A review: bioactive compounds of macroalgae and their application as functional beverages

S G Widyaswari1,2*, Metusalach1, Kasmiati1, and N Amir1

1Departement of Fisheries, Hasanuddin University, Makassar, South Sulawesi, Indonesia; 2Department of Fisheries Education, Vocational Education and Training Center of Maritime and Information Technology Study (BPPMPV KPTK), Gowa, South Sulawesi, Indonesia.

*Corresponding author: s.g.widyaswari@gmail.com

Abstract. Macroalgae have the potential of a bioactive compound that can be used as the main ingredient in functional beverages. The content of bioactive compounds in macroalgae such as natural pigments, sulfated polysaccharides, antioxidants have been studied and it is very beneficial for health. Macroalgae, which are used as main ingredient in functional beverage, must be contain bioactive compound that are beneficial for health and also must be free from microbiological and heavy metal contamination. This study aims to determine bioactive compound activity and the potential of macroalgae as the primary raw material in the formulation of functional beverages. Studied on the formulation of functional beverages with macroalgae as raw materials have been carried out in the last few decades. All types of macroalgae have the potential to be used as raw material or main ingredient for functional beverage. The formulation of macroalgae functional beverages with other additives can improve the quality of the final product. The addition of natural scented ingredients and containing bioactive compounds can increase the value of taste and increase the nutrients in functional beverage products.

1. Introduction

Macroalgae can be used as the main ingredient for the fulfillment of functional food [1] Macroalgae has almost all types of essential amino acids needed by the body [2]. Macroalgae also contains bioactive compound that potential to counteract free radicals, prevent aging, prevent and treat other degenerate diseases [3–5]. The use of macroalgae has long been carried out by several Asian countries, namely China, Japan, Korea [6], Malaysia, Philippines, and Thailand [2]. Aside from being a main food ingredient [2,7], macroalgae are used as animal feed [8–11], organic fertilizer [10–12], cosmetic [2,3,13,14], medicines [2,15–18], to additional food ingredients [8,9,19,20]. Utilization of macroalgae in western countries also uses macroalgae as sea vegetables, salads, or cooked [18,21].

Indonesia has been long used macroalgae as the main food consumed daily [6,22] and for treatment [23]. The potential of macroalgae in the industrial sector only uses macroalgae to be directly dried and then exported. Type of processed macroalgae products (agar, carrageenan, alginate) exported are only around 20% and dry product as much as 80% [24]. Macroalgae resources, if carried out appropriately, can produce functional food products for the community [25], macroalgae as a cosmetic [26], biofuel [10,27], and animal feeding [8]. This review aims to provide information about the benefits of macroalgae as functional beverages, in order to increase the added value macroalgae products and to
make a good contribution not only as a daily food but also as a beneficial product for health that has a higher value.

2. Macroalgae characteristics

Taxonomically, macroalgae are classified into three classes, namely Rhodophyceae (red algae), Chlorophyceae (green algae), Phaeophyceae (brown algae). Cyanophyceae varieties are not considered as algae because Cyanophyceae is a prokaryotic organism, only eukaryotic organisms can be classified as macroalgae [28]. The characteristics contained in macroalgae can also be used to classify macroalgae. The most commonly used classification is based on the presence of special pigments other than chlorophyll which clearly identify macroalgae as one of the algal divisions [29]. Good temperatures for macroalgae growth range between 20-30°C. Macroalgae require sufficient light intensity to carry out photosynthesis, but the brightness required by each type of macroalgae is different [29]. Rhodophyceae and Chlorophyceae generally can live in limited sunlight while Phaeophyceae are generally able to absorb a lot of light and it abundant in coastal areas.

