Search for CP Violation in the Decays $D_{(s)}^{+} \rightarrow K_{S}^{0}\pi^{+}$ and $D_{(s)}^{+} \rightarrow K_{S}^{0}K^{+}$

B. R. Ko,16 E. Won,16 H. Aihara,45 V. Aulchenko,1,32 T. Aushev,18,12 A. M. Bakich,39 V. Balagura,12 E. Barberio,22 K. Belous,11 V. Bhardwaj,34 M. Bischofberger,24 A. Bozek,28 M. Bracko,20,13 T. E. Browder,7 P. Chang,27 A. Chen,25 P. Chen,27 B. G. Cheon,6 I.-S. Cho,19 Y. Choi,38 J. Dalseno,21,41 A. Das,40 Z. Doležal,2 A. Drutskoy,3 S. Eidelman,1,32 P. Goldenzweig,3 B. Golob,19,13 H. Ha,16 T. Hara,8 H. Hayashii,24 Y. Horii,44 Y. Hoshi,43 W.-S. Hou,27 Y. B. Hsiung,27 H. J. Hyun,17 T. Iijima,23 K. Inami,23 R. Itoh,8 M. Iwabuchi,49 M. Iwasaki,45 N. J. Joshi,40 D. H. Kah,17 J. H. Kang,49 P. Kapusta,28 N. Katayama,8 T. Kawasaki,30 H. O. Kim,17 Y. J. Kim,5 S. Korpar,20,13 P. Križan,19,13 P. Kroukovny,8 T. Kuhr,15 T. Kumita,46 Y.-J. Kwon,49 S.-H. Kyeong,49 J. S. Lange,4 M. J. Lee,37 S.-H. Lee,16 J. Li,7 C. Liu,36 Y. Liu,27 D. Liventsev,12 R. Louvot,18 A. Matyja,28 S. McOnie,39 H. Miyata,30 R. Mizuk,12 E. Nakano,33 M. Nakao,8 Z. Natkaniec,28 S. Neubauer,15 S. Nishida,8 O. Nitoh,47 S. Ogawa,42 T. Ohshima,23 S. Okuno,14 S. L. Olsen,37,7 W. Ostrowicz,28 P. Pakhlov,12 G. Pakhlova,12 H. Park,28 C. W. Park,38 H. Park,17 H. K. Park,17 R. Pestotnik,13 M. Petrič,13 L. E. Piilonen,48 M. Rührken,15 S. Ryu,37 H. Sahoo,7 Y. Sakai,8 O. Schneider,18 C. Schwanda,10 A. J. Schwartz,3 R. Seidl,35 K. Senyo,23 M. E. Sevior,22 M. Shapkin,11 V. Shebalin,1,32 C. P. Shen,7 J.-G. Shiu,27 J. B. Singh,34 P. Smerkel,13 A. Sokolov,11 E. Solovieva,12 S. Stanić,13 M. Starić,13 T. Sumiyoshi,46 M. Tanaka,8 G. N. Taylor,22 Y. Teramoto,33 K. Trabelsi,8 S. Uehara,8 Y. Unno,6 S. Uno,8 G. Varner,7 K. E. Varvell,39 K. Vervink,18 C. H. Wang,26 M.-Z. Wang,27 P. Wang,9 M. Watanabe,30 Y. Watanabe,14 B. D. Yabsley,39 Y. Yamashita,29 M. Yamauchi,8 Z. P. Zhang,36 V. Zhilich,1,32 T. Zivko,13 A. Zupanc,15 and O. Zyukova1,32

