating solvents and thereby enable cation exchange. The ability of coordinatively saturated metal sites to exchange when surrounded by weak field carboxylates, but not bridging O2− ligands, suggests that cation exchange might become a predictable tool by quantifying the interaction of the SBU with the metal ions. If future studies measured the ligand field strength of the exchangeable SBUs, then general trends might emerge and aid our understanding of the cation exchange process. This might be achieved by UV-vis spectroscopy, for instance, in a manner analogous to classic solution studies of homoleptic complexes.43

Which ions exchange into SBUs?

To program physical properties into a SBU through cation exchange, we must be able to predict whether a particular cation will replace another and to what extent. By controlling the initial concentration of the inserting cation solution, the thermodynamic equilibria of the exchange processes could be controlled to furnish heterometallic SBUs for specific catalytic applications. Clusters with unusual magnetic and electronic properties could be assembled through judicious cation exchange that might be otherwise impossible through direct synthesis. Attaining this depth of understanding can be achieved by comparing how a wide variety of cations replace SBUs in a particular MOF structure. Unfortunately, few studies report the results of more than one exchange and almost none report unsuccessful attempts, which in the context of mechanistic investigations can be equally informative.

Most examples of cation exchange at SBUs involve Cu2+, replacing Zn2+ or Cd2+. The Zn2+ ions in porph@MOM-11-Zn, PCN-921, NTU-101-Zn, and PMOF-2 are known to undergo a high degree of substitution for Cu2+, with no reported attempts to exchange with other ions.22,23,29,36 Similarly, the Cd2+ ions in [{Cd4(BTX)2(BDC)2}H2O]n and [Cd(BTX)2Cl2]n can be totally replaced by Cu2+, but their exchange with other ions is unknown.39 In the isostructural variants of [{M2(BDCPPI)(DMF)3}7DMF·5H2O]n (M = Cd2+ or Zn2+) both Cd2+ and Zn2+ are fully replaced by Cu2+.30 The Zn2+ ions in Zn-HKUST-122 and Zn2+ or Cd2+ ion in [{[M(BP)2(FchphSO3)](CH3OH)}3]n (M = Zn2+ or Cd2+) both exchange for Cu2+,40,41 though not to completion. These reports do not always test whether the cation exchange is reversible, but the reversibility of a process lends insight into the relative thermodynamic stability of the exchanged variants. We do know, however, that reversible Zn2+ exchange into NTU-101-Cu29 or Cu-PMOF-222 is impossible, while Zn2+ can partially replace Cu2+ in the framework of porph@MOM-11-Cu, but not at the porphyrin metalloligand.36

When information is available for Cu2+ as well as other transition metals exchanging in the same host structure, Cu2+ typically inserts to the greatest extent and is the least reversible. In [{Zn5(BDCPPI)(DMF)1}7DMF·5H2O]n, 97% of the Zn2+ sites are exchangeable for Cu2+, but none can be replaced by Ni2+, Co2+, or Cd2+.30 Similarly, Cu2+ exchanges Zn2+ in [Zn3(((PPBOTCDITC))3(H2O))3]n ·Solvent24 and

Scheme 1 Simplified mechanistic pathways for cation exchange at MOF SBUs. Green and red spheres represent exiting and inserting metal ions, respectively. Organic linkers are shown in gray and solvent is depicted in yellow.
Cd$^{2+}$ in Na$_{0.25}$[(CH$_3$)$_2$NH$_3$]$_{1.75}$[Cd(HMBM)$_2$].xSolvent, but Ni$^{2+}$. for example, Ni$^{2+}$ do not. Cu$^{2+}$, Co$^{2+}$, and Ni$^{2+}$ replace Zn$^{2+}$ in SUMOF-1-Zn, but only Cu$^{2+}$ replaces all the sites, while Co$^{2+}$ replaces 35% and Ni replaces 38% after an identical number of times. In the reverse process, the all-Zn$^{2+}$ material can be regenerated from the Co$^{2+}$ or Ni$^{2+}$ variants after 7 days, but Zn$^{2+}$ can replace only 38% of the Cu$^{2+}$ sites in SUMOF-1-Cu. Furthermore, the Co$^{2+}$, Ni$^{2+}$, and Zn$^{2+}$ materials are all interchangeable through reversible cation exchange, while their replacement for Cu$^{2+}$ is irreversible. Similarly, the isostructural series M$_6$[BBTB$_2$]$_2$(BP)$_3$ (M = Zn$^{2+}$, Co$^{2+}$, or Ni$^{2+}$) generate a Cu$^{2+}$ analogue through irreversible cation exchange, while the Co$^{2+}$ and Zn$^{2+}$ variants are completely interchangeable. Despite the overall low degree of cation exchange in [(CH$_3$)$_2$NH$_3$]$_2$[(Cd$_2$Cl)$_2$(TATPT)$_2$]·12DMF-18H$_2$O, Cu$^{2+}$ still replaced Cd$^{2+}$ more than Co$^{2+}$, Ni$^{2+}$, or Zn$^{2+}$ did. Perhaps most tellingly, there is only one instance in which Cu$^{2+}$ is replaced by other transition metal ions: Zn$^{2+}$ and Co$^{2+}$ both exchange the Cu$^{2+}$ sites in Cu$_8$(BIM)$_{16}$, albeit only 21% and 15% of the Cu$^{2+}$ sites are replaced, respectively.

