Observation of micro–macro entanglement of light

A. I. Lvovsky1,2*, R. Ghobadi1,3, A. Chandra1, A. S. Prasad1 and C. Simon1

Schrödinger’s famous thought experiment1 involves a (macroscopic) cat whose quantum state becomes entangled with that of a (microscopic) decaying nucleus. The creation of such micro–macro entanglement is being pursued in several fields, including atomic ensembles2, superconducting circuits3, electro-mechanical4 and opto-mechanical5 systems. Here we experimentally demonstrate the micro–macro entanglement of light. The macro system involves over a hundred million photons, whereas the micro system is at the single-photon level. We show that microscopic quantum fluctuations (in field quadrature measurements) on one side are correlated with macroscopic fluctuations (in the photon number statistics) on the other side. Further, we demonstrate entanglement by bringing the macroscopic state back to the single-photon level and performing full quantum state tomography of the final state. Although Schrödinger’s thought experiment was originally intended to convey the absurdity of applying quantum mechanics to macroscopic objects, this experiment and related ones suggest that it may apply on all scales.

Schrödinger cat states are notoriously difficult to generate and observe because even the minutest interactions of the system with the environment entangle the two, thereby decohering the superposition. In the optical domain, decoherence is mainly due to losses associated with absorption and spurious reflection at interfaces. However, certain optical states exhibit surprising robustness with respect to such losses, and can be truly macroscopic, yet maintain properties of a quantum superposition.

There have been several recent studies aimed at creating micro–macro entanglement of light4–8. For example, ref. 6 claimed to have demonstrated micro–macro entanglement involving 104 photons on the macro side by starting with a polarization-entangled photon pair and amplifying one of the photons. However, these results were shown to be inconclusive by pointing out that equivalent results could be obtained with a separable state9. It was subsequently understood10 that, although the state of ref. 6 is robust to losses, it is very difficult to detect micro–macro entanglement by means of direct measurements (such as photon counting) on the macroscopic state, because the relevant measurements need to have extremely high resolution. This issue may be resolved by bringing the macroscopic state back to the single-photon level by inverting the amplification operation11.

The type of amplification considered in the above references was based on optical nonlinearities (squeezing). A significantly simpler approach is to use the phase-space displacement operation to render the state in one or both channels macroscopic6. One can start with the delocalized single-photon state

\[
|\Psi_0\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |0\rangle_B)
\]

(1)

where \(a\) is the macroscopic displacement vector (Fig. 1a). The resulting state is an attractive candidate for the observation of micro–macro entanglement. Surprisingly, even though the displaced single-photon and vacuum states are close in phase space and in mean photon numbers \((\langle N \rangle \approx \alpha^2\rangle\), they are macroscopically different in the photon number variance. This property makes the state (2) a macroscopic quantum superposition according to the most basic definition12, namely a superposition of two states with macroscopically different values for a physical observable. The necessary phase-space displacement is easy to implement in the laboratory: this is done by overlapping the target state with a strong coherent state on a highly asymmetric beam splitter13,14.

State (2) is only weakly sensitive to losses7, which is very advantageous from the point of view of experimental implementation. In contrast, its sensitivity to phase noise increases with the size of the displacement7, making it essential to implement a highly phase-stable set-up. This increasing sensitivity to a decoherence mechanism can be seen as an additional argument for the macroscopic character of the superposition (2) (ref. 15).

Finally, one can easily verify the entangled nature of state (2). To that end, one can undo the displacement in Bob’s channel by applying operator \(D(-\alpha)\) to it, bringing state (2)
back to microscopic\textsuperscript{2,11} (1), and characterizing it by homodyne
tomography\textsuperscript{16}.

Here, we implement state (2) and test it for the two salient
features of Schrödinger’s cat: macroscopicity and entanglement.
First, we verify that, by changing the conditions of a microscopic
measurement in Alice’s channel and conditioning on specific results
of that measurement, we obtain states with macroscopically distinct
photon number statistics in Bob’s channel. Second, we perform
homodyne tomography on the undisplaced state and verify that
the entanglement has been preserved through the displacement and
undisplacement operations.

The principal scheme of the first part of the experiment is
shown in Fig. 1a,b. A heralded single photon from a parametric
down-conversion set-up propagates through a symmetric beam
splitter to generate the nonlocal single-photon state. We perform
a phase-space quadrature measurement in Alice’s mode by means
of a balanced homodyne detector\textsuperscript{17}. At the same time, Bob’s mode is
subjected to phase-space displacement with $\alpha^2 \sim 1.6 \times 10^4$ photons,
after which its photon number $N_B$ is measured.

