EVERYWHERE DIFFERENTIABILITY OF ABSOLUTE MINIMIZERS FOR LOCALLY STRONGLY CONVEX AND CONCAVE HAMILTONIAN \(H(p) \in C^0(\mathbb{R}^n) \) WITH \(n \geq 3 \)

PENG FA, QIANYUN MIAO AND YUAN ZHOU

Abstract. Suppose that \(n \geq 3 \) and \(H(p) \in C^0(\mathbb{R}^n) \) is a locally strongly convex and concave Hamiltonian. We obtain the everywhere differentiability of all absolute minimizers for \(H \) in any domain of \(\mathbb{R}^n \).

1. Introduction

Let \(n \geq 2 \) and suppose that \(H \in C^0(\mathbb{R}^n) \) is convex and coercive (i.e., \(\liminf_{p \to \infty} H(p) = \infty \)). Aronsson 1960’s initiated the study of minimization problems for the \(L^\infty \)-functional

\[
\mathcal{F}_H(u, \Omega) = \text{esssup}_{x \in \Omega} H(Du(x))
\]

for any domain \(\Omega \subset \mathbb{R}^n \) and function \(u \in W^{1,\infty}_{\text{loc}}(\Omega) \); see \([2, 3, 4, 5]\). Given any domain \(\Omega \subset \mathbb{R}^n \), by Aronsson a function \(u \in W^{1,\infty}_{\text{loc}}(\Omega) \) is called an absolute minimizer for \(H \) in \(\Omega \) (write \(u \in \text{AM}_H(\Omega) \) for simplicity) if

\[
\mathcal{F}_H(u, V) \leq \mathcal{F}_H(v, V) \text{ whenever } V \subset \Omega, \quad v \in W^{1,\infty}_{\text{loc}}(V) \cap C(V) \text{ and } u = v \text{ on } \partial V.
\]

It turns out that the absolute minimizer is the correct notion of minimizers for such \(L^\infty \)-functionals. The existence of absolute minimizers for given continuous boundary in bounded domains was proved by Aronsson \([4]\) for \(\frac{1}{2}|p|^2 \) and Barron-Jensen-Wang \([9]\) for general \(H(p) \in C^0(\mathbb{R}^n) \); while their uniqueness was built up by Jensen \([26]\) for \(\frac{1}{2}|p|^2 \) (see also \([1, 8, 13]\)), and by Jensen-Wang-Yu \([27]\) and Armstrong-Crandal-Julin-Smart \([7]\) for \(H(p) \in C^2(\mathbb{R}^n) \) and \(H(p) \in C^0(\mathbb{R}^n) \), respectively, with \(H^{-1}(\min H) \) having empty interior.

Moreover, if \(H \in C^1(\mathbb{R}^n) \) is convex and coercive, absolute minimizers coincide with viscosity solutions to the Aronsson equation (a highly degenerate nonlinear elliptic equation)

\[
(1.1) \quad \mathcal{A}_H(u) := \sum_{i,j=1}^n H_{p_i} (Du) H_{p_j} (Du) u_{x_i} u_{x_j} = 0 \quad \text{in } \Omega,
\]

see Jensen \([20]\) for \(H(p) = \frac{1}{2}|p|^2 \), and Crandall-Wang-Yu \([15]\) and Yu \([33]\) (and also \([7, 9, 10, 23, 13]\)) in general. Here \(H_{p_i} = \frac{\partial H}{\partial p_i} \) for \(H \in C^1(\mathbb{R}^n) \), \(u_{x_i} = \frac{\partial u}{\partial x_i} \) for \(u \in C^1(\mathbb{R}^n) \), and \(u_{x_i x_j} = \frac{\partial^2 u}{\partial x_i \partial x_j} \) for \(u \in C^2(\mathbb{R}^n) \). For the theory of viscosity solution see \([14]\). In the special case \(H(p) = \frac{1}{2}|p|^2 \), the Aronsson equation \((1.1)\) is the \(\infty \)-Laplace equation

\[
(1.2) \quad \Delta_{\infty} u := \sum_{i,j=1}^n u_{x_i} u_{x_j} u_{x_i x_j} = 0 \quad \text{in } \Omega
\]

and its viscosity solutions are called as \(\infty \)-harmonic functions. If \(H \in C^0(\mathbb{R}^n) \) but \(\not\in C^1(\mathbb{R}^n) \), we refer to \([13, 7]\) for further discussions and related problems on the Euler–Lagrange equation for absolute minimizers.

The regularity of absolute minimizer is then the main issue in this field.

Date: January 30, 2019.
By Aronsson [6], \(\infty \)-harmonic functions are not necessarily \(C^2 \)-regular; indeed \(\infty \)-harmonic functions \(x_1^{4/3} - x_2^{1/3} \) in whole \(\mathbb{R}^n \) is not \(C^2 \)-regular. Such a function also leads to a well-known conjecture on the \(C^{1,1/3}, \) and \(W^{2, t}_{\text{loc}} \)-regularity with \(1 \leq t < 3/2 \) of \(\infty \)-harmonic functions. A seminar step towards this is made by Crandall-Evans [11], who obtained their linear approximation property. They [12] also proved that all bounded \(\infty \)-harmonic functions in whole \(\mathbb{R}^n \) with \(n \geq 2 \) must be constant functions.

Next, when \(n = 2 \), Savin [30] established their interior \(C^1 \)-regularity and then deduced the corresponding Liouville theorem, that is, all \(\infty \)-harmonic functions in whole plane with a linear growth at \(\infty \) (that is, \(|u(x)| \leq C(1 + |x|) \) for all \(x \in \mathbb{R}^2 \)) must be linear functions. Later, the interior \(C^{1, \alpha} \)-regularity for some \(0 < \alpha < 1/3 \) was proved by Evans-Savin [17] and the boundary \(C^1 \)-regularity by Wang-Yu [32]. Recently, Koch-Zhang-Zhou [28] proved that \(|Du|^\alpha \in W^{1,2}_{\text{loc}} \) for all \(\alpha > 0 \) and all \(\infty \)-harmonic functions \(u \) in planar domains, which is sharp as \(\alpha \to 0 \); also that the distributional determinant \(-\det D^2 u \) is a nonnegative Radon measure.

Moreover, when \(n \geq 3 \), Evans-Smart [18, 19] obtained their everywhere differentiability; Miao-Wang-Zhou [29] and Hong-Zhao [25] independently observed an asymptotic Liouville property, that is, if \(u \) is a \(\infty \)-harmonic function in whole \(\mathbb{R}^n \) with a linear growth at \(\infty \), then \(\lim_{R \to \infty} \frac{1}{2R^2} u(Rx) = e \cdot x \) locally uniformly for some vector \(e \) with \(|e| = \|Du\|_{L^\infty(\mathbb{R}^n)} \). But \(C^4, C^{1, \alpha} \)-regularity and the corresponding Liouville theorem of \(\infty \)-harmonic functions are completely open.

On the other hand, if \(H \in C^2(\mathbb{R}^n) \) is locally strongly convex, Wang-Yu [31] obtained the linear approximation property of absolute minimizer, and when \(n = 2 \), the \(C^1 \)-regularity and hence the corresponding Liouville theorem. In this paper, we say that \(H \in C^0(\mathbb{R}^n) \) is locally strongly convex (resp. concave) if for any convex subset \(U \) of \(\mathbb{R}^n \), there exists \(\lambda > 0 \) depending on \(U \) (resp. \(\Lambda > 0 \)) such that

\[
H(p) - \frac{\lambda}{2} |p|^2 \quad \text{(resp. } \frac{\Lambda |p|^2}{2} - H(p) \text{)} \quad \text{is convex in } U.
\]

Note that \(H \in C^2(\mathbb{R}^n) \) implies that \(H \) is always locally strongly concave. In particular, the \(l_\alpha \)-norm for \(2 < \alpha < \infty \) provides a class of typical example of locally strongly convex and concave but non-Hilbertian Hamiltonians.

Recently, under the assumptions that \(H \in C^0(\mathbb{R}^n) \) is convex and coercive, it was shown by Fa-Wang-Zhou [20] that \(H \) is not a constant in any line segment if and only if all absolute minimizers for \(H \) have the linear approximation property; moreover, when \(n = 2 \), if and only if all absolute minimizers for \(H \) are \(C^1 \)-regular, and also if and only if the corresponding Liouville theorem holds. In [21], we proved that if \(H \in C^2(\mathbb{R}^2) \) is locally strongly convex and concave, then \(H(Du)^\alpha \in W^{1,2}_{\text{loc}} \) for all \(\alpha > \frac{1}{2} - \tau_H \) for all absolute minimizers \(u \) in planar domains, where \(0 < \tau_H \leq \frac{1}{2} \) and \(\tau_H = 1/2 \) when \(H \in \mathcal{C}^2(\mathbb{R}^2) \); and also that the distributional determinant \(-\det D^2 u \) is a nonnegative Radon measure. But, when \(n \geq 3 \), the everywhere differentiability, \(C^1, C^{1, \alpha} \)-regularity and the Liouville theorem is not clear.

If \(n \geq 3 \) and \(H \in C^0(\mathbb{R}^n) \) is locally strongly convex and concave, this paper aims to prove the following everywhere differentiability (Theorem 1.1 below) and asymptotic Liouville property (Theorem 1.2 below) of absolute minimizers.

Theorem 1.1. Suppose that \(n \geq 3 \) and \(H \in C^0(\mathbb{R}^n) \) is locally strongly convex and concave. Let \(\Omega \subset \mathbb{R}^n \) be any domain. If \(u \in AM_H(\Omega) \), then \(u \) is differentiable everywhere in \(\Omega \).

Theorem 1.2. Suppose that \(n \geq 3 \) and \(H \in C^0(\mathbb{R}^n) \) is locally strongly convex/concave. If \(u \in AM_H(\mathbb{R}^n) \) with a linear growth at \(\infty \), then there exists a unique vector \(e \) such that

\[
H(e) = \|H(Du)\|_{L^\infty(\mathbb{R}^n)} \quad \text{and} \quad \lim_{R \to \infty} \frac{1}{R} u(Rx) = e \cdot x \quad \text{locally uniformly in } \mathbb{R}^n.
\]

When \(n \geq 3 \), it is unclear to us whether the assumption for \(H \) in Theorems 1.1, 1.2 can be relaxed to the weaker (and also necessary in some sense) assumption that \(H \in C^0(\mathbb{R}^n) \) is convex and coercive.
and is not a constant in any line segment. By [20], if $H \in C^0(\mathbb{R}^n)$ is convex and coercive, and is constant in some line-segment, then both of Theorems 1.1, 1.2 are not necessarily true.

In particular, it would be interesting to prove the everywhere differentiability of absolute minimizer for l_α-norm with $1 < \alpha < 2$. Recall that if $2 < \alpha < \infty$, then l_α-norm belongs to $C^2(\mathbb{R}^n)$ and is convex, and hence both of the conclusions of Theorem 1.1, 1.2 holds. If $\alpha = 1$ or ∞, the l_α-norm will be constant in some line-segment.

By Remark 1.3 below, we only need to prove Theorems 1.1, 1.2 when $H \in C^0(\mathbb{R}^n)$ satisfies (H1) H is strongly convex and concave in \mathbb{R}^n, that is, there exist $0 < \lambda \leq \Lambda < \infty$ such that both of $H(p) - \frac{1}{\lambda}|p|^2$ and $\frac{1}{\Lambda}|p|^2 - H(p)$ are convex in \mathbb{R}^n.

(H2) $H(0) = \min_{p \in \mathbb{R}^n} H(p) = 0.$

Remark 1.3. Suppose that $H \in C^0(\mathbb{R}^n)$ is locally strongly convex and concave.

(i) If $u \in AM_H(\Omega)$ for some domain $\Omega \subset \mathbb{R}^n$, letting $U \subset \Omega$ be arbitrary subdomain, we have $k = \|Du\|_{L^\infty(U)} < \infty$. Next, by [21] Lemma A.8, there exists a \bar{H} which is strongly convex/concave in \mathbb{R}^n and $\bar{H} = H$ in $B(0, k + 1)$. Thus $u \in AM_{\bar{H}}(U)$. The strongly convexity of \bar{H} implies that there exists a $p_0 \in \mathbb{R}^n$ such that $\min_{p \in \mathbb{R}^n} \bar{H}(p) = H(p_0)$. Set $\bar{H}(p) = H(p + p_0) - H(p_0)$ for $p \in \mathbb{R}^n$. Then \bar{H} satisfies (H1)&(H2). Write $\bar{u}(x) = u(x) - p_0 \cdot x$ for all $x \in U$. We have $\bar{u} \in AM_{\bar{H}}(U)$. Since u and \bar{u} have the same regularity in U, we only need to prove the everywhere differentiability of \bar{u} in U.

(ii) If $u \in AM_{\bar{H}}(\mathbb{R}^n)$ has a linear growth at ∞, then by [20] we have $k := \|Du\|_{L^\infty(\mathbb{R}^n)} < \infty$. Let \bar{u} and \bar{H} as above. Then u is linear if and only if \bar{u} is linear. So we only need to prove \bar{u} is linear.

