Association study of genetic variation of IncRNA MALAT1 with carcinogenesis of colorectal cancer

Kexin Zhao¹
Si Jin²
Bo Wei³
Shiqiong Cao¹
Zhifan Xiong¹

¹Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, People’s Republic of China; ²Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science, Wuhan 430077, People’s Republic of China; ³Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science, Wuhan 430077, People’s Republic of China

Introduction: Colorectal cancer (CRC) remains a major public health concern worldwide. However, the detailed molecular mechanisms of CRC remain poorly understood.

Methods: In the current study, we evaluated associations of four genetic variants located in the promoter and gene region of long noncoding RNAs metastasis-associated lung adenocarcinoma transcript 1 (IncRNA MALAT1) with CRC susceptibility among a Chinese population with 966 CRC cases and 988 healthy controls, using a two-stage, case-control study design (400 CRC cases and 400 controls in stage 1, and 566 CRC cases and 588 controls in stage 2).

Results: We found that the minor alleles of rs619586 (OR = 0.73; 95% CI = 0.60–0.88; P = 0.001) and rs1194338 (OR = 0.80; 95% CI = 0.70–0.92; P = 0.001) were significantly associated with decreased CRC susceptibility. Compared with those with rs619586 –AA genotype, the risk of CRC was significantly lower in individuals with AG genotype (OR = 0.76; 95% CI = 0.61–0.95) and GG genotype (OR = 0.46; 95% CI = 0.23–0.90). Compared with those with rs1194338 –CC genotype, the risk of CRC was significantly lower in individuals with AC genotype (OR = 0.76; 95% CI = 0.65–0.95) and AA genotype (OR = 0.68; 95% CI = 0.51–0.89).

Conclusion: Taken together, our findings provided strong evidence for the hypothesis that genetic variants in IncRNA MALAT1 might contribute to the carcinogenesis of CRC.

Keywords: colorectal cancer, genetic, IncRNA, susceptibility, MALAT1

Introduction
Colorectal cancer (CRC) ranks the third most prevalent cancer type in both men and women worldwide.¹ According to the Colorectal Cancer Statistics in 2017, there were about 135,430 newly diagnosed CRC cases and 50,260 deaths from the disease in United States in 2017.² It was reported that 376,300 new CRC cases and 191,000 CRC death occurred per year in China.³ CRC has a complicated carcinogenesis involving multiple risk factors for its initiation, promotion, and progression, as well as its relapse and metastasis.²⁴ In addition to some well-known risk factors, such as older age, male gender, obesity, lack of physical exercise, adenomas, and smoking, genetic factors also play an important role in CRC carcinogenesis.²⁴⁻⁷ In spite of great effort for the research of CRC carcinogenesis, the detailed molecular mechanisms of CRC remain poorly understood.⁸⁻⁹

Recently, the long noncoding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides that are not translated into protein, have gradually been reported to be an important class of RNAs with pivotal roles in regulation of gene expression, and involved in multitudinous human complex diseases.¹⁰⁻¹¹ However, the biological functions and precise mechanisms of the majority of lncRNAs are still poorly understood.
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), originally identified as a marker for predicting metastasis and prognosis of early-stage non-small-cell lung cancer patients, was reported to be dysregulated in multiple human cancer types, diabetic retinopathy, thoracic aortic aneurysm, etc. Studies also found that MALAT1 contributed to the cell proliferation/migration/invasion, malignancy, tumor growth, metastasis, and poor prognosis of CRC. Additionally, many epidemiologic studies have explored the link between genetic variants in MALAT1 and disease susceptibility. Meta-analyses showed that MALAT1 rs619586 was associated with overall cancer risk. However, the susceptibility was also included. DNA was extracted from peripheral blood leukocytes with RelaxGene Blood System DP319-02 (Tiangen, Beijing, People’s Republic of China). A260/A280 ratio of the purified DNA samples was assessed to ensure purity. DNA samples were then stored at −80°C for further genotyping. Candidate SNPs were genotyped by the TaqMan SNP Genotyping Assay on an ABI PRISM 7900HT Fast Real-Time PCR platform (Applied Biosystems, Waltham, MA, USA). For quality control, we randomly selected 10% of these DNA samples for further validation, which were 100% consistent. Two researchers performed genotyping independently to cross-validate the results.

