AutoSimulate: (Quickly) Learning Synthetic Data Generation

Harkirat Singh Behl, AG Baydin, Ran Gal, Philip Torr, Vibhav Vineet
Neural Networks are Data Hungry

Synthetic Dataset → NN
Training on Synthetic Data
Synthetic Data Generation

Simulator \rightarrow \text{Synthetic Dataset}
Synthetic Data Generation

ψ

Simulator parameters

Simulator

Synthetic Dataset

Object Shapes
Object Colors
Object Locations
Materials
Lighting
Etc.
Manual Synthetic Data Generation

Human Expert

\[\psi \]

Simulator parameters

Object Shapes
Object Colors
Object Locations
Materials
Lighting
Etc.

Simulator

Synthetic Dataset
What’s Wrong with Manual Synthetic Data Generation?

- Needs significant human effort
- Expensive
- Can be sub-optimal
What’s Wrong with Manual Synthetic Data Generation?

- Needs significant human effort
- Expensive
- Can be sub-optimal
AutoSimulate: Learning Synthetic Data Generation

\[\psi \rightarrow \text{Simulator} \rightarrow \text{Synthetic Dataset} \rightarrow \text{NN} \rightarrow \text{Training on Synthetic Data} \]

- Simulator parameters:
 - Object Shapes
 - Object Colors
 - Object Locations
 - Materials
 - Lighting
 - Etc.
AutoSimulate: Learning Synthetic Data Generation

Simulator parameters
- Object Shapes
- Object Colors
- Object Locations
- Materials
- Lighting
- Etc.

ψ → Simulator → Synthetic Dataset → NN → Training on Synthetic Data → NN → Validation on Real data → Val score
AutoSimulate: Learning Synthetic Data Generation

Backpropagation: We propose Differentiable approximations for the non-differentiable bi-level objective.
Problem Formulation

• Objective is to find optimal simulator parameters as

\[
\begin{align*}
\min_{\psi} \quad & \mathcal{L}_{\text{val}}(\hat{\theta}(\psi)) \\
\text{s.t.} \quad & \hat{\theta}(\psi) \in \arg\min_{\theta} \mathcal{L}_{\text{train}}(\theta, \psi).
\end{align*}
\]

(1a)

(1b)

\(\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))\): validation loss
\(\mathcal{L}_{\text{train}}(\theta, \psi)\): training loss
\(\hat{\theta}(\psi)\): neural network parameters after training on data from simulator \(\psi\)

• Eqns. (1a) and (1b) represent a bi-level optimization problem.
Computing gradient of the bi-level optimization is difficult as:

- Simulator can be non-differentiable
- Backpropagating through NN training is impracticable

We propose **differentiable approximations** for the non-differentiable bi-level objective.
AutoSimulate

Objective: Minimize $\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))$ with respect to ψ
Objective: Minimize $\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))$ with respect to ψ
AutoSimulate

Objective: Minimize $\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))$ with respect to ψ

\[
\mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t + \Delta \psi)) = \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t)) + \Delta \hat{\theta}_\psi \frac{d\mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t))}{d\hat{\theta}(\psi_t)} \tag{2}
\]
AutoSimulate

Objective: Minimize $\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))$ with respect to ψ

\[
\mathcal{L}_{\text{val}}(\hat{\theta}(\psi + \Delta \psi)) = \mathcal{L}_{\text{val}}(\hat{\theta}(\psi)) + \Delta \hat{\theta}_\psi \frac{d\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))}{d\hat{\theta}(\psi)}
\]

(2)

where

\[
\Delta \hat{\theta}_\psi = \Delta \psi \frac{d\hat{\theta}(\psi)}{d\psi} \approx \hat{\theta}(\psi + \Delta \psi) - \hat{\theta}(\psi)
\]
Objective: Minimize $L_{val}(\hat{\theta}(\psi))$ with respect to ψ

$$L_{val}(\hat{\theta}(\psi_t + \Delta \psi)) = L_{val}(\hat{\theta}(\psi_t)) + \Delta \hat{\theta}_\psi \frac{dL_{val}(\hat{\theta}(\psi_t))}{d\hat{\theta}(\psi_t)}$$

