Planning Optimal Paths for Multiple Robots on Graphs

Jingjin Yu Steven M. LaValle

Abstract—In this paper, we study the problem of optimal multi-robot path planning (MPP) on graphs. We propose two multiflow based integer linear programming (ILP) models that computes minimum last arrival time and minimum total distance solutions for our MPP formulation, respectively. The resulting algorithms from these ILP models are complete and guaranteed to yield true optimal solutions. In addition, our flexible framework can easily accommodate other variants of the MPP problem. Focusing on the time optimal algorithm, we evaluate its performance, both as a stand alone algorithm and as a generic heuristic for quickly solving large problem instances. Computational results confirm the effectiveness of our method.

I. INTRODUCTION

Planning collision-free paths for multiple robots, an easily stated yet difficult problem, has been actively studied for decades [4], [12], [13], [20], [22], [24], [25], [28], [29], [32]. The hardness of the problem mainly resides with the coupling between the robots’ paths which leads to an enormous state space and branching factor. As such, algorithms that are both complete and (distance) optimal, such as the A∗ [8] algorithm and its variants, do not perform well on tightly coupled problems beyond very small ones. On the other hand, faster algorithms for finding the paths generally do not provide optimality guarantees: Sifting through all feasible path sets for optimal ones greatly increases the search space, which often makes these problems intractable.

In this paper, we investigate the problem of planning optimal paths for multiple robots with individual goals. The robots have identical but non-negligible sizes, are confined to some arbitrary connected graph, and are capable of moving from one vertex to an adjacent vertex in one time step. Collision between robots is not allowed, which may occur when two robots attempt to move of the same vertex or move along the same edge in different directions. For this general setting, we propose a network flow based integer linear programming (ILP) model for finding robot paths that are time optimal or distance optimal. Our time optimality criterion seeks to minimize the number of time steps until the last robot reaches its goal; distance optimality seeks to minimize the total distance (each edge has unit distance) traveled by the robots. Taking advantage of the state of the art ILP solvers (Gurobi is used in this paper), our method can plan time optimal, collision-free paths for several dozens of robots on graphs with hundreds of vertices within minutes.

As a universal subroutine, collision-free path planning for multiple robots finds applications in tasks spanning assembly [7], [15], evacuation [18], formation control [2], [16], [21], [23], [27], localization [6], object transportation [14], [19], search and rescue [9], and so on. Given its importance, path planning for multi-robot systems has remained as a subject of intense study for many decades. Given the vast size of the available literature, we will only mention related research on discrete MPP and refer the readers to [3], [10], [11] and the references therein for a more comprehensive review of the subject.

From an algorithmic perspective, discrete MPP is a natural extension of the single robot path planning problem: One may combine the state spaces of all robots and treat the problem as a planning problem for a single robot. A∗ algorithm can then be used to compute distance optimal solutions to these problems. However, since naive A∗ scales poorly due to the curse of dimensionality, additional heuristic methods were proposed to improve the computational performance. One of the first such heuristics, Local Repair A∗ (LRA∗) [32], plans robot paths simultaneously and performs local repairs when conflicts arise. Focusing on fixing the (locality) shortcomings of LRA∗, Windowed Hierarchical Cooperative A∗ (WHCA∗) [22] proposed to use a space-time window to allow more choices for resolving local conflicts while limiting the search space size at the same time. For additional heuristics exploring various specific local and global features, see [13], [20], [25].

Formulations of MPP problems with optimality guarantee have also been studied. The most general optimality criterion is the total path length traveled by all robots, which is consistent with the distance heuristic used by the A∗ algorithm. Since A∗ is the best possible among all such algorithms for finding distance optimal solutions, one should not expect complete and true optimal algorithms to exist that perform much better than the basic A∗ algorithm in all cases. Nevertheless, this does not prevent algorithms from quickly solving certain instances optimally. One such algorithm that is also complete, MGSx, is presented in [24] (note that the grid world formulation in [24], which allows diagonal moves in general, even in the presence of diagonal obstacles, does not carry over to general graphs or geometric models in robotics). For time optimality, for a version of the MPP problem that resembles our formulation more closely, it was shown that finding a time optimal solution is NP-hard [26], implying that our formulation is also intractable [30]. Finally, it was shown that finding the least number of moves for the
$N \times N$-generalization of the 15-puzzle is NP-hard [17]. Here, time optimality equals distance optimality, which is not the case in general.

