Auto-active Verification of Floating-point Programs via Nonlinear Real Provers

Junaid Rasheed and Michal Konečný

Aston University, Birmingham, B4 7ET, UK

Abstract. We give a process for verifying numerical programs against their functional specifications. Our implementation is capable of automatically verifying programs against tight error bounds featuring common elementary functions. We demonstrate and evaluate our implementation on several examples, yielding the first fully verified SPARK implementations of the sine and square root functions.

The process integrates existing tools using a series of transformations and derivations, building on the proving process in SPARK where Why3 produces Verification Conditions (VCs) and tools such as SMT solvers attempt to verify them. We add steps aimed specifically at VCs that contain inequalities with both floating-point operations and exact real functions. PropaFP is our open-source implementation of these steps. The steps include symbolic simplifications, deriving bounds via interval arithmetic, and safely replacing floating-point operations with exact operations, utilizing tools such as FPTaylor or Gappa to bound the compound rounding errors of expressions. Finally, the VCs are passed to provers such as dReal, MetiTarski or LPPaver which attempt to complete the proof or suggest possible counter-examples.

Keywords: Floating-Point Computation · Software Verification · Automated Proving · Interval Methods · Software Assurance.

1 Introduction

Context. Safety-critical software often includes numerical calculations. Since most processors now contain a floating-point (FP) unit, these calculations often use FP arithmetic to utilise the speed and precision of FP units.

Those developing safety-critical programs need to provide guarantees that the program behaves in a precisely specified way. This can be achieved via formal verification, i.e., proving that the program adheres to some specification.

For example, consider the Ada function in Listing 1.1 that computes a Taylor approximation of the sine function. We specify that this function gives a result very close to the exact sine function under some conditions:

\[X \in [-0.5, 0.5] \implies |\text{Taylor}_\text{Sin}'\text{Result} - \sin(X)| \leq 0.001 \] (1)

* This project has received funding from AdaCore Ltd and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.
We would like a tool to automatically verify this specification or obtain a counterexample if it is not valid. This is an example of auto-active verification \cite{14}, i.e., automated proving of inline specifications such as post-conditions and loop invariants.

To this end, we deploy SPARK technology \cite{12}, which represents the state-of-the-art in industry-standard formal software verification. Specifically, we use SPARK Pro 22.1 which includes the GNAT Studio IDE and GNATprove. GNATprove manages Why3 and a selection of bundled SMT solvers as shown in Fig. 1.

As a language, SPARK is based on Ada with a focus on program verification. GNATprove translates SPARK programs to WhyML programs using GNAT2Why. Why3 \cite{6} then derives proof obligations in the form of verification conditions (VCs), which are formulas comprising traditional mathematical features such as numbers, numerical functions, and sets, and do not mention programming constructions such as loops and mutable variables. The VCs imply that the program satisfies the given specification. Finally, these VCs are sent to various SMT solvers which will attempt to decide them. Why3 plays a key role in SPARK as well as other toolchains, effectively harnessing available solvers and provers for software verification.

Problem. With a SPARK version of the specification (1), the toolchain automatically verifies absence of overflow in the \texttt{Taylor_Sin} function. This is not difficult since the input \(x\) is restricted to the small domain \([-0.5, 0.5]\). However, the current SPARK toolchain and other frameworks we are aware of are unable to automatically verify that the result of \(\text{Taylor}_\text{Sin}(x)\) is close to the exact \(\sin(x)\).

Part of the problem is that the VCs feature a mixture of exact real and FP operations. For example, in the VCs derived from (1), \texttt{Taylor_Sin’Result} is replaced with

\[
X \ominus ((X \odot X \odot X) \oslash 6.0);
\]

where \(\ominus, \odot,\) and \(\oslash\) are FP subtraction, multiplication, and division, respectively. Although SPARK has some support for FP verification as described in \cite{10},

```ada
function Taylor_Sin (X : Float ) return Float is
  (X - ((X * X * X) / 6.0));
```

Fig. 1. Overview of Automated Verification via GNATProve (adapted from \cite{10})
automatically verifying (1) requires further work and that is what we set out to do here, building on [10].

Solution. To automatically verify functional specifications analogous to the one in equation (1), we have designed and implemented an extension of the SPARK proving process, called PropaFP. The following steps are applied to quantifier-free VCs that contain real inequalities:

1. Derive bounds for variables and simplify the VC.
2. Safely replace FP operations with exact operations.
3. Again simplify the VC.
4. Attempt to decide the resulting VCs with provers for nonlinear real theorems.

PolyPaver [9] is a nonlinear real theorem prover that integrates with an earlier version of SPARK, but lacks the simplification steps and has much less powerful method of replacing FP operations.

Paper outline. Section 2 describes our process in detail, and Section 3 analyses what constitutes an error bound provable by this process. Sections 4 and 5 illustrate the process on further examples, featuring a loop, domain reduction using integers, and calling non-trivial subprograms. Section 4 presents an implementation of Heron’s method for approximating the square-root of a number, while Section 5 describes a verification of an adapted version of the sine function implementation from an AdaCore library used for safety-critical applications. Section 6 analyses the performance of the new proving process on the examples described in this paper and Section 7 concludes the paper.

2 Our Proving Process

When describing our proving process, we will illustrate its steps using the program \texttt{Taylor_Sin} from Listing 1.1. Let us first consider its SPARK formal specification shown in Listing 1.2. To write more intuitive specifications, we use the Ada \texttt{Big_Real} and \texttt{Big_Integer} libraries to get rational arithmetic in specifications. We have created axiomatic definitions of some exact functions, including sine which we call \texttt{Real_Sin}. These axiomatic functions have no implementation, only a specification which states that they behave like their analogous exact function. The listings in this paper have shortened versions of some functions to aid readability. Functions \texttt{FC_To_Big_Real}, \texttt{FLC_To_Big_Real}, and \texttt{To_Real} respectively embed \texttt{Floats}, \texttt{Long_Floats} (doubles), and \texttt{Integers} to \texttt{Big_Reals}. We have shortened these to \texttt{Rf}, \texttt{Rlf}, and \texttt{Ri} respectively. It should be understood that Why3 treats the \texttt{Big_Real} type as reals, not rationals. The post-condition specifies a bound on the total error, i.e., the difference between this Taylor series approximation of sine and the exact sine of \(x\).
Listing 1.2. SPARK formal specification of Taylor_Sin

```spark
function Taylor_Sin (X : Float) return Float with
  Pre => X >= -0.5 and X <= 0.5,
  Post =>
    abs(Real_Sin(Rf(X)) - Rf(Taylor_Sin ' Result))
    <= Ri(25889) / Ri(100000000); --- 0.00025889
```

Fig. 2. Overview of Automated Verification via GNATprove with PropaFP

2.1 Generating and processing verification conditions

As described in the introduction, we use GNATprove/Why3 to generate VCs. In principle, we could use other programming and specification languages, as long as we can obtain VCs of a similar nature.

