The subcutaneous implantable cardioverter-defibrillator should be considered for all patients with an implantable cardioverter-defibrillator indication

Jian Liang Tan, MD, Andrea M. Russo, MD, FHRS

From the From the Division of Cardiovascular Disease, Cooper Medical School of Rowan University/Cooper University Health System, Camden, New Jersey.

The implantable cardioverter-defibrillator (ICD) is an essential lifesaving device implanted worldwide for the prevention of sudden cardiac death (SCD). Several clinical trials have demonstrated the efficacy of ICDs in both primary and secondary prevention cohorts over the last two and a half decades.1–5 Transvenous implantable cardioverter-defibrillators (TV-ICDs) have traditionally been implanted for such purposes. However, the TV-ICD system has considerable limitations and is associated with short- and long-term adverse events related to the endovascular lead.

Concerns related to the TV-ICD system

Evidence has demonstrated that 2%–11% of new TV-ICD implantation procedures result in early complications, such as pocket-related complications, device-related infection, procedure-related complications (pneumothorax, pericardial effusion/cardiac tamponade), device malfunction, and lead-related issues (lead dislodgment, lead fracture requiring revision) within 45–90 days postoperatively.6–9 Several other studies also demonstrated that the long-term risk (up to 10 years) of TV-ICD systems for any complications leading to reoperation or hospitalization remain significantly elevated at 8%–33%.9–10 Interestingly, the National Cardiovascular Data Registry (NCDR) ICD registry reported that women with a TV-ICD system have a higher risk than men for any device-related complications postimplantation (adjusted odds ratio [OR] 1.39; P < .001); 6-month heart failure readmission (adjusted OR 1.32; P < .001); and 6-month all-cause readmission (adjusted OR 1.22; P < .001).11 Acute procedural complications include a higher risk of pneumothorax and cardiac perforation. Another NCDR ICD registry study reported that dialysis patients seemed to be at greatest risk for developing cardiac implantable electronic device (CIED) infection (OR 1.34; P = .0012) within 6 months of TV-ICD implantation.12 A totally subcutaneous defibrillator system was developed to overcome these complications related to the TV-ICD system.

Overview of the S-ICD system

The subcutaneous implantable cardioverter-defibrillator (S-ICD) was first approved by the U.S. Food & Drug Administration (FDA) in 2012 for prevention of SCD. A summary of the differences and similarities between the S-ICD and the TV-ICD system are listed in Table 1. Similar to the single-chamber TV-ICD system, the S-ICD system consists of a defibrillator lead and a pulse generator (PG). The S-ICD is designed to eliminate the need to insert the lead into the vasculature and into the heart, minimizing potential lead-related complications. Before S-ICD implantation, patients are screened with an electrocardiogram (ECG) to evaluate QRS–T-wave morphologies to assure appropriate sensing and reduce the risk of T-wave oversensing, hence minimizing the risk of inappropriate shocks (IAS) or undersensing of ventricular tachyarrhythmias.13–21

Different techniques of PG and lead implantation with the S-ICD system

There are vast differences between the S-ICD and the TV-ICD related to implantation techniques. The PG of the TV-ICD system is traditionally implanted in the left infraclavicular region (less commonly in the right infraclavicular region), and placement of the defibrillator lead requires venous access to the right ventricle through the subclavian, axillary, or cephalic vein. In contrast, the PG of the S-ICD system is implanted subcutaneously in the midaxillary line at the level of the fifth and sixth intercostal spaces, and the defibrillator lead is tunneled subcutaneously from the PG to the left parasternal border. The standard implantation technique of the S-ICD system was originally described using a 3-incision approach.
The subcutaneous implantable cardioverter-defibrillator (S-ICD) has been shown to have comparable efficacy, reliability, and safety outcomes compared to the transvenous implantable cardioverter-defibrillator (TV-ICD) for the prevention of sudden cardiac death (SCD) in patients who do not have pacing indications.

When recommending an implantable cardioverter-defibrillator (ICD) for the primary or secondary prevention of SCD, patients should be given the option of an S-ICD with a high level of recommendation in the absence of pacing indications.

