Immune response to SARS-CoV-2 variants of concern in vaccinated individuals

Matthias Becker1,14, Alex Dulovic1,14, Daniel Junker1, Natalia Ruetalo2, Philipp D. Kaiser1, Yudi T. Pinilla3, Constanze Heinzel3, Julia Haering1, Bjoern Traenkle1, Teresa R. Wagner1,14, Mirjam Layer2, Martin Mehrlaender5, Valbona Mirakaj5, Jana Held3,6, Hannes Planatscher7, Katja Schenke-Layland1,18,9,10, Gérard Krause11,12, Monika Strengert11,12, Tamam Bakchoul13, Karina Althaus13, Rolf Fendel3,6, Andrea Kreidenweiss3,6, Michael Koeppen5, Ulrich Rothbauer1,4, Michael Schindler2 & Nicole Schneiderhan-Marra1

SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.
Results

To analyze the humoral response generated by vaccination, SARS-CoV-2 reactive antibody titers in serum samples from vaccinated, convalescent (hereon referred to as “infected”), and uninfected (hereon referred to as “negative”) individuals were measured using MULTICOV-AB33 (Fig. 1). Descriptions of all groups of donors can be found in Supplementary Table 1. Vaccinated individuals had not been previously infected with SARS-CoV-2 as demonstrated by the absence of anti-nucleocapsid IgG and IgA (Fig. 1a). As expected, there was a typical variation in antibody titers reflecting individual immune responses (Fig. 1a, b). When comparing between vaccine doses (Fig. 1c, d), all vaccinated subjects showed an enhanced antibody response with increasing time after the first dose and a further significant boost after the second dose. This boosting effect was so pronounced that it reached the upper limit of detection for MULTICOV-AB, as confirmed by a dilution series (Supplementary Fig. 1).

Discussion

RBD mutants are particularly important to track and study due to the role of the RBD-ACE2 interaction site in virus transmission and neutralization13,30 and their potentially increased infectivity12 or lethality28. This tracking has led to the identification of several variants of concern, notably the UK12, South African24, Mink26, and LA27 variants. We initiated this study to reveal the vaccine-induced immune response and most importantly to shed light on the still controversial question of how efficiently antibodies can bind and neutralize SARS-CoV-2 variants of concern. The presence of large titers of IgG antibodies within the saliva of vaccinated individuals far exceeded those seen in convalescent individuals. This was both surprising and welcome as it could indicate that vaccination might confer a...
Fig. 1 IgG and IgA response in serum samples of vaccinated, infected, and negative individuals. IgG (a, c) and IgA (b, d) response in sera from vaccinated (pre second vaccination (light blue, n = 25), post second vaccination (dark blue, n = 20)), infected (red) (n = 35), and negative (gray) (n = 20) individuals were measured with MULTICOV-AB. IgG (a) and IgA (b) response is shown as normalized RBD wild-type (wt) versus normalized nucleocapsid MFI values allowing for visualization of separation between the different groups. Increasing antibody titers in vaccinated individuals for IgG (c) and IgA (d) is shown with increasing days post vaccination, with samples colored based on whether they are before (light blue) or after (dark blue) the second dose. Lines indicate paired samples from the same donor. Source data are provided as a Source Data file.

Fig. 2 IgA and IgG response in saliva samples of vaccinated, infected, and negative individuals. Box and whisker plots for the IgA (a) and IgG (b) response in the saliva of vaccinated (blue, n = 22), infected (red, n = 26), and negative (gray, n = 45) individuals. All samples were measured three times using MULTICOV-AB, normalized against QC values to remove confounding effects, and the mean calculated and displayed. Panel b is presented using a logarithmic scale for clarity. As additional controls, one infected and then vaccinated sample and two vaccinated samples from individuals not in contact with active COVID-19 infections are displayed as triangles. Boxes represent the median, 25th and 75th percentiles, whiskers show the largest and smallest non-outlier values. Outliers were determined by 1.5 times IQR. Statistical significance was calculated by Mann–Whitney U (two-sided) with significance determined as being < 0.01. **< 0.001; ***< 0.0001. Source data are provided as a Source Data file.
Fig. 3 South African RBD mutant has a reduced response compared to UK RBD mutant. UK (a) and South African (SA) RBD mutants (b) have differing effects upon antibody binding. RBD mutant antigens were generated and added to MULTICOV-AB to measure the immune response towards them in sera from vaccinated pre-second dose (light blue, n = 25), post second dose (dark blue, n = 20), and infected (red, n = 35) individuals, compared to the wild-type (wt) RBD. A linear curve \(y = x \) is shown as a dashed gray line to indicate an identical response between wild-type and mutant. Kendall’s tau was calculated to measure the ordinal association between the mutant and wild-type. Source data are provided as a Source Data file.