These energy measurements exhibit macroscopic quantum fluctua-
tions whose statistics are correlated with Alice’s measurements of
the field quadrature (Fig. 2). This can be qualitatively understood as
follows. Alice’s measurement of the position observable $X_A$ collapses
the entanglement, projecting Bob’s mode onto state\textsuperscript{18}

$$ |\psi_B\rangle = \frac{1}{\sqrt{2}} \left( |\psi_a(X_A)\rangle D(\alpha)|1\rangle_B + |\psi_b(X_A)\rangle \bar{D}(\alpha)|0\rangle_B \right) $$

(3)

where $\psi_{a,b}(X)$ are the wavefunctions of the zero- and one-photon
states in the position basis. If $X_A$ is close to zero, we have
$|\psi_a(X_A)| \ll |\psi_b(X_A)|$, so the state in Bob’s channel is close to $D(\alpha)|1\rangle$ and its photon number noise variance is about $\langle \Delta N^2 \rangle \sim 3\alpha^2$. On the other hand, if Alice observes a high quadrature value $X_A \gg 1$, Bob’s mode is projected onto a state close to $\bar{D}(\alpha)|0\rangle$ so $\langle \Delta N^2 \rangle \sim \alpha^2$.

In this way, projecting onto different values of a microscopic
observable at Alice’s end leads to macroscopically different photon
number statistics at Bob’s.

Although ideally the ratio between the photon number variances
in these two situations equals 3, in our experiment this number is
reduced to about 1.35, primarily owing to two effects. First, the
observed data are influenced by the imperfection in the preparation
of the single-photon state and linear losses, which manifest themselves
as an admixture of the vacuum state $|0\rangle_B \otimes |0\rangle_B$ to the ideal state
(1) (refs 17,19). In this work, the vacuum fraction is $1 - \eta = 0.46$. Second, we measure the photon number by means of a balanced
photodetector\textsuperscript{20}. Bob’s mode is incident onto the sensitive area of
one of its photodiodes while the other photodiode is illuminated
by a reference laser pulse of exactly the same mean energy. The
subtraction signal is then proportional to $N_B - N_R$, where $N_R$ is
the number of photons in the reference pulse. This technique is
necessary because the photon number fluctuations of the displaced
field are on the scale of $\alpha$, whereas its mean is much higher:
$\langle N_B \rangle \approx \alpha^2$. Subtraction of the reference pulse permits elimination
of this background along with its classical noise. As a trade-off,
this technique adds to the shot noise $\langle \Delta N^2 \rangle_c = \alpha^2$ to the signal, thereby
reducing the observed ratio of the photon number variances.

The experimental results (Fig. 2) exhibit different behaviour
dependent on the relative phase of Alice’s quadrature measurement
and Bob’s displacement. If the two are the same, we observe that
not only the variance but also the mean of the photon number
observed in Bob’s channel is correlated with Alice’s results. On
the other hand, if the phases are orthogonal, the mean photon number
is almost constant. Therefore, by choosing which quadrature to
measure, Alice can influence the state prepared in Bob’s channel.
This is a consequence of the entangled nature of state (2); similar
phenomena have been observed in discrete\textsuperscript{21}, continuous\textsuperscript{22} and
hybrid\textsuperscript{18} systems, but not yet on a macroscopic level. In particular,
this behaviour explicitly shows absence of decoherence of the two
terms in (2). If such decoherence were present, we would observe no
dependence on Alice’s choice of quadratures.

An interesting interpretation of our results arises if one rewrites
state (2) in the superposition basis:

$$ |\Psi_B\rangle = \frac{1}{2 \sqrt{2}} \left[ (|0\rangle + |1\rangle) \otimes \bar{D}(\alpha)(|0\rangle + |1\rangle)_B 
- (|0\rangle - |1\rangle) \otimes \bar{D}(\alpha)(|0\rangle - |1\rangle)_B \right] $$

