INTRODUCTION

The lung is a particularly vulnerable organ at the interface of the body and the exterior environment. It is constantly exposed to microbes and particles by inhalation. The innate immune system needs to react promptly and adequately to potential dangers posed by these microbes and particles, while at the same time avoiding extensive tissue damage. Nucleotide-binding oligomerization domain-like receptors (NLRs) represent a group of key sensors for microbes and damage in the lung. As such they are important players in various infectious as well as acute and chronic sterile inflammatory diseases, such as pneumonia, chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome, pneumoconiosis, and asthma. Activation of most known NLRs leads to the production and release of pro-inflammatory cytokines, and/or to the induction of cell death. We will review NLR functions in the lung during infection and sterile inflammation.

Keywords: NOD-like receptors, inflammasome, lung, pneumonia, lung injury
function as *bona fide* PRRs, other family members act as adaptor molecules or regulators of signal transduction.

In this review article we discuss the current knowledge about NLR expression and function in the lung in different pulmonary diseases. We have grouped the NLRs based on functional similarities and summarize major pathways and common principles of function.

NOD1 AND NOD2

NOD1 and NOD2 were the first NLR proteins to be discovered (21–25). In the lung, NOD1 is expressed in various cell types including lung epithelial cells, endothelial cells, human airway smooth muscle cells, and different types of leukocytes (26–29). NOD2 has been found in alveolar macrophages, neutrophils, and bronchial epithelial cells (30–32). NOD1 responds to bacterial cell wall peptidoglycan containing *meso*-diaminopimelic acid found predominantly in Gram-negative bacteria (33, 34). NOD2 recognizes the muramyl-dipeptide (MDP) MurNAc-L-Ala-D-isoGln, which is conserved in peptidoglycans of the majority of bacteria (35, 36). Other peptidoglycan motifs can be recognized by NOD1 and NOD2, for details refer to review (37).

Ligand recognition by both receptors leads to signal transduction through Rip2 kinase with downstream activation of MAP kinases and the transcription factor NF-κB, leading to activation of genes encoding different cytokines, chemokines (e.g., IL-8), and antimicrobial peptides. Both NOD signaling cascades are regulated by small GTPases such as Rac1, however conflicting evidence exists as to whether this regulation enhances or reduces NOD-dependent NF-κB activation (38–40). A recent study suggested that Rac1 is activated upstream of NOD1, and that NOD1 essentially senses GTPase activation rather than the peptidoglycan fragments directly (41).

NOD1 and NOD2 can recruit the GTPase...
ATG16L1 and subsequently stimulate autophagy, a highly conserved bulk degradation system with antimicrobial activity against intracellular pathogens (42).

Among the studied lung pathogens, NOD1 responds to Chlamydophila pneumoniae, Legionella pneumophila, Klebsiella pneumoniae, Haemophilus influenzae, and Pseudomonas aeruginosa (32, 40, 43–47), whereas NOD2 senses S. pneumoniae, S. aureus, Escherichia coli, C. pneumoniae, and Mycobacterium tuberculosis (30–32, 44, 48–50) (Figure 2). Accordingly, Rip2−/− mice – and to a lesser extend also Nod1−/− and Nod2−/− mice – display impaired chemokine production, neutrophil recruitment, and reduced antibacterial defense in response to pulmonary C. pneumoniae or L. pneumophila infection (32, 44). NOD2 is also required for efficient antibacterial innate and adaptive immunity in the chronic phase of pulmonary M. tuberculosis infection (51), and polymorphisms in the human NOD2 gene have been associated with resistance or susceptibility to tuberculosis (52). Of note, mycobacteria express N-glycolylated MDP that has a stronger NOD2-activating potential compared to the MDP (53). NOD2 controls inflammatory responses to S. aureus pneumonia (49), and it is also required to clear pneumococcal colonization of the upper respiratory tract by CCR2-dependently recruited monocytes/macrophages. It was shown that professional phagocytes produce CCL2 after LysM-mediated bacterial digestion and subsequent NOD2-dependent detection of S. pneumoniae-derived peptidoglycan (48). Similarly, NOD1 controls neutrophil-dependent clearance of nasopharyngeal colonization with encapsulated H. influenzae in mice, whereas it is redundant for non-encapsulated strains (46). NOD1 might critically regulate microbial competition in the upper respiratory tract as H. influenzae derived peptidoglycan fragments activate NOD1, which instructs neutrophils to clear co-colonizing S. pneumoniae (54). Finally, one study implicated NOD2 in antiviral immunity to RSV and influenza virus infections (55).

Importantly, NOD proteins might also indirectly regulate immune responses in the respiratory tract. An elegant study by

![Figure 2](https://example.com/figure2.png) | Representation of NLRs involved in lung infections.

Various lung pathogens can be sensed by different NLR. These NLRs either form inflammasomes to regulate IL-1 family cytokines and pyroptotic cell death, stimulate production of NF-κB-dependent inflammatory mediators, regulate autophagy, or control ROS production.
Weiser and colleagues showed that intestinal microbiota-derived NOD1 ligands translocate into the circulation and the bone marrow, where it enhances protective neutrophil functions in the periphery. This NOD1 induced neutrophil activation is required for efficient clearance of *S. pneumoniae* or *S. aureus* from the respiratory tract (56). NOD2 regulates the composition of the intestinal microbiota in mice (57, 58) and one might speculate about a similar function in shaping microbial communities in the upper respiratory tract.