If a VC is not decided by the included SMT solvers, we use the Manual Proof feature in GNAT Studio to invoke PropaFP via a custom Why3 driver based on the driver for CVC4. This driver first applies selected Why3 symbolic simplifications and saves the VC in SMT format. As in this format the VC is a negation of the specification from which it was produced, we shall refer to it as ‘the negated VC’ (NVC). The VC $contextAsConjunction \implies goal$ becomes $contextAsConjunction \land \neg goal$. During the process, we may weaken the conjunction of assertions by, for example, dropping assertions. A model that satisfies the weakened NVC will not necessarily be a counter-example to the original VC or the original specification. However, if the weakened NVC has no model, then both the original VC and the original specification are correct.

When parsing the SMT files, we ignore the definitions of basic arithmetic operations and transcendental functions. Instead of using these definitions, we use each prover’s built-in interpretations of such operations and functions. In more detail, the parsing stage comprises the following steps:

- Parse the SMT file as a list of symbolic expressions. Drop everything except assertions and variable and function type declarations.
- Attempt to parse all assertions in the conjunction. If an assertion contains any function not supported by the proving process, we drop the assertion.
- Functions are interpreted using their names.
We rely on each prover’s built-in understanding of the supported functions, currently $-, +, \times, \div, \exp, \log, \sin, \cos, \sqrt{}$, mod.

To increase the safety of this interpretation, we check the return type of some ‘ambiguous’ functions.

- For example, the output of a function named of_int depends on the return type, i.e. If the return type of of_int(x) is a single-precision float, parse this as Float32(x).

- For functions such as fp.add, the return type is clear from the name of the function. Also, for these functions a type declaration is normally not included in the SMT file.

We use the operands to derive the type of the operation as follows:

- FP operations are generic in the FP type, e.g., addition is encoded as fp.add param1 param2 for both single and double precision numbers.
- FP literals are encoded in the SMT file as bits, making it trivial to determine their type.
- If the FP operation contains variables, use variable declarations to determine the type of each variable.
- If every literal and every variable in the operation has the same type, we can decide the type of the operation.
- If an operation has operands of differing types, we cannot determine the type of the FP operation, and drop the assertion.

Dealing with \(\pi\). Similar to Real_Sin, we have created a function, Real_Pi, which takes no input, and is specified with axioms to state that it behaves like \(\pi\). Why3 turns this into a function, real_pi, with one void input. To help provers understand that this is the exact \(\pi\), we substitute calls to the function real_pi with \(\pi\).

For Taylor_Sin, the only VC that the SMT solvers included with GNAT Studio cannot solve is the post-condition VC. The NVC for the post-condition is in Listing 1.3. It has been reformatted for better readability by, e.g., removing unneeded brackets, using circles for floating-point operations, and omitting irrelevant statements. The predicate isFiniteFloat(X) is short for the inequalities MinFloat <= X, X <= MaxFloat.

2.2 Simplifications and bounds derivation

As some of the tools used by PropaFP require bounds on all variables, we attempt to derive bounds from the assertions in the NVC. First, we make the following symbolic simplifications to help derive better bounds:

- Reduce vacuous propositions and obvious tautologies, such as:
 - \((\text{NOT } \varphi \text{ OR true}) \text{ AND } (\varphi \text{ OR false}) \rightarrow \varphi\)
 - \(\varphi = \varphi \rightarrow \text{true}\)
- Eliminate variables by substitution as follows:
 - Find variable-defining equations in the NVC, except circular definitions.
Listing 1.3. NVC corresponding to the post-condition from Listing 1.2

| — assertions regarding axioms for sin and pi omitted |
| assert to_float(RNA, i) = 1.0 |
| assert isFiniteFloat(x) |
| assert (-0.5) ≤ x ∧ x ≤ 0.5 |
| assert isFiniteFloat(x⊙x) |
| assert isFiniteFloat((x⊙x)⊙x) |
| assert isFiniteFloat(x ⊖ (((x⊙x)⊙x)⊘6.0)) |
| assert

```plaintext
¬((sin(x) + (-1·x ⊖ (((x⊙x)⊙x)⊘6.0))) ≥ 0.0

⇒

sin(x) + (-1·x ⊖ (((x⊙x)⊙x)⊘6.0))) ≤ 25889/100000000

)∧( 

¬(sin(x) + (-1·x ⊖ (((x⊙x)⊙x)⊘6.0))) ≥ 0.0)

⇒

-1·(sin(x) + (-1·x ⊖ (((x⊙x)⊙x)⊘6.0))) ≤ 25889/100000000
```

• Pick a variable definition and make substitutions accordingly.
 * E.g., pick i=i1+1, and replace all occurrences of i with i1+1.
• If the variable has multiple definitions, pick the shortest one.
 * E.g., if we have both x=1 and x=0+1, all occurrences of x will be replaced with 1, including x=0+1 → 1=0+1.

– Perform simple arithmetic simplifications, such as:
 ● \(\varphi / 1 \rightarrow \varphi \)
 ● \(0 + 1 \rightarrow 1 \)
 ● \(\text{MIN}(e,e) \rightarrow e \).

– Repeat the above steps until no further simplification can be made.

Deriving bounds for variables proceeds as follows:

– Identify inequalities which contain only a single variable on either side.
– Iteratively improve bounds by interval-evaluating the expressions given by these inequalities.
 ● Initially the bounds for each variable are \(-\infty\) and \(+\infty\).
 ● For floating-point rounding \(\text{rnd}(x) \), we overestimate the rounding error by the interval expression \(x \cdot (1 ± \epsilon) ± \zeta \) where \(\epsilon \) is the machine epsilon, and \(\zeta \) is the machine epsilon for denormalized numbers for the precision of the rounded operation.
– These variables are assumed to be real unless they are declared integer.
– For integer variables, trim their bounds to nearest integers inside the interval.

Next, use the derived bounds to potentially further simplify the NVC:

– Evaluate all formulas in the NVC using interval arithmetic.
– If an inequality is decided by this evaluation, replace it with \textbf{True} or \textbf{False}.

Finally, repeat the symbolic simplification steps, e.g., to remove any tautologies that have arisen in the interval evaluation. Repeat deriving bounds, evaluations, and simplifications until we have no further improvement.
Listing 1.4. Taylor_Sin NVC after simplification and bounds derivation

Bounds on variables:
x (real) ∈ [-0.5, 0.5]

NVC:
assert to_float(RNA, 1) = 1.0

--- The last assertion is unchanged from Listing 1.3 except turning ≥s into equivalent ≤s.

Similarities with Abstract Interpretation This process of deriving bounds can be thought of as a simple form of Abstract Interpretation (AI) over the interval domain, but instead of scanning program steps along paths in loops, we scan a set of mutually recursive variable definitions. A similar iterative fixed-point calculation is used in both approaches.

The NVC arising from Taylor_Sin, shown in Listing 1.3, is already almost in its simplest form. The symbolic steps described in this section applied on this NVC only remove the assertions bounding x and pi, and replace pi with π. The resulting NVC is outlined in Listing 1.4.

