SOME FAMILIES OF RANDOM FIELDS RELATED TO MULTIPARAMETER LÉVY PROCESSES

FRANCESCO IAFRATE * AND COSTANTINO RICCIUTI**

Abstract. Let $\mathbb{R}^+_N = [0, \infty)^N$. We here consider a class of random fields $(X_t)_{t \in \mathbb{R}^+_N}$ which are known as Multiparameter Lévy processes. Related multiparameter semigroups of operators and their generators are represented as pseudo-differential operators. We also consider the composition of $(X_t)_{t \in \mathbb{R}^+_N}$ by means of the so-called subordinator fields and we provide a Phillips formula. We finally study the composition of $(X_t)_{t \in \mathbb{R}^+_N}$ by means of the so-called inverse random fields, which gives rise to interesting long range dependence properties. As a byproduct of our analysis, we study a model of anomalous diffusion in an anisotropic medium which extends the one treated in [8].

1. Introduction

In this paper we consider Multiparameter Lévy processes $(X_t)_{t \in \mathbb{R}^+_N}$ in the sense of [5; 37; 38; 39]. The reason they are called in this way is that they enjoy, in some sense, independence and stationarity of increments. Independence of increments is meant in the following way. First a partial ordering on \mathbb{R}^+_N is established, such that $a \preceq b$ in \mathbb{R}^+_N if $a_i \leq b_i$ for each $i = 1, \ldots, N$. Then it is assumed that, for any choice of ordered points $t^{(1)}, t^{(2)}, \ldots, t^{(k)}$ in \mathbb{R}^+_N, we have that $X_{t^{(j+1)}} - X_{t^{(j)}}$, $j = 1, \ldots, k - 1$, is a set of independent random variables. On the other hand, stationarity of increments means that $X_{t+\tau} - X_t$ has the same distribution of X_τ for all $t, \tau \in \mathbb{R}^+_N$.

Such processes are not to be confused with other extensions of Lévy processes where the parameter is multidimensional. Among them, we recall a class of processes, including the Brownian sheet and the Poisson sheet, which have a different definition from ours, because in that case

* Dipartimento di Scienze di Base Applicate all’Ingegneria - Sapienza Università di Roma
** Dipartimento di Scienze Statistiche - Sapienza Università di Roma
Corresponding author: Costantino Ricciuti (costantino.ricciuti@uniroma1.it) .
independence of increments is understood in another way (consult e.g. [1; 10; 17]).

Multiparameter Lévy processes are of interest in Analysis since they furnish a stochastic solution to some systems of differential equations, as will be recalled in section 2. Roughly speaking, if the vector $G = (G_1, G_2, \ldots, G_N)$ is the generator of a Multiparameter Lévy process $(X_t)_{t \in \mathbb{R}_+^N}$, then, provided that u belongs to suitable function spaces, the function $E u(x + X_t)$ (E denoting the expectation) solves the system

$$
\frac{\partial}{\partial t_k} h(x, t) = G_k h(x, t) \quad h(x, 0) = u(x) \quad k = 1, \ldots, N
$$

where $t = (t_1, \ldots, t_N)$. Of course, for one parameter Lévy processes, we have a single differential equation, as stated by the well known Feller theory of one parameter Markov processes and semigroups.

The idea of subordination for Multiparameter Lévy processes is presented in [5; 37; 38; 39] (for the classical theory of subordination of one-parameter Lévy processes see e.g. [[42], chapter 6]). The construction is as follows. Let $(X_t)_{t \in \mathbb{R}_+^N}$ be a Multiparameter Lévy process and let $(H_t)_{t \in \mathbb{R}_+^M}$ be a subordinator field, i.e. a Multiparameter Lévy process with values in \mathbb{R}_+^N, such that it has non decreasing paths in the sense of the partial ordering (i.e. $t_1 \preceq t_2$ in \mathbb{R}_+^M implies $H_{t_1} \preceq H_{t_2}$ in \mathbb{R}_+^N). The subordinated field is defined by $(X_{H_t})_{t \in \mathbb{R}_+^M}$ and it is again a Multiparameter Lévy process.

One of the main results of this paper is to provide a formula for the generator of the subordinated field. Indeed we find an extension of the Phillips theorem to the multi-parameter case, by involving the so-called multi-dimensional Bernstein functions. This gives rise to interesting systems of type 1.1. In those systems, the operator on the right side may possibly be pseudo-differential. For example, when the subordinator field is stable, such a system could be interesting for those studying fractional equations, since the operator on the right side involves the fractional Laplacian and the so-called fractional gradient; we recall that the fractional gradient is a generalization of the fractional Laplacian to the case where the jumps are not isotropically distributed (see e.g. [[8], Example 2.2] and the references therein).

The basic case of subordinator field is the one with $M = 1$. In this case we have a one-parameter process $H_t = (H_1(t), \ldots, H_N(t))$ which the authors in [5] call multivariate subordinator. This is nothing more than a one-parameter Lévy process with values in \mathbb{R}_+^N, where all the components $t \to H_j(t)$ are non-decreasing (namely, each H_j is a
subordinator). Using a multivariate subordinator, subordination of a
Multiparameter Lévy process gives a one-parameter Lévy process.

In the second part of the paper, by considering a multivariate sub-
ordinator \((H_1(t), \ldots, H_N(t)) \), we will construct a new random field
\[
L_t = (L_1(t_1), \ldots, L_N(t_N)) \quad t = (t_1, \ldots, t_N)
\]
where \(L_j \) is the inverse, also said the hitting time, of the subordinator
\(H_j \), i.e.
\[
L_j(t_j) = \inf\{x > 0 : H_j(x) > t_j\}.
\]

We will call (1.2) inverse random field. Now, let \((X_t)_{t \in \mathbb{R}_+^N}\) be a Mul-
tiparameter Lévy process with values in \(\mathbb{R}^d \), which is assumed to be
independent of (1.2). We are interested in the subordinated random
field \((Z_t)_{t \in \mathbb{R}_+^N}\) defined by
\[
Z_t = X_{L_t}
\]
Of course, (1.2) and (1.3) are not Multiparameter Lévy processes because
they enjoy neither independence nor stationarity of increments with
respect to the partial ordering on \(\mathbb{R}_+^N \). However, they may be useful in
applications in order to model spatial data exhibiting various correlation
structures which cannot fall in the framework of Multiparameter
Lévy or Markov processes.

Our topic has been inspired by some existing literature. First of
all, there are many papers (see e.g. [6; 21; 28; 29; 30; 31; 32; 33; 47])
concerning semi-Markov processes of the form
\[
Z(t) = X(L(t)) \quad t \geq 0
\]
where \(X \) is a (one parameter) Lévy process in \(\mathbb{R}^d \) and \(L \) is the inverse
of a subordinator \(H \) independent of \(X \), i.e.
\[
L(t) = \inf\{x > 0 : H(x) > t\}.
\]
Processes of type (1.4) have an important role in statistical physics, since
they model continuous time random walk scaling limits and anomalous
diffusions. Moreover, it is known that (1.4) is not Markovian and its
density \(p(x,t) \) is governed by an equation which is non local in the
time variable:
\[
D_t p(x, t) - \mathcal{V}(t)p(x, 0) = G^* p(x, t).
\]
In the above equation, \(G^* \) is the dual to the generator of \(X \) and the
operator \(D_t \) is the so-called generalized fractional derivative (in the
sense of Marchaud), defined by
\[
D_t h(t) := \int_0^\infty (h(t) - h(t - \tau)) \nu(d\tau), \quad t > 0
\]
where ν is the Lévy measure of H and $\nu(t) := \int_t^\infty \nu(dx)$ is the tail of the Lévy measure.

The main results regarding the random fields of type 1.3 will be reported in Section 4; we will show that they have interesting correlation structures and that they are governed by particular integro-differential equations. Such equations are non local in the t_1, \ldots, t_N variables and generalize equation (1.6) holding in the one-parameter case.

We also recall that the first idea of inverse random field appeared in [[8], Sect. 3] where the authors proposed a model of multivariate time change.

Another source of inspiration is the paper [23], even if it does not exactly fit into our context. Here the authors considered a Poisson sheet $N(t_1, t_2)$, which is not a Multiparameter Lévy process in the sense of this paper, and studied the composition

$$Z(t_1, t_2) = N(L_1(t_1), L_2(t_2)),$$

where L_1 and L_2 are two independent inverse stable subordinators, of index α_1 and α_2 respectively; the resulting random field showed interesting long range dependence properties.

2. Basic notions and some preliminary results

We introduce the partial ordering on the set $\mathbb{R}_+^N = [0, \infty)^N$: the point $a = (a_1, \ldots, a_N)$ precedes the point $b = (b_1, \ldots, b_N)$, say $a \preceq b$, if and only if $a_j \leq b_j$ for each $j = 1, \ldots, N$.

A sequence $\{x_i\}_{i=1}^\infty$ in \mathbb{R}_+^N is said to be increasing if $x_i \preceq x_{i+1}$ for each i; it is said to be decreasing if $x_{i+1} \preceq x_i$ for each i.

Consider a function $f : \mathbb{R}_+^N \to \mathbb{R}^d$. We say that f is right continuous at $x \in \mathbb{R}_+^N$ if, for any decreasing sequence $x_i \to x$ we have $f(x_i) \to f(x)$. We say that $f : \mathbb{R}_+^N \to \mathbb{R}^d$ has left limits at $x \in \mathbb{R}_+^N/\{0\}$ if, for any increasing sequence $x_i \to x$, the limit of $f(x_i)$ exists; such a limit may depend on the choice of the sequence x_i.

Moreover, f is said to be cadlag if it is right continuous at each $x \in \mathbb{R}_+^N$ and has left limits at each $x \in \mathbb{R}_+^N/\{0\}$.

2.1. Multiparameter Lévy processes. We here recall the notion of Multiparameter Lévy process in the sense of [5; 37; 38; 39]. We also refer to [16] as a standard reference on Multiparameter Markov processes.

The parameters set is here assumed to be \mathbb{R}_+^N. An analogous (but more general) definition holds if the parameter set is any cone contained in \mathbb{R}^N, but this generalization is not essential for the aim of this paper.
Definition 2.1. A random field \((X_t)_{t \in \mathbb{R}^N_+}\), with values in \(\mathbb{R}^d\), is said to be a Multiparameter Lévy process if

1. \(X_0 = 0\) a.s.
2. it has independent increments with respect to the partial ordering on \(\mathbb{R}^N_+\), i.e. for any choice of \(0 = t^{(0)} \leq t^{(1)} \leq t^{(2)} \ldots \leq t^{(k)}\), the random variables \(X_{t^{(j)}} - X_{t^{(j-1)}}\), \(j = 1, \ldots, k\), are independent.
3. it has stationary increments, i.e. \(X_{t+\tau} - X_t \overset{d}{=} X_\tau\) for each \(t, \tau \in \mathbb{R}^N_+\).
4. it is c.d.l.g a.s.
5. it is continuous in probability, namely, for any sequence \(t^{(i)} \in \mathbb{R}^N_+\) such that \(t^{(i)} \rightarrow t\), it holds that \(X_{t^{(i)}}\) converges to \(X_t\) in probability.

If (1), (2), (3), (5) hold, then \((X_t)_{t \in \mathbb{R}^N_+}\) is said to be a Multiparameter Lévy process in law.

We report some examples of Multiparameter Lévy processes, which are constructed from one-parameter ones.

