ACCEPTED MANUSCRIPT

Accepted manuscripts are the articles in press that have been peer reviewed and accepted for publication by the Editorial Board of the Vojnosanitetski Pregled. They have not yet been copy edited and/or formatted in the publication house style, and the text could still be changed before final publication.

Although accepted manuscripts do not yet have all bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: article title, the author(s), publication (year), the DOI.

Please cite this article NEW GOLD PINCER-TYPE COMPLEXES INDUCE CASPASE-DEPENDENT APOPTOSIS IN HUMAN CANCER CELLS IN VITRO

NOVI KOMPLEKSI ZLATA PINCER-TIPA INDUKUJU KASPAZA-ZAVISNU APOPTOZU U HUMANIM ĆELIJAMA RAKA IN VITRO

Authors Milan M. Zarić*, Petar P. Čanović*+, Marijana Stanojević Pirković*, Sanja M. Knežević†, Radica S. Živković Zarić‡, Biljana Popovska Jovičić||, Nedim Hamzagić§, Bojana Simović Marković¶, Nenad Marković††, Ana Rilak Simović◊, Vojnosanitetski pregled (2020); Online First January, 2020.

UDC:

DOI: https://doi.org/10.2298/VSP190507002Z

When the final article is assigned to volumes/issues of the Journal, the Article in Press version will be removed and the final version appear in the associated published volumes/issues of the Journal. The date the article was made available online first will be carried over.
NEW GOLD PINCER-TYPE COMPLEXES INDUCE CASPASE-DEPENDENT APOPTOSIS IN HUMAN CANCER CELLS IN VITRO

NOVI KOMPLEKSI ZLATA PINCER-TIPA INDUKUJU KASPAZA-ZAVISNU APOPTOZU U HUMANIM ĆELIJAMA RAKA IN VITRO

Milan M. Zarić*, Petar P. Čanović**, Marijana Stanojević Pirković*, Sanja M. Knežević†, Radica S. Živković Zarić‡, Biljana Popovska Jovičić‖, Nedim Hamzagić§, Bojana Simović Marković‖, Nenad Marković††, Ana Rilak Simović◊

*Department of Biochemistry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
†Department of Pediatrics, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
‡Department of Pharmacology and toxicology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
‖Department of Infectious diseases, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
§Center of Hemodialysis, Medical Center Tutin, Tutin, Serbia
‖Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
††Department of Surgery, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
◊Department of Chemistry, University of Kragujevac, Faculty of Science, Kragujevac, Serbia

*Corresponding author:
dr Petar Čanović,
Svetozara Markovica 69, 34000 Kragujevac, Serbia
Tel.:+381600234224
e-mail: petar.c89@gmail.com
Abstract

Background / Aim. We investigated cytotoxicity of Au(III) complexes with pincer type ligands against cervical carcinoma cells (HeLa), breast cancer cells (MDA-MB-231 and 4T1) and colon carcinoma cells (HCT116 and CT26). We also examined the type and mechanism of cell death that these complexes induced in cancer cells. Methods. Cytotoxicity of Au(III) complexes was investigated by MTT assay. Apoptosis of treated cancer cells was measured by flow cytometry and applying Annexin V/7AAD staining. The expressions of active proapoptotic protein Bax, antiapoptotic protein Bcl-2 and the percentage of cells containing cleaved caspase-3 in treated cancer cells was determined by flow cytometry. Results. Complex 1 showed the most potent anti-tumor effect on HeLa cells, both compared to other two examined gold complexes and compared to cisplatin. The IC_{50} values on HeLa cells after 72 hours were 1.3 ± 0.4 μM, 3.4 ± 1.3 μM, 5.7 ± 0.6 μM, 26.7 ± 6.5 μM for complexes 1, 2, 3 and cisplatin, respectively. Complex 1 also exhibited highest cytotoxicity against MDA-MB-231 and HCT116 cells compared to other tested compounds. The results of Annexin V/7AAD staining showed that all three complexes induced apoptosis in treated cells. Our gold(III) complexes induced apoptosis by caspase-dependent mechanism, but we did not observe that an activation of the internal pathway of apoptosis occurred in treated cancer cells. Conclusion. According to the results of our in vitro study, all three compounds and especially complex 1 are promising candidates for a new generation of anticancer drugs.

Keywords: anticancer, MTT assay, Annexin V, Bax, Bcl-2, caspase-3.

Apstrakt

Uvod. Ispitivali smo citotoksičnost Au(III) kompleksa sa ligandima tipa pincer protiv ćelija karcinoma grlića materice (HeLa), ćelija raka dojke (MDA-MB-231 i 4T1) i ćelija karcinoma kolona (HCT116 i CT26). Takođe smo ispitali tip i mehanizam ćelijske smrtnosti koji su ovi kompleksi indukovani u ćelijama raka. Metode. Citotoksičnost Au(III) kompleksa je ispitivana pomoću MTT testa. Apoptoza tretiranih ćelija raka je merena protočnom citometrijom i primenom bojenja Aneksin V/7AAD. Ekspresija aktivnog proapoptotičnog proteina Bax, antiapoptotetskog proteina Bcl-2 i procenat ćelija koje sadrže aktivnu kaspazu-3 u tretiranim ćelijama raka je određena protočnom citometrijom. Rezultati. Kompleks 1 je pokazao najsnažniji antitumorski efekat na HeLa ćelije, kako u
poređenju sa drugim ispitivanim kompleksima złata, tako i u poređenju sa cisplatinom. Vrednosti IC₅₀ kompleksa złata na HeLa ćelije nakon 72 sata bile su 1,3 ± 0,4 μM, 3,4 ± 1,3 μM, 5,7 ± 0,6 μM, 26,7 ± 6,5 μM za komplekse 1, 2, 3 i cisplatin. Kompleks 1 je takođe pokazao najvišu citotoksičnost prema MDA-MB-231 i HCT116 ćelijama u poređenju sa drugim testiranim jedinjenjima. Rezultati bojenja aneksinomV/7AAD pokazali su da sva tri kompleksa indukuju apoptozu u tretiranim ćelijama. Naši kompleksi złata(III) indukovali su apoptozu mehanizmom koji je zavisio od kaspaze, ali nismo pokazali da je u tretiranim ćelijama raka došlo do aktivacije unutrašnjeg puta apoptoze. 