SBUs in which a variety of cations are exchanged but are not fully exchangeable by Cu$^{2+}$ still demonstrate preference for Cu$^{2+}$. All the Mn$^{2+}$ sites of POST-65(Mn) can be replaced by Cu$^{2+}$, and Ni$^{2+}$ but not Cu$^{2+}$. Nevertheless, Mn$^{2+}$ can replace only 34% of the Cu$^{2+}$, whereas the Co$^{2+}$ and Ni$^{2+}$ processes are fully reversible. The Mn$^{2+}$ ions in the SBU of the material known as MnMn-BTT are exchangeable for Cu$^{2+}$ and Zn$^{2+}$, with Cu$^{2+}$ replacing Mn$^{2+}$ to the fullest extent. A notable exception to the apparent dominance of Cu$^{2+}$ is porph@MOM-10-Cd, where Mn$^{2+}$ replaces all Cd$^{2+}$ sites, while Cu$^{2+}$ replaces 76%.

Outside the first transition series, Pb$^{2+}$ and Cd$^{2+}$ tend to exchange preferentially into SBUs over Cu$^{2+}$ and other transition metals. The extent that Zn$^{2+}$ sites can be exchanged in [[Zn(OOCCH$_3$)$_2$Fe]$_2$(H$_2$O)],[(H$_2$O)]$_n$, follows the order Pb$^{2+}$ > Cd$^{2+}$ > Cu$^{2+}$ > Mn$^{2+}$ > Ni$^{2+}$ > Co$^{2+}$ > Cr$^{3+}$. In a related system, Pb$^{2+}$ replaces 75% of the Zn$^{2+}$ sites of [Zn(4,4'-BP)$_2$](FephSO$_3$)$_2$], whereas Cu$^{2+}$ replaces just 50%.

Although little rigorous work has been done to interrogate the kinetics of cation exchange in MOFs, the present studies indicate that the rate of substitution into a particular SBU depends on the identity of the metal ions. For MOF-5, Ni$^{2+}$ requires up to a year to replace 25% of the original Zn$^{2+}$ sites, whereas Cr$^{3+}$ and Fe$^{3+}$ reach that extent in a week. Furthermore, the exchange with Mn$^{2+}$ is so rapid at room temperature that the process destroys the crystals and only proceeds in a controlled fashion when conducted at -35 °C. Though the resulting materials are isostructural, Cu$^{2+}$ fully replaces Zn$^{2+}$ in 2 days, Co$^{2+}$ in 1 day, and Ni$^{2+}$ in 15 days. Pb$^{2+}$ replaces Cd$^{2+}$ in 7 days for Cd$_{12}$(H$_2$O)$_n$[(Cd$_2$O$_4$)(HMTT)$_2$]·6H$_2$O, yet Co$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$ require 12 days to replace Mn$^{2+}$ in a similar structure.

The dominance of Cd$^{2+}$ among these examples and the preference for Cd$^{2+}$ and Pb$^{2+}$ over Cu$^{2+}$ might be explained by differences in electronegativity. Calculations suggest that Pb$^{2+}$ has the lowest electronegativity among the cations that undergo exchange, followed by Mn$^{2+}$ and Cd$^{2+}$. Cu$^{2+}$, on the other hand, has the highest electronegativity.
Similarly, after Co$^{2+}$ replaces Cd$^{2+}$ in MMPF-5(Cd), the surface area decreases, possibly due to collapsed pores.48