Example 2.2. If \((X^{(1)}_{t_1})_{t_1 \in \mathbb{R}^+}, \ldots, (X^{(N)}_{t_N})_{t_N \in \mathbb{R}^+}\) are \(N\) independent Lévy processes on \(\mathbb{R}^d\), with laws \(\nu^{(1)}_{t_1}, \ldots, \nu^{(N)}_{t_N}\), then

\[
X_t := X^{(1)}_{t_1} + X^{(2)}_{t_2} + \cdots + X^{(N)}_{t_N} \quad t = (t_1, t_2, \ldots, t_N)
\]

is a \(N\)-parameter Lévy process on \(\mathbb{R}^d\), which is usually called additive Lévy process (see e.g. [18] and [[16], pp. 405]).

Here \(X_t\) has law

\[
\mu_t = \nu^{(1)}_{t_1} \ast \cdots \ast \nu^{(N)}_{t_N}
\]

where \(\ast\) denotes the convolution. Examples of the sample paths are shown in Figure 1 and Figure 2.

Example 2.3. Let \((X^{(1)}_{t_1})_{t_1 \in \mathbb{R}^+}, \ldots, (X^{(N)}_{t_N})_{t_N \in \mathbb{R}^+}\) be independent \(\mathbb{R}\)-valued Lévy processes with laws \(\nu^{(1)}_{t_1}, \ldots, \nu^{(N)}_{t_N}\). Then

\[
X_t = (X^{(1)}_{t_1}, X^{(2)}_{t_2}, \ldots, X^{(N)}_{t_N}) \quad t = (t_1, t_2, \ldots, t_N)
\]

is a \(\mathbb{R}^N\) valued Lévy process, which can be called product Lévy process (in the language of [[16], pag. 407]). Clearly, this is a particular case of Example 2.2 because

\[
X_t = X^{(1)}_{t_1} e_1 + X^{(2)}_{t_2} e_2 + \cdots + X^{(N)}_{t_N} e_N
\]

where \(\{e_1, \ldots, e_N\}\) denotes the canonical basis of \(\mathbb{R}^N\).

Here \(X_t\) has law

\[
\mu_t = \nu^{(1)}_{t_1} \otimes \nu^{(2)}_{t_2} \otimes \cdots \otimes \nu^{(N)}_{t_N}
\]
Figure 1. Sample paths of additive Lévy fields, as in Example 2.2

Figure 2. Sample path of a \mathbb{R}^2-valued biparameter additive field (i.e. $d = N = 2$).

where \otimes denotes the product of measures.

Example 2.4. Let $(V_t)_{t \in \mathbb{R}_+}$ be a Lévy process in \mathbb{R}^d. Then $V_{c_1 t_1 + \cdots + c_N t_N}$ is a multi-parameter Lévy process for any choice of $(c_1, \ldots, c_N) \in \mathbb{R}_+^N$.

Remark 2.5. What we have presented is not the only way to extend the notion of independence of increments to the multiparameter case. A very common approach is to define independence of increments over
disjoint rectangles (see [1] and [10]). This gives rise to a class of random fields, known as \textit{Levy sheets} (e.g. the Poisson sheet or the Brownian sheet).

In the following, \(\delta_0\) will denote the probability measure concentrated at the origin. Moreover, \(\{e_1, \ldots, e_N\}\) will denote the canonical basis of \(\mathbb{R}^N\).

Definition 2.6. A family \((\mu_t)_{t \in \mathbb{R}^N_+}\) of probability measures on \(\mathbb{R}^d\) is said to be a \(\mathbb{R}^N_+\)-parameter convolution semigroup if

\[
\begin{align*}
&i) \mu_{t+\tau} = \mu_t * \mu_\tau, \text{ for all } t, \tau \in \mathbb{R}^N_+ \\
&ii) \mu_t \to \delta_0 \text{ as } t \to 0
\end{align*}
\]

By Def. 2.6 it follows that \(\mu_t\) is infinitely divisible for each \(t\).

The above notion of multi-parameter convolution semigroup is related to Multiparameter Lévy processes, as shown in the following Proposition.

We preliminarily observe that, since \(X_t\) is a Multiparameter Lévy process, where \(t = (t_1, \ldots, t_N)\), it immediately follows that, for each \(j = 1, \ldots, N\), the process \((X_{t_j}e_j)_{t_j \in \mathbb{R}^N_+}\) is a classical one-parameter Lévy process. In other words, if \((\mu_t)_{t \in \mathbb{R}^N_+}\) is a multi-parameter convolution semigroup, then \((\mu_{t_j}e_j)_{t_j \in \mathbb{R}^N_+}\) is a one-parameter convolution semigroup which is the law of \(X_{t_j}e_j\).

Proposition 2.7. Let \((X_t)_{t \in \mathbb{R}^N_+}\) be a Multiparameter Lévy process on \(\mathbb{R}^d\) and let \(\mu_t\) be the law of the random variable \(X_t\). Then

\[
\begin{align*}
&i) \text{ The family } (\mu_t)_{t \in \mathbb{R}^N_+} \text{ is a } \mathbb{R}^N_+\text{-parameter convolution semigroup of probability measures}. \\
&ii) \text{ There exist independent random vectors } Y_{t_j}^{(j)}, j = 1, \ldots, N, \text{ with } Y_{t_j}^{(j)} \overset{d}{=} X_{t_j}e_j, \text{ such that } \\
X_t \overset{d}{=} Y_{t_1}^{(1)} + \ldots + Y_{t_N}^{(N)} \quad t = (t_1, \ldots, t_N)
\end{align*}
\]

Proof. By writing

\[
X_{t+\tau} = (X_{t+\tau} - X_\tau) + X_\tau
\]

for all \(t, \tau \in \mathbb{R}^N_+\), we observe that \(X_{t+\tau} - X_\tau\) and \(X_\tau\) are independent by the assumption of independence of increments along those sequences that are increasing with respect to the partial ordering. Moreover \(X_{t+\tau} - X_\tau\) has the same distribution of \(X_t\) by stationarity. Hence \(\mu_{t+\tau} = \mu_t * \mu_\tau\). Moreover, stochastic continuity of \((X_t)_{t \in \mathbb{R}^N_+}\) gives \(\mu_t \to \delta_0\) as \(t \to 0\), and thus \(i)\) is proved. To prove \(ii)\), it is sufficient to write \(t = t_1e_1 + \cdots + t_Ne_N\) and apply the semigroup property just proved in point \(i)\), to have

\[
\mu_t = \mu_{t_1e_1} * \cdots * \mu_{t_Ne_N}
\]
and the proof is complete since $\mu_{t^j\varepsilon_j}$ is the law of $X_{t^j\varepsilon_j}$. □

We stress that Proposition 2.7 is a statement about equality in law of random variables (t is fixed), and not equality of processes. We further observe that Proposition 2.7 says that to each multiparameter Lévy process in law there corresponds a unique convolution semigroup of probability measures. But, unlike what happens for classical Lévy processes (i.e. when $N = 1$), the converse is not true in general: a multiparameter convolution semigroup $(\mu_t)_{t \in \mathbb{R}^N_+}$ can be associated to different multiparameter Lévy processes in law, because $(\mu_t)_{t \in \mathbb{R}^N_+}$ does not completely determine all the finite-dimensional distributions. Indeed, only along \mathbb{R}^N_+-increasing sequences $0 \leq \tau^{(1)} \leq \cdots \leq \tau^{(k)}$, the joint distribution of $(X_{\tau^{(1)}}, \ldots, X_{\tau^{(k)}})$ can be uniquely determined in terms of μ_t by using independence and stationarity of increments, but this is not possible if the points $\tau^{(1)}, \ldots, \tau^{(k)} \in \mathbb{R}^N_+$ are not ordered (in the sense of the partial ordering).

2.1.1. **Characteristic function of multiparameter Lévy processes.** Consider the Y_{t^j} involved in Proposition 2.7. By the Lévy Khintchine formula, we have

\[
\mathbb{E}e^{i\xi Y_{t^j}} = \int_{\mathbb{R}^d} e^{i\xi y} \mu_{t^j\varepsilon_j}(dy) = e^{t^j\psi_j(\xi)} \quad \xi \in \mathbb{R}^d,
\]

the Lévy exponent ψ_j having the form

\[
\psi_j(\xi) = i\gamma_j \cdot \xi - \frac{1}{2} A_j \xi \cdot \xi + \int_{\mathbb{R}^d/(0)} (e^{i\xi z} - 1 - i\xi \cdot z I_{[-1,1]}(z)) \nu_j(dz)
\]

where $\gamma_j \in \mathbb{R}^d$, A_j is the Gaussian covariance matrix, ν_j denotes the Lévy measure and \cdot denotes the scalar product. By the above considerations, we thus get the following statement.

Proposition 2.8. Let $(X_t)_{t \in \mathbb{R}^N_+}$ be a multiparameter Lévy process with values in \mathbb{R}^d. Then X_t has characteristic function

\[
\mathbb{E}e^{i\xi X_t} = e^{t^1\psi_1(\xi) + \cdots + t_N\psi_N(\xi)} = e^{t^1\Psi(\xi)} \quad \xi \in \mathbb{R}^d
\]

where $t = (t_1, \ldots, t_N)$, the functions ψ_j have been defined in 2.2, and

\[
\Psi(\xi) = (\psi_1(\xi), \ldots, \psi_N(\xi)).
\]

We will call 2.4 the multidimensional Lévy exponent.
2.2. Autocorrelation function of Multiparameter Lévy processes.

Consider a Multiparameter Lévy process \(\{X_t\}_{t \in \mathbb{R}^N} \) with values in \(\mathbb{R} \). In the following Proposition we will explicitly compute the autocorrelation function between two ordered points in the parameter space, i.e.

\[
\rho(X_s, X_t) := \frac{Cov(X_s, X_t)}{\sqrt{\text{Var}X_s} \sqrt{\text{Var}X_t}} \quad s \leq t.
\]

(2.5)

Of course, 2.5 exists finite only in some cases, which will be specified in the following. What we will find is the \(N \)-parameter extension of the well known formula holding in the case \(N = 1 \), i.e. for classical Lévy processes (consult e.g. Remark 2.1 in [22]):

\[
\rho(X_s, X_t) = \sqrt{\frac{s}{t}} \quad s \leq t.
\]

Proposition 2.9. Let \(\{X_t\}_{t \in \mathbb{R}^N} \) be a \(N \)-parameter Lévy process with values in \(\mathbb{R} \), having multidimensional Lévy exponent \(\Psi(\xi) \) defined in 2.3 and 2.4. For each \(j = 1, \ldots, N \), let \(\xi \to \psi_j(\xi) \) be twice differentiable in a neighborhood of \(\xi = 0 \), and such that \(\psi_j''(0) \neq 0 \). Then the autocorrelation function defined in 2.5 reads

\[
\rho(X_s, X_t) = \sqrt{\frac{s \cdot \sigma^2}{t \cdot \sigma^2}} \quad s \leq t
\]

(2.6)

where \(\cdot \) denotes the scalar product and \(\sigma^2 := -\Psi''(0) \).

