Article

Essential Oils from Vietnamese Asteraceae for Environmentally Friendly Control of Aedes Mosquitoes

Tran Minh Hoi 1, Prabodh Satyal 2, Le Thi Huong 3, Dang Viet Hau 4, Tran Duc Binh 1, Dang Thi Hong Duyen 4, Do Ngoc Dai 5, Ngo Gia Huy 6, Hoang Van Chinh 7, Vo Van Hoa 8, Nguyen Huy Hung 6,8,* and William N. Setzer 2,9,*

1 Department of Plant Resources, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
2 Aromatic Plant Research Center, Lehi, UT 84043, USA
3 School of Natural Science Education, Vinh University, Vinh City 43000, Vietnam
4 Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
5 Faculty of Agriculture, Forestry and Fishery, Nghe An College of Economics, Vinh City 43000, Vietnam
6 Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
7 Faculty of Natural Sciences, Hong Duc University, Thanh Hoa 440000, Vietnam
8 Department of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
9 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

* Correspondence: nguyenhuyhunghdyutan.edu.vn (N.H.H.); wsetzerchemistry.uah.edu (W.N.S.)

Abstract: Mosquitoes, in addition to being a biting nuisance, are vectors of several pathogenic viruses and parasites. As a continuation of our work identifying abundant and/or invasive plant species in Vietnam for use as ecologically friendly pesticidal agents, we obtained the essential oils of Blumea lacer, Blumea sinuata, Emilia sonchifolia, Parthenium hysterophorus, and Sphaeranthus africanus; analyzed the essential oils using gas chromatographic techniques; and screened the essential oils for mosquito larvicidal activity against Aedes aegypti and Aedes albopictus. The most active larvicidal essential oils were B. sinuata, which was rich in thymohydroquinone dimethyl ether (29.4%), (E)-β-caryophyllene (19.7%), α-pinene (8.8%), germacrene D (7.8%), and α-humulene (4.3%), (24-h LC₅₀ 23.4 and 29.1 µg/mL) on Ae. aegypti and Ae. albopictus, respectively, and Emilia sonchifolia, dominated by 1-undecene (41.9%) and germacrene D (11.0%), (24-h LC₅₀ 30.1 and 29.6 µg/mL) on the two mosquito species. The essential oils of P. hysterophorus and S. africanus were also active against mosquito larvae. Notably, B. sinuata, P. hysterophorus, and S. africanus essential oils were not toxic to the non-target water bug, Diplomychus rusticus. However, E. sonchifolia essential oil showed insecticidal activity (24-h LC₅₀ 48.1 µg/mL) on D. rusticus. Based on these results, B. sinuata, P. hysterophorus, and S. africanus essential oils appear promising for further investigations.

Keywords: Blumea lacer; Blumea sinuata; Emilia sonchifolia; Parthenium hysterophorus; Sphaeranthus africanus; essential oil composition; larvicidal activity

1. Introduction

The Asteraceae is the largest family of flora in the world, comprising about 1550 genera and about 23,000 species [1]. In Vietnam, there are about 126 genera and 379 species from this family [2]. Many species are used as medicines, for isolation of essential oils, or as ornamentals [2].

Blumea lacer (Burm. f.) DC. (syn. Conyza lacer Burm. f., Blumea bodinieri Vaniot, Blumea dregeanoides Sch. Bip. ex A. Rich., Blumea duclouxii Vaniot, Blumea glandulosa DC., Blumea subcapitata DC., Blumea velutina (H. Lév. and Vaniot) H. Lév. and Vaniot, Conyza velutina H. Lév., and Senecio velutinus H. Lév. and Vaniot) is found in China, Bhutan, India, Japan, Laos, Malaysia, Myanmar, Nepal, New Guinea, Pakistan, Sri Lanka, Thailand, and Vietnam [1].
The pharmacognosy and phytochemistry of *B. lacer* have been reviewed [3]. In traditional medicine, *B. lacer* has been used as an expectorant, diuretic, astringent, antispasmodic, antipyreric, antioxidant, antiinflammatory, liver tonic, and stimulant [4]. The leaves of *B. lacer* are fragrant, and in Vietnam, are used as a vegetable as well as a medicine to treat boils and stop bleeding [5].

Blumea sinuata (Lour.) Merr. (syn. *Blumea lacti* (Wall. ex Roxb.) DC., *Conyza laciniata* Roxb., Asteraceae) [6] is native to southern China, India, Pakistan, Sri Lanka, Bhutan, Nepal, Myanmar, Malaysia, Indonesia, the Philippines, and Vietnam, naturally ranging from southern China and India, south through Indonesia, Malaysia, Myanmar, Thailand, and Vietnam [1]. Its leaves and stems are used to treat boils, remove toxins from the body, and stop bleeding. Leaves of *B. sinuata* have been used to treat influenza, rheumatism, bone pain, or pain due to injury or swelling [3]. A review of the medicinal chemistry, phytochemistry, and pharmacology of the *Blumea* genus has been published [7].

Emilia sonchifolia (L.) DC. (syn. *Cacalia sonchifolia* L., *Crassocephalum sonchifolium* Less., *Emilia mucronata* Wall., *Emilia purpurea* Cass., *Emilia rigidula* DC., *Emilia scabra* DC., *Emilia sinica* Miq., *Senecio ecalyculatus* Sch. Bip., *Senecio rapae* F. Br., *Senecio sonchifolius* Moench) is a pantropical weed of Old World origin [8]. Ethnobotanically, the plant has been used to treat eye sores, convulsion, cuts, wounds, rheumatism, and insect bites [9]. In Vietnam, the leaves and young tops are used as vegetables, and the whole plant is used as medicine to reduce fever [5].

Parthenium hysterophorus L. (syn. *Argyrochaeta bipinnatifida* Cav., *Argyrochaeta parviflora* Cav., *Echetrosis pentasperma* Phil., *Parthenium lobatum* Buckley, *Parthenium pinnatifidum* Stokes) is believed to be native to the Gulf of Mexico, including Honduras, Guatemala, and Mexico, as well as the West Indies [10]. The plant was introduced to Australia, India, southern China, and Vietnam, where it became a noxious weed [11,12]. Nevertheless, the plant has shown potential medicinal applications [13–15].

Sphaeranthus africanus L. (syn. *Sphaeranthus cochinchenensis* Lour., *Sphaeranthus glaber* DC., *Sphaeranthus globosus* Wall. ex DC., *Sphaeranthus hildebrandtii* Baker, *Sphaeranthus indicus* Kurz, *Sphaeranthus laevigatus* Wall. ex DC., *Sphaeranthus microcephalus* Vatke, *Sphaeranthus microcephalus* Willd., *Sphaeranthus ovalis* Steetz, *Sphaeranthus paniculatus* Cass., *Sphaeranthus sphenocleoides* Oliv. and Hiern, *Sphaeranthus suberiflorus* Hayata) is native to Africa (Kenya, Tanzania, Mozambique, and Madagascar), tropical Asia (Bangladesh, Borneo, Cambodia, south-central and southeastern China, Hainan, India, Malaya, Myanmar, Nepal, Philippines, Sri Lanka, Taiwan, Thailand, and Vietnam), and Australia (Northern Territory, Queensland, and Western Australia) [16]. In Vietnam, a decoction of the leaves of *S. africanus* is used to prepare a mouthwash to treat sore throats [5]. Several biologically active carvotacetones have been isolated from *S. africanus* extracts [17–19].

Aedes mosquitoes (Culicidae) are acknowledged vectors of numerous pathogenic viruses. *Aedes aegypti* (L.) is known to transmit the yellow fever, Zika, dengue, and chikungunya viruses [20], whereas *Aedes albopictus* (Skuse) is a vector for West Nile, Japanese encephalitis, and Eastern equine encephalitis, as well as dengue and chikungunya viral pathogens [21]. Dengue fever is widespread in Southeast Asia, including Vietnam, and causes considerable health and economic burden [22]. Both chikungunya [23] and Zika [24] viral infections are emerging diseases in the region. Though synthetic insecticides have been used to control mosquito populations, there is growing concern regarding insecticidal resistance [25,26], environmental degradation [27,28], and harm to non-target organisms [29,30]. Essential oils have been recognized as potential alternatives to synthetic insecticides for control of insect pests, including mosquitoes [31,32].