**Zaključak.** Prema rezultatima naše in vitro studije, sva tri jedinjenja, a posebno kompleks 1, su obećavajući kandidati za novu generaciju antikancerogenih lekova.

**Ključne reči:** antitumorski, MTT test, Aneksin V, Bax, Bel-2, kaspaza-3.

**Introduction**

In the United States, it is assumed that about 40% of the adults will be diagnosed cancer at certain age [1]. This is a worrying fact, but finding a cure for cancer is not easy. There are major differences between tumors of various tissues and organs in cellular morphology, tumor aggressiveness and treatment of the tumors [1-3]. Such differences exist even among tumors of the same organ, such as breast tumors [3]. Even in the course of treatment, tumor cells are modified and may become resistant to therapy, which even further complicates the treatment [4]. Therefore, one universal cure for cancer will most likely never be found and testing of a substance that has chemotherapeutic potential against two or three types of tumors in vitro cannot provide sufficiently precise results.

Deregulation in apoptotic cell death machinery is a main characteristic of cancer [5]. Apoptosis is a process of cell degeneration that is not associated with inflammation and damage to surrounding healthy cells, and therefore a more favorable mechanism for reducing the number of tumor cells compared to necrosis [5, 6]. Apoptosis happens spontaneously in malignant tumors, often noticeably delaying their growth, and it is increased in tumors responding to irradiation, chemotherapy, high temperature and hormone ablation [6]. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies [5]. On the other hand, much of the present attention in the process stems from the finding that it can be regulated by certain proto-oncogenes and the p53 tumor suppressor gene [5-7]. Two proteins located in
cytoplasm of the cells, B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and Bcl-2, are the activator and an inhibitor of apoptosis, respectively. It has been described, that Bax and Bcl-2, and their ratio, are predictive markers in different cancers [8]. Also, the significance of other molecules included in the apoptosis, such as caspases, had also been previously reported [9].

The use of cisplatin as a “standard” chemotherapeutic opened the door to the new metal-based drug research [10]. New complexes containing metals such as platinum, palladium, ruthenium and gold have recently been analyzed as potential antitumor agents [10-12]. Also, organometallic gold compounds occupied a valuable place in various anticancer researches due to their exceptional chemical characteristics with respect to gold coordination complexes [13]. Actually, many researchers have discovered that they could be utilized to create exceptionally capable metal-based drugs with potential relevance in the treatment of cancer [14].

In order to evaluate whether Au(III) compounds with pincer type ligands might be used as possible anticancer agents, three new monofunctional Au(III) pincer complexes with three bispyrazolate ligands such as 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine (H,L") 2,6-bis(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)pyridine (Me,L") and 2,6-bis((4S,7R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1H-4,7-methanoindazol-3-yl)pyridine (Me,^L") had been synthesized. The newly synthesized complexes, namely [Au(H,LtBu)Cl]Cl (1), [Au(Me,LtBu)Cl]Cl (2) and [Au(Me,^L)Cl]Cl (3) were characterized by elemental analysis, spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR) and mass spectrometry (MS) methods: MALDI TOF and ESI Q-TOF. These three gold(III) complexes had also been tested against three types of cancer cells (A549, A375, LS-174) in vitro [15].

However, these Au(III) complexes have not been investigated against other types of cancer cells and therefore further investigations were necessary. The aim of our research was to examine whether these Au(III) compounds with pincer type ligands might be utilized as potential antitumor agents. Therefore, we examined the antitumour potential of all three Au(III) complexes against cell lines of cervical carcinoma (HeLa), breast cancer (MDA-MB-231 and 4T1) and colon carcinoma (HCT116 and CT26). We also included mouse carcinoma cells in our research (4T1 and CT26) in order to prove future research potential of these complexes for in vivo studies. We investigated their cytotoxic effect
against five types of cancer cells, the type and mechanism of cell death that these complexes induce in cancer cells.

Methods

Synthesis of Au(III) pincer complexes with three bispyrazolate ligands

The synthesis and characterization of 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine (H$_2$L$_{tBu}$), 2,6-bis(5-tert-butyl-1-methyl-1H-pyrazol-3-yl)pyridine (Me$_2$L$_{tBu}$), and 2,6-bis((4S,7R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1H-4,7-methanoindazol-3-yl)pyridine (Me$_2$*L) was discussed in detail in a previously published article [15]. The newly synthesized complexes, namely [Au(H$_2$L$_{tBu}$)Cl]Cl (1), [Au(Me$_2$L$_{tBu}$)Cl]Cl (2) and [Au(Me$_2$*L)Cl]Cl (3) were characterized by elemental analysis, spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR) and mass spectrometry (MS) methods: MALDI TOF and ESI Q-TOF.

