Association of Volumetric Epicardial Adipose Tissue Quantification and Cardiac Structure and Function

Nitesh Nerlekar, MBBS, MPH; Rahul G. Muthalaly, MBBS; Nathan Wong, MBBS; Udit Thakur, MBBS; Dennis T. L. Wong, MD, PhD; Adam J. Brown, MD, PhD; Thomas H. Marwick, MBBS, MPH, PhD

Background—Epicardial adipose tissue (EAT) is in immediate apposition to the underlying myocardium and, therefore, has the potential to influence myocardial systolic and diastolic function or myocardial geometry, through paracrine or compressive mechanical effects. We aimed to review the association between volumetric EAT and markers of myocardial function and geometry.

Methods and Results—PubMed, Medline, and Embase were searched from inception to May 2018. Studies were included only if complete EAT volume or mass was reported and related to a measure of myocardial function and/or geometry. Meta-analysis and meta-regression were used to evaluate the weighted mean difference of EAT in patients with and without diastolic dysfunction. Heterogeneity of data reporting precluded meta-analysis for systolic and geometric associations. In the 22 studies included in the analysis, there was a significant correlation with increasing EAT and presence of diastolic dysfunction and mean e’ (average mitral annular tissue Doppler velocity) and E/e’ (early inflow / annular velocity ratio) but not E/A (ratio of peak early (E) and late (A) transmirtal inflow velocities), independent of adiposity measures. There was a greater EAT in patients with diastolic dysfunction (weighted mean difference, 24.43 mL; 95% confidence interval, 18.5–30.4 mL; P<0.001), and meta-regression confirmed the association of increasing EAT with diastolic dysfunction (P=0.001). Reported associations of increasing EAT with increasing left ventricular mass and the inverse correlation of EAT with left ventricular ejection fraction were inconsistent, and not independent from other adiposity measures.

Conclusions—EAT is associated with diastolic dysfunction, independent of other influential variables. EAT is an effect modifier for chamber size but not systolic function. *(J Am Heart Assoc. 2018;7:e009975. DOI: 10.1161/JAHA.118.009975.)*

Key Words: diastolic function • epicardial fat • systolic dysfunction

Epicardial adipose tissue (EAT) has been widely studied as a potential contributor to cardiovascular pathological characteristics. Much of this research has focused on its effect on coronary atherosclerosis, but there are unique properties of EAT that may lead to an effect on myocardial function. EAT shares direct anatomic contact with the myocardium without fascial interruption and, therefore, may exhibit local compressive forces, resulting in alteration of myocardial function and geometry. In addition, the shared blood supply of the coronary circulation to both the myocardium and surrounding EAT may predispose paracrine effects on the neighboring myocardium with such inflammatory cytokines as MCP-1 (monocyte chemoattractant), interleukin-β, interleukin-6, tumor necrosis factor-α, and leptin. Persistent inflammation may lead to collagen deposition and subsequent impaired left ventricular (LV) relaxation and further effects on diastolic and systolic function. Furthermore, there is an association between EAT and release of free fatty acids, as well as their myocardial consumption. The relationship between obesity, visceral fat, and EAT may also explain effects on myocardial function, chamber size, and mass.

Several methods have been used for measurement of EAT, including echocardiography, cardiac computed tomography (CT), and cardiac magnetic resonance imaging (MRI). Echocardiography may overestimate or underestimate total EAT volume because of single-plane assessment and the effects of probe angulation on linear measurement. Single-slice area measurements on CT or MRI are also limited by being only single-plane measurements. Recently, we have demonstrated the
superiority of volumetric EAT assessment in comparison to 2-dimensional linear echocardiographic EAT thickness. We, therefore, sought the association of full-volume quantification of EAT (assessed by cardiac CT or cardiac MRI) with myocardial function, as assessed by transthoracic echocardiography, full R-R interval cardiac CT, or cardiac MRI.

Clinical Perspective

What Is New?
- Increasing epicardial adipose tissue volume is associated with diastolic dysfunction, independent of other markers of adiposity.
- Epicardial adipose tissue is an effect modifier for left ventricle chamber geometry.
- Epicardial adipose tissue is not associated with systolic function.

What Are the Clinical Implications?
- Epicardial adipose tissue may represent an important target for therapy associated with diastolic dysfunction.

Methods

Search Method

We conducted this systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and the trial was registered with PROSPERO (CRD 42017038400). The search was conducted in MEDLINE, EMBASE, and PubMed databases, ending in March 2018. References of eligible articles were hand searched for additional articles. Searches were restricted to human studies, and conference abstracts were included. A study search flowchart is presented in Figure 1, and the specific search term strategy is given in Table S1. The data, analytic methods, and study materials will not be made available to other researchers for purposes of reproducing the results or replicating the procedure.

Our inclusion criteria were as follows: patients undergoing cardiac CT (CT angiography or calcium score) or MRI with volumetric assessment of EAT (either volume or mass), with cardiac imaging for assessment of myocardial function parameters (full cardiac cycle cardiac CT or MRI or echocardiography), or measurement of myocardial geometry (LV mass, LV volumes, and left atrium size) by validated methods.

Figure 1. Search strategy. EAT indicates epicardial adipose tissue.
Assessment of diastolic function was restricted to studies using echocardiography. Exclusion criteria included the following: any study with linear measurement of EAT thickness, single-slice area measures of EAT, measures of myocardial lipid content not differentiated from EAT, and measurement of paracardial adipose tissue (ie, fat beyond the parietal pericardium). Two authors (N.N. and R.G.M.) independently reviewed the abstracts from the search to meet the inclusion criteria, and discrepancies were resolved by consensus. Probable overlap of the patient cohort with a similar study led to exclusion of the smaller study.5

Evaluation of Full-Volume EAT
EAT was regarded as adipose tissue enclosed within the visceral pericardium, and mean values (indexed and nonindexed) were recorded.

Evaluation of Cardiac Function
Included studies measured myocardial performance based on echocardiography or MRI. Measures of diastolic function included the following: transmitral flow for peak early (E) and late (A) inflow velocities and their ratio (E/A); deceleration time; septal, lateral, and/or average myocardial annular velocities on tissue Doppler imaging (e'); early inflow/annular velocity ratio (E/e'); pulmonary vein flow to calculate the time difference between the atrial reversal wave and mitral A-wave duration; and the isovolumic relaxation time. Diastolic class grade was recorded if reported: normal, grade 1 (impaired relaxation), grade 2 (pseudonormal), and grade 3 (restrictive). Measures of systolic performance assessed included LV ejection fraction, cardiac output, stroke volume, and global longitudinal strain, if recorded. Measures of cardiac structure included LV mass, LV end-diastolic and end-systolic volumes, and left atrial size.

