Calculation of Astrophysical S-factor and Thermonuclear Reaction Rates for \((p,n)\) Medium Elements Reactions

Mohammed Issa Hussein\(^1,^*\), Ramadhan Hayder Abdullah\(^2\)

\(^1\)BSc, MSc Physic, PhD student, Department of Physics, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq.
\(^2\)PhD Physic, Department of Physics, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq.

\(^*\)Corresponding Author: m_isa76@yahoo.com

Abstract. The cross-sections of \((p,n)\) medium elements reactions as a function of proton energies such as \(^{45}\)Sc\((p,n)^{45}\)Ti, \(^{48}\)Ti\((p,n)^{48}\)V, \(^{51}\)V\((p,n)^{51}\)Cr, \(^{52}\)Cr\((p,n)^{52}\)Mn, \(^{55}\)Mn\((p,n)^{55}\)Fe, \(^{56}\)Fe\((p,n)^{56}\)Co, \(^{59}\)Co\((p,n)^{59}\)Ni, \(^{62}\)Ni\((p,n)^{62}\)Cu, \(^{63}\)Cu\((p,n)^{63}\)Zn, and \(^{66}\)Zn\((p,n)^{66}\)Ga have been interpolated near threshold up to 10 MeV in step of 0.05 MeV using MATLAB program. Weighted averages of cross-sections have been used to calculate the astrophysical S-factor and thermonuclear reaction rates as a function of the center of mass energy, \(E_{\text{c.m.}}\) and \(T_9\) respectively. Polynomial expressions have been used to fit the calculated astrophysical S-factor and thermonuclear reaction rates to determine the astrophysical S-factor at various \(E_{\text{c.m.}}\) and thermonuclear reaction rates at various \(T_9\) from best fitting equations with minimum Chi-Square. Empirical formulae of reactions set \(^{45}\)Sc\((p,n)^{45}\)Ti, \(^{48}\)Ti\((p,n)^{48}\)V, \(^{55}\)Mn\((p,n)^{55}\)Fe, \(^{59}\)Co\((p,n)^{59}\)Ni, \(^{66}\)Zn\((p,n)^{66}\)Ga and reactions set \(^{48}\)Ti\((p,n)^{48}\)V, \(^{51}\)V\((p,n)^{51}\)Cr, \(^{59}\)Co\((p,n)^{59}\)Ni, \(^{63}\)Cu\((p,n)^{63}\)Zn, \(^{66}\)Zn\((p,n)^{66}\)Ga have been used to calculate the astrophysical S-factor as a function of \(E_{\text{c.m.}}\) and \(Z\) and thermonuclear reaction rates as a function of \(T_9\) and \(Z\) of target nucleus. The results have been compared with the adopted data that have been calculated from the fitting equations which have a good agreement.

Keywords: Cross sections; astrophysical S-factor; thermonuclear reaction rates; Gamow factor; Gamow energy; Sommerfeld parameter.

1. Introduction
A star can be defined as a self - gravitating celestial object in which there is, or there once was (in the case of dead stars), sustained thermonuclear fusion of hydrogen in their core [1]. The astrophysical S-factor, \(S(E)\) has extensively been used in the field to remove the energy dependence of the Coulomb barrier penetration from the cross section, \(\sigma(E)\) [2]. As stellar energies are much lower than the Coulomb barrier, the cross sections strongly depend on energy [3]. If all the nuclei in a star fused when the “Coulomb Barrier” was overcome, the star would burn instantaneously, in a ‘flash’ [4], [5]. The astrophysical calculations concerning the synthesis of elements require as input temperature-dependent expressions for thermonuclear reaction rates (TNRR) [6]. The quantity of interest in calculating thermonuclear reaction rates for astrophysical purposes is \(N_A \langle \sigma v \rangle\) which is the product of Avogadro’s number with the average value of the cross section times velocity, averaged over a Maxwell-Boltzmann distribution of temperature [7]. Total cross sections of \((p,n)\) light elements reactions as a function of
center of mass energy have been measured by several authors which are mentioned by different references such as: 45Sc(p,n)45Ti [8–11], 48Ti(p,n)48V[11,12], 51V(p,n)51Cr[8,13–17], 52Cr(p,n)52Mn[11,18], 55Mn(p,n)55Fe[8,19–22], 56Fe(p,n)56Co [11,23], 59Co(p,n)59Ni[19,20,24,25], 62Ni(p,n)62Cu[11,26,27], 63Cu(p,n)63Zn[11,28,29], and 66Zn(p,n)66Ga [11,30,31] respectively. The aim of this work is to determine the empirical formulae to calculate the astrophysical S-factor, S(E) and thermonuclear reaction rates, N Aσν> using the modified cross sections of the above reactions. The results are compared with those published in the literature.

2. Theory

Atomic masses of each medium elements and isotopes related this work has been taken from the nuclear wallet cards published by the National Nuclear Data Center (NNDC) [32].

The Q – value of the reaction

\[Q = M_n + M_Y - (M_Y + M_n) c^2 \]

(1)

Where \(M_p, M_X, M_Y, \) and \(M_n \) are the atomic masses of the incident, target particles, product nucleus and neutron (outgoing particle), respectively and \((c^2 = 931.494013 \text{ MeV/amu}) \) where \(u= \text{atomic mass unit (amu)} = 1.66 \times 10^{-27} \text{ kg} \). From conservation law of energy [33]:

\[M_p c^2 + T_p + M_n c^2 = M_X c^2 + T_n + M_Y c^2 + T_Y \]

(2)

Where \(T_p, T_n, \) and \(T_Y \) are the proton, neutron, and heavy product kinetic energies.

In the laboratory system conservations of energy and momentum lead to the following equation [33]:

\[Q = T_n \left(1 + \frac{M_p}{M_X}\right) - T_p \left(1 + \frac{M_X}{M_p}\right) - \frac{2}{M_Y} (M_p T_p M_n T_n)^{1/2} \cos \theta \]

(3)

This is called the Q-value equation.

If Q is positive, the reaction is said to be exoergic; if Q is negative, it is endoergic. The amount of energy needed for an endoergic reaction is called the threshold energy and can be calculated easily [34].

\[E_{th} = Q (1 + \frac{M_p}{M_X}) \]

(4)

\[V(r) = \frac{Z_1 Z_2 e^2}{r} \]

(5)

Where \(Z_1 \) and \(Z_2 \) are the charges of the projectile and target nuclei, and \(r \) and \(r = r_1 + r_2 \) is their separation, \(e \) is the charge of electron \((e^2 = 1.44 \text{ MeV fm}) \), and the radius of the nucleus is given by \(r = 1.3 \times 10^{-13} A^{1/3} \) cm, where \(A \) is the mass number (atomic weight) [35]. Then Eq. (5) leads to

\[V(r) = E_c \left(\frac{Z_1 Z_2}{A_1^{1/3} + A_2^{1/3}} \right) \]

(6)

Where \(E_c \) is the coulomb barrier or coulomb energy in MeV, \(A_1^{1/3} \) and \(A_2^{1/3} \) are the mass numbers of the charges of projectile and target nuclei respectively.

