Dark Gauge U(1) Symmetry for an Alternative Left-Right Model

Oleg Popov

University of California, Riverside

opo001@ucr.edu

The 26th International Workshop on Weak Interactions and Neutrinos (WIN2017) June 23, 2017

In collaboration with Sean Fraser, Corey Kownacki, Ernest Ma, Nicholas Pollard, Mohammadreza Zakeri
1 Left-Right Models
- Introduction
- Minimal Left-Right Model
- Alternative Left-Right Model
- Dark Alternative Left-Right Models with Global Symmetries
- $U(1)_D$ Gauged ALRM
- Constraints on the $U(1)_D$ ALRM
- Conclusions

2 Scotogenic Inverse Seesaw Model of Neutrino Mass
- Model
 - Particle Content
 - Relevant Lagrangian Terms
- Neutrino Mass
 - Neutrino Mass Generation
 - Mixing of Leptons
 - m_ν
- Neutrino Mixing
Introduction/Motivation

- Restore symmetry between Left-Right sectors
- Generate naturally small neutrino masses
- Accomodate dark matter
Minimal Left-Right Model

- Simple extension of the SM gauge group
- Spontaneous/Explicit breaking of $\text{P} (\text{SU}(2)_L \leftrightarrow \text{SU}(2)_R)$ (also CP)
- Generation of naturally light neutrino masses (Seesaw I/III)

\[
\text{SU}(3)_C \times \text{SU}(2)_L \times \text{SU}(2)_R \times \text{U}(1)_{B-L}
\]

- $Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \equiv [3, 2, 1, \frac{1}{3}]$, $Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \equiv [3, 1, 2, \frac{1}{3}]
- \ell_L = \begin{pmatrix} v_L \\ e_L \end{pmatrix} \equiv [1, 2, 1, -1]$, $\ell_R = \begin{pmatrix} v_R \\ e_R \end{pmatrix} \equiv [1, 1, 2, -1]$. *

- $\eta \sim (1, 2, 2, 0)$, $\Delta_L \sim (1, 3, 1, -1)$, $\Delta_R \sim (1, 1, 3, -1)$
- Seesaw I/II
- $\eta \sim (1, 2, 2, 0)$, $\phi_L \sim (1, 2, 1, 1/2)$, $\phi_R \sim (1, 1, 2, 1/2)$
- Double seesaw through Weinberg dim-5 operator
- Flavour changing neutral currents

* N.G. Deshpande et al., Phys. Rev. D 44, 837 (1991).
Alternative Left-Right Model

\[SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \]

- \((u, d)_L : (3, 2, 1, \frac{1}{6})\)
- \((h^c, u^c)_L : (\bar{3}, 1, 2, -\frac{1}{6})\)
- \((\nu_E, E)_L : (1, 2, 1, -\frac{1}{2})\)
- \((e^c, n)_L : (1, 1, 2, \frac{1}{2})\)
- \(h_L : (3, 1, 1, -\frac{1}{3})\)
- \(d^c_L : (\bar{3}, 1, 1, \frac{1}{3})\)
- \(\begin{pmatrix} \nu_e & E^c_e \\ e & N^c_e \end{pmatrix}_L : (1, 2, 2, 0)\)
- \(N^c_L : (1, 1, 1, 0)\)

- ALRM is motivated by superstring-inspired E\(_6\) model
- Flavour changing neutral currents are naturally absent at tree level
- \(W^\pm_R\) has lepton number \(\pm 1\) and odd parity so they do not mix with \(W^\pm_L\)
- \(SU(2)_R\) breaking scale can be below as TeV, \(W^\pm_R\) and \(Z'\) are reachable at LHC

\[^\dagger \text{E. Ma, Phys. Rev. D 36, 274 (1987); K. S. Babu, X.-G. He, and E. Ma, Phys. Rev. D 36, 878 (1987); J. L. Hewett and T. G. Rizzo,} \]
Dark Alternative Left-Right Models with Global Symmetries

Fermion	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)$	S
$\psi_L = (\nu, e)_L$	(1, 2, 1, −1/2)	1
$\psi_R = (n, e)_R$	(1, 1, 2, −1/2)	1/2
$Q_L = (u, d)_L$	(3, 2, 1, 1/6)	0
$Q_R = (u, h)_R$	(3, 1, 2, 1/6)	1/2
d_R	(3, 1, 1, −1/3)	0
h_L	(3, 1, 1, −1/3)	1