Statistical Analysis
Data on univariable correlations are presented because this was the most consistent measure seen in included studies. Where multivariable regression was performed, adjusted study estimates and model covariates are reported. Meta-analysis was performed for the weighted mean difference in EAT volume between groups with and without diastolic dysfunction. Meta-regression of weighted mean difference as an effect size and the combined mean EAT in included studies were performed with the moment-based estimate of within-study variance and a permutation test using 1000 Monte Carlo simulations to moderate for potentially spurious results, as previously described.5 Precision of pooled estimates is reported as 95% confidence intervals, and heterogeneity is reported by the I² statistic. The Newcastle Ottawa Scale was used to assess risk of bias (Tables S2 and S3). Statistical analysis was performed using StataMP 14.0 (StataCorpLP, College Station, TX).

Results

Study Selection
A brief outline summary of the 22 studies (18 published and 4 conference papers) included in this review is presented in Table 1.3,7–28

Association of EAT With LV Diastolic Function
There were 11 studies that investigated the relationship between EAT and diastolic parameters, with 5 specifying adherence to an iteration of the American Society of Echocardiography diastolic guidelines.29 EAT was associated with diastolic parameters, including peak mitral annular tissue Doppler velocities (e' septal, e' lateral, or e' mean) and transmittral flow (early [E] and late [A] diastolic peak flow velocities and their ratio [E/A]) (Table 2).15,16,20–24,29–32 Although some studies did perform comprehensive Doppler measures, such as isovolumic relaxation times, deceleration times, and pulmonary vein Doppler, the association with EAT individually with each parameter was not described. The classification of patients with diastolic dysfunction was available in 5 studies. Most patients (26%–38% of total cohort) had grade 1 diastolic dysfunction, with fewer qualifying as grade ≥2 (2%–28%).

In the 5 studies that measured differences in EAT between groups, EAT was significantly greater in the diastolic dysfunction group compared with patients with normal diastolic function (weighted mean difference, 24.4 mL; 95% confidence interval, 18.5–30.4 mL; P=0.001; I²=28%) (Figure 2).15,16,20,21,23,26 Meta-regression, performed evaluating the weighted mean difference (effect size) against the mean EAT volume, demonstrated a nominally increasing presence of diastolic dysfunction with increasing EAT values (β=0.17, SEE=0.09, P=0.06). This was statistically significant after Monte Carlo permutation testing, P=0.001 (Figure 3).

Mean E/e' values were positively correlated with EAT (r value range, 0.21–0.34; P<0.05), and mean e' values were inversely correlated (r value range, −0.26 to −0.44; P<0.05); in all but one study, no consistent association was seen with the E/A ratio (r value range, −0.40 to 0.08). Increasing EAT was an independent predictor of diastolic dysfunction, e' and E/e' independent of age, sex, and measures of adiposity (Table 2). No independent association was identified with the E/A ratio. In 6 studies, hypertension was also an adjusted covariate in the model, and increasing EAT remained a predictor of altered diastolic parameters.

Association of EAT With Systolic Function
Of 10 studies describing the association of EAT with systolic parameters, LV function was evaluated with MRI in 5 and echocardiography in 4 (Table 3).3,10,11,16,18,19,22,27 One study
First Author	Year	Country	Study Type	Population	Sample Size	EAT Method	EAT Value
Bakkum	2015	the Netherlands	Cross-sectional	Suspected CAD	208	PET-CT	113.8±48.1 cm³
Cavalcante	2012	United States	Cross-sectional	Self-referred	110	MDCT	Men, 101±51 cm³; Women, 67±40 cm³
Al Chekakie	2010	United States	Case-control	AF and controls	273	MDCT	Sinus rhythm, 76.1±36.3 mL; AF, 101.6±44.1 mL
Doesch	2012	Germany	Case-control	Established CAD	158 cases	MRI	Control, 31±8 g/m²; CAD, 29±10 g/m²; CAD and EF <50%, 26±8 g/m²; CAD and EF >50%, 36±11 g/m²
Doesch	2013	Germany	Case-control	DCM	112 cases	MRI	Control, 62.1±14.4 g; DCM, 47.2±15.2 g; control, 66±15.3 mL; DCM, 50.2±16.2 mL; control, 31.7±5.6 g/m²; DCM, 24±7.5 g/m²; control, 33.5±6.4 mL/m²; DCM, 25.5±8 mL/m²
Doesch	2010	Germany	Case-control	CHF (LVEF <35%)	66 cases	MRI	Control, 71±13 mL; CHF, 46±11 mL; control, 36±5 mL/m²; CHF, 24±5 mL/m²; control, 67±13 g; CHF, 43±11 g; control, 34±4 g/m²; CHF, 22±5 g/m²
Ede	2014	Turkey	Cross-sectional	Suspected CAD	106	MDCT	38±31 cm³
Faustino	2011	Portugal	Cross-sectional	Not specified	78	MDCT	Threshold of 44.1 mL defined by ROC curve (72% sensitivity and 50% specificity) for diastolic dysfunction
Fernando	2015	United States	Cross-sectional	AF before ablation	20	MRI	125.7±56.7 mL
Fontes-Carvalho	2014	Portugal	Cross-sectional	Postmyocardial infarction	225	MDCT	113.6±43.2 cm³
Fox	2009	United States	Cross-sectional	Substudy of Framingham	997	MDCT	Women, 108±41 cm³; men, 136±54.4 cm³
Hachiya	2014	Japan	Cross-sectional	Suspected CAD	134	MDCT	77.1±29.6 cm³/m²
Khawaja	2011	United States	Cross-sectional	Suspected CAD	381	MDCT	Normal LVEF, 114.5±98.5 cm³; LVEF <55%, 83.5±67.1 cm³
Konishi	2012	Japan	Cross-sectional	Suspected CAD	229	MDCT	Diastolic dysfunction, 184±61 cm³; normal function, 154±58 cm³
Lai	2015	Taiwan	Cross-sectional	Self-referred	318	MDCT	80.6±33 mL
Liu	2011	United States	Cross-sectional	Blacks	1402	MDCT	Men, 79.8±37.1 mL; women, 67.1±29.0 mL
Longenecker	2016		Cross-sectional	Patients with HIV	46 HIV+ and 23 HIV−	MDCT	HIV+ with DD, median of 120 (74–143) mL; HIV+ with normal function, median of 72 (54–100) mL; HIV−, not specified
Table 1. Continued

| First Author Year Country Study Type Population Sample Size EAT Method EAT Value |
|---|---|---|---|---|---|
| Ng24 | 2016 Australia Cross-sectional Suspected CAD | 130 | MDCT | Total, 97.5 ± 43.7 cm³; men, 103.7 ± 39.5 cm³; women, 90.9 ± 47.4 cm³ |
| Ruberg3 | 2010 United States Cross-sectional Obese with metabolic syndrome | 28 Cases and 18 controls | MRI | Controls, 85.66 mL; subjects, 161.88 mL; controls, 1.1 ± 0.7 mL/g; subjects, 2.0 ± 1.1 mL/g |
| Vanni25* | 2015 Italy Case-control Not specified | 19 NAFLD and 9 controls | MRI | NAFLD, 228.1 ± 112.9 mL; controls, 66.8 ± 25.2 mL |
| Vural26 | 2014 Turkey Case-control Suspected CAD | 63 | CACS | 137 ± 56 cm³ |
| Wu27 | 2015 Taiwan Cross-sectional Compensated CHF | 50 Cases and 20 controls | MRI | Control, 45.8 (39.4–50.3) mL; CHF+VT/VF, 51.5 (46.6–59.8) mL; CHF and no VT/VF, 44.0 (33.9–48.3) mL |
| Yamashita28* | 2012 Japan Cross-sectional Suspected CAD | 286 | MDCT | EAT, 71.6 ± 37.9 (10.5–179.9) mL |

