Search for Third Generation Vector Leptoquarks in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen, A. Abulencia, J. Adelman, T. Affolder, T. Akimoto, M.G. Albrow, S. Amerio, D. Amidei, A. Anastassov, K. Anikeev, A. Annovi, J. Antos, M. Aoki, G. Appollinari, T. Arisawa, A. Artikov, W. Ashman, A. Attal, A. Aurisano, F. Azfar, P. Azzi-Bacchetta, P. Azzurri, N. Bacchetta, W. Badgett, A. Barbaro-Galtieri, V.E. Barnes, B.A. Barnett, S. Baroian, V.T. Bartsch, G. Bauer, P.-H. Beauchemin, F. Bedeschi, S. Behari, G. Bellettini, J. Bellinger, A. Belloni, D. Benjamini, A. Beretvas, J. Beringer, T. Berry, A. Bhatti, M. Binkley, D. Bisello, I. Bizjak, R.E. Blair, C. Blocker, B. Blumenfeld, A. Bocci, A. Bodek, V. Boisvert, G. Bolla, A. Bolshov, D. Bortoletto, J. Boudreau, A. Boveia, B. Brau, L. Brigladori, C. Bromberg, E. Brubaker, J. Budagov, H.S. Budd, S. Budd, K. Burkett, G. Busetto, P. Bussey, A. Buza, T. Byrum, S. Cabrera, M. Campanelli, M. Campbell, F. Canelli, A. Canepa, S. Carrillo, D. Carlsmith, R. Carosi, S. Carron, B. Casal, M. Casarsa, A. Castro, P. Catalani, D. Cauz, M. Cavalli-Sforza, A. Cerri, L. Cerrito, S.H. Chang, V.C. Chen, M. Chertok, G. Chiaralli, G. Chlachidze, F. Chlebana, I. Cho, K. Cho, D. Chokheli, J.P. Chou, G. Choudalakis, S.H. Chuang, K. Chung, W.H. Chung, Y.S. Chung, M. Ciliajik, C.I. Ciobanu, M.A. Ciocci, A. Clark, D. Clark, M. Coca, G. Compostella, M.E. Convery, J. Conway, B. Cooper, K. Copie, M. Cordelli, G. Cortiana, F. Crescioli, C. Cuenca Almenar, J. Cuevas, R. Culbertson, J.C. Cully, S. DaRonco, M. Datta, S. D’Auria, T. Davies, D. Dagenhart, P. De Barbaro, S. De Cecco, A. Deisher, G. De Lentdecker, G. De Lorenzo, M. Dell’Oro, F. Delli Paoli, L. Demortier, J. Deng, M. Denino, D. De Pedis, P.F. Derwent, G.P. Di Giovanni, C. Dionisi, B. Di Ruza, J.R. Dittmann, M. Donofrio, C. Dör, S. Donati, J. Dong, J. Donini, T. Dorigo, S. Dube, J. Efron, R. Erbach, D. Errede, S. Errede, R. Eusebi, H.C. Fang, S. Farrington, I. Fedorko, M.F. Feild, R.G. Feild, M. Feindt, J.P. Fernandez, R. Field, G. Flanagan, R. Forrest, S. Forrester, M. Franklin, J.C. Freeman, I. Furic, M. Gallinaro, J. Galyart, J.E. Garcia, F. Garberson, A.F. Garfinkel, C. Gay, H. Gerberich, D. Gerdes, S. Giagu, A. Giannetti, K. Gibson, J.L. Gimmell, C. Ginsburg, N. Giokaris, M. Giordani, P. Giromini, M. Giunta, G. Giurgiu, V. Glagolev, D. Glenzinski, M. Gold, N. Goldschmidt, J. Goldstein, A. Golossanov, G. Gomez, N. Gomez-Ceballos, M. Goncharov, O. Gonzaález, I. Gorelov, A.T. Goshaw, K. Goulianos, A. Gresele, S. Grinstein, C. Grossio-Pilcher, R.C. Group, U. Grundler, J. Guimarães da Costa, Z. Gunay-Unalan, C. Haber, K. Halla, S.R. Hahn, E. Halkiadakis, A. Hamilton, B.-Y. Han, J.Y. Han, R. Handler, F. Happacher, K. Haru, D. Hare, M. Hare, S. Harper, R.F. Hart, R.M. Harris, M. Hartz, K. Hatakeyama, J. Hauser, C. Hays, M. Heck, A. Heijboer, B. Heinemann, J. Heinrich, C. Henderson, M. Herndon, M. Heusser, D. Hidas, C.S. Hill, D. Hirschbuehl, A. Hocker, J. Holloway, S. Hou, M. Houlten, S.