The data of cross-sections of nonresonant reactions, exhibit a dramatic decrease at low energies due to quantum tunneling, as reflected in the energy dependence of the transmission coefficient through the Coulomb barrier [2]: The astrophysical S-factor, \(S(E) \) in unit \((\text{MeV} - \text{b}) \) is related to the cross-section by [36]:

\[S(E) = E \sigma(E) \exp(2\pi\eta) \]

(7)

Where \(E \) is the energy in the center of mass system \((E_{c.m.}) \) in MeV, \(\sigma(E) \) is the cross section of the reaction in (mb), \(2\pi\eta \) is the Gamow factor, and \(\eta \) is Sommerfeld parameter [37]:

\[\eta = \frac{Z_1 Z_2 e^2}{h^2} = 0.1575 Z_1 Z_2 \sqrt{\frac{\mu_{\text{prod}}}{E(\text{MeV})}} \]

(8)
\(\hbar \) is Planck’s constant over \(2 \pi \) (1.0546 \times 10^{-27} \text{ ergs}), \(v \) is the relative velocity, \(\mu \) is the reduced mass. And the Gamow factor \(G(E) \) or \(2\pi\eta \) [2]:

\[
2\pi\eta = 0.98951Z_1Z_2 \sqrt{\frac{\mu(u)}{E(Mev)}} \tag{9}
\]

The reduced mass \(\mu \) in u (amu) is determined by the equation [38]:

\[
\mu = \frac{m_1m_2}{m_1+m_2} \tag{10}
\]

Where \(m_1 \) and \(m_2 \) represents the masses of the projectile and target nucleus in units of (amu), respectively. The energy of a pair of particles in their center of mass \(E_{c.m.} \) is related to the laboratory energy, \(E_{lab.} \) of the incident particle by the relationship [33]:

\[
E_{c.m.} = \frac{m_2}{m_1+m_2}E_{lab} \tag{11}
\]

The Gamow energy \(E_G \), in MeV [39]:

\[
E_G = 2\pi^2 \mu u C^2 \alpha^2(Z_1Z_2)^2 = 0.979\mu(Z_1Z_2)^2 \tag{12}
\]

Where \(\alpha = \frac{1}{137} = \frac{e^2}{\hbar c} \) is the fine-structure constant.

The thermonuclear reaction rates, \(N_A(\sigma v) \) in unit \((cm^2mol^{-1}s^{-1}) \) [37]:

\[
N_A(\sigma v) = \left(\frac{B}{\mu r} \right)^{1/2} \frac{1}{(k_B T)^{3/2}} N_A \int_0^{\infty} E\sigma(E) \exp\left(-E/k_BT\right) dE \tag{13}
\]

Where \(N_A \) is the Avogadro’s number \((6.022 \times 10^{23} \text{ mol}^{-1}) \), \(k_B \) is the Boltzmann’s constants \((1.38 \times 10^{-16} \text{ erg/K}) \), and \(T \) is the temperature respectively. Eq. (13) leads to [37]:

\[
N_A(\sigma v) = 3.7313 \times 10^7 \mu^{-1/2} T_9^{-3/2} \int_0^{\infty} E\sigma(E) \exp\left(-11.605E/T_9\right) dE \tag{14}
\]

Where \(T_9 \) is the temperature in units of \(10^9 \text{K} \) (\(T_9 = 10^{-9}T \))

The weighted averages of the cross sections of light elements whose cross sections \(\sigma_0(mb) \) and the uncertainty (errors) \(\Delta\sigma_0(mb) \) are expressed by the following Eqs. [40]:

\[
\sigma_0(mb) = \sum_i \sigma_i / \sigma_i^2 \tag{15}
\]

Where \(\sigma_i \) is the cross section of \(i^{th} \) reference, and \(\Delta\sigma_i \) is the errors corresponding to each values of \(\sigma_i \),

\[
\Delta\sigma_0(mb) = \pm \frac{1}{\sqrt{\sum_i (1/\Delta\sigma_i^2)}} \tag{16}
\]

The type of formalism has been considered in the present work is the polynomial fit expression of the form:

\[
Y = C_0 + C_1X + C_2X^2 + C_3X^3 + \cdots + C_NX^N = \sum_{i=0}^{M} C_iX^i \tag{17}
\]
This polynomial is obtained by the Excel computer program (Format Trendline). Where \((c_0, c_1, c_2, c_3, \ldots)\) are free parameters, and \((i = 0, 1, 2, 3, \ldots, M)\).

\[
G_i = \sum_{j=0}^{N} C_{ij}K^j
\]

have been considered in this work. Subsequently, by combining the above equations (17) & (18), the following expression has been obtained:

\[
Y = \sum_{l=0}^{M} \left(\sum_{j=0}^{N} C_{lj}K^j \right)X^l
\]

Where \(Y = \ln[S(E)]\) or \(\ln[N_A<\sigma\nu>]\), \((i=0,1,2,\ldots,M)\), \((j=0,1,2,\ldots,N)\), \((C_{00}, C_{01}, C_{02}, \ldots)\) are free parameters (coefficients of polynomials), \(K\) is the center of mass energy or \(T_s\) according to the \(S(E)\) or \(N_A<\sigma\nu>\), and \(X\) is atomic number \(Z\). The Excel computer program has been used to obtain the best fit formulae corresponding to different energies ranges from the threshold up to \(10^{10} \text{K}\) in the center of mass system or \(T_s\) ranges from 1 to \(10^{10} \text{K}\). The data of these ranges were excluded in each step, till an acceptable value of the coefficient of determination \(R^2 \approx 1\) was reached. The best fit adopted data was obtained with increasing order to provide the minimum value of Chi-Square \((\chi^2)\) by using the Eq. [41]:

\[
\chi^2 = \frac{1}{(N - M)} \sum_{l=0}^{N} \left(\frac{Y_{\text{exp}}^l - Y_{\text{cal}}^l}{\Delta Y_{\text{exp}}^l} \right)^2
\]

Where \(N\) is the data points number, \(M\) is the fitting coefficients number, \(Y_{\text{exp}}^l\) and \(\Delta Y_{\text{exp}}^l\) are the experimental (adopted value) of \(\ln[S(E)]\) or \(\ln[N_A<\sigma\nu>]\) and its error respectively, \(Y_{\text{cal}}^l\) is the calculated \(\ln[S(E)]\) or \(\ln[N_A<\sigma\nu>]\).

3. Data Reduction and Analysis

The Atomic masses have been taken into consideration to determine the Q-Value, threshold energy, Coulomb barrier, reduced mass, and the ratio between \((E_{c.m.}/E_{\text{lab}})\) of \((p,n)\) medium elements reactions using the Eqs. (1, 4, 6, 10, and 11) respectively; the results are shown in the table (1).

