The Principal Curvatures and the Third Fundamental Form of Dini-Type Helicoidal Hypersurface in 4-Space

Erhan Güler

1Bartın University, Faculty of Sciences, Department of Mathematics, 74100 Bartın, Turkey.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2020/v16i1130243

Editor(s):
(1) Dr. Ruben Dario Ortiz Ortiz, Universidad Michoacana de San Nicolas de Hidalgo, Mexico.

Reviewer(s):
(1) Andrews S, Mahendra Engineering College, India.
(2) Tuhid Pashaee Golmarz, Urmia University of Technology, Iran.
(3) Zsuzsanna Balajti, University of Miskolc, Hungary.

Complete Peer review History: http://www.sdiarticle4.com/review-history/63690

Received: 15 October 2020
Accepted: 22 December 2020
Published: 30 December 2020

Abstract

We consider the principal curvatures and the third fundamental form of Dini-type helicoidal hypersurface $D(u, v, w)$ in the four dimensional Euclidean space E^4. We find the Gauss map e of helicoidal hypersurface in E^4. We obtain characteristic polynomial of shape operator matrix S. Then, we compute principal curvatures $k_{i=1,2,3}$, and the third fundamental form matrix III of D.

Keywords: Four dimensional; Dini-type helicoidal hypersurface; Gauss map; principal curvatures; the third fundamental form.

2020 Mathematics Subject Classification: Primary 53A35; Secondary 53C42.

1 Introduction

Theory of surfaces and hypersurfaces have been studied by many geometers for years such as [1 – 26].

In the rest of this paper, we identify a vector (a,b,c,d) with its transpose $(a,b,c,d)^t$. Let $\gamma : I \rightarrow \Pi$ be a curve in a plane Π in \mathbb{R}^4, and let ℓ be a straight line in Π for an open interval $I \subset \mathbb{R}$. A
rotational hypersurface in \mathbb{E}^4 is defined as a hypersurface rotating a curve γ (i.e. profile curve) around a line (i.e. axis) ℓ. Suppose that when a profile curve γ rotates around the axis ℓ, it simultaneously displaces parallel lines orthogonal to the axis ℓ, so that the speed of displacement is proportional to the speed of rotation. Resulting hypersurface is called the helicoidal hypersurface with axis ℓ and pitches $a, b \in \mathbb{R}\setminus\{0\}$.

Let ℓ be a line spanned by the vector $(0, 0, 0, 1)^t$. The orthogonal matrix

$$
\mathcal{M}(v, w) = \begin{pmatrix}
\cos v \cos w & -\sin v & -\cos v \sin w & 0 \\
\sin v \cos w & \cos v & \sin v \sin w & 0 \\
\sin w & 0 & \cos w & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad v, w \in \mathbb{R},
$$

fixes the vector ℓ. The matrix \mathcal{M} can be found by solving the following equations simultaneously; $\mathcal{M}\ell = \ell$, $\mathcal{M}^t \mathcal{M} = \mathcal{M} \mathcal{M}^t = I_4$, det $\mathcal{M} = 1$. When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis is ℓ transformed to the x_4-axis of \mathbb{E}^4. Parametrization of the profile curve is given by $\gamma(u) = (u, 0, 0, \varphi(u))$, where $\varphi(u) : I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function for all $u \in I$. So, the helicoidal hypersurface is given by $H(u, v, w) = \mathcal{M}(u, v, w) = \mathcal{M}_{\gamma}(u, 0, 0) \cdot (av + bw) \cdot \ell'$, where $u \in I$, $v, w \in [0, 2\pi]$, $a, b \in \mathbb{R}\setminus\{0\}$. Clearly, we write helicoidal hypersurface as follows

$$
H(u, v, w) = (u \cos v \cos w, u \sin v \cos w, u \sin w, \varphi(u) + av + bw).
$$

In this paper, we study the principal curvatures and the third fundamental form of the Ulisse Dini-type helicoidal hypersurface in Euclidean 4-space \mathbb{E}^4. We give some basic notions of four dimensional Euclidean geometry in section 2. In section 3, we give Ulisse Dini-type helicoidal hypersurface, and calculate its principal curvatures, and the third fundamental form in section 4. In addition, we give a conclusion in the last section.