As part of our research into the identification of readily available native and invasive plants in Vietnam as sources of essential oils for ecologically friendly pest control agents [33–36], we investigated *B. lacer*, *B. sinuata*, *E. sonchifolia*, *P. hysterophorus*, and *S. africanus* essential oils for mosquito larvicidal activity against *Aedes aegypti* (L.) and *Aedes albopictus* (Skuse) (Diptera: Culicidae) mosquitoes. These species of mosquitoes are the principal vectors of the dengue fever virus in Vietnam [37]. To test selectivity, we
screened the essential oils against the non-target water bug, *Diplonychus rusticus* (Fabricius), a predator of mosquito larvae. There have been several reviews on the potential pesticidal utility of essential oils to control mosquito populations [38–41].

2. Results and Discussion
2.1. Essential Oil Compositions
2.1.1. *Blumea lacera*

Floral, leaf, and stem essential oils of *B. lacera* were obtained at 1.10, 1.56, and 0.35%, respectively. The chemical compositions of *B. lacera* essential oils are presented in Table 1. The most abundant chemical components in the essential oils of *B. lacera* were (E)-β-caryophyllene (23.8, 27.2, and 11.7%), germacrene D (18.5, 21.0, and 11.2%), thymohydroquinone dimethyl ether (5.0, 4.1, and 28.4%), γ-curcumene (5.9, 7.7, and 4.7%), ar-curcumene (8.0, 3.7, and 1.9%), and α-zingiberene (4.7, 7.1, and 4.6%) in the flowers, leaves, and stems, respectively.

RI_{calc}	RI_{db}	Compound	Floral %	Leaf %	Stem %
931	933	α-Pinene	0.5	0.1	0.1
949	950	Camphene	tr	tr	—
971	972	Sabinene	0.1	tr	—
990	986	Saframal	0.1	0.4	tr
1024	1025	γ-Cymene	0.1	tr	tr
1028	1030	Limonene	tr	tr	—
1057	1054	γ-Terpine	tr	tr	—
1063	1086	2,6,6-Trimethyl-1,4-cyclohexadiene-1-carboxaldehyde	0.1	tr	tr
1099	1101	Linalool	0.2	0.1	tr
1101	1105	Filifolone	1.2	0.9	0.1
1105	1107	Nonanal	0.1	0.1	—
1108	1106	4-is-Chrysantheneone	0.1	0.1	—
1112	1110	(E)-4,8-Dimethylona-1,3,7-triene	0.1	tr	tr
1122	1124	Chrysantheneone	1.3	1.0	0.1
1129	1129	1,3,8-p-Menthatriene	—	—	0.1
1136	1138	trans-Chrysanthenol	0.3	0.2	0.1
1159	1152	Alibene	tr	tr	0.2
1223	1215	Isothymyl methyl ether	—	—	tr
1229	1229	Thymyl methyl ether	0.1	0.1	1.0
1238	1239	Carvacyl methyl ether	tr	tr	0.1
1256	1261	cis-Chrysanthenyl acetate	0.1	—	—
1284	1285	Bornyl acetate	—	—	0.1
1290	1289	Thymol	—	tr	—
1345	1345	Silphiene	—	—	tr
1374	1375	α-Copaene	0.1	0.1	tr
1380	1381	cis-β-Elemene	tr	0.1	0.1
1382	1382	β-Bourbonene	tr	tr	tr
1386	1387	β-Cubebeine	0.1	0.1	tr
1388	1390	trans-β-Elemene	1.6	2.1	1.1
1394	1392	2-Ethylidene-6-methyl-3,5-heptadienal	0.9	0.6	—
1413	1411	Thymohydroquinone dimethyl ether	5.0	4.1	28.4
1419	1417	(E)-β-Caryophyllene	23.8	27.2	11.7
1428	1430	β-Copaene	0.2	0.1	0.1
1431	1432	trans-α-Bergamotene	0.3	0.2	0.2
1434	1443	Dimethoxy-p-cymene	0.1	tr	0.5
1445	1446	epi-β-Santene	—	—	0.1
1446	1453	Geranyl acetone	0.1	tr	tr
1451	1452	(E)-β-Farnesene	0.9	0.8	0.5
1455	1454	α-Humulene	3.7	3.5	1.5
1459	1457	allo-Aromadendrene	0.1	0.1	tr
1461	1461	cis-Cadin-1(6),4-diene	0.1	0.1	—
1471	1475	trans-Cadin-1(6),4-diene	tr	—	—
1473	—	Unidentified (43, 148, 218)	0.4	0.2	1.0
1475	1480	Thymyl isobutyratate	0.9	0.5	2.7
1477	1481	γ-Curcumene	5.9	7.7	4.7
Table 1. Cont.

RI\textsubscript{calc}	RI\textsubscript{db}	Compound	Floral	Leaf	Stem
1480 1479	1482 1483	ar-Curcumene	8.0	3.7	1.9
1482 1490	1488 1489	Germacrine D	18.5	21.0	11.2
1488 1497	1491 1492	Neryl isobutyrate	tr	tr	0.2
1491 1493	1497 1499	β-Selinene	0.4	0.3	0.2
1502 1504	1506 1508	trans-Murola-4(14),5-diene	tr	0.1	0.1
1506 1508	1510 1514	χ-Zingiberene	5.7	7.1	4.6
1510 1516	1512 1518	Germacrene D	0.5	0.3	0.3
1512 1514	1516 1520	β-Sesquiphellandrene	3.6	3.8	2.4
1516 1522	1520 1524	(E)-Nerolidol	0.4	0.2	0.1
1520 1524	1528 1532	Thymyl 2-methylbutanoate	0.9	0.4	1.1
1528 1532	1536 1540	Neryl 2-methylbutanoate	0.9	0.8	3.3
1536 1540	1548 1552	Neryl isovalerate	0.8	0.5	1.3
1548 1552	1556 1560	Caryophyllene oxide	1.4	1.4	0.5
1556 1560	1564 1568	Humulene epoxide I	0.2	0.2	0.1
1564 1568	1566 1570	Humulene epoxide II	0.1	0.1	tr
1566 1570	1572 1576	Zingiberenol	0.3	0.2	0.3
1572 1576	1578 1582	7-epi-cis- Sesquisabinene hydrate	0.2	0.1	0.3
1578 1582	1584 1588	Caryophylla-4(12),8(13)-dien-5α-ol	0.1	0.1	0.1
1584 1588	1590 1594	Caryophylla-4(12),8(13)-dien-5β-ol	0.1	0.3	0.3
1590 1594	1596 1598	(25,5E)-Caryophyll-5-en-12-al	1.0	1.1	0.4
1596 1598	1602 1606	γ-Cadinol	0.8	0.8	3.0
1602 1606	1608 1612	μ-Murolol	0.4	0.3	0.4
1608 1612	1614 1618	δ-Cadinol	0.1	0.1	0.1
1614 1618	1620 1624	β-Eudesmol	—	—	0.1
1620 1624	1626 1630	α-Cadinol	1.2	1.0	1.3
1626 1630	1632 1636	Selin-11-en-4α-ol	tr	0.1	0.1
1632 1636	1638 1642	Intermedeol	tr	—	0.1
1638 1642	1644 1648	6-Methoxythymyl isobutyrate	0.2	0.1	0.9
1644 1648	1650 1654	14-Hydroxy-9-epi-(E)-caryophyllene	—	—	—
1650 1654	1656 1660	4-Himachalen-1β-ol (2-Himachalen-6β-ol)	0.7	0.5	0.8
1656 1660	1658 1662	α-Bisabolol	0.1	0.1	—
1658 1662	1660 1664	(Z,6Z)-Farnesal	0.1	0.1	—
1660 1664	1666 1670	Pentadecanal	—	0.2	0.2
1666 1670	1672 1676	Xanthorrhizol	—	—	0.1
1672 1676	1678 1682	(Z)-Nerolidyl isobutyrate	0.2	—	—
1678 1682	1684 1688	Unidentified (43, 71, 145, 162)	0.3	0.2	1.8
1684 1688	1690 1694	Unidentified (43, 57, 71, 85, 145, 162)	0.5	0.3	1.0
1690 1694	1696 1700	(E)-Phytol	tr	0.2	0.1
1696 1700	1702 1706	Pentacosane	tr	tr	0.1
1702 1706	1708 1712	Monoterpane hydrocarbons	0.6	0.1	0.1
1708 1712	1710 1714	Oxygenated monoterpenoids	13.0	9.3	44.9
1710 1714	1716 1720	Sesquiterpene hydrocarbons	76.1	80.1	41.5
1716 1720	1722 1726	Oxygenated sesquiterpenoids	7.6	6.8	7.7
1722 1726	1728 1732	Others	0.4	0.9	0.6
1728 1732	1734 1738	Total identified	97.7	97.3	94.7

RI\textsubscript{calc} = Retention indices determined with reference to a homologous series of \textit{n}-alkanes on a ZB-5 ms column. RI\textsubscript{db} = Retention indices from the databases. tr = trace (<0.05%). % = percent of total essential oil composition.