Values are means±SD or mean (range). AF indicates atrial fibrillation; CACS, coronary artery calcium score; CAD, coronary artery disease; CHF, congestive heart failure; DCM, dilated cardiomyopathy; DD, diastolic dysfunction; EAT, epicardial adipose tissue; ICM, ischemic cardiomyopathy; LVEF, left ventricular ejection fraction; MDCT, multidetector computed tomography; MRI, magnetic resonance imaging; NAFLD, nonalcoholic fatty liver disease; PET-CT, positron emission tomography–computed tomography; ROC, receiver operating characteristic; VT/VF, ventricular tachycardia/ventricular fibrillation.

*This is a conference abstract.
First Author	Diastolic Function Reference	Subgroup Characteristics	Diastolic Parameter Correlations	Multivariable Regression Comments
Cavalcante	ASE29	Grade 1 (n=29, 26%)	E/A n=70, 64%	Multivariable model outcomes of grade 1 or higher DD, mean e, and mean E/e': EAT was an independent predictor (model included 10-y Framingham Risk Score, metabolic syndrome, subclinical CAD, and LV mass index), \(\beta \) range, \(-0.02 \) to \(0.04 \) (all \(P<0.05 \)). Indexed EAT was found to increase clinical model for prediction of DD (adjusted \(\hat{R}^2=0.16 \) vs 0.24; \(P=0.004 \)) and mean e' (adjusted \(\hat{R}^2=0.17 \) vs 0.27; \(P=0.001 \)) (ie, indexed EAT represents 8%–10% of the variation of predictors for DD)
Lang et al32	Not specified	Grade 1 (n=39, 37%)	e=0.34*	EAT not significant on multivariable regression (results and covariates not reported). Relationship of EAT with DD by ROC AUC of 0.66 (\(P=0.02 \))
Ede13	Not specified	46Patients with DD and EAT >44.1 mL	n=55, 52%	On multivariable regression adjusted for age, BMI, LA volume, hypertension, and CAD, EAT associated with abnormal myocardial relaxation (OR, not specified; \(P=0.04 \))
Fontes-Carvalho16	ASE29	EAT=116.7±67.9 cm³	e=0.26*	On multivariable regression adjusted for hypertension, age, sex, and other markers of adiposity (SAT, VAT, waist/height ratio, and fat mass %), EAT remained significantly predictive of E/e' (\(\beta \), 0.19 [0.06–0.32]; \(P=0.01 \)), as did e' septal and e' lateral
Konishi20	Defined as E/e' >10	EAT=184±61 cm³	EAT=154±58 cm³	On multivariable regression with age, hypertension, male sex, diabetes mellitus, and abdominal obesity, there was an independent effect of EAT on DD: OR, 2.09 (1.15–3.79; \(P=0.02 \)) for EAT per 100 cm³

Table 2. EAT and Diastolic Function

DOI: 10.1161/JAHA.118.009975

Journal of the American Heart Association

Epicardial Fat and Cardiac Structure and Function

Nerlekar et al

SYSTEMATIC REVIEW AND META-ANALYSIS
Table 2. Continued

First Author	Diastolic Function	Subgroup Characteristics	Diastolic Parameter Correlations	Multivariable Regression Comments
Lai²¹	Lang et al³²	EAT=66.79±31.77 n=100		
		EAT=67.32±31.95 n=218		
Liu²²	Gottdiener et al³¹			
Longenecker²³	Not specified	Grade 1 (n=29 [HIV+, n=19; HIV-, n=10])	n=38 & (HIV-) n=26 and n=12 (HIV-)	On multivariable regression adjusted for age, height, smoking, alcohol, blood pressure, eGFR, hemoglobin, total physical activity score, medications, VAT, and weight, E/A no longer became significant (regression co-efficient, \(-0.01±0.02 [P=0.41]\) in women and \(-0.0±0.02 [P=0.64]\) in men) (described as pericardial fat volume)
Ng²⁴	Not specified			
Vural²⁶	Alnabhan et al³⁰	EAT=164.4±54 cm³ Grade 1 (n=24, 38%)		On multivariable regression adjusted for age, blood pressure, BMI, waist circumference, and cholesterol, EAT was an independent predictor of DD (OR, 1.03 [1.01–1.06]; \(P=0.006\)). ROC-derived optimal cutoff for DD, 129.6 cm³ (ROC curve, 0.758)
		Grade 2 (n=4, 6%) Grade 3 (n=1, 1.5%)		
		EAT=114.1±46.6 cm³ n=34 (56%)		

Correlations represent the correlation coefficient. Values are mean±SD or mean (range). ASE indicates American Society of Echocardiography; AUC, area under the curve; BMI, body mass index; CAD, coronary artery disease; CI, confidence interval; DD, diastolic dysfunction; e', average mitral annular tissue Doppler velocity; E/e', early inflow / annular velocity ratio; E/A, ratio of peak early (E) and late (A) transmitral inflow velocities; EAT, epicardial adipose tissue; eGFR, estimated glomerular filtration rate; LA, left atrial; LV, left ventricular; OR, odds ratio; ROC, receiver operating characteristic; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue. *P value for univariate correlation is significant at <0.05. †Study is a conference abstract.
statistically significantly positively correlated in the diseased patient group (not controls), with ranges from $r=0.19$ to $r=0.42$ ($P<0.05$). Only studies by Doesch et al11,12 measured LV end-diastolic diameter and found a consistent association with EAT (r value range, 0.22–0.42; $P<0.05$). Similar findings were seen for LV end-diastolic and end-systolic volume. Left atrial size was measured either as volume or diameter and demonstrated significant univariable associations with EAT (Table 4).*

An inconsistent association was seen with measures of adiposity in relation to EAT and cardiac structure. In patients with reduced LVEF, indexed EAT appears to be associated with indexed LV end-diastolic mass independent of BMI (Table 4).10--12 One study assessing patients with suspected CAD and normal LVEF demonstrated that EAT correlated best with LV mass (nonindexed) in the nonobese cohort only ($\beta=0.23$, $P<0.001$).8 Finally, in 2 observational studies, an independent association of EAT with LV mass (nonindexed), adjusted for body weight, was only seen in women (Table 4).17,22

Discussion

This review of 21 studies has demonstrated the emerging body of work relating EAT to myocardial structure and function. Increasing EAT is associated with the following: (1) an increasing prevalence of diastolic dysfunction; (2) a concomitant increase in LV mass; and (3) no consistent association with markers of systolic function. However, these

*References 3, 7--12, 17, 18, 20, 22, 24, 25, 28.

