Minimal Theory of Isomerism- Q.Q and Other Interactions

P. C. Srivastavaa and L. Zamickb
aDepartment of Physics, Indian Institute of Technology, Roorkee 247 667, India
bDepartment of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

Abstract. We perform shell model calculations using a quadrupole-quadrupole interaction (Q.Q) in a single j shell space. We show that this one-parameter interaction is a good predictor of where nuclear isomerism occurs and where it does not occur. The limitations of this interaction are also discussed. We then include other interactions, e.g. in the $f_{7/2}$ shell those obtained from the (local) spectrum of a two particle system and then from a two hole system. In the $g_{9/2}$ where there is insufficient empirical data from the two hole system and so various empirical interactions are used.

1. Introduction

Study of a nuclear isomer in the different region of nuclear chart attracted much experimental and theoretical investigations \[1, 2, 3, 4, 5]\). In the present work we consider two types of isomeric states. In one case, we have the spin-gap isomer state of angular momentum J for which there are no states of angular momentum ($J-1$) or ($J-2$) below the isomeric state. These isomers can have very long half-lives. They cannot decay by E1, M2 or E2 transitions. Then there is the second kind of isomer, where there is a, say, a state of angular momentum ($J-2$) below the J state but the energy difference is so small that the transition is hindered; e.g. for E2 transitions the rate goes as $(E_i - E_f)^5$; for M_1 and E_1 as $(E_i - E_f)^3$.

While admirable progress has been made in the calculations of larger and larger spaces for quantitative shell model properties \[6, 7, 8]\, it should not be forgotten that much insight can be gained by doing simple calculations with simple interactions. We here discuss, in part, the quadrupole-quadrupole interaction (Q.Q) which has only one parameter i.e. the overall strength. This parameter can be adjusted to give the correct excitation energy. We will show that the Q.Q interaction is a good predictor of where isomeric states can be found. It should be said that the idea of using matrix elements from experiment came from earlier works of deShalit and Talmi \[9, 10]\.
We then consider, in addition, other empirical (fitted) interactions. In the f\textsubscript{7/2} shell we can use the spectrum of the two-particle system 42Sc from the experimental data for the effective interactions to make predictions of isomerism in 43Sc, 43Ti and 44Ti. We then use, the local hole-hole spectrum of 54Co to make predictions of the isomerism in 53Fe, 53Co and 52Fe. In the g\textsubscript{9/2} shell, there is insufficient experimental data about the two hole system 98In so empirical two-body matrix elements are obtained by other means \cite{11, 12, 13}.

For a neutron and proton in a single j shell, the states of even angular momentum J have isospin T= 1 whilst the odd ones have T=0 zero. The T=0 two-body matrix elements can only be obtained from the np system- not from nn or pp. They are usually not as well known as the ones with T=1. Because of charge independence the spectra of T=1 states for the np, nn and pp systems are nearly identical and this is a big help in obtaining the corresponding two-body matrix elements extracted from the energy-levels. We will later show the striking differences in T=0 matrix elements obtained in 1964 \cite{14, 15, 16, 17} and the ones obtained in 2006 \cite{18} when better data were available. Our aim is to see differences in the energies with earlier and new set of effective interactions.

Isomeric states played a very prominent role in the ground breaking book, elementary theory of nuclear shell structure, by Mayer and Jensen \cite{19}. They are cited as evidence that there is indeed a shell structure in nuclei. For updated reading and broadening the scope the review articles by Heyde and Wood \cite{20} on shape isomers and by Draculis, Walker and F.G. Kondev \cite{21} on isomers in heavier nuclei are recommended. The latter also discusses medical applications of nuclear isomers.

Table 1: Two-body matrix elements of the Q.Q interaction. We have chosen χ’ =1 corresponding to χ’ = χ b4.

J	0	1	2	3	4	5	6	7	8	9
f\textsubscript{7/2}	-1.9184	-1.5530	-0.8952	-0.0914	0.6395	1.0049	0.6396	0.8952		
g\textsubscript{9/2}	-2.9178	-2.5642	-1.9010	-1.0168	-0.0442	0.8400	1.4147	1.4147	0.5305	-1.5916

We will be dealing mainly with high spin isomers. In the single j shell it is easy to determine the maximum J. For identical particles put a given particle in the highest m state consistent with the Pauli principle. For example, for 43Sc the one proton is in m=7/2 state and the two neutrons in 7/2 and 5/2. This adds up to 19/2 which is indeed J\textsubscript{max} for 43Sc. It is also J\textsubscript{max} for 43Ti, 53Co and 53Fe. For 44Ti we have two protons and two neutrons one with m=7/2 and one with m=5/2. This is responsible to generate J = 12+.