A \textit{B. lacera} leaf essential oil sample from Idaban, Nigeria, was found to contain thymohydroquinone dimethyl ether (33.9%) and (\textit{E})-β-caryophyllene (10.7%) as major components [42]. Similarly, the two essential oil samples from aerial parts of \textit{B. lacera} from central Vietnam were rich in (\textit{E})-β-caryophyllene (12.0 and 8.3%), thymohydroquinone dimethyl ether (11.4 and 6.6%), and caryophyllene oxide (21.7 and 11.9%) [43]. Joshi and co-workers have noted large variations in essential oil compositions in samples from different geographical regions of India with thymohydroquinone dimethyl ether ranging from 0.4 to 28.7% and (\textit{E})-β-caryophyllene from 0.5 to 25.5% [44]. In contrast, a previous examination of the essential oil from the aerial parts of \textit{B. lacera} from Biratnagar, Nepal, found the oil to be dominated by (\textit{Z})-lachnophyllum ester (25.5%), (\textit{Z})-lachnophyllic acid (17.0%), germacrene D (11.0%), (\textit{E})-β-farnesene (10.1%), bicyclogermacrene (5.2%), (\textit{E})-caryophyllene (4.8%),...
and (E)-nerolidol (4.2%) [45]. Both the essential oil and (Z)-lachnophyllum ester showed cytotoxic, antibacterial, and antifungal activity. Interestingly, neither lachnophyllum esters nor lachnophyllic acids were detected in the essential oils from Vietnam. It is not clear what factors contribute to the large variations in essential oil compositions, but environmental influences (climate, altitude, latitude, and edaphic conditions), seasonality, phenology, genotype variation, or extraction method have often been attributed to rationalize essential oil compositional differences [46].

2.1.2. *Blumea sinuata*

The fresh aerial parts of *B. sinuata* were hydrodistilled using a Clevenger apparatus to obtain the essential oil in 0.16% yield. The essential oil composition of *B. sinuata* is shown in Table 2. The major components in the essential oil of *B. sinuata* were thymohydroquinone dimethyl ether (29.4%), (E)-β-caryophyllene (19.7%), α-pinene (8.8%), germacrene D (7.8%), and α-humulene (4.3%). As far as we are aware, there is only one previous report on the essential oil of *B. sinuata* (as *B. laciniata*, from Dapoli region, Maharashtra, India) [47]. The GC–MS analysis, however, is not reliable, so a meaningful comparison of the compositions is not possible.

Table 2. Essential oil composition of *Blumea sinuata* from Vietnam.

RI_{calc}	RI_{db}	Compound	%
925	925	α-Thujene	tr
933	933	α-Pinene	8.8
949	950	Camphene	tr
952	953	Thuja-2,4(10)-diene	tr
970	972	Dimethyltrisulfide	tr
977	978	β-Pinene	tr
985	986	6-Methylhept-5-en-2-one	tr
988	989	Myrcene	0.1
989	989	2-Pentylfuran	tr
1007	1007	α-Phellandrene	tr
1025	1025	p-Cymene	0.1
1029	1030	Limonene	0.1
1031	1031	β-Phellandrene	tr
1045	1045	(E)-β-Ocimene	tr
1100	1101	Linalool	0.1
1106	1107	Nonanal	0.1
1107	1107	1-Octen-3-yl acetate	tr
1110	1108	p-Mentha-2,8-dien-1-ol	tr
1113	1113	(E)-1,5-Dimethylnona-1,3,7-triene	tr
1146	1145	trans-Verbenol	tr
1159	1161	Albene	0.3
1196	1195	α-Terpineol	tr
1207	1206	Decanal	tr
1230	1229	Thymyl methyl ether	0.4
1239	1239	Carvacryl methyl ether	tr
1266	1272	Nonanoic acid	0.1
1284	1285	Bornyl acetate	0.3
1323	1326	Myrtenyl acetate	tr
1346	1348	α-Cubebene	0.1
1350	1348	α-Longipinene	tr
1359	1361	Neryl acetate	0.3
1371	1371	Decanoic acid	1.5
1375	1375	α-Copaene	1.2
1383	1382	β-Bourbonene	0.1
RI_{calc}	RI_{db}	Compound	%
-----------	--------	----------	-----------
1387	1387	β-Cubebe	0.4
1389	1390	trans-β-Elemene	0.3
1415	1411	Thymohydroquinone dimethyl ether	29.4
1420	1417	(E)-β-Caryophyllene	19.7
1430	1430	β-Copaene	0.2
1433	1432	trans-α-Bergamotene	0.1
1441	1439	(Z)-β-Farnesene	0.1
1447	1446	epi-β-Santalene	0.1
1453	1452	(E)-β-Farnesene	3.5
1456	1454	α-Humulene	4.3
1460	1457	allo-Aromadendrene	0.5
1475	1478	γ-Muurolene	0.1
1479	1481	(E)-β-Ionone	0.1
1482	1483	Germacrene D	7.8
1484	1483	trans-β-Bergamotene	0.5
1489	1489	β-Selinene	0.1
1492	1492	trans-Muurola-4(14),5-diene	0.1
1496	1497	α-Selinene	0.7
1498	1497	α-Muurolene	0.2
1504	1504	(E,E)-α-Farnesene	1.1
1508	1508	β-Bisabolene	0.1
1513	1514	γ-Cadinene	0.1
1518	1515	Dihydrolachnophyllum ester B	1.0
1518	1518	δ-Cadinene	0.8
1522	1519	trans-Calamene	0.1
1524	1523	7-epi-cis-Sesquisabinene hydrate	0.2
1561	1562	(E)-Nerolidol	0.4
1564	1561	7-Hydroxyfarnesene	0.2
1571	1568	Palustrol	0.2
1579	1580	Neryl isovalerate	0.6
1583	1587	Caryophyllene oxide	3.6
1593	1593	Salvial-4(14)-en-1-one	0.1
1605	1605	Ledol	0.2
1611	1611	Humulene epoxide II	0.4
1613	1610	(Z)-Sesquilavandulol	0.2
1617	1611	β-Atlantol	0.2
1629	1628	1-epi-Cubenol	0.1
1635	1635	Caryophylla-4(12),8(13)-dien-5α-ol	0.1
1638	1636	Caryophylla-4(12),8(13)-dien-5β-ol	0.5
1640	1639	allo-Aromadendrene epoxide	0.1
1643	1643	τ-Cadinol	0.3
1645	1645	τ-Muurolo	0.2
1647	1653	Pogostol	0.2
1656	1655	α-Cadinol	0.8
1671	1671	14-Hydroxy-9-epi-(E)-caryophyllene	0.3
1680	1683	15-Hydroxy-α-muurolo	0.3
1686	1683	Germacr-4(15),5,10(14)-trien-1α-ol	0.5
1716	1715	Pentadecanal	0.4
1841	1841	Phytone	0.1
1862	1856	(Z)-Lanceol acetate	2.6
		Monoterpene hydrocarbons	9.1
		Oxygenated monoterpenoids	30.5
		Sesquiterpene hydrocarbons	42.4
		Oxygenated sesquiterpenoids	12.2
		Others	3.5
		Total identified	97.8

RI_{calc} = Retention indices determined with reference to a homologous series of n-alkanes on a ZB-5 ms column. RI_{db} = Retention indices from the databases. tr = trace (<0.05%). % = percent of total essential oil composition.
2.1.3. Emilia sonchifolia

Hydrodistillation of the fresh aerial parts of *E. sonchifolia* gave a 0.51% yield of essential oil. A total of 43 compounds were identified, accounting for 93.2% of the total composition (see Table 3). Gas chromatographic analysis of *E. sonchifolia* essential oils revealed the oil to be dominated by 1-undecene (41.9%) and germacrene D (11.0%). The essential oil composition of *E. sonchifolia* from Vietnam is in marked contrast to the essential oils from Belagavi, Karnataka, India [48] or Ojo State, Nigeria [49]. The *E. sonchifolia* sample from India was rich in the sesquiterpene hydrocarbons, (E)-β-caryophyllene (22.7%) and γ-muurolene (32.1%). The essential oil from Nigeria was also rich in sesquiterpene hydrocarbons, namely (E)-β-caryophyllene (15.7%), γ-gurjunene (8.6%), and γ-himachalene (25.2%). The differences in essential oil compositions may be due to genetic or environmental factors.