-C. Hsu, B.T. Huffman, R.E. Hughes, U. Husemann, J. Huston, J. Incandela, G. Introzo, M. Iori, A. Ivanov, B. Iyutin, E. James, D. Jang, B. Jayatilaka, D. Jeans, E.J. Jeon, S. Jindariani, W. Johnson, M. Jones, K.C. Koh, S.Y. Jun, J.E. Jung, T.R. Junk, T. Kamon, P. Kachinski, Y. Kato, Y. Kemp, R. Kephart, U. Kerzel, V. Khotilovich, B. Kilminster, D.H. Kim, H.S. Kim, J.E. Kim, M.J. Kim, S.B. Kim, Y.K. Kim, Y.K. Kim, N. Kimura, L. Kirsch, S. Klimenko, M. Klute, B. Knuteson, B.R. Ko, K. Kondo, D.J. Kong, J. Konigsberg, A. Korytov, A.V. Kotwal, A.C. Kraan, J. Kraus, M. Kreps, J. Kroll, N. Krumnack, M. Kruse, V. Krujelov, T. Kubo, S. Kuhlmann, T. Kuhrt, N.P. Kulikarni, Y. Kusakabe, S. Kwang, A.T. Laasanen, S. Lai, S. Lammel, M. Lancaster, R.L. Lander, K. Lannon, A. Lath, G. Latino, I. Latt, I. Lazzizzera, T. LeCompte, J. Lee, J. Lee, Y.J. Lee, S.W. Lee, R. Lefèvre, N. Leonard, S. Leon, S. Levy, J.D. Lewis, C. Lin, C.S. Lin, M. Lindgren, I. Lipeles, A. Lister, D.O. Litvintsev, T. Liu, N.S. Loopcy, A. Logov, M. Loreti, R.-S. Lu, D. Lucchesi, P. Lujan, P. Luken, G. Lungu, I. Lyons, J. Lys, R. Lyons, E. Lytken, P. Mack, D. MacQueen, R. Madrak, K.A. Maeshima, K. Makhoul, T. Maki, P. Maksimovic, S. Malde, S. Malik, G. Manca, A. Manousakis, F. Margaroli, R. Marginean, C. Marino, C.P. Marino, A. Martin, M. Martin, V. Martín, R. Martinez, R. Martínez-Ballarín, T. Maruyama, P. Mastrandrea, T. Masubuchi, H. Matsunaga, M.E. Mattsson, R. Mazini, P. Mazzanti, K.S. McFarland, P. McIntyre, R. McNulty, A. Mehta, P. Mehtala, S. Menzemeer, A. Menzione, P. Merkel, C. Mesropian, A. Messina, T. Miao, N. Miladinovic, J. Miles, R. Miller, C. Mills, M. Milnik, A. Mitra, G. Mitselmakher, A. Miyamoto, S. Moed, N. Moggi, B. Mohr, C.S. Moon,
R. Moore, M. Morello, P. Movilla Fernandez, J. Mülmenstädt, A. Mukherjee, Th. Muller, R. Mumford, P. Murat, M. Mussini, J. Nachtman, A. Nagano, N. Nagano, K. Nakamura, I. Nakano, A. Napier, V. Neculae, C. Neu, M.S. Neubauer, J. Nielsen, L. Nodulman, O. Norniella, E. Nurse, S.H. Oh, Y.D. Oh, T. Oksuzian, R. Oldeman, R. Orava, K. Osterberg, C. Pagliarone, E. Palencia, V. Papadimitriou, A. Papaikonomou, A.A. Paramonov, B. Parks, S. Pashapour, J. Patrick, G. Paulletta, M. Paulini, C. Paus, D.E. Pellett, A. Penzo, T.J. Phillips, G. Piacentino, J. Piedra, L. Pinera, K. Pitts, C. Plager, L. Pondrom, X. Portell, O. Poutoukis, F. Prakoshyn, A. Pronko, J. Proudfoot, F. Ptohos, G. Punzi, J. Pursley, J. Rademacker, R. Rahaman, V. Ramakrishnan, N. Ranjan, R. Redondo, B. Reisert, V. Rekovic, P. Renton, M. Rescigno, S. Richter, F. Rimondi, L. Ristori, A. Robson, T. Rodrigo, E. Rogers, S. Rolli, R. Roser, M. Rossi, R. Rossini, P. Roy, A. Ruiz, J. Russ, V. Rusi, H. Saarikko, A. Safonov, W.K. Sakumoto, G. Salamanna, O. Salt, L. Santi, S. Sarkar, L. Sartor, K. Sato, P. Savard, A. Savoy-Navarro, T. Scheide, P. Schlabach, E.E. Schmidt, M.P. Schmidt, M. Schmitt, T. Schwarz, L. Scodellaro, A.L. Scott, A. Scricbano, F. Scru, A. Sedov, S. Seidel, Y. Seiya, S. Semenov, L. Sexton-Kennedy, A. Sfyrla, S.Z. Shalhout, M.D. Shapiro, T. Shears, P.F. Shepard, D. Sherman, M. Shimojima, M. Shocket, Y. Shon, I. Shreyber, A. Sidoti, P. Sinervo, A. Sisakyan, A.L. Slaughter, J. Slaunwhite, K. Sliwa, J.R. Smith, F.D. Snider, R. Snihur, M. Soderberg, A. Soha, S. Somalwar, V. Sorin, J. Spalding, F. Spallina, T. Spreitzer, P. Squillacioti, M. Stanitzki, A. Staveris-Polyakalas, R. St. Denis, B. Stelzer, O. Stelzer-Chilton, D. Stentz, J. Strologas, D. Stuart, J.S. Suh, A. Sukhanov, H. Sun, I. Suslov, T. Suzuki, A. Taffard, R. Takahashi, Y. Takeuchi, R. Tanaka, M. Tecchio, P.K. Teng, K. Terashi, J. Thom, A.S. Thompson, E. Thomson, P. Tipton, V. Tiwari, S. Tkaczyk, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, S. Tourneur, W. Trischuk, S. Tsumo, Y. Tu, N. Turini, F. Ukegawa, S. Uozumi, S. Vallecorsa, N. van Remortel, A. Varganov, V. Vataga, F. Vazquez, G. Velev, C. Vellidis, G. Veramendi, V. Veszpremi, M. Vidal, R. Vidal, I. Vila, R. Vilar, T. Vine, M. Vogel, I. Vollrath, I. Volobouev, G. Volpi, F. Würtzweirn, P. Wagner, R.G. Wagner, L.R. Wagner, J. Wagoner, W. Wagner, R. Wallny, S.M. Wang, A. Warburton, D. Waters, M. Weinberger, W.C. Wester III, B. Whitehouse, D. Whiteson, A.B. Wicklund, E. Wicklund, G. Williams, H.H. Williams, P. Wilson, B.L. Winer, P. Wittich, S. Wolbers, C. Wolfe, T. Wright, X. Wu, S.M. Wynne, A. Yagil, J. Yamamoto, T. Yamashita, C. Yang, U.K. Yang, Y.C. Yang, W.M. Yao, G.P. Yeh, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, S.S. Yu, J.C. Yun, L. Zanello, A. Zanetti, I. Zaw, X. Zhang, J. Zhou, S. Zucchelli (CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
4 Baylor University, Waco, Texas 76798
5 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
6 Brandeis University, Waltham, Massachusetts 02254
7 University of California, Davis, California 95616
8 University of California, Los Angeles, Los Angeles, California 90024
9 University of California, San Diego, La Jolla, California 92093
10 University of California, Santa Barbara, Santa Barbara, California 93106
11 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
12 Carnegie Mellon University, Pittsburgh, PA 15213
13 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
14 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
15 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
16 Duke University, Durham, North Carolina 27708
17 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
18 University of Florida, Gainesville, Florida 32611
19 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
20 University of Geneva, CH-1211 Geneva 4, Switzerland
21 Glasgow University, Glasgow G12 8QQ, United Kingdom
22 Harvard University, Cambridge, Massachusetts 02138
23 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
We describe a search for a third generation vector leptoquark (VLQ) that decays to a b quark and tau lepton using the CDF II detector and 322 pb$^{-1}$ of integrated luminosity from the Fermilab Tevatron. Vector leptoquarks have been proposed in many extensions of the standard model (SM). Observing a number of events in agreement with SM expectations, assuming Yang-Mills (minimal) couplings, we obtain the most stringent upper limit on the VLQ pair production cross section of 344 fb (493 fb) and lower limit on the VLQ mass of 317 GeV/c2 (251 GeV/c2) at 95% C.L.

