Using DEMATEL approach to develop relationships of performance indicators on sustainable service only supply chain performance measurement

EB Leksono 1,2*, Suparno 2 and I Vanany 2
1 Department of Industrial Engineering, Universitas Muhammadiyah Gresik, Gresik 61121, Indonesia
2 Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukohilo-Surabaya 60111, Indonesia

*eko_budileksono@umg.ac.id

Abstract. Service only supply chain (SOSC) concept is service supply chain (SSC) implementation on pure services. The globalization and stakeholder pressure makes operation of SSC should give the attention to the environment effect, community, economic and intangibility assets. SOSC performance measurement (SOSCPM) may be developed for measuring of performance for sustainability aspects and intangibility assets to meet customer satisfaction. This article discusses sustainable SOSCPM based on balanced scorecard (BSC), include sustainability aspects, intangibility and relations between perspectives and indicators. From literature review, it is found 34 performance indicators that must be confirm to expert and SC actors by survey. From survey validation using weighted average and level of consensus, it is found 29 valid indicators for processed by DEMATEL. From DEMATEL, it is found 26 indicators can be used on sustainable SOSCPM. Furthermore, innovation and growth perspective most influence to other, and customer perspective most important. Intangibility indicators incorporated on innovation and growth perspective very related with human resources. Finally, relations between perspectives and indicator used to design of BSC strategy maps.

1. Introduction
SSC implementation has become a trend because service sector has significant contribution to gross domestic product (GDP) [3] and affect to the world economic [4]. SSC has two categories, service only supply chains (SOSC) and product service supply chains (PSSC) [5]. SOSC is system which output orientation is pure services, for example: healthcare, hospitality, consultant, bank, etc. PSSC is system which output orientation are service and physical product, for example: restaurant, mass customization, etc. In 2013, services sector contribution to Indonesia GDP is 39, 87% [6] which most contributions from pure services, so pure services existence can be developed in Indonesia. The supply chain and performance measurement can used to develop of the pure service (service only).

The globalization and stakeholder pressure makes operation of SSC should more attention to sustainability issue which consists of economic, social and environment simultaneously [7]. Sustainability orientation on SC called sustainable SC [8]. The sustainable SC implementation on services can minimize of negative operation effect to environment and social and maximize of profit.
Main characteristic of services sector are intangibility assets that related with human resources [10]-[12], so SSC implementation must be attend to intangibility characteristic [2].

Sustainable SC needs performance measurement to success evaluation of: competitiveness increase [13], maximize of profit, minimize of environment negative effect and beyond of stakeholder expectation [14]. Limitations of sustainable SSCPM frameworks are less of interaction between SC actors on performance indicators determine [15], less on relationship between indicators based on sustainability aspect [7],[13], less on social aspect and focal company centralize [13],[16]. Besides, there aren’t models of sustainable SSCPM that focus to the intangibility characteristics. From the limitations, so sustainable SOSCPM need new model which all actors can participate on performance indicators define and describe relationship between indicators. Furthermore, the new model has attended to intangibility characteristic and sustainability aspects. Finally, the decision-making trial and evaluation laboratory (DEMATEL) can be used to develop sustainable SOSCPM based on BSC.

2. Literature review

2.1. The balanced scorecard (BSC) on SSCPM

The BSC is performance measurement model that describe of relationship between perspectives and or indicators on BSC strategy map as business strategy [17]. The BSC is dynamic and innovative method that can be developed and collaborated with other method [18]. The BSC can be used simultaneously by several organizations collaborate [19].

The determination of the performance perspective is starting point on the BSC because the perspectives explain view point of organization. There are 5 perspectives use on services sector: Financial, Customers, Operational, Information and Innovation & Growth [20].

2.2. The decision-making trial and evaluation laboratory (DEMATEL)

DEMATEL is one method on multiple-attribute decision making (MADM) as tool to help of decision making [21]. DEMATEL can be used to view direct or indirect relationship between variable or attribute using matrix to get all of causal relationship [22]. Beside, DEMATEL can describe of important level and influence level of an attribute or a variable on system [22].