Fig. 4 South African RBD variant has decreased neutralization compared to wild-type in vaccinated and infected samples. Neutralization for the South African variant (SA) displayed as virus neutralizing titers (VNT50) was measured in a virus neutralization assay compared to a wild-type variant (wt) (a) with sera from vaccinated (pre second vaccination (light blue, n = 9), post second vaccination (dark blue, n = 7)), infected (red, n = 6), and negative (pre-pandemic) (gray, n = 2) individuals. To confirm the reduction in neutralization seen, an ACE2 competition assay was developed and used to measure neutralization capacity for wild-type RBD (wt) and the South African RBD mutant (SA) (b) on sera from vaccinated (pre second vaccination (light blue, n = 25), post second vaccination (dark blue, n = 20)), infected (red, n = 35) and negative (pre-pandemic, gray, n = 20) individuals. 0 indicates that no neutralization is present while 1 indicates maximum neutralization. A linear regression \(y = -0.044 + 0.408x \) for all samples is shown in gray with the \(R^2 \) included. When examining vaccinated samples only, wild-type neutralization (c) is significantly increased following the second vaccine dose. For South African neutralization (d), while it is increased following the second dose, there is a significant reduction when compared to wild-type. Lines in (a), (c), and (d) indicate paired samples from the same donor. Source data are provided as a Source Data file.
sterilizing immune response in the oral cavity and thereby lower virus transmission. Focusing on antibody response, we examined in detail the effects of RBD mutations observed in emerging variants of concern. While only minor differences were detectable for the UK, Mink, and LA variants, a substantial reduction in VNT binding was observed for the South African variant. These findings were confirmed at the functional level by a VNT using patient-derived viral isolates, showing a significant decrease in the neutralizing capacity of sera from vaccinated or infected individuals for the South African variant, in accordance with other recently published studies.[46–39] This could provide a reasonable explanation for infection in vaccinated or convalescent individuals with the South African variant and suggests a potential reduction in the efficacy of the Pfizer BNT-162b2 vaccine from a B-cell perspective.

This study is limited by the sample size, the restriction to only two time points after vaccination for data analysis, and the lack of paired saliva and serum samples for our infected and negative groups. However, we want to note that our sample size examined is similar to or larger than most other sample sets used to examine immune response to the variants in detail[40] and that we examined paired serum and saliva samples for all of our vaccinated subjects. Furthermore, we performed VNT assays comparing wild-type to the South African variant with authentic virus isolates on human cells, in contrast to utilizing a pseudotype neutralization assay[40] or genetically engineered wild-type variant.[37] Notably, we focused our study on a detailed characterization of the humoral immune response, as a proxy of an individual’s immune response, as T-cell immunity has already been extensively studied.[21,41] Future work should investigate the antibody response and their persistence from different vaccines (i.e., AstraZeneca-Oxford, Moderna) against similar or newly emerging RBD mutants over a longer timeframe with increased sample size.

Viewed in a larger context, the impaired RBD-binding capacity to mutations in emerging variants of concern highlights the importance of updating current vaccines accordingly. Particular attention should be paid to the South African variant, because of the reduced neutralizing potency identified, while spontaneous independent enrichments of the E484K mutation have been observed in several countries.[42]

Methods

Data reporting. No statistical analysis was used to determine the sample size. The experiments were not randomized, and the investigators were not blinded during either experimentation or data analysis.