Proof. Consider the decomposition of \(X_t \) given in Proposition 2.7. Since \(\psi_j''(0) \) exists, then \(Y_{t_j}^{(j)} \) has finite mean and variance:

\[
\mathbb{E}Y_{t_j}^{(j)} = -it_j \psi_j'(0) = t_j \mathbb{E}Y_1^{(j)}
\]

\[
\mathbb{E}(Y_{t_j}^{(j)})^2 = -t_j \psi_j''(0) + t_j^2 \psi_j'(0)^2
\]

\[
\text{Var}Y_{t_j}^{(j)} = -t_j \psi_j''(0) = t_j \text{Var}Y_1^{(j)}
\]

Letting \(\mu := (\mathbb{E}Y_1^{(1)}, \ldots, \mathbb{E}Y_1^{(N)}) \) and \(\sigma^2 := -\Psi''(0) = (\text{Var}Y_1^{(1)}, \ldots, \text{Var}Y_1^{(N)}) \), we get

\[
\mathbb{E}X_t = -it \cdot \Psi'(0) = t \cdot \mu
\]

\[
\text{Var}X_t = -t \cdot \Psi''(0) = t \cdot \sigma^2
\]

Moreover, for \(s \leq t \), we have

\[
\mathbb{E}X_tX_s = \mathbb{E}(X_t - X_s)X_s + \mathbb{E}(X_s)^2
\]

\[
= \mathbb{E}(X_t - X_s)\mathbb{E}X_s + \mathbb{E}(X_s)^2
\]

\[
= \mathbb{E}X_{t-s}\mathbb{E}X_s + \mathbb{E}(X_s)^2
\]
\[
(t - s) \cdot (s \cdot \mu) + s \cdot \sigma^2 + (s \cdot \mu)^2
\]
where we used independence and stationarity of the increments along \(\mathbb{R}^N_+\) increasing sequences. We thus have

\[
\text{Cov}(X_t, X_s) := \mathbb{E}X_t X_s - \mathbb{E}X_t \mathbb{E}X_s = s \cdot \sigma^2
\]
and the desired result immediately follows. \(\square\)

Remark 2.10. Let \(|v|\) denote the euclidean norm of \(v\). In the limit \(|t| \to \infty\), we have that \(\rho(X_s, X_t)\) behaves like \(|t|^{-1/2}\). Indeed, consider the scalar product in the denominator of 2.6, i.e. \(t \cdot \sigma^2 = ||t||_1 \sigma^2 \cos \theta\), where \(\theta\) is the angle between \(t\) and \(\sigma^2\). Now, observe that \(\sigma^2\) is a fixed vector of \(\mathbb{R}^N_+\), with strictly positive components by the assumption \(\psi_j''(0) \neq 0\). Since \(t\) is in \(\mathbb{R}^N_+\) also, by simple geometric arguments it follows that there exist two constants \(c_1 > 0\) and \(c_2 > 0\), which do not depend on \(t\), such that \(c_1 \leq \cos \theta \leq c_2\). Then \(k_1 |t|^{-1/2} \leq \rho(X_s, X_t) \leq k_2 |t|^{-1/2}\) for two suitable constants \(k_1 > 0\) and \(k_2 > 0\) both independent of \(t\).

2.3. Multi-parameter semigroups of operators and their generators.

Let \(B\) be a Banach space equipped with the norm \(|| \cdot ||_B\). A \(N\)-parameter family \((T_t)_{t \in \mathbb{R}^N_+}\) of bounded linear operators on \(B\) is said to be a \(N\)-parameters semigroup of operators if \(T_0\) is the identity operator and the following property holds:

\[
T_{s+t} = T_s \circ T_t \quad \forall s, t \in \mathbb{R}^N_+. \tag{2.7}
\]

We say that \((T_t)_{t \in \mathbb{R}^N_+}\) is strongly continuous if

\[
\lim_{t \to 0} ||T_t u - u||_B = 0 \quad \forall u \in B.
\]

Moreover, we say that \((T_t)_{t \in \mathbb{R}^N_+}\) is a contraction semigroup if, for any \(t \in \mathbb{R}^N_+\), we have \(||T_t u||_B \leq ||u||_B\).

Example 2.11. Let \(G_1, G_2, \ldots, G_N\) be bounded operators on \(B\), such that \([G_i, G_k] := G_i G_k - G_k G_i = 0\) for all \(i \neq k\). Consider the vector

\[
G = (G_1, \ldots, G_N).
\]

Then, for all \(t = (t_1, \ldots, t_N)\), the family

\[
T_t = e^{t_1 G_1} \circ \cdots \circ e^{t_N G_N} = e^{G \cdot t}
\]
defines a strongly continuous semigroup on \(B\). In light of the following Definition 2.13, we will call the vector \(G\) the generator of the multi-parameter semigroup.
Example 2.12. Let \((\mu_t)_{t \in \mathbb{R}^N_+} \) be a multiparameter convolution semigroup of probability measures on \(\mathbb{R}^d \) (in the sense of Definition 2.6) and let \(C_0(\mathbb{R}^d) \) be the space of continuous functions vanishing at infinity, equipped with the sup-norm. Then
\[
T_t q(x) = \int_{\mathbb{R}^d} q(x-y) \mu_t(dy) = \mu_t * q(x) \quad q \in C_0(\mathbb{R}^d) \quad t \in \mathbb{R}^N_+
\]
defines a strongly continuous contraction multi-parameter semigroup.

Let \(t = (t_1, \ldots, t_N) \in \mathbb{R}^N_+ \) and let \(\{e_1, \ldots, e_N\} \) be the canonical basis of \(\mathbb{R}^N \). For each \(j = 1, \ldots, N \), we refer to the one-parameter semigroups \(T_{t_i}e_j \) as the marginal semigroups. By the property 2.7 it follows that the marginal semigroups commute, i.e. \([T_{t_i}e_j, T_{t_j}e_i] = 0 \) for \(i \neq j \) and the following relation holds:
\[
T_{t} = T_{t_1 e_1} \circ T_{t_2 e_2} \circ \cdots \circ T_{t_N e_N}
\]

Now, let \(G_i \) be the generator of \(T_{t_i}e_i \), defined on \(\text{Dom}(G_i) \). It is well known that if \(u \in \text{Dom}(G_i) \), then \(T_{t_i}e_i u \in \text{Dom}(G_i) \) and the following differential equation
\[
\frac{d}{dt_i} w(t_i) = G_i w(t_i) \quad w(0) = u
\]
is solved by \(w(t_i) = T_{t_i}e_i u \). We here report the notion of generator of a multi-parameter semigroup (see [9], chap 1).

Definition 2.13. Let \((T_t)_{t \in \mathbb{R}^N_+} \) be a strongly continuous \(N \)-parameter semigroup on \(\mathbb{B} \) and let \(G_i, i = 1, \ldots, N, \) be the generators of the marginal semigroups, each defined on \(\text{Dom}(G_i) \). We say that the vector
\[
G = (G_1, \ldots, G_N)
\]
is the generator of \((T_t)_{t \in \mathbb{R}^N_+} \), defined on \(\text{Dom}(G) = \bigcap_{j=1}^N \text{Dom}(G_j) \).

The above definition is intuitively motivated by the following result.

Proposition 2.14. Let \((T_t)_{t \in \mathbb{R}^N_+} \) be a strongly continuous \(N \)-parameter semigroup with generator \(G \) according to Def. 2.13. Then, for \(u \in \bigcap_{j=1}^N \text{Dom}(G_j) \), the function \(w(t) = T_t u \) solves the following system of differential equations
\[
\nabla_t w(t) = Gw(t) \quad w(0) = u
\]
where \(\nabla_t \) denotes the gradient with respect to \(t = (t_1, \ldots, t_N) \). Namely, we have
\[
\frac{\partial}{\partial t_i} w(t) = G_i w(t) \quad i = 1 \ldots N
\]
subject to \(w(0) = u \).
Proof. Let us fix \(i = 1, \ldots, N \). For \(q \in \text{Dom}(G_i) \) it is true that \(T_{t,e_i} q \in \text{Dom}(G_i) \) and

\[
\frac{d}{dt_i} T_{t,e_i} q = G_i T_{t,e_i} q
\]

By using Propositions 1.1.8 and 1.1.9 in [9], we know that if \(u \in \text{Dom}(G_i) \) then \(T_t u \in \text{Dom}(G_i) \) for any \(t \in \mathbb{R}^N_+ \). In particular, we have \(\bigcap_{k=1,k \neq i}^N T_{t,e_k} u \in \text{Dom}(G_i) \) Hence equation (2.10) holds for \(q = \bigcap_{k=1,k \neq i}^N T_{t,e_k} u \):

\[
\frac{d}{dt_i} T_{t,e_i} \bigcap_{k=1,k \neq i}^N T_{t,e_k} u = G_i T_{t,e_i} \bigcap_{k=1,k \neq i}^N T_{t,e_k} u
\]

and the equation 2.9 for a fixed \(i \) is found by using property 2.7. By choosing \(u \in \bigcap_{j=1}^N \text{Dom}(G_j) \) it is possible to repeat the same argument for all \(i = 1, \ldots, N \), and the system of differential equations is obtained.

By putting \(t = 0 \) in equation 2.8 it follows that the generator \(G \) can also be found by

\[
Gu = \nabla_t T_t u \bigg|_{t=0} \quad u \in \bigcap_{j=1}^N \text{Dom}(G_j)
\]

For other results concerning multiparameter semigroups and generators consult [9]. Moreover, for a general discussion on operator semigroups related to multiparameter Markov processes we refer to [16].

Remark 2.15. A different definition of generator for multiparameter semigroups is given in [13] and [46]. Here the authors defined the generator as the composition of the marginal generators, i.e.

\[
G = G_1 \circ G_2 \circ \cdots \circ G_N.
\]

The motivation for such definition is that, for \(u \in \text{Dom}(G_1 \circ \cdots \circ G_N) \), the authors prove that \(w(t) = T_t u \) solves the partial differential equation

\[
\frac{\partial^N}{\partial t_1 \cdots \partial t_N} w(t) = Gw(t) \quad w(0) = u
\]

where \(t = (t_1, \ldots, t_N) \). Also this approach seems to be very interesting, especially in the field of partial differential equations as it allows to find probabilistic solutions to equations of type 2.13, containing a mixed derivative.
2.4. Semigroups associated to Multiparameter Lévy processes.

Let \((X_t)_{t \in \mathbb{R}_+^N}\) be a Multiparameter Lévy process on \(\mathbb{R}^d\) and let \((\mu_t)_{t \in \mathbb{R}_+^N}\) be the associated convolution semigroup of probability measures, i.e. \(\mu_t\) is the law of \(X_t\) for each \(t\). Consider the operator

\[
T_t h(x) := \mathbb{E} h(x + X_t) = \int_{\mathbb{R}^d} h(x + y) \mu_t(dy) \quad h \in \mathcal{C}_0(\mathbb{R}^d) \quad t \in \mathbb{R}_+^N
\]

where \(\mathcal{C}_0(\mathbb{R}^d)\) denotes the space of continuous functions vanishing at infinity. By using the properties of \(\{\mu_t\}_{t \in \mathbb{R}_+^N}\) it immediately follows that the family \((T_t)_{t \in \mathbb{R}_+^N}\) is a strongly continuous contraction semigroup on \(\mathcal{C}_0(\mathbb{R}^d)\); it is also positivity preserving, hence it is a Feller semigroup.

We now give a representation of this semigroup and its generator by means of pseudo-differential operators. We restrict to the Schwartz space of functions \(\mathcal{S}(\mathbb{R}^d)\).

We define the Fourier transform by

\[
\hat{h}(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-i\xi \cdot x} h(x) dx \quad \xi \in \mathbb{R}^d
\]

Since \(h \in \mathcal{S}(\mathbb{R}^d)\), the following Fourier inversion formula holds:

\[
h(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{i\xi \cdot x} \hat{h}(\xi) d\xi \quad x \in \mathbb{R}^d
\]

Theorem 2.16. Let \((X_t)_{t \in \mathbb{R}_+^N}\) be a Multiparameter Lévy process with Lévy exponent \(\Psi\) defined in 2.3 and 2.4. Let \((T_t)_{t \in \mathbb{R}_+^N}\) be the associated semigroup defined in 2.14 and let \(G = (G_1, \ldots, G_N)\) be its generator. Then

1. For any \(t \in \mathbb{R}_+^N\), \(T_t\) is a pseudo-differential operator with symbol \(e^{t \cdot \Psi}\), i.e.

\[
T_t h(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{i\xi \cdot x} e^{t \cdot \Psi(\xi)} \hat{h}(\xi) d\xi \quad h \in \mathcal{S}(\mathbb{R}^d)
\]

2. \(G\) is a pseudo-differential operator with symbol \(\Psi\), i.e. for each \(i = 1, \ldots, N\) we have

\[
G_i h(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{i\xi \cdot x} \psi_i(\xi) \hat{h}(\xi) d\xi \quad h \in \mathcal{S}(\mathbb{R}^d)
\]

Proof. (1) Since 2.14 is a convolution integral, its Fourier transform can be computed as

\[
\frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-i\xi \cdot x} T_t h(x) dx = \hat{h}(\xi) \mathbb{E} e^{i\xi \cdot X_t}
\]
where $E e^{i\xi^T X_t} = e^{t\Psi(\xi)}$ by using 2.3. Then Fourier inversion gives the result.