Finally, NOD1 and NOD2 have been implicated in granulomatous and allergic lung diseases. For example, a genetic variation in *NOD1* was found to be associated with increased susceptibility to sarcoidosis in a Japanese cohort (59), and NOD2 polymorphisms were associated with severe pulmonary sarcoidosis in Caucasian patients (60). *NOD1* as well as NOD2 polymorphisms have been associated with increased risk of developing allergy and allergic asthma (61–64). Moreover, intranasal delivery of NOD2 ligands was shown to inhibit airway tolerance to antigens by modulating the Treg/Th2-cell balance (65). However, the function of NOD1/2 in these diseases remains ill-defined as compared to their well-established role in host defense.

NLRP Proteins

The NLRP subgroup of NLRs comprises 14 proteins of which NLRP1, NLRP3, NLRP6, NLRP7, and NLRP12 form multiprotein complexes termed inflammasomes, consisting of one or two NLR proteins, the adapter molecule ASC and pro-caspase-1 (20). Inflammasomes serve as platforms for autocatalytic caspase-1 activation, which in turn critically regulates IL-1β and IL-18 production by processing their zymogens proIL-1β and proIL-18, and induce an inflammatory form of cell death called pyroptosis. Inflammasome activation has also been implicated in the production of eicosanoids (66). A number of NLRPs, such as NLRP6 and NLRP12 exert inflammasome-independent functions, like negative regulation of innate immune signaling pathways (as discussed below).

NLRP1

NLRP1 was the first NLR protein to be described as forming an inflammasome (67). In humans, NLRP1 is abundantly expressed in myeloid cells, lymphocytes, and respiratory epithelial cells (68). A biochemical study showed that purified human NLRP1 can form an active inflammasome with ASC and caspase-1 in presence of MDP and ribonucleoside triphosphates (69). Nevertheless, it has so far not been clearly confirmed that MDP can trigger NLRP1 inflammasome formation in human cells.

Mice possess three genes encoding NLRP1, which are present in tandem on chromosome 11: NLRP1a, 1b, and 1c (70). Depending on the genetic background, one, two, or three of these NLRP1s can be expressed. Mouse NLRP1b senses lethal toxin (LT) of *Bacillus anthracis*, leading to inflammasome activation (70, 71). Using cells from wild-type and NLRP1−/− mice, it was shown that LT but not MDP could trigger the NLRP1 inflammasome assembly (72). LT consists of two components: protective antigen (PA) and lethal factor (LF). PA mediates cytosolic uptake of LF, which has endopeptidase activity and cleaves several MAPK kinases [reviewed in Ref. (73, 74)]. This way *B. anthracis* blocks early immune responses by abrogating TLRs and NOD2 signaling (75). The expression of NLRP1b and potentially NLRP1a in macrophages, depending on the mouse background, leads to resistance to LT (70, 72, 75, 76).

It is unclear if NLRP1 mediated LT resistance exists in human cells, however it was mentioned in a recent review that the authors had never observed LT resistance in macrophages isolated from healthy human subjects (77). Studies in rats and mice, which also present cell death induced by LT depending on NLRP1, showed that LF-mediated cleavage of the N-terminal domain of NLRP1 leads to caspase-1 activation and IL-1β release (71, 78, 79). Interestingly, a recent study indicated that a direct cleavage of murine NLRP1b is sufficient to induce inflammasome activation in the absence of LF, and proposed that NLRP1 might function as a sensor of protease activity of multiple pathogens (79).

NLRP3

Expression of NLRP3 is strongly induced by inflammatory cytokines and TLR agonists in myeloid cells (68, 80). Moreover, low level expression has also been found in human bronchial epithelial cells (81). Similar to the other inflammasomes, the NLRP3 inflammasome mediates caspase-1-dependent processing of proIL-1β as well as proIL-18 into their mature forms and stimulates pyroptosis (20).

The NLRP3 inflammasome responds to a broad range of microbial and non-microbial agents. Among lung pathogenic microorganisms, *K. pneumoniae*, *S. pneumoniae*, *S. aureus*, *C. pneumoniae*, *M. tuberculosis*, *L. pneumophila*, influenza virus, human rhinovirus, RSV, and *Aspergillus fumigatus* have been shown to induce NLRP3 activation (82–99). It is generally accepted that those microbes or their molecules do not directly interact with NLRP3, but instead microbe-induced disruption of host cell physiology is sensed by NLRP3. The exact nature of the NLRP3 activating signal remains somewhat elusive although production of reactive oxygen species (ROS) (16, 100), mitochondrial dysfunction (101, 102), potassium efflux (103, 104), calcium mobilization (105), have been implicated in NLRP3 inflammasome activation during infection. Most pathogens stimulate ROS production in host phagocytes, which might be involved in NLRP3 activation (85, 93). Furthermore, *S. aureus*, *S. pneumoniae*, *M. tuberculosis*, and influenza virus disturb the cell membrane and/or the intracellular ionic concentrations by their pore-forming toxins, secretion apparatus or ion channel proteins (82, 86–88, 96, 106). Other pathogens might activate NLRP3 through an incompletely defined mechanism upstream of NLRP3 that senses microbial RNA (107), and Gram-negative bacteria stimulate a non-canonical caspase-11 inflammasome (108–111). Interestingly, NLRP3 inflammasome activation by non-pathogenic bacteria that do not actively disrupt host cell integrity is dependent on bacterial viability. Live but not dead bacteria contain significant amounts of mRNA, the recognition of which triggers NLRP3 inflammasome formation. This response requires the adaptor protein TRIF, but it remains unclear whether prokaryotic mRNA can directly activate NLRP3 or if it is the result of a proximal signaling event. Detection of bacterial mRNA is a key mechanism employed by the host immune system to sense the presence of viable and thus infectious microbes and thereby to scale the level of infectious threat (112, 113). These
findings underscore the role of NLRP3 as a sensor of microbial (and non-microbial) danger signals.