The S-ICD may be preferred over the TV-ICD in patients at high risk for cardiac implantable electronic device infection, those with limited vascular access, and patients on dialysis in the absence of pacing indications.

The S-ICD also may be preferred in younger patients, who may need multiple devices and leads throughout their lifetime, and in women, who are at higher risk for TV-ICD complications, in the absence of pacing indications.

It is important to emphasize that the S-ICD should be included in the shared decision-making process, in addition to discussion about the TV-ICD, when offering ICD therapy for the primary or secondary prevention of SCD in patients who meet implantation criteria without pacing indications.

For patients, these alternative implantation strategies may have cosmetic or comfort advantages. The 2-incision technique for lead placement, and subfascial and submuscular implantation of the PG have also been described.

For patients, these alternative implantation strategies may have cosmetic or comfort advantages. The 2-incision technique for lead placement, and subfascial and submuscular implantation of the PG have also been described.

Table 1 Summary of S-ICD* and TV-ICD (single-chamber) systems

	S-ICD†	TV-ICD
Preimplantation	Requires ECG screening	No prescreening
Pulse generator	Subcutaneous, subfascial, or submuscular	Subcutaneous or submuscular
implantation		
Lead implantation	Subcutaneous, 2-incision vs 3-incision techniques	Transvenous, requires patent vascular access
Battery life	7.3–8.7 y[61]†	11–12 y,[62]† up to 13 y[63]
Pulse generator size	Larger (59.5 cc, 130 g)†	Smaller (30 cc, 68.9 g)[62]
Cost	Higher	Lower
Delivered energy	80 J†	41 J
Energy required to	Higher	Lower
defibrillate (J)		
Capacitor charge time	Longer (14.6 ± 2.9 s)	Shorter (7.1 ± 1.8 s)
Shock waveform	Biphasic	Biphasic
Shock tilt	Fixed, 50%	Fixed, 50%
Pacing capability	Not available*	Available
(ATP/brady/CF)		
Lead removal	Less complex	More complex
Infection risk	Lower (0.9%)	Higher (1.9%)
(4-y follow-up)		
Lead failure/complications	Lower (1.4%)	Higher (6.6%)
MRI compatible	Yes	Yes
Atrial arrhythmia monitoring	Yes (AF detection algorithm)	Yes (Various options)
Remote patient monitoring	Yes	Yes

AF = atrial fibrillation; ATP = antitachycardia pacing; brady = bradyarrhythmia; CRT = cardiac resynchronization therapy; ECG = electrocardiogram; ICD = implantable cardioverter-defibrillator; MRI = magnetic resonance imaging; S-ICD = subcutaneous implantable cardioverter-defibrillator; TV-ICD = transvenous implantable cardioverter-defibrillator.

*S-ICD generation 3.

†Data on file with manufacturer. Based on analysis of >2900 Emblem patients followed on LATITUDE June 2017 (https://www.bostonscientific.com/content/dam/bostonscientific/Rhythm%20Management/portfolio-group/EMBLEM_S-ICD/Download_Center/EMBLEM-S-ICD-Spec-Sheet.pdf) and EMBLEM MRI S-ICD Model A209 & A219 User’s Manual 359480-001 EN US 2015-11. (https://www.bostonscientific.com/content/dam/Manuals/us/current-rev-en/359480-004_EMBLEM_S-ICD_Um_en-US_S.pdf).

‡Single-chamber transvenous Boston Scientific Model D140 Extended Longevity, Technical Manual (https://www.bostonscientific.com/content/dam/Manuals/au/current-rev-en/359499-004_ICD_PTM_en-AUS_S.pdf).

§Longevity estimates for Boston Scientific single-chamber TV-ICD device.

¶Programmable on-demand bradycardia pacing at 50 bpm for up to 30 seconds.

||
|---|---|
|**Early studies of the S-ICD**| Several major S-ICD studies have shown that the S-ICD consistently demonstrates favorable safety and efficacy outcomes when used for the primary and secondary prevention |

For patients, these alternative implantation strategies may have cosmetic or comfort advantages. The 2-incision technique for lead placement, and subfascial and submuscular implantation of the PG have also been described.

