Crosstalk between purinergic receptors and lipid mediators in leishmaniasis

Mariana M. Chaves 1,2,3, Cláudio Canetti 2,3 and Robson Coutinho-Silva 1,3*

Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus *Leishmania*. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for *Leishmania* survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat *Leishmania*. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in *Leishmania* fate, survival or death.

Abbreviations: ATP, 5'-adenosine triphosphate; eATP, extracellular ATP; Ado, Adenosine; DC, Dermal dendritic cells; LCs, Langerhans cells; LPG, Lipophosphoglyca; GP63, Glycoprotein 63; CR, Complement receptor; MR, Mannose receptor; FcγRs, Fc gamma receptors; FNRs, Fibronectin receptors; TLR, Toll-like receptor; DAMP, Damage-associated molecular pattern; cytosolic phospholipase A2; COX, Cyclooxygenase; 5-LO, 5-lipoxygenase; LTB4, Leukotriene B4; NO, Nitric oxide; ROS, Reactive oxygen species; PGE2, Prostaglandin E2; AMP, 5'-adenosine mono-phosphate; TNF, Tumor necrosis factor; UTP, Uridine triphosphate; PAMPs, Pathogen-associated molecular patterns

Review

Background
The protozoan parasites of the genus *Leishmania* cause a broad range of human diseases called leishmaniasis. Leishmaniasis is a neglected disease of tropical and subtropical areas that affects more than 12 million people worldwide [1]. Moreover, every year, 2 million new cases are diagnosed, among them, 75% of the cases are cutaneous and 25% are visceral leishmaniasis, leading to it being the second most common cause of parasite-associated death resulting in 20,000 to 30,000 deaths per year [2]. *Leishmania* preferentially infect phagocytic cells, as macrophages, neutrophils and dendritic cells of susceptible mammalian hosts [3] causing numerous clinical manifestations. In general, cutaneous leishmaniasis is located adjacent to the infectious site, the skin or lymph nodes. The parasite can escape into the nasal and oropharyngeal mucosa causing mucocutaneous leishmaniasis; or also migrate to the spleen, liver, bone marrow, and distant lymph nodes, leading to lethal clinical manifestations, named visceral leishmaniasis or kala-azar [4].

Leishmaniasis is transmitted by a female blood-sucking insects of the genus *Phlebotomus* in the ‘Old’ World and by species of *Lutzomya* in the ‘New’ World. The parasite can occur in two ways: the promastigote, which has high mobility, and is found in the digestive tract of the vector; and amastigote, without flagella, which develops into the phagolysosomes of phagocytic cells. Immediately before blood intake, the insect saliva containing promastigote forms is inoculated into the skin of the mammalian host. Soon after, the parasite is phagocytosed, remaining viable inside the phagolysosome, the fused phagosome and lysosome. Then, the promastigote form differentiates in amastigote approximately 12–24 h later [5, 6]. When an infected mammal host is bitten by the sand fly, it sucks amastigote-
infected macrophages or free amastigotes which will transform into mobile flagellated promastigotes in the midgut of the vector. In this process, procyclic promastigotes (proliferative and non-infective forms) acquire the ability to be virulent and non-proliferative, the metacyclic promastigotes, and this process is called metacyclogenesis [7]. These promastigote forms migrate to the oral cavity promoting the transmission in the next blood meal.

The innate immune cells present in the skin are the first line of defense against Leishmania infection [8]. Dermal dendritic cells (DCs), Langerhans cells (LCs) [9, 10], mast cells, T cells, and macrophages are the immune cells in the skin. Interesting, keratinocytes, which are the most abundant in the skin, also play an active role in the local immune response and it has been reported that they have an important role in polarization of the Th1 response during leishmaniasis [11, 12]. After parasite inoculum into the dermis, neutrophils quickly infiltrate and phagocytose Leishmania parasites, becoming the first circulatory cells to reach tissue space [13–15]. Macrophages are the second wave of infiltrating immune cells and are the principal host cells for the Leishmania [16, 17]. Thus, neutrophils and macrophages play crucial roles in disease progression, but ironically as professional phagocytic and killing cells, they become targets because of evasion mechanisms employed by Leishmania to subvert the host immune system.