Unless otherwise specifying, we always assume that $H \in C^0(\mathbb{R}^n)$ satisfies (H1)&(H2) below. Note that the geometric&variational approach used in dimension 2 (see Savin [30] and also [20, 31]) is not enough to prove Theorems 1.1, 1.2 since it includes a key planar topological argument. Moreover, since $H \in C^0(\mathbb{R}^n)$ does not have Hilbert structure necessarily, it is not clear whether one can prove Theorem 1.1 by using the idea of Evans-Smart [18]—a PDE approach based on maximal principle (see also Remark 2.6 (i)). But, in Section 2, we are able to prove Theorems 1.1, 1.2 by borrowing some idea of Evans-Smart [19]—a PDE approach based on an adjoint argument, and using the following crucial ingredients:

(a) the linear approximation property of any given absolute minimizer u for H as obtained in Fa-Wang-Zhou [20] and Wang-Yu [31] (see Lemmas 2.1&2.5).

(b) a stability result in [21] (see Lemma 2.2) which allows to approximate u via absolute minimizers u^γ of a Hamiltonian H^γ, where H^γ is a smooth approximation of H and satisfies (H1)&(H2) with the same constants λ, Λ.

(c) a uniform approximation to u^γ via smooth functions $u^{\gamma, \epsilon}$ (see Theorem 2.3), which is an appropriate modification of Evans’ approximation via $e^{\frac{\epsilon}{2}H^\gamma}$-harmonic functions in [10]. The point is that none of $k \geq 3$ -order derivatives of H^γ is involved in the linearization of the equation (2.2) for $u^{\gamma, \epsilon}$.

(d) an integral flatness estimate for $u^{\gamma, \epsilon}$ (see Theorem 2.4).

Theorem 2.3 will be proved in Section 3. The novelty in the proof of Theorem 2.3 is that we use viscosity solutions to certain Hamilton-Jacobi equation as barrier functions to get a boundary regularity of $u^{\gamma, \epsilon}$ and then conclude the uniform approximation of $u^{\gamma, \epsilon}$ to u^γ. The reason to use $u^{\gamma, \epsilon}$ instead of $e^{\frac{\epsilon}{2}H^\gamma}$-harmonic functions is that the linearization of $e^{\frac{\epsilon}{2}H^\gamma}$-harmonic equation contains 3-order derivatives of H^γ; see Remark 2.3 (i) for details.

Theorem 2.4 will be proved in Section 5. To this end, we generalize in Section 4 the adjoint arguments of [19] to Hamiltonian H^γ and $u^{\gamma, \epsilon}$. Since none of $k \geq 3$ -order derivatives of H^γ is involved in the equation for $u^{\gamma, \epsilon}$, all key estimates in Theorem 2.3 and Section 4 rely only on λ and Λ. This is indeed important to get Theorem 2.4 Moreover, since $H \in C^0(\mathbb{R}^n)$ does not have Hilbert
structure in general, some new ideas are needed to get Theorem 2.4 in Section 5; in particular, the test function used in the proof of flatness estimates in [19] is not enough to us, as an another novelty we find a suitable test function and build up some related estimates.

2. Proofs of Theorems 1.1-1.2

Considering Remark 1.3, we always assume that $H \in C^0(\mathbb{R}^n)$ satisfies (H1)&(H2). To prove Theorem 1.1, let Ω be any domain of \mathbb{R}^n, and $u \in AM_H(\Omega)$. We recall the following linear approximation property of u as established by [20].

Lemma 2.1. For any $x \in \Omega$ and any sequence $\{r_j\}_{j \in \mathbb{N}}$ which converges to 0, there exist a subsequence $\{r_{j_k}\}_{k \in \mathbb{N}}$ and a vector $e_{\{r_{j_k}\}_{k \in \mathbb{N}}}$ such that

$$\lim_{k \to \infty} \sup_{y \in B(0,1)} \left| \frac{u(x + r_{j_k}y) - u(x)}{r_{j_k}} - e_{\{r_{j_k}\}_{k \in \mathbb{N}}} \cdot y \right| = 0$$

and

$$H(e_{\{r_{j_k}\}_{k \in \mathbb{N}}}) = \lim_{r \to 0} \|H(Du)\|_{L^\infty(B(x,r))}.$$

For each $x \in \Omega$, denote by $\mathcal{D}u(x)$ the collection of all possible vector $e_{\{r_{j_k}\}_{k \in \mathbb{N}}}$ as above. Observe that u is differentiable at x if and only if $\mathcal{D}u(x)$ is a singleton; in this case $\mathcal{D}u(x) = \{Du(x)\}$.

To see that $\mathcal{D}u(x)$ is a singleton, we need the following approximation to u given in [21]. Precisely, let $\{H^\gamma\}_{\gamma \in (0,1]}$ be a standard smooth approximation to H as below. For each $\gamma \in (0,1]$, let $\tilde{H}^\gamma = \eta_\gamma \ast H$, where η_γ is standard smooth mollifier. Since H^γ is strictly convex there exists a unique point $p^\gamma \in \mathbb{R}^2$ such that $\tilde{H}^\gamma(p^\gamma) = \min_{p \in \mathbb{R}^2} \tilde{H}^\gamma(p)$. Set

$$(2.1) \quad H^\gamma(p) = \tilde{H}^\gamma(p + p^\gamma) - \tilde{H}^\gamma(p^\gamma) \quad \forall p \in \mathbb{R}^n.$$

Obviously, H^γ satisfies (H2); by [21] Appendix A, $\{H^\gamma\}_{\gamma \in (0,1]}$ satisfies (H1) with the same λ and Λ, and $H^\gamma \to H$ locally uniformly as $\gamma \to 0$. For each $\gamma \in (0,1]$ and $U \subseteq \Omega$, let

$$u^\gamma \in AM_{H^\gamma}(U) \cap C^0(\overline{U})$$

with $u^\gamma = u$ on ∂U.

We then have the following result; see [21] for $n = 2$ and note that the proofs in [21] also works for $n \geq 3$.

Lemma 2.2. We have

$$\|H^\gamma(Du^\gamma)\|_{L^\infty(U)} \leq C\Lambda\|u^\gamma\|_{C^{0,1}(\partial U)} \quad \forall \gamma \in (0,1],$$

and $u^\gamma \to u$ in $C^0(U)$ as $\gamma \to 0$.

Next, for any $\gamma \in (0,1]$, to approximate u^γ in a smooth way we consider the following Dirichlet problem:

$$(2.2) \quad \mathcal{A}_{H^\gamma}(v) + \epsilon \Delta v = 0 \quad \text{in} \ U; \ v = u^\gamma \text{ on } \partial U.$$

The following result is proved in Section 3.

Theorem 2.3. For each $\epsilon, \gamma \in (0,1]$, there exists a unique solution $u^{\gamma,\epsilon} \in C^\infty(U) \cap C^0(\overline{U})$ to (2.2). Moreover, the following hold.

(i) We have

$$\|u^{\gamma,\epsilon}\|_{C^0(\overline{U})} \leq \|u^\gamma\|_{C^0(\partial U)} \quad \forall \epsilon \in (0,1].$$

(ii) We have

$$\|Du^{\gamma,\epsilon}\|_{C^0(\overline{U})} \leq C_0(\lambda, \Lambda, \text{dist}(V, \partial U), \|u^\gamma\|_{C^0(\partial U)}) \quad \text{for any } V \subseteq U \text{ and } \epsilon \in (0,1],$$

where the constant $C_0(\lambda, \Lambda, \text{dist}(V, \partial U), \|u^\gamma\|_{C^0(\partial U)})$ depends only on λ, Λ, $\text{dist}(V, \partial U)$ and $\|u^\gamma\|_{C^0(\partial U)}$.

(iii) There exist $\epsilon_*>0$ and $C_*>0$ depending on H^γ and $\|u^\gamma\|_{C^{0,1}(\overline{U})}$ such that for any $0<\epsilon<\epsilon_*$, we have

$$|u^{\gamma,\epsilon}(x) - u^\gamma(x_0)| \leq C_*|x-x_0| \quad \forall x \in U, \ x_0 \in \partial U.$$

(iv) We have $u^{\gamma,\epsilon} \to u^\gamma$ in $C^0(\overline{U})$ as $\epsilon \to 0$.

The existence and uniqueness of $u^{\gamma,\epsilon}$, and also Theorem 2.3 (i) follow from the classical elliptic theory; Theorem 2.3 (iv) from Theorem 2.3 (ii) and (iii). Theorem 2.3 (ii) follows from the approach by [13] based on the maximal principle and the linearized operator arising from (2.2):

$$(2.3) \quad -H_{p_j}(Du^{\gamma,\epsilon})H_{p_j}(Du^{\gamma,\epsilon})v_{x_j,x_j} - 2H_{p_j,p_l}(Du^{\gamma,\epsilon})u^{\gamma,\epsilon}_{x_j,x_l}H_{p_j}(Du^{\gamma,\epsilon})v_{x_l} - \epsilon \Delta v.$$

Since none of $k \geq 3$ order derivatives of H is involved in (2.3), we will conclude that the constant C_0 in Theorem 2.3 (ii) depends at most on λ, Λ dist$(V, \partial U)$ and $\|u^\gamma\|_{C^0(\partial U)}$. To get Theorem 2.3 (iii), we need new ideas. Indeed, unlike the case $H(p) = \frac{1}{2}|p|^2$, where we use $|x|^{\gamma}$ as a barrier function to conclude Theorem 2.3 (iii) from the comparison principle, the novelty here is that due to we take viscosity solutions L^b_{σ} of certain Hamilton-Jacobi equation as barrier functions; see Lemmas 3.1-3.2.

In Section 5, we establish the following flatness estimate of $u^{\gamma,\epsilon}$, which is crucial to show that $\mathcal{D}u(x)$ is a singleton. Denote by e_n the vector $(0, \cdots, 0, 1)$.

Theorem 2.4. Suppose that $U = B(0,3)$ and for some $\gamma, \epsilon \in (0,1]$, $u^{\gamma,\epsilon}$ satisfies

$$(2.4) \quad \max_{B(0,3)} |u^{\gamma,\epsilon} - x_n| \leq \tau$$

for some $0<\tau<1$ and

$$(2.5) \quad H^\gamma(Du^{\gamma,\epsilon}(x_0)) \geq H^\gamma(e_n) - \delta$$

for some $0<\delta<H(e_n)/2$ and $x_0 \in B(0,1)$. Then

$$(2.6) \quad |Du^{\gamma,\epsilon}(x_0) - e_n|^2 \leq C_1(\lambda, \Lambda) \left[\tau + \frac{\tau}{\epsilon} \right],$$

where $\mu = \frac{1}{10n}$. Above $C_1(\lambda, \Lambda)$ is a constant depending only on λ and Λ.

The proof of Theorem 2.4 relies on a generalization of the adjoint method of Evans-Smart [19] to the equation (2.2) as developed in Section 4. Moreover, since H does not have Hilbert structure necessarily, we can not follow the argument of Evans-Smart to get Theorem 2.4, where they take $u^{\gamma,\epsilon}_n - 1$ as a test function. The novelty here is to take $|Du^{\gamma,\epsilon} - e_n|^2$ as a test function. With aid of the estimates in Section 4, by using the strongly convexity/concavity of H and some careful analysis, we are able to prove Theorem 2.4. Again, since none of $k \geq 3$ order derivatives of H are involved in the linearized operator and hence in the whole procedure, we conclude that all constants in estimates in Section 4 and hence C_1 in Theorem 2.4 depend on at most λ and Λ.

With the aid of Theorem 2.4, Theorem 2.3 and Lemma 2.11 by some necessary modifications of the arguments of [13] we are able to prove that for any $x \in \Omega$, $\mathcal{D}u(x)$ is singleton, and hence that u is differentiable everywhere in Ω; for reader’s convenience we give the details.

Proof of Theorem 2.4 By Remark 1.3 we assume $H \in C^0(\mathbb{R}^n)$ satisfies (H1)&(H2). Let Ω be any domain of \mathbb{R}^n, and $u \in AM_H(\Omega)$. It suffices to prove that $\mathcal{D}u(x)$ is singleton. We prove this by contradiction. Assume that $\mathcal{D}u(x_0)$ contains at least two vectors $a \neq b$ with $H(a) = H(b)$ for some $x_0 \in \Omega$. Note that $a, b \neq 0$. We may assume that $x_0 = 0 \in \Omega$, $u(0) = 0$, $a = e_n$ without loss of generality. Set $\theta = |b - e_n| > 0$. We obtain a contradiction by the following 4 steps.