Table 2: Two body matrix elements used in the f\textsubscript{7/2} shell.

J	0	1	2	3	4	5	6	7
MBZ(1964)	0.0000	1.036	1.509	2.248	2.998	1.958	3.400	0.617
MBZE (2006)42Sc	0.0000	0.6110	1.5803	1.4904	2.8153	1.5100	3.2420	0.6163
hole-hole 54Co	0.0000	0.9369	1.4457	1.8215	2.6450	1.8770	2.9000	0.1974
Q.Q	0.0000	0.3655	1.0232	1.8270	2.5579	2.9233	2.5580	1.0232
Table 3: Two-body matrix elements used in the $g_{9/2}$ shell.

	0	1	2	3	4	5	6	7	8	9
CCGI	0.000	0.829	1.710	1.877	2.217	2.046	2.383	1.913	2.527	0.915
Qi et al.	0.000	1.220	1.458	1.592	2.283	1.882	2.549	1.930	2.688	0.626
$g_{9/2}$ Q.Q	0.000	0.3536	1.0168	1.8990	2.8736	3.7618	4.3325	4.3325	3.4483	1.3262
INTd	0.000	1.1387	1.3947	1.8230	2.0283	1.9215	2.2802	1.8797	2.4275	0.7500

2. The Q.Q and other interactions in the single j shell

The interaction we use is $\chi Q.Q = -\chi \sqrt{5} [(r^2 Y^2)_i (r^2 Y^2)_j]^0$. Two body matrix elements were constructed using harmonic oscillator radial wavefunctions. These have one parameter, the oscillator length b, which is approximately equal to $A^{1/6} \text{ fm}$. In evaluating energies, unless specified otherwise, we set χb^4 to 1 MeV. Alternately, one can say that the energy is in units of χb^4. Results for two-body matrix elements of this interaction are shown in table 1.

We shall also be showing results from other interactions for comparison. In the early 1960’s empirical two body matrix elements were taken from the spectrum of ^{42}Sc in order to do calculations in the $f_{7/2}$ region. We cite the works of Bayman et al. [15], McCullen et al. [16] and Ginocchio and French [17]. However, at that time (1964) the T=0 two body matrix elements were not well determined. The T=1 states also occurred in ^{42}Ca and ^{42}Ti and so were much better known. Despite these deficiencies we show in the second column of table 2 the results of the old MBZ (1964) interaction. This should be compared with the results of the newer MBZE (2006) interaction shown in the 3rd column, as performed by Escuderos, Zamick and Bayman [18]. The latter calculation is basically the same as the 1964 one except that the input parameters were better known in 2006. Also, shown are matrix elements from the two hole system ^{54}Co. These are appropriate for nuclei in the upper part of the $f_{7/2}$ shell (had one used the same interaction, the spectrum of holes would be the same as that for particles). In the first 3 rows of table 2 the ground state energy has been set to zero. To make a better comparison with Q.Q we also added a constant (1.9184 MeV) to the matrix elements in the first row of Table 1 and show this in the last row of Table 2. Adding a constant will not affect the level spacings. In table 3 we have shown the two-body matrix elements used for the $g_{9/2}$ shell calculations.

We note that besides a strongly attractive J=0, T=1 matrix element, Q.Q has also attractive matrix elements for the neutron-proton system in the T=0 channel, namely for J=1 and J=J_{max}, the latter being seven in the $f_{7/2}$ shell and nine in the $g_{9/2}$ shell. This is also a feature of the empirical two-body matrix elements in both shells. The Q.Q interaction is thus quite different from the J=0 T=1 pairing interaction which was in vogue in the early fifties, e.g. in the works of Flowers [13] and Edmund and Flowers [22].
3. The spectra with a Q.Q and other interactions.