Preparation of drug solutions

Complexes 1, 2, 3 and cisplatin were measured, dissolved in dimethyl sulfoxide at a concentration of 40 mM and then filtered through filters with a pore diameter of 0.22 mm. Afterward, the compounds were diluted in the complete medium so that the final concentration of dimethyl sulfoxide (DMSO, Fisher Scientific, UK) was never greater than 0.5% (v/v). Dilution series of all compounds were prepared at concentrations of 0.1 μM, 0.3 μM, 1 μM, 3 μM, 10 μM, 30 μM and 100 μM. All solutions used in the experiments were prepared exclusively on the day of the experiment, in order to avoid any potential modification in the chemical structure of the compounds tested. The control population consisted of cells that were not treated with the test substances and to which the same amount of DMSO in comparison to treated cells, was added. Blanks were microtiter plate wells that did not contain any cells or media.

Cell cultures

The study examined the effects of the Au(III) pincer complexes 1, 2 and 3, as well as cisplatin against five types of tumor cells: HeLa (human cervical cancer cells), MDA-MB-231 (human breast cancer cells), 4T1 (mouse breast cancer cells), HCT116 (human colon carcinoma cells) and CT26 (mouse colon carcinoma cells). All cells used in this study were obtained from the American Type Cell Collection (ATCC, Manassas, VA,
USA). Cells were cultured in a complete medium that was prepared as follows: DMEM (Dulbecco's Modified Eagle's Medium-High Glucose, D5796, Sigma Aldrich, Germany) was supplemented with 10% FBS (Fetal Bovine Serum, Sigma Aldrich, Germany), 1% Penicillin-Streptomycin (Penicillin-Streptomycin, P4333, Sigma Aldrich, Germany) and 1% non-essential amino acids (MEM Non-essential Amino Acid Solution, M7145, Sigma Aldrich, Germany). The cells were maintained in 25cm² flasks (Thermo Fischer Scientific, US) that were stored in CO₂ incubator at absolute humidity and 5% CO₂ at a temperature of 37°C. Every 2-3 days, the cells were passaged in order to be used in all experiments in their exponential (Log) growth phase.

**MTT assay**

MTT assay is the colorimetric test used to examine viability of cells. The basic principle of this assay is based on the ability of viable or living cells to reduce yellow tetrazolium bromide (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to the purple formazan [16]. Namely, living cells contain NAD(P)H-dependent oxidoreductase enzymes that have this ability, so the purple color of the cellular suspension after the incubation period reflects the amount of viable cells. To be precise, in each well of 96-wells microtiter plate, 100 μl of a suspension containing 3 × 10⁵ cells in the exponential growth stage was added. The cells were incubated in an atmosphere containing 5% CO₂ and at 37°C for 24 hours, and then different concentrations (0.1 μM, 0.3 μM, 1 μM, 3 μM, 10 μM, 30 μM, 100 μM) of the examined complexes or cisplatin were added. As we previously mentioned, we only added complete medium containing appropriate amount of DMSO in control wells. Each concentration of investigated substances was tested in triplicate and in three independent experiments. After 72 hours incubation of tumor cells in an atmosphere containing 5% CO₂ and at 37°C, supernatant was extracted from each well and 200 μl of the tetrazolium bromide solution in the medium (0.05 mg/ml) was added. After another 2-3 hours of incubation under the previously mentioned conditions, the supernatant was again removed from each well, and 150 μl of DMSO was added to dissolve the crystals of violet formazan. The plates were then shaken in the dark for 15 minutes at room temperature and the intensity of the purple color in each well had been measured using the plate reader (Zenyth 3100, Anthos Labtec Instruments, Austria) by analyzing the absorbance at 595 nm. The percentage of viable cells was calculated by
dividing the value of the readout absorbance in the wells that contained treated cells with the average absorbance value measured in the wells of untreated cells, and the ratio thus obtained was multiplied by 100.

\[
\% \text{ of the viable cells} = \left(\frac{\text{absorbance of treated cell} - \text{absorbance of blank}}{\text{absorbance of untreated cell} - \text{absorbance of blank}}\right) \times 100
\]

\[
\% \text{ of the cytotoxicity of the compound} = 100\% - \% \text{ of the viable cells}
\]

All cytotoxicity results were presented graphically as the arithmetic mean of the cytotoxicity of the tested substances from all three repeated experiments and triplicates ± standard deviation (SD). The values that reduce the treated cells’ viability by 50% relative to the control (IC\(_{50}\) values) were calculated using Microsoft Office Excel 2010, via logarithm-transformed dose-response data, previously obtained by MTT assay.

