Network Models

Michael Goodrich

Some slides adapted from:
Networked Life (NETS) 112, Univ. of Penn., 2018, Prof. Michael Kearns
Efficient generation of large random networks, by Batagelj and Brandes.
Database of Real-World Graphs

- **SNAP**: Stanford Network Analysis Project’s Large Network Dataset Collection
- http://snap.stanford.edu/data/index.html
- Many real-world networks:
 - Social networks: online social networks, edges represent interactions between people
 - Communication networks: email communication networks with edges representing communication
 - Citation networks: nodes represent papers, edges represent citations
 - Collaboration networks: nodes represent scientists, edges represent collaborations (co-authoring a paper)
 - Web graphs: nodes represent webpages and edges are hyperlinks
 - Amazon networks: nodes represent products and edges link commonly co-purchased products
 - Internet networks: nodes represent computers and edges communication
 - ... many more
Network Models

• Recent studies of complex systems such as the Internet, biological networks, or social networks, have significantly increased the interest in modeling networks.

• Network models are desired that match real-world graph structures and properties, including:
 – Degree distributions
 – Small-world property
 – Clustering coefficients

Image from https://matrix.berkeley.edu/research/social-networks-history
Network Models

I. The Erdös-Rényi (Random Graph) Model
Random Graphs (Erdös/Rényi)

- **$G(n,p)$:**
 - n nodes
 - Every pair of nodes is connected independently with probability p
 - Average degree: $d = (n-1)p \sim np$
Erdös-Rényi G(n,p) Generation

• Begin with n isolated vertices, no edges
• Consider (unordered) vertex pairs, \{v,w\}, according to some ordering.
• For each such pair, \{v,w\}:
 – Randomly generate a bit, b, that is 1 with probability p.
 – If b = 1, then add the edge (v,w) to the graph

• This algorithm runs in $O(n^2)$ time, however.
Faster Erdös-Rényi G(n,p) Generation

- The above algorithm for generating G(n,p) is slow if p is small, because most of the bits are 0.
- Probability of having k-1 0’s then a 1 is $q^{k-1}p$, where $q = 1-p$.
- Waiting times are geometrically distributed.
- Divide the interval [0,1) according to the waiting times:

```
(0, p)         (qp, q^2p)          (1)
```

Faster Erdös-Rényi $G(n,p)$ Generation

- Pick r uniformly at random in the interval $[0,1)$
- Divide the interval $[0,1)$ according to the waiting times.
- The subinterval in which r falls will sample a waiting time:

Note that

$r < 1 - q^k \iff k > \frac{\log(1-r)}{\log q}$,

so that we choose $k = 1 + [\log(1-r)/\log q]$.
Faster Erdös-Rényi $G(n,p)$ Generation

• The above algorithm for generating $G(n,p)$ is slow if p is small, because most of the bits are 0.
• Probability of having $k-1$ 0’s then a 1 is $(1-p)^{k-1}p$
• Faster $O(n+m)$-time algorithm skips over runs of 0’s:

```
ALG. 1: $G(n,p)$
Input: number of vertices $n$, edge probability $0 < p < 1$
Output: $G=(\{0, \ldots, n-1\},E) \in G(n,p)$

$E \leftarrow \emptyset$

$v \leftarrow 1$; $w \leftarrow -1$

while $v < n$ do
  draw $r \in [0,1)$ uniformly at random
  $w \leftarrow w + 1 + [\log(1-r)/\log(1-p)]$
  while $w \geq v$ and $v < n$ do
    $w \leftarrow w - v$; $v \leftarrow v + 1$
  if $v < n$ then $E \leftarrow E \cup \{v,w\}$
```
There Can’t Be Two Large Components?

\[\frac{N}{2} \]

densely connected

\[\frac{N^2}{4} \]

missing edges

\[\frac{N}{2} \]

densely connected
Threshold Phenomena in Erdös-Rényi

• Theorem: In Erdös-Rényi, as \(n \) becomes large:
 - If \(p < \frac{1}{n} \), probability of a giant component (e.g. 50% of vertices) goes to 0
 - If \(p > \frac{1}{n} \), probability of a giant component goes to 1, and all other components will have size at most \(\log(n) \)