Scalar	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)$	S
Φ	(1, 2, 2, 0)	1/2
$\Phi^* \Phi \sigma_2$	(1, 2, 2, 0)	−1/2
Φ_L	(1, 2, 1,1/2)	0
Φ_R	(1, 1, 2,1/2)	−1/2
Δ_L	(1, 3, 1, 1)	−2
Δ_R	(1, 1, 3, 1)	−1

- No tree level FCNC
- Neutrino masses ($m_\nu \sim \langle \Delta_L^0 \rangle \implies L \to (-1)^L, \text{R parity}$)
- Fermionic Dark Matter (Scotinos) ($m_n \sim \langle \Delta_R^0 \rangle$)
- Lepton number given by $L=S-T_{3R}$
- $\langle \phi_1^0 \rangle = 0$ by $S-T_{3R}$
- h, W_{R}^{\pm} has $L=1, \mp 1$
- SM particles are even, n, h, W_{R}^{\pm}, and Δ_{R}^{\pm} are odd under parity

‡ S. Khalil, H.-S. Lee, E. Ma, Phys. Rev. D 79, 041701(R) (2009)
Dark Alternative Left-Right Models II
with Global Symmetries

- No tree level FCNC
- Dirac neutrino masses ($m_\nu \sim \langle \phi^0_L \rangle$)
- Dirac Fermionic Dark Matter (Scotinos) ($m_n \sim \langle \phi^0_R \rangle$)
- Lepton number given by $L = S + T_{3R}$ and is conserved
- $\langle \phi^0_1 \rangle = 0$ by $S + T_{3R}$
- $\nu_R \nu_R$ breaks L and generates Majorana neutrino mass through canonical seesaw
- n remains Dirac fermion protected by residual global $U(1)$

$$n, W^+_R \sim 1, h, \phi^{0,-}_1 \sim -1$$

\S S. Khalil, H.-S. Lee, E. Ma, Phys. Rev. D 81, 051702(R) (2010)
The Particle Content of the U(1)$_D$ ALRM

particles	SU(3)$_C$	SU(2)$_L$	SU(2)$_R$	U(1)$_X$	U(1)$_S$
$(u, d)_L$	3	2	1	1/6	0
$(u, h)_R$	3	1	2	1/6	−1/2
d_R	3	1	1	−1/3	0
h_L	3	1	1	−1/3	−1
$(\nu, l)_L$	1	2	1	−1/2	0
$(n, l)_R$	1	1	2	−1/2	1/2
ν_R	1	1	1	0	0
n_L	1	1	1	0	1
(ϕ^+_L, ϕ^0_L)	1	2	1	1/2	0
(ϕ^+_R, ϕ^0_R)	1	1	2	1/2	1/2
η	1	2	2	0	−1/2
ζ	1	1	1	0	1
$(\psi^0_1, \psi^-_1)_R$	1	1	2	−1/2	2
$(\psi^+_2, \psi^0_2)_R$	1	1	2	1/2	1
χ^+_R	1	1	1	1	−3/2
χ^-_R	1	1	1	−1	−3/2
χ^0_{1R}	1	1	1	0	−1/2
χ^0_{2R}	1	1	1	0	−5/2
σ	1	1	1	0	3

C. Kownacki, E. Ma, N. Pollard, OP, M. Zakeri, 1706.06501
Symmetry breaking, Mass Generation, and Flavour Changing Neutral Currents

- $\langle \phi^0_R \rangle = 0$, $\langle \eta_2^0 \rangle = 0$ and conserve $S+T_{3R}$
- All exotic fermions have half integer charges under $S+T_{3R}$
- Particle content and charge assignments result in additional unbroken Z_2 symmetry, under which exotic fermions are odd and others are even
- $S+T_{3R}$ is broken to S' by $\langle \sigma \rangle \neq 0$ and gives masses to exotic fermions
- S' charges for exotic fermions are different from $S+T_{3R}$ charges
- Presence of ζ induces $\zeta^3 \sigma^*$ and $\chi_{1R}^0 \chi_{1R}^0 \zeta$ breaks S' further to Z_3
Particle content of proposed model under \((T_{3R} + S) \times Z_2\)

particles	gauge \(T_{3R} + S\)	global \(S'\)	\(Z_3\)	\(Z_2\)
\(u, d, ν, l\)	0	0	1	+
\((φ^+_L, φ^0_L, (η^+_2, η^0_2), φ^0_R)\)	0	0	1	+
\(n, φ^+_R, ζ\)	1	1	\(ω\)	+
\(h, (η^0_1, η^-_1)\)	−1	−1	\(ω^2\)	+
\(ψ^+_2R, χ^+_R\)	3/2, −3/2	0	1	−
\(ψ^-_1R, χ^-_R\)	3/2, −3/2	0	1	−
\(ψ^0_1R, ψ^0_2R\)	5/2, 1/2	1, −1	\(ω, ω^2\)	−
\(χ^0_1R, χ^0_2R\)	−1/2, −5/2	1, −1	\(ω, ω^2\)	−
\(σ\)	3	0	1	+
Constraints on the $U(1)_D$ ALRM

