MULTIPLICATIVE NAMBU STRUCTURES ON LIE GROUPOIDS

APURBA DAS

Abstract. We study some properties of coisotropic submanifolds of a manifold with respect to a given multivector field. Using this notion, we generalize the results of Weinstein [17] from Poisson bivector field to Nambu-Poisson tensor or more generally to any multivector field. We also introduce the notion of Nambu-Lie groupoid generalizing the concepts of both Poisson-Lie groupoid and Nambu-Lie group. We show that the infinitesimal version of Nambu-Lie groupoid is the notion of weak Lie-Filippov bialgebroid as introduced in [1]. Next we introduce coisotropic subgroupoids of a Nambu-Lie groupoid and these subgroupoids corresponds to, so called coisotropic subalgebroids of the corresponding weak Lie-Filippov bialgebroid.

1. Introduction

In [17], Weinstein introduced the notion of coisotropic submanifold of a Poisson manifold generalizing the notion of Lagrangian submanifold of symplectic manifold. A submanifold C of a Poisson manifold (P, π) is called coisotropic, if $\pi^\#(TC)^0 \subset TC$, or, equivalently, $\pi(\alpha, \beta) = 0$, for all $\alpha, \beta \in (TC)^0$, where $(TC)^0$ is the conormal bundle of C. Moreover, Weinstein proved the following results.

1. A map $\phi : P_1 \to P_2$ between Poisson manifolds is a Poisson map if and only if its graph is a coisotropic submanifold of $P_1 \times P_2^-$, where P_2^- stands for the manifold P_2 with opposite Poisson structure.

2. If $\phi : P \to Q$ is a surjective submersion from a Poisson manifold P to some manifold Q, then Q has a Poisson structure for which ϕ is a Poisson map if and only if

$$\{(x, y)|\phi(x) = \phi(y)\} \subset P \times P$$

is a coisotropic submanifold of $P \times P^-$. To define the coisotropic submanifold of a Poisson manifold, one does not require the Poisson tensor to be closed, that is, $[\pi, \pi] = 0$, where $[\ ,\]$ denotes the Schouten bracket on multivector fields. Therefore, the notion of coisotropic submanifolds make sense for any bivector field, or more generally, for any multivector field. Explicitly, if M is a smooth manifold and $\Pi \in \mathcal{X}^n(M) = \Gamma \wedge^n TM$ be an n-vector field on M, then a submanifold $C \hookrightarrow M$ is called coisotropic with respect to Π if

$$\Pi^\sharp(\bigwedge^{n-1}(TC)^0) \subset TC \iff \Pi(\alpha_1, \ldots, \alpha_n) = 0, \text{ for all } \alpha_1, \ldots, \alpha_n \in (TC)^0,$$

2010 Mathematics Subject Classification. 17B62, 17B63, 53D17.

Key words and phrases. coisotropic submanifold, Nambu-Poisson bracket, Poisson groupoid, Lie algebroid, Lie bialgebroid.
where $\Pi^2 : \wedge^{n-1} T^* M \to TM$ is the bundle map induced by Π.

Nambu-Poisson manifolds are generalization of Poisson manifolds. Recall that a Nambu-Poisson manifold of order n is a manifold M equipped with an n-vector field Π such that the induced bracket on functions satisfies the Fundamental identity (Definition 2.1). The n-vector field Π of a Nambu-Poisson manifold is referred to as the associated Nambu tensor.

Coisotropic submanifolds of a Nambu-Poisson manifold M are those submanifolds which are coisotropic with respect to the Nambu tensor Π.

In the present paper, we study some basic properties of coisotropic submanifolds of a manifold with respect to a given multivector field and generalize the results of Weinstein to the case of multivector field. More precisely, we prove the following results (Propositions 3.5 and 3.10).

1. Let (M, Π_M) and (N, Π_N) be two manifolds with n-vector fields and $\phi : M \to N$ be a smooth map. Then $\phi_* \Pi_M = \Pi_N$ if and only if its graph $\text{Gr}(\phi) := \{(m, \phi(m)) | m \in M\}$ is a coisotropic submanifold of $M \times N$ with respect to $\Pi_M \oplus (-1)^{n-1} \Pi_N$.

2. Let (M, Π_M) be a manifold with an n-vector field and $\phi : M \to N$ be a surjective submersion. Then N has an (unique) n-vector field Π_N such that $\phi_* \Pi_M = \Pi_N$ if and only if $R(\phi) := \{(x, y) \in M \times M | \phi(x) = \phi(y)\}$ is a coisotropic submanifold of $M \times M$ with respect to $\Pi_M \oplus (-1)^{n-1} \Pi_M$.

Poisson Lie group is a Lie group equipped with a Poisson structure such that the group multiplication map is a Poisson map. Equivalently, a Lie group equipped with a Poisson structure is a Poisson Lie group if the Poisson bivector field is multiplicative [8]. These definitions have no natural extension when one wants to define Poisson groupoid. Nevertheless, the notion of coisotropic submanifolds of Poisson manifolds was used by Weinstein [17] to introduce the notion of Poisson groupoid. Recall that a Poisson groupoid is a Lie groupoid $G \rightrightarrows M$ with a Poisson structure on G such that the graph of the groupoid (partial) multiplication map is a coisotropic submanifold of $G \times G \times G$.

In [18], P. Xu gave an equivalent formulation of Poisson groupoid which generalizes the multiplicativity condition for Poisson Lie group. More generally, in [13], the authors introduced the notion of multiplicative multivector fields on a Lie groupoid. Given a Lie groupoid $G \rightrightarrows M$, an n-vector field $\Pi \in \mathfrak{X}^n(G)$ is called multiplicative, if the graph of the groupoid multiplication is a coisotropic submanifold of $G \times G \times G$ with respect to $\Pi \oplus \Pi \oplus (-1)^{n-1} \Pi$. In this terminology, a Poisson groupoid is a Lie groupoid equipped with a multiplicative Poisson tensor.

In the present paper, we extend this approach to the case of Lie groupoid with a Nambu structure. We introduce the notion of a Nambu-Lie groupoid as a Lie groupoid with a Nambu structure Π such that the Nambu tensor Π is multiplicative (Definition 4.4). When G is a Lie group, this definition coincides with the definition of Nambu-Lie group given by Vaisman [16]. Using results proved in [13] for multiplicative multivector fields on Lie
groupoid, we deduce the following facts which are parallel to the case of Poisson groupoid. Suppose \((G \rightrightarrows M, \Pi)\) is a Nambu-Lie groupoid, then

1. \(M \hookrightarrow G\) is a coisotropic submanifold of \(G\);
2. the groupoid inversion map \(\iota : G \to G\) is an anti Nambu-Poisson map;
3. there is a unique Nambu-Poisson structure \(\Pi_M\) on \(M\) for which the source map is a Nambu-Poisson map (Proposition 4.6).

It is well known that for a Nambu-Poisson manifold \(M\) of order \(n\), the space of 1-forms admits a skew-symmetric \(n\)-bracket which satisfies the Fundamental identity modulo some restriction ([1, 4, 16]). Moreover, the bracket on forms and the de-Rham differential of the manifold satisfy a compatibility condition similar to that of a Lie bialgebroid. This motivates the authors [1] to introduce a notion of weak Lie-Filippov bialgebroid of order \(n\). If \(M\) is a Nambu-Poisson manifold of order \(n\), then \((TM, T^*M)\) provides such an example. Roughly speaking, a weak Lie-Filippov bialgebroid of order \(n\) \((n > 2)\) over \(M\) is a Lie algebroid \(A \to M\) together with a skew-symmetric \(n\)-ary bracket on the space of sections of the dual bundle \(A^* \to M\) and a bundle map \(\rho : \bigwedge^{n-1} A^* \to TM\) satisfying some conditions (cf. Definition 5.1). Moreover it is proved in [1] that, if \((A, A^*)\) is a weak Lie-Filippov bialgebroid of order \(n\) over \(M\), then there is an induced Nambu-Poisson structure of order \(n\) on the base manifold \(M\).

In the present paper, we prove that weak Lie-Filippov bialgebroids are infinitesimal form of Nambu-Lie groupoids. Explicitly, if \(C\) is a coisotropic submanifold of a Nambu-Poisson manifold \((M, \Pi)\), then we show that the \(n\)-ary bracket on the space of 1-forms on \(M\) restricts to the sections of the conormal bundle \((TC)^0 \to C\) and the induced bundle map \(\Pi^\sharp : \bigwedge^{n-1} T^*M \to TM\) maps \(\bigwedge^{n-1} (TC)^0\) to \(TC\) (Proposition 5.3). Therefore, if \(G \rightrightarrows M\) is a Nambu-Lie groupoid of order \(n\) whose Lie algebroid is \(AG \to M\), then as \(M\) is a coisotropic submanifold of \(G\), the space of sections of the dual bundle \(A^*G \cong (TM)^0 \to M\) is equipped with a skew-symmetric \(n\)-ary bracket. Moreover, there is a bundle map \(\bigwedge^{n-1} A^*G \to TM\) so that the pair \((AG, A^*G)\), with the above data, satisfies the conditions of a weak Lie-Filippov bialgebroid. Thus we prove the following (cf. Theorem 5.7).

1.1. Theorem. Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid of order \(n\) with Lie algebroid \(AG \to M\). Then \((AG, A^*G)\) forms a weak Lie-Filippov bialgebroid of order \(n\) over \(M\).

Finally, we compare the Nambu-Poisson structures on the base manifold \(M\) induced from the Nambu-Lie groupoid \(G \rightrightarrows M\) and the weak Lie-Filippov bialgebroid \((AG, A^*G)\) (cf. Proposition 5.9).

Next, we introduce the notion of a coisotropic subgroupoid \(H \rightrightarrows N\) of a Nambu-Lie groupoid \((G \rightrightarrows M, \Pi)\). To study the infinitesimal form of a coisotropic subgroupoid, we introduce the notion of coisotropic subalgebroid of a weak Lie-Filippov bialgebroid. Then we show that the Lie algebroid of a coisotropic subgroupoid \(H \rightrightarrows N\) is a coisotropic subalgebroid of the corresponding weak Lie-Filippov bialgebroid \((AG, A^*G)\) (cf. Proposition 6.6).

Organization. The paper is organized as follows. In section 2, we recall basic definitions and conventions. In section 3, we study some properties of coisotropic submanifolds of a
manifold with respect to a given multivector field and in section 4 we introduce Nambu-Lie groupoids and study some of its basic properties. In section 5, we show that the infinitesimal object corresponding to Nambu-Lie groupoid is weak Lie-Filippov bialgebroid and in section 6 we introduce coisotropic subgroupoids of a Nambu-Lie groupoid and study their infinitesimal.

Acknowledgements. The author would like to thank his Ph.D supervisor Professor Goutam Mukherjee for his guidance and carefully reading the manuscript.

2. Preliminaries

In this section, we recall some basic preliminaries from \([2,9,18]\) and fix the notations that will be used throughout the paper.

Nambu-Poisson manifolds are \(n\)-ary generalizations of Poisson manifolds introduced by Takhtajan \([14]\).