(p,n) Medium Element Reaction	Q-value (MeV)	\(E_{\text{threshold}}\) (MeV)	Coulomb Barrier \(E_c\) (MeV)	Reduced Mass \((\mu)\) (amu)	\(E_{c.m.}/E_{\text{lab}}\)	
\(^{40}\text{Sc}(p,n)^{38}\text{Ti}\)	-2.844E+00	2.908E+00	2.844E+00	5.105E+00	9.857E-01	9.781E-01
\(^{40}\text{Ti}(p,n)^{38}\text{V}\)	-4.797E+00	4.898E+00	4.797E+00	5.259E+00	9.871E-01	9.794E-01
\(^{51}\text{V}(p,n)^{49}\text{Cr}\)	-1.535E+00	1.565E+00	1.535E+00	5.411E+00	9.883E-01	9.806E-01
\(^{52}\text{Cr}(p,n)^{50}\text{Mn}\)	-5.494E+00	5.600E+00	5.494E+00	1.329E+01	9.886E-01	9.810E-01
\(^{55}\text{Mn}(p,n)^{53}\text{Fe}\)	-1.013E+00	1.032E+00	1.013E+00	5.766E+00	9.897E-01	9.820E-01
\(^{56}\text{Fe}(p,n)^{54}\text{Co}\)	-5.349E+00	5.445E+00	5.349E+00	5.968E+00	9.900E-01	9.823E-01
\(^{59}\text{Co}(p,n)^{57}\text{Ni}\)	-1.855E+00	1.887E+00	1.855E+00	6.112E+00	9.909E-01	9.832E-01
\(^{60}\text{Ni}(p,n)^{58}\text{Cu}\)	-4.741E+00	4.818E+00	4.741E+00	6.256E+00	9.917E-01	9.840E-01
\(^{63}\text{Cu}(p,n)^{61}\text{Zn}\)	-4.149E+00	4.215E+00	4.149E+00	6.452E+00	9.919E-01	9.842E-01
\(^{66}\text{Zn}(p,n)^{64}\text{Ga}\)	-5.957E+00	6.048E+00	5.957E+00	6.592E+00	9.927E-01	9.849E-01
Eqs. (8, 9, 12, and 7) taken into consideration to determine the Sommerfeld parameter (η), Gamow factor ($G(E)$), Gamow energy (E_g), and the astrophysical S-factor, $S(E)$ of the (p,n) medium elements reactions. The results are shown in Table (2).

Table 2. The Sommerfeld parameter (η), Gamow factor ($G(E)$), Gamow energy (E_g), and the astrophysical S-factor, $S(E)$ of the (p,n) medium elements reactions

Medium Element Reaction	Sommerfeld Parameter η	Gamow factor $G(E)$	Gamow Energy E_g(MeV)	Astrophysical S-factor $S(E)$
45Sc(p,n)45Ti	3.282E+00/$\sqrt{E_{c.m.}}$	2.063E+01/$\sqrt{E_{c.m.}}$	4.256E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.063E+01/$\sqrt{E_{c.m.}}$)
46Ti(p,n)46V	3.441E+00/$\sqrt{E_{c.m.}}$	2.163E+01/$\sqrt{E_{c.m.}}$	4.678E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.163E+01/$\sqrt{E_{c.m.}}$)
51V(p,n)51Cr	3.599E+00/$\sqrt{E_{c.m.}}$	2.262E+01/$\sqrt{E_{c.m.}}$	5.119E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.262E+01/$\sqrt{E_{c.m.}}$)
52Cr(p,n)52Mn	3.757E+00/$\sqrt{E_{c.m.}}$	2.361E+01/$\sqrt{E_{c.m.}}$	5.576E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.361E+01/$\sqrt{E_{c.m.}}$)
55Mn(p,n)55Fe	3.915E+00/$\sqrt{E_{c.m.}}$	2.461E+01/$\sqrt{E_{c.m.}}$	6.056E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.461E+01/$\sqrt{E_{c.m.}}$)
56Fe(p,n)56Co	4.072E+00/$\sqrt{E_{c.m.}}$	2.560E+01/$\sqrt{E_{c.m.}}$	6.553E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.560E+01/$\sqrt{E_{c.m.}}$)
57Co(p,n)57Ni	4.121E+00/$\sqrt{E_{c.m.}}$	2.659E+01/$\sqrt{E_{c.m.}}$	7.073E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.659E+01/$\sqrt{E_{c.m.}}$)
60Ni(p,n)60Cu	4.389E+00/$\sqrt{E_{c.m.}}$	2.759E+01/$\sqrt{E_{c.m.}}$	7.613E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.759E+01/$\sqrt{E_{c.m.}}$)
61Cu(p,n)61Zn	4.547E+00/$\sqrt{E_{c.m.}}$	2.858E+01/$\sqrt{E_{c.m.}}$	8.168E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.858E+01/$\sqrt{E_{c.m.}}$)
66Zn(p,n)66Ga	4.705E+00/$\sqrt{E_{c.m.}}$	2.958E+01/$\sqrt{E_{c.m.}}$	8.747E+02/$\sqrt{E_{c.m.}}$	$E_{c.m.}\cdot\sigma(E)\cdot\exp(2.958E+01/$\sqrt{E_{c.m.}}$)

4. Results and Discussion

In general, we can write Eq. (17), instead of X insert center of mass energies $E_{c.m.}$ then the Eq. (17) become:

\[Y = C_0 + C_1 K + C_2 K^2 + C_3 K^3 + \cdots + C_N K^N = \sum_{i=0}^{M} C_i K^i \tag{21} \]

Where (C_0, C_1, C_2, \ldots) are free parameters, K is the center of mass energy or T_β ($i = 0, 1, 2, 3 \ldots M$), and $Y = \ln[S\text{-factor (MeV-b)}]$ or $Y = \ln[N_A \cdot \sigma(v) \cdot (\text{cm}^3 \text{mol}^{-1} \text{s}^{-1})]$.

