The Research Behaviour and Dynamics of Science in Periods of Crisis: Case Study of COVID-19 Leading to Discovery of mRNA Vaccines

Mario Coccia (✉ mario.coccia@cnr.it)
National Research Council of Italy

Research Article

Keywords: Dynamics of science, Research behavior, Nature of science, Crisis management, Pandemic crisis, COVID-19, Science planning, Scientific development, Anatomy of science, Physiology of science, Geography of science, Research funding, Scientific research, Scientific advances, Technological change, Social change

DOI: https://doi.org/10.21203/rs.3.rs-613236/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
THE RESEARCH BEHAVIOUR AND DYNAMICS OF SCIENCE IN PERIODS OF CRISIS:
CASE STUDY OF COVID-19 LEADING TO DISCOVERY OF mRNA VACCINES

MARIO COCCIA
Research Director
CNR -- NATIONAL RESEARCH COUNCIL OF ITALY
Via Real Collegio, n. 30
(Collegio Carlo Alberto)
10024 - Moncalieri (TO), Italy

Contact E-mail: mario.coccia@cnr.it

Abstract
No studies to date allow us to explain the dynamics of science and research behavior in the presence of crisis to support research policy for allocating resources with effectiveness and planning scientific research to provide solutions directed to positive societal impact. The main goal of this study is to explain the research behavior and dynamics of science during a global crisis, focusing on Coronavirus Disease 2019 (COVID-19) that has generated a pandemic crisis worldwide. Results suggest critical characteristics of the research behavior and dynamics of science in global crisis, namely: evolution of research field is driven by new and consequential environmental threats in human society to be solved in a short run; evolution of crisis-driven research fields is pulled by few (parent) disciplines (3–5) that generate more than 80% of documents; the most active institutions in crisis-driven studies are mainly academic institutions localized in advanced countries; main funding institutions in scientific production of crisis-driven research fields are public organizations of rich nations and global charitable foundations; the most productive countries of crisis-driven research fields are nations direct to support their global leadership; moreover, research behavior of crisis-driven research fields is mainly based on scientific publications having open access for a widespread diffusion of results for a higher social impact; finally, scientific production of crisis-driven research field has a higher density of short communications with letters and notes to systematize quickly findings, publish and spread them. Overall, then, this study provides critical characteristics of research behavior and dynamics of science in global crises that could be of benefit to policymakers to design science policies and plan research programmes to generate fruitful science advances and technological breakthroughs directed to reduce negative effects of crisis on socioeconomic systems and improve wellbeing of people.

Keywords: Dynamics of science; Research behavior; Nature of science; Crisis management; Pandemic crisis; COVID-19; Science planning; Scientific development; Anatomy of science; Physiology of science; Geography of science; Research funding; Scientific research; Scientific advances; Technological change; Social change.
INTRODUCTION

The explanation of dynamics of a research fields driven by crisis is critical to science and society for allocating resources and planning toward positive societal impact (Coccia, 2020; Coccia and Bellitto, 2018; Sun et al., 2013). In this context, the evolution of studies concerning the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the Coronavirus Disease 2019 (COVID-19) can clarify characteristics of research fields and research behavior in conditions of crisis directed to solve the problem of global pandemic (Coccia, 2021; 2020a, 2018; Dos Santos, 2020; Fanelli and Glänzel, 2013; Fortunato et al., 2018; Sun et al., 2013).

The research questions of this study are:

- How does a new scientific field driven by crisis evolve compared to established research fields?
- What are the characteristics of research fields and research behavior under conditions of crises and environmental threats?

This paper confronts these questions here by developing an inductive study focused on scientific documents in COVID-19 to analyze and explain different characteristics of the dynamics of science in period of crisis are critical to science and human society. This study is part of a large body of research that endeavors to explain how scientific fields and new technology emerge and evolve in a period of crisis to clarify general characteristics for designing research policies directed to progress of science in society (Ardito et al., 2020; Coccia 2018, 2020; Coccia and Bozeman 2016; Coccia and Wang, 2016; Gibbons et al., 1994).

THEORETICAL FRAMEWORK

The investigation of the research field of COVID-19, driven by a global crisis, is critical to science and society to explain how dynamics of science achieves and sustains new knowledge, and innovative drugs to solve this health and social issue that threatens nations and global economy (Guerrieri et al., 2020; Di Girolamo and Meursinge Reynders, 2020; del Rio-Chanona et al., 2020; Ebadi et al., 2020). Current literature is investigating different aspects of COVID-19, such as Haghani and Bliemer (2020) that perform a comparative analysis across
different epidemics (e.g., SARS, MERS and 2019-nCoV literature) showing that studies about epidemics are linked to epidemic control, chemical constitution of the virus, innovative treatments, vaccines and clinical care. Zhang et al. (2020) also investigate different infectious diseases and show that scholars always responded quickly to public health emergencies with an accelerated increase in the production of publications driven by disciplines of virology and immunology. Ebadi et al. (2020) analyze temporal evolution of COVID-19 research through machine learning and show that research communities focus their studies on high-risk groups and people with comorbidities. Di Girolamo and Meursinge Reynders (2020) investigate characteristics of scientific articles during the initial phase of COVID-19 pandemic crisis and suggest that the majority of early publications on COVID-19 are explorative studies with tentative results. In this research field, Belli et al. (2020) show that international collaboration is growing in all countries to support science advances to cope with COVID-19 pandemic crisis. Atlasi et al. (2020) argue that the literature on COVID-19 is increasing with a high and fast growth. New results can be used for an effective management of research and allocation of budgets to novel studies in order to avoid duplication of information. This strategy can be appropriate for prevention, control, and treatment of COVID-19 and new mutations of the novel coronavirus. Pal (2021) demonstrates that the rate of publication growth (1600%) reveals a synergic response of researchers to combat pandemic threat of COVID-19 and its variants. Moreover, many scholarly publishers have disclosed their preprint servers to make the publications available immediately in Open Access to accelerate solutions for COVID-19. In this field of research, publishers occupied almost 70% of articles, and about 25% of new studies were sponsored by 300 funding agencies. Findings also reveal that the majority of contributions has occurred in medical science, focusing on virology, immunology, epidemiology, pharmacology, nursing, etc. The most active academic hubs for scientific production concerning COVID-19 are located in the USA, China, Italy, and the UK. The advanced countries produced more than 50% of the global research output about COVID-19 with an intensive collaborative research across manifold countries and disciplines. Sachini et al. (2021) investigate the evolution of publications in all COVID-19-related peer reviewed papers that have been (co)-authored by researchers that are affiliated with Greek institutions. Findings indicate that there is a steady increase in the number of publications and number
of scientific collaborations over time. In addition, at a cross-country level, results suggest that higher education and government sectors contribute the most in terms of scientific outputs. On an international scale, a significant amount of publications (roughly 20%) is due to countries having “traditionally” major scientific impact in the field of medicine.

This study here develops, in this new research stream, an inductive analysis, which explains as far as possible dynamics of science and underlying relationships driven by crises, such as studies about COVID-19, to understand characteristics of the research behavior in the presence of crises and environmental (Guerrieri et al., 2020; Di Girolamo and Meursinge Reynders, 2020; del Rio-Chanona et al., 2020; Ebadi et al., 2020; Xu et al., 2021). In this context, the study shows a preliminary comparison of the growth of different pandemics in the initial phase of diffusion to assess the evolutionary paths of COVID-19. In particular, the study considers the initial growth of COVID-19 in comparison with:

- **Middle East respiratory syndrome (MERS)** that is a viral respiratory disease caused by a novel coronavirus (Middle East respiratory syndrome coronavirus, or MERS-CoV) that was first identified in Saudi Arabia in 2012 (WHO, 2021)

- **Human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS)** that is a spectrum of conditions caused by infection with the human immunodeficiency virus (HIV), a retrovirus. The first news story on the disease appeared May, 1981 (Sepkowitz, 2001).

- **Zika virus disease** that is caused by a virus transmitted primarily by Aedes mosquitoes, which bite during the day (WHO, 2021a).