Observations suggest that the framework itself limits the extent of cation exchange. The replacement of Zn$^{2+}$ by Co$^{2+}$ in Zn$\{\text{RTR}\}$$\{\text{BP}\}$ occurs initially at the exterior of the crystals and replaces the interior sites after approximately a day. The authors contend that this time dependence is the result of the lattice being more flexible at the exterior, not of diffusion limitations in the framework pores.38 When rationalizing why Cu$^{2+}$ exchanges 53\% of the Zn$^{2+}$ sites in Zn-HKUST-1 but all it is slow in acetone and does not occur in larger solvents such as DMF or 1-pentanol.30 However, solvents appear to play a mechanistic role aside from shuttling solvated cations through pores. Given that most SBUs feature coordinatively unsaturated metal sites or solvent ligands, it is significant that all exchanges involve coordinating solvents. Most use methanol, DMF, or H$_2$O – all of which are strongly donating ligands with relatively high ligand field strengths. The Cu$^{2+}$ substitution into Zn-HKUST-1 occurs more slowly in DMF than in the stronger field ligand methanol.22 Perhaps the Co$^{2+}$ exchange into MMPF-5(Cd) does not go to completion because the weak field solvent, DMSO, is used.48 Based on the ligand field analysis of Ni-MOF-5,16 the lattice is a far weaker ligand than solvents used for cation exchange. If solvents act as ligands during the exchange mechanism, then they might associate with SBUs and weaken the bonds between the exiting metal ion and the framework. They might also stabilize reactive intermediates or dictate the rate at which the inserting metal ion desolvates and subsequently enters the SBU.

Systematic studies will be needed to elucidate how solvents influence the mechanistic details. Future reports should attempt their synthesis procedures with multiple solvents and plot the extent of exchange versus relevant solvent parameters. Finding a single parameter that correlates well with exchange rate would shed light on the crucial steps of the exchange process. For an example, if substitution rate in a particular MOF correlates with the dielectric constant, then perhaps the role of the solvent is to stabilize an intermediate with a large dipole moment. Each system will need to be studied individually, but with many thorough solvent investigations we could learn about the cation exchange mechanism in general.

Applications

As a research direction, cation exchange at MOF SBUs is still in its infancy, but the exchange process already has applications that are impossible to achieve through conventional synthetic routes. Most of the materials covered in this review can only be made through cation exchange. Isolating Ni-MOF-5 is possible by solvothermal synthesis, but all other variants in the (Cl)M-MOF-5 family are not. M-HKUST-1 (M = Zn$^{2+}$ or Cu$^{2+}$), M-PMOF-2 (M = Zn$^{2+}$ or Cu$^{2+}$), MIL-53(Fe)-Br, MIL-53(Al)-Br, MIL-101(Fe), MIL-101(Al), and the class of MOFs known as M$_6$(BTB)$_4$(BP)$_3$ (M = Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, or Zn$^{2+}$) are accessible through direct synthesis, but the mixed-metal derivatives have only been accessed by cation exchange. The Mn$^{2+}$,20 Fe$^{2+}$,49 and Cu$^{2+}$20 (ref. 50) variants of MM-BTT can be made directly, but cation exchange remains the only route to the Zn$^{2+}$, Co$^{2+}$, Ni$^{2+}$-based materials.1,21

The most common application for cation exchanged-MOFs is in gas storage. Installing cations with open coordination sites and open shell electronic structures enhances the adsorption interaction between the SBU and guest molecule to increase the overall gas uptake. Whether starting from CdCd-BTT21 or MnMn-BTT3, altering the cation identity leads to tunable apparent surface areas, H$_2$ uptake, and H$_2$ adsorption enthalpies. So far accessible
only by cation exchange, the partially exchanged Co$^{2+}$ derivative exhibited an unprecedented initial enthalpy of adsorption, ΔH, of 10.5 kJ mol$^{-1}$. Calculations suggest that ZnZn-BTT should exhibit the largest enthalpy of adsorption. Although only a partially substituted Zn analogue has been reported, the all-Zn material may be accessible through cation exchange. Soaking POST-65(Mn) in a solution of Fe$^{2+}$, Co$^{2+}$, Ni$^{2+}$, or Cu$^{2+}$ leads to isostructural analogues with enhanced H$_2$ uptake when measured in mol mol$^{-1}$. Most variants show greater ΔH than the initial 5.21 kJ mol$^{-1}$ of POST-65(Mn), with POST-65(Fe) displaying a ΔH of 6.60 kJ mol$^{-1}$. Each variant also displays distinct magnetic properties, with the Co$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$ materials showing antiferromagnetic coupling while the Fe$^{2+}$ version exhibits ferromagnetic coupling. The Zn$^{2+}$-variants of HKUST-1 and PMOF-2 do not show appreciable gas uptake.