In the literature, all types of macroalgae contain chlorophylls-a, chlorophylls-b and β-carotene pigments (Table 1.) that can function as sources of bioactive components. Chlorophylls are the main pigments responsible for the photosynthesis process [30]. This pigment is very important for the survival of macroalgae. Chlorophylls are not only important for macroalgae growth but also can be potential as a natural coloring agent for food and beverage industry, in health sector and agriculture [31,32].

| Table 1. Macroalgae characteristics |
|-----------------|-----------------|-----------------|-----------------|-----------------|
Division	Common name	Pigments	Storage Product	Struktural cell wall	Intercellular mucilage	Flagella
Rhodophyceae	Red alga	Chlorophylls a, b, phycocyanins, phycoerythrin, α- and β-carotenes, several Xanthophylls	Floridean starch	Cellulose, xylans, mannans	Sulfated polysaccharides	Not present
Chlorophyceae	Green alga	Chlorophylls a,b, β-carotenes, lutein, several Xanthophylls	Starch	Cellulosa, xylans, mannans cellulose, chitin	Sulfated polysaccharides	Present
Phaeophyceae	Brown alga	Chlorophylls a,b, β-carotenes, fucoxanthins several other Xanthophyles	Starch	Cellulose, xylans, mannans	Sulfated polysaccharides	Present

[29,33]

Based on algaebase.org, Rhodophyceae is a macroalgal group with the highest number of species. Rhodophyceae has a varied appearance of thalus color. It contains a composition of pigments consisting of carotenoids, β-carotene and several xanthophylls and phycoerythrin. Phycoerythrin is the dominant pigment in Rhodophyceae which gives a red color. Chlorophyceae generally contains lutein, some xanthophyles, and carotenoids that function as antioxidants [3]. Carotenoids are able to protect organism and cells from oxidative damage caused by free radicals [34]. Carotenoids can inhibit free radical activity [34,35]. Inhibition of free radicals by carotenoids is carried out by β-carotenes, β-carotenes react with peroxy radicals, forming ROO-carotene radicals and electron delocalisation [3]. As with other macroalgae, the bioactive components of Chlorophyceae varies according to geographical location, harvest time, season, and species [36].
Phaeophyceae also has Chlorophylls a,b, β-carotenes and fucoxanthins pigments that displays a greenish brown color. Fucoxanthin has biological activity that functions as an antioxidant, anti-cancer, anti-inflammatory, anti-obesity, and antibacterial [37]. In addition, Phaeophyceae produces a variety of active components, secondary metabolic namely phlorothannins, which show specific biological activity [37,38]. The antioxidant in phlorothannins have higher antioxidant activity than vitamin E [39]. All of the content of polyphenols in macroalgae also differs according to geographical location, harvest time, season, and also species of macroalgae [36].

3. Nutritional compound from macroalgae
Carbohydrates in macroalgae are relatively high of each type (Table 2.), it cannot be considered as a food that contains a lot of energy, due to the low digestibility of carbohydrates in macroalgae. Macroalgae polysaccharides differ from those in terrestrial plants. There are three types of polysaccharides that have different functions: structural cell wall polysaccharides, inter-cell slime polysaccharides and storage polysaccharides [29]. The content of polysaccharides in macroalgae serves to reduce cholesterol levels, reduce blood lipid levels, and facilitate the digestive system. Polysaccharides in macroalgae show some biological activities that are very important for health. These activities are anticoagulant, antibacterial [22], antiviral, anticancer [36], antithrombotic, and anti-inflammatory [40].

Table 2. Chemical compound of several types of macroalgae
Macroalga
Rhodophyceae
Gracilaria gracilis
Gracilaria changii
Gelidiella acerosa
Gelidium pusillum
Gelidium pristoides
Hypnea pannosa
Hypnea musciformis
Kappaphycus alvarezii
Palmaria palmata
Eucheuma cottonii
Chlorophyceae
Caulerpa racemosa
Caulerpa lentillifera
Enteromorpha compressa
Enteromorpha linza
Enteromorpha tubulosa
Halimeda opuntia
Ulva reticulata
Phaeophyceae
Laminaria digitata
Laminaria hyperborea
Turbinaria conoides
Sargassum polycystum
Sargassum turbinaria
Sargassum duplicatum
Padina minor
Undaria pinnatifida | 33.5 | 16.7 | 1.08 | 29.6 | 2.7 | [19,58]

Macrolalgae has a high fiber content but low in fat and calorie content, and it can be used as a main ingredient in functional beverages. The total fiber value in each macroalgae varies depending on geography, season, and time of harvest [36]. Fiber functions to maintain health and balance the digestive system functions. Dietary fiber is a part of plants that can be consumed and composed by carbohydrates, it resistant to the process of digestion and absorption in the small intestine and undergo fermentation in the large intestine [25].