- **H1N1 (H1N1pdm09)** virus that was detected in the United States in 2009 and spread quickly across the United States and the world. This new H1N1 virus contained a unique combination of influenza genes not previously identified in animals or people. This virus was designated as influenza A (H1N1)pdm09 virus. (CDC, 2021)

In addition, the paper makes a comparative analysis between the evolution of studies concerning the COVID-19 driven by crisis of global pandemic and research fields associated with serious respiratory disorders, such as
Chronic Obstructive Pulmonary Disease (COPD) and lung cancer that are not driven by exogenous shocks. COPD is defined as a disease state characterized by the presence of airflow obstruction due to chronic bronchitis and emphysema. COPD is a highly prevalent disease affecting >10% of the population worldwide. The first manifestations occur at the cellular level with biochemical processes that lead to inflammation. Typically, the disease presents in the fourth or fifth decade with subtle symptoms, such as morning cough productive of mucoid sputum or simply an insidious progression of exertional dyspnea (Decramer and Cooper, 2010). COPD is thought to result from an accelerated decline in forced expiratory volume in 1 second (FEV1) over time (Lange et al., 2015). Moreover, it is well known that COPD is a very common disease with great morbidity and mortality (Halbert et al., 2006; Siafakas et al., 2018). The other research field compared is lung cancer: “that forms in tissues of the lung, usually in the cells lining air passages” [as defined by the National Cancer Institute (2021)]. Lung cancer is one of the main diseases in several developed countries and a leading cause of cancer death worldwide.

The comparative analysis of the evolution of crisis-driven research fields, such as COVID-19, to other research fields that are not driven by crises and environmental threats (e.g., COPD and Lung Cancer) can reveal main differences to clarify characteristics and properties of the dynamics of science under conditions of crises to design research policy for efficient allocation of resources directed to a positive impact in science advances and society (Figure 1).

Evolution of research field driven by exogenous events, such as pandemic crises	Compared to	Evolution of research field not driven by crises but mainly by endogenous processes in science
COVID-19	Chronic Obstructive Pulmonary Disease (COPD)	Lung cancer

To explain new characteristics of the evolution of science in crises

Figure 1. Investigation of research fields and research behavior in a period of crises.
METHODS AND MATERIALS

1.1 Source and research setting

The study uses data of Scopus (2020) to detect scientific documents having in title, abstract or keyword the terms connected with respiratory diseases, such as: “COVID”, “COPD”, and “LUNG CANCER”. Scientific products are appropriate units of analysis that can explain the structure and evolution of science.

Period under study: From 1st April to 31 December 2020, using daily data of document results from Scopus (2021). The year 2021 is not considered because the scientific production is on-going. Moreover, trends of research fields under study consider the first published documents and different periods:

- 1929-2020 for lung cancer
- 1969-2020 for COPD
- and finally, 2019-2020 for COVID-19

1.2 Measures

- Accumulation and development of knowledge in research fields under study here (COVID-19, COPD and Lung Cancer) are measured with total document results given by: article, letter, review, note, editorial, conference paper, short survey, book chapter and conference review. In particular, data are gathered from Scopus (2021) daily from April 2020 onwards for 420 days.
- Documents of research fields under study per subject areas (e.g., medicine, biochemistry, genetics and molecular biology, etc.)
- Document type of research fields under study (i.e., article, letter, conference paper, book chapter, etc.)
- Documents of research fields under study per source title, such as journals.
- Documents of research fields under study per affiliation, such as universities, public and private research labs, hospitals, etc.
- Documents of research fields under study per funding sponsor, such as National Science Foundation, National Institutes, etc.
Documents of research fields under study per countries.

1.3 Data analysis and procedure

Question 1 (evolution of crisis-driven research field compared to other related fields)

In order to answer the first research question of how a scientific field evolves in a period of crisis compared to established research fields not crisis driven, the method of inquiry is as follows.

Methods to explain question 1

Data of documents (in short, Docs) per research fields $i (i = \text{COVID-19, COPD and Lung Cancer})$ are gathered daily from 1st April 2020 to 6th June 2021.

It is calculated the daily growth (%) of documents (Docs) per research field (i) given by:

$$\Delta Docs \text{ (%) of research field } i \text{ (increment)} = \left(\frac{Docs_{day \ t} - Docs_{day \ t-1}}{Docs_{day \ t-1}}\right) \cdot 100 \quad [1]$$

The percent increment is calculated from April 2020 to June 2021 for all three research fields (COVID-19, COPD and Lung cancer); for COVID-19 the period is also divided from April to July 2020, from August to December 2020 and from January to June 2021 to better assess the different magnitude of the growth of this new research field over time. The data of documents and derived variables can be transformed in logarithmic scale to have a normal distribution for appropriate parametric analyses or to design graphs and trends with comparable values.

In addition, the study also compares the growth of different pandemics in the initial phase of diffusion to assess the evolutionary paths of COVID-19 from 2019 to 2021, compared to:

- MERS from $t=2012$ to $t'=2015$
- HIV from 1981 to 1984
- Zika virus disease (from 2010 to 2016)
- H1N1 (H1N1pdm09) virus (2009-2012).

The rate of growth is similar to equation [1] but it considers documents in the year t and initial year t' as indicated above.
Firstly, preliminary analyses of variables are descriptive statistics based on arithmetic mean, std. error of the mean, std. deviation, skewness and kurtosis to assess the normality of distributions and, if necessary, to fix distribution of variables with a log-transformation. Trends and bar graphs of research fields under study can show the type of development and annual increment in 2020 – 2021 in a context of comparative analysis.

Secondly, the study analyzes the evolution of documents as a function of time. The specification of relationship is based on a linear model that fits scatter data:

\[
y_i = b_0 + (b_1 t) + \varepsilon \] \[2\]

\(y\)= scientific documents in the research field \(i\) (\(i\)= COVID-19, COPD and Lung Cancer)

\(t\) = time = progressive series (N) indicating the time from 1 (1st day), 2 (2nd day), …, to 420 (420 day)

\(b_0\)= constant

\(b_1\)= coefficient of regression

\(\varepsilon\)= error term

Ordinary Least Squares (OLS) method is applied for estimating the unknown parameters of models [2] in regression analysis.

Thirdly, the study analyzes whether the difference of arithmetic mean of \(\Delta Docs\) (%) [1] between research fields considered as independent groups (e.g., COVID-19=group 1 that is driven by crisis vs. COPD=group 2 not driven by crisis, etc.) is significant. In particular, the Independent Samples \(t\)-Test is applied to compare the means of two independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different. The Independent Samples \(t\)-Test requires the assumption of homogeneity of variance -- i.e., both groups have the same variance and as a consequence Levene's Test is performed. After that, null hypothesis \((H_0)\) and alternative hypothesis \((H_1)\) of the Independent Samples \(t\)-Test are:

\(H_0\): \(\mu_1 = \mu_2\), the two population means are equal in groups

\(H_1\): \(\mu_1 \neq \mu_2\), the two population means are not equal in groups

The arithmetic mean of groups is compared considering pair of research fields under study as follows:
COVID-19 (group 1) – COPD (group 2),
COVID-19 (group 1) – Lung Cancer (group 3),
and COPD (group 2) – Lung Cancer (group 3).

Remark. Group 1 indicates a crisis-driven research field; Groups 2 and 3 are research fields not driven by crises but by endogenous factors to science dynamics.

This analysis is performed considering data from April to December 2020 for 260 days to assess the differences between means in the initial evolution of studies in COVID-19 and obtain stable results, since data of 2021 are ongoing.

Question 2 (characteristics of crisis-driven research fields and research behavior in a period of crises)

In order to clarify second question main drivers and additional characteristics of emerging research fields in crises to explain the dynamics of science, the method is as follows.

Methods to clarify question 2

Data analysis procedure here uses total number of documents published in the research field of COVID-19 from April to December 2020 and from January to June 2021 to assess variations of research behavior in crises considering:

- Main research areas supporting the evolution of the research field of COVID-19.
- Leading journals supporting the evolution of the research field of COVID-19.
- The most prolific institutions in the production of COVID-19
- The most important institutions that have funded studies in the research field of COVID-19 over time.
- Finally, a ranking of the most prolific countries in the research field of COVID-19 that have supported scientific and technological advances in this new research fields.

