Regulating the discriminatory response to antigen by T cell receptor

Kaustav Gangopadhyay[a], Swarnendu Roy[a], Soumei SenGupta[a], Athira C. Chandradasan[a], Subhankar Chowdhury[a], and Rahul Das[a],[b]*

[a] Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur-741246, India

[b] Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur-741246, India

Manuscript

*Corresponding authors

Rahul Das: rahul.das@iiserkol.ac.in

Keywords: T cell receptor, Cell signaling, Kinetic Proofreading, Lck, ZAP-70, LAT
Abstract:

The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells and calibrates its cellular response by a network of intracellular signaling events. Activation of T cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like SCID, Rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewrites the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Introduction:

The cell-mediated immunity is carried out by a repertoire of clonally diverse T lymphocytes that display unique antigen-binding receptors on the cell surface called T cell receptors (TCR). The TCR binds to the foreign antigen, presented as peptide-major histocompatibility complex (pMHC) through antigen-presenting cells (APC) with remarkable selectivity and sensitivity (Figure 1)[1-4]. The formation of the TCR-pMHC complex initiates a cascade of downstream signaling that remodels cell metabolism and gene expression causing T cells to exit quiescence [5-8]. TCR signaling is also essential for T cell development and maturation [9-11]. T lymphocytes migrate to the thymus gland from bone marrow to develop into mature T cells [11-13]. T cells undergo a series of selection processes in the thymus that train them to distinguish between self and foreign antigen. In the first selection step, T cells undergo positive selection to create a repertoire of self-MHC-restricted T lymphocytes [14-16]. In the subsequent steps, T cells that react too strongly with self-MHC or self-peptides are eliminated by the process of negative selection producing self-tolerant T cells[17-23].

Central to the TCR response lies a delicate balance that helps discriminate between “self” versus “non-self” peptides while maintaining high sensitivity against small amounts of non-self antigen (agonist). TCR does not possess intrinsic catalytic activity; it responds to antigen binding by recruiting several enzymes and adaptor proteins following a mechanism that may have evolved 500 million years ago in jawed fish [24-30]. Early TCR signaling begins with assembling coreceptors at the TCR [31-34], phosphorylation of key non-receptor tyrosine kinases [35, 36], and adaptor proteins [37-39] that helps propagate the signaling downstream (Figure 1). A kinetic proofreading mechanism was proposed to explain how the lifetime of TCR-pMHC complex and subsequent delayed recruitment and activation of enzymes fine-tune the TCR downstream signalling [40-42]. In this review, we focus on the regulation of early TCR signaling. We have discussed recently published experimental
evidence that explained how such a proofreading mechanism works in T cell. In recent years, it is becoming evident that remodelling of glucose metabolism is critical in determining the output of T cell receptor signaling. In the final section, we discuss the emerging role of metabolic cues in regulating T cell signaling.

Overview of T cell receptor signalling:

T cell receptor is a complex of integral membrane proteins comprised of α, and β chains, and the CD3 chains (comprised of γ, δ, ε, and ζ) that together provides an extracellular ligand-binding domain and intracellular segment for recruiting enzymes and adaptor proteins (Figure 1) [7, 8, 43-47]. The extracellular domain of TCR interacts with the pMHC, initiating the signal transduction circuitry by recruiting coreceptors like CD4/CD8. The early downstream signaling begins with the recruitment and activation of two non-receptor tyrosine kinases to the TCR. First, a lymphocyte-specific protein tyrosine kinase (Lck) associated with the CD4/CD8 is recruited to the TCR complex[36, 48, 49], which in turn phosphorylates the cytosolic segment of the CD3 (γ, ε, δ, and ζ) chain.[50-55]. The phosphorylated CD3 chains serve as a docking site for the second non-receptor tyrosine kinase named Zeta chain Associated Protein tyrosine kinase (ZAP-70) [56-59]. The discriminative ability of TCR relies on two different events, the affinity of the antigenic peptide for the extracellular receptor[60] and the intracellular balance between downstream kinases and phosphatases, creating a feedback regulation[61-65]. Activation of Lck serves a dual role; it creates the docking site for the ZAP-70 recruitment to the membrane and fully activates ZAP-70 by phosphorylating critical tyrosine residues on the kinase domain[66-70]. Specific phosphatases, CD45, and SHP1[36, 71-74], control activation of Lck [36, 75, 76], which in turn regulate the recruitment of ZAP-70 to TCR. The ZAP-70 activation is central for the
propagation of TCR signaling downstream (Figure 1). Together, the intricate circuitry between downstream signaling modules in the early stage of TCR signaling constitutes a proofreading mechanism making TCR sensitive to minor perturbation of antigen peptide sequence[41, 77]. Next the activated ZAP-70 propagates the signal downstream by phosphorylating a scaffold protein Linker for Activation of T cells (LAT) [37-39]. LAT is then recruited to the signalosome where several tyrosine residues are phosphorylated by ZAP-70. An electrostatic selection mechanism filters LAT from being non-specifically phosphorylated by Lck [78, 79]. Phosphorylated LAT connects the TCR signaling to cellular processes regulating cell migration, differentiation, and proliferation by recruiting enzymes and adaptor proteins to the signalosome (Figure 1)[80-83]. LAT function as a scaffold to bind adaptor proteins and enzymes like SLP-76, Grb2, and PLCγ1 connecting TCR response to the MAP Kinase pathway and Ca^{2+} signalling (Figure 1).[84, 85] Activated ZAP-70 also regulates T cell migration through SLP-76 phosphorylation that connects TCR signaling to Vav1 (Figure 1) [86-88].

Early TCR signaling is regulated by Kinetic Proofreading mechanism:

T cells are sensitive to a very low abundance of agonist present in a large amount of self-peptide mixture. Experimentally, 60-200 molecules of the specific pMHC are sufficient for generating T-cell response.[89, 90] T-cells do not rely on TCR-dependent basal signaling for survival in a ligand-free state [91-93]. Deletion of TCR does not affect the T cell survival suggesting the TCR signaling is not indispensable for cell survival in resting state. However, TCR deletion or loss of TCR affects T cell development and maintenance [94, 95]. These observations suggest that the general state of TCR is an OFF state. TCR could distinguish between an agonist and a partial agonist despite the marginal difference in the binding
affinity. The inability of the partial agonist to activate TCR downstream signaling suggests a prevalence of proofreading mechanisms that help calibrate TCR response to an agonist [101, 102].

Two theories explaining how a proofreading mechanism may regulate T cell response to antigen binding were proposed in the mid-nineties. Lanzavecchia and colleagues proposed a serial triggering model suggesting that the amplification of TCR activation depends on multiple binding of the same ligand to different TCRs [103]. According to this model, a sustained TCR signalling may be generated by serially triggering large number of receptors with a limited set of pMHC molecules. For such a model to work, the ligand needs fast off rates to serially bind large number of receptors. Several computational models and experimental studies have supported the serial triggering model [105-111]. However, a direct evidence supporting serial triggering model is lacking and none of the data explained the optimal half-life of pMHC: TCR complex required to initiate an effective downstream response. Recent studies with traction force microscopy instead suggest that T cell receptors mechanically sense the strength of pMHC binding, and digitally activates the downstream signaling [112-116].

Timothy W. McKeithan, in the same year as Lanzavecchia and colleagues, suggested an alternate kinetic proofreading model explaining TCR response on binding agonist or a partial agonist [40]. According to the kinetic proofreading model, time delays between pMHC binding to TCR and subsequent recruitment and activation of each downstream enzyme were considered. A balance between pMHC: TCR complex formation and the delayed response of downstream signalling modules determines the TCR selectivity and sensitivity. The nonspecific interaction between self-antigen (or a partial agonist) and TCR are short-lived. Hence, they do not signal because the pMHC: TCR complex disintegrates before the downstream enzymes are recruited and activated [41, 77, 117]. Recent optogenetic
approaches using chimeric ligand suggested that the half-life of optoligand and TCR complex is the rate-limiting step during the formation of the initial signalosome [41, 77, 117]. The ligand: receptor half-life determines the ZAP-70 dependent DAG accumulation, an important signaling event that connects TCR to intracellular Ca\(^{2+}\) release (Figure 1). [77, 117]. The interaction between foreign-antigen and TCR is long-lived and finds enough time to signal by activating the kinases. Several research groups have independently studied the kinetic proofreading by TCR signaling in recent years [41, 84, 117-120]. The binding of TCR and pMHC acts as a driving force for the colocalization of coreceptor, bringing Lck to the close vicinity of the cytosolic domain of TCR, facilitating phosphorylation of the CD3 chains and subsequent recruitment of other enzymes and scaffolds (Figures 1 and 2). In the following section, we discussed how such an intricate network of kinase activation is regulated during T cell response.

Regulation of Lck activation:

Lck is an Src family kinase essential for the phosphorylation of the cytosolic domain of the CD3 chain in the TCR [121, 122]. The localization of coreceptors CD4/CD8 along with Lck at the signalosome marks the activation of the first tyrosine kinase. The activated Lck phosphorylates the tyrosine residues on the immunoreceptor tyrosine-based activation motifs (ITAM) on the CD3 chains [121, 122]. The recruitment of Lck and subsequent phosphorylation of the ITAM motifs contribute to the temporal lag observed in the initiation of signaling cascade [123-125].