4.1. Astrophysical S-factor Empirical Formulae

The adopted astrophysical S-factor has been used to obtain the fitting parameters by using the polynomial expressions (18), (20) and (21) by the following step:

1. The polynomial expressions which are used in eq. (21) to fit the calculated natural logarithm of astrophysical S-factor, $S(E)$ of the studied medium elements to determine the adopted natural logarithm of astrophysical S-factor from the best fitting with minimum Chi-Square using Eq. (20). The obtained best fitting Equations of the mentioned reactions were presented in equations (22, 23, 24, 25, 26, 27, 28, 29, 30, and 31) for the reactions 45Sc(p,n)45Ti, 46Ti(p,n)46V, 51V(p,n)51Cr, 52Cr(p,n)52Mn, 55Mn(p,n)55Fe, 56Fe(p,n)56Co, 59Co(p,n)59Ni, 62Ni(p,n)62Cu, 63Cu(p,n)63Zn, and 66Zn(p,n)66Ga respectively.

\[45\text{Sc}(p,n)\quad \chi^2 = 0.206 \]

\[\ln[S\text{-factor(MeV-b)}] = -0.0097E^3 + 0.1908E^2 - 1.3719E + 11.975 \tag{22} \]
\[^{48}\text{Ti}(p,n)^{48}\text{V} \quad x^2 = 0.855 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = -0.1004E^4 + 3.1142E^3 - 35.854E^2 + 181.26E - 330.11 \quad (23) \]

\[^{51}\text{V}(p,n)^{51}\text{Cr} \quad x^2 = 1.006 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = 0.0024E^4 - 0.0687E^3 + 0.7405E^2 - 3.8774E + 16.191 \quad (24) \]

\[^{52}\text{Cr}(p,n)^{52}\text{Mn} \quad x^2 = 0.793 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = -0.1933E^4 + 6.1958E^3 - 73.88E^2 + 388.15E - 748.49 \quad (25) \]

\[^{55}\text{Mn}(p,n)^{55}\text{Fe} \quad x^2 = 0.0649 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = -0.0034E^3 + 0.083E^2 - 0.9498E + 14.193 \quad (26) \]

\[^{56}\text{Fe}(p,n)^{56}\text{Co} \quad x^2 = 0.0014 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = -0.0014E^2 - 0.1037E + 10.509 \quad (27) \]

\[^{59}\text{Co}(p,n)^{59}\text{Ni} \quad x^2 = 0.075 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = -0.0047E^4 + 0.123E^3 - 1.144E^2 + 4.0873E + 7.6684 \quad (28) \]

\[^{62}\text{Ni}(p,n)^{62}\text{Cu} \quad x^2 = 0.0628 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = 0.0356E^3 - 0.8537E^2 + 6.4351E - 4.0352 \quad (29) \]

\[^{63}\text{Cu}(p,n)^{63}\text{Zn} \quad x^2 = 0.0026 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = 0.0208E^3 - 0.4423E^2 + 2.6549E + 7.4516 \quad (30) \]

\[^{66}\text{Zn}(p,n)^{66}\text{Ga} \quad x^2 = 0.079 \]

\[\ln\left[S^{-} \text{-factor (MeV - b)} \right] = -0.114E^2 + 1.8612E + 3.8573 \quad (31) \]

2. At fixed values of center of mass energy, the variation of the natural logarithm of the astrophysical S-factor with the physical parameter atomic number Z has been fitted to the polynomial expression using Eq. (21). The obtained results were used to determine the free parameters (C_i).

3. The free parameters C_i were plotted against each value of the center of mass energies and fitted to adequate the polynomial expression were presented in Eq. (18).

4. The final formula of a set of reactions has been determined by using the combination of the two polynomials to show the systematic behavior of the reactions which are shown in Eq. (19). The Y Variable is the astrophysical S-factor.

4.1.1 The Empirical Formulae Relating the Astrophysical S-factor to Center of Mass Energy and the Atomic Number Z of the Target Nucleus

The empirical formulae relating to the astrophysical S-factor (MeV-b) with both of center of mass energies E_{cm}, and the target atomic number Z, were performed as follows: 1- At fixed values of the center of mass energies from 6 to 10 MeV in steps of 0.25 MeV for the $^{45}\text{Sc}(p,n)^{45}\text{Ti}$, $^{48}\text{Ti}(p,n)^{48}\text{V}$, $^{55}\text{Mn}(p,n)^{55}\text{Fe}$, $^{59}\text{Co}(p,n)^{59}\text{Ni}$, and $^{66}\text{Zn}(p,n)^{66}\text{Ga}$ reactions, the natural logarithm of the astrophysical S-factor will vary with the atomic number(Z) this shown in Fig. (1). The data have been fitted to the following polynomial expression:

\[Y = \sum_{i=0}^{2} C_i X^i \quad (32) \]

Where $Y = \ln[S(E)]$, and $X=Z$, with free parameters C_i (C_0, C_1, and C_2).
The variation of the natural logarithm of the astrophysical S-factor \(S(E) \) with the atomic number \(Z \) for the \(^{45}\text{Sc}(p,n)^{45}\text{Ti} \), \(^{48}\text{Ti}(p,n)^{48}\text{V} \), \(^{55}\text{Mn}(p,n)^{55}\text{Fe} \), \(^{59}\text{Co}(p,n)^{59}\text{Ni} \), and \(^{66}\text{Zn}(p,n)^{66}\text{Ga} \) reactions at fixed values of center of mass energy.

2- The adopted astrophysical S-factor, \(S(E) \) has been used as a function of target atomic number \(Z \) at the fixed center of mass energies using the Excel computer program to get the fitting expressions and then used to calculate the fitting parameters. The obtained results are presented in Table 3.

3- The obtained free parameters \(C_i \) (\(C_0 \), \(C_1 \), and \(C_2 \)), as shown in Table (3) are plotted against with the prefixed values of center of mass energies from 6 to 10 MeV in step of 0.25 MeV as shown in Fig(2), and then the obtained free parameters \(C_i \) have been fitted to the following polynomial expression:

\[
C_i = \sum_{j=0}^{2} C_{ij}E^j
\]

(33)

Table 3. Free parameters \(C_i \) (\(C_0 \), \(C_1 \), and \(C_2 \)) as a function of the center of mass energy.

\(E_{c.m.} \) (MeV)	\(C_0 \)	\(C_1 \)	\(C_2 \)
6	-38.595	3.6166	-0.0655
6.25	-34.076	3.2484	-0.0581
6.5	-30.24	2.9271	-0.0516
6.75	-26.973	2.647	-0.0458
7	-24.172	2.403	-0.0407
7.25	-21.755	2.1908	-0.0362
7.5	-19.654	2.0066	-0.0324
7.75	-17.822	1.8475	-0.0291
8	-16.225	1.7112	-0.0263
8.25	-14.848	1.5961	-0.024
8.5	-13.692	1.5012	-0.0221
8.75	-12.776	1.4263	-0.0207
9	-12.136	1.372	-0.0196
9.25	-11.823	1.3394	-0.0189
9.5	-11.907	1.3303	-0.0186
9.75	-12.475	1.3474	-0.0186
10	-13.63	1.3939	-0.019

The combination of the two polynomials Eq. (32) and Eq. (33) takes the form of the following formula of energy range from 6 to 10 MeV in the step of 0.25 MeV:
\[Y = \sum_{i=0}^{2} \left(\sum_{j=0}^{2} C_{ij}E^j \right)X^i \]

(34)