- $M(Z') > 4\text{TeV}$
- DM candidates: Fermionic $DM(\chi_0)$ ($\chi_0\bar{\chi}_0 \rightarrow \zeta\zeta^*$), Scalar DM ($\zeta$) ($\zeta\zeta^* \rightarrow HH$)
- $\langle \sigma \times v_{\text{rel}} \rangle_{\chi} = \frac{f_0^4}{4\pi m_{\chi_0}} \frac{(m_{\chi_0}^2 - m_{\zeta}^2)^{3/2}}{(2m_{\chi_0}^2 - m_{\zeta}^2)^2} \left(f_0 \zeta \chi_0 R \chi_0 R \right)$
- $\langle \sigma \times v_{\text{rel}} \rangle_{\zeta} = \frac{\lambda_0^2}{16\pi} \frac{(m_{\zeta}^2 - m_H^2)^{1/2}}{m_{\zeta}^3} \left(\lambda_0 \zeta\zeta^* HH \right)$
- $\nu_R > 35\text{TeV} \implies M_{Z'} > 18\text{TeV}, M_{W_R} > 16\text{TeV}$
Conclusions

- (Alternative, Dark) Left-Right Models have no tree level FCNC
- Generate naturally small neutrino masses (Seesaw I/II/III/Double)
- Rich phenomenology accessible at LHC
- Different variations are possible
- Natural Dark Matter candidates due to residual symmetry
- 2 layers of DM stabilized by Z_3 and Z_2 in case of Gauged DLRM
Particle Content of the Model

Particle	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	L	copies	Z_2
$Q_i = (u, d)_i$	3	2	1/6	0	3	+
u^c	3*	1	-2/3	0	3	+
d^c	3*	1	1/3	0	3	+
$L_i = (\nu, e)_i$	1	2	-1/2	1	3	+
e^c	1	1	1	-1	3	+
$(E^0, E^-)_{L,R}$	1	2	-1/2	1	1	-
$N_{L,R}$	1	1	0	1	1	-
$\Phi = (\phi^+, \phi^0)$	1	2	1/2	0	1	+
s^0_i	1	1	0	0	3	-
New Lagrangian

\[\mathcal{L}_{\text{new}} \supset \begin{align*} &N_L \left(E_R^0 \phi^0 - E_R^- \phi^+ \right) \\ &\left(E_R^0 E_L^0 + E_R^+ E_L^- \right) \\ &\left(\bar{\nu} L_i E_R^0 + e_{L_i} E_R^- \right) s_j \end{align*} \]

\[N_L N_L \]

\[m_i^2 s_j^2 \]
Scotogenic Neutrino Mass
Mixing of Leptons, \mathbb{Z}_2 odd

$$
M_{E,N} = \begin{pmatrix}
0 & m_E & m_D \\
 m_E & 0 & 0 \\
 m_D & 0 & m_N
\end{pmatrix}
$$

$$
m_1 = \frac{m_E^2 m_N}{m_E^2 + m_D^2}
$$

$$
m_{2,3} = \pm \sqrt{m_E^2 + m_D^2} + \frac{m_D^2 m_N}{2 (m_E^2 + m_D^2)}
$$

$$
m_N \ll m_E, m_D
$$
Neutrino Mass

\[m_\nu = f^2 \frac{m_D m_N}{m_E^2 + m_D^2} F(x) \]

\[F(x) = \frac{1}{1-x} \left(1 + \frac{x \ln x}{1-x} \right) \]

\[x = \frac{m_s^2}{(m_E^2 + m_D^2)} \]

\(f_{e,\mu,\tau} \)	0.1
\(x \)	\(\approx 0 \)
\(m_N \)	10 MeV
\(m_D \)	10 GeV
\(m_E \)	1 TeV
\(m_\nu \)	0.1 eV
Gauge $U(1)_D$
Symmetry for ALRM