The secondary structure of Lck is comprised of an N-terminal regulatory module made up of SH4 domain, a unique domain (UD), SH3 and SH2 domain, connected to a kinase domain followed by a short C-terminal tail [126-130]. The autoinhibitory state of the
kinase domain is stabilized by the close conformation of SH3, SH2, and kinase domain [36, 131]. The autoinhibited structure is locked in the closed conformation by docking the phosphotyrosine residue (Y505) in the C-terminal tail on the SH2 domain [130]. The Y505 is phosphorylated by C-terminal Src kinase (Csk) [132-134]. Myristylation of Ser6 or palmitoylation of Gly2 in the SH4 domain is essential for membrane recruitment of Lck and subsequently releasing the autoinhibition of the kinase domain. The kinase domain inhibition is released by dephosphorylating Y505 followed by autophosphorylation of Y394 in the activation loop (Figure 2) [135-140]. Membrane-associated phosphatase CD45 helps stabilize the active conformation by dephosphorylating Y505, breaking the lock between Y505 and SH2 domain [71, 141]. A delicate balance of phosphorylation and dephosphorylation regulates Lck activity. Studies using phosphomimetic mutant of Lck suggest that residue Y192 in the SH2 domain is essential in determining the equilibrium between an active and inactive conformation [131, 142]. Phosphorylation of Y192 prevents Lck interaction with the CD45, thus altering the enzymatic activity of Lck and shifting the equilibrium toward the closed-autoinhibited state [143].

Apart from phosphorylation of Y192, Lck is also downregulated by the phosphorylation of S59 in the UD domain [141, 144]. S59 is phosphorylated by extracellular signal-regulated kinases (Erk1/2)[145] and dephosphorylated by calcineurin [146], creating a feedback mechanism [141]. A mutational study suggested that S59 plays a pivotal role in recruiting phosphatase SHP1, which inactivates Lck by dephosphorylating Y394 in the activation loop [147]. Conversely, studies using knock-in mutant (S59A) mice suggest a limiting role of SHP-1 interaction in favouring autoinhibited conformation of Lck during thymocyte maturation (i.e, DN to DP stage). Rather a trimeric complex between THEMIS:GRB2:SHP-1 negatively regulates Lck activation [148].
A large intracellular concentration of Lck could phosphorylate the CD3 chain in the basal state, which may initiate TCR signaling even without binding to pMHC. The basal activity of Lck is regulated by a coordinated function of non-receptor tyrosine kinase Csk and the phosphatases (CD45 and SHP-1) [147, 149]. With such a large number of inhibitory steps, how does Lck initiate the signaling? The N-terminal region of Lck plays a major role in regulating Lck activation at the membrane. The N-terminal SH4 domain of Lck interacts with the Zinc-clasp motif located in the cytosolic tail of the coreceptor CD4/CD8, clustering Lck at along with CD45, an essential step for Lck dependent ITAM phosphorylation [131, 150-154]. Kinetic segregation of Lck:CD4/CD8 complex from the CD45 and Csk may result in a high concentration of active Lck accumulation at the TCR complex [131, 155-158]. Recent studies suggest that antigen-bound TCR scans for several CD4/CD8 coreceptors and finally binds with CD4/CD8 coreceptors in complex with Lck [159]. The basic residues in the CD3ε chains serve as a docking site for Lck, leading to the phosphorylation of the ITAM motifs [160]. The clustering of Lck to the TCR may represent an additional proofreading step, most likely following a spatial proofreading mechanism [161]. Under the basal state, the Lck is spatially arranged far from the TCR in a low substrate concentrated region. Upon TCR activation, Lck diffuse to the high substrate concentration region contributing to additional delay in activating TCR response [161].

Under the basal condition, the residual activity of Lck could partially phosphorylate ITAM motifs, but is not enough for activation of ZAP-70. Complete phosphorylation of the ITAM motifs are required for TCR engagement, which depends on the half-life of the TCR: pMHC complex [110, 162]. The phosphorylation step acts as a threshold for the activation of T-cell signaling. In the basal state, the tyrosine residues in the cytosolic domain of the CD3 chain are embedded in the lipid bilayer, making them inaccessible for phosphorylation by Lck [163-165]. The binding of pMHC to the TCR reorients the cytosolic domain of the CD3
chain dislodging the tyrosine residues from the membrane allowing the unique domain of Lck to interact.

Regulation of ZAP-70 activation

ZAP-70 is indispensable for propagating downstream TCR signaling. ZAP-70 is a Syk family kinase translated as a single polypeptide chain containing an N-terminal regulatory module connected through a flexible linker, interdomain-B, to the C-terminal catalytic module. The regulatory module is comprised of tandem repeats of two SH2 (tSH2) domains, N-SH2 and C-SH2, interconnected by a helical linker called interdomain-A [69, 70, 166-169]. The kinase domain adopts Cdk/Src-like inactive conformation in the autoinhibited state, stabilized by a closed conformation of kinase domain, interdomain-B, and tSH2 domain sandwich [166, 170]. In the autoinhibited state, the SH2 domains are separated in an L-shaped conformation, making them incompatible with the binding doubly-phosphorylated ITAM motif. The ZAP-70 is activated in two steps. In the first step, the autoinhibition of the kinase is partially released when the two SH2 domains bind allosterically to the phosphorylated tyrosines in the ITAM motif (Figure 2) [171]. Structural analysis suggests that the holo-tSH2 domain rearranges to a Y-shaped closed conformation exposing the Y315 and Y319 in the interdomain B to be phosphorylated [166, 169, 172-174]. The activated structure of ZAP-70 is stabilized by the phosphorylation of Y315 and Y319 in interdomain B, and tyrosine residue in the activation loop by Lck [169, 172, 173, 175-178].

Steady-state ligand binding experiments suggest that the tSH2 domain binds to the doubly-phosphorylated ITAM peptides in a biphasic manner [179]. In the first step, the C-SH2 domain binds uncooperatively to the N-terminal tyrosine phosphate with low nanomolar affinity, subsequently facilitating the formation of the N-SH2 phosphate-binding pocket
enabling second phosphotyrosine to bind with micromolar affinity leading to remodeling of C-SH2 binding site. Fluorescence recovery after photobleaching (FRAP) study suggests that the recruitment of ZAP-70 follows a biphasic pattern in cells [180, 181]. The functional significance of such two-step ligand binding is still not completely understood. Comparison of the apo- and holo-structure of the tSH2 domain revealed that the N-SH2 binding pocket formed at the interface of the two SH2 domains [169, 174, 179, 182]. A non-covalent network of amino acids residues allosterically couples the two SH2 domains during ligand binding. Mutation in the allosteric network residues, including W165C that cause Rheumatoid Arthritis like symptoms in mice [183], uncouples the ligand-binding from ZAP-70 activation [179]. Thus, it is speculated that the ITAM binding by the ZAP-70 tSH2 domain may be an important rate-limiting step in regulating ZAP-70 activation [117, 184].

Although partial phosphorylation of ITAM motifs allows ZAP-70 to localize on the membrane, it cannot initiate the T-cell signaling, indicating an added layer of proofreading preventing ZAP-70 activation. Mass spectrometry-based phosphoproteomic studies suggest that ZAP-70 does not activate or initiate T-cell signaling without binding to its ligand at TCR [173, 175, 185]. The C terminal-SH2 domain of ZAP-70 interacts with PIP2 and PIP3 lipid in the membrane in a spatiotemporal manner priming the tSH2 domain to bind doubly phosphorylated ITAM motifs [186]. Subsequent phosphorylation of the tyrosine residues in interdomain B increases the retention time of ZAP-70 at the membrane [119]. The strength of TCR signaling is determined by the ZAP-70 dwell time. Following ZAP-70 recruitment to the TCR by Single-particle tracking, Lillemoier and co-worker showed that minutes (< 10 min) after ITAM binding, during early T cell activation, ZAP-70 is released from the TCR complex and translocation to the plasma membrane [118]. Mass spectroscopy analysis and immunoblot assay suggest that Y126 residue in tSH2 domain of ZAP-70 determines the half-life at the TCR. Autophosphorylation of Y126 decreases the affinity of the tSH2 domain for
phosphorylated ITAM, thus releasing the ZAP-70 from the TCR complex [118, 187, 188].

The signaling is again initiated by recruiting new ZAP-70 molecules to the TCR complex following a ‘catch and prey’ model [118]. At the membrane, ZAP-70 phosphorylates the substrate peptide in the LAT with high specificity. The kinase domain of ZAP-70 carries a high net positive charged at the substrate binding site that allows specific binding of the negatively charged substrates like LAT and SLP-76 [78]. It has also been established that Lck-dependent ZAP-70 phosphorylation mediates the adaptor function of Lck, essential for bringing LAT to the TCR for activation [84, 173, 175, 189]. The net negative charge in the substrate-binding site of Lck prevents transactivation of LAT [78].