For patients, these alternative implantation strategies may have cosmetic or comfort advantages. The 2-incision technique for lead placement, and subfascial and submuscular implantation of the PG have also been described.

The submuscular technique is considered a preferred mode of PG implantation, especially in obese patients, because it reduces the distance between the coil and the PG, thus reducing shock impedance and defibrillation energy requirements.

The improvement in implantation techniques, device programming (prespecified with a conditional zone between 200 and 250 bpm), arrhythmia discrimination algorithm, and SMART Pass filter have also resulted in lower IAS rates and better outcomes.

In addition, >95% of S-ICD implants can be safely performed using anatomic landmarks and require zero or minimal fluoroscopic guidance. This offers some additional advantage to the operator, the staff, and the patient in helping to reduce the cumulative lifetime level of radiation exposure.
Table 2 Published major studies on S-ICD

Study, year (Reference no.)	Design	Study description	No. of patients	Age (y)	Primary prevention (%)	LVEF (%)	DFT success (%)	IAS (%)	Complications (%)	Data available
CE study, 2011[35]	Prospective, nonrandomized	Initial clinical experience of the S-ICD	31	53 ± 16	67	38.8 ± 15	100	16.1	9.7	286 d (median)
S-ICD IDE study, 2013[32]	Prospective, nonrandomized, multicenter, observational registry	Premarket safety and efficacy	321	51.9 ± 15.5	79.4	36.1 ± 15.9	100	13.1 (mean 11–mo follow-up)	7.9 (180-d complication rate)	180 d
Global EFFORTLESS S-ICD Registry, 2017[37]	Nonrandomized, multicenter, registry	Postapproval safety and efficacy*	985	48 ± 17	64.9	43 ± 18	99.5	2.3 (mean 3.1-y follow-up)	11.1 (mean 3.1-y follow-up)	5 y
S-ICD system PAS study, 2017[36]	Nonrandomized, multicenter, registry	Postapproval safety and efficacy†	1637	53.2 ± 15	76.7	32 ± 14.6	98.7	0.2 (at 30 d)	3.8 (at 30 d)	30 d
PRAETORIAN trial, 2020[15]	International, randomized, noninferiority	Head-to-head comparison for safety and efficacy‡	426[1] vs 423[1]	63 (54–69) vs 64 (56–70)	81.2[1] vs 80.1[1]	30 (25–35)[1]	99.3[1]	9.7[1] vs 7.3[1] (4-y cumulative incidence)	5.9[1] vs 9.8[1] (4-y cumulative incidence)	49.1 mo (median)
UNTOUCHED trial, 2021[11]	Multinational, prospective, nonrandomized	Primary prevention using standardized programing and improved sensing algorithms[1]	1116	55.8 ± 12.4	100	26.4 ± 5.8	99.2	4.1 (at 18 mo)	7.3 (at 18 mo)	18 mo
ATLAS trial, 2022[59]	Randomized, multicenter, open-label, parallel group	Head-to-head comparison for safety and efficacy with the focus on younger patients	251** vs 252[1]	48 ± 12** vs 50 ± 11[1]	63.7** vs 69.4[1]	NA	NA	6.4** vs 2.8 (at 6-mo follow-up)	4.4** vs 5.6 (at 6-mo follow-up)	6 mo

Values are given as number of patients, percentage (%), median (interquartile range), or mean ± SD.

ATLAS = Avoid Transvenous Leads in Appropriate Subjects; DFT = defibrillation threshold; EFFORTLESS S-ICD = Evaluation of Factors Impacting Clinical Outcome and Cost Effectiveness of the S-ICD; IAS = inappropriate shock; IDE = S-ICD System Investigational Device Exemption Clinical Investigation; LVEF = left ventricular ejection fraction; NA = not available; PAS = S-ICD System Post-Approval; PRAETORIAN = Prospective Randomized Comparison of Subcutaneous and Transvenous Implantable Cardioverter Defibrillator Therapy; S-ICD = subcutaneous implantable cardioverter-defibrillator; TV-ICD = transvenous implantable cardioverter-defibrillator; UNTOUCHED = Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction.

