Single Nucleotide Polymorphism of Sex Determining Region-Y Gene Coding Sequences in Belgian Blue Bull and Wagyu Bull Crossbred Cattle

T Hartatik1, S Bintara1, I Ismaya1, P Panjono1, B P Widyobroto1, A Agus1, I G S Budisatria1 and P Leroy2

1Faculty of Animal Science, UGM, Jl. Fauna No. 3 Bulaksumur, Yogyakarta 55281, Indonesia
2Faculty of Veterinary Medicine, University of Liege, Belgium
tety@ugm.ac.id

Abstract. Crossbreeding using exotic bulls have been developed widely in Indonesia. Y-chromosome markers have high value for the evaluation of paternal genetic and phylogeny history. The aim of this study was to investigate the coding sequence polymorphism of SRY gene in crossbred cattle using Belgian Blue Bull and Wagyu Bull. Polymerase chain reaction method was used to identify the target sequence 690 bp of SRY gene coding sequences. Then, direct DNA sequencing with forward primer was performed to identify the single nucleotide polymorphism (SNP) differences between individual sample. The results of the alignment coding sequence of SRY gene from four GenBank data, Brahman cross cattle, Belgian Blue Bull Cross and Wagyu Bull cross revealed that there are 21 SNPs variation. Six SNPs out of 21 SNPs (29%) was synonymous and 15 SNPs out of 21 SNPs (71%) was change the amino acid (non-synonymous). Eight out of 21 SNPs (38%) were transition mutation and 13 SNPs out of 21 SNPs (62%) were transversion mutation. Crossbred cattle using Brahman cross cow with Belgian Blue Bull and Wagyu Bull show the SNP at position 1707T→G (transversion mutation). This SNP change the amino acid from Phe(TTT) to Cys(TGT). Thus, the result can be used as molecular marker for identifying the paternal lineage of crossbred cattle which recently develop in Indonesia.

1. Introduction
The Brahman cross cattle performance can be improved by intensifying the genetic quality through crossbreeding with superior sire[1]. Wagyu and Belgia Blue are superior breeds which suitable for crossing with Brahman cross cattle. Wagyu has the superiority on meat marbling, so the meat had a great vogue[2]. Belgian Blue has high feed efficiency, high carcass percentage, and produce lean meat[3]. The combination of those two superior breeds will improve the meat quality and meat production of the crossbred beef cattle in the future.

Crossbreeding program can be controlled by genetic marker method. One of the genes that can be a genetic marker is the SRY gene. The Y chromosome-linked SRY gene is responsible for male sex determination in mammals. The SRY encodes a protein with a central HMG-box present in a wide
variety of proteins that bind and bend DNA, suggesting that SRY functions as a transcription factor [4]. In the previous study, the monitoring of the crossbred beef cattle is an initial effort to increase the genetic variations and enhance the genetic qualities without threatening the germplasm purity. The results of coding sequence (CDS) in SRY gene showed that the overall sample is monomorphic, except for Bali and Nellore cattle[5]. The study of Hartatik et al. [6] was identified 68.18% of Limousin x Madura crossbred cattle in the sequence of Y-chromosome. Also, the gene markers(SNP) of IGFBP3 were found at nucleotide base number 3,930 G/A in intron region in crossbreed cattle [7]. Therefore, the aim of this study was to investigate the coding sequence polymorphism of SRY gene in crossbred cattle using Belgian Blue Bull and Wagyu Bull

2. Material and methods

2.1. Collecting DNA sample
The blood samples were collected from 10 crossbred cattle (BX=4; Belgian Blue x BX = 4; Wagyu x BX=2). Then, the blood samples were isolated using GENEAID isolation kit (Taiwan)

2.2. Polymerase chain reaction
The target coding sequence 928 bp of SRY gene was amplified using forward primer GTTGATGGGTTTGGCGCTGACT and reverse primer AAATTGAATAAAGAGCGCCT with PCR kit 12.5 µl (My Taq HS Red 2x), double distilled water 9.5 µl and 2 µl DNA. The program consisted of an initial denaturation for 5 min at94°C followed by 35 cycles of 1 m at 92°C, 1 m at 60°C and 1 m at 72°C and by a final extension for 7 min at 72°C.

