LEPTON CP ASYMMETRY IN B FACTORIES:
\(\epsilon_B \) AND NEW PHYSICS

Zhi-zhong Xing
Physics Department, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

In this talk, we first make some brief comments on the phase-convention dependence of the CP-violating parameter \(\epsilon_B \). A simple framework is then presented for analyzing new physics contributions to \(B^0-\bar{B}^0 \) mixing and their effects on the lepton CP asymmetry, a promising signal to be further searched for in the first-round experiments of \(B \) factories.

1 Introduction

The study of various possible CP-violating phenomena in weak \(B \)-meson decays, starting from the end of 1970’s, becomes more intensive today – on the eve of KEK and SLAC \(B \) factories, which will provide a unique opportunity to test the Kobayashi-Maskawa (KM) mechanism of CP violation in the standard model (SM) and to discover possible new physics (NP) beyond the SM.

Phenomenologically three different types of CP-violating signals are expected in neutral \(B \)-meson transitions: (a) CP violation from \(B^0-\bar{B}^0 \) mixing; (b) CP violation from direct \(b \)-quark decay; and (c) CP violation from the interplay of decay and mixing. Type (a) can be detected most appropriately from the decay-rate asymmetry between two semileptonic channels \(B^0 \rightarrow l^+\nu_l X^- \) and \(\bar{B}^0 \rightarrow l^-\bar{\nu}_l X^+ \), the so-called “lepton CP asymmetry” (denoted as \(A_{SL} \) below). Type (b) may involve large uncertainties associated with the evaluation of hadronic matrix elements and (or) penguin contributions. Type (c) should play a crucial role in determining the KM CP-violating phase and (or) the NP phase(s), as it is independent of hadron or penguin pollution to a good degree of accuracy in some decay modes.

Experimentally, however, only the lepton CP asymmetry \(A_{SL} \) has been searched for to date. An upper bound on this asymmetry was first set by the CLEO time-integrated measurement: \(|A_{SL}| < 0.18\) or \(\text{Re}\epsilon_B < 0.045\) at the 90% confidence level where \(\epsilon_B \) is a CP-violating parameter of \(B^0-\bar{B}^0 \) mixing defined like \(\epsilon_K \) in the neutral kaon system. The OPAL time-dependent measurement has recently given a more accurate result: \(\text{Re}\epsilon_B = 0.002 \pm 0.007 \pm 0.003\) in a special convention used for \(\epsilon_B \), which is equivalent to \(A_{SL} = 0.008 \pm 0.028 \pm 0.012 \). Both experiments are consistent with the standard model prediction, i.e., \(|A_{SL}| \sim 10^{-3}\) or smaller. It should be noted, nevertheless, the existence of NP in \(B^0-\bar{B}^0 \) mixing is possible to enhance \(A_{SL} \) up to the percent level, observable in the first-round experiments of a \(B \)-meson factory with
about \(10^8\) events of \(B^0 \bar{B}^0\) mesons.

The purposes of this talk are: (1) to comment on the phase convention dependence of the parameter \(\epsilon_B\); and (2) to present a simple framework for analyzing NP effect on \(A_{SL}\). We expect that the further measurement of \(A_{SL}\) and its correlation with other \(CP\) asymmetries may serve as a sensitive probe for NP in \(B^0-\bar{B}^0\) mixing.

2 Comments on \(\epsilon_B\)

In some literature, the \(CP\)-violating parameter \(\epsilon_B\) is defined to relate the flavor eigenstates |\(B^0\rangle\) and |\(\bar{B}^0\rangle\) to the mass eigenstates |\(B_1\rangle\) and |\(B_2\rangle\):

\[
|B_{1,2}\rangle = \frac{1}{\sqrt{2(1 + |\epsilon_B|^2)}} \left[(1 + \epsilon_B) |B^0\rangle \pm (1 - \epsilon_B) |\bar{B}^0\rangle \right].
\]

Certainly \(\epsilon_B\) has the phase freedom arising from the bound states |\(B^0\rangle\) and |\(\bar{B}^0\rangle\). The reason is simply that |\(B^0\rangle\) and |\(\bar{B}^0\rangle\) are defined by strong interactions only, leaving the relative phase between them undetermined. The dependence of \(\epsilon_B\) on the bound-state phase convention can be removed, if one adopts the definition to link the \(CP\) eigenstates |\(B^+\rangle\) (\(CP\)-even) and |\(B^-\rangle\) (\(CP\)-odd) with the mass eigenstates |\(B_1\rangle\) and |\(B_2\rangle\):

\[
|B_{1,2}\rangle = \frac{1}{\sqrt{1 + |\epsilon_B|^2}} \left[|B^\pm\rangle + \epsilon_B |B^\mp\rangle \right].
\]

Note that \(\epsilon_B\) and \(\epsilon_B\) are not identical, unless we fix the \(CP\) transformation between |\(B^0\rangle\) and |\(\bar{B}^0\rangle\) as \((CP)|B^0\rangle = \pm |\bar{B}^0\rangle\). Therefore it is better to adopt the phase-convention independent parameter \(\epsilon_B\), other than \(\epsilon_B\), in phenomenological applications. In the analyses of CLEO and OPAL measurements, however, the phase-convention dependent parameter \(\epsilon_B\) has been used.