PACS numbers: 14.80.-j, 13.85.Rm
Despite its extraordinary success, the standard model (SM) of elementary particles has structural deficiencies. The parallels between the families of quarks and leptons suggest a possible link between these two sectors at higher mass scales. Leptoquarks, therefore, have been proposed as fractionally-charged color-triplet bosons carrying both lepton and baryon quantum numbers. Leptoquarks appear in a wide range of theories, including SU(5) grand unification [1], superstrings [2], SU(4) Pati-Salam [3], and compositeness models [4]; direct searches for leptoquarks at hadron colliders probe the parameter space of some of these models.

The various leptoquark states are classified according to the quantum numbers of SM gauge group interactions [5]. At the Tevatron collider, these states would be predominately pair produced through quark anti-quark annihilation. In general, larger cross sections, and thus better search sensitivities, are predicted for vector (spin 1) than for scalar leptoquarks [6].

We search for third generation vector leptoquark (VLQ3) pair production, and assume each VLQ3 decays promptly to a b quark and a tau lepton. As the trilinear and quartic couplings between vector leptoquarks and gluons can have model-dependent “anomalous” contributions, we examine two scenarios: one with Yang-Mills couplings, where vector leptoquarks are fundamental gauge bosons of an extended gauge group, and the other with minimal anomalous couplings [6, 7]. Previous VLQ3 searches have been carried out in experiments at p̅p, e+e−, and ep colliders [8–11]. Our new results substantially extend the reach beyond the previous limits.

The results reported in this Letter are obtained from data corresponding to 322 pb−1 of integrated luminosity collected between March 2002 and August 2004 by the CDF II detector [12], operating at the Tevatron p̅p collider. Detector components relevant to this search are described briefly here. The charged particle tracking volume, which is inside a uniform 1.4 T magnetic field, includes a multi-layer silicon microstrip detector system and an open-cell drift chamber (COT) that provide position, momentum, and charge information in the range |η| < 1.0 [13]. Outside the solenoid, electromagnetic (EM) and hadronic calorimeters are arranged in a projective tower geometry to measure electron, photon, and jet energies. A set of strip and wire chambers (CES) is embedded in the EM calorimeter, at the depth where the longitudinal development of EM showers is expected to be maximal, and provides information used for the identification of electron candidates and reconstruction of π0 candidates that decay through π0 → γγ. Outside the calorimeters, drift chambers and scintillators provide muon candidate identification in the range |η| < 1.0.

This search assumes a branching ratio B(VLQ3 → bτ) = 1, and considers a signature where the decay products of the VLQ3 pair, τ+τ−b̅, yield two jets from the b quarks, an electron or muon from a leptonically decaying tau, and a hadronically decaying tau (τh). We do not attempt to identify the jets as originating from b quarks, as we find this would degrade the search sensitivity. A three-level trigger system selects events with lepton candidates and charged tracks [14]. These events are then classified as eτh or µτh based on the flavor of the leptonic tau decay.

Selected events are required to contain at least one well-identified electron (muon) candidate that passes fully through the fiducial volume of the COT, with transverse energy (momentum) ET > 10 GeV (pT > 10 GeV/c) [13]. To reduce the background due to multi-jet quantum chromodynamics (QCD) events, an isolation requirement is imposed upon the electron or muon candidate. Specifically, the sum of the pT of all additional tracks within a cone in η−φ space of ∆R < 0.4 around the track direction of the candidate is required to be less than 2 GeV/c, where ∆R = √(Δη2 + Δφ2).