The main contributions of this paper are twofold. First, adapting the constructions from [31], we develop ILP models for solving time optimal and distance optimal MPP problems. The resulting algorithms are shown to be complete. Our approach is quite general and easily accommodates other formulations of the MPP problems, including that of [24]. Second, we provide thorough computational evaluations of our models’ performance: With a state-of-the-art ILP solver, our models are capable of solving large problem instances with few dozens of robots fairly fast. Such a result is in some sense the best we can hope for because the best possible approach is quite general and easily accommodates other cases in general.

In this paper, we work with graphs on which the only possible collisions are meet or head-on collisions. This assumption is a mild one: For example, a 2D grid with unit edge lengths is such a graph for robots with radii of no more than $\sqrt{2}/4$. As a last note, our formulation allows multiple robots to move at the same time step as long as no collision occurs. On a graph, this allows robots on any cycle to “rotate”.

\[T_p = \max_{1 \leq r \leq n} k^\text{min}_r. \]

Another frequently used objective is distance optimality, which counts the total number of edges traveled by the robots. We point out that distance optimality and time optimality cannot be satisfied at the same time in general: In Fig. 1, we want to get them into the “H” example in [12]. Given the robots as numbered in the “H” example in [12]. Given the robots as numbered in Fig. 1, let the dotted straight line have length t and the dotted arc has length $1.5t$ from some large even number t. The four solid line segments are edges with unit length. Assuming that robot 1, 2 are to move from the locations marked with solid circles to the locations marked with gray dotted circles. Time optimal paths take $1.5t + 2$ time steps with a total distance of $2.5t + 4$; distance optimal paths take $2t + 3$ time steps with a total distance of $2t + 4$.

Fig. 1. Time optimality and distance optimality cannot be satisfied simultaneously for this setup.

In this paper, we work with graphs on which the only possible collisions are meet or head-on collisions. This assumption is a mild one: For example, a 2D grid with unit edge lengths is such a graph for robots with radii of no more than $\sqrt{2}/4$. As a last note, our formulation allows multiple robots to move at the same time step as long as no collision occurs. On a graph, this allows robots on any cycle to “rotate”.

\[(a) \quad (b) \]

Fig. 2. a) A 9-puzzle problem. b) The desired goal state.

To better characterize what we solve in this paper, look at the example in Fig. 2. We call this problem a 9-puzzle, which is a variant of the 15-puzzle [17]; it is also related to the “H” example in [12]. Given the robots as numbered in Fig. 2(a), we want to get them into the state (configuration) is also used in this paper to refer to the same, depending on the context) given in Fig. 2(b) (such a configuration is often referred to as row major ordering). Coming up with a feasible solution for such a highly constrained problem is non-trivial, let alone solving it with an optimality guarantee. The time optimal algorithm we present in this paper solves this problem instance under 0.1 second. The solution is given in Fig. 3. The time optimality of the solution is evident: It takes at least four steps for robot 9 to reach its goal.

A natural criterion for measuring path set optimality is the number of time steps until the last robot reaches its goal. This is sometimes called the makespan, which can be computed from $\{k^\text{min}_i\}$ for a feasible path set P as

\[T_p = \max_{1 \leq r \leq n} k^\text{min}_r. \]
that satisfies edge capacity constraints, the set of edges of the set of sources and sinks. We let our algorithm. For surveys on network flow, see [1], [5].

maximum flow problem formulation pertinent to the introduction of be treated as different commodities. A feasible (static) S^+, S^--flow on this network \mathcal{N} is a map $f : E \rightarrow \mathbb{Z}^+$ that satisfies edge capacity constraints,

$$\forall e \in E, \quad f(e) \leq c_1(e),$$

(1)

the flow conservation constraints at non terminal vertices,

$$\forall v \in V \setminus S, \quad \sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) = 0,$$

(2)

and the flow conservation constraints at terminal vertices,

$$F(f) = \sum_{v \in S^+} \left(\sum_{e \in \delta^-(v)} f(e) - \sum_{e \in \delta^+(v)} f(e) \right)$$

$$= \sum_{v \in S^-} \left(\sum_{e \in \delta^-(v)} f(e) - \sum_{e \in \delta^+(v)} f(e) \right).$$

(3)

The quantity $F(f)$ is called the value of the flow f. The classic (single-commodity) maximum flow problem asks the question: Given a network \mathcal{N}, what is the maximum $F(f)$ that can be pushed through the network? The minimum cost maximum flow problem further requires the flow to have minimum total cost among all maximum flows. That is, we want to find a flow among all maximum flows that also minimizes the quantity

$$\sum_{e \in E} c_2(e) \cdot f(e).$$

(4)