Macrophages and neutrophils possess several pattern recognition receptors (PRR) that respond to pathogen-associated molecular patterns (PAMPs) present in the Leishmania surface, such as lipophosphoglycan (LPG) and glycoprotein 63 (GP63), both in humans and in mice [18–21]. Several host immune receptors can bind Leishmania components or antibodies against Leishmania, such as: the first and third complement receptor (CR1 and CR3, respectively) [22, 23], mannose receptor (MR) [24, 25], Fc gamma receptors (FcyRs) [26], fibronectin receptors (FNRS) [18], and Toll-like receptors (TLR) [27–30]. TLRs are phylogenetically the most ancient and best studied PRRs. In humans, 10 TLR family members have been identified and there are 12 in mice [31]. TLRs activation has been associated with the production and release of inflammatory mediators, such as cytokines, lipid mediators, and adenosine 5’-triphosphate (ATP) in extracellular medium [32–34]. ATP is widely present in the intracellular environment, at concentrations in the millimolar range, whereas it is almost imperceptible in the extracellular space, being around nanomolar [35]. We recently showed that Leishmania amazonensis recognition by macrophages leads to ATP release [36] (Fig. 1a). However, the receptor involved in this release and the mechanism that triggers this process has not yet been elucidated.

Purinergic receptors

Extracellular ATP (eATP) is defined as a damage-associated molecular pattern (DAMP) causing biological effects though the activation of purinergic receptors that are presented on the cell membrane. Purinergic receptors are classified into two large families: P1 and P2. The P1 receptor family is characterized by metabotropic receptors activated by adenosine: A1, A2A, A2B, and A3 [37]. The P1 receptor activation has been discussed in several systems, suggesting a role in both physiological and pathological processes. In the immune system, P1 receptors are widely expressed by cells of the myeloid and lymphoid lineage [38]. P1 receptors act in regulating the immune response, and are involved mainly in resolving inflammation [39].

The P2 family of receptors is subdivided into P2X and P2Y. The P2Y receptors are G-protein coupled receptors, [35] while P2X are ionotropic receptors, capable of forming cationic channels activated by eATP. The participation of P2Y receptors in inflammatory events has been described [40, 41]. Furthermore, it has been reported that P2Y2 receptors act in neutrophil chemotaxis after activation by eATP [42]. The family of P2X receptors, in contrast, consists of ionotropic receptors. These receptors are intrinsic ion channels for Na+, K+, and Ca2+. To date, seven subtypes of P2X family have been cloned: P2X1 to P2X7 [43, 44]. The most studied of P2X receptors is the P2X7 subtype. This receptor has two transmembrane domains, being a polypeptide of 595 amino acids with a longer C-terminal domain, compared to other members of the P2X family. This peculiarity makes it capable of inducing the formation of pores permeable to molecules up to 900 Daltons after sustained eATP stimulation [45]. Moreover, the elongated C-terminal enables it to initiate various intracellular signaling cascades culminating with apoptosis, vesicular fusion, phospholipase D activation, exosome release, activation and secretion of pro-inflammatory cytokines IL-1β and IL-18 [44]. The expression of P2X7 receptor is well characterized under many cell types, including macrophages [46], monocytes [47], neutrophils [48], among others [49]. Furthermore, many studies have demonstrated the participation of purinergic receptors in the induction of bioactive lipid mediators [50–54].

Lipid mediators

Lipid metabolites of arachidonic acid (AA), including leukotrienes (LTs) and prostaglandins (PGs), have emerged as important mediators of a variety of physiological and pathophysiological functions. They are synthesized through the metabolism of AA released by cytosolic phospholipase A2. The lipid metabolites can be subsequently metabolized by different pathways, including the cyclooxygenase (COX) enzymes and lipooxygenase
PGs and LTs, respectively. The activation of cPLA₂ and 5-LO involves an increase of intracellular Ca²⁺ and subsequently activation of certain protein kinases, as well as translocation of 5-LO from cytoplasm and nucleoplasm to membrane sites such as the nuclear envelope [55]. The AA is presented to 5-LO by an essential accessory protein called 5-LO activating protein (FLAP), producing an unstable precursor of all other leukotrienes, the LTA₄ [55]. Once generated, LTA₄ can be conjugated with reduced glutathione by LTC₄ synthase (LTC₄S) to form LTC₄, or LTA₄ can also be hydrolyzed by LTA₄ hydrolase (LTA₄H) to form LTD₄ [56]. LTC₄ as LTD₄ can be exported to the extracellular space through specific transporters [57–59].