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Faculty of Mathematics and Physics, Charles University, Prague
3University of Cincinnati, Cincinnati, Ohio 45221
4Justus-Liebig-Universität Gießen, Gießen
5The Graduate University for Advanced Studies, Hayama
6Hanyang University, Seoul
7University of Hawaii, Honolulu, Hawaii 96822
8High Energy Accelerator Research Organization (KEK), Tsukuba
9Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10Institute of High Energy Physics, Vienna
11Institute of High Energy Physics, Protvino
12Institute for Theoretical and Experimental Physics, Moscow
13J. Stefan Institute, Ljubljana
14Kanagawa University, Yokohama
15Institut für Experimentelle Kernphysik, Karlsruhe Institut für Technologie, Karlsruhe
16Korea University, Seoul
17Kyungpook National University, Taegu
18École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
19Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
20University of Maribor, Maribor
21Max-Planck-Institut für Physik, München
22University of Melbourne, School of Physics, Victoria 3010
23Nagoya University, Nagoya
24Nara Women’s University, Nara
25National Central University, Chung-li
26National United University, Miaoli
27Department of Physics, National Taiwan University, Taipei
28H. Niewodniczanski Institute of Nuclear Physics, Krakow
29Nippon Dental University, Niigata
30Niigata University, Niigata
31University of Nova Gorica, Nova Gorica
32Novosibirsk State University, Novosibirsk
33Osaka City University, Osaka
34Panjab University, Chandigarh
Violation of the combined Charge-conjugation and Parity symmetries (CP) in the standard model (SM) is produced by a non-vanishing phase in the Cabibbo-Kobayashi-Maskawa flavor-mixing matrix \[^{35}\text{Riken BNL Research Center, Upton, New York 11973}^\text{36}\text{University of Science and Technology of China, Hefei}^\text{37}\text{Seoul National University, Seoul}^\text{38}\text{Sungkyunkwan University, Suwon}^\text{39}\text{School of Physics, University of Sydney, NSW 2006}^\text{40}\text{Tata Institute of Fundamental Research, Mumbai}^\text{41}\text{Excellence Cluster Universe, Technische Universität München, Garching}^\text{42}\text{Toho University, Funabashi}^\text{43}\text{Tohoku Gakuen University, Tagajo}^\text{44}\text{Tohoku University, Sendai}^\text{45}\text{Department of Physics, University of Tokyo, Tokyo}^\text{46}\text{Tokyo Metropolitan University, Tokyo}^\text{47}\text{Tokyo University of Agriculture and Technology, Tokyo}^\text{48}\text{IPNAS, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061}^\text{49}\text{Yonsei University, Seoul}\]

The SM also predicts a semileptonic decay \(^{38}\text{K}^0\to\pi^+\ell^+\bar{\nu}_\ell\), which is produced by a non-vanishing phase in the Cabibbo-Kobayashi-Maskawa flavor-mixing matrix \[^{35}\text{Riken BNL Research Center, Upton, New York 11973}^\text{36}\text{University of Science and Technology of China, Hefei}^\text{37}\text{Seoul National University, Seoul}^\text{38}\text{Sungkyunkwan University, Suwon}^\text{39}\text{School of Physics, University of Sydney, NSW 2006}^\text{40}\text{Tata Institute of Fundamental Research, Mumbai}^\text{41}\text{Excellence Cluster Universe, Technische Universität München, Garching}^\text{42}\text{Toho University, Funabashi}^\text{43}\text{Tohoku Gakuen University, Tagajo}^\text{44}\text{Tohoku University, Sendai}^\text{45}\text{Department of Physics, University of Tokyo, Tokyo}^\text{46}\text{Tokyo Metropolitan University, Tokyo}^\text{47}\text{Tokyo University of Agriculture and Technology, Tokyo}^\text{48}\text{IPNAS, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061}^\text{49}\text{Yonsei University, Seoul}\]

In this Letter we report results from searches for CP violation in the charmed meson decays \(^{46}\text{D}^+_s\to\text{K}^{0}\text{s}\pi^+\) and \(^{46}\text{D}^+_s\to\text{K}^{0}\text{s}K^+\) using 673 fb\(^{-1}\) of data collected with the Belle detector at the KEKB asymmetric-energy \(e^+e^-\) collider. No evidence for CP violation is observed. We report the most sensitive CP asymmetry measurements to date for these decays: \(^{46}\text{A}_{CP}^{D^+_s\to\text{K}^{0}\text{s}\pi} = (-0.71 \pm 0.19 \pm 0.20)\%\), \(^{46}\text{A}_{CP}^{D^+_s\to\text{K}^{0}\text{s}K} = (5.45 \pm 2.50 \pm 0.33)\%\), \(^{46}\text{A}_{CP}^{D^+_s\to\text{K}^{0}\text{h}^+} = (-0.16 \pm 0.58 \pm 0.25)\%\), and \(^{46}\text{A}_{CP}^{D^+_s\to\text{K}^{0}\text{s}h} = (0.12 \pm 0.36 \pm 0.22)\%\), where the first uncertainties are statistical and the second are systematic.

PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb
symmetry other than A^{h+}_ϵ. Eq. (2) can therefore be expressed as

$$A_{rec}^{X^+\to K^0_S h^+} = A_{CP}^{X^+\to K^0_S h^+} + A_{FB}^{h+} + A^{h+}_{\epsilon}.$$ (3)

To correct for the asymmetries other than A_{CP}, we use reconstructed samples of $D_s^+ \rightarrow \phi \pi^+$ and $D^0 \rightarrow K^- \pi^+$ decays and assume that A_{CP} in CF decays is negligibly small at the current experimental sensitivity and that A_{FB} is the same for all charged mesons. We reconstruct ϕ mesons via their $K^+ K^-$ decay channel for $D_s^+ \rightarrow \phi \pi^+$, requiring the $K^+ K^-$ invariant mass to be between 1.01 and 1.03 GeV/c^2.

The measured asymmetry for $D_s^+ \rightarrow \phi \pi^+$ is the sum of $A_{FB}^{D_s^+}$ and A^{h+}_ϵ. Hence one can extract the A_{CP} value for the $K^0_S \pi^+$ final states by subtracting the measured asymmetry for $D_s^+ \rightarrow \phi \pi^+$ from that for $D_s^+ \rightarrow K^0_S \pi^+$. The subtraction is performed in bins of π^+ momentum, p_{π}^{lab}, and polar angle in the laboratory system, $\cos \theta_{\pi}^{lab}$ (because A^{h+}_{ϵ} depends on these two variables while it is uniform in azimuthal angle), and the charmed meson’s polar angle in the center-of-mass system, $\cos \theta_{CMS}^{D_s^+}$ (since $\cos \theta_{CMS}^{D_s^+}$ is correlated with $\cos \theta_{\pi}^{lab}$ and $A_{FB}^{D_s^+}$ depends on it). The choice of the three-dimensional (3-D) binning is selected in order to avoid large statistical fluctuations in each bin. Figure 2 shows the A_{CP} map of $D^+ \rightarrow K^0_S \pi^+$ in bins of $(p_{\pi}^{lab}, \cos \theta_{\pi}^{lab}, \cos \theta_{CMS}^{D_s^+})$. Calculating a weighted average of the A_{CP} values over the 3-D bins, we obtain $A_{rec}^{D^+\to K^0_S \pi^+} = (-0.71 \pm 0.26\%)$ where the uncertainty originates from the finite size of the $D^+ \rightarrow K^0_S \pi^+$ (0.19%) and $D^+ \rightarrow \phi \pi^+$ (0.18%) samples. The χ^2/d.o.f over the 3-D bins is found to be 31.4/24 which corresponds to 14% probability.

The statistical precision of the $D_s^+ \rightarrow K^0_S \pi^+$ sample is too low to allow for a 3-D correction to $A_{rec}^{D_s^+\to K^0_S \pi^+}$. For this mode we correct for asymmetries other than A_{CP} with an inclusive correction obtained by subtracting $A_{rec}^{D^+\to K^0_S \pi^+}$ from $A_{CP}^{D^+\to K^0_S \pi^+}$ after integrating over the entire $(p_{\pi}^{lab}, \cos \theta_{\pi}^{lab}, \cos \theta_{CMS}^{D^+})$ space. The inclusive correction is $(-0.34 \pm 0.18\%)$ where the uncertainty is entirely due to the statistical uncertainty of the $D_s^+ \rightarrow \phi \pi^+$ sample. The value of $A_{CP}^{D^+\to K^0_S \pi^+}$ is measured to be $(+5.45 \pm 2.50\%)$, where the uncertainty is statistical only.
tributions: binnings, mass windows, and background parameterizations together, contribute uncertainties of 0.04% to $A_{CP}^{D^+ \rightarrow K^0 \pi^+}$ and 0.27% to $A_{CP}^{D^+ \rightarrow K^0 \pi^+}$, where the larger uncertainty on $A_{CP}^{D^+ \rightarrow K^0 \pi^+}$ is inherited from the low statistics of $D^+_s \rightarrow K^0 \pi^+$. We also consider possible effects due to the differences in interactions of K^0 and K^0 mesons with the material of the detector. K^0 and K^0 mesons considered in this Letter are produced through the weak interaction and interact with the material near the interaction point until they decay into $\pi^+ \pi^-$ pairs. This produces a non-vanishing asymmetry originating from the different strong interactions of K^0 and K^0 mesons with nucleons. Assuming that the differences between K^0 and K^0 interactions with nucleons are the same as those for K^+ and K^- interactions, we calculate the probability of K^0 and K^0-nucleon interactions using the known K^+ and K^- cross sections [9] and take into account the time evolution of neutral kaons. We consider the beam pipe [6] and the silicon vertex detector [3] in our estimates of the K^0/K^0-material effects. The uncertainty in the CP asymmetry due to K^0/K^0-material effects is found to be 0.06%. A summary of systematic uncertainties in $A_{CP}^{D^+_s \rightarrow K^0 \pi^+}$ is given in Table I.