Step 1. Fix $\tau_0 \in (0,1]$ such that

$$(2.7) \quad C_1(\lambda, \Lambda)\frac{\tau^2}{32} \leq \frac{\theta^2}{32}, \quad \forall \delta < \delta_0, \tau < \tau_0.$$
Since $e_n \in \mathcal{D}u(0)$ we can find a sequence $\{r_j\}_{j \in \mathbb{N}}$ which converges to 0 such that
\[
\max_{B(0,3)} |u_j(x) - x_n| = \max_{B(0,3r_j)} \frac{|u(x) - a \cdot x|}{r_j} \to 0 \quad \text{as} \; j \to \infty,
\]
where $u_j(x) = u(r_jx)/r_j$ for $x \in \Omega$. For each $\tau \in (0, \tau_0]$, there exists a j_τ such that if $j \geq j_\tau$,
\[
\max_{B(0,3)} |u_j(x) - x_n| < \frac{\tau}{4} \quad \forall \; j \geq j_\tau.
\]
For any $\gamma \in (0, 1)$ and $j \in \mathbb{N}$, let
\[
u_j^\gamma \in AM_{H^\gamma}(B(0,3)) \quad \text{with} \quad u_j^\gamma = u_j \text{ on } \partial B(0,3).
\]
By Lemma 2.2 for each $j \geq j_\tau$, $u_j^\gamma \to u_j$ as $\gamma \to 0$, there exists $\gamma_{j,\tau} > 0$ such that
\[
\max_{B(0,3)} |u_j^\gamma - x_n| \leq \frac{\tau}{2} \quad \forall \gamma \in (0, \gamma_{j,\tau}].
\]
By Theorem 2.3 (iv), for each $j \geq j_\tau$ and $\gamma < \gamma_{j,\tau}$, there is an $\epsilon_{j,\gamma,\tau} \in (0, 1]$ that
\[
\max_{B(0,3)} |u_j^{\gamma,\epsilon} - x_n| \leq \tau \quad \forall \epsilon < \epsilon_{j,\gamma,\tau}.
\]
Step 2. Since $b \in \mathcal{D}(u)(0)$ by \[20\], there exist a sequence $\{s_k\}_{k=1}^\infty$ which converge to zero such that
\[
\max_{B(0,s_k/r_j)} \frac{|u_j(x) - b \cdot x|}{s_k/r_j} = \max_{B(0,s_k)} \frac{|u(x) - b \cdot x|}{s_k} \to 0 \quad \text{as} \; k \to \infty
\]
for all $j \in \mathbb{N}$. For each $\eta \in (0, \tau)$ and $j \geq j_\tau$, there exist $k_{\eta,j} \in \mathbb{N}$ such that for all $k \geq k_{\eta,j}$, we have $s_k/r_j \leq 1$ and
\[
\max_{B(0,s_k/r_j)} \frac{|u_j - b \cdot x|}{s_k/r_j} \leq \frac{\eta}{4}.
\]
Since $u_j^\gamma \to u_j$ in $B(0,3)$, for each $k \geq k_{\eta,j}$ we can find $\gamma_{k,j,\eta} < \gamma_{j,\tau}$ such that for each $\gamma \in (0, \gamma_{k,j,\eta})$,
\[
\max_{B(0,s_k/r_j)} \frac{|u_j^{\gamma,\epsilon} - b \cdot x|}{s_k/r_j} \leq \frac{\eta}{2}.
\]
Since $u_j^{\gamma,\epsilon} \to u_j^\gamma$ in $B(0,3)$, for each $\epsilon < \epsilon_{j,\gamma,k,j,\eta}$, we further find $\epsilon_{\gamma,k,j,\eta} < \epsilon_{j,\gamma,\tau}$ such that for all $\epsilon < \epsilon_{\gamma,k,j,\eta}$,
\[
\max_{B(0,s_k/r_j)} \frac{|u_j^{\gamma,\epsilon} - b \cdot x|}{s_k/r_j} \leq \eta.
\]
Step 3. For each $\eta \in (0, \tau)$, there exists $\gamma_{\eta} \in (0, 1)$ such that
\[
|H^\gamma(e_n) - H^\gamma(b)| \leq \eta,
\]
where we have used $H(e_n) = H(b)$.
For each $\eta \in (0, \tau)$, $j \geq j_\tau$, $k \geq k_{\eta,j}$, $\gamma < \min\{\gamma_{k,j,\eta}, \gamma_{\eta}\}$ and $\epsilon < \epsilon_{j,\gamma,k,j,\eta}$, by Lemma \[18, 19, 2.11\] implies that there is a point $x_{\epsilon,\gamma,k,j,\eta} \in B(0,s_k/r_j)$ at which
\[
|Du_j^{\gamma,\epsilon}(x_{\epsilon,\gamma,k,j,\eta}) - b| \leq 4\eta.
\]
We further have that
\[
|H^\gamma(e_n) - H^\gamma(Du_j^{\gamma,\epsilon}(x_{\epsilon,\gamma,k,j,\eta}))| \leq C_2(\lambda, \Lambda, b)\eta.
\]
Indeed, by convexity of H, we have
\[
H^\gamma(b) - H^\gamma(Du_j^{\gamma,\epsilon}(x_{\epsilon,\gamma,k,j,\eta})) \geq \langle D_pH(Du_j^{\gamma,\epsilon}(x_{\epsilon,\gamma,k,j,\eta})), b - Du_j^{\gamma,\epsilon}(x_{\epsilon,\gamma,k,j,\eta}) \rangle.
\]
Since $|D_p H^\gamma(p)| \leq \Lambda |p|$ and $|Du_j^{\gamma,\epsilon}(x^0)| \leq |b| + 4$, one has
\[H^\gamma(Du_j^{\gamma,\epsilon}(x,\gamma, k, j, \eta)) - H^\gamma(b) \leq |D_p H^\gamma(Du_j^{\gamma,\epsilon}(x,\gamma, k, j, \eta))| |Du_j^{\gamma,\epsilon}(x,\gamma, k, j, \eta) - b| \leq C(\lambda, \Lambda, b)\eta. \]
A similar estimate holds for $H^\gamma(b) - H^\gamma(Du_j^{\gamma,\epsilon}(x,\gamma, k, j, \eta))$. Thus
\[|H^\gamma(Du_j^{\gamma,\epsilon}(x,\gamma, k, j, \eta)) - H^\gamma(b)| \leq C(\lambda, \Lambda, b)\eta. \]
This together with Remark 2.6. (i) Recall that Evans [16] suggested another approximation to prove Theorem 1.2; here we omit the details and also refer to [25, 29].

Step 4. Let $\delta_0 \in (0, 1]$ such that
\[C_1(\lambda, \Lambda)\delta \leq \frac{\theta^2}{32}, \quad \forall \delta < \delta_0; \]
For each $\mu \in (0, \frac{\Lambda}{8n}], \delta \in (0, \delta_0]$, let $\epsilon_{\mu, \delta, \theta} \in (0, 1]$ such that
\[C_1(\lambda, \Lambda)\frac{1}{\epsilon} e^{-\frac{4}{\epsilon}} \leq \frac{\theta^2}{32}, \quad \forall \epsilon \in (0, \epsilon_{\mu, \delta, \theta}]. \]
Let $\eta < \min\{\delta_0/C_2(\lambda, \Lambda, b), \theta/16\}$ and $\delta = C_2(\lambda, \Lambda, b)\eta$. For $\tau < \tau_\theta$, $j \geq j_\theta$, $k \geq k_{j, \eta}$, $\gamma < \min\{\gamma_{k, j, \eta}, \gamma_n\}$, and $\epsilon < \min\{\epsilon_{\gamma, k, j, \eta}, \epsilon_{\mu, \delta, \theta}\}$, by Theorem 2.4 (2.13) and (2.10) imply that
\[|Du^{\gamma,\epsilon}(x,\gamma, k, j, \eta) - e_n|^2 \leq C_1(\lambda, \Lambda) \left[\tau + C_2(\lambda, \Lambda, b)\eta + \frac{1}{\epsilon} e^{-\frac{4}{\epsilon}} \right] \leq \frac{\theta^2}{8}. \]
Thus by (2.12) one has
\[\theta = |e_n - b| \leq 4\eta + \frac{\theta}{2} \leq \frac{3\theta}{4}, \]
which is a contradiction as desired. The proof of Theorem 1.1 is complete. \[\square\]

To prove Theorem 1.2 let $u \in AM_H(\mathbb{R}^n)$ with a linear growth at ∞. By [20], $\|Du\|_{L^\infty(\mathbb{R}^n)} < \infty$ and moreover u has the linear approximation property at ∞ as below.

Lemma 2.5. For any sequence $\{r_j\}_{j \in \mathbb{N}}$ which converges to ∞, there exist a subsequence $\{r_{jk}\}_{k \in \mathbb{N}}$ and a vector $e_{\{r_{jk}\}_{k \in \mathbb{N}}}$ such that
\[\lim_{k \to \infty} \sup_{y \in B(0,1)} \left| \frac{u(r_{jk})}{r_{jk}} - e_{\{r_{jk}\}_{k \in \mathbb{N}}} \cdot y \right| = 0 \]
and
\[H(e_{\{r_{jk}\}_{k \in \mathbb{N}}}) = \|H(Du)\|_{L^\infty(\mathbb{R}^n)}. \]

Denote by $\mathcal{D}(\infty)$ the collection of all possible $e_{\{r_{jk}\}}$ as above. Following the proof of Theorem 1.1 line by line and letting $r_k \to \infty$ as $k \to \infty$, we are able to prove that $\mathcal{D}(\infty)$ is singleton, and hence prove Theorem 1.2 here we omit the details and also refer to [25, 29].

We end this section by the following remark.

Remark 2.6. (i) Recall that Evans [16] suggested another approximation to u^γ via $e^{1/H}$-harmonic functions $\tilde{u}^{\gamma,\epsilon}$, that is, smooth solutions to
\[\text{div} \left(e^{1/H(Du)} D_p H(Du) \right) = e^{1/H(Du)} [\partial H[v] + \epsilon \text{div} \left(D_p H^\gamma(Du) \right)] = 0 \quad \text{in} \ U; \ v = u^\gamma \quad \text{on} \ \partial U. \]
But note that the 3-order derivative of H^γ appears in third terms of the linearized operator
\[(2.17) \quad - H_{p_i}(D\tilde{u}^{\gamma,\epsilon}) H_{p_j}(D\tilde{u}^{\gamma,\epsilon}) v_{x_i x_j} - 2H_{p_i p_j}(D\tilde{u}^{\gamma,\epsilon}) \tilde{u}^{\gamma,\epsilon}_{x_i x_j} H_{p_j}(D\tilde{u}^{\gamma,\epsilon}) v_{x_i} - \epsilon \text{div} \left(D_{pp}^2 H^\gamma(D\tilde{u}^{\gamma,\epsilon}) Dv \right). \]
If we want to get Theorem 2.3 and 2.4 for $\tilde{u}^{\gamma,\epsilon}$ so that the constants C_0, C_1 are independent of 3-order derivative of H^γ or H, some extra efforts are needed. To avoid such extra efforts, we prefer to consider the approximation equation (2.2).
If \(H(p) = \frac{1}{p} |p|^2 \), a flatness estimate stronger than Theorem 2.4 is also given in [18] via the maximal principle,

\[
|Du^\gamma| \leq u_{x_n}^\gamma + C\sqrt{\tau} \quad \text{in } B(0, 1) \text{ for all } \epsilon \in (0, 1].
\]

Note that in this case, \(H^\gamma = H \) and \(u^\gamma = u \), and \(u^\gamma \epsilon \) is then reduced to \(u^\epsilon \). From this Evans-Smart [18] concluded the everywhere differentiability of \(\infty \)-harmonic functions \(u \). But for \(H \in C^0(\mathbb{R}^n) \) satisfying (H1) and (H2), since \(H \) does not necessarily have a Hilbert structure, it is still unclear whether there is some estimate similar to (2.18), and also whether the approach in [18] can be used to prove Theorem 1.1.

3. Proof of Theorem 2.3

Let \(H, H^\gamma, u, u^\gamma \) and \(u^\gamma \epsilon \) be as in Section 2. Note that \(H^\gamma \) satisfies (H1)\&(H2) with the same \(\lambda \) and \(\Lambda \). Since \(|H^\gamma_p(p)|^2 \leq \Lambda^2 |p|^2 \) implies

\[
\epsilon |\xi|^2 \leq [H^\gamma_p(p)H^\gamma_{ij}(p)] |\xi_i| |\xi_j| \leq \Lambda^2 (|p|^2 + 1)|\xi|^2 \quad \forall \xi \in \mathbb{R}^n,
\]

by a standard quasilinear elliptic theory (see [24]), there exists a unique smooth solution \(u^\gamma \epsilon \in C^\infty(U) \cap C^0(\bar{U}) \) to (2.2). Theorem 2.3 (i) follows from the known maximum principle. We also note that by a standard argument, \(u^\gamma \epsilon \to u^\gamma \) in \(C^0(\bar{U}) \) (that is Theorem 2.3 (iv)) follows from Theorem 2.3 (ii)\&(iii), and the uniqueness of \(u^\gamma \epsilon \) in [18]; here we omit the details. Below we only need to prove Theorem 2.3 (ii)\&(iii). For simplicity, we write \(u^\gamma \) as \(H \), \(u^\gamma \) as \(u \), and we write \(u^\gamma \epsilon \) as \(u^\epsilon \) by abuse of notation.