In the extracellular environment, LTC₄ is rapidly converted to LTD₄ by the glutamyl leukotrienease removing glutamic acid molecule of LTC₄, and LTD₄ can be further converted to LTE₄ by the dipeptidase which removes a glycine residue of LTD₄ molecule [60]. LTD₄ is best known as a chemotactic and activator for leukocytes, and cysteinyl leukotrienes (LTC₄, LTD₄, and LTE₄) are widely known in the pathogenesis of asthma [61].

PGs are formed when AA is metabolized by sequential actions of cyclooxygenase and their specific synthases [62]. COX has both cyclooxygenase (COX) and peroxidase activity, and three COX isoforms were described: COX-1, COX-2 and COX-3 [63, 64]. COX-2 is induced by inflammatory stimuli [64, 65]. There are six bioactive PGs: PGE₂, PGI₂, PGD₂ and PGF₂ [62]. Much is known about the pro-inflammatory functions of PGs, but, in the past years, it has been proven to also possess potential anti-inflammatory effects of PGs observed in resolution phase [66], and, importantly, these effects can be used by parasites to evade the immune system.

Purinergic receptor, lipid mediators and immune evasion

The most effective mechanisms against infection by *Leishmania* already described involve the production of reactive oxygen species (ROS) and nitric oxide (NO) [67]. Furthermore, it has been shown that an effective response against infection by *Leishmania* is given by the induction of Tₘ1 and Tₘ17 responses [68–72], while Tₘ2 response promotes susceptibility [68, 70].

Fig. 1 Schematic representation of elimination and evasion mechanisms mediated by purinergic signaling and lipid mediators during *Leishmania* infection. a *Leishmania* spp. promastigotes can be recognized by PRRs. This recognition leads to the release of ATP into the extracellular medium. b eATP active P2X₇ receptors, which in turn leads to release of LTD₄. c LTD₄ binds to specific receptors on cell membrane, as BLT₁, causing the elimination of *Leishmania* spp. by production of ROS, NO, and participates on Tₘ1 and Tₘ17 polarization. d In order to evade the immune system and ensure its survival, *Leishmania* spp. possess ecto-nucleotidase enzymes, such as E-NTPDase and ecto-5'-nucleotidase, removing eATP and favoring Ado accumulation. e Ado actives P₁ receptors, such as A₂B, increasing COX-2 expression and therefore leads to the release of PGE₂. f PGE₂ in turn binds EP receptors on cellular membranes, causing the decrease of ROS and NO production, and participates on Tₘ2 polarization, resulting in establishment and dissemination of *Leishmania* spp. infection.
The role of extracellular nucleotides and the activation of purinergic receptors during infection by *L. amazonensis* have been investigated [73]. Marques-da-Silva and colleagues [74] showed that P2Y2 and P2Y4 receptors have its expression upregulated and increased levels of uridine triphosphate (UTP) nucleotide into the extracellular environment during infection can lead to death of the macrophage by apoptosis and the elimination of the parasite. Other studies have shown that eATP can lead to the elimination of *L. amazonensis* in infected macrophages via P2X7 receptor [75]. A recent study demonstrates that elimination of *L. amazonensis* by P2X7 receptor depends on the production of LTB₄ and leukotriene B₄ receptor 1 (BLT1) [36] (Fig. 1b, c). Additionally, other studies have demonstrated the production of LTB₄ in resistance to *L. amazonensis* and *L. braziliensis*, in humans and mice [76–78]. Furthermore, latest studies have demonstrated the participation of 15d-prostaglandin J₂ in *L. donovani* elimination [79]. This resistance can be due to the production of ROS and NO, which may be produced after P2X7 receptor activation [80, 81] and LTB₄ release [82–85]. Moreover, the P2X7 receptor activation and LTB₄ release have been implicated in the polarization of T₉,1 and Tₕ,17 responses, participating in the immune response against *Leishmania* [86–90] (Fig. 1c).