By combining all systematic uncertainties in quadrature, we obtain $A_{CP}^{D^+ \rightarrow K^0 \pi^+} = (-0.71 \pm 0.19 \pm 0.20)\%$ and $A_{CP}^{D^+ \rightarrow K^0 \pi^+} = (+5.45 \pm 2.50 \pm 0.33)\%$, where the first uncertainties are statistical and the second are systematic.

The method for the measurement of A_{CP} in the $K^0_S K^+$ final states is different from that for the $K^0_S K^+$ final states. The $A_{CP}^{D^+_s}$ and $A_{CP}^{D^+_s}$ components in $A_{CP}^{D^+_s}$ are directly obtained from the $D^+_s \rightarrow \phi \pi^+$ sample, but there is no corresponding large statistics decay mode that can be used to directly measure the $A_{CP}^{D^+_s}$ and $A_{CP}^{D^+_s}$ components in $A_{CP}^{D^+_s}$. Thus, to correct the reconstructed asymmetry in the $K^0_S K^+$ final states, we use samples of $D^0 \rightarrow K^- \pi^+$ as well as $D^+_s \rightarrow \phi \pi^+$ decays.

The measured asymmetry for $D^0 \rightarrow K^- \pi^+$ is a sum of A_{FB}^{p}, $A_{FB}^{K^-}$, and $A_{FB}^{K^+}$. Thus, we can extract $A_{FB}^{K^-}$ from $D^0 \rightarrow K^- \pi^+$, which has several sources: the systematic uncertainty in the $A_{FB}^{D^+ \rightarrow \phi \pi^+}$ measurement (0.18%); statistics of the $D^0 \rightarrow K^- \pi^+$ sample (0.06%); the systematic uncertainty due to the choice of binning for the 2-D map of $A_{FB}^{K^-}$ (0.04%); and a possible A_{CP} in the $D^0 \rightarrow K^- \pi^+$ final state from the interference between decays with and without $D^0 \rightarrow D^0$ mixing. The latter uncertainty is estimated from the 95% confidence level upper limit on the CP violating asymmetry, $A_{CP} = -y \sin \delta \sin \phi \sqrt{2}$ [13], using the world average of $D^0 \rightarrow D^0$ mixing and CP violating parameters [14] and is found to be 0.01%. We also consider different cosθ CMS binnings to estimate the systematic uncertainty due to the choice of cosθ CMS binning.

As shown in Eq. (4), $A_{rec}^{D^+_s \rightarrow K^0_S K^+}$ includes not only an A_{CP} component but also an A_{FB} component. Since A_{CP} is independent of all kinematic variables, while A_{FB} is an odd function of cosθ CMS, and thus vanishes when integrated over it, we measure $A_{rec}^{D^+_s \rightarrow K^0_S K^+}$ as a function of cosθ CMS D^+_s. The A_{CP} component in Eq. (4) is then extracted according to Eq. (5a), using the above symmetry properties. We also extract the A_{FB} component in Eq. (4) using Eq. (5b).