Several *in vivo* infection models have highlighted the central role of NLRP3 in host defense. NLRP3 was required for efficient antimicrobial responses against *S. pneumoniae*, *K. pneumoniae*, and influenza A virus *in vivo* (84, 85, 87, 88). Interestingly, the known susceptibility of aged mice toward influenza infection has been attributed to a reduced expression of NLRP3, ASC, and caspase-1 (114). It remains to be studied whether a similar mechanism contributes to the elevated susceptibility of elderly humans to community-acquired pneumonia (115). Importantly, NLRP3 activation may also contribute to ALI, which was observed in a mouse model of *S. aureus* pneumonia (96). The net effect of NLRP3 during pneumonia might thus depend on the pathogen load, the virulence of the pathogen and/or the expression of inflammasome components, as well as the susceptibility of the patient to pulmonary damage.

Of note, NLRP3 (and even more pronounced the NLRP6; see below) inflammasome activation in the gut shapes the intestinal microbiota (116). The commensal microflora in turn induces expression of NLRP3, proIL-1β, and proIL-18 in the lung (117). This microflora driven host gene regulation is beneficial since antibiotic depletion of the resident microbiota resulted in markedly elevated susceptibility to influenza A virus infection in mice (117).

Importantly, the NLRP3 inflammasome responds to a vast range of sterile stimuli, particularly so-called DAMPs released by dying cells including ATP, uric acid metabolites, biglycan as well as hyaluronan (106, 116–121). Experimental studies in mice suggest activation of NLRP3 by some of those DAMPs might have important functions in the pathogenesis of ALI/ARDS, COPD/emphysema, and lung fibrosis.

Efficient pulmonary gas exchange critically depends on the integrity of the fragile lung barrier composed of the alveolar epithelium and the endothelium of the pulmonary microvasculature. ALI and ARDS can develop in the course of pneumonia, sepsis, as a result of mechanical ventilation and hyperoxia, aspiration of gastric content, or major trauma (6). ALI and ARDS are characterized by a disrupted lung barrier, resulting in interstitial and alveolar edema, impaired gas exchange, and in severe cases organ failure and death. In addition, lung fibrosis may develop as a long term consequence of ALI/ARDS. Bleomycin treatment as a mouse model of acute inflammation and fibrosis results in uric acid- and ATP-release by dying cells that stimulated NLRP3 activation and IL-1β production and IL-1R-mediated inflammation, remodeling, and fibrosis (122–124). Bleomycin induced inflammation and fibrosis can be rescued by treatment with IL-1R antagonist (Anakinra) (123), allopurinol (impairs uric acid synthesis), uricase (degrades uric acid) (122), and appyrase (degrades ATP) (124). Moreover, it has been suggested that hyperoxia leads to NLRP3 inflammasome activation, secretion of pro-inflammatory cytokines, epithelial barrier dysfunction, and cell death (125, 126). Mechanical ventilation was shown to enhance IL-18 levels in the lung and serum, and inhibition of caspase-1 or IL-18 reduced ventilation-induced lung injury (127). Human ARDS patients express increased mRNA levels of inflammasome-related genes and IL-18 protein in their peripheral blood (127).

NLRP4 inflammasomes might also contribute to pathogenesis of chronic pulmonary disorders such as COPD and emphysema. Concentrations of uric acid is increased in broncho-alveolar fluid (BALF) of smokers and individuals with COPD as compared to healthy controls (128). COPD patients also have reduced levels of IL-1R antagonist (IL1RA) compared to controls (129). The mouse model of elastase-induced emphysema depends on uric acid, NLRP3, ASC, IL-1R, and MyD88 as critical mediators of inflammation, alveolar wall destruction, and fibrosis (130). Conflicting data exist regarding the contribution of the NLRP3 pathway in tobacco smoke-induced pulmonary inflammation. Whereas the study by Doz et al. indicated that smoke-induced inflammation is mediated by TLRs, the purinergic receptor P2X7, caspase-1, and IL-1R (131, 132), Pauwels et al. reported in another study that smoke-induced pulmonary inflammation occurs independently of the NLRP3 inflammasome (133). Transgenic overexpression of mature IL-1β in the lung epithelium of mice evokes a phenotype that closely resembles COPD, including inflammation, emphysema, airway fibrosis, and mucus cell metaplasia (134). Finally, *H. influenzae* infection induces NLRP3 expression and activation in human lung tissue, which might be a mechanism of infection-triggered COPD exacerbations (135). These studies together indicate an important role of caspase-1 and IL-1β in COPD and emphysema.

Conflicting evidence exists regarding the role of NLRP3 inflammasome-dependent IL-1β production in experimental asthma. Whereas ovalbumin-induced airway inflammation requires NLRP3 and IL-1β, house dust mite allergens induce pathology in an NLRP3-independent fashion (136, 137).

Pneumoconiosis is an occupational lung disease resulting from long-term exposure to silica, asbestos, or coal particles. It is characterized by pulmonary inflammation as well as fibrosis, which may be driven by NLRP3 inflammasome activation. It has been shown that engulfment of silica or asbestos crystals by resident macrophages leads to NLRP3 inflammasome activation and IL-1β production (16–18). It was suggested that crystal-induced inflammasome formation is a consequence of phagolysosomal disruption and leakage of enzymes such as cathepsin B into the cytoplasm (18). *Nlrp3−/−* and *Ascn−/−* mice are protected from silica or asbestos-induced granuloma formation and fibrosis (16, 17). In contrast, mesothelioma development, a serious long term consequence of asbestosis, appears to be independent of NLRP3 (138). A recent case-control study in a Chinese population suggested that a NLRP3 polymorphisms may confer increased risk for coal workers' pneumoconiosis (139).

 Taken together, NLRP3 is a key sensor of disturbed cell and tissue integrity during infectious and non-infectious pulmonary disorders.

