Neuropilin-2 is an independent prognostic factor for shorter cancer-specific survival in patients with acinar adenocarcinoma of the prostate

Angelika Borkowetz, Michael Froehner, Martina Rauner, Stefanie Conrad, Kati Erdmann, Thomas Mayr, Kaustubh Datta, Lorenz C. Hofbauer, Gustavo B. Baretton, Manfred Wirth, Susanne Fuesel, Marietta Toma and Michael H. Muders

1Department of Urology, Technische Universität, Dresden, Germany
2Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität, Dresden, Germany
3Institute of Pathology, Technische Universität, Dresden, Germany
4Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
5Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany

Neuropilin-2 (NRP2) is a member of the neuropilin receptor family and known to regulate autophagy and mTORC2 signaling in prostate cancer (PCa). Our study investigated the association of immunohistochemical NRP2 expression with clinicopathological data in PCa patients. For this purpose, we generated a tissue microarray with prostate tissue specimens from 400 PCa patients treated by radical prostatectomy. We focused on patients with high-risk factors such as extraprostatic extension (pT ≥ 3), Gleason score ≥ 8 and/or the presence of regional lymph node metastases (pN). Protein levels of NRP2, the vascular endothelial growth factor C (VEGFC) and oncogenic v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) gene as an indicator for TMPRSS2-ERG fusion was assessed in relation to the patients’ outcome. NRP2 emerged as an independent prognostic factor for cancer-specific survival (CSS) (hazard ratio 2.360, 95% confidence interval = 1.2–4.8; p = 0.016). Moreover, the association between NRP2 expression and shorter CSS was also especially pronounced in patients at high risk for progression (log-rank test: p = 0.010). We evaluated the association between NRP2 and the TMPRSS2-ERG gene fusion status assessed by immunohistochemical nuclear ERG staining. However, ERG staining alone did not show any prognostic significance. NRP2 immunostaining is significantly associated with shorter CSS in ERG-negative tumors (log-rank test: p = 0.012). No prognostic impact of NRP2 expression on CSS was observed in ERG-positive tumors (log-rank test: p = 0.153). Our study identifies NRP2 as an important prognostic marker for a worse clinical outcome especially in patients with a high-risk PCa and in patients with ERG-negative PCa.

*M.T. and M.H.M. contributed equally as senior authors to this work

Additional Supporting Information may be found in the online version of this article.

Key words: ERG, neuropilin-2, prognosis, prostate cancer, VEGFC

Abbreviations: CSS: cancer-specific survival; EGFR: epithelial growth factor receptor; ERG: v-ets avian erythroblastosis virus E26 oncogene homolog gene; ETS: E26 transformation-specific; NRP: neuropilin; OS: overall survival; PCa: prostate cancer; RP: radical prostatectomy; TMA: tissue microarray; TMPRSS: transmembrane protease serine; VEGF: vascular endothelial growth factor

Conflict of interest: M.R. declares a potential financial conflict of interest due to honoraria for lectures by Amgen. All other authors declare no conflict of interest.

Grant sponsor: Deutsche Forschungsgemeinschaft/German Research Foundation; Grant sponsor: Ferdinand-Eisenberger-Fellowship of the German Society of Urology

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/ijc.32679

History: Received 7 Apr 2019; Accepted 7 Aug 2019; Online 11 Sep 2019

Correspondence to: Michael H. Muders, Rudolf-Becker-Professor for Prostate Cancer Research, Division for Prostate Cancer Research, Center for Pathology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany, Tel.: +49-228-287-19397, E-mail: michael.muders@ukbonn.de; or Angelika Borkowetz, Department for Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany, Tel.: +49-351-458-18244, E-mail: angelika.borkowetz@uniklinikum-dresden.de
Introduction

Prostate cancer (PCa) is the most common malignant disease in men in the western world. In most patients with PCa, the disease is characterized by a long survival time and clinicopathological parameters are very important predictors for treatment response or survival. However, in a subgroup of patients, the disease progresses after local treatment. Therefore, it is of utmost importance to reliably identify men with aggressive disease, but prognostic biomarkers are still lacking for this subgroup.