2.3 Eliminating floating-point operations

VCs arising from floating-point programs are likely to contain floating-point operations. As most provers for real inequalities do not natively support floating-point operations, we need to eliminate the floating-point operations before passing the NVCs to a numerical prover. We propose computing a bound on the size of the overall rounding errors in expressions using a tool specialised in this task, replacing floating-point operations with exact operations, and compensating for the loss of rounding by adding/subtracting the computed error bound. Note that this action weakens the NVCs. Recall that weakening is safe for proving correctness but may lead to incorrect counter-examples.

Currently, in our implementation we use FPTaylor [15], which supports most of the operations we need. In principle, we can use any tool that gives reliable absolute bounds on the rounding error of our floating-point expressions, such as Gappa [8] or Rosa [7].

There are expressions containing floating-point operations in the Taylor_Sin NVC. The top-level expressions with FP operators are automatically passed to FPTaylor. Listing 1.5 shows an example of how the expressions are specified to FPTaylor. The error bounds computed by FPTaylor for the Taylor_Sin NVC expressions with floating-point operators are summarised in Table 1.

We can now use these error bounds to safely replace FP operations with exact operations. Listing 1.6 shows the resulting NVC for Taylor_Sin.

There may be statements which can be further simplified thanks to the elimination of FP operations. For example, in Listing 1.6, we have the trivial tautology 1 ± 0.0 = 1.0. To capitalise on such occurrences, we could once again interval-evaluate each statement in the NVC. Instead, we invoke the steps from
Section 2.2 again, which not only include interval evaluation, but also make any consequent simplifications. In Table 4 this NVC is referred to as Taylor_Sin.

We now have derived bounds for variables and a weakened and simplified NVC with no FP operations, ready for provers. We will call this the ‘simplified exact NVC’.

Alternative Methods to Deal with Floating-Point Operations Why3 includes a formalization of the FP IEEE-754 standard [4]. For SMT solvers that natively support FP operations, this formalization is mapped to the SMT-LIB FP theory, and for SMT solvers that do not support FP operations, an axiomatization of the formalization is given [10]. This approach is not powerful enough to verify our Taylor_Sin NVC as well as examples we discuss later.

3 Deriving Provable Error Bounds

The specification in Listing 1.2 bounds the difference between Taylor_Sin(X) and the exact sine function. Such a bound can be broken down as follows:

- The **subprogram specification error**, i.e. the error inherited from the specification of any subprograms that the implementation relies on.
 - If an implementation relies on some subprogram, the specification, not the implementation, of that subprogram would be used in the Why3 VC.
 - For Taylor_Sin this component is 0 as it does not call any subprograms.
- The **maximum model error**, i.e. the maximum difference between the model used in the computation and the exact intended result.
 - For Taylor_Sin this is the difference between the degree 3 Taylor polynomial for the sine function and the sine function.
- The **maximum rounding error**, i.e. the maximum difference between the exact model and the rounded model computed with FP arithmetic.
Auto-active Verification of FP Programs via Nonlinear Real Provers

Listing 1.6. Taylor_Sin NVC after removal of FP operations

Bounds on variables:	x (real) ∈ [-0.5, 0.5]
NVC:	assert 1 ± 0.0 = 1.0
	assert 0.0 ≤ (sin(x) + (-1·(x - ((x·x)·x/6.0))) + 1.769513e-8)
	(sin(x) + (-1·(x - ((x·x)·x/6.0))) + 1.769513e-8) ≤ (25889/100000000)
	¬ (0.0 ≤ (sin(x) + (-1·(x - ((x·x)·x/6.0))) - 1.769513e-8))
	¬ assert 0.0 ≤ (sin(x) + (-1·(x - ((x·x)·x/6.0))) + 1.769513e-8)
	(sin(x) + (-1·(x - ((x·x)·x/6.0))) + 1.769513e-8) ≤ (25889/100000000)

Listing 1.7. Taylor_Sin simplified exact NVC, ready for provers

Bounds on variables:	x (real) ∈ [-0.5, 0.5]
NVC:	¬¬ The last assertion is the same as in Listing 1.6

A rounding analysis cushion arising when eliminating floating-point operations. This is the difference between the actual maximum rounding error and the bound on the rounding error calculated by a tool such as FPTaylor as well as over-approximations made when deriving bounds for variables.

- The derived bounds are imperfect due to the accuracy loss of interval arithmetic as well as the over-approximation of floating-point operations.
- Imperfect bounds inflate the computed rounding error bound, as more values have to be considered.

A proving cushion is added so that the specification can be decided by the approximation methods in the provers. Without this cushion, the provers could not decide the given specification within certain bounds on resources, such as a timeout.

To justify our specification in Listing 1.2, we estimated the values of all five components. Our estimates can be seen in Table 2. The maximum model error and the maximum rounding error were calculated using the Monte-Carlo method. We ran a simulation comparing the Taylor series approximation of degree 3 of the sine function and an exact sine function. This simulation was ran for one million with pseudo-random inputs, giving us an approximate model error. To estimate the maximum rounding error, we compared a single precision and a quadruple precision floating-point implementation of the model for one hundred million pseudo-random inputs. (Floating-point operations are much faster than exact operations.) We estimated rounding analysis cushion by the difference
between the rounding error and the bound given by \(\text{FPTaylor} \) (~\(1.77E^{-8} \)). Note that the actual rounding analysis cushion may be larger due to overapproximations made when deriving bounds.

The sum of the maximum model error, the maximum rounding error, and the rounding analysis cushion is around 0.0002588878950. Raising the specification bound to 0.00025889 enables provers LPVaver and dReal to verify the specification, using a proving cushion of around \(2.11E^{-9} \).

In this case, most of the error in the program comes from the maximum model error. If we increased the number of Taylor terms, the maximum model error would become smaller and the maximum rounding error would become larger. Increasing the input domain would make both the maximum model error and the maximum rounding error larger.

Increasing the precision of the floating-point numbers used is a simple way to reduce both the maximum rounding error and the rounding analysis cushion. Table 2 on the right shows estimates for the components in a double-precision version of Taylor_Sin. The simplified exact NVC resulting from this example is referred to as Taylor_Sin_Double in Table 4.

To see how the subprogram specification error affects provable error bounds, consider function SinSin given in Listings 1.8 and 1.9. Taylor_Sin_P is the procedure version of the Taylor_Sin function. Our implementation currently does not support function calls, but it does support procedure calls. (This limitation is not conceptually significant.) The specification for Taylor_Sin_P has two additional inequalities, bounding the output value \(R \) to allow us to derive tight bounds for \(R \) when proving VCs involving calls of this procedure. Verifying this procedure in GNATprove gives one NVC for our proving process, corresponding to the final post-condition. This NVC is referred to as and Taylor_Sin_P in Table 4. The exact NVC is in folder examples/taylor_sine in [3].