Regarding the participation of lipid mediators in *Leishmania* infection, the role of PGE₂ in susceptibility has been discussed. It is known that PGE₂ possesses anti-inflammatory activity, facilitating *Leishmania* infection in macrophages, suppressing inflammatory response in both cutaneous and visceral leishmaniasis [91–94]. Moreover, reinforcing the context of a beneficial effect of PGE₂ for *Leishmania* survival, it was demonstrated that several *Leishmania* species possess lipid cupulces as organelles and *L. infantum* is able to produce and release PGs, such as PGE₂₃, itself [95, 96] (Fig. 1d). It is important to highlight that PGE₂ inhibits NO production [97], and T₉,1 and Tₕ,17 development [98–101] and, consequently, stimulates Tₙ,2 response, favoring infection [99] (Fig. 1f).

On the other hand, in order to perpetuate itself, *Leishmania* has developed methods to subvert microbialid mechanisms and immune responses against itself. As already described before, eATP has proved to be an endogenous molecule able to induce the death of *L. amazonensis* through P2X7 receptors activation [36]. It has also been well established that the presence of enzymes capable of degrading ATP in the mammalian cell membrane forming ADP (adenosine-diphosphate) and adenosine (Ado), named ecto-nucleotidases. Among them, CD39 (ecto-NTPDase) and CD73 (ecto-5′-nucleotidase) exert relevant actions, regulating inflammatory responses of ATP and UTP. Thus, Ado is formed through the action of CD39 that converts ATP and ADP to 5′-adenosine mono-phosphate (AMP). AMP is the substrate for CD73. This enzyme, in turn, catalyzes the reaction that converts AMP to Ado [39, 102]. In this scenario, it has been shown that *Leishmania* express ecto-nucleotidase activity. This is confirmed by the observation of increased Ado levels in serum from visceral leishmaniasis patients [103, 104]. This can cause the prevention of the activation of macrophages and leads to the increase of infection by *Leishmania* species [105–109]. Moreover, the virulence of *L. amazonensis* promastigotes could be due to its high ecto-nucleotidase activity [110] (Fig. 1d). Moreover, ecto-5′-nucleotidase activity also has been seen in *L. chagasi* [105]. Furthermore, it has been observed that *L. amazonensis* infection increases ecto-nucleotidases expression in DC [111]. Thus, the blocking of the A₂₃ receptors is found to increase production of NO and decrease parasite survival, suggesting participation of Ado in this process [109].

Others have shown that Ado increases COX-2 expression and PGE₂ production in neutrophils [112, 113] (Fig. 1e). This corroborates the fact that both Ado and PGE₂ stimulates the release of anti-inflammatory cytokines, such as interleukin (IL)-10 in macrophages [114, 115], while inhibiting the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-12 in DCs and macrophages [116, 117]. This stimulates an anti-inflammatory environment, allowing establishment of infection.

It has been shown that Ado decreases production and release of LTB₄ [118–121], which modulates microbicidal mechanisms. Moreover, it is known that *L. amazonensis* is capable to negatively modulate the production of LTB₄ via P2X7 receptor activation in macrophages from C57BL/6 and BALB/c mice [36]. Neutrophils are recruited to the infection site when infection is initiated by sand fly bite [14, 122], spreading *Leishmania* parasites [17, 123, 124]. However, in other species of *Leishmania*, such as *L. braziliensis*, the neutrophils are important for parasite elimination [125]. Nevertheless, the role of the Ado in stimulation of PGE₂ production in macrophages still needs to be studied. Moreover, other pathogens use Ado to subvert the immune system such as *Toxoplasma gondii*, *Staphylococcus aureus* and *Streptococcus agalactiae* [126–128].