Neuropilin-2 (NRP2) is a member of the neuropilin family of receptor proteins; the other member is Neuropilin-1 (NRP1). NRP2 is a non-tyrosine kinase receptor and functions as a co-receptor of vascular endothelial growth factor (VEGF)-receptors or plexins by modulating various cellular pathways including angiogenesis, cellular communication and migration. NRP2 plays a substantial role in the development of vascular capillaries and lymphatic vessels. NRP2 is expressed in numerous human cancers like PCa. During carcinogenesis, it is involved in proliferation, survival, migration and therapy resistance. One of the ligands for NRP2 is the VEGF. VEGFC promotes autophagy upon binding to NRP2 to escape chemotherapeutic stress in PCa cells. Together with NRP2, VEGFC promotes mTORC2 activation under oxidative stress. Moreover, NRP2, VEGFC and their co-expression emerged as predictive markers for radio-chemotherapy in bladder cancer patients. NRP2 also cross-talks with the insulin-like growth factor 1 receptor (IGF-1R) axis and promotes PCa progression and therapy resistance by regulating BMI-1 signaling.

Recently, the two most abundant isoforms of NRP2—NRP2a and NRP2b—have proven to elicit different functions in cancer cells. In this respect, the hepatocyte growth factor (HGF) plays an important role for cancer progression by inducing NRP2b-mediated Akt phosphorylation. NRP2b is also an important mediator for the signaling events initiated by transforming growth factor β (TGF-β). For PCa, it has been demonstrated that NRP1 was associated with increased tumor stage and Gleason grading as well as with nodal status. Although the expression of NRP2 in several tumor tissues and its association with tumor progression was described previously, its prognostic impact in primary PCa has not been investigated so far.

The PCa-specific gene fusion of the promoter and 5′-untranslated region of transmembrane protease serine 2 (TMPRSS2) with the oncogenic v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) gene, which belongs to the E26 transformation-specific (ETS) family of transcription factors, is an early event in PCa onset. However, the role of TMPRSS2-ERG gene fusion as prognostic marker for PCa progression remains contradictory. This fusion event results in an increased protein expression of ERG. In our study, we evaluated the staining of NRP2 and VEGFC in primary PCa tissue in a large cohort of 400 patients who underwent radical prostatectomy (RP) due to PCa. We investigated the role of NRP2 as potential predictor of unfavorable PCa outcome. Furthermore, we analyzed the role of ERG alone and in combination with NRP2 staining as prognostic marker in this PCa cohort.

Methods

Patient cohort for tissue microarray (TMA) analyses

For the generation of a TMA, paired malignant and non-malignant prostate tissue specimens from 400 patients with PCa were used. Patients were treated between 1996 and 2005 by RP at the Department of Urology of the Technische Universität Dresden, Germany. The study was approved by the Institutional Review Board of the Medical Faculty of the Technische Universität Dresden (EK194092004 and EK195092004), and written informed consent was obtained from each patient. Follow-up data regarding cancer-specific survival (CSS) and overall survival (OS) were obtained from medical records and by contacting the treating urologists, oncologists and general practitioners. CSS as the primary endpoint was defined as time between RP and the date of cancer-specific death. Data of patients not succumbing to PCa were censored at the date of last follow-up or date of death from any other cause. OS was defined as the time between RP and the date of death. Patient data without reported date of death were censored at the day of last follow-up.