2.1. Definition.

Let \(M\) be a smooth manifold. A **Nambu-Poisson structure** of order \(n\) on \(M\) is a skew-symmetric \(n\)-multilinear bracket

\[
\{ \ldots, \} : C^\infty(M) \times [n] \times C^\infty(M) \to C^\infty(M)
\]

satisfying the following conditions:

1. **Leibniz rule:**
 \[
 \{f_1, \ldots, f_{n-1}, fg\} = f_1\{f_1, \ldots, f_{n-1}, g\} + \{f_1, \ldots, f_{n-1}, f\}g;
 \]

2. **Fundamental identity:**
 \[
 \{f_1, \ldots, f_{n-1}, \{g_1, \ldots, g_n\}\} = \sum_{k=1}^n\{g_1, \ldots, g_{k-1}, f_1, \ldots, f_{n-1}, g_k\}, \ldots, g_n\};
 \]

for all \(f, g, f_1, g_1, \ldots, f_{n-1}, g_1, \ldots, g_n \in C^\infty(M)\). A manifold together with a Nambu-Poisson structure of order \(n\) is called a **Nambu-Poisson manifold of order \(n\)**. Thus the space of smooth functions with this bracket forms a Nambu-Poisson algebra. A Nambu-Poisson manifold of order 2 is nothing but a Poisson manifold \([15]\). Since the bracket above is skew-symmetric and satisfies Leibniz rule, there exists an \(n\)-vector field \(\Pi \in \mathcal{X}^n(M)\), such that

\[
\{f_1, \ldots, f_n\} = \Pi(df_1, \ldots, df_n),
\]

for all \(f_1, \ldots, f_n \in C^\infty(M)\). Given any \((n-1)\) functions \(f_1, \ldots, f_{n-1} \in C^\infty(M)\), the **Hamiltonian vector field** associated to these functions is denoted by \(X_{f_1 \ldots f_{n-1}}\) and is defined by

\[
X_{f_1 \ldots f_{n-1}}(g) = \{f_1, \ldots, f_{n-1}, g\}.
\]

Note that the Fundamental identity, in terms of Hamiltonian vector fields, is equivalent to the condition

\[
[X_{f_1 \ldots f_{n-1}}, X_{g_1 \ldots g_{n-1}}] = \sum_{k=1}^{n-1}X_{g_1 \ldots [f_1, \ldots, f_{n-1}, g_k], \ldots, g_n}.
\]

for all \(f_1, \ldots, f_{n-1}, g_1, \ldots, g_{n-1} \in C^\infty(M)\). The Fundamental identity can also be rephrased as

\[
\mathcal{L}_{X_{f_1 \ldots f_{n-1}}} \Pi = 0,
\]
for all \(f_1, \ldots, f_{n-1} \in C^\infty(M) \), which shows that every Hamiltonian vector field preserves the Nambu tensor. A Nambu-Poisson manifold is often denoted by \((M, \{ , , \})\) or simply by \((M, \Pi)\).

2.2. Example. (1) Let \(M \) be an orientable manifold of dimension \(n \) and \(\nu \) be a volume form on \(M \). Define an \(n \)-bracket \(\{ , , \} \) on \(C^\infty(M) \) by the following identity

\[
df_1 \wedge \cdots \wedge df_n = \{ f_1, \ldots, f_n \} \nu.
\]

Then \(\{ , , \} \) defines a Nambu-Poisson structure of order \(n \) on \(M \). Let \(\Pi_\nu \in \Gamma \wedge^n TM \) denotes the associated Nambu-Poisson tensor. If \(\Pi \in \Gamma \wedge^n TM \) is any Nambu-Poisson structure of order \(n \) such that \(\Pi \neq 0 \) at every point, then there exists a volume form \(\nu' \) on \(M \) such that \(\Pi = \Pi_{\nu'} \). If \(M = \mathbb{R}^n \) and \(\nu = dx_1 \wedge \cdots \wedge dx_n \) is the standard volume form, then one recovers the Nambu structure on \(\mathbb{R}^n \) originally discussed by Y. Nambu [12].

(2) Let \(\Pi \) be any \(n \)-vector field on an oriented manifold \(M \) of dimension \(n \). Then \(\Pi \) defines a Nambu structure of order \(n \) on \(M \) (see [5]).

(3) Let \(M \) be a manifold of dimension \(m \) and \(X_1, \ldots, X_n \) be linearly independent vector fields such that \([X_i, X_j] = 0\) for all \(i, j = 1, \ldots, n \). Then the \(n \)-vector field \(\Pi = X_1 \wedge \cdots \wedge X_n \) defines a Nambu structure of order \(n \).

(4) Let \((M, \{ , , \})\) be a Nambu-Poisson manifold of order \(n \). Suppose \(k \leq n - 2 \) and \(F_1, \ldots, F_k \in C^\infty(M) \) be any fixed functions on \(M \). Define a \((n-k)\)-bracket \(\{ , , \}' \) on \(C^\infty(M) \) by

\[
\{ f_1, \ldots, f_{n-k} \}' = \{ F_1, \ldots, F_k, f_1, \ldots, f_{n-k} \}
\]

for \(f_1, \ldots, f_{n-k} \in C^\infty(M) \). Then \(\{ , , \}' \) defines a Nambu-structure of order \((n-k)\) on \(M \). This Nambu structure is called the subordinate Nambu structure of \((M, \{ , , \})\) with subordinate function \(F_1, \ldots, F_k \).

(5) If \(\Pi_i \) is a Nambu structure of order \(n_i \) on a manifold \(M_i \) \((i = 1, 2) \), then \(\Pi = \Pi_1 \wedge \Pi_2 \) is a Nambu structure of order \(n_1 + n_2 \) on \(M_1 \times M_2 \) [2].

More examples of Nambu structures can be found in [6,16].

Let \((M, \Pi)\) be a Nambu-Poisson manifold of order \(n \). For each \(m \in M \), let \(D_mM \subset T_mM \) be the subspace of the tangent space at \(m \) generated by all Hamiltonian vector fields at \(m \). Since the Lie bracket of two Hamiltonians is again a Hamiltonian, therefore \(D \) defines a \((\text{singular}) \) integrable distribution whose leaves are either \(n \)-dimensional submanifolds endowed with a volume form or just singletons [2].

2.3. Definition. Let \((M, \Pi_M)\) and \((N, \Pi_N)\) be two manifolds with \(n \)-vector fields. A smooth map \(\phi : M \to N \) is called \((\Pi_M, \Pi_N)\)-map if the induced brackets on functions satisfies:

\[
\{ \phi^* f_1, \ldots, \phi^* f_n \}_M = \phi^* \{ f_1, \ldots, f_n \}_N
\]
for all $f_1, \ldots, f_n \in C^\infty(N)$, or equivalently, $\phi_*\Pi_M = \Pi_N$. The map ϕ is called an anti (Π_M, Π_N)-map if

$$\{\phi^* f_1, \ldots, \phi^* f_n\}_M = (-1)^{n-1} \phi^* \{f_1, \ldots, f_n\}_N$$

for all $f_1, \ldots, f_n \in C^\infty(N)$. A (Π_M, Π_N)-map $\phi : (M, \Pi_M) \to (N, \Pi_N)$ between Nambu-Poisson manifolds of the same order n is called a Nambu-Poisson map or a N-P-map.

2.4. Remark. The condition for a (Π_M, Π_N)-map can also be expressed in terms of the induced bundle maps as

$$\Pi^1_{N,\phi(m)} = T_m\phi \circ \Pi^1_{M,m} \circ T^*_m\phi$$

for each $m \in M$, where $\Pi^1_M : \bigwedge^{n-1} T^*M \to TM$ is the induced bundle map and is given by

$$\langle \beta, \Pi^1_M (\alpha_1 \wedge \cdots \wedge \alpha_{n-1}) \rangle = \Pi_M (\alpha_1, \ldots, \alpha_{n-1}, \beta)$$

for all $\alpha_1, \ldots, \alpha_{n-1}, \beta \in T^*_x M$, $x \in M$.

2.5. Definition. A Lie groupoid over a smooth manifold M is a smooth manifold G together with the following structure maps:

1. two surjective submersions $\alpha, \beta : G \to M$, called the source map and the target map respectively;
2. a smooth partial multiplication map

$$G_{(2)} = \{(g, h) \in G \times G | \beta(g) = \alpha(h)\} \to G, \ (g, h) \mapsto gh;$$

3. a smooth unit map $\epsilon : M \to G, \ x \mapsto \epsilon_x$;
4. and a smooth inverse map $i : G \to G, \ g \mapsto g^{-1}$ with $\alpha(g^{-1}) = \beta(g)$ and $\beta(g^{-1}) = \alpha(g)$

such that, the following conditions are satisfied

(i) $\alpha(gh) = \alpha(g)$ and $\beta(gh) = \beta(h);
(ii) (gh)k = g(hk), \text{ whenever the multiplications make sense};
(iii) $\alpha(\epsilon_x) = \beta(\epsilon_x) = x, \forall x \in M;
(iv) \epsilon_{\alpha(g)}g = g \text{ and } g\epsilon_{\beta(g)} = g, \forall g \in G;
(v) gg^{-1} = \epsilon_{\alpha(g)} \text{ and } g^{-1}g = \epsilon_{\beta(g)}, \forall g \in G.$

A Lie groupoid G over M is denoted by $G \rightrightarrows M$ when all the structure maps are understood.

2.6. Remark. Note that the smooth structure on $G_{(2)}$ comes from the fact that

$$G_{(2)} = (\beta \times \alpha)^{-1}(\Delta_M),$$

where $\beta \times \alpha : G \times G \to M \times M, \ (g, h) \mapsto (\beta(g), \alpha(h))$ and $\Delta_M = \{(m, m) | m \in M\} \subset M \times M$ is the diagonal submanifold of $M \times M$. Then these conditions imply that the inverse map $i : G \to G, \ g \mapsto g^{-1}$ is also smooth [9]. Moreover, α-fibers and β-fibers are submanifolds of G as both α and β are surjective submersions.
2.7. Definition. Given a Lie groupoid $G \rightrightarrows M$, define an equivalence relation \sim' on M by the following: two points $x, y \in M$ are said to be equivalent, written as $x \sim y$, if there exists an element $g \in G$ such that $\alpha(g) = x$, $\beta(g) = y$. The quotient M/\sim is called the orbit set of G.

2.8. Definition. Given two Lie groupoids $G_1 \rightrightarrows M_1$ and $G_2 \rightrightarrows M_2$, a morphism between Lie groupoids is a pair (F, f) of smooth maps $F : G_1 \to G_2$ and $f : M_1 \to M_2$ which commute with all the structure maps of G_1 and G_2. In other words,

$$\alpha_2 \circ F = f \circ \alpha_1, \quad \beta_2 \circ F = f \circ \beta_1,$$

and $F(g_1 h_1) = F(g_1) F(h_1)$

for all $(g_1, h_1) \in (G_1)_{(2)}$.

2.9. Definition. Let $G \rightrightarrows M$ be a Lie groupoid. A Lie subgroupoid of it is a Lie groupoid $H \rightrightarrows N$ together with injective immersions $i : H \to G$ and $i_0 : N \to M$ such that (i, i_0) is a Lie groupoid morphism.