The above formulation concerns a single commodity, which corresponds to all robots being inter exchangeable. For MPP, the robots are not inter exchangeable and must be treated as different commodities. Multi-commodity flow or multiflow captures the problem of flowing different types of commodities through a network. Instead of having a single flow function f, we have a flow function f_i for each commodity i. The constraints (1), (2), and (3) become

$$\forall i, \forall e \in E, \quad \sum_{v \in S^+} \left(\sum_{e \in \delta^-(v)} f_i(e) - \sum_{e \in \delta^+(v)} f_i(e) \right)$$

$$\sum_{v \in S^-} \left(\sum_{e \in \delta^-(v)} f_i(e) - \sum_{e \in \delta^+(v)} f_i(e) \right).$$

(5)

$$\forall i, \forall v \in V \setminus S, \quad \sum_{e \in \delta^+(v)} f_i(e) - \sum_{e \in \delta^-(v)} f_i(e) = 0,$$

(6)

Again, maximum flow and minimum cost flow problems can be posed for a multiflow setup.

B. Equivalence between MPP and multiflow

Viewing robots as commodities, we may connect MPP and multiflow. This relationship (Theorem 2) was stated in [31] without full proof, which is provided here for completeness. To make the presentation clear, we use as an example the simple graph G in Fig. 4(a), with initial locations $\{s_i\}, i = 1, 2$ and goal locations $\{s_i^+\}, i = 1, 2$. An instance of Problem 1 is given by $(G, \{r_1, r_2\}, \{x_i : r_1 \rightarrow s_i^+, x_G : r_1 \rightarrow s_1^-\})$. We now convert this problem to a network flow problem $\mathcal{N}' = (G', c_1, c_2, S^+ \cup S^-)$. Given the graph G and a natural number T, we create $2T + 1$ copies of vertices from G, with indices $0, 1, 1', \ldots$, as shown in Fig. 5. For each vertex $v \in G$, denote these copies $v(0), v(1), v(1'), v(2), \ldots, v(T')$. For each edge $(u, v) \in G$ and time steps $t,t+1, 0 \leq t < T$, add the gadget shown in Fig. 4(b) between $u(t)', v(t)'$ and $u(t+1)', v(t+1)'$ (arrows from the gadget are omitted from Fig. 5 since they are small). For the gadget, we assign unit capacity to all edges, unit cost to the horizontal middle edge, and zero cost to the other four edges. This gadget ensures that two robots cannot travel in opposite directions on an edge in the same time step. To finish the construction of Fig. 5 for each vertex $v \in G$, we add one edge between every two successive copies (i.e., we add the edges $(v(0), v(1)), (v(1), v(1)'), \ldots, (v(T), v(T'))$). These correspond to the green and blue edges in Fig. 5. For all green edges, we assign them unit capacity and cost; for all blue edges, we assign them unit capacity and zero cost.
Fig. 5 (with the exception of edges e₁ and e₂, which are not relevant until Section IV), called a time-expanded network [1], is the desired G'. For the set S, we may simply let \(S^+ = \{v(0) : v \in \{s_1^1\}\} \) and \(S^- = \{v(T') : v \in \{s_1^n\}\} \). The network \(\mathcal{N}' = (G', c_1, c_2, S^+ \cup S^-) \) is now complete; we have reduced Problem 1 to an integer maximum multiflow problem on \(\mathcal{N}' \) with each robot from \(R \) as a single type of commodity.

Theorem 2 Given an instance of Problem 1 with input parameters \((G, R, x_1, x_G)\), there is a bijection between its solutions (with maximum number of time steps up to \(T \)) and the integer maximum multiflow solutions of flow value \(n \) on the time-expanded network \(\mathcal{N}' \) constructed from \((G, R, x_1, x_G)\) with \(T \) time steps.

Proof. (Injectivity) Assume that \(P = \{p_1, \ldots, p_n\} \) is a solution to an instance of Problem 1. For each \(p_i \) and every time step \(t = 0, \ldots, T \), we mark the copy of \(p_i(t) \) and \(p_i(t') \) (recall that \(p_i(t) \) corresponds to a vertex of \(G \)) at time step \(t \) in the time-expanded graph \(G' \). Connecting these vertices of \(G' \) sequentially (there is only one way to do this) yields one unit of flow \(f_i \) on \(\mathcal{N}' \) (after connecting to appropriate source and sink vertices in \(S^+, S^- \), which is trivial). It is straightforward to see that if two paths \(p_i, p_j \) are not in collision, then the corresponding flows \(f_i, f_j \) on \(\mathcal{N}' \) are vertex disjoint paths and therefore do not violate any flow constraint. Since any two paths in \(P \) are not in collision, the corresponding set of flows \(\{f_1, \ldots, f_n\} \) is feasible and maximal on \(\mathcal{N}' \).