NLRP4

NLRP4 has been proposed to be involved in reproduction in mammals (140–142). Nevertheless, NLRP4 expression in humans is found in various organs including the lung (142–144). *In vitro*, this NLR has the feature of a negative regulator of inflammatory responses by lowering NF-κB activation and IFNβ production (143, 144). Another particularity of NLRP4 is that its PYD is structurally different compared to the one in other NLRs, leading to the absence of interaction of NLRP4 with ASC (145). Besides, it has
been described that NLRP4 negatively controls autophagy during group A streptococcal infection by interacting with the autophagy regulator Beclin-1 (146). However, in the absence of conditional gene-targeted mice it is hard to predict a functional contribution of NLRP4 to pathologies in the lung.

NLRP6

NLRP6 has been indicated to fulfill anti-inflammatory functions by inhibiting NF-kB signaling downstream of, e.g., TLRs in macrophages and mouse (147). Moreover, elegant studies by the Flavell’s laboratory showed that NLRP6 can form an inflammasome in intestinal epithelial cells that appears to sense components of the gut microflora and in turn regulates the composition of this flora through IL-18 (116). Related or unrelated to these mechanisms, NLRP6 has also been implicated in wound healing of the intestinal mucosa (148). NLRP6 have so far been mainly described in intestinal epithelial cells, neutrophils, and macrophages (116, 147) but our own unpublished data show expression of this protein also in activated murine alveolar epithelial cells (data not shown). The function of NLRP6 in the lung has, however, not been studied yet.

NLRP7

The NLRP7 gene is only present in humans and it is expressed in peripheral blood mononuclear cells (PBMCs) upon LPS and IL-1β stimulation (149). Gene silencing experiments in human monocytes and macrophages recently indicated that NLRP7 responds to bacterial lipopeptides and *Mycoplasma* as well as *S. aureus* infections by forming an inflammasome (150). Its precise function during bacterial infections remains unknown, and no data is available regarding its role in pulmonary physiology.

NLRP12

NLRP12 is expressed mainly in myeloid cells (151–153). Its expression is reduced by TLR stimulation and TNFα (151, 154). NLRP12 has been described as a negative regulator of classical and nonclassical NF-kB activation downstream of TLR or cytokine receptors, by interacting with IKK and NIK (151, 155, 156). Furthermore, NLRP12 has been indicated to form an inflammasome, however this has so far only been observed upon *Yersinia pestis* infection (157). Finally, NLRP12 might play a role in adaptive immunity by controlling migration of DCs to the draining lymph nodes (153). NLRP12−/− mice did not respond differently to *M. tuberculosis* and *K. pneumoniae* lung infections and allergic airway inflammation wild-type mice in (158, 159), suggesting a functional redundancy with other NLRs, or a minor contribution of NLRP12 to inflammatory processes in the lung.

NLRC4 AND NAIP PROTEINS

NAIP5 and NLRC4 are expressed in the cytosol of bone-marrow and alveolar macrophages. A polymorphism in *NAIP5* (also called Birc7) has long been known to affect resistance of inbred mice toward *L. pneumophila* (160, 161). Whereas most mice strains are resistant against *L. pneumophila* infection due to a functional *NAIP5*, A/J mice expressing a *NAIP5* that differs in 14 amino acids or *NAIP5*−/− mice allow *L. pneumophila* replication (162–164). This NAIP5-mediated resistance against *L. pneumophila* is dependent on detection of flagellin (162, 165), and on pyroptosis of the infected macrophage as well as effects on the trafficking of the *Legionella*-containing vacuole (166, 167). Similarly, NLRC4 is well known for mediating caspase-1-dependent responses to *L. pneumophila* and other flagellated bacteria (168–171). NLRC4, however, also respond to bacteria that express a type 3 secretion system (T3SS) including, for example, *P. aeruginosa* (172–176). Of note, the *Pseudomonas* T3SS effector protein ExoU can inhibit this inflammasome activation (176). One study suggested that NLRC4 is partially involved in the production of IL-1β and inflammasome-independent cytokines upon *K. pneumoniae* infection in vivo (177), even though *K. pneumoniae* does neither express flagella nor T3SS.

It is now clear that murine NLRC4 forms together with either NAIP5 (and possibly NAIP6) or NAIP2 two different inflammasomes that recognize flagellin or T3SS rod proteins, respectively (178, 179). These inflammasomes appear to regulate IL-1β/IL-18 through ASC and pyroptosis independently of ASC (175, 180, 181).

The exact function of human NAIP is currently incompletely understood. We and others suggested that hNAIP can detect and restrict flagellated *Legionella* (182–184), whereas others indicated recognition of bacterial T3SS needle proteins by hNAIP (178).

NLRX1

NLRX1 is ubiquitously expressed and located at the mitochondria due to an N-terminal mitochondrial targeting sequence, although the precise location (matrix or outer membrane) is still controversial (198, 199). The C-terminal LRR domain has been shown to bind to RNA but not to DNA by (200). Silencing of NLRX1 expression or knockout at the exons 4–5 in mice leads to exacerbated immune responses to *Legionella* and other flagellated bacteria (168–176). Of note, the *Pseudomonas* T3SS effector protein ExoU can inhibit this inflammasome activation (176). One study suggested that NLRC4 is partially involved in the production of IL-1β and inflammasome-independent cytokines upon *K. pneumoniae* infection in vivo (177), even though *K. pneumoniae* does neither express flagella nor T3SS.

It is now clear that murine NLRC4 forms together with either NAIP5 (and possibly NAIP6) or NAIP2 two different inflammasomes that recognize flagellin or T3SS rod proteins, respectively (178, 179). These inflammasomes appear to regulate IL-1β/IL-18 through ASC and pyroptosis independently of ASC (175, 180, 181).