2.10. Definition. Let $G \rightrightarrows M$ be a Lie groupoid. A submanifold \mathcal{K} of G is called a bisection of the Lie groupoid, if $\alpha|_\mathcal{K} : \mathcal{K} \to M$ and $\beta|_\mathcal{K} : \mathcal{K} \to M$ are diffeomorphisms.

The existence of local bisections through any point $g \in G$ is always guaranteed. The space of bisections $\mathcal{B}(G)$ form an infinite dimensional (Fréchet) Lie group under the multiplication of subsets induced from the partial multiplication of G. Note that the left (right) multiplication is defined only on α-fibers (β-fibers), therefore, we cannot define a diffeomorphism of G using left (right) multiplication by an element, like a Lie group. However we can do so by using bisection instead of an element. Given a bisection $\mathcal{K} \in \mathcal{B}(G)$, let $l_\mathcal{K}$ and $r_\mathcal{K}$ be the diffeomorphisms on G defined by

$$l_\mathcal{K}(h) = gh, \text{ where } g \in \mathcal{K} \text{ is the unique element such that } \beta(g) = \alpha(h)$$

and

$$r_\mathcal{K}(h) = hg', \text{ where } g' \in \mathcal{K} \text{ is the unique element such that } \alpha(g') = \beta(h).$$

2.11. Remark. Suppose \mathcal{K} is any (local) bisection of G through $g \in G$. Then the restriction of the map $l_\mathcal{K}$ to $\alpha^{-1}(\beta(g))$ is the left translation l_g by g:

$$l_g : \alpha^{-1}(\beta(g)) \to \alpha^{-1}(\alpha(g)), \; h \mapsto gh.$$

Then we have the following result [18].

2.12. Proposition. Let $G \rightrightarrows M$ be a Lie groupoid and P be an n-vector field on G. Suppose for any $g \in G$ with $\beta(g) = u$, P satisfies $P(g) = (l_g)_* P(e_u)$, where $G \in \mathcal{B}(G)$ is any arbitrary bisection through the point g. Then P is left invariant.

2.13. Definition. A Lie algebroid $(A, [\; , \;], a)$ over a smooth manifold M is a smooth vector bundle A over M together with a Lie algebra structure $[\; , \;]$ on the space ΓA of the smooth sections of A and a bundle map $a : A \to TM$, called the anchor, such that

1. the induced map $a : \Gamma A \to \mathcal{X}^1(M)$ is a Lie algebra homomorphism, where $\mathcal{X}^1(M)$ is the usual Lie algebra of vector fields on M.
(2) For any $X, Y \in \Gamma A$ and $f \in C^\infty(M)$, we have
$$[X, fY] = f[X, Y] + (a(X)f)Y.$$

We may denote a Lie algebroid simply by A, when all the structures are understood. Any Lie algebra is a Lie algebroid over a point with zero anchor. The tangent bundle of any smooth manifold is a Lie algebroid with usual Lie bracket of vector fields and identity as anchor.

Lie algebroid of a Lie groupoid. Given a Lie groupoid $G \rightrightarrows M$, its Lie algebroid consists of the vector bundle $AG \to M$ whose fiber at $x \in M$ coincides with the tangent space at the unit element ϵ_x of the α-fiber at x. Then the space of sections of AG can be identified with the left invariant vector fields $X_{\text{inv}}(G) = \{ X \in \Gamma(T^\alpha G) = \Gamma(\ker(d\alpha))| X_{gh} = (l_g)_*X_h, \forall (g, h) \in G(2) \}$ on G. Since the space of left invariant vector fields on G is closed under the Lie bracket, therefore it defines a Lie bracket on ΓAG. The anchor a of AG is defined to be the differential of the target map β restricted to AG.

Let AG be the Lie algebroid of the Lie groupoid $G \rightrightarrows M$. Given any $X \in \Gamma AG$, let \vec{X} be the corresponding left invariant vector field on G. Then there exists an $\epsilon > 0$ and a 1-parameter family of transformations $\phi_t (|t| < \epsilon)$, generated by \vec{X} ([9]). Suppose each ϕ_t is defined on all of M, where M is identified with a closed embedded submanifold of G via the unit map. We denote the image of M via ϕ_t by $\exp tX$. Then $\exp tX$ is a bisection of the groupoid (for all $|t| < \epsilon$) and satisfies 1-parameter group like conditions, namely
$$\exp(t + s)X = \exp tX \cdot \exp sX, \quad \text{whenever} \quad |t|, |s|, |t + s| < \epsilon,$$
where on the right hand side, we used the multiplication of bisections.

3. **Coisotropic submanifolds**

Let M be a manifold and $\Pi \in \mathcal{A}^n(M)$ be a n-vector field on M. Let
$$\Pi^2 : \bigwedge^{n-1} T^*M \to TM$$
be the induced bundle map given by
$$(\beta, \Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_{n-1})) = \Pi(\alpha_1, \ldots, \alpha_{n-1}, \beta)$$
for all $\alpha_1, \ldots, \alpha_{n-1}, \beta \in T^*_xM$, $x \in M$.

We recall the following definition from [13].

3.1. **Definition.** A submanifold $C \hookrightarrow M$ is said to be **coisotropic** with respect to Π, if
$$\Pi^2(\bigwedge^{n-1}(TC)_x^0) \subset TC$$
where
$$(TC)_x^0 = \{ \alpha \in T^*_xM | \alpha(v) = 0, \forall v \in T_xC \}, \quad x \in C,$$
or equivalently,
\[\Pi_x(\alpha_1, \ldots, \alpha_n) = 0, \forall \alpha_i \in (TC)^0_x, \ x \in C. \]

We have the following easy observation for coisotropic submanifolds of a Nambu-Poisson manifold.

3.2. **Proposition.** Let \((M, \Pi)\) be a Nambu-Poisson manifold of order \(n\) and \(C\) be a closed embedded submanifold of \(M\). Let \(\mathcal{I}(C) = \{ f \in C^\infty(M) | f|_C \equiv 0 \}\) denote the vanishing ideal of \(C\). Then the followings are equivalent:

1. \(C\) is a coisotropic submanifold;
2. \(\mathcal{I}(C)\) is a Nambu-Poisson subalgebra;
3. for every \(f_1, \ldots, f_{n-1} \in \mathcal{I}(C)\), the Hamiltonian vector field \(X_{f_1 \ldots f_{n-1}}\) is tangent to \(C\).

Proof.

(1) \(\Rightarrow\) (2) Let \(f_1, \ldots, f_n \in \mathcal{I}(C)\). Then for any \(x \in C\), \(d_x f_i \in (TC)^0_x\), for all \(i = 1, \ldots, n\). Now since \(C\) is a coisotropic submanifold, we have
\[\{ f_1, \ldots, f_n \}(x) = \Pi_x(d_x f_1, \ldots, d_x f_n) = 0, \ \forall x \in C. \]
Hence \(\{ f_1, \ldots, f_n \} \in \mathcal{I}(C)\). Therefore \(\mathcal{I}(C)\) is a Nambu-Poisson subalgebra.

(2) \(\Rightarrow\) (3) Let \(f_1, \ldots, f_{n-1} \in \mathcal{I}(C)\) and \(x \in C\). Let \(\alpha \in (TC)^0_x\). Then there exists a function \(g\) vanishing on \(C\) such that \(d_x g = \alpha\). Since \(\mathcal{I}(C)\) is a Nambu-Poisson subalgebra, we have
\[\{ f_1, \ldots, f_{n-1}, g \}(x) = 0. \]
Thus,
\[X_{f_1 \ldots f_{n-1}}|_x(\alpha) = X_{f_1 \ldots f_{n-1}}|_x(d_x g) = \{ f_1, \ldots, f_{n-1}, g \}(x) = 0 \]
and consequently, \(X_{f_1 \ldots f_{n-1}}\) is tangent to \(C\).

(3) \(\Rightarrow\) (1) Let \(x \in C\) and \(\alpha_1, \ldots, \alpha_n \in (TC)^0_x\). Then there exist functions \(f_1, \ldots, f_n \in \mathcal{I}(C)\) such that \(d_x f_i = \alpha_i, \ \forall i = 1, \ldots, n\). Therefore,
\[\Pi_x(\alpha_1, \ldots, \alpha_n) = \Pi_x(d_x f_1, \ldots, d_x f_n) = X_{f_1 \ldots f_{n-1}}|_x(d_x f_n) = 0. \]
Hence \(C\) is a coisotropic submanifold of \(M\). \(\square\)

3.3. **Proposition.** Let \((M, \Pi_M)\) and \((N, \Pi_N)\) be two Nambu-Poisson manifolds of same order \(n\) and \(C \hookrightarrow N\) be a coisotropic submanifold of \(N\) with respect to \(\Pi_N\). If \(\phi : M \rightarrow N\) is a Nambu-Poisson map transverse to \(C\), then \(\phi^{-1}(C)\) is a coisotropic submanifold of \(M\) with respect to \(\Pi_M\). (the result holds true for manifolds with \(n\)-vector fields such that \(\phi_* \Pi_M = \Pi_N\)).

Proof. Since \(\phi\) is transverse to \(C\), therefore \(\phi^{-1}(C)\) is a submanifold of \(M\). Moreover
\[T(\phi^{-1}(C)) = (T\phi)^{-1}TC. \]
Therefore $T(\phi^{-1}(C))^0 = (T\phi)^*(TC)^0$. Observe that
\[
T\phi(\Pi_M^2(\bigwedge^{n-1} T(\phi^{-1}(C))^0)) = T\phi(\Pi_M^2((T\phi)^* \bigwedge^{n-1} (TC)^0))
= \Pi_N^2(\bigwedge^{n-1} (TC)^0) \subseteq TC.
\]
Thus,
\[
\Pi_M^2(\bigwedge^{n-1} T(\phi^{-1}(C))^0) \subseteq (T\phi)^{-1}TC = T(\phi^{-1}(C))
\]
and hence $\phi^{-1}(C)$ is coisotropic with respect to Π_M. \hfill \Box

3.4. **Proposition.** Let $\phi : (M, \Pi_M) \to (N, \Pi_N)$ be a Nambu Poisson map between two Nambu-Poisson manifolds (M, Π_M) and (N, Π_N) and $C \hookrightarrow M$ be a coisotropic submanifold of M. Assume that $\phi(C)$ is a submanifold of N. Then $\phi(C)$ is a coisotropic submanifold of N (the result holds true for manifolds with n-vector fields such that $\phi_*\Pi_M = \Pi_N$).

Proof. We have $T(\phi(C)) \supseteq T(\phi(TC))$ and $(T\phi)^*(T(\phi(C)))^0 \subseteq (TC)^0$. Therefore,
\[
\Pi_N^2(\bigwedge^{n-1} T(\phi(C))^0) = T\phi(\Pi_M^2((T\phi)^* \bigwedge^{n-1} T(\phi(C))^0)) \quad \text{(since ϕ is a N-P map)}
\[
\subseteq T\phi(\Pi_M^2(\bigwedge^{n-1} (TC)^0))
\subseteq T\phi(TC) \quad \text{(since $C \hookrightarrow M$ is coisotropic)}
\subseteq T(\phi(C))
\]
which shows that $\phi(C)$ is a coisotropic submanifold of N. \hfill \Box

Using the terminology of coisotropic submanifold with respect to any multivector field allows us to extend the results of Weinstein [17] from Poisson bivector field to Nambu-Poisson tensor or more generally to any multivector field.