High protein content is one of the determining factors in the of macroalgae as functional food. In general, Phaeophyceae protein level are lower when compared to Rhodophyceae and Chlorophyceae [18]. Macrolalgae have a high protein content compared to vegetables such as long beans, spinach and carrots [59]. This shows that macroalgae is good to be used as a food source of high protein content [60]. Macrolalgae protein levels depend on the type and period of season [8].

Lipids and fatty acids present in small amounts in macroalgae. The lipid content of the dry weight and composition of omega 3 and 6 fatty acids are only around 1-5% [29]. However, lipids containing omega 3 and omega 6 fatty acids play an important role in preventing various diseases. The lipid content of the Rhodophyceae, Chlorophyceae and Phaeophyceae are relatively low (Table 2) and the composition of fat in each type of macroalgae are varies. This is based on the season when harvesting or sampling and the environmental conditions [36,52].

The content of macroalgae lipids is different from land plants. Macroalgae has a higher proportion of saturated and unsaturated fatty acids [48]. In general, Phaeophyceae contains Alfa linoleate (omega 3), whereas in Chlorophyceae and Rhodophyceae it contains arachidonic acid and eikosapentanoic acid namely fatty acids with 20 carbon atoms [18,60]. In addition of fatty acids, macroalgae also contain sterols, terpenoids, and tocopherols [38]. Lipid extract from some edible commercial macroalgae show antioxidant activity and synergistic effects with tocopherol [48]. Phaeophyceae has higher sterol levels than Chlorophyceae and Rhodophyceae [8].

4. Bioactive compound from macroalgae

Raw materials for functional beverages do not came from animals and plants only. Raw materials originating from sea have started to develop rapidly. There are various ways to extract bioactive compounds from macroalga [61]. Several novel extractions without loss of bioactive activity have been applied. The new techniques are supercritical fluid extraction (SFE), ultrasound extraction (UAE), microwave assisted extraction (MAE) and pressurized fluid extraction (PLE).

Macroalgae	Bioactive compounds	references
Gracilaria gracilis	Antioxidant	[64]
Gracilaria changii	Antiinflammatory, antiulcer, antioxidant	[65],[66]
Gelidiella acerosa	Antioxidant, antibacterial, strengthening of the immune system	[22,67]
Gelidium pusillum	Antimicrobial; antioxidant	[34,46]
Gelidium pristoides	Antimycrobacterial	[68]
Hypnea pannosa	Antimicrobial	[69]
Hypnea musciformis	Antibacterial, antifouling, ichthyotoxicity assays	[70,71]
Kappaphycus alvarezi	Anti-hyperglycemic, antiproliferative, dietary fiber, anti-diabetic	[9,72–74]
Palmaria palmata	Anti UV	[75]

Table 3. Bioactive compounds of several macroalgae

Eucheuma cottoni Recognising blinding of carbohydrates, anti-diabetic [9,19]

Chlorophyceae

Caulerpa racemose Antibacterial, anti-inflammatory [40]

Caulerpa lentillifera Antibacterial, anti-inflammatory [40]

Enteromorpha compressa Antidepressant, reproductive health [74–76]

Enteromorpha linza Antibacterial, antioxidant [50,76–78]

Enteromorpha tubulosa Antioxidant, [50]

Halimeda opuntia Antimicrobial, antiplasmid, cytotoxicity activities [79]

Ulva reticulata Antimicrobial, antioxidant, palmitic acid [80,81]

Phaeophyceae

Laminaria digitata Antioxidant; anti-inflammatory activity [64,82]