$$A_{CP}^{D^+_s \rightarrow K^0_S K^+} = |A_{rec}^{D^+_s \rightarrow K^0_S K^+}(\cos \theta_{CMS}^{D^+_s})|,$$

$$A_{FB}^{D^+_s \rightarrow K^0_S K^+} = |A_{rec}^{D^+_s \rightarrow K^0_S K^+}(\cos \theta_{CMS}^{D^+_s})|/2,$$

Figure 3 shows $A_{CP}^{D^+_s \rightarrow K^0_S K^+}$ and $A_{FB}^{D^+_s \rightarrow K^0_S K^+}$ as a function of cosθ CMS D^+_s. Calculating a weighted average over the $|\cos \theta_{CMS}^{D^+_s}|$ bins, we obtain $A_{CP}^{D^+_s \rightarrow K^0_S K^+} = (-0.16 \pm 0.58)\%$ and $A_{FB}^{D^+_s \rightarrow K^0_S K^+} = (0.12 \pm 0.36)\%$ where the uncertainties are statistical only. The observed A_{FB} values decrease with cosθ CMS as expected from the leading-order prediction [11]. The observed deviations from the prediction are expected due to higher order corrections, and are in agreement with the measured asymmetries in the $K^+ K^-$ and $\pi^+ \pi^-$ final states [12].

The dominant source of systematic uncertainty in the $A_{CP}^{D^+_s \rightarrow K^0_S K^+}$ measurement is the uncertainty in $A_{CP}^{K^-}$, which has several sources: the systematic uncertainty in the $A_{CP}^{D^+_s \rightarrow \phi \pi^+}$ measurement (0.18%); statistics of the $D^0 \rightarrow K^- \pi^+$ sample (0.06%); the systematic uncertainty due to the choice of binning for the 2-D map of $A_{CP}^{K^-}$ (0.04%); and a possible A_{CP} in the $D^0 \rightarrow K^- \pi^+$ final state from the interference between decays with and without $D^0 \rightarrow D^0$ mixing. The latter uncertainty is estimated from the 95% confidence level upper limit on the CP violating asymmetry, $A_{CP} = -y \sin \delta \sin \phi \sqrt{2}$ [13], using the world average of $D^0 \rightarrow D^0$ mixing and CP violating parameters [14] and is found to be 0.01%. We also consider different cosθ CMS binnings to estimate the systematic uncertainty due to the choice of cosθ CMS binning.
(0.06%). Systematic uncertainties due to the fitting procedure and \(K^0/\bar{K}^0\) material effects are described above and included in Table I where the total systematic uncertainties of the \(A_{CP}\) measurements are summarized. Combining all systematic uncertainties in quadrature, we obtain \(A^{D^+\rightarrow K_S^0 K^+}_{CP} = (-0.16 \pm 0.58 \pm 0.25)\%\) and \(A^{D_s^+\rightarrow K_S^0 K^+}_{CP} = (+0.12 \pm 0.36 \pm 0.22)\%\) where the first uncertainties are statistical and the second are systematic. Table II summarizes our results, present best measurements \cite{13}, and expected \(A_{CP}\) from \(K^0 - \bar{K}^0\) mixing \cite{3}.

![FIG. 3: Measured \(A_{CP}\) and \(A_{FB}\) values for \(D^{+}_{(s)} \rightarrow K_S^0 K^+\) as a function of |\(cos\theta^{CMS}_{D^+}\)|. The dashed curves show the leading-order prediction for \(A_{FB}\).](image)

In summary, with a 673 fb\(^{-1}\) data sample collected with the Belle detector at the KEKB asymmetric-energy \(e^+e^-\) collider, we have searched for \(CP\) violation in the charged charmed meson decays \(D^+_{(s)} \rightarrow K_S^0 \pi^+\) and \(D^+_{(s)} \rightarrow K_S^0 K^+\). No evidence for \(CP\) violation is observed. Our results are consistent with the SM (see Table II) and provide the most stringent constraints to date on models for beyond the SM \(CP\) violation in these decays \cite{3}.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); DST (India); MEST, KOSEF, KRF (Korea); MNISW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

\[\text{References:}\]

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys., 49, 652 (1973).
[2] F. Buccella, M. Lusignoli, G. Miele, A. Pugliese, and P. Santorelli, Phys. Rev. D 51, 3478 (1995).