3.5. **Proposition.** Let (M, Π_M) and (N, Π_N) be two manifolds with n-vector fields and $\phi : M \to N$ be a smooth map. Then ϕ is a (Π_M, Π_N)-map, that is $\phi_*\Pi_M = \Pi_N$ if and only if its graph
\[
\text{Gr}(\phi) = \{(m, \phi(m)) \mid m \in M\}
\]
is a coisotropic submanifold of $M \times N$ with respect to $\Pi_M \oplus (-1)^{n-1}\Pi_N$.

Proof. Let $C = \text{Gr}(\phi) \subset M \times N$. Then C is a closed embedded submanifold of $M \times N$. Note that, a tangent vector to the graph consist of a pair $(v_m, (T\phi)(v_m))$, where $m \in M$, $v_m \in T_m M$. Therefore, $(TC)^0$ consists of a pair of covectors $(-(T\phi)^* \psi, \psi)$, where $\psi \in T^*_{\phi(m)} N$. Therefore, $\text{Gr}(\phi)$ is a coisotropic submanifold of $M \times N$ with respect to $\Pi_M \oplus (-1)^{n-1}\Pi_N$ if and only if $(\Pi_M^2 \times (-1)^{n-1}\Pi_N^2)$ maps $(-(T\phi)^* \psi_1, \psi_1) \land \cdots \land (-(T\phi)^* \psi_{n-1}, \psi_{n-1})$ into TC, for all $\psi_1, \ldots, \psi_{n-1} \in T^*_{\phi(m)} N$ and $m \in M$. In other words,
\[
(T\phi) \left(\Pi_M^2(-(T\phi)^* \psi_1, \ldots, -(T\phi)^* \psi_{n-1}) \right) = (-1)^{n-1}\Pi_N^2(\psi_1, \ldots, \psi_{n-1})
\]
that is,
\[(T\phi)(\Pi_M((T\phi)^*\psi_1, \ldots, (T\phi)^*\psi_{n-1})) = \Pi_N(\psi_1, \ldots, \psi_{n-1}).\]
This is equivalent to the condition that ϕ is a (Π_M, Π_N)-map.

3.6. **Definition.** Let (M, Π_M) be a Nambu-Poisson manifold of order n and $\phi : M \to N$ be a smooth surjective map. If there exist a Nambu-Poisson structure Π_N (of order n) on N which makes ϕ into a Nambu-Poisson map, then Π_N is called the Nambu-Poisson structure *coinduced* by the mapping ϕ.

The following is a characterization of coinduced Nambu-Poisson structure.

3.7. **Proposition.** Let (M, Π_M) be a Nambu-Poisson manifold of order n and $\phi : M \to N$ be a smooth surjective map from M to some manifold N. Then N has a Nambu-Poisson structure coinduced by ϕ if and only if for all $f_1, \ldots, f_n \in C^\infty(N)$, the function \(\{\phi^*f_1, \ldots, \phi^*f_n\}_M\) is constant along the fibers of ϕ.

Proof. Let $f_1, \ldots, f_n \in C^\infty(N)$. If the function \(\{\phi^*f_1, \ldots, \phi^*f_n\}_M\) is constant along the ϕ-fibers, then there exists a function on N, which we denote by \(\{f_1, \ldots, f_n\}_N\) such that \(\{\phi^*f_1, \ldots, \phi^*f_n\}_M = \phi^*\{f_1, \ldots, f_n\}_N\). Clearly this bracket defines a coinduced Nambu-Poisson structure on N.

Conversely, suppose that there is a Nambu-Poisson bracket \(\{\ldots, \ldots\}_N\) on N coinduced by ϕ. Then for any $y \in N$,
\[
\{\phi^*f_1, \ldots, \phi^*f_n\}_M(\phi^{-1}\{y\}) = (\phi^*\{f_1, \ldots, f_n\}_N)(\phi^{-1}y) = \{f_1, \ldots, f_n\}_N(y)
\]
proving \(\{\phi^*f_1, \ldots, \phi^*f_n\}_M\) is constant along the ϕ-fibers. □

3.8. **Remark.** Let (M, Π_M) be a manifold with an n-vector field and $\phi : M \to N$ be a smooth map. Then there exists an n-vector field Π_N on N such that ϕ is a (Π_M, Π_N)-map if and only if for all $f_1, \ldots, f_n \in C^\infty(N)$, the function \(\{\phi^*f_1, \ldots, \phi^*f_n\}_M\) is constant along the fibers of ϕ.

3.9. **Proposition.** Let (M, Π_M) be a Nambu-Poisson manifold and $\phi : M \to N$ be a surjective submersion with connected fibers. Let $\ker \phi_*(m)$ is spanned by local Hamiltonian vector fields (that is, $\ker \phi_*(m) \subset D_m M$, for all $m \in M$). Then N has a Nambu-Poisson structure coinduced by ϕ.

Proof. Since ϕ is a submersion, the fibers of ϕ are submanifolds of M. Then for $y \in N$, $\phi^{-1}\{y\} = C$ is a submanifold of M. Let g_1, \ldots, g_{n-1} be locally defined functions on M such that $X_{g_1 \ldots g_{n-1}} \in \ker \phi_*$. Let $f_1, \ldots, f_n \in C^\infty(N)$. To prove that \(\{\phi^*f_1, \ldots, \phi^*f_n\}\) is constant on the fibers, it is enough to prove that
\[
X_{g_1 \ldots g_{n-1}}\{\phi^*f_1, \ldots, \phi^*f_n\} = 0.
\]
Note that
\[X_{g_1 \cdots g_{n-1}}(\phi^* f_1, \ldots, \phi^* f_n) = \sum_{k=1}^{n} (\phi^* f_k) X_{g_1 \cdots g_{n-1}}(\phi^* f_k) + (\phi^* f_n) \]
and the functions \(\phi^* f_i \) are constant along the fibers. Hence by the Proposition 3.7, there exists a coinduced Nambu-Poisson structure on \(N \).

\[\square \]

3.10. **Proposition.** Let \((M, \Pi_M)\) be a manifold with an \(n \)-vector field and \(\phi : M \to N \) be a surjective submersion. Then \(N \) has an (unique) \(n \)-vector field \(\Pi_N \) such that \(\phi \) is a \((\Pi_M, \Pi_N)\)-map if and only if \(R(\phi) = \{(x, y) \in M \times M | \phi(x) = \phi(y)\} \) is a coisotropic submanifold of \(M \times M \) with respect to \(\Pi_M \oplus (-1)^{n-1} \Pi_M \).

Proof. Note that \(R(\phi) = (\phi \times \phi)^{-1}(\Delta_N) \), where \(\Delta_N \) is the diagonal of \(N \times N \). Since \(\phi \) is surjective submersion \(R(\phi) \) is a submanifold of \(M \times M \). Moreover, for \((x, y) \in R(\phi)\)
\[T_{(x,y)}(R(\phi)) = \{(X, Y) \in T_x M \times T_y M | (T\phi)_x(X) = (T\phi)_y(Y)\}. \]
Therefore, \(T(R(\phi))^0 \) consists of covectors \(-(T\phi)^*_x \psi, (T\phi)^*_y \psi)\), where \(\psi \in T^*_x N \).

Thus, \(R(\phi) \) be a coisotropic submanifold of \(M \times M \) with respect to \(\Pi_M \oplus (-1)^{n-1} \Pi_M \) if and only if for all \(\psi_1, \ldots, \psi_{n-1} \in T^*_x N \) and \((x, y) \in R(\phi) \), \(\Pi^*_M \oplus (-1)^{n-1} \Pi^*_M \) maps
\[-(T\phi)^*_x \psi_1, (T\phi)^*_y \psi_1) \wedge \cdots \wedge -(T\phi)^*_x \psi_{n-1}, (T\phi)^*_y \psi_{n-1} \]
into \(T(R(\phi)) \). That is
\[(T\phi)_x \Pi^*_M ((T\phi)^*_x \psi_1, \ldots, (T\phi)^*_x \psi_{n-1}) = (1)^{n-1}(T\phi)_y \Pi^*_M ((T\phi)^*_y \psi_1, \ldots, (T\phi)^*_y \psi_{n-1}), \]
or equivalently,
\[(T\phi)_x \Pi^*_M ((T\phi)^*_x \psi_1, \ldots, (T\phi)^*_x \psi_{n-1}) = (T\phi)_y \Pi^*_M ((T\phi)^*_y \psi_1, \ldots, (T\phi)^*_y \psi_{n-1}) \]
holds. Let \(f_1, \ldots, f_n \in C^\infty(N) \) and \(x \in M \). Then
\[\{\phi^* f_1, \ldots, \phi^* f_n\}_M(x) = \Pi^*_M (d_x(\phi^* f_1) \wedge \cdots \wedge d_x(\phi^* f_{n-1}), d_x(\phi^* f_n)) \]
\[= \Pi^*_M ((T\phi)^*_x \psi_1 \wedge \cdots \wedge (T\phi)^*_x \psi_{n-1}), (T\phi)^*_y \psi_n) \]
\[= \langle (T\phi)_x \Pi^*_M ((T\phi)^*_x \psi_1 \wedge \cdots \wedge (T\phi)^*_x \psi_{n-1}), \psi_n \rangle \]
where \(\psi_i = d_{\phi(x)} f_i = d_{\phi(y)} f_i \in T^*_N, \) for all \(1 \leq i \leq n \). It follows from the Equation (1) that the function \(\{\phi^* f_1, \ldots, \phi^* f_n\}_M \) is constant along the \(\phi \)-fibers if and only if \(R(\phi) \) is a coisotropic submanifold of \(M \times M \) with respect to \(\Pi^*_M \oplus (-1)^{n-1} \Pi^*_M \). Hence the result follows by the Remark 3.8. The uniqueness follows from the surjectivity of \(\phi \).

\[\square \]

4. **Nambu-Lie groupoids**

In this section, we recall the definition of multiplicative multivector fields on Lie groupoid ([13]) and define Nambu-Lie groupoid (of order \(n \)) as a Lie groupoid with a multiplicative \(n \)-vector field which is also a Nambu-Poisson tensor.
4.1. **Definition.** Let $G \Rightarrow M$ be a Lie groupoid and $\Pi \in \mathcal{X}^n(G)$ be an n-vector field on G. Then Π is called *multiplicative* if the graph of the groupoid multiplication

$$\{(g, h, gh) \in G \times G \times G \mid \beta(g) = \alpha(h)\}$$

is a coisotropic submanifold of $G \times G \times G$ with respect to $\Pi \oplus \Pi \oplus (-1)^{n-1} \Pi$.

Then we have the following characterization of multiplicative multivector fields [13]:

4.2. **Theorem.** Let $G \Rightarrow M$ be a Lie groupoid and $\Pi \in \mathcal{X}^n(G)$ be an n-vector field on G. Then Π is multiplicative if and only if the following conditions are satisfied.

1. Π is an affine tensor. In other words
 $$\Pi(gh) = (r_h)_* \Pi(g) + (l_g)_* \Pi(h) - (r_h)_* (l_g)_* \Pi(u)$$
 where $u = \beta(g) = \alpha(h)$ and \mathcal{G}, \mathcal{H} are (local) bisections through the points g, h respectively.