Function SinSin calls Taylor_Sin_P with the parameter \(X \), storing the result in variable OneSin. Taylor_Sin_P is then called again with the parameter OneSin, storing the result in TwoSin, which is then returned. The post-condition for the SinSin function specifies the difference between our SinSin implementation and calling the exact sine function on \(X \) twice. The VC resulting from this post-condition is referred to as SinSin in Table 4.

Subprogram Specification Error	single precision	double precision
Maximum Model Error	\(~2.59E^{-4}\)	\(~2.59E^{-4}\)
Maximum Rounding Error	\(~1.61E^{-8}\)	\(~2.89E^{-17}\)
Rounding Analysis Cushion	\(~1.57E^{-9}\)	\(~4.04E^{-18}\)
Proving Cushion	\(~2.11E^{-9}\)	\(~1.80E^{-9}\)

Table 2. Error bound components for Taylor_Sin
Listing 1.8. SinSin function definition in SPARK

```plaintext
procedure Taylor_Sin_P (X : Float; R : out Float) is
begin
  R := X - ((X * X * X) / 6.0);
end Taylor_Sin_P;

function SinSin (X : Float) return Float is
  OneSin , TwoSin : Float;
begin
  Taylor_Sin_P (X, OneSin);
  Taylor_Sin_P (OneSin, TwoSin);
  return TwoSin;
end SinSin;
```

Listing 1.9. SinSin function specification in SPARK

```plaintext
procedure Taylor_Sin_P (X : Float; R : out Float) with
  Pre => X >= -0.5 and X <= 0.5,
  Post =>
    Rf(R) >= Ri(-48) / Ri(100) and — Helps verification of calling functions
    Rf(R) <= Ri(48) / Ri(100) and
    abs(Real_Sin(Rf(X)) - Rf(R)) <= Ri(25889) / Ri(100000000);

function SinSin (X : Float) return Float with
  Pre => X >= -0.5 and X <= 0.5,
  Post =>
    abs(Real_Sin(Real_Sin(Rf(X))) - Rf(SinSin'Result))
    <= Ri(51778) / Ri(100000000);
```

Since the steps of SinSin involve only subprogram calls, there is no model error or rounding error, and thus no rounding analysis cushion. As the value of SinSin comes from Taylor_Sin_P applied twice, and the derivative of sin has the maximum value 1, the subprogram specification error is a little below 0.00025889 + 0.00025889 = 0.00051778. Experimenting with different bounds, we estimate the LPPaver proving cushion is around 10^{-13}.

There is a delicate trade-off between the five components that a programmer would need to manage by a careful choice of the model used, floating-point arithmetic tricks, and proof tools used to obtain a specification for a program that is both accurate and does not require large cushions or specification errors. It is not our goal to make this type of optimisation for the example programs, rather we have calculated these values to help improve the understanding of how difficult it is to estimate them in practice. In simple cases, it would be sufficient to tighten and loosen the ‘bound’ in the specification until the proving process succeeds and fails, respectively.
4 Verification of Heron’s Method for Approximating the Square Root Function

We used PropaFP to verify an implementation of Heron’s method. This is an interesting case study because it requires the use of loops and loop invariants.

Listing 1.10. Heron’s Method Specification

```vhdl
function Certified_Heron (X : Float; N : Integer) return Float is
  Y : Float := 1.0;
  begin
    for i in 1 .. N loop
      Y := (Y + X/Y) / 2.0;
      pragma Loop_Invariant (Y >= 0.7);
      pragma Loop_Invariant (Y <= 1.8);
      pragma Loop_Invariant
        (abs (Real_Square_Root(Rf(X)) - Rf(Certified_Heron 'Result)))
        <= (Ri(1) / (Ri(2 ** (2 ** N))))  -- 1/2^2^N model error
        + Ri(3*N) * (Ri(1) / Ri(8388608));  -- 3*N*ε, rounding error bound
    end loop;
    return Y;
  end Certified_Heron;
end function Certified_Heron;
```

In Listing 1.10, the term $3 \cdot N \cdot \epsilon$ is a bound for the compound rounding error guessed by counting the number of operations. Note that five iterations are more than enough to get a good approximation of the square root function for X in the range $[0.5, 2]$.

The implementation in Listing 1.11 contains the loop invariants. The bounds on Y here help generate easier VCs for the loop iterations and post-loop behaviour. The main loop invariant is very similar to the post-condition in the specification, except substituting i for N, essentially specifying the difference between the exact square root and Heron’s method for each iteration of the loop.

Why3 produces 74 NVCs from our implementation of Heron’s method. 72 of these NVCs are either trivial or verified by SMT solvers. PropaFP is required for 2 NVCs that come from the main loop invariant. One NVC specifies that the loop invariant holds in the initial iteration of the loop, where i is equal to 1. Another VC specifies that the loop invariant is preserved from one iteration to the next, where i ranges from 1 and N. We refer to these NVCs as as Heron_Init and Heron_Pres in Table 4. Note that the third NVC derived from the invariant, i.e., that the invariant on the last iteration implies the postcondition is
Listing 1.12. Multiply_Add Implementation

```ada
procedure Multiply_Add (X, Y, Z : Float; Result : out Float) is
begin
  Result := (X * Y + Z);
end Multiply_Add;
```

Listing 1.13. Multiply_Add Specification

```ada
procedure Multiply_Add (X, Y, Z : Float; Result : out Float) with
  Pre =>
    (-3.0 <= X and X <= 3.0) and
    (-3.0 <= Y and Y <= 3.0) and
    (-3.0 <= Z and Z <= 3.0),
  Post =>
    (-12.0 <= Result and Result <= 12.0) and
    Result = X * Y + Z;
```

trivial here. The corresponding simplified exact NVCs can be found in folder `examples/heron` in [3].

5 Verifying AdaCore’s Sine Implementation

With the help of PropaFP, we developed a verified version of an Ada sine implementation written by AdaCore for their high-integrity math library\(^1\). First, we translated the program from Ada to SPARK, which entailed removing the use of generic types and other SPARK-violating code.

The code consists of several dependent subprograms. There are functions for computing \(\sin(x)\) and \(\cos(x)\) for \(x\) close to 0 and functions that extend the domain to \(x \in [-802, 802]\) by translating \(x\) into one of the four basic quadrants near 0. There is also a loop that extends the domain further. We have focused on the code for \(x \in [-802, 802]\) and postponed the verification of the loop.

We have translated functions into procedures since PropaFP currently does not support function calls. Next, we discuss all six procedures that we needed to specify and verify.

5.1 Multiply_Add

The specification in Listing 1.13 restricts the ranges of the input and output to rule out overflows. We used very small bounds based on how the function is used locally by the other procedures.

5.2 My_Machine_Rounding

\(^1\) We obtained the original code from file `src/ada/hie/s-libsin.adb` in archive `gnat-2021-20210519-19a70-src.tar.gz` downloaded from “More packages, platforms, versions and sources” at `https://www.adacore.com/download`.
This is a custom procedure that is used to round a floating-point number to the nearest integer. In the original version of this code, this was done using the SPARK-violating Ada function, `Float'Machine_Rounding`.