\[\text{Table I: Summary of systematic uncertainties.} \sigma A_{CP}\text{ is the systematic uncertainty in }A_{CP}.\]

Source	\(\sigma A^{D^+\rightarrow K_S^0 \pi^+}_{CP}\) (%)	\(\sigma A^{D^+\rightarrow K_S^0 K^+}_{CP}\) (%)	\(\sigma A^{D_s^+\rightarrow K_S^0 K^+}_{CP}\) (%)
\(A^{D^+\rightarrow \phi \pi^+}_{rec}\) statistics	0.18	0.18	-
\(A^{D^+\rightarrow \phi \pi^+}_{binning}\)	0.03	0.03	-
\(M(K^+ K^-)\) window	-	-	0.03
\(A^{K^-}_{binning}\)	-	-	0.04
Possible \(A^{D_s^+\rightarrow K^- \pi^+}_{binning}\)	-	-	0.01
\(\cos \theta^{CMS}_{D^+}\)	-	-	0.06
Fitting	0.04	0.27	0.12
\(K^0/\bar{K}^0\)-material effects	0.06	0.06	0.06
Total	0.20	0.33	0.25

\[\text{Table II: Summary of the }A_{CP}\text{ measurements. The first uncertainties in the second and third columns are statistical and the second are systematic. DCS decay contributions are ignored for the decays denoted by }\dagger\text{.}\]

\(Belle\) (%)	Ref. \cite{15} (%)	Ref. \cite{3} (%)	
\(A^{D^+\rightarrow K_S^0 \pi^+}_{CP}\)	-0.71\(\pm\)0.19\(\pm\)0.20	-1.3\(\pm\)0.7\(\pm\)0.3	-0.332\(\dagger\)
\(A^{D^+\rightarrow K_S^0 K^+}_{CP}\)	+5.45\(\pm\)2.50\(\pm\)0.33	+16.3\(\pm\)7.3\(\pm\)0.3	+0.332
\(A^{D_s^+\rightarrow K_S^0 K^+}_{CP}\)	-0.16\(\pm\)0.58\(\pm\)0.25	-0.2\(\pm\)1.5\(\pm\)0.9	-0.332
\(A^{D_s^+\rightarrow K_S^0 K^+}_{CP}\)	+0.12\(\pm\)0.36\(\pm\)0.22	+4.7\(\pm\)1.8\(\pm\)0.9	-0.332\(\dagger\)
Throughout this Letter the charge conjugate decay mode is also implied unless stated otherwise.

[5] I. I. Bigi and H. Yamamoto, Phys. Lett. B 349, 363 (1995); H. J. Lipkin and Z.-Z. Xing, Phys. Lett. B 450, 405 (1999); G. D’Ambrosio and D.-N. Gao, Phys. Lett. B 513, 123 (2001); Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D 75, 036008 (2007).

[6] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 479, 117 (2002).

[7] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.

[8] E. Won et al. (Belle Collab.), Phys. Rev. D 80, 111101(R) (2009).

[9] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instr. and Meth. A 560, 1 (2006); Y. Ushiroda (Belle SVD2 Group), Nucl. Instr. and Meth. A 511, 6 (2003).

[10] We define $A^x_+ \equiv [N^x_+ - N^x_-]/[N^x_+ + N^x_-]$. Hence $A^x_- = -A^x_+$.

[11] The leading-order prediction for A^{CB}_{FB} at $\sqrt{s}=10.6$ GeV is about $-0.029 \cos \theta_{CMS}/(1 + \cos^2 \theta_{CMS})$. See for example O. Nachtmann, Elementary Particle Physics, Springer-Verlag (1989).

[12] M. Starić et al. (Belle Collab.), Phys. Lett. B 670, 190 (2008).

[13] A. A. Petrov, Phys. Rev. D 69, 111901(R) (2004).

[14] E. Barberio et al. (Heavy Flavor Averaging Group), arXiv:0808.1297v3[hep-ex] and online update at http://www.slac.stanford.edu/xorg/hfag/.

[15] H. Mendez et al. (CLEO Collab.), Phys. Rev. D 81, 052013 (2010).