2. M is a coisotropic submanifold of G with respect to Π.

3. For all $g \in G$, $\alpha_\ast \Pi(g)$ and $\beta_\ast \Pi(g)$ depend only on the base points $\alpha(g)$ and $\beta(g)$ respectively.

4. For all $f, f' \in C^\infty(M)$, the $(n - 2)$-vector field $\iota_{d(\alpha_\ast f) \wedge d(\beta_\ast f')} \Pi$ is zero. In other words,
 $$\{\cdots, \alpha_\ast f, \beta_\ast f'\} = 0.$$

5. For all $f_1, \ldots, f_k \in C^\infty(M)$, $\iota_{d(\beta_\ast f_1) \wedge \cdots \wedge d(\beta_\ast f_k)} \Pi$ is a left invariant $(n - k)$-vector field on G, $1 \leq k < n$.

4.3. **Remark.** Suppose G be a Lie group considered as a Lie groupoid over a point. Then the conditions (3) - (5) of the Theorem 4.2 are satisfied automatically. The condition (2) implies that $\Pi(e) = 0$ (where e is the identity element of the group), which together with condition (1) implies that Π satisfies the usual multiplicativity condition

$$\Pi(gh) = (r_h)_* \Pi(g) + (l_g)_* \Pi(h).$$

4.4. **Definition.** A *Nambu-Lie groupoid of order n* is a Lie groupoid $G \Rightarrow M$ with a multiplicative Nambu tensor $\Pi \in \mathcal{X}^n(G)$ of order n.

A Nambu Lie groupoid (of order n) will be denoted by $(G \Rightarrow M, \Pi)$.

4.5. **Example.** (1) Poisson groupoids [17] are examples of Nambu-Lie groupoids with $n = 2$.

(2) Any Lie groupoid with zero Nambu structure is a Nambu-Lie groupoid.

(3) Let (G, Π) be a Nambu-Lie group (of order n) [16]. Thus G is a Lie group equipped with a Nambu structure Π of order n on G such that

$$\Pi(gh) = (r_h)_* \Pi(g) + (l_g)_* \Pi(h)$$

for all $g, h \in G$. Note that the right hand side of the above equality is equal to $m_*(\Pi(g), \Pi(h))$, where $m_* : \wedge^n T_{(g,h)}(G \times G) \to \wedge^n T_{gh}G$ is the map induced by the
multiplication map \(m : G \times G \to G \). Therefore,
\[
\Pi(gh) = m_*(\Pi(g), \Pi(h)).
\]
Thus, the group multiplication map \(m : G \times G \to G \) is a \((\Pi \oplus \Pi, \Pi)\)-map. Therefore, by the Proposition 3.5, the graph of the group multiplication map is a coisotropic submanifold of \(G \times G \times G \) with respect to \(\Pi \oplus \Pi \oplus (-1)^{n-1} \Pi \). Hence \((G, \Pi)\) is a Nambu-Lie groupoid over a point. Conversely, if \((G, \Pi)\) is a Nambu-Lie groupoid over a point, then the group multiplication map \(m : G \times G \to G \) is a \((\Pi \oplus \Pi, \Pi)\)-map. Hence \((G, \Pi)\) is a Nambu-Lie group in the sense of [16]. One can also see the equivalence between Nambu-Lie groupoid over a point and Nambu-Lie group by using Remark 4.3.

For a Poisson groupoid the following facts are well known [17].

- The groupoid inversion map is a anti-Poisson map.
- The Poisson structure on the total space induces a Poisson structure on the base such that the source map is a Poisson map and the target map is a anti-Poisson map.

In the next proposition we generalize the above facts to the Nambu-Poisson setting.

4.6. **Proposition.** Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid. Then

1. The inverse map \(i : G \to G, \ g \mapsto g^{-1} \) is an anti-Nambu Poisson map.
2. There is a unique Nambu-Poisson structure on \(M \) which we denote by \(\Pi_M \) for which \(\alpha \) is a Nambu-Poisson map and \(\beta \) is an anti-Nambu-Poisson map.

Proof. (1) It is proved in [13] that given a Lie groupoid \(G \rightrightarrows M \) with multiplicative \(n \)-vector field \(\Pi \in X^n(G) \), the groupoid inversion map \(i : G \to G \) satisfies
\[
i_*\Pi = (-1)^{n-1}\Pi.
\]
Hence the result follows as \(\Pi \) is a Nambu tensor.

(2) Let \(f_1, \ldots, f_n \in C^\infty(M) \) be any functions on \(M \). Then for any \(g \in G \), we have
\[
\{\alpha^*f_1, \ldots, \alpha^*f_n\}(g) = \Pi(g)(d_g(\alpha^*f_1), \ldots, d_g(\alpha^*f_n)) = \Pi(g)(\alpha^*(d_{\alpha(g)}f_1), \ldots, \alpha^*(d_{\alpha(g)}f_n)) = \alpha_*\Pi(g)(d_{\alpha(g)}f_1, \ldots, d_{\alpha(g)}f_n).
\]
Since \(\alpha_*\Pi(g) \) depends only on the value of \(\alpha(g) \), it follows that the function \(\{\alpha^*f_1, \ldots, \alpha^*f_n\} \) is constant on the \(\alpha \)-fibers. Therefore, by the Proposition 3.7, there exists a Nambu-Poisson structure \(\Pi_M \) with the induced bracket denoted by \(\{ \ldots, \} \) on \(M \) for which \(\alpha \) is a Nambu-Poisson map. Since \(\beta = \alpha \circ i \) and \(i \) is anti Nambu-Poisson, therefore \(\beta \) is an anti Nambu-Poisson map.

4.7. **Remark.** Consider the map \((\alpha, \beta) : G \to M \times M \). Since we have \(\alpha_*\Pi = \Pi_M \) and \(\beta_*\Pi = (-1)^{n-1}\Pi_M \), using property \((4)\) of the Theorem 4.2 we obtain
\[
(\alpha, \beta)_*\Pi = \alpha_*\Pi \oplus \beta_*\Pi = \Pi_M \oplus (-1)^{n-1}\Pi_M.
\]
4.8. **Proposition.** Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid. If the orbit space \(M/\sim\) is a smooth manifold, then \(M/\sim\) carries a Nambu-Poisson structure such that the projection \(q : M \to M/\sim\) is a Nambu-Poisson map.

Proof. Let \(\Pi_M\) be the induced Nambu structure on the base \(M\). For the projection map \(q : M \to M/\sim\), we have

\[
\mathcal{R}(q) = \{(x,y) \in M \times M | q(x) = q(y)\} = \{(\alpha(g), \beta(g)) | g \in G\} = (\alpha, \beta)(G).
\]

Consider \(G\) as a coisotropic submanifold of \(G\) with respect to \(\Pi\) and also consider the map \((\alpha, \beta) : G \to M \times M\). By the above Remark we have \((\alpha, \beta)_\ast \Pi = \Pi_M \oplus (-1)^{n-1} \Pi_M\). Therefore, by the Proposition 3.4, \(\mathcal{R}(q) = (\alpha, \beta)(G)\) is a coisotropic submanifold of \(M \times M\) with respect to \(\Pi_M \oplus (-1)^{n-1} \Pi_M\). Hence the result follows from the Proposition 3.10. \(\Box\)

5. **Infinitesimal form of Nambu-Lie groupoid**

The aim of this section, is to study the infinitesimal form of a Nambu-Lie groupoid. We show that if \((G \rightrightarrows M, \Pi)\) is a Nambu-Lie groupoid of order \(n\) with Lie algebroid \(AG \to M\), then \((AG, A^\ast G)\) forms a weak Lie-Filippov bialgebroid of order \(n\) introduced in [1]. Before proceeding further, let us briefly recall from [1] the notion of a weak Lie-Filippov bialgebroid.

Lie bialgebroids are generalization of both Poisson manifolds and Lie bialgebras. Recall that a Lie bialgebroid, introduced by Mackenzie and Xu [10] is also the infinitesimal form of a Poisson groupoid. It is defined as a pair \((A, A^\ast)\) of Lie algebroids in duality, where the Lie bracket of \(A\) satisfies the following compatibility condition expressed in terms of the differential \(d^\ast\) on \(\Gamma(\bigwedge \cdot A)\)

\[
d^\ast[X,Y] = [d^\ast X, Y] + [X, d^\ast Y],
\]

for all \(X, Y \in \Gamma A\).

We note that if \(M\) is a Poisson manifold then the Lie algebroid structures on \(TM\) and \(T^\ast M\) form a Lie bialgebroid. On the other hand, it is well known [7,10] that if \((A, A^\ast)\) is a Lie bialgebroid over a smooth manifold \(M\) then there is a canonical Poisson structure on the base manifold \(M\).

Thus it is natural to ask the following question which was posed in [1]:

Does there exist some notion of bialgebroid associated to a Nambu-Poisson manifold of order \(n > 2\)?

To answer this question, the authors [1] introduced the notion of weak Lie-Filippov bialgebroid.

It is well known [4,16] that for a Nambu-Poisson manifold \(M\) of order \(n \geq 2\), the space \(\Omega^1(M)\) of 1-forms admits an \(n\)-ary bracket, called *Nambu-form bracket*, such that the bracket satisfies almost all the properties of an \(n\)-Lie algebra (also known as Filippov algebra of order \(n\)) bracket [3] except that the Fundamental identity is satisfied only in a restricted sense as described below.
Let \((M, \{\ldots,\})\) be a Nambu-Poisson manifold of order \(n\) with associated Nambu-Poisson tensor \(\Pi\). Then one can define the Nambu form-bracket on the space of 1-forms

\[[\ldots] : \Omega^1(M) \times \cdots \times \Omega^1(M) \to \Omega^1(M) \]

by the following

\[
[a_1, \ldots, a_n] = \sum_{k=1}^{n} (-1)^{n-k} \mathcal{L}_{\Pi(a_1 \wedge \cdots \wedge \hat{a}_k \wedge \cdots \wedge a_n)} a_k - (n-1)d(\Pi(a_1, \ldots, a_n))
\]

for \(a_i \in \Omega^1(M), i = 1, \ldots, n\). Here \(\hat{a}_k\) in a monomial \(a_1 \wedge \cdots \wedge \hat{a}_k \wedge \cdots \wedge a_n\) means that the symbol \(a_k\) is missing in the monomial. The above bracket satisfies the following properties ([16]).

1. The bracket is skew-symmetric.
2. \([df_1, \ldots, df_n] = d\{f_1, \ldots, f_n\}\).
3. \([a_1, \ldots, a_{n-1}, f a_n] = f[a_1, \ldots, a_{n-1}, a_n] + \Pi^2(a_1 \wedge \cdots \wedge a_{n-1})(f)a_n\).
4. The bracket satisfies the Fundamental identity

\[
[a_1, \ldots, a_{n-1}, [\beta_1, \ldots, \beta_n]] = \sum_{k=1}^{n} [\beta_1, \ldots, \beta_{k-1}, [a_1, \ldots, a_{n-1}, \beta_k], \ldots, \beta_n]
\]

whenever the 1-forms \(a_i \in \Omega^1(M)\) are closed, \(1 \leq i \leq n-1\) and for any \(\beta_j\).