For the calculation of potential associations with clinicopathological and survival parameters, patient groups differing in pathological tumor stages (pT), Gleason scores (GS) and pathological lymph node stages (pN) were compared. Patients were stratified according to prognostic risk factors as follows: low-risk (pT2 / GS ≤6 / pN0), intermediate-risk (pT2 / GS 7 / pN0) and high-risk (pT ≥3, GS ≥8 and/or pN1). As reported previously, the cohort was enriched for patients representing high-risk PCa. None of the patients showed distant metastases.
Staining scores for NRP2 and ERG were dichotomized into total of 14 paraffin blocks. Diagnostic hematoxylin and eosin stained tissue sections from the RP specimens were reviewed by an experienced board-certified uropathologist (M.H.M.) and representative tumor areas were assigned. Four tumor cores were selected per patient within these areas. Cores were mounted into a tumor areas were assigned. Four tumor cores were selected into a HRP Kit (Vector Laboratories; Burlingame, CA) and 3,3'-diaminobenzidine tetrahydrochloride (Sigma-Aldrich, Steinheim, Germany) as substrate or the BrightVision plus poly-HRP Kit (Immunologic, Duiven, the Netherlands) and the DAB-3S Kit BULK (Nicheirei Biosciences Inc., Chuo, Tokyo, Japan). Immunohistochemical staining of ERG served as surrogate marker for ERG gene fusion events that otherwise be detected by fluorescence in situ hybridization.25–27 The percentage of stained cells (0–100%) (cytoplasmic staining) and the intensity of staining (1 = low, 2 = medium, 3 = high) were assessed in case of VEGFC staining. For the scoring, we multiplied the percentage with the intensity. Because NRP2 and ERG staining allow a clear distinction between a positive and a negative staining, we scored only “positive” or “negative” in case of NRP2 and ERG. In case of NRP2, a distinction between membranous and cytoplasmic staining was not performed. For ERG, only the nuclear staining was counted. Evaluation was performed by two board-certified uropathologists (M.T. and M.H.M.).

Immunohistochemistry
The protein levels of NRP2, VEGFC and ERG were analyzed by immunohistochemistry using commercially available antibodies against total NRP2 (monoclonal mouse anti-human antibody C-9 / sc13117; Santa Cruz Biotechnology, Dallas, TX), VEGFC (polyclonal rabbit anti-human antibody PAD Z-CVC7, Thermo Fisher, Schwerte, Germany) and ERG (monoclonal rabbit anti-human antibody EP111; Zeta; Arcadia, CA). Staining was performed on 2 μm TMA sections using the immunoperoxidase-based universal VECTASTAIN Elite ABC HRP Kit (Vector Laboratories; Burlingame, CA) and 3,3'-diaminobenzidine tetrahydrochloride (Sigma-Aldrich, Steinheim, Germany) as substrate or the BrightVision plus poly-HRP Kit (Immunologic, Duiven, the Netherlands) and the DAB-3S Kit BULK (Nicheirei Biosciences Inc., Chuo, Tokyo, Japan). Immunohistochemical staining of ERG served as surrogate marker for ERG gene fusion events that otherwise be detected by fluorescence in situ hybridization.25–27

Statistical analyses
Data were analyzed using SPSS v24.0 (IBM Corp, Armonk, NY). Categorical data are presented as absolute and relative frequencies. Continuous variables are described as means with standard deviation, complemented by median and interquartile range. The Student’s t-test was used to compare means of independent groups. The Chi-square test was used to compare absolute frequencies. The prognostic impact of NRP2 and ERG (positive vs. negative) as well as of VEGFC expression (low expression vs. high expression) were assessed by Kaplan–Meier analyses. Differences in CSS and OS were evaluated by the log-rank test, respectively. These analyses were performed in the whole cohort and in patient subgroups stratified according to the risk (low- and intermediate- vs. high-risk, tumor stage (pT2 vs. pT ≥3), Gleason score (GS ≤7 vs. GS ≥8) and lymph node stage (pN0 vs. pN1)). Uni- and multivariate Cox’s proportional hazard regression analyses were performed to assess the prognostic impact of NRP2, ERG and VEGFC protein levels on CSS adjusted to pT stage (pT ≥3 vs. pT2), GS (GS ≥8 vs. GS ≤7) and pN (pN1 vs. pN0). Statistically significant parameters in univariate Cox’s proportional hazard regression analysis were included in multivariate analysis. A p-value of <0.05 was considered as statistically significant.