Propagating signal through LAT and Plcγ:

The LAT is an essential scaffold that coordinates early TCR signaling to downstream cellular responses in a phosphorylation-dependent manner. At the plasma membrane LAT and its binding partners colocalize into micrometer or submicrometer clusters [190]. Elimination of these microclusters by deleting key components (for example, LAT or Grb2) impairs downstream signaling and transcriptional responses [191].

Several phosphorylation sites on LAT are vital for kinetic proofreading TCR response to antigen binding (Figure 2). Among them, relatively slower phosphorylation of Y132 in LAT creates a critical kinetic bottleneck in transducing signaling downstream [84]. ZAP-70 phosphorylates Y132, which serves as a docking site for a phospholipase C-γ1 (PLC-γ1). The slower phosphorylation of Y132 is due to residue G131 located at the -1 position from Y132. Glycine at this position reduces the net negative charge of the peptide, making it a poor substrate for ZAP-70. Replacing G131 with an acidic amino acid accelerates the
phosphorylation rate of Y132 and increases the PLC-γ1 activation, causing TCR to activate even with weak agonists or self-peptides [78, 84].

ZAP-70 also phosphorylates several distal tyrosine residues on LAT (Y171, Y191, and Y226) that facilitate the recruitment for the Grb2 family of proteins, Tec family tyrosine kinase Itk and SLP-76 [192-194]. The adaptor protein SLP-76 mediates the TCR response to cell migration. At the LAT complex, the SLP-76 is phosphorylated by ZAP-70, resulting in phosphorylation of Vav-1, a critical step in regulating T cell migration [195].

Recruitment of Itk to the signalosome connects the TCR signaling to the Ca^{2+} response. At the TCR complex, Lck activates Itk by phosphorylating Y511 residue in the activation loop leading to autophosphorylation of Y180 on the SH3 domain [196, 197]. Next, the activated Itk phosphorylate two tyrosine residues, 775 and 783, respectively, turning on the catalytic domain of PLC-γ1 [198, 199]. PLCγ1 cleaves phosphatidylinositol (4,5) bisphosphate (PIP2) into two secondary messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Figure 1). IP3 then interacts with its cognate IP3 receptors (IP3R) on the endoplasmic reticulum (ER), inducing Ca^{2+} influx to the cytoplasm. Increased cytoplasmic Ca^{2+} activates the calcineurin by removing the inhibitory interaction with the calmodulin (Figure 1). The free calcineurin is now available to dephosphorylate cytoplasmic localized nuclear factor of activated T cells (NFAT) (Figure 1) [121]. PLC-γ1 and LAT interaction shields the phosphotyrosine residues on LAT from dephosphorylation by CD45, providing enough time to propagate downstream signalling by activating Erk through multiple pathways [200, 201]. An alternate pathways mediated by a ternary complex between PLC-γ1, Pak1 and Bam32 also activates Erk, independently of LAT[202]. Erk plays a central role in connecting TCR response to the downstream gene expression (Figure 1). Additionally,
Erk also functions as a negative feedback regulator of TCR signaling. The Erk phosphorylates T155 residue on LAT, thereby preventing recruitment of PLC-γ1 [203].

Immediately after the pMHC engagement, T cell receptors oligomerize into microcluster to which the TCR, ZAP-70, and LAT associated signaling modules are recruited sequentially [204, 205] (Figures 1 and 2). The multiple phosphorylation sites on the LAT enable cross-linking of LAT-associated signaling modules driving the microcluster formation [192, 206]. In a recent study, Jason Yi and colleagues observed a kinetic lag (delayed recruitment) in ZAP-70 binding to TCR and subsequent LAT recruitment to the ZAP-70 bound TCR complex [181]. The observed delays in recruiting the downstream signaling module may be an essential component in regulating kinetic proofreading in T cell (Figure 2). The elevated intracellular Ca^{2+} flux negatively regulates the TCR signaling by increasing the kinetic lag of ZAP-70 and LAT recruitment to the TCR microcluster.

Metabolic regulation of TCR signaling

Immunometabolism has emerged as an integral regulator of immune cell responses. T lymphocytes acquire separate functional lineages on activation, and each functionally distinct states have specific metabolic requirements [207]. The naive T cells mostly remain in the quiescent stage. When activated, metabolic network is rewired to meet the demands of cytoskeletal rearrangement, clonal expansion, and epigenetic remodeling [208, 209]. The naive T cell depends on lipid and pyruvate oxidation for survival [209] and converts to aerobic glycolysis and glutamine oxidation upon activation to sustain proliferation and rapid cell growth (Figure 3) [207]. The interplay between immune signaling pathways and metabolic changes is bidirectional [210]. The TCR signaling regulates metabolism, and the metabolites directly influence signaling modules or epigenetic remodeling to alter different cellular processes (Figure 3) [211] The involvement of bidirectional metabolic signaling in
regulating T cell quiescence and activation has been extensively reviewed [208]. In T cells, the metabolite utilization is mainly regulated through the costimulatory CD28 receptor via the PI3K-Akt-mTOR pathway (Figures 1 and 3) [212-214]. TCR signaling on pMHC binding and CD28 costimulatory pathways upregulates the expression of glucose transporter, GLUT 1, crucial for glucose uptake [215-217]. Using a genome-wide CRISPR screening and protein-protein interaction network mapping, Lingyun Long and colleagues have identified key immune regulators that connect immune receptors to the nutrient-dependent downstream mTOR signaling cascade [218]. However, the influence of early TCR signaling outputs on the metabolic network is not fully understood.

In a recent study, Jones et al. investigated the effect of TCR: antigen-binding affinity on the metabolic output in T cells [160, 219]. Studying peptide-human leukocyte antigen (pHLA) and TCR binding, they concluded that the most robust ligand interaction might result in the highest glycolic change and hexokinase expression. Downstream TCR signaling modules play a crucial role in crosstalk with the metabolic network. Erk, which is activated downstream of the TCR signaling, regulates glucose utilization by enhancing hexokinase gene expression [220, 221]. However, if hexokinase is a direct phosphorylation target of Erk is unknown. Alternatively, hexokinase II (HK-II) activation is also regulated by Akt [222, 223]. Dynamic localization of HK-II between the cytosol and mitochondria is important for maintaining cellular energy balance (i.e catabolism vs anabolism). Phosphorylation of HK-II by Akt promotes localization of HK-II to the mitochondria leading to increase glycolytic flux and catabolism. Together, these observations suggest that both Erk and PI3K-Akt pathways may synergistically regulate hexokinase dependent glucose metabolism upon TCR activation (Figure 3). Calcium ion (Ca$^{2+}$) is another signaling modulator downstream of TCR that regulates the metabolic network of T cells. For example, a defect in the Store-Operated Ca$^{2+}$ Entry (SOCE) pathway, which influences Ca$^{2+}$ flux in T
cells, inhibits the phosphorylation of Akt and nutrient sensing through the mTOR pathway [224].

Elevated potassium ion concentration in the tumor microenvironment is also linked to Ca$^{2+}$ homeostasis, which reprograms glycolysis and suppresses T cell function. Increased potassium ion downregulates Akt activation through serine-threonine phosphatase PP2A dependent manner, affecting the nutrient-sensing mTOR pathway and downregulating glucose uptake [225]. The reduction in nutrient uptake forces T cells to enter a functional caloric restriction state, thus driving mitochondrially dominant metabolism. Low nutrient leads to scarcity of cofactors like nucleocytosolic acetyl–coenzyme A limiting the acetylation of histone H3, required to promote effector functions. Depletion of methionine intermediates under starvation lowers the methylation of Histone H3 is linked to T cell stemness [226].

Together, these observations indicate that extracellular and intracellular nutrient levels can significantly impact T cell functioning. Since the TCR- induced immunological cues and metabolic cascades are intricately connected, reprogramming metabolic pathways is a promising tool for improving T cell-based immunotherapies [227].

Summary

Tight regulation of signaling pathways is imperative for an accurate immune response at the right time. The adaptive immune system evolved from a lymphoid cell-based systems in jawless vertebrates to a robust BCR-TCR-MHC immune system in jawed vertebrates [25, 30, 228-230]. The humoral and cell-mediated parts of the adaptive immune system are governed by B cells and T cells, respectively [231, 232]. Both the cell types share the same lineage, and the same family of proteins mediate the receptor-dependent downstream signaling following a conceptually similar mechanism [231, 233]. For example, like T cells, the early receptor
signaling in B cell is initiated by Src and Syk family of non-receptor tyrosine kinases [234].

B cell receptor signaling begins with Syk kinase recruitment, corresponding to ZAP-70 activation in TCR signaling. Despite the high sequence conservation between Syk and ZAP-70, the functional significance of the subtle difference between the two proteins in determining the respective cellular response is not clearly understood [234-236]. Chronic lymphocytic leukemia (B-CLL) aberrantly expresses ZAP-70, remodels the Syk mediated BCR downstream signaling. ZAP-70 diverts the B cell to undergo tonic PI3K signaling and ensures cell survival, promoting malignancy [237, 238].