\textbf{Figure 2} | Photon number statistics of the state in Bob’s channel that is
conditionally prepared by Alice’s quadrature measurement. \textbf{a, b}. Mean (\textbf{a})
and variance (\textbf{b}) of the difference $N_B - N_R$ between the photon numbers
and the reference beam. Filled circles correspond to the displacement in
Bob’s channel along the same quadrature as Alice’s measurement; for open
circles the displacement and measurement are in orthogonal quadratures.
The dashed line in (\textbf{b}) corresponds to $2\alpha^2$; that is, the variance that would be
observed if Bob’s channel contained a coherent state of amplitude $\alpha$.
\textbf{c}. Histograms of $N_B - N_R$ conditioned on Alice’s measurement result within
intervals I, II, III shown in (\textbf{a, b}) by shaded areas. All histograms correspond
to the displacement and measurement in the same quadrature. Solid and
dashed lines in (\textbf{c}) show theoretical predictions, respectively with and
without taking experimental imperfections into account. The statistics
represented by histograms I and III, corresponding approximately to states
$1/\sqrt{2} (D(\alpha)|0\rangle \pm |1\rangle)$, can be distinguished by a single energy measurement
with a 68% certainty. They are reminiscent of the dead and alive states of
Schrödinger’s cat.
Figure 3 | Homodyne tomography of the micro-macro entangled state after undisplacing Bob's mode. a. Density matrix showing entanglement of Alice's and Bob's modes. The plot shows the matrix elements corresponding to zero- and one-photon domains of the optical Hilbert space; the diagonal element contribution from other domains does not exceed 1.2%. b. Concurrence $C(\rho) = 2(\sqrt{\rho_{11}} - \sqrt{\rho_{00}})$ of the two-mode state $^2$ as a function of the attenuation between the displacement and undispacement operations shows that micro-macro entanglement is robust to optical losses. The dashed theoretical curve corresponds to state (1) and accounts for the losses; the solid curve also accounts for the two-photon term of weight 1.5% that contaminates the heralded single photon.

This, again, can be viewed as Schrödinger's cat, but now the macroscopic terms $D(\alpha)\{\ket{0} \pm \ket{1}\}_A$ have photon number statistics with different mean values of $\alpha^2 + 1/2 \pm \alpha$ and standard deviations of $\alpha \sqrt{2}$. Performing a single measurement of the photon number observable and checking whether the result exceeds $\alpha^2$ allows one to distinguish these states from each other with an error probability of 10.1%. In other words, the two macroscopic components of our state are distinguishable by means of a single-shot measurement using a detector without microscopic sensitivity.

This fact, which further emphasizes the Schrödinger's cat nature of our state, is confirmed by the experimental results. Alice's observation of quadrature values $X_A$ such that $\psi_0(X_A) = \pm \psi_1(X_A)$ leads, according to (3), to projecting Bob's channel onto states $D(\alpha)\{\ket{0} \pm \ket{1}\}_A$. The relevant experimentally observed statistics of Bob's photon number measurement (shown in panels I and III of Fig. 3c) are substantially different, albeit not as much as expected theoretically in the idealized setting. This is due to the measurement imperfections discussed above, which increase the probability of error in distinguishing the two states to about 32%.

For a direct verification of entanglement, we apply the inverse displacement $D(-\alpha)$ to Bob's mode of state (2). Both modes of that state are then subjected to balanced homodyne detection at various local oscillator phases (Fig. 1c). The data output by Bob's homodyne detector exhibit residual phase-dependent quadrature displacement on a scale of $\alpha$, ~10, which we suppress by means of electronic filters. The collected quadrature data are used to reconstruct the density matrix of the two-mode state. This density matrix (Fig. 3) is consistent with a mixture of state (1) with weight $\eta$ and vacuum state with weight $1 - \eta$ and shows a high degree of entanglement. As undisplacement is a local operation, entanglement of the reconstructed state after the undisplacement operation shows that the micro-macro state was entangled as well.

Finally, we verified the robustness of entanglement of state (2) with respect to losses. We inserted a series of attenuators between the displacement and undisplacement operations and reconstructed the density matrix of the resulting state. Figure 3b shows that, although entanglement is degraded with loss, the rate of this degradation is similar to that expected in the absence of displacement.

To summarize, we have conclusively demonstrated, for the first time, an optical entangled state consisting of two terms that are both macroscopic in the particle number and macroscopically distinct from each other. These features distinguish our work from previous experiments aimed at generating large-size optical coherent superpositions.

We emphasize the difference between our experiment and homodyne tomography of optical states. Although the latter also involves interference of a microscopic optical state with a strong field, the fields generated by this interference are viewed as a part of the measurement process—akin to the electronic cascade within an avalanche photodetector. The present work, in contrast, studies these fields as part of a quantum system and unveils their macroscopic and entangled character.

A state similar to ours can be implemented in other quantum systems, for example, in atomic ensembles. A delocalized coherent spin excitation stored in two atomic clouds can be subjected to phase-space displacement by briefly applying a magnetic field perpendicular to the quantization axis, leading to precession of the macroscopic Bloch vector by a small angle. The resulting atomic collective state can be measured and its entanglement verified using the technique of off-resonant Faraday interaction. Another intriguing possibility is to combine the present approach with opto-mechanical systems.