Again, we specify the ranges of the variables based on the local use of this procedure, to make it easier for our provers to verify the resulting VCs.

The other post-conditions state that the difference between \(x \) and \(y \) (which is \(x \) rounded to the nearest integer) is, at most, 0.500000001. We chose this number to avoid any “touching” VCs (such as \(x > 0 \implies x > 0 \)), which solvers using interval methods usually cannot prove. While SMT solvers can usually verify simple touching VCs, here they fail, probably due to the rounding function.

The NVCs resulting from the last two post-conditions are referred to as `My_Machine_Rounding \geq` and `My_Machine_Rounding \leq` in Table 4.

5.3 Reduce_Half_Pi

This procedure takes some input value, \(x \), and subtracts a multiple of \(\frac{\pi}{2} \) to translate it into the interval \([-0.26 \otimes \text{floatingPointPi}, 0.26 \otimes \text{floatingPointPi}]\).

The implementation, seen in Listing 1.16, has some significant differences to the original implementation. First, we limited this procedure to \(x \) within \([0, 802]\) and removed a loop that catered for larger values, as mentioned earlier. Also, we inlined calls to the SPARK-violating function `Float'Leading_Part`, which removes a specified number of bits from a floating-point number. This function was used to define the variables \(c1, c2, \) and \(c3 \), in effect, giving a higher precision version of \(\pi/2 \) using single-precision floating-point variables.

The specification in Listing 1.17 uses the new out parameter \(r \), which was just a local variable in the original implementation. \(r \) holds the integer multiple of \(\frac{\pi}{2} \) used to shift the input value close to 0. The final two post-conditions bound the difference between the computed new value of \(x \) and the ideal model result.

Our proving process is needed for the NVCs derived from the last four post-conditions in Listing 1.17. These four NVCs derived are referred to in Table 4 as `Reduce_Half_Pi_X{\geq,\leq}` and `Reduce_Half_Pi{\geq,\leq}`, respectively.
Listing 1.16. Reduce_Half_Pi Implementation

```ada
procedure Reduce_Half_Pi (X : in out Float; Q : out Quadrant; R : out Integer)
is
    K : constant := Pi / 2.0;
    Bits_N : constant := 9;
    Bits_C : constant := Float'Machine_Mantissa - Bits_N;
    C1 : constant Float := 1.57073974609375;
    C2 : constant Float := 0.00005676790530395508;
    C3 : constant Float := 0.000000000992088199377682284;
    C4 : constant Float := K - C1 - C2 - C3;
    N : Float := (X / K);
begin
    My_Machine_Rounding (N, R);    — R is returned for use in the specification
    X := (((X - Float(R)*C1) - Float(R)*C2) - Float(R)*C3) - Float(R)*C4;
    Q := R mod 4;
end Reduce_Half_Pi;
```

Listing 1.17. Reduce_Half_Pi Specification

```ada
subtype Quadrant is Integer range 0 .. 3;
Max_Red_Trig_Arg : constant := 0.26 * Ada.Numerics.Pi;
Half_Pi : constant := Ada.Numerics.Pi / 2.0;

procedure Reduce_Half_Pi (X : in out Float; Q : out Quadrant; R : out Integer)
with Pre => X >= 0.0 and X <= 802.0 ,
Post =>
    R >= 0 and R <= 511 and
    Rf(X'Old / (Pi/2.0)) - Ri(R) >= Ri(-500000001)/Ri(1000000000) and
    Rf(X'Old / (Pi/2.0)) - Ri(R) <= Ri(500000001)/Ri(1000000000) and
    Q = R mod 4 and
    X >= -Max_Red_Trig_Arg and X <= Max_Red_Trig_Arg and
    (Rf(X) - (Rf(X'Old) - (Ri(R)*Real_Pi/Rf(2.0)))) >= Ri(-18)/Ri(100000)
    and
    (Rf(X) - (Rf(X'Old) - (Ri(R)*Real_Pi/Rf(2.0)))) <= Ri(18)/Ri(100000);
```

5.4 Approx_Sin and Approx_Cos

Approx_Sin and Approx_Cos in Listing 1.18 compute Taylor series approximations of sine and cosine, respectively, using the Horner scheme. In the original AdaCore implementation, variable X has a generic type, but we have fixed the type to Float. The original implementation uses arrays and loops to adapt the order of the Taylor series to the precision of the float type. Since we have fixed the type of X, we perform these computations directly without arrays and loops.

The specifications in Listing 1.19 are quite simple. The pre-conditions restrict the value of X to be within the interval \([-0.26 \odot \text{floatingPointPi}, 0.26 \odot \text{floatingPointPi}\]). The first two post-conditions in both procedures restrict the Result to be within the interval \([-1, 1]\). The last two post-conditions in both
Listing 1.18. Approx_Sin and Approx_Cos Implementation

```ada
procedure Approx_Sin (X : Float; Result : out Float) is
  Sqrt_Epsilon_LF : constant Long_Float := Sqrt_2 ** (1 - Long_Float'Machine_Mantissa);
  G : constant Float := X * X;

  -- Horner Scheme
  H0 : constant Float := (-0.19501_81843E-3);
  H1 : Float;
  H2 : Float;
begin
  Multiply_Add(H0, G, (0.83320_16396E-2), H1);
  Multiply_Add(H1, G, (-0.16666_65022), H2);
  if abs X <= Float(Long_Float(Sqrt_Epsilon_LF)) then
    Result := X;
  else
    Result := (X * (H2 * G) + X);
  end if;
end Approx_Sin;

procedure Approx_Cos (X : Float; Result : out Float) is
  G : constant Float := X * X;

  -- Horner Scheme
  H0 : constant Float := (0.24372_67909E-4);
  H1 : Float;
  H2 : Float;
  H3 : Float;
  H4 : Float;
begin
  Multiply_Add(H0, G, (-0.13888_52915E-2), H1);
  Multiply_Add(H1, G, (0.41666_61323E-1), H2);
  Multiply_Add(H2, G, (-0.49999_99957), H3);
  Multiply_Add(H3, G, (0.99999_99999), H4);
  Result := H4;
end Approx_Cos;
```