Deregulation of crucial signaling modules in TCR signaling pathways (Figure 1) often associated with human diseases related to cellular anergy, immunodeficiency or autoimmune diseases. (Summarized in Table 1). Over the years, immunotherapy and immunomodulators have evolved as a potent therapeutic strategy to treat autoimmune disorders and cancer [227]. The ability of T cells to identify tumor antigens and drive antitumor activities makes Adoptive Cellular Transfer (ACT) therapy an essential clinical approach in multiple cancer treatments [239]. Promising clinical approaches of using immunotherapies like Chimeric Antigen Receptor T cells (CAR T) therapy, TCR engineered T cell therapy (TCR-T), and Tumor-Infiltrating lymphocytes (TILs) in mitigating multiple viral, autoimmune, and malignant diseases are being developed [240-243]. Recent studies on SARS-CoV-2 patients revealed that elevated glucose levels and glycolysis facilitate increased viral replication and cause monocytes-driven cytokine storms, resulting in T cell dysfunction [244, 245]. Together these observations underline the importance of investigating intricate networks and crosstalk between metabolic pathways and immune signaling to understand the regulation of the adaptive immune system.
Acknowledgement:
The authors thank research funding from IISER Kolkata, SERB (CRG/2020/000437) and DBT Ramalingaswami Fellowship (BT/RFF/Re-entry/14/2014) to RD; ACC and SSG are supported by the fellowships from CSIR-UGC, and UGC, respectively.

Competing Interests:
The authors declare that they have no conflict of interest with the contents of this article.

Author Contribution:
KG, SR, SSG, ACC, and SC collected the material. KG, SR, SSG, ACC, SC, and RD prepared the manuscript. RD edited the manuscript and supervised.

Abbreviations:
TCR, T cell receptor; pMHC, Peptide-major histocompatibility complex; APC, Antigen-presenting cells; Lck, Lymphocyte-specific protein tyrosine kinase; ITAM, Immunoreceptor tyrosine-based activation motif; ZAP-70, Zeta chain Associated Protein tyrosine kinase; LAT, Linker for activation of T cells; SLP-76, SH2 domain containing leukocyte protein of 76kDa; PLC-γ1, Phospholipase C-γ1; Itk, Interleukin 2 inducible T-cell kinase; PKC, Protein kinase C; PIP2, Phosphatidylinositol 4,5-bisphosphate; IP3, Inositol trisphosphate; DAG, Diacylglycerol; Grb2, Growth-factor-receptor-bound protein 2; pHLA, Peptide-human leukocyte antigen; SOCE, Store-Operated Ca$^{2+}$ Entry; Erk, Extracellular Regulated Kinase; PI3K, Phosphatidylinositol 3-kinase; mTOR, Mammalian target of rapamycin.
Table 1. Diseases associated with defects in early T cell signaling candidates

CANDIDATE PROTEIN	REGULATION	DISEASE
Lck	Mislocalisation of Lck	Thymoma [246]
	Impaired Lck inhibition	Acute coronary syndrome [247]
	Missense mutation c.1022T>C	New form of T-cell immunodeficiency [248]
CD3ζ	Reduced expression	Renal-cell carcinoma [249]
	Reduced expression	Colorectal carcinoma [250]
	Reduced expression	Rheumatoid Arthritis (RA) [251]
	Reduced or lack of expression	Systemic Lupus Erythematosus (SLE) [252]
ZAP-70	Abnormal ZAP-70 expression in B cells	Chronic lymphocytic leukemia (CLL) [237]
	Deficiency	Severe Combined Immunodeficiency (SCID) [236]
	W163C mutation (mice)	Rheumatoid arthritis in SKG mice [183]
	R192W, R360P mutation	Undescribed human ZAP-70-associated autoimmune disease [253]
	P80Q/M572L	CD8+ lymphopenia [254]
	L337R	Secondary hemophagocytic syndrome [255]
	D521N	Immune thrombocytopenic purpura [256]
	c.1623 + 5G > A	Epstein–Barr virus (EBV) lymphoproliferative disease (LPD), Hemophagocytic lymphohistiocytosis (HLH) [257]
LAT	Upregulation	Sezary syndrome [258]
	Frameshift mutation (c.44_45insT:p.Leu16AlafsX28)	T B'NK' Severe Combined Immunodeficiency (SCID) [259]
	Y136F mice	Lymphoproliferative syndrome [260]
ITK	Deficiency and R29H mutation	EBV-associated lymphoproliferative disease [261]
PLCγ1	PLCγ1-deficient mice	Peripheral T cell lymphopenia [262]
Reference

1. Davis, M. M. and Bjorkman, P. J. (1988) T-cell antigen receptor genes and T-cell recognition. Nature. 334, 395-402

2. Frank, S. J., Engel, I., Rutledge, T. M. and Letourneur, F. (1991) Structure/function analysis of the invariant subunits of the T cell antigen receptor. Seminars in immunology. 3, 299-311

3. Matsui, K., Boniface, J. J., Reay, P. A., Schild, H., Groth, B. F. d. S. and Davis, M. M. (1991) Low Affinity Interaction of Peptide-MHC Complexes with T Cell Receptors. Science (New York, N.Y.). 254, 1788-1791

4. Birnbaum, M. E., Mendoza, J. L., Sethi, D. K., Dong, S., Glanville, J., Dobbins, J., Ozkan, E., Davis, M. M., Wucherpfennig, K. W. and Garcia, K. C. (2014) Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 157, 1073-1087

5. Huang, W. and August, A. (2015) The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. Journal of leukocyte biology. 43, 108-123

6. Samelson, L. E. and Klausner, R. D. (1988) The T-cell antigen receptor. Structure and mechanism of activation. Ann N Y Acad Sci. 540, 1-3

7. Jones, M. E. and Zhuang, Y. (2007) Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity. 27, 860-870

8. Pullen, A. M., Marrack, P. and Kappler, J. W. (1988) The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens. Nature. 335, 796-801

9. McDuffie, M., Roehm, N., Born, W., Marrack, P. and Kappler, J. W. (1987) T cell receptor/MHC interactions in the thymus and the shaping of the T cell repertoire. Transplant Proc. 19, 111-116

10. Kisielow, P. and von Boehmer, H. (1995) Development and selection of T cells: facts and puzzles. Adv Immunol. 58, 87-209

11. Singer, A., Munitz, T. I. and Gress, R. E. (1987) Specificity of thymic selection and the role of self antigens. Transplant Proc. 19, 107-110

12. Jameson, S. C., Hogquist, K. A. and Bevan, M. J. (1995) Positive selection of thymocytes. Annual review of immunology. 13, 93-126

13. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. and Perlmutter, R. M. (1996) Positive and negative selection invoke distinct signaling pathways. The Journal of experimental medicine. 184, 9-18

14. Palmer, E. (2003) Negative selection—clearing out the bad apples from the T-cell repertoire. Nature reviews. Immunology. 3, 383-391

15. Sprent, J. and Kishimoto, H. (2001) The thymus and central tolerance. Philos Trans R Soc Lond B Biol Sci. 356, 609-616