**Annexin V/7AAD assay**

The type of cell death induced by Au(III) pincer complexes was tested by flow cytometry and using annexin V/7AAD staining according to the manufacturer's recommendation (Annexin V-fluorescein isothiocyanate (FITC)/7-amino-actinomycin D (7-AAD) Apoptosis Kit, BD Biosciences). To be precise, two colors were used, Aneksin V, which binds to the residues of phosphatidyl serine and a viable color, 7-AAD. In viable cells that did not start apoptosis, the residues of phosphatidyl serine are turned to the inside of the cell membrane, so that there is no binding of Aneksin V to the residues of phosphatidyl serine. When initiating the apoptosis process, the parts of the cell membrane are drawn to the outside, so the cells that entered apoptosis bind Aneksin V. Such cells are grouped as Anexin V positive on the results of flow cytometry assay. On the other hand, 7-AAD is a color that binds the nucleus and color that does not pass through the cell membrane, so the cells that are 7-AAD positive, are in fact cells whose integrity of the cell membrane has been compromised. Such cells are either in the late stage of apoptosis or are necrotic. Therefore, it is assumed that the Annexin V(-)/7-AAD(-) cells are viable, Annexin V(+)/7-AAD(-) cells at an early stage of apoptosis, Annexin V(+)/7-AAD(+) are cells in the late stage of apoptosis and that the necrotic cells are Annexin V(-)/7-AAD(+).
Therefore, we added 1 ml of cell suspension containing 10^6 cells/ml of complete medium in each well of 24-well plates. After 24 hours of incubation in an atmosphere containing 5% CO₂ and at 37°C, the medium was removed and 1 ml of the medium containing the half maximal inhibitory concentration (IC₅₀) of tested substances was added. Each substance was tested in triplicate and in three independent experiments. The control population consisted of cells supplemented with complete medium with the same concentration of DMSO as in treated cells. The cells were then incubated for 24 hours in order to detect substance-induced cellular changes [17]. After the incubation in an atmosphere containing 5% CO₂ and at 37°C, the cells were trypsinised, washed three times in ice-cold PBS (Phosphate Buffer Saline) and 1x10^5 cells was dissolved in 100 μl of binding buffer (BD Biosciences, USA). Then, 10 μl of Annexin-V-FITC and 20 μl of 7-AAD were added to the cells, followed by 15 minutes incubation at room temperature in the dark and the addition of 400 μl of binding buffer. The cells were then stirred and evaluated on the flow cytometer (The Cytomics FC500 Series, Beckman Coulter). At least 15000 events per sample were analyzed. The results were analyzed using FlowJo vX.0.7 and presented as arithmetic means of the results obtained in three independent experiments and triplicates ± standard deviation (SD). We analyzed statistical significance between the percentages of cells found in early and late apoptosis against the percentage of necrotic cells for each test substance and for each type of tumor cells [18, 19].

Analysis of key proteins involved in the apoptosis process

The next step in our research was to examine the mechanism by which the process of apoptosis in the treated cells was activated. We wanted to determine if there was a change in the amount or activity of the key proteins involved in the apoptosis process. Therefore, we examined the cellular levels of the proapoptotic protein active-Bax, the antiapoptotic protein Bcl-2, and the percentage of the cells in which caspase-3 is active [18, 19]. We compared the populations of cells treated with the half maximal inhibitory concentration (IC₅₀) of the tested substances (experimental group) to the population of untreated cells (control group). Every type of examined cells was seeded in five 25 cm² flasks, i.e. four for the investigated compounds and one for the control group of cells. After 24 hours of incubation in an atmosphere containing 5% CO₂ and at 37°C and absolute humidity, the media was replaced in all cell culture flasks. In four flasks, we added a
complete growth medium supplemented with the previously determined half maximal inhibitory concentration (IC$_{50}$) of complexes 1, 2, 3 and cisplatin. In one flask the complete growth medium was added and the cells from this flask were the control population of the cells. The cells were then incubated for another 24 hours in an atmosphere containing 5% CO$_2$ and at 37ºC and absolute humidity in order to detect substance-induced cellular changes [17]. Afterward, the cells from all the flasks were trypsinized and from every cell culture flask were divided into nine tubes, i.e. three for active-Bax staining, three for Bcl-2 staining and three for active caspase-3 staining. All cells were washed three times in PBS, fixed and permeabilized according to manufacturer’s instructions (Fixation and Permeabilization Kit, eBioscience). The cells we isolated for Bcl-2 staining were supplemented with primary antibody for Bcl-2 (mhbcl01, Life technologies) in a ratio of 1:1000 for 15 minutes. Permeabilized HeLa cells were also incubated with primary antibody for active-Bax (N20, sc-493; Santa Cruz Biotech Inc.) and for activated caspase-3 (#9661, Cell Signing Technology) for 30 minutes and at a concentration of 1:1000. Subsequently, these two groups of cells (for active-Bax and caspase-3) were incubated with secondary, goat FITC-labeled antibody (goat anti-rabbit IgG FITC Ab6717-1, Abcam) for 30 minutes and at a concentration of 1:2000. Afterward, all cells were washed in PBS and analyzed by flow cytometer FC500 (Beckman Coulter, US). At least 15,000 events per sample were analyzed. The mean fluorescence intensities (MFI) for Bcl-2 and Bax were calculated as the ratio of the measured fluorescences for Bcl-2 and Bax against the fluorescence of the isotype control and represent the concentrations of Bcl-2 and active-Bax in stained cells. Values for active caspase-3 are presented as percentages of cells that emit fluorescence to active caspase-3. The experiment was repeated three times.

Statistical analysis

The distributions of the obtained data were evaluated for normality using the Shapiro-Wilk test. The values of MTT and Annexin assays were presented as mean ± standard deviation (SD). The values of apoptotic proteins were presented as medians due to large standard deviations and distribution of data that was not normal. All experiments were performed in triplicates and in three separate repetitions. Commercial SPSS version 20.0 for Windows was used for statistical analysis. Statistical evaluation was performed by Student’s T-test for paired observations, or one-way ANOVA depending on data
distribution. P values less than 0.05 were considered to indicate a statistically significant difference.

Results

The cytotoxicity of complex 1 and its ligand was partially tested on cell lines of colon carcinoma (LS-174), lung carcinoma (A549) and melanoma (A375) cell lines. The results of this study have shown that complex 1 exhibited stronger anti-tumor effect on all three types of tumor cells tested compared to cisplatin [15]. Since some compounds may show delayed toxicity, it is concluded that the analysis of cytotoxicity should be performed after an interval of at least 48 hours [20]. Therefore, we chose to analyze cytotoxicity after 72 hours similarly to previous experiments [21-23].