5. \([\Pi^1(a_1 \wedge \cdots \wedge a_{n-1}), \Pi^2(\beta_1 \wedge \cdots \wedge \beta_{n-1})] = \sum_{k=1}^{n-1} \Pi^2(\beta_1 \wedge \cdots \wedge [a_1, \ldots, a_{n-1}, \beta_k] \wedge \cdots \wedge \beta_{n-1})\)

for closed 1-forms \(a_i \in \Omega^1(M)\) and for any 1-forms \(\beta_j\).

The Nambu-form bracket on \(\Omega^1(M)\), together with the usual Lie algebroid structure on \(TM\) yields an example of a notion called a weak Lie-Filippov algebroid pair of order \(n\), \(n > 2\), on a smooth vector bundle (cf. Definition 5.5, [1]).

In order to classify such structures, the authors formulate a notion of Nambu-Gerstenhaber algebra of order \(n\). It turns out, weak-Lie-Filippov algebroid pair structures of order \(n\), \(n > 2\), on a smooth vector bundle \(A\) over \(M\), are in bijective correspondence with Nambu-Gerstenhaber brackets of order \(n\) on the graded commutative, associative algebra \(\Gamma \Lambda^* A^*\) of multisections of \(A^*\), where \(A^*\) is the dual bundle (cf. Definition 5.7, Theorem 5.8, [1]).

Moreover, for a Nambu-Poisson manifold \(M\) of order \(n > 2\), the Nambu-Gerstenhaber bracket on \(\Omega^1(M)\), extending the Nambu-form bracket on \(\Omega^1(M)\) satisfies certain suitable compatibility condition similar to the compatibility condition of a Lie bialgebroid. This motivates the authors to introduce the notion of a weak Lie-Filippov bialgebroid structure of order \(n\) on a smooth vector bundle.

5.1. Definition. A weak Lie-Filippov bialgebroid of order \(n > 2\) over a smooth manifold \(M\) consists of a pair \((A, A^*)\), where \(A\) is a smooth vector bundle over \(M\) with dual bundle \(A^*\) satisfying the following properties:
(1) A is a Lie algebroid with d_A being the differential of the Lie algebroid cohomology of A with trivial representation;

(2) the space of smooth sections ΓA^* admits a skew-symmetric n-ary bracket

\[[\ldots,] : \Gamma A^* \times \cdots \times \Gamma A^* \longrightarrow \Gamma A^* \]

satisfying

\[[\alpha_1, \ldots, \alpha_{n-1}, [\beta_1, \ldots, \beta_n]] = \sum_{k=1}^{n} [\beta_1, \ldots, \beta_{k-1}, [\alpha_1, \ldots, \alpha_{n-1}, \beta_k], \ldots, \beta_n] \]

for all d_A-closed sections $\alpha_i \in \Gamma A^*$, $1 \leq i \leq n-1$ and for any sections $\beta_j \in \Gamma A^*$, $1 \leq j \leq n$;

(3) there exists a vector bundle map $\rho: \bigwedge^{n-1} A^* \longrightarrow TM$, called the anchor of the pair (A, A^*), such that the identity

\[[\rho(\alpha_1 \wedge \cdots \wedge \alpha_{n-1}), \rho(\beta_1 \wedge \cdots \wedge \beta_{n-1})] = \sum_{k=1}^{n-1} \rho(\beta_1 \wedge \cdots \wedge [\alpha_1, \ldots, \alpha_{n-1}, \beta_k] \wedge \cdots \wedge \beta_{n-1}) \]

holds for all d_A-closed sections $\alpha_i \in \Gamma A^*$, $1 \leq i \leq n-1$ and for any sections $\beta_j \in \Gamma A^*$, $1 \leq j \leq n-1$;

(4) for all sections $\alpha_i \in \Gamma A^*$, $1 \leq i \leq n$ and any $f \in C^\infty(M)$,

\[[\alpha_1, \ldots, \alpha_{n-1}, f\alpha_n] = f[\alpha_1, \ldots, \alpha_{n-1}, \alpha_n] + \rho(\alpha_1 \wedge \cdots \wedge \alpha_{n-1})(f)\alpha_n \]

holds;

(5) the following compatibility condition holds:

\[d_A[\alpha_1, \ldots, \alpha_n] = \sum_{k=1}^{n} [\alpha_1, \ldots, d_A\alpha_k, \ldots, \alpha_n], \]

for any $\alpha_i \in \Gamma A^*$, $1 \leq i \leq n$, where the bracket $[\ldots,]$ on the right hand side is the graded extension of the bracket on ΓA^*.

A weak Lie-Filippov bialgebroid (of order n) over M is denoted by (A, A^*) when all the structures are understood. A Lie bialgebroid is a Lie-Filippov bialgebroid of order 2 such that the conditions (2) and (3) of the above definition has no restriction on α.

In [1], the authors have shown that for a Nambu-Poisson manifold M of order $n > 2$, the pair (TM, T^*M) is a weak Lie-Filippov bialgebroid of order n (cf. Corollary 6.3, [1]). It is also proved that if (G, Π) is a Nambu-Lie group [16] of order n with its Lie algebra \mathfrak{g}, then $(\mathfrak{g}, \mathfrak{g}^*)$ forms a (weak) Lie-Filippov bialgebroid of order n over a Point.

It is known that the base of a Lie bialgebroid carries a natural Poisson structure. In [1] it has been extended to the Nambu-Poisson set up.

5.2. Proposition. ([1]) Let (A, A^*) be a weak Lie-Filippov bialgebroid (of order n) over M. Then the bracket

\[\{f_1, \ldots, f_n\}_{(A, A^*)} := \rho(d_Af_1 \wedge \cdots \wedge d_Af_{n-1})f_n \]

defines a Nambu-Poisson structure of order n on M.

It is known that, given a coisotropic submanifold C of a Poisson manifold M, the conormal bundle $(TC)^0 \to C$ is a Lie subalgebroid of the cotangent Lie algebroid T^*M \cite{17}. If M is a Nambu-Poisson manifold of order n ($n \geq 3$), the cotangent bundle T^*M is not a Filippov algebroid. However we have the following useful result.

5.3. Proposition. Let C be a closed embedded coisotropic submanifold of a Nambu-Poisson manifold (M, Π) of order n. Then

1. the bundle map $\Pi^2 : \wedge^{n-1} T^*M \to TM$ maps $\wedge^{n-1}(TC)^0$ to TC;
2. the Nambu-form bracket on the space of 1-forms $\Omega^1(M)$ can be restricted to the sections of the conormal bundle $(TC)^0 \to C$.

Proof. The assertion (1) follows from the definition of coisotropic submanifold. To prove (2), let $\alpha_1, \ldots, \alpha_n \in \Gamma(TC)^0$. We extend them to 1-forms on M, which we denote by the same notation. Let $X \in \mathcal{X}(M)$ be such that $X\big|_C$ is tangent to C. From the definition of Nambu-form bracket on 1-forms, we have

$$\langle [\alpha_1, \ldots, \alpha_n], X \rangle = \sum_{k=1}^{n} (-1)^{n-k} \langle \mathcal{L}_{\Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_k \wedge \cdots \wedge \alpha_n)} \alpha_k, X \rangle - (n - 1) \langle d(\Pi(\alpha_1, \ldots, \alpha_n)), X \rangle.$$

Observe that

$$\langle \mathcal{L}_{\Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_k \wedge \cdots \wedge \alpha_n)} \alpha_k, X \rangle = \langle \mathcal{L}_{\Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_k \wedge \cdots \wedge \alpha_n)} \alpha_k, X \rangle - \langle \alpha_k, [\Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_k \cdots \wedge \alpha_n), X] \rangle.$$

This is zero on C, because,

- $\langle \alpha_k, X \rangle$ is zero on C;
- $\Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_k \wedge \cdots \wedge \alpha_n)$ and X are both tangent to C and hence their Lie bracket is also tangent to C. Thus its pairing with α_k vanish on C.

Note that $\Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_{n-1})|_C$ is tangent to C and $\alpha_n|_C \in (TC)^0$. As a consequence, the function

$$\Pi(\alpha_1, \ldots, \alpha_n) = \langle \alpha_n, \Pi^2(\alpha_1 \wedge \cdots \wedge \alpha_{n-1}) \rangle$$

is zero on C. Therefore, the differential $d(\Pi(\alpha_1, \ldots, \alpha_n))$ restricted to C is in $(TC)^0$, which in turn implies that the second term of the right hand side also vanish on C. Hence

$$[\alpha_1, \ldots, \alpha_n]|_C \in (TC)^0.$$

One can check that the restriction to C does not depend on the chosen extension. Hence it defines a bracket on the sections of the conormal bundle $(TC)^0 \to C$.

5.4. Remark. (1) Let $m_0 \in M$ such that $\Pi(m_0) = 0$. Then \{m_0\} is a coisotropic submanifold of M. In this case, the conormal structure becomes $T^*_{m_0} M$, which is a Filippov algebra.

(2) The Nambu structure of a Nambu-Lie group G vanishes at the identity element and therefore the dual g^* of the Lie algebra g of G has a Filippov algebra structure \cite{16}.
5.5. Remark. Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid of order \(n\) with Lie algebroid \(AG \to M\). By the Proposition 5.3, we see that the space of sections of the conormal bundle \(A^*G = (TM)^0 \to M\) admits a skew-symmetric \(n\)-bracket \([\ldots]\) and there exists a bundle map

\[
\rho := \Pi^2 \mid_{\Lambda^{n-1}(TM)^0} : \bigwedge^{n-1} A^*G = \bigwedge^{n-1} (TM)^0 \to TM,
\]

as \(M\) is a coisotropic submanifold of \(G\).

Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid of order \(n\) with Lie algebroid \(AG \to M\). Let \(f \in C^\infty(M)\). Then by part (5) of the Theorem 4.2, \(\iota_{\delta^2 G} \Pi\) is a left invariant \((n-1)\)-vector field on \(G\). Therefore, there exists an \((n-1)\)-multisection \(\delta^0_\Pi(f) \in \Gamma \wedge^{n-1} AG\) of the Lie algebroid \(AG\) such that

\[
\iota_{\delta^2 G} \Pi = \delta^0_\Pi(f).
\]

Then we have the following result.

5.6. Proposition. Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid of order \(n\) and \(AG \to M\) be its Lie algebroid. Then for any \(X \in \Gamma AG\),

\[
\mathcal{L}_X \Pi := [\tilde{X}, \Pi]
\]

is a left invariant \(n\) vector field on \(G\), where \(\tilde{X}\) is the left invariant vector field on \(G\) corresponding to \(X\). Moreover \(\mathcal{L}_X \Pi\) corresponds to the \(n\)-multisection \(-\delta^1_\Pi(X) \in \Gamma \wedge^n AG\), that is,

\[
\mathcal{L}_X \Pi = -\delta^1_\Pi(X)
\]

where \(\delta^1_\Pi(X) \in \Gamma \wedge^n AG\) is given by

\[
\delta^1_\Pi(X)(\alpha_1, \ldots, \alpha_n) = \sum_{k=1}^n (-1)^{n-k} \Pi^2(\alpha_1 \wedge \ldots \wedge \hat{\alpha}_k \wedge \ldots \wedge \alpha_n)(X(\alpha_k)) - X([\alpha_1, \ldots, \alpha_n])
\]

for \(\alpha_1, \ldots, \alpha_n \in \Gamma A^*G = \Gamma(TM)^0\).