Statistical analyses are performed with the Statistics Software SPSS® version 26.
RESULTS

- *Dynamics of research fields driven by crises compared to research fields (question 1)*

Pandemics is a very special condition in society and it is important to explain the behavior and characteristics in the research arena. First of all, the study also shows a comparison of the growth of different pandemics in the initial phase of diffusion to assess the evolutionary path of COVID-19. In particular, the study considers the initial growth of publications in COVID-19 compared to Middle East respiratory syndrome (MERS) from 2012 to 2015, HIV from 1981 to 1984, Zika virus disease (from 2010 to 2016) and H1N1 (H1N1pdm09) virus (2009-2012). Figure 2 suggests the unparalleled growth of publications in COVID-19 likely associated with the high number of deaths that has supported a lot of scientific research to solve this global socio-health issue (cf., Pal, 2021).

![Figure 2. Rate of growth of publications concerning some pandemics in the initial phase of diffusion.](image)

Figure 3 shows the evolution of research fields comparing COVID-19 having a crisis-driven origin in 2019 to lung cancer started in 1929 (though some occasional previous papers) and COPD originated in 1969 or thereabouts. Results suggest two different types of evolution of research fields:

- crisis-driven is associated with exogenous factors that generate shocks and environmental threats in socioeconomic systems and need to be solved in a short run.
- problem-driven is associated with a situation that causes difficulties in people and environment and needs
to be solved in a medium run.

In this context, crisis-driven research field of COVID-19 has a sharply increase from 2019, whereas problem-driven research fields have a linear growth over time. In particular, the evolution of research fields of COPD and lung cancer, originated because of problems given by main diseases in society (problem-driven origin), suggests an linear equation of development of publications \(y \) given by \(y(t) = \alpha + \beta t \) with an acceleration for lung cancer in 1975 (about 45 years after origin in 1929) and for COPD in 1995 (25 years after the origin), whereas the crisis-driven research field of COVID-19 originated with a pandemic and public health threat has an evolutionary paths associated with an exponential equation of development of publications: \(y(t) = \alpha e^{\beta t} \) (cf. also figure 4).

Figure 3. Evolution of crisis- and problem- driven research field over time (last data included 6 June 2021). Note: Log scale is to have comparable trends.

Figure 4 shows the initial evolution of the research field of COVID-19 with some chronological events given by the first cases in China in 2019, the alarming levels of spread and severity in Europe in March 2020 and the announcement of first vaccines in November 2020.
Table 1 considers the initial number of publications in COVID-19, COPD and lung cancer (first three years since origin). It is also important to observe that the annual scientific production of COVID-19 studies in December 2020 (i.e., 83,621 documents) has surpassed annual production of main research fields, such as COPD having 4,397 documents and in particular lung cancer having 29,362 documents in December 2020. Moreover, problem-driven research fields have in the initial phase of origin an arithmetic growth of scientific products, whereas crisis-driven research fields, such as COVID-19, have and exponential growth because of overring problems and environmental threats in society that have to be solved rapidly.

Table 1. Number of publications of research fields in first three years after origin

year	COVID-19	year	COPD	year	Lung cancer
2019	57	1969	1	1929	1
2020	85,539	1970	5	1930	0
2021	on going	1971	3	1931	4
		2020	4,397	2020	29,362

Note: data of 9th June 2021 (Scopus, 2021)
Table 2 confirms the unparalleled evolution of the research field of COVID-19 compared to lung cancer and COPD. In particular, in April 2020 the research field of COVID-19 was at initial stage of evolution and had the lowest number of publications, whereas in June 2021 it has outclassed over other research fields (COPD and Lung Cancer) that have had a stable evolution over time. In fact, the average growth of the research field of COVID-19 is 1.2% daily from April 2020 to June 2021, whereas other research fields have had a normal evolution with a steady growth equal to about 0.42% of daily publications (Figure 5). In addition, table 2 shows that the evolution of the research field of COVID-19 from April to July 2020 had an average growth accelerated of 3.16% daily, whereas from August to December 2020 has reduced the acceleration of scientific production, converging towards a steady average growth of about 0.65% daily, in the 2021 (January-June 2021) it is about 0.38%.

Table 2. Descriptive statistics of scientific documents in the research fields of COVID-19, COPD and Lung Cancer based on 420 days from April 2020 to June 6th, 2021.

Variables	Arithmetic Mean	Std. Error
COVID-19, documents (Docs)	68,067.61	2,135.79
COPD, documents	3,743.23	74.32
Lung Cancer, documents	25,119.04	504.17
\(\Delta Docs \) (\%) of COVID-19, daily increment	1.19	0.16
\(\Delta Docs \) (\%) of COPD, daily increment	0.417	0.024
\(\Delta Docs \) (\%) of Lung Cancer, daily increment	0.419	0.023
\(\Delta Docs \) (\%) of COVID-19, daily increment April-July 2020	3.16	0.56
\(\Delta Docs \) (\%) of COVID-19, daily increment August-December 2020	0.65	0.06
\(\Delta Docs \) (\%) of COVID-19, daily increment January-June 2021	0.38	0.04

Note: COVID-19= Coronavirus Disease 2019; COPD= Chronic Obstructive Pulmonary Disease
Figure 5. Daily growth (%) of scientific production of research field based on 420 days from April 2020 to June 6th, 2021. Note: COVID-19= Coronavirus Disease 2019; COPD= Chronic Obstructive Pulmonary Disease

Table 3 suggests that in the research field of COVID-19, an increase of 1 day, it increases the expected number of publications by about 360 units (p-value<.001), whereas in research field of COPD by about 13 units (p-value<.001), finally in research field of Lung Cancer, the expected number of publications increases by about 85 units (p-value<.001). This result confirms the unparalleled growth of scientific production in the research field of COVID-19.

Table 3. Parametric estimates of the relationship of scientific production in research fields as function of time (T=420 days, from April 2020 to June 2021)

	Model Linear COVID-19	Model Linear COPD	Model Linear Lung Cancer
Constant α	-7619.01^{***}	1102.74^{***}	7209.64^{***}
(St. Err.)	(323.46)	(3.78)	(30.34)
Coefficient β (time)	359.56^{***} a	12.54^{***} a	85.08^{***} a
(St. Err.)	(1.33)	(.016)	(.13)
F	72915.44^{***}	651540.61^{***}	464061.02^{***}
R^2	.994	0.99	.99

Note: *** p-value<0.001

a= predictor is a progressive series (N) indicating the time from 1 (1st day), 2 (2nd day) … to 420 (420th day) from April to December 2020 and January-6th June 2021.
Finally, the Independent Samples t-Test compares the means of two independent groups in order to determine whether there is statistical evidence that the associated population means of ∆Docs are significantly different from April to December 2020 (2021 is excluded in this statistical analysis because it is ongoing). The p-value of Levene's test is significant, and we have to reject the null hypothesis of Levene's test and conclude that variances in groups under study are significantly different (i.e., Equal variances are not assumed), except mean ∆Docs (%) between COPD and LC that has p-value<.27 and as a consequence Equal variances are assumed (Table 4).

Table 4 shows main results about a statistically significant difference of arithmetic means of ∆Docs between groups. In particular, table 4 substantiates that:

- There was a significant difference in mean ∆Docs (%) between research fields of COVID-19 and COPD ($t_{264.809} = 4.69, p < .001$), suggesting a different evolution of these research fields
- There was a significant difference in mean ∆Docs (%) between research fields of COVID-19 and Lung cancer ($t_{263.118} = 4.727 p < .001$), suggesting a different evolution of these research fields
- Whereas, arithmetic mean of ∆Docs (%) between research fields of COPD and Lung cancer is not different but it is rather similar ($t_{505.496} = .161 p < .872$), suggesting a similar evolution of these research fields

Table 4. Independent Samples Test	Levene’s Test for equality of variances	t-test for equality of Means						
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	
ΔDocs (%), COVID-19/COPD	Equal variances assumed	35.53	0.001	4.690	510	0.001	1.186	.2528
	Equal variances not assumed		4.690	264.809	0.001	1.186	.2528	
ΔDocs (%), COVID-19/LC	Equal variances assumed	37.28	0.001	4.727	510	0.001	1.194	.2524
	Equal variances not assumed		4.727	263.118	0.001	1.194	.2524	
ΔDocs (%), COPD/LC	Equal variances assumed	1.204	0.273	.161	510	.872	.00758	.0470
	Equal variances not assumed		.161	505.496	.872	.00758	.0470	

Note: N=256 days over April-December 2020 period. Δ=increment

The conclusion of these statistical analyses are that the rate of evolutionary growth of the research field of COVID-19 is statistically different from other normal research fields, such as COPD and Lung cancer. Hence,
crisis-driven research field of COVID-19 has an accelerated and disproportionate growth compared to problem-driven research fields with the potential to lead to manifold scientific breakthroughs over time.