10.5 kJ mol^{-1}

Catalytically active in oxidizing CO to CO$_2$. When measured in mol mol$^{-1}$/C0, the Cu$^{2+}$ variant adsorbs significant CO$_2$ than the initial 5.21 kJ mol$^{-1}$ of POST-65(Mn), with POST-65(Fe) displaying a ΔH of 6.60 kJ mol$^{-1}$. Each variant also displays distinct magnetic properties, with the Co$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$ materials showing antiferromagnetic coupling while the Fe$^{2+}$ version exhibits ferromagnetic coupling. The Zn$^{2+}$-variants of HKUST-1 and PMOF-2 do not show appreciable gas uptake since they are not stable to complete desolvation. The Cu$^{2+}$ analogue of HKUST-1 is, on the other hand, stable to desolvation, and greater amounts of Cu$^{2+}$ substitution into the Zn$^{2+}$ parent material lead to significant N$_2$ uptake indicative of greater porosity and stability. Similarly, the ability of $\text{M}_{6}(\text{BTB})_4(\text{BP})_3 (\text{M} = \text{Co}^{2+}, \text{Ni}^{2+}, \text{or Zn}^{2+})$ to adsorb N$_2$ can be tailored by altering the ratio of any two of these cations in the structure. Finally, while NTU-101-Zn exhibits a BET surface area of just 37 m2 g$^{-1}$, the Cu$^{2+}$ variant adsorbs significant amounts of H$_2$, CO$_2$, and N$_2$, to give a BET value of 2017 m2 g$^{-1}$.29

The most exciting potential application of cation exchange lies in the area of small molecule reactivity and catalysis, yet catalysis at SBUs altered through cation exchange is only just emerging. Even in these examples, most reports focus on simply demonstrating reactivity or catalysis; it is unfortunately not yet common practice to show how the new SBUs compare with the state-of-the-art (heterogeneous) catalysts for a given transformation. For instance, after replacing the Cd$^{2+}$ ions in porph@MOM-10-Cd with Mn$^{2+}$ or Cu$^{2+}$, the MOFs are capable of catalysing the oxidation of trans-stilbene to stilbene oxide and benzaldehyde in the presence of tert-butyl hydroperoxide. Here, the conversion and turnover number compare well to molecular Mn$^{3+}$TMPyP under similar conditions. The Cu$^{2+}$, Zn$^{2+}$, and Co$^{2+}$ variants of the helical framework known as Cu$_{16}$(BIM)$_{16}$ catalyse the self-coupling of 2,6-di-tert-butylphenol under ambient conditions to afford 3,3’5,5’-tetra-tert-butyl-4,4’-diphenoquinone. After replacing the four exterior Zn$^{2+}$ sites in the SBU of MFU-4I with Co$^{2+}$, Co-MFU-4I becomes catalytically active in oxidizing CO to CO$_2$.

Cation exchange builds a fundamentally new platform for reactivity studies because the resultant metal clusters of SBUs are often unusual coordination motifs that are difficult or impossible to achieve as solution-phase molecules. For example, no molecule is known to stabilize Ni$^{2+}$ or Co$^{2+}$ in the two-coordinate environment conferred by MM-BTT. The metal species in the (Cl)M-MOF-5 family are without a precedent in both materials and molecules because of the unusual all-oxygen, dianionic, and tripodal ligand field in the MOF-5 SBU. These sites are some of the few examples of divalent metal ions in three-fold symmetric tetradentate environments. A ligand field analysis of Ni-MOF-5 indicates that MOF-5 is by far the strongest ligand to stabilize Ni$^{2+}$ in a pseudo-tetrahedral geometry, which is remarkable because ligand fields of similar strength coerce Ni$^{2+}$ to assume a square planar configuration. Preliminary studies demonstrate that these unusual species perform small molecule activation without compromising the integrity of the lattice. The Fe$^{2+}$ centers in Fe-MOF-5 react with NO to generate an unusual ferric nitrosyl, which is the only example of electron transfer to NO in a MOF and the only example of a ferric nitrosyl in an all-oxygen environment.

Viewing the cation exchanged SBUs as molecular entities will be a useful perspective for conceiving new applications in reactivity and catalysis. Reimagining SBUs as coordination pockets for various transition metal ions constructs an entirely new platform for coordination and redox chemistry. SBUs will act as superior catalysts only by treating them as an unusual ligand environment. This viewpoint inspired the use of open coordination and open shell metal ions to enhance H$_2$ uptake. Novel porous magnets might result from installing particular metal ions into desirable molecular entities. Only a few reports have investigated the applications of cation exchange, but the ability to insert reactive metal ions into specific geometries should enable chemistry that is otherwise impossible to achieve.