Oleg Popov

RLM
Introduction
MLRM
ALRM
DLRM
$U(1)_D$ Gauged ALRM

Constraints on the $U(1)_D$ ALRM
Conclusions

Scotogenic Inverse Seesaw Model of Neutrino Mass

Model
Particle Content
Relevant Lagrangian Terms
Neutrino Mass Neutrino Mass Generation Mixing of Leptons

m_{ν}

Z$_3$ symmetry and Neutrino Mixing

$(\nu_i, l_i) \sim 1, 1', 1''$, $s_1 \sim 1$, $(s_2 \pm is_3)/\sqrt{2} \sim 1', 1''$, $l_{iR} \sim 1, 1', 1''$

$$m_s^2 s^2 + m_s^2 (s_2^2 + s_3^2)$$

$$M_\nu = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & i/\sqrt{2} \\ 0 & i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix} O^T \begin{pmatrix} I(m_{s1}^2) & 0 & 0 \\ 0 & I(m_{s2}^2) & 0 \\ 0 & 0 & I(m_{s3}^2) \end{pmatrix} O \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix}$$

$$M_\nu \bigg|_{f_\mu = f_\tau} = \begin{pmatrix} A & C & C^* \\ C & D^* & B \\ C^* & B & D \end{pmatrix}$$

Cobimaximal Mixing: $\theta_{23} = \pi/4$, $\exp(-i\delta) = \pm i$, $\theta_{13} \neq 0$
\[f_\mu \neq f_\tau \] case

\[
M_\nu = E_\alpha U E_\beta M_d E_\beta U^T E_\alpha \\
M_\nu M_\nu^\dagger = E_\alpha U M_d^2 U^\dagger E_\alpha^\dagger \\
M_\nu^\lambda M_\nu^\lambda & = E_\alpha U [1 + \Delta] M_{\lambda d}^2 \left[1 + \Delta^\dagger \right] U^\dagger E_\alpha^\dagger \\
\underbrace{OM_{\text{new}}^2 O^T}
\]

\[
\Delta = U^\dagger \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda - 1 \end{pmatrix} U, \quad M_{\lambda d}^2 = \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & \lambda^2 m_3^2 \end{pmatrix}
\]

\[
\lambda = \frac{f_\mu}{f_\tau}
\]
\[f_\mu \neq f_\tau \text{ case} \]

\[\rightarrow \text{ Normal ordering (left) and Inverted ordering (right).} \]
Muon Anomalous Magnetic Moment

\[\Delta a_\mu = \frac{(g - 2)_\mu}{2} = \frac{f_\mu^2 m_\mu^2}{16\pi^2 m_E^2} \sum_i |U_{\mu i}|^2 G(x_i) \]

\[G(x) = \frac{1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x}{6 (1 - x)^4}, \quad x_i = \frac{m_{s_i}^2}{m_E^2} \]

\[U = O \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix} \]

\[x_i \ll 1, \quad m_E \sim 1\text{ TeV} \]

\[\Delta a = \frac{f_\mu^2 m_\mu^2}{96\pi^2 m_E^2} \approx 10^{-11} f_\mu^2 \]

\(^{\S}\) S. Kanemitsu and K. Tobe, Phys. Rev. D86, 095025 (2012).
\[
\mu \rightarrow e\gamma
\]

\[
A_{\mu e} = \frac{e f_\mu f_e m_\mu}{32\pi^2 m_E^2} \sum_i U_{ei}^* U_{\mu i} G(x_i)
\]

\[
Br (\mu \rightarrow e\gamma) = \frac{12\pi^2 |A_{\mu e}|^2}{m_\mu^2 G_F^2} < 5.7 \times 10^{-13} \dagger
\]

\[
f_\mu f_e < 0.03
\]

\dagger MEG Collaboration, J. Adams et al., Phys. Rev. Lett. 110, 201801 (2013).
Dark Matter Candidates: N_L, S

\[-\mathcal{L}_{int} = \frac{\lambda h S}{2} \nu h S^2 + \frac{\lambda h S}{4} h^2 S^2\]

$m_S \lesssim m_h/2$ or $m_S > 150$ GeV
Conclusions

- Inverse Seesaw Neutrino Mass
- Z_3 Flavor Symmetry \implies Cobimaximal Mixing
- Deviation from Cobimaximal Mixing
- g-2 and $\mu \rightarrow e\gamma$