*S-ICD generation 1.
†S-ICD generation 2.
‡S-ICD (patient received either generation 1 or generation 2).
*TV-ICD group.
§S-ICD generation 2 and generation 3.
**S-ICD generation 3 or subsequent newer generation.
Factors Influencing Selection of S-ICD vs. TV-ICD

- Limited vascular access
 - Venous occlusion
 - Venous anomaly
- Congenital heart disease
 - No venous access to heart
 - Intra-cardiac shunt
- Prior transvenous ICD infection
- Prior bacteremia
- High risk for infection
 - Immunodeficiency
 - Diabetes
 - Renal dysfunction
 - Immunosuppressive therapy
- On hemodialysis
- High risk for infection
- Need for venous access
- Young age
 - Need for multiple leads in lifetime
 - Active with increased risk lead failure
- Hypertrophic cardiomyopathy
 - High defibrillation energy requirement with TV-ICD
- Channelopathies
 - Index arrhythmia VT/PMVT
 - Often young patients
- Women
 - Higher risk complications TV leads compared with men
 - Cosmetic appearance/concealed
- Patient preference
- Need for bradycardia pacing
- Need for CRT
- Known need for ATP for frequent MMVT, without planned VT ablation
- Failed ECG screen (high risk inappropriate shocks)

Figure 1 Factors influencing selection of subcutaneous implantable cardioverter-defibrillator (S-ICD). CRT = cardiac resynchronization therapy; ECG = electrocardiogram; ICD = implantable cardioverter-defibrillator; MMVT = monomorphic ventricular tachycardia; PMVT = polymorphic ventricular tachycardia; TV = transvenous; TV-ICD = transvenous implantable cardioverter-defibrillator; VT = ventricular tachycardia.

of SCD (Table 2). The IDE (S-ICD System Investigational Device Exemption Clinical Investigation) study and the EFFORTLESS S-ICD (Evaluation of Factors Impacting Clinical Outcome and Cost Effectiveness of the S-ICD) registry, 2 earlier studies conducted in the United States and Europe, respectively, demonstrated the safety and feasibility of the S-ICD system for the primary and secondary prevention of SCD. The IDE study and the EFFORTLESS registry demonstrated high first-shock conversion efficacy of 88% and 92.1%, respectively, for any spontaneous ventricular arrhythmias. In a pooled analysis of 882 patients (results from the IDE study and the EFFORTLESS registry with mean follow-up of 22-months), the S-ICD continued to demonstrate favorable safety and efficacy. This study also noted an estimated 3-year all-cause mortality rate of 4.7% and a very low rate of lead issues (<1%) over the course of 3-year follow-up. It is also important to note the S-ICD had a very low rate of infection (<2%). In particular, there were no S-ICD related cases of endocarditis or bacteremia in the cohort with infection over the course of 3-year follow-up.

After publication of these studies that included observational and large registry data, recommendations were published in the 2015 European Society of Cardiology (ESC) guidelines and the 2017 American Heart Association/American College of Cardiology/Heart Rhythm Society (AHA/ACC/HRS) guidelines, giving the S-ICD a class IIa recommendation for patients who meet criteria for ICD implantation and do not require pacing therapy for bradycardia, ventricular tachyarrhythmia, or cardiac resynchronization. In addition, these guidelines gave the S-ICD a class I indication for the prevention of SCD in patients with limited vascular access or at high risk for infection who do not require pacing therapy for bradycardia, ventricular tachyarrhythmia, or cardiac resynchronization therapy.