Listing 1.19. Approx_Sin and Approx_Cos Specification

```ada
Max_Red_Trig_Arg : constant := 0.26 * Ada.Numerics.Pi;
Sqrt_2 : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;

procedure Approx_Sin (X : Float; Result : out Float) with
  Pre =>
  X => -Max_Red_Trig_Arg and X <= Max_Red_Trig_Arg,
  Post =>
  Result => -1.0 and Result <= 1.0 and
  (Rf(Result) - Real_Sin(Rf(X))) >= Ri(-58) / Ri(1000000000) and
  (Rf(Result) - Real_Sin(Rf(X))) <= Ri(58) / Ri(1000000000);

procedure Approx_Cos (X : Float; Result : out Float) with
  Pre =>
  X => -Max_Red_Trig_Arg and X <= Max_Red_Trig_Arg,
  Post =>
  Result => -1.0 and Result <= 1.0 and
  (Rf(Result) - Real_Cos(Rf(X))) >= Ri(-14) / Ri(1000000000) and
  (Rf(Result) - Real_Cos(Rf(X))) <= Ri(14) / Ri(1000000000);
```
Listing 1.20. Sin Implementation

```haskell
procedure Sin (X : Float; FinalResult : out Float) is
    Y : Float := (if X < 0.0 then -X else X);
    Q : Quadrant;
    R : Integer;
    Result : Float;
begin
    Reduce_Half_Pi (Y, Q, R);
    if Q = 0 or Q = 2 then
        Approx_Sin (Y, Result);
    else
        if Q = 1 or Q = 3
            Approx_Cos (Y, Result);
        end if;
    end if;
    if X < 0.0 then
        FinalResult := ( -1.0) * (if Q >= 2 then - Result else Result);
    else
        FinalResult := (1.0) * (if Q >= 2 then - Result else Result);
    end if;
end Sin;
```

Listing 1.21. Sin Specification

```haskell
procedure Sin (X : Float; FinalResult : out Float)
with Pre =>
    X >= -802.0 and X <= 802.0,
Post =>
    (Rf(FinalResult) - Real_Sin(Rf(X))) >= Ri(-19) / Ri(100000) and
    (Rf(FinalResult) - Real_Sin(Rf(X))) <= Ri(19) / Ri(100000);
```

procedures specify the difference between the exact version of Sine/Cosine and Approx_Sin/Approx_Cos.

The NVCs corresponding to the last two postconditions in both procedures are called Approx_Sin{≥,≤} and Approx_Cos{≥,≤} in Table 4.

5.5 Sin

Finally, procedure Sin in Listing 1.20 approximates the sine function for inputs from [−802, 802]. Compared to the original function, we have replaced uses of the SPARK-violating function Float’Copy_Sign with code that has the same effect.

Our proving process is needed to verify NVCs arising from the final two post-conditions in Listing 1.21, and these are referred to as Sin{≥,≤} in Table 4.

5.6 Generated Why3 NVCs

In total, Why3 derives 158 NVCs from the six procedures we have described. SMT solvers can verify 146 NVCs. The 12 remaining NVCs can be verified using our proving process. This is broken down by procedure in Table 3.
Listing 1.22. Selected Reduce_Half_Pi Simplified Exact NVCs

Reduce_Half_Pi_X_≤

Bounds on variables:
- r1 (int) ∈ [0, 511]
- x (real) ∈ [0, 802]

assert
-500000001 / 1000000000 <= (((x / (13176795/8388608)) - r1) + (542101/2500000000000000000000000))

assert
(((x / (13176795/8388608)) - r1) - (542101/2500000000000000000000000)) <= 500000001 / 1000000000

assert
¬(((((x - r1 * (25735/16384))) - (r1 * (3797/67108864))) - (r1 * (17453/17592186044416))) - (r1 * (12727493/2361183241434822606848))) + (1765573/10000000000) <= 6851933/8388608

Reduce_Half_Pi_<

Bounds on variables:
- r1 (int) ∈ [0, 511]
- x (real) ∈ [0, 802]

assert
-500000001 / 1000000000 <= (((x / (13176795/8388608)) - r1) + (542101/2500000000000000000000000))

assert
(((x / (13176795/8388608)) - r1) - (542101/2500000000000000000000000)) <= 500000001 / 1000000000

assert
¬(((((x - r1 * (25735/16384))) - (r1 * (3797/67108864))) - (r1 * (17453/17592186044416))) - (r1 * (12727493/2361183241434822606848))) + (/ 1765573 10000000000) <= 18 / 100000
Table 3. Why3 NVCs Generated for each Procedure from our Modified AdaCore Sine Implementation

Procedure	Generated NVCs	Trivial/SMT	Proving Process
Multiply_Add	4	4	0
My_Machine_Rounding	16	14	2
Reduce_Half_Pi	44	40	4
Approx_Sin	33	31	2
Approx_Cos	41	39	2
Sin	20	18	2

Listing 1.23. Selected Approx_Sin NVC

```plaintext
Approx_Sin ≤

Bounds on variables:
result__1 (real) ∈ [-7639663/8388608, 3819831/4194304] —− [−0.91072, 0.91072]
x (real) ∈ [-6851933/8388608, 6851933/8388608] —− [−0.81681, 0.81681]

NVC:
assert
(abs(x) <= 1 / 67108864) ⇒ (x = result__1)

assert
¬(abs(x) <= 1 / 67108864) ⇒
((x*(((−3350387 / 17179869184)*(x*x)) + (4473217 / 536870912))*(x*x))
 - (349525 / 2097152)*(x*x)) + x) - (2263189 / 50000000000000) <= result__1
∧ result__1 <=
((x*(((−3350387 / 17179869184)*(x*x)) + (4473217 / 536870912))*(x*x))
 - (349525 / 2097152)*(x*x)) + x) + (2263189 / 50000000000000)

assert
¬( result__1 - sin(x) <= 58 / 1000000000 )
```

We discuss only a few of the more interesting NVCs here. All NVCs can be found in folder examples/hie_sine in [3].

Listing 1.22 shows two of the simplified exact NVCs arising from the post-conditions in Reduce_Half_Pi. In both NVCs, the second and third assertions come from the third and fourth post-conditions and define how the x and r1 variables are dependent on each other. In both NVCs, the final assertion comes from the post-condition used to derive the NVC. The final assertion in the first NVC asserts an upper bound on the new value of x after calling Reduce_Half_Pi. The final assertion in the second NVC asserts that the difference between the new value of x after calling Reduce_Half_Pi and performing the same number of π/2 reductions on the original value of x using the exact π is not smaller than or equal to 18/100000.

The exact NVC in Listing 1.23 comes from the final post-condition from the Approx_Sin procedure in Listing 1.19. The second and third assertions specify
a dependency on x and result_{-1}. There are two assertions here due to the two if-then-else branches in the implementation of Approx_Sin in Listing 1.18. The final assertion specifies that the difference between the result of Approx_Sin for x and the value of the exact sine function for x is not smaller than or equal to $58/1000000000$.

Finally, the NVC in Listing 1.24 comes from the first post-condition in the procedure Sin in Listing 1.20.

This NVC is interesting since the implementation of the Sin procedure depends on the other procedures we have discussed, which results in the derived NVC including assertions derived from specifications of these other procedures. Assertions 1–2 come from the if statement defining Y. Assertions 3–6 come from the $\text{Reduce}_\text{Half}_\text{Pi}$ post-conditions as a consequence of calling $\text{Re-
duce_Half_Pi in Listing 1.20. Assertion 7 comes from the quadrant subtype defined in Listing 1.17. Assertions 8–9 contain the final two Approx_Sin/Approx_Cos post-conditions as well as corresponding to one of the if-then-else branches after the call to Reduce_Half_Pi. Assertions 10–11 correspond to the different paths from the final if-then-else. The final assertion clearly comes from the first post-condition in Listing 1.20.

