A Note on the Maximum Number of Minimal Connected Dominating Sets in a Graph

Faisal N. Abu-Khzam

Department of Computer Science and Mathematics
Lebanese American University
Beirut, Lebanon

Abstract

We prove constructively that the maximum possible number of minimal connected dominating sets in a connected undirected graph of order n is in $\Omega(1.489^n)$. This improves the previously known lower bound of $\Omega(1.4422^n)$ and reduces the gap between lower and upper bounds for input-sensitive enumeration of minimal connected dominating sets in general graphs as well as some special graph classes.

1 Introduction

A connected dominating set in a graph $G = (V, E)$ is a set of vertices whose closed neighborhood is V that induces a connected subgraph. A connected dominating set is inclusion minimal if it does not contain another connected dominating set as a proper subset.

Enumerating all minimal connected dominating sets in a given graph can be trivially performed in $O(2^n)$. Whether a better enumeration algorithm exists was one of the most important open problems posed in the first workshop on enumeration (Lorentz Center, Netherlands, 2015) [2]. The problem has been subsequently addressed in [5] where an algorithm that runs in $O((2 - 10^{-50})^n)$ was presented. This slightly improves the upper bound on the number of minimal connected dominating sets in a (general) graph.

On the other hand, the maximum number of minimal connected dominating sets in a graph was shown to be in $\Omega(3^{\sqrt{n}})$ [3]. This lower bound is obviously very low compared to the upper bound and to the running time of the current asymptotically-fastest exact algorithm, which is in $O(1.862^n)$
The gap between upper and lower bounds is narrower when it comes to special graph classes. On chordal graphs, for example, the upper bound has been recently improved to $O(1.4736^n)$ [4]. Other improved lower/upper bounds have been obtained for AT-free, strongly chordal, distance-hereditary graphs, and cographs in [3]. Further improved bounds for split graphs and cobipartite graphs have been obtained in [6].

In this note we report an improved lower bound on the maximum number of minimal connected dominating sets in a graph. This is related to the enumeration of all the minimal connected dominating sets since it also gives a lower bound on the asymptotic performance of any input-sensitive enumeration algorithm.

2 Graphs with Large Minimal Connected Dominating Sets

Given arbitrary positive integers k, t, we construct a graph G^k_t of order $n = k(2t + 1) + 1$ as follows.

The main building blocks of G^k_t consist of k copies of a base-graph G_t, of order $2t - 1$. The vertex set of G_t consists of three layers. The first layer is a set $X = \{x_1 \ldots x_t\}$ that induces a clique. The second is an independent set $Y = \{y_1 \ldots y_t\}$, while the third layer consists of a singleton $\{z\}$. Each vertex $x_i \in X$ has exactly $t - 1$ neighbors in Y: $N(x_i) = \{y_j \in Y : i \neq j\}$. In other words, the base-graph G_t has a maximum anti-matching $\{\{x_j, y_j\} : 1 \leq j \leq t\}$. In fact, $X \cup Y$ induces a copy of $K_{t,t}$ minus a perfect matching. Finally the vertex z is adjacent to all the t vertices in Y. Figure [1] below shows the graph G_t for $t = 4$.

Lemma 1. For each $t > 0$, the graph G_t has exactly $\frac{t^3 + t^2}{2} - t$ minimal connected dominating sets that have non-empty intersection with the set X.

Proof. The set X cannot have more than two vertices in common with any minimal connected dominating set, since any two elements of X dominate $X \cup Y$. Any minimal connected dominating set that contains exactly one vertex x_i of X must contain the vertex z, to dominate y_i, and one of the $t - 1$ neighbors of x_i (to be connected). There are $t(t - 1)$ sets of this type. Moreover, each pair of elements of X dominates Y. So a minimal connected dominating set can be formed by (any) two elements of X and any of the elements of Y (to dominate z). There are $\frac{t(t-1)}{2}$ such sets. \[\square\]

\[1\text{An anti-matching in } G \text{ is a collection of disjoint non-adjacent pairs of its vertices.}\]
The hub-vertex \(s \) in \(G^k_t \) must be in any connected dominating set, being a cut-vertex. Therefore, there is no need for the set \(X \) in \(G_t \) to induce a clique (in \(G^k_t \)), being always dominated by \(s \). In other words, the counting used in the above proof still holds if each copy of \(G_t \) is replaced by \(G_t - E(X) \) in \(G^k_t \). Here \(E(X) \) denotes the set of edges connecting pairs of vertices in \(X \). The below figure shows \(G^3_3 \) without the edges between pairs of element of \(X \) in each copy of \(G_3 \).
Theorem 1. The maximum number of minimal connected dominating sets in a simple undirected connected graph of order \(n \) is in \(\Omega(1.489^n) \).