Table 3. Essential oil composition of *Emilia sonchifolia* from Vietnam.

RI_{calc}	RI_{db}	Compound	%
882	880	2-Butylfuran	0.3
933	932	α-Pinene	2.4
949	950	Camphene	0.2
977	978	β-Pinene	1.2
989	989	Myrcene	0.8
991	987	1-Decene	0.4
1024	1024	p-Cymene	1.7
1029	1030	Limonene	1.5
1046	1045	(E)-β-Octene	0.8
1091	1091	1-Undecene	41.9
1335	1335	δ-Elemene	0.6
1367	1367	Cyclooctatetraene	0.3
1375	1375	α-Copaene	0.3
1387	1387	β-Cubebene	0.4
1389	1390	trans-β-Elemene	1.4
1418	1417	(E)-β-Caryophyllene	2.2
1428	1427	γ-Elemene	0.6
1452	1452	(E)-β-Farnesene	0.2
1454	1454	α-Humulene	2.8
1459	1461	Precocene I (=6-Demethoxyageratocromene)	0.8
1474	1475	γ-Muurolene	0.6
1480	1480	Germacrene D	11.0
1492	1492	1-Pentadecene	0.2
1497	1497	α-Muurolene	0.5
1503	1503	(E,E)-α-Farnesene	0.3
1506	1508	β- Bisabolene	1.4
1511	1512	γ-Cadinene	0.4
1517	1518	δ-Cadinene	0.8
1527	1528	Kessane	0.5
1557	1557	Germacrene B	0.6
1561	1561	(E)-Nerolidol	1.1
1566	1566	1,5-Epoxyosalvial-4(14)-ene	0.9
1575	1576	Spathulenol	1.0
1580	1577	Caryophyllene oxide	1.3
1607	1607	Humulene epoxide I	1.2
1626	1629	iso-Spathulenol	0.7
1637	1644	allo-Aromadendrene epoxide	0.8
1640	1640	γ-Cadinol	0.3
1642	1644	γ-Muurolol	0.5
1653	1655	α-Cadinol	3.8
1659	—	Unidentified (43, 79, 91, 105, 133(100%), 163, 206)	1.1
1666	—	Unidentified (41, 55, 81(100%), 93, 164, 206)	1.2
1827	—	Unidentified (41, 55, 81, 122(100%), 151, 191)	2.8
1839	1841	Phytene	0.8
2113	2109	Phytol	3.8

Monoterpene hydrocarbons 8.7
Oxygenated monoterpensoids 0.0
Sesquiterpene hydrocarbons 24.7
Oxygenated sesquiterpenoids 11.6
Diterpenoids 3.8
Others 44.4
Total identified 93.2

RI_{calc} = Retention indices determined with reference to a homologous series of n-alkanes on a ZB-5 ms column.
RI_{db} = Retention indices from the databases. tr = trace (<0.05%). % = percent of total essential oil composition.
2.1.4. Parthenium hysterophorus

Hydrodistillation of the fresh aerial parts of *P. hysterophorus* gave a yield of 0.05% (w/w) as a colorless/pale yellow essential oil. Gas chromatography–mass spectral analysis of the essential oil revealed a total of 75 identified (97.8% of the total) compounds (see Table 4).

Table 4. Essential oil composition of *Parthenium hysterophorus* from Vietnam.

RI_{calc}	RI_{db}	Compound	%
922	923	Tricyclene	0.1
925	925	α-Thujene	tr
932	932	α-Pinene	1.0
949	950	Camphene	2.2
972	972	Sabine	0.6
978	978	β-Pinene	3.0
978	978	1-Octen-3-ol	0.3
986	986	Octan-3-one	tr
989	989	Myrcene	14.4
1025	1025	p-Cymene	0.1
1030	1030	Limonene	1.0
1031	1031	β-Phellandrene	0.5
1036	1035	(Z)-β-Ocimene	tr
1046	1046	(E)-β-Ocimene	3.1
1051	1051	2,3,6-Trimethylhepta-1,5-diene	0.1
1058	1058	γ-Terpinene	tr
1081	1079	1-Nonen-3-ol	0.2
1086	1086	Terpinolene	tr
1099	1098	Perillene	0.1
1101	1101	Linalool	0.1
1114	1114	4,8-Dimethylnona-1,3,7-triene	0.4
1140	1139	(E)-Myroxide	tr
1182	1180	Terpin-4-ol	0.1
1189	1187	Cryptone	tr
1286	1286	Cogeijerene	4.8
1332	1331	Bicycloelemene	0.1
1335	1335	δ-Elemene	0.3
1347	1348	α-Cubebe	0.1
1370	1367	Cyclosativenol	0.2
1376	1375	α-Copaene	0.3
1379	1380	Daucone	0.2
1382	1383	cis-β-Elemene	0.4
1384	1385	β-Bourbonone	0.5
1388	1387	β-Cubebe	0.7
1390	1390	trans-β-Elemene	0.9
1392	1392	Sativene	0.1
1416	1414	α-Cedrene	0.1
1421	1418	(E)-β-Caryophyllene	12.6
1430	1432	γ-Elemene	0.7
1433	1432	trans-α-Bergamotene	0.1
1441	1439	(Z)-β-Farnesene	0.1
1442	1442	Guai-6,9-diene	0.1
1445	1447	iso-Germacrene D	0.1
1454	1452	(E)-β-Farnesene	0.2
1456	1454	α-Humulene	1.5
1476	1478	γ-Murolene	2.5
1484	1483	Germacrene D	23.2
1490	1489	β-Selinene	0.2
1493	1492	trans-Murola-4(15),5-diene	0.1
1496	1497	Bicyclogermacrene	0.8
Table 4. Cont.

RI_{calc}	RI_{db}	Compound	%
1499	1500	α-Muurolene	0.5
1505	1504	(E,E)-α-Farnesene	3.3
1508	1508	β-Bisabolene	0.1
1514	1514	γ-Cadinene	0.1
1516	1515	Cubebol	0.2
1519	1520	δ-Cadinene	0.6
1525	1524	β-Sesquiphellandrene	0.2
1533	1532	Selina-4(15),7(11)-dienen	0.4
1560	1560	Germacrene B	0.4
1562	1560	(E)-Nerolidol	0.6
1566	1571	iso-Shobunol	2.8
1578	1576	Spathulenol	0.5
1584	1587	Caryophyllene oxide	2.4
1604	1609	Carotol	1.8
1611	1611	Humulene epoxide II	0.2
1628	1624	Muurola-4,10(14)-dien-1α-ol	0.6
1630	1629	iso-Spathulenol	0.3
1634	1632	Muurola-4,10(14)-dien-1β-ol	1.4
1641	1644	allo-Aromadendrene epoxide	0.7
1644	1643	τ-Cadinol	0.1
1646	1645	τ-Murrolo	0.1
1648	1651	α-Muurolol (=δ-Cadinol)	0.6
1657	1655	α-Cadinol	0.6
1865	1860	Platambin	0.3
2109	2109	Phytol	0.5

RI_{calc} = Retention indices determined with reference to a homologous series of n-alkanes on a ZB-5 ms column. RI_{db} = Retention indices from the databases. tr = trace (<0.05%). % = percent of total essential oil composition.

The major components in the *P. hysterophorus* essential oil were germacrene D (23.2%), myrcene (14.4%), (E)-β-caryophyllene (12.6%), cogeijerene (4.8%), (E,E)-α-farnesene (3.3%), (E)-β-oicem (3.1%), and β-pinene (3.0%). Though most of these compounds are commonly present in essential oils, cogeijerene (1,2,3,7,8,8a-hexahydro-4,8a-dimethylnaphtalene) is a relatively rare component of essential oils. The compound was originally isolated and characterized from *Geijera parviflora* [50], but it has also been found in the essential oils of *Geijera parviflora* (4.3%) [51], *Scaligeria tripartita* (1.0%) [52], and *Artemesia annua* (0.1%) [53]. The essential oil composition is qualitatively similar to an essential oil sample from Lavras, Minas Gerais, Brazil, with germacrene D (35.9%), myrcene (7.6%), (E)-β-caryophyllene (8.5%), and β-pinene (7.6%) [54]. However, neither cogeijerene nor (E,E)-α-farnesene were reported from the Brazilian sample.