We prove Theorem 2.3 (ii) using the approach of Evans-Smart [19] here. Denote by \(L_\epsilon \) the linearized operator obtained from \(\mathcal{A}_H[u^\epsilon] + \epsilon \Delta u^\epsilon = 0 \), that is,

\[
L_\epsilon(v) := -H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)v_{x_i x_j} - 2H_{p_i p_j}(Du^\epsilon)u^\epsilon_{x_i x_j}H_{p_j}(Du^\epsilon)v_{x_l} - \epsilon \Delta v
\]
for \(v \in C^\infty(U) \). Note that

\[
L_\epsilon(u^\epsilon_{x_k}) = (\mathcal{A}_H[u^\epsilon] + \epsilon \Delta u^\epsilon)_{x_k} = 0 \quad \text{in } U \quad \forall k = 1, \ldots , n.
\]

Proof of Theorem 2.3 (ii). We choose \(\zeta \in C^\infty_c(U) \) such that

\[
0 \leq \zeta \leq 1, \quad \zeta = 1 \quad \text{in } V, \quad |D\zeta| \leq 4 \frac{1}{\text{dist} (V, \partial U)}, \quad |D^2\zeta| \leq C_0 \frac{1}{[\text{dist} (V, \partial U)]^2}.
\]

Define an auxiliary function

\[
w = \zeta^2 |Du^\epsilon|^2 + \alpha(u^\epsilon)^2,
\]
where \(\alpha > 0 \) will be determined later. If \(w \) attains its maximum on \(\partial U \), then

\[
\max_V |Du^\epsilon|^2 \leq \sup_U w = \max_{\partial U} \alpha u^2,
\]
this implies Theorem 2.3 (ii).

Assume that \(w \) attains its maximum at some \(x_0 \in U \). Since \(Dw(x_0) = 0 \) and \(D^2 w(x_0) \) is nonpositive definite, we have \(L_\epsilon(w) \geq 0 \) at \(x_0 \). Below we estimate \(L_\epsilon(w) \) at \(x_0 \) from above. Note that

\[
L_\epsilon(w) = \zeta^2 L_\epsilon(|Du^\epsilon|^2) + |Du^\epsilon|^2 L_\epsilon(\zeta^2) + \alpha L_\epsilon((u^\epsilon)^2)
+ [-4\zeta \langle D_p H(Du^\epsilon), D\zeta \rangle \langle D^2 u^\epsilon D_p H(Du^\epsilon), D\zeta \rangle - 8\epsilon \zeta \langle D^2 u^\epsilon Du^\epsilon, D\zeta \rangle]
\]
A direct calculation gives

\[
L_\epsilon(|Du^\epsilon|^2) = -2H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)[u^\epsilon_{x_k} u^\epsilon_{x_k x_i x_j} + u^\epsilon_{x_k x_i} u^\epsilon_{x_k x_j}]
- 4H_{p_i p_j}(Du^\epsilon)H_{p_j}(Du^\epsilon)u^\epsilon_{x_i x_j} u^\epsilon_{x_k x_i} u^\epsilon_{x_k x_j} - 2\epsilon [u^\epsilon_{x_k} u^\epsilon_{x_k x_i} + (u^\epsilon_{x_k x_i})^2]
= 2u^\epsilon_{x_k} L_\epsilon(u^\epsilon_{x_k}) - 2|D^2 u^\epsilon D_p H(Du^\epsilon)|^2 - 2\epsilon |D^2 u^\epsilon|^2.
\]
By $L_{\epsilon}(u_{x_0}^\epsilon) = 0$, and $D^2u^\epsilon D_pH(Du^\epsilon) = D[H(Du^\epsilon)]$ we obtain
\[
\zeta^2 L_{\epsilon}(|Du^\epsilon|^2) = -\frac{2}{2}\zeta^2|D[H(Du^\epsilon)]|^2 - 2\epsilon \zeta^2|D^2u^\epsilon|^2.
\]
Similarly using (2.2), we have
\[
L_{\epsilon}((u^\epsilon)^2) = -2H_{p_1}(Du^\epsilon)^2 + u_{x_1}^\epsilon u_{x_1}^\epsilon + u_{x_i}^\epsilon u_{x_i}^\epsilon
\[
-4u_{x_i}^\epsilon H_{p_1}(Du^\epsilon)H_{p_1}(Du^\epsilon)u_{x_1}^\epsilon u_{x_i}^\epsilon
\[
-2\epsilon u_{x_1}^\epsilon u_{x_i}^\epsilon + (u_{x_i}^\epsilon)^2
\[
= -2(D_pH(Du^\epsilon), Du^\epsilon)^2 - 2\epsilon|Du^\epsilon|^2 - 4\epsilon(D_{pp}^2H(Du^\epsilon)D[H(Du^\epsilon)], Du^\epsilon).
\]
Since (H1)\&(H2) implies
\[
\langle D_pH(p), p \rangle \geq \frac{\lambda}{2}|p|^2, \ |D_{pp}^2H(p)\rangle \leq \Lambda \langle \xi | \ \forall p, \xi \in \mathbb{R}^n,
\]
by Young’s inequality, we obtain
\[
\alpha L_{\epsilon}((u^\epsilon)^2) \leq -\alpha \lambda^2|Du^\epsilon|^4 + C(\alpha, \Lambda)|D[H(Du^\epsilon)]|^4/3 + |u^\epsilon|^4|Du^\epsilon|^4.
\]
Since
\[
L_{\epsilon}(\zeta^2) = -2H_{p_1}(Du^\epsilon)H_{p_1}(Du^\epsilon)[\zeta_{x_1}^2 + \zeta_{x_i}^2]
\[
-4\epsilon H_{p_1}(Du^\epsilon)H_{p_1}(Du^\epsilon)\zeta_{x_1}^2 \zeta_{x_i}^2 - 2\epsilon \zeta_{x_1}^2 + \zeta_{x_i}^2
\]
using (H1)\&(H2) and Young’s inequality we also obtain
\[
|Du^\epsilon|^2L_{\epsilon}(\zeta^2) \leq C(\Lambda)|Du^\epsilon|^4||D\zeta|^2 + |D^2\zeta|\zeta| + \frac{1}{4}|D[H(Du^\epsilon)]|^2\zeta^2 + C(\Lambda)||D\zeta|^2 + |D^2\zeta|\zeta|.
\]
Similarly,
\[
-4\epsilon \langle D_pH(Du^\epsilon), D\zeta \rangle \langle D^2u^\epsilon D_pH(Du^\epsilon), Du^\epsilon \rangle - 8\epsilon \zeta \langle D^2u^\epsilon D_u^\epsilon, D\zeta \rangle
\]
\[
\leq \frac{1}{4}|\zeta|^2|D[H(Du^\epsilon)]|^2 + \frac{1}{4}|\zeta|^2|D^2u^\epsilon|\zeta^2 + C(\Lambda)||D\zeta|^2 + C(\alpha)||\zeta|^2.
\]
In conclusion, we have
\[
L_{\epsilon}(w) \leq -\zeta^2|D[H(Du^\epsilon)]|^2 + C(\alpha, \Lambda)|D[H(Du^\epsilon)]|^4/3 - [\alpha \lambda^2 - C(\Lambda)(|D\zeta|^2 + |D^2\zeta|\zeta)]|Du^\epsilon|^4
\]
\[
- |u^\epsilon|^4|Du^\epsilon|^4 + C(\Lambda)||D\zeta|^2 + |D^2\zeta|\zeta| + C(\alpha)||\zeta|^2.
\]
At x_0, $L_{\epsilon}(w) \geq 0$ implies that
\[
\zeta^2|D[H(Du^\epsilon)]|^2 + [\alpha \lambda^2 - C(\Lambda)(|D\zeta|^2 + |D^2\zeta|\zeta)]|Du^\epsilon|^4
\]
\[
\leq C(\alpha, \Lambda)|D[H(Du^\epsilon)]|^4/3 + |u^\epsilon|^4|Du^\epsilon|^4 + C(\Lambda)||D\zeta|^2 + |D^2\zeta|\zeta|.
\]
Multiplying the above inequality with ζ^4 yields
\[
|D[H(Du^\epsilon)]|^2 \zeta^6 + [\alpha \lambda^2 - C(\Lambda)(|D\zeta|^2 + |D^2\zeta|\zeta)]|Du^\epsilon|^4 \zeta^4
\]
\[
\leq C(\alpha, \Lambda)|D[H(Du^\epsilon)]|^4/3 \zeta^4 + |u^\epsilon|^4|Du^\epsilon|^4 \zeta^4 + C(\Lambda)||D\zeta|^2 + |D^2\zeta|\zeta| \zeta^4.
\]
By Young’s inequality we have
\[
C(\alpha, \Lambda)|D[H(Du^\epsilon)]|^4/3 \zeta^4 \leq \frac{1}{2}|D[H(Du^\epsilon)]|^2 \zeta^6 + C(\alpha, \Lambda),
\]
and hence
\[
[\alpha \lambda^2 - C(\Lambda)(|D\zeta|^2 + |D^2\zeta|\zeta)]|Du^\epsilon|^4 \zeta^4 \leq |u^\epsilon|^4|Du^\epsilon|^4 \zeta^4 + C(\Lambda)||D\zeta|^2 + |D^2\zeta|\zeta| \zeta^4 + C(\alpha, \Lambda).
\]
Choosing $\alpha = \alpha(\lambda, \Lambda, \|u^\epsilon\|_{C^0(U)}, \ dist (V, \partial U))$ so that
\[
\alpha \lambda^2 - C(\Lambda) \frac{C_0 + 16}{(\dist (V, \partial U))^2} \geq \|u^\epsilon\|^4_{C^0(U)} + 1,
\]
we have
\[\zeta^4 |Du^e|^4 |_{x=x_0} \leq C(\lambda, \Lambda, \|u^e\|_{C^{0}(U)}, \text{dist} (V, \partial U)). \]

Hence,
\[\sup_{V} |Du^e|^4 \leq \left[\sup_{U} w \right]^2 \leq \zeta^4 |Du^e|^4 |_{x=x_0} + \alpha [u^e(0)]^2 \leq C(\lambda, \Lambda, \|u^e\|_{C^{0}(U)}, \text{dist} (V, \partial U)) \]
as desired. \hfill \Box

To prove Theorem 2.3 (iii), we need the following Lemma 3.1, which can be found in [22, Lemma 3.2 and Lemma 3.4]. For each \(t > 0, \delta > 0, \sigma > 0 \) and \(x, y \in U \), define
\[L^\delta(x, y) := \inf \left\{ \int_0^t \left[\sigma + L(\xi(s)) \right] e^{-\delta(t-s)} ds \bigg| t > 0, \xi \in C(0, t; x, y; U) \right\}, \]
where \(C(0, t; x, y; U) \) is the set of all rectifiable curves \(\xi : [0, t] \to U \) that joins \(x \) to \(y \), and
\[L(q) = \sup_{p \in \mathbb{R}^n} \{ p \cdot q - H(p) \}, \quad \forall q \in \mathbb{R}^n. \]

For each \(\sigma > 0 \), we also need to the notion of generalized cones, that is
\[\mathcal{C}_\sigma^H(x) = \max_{H(p)=\sigma} \{ p \cdot x \}, \quad \forall x \in U. \]

By the strongly convexity of \(H \), one always has that
\[\sqrt{2\sigma/\lambda|x|} \leq \mathcal{C}_\sigma^H(x) \leq \sqrt{2\sigma/\lambda|x|} \]

Lemma 3.1. Assume that \(H \in C^\infty(\mathbb{R}^n) \) satisfy (H1)&(H2).

(i) For all \(\sigma > 0, \delta \geq 0 \) and \(x, y \in U \), we have
\[\mathcal{C}_\sigma^H(y - x) \geq L^\delta(x, y) \geq 0. \]

(ii) When \(\frac{\delta}{\sigma} L^\delta(x, y) < \ln \sqrt{2} \), we also have
\[\mathcal{C}_\sigma^H(y - x) \leq e^{\frac{2\delta}{\sigma} L^\delta(x, y)} L^\delta(x, y). \]

(iii) For any domain \(V \subseteq \mathbb{R}^n \) and \(x_0 \in \partial V \), we have \(L^\delta(x_0, \cdot) \) is a viscosity sup-solution of
\[A_H(v) = -\frac{\delta}{2} \quad \text{in} \ V \setminus \{x_0\} \quad \text{whenever} \ 0 < \delta < \delta_{\sigma, V} = \frac{\sigma}{2 \sup \{ \mathcal{C}_\sigma^H(y - x) : x, y \in \partial V \}} \]
and \(L^\delta(\cdot, x_0) \) is a viscosity sub-solution of
\[A_H(v) = \frac{\delta}{2} \quad \text{in} \ V \setminus \{x_0\} \quad \text{whenever} \ 0 < \delta < \delta_{\sigma, V}. \]

We also need the following comparison principle, see [33, Appendix, Theorem 2].