2.3. Performance indicators of sustainable SOSC

Performance indicators on sustainable SOSCPM taken from literature review with topics: performance measurement, service SC, service SCPM and sustainable SSC practices show on table 1.

Economic aspect	Environmental aspect	Social aspect			
Indicators	References	Indicators	References	Indicators	References
Operational costs	[23], [24]	Conservation	[25], [26]	CSR	[14], [27]
ROI	[15], [24], [28]	Green service	[14]	Customer satisfaction	[14], [15], [28]
Profit	[4], [14], [29]	Energy consumption	[26], [30], [31]	Stakeholder satisfaction	[25], [32]-[36]
Total Revenue	[15], [24], [37]	Water consumption	[30], [31]	Local suppliers	[9], [31]
Efficiency	[9], [26], [38]-[40]	CO₂ emission	[14], [26], [39]	Local human resources	[25], [30], [41]
Quality of service	[4], [24], [26], [42], [43]	Waste treatment	[26], [30], [31]	Health & safety	[9], [26], [27], [39]
ROA	[4], [14], [24], [26], [42]	Green material	[36]	Organization behaviour	[38], [39]
Delivery Time	[24], [28]	Reuse & recycle	[9], [36], [39]	Information sharing	[44], [46]
Flexibility	[4], [15], [24], [28]	Green collaboration	Error! Reference source not found.	Regulations & laws	[9], [26], [31], [33], [38], [39]
Level of inventory	[15], [28]	Integrated of IT	Reference source not found.	[36], [46]	
Cost of TIC	[14], [28]		[23], [45], [47]		
Capacity of TIC	[28], [46], Error! Reference source not found.				
Human resources	[14], [31], [38]				
3. Methodology

Model development used survey with in depth interview. In this study we asked three scholars and six managers from suppliers and provider of service only business. Stage on model development:

a. Validation of survey result of indicators with weighted average (WA) and level of consensus (LC). Indicator cut off: WA ≥ 4.2 & LC ≥ 0.5 (economic) and WA ≥ 4.5 & LC ≥ 0.7 (environmental and social)[50], and then classification based on BSC perspectives

b. Survey to level of influence between perspective and indicator.

c. Design of BSC strategy map based on DEMATEL steps: build matrix of direct relation, normalization, total relationship, calculate important level and influence level and make a relationship diagram with significant matrix [22].

4. Result and discussion

4.1. Validation and classification of indicators

From literature review, the indicators were validated with survey. Then, survey result processed with WA and LC. It is found five indicators that not valid, namely: ROA, cost of TIC, CO2 emission, green material and local supplier. Finally, there are 29 valid indicators that classified into performance perspectives on table 2.

Financial	Customer	Operational	Information	Innovation & Growth
(X1)	Quality of service (X6)	Flexibility (X11)	Capacity of TIC (X20)	HR (X23)
ROI (X2)	Delivery Time (X7)	Level of inventory (X12)	Integrated of IT (X21)	Qualification & competency (X24)
Profit (X3)	CSR (X8)	Conservation (X13)	Information sharing (X22)	HRD (X25)
Total Revenue (X4)	Customer satisfaction (X9)	Green service (X14)		Organization behaviour (X26)
Efficiency (X5)	Stakeholder satisfaction (X10)	Energy consumption (X15)	Water consumption (X16)	Local HR (X27)
		Water consumption (X17)	Waste treatment (X17)	Health & safety (X28)
		Reuse & recycle (X18)	Green collaboration (X19)	Regulations & laws (X29)

4.2. Relation between perspectives and indicators

The DEMATEL steps used to design of relationship. Table 3 shows of influence level (D – R) and important level (D + R) of perspectives and indicators. Innovation and growth perspective is most influence and customer perspective is most important. The indicators of ROI (X2), water consumption (X16) and local human resource did not important and significant relations with other, so the BSC strategy map can develop without their indicators.
Table 3. Total relation matrix of perspectives and indicators.