- **Results to explain the second research question on characteristics of research field and research behavior in the presence of turbulent crises**

The origin and accelerated growth of the crisis-driven research field of COVID-19 reveal some main characteristics to understand the dynamics of science in crisis. The most productive research areas in the research field of COVID-19 are mainly related to life science (Table 5). Of the top 10 research areas more than 53% of documents published on COVID-19 worldwide is in Medicine, Biochemistry, genetics and molecular biology has more than 8% and Immunology and microbiology has more than 5% (cf., Zhang et al., 2020). In the top ten areas, there is also social sciences (more than 9%) and environmental science (about 3.5%) because manifold studies analyze possible relations between air pollution and the spread of COVID-19 in society (Coccia, 2020a). The comparison of two periods in 2020 and 2021 shows the growth of computer science in 2021 and studies of psychology likely associated to side effects of containment policies of full lockdown (Coccia, 2021a). This research field of COVID-19 confirms the properties of science dynamics by Coccia (2018) that the emergence of a research field is in critical (parent) disciplines (e.g., medicine, biochemistry, genetics and molecular biology in the case study of COVID-19), and subsequently the evolution is driven mainly by few disciplines (3–5) that generate more than 80% of documents (*concentration of scientific production*).

Table 6 shows the top ten journals that have published more contributions on emerging research field of COVID-19. Five of the top ten journals are related to medicine (parent discipline; cf. Coccia, 2018). In the top ten, there are also journals related to environmental and sustainability science for investigating relationships between environmental pollution and the spread of COVID-19 (cf., also Zhang et al., 2020). In the top ten, it is also important to note the presence of the journal “Medical Hypothesis” because in the initial phase of pandemic based on a novel coronavirus hardly known, a lot of scholars suggest multiple working hypotheses to explain likely determinants of transmission dynamics, consequences on health of people and effective treatments to
reduce the negative impact of COVID-19 pandemic in society (cf. also, Haghani and Bliemer, 2020). In 2021 compared to 2020, the evolution of this research field is also driven by journals of psychology and interdisciplinary that enter in the top ten list having a higher number of contributions.

Table 5. Top ten areas supporting the evolution of the research field of COVID-19

Ranking	31 December 2020	6 June 2021				
	Documents published, Disciplines	N.	%	Documents published, Disciplines	N.	%
1	Medicine	57842	57.62	Medicine	97236	53.36
2	Social sciences	9377	9.34	Social sciences	19210	10.54
	Biochemistry, Genetics and molecular biology	8560	8.53	Biochemistry, Genetics and molecular biology	15045	8.26
3	Immunology and Medicine	5472	5.45	Immunology and Microbiology	9568	5.25
4	Microbiology	3723	3.71	Computer science	8401	4.61
5	Nursing	3554	3.54	Environmental sciences	7444	4.09
6	Pharmacology, Toxicology and Pharmaceutics	3502	3.49	Nursing	6936	3.81
7	Environmental sciences	3054	3.04	Engineering	6679	3.67
8	engineering	2819	2.81	Pharmacology, Toxicology and Pharmaceutics	6058	3.32
9	Neuroscience	2480	2.47	Psychology	5646	3.10
10	Neuroscience	2480	2.47	Psychology	5646	3.10
	Total	100383	100.00	Total	182223	100.00

Table 6. Top ten journals leading the evolution of the research field of COVID-19

Ranking	31 December 2020	6 June 2021				
	Documents published in Journals	N.	%	Documents published in Journals	N.	%
1	International Journal of environmental research and public health	737	14.87	International Journal of environmental research and public health	1702	18.43
2	Journal of medical virology	648	13.07	Plos ONE	1465	15.87
3	BMJ Clinical research from British Medical Association	615	12.41	Journal of medical virology	1025	11.10
4	BMJ from British Medical Association	576	11.62	BMJ	896	9.70
5	Plos ONE	562	11.34	BMJ Clinical research	875	9.48
6	Lancet	413	8.33	Sustainability (Switzerland)	719	7.79
7	Infectious diseases	399	8.05	Infectious diseases	670	7.26
8	Medical Hypotheses	354	7.14	Scientific Reports	658	7.13
9	Science of the total environment	327	6.60	Frontiers in Psychology	630	6.82
10	Sustainability	326	6.58	Lancet	594	6.43
	Total	4957	100.00	Total	9234	100.00
The most prolific institutions in the research field of COVID-19 are Harvard Medical School and two Chinese organizations, Huazhong University of Science and Technology, and Tongji Medical College. The top 10 active institutions in COVID-19 studies are mainly academic institutions localized in specific advanced countries: 1 in the USA, 2 in China, 3 in England, 2 in Italy, 1 in France and 1 in Canada (Table 7).

Table 7. The top ten prolific institutions in the production of COVID-19 studies

Ranking	31 December 2020	6 June 2021,	N.	%	N.	%
	Research Institutions/Affiliations	Documents published	Research Institutions/Affiliations	Documents published		
1	Harvard Medical School, USA Huazhong University of Science and Technology, China	1422	15.56	Harvard medical school Huazhong University of Science and Technology	2325	15.76
2	Tongji Medical College, China	1111	12.16	University of Toronto	1591	10.78
3	The Institut national de la santé et de la recherche médicale, INSERM, the French National Institute of Health and Medical Research.	1056	11.56	University of Toronto	1579	10.70
4	University of Toronto, Canada	983	10.76	INSERM, France	1508	10.22
5	Università degli Studi di Milano, Italy	908	9.94	Tongji Medical College	1477	10.01
6	University of Oxford, England	776	8.49	University of Oxford	1395	9.45
7	Università di Roma la Sapienza, Italy	761	8.33	University College London	1289	8.74
8	University College London, England	755	8.26	Imperial College London Università degli studi di Milano	1223	8.29
9	Massachusetts General Hospital, USA	660	7.22	Università di Roma La Sapienza	1159	7.85
10	Total	9136	100.00	14755	100.00	

The top ten funding organizations that have supported the emerging research field of COVID-19 with the publication of documents are located in the USA, China, the UK, Europe (with European Commission) and Brazil. In particular, at December 2020, institutions in the USA have funded about 43% of published documents in top ten institutions, in China about 35%, in the UK roughly 12.5% of documents and finally in Brazil about 9%. In June 2021, funding role of US institutions is reinforced in the top ten with about 47%, China, UK and Brazil have a slightly. In 2021, a supranational institution given by European commission enters in the top ten of funding institutions with about 6%. Results show that the top funding institutions in
scientific production of COVID-19 are public organizations, except Wellcome Trust that is a global charitable foundation, located in London (UK). In addition, Table 8 shows the driving role of public funding organizations in two large countries given by the USA and China that have funded more than 78% of documents on COVID studies among top ten institutions (cf., also Zhang et al., 2020). De Roeck (2016) argues that scientific discovery is also due to main role of funding of governments and funding agencies.

