MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells

Stutvoet, Thijs S.; Kol, Arjan; de Vries, Elisabeth G. E.; de Bruyn, Marco; Fehrmann, Rudolf S. N.; van Scheltinga, Anton G. T. Terwisscha; de Jong, Steven

Published in:
JOURNAL OF PATHOLOGY

DOI:
10.1002/path.5280

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Stutvoet, T. S., Kol, A., de Vries, E. G. E., de Bruyn, M., Fehrmann, R. S. N., van Scheltinga, A. G. T. T., & de Jong, S. (2019). MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. JOURNAL OF PATHOLOGY, 249(1), 52-64. https://doi.org/10.1002/path.5280

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 02-10-2023
MAPK pathway activity plays a key role in PD–L1 expression of lung adenocarcinoma cells

Thijs S Stutvoet1†, Arjan Kol1†, Elisabeth GE de Vries1, Marco de Bruyn2, Rudolf SN Fehrmann1, Anton GT Terwisscha van Scheltinga3 and Steven de Jong1*1*

1 Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
2 Department of Obstetrics and Gynecology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
3 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

*Correspondence to: S de Jong, Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands. E-mail: s.de.jong@umcg.nl
†These authors contributed equally to this work.

Abstract

Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have improved the survival of patients with non-small cell lung cancer (NSCLC). Still, many patients do not respond to these inhibitors. PD-L1 (CD274) expression, one of the factors that influences the efficacy of immune checkpoint inhibitors, is dynamic. Here, we studied the regulation of PD-L1 expression in NSCLC without targetable genetic alterations in EGFR, ALK, BRAF, ROS1, MET, ERBB2 and RET. Analysis of RNA sequencing data from these NSCLCs revealed that inferred IFN-γ, EGFR and MAPK signaling correlated with CD274 gene expression in lung adenocarcinoma. In a representative lung adenocarcinoma cell line panel, stimulation with EGF or IFN-γ increased CD274 mRNA and PD-L1 protein and membrane levels, which were further enhanced by combining EGF and IFN-γ. Similarly, tumor cell PD-L1 membrane levels increased after coculture with activated peripheral blood mononuclear cells. Inhibition of the MAPK pathway, using EGFR inhibitors cetuximab and erlotinib or the MEK 1 and 2 inhibitor selumetinib, prevented EGF- and IFN-γ-induced CD274 mRNA and PD-L1 protein and membrane upregulation, but had no effect on IFN-γ-induced MHC-I upregulation. Interestingly, although IFN-γ increases transcriptional activity of CD274, MAPK signaling also increased stabilization of CD274 mRNA. In conclusion, MAPK pathway activity plays a key role in EGF- and IFN-γ-induced PD-L1 expression in lung adenocarcinoma without targetable genetic alterations and may present a target to improve the efficacy of immunotherapy.

Keywords: non-small cell lung cancer (NSCLC); programmed death-ligand 1 (PD-L1); IFN-γ; MAPK pathway; MHC-I

Received 28 November 2018; Revised 11 March 2019; Accepted 7 April 2019

No conflicts of interest were declared.

Introduction

After years of limited progress in the treatment of advanced non-small cell lung cancer (NSCLC), a major leap forward has been made with the introduction of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) targeting immune checkpoint inhibitors. These have greatly improved the overall survival of patients with advanced NSCLC, especially patients without targetable genetic alterations, accounting for almost 60% of NSCLC [1–3]. Patients with PD-L1-positive tumors generally respond better to PD-1-targeted immune checkpoint inhibition. However, discrepancies between observed PD-L1 expression and the benefit from treatment often occur [4]; even in a preselected patient population with >50% PD-L1-positive tumor cells, only 45–55% of patients respond to therapy [5]. The limited value of tumor PD-L1 as a biomarker may be caused by the highly dynamic expression of PD-L1 due to the influence of multiple factors [6]. The best characterized inducer of PD-L1 expression in NSCLC is the pro-inflammatory cytokine IFN-γ, which is secreted by T cells [7,8]. PD-L1 on tumor cells binds to PD-1 on T cells, disrupting T cell function and thereby preventing an effective tumor immune response [9]. Oncogenic driver mutations, such as mutations in EGFR, ALK and BRAF, are known inducers of PD-L1 expression in NSCLC cells. In these oncogene-activated cells, the PI3K/mTOR, JAK/STAT and MAPK pathways are the main drivers of PD-L1 expression [10–13].
Interestingly, EGFR wild-type NSCLC tumors have higher levels of PD-L1 and tumor infiltrating lymphocytes, and respond better to PD-1/PD-L1-targeted therapy compared with EGFR mutant NSCLC [1,2]. However, there are only limited data about the regulation of PD-L1 expression in NSCLC without targetable genetic alterations [14–16]. A better understanding of PD-L1 regulation may provide a rationale to combine immune checkpoint inhibitors with other targeted agents. In the present study, we aimed to identify pathways regulating CD274 (PD-L1) expression in this NSCLC subtype by using RNA sequencing data from The Cancer Genome Atlas (TCGA) lung adenocarcinoma and squamous cell lung carcinoma datasets. We functionally validated our findings using adenocarcinoma cell lines and cocultures with peripheral blood mononuclear cells (PBMCs). Our results indicate that growth factor-dependent MAPK signaling plays an important role in basal and IFNγ-induced PD-L1 expression of lung adenocarcinoma without targetable genetic alterations.