16. van Meerwijk, J. P., Marguerat, S., Lees, R. K., Germain, R. N., Fowlkes, B. J. and MacDonald, H. R. (1997) Quantitative impact of thymic clonal deletion on the T cell repertoire. The Journal of experimental medicine. 185, 377-383
21 Lauffer, T. M., Glimcher, L. H. and Lo, D. (1999) Using thymus anatomy to dissect T cell repertoire selection. Seminars in immunology. 11, 65-70
22 Zinkernagel, R. M. and Hengartner, H. (2006) CHAPTER 22 - Infections, Immunity, and Autoimmunity. In The Autoimmune Diseases (Fourth Edition) (Rose, N. R. and Mackay, I. R., eds.). pp. 289-295, Academic Press, St. Louis
23 Kappler, J. W., Staerz, U., White, J. and Marrack, P. C. (1988) Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature. 332, 35-40
24 Kasamatsu, J. (2013) Evolution of innate and adaptive immune systems in jawless vertebrates. Microbiol Immunol. 57, 1-12
25 Flajnik, M. F. and Kasahara, M. (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics. 11, 47-59
26 Uinuk-Ool, T., Mayer, W. E., Sato, A., Dongak, R., Cooper, M. D. and Klein, J. (2002) Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proceedings of the National Academy of Sciences of the United States of America. 99, 14356-14361
27 Suzuki, T., Shin, I. T., Kohara, Y. and Kasahara, M. (2004) Transcriptome analysis of hagfish leukocytes: a framework for understanding the immune system of jawless fishes. Dev Comp Immunol. 28, 993-1003
28 Pancer, Z., Saha, N. R., Kasamatsu, J., Suzuki, T., Amemiya, C. T., Kasahara, M. and Cooper, M. D. (2005) Variable lymphocyte receptors in hagfish. Proceedings of the National Academy of Sciences of the United States of America. 102, 9224-9229
29 Rogozin, I. B., Iyer, L. M., Liang, L., Glazko, G. V., Liston, V. G., Pavlov, Y. I., Aravin, L and Pancer, Z. (2007) Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nature immunology. 8, 647-656
30 Cooper, M. D. and Alder, M. N. (2006) The evolution of adaptive immune systems. Cell. 124, 815-822
31 Mørch, A. M., Bálint, Š., Santos, A. M., Davis, S. J. and Dustin, M. L. (2020) Coreceptors and TCR Signaling – the Strong and the Weak of It. Frontiers in Cell and Developmental Biology. 8
32 Wange, R. L. and Samelson, L. E. (1996) Complex Complexes: Signaling at the TCR. Immunity. 5, 197-205
33 Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., Hemenway, R., Bomhardt, U., Arndt, B., Haus, U.-U., Weismantel, R., Gilles, E. D., Klamt, S. and Schraven, B. (2007) A Logical Model Provides Insights into T Cell Receptor Signaling. PLOS Computational Biology. 3, e163
34 Rudolph, M. G., Stanfield, R. L. and Wilson, I. A. (2006) HOW TCRS BIND MHCS, PEPTIDES, AND CORECEPTORS. Annual review of immunology. 24, 419-466
35 Walk, S. F., March, M. E. and Ravichandran, K. S. (1998) Roles of Lck, Syk and ZAP-70 tyrosine kinases in TCR-mediated phosphorylation of the adapter protein Shc. Eur J Immunol. 28, 2265-2275
36 Rossy, J., Williamson, D. and Gaus, K. (2012) How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Frontiers in Immunology. 3
37 Koretzky, G. A. and Boerth, N. J. (1999) The role of adapter proteins in T cell activation. Cell Mol Life Sci. 56, 1048-1060
38 Dinur-Schechter, Y., Zaidman, I., Mor-Shaked, H. and Stepensky, P. (2021) The Clinical Aspect of Adaptor Molecules in T Cell Signaling: Lessons Learnt From Inborn Errors of Immunity. Frontiers in Immunology. 12
39 Arbulu-Echevarria, M. M., Narbona-Sánchez, I., Fernandez-Ponce, C. M., Vico-Barranco, I., Rueda-Ygeruavide, M. D., Dustin, M. L., Miazek, A., Duran-Rui, M. C., Garcia-Cózar, F. and Aguado, E. (2018) A Stretch of Negatively Charged Amino Acids of Linker for Activation of T-Cell Adaptor Has a Dual Role in T-Cell Antigen Receptor Intracellular Signaling. Frontiers in Immunology. 9
40 McKeithan, T. W. (1995) Kinetic proofreading in T-cell receptor signal transduction. Proceedings of the National Academy of Sciences. 92, 5042-5046
41 Yousefi, O. S., Günther, M., Hörner, M., Chalupsky, J., Wess, M., Brandl, S. M., Smith, R. W., Fleck, C., Kunkel, T., Zurbriggen, M. D., Höfer, T., Weber, W. and Schamel, W. W. (2019) Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife. 8
42 Katz, Z. B., Novotná, L., Blount, A. and Lillemoeier, B. F. (2017) A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nature immunology.
43 Dong, D., Zheng, L., Lin, J., Zhang, B., Zhu, Y., Li, N., Xie, S., Wang, Y., Gao, N. and Huang, Z. (2019) Structural basis of assembly of the human T cell receptor–CD3 complex. Nature. 573, 546-552
44 Meuer, S. C., Acuto, O., Hussey, R. E., Hodgdon, J. C., Fitzgerald, K. A., Schlossman, S. F. and Reinherz, E. L. (1983) Evidence for the T3-associated 90K heterodimer as the T-cell antigen receptor. Nature. 303, 808-810
45 Wucherpfennig, K. W., Gagnon, E., Call, M. J., Huseby, E. S. and Call, M. E. (2010) Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harbor perspectives in biology. 2, a005140
46 Chakraborty, A. K. and Weiss, A. (2014) Insights into the initiation of TCR signaling. Nature immunology. 15, 798-807
47 Au-Yeung, B. B., Shah, N. H., Shen, L. and Weiss, A. (2018) ZAP-70 in Signaling, Biology, and Disease. Annual review of immunology. 36, 127-156
48 Zhang, J., Salojin, K. and Delovitch, T. L. (1998) Sequestration of CD4-associated Lck from the TCR complex may elicit T cell hyporesponsiveness in nonobese diabetic mice. Journal of immunology (Baltimore, Md. : 1950). 160, 1148-1157
49 Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. and Chakraborty, A. K. (2010) CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proceedings of the National Academy of Sciences. 107, 16916-16921
50 Call, M. E., Pyrdol, J., Wiedmann, M. and Wucherpfennig, K. W. (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell. 111, 967-979
51 Call, M. E. and Wucherpfennig, K. W. (2004) Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol Immunol. 40, 1295-1305
52 Dushek, O. (2011) Elementary steps in T cell receptor triggering. Front Immunol. 2, 91
53 Dushek, O., Goyette, J. and van der Merwe, P. A. (2012) Non-catalytic tyrosine-phosphorylated receptors. Immunological reviews. 250, 258-276
54 Limozin, L., Bridge, M., Bongrand, P., Dushek, O., van der Merwe, P. A. and Robert, P. (2019) TCR–pMHC kinetics under force in a cell-free system show no intrinsic catch bond, but a minimal encounter duration before binding. Proceedings of the National Academy of Sciences. 116, 16943-16948
55 Pettmann, J., Huhn, A., Abu Shah, E., Kutuzov, M. A., Wilson, D. B., Dustin, M. L., Davis, S. J., van der Merwe, P. A. and Dushek, O. (2021) The discriminatory power of the T cell receptor. eLife. 10
56 Clemens, L., Dushek, O. and Allard, J. (2021) Intrinsic Disorder in the T Cell Receptor Creates Cooperativity and Controls ZAP70 Binding. Biophysical Journal. 120, 379-392
57 Sloan-Lancaster, J., Presley, J., Ellenberg, J., Yamazaki, T., Lippincott-Schwartz, J. and Samelson, L. E. (1998) ZAP-70 association with T cell receptor zeta (TCRzeta): fluorescence imaging of dynamic changes upon cellular stimulation. The Journal of cell biology. 143, 613-624
58 Sloan-Lancaster, J., Zhang, W., Presley, J., Williams, B. L., Abraham, R. T., Lippincott-Schwartz, J. and Samelson, L. E. (1997) Regulation of ZAP-70 intracellular localization: visualization with the green fluorescent protein. The Journal of experimental medicine. 186, 1713-1724
59 Fu, G., Rybakin, V., Brzostek, J., Paster, W., Acuto, O. and Gascoigne, N. R. (2014) Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol. 35, 311-318
60 Garcia, K. C. and Adams, E. J. (2005) How the T cell receptor sees antigen--a structural view. Cell. 122, 333-336
61 Stanford, S. M., Rapini, N. and Bottini, N. (2012) Regulation of TCR signalling by tyrosine kinases: from immune homeostasis to autoimmunity. Immunology. 137, 1-19
62 Bononi, A., Agnoletto, C., De Marchi, E., Marchi, S., Paternagni, S., Bonora, M., Giorgi, C.,
Missirolì, S., Poletti, F., Rimessi, A. and Pinton, P. (2011) Protein kinases and phosphatases in the
control of cell fate. Enzyme Res. 2011, 329098
63 Cantrell, D. (2015) Signaling in lymphocyte activation. Cold Spring Harbor perspectives iniology. 7
64 Poltorak, M., Arndt, B., Kowtharapu, B. S., Reddycherla, A. V., Witte, V., Lindquist, J. A.,
Schraven, B. and Simeoni, L. (2013) TCR activation kinetics and feedback regulation in primary
human T cells. Cell Communication and Signaling. 11, 4
65 Stone, J. D., Chervin, A. S. and Kranz, D. M. (2009) T-cell receptor binding affinities and
kinetics: impact on T-cell activity and specificity. Immunology. 126, 165-176
66 Yan, Q., Barros, T., Visperas, P. R., Deindl, S., Kadlecnek, T. A., Weiss, A. and Kuriyan, J. (2013)
Structural Basis for Activation of ZAP-70 by Phosphorylation of the SH2-Kinase Linker. Molecular and
cellular biology. 33, 2188-2201
67 Wang, H., Kadlecnek, T. A., Au-Yeung, B. B., Goodfellow, H. E., Hsu, L. Y., Freedman, T. S. and
Weiss, A. (2010) ZAP-70: an essential kinase in T cell signaling. Cold Spring Harbor perspectives in
biology. 2, a002279
68 Chan, A. C., Dalton, M., Johnson, R., Kong, G. H., Wang, T., Thoma, R. and Kurosaki, T. (1995)
Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte
antigen receptor function. The EMBO journal. 14, 2499-2508
69 Chan, A. C., Iwashima, M., Turck, C. W. and Weiss, A. (1992) ZAP-70: a 70 kD protein-tyrosine
kinase that associates with the TCR zeta chain. Cell, 71, 649-662
70 van Oers, N. S., Killeen, N. and Weiss, A. (1994) ZAP-70 is constitutively associated with
tyrosine-phosphorylated TCR zeta in murine thymocytes and lymph node T cells. Immunity. 1, 675-
685
71 Furlan, G., Minowa, T., Hanagata, N., Kataoka-Hamai, C. and Kaizuza, Y. (2014) Phosphatase
CD45 both positively and negatively regulates T cell receptor phosphorylation in reconstituted
membrane protein clusters. The Journal of biological chemistry. 289, 28514-28525
72 Irles, C., Symons, A., Michel, F., Bakker, T. R., van der Merwe, P. A. and Acuto, O. (2003)
CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nature
immunology. 4, 189-197
73 Falahati, R. and Leitenberg, D. (2007) Changes in the Role of the CD45 Protein Tyrosine
Phosphatase in Regulating Lck Tyrosine Phosphorylation during Thymic Development. The Journal of
Immunology. 178, 2056-2064
74 Sun, C., Shou, P., Du, H., Hirabayashi, K., Chen, Y., Herring, L. E., Ahn, S., Xu, Y., Suzuki, K., Li,
G., Tsahouridis, O., Su, L., Savoldo, B. and Dotti, G. (2020) THEMIS-SHP1 Recruitment by 4-IBB Tunes
LCK-Mediated Priming of Chimeric Antigen Receptor-Redirected T Cells. Cancer Cell. 37, 216-
225.e216
75 Liaunardy-Jopeace, A., Murton, B. L., Mahesh, M., Chin, J. W. and James, J. R. (2017)
Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat Struct
Mol Biol. 24, 1155-1163
76 Nika, K., Soldani, C., Salek, M., Paster, W., Gray, A., Etzensperger, R., Fugger, L., Polzella, P.,
Cerundolo, V., Dushek, O., Höfer, T., Viola, A. and Acuto, O. (2010) Constitutively Active Lck Kinase in
T Cells Drives Antigen Receptor Signal Transduction. Immunity. 32, 766-777
77 Tischer, D. K. and Weiner, O. D. (2019) Light-based tuning of ligand half-life supports kinetic
proofreading model of T cell signaling. eLife. 8
78 Shah, N. H., Wang, Q., Yan, Q., Karandur, D., Kadlecnek, T. A., Fallahiee, I. R., Russ, W. P.,
Ranganathan, R., Weiss, A. and Kuriyan, J. (2016) An electrostatic selection mechanism controls
sequential kinase signaling downstream of the T cell receptor. eLife. 5
79 Dine, E., Reed, E. H. and Toettcher, J. E. (2021) Positive feedback between the T cell kinase
Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Rep. 35, 109280
120 Rabinowitz, J. D., Beeson, C., Lyons, D. S., Davis, M. M. and McConnell, H. M. (1996) Kinetic discrimination in T-cell activation. Proceedings of the National Academy of Sciences. 93, 1401-1405
121 Weiss, A. and Littman, D. R. (1994) Signal transduction by lymphocyte antigen receptors. Cell. 76, 263-274
122 Isakov, N., Wange, R. L. and Samelson, L. E. (1994) The role of tyrosine kinases and phosphotyrosine-containing recognition motifs in regulation of the T cell-antigen receptor-mediated signal transduction pathway. Journal of leukocyte biology. 55, 265-271
123 Marth, J. D., Lewis, D. B., Wilson, C. B., Gearn, M. E., Krebs, E. G. and Perlmuter, R. M. (1987) Regulation of pp56lck during T-cell activation: functional implications for the src-like protein tyrosine kinases. The EMBO journal. 6, 2727-2734
124 Barber, E. K., Dasgupta, J. D., Schlossman, S. F., Trevillyan, J. M. and Rudd, C. E. (1989) The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proceedings of the National Academy of Sciences of the United States of America. 86, 3277-3281
125 Veillette, A., Bookman, M. A., Horak, E. M., Samelson, L. E. and Bolin, J. B. (1989) Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature. 338, 257-259
126 Yamaguchi, H. and Hendrickson, W. A. (1996) Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature. 384, 484-489
127 Briese, L. and Willbold, D. (2003) Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy. BMC Structural Biology. 3, 3
128 Zhu, X., Kim, J. L., Newcomb, J. R., Rose, P. E., Stover, D. R., Toledo, L. M., Zhao, H. and Morgenstern, K. A. (1999) Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure (London, England : 1993). 7, 651-661
129 Eck, M. J., Shoelson, S. E. and Harrison, S. C. (1993) Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature. 362, 87-91
130 Eck, M. J., Atwell, S. K., Shoelson, S. E. and Harrison, S. C. (1994) Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Nature. 368, 764-769
131 Courtney, A. H., Amacher, J. F., Kadlecek, T. A., Mollenauer, M. N., Au-Yeung, B. B., Kuriyan, J. and Weiss, A. (2017) A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Molecular cell. 67, 498-511.e496
132 Mustelin, T. and Burn, P. (1993) Regulation of src family tyrosine kinases in lymphocytes. Trends in biochemical sciences. 18, 215-220
133 Chow, L. M., Fournel, M., Davidson, D. and Veillette, A. (1993) Negative regulation of T-cell receptor signalling by phosphotyrosine kinase p50csk. Nature. 365, 156-160
134 Vang, T., Torgersen, K. M., Sundvold, V., Saxena, M., Levy, F. O., Skålhegg, B. S., Hansson, V., Mustelin, T. and Taskén, K. (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. The Journal of experimental medicine. 193, 497-507
135 Yasuda, K., Kosugi, A., Hayashi, F., Saitoh, S., Nagafuku, M., Mori, Y., Ogata, M. and Hamaoka, T. (2000) Serine 6 of Lck tyrosine kinase: a critical site for Lck myristoylation, membrane localization, and function in T lymphocytes. Journal of immunology (Baltimore, Md. : 1950). 165, 3226-3231
136 Rawat, A., Harishchandran, A. and Nagaraj, R. (2013) Fatty acyl chain-dependent but charge-independent association of the SH4 domain of Lck with lipid membranes. J Biosci. 38, 63-71
137 Ventimiglia, L. N. and Alonso, M. A. (2013) The role of membrane rafts in Lck transport, regulation and signalling in T-cells. The Biochemical journal. 454, 169-179
138 Simeoni, L. (2017) Lck activation: puzzling the pieces together. Oncotarget. 8, 102761-102762
Phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Sci Signal. 10