(Surjectivity) Assume that \(\{f_1, \ldots, f_n\} \) is a integer maximum multiflow on the network \(\mathcal{N}' \) with \(|f_i| = 1 \). First we establish that any pair of flows \(f_i, f_j \) are vertex disjoint. To see this, we note that \(f_i, f_j \) (both are unit flows) cannot share the same source or sink vertices due to the unit capacity structure of \(\mathcal{N}' \) enforced by the blue edges. If \(f_i, f_j \) share some non-sink vertex \(v \) at time step \(t \geq 0 \), both flows then must pass through the same blue edge (see Fig. 2(b)) with \(v \) being either the head or tail vertex, which is not possible. Thus, \(f_i, f_j \) are vertex disjoint on \(\mathcal{N}' \). We can readily convert each flow \(f_i \) to a corresponding path \(p_i \) (after deleting extra source vertex, sink vertices, vertices in the middle of the gadgets, and tail vertices of blue edges) with the guarantee that no \(p_i, p_j \) will collide due to a meet collision. By construction of \(\mathcal{N}' \), the gadget we used ensures that a head-on collision is also impossible. The set \(\{p_1, \ldots, p_n\} \) is then a solution to Problem 1.

C. Accommodating other formulations

Our network flow based approach for encoding the MPP problem is fairly general; we illustrate this using two examples. The first is the grid world formulation from [24], which allows (single) diagonal crossings. That is, for vertices \(v_1, \ldots, v_4 \) on the four corners of a square cell with \(v_1, v_3 \) and \(v_2, v_4 \) diagonal to each other, respectively, it is possible for a robot to move from \(v_1 \) to \(v_3 \) provided that \(v_3 \) is unoccupied and the \(v_2-v_4 \) diagonal is not used in the same time step. To include this constraint in the ILP model, we may simply add the gadget structure in Fig. 2 to the time-expanded network construction. The inclusion of the gadget will allow a single diagonal; the extra paths do not create an issue since no two robots can go through a single vertex at the same time step (enforced by the blue dotted edges in Fig. 5).

Fig. 6. A gadget for allowing diagonal crossings.

For a second example, in some MPP formulations, head-on collisions may be allowed. For instance, two adjacent CPUs may exchange two units of data in parallel but no single CPU may hold multiple units of data. To allow this, we simply do not use the gadget from Fig. 2(b) when the time-expanded network is constructed.

IV. ALGORITHMIC SOLUTIONS FOR OPTIMAL MULTI-ROBOT PATH PLANNING

Given the time-expanded network \(\mathcal{N}' = (G', c_1, c_2, S^+ \cup S^-) \), it is straightforward to create an integer linear programming (ILP) model with different optimality objectives. We investigate two objectives in this section: Time optimality or makespan (the time when the last robot reaches its goal) and distance optimality (the total distance traveled by all robots).

A. Time optimality

Time optimal solutions to Problem 1 can be obtained using a maximum multiflow formulation. As a first step, we introduce a set of \(n \) loopback edges to \(G' \) by connecting each pair of corresponding goal and start vertices in \(S \), from the goal to the start. For convenience, denote these loopback edges as \(\{e_1, \ldots, e_n\} \) (e.g., edges \(e_1, e_2 \) in Fig. 5). These edges have unit capacity and zero cost. Next, for each edge \(e_j \in G' \), create \(n \) binary variables \(x_{1,j}, \ldots, x_{n,j} \) corresponding to the flow through that edge, one for each robot. \(x_{i,j} = 1 \) if and only if robot \(r_i \) passes through \(e_j \) in \(G' \). The variables \(x_{i,j} \)'s must satisfy two edge capacity constraints and one flow conservation constraint,

\[
\forall e_j \in G', \quad \sum_{i=1}^{n} x_{i,j} \leq 1
\]

\[
\forall 1 \leq i, j \leq n, i \neq j, \quad x_{i,j} = 0,
\]

\[
\forall v \in G' \text{ and } 1 \leq i \leq n, \quad \sum_{e_j \in \delta^+(v)} x_{i,j} = \sum_{e_j \in \delta^-(v)} x_{i,j}.
\]

The objective function is

\[
\max \sum_{1 \leq i \leq n} x_{i,j}.
\]

For each fixed \(T \), the solution to the above ILP problem equaling \(n \) means that a feasible solution to Problem 1 is
found. We are to find the minimal \(T \) that yields such a feasible solution. To do this, we start with \(T \) being the maximum over all robots the shortest possible path length for each robot, ignoring all other robots. We then build the ILP model for this \(T \) and test for a feasible solution. If the model is not feasible, we increase \(T \) and try again. The first feasible \(T \) is the optimal \(T \). The robots’ paths can be extracted based on the proof of Theorem 2. The algorithm is complete: Since the problem is discrete, there is only a finite number of possible states. Therefore, for some sufficiently large \(T \), there must either be a feasible solution or we can pronounce that none can exist. Calling this algorithm TOMPP (time optimal MPP), we have shown the following.