6 Benchmarking the Proving Process

Tables 4 shows the performance of our implementation of the proving process on the verification examples described earlier. “VC processing” is the time it takes PropaFP to process the NVCs generated by GNATprove/Why3. The remaining columns in Table 4 show the performance on the following provers applied to the resulting simplified exact NVCs:

- dReal v4.21.06.2 [11] – solver using numerical branch-and-prune methods.
- MetiTarski v2.4 [5] – symbolic theorem prover deciding real inequalities via cylindrical algebraic decomposition (CAD).
- LPPaver v0.0.1 [2] – our prototype prover that uses methods similar to dReal.

In Table 4, n/s means the NVC contains some operation or number that is not supported by the prover (dReal does not support very large integers) while g/u means that the prover gave up.

All of the NVCs were solved by at least one of the provers in a reasonable time frame. VC processing takes, at most, a few seconds for most of the NVCs.

VC	VC Processing	dReal	MetiTarski	LPPaver
My_Machine_Rounding≥	0.53s	n/s	n/s	0.47s
My_Machine_Rounding≤	0.56s	n/s	n/s	0.42s
Reduce_Half_Pi_X≥	1.76s	n/s	0.07s	0.35s
Reduce_Half_Pi_X≤	1.77s	n/s	0.04s	0.33s
Reduce_Half_Pi≥	65.02s	n/s	g/u	0.02s
Reduce_Half_Pi≤	61.32s	n/s	g/u	0.01s
Approx_Sin≥	1.85s	1m08.95s	0.17s	5.63s
Approx_Sin≤	1.86s	1m06.16s	0.15s	5.61s
Approx_Cos≥	0.95s	3.28s	0.05s	1.83s
Approx_Cos≤	1.00s	1.53s	0.04s	1.50s
Sin≥	1.29s	n/s	n/s	6m34.62s
Sin≤	1.30s	n/s	n/s	6m29.8s
Taylor_Sin	2.04s	0.01s	0.14s	0.06s
Taylor_Sin_Double	2.07s	n/s	0.11s	0.05s
Taylor_Sin_P	2.05s	0.01s	0.14s	0.06s
SinSin	0.53s	3m19.81s	g/u	8.20s
Heron_Init	2.01s	0.00s	0.07s	0.01s
Heron_Pres	3.05s	5m06.14s	g/u	1m19.99s

Table 4. Proving Process on Described Examples
For the Reduce_Half_Pi{≥,≤} NVCs, the VC processing step takes around one minute. Most of this time was spent on the ‘Eliminating FP operations’ step. This is because FPTaylor takes a while to run its branch-and-bound algorithm on the file that is produced from these NVCs, particularly due to the use of π in a non-trivial formula which can be seen in the last two post-conditions in Listing 1.17.

Some of the NVCs could only be decided by LPPaver due to the following:

- The My_Machine_Rounding NVC contains integer rounding with ties going away from zero.
 - dReal does not support integer rounding.
 - MetiTarski does not support the rounding mode specified in this NVC.
- After our proving process, the bound on the maximum rounding error computed by FPTaylor in the Reduce_Half_Pi and the Taylor.Sin.Double NVCs are very small.
 - This number is represented as a rational number in the exact NVC, and the denominator is outside the range of integers supported by dReal.
- The Reduce_Half_Pi{≥,≤} NVCs have a tight bound.
 - Slightly loosening the specification bounds from 0.00018 to 0.0002 allows MetiTarski to verify this.
 * After this loosening, the Sin{≥,≤} would need to be loosened from 0.00019 to 0.00021 due to the increased subprogram specification error.
- The Sin NVCs contain integer rounding with ties going to the nearest even integer and uses the modulus operator.
 - dReal does not support integer rounding.
 - MetiTarski does not support the modulus operator.

6.1 Effect of Specification Bounds on Proving Times

For numerical provers, the tightness of the specification bound is often correlated with the time it takes for a prover to decide a VC arising from said specification. This is not normally the case for symbolic solvers, however, a VC arising from a specification that a symbolic solver could not decide may become decidable with a looser bound on the specification. We illustrate this in Table 5. The ‘Bound’ column states the specification bound for the NVC.

Table 5 shows how, in all of our examples, a looser bound results in quicker proving times for the tested numerical provers. In some cases, this improvement can be significant, as seen with the ‘SinSin’ NVCs. The proving time for symbolic provers does not improve with looser bounds.

6.2 Counter-examples

When writing specifications, it is not uncommon for a programmer to make a mistake in the specification by, for example, using wrong mathematical operations, setting too tight a bound for a specification, and so on. When this occurs,
Table 5. Effect of Specification Bound on Proving Time

VC	Bound	VC Processing	dReal	MetiTarski	LPPaver
Approx_Sin≥ -0.000000058	1.85s	1m08.95s	0.17s	5.63s	
Approx_Sin≥ -0.000000075	1.84s	28.27s	0.16s	3.72s	
Approx_Sin≥ -0.0000001	1.82s	15.07s	0.13s	2.74s	
Approx_Sin≥ -0.00001	1.87s	0.09s	0.15s	0.25s	
Approx_Sin≤ 0.000000058	1.86s	1m06.16s	0.15s	5.61s	
Approx_Sin≤ 0.000000075	1.85s	28.73s	0.16s	3.72s	
Approx_Sin≤ 0.0000001	1.86s	15.42s	0.15s	2.69s	
Approx_Sin≤ 0.00001	1.85s	0.09s	0.15s	0.25s	
Approx_Cos≥ -0.00000014	0.95s	3.28s	0.05s	1.83s	
Approx_Cos≥ -0.0000005	0.96s	0.31s	0.05s	0.61s	
Approx_Cos≥ -0.0000001	0.93s	0.14s	0.05s	0.54s	
Approx_Cos≥ -0.0001	0.96s	0.00s	0.06s	0.07s	
Approx_Cos≤ 0.00000014	1.00s	1.53s	0.04s	1.50s	
Approx_Cos≤ 0.0000005	0.94s	0.29s	0.04s	0.60s	
Approx_Cos≤ 0.000001	0.96s	0.14s	0.04s	0.51s	
Approx_Cos≤ 0.0001	0.94s	0.00s	0.04s	0.06s	
SinSin 0.00051778	0.53s	3m14.06s	g/u	8.20s	
SinSin 0.000052	0.57s	0.12s	g/u	5.25s	
SinSin 0.001	0.53s	0.02s	g/u	1.34s	
SinSin 0.01	0.53s	0.00s	g/u	0.33s	

it would be useful for a programmer to receive a counter-example for their specification.

Our proving process supports producing counter-examples and, with a custom Why3 driver, these counter-examples can be reported back to Why3, which will send the counter-examples to the programmer’s IDE. It should be understood that counter-examples produced by the proving process are potential counter-examples, since ‘simplified exact’ NVCs are weakened versions of original NVCs. Nevertheless, these potential counter-examples can still be actual counter-examples and would be useful for a programmer to have.