Study recruitment, sample collection, and ethics statement. Serum and saliva samples were collected from healthcare workers, vaccinated with the Pfizer BNT-162b2 vaccine. Two serum samples were collected from each individual. The first collection took place on average 17 days following administration of the first dose, while the second collection took place on average 12 days following administration of the second dose. Saliva samples were collected 7–10 days following the second serum sampling. Infected serum and saliva samples were collected from different groups of individuals. Serum samples were collected from individuals hospitalized at Universitäts Klinikum Tübingen between March 25, 2020 and January 22, 2021. All individuals tested positive for SARS-CoV-2 by PCR. Saliva samples were collected from individuals who had previously been infected with SARS-CoV-2 between March 7, 2020 and June 19, 2020. All individuals had previously tested positive by PCR, or were confirmed as being previously infected by ELISA measurements plus the presence of at least one key symptom (i.e., coughing, fever). Negative serum and saliva samples were also from different groups of individuals. Negative serum samples were purchased from Central Biohub. All of these samples were collected pre-pandemic. Negative saliva samples were collected from healthcare workers, vaccinated with the Pfizer BNT-162b2, who do not have contact with active SARS-CoV-2 infected patients, and one individual who had been previously infected with SARS-CoV-2 and was later vaccinated.

For serum collection, blood was taken by venipuncture, the serum extracted, and then frozen at −80 °C until use. For saliva collection, all individuals spat undisturbed into a collecting tube. To improve the sample, 0.5 μL of 1× PBS containing 0.1% Tween-20 were added to final concentrations of 0.3% and 1×, respectively. Saliva samples were then frozen at −80 °C until further use.

This study was approved by the Ethics Committee of Eberhard Karls University Tübingen and the University Hospital Tübingen under the approval number 222/2020BO2 Dr. Karina Althaus for Clinical Studies at the Institute of Transfusion Medicine, University Hospital Tübingen, and 312/2020BO1 (Coro-Buddy) to Dr. Andrea Kreidenweis, Institute of Tropical Medicine, University Hospital Tübingen and Eberhard Karls University Tübingen. All participants gave written informed consent. Characteristics of vaccinated and serum donors can be found in Supplementary Table 1. Characteristics of vaccinated, infected, and negative saliva donors can be found in Supplementary Table 2.

Expression of RBD mutants. The pCAGGS plasmid encoding the receptor-binding domain (RBD) of SARS-CoV-2 was kindly provided by F. Krammer.[35] RBDS of SARS-CoV-2 variants of concern were generated by PCR amplification of fragments from wild-type DNA template followed by fusion PCRs to introduce described mutation N501Y for the UK variant and additional mutations K417N and E484K for the South African variants.[38,39] Forward primer RBDFor and reverse primer N501Yrev were used for amplification of fragment 1, forward primer N501Yfor and reverse primer RBDFrev were used for amplification of fragment 2. Both fragments containing an overlap sequence at the 3′ and 5′ end were fused by an additional PCR using forward primer RBDFor and RBDrev. Based on cDNA for forward primer RBDFor and reverse primer RBDFrev. Amplified fragments were assembled by subsequent fusion into forward primer RBDfor and reverse primer RBDrev. RBDMutation L452R as recently reported for the SARS-CoV-2 variant of concern identified in Southern California (referred to in this manuscript as “LA”), was introduced using primer RBD-for and reverse primer L452Rrev for amplification of fragment 1 and forward primer L452Rfor for fragment 2. Both fragments were subsequently fused using primers RBDFor and RBDFrev. DNA coding for mutations (aminooxy acids 319–541 of respective spike protein) was cloned into Exp31 and EcoRI site of pCDNA3.4 expression vector with the N-terminal signal peptide (MWTLVTLFLLISVTAGVHS) for the secretory pathway that comprises Exp31 site. All expression constructs were verified by sequence analysis. A full list of primers used in this study can be found in Supplementary Table 3. Confirmed constructs were expressed in Exp293 cells.[34] Briefly, cells were cultivated (37 °C, 125 rpm, 8% (v/v) CO2) to a density of 5.5 × 106 cells/mL, diluted with Exp293F expression medium and transduction of the corresponding plasmids (1 μg/mL) with expexpression plasmids as per the manufacturer’s instructions. 20 h post transfection enhancers were added as per the manufacturer’s instructions. Cell suspensions were then cultivated for 2–5 days (37 °C, 125 rpm, 8% (v/v) CO2) and then centrifuged (4 °C, 23,900g, 20 min) to clarify the supernatant. Supernatants were then filtered with a 0.22-μm membrane (Millipore, Darmstadt, Germany) and supplemented with His-A buffer stock solution (20 mM Na2HPO4, 300 mM NaCl, 20 mM imidazole, pH 7.4). The solution was then applied to a HisTrap FF crude column (a Ni-NTA pure system pack, GE Healthcare, Freiburg, Germany), extensively washed with His-A buffer, and eluted with an imidazole gradient (50–400 mM). Eluted proteins were dialyzed against PBS.