Where \(Y = \ln[S(E)] \), \(X = \text{atomic number } Z \)

\[Y = \sum_{i=0}^{2} (C_{00}E^0 + C_{11}E^1 + C_{22}E^2)X^i \]

\[Y = C_{00}E^0X^0 + C_{01}E^1X^0 + C_{02}E^2X^0 + C_{10}E^0X^1 + C_{11}E^1X^1 + C_{12}E^2X^1 + C_{20}E^0X^2 + C_{21}E^1X^2 + C_{22}E^2X^2 \]

(35)

Where (\(C_{00}, C_{01}, C_{02}, C_{10}, C_{11}, \ldots, C_{22} \)) are free parameters and their values are shown in the below:

\[
\begin{bmatrix}
C_{00} & C_{01} & C_{02} \\
C_{10} & C_{11} & C_{12} \\
C_{20} & C_{21} & C_{22}
\end{bmatrix}
= \begin{bmatrix}
-221.1 & 45.151 & -2.4379 \\
18.619 & -3.6921 & 0.1971 \\
-0.3699 & 0.0748 & -0.004
\end{bmatrix}, \quad R^2 = \begin{bmatrix}
0.9988 \\
0.9991 \\
0.9988
\end{bmatrix}
\]

\(R^2 = 0.9988 \)

\(R^2 = 0.9991 \)

\(R^2 = 0.9988 \)

\(R^2 = 0.9991 \)

\(R^2 = 0.9988 \)

\[C_z = -2.4379E^2 + 45.151E - 221.1 \]

\(R^2 = 0.9988 \)

\[C_z = 0.1971E^2 - 3.6921E + 18.619 \]

\(R^2 = 0.9991 \)
Fig 2. C_i coefficients against the center of mass energy, for C_0, C_1, and C_2 respectively. The solid line represents the fitted curve through the data.

The values of free parameters of the above and the atomic number Z of each targets nuclei for each reactions 45Sc(p,n)45Ti, 48Ti(p,n)48V, 55Mn(p,n)55Fe, 59Co(p,n)59Ni, and 66Zn(p,n)66Ga are substitute into Eq. (35) the results are shown in the following formulae:

45Sc(p,n)45Ti
\[
\chi^2 = 3.266
\]
\[
\ln[S - factor(\text{MeV} - b)] = -0.0628E^2 + 0.6037E + 6.7731
\]

48Ti(p,n)48V
\[
\chi^2 = 4.936
\]
\[
\ln[S - factor(\text{MeV} - b)] = -0.0377E^2 + 0.128E + 9.4864
\]

55Mn(p,n)55Fe
\[
\chi^2 = 1.088
\]
\[
\ln[S - factor(\text{MeV} - b)] = -0.0104E^2 - 0.4015E + 13.1875
\]

59Co(p,n)59Ni
\[
\chi^2 = 2.347
\]
\[
\ln[S - factor(\text{MeV} - b)] = -0.0322E^2 - 0.0065E + 11.9559
\]

66Zn(p,n)66Ga
\[
\chi^2 = 2.814
\]
\[
\ln[S - factor(\text{MeV} - b)] = -0.1249E^2 + 1.708E + 4.56
\]

These above formulae have been used to calculate the astrophysical S-factor $S(E)$ in natural logarithm for each of the 45Sc(p,n)45Ti, 48Ti(p,n)48V, 55Mn(p,n)55Fe, 59Co(p,n)59Ni, and 66Zn(p,n)66Ga reactions and compared with the adopted astrophysical S-factor calculated from the fitting expressions which indicated in Eqs. (22, 23, 26, 28, and 31) respectively which are in a good agreement. The obtained data are presented in Table (4).

4.2. Thermonuclear Reaction Rates Empirical Formulae

The adopted thermonuclear reaction rates $N_A<\sigma v>$ have been used to obtain the fitting parameter by using the polynomial expressions (18), (20) and (21) by the following steps:

1. The polynomial expressions were used in eq. (21) to fit the calculated natural logarithm of thermonuclear reaction rates $N_A<\sigma v>$ of the studied medium elements to determine the adopted natural logarithm of thermonuclear reaction rates $N_A<\sigma v>$ from the best fitting with minimum Chi-Square using Eq. (20). The obtained best fitting equations of the mentioned reactions are present in equations (41, 42, 43, 44, 45, 46, 47, 48, 49, and 50) for the reactions 45Sc(p,n)45Ti,
48Ti(p,n)48V, 51V(p,n)51Cr, 52Cr(p,n)52Mn, 55Mn(p,n)55Fe, 56Fe(p,n)56Co, 59Co(p,n)59Ni, 62Ni(p,n)62Cu, 63Cu(p,n)63Zn, and 66Zn(p,n)66Ga respectively.

45Sc(p,n)45Ti $\chi^2 = 0.024$

\[
\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = 0.001870_9^5 - 0.063479_4^4 + 0.886670_9^3 - 6.268370_9^2 + 23.57870_9 - 25.628
\]

48Ti(p,n)48V $\chi^2 = 0.372$

\[
\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = 0.003270_9^5 - 0.112970_9^4 + 1.584270_9^3 - 11.25870_9^2 + 42.5470_9 - 59.805
\]

51V(p,n)51Cr $\chi^2 = 0.4$
Table 4. Comparison between polynomial fitting expressions (Best Fitting) of the adopted astrophysical S-factor with those calculated from Eqs. (36) to (40).

