Appendix for

“Can income-based co-payment rates improve disparity? The case of the choice between brand-name and generic drugs”
Appendix. Conceptual Model for Drug Choice and Calibration Studies for Utility Difference between Income Groups by Specifying the Utility Function and Income

We model patient i’s utility V_{ik} from brand-name and generic drug k as follows:

$$
V_{ik} = \begin{cases}
U_i(\text{Income}_i - \alpha_i p^b_k) + \delta^b_{ik}, & \text{(brand - name chosen)} \\
U_i(\text{Income}_i - \alpha_i p^g_k) + \delta^g_{ik}, & \text{(generic chosen)}
\end{cases}
$$

where $\delta^b_{ik}, \delta^g_{ik}$ denote patient i’s utilities from brand-name and generic versions, α_i is patient i’s co-payment rate, and p^b_k, p^g_k are the prices of brand-name and generic version of drug k. Income_i is the income of patient i. $U_i(\cdot)$ is the patient’s utility function for a monetary outcome.

Since we focus on patients’ choice after receiving a prescription, we assume there is no outside option besides choosing a brand-name or generic version of the drug. If $U_i(\text{Income}_i - \alpha_i p^b_k) + \delta^b_{ik} > U_i(\text{Income}_i - \alpha_i p^g_k) + \delta^g_{ik}$ holds, the patient will choose the brand-name drug, and vice versa. Our interest is the difference between δ^b_{ik} and δ^g_{ik} by a patient’s income status.

Furthermore, we aim to reveal the varying effects of price differences on patients’ choice on the basis of income status.

We consider a simple setting. Assume there are two types of patients with high- and general-income ($i = h, g$, respectively), and $U_h = U_g (= U)$ holds, that is, the utility function is common
across enrollees, irrespective of income. The generic version of drug k is more likely to be chosen by the high-income group than the general counterpart if the following relationship holds:

\[
P(U(\text{Income}_h - \alpha_h p^g_k) - U(\text{Income}_h - \alpha_h p^b_k) > \delta_{hk}^b - \delta_{hk}^g) > P(U(\text{Income}_g - \alpha_g p^g_k) - U(\text{Income}_g - \alpha_g p^b_k) > \delta_{gk}^b - \delta_{gk}^g),
\]

where $P(A)$ indicates the probability of event A. Figure A1 illustrates our model.

For the sake of illustration, we compare the difference in $U(\text{Income}_i - \alpha_i p^g_k) - U(\text{Income}_i - \alpha_i p^b_k)$ between $i = h$ and $i = g$ under certain utility function specifications. If we define $I_{ik} = \text{Income}_i - \alpha_i p^g_k$ for $i = h, g$ and $p_k = p^b_k - p^g_k$, we can rewrite this term as $U(I_{ik}) - U(I_{ik} - \alpha_i p_k)$. We describe the results of certain calibration exercises for the size of $U(\text{Income}_i - \alpha_i p^g_k) - U(\text{Income}_i - \alpha_i p^b_k)$.

Table A1 reports the results from a calibration exercise. We assume a Constant Relative Risk Aversion (CRRA) utility $U(x) = (x^{1-\theta} - 1)/(1 - \theta)$. In our setting, $\alpha_h = 0.3$ and $\alpha_g = 0.1$ holds. We report three panels for three different values of CRRA parameter θ. Columns 1 and 2 report the value of $U(I_{ik}) - U(I_{ik} - \alpha_i p_k)$ for $i = h$, columns 3 and 4 for $i = g$. We report this amount for several values of I_{ik} and p_k. As we can see from this result, whether $U(I_{ik}) - U(I_{ik} - \alpha_i p_k)$ is larger for $i = h$ or $i = g$ depends on the form of the utility function and income related term I_{ik}. When $\theta = 1$, $U(I_{ik}) - U(I_{ik} - \alpha_i p_k)$ tend to be larger in the higher
income group in our setting of income. In contrast, when $\theta = 2, 3$, the results suggest that this comparison in size heavily depends on income of each group.

Our calibration results suggest that whether the size of $U(I_{ik}) - U(I_{ik} - \alpha_ip_k)$ is larger for high- or general-income enrollees remains controversial and the size can be substantial. In other words, there is no clear implication for how the difference in probability of choosing generic drugs between high- and general-income groups responds to price changes and the difference may be sizeable such that equal probability cannot be achieved within a realistic co-payment rate setting. In addition, it is important to know the distributions of $\delta^h_{ik}, \delta^g_{ik}$ to elucidate the differences in preferences for brand-name drugs by income status. By empirically assessing these aspects, we can determine whether differentiating co-payment rates can contribute to the equal probability of high- and general-income groups choosing generic drugs.
Appendix. Details of the Patients’ Choice Model and Empirical Strategy

We describe the relations between our empirical methods and an underlying patients’ choice model. We denote the patient i’s utility from choosing each version of the drug and introduce time dimension t:

$$
V_{ikt} = \begin{cases}
U(l_{ik} - \alpha_1 p_k) + \delta_{ikt}^b, & \text{(brand – name chosen)} \\
U(l_{ik}) + \delta_{ikt}^g, & \text{(generic chosen)}
\end{cases}
$$

where we assume that the patient’s utility function U is time-invariant.