(2) By applying formula 2.12, we have that

$$G_i h(x) = \frac{\partial}{\partial t_i} T_t u(x) \bigg|_{t=0} = \left[\lim_{t_i \to 0} \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{ix \cdot \psi_i(\xi)} - 1 \prod_{k=1, k \neq i}^N e^{t_k \psi_k(\xi)} \hat{h}(\xi) d\xi \right]_{t=0}$$

The limit can be taken inside the integral due to dominated convergence theorem. Indeed $|e^{t_k \psi_k(\xi)}| \leq 1$ for each k because $e^{t_k \psi_k(\xi)}$ is the characteristic function of $\mu_k e_k$ (see 2.1); moreover

$$\left| \frac{e^{t_i \psi_i(\xi)} - 1}{t_i} \right| \leq |\psi_i(\xi)| \leq C_i(1 + |\xi|^2)$$

where for the last inequality we used [[4] page 31]. Thus the absolute value of the integrand is dominated by $(1 + |\xi|^2) \hat{h}(\xi)$. But the last function is independent of t_i and is integrable on \mathbb{R}^d because \hat{h} is a Schwartz function. Then, by exchanging the limit and the integral, the result immediately follows.

\[\square\]

3. Composition of random fields

3.1. Subordinator fields. In order to treat the composition of random fields, the main object is provided by the following definition.

Definition 3.1. A Multiparameter Levy process $(H_t)_{t \in \mathbb{R}^+_M}$ is said to be a subordinator field if, for some positive integer N, it takes values in \mathbb{R}^N_+ almost surely.

The above definition means that, almost surely, $t \to H_t$ is a non decreasing function with respect to the partial ordering, i.e. $t_1 \leq t_2$ on \mathbb{R}^M_+ implies $H_{t_1} \leq H_{t_2}$ on \mathbb{R}^N_+.

Example 3.2. (Classical subordinators) If $N = M = 1$, then $(H_t)_{t \in \mathbb{R}^+_+}$ is a classical subordinator, i.e. a non-decreasing Lévy process with values in \mathbb{R}^+_+. Hence it is such that

$$E e^{-\lambda H_t} = e^{-tf(\lambda)}, \quad \lambda \geq 0,$$

where the Laplace exponent f is a so-called Bernstein function. Thus it is defined by

$$f(\lambda) = b\lambda + \int_{\mathbb{R}^+} (1 - e^{-\lambda x}) \phi(dx)$$
where $b \geq 0$ is the drift coefficient and ϕ is the Lévy measure, which is supported on \mathbb{R}_+ and satisfies $\int_{\mathbb{R}_+} \min(x,1)\phi(dx) < \infty$. For more details on this subject consult [44].

Example 3.3. (Multivariate subordinators)

If $M = 1$ and $N \geq 1$, then $(H_t)_{t \in \mathbb{R}_+}$ is a multivariate subordinator in the sense of [5]. Thus it is a one-parameter Lévy process with values in \mathbb{R}_+^N, i.e. it is non decreasing in each marginal component. Here H_t has Laplace transform

$$
\mathbb{E} e^{-\lambda H_t} = e^{-t S(\lambda)}, \quad \lambda \in \mathbb{R}_+^N,
$$

where the Laplace exponent S is a multivariate Bernstein function. Hence it is defined by

$$
S(\lambda) = b \cdot \lambda + \int_{\mathbb{R}_+^N} (1 - e^{-\lambda x})\phi(dx) \quad \lambda \in \mathbb{R}_+^N
$$

where $b \in \mathbb{R}_+^N$, and the Lévy measure ϕ is supported on \mathbb{R}_+^N and satisfies

$$
\int_{\mathbb{R}_+^N} \min(|x|,1)\phi(dx) < \infty.
$$

It is known (see e.g. Sect. 2 in [8]) that if H_t has a density $p(x,t)$, then it solves

$$
\partial_t p(x,t) = b \cdot \nabla_x p(x,t) - \mathcal{D}_x p(x,t) \quad x \in \mathbb{R}_+^N \quad t > 0
$$

where \mathcal{D}_x denotes the N-dimensional version of the generalized fractional derivative defined in 1.6, i.e:

$$
(3.1) \quad \mathcal{D}_x h(x) = \int_{\mathbb{R}_+^N} (h(x) - h(x-y))\phi(dy) \quad x \in \mathbb{R}_+^N.
$$

Example 3.4. (Multivariate stable subordinators) We here consider a special sub-case of Example 3.3, in which the multivariate subordinator is stable. In order to define this process by means of its Lévy measure, we need to use the spherical coordinates r and $\hat{\theta}$, which respectively denote the length and the direction of jumps. Clearly $\hat{\theta}$ takes values in the set $\mathcal{C}^{N-1} = \{ \hat{\theta} \in \mathbb{R}_+^N : |\hat{\theta}| = 1 \}$ because, by definition, all the marginal components make positive jumps. So, a multivariate subordinator $(H_t)_{t \in \mathbb{R}_+}$ is said to be α-stable if its Lévy measure can be written in spherical coordinates as

$$
\phi(dr,d\hat{\theta}) = \frac{dr}{r^{\alpha+1}} \sigma(d\hat{\theta}) \quad r > 0 \quad \hat{\theta} \in \mathcal{C}^{N-1}
$$

where $\alpha \in (0,1)$ denotes the stability index and σ is the so-called spectral measure, which is proportional to the probability distribution of the
jump direction $\hat{\theta}$. By simple calculations, it is easy to see that in this case the Laplace exponent takes the form

$$ S^{\alpha,\sigma}(\lambda) = k \int_{C^{N-1}} (\lambda \cdot \hat{\theta})^\alpha \sigma(d\hat{\theta}) \quad \lambda \in \mathbb{R}^N_+ $$

for a suitable $k > 0$. It is known that H_t has a density $p(x,t)$ solving the following equation

$$ \partial_t p(x,t) = -D^{\alpha,\sigma}_x p(x,t) $$

where $D^{\alpha,\sigma}_x$ is the so-called fractional gradient, i.e. a pseudo-differential operator defined by

$$ D^{\alpha,\sigma}_x h(x) = k \int_{C^{N-1}} (\nabla \cdot \hat{\theta})^\alpha h(x) \sigma(d\hat{\theta}) $$

Note that 3.4 represents the average under $\sigma(d\hat{\theta})$ of the fractional power of the directional derivative along the direction $\hat{\theta}$. For some theory and applications about this operator consult Example 2.2 in [8], chapter 6 in [32] and also [12, 27].

When $N = 2$ the Lévy measure has the form

$$ \phi(dr,d\theta) = \frac{dr}{r^{\alpha+1}} \sigma(d\theta) \quad r > 0 \quad 0 \leq \theta \leq \frac{\pi}{2} $$

and, by denoting $\lambda = (\lambda_1, \lambda_2)$, the Laplace exponent can be written as

$$ S^{\alpha,\sigma}(\lambda_1, \lambda_2) = k \int_0^{\pi/2} (\lambda_1 \cos \theta + \lambda_2 \sin \theta)^\alpha \sigma(d\theta), $$

whence the fractional gradient, acting of a function $(x,y) \rightarrow h(x,y)$, has the form

$$ D^{\alpha,\sigma}_{x,y} h(x,y) = k \int_0^{\pi/2} \left(\cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y} \right)^\alpha h(x,y) \sigma(d\theta), $$

3.1.1. The general case. In the general case where N and M are any positive integers, the Laplace transform of H_t can be computed as follows. Let $t = (t_1, \ldots, t_M) \in \mathbb{R}^M_+$ and let $\{e_1, \ldots, e_M\}$ be the canonical basis of \mathbb{R}^M. We can use Proposition 2.7 to say that there exist independent random vectors $Z^{(k)}_{t_k}, k = 1, \ldots, M$, with $Z^{(k)}_{t_k} \overset{d}{=} H_{t_k e_k}$, such that

$$ H_t \overset{d}{=} Z^{(1)}_{t_1} + \ldots + Z^{(M)}_{t_M} $$

But, by the construction of $(H_t)_{t \in \mathbb{R}^M_+}$, it follows that, for each $k = 1, \ldots, M$, the process $(H_{t_k e_k})_{t_k \in \mathbb{R}^N_+}$ is a multivariate subordinator in the sense explained in the previous Example 3.3. Hence there exist $b_k \in \mathbb{R}^N_+$.
and a Lévy measure ϕ_k on \mathbb{R}^N_+ (satisfying $\int_{\mathbb{R}^N_+} \min(|x|,1)\phi_k(dx) < \infty$) such that $H_{t_k\epsilon_k}$ has Laplace transform
\[
E e^{-\lambda \cdot H_{t_k\epsilon_k}} = e^{-t_k S_k(\lambda)}, \quad \lambda \in \mathbb{R}^N_+,
\]
where S_k is a multivariate Bernstein functions, defined by
\[
S_k(\lambda) = b_k \cdot \lambda + \int_{\mathbb{R}^N_+} (1 - e^{-\lambda \cdot x})\phi_k(dx).
\]
Hence the Laplace transform of H_t can be compactly written as
\[
E e^{-\lambda \cdot H_t} = e^{-t_1 S_1(\lambda) - \cdots - t_M S_M(\lambda)} = e^{-t \cdot S(\lambda)}
\]
where $t = (t_1, \ldots, t_M)$ and
\[
S(\lambda) = (S_1(\lambda), \ldots, S_M(\lambda))
\]
We call 3.8 the multi-dimensional Laplace exponent of the subordinator field. The above decomposition of a subordinator field into the sum (in distribution) of independent multivariate subordinators will play a decisive role in the following.

A sample path of a stable subordinator field is shown in Figure 3.

3.2. **Subordinated fields.** Let $(X_s)_{s \in \mathbb{R}^N_+}$ be a N-parameter Lévy process with values in \mathbb{R}^d and let $(H_t)_{t \in \mathbb{R}^M_+}$ be a subordinator field (in the sense of Sect. 3.1) with values in \mathbb{R}^N_+. In the following, $(X_s)_{s \in \mathbb{R}^N_+}$ and
$(H_t)_{t \in \mathbb{R}_+^M}$ are assumed to be independent. We consider the subordinated random field

$$Z_t := X_{H_t} \quad t \in \mathbb{R}_+^M.$$

(3.9)

It is known that (3.9) is also a Multi-parameter Lévy process (see [[38], Thm. 3.12]). Let μ_s, ρ_t and ν_t respectively denote the probability laws of X_s, H_t and Z_t. Then, by conditioning, for any Borel set $B \subset \mathbb{R}^d$ we have

$$\nu_t(B) = \int_{\mathbb{R}_+^N} \mu_s(B) \rho_t(ds).$$

(3.10)

Processes of type 3.9 have also been studied in the literature.

In [5] the authors study the case $M = 1$ and prove that $(Z_t)_{t \in \mathbb{R}_+^+}$ is again a Lévy process and find the characteristic triplet.

In [37], [38] and [39], the authors consider the general case $M \geq 1$; actually their study is more general, since they consider cone-parameter Lévy processes subordinated by cone-valued Lévy processes.