Data availability
Data available on request due to privacy/ethical restrictions.

Results
Demographic and clinicopathological characteristics of PCa patients
Patients’ and histopathological characteristics are depicted in Table 1. In total, 81% (n = 325) of the analyzed tumors were staged as high-risk PCa with ≥pT3, GS ≥8 or pN1. Only 51 and 24 patients presented low- and intermediate-risk PCa, respectively.

Table 1. Patients and histopathological characteristics	All (n = 400)
Age (years) (mean ± SD)	65 ± 5.64
PSA (ng/ml) (mean ± SD)	13.0 ± 12.9
pT2 (n)	178
pT3 (n)	154
pT4 (n)	68
pN0 (n)	294
pN1 (n)	106
Low-risk PCa (n)	51
Intermediate-risk PCa (n)	24
High-risk PCa (n)	325
Gleason score ≤ 6 (n)	78
Gleason score 7 (n)	75
Gleason score ≥ 8 (n)	247
Follow-up (years) (mean ± SD)	9.5 ± 2.9
NRP2 expression (n (%))	128 (32%)
High VEGFC expression (n (%))	137 (34%)
ERG expression (n (%))	182 (46%)
Accordingly, the cohort was enriched for patients with high-risk PCa and does not represent the distribution of a natural RP cohort. High-risk PCa was significantly associated with shorter CSS. CSS was 15.9 years in patients with low- and intermediate-risk PCa versus 11.2 years in patients with high-risk PCa (95% confidence interval [CI] = 15.33–16.57; \(p = 0.003 \)). While the 10-year CSS was 100% in patients with low- or intermediate-risk PCa, it was only 89% in patients with high-risk PCa (data not shown).

Immunohistochemical staining of NRP2, ERG and VEGFC and association with clinical parameters

Membranous and cytoplasmic staining of NRP2 could be assessed in 396 patients (Fig. 1a). Two hundred sixty-eight patients (68%) showed positive staining for NRP2 (Fig. 1a), whereas in 128 patients (32%) NRP2 staining was negative. NRP2 was detected in 33% (107/325) of high-risk PCa, in 33% (74/222) with a pathological stage ≥pT3, in 34% (85/247) with a GS ≥8 and in 31% (33/106) with the evidence of locoregional lymph node metastasis (pN1). In 28% of patients (n = 21) with low- and intermediate-risk PCa (n = 75), NRP2 staining was detected.

Nuclear staining for ERG (Fig. 1b) and cytoplasmic staining for VEGFC (Fig. 1c) could be assessed in all patients (n = 400). In 42% of the patients (168/400), nuclear ERG staining (Fig. 1b) was detectable, whereas in 58% (232/400) ERG staining was negative. Furthermore, ERG was detected in 45% (146/325) of high-risk PCa, in 48% (107/222) with a pathological stage ≥pT3, in 44% (109/247) with a GS ≥8 and in 49% (52/106) with the evidence of lymph node metastasis. High VEGFC protein levels were detected in 34% (137/400) of all cases, whereas 66% (263/400) of the cases showed low VEGFC levels. High VEGFC levels were also observed in 33% (107/325) of high-risk PCa, in 33% (74/222) with a pathological tumor stage ≥pT3, in 34% (83/247) with a GS ≥8 and in 41% (33/106) with the evidence of lymph node metastasis.

Patients with detectable NRP2 staining, high VEGFC levels and ERG staining did not show significantly different preoperative PSA serum levels or age compared to patients without NRP2 expression, low VEGFC levels or negative ERG staining. Concerning the histopathological parameters, there was no significant association of the NRP2 status, VEGFC level or the ERG status, with tumor stage, lymph node status and the GS (data not shown).

Association of outcome and NRP2 staining

NRP2 staining in the whole patient cohort indicated a significantly shorter CSS with a mean survival time of 15.5 years.
Figure 2. Association of NRP2 staining with CSS of the whole cohort (a), in patients with high-risk PCa (b), with pT ≥ 3 (c), with GS ≥ 8 (d) and with pN1 (e). The number of patients in each group is indicated, in which the values in brackets represent the number of events.