Ec.m. (MeV)	\(^{45}\)Sc(p,n)\(^{45}\)Ti	\(^{48}\)Ti(p,n)\(^{48}\)V	\(^{55}\)Mn(p,n)\(^{55}\)Fe	\(^{59}\)Co(p,n)\(^{59}\)Ni	\(^{66}\)Zn(p,n)\(^{66}\)Ga					
	ln[S-factor (MeV-b)] (Best Fitting)	ln[S-factor (MeV-b)] (Formula)	ln[S-factor (MeV-b)] (Best Fitting)	ln[S-factor (MeV-b)] (Formula)	ln[S-factor (MeV-b)] (Best Fitting)					
6	8.51±0.475	8.135	9.25±0.349	8.897	10.74±1.077	10.404	11.48±0.853	10.758	10.92±0.826	10.312
6.25	8.486±0.474	8.093	9.32±0.351	8.814	10.66±1.069	10.272	11.38±0.846	10.657	11.03±0.835	10.356
6.5	8.45±0.472	8.044	9.26±0.349	8.726	10.59±1.061	10.138	11.29±0.839	10.553	11.13±0.843	10.385
6.75	8.42±0.470	7.987	9.13±0.344	8.633	10.51±1.054	10.004	11.20±0.832	10.445	11.22±0.849	10.398
7	8.39±0.469	7.922	8.97±0.338	8.535	10.44±1.047	9.867	11.12±0.827	10.333	11.30±0.855	10.396
7.25	8.36±0.467	7.849	8.81±0.332	8.433	10.37±1.039	9.730	11.05±0.821	10.216	11.35±0.860	10.378
7.5	8.32±0.465	7.768	8.68±0.327	8.326	10.30±1.032	9.591	10.99±0.817	10.096	11.40±0.863	10.344
7.75	8.28±0.463	7.680	8.59±0.324	8.214	10.23±1.026	9.451	10.93±0.812	9.972	11.43±0.865	10.295
8	8.24±0.460	7.584	8.54±0.322	8.098	10.16±1.019	9.310	10.87±0.808	9.843	11.45±0.866	10.230
8.25	8.19±0.458	7.479	8.54±0.322	7.976	10.09±1.012	9.167	10.81±0.804	9.711	11.45±0.867	10.150
8.5	8.14±0.454	7.367	8.56±0.323	7.851	10.02±1.005	9.023	10.76±0.799	9.574	11.44±0.866	10.054
8.75	8.08±0.451	7.247	8.58±0.324	7.720	9.99±0.998	8.878	10.69±0.795	9.434	11.41±0.864	9.942
9	8.01±0.447	7.120	8.58±0.324	7.585	9.89±0.991	8.732	10.62±0.789	9.289	11.37±0.861	9.815
9.25	7.93±0.443	6.984	8.50±0.321	7.445	9.81±0.984	8.584	10.53±0.782	9.141	11.31±0.857	9.672
9.5	7.84±0.438	6.841	8.39±0.313	7.300	9.74±0.977	8.435	10.42±0.775	8.988	11.25±0.851	9.514
9.75	7.74±0.432	6.689	7.92±0.299	7.151	9.67±0.969	8.284	10.29±0.765	8.832	11.17±0.845	9.340
10	7.63±0.426	6.530	7.29±0.275	6.996	9.59±0.961	8.133	10.14±0.753	8.671	10.69±0.838	9.150
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = 0.00127\sigma_9^5 - 0.0422T_9^4 + 0.5916T_9^3 - 4.2008T_9^2 + 15.932T_9 - 13.576 \]
\[x^2 = 0.203\]
(43)

52Cr(p,n)52Mn
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = -0.0077T_9^4 + 0.2342T_9^3 - 3.0337T_9^2 + 19.048T_9 - 36.889 \]
(44)

55Mn(p,n)55Fe
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = -0.0087T_9^4 + 0.2366T_9^3 - 2.4329T_9^2 + 11.77T_9 - 8.4719 \]
(45)

56Fe(p,n)56Co
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = -0.0216T_9^4 + 0.6298T_9^3 - 6.9401T_9^2 + 35.748T_9 - 64.334 \]
(46)

59Co(p,n)59Ni
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = 0.0021T_9^5 - 0.0711T_9^4 + 0.9356T_9^3 - 6.1675T_9^2 + 21.596T_9 - 20.117 \]
(47)

62Ni(p,n)62Cu
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = 0.004T_9^5 - 0.1371T_9^4 + 1.8612T_9^3 - 12.693T_9^2 + 45.546T_9 - 60.46 \]
(48)

63Cu(p,n)63Zn
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = -0.0083T_9^4 + 0.2608T_9^3 - 3.1324T_9^2 + 18.009T_9 - 28.88 \]
(49)

66Zn(p,n)66Ga
\[\ln[N_A(\sigma v)(cm^3 s^{-1} mol^{-1})] = -0.0207T_9^4 + 0.6043T_9^3 - 6.6657T_9^2 + 34.434T_9 - 61.501 \]
(50)

2- At fixed values of the T_9, the variation of the natural logarithm of the thermonuclear reaction rates with the physical parameter atomic number Z has been fitted to the polynomial expression using Eq. (21).

3- The free parameters C_i are plotted against each value of T_9 and fitted to adequate the polynomial expression were presented in Eq. (18).

4- The final formula of a set of reactions has been determined by using the combination of the two polynomials to show the systematic behavior of the reactions which is shown in Eq. (19).

4.2.1. The Empirical Formulae Relating the Thermonuclear Reaction Rates to T_9 and the Atomic Number Z of the Target Nucleus

The empirical formulae relating to the thermonuclear reaction rates N_A<\sigma v> (cm^3 s^{-1} mol^{-1}) with both T_9 and Z were performed as follows:

1- At fixed values of the T_9 from 6 to 10 10^9 K in steps of 0.25 10^9 K for the 40Ti(p,n)40V, 51V(p,n)51Cr, 59Co(p,n)59Ni, 63Cu(p,n)63Zn, and 66Zn(p,n)66Ga reactions, the natural logarithm of the thermonuclear reaction rates will vary with the atomic number Z this shown in Fig. (3). The data have been fitted to the polynomial expression as the same as Eq. (32), Where Y = ln[N_A(\sigma v)], X=Z, with free parameters C_i (C_0, C_1, and C_2).
Fig 3. The variation of the natural logarithm of the thermonuclear reaction rates with the atomic number Z for the 48Ti($p,n)^{48}$V, 51V($p,n)^{51}$Cr, 59Co($p,n)^{59}$Ni, 63Cu($p,n)^{63}$Zn, and 66Zn($p,n)^{66}$Ga reactions at fixed values of T_9.

2- The adopted thermonuclear reaction rates have been used as a function of Z at fixed T_9 using the Excel computer program to obtain the fitting expressions and then used to calculate the fitting parameters. The obtained results are presented in Table (5).

3- The obtained free parameters C_i (C_0, C_1, and C_2), as shown in Table (5) are plotted against with the prefixed values of T_9 from 6 to 10 10^9K in steps of 0.25 10^9K as shown in Fig.(4), and then the obtained free parameters C_i have been fitted to the polynomial expression:

$$C_i = \sum_{j=0}^{2} C_{ij} T_9^j$$

(51)

Table 5. Free parameters C_i (C_0, C_1, and C_2) as a function of T_9.

T_9 (10^9 K)	C_0	C_1	C_2
6	-171.44	14.564	-0.2848
6.25	-159.79	13.667	-0.2673
6.5	-148.42	12.79	-0.2503
6.75	-137.07	11.913	-0.2332
7	-125.52	11.019	-0.2158
7.25	-113.62	10.094	-0.1977
7.5	-101.26	9.1317	-0.1789
7.75	-88.414	8.1281	-0.1593
8	-75.103	7.0856	-0.139
8.25	-61.413	6.0114	-0.118
8.5	-47.496	4.9181	-0.0966
8.75	-33.567	3.8239	-0.0752
9	-19.911	2.7526	-0.0544
9.25	-6.8799	1.7341	-0.0346
9.5	5.1043	0.804	-0.0167
9.75	15.548	0.0044	-0.0015
10	23.885	-0.6164	0.0099
Fig 4. C_i coefficients against T_9, for C_0, C_1, and C_2 respectively. The solid line represents the fitted curve through the data.