2.1.5. *Sphaeranthus africanus*

The essential oil from the aerial parts of *S. africanus* was obtained at 0.25% yield. The major components in *S. africanus* essential oil were 1-decen-3-ol (36.9%), α-pinene (21.0%), τ-cadinol (7.5%), 3-octyl propionate (5.6%), and (E)-β-caryophyllene (5.5%) (see Table 5). In contrast, the *S. africanus* (as *S. indicus*) essential oil from India was composed of thymohydroquinone dimethyl ether (18.2%), α-agarofuran (11.8%), 10-epi-β-eudesmol (7.9%), and silen-11-en-4α-ol (12.7%) [55]. The compositional differences in the essential oils from Vietnam and India may be attributed to genetic differences or environmental factors.
Table 5. Essential oil composition of *Sphaeranthus africanus* from Vietnam.

RI\text{calc}	RI\text{db}	Compound	%
926	925	α-Thujene	tr
934	933	α-Pinene	21.0
950	950	Camphene	0.1
953	953	Thuja-2,4(10)-diene	tr
973	972	Sabinene	0.1
978	978	β-Pinene	0.2
979	982	1-Octen-3-ol	0.2
989	989	Myrcene	0.1
1025	1025	p-Cymene	0.2
1029	1030	Limonene	0.1
1046	1045	(E)-β-Ocimene	0.2
1081	1079	1-Nonen-3-ol	0.1
1099	1099	(2Z)-Hexenyl propanoate	0.9
1106	1107	Nonanal	0.1
1108	1107	1-Octen-3-yl acetate	0.7
1110	1110	Vinyl 2-ethylhexanoate	0.3
1120	1118	3-Octyl acetate	0.4
1194	1184	1-Decen-3-ol	36.9
1205	1218	3-Octyl propionate	5.6
1216	1218	3-Nonyl acetate	0.1
1229	1229	Thymyl methyl ether	0.2
1242	1242	Cumaraldehyde	0.1
1250	1249	6-Methylidodecane	0.2
1260	1294	2,2,4,4,6,8,8-Heptamethylmononane	2.6
1295	1294	trans-Farnesylacetate	0.1
1322	1322	Myrtenyl acetate	0.1
1345	1349	7-epi-Silphiperfol-5-ene	0.3
1380	1382	Modheph-2-ene	2.4
1387	1385	α-Isocoumarone	0.4
1409	1413	β-Isocoumarone	0.4
1411	1411	Thymohydroquinone dimethyl ether	0.4
1418	1417	(E)-β-Caryophyllene	5.5
1452	1452	(E)-β-Farnesene	0.1
1454	1454	α-Humulene	0.4
1458	1458	allo-Aromadendrene	0.5
1460	1461	Precocene 1 (=6-Demethoxyageratochromene)	0.5
1479	1480	Germacrene D	0.1
1496	1497	α-Murolene	0.1
1511	1512	γ-Cadinene	0.8
1515	1518	Isosyoxybunone	0.5
1516	1518	δ-Cadinene	0.3
1579	1577	Caryophyllene oxide	1.1
1595	1597	Dimethyl-α-ionone	0.2
1600	1600	β-Isoopene	0.1
1601	1604	Geranyl isovalerate	0.1
1623	1624	Muurola-4,10(14)-dien-1β-ol	0.1
1631	1631	Caryophylla-4(12),8(13)-dien-5α-ol	0.1
1634	1634	Caryophylla-4(12),8(13)-dien-5β-ol	0.2
1640	1641	α-Cadinol	7.5
1651	1652	δ-Himachalol	1.5
1662	1660	Selin-11-en-4β-ol	0.1
1671	1672	Jatamansone	2.0
1834	1836	Neophytadiene	0.4
1839	1841	Phytone	0.3
2103	2102	Phytol	2.0
		Monoterpene hydrocarbons	22.0
		Oxygenated monoterpenoids	1.1
		Sesquiterpene hydrocarbons	10.9
		Oxygenated sesquiterpenoids	13.4
		Diterpenoids	2.3
		Others	48.9
		Total identified	98.5

RI\text{calc} = Retention indices determined with reference to a homologous series of \textit{n}-alkanes on a ZB-5 ms column.

RI\text{db} = Retention indices from the databases. tr = trace (<0.05%). % = percent of total essential oil composition.
2.2. Mosquito Larvicidal Activity

The essential oils of *B. lacera*, *B. sinuata*, *E. sonchifolia*, *P. hysterophorus*, and *S. africanus* were screened for mosquito larvicidal activity against *Aedes aegypti* (the yellow fever mosquito) and *Aedes albopictus* (the Asian tiger mosquito), as previously described [34,56]. The essential oils were also screened for possible insecticidal activity against the non-targeted water bug, *D. rusticus*, as previously reported [33,36]. The larvicidal and insecticidal activities for the essential oils are summarized in Table 6.

Table 6. *Aedes* larvicidal and *Diplonychus rusticus* insecticidal activities of Vietnamese Asteraceae essential oils.

Essential Oil	24 h	48 h	24 h	48 h
	LC₅₀	LC₉₀	LC₅₀	LC₉₀
Blumea lacera leaf	64.7	96.4	55.1	83.4
Blumea sinuata aerial parts	23.4	36.2	17.4	27.3
Emilia sonchifolia aerial parts	30.1	40.8	26.2	36.6
Parthenium hysterophorus aerial parts	47.6	63.4	36.3	57.7
Sphaeranthus africanus aerial parts	50.7	74.4	44.2	65.3
Blumea lacera leaf	116.7	155.8	99.4	147.4
Blumea sinuata aerial parts	29.1	104.7	12.4	36.5
Emilia sonchifolia aerial parts	29.6	46.3	23.4	40.7
Parthenium hysterophorus aerial parts	44.4	66.4	33.8	63.6
Sphaeranthus africanus aerial parts	36.9	56.4	28.8	44.4

*Due to insufficient data for probit analysis, the LC₅₀ was determined using the Reed–Muench method [57].

According to Dias and Moraes [39], essential oils and their components are considered to be active with larvicidal LC₅₀ values less than 100 µg/mL. However, we have recently amended the activity definition: essential oils with 24-h LC₅₀ < 10 µg/mL are considered “exceptionally active”, those with 24-h LC₅₀ between 10 and 50 µg/mL are “very active”, those with 24-h LC₅₀ between 50 and 100 µg/mL are “moderately active”, and LC₅₀ >100 µg/mL are “inactive” [58]. Thus, *B. lacera* leaf essential oil was only marginally active against *Ae. aegypti* and inactive against *Ae. albopictus*.

The essential oil of *B. sinuata*, on the other hand, showed very good *Aedes* larvicidal activities with 24-h LC₅₀ values of 23.4 and 29.1 µg/mL against *Ae. aegypti* and *Ae. albopictus*, respectively, as well as 48-h LC₅₀ values of 17.4 and 12.4 µg/mL. Importantly, *B. sinuata* essential oil showed no mortality at the highest concentration tested (100 µg/mL) against the non-target water bug, *Diplonychus rusticus*. The larvicidal activities observed can be partly attributed to the major components. *Ayapana triplinervis* essential oil, rich in thymohydroquinone dimethyl ether (84.5%), showed larvicidal activity against *Ae. aegypti* (24-h LC₅₀ = 86.2 µg/mL) [59]. *(E)-β*-Caryophyllene has shown insecticidal activity against *Ae. aegypti* larvae (LC₅₀ 39–88 µg/mL), as well as *Ae. albopictus* larvae (LC₅₀ 40–45 µg/mL) [33,35,36]. Likewise, α-pinene has demonstrated larvicidal activities against both *Ae. aegypti* and *Ae. albopictus* with LC₅₀ values ranging 40–65 and 29–69 µg/mL, respectively [35], germacrene D showed good
larvicidal activity on *Ae. aegypti* (LC$_{50}$ = 18.8 µg/mL) [60], and α-humulene was larvicidal with 24-h LC$_{50}$ values of 44.4 and 43.9 µg/mL against *Ae. aegypti* and *Ae. albopictus*, respectively [36].

Although *E. sonchifolia* essential oil showed moderately active mosquito larvicidal activity (24-h LC$_{50}$ = 30.1 and 29.6 µg/mL against *Ae. aegypti* and *Ae. albopictus*, respectively), it was also insecticidal to the non-target insect, *Diplonychus rusticus* with a 24-h LC$_{50}$ of 48.1 µg/mL. Thus, the *E. sonchifolia* essential oil is not selectively toxic and should not be considered further for this purpose.