The exact function of human NAIP is currently incompletely understood. We and others suggested that hNAIP can detect and restrict flagellated *Legionella* (182–184), whereas others indicated recognition of bacterial T3SS needle proteins by hNAIP (178).

NLR3 AND 5

NLRX1 is ubiquitously expressed and located at the mitochondria due to an N-terminal mitochondrial targeting sequence, although the precise location (matrix or outer membrane) is still controversial (198, 199). The C-terminal LRR domain has been shown to bind to RNA but not to DNA by (200). Silencing of NLRX1 expression or knockout at the exons 4–5 in mice leads to exacerbated immune responses to *Legionella* and other flagellated bacteria (168–176). Of note, the *Pseudomonas* T3SS effector protein ExoU can inhibit this inflammasome activation (176). One study suggested that NLRC4 is partially involved in the production of IL-1β and inflammasome-independent cytokines upon *K. pneumoniae* infection in vivo (177), even though *K. pneumoniae* does neither express flagella nor T3SS.

It is now clear that murine NLRC4 forms together with either NAIP5 (and possibly NAIP6) or NAIP2 two different inflammasomes that recognize flagellin or T3SS rod proteins, respectively (178, 179). These inflammasomes appear to regulate IL-1β/IL-18 through ASC and pyroptosis independently of ASC (175, 180, 181).

The exact function of human NAIP is currently incompletely understood. We and others suggested that hNAIP can detect and restrict flagellated *Legionella* (182–184), whereas others indicated recognition of bacterial T3SS needle proteins by hNAIP (178).

CONCLUDING REMARKS

Nucleotide-binding oligomerization domain-like receptors proteins are without doubt key players in the innate immune...
responses to infectious and sterile inflammatory diseases of the lung, although many functions of several NLR family members, particularly in the lung, are still unknown. Many NLRs respond in functional cooperation with other innate sensors to invading microbes, particles, and endogenous danger signals after tissue damage. In similarity to possibly most immune receptors they can exert beneficial or detrimental functions, depending on the magnitude and the context of their activation. Increasing knowledge on specific activators and inhibitors of these pathways might help to manipulate them therapeutically in the not-so-distant future.

ACKNOWLEDGMENTS
We thank members of the lab for helpful discussions. Research Support: own work described in the text was supported by grants given by the Deutsche Forschungsgemeinschaft (SFB-TR84 to Catherine Chaput, Norbert Suttrop, Bastian Opitz; OP 86/7-2 to Bastian Opitz; SA1940/2-1 to Leif Erik Sander).

REFERENCES
1. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio (2010) e00129-10. doi:10.1128/mBio.00129-10
2. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadvan A, et al. Topography of the mucosal immune system: an essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. J Biol Chem (2008) 283:36426–32. doi:10.1074/jbc.M403861200
3. Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Adams J, et al. Toll-like receptors for internalized bacteria. Annu Rev Immunol (2003) 21:29–34. doi:10.1146/annurev-immunol-020702-134635
4. Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science (2008) 320:674–7. doi:10.1126/science.1156095
5. Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathophysiology, clinical features, and treatment principles. Am J Respir Crit Care Med (2001) 161:1504–16. doi:10.1164/ajrccm.161.6.2001201
6. World Health Organization. Infectious and noninfectious diseases of the lung. Bulletin (2004) 83:129–33.
7. Opitz B, van Laak V, Eitel J, Suttorp N. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Physiol Lung Cell Mol Physiol (2010) 303:L627–33. doi:10.1152/ajplung.00225.2012
8. Hugot JP. CCAAT/enhancer binding protein beta signalling in lung epithelial cells. Eur Respir J (2007) 30:214–22. doi:10.1183/09031936.0014906
9. Månsson Kvarnhammar A, Tengroth L, Adner M, Cardell L-O. Innate immune receptors in human airway smooth muscle cells: activation by TLR1/2, TLR3, TLR4 and NOD1 agonists. PLoS One (2013) 8:e68701. doi:10.1371/journal.pone.0068701
10. Matzinger P. The danger model: a renewed sense of self. Annu Rev Immunol (1999) 17:243–8. doi:10.1146/annurev.immunol.17.1.243
11. Magalhaes JG, Sorbara MT, Girardin SE, Philpott DJ. What is new with Nods? Curr Opin Immunol (2003) 15:29–34. doi:10.1016/j.coi.2003.11.003
12. Magalhaes JG, Sorbara MT, Girardin SE, Philpott DJ. CARD4 protein is a novel CARD-family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem (2001) 276:34560–7. doi:10.1074/jbc.M11415601
13. Slevogt H, Seybold J, Tiwari KN, Hocke AC, Forster S, Schmeck B, et al. Disordered microbial communities in asthmatic airways. PLoS One (2010) 5:e8578. doi:10.1371/journal.pone.0008578
14. Chamaillard M, Chamaillard M, Lesage S, Cezard JP, Belaiche J, et al. Asso-
37. Kujo CC, Lee A, Campbell LA. Cleavage of the N-linked oligosaccharide from the surfaces of Chlamydia species affects attachment and infectivity of the organisms in human epithelial and endothelial cells. Infect Immun (2004) 72:6699–701. doi:10.1128/IAI.72.11.6699-6701.2004

38. Eitel J, Krull M, Hocke AC, N’Guessan PD, Zahlten J, Schmeck B, et al. Beta1,3N-acetilglucosaminyltransferase 3 mediates glycosylation of Nod1. J Immunol (2011) 186:371–80. doi:10.4049/jimmunol.1100937

39. Kuo CC, Lee A, Campbell LA, Girardin SE, Boneca IG, Lemos R, Bozza MT, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immune signaling. Nat Med (2010) 16:228–31. doi:10.1038/nm.2087