Materials and methods

TCGA data retrieval and analysis

TCGA RNA sequencing V2 and mutation data for lung adenocarcinoma and squamous cell carcinoma [17,18] were obtained from the cBioportal for Cancer Genomics [19] on 14 October 2018. We selected 230 adenocarcinoma and 178 squamous cell carcinoma samples with complete RNA sequencing and whole exome sequencing data. Data were analyzed and visualized using R (available from https://www.r-project.org/) and the R studio interface 1.1.453 (available from https://www.rstudio.com/) and ggplot2 package for R 3.5.1 (available from http://ggplot2.tidyverse.org). Our analysis was performed in 159 lung adenocarcinoma and 166 squamous cell lung carcinoma samples without targetable alterations in EGFR, ALK, ROS1, BRAF, ERBB2, MET or RET [20]. TCGA RNA sequencing data were normalized in two steps. Each expression value was first log10-transformed and then Z-score normalized by subtracting the mean expression of each gene and dividing by the standard deviation. Next, MAPK pathway activation was inferred according to the methods of previously described gene signatures for rat sarcoma (RAS) and MEK activation [21,22]. Inferred pathway activities were calculated as described in the original articles. IFNγ signaling was inferred using IRF1 and STAT1 mRNA levels; STAT3 signaling by using STAT3 gene expression. The correlation of CD274 (PD-L1) mRNA level with these signature scores was calculated using Spearman correlation. To complement this analysis, gene set enrichment analysis (GSEA) was performed on the same samples, using the hallmark PI3K and IFNG signatures in addition to the previously mentioned signatures. Furthermore, we used the C6 oncogenic signaling MEK and EGFR signatures and an alternative PI3K signature. However, the authors doubt whether their signatures, developed for estrogen receptor-positive breast cancer, can be used for other tumor types (http://software.broadinstitute.org/gsea/index.jsp [23,24]). GSEA was performed with 1000 permutations with Z-score normalized CD274 gene expression as a continuous phenotype label. Genes were ranked based on the Pearson Metric.

Cell culture

The human NSCLC cell lines HCC827, H292, A549, H358 and H460 were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). H322 was obtained from Sigma-Aldrich (St Louis, MO, USA). All cell lines are from the adenocarcinoma histological subtype, except H292, which is an adenocarcinoma-like mucoepidermoid carcinoma. Cells were quarantined until screening for microbial contamination and mycoplasma was performed and proven to be negative. Cells were tested and authenticated using short tandem repeat profiling. Cells were grown in RPMI with 10% FCS, with 2 mM glutamine added for H322 cells. All cells were incubated in a humidified atmosphere with 5% CO2 at 37 °C.

Antibodies and treatments

The details of antibodies used for flow cytometry and Western blotting are provided in Supplementary material, Table S1. Western blotting detection was performed using Lumi-Light Western blotting substrate (Roche Diagnostics, Basel, Switzerland). Cells were treated under normal culture conditions with EGF, HGF, IFNγ (each from R&D Systems, Minneapolis, MN, USA), erlotinib (LC Laboratories, Woburn, MA, USA), cetuximab (Merck KGaA Darmstadt, Germany), selumetinib (AZD6244, Axon Medchem, Reston, VA, USA), XL147 (LC Laboratories), everolimus (Selleckchem, Houston, TX, USA), BMS911543 (Selleckchem) and actinomycin D (Sigma-Aldrich).

siRNA transfection

Cells were transiently transfected with an siRNA targeting STAT3 (Eurogentec, Liege, Belgium) or a negative control siRNA (12935300, Invitrogen, Carlsbad, CA, USA) using oligofectamine (11252011, Invitrogen) in Opti-MEM (51985, Invitrogen) according to the manufacturer’s instructions. Twenty-four hours after transfection, cells were treated with indicated ligands and treatments. After a total of 48 h, STAT3 knockdown efficiency and proteins of interest were analyzed by Western blotting or flow cytometry. All experiments were performed in triplicate.

Flow cytometric analysis

Cells were harvested using trypsin and kept on ice in PBS with 2% FCS during the entire protocol. After staining, cells were kept in PBS with 2% FCS until
supplementary material, Table S2B for data). GAPDH depending on the target protein size (see

Western blot
Lysates from cells were made using mammalian protein extraction reagent with protease and phosphatase inhibitors diluted 1:100 (Thermo Fisher Scientific, Waltham, MA, USA). Proteins were separated using SDS-PAGE. Target proteins were detected with the appropriate antibodies and images were captured using a digital imaging system (Bio-Rad, Hercules, CA, USA). All bands were observed around the size specified in supplementary material, Table S2A. Densitometric quantitation of target proteins was calculated using ImageJ relative to loading controls β-actin or GAPDH depending on the target protein size (see supplementary material, Table S2B for data).

Viability assays
H292 (8000 cells/well), H358 (20,000 cells/well), A549 (2000 cells/well), H322 (10,000 cells/well) and H460 (2000 cells/well) cells were plated in 96-well plates in their respective media and after 6 h erlotinib or selumetinib was added in concentrations ranging from 0.01 to 10 μM. After 96 h, cells were fixed in 3.7% formaldehyde and stained using crystal violet. After washing, bound crystal violet was dissolved using 10% ethanoic acid and absorption measured at 590 nm. Cell survival was calculated as a percentage of untreated control. All proliferation assays were performed three times in triplicate.

RNA sample collection and qRT-PCR
Total RNA was extracted using Trizol reagent (Invitrogen) and possible DNA contamination was removed using TURBO DNase ambi (Life Technologies, AM2238). RNA was then reverse transcribed to cDNA with M-MLV reverse transcriptase (Thermo Fisher Scientific, 28025013). Real-time PCR was performed using IQ SYBR Green Supermix (Bio-Rad, 1708886) according to the manufacturer’s instructions. The following primers were used: CD274 forward 5′-CAATGTGACCGACACTGAGAA-3′, reverse 5′-GGCATATAAGATGGCTCCAGAAA-3′; GAPDH forward 5′-CCCCACTCTCCACCTTTGAC-3′, reverse 5′-CCACCCACCTTGTGGCTGTAG-3′. The relative gene expression was calculated using the double delta CT method and GAPDH as a loading control [25]. All qPCR experiments were performed three times in duplicate.