Proposition 3 Algorithm TOMPP is complete and returns a solution with minimum makespan to Problem 7 if one exists.

B. Distance optimality

Distance optimality objective can be encoded using minimum cost maximum multiflow. Constraints (8) and (9) remain; to force a maximum flow, let \(x_{i,j} = 1 \) for \(1 \leq i \leq n \). The objective is given by

\[
\min \sum_{e_j \in G', j \geq n, 1 \leq i \leq n} c_2(e_j) \cdot x_{i,j}.
\]

(11)

The value given by \((11) \), when feasible, is the total distance of all robots’ paths. Let \(T_i \) denote the optimal \(T \) produced by TOMPP (if one exists), then a distance optimal solution exists in a time-expanded network with \(T = nT_i \) steps. Calling this algorithm DOMPP (distance optimal MPP), we have

Proposition 4 Algorithm DOMPP is complete and returns a solution with minimum total path length to Problem 7 if one exists.

Due to the large number of steps needed in the time-expanded network, DOMPP, in its current form, is not very fast in solving problems with many robots. Therefore, our evaluation in this paper focuses on TOMPP which, on the other hand, is fairly fast in solving some very difficult problems. DOMPP, however, still proves useful in providing time optimal and near distance optimal solutions using the outputs of TOMPP, as shown in Subsection VI-C

V. PROPERTIES OF THE \(n^2 \)-PUZZLE

The example problem from Fig. 2 easily extends to an \(n \times n \) grid; we call this class of problems the \(n^2 \)-puzzle. Such problems are highly coupled: No robot can move without at least three other robots moving at the same time. At each step, all robots that move must move synchronously in the same direction (per cycle) on one or more disjoint cycles (see e.g., Fig. 3). To put into perspective the computational results on \(n^2 \)-puzzles that follow, we make a characterization of the state structure of the \(n^2 \)-puzzle for \(n \geq 3 \) (the case of \(n = 2 \) is trivial).

Proposition 5 All states of the 9-puzzle are connected via legal moves.

![Fig. 7. A 3-step procedure for exchanging robots 8 and 9.](image)

Proof. We show that any state of a 9-puzzle can be moved into the state shown in Fig. 2(b). From any state, robot 5 can be easily moved into the center of the grid. We are left to show that we can exchange two robots on the border without affecting other robots. This is possible due to the procedure illustrated in Fig. 7.

Larger puzzles can be solved recursively: We may first solve the top and right side of the puzzle and then the left over smaller square puzzle. For a 16-puzzle, Fig. 8 outlines the procedure, consisting of six main steps:

1) Move robots 1 and 2 to their respective goal locations, one robot at a time (first 1, then 2).
2) Move robots 3 and 4 (first 3, then 4) to the lower left corner (top-middle figure in Fig. 8).
3) Move robots 3 and 4 to their goal location together via counterclockwise rotation along the cycle indicated in the top-middle figure in Fig. 8.
4) Move robot 8 to its goal location.
5) Move robots 12 and then 16 to the lower left corner.
6) Rotate robots 12 and 16 to their goal locations.

![Fig. 8. A solution scheme for solving top/left sides of the 16-puzzle.](image)

It is straightforward to see that larger puzzles can be solved similarly. We have thus outlined the essential steps for proving Proposition 6 below; a more generic proof can be written using generators of permutation groups, which we omit here due to its length. Proposition 6 implies that, for \(n \geq 3 \), all instances of \(n^2 \)-puzzles are solvable. The constructive proofs of Proposition 5 and 6 lead to recursive algorithms for solving any \(n^2 \)-puzzle (clearly, the solution is not time/distance optimal in general).

Proposition 6 All states of an \(n^2 \)-puzzle, \(n \geq 3 \) are connected via legal moves.

Corollary 7 All instances of the \(n^2 \)-puzzle, \(n \geq 3 \), are solvable.