Figure 2. Mean difference of epicardial adipose tissue (EAT) volume in patients with and without diastolic dysfunction. Forest plot demonstrates the weighted mean difference (WMD; in mL) of EAT in studies with and without diastolic dysfunction, according to a random-effect model. Those with diastolic dysfunction have significantly greater EAT volumes. There is mild heterogeneity, as seen by the I^2 statistic of 28%. CI indicates confidence interval.

Figure 3. Meta-regression of the effect of increasing epicardial adipose tissue (EAT) volume on the weighted mean difference (effect size) of EAT in patients with and without diastolic dysfunction. Meta-regression bubble plot depicts increasing differences in mean EAT volume in patients with diastolic dysfunction as EAT increases. Circles represent the weight of each study. β coefficient is from meta-regression with associated SEE; P value is from Monte-Carlo testing (1000 simulations) and demonstrates a significant association ($P<0.001$).
correlations were no more than moderate; no coefficient exceeded 0.50.

Protective Functions of EAT

EAT has a high fatty acid content and can both release and scavenge excess free fatty acids to regulate myocardial energy production. In addition, EAT secretes anti-inflammatory cytokines, such as adiponectin, adrenomedullin, and omentin, which have antiatherogenic effects; EAT also regulates vascular tone and cardiac remodelling. There is a thermogenic role for EAT in providing heat for the myocardium in times of hypoxic or ischemic stress. However, the presence of numerous proinflammatory

Table 3. EAT and Systolic Function

First Author	Method	Group	EAT Value	Multivariable Regression Comment
Doesch¹¹	MRI	CAD and EF >50% (n=44)	36±11 g/m²	On multivariable regression adjusted for BMI, NYHA classes I and III, atrial fibrillation, LV-EDVI, LV-ESVI, LV-EDD, LVIDs, and LGE%, LVEF was an independent predictor of indexed EAT (HR, 0.478 [0.28–0.67]; P<0.01)¹
		CAD and EF <50% (n=114)	26±8 g/m²	
		Combined CAD (n=158)	29±10 g/m²	
		Controls (n=40)	31±8 g/m²	
Doesch¹²	MRI	Control (n=48)	31.7±5.6 g/m²	No correlation with LVEF and EAT (P=0.37)
		DCM (n=112)	24±7.5 g/m²	
Fontes-Carvalho¹⁶	Echocardiography	LVEF	Not specified	
Hachiya¹⁸	Echocardiography	LVEF	0.22*	
Khawaja¹⁹	Echocardiography	LVEF	Multivariate analysis revealed LVEF and triglyceride levels predicted EAT (values and covariates not reported)	
Liu²²	Echocardiography	LVEF	Not significant on multivariable regression in either sex (adjusted for age, height, smoking, alcohol, blood pressure, eGFR, hemoglobin, total physical activity score, medications, VAT, and weight: regression coefficient, 0.3±0.4 [P=0.51] in women and 0.2±0.6 [P=0.72] in men). Note: described as pericardial fat volume.	
Ruberg³	MRI	Obese	CO SV LVEF	Values are normalized to LV mass (mL/g)
		Control	CO SV LVEF	Not correlated
Wu²⁷	MRI	LVEF	Not correlated	

Values are mean±SD or r value correlation coefficients, unless otherwise stated. BMI indicates body mass index; CAD, coronary artery disease; CO, cardiac output; DCM, dilated cardiomyopathy; EAT, epicardial adipose tissue; EF, ejection fraction; eGFR, estimated glomerular filtration rate; HR, hazard ratio; LGE%, percentage of late gadolinium enhancement; LV, left ventricular; LV-EDD, LV end-diastolic diameter; LV-EDVI, LV end-diastolic volume index; LV-ESVI, left ventricular end-systolic volume index; LVRI, LV remodeling index; MRI, magnetic resonance imaging; NYHA, New York Heart Association; SV, stroke volume; VAT, visceral adipose tissue.

*P<0.05.

¹Directly quoted values from source article.
Table 4. EAT and Chamber Geometry

Author	Modality	Subgroup	LV-EDD	LVEDMI	LV-EDVI	LV-ESVI	LVRI	Comment
Bukkam⁶	CT		0.42*					On multivariable regression adjusted for traditional cardiovascular risk factors, CACS and BMI, EAT was not a significant predictor of LV mass in obese patients, but only in nonobese patients ($β$=0.23, $P=0.001$)
Cavalcante⁹	Echocardiography		0.41*					Measure not included in multivariate analysis
Al Chekakie⁷	CT and echocardiography		0.25/0.24					
Doesch¹¹	MRI	EF <50% (n=44)	0.076	0.336*	0.043	0.089	0.137	On multivariable regression including LVEF, BMI, NYHA classes I and II, atrial fibrillation, LV-EDVI, LV-ESVI, LV-EFF, LVR, and LGE%, best correlates to indexed EAT were LVEF, BMI, LV-ESVI (HR, 0.48; $P<0.01$), and LV-EDD (HR, $−0.238$; $P=0.01$). In subgroup analysis by EF <50% or >50%, full model not described; however, no association with LVEDMI in LVEF >50% but association seen in LVEF >50% (HR, 0.105; $P=0.01$)
Doesch¹²	MRI	Control (n=48)	0.01	0.346*	0.007	0.0001	0.204	Increased EAT mass with increasing LVEDMI in DCM, but less values than healthy control group. Greater mass seen in DCM with hypertrophy vs nonhypertrophy (31.7±5.6 vs 24.4±7.1 g/m²; $P=0.01$). On multivariable regression only, LVEDMI independently correlated with indexed EAT, as was seen in healthy controls (adjusted for age and BMI [value not reported]).
Doesch¹⁰	MRI	Control CHF	NR	0.36*	0.36*	0.25*	0.204	Increased EAT mass in CHF with increasing LVEDMI; however, higher levels of EAT in controls compared with CHF (34±4 vs 22±5 g/m²; $P=0.01$). On multivariate regression adjusted for LVEF, LV-EDD, RVEF, and LVEDMI, only LVEDMI independently associated with indexed EAT ($P=0.0001$)
Fox¹⁷	MRI	Women	0.28*	0.35+1	0.2+2	0.07+2		On multivariable regression adjusted for age, height, smoking, alcohol, menopause, hormone replacement therapy, blood pressure, hypertension therapy, and weight, only in women, LVM (adjusted regression coefficient, 1.66; $P=0.01$), and in men, LA diameter (adjusted regression coefficient, 0.8; $P=0.002$) were independent predictors of pericardial fat volume
Hachiya¹⁸	Echocardiography		0.28*					Measure not included in multivariate analysis