Our study contributes to the ongoing discussion in the literature regarding the definition of macroscopic quantum superpositions. We have here adopted the most basic definition, a superposition of two states that have macroscopically different expectation values for some physical observable. We have shown that our state is compliant not only with this definition, but with an even stronger criterion: its two components are largely distinguishable by means...
of single-shot measurements with a macroscopic detector. Another argument for the macroscopicity of our state is its high sensitivity to certain types of decoherence. However, there are also definitions of macroscopic quantum superpositions that are more stringent, and would exclude the present state. We hope that our work will stimulate further investigation and discussion on this topic, which should eventually bring about a much more precise understanding of what is meant by macroscopic quantum effects. In particular, this may lead to a more detailed taxonomy of different Schrödinger cats.

There are more practical questions as well. Although the two terms comprised in state (2) are macroscopically distinct, their difference scales as a square root of their size. This feature is related to the robustness to loss exhibited by our state. Will it be possible to experimentally demonstrate macroscopic entanglement for a state that contains terms whose difference in photon number is comparable to their magnitude? What is the general class of macroscopic entangled optical states that are robust to losses? Will such states be useful for quantum technology, for example quantum metrology? Some of these questions are already being discussed in the literature, but more research is required before complete answers are found.

**Methods**

We use a mode-locked Ti:sapphire laser (Coherent Mira 900) to produce transform-limited pulses of ~1.6 ps width at ~790 nm wavelength and a repetition rate of 76 MHz. The light from this laser is frequency doubled in a single pass through a 17-mm-long lithium triborate crystal and subjected to spatial filtering, yielding ~45 mW average power at 390 nm. This field is focused, with a waist of 100 μm, into a 2-mm-long periodically poled potassium-titanyl phosphate crystal for parametric down-conversion, in a type II spatially and spectrally degenerate configuration. The signal and idler photons are separated using a polarizing beam splitter. Idler photons are filtered spatially with a single-mode fibre and spectrally with a 0.3 nm interference filter, and subsequently registered by a Perkin Elmer SPCM-AQR-14 FC single-photon detector. Count events occur at a rate of 50–60 kHz. Each such event heralds preparation of a single photon in the signal channel, in a highly pure spatial and spectral mode; however, the signal state features a small (~1.5%) two-photon fraction due to the high amplitude of parametric down-conversion.

The heralded single photon is directed into the circuit shown in Fig. 4. It is first split between Alice’s and Bob’s stations using a half-waveplate H1 and polarization beam splitter P1. A strong field from the laser is entering the other input port of P1, its horizontally polarized transmitted portion (~10 mW) serving as the local oscillator for Alice’s homodyne detector and its vertically polarized reflected portion (~120 μW) providing the displacement field for Bob’s channel. Waveplate H3, whose optical axis is rotated by 4.5° with respect to horizontal, mixes the displacement field with Bob’s portion of the entangled single photon in the horizontal mode, creating phase-space displacement in that mode. The resulting displaced field power is 3 mW, or ~e2 = 1.6 x 10^6 photons.

Alice’s portion of the single photon is mixed with the local oscillator using H2 and P2 for homodyne detection. To change the phase relation between the quadrature measured by Alice and the phase-space displacement of Bob’s mode, a quarter-waveplate Q1 is inserted into Alice’s channel.

To implement the configuration shown in Fig. 1c, we remove waveplates Q2, H4 and H5. In this way, the displaced mode is transmitted through P3 and P4. Bob’s reference beam, on the other hand, is reflected from P3 and P4. For quadrature measurements in Bob’s channel (Fig. 1b), we insert waveplates Q2 and H4 to undo the displacement in the horizontal mode and waveplate H5 to mix the local oscillator and the signal field. In this way, the same balanced detector can be used for both the energy and quadrature (homodyne) measurements at Bob’s station. Note that phase locking between the local oscillators in Alice’s and Bob’s channels was not necessary because the phase drift of these two fields was much slower than the data acquisition rate.