The role of sand fly saliva substances in modulating *Leishmania* infection has been demonstrated [129, 130]. Furthermore, it has been described that sand fly saliva can inhibit NO production, and consequently increase the parasite load [131, 132]. It has also been described that *Lutzomyia longipalpis* saliva possesses ATPase activity, which can hydrolyse eATP [133]. Sand fly saliva also contains high levels of Ado, modulating the inflammatory micro-environment, causing NO inhibition, and
macrophage inactivation, which in turn increases the parasitic load in macrophages and neutrophils [134–136]. Recently it was shown that exosomes are co-inoculated with Leishmania into mammalian hosts [137]. It is tempting to correlate it with a burst of ATP secretion, local Ado generation and PGE$_2$ production. It is known that L. longipalpis saliva triggers the production and release of PGE$_2$ and decreases LTB$_4$ in macrophages [138, 139].

Conclusion
The establishment of Leishmania infection can be due to the balance of several factors. Extracellular nucleotides can modulate the balance of pro- and anti-inflammatory factors such as PGs and LTs. To ensure their survival, Leishmania spp. developed strategies throughout its evolution to guarantee its perpetuation (Fig. 2a). The ability of Leishmania spp. to modulate extracellular concentrations of ATP and Ado, and consequently the balance of LTB$_4$ and PGE$_2$ shows how organisms can subvert the immune system of the host (Fig. 2b). Thus, the importance of knowledge of these strategies of evasion is essential in order to develop drugs capable to counterbalance Leishmania evasion.

Acknowledgments
We thank Ludmilla Dellatorre for help in preparing the figures, Dr Larry Johnson for revision of English language and CNPq, CAPES and FAPERJ for financial support.

Funding
This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (grant number E-26/111.182/2011).

Availability of data and material
Not applicable.

Authors’ contributions
MMC carried out the literature search, prepared the draft of the manuscript and wrote the paper. CC contributed to writing the paper and critically revised the manuscript. RCS contributed to writing the paper and critically revised the manuscript. All authors read and approved the final manuscript.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Disclosures
The authors have no financial conflicts of interest.

Author details
1Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil. 2Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil. 3National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.

Received: 27 January 2016 Accepted: 29 August 2016
Published online: 05 September 2016

References
1. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27(5):305–18.
2. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.
3. van GJ, Diro E. Visceral leishmaniasis. Infect Dis Clin North Am. 2012;26(2):309–22.
4. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet. 2005;366(9496):1561–77.
5. Courret N, Frehel C, Prina E, Lang T, Antoine JC. Kinetics of the intracellular differentiation of Leishmania amazonensis and internalization of host MHC molecules by the intermediate parasite stages. Parasitology. 2001;122(Pt 3):263–79.

Fig. 2 Balance between nucleotides and inflammatory lipid mediators on Leishmania spp. infection establishment. a The increase of ATP and reduction of Ado in extracellular medium leads to an overproduction of LTB$_4$, which in turn stimulates the production of ROS and NO, and the polarization of immune responses for a Th$_1$ and Th$_17$ pattern; meanwhile a high PGE$_2$ production also directs the polarization for Th$_2$ response. This scenario facilitates the elimination of Leishmania spp. by macrophages. b The evasion of Leishmania spp. occurs when Ado concentrations in the extracellular medium overlaps the ATP. Thus, there is an increase in PGE$_2$ and decreased ROS and NO, with consequent polarization Th$_2$.
6. Galvao-Quintoa L, Alifeti SC, Ryter A, Rabinovitch M. Intracellular differentiation of Leishmania amazonensis promastigotes to amastigotes: presence of megameres, cytostasis, proteinase activity and susceptibility to leucine-methyl ester. Parasitology. 1990;100(Pt 1):7–13.

7. da Silva R, Sacks DL. Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun. 1987;55(11):2802–6.

8. Solbach W, Laskay T. The host response to Leishmania infection. Adv Immunol. 2000;70:275–317.

9. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8(12):935–47.