Continued
Table 4. Continued

Author	Modality	Subgroup	LV-EDD	LA Size (Diameter/Volume)	LVEDMI	LV-EDVI	LV-ESVI	LVRI	Comment
Konishi20	Echocardiography			0.32*	0.23*				Measure not included in multivariate analysis
Liu22	Echocardiography	Women		0.3*	0.11	0.24*, ‡	0.21*, ‡		On multivariable regression adjusted for age, height, smoking, alcohol, blood pressure, eGFR, hemoglobin, total physical activity score, medications, VAT, and weight, only in women, LVM (adjusted regression coefficient, 4.1±1.8; *P* = 0.03) and LA diameter (adjusted regression coefficient, 0.4±0.2; *P* = 0.03) were independent predictors of pericardial fat volume
Ng24	Echocardiography			–0.09	0.08				
Ruberg3	MRI								
Vanni25	MRI	Cases		0.46*	0.1				Inversely correlated with EF
Yamashita28	CT			0.25*					No other analysis specified

Values are mean±SD or r value correlation coefficients, unless otherwise stated. BMI indicates body mass index; CACS, coronary artery calcium score; CHF, congestive heart failure; CT, computed tomography; DCM, dilated cardiomyopathy; EAT, epicardial adipose tissue; EF, ejection fraction; eGFR, estimated glomerular filtration rate; HR, hazard ratio; LA, left atrial; LGE%, percentage of late gadolinium enhancement; LV, left ventricular; LV-EDDI, LV end-diastolic volume index; LV-EDD, LV end-diastolic diameter; LV-EDVI, LV end-diastolic volume index; LV-EDVII, LV end-diastolic volume index; LVRI, LV remodeling index; MRI, magnetic resonance imaging; NR, not reported; NYHA, New York Heart Association; RVEF, right ventricular EF; VAT, visceral adipose tissue.

*P < 0.05.
†Value is for LV mass on CT, nonindexed and time in cardiac cycle not specified.
‡Represents a nonindexed measure.
§Study is a conference abstract.
kValue is for end-systolic LV diameter.
cytokines within EAT may lead to a potential imbalance of harmful versus protective cytokines and disruption of myocardial function. Higher levels of these molecules (eg, tumor necrosis factor-α, interleukin-6, interleukin-1, and MCP-1) are seen in patients with CAD or heart failure. It is uncertain whether the trigger for the imbalance of cytokines is a cause of the pathological characteristics or a consequence, and a potential reciprocal or bidirectional role has been proposed.

EAT and Diastolic Dysfunction

Adipose tissue can modulate the cardiovascular system by mechanisms including sympathetic activation, adipokine secretion, and myocardial oxidative stress. EAT is regarded as a visceral fat depot. Visceral fat is metabolically active and is a determinant of diastolic function. The adipokines within EAT can all affect diastolic function through persistent inflammation and subsequent collagen turnover, impaired microvascular relaxation, or a direct toxic effect on the myocardium. The loss of protective effects of adiponectin can also modify diastolic function.

Mechanical effects may arise from myocardial compression of EAT because it lies within a fixed pericardial sac, inducing a similar mechanism as pericardial constriction. Hachiya et al demonstrated an independent correlation of EAT with aortic pulse pressure as another mechanism of diastolic dysfunction that may be mediated by the association of EAT with aortic stiffness and, therefore, increased pulse wave velocity and early wave reflection. Increased pressure in late systole may cause slower LV relaxation and subsequent diastolic dysfunction, as well as compromise coronary perfusion, especially if there is underlying CAD leading to impaired LV relaxation.

EAT is associated with obesity, which itself is independently associated with diastolic dysfunction. Obese patients often have elevated EAT volumes, and indexed EAT has modest incremental value for diastolic dysfunction over traditional covariates, such as metabolic syndrome, subclinical CAD, and LV mass index. Although the results from our analysis demonstrate that EAT had an independent effect on diastolic function parameters over adiposity measures, adiposity measures varied considerably and included BMI, bioimpedence testing, area of visceral adipose tissue or subcutaneous adipose tissue, or indexed EAT, which accounts for body weight. This heterogeneity needs further explanation to adequately isolate the effect of obesity and EAT on diastolic function. The lack of an association of EAT with E/A ratio may be confounded by the effects of age, proportion of patients with CAD, measurement in patients with normal LVEF, and the U-shaped relationship of E/A ratio with diastolic function that makes it difficult to assess without the addition of other variables.

The evaluation of diastolic function is challenging and influenced by a patient’s filling status, the presence of CAD, diabetes mellitus, obesity, as well as “normal” changes seen in the ageing patient. Although most studies aim to account for these factors in multivariable regression models, no more than association can be interpreted, and causality cannot be proved. Statistically, there may be implications of collinearity of obesity measures and EAT in multivariable models.

EAT and Systolic Dysfunction

Our study noted weak and inconsistent associations of EAT and systolic parameters. In the single study that evaluated EAT and longitudinal strain as a marker of subclinical myocardial dysfunction, there was a strong association noted independent of confounders, such as obesity and diabetes mellitus. This is a notable finding; however, causality remains unproved and requires further assessment in larger-scale studies as a possible marker of the syndrome of heart failure with preserved ejection fraction. Various hypotheses have been developed to relate EAT and systolic function. In studies of patients with ischemic and dilated cardiomyopathy, there has been a consistent signal of reducing EAT with reducing LVEF, with less EAT also seen compared with normal controls or those with normal LVEF. As myocardium becomes progressively dysfunctional, the role of EAT as a source of energy or cytokine homeostasis may become less necessary, contributing to EAT depletion. Conversely, in obese patients, there was no association with EAT (normalized to cardiac mass) and LVEF, and there was a negative correlation with MRI-derived cardiac output as EAT increased. The proposed mechanism is from mechanical restriction of myocardial expansion from EAT in diastole that may lead to less ventricular filling and, therefore, reduced cardiac output. A further mechanism may involve the effects of a direct cytokine release, as seen in patients with decompensated heart failure, but no studies have applied this in the context of EAT volume.