2 Preliminaries

In this section, we introduce the fundamental form matrices I, II, III, the shape operator matrix S, the Gaussian curvature K, and the mean curvature H of a hypersurface $M = M(u, v, w)$ in the Euclidean 4-space \mathbb{E}^4.

Let M be an isometric immersion of a hypersurface M^3 in the \mathbb{E}^4. The inner product of $\overrightarrow{x} = (x_1, x_2, x_3, x_4)$, $\overrightarrow{y} = (y_1, y_2, y_3, y_4)$, and the vector product of \overrightarrow{x}, \overrightarrow{y}, $\overrightarrow{z} = (z_1, z_2, z_3, z_4)$ on \mathbb{E}^4 are defined by

$$
\overrightarrow{x} \cdot \overrightarrow{y} = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4,
$$

$$
\overrightarrow{x} \times \overrightarrow{y} \times \overrightarrow{z} = \begin{vmatrix}
e_1 & e_2 & e_3 & e_4 \\
e_1 & x_2 & x_3 & x_4 \\
y_1 & y_2 & y_3 & y_4 \\
z_1 & z_2 & z_3 & z_4
\end{vmatrix},
$$

respectively. A hypersurface M in 4-space has the first and the second fundamental form matrices

$$
I = \begin{pmatrix}
E & F & A \\
F & G & B \\
A & B & C
\end{pmatrix}, \quad II = \begin{pmatrix}
L & M & P \\
M & N & T \\
P & T & V
\end{pmatrix},
$$

respectively. Here,

$$
E = M_{uv} \cdot M_u, \quad F = M_u \cdot M_v, \quad G = M_v \cdot M_v, \quad A = M_u \cdot M_w, \quad B = M_v \cdot M_w, \quad C = M_v \cdot M_v, \quad L = M_{uu} \cdot e, \quad M = M_{uv} \cdot e, \quad N = M_{vw} \cdot e, \quad P = M_{uw} \cdot e, \quad T = M_{vw} \cdot e, \quad V = M_{ww} \cdot e,
$$
and \(e \) is the Gauss map
\[
e = \frac{M_u \times M_v \times M_w}{\|M_u \times M_v \times M_w\|}.
\]

Hence, \(I^{-1}II \) gives the shape operator matrix of \(M \)
\[
S = \frac{1}{\det I} \begin{pmatrix}
 s_{11} & s_{12} & s_{13} \\
 s_{21} & s_{22} & s_{23} \\
 s_{31} & s_{32} & s_{33}
\end{pmatrix},
\]
where
\[
\det I = (EG - F^2)C - A^2G + 2ABF - B^2E,
\]
\[
s_{11} = ABM - CFM - AGP + BFP + CGL - B^2L,
\]
\[
s_{12} = ABN - CFN - AGT + BFT + CGM - B^2M,
\]
\[
s_{13} = ABT - CFT - AGV + BVF + CGP - B^2P,
\]
\[
s_{21} = ABL - CFL + AFP - BPE + CME - A^2M,
\]
\[
s_{22} = ABM - CFM + AFT - BTE + CNE - A^2N,
\]
\[
s_{23} = ABP - CFP + AFV - BVE + CTE - A^2T,
\]
\[
s_{31} = -AGL + BFL + AFM - BME + GPE - F^2P,
\]
\[
s_{32} = -AGM + BFM + AFN - BNE + GTE - F^2T,
\]
\[
s_{33} = -AGP + BFP + AFT - BTE + GVE - F^2V.
\]