10. Nestle FO, Di MP, Qin JZ, Nickoloff BJ. Skin immune sentinel in health and disease. Nat Rev Immunol. 2009;9(10):679–91.

11. Albanezi C, Scarpagni C, Giustizieri ML, Girolomoni G. Keratinocytes in inflammatory skin diseases. Curr Drug Targets Inflamm Allergy. 2005;4(3):329–34.

11. Ehrchen JM, Roebrock K, Foell D, Nippe N, von SE, Weiss JM, et al. Keratinocytes determine TH1 immunity during early experimental leishmaniasis. PLoS Pathog. 2010;6(4):e1000871.

12. Bell WJ, Meinardus-Hager G, Neugebauer DC, Sorg C. Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice. J Leukoc Biol. 1992;52(2):135–42.

13. Peters EC, Egen JG, Secundino N, Debrabant A, Kambil N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–4.

14. Ribeiro-Gomes FL, Sacks D. The influence of early neutrophil-Leishmania interactions on the host immune response to infection. Front Cell Infect Microbiol. 2012;2:59.

15. Ribeiro-Gomes FL, Otero AC, Gomes NA, Moniz-De-Souza MC, Cysewski-Linkle T, Armholc DT, et al. Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol. 2004;172(7):4454–62.

16. van ZG, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, et al. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol. 2004;173(11):6521–5.

17. Brittingham A, Chen G, McGwire BS, Chang KP, Mosser DM. Interaction of Leishmania gp63 with cellular receptors for fibrinectin. Infect Immun. 1999;67(9):4477–84.

18. Vargas-Inc Tai W, Xin L, Hogg AE, Cory DB, Soong L. Distinct roles for MyD88 and Toll-like receptor 2 during Leishmania braziliensis infection in mice. Infect Immun. 2009;77(7):2948–56.

19. Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signalling. Front Cell Infect Microbiol. 2012;2:72.

20. Spath GF, Garraway LA, Turco SJ, Beverley SM. The role(s) of Macrophage complement and lectin-like receptors bind to Leishmania in the absence of serum. J Exp Med. 1985;162(1):324–31.

21. Aikow OE, Kasuboski RE, Carter CR, McDowell MA. The role of mannose receptor during experimental leishmaniasis. J Leukoc Biol. 2007;81(5):1148–57.

22. Kima PE, Constant SL, Hannum L, Colmeneras M, Lee KS, Haberman AM, et al. Internalization of Leishmania mexicana complex amastigotes via the Fc receptor is required to sustain infection in murine cutaneous leishmaniasis. J Exp Med. 2004;191(6):1063–8.

23. Kopf P, Freudenberg N, Kalis C, Moddeli M, Herath S, Galanos C, et al. Infection of C57BL/10ScCr and C57BL/10ScNCr mice with Leishmania major reveals a role for Toll-like receptor 4 in the control of parasite replication. J Leukoc Biol. 2004;76(1):48–57.

24. Whittaker SM, Colmeneras M, Pestana KG, McMahon-Pratt D. Leishmania pfianoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4. Infect Immun. 2008;76(5):2149–56.

25. Cezarino GA, de Oliveira LR, Peres E, Nicolete VC, Poletini J, de Lima CR, et al. Analysis of the expression of Toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection. Mem Inst Oswaldo Cruz. 2011;106(5):573–83.

26. Srivastava S, Pandey SP, Jha MK, Chandel HS, Saha B. Leishmania expressed lipophosphoglycan interacts with Toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses. Clin Exp Immunol. 2013;172(3):403–9.

27. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

28. Cohen M, Volpin G, Meir T, Klein E, Katz R, Assaf M, et al. Possible association of Toll-like receptor 9 polymorphisms with cytokine levels and posttraumatic symptoms in individuals with various types of orthopaedic trauma: early findings. Injury. 2013;44(11):1625–9.

29. Park JA, Kim Y. Eicosanoid biosynthesis is activated via Toll, but not IL-1 receptor pathway in response to fungal infection. J Invertebr Pathol. 2012;110(3):382–8.