Ballek, O., Valecka, J., Manning, J. and Filipp, D. (2015) The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol Cell Biol. 93, 384-395

Bomhardt, U., Schraven, B. and Simeoni, L. (2019) Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci. 20

Kapoor-Kaushik, N., Hinde, E., Compeer, E. B., Yamamoto, Y., Kraus, F., Yang, Z., Lou, J., Pageon, S. V., Tabarin, T., Gaus, K. and Rossy, J. (2016) Distinct Mechanisms Regulate Lck Spatial Organization in Activated T Cells. Frontiers in Immunology. 7

Kastle, M., Merten, C., Hartig, R., Kaehne, T., Liaunardy-Jopeace, A., Woessner, N. M., Schamel, W. W., James, J., Minguet, S., Simeoni, L. and Schraven, B. (2020) Tyrosine 192 within the SH2 domain of the Src-protein tyrosine kinase p56(Lck) regulates T-cell activation independently of Lck/CD45 interactions. Cell Commun Signal. 18, 183

Hwang, J.-R., Byeon, Y., Kim, D. and Park, S.-G. (2020) Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Experimental & Molecular Medicine. 52, 750-761

Winkler, D. G., Park, I., Kim, T., Payne, N. S., Walsh, C. T., Strominger, J. L. and Shin, J. (1993) Phosphorylation of Ser-42 and Ser-59 in the N-terminal region of the tyrosine kinase p56lck. Proceedings of the National Academy of Sciences of the United States of America. 90, 5176-5180

Dutta, D., Barr, V. A., Akpan, I., Mittelstadt, P. R., Singha, L. I., Samelson, L. E. and Ashwell, J. D. (2017) Recruitment of calcineurin to the TCR positively regulates T cell activation. Nature immunology. 18, 196-204

Stefanová, I., Hemmer, B., Vergelli, M., Martin, R., Biddison, W. E. and Germain, R. N. (2003) TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nature immunology, 4, 248-254

Paster, W., Bruger, A. M., Katsch, K., Gregoire, C., Roncagalli, R., Fu, G., Gascoigne, N. R., Nika, K., Cohnen, A., Feller, S. M., Simister, P. C., Molder, K. C., Cordoba, S. P., Dushek, O., Malissen, B. and Acuto, O. (2015) A THEMIS:SHP1 complex promotes T-cell survival. The EMBO journal. 34, 393-409

Secrist, J. P., Burns, L. A., Karnitz, L., Koretzky, G. A. and Abraham, R. T. (1993) Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. The Journal of biological chemistry. 268, 5886-5893