(2)

where

$$\Delta \hat{\theta}_\psi = \Delta \psi \frac{d\hat{\theta}(\psi_t)}{d\psi} \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t)$$

How to find?
AutoSimulate

Objective: Minimize $\mathcal{L}_{\text{val}}(\hat{\theta}(\psi))$ with respect to ψ

\[
\mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t + \Delta \psi)) = \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t)) + \Delta \hat{\theta}_\psi \frac{d \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t))}{d \hat{\theta}(\psi_t)}
\]

(2)

where

\[
\Delta \hat{\theta}_\psi = \Delta \psi \frac{d \hat{\theta}(\psi_t)}{d \psi} \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t)
\]

How to find?
AutoSimulate

Find: \(\Delta \hat{\theta}_\psi \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t) \)
AutoSimulate

Find: \(\Delta \hat{\theta}_\psi \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t) \)

\(\hat{\theta}(\psi_t) = \arg \min_\theta \mathcal{L}_{\text{train}}(\theta, \psi_t) \)
AutoSimulate

Find: \(\Delta \hat{\theta}_\psi \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t) \)

\[\hat{\theta}(\psi_t) = \arg \min_{\theta} \mathcal{L}_{\text{train}}(\theta, \psi_t) \]

\[\hat{\theta}(\psi_t + \Delta \psi) = \arg \min_{\theta} \mathcal{L}_{\text{train}}(\theta, \psi_t + \Delta \psi) \]
AutoSimulate

Find: \(\Delta \hat{\theta}_\psi \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t) \)

\[
\mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t) + \Delta \theta, \psi_t + \Delta \psi) = \mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t), \psi_t + \Delta \psi) + \Delta \theta^T \frac{\partial}{\partial \theta} \mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t), \psi_t + \Delta \psi) + \frac{1}{2} \Delta \theta^T H(\hat{\theta}(\psi_t), \psi_t + \Delta \psi) \Delta \theta + \ldots
\]
AutoSimulate

Find: \[\Delta \hat{\theta}_\psi \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t) \]

\[\Delta \hat{\theta}_\psi \approx \arg \min_{\Delta \theta} \left(L_{\text{train}}(\hat{\theta}(\psi_t) + \Delta \theta, \psi_t + \Delta \psi) \right) \]

\[= -H(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)^{-1} \frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)}{\partial \theta} \]
AutoSimulate

Find: \(\Delta \hat{\theta}_\psi \approx \hat{\theta}(\psi_t + d\psi) - \hat{\theta}(\psi_t) \)

\[
\Delta \hat{\theta}_\psi \approx \arg\min_{\Delta \theta} \left(\mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t) + \Delta \theta, \psi_t + \Delta \psi) \right)
\]

\[
= -H(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)^{-1} \frac{\partial \mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)}{\partial \theta}
\]

Putting back into Eq.2
AutoSimulate

Differentiable Approximation:

\[
\tilde{L}_{val}(\hat{\theta}(\psi_t + \Delta \psi)) = L_{val}(\hat{\theta}(\psi_t)) - \frac{\partial L_{train}(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)}{\partial \theta}^T H(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)^{-1} \frac{d L_{val}(\hat{\theta}(\psi_t))}{d \theta}
\]
AutoSimulate