Table 8. Top ten institutions that have funded studies in the research field of COVID-19

Ranking	31 December 2020	6 June 2021				
	Documents funded by	N	%	Documents funded by	N	%
1	National Natural Science Foundation of China	1901	30.84	National Institutes of Health, USA	3992	27.01
2	National Institutes of Health, USA	1641	26.62	National Natural Science Foundation of China	3689	24.96
3	National institute for health research, UK	422	6.85	U.S. Department of health and human services	1140	7.71
4	National Science Foundation, USA	411	6.67	National institute for health research, UK	1005	6.80
5	Wellcome Trust, UK	346	5.61	National Science Foundation, USA	963	6.52
6	National Institute of allergy and infectious disease, USA	344	5.58	National Key research and Devel program of China	912	6.17
7	Conselho nacional desenvolvimento Cient, Brazil	326	5.29	European Commission National Institute of Allergy and infectious disease, USA	881	5.96
8	Fundamental Research Funds for the Central Universities, China National heart, Lung and Blood institute, USA	277	4.49	Wellcome Trust, UK	816	5.52
9	Coordencao de aperfeicoamento de pessoal de Nivel Superior, Brazil	256	4.15	Conselho nacional desenvolvimento Cient, Brazil	709	4.80
10	Coordeneac de aperfeicoamento de pessoal de Nivel Superior, Brazil	240	3.89	Conselho nacional desenvolvimento Cient, Brazil	672	4.55

| | Total | 6164 | 100.00 | 14779 | 100.00 |

The evolution of research field of COVID-19 is driven mainly by scientific production in advanced and rich countries that have published about 78% of documents in the list of top ten countries that also includes China with about 13% and India with 8% (Table 9). This result further confirms the concentration of scientific production in specific geoeconomic contexts of rich countries (Coccia, 2018). Coccia (2019) argues that nations produce science advances and new technology to endorse a socio economic power and leadership directed to take advantage of important opportunities or to cope with environmental threats in competitive
settings. In general, underlying motivations of nations to produce science advances and new technology in society can be: endogenous power and leadership in international system, higher reputation in the international system with challenges to big science and path-breaking technology and economic growth and wellbeing of citizens.

Table 9. Top ten countries with the highest number of documents produced in the research field of COVID-19

Ranking	Countries of production	31 December 2020 N	%	6 June 2021 Countries of production N	%	
1	United States	21285	30.37	United States	38155	31.06
2	China	9293	13.26	United Kingdom	15975	13.01
3	United Kingdom	9004	12.85	China	15092	12.29
4	Italy	7765	11.08	Italy	12664	10.31
5	India	5885	8.40	India	10654	8.67
6	Spain	3585	5.11	Spain	6505	5.30
7	Canada	3542	5.05	Canada	6357	5.18
8	Germany	3274	4.67	Germany	6227	5.07
9	France	3253	4.64	Australia	5718	4.65
10	Australia	3209	4.58	France	5489	4.47

Total | 70095 | 100.00 | 122836 | 100.00 |

Finally, a comparative analysis of crisis-driven research field and problem-driven research fields shows some main characteristics of the research behavior in crisis (Table 10).

Table 10. Characteristics of publication in crisis-driven (COVID-19) and not crisis driven research fields (COPD and Lung Cancer), using data on 7th June 2021

	COVID	COPD	Lung Cancer			
	Number	% of total	Number	% of total	Number	% of total
Total publication June 2021	152970	60798	449875			
Open access	116203	75.96	24616	40.49	162703	36.17

Type of documents

	COVID	COPD	Lung Cancer			
	Number	% of total	Number	% of total	Number	% of total
Article	93563	61.16	44039	72.43	333986	74.24
Letter	18201	11.90	1281	2.11	13089	2.91
Review	16795	10.98	8645	14.22	55782	12.40
Note	8769	5.73	1227	2.02	8643	1.92
Conference	307	0.20	2256	3.71	13800	3.07

Results show that research behavior in crisis is mainly open access for a widespread diffusion of results for a higher social impact, in fact products in COVID-19 have about 76% of access, whereas in COPD is 40% and
Lung cancer is 36%. In addition, scientific production has a higher publication density with short communication given by letters that in crisis-driven research field of COVID-19 is about 12% (vs. 2-3% for COPD and Lung Cancer) and notes that have higher frequency of about 6% (vs. about 2% for COPD and Lung cancer).

DISCUSSION

The inductive analysis here, based on case study of the research field of COVID-19, has theoretical implications to explain the dynamics of science and research behavior in periods of crises that generate scientific discoveries.

This study suggests that (Table 11):

- **Problem-driven** research fields are based on perception of the problem in nature and/or society (e.g., lung cancer, Alzheimer disease, environmental pollution, etc.) and the evolution is mainly due to endogenous processes in science that generate discoveries in the long run (Sun et al., 2013).

- **Crisis-driven** research fields are due to a crisis, exogenous event, which generates environmental threats with elements of surprise in society having high priority goals of solution in a limited amount of time before can permanently damage socioeconomic and environmental systems (e.g., pandemic, war, etc.). The evolution of crisis-driven research fields has in the starting phase an exponential growth that fosters science advances and scientific discoveries in the short run.

In particular, some unique characteristics of the evolution of crisis-driven research fields and research behavior in crises that can be systematized with following empirical properties of the dynamics of science:

1. **Environmental threat.** Evolution of crisis-driven research field is due to a new and consequential environmental threats in human society, such as COVID-19 global pandemic crisis, supporting a high average rate of daily growth of scientific production (about 1.2% daily) that can generate scientific and technological breakthroughs in a short run.

 Remark: Evolution of research field not crisis driven, called here problem driven, is based on average rate of daily growth of scientific production equal to about 0.4% that generates scientific breakthroughs in the long run.

2. **Concentration of scientific production.** Evolution of crisis-driven research fields field is pulled by few (parent) disciplines (3–5) that generate more than 80% of documents. In the case study of COVID-19
critical disciplines are given by medicine, biochemistry, genetics and molecular biology. This crisis-driven research field of COVID-19 confirms the property of science dynamics by Coccia (2018).

3. **Public research organizations of advanced nations.** The most active institutions in crisis-driven studies are mainly academic institutions localized in advanced countries.

4. **Public funding institutions of advanced nations.** Main funding institutions in scientific production of crisis-driven research fields are public organizations of rich nations and global charitable foundations.

Remark: Data show that in June 2020, in the initial phase of COVID-19 pandemic, premier biopharmaceutical companies (e.g., AstraZeneca, Merck, Novartis, Pfizer, Roche, etc.) funded scientific research in this global health issue and some of them has generated scientific and technological breakthroughs given by new vaccines to treat this new infectious disease.

5. **Rich countries and global leadership.** Scientific production of crisis-driven research fields is due to specific geoeconomic contexts of rich countries that generate about 78% of documents. The most productive countries of crisis-driven research fields are nations direct to support their global leadership (cf., Coccia, 2015, 2017, 2017a).

Remark: This result is due to high levels of R&D investments in rich countries that support scientific and technological advances (Coccia, 2009, 2012, 2018a; Kealey, 1996; Price de Solla, 1986). These results can be due to critical socioeconomic factors of leading countries in supporting this crisis-driven research field in science and society as explained by Coccia (2019):

- Science advances and new technology are a source of socioeconomic power for countries to take advantage of important opportunities or to cope with consequential environmental threats in society.
- Science advances and new technology are drivers of economic and productivity growth for nations and of a higher wellbeing of citizens.
- Science advances and new technology increase reputation and recognition of nations worldwide to support an endogenous power in international system based on scientific and technological superiority that endorses their leadership and affects other geoeconomic regions to take advantage of commercial and political
opportunities.

6. *Open source production*. Research behavior of crisis-driven research fields is mainly open access for a widespread diffusion of results for a higher social impact.

7. *Short communication*. Scientific production of crisis-driven research field has a higher publication density of short communication given by letters and notes to systematize quickly findings.