In this section we present results of single j shell calculations of energy levels for selected nuclei in both the f_{7/2} and g_{9/2} regions. These are contained in Table 4 to 9. In Table 4, we show the spectra of even-even nuclei using the Q.Q interaction; in Table 5, odd A nuclei are considered and in Table 6, odd-odd nuclei. In Tables 7,8 and 9 we have reported the corresponding spectra, but using local interactions from experiment. For the lower part of the f_{7/2} shell we use the particle-particle spectrum of ^{42}\text{Sc} as input whilst in the upper half the hole-hole spectrum of ^{54}\text{Co}. Discussions will follow in the next section. In tables 4 to 8 we give results for \(\chi^\prime = \chi b^4 = 1 \). A reasonable fit with the experimental data in the f_{7/2} and g_{9/2} region is given for \(\chi = 0.4 \text{ MeV} \).

Table 4: Energy levels (in MeV) of even-even nuclei with a Q.Q interaction. Energy are in MeV.

J	^{44}\text{Ti}	^{52}\text{Fe}	^{48}\text{Cr}	^{96}\text{Cd}	^{92}\text{Pd,88}\text{Ru}
0	0.000	0.000	0.000	0.000	
1	2.995	2.296	5.040	4.747	
2	0.570	0.552	0.867	0.563	
3	3.955	2.854	6.077	5.333	
4	1.905	0.925	2.753	1.557	
5	5.062	2.884	7.734	6.247	
6	3.468	1.695	5.352	3.044	
7	4.716	3.722	8.820	5.787	
8	5.087	2.647	5.625	4.817	
9	6.423	4.978	7.620	7.667	
10	6.501	4.125	9.235	6.703	
11	7.446	6.703	10.767	9.400	
12	6.277	6.126	11.414	8.535	
13	8.817	12.449	10.864	10.481	
14	8.633	12.075	12.85	13.636	
15	11.558	12.285	12.706	16.113	
16	11.377	10.163	15.317	18.897	
17	11.294	10.127	18.347	22.136	
18	21.793	25.885	18.347	22.136	
19	21.793	25.885	18.347	22.136	
20	21.793	25.885	18.347	22.136	
21	21.793	25.885	18.347	22.136	
22	21.793	25.885	18.347	22.136	
23	21.793	25.885	18.347	22.136	
24	21.793	25.885	18.347	22.136	
Table 5: Energy levels (in MeV) of odd A nuclei with a Q,Q interaction.

2J	43Sc	53Fe, 53Co	97Cd	95Ag	93Ag
1	3.906	7.159	7.623	6.833	
3	3.284	6.585	6.164	5.365	
5	2.018	5.485	4.426	4.075	
7	0.000	3.441	0.000	0.000	
9	0.816	0.000	0.997	0.740	
11	1.905	1.602	2.250	1.666	
13	3.217	3.156	3.361	2.531	
15	3.467	4.752	5.154	3.708	
17	4.088	5.703	5.874	4.597	
19	2.700	6.852	8.640	4.611	
21		6.585	8.252	5.992	
23		6.585	5.675	7.624	
25		4.374	8.032	8.260	
27			10.173	10.775	
29			11.295	10.499	
31			13.139	13.495	
33			12.907	12.710	
35			14.475	15.045	
37			12.840	15.318	
39				18.253	
41				18.091	
43				21.424	
45				20.761	
Table 6: Energy levels (in MeV) of Odd-Odd Nuclei with a Q.Q Interaction.

J	44Sc	52Mn	48V	94Ag	96Ag
0	2.982	5.623	0.000	3.506	
1	0.000	0.000	0.275	0.000	
2	0.474	0.001	0.631	0.388	
3	0.960	0.558	1.147	1.037	
4	1.786	0.308	1.885	1.823	
5	2.066	0.588	2.731	2.694	
6	0.472	0.914	3.667	3.511	
7	1.779	1.426	0.657	3.779	
8	2.989	2.564	2.217	0.589	
9	3.427	2.682	3.810	2.580	
10	5.254	4.446	5.555	4.511	
11	4.450	4.407	6.741	5.727	
12	6.412	9.014	7.544		
13	6.520	9.189	7.409		
14	9.079	9.720	9.013		
15	9.263	11.127	7.245		
16	13.312				
17	13.460				
18	15.805				
19	15.437				
20	17.745				
21	16.507				
Table 7: Energy levels (in MeV) of even A Nuclei with $f_{7/2}^{42}$Sc and $f_{7/2}^{54}$Co interactions.