Laminaria hyperborea Terpenes and phenols [61]

Turbinaria conoides Antioxidant, antibacterial, antifungal, anticancer [16,83–85]

Sargassum polycystum amino acids and amines, tannins, antioxidant [86,87]

Sargassum turbinaria Antioxidant [88]

Sargassum duplicatum Antioxidant [89]

Padina minor Anticancer, antioxiindat [17,87]

Undaria pinnatifida immunostimulatory, antiplasmodial, anti-allergi, antitumor [90]

Based on the bioactive compounds, macroalgae can be as one of the potential raw materials for functional beverages. Phenolic compounds are one of the bioactive compounds included in natural antioxidants [39,61]. Catechins, phenolic acids, phlorotannins, flavonoids, flavonol glycoide and flavon [62,63] have been identified in *Rhodophyceae, Chlorophyceae, and Phaeophyceae*. They have potential as a bioactive compound as an antioxidant, anti-inflammatory, anticancer, antiulcer, antimicrobial (Table 3).

Macroalgae in Indonesia are widely available in nature and cultivation with good quality, qualifications, availability and varieties [91]. Bioactive compounds in macroalgae varies greatly depending on species, season, geographical conditions, environment, air temperature, harvest season and postharvest handling [7,92]. Macroalgae are more profitable compared to plants in terms of productivity, easier to extract, and unseasonal.

5. *Macroalgae as a functional beverages*

Macroalgae are source of agar, carrageenan and alginate. Agar has the ability to form a film or gel layer so that it can be used as a stabilizer, emulsifier, suspension, coating, gel forming and inhibitor [93]. In food industry, it is widely used in jelly, milk, ice cream and also fish and meat canning industry. This review discusses the benefits of macroalgae as the main ingredient of functional beverages. Macroalgae can be used as main ingredient because it contains bioactive compounds and prevents the disease [94,95].

There are several technique processing for functional beverages, one of them by the fermentation process. Fermented functional beverages using *E.cottoni* (Table 4) with the addition of 5% *L.plantarium* and 5% glucose and incubated at 37°C for 72 hours. The results is that the fermentation of *E.cottoni* produce slightly bitter flavored yogurts with a pH of 3, has a sour odor and the characteristic are yellow-green jelly [96]. The bitter taste is caused by washing of *E.cottoni* which is uncleaned, so there is still a salt component in the macroalgae. Washing and removal of salt need to be done, so the results of macroalgae fermentation are not bitter.
Table 4. Functional beverages made from macroalgae

Macroalga	Functional beverages	Functional ingredient	Result	References
Rhodophyceae				
Eucheuma cottonii	Yogurts	*E. cottonii* by addition of 5% glucose & 5% inoculum of *L.plantarium*	Yoghurt has a sour odor, sour taste and slightly bitter with a pH of 3	[96]
	Jelly drink	*E.cottonii* by addition of culture-based *Spirulina platensis* and commercial *spirulina*	Type of spirulina (commercial & culture) gave no sign ificant effect to the hedonic test and antioxidant activity but affected significantly on protein content	[97]
	Powder beverages	*E. cottonii* by addition of 5% glucose and *essens*	The best treatment was without addition of glucose	[98]
	Beverages	*E. cottonii* by adding different dosages of sugars	Highest phosphor content	[99]
Eucheuma spinosum	Jelly drink	*E.spiniosum* by addition of Sargassum sp	The highest hedonic test result that jelly drink has a bright appearance and clean, bright purple, slightly felt and smell of seaweed overall acceptance and flavor, tasted a little sweet with sour flavor and a small amount of seaweed odor	[100]
Gracillaria fisheri	Fermented beverages	Fermented *G.fisheeri* in four different fermentation process		[101]
Chlorophyceae	Tea	Dried *U.pertusa* extract	High antioxidant activity	[95]
Fucus vesiculosus	Yogurts	*F. vesiculosus* 60% EtOH	No influence on chemical and microbiological characteristics Yoghurts lipid stability and shelf-life characteristics Overall sensory attributes were worsened	[102]
Fucus vesiculosus	Functional beverages	*F.vesiculosus* extract	Dietary fiber, antimicrobial	[94]
Ascophyllum nodosum	Yogurts	*A.nodosum* extract	No influence on chemical characteristics Yoghurts had antioxidant activity before and after digestion	[102]
Sargassum polycystum	Instant drink	*S.polycystum* powder by addition of ginger and sugar	More addition of S. polycystum extract, decreases the level of consumer preference fermentation time give the effect on physical properties (color and weight of nata/cellulose) and chemical properties (vitamin C content, total acidity, total sugar content, pH and alcohol content	[103]
Sargassum sp	Kombucha	Fermented *Sargassum* with different fermentation time		[104]
Sargassum binderi	Seaweed tea	*S.binderi* by addition of lemon essence	Seaweed tea potential to be commercialised, thus, consumers may acquire the health benefit of fucoidan	[105]
Fermentation times also very influential in making functional beverages. The result of kombucha beverage [104] with time treatment (Table. 5) showed decreased levels of vitamin C on the 4th day fermentation but increased on the 8th day to the 16th day. pH and total sugar decreased until the 16th day and alcohol levels increased until the 12th day and decrease until the 16th day. In accordance with the statement [(106)] fermentation effectively affects the taste, texture and also nutritional value.