Therefore, using \(II.S \), we get the third fundamental form matrix
\[
III = \frac{1}{\det I} \begin{pmatrix}
 \Gamma & \Phi & \Omega \\
 \Phi & \Psi & \Theta \\
 \Omega & \Theta & \Delta
\end{pmatrix},
\]
where
\[
\Gamma = -A^2M^2 + 2ABLM + 2AFMP - 2GALP - B^2L^2 + 2BFLP
\]
\[
-2EBMP - F^2P^2 - 2CFLM + CGL^2 + CEM^2 + GEP^2,
\]
\[
\Phi = ABM^2 - CFM^2 - B^2LM - A^2MN - F^2PT + CMNE
\]
\[
-BNPE - BMTE + GPTE + ABLN - CFLN + CGLM
\]
\[
+AFNP - AGMP + BFMP + AFMT - AGLT + BFLT,
\]
\[
\Omega = BFP^2 - AGP^2 - B^2LP - A^2MT - F^2PV + CMTE
\]
\[
-BMVE - BPTE + GPVE + ABMP + ABLT - CFMP
\]
\[
+CGLP - CFLT + AFMV - AGLV + BFLV + AFPT,
\]
\[
\Psi = -A^2N^2 + 2ABMN + 2AFNT - 2GAMT - B^2M^2 + 2BFMT
\]
\[
-2EBNT - F^2T^2 - 2CFMN + CGM^2 + CEN^2 + GE^2,
\]
\[
\Theta = AFT^2 - B^2MP - A^2NT - F^2TV - BT^2E + CNTE
\]
\[
-BNVE + GTVE + ABNP + ABMT - CFNP + CGMP
\]
\[
-CFMT + AFNV - AGMV + BFVM - AGPT + BFPT,
\]
\[
\Delta = -A^2T^2 + 2ABPT + 2AFTV - 2GAPV - B^2P^2 + 2BFPV
\]
\[
-2EBTV - F^2V^2 - 2CFPT + CGP^2 + CET^2 + GEV^2.
\]
3 The Principal Curvatures and the Third Fundamental Form of the Dini-Type Helicoidal Hypersurface

We consider Dini-type helicoidal hypersurface

\[D(u, v, w) = \begin{pmatrix} \sin u \cos v \cos w \\ \sin u \sin v \cos w \\ \sin u \sin w \\ \cos u + \log (\tan \frac{u}{2}) + av + bw \end{pmatrix}, \tag{3.1} \]

where \(u \in \mathbb{R}\setminus\{0\} \) and \(0 \leq v, w \leq 2\pi \). Using the first differentials of (3.1) with respect to \(u, v, w \), we get the first quantities

\[I = \begin{pmatrix} \cot^2 u & a \cot u \cos w & b \cot u \cos u \\ a \cot u \cos u & \sin^2 u \cos^2 w + a^2 & ab \\ b \cot u \cos u & ab & \sin^2 u + b^2 \end{pmatrix}, \]

and then, we have \(\det I = \left((b^2 + 1) \cos^2 w + a^2 \right) \sin^2 u \cos^2 u \). The Gauss map of (3.1) is given by

\[e_D = \frac{1}{\sqrt{W}} \begin{pmatrix} \cos u \cos v \cos^2 w + \sin v - b \cos u \sin w \cos w \\ \cos u \sin v \cos^2 w + a \cos v - b \sin v \sin w \cos w \\ (\cos u \sin w + b \cos w) \cos w \end{pmatrix}, \tag{3.2} \]

where \(W = (b^2 + 1) \cos^2 w + a^2 \). Using the second differentials of (3.1) with respect to \(u, v, w \), with (3.2), we have the second quantities of the (3.1)

\[H = \frac{1}{W^{1/2}} \begin{pmatrix} \cot u \cos w & a \cos u \cos w & b \cos u \cos w \\ a \cos u \cos w & (b \sin w - \cos u \cos w) \sin u \cos^2 w \sin u \sin w & -a \sin u \sin w \\ b \cos u \cos w & -a \sin u \sin w & -a \sin u \cos u \cos w \end{pmatrix}. \]

Computing \(I^{-1}S \), we obtain the shape operator matrix of (3.1)

\[S = \begin{pmatrix} \frac{\sin u \cos w}{W^{3/2} \sin u} & \frac{u \cos w}{W^{3/2} \sin u} & \frac{a^2 (b \cos w + \cos u \sin w) + b (b^2 + 1) \cos^2 w}{W^{3/2} \sin u} \\ 0 & \frac{b \sin w - \cos u \cos w}{W^{3/2} \sin u} & \frac{-a \sin u \sin w}{W^{3/2} \sin u} \\ 0 & \frac{-a \sin u \cos w}{W^{3/2} \sin u} & \frac{a (b^2 + 1) \sin w}{W^{3/2} \sin u} \end{pmatrix}. \tag{3.3} \]