The combination of the two polynomials Eq. (32) and Eq. (51) takes the form of the following formula range T_9 from 6 to 10 10^9K in steps of 0.25 10^9K:

- $C_0 = 0.46T_9^2 + 43.22T_9 - 449.15$
 $R^2 = 0.9988$

- $C_1 = -0.0387T_9^2 - 3.3255T_9 + 36.068$
 $R^2 = 0.9986$

- $C_2 = 0.0006T_9^2 + 0.0672T_9 - 0.7128$
 $R^2 = 0.9984$
\[
Y = \frac{2}{\sum_{i=0}^{2} \left(\sum_{j=0}^{2} C_{ij} T_{ij} \right) X^{i}}
\]

Where \(Y = \ln[N_{A} < \sigma v >] \), \(T_{ij} \) is the temperature in \(10^{9} \)K, and \(X = \) atomic number \(Z \)

\[Y = \sum_{i=0}^{2} (C_{00} T_{00}^{0} + C_{01} T_{01}^{1} + C_{12} T_{12}^{2}) X^{i}\]

\(Y = C_{00} T_{00}^{0} X^{0} + C_{01} T_{01}^{1} X^{0} + C_{02} T_{02}^{2} X^{0} + C_{10} T_{10}^{0} X^{1} + C_{11} T_{11}^{1} X^{1} + C_{12} T_{12}^{2} X^{1} + C_{20} T_{20}^{0} X^{2} + C_{21} T_{21}^{1} X^{2} + C_{22} T_{22}^{2} X^{2}\)

Where \((C_{00}, C_{01}, C_{02}, C_{10}, C_{11}, ..., C_{22}) \) are free parameters and their values are shown in the below:

\[
\begin{bmatrix}
C_{00} & C_{01} & C_{02} \\
C_{10} & C_{11} & C_{12} \\
C_{20} & C_{21} & C_{22} \\
\end{bmatrix}
=
\begin{bmatrix}
-449.15 & 43.22 & 0.46 \\
36.068 & -3.3255 & -0.0387 \\
-0.7128 & 0.0672 & 0.0006 \\
\end{bmatrix}
\]

\[R^2 = 0.9988\]

\[R^2 = 0.9986\]

\[R^2 = 0.9984\]

The values of free parameters of the above and the atomic number \(Z \) of each targets nuclei of each reactions \(^{48}\)Ti(p,n)\(^{48}\)V, \(^{51}\)V(p,n)\(^{51}\)Cr, \(^{59}\)Co(p,n)\(^{59}\)Ni, \(^{63}\)Cu(p,n)\(^{63}\)Zn, and \(^{66}\)Zn(p,n)\(^{66}\)Ga are substitute into Eq. (53) the following formulae results:

\(^{48}\)Ti(p,n)\(^{48}\)V \quad \chi^2 = 0.123

\[\ln[N_{A} (\sigma v) \text{ (cm}^{3} \text{s}^{-1} \text{mol}^{-1})] = -0.1017 T_{00}^{0} + 2.58387 T_{00}^{0} - 0.6492\]

\(^{51}\)V(p,n)\(^{51}\)Cr \quad \chi^2 = 2.098

\[\ln[N_{A} (\sigma v) \text{ (cm}^{3} \text{s}^{-1} \text{mol}^{-1})] = -0.1127 T_{00}^{0} + 2.28237 T_{00}^{0} + 3.3428\]

\(^{59}\)Co(p,n)\(^{59}\)Ni \quad \chi^2 = 0.362

\[\ln[N_{A} (\sigma v) \text{ (cm}^{3} \text{s}^{-1} \text{mol}^{-1})] = -0.1475 T_{00}^{0} + 2.42037 T_{00}^{0} + 5.0548\]

\(^{63}\)Cu(p,n)\(^{63}\)Zn \quad \chi^2 = 0.719

\[\ln[N_{A} (\sigma v) \text{ (cm}^{3} \text{s}^{-1} \text{mol}^{-1})] = -0.1577 T_{00}^{0} + 3.2957 T_{00}^{0} - 2.6428\]

\(^{66}\)Zn(p,n)\(^{66}\)Ga \quad \chi^2 = 0.517

\[\ln[N_{A} (\sigma v) \text{ (cm}^{3} \text{s}^{-1} \text{mol}^{-1})] = -0.1617 T_{00}^{0} + 3.9357 T_{00}^{0} - 8.63\]

These above formulae has been used to calculate the thermonuclear reaction rates \(N_{A} < \sigma v > \) in natural logarithm for each of the \(^{48}\)Ti(p,n)\(^{48}\)V, \(^{51}\)V(p,n)\(^{51}\)Cr, \(^{59}\)Co(p,n)\(^{59}\)Ni, \(^{63}\)Cu(p,n)\(^{63}\)Zn, and \(^{66}\)Zn(p,n)\(^{66}\)Ga reactions and compared with the adopted thermonuclear reaction rates calculated from the fitting expressions of Eqs. (42, 43, 47, 49, and 50) respectively which are in a good agreement, the obtained data are presented in table (6).
Table 6. Comparison between polynomial fitting expressions (Best Fitting) of the adopted thermonuclear reaction rates with those calculated from Eqs. (54) to (58).

T9 (109 K)	\(^{40}\text{Ti}(p,n)^{40}\text{V} \)	\(^{51}\text{V}(p,n)^{51}\text{Cr} \)	\(^{59}\text{Co}(p,n)^{59}\text{Ni} \)	\(^{63}\text{Cu}(p,n)^{63}\text{Zn} \)	\(^{66}\text{Zn}(p,n)^{66}\text{Ga} \)
6	10.899±0.411	11.218	12.213±0.102	13.703±1.018	11.984±0.819
6.25	11.318±0.427	11.554	13.391±0.103	13.895±1.032	12.324±0.843
6.5	11.711±0.441	11.878	13.560±0.105	14.067±1.045	12.641±0.864
6.75	12.080±0.455	12.190	13.721±0.106	14.217±1.056	12.939±0.885
7	12.423±0.468	12.488	13.874±0.107	14.342±1.065	13.222±0.904
7.25	12.741±0.480	12.775	14.018±0.108	14.439±1.073	13.492±0.923
7.5	13.032±0.491	13.048	14.153±0.109	14.507±1.078	13.753±0.940
7.75	13.296±0.501	13.309	14.280±0.110	14.542±1.080	14.006±0.958
8	13.533±0.510	13.557	14.398±0.111	14.545±1.081	14.251±0.974
8.25	13.744±0.518	13.793	14.509±0.112	14.516±1.078	14.489±0.991
8.5	13.932±0.525	14.016	14.613±0.113	14.454±1.074	14.718±1.006
8.75	14.101±0.531	14.226	14.711±0.113	14.363±1.067	14.937±1.021
9	14.259±0.537	14.424	14.808±0.114	14.755	15.248±1.058
9.25	14.413±0.543	14.609	14.906±0.115	14.811	15.344±1.049
9.5	14.576±0.549	14.782	15.011±0.116	14.853	15.506±1.060
9.75	14.764±0.556	14.942	15.128±0.117	14.882	15.653±1.070
10	14.995±0.565	15.089	15.264±0.118	14.896	15.770±1.078
5. Conclusions
1- The astrophysical S-factor, S(E), was starting with increase and then decrease irregularly (fluctuate) by increasing the center of mass energy, this because of Coulomb barrier penetration \(\exp(2\pi\eta) \).
2- The astrophysical S-factor increased with increasing atomic number \(Z \) of target nuclei at fixed center of mass energy.
3- The thermonuclear reaction rates, \(N_A\langle\sigma v\rangle \), were increased with increasing \(T_9 \) because by increasing the \(T_9 \) the Charged interacting particles need to overcome the existing Coulomb barrier.
4- The thermonuclear reaction rates decreased with increasing atomic number \(Z \) of target nuclei at fixed \(T_9 \) because as \(Z \) increase Coulomb barrier increased.
5- The astrophysical S-factor and Thermonuclear reaction rates calculated in the present work are in good agreement with those measured previously by other works.