EAT and Chamber Measures

Postmortem and experimental studies have demonstrated a constant ratio of epicardial fat/ventricular myocardium, regardless of underlying pathological characteristics of hypertrophy, ischemia, or normal muscle. Furthermore, the increase in fat mass parallels LV hypertrophy, although healthy controls have higher quantities of EAT. Similar findings are seen when evaluating the LV remodeling index (ratio of mass/end-diastolic volume), where an inverse correlation is noted with LVEF and the EAT/LV remodeling index ratio. LVEF is inversely correlated with EAT and linearly correlated with LV remodeling index, suggesting that remodeling is not compensated by an adequate increase in EAT. Obesity has shown a positive relationship with increased LV mass and EAT, yet the impact of obesity on myocardial...
geometry may outweigh the local effects of ectopic fat because associations attenuated after adjustment for other adiposity measures, including body weight. From a mechanistic perspective, the association of EAT with central obesity and visceral adipose tissue might result in greater LV afterload and subsequent increased LV output, therefore leading to LV remodeling. As LV remodeling progresses, LV diameter, volume, and mass increase, which may then deplete EAT stores and result in a vicious cycle of reduced protective benefits on the heart and further dysfunction. However, the independent association of EAT with LV mass is limited to nonobese subjects. Associations of EAT with the incidence of CAD have been described in nonobese people and could contribute to the so-called obesity paradox.

Limitations

We acknowledge several limitations in our study. EAT measurement by different modalities may lead to differences between studies. Some reported EAT indexed to Body Surface Area (BSA) (therefore accounting for weight), and some reported raw values using weight as a covariate in multivariable models. Such normalization, as opposed to normalization to height, may obscure the contribution of obesity to differences in chamber volumes and mass, which are associated with EAT. Not all studies adjusted for hypertension in multivariable models, which is also associated with obesity and diastolic function. Variations in the reference literature on measures of diastolic function also lead to difficulties with comparing studies. The differences in regional location of EAT were not available in most studies and, therefore, the effect of EAT distribution was not assessable. The level of heterogeneity and variable study end points precluded detailed meta-analysis.

Conclusions

Despite small and heterogeneous studies, there is clear evidence of a consistent effect of volumetric EAT on myocardial diastolic function and chamber measurements; however, robust data are lacking to make causal inferences. These findings are observed despite adjustment for common confounders, such as adiposity. No consistent effect is seen with respect to systolic parameters. Further longitudinal studies are necessary to generate quantitative summary measures as well as develop potential targets for treatment.

Sources of Funding

Nerlekar is supported by a scholarship from the National Medical Health and Research Council and the National Heart Foundation. Brown is supported by an Early Career Fellowship from Monash University.

Disclosures

None.

References

1. Nerlekar N, Brown AJ, Muthalaly RG, Talman A, Hettige T, Cameron JD, Wong DTL. Association of epicardial adipose tissue and high-risk plaque characteristics: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e006379. DOI: 10.1161/JAHA.117.006379.

2. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–371.

3. Ruberg FL, Chen Z, Hua N, Bigornia S, Guo Z, Hallock K, Jara H, LaValley M, Phinikaridou A, Qiao Y, Viereck J, Apovian CM, Hamilton JA. The relationship of ectopic lipid accumulation to cardiac and vascular function in obesity and metabolic syndrome. Obesity (Silver Spring). 2010;18:1116–1121.

4. Nerlekar N, Baey YM, Brown AJ, Muthalaly RG, Dey D, Tamarapuroo B, Cameron JD, Marwijk WH, Wong DT. Poor correlation, reproducibility, and agreement between volumetric versus linear epicardial adipose tissue measurement: a 3D computed tomography versus 2D echocardiography comparison. JACC Cardiovasc Imaging. 2018;11:1035–1036.

5. Doesch C, Susebeck T, Leweling H, Fluechter S, Haghi D, Schoeneng SO, Borggreve M, Papavassiliou T. Bioimpedance analysis parameters and epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure. Obesity (Silver Spring). 2010;18:2326–2332.

6. Harbord RM, Higgins JPT. Meta-regression in Stata. Stata J. 2008;8:493–519.

Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, Santucci P, Wilber DJ, Akar JG. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010;56:784–788.

8. Bakkum MJ, Danad I, Romijn IA, Stuijfzand WJ, Leonora RM, Tulevski II, Somsen GA, Lammertmaa AA, van Kuijk C, van Rossum AG, Raijmakers PG, Knaepen P. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function. Eur J Nucl Med Mol Imaging. 2015;42:1562–1573.

9. Cavalcante JL, Tamarapuroo BK, Hachamovitch R, Kwon DH, Arai MC, Halliburton S, Schoeneng P, Dey D, Berman DS, Marwijk WH. Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction. Am J Cardiol. 2012;10:1793–1798.

10. Doesch C, Haghi D, Fluchter S, Susebeck T, Schoeneng SO, Michaeley H, Borggreve M, Papavassiliou T. Epicardial adipose tissue in patients with heart failure. J Cardiovasc Magn Reson. 2010;12:40.

11. Doesch C, Haghi D, Susebeck T, Schoeneng SO, Borggreve M, Papavassiliou T. Impact of functional, morphological and clinical parameters on epicardial adipose tissue in patients with coronary artery disease. Circ J. 2012;76:2426–2434.

12. Doesch C, Streitner F, Bellin S, Susebeck T, Haghi D, Heggemann F, Schoeneng SO, Michaeley H, Borggreve M, Papavassiliou T. Epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure due to dilated cardiomyopathy. Obesity (Silver Spring). 2013;21:E253–E261.

13. Eda H, Erkoc MF, Oku A, Erbay AR. Impaired aortic elasticity and diastolic functions are associated with findings of coronary computed tomographic angiography. Med Sci Monit. 2014;20:2061–2068.

14. Faustino AP, Paiva L, Mota P, Costa M, Leito-Marques A. Pericardial fat, a new marker of impaired left ventricle diastolic dysfunction. Eur J Heart Fail Suppl. 2011;10:S248.

15. Fernando RS, Syed MA, Wilber D, Singh S, Sene T, Rabbat M. Epicardial adipose tissue volume by cardiac magnetic resonance imaging predicts abnormal myocardial relaxation in patients with atrial fibrillation. J Cardiovasc Magn Reson. 2015;17:P352.

16. Fontes-Carvalhal R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, Rocha Goncalves F, Gama V, Leite-Moreira A. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am J Cardiol. 2014;114:1663–1669.

17. Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, Levy D, Larson MG, D’Agostino RB Sr, O’Donnell CJ, Manning WJ. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119:1586–1591.
Epicardial Fat and Cardiac Structure and Function

18. Hachiya K, Fukuta H, Wakami K, Goto T, Tani T, Otte N. Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease. *Int J Cardiovasc Imaging*. 2014;30:1393–1398.

19. Khawaja T, Greer C, Chokshi A, Chavarria N, Thadani S, Jones M, Schaeffle K, Bhatia K, Collado JE, Shimbo D, Einstein AJ, Schulze PC. Epicardial fat volume in patients with left ventricular systolic dysfunction. *Am J Cardiol*. 2011;108:397–401.

20. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Matsubara J, Akiyama E, Utsunomiya D, Matsuzawa Y, Yamashita Y, Kimura U, Umemura S, Ogawa H. Accumulation of pericardial fat correlates with left ventricular diastolic dysfunction in patients with normal ejection fraction. *J Cardiol*. 2012;59:344–351.