Tea from macroalgae also have been widely studied, one of made from Sargassum binderi [105] (Table. 5). S.binderi powder as much as 5g in tea bag, brewed with 200 ml of boiling water for 20 minutes. This boiling water aims to maximize the extraction of fucoidan with higher secondary antioxidant activity. The fucoidan content, shows a significant positive correlation with the superoxide anion scavenging activity (r=0.99) [105]. The taste acceptance of the functional beverage was less favored by panelists. Addition of lemon juice to S.binderi tea can mask the fishy taste of tea produced from macroalgae. Similarly, research [103] showed greater addition of S.polycystum extract increase antioxidant activity, but panelists’ acceptance of taste was decreased.

6. Conclusion

Processing macroalgae into functional beverages can increase the nutrition value and bioactive compounds and it can be affect in human health. All types of macroalgae have the potential to be used as raw material or main ingredient for functional beverage, what must be considered are non toxic macroalgae types. A preliminary research should be conducted for non-commercial types of macroalgae to be processed into a product. This review about the use of macroalgae as functional beverage ingredients can open wider opportunities for the beverage industry to present functional beverage products with new innovations.

7. References

[1] Suleria H A R, Osborne S, Masci P and Gobe G 2015 *Mar Drugs.* 13 6336–51.
[2] Salman M A and Hasan M M 2017 *World J Pharm Pharm Sci.* 6 1934–59.
[3] Bedoux G, Hardouin K, Burtle A S and Bourgougnon N 2014 *Bioactive Components From Seaweeds: Cosmetic Applications and Future Development* vol 71 (Elsevier).
[4] Rioux L E, Beaulieu L and Turgeon S L 2017 *Food Hydrocoll.* 68 255–65.
[5] Caporgno M P and Mathys A 2018 *Front Nutr.* 5 1–10.
[6] Suparmi and Sahri A 2009 *Majalah ilmiah Sultan Agung.* 151–152 5–29.
[7] Fleurence J 1999 Seaweed Proteins: *Proteins Food Process Second Ed.* 10 25–8.
[8] Holdt S L and Kraan S 2011 *J Appl Phycol.* 23 543–97.
[9] Park H R, Jung K A, Lim S R and Park J M 2014 Q *Bioenergy Res.* 7 974–85.
[10] Nan-Hee An, Jung-Rai Cho, Jae-Hun Shin, Jae-Hun Ok and Seok-Cheol Kim 2015 *Korea Sci.* 23 32–39.
[11] Ogawa H and Fujita M 1997 *The Effect of Fertilizer Application On Farming Of The Seaweed Undaria Pinnatifida* (Laminariales, Phaeophyta) 113–116
[12] Thomas N V and Kim S K 2013 *Mar Drugs.* 11 146–64.
[13] Nurjanah, Luthfiyana N, Hidayat T, Nurilma M and Anwar E 2019 *IOP Conf Ser Earth Environ Sci.* 278.
[14] Santosjo J, Yoshie Y and Suzuki T 2004 *J Ilmu-Ilmu Perairan dan Perikanan Indonesia.* 11 45–51.
[15] Chattopadhyay N, Ghosh T, Sinha S, Chattopadhyay K, Karmakar P and Ray B 2010 *Food Chem.* 118 823–829.
Subong B J J and Primavera K H 2012 *Int J Pharm Sci Rev Res.* 13 34–37.