Table 1. Location of Coding Sequence target base on GenBank Acc.No. AB039748.1

Target	Sequence	Size (bp)	Location	Amino Acid
Primer Forward	gtgtatgggtttgggctgact	21	771-891	
Primer Reverse	aaattgagataaagagegct	21	1778-1798	
Start Codon	ATG	3	1067-1069	Methionine
Stop Codon	TGA	3	1754-1756	STOP
CDS	ATG….TGA	690	1067-1756	230aa
PCR Target	GTT….TTT	928	771-1798	

2.3. Sequencing
The PCR products as much as 25 µl/sample and 10 µl/sample of primers were sent to PT. Genetika Science Indonesia for sequencing. The PCR products were sequenced using sanger dideoxy sequencing method.

2.4. Alignment and single nucleotide polymorphism identification
Genbank accession codes for alignments are AB039748.1, AF148462.1, AY079145.2, AY341337.1, DQ119747.1. The alignment was formed for identification of single nucleotide polymorphism (SNP). The analysis of amino acid change used Bioedit program with choose graphic view in menu file.

3. Result and discussion
The SRY gene sequence of consist 928 bp with direct sequencing. Based on GenBank accession no. AB039748.1, the location of SRY gene in this study was 771-1798 bp. This part is covered the exon region of SRY gene as long as 690 bp. In the previous study was identified of polymorphism SRY gene in the promotor region on native and crossbred cattle[5].

In the Yak (Bos grummiens) and Chinese native bovine (Bos taurus) were characterized of SRY gene in the 3 region (5‘UTR, exon, and 3‘UTR). Three regions of the Bovidae SRY genes are aligned separately for comparison. In the 5’UTR region, the alignment shows a high level of sequence
conservation among these species except for four variable regions due to insertion/deletion (motif A-D). The sequences in the 3’UTR region are more conserved with the exception of 2 insertion/deletion of 4 bases. The alignment of the SRY exon regions from yak, Chinese native cattle and other species in Bovidae shows much higher amino-acid identities along the entire exon region[8]. The target of SRY gene of the crossbred cattle are aligned for comparison. Table 2 presents a comparison of the SRY gene in crossbred cattle and other GenBank that were registered in NCBI.

Sample	Single Nucleotide Polymorphism site
AB039748.1	T C C G C G G C G A C A G C G C A C G
AF148462.1	T C C G C G G C G T C A G C G C C A C T
AY079145.2	T C C G C G G C G A C A G C G C C A C T
AY341337.1	G A T A A A T C T A G C T A A A T T G A T
DQ119747.1	G A T A A A T G T A G C T A A A T T G A T
Brahman Cross	T C C G C G G C G A C A G C G C C A C T
BBB Cross	T C C G C G G C G A C A G C G C C A C G
WB Cross	T C C G C G G C G A C A G C G C C A C G

Six SNPs out of 21 SNPs (29%) was synonymous and 15 SNPs (71%) was change the amino acid (non-synonymous). Eight of 21 SNPs (38%) were transition mutation and 13 SNPs (62%) were transversion mutation (Table 3). Previous studies described the sequence variation in the Y-chromosomal SRY gene on crossbred cattle showed the contribution of Bos Taurus gene through the paternal line. There were 68.18% change of sequence type of Y Chromosome in crossbred cattle. The number showed that the consistent using of Limousin bull can continually shift the genetic trait from Y chromosome on local cattle[6]. The representative sample sequence has been submitted to the genbank with register ID BankIt2283096 and accession number MN727883 (Brahman cross, BX627), MN727884 (BBB634, Belgian Blue Bull cross) and MN727885 (WB507W, Wagyu Bull cross).