We decompose $\delta_{ikt}^j (j = b, g)$ as follows:

$$
\delta_{ikt}^j = \mu_{ik}^j + D_{it} \pi_{ikt}^j + X_{ikt} \gamma_{ikt}^j + \epsilon_{ikt}^j,
$$

where b denotes brand-name drug and g indicates generic drugs; μ_{ik}^j is the drug-version-specific time-invariant preference toward version j; D_{it} is a dummy variable that equals 1 if patient i’s co-payment rate is 30%, which also indicates a relatively high income; X_{ikt} is a vector for other individual characteristics; and ϵ_{ikt}^j is an error term for an unobservable taste shock. Coefficient π_{ikt}^j is the change in preference for version j caused by being in the high-income group instead of the general-income group. We allow each patient’s preference to differ by their income level and other observable characteristics. Let $\delta_{ikt} = \delta_{ikt}^g - \delta_{ikt}^b$, $\mu_k = \mu_k^g - \mu_k^b$, $\gamma_k = \gamma_k^g - \gamma_k^b$, $\epsilon_{ikt} = \epsilon_{ikt}^g - \epsilon_{ikt}^b$, $\pi_k = \pi_k^g - \pi_k^b$. Note that π_k can be interpreted as the difference in preference...
for the generic version relative to the brand-name version between the high- and general-income groups. Assuming $U(I_{ikt}) - U(I_{ikt} - \alpha_ip_k) = \alpha_ip_kU'(I_{ikt})$ by linear approximation, we rewrite the condition for the generic version to be chosen as:

$$\alpha_ip_kU'(I_{ikt}) + \mu_k + D_{it}\pi_k + X_{ikt}\gamma_k + \epsilon_{ikt} > 0.$$

Here, recall that we assume two types of patients with high or general income adjusted to the price of generic drugs I_{hk}, I_{gk}. Finally, the condition can be written as

$$D_{it}\{p_k(\alpha_hU'(I_{hk}) - \alpha_gU'(I_{gk})) + \pi_k\} + \alpha_gp_kU'(I_{gk}) + \mu_k + X_{ikt}\gamma_k + \epsilon_{ikt} > 0.$$

Assuming that ϵ_{ikt}^a and ϵ_{ikt}^b are exogenous error terms with type-I extreme value distribution, this condition motivates us to conduct a logistic regression for each drug as follows:

$$\text{Logit}(P(y_{ikt} = 1)) = \mu_k + \beta_kD_{it} + X_{ikt}\gamma_k.$$ \{1\}

where dependent variable y_{ikt} is a dummy variable that equals 1 if a generic version of drug k is dispensed for patient i at prescription timing t. We include a set of covariates for X_{ikt} such as age, sex, amount of drug prescribed at t, area of patient’s residence, total medical expenditure in a month including prescription timing t but excluding spending on drugs, and total spending on drugs besides drug k in a month including prescription timing t. μ_k is an intercept (we rewrite $\alpha_gp_kU'(I_{gk}) + \mu_k$ as μ_k). Since individuals tend to receive a prescription for the same drug repeatedly, we employ a generalized estimating equation (GEE) approach to account for the
clustering responses among the same individuals. To model the within-individual correlation, we choose a working correlation matrix to have an exchangeable structure.

Our central estimate of interest is \(\beta_k \). If this coefficient is smaller than 0 (i.e., the odds ratio is less than 1), being in the high-income group reduces the probability of choosing generic drugs, despite the higher out-of-pocket prices. From the above argument, \(\beta_k \) comprises two components:

\[
\beta_k = p_k(\alpha_h U'(I_{hk}) - \alpha_g U'(I_{gk})) + \pi_k, \quad (2)
\]

where \(p_k(\alpha_h U'(I_{hk}) - \alpha_g U'(I_{gk})) \) is the difference in utility loss from the high price of a brand-name version between high- and general-income groups and \(\pi_k \) is difference in preference for a generic drug between high- and general-income groups. We focus on the role of these components in the choice of versions.

We analyze the relationship between estimated coefficients \(\tilde{\beta}_k \) and price difference between the brand-name and generic drugs. We define price difference as the product of price difference per unit dose and average daily dose. To analyze the relationship, we regress the estimated coefficient \(\tilde{\beta}_k \) on price difference. We introduce certain assumptions to interpret our results from the regressions.
Assumption 1. The difference in utility loss from the price difference per one yen between high- and general-income groups, \((\alpha_h U'(l_{hk}) - \alpha_g U'(l_{gk}))\), is the same across drugs \(k\).

Although this assumption is untestable using our data, the drugs included in our analysis are commonly prescribed drugs. Therefore, we consider this assumption to be reasonable as the income level would not largely differ among such drugs.

Assumption 2a. The difference in preference for generic drugs between high- and general-income groups, \(\pi_k\), is heterogeneous with mean \(\pi\). In addition, \(\pi_k\) is mean-independent of \(p_k\), that is, \(E(\pi_k - \pi|p_k) = 0\) holds.