Salehi B, Sharifi-rad J, Seca A M L, Pinto D C G A, Michalak I, Trincone A, Mishra A P, Nigam M, Zam W and Martins N 2019 *Molecules.* 24 4182.

Ito K and Hori K 1989 *Food Rev Int.* 5 101–44

Florencce J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N and Jaouen P 2012 *Trends Food Sci Technol.* 27 57–61.

Chapman V J, Chapman D J, Chapman V J and Chapman D J 1980 *Seaweeds their Uses.* 62–97.

Ulfsah M, Kasanah N and Handayani N S N 2018 *Indonesia J Biotechnol.* 22 13-21.

Atmadja W S 1992 *Seaweeds As Medicine Oseana XVII* 1–8

Simanjuntak P T H, Arifin Z and Mawardi M K 2017 *J Bus Adm.* 50 163–71

Erniati E, Zakaria F R, Prangdimurti E and Adawiyah D R 2016 *Acta Aquat Aquat Sci J.* 5 12.

Khatulistiani T S, Noviendri D, Munifah I and Melanie S 2019 *IOP Conf Ser Earth Environ. Sci.* 404.

Padam B S and Chye F Y 2020 *Seaweed components, properties, and applications* (Elsevier Inc.)

Santos S A O, Vilela C, Freire C S R, Abreu M H, Rocha S M and Silvestre A J D 2015 *Food Chem.* 183 122–8.

Bocanegra A, Bastida S, Benedí J, Ródenas S and Sánchez-Muniz F J 2009 *J Med Food.* 12 236–258.

Mabeau S and Fleurence J 1993 *Trends Food Sci Technol.* 4 103–7.

Leandro A, Pereira L and Gonçalves A M M 2020 *Mar Drugs.* 18 1–15.

Childs N M 1997 *J Nutraceuticals Funct Med Foods.* 1 83–99.

Sánchez-Machado D I, López-Cervantes J, López-Hernández J and Paseiro-Losada P 2004 *Food Chem.* 85 439–44.

Álvarez-Gómez E, Korbee N and Félix L Figueroa 2016 *Ciencias Mar.* 42 271–88

Kumar M, Kumari P, Trivedi N, Shukla M K, Gupta V, Reddy C R K and Jha B 2011 *J Appl Phycol.* 23 797–810.

Wells M L, Potin P, Craigie J S, Raven J A, Merchant S S, Hellwell K E, Smith A G, Camire M E and Brawley S H 2017 *J Appl Phycol.* 29 949–82.

Afonso N C, Catarino M D, Silva A M S and Cardoso S M 2019 *Antioxidants.* 8

Piovetti L, Deffo P, Valls R and Peiffer G 1991 *J Chromatografi A.* 588 99–105.

Negreanu P T, Marioara M, Monica V and Emin C 2018 *Sect Adv Biotechnol.* 63

Nagappan T and Vairappan C S 2014 *J Appl Phycol.* 26 1019–27.

Rodrigues D, Freitas A C, Pereira L, Rocha-Santos T A P, Vasconcelos M W, Roriz M, Rodríguez-Alcalá L M, Gomes A M P and Duarte A C 2015 *Food Chem.* 183 197–207.