30. Ren H, Yong Y, Tan B, Zhang X, Jiang W, Liu M, et al. Toll-like receptor-triggered calcium mobilization protects mice against bacterial infection through extracellular ATP release. Infect Immun. 2014;82(12):5076–85.

31. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2002;82(4):971–1008.

32. Chaves MM, Marques-da-Silva C, Monteiro AP, Canetti C, Coutinho-Silva R. Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J Immunol. 2014;192(10):4765–73.

33. Fredholm BB, Uzerman AP, Jacobson KA, Klotz KN, Lindgren J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2005;57(1):153–206.

34. Di VF, Yuwarc M. Purinergic signalling in the immune system. Auton Neurosci. 2015;191:117–23.

35. Hasko G, Lindgren J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 2008;7(9):759–70.

36. Santiago-Perez LL, Flores RV, Santos-Berrios C, Chorna NE, Krugh B, Garrad RC, et al. P2Y(2) nucleotide receptor signaling in human monocyte: cell activation, desensitization and coupling to mitogen-activated protein kinases. J Cell Physiol. 2001;187(2):196–208.

37. Brunschweiger A, Muller CE. P2 receptors activated by uracil nucleotides – an update. Curr Med Chem. 2006;13(3):289–312.

38. Chen Y, Corrinder R, Inouye Y, Yip L, Hashiguchi N, Zinkernagel A, et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314(5803):1792–5.

39. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32(1):19–29.

40. North RA. Molecular physiology of P2X receptors. Physiol Rev. 2002;82(4):1013–67.

41. Nihei OK, Savino W, Alves LA. Procedures to characterize and study P2Z/P2X7 receptor for extracellular ATP identified as a P2X receptor (P2X7). Pharmacol Rev. 2001;53(4):527–52.

42. Di VF, Yuwarc M. Purinergic signalling in the immune system. Auton Neurosci. 2015;191:117–23.
lysoosphatidic acid: a signaling axis promoting osteogenesis. J Cell Biol. 2008;181(3):859–71.

54. Costa-Junior HM, Marques-da-Silva C, Vieira FS, Moncao-Ribeiro LC, Coutinho-Silva R. Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view. Purinergic Signal. 2011;7(4):381–92.

55. Peters-Golden M, Brock TG. 5-lipoxygenase and FLAP. Prostaglandins Leukot Essent Fatty Acids. 2003;69(2):319–10.

56. Aho G, Kanaoka Y, Ikruka D, Lam BK, Shimamura T, Austen KF, et al. Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature. 2007;448(7155):609–12.

57. Lam BK, Gagnon L, Austen KF, Soberman RJ. The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes. J Biol Chem. 1990;265(23):13438–41.

58. Leier I, Jedlickschgy G, Buchholz U, Cole SP, Deyele R, Keppler D. The MR gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugats. J Biol Chem. 1994;269(45):27807–10.

59. Robbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ. The leukotriene C(4) transporter MRPl regulates CIIC19 (MIP-1beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell. 2000;103(5):757–68.

60. Murphy RC, Gjion MA. Biosynthesis and metabolism of leukotrienes. Biochem. J. 2007;405(3):379–95.

61. Peters-Golden M, Canetti C, Mancuso P, Coffey MJ. Leukotrienes: underappreciated mediators of innate immune responses. J Immunol. 2005;174(2):589–94.

62. Ricciotti E, Fitz-Gerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

63. Smith T, McCracken J, Shin YK, DelWitt D. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem. 2000;275(51):40407–15.

64. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other anti-inflammatory drugs induce conformational changes in the human cyclooxygenase-1. Proc Natl Acad Sci U S A. 2002;99(21):13926–31.

65. Ricciotti E, Fitz-Gerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

66. Smith T, McCracken J, Shin YK, DeWitt D. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem. 2000;275(51):40407–15.

67. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A. 2002;99(21):13926–31.

68. Ricciotti E, Fitz-Gerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

69. Smith T, McCracken J, Shin YK, DelWitt D. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem. 2000;275(51):40407–15.

70. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A. 2002;99(21):13926–31.