Co-culture experiments
Human PBMCs were isolated from whole blood by Ficoll-Paque density centrifugation (Ficoll-Paque PLUS, GE Healthcare Life Sciences, Marlborough, MA, USA) from peripheral blood donated by healthy volunteers. The acquired PBMCs were activated for 72 h using human T-activator CD3/28 beads (Thermo Fisher Scientific) and 100 IU/ml IL-2 (Proleukin, Novartis, Basel, Switzerland) in the presence of tumour cells. Separately, tumor cells were seeded into 96-well plates at a density of 1 × 10^4 cells/well for 48 h. Then, the pre-activated PBMCs were added into the co-culture system at a 5:1 ratio of PBMCs to tumor cells. During co-culture, cells were treated with EGF (20 ng/ml), erlotinib (10 μM) and selumetinib (10 μM). After 24 h of co-culture, cell-free supernatant was collected for IFNγ analysis by ELISA (Sino Biological, Beijing, PR China). Cells were harvested for flow cytometric measurement of membrane PD-L1. In separate experiments, tumor cells were cultured in cell-free supernatant from activated PBMCs. Membrane PD-L1 levels were determined after 24 h using flow cytometry.

Statistics
Cell line experiments were assessed for differences with unpaired two-tailed Student’s t-test or two-way ANOVA followed by Bonferroni post-hoc or Dunnett’s test. Results are represented as means ± SD. A P value < 0.05 was considered statistically significant. Statistical analyses were performed using GraphPad Prism software (version 6.0 GraphPad software).

Results
MAPK pathway activation correlates with CD274 gene expression in lung adenocarcinoma
To study which EGFR-related signaling pathways regulate CD274 expression in NSCLC without targetable genetic alterations, we collected RNA sequencing data of 159 lung adenocarcinoma and 166 squamous cell lung carcinoma samples from TCGA, excluding samples with driver mutations in EGFR, ALK, BRAF, ROS1, MET, ERBB2 and RET. Activating KRAS mutations were present in 75 of the lung adenocarcinoma and in one of the squamous cell carcinoma samples. Activation of the MAPK pathway was determined using validated signatures for RAS or MEK activation [21,22]. MAPK pathway activation scores were significantly higher in KRAS mutant samples (see supplementary material, Figure S1A). In addition, there was a moderate correlation between RAS and MEK activation scores (see supplementary material, Figure S1B). Interestingly, in adenocarcinomas, but not in squamous cell carcinomas,
MAPK signaling in growth factor- and cytokine-induced PD-L1 expression

Figure 1. MAPK and IFN\(\gamma\) signaling correlate with CD274 expression in lung adenocarcinoma tumors without targetable genetic alterations. RNA sequencing data from all TCGA lung adenocarcinoma and squamous cell lung carcinoma samples without targetable genetic alterations were collected. RNA sequencing data were Z-score normalized after 10log transformation. (A) Spearman correlation between CD274 and RAS activationscore or MEK activationscore in all samples. (B) Spearman correlation between CD274 expression and RAS activationscore or MEK activationscore in KRAS wild-type lung adenocarcinoma samples. (C) Spearman correlation between STAT1 and CD274 in all samples. LUSC, squamous cell lung carcinoma.

RAS and MEK activation scores correlated with CD274 gene expression (Figure 1A, Table 1). Subset analysis showed that these correlations were strongest in KRAS wild-type lung adenocarcinomas (Figure 1B and supplementary material, Figure S1C). STAT3 mRNA levels did not correlate with CD274 in any subset (Table 1). In both histological subtypes, mRNA levels of STAT1 and IRF1, important mediators of IFN\(\gamma\), correlated with CD274 (Figure 1C and supplementary material, Figure S1D). CD8A \((r_s = 0.73, p = 0.72)\), and IFNG \((r_s = 0.71, p = 0.74)\), respectively. Inferred MEK and RAS activities were not significantly correlated with STAT1 \((r_s = 0.12, p = 0.27; r_s = 0.1, p = 0.36)\). Interestingly, a combined score for MAPK and IFN\(\gamma\) signaling, created by adding up 0 to 1 rescaled MEK activation scores and STAT1 levels, correlated more strongly with CD274 mRNA levels (see supplementary material, Figure S1E). GSEA using RAS, MEK and the hallmark IFNG signatures largely confirmed these findings. In addition, GSEA of the PI3K hallmark signature suggested a link between PI3K/mTOR signaling and CD274 (see supplementary material, Table S3). This suggests that activation of the MAPK, PI3K/mTOR and IFN\(\gamma\) pathways is related to increased CD274 mRNA levels in lung adenocarcinomas without targetable genetic alterations.

EGF increases IFN\(\gamma\)-induced PD-L1 expression in NSCLC cells without targetable genetic alterations

A panel of lung adenocarcinoma cell lines without targetable genetic alterations, including a KRAS wild-type (H322), three KRAS mutant (A549, H358 and H460) and a KRAS wild-type adenocarcinoma-like mucoepidermoid carcinoma cell line (H292) [26], was selected to further investigate the relationship between EGF and IFN\(\gamma\) pathway activation with PD-L1 expression. Membrane PD-L1 was observed in all cell lines, irrespective of KRAS mutation status (see supplementary material, Figure S2A). The highest levels were found in H292, H358 and H460 cells. Levels were comparable with PD-L1 membrane levels of HCC827 EGFR mutant NSCLC cells (see supplementary material, Figure S2A). We wondered whether IFN\(\gamma\) and EGF, known activators of the EGFR, PI3K/mTOR and MAPK pathways, would increase PD-L1 levels in our panel. Treatment with EGF or IFN\(\gamma\) for 24 h using physiologically relevant concentrations (20 ng/ml) [27,28] increased membrane PD-L1 in both KRAS wild-type and KRAS mutant cells (Figure 2A,B). Moreover, exposure of cells to EGF combined with IFN\(\gamma\) resulted in a further increase in PD-L1 compared with IFN\(\gamma\) alone. Prolonged incubation up

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
to 72 h further enhanced PD-L1 in H292 and H358 (Figure 2C).