Outlook

Being able to substitute specific metal ions into predefined environments is a level of control uncommon to solid state synthetic chemistry. Cation exchange into the SBUs of MOFs is already unlocking materials with unprecedented properties that cannot be achieved otherwise. However, harnessing this process as a predictive synthetic tool will require understanding its mechanistic details. The available experimental observations are insufficient to draw meaningful conclusions about how the process transpires in even a particular material. Future studies, including those we proposed here, will uncover trends that will make this technique predictive. We recommend that if a MOF appears active for cation exchange, then the substitution should be attempted for a variety of metal species and solvents to tease out trends. The rate and extent of exchange under these different conditions could be compared against various chemical properties of the metal ions and solvents to find parameters that are most relevant to the mechanism. Future studies should also report exchange conditions that did not work along with those that did. Such detailed, seemingly obscure, observations might prove critical in uncovering a deeper understanding of cation exchange.

Discovering how SBUs undergo cation exchange will teach us about MOF chemistry and dynamics in general. For example, if coordinating solvents enable the exchange process by binding to metal sites in SBUs, perhaps this will reveal that MOFs dynamically interact with solvents and are not as rigid as commonly assumed or as portrayed by X-ray crystal structures. Elucidating these sorts of fundamentals about MOFs will have profound consequences for any of their applications. Understanding how the lattice flexibility or the symmetry of the SBU
limits the geometrical distortions of the metal site will shape future catalytic studies of MOFs. The reactivity of metal sites could be controlled with the fine level of control we enjoy with molecular catalysts, but with the unexplored solid-state ligand environment of MOFs. Cation exchange at the SBUs of MOFs promises a new landscape of materials chemistry and our investigations have only just begun.

Addendum

During the preparation and review of this manuscript, several relevant reports were published that reinforce the trends stated above. Consistent with our comments on the types of SBUs that undergo exchange, these new examples feature metal sites that are capable of higher coordination numbers. Thus, one of the two replaceable Zn$^{2+}$ sites in JUC-118 \([\text{[Zn}_4\text{(TIAPy)}\text{]}(\text{H}_2\text{O})_4\text{(EGME)}_2])\) is 4-coordinate,\(^{52}\) as are two of the four unique Zn$^{2+}$ sites in \([\text{Zn}_4\text{(DCPP)}_2\text{]}(\text{DMF})_3(\text{H}_2\text{O})_2]\)\(^\text{53}\) while one of the two exchangeable Zn$^{2+}$ sites in \([\text{Zn}_4\text{(CBAI)}_2\text{(DMF)}_2]\)\(^\text{2DMF}\) is 5-coordinate.\(^{54}\) In addition, the SBUs in these new examples contain metal sites with bound solvent molecules. DMSO occupies a coordination site of the 6-coordinate Zn$^{2+}$ in JUC-118, two DMF molecules are bound to a Zn$^{2+}$ atom in the asymmetric unit of \([\text{Zn}_4\text{(CBAI)}_2\text{(DMF)}_2]\)\(^\text{2DMF}\), and two of the four Zn$^{2+}$ sites in \([\text{Zn}_4\text{(DCPP)}_2\text{]}(\text{DMF})_3(\text{H}_2\text{O})_2]\) are ligated by DMF or H$_2$O. In one of the most complete mechanistic reports of cation exchange in a MOF, magnetic measurements revealed that the first Zn$^{2+}$ to exchange in \([\text{Zn}_4\text{(DCPP)}_2\text{]}(\text{DMF})_3(\text{H}_2\text{O})_2]\) is the one with most bound solvent. Even though some of these exchangeable metal sites are coordinatively saturated, the substitution presumably happens only because the ligands are weak-field carboxylates, as explained before. Like most examples of cation exchange, Cu$^{2+}$ replaces the Zn$^{2+}$ atoms in these MOFs completely and, in the case of JUC-118 and \([\text{Zn}_4\text{(CBAI)}_2\text{(DMF)}_2]\)\(^\text{2DMF}\), does so irreversibly. While Ni$^{2+}$ and Co$^{2+}$ do not exchange at all into \([\text{Zn}_4\text{(CBAI)}_2\text{(DMF)}_2]\)\(^\text{2DMF}\), they insert only into the 6-coordination sites of \([\text{Zn}_4\text{(DCPP)}_2\text{]}(\text{H}_2\text{O})_2]\) due to the preference for these geometries. The new reports also offer insight into the role of the solvent. For instance, Cu$^{2+}$ inserts into \([\text{Zn}_4\text{(TIAPy)}\text{]}(\text{H}_2\text{O})_4\text{(EGME)}_2])\) in the presence of 2-methoxethanol but not common solvents such as DMF, MeOH, or acetone. Since 2-methoxethanol also induces a single crystal-to-single crystal transformation, perhaps it allows cation exchange by facilitating bond rupture between the Zn$^{2+}$ and carboxylate ligands in the MOF. A recent report also investigated the solvent dependence of Co$^{2+}$ exchanging into MFU-4 and Ni$^{2+}$ into MOF-5. By plotting the rates of exchange against a variety of solvent parameters, the exchange of Co$^{2+}$ into MFU-4 appeared to be limited by the ability of the solvents to solvate the exiting Zn$^{2+}$ ions, while the Ni$^{2+}$ exchange into MOF-5 was limited by the ability of the solvent to desolvate the inserting Ni$^{2+}$ ions.\(^{55}\) The publication of these reports in just the past few months speaks of the burgeoning interest in this field, while offering observations that reinforce the trends we propose in this review.