J	44Ti (with $f_{7/2}^{42}$Sc)	52Fe ($f_{7/2}^{54}$Co)	48Cr (with $f_{7/2}^{42}$Sc)	48Cr ($f_{7/2}^{54}$Co)
0	0.000	0.000	0.000	0.000
1	5.660	5.459	5.472	5.172
2	1.159	1.024	1.203	1.084
3	5.783	5.810	5.746	5.614
4	2.787	2.611	2.249	1.965
5	5.868	6.234	4.302	4.251
6	4.065	3.989	3.484	3.062
7	6.040	5.880	5.954	5.535
8	6.084	5.649	5.002	4.262
9	7.989	7.737	6.989	6.267
10	7.390	6.611	6.447	5.401
11	9.871	8.617	8.623	7.671
12	7.708	6.413	7.891	6.606
13			11.578	10.168
14			10.263	8.580
15			14.550	12.432
16			13.583	11.421

Table 8: Energy levels (in MeV) of odd A nuclei with $f_{7/2}^{42}$Sc and $f_{7/2}^{54}$Co interactions.

2J	43Sc (with $f_{7/2}^{42}$Sc)	53Fe (with $f_{7/2}^{54}$Co)
1	4.319	4.870
3	2.885	3.528
5	3.451	3.849
7	0.000	0.000
9	1.676	1.524
11	2.332	2.201
13	3.503	3.337
15	3.514	3.204
17	4.300	4.052
19	3.648	2.817
Table 9: Energy levels (in MeV) of Odd-Odd Nuclei with $f_{7/2}^{42}{\text{Sc}}$ and $f_{7/2}^{54}{\text{Co}}$ interactions.

J	$^{44}{\text{Sc}}$ (with $f_{7/2}^{42}{\text{Sc}}$)	$^{52}{\text{Mn}}$ (f$^{42}_{7/2}$Co)	$^{48}{\text{V}}$ (with $f_{7/2}^{42}{\text{Sc}}$)	$^{48}{\text{Mn}}$ (f$^{54}_{7/2}$Co)
0	3.055	2.784	5.200	5.975
1	0.427	0.446	0.450	0.497
2	0.000	0.155	0.000	0.093
3	0.762	0.797	0.924	0.903
4	0.719	0.792	0.157	0.000
5	1.279	1.325	0.761	0.460
6	0.381	0.000	0.626	5.894
7	1.275	0.866	1.339	0.913
8	3.099	2.554	2.484	1.980
9	3.392	2.724	2.836	2.077
10	4.801	4.191	4.610	3.820
11	4.635	3.604	4.596	3.548
12			6.993	5.895
13			6.910	5.493
14			8.809	7.474
15			9.531	7.757

4. Qualitative discussion of the Q.Q. tables

Here we will simply report whether the Q.Q interaction is able to predict a spin gap, a weak isomerism or no isomerism. These states are shown in Tables 4, 5 and 6. Note that the excitation energies are given for $\chi'' = \chi b^4 = 1.0$. We can adjust this parameter to get the (possible) isomeric state at the right energy.

In Table 4, we consider the even-even nuclei. For four particles ($^{44}{\text{Ti}}$) and four holes ($^{52}{\text{Fe}}$) we get identical spectra with any interaction including Q.Q. We get a prediction of a spin gap since $J = 12^+$ lies lower than $J = 11^+$ or $J = 10^+$. For the eight particle system $^{48}{\text{Cr}}$ we do not predict any isomerism. We get analogous behavior in the $g_{9/2}$ shell– a spin gap for the four hole system ($^{96}{\text{Cd}}$) but none for the eight hole case ($^{92}{\text{Pd}}$) or the eight particle case ($^{88}{\text{Ru}}$).