Lemma 3.2. Assume that \(H \in C^\infty(\mathbb{R}^n) \) satisfy (H1)&(H2). For any \(\sigma > 0 \) and domain \(V \subseteq \mathbb{R}^n \), assume that \(u_1 \in C^0(\partial V) \) is a viscosity sup-solution of
\[A_H(u_1) + \epsilon \Delta u_1 = -\delta \quad \text{in} \ V \]
and \(u_2 \in C^0(\partial V) \) is a viscosity sub-solution of
\[A_H(u_2) + \epsilon \Delta u_2 = 0 \quad \text{in} \ V. \]

If either \(u_1 \in C^{0,1}(V) \) or \(u_2 \in C^{0,1}(V) \), then
\[\max_{V} (u_2 - u_1) \leq \max_{\partial V} (u_2 - u_1). \]

From Lemma 3.1 and 3.2 we deduce the following.
Lemma 3.3. Assume that $H \in C^\infty(\mathbb{R}^n)$ satisfy (H1) & (H2). For any domain $V \subset \mathbb{R}^n$ and $x_0 \in V$ for all $\sigma > 0$ and $0 < \delta < \delta_0$, there exist constant $\mu_1, \mu_2 > 0$ depending on σ, δ, H such that for all $\epsilon \in (0,1)$, $L_\sigma^\delta(x_0, \cdot)$ is a viscosity super-solution of
\[\mathcal{A}_H(v) + \epsilon \Delta v = -\frac{\delta v}{2} + \epsilon \mu_1 \text{ in } V \setminus \{x_0\} \]
and $L_\sigma^\delta(\cdot, x_0)$ is a viscosity sub-solution of
\[\mathcal{A}_H(v) + \epsilon \Delta v = \frac{\delta v}{2} - \epsilon \mu_2 \text{ in } V \setminus \{x_0\}. \]

Proof of Lemma 3.3. For any $\phi \in C^2(V)$ and $L_\sigma^\delta(x_0, x) - \phi(x)$ attains its locally minimum at $y \in V \setminus \{x_0\}$, it suffice to prove that
\[\mathcal{A}_H(\phi)(y) + \epsilon \Delta \phi(y) \leq -\frac{\delta \sigma}{2} + \epsilon \mu_1. \]

Without loss of generality, we may assume that $L_\sigma^\delta(x_0, x) - \phi$ attains its a strictly minimum at $y_0 \in V \setminus \{x_0\}$. Since $L_\sigma^\delta(x_0, x)$ is semiconcave, for any $\eta > 0, r > 0$, by Lemma A.3 in [14] there exist $x^{r, \eta} \in B(y_0, \sigma)$ and $p^{r, \eta} \in B(0, \eta)$ such that $L_\sigma^\delta(x_0, x) - \phi(x) - \langle p^{r, \eta}, x \rangle$ has a local minimal at $x^{r, \eta}$ and $L_\sigma^\delta(x_0, x)$ is twice differentiable at $x^{r, \eta}$. Also, the semiconcave property of $L_\sigma^\delta(x_0, x)$ implies that there exists $\mu_1 > 0$ depending on σ, δ, H such that
\[D^2 \mathcal{L}_\sigma^\delta(x_0, x) \leq \mu_1 I \]
in the sense of distributions, where I_n is identity matrix. Since $L_\sigma^\delta(x_0, x)$ is twice differentiable at $x^{r, \eta}$, by Lemma 3.1 and 3.3, we have
\[\langle D^2 \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta})D_p H(D \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta})), D_p H(D \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta})) \rangle + \epsilon \Delta \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta}) \leq -\frac{\delta \sigma}{2} + \epsilon \mu_1. \]

On the other hand, since $L_\sigma^\delta(x_0, x) - \phi(x) - \langle p^{r, \eta}, x \rangle$ has a local minimal at $x^{r, \eta}$, we have $D\mathcal{L}_\sigma^\delta(x_0, x^{r, \eta}) = D\phi(x^{r, \eta}) + p^{r, \eta}$ and $D^2 \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta}) \geq D^2 \phi(x^{r, \eta})$. Thus
\[\langle D^2 \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta})D_p H(D \phi(x^{r, \eta}) + p^{r, \eta}), D_p H(D \phi(x^{r, \eta}) + p^{r, \eta}) \rangle + \epsilon \Delta \phi(x^{r, \eta}) \]
\[\geq \langle D^2 \phi(x^{r, \eta})D_p H(D \phi(x^{r, \eta}) + p^{r, \eta}), D_p H(D \phi(x^{r, \eta}) + p^{r, \eta}) \rangle + \epsilon \Delta \phi(x^{r, \eta}). \]
Combining (3.4) and (3.5), we have
\[\langle D^2 \mathcal{L}_\sigma^\delta(x_0, x^{r, \eta})D_p H(D \phi(x^{r, \eta}) + p^{r, \eta}), D_p H(D \phi(x^{r, \eta}) + p^{r, \eta}) \rangle + \epsilon \Delta \phi(x^{r, \eta}) \leq -\frac{\delta \sigma}{2} + \epsilon \mu_1. \]

Letting $r = \eta \to 0$ and noting $p^{r, \eta} \to 0, x^{r, \eta} \to y_0$, this leads to (3.2).

Similarly, we can prove that $-\mathcal{L}_\sigma^\delta(x, x_0)$ is viscosity sub-solution of
\[\mathcal{A}_H(v) + \epsilon \Delta v = -\frac{\delta v}{2} - \epsilon \mu_2 \text{ in } V \setminus \{x_0\}. \]
The proof is complete. \qed

We are able to prove Theorem 2.2 (iii) as below.

Proof of Theorem 2.2 (iii). Note that $u \in C^{0,1}(\overline{U})$. Letting $\sigma > 8\Lambda \|u\|_{C^{0,1}(\overline{U})}^2$, we have
\[|u(y) - u(x)| \leq \|u\|_{C^{0,1}(\overline{U})}|y - x| \leq \frac{1}{4} \mathcal{E}_\sigma^H(y - x), \quad \forall x, y \in U. \]
Moreover, there exist $\delta(\sigma, U) > 0$ such that for all $x, y \in U$ and $\delta < \delta(\sigma, U)$, we have
\[\frac{\delta}{\sigma} L_\sigma^\delta(x, y) < \ln \sqrt{2} \]
and hence, by Lemma 3.1
\[\mathcal{E}_\sigma^H(y - x) \leq e^{\frac{4\delta}{\sigma} L_\sigma^\delta(x, y)} L_\sigma^\delta(x, y) \leq 4 L_\sigma^\delta(x, y). \]
By (3.7), for all $\sigma > 8\Lambda \|u\|_{C^{0,1}(\overline{V})}^2$ and $\delta < \delta(\sigma, U)$, we have
\begin{equation}
|u(y) - u(x)| \leq L_\sigma^\delta(x, y), \quad \forall x, y \in U.
\end{equation}

Note that
\[\mathcal{A}_H(u^\epsilon) + \epsilon \Delta u^\epsilon \geq 0 \quad \text{in } U\]
in viscosity sense and by Lemma 3.3,
\[\mathcal{A}_H(L_\sigma^\delta(x, 0, x)) + \epsilon \Delta L_\sigma^\delta(x, 0, x) \leq -\frac{\delta \sigma}{2} + \epsilon n \mu_1 \quad \text{in } U\]
in viscosity sense. For all $\sigma > 8\Lambda \|u\|_{C^{0,1}(\overline{V})}^2$ and $\delta < \delta(\sigma, U)$ and if $0 < \epsilon < \frac{\delta \sigma}{2n \mu_1}$, by Lemma 3.2 we have
\begin{equation}
u^\epsilon(x) - u(x_0) \leq L_\sigma^\delta(x, 0, x_0), \quad \forall x \in U, x_0 \in \partial U.
\end{equation}
By similar argument, for all $\sigma > 8\Lambda \|u\|_{C^{0,1}(\overline{V})}^2$ and $\delta < \delta(\sigma, U)$, if $0 < \epsilon < \frac{\delta \sigma}{2n \mu_2}$, we have
\begin{equation}u^\epsilon(x) - u(x_0) \geq -L_\sigma^\delta(x, 0, x_0), \quad \forall x \in \partial U, x_0 \in \partial U.
\end{equation}
We therefore conclude that for $\sigma = 8\Lambda \|u\|_{C^{0,1}(\overline{V})}^2$ and $\delta < \delta(\sigma, U)$ if $0 < \epsilon < \min\{\frac{\delta \sigma}{2n \mu_1}, \frac{\delta \sigma}{2n \mu_2}\}$,
\[|u^\epsilon(x) - u(x_0)| \leq C_H^\delta(x, 0, x), \quad \forall x \in U, x_0 \in \partial U.
\]
Thus, there exist ϵ_* and C depending on U, $\|u\|_{C^{0,1}(\overline{V})}$, H, δ, σ such that for all $0 < \epsilon < \epsilon_*$, we have
\[|u^\epsilon(x) - u(x_0)| \leq C|x - x_0| \quad \forall x \in U, x_0 \in \partial U.
\]
The proof of Theorem 2.2 is complete. \hfill \Box

4. A generalization of Evans-Smart' adjoint method

Let H, H^γ, u, u^γ and $u^{\gamma, \epsilon}$ be as in Section 2. For convenience, we write H^γ as H, and u^γ as $u, u^{\gamma, \epsilon}$ as u^ϵ below. Let L_ϵ be the linearized operator given in (3.1), and L_ϵ^* be its dual operator, that is,
\begin{equation}
L_\epsilon^*(v) := -[H_{p_j}(Du^\epsilon)H_{p_j}(Du^\epsilon)v]_{x, x_j} + 2[H_{p_j}(Du^\epsilon)u^\epsilon_{j, x_j}H_{p_j}(Du^\epsilon)v]_{x, x_j} - \epsilon \Delta v
\end{equation}
for any $v \in C^\infty(U)$. Observe that
\[\int_{\mathbb{R}^n} L_\epsilon(v)(x)w(x) \, dx = \int_{\mathbb{R}^n} v(x)L_\epsilon^*(w)(x) \, dx \quad \forall v, w \in C^\infty_c(U).
\]
Fix a smooth domain $V \subseteq U$. For each point $x_0 \in V$, we consider the adjoint problem
\begin{equation}
L_\epsilon^*(v) = \delta_{x_0} \quad \text{in } V; v = 0 \text{ on } \partial V,
\end{equation}
where δ_{x_0} denotes the Dirac measure at x_0. Equivalently,
\[\int_V v(x)L_\epsilon(\phi)(x) \, dx = \phi(x_0) \quad \forall \phi \in C^\infty_c(V); v = 0 \text{ on } \partial V.
\]
Then we have the following result.

Theorem 4.1. For each point $x_0 \in V$, there exists a unique solution $\Theta^\epsilon \in C^\infty(\overline{V} \setminus \{x_0\})$ of the linear adjoint problem (4.2) such that $\Theta^\epsilon \geq 0$ in V.

Proof. Consider problem
\[L_\epsilon(w) = 0 \quad \text{in } V; w = 0 \quad \text{on } \partial V.
\]
By Theorem 2.3 there exists a unique solution $\omega \equiv 0$ on \overline{V}. So that 0 is not an eigenvalue of the operator L_ϵ, and hence 0 is not an eigenvalue of L_ϵ^*. Applying standard linear elliptic PDE theory,
there exists smooth Green’s function \(\Theta^\epsilon \in C^\infty(\overline{B}(0, 2 \setminus \{x_0\}) \). Next we show that \(\Theta^\epsilon \geq 0 \). For any \(f \in C^\infty(V) \) and \(\epsilon \geq 0 \) in \(V \), we introduce the solution \(\omega^\epsilon \) of the linear boundary value problem (4.3)

\[
L_\epsilon(\omega^\epsilon) = f \quad \text{in } V; \quad \omega^\epsilon = 0 \quad \text{on } \partial V.
\]

By Theorem 2.3, we know that there exists a unique solution \(0 \leq \omega^\epsilon \in C^\infty(V) \). Multiply the equation in (4.3) by \(\Theta^\epsilon \), we have

\[
\int_V f \Theta^\epsilon \, dx = \int_V L_\epsilon(\omega^\epsilon) \Theta^\epsilon \, dx
\]

\[
= \int_V [-H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\omega^\epsilon_{x_i x_j} - 2H_{p_j}(Du^\epsilon)H_{p_ip_i}(Du^\epsilon)u^\epsilon_{x_i x_j} - \epsilon \omega^\epsilon_{x_i x_j}] \Theta^\epsilon \, dx.
\]

By integration by parts, \(\omega^\epsilon|_{\partial V} = 0 \) and \(\Theta^\epsilon|_{\partial V} = 0 \), we have

\[
\int_V -H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\omega^\epsilon_{x_i x_j} \Theta^\epsilon \, dx
\]

\[
= \int_V -H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\Theta^\epsilon \omega^\epsilon_{x_i x_j} \, dx - \int_{\partial V} H_{p_j}(Du^\epsilon)H_{p_j}(Du^\epsilon)\Theta^\epsilon \omega^\epsilon_{x_j} \cos(\vec{N}, x_i) \, ds
\]

\[
+ \int_{\partial V} (H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\Theta^\epsilon)_{x_i x_j} \omega^\epsilon \cos(\vec{N}, x_j) \, ds
\]

\[
= \int_V -H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\Theta^\epsilon \omega^\epsilon_{x_i x_j} \, dx,
\]

where \(\vec{N} \) denotes the outward pointing unit normal along \(\partial V \). By similar calculation, which lead to

\[
\int_V f \Theta^\epsilon \, dx = \int_V L^*_\epsilon(\Theta^\epsilon) \omega^\epsilon \, dx = \omega^\epsilon(x_0) \geq 0.
\]

Since for all \(f \geq 0 \) holds, that is \(\Theta^\epsilon \geq 0 \).