To demonstrate how the proving process can produce counter-examples, we modify our Taylor_Sin example, introducing three different mistakes which a programmer may feasibly make:

1. Replace the * with + in the Taylor_Sin implementation in Listing 1.1.
2. Invert the inequality in the Taylor_Sin post-condition in Listing 1.2.
3. Make our specification bound slightly tighter than the maximum model error + maximum rounding error + rounding analysis cushion in the post-condition from Listing 1.2, changing the value of the right hand side of the inequality in the post-condition from 0.00025889 to 0.00025887.

These three ‘mistakes’ are referred to as Taylor_Sin_Plus, Taylor_Sin_Swap, and Taylor_Sin_Tight, respectively, in Table 6.
Table 6. Proving Process on Described Counter-examples

VC	VC Processing	dReal	CE	LPPaver	CE
Taylor_Sin_Plus	2.05s	0.00s	$x = -0.166\ldots$	0.02s	$x = -0.5$
Taylor_Sin_Swap	2.05s	0.00s	$x = 0.166\ldots$	0.03s	$x = 0.499\ldots$
Taylor_Sin_Tight	2.1s	0.00s	$x = 0.499\ldots$	0.03s	$x = 0.499\ldots$

If a specification is incorrect, the resulting NVC must be true or ‘sat’. dReal would report a ‘delta-sat’ result, which means the given file was sat with a configurable tolerance, which we set to 1^{-100}. This makes models produced by dReal a potential model for the NVC. Models produced by LPPaver are actual models for the given NVC, but for files produced by the proving process, these should still be thought of as potential counter-examples due to the weakening of the NVC. The computed potential counter-examples shown in Table 6 are all actual counter-examples except those for Taylor_Sin_Tight.

7 Conclusion

Summary In this paper, we have presented an automated proving process for deciding VCs that arise in the verification of floating-point programs with a strong functional specification. The proving process combines several existing techniques and tools in its steps (cf., Fig. 2):

1. Why3 reads a program+specification and produces NVCs (Negated VCs).
2. PropaFP processes the NVCs as follows:
 (a) Simplify the NVC using simple symbolic rules and interval evaluation.
 (b) Derive bounds for all variables in the NVC, interleaving with (a).
 (c) Derive bounds for rounding errors in expressions with FP operations.
 (d) Using these bounds, safely replace FP operations with exact operations.
 (e) Repeat the simplification steps (a–b).
3. Apply nonlinear real provers on the processed NVCs to either prove them or get potential counter-examples.

This proving process should, in principle, work with other tools and languages than Why3 and SPARK, as long as one can generate NVCs similar to those generated by GNATprove.

We demonstrated our proving process on three examples of increasing complexity, featuring loops, real-integer interactions and subprogram calls. Notably, we have contributed the first fully verified SPARK implementations of the sine and square root functions. The examples demonstrate an improvement on the state-of-the-art in the power of automated FP software verification.

Table 4 indicates that our proving process can automatically and fairly quickly decide certain VCs that are currently considered difficult. Table 5 demonstrates how the process speeds up when using looser bounds in specifications.
Table 6 shows that our proving process can quickly find potential, often even actual, counter-examples for a range of common incorrect specifications.

Our examples may be used as a suite for benchmarking future FP verification approaches, and our resulting NVCs can be used to benchmarks future nonlinear real provers.

Future work

We conclude with thoughts on how our process could be further improved.

Executable exact real specifications. We plan to make specifications containing functions such as $\sqrt{}$ executable via high-accuracy interval arithmetic, allowing the developer or IDE to check whether the suggested counter-examples are real.

Improving the provers. We would like the provers we used in this paper to be improved in some ways. Ideally, the provers will be able to decide all of our examples. Support for integer rounding could be added to dReal, using methods similar to those used in LPPaver. It should also not be difficult to add support for larger integers in dReal. Support for both integer rounding and the modulus operator could be added to MetiTarski. Adding these features will allow both dReal and MetiTarski to have an attempt at deciding all of our examples.

Why3 integration. Our VC processing could be integrated into Why3. This would include the symbolic processing, bound derivation, and floating-point elimination. As Why3 transformations, the VC processing steps would be more accessible for users who are familiar with Why3. Also, the proving process would thus become easily available to the many tools that support Why3.

Support function calls. Having to manually translate functions into procedures is undesirable. Support for function calls could be added, e.g., by a Why3 transformation that translates functions into procedures.

Use Abstract Interpretation. We currently derive bounds for variables using our own iterative process similar to Abstract Interpretation over the interval domain. It would be interesting to see if the proving process would improve if we use an established Abstract Interpretation implementation to derive bounds. If nothing else, such change would reduce the amount of new code that a user would need to trust.

Verified implementation. We would like to formally verify some elements of our process to ensure that the transformation steps are performed correctly. As PropaFP and LPPaver utilise Haskell and AERN2 [1], rewriting these tools in Coq with coq-aern [13] may be a feasible verification route.
References

1. michalkonecny/aern2, https://github.com/michalkonecny/aern2
2. rasheedja/LPPaver, https://github.com/rasheedja/LPPaver
3. rasheedja/PropaFP, https://github.com/rasheedja/PropaFP
4. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 pp. 1–70 (Aug 2008)
5. Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. Journal of Automated Reasoning 44(3), 175–205 (Mar 2010), https://doi.org/10.1007/s10817-009-9149-2
6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd of Provers. pp. 53–64 (2011), https://hal.inria.fr/hal-00790310
7. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Transactions on Programming Languages and Systems (TOPLAS) 39(2), 1–28 (2017)
8. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving rounded operators. ACM Trans. Math. Softw. 37(1) (Jan 2010), https://doi.org/10.1145/1644001.1644003
9. Duracz, J., Konečný, M.: Polynomial function intervals for floating-point software verification. Annals of Mathematics and Artificial Intelligence 70(4), 351–398 (2014)
10. Fumex, C., Marché, C., Moy, Y.: Automated Verification of Floating-Point Computations in Ada Programs. report, Inria Saclay Ile de France (Apr 2017), https://hal.inria.fr/hal-01511183/document
11. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver for Nonlinear Theories over the Reals. In: Bonacina, M.P. (ed.) Automated Deduction – CADE-24. pp. 208–214. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2013)
12. Hoang, D., Moy, Y., Wallenburg, A., Chapman, R.: SPARK 2014 and GNATprove. International Journal on Software Tools for Technology Transfer 17(6), 695–707 (Nov 2015), https://doi.org/10.1007/s10009-014-0322-5
13. Konečný, M., Park, S., Thies, H.: Axiomatic Reals and Certified Efficient Exact Real Computation. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) Logic, Language, Information, and Computation. pp. 252–268. Lecture Notes in Computer Science, Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_16
14. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Workshop. http://fm.csl.sri.com/UV10. Citeseer (2010)
15. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic taylor expansions. ACM Transactions on Programming Languages and Systems (TOPLAS) 41(1), 1–39 (2018)