Dr. Bruce Cleveland Publication List

Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1, P.-A. Amaudruz et al. (72 authors), Astropart. Physics 85 1–23 (2016).

Current status and future prospects of the SNO+ experiment, S. Andringa et al. (166 authors), Advances in High Energy Physics 2016 1–22 (2016).

Cosmogenic backgrounds to $0\nu\beta\beta$ in EXO-200, J. B. Albert et al. (86 authors), J. Cosmology and Astroparticle Physics, 04 029–057 (2016).

First search for Lorentz and CPT violation in double beta decay with EXO-200, J. B. Albert et al. (90 authors), Phys. Rev. D 93 072001–072006 (2016).

A rope-net support system for the liquid scintillator detector for the SNO+ experiment, A. Bialek et al. (17 authors), Nucl. Instrum. Meth. A 827 152–160 (2016).

An optimal energy estimator to reduce correlated noise for the EXO-200 light readout, C. G. Davis et al. (86 authors), J. Inst. 11 P07015 (2016).

High energy-resolution measurement of the $^{82}\text{Se(^3He,t)^{82}Br}$ reaction for double-beta decay and for solar neutrinos, D. Frekers et al. (20 authors), Phys. Rev. C 94 014614-1–014614-10 (2016).

Precision evaluation of the $^{71}\text{Ga(νe,e^-)}$ solar neutrino capture rate from the ($^3\text{He},t$) charge-exchange reaction, D. Frekers et al. (20 authors), Phys. Rev. C 91 034608–034615 (2015).

Current status of new SAGE project with ^{51}Cr neutrino source, V. Gavrin et al. (18 authors), Phys. Part. Nucl. 46 131–137 (2015).

An RF-only ion-funnel for extraction from high-pressure gases, T. Brunner et al. (77 authors), Int. J. of Mass Spectrometry 379 110–120 (2015).

Investigation of radioactivity–induced backgrounds in EXO-200, J. B. Albert et al. (86 authors), Phys. Rev. C 92 015503 (2015).
Measurements of the ion fraction and mobility of α– and β–decay products in liquid xenon using the EXO-200 detector, J. B. Albert et al. (85 authors), Phys. Rev. C 92 045504–045513 (2015).

Use of enriched isotopes to measure efficiency of chemical extraction in the SAGE solar neutrino experiment, B. T. Cleveland et al. (8 authors), Int. J. of Mass Spectrometry 392 41–44 (2015).

Search for 2νββ decay of 136Xe to the 0^+_1 excited state of 136Ba with EXO-200, J. B. Albert et al. (90 authors), Phys. Rev. C 93 035501–035510 (2015).

Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 Detector, J. B. Albert et al. (98 authors), Phys. Rev. C 89 015502-1–29 (2014).

A search for astrophysical burst signals at the Sudbury Neutrino Observatory, B. Aharmim et al. (127 authors), Astropart. Phys. 55 1–7 (2014).

Search for Majorana neutrinos with the first two years of EXO-200 data, J. B. Albert et al. (93 authors), Nature 510 229–234 (2014).

An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe, K. Twelker et al. (80 authors), Rev. Sci. Instrum. 85 095114–095126 (2014).

Search for Majoron-emitting modes of double-beta decay of 136Xe with EXO-200, J. B. Albert et al. (80 authors), Phys. Rev. D 90 092004–092011 (2014).

Spectroscopy of Ba and Ba$^+$ deposits in solid xenon for barium tagging in nEXO, B. Mong et al. (76 authors), Phys. Rev. A 91 022505–022518 (2014).

Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques, M. Akashi-Ronquest et al. (82 authors), Astropart. Phys. 65 40–54 (2014).

Radon backgrounds in the DEAP-1 liquid argon based dark matter detector, P.-A. Amaudruz et al., (56 authors), Astropart. Phys. 62 178–194 (2014).

Measurement of the ν_e and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set, B. Aharmim et al. (150 authors), Phys. Rev. C 87 015502-1–43 (2013).
Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, B. Aharmim et al. (123 authors), Phys. Rev. C 88 025501-1–27 (2013).