• Note: at edge density \(p \), expected/average degree is \(p(N-1) \sim pn \)

• So at \(p \sim \frac{1}{n} \), average degree is \(\sim 1 \): incredibly sparse
• So model “explains” giant components in real networks

• General “tipping point” at edge density \(q \) (may depend on \(n \)):
 - If \(p < q \), probability of property goes to 0 as \(n \) becomes large
 - If \(p > q \), probability of property goes to 1 as \(n \) becomes large

• For example, could examine property “diameter 6 or less”
Threshold Phenomena in Erdős-Renyi

• Theorem: In Erdős-Renyi, as N becomes large:
 – The diameter is \(O(\log(N) / \log(Np) \).
 – Threshold at
 \[
 p \sim \frac{\log(N)}{N^{5/6}}
 \]
 – for diameter 6.
 – Note: degrees growing (slightly) with N
 – If N = 300M (U.S. population) then average degree \(pN \sim 500 \)
 – If N = 7BN (world population) then average degree \(pN \sim 1000 \)
 – Not unreasonable figures…

• At \(p \) not too far from \(1/N \), get strong connectivity
• Very efficient use of edges
What Doesn’t the Model Explain?

- Erdös-Renyi explains giant component and small diameter
- But:
 - degree distribution not heavy-tailed; exponential decay from mean (Poisson)
 - clustering coefficient is *exactly* p

- To model these real-world phenomena, we’ll need richer models with greater realism…
Rich-Get-Richer Processes

- Processes in which the more someone has of something, the more likely they are to get more of it
- Examples:
 - the more friends you have, the easier it is to make more
 - the more business a firm has, the easier it is to win more
 - the more people there are at a nightclub, the more who want to go
- Such processes will amplify inequality
- One simple and general model: if you have amount \(x \) of something, the probability you get more is proportional to \(x \)
 - so if you have twice as much as me, you’re twice as likely to get more
- Generally leads to heavy-tailed distributions (power laws)
Preferential Attachment

• Start with two vertices connected by an edge
• At each step, add one new vertex v with one edge back to previous vertices
• Probability a previously added vertex u receives the new edge from v is proportional to the (current) degree of u
 – more precisely, probability u gets the edge is
 \[\frac{\text{current degree of } u}{\text{sum of all current degrees}} \]
• Vertices with high degree are likely to get even more links!
 – just like Instagram, Twitter, …
• Generates a power law distribution of degrees
• Variation: each new vertex initially gets d edges
Barabasi-Albert (BA) model

• The BA model for preferential attachment
 – input: some initial subgraph G_0, and d the number of edges per new node
 – the process:
 • nodes arrive one at the time
 • each node connects to d other nodes selecting them with probability proportional to their degree
 • if $[d_1,\ldots,d_t]$ is the degree sequence at time t, the node $t+1$ links to node i with probability equal to
 \[
 \frac{d_i}{\sum_i d_i}
 \]
 • Guarantees a degeneracy of d. Why?
 • Brute-force algorithm runs in $O(n^2)$ time. (Bad.)
Faster Barabási-Albert (BA) Algorithm

• Let d be the parameter for the BA algorithm

ALG. 5: preferential attachment

Input: number of vertices n
minimun degree $d \geq 1$

Output: scale-free multigraph

$G = (\{0, \ldots, n-1\}, E)$

M: array of length $2nd$

// M is an array of edges chosen so far.

for $v = 0, \ldots, n-1$ do

 for $i = 0, \ldots, d-1$ do

 $M[2(vd+i)] \leftarrow v$

draw $r \in \{0, \ldots, 2(vd+i)\}$ uniformly at random

 $M[2(vd+i)+1] \leftarrow M[r]$

$E \leftarrow \emptyset$

for $i = 0, \ldots, nd-1$ do

 $E \leftarrow E \cup \{M[2i], M[2i+1]\}$
Barabasi-Albert (BA) algorithm

- Faster algorithm runs in $O(nd) = O(n+m)$ time.
- The BA model should result in power-law degree distribution with exponent $c = -3$.

$c = -3$. different d’s. $P(k)$ changes. c does not.