No.	SNP	Mutation	Amino Acid Changes	Type	
1	SNP1(1105T→G)	Transversions	Ala(GCT) Ala(GCG)	Synonimous	
2	SNP2(1122C→A)	Transversions	Thr(ACG) Asn(AAT)	Non-Synonimous	
3	SNP3(1125C→T)	Transitions	Thr(ACG) Ile(ATT)	Non-Synonimous	
4	SNP4(1183G→A)	Transitions	Gln(GAG) Gln(CAA)	Synonimous	
5	SNP5(1199C→A)	Transversions	His(CAT) Asn(AAT)	Non-Synonimous	
6	SNP6(1226G→A)	Transitions	Val(GTC) Ile(ATT)	Non-Synonimous	
7	SNP7(1253G→T)	Transversions	Val(GTG) Leu(TTG)	Non-Synonimous	
8	SNP8(1268C→G)	Transversions	Arg(CGA) Gly(GGA)	Non-Synonimous	
9	SNP9(1280G→T)	Transversions	Val(GTG) Leu(TTG)	Non-Synonimous	
10	SNP10(1292T→A)	Transversions	Asn(AAT) Tyr(TAT)	Non-Synonimous	
11	SNP11(1315C→G)	Transversions	Asp(GAC) Glu(GAG)	Non-Synonimous	
12	SNP12(1333A→C)	Transversions	Gly(GGA) Gly(GGC)	Synonimous	
13	SNP13(1400G→T)	Transversions	Ala(GCC) Ser(TCC)	Non-Synonimous	
14	SNP14(1409C→A)	Transversions	Arg(CGA) Arg(AGA)	Synonimous	
15	SNP15(1449G→A)	Transversions	Arg(AGA) Lys(AAA)	Non-Synonimous	
16	SNP16(1456G→A)	Transversions	Lys(AAG) Lys(AAA)	Synonimous	
17	SNP17(1461C→T)	Transversions	Pro(CCA) Leu(CCT)	Non-Synonimous	
18	SNP18(1564C→T)	Transversions	Tyr(TAC) Tyr(TAT)	Synonimous	
SNP	Transition	Amino Acid	Reference	Function	
-------	------------	------------	-----------	----------------	
19	SNP19(1668A→G)	Transitions	Lys(AAG)	Arg(AGG)	Non-Synonimous
20	SNP20(1695C→A)	Transversions	Ala(GCG)	Glu(GAG)	Non-Synonimous
21	SNP21(1707G→T)	Transversions	Cys(TGT)	Phe(TTT)	Non-Synonimous

4. Conclusion
Transversion mutation at SNP 1707T→G change the amino acid phe(TTT) to Cysteine(TGT). Therefore, the result can be used as molecular marker for identifying the paternal lineage of crossbred cattle which recently develop in Indonesia.

Acknowledgments
This research was funded by Competitive Research Grant (2827/UN1/DITLIT/DIT-LIT/LT/2019). Authors thank to Retno Setyowati for technically help in Genetic and Animal Breeding Laboratory. We also thank to D.A. Priyadi for sample collection and DNA extraction.

References
[1] Sutarno S and Setyawan A D W I 2015 Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian cattle Biodiversitas J. Biol. Divers. 16
[2] Kahi A K and Hirooka H 2005 Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes J. Anim. Sci.83 2021–32
[3] Fiems L O 2012 Double muscling in cattle: genes, husbandry, carcasses and meat Animals 2 472–506
[4] Sinclair A H, Berta P, Palmer M S, Hawkins J R, Griffiths B L, Smith M J, Foster J W, Frischauf A-M, Lovell-Badge R and Goodfellow P N 1990 A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif Nature 346 240
[5] Hartatik T, Priyadi D A, Agus A, Bintara S, Budisatria I G S, Panjono P, Widyobroto B P and Adinata Y 2018 SRY Gene Marker Differences in Native and Crossbreed Cattle Bul. Peternak. 42
[6] Hartatik T, Widi T S M, Volkandari S D, Maharani D and Sumadi 2014 Analysis of DNA polymorphism in SRY gene of Madura Cattle populations Procedia Environ. Sci. 20 365–9
[7] Priyadi D A, Panjono P, Bintara S and Hartatik T 2017 Study of Brahman and Brahman Cross cattle genotype base on SNP in insulin-like growth factor binding protein-3 (IGFBP-3) gene sequences Biodiversitas 18 795–800
[8] Cheng H, Shi H, Zhou R, Guo Y, Liu L, Liu J, Jiang Y, Kudo T and Sutou S 2001 Characterization of bovidae sex-determining gene SRY Genet. Sel. Evol. 33 687