The results of MTT assay have shown that Au(III) complexes 1, 2 and 3, and cisplatin, show dose-dependent cytotoxic effects against all tested cancer cells (HeLa, MDA-MB-231, 4T1, HCT116 and CT26) in vitro (Fig. 1).
Fig. 1 - Gold(III) complexes’ cytotoxic activities against cancer cells. MTT assay results after 72 hours of incubation of complexes 1, 2, 3 and cisplatin against HeLa cells (A), MDA-MB-231 cells (B), 4T1 cells (C), HCT116 cells (D) and CT26 cells (E). Results are presented as mean ± SD.

By further analysis of the results obtained by the MTT test, as described in material and methods section, we calculated the IC₅₀ values that more accurately showed the cytotoxicity of the compounds tested. Complex 1 showed the most potent anti-tumor effect on HeLa cells, both compared to other two examined Au(III) complexes and compared to
cisplatin (p<0.05). The IC₅₀ values on HeLa cells after 72 hours were 1.3 ± 0.4 μM, 3.4 ± 1.3 μM, 5.7 ± 0.6 μM, 26.7 ± 6.5 μM for complexes 1, 2, 3 and cisplatin, respectively (Table 1).

| IC₅₀ values (μM) | 1         | 2         | 3         | cisplatin |
|------------------|-----------|-----------|-----------|-----------|
| **HeLa**         | 1.3 ± 0.4 | 3.4 ± 1.3 | 5.7 ± 0.6 | 26.7 ± 6.5 |
| **MDA-MB-231**   | 1.6 ± 0.3 | 15.1 ± 2.3| 5.4 ± 0.5 | 30.8 ± 6.1 |
| **4T1**          | 1.7 ± 0.2 | > 100     | 6.2 ± 0.4 | 1.8 ± 0.2 |
| **HCT116**       | 0.7 ± 0.2 | 53.9 ± 4.7| 4.1 ± 0.4 | 1.6 ± 0.2 |
| **CT26**         | 4.3 ± 0.3 | 26.0 ± 2.1| 6.2 ± 0.3 | 2.6 ± 0.3 |

**Table 1 - IC₅₀ values for complexes 1, 2, 3 and cisplatin after 72 h drug exposure.**

Results are presented as mean ± SD determined from the results of MTT assay in three independent experiments.

The antitumor effects of our gold(III) complexes were also tested against human (MDA-MB-231) and mouse (4T1) breast cancer cells. All three gold(III) complexes showed stronger anti-tumor effects on both breast cancer cell lines compared to cisplatin (p<0.05, Table 1). Complex 1 exhibited highest cytotoxicity against MDA-MB-231 cells compared to other tested compounds (p<0.05). The IC₅₀ value of complex 1 against MDA-MB-231 cells was 1.6 ± 0.3 μM, which is significantly lower compared to complexes 2 and 3 (p<0.05, 15.1 ± 2.3 μM and 5.4 ± 0.5 μM for complexes 2 and 3, in that order). All three complexes displayed significantly increased cytotoxicity MDA-MB-231 cells compared to cisplatin whose IC₅₀ value against MDA-MB-231 cells was 30.8 ± 6.1 μM (p<0.05).

Complex 1 exhibited a similar cytotoxic effect against mouse breast cancer cells 4T1 as cisplatin (p>0.05). The IC₅₀ values for complex 1 and cisplatin were 1.7 ± 0.2 μM and 1.8 ± 0.2 μM, respectively (Table 1). Complexes 2 and 3 displayed significantly decreased cytotoxicity against 4T1 cells compared to cisplatin and the IC₅₀ values for complexes 2 and 3 were > 100 μM and 6.2 ± 0.4 μM, respectively (p<0.05, Table 1).

The most cytotoxic agent against human colon cancer cells HCT116, was complex 1 displaying twice as high cytotoxicity as cisplatin (p<0.05; 1 vs. 2, 1 vs. 3 and 1 vs. cisplatin). The IC₅₀ value for complex 1 and cisplatin against HCT116 cells was 0.7 ± 0.2 μM and 1.6 ± 0.2 μM respectively. Complexes 2 and 3 exhibited less potent cytotoxic
effects against HCT116 cells than cisplatin (p<0.05, Table 1). It is worth noticing that our gold(III) complexes showed stronger cytotoxicity against human MDA-MB-231 cells compared to mouse 4T1 breast cancer cells (p<0.05). Also, when we analysed MTT assay results of our gold(III) complexes against colon carcinoma cells, an identical phenomenon occurred (p<0.05; 1(CT26) vs. 1(HCT116), 2(CT26) vs. 2(HCT116), 3(CT26) vs. 3(HCT116)). In this case, complexes 1, 2, and 3 showed weaker cytotoxicity against CT26 mouse colon carcinoma cells than HCT116 human colon cancer cells. All three complexes exhibited lower cytotoxicity against CT26 cells compared to cisplatin (p<0.05, Table 1).

We showed that our gold(III) complexes, and especially complex 1, displayed strong antitumor effects in vitro against all three types of tested human cancers cells, i.e. cervical cancer cells, breast cancer cells and colon cancer cells. Therefore, the next step of our research was to investigate the mechanism, or the type of cell death resulting in a decrease the viability of treated cells.