71. Smith T, McCracken J, Shin YK, DelWitt D. Arachidonic acid and nonsteroidal anti-inflammatory drugs induce conformational changes in the human prostaglandin endoperoxide H2 synthase-2 (cyclooxygenase-2). J Biol Chem. 2000;275(51):40407–15.
97. Griffon B, Cillard J, Chevenne M, Morel I, Cillard P, Sergent O. Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release. Hepatology. 1998;28(5):1300–8.

98. Betz M, Fox BS. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol. 1999;161(1):108–13.

99. Snijderwint FG, Kalinski P, Wierenga EA, Bos J, Kapsenberg ML. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol. 1993;150(12):5231–9.

100. Hilkens CM, Vanmeenen H, Van Neerven RJ, Snijderwint FG, Wierenga EA, Kapsenberg ML. Differential modulation of T helper type 1 (Th1) and T helper type 2 (Th2) cytokine secretion by prostaglandin E2 critically depends on interleukin-2. J Eur J Immunol. 1999;29(5):59–63.

101. Saha A, Biswas A, Srivastav S, Mukherjee M, Das PK, Ukil A. Prostaglandin E2 negatively regulates the production of inflammatory cytokines/chemokines and IL-17 in visceral leishmaniasis. J Immunol. 2014;193(5):2330–9.

102. Peng Z, Fernandez P, Wilder T, Yee H, Chiriboga L, Chan ES, et al. Ecto-5'-nucleotidase (CD73)-mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J. 2008;22(7):2263–72.

103. Paletta-Silva R, Vieira DP, Vieira-Bernardo R, Majerowicz D, Gondim KC, Afonso LC. Nucleosides present on phlebotomine saliva induce Th2 cytokine secretion by prostaglandin E2 critically on cutaneous leishmaniasis. Parasit. Vectors. 2016;9:489.

104. Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-Leishmania response. PLoS Pathog. 2012;8(1):e1002356.

105. Surette ME, Krump E, Picard S, Mancini J, Borgeat P. Activation of leishmaniasis in human neutrophils by exogenous arachidonic acid: inhibition by adenosine A2A receptor agonists and crucial role of autocrine activation by Leishmania (b)D. Mol Pharmacol. 1999;56(5):1055–62.

106. Peeters NC, Sacks DL. The impact of vector-mediated neutrophil recruitment on cutaneous leishmaniasis. Cell Microbiol. 2005;7(9):1290–6.

107. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect Immun. 2002;70(2):826–35.

108. Firon A, Dinis M, Raynal B, Poyart C, Trieu-Cuot P, Kaminski PA. Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. J Biol Chem. 2014;289(9):5479–89.

109. Afonso LC. Leishmania amazonensis: characterization of an ecto-5'-nucleotidase activity and its possible role in virulence. Exp Parasitol. 2011;129(3):277–83.

110. Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-Leishmania response. PLoS Pathog. 2012;8(1):e1002356.

111. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect Immun. 2002;70(2):826–35.

112. Thammavongva V, Kern JW, MISSIASSAda IM, SCHNEEWOOD O. Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med. 2009;206(11):2417–27.

113. Laufs H, Muller K, Fleischer J, Reiling N, Jahnke N, Jensenius JC, et al. Intracerebral survival of Leishmania major in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect Immun. 2002;70(2):826–35.

114. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol. 2009;183(12):8088–94.

115. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol. 2009;183(12):8088–94.

116. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol. 2009;183(12):8088–94.

117. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol. 2009;183(12):8088–94.

118. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol. 2009;183(12):8088–94.

119. Afonso LC. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection. J Immunol. 2009;183(12):8088–94.
138. Araujo-Santos T, Prates DB, Andrade BB, Nascimento DO, Clarencio J, Entringer PF, et al. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E(2) production in murine macrophages. PLoS Negl Trop Dis. 2010;4(11):e873.

139. Araujo-Santos T, Prates DB, Franca-Costa J, Luz NF, Andrade BB, Miranda JC, et al. Prostaglandin E2/leukotriene B4 balance induced by Lutzomyia longipalpis saliva favors Leishmania infantum infection. Parasit Vectors. 2014; 7:601.