Bead coupling. Coupling of RBD mutant antigens was done by Anteo coupling (#A-LMPKMM-10, Anteo Tech Reagents) following the manufacturer’s instructions. Briefly, 100 μL of spectrally distinct populations of MagPlax beads (1.25 × 106) (Lumines) were activated in 100 μL of AnteoBind Activation Reagent for 1 h at room temperature. The activated beads were washed twice with 100 μL of Coupling Buffer using a magnetic separator. Following this, 50 μg/mL of antigen (diluted in Coupling buffer) was added to the beads and incubated for 1 h at room temperature. The beads were then washed twice with 100 μL Coupling buffer and blocked for 1 h at room temperature in 0.1% BSA in Coupling Buffer. After washing twice in storage buffer, the beads were stored at 4 °C until further use.

MULTICOV-AB. MULTICOV-AB[31] is a multiplex immunoassay that simultaneously analyses 20 antigens was performed on all samples. In addition to the antigens presently included in MULTICOV-AB (Supplementary Table 4), RBD mutants from variants of concern were also included for measurements of all serum samples. All RBD mutants except the Mink variant (#40592-V08H80, Sino Biological) were produced in house. Both IgG and IgA were measured for all serum samples. To adapt MULTICOV-AB to analyze antibodies in saliva, the dilution factor was changed from 1:400 for the serum to 1:12 for saliva. Samples were diluted into assay buffer (1:4 Low Cross Buffer (Candor Bioscience Gmbh) in CBS (1× PBS + 1% BSA) + 0.05% Tween20) included a sterile workbench. In total, 25 μL of diluted sample was then added to 25 μL of 1× Bound Mix[35] using a 96-well plate reader. Samples were incubated for 2 h at 20 °C on a momixer (Eppendorf). After which the unbound antibodies were removed by washing three times with Wash Buffer (1× PBS, 0.05% Tween20) using a
Software Version 3.31 was fitted to the respective OD values and the antibody concentrations in the sample specimen calculated. Concentrations in the sample specimen calculated.

Saliva IgG ELISA. To validate saliva measurements by MULTICOV-AB, samples were re-measured using an in-house ELISA established by the Institute of Tropical Medicine, University of Tübingen. Saliva samples were analyzed for SARS-CoV-2 wild-type and South African variant reactive IgG antibodies by an in-house ELISA developed at the Institute of Tropical Medicine, University of Tübingen. SARS-CoV-2 RBD recombinant protein was dissolved in PBS to a final concentration of 2 µg/mL. In all, 50 µL of this solution was added to each well. Plates were then incubated at room temperature for 1 h. For detection, 1:20,000 biotinylated anti-human IgG (#109-065-008, Jackson Immunoresearch Laboratories) and 1:200 Streptavidin-HRP (Prozyme) were added and incubated for 1 h and 30 min, respectively. For visualization, TMB was added and the reaction was stopped using 1 M HCl. The plate was read at 450 nm and 620 nm using a microplate reader (CLARIOstar, BMG LABTECH, running Software Version 5.40 R2). To estimate the concentration of the IgG antibodies, a four-parameter logistic curve using MARS Data Analysis Software Version 3.31 was fitted to the respective OD values and the antibody concentrations in the sample specimen calculated.