Heart failure and other comorbidities

After initial approval by the FDA in 2012, the S-ICD was initially utilized in a minority of patients meeting indications for ICD therapy (2.0% in 2016 NCDR publication and 3.4% in 2019 Q1 NCDR registry quarterly report, according to data supplied by the NCDR registry to participating centers), often used as a “niche” device. Recent FDA recalls of the S-ICD system (due to risk of a short circuit, accelerated battery depletion, and electrode body fracture) also might have affected increased adoption of this technology in the United States. In the United States, the majority of patients (3/4) who undergo ICD implantation have a primary prevention indication, particularly for ischemic or nonischemic cardiomyopathy with reduced left ventricular (LV) function, a cohort who often have multiple comorbidities. However, it should be noted that previous S-ICD studies also included patients with heart failure, low ejection fraction (EF), and multiple comorbidities. Low EF patients were well represented in the IDE trial (mean 36% ± 16%, and 70% of patients with EF ≤35%). In the EFFORTLESS registry, patients with a broad range of underlying heart disease were represented, including 29% with ischemic cardiomyopathy and 17% with nonischemic cardiomyopathy. In the combined EFFORTLESS registry + IDE study, 42% had congestive heart failure and 35% had previous myocardial infarction. In the NCDR ICD registry, 74% had heart failure, 40% had previous myocardial infarction and 20% were on dialysis.
The UNTOUCHED (Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction) study included only patients with primary prevention ICDs who had LVEF ≤35% (1116 patients implanted with an S-ICD). Compared with patients included in MADIT-RIT (Multicenter Automatic Defibrillator Implantation Trial-Reduce Inappropriate Therapy), which included only TV-ICDs, LVEF in UNTOUCHED was similar (27% ± 7% vs 26% ± 6%, respectively). In the PRAETORIAN (Prospective Randomized Comparison of Subcutaneous and Transvenous Implantable Cardioverter Defibrillator Therapy) trial, 426 patients had undergone S-ICD implantation, including 68% with ischemic cardiomyopathy, 23% with nonischemic cardiomyopathy, 66% with New York Heart Association functional class II–IV heart failure, and median EF 30%. Because there is a large amount of experience with the S-ICD in low EF populations with heart failure and multiple comorbidities, the S-ICD should not be considered a “niche” device.

The evidence and why choose the S-ICD over a TV-ICD?

The S-ICD may be preferred over the TV-ICD because of to the low rates of lead failure and clinically significant infections, specifically bacteremia, due to the absence of a transvenous lead. Specifically, this device may be preferred in patients with limited venous access, those with previous transvenous infection, those with conditions associated with a high risk of infection, such as dialysis or immunodeficiency states, and in patients with hypertrophic cardiomyopathy (who may have a high defibrillation threshold with TV-ICDs). Younger patients with an active lifestyle may be at higher risk for long-term lead failure and women may be at higher risk for procedural complications from transvenous leads, also potentially favoring the S-ICD (Figure 1).

Additional evidence supporting the S-ICD includes real-world data from registries. The NCDR ICD registry examined trends and in-hospital outcomes of S-ICD implantation in the United States (2012–2015), reporting outcomes of 3717 patients who underwent S-ICD implantation. In contrast to the IDE study and the EFFORTLESS registry, patients on chronic dialysis represented 20% of patients who underwent S-ICD implantation in this registry. Patients with the S-ICD had a high success rate of defibrillation testing (99.7%) at ≤80 J and low overall in-hospital complication rates (<1.0%) as well as low in-hospital mortality rates (0.1%), similar to outcomes of patients with single- or dual-chamber TV-ICDs.

PRAETORIAN was the first head-to-head trial comparing the S-ICD (426 patients) with the TV-ICD (423 patients) in general populations with an indication for ICD implantation in the United States (2012–2015), reporting outcomes of 3717 patients who underwent S-ICD implantation. In contrast to the IDE study and the EFFORTLESS registry, patients on chronic dialysis represented 20% of patients who underwent S-ICD implantation in this registry. Patients with the S-ICD had a high success rate of defibrillation testing (99.7%) at ≤80 J and low overall in-hospital complication rates (<1.0%) as well as low in-hospital mortality rates (0.1%), similar to outcomes of patients with single- or dual-chamber TV-ICDs.
patients), the S-ICD was proven to be safe and effective for use, even in older patients with multiple comorbidities and poorer cardiovascular function.31 This study also demonstrated a high defibrillation success rate (>92%), high complication-free rate (92.7%), and high IAS-free rate (95.9%) at 18 months without compromising patient safety.31 Evidence from these trials supports the use of the S-ICD in older patients and in patients with multiple comorbidities and lower EF.