(95% CI = 14.5–16.5) compared to 16.1 years (95% CI = 15.6–16.6; \(p = 0.007 \)) for patients without NRP2 staining (Fig. 2a). Accordingly, the 5- and 10-year survival rates were lower for patients with positive NRP2 staining in comparison to patients without NRP2 protein expression (5-year CSS 92% vs. 97% and 10-year CSS 86% vs. 94%; Fig. 2a). In contrast, immunohistochemical staining of NRP2 was not associated with OS in the whole patient cohort (Supplemental Fig. S1).

In the subgroup of patients with high-risk PCa, the NRP2 expression was significantly associated with CSS (log-rank test: \(p = 0.010 \); Fig. 2b). Furthermore, patients with non-organ confined tumors (≥pT3), high-grade tumors (GS≥8) or with lymph node metastasis (pN1) were characterized by a significantly shorter CSS when NRP2 was expressed (Figs. 2c–2e).

In the univariate Cox’s proportional hazard regression analysis, patients with NRP2-positive staining presented a 2.5-fold higher probability of cancer-specific death (hazard ratio [HR] = 2.5, 95% CI = 1.27–5.10; \(p = 0.009 \)). More importantly, expression of NRP2 appeared as an independent prognostic indicator of cancer-specific death (HR = 2.4, 95% CI = 1.17–4.75, \(p = 0.016 \)) as revealed by multivariate Cox’s regression analyses and adjustment to stage (pT), Gleason Score and regional lymph node metastases (pN) (Table 2).

Association of outcome and VEGFC staining

We detected no prognostic impact of VEGFC levels with regard to OS and CSS in the whole cohort (Supplemental Figs. S2a and S2b) and to CSS in patients with high-risk PCa (Supplemental Fig. S2c). Moreover, VEGFC protein levels showed no significant association with CSS in PCa patients with non-organ confined tumor stage, high GS or the evidence of lymph node metastasis (Supplemental Figs. S2d–S2f). Cox’s regression analysis also revealed no prognostic influence of the VEGFC staining on CSS (univariate analysis: HR = 1.1, 95% CI = 0.51–2.21; \(p = 0.867 \); Table 2).
Table 2. Uni- and multivariate Cox regression analysis: parameters for the prediction of CSS in patients with PCa

Parameter	Comparison	Univariate Cox analysis HR (95% CI)	Univariate Cox analysis p-value	Multivariate Cox analysis HR (95% CI)	Multivariate Cox analysis p-value
Age (median 65 years)	≤ vs. > median	0.693 (0.338–1.422)	0.317	-	-
Gleason score (GS)	GS ≥ 8 vs. GS ≤ 7	5.165 (1.803–14.791)	0.002	3.871 (1.333–11.240)	0.013
pT	pT ≥ 3 vs. pT2	26.764 (3.65–196.12)	0.001	16.168 (2.18–120.12)	0.007
pN	pN1 vs. pN0	3.841 (1.896–7.781)	<0.001	3.085 (1.509–6.306)	0.002
VEGFC intensity	High vs. low	1.065 (0.513–2.209)	0.867	-	-
ERG staining	Positive vs. negative	0.942 (0.468–1.895)	0.867	2.360 (1.174–4.747)	0.016
NRP2 staining	Positive vs. negative	2.542 (1.267–5.102)	0.009	-	-

Association of outcome and NRP2 and VEGFC co-expression

A 49% of patients with high levels of VEGFC (67/136) and 23% of patients (61/260) with low levels of VEGFC showed a positive NRP2 staining. Focusing on patients for high levels of VEGFC, there was no significant difference in CSS between patients with or without positive NRP2 staining (p = 0.109; Fig. 3a). However, in patients with low VEGFC levels, patients with NRP2-positive tumors showed a significantly shorter CSS than those with NRP2-negative tumors (13.1 years, 95% CI = 12.0–14.3 vs. 16.0 years, 95% CI = 15.3–16.6; p = 0.022; Fig. 3b).