Xenon purity analysis for EXO-200 via mass spectrometry, A. Dobi et al. (76 authors), Nucl. Instrum. Meth. Phys. Res. A 675 40–46 (2012).

Activities of γ-ray emitting isotopes in rainwater from Greater Sudbury, Canada following the Fukushima incident, B. T. Cleveland, F. A. Duncan, I. T. Lawson, N. J. T. Smith, E. Vazquez-Jauregui, Can. J. Phys. 90 599–603 (2012).

The EXO-200 detector, part I: Detector design and construction, M. Auger et al. (81 authors), Jour. Inst. 7 P05010 (2012).

Search for neutrinoless double-beta decay in 136Xe with EXO-200, M. Auger et al. (78 authors), Phys. Rev. Lett. 109 032505 (2012).

Low multiplicity burst search at the Sudbury Neutrino Observatory, B. Aharmim et al. (109 authors), Astrophys. J. 728 83 (2011).

Optimizing the parameters of the gas mixture for the proportional counters in the SAGE gallium-germanium neutrino experiment, J. N. Abdurashitov et al. (8 authors), Pribory i tekhnika eksperimenta 54 156-158 (2011), Instrum. Exp. Tech. 54 156-158 (2011).

Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal, H. M. O’Keeffe et al. (18 authors), Nucl. Instrum. Meth. Phys. Res. A 659 182–192 (2011).

The 71Ga(3He,t) reaction and the low-energy neutrino response, D. Frekers et al. (33 authors), Phys. Lett. B 706 134–138 (2011).

Observation of two-neutrino double-beta decay in 136Xe with EXO-200, N. Ackerman et al. (103 authors), Phys. Rev. Lett. 107 212501 (2011).

A magnetically-driven piston pump for ultra-clean applications, F. LePort et al. (80 authors), Rev. Sci. Instrum. 82 105114 (2011).

Searches for high-frequency variations in the 8B solar neutrino flux at the Sudbury Neutrino Observatory, B. Aharmim et al. (124 authors), Astrophys. J. 710 540–548 (2010).
Low-energy-threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory, B. Aharmim et al. (123 authors), Phys. Rev. C 81 055504-1–49 (2010).

The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources, K. Boudjemline et al. (33 authors), Nucl. Instrum. Meth. Phys. Res. A 620 171–181 (2010).

High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory, B. Aharmim et al. (17 authors), Nucl. Instrum. Meth. Phys. Res. A 604 531–535 (2009).

Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory, B. Aharmim et al. (137 authors), Phys. Rev. D 80 012001-1–15 (2009).

Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period, J. N. Abdurashitov et al. (19 authors), Phys. Rev. C 90 015807-1–16 (2009).

Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory, B. Aharmim et al. (150 authors), Phys. Rev. Lett. 101 111301-1–5 (2008).

Determination of the ν_e and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory Phase I data set, B. Aharmim et al. (125 authors), Phys. Rev. C 75 045502 (2007).

Artificial neutrino source based on the 37Ar isotope, V. I. Barsanov et al. (18 authors), Phys. At. Nucl. 70 300–310 (2007) [Yad. Fiz. 70 325–336 (2007)].

Measurement of the activity of an artificial neutrino source based on 37Ar, D. N. Abdurashitov et al. (15 authors), Phys. At. Nucl. 70 311–318 (2007) [Yad. Fiz. 70 337–345 (2007)].

Measurement of the response of a Ga solar neutrino experiment to neutrinos from an 37Ar source, J. N. Abdurashitov et al. (45 authors), Phys. Rev. C 73 045805-1–12 (2006).

The BNO-LNGS joint measurement of the solar neutrino capture rate in 71Ga, J. N. Abdurashitov et al. (26 authors), Astroparticle Physics 25 349–354 (2006).
A search for neutrinos from the solar *hep* reaction and the diffuse supernova neutrino background with the Sudbury Neutrino Observatory, B. Aharmim et al. (128 authors), *Astrophys. J.* 653 1545 (2006).