By Proposition 6, since all states of a \(n^2 \)-puzzle for \(n \geq 3 \) are connected via legal moves, the state space of searching an \(n^2 \)-puzzle equals \(n^2 \) factorial. For 16-puzzle and 25-puzzle,
16! > 10^{13}, 25! > 10^{22}. Large state space is one of the three reasons that make finding a time optimal solution to the \(n^2 \)-puzzle a difficult problem. The second difficulty comes from the large branching factor at each step. For a 9-puzzle, there are 13 unique cycles, yielding a branching factor of 26 (clockwise and counterclockwise rotations). For the 16-puzzle, the branching factor is around 500. This number balloons to over \(10^4 \) for the 25-puzzle. This suggests that on typical commodity personal computer hardware (assuming a 1GHz processor), a basic breadth first search algorithm will not be able to go beyond depth of 3 for the 16-puzzle and depth 2 for the 25-puzzle in reasonable amount of time. Moreover, enumerating these cycles is a non-trivial task. The third difficulty is the lack of obvious heuristics: Manhattan distances of robots to their respective goals prove to be a bad one. For example, given the initial configuration as that in Fig. 2(a), the first step in the optimal plan from Fig. 3 gets robots 1, 3, 4, 6, 8, 9 closer to their respective goals while moving robots 2, 7 farther. On the other hand, rotating counterclockwise along the outer cycle takes robots 1, 3, 4, 5, 6, 8, 9 closer and only moves robot 7 farther. However, if we instead take this latter first step, the optimal plan afterwards will take 5 more steps.

VI. SOLUTIONS AND EVALUATION

Our experimentation in this paper focuses on TOMPP with the main goal being evaluating the comparative efficiency of our approach rather than pushing for best computational performance. As such, our implementation is Java based and did not directly take advantage of multi-core technology. We note that, Gurobi, the ILP solver used in our implementation, can engage multiple cores automatically for hard problems. We ran our code on an Intel Q6600 quad-core machine with 4GB JavaVM.

A. Time optimal solution to \(n^2 \)-puzzles

The first experiment we performed was evaluating the efficiency of the algorithm TOMPP for finding time optimal solutions to the \(n^2 \)-puzzle for \(n = 3, 4, 5 \), and 6. We ran Algorithm TOMPP on 100 randomly generated \(n^2 \)-puzzle instances for \(n = 3, 4, 5 \). For the 9-puzzle, computation on all instances completed successfully with an average computation time of 1.36 seconds per instance. To compare the computational result, we implemented a (optimal) BFS algorithm. The BFS algorithm is heavily optimized: For example, cycles of the grid are precomputed and hard coded to save computation time. Since the state space of the 9-puzzle is small, the BFS algorithm is capable of optimally solving the same set of 9-puzzle instances with an average computation time of about 0.89 seconds per instance.

Once we move to the 16-puzzle, the power of general ILP solvers becomes evident. TOMPP solved all 100 randomly generated 16-puzzle instances with an average computation time of 18.9 seconds. On the other hand, the BFS algorithm with a priority queue that worked for the 9-puzzle ran out of memory after a few minutes. As our result shows that an optimal solution for the 16-puzzle generally requires 6 time steps, it seems natural to also try bidirectional search, which cuts down the total number states stored in memory. To complete such a search, one side of the bidirectional search generally must reach a depth of 3, which requires storing about \(3 \times 10^7 \) states, each taking 64 bits of memory. This turns out to be too much for a 4GB JavaVM: A bidirectional search ran out of memory after about 10 minutes in general. To be sure, we also coded part of the same search algorithm in C++ with STL. Reaching a search depth 3 on one side takes about a minute with a memory footprint of 1.5GB, suggesting a minimum running time of more than one minute.

Fig. 9. An instance of a 25-puzzle problem solved by TOMPP.

For the 25-puzzle, without a good heuristic, bidirectional search cannot explore a tiny fraction of the fully connected state space with about \(10^{25} \) states. On the other hand, TOMPP again consistently solves the 25-puzzle, with an average computational time under 2 hours over 100 randomly created problems. Fig. 9 shows one of the solved instances with a 7-step solution given in Fig. 10. Note that 7 steps is obviously the least possible since it takes at least 7 steps to move robot 10 to its desired goal. We also briefly tested TOMPP on the 36-puzzle. While we had some success here, TOMPP generally does not seem to solve a randomly generated instance of the 36-puzzle within 24 hours, which has \(3.7 \times 10^{41} \) states and a branching factor of well over \(10^9 \).