Table 11. Evolution of research fields in science

Origin	Problem driven	Crisis driven
Type of evolution	Linear in short and long run	Exponential in the short run, linear in the long run
Growth of scientific products in the initial phase of development	Arithmetic increment	Geometric/Exponential increment
Active institutions	Public research organizations and universities	Public research organizations and universities
Funding institutions	Public funding institutions	Public funding institutions and foundations
Prolific countries	Rich countries	Rich countries
Open Access	Low intensity	High intensity
Document type	Articles and conferences	Articles, letters and notes
Discoveries and paradigm shifts	Long-run	Short-run
Example	COPD, Lung Cancer	COVID-19

The main findings of this study suggest that in general research fields evolve with accumulation of “normal science” (e.g., COPD and lung cancer) that can have discontinuous transformations in the long run by new theoretical and empirical approaches that support the transition from an existing scientific paradigm to an emerging one (Kuhn, 1996). However, what this study adds is that in the presence of consequential environmental threats for human society (such as COVID-19 global pandemic), crisis-driven evolution of research fields has accelerated rates of growth that generate discoveries and science advances in the short run to solve overriding problems and/or reduce the negative impact of emergency in society. In particular, research behavior in crisis management is based on systematic and improvised activities directed to solve and/or constrain problems in a limited amount of time. In fact, in the initial phase of crisis management, research behavior is focused on the use of inventive analogies in the development of scientific research that can be helpful to support
solutions that solve complex problems in the presence of environmental threats (Bonnardel, 2000). For instance, in the presence of COVID-19 pandemic crisis, scholars developed studies, in a perspective of analogical thinking, to apply Tocilizumab (a chronic inflammatory disorder in which the body’s immune system attacks its joints, and it is one of the most common autoimmune diseases) to treat the respiratory and health disorders of COVID-19 (Ardito et al., 2021). In addition, research behavior in crisis management, such as during COVID-19 pandemic, is mainly directed to achieve solutions [e.g., effective vaccines, new therapies, or other solutions] quickly (Coccia, 2021). In fact, accelerated rate of growth of crisis-driven research field of COVID-19 is supporting a scientific (and likely technological) paradigm shift to treat infectious diseases based on novel type of messenger RNA vaccines, known as mRNA vaccines for high levels of protection by preventing COVID-19 among people that are vaccinated. This new approach is different from classical approaches to vaccination because immunogenic proteins of a pathogen can be engineered into a non-pathogenic or attenuated vector that can incite the immune system similarly to a real infection (Smoot, 2020). Crisis-driven research field of COVID-19 has accelerated the transition towards these innovative types of mRNA vaccines and leading companies in pharmaceutical sector, such as AstraZeneca, Pfizer, Roche, etc. are now focusing human and economic resources on vectored, subunit, RNA, and DNA platforms, respectively. In addition, previous vaccines have been developed in about four years, the R&D of mRNA vaccines to cope with COVID-19 global pandemic has been less than one year after the discovery of the SARS-CoV-2; manifold public agencies for protecting and promoting public health through the control and supervision in the United Kingdom, the US, Europe and other countries confirm that mRNA vaccines for COVID-19 can be effective and safely tolerated in population (Abbasi, 2020; Coccia, 2021; Heaton, 2020; Jeyanathan et al., 2020; Komaroff, 2020; Sanjay Mishra, 2020). Overall, then, crisis-driven research field of COVID-19 is generating a paradigm shift towards mRNA vaccines.
CONCLUSIONS AND LIMITATIONS

Social studies of science show that factors determining the evolution of research fields are due to endogenous factors in science, such as, splitting and merging of social communities: splitting can account for branching mechanisms, such as specialization and fragmentation, while merging can capture the synthesis of new fields from old ones (Sun et al., 2013). However, this study reveals that the evolution of research fields that can be also crisis-driven, such as the research field COVID-19 originated in 2019. In particular, relevant problems and environmental threats generated by unpredictable crisis can support the accelerated evolution of research fields characterized by continuous scientific advances directed to explain and solve unknown problems, support discoveries, and also scientific and technological paradigm shifts (cf., Becsei-Kilborn, 2010).

These conclusions are of course tentative. A limitation of this study is that sources under study may only capture certain aspects of the on-going dynamics of science a period of crisis. In addition, high production rate and publication frequency in the research field of COVID-19 can be also due to that in the presence of emergency, publications associated with COVID-19 have been published without formal procedures of publication. This fact may have increased publication frequency and control factors are necessary to consider in future development of this study. In fact, we know that other things are not equal in the dynamics of science over time and space. Therefore, the identification of general patterns and characteristics of science in the presence of social, economic and health crisis is a non-trivial exercise because society and as a consequence scientific results change rapidly under a social stress given by unforeseen shocks of global crises. To conclude, there is need for much more detailed research with additional data to clarify the relations and scientific change underlying the evolution of new scientific fields in the presence of crisis and environmental threats, such as considering collaboration intensity, openness, intellectual property rights, different sources/procedures of academic publications, different motivations associated with funding, etc.

Declaration of competing interest. The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. No funding was received for this study.
REFERENCES
Abbasi J. 2020. COVID-19 and mRNA Vaccines-First Large Test for a New Approach. JAMA, 324(12), 1125–1127. https://doi.org/10.1001/jama.2020.16866

Ardito L., Coccia M., Messeni Petruzelli A. 2021. Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R&D Management, https://doi.org/10.1111/radm.12455

Atlasi, R., Noroozi Chakoli, A., Ramezani, A. et al. 2021. Scientometric analyzing the output of researchers and organizations on COVID-19 for better conducting the scientific efforts: with a glance to endocrinology. J Diabetes Metab Disord. https://doi.org/10.1007/s40200-020-00718-7

Becsei-Kilborn E. 2010. Scientific discovery and reputation: the reception of Peyton Rous’ discovery of the chicken sarcoma virus. Journal of the history of biology, 43, pp. 111-157, DOI: 10.1007/s10739-008-9171-y

Belli, S., Mugnaini, R., Baltà, J. et al. 2020. Coronavirus mapping in scientific publications: When science advances rapidly and collectively, is access to this knowledge open to society? Scientometrics 124, 2661–2685. https://doi.org/10.1007/s11192-020-03590-7

Bonnardel, N. 2000. Towards understanding and supporting creativity in design: analogies in a constrained cognitive environment. Knowledge-Based Systems, 13, 7, 505–13.

CDC 2021. 2009 H1N1 Pandemic (H1N1pdm09 virus), https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html (accessed June 2021)

Coccia M. 2009. What is the optimal rate of R&D investment to maximize productivity growth? Technological Forecasting & Social Change, vol. 76, n. 3, pp. 433-446. https://doi.org/10.1016/j.techfore.2008.02.008

Coccia M. 2012. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia, Technovation, vol. 32, n. 6, pp. 370–379, https://doi.org/10.1016/j.technovation.2012.03.005

Coccia M. 2015. General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development, Technology in Society, vol. 42, August, pp. 199-226, http://doi.org/10.1016/j.techsoc.2015.05.008

Coccia M. 2017. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System, Technological Forecasting & Social Change, vol. 116 (March), pp. 331-339. https://doi.org/10.1016/j.techfore.2016.05.019

Coccia M. 2017a Varieties of capitalism’s theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances. Int. J. Public Sector Performance Management, Vol. 3, No. 2, pp. 148–168. https://doi.org/10.1504/IJPSPM.2017.084672

Coccia M. 2018. General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology, Scientometrics, vol. 117, n. 2, pp. 1265-1283, https://doi.org/10.1007/s11192-018-2902-8

Coccia M. 2018a. Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations, The Journal of Technology Transfer, vol. 43, n. 3, pp. 792-814, 10.1007/s10961-017-9572-1, https://doi.org/10.1007/s10961-017-9572-1

Coccia M. 2019. Why do nations produce science advances and new technology? Technology in society, vol. 59, November, 101124, pp. 1-9, https://doi.org/10.1016/j.techsoc.2019.03.007

Coccia M. 2020. The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics, Scientometrics, 124, 451–487. https://doi.org/10.1007/s11192-020-03464-y

Coccia M. 2020a. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID, Science of the Total Environment, volume, 729, Article Number: 138474, STOTEN_138474, PII S0048-9697(20)31987-2, 20-APR-2020, https://doi.org/10.1016/j.scitotenv.2020.138474
Coccia M. 2021. Comparative Critical Decisions in Management. In: Farazmand A. (eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer Nature Switzerland AG 2020, Springer, Cham. https://doi.org/10.1007/978-3-319-31816-5_3969-1

Coccia M. 2021a. The relation between length of lockdown, numbers of infected people and deaths of Covid-19, and economic growth of countries: Lessons learned to cope with future pandemics similar to Covid-19. Science of The Total Environment, vol. 775, article number 145801, Available online 12 February 2021. https://doi.org/10.1016/j.scitotenv.2021.145801

Coccia M., Bellitto M. 2018. Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, vol. 5, n. 2, pp. 160-178, http://dx.doi.org/10.1453/jest.v5i2.1649

Coccia M., Bozeman B. 2016. Allometric models to measure and analyze the evolution of international research collaboration. Scientometrics, vol. 108, n. 3, pp. 1065-1084.