In Table 5, we consider even-odd and odd-even nuclei. For the three particle and three hole systems Q.Q gives a spin gap for the $J = 19/2^-$ state, which lies lower than $J = 17/2^-$ or $15/2^-$. This pertains to $^{43}{\text{Sc}}$, $^{43}{\text{Ti}}$, $^{53}{\text{Fe}}$ and $^{53}{\text{Co}}$. Q.Q also yields an spin gap for the three hole system in the $g_{9/2}$ shell $^{97}{\text{Cd}}$ and $^{97}{\text{In}}$. The $J = 25/2^+$ state lies lower than $23/2^+$ or $21/2^+$. However, no isomerism is forthcoming to the silver isotopes $^{95}{\text{Ag}}$ or $^{93}{\text{Ag}}$.

In Table 6, the odd-odd nuclei are considered and there is no isomerism with Q.Q for any of them.
5. Discussion of the tables

A spin gap in ^{52}Fe was found and studied by D.A. Geesaman et al. [23]. The J=12$^+$ state was below the 10$^+$. A key finding pertaining to isomers in the $g_{9/2}$ shell is contained in the work of Nara Singh et al [24]. They found a J=16$^+$ state in ^{96}Cd which was lower in excitation energy than the lowest J=15$^+$ and J=14$^+$ states. Thus the 16$^+$ could not decay by magnetic dipole or electric quadrupole radiation.

A popular but somewhat arbitrary definition of a nuclear isomeric state is one that lives longer than 1 ns. We adopt this definition here. In Table 10 we show data on half-lives of isomers gathered from the NNDC [25] and corresponding calculations are shown in Tables 12 and 13. Direct comparison of the calculated half-life with the experimental data is difficult because the half-lives are super sensitive to the transition energies. For comparison, in Table 10 we show very short half-lives of non-isomeric states in ^{43}Sc (J=15/2) and ^{44}Ti (J=10).

Table 10: Half-lives from the National Nuclear Data Center (NNDC).

Nucleus	E(keV)	J	Half life
^{43}Sc	2988.12	15/2$^-$	5.6 (7) ps
	3123.73	19/2$^-$	472 (4) ns
^{44}Ti	7671.4	(10$^+$)	1.87 (35) ps
	8039.9	(12$^+$)	2.1 (4) ns
^{52}Fe	6958.0	12$^+$	45.9 (6) s
^{53}Fe	3040.4	19/2$^-$	2.54 (2) min
^{94}Ag	?	(7$^+$)	0.55 (6) s
^{95}Ag	6670	(21$^+$)	0.40 (4) s
^{96}Ag	?	(15$^+$, 13$^-$)	< 40 ms
^{96}Cd	?	16$^+$	0.29$^{+0.11}_{-0.10}$ s [12]

In Table 4 we see clearly that with Q.Q the J=12$^+$ state for two protons and two neutrons and with two proton hole and two neutron holes is a spin gap isomer. The J=12$^+$ lies below J=11$^+$ and J=10$^+$ (6.277 vs. 7.466 and 6.501). The J=12$^+$ become isomer only when it lies below J=11$^+$ and J=10$^+$. As seen in table 10 the half life of ^{44}Ti is 1.87ps while that of ^{52}Fe is 45.9s. Clearly the J=12$^+$ state in ^{44}Ti is a weak isomer while the J=12$^+$ in ^{52}Fe is a spin gap isomer. The reason for this is that in ^{52}Fe the 12$^+$ state lies below the lowest 10$^+$ state but in ^{44}Ti J=12$^+$ is slightly above J=10$^+$. In the single j shell model ^{44}Ti consists of two protons and two neutrons in the $f_{7/2}$ shell while ^{52}Fe consists of two proton holes and two neutron holes. In the single j shell model the hole-hole interaction is the same as particle-particle interaction. Thus if the same interaction is used for the two nuclei then the J=12$^+$ states would both either be weak isomers or would both be spin gap isomers. To get around the fact that experimentally one J=12$^+$ state is a weak isomer and the other is a spin gap isomer. This is done in Table 7 where for ^{44}Ti we use as input the spectrum of ^{42}Sc while for ^{52}Fe we use the spectrum of ^{54}Co. When this is done, we get a spin gap isomer for ^{52}Fe but not for
In the ^{52}Fe case we still get an isomer because the $J=12^+$ (6.413 MeV) state is lies below to $J=10^+$ (6.611 MeV) but the half life is much smaller.