Perspectives and Indicators	D	R	D+R	D-R
Financial				
Operational costs	3.27	3.756	7.026	0.485
ROI	1.155	1.686	2.842	-0.53
Profit	2.39	3.69	6.08	-1.3
Total revenue	2.677	3.57	6.25	-0.89
Efficiency	3.386	3.63	7.02	-0.24
Customer				
Quality of service	3.715	4.183	7.898	0.468
Delivery Time	2.694	3.378	6.072	-0.68
CSR	2.697	2.73	5.427	-0.03
Customer satisfaction	2.765	2.038	4.803	0.727
Stakeholder satisfaction	2.854	2.84	5.696	0.013
Operational				
Flexibility	3.518	3.924	7.442	0.405
Level of inventory	3.283	2.997	6.28	0.285
Conservation	2.233	2.044	4.277	0.189
Green service	2.06	2.554	4.614	-0.49
Energy consumption	3.493	3.2	6.693	0.292
Water consumption	2.29	2.385	4.675	-0.09
Waste treatment	1.867	2.432	4.299	-0.56
Reuse & recycle	2.67	2.71	5.381	0.33
Green collaboration	2.955	2.71	5.666	0.244
Information				
Capacity of TIC system	3.181	3.194	6.375	0.013
Integrated of inf. system	3.048	2.664	5.712	0.384
Information sharing	3.46	2.946	6.4	0.515
Innovation & Growth				
HR	4.421	3.05	7.471	1.371
Qualification & competency	3.17	2.8	5.978	0.37
HRD	3.622	2.89	6.513	0.731
Organization behaviour	3.667	3.056	6.724	0.611
Local HR	3.617	3.383	7.0	0.234
Health & safety	2.954	2.66	5.615	0.292
Regulations & laws	3.072	2.762	5.834	0.31

From the total relation matrix, we build significance matrix. The significance matrix describe of relationship between perspective and indicator and then will be input for BSC strategy map design. Figure 1 show of the BSC strategy map with twenty six indicators on five perspectives.
5. Conclusions
The sustainable SOSCPM can be developing based BSC and DEMATEL with five perspectives and twenty six indicators that oriented to sustainability dimensions and intangibility assets. We found two phenomenon’s on the sustainable SOSCPM performance measurement: first, an intangibility indicator on innovation and growth perspective is most influence to other indicator, and second, existence of customer perspective is most important. From the phenomenon, the human resource and customer must be more attention by services business. Further research need calculate weight of indicator base on relationship between indicators, then simulate by system dynamic to predict of performance in the future. Furthermore, the model can be implemented on several service only with similar of intangibility as baseline for improving of sustainable SOSCPM.

6. References
[1] Baltacioglu T, Ada E, Kaplan MD, Yurt And O and Cem Kaplan Y 2007 A new framework for service supply chains Serv. Ind. J 27(2) pp 105-24
[2] Giannakis M 2011 Conceptualizing and managing service supply chains Serv. Ind. J 31:11 pp 1809–1823
[3] Drzymalski J 2012 Supply Chain Frameworks for the Service Industry : A Review of the Literature
vol. 1 December pp 31–42

[4] Cho D W, Lee Y H, Ahn S H and Hwang M K 2012 A framework for measuring the performance of supply chain management Comput. Ind. Eng. 62:3 pp 801–818

[5] Wang Y, Wallace S W, Shen B and Choi T 2015 Service supply chain management : A review of operational models Eur. J. Oper. Res. 247:3 pp 685–698

[6] BPS 2014 Pertumbuhan Ekonomi Indonesia Triwulan II-2014 in Berita Resmi Statistik no. 16/02/Th. XVII pp 1–9

[7] Hassini E, Surti C and Searcy C 2012 A literature review and a case study of sustainable supply chains with a focus on metrics Int. J. Prod. Econ. 140:1 pp 69–82