Coccia M., Wang L. 2016. Evolution and convergence of the patterns of international scientific collaboration, Proceedings of the National Academy of Sciences of the United States of America, February 23, vol. 113, n. 8, pp. 2057-2061, www.pnas.org/cgi/doi/10.1073/pnas.1510820113

De Roeck A. 2016, The probability of discovery, Technol. Forecast. Soc. Change 112, pp. 13-19, DOI: 10.1016/j.techfore.2016.04.020

Decramer M., Cooper C. B. 2010. Treatment of COPD: the sooner the better? Thorax; 65:837e841. doi:10.1136/thx.2009.133355

del Rio-Chanona RM, Mealy P, Pichler A, Lafond F, Farmer D. 2020. Supply and demand shocks in the COVID-19 pandemic: An industry and occupation perspective; 2020. Available from: http://arxiv.org/abs/2004.06759.

Di Girolamo, N., Meursinge Reynders, R. 2020. Characteristics of scientific articles on COVID-19 published during the initial 3 months of the pandemic. Scientometrics 125, 795–812 (2020). https://doi.org/10.1007/s11192-020-03632-0

Dos Santos W. G. 2020. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 129, 110493. https://doi.org/10.1016/j.biopha.2020.110493

Ebadi A., Xi P., Tremblay, S., Spencer, B., Pall, R., & Wong, A. (2020). Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing. Scientometrics, 1–15. Advance online publication. https://doi.org/10.1007/s11192-020-03744-7

Fanelli D., Glänzel W. 2013. Bibliometric evidence for a hierarchy of the sciences. PLoSONE, vol. 8, n. 6, e66938. doi: 10.1371/journal.pone.0066938

Fortunato S., Bergstrom C. T., Börner K., Evans J. A., Helbing D., Milojević, S., Petersen A. M., Radicchi F., Sinatra R., Uuzzi B., Vespignani A., Waltman L., Wang D., Barabási A.-L. 2018. Science of science. Science, vol. 359, n. 6379, DOI: 10.1126/science.aaao185

Gibbons M., Limoges C., Nowotny H., Schwatzman S., Scott P., Trow M. 1994. The New Production of Knowledge: the dynamics of science and research in contemporary society. Sage Publications, London.

Guerrieri V., Lorenzoni G., Straub L., Werning I. 2020. Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages? National Bureau of Economic Research Working Paper Series. 2020;53(9):1689–1699 doi:10.3386/w26918.

Haghani M., Bliemer M. 2020. Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCoV literature. Scientometrics, 1–32. Advance online publication. https://doi.org/10.1007/s11192-020-03706-z

Halbert R.J., Natoli J.L., Gano A., Badamgarav E., Buist A.S., Mannino D.M. 2006. Global burden of COPD: systematic review and meta-analysis, Eur. Respir. J. 28, 523–532.

Heaton P. M. 2020. The Covid-19 Vaccine-Development Multiverse. The New England journal of medicine, 383(20), 1986–1988. https://doi.org/10.1056/NEJMe2025111
Additional readings

Ardito L., Coccia M., Messeni Petruzzelli A. 2021. Technological exaptation and crisis management: Evidence from COVID-19 outbreaks. R&D Management, https://doi.org/10.1111/radm.12455

Calabrese G., Coccia M., Rolfo S. 2005. Strategy and market management of new product development: evidence from Italian SMEs. International Journal of Product Development, vol. 2, n. 1-2, pp. 170-189. https://doi.org/10.1504/IJPDI.2005.006675

Coccia M. 2003. Metrics of R&D performance and management of public research institute, Proceedings of IEEE- IEMC 03, Piscataway, pp. 231-236 – ISBN: 0-7803-8150-5

Coccia M. 2005. A taxonomy of public research bodies: a systemic approach, Prometheus –The journal of issues in technological change. Innovation. Information economics, communications and science policy, vol. 23, n. 1, pp. 63-82. https://doi.org/10.1080/0810902042000331322

Coccia M. 2005a. Countries metrics: valutazione della performance economica e tecnologica dei paesi e posizionamento dell’Italia, Rivista Internazionale di Scienze Sociali, vol. CXIII, n. 3, pp. 377-412. Stable URL: http://www.jstor.org/stable/41624216

Coccia M. 2005b. Measuring Intensity of technological change: The seismic approach, Technological Forecasting & Social Change, vol. 72, n. 2, pp. 117-144. https://doi.org/10.1016/j.techfore.2004.01.004

Coccia M. 2005c. Metrics to measure the technology transfer absorption: analysis of the relationship between institutes and adopters in northern Italy. International Journal of Technology Transfer and Commercialization, vol. 4, n. 4, pp. 462-486. https://doi.org/10.1504/IJTTC.2005.006699

Coccia M. 2006. Analysis and classification of public research institutes, World Review of Science, Technology and Sustainable Development, vol. 3, n. 1, pp.1-16. https://doi.org/10.1504/WRSTSD.2006.008759

Coccia M. 2007. A new taxonomy of country performance and risk based on economic and technological indicators, Journal of Applied Economics, vol. 10, n. 1, pp. 29-42. https://doi.org/10.1080/15140326.2007.12040480

Coccia M. 2008. Measuring scientific performance of public research units for strategic change. Journal of Informetrics, vol. 2, n. 3, pp. 183-194. https://doi.org/10.1016/j.joi.2008.04.001

Coccia M. 2008a. New organizational behaviour of public research institutions: Lessons learned from Italian case study. International Journal of Business Innovation and Research, vol. 2, n. 4, pp. 402-419. https://doi.org/10.1504/IJBIR.2008.018589

Coccia M. 2009. A new approach for measuring and analyzing patterns of regional economic growth: empirical analysis in Italy, Italian Journal of Regional Science- Scienze Regionali, vol. 8, n. 2, pp. 71-95. DOI: 10.3280/SCRE2009-002004

Coccia M. 2009a. Measuring the impact of sustainable technological innovation. International Journal of Technology Intelligence and Planning, vol. 5, n. 3, pp. 276-288. https://doi.org/10.1504/IJTIP.2009.026749

Coccia M. 2010. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita, Energy Policy, vol. 38, n. 3, pp. 1330-1339, DOI: 10.1016/j.enpol.2009.11.011.

Coccia M. 2010. Foresight of technological determinants and primary energy resources of future economic long waves. International Journal of Foresight and Innovation Policy, vol. 6, n. 4, pp. 225–232, https://doi.org/10.1504/IJFIP.2010.037468.

Coccia M. 2010b. Spatial patterns of technology transfer and measurement of its friction in the geo-economic space. International Journal of Technology Transfer and Commercialisation, vol. 9, n. 3, pp. 255-267. https://doi.org/10.1504/IJTTC.2010.030214

Coccia M. 2011. The interaction between public and private R&D expenditure and national productivity, Prometheus-Critical Studies in Innovation, vol.29, n. 2, pp.121-130.

Coccia M. 2012. Evolutionary growth of knowledge in path-breaking targeted therapies for lung cancer: radical innovations and structure of the new technological paradigm. International Journal of Behavioural and Healthcare Research, vol. 3, nos. 3-4, pp. 273-290. https://doi.org/10.1504/IJBHR.2012.051406
Coccia M. 2017a. Sources of disruptive technologies for industrial change. L’industria – Rivista di economia e politica industriale, vol. 38, n. 1, pp. 97-120, DOI: 10.1430/87140

Coccia M. 2017b. The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System, Technological Forecasting & Social Change, vol. 116 (March), pp. 331-339. https://doi.org/10.1016/j.techfore.2016.05.019

Coccia M. 2017c. Varieties of capitalism’s theory of innovation and a conceptual integration with leadership-oriented executives: the relation between typologies of executive, technological and socioeconomic performances. Int. J. Public Sector Performance Management, Vol. 3, No. 2, pp. 148–168. https://doi.org/10.1504/IJPSPM.2017.084672

Coccia M. 2017d. New directions in measurement of economic growth, development and under development, Journal of Economics and Political Economy, vol. 4, n. 4, pp. 382-395, http://dx.doi.org/10.1453/jepe.v4i4.1533

Coccia M. 2017e. Disruptive firms and industrial change, Journal of Economic and Social Thought, vol. 4, n. 4, pp. 437-450, http://dx.doi.org/10.1453/jest.v4i4.1511

Coccia M. 2018. Economic inequality can generate unhappiness that leads to violent crime in society. Int. J. Happiness and Development, Vol. 4, No. 1, pp.1–24. DOI: 10.1504/IJHD.2018.10011589

Coccia M. 2018a. Evolution of the economics of science in the Twenty Century. Journal of Economics, Library, 5(1), 65–84. https://doi.org/10.1453/jel.v5i1.1577.