To gain insight into the underlying mechanism of the increase in surface PD-L1, we measured total PD-L1 protein and CD274 mRNA levels. The EGFR- and IFNγ-induced increase in surface expression was reflected in a strong induction of both mRNA and total protein levels (Figure 2D,E). EGF stimulated the MAPK and PI3K/mTOR pathways, as signified by increased levels of phosphorylated ERK 1 and 2 (pERK1/2) and phosphorylated ribosomal S6 protein (pS6), respectively (Figure 2E and supplementary material, Figure S2B). IFNγ strongly increased STAT1 and phosphorylated STAT1 (pSTAT1) levels for up to 72 h. Taken together, these results indicate that EGFR and IFNγ activate the MAPK, PI3K/mTOR and STAT1 pathways, and concurrently increase PD-L1 mRNA, protein and membrane levels.

Table 1. Correlation between inferred MAPK, PI3K/mTOR and IFNγ pathway activity, and CD274 gene expression in NSCLC subtypes

Pathway	Adenocarcinoma	LUSC
	Non-targetable	
RAS score t₁	0.42	0.32
	KRAStmt n = 73	
	0.47	0.52
	KRAStwt n = 86	
	0.52	0.06
	EGFrmt Total n = 28	
MEK score t₂	4.1 x 10⁻⁸	
	0.006	
	7.6 x 10⁻⁶	
	0.005	
	0.13	
	rs, Spearman's rho	
STAT3 t₃	2.0 x 10⁻⁷	
	ns	
	7.5 x 10⁻⁷	
	ns	
	ns	
	ns	
STAT1 t₄	0.54	
	0.66	
	0.48	
	0.33	
	ns	
	1.6 x 10⁻⁸	
IRF1 t₅	0.49	
	0.43	
	0.53	
	0.47	
	0.33	
	2.1 x 10⁻⁵	

mt, mutant; ns, not significant; r₁, Spearman's rho; wt, wild-type.

EGFR inhibition prevents EGFR- and IFNγ-induced PD-L1 upregulation

To analyze the regulation of membrane PD-L1 by EGFR and STAT1 signaling, H292 and H358 cells were treated with EGF and IFNγ in the presence of anti-EGFR monoclonal antibody cetuximab or EGFR small molecule inhibitor erlotinib. Interestingly, cetuximab and erlotinib prevented not only EGF-induced but also IFNγ-induced upregulation of CD274 mRNA levels, which was reflected in reduced membrane and total PD-L1 protein levels (Figure 3A,B and supplementary material, Figure S3A). Data from multiple experiments showed that erlotinib reduced basal PD-L1 membrane levels in H358 but not H292 cells (see supplementary material, Figure S3B). Erlotinib had a similar effect on EGFR- and IFNγ-induced PD-L1 membrane levels in two other cell lines but not in the erlotinib-resistant H460 cell line, as expected (see supplementary material, Figure S4A). EGFR inhibition effectively reduced EGFR-dependent MAPK and PI3K/mTOR signaling and modestly decreased IFNγ-induced upregulation of (p)STAT1 (Figure 3B). These results indicate that EGFR- and IFNγ-induced CD274 mRNA and PD-L1 protein and membrane levels are dependent on EGFR-mediated signaling.

MAPK pathway inhibition prevents PD-L1 induction by EGF and IFNγ

Next, we assessed the involvement of MAPK and PI3K/mTOR signaling in PD-L1 upregulation. Selumetinib, an inhibitor of MEK1/2, almost completely suppressed induction of CD274 mRNA by EGF and IFNγ in H292 and H358, and diminished the induction of protein and membrane levels (Figure 4A,B and supplementary material, Figure S3A). Moreover, selumetinib decreased basal PD-L1 membrane levels in H292 and H358 cells (see supplementary material, Figure S3B). Selumetinib effectively inhibited MEK1/2 activity, as reflected in the reduction in pERK1/2 levels, and had a moderate effect on pSTAT1 levels. The effect of selumetinib on membrane PD-L1 was confirmed in additional cell lines (see supplementary material, Figure S4A). PI3K inhibitor XL147 and mTORC1 inhibitor everolimus partially suppressed EGF- and IFNγ-induced PD-L1 in H292 cells, but they had no effect on the induction of membrane PD-L1 (Figure 4A,B). At these concentrations, both drugs effectively inhibited PI3K/mTOR pathway activity, as indicated by reduced pAKT and pS6 levels (Figure 4B).