References
[1] LeBlanc F 2010 An Introduction to Stellar Astrophysics (Université de Moncton, Canada)
[2] Jose J 2016 Stellar Explosions Hydrodynamics and Nucleosynthesis (Taylor & Francis Group, LLC) vol 218
[3] Descouvemont P 2011 Theoretical Models in Nuclear Astrophysics (PoS) p.008.
[4] Regan H 2006 Level IV Nuclear Astrophysics (Lecture Notes Spring Semester 2006)
[5] Abdul Aziz A 2008 (MSc. Thesis) University of Malaya, Malaysia.
[6] Kailas S 1986 J. Astrophys. Astr. 7 53–7
[7] Roughton N A, Intrator T P, Peterson R J and Zaidins C S 1983 At. Data Nucl. Data Tables 28: 341–53
[8] Dell G F, Ploughe W D and Hausman H J 1965 Total Reaction Cross Sections in the Mass Range 45 TO 65 Nucl. Phys. 64:513–23
[9] Thomas R G and Bartolini W 1968 Nucl. Physics, Sect. A 106: 323–36
[10] Howard A J, Jensen H B, Rios M, Fowler W A and Zimmerman B A 1974 Astrophys. J. 188: 131–9
[11] Levkovski V N 1991 Levkovskij, Act. Cs. By Protons and Alphas, Moscow
[12] West Jr H I, Lanier R G and Mustafa M G 1993 Lawrence Rad. Lab. (Berkeley and Livermore) 3: 1
[13] Barrandon J N, Debrun J L, Kohn A and Spear R H 1975 Nucl. Instrum. and Methods Phys. Res. 127:269
[14] Michel R, Brinkmann G, Weigel H and Herr W 1979 Nucl. Physics, Sect. A 322: 40–60
[15] ZhaoWenrong, LuHanlin and YuWeixiang 1994 Chinese J. of Nucl. Phys. 16: 67
[16] Mustafa M M, Kumar Sharma M, Singh B P and Prasad R 2005 Appl. Radiat. Isot. 62: 419-28
[17] Solieman A H M, Al-Abyad M, Ditroi F and Saleh Z A 2016 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 366: 19–27
[18] Wing J and Huizenga J R 1962 Phys. Rev. 128:280
[19] Albert R D 1959 Phys. Rev. 115: 925–7
[20] Johnson C H, Trail C C and Galonsky A 1964 Phys. Rev. 136:B1719–B 1729
[21] Viyogi Y P, Satyamurthy P, Ganguly N K and Kailas S 1978 Phys. Rev. Part C 18: 1178
[22] Al-Abyad M, Spahn I and Qaim S M 2005 Appl. Radiat. Isot. 62: 671-53.
[23] ZhaoWenrong, LuHanlin and YuWeixiang 1994 Chinese J. of Nucl. Phys. 15: 337
[24] Chodil G, Jopson R C, Hans Mark, Swift C D, Thomas R G and Yates M K 1967 Nucl. Physics, Sect. A 93:648–72
[25] Kailas S, Gupta S K, Mehta M K, Kerekatte S S, Namjoshi L V., Ganguly N K and Chintalapudi S 1975 Phys. Rev. C 12:1789–96
[26] Tanaka S, Furukawa M and Chiba M 1972 J. Inorg. Nucl. Chem. 34 :2419–26
[27] Piel H, Qain S M and Stücklin G 1992 Radiochim. Acta 57: 1–6
[28] Meadows J W 1953 Phys. Rev. 91: 885
[29] Howe H A 1958 Phys. Rev. 109 :2083
[30] Tárkányi F, Szelecsényi F, Kovács Z and Sádár S 1990 Radiochim. Acta 50:19–26
[31] Szelecsényi F, Boothe T E, Tavano E and Plitnikas M E 1994 Conf. on Nucl. Data Sci. and Techn., Gatlinburg. 393

[32] Tuli J K 2011 Natl. Nucl. Data Cent.

[33] Meyerhof W E 1967 Elements of Nuclear Physics. McGraw-Hill Book Company (New York, USA)

[34] Kaplan I 1962 Nuclear Physics (New York, USA: Addison-Wesley Publishing Company, Inc.)

[35] Shaviv G 2012 The Synthesis of the Elements. The Astrophysical Quest for Nucleosynthesis and What It Can Tell Us About the Universe. Springer-Verlag Berlin Heidelberg vol 387

[36] Li, J. Y., Li Z. H., Li E. T., Bai X. X., Su J., Guo B., Wang B. X., Yan S. Q., Zeng S., Li Z. C., Liu J. C., Liu X., Jin S. J., Wang Y. B., Zhang L. Y., Yu X. Q., Li L., Lian G., Fan Q. W. and Liu W. P. 2012 Eur. Phys. J. A 48 :1–7

[37] Angulo C, Arnould M, Rayet M, Descouvemont P, Baye D, Leclercq-Willain C, Coc A, Barhoumi S, Aguier P, Rolfs C, Kunz R, Hammer J W, Mayer A, Paradellis T, Kossionides S, Chronidou C, Spyrou K, Degl’Innocenti S, Fiorentini G, Ricci B, Zavatarelli S, Providencia C, Wolters H, Soares J, Grama C, Rahighi J, Shotter A and Lamehi Rachti M 1999 Nucl. Phys. A 656 3–183

[38] Clayton D D 1968 Principles of Stellar Evolution and Nucleosynthesis. (McGraw-Hill Book Company)

[39] Brown E 2015 stellar astrophysics (Edward Bro).

[40] Bevington P R and Robinson D K 2003 Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Companies, Inc.)

[41] Belgaid M, Tassadit A, Kadem F and Amokrane A 2005 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 239: 303–13.