There is a similar story for ^{43}Sc and ^{53}Co (^{53}Fe). In Table 5 Q.Q predicts a spin gap isomer but, as seen in Table 8 the local interactions predict that only for $A=53$ will there be a spin gap. The latter two are in agreement with experiment. There is a weaker isomerism in ^{43}Sc because the $19/2^+$ state is close to the $15/2^+$. In the $g_{9/2}$ region the $J=16^+$ state in ^{96}Cd is predicted to be isomeric with the Q.Q interaction, in agreement with experiment. There are no other isomerisms predicted for the even-even nuclei in Table 4. This is in accord with experiment and with calculations with more realistic interactions in larger shell model spaces.

In Table 10, we gathered experimental data of half-lives corresponding to all cases from Tables 4 to 9 where either there is a calculated spin gap isomer with Q.Q or an isomer due to a low energy transition. corresponding calculated half-lives are discussed below.

In Table 11, we show spin gap isomers as predicted by the Q.Q interaction. For these there cannot be any E2 or M1 decays. We do not attempt to calculate their lifetimes.

In Table 12, we show, for the most part, calculations of B(E2)'s and half-lives for cases where J to (J-2) transitions are allowed but the states are long lived because the energy differences are small. We also include ^{94}Ag, although calculated lifetime is very long.

There is a previously discovered isomeric $J=21^+$ state in ^{94}Ag by I. Mukha et al.[26] However, with the Q.Q interaction as seen in Table 12 although the $J=21^+$ is lower than $J=20^+$, it lies above $J=19^+$. In the absence of empirical data we have given the Q.Q results for $\chi''=1$. With Q.Q, the CCGI interaction [11] and that of Qi et al. [12] the values of ΔE are smaller and the half lives are longer, but they also allow for E2 transition. However Mukha et al. [26] state that the $J=21^+$ state decays by proton emission. If we had an interaction for which ΔE was negative, however small, that would solve the problem. With the CCGI interaction [11] we are almost there.

An important point in Table 12 is that the B(E2)'s for a given nucleus with various interactions are very close for ^{43}Sc and ^{94}Ag, however, the half-lives are different because of difference in the transition energies.

Table 11: Spin gaps with the Q.Q interaction.

	$^{52}\text{Fe}(12)$	$^{53}\text{Co}(19/2)$	$^{97}\text{Cd}(25/2)$	$^{96}\text{Cd}(16)$	$^{96}\text{Ag}(15)$
J	6.277	2.700	4.374	10.163	7.245
J-1	7.466	4.088	6.585	12.585	9.013
J-2	6.501	3.467	6.585	12.075	7.409
Table 12: Selected lifetime calculations.

Nucleus	Interaction	J_i	J_f	∆E (MeV)	B(E2) e²fm⁴	τ₁/₂ (SM)
⁴³Sc	Q.Q	19/2⁻	15/2⁻	0.768	5.918	358 ps
	⁴²Sc/⁵⁴Co			0.134	5.919	2.21 µs
⁴⁴Ti	Q.Q	12⁺	10⁺	0.224	21.85	45.97 ns
	⁴²Sc			0.317	18.03	9.82 ns
	⁵⁴Co			0.197	22.32	85.56 ns
⁹⁵Ag	Q.Q	37/2⁺	33/2⁺	0.068	77.35	4.990 µs
	CCGI			0.012	70.15	0.032 s
	Qi			0.099	70.90	0.83 µs
⁹⁴Ag	Q.Q	21⁺	19⁺	1.071	68.30	6.500 µs
	CCGI			0.126	68.85	0.257 µs
	Qi			0.290	68.89	3.98 ns

Table 13: Selected lifetime calculations by taking energy difference from the experimental data.

Nucleus	Interaction	J_i	J_f	∆E_{expt} (MeV)	B(E2) e²fm⁴	τ₁/₂ (SM)	τ₁/₂ (Expt.)
⁴³Sc	Q.Q	19/2⁻	15/2⁻	0.136	5.918	2.041 x 10³ ns	472 (4) ns
	⁴²Sc/⁵⁴Co			0.136	5.919	2.040 x 10³ ns	
⁴³Ti	Q.Q	19/2⁻	15/2⁻	0.115	23.63	1.182 x 10³ ns	556 (6) ns
⁴⁴Ti	Q.Q	12⁺	10⁺	0.369	21.85	3.759 ns	2.1 (4) ns
	⁴²Sc			0.369	18.03	4.556 ns	
	⁵⁴Co			0.369	22.32	3.680 ns	

In Table 13, we used calculated B(E2)'s but experimental transition energies. When compared with the experiment the results for ⁴⁴Ti is in reasonable agreement. We have done this only for non-spin gap isomers.