The results of Annexin V/7AAD staining showed that the apoptosis was induced by our gold complexes and cisplatin in all five types of cancer cells tested (Fig. 2, p<0.05). In all cases, less than 4% of the total population of cells had been necrotic, while the rest of the non-viable cell population was in different stages of apoptosis. In general, a higher percentage of cells had entered early apoptosis phase, and a slightly lower percentage of cells had already entered the late stage of apoptosis (Fig. 2).
Fig. 2 - Annexin V/7AAD assay results after treatment with IC₅₀ values of complexes 1, 2, 3 and cisplatin against HeLa cells (A), MDA-MB-231 cells (B), 4T1 cells (C), HCT116 cells (D) and CT26 cells (E). EA - early apoptosis; LA - late apoptosis; N – necrosis; V – viability. Results are presented as mean ± SD. Control cells are untreated cells.
Consequently, the next step of our research was to investigate whether our gold complexes influenced the cytoplasmic concentration of antiapoptotic protein Bcl-2, the activation of the proapoptotic protein Bax and the activation of the caspase cascade in HeLa cancer cells. We decided to investigate these events in HeLa cells considering that all three complexes exhibited the strongest cytotoxicity against this type of cancer cells, and these results were presented in Fig. 3.

**Fig. 3 - Gold(III) complexes induce apoptosis of HeLa cells via caspase-dependent pathway.** (A) MFI (mean fluorescence intensity) values for antiapoptotic protein Bcl-2 of untreated cells (control) or cells treated with IC$_{50}$ values of complexes 1, 2, 3 or cisplatin. (B) MFI values for active proapoptotic protein Bax of untreated cells (control) or cells treated with IC$_{50}$ values of complexes 1, 2, 3 or cisplatin. (C) Bcl-2/Bax ratio for both untreated and treated HeLa cells (D) The percentages of cells displaying fluorescence for cleaved caspase-3. Results are presented as medians. *p<0.05 compared to the untreated cells.
The results of our research have shown that all three gold complexes and cisplatin insignificantly reduced the amount of antiapoptotic protein Bcl-2 (Fig. 3A, p>0.05). Although this decrease was not statistically significant, it appeared as a noticeable trend. In addition, we have shown that there has been no statistically significant change in the activation of proapoptotic protein Bax in the groups of cancer cells cultivated in the presence of Au(III) complexes (Fig. 3B, p>0.05). However, in cisplatin-treated cells, statistically significant increase of active-Bax was detected in comparison to untreated cells (Fig. 3B, p<0.05). If we observe Bcl-2/Bax ratio, there had also been no significant change in the values following the effects of complex 1-3 in comparison to control (Fig. 3C, p>0.05). Quite the opposite, cisplatin-treated cells exhibited statistically significant increase of Bcl-2/Bax ratio in comparison to untreated cells (Fig. 3C, p<0.05). On the other hand, a statistically significant increase in the amount of active caspase-3 in cells treated with gold(III) complexes 1-3 and cisplatin in relation to the control population of untreated cells had been noted (Fig. 3D, p<0.05).

Discussion

Seeking new solutions to increase selectivity and specificity of chemotherapy in cancer cells has attracted much attention in science, recently. It was a widespread opinion that the cytotoxic effects of metal complexes are the result of direct damage to nuclear DNA [24]. However, gold(III) complexes exert their cytotoxic activities through mechanisms that are considerably diverse from those of platinum drugs [24] and the molecular mechanisms and targets of gold(III) complexes are still not precisely defined. Hence in this work, three new gold(III) complexes with different hydro/lipophilic properties have been evaluated for their anticancer activity against in vitro. When we observed cytotoxic activities of our gold(III) complexes and cisplatin against all five types of tested cancer cells, we discovered that complex 1 showed the strongest cytotoxicity in comparison to other complexes and compared to cisplatin in HeLa, MDA-MB-231, 4T1 and HCT116 cells. It is important to point out that complex 1 exhibited stronger citotoxic effects than cisplatin against all three types of human cancer cells: HeLa, MDA-MB-231 and HCT116 cells. The results of our research are in agreement with the results of other
authors [25-27] who also synthesized gold(III) complexes that are significantly more effective against cancer cells in comparison to cisplatin. However, cisplatin showed statistically higher cytotoxicity against CT26 cells compared to complex 1.

The results of our study showed that gold(III) complexes exhibit strong anticancer activity in vitro, which is in agreement with the results of some previous studies [25-27]. However, our gold complexes have demonstrated a stronger cytotoxicity against human cancer cells in vitro compared to gold complexes of some other authors. The Williams et al. synthesized seven new cyclometalated Au(III) complexes with five of them bearing an acridine moiety attached via (N^O) or (N^N) chelates, acyclic amino carbenes (AAC) and N-heterocyclic carbenes (NHC). However, the Williams and associates’ complexes showed significantly lower cytotoxicity compared to our complexes which was at least two-fold less in comparison to IC50 value of our complex 1 against MDA-MB-231 cells. Only complex 11 synthesized by Williams et al. demonstrated an IC50 value against MCF-7 breast cancer cells comparable to our results [25]. The complexes of Bertrand et al. were biotin, 17α-ethynylestradiol and benzimidazole-based (NHC)AuCl conjugates connected by linkers of variable length. Bertrand et al. investigated cytotoxicity of their complexes against MCF-7, MDA-MB-231, A549, HCT116 and HEK-293 cancer cells. However, our complexes exhibited 3.5-fold stronger cytotoxicity in vitro compared to gold complexes of Bertrand and associates[26]. The series of lipophilic [AuIII(C^N^C)(NHC)]+ complexes synthesized by conjugation of an N-heterocyclic carbene (NHC) ligand to the [AuIII(C^N^C)]+ moiety, showed promising in vitro cytotoxicity towards a panel of cancer cell lines with IC50 values spanning between 0.17 and 1.2 mM [27]. These results are in line with the results of our study and show promising in vitro results of Au(III) complexes against cancer cells, in general. Li et al. synthesized a series of cyclometalated gold(III) compounds [Au-(C^N^C)mL]n+ (m=1–3; n=0–3; HC^N^CH=2,6-diphenylpyridine) by ligand substitution reaction of L with N-donor or phosphine ligands. The cytotoxicity of Li and associates’ Au(III) complexes was examined against HeLa cells under the same conditions in comparison to our study [22]. Their IC50 values were similar or even significantly lower in comparison to the results that we obtained, and the proposed mechanism that decreases viability of treated cells was apoptosis [22].