B. Time optimal solutions for grid graphs

For problems in which not all graph vertices are occupied by robots, TOMPP can handle much larger instances. In a first set of tests on this subject, a grid size of \(20 \times 15 \) is used with varying percentage of obstacles (simulated by removed vertices) and robots for evaluating the effect of these factors. A typical set up is illustrated in Fig. 11. The computation time (in seconds) and the average number of optimal time steps (in parenthesis) are listed in Table II. The numbers are averages over 10 randomly created instances. For each run, a maximum of 1000 seconds is allowed (such limits,
somewhat arbitrary, were chosen to manage the expected computational difficulty. On the other hand, as more obstacles are introduced, the reduced connectivity of the graph makes the problem harder. In particular, the 20×15 grid setting with 25% obstacles, $\times 9$ 234 $\times 3$ 80.

C. Distance optimality of time optimal solutions

Although DOMPP is not yet practical for computing distance optimal solutions alone, it can be used for computing distance optimal solutions for a fixed time expansion length T. That is, we first find a time optimal solution, which gives us the smallest time-expanded network containing feasible solutions. We then run DOMPP on this network. For evaluation, we used the same 20×15 instances with 5-25% obstacles and 10-30 robots (DOMPP could not finish most instances with 30% obstacles or 40+ robots in 200 seconds, the cutoff time). We used the first 5 of every 10 instances for each obstacle/robot combination. For each fixed number of obstacles, instances of different numbers of robots are combined. The result is listed in Table III. We allow DOMPP to run for at most 200 seconds per instance. Note that unlike TOMPP, even when DOMPP does not find the optimal solution, it generally produces feasible solution which sometimes is a near optimal solution. These are included in the result. “Time” entries are average time, in seconds, used by DOMPP. “Disjoint” entries are the average path lengths for all robots if we were to plan each shortest path ingoring other robots. The distance optimal solutions must produce a length no less than this. The next two lines are average path lengths from TOMPP and DOMPP algorithms. As we can see, TOMPP alone yields path length 50% than optimal; DOMPP, on the other hand, provided time optimal solutions that are near distance optimal (<1% difference). For more than half of the instances, DOMPP produced true distance optimal solutions. In fact, DOMPP produced true distance optimal solutions for 42 out of the 45 instances with 5-15% obstacles.

D. Using TOMPP as a generic heuristic

In the last experiment, we exploit TOMPP as a generic heuristic for locally resolving path conflicts for large problem instances. By generic, we mean that the heuristic is not coded to any specific robot/grid setting. In our algorithm, paths are first planned for single robots (ignoring other robots). Afterwards, the robots are moved along these paths until no progress are stalled and resolve the conflict locally.

In a second test on even larger problems, 32×32 grids with 20% obstacles were tried. For between 10 and 50 robots with an increment of 10, 10 random instances each were created; each instance is allowed to run a maximum of half an hour. The statistics, similarly composed as that in Table II is listed in Table III We observe that the problem is similar in difficulty to the 20×15 grid setting with 25% obstacles, but much simpler than that with 30% obstacles.

![Fig. 11. A 20×15 grid with 20% vertices removed (modeling obstacles) and 30 start/goal pairs. The start locations are marked with strings beginning with “S” and the goal locations are marked with strings beginning with “G”.](image)
average over 100 runs for a certain number of robots, are listed in Table IV (keep in mind that our implementation is Java based, which should see a speedup if implemented in C++). While we did not make side-by-side comparisons with the literature due to (seemingly small but) important differences in problem formulation, the computation time and completion rate of our algorithm appear comparable with the state of the art results from other authors.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper, we introduced a multiflow based ILP algorithm for planning optimal, collision-free paths for multiple robots on graphs. We provided complete ILP algorithms for solving time optimal and distance optimal MPP problems. Our experiments confirmed that TOMPP is a feasible method for planning time optimal paths for tightly coupled problems as well as for larger problems with more free space. Moreover, we showed that TOMPP can serve as a good heuristic for solving large problem instances efficiently. For distance optimality, DOMPP, when combined with TOMPP, produces time optimal solutions that are often near distance optimal.

Many interesting open problems on optimal MPP remain; we mention two here. First, the ILP algorithms have ample room for performance improvements. On one hand, the ILP model can be made leaner. For example, it is clear that some x_{ij}’s will never be set to 1; these should be removed from the model. On the other hand, our application of the Gurobi solver is fairly rudimentary – we simply feed the model to the solver as a mixed integer program (MIP) without specifying any other optimization options. Therefore, it would not be surprising that tuning the parameters of the solver greatly improves its performance on MPP problems. Secondly, while TOMPP could solve hard MPP problems such as the 25-puzzle, ILP solvers are nevertheless not tailored for such problems. Thus, we expect that tailored methods, such as heuristic based search, to solve problems like n^2-puzzles even faster. Looking closely at how ILP solvers work on these problems should provide insights that help building these heuristics.