The *Parthenium hysterophorus* essential oil showed good mosquito larvicidal activity with 24-h LC$_{50}$ values of 47.6 and 44.4 µg/mL against *Ae. aegypti* and *Ae. albopictus*, respectively. Notably, the essential oil showed no lethality to the non-target insect, *Diplonychus rusticus*. Several of the major components of the *P. hysterophorus* essential oil have previously shown larvicidal activity against *Ae. aegypti*, including germacrene D (LC$_{50}$ = 18.8 µg/mL) [60], myrcene (LC$_{50}$ = 35.8 µg/mL) [61], (E)-β-caryophyllene (LC$_{50}$ = 61.1 µg/mL) [36], and β-pinene (22.9 µg/mL) [33]. Larvicidal activity on *Ae. albopictus* has also been reported for myrcene [61] and (E)-β-caryophyllene [33] (LC$_{50}$ = 27.0 and 56.9 µg/mL, respectively). The larvicidal activities of the major components, therefore, likely account for the observed larvicidal activities of the *P. hysterophorus* essential oil.

The essential oil of *S. africanus* showed moderate larvicidal activity with 24-h LC$_{50}$ values of 50.7 and 36.9 µg/mL, respectively, on *Ae. aegypti* and *Ae. albopictus*. In a previous study, the *S. africanus* (as *S. indicus*) essential oil from India was screened for mosquito larvicidal activity against *Culex quinquefasciatus* and *Ae. aegypti* [62]. The larvicidal activities were very modest, however (24-h LC$_{50}$ = 130 and 140 µg/mL, respectively). Unfortunately, the essential oil characterization in this study is not reliable.

3. Materials and Methods

3.1. Plant Material

The details of plant material collection and hydrodistillation are summarized in Table 7. During this process, botanical identification and confirmation was conducted by Dr. Huong, L.T., Faculty of Biology, College of Natural Science Education, Vinh University, Vietnam. In addition, voucher specimens with codes LTH 881, LTH 284, LTH 286, LTH 327, and LTH 332 were preserved in the plant specimen room, Vinh University, Vietnam. Aerial parts were shredded and hydrodistilled for 5 h using a Clevenger-type apparatus (Witeg Labortechnik, Wertheim, Germany). Essential oil isolation yields of three consecutive replicates were used to calculate the average yield. The essential oils were dried over anhydrous Na$_2$SO$_4$ and stored in sealed glass vials at 4 °C until use in analysis and bioactivity assays.

Plant Species	Collection Location (GPS)	Part	Mass Plant Material (kg)	Extraction Yield (%/w/w)	Collection Time
B. lacera	Nghia Dan District, Nghe An Province (19°23′05″ N, 105°25′51″ E).	Aerial parts	3.0	1.2	August 2021
		Leaves	0.3	1.56	August 2021
		Flowers	0.3	1.10	August 2021
		Stems	0.3	0.35	August 2021
B. sinuata	Nghia Dan District, Nghe An Province (19°20′06″ N, 105°25′59″ E).	Aerial parts	4.0	0.16	August 2021
E. sonchifolia	Dien Lâm Commune, Pù Huơng Natural Reserve, Nghe An Province (19°26′44″ N, 104°58′40″ E).	Aerial parts	3.0	0.51	August 2021
P. hysterophorus	Dien L詹姆斯 Commune, Pù Huơng Natural Reserve, Nghe An Province (19°16′53″ N, 104°55′16″ E).	Aerial parts	5.0	0.05	August 2021
S. africanus	Dien L詹姆斯 Commune, Pù Huơng Natural Reserve, Nghe An Province (19°26′44″ N, 104°58′40″ E).	Aerial parts	4.0	0.25	August 2021
3.2. Gas Chromatography–Mass Spectral Analysis

Gas chromatography–mass spectral analyses (GC–MS) of *B. lacera*, *B. sinuata*, *E. sonchifolia*, *P. hysterophorus*, and *S. africanus* essential oils were carried out using the instrumentation and protocols previously published [36,56,63]. A Shimadzu GCMS-QP2010 Ultra, with a ZB-5 ms fused silica capillary column (60 m length, 0.25 mm diameter, 0.25 µm film thickness) was used, He carrier gas, 2.0 mL/min flow rate, injection and ion source temperatures of 260 °C, and a GC oven program of 50 to 260 °C at 2.0 °C/min. Injection volumes of 0.1 µL of 5% (w/v) samples of essential oil in CH2Cl2 were injected in split mode, with a 24.5:1 split ratio. Identification of the essential oil components was carried out with a comparison of MS fragmentation and retention indices (RI) with those available in the databases [64–67]. The peak areas were corrected for response using external standards of representative compounds from each compound class.

3.3. Mosquito Larvicidal Activity Screening

Mosquito larvicidal activity screening against *Ae. aegypti* and *Ae. albopictus* was carried out as previously described [34,56]. Quadruplicate assays using 20 fourth-instar mosquito larvae and five essential oil concentrations (100, 75, 50, 25, and 12.5 µg/mL) and a permethrin positive control. Mortality was recorded after 24 h and again after 48 h of exposure. Lethality data were subjected to log-probit analysis to obtain LC50 values, LC90 values, and 95% confidence limits using Minitab® version 19.2020.1 (Minitab, LLC, State College, PA, USA).

3.4. Diplonychus Rusticus Insecticidal Assay

Insecticidal activity against *D. rusticus* was carried out as previously described [33]. Quadruplicate assays were conducted, using 20 adult *D. rusticus*, and five essential oil concentrations (100, 75, 50, 25, and 12.5 µg/mL), with mortality recorded after 24 h and 48 h exposure times.

4. Conclusions

The essential oils of *B. sinuata*, rich in thymohydroquinone dimethyl ether, (E)-β-caryophyllene, α-pinene, and germacrene D; *P. hysterophorus*, rich in germacrene D, myrcene, and (E)-β-caryophyllene; and *S. africanus*, dominated by 1-decen-3-ol and α-pinene, all showed good mosquito larvicidal activities without toxicity to a non-target aquatic species. Based on these encouraging results, *B. sinuata*, *P. hysterophorus*, and *S. africanus* essential oils should be further investigated for use as eco-friendly botanical pesticides. Field trials and formulations are needed to enhance the environmental lifetime of the essential oils and determine whether they are a viable alternative pest-control agents in aquatic systems.

Author Contributions: Conceptualization, N.H.H. and W.N.S.; methodology, N.H.H. and P.S.; software, P.S.; validation, W.N.S. and N.H.H.; formal analysis, W.N.S. and N.H.H.; investigation, T.M.H., P.S., L.T.H., D.V.H., T.D.B., D.T.H.D., D.N.D., N.G.H., H.V.C., V.V.H., and N.H.H.; resources, T.M.H.; data curation, T.M.H., N.H.H., P.S. and W.N.S.; writing—original draft preparation, N.H.H. and W.N.S.; writing—review and editing, W.N.S.; visualization, T.M.H.; supervision, T.M.H.; project administration, T.M.H.; funding acquisition, T.M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NAFOSTED (Vietnam), grant number 106.03-2019.315.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available upon reasonable request from the corresponding authors (N.H.H. and W.N.S.).

Acknowledgments: P.S. and W.N.S. participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/ (accessed on 13 November 2022)).
Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the essential oils are available from the corresponding author N.H.H.