We pursued studying the MAPK pathway because of its major influence on PD-L1 expression. A wide range of selumetinib and erlotinib concentrations was used to determine if lower drug concentrations also reduce PD-L1 expression. After 24 h, even the lowest selumetinib concentration (0.1 μM) strongly reduced pERK levels, as well as PD-L1 protein and membrane expression levels of H292 and H358 cells in both control and EGF- and IFNγ-stimulated cells (see supplementary material, Figure S3C). Treatment with this selumetinib concentration for 96 h resulted in a growth reduction of 30–50% (see supplementary material, Figure S3D), indicating that PD-L1 expression can be manipulated with a MAPK activity inhibitor using concentrations that only partially reduce cell growth. In line with these results, selumetinib had a similar moderate effect on growth in the other three cell lines (see supplementary material, Figure...
EGF and IFNγ induce PD-L1 in NSCLC cell lines. (A and B) NSCLC cell lines without targetable genetic alterations treated with 20 ng/ml EGF, 20 ng/ml IFNγ or both. After 24 h, PD-L1 membrane expression was measured using flow cytometry (Student’s t-test; ns = not significant, *p < 0.05, **p < 0.01 compared with IFNγ, n = 3–11, combined data from all other figures). (C) Membrane PD-L1 levels measured using flow cytometry in cells treated with EGF and IFNγ for 24 or 72 h. Data are represented as MFI/mean corresponding control MFI; n = 3. (D) PD-L1 mRNA levels measured using RT-qPCR on H292 and H358 treated with 20 ng/ml EGF or IFNγ or both for 24 h. Data were analyzed using the double delta CT method and GAPDH as a loading control. (E) Western blotting of protein extracts from H292 and H358 treated with 20 ng/ml EGF, 20 ng/ml IFNγ or both for 1, 24, 48 and 72 h. Actin was used as a loading control. Con, untreated control.

S4B). Similar results were observed with erlotinib. In conclusion, MAPK pathway inhibitors suppress EGF- and IFNγ-induced CD274 mRNA and PD-L1 protein and membrane expression at concentrations that have a small effect on growth.

HGF induces surface PD-L1 via the MAPK pathway

We investigated whether activation of the MAPK pathway via HGF receptor (cMET) has a similar effect on PD-L1 as MAPK activation by EGFR. Overexpression of cMET and its ligand HGF occur
Figure 3. EGFR inhibition prevents EGF- and IFNγ-induced PD-L1 expression. H292 and H358 cells were treated with 20 μg/ml cetuximab or 10 μM erlotinib with and without cotreatment with 20 ng/ml EGF, 20 ng/ml IFNγ or both for 24 h. (A) Membrane PD-L1 measured using flow cytometry (two-way ANOVA with Dunnett’s multiple comparisons test; **p < 0.01, ***p < 0.001 compared with untreated control). (B) Cellular protein levels measured using Western blotting. Actin was used as a loading control. Data from a representative experiment are shown. C, untreated control; E + I, EGF + IFNγ.

frequently in lung adenocarcinoma tumors [29]. Moreover, upon binding of HGF, cMET is known to activate PI3K/mTOR, MAPK and JAK/STAT pathways, similar to EGFR [30]. HGF enhanced PD-L1 expression and augmented IFNγ-induced PD-L1 expression in the cMET-positive H292 and H358 cell lines (Figure 4C). Combining HGF and EGF had no additional effect on membrane PD-L1 levels compared with single EGF or HGF treatment. Also, in this case, selumetinib effectively prevented HGF-induced effects on PD-L1 levels in both cell lines, whereas erlotinib only showed efficacy in H292 cells. Taken together, these results demonstrate that, irrespective of the upstream growth factor receptor, MAPK pathway activation is essential for PD-L1 membrane expression.

MAPK pathway inhibition does not interfere with IFNγ-induced MHC-I upregulation

Expression of MHC-I is critical for tumor cell antigen presentation and the anti-tumoral immune response [31]. Because both MAPK and IFNγ signaling can influence MHC-I expression, we wondered whether EGFR and MEK1/2 blockade could interfere with its expression in our cell lines [32–34]. IFNγ, but not EGF, increased MHC-I membrane expression in four of five cell lines (Figure 4D and supplementary material, Figure S4C). Moreover, MAPK pathway inhibition using erlotinib and selumetinib did not influence IFNγ-induced upregulation of MHC-I expression, suggesting that MHC-I-mediated tumor cell antigen presentation will not be impaired by these drugs.

MAPK signaling increases stability of CD274 mRNA

To investigate the role of STAT signaling in MHC-I and PD-L1 expression after IFNγ or EGF treatment, we inhibited STAT1 and STAT3, major transcription factors downstream of IFNγ and EGFR signaling, respectively [6,35]. Suppression of STAT1 signaling using JAK2 inhibitor BMS911543 prevented IFNγ-induced PD-L1 and MHC-I expression, but not EGF-induced PD-L1 expression (Figure 5A and supplementary material, Figure S5A). Also, inhibition of STAT3 using an siRNA had no influence on PD-L1 regulation by MAPK signaling (see supplementary material, Figure S5B). Therefore, we hypothesized that the MAPK pathway may regulate PD-L1 at a post-transcriptional level.

KRAS mutations were recently shown to be involved in post-transcriptional regulation of basal PD-L1 levels through modulation of CD274 mRNA stability [36]. To study whether MAPK signaling controls the stability of IFNγ-induced CD274 mRNA, KRAS wild-type and mutant cells were pretreated with IFNγ followed by the addition of the transcriptional blocker actinomycin D [37]. Blocking transcription for 90 min halved CD274
Selumetinib effectively decreases growth factor- and IFNγ-induced PD-L1 expression. H292 and H358 cells were treated with 10 μM XL147, 10 μM everolimus or 10 μM selumetinib, with and without cotreatment with 20 ng/ml EGF, 20 ng/ml IFNγ or both for 24 h. (A) Flow cytometry of membrane PD-L1 (two-way ANOVA with Dunnett’s multiple comparisons test, *p < 0.05, ***p < 0.001 compared with ligand-stimulated control). (B) Western blot of cellular protein levels. Actin was used as a loading control. Data are from a representative experiment (n = 2). (C) Membrane PD-L1 and (D) MHC-1 levels measured by flow cytometry of H292 and H358 cells treated with 10 μM erlotinib or 10 μM selumetinib, with and without cotreatment with 20 ng/ml EGF, 20 ng/ml HGF, 20 ng/ml IFNγ or a combination for 24 h. In (C), two-way ANOVA with Dunnett’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001 compared with ligand-stimulated control. (D) Student’s t-test, **p < 0.01. ns, not significant; C, untreated control; XL, XL147; Ev, everolimus; Selu, selumetinib. H + E + I, HGF + EGF + IFNγ.

© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org J Pathol 2019; 249: 52–64 www.thejournalofpathology.com
Figure 5. MAPK signaling increases CD274 mRNA stability. (A) Membrane PD-L1 using flow cytometry and cellular protein levels by Western blotting in cells treated with BMS911543 in the presence of 20 ng/ml EGF and IFNγ for 24 h. Blot from a representative experiment (n=2). (B) RT-qPCR of CD274 mRNA levels (PD-L1) in H292 and H358 cells initially treated with IFNγ for 24 h, then with 5 μg/ml actinomycin D for 10 min, followed by 20 ng/ml IFNγ, 20 ng/ml EGF or 10 μM selumetinib for 80 min. Data were analyzed using the double delta CT method and GAPDH as a loading control (two-way ANOVA with Tukey’s test, *p < 0.05, **p < 0.01, ***p < 0.001). Con, untreated control; E + I, EGF + IFNγ; ActD, actinomycin D.

Interestingly, degradation of CD274 was counteracted by EGF-induced activation of MAPK signaling. Accordingly, inhibition of MAPK signaling with selumetinib accelerated CD274 degradation and decreased the stabilization by EGF. These results show that MAPK signaling influences the stability of CD274 mRNA, contributing to regulation of PD-L1 protein and membrane expression.

MAPK pathway inhibition decreases PBMC-induced PD-L1 surface expression

To study the relationship between immune cell activation and PD-L1 expression of tumor cells, we performed cocultures of PBMCs and NSCLC cells. After 24 h coculture, membrane PD-L1 and MHC-I were strongly induced in tumor cells (Figure 6A,B). Conditioned medium from activated PBMCs contained IFNγ (30 ng/ml) in comparable levels to our other experiments and also strongly induced membrane PD-L1, indicating that IFNγ may be involved in PBMC-induced PD-L1 (see supplementary material, Figure S6A). Similar to our previous experiments, EGF further enhanced tumor cell MAPK pathway activity and PD-L1 expression, which was counteracted by erlotinib and selumetinib, without influencing MHC-I (Figure 6A,B and supplementary material, Figure S6A). Our results indicate that MAPK pathway inhibition can reduce tumor cell PD-L1 in a more complex coculture system, without interfering with MHC-I induction in tumor cells, potentially improving the immunogenicity of these cells.

Discussion

In this study we revealed a correlation between MAPK pathway activation and CD274 expression in lung adenocarcinomas without targetable genetic alterations using TCGA RNA sequencing data. Subsequently, we demonstrated the importance of MAPK signaling in the upregulation of PD-L1 by growth factors and IFNγ in lung adenocarcinoma cell lines, which was mediated through CD274 mRNA stability and STAT1 activation (Figure 6C). Inhibition of the MAPK pathway prevents growth factor-, IFNγ- and PBMC-induced PD-L1
Figure 6. Erlotinib and selumetinib prevent PBMC-induced PD-L1, but not MHC-I expression, in NSCLC cells. (A) H292 and H358 cells were cocultured with 72 h pre-activated PBMCs from healthy volunteers at a ratio of five PBMCs per tumor cell. During coculture, cells were treated with 20 ng/ml EGF, and 10 μM erlotinib or 10 μM selumetinib. Membrane PD-L1 was measured by flow cytometry after 24 h (two-way ANOVA with Bonferroni’s multiple comparisons method, **p < 0.01, ***p < 0.01 compared with control + pre-activated PBMCs). (B) Membrane MHC-I measured using flow cytometry (two-way ANOVA, *p < 0.05, **p < 0.01 compared with control). R, resting PBMCs; A, activated PBMCs. (C) Proposed model for the role of IFNγ and MAPK signaling in PD-L1 regulation in lung adenocarcinoma. IFNγ derived from tumor infiltrating immune cells induces CD274 transcription in tumor cells through activation of JAK/STAT signaling. CD274 mRNA is translated into PD-L1 protein, which is transported to the cell membrane. Growth receptor- and mutated KRAS-induced MAPK signaling increase STAT signaling, potentially adding to transcriptional activity. Also, MAPK signaling increases the stability of CD274 mRNA, resulting in increased mRNA and protein levels, and subsequently increasing PD-L1 membrane expression.

upregulation, whereas it does not interfere with MHC-I expression. Taken together, these results indicate that MAPK pathway inhibition may improve tumor cell immunogenicity of lung adenocarcinomas without targetable genetic alterations, comprising almost 60% of all lung adenocarcinoma tumors in the Western world [3].

Our TCGA analysis suggests that MAPK pathway activity and CD274 gene expression are primarily connected in lung adenocarcinoma, but not in squamous cell carcinoma of the lung. Targeting the MAPK pathway is especially interesting in lung adenocarcinoma, because these tumors have a more active MAPK pathway and more frequently harbor KRAS mutations compared with squamous cell carcinoma tumors [38,39]. Intriguingly, this is also the subtype where tumor cell PD-L1 has predictive and prognostic value [40,41]. Our study shows that MAPK pathway inhibition prevents the induction of CD274 mRNA by EGF and IFNγ through two separate mechanisms (Figure 6C). First, a moderate dose-dependent reduction of STAT1 and pSTAT1 levels upon inhibition of EGFR or MEK1/2 may lower CD274 transcription (see supplementary material, Figure S3C). This might be due to inhibition of the eukaryotic initiation factor 4F (eIF4F) translation initiation complex, which is a downstream effector of the MAPK pathway and essential for cap-dependent translation of STAT1 mRNA [39,42]. Second, we observed reduced CD274 mRNA stability upon inhibition of MEK1/2 or EGFR. This expands earlier data on basal PD-L1 expression in KRAS mutant cell lines, where MEK1/2 inhibition activates tristetraprolin, resulting in CD274 mRNA degradation [36]. Although CD274 transcription and MHC-I-related transcription are both regulated by STAT1 [6,35], MAPK inhibition, in contrast to JAK2 inhibition, does not affect MHC-I expression, suggesting that MAPK activity primarily regulates CD274 mRNA stability in lung adenocarcinoma cells. At the protein level, PD-L1 can be affected by several mechanisms, such as glycosylation, ubiquitination and...
stabilization at the cell membrane [15,43–45]. However, we found no direct effect of EGFR or IFN-γ on CKLF-like MARVEL transmembrane domain containing protein 6 (CMTM6) protein levels in H292 or H358 cells (data not shown).