40. Rehman A, Sina C, Gavriloa O, Hasler R, Ott S, Baines JF, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut (2011) 60:1554–62. doi:10.1136/gut.2010.216259

41. Petnicki-Ocwieja T, Hencir T, Liu YJ, Biswas A, Hucどvic T, Tslakolava-Hogenova H, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A (2009) 106:15813–8. doi:10.1073/pnas.0907722106

42. Travassos LH, Carneiro LA, Girardin SE, Boneca IG, Lemos R, Bozza MT, et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by Nod1. Nature (2011) 46:233–7. doi:10.1038/nature10225

43. Opitz B, Forster S, Hocke AC, Maass M, Schmeck B, Hippenstiel S, et al. Nod1-mediated endothelial cell activation by Chlamydia pneumoniae. Eur J Immunol (2010) 40:3519–27. doi:10.1002/eji.2010040158

44. Frutuoso MS, Horii JI, Pereira MS, Junior DS, Sonego F, Kobayashi KS, et al. The pattern recognition receptors Nod1 and Nod2 account for neutrophil recruitment to the lungs of mice infected with Legionella pneumophila. Microbes Infect (2010) 12:819–27. doi:10.1016/j.micinf.2010.05.006

45. Kapetanovic R, Jouvion G, Fitting C, Parlato M, Blanchet C, Huerre M, et al. Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J Cell Sci (2007) 120:1299–310. doi:10.1242/jcs.033424

46. Zola TA, Lysenko ES, Weiser JN. Mucosal clearance of capsule-expressing bac-

47. Travassos LH, Carneiro LA, Girardin SE, Boneca IG, Lemos R, Bozza MT, et al. Contribution of Nod1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol (2005) 116:177–84. doi:10.1016/j.jaci.2005.02.034

48. Austin CM, Ma X, Graviss EA. Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis infection. Eur Respir J (2005) 26:693–701. doi:10.1183/09031936.0402089.x

49. Kapetanovic R, Jouvion G, Fitting C, Parlato M, Blanchet C, Huerre M, et al. Nod2-mediated endothelial cell activation by Chlamydia pneumoniae. Circ Res (2005) 96:319–26. doi:10.1161/01.RES.0000155721.83594.c2

50. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, et al. Contribution of Nod1 to lung inflammation during Staphylococcus aureus colonization in mice. Eur Respir J (2011) 38:882–91. doi:10.1183/09031936.00015210

51. Kuo CC, Lee A, Campbell LA, Girardin SE, Boneca IG, Lemos R, Bozza MT, et al. Nod1 participates in the innate immune response to Pseudomonas aeruginosa Nod1. J Immunol (2005) 174:188. doi:10.1186/1471-2164-14-188

52. Austin CM, Ma X, Graviss EA. Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis infection. Eur Respir J (2005) 26:693–701. doi:10.1183/09031936.0402089.x

53. Kapetanovic R, Jouvion G, Fitting C, Parlato M, Blanchet C, Huerre M, et al. Nod2-mediated endothelial cell activation by Chlamydia pneumoniae. Circ Res (2005) 96:319–26. doi:10.1161/01.RES.0000155721.83594.c2

54. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, et al. Contribution of Nod1 to lung inflammation during Staphylococcus aureus colonization in mice. Eur Respir J (2011) 38:882–91. doi:10.1183/09031936.00015210

55. Sabbah A, Chang TH, Harnack K, Hollich V, Tominaga K, Dube PH, et al. Activation of innate immune antimicrobial responses by Nod2. Nat Immunol (2009) 10:1073–80. doi:10.1038/ni.1782

56. Clarke TB, Davis KM, Lysenko ES, Zhou Y, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immune signaling. Nat Med (2010) 16:228–31. doi:10.1038/nm.2087
Chaput et al. NOD-like receptors in lung diseases

77. Moayeri M, Sastalla I, Leplà SH. Anthrax and the inflammasome. *Microbes Infect* (2012) 14:392–400. doi:10.1016/j.micinf.2011.12.005

78. Hellmich KA, Levinsohn IL, fattah R, Newman ZL, Mater N, Sastalla I, et al. Anthrax lethal factor cleaves mouse nlrp1b in both toxic-sensitve and toxic-resistant macrophages. *PLoS One* (2012) 7:e49741. doi:10.1371/journal.pone.0049741

79. Chavarria-Smith J, Vance RE. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. *PLoS Pathog* (2013) 9:e1003453. doi:10.1371/journal.ppat.1003453

80. Bauerfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-κB-activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. *J Immunol* (2009) 183:787–91. doi:10.4049/jimmunol.0901363

81. Hirota JA, Hirota SA, Warner SM, Stefanowicz D, Shaheen F, Beck PL, et al. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 is activated by urban particulate matter. *J Allergy Clin Immunol* (2012) 129:1116-25.e6. doi:10.1016/j.jaci.2011.11.033

82. Munoz-Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins in Staphylococcus aureus induced activation of the NLRP3 inflammasome. *J Immunol* (2009) 183:3942–8. doi:10.4049/jimmunol.0900729

83. Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza is essential for adaptive immune responses. *J Exp Med* (2009) 206:79–87. doi:10.1084/jem.20081667

84. Thomas PG, Dash P, Aldridge JR, Eliebedy AH, Reynolds C, Funk AJ, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. *Immunity* (2009) 30:566–75. doi:10.1016/j.immuni.2009.02.006

85. Allen IC, Scull MA, Moore CB, Hollnok EL, McElvania-Tekippe E, Taxman DJ, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. *Immunity* (2009) 30:556–65. doi:10.1016/j.immuni.2009.02.005

86. Carlsson F, Kim J, Dumitru C, Barck KH, Carano RA, Sun M, et al. Host-detrimental role of Ess-1-mediated inflammasome activation in mycobacterial infection. *PLoS Pathog* (2010) 6:e1000895. doi:10.1371/journal.ppat.1000895

87. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. *PLoS Pathog* (2010) 6:e1001191. doi:10.1371/journal.ppat.1001191

88. Wittensnath M, Pache L, Lorenz D, Koppe U, Gutbier B, Tabeling C, et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and regulates the NLRP3 inflammasome function in elderly mice during influenza infection. *J Exp Med* (2013) 210:5743–54. doi:10.1084/jem.20130219

89. Eitel J, Meixenberger K, van Laak C, Orlovski C, Hocke A, Schmeck B, et al. NLRP3 inflammasome activation by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. *Eur J Immunol* (2012) 42:374–84. doi:10.1002/eji.20114514

90. Doenhoff A, Nouailles G, Jorg S, Hagens K, Heinemann E, Pradl L, et al. Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is rescued by treatment with nigericin. *PLoS One* (2012) 7:e29695. doi:10.1371/journal.pone.0029695

91. Kebaiar C, Chamberland RR, Allen IC, Gao X, Broglio PM, Hall JD, et al. Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. *J Infect Dis* (2012) 205:807–17. doi:10.1093/infdis/jir464

92. Shimada K, Crother TR, Karlin J, Chen S, Chiba N, Ramanujan VK, et al. Caspase-1-dependent IL-1 beta secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection. *PLoS One* (2011) 6:e21477. doi:10.1371/journal.pone.0021477

93. Segovia J, Sabbah A, Mbegbema V, Tsai SY, Chang TH, Berton MT, et al. TLR2/MyD88/NF-kappaB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. *PLoS One* (2012) 7:e29695. doi:10.1371/journal.pone.0029695

94. Said-Sadier N, Padilla E, Langsley G, Ojcius DM. *J Immunol* (2012) 188:2815–24. doi:10.4049/jimmunol.1103051

95. Russkanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. *Lancet* (2011) 377:1264–75. doi:10.1016/S0140-6736(10)64159-6
127. Dolinay T, Kimys YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, et al. Novel NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell (2011) 145:745–57. doi:10.1016/j.cell.2011.04.022

128. Wanderer AA, Hinterlong J, Krapuzak HA, Hinterlong CW, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X7 receptors. J Biol Chem (2009) 284:23045–48. doi:10.1074/jbc.M109.014266

129. Iyer SS, Pulsken WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A (2009) 106:20388–93. doi:10.1073/pnas.0908681010

130. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature (2006) 440:237–41. doi:10.1038/nature04516

131. Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, et al. NLRP12 and related inflammasome proteins with negative regulatory functions. PLoS One (2013) 8:e69480. doi:10.1371/journal.pone.0069480

132. Zhang P, Dixon M, Zucchielli M, Hambiliki F, Levkov L, Hovatta O, et al. Expression analysis of the NLRP1 gene family suggests a role in human preimplantation development. PLoS One (2008) 3:e2755. doi:10.1371/journal.pone.0002755

133. Cui, Li Y, Zhu L, Liu D, Songyang Z, Wang HY, et al. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol (2012) 13:387–95. doi:10.1038/ni.2239

134. Fiorentino L, Stellich C, Oliveira V, Ariza ME, Godzik A, Reed JC. A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor alpha and inflammasome - induced cell permeability. J Immunol (2002) 169:3533–40. doi:10.4049/jimmunol.169:3533-40

135. Eibl G, Grigoriu S, NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in injury. Am J Respir Crit Care Med (2011) 183:837–42. doi:10.1164/rccm.201201-0114OC

136. Eibl G, Grigoriu S, Hessenberger M, Wenger J, Puehringer S, Pinheiro AS, et al. Structural and functional analysis of the NLRP gene family suggests a role in human preimplantation development. J Clin Invest (2013) 123:3786–99. doi:10.1172/JCI63225

137. Chaudhry AA, Interleukin-1beta targeted therapy in severe persistent asthma (SPA) and chronic obstructive pulmonary disease (COPD): proposed similarities observed after exposure to tobacco smoke. J Biol Chem (2009) 284:12762–71. doi:10.1074/jbc.M109.014266

138. Gasse N, Romain N, Guenon N, Noulin N, Boichot E, Guenon I, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med (2010) 181:774–83. doi:10.1164/rccm.201003-0359OC

139. Kolliputi N, Shaik RS, Waxman AB. The inflammasome mediates hyperoxia-induced acute lung injury. J Physiol Cell Physiol (2010) 559:1–10. doi:10.1152/jp.00744.2009

140. Chang BH, Liu X, Liu J, Quan FS, Guo ZK, Zhang Y. Developmental expression and possible functional roles of mouse Nlrp4 in preimplantation embryos. Proc Natl Acad Sci U S A (2011) 108:7349–54. doi:10.1073/pnas.1014247108

141. Tian X, Pascal M, Gonet P. Evolution and functional diversification of NLR genes in mammalian reproductive systems. BMC Evol Biol (2009) 9:202. doi:10.1186/1471-2148-9-202

142. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, et al. NLRP2 is a sensor of acid crystals activate the NLRP3 inflammasome. Nature (2011) 474:672–6. doi:10.1038/nature09879

143. Lord CA, Savitsky D, Sticheran R, Calame K, Wibeg J, et al. Blimp-1/PRDM1 mediates transcriptional suppression of the NLR gene.
NLRP12/Monarch-1. *J Immunol* (2009) 182:2948–58. doi:10.4049/jimmunol.0801692

Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Tooman DJ, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. *J Immunol* (2007) 178:1256–60.

Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, et al. NLRP12 suppresses colonic inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. *Immunity* (2012) 36:742–54. doi:10.1016/j.immuni.2012.03.012

Vladimer GI, Weng D, Paquette SW, van Andel SK, Rathinam VA, Aune MH, et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. *J Biol Chem* (2007) 282:28509–13. doi:10.1074/jbc.C100250200

Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace JE, et al. Toll-like receptor-mediated antiviral immune responses in mice. *PLoS One* (2011) 7:e30612. doi:10.1371/journal.pone.0030612

Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, et al. Regulation of caspase-1 activation by the Nlrc3/Ipaf inflammasome restricts proliferation of inflammatory pathways. *J Biol Chem* (2007) 282:516–20. doi:10.1074/jbc.M604933200

Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, Brady G, et al. Flagellin-deficient Legionella mutants evade caspase-1- and Nalp5-mediated macrophage immunity. *PLoS Pathog* (2009) 5:e1000188. doi:10.1371/journal.ppat.1000188

Ren T, Zamboni DS, Yoshikawa Y, Yosifov K, Zhang Z, et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. *J Exp Med* (2006) 203:1093–104. doi:10.1084/jem.20051659

Bonomo R, Fazilleau L, Lomma M, Cicipic G, Buchrieser C, Garcia S, et al. Population variation in NALPs functional copy number confers increased cell death upon Legionella pneumophila infection. *Hum Immunol* (2012) 73:139–46. doi:10.1016/j.humimm.2011.10.014

Broz P, von Molk E, Jones JW, Vince RE, Monack DM. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. *Cell Host Microbe* (2010) 8:471–83. doi:10.1016/j.chom.2010.11.007

Vorup J, Roy CR. Asc modulates the function of NALP4 in response to infection of macrophages by Legionella pneumophila. *MBio* (2011) 2:e00117-11. doi:10.1128/mBio.00117-11

Vinzing M, Eitel J, Lippmann J, Hoce AC, Zahlen J, Slevogt H, et al. Nalp12 and Itp12 control Legionella pneumophila replication in human cells. *J Immunol* (2008) 180:6808–15.

Kofoed EM, Vincent RE. Inflammasome recognition of bacterial ligands by Nalp3 determines inflammasome specificity. *Nature* (2011) 477:592–5. doi:10.1038/nature10194

Benko S, Magalhaes JG, Philpott DJ, Girardin SE. NLRC5 limits the activation of the NLRC4 inflammasome. *Nat Immunol* (2011) 12:411–23. doi:10.1038/ni.2012.03.005

Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, et al. The innate immune sensor NLR3 attenuates Toll-like receptor signaling via modification of the signaling adapter TRAM and transcription factor NF-kappaB. *Nat Immunol* (2012) 13:823–31. doi:10.1038/ni.23578

Cani P, Flamand V, Turetta C, O'Sullivan MK, Delzenne NM, Poilblanc K. The role of the gut microbiota in the regulation of host energy balance and metabolism. *Cell Metab* (2007) 6:516–20. doi:10.1016/j.cmet.2007.03.006

Chaput et al. NOD-like receptors in lung diseases

www.frontiersin.org

November 2013 | Volume 4 | Article 393 | 11
194. Yao Y, Wang Y, Chen F, Huang Y, Zhu S, Leng Q, et al. NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res (2012) 22:836–47. doi:10.1038/cr.2012.56

195. Robbins GR, Truxa AD, Davis BK, Zhang I, Brickey WJ, Ting JP. Regulation of class I major histocompatibility complex (MHC) by nucleotide-binding domain, leucine-rich repeat-containing (NLR) proteins. J Biol Chem (2012) 287:24294–303. doi:10.1074/jbc.M112.364604

196. Meissner TB, Liu YJ, Lee KH, Li A, Biswas A, van Eggermond MC, et al. NLRC5 cooperates with the RFX transcription factor complex to induce MHC class I gene expression. J Immunol (2012) 188:4951–8. doi:10.4049/jimmunol.1103160

197. Neerinck A, Rodriguez GM, Steimle V, Kufer TA. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. J Immunol (2012) 188:4940–50. doi:10.4049/jimmunol.1103136

198. Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci (2009) 122:3161–8. doi:10.1242/jcs.051193

199. Moore CB, Bergstrahl DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature (2008) 451:573–7. doi:10.1038/nature06501

200. Hong M, Yoon SI, Wilson IA. Structure and functional characterization of the RNA-binding element of the NLRX1 innate immune modulator. Immunity (2012) 36:337–47. doi:10.1016/j.immuni.2011.12.018

201. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, et al. NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity (2011) 34:843–53. doi:10.1016/j.immuni.2011.02.022

202. Allen JC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity (2011) 34:854–65. doi:10.1016/j.immuni.2011.03.026

203. Rebsamen M, Vazquez J, Tardivel A, Guarda G, Curran J, Tschopp J. NLRX1/NOD5 deficiency does not affect MAVS signalling. Cell Death Differ (2011) 18:1387. doi:10.1038/cdd.2011.64

204. Soares F, Tattoli I, Wörtzman ME, Arnoult D, Philpott DJ, Girardin SE. NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immun (2013) 19:438–48. doi:10.1177/1753425912467383

205. Tattoli I, Carneiro LA, Jehanno M, Magalhães JG, Shu Y, Philpott DJ, et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep (2008) 9:293–300. doi:10.1038/embor.7401161

206. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity (2012) 36:933–46. doi:10.1016/j.immuni.2012.03.025

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 07 August 2013; paper pending published: 30 September 2013; accepted: 07 November 2013; published online: 21 November 2013.

Citation: Chaput C, Sander LE, Suttorp N and Opitz B (2013) NOD-like receptors in lung diseases. Front. Immunol. 4:393. doi: 10.3389/fimmu.2013.00393

This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology.

Copyright © 2013 Chaput, Sander, Suttorp and Opitz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.