Proof. Let \(X_t = \exp t X\) be the one-parameter family of bisections generated by \(X \in \Gamma AG\). Let \(g \in G\) with \(\beta(g) = u\). Let \(u_t = (\exp t X)(u)\) be the integral curve of \(\tilde{X}\) starting from \(u\). If \(G\) is any (local) bisection through \(g\), then from the multiplicativity condition of \(\Pi\) (cf. Theorem 4.2), we have

\[
\Pi(g u_t) = (r_{X_t^*} \Pi)(g) + (l_g)_* \Pi(u_t) - (r_{X_t} \Pi)(l_g)_* \Pi(u).
\]

Therefore,

\[
(r_{X_t^*} \Pi)(g u_t) - \Pi(g) = (r_{X_t} \Pi)(l_g)_* \Pi(u_t) - (l_g)_* \Pi(u).
\]

Taking derivative at \(t = 0\), one obtains

\[
(\mathcal{L}_X^\Pi)(g) = (l_g)_* ((\mathcal{L}_X^\Pi)(u)).
\]

Therefore, \(\mathcal{L}_X^\Pi\) is left invariant by the Proposition 2.12 and hence it corresponds to some \(n\)-multisection of \(AG\). To show that \(\mathcal{L}_X^\Pi\) corresponds to \(-\delta^1_\Pi(X) \in \Gamma \wedge^n AG\), we have
to check that $\mathcal{L}\hat{\Pi}(X)$ coincide on the unit space M (both being left invariant). Since both of them are tangent to α-fibers, it is enough to show that they coincide on the conormal bundle $(TM)^0$. Let $\alpha_1, \ldots, \alpha_n$ be any sections of $(TM)^0$ and $\hat{\alpha}_1, \ldots, \hat{\alpha}_n$ be their respective extensions to one forms on G. Observe that

$$\left(\mathcal{L}_{\hat{\Pi}}(X)\right)_{|M}(\alpha_1, \ldots, \alpha_n)$$

$$= \left\langle \hat{\Pi}, \left[d(\hat{\Pi}(\hat{\alpha}_1, \ldots, \hat{\alpha}_n))\right] \right\rangle - \sum_{k=1}^{n} \hat{\Pi}(\hat{\alpha}_1, \ldots, \hat{\alpha}_k, \mathcal{L}_{\hat{\Pi}}(\alpha_1, \ldots, \alpha_n)) \right\rangle_{|M}$$

$$= \left\langle \hat{\Pi}, \hat{\Pi}(\alpha_1, \ldots, \alpha_n) \right\rangle - \sum_{k=1}^{n} (-1)^{n-k} \left\langle \hat{\Pi}^2(\hat{\alpha}_1 \wedge \cdots \wedge \hat{\alpha}_k \wedge \cdots \wedge \hat{\alpha}_n), \mathcal{L}_{\hat{\Pi}}(\alpha_1, \ldots, \alpha_n) \right\rangle_{|M}$$

(from the Equation (2))

$$= \left\langle X, [\alpha_1, \ldots, \alpha_n] \right\rangle - \sum_{k=1}^{n} (-1)^{n-k} \left\langle \hat{\Pi}^2(\alpha_1 \wedge \cdots \wedge \alpha_k \wedge \cdots \wedge \alpha_n), \mathcal{L}_{\hat{\Pi}}(\alpha_1, \ldots, \alpha_n) \right\rangle_{|M}$$

(using Cartan formula)

$$= - \delta^1_{\hat{\Pi}}(X)(\alpha_1, \ldots, \alpha_n).$$

To make our notation simple, let us denote $\delta^0_{\hat{\Pi}}, \delta^1_{\hat{\Pi}}$ by the same symbol $\delta_{\hat{\Pi}}$. We extend $\delta_{\hat{\Pi}}$ to the graded algebra $\Gamma^\Lambda\wedge A$ of multisections of AG by the following rule

$$\delta_{\hat{\Pi}}(P \wedge Q) = \delta_{\hat{\Pi}}(P) \wedge Q + (-1)^{|P|(n-1)}P \wedge \delta_{\hat{\Pi}}(Q)$$

for $P \in \Gamma^\Lambda[|P|] A, Q \in \Gamma^\Lambda[|Q|] A$. Then the operator

$$\delta_{\hat{\Pi}} : \Gamma^\Lambda \bigwedge^k AG \to \Gamma^\Lambda \bigwedge^{k+n-1} AG$$

satisfies

$$\delta_{\hat{\Pi}}([P, Q]) = [\delta_{\hat{\Pi}}(P), Q] + (-1)^{(|P|-1)(n-1)}[P, \delta_{\hat{\Pi}}(Q)].$$

Note that the operator $\delta_{\hat{\Pi}}$ need not satisfy condition $\delta_{\hat{\Pi}} \circ \delta_{\hat{\Pi}} = 0$.

We known that, Lie bialgebroids are infinitesimal form of Poisson groupoids. More precisely, given a Poisson groupoid $G \rightrightarrows M$ with Lie algebroid AG, it is known that its dual bundle A^*G also carries a Lie algebroid structure and (AG, A^*G) forms a Lie bialgebroid. In the next theorem we show that weak Lie-Filippov bialgebroids are infinitesimal form of Nambu-Lie groupoids.

5.7. Theorem. Let $(G \rightrightarrows M, \Pi)$ be a Nambu-Lie groupoid of order n with Lie algebroid $AG \to M$. Then (AG, A^*G) forms a weak Lie-Filippov bialgebroid of order n over M.
Proof. From the Remark 5.5, we have the space of sections of the bundle $A^*G = (TM)^0 \to M$ admits a skew-symmetric n-bracket $[,]\ldots[,]$ and there exists a bundle map

$$\rho : \bigwedge^{n-1} A^*G \to TM.$$

Let $\alpha_1, \ldots, \alpha_{n-1} \in \Gamma(TM)^0 = \Gamma(A^*G)$ with $d_A \alpha_i = 0$, for all $i = 1, \ldots, n-1$. Let $\bar{\alpha}_1, \ldots, \bar{\alpha}_{n-1}$ be, respectively, their extensions to left invariant 1-forms on G such that $d\bar{\alpha}_i = 0$, for all $i = 1, \ldots, n-1$. Then the conditions (2) and (3) of the Definition 5.1 of a weak Lie-Filippov algebroid pair follows from the weak Lie-Filippov bialgebroid structure (TG, T^*G) (Note that G is a Nambu-Poisson manifold).

Let $f \in C^\infty(M)$. Then observe that

$$[\bar{\alpha}_1, \ldots, \bar{\alpha}_{n-1}, (\beta^* f)\bar{\alpha}_n] = (\beta^* f)[\bar{\alpha}_1, \ldots, \bar{\alpha}_{n-1}, \bar{\alpha}_n] + \Pi^1(\bar{\alpha}_1 \wedge \cdots \wedge \bar{\alpha}_{n-1})(\beta^* f)\bar{\alpha}_n.$$

Since $(\beta^* f)\bar{\alpha}_n = \tilde{f}\alpha_n$, by assertion (2) of the Proposition 5.3, we get

$$[\alpha_1, \ldots, \alpha_{n-1}, f\alpha_n] = f[\alpha_1, \ldots, \alpha_n] + \rho(\alpha_1 \wedge \cdots \wedge \alpha_{n-1})(f)\alpha_n$$

proving condition (4) of the Definition 5.1. Moreover the compatibility condition of the weak Lie-Filippov bialgebroid (condition (5) of the Definition 5.1) follows from the observation that for any $\alpha \in \Gamma(A^*G) = \Gamma(TM)^0$ and any left invariant extension $\tilde{\alpha} \in \Omega^1(G)$, we have

$$d_A \alpha = (d\tilde{\alpha})|_M.$$

Thus, (AG, A^*G) is a weak Lie-Filippov bialgebroid of order n. \hfill \Box

5.8. Remark. If (G, Π) is a Nambu-Lie group with Lie algebra \mathfrak{g}, the dual vector space \mathfrak{g}^* carries a Filippov algebra structure [16]. Moreover the pair $(\mathfrak{g}, \mathfrak{g}^*)$ forms a (weak) Lie-Filippov bialgebra ([1,16]). The Lie-Filippov bialgebra $(\mathfrak{g}, \mathfrak{g}^*)$ is the infinitesimal form of the Nambu-Lie group (G, Π). A Lie-Filippov bialgebra $(\mathfrak{g}, \mathfrak{g}^*)$ can also be seen a Lie algebra \mathfrak{g} together with a Filippov algebra structure on the dual vector space \mathfrak{g}^* such that the map $\delta : \mathfrak{g} \to \bigwedge^n \mathfrak{g}$ dual to the Filippov bracket on \mathfrak{g}^*, defines a 1-cocycle of \mathfrak{g} with respect to the adjoint representation on $\bigwedge^n \mathfrak{g}$.

We have seen that given a Nambu-Lie groupoid of order n, there is an induced Nambu-Poisson structure on the base manifold (cf. Proposition 4.6). On the other hand, given a weak Lie-Filippov bialgebroid, there is an induced Nambu-Poisson structure on the base (cf. Theorem 5.2). The next proposition compares these Nambu-Poisson structures on the base induced from the Nambu Lie groupoid and its infinitesimal.

5.9. Proposition. Let $(G \Rightarrow M, \Pi)$ be a Nambu-Lie groupoid (of order n) with associated weak Lie-Filippov bialgebroid (AG, A^*G). Then the induced Nambu structures on M coming from the Nambu-Lie groupoid and the weak Lie-Filippov bialgebroid are related by

$$\{\ldots,\} = (-1)^{n-1}\{(AG, A^*G)\}.$$

Proof. For any functions \(f_1, \ldots, f_n \in C^\infty(M)\), we have
\[
\{(f_1, \ldots, f_n)\}_{(AG, A^*G)} = \Pi|_M (d_A f_1 \wedge \cdots \wedge d_A f_{n-1}) f_n \\
= \Pi(d(\beta^* f_1) \wedge \cdots \wedge d(\beta^* f_{n-1}))|_M f_n \\
= \Pi(\beta^* f_1, \ldots, \beta^* f_{n-1}, \beta^* f_n)|_M \\
= (-1)^{n-1} (\beta^* \{f_1, \ldots, f_n\})|_M \\
= (-1)^{n-1} \{f_1, \ldots, f_n\}_M.
\]

\[\square\]

5.10. Remark. It is known that under some connectedness and simply connectedness assumption, any Lie bialgebra integrates to a Poisson-Lie group \([8]\), and any Lie bialgebroid integrates to a Poisson groupoid \([11]\). These results does not hold in the context of Nambu structures of order \(\geq 3\). Let \(G\) be a connected and simply-connected Lie group with Lie algebra \(\mathfrak{g}\). Given a Lie-Filippov bialgebra structure \((\mathfrak{g}, \mathfrak{g}^*)\) on \(\mathfrak{g}\), the 1-cocycle \(\delta: \mathfrak{g} \to \wedge^n \mathfrak{g}\) dual to the Filippov algebra bracket on \(\mathfrak{g}^*\) integrates a multiplicative \(n\)-vector field \(\Pi\) on the Lie group. However this \(n\)-vector field (for \(n \geq 3\)) need not be a Nambu tensor \([16]\), that is, need not be locally decomposable. Thus (weak) Lie-Filippov bialgebra does not integrate to a Nambu-Lie group in general.