Received 10 May 2013; accepted 5 June 2013; published online 21 July 2013; corrected online 25 July 2013

**References**

1. Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935).
2. Juištienė, B., Kozhukhin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).
3. Neeley, M. et al. Process tomography of quantum memory in a Josephson-phc qubit coupled to a two-level state. Nature Phys. 4, 523–526 (2008).
4. O’Connell, A. D. et al. Quantum ground state and single-photon control of a mechanical resonator. Nature 464, 697–703 (2010).
5. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kimpenborg, T. J. Quantum–coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).
6. De Martini, F., Sciarrino, F. & Vitelli, C. Entanglement test on a microscopic-macroscopic system. Phys. Rev. Lett. 100, 253601 (2008).
7. Sekatskii, P. et al. Proposal for exploring macroscopic entanglement with a single photon and coherent states. Phys. Rev. A 86, 060301(R) (2012).
8. Gobadi, R., Livosky, A. I. & Simon, C. Creating and detecting micro–macro photon-number entanglement by amplifying and de-amplifying a single-photon entangled state. Phys. Rev. Lett. 110, 170406 (2013).
9. Sekatskii, P., Sanguinetti, B., Pomarico, E., Gisin, N. & Simon, C. Cloning entangled photons to scales one can see. Phys. Rev. A 82, 053814 (2010).
10. Raisi, S., Sekatskii, P. & Simon, C. Coarse graining makes it hard to see micro–macro entanglement. Phys. Rev. Lett. 107, 230401 (2011).
11. Raisi, S., Titel, W. & Simon, C. Proposal for inverting the quantum cloning of photons. Phys. Rev. Lett. 108, 120402 (2012).
12. Leggett, A. J. Testing the limits of quantum mechanics: Motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415 (2002).
13. Paris, M. G. A. Displacement operator by beam splitter. Phys. Lett. A 217, 78 (1996).
14. Livosky, A. I. & Babichev, S. A. Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801(R) (2002).
15. Dür, W., Simon, C. & Cirac, J. I. Effective size of certain macroscopic quantum superpositions. Phys. Rev. Lett. 89, 210402 (2002).
16. Babichev, S. A., Appel, J. & Livosky, A. I. Homodyne tomography characterization and nonlocality of a dual-mode optical qubit. Phys. Rev. Lett. 92, 193601 (2004).
17. Livosky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).
18. Babichev, S. A., Brezger, B. & Livosky, A. I. Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004).
19. Huismans, S. R. et al. Instant single-photon Fock state tomography. Opt. Lett. 34, 2739–2741 (2009).
20. Kumar, R. et al. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt. Commun. 285, 2529 (2012).
21. Saunders, D. J., Jones, S. I., Wiseman, H. M. & Pryde, G. J. Experimental EPR-steering using Bell-local states. Nature Phys. 6, 845–849 (2010).
22. Ou, Z. Y., Pereira, S.F., Kimble, H. J. & Peng, K. C. Realization of the Einstein–Podolsky–Rosen paradox for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992).
23. Morin, O. et al. Witnessing single-photon entanglement with local homodyne measurements. Phys. Rev. Lett. 110, 130401 (2013).
24. Ourjoumtsev, A., Jeong, H., Tuille–Broui, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).
25. Ishikhak, T. S., Agafonov, I. N., Chekhova, M. V. & Leuchs, G. Polarization-entangled light pulses of 10^9 photons. Phys. Rev. Lett. 109, 150502 (2012).
26. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).
27. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).
28. Marquardt, F., Abel, B. & vom Delf, I. Measuring the size of a quantum superposition of many-body states. Phys. Rev. A 78, 012109 (2008).
29. Lee, C. W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett. 106, 220401 (2011).
30. Vitelli, C., Spagnolo, N., Toffoli, L., Sciarrino, F. & De Martini, F. Enhanced resolution of lossy interferometry by coherent amplification of single photons. Phys. Rev. Lett. 105, 113602 (2010).

**Acknowledgements**

The work was sponsored by NSERC, CIFAR and AITF. A.I.L. is a CIFAR Fellow. We thank N. Brunner, N. Sanguinetti, N. Gisin, R. Thew, S. Rahman–Keshari, S. Raeisi and B. Sanders for helpful discussions.

**Author contributions**

R.G., A.I.L. and C.S. conceived the experiment. A.I.L. performed the experiment with help from A.C. and A.S.P. A.I.L. and C.S. wrote the paper with input from A.S.P., R.G. and A.C.

**Additional information**

Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to A.I.L.

**Competing financial interests**

The authors declare no competing financial interests.
Observation of micro–macro entanglement of light
A. I. Lvovsky, R. Ghobadi, A. Chandra, A. S. Prasad and C. Simon

Nature Physics http://dx.doi.org/10.1038/nphys2682 (2013); published online 21 July 2013; corrected online 25 July 2013.

In the version of this Letter originally published online, in Fig. 1, panels b and c were transposed. This error has now been corrected in all versions of the Letter.