Data Article

Data on the synthesis and characterization of two novel polydentate ligands possessing unsymmetrical NH–urea fragment

Stanislava Todorova a, Maria Atanassova b, Vanya Kurteva a,*

* Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev street, Block 9, 1113 Sofia, Bulgaria
b University of Chemical Technology and Metallurgy, Department of General and Inorganic Chemistry, 8 Kliment Ohridski blvd., 1756 Sofia, Bulgaria

ARTICLE INFO

Article history:
Received 2 May 2018
Accepted 24 August 2018
Available online 31 August 2018

ABSTRACT

The data represent the synthesis and structural characterization of two novel polydentate ligands possessing unsymmetrical NH–urea fragment: an open-chain substituted aromatic compound with unsymmetrical urea and secondary amine units (S1) and fused aryloxazinone with unsymmetrical urea fragment (S2). The data include the analyzed NMR spectra, turbo-spray mass spectra, melting points and Rf-values. 1D and 2D NMR spectra are given in the article. The efficiency of the ligands as synergists in the isolation and separation of lanthanoid ions is reported in reference [1].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Chemistry
More specific subject area	Organic polydentate ligands
Type of data	Scheme, figures (NMR spectra)
How data was acquired	NMR (1D and 2D), mass spectroscopy, TLC, m.p.
Data format	Analyzed

DOI of original article: https://doi.org/10.1016/j.seppur.2018.04.071
* Corresponding author.
E-mail address: vkurteva@orgchm.bas.bg (V. Kurteva).
Experimental factors
The ligands were isolated by flash chromatography on silica gel and were then recrystallized.

Experimental features
Synthesis and characterization of novel polydentate ligands

Data source location
Soﬁa, Bulgaria

Data accessibility
The data are available within this article and present a supplementary material to the article “M. Atanassova, S. Todorova, V. Kurteva, N. Todorova, Insights into the synergistic selectivity of 4f-ions implementing 4-acyl-5-pyrazolone and two new unsymmetrical NH-urea ring molecules in an ionic liquid, Sep. Purif. Technol.; In preparation” [1].

Value of the data
- The 2D NMR data permit full assignment of the signals in the spectra of the novel compounds.
- The ligands offer unlimited possibilities for NH-derivatization.
- The data can be useful for comparison with similar structures.

1. Data
The data include synthetic details and characterization by 1D and 2D NMR spectra, mass spectrometry, TLC and m.p. of novel organic polydentate ligands.

2. Experimental design, materials and methods

2.1. General

All reagents were purchased from Aldrich, Merck and Fluka and were used without further purification. The deuterated chloroform was purchased from Deutero GmbH. Fluka silica gel (TLC-cards 60778 with ﬂuorescent indicator 254 nm) were used for TLC chromatography and Rf-values determination. Merck Silica gel 60 (0.040–0.063 mm) was used for flash chromatography purification of the products. The melting points were determined in capillary tubes on SRS MPA100 OptiMelt (Sunnyvale, CA, USA) automated melting point system. The NMR spectra were recorded on a Bruker Avance II+ 600 spectrometer (Rheinstetten, Germany) in CDCl3; the chemical shifts were quoted in ppm in δ-values against tetramethylsilane (TMS) as an internal standard and the coupling constants were calculated in Hz. The spectra were processed with Topspin 2.1 program. The low-resolution mass spectra were taken on a HP 5973 Mass Selective Detector, the turbo spray spectrum on API 150EX (AB/MAS Sciex).

Scheme 1. Synthesis of the ligands S1 and S2.
2.2. Synthesis and characterization

Two novel polydentate ligands possessing unsymmetrical NH-urea fragment, \textbf{S1} and \textbf{S2} (Scheme 1) were synthesized as a mixture from a known bis-amine [2] and were isolated in low overall yield by flash chromatography on silica gel [3]. The optimization of protocols for each ligand is in progress.

To a solution of 2,6-bis((benzylamino)methyl)-4-methylphenol (3.92 mmol, 1.359 g), pyridine (12 mmol, 0.97 ml), and aniline (6 mmol, 0.55 ml) in toluene (20 ml) phosgene (8 mmol, 3.96 ml 20% solution in toluene) was added and the mixture was stirred at room temperature for 24 h. The products were partitioned between toluene and 10% aq. HCl. The water layer was washed with dichloromethane (DCM). The combined organic solutions were dried over MgSO$_4$, evaporated to dryness, and purified by flash chromatography on silica gel by using mobile phase with a gradient of polarity from DCM to 2% MeOH in DCM.