6. Coisotropic subgroupoids of a Nambu-Lie groupoid

In this final section, we introduce the notion of coisotropic subgroupoid of a Nambu-Lie groupoid and study the infinitesimal object corresponding to it.

6.1. Definition. Let \((G \Rightarrow M, \Pi)\) be a Nambu-Lie groupoid of order \(n\). Then a subgroupoid \(H \Rightarrow N\) is called a coisotropic subgroupoid if \(H\) is a coisotropic submanifold of \(G\) with respect to \(\Pi\).

6.2. Example. (1) For \(n = 2\), that is, when \(G \Rightarrow M\) is a Poisson groupoid, this notion is same as the coisotropic subgroupoid of a Poisson groupoid introduced in \([18]\).

(2) Let \((G, \Pi)\) be a Nambu-Lie group. Then a subgroup of \(G\) is called coisotropic if it is also a coisotropic submanifold of \(G\). Any coisotropic subgroup of \(G\) is a coisotropic subgroupoid over a point.

(3) Let \((G \Rightarrow M, \Pi)\) be a Nambu-Lie groupoid. Then by the Proposition 4.6, there exist an induced Nambu-structure on \(M\) for which the source map \(\alpha\) is a Nambu-Poisson map. Let \(N \Rightarrow M\) be a coisotropic submanifold of \(M\) with respect to this induced Nambu structure. Consider the restriction \(G|_N := \alpha^{-1}(N) \cap \beta^{-1}(N)\), then \(G|_N \Rightarrow N\) is a coisotropic subgroupoid.

(4) Let \(G \Rightarrow M\) be a Nambu-Lie groupoid. If the set of all elements of \(G\) which has same source and target, is a submanifold of \(G\), then it is a coisotropic subgroupoid.

Note that, the infinitesimal object corresponding to a Nambu-Lie groupoid \((G \Rightarrow M, \Pi)\) is the weak Lie-Filippov bialgebroid \((AG, A^*G)\). Therefore it is natural to ask how the Lie algebroid of a coisotropic subgroupoid \(H \Rightarrow N\) is related to the weak Lie-Filippov
bialgebroid \((AG, A^*G)\). To answer this question, we introduce a notion of coisotropic subbialgebroid of a weak Lie-Filippov bialgebroid and show that infinitesimal forms of coisotropic subgroupoids of a Nambu-Lie groupoid \((G \rightrightarrows M, \Pi)\) appear as coisotropic subalgebroids of the corresponding weak Lie-Filippov bialgebroid \((AG, A^*G)\).

6.3. Definition. Let \((A, A^*)\) be a weak Lie-Filippov bialgebroid of order \(n\) over \(M\). Then a Lie subalgebroid \(B \to N\) of \(A \to M\) is called a coisotropic subalgebroid if the anchor \(\rho : \bigwedge^{n-1} A^* \to TM\) and the \(n\)-bracket \([\ldots]\) on \(\Gamma A^*\) satisfy the following properties.

1. The anchor \(\rho\) maps \(\bigwedge^{n-1} B^0 \to TN\).
2. If \(\alpha_1, \ldots, \alpha_n \in \Gamma A^*\) with \(\alpha_i|_N \in B^0\) for all \(i\), then \([\alpha_1, \ldots, \alpha_n]|_N \in B^0\).
3. If \(\alpha_1, \ldots, \alpha_n \in \Gamma A^*\) with \(\alpha_i|_N \in B^0\) for all \(i\) and \(\alpha_n|_N = 0\), then \([\alpha_1, \ldots, \alpha_n]|_N = 0\).

where \(B_x^0 = \{\gamma \in A_x^* | \gamma(v) = 0, \forall v \in B_x\}\), is the annihilator of \(B_x\), \(x \in N\).

6.4. Example. Let \(M\) be a Nambu-Poisson manifold, then \((TM, T^*M)\) is a weak Lie-Filippov bialgebroid over \(M\). Let \(N \rightrightarrows M\) be a coisotropic submanifold. Then from the Proposition 5.3, it follows that the tangent bundle \(TN \to N\) is a coisotropic subalgebroid.

It is known that (Proposition 5.2, see also [1]), the base of a weak Lie-Filippov bialgebroid carries a Nambu structure. The next Proposition shows that the base of a coisotropic subalgebroid is a coisotropic submanifold with respect to this induced Nambu structure.

6.5. Proposition. Let \((A, A^*)\) be a weak Lie-Filippov bialgebroid over \(M\) and \(B \to N\) be a coisotropic subalgebroid. Then \(N\) is a coisotropic submanifold of \(M\).

Proof. Let \(a : A \to TM\) denote the anchor of the Lie algebroid \(A\) and \(\rho : \bigwedge^{n-1} A^* \to TM\) be the anchor of pair \((A, A^*)\). We first show that, \(a^*(TN)^0 \subseteq B^0\). This is true because,

\[\langle a^*\xi_x, v \rangle = \langle \xi_x, a(v) \rangle = 0\] for \(\xi_x \in (TN)_x^0\) and \(v \in B_x\).

Let \(\Pi^{\sharp}_{(A, A^*)}\) be the induced Nambu structure on \(M\) coming from the weak Lie-Filippov bialgebroid \((A, A^*)\). Then the induced map \(\Pi^{\sharp}_{(A, A^*)} : \bigwedge^{n-1} A^*M \to TM\) is given by

\[\Pi^{\sharp}_{(A, A^*)} = \rho \circ \bigwedge^{n-1} a^*\].

Therefore, for any \(\xi_1, \ldots, \xi_{n-1} \in (TN)^0\), we have

\[\Pi^{\sharp}_{(A, A^*)}(\xi_1, \ldots, \xi_{n-1}) = \rho(a^*\xi_1, \ldots, a^*\xi_{n-1}) \in TN\]
as \(a^*\xi_i \in B^0\) and \(B\) is a coisotropic subalgebroid. Therefore \(N\) is a coisotropic submanifold of \(M\).

The next proposition shows that the infinitesimal object corresponding to coisotropic subgroupoids are coisotropic subalgebroids.

6.6. Proposition. Let \((G \rightrightarrows M, \Pi)\) be a Nambu-Lie groupoid with weak Lie-Filippov bialgebroid \((AG, A^*G)\). Let \(H \rightrightarrows N\) be a coisotropic subgroupoid of \(G \rightrightarrows M\) with Lie algebroid \(AH \to N\). Then \(AH \to N\) is a coisotropic subalgebroid.

Proof. Since \(H \rightrightarrows N\) is a Lie subgroupoid of \(G \rightrightarrows M\), therefore \(AH \to N\) is a Lie subalgebroid of \(AG \to M\). We claim that the anchor \(\rho = \Pi^{\sharp}_{(A, A^*)}|_{\bigwedge^{n-1} (TM)^0} = \Pi^{\sharp}_{(A, A^*)}|_{\bigwedge^{n-1} (AG)^0}\) of the weak Lie-Filippov bialgebroid \((AG, A^*G)\) maps \(\bigwedge^{n-1} (AH)^0\) to \(TN\). First observe that, for any
$x \in N, (AH)_x^0 = (TM)_x^0 \cap (TH)_x^0$ and $T_xN = T_xM \cap T_xH$. Therefore, ρ maps $\wedge^{n-1}(AH)^0$ to

$$\Pi^2(\wedge^{n-1}(TM)^0) \cap \Pi^2(\wedge^{n-1}(TH)^0) \subseteq TM \cap TH \cong TN,$$

here we have used the fact that M and H are both coisotropic submanifolds of G.

Let $\alpha_1, \ldots, \alpha_n \in \Gamma^*G = \Gamma(TM)^0$ such that $\alpha_i|_N \in (AH)^0$, for all $i = 1, \ldots, n$. Let $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_n$ be one forms on G extending $\alpha_1, \ldots, \alpha_n$ and are conormal to H. Then by the Proposition 5.3, the 1-form $[\tilde{\alpha}_1, \ldots, \tilde{\alpha}_n]$ is conormal to both M and H, as M and H are both coisotropic submanifolds of G. Therefore,

$$[\tilde{\alpha}_1, \ldots, \tilde{\alpha}_n]_N \in (TM)^0 \cap (TH)^0 \cong (AH)^0.$$

Verification of the last condition of the Definition 6.3 is similar. Hence $AH \to N$ is a coisotropic subalgebroid of (AG, A^*G). □

6.7. Corollary

Let $(G \rightrightarrows M, \Pi)$ be a Nambu-Lie groupoid and $H \rightrightarrows N$ be a coisotropic subgroupoid. Then N is a coisotropic submanifold of M.

References

[1] Samik Basu, Somnath Basu, Apurba Das and Goutam Mukherjee, Nambu structures and associated Bialgebroids, preprint, arXiv:1502.06533

[2] Jean-Paul Dufour and Nguyen Tien Zung, Poisson structures and their normal forms, Birkhäuser Verlag, Basel-Boston-Berlin (2005).

[3] V. T. Filippov, n-Lie algebras, Sib. Math. Zh., 26 (6), 126-140, (1985).

[4] J. Grabowski and G. Marmo, On Filippov algebroid and multiplicative Nambu structures, Diff. Geom. Appl. 12 (2000) 35-50.

[5] R. Ibáñez, M. de León, J.C. Marrero, E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A: Math. Gen. 32 (1999) 8129-8144.

[6] R. Ibáñez, M. de León, J.C. Marrero and D. M. de Diego, Reduction of generalized Poisson and Nambu-Poisson manifolds, Rep. Math. Phys. 42 (1998) 71-90.

[7] Y. Kosmann-Schwarzbach; Exact Gerstenhaber algebras and Lie bialgebroids, Acta applicandae Mathematicae 41: 153-165, 1995.

[8] Jiang-Hua Lu and Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom. 31 (1990) 501-526.

[9] Kirill C.H. Mackenzie, Lie groupoids and Lie algebroids in Differential Geometry, Cambridge University Press, Cambridge, (2005).

[10] Kirill C.H. Mackenzie and Ping Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73, (1994) 415-452.

[11] Mackenzie, Kirill C. H., and Xu, P.: Integration of Lie bialgebroids, Topology 39 (2000) 445-467.

[12] Yoichiro Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D. 7 (1973) 2405-2412.

[13] David Iglesias Ponte, Camille Laurent-Gengoux and Ping Xu, Universal lifting theorem and quasi-Poisson groupoids, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 3, 681-731.

[14] Leon Takhtajan, On foundation of the Generalized Nambu Mechanics, Comm. Math. Phys. Volume 160, Number 2 (1994), 295-315.

[15] Izu Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, Vol. 118, Birkhäuser Verlag, Basel, (1994).

[16] Izu Vaisman, Nambu-Lie groups, J. Lie Theory 10 (2000), 181-194.

[17] Alan Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988) 705-727.
[18] Ping Xu, *On Poisson groupoids*, Inter. J. math. 6, No. 1, 101-124 (1995).

E-mail address: apurbadas348@gmail.com

Stat-Math Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India.