Abbreviations

Abbreviation	Full Form
BDC	1,4-p-Benzenedicarboxylate
BDCPPI	N$_x$N$_y$-Bis(3,5-dicarboxyphenyl)pyromellitic diimide
BIM	4’-[4-Methyl-6-(1-methyl-benzimidazolyl-2-group)-2-n-propyl-benzimidazolyl methyl]
BP	4,4’-Bipyridine
BPT	Biphenyl-3,4’,5-tricarboxylate
BTB	1,3,5-Benzenetribenzoate
BTC	1,3,5-Benzenetraicarboxylate
BTDD	Bis[1,2,3-triazolo-[4,5-b][4’,5’-i]dibenzo-[1,4]-dioxin
BTT	1,3,5-Tris(tetrazol-5-yl)benzene
BTTN	Benzene-1,3,5-triytrisionicotinate
BTX	1,4-Bis[tetraza-1-ylmethyl]benzene
CBAI	5-(4-Carboxybenzoylamino)-isophthalate
Cl$_2$Im	Dihydropyridolate
DCPP	4,5-Bis[4’-carboxyphenyl]-phthalate
EGME	2-Methoxethanol
ETTB	4’,4’’,4’’’,4’’’’-Ethene-1,1,2,2-tetrayltetrakis-[1,1’-biphenyl]-3,5-dicarboxylate
FcphSO$_3$	m-Ferrocenyl benzensulfonate
HMTT	5’,5’,10’,15’,15’-Hexamethyltruxene-2,7,12-tricarboxylate
HMBM	2-Hydroxymethyl-4,6-bij[2’-methoxy-4’- (2’’-1’’-carboxy)-ethylene]-1,3,5-mesitylene
MeM	2-Methylimidazolate
O$_2$ScF$_3$O$_3$	Ferrocene-1,1’-disulfonate
PPBOTCDITC	N-Phenyl-N’-phenyl bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetraacarboxydiimide tetraacarboxylate
TADYDI	5,5’(1,2,3-Triazole-1,4-diyl)-diisophthalate
TATPT	2,4,6-Tris[2,5-dicarboxyphenyl-amin]-1,3,5-triazine
TDCPEB	1,3,5-Tris[3,5-dicarboxyphenylethynyl]benzene
TIApy	1,3,6,8-Tetrakis(3,5-isophthalate)pyrene (H$_8$TIAPy)

Acknowledgements

Our work on cation exchange in MOFs is partially supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0006937. MD thanks 3M, the Sloan Foundation, and the Research Corporation for Science Advancement (Cottrell Scholars) for non-tenured faculty funds. CKB is partially supported through an NSF Graduate Research Fellowship Program through Grant 1122374. We also thank the MIT-Hayashi (MISTI) Seed Fund for travel funds.

Notes and references

1. M. Dinca and J. R. Long, J. Am. Chem. Soc., 2007, 129, 11172–11176.
2. K. A. Misra, Introduction to Geochemistry: Principles and Applications, Wiley, West Sussex, 2012.
3. H. Jaffe, Crystal Chemistry and Refractivity, Dover, 1988.
4. A. Putnis, Mineral. Mag., 2002, 66, 689–708.