Statistical analysis

Categorical data were expressed as number (percentage) and analyzed using chi-squared test. Continuous data were expressed as mean±SD and analyzed using Student’s t-test. Hardy–Weinberg equilibrium (HWE) was tested by using a chi-squared goodness-of-fit test. ORs and 95% CIs were selected to estimate the strength of association between SNPs and risk of CRC adjusted for age, gender, alcohol drinking and smoking status, and family history of cancer. The analyses were done first per allele and then per genotype. All statistics were performed using SPSS software 19.0 (IBM Corporation, Armonk, NY, USA), and P<0.05 was considered as statistically significant.

Results

Characteristics of study population

The descriptive characteristics of the study participants are provided in Table 1. No significant differences were found between the CRC patients and controls with regard to the distribution of age, gender, and smoking and drinking status in the discovery set and validation set, yet the distribution of family history of cancer in CRC patients was significantly higher than that in the controls in both stages (P<0.001). Overall, 52.5% of the tumor site was located at colon.

Associations of candidate SNPs and CRC risk in stage 1

Table 2 shows the effects of four SNPs (rs11227209, rs619586, rs3200401, and rs1194338) on CRC susceptibility
The genotypic distribution for rs11227209 and rs3200401 was not statistically significant, indicating no evidence of association with CRC risk.

**Table 2** Association of the selected SNPs with colorectal cancer risk in stage 1

| Genotypes      | Cases (n=316) | Controls (n=308) | OR (95% CI) | P-value |
|----------------|--------------|-----------------|------------|---------|
| rs11227209     |              |                 |            |         |
| CC             | 301          | 316             | 1.00 (reference) |         |
| CG             | 88           | 76              | 1.21 (0.86–1.72) | 0.267   |
| GG             | 11           | 8               | 1.44 (0.57–3.62) | 0.434   |
| G vs C         | rs619586     |                 | 1.23 (0.91–1.65) | 0.175   |
| AA             | 330          | 308             | 1.00 (reference) |         |
| AG             | 65           | 82              | 0.74 (0.52–1.06) | 0.101   |
| GG             | 5            | 10              | 0.47 (0.16–1.34) | 0.159   |
| G vs A         | rs3200401    |                 | 0.71 (0.52–0.97) | 0.031   |
| CC             | 283          | 294             | 1.00 (reference) |         |
| CT             | 102          | 96              | 1.10 (0.80–1.52) | 0.549   |
| TT             | 15           | 10              | 1.56 (0.69–3.50) | 0.284   |
| T vs C         | rs1194338    |                 | 1.16 (0.89–1.53) | 0.269   |
| CC             | 194          | 164             | 1.00 (reference) |         |
| CA             | 156          | 172             | 0.77 (0.57–1.03) | 0.083   |
| AA             | 50           | 64              | 0.66 (0.43–1.01) | 0.055   |
| A vs C         |              |                 | 0.78 (0.64–0.96) | 0.021   |

Notes: Adjusted by age, gender, alcohol drinking and smoking status, and family history of cancer. Statistically significant values are shown in bold.

Abbreviation: SNP, single-nucleotide polymorphism. Bold means statistically significant.

in stage 1. The genotypic distributions of four SNPs among the controls were in accordance with HWE (P>0.05). In the four loci, the per allele association of rs619586 (OR=0.73; 95% CI=0.60–0.88; P=0.001) and rs1194338 (OR=0.80; 95% CI=0.70–0.92; P=0.001) were significantly associated with CRC susceptibility. Compared with those with rs619586 −AA genotype, the risk of CRC was significantly lower in individuals with AG genotype (OR=0.79; 95% CI=0.65–0.95) and AA genotype (OR=0.68; 95% CI=0.51–0.89). Comparing with those with rs1194338 −CC genotype, the risk of CRC was significantly lower in individuals with AC genotype (OR=0.79; 95% CI=0.65–0.95) and AA genotype (OR=0.68; 95% CI=0.51–0.89).

**Discussion**

Up to date, CRC remains a major public health concern worldwide. The current study explored the associations between genetic variants located in the promoter and gene region of lncRNA MALAT1 and CRC susceptibility among a Chinese population, using a two-stage, case–control study design. We detected that minor alleles of both MALAT1 rs619586 and rs1194338 were significantly associated with decreased CRC susceptibility in two stages.
Table 3 Association of MALAT1 variants with colorectal cancer risk in stage 2 and combined stage