Now, let $(T_t)_{t \in \mathbb{R}_+^N}$ be the Feller semigroup associated to X_t, defined in 2.14, with generator $G = (G_1, \ldots, G_N)$. Moreover, let $(T^Z_t)_{t \in \mathbb{R}_+^M}$ be the Feller semigroup associated to Z_t, i.e.

$$T^Z_t h(x) := \mathbb{E} h(x + Z_t) = \int_{\mathbb{R}^d} h(x + y) \nu_t(dy) \quad h \in \mathcal{C}_0(\mathbb{R}^d) \quad t \in \mathbb{R}_+^M$$

(3.11)

where ν_t is the law of Z_t defined in 3.10, whence we can rewrite 3.10 as a subordinated semigroup:

$$T^Z_t h(x) = \int_{\mathbb{R}_+^N} T_s h(x) \rho_t(ds) \quad t \in \mathbb{R}_+^M$$

(3.12)

In the following theorem we determine the form of the generator $G^Z = (G^Z_1, \ldots, G^Z_M)$ for the subordinated semigroup, by restricting to the Schwartz space $\mathcal{S}(\mathbb{R}^d)$. We obtain a multiparameter generalization of the well known Phillips formula (see e.g. [[42], pag. 212]) holding for one-parameter subordinated semigroups.

Theorem 3.5. For each $k = 1, \ldots, M$, we have

$$G_k^Z h(x) = b_k \cdot G h(x) + \int_{\mathbb{R}_+^N} (T_z h(x) - h(x)) \phi_k(dz) \quad h \in \mathcal{S}(\mathbb{R}^d).$$

(3.13)

where b_k and ϕ_k have been defined in 3.6.
Proof. We first compute the characteristic function of $Z_t = X_{H_t}$. By conditioning, and using 2.3 and 3.7, we have

$$\mathbb{E}e^{i\xi \cdot X_{H_t}} = \int_{\mathbb{R}^N} \mathbb{E}e^{i\xi \cdot X_u} P(H_t \in du)$$

$$= \int_{\mathbb{R}^N} e^{u \cdot \Psi(\xi)} P(H_t \in du)$$

$$= \mathbb{E}e^{-(\Psi(\xi)) \cdot H_t}$$

$$= e^{-t \cdot S(-\Psi(\xi))}$$

where $t = (t_1, \ldots, t_M)$ and

$$-S(-\Psi(\xi)) := \begin{pmatrix} -S_1(-\psi_1(\xi), \ldots, -\psi_N(\xi)) \\ \vdots \\ -S_M(-\psi_1(\xi), \ldots, -\psi_N(\xi)) \end{pmatrix}$$

Thus, by using theorem 2.16, it follows that T_t^Z is a pseudo-differential operator with symbol $e^{-t \cdot S(-\Psi)}$, i.e.

$$T_t^Z h(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{-t \cdot S(-\Psi(\xi))} \hat{h}(\xi) d\xi \quad h \in \mathcal{S}(\mathbb{R}^d)$$

while, for each $k = 1, \ldots, M$, G_k^Z is a pseudo-differential operator with symbol

$$-S_k(-\Psi(\xi)) = -S_k(-\psi_1(\xi), \ldots, -\psi_N(\xi)).$$

This means that

$$G_k^Z h(x) = -\frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{ix \cdot \xi} S_k(-\psi_1(\xi), \ldots, -\psi_N(\xi)) \hat{h}(\xi) d\xi \quad h \in \mathcal{S}(\mathbb{R}^d)$$

But, using 3.6, we have that

$$-S_k(-\Psi(\xi)) = b_k \cdot \Psi(\xi) + \int_{\mathbb{R}^N} (e^{z \cdot \Psi(\xi)} - 1) \phi_k(\Delta z)$$

Then, after substituting 3.16 in 3.15, we can solve the inverse Fourier transform and taking into account the representation of T_t given in 2.15 we obtain the result.

□

Remark 3.6. In the spirit of operational functional calculus, the well known Phillips Theorem (see e.g. [[42], pag. 212]) can be informally stated as follows. Let a Markov process $(X_t)_{t \in \mathbb{R}_+}$ have generator G
and let a subordinator \((H_t)_{t \in \mathbb{R}^+}\) have Bernstein function \(f\). Then the subordinated process \((X_{H_t})_{t \in \mathbb{R}^+}\) has generator \(-f(-G)\).

In a similar way, our Theorem 3.5 can be stated as follows.

Let \((X_t)_{t \in \mathbb{R}^+_N}\) be a Multiparameter Lévy process with generator \(G = (G_1, \ldots, G_N)\) and let \((H_t)_{t \in \mathbb{R}^+_M}\) be a subordinator field associated to the multivariate Bernstein functions \(S_1, S_2, \ldots, S_M\), namely its Laplace exponent is \(S = (S_1, S_2, \ldots, S_M)\). Then the subordinated field \((X_{H_t})_{t \in \mathbb{R}^+_M}\) has generator

\[
-S(-G) := \begin{pmatrix}
-S_1(-G_1, -G_2, \ldots, -G_N) \\
-S_2(-G_1, -G_2, \ldots, -G_N) \\
\vdots \\
-S_M(-G_1, -G_2, \ldots, -G_N)
\end{pmatrix}
\]

3.3. Stochastic solution to systems of integro-differential equations. Our extension of the Phillips theorem, given in Theorem 3.5, provides a stochastic solution to some systems of differential equations.

Indeed, let \((X_t)_{t \in \mathbb{R}^+_N}\) be a Multiparameter Lévy process with values in \(\mathbb{R}^d\). Moreover, let \((H_t)_{t \in \mathbb{R}^+_M}\) be a subordinator field with values in \(\mathbb{R}^N_+\) and let \((Z_t)_{t \in \mathbb{R}^+_M} = (X_{H_t})_{t \in \mathbb{R}^+_M}\) be the subordinated field. Then, by virtue of Proposition 2.14, and using the symbolic notation of Remark 3.6, we have that, for any \(u \in \mathcal{S}(\mathbb{R}^d)\), the function \(\mathbb{E}u(x + Z_t)\) solves the system

\[
\begin{cases}
\frac{\partial}{\partial t_1} h(x, t) = -S_1(-G_1, -G_2, \ldots, -G_N) h(x, t) \\
\frac{\partial}{\partial t_2} h(x, t) = -S_2(-G_1, -G_2, \ldots, -G_N) h(x, t) \\
\vdots \\
\frac{\partial}{\partial t_M} h(x, t) = -S_M(-G_1, -G_2, \ldots, -G_N) h(x, t) \\
h(x, 0) = u(x)
\end{cases}
\quad x \in \mathbb{R}^d, \ t \in \mathbb{R}^M_+
\]

where \(t = (t_1, \ldots, t_M)\), \(G = (G_1, \ldots, G_N)\) denotes the generator of \((X_t)_{t \in \mathbb{R}^+_N}\) and \(S_1, S_2, \ldots, S_M\) are the multivariate Bernstein functions, i.e. the components of the Laplace exponent of \((H_t)_{t \in \mathbb{R}^+_M}\) defined in 3.8.

Example 3.7. Let \(\{e_1, \ldots, e_M\}\) be the canonical basis of \(\mathbb{R}^M\). Assume that the subordinator field \((H_t)_{t \in \mathbb{R}^+_M}\) is such that, for each \(i = 1, \ldots, M\), the component \(H_{t_i} e_i\) is a multivariate stable subordinator in the sense
of Example 3.4, with index $\alpha_i \in (0, 1)$, whose multivariate Bernstein function reads

\[S_i^{\alpha_i}(\lambda) = k_i \int_{C_{N-1}} (\lambda \cdot \hat{\theta})^{\alpha_i} \sigma_i(d\hat{\theta}). \]

Then the system 3.17 takes the form

\[\frac{\partial}{\partial t} h(x, t) = -k_1 \int_{C_{N-1}} (\lambda \cdot \hat{\theta})^{\alpha_1} h(x, t) \sigma_1(d\hat{\theta}) \]
\[\frac{\partial}{\partial t} h(x, t) = -k_2 \int_{C_{N-1}} (\lambda \cdot \hat{\theta})^{\alpha_2} h(x, t) \sigma_2(d\hat{\theta}) \]
\[\cdots \]
\[\frac{\partial}{\partial t} h(x, t) = -k_M \int_{C_{N-1}} (\lambda \cdot \hat{\theta})^{\alpha_M} h(x, t) \sigma_M(d\hat{\theta}) \]

where, on the right side, the fractional powers $(-\lambda \cdot \hat{\theta})^{\alpha_i}$ are well defined because $-\lambda \cdot \hat{\theta}$ is the generator of a contraction semigroup.

Example 3.8. Let $N = M = 2$. Consider the bi-parameter, additive Lévy process

\[X(t_1, t_2) = X_1(t_1) + X_2(t_2) \]

where X_1 and X_2 are independent isotropic stable processes with indices $\alpha_1 \in (0, 2]$ and $\alpha_2 \in (0, 2]$ respectively. Let

\[H(t_1, t_2) = (H_1(t_1, t_2), H_2(t_1, t_2)) \]

be a subordinator field, such that $H(t_1, 0)$ and $H(0, t_2)$ are two bivariate stable subordinators in the sense of Example 3.4, respectively having indices $\beta_1 \in (0, 1)$ and $\beta_2 \in (0, 1)$ and spectral measures σ_1 and σ_2. Let

\[Z(t_1, t_2) = X_1(H_1(t_1, t_2)) + X_2(H_2(t_1, t_2)) \]

be the subordinated field. Then, for any $u \in S(\mathbb{R}^d)$, the function $\mathbb{E}u(x + Z(t_1, t_2))$ solves the system

\[\frac{\partial}{\partial t} h(x, t) = -k_1 \int_0^{\pi/2} ((-\lambda)^{\alpha_1/2} \cos \theta + (-\lambda)^{\alpha_2/2} \sin \theta)^{\beta_1} h(x, t) \sigma_1(d\theta) \]
\[\frac{\partial}{\partial t} h(x, t) = -k_2 \int_0^{\pi/2} ((-\lambda)^{\alpha_1/2} \cos \theta + (-\lambda)^{\alpha_2/2} \sin \theta)^{\beta_2} h(x, t) \sigma_2(d\theta) \]
\[h(x, 0) = u(x) \]

where $-(-\lambda)^{\alpha_i/2}$ denotes the fractional Laplacian. To write the system 3.21, we used that, for $i = 1, 2$, the generator of the isotropic stable process X_i is $G_i = -(-\lambda)^{\alpha_i/2}$ (see e.g. [4], page 166).
Example 3.9. Consider again Example 3.8. In the special case where
\(\alpha_1 = \alpha_2 = 2 \), the process 3.20 is a so-called additive Brownian motion
(see e.g. [16], page 394) and the above system simplifies to
\[
\begin{align*}
\frac{\partial}{\partial t_1} h(x, t) &= -C_1(-\Delta)^{\beta_1} h(x, t) \\
\frac{\partial}{\partial t_2} h(x, t) &= -C_2(-\Delta)^{\beta_2} h(x, t) \\
\frac{\partial}{\partial t_M} h(x, t) &= -C_M(-\Delta)^{\beta_M} h(x, t)
\end{align*}
\]
for suitable constants \(C_1, C_2 > 0 \).