Thome, M., Germain, V., DiSanto, J. P. and Acuto, O. (1996) The p56lck SH2 domain mediates recruitment of CD8/p56lck to the activated T cell receptor/CD3/ζa complex. Eur J Immunol. 26, 2093-2100

Veillette, A., Bookman, M. A., Horak, E. M. and Bolen, J. B. (1988) The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 55, 301-308

Lin, R. S., Rodriguez, C., Veillette, A. and Lodish, H. F. (1998) Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. The Journal of biological chemistry. 273, 32878-32882

Rudd, C. E., Trevillyan, J. M., Dasgupta, J. D., Wong, L. L. and Schlossman, S. F. (1988) The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proceedings of the National Academy of Sciences. 85, 5190-5194

Kim, P. W., Sun, Z.-Y. J., Blacklow, S. C., Wagner, G. and Eck, M. J. (2003) A Zinc Clasp Structure Tethers Lck to T Cell Coreceptors CD4 and CD8. Science (New York, N.Y.). 301, 1725-1728

Davis, S. J. and van der Merwe, P. A. (2006) The kinetic-segregation model: TCR triggering and beyond. Nature immunology. 7, 803-809
Ongoing BCR signaling is required for the establishment of ZAP70 activity in the CD3ζ cytoplasmic domain and is inhibited by the C-terminal 473 residue domain of ZAP70 for the maintenance of B-cell antigen receptor signaling function. The Journal of biological chemistry. 2021, 296, 9589-9598

842 Brdicka, T., Pavlistová, D., Leo, A., Bruyns, E., Korínek, V., Angelisová, P., Scherer, J., Shevchenko, A., Hilgert, I., Cerný, J., Drbal, K., Kuramitsu, Y., Kornacker, B., Horejsí, V. and Schraven, B. (2000) Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. The Journal of experimental medicine. 191, 1591-1604

843 Zikherman, J., Jenne, C., Watson, S., Doan, K., Raschke, W., Goodnow, C. C. and Weiss, A. (2010) CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity. 32, 342-354

844 Kawabuchi, M., Satomi, Y., Takao, T., Shimonishi, Y., Nada, S., Nagai, K., Tarakhovsky, A. and Okada, M. (2000) Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 404, 999-1003

845 Stepanek, O., Prabhakar, A. S., Osswald, C., King, C. G., Bulek, A., Naeher, D., Beaufrils-Hugot, M., Abanto, M. L., Galati, V., Hausmann, B., Lang, R., Cole, D. K., Huseby, E. S., Sewell, A. K., Chakraborty, A. K. and Palmer, E. (2014) Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell. 159, 333-345

846 Li, L., Guo, X., Shi, X., Li, C., Wu, W., Yan, C., Wang, H., Li, H. and Xu, C. (2017) Ionic CD3-Lck interaction regulates the initiation of T-cell receptor signaling. Proceedings of the National Academy of Sciences of the United States of America. 114, E5891-E5899

847 Galstyan, V., Husain, K., Xiao, F., Murugan, A. and Phillips, R. (2020) Proofreading through spatial gradients. eLife. 9

848 Chakraborty, A. K. and Weiss, A. (2014) Insights into the initiation of TCR signaling. Nature immunology. 15, 798-807

849 Lanz, A. L., Masi, G., Porciello, N., Cohnen, A., Cipria, D., Prakaash, D., Bálint, Š., Raggiaschi, R., Galgano, D., Cole, D. K., Lepore, M., Dushek, O., Dustin, M. L., Sansom, M. S. P., Kalli, A. C. and Acuto, O. (2021) Allosteric activation of T cell antigen receptor signaling by quaternary structure relaxation. Cell Rep. 36, 109375

850 Zhang, H., Cordoba, S.-P., Dushek, O. and Anton van der Merwe, P. (2011) Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proceedings of the National Academy of Sciences. 108, 19323-19328

851 Xu, C., Gagnon, E., Call, M. E., Schnell, J. R., Schwiers, C. D., Carman, C. V., Chou, J. J. and Wucherpfennig, K. W. (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3 epsilon cytoplasmic tyrosine-based motif. Cell. 135, 702-713

852 Deindl, S., Kadlec, T. A., Brdicka, T., Cao, X., Weiss, A. and Kuriyan, J. (2007) Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell. 129, 735-746

853 Chan, A. C., Irving, B. A., Fraser, J. D. and Weiss, A. (1991) The ζeta chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proceedings of the National Academy of Sciences of the United States of America. 88, 9166-9170

854 van Oers, N. S. and Weiss, A. (1995) The Syk/ZAP-70 protein tyrosine kinase connection to antigen receptor signalling processes. Seminars in immunology. 7, 227-236

855 Hatada, M. H., Lu, X., Laird, E. R., Green, J., Morgenstern, J. P., Lou, M., Marr, C. S., Phillips, T. B., Ram, M. K., Theriault, K. and et al. (1995) Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature. 377, 32-38

856 Huber, R. G., Fan, H. and Bond, P. J. (2015) The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain. PLOS Computational Biology. 11, e1004560

857 Bu, J. Y., Shaw, A. S. and Chan, A. C. (1995) Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proceedings of the National Academy of Sciences of the United States of America. 92, 5106-5110

858 Zhao, Q., Williams, B. L., Abraham, R. T. and Weiss, A. (1999) Interdomain B in ZAP-70 regulates but is not required for ZAP-70 signaling function in lymphocytes. Molecular and cellular biology. 19, 948-956
208 Chapman, N. M., Boothby, M. R. and Chi, H. (2020) Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology. 20, 55-70

209 Shyer, J. A., Flavell, R. A. and Bailis, W. (2020) Metabolic signaling in T cells. Cell Research. 30, 649-659

210 Crispo, F., Condelli, V., Lepore, S., Notarangelo, T., Sgambato, A., Esposito, F., Maddalena, F. and Landriscina, M. (2019) Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression. Cells. 8, 798

211 Raval, F. M. and Nikolajczyk, B. S. (2013) The Bidirectional Relationship between Metabolism and Immune Responses. Discoveries (Craiova). 1, e6

212 Palmer, C. S., Ostrowski, M., Balderson, B., Christian, N. and Crowe, S. M. (2015) Glucose Metabolism Regulates T Cell Activation, Differentiation, and Functions. Frontiers in Immunology. 6

213 Frauwirth, K. A., Riley, J. L., Harris, M. H., Parry, R. V., Rathmell, J. C., Plas, D. R., Elstrom, R. L., June, C. H. and Thompson, C. B. (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity. 16, 769-777

214 Geltink, R. I. K., Kyle, R. L. and Pearce, E. L. (2018) Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annual review of immunology. 36, 461-488

215 Wieman, H. L., Wofford, J. A. and Rathmell, J. C. (2007) Cytokine Stimulation Promotes Glucose Uptake via Phosphatidylinositol-3 Kinase/Akt Regulation of Glut1 Activity and Trafficking. Molecular Biology of the Cell. 18, 1437-1446

216 Jacobs, S. R., Herman, C. E., Maclver, N. J., Wofford, J. A., Wieman, H. L., Hammen, J. J. and Rathmell, J. C. (2008) Glucose Uptake Is Limiting in T Cell Activation and Requires CD28-Mediated Akt-Dependent and Independent Pathways. The Journal of Immunology. 180, 4476-4486

217 Macintyre, Andrew N., Gerriets, Valerie A., Nichols, Amanda G., Michalek, Ryan D., Rudolph, Michael C., Deoliveira, D., Anderson, Steven M., Abel, E. D., Chen, Jenny J., Hale, Laura P. and Rathmell, Jeffrey C. (2014) The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function. Cell Metabolism. 20, 61-72

218 Long, L., Wei, J., Lim, S. A., Raynor, J. L., Shi, H., Connelly, J. P., Wang, H., Guy, C., Xie, B., Chapman, N. M., Fu, G., Wang, Y., Huang, H., Su, W., Saravia, J., Risch, I., Wang, Y.-D., Li, Y., Niu, M., Dhungana, Y., Kc, A., Zhou, P., Vogel, P., Yu, J., Pruett-Miller, S. M., Peng, J. and Chi, H. (2021) CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature. 600, 308-313

219 Jones, N., Cronin, J. G., Dolton, G., Panetti, S., Schauenburg, A. J., Galloway, S. A. E., Sewell, A. K., Cole, D. K., Thornton, C. A. and Francis, N. J. (2017) Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation. Frontiers in Immunology. 8

220 Marko, A. J., Miller, R. A., Kelman, A. and Frauwirth, K. A. (2010) Induction of Glucose Metabolism in Stimulated T Lymphocytes Is Regulated by Mitogen-Activated Protein Kinase Signaling. PLOS ONE. 5, e15425

221 Carr, E. L., Kelman, A., Wu, G. S., Gopaul, R., Senkevitich, E., Aghvanyan, A., Turay, A. M. and Frauwirth, K. A. (2010) Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK during T Lymphocyte Activation. The Journal of Immunology. 185, 1037-1044

222 Miyamoto, S., Murphy, A. N. and Brown, J. H. (2008) Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death & Differentiation. 15, 521-529