| Genotypes | Cases | Controls | OR (95% CI)* | P-value |
|-----------|-------|----------|--------------|---------|
| rs619586  |       |          |              |         |
| Stage 2   |       |          |              |         |
| AA        | 454   | 442      | 1.00 (reference) | 0.891   |
| AG        | 105   | 131      | 0.78 (0.58–1.04) | 0.091   |
| GG        | 7     | 15       | 0.45 (0.19–1.10) | 0.081   |
| G vs A    |       |          | 0.74 (0.57–0.95) | 0.019   |
| Pooled results | | | 1.00 (reference) | 0.019   |
| AA        | 784   | 750      | 0.73 (0.60–0.88) | 0.001   |
| AG        | 170   | 213      | 0.76 (0.61–0.95) | 0.025   |
| GG        | 12    | 25       | 0.46 (0.23–0.90) | 0.046   |
| G vs A    |       |          | 0.73 (0.60–0.88) | 0.001   |
| rs1194338 |       |          |              |         |
| Stage 2   |       |          |              |         |
| CC        | 267   | 241      | 1.00 (reference) | 0.888   |
| CA        | 235   | 263      | 0.80 (0.63–1.03) | 0.046   |
| AA        | 64    | 84       | 0.69 (0.48–0.99) | 0.021   |
| A vs C    |       |          | 0.81 (0.69–0.97) | 0.001   |
| Pooled results | | | 1.00 (reference) | 0.019   |
| CC        | 461   | 405      | 0.79 (0.65–0.95) | 0.015   |
| CA        | 391   | 435      | 0.79 (0.65–0.95) | 0.006   |
| AA        | 114   | 148      | 0.68 (0.51–0.89) | 0.001   |
| A vs C    |       |          | 0.80 (0.70–0.92) | 0.001   |

Notes: *Adjusted by age, gender, alcohol drinking and smoking status, and family history of cancer.

Increasing evidence shows that lncRNAs can be used as biomarkers for the prediction of susceptibility, prognosis, or as tumor therapeutic targets in human cancers. MALAT1, also known as NEAT2 (noncoding nuclear-enriched abundant transcript 2), was located at 11q13.1. Tripathi et al first identified that MALAT1 could regulate alternative splicing by modulating serine/arginine splicing factor phosphorylation. It was also found to be involved in multiple types of physiological processes, such as alternative splicing, nuclear organization, epigenetic modulating of gene expression, and various pathological processes, ranging from diabetes complications to cancers. Functional investigations indicated that G allele of rs619586 could trigger higher expression of MALAT1 in multiple tissues, which might affect the physiological processes consequently. Function of MALAT1 rs1194338 was only studied in 71 CRC tissues samples; however, no statistically significant difference of MALAT1 expression between CC genotype and AA genotype was detected.

Genetic variants in lncRNA MALAT1 have also been linked to various kinds of diseases. Li et al found rs1194338 was significantly associated with decreased CRC risk. Wang et al identified that rs3200401 was associated with survival for advanced lung adenocarcinoma patients. Peng et al showed that individuals with genotype AG of rs619586 have a decreased risk of breast cancer. Additionally, Wang et al found that rs619586 AG/GG genotypes might protect against the occurrence of coronary atherosclerotic heart disease. Li et al identified that MALAT1 rs619586 was significantly associated with lower risk of congenital heart disease. Zhuo et al showed rs619586 was associated with a decreased risk of pulmonary arterial hypertension. All the above findings were consistent with our results, which showed rs619586 and rs1194338 were significantly associated with decreased CRC susceptibility.

**Strengths and limitations**

A relatively small sample size for the stratification and interaction analyses is the limitation of this study that should be pointed out. However, for the main effect, the statistical power for rs619586 was 88.2%, and the statistical power for rs1194338 was 91.1%. The strength of this study is that we used a two-stage investigation to validate the association between the genetic variants and CRC susceptibility.

**Conclusion**

Conclusively, the current findings indicate that genetic variants in lncRNA MALAT1 may influence the risk of CRC. However, since the exact mechanism and function of these gene variants have not yet been fully defined, the present findings need to be confirmed in further studies with other populations in order to clarify the association between these polymorphisms and the risk of CRC.

**Disclosure**

The authors report no conflicts of interest in this work.