Lemma 4.2. Denote by \(\vec{N} \) denotes the outward pointing unit normal along \(\partial V \). Then

\[
\cos(\vec{N}, x_i) = -\frac{\Theta^\epsilon_{x_i}}{|D\Theta^\epsilon|} \quad \forall i = 1, \cdots, n.
\]

We have the following connection of between operator \(L_\epsilon \) and \(\Theta_\epsilon \).

Lemma 4.3. For any \(v \in C^\infty(\overline{V}) \), we have

\[
\int_V L_\epsilon(v) \Theta^\epsilon \, dx + \int_{\partial V} v \rho^\epsilon \, ds = v(x_0),
\]

where dentes

\[
\rho^\epsilon := \frac{\langle D_p H(Du^\epsilon), D\Theta^\epsilon \rangle^2}{|D\Theta^\epsilon|} + \epsilon |D\Theta^\epsilon|.
\]

Proof. By integrate by parts and \(\Theta^\epsilon|_{\partial V} = 0 \), we have

\[
\int_V L_\epsilon(v) \Theta^\epsilon \, dx
\]

\[
= \int_V [-H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)v_{x_i x_j} - 2H_{p_j}(Du^\epsilon)H_{p_ip_i}(Du^\epsilon)u^\epsilon_{x_i x_j}v_{x_j} - \epsilon v_{x_i x_j}] \Theta^\epsilon \, dx
\]

\[
= \int_V [-H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\Theta^\epsilon]_{x_i x_j} + 2(H_{p_j}(Du^\epsilon)H_{p_ip_i}(Du^\epsilon)u^\epsilon_{x_i x_j} \Theta^\epsilon)_{x_i} - \epsilon (\Theta^\epsilon)_{x_i x_j} v \, dx
\]

\[
+ \int_{\partial V} v[(H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)\Theta^\epsilon)_{x_i} + \epsilon (\Theta^\epsilon)_{x_j}] \cos(\vec{N}, x_j) \, ds,
\]
Proof. Let \(\phi(r) = \epsilon e^{\frac{r}{\epsilon}}(\alpha - r) \) and \(\alpha_{\epsilon} := H(Du^\epsilon(x_0)) \), where \(0 < \mu \leq \frac{\lambda}{8\mu} \). Similarly to (4.4) we have

\[
L_\epsilon((\phi \circ H)(Du^\epsilon)) = -(\phi \circ H)_{p_kp_s}(Du^\epsilon)[H_{p_k}(Du^\epsilon)H_{p_j}(Du^\epsilon)u^\epsilon_{x_kx_j}u^\epsilon_{x_sx_i} + \epsilon u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_i}] \\
\]

as desired.

We further need an exponential estimate.

Lemma 4.6. Moreover, for all \(0 < \mu < \frac{\lambda}{8\mu} \) we have

\[
\int_{\partial V} e^{\frac{r}{\epsilon}[H(Du^\epsilon(x_0)) - H(Du^\epsilon)]} \rho^\epsilon ds \\
+ \mu \int_V e^{\frac{r}{\epsilon}[H(Du^\epsilon(x_0)) - H(Du^\epsilon)]} D^2_{pp}H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \Theta^\epsilon dx \\
+ \epsilon \mu \int_V e^{\frac{r}{\epsilon}[H(Du^\epsilon(x_0)) - H(Du^\epsilon)]} H_{p_kp_s}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_i} \Theta^\epsilon dx \\
\leq 2\epsilon.
\]

Proof. Let

\[
\phi(r) = \epsilon e^{\frac{r}{\epsilon}[\alpha_{\epsilon} - r]} \quad \text{and} \quad \alpha_{\epsilon} := H(Du^\epsilon(x_0)),
\]

where \(0 < \mu \leq \frac{\lambda}{8\mu} \). Similarly to (4.4) we have

\[
L_\epsilon((\phi \circ H)(Du^\epsilon)) = -(\phi \circ H)_{p_kp_s}(Du^\epsilon)[H_{p_k}(Du^\epsilon)H_{p_j}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j} + \epsilon u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_i}]
\]

as desired.

Since \(L_\epsilon(1) = 0 \) in \(V \), the following follows from Lemma 4.3 obviously.

Corollary 4.4. We have

\[
\int_{\partial V} \rho^\epsilon ds = 1.
\]

Letting \(v = H(Du^\epsilon) \) in Lemma 4.3 we also have the following.

Lemma 4.5. We have

\[
\int_V \langle D^2_{pp}H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle + \epsilon H_{p_kp_s}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j} \rangle \Theta^\epsilon dx \leq \|H(Du^\epsilon)\|_{L^\infty(V)}.
\]

Proof. By Lemma 4.3

\[
-\int_V L_\epsilon(H(Du^\epsilon)) \Theta^\epsilon dx = \int_{\partial V} H(Du^\epsilon) \rho^\epsilon ds - H(Du^\epsilon(x_0)) \leq \|H(Du^\epsilon)\|_{L^\infty(V)}.
\]

Write

\[
L_\epsilon(H(Du^\epsilon)) = -H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)[H_{p_kp_s}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j} + H_{p_k}(Du^\epsilon)u^\epsilon_{x_kx_i} u^\epsilon_{x_sx_j}] \\
- 2H_{p_j}(Du^\epsilon)H_{p_kp_s}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j} + H_{p_k}(Du^\epsilon)u^\epsilon_{x_kx_i} u^\epsilon_{x_sx_j} \\
- \epsilon[H_{p_kp_s}(Du^\epsilon)u^\epsilon_{x_kx_i} u^\epsilon_{x_sx_j} + H_{p_k}(Du^\epsilon)u^\epsilon_{x_kx_i} u^\epsilon_{x_sx_j}].
\]

Since \(L_\epsilon(u^\epsilon_{x_sx_i}) = 0 \), we have

\[
(4.4) \quad L_\epsilon(H(Du^\epsilon)) = -(H_{p_kp_s}(Du^\epsilon)H_{p_j}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j} + \epsilon u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j}) \\
= -\langle D^2_{pp}H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle - \epsilon H_{p_kp_s}(Du^\epsilon)u^\epsilon_{x_kx_i}u^\epsilon_{x_sx_j}
\]

as desired.
By the Young's inequality, we have
\[(\phi \circ H)_{pkp_\epsilon} = (\phi'' \circ H)_{pk} H_{p_\epsilon \epsilon} + \epsilon (\phi' \circ H)_{pkp_\epsilon} u_{x,s,x_i}^\epsilon. \]

Since
\[(\phi \circ H)_{pkp_\epsilon} = (\phi'' \circ H)_{pk} H_{p_\epsilon \epsilon} + (\phi' \circ H)_{pkp_\epsilon}, \]
and \(\mathcal{A}_H[u^\epsilon] = -\epsilon \Delta u^\epsilon \), we get
\[
L_\epsilon((\phi \circ H)(Du^\epsilon)) \\
= \left| ((\phi'' \circ H)(Du^\epsilon))_{pk}(Du^\epsilon)_{p_\epsilon} \right| + (\phi' \circ H)(Du^\epsilon)_{pkp_\epsilon}(Du^\epsilon) \\
\times \left| (Du^\epsilon)_{p_\epsilon}(Du^\epsilon)_{p_\epsilon} u_{x,s,x_j}^\epsilon + \epsilon u_{x,s,x_j}^\epsilon \right| \\
= -\epsilon (\phi' \circ H)(Du^\epsilon)_{pkp_\epsilon}(Du^\epsilon)_{p_\epsilon} u_{x,s,x_i}^\epsilon - \phi''(H(Du^\epsilon))\epsilon^2(\Delta u^\epsilon)^2. \]

Note that
\[\phi'(r) = -\mu e^{\frac{H}{\epsilon}[\alpha_r - r]} \leq 0, \quad \phi''(r) = \frac{\mu^2}{\epsilon} e^{\frac{H}{\epsilon}[\alpha_r - r]} \geq 0. \]

Since the strongly convexity of \(H \) implies
\[|p|^2 \leq \frac{1}{\lambda} \langle D^2_H(Du^\epsilon)p, p \rangle, \]
by \(1 - \frac{M}{\lambda} \geq 1/2 \) we have
\[
L_\epsilon((\phi \circ H)(Du^\epsilon)) \geq \frac{H}{2} e^{\frac{H}{\epsilon}[\alpha_r - H(Du^\epsilon)]} \langle D^2_H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle \\
+ \frac{H}{2} e^{\frac{H}{\epsilon}[\alpha_r - H(Du^\epsilon)]} (H(Du^\epsilon))_{p_\epsilon \epsilon} u_{x,s,x_i}^\epsilon. \]

Since Lemma \[4.3\] implies
\[\int_{\partial V} (\phi \circ H)(Du^\epsilon) \rho^\epsilon \, ds + \int_V L_\epsilon((\phi \circ H)(Du^\epsilon)) \Theta^\epsilon \, dx = (\phi \circ H)(Du^\epsilon(x_0)) = \epsilon. \]
We obtain the desired estimate. \(\square \)

Applying Lemma \[4.7\], we will get the following upper bound.

Lemma 4.7. We have
\[\int_V |H(Du^\epsilon)|^2 \Theta^\epsilon \, dx \leq C(\lambda, \Lambda, \eta)(1 + \|u^\epsilon\|_{L^\infty(V)}) \left[1 + \|H(Du^\epsilon)\|_{L^\infty(V)} \right] + C(\lambda, \Lambda)\eta^2 \int_V \Theta^\epsilon \, dx. \]

Proof. By \(\mathcal{A}_H(u^\epsilon) + \epsilon \Delta u^\epsilon = 0 \), a direct calculation implies that
\[L_\epsilon(\frac{1}{2} u^\epsilon^2) = -\langle D_p H(Du^\epsilon), Du^\epsilon \rangle^2 + \epsilon |Du^\epsilon|^2 - 2u^\epsilon \langle D^2_H(Du^\epsilon)D[H(Du^\epsilon)], Du^\epsilon \rangle. \]

By the convexity of \(H \) and \(H(0) = 0 \), we have
\[\langle D_p H(Du^\epsilon), Du^\epsilon \rangle^2 \geq |H(Du^\epsilon)|^2. \]

By the Young's inequality, we have
\[2u^\epsilon \langle D^2_H(Du^\epsilon)D[H(Du^\epsilon)], Du^\epsilon \rangle \leq C(\eta) |u^\epsilon|^2 \langle D^2_H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle + \eta \langle D^2_H(Du^\epsilon)Du^\epsilon, Du^\epsilon \rangle. \]

By the strongly concavity of \(H \), we have
\[\eta \langle D^2_H(Du^\epsilon)Du^\epsilon, Du^\epsilon \rangle \leq \frac{2\Lambda}{\lambda} H(Du^\epsilon) \leq \frac{1}{2} |H(Du^\epsilon)|^2 + C(\lambda, \Lambda)\eta^2. \]

Thus
\[\int_V |H(Du^\epsilon)|^2 \Theta^\epsilon \, dx \leq - \int_V L_\epsilon(\frac{1}{2} u^\epsilon^2) \Theta^\epsilon \, dx + \frac{1}{2} \int_V |H(Du^\epsilon)|^2 \Theta^\epsilon \, dx + C(\lambda, \Lambda)\eta \int_V \Theta^\epsilon \, dx. \]
and hence by the Young's inequality,

\[C(\eta) \int_V |u^\epsilon|^2 \langle D_{pp}^2 H(Du^\epsilon) D[H(Du^\epsilon)] \rangle, D[H(Du^\epsilon)] \rangle \Theta^\epsilon \, dx \]

By Lemma 4.3,

\[- \int_V L_\epsilon \left(\frac{1}{2}(u^\epsilon)^2 \right) \Theta^\epsilon \, dx \leq 2\|u^\epsilon\|_L^\infty(V), \]

and hence,

\[\int_V \|H(Du^\epsilon)\|^2 \Theta^\epsilon \, dx \leq C(\eta, \lambda, \Lambda)[1 + \|u^\epsilon\|^2_\infty(V)] [1 + \|H(Du^\epsilon)\|_L^\infty(V)] + C(\lambda, \Lambda)\eta^2 \int_V \Theta^\epsilon \, dx. \]

Moreover, we also need an integral estimate of \(\Theta^\epsilon \).

Lemma 4.8. Let \(x_0 \in V \) and \(\alpha_\epsilon := H(Du^\epsilon(x_0)) > 0 \).