Neutralization assay. Neutralization assays for the wild-type (Tü1) variant and the South African variant were performed on 16 vaccinated, 6 infected, and 2 negative serum samples. Briefly, Caco-2 cells were cultured at 37 °C in Dulbecco’s modified Eagle medium (DMEM), supplemented with 10% fetal calf serum (FCS), 2 mM l-glutamine, 100 mg/mL penicillin–streptomycin, and 1% non-essential amino acids (NEAA). The clinical isolate (200325_Tü1)34, which belongs to the lineage B.1.1.26 was referred to as “wild-type” in this manuscript. The South African variant (210211_SaV) was isolated from a throat swab collected in January 2021 at the Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, from a PCR-positive patient. In total, 100 µL of patient material was diluted in medium and used to directly inoculate 150,000 Caco-2 cells in a six-well plate. At 48 h post infection, the supernatant was collected and stored at −80 °C. After two consecutive passages, the supernatant was tested by qRT-PCR confirming the presence of three point mutations (N501Y, K417N, and E484K). NGS confirmed that the clinical isolate belongs to the lineage B.1.351. Sequence comparison of the Spike protein of 200325_Tü1 and 210211_SaV can be found as Supplementary Data 1. Caco-2 cell infection with SARS-CoV-2 was detected by western blotting, using sera from a convalescent patient. The multiplicity of infection determination (MOI) was conducted by titration using serial dilutions of both virus stocks. The number of infectious virus particles per millimeter was calculated as (MOI x cell number)/ (infection volume), where MOI = In (1 – infection rate). For neutralization experiments, 1 × 10^4 Caco-2 cells/well were seeded in 96-well plates the day before infection in a medium containing 5% FCS. Cells were co-infected with SARS-CoV-2 clinical isolate 200325_Tü1 or SARS-CoV-2 clinical isolate 210211_SaV at an MOI of 0.7. Patient sera were added in serial twofold dilutions from 1:40 to 1:12,800. At 48 h post infection, cells were fixed with 80% acetone for 5 min, washed with PBS, and blocked for 1 h at room temperature (RT) with 10% normal goat serum (NGS). Cells were incubated for 1 h at RT with 100 µL of serum from a hospitalized convalescent donor in a 1:10,000 dilution and washed three times with PBS. In total, 100 µL of goat anti-human Alexa594 (1:2000) in PBS was used as a secondary antibody for 1 h at RT. Cells were then washed three times with PBS and counted using the Cell-Counter (Becker & Hickl GmbH). Fluorescence intensity (MFI) values were divided by the mean MFI of CO (for IgG) or CO3 (for IgA), included on each plate to produce a normalization value. For serum measurements of the Spike and wtRBD of SARS-CoV-2, a normalized MFI value > 1 indicates positivty.

ACE2 competition assay. Biotinylated recombinant human ACE2 (#10108-H08H1-B, Sino Biological) was diluted to a final concentration of 571.4 ng/mL in assay buffer (Candor Bioscience GmBH) in CBS (1× PBS + 1% BSA) + 0.05% Tween20) to create ACE2 buffer. Plasma samples were diluted 1:50 in assay buffer and then to a final concentration of 1:400 in ACE2 buffer under a sterile workbench, resulting in a final ACE2 concentration of 500 ng/mL in all samples. In all, 25 µL of diluted plasma samples were then added to 25 µL of 1× ACE2 Buffer Mix35 using a 96-well plate (Sartorius). In addition to the standard bead mix used in MULTICOV-AB, all bead coupled RBD mutants were included. As a control, 500 ng/mL ACE2 was also used. Samples were incubated at 21 °C, 750 rpm for 2 h on a thermomixer. Samples were then washed using a microplate washer with Wash Buffer (1× PBS + 0.05% Tween20). 30 µL of 2 µg/mL Streptavidin-PE (#SAPE-001, Moss) was added to each well and incubated for 45 min, 21 °C, 750 rpm in darkness on a thermomixer. Following incubation, samples were washed again and then resuspended in 100 µL of Wash Buffer, before being shaken again for 3 min at 1000 rpm. Samples were read individually on a FLEXMAP3D instrument under the following settings: 80 µL (no timeout), 50 events, Gate:7500–15000 and Report Gain:Standard PMT. MFI values were then normalized against the control wells. All samples were measured in duplicates and the mean is reported.