Our experiments demonstrated that both EGFR and MEK1/2 inhibitors decrease EGFR- and IFN-γ-induced PD-L1 expression, potentially increasing immunogenicity of lung adenocarcinoma cells. Nevertheless, because the MAPK pathway is downstream of a plethora of growth factor receptors, downstream inhibition with MEK1/2 inhibitors may be more effective to modulate PD-L1 than inhibition of specific growth factor receptors. This is supported by our finding that MEK1/2 inhibition, but not EGFR inhibition, prevented HGF-induced PD-L1 expression and by earlier findings in renal cell carcinoma [46]. In vitro, we observed PD-L1 downregulation at selumetinib concentrations that had a small effect on cell growth. Although in vitro experiments do not perfectly model the tumor microenvironment, our results suggest that an immunomodulatory effect may already be present at lower selumetinib doses than previously utilized in NSCLC patients [47,48]. The immunomodulatory role of MAPK signaling is increasingly being recognized [49]. Multiple studies using in vivo colon cancer models showed that MEK inhibition potentiates the anti-tumor immune response by preventing T cell apoptosis and decreasing levels of myeloid suppressor cells and regulatory T cells. This resulted in sustained tumor regression when combined with PD-L1, PD-1 or CTLA-4 blocking treatment [50–52]. In phase II and III studies of selumetinib in NSCLC patients, disappointing efficacy was observed [47,48]. However, clear immune modulating effects were observed, indicating that MAPK pathway inhibition may increase the efficacy of immunotherapy. Modulating PD-L1 expression is especially interesting in NSCLC tumors without targetable genetic alterations, because these have a more inflamed tumor microenvironment and respond better to immune checkpoint inhibitors than tumors with targetable genetic alterations, such as EGFR mutations [1,2]. These combination strategies are currently being tested in NSCLC patients (NCT03600701, NCT03299088).

In conclusion, our results show the importance of growth factor-induced MAPK pathway signaling in PD-L1 expression in lung adenocarcinoma without targetable genetic alterations. This provides a rationale to explore the combination of MAPK pathway inhibitors with immunotherapy in this lung cancer subtype.

Acknowledgements

This work was supported by a POINTING grant of the Dutch Cancer Society to EGE de Vries. TS Stutvoet is supported by a fellowship of the Junior Scientific Master Class (JSM) of the University of Groningen.

Author contributions statement

TS, AK, AT and SJ designed, performed and interpreted the experiments. EV gave valuable input on structuring the experiments. MB and RF, respectively, guided the coculture and in silico experiments. TS and AK wrote the manuscript and put the figures together. EV, MB, RF, AT and SJ made revisions and proofread the manuscript. All authors read and approved the final manuscript.

References

1. Dong ZY, Zhang JT, Liu SY, et al. EGFR mutation correlates with uninfamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 2017; 6: e1356145.
2. Zhang M, Li G, Wang Y, et al. PD-L1 expression in lung cancer and its correlation with driver mutations: a meta-analysis. Sci Rep 2017; 7: 10255.
3. Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet 2017; 389: 299–311.
4. Sacher AG, Gandhi L. Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol 2016; 2: 1217–1222.
5. Ferrara R, Mezquita L, Besse B. Progress in the management of advanced thoracic malignancies in 2017. J Thorac Oncol 2018; 13: 301–322.
6. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity 2018; 48: 434–452.
7. Lee S-J, Jang B-C, Lee S-W, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 2006; 580: 755–762.
8. Schalper KA, Carvajal-Haudsof D, McLaughlin J, et al. Differential expression and significance of PD-L1, IOD-1, and B7-H4 in human lung cancer. Clin Cancer Res 2017; 23: 370–378.
9. Califano R, Kerr K, Morgan RD, et al. Immune checkpoint blockade: a new era for non-small cell lung cancer. Curr Oncol Rep 2016; 18: 59.
10. Chen N, Fang W, Zhan J, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol 2015; 10: 910–923.
11. Ota K, Azuma K, Kawahara A, et al. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 2015; 21: 4014–4021.
12. Concha-Benavente F, Srivastava RM, Trivedi S, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res 2016; 76: 1031–1043.
13. Sumimoto H, Takano A, Teramoto K, et al. RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS One 2016; 11: e0166626.
14. Li C-W, Lim S-O, Xia W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 2016; 7: 12632.
15. Horia H, Law A, Hong S, et al. Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitination. Neoplasia 2017; 19: 346–353.
16. Lastwika KJ, Wilson W, Li QK, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 2016; 76: 227–238.
17. Iminielski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150: 1107–1120.

18. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2014; 489: 519–525.

19. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics. Cancer Discov 2012; 2: 401–404.

20. National Comprehensive Cancer Network. Non-small Cell Lung Cancer (Version 11 2019). [Accessed 15 January 2019]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf.