IAS delivery is one adverse event of ICD therapy that has gained attention with both S-ICDs and TV-ICDs. Studies have shown that IAS greatly reduce quality of life and are associated with increased risk of all-cause mortality.45–47 Previous investigation has demonstrated overall similar rates of IAS among TV-ICD and S-ICD recipients, but the reasons for IAS delivery were more often related to supraventricular arrhythmias with the TV-ICD and T-wave oversensing with the S-ICD in a meta-analysis of case-controlled studies.48 Use of the SMART Pass filter technology (available in third-generation S-ICDs) and programming the S-ICD with a conditional zone between 200 and 250 bpm have greatly reduced T-wave oversensing and IAS delivery among S-ICD recipients without affecting safety outcomes.29,31,32,49,50 In the START (Subcutaneous versus Transvenous Arrhythmia Recognition Testing) study, the S-ICD even surpassed performance of TV-ICD algorithms in head-to-head comparisons of sensitivity and specificity using induced arrhythmias \textit{in vitro}.49 Figure 2 demonstrates a comparison of annual IAS rates across different major S-ICD and TV-ICD studies.

In addition, recent data from the ATLAS (Avoid Transvenous Leads in Appropriate Subjects) trial have once again proven that the S-ICD has lower major lead-related complications compared with the TV-ICD (0.4% vs 4.8%; \(P < .0003\)) at 6-month follow-up.51 In this study, there was no significant difference in ICD performance between the 2 devices with respect to the rate of IAS and failed first shock/arrhythmic death during 6-month follow-up.51 It is important to note that younger patients aged 18 to 60 years were enrolled in the ATLAS trial. Previous studies have shown that younger patients are at higher risk for TV lead failure/fracture, and there is an increased need for early reoperation in this age group.10,52,53 Therefore, we would highly recommend the S-ICD for primary prevention of SCD in younger patients with no indication for pacing.

Last, but not least, a recent systematic review and meta-analysis, which was a pooled analysis of 5 high-quality studies (1195 patients received S-ICD; 1192 patients received TV-ICD), reported that patients implanted with the S-ICD had a lower risk of lead-related complications (risk ratio [RR] 0.14; \(P < .0001\)) at 30 to 60 months of follow-up.55 Both the S-ICD and TV-ICD seemed to have similar rates of device-related complications (RR 0.59; \(P = .07\)), similar rates of infection (RR 0.94; \(P = .897\)), similar rates of appropriate shock therapy (RR 0.87; \(P = .732\)), and no significant differences in IAS therapy (RR 1.06; \(P = .695\)) and all-cause mortality (RR 1.02; \(P = .943\)).54

In summary, there certainly are many important points and tradeoffs to consider when selecting either the S-ICD or the TV-ICD. The implanting physician should be open-minded and consider the evidence because both types of devices are indicated for many patients undergoing ICD implantation. This can be a tough decision for patients. Hence, it is utterly important for us, their trusted health care providers, to adopt a shared decision-making model and provide the most up-to-date clinical evidence when selecting between the S-ICD and the TV-ICD for sudden death prevention. Figure 1 outlines considerations for device selection and situations for which the S-ICD may be preferred, or not preferred, over TV-ICDs.