Number of Robots	Running time (s)	Fully solved	% goals reached
25	0.04	100	100.0
50	0.15	100	99.0
75	0.32	100	98.0
100	1.37	100	98.0
125	3.85	98	95.0
150	10.33	98	95.0

TABLE IV

REFERENCES

[1] J. E. Aronson. A survey on dynamic network flows. Annals of Operations Research, 2011:1–66, 1989.
[2] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transaction on Robotics and Automation, 14(6):926–939, 1998.
[3] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles of Robotic Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.
[4] M. A. Erdmann and T. Lozano-Pérez. On multiple moving objects. In Proceedings IEEE International Conference on Robotics & Automation, pages 1419–1424, 1986.
[5] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, New Jersey, 1962.
[6] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to collaborative multi-robot localization. Auton. Robots, 8(3):325–344, June 2000.
[7] D. Halperin, J.-C. Latombe, and R. Wilson. A general framework for assembly planning: The motion space approach. Algorithmica, 26(3-4):577–601, 2000.
[8] P. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968.
[9] J. S. Jennings, G. Whelan, and W. F. Evans. Cooperative search and rescue with a team of mobile robots. In Proceedings IEEE International Conference on Robotics & Automation, 1997.
[10] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.
[11] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Also available at http://planning.cs.uiuc.edu/.
[12] S. M. LaValle and S. A. Hutchinson. Optimal motion planning for multiple robots having independent goals. IEEE Trans. on Robotics and Automation, 14(6):912–925, December 1998.
[13] R. Luna and K. E. Bekris. Push and swap: Fast cooperative pathfinding with completeness guarantees. In Twenty-Second International Joint Conference on Artificial Intelligence, pages 294–300, 2011.
[14] M. J. Mataric, N. Nilsson, and K. T. Simsarian. Cooperative multi-robot box pushing. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 556–561, 1995.
[15] B. Niaji. Theory of Automatic Robot Assembly and Programming. Chapman & Hall, 1999.
[16] S. Poduri and G. S. Sukhatme. Constrained coverage for mobile sensor networks. In Proceedings IEEE International Conference on Robotics & Automation, 2004.
[17] D. Ratner and M. Warmuth. The $(n^2 - 1)$-puzzle and related relocation problems. Journal of Symbolic Computation, 10:111–137, 1990.
[18] S. Rodriguez and N. M. Amato. Behavior-based evacuation planning. In Proceedings IEEE/RSJ International Conference on Robotics and Automation, pages 350–351, 2010.
[19] D. Ras, B. Donald, and J. Jennings. Moving furniture with teams of autonomous robots. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 235–242, 1995.
[20] M. R. K. Ryan. Exploiting subgraph structure in multi-robot path planning. Journal of Artificial Intelligence Research, 31:497–542, 2008.
[21] B. Shucker, T. Murphey, and J. K. Bennett. Switching rules for decentralized control with simple control laws. In American Control Conference, July 2007.
[22] D. Silver. Cooperative pathfinding. In The 1st Conference on Artificial Intelligence and Interactive Digital Entertainment, pages 23–28, 2005.
[23] B. Smith, M. Egerstedt, and A. Howard. Automatic generation of persistent formations for multi-agent networks under range constraints. ACM/Springer Mobile Networks and Applications Journal, 14(3):322–335, June 2009.
[24] T. Standley and R. Korf. Complete algorithms for cooperative pathfinding problems. In Twenty-Second International Joint Conference on Artificial Intelligence, pages 668–673, 2011.
[25] P. Surynek. A novel approach to path planning for multiple robots in bi-connected graphs. In Proceedings IEEE International Conference on Robotics and Automation, pages 3613–3619, 2009.
[26] P. Surynek. An optimization variant of multi-robot path planning is intractable. In The Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), pages 1261–1263, 2010.
[27] H. Tanner, G. Pappas, and V. Kumar. Leader-to-stability. IEEE Transactions on Robotics and Automation, 20(3):443–455, Jun 2004.
[28] J. van den Berg and M. Overmars. Prioritized motion planning for multiple robots. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.
[29] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In Proceedings Robotics: Science and Systems, 2009.
[30] J. Yu. Diameters of permutation groups on graphs and linear time feasibility test of pebble motion problems. arXiv:1205.5263, 2012.
[31] J. Yu and S. M. LaValle. Multi-agent path planning and network flow. In The Tenth International Workshop on Algorithmic Foundations of Robotics, 2012.
[32] A. Zelinsky. A mobile robot exploration algorithm. *IEEE Transactions on Robotics and Automation*, 8(6):707–717, 1992.