[8] Linton J, Klassen R and Jayaraman V 2007 Sustainable supply chains: An introduction J. Oper. Manag. 25:6 pp 1075–1082

[9] Xu X and Gursoy D 2014 A conceptual framework of sustainable hospitality supply chain management J. Hosp. Mark. Manag. pp 1–31

[10] Marr B and Adams C 2006 The balanced scorecard and intangible assets: similar ideas, unaligned concepts Meas. Bus. Excell. 8:3 pp 18–27

[11] Zigan K and Zeglat D 2010 Intangible resources in performance measurement systems of the hotel industry Facilities 28 no. 13/14 pp 597–610

[12] Melnyk S A, Bititci U, Platz K, Tobias J and Andersen B 2014 Is performance measurement and management fit for the future? Manag. Account. Res. 25:2 pp 173–186

[13] Varsei M, Soosay C, Fahimnia B and Sarkis J 2014 Framing sustainability performance of supply chains with multidimensional indicators Supply Chain Manag. An Int. J. 19:3 pp 242–257

[14] Tajbakhsh A and Hassini E 2014 A data envelopment analysis approach to evaluate sustainability in supply chain networks J. Clean. Prod. Aug.

[15] Zhang X, Song H and Huang G Q 2009 Tourism supply chain management: A new research agenda Tour. Manag. 30:3 pp 345–358

[16] Beske-janssen P, Johnson M P and Schaltegger S 2015 20 years of performance measurement in sustainable supply chain management – what has been achieved? Supply Chain Manag. An Int. J. 20:6 pp 664–680

[17] Kaplan R S and Norton D P 1996 Linking the Balanced Scorecard to strategy Calif. Manage. Rev. 39:1 pp 53–79

[18] Kaplan R S and Norton D P 2006 Response to S. Voelpel et al., ‘The tyranny of the Balanced Scorecard in the innovation economy,’ Journal of Intellectual Capital, Vol. 7 No. 1, 2006, pp. 43–60 J. Intellect. Cap. 7:3 pp 421–428

[19] Kaplan R S, Norton D P and Rugelsjoen B 2010 Managing alliances with the Balanced Scorecard Harv. Bus. Rev. no. February 2010 pp 114–121

[20] Leksono E B, Suparno and Vanany I 2016 Development of conceptual framework for sustainable supply chain performance measurement in service industries in 8th Widyatama Int. Seminar on Sustainability pp 142–148

[21] Gölcük I and Baykasoglu A 2016 An analysis of DEMATEL approaches for criteria interaction handling within ANP Expert Syst. Appl. 46 pp 346–366

[22] Chen F, Hsu T and Tseng G 2011 A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP Int. J. Hosp. Manag. 30:4 pp 908–932

[23] Wei Y, Hu Q and Xu C 2013 Ordering, pricing and allocation in a service supply chain Int. J. Prod. Econ. 144:2 pp 590–598

[24] Wu I L, Chuang C H and Hsu C H 2014 Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective Int. J. Prod. Econ. 148 pp 122–132

[25] Sigala M 2008 A supply chain management approach for investigating the role of tour operators on sustainable tourism: the case of TUI J. Clean. Prod. 16:15 pp 1589–1599