Current limitations of the S-ICD

There are some current known limitations of the S-ICD system as mentioned previously (Table 1), including shorter battery lifespan, larger PG size, lack of pacing support, and lack of direct atrial arrhythmia recording. However, major improvements and advancements have been made in S-ICD technology over the past few years. These include enhanced battery longevity, smaller PG size, and algorithms to help with detection of atrial arrhythmias despite absence of an atrial lead. In appropriately selected patients, there is a very low risk of needing a TV-ICD system for pacing indications.15

Investigation is underway evaluating the combination of a leadless pacemaker or a cardiac contractility modulation device with the S-ICD system, which seems to be feasible and effective in small animal and human case studies.55–59 The concept of combined leadless pacing with the S-ICD currently is being evaluated in a larger study—MODULAR ATP (Effectiveness of the EMPOWER™ Modular Pacing System and EMBLEM™ Subcutaneous ICD to Communicate Antitachycardia Pacing).60 Until then, the S-ICD is indicated in a wide variety of patients without cardiac pacing indications for all the reasons noted here and should be strongly considered as upfront therapy at the time of initial ICD implantation in the shared decision-making process.

Conclusion

Available evidence strongly supports use of the S-ICD in patients without cardiac pacing indications for the primary and secondary prevention of SCD. Although previous guidelines gave the ICD a class IIa indication, they were written before the availability of data from more recent trials, and it is anticipated that this level of recommendation will be elevated with the next guideline update. In addition, the S-ICD may be preferable to TV-ICD systems in certain special populations, including younger patients, women, those with vascular access issues, patients at high-risk for CIED infection (previous CIED infection, recent endocarditis, prosthetic heart valve replacement, dialysis, or immunodeficiency states), and those with complex congenital heart disease. It may also be a good device for patients with...
hypertrophic cardiomyopathy (who may have high defibrillation thresholds with TV-ICDs) and inherited arrhythmogenic syndromes (often young patients with a low risk for development of monomorphous ventricular tachycardia). In any case, a patient-centered approach and a shared decision-making model that provides the most up-to-date clinical evidence should be utilized when selecting between the S-ICD and the TV-ICD for sudden death prevention.

Funding Sources: The authors have no funding sources to disclose.

Disclosures: Dr Russo reports research and funding to Cooper Health System from Boston Scientific, Kestra, MedLynx, and Medtronic; consulting fees from Abbott, AtriCure, Bayer, Biosense Webster, Boston Scientific, Medtronic, and PacedMate; honoraria/speaking fees from Biotronik, BMS/Pfizer, Medtronic, and Sanofi; and royalties from Up-to-Date. Dr Tan has no conflicts to disclose.

Authorship: All authors attest they meet the current ICMJE criteria for authorship.