Mohamed S, Matanjun P, Hashim S N, Rahman H A, Mohamed S, Matanjun P, Nadia S and Ntroduction I 2019 *Inter J Recent Techno and Engine.* 8.

Chan P T and Matanjun P 2017 *Food Chem.* 302–310.

Ben Said R, Mensi F, Majdami H, Ben Said A, Ben Said B and Bouraoui A 2018 *J Appl Phycol.* 30 2499–512.

Jamshidi M, Keramat J, Hamdami N and Farhadian O 2018 *Phycol Res.* 66 231–7.

Siddique M A M, Khan M S K and Bhuiyan M K A 2013 *Int Food Res J.* 20 2287–92.

Foster G G and Hodgson A N 1998 *Aquaculture.* 167 211–27.

Barot M, Nirmal Kumar J I and Kumar R N 2019 *Natl Acad Sci Lett.* 42 459–64.

Abirami R G and Kowalsaya S 2011 *Agric Sci Technol.* 5 1–7.

Suresh Kumar K, Ganesan K and Subba Rao P V 2015 *J Food Sci Technol.* . 2751–60

Yong Y S, Yong W T L, Ng S E, Anton A and Yassir S 2015 *J Appl Phycol.* 27 1271–5.

Mehr H K, Malde M K, Eilertsen K E and Elvevoll E O 2014 *J Sci Food Agric.* 94 3281–90.

Matanjun P, Mohamed S, Mustapha N M and Muhammad K 2009 *J Appl Phycol.* 21 75–80.