21. Lai YH, Hou CJ, Yun CH, Sung KT, Su CH, Wu TH, Yang FS, Hung TC, Chung CL, Bezerra HG, Yeh HI. The association among MDCT-derived three-dimensional visceral adiposities on cardiac diastology and dysynchrony in asymptomatic population. *BMC Cardiovasc Disord*. 2015;15:142.

22. Liu J, Fox CS, Hickson DA, May WL, Ding J, Carr JJ, Taylor HA. Pericardial fat and echocardiographic measures of cardiac abnormalities: the Jackson Heart Study. *Diabetes Care*. 2011;34:341–346.

23. Longenecker CAK, Serhal M, Kinley B, Labbato D, McComsey GA. Diastolic function correlates with pericardial fat [fat around the heart] and vascular remodeling in HIV. *Conference on Retroviruses and Opportunistic Infections (CROI) February 22-25*. Boston, MA: 2016.

24. Ng AC, Goo SY, Roche N, van der Geest RJ, Wang WY. Epicardial adipose tissue volume and left ventricular myocardial function using 3-dimensional speckle tracking echocardiography. *Can J Cardiol*. 2016;32:1485–1492.

25. Vanni EM, Faletti R, Morello M, Mezzabotta L, Battisti G, Frea S, Cannillo M, Rossato S, Rosso C, Bergamasco L, Rizzetto M, Bugianesi E. Incrased epicardial fat and early signs of impaired diastolic and systolic left ventricular function in non-diabetic, normotensive patients with nonalcoholic fatty liver disease. *J Hepatol*. 2015;62:S745.

26. Vural M, Talu A, Sahin D, Elalimous OU, Durmaz HA, Uyanik S, Dolek BA. Evaluation of the relationship between epicardial fat volume and left ventricular diastolic dysfunction. *Jpn J Radiol*. 2014;32:331–339.

27. Wu CK, Tsai HY, Su MY, Wu YF, Hwang JJ, Tseng WY, Lin JL, Lin LY. Pericardial fat is associated with ventricular tachyarrhythmia and mortality in patients with systolic heart failure. *Atherosclerosis*. 2015;241:607–614.

28. Yamashita KO, Ebara S, Yamamoto MO, Obara C. Increased epicardial adipose tissue are associated with left ventricular diastolic dysfunction. *J Am Coll Cardiol*. 2012;59:E1349.

29. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pelikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. *J Am Soc Echocardiogr*. 2009;22:107–133.

30. Alnabhan N, Kerut EK, Geraci SA, McMullen MR, Fox E. An approach to analysis of left ventricular diastolic function and loading conditions in the echocardiography laboratory. *Echocardiography*. 2008;25:105–116.

31. Gotttdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, Morehead A, Kitzman D, Oh J, Quinones M, Schiller NB, Stein JH, Weissman NJ. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. *J Am Soc Echocardiogr*. 2004;17:1086–1119.

32. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pelikka PA, Picard MH, Roman MJ, Seward J, Shewansen JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. *J Am Soc Echocardiogr*. 2005;18:1440–1463.

33. Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: echocardiographic and clinical associations. *J Am Heart Assoc*. 2014;3:e000582. DOI: 10.1161/JAHA.113.000582.

34. Vincent HK, Powers SK, Stewart DJ, Shanelly RA, Demirel H, Naito H. Obesity is associated with increased myocardial oxidative stress. *Int J Obes Relat Metab Disord*. 1999;23:67–74.

35. Falcao-Pires I, Castro-Chaves P, Miranda-Silva D, Lourenco AP, Leite-Moreira AF. Physiological, pathological and potential therapeutic roles of adipokines. *Drug Discov Today*. 2012;17:880–889.

36. Canepa M, Straib JB, Milaneschi Y, AIGhatiri M, Ramachandran R, Makrogiannis S, Moni M, David M, Brunelli C, Lakatta EG, Ferrucci L. The relationship between visceral adiposity and left ventricular diastolic function: results from the Baltimore Longitudinal Study of Aging. *Natr Metab Disord Cardiovasc*. 2013;23:1263–1270.

37. Mak GJ, Ledwidge MT, Watson CJ, Phelan DM, Dawkins IR, Murphy NF, Patle AK, Baugh JA, McDonald KM. Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. *J Am Coll Cardiol*. 2009;54:1674–1682.

38. Silberman GA, Fan TH, Liu H, Jiao Z, Xiao HD, Lovecchio JD, Boulender WM, Widder J, Fredd S, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC Jr. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. *Circulation*. 2010;121:519–528.

39. Kankaanpaa M, Lehto HR, Parrika JP, Komu M, Viljlanen A, Ferrannini E, Knutti J, Naiaa P, Parkkola R, Leppo P. Myocardial triglyceride content and epicardial fat mass in human obesity: relationship to left ventricular function and serum free fatty acid levels. *J Clin Endocrinol Metab*. 2006;91:4689–4695.

40. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, Laing J, Yates AP, Pemberton PW, Malik RA, Heagerty AM. Local inflammation and adipose abolish the protective anticontractile properties of perivascular fat in obese patients. *Circulation*. 2009;119:1661–1670.

41. Buckberg GD, Fidler DE, Archie JP, Hoffman JL. Experimental subendocardial ischemia in dogs with normal coronary arteries. *Circ Res*. 1972;30:67–81.

42. Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. *Nat Clin Pract Cardiovasc Med*. 2007;4:436–443.

43. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. *J Am Soc Echocardiogr*. 2016;29:277–314.

44. Corradi D, Maestri R, Callegari S, Pastori P, Goldoni M, Luong TV, Bordi C, and the Obesity paradox. *Updated*. *Prog Cardiovasc Dis*. 2016;58:537–547.

DOI: 10.1161/JAHA.118.009975

Journal of the American Heart Association
Supplemental Material
Table S1. Example MEDLINE search strategy.

#	Searches	Results
1	exp Adipose Tissue/ or epicardial fat.mp.	79789
2	epicardial adipose tissue.mp.	477
3	epicardial fat volume.mp.	56
4	pericardial adipose tissue.mp.	58
5	pericardial fat.mp.	242
6	pericardial fat volume.mp.	31
7	1 or 2 or 3 or 4 or 5 or 6	79916
8	exp Myocardial Contraction/ or exp Heart Failure/ or exp Heart Ventricles/ or exp Echocardiography, Doppler/ or exp Ventricular Dysfunction, Left/ or exp Diastole/ or exp Ventricle Function, Left/ or diastolic function.mp.	260853
9	diastolic dysfunction.mp.	6262
10	systolic function.mp.	9152
11	exp Myocardial Contraction/ or myocardial function.mp.	75943
12	myocardial performance.mp.	2269
13	mitral annular velocities.mp.	154
14	ejection fraction.mp.	44097
15	8 or 9 or 10 or 11 or 12 or 13 or 14	282014
16	exp Tomography, X-Ray Computed/ or cardiac ct.mp.	337987
17	coronary calcium score.mp. or exp Tomography, X-Ray Computed/	337983
18	exp Multidetector Computed Tomography/ or ccta.mp.	4630
19	16 or 17 or 18	338169
20	exp Magnetic Resonance Imaging/	346308
21	cardiac mri.mp.	1739
22	ectopic fat.mp.	396
23	7 or 22	80055
24	20 or 21	346580
25	15 and 19 and 23	53
26	15 and 23 and 24	78
27	25 or 26	122
Table S2. Newcastle – Ottawa Scale for Assessment of Cross-sectional Studies.