Differentiable Approximation:

$$\tilde{L}_{\text{val}}(\hat{\theta}(\psi_t + \Delta \psi)) = L_{\text{val}}(\hat{\theta}(\psi_t)) - \frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)}{\partial \theta}^\top H(\hat{\theta}(\psi_t), \psi_t + \Delta \psi)^{-1} \frac{dL_{\text{val}}(\hat{\theta}(\psi_t))}{d\theta}$$

$$\Rightarrow \tilde{L}_{\text{val}}(\hat{\theta}(\psi)) = L_{\text{val}}(\hat{\theta}(\psi_t)) - \frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta}^\top H(\hat{\theta}(\psi_t), \psi)^{-1} \frac{dL_{\text{val}}(\hat{\theta}(\psi_t))}{d\theta}$$
AutoSimulate

Differentiable Approximation:

\[\tilde{\mathcal{L}}_{\text{val}}(\hat{\theta}(\psi)) = \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t)) - \frac{\partial \mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \mathbf{H}(\hat{\theta}(\psi_t), \psi)^{-1} \frac{d \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t))}{d \theta} \]

Derivative:

\[\frac{\partial \tilde{\mathcal{L}}_{\text{val}}(\hat{\theta}(\psi))}{\partial \psi} \bigg|_{\psi = \psi_t} = -\frac{\partial}{\partial \psi} \left[\frac{\partial \mathcal{L}_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \right]^\top \bigg|_{\psi = \psi_t} \mathbf{H}(\hat{\theta}(\psi_t), \psi)^{-1} \frac{d \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t))}{d \theta} \]
AutoSimulate

Derivative:

\[
\frac{\partial \tilde{L}_{\text{val}}(\hat{\theta}(\psi))}{\partial \psi} \bigg|_{\psi=\psi_t} = -\frac{\partial}{\partial \psi} \left[\frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \right]^\top \bigg|_{\psi=\psi_t} H(\hat{\theta}(\psi_t), \psi)^{-1} \frac{dL_{\text{val}}(\hat{\theta}(\psi_t))}{d\theta}
\]

How to find?
Stochastic Simulator

- The term requires backpropagation through the dataset generation.

\[
\frac{\partial}{\partial \psi} \left[\frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \right]^T = \frac{\partial}{\partial \psi} \mathbb{E}_{\zeta \sim p_\psi} \left[\frac{\partial}{\partial \theta} l(\zeta, \hat{\theta}(\psi_t)) \right]
\]

- We assume a stochastic simulator that involves a deterministic renderer.

- We make the stochasticity in the process explicit by separating the stochastic part of the simulator from the deterministic rendering.
Stochastic Simulator

Given the deterministic renderer component $\zeta = r(s)$, we would like to find the optimal values of simulator parameters ψ that parameterize $s \sim q_\psi(s)$ representing the stochastic component, expressing the overall simulator as $\zeta \sim p_\psi(\zeta)$.

$$p_\psi(\zeta) = \int_{s \in \{s | r(s) = \zeta\}} q_\psi(s) \, ds$$
AutoSimulate

Derivative:

\[
\frac{\partial \tilde{L}_{\text{val}}(\hat{\theta}(\psi))}{\partial \psi} \bigg|_{\psi=\psi_t} = -\frac{\partial}{\partial \psi} \left[\frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \right]^\top \bigg|_{\psi=\psi_t} \quad \text{How to find?}
\]

\[
H(\hat{\theta}(\psi_t), \psi)^{-1} \frac{dL_{\text{val}}(\hat{\theta}(\psi_t))}{d\theta} \quad \text{How to find?}
\]
AutoSimulate

Derivative:

\[
\left. \frac{\partial \tilde{L}_{\text{val}}(\hat{\theta}(\psi))}{\partial \psi} \right|_{\psi = \psi_t} = - \frac{\partial}{\partial \psi} \left[\frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \right]^T \bigg|_{\psi = \psi_t}
\]

\[
H(\hat{\theta}(\psi_t), \psi)^{-1} \frac{dL_{\text{val}}(\hat{\theta}(\psi_t))}{d\theta}
\]

How to find? See paper for more details How to find?
Approximations for $\Delta \hat{\theta}_\psi$

- Earlier we proposed a quadratic approximation.
- To further reduce the compute overhead, we propose more approximations.