(i) For any \(0 < \mu < \frac{1}{8n} \) and \(0 < \beta < H(Du^\epsilon(x_0)) \), we have

\[\int_{V \cap \{H \leq \beta\}} \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \frac{1}{\epsilon} e^{\mu [\beta - H(Du^\epsilon(x_0))]}. \]

(ii) If \(\lim \inf_{\epsilon \to 0} H(Du^\epsilon(x_0)) \geq \alpha > 0 \), we have

\[\int_V \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \frac{1}{\epsilon} e^{-\frac{\alpha}{\epsilon}} + C(\lambda, \Lambda, \|u\|_L^\infty(V), \text{dist}(V, \partial U)) \frac{1}{\alpha^2}. \]

Proof. For each \(0 < \mu < \frac{1}{8n} \), define

\[\phi(r) = \epsilon e^{\frac{\mu}{\epsilon}(\alpha_\epsilon - r)} \]

and set \(v(x) = (\phi \circ H)(Du^\epsilon(x))|x|^2 \). By Lemma 4.3,

\[\int_V L_\epsilon(v) \Theta^\epsilon \, dx = v(x_0) - \int_{\partial V} v \rho^\epsilon \, ds. \]

Then

\[L_\epsilon(v) = (\phi \circ H)(Du^\epsilon)L_\epsilon(|x|^2) + |x|^2 L_\epsilon((\phi \circ H)(Du^\epsilon)) \]

\[- 2\langle D_{pp} H(Du^\epsilon), D(\phi \circ H)(Du^\epsilon) \rangle \langle D_p H(Du^\epsilon), D|x|^2 \rangle - 2\epsilon \langle D(\phi \circ H)(Du^\epsilon), D|x|^2 \rangle. \]

Write

\[K := e^{\frac{\mu}{\epsilon}[\alpha_\epsilon - H(Du^\epsilon)]}[\langle D_{pp}^2 H(Du^\epsilon) D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle + \epsilon H_{pp} H(Du^\epsilon) u^\epsilon_{x_i x_j} u^\epsilon_{x_i x_j}]. \]

By 4.5, we have

\[|x|^2 L_\epsilon((\phi \circ H)(Du^\epsilon)) \leq 4\mu K. \]

Note that

\[L_\epsilon(|x|^2) = -H_{p^2}(Du^\epsilon)H_{i j}(Du^\epsilon)\langle |x|^2 \rangle_{x_i x_j} - 2H_{p^2}(Du^\epsilon)H_{x_i x_j}(Du^\epsilon) u^\epsilon_{x_i x_j} \langle |x|^2 \rangle_{x_i x_j} - \epsilon(\langle |x|^2 \rangle_{x_i x_j}) \]

and hence by the Young's inequality,

\[\langle D_p H(Du^\epsilon), D[H(Du^\epsilon)] \rangle = \mathcal{A}_H[u^\epsilon] = -\epsilon \Delta u^\epsilon \text{ we also have} \]

\[- 2\langle D_p H(Du^\epsilon), D(\phi \circ H)(Du^\epsilon) \rangle \langle D_p H(Du^\epsilon), D|x|^2 \rangle - 2\epsilon \langle D(\phi \circ H)(Du^\epsilon), D|x|^2 \rangle \]

\[= -2(\phi \circ H)(Du^\epsilon)[\langle D_p H(Du^\epsilon), D[H(Du^\epsilon)] \rangle \langle D_p H(Du^\epsilon), D|x|^2 \rangle + \epsilon \langle D[H(Du^\epsilon)], D|x|^2 \rangle] \]

\[= -2(\phi \circ H)(Du^\epsilon)[-\epsilon \Delta u^\epsilon \langle D_p H(Du^\epsilon), D|x|^2 \rangle + \epsilon \langle D[H(Du^\epsilon)], D|x|^2 \rangle), \]
by $\phi'(r) = -\mu e^{\frac{\mu}{\epsilon}(\alpha - H(Du^\epsilon))} \leq 0$ and Young’s inequality, which is bounded by

$$C(\lambda, \Lambda) \mu K + \frac{1}{8} (\phi \circ H)(Du^\epsilon) |D_pH(Du^\epsilon)|^2 + \frac{c}{8} (\phi \circ H)(Du^\epsilon).$$

Thus

$$L_\epsilon(v) \leq - (\phi \circ H)(Du^\epsilon) [D_pH(Du^\epsilon)]^2 + \epsilon n] + C(\lambda, \Lambda) \mu K.$$

Therefore, applying Lemma 4.6 we get

$$\int_V (\phi \circ H)(Du^\epsilon) [D_pH(Du^\epsilon)]^2 + \epsilon n] \Theta^\epsilon \, dx$$

$$\leq 4 \int_{\partial V} (\phi \circ H)(Du^\epsilon) \Theta^\epsilon \, ds + C(\lambda, \Lambda) \int_V \mu K \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \epsilon.$$

Thus $L_\epsilon(\nu) \leq - (\phi \circ H)(Du^\epsilon) [D_pH(Du^\epsilon)]^2 + \epsilon n] + C(\lambda, \Lambda) \mu K.$

Therefore, applying Lemma 4.6 we get

$$\int_V (\phi \circ H)(Du^\epsilon) [D_pH(Du^\epsilon)]^2 + \epsilon n] \Theta^\epsilon \, dx$$

$$\leq 4 \int_{\partial V} (\phi \circ H)(Du^\epsilon) \Theta^\epsilon \, ds + C(\lambda, \Lambda) \int_V \mu K \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \epsilon.$$

We conclude that

$$e^2 \int_V e^\frac{\mu(\alpha - H(Du^\epsilon))}{\epsilon} \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \epsilon,$$

and hence

$$\int_{V \cap \{H(Du^\epsilon) \leq \beta\}} \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \frac{1}{\epsilon} e^{-\frac{\mu(\alpha - \beta)}{\epsilon}}.$$ (4.6)

This implies that

$$\int_V \Theta^\epsilon \, dx = \int_{V \cap \{H(Du^\epsilon) \leq \frac{\beta}{2}\}} \Theta^\epsilon \, dx + \int_{V \cap \{H(Du^\epsilon) > \frac{\beta}{2}\}} \Theta^\epsilon \, dx$$

$$\leq C(\lambda, \Lambda) \frac{1}{\epsilon} e^{-\frac{\mu(\alpha_0 - \alpha)}{2\epsilon}} + \frac{4}{\alpha^2} \int_V [H(Du^\epsilon)]^2 \Theta^\epsilon \, dx.$$

Let $C_0(\lambda, \Lambda) \eta^2 \frac{4}{\alpha^2} = \frac{1}{2}$, that is, $\eta^2 = \frac{\alpha^2}{8C_0(\lambda, \Lambda)}$. Apply Lemma 4.7 Theorem 2.3 and $\alpha_\epsilon \geq \alpha$ for all $\epsilon \in (0, 1]$, we have

$$\int_V \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \frac{1}{\epsilon} e^{-\frac{\mu(\alpha_0 - \alpha)}{2\epsilon}} + C(\lambda, \Lambda, \|u\|_{L^\infty(V)}, \text{dist}(V, \partial U)) \frac{1}{\alpha^2}.$$

\[\square\]

5. PROOF OF THEOREM 2.4

Let $U = B(0, 3)$ and $V = B(0, 2)$ in this section. Let H, H^γ, u, u^γ and u^γ, ϵ be as in Section 2. For convenience, we write H^γ as H, and u^γ as u, u^γ, ϵ as u^ϵ below.

Note that the condition (2.4) and Theorem 2.3 implies that

$$\sup_{U} |u^\epsilon| \leq 4 \quad \text{and} \quad \sup_{V} |Du^\epsilon| \leq C(\lambda, \Lambda).$$

Moreover, let L_ϵ and Θ^ϵ is given in Theorem 4.1. The condition (2.5) implies that Lemma 4.8 (ii) holds, that is

$$\int_{\partial V} \Theta^\epsilon \, dS \leq C(\lambda, \Lambda).$$

The proof of Theorem 2.4 is then divided into 3 steps.

Step 1. We first show that

$$\int_{V} [H(e_n) - H(Du^\epsilon)]_+ \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) |\delta + \frac{1}{\epsilon} e^{-\frac{\mu(\alpha - \beta)}}|.$$
Here and below $f_+ = \max\{f, 0\}$. Observe that
\[
\int_{\Omega} [H(e_n) - H(Du^\epsilon)]^+ \Theta^\epsilon \, dx = \int_{\Omega\cap \{H(Du^\epsilon) \leq H(e_n) - 2\delta\}} [H(e_n) - H(Du^\epsilon)] \Theta^\epsilon \, dx \\
+ \int_{\Omega\cap \{H(e_n) - 2\delta \leq H(Du^\epsilon) \leq H(e_n)\}} [H(e_n) - H(Du^\epsilon)] \Theta^\epsilon \, dx.
\]

By Lemma 1.8 (i), we have
\[
\int_{\Omega\cap \{H(Du^\epsilon) \leq H(e_n) - 2\delta\}} [H(e_n) - H(Du^\epsilon)] \Theta^\epsilon \, dx \leq H(e_n) \frac{1}{\epsilon} e^{-\frac{2\delta}{H(Du^\epsilon)(x_0)}} \leq \frac{1}{\epsilon} e^{-\frac{2\delta}{H(Du^\epsilon)}}.
\]

By Lemma 1.8 (ii), we also have
\[
\int_{\Omega\cap \{H(e_n) - 2\delta \leq H(Du^\epsilon) \leq H(e_n)\}} [H(e_n) - H(Du^\epsilon)] \Theta^\epsilon \, dx \leq 2\delta \int_{\Omega} \Theta^\epsilon \, dx \leq C(\lambda, \Lambda)\delta.
\]

Step 2. We show that
\[
\int_{\Omega} (D_p H(Du^\epsilon), Du^\epsilon - e_n)^2 \Theta^\epsilon \, dx \leq C(\lambda, \Lambda) \tau [1 + \frac{1}{\epsilon} e^{-\frac{2\delta}{H(Du^\epsilon)}}].
\]

Taking $v = (u^\epsilon - x_n)^2$ in Lemma 1.3, we have
\[
(u^\epsilon(x_0) - x_n^0)^2 = \int_{B(0,2)} L_\epsilon((u^\epsilon - x_n)^2) \Theta^\epsilon \, dx + \int_{\partial B(0,2)} (u^\epsilon - x_n)^2 \rho \, ds
\]
and hence, by (2.3),
\[
0 \leq \int_{B(0,2)} L_\epsilon((u^\epsilon - x_n)^2) \Theta^\epsilon \, dx + \tau^2.
\]

Since $\mathcal{H}(u^\epsilon) + \epsilon \Delta u^\epsilon = 0$, one has
\[
L_\epsilon((u^\epsilon - x_n)^2) = -H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)[2(u^\epsilon_{x_i} - \delta_{nj})(u^\epsilon_{x_j} - \delta_{ni}) + 2(u^\epsilon - x_n)u^\epsilon_{x_i,x_j}] \\
- 4H_{p_i}(Du^\epsilon)H_{p_j}(Du^\epsilon)u^\epsilon_{x_i}u^\epsilon_{x_j}(u^\epsilon - x_n)(u^\epsilon_{x_i} - \delta_{ni}) - \epsilon [2(u^\epsilon_{x_i} - \delta_{nj})(u^\epsilon_{x_j} - \delta_{ni}) + 2(u^\epsilon - x_n)u^\epsilon_{x_i,x_j}] \\
= -2\langle D_p H(Du^\epsilon), Du^\epsilon - e_n \rangle^2 - 4(u^\epsilon - x_n)(D_p^2 H(Du^\epsilon)D[H(Du^\epsilon)] + Du^\epsilon - e_n - 2\epsilon |Du^\epsilon - e_n|^2,
\]
and hence, by (2.3),
\[
L_\epsilon((u^\epsilon - x_n)^2) \leq -2\langle D_p H(Du^\epsilon), Du^\epsilon - e_n \rangle^2 + 4\tau |D_p^2 H(Du^\epsilon)D[H(Du^\epsilon)], Du^\epsilon - e_n|.
\]

By Young’s inequality,
\[
|\langle D_p^2 H(Du^\epsilon)D[H(Du^\epsilon)], Du^\epsilon - e_n\rangle| \leq \frac{1}{2} \langle D_p^2 H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle + \frac{1}{2} \langle D_p^2 H(Du^\epsilon)(Du^\epsilon - e_n), (Du^\epsilon - e_n) \rangle.
\]

By the strongly concavity/convexity of H, we know that
\[
\langle D_p^2 H(Du^\epsilon)(Du^\epsilon - e_n), (Du^\epsilon - e_n) \rangle \leq \frac{\Lambda}{2} |Du^\epsilon - e_n|^2
\]
and
\[
\langle D_p H(Du^\epsilon), e_n - Du^\epsilon \rangle + \frac{\lambda}{2} |Du^\epsilon - e_n|^2 \leq H(e_n) - H(Du^\epsilon).
\]