Hadronic tau candidates are formed by matching narrow clusters of calorimeter towers with tracks. The procedure is described briefly here and in detail elsewhere [15]. A cluster is seeded by a tower with ET > 6 GeV. The highest pT track with pT > 6 GeV/c that points to the cluster is defined as the seed track. Other tracks are added if they are within an angle of 0.05 to 0.17 radians from the seed track, where the angle depends on the total cluster energy. Tau candidates with one or three tracks are considered. We reconstruct π0 candidates as single narrow strip and wire clusters in the CES, and include them as part of the τh candidate if they are within 0.17 radians of the seed track and have ET > 1 GeV. The τh candidates are required to have |η| < 1.0 and ET > 15 GeV. To reduce instances where a jet is misidentified as a τh, we place requirements on the mass formed by constituent tracks, mTrk < 1.8 GeV/c2, and the mass formed from tracks and π0 mesons within the tau candidate, mTrk+π0 < 2.5 GeV/c2. To better discriminate hadronic taus from electrons, we require the ratio of ET deposited in the hadronic calorimeter to the sum of the magnitudes of the transverse momenta of the tau tracks to be greater than 0.1. To obtain isolated τh candidates, we require that the region outside the track selection cone, but inside a cone of 0.52 radians from the seed track, contains no tracks with pT > 1 GeV/c. In addition, the region outside the π0 inclusion cone, but inside a cone of 0.52 radians from the seed track, is required to contain less than 0.6 GeV of summed ET due to π0 candidates.

To ensure efficient event reconstruction, the electron or muon candidate (ℓ) direction must be separated from
the tau candidate direction by \(\Delta R(\tau_h, \ell) > 0.7 \). Jet candidates, with \(E_T > 15 \text{ GeV} \), are identified in the region \(|\eta| < 2.4 \) and are required to be separated from the lepton candidates by \(\Delta R(\ell/\tau_h, \text{jet}) > 0.8 \).

There are a number of SM processes which can mimic the VLQ3 signal. The first category consists of background processes which contain a real \(e\tau_h \) or \(\mu\tau_h \) plus two jets. The primary processes are \(Z^0/\gamma^* \rightarrow \tau\tau \) plus two jets, and \(t\bar{t} \rightarrow WbWb \), where one \(W \) yields a hadronic tau via \(W \rightarrow \tau\nu\tau \), the other \(W \) similarly yields an electron (muon) or leptonically decaying tau, and the two b quarks give jets.

The second category of backgrounds consists of those that include misidentified final state particles. These include \(t\bar{t} \rightarrow WbWb \), where a jet from a hadronic \(W \) decay can be misidentified as an electron (muon). The processes \(t\bar{t} \rightarrow WbWb \), \(Z^0/\gamma^* \rightarrow e^+e^- \) plus jets, and \(Z^0/\gamma^* \rightarrow \mu^+\mu^- \) plus jets also contribute as backgrounds when an electron (muon) or jet is misidentified as the \(\tau_h \). Events with \(W \) plus jets can pass the selection if one of at least three jets is misidentified as the \(\tau_h \). Contributions from diboson channels (\(WW, WZ, \) and \(ZZ \)) plus jets are negligible. The above contributions and their uncertainties are estimated using PYTHIA [16] Monte Carlo simulation and GEANT [17] CDF II detector simulation. Background from multi-jet QCD can contribute when jets from quarks are misidentified as an electron (muon) or \(\tau_h \). Photon plus jets background enters when high- \(p_T \) photons convert within the detector and at least one of the resulting electrons appears as a primary electron candidate, while a jet is misidentified as the \(\tau_h \). Contributions from both of these sources are estimated directly from the data, using methods described elsewhere [15].

Further event selection reduces the backgrounds. Backgrounds associated with misidentification are reduced by approximately one-half through a requirement of oppositely charged electron (muon) and \(\tau_h \) candidates, where the charge of the \(\tau_h \) candidate is defined as the sum of the charges of all constituent tracks. Events consistent with photon conversions and cosmic rays are removed. To reduce contributions from \(Z \) boson production, events are rejected if \(76 < m(\ell, X) < 106 \text{ GeV}/c^2 \), where \(X \) can be the tau candidate or a second electron candidate in the \(e\tau_h \) channel, or a second muon candidate in the \(\mu\tau_h \) channel. We require \(E_T > 10 \text{ GeV} \), where \(E_T \) is the magnitude of the missing transverse energy [13]. This requirement reduces backgrounds from \(Z^0/\gamma^* \rightarrow \tau^+\tau^- \) and multi-jet QCD processes and is nearly 100% efficient for the signal process. We define \(H_T \) as the scalar sum of electron (muon) candidate \(E_T \), tau candidate \(E_T \), event \(E_T \), and the transverse energies of the two highest \(E_T \) jet candidates. The requirements on \(H_T \) are given below. The final selection requirement is that the event must contain two or more jets.