Neutrophil Plex. For further validation of the neutralization response, all samples were analyzed using the NeutrophilPlex36 using a final Nanobead (NM11267) concentration of 2 nM. Samples were diluted 1:25 into assay buffer (same as MULTICOV-AB) and then a further 1:8 in neutrophil buffer (MULTICOV-AB assay buffer + 4.56 nM nanobead). In total, 25 µL of diluted sample was then added to 25 µL of 1× MULTICOV-AB Bead Mix33 using a 96-well plate (#3600, Corning). Samples were incubated for 2 h at 21 °C, 750 rpm on a thermomixer (Eppendorf), after which the unbound antibodies were removed by washing three times with Wash Buffer (1× PBS, 0.05% Tween20) using a microplate washer (Biotek 405TS, Biotek Instruments GmBH). Bound antibodies were detected using 3 µg/mL RPE-huIgG (#10116-098, DiaNova) by incubation for 45 min at 21 °C, 750 rpm on a thermomixer. Following another washing step, beads were re-suspended in 100 µL of Wash Buffer and re-shaken for 3 min at 21 °C, 1000 rpm. Plates were then measured using a FLEXMAP3D instrument (Luminex) using the same settings as in MULTICOV-AB above. Samples were measured on the same plate with their respective MULTICOV-AB IgG measurement. In addition to MULTICOV-AB controls, for plate-to-plate qualification one control sample was processed on all plates.

Data analysis. Data analysis and figure generation were performed in RStudio (Version 1.2.5001), running R (version 3.6.1) with the additional packages “beeswarm” and “RcolorBrewer” for data depiction purposes only. The type of statistical analysis performed (when appropriate) is listed in the figure legends. Figures were generated in RStudio and then edited for clarity in Inkscape (Inkscape 0.92.4). Mann–Whitney U test was used to determine the difference between signal distributions from different sample groups using the “wilcox.test” function from R’s “stats” library. Kendall’s τ coefficient was calculated in order to determine the ordinal association between the observed antibody responses towards RBD mutant and wild-type proteins using the “cor” function from R’s “stats” library. Linear regression was performed to assess the reduction in ACE2 neutralization observed for RBD mutants compared to wild-type proteins using the “lm” function from R’s “stats” library. Pre-processing of data such as matching sample metadata and collecting results from multiple assay runs was performed in Excel 2016. GraphPad Prism version 8.4.0 was used to process VNT data.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper.

Code availability

Custom analysis code in R and required input files have been deposited on GitHub: https://github.com/BeckerMatthias/Vaccination_VoC_Publication.

Received: 8 March 2021; Accepted: 28 April 2021; Published online: 25 May 2021

References

1. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* 579, 270–273 (2020).
2. Zhi, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. *N. Engl. J. Med.* 382, 727–733 (2020).

Conclusions

Interpretation of results

Discussion

Concluding remarks

Acknowledgments

Funding

Authors’ contributions

Competing interests

Data and code availability

Software

References

Glossary

Article highlights

Supplementary information

Authors’ information

Additional information

Tables

Figure legends

Videos

Supplementary references

Supplementary tables

Supplementary figures

Supplementary methods

Supplementary code
3. Pan, K.-Y. et al. The mental health impact of the COVID-19 pandemic on people with and without depressive anxiety, or obsessive-compulsive disorders: a longitudinal study of three Dutch case-control cohorts. Lancet Psychiatry 8, 121–129 (2021).

4. Pierce, M. et al. Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. Lancet Psychiatry 7, 883–892 (2020).

5. Mofjord, M. et al. Impact of COVID-19 on the social, economic, environmental and energy domains: lessons learnt from a global pandemic. Sustain. Prod. Consum. 26, 343–359 (2021).

6. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 384, 403–416 (2021).

7. Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021).

8. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

9. Mulligan, M. J. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. N. Engl. J. Med. 386, 589–593 (2020).

10. Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e819 (2020).

11. Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature https://doi.org/10.1038/s41586-021-03470-x (2021).

12. Graham, M. S. et al. Changes in symptomatology, re-infection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health https://doi.org/10.1016/S2468-2667(21)00055-4 (2021).

13. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

14. Collier, D. A. et al. Sensitivity of SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01318-5 (2021).

15. Becker, M. et al. Exploring beyond clinical routine SARS-CoV-2 serology using MultiCoV-Ab to evaluate endemic coronavirus cross-reactivity. Nat. Commun. 12, 1152 (2021).

16. Ruetalo, N. et al. Antibody response against SARS-CoV-2 and seasonal coronaviruses in nonhospitalized COVID-19 patients. mSphere 6, https://doi.org/10.1128/mSphere.01145-20 (2021).