References

1. Wu, C.Y.; Raven, P.H.; Hong, D.Y. Flora of China. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=2500979945 (accessed on 14 August 2022).
2. Biên, L.K. Thực vật chi Việt Nam-Flora of Vietnam; Science and Technics Publishing House: Hanoi, Vietnam, 2007; Volume 7.
3. Gore, M. Bioactive and pharmacological consultation of Blumea lacer (Bur. f.) DC. and Blumea eriantha DC. In Bioactives and Pharmacology of Medicinal Plants; Pullaith, T., Ed.; Apple Academic Press: New York, NY, USA, 2022; pp. 249–257. ISBN 9781000328658.
4. Pham, X.P.; Nhung, T.T.T.; Trinh, H.N.; Trung, D.M.; Giang, D.T.; Vu, B.D.; Diep, N.T.; Long, N.V.; Nguyen, V.T.; Men, C.V. Isolation and structural characterization of compounds from Blumea lacer. Pharmacogn. J. 2021, 13, 999–1004. [CrossRef]
5. Vo, V.C. The Dictionary of Medicinal Plants of Vietnam 1; Medical Publishing House: Hanoi, Vietnam, 2012.
6. Missouri Botanical Garden, Tropicos.org. Available online: https://tropicos.org/name/2700154 (accessed on 7 October 2022).
7. Kaur, L.; Malhi, D.S.; Cooper, R.; Kaur, M.; Sohal, H.S.; Mutreja, V.; Sharma, A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hystrophorus L. A journey from noxious weed to a therapeutic medicinal plant. J. Ethnopharmacol. 2021, 281, 115425. [CrossRef] [PubMed]
8. World Flora Online. Emilia sonchifolia (L.) DC. Available online: http://www.worldfloraonline.org/taxon/wfo-0000017704 (accessed on 14 August 2022).
9. Dinh, T.C.; Bac, N.D.; Minh, L.B.; Ngoc, V.T.N.; Pham, V.-H.; Vo, H.-L.; Tien, N.L.B.; Thanh, V.V.; Tao, Y.; Show, P.L.; et al. Zika virus in Vietnam, Laos, and Cambodia: Are there health risks for travelers? Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1585–1590. [CrossRef] [PubMed]
10. Tran, H.T.; Gao, X.; Kretschmer, N.; Pferschy-Wenzig, E.M.; Raab, P.; Pirker, T.; Temml, V.; Schuster, D.; Kunert, O.; Huynh, L.; et al. Antiproliferative carvotacetones from Sphaeranthus africanus L.—A review. Plant Sci. Today 2015, 2, 77–81. [CrossRef]
11. Dhileepan, K.; Strathie, L. Parthenium hysterophorus L. (Asteraceae). In Biological Control of Tropical Weeds Using Arthropods; Muniappan, R., Reddy, G.V.P., Raman, A., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 274–318.
12. Nguyen, T.L.; Nguyen, P.N.; Adkins, S. Parthenium weed (Parthenium hysterophorus L.) in Vietnam. In Proceedings of the 23rd Asian-Pacific Weed Science Society Conference—Weed Management in a Changing World, The Sebel Cairns, QLD, Australia, 26–29 September 2011; Asian-Pacific Weed Science Society: Cairns, Australia, 2011; pp. 401–402.
13. Marwat, S.K.; Fazal-ul-Rehman; Khan, I.U. Ethnobotanical importance and phytochemical constituents of Parthenium weed (Parthenium hysterophorus L.)—A review. J. Ethnopharmacol. 2011, 134, 348–353. [CrossRef] [PubMed]
14. Kaur, L.; Malik, D.S.; Cooper, R.; Kaur, M.; Sohal, H.S.; Mutreja, V.; Sharma, A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. J. Ethnopharmacol. 2022, 281, 115425. [CrossRef] [PubMed]
15. Sahrawat, A.; Sharma, J.; Rahul, S.N.; Tiwari, S.; Rai, D.V. Parthenium hysterophorus current status and its possible effects on mammalians- A review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3548–3557. [CrossRef]
16. Royal Botanic Gardens, Kew. Sphaeranthus africanus L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:250492-1 (accessed on 14 August 2022).
17. Tran, H.T.; Pferschy-Wenzig, E.M.; Kretschmer, N.; Kunert, O.; Huynh, L.; Bauer, R. Antiproliferative carvotacetones from Sphaeranthus africanus. J. Nat. Prod. 2018, 81, 1829–1834. [CrossRef]
18. Tran, H.T.; Gao, X.; Kretschmer, N.; Pferschy-Wenzig, E.M.; Raab, P.; Pirker, T.; Temml, V.; Schuster, D.; Kunert, O.; Huynh, L.; et al. Anti-inflammatory and antiproliferative compounds from Sphaeranthus africanus. Phytomedicine 2019, 62, 152951. [CrossRef]
19. Tran, H.T.; Solnier, J.; Pferschy-Wenzig, E.M.; Kunert, O.; Martin, L.; Bhakta, S.; Huynh, L.; Le, T.M.; Bauer, R.; Bucar, F. Antimicrobial and efflux pump inhibitory activity of carvotacetones from Sphaeranthus africanus against mycobacteria. Antibiotics 2020, 9, 390. [CrossRef]
20. Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [CrossRef]
21. Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [CrossRef]
22. Hung, T.M.; Capham, H.E.; Bettis, A.A.; Cuong, H.Q.; Thwaites, G.E.; Wills, B.A.; Boni, M.F.; Turner, H.C. The estimates of the health and economic burden of dengue in Vietnam. Trends Parasitol. 2018, 34, 904–918. [CrossRef]
23. Haroon-Or-Rashid, M.; Patwary, M.M.H.; Tariquzzaman, M.; Imtiaz, A.; Bony, M.R.I. Chikungunya virus: An emerging threat to South East Asia region. Asian J. Res. Infect. Dis. 2018, 1, 1–9. [CrossRef]
24. Dinh, T.C.; Bùc, N.D.; Minh, L.B.; Ngoc, V.T.N.; Pham, V.-H.; Vo, H.-L.; Tien, N.L.B.; Thanh, V.V.; Tao, Y.; Show, P.L.; et al. Zika virus in Vietnam, Laos, and Cambodia: Are there health risks for travelers? Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1585–1590. [CrossRef] [PubMed]
25. Abbas, S.; Nasir, S.; Fakhar-e-Alam, M.; Saadullah, M. Toxicity of different groups of insecticides and determination of resistance in Aedes aegypti from different habitats. Pak. J. Agric. Sci. 2019, 56, 161–169. [CrossRef]
26. Hernandez, H.M.; Martinez, F.A.; Vitek, C.J. Insecticide resistance in Aedes aegypti varies seasonally and geographically in Texas/Mexico border cities. J. Am. Mosq. Control Assoc. 2022, 38, 59–69. [CrossRef] [PubMed]
27. Nayak, S.B.; Sahoo, A.K.; Elango, K.; Rao, K.S. Role of pesticide application in environmental degradation and its remediation strategies. In Environmental Degradation: Causes and Remediation Strategies; Kumar, V., Singh, J., Kumar, P., Eds.; Agriculture and Environmental Science Academy: Haridwar, India, 2020; Volume 1, pp. 36–49. ISBN 978-81-942017-1-7.

28. Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. *Ecotoxicol. Environ. Saf.* 2021, 207, 111483. [CrossRef] [PubMed]

29. Zaller, J.G.; Brühl, C.A. Non-Target Effects of Pesticides on Organisms Inhabiting Agroecosystems; Frontiers Media: Lausanne, Switzerland, 2019; Volume 7, ISBN 9782889459766.

30. Serrão, J.E.; Plata-Rueda, A.; Martínez, L.C.; Zanuncio, J.C. Side-effects of pesticides on non-target insects in agriculture: A mini-review. *Sci. Nat.* 2022, 109, 17. [CrossRef] [PubMed]

31. Piplan, M.; Bhagwat, D.P.; Singhiy, G.; Sankaranarayanan, M.; Balana-Fouce, R.; Vats, T.; Chandler, S. Plant-based larvicidal agents: An overview from 2000 to 2018. *Exp. Parasitol.* 2019, 195, 92–103. [CrossRef]

32. Esmaili, F.; Sanei-Dehkordi, A.; Amoozegar, F.; Osanloo, M. A review on the use of essential oil-based nanoformulations in control of mosquitoes. *Biointerface Res. Appl. Chem.* 2021, 11, 12516–12529. [CrossRef]

33. Hoi, T.M.; Huong, L.T.; van Chinh, H.; Hau, D.V.; Satyal, P.; Tai, T.A.; Dai, D.N.; Hung, N.H.; Hien, V.T.; Setzer, W.N. Essential oil compositions of three invasive *Cynoglossa* species collected in Vietnam and their larvicidal activities against *Aedes aegypti*, *Aedes albopictus*, and *Culex quinquefasciatus*. *Molecules* 2020, 25, 4576. [CrossRef]

34. Hung, N.H.; Satyal, P.; Do, N.D.; Tai, T.A.; Huong, L.T.; Chuong, N.T.H.; Hieu, H.V.; Tuan, P.A.; Vuong, P.V.; Setzer, W.N. Chemical compositions of *Crassostreptus crepidoiodes* essential oils and larvicidal activities against *Aedes aegypti*, *Aedes albopictus*, and *Culex quinquefasciatus*. Nat. Prod. Commun. 2019, 14, 1934578X19850033. [CrossRef]

35. Hung, N.H.; Satyal, P.; Hieu, H.V.; Chuong, N.T.H.; Dai, D.N.; Huong, L.T.; Tai, T.A.; Setzer, W.N. Mosquito larvicidal activity of the essential oil of *Erectiptes* species growing wild in Vietnam. *Insects* 2019, 10, 47. [CrossRef]