Search for periodicities in the 8B solar neutrino flux measured by the Sudbury Neutrino Observatory, B Aharmim et. al. (135 authors), *Phys. Rev. D* 72 052010-1–8 (2005).

Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, B Aharmim et. al. (144 authors), *Phys. Rev. C* 72 055502-1–47 (2005).

Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory, I. Blevis et al. (36 authors), *Nucl. Instrum. Meth. Phys. Res. A* 517 139–153 (2004).

Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory, S. N. Ahmed et al. (134 authors), *Phys. Rev. Lett.* 92 102004-1–4 (2004).

Electron antineutrino search at the Sudbury Neutrino Observatory, B Aharmim et. al. (136 authors), *Phys. Rev. D* 70 093014-1–8 (2004).

Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity, S. N. Ahmed et al. (131 authors), *Phys. Rev. Lett.* 92 181301-1–6 (2004).

A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory, T. C. Andersen et al. (43 authors), *Nucl. Instrum. Meth. Phys. Res. A* 501 386–398 (2003).

Measurement of radium concentration in water with Mn-coated beads at the Sudbury Neutrino Observatory, T. C. Andersen et al. (34 authors), *Nucl. Instrum. Meth. Phys. Res. A* 501 399–417 (2003).

Measurement of the cross section for the reaction 127I$(\nu_e, e^-)^{127}$Xebound states with neutrinos from the decay of stopped muons, J. Distel, B. T. Cleveland, K. Lande, C. K. Lee, P. S. Wildenhain, G. E. Allen, and R. L. Burman, *Phys. Rev. C* 68 054613-1–9 (2003).

Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Q. R. Ahmad et al. (179 authors), *Phys. Rev. Lett.* 89 011302-1–5 (2002).
Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year solar cycle, J. N. Abdurashitov et al. (21 authors), JETP 95 181–193 (2002) [Zh. Eksp. Teor. Fiz. 122 211–226 (2002)].

Rate of germanium-isotope production in background processes in the SAGE experiment, V. N. Gavrin, V. V. Gorbachev, T. V. Ibragimova, and B. T. Cleveland, Phys. At. Nucl. 65 1276–1281 (2002) [Yad. Fiz. 65 1309–1314 (2002)].

Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Q. R. Ahmad et al. (179 authors), Phys. Rev. Lett. 89 011301-1–6 (2002).

Measurement of the rate of $\nu_e + d \rightarrow p + p + e^-$ interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Q. R. Ahmad et al. (178 authors), Phys. Rev. Lett. 87 071301-1–6 (2001).

The Sudbury Neutrino Observatory, J. Boger et al. (199 authors), Nucl. Instrum. Meth. Phys. Res. A 449 172–207 (2000).

Measurement of the response of a gallium metal solar neutrino experiment to neutrinos from a 51Cr source, J. N. Abdurashitov, et al. (36 authors), Phys. Rev. C 59, 2246–2263 (1999).

Measurement of the solar neutrino capture rate with gallium metal, J. N. Abdurashitov et al. (25 authors), Phys. Rev. C 60, 055801-1–32 (1999).

Measurement of the solar neutrino capture rate by SAGE and implications for neutrino oscillations in vacuum, J. N. Abdurashitov et al. (25 authors), Phys. Rev. Lett. 83, 4686–4689 (1999).

Measurement of the solar electron neutrino flux with the Homestake chlorine detector, B. T. Cleveland, T. J. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, and P. S. Wildenhain, Astrophys. J. 496, 505–526 (1998).

The goodness of fit of radioactive counting data with application to the data of the chlorine solar neutrino experiment, B. T. Cleveland, Nucl. Instrum. Methods Phys. Res. A 416, 405–414 (1998).

The Russian–American Gallium experiment (SAGE) Cr neutrino source measurement, J. N. Abdurashitov et al. (36 authors), Phys. Rev. Lett. 77 4708–4711 (1996).
Results from SAGE (The Russian-American Gallium solar neutrino experiment), J. N. Abdurashitov et al. (30 authors), Phys. Lett. B328 234–248 (1994).