Chirapart A and Ratana-Arporn P 2014 *Kasetsart J Nat Sci.* 40 75–83.
[55] Ganesan K, Suresh Kumar K, Subba Rao P V, Tsukui Y, Bhaskar N, Hosokawa M and Miyashita K 2014 Biomed Prev Nutr. 4 365–9.
[56] Nurhayati, Apriani S N K, JPB Kelautan dan Perikanan. 12 13–22.
[57] Brindo R A and Felix N 2014 Int J Fish Aquat Stud. 1 108–13.
[58] Jurković N, Kolb N and Colić I 1995 Food Nahrung. 39 63–66.
[59] Handayani T 2006 Oseana XXXI 23–30.
[60] Fleurence J, Morançais M and Dumay J 2018 Seaweed proteins (Elsevier Ltd.)
[61] Michalaki I and Choijnacka K 2015 Eng Life Sci. 15 160–76
[62] Kumar Y, Tarafdar A, Kumar D and Badgujar P C 2019 J Food Sci Technol. 56 4516–25.
[63] Yan X, Yang C, Lin G, Chen Y, Miao S, Liu B and Zhao C 2019 J Food Sci. 84 165–73.
[64] Heffernan N, Smyth T J, Soler-Villa A, Fitzgerald R J and Brunton N P 2014 J Appl Phycol. 27 519–30.
[65] Torres P, Santos J P, Chow F and dos Santos D Y A C 2019 Algal Res. 37 288–306.
[66] Andriani Y, Syamsurrirat D F, Yee T C, Harisson F S, Herng T C, Latip J, Kikuzaki H and Mohamad H 2016 Nat Prod Commun. 11 1117–20.
[67] Syad A N, Rajamohamed B S, Shunnugahia K P and Kasi P D 2016 Nat Prod Commun. 11 1117–20.
[68] Saravanakumar D 2014 Dissertation. University of South Australia
[69] Siddique M A M 2013 Iran J Fish Sci. 12 864-872.
[70] Pangestuti R, Getachew A T, Siahaan E A and Chun B S 2019 J Appl Phycol. 31 2517–28.
[71] Selvin J and Lipton A P 2004 J Mar Sci Technol. 12 1–6.
[72] Raman M and Doble M 2014 J Appl Phycol. 26 2183–91.
[73] Ying Lau T, Fenny Vittal D, Sze Yee Chew C and Thau Lym Yong W 2014 Sains Malaysiana. 43 1895–900.
[74] Cyriac B and Esvaran K 2016 J Appl Phycol. 28 2507–13.
[75] Yuan Y V., Westcott N D, Hu C and Kitts D D 2009 Food Chem. 112 321–8.
[76] Patra J K and Back K H 2016 Molecules. 21
[77] Patra J K, Kim S H and Back K H 2015 J Food Biochem. 39 80–90.
[78] Zhang Z, Wang F, Wang X, Liu X, Hou Y and Zhang Q 2010 Carbohydr Polym. 82 118–21.
[79] Selim S A 2012 Int J Mar Environ Sci. 6 24–9.
[80] Dhanya K I, Swati V I, Vanka K S and Osborne W J 2016 J Ocean Univ China. 15 363–9.
[81] Yu-Qing T, Mahmood K, Shehzadi R and Ashraf M F 2016 J Biol. 6 140–51.
[82] Qiao J 2010 Antibacterial effect of extracts from two icelandic algae Ascophyllum nodosum and Laminaria digitata (Skulagata CELAND, University of Akureyri). 37.
[83] Vijayabaskar P and Shiyamala V 2011 Adv Biol Res (Rennes). 5 99–102.
[84] Begum M. A J, Selvaraju P and Vijayakumar A 2016 J Appl Nat Sci. 8 60–2.
[85] Ponnan A, Ramu K, Marudhamuthu M, Marimuthu R, Siva K and Kadarkarai M 2017 Clin. Phytoscience. 3.
[86] Chan Y Y, Kim K H and Cheah S H 2011 J Ethnopharmacol. 137 1183–8.
[87] Manteu S H, Nurjanah and Nurhayati T 2018 J. Enhphii. 21 396–405.
[88] Diachanty S, Nurjanah and Abdullah A 2017 Jurnal Pengolahan Hasil Ikan Indonesia. 20 305–18.
[89] Pakidi C S and Suwono H suryanto 2016 Octopus. 5 488–98.
[90] Arunkumar K, Sivakumar S . and Rengasamy R 2010 Asian J plant Sci. 9 227–49.
[91] Oktarina E 2017 Majalah TEGI. 9 1–10.
[92] Larsen R, Eilertsen K E and Elvevoll E O 2011 Biotechnol Adv. 29 508–18.
[93] Dwijitno D 2010 Squalen Bull Mar Fish Postharvest Biotechnol. 6 9.
[94] Poveda-Castillo G, Rodrigo D, Martínez A and Pina-Pérez M 2018 Beverages. 4 64.
[95] Nagai T and Takakiyoi Yukimoto 2003 Food Chem. 81 327–32.
[96] Baiq D, Wandansari A L N A, Mulyani N S and Kimia J 2013 Chem Info. 1 64–9.
[97] Trilaksuni W and Setyaningsih I 2015 J. Pengolahan Hasil Perikanan Indonesia. 18 74–82.
[98] Wibowo L and Evi D A N 2012 Yokasi. 8 101–109.
[99] Sanger G, Kaseger B E, Rarung L K and Damongilala L 2018 *J Pengolahan Hasil Perikanan Indonesia*. 21 208.

[100] Muhtar N I, Rejeki S, Perikanan T H, Tenggara S, Pertanian F, Halu U and Tenggara S 2019 *J Fish Protech*. 2.

[101] Prachyakij P, Charernjiratrakul W and Kantachote D 2008 *World J Microbiol Biotechnol*. 24 1713–20.

[102] O’Sullivan A M, O’Grady M N, O’Callaghan Y C, Smyth T J, O’Brien N M and Kerry J P 2016 *Innov Food Sci Emerg Technol*. 37 293–9.

[103] Husni A, Ariani D and Budhiyanti S A 2015 *J Agritech*. 35 368.

[104] Pratiwi A, Elfita and Aryawati R 2011 *Masparsi J*. 04 131–6.

[105] Lim S J, Mustapha W A W and Maskat M Y 2017 *Sains Malaysiana*. 46 1573–9.

[106] Neves A R, Pool W A, Kok J, Kuipers O P and Santos H 2005 *FEMS Microbiol Rev*. 29 531–54.