References

1. Antiarhythmic versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997; 337:1576–1583.
2. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005;352:225–237.
3. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of randomized clinical trials comparing implantable cardioverter-defibrillator vs. antiarrhythmic drug therapy for secondary prevention of ventricular tachycardia or fibrillation. J Am Coll Cardiol 2011;57:1936–1943.
4. Duray GZ, Schmitt J, Cicek-Hartvig S, Hohnloser SH, Israel CW. Complications and reoperations after implantable cardioverter defibrillator implantation: an observational cohort study. Ann Intern Med 2016;165:2047–2055.
5. Knops RE, Olde Nordkamp LRA, Warnaars JLF, et al. Subcutaneous or transvenous implantable defibrillator in young patients with inherited arrhythmia syndromes: a systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm 2016;13:443–454.
6. Russo AM, Daughey SL, Masoudi FA, Wang Y, Curtis J, Lampert R. Gender and outcomes after primary prevention implantable cardioverter-defibrillator implantation: findings from the National Cardiovascular Data Registry (NCDR). Am Heart J 2015;170:330–338.
7. Prutkin JM, Reynolds MR, Bao H, et al. Rates of and factors associated with infection in 200,909 Medicare implantable cardioverter-defibrillator implants: results from the National Cardiovascular Data Registry. Circulation 2014;130:1037–1043.
8. Olde Nordkamp LRA, Warnaars JLF, Koosman KM, et al. Which patients are not suitable for a subcutaneous ICD: incidence and predictors of failed QBS-T-wave morphology screening study. Europace 2014;16:2480–2487.
9. Groh CA, Sharma S, Pelchovitz DJ, et al. Use of an electrocardiographic screening tool to determine candidacy for a subcutaneous implantable cardioverter-defibrillator. Heart Rhythm 2014;11:1361–1366.
10. Randles DA, Hawkins NM, Shaw M, Patwala AY, Pettit SJ, Wright DJ. How many patients fulfill the surface electrocardiogram criteria for subcutaneous implantable cardioverter-defibrillator implantation? Europace 2014;16:1015–2021.
11. Bardy GH, Smith WM, Hood MA, et al. An entirely subcutaneous implantable cardioverter-defibrillator. N Engl J Med 2010;363:36–44.
12. Brouwer TF, Miller MA, Quast AB, et al. Implantation of the subcutaneous implantable cardioverter-defibrillator: an evaluation of 4 implantation techniques. Circ Arrhythm Electrophysiol 2017;10:e004663.
13. Brouwer TF, Driessen AHG, Olde Nordkamp LRA, et al. Surgical management of implantation-related complications of the subcutaneous implantable cardioverter-defibrillator. JACC Clin Electrophysiol 2016;2:89–96.
14. Smietana J, Frankel DS, Serletti JM, et al. Subserratus implantation of the subcutaneous implantable cardioverter-defibrillator. Heart Rhythm 2021;18:1799–1804.
15. Knops RE, Olde Nordkamp LR, de Groot JR, Wilde AA. Two-incision technique for implantation of the subcutaneous implantable cardioverter-defibrillator. Heart Rhythm 2013;10:1240–1243.
16. Heitk EK, Belalcazar A, Stahl W, Brouwer TF, Knops RE. Determinants of subcutaneous implantable cardioverter-defibrillator efficacy: a computer modeling study. JACC Clin Electrophysiol 2017;3:405–414.
17. Brisbin AI, Burke MC, Knight BP, et al. A new algorithm to reduce inappropriate therapy in the S-ICD system. J Cardiovasc Electrophysiol 2015;26:417–423.
18. Theuns D, Brouwer TF, Jones PW, et al. Prospective blinded evaluation of a novel sensing methodology designed to reduce inappropriate shocks by the subcutaneous implantable cardioverter-defibrillator. Heart Rhythm 2018;15:1515–1522.
19. Boersma LV, El-Chami MF, Bongiorni MG, et al. Understanding Outcomes with the EMBLEM S-ICD in Primary Prevention Patients with Low EF Study (UN-TOUCHED): clinical characteristics and perioperative results. Heart Rhythm 2019;16:1636–1644.
20. Gold MR, Lambiase PD, El-Chami MF, et al. Primary results from the Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction (UNTOUCHED) trial. Circulation 2021;143:71–109.
21. Weiss R, Knight BP, Gold MR, et al. Safety and efficacy of a totally subcutaneous implantable-cardioverter defibrillator. Circulation 2013;128:944–953.
22. Boersma L, Barr C, Knops R, et al. Implant and midterm outcomes of the subcutaneous implantable cardioverter-defibrillator: the EFFORTLESS study. J Am Coll Cardiol 2017;70:830–841.
23. Gold MR, Aasbo JD, El-Chami MF, et al. Subcutaneous implantable cardioverter-defibrillator post-approval study: clinical characteristics and perioperative results. Heart Rhythm 2017;14:1456–1463.
24. Dabiri Abkenari L, Theuns DA, Valk SD, et al. Clinical experience with a novel subcutaneous implantable defibrillator system in a single center. Clin Res Cardiol 2011;100:737–744.
25. Lambiase PD, Barr C, Theuns DA, et al. Worldwide experience with a totally subcutaneous implantable cardioverter-defibrillator: early results from the EFFORTLESS S-ICD Registry. Eur Heart J 2014;35:1667–1665.
26. Burke MC, Gold MR, Knight BP, et al. Safety and efficacy of the totally subcutaneous implantable cardioverter defibrillator. Circulation 2015;131:1867–1878.
27. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015;36:3793–3867.
28. Al-Khatab SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American College of Cardiology/Am...