Ligand \textbf{S1}: 13% (238 mg); R$_f$ 0.22 (1% MeOH/DCM); m.p. 151.9–152.1 °C; 1H NMR 2.231 (s, 3H, C$_H_3$), 3.821 (s, 2H, C$_H_2$-Ph), 4.015 (s, 2H, CH$_2$-2), 4.643 (s, 2H, CH$_2$-Ph'), 6.800 (bs, 1H, C$_H$-5), 6.843 (bs, 1H, CH-3), 6.979 (tt, 1H, J 7.4, 1.0, p-Ph"), 7.241 (dd, 2H, J 8.4, 7.5, m-Ph"), 7.268–7.328 (m, 6H, o-Ph, m-Ph, p-Ph, p-Ph'), 7.356 (dd, 2H, J 7.8, 7.4, m-Ph'), 7.398 (d, 2H, J 7.8, o-Ph'), 7.435 (bd, 2H, J 8.0, o-Ph"), 8.629 (bs, 1H, NH); 13C NMR 20.49 (C$_H_3$), 45.21 (C$_H_2$-2), 49.20 (CH$_2$-6), 51.62 (CH$_2$-2), 119.21 (C$_q$-6), 123.51 (C$_q$-2), 123.73 (p-Ph or p-Ph'), 128.03 (o-Ph'), 128.43 (o-Ph), 128.57 (C$_q$-4), 128.62 (m-Ph'), 128.73 (m-Ph), 128.84 (m-Ph), 129.16 (CH-5), 130.79 (CH-3), 137.60 (i-Ph), 138.17 (i-Ph"), 140.26 (i-Ph"'), 153.32 (C$_q$-1), 156.42 (C=O-NH); ESI (TIS)-Q m/z 932 [2M+1]$^+$ (28), 466 [M+1]$^+$ (100), 359 [M-NHBn]$^+$ (56), 347 [M-M-CHNHBn+1]$^+$ (24), 240 [M-BnNCONHPh]$^+$ (74), 226 [M-CH$_3$N(Bn)CONHPh]$^+$ (20), 133 [BnNCO]$^+$ (41).

Ligand \textbf{S2}: 6% (120 mg); R$_f$ 0.31 (1% MeOH/DCM); m.p. 173.7–174.4 °C; 1H NMR 2.258 (s, 3H, C$_H_3$), 4.279 (s, 2H, CH$_2$-4), 4.595 (s, 2H, CH$_2$-8), 4.652 (s, 2H, CH$_2$-Ph'), 4.672 (s, 2H, CH$_2$-Ph), 6.749 (bs, 1H,
Fig. 2. 13C NMR spectrum of ligand S1.

Fig. 3. 1H-13C HSQC spectrum of ligand S1.
Fig. 4. 1H NMR spectrum of ligand S2.

Fig. 5. 13C NMR spectrum of ligand S2.
\(6.927\) (bs, 1H, NH), \(6.995\) (tt, 1H, \(J\) 7.4, 1.1, \(m\)-Ph’), \(7.015\) (dd, 2H, \(J\) 8.4, 7.5, \(m\)-Ph’), \(7.255\) (dd, 2H, \(J\) 8.4, 7.5, \(o\)-Ph or \(o\)-Ph’), \(7.282\)–\(7.362\) (m, 10H, \(o\)-Ph, \(o\)-Ph, \(o\)-Ph, \(o\)-Ph’, \(m\)-Ph, \(m\)-Ph, \(m\)-Ph) or \(m\)-Ph’), \(7.406\) (bd, 2H, \(J\) 8.1, \(o\)-Ph’); \(^{13}\)C-NMR NMR 20.80 (\(C\)H\(_3\)), 45.33 (\(C\)H\(_2\)-8), 46.56 (\(C\)H\(_2\)-2), 50.43 (\(C\)H\(_2\)-Ph’), 52.53 (\(C\)H\(_2\)-Ph), 117.07 (\(C\)H-4a), 119.90 (\(o\)-Ph’), 122.82 (\(p\)-Ph’), 124.10 (\(C\)q-8), 125.33 (CH-5), 127.55 (\(p\)-Ph or \(p\)-Ph’), 127.59 (\(p\)-Ph or \(p\)-Ph’), 128.15 (\(o\)-Ph or \(o\)-Ph’), 128.24 (\(o\)-Ph or \(o\)-Ph’), 128.76 (\(m\)-Ph’), 128.84 (\(m\)-Ph or \(m\)-Ph’), 128.89 (\(m\)-Ph or \(m\)-Ph’), 129.30 (CH-7), 134.06 (\(C\)q-6), 135.19 (i-Ph), 137.35 (i-Ph’), 139.28 (i-Ph’), 145.41 (\(C\)q-8a), 150.50 (\(C\)q-2), 155.97 (C=O-NH); ESI (TIS)-Q m/z 983 [2M+1]\(^+\) (231), 492 [M+1]\(^+\) (100), 399 [M-NHPh]\(^+\) (9), 373 [M-CONPh+1]\(^+\) (42), 266 [M-BnNCONHPh]\(^+\) (30), 133 [BnNCO]\(^+\) (25).

2.3. Original NMR spectra

See Figs. 1–6.

Acknowledgments

The financial support by The Bulgarian Science Fund, DCOST-01-23 and infrastructure projects UNA-17/2005, DRNF-02–13/2009, and DRNF-02/01, and by The EU, COST Action CA15106 “C–H Activation in Organic Synthesis” (CHAOS), is gratefully acknowledged. The authors would like to express also their gratitude to the Operational Programme “Science and education for smart growth” 2014–2020 of the European Union cofounded by the European Social Fund through the project BG05M2OP001-2.009-0015 “Support for the development of capacity of doctoral students and young researchers in the field of engineering, natural and mathematical sciences” for funding this publication.
Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.136.

References

[1] M.A. Petrova, S.E. Todorova, V.B. Kurteva, N.I. Todorova, Insights into the synergistic selectivity of 4f-ions implementing 4-acyl-5-pyrazolone and two new unsymmetrical NH-urea containing ring molecules in an ionic liquid, Sep. Purif. Technol. 204 (2018) 328–335.
[2] P.D. Beer, O.D. Fox, Brit. UK Pat. Appl., 2002, GB 2364305 A 20020123, 13 pp.
[3] S. Todorova, V. Kurteva, B. Shivachev, R.P. Nikolova, Crystal structures of novel polydentate N,O-ligands, Acta Cryst. A72 (2016) s403 (Supplement).