Association of outcome and ERG staining as a surrogate marker for fusion positive PCa

In the whole patient cohort, there was no significant association between ERG status and OS (Supplemental Fig. S3a). Moreover, ERG positivity was not associated with CSS (p = 0.867; Supplemental Fig. S3b). The same was true for patients with high-risk PCa (p = 0.892; Supplemental Fig. S3c). In accordance with these observations, immunohistochemical ERG staining was not a prognostic marker as assessed by univariate Cox’s regression analysis (HR = 0.94, 95% CI = 0.47–1.89; p = 0.867; Table 2).

Figure 3. Association of NRP2 staining with CSS in patients stratified according to high levels of VEGFC (a) and low levels of VEGFC (b). The number of patients in each group is indicated, in which the values in brackets represent the number of events.
Association of outcome and NRP2 and VEGFC expression in fusion positive and negative PCa

Out of the patients with positive ERG staining, 18% of the patients (71/182) showed an NRP2 expression. When considering the outcome of patients with positive ERG staining, no significant differences in CSS were detected between NRP2-positive and NRP2-negative patients (Fig. 4a). In contrast, in the subgroup of ERG-negative patients those with NRP2 staining (57/214) showed a significantly shorter CSS than those without NRP2 expression (log-rank test: \(p = 0.012 \); Fig. 4b).

When the patients were stratified into subgroups according to their VEGFC levels, no differences in CSS were detected between patients with ERG-positive and ERG-negative tumors for both VEGFC subgroups (data not shown).

Discussion

For men with localized PCa undergoing surgical treatment with curative intent, it is important to define prognostic markers for those at the highest risk to develop metastases and to die from the disease. The identification of useful clinicopathological factors and suitable biomarkers might lead to an individualized follow-up and tumor treatment. For this purpose, the prognostic potential of NRP2 and its ligand VEGFC as well as ERG expression as surrogate marker for TMPRSS2-ERG were evaluated in a large RP cohort enriched with high-risk PCa patients.

We previously reported an important role of the NRP2 axis in inducing antiapoptotic signaling during oxidative stress in PCa.\(^1\) Subsequent studies from our group showed that this axis also regulates autophagy and trafficking of the epithelial growth factor receptor (EGFR) in PCa cells.\(^9,28\) Both molecular pathways are important for cancer progression. The finding that NRP2 regulates Bmi-1 and modulates IGF-1R signaling in PCa underscores its importance in PCa and as possible marker for treatment response for drugs targeting the IGF-1R pathway.\(^13\) Moreover, calpain-mediated promoter methylation of the antimetastatic collapsing response mediator protein-4 (CRMP4) also promotes PCa metastases through the VEGFC/NRP2 axis.\(^29\) Furthermore, it has already been shown that immunohistochemical staining of NRPI, the other member of the neuropilin family, in PCa tissues was associated with increased tumor stage and Gleason grading as well as with nodal status.\(^14\)

Accordingly, we evaluated the role of immunohistochemical staining of NRP2 and VEGFC as ligand of NRP2 on a TMA as potential prognostic markers for PCa patients treated by RP. Cancer-specific death was considered as the primary end point in these analyses. NRP2 protein staining emerged as an independent predictor for shorter CSS in patients with PCa. Stratifying by risk factors, the prognostic value of NRP2 staining became more pronounced in patients with high-risk PCa (pT \(\geq 3 \), GS \(\geq 8 \) and/or pN1) compared to those with low- and intermediate-risk PCa. In high-risk PCa, especially in
Tumor Markers and Signatures

NRP2 expression. These whereby lymph node and bone metastases showed robust invasive potential of PCa and lymph node or bone metastases especially in patients with unfavorable PCa. However, the authors did not report any association of NRP2 expression with CSS.