The more important point is that both \(\epsilon_B\) and \(\epsilon_B\) depend on the phase convention of the KM matrix for quark flavor mixings, although \(\epsilon_B\) itself is independent of the bound-state phases of |\(B^0\rangle\) and |\(\bar{B}^0\rangle\). The KM phase convention comes from the freedom in defining the quark field phases, thus different parametrizations of the KM matrix may result in different values for \(\epsilon_B\) and \(\epsilon_B\). In this sense, even \(\epsilon_B\) is not a physically well-defined parameter.

In the CLEO and OPAL analyses, \(\text{Im} \epsilon_B = 0\) or \(\text{Im} \epsilon_B \ll 1\) has been assumed in an undemonstrative way. That is why these analyses can yield an upper bound on Re\(\epsilon_B\) solely from the measurement of the lepton \(CP\) asymmetry. To see this point more clearly, let us take the CLEO constraint on Re\(\epsilon_B\) into account. The dilepton \(CP\) asymmetry measured on the \(\Upsilon(4S)\)
resonance reads

\[A_{SL}(\varepsilon) = \frac{4 \text{Re} \varepsilon (1 + |\varepsilon|^2)}{(1 + |\varepsilon|^2)^2 + 4(\text{Re} \varepsilon)^2}, \]

and \(A_{SL}(\varepsilon) = A_{SL}(\varepsilon) \) holds. Only in the assumption \(|\text{Im} \varepsilon| \ll 1 \) (and \(|\text{Re} \varepsilon| \ll 1 \)), one can get \(A_{SL}(\varepsilon) \approx 2 \text{Re} \varepsilon \). Then \(|A_{SL}(\varepsilon)| < 0.18 \) leads to \(|\text{Re} \varepsilon| < 0.045 \). If one takes \(|\text{Im} \varepsilon| \sim 1 \), however, \(A_{SL}(\varepsilon) \approx 2 \text{Re} \varepsilon \) appears and a different upper bound on \(\text{Re} \varepsilon \) must turn out from the same measurement of \(A_{SL}(\varepsilon) \). Indeed the condition \(\text{Im} \varepsilon = 0 \) corresponds to a special parametrization of the KM matrix which has \(\text{Im} V_{td} = \text{Im} V_{tb} = 0 \) (e.g., the one proposed recently by Fritzsch and the author). In contrast, the condition \(|\text{Im} \varepsilon| \approx \mathcal{O}(1) \) may be satisfied in the “standard” parametrization or the Wolfenstein form.

3 NP effect on \(A_{SL} \)

Now we present a simple framework to analyze NP contributions to \(A_{SL} \) and other CP asymmetries via \(B^0 - \bar{B}^0 \) mixing. In terms of the off-diagonal elements of the \(2 \times 2 \) \(B^0 - \bar{B}^0 \) mixing Hamiltonian \(\mathbf{M} - i \Gamma/2 \), \(A_{SL} \) can be written as

\[A_{SL} = \text{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right). \]

In most extensions of the SM, NP can significantly contribute to \(M_{12} \). However, NP is not expected to significantly affect the direct \(B \)-meson decays via the tree-level \(W \)-mediated channels. Thus \(\Gamma_{12} = \Gamma_{12}^{SM} \) holds as a good approximation, where

\[\Gamma_{12}^{SM} = -\frac{G_F^2 \mathcal{B} \mathcal{F} \mathcal{B} M_B m_b^2}{8\pi} \left[(\xi_u^*)^2 T_u + (\xi_c^*)^2 T_c + (\xi_t^*)^2 T_t \right]. \]

with KM factors \(\xi_i \equiv V_{ib}^* V_{id} \) \((i = u, c, t)\) for three quark families and QCD correction factors \(T_u \sim -T_c \sim 0.1 \) and \(T_t \sim 1 \). In the presence of NP, \(M_{12} \) can be written as

\[M_{12} = M_{12}^{SM} + M_{12}^{NP}. \]

Rescaling three complex quantities in Eq. (6) by \(|M_{12}| = \Delta M/2 \), where \(\Delta M = (0.464 \pm 0.018) \text{ ps}^{-1} \) has been measured, we obtain a parametrized triangle in the complex plane (see Fig. 1). The correlation between the SM and NP parameters reads

\[R_{NP} = -R_{SM} \cos 2(\theta - \phi_1) \pm \sqrt{1 - R_{SM}^2} \sin^2 2(\theta - \phi_1). \]
where R_{SM} can be calculated in the SM box-diagram approximation:

$$R_{SM} = \frac{G_F^2 B_B f_B^2 M_B m_t^2}{6\pi^2 \Delta M} \eta_B F \left(\frac{m_t^2}{m_W^2} \right) |\xi_t|^2$$

(8)

with $\eta_B \approx F(m_t^2/m_W^2) \approx 0.55$. We see that there exist two solutions for R_{NP}.