Proof. By Lemma 1, each copy of the graph \(G_t \) has \(\frac{t^3 + t^2}{2} - t \) minimal connected dominating sets. There are \(k \) such graphs in \(G_t^k \), in addition to the vertex \(s \) that connects them all. Every minimal connected dominating set must contain \(s \) and at least one element from \(N(s) \) in each \(G_t \). Therefore, the total number of minimal connected dominating sets in \(G_t^k \) is \(\left(\frac{t^3 + t^2}{2} - t \right)^k = \left(\frac{t^3 + t^2}{2} - t \right)^{\frac{n-1}{2t+1}} \). The claimed lower bound is achieved when \(t = 4 \), which gives a total of \(36 \frac{n-1}{9} \in \Omega(1.489^n) \).

We note that \(G_t^k \) is a \(t \)-degenerate graph that is also bipartite (since the set \(X \) in each copy of \(G_t \) can be an independent set). Furthermore, we observe that \(G_3^k \) is planar. To see this, simply re-order the elements of \(Y \) in each copy of \(G_3 \) as shown in Figure 3 below.

![Figure 3: A plane drawing of \(G_3^3 \)](image)

Therefore, we can obtain an improved lower bound for \(3 \)-degenerate, bipartite and planar graphs. We conclude with the following corollary.

Corollary 1. The maximum number of minimal connected dominating sets in a \(3 \)-degenerate bipartite planar graph of order \(n \) is in \(\Omega(1.472^n) \).
3 Conclusion

The method we adopted for constructing asymptotic worst-case examples for enumerating minimal connected dominating sets consists of combining copies of a certain base-graph having a particular subset of vertices that must contain elements of any minimal connected dominating set, being linked to a main hub-vertex. For example, the graph G_4 has 36 minimal connected dominating sets, each of which must contain elements of the set X, which in turn is linked to the hub-vertex s in G_k.

The main question at this stage is: can we do better? We believe it is very difficult to find a base-graph of order eight or less that can be used to achieve a higher lower-bound since it would have to have at least 25 minimal connected dominating sets. Moreover, any better example that contains more than 9 vertices must have a much larger number of minimal connected dominating sets. For example, to achieve a better lower bound with a base-graph of order 10 (or 11), such a graph must have at least 54 (respectively 80) minimal connected dominating sets. It would be challenging to obtain such a construction, which is hereby posed as an open problem.

References

[1] F. N. Abu-Khzam, A. E. Mouawad, and M. Liedloff, *An exact algorithm for connected red-blue dominating set*, J. Discrete Algorithms, 9 (2011), pp. 252–262.

[2] H. L. Bodlaender, E. Boros, P. Hegghernes, and D. Kratsch, *Open problems of the Lorentz workshop “Enumeration Algorithms using Structure”*, Utrecht University Technical Report UU-CS-2015-016, 2015.

[3] P. A. Golovach, P. Hegghernes, and D. Kratsch, *Enumerating minimal connected dominating sets in graphs of bounded chordality*, Theor. Comput. Sci., 630 (2016), pp. 63–75.

[4] P. A. Golovach, P. Hegghernes, D. Kratsch, and R. Saei, *Enumeration of minimal connected dominating sets for chordal graphs*, Discrete Applied Mathematics, 278 (2020), pp. 3–11. Eighth Workshop on Graph Classes, Optimization, and Width Parameters.

[5] D. Lokshtanov, M. Pilipczuk, and S. Saurabh, *Below all subsets for minimal connected dominating set*, SIAM J. Discret. Math., 32 (2018), pp. 2332–2345.
[6] I. B. Skjørtøn, *Faster enumeration of minimal connected dominating sets in split graphs*, Master’s thesis, The University of Bergen, 2017.