We observed predominantly cytoplasmic staining of NRP2 in PCa cells, which was similar to our previous study in bladder cancer. Most of the evaluated cases were characterized by cytoplasmic staining. Preliminary data from our work group clearly show that the localization of NRP2 inside the cells plays an important role for tumor progression and metastases. In addition, we have previously shown that the VEGFC/NRP2 axis influences the endocytosis of EGFR and thus, cell survival and proliferation.

We could not detect any prognostic value for the VEGFC tissue staining in PCa, although VEGFC is an important ligand for NRP2. In earlier studies, we demonstrated that VEGFC protects PCa cells from oxidative stress and regulates the maturation of autophagosomes as well as EGFR trafficking in PCa cells. Other groups have also shown an important role of VEGFC in PCa progression by evaluating the presence of VEGFC on protein level in primary PCa tissues and in experimental models. In bladder cancer, we reported an association of VEGFC and NRP2 expression with resistance to radiochemotherapy. Other ligands for NRP2 might also be important for cancer progression like the HGF receptor derived NRP2 suggesting a possible regulatory function of ERG for PCa innervation. Interestingly, in our cohort, NRP2 expression was significantly associated with shorter time to cancer-specific death in ERG-negative patients. This suggests that the prosurvival and prometastatic function of ERG could be substituted by molecules like NRP2. Taken together, this implies a prognostic impact of NRP2 expression especially in ERG-negative patients.

The commercially available antibody against NRP2 used in our study detects total NRP2 including the two most abundant isoforms—NRP2a and NRP2b. Recently, it has been demonstrated that the isoform NRP2b plays an important role for disease progression in a subcutaneous xenograft model of lung cancer. Further studies with specific antibodies detecting individual isoforms are needed.

In summary, we have shown an association between NRP2 protein levels in PCa tissues and CSS in patients with localized PCa treated by RP. NRP2 was associated with a worse outcome especially in high-risk PCa patients and patients with negative ERG status. NRP2 emerged as independent prognostic marker for cancer specific death. Therefore, it could be considered as a novel biomarker that can indicate aggressive PCa.