The lepton CP asymmetry A_{SL} turns out to be:

$$\frac{A_{SL}}{C_m} = R_{SM} R_{NP} \left[\text{Im} \left(\frac{\xi_u}{|\xi_t|} \right)^2 T_u + \text{Im} \left(\frac{\xi_c}{|\xi_t|} \right)^2 T_c + \text{Im} \left(\frac{\xi_t}{|\xi_t|} \right)^2 T_t \right] \cos(2\theta)$$

$$+ R_{SM}^2 \left[\text{Im} \left(\frac{\xi_u}{\xi_t} \right)^2 T_u + \text{Im} \left(\frac{\xi_c}{\xi_t} \right)^2 T_c \right]$$

$$+ R_{SM} R_{NP} \left[\text{Re} \left(\frac{\xi_u}{|\xi_t|} \right)^2 T_u + \text{Re} \left(\frac{\xi_c}{|\xi_t|} \right)^2 T_c + \text{Re} \left(\frac{\xi_t}{|\xi_t|} \right)^2 T_t \right] \sin(2\theta)$$

(9)

where $C_m \approx 1.3 \times 10^{-2}$. Clearly the second term of A_{SL} comes purely from M_{SM}^{12} itself and its magnitude is expected to be of $O(10^{-3})$ due to the absence of the T_t contribution. The first and third terms of A_{SL} arise from the interference between M_{SM}^{12} and M_{NP}^{12}; but they depend on nonvanishing $\text{Im}(M_{SM}^{12})$ and $\text{Im}(M_{NP}^{12})$, respectively. For appropriate values of θ and ϕ_1, magnitudes of both the first and third terms of A_{SL} may be at the percent level! To obtain $|A_{SL}| \sim O(10^{-2})$, however, there should not be large cancellation between two dominant terms in Eq. (9).

The CP asymmetry in $B_d \rightarrow J/\psi K_S$ can be calculated in the same framework. We obtain

$$A_{\psi K} = R_{SM} \sin(2\phi_1) + R_{NP} \sin(2\theta).$$

(10)

As R_{NP}, R_{SM} and ϕ_1, θ are dependent on one another through Eq. (7), $|A_{\psi K}| \leq 1$ is always guaranteed within the allowed parameter space.
Two interesting cases, corresponding to $\mathrm{Im} M_{12}^{\text{SM}} = 0$, $\mathrm{Im} M_{12}^{\text{NP}} \neq 0$ and $\mathrm{Im} M_{12}^{\text{NP}} = 0$, $\mathrm{Im} M_{12}^{\text{SM}} \neq 0$, have been numerically illustrated by Sanda and the author. It is found that A_{SL} does have good chances to reach the percent level, and the correlation between A_{SL} and $A_{\psi K}$ (as well as other CP asymmetries) does reflect the information from NP.

4 Summary

We have commented on the dependence of ϵ_B or ϵ_B on the KM phase convention. We emphasize that neither of them can prove much advantage in describing data of CP violation from B^0-\bar{B}^0 mixing. Also a simple framework has been presented for the analysis of possible NP contributions to B^0-\bar{B}^0 mixing and of their effects on A_{SL} and other CP asymmetries. If we are lucky, we should be able to detect the lepton CP asymmetry at the percent level in the first-round experiments of B factories.

Acknowledgments: I would like to thank Y.Y. Keum for his warm hospitality and APCTP for its generous support, which made my participation in this wonderful workshop realizable. I am also grateful to A.I. Sanda for sharing physical ideas with me in a recent paper, whose results were partially presented here. Finally useful discussions with S. Pakvasa, A.I. Sanda, S.Y. Tsai and D.D. Wu are acknowledged.

References

1. I.I. Bigi and A.I. Sanda, Nucl. Phys. B 193, 85 (1981); 281, 41 (1987).
2. CLEO Collaboration, J. Bartelt et al., Phys. Rev. Lett. 71, 1680 (1993).
3. Particle Data Group, R.M. Barnett et al., Phys. Rev. D 54, 1 (1996).
4. OPAL Collaboration, K. Ackerstaff et al., CERN-PPE/97-036 (1997).
5. A.I. Sanda and Z.Z. Xing, Phys. Rev. D 56, 6866 (1997).
6. H. Yamamoto, Phys. Lett. B 401, 91 (1997); Y. Sakai, talk given at the B Physics Mini-workshop, September, Izu, Shizuoka, Japan (1997).
7. M.C. Bañuls and J. Bernabéu, CERN-TH/97-216 or hep-ph/9710348.
8. See, e.g., S.Y. Tsai, Mod. Phys. Lett. A 11, 2941 (1996).
9. I would like to thank Y. Nir for pointing out this fact to me.
10. Z.Z. Xing, hep-ex/9709003.
11. See, e.g., T. Brown and S. Pakvasa, Phys. Rev. D 31, 1661 (1985).
12. H. Fritzsch and Z.Z. Xing, Phys. Lett. B 413, 396 (1997) (hep-ph/9707215); CERN-TH/97-201 or hep-ph/9708366 (Phys. Rev. D in press).