Search for neutrinos from the Sun using the reaction $^{71}\text{Ga}(\nu_e, e^-)^{71}\text{Ge}$, A. I. Abazov et al. (28 authors), Phys. Rev. Lett. 67 3332–3335 (1991).

Homestake mine experiments and weakly interacting massive particles in the universe, E. L. Fireman, B. T. Cleveland, and H. Uberall, Astrophys. J. 326 645–652 (1988).

Chlorine and bromine experiments to detect solar neutrinos, R. Davis, B. T. Cleveland, and J. K. Rowley, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 51 1228–1229 (1987).

Current status of potassium experiment to measure the cosmic-ray background for a chlorine solar neutrino detector, B. T. Cleveland, R. Davis, E. L. Fireman, and J. K. Rowley, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 51 1229–1230 (1987).

Limits on neutrino oscillation parameters from the chlorine solar-neutrino experiment, M. Cribier, J. Rich, M. Spiro, D. Vignaud, W. Hampel, and B. T. Cleveland, Phys. Lett. B188 168–170 (1987).

Chlorine and gallium solar neutrino experiments, J. N. Bahcall, B. T. Cleveland, R. Davis, Jr., and J. K. Rowley, Astrophys. J. 292 L79–L82 (1985).

Feasibility of a $^{81}\text{Br}(\nu_e, e^-)^{81}\text{Kr}$ solar neutrino experiment, G. S. Hurst, C. H. Chen, S. D. Kramer, B. T. Cleveland, R. Davis, Jr., J. K. Rowley, F. Gabbard, and J. J. Schima, Phys. Rev. Lett. 53 1116–1119 (1984).

Multiple muons in the Homestake underground detector, M. L. Cherry, M. Deakyne, K. Lande, C. K. Lee, R. I. Steinberg, B. Cleveland, and E. J. Fenyves, Phys. Rev. D 27 1444–1447 (1983).

The analysis of radioactive decay with a small number of counts by the method of maximum likelihood, B. T. Cleveland, Nucl. Instr. and Meth. 214 451–458 (1983).

Experimental test of baryon conservation: a new limit on neutron–antineutron oscillations in oxygen, M. L. Cherry, K. Lande, C. K. Lee, R. I. Steinberg, and B. Cleveland, Phys. Rev. Lett. 50 1354–1356 (1983).
Experimental test of baryon conservation: a new limit on the nucleon lifetime, M. L. Cherry, M. Deakyne, K. Lande, C. K. Lee, R. I. Steinberg, and B. Cleveland, Phys. Rev. Lett. 47 1507–1510 (1981).

Proposed solar neutrino experiment using 71Ga, J. N. Bahcall, B. T. Cleveland, R. Davis, Jr., I. Dostrovsky, J. C. Evans, Jr., W. Frati, G. Friedlander, K. Lande, J. K. Rowley, R. W. Stoenner, and J. Weneser, Phys. Rev. Lett. 40 1351–1354 (1978).

Lepton conservation in the double-beta decay of 82Se, B. T. Cleveland, W. R. Leo, C. S. Wu, L. R. Kasday, A. M. Rushton, P. J. Gollon, and J. D. Ullman, Phys. Rev. Lett. 35 757–760 (1975).

An analytic method for the least-squares fitting of single-line thick-absorber Mößbauer spectra, B. T. Cleveland, Nucl. Instr. and Meth. 107 253–257 (1973).

A simpler formula for certain integrals in the theory of the Mößbauer line shape, Bruce T. Cleveland, Z. Naturforsch. 27a 370 (1972).

Shape of Mößbauer resonance with interference, B. T. Cleveland and J. Heberle, Phys. Lett. 40A 13–14 (1972).

Approximate theoretical shape of the Mößbauer spectrum of a thick split absorber, B. T. Cleveland and J. Heberle, Phys. Lett. 36A 33–34 (1971).

The locomotory waves of Koruga, Deltotrichonympha, and Mixotricha, L. R. Cleveland and B. T. Cleveland, Arch. Protistenkunde 109, 39–45 (1966).