Acknowledgements

A.B. was supported by the Ferdinand-Eisenberger-Fellowship of the German Society of Urology (DGU). This work was supported by the Deutsche Forschungsgemeinschaft/German Research Foundation (DFG MU2687/5-1 to M.H.M. and L.C.H.) and the SKELMET Consortium funded by the DFG. The tumor and normal tissue bank of the University Cancer Center Dresden, Technische Universität Dresden provided the primary PCa tissues for the creation of the investigated tissue microarray.
References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30.
2. Bill-Axelson A, Holmberg L, Garmo H, et al. Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 2014;370:932–42.
3. Bagri A, Tessler-Lavigne M, Watts RJ. Neuropilins in tumor biology. Clin Cancer Res 2009;15:1860–4.
4. Chen H, Bagri A, Zupicich JA, et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 2000;25:43–56.
5. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002;129:4797–806.
6. Dallas NA, Gray MJ, Xia L, et al. Neuropilin-2 mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin Cancer Res 2008;14:8402–60.
7. Gemmill RM, Nasarre P, Nair-Menon J, et al. The neuropilin 2 isoform NR2B uniquely supports TGFbeta-mediated progression in lung cancer. Sci Signal 2012;10:eaag9528.
8. Yasuoka H, Kodama R, Tsujimoto M, et al. Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCXR4 expression. BMC Cancer 2009;9:220.
9. Stanton MJ, Dutta S, Zhang H, et al. Autophagy control by the VEGF-C/NRP-2 axis in cancer and its implication for treatment resistance. Cancer Res 2013;73:160–71.
10. Honscheid P, Dutta K, Murdesh MH. Autophagy detection, regulation and its role in cancer and therapy response. Int J Radiat Biol 2014;90:628–35.
11. Maders MH, Zhang H, Wang E, et al. Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1. Cancer Res 2009;69:6042–8.
12. Keck B, Wach S, Taubert H, et al. Neuropilin-2 and its ligand VEGF-C predict treatment response after transurethral resection and radiochemotherapy in bladder cancer patients. Int J Cancer 2015;136:443–51.
13. Goel HL, Chang C, Pursell B, et al. VEGF/neuropilin-2 regulation of Rmi-1 and consequent repression of Sgf-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov 2012;2:906–21.
14. Tse BWC, Volpert M, Rathier E, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36:3417–27.
15. Gray MJ, Van Buren G, Dallas NA, et al. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 2008;100:109–20.
16. Dal Pra A, Lalonde S, Sykes J, et al. TMPRSS2-ERG status is not prognostic following prostate cancer radiotherapy: implications for fusion status and DSB repair. Clin Cancer Res 2013;19:5202–9.
17. FitzGerald LM, Agulliu I, Johnson K, et al. Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer 2008;8:230.
18. Font-Tello A, Juanpere N, de Muga S, et al. Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate 2015;75:1216–26.
19. Haghdal C, Hammarsten P, Stromvall K, et al. TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 2014;4:96824.
20. Hermans KG, Boormans JL, Gasi D, et al. Overexpression of prostate-specific TMPRSS2(exon 9)-ERG fusion transcripts correlates with favorable prognosis of prostate cancer. Clin Cancer Res 2009;15:6398–403.
21. Pettersson A, Graff RE, Bauer SR, et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 2009;18:2149–59.
22. Spencer ES, Johnston RB, Gordon RR, et al. Prognostic value of ERG oncoprotein in prostate cancer recurrence and cause-specific mortality. Prostate 2013;73:905–12.
23. Rachner TD, Thiele S, Gobel A, et al. High serum levels of Dickkopf-1 are associated with a poor prognosis in prostate cancer patients. BMC Cancer 2014;14:649.
24. Thiele S, Gobel A, Rachner TD, et al. WNT5A has anti-prostate cancer effects in vitro and reduces tumor growth in the skeleton in vivo. J Bone Miner Res 2015;30:471–80.
25. Park K, Tomlins SA, Mudalir KM, et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 2010;12:590–8.
26. Shah RB. Clinical applications of novel ERG immunohistochemistry in prostate cancer: significance of TMPRSS2-ERG fusions. Mol Cancer Res 2013;11:1349–61.
27. Deliaux C, Tian YV, Bouchet M, et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 2006;8:826–32.
28. Singareddy R, Seman L, Conley-Lacomb MK, et al. Transcriptional regulation of CXCXR4 in prostate cancer: significance of TMPRSS2-ERG fusions. Mol Cancer Res 2006;4:8347–51.
29. Chaux A, Albadine R, Toubaïj A, et al. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol 2011;35:1014–20.
30. Cerveira N, Ribeiro FR, Peixoto A, et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosomal copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 2006;8:826–32.
31. Singareddy R, Seman L, Conley-Lacomb MK, et al. Transcriptional regulation of CXCXR4 in prostate cancer: significance of TMPRSS2-ERG fusions. Mol Cancer Res 2006;4:8347–51.
32. Deliaux C, Tian YV, Bouchet M, et al. TMPRSS2-ERG gene fusion expression regulates bone markers and enhances the osteoblastic phenotype of prostate cancer bone metastases. Cancer Lett 2018;438:32–43.
33. Xu B, Chevarie-Davis M, Cheravel S, et al. The prognostic role of ERG immunopositivity in prostatic acinar adenocarcinoma: a study including 454 cases and review of the literature. Hum Pathol 2014;45:488–97.
34. Hoogland AM, Jenster G, van Weerden WM, et al. ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Med Pediatr Oncol 2012;52:471–9.
35. Mao X, Yu Y, Boyd LK, et al. Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res 2010;70:5207–12.
36. Hänze J, Rexin P, Jakubowski P, et al. Prostate cancer tissues with positive TMPRSS2-ERG-gene fusion status may display enhanced nerve density. Urol Oncol 2018; https://doi.org/10.1016/j.suronc.2018.07.019. [Epub ahead of print].