The results of recent studies pointed toward the induction of apoptosis as a major cytotoxic mechanism of gold(III) complexes against cancer cells [22, 28]. Apoptosis is mediated by
two main pathways, an extrinsic pathway that involve cell surface receptors, and an intrinsic pathway via mitochondria and the endoplasmic reticulum. The results of our research were completely in agreement with the results of other studies, where it had also been shown that complexes of gold displayed cytotoxicity against tested cancer cells by induction of apoptosis [26]. This is very important because substances acting cytotoxicly by induction of apoptosis do not induce changes in surrounding healthy tissue; there is no process of inflammation or other adverse effects [6].

Therefore, the next step in our research was to examine the mechanism of apoptosis in the group of treated cancer cells. It has already been shown that substances acting through the mitochondrial, internal pathway of apoptosis changed the activity or concentration of proapoptotic and antiapoptotic proteins [18, 19]. In addition, it has already been shown that gold complexes could induce apoptosis by activating the mitochondrial pathway of apoptosis [26, 29]. Activation of caspase-8 is typical for the external (receptor) pathway of apoptosis, while increased active Bax and/or decreased Bcl-2 is rather connected with the internal (mitochondrial) pathway. In both cases, downstream activation of caspase-3 occurs. Afterward, caspase-3 initiates apoptotic DNA fragmentation by proteolytically inactivating the DFF45/ICAD protein complex [30].

The results of our research indicated that the most probably there had been no induction of apoptosis due to the effect of the complex 1-3 through the internal pathway of apoptosis. Further research are necessary in order to confirm the following assumption, but we may suggest that the activation of the external pathway of apoptosis is the most probable cause of Au(III) complexes’-induced apoptosis [6, 31]. On the other hand, we undoubtlessly concluded that all three gold(III) complexes induced apoptosis by activating the caspase cascade, as there had been statistically significant increase in the amount of active caspase-3 in cells treated with IC₅₀ values of gold(III) complexes 1-3 compared to untreated cells (p<0.05).

Although it has been shown that gold(III) complexes have a different mechanism of action in comparison to cisplatin, the precise mechanism of cytotoxic activity of gold(III) complexes has not yet been fully clarified.

**Conclusion**
It has been shown that gold(III) complexes could induce apoptosis by activating the internal pathway of apoptosis and activating the caspase cascade. The results of our research have shown that our gold(III) complexes induced apoptosis by the caspase-dependent mechanism, but we did not observe that an activation of the internal pathway of apoptosis occurred in treated cancer cells. The most probable cytotoxic mechanism of investigated gold(III) complexes was activation of the external pathway of apoptosis, but this assumption must be proven. However, all three investigated gold(III) complexes, especially complex 1, showed strong cytotoxicity against human cancer cells *in vitro* and induced apoptosis by caspase-dependent mechanism. It is therefore necessary to further investigate the mechanism of cytotoxicity of these complexes. According to the results of our *in vitro* study, and if some further *in vivo* investigations show promising results, complex 1 may be a good candidate for a new generation of anticancer drugs.

**Acknowledgements**

This work has been financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under Grant No. 172011.

**Declaration of interests**

The authors declare no conflict of interest.

Fondacije / institucije — Univerzitet u Kragujevcu, Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije

Naziv projekta — Ispitivanje mehanizma reakcija kompleksa jona prelaznih metala sa biološki značajnim molekulima

Oznaka projekta — 172011

**References**

1. Arem H, Loftfield E. Cancer epidemiology: A survey of modifiable risk factors for prevention and survivorship. American journal of lifestyle medicine. 2018;12(3):200-10. doi: 10.1177/1559827617700600.
2. Pan P, Yu J, Wang LS. Colon cancer: what we eat. Surgical Oncology Clinics. 2018;27(2):243-67. doi: 10.1016/j.soc.2017.11.002.

3. Hill DA, Friend S, Lomo L, Wiggins C, Barry M, Prossnitz E, Royce M. Breast cancer survival, survival disparities, and guideline-based treatment. Breast cancer research and treatment. 2018;170(2):405–14. doi: 10.1007/s10549-018-4761-7.

4. Al-Dimassi S, Abou-Antoun T, El-Sibai M. Cancer cell resistance mechanisms: a mini review. Clinical and Translational Oncology. 2014;16(6):511-6. doi: 10.1007/s12094-014-1162-1.

5. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603-19. doi: 10.18632/aging.100934.

6. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8):2013-26. doi: 10.1002/1097-0142(19940415)73:8<2013::aid-cncr2820730802>3.0.co;2-j.

7. Cheng X, Holenya P, Can S, Alborzinia H, Rubbiani R, Ott I, Wölfl S. A TrxR inhibiting gold (I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Molecular cancer. 2014;13(1):221. doi: 10.1186/1476-4598-13-221.

8. Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: Are we ready for Bcl-2-directed therapy? Cancer Manag Res. 2018;10:403–16. doi: 10.2147/cmar.s154608.

9. Kolenko VM, Uzzo RG, Bukowski R, Finke JH. Caspase-dependent and -independent death pathways in cancer therapy. Apoptosis. 2000;5(1):17–20. doi: 10.1023/a:1009677307458.

10. Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – an update from drug design perspective. Drug Des Devel Ther. 2017;11:599–616. doi: 10.2147/dddt.s119488.

11. Zhang P, Sadler PJ. Advances in the design of organometallic anticancer complexes. J Organomet Chem. 2017;839:5–14. doi: 10.1016/j.jorganchem.2017.03.038.
12. Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem. 2017;142:8–31. doi: 10.1016/j.ejmech.2017.04.007.

13. Nardon C, Boscotti G, Fregona D. Beyond platinums: Gold complexes as anticancer agents. Anticancer Res. 2014;34(1):487–92.

14. Bertrand B, Casini A. A golden future in medicinal inorganic chemistry: The promise of anticancer gold organometallic compounds. Dalton Trans. 2014;43:4209–19. doi: 10.1039/c3dt52524d.

15. Radisavljević S, Bratsos I, Scheurer A, Korzekwa J, Masnikosa R, Tot A, Gligorijević N, Radulović S, Simović AR. New gold pincer-type complexes: synthesis, characterization, DNA binding studies and cytotoxicity. Dalt Trans. 2018;47(38):13696–712. doi: 10.1039/c8dt02903b.

16. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4.

17. Sundquist TE, Moravec R, Niles AN, O’Brien MA, Riss T. Timing your apoptosis assays. Cell Notes. 2006;16:18–21. doi: 10.1385/1-59745-339-0:137.

18. Zaric M, Mitrovic M, Nikolic I, Baskic D, Popovic S, Djurdjevic P, Milosavljevic Z, Zelen I. Chrysin induces apoptosis in peripheral blood lymphocytes isolated from human chronic lymphocytic leukemia. Anticancer Agents Med Chem. 2015;15(2):189–95. doi: 10.2174/1871520614666140924123116.

19. Čanović P, Simović AR, Radisavljević S, Bratsos I, Demitri N, Mitrović M, Zelen I, Bugarčić ŻD. Impact of aromaticity on anticancer activity of polypyridyl ruthenium(II) complexes: synthesis, structure, DNA/protein binding, lipophilicity and anticancer activity. J Biol Inorg Chem. 2017;22(7):1007–28. doi: 10.1007/s00775-017-1479-7.

20. O’donovan M. A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis. 2012;27(6):615-21. doi: 10.1093/mutage/ges045.

21. Joksimović N, Baskić D, Popović S, Zarić M, Kosanić M, Ranković B, Stanojković T, Novaković SB, Davidović G, Bugarčić Z, Janković N. Synthesis, characterization, biological activity, DNA and BSA binding study: novel copper(II)
complexes with 2-hydroxy-4-aryl-4-oxo-2-butoenoate. Dalton Trans. 2016;45(38):15067-77. doi: 10.1039/c6dt02257j.

22. Li CK, Sun RW, Kui SC, Zhu N, Che CM. Anticancer cyclometalated [AuIIIm (C∧NA∧C) mL] n+ compounds: synthesis and cytotoxic properties. Chemistry–A European Journal. 2006;12(20):5253-66. doi: 10.1002/chem.200600117.

23. Shi P, Jiang Q, Zhao Y, Zhang Y, Lin J, Lin L, Ding J, Guo Z. DNA binding properties of novel cytotoxic gold (III) complexes of terpyridine ligands: the impact of steric and electrostatic effects. JBIC Journal of Biological Inorganic Chemistry. 2006;11(6):745-52. doi: 10.1007/s00775-006-0120-y.

24. Marloye M, Berger G, Gelbcke M, Dufrasne F. A survey of the mechanisms of action of anticancer transition metal complexes. Future Med Chem. 2016;8(18):2263–86. doi: 10.4155/fmc-2016-0153.

25. Williams MR, Bertrand B, Fernandez-Cestau J, Waller ZA, O’Connell MA, Searcey M, Bochmann M. Acridine-decorated cyclometallated gold(III) complexes: synthesis and anti-tumour investigations. Dalt Trans. 2018;47(38):13523–34. doi: 10.1039/c8dt02507j.

26. Bertrand B, O’Connell MA, Waller ZAE, Bochmann M. A Gold(III) Pincer Ligand Scaffold for the Synthesis of Binuclear and Bioconjugated Complexes: Synthesis and Anticancer Potential. Chem-Eur J. 2018;24(14):3613–22. doi: 10.1002/chem.201705902.

27. Che CM, Sun RW. Therapeutic applications of gold complexes: lipophilic gold (III) cations and gold (I) complexes for anti-cancer treatment. Chemical Communications. 2011;47(34):9554-60. doi: 10.1039/c1cc10860c.

28. Yeo C, Ooi K, Tiekink E. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules. 2018;23(6):E1410. doi: 10.3390/molecules23061410.

29. Fung SK, Zou T, Cao B, Lee PY, Fung YM, Hu D, Lok CN, Che CM. Cyclometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Targets. Angew Chem Int Ed Engl. 2017;56(14):3892–6. doi: 10.1002/anie.201612583.

30. Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 Is the Primary Activator of Apoptotic DNA Fragmentation via DNA Fragmentation Factor-45/Inhibitor of
Caspase-activated DNase Inactivation. J Biol Chem. 1999;274(43):30651–6. doi: 10.1074/jbc.274.43.30651.

31. Tu S, Wai-Yin Sun R, Lin MC, Tao Cui J, Zou B, Gu Q, Kung HF, Che CM, Wong BC. Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer. Cancer-Am Cancer Soc. 2009;115(19):4459–69. doi: 10.1002/cncr.24514.

Received on May 7, 2019.
Revised on December 29, 2019.
Accepted December 30, 2019.
Online First January, 2020.