To simulate VLQ3 pair production and decay [18], we have added the production and decay processes to the GRACE [19] matrix element event generator, which calculates amplitudes, and to the GR@PPA [20] interface, which speeds up computations of the interactions of the primary hadrons. In addition to providing the theoretical cross section, these programs yield events that are processed through TAUOLA [21] to simulate tau decays, PYTHIA [16] to simulate parton showering, fragmentation, and additional particle decays, and GEANT [17] for the full CDF II detector simulation. For the first time, this framework includes helicity amplitudes for the full matrix element at tree level and propagation of helicity information from the leptoquarks to the tau decay products. We use the parton distribution functions (PDFs) CTEQ5L [22] and renormalization energy scale \(Q^2 = m_{VLQ3}^2 \).

We determine total selection efficiencies, including factors for triggering, geometrical and kinematic acceptance, particle candidate identification and isolation, and background suppression criteria. The total efficiencies, averaged between the \(e\tau_h \) and \(\mu\tau_h \) channels, range from about 2.2% (1.4%) to about 6.1% (5.9%) for Yang-Mills (minimal) couplings over the mass range 160 GeV/c^2 to 400 GeV/c^2. For the example of \(m_{VLQ3} = 320 \text{ GeV}/c^2 \) and Yang-Mills couplings, the efficiencies for the \(e\tau_h \) and \(\mu\tau_h \) channels are (6.0 \(\pm \) 0.1)% and (6.1 \(\pm \) 0.1)% respectively.

We define two signal regions. In addition, three sideband control regions in the plane of the number of jets (\(N_{\text{jets}} \)) versus \(H_T \) are used to verify the expected composition of the backgrounds and the distributions for kinematic quantities. The primary signal region (\(\text{SR}_A \)) has \(N_{\text{jets}} \geq 2 \) and \(H_T > 400 \text{ GeV} \), and is sensitive to the highest mass leptoquarks. The secondary signal region (\(\text{SR}_B \)) has \(N_{\text{jets}} \geq 2 \) and 250 \(< H_T < 400 \text{ GeV} \), and adds sensitivity to lower VLQ3 masses (down to the previous mass limits). The three control regions are called CR0J, CR1J, and CR2J, where 0J, 1J, or 2J specifies the number of jets (0, 1, or \(\geq 2 \)). Regions CR0J and CR1J include the \(H_T \) range \(H_T > 80 \text{ GeV} \), while region CR2J is restricted to 80 \(< H_T < 250 \text{ GeV} \). Table I shows the expected background contributions in the control and signal regions, as well as the number of events observed in all regions. The signal regions are examined only after an \(a\ priori \) optimization of the \(H_T \) ranges that maximizes signal sensitivity. Control region CR1J in the \(\mu\tau_h \) channel contains the largest difference between the expected and observed number of events, with a difference of 1.9 sigma. Figure 1 shows the \(H_T \) distributions for the \(e\tau_h \) and \(\mu\tau_h \) channels, and includes the control region CR2J and the two signal regions.

The dominant sources of systematic uncertainties on the signal efficiencies are the amount of initial state radiation (ISR) and final state radiation (FSR), the tau identification, and the isolation requirements. The ISR and FSR uncertainties, as evaluated by varying the amount of ISR and FSR in simulation, are each approximately 3.7% of the selection efficiency. The tau identification systematic uncertainty, as measured using methods de-
TABLE I: Numbers of events observed in data and estimates for the total background, for the $e\tau_h$ and $\mu\tau_h$ channels, in the control regions (CR0J, CR1J, CR2J) and signal regions (SR$_{B}$, SR$_{A}$). For the backgrounds, the statistical uncertainty is given first, followed by the systematic uncertainty.

	$e\tau_h$	$\mu\tau_h$
	Data Background	Data Background
CR0J	129 $^{+2.1\pm0.0}_{-1.3\pm0.0}$	129 $^{+17.1\pm0.0}_{-2.6\pm0.0}$
CR1J	110 $^{+0.2\pm0.0}_{-9.3\pm0.0}$	79 $^{+100.5\pm0.0}_{-6.7\pm0.0}$
CR2J	36 $^{+3.4\pm0.0}_{-4.8\pm0.0}$	26 $^{+30.6\pm0.0}_{-3.8\pm0.0}$
SR$_{B}$	5 $^{+0.3\pm0.0}_{-0.5\pm0.0}$	3 $^{+2.2\pm0.0}_{-0.3\pm0.0}$
SR$_{A}$	0 $^{+0.3\pm0.0}_{-0.1\pm0.0}$	0 $^{+0.2\pm0.0}_{-0.1\pm0.0}$