First Author	Year	Selection	Comparability	Outcome	Total				
		Representativeness of the sample	Sample size	Ascertainment of exposure	Non-responder(s)	Outcome groups comparable	Assessment of outcome	Correct statistical test	
Bakkum¹	2015	*	-	**	*	*	*	*	7
Cavalcante²	2012	*	-	**	*	**	**	*	9
Ede³	2014	*	-	**	*	**	**	*	9
Faustino⁴	2011	*	-	**	-	**	*	*	7
Fernando⁵	2015	*	-	**	-	**	*	*	7
Fontes-carvalho⁶	2014	*	-	**	*	**	**	*	9
Fox⁷	2009	*	-	**	*	**	**	*	10
Hachiya⁸	2014	*	-	**	*	*	*	*	7
Khawaja⁹	2011	*	-	**	-	**	**	*	8
Konishi¹⁰	2012	*	-	**	*	-	*	*	6
Lai¹¹	2015	*	-	**	*	**	*	*	8
Liu¹²	2011	*	*	**	*	**	*	*	10
Longenecker¹³	2016	*	-	**	*	**	*	*	8
Ng¹⁴	2016	*	-	**	*	**	*	*	8
Ruberg¹⁵	2010	*	-	**	*	*	**	*	8
Wu¹⁶	2015	*	-	**	*	**	*	*	8
Yamashita¹⁷	2012	*	-	**	*	**	*	*	8
Table S3. Newcastle - Ottawa Scale for Assessment of Case Control Studies.

First Author	Year	Selection	Comparability	Exposure	Total					
		Representativeness of the sample	Adequate case definition?	Selection of controls	Definition of controls	Controls and cases comparable	Ascertainment of exposure	Same method of ascertainment for cases and controls	Non-response rate	
Chekakie18	2010	*	*	*	*	**	*	*	*	9
Doesch19	2012	*	*	*	*	**	*	*	*	9
Doesch20	2013	*	*	*	*	**	**	*	*	10
Doesch21	2010	*	*	*	*	**	**	*	*	10
Vanni22	2015	*	*	*	*	*	*	*	*	8
Vural23	2014	*	*	*	*	**	**	*	*	10
Clinical Parameters on Epicardial Adipose Tissue in Patients With Coronary Artery Disease.

19. Independently associated with human atrial fibrillation.

18. Diastolic dysfunction.

17. Tachyarrhythmia and mortality in patients with systolic heart failure.

16. Syndrome.

15. Function Using 3T.

14. [Fat around the heart] and Vascular Remodeling in HIV.

13. Abnormalities: the Jackson Heart Study.

12. BMC Cardiovasc Disord 2014;30:1393-9.

11. Patients with normal ejection fraction.

10. Schulze PC. Epicardial fat volume in patients with left ventricular systolic dysfunction. Am J Cardiol. 2012;110:1793-8.

9. Ede H, Erkoc MF, Okur A, Erbay AR. Impaired aortic elasticity and diastolic functions are associated with findings of coronary computed tomographic angiography. Med Sci Monit. 2014;20:2061-8.

8. Faustino AP, Paiva L, Mota P, Costa M, Leite-Marques A. Pericardial fat, a new marker of impaired left ventricle diastolic dysfunction. European Journal of Heart Failure Supplements 2011;10:S248.

7. Fernando RS, Syed MA, Wilber D, Singh S, Teme T, Rabbat M. Epicardial adipose tissue volume by cardiac magnetic resonance imaging predicts abnormal myocardial relaxation in patients with atrial fibrillation. Journal of Cardiovascular Magnetic Resonance. 2015;17:P352.

6. Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, Rocha Goncalves F, Gama V, Leite-Moreira A. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Am J Cardiol. 2014;114:1663-9.

5. Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, Levy D, Larson MG, D'Agostino RB, Sr., O'Donnell CJ, Manning WJ. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation. 2009;119:1586-91.

4. Hachiya K, Fukuta H, Wakami K, Goto T, Tani T, Ohte N. Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease. Int J Cardiovasc Imaging. 2014;30:1393-8.

3. Khawaja T, Greer C, Chokshi A, Chavarria N, Thadani S, Jones M, Schaeffle K, Bhatia K, Collado JE, Shimbo D, Einstein AJ, Schulze PC. Epicardial fat volume in patients with left ventricular systolic dysfunction. Am J Cardiol. 2011;108:397-401.

2. Konishi M, Sugiyama S, Sugamura K, Nozaki T, Matsubara J, Akiyama E, Utsunomiya D, Matsuzawa Y, Yamashita Y, Kimura K, Umemura S and Ogawa H. Accumulation of pericardial fat correlates with left ventricular diastolic dysfunction in patients with normal ejection fraction. J Cardiol. 2012;59:344-51.

1. Lai YH, Hou CJ, Yun CH, Sung KT, Su CH, Wu TH, Yang FS, Hung TC, Hung CL, Bezerra HG, Yeh HI. The association among MDCT-derived three-dimensional visceral adiposities on cardiac diastology and dyssynchrony in asymptomatic population. BMC Cardiovasc Disord. 2015;15:142.
20. Doesch C, Streitner F, Bellm S, Suselbeck T, Haghi D, Heggemann F, Schoenberg SO, Michaely H, Borggrefe M, Papavassiliu T. Epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure due to dilated cardiomyopathy. *Obesity (Silver Spring)*. 2013;21:E253-61.

21. Doesch C, Haghi D, Fluchter S, Suselbeck T, Schoenberg SO, Michaely H, Borggrefe M, Papavassiliu T. Epicardial adipose tissue in patients with heart failure. *J Cardiovasc Magn Reson*. 2010;12:40.

22. Vanni EM, Faletti R, Morello M, Mezzabotta L, Battisti G, Frea S, Cannillo M, Mosso E, Rosso C, Bergamasco L, Rizzetto M, Bugianesi E. Increased Epicardial Fat and Early Signs of Impaired Diastolic and Systolic Left Ventricular Function in Non-diabetic, normotensive patients with nonalcoholic fatty liver disease. *Journal of Hepatology*. 2015;62:S745.

23. Vural M, Talu A, Sahin D, Elalmis OU, Durmaz HA, Uyanik S, Dolek BA. Evaluation of the relationship between epicardial fat volume and left ventricular diastolic dysfunction. *Jpn J Radiol*. 2014;32:331-9.