**References**

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. *CA Cancer J Clin*. 2018;68(1):7–30.
2. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. *CA Cancer J Clin*. 2017;67(3):177–193.
3. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. *CA Cancer J Clin*. 2016;66(2):115–132.
4. Stoffel EM, Koepppe E, Everett J, et al. Germline Genetic Features in colorectal cancer reveals genetic heterogeneity. *Carcinogenesis*. 2018;39(5):708–718.
5. Wang X, Fang H, Cheng Y, et al. The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity. *Carcinogenesis*. 2018;39(5):708–718.
6. Schubert SA, Ruano D, Elsayed FA, et al. Evidence for genetic association between chromosome 1q loci and predisposition to colorectal neoplasia. *Br J Cancer*. 2018;118(2):e4.
7. Witold K, Anna K, Maciej T, Jakub J. Adenomas - Genetic factors in colorectal cancer prevention. *Rep Pract Oncol Radiother*. 2018;23(2):75–83.
8. Weigl K, Thomsen H, Balavarca Y, Hellwege JN, Shrubsole MJ, Brenner DA. Genetic Risk Score Is Associated With Prevalence of Advanced Neoplasms in a Colorectal Cancer Screening Population. *Gastroenterology*. 2018;154(4):897–905.
9. Jem J, Du M, Schoen RE, et al. Colorectal Transdisciplinary Study and Genetics and Epidemiology of Colorectal Cancer Consortium. Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. *Gastroenterology*. 2018;154(8):2152–2164.
10. Zheng LL, Li JH, Wu J, et al. deepBase v2.0: identification, expression, evolution and function of small RNAs, lncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res. 2016;44(D1):D196–D202.

11. Xie W, Yuan S, Sun Z, Li Y. Long noncoding and circular RNAs in lung cancer: advances and perspectives. Epigenomics. 2016;8(9):1275–1287.

12. Anmodal N, Raimondi L, Juli G, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11(1):63.

13. Biswas S, Thomas AA, Chen S, et al. MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy. Sci Rep. 2018;8(1):6526.

14. Lino Cardenas CL, Kessinger CW, Cheng Y, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9(1):1009.

15. Yang MH, Hu ZY, Xu C, et al. MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PRKA kinase anchor protein 9. Biochim Biophys Acta. 2015;1852(1):166–174.

16. Ji Q, Zhang L, Liu X, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 2014;111(4):736–748.

17. Xu C, Yang M, Tian J, Wang X, Li Z. MALAT-1: a long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int J Oncol. 2011;39(1):169–175.

18. Zheng HT, Shi DB, Wang YW, et al. High expression of IncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int J Clin Exp Pathol. 2014;7(6):3174–3181.

19. Wu C, Zha X, Tao K, et al. MALAT1 promotes the colorectal cancer malignancy by increasing DCP1A expression and miR203 downregulation. Mol Carcinog. 2018;57(10):1421–1431.

20. Li Q, Zhu W, Zhang B, et al. The MALAT1 gene polymorphism and its relationship with the onset of congenital heart disease in Chinese. Biosci Rep. 2018;38(3):B3R20171381.

21. Zhao Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y. Functional polymorphism of IncRNA MALAT1 contributes to pulmonary arterial hypertension susceptibility in Chinese people. Clin Chem Lab Med. 2017;55(1):38–46.

22. Wang R, Sun Y, Li L, et al. Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9® to Suppress Enzalutamide-resistant Prostate Cancer Progression. Eur Urol. 2017;72(5):835–844.

23. Wang JZ, Xiang JJ, Wu LG, et al. A genetic variant in long non-coding RNA MALAT1 associated with survival outcome among patients with advanced lung adenocarcinoma: a survival cohort analysis. BMC Cancer. 2017;17(1):167.

24. Li Y, Bao C, Gu S, et al. Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer. Oncotarget. 2017;8(54):92604–92614.

25. Peng R, Luo C, Guo Q, et al. Association analyses of genetic variants in long non-coding RNA MALAT1 with breast cancer susceptibility and miRNA expression of MALAT1 in Chinese Han population. Gene. 2018;642:241–248.

26. Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis. Biosci Rep. 2018;38(4):BSR20180365.

27. Zhang B, Mao YS, Diermeier SD, et al. Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Rep. 2017;19(8):1723–1738.

28. Xia H, Chen Q, Chen Y, et al. The IncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget. 2016;7(35):56209–56218.

29. Szczesniak MW, Makalowska I. IncRNA-RNA Interactions across the Human Transcriptome. PLoS One. 2016;11(3):e0150353.

30. Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–938.

31. Zhang B, Arun G, Mao YS, et al. The IncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2(1):111–123.

32. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–750.

33. Gutschner T, Hämmerle M, Diederichs S. MALAT1 – a paradigm for long noncoding RNA function in cancer. Circ Res. 2015;116(4):737–750.

34. Li Y, Bao C, Gu S, et al. Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer. Oncotarget. 2017;8(54):92604–92614.