Example 3.10. Let \(N = 1 \) and \(M > 1 \) (so that subordination increases
the number of parameters). So let \((X_t)_{t \in \mathbb{R}^+}\) be a one-parameter Lévy
process and let \((H_t)_{t \in \mathbb{R}^M}\) be a subordinator field with values in \(\mathbb{R}^+ \). For
example, assume that \((X_t)_{t \in \mathbb{R}^+}\) is a standard Brownian motion in \(\mathbb{R}^d \)
and, for each \(k = 1, \ldots, M \), \(H_k e_k \) is a stable subordinator of index
\(\beta_k \in (0, 1) \) (\(e_k \) denoting the \(k \)-th vector of the canonical basis). Let
\((Z_t)_{t \in \mathbb{R}^M} = (X_{H_t})_{t \in \mathbb{R}^M} \) be the subordinated field. Then \(\mathbb{E} u(x + Z_t) \) solves
\[
\begin{align*}
\frac{\partial}{\partial t_1} h(x, t) &= -(-\Delta)^{\beta_1} h(x, t) \\
\frac{\partial}{\partial t_2} h(x, t) &= -(-\Delta)^{\beta_2} h(x, t) \\
\vdots & \quad \vdots \\
\frac{\partial}{\partial t_M} h(x, t) &= -(-\Delta)^{\beta_M} h(x, t) \\
h(x, 0) &= u(x)
\end{align*}
\]

4. Subordination by the inverse random field

Let \((H_t)_{t \in \mathbb{R}^+}\) be a multivariate subordinator in the sense of Example
3.3, which takes values in \(\mathbb{R}^N \). Hence it is defined by \(H_t = (H_1(t), \ldots, H_N(t)) \),
where each marginal component \(H_j(t) \) is a classical subordinator. Consider a new random field \((L_t)_{t \in \mathbb{R}^N_+}\) defined by
\[
L_t = (L_1(t_1), \ldots, L_N(t_N)) \quad t = (t_1, \ldots, t_N)
\]
where \(L_j \) is the inverse hitting time of the subordinator \(H_j \), i.e.
\[L_j(t_j) = \inf\{x > 0 : H_j(x) > t_j\}\]
As stated in the introduction, we will call 4.1 inverse random field.

Now, let \((X_t)_{t \in \mathbb{R}^N_+}\) be a \(N \)-parameter Lévy process with values in \(\mathbb{R}^d \).
We are interested in the subordinated random field \((Z_t)_{t \in \mathbb{R}^N_+}\) defined by
\[
Z_t = X_{L_t} \quad t \in \mathbb{R}^N_+
\]
This topic has many sources of inspiration. Above all, there is a well established theory (consult e.g. [6; 7; 21; 26; 28; 29; 30; 31; 32; 33; 47]) concerning semi-Markov processes of the form

\[(4.3) \quad Z(t) = X(L(t)) \quad t \geq 0\]

where \(X\) is a Lévy process in \(\mathbb{R}^d\) and \(L\) is the inverse hitting time of a subordinator \(H\), i.e.

\[L(t) = \inf\{x > 0 : H(x) > t\}\]

Such processes have a great interest in statistical physics, as they arise as scaling limits of suitable continuous time random walks.

Example 4.1. A special case (see e.g. [2; 3; 24; 25]) is the process

\[(4.4) \quad Z(t) = B(L^\alpha(t))\]

where \(B\) is a \(d\)-dimensional standard Brownian motion and \(L^\alpha\) is the inverse of a \(\alpha\)-stable subordinator independent of \(B\), where \(\alpha \in (0, 1)\). The process 4.4 is a so-called subdiffusion: the mean square displacement behaves as \(t^\alpha\), i.e. the motion is delayed with respect to the Brownian behavior. This models the case where the moving particle is trapped by inhomogeneities or perturbations in the medium; thus the particle runs on Brownian paths, but, for arbitrary time intervals, it is forced to be at rest, which gives rise to a sub-diffusive dynamics. Diffusions in porous media and penetration of a pollutant in the ground have this type of motion (see [34] for other applications of anomalous diffusions). The random variable \(B(L^\alpha(t))\) has a density solving the following anomalous diffusion equation

\[(4.5) \quad \mathcal{D}_t^\alpha q(x, t) - \frac{t^\alpha}{\Gamma(1 - \alpha)} \delta(x) = \frac{1}{2} \Delta q(x, t)\]

where \(\Delta\) denotes the Laplacian operator and \(\mathcal{D}_t^\alpha\) is the Marchaud fractional derivative, defined by

\[(4.6) \quad \mathcal{D}_t^\alpha h(t) := \int_0^\infty (h(t) - h(t - \tau)) \frac{\alpha \tau^{-\alpha - 1}}{\Gamma(1 - \alpha)} d\tau.\]

See also [11] for a tempered version of such operator. We finally recall that recent models of anomalous diffusion in heterogeneous media, where the fractional order \(\alpha\) is space-dependent, have been developed in [19; 40; 43] (see also [15] for a related model).

Equation 4.5 is a special case of a more general theory. Indeed, as anticipated in the Introduction, if \(X\) and \(L\) are independent, the
connection of the process 4.3 with integro-differential equations is given by the following facts. Let X have a density $p(x, t)$ solving
\[\partial_t p(x, t) = G^* p(x, t) \]
where G^* is the dual to the Markov generator. Moreover, let L be the inverse of a subordinator with Lévy measure ν. If L has a density $l(x, t)$, then, by conditioning, $X(L(t))$ has a density
\[p^*(x, t) = \int_0^\infty p(x, u)l(u, t)du. \]
Such a density solves
\[(4.7) \quad \mathcal{D}_t p^*(x, t) - \nu(t) p^*(x, 0) = G^* p^*(x, t) \]
where \mathcal{D}_t is the generalized Marchaud fractional derivative, defined by
\[(4.8) \quad \mathcal{D}_t h(t) := \int_0^\infty \left(h(t) - h(t - \tau) \right) \nu(d\tau). \]

Concerning the link between semi-Markov processes and non-local in time equations, consult also [35; 36] for a discrete-time model and [41] for the theory of abstract equations related to semi-Markov Random evolutions.

The rest of this section will be structured as follows. A special case of biparameter Lévy processes will be treated in subsection 4.1 and a related model of anisotropic subdiffusion will be presented in subsection 4.2. Finally, the special case where the L_j, $j = 1, \ldots, N$, are independent will be presented in subsection 4.3 and some long range dependence properties will be analysed.

4.1. Subordination of some two-parameter Lévy processes

Consider the following biparameter Lévy process with values in \mathbb{R}^d:
\[(4.9) \quad X(t_1, t_2) = (X_1(t_1), X_2(t_2)) \]
where X_1 and X_2 are (possibly dependent) Lévy processes with values in \mathbb{R}^{d_1} and \mathbb{R}^{d_2} respectively, with $d_1 + d_2 = d$.

Consider now a bivariate subordinator $(H_1(t), H_2(t))$ and the related bivariate inverse random field $(L_1(t_1), L_2(t_2))$ as defined in 4.1.

We will consider the following assumptions:
\[A1) \quad X_1(t_1) \text{ and } X_2(t_2) \text{ have marginal densities } p_1(x_1, t) \text{ and } p_2(x_2, t) \]
satisfying the following forward equations:
\[\frac{\partial}{\partial t} p_i(x_i, t) = G^*_i p_i(x_i, t) \quad i = 1, 2 \]
where G^*_1 and G^*_2 are the duals to the generators of X_1 and X_2.
A2) $X(t_1, t_2)$ has density $p(x_1, x_2, t_1, t_2)$ satisfying the system
\[
\frac{\partial}{\partial t_i} p(x_1, x_2, t_1, t_2) = G_i^* p(x_1, x_2, t_1, t_2) \quad i = 1, 2.
\]

A3) For all $t_1, t_2 > 0$, the random vector $(H_1(t_1), H_2(t_2))$ has a density $q(x_1, x_2, t_1, t_2)$.

We now consider the subordinated random field
\[
Z(t_1, t_2) = X(L_1(t_1), L_2(t_2))
\]
(4.10)

The following Proposition gives a generalization of equation 4.7 adapted to the random field 4.10.

Proposition 4.2. Under the assumptions A1), A2), A3), the random vector $X(L_1(t_1), L_2(t_2))$ has a density $h(x_1, x_2, t_1, t_2)$ satisfying
\[
P_{t_1, t_2} h(x_1, x_2, t_1, t_2) = (G_1^* + G_2^*) h(x_1, x_2, t_1, t_2) \quad x_1 \neq 0, x_2 \neq 0
\]
where P_{t_1, t_2} is the bidimensional version of the generalized fractional derivative, defined in 3.1, i.e.
\[
P_{t_1, t_2} h(x_1, t_2) = \int_{\mathbb{R}^2} (h(t_1, t_2) - h(t_1 - \tau_1, t_2 - \tau_2)) \phi(d\tau_1, d\tau_2)
\]

Proof. Under assumption A3), the distribution of $(L_1(t_1), L_2(t_2))$ is the sum of two components (see [8], sect. 3.1): the first one is absolutely continuous with respect to the bi-dimensional Lebesgue measure, with density l, namely
\[
P(L_1(t_1) \in dx_1, L_2(t_2) \in dx_2) = l(x_1, x_2, t_1, t_2) dx_1 dx_2 \quad x_1 \neq x_2
\]
while the second one has support on the bisector line $x_1 = x_2$, with one dimensional Lebesgue density $l_s(x, t_1, t_2)$ (i.e. $P(L_1(t_1) = L_2(t_2)) = \int_{-\infty}^{\infty} l_s(x, t_1, t_2) dx$).

Then, by using a simple conditioning argument, the random vector $X(L_1(t_1), L_2(t_2))$ has density
\[
h(x_1, x_2, t_1, t_2) = \int_0^\infty \int_0^\infty p(x_1, x_2, u, v) l(u, v, t_1, t_2) dudv
\]
\[+ \int_0^\infty p(x_1, x_2, u, u) l_s(u, t_1, t_2) du
\]

By applying P_{t_1, t_2} to both sides and using [8], Thm 3.6] we have
\[
P_{t_1, t_2} h(x_1, x_2, t_1, t_2)
\]

\footnote{Observe that the random field $(t_1, t_2) \to (H_1(t_1), H_2(t_2))$ is not a biparameter Lévy process even if $t \to (H_1(t), H_2(t))$ is a multivariate subordinator, unless the two marginal components are independent.}
In the above calculations we have taken into account that
\[A_1 \]

Now, we integrate by parts by using assumptions \(A_1 \) and \(A_2 \). We also use that \(X_1(0) = 0 \) and \(X_2(0) = 0 \) almost surely, which implies that \(P(X_1(0) \in A, X_2(t_2) \in B) = \mathcal{I}_{(0 \in A)} P(X_2(t_2) \in B) \) and \(P(X_1(t_1) \in A, X_2(0) \in B) = P(X_1(t_1) \in A) \mathcal{I}_{(0 \in B)} \); thus we get

\[
D_{t_1, t_2} h(x_1, x_2, t_1, t_2)
\]

\[
= G_1^* \int_0^\infty \int_0^\infty p(x_1, x_2, u, v) l(u, v, t_1, t_2) dudv + \delta(x_1) \int_0^\infty p_2(x_2, v) l(0, v, t_1 t_2) dv +
+ G_2^* \int_0^\infty \int_0^\infty p(x_1, x_2, u, v) l(u, v, t_1, t_2) dudv + \delta(x_2) \int_0^\infty p_1(x_1, u) l(u, 0, t_1 t_2) du
+ (G_1^* + G_2^*) \int_0^\infty p(x_1, x_2, u, u) l_*(u, t_1, t_2) du + \delta(x_1) \delta(x_2) \overline{\phi}(t_1, t_2)
\]

where

\[
\overline{\phi}(t_1, t_2) = \int_{t_1}^\infty \int_{t_2}^\infty \phi(dx_1, dx_2).
\]

In the above calculations we have taken into account that

\[
\frac{\partial p(x_1, x_2, u, u)}{\partial u} = (G_1^* + G_2^*) p(x_1, x_2, u, u)
\]

since the total derivative of \(p(x_1, x_2, t_1, t_2) \), with \(t_1 = u \) and \(t_2 = v \), is given by

\[
\frac{\partial p}{\partial t_1} \frac{\partial p}{\partial t_1} + \frac{\partial p}{\partial t_2} \frac{\partial p}{\partial u} = G_1^* p + G_2^* p.
\]

In the region \(x_1 \neq 0, x_2 \neq 0 \) we have

\[
D_{t_1, t_2} h(x_1, x_2, t_1, t_2)
\]

\[
= (G_1^* + G_2^*) \int_0^\infty \int_0^\infty p(x_1, x_2, u, v) l(u, v, t_1, t_2) dudv
+ (G_1^* + G_2^*) \int_0^\infty p(x_1, x_2, u, u) l_*(u, t_1, t_2) du
= (G_1^* + G_2^*) h(x_1, x_2, t_1, t_2),
\]

which concludes the proof. \(\square \)

A sample path of a time-changed field is shown in Figure 4.
4.2. Anomalous diffusion in anisotropic media. As a byproduct of the results of section 4.1, we here propose another model of subdiffusion which extends the one treated in Example 4.1, by including it as a special case.