Approximation ($\Delta \hat{\theta}_\psi$)	Derivative Term ($\frac{\partial}{\partial \psi} \tilde{L}_{\text{val}}(\hat{\theta}(\psi))$)	
Quadratic $-H(\hat{\theta}(\psi_t), \psi) - \frac{1}{\partial \hat{\theta}} L_{\text{tr}}(\hat{\theta}(\psi_t), \psi)$	$-\frac{\partial}{\partial \psi} \mathbb{E}_{\tilde{\psi} \sim p_{\psi}} [\frac{\partial}{\partial \hat{\theta}} l(\zeta, \hat{\theta}(\psi_t))]^T \bigg	_{\psi = \psi_t} H(\hat{\theta}(\psi_t), \psi_t) - \frac{1}{d\theta} L_{\text{val}}(\hat{\theta}(\psi_t))$
Approx. Quadratic $H(\hat{\theta}(\psi_t), \psi) \frac{\partial}{\partial \hat{\theta}} L_{\text{tr}}(\hat{\theta}(\psi_t), \psi)$	$\frac{\partial}{\partial \psi} \mathbb{E}_{\tilde{\psi} \sim p_{\psi}} [\frac{\partial}{\partial \hat{\theta}} l(\zeta, \hat{\theta}(\psi_t))]^T \bigg	_{\psi = \psi_t} H(\hat{\theta}(\psi_t), \psi_t) \frac{d}{d\theta} L_{\text{val}}(\hat{\theta}(\psi_t))$
Linear $-\frac{\partial}{\partial \hat{\theta}} L_{\text{tr}}(\hat{\theta}(\psi_t), \psi)$	$-\frac{\partial}{\partial \psi} \mathbb{E}_{\tilde{\psi} \sim p_{\psi}} [\frac{\partial}{\partial \hat{\theta}} l(\zeta, \hat{\theta}(\psi_t))]^T \bigg	_{\psi = \psi_t} \frac{d}{d\theta} L_{\text{val}}(\hat{\theta}(\psi_t))$
No Val 1	$-\frac{\partial}{\partial \psi} \mathbb{E}_{\tilde{\psi} \sim p_{\psi}} [\frac{\partial}{\partial \hat{\theta}} l(\zeta, \hat{\theta}(\psi_t))]^T \bigg	_{\psi = \psi_t} \frac{d}{d\theta} L_{\text{val}}(\hat{\theta}(\psi_t))$
AutoSimulate

Derivative:

\[
\frac{\partial \tilde{L}_{\text{val}}(\hat{\theta}(\psi))}{\partial \psi} \bigg|_{\psi=\psi_t} = -\frac{\partial}{\partial \psi} \left[\frac{\partial L_{\text{train}}(\hat{\theta}(\psi_t), \psi)}{\partial \theta} \right]^T \bigg|_{\psi=\psi_t} \frac{H(\hat{\theta}(\psi_t), \psi)^{-1}}{d \theta} \frac{dL_{\text{val}}(\hat{\theta}(\psi_t))}{d \theta}
\]

Optimizing Simulator:

\[
\psi_{t+1} \leftarrow \psi_t - \alpha \frac{\partial \tilde{L}_{\text{val}}(\hat{\theta}(\psi))}{\partial \psi} \bigg|_{\psi=\psi_t}
\]
Algorithm 1: AutoSimulate

for number of iterations do

Sample dataset of size K: $D_{\text{train}} \sim p_{\psi_t}(\zeta)$

Fine-tune model for ϵ epochs on D_{train}

Compute $H(\hat{\theta}(\psi_t), \psi_t)^{-1} \frac{d}{d\theta} \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t))$ using CG

Compute gradient of expectation as $\sum_{k=1}^{K} \frac{d}{d\psi} \log q_{\psi}(s_k). \left[\frac{\partial}{\partial \theta} l(s_k, \hat{\theta}(\psi_t)) \right]^T$