6. Summary:

In the present work we have performed shell model calculations using Q.Q interaction in \(f_{7/2} \) and then the \(g_{9/2} \) space. This interaction has one parameter, the overall strength. There is no additional parameter to determine whether a state is isomeric or not. We have compared this to other empirical interactions. We find Q.Q is a good predictor of where isomerism will occur, although, it does not always distinguish between a true spin gap and an isomer where E2 or M1 is allowed but the energy is very small. To get a weak isomer for ⁴³Sc and a spin gap for ⁵³Fe we have to use different local interactions in each case—one from the spectrum of ⁴²Sc and one from the spectrum of ⁵⁴Co.

We have predicted half-lives for non-spin gap nuclei ⁴³Sc, ⁴⁴Ti, ⁹⁴Ag and ⁹⁵Ag, and shown agreements for spin gap nuclei. Our predictions are in good agreement when we combined calculated \(B(E2) \) values with the experimental energy differences. In the case where no information is known, e.g ⁹⁷Cd, we predict a robust spin gap.
ACKNOWLEDGEMENTS

P.C.S. acknowledges a research grant from SERB (India), CRG/2019/000556.

References

[1] P. Axel and S.M. Dancoff, Phys. Rev. 76, 892 (1949).
[2] P.C. Srivastava, B. Bhow and M. J. Ernmatov, Prog. Theor. Exp. Phys. 109, 103D01 (2019).
[3] A.K. Jain et al. Nucl. Data Sheets 128, 1 (2015).
[4] B. Maheshwari, A.K. Jain and P.C. Srivastava, Phys. Rev. C 91, 024321 (2015).
[5] A.K. Jain and B. Maheshwari, Physica Scripta 92, 074004 (2017).
[6] P.C. Srivastava and I. Mehrotra, European Physical Journal A 45, 185 (2010).
[7] P.C. Srivastava and M.J. Ernmatov, Physica Scripta 88, 045201 (2013).
[8] B. Bhow, P.C. Srivastava and K. Kaneko, J. Phys.(London) G47, 065105 (2020).
[9] A. de Shalit and I. Talmi, Nuclear Shell Theory, Academic Press, New York(1963).
[10] I. Talmi, Simple Models of Complex Nuclei, Harwood Academic Publishing Switzerland (1993).
[11] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev. C 85, 034335 (2012).
[12] C.Qi, J. Blomqvist, T. Back, B. Cederwall, A. Johnson, R.J. Liotta and R. Wyss, Physica Scripta T150, 014031, (2012).
[13] B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1951).
[14] L. Zamick, Phys. Rev. C93, 034327 (2016).
[15] B.F. Bayman, J.D. McCullen and L. Zamick, Phys. Rev. Lett. 11, 215 (1963).
[16] J.D. McCullen, B.F. Bayman and L.Zamick, Phy. Rev 134, B515 (1964).
[17] J.N. Ginocchio and J.B. French, Phys. Lett. 7,137 (1963).
[18] A. Escuderos, L.Zamick and B.F. Bayman, Wave functions in the $f_{7/2}$ shell for educational purposes and ideas, arXiv:nucl-th/0506050, June (2005).
[19] Maria G. Mayer and J. Hans P. Jensen, Wiley and Sons 1955.
[20] K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
[21] G.D. Draculis, P.M. Walker and F.G. Kondev, Rep. Prog. Phys 79, 076301(2016).
[22] A.R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London) A214, 515 (1952).
[23] D.E. Geesaman, R.C. McGrath, J.W. Noe and R.E. Malmin, Phys. Rev. C19,1938 (1979).
[24] B.S. Nara Singh et al., Phys. Rev. Lett. 107, 172502 (2011).
[25] ENSDF database:http://www.nndc.bnl.gov/ensdf/ http://www.nndc.bnl.gov/ensdf/.
[26] I. Mukha et al., Phys. Rev. Lett. 95, 022501 (2005); Nature (London) 439,298 (2006).