The results are shown in Fig. 2, as a function of V_{LQ3} mass, along with the theoretical predictions. For a V_{LQ3} with Yang-Mills couplings, at 95% confidence level (C.L.), the upper limit on the cross section is $\sigma < 344$ fb, assuming $B(V_{LQ3} \to b\tau) = 1$, and the lower limit on the mass is $m_{V_{LQ3}} > 317$ GeV/c2. With theoretical uncertainties included on the predicted cross section, the results are $\sigma < 360$ fb and $m_{V_{LQ3}} > 294$ GeV/c2. For the minimal couplings model, the upper limit on the cross section is $\sigma < 493$ fb and the lower limit on the mass is $m_{V_{LQ3}} > 251$ GeV/c2. With theoretical uncertainties included on the predicted cross section, the results are $\sigma < 610$ fb and $m_{V_{LQ3}} > 223$ GeV/c2. The mass limits are approximately $80 - 90$ GeV/c2 higher than those of previous comparable results [8, 9].

Using 322 pb$^{-1}$ of luminosity at CDF II, we have searched for V_{LQ3} pair production and subsequent decay to two tau leptons and two jets. We observe no excess of events beyond the expected SM processes and set the most stringent limits to date on the V_{LQ3} mass and pair production cross section in the context of two coupling scenarios.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contribu-
FIG. 2: The 95% C.L. upper limits for VLQ3 pair production versus mass. Also shown are the theoretical predictions using the simulation described in the text, with bands for uncertainties due to the choices of PDFs and Q^2.

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Technology Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

[1] H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
[2] J.L. Hewett and T.G. Rizzo, Phys. Rep. 183, 193 (1989).
[3] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[4] B. Schrempp and F. Schrempp, Phys. Lett. B 153, 101 (1985).
[5] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B 191, 442 (1987).
[6] J.L. Hewett et al., in Proceedings of the Workshop on Physics at Current Accelerators and Supercolliders, Argonne National Lab, Argonne Accel. Phys. 539-546 (1993).
[7] J. Blumlein, E. Boos, and A. Kryukov, Z. Phys. C 76, 137 (1997).
[8] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 78, 2906 (1997).
[9] B. Abbott et al. (DØ Collaboration), Phys. Rev. Lett. 81, 38 (1998).
[10] G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 31, 281 (2003).
[11] S. Aid et al. (H1 Collaboration), Phys. Lett. B 369, 173 (1996).
[12] D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[13] We use a cylindrical coordinate system with the z axis along the beam axis, polar angle θ, azimuthal angle ϕ, and pseudorapidity $\eta \equiv -\ln \tan(\theta/2)$. We define $p_T \equiv p \sin \theta$ and $E_T \equiv E \sin \theta$, where p is the momentum measured by the tracking chambers and E is the energy measured by the calorimeters. The missing transverse energy is defined by $E_T = - \sum E_T^i \hat{n}_i$, where i is the calorimeter tower number with $|\eta| < 3.6$ and \hat{n}_i is a unit vector perpendicular to the beam axis and pointing at the i^{th} calorimeter tower. We also define $\tilde{E}_T = |E_T|$.
[14] A. Anastassov et al., Nucl. Instrum. Methods Phys. Res. A 518, 609 (2004).
[15] A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 75, 092004 (2007).
[16] T. Sjostrand et al., Comput. Phys. Commun. 76, 361 (1993); TP 01-21, LU (2001), hep-ph/0108264. We use version 6.2.
[17] R. Brun and F. Carminati, CERN Programming Library Long Writeup W5013 (1993).
[18] B. C. Allanach et al., “Les Houches ‘Physics at TeV colliders 2005’ Beyond the standard model working group: Summary report,” page 104 (2006), hep-ph/0602198.
[19] Minami-Tateya Group, GRACE manual, KEK Report 92-19 (1993); F. Yuasa et al., Prog. Theor. Phys. Suppl. 138, 18 (2000).
[20] S. Tsuno, T. Kaneko, Y. Kurihara, S. Odaka, and K. Kato, Comput. Phys. Commun. 175, 665 (2006).
[21] S. Jadach, J. H. Kuhn, and Z. Was, Comput. Phys. Commun. 64, 275 (1990).
[22] J. Fumplin et al., J. High Energy Phys. 0207, 012 (2002).