36. Higa, Y.; Yen, N.T.; Kawada, H.; Son, T.H.; Hoa, N.T.; Takagi, M. Geographic distribution of *Aedes aegypti* and *Aedes albopictus* collected from used tires in Vietnam. *J. Am. Mosq. Control Assoc.* 2010, 26, 1–9. [CrossRef]

37. Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. *Ind. Crops Prod.* 2015, 76, 174–187. [CrossRef]

38. Dias, C.N.; Moraes, D.F.C. Essential oils and their compounds as *Aedes aegypti* L. (Diptera: Culicidae) larvicides: Review. *Parasitol. Res.* 2014, 113, 565–592. [CrossRef] [PubMed]

39. de Souza, M.A.; da Silva, L.; dos Santos, M.A.C.; Macêdo, M.I.F.; Lacerda-Neto, L.J.; Coutinho, H.D.M.; de Oliveira, L.C.C.; Cunha, F.A.B. Larvicidal activity of essential oils against *Aedes aegypti* (Diptera: Culicidae). *Curr. Pharm. Des.* 2020, 26, 4092–4111. [CrossRef]

40. Osanloo, M.; Sedaghat, M.M.; Sanei-Dehkordi, A.; Amani, A. Plant-derived essential oils: their larvicidal properties and potential application for control of mosquito-borne diseases. *Galen Med. J.* 2019, 8, 1532. [CrossRef] [PubMed]

41. Laakso, I.; Seppänén-Laakso, T.; Hiltunen, R.; Ekundayoo, O. Composition of the essential oil of *Blumea lacera* DC. (Asteraceae) leaves from Nigeria. *Flavour Fragr. J.* 1989, 4, 73–75. [CrossRef]

42. Hac, L.V.; Muoi, T.T.; Dung, N.X. Essential oils of *Blumea lacera* (Burm. f) DC. (Asteraceae) produced from arial parts of plants grown in central of Vietnam. *J. Essent. Oil-Bear. Plants* 2003, 6, 36–40. [CrossRef]

43. Joshi, R.K.; Pai, S.R.; Nagarajan, H.; Vetrivel, U. Identification of potentially bioactive compounds from *Blumea lacera* essential oil by gas chromatography-mass spectroscopy and molecular docking studies for targeting inflammatory bowel disease. *Nat. Prod. Res.* 2022, 1–5. [CrossRef] [PubMed]

44. Satyal, P.; Chhetri, B.K.; Dosoky, N.S.; Shrestha, S.; Poudel, A.; Setzer, W.N. Chemical composition of *Blumea lacera* essential oil from Nepal. *Bioresour. Technol.* 2015, 1749–1750. [CrossRef] [PubMed]

45. Baser, K.H.C.; Buchbauer, G. *Handbook of Essential Oils: Science, Technology, and Applications*; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-6315-8.

46. Dinde, A.V.; Lokhande, P.B.; Mujawar, H.A. Essential oil extraction, characterization and antimicrobial study of *Blumea laciniata* DC from Konkan Region. *J. Biol. Chem. Chron.* 2018, 4, 70–76.

47. Joshi, R.K. Volatile constituents of *Emilia sonchifolia* from India. *Nat. Prod. Commun.* 2013, 13, 1355–1356. [CrossRef]

48. Ongundajo, A.L.; Ewekeye, T.; Sharaibi, O.J.; Owolabi, M.S.; Dosoky, N.S.; Setzer, W.N. Antimicrobial activities of sesquiterpenene-rich essential oils of two medicinal plants, *Lannea egregia* and *Emilia sonchifolia*, from Nigeria. *Plants* 2021, 10, 488. [CrossRef]

49. Gough, J.; Powell, V.; Sutherland, M.D. Constitution and biogenesis of two new sesquiterpenes. *Tetrahedron Lett.* 1961, 2, 763–767. [CrossRef]

50. Sadgrove, N.J.; Gonçalves-Martins, M.; Jones, G.L. Phytochemistry chemogeography and antimicrobial activity of essential oils from *Geijera parviflora* and *Geijera salicifolia* (Rutaceae): Two traditional Australian medicinal plants. *Phytochemistry* 2014, 104, 60–71. [CrossRef]

51. Baldemir, A.; Demirci, B.; Paksoy, M.Y.; Ilgin, S.; Koşar, M.; Başer, K.H.C.; Demirci, F. Chemical composition of the essential oil and antimicrobial activity of *Scaligeria* DC. taxa and implications for taxonomy. *Rec. Nat. Prod.* 2018, 12, 14–28. [CrossRef]

52. Goel, R.; Singh, V.R.; Gupta, A.K.; Mallavarapu, G.R.; Kumar, S. Constituents of the essential oil of *Artemisia annua* variety Sanjeevani compared with those of its parental varieties Arogya and Jeevanraksha: Selection for high artemisinin content co-selected high sesquiterpene content in essential oil. *J. Essent. Oil Bear. Plants* 2018, 21, 1336–1348. [CrossRef]
54. de Miranda, C.A.S.F.; Cardoso, M.G.; de Carvalho, M.L.M.; Figueiredo, A.C.S.; Nelson, D.L.; de Oliveira, C.M.; Gomes, M.S.; de Andrade, J.; de Souza, J.A.; de Albuquerque, L.R. Chemical composition and allelopathic activity of *Parthenium hysterophorus* and *Ambrosia polysperma* weeds essential oils. *Am. J. Plant Sci.* 2014, 5, 1248–1257. [CrossRef]

55. Kaul, P.N.; Rajeswara Rao, B.R.; Bhattacharya, A.K.; Singh, K.; Mallavarapu, G.R.; Ramesh, S. Essential oil composition of *Sphaeranthus indicus* L. J. Essent. Oil Res. 2005, 17, 453–454. [CrossRef]

56. Hung, N.H.; Huong, L.T.; Chung, N.T.; Thi, N.; Thuong, H.; Satyal, P.; Dung, N.A.; Tai, T.A.; Setzer, W.N. *Callicarpa* species from central Vietnam: Essential oil compositions and mosquito larvicidal activities. *Plants* 2020, 9, 113. [CrossRef]

57. Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. *Am. J. Hyg.* 1938, 27, 493–497.

58. Hung, N.H.; Dai, D.N.; Cong, T.N.; Setzer, W.N. Pesticidal activities of *Callicarpa* and *Premna* essential oils from Vietnam. *Nat. Prod. Commun.* 2022, 17, 1934578X221110660. [CrossRef]

59. Lobato Rodrigues, A.B.; Martins, R.L.; Rabelo, E.M.; Tomazi, R.; Santos, L.L.; Brandão, L.B.; Faustino, C.G.; Ferreira Farias, A.L.; Dos Santos, C.B.R.; de Castro Cantúria, P.; et al. Development of nano-emulsions based on *Ayapana triplinervis* essential oil for the control of *Aedes aegypti* larvae. *PLoS ONE* 2021, 16, e0254225. [CrossRef] [PubMed]

60. Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from *Clausena anisata* (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. *Asian Pac. J. Trop. Med.* 2010, 3, 874–877. [CrossRef]

61. Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Liu, Y.H.; Huang, C.G.; Chang, S.T. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from *Cunninghamia konishii* Hayata against the dengue mosquitoes. *Ind. Crops Prod.* 2013, 47, 310–315. [CrossRef]

62. Chellappandian, M.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Selin-Rani, S.; Kalaiyani, K.; Senthil-Nathan, S.; Benelli, G. Toxicological effects of *Sphaeranthus indicus* Linn. (Asteraceae) leaf essential oil against human disease vectors, *Culex quinquefasciatus* Say and *Aedes aegypti* Linn., and impacts on a beneficial mosquito predator. *Environ. Sci. Pollut. Res.* 2018, 25, 10294–10306. [CrossRef] [PubMed]

63. Hung, N.H.; Satyal, P.; Dai, D.N.; Huong, L.T.; Giang, L.D.; Hung, L.T.; Hoa, V.V.; Hien, T.T.; Hien, V.T.; Setzer, W.N. Chemical constituents of the leaf essential oil of *Vitex axillaris* (Merr.) Bramley from Vietnam. *J. Essent. Oil Bear. Plants* 2021, 24, 1256–1259. [CrossRef]

64. Adams, R.P. *Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry*, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4.

65. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016.

66. NIST. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.

67. Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Dissertation, University of Alabama in Huntsville, Huntsville, AL, USA, 2015.