Update simulator by descending the gradient

$$-\frac{\partial}{\partial \psi} \mathbb{E}_{\zeta \sim p_{\psi}} \left[\frac{\partial}{\partial \theta} l(\zeta, \hat{\theta}(\psi_t)) \right]^T \bigg|_{\psi = \psi_t} H(\hat{\theta}(\psi_t), \psi_t)^{-1} \frac{d}{d\theta} \mathcal{L}_{\text{val}}(\hat{\theta}(\psi_t))$$

end for
Experiments

- Optimizing photorealistic Arnold renderer (non-differentiable)
- For object detection on real-world dataset LM-O (with 12 classes)
Results: Faster

50x
Results: More Accurate (mAP)

+8.5%
Results: Requires Lesser Data

![Bar chart showing the number of images required by different methods: AutoSimulate, Bayesian Optimization, Random Search, and LTS. LTS requires the least data.]
Real World Object Detection

- We run each method for a 1,000 epochs
- Val. mAP: maximum validation mAP, Test mAP: test mAP.
- Images and Time: number of images generated and time spent to reach maximum validation mAP.

Method	Val. mAP	Images	Time(s)	Test mAP
REINFORCE (LTS)	40.2	86,150	114,360	37.2
Bayesian Optimization	39.3	9,200	83,225	37.5
Random Search	40.3	34,300	134,318	37.0
AutoSimulate	37.1	8,950	23,193	36.1
AutoSimulate(Approx Quad)	40.1	2,950	2,321	37.4
AutoSimulate (Linear)	**41.4**	17,850	30,477	**45.9**
Results: Object Detections
Ablation: Generalization

• In this ablation, we study whether a simulator trained on a shallow network generalizes to a deeper network.

• Simulator was trained on Yolo and tested on Faster-rcnn.

Method	mAP (Faster-rcnn)	mAP (Yolo)
REINFORCE (LTS)	51.8	37.2
Bayesian Optimization	46.0	37.5
Random Search	50.3	36.8
Ours	**55.1**	**45.9**
Ablation: Effect of Freezing Layers

• It is a common practise to train on synthetic data with the initial layers of the network frozen and trained on real data.

• We see the relative performance of different simulator optimization methods under this scenario

Method	0 frozen layers	98 frozen layers	104 frozen layers
	mAP Time(s) Images	mAP Time(s) Images	mAP Time(s) Images
REINFORCE (LTS)	37.2 114,360 86,150	33.0 114,360 86,150	31.9 145,193 104,600
Bayesian Optimization	37.5 83,225 9\,225	31.7 13,940 3,550	31.7 30,538 6,050
Random Search	36.8 134,137 34,300	30.2 8,913 3,500	28.9 73,411 21,650
Ours	45.9 30,477 17,850	37.1 2,321 2,950	35.8 958 1,000
Ablation: Effect of Network Size

• We first examine the effect of network depth on simulator training
• Our method is even faster in optimizing smaller networks.

Method	Yolo-spp	Yolo-Tiny				
	mAP	Time(s)	Images	mAP	Time(s)	Images
REINFORCE (LTS)	37.2	114,360	86,150	24.7	3,475	11,550
Bayesian Optimization	37.5	83,225	9,225	19.5	65,760	35,700
Random Search	36.8	134,137	34,300	20.6	7,319	11,620
Ours	**45.9**	**30,477**	17,850	**21.2**	**484**	**280**
Acknowledgements

- Vibhav Vineet (MSR Redmond)
- Tencent
- Ondrej Miksik (Microsoft AI, Zurich), Tomas Hodan (Czech Technical University Prague)
- Emanuel Shalev, Pedro Urbina (Microsoft Hololens Synthetics Team)
- Prof. M. Pawan Kumar (Oxford)
Thank You