As explained, the process 4.4 models a subdiffusion through an isotropic medium, i.e. the trapping effect is the same in all coordinate directions (e.g. all components of the Brownian motion are delayed by the same random time process). Hence the subordinated process 4.4 is isotropic as well as the Brownian motion.

Thus it is natural to search for a model of subdiffusion in the case where the external medium is not isotropic. Actually, a first model of anisotropic subdiffusion has been proposed in [8, Sect. 5]. In the following, we will improve such a model, by including it in a more general framework.

We recall some notions on operator stability (consult [14] and [45]). A random vector X with values in \mathbb{R}^d is said to be operator stable if, for any positive integer n, there exist a vector $c_n \in \mathbb{R}^d$ and a $d \times d$ matrix A such that n independent copies X_1, \ldots, X_n of X satisfy

\[(4.13) \quad X_1 + \cdots + X_n = n^A X + c_n\]

Figure 4. Sample path of a time-changed additive Brownian field with an inverse stable field.
where the matrix power \(n^A \) is defined by
\[
n^A = e^{A \ln n} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k (\ln n)^k.
\]
In the special case \(A = \frac{1}{\alpha} I \), with \(\alpha \in (0, 2] \) and \(I \) denoting the identity matrix, we have that \(X \) is \(\alpha \)-stable. In the general case, \(A \) has eigenvalues whose real parts have the form \(1/\alpha_i \), with \(\alpha_i \in (0, 2] \), \(i = 1, \ldots, d \). We stress that the matrix \(A \) is not unique, i.e. there may be different \(n \times n \) matrices satisfying 4.13 (unlike what happens in the stable case, where the index \(\alpha \) is uniquely defined).

Operator stable laws are infinite divisible, hence they correspond to some Lévy processes. A Lévy process \(X(t), t \geq 0 \) is said to be an operator stable Lévy motion if \(X(1) \) is an operator stable random vector. Note that such a process is characterized by the anisotropic scaling \(X(\alpha t) \sim \alpha^A X(t) \). This property is a generalization of self-similarity of \(\alpha \)-stable processes where the scaling is the same for all coordinates, i.e. \(X(\alpha t) \sim c^{1/\alpha} X(t) \).

We are now ready to present the model of anisotropic subdiffusion. So, let us consider a bivariate subordinator \((H_1(t), H_2(t))\) which is constructed as an operator stable Lévy motion with values in \(\mathbb{R}^2_+ \). In this case \(A \) has eigenvalues whose real parts have the form \(1/\alpha_i \), with \(\alpha_i \in (0, 1), i = 1, 2 \). Now, let \(r > 0 \) and \(\theta \in [0, \pi/2] \) be the so-called Jurek coordinates (see e.g. [14] and [[32], page 185]) which are defined by the mapping \(\mathbb{R}^2_+ \ni x = rA\hat{\theta} \), where \(\hat{\theta} = (\cos \theta, \sin \theta) \). In this new coordinates the bi-dimensional Lévy measure can be expressed as
\[
\phi^{A,M}(dr, d\theta) = C \frac{dr}{r^2} M(d\theta) \quad r > 0 \quad \theta \in \left[0, \frac{\pi}{2}\right]
\]
where \(M \) is a probability measure on the angular component. Then the operator \(D_x, x \in \mathbb{R}^2_+ \), defined in formula 3.1 of Example 3.3, takes the form
\[
(4.14) \quad D_x^{A,M} h(x) = C \int_0^{\pi/2} \int_0^\infty \left(h(x) - h(x - rA\hat{\theta}) \right) \frac{dr}{r^2} M(d\theta)
\]
If \((H_1(t), H_2(t))\) is a bivariate stable subordinator (see Example 3.4), i.e. \(A = \frac{1}{\alpha} I \), by a simple change of variables one re-obtains the fractional gradient defined in formula 3.4.

Now, let \((L_1(t_1), L_2(t_2))\) be the inverse random field of \((H_1(t), H_2(t))\) and let \((B_1(t), B_2(t))\) be a bi-dimensional standard Brownian motion with independent components. Consider the time changed process
\[
(4.15) \quad Z(t) = (B_1(L_1(t)), B_2(L_2(t))) \quad t \geq 0
\]
The process 4.15 is a model of anisotropic subdiffusion. Indeed consider the random variable
\[Z_\theta(t) = Z(t) \cdot \hat{\theta} \]
representing the displacement along the direction \(\hat{\theta} = (\cos \theta, \sin \theta) \). By conditioning, the mean square displacement can be written as
\[\mathbb{E} Z_\theta^2(t) = \mathbb{E} L_1(t) \cos^2 \theta + \mathbb{E} L_2(t) \sin^2 \theta \]
which, in general, depends on \(\theta \) because of anisotropy.

In the spirit of [[8], Sect. 4], a governing equation for the process 4.15 can be obtained by considering the related random field \((B_1(L_1(t_1)), B_2(L_2(t_2))) \). Indeed, by applying Proposition 4.2 of the previous section, it has a density
\[h(x_1, x_2, t_1, t_2) \]
which satisfies the anomalous diffusion equation
\[D_{t_{1,2}} h(x_1, x_2, t_1, t_2) = \frac{1}{2} \Delta h(x_1, x_2, t_1, t_2) \quad x_1 \neq 0, x_2 \neq 0 \]
where the operator \(D_{t_{1,2}} \), defined in 4.14, now acts on \(t = (t_1, t_2) \).

Example 4.3. If \(L_1(t) = L_2(t) = L(t) \), where \(L(t) \) is the inverse of a \(\alpha \)-stable subordinator, the process 4.15 reduces to the isotropic subdiffusion 4.4. In this case we have \(\mathbb{E} L(t) = Ct^\alpha \). Thus \(\mathbb{E} Z_\theta^2(t) = Ct^\alpha \), which is independent of \(\theta \) because of isotropy.

Example 4.4. If \(H_1(t) \) and \(H_2(t) \) are independent stable subordinators, then the matrix \(A \) is diagonal with elements \(1/\alpha_1 \) and \(1/\alpha_2 \). If \(\alpha_1 \neq \alpha_2 \) the process 4.15 is anisotropic, in such a way that \(\alpha_1 \) and \(\alpha_2 \) represent the spreading rates along the two coordinate directions. Indeed, since \(\mathbb{E} L_i(t) = C_i t^{\alpha_i} \) for \(i = 1, 2 \), then the mean square displacement along a direction \(\hat{\theta} \) has the form \(\mathbb{E} Z_\theta^2(t) = C_1 t^{\alpha_1} \cos^2 \theta + C_2 t^{\alpha_2} \sin^2 \theta \) which depends on \(\hat{\theta} \) and asymptotically behaves like \(t^{\max(\alpha_1, \alpha_2)} \).

Example 4.5. If \(A \) is a symmetric matrix with eigenvalues \(1/\alpha_1 \) and \(1/\alpha_2 \), where \(\alpha_1 \) and \(\alpha_2 \) are in \((0,1)\), then a rigid rotation of the coordinate system allows to find the two eigenvectors, along which the spreading rates are \(\alpha_1 \) and \(\alpha_2 \) respectively, which corresponds to the situation explained in Example 4.4.

4.3. **Subordination by independent inverses.** In the following, let \(X(t_1, \ldots, t_N) \) be a \(N \)-parameter Lévy process with density \(p(x, t) \) satisfying the system
\[\partial_t p(x, t) = G_j^* p(x, t) \quad j = 1, \ldots, N \]
with the usual notation \(t = (t_1, \ldots, t_N) \). Assume that the marginal components \(L_j(t_j) \) of the inverse random field 4.1 are mutually independent, each having density \(l_j(x, t_j) \) and Lévy measure \(\nu_j \). Consider the subordinated random field

(4.16) \[Z(t) := X(L_1(t_1), \ldots, L_N(t_N)) \]

Before stating the next result, we introduce the following notation: for a given vector \(v = (v_1, \ldots, v_N) \), we introduce the vector \(v^{(j)} \) defined by \(v^{(j)} = (v_1, \ldots, v_{j-1}, 0, v_{j+1}, \ldots, v_N) \).

Proposition 4.6. Under the above assumptions, the subordinated field 4.16 has a density \(p^*(x, t) \) satisfying the system

\[
\mathcal{D}_{t_j}^{(\nu_j)} p^*(x, t) - \nabla_j(t_j) p^*(x, t^{(j)}) = G_j^* p^*(x, t) \quad j = 1, \ldots, N
\]

where \(\mathcal{D}_{t_j}^{(\nu_j)} \) denotes the generalized fractional derivative defined in 4.8 with Lévy measure \(\nu_j \), and \(\nabla_j(t_j) = \int_{t_j}^{\infty} \nu_j(d\tau) \).

Proof. By conditioning, 4.16 has a density

\[
p^*(x, t) = \int_{R_+^N} p(x, u_1, \ldots, u_N) \prod_{i=1}^{N} l_i(u_i, t_i) du_1 \cdots du_N
\]

By applying \(\mathcal{D}_{t_j}^{(\nu_j)} \) to both members and taking into account that such operator commutes with the integral, we have

\[
\mathcal{D}_{t_j}^{(\nu_j)} p^*(x, t) = -\int_{R_+^N} p(x, u_1, \ldots, u_N) \frac{\partial \nu_j(u_j, t_j)}{\partial u_j} \prod_{i=1, i \neq j}^{N} l_i(u_i, t_i) du_1 \cdots du_N
\]

where we used that the density \(l_j(x, t_j) \) of an inverse subordinator satisfies the equation \(\mathcal{D}_{t_j}^{(\nu_j)} l_j(x, t_j) = -\nabla_j(x, t_j) \) under the condition \(l_j(0, t_j) = \nu_j(t_j) \) (see e.g. [21]).

Integrating by parts, we have

\[
\mathcal{D}_{t_j}^{(\nu_j)} p^*(x, t) = G_j^* p^*(x, t) + \nabla_j(t_j) \int_{R_+^{N-1}} p(x, u^{(j)}) \prod_{i=1, i \neq j}^{N} l_i(u_i, t_i) du_i
\]

where the last integral can be written as

\[
\int_{R_+^{N-1}} p(x, u^{(j)}) \prod_{i=1, i \neq j}^{N} l_i(u_i, t_i) du_i = p^*(x, t^{(j)})
\]

because \(l_j(u_j, 0) = \delta(u_j) \). This completes the proof. \(\square \)
4.3.1. Long range dependence. Consider a process of type 4.16. For each \(k = 1, \ldots, N \), let \(L_k(t_k) \) be the inverse of a \(\alpha \)-stable subordinator. The subordinated field exhibits a power law decay of the autocorrelation function which is slower with respect to the \(|t|^{-\frac{1}{2}} \) decay holding for Multiparameter Lévy processes (which was discussed in Remark 2.10). This can be useful in applied fields, where spatial data exhibit long range dependence properties.