It is natural that the preference for generic drugs is heterogeneous among drugs. Although the conditional mean-zero assumption may be strong, we make this assumption for inference. To relax this assumption to a certain extent, we later allow mean \(\pi\) to differ among the types of drugs. Under assumptions 1 and 2a, the price coefficient can be interpreted as \(\alpha_h U'(l_{hk}) - \alpha_g U'(l_{gk})\) and the intercept as \(\pi\).
Next, we regress \(\overline{\beta}_k \) on price difference and drug category dummies. To interpret the results from this regression, we relax Assumption 2a and instead, propose the following assumption.

Assumption 2b. The difference in preference for generic drugs between the high- and general-income groups, \(\pi_k \), is heterogeneous with mean \(\pi_c \) in each drug category, \(c \). In addition, we assume mean independence between \(\pi_k \) and \(p_k \) within each drug category \(c \), that is,

\[
E(\pi_k - \pi_c | p_k) = 0 \quad \text{holds.}
\]

Instead of Assumption 2a, we allow the mean level of preference to differ by drug category. Again, under assumptions 1 and 2b, the price coefficient can be interpreted as \(\alpha_h U'(I_{ihk}) - \alpha_g U'(I_{igk}) \) and the intercept as \(\pi_c \) of the reference category \(c \) in the regression.
Appendix. FGLS Estimation

We describe the FGLS estimation procedure which follows the previous literature on estimating regression models where the dependent variables are estimates. Our model of interest is:

$$\beta_k = \theta p_k + \pi + u_k$$

where we rearrange the terms $\theta = \alpha_h U'(I_h) - \alpha_i U'(I_l)$ and $\pi + u_k = \pi_k$. We introduced Assumption 1 to drop index k in the terms I_{hk} and I_{lk}. From Assumption 2, u_k is assumed to be mean-zero conditional on p_k and let the variance be σ^2. Now, as β_k's are estimated in our model, let the estimates be $\hat{\beta}_k$. Let

$$\hat{\beta}_k = \beta_k + e_k.$$

In addition, assume that $Var(e_k) = \omega_k^2$. We assume that the estimate of the β_k for each observation is independent of the others, in other words, we assume $Cov(e_k, e_l) = 0$ where $k \neq l$. By substituting this equation we obtain:

$$\hat{\beta}_k = \theta p_k + \pi + u_k + e_k.$$

Let $v_k = u_k + e_k$. Also, let

$$G = \begin{bmatrix} \omega_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_K^2 \end{bmatrix}.$$
Following Lewis & Linzer (2005), we first calculate residuals \hat{v}_k from OLS regression. Then, we can obtain a consistent estimator for σ^2 as:

$$
\hat{\sigma}^2 = \left\{ \sum_k \hat{v}_k^2 - \sum_k \omega_k^2 + tr((X'X)^{-1}GXX') \right\} / (K - 2)
$$

where

$$X = \begin{bmatrix} 1 & p_1 \\ \vdots & \vdots \\ 1 & p_K \end{bmatrix}.$$

Assuming that we have consistent estimators for ω_k, which is the standard errors from the logistic regression, we may substitute the standard errors in the equation above without harming consistency of $\hat{\sigma}^2$. Note that the variance-covariance matrix for $v = (v_1, v_2, ..., v_K)'$ is:

$$
E(vv') = V = \begin{bmatrix}
\sigma^2 + \omega_1^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma^2 + \omega_K^2
\end{bmatrix}.
$$

By substituting estimates for σ^2 and ω_k, we can conduct FGLS estimation using this matrix as the weighting matrix.
Figure A1. Conceptual framework: utility loss from paying high prices for brand-name drugs by income status

Notes: The utility function is drawn in this figure. What we compare here is $U(I_i) - U(I_i - \alpha_i p)$ pointed out in the figure.
\[U(I_h) - U(I_i - \alpha_i p) \]
Table A1
Calibration results – Utility differences for different specifications of parameters and prices

Income	High-income group	General-income group		
	5,000,000	4,000,000	3,000,000	2,000,000
Price difference	CRRA parameter = 1	CRRA parameter = 2	CRRA parameter = 3	
1,000	6.000	7.500	3.333	5.000
3,000	18.002	22.503	10.001	15.001
10,000	60.018	75.028	33.339	50.013
30,000	180.162	225.254	100.050	150.113
1,000	1.200	1.875	1.111	2.500
3,000	3.601	5.626	3.334	7.501
10,000	12.007	18.764	11.115	25.013
30,000	36.065	56.377	33.367	75.113
1,000	2.400	4.688	3.704	12.501
3,000	7.202	14.067	11.113	37.508
10,000	24.022	46.928	37.056	125.094
30,000	72.195	141.101	111.278	375.845

Notes: This table presents the values of \(U(I_{l_k}) - U(I_{l_k} - \alpha_l p_k) \) for each pairs of income \(I_{l_k} \), price difference \(p_k \), and Constant Relative Risk Aversion (CRRA) parameters. \(\alpha_l \) is set at 0.3 and 0.1 for the high- and general-income group.