17. Wagner, T. R. et al. NeutrobodyPlex—nanobodies to monitor a SARS-CoV-2 neutralizing immune response. EMBO Rep. 22, e52325 https://doi.org/10.15252/embr.202052325 (2021).

18. Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell https://doi.org/10.1016/j.cell.2021.02.037.

19. Liu, Y. et al. Neutralizing activity of BNT162b2-elicited serum—preliminary report. N. Engl. J. Med. https://doi.org/10.1056/NEJMci2102017 (2021).

20. Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature https://doi.org/10.1038/s41586-021-03398-2 (2021).

21. Kuzmina, A. et al. SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.03.008 (2021).

22. Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature https://doi.org/10.1038/s41586-021-03324-6 (2021).

23. Neide, A. et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).

24. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

25. Amanat, F. et al. A serological assay to detect SARS-CoV-2 serocconversion in vaccinated and naturally-infected people. Nat. Med. 26, 1033–1036 (2020).

26. Laurant, A. S. & Hodcroft, E. R. Genetic variants of SARS-CoV-2—what do they mean? J. Am. Med. Assoc. 325, 529–531 (2021).

27. Platschger, H. et al. Systematic reference sample generation for multiplexed serological assays. Sci. Rep. 3, 1–5 (2013).

28. Sulyok, Z. et al. Heterologous protection against malaria by a simple chemoattenuated PfSPZ vaccine regimen in a randomised trial. Nat. Commun. 12, 2518, https://doi.org/10.1038/s41467-021-22740-w (2021).

Acknowledgements
We thank Johanna Griesbaum for technical assistance, Florian Krammer for providing us with expression plasmids for the Spike Trimera and RBD, Tina Ganzenmüller and the diagnostic department of the Institute for Medical Virology, University Hospital Tübingen for providing patient samples, and the NGS competence center of the University Hospital Tübingen for rapid sequencing. This work was financially supported by the State Ministry of Baden-Württemberg for Economic Affairs, Labour and Housing Construction (grant numbers FKZ 3-4332.62-NMI-67 and FKZ 3-4332.62-NMI-68), the Ministerium für Wissenschaft und Kunst Baden-Württemberg, the Initiative and Networking Fund of the Helmholtz Association of German Research Centres (grant number SO-96), the Deutsche Forschungsgemeinschaft (DFG-KO 3884/5-1) and the EU Horizon 2020 research and innovation programme (grant agreement number 101003480—CORESMA). The funders had no role in study design, data collection, data analysis, or the decision to publish.

Author contributions
U.R., M.K., M.B., A.D., and N.S.M. conceived the study. M.B., A.D., J.A.H., R.F., A.K., M.L.S., U.R., and N.S.M. designed the experiments. K.S.L., M.S., G.K., M.S., M.K., and M.L. performed the experiments. M.B., A.D., D.J., N.R., C.H., J.A.H., and M.L. performed data analysis. K.S.L., M.S., U.R., and N.S.M. procured funding. M.B., A.D., D.J., N.R., C.H., J.A.H., and M.L. performed experiments. T.Y.P., M.M., Y.M., T.B., K.A., R.F., A.K., M.U., and N.S.M. collected samples or organized their collection. P.D.K., B.T., and T.W. produced the RBD mutants. H.P., M.B., and D.J. produced and analyzed the QC samples in MULTICOV-AB. M.B., A.D., N.R., and M.L.S. performed the data analysis. M.B., A.D., D.J., and N.S.M. generated the figures. A.D. wrote the first draft of the manuscript with input from M.B., D.J., J.A.H., K.S.L., M.S., R.F., A.K., M.L.S., U.R., and N.S.M. and D.J., M.B., R.F., M.L.S., U.R., and N.S.M. revised the manuscript. All authors approved the final version of the manuscript.

Competing interests
T.R.W., P.K., N.S.M., and U.R. are named as inventors on a patent application (EP 20 197 031.6) claiming the use of the described Nanobodies used in the NeutrobodyPlex for diagnosis and therapeutics file by the Natural and Medical Sciences Institute. N.S.M. was a speaker at Lumines user meetings in the past. The Natural and Medical Sciences Institute at the University of Tuebingen is involved in applied research projects as a fee for services with Lumines. The remaining authors declare no competing interests.