So, let \(s \preceq t \). By using the results of Section 2.2, we have

\[
\text{Cov}(X_{L_s}, X_{L_t}) = \mathbb{E}[\text{Cov}(X_{L_s}, X_{L_t})|L_s, L_t] + \text{Cov}(\mathbb{E}[X_{L_s}|L_s, L_t], \mathbb{E}[X_{L_t}|L_s, L_t])
\]
\[
= \mathbb{E}[L_s \cdot \sigma^2] + \text{Cov}(L_t \cdot \mu, L_s \cdot \mu)
\]
\[
= \mathbb{E}\left[\sum_{k=1}^{N} \sigma_k^2 L_k(s_k) \right] + \text{Cov}\left(\sum_{k=1}^{N} \mu_k L_k(t_k), \sum_{i=1}^{N} \mu_i L_i(s_i) \right)
\]
\[
= \sum_{k=1}^{N} \sigma_k^2 \mathbb{E}L_k(s_k) + \sum_{k=1}^{N} \sum_{i=1}^{N} \mu_k \mu_i \text{Cov}(L_k(t_k), L_i(s_i))
\]
\[
= \sum_{k=1}^{N} \sigma_k^2 \mathbb{E}L_k(s_k) + \sum_{k=1}^{N} \mu_k^2 \text{Cov}(L_k(t_k), L_k(s_k))
\]

where in the last step we used independence between \(L_i \) and \(L_k \) when \(i \neq k \). Putting \(s = t \) we have

\[
\text{Var}X_{L_t} = \sum_{k=1}^{N} \sigma_k^2 \mathbb{E}L_k(t_k) + \sum_{k=1}^{N} \mu_k^2 \text{Var}L_k(t_k)
\]

By self-similarity of the inverse stable subordinator (consult e.g. Proposition 3.1 in [30]), we have \(L_k(t_k) \overset{d}{=} t_k^\alpha L_k(1) \). Hence

\[
\mathbb{E}L_k(t_k) = t_k^\alpha \mathbb{E}L_k(1) \quad \text{Var}L_k(t_k) = t_k^{2\alpha} \text{Var}L_k(1).
\]

Thus, by using the notation \(t^\beta := (t_1^\beta, \ldots, t_N^\beta) \) we can write

\[
\text{Var}X_{L_t} = w \cdot t^\alpha + v \cdot t^{2\alpha}
\]

where we defined \(w_k = \sigma_k^2 \mathbb{E}L_k(1) \) and \(v_k = \mu_k^2 \text{Var}L_k(1) \).

Moreover, by using Formula 10 in [22] we have

\[
\text{Cov}(L_k(t_k), L_k(s_k)) \sim \frac{s_k^{2\alpha}}{\Gamma(2\alpha + 1)} \quad t_k \to \infty.
\]
In summary, for $|t| \to \infty$, we have

$$\rho(X_{L_t}, X_{L_s}) \sim \begin{cases} \frac{1}{|t|^{\alpha}} & \text{if } \mu = 0 \\ \frac{|\mu|^{1/2}}{|t|^{\alpha} |\mu|^{1/2}} & \text{if } \mu \neq 0 \end{cases}$$

(4.17)

Remark 4.7. What we found in 4.17 is the multiparameter extension of the known formula holding in the $N = 1$ case, see e.g. Example 3.2 in [22]. Here the authors considered the subordinated process $(X_{L(t)})_{t \in \mathbb{R}_+}$, where $(X_t)_{t \in \mathbb{R}_+}$ is a Lévy process and $(L(t))_{t \in \mathbb{R}_+}$ is the inverse of a α-stable subordinator, with $\alpha \in (0, 1)$. By considering two times s and t, such that $s < t$, and letting $t \to \infty$, they show that the auto-correlation $\rho(X_{L(t)}, X_{L(s)})$ behaves like $t^{-\alpha}$ if $\mathbb{E}X_1 \neq 0$ and $t^{-\frac{\alpha}{2}}$ if $\mathbb{E}X_1 = 0$. It is interesting to note that the same power law behavior is observed in the corresponding discrete-time models (see Proposition 4 in [36]).

References

[1] R.J.Adler, D.Monrad, R.H.Scissors, R.Wilson. Representations, decompositions and sample function continuity of random fields with independent increments. Stochastic Processes and their Applications Volume (15), Issue 1, 1983, Pages 3-30

[2] G. Ascione. Tychonoff solutions of the time-fractional heat equation. Fractal Fract. 6(6), 292, 2022

[3] G. Ascione, P. Patie, B. Toaldo. Non-local heat equation with moving boundary and curve-crossing of delayed Brownian motion, https://arxiv.org/pdf/2203.09850.pdf

[4] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.

[5] O. Barndorff-Nielsen; J. Pedersen; K. Sato. Multivariate subordination, self-decomposability and stability. Adv. in Appl. Probab. 33, no. 1, 160-187, 2001.

[6] P. Becker-Kern, M. M. Meerschaert, H. P. Scheffler. Limit theorems for coupled continuous-time random walks. Ann. Probab., 32, 730-756, 2004.

[7] L. Beghin, C. Macci, B. Martinucci. Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates. Modern Stochastics: Theory and Applications, Volume 8, Issue 1 , pp. 63–91 (2018)

[8] L. Beghin; C. Macci; C. Ricciuti. Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics. Stoch. Proc. Appl. 130(10), pp. 6364-6387, 2020.
[9] P. L. Butzer, H. Berens. Semi-groups of Operators and Approximation, Springer-Verlag, 1967.

[10] R. Dalang, J.B. Walsh. The sharp Markov property of Lévy sheets. The Annals of Probability. Vol. 20, pp. 591-626, 1992.

[11] M. D'Ovidio, F. Iafrate, E. Orsingher. Drifted Brownian motions governed by fractional tempered derivatives. Modern Stochastics: Theory and Applications 5 (2018), 445 - 456.

[12] M. D'Ovidio.; R. Garra. Multidimensional fractional advection-diffusion equations and related stochastic processes. Electron. J. Probab. 19, no. 61, 31 pp., 2014.

[13] N. Jacob, M Schicks. Multiparameter Markov processes: generators and associated martingales. Revue Roumaine des Mathematiques Pures et Appliquees, 55(1), 2010.

[14] Z. Jurek and J. Mason, Operator-Limit Distributions in Probability Theory, JohnWiley and Sons, New York, 1993

[15] K.K. Kataria, P. Vellaisamy, On Distributions of Certain State-Dependent Fractional Point Processes, J. Theoret. Probab. 32, pp. 1554–1580 (2019)

[16] D. Khoshnevisan. Multiparameter Processes. An Introduction to Random Fields. Springer Monographs in Mathematics, 2002.

[17] D. Khoshnevisan, Z. Shi, Brownian sheet and capacity. Ann. Probab., 27 (1999), 1135–1159.

[18] D. Khoshnevisan, Y. Xiao. Level Sets of Additive Levy Processes. Ann. Probab. (2002) Vol 30, pp. 62-100

[19] Y. Kian, E. Soccorsi, M. Yamamoto. On Time-Fractional Diffusion Equations with Space-Dependent Variable Order. Ann. Henry Poincarè, (19), pp. 3855–3881 (2018)

[20] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.

[21] V.N. Kolokoltsov. Generalized Continuous-Time Random Walks, subordination by hitting times, and fractional dynamics. Theory Probab. Appl. 53, 594-609, 2009.

[22] N. N. Leonenko, M. M. Meerschaert, R. L. Shilling and A. Sikorskii, Correlation structure of time-changed Lévy processes, Commun. Appl. Ind. Math., 6, 2014.

[23] N. Leonenko , E. Merzbach. Fractional Poisson sheet. Methodol Comput Appl Probab (2015) 17:155–168

[24] M. Magdziarz, R. Schilling. Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Am. Math. Soc 143, 4485-4501, 2015.
[25] M. Magdziarz ; A. Weron. Ergodic properties of anomalous diffusion processes. Ann. Physics 326, no. 9, 2431-2443, 2011.

[26] A. Maheshwari P. Vellaisamy. Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse, J. Theoret. Probab, pp.1278-1305, 32 (3), 2019.

[27] M.M. Meerschaert, D. Benson, B. Baumer. Multidimensional advection and fractional dispersion. Physical Review E, Vol 59(5): 1-3, 1999.

[28] M.M. Meerschaert, E. Nane and P. Vellaisamy. The fractional Poisson process and the inverse stable subordinator. Elect. J. Prob., 16(59): 1600-1620, 2011.

[29] M.M. Meerschaert and H.P. Scheffler. Triangular array limits for continuous time random walks. Stoch. Proc. Appl., 118(9): 1606-1633, 2008.

[30] M.M. Meerschaert and H.P. Scheffler. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab., 41: 623-638, 2004.

[31] M.M. Meerschaert and P. Straka. Semi-Markov approach to continuous time random walk limit processes. Ann. Probab., 42(4) : 1699-1723, 2014.

[32] M.M. Meerschaert, A. Sikorskii. Stochastic models for fractional calculus. De Gruyter Studies in Mathematics, 43. Walter de Gruyter Co., Berlin, 2012.

[33] M.M. Meerschaert, B. Toaldo. Relaxation patterns and semi-Markov dynamics. Stoch. Proc. Appl., 129(8), 2850-2879, 2019.

[34] R. Metzler, J. Klafter: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77, 2000.

[35] T. M. Michelitsch, F. Polito, A. P. Riascos, Asymmetric random walks with bias generated by discrete-time counting processes. Comm. Nonlin. Sc. Num. Simul., Vol. 109, art. 106121, 2022.

[36] A. Pachon, F. Polito, C. Ricciuti. On discrete-time semi-Markov processes, Discrete and continuous dynamical systems- series B, 26(3), pp. 1499-1529, 2021.

[37] J. Pedersen; K. Sato, Cone-parameter convolution semigroups and their subordination. Tokyo J. Math. 26, no. 2, 503-525, 2003.

[38] J. Pedersen; K. Sato, Relations between cone-parameter Lévy processes and convolution semigroups. J. Math. Soc. Japan 56, no. 2, 541-559, 2004.

[39] Pedersen J.; Sato K., Semigroups and processes with parameter in a cone. Abstract and applied analysis, 499-513, World Sci. Publ., River Edge, NJ, 2004.
[40] Ricciuti C.; Toaldo B. Semi-Markov models and motion in heterogeneous media. J. Stat. Phys. 169, no. 2, 340-361, 2017.

[41] Ricciuti, C., Toaldo, B. From Semi-Markov Random Evolutions to Scattering Transport and Superdiffusion. Commun. Math. Phys. (2023). https://doi.org/10.1007/s00220-023-04705-w

[42] Sato K., Levy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999.

[43] M. Savov, B. Toaldo, Semi-Markov processes, integro-differential equations and anomalous diffusion-aggregation, Ann. de l’Institut Henri Poincaré (B) Prob. and Stat., 56(4): 2640 - 2671, 2020.

[44] R. L. Schilling, R. Song, Z. Vondracek, Bernstein functions: Theory and applications. Walter de Gruyter GmbH and Company KG, vol 37 of De Gruyter Studies in Mathematics Series, 2010.

[45] M. Sharpe. Operator-stable probability distributions on vector groups. Trans. Amer. Math. Soc., 136:51, 65, 1969.

[46] M. Schicks. Investigations on Families of Probability Measures Depending on Several Parameters. PhD Thesis, Swansea University, 2007.

[47] P. Straka, B.I. Henry, Lagging and leading coupled continuous time random walks, renewal times and their joint limits, Stoch. Proc. Appl. 121 324-336, 2011.