223 John, S., Weiss, J. N. and Ribalet, B. (2011) Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose. PLOS ONE. 6, e17674

224 Vaeth, M., Maus, M., Klein-Hessling, S., Freinkman, E., Yang, J., Eckstein, M., Cameron, S., Turvey, S. E., Serfling, E., Berberich-Siebelt, F., Possemato, R. and Feske, S. (2017) Store-Operated Ca2+ Entry Controls Clonal Expansion of T Cells through Metabolic Reprogramming. Immunity. 47, 664-679.e666

225 Eil, R., Vodnala, S. K., Clever, D., Klebanoff, C. A., Sukumar, M., Pan, J. H., Palmer, D. C., Gros, A., Yamamoto, T. N., Patel, S. J., Guittard, C. G., Yu, Z., Carbonaro, V., Okkenhaug, K., Schrump, D. S.,
Martini, M. C., Marques, R. E., Carmo, H. R., Borin, A., Coimbra, L. D., Boldrini, V. O., Brunetti, N. S., Vieira, A. S., Mansour, E., Ulaf, R. G., Bernardes, A. F., Nunes, T. A., Ribeiro, L. C., Palma, A. C., Agrela, M. V., Moretti, M. L., Saposito, A. C., Pereira, F. B., Velloso, L. A., Vinolo, M. A. R., Damasio, A., Proença-Módena, J. L., Carvalho, R. F., Mori, M. A., Martins-de-Souza, D., Nakaya, H. I., Farias, A. S. and Moraes-Vieira, P. M. (2020) Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 32, 437-446.e435

Zheng, M., Wang, X., Guo, H., Fan, Y., Song, Z., Lu, Z., Wang, J., Zheng, C., Dong, L., Ma, Y., Zhu, Y., Fang, H. and Ye, S. (2021) The Cytokine Profiles and Immune Response Are Increased in COVID-19 Patients with Type 2 Diabetes Mellitus. Journal of Diabetes Research. 2021, 9526701

Salmond, R. J., Filby, A., Pirinen, N., Magee, A. I. and Zamoyska, R. (2011) Mislocalization of Lck impairs thymocyte differentiation and can promote development of thymomas. Blood. 117, 108-117

Pryshchep, S., Goronzry, J. J., Parashar, S. and Weyand, C. M. (2010) Insufficient deactivation of the protein tyrosine kinase lck amplifies T-cell responsiveness in acute coronary syndrome. Circ Res. 106, 769-778

Hauck, F., Randriampamita, C., Martin, E., Gerart, S., Lambert, N., Lim, A., Soulier, J., Maciorowski, Z., Touzot, F., Moschous, D., Quartier, P., Heritier, S., Blanche, S., Rieux-Laucat, F., Brousse, N., Callebaut, I., Veillette, A., Hivroz, C., Fischer, A., Latour, S. and Picard, C. (2012) Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. 130, 1144-1152.e1111

Finke, J. H., Zea, A. H., Stanley, J., Longo, D. L., Mizoguchi, H., Tubb, R. R., Wiltrout, R. H., O'Shea, J. J., Kudoh, S., Klein, E. and et al. (1993) Loss of T-cell receptor zeta chain and p56lck in T-cells infiltrating human renal cell carcinoma. Cancer Res. 53, 5613-5616

Nakagomi, H., Petersson, M., Magnusson, I., Juhlin, C., Matsuda, M., Mellstedt, H., Taupin, J. L., Vivier, E., Anderson, P. and Kiessling, R. (1993) Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and nk cells of patients with colorectal carcinoma. Cancer Res. 53, 5610-5612

Maurice, M. M., Nakamura, H., van der Voort, E. A., van Vliet, A. I., Staal, F. J., Tak, P. P., Breedveld, F. C. and Verweij, C. L. (1997) Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. Journal of immunology (Baltimore, Md.: 1950). 158, 1458-1465

Liiosis, S. N., Ding, X. Z., Dennis, G. J. and Tsokos, G. C. (1998) Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. J Clin Invest. 101, 1448-1457

Chan, A. Y., Punwani, D., Kadlecsek, T. A., Cowan, M. J., Olson, J. L., Mathes, E. F., Sunderam, U., Fu, S. M., Srinivasan, R., Kuriyan, J., Brenner, S. E., Weiss, A. and Puck, J. M. (2016) A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. The Journal of experimental medicine. 213, 155-165

Matsuda, S., Suzuki-Fujimoto, T., Minowa, A., Ueno, H., Katamura, K. and Koyasu, S. (1999) Temperature-sensitive ZAP70 mutants degrading through a proteasome-independent pathway. Restoration of a kinase domain mutant by Cdc37. The Journal of biological chemistry. 274, 34515-34518

Turul, T., Tezcan, I., Artac, H., de Bruin-Versteeg, S., Barendregt, B. H., Reisli, I., Sanal, O., van Dongen, J. J. M. and van der Burg, M. (2008) Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. European Journal of Pediatrics. 168, 87

Shirkani, A., Shahrooei, M., Azizi, G., Rokni-Zadeh, H., Abolhassani, H., Farrokhi, S., Frans, G., Bossuyt, X. and Aghamohammadi, A. (2017) Novel Mutation of ZAP-70-related Combined Immunodeficiency: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest. 46, 70-79
Forster, M., Moran, T., Beaven, A. and Voorhees, T. (2021) Novel ZAP-70-Related Immunodeficiency Presenting with Epstein-Barr Virus Lymphoproliferative Disorder and Hemophagocytic Lymphohistiocytosis. Case Reports Immunol. 2021, 6587323

Wang, L., Ni, X., Covington, K. R., Yang, B. Y., Shiu, J., Zhang, X., Xi, L., Meng, Q., Langridge, T., Drummond, J., Donehower, L. A., Doddapaneni, H., Muzny, D. M., Gibbs, R. A., Wheeler, D. A. and Duvic, M. (2015) Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nature Genetics. 47, 1426-1434

Bacchelli, C., Moretti, F. A., Carmo, M., Adams, S., Stanescu, H. C., Pearce, K., Madkaikar, M., Gilmour, K. C., Nicholas, A. K., Woods, C. G., Kleta, R., Beales, P. L., Qasim, W. and Gaspar, H. B. (2017) Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol. 139, 634-642.e635

Sommers, C. L., Park, C. S., Lee, J., Feng, C., Fuller, C. L., Grinberg, A., Hildebrand, J. A., Lacaná, E., Menon, R. K., Shores, E. W., Samelson, L. E. and Love, P. E. (2002) A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science (New York, N.Y.). 296, 2040-2043

Linka, R. M., Risse, S. L., Bienemann, K., Werner, M., Linka, Y., Krux, F., Synaeve, C., Deenen, R., Ginzel, S., Dvorsky, R., Gombert, M., Halenius, A., Hartig, R., Helminen, M., Fischer, A., Stepensky, P., Vettenranta, K., Köhrer, K., Ahmadian, M. R., Laws, H. J., Fleckenstein, B., Jumaa, H., Latour, S., Schraven, B. and Borkhardt, A. (2012) Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 26, 963-971

Fu, G., Chen, Y., Yu, M., Podd, A., Schuman, J., He, Y., Di, L., Yassai, M., Haribhai, D., North, P. E., Gorski, J., Williams, C. B., Wang, D. and Wen, R. (2010) Phospholipase C{gamma}1 is essential for T cell development, activation, and tolerance. The Journal of experimental medicine. 207, 309-318
Figure legend

Figure 1: Overview of TCR signaling. The key proteins known to regulate kinetic proofreading in the early TCR signaling are highlighted. Following the binding of pMHC to the TCR complex, Lck is activated and brought into proximity of the CD3 complex. Lck then phosphorylates the ITAM motifs in the CD3 chains (phosphorylation depicted as red dots). ZAP-70 is recruited to the TCR complex through the tSH2 domain and doubly-phosphorylated ITAM interaction. Activated ZAP-70 phosphorylate scaffold protein LAT connects the TCR to indicated downstream cellular response through multiple signaling pathways.

Figure 2: Schematic depiction of initiation of TCR signaling cascade. a) In the resting T cell, Lck, ZAP-70, and LAT remain in autoinhibited states b) pMHC: TCR complex formation leads to colocalization of CD4/CD8 coreceptors associated with Lck to the signalosome. c) Autoinhibited ZAP-70 is recruited to the membrane and activated Lck or by autophosphorylation. d) Activated ZAP-70 phosphorylates LAT and leads to the formation of LAT/SLP-76 signalosome and recruitment of PLCγ. Red arrows indicate the rate-limiting steps.

Figure 3: Schematic representation of T cell metabolic network and TCR signaling. The naive and activated T cells are labeled. The resting naive T cells metabolize glucose primarily via the high energy-yielding mitochondrial oxidative phosphorylation pathway. On activation, the glucose uptake is enhanced due to upregulation of GLUT1 expression. The cells switch to aerobic glycolysis and lipid oxidation to produce biosynthetic precursors, this enhancing cell growth and proliferation. The TCR signaling modules cross-talk with the glucose metabolism are shown.