21. Dry JR, Pavely S, Pratilas CA, et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res 2010; 70: 2264–2273.

22. Loboda A, Nebozyn M, Klinghofer R, et al. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genomics 2010; 3: 26.

23. Creighton CJ, Fu X, Hennessy BT, et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res 2010; 12: R40.

24. Creighton CJ, Hilger AM, Murthy S, et al. Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 2006; 66: 3903–3911.

25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 2001; 25: 402–408.

26. Wang R, Li Y, Hu E, et al. S100A7 promotes lung adenocarcinoma to squamous carcinoma transdifferentiation, and its expression is differentially regulated by the Hippo-YAP pathway in lung cancer cells. 2017; 8: 24804–24814.

27. Sigismund S, Woelk T, Puri C, et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A 2005; 102: 2760–2765.

28. Qin A, Coffey DG, Warren EH, et al. Mechanisms of immune evasion and current status of checkpoint inhibitors in non-small cell lung cancer. Cancer Med 2016; 5: 2567–2578.

29. Matsumura Y, Unemura S, Ishii G, et al. Expression profiling of receptor tyrosine kinases in high-grade neuroendocrine carcinoma of the lung: a comparative analysis with adenocarcinoma and squamous cell carcinoma. J Cancer Res Clin Oncol 2015; 141: 2159–2170.

30. Gelsomino F, Facchinietti F, Haspinger ER, et al. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol 2014; 89: 284–299.

31. Leone P, Shin E-C, Perno F, et al. MHC class I antigen processing and presentation machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105: 1172–1187.

32. Brea EJ, Oh CY, Manchado E, et al. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol Res 2016; 4: 936–947.

33. Minura K, Kua L-F, Shiraiishi K, et al. Inhibition of mitogen-activated protein kinase pathway can induce upregulation of human leukocyte antigen class I without PD-L1 upregulation in contrast to interferon-γ treatment. Cancer Sci 2014; 105: 1236–1244.

34. Im JS, Herrmann AC, Bernatche C, et al. Immune-modulation by epidermal growth factor receptor inhibitors: implication on anti-tumor immunity in lung cancer. PLoS One 2016; 11: e0160004.

35. Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 2009; 28: 239–260.

36. Coelho MA, de Carne Trécesson S, Rana S, et al. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 2017; 47: 1083–1099.e6.

37. Bensauda O. Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription 2011; 2: 103–108.

38. Fumarola C, Bonelli MA, Petronini PG, et al. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 2014; 90: 197–207.

39. Yoshizawa A, Fukuoka J, Shimizu S, et al. Overexpression of phospho-elf4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin Cancer Res 2010; 16: 240–249.

40. Brahmer J, Reckamp KL, Baus P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373: 123–135.

41. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373: 1627–1639.

42. Cereto M, Guerini R, Druiilencenc S, et al. Translational control of tumor immune escape via the elf4F-STAT1-PD-L1 axis in melanoma. Nat Med 2018; 24: 1877–1886.

43. Mezzadra R, Sun C, Jae LT, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 2017; 549: 106–110.

44. Burr ML, Sparbier CE, Chan YC, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 2017; 549: 101–105.

45. Li CW, Lim S, Chang EM, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 2018; 33: 187–201.e10.

46. Balan M, Mier y Teran E, Waaga-Gasser AM, et al. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J Biol Chem 2015; 290: 8110–8120.

47. Janne PA, van den Heuvel MM, Barlesi F, et al. Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. JAMA 2017; 317: 1844–1853.

48. Carter CA, Rajan A, Keen C, et al. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann Oncol 2016; 27: 693–699.

49. Bedognetti D, Roelands J, Decock J, et al. The MAPK hypothesis: immune-regulatory effects of MAPK-pathway genetic dysregulations and implications for breast cancer immunotherapy. Emerg Top Life Sci 2017; 1: 429–445.

50. Liu L, Mayes PA, Eastman S, et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin Cancer Res 2019; 25: 1639–1651.

51. Poon E, Mullins S, Watkins A, et al. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. J Immunother Cancer 2017; 5: 63.

52. Ebert PJR, Cheung I, Yang Y, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 2016; 44: 609–621.
SUPPLEMENTARY MATERIAL ONLINE

Figure S1. Supplementary TCGA analyses
Figure S2. EGF and IFNγ increase PD-L1 expression in lung adenocarcinoma cell lines without targetable genetic alterations
Figure S3. MAPK pathway inhibition decreases EGF- and IFNγ-induced PD-L1 expression at concentrations that only partially reduce cell growth
Figure S4. Effects of erlotinib and selumetinib on PD-L1 and MHC-I expression and proliferation in a panel of NSCLC cell lines
Figure S5. JAK2 and STAT3 influence MHC-I, but not PD-L1 signaling
Figure S6. PBMC-derived IFNγ may play a role in PD-L1 induction
Table S1. Antibodies used in the study
Table S2. (A) Protein band sizes that were considered as specific staining for the target protein. (B) Quantitation of densitometry of all presented Western blotting results
Table S3. Gene set enrichment results

75 Years ago in The Journal of Pathology...

The reaction of the pituitary gland and related hypothalamic centres in the hamster to prolonged treatment with oestrogens

E. Vazquez-lopez

Mammary and testicular tumours in male mice of various strains following oestrogen treatment

Georgiana M. Bonser

Hyaluronidase production by hæmolytic streptococci of human origin

Nuala Crowley

Massive infection with intestinal anaerobic organisms as a cause of intrapulmonary hæmorrhage

Alan H. Cruickshank, Jane I. Davidson

To view these articles, and more, please visit: www.thejournalofpathology.com

Click 'BROWSE' and select 'All issues', to read articles going right back to Volume 1, Issue 1 published in 1892.

The Journal of Pathology
Understanding Disease