Theorem 1. Let \(D : M^3 \rightarrow \mathbb{E}^4 \) be an immersion given by (3.1). Then, characteristic polynomial of the (3.3) of the (3.1) is given by

\[X^3 + pX^2 + qX + r = 0, \]

where

\[p = \begin{pmatrix} \cos^2 u \cos^3 w + b^2 \cos^2 u \cos^3 w + W \cos^2 u \cos w \\ -W \cos u \sin^2 u + a^2 \cos^2 u \cos w \\ -bW \cos u \sin w - a b \cos u \sin w \end{pmatrix}, \]

\[q = \begin{pmatrix} \cos^3 u \cos^4 w + a^2 \cos^2 u \cos^4 w + b^2 \cos^3 u \cos^4 w \\ -a^2 \cos u \sin^2 w - \cos u \cos^3 w \sin^2 w \\ -W \cos u \cos^2 u \sin^4 u - a^2 \cos u \cos^2 u \sin^4 u \\ -b^2 \cos u \cos^4 u \sin u - b^2 \cos u \cos^4 u \sin u \\ -b^2 \cos^2 u \cos^3 w \sin w + bW \cos u \sin^3 w \sin w \\ -2a^2 \cos^2 u \cos w \sin w + a b \cos w \sin^3 w \sin w \end{pmatrix}, \]

\[r = \frac{W}{W^2 \cos^2 u \sin^2 u}. \]
Corollary 1. Let $D : M^3 \to \mathbb{E}^4$ be an immersion given by (3.1). Then, (3.1) has the principal curvatures
\[k_1 = \frac{\sin u \cos w}{W^{1/2} \cos u}, \quad k_2 = \frac{\beta_1}{2W^{3/2} \sin u}, \quad k_3 = \frac{\beta_2}{2W^{3/2} \sin u}, \]
where
\[\beta_1 = \frac{T^{1/2}}{2} - 2W \cos u \cos w + (W + a^2) b \sin w, \]
\[\beta_2 = -\frac{T^{1/2}}{2} - 2W \cos u \cos w + (W + a^2) b \sin w, \]
and
\[T = \left(-W + a^2 \right)^2 \left(\cos u \cos w - 2b \sin w \right) \cos u \cos w \]
\[+ \left(4a^2 W + b^2 (W + a^2) \right) \sin^2 w \]
\[- 2(b^2 + 1) \left(-W + a^2 \right) \left(\cos u \cos w + b \sin w \right) \cos u \sin^2 w \]
\[+ (b^2 + 1)^2 \cos^2 u \cos^6 w. \]

Proof. Solving characteristic polynomial of S, we have eigenvalues of S.

Corollary 2. Let $D : M^3 \to \mathbb{E}^4$ be an immersion given by (3.1). Then, (3.1) has the third fundamental form matrix
\[III = \frac{\cos^2 w}{W} \left(\begin{array}{ccc} 1 & \frac{a \sin u}{(b \sin u - \cos u \cos w)^2 \cos^2 w + a^2} & \frac{b \sin u}{a(b \cos 2w + \cos u \sin 2w)} \\ a \sin u & \frac{a \sin u}{(b \sin u - \cos u \cos w)^2 \cos^2 w + a^2} & \frac{a(b \cos 2w + \cos u \sin 2w)}{a(b \cos 2w + \cos u \sin 2w)} \\ b \sin u & \frac{b \sin u}{a(b \cos 2w + \cos u \sin 2w)} & \frac{a(b \cos 2w + \cos u \sin 2w)}{a(b \cos 2w + \cos u \sin 2w)} \end{array} \right). \]

Proof. Using II.S, we get the third fundamental form matrix of (3.1).