Thus
\[
L_\epsilon((u^\epsilon - x_n)^2) \leq -2\langle D_p H(Du^\epsilon), Du^\epsilon - e_n \rangle^2 + 2\tau \langle D_p^2 H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle
\]
+ 2\tau \frac{\Lambda}{\lambda} [H(e_n) - H(Du^\epsilon)] - 2\tau \frac{\Lambda}{\lambda} \langle D_p H(Du^\epsilon), e_n - Du^\epsilon \rangle,

Plugging this in (5.1), one gets

$$
\int_{B(0,2)} \langle D_p H(Du^\epsilon), Du^\epsilon - e_n \rangle^2 \Theta^\epsilon \, dx
\leq \tau^2 + 2\tau \int_{B(0,2)} \langle D_{pp}^2 H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle \Theta^\epsilon \, dx
+ 2\tau \frac{\Lambda}{\lambda} \int_{B(0,2)} [H(e_n) - H(Du^\epsilon)] \Theta^\epsilon \, dx
+ 2\tau \frac{\Lambda}{\lambda} \int_{B(0,2)} |\langle D_p H(Du^\epsilon), e_n - Du^\epsilon \rangle| \Theta^\epsilon \, dx.
$$

Note that

$$
\int_{B(0,2)} \langle D_{pp}^2 H(Du^\epsilon)D[H(Du^\epsilon)], D[H(Du^\epsilon)] \rangle \Theta^\epsilon \, dx \leq C(\lambda, \Lambda).
$$

By Young’s inequality,

$$
2\tau \frac{\Lambda}{\lambda} \int_{B(0,2)} |\langle D_p H(Du^\epsilon), e_n - Du^\epsilon \rangle| \Theta^\epsilon \, dx
\leq \frac{1}{2} \int_{B(0,2)} \langle D_p H(Du^\epsilon), Du^\epsilon - e_n \rangle^2 \Theta^\epsilon \, dx + \tau^2 \frac{\Lambda}{\lambda} \int_{B(0,2)} \Theta^\epsilon \, dx
\leq \frac{1}{2} \int_{B(0,2)} \langle D_p H(Du^\epsilon), Du^\epsilon - e_n \rangle^2 \Theta^\epsilon \, dx + C(\lambda, \Lambda) \tau^2.
$$

Step 3. Set

$$
v := \zeta^2 |Du^\epsilon - e_n|^2,
$$

where \(\zeta \in C_0^\infty(B(0,2)), \ 0 \leq \zeta \leq 1 \) in \(B(0,2) \) and \(\zeta = 1 \) in \(B(0,1) \). Lemma 4.3 gives that

$$
(5.2) \quad |Du^\epsilon(x_0) - e_n|^2 = \int_{B(0,2)} L_\epsilon(\zeta^2 |Du^\epsilon - e_n|^2) \Theta^\epsilon \, dx,
$$

where we used \(\zeta|_{\partial B(0,2)} = 0 \). One has

$$
L_\epsilon(\zeta^2 |Du^\epsilon - e_n|^2) = |Du^\epsilon - e_n|^2 L_\epsilon(\zeta^2) + \zeta^2 L_\epsilon(|Du^\epsilon - e_n|) - 2H_{p_1}(Du^\epsilon)H_{p_j}(Du^\epsilon)(\zeta^2)_{x_i}(|Du^\epsilon - e_n|^2)_{x_j} - 2\epsilon(\zeta^2)_{x_i}(|Du^\epsilon - e_n|)_{x_i}.
$$

Owing to \(L_\epsilon(u_\epsilon^i) = 0 \), we further compute

$$
L_\epsilon(|Du^\epsilon - e_n|^2) = -H_{p_1}(Du^\epsilon)H_{p_j}(Du^\epsilon)[2u_{x_j} u_{x_i}^\epsilon + 2(u_{x_j} - \delta_{ns})u_{x_i}^\epsilon] - 4(u_{x_j}^\epsilon - \delta_{ns})H_{p_1}(Du^\epsilon)H_{p_jp_i}(Du^\epsilon)u_{x_j}^\epsilon u_{x_i}^\epsilon
- \epsilon[2u_{x_j}^\epsilon u_{x_i}^\epsilon + 2(u_{x_j}^\epsilon - \delta_{ns})u_{x_i}^\epsilon]
- 2|D[H(Du^\epsilon)]|^2 - 2\epsilon|D^2 u^\epsilon|^2.
$$

Note that

$$
L_\epsilon(\zeta^2) = -H_{p_1}(Du^\epsilon)H_{p_j}(Du^\epsilon)[2\zeta_{x_j} + 2\zeta_{x_i} x_j] - 4\zeta H_{p_1}(Du^\epsilon)H_{p_jp_i}(Du^\epsilon)u_{x_j}^\epsilon \zeta_{x_i}
- \epsilon[2\zeta_{x_j} + 2\zeta_{x_i} x_j]
\leq C|D_p H(Du^\epsilon)|^2 + CA \zeta |D[H(Du^\epsilon)]| + C\epsilon
$$
and hence
\[|Du^\varepsilon - e_n|^2 L_\varepsilon(\zeta^2) \leq \frac{1}{8} \xi^2 |D[H(Du^\varepsilon)]|^2 + C(\lambda, \Lambda) |Du^\varepsilon - e_n|^2 [1 + |Du^\varepsilon|^2] \]
and
\[-2H_{p_i}(Du^\varepsilon)H_{p_j}(Du^\varepsilon) \langle \partial_\lambda (\zeta^2) \rangle_{x_i} |Du^\varepsilon - e_n|^2 \rangle_{x_j} - 2\varepsilon (\zeta^2)_{x_i} |Du^\varepsilon - e_n|^2 \rangle_{x_i} \]
\[\leq C |D[H(Du^\varepsilon)]| |D_p H(Du^\varepsilon)| |Du^\varepsilon - e_n| + C \zeta \varepsilon |Du^\varepsilon - e_n||D^2 u^\varepsilon| \]
\[\leq \frac{1}{8} \xi^2 [D[H(Du^\varepsilon)]|^2 + \varepsilon |D^2 u^\varepsilon|^2 + C(\lambda, \Lambda) |Du^\varepsilon - e_n|^2 [1 + |Du^\varepsilon|^2]. \]

We conclude that
\[L_\varepsilon(\zeta^2|Du^\varepsilon - e_n|^2) \leq C(\lambda, \Lambda) |Du^\varepsilon - e_n|^2 [1 + |Du^\varepsilon|^2]. \]

In view of (5.2), we conclude that
\[|Du^\varepsilon(x_0)|^2 - e_n|^2 \leq C(\lambda, \Lambda) \|Du^\varepsilon\|_{L^\infty(V)} \int_{B(0,2)} |Du^\varepsilon - e_n|^2 \Theta^\varepsilon dx. \]

Since \(H \) is strongly convex,
\[H(e_n) \geq H(Du^\varepsilon) + \langle D_p H(Du^\varepsilon), e_n - Du^\varepsilon \rangle + \frac{\lambda |Du^\varepsilon - e_n|^2}{2}. \]

This implies that
\[\frac{\lambda}{2} \int_{B(0,2)} |Du^\varepsilon - e_n|^2 \Theta^\varepsilon dx \leq - \int_{B(0,2)} \langle D_p H(Du^\varepsilon), Du^\varepsilon - e_n \rangle \Theta^\varepsilon dx + \int_{B(0,2)} [H(e_n) - H(Du^\varepsilon)] \Theta^\varepsilon dx \]
\[\leq C(\lambda, \Lambda) \tau + \delta + \frac{1}{\varepsilon} e^{-\Theta^\varepsilon}. \]

The proof of Theorem 2.4 is complete.

Acknowledgment. The authors would like to thank the supports of National Natural Science of Foundation of China (No. 11522102&11871088).

References

[1] S. N. Armstrong and C. K. Smart, An easy proof of Jensen’s theorem on the uniqueness of infinite harmonic functions. Calc. Var. Partial Differential Equations 37 (2010), 381-384.

[2] G. Aronsson, Minimization problems for the functional sup, \(F(x, f(x), f'(x)) \). Ark. Mat. 6 (1965), 33-53.

[3] G. Aronsson, Minimization problems for the functional sup, \(F(x, f(x), f'(x)) \). II. Ark. Mat. 6 (1966), 409-431.

[4] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967), 551-561.

[5] G. Aronsson, Minimization problems for the functional sup, \(F(x, f(x), f'(x)) \). III. Ark. Mat. 7 (1969), 509-512.

[6] G. Aronsson, On certain singular solutions of the partial differential equation \(u''_x u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0 \). Manuscripta Math. 47 (1984), 133-151.

[7] S. N. Armstrong, M. G. Crandall, V. Julin and C. K. Smart, Convexity criteria and uniqueness of absolutely minimizing functions. Arch. Ration. Mech. Anal. 200 (2011), 405-443.

[8] G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zero-order term. Comm. Partial Differential Equations 26 (2001), 2323-2337.

[9] N. Barron, R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of \(L^\infty \) functionals. Arch. Ration. Mech. Anal. 157 (2001), 255-283.

[10] M. Crandall, An efficient derivation of the Aronsson equation. Arch. Ration. Mech. Anal. 167 (2003), 271-279.

[11] M. Crandall and L. C. Evans, A remark on infinity harmonic functions. Proceedings of the USA-Chile Workshop on Nonlinear Analysis, Viadel Mar—Valparaiso, 2000 (electronic), Electron. J. Differ. Equ. Conf. 6, pp. 123-129.

[12] M. Crandall, C. Evans and R. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations 13 (2001), 123-139.

[13] M. G. Crandall, G. Gumman and P. Wang, Uniqueness of \(\infty \)-harmonic functions and the eikonal equation. Comm. Partial Differential Equations 32 (2007), 1587-1615.
EVERYWHERE DIFFERENTIABILITY OF ABSOLUTE MINIMIZERS

[14] M. G. Crandall, H. Ishii, P. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc (N.S.) 27 (1992), 1–67.

[15] M. G. Crandall, C. Y. Wang and Y. F. Yu, Derivation of the Aronsson equation for C^1- Hamiltonians. Trans. Amer. Math. Soc. 361 (2009), 103–124.

[16] L. C. Evans, Three singular variational problems. Viscosity Solutions of Differential Equations and Related Topics. RIMS Kokyuroku 1323. Research Institute for the Mathematical Sciences, 2003.

[17] L. C. Evans and O. Savin, $C^{1,\alpha}$ regularity for infinity harmonic functions in two dimensions. Calc. Var. Partial Differential Equations 32 (2008), 325–347.

[18] L. C. Evans and C. K. Smart, Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial Differential Equations 42 (2011), 289–299.

[19] L. C. Evans and C. K. Smart, Adjoint methods for the infinity Laplacian partial differential equation. Arch. Ration. Mech. Anal. 201 (2011), 87–113.

[20] P. Fa, C. Y. Wang and Y. Zhou, Regularity of absolute minimizers for continuous convex Hamiltonians. 2019,

[21] P. Fa, Q. Y. Miao and Y. Zhou, A quantitative Sobolev regularity of absolute minimizers involving Hamiltonian $H(p) \in C^0(R^2)$ in plane. 2019, submitted.

[22] P. Fa, Q. Y. Miao, On the viscosity solutions of a class of inhomogeneous Aronsson Equations. 2019, submitted.

[23] R. Gariepy, C. Y. Wang and Y. F. Yu. Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers. Comm. Partial Differential Equations 31 (2006) 1027–1046.

[24] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin, 1983.

[25] G. Hong and Y. Zhao, A Liouville theorem for infinity harmonic functions. manus. math. (2018) to appear.

[26] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123 (1993), 51–74.

[27] R. Jensen, C. Y. Wang, and Y. F. Yu, Uniqueness and nonuniqueness of viscosity solutions to Aronsson’s equation. Arch. Ration. Mech. Anal. 190 (2008), 347-370.

[28] H. Koch, Y. Zhang and Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions. JMPA, 2019, to appear.

[29] Q. Miao, C. Wang and Y. Zhou, ∞-harmonic functions with linear growth are differentiable at ∞. unpublished manuscript, 2016.

[30] O. Savin, C^1-regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176 (2005), 351–361.

[31] C. Y. Wang and Y. F. Yu, C^1-regularity of the Aronsson equation in R^2. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 659–678.

[32] C. Y. Wang and Y. F. Yu, C^1-boundary regularity of planar infinity harmonic functions. Math. Res. Lett. 19 (2012), 823–835.

[33] Y. F. Yu, L^∞-variational problems and Aronsson equations. Arch. Ration. Mech. Anal. 182 (2006), 153–180.

(2007), 1111-1147.

DEPARTMENT OF MATHEMATICS, BEIHANG UNIVERSITY, BEIJING 100191, P. R. CHINA
E-mail address: pengfa@buaa.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, P. R. CHINA
E-mail address: qianyunm@math.pku.edu.cn

DEPARTMENT OF MATHEMATICS, BEIHANG UNIVERSITY, BEIJING 100191, P. R. CHINA
E-mail address: yuanzhou@buaa.edu.cn