[26] Büyükozkan G and Cifci G 2013 An integrated QFD framework with multiple formatted and
incomplete preferences: A sustainable supply chain application Appl. Soft Comput. 13 pp 3931–3941
[27] Hussain M, Khan M and Al-aomar R 2016 A framework for supply chain sustainability in service industry with Confirmatory Factor Analysis Renew. Sustain. Energy Rev. 55 pp1301–1312
[28] Bhagwat R and Sharma M K 2009 Performance measurement of supply chain management using the analytical hierarchy process Prod. Plan. Control 18: 8 pp 666–680
[29] Bhagwat R and Sharma M K 2007 Performance measurement of supply chain management: A balanced scorecard approach Comput. Ind. Eng. 53 pp 43–62
[30] Matos S and Hall J 2007 Integrating sustainable development in the supply chain: The case of life cycle assessment in oil and gas and agricultural biotechnology J. Oper. Manag. 25:6 pp 1083–1102
[31] Schwartz K, Tapper R and Font X 2008 A sustainable supply chain management framework for tour operators J. Sustain. Tour. 16: 3 pp 298–314
[32] Wicks A M, St Clair L and Kidney C S 2007 Competing values in healthcare: Balancing the (Un)Balanced Scorecard J. Healthc. Manag. 52: 5 pp 309–324
[33] Keating B, Quazi A, Kriz A and Coltman T 2008 In pursuit of a sustainable supply chain: insights from Westpac Banking Corporation Supply Chain Manag. An Int. J. 13: 3 pp 175–179
[34] Smith B K, Nachtmann H and Pohl E A 2011 Quality measurement in the healthcare supply chain Qual. Manag. J. 18:4 pp 50–60
[35] de Vries J and Huizsman R 2011 Supply chain management in health services: an overview Supply Chain Manag. An Int. J. 16:3 pp 159–165
[36] Chithambaranathan P, Subramanian N and Gunasekaran A 2015 Service supply chain environmental performance evaluation using grey based hybrid MCDM approach Int. J. Prod. Econ. no. 2006 pp 1–14
[37] Fu N, Flood P C, Bosak J, Morris T and O’Regan P 2013 Exploring the performance effect of HPWS on professional service supply chain management Supply Chain Manag. An Int. J. 18:3 pp 292–307
[38] Adriana B 2009 Environmental supply chain management in tourism: The case of large tour operators J. Clean. Prod. 17:16 pp 1385–1392
[39] Gopalakrishnan K, Yusuf Y Y, Musa A, Abubakar T and H M Ambursa 2012 Sustainable supply chain management: A case study of British Aerospace (BAe) Systems Int. J. Prod. Econ. 140:1 pp 193–203
[40] Brindley C and Oxborrow L 2014 Aligning the sustainable supply chain to green marketing needs: A case study Ind. Mark. Manag. 43:1 pp 45–55
[41] Font X, Tapper R, Schwartz K and Kornilaki M 2008 Sustainable supply chain management in tourism Bus. Strateg. Environ. 17 pp 260–271
[42] Elgazzar S H, Tippi N S, Hubbard N J and Leach D Z 2012 Linking supply chain processes performance to a company’s financial strategic objectives Eur. J. Oper. Res. 223:1 pp 276–289
[43] Lega F, Marsilio M and Villa S 2013 An evaluation framework for measuring supply chain performance in the public healthcare sector: evidence from the Italian NHS Prod. Plan. Control 24:10–11 pp 931–947
[44] Chen D Q, Preston D S and Xia W 2013 Enhancing hospital supply chain performance: A relational view and empirical test J. Oper. Manag. 31:6 pp 391–408
[45] Narayana S A, Kumar R and Vrat P 2014 Managerial research on the pharmaceutical supply chain – A critical review and some insights for future directions J. Purch. Supply Manag. 20:1 pp 18–40
[46] Lee H K and Fernando Y 2015 The antecedents and outcomes of the medical tourism supply chain Tour. Manag. 46 pp 148–157
[47] Parker J and DeLay D 2008 The future of the healthcare supply chain Healthc. Financ. Manag 62: 4 pp 66–69
[48] Wu T, Wu Y C, Chen Y J and Goh M 2014 Aligning supply chain strategy with corporate environmental strategy: A contingency approach International Journal of Production Economics 147 pp 220-9

[49] Hohenstein N O, Feisel E and Hartmann E 2014 Human resource management issues in supply chain management research Int. J. Phys. Distrib. Logist. Manag. 44: 6 pp 434–463

[50] Feil A A, De Quevedo D M and Schreiber D 2015 Selection and identification of the indicators for quickly measuring sustainability in micro and small furniture industries Sustain. Prod. Consum 3 pp 34–44