4 Conclusion

In this paper, we introduce the principal curvatures, and the third fundamental form of the Dini-type helicoidal hypersurface $D(u, v, w)$ in the four dimensional Euclidean space \mathbb{E}^4. We calculate the Gauss map e of the $D(u, v, w)$ in \mathbb{E}^4. We obtain the characteristic polynomial of the shape operator matrix S. After long calculations, we reveal the principal curvatures k_1, k_2, k_3, and the third fundamental form matrix III of the Dini-type helicoidal hypersurface.

5 Competing Interests

Author has declared that no competing interests exist.

References

[1] Arvanitoyeorgos A, Kaimakamis G, Magid M. Lorentz hypersurfaces in \mathbb{E}_1^4 satisfying $\Delta H = \alpha H$. Illinois J. Math. 2009;53(2):581-590.
[2] Bour E. Theorie de la deformation des surfaces. J. de l. Ecole Imperiale Polytechnique. 1862;22(39):1-148.

[3] Chen BY. Total mean curvature and submanifolds of finite type. World Scientific, Singapore; 1984.

[4] Cheng QM, Wan QR. Complete hypersurfaces of \mathbb{R}^4 with constant mean curvature. Monatsh. Math. 1994;118(3-4):171-204.

[5] Choi M, Kim YH. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2001;38:753-761.

[6] Dillen F, Pas J, Verstraelen L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 1990;13:10-21.

[7] Do Carmo M, Dajczer M. Helicoidal surfaces with constant mean curvature. Tohoku Math. J. 1982;34:351-367.

[8] Ferrandez A, Garay OJ, Lucas P. On a certain class of conformally at Euclidean hypersurfaces. Proc. of the Conf. in Global Analysis and Global Differential Geometry, Berlin; 1990.

[9] Ganchev G, Milousheva V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 2014;38:883-895.

[10] G"uler E, Hacısalihoğlu HH, Kim YH. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry. 2018;10(9):1-11.

[11] G"uler E, Kişi Ö. Dini-type helicoidal hypersurfaces with timelike axis in Minkowski 4-space \mathbb{E}_4^1. Mathematics. 2019;7(2):205:1-8.

[12] G"uler E, Magid M, Yaylı Y. Laplace Beltrami operator of a helicoidal hypersurface in four space. J. Geom. Sym. Phys. 2016;41:77-95.

[13] G"uler E, Turgay NC. Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 2019;16(3):66:1-16.

[14] G"uler E, Yaylı Y, Hacısalihoğlu HH. Bour’s theorem on the Gauss map in 3-Euclidean space. Hacettepe J. Math. 2010;39:515-525.

[15] Hasanis Th, Vlachos Th. Hypersurfaces in \mathbb{E}^4 with harmonic mean curvature vector field. Math. Nachr. 1995;172:145-169.

[16] Kim DS, Kim JR, Kim YH. Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 2016;39:1319-1327.

[17] Kim YH, Turgay NC. Surfaces in \mathbb{E}^4 with L_1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 2013;50(3):935-949.

[18] Lawson HB. Lectures on minimal submanifolds. Rio de Janeiro. 1973;1.

[19] Magid M, Scharlach C, Vrancken L. Affine umbilical surfaces in \mathbb{R}^4. Manuscripta Math. 1995;88:275-289.

[20] Moore C. Surfaces of rotation in a space of four dimensions. Ann. Math. 1919;21:81-93.

[21] Moore C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 1920;26:454-460.

[22] Moruz M, Munteanu MI. Minimal translation hypersurfaces in \mathbb{E}^4. J. Math. Anal. Appl. 2016;439:798-812.

[23] Scharlach C. Affine geometry of surfaces and hypersurfaces in \mathbb{R}^4. Symposium on the Differential Geometry of Submanifolds, France. 2007;251-256.

[24] Senoussi B, Bekkar M. Helicoidal surfaces with $\Delta^J r = Ar$ in 3-dimensional Euclidean space. Stud. Univ. Babe-Bolyai Math. 2015;60(3):437-448.
[25] Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan. 1966;18:380-385.

[26] Verstraelen L, Walrave J, Yaprak Ş. The minimal translation surfaces in Euclidean space. Soochow J. Math. 1994;20(1):77-82.

© 2020 Güler; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.