Coccia M. 2018b. The origins of the economics of Innovation, Journal of Economic and Social Thought, vol. 5, n. 1, pp. 9-28, http://dx.doi.org/10.1453/jest.v5i1.1574

Coccia M. 2018c. An introduction to the theories of institutional change, Journal of Economics Library, vol. 5, n. 4, pp. 337-344, http://dx.doi.org/10.1453/jel.v5i4.1788

Coccia M. 2018d. Disruptive firms and technological change, Quaderni ICRCES-CNR, vol., 3, n. 1, pp. 3-18, http://dx.doi.org/10.23760/2499-6661.2018.001

Coccia M. 2018e. General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology, Scientometrics, vol. 117, n. 2, pp. 1265-1283, https://doi.org/10.1007/s11192-018-2902-8

Coccia M. 2018f. Theorem of not independence of any technological innovation, Journal of Economics, vol. 5, n. 1, pp. 29-35. http://dx.doi.org/10.1453/jeb.v5i1.1578

Coccia M. 2018g. An introduction to the methods of inquiry in social sciences, Journal of Social and Administrative Sciences, vol. 5, n. 2, pp. 116-126, http://dx.doi.org/10.1453/jsas.v5i2.1651.

Coccia M. 2018h. World-System Theory: A sociopolitical approach to explain World economic development in a capitalistic economy, Journal of Economics and Political Economy, vol. 5, n. 4, pp. 459-465, http://dx.doi.org/10.1453/jep.v5i4.1787

Coccia M. 2018i. Motivations of scientific research in society, Journal of Social and Administrative Sciences, vol. 5, n. 3, pp. 196-216. http://dx.doi.org/10.1453/jsas.v5i3.1680

Coccia M. 2019. Comparative Institutional Changes. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, ISBN: 978-3-319-20927-2, https://doi.org/10.1007/978-3-319-31816-5_1277-1

Coccia M. 2019a. The Role of Superpowers in Conflict Development and Resolutions. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, Print ISBN: 978-3-319-20927-2, https://doi.org/10.1007/978-3-319-31816-5_3709-1

Coccia M. 2019b. A Theory of classification and evolution of technologies within a Generalized Darwinism, Technology Analysis & Strategic Management, vol. 31, n. 5, pp. 517-531, http://dx.doi.org/10.1080/09537325.2018.1523385

Coccia M. 2019c. Comparative Incentive Systems. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, https://doi.org/10.1007/978-3-319-31816-5_3706-1
Coccia M. 2019d. Revolution: Characteristics, taxonomies and situational causes, Journal of Economic and Social Thought, vol. 6, no. 1, pp. 48-56, http://dx.doi.org/10.1453/jest.v6i1.1790

Coccia M. 2019e. Revolutions and Evolutions. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, ISBN: 978-3-319-20927-2, https://doi.org/10.1007/978-3-319-31816-5_3708-1

Coccia M. 2019f. The theory of technological parasitism for the measurement of the evolution of technology and technological forecasting, Technological Forecasting and Social Change, vol. 141, pp. 289-304, https://doi.org/10.1016/j.techfore.2018.12.012

Coccia M. 2019g. Theories of Self-determination. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, Print ISBN: 978-3-319-20927-2, https://doi.org/10.1007/978-3-319-31816-5_3710-1.

Coccia M. 2019h. Why do nations produce science advances and new technology? Technology in Society, vol. 59, November, 101124, pp. 1-9, https://doi.org/10.1016/j.techsoc.2019.03.007

Coccia M. 2019i. Metabolism of public organizations: A case study, Journal of Social and Administrative Sciences, vol. 6, no. 1, pp. 1-9, http://dx.doi.org/10.1453/jsas.v6i1.1793

Coccia M. 2019j. Theories of Development. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, ISBN: 978-3-319-20927-2, https://doi.org/10.1007/978-3-319-31816-5_939-1

Coccia M. 2019k. Comparative World-Systems Theories. A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer Nature Switzerland AG, ISBN: 978-3-319-20927-2, https://doi.org/10.1007/978-3-319-31816-5_3705-1

Coccia M. 2020. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Science of The Total Environment, vol. 729, n.138474, https://doi.org/10.1016/j.scitotenv.2020.138474.

Coccia M. 2020a. An index to quantify environmental risk of exposure to future epidemics of the COVID-19 and similar viral agents: Theory and Practice. Environmental Research, volume 191, December, Article number 110155. https://doi.org/10.1016/j.envres.2020.110155

Coccia M. 2020b. Critical decision in crisis management: Rational strategies of decision making. Journal of Economics Library, vol. 7., n. 2, pp. 81-96. http://dx.doi.org/10.1453/jel.v7i2.2049

Coccia M. 2020c. How (Un)sustainable Environments are Related to the Diffusion of COVID-19: The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy. Sustainability 2020, 12, 9709; doi:10.3390/su12229709

Coccia M. 2020d. Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, vol. 60, February, pp. 1-11, https://doi.org/10.1016/j.techsoc.2019.101198

Coccia M. 2020e. How do environmental, demographic, and geographical factors influence the spread of Covid-19. Journal of Social and Administrative Sciences, vol. 7, n. 3, pp. 169-209. http://dx.doi.org/10.1453/jsas.v7i3.2018

Coccia M. 2020f. Critical decision in crisis management: Rational strategies of decision making. Journal of Economics Library, vol. 7., n. 2, pp. 81-96. http://dx.doi.org/10.1453/jel.v7i2.2049

Coccia M. 2020g. Comparative Concepts of Technology for Strategic Management. In: Farazmand A. (eds), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer Nature Switzerland AG 2020, Springer, Cham. https://doi.org/10.1007/978-3-319-31816-5_3970-1

Coccia M. 2020h. Fishbone diagram for technological analysis and foresight. Int. J. Foresight and Innovation Policy, Vol. 14, Nos. 2/3/4, pp. 225-247. DOI: 10.1504/IJFIP.2020.111221

Coccia M. 2020i. Asymmetry of the technological cycle of disruptive innovations. Technology Analysis & Strategic Management, vol. 32, n. 12, p. 1462-1477. https://doi.org/10.1080/09537325.2020.1785415
Coccia M. 2021m. Evolution of technology in replacement of heart valves: transcatheter aortic valves, a revolution, Health Policy and Technology, vol. 10, Article number 100512, PII S2211-8837(21)00035-6, https://doi.org/10.1016/j.hlpt.2021.100512

Coccia M. 2021n. The birth of the research field of COVID-19: factors determining the evolution supporting discoveries and technological paradigm shift with new mRNA vaccines, Working Paper CocciaLab n. 59/2021, CNR -- National Research Council of Italy. Available at SSRN: https://ssrn.com/abstract=3766882

Coccia M., Bellitto M. 2018. Human progress and its socioeconomic effects in society, Journal of Economic and Social Thought, vol. 5, n. 2, pp. 160-178, http://dx.doi.org/10.1453/jest.v5i2.1649

Coccia M., Benati I. 2018. Comparative Evaluation Systems, A. Farazmand (ed.), Global Encyclopedia of Public Administration, Public Policy, and Governance, Springer International Publishing AG, part of Springer Nature, https://doi.org/10.1007/978-3-319-31816-5_1210-1

Coccia M., Cadario E. 2014. Organisational (un)learning of public research labs in turbulent context. International Journal of Innovation and Learning, vol. 15, n. 2, pp.115-129, https://doi.org/10.1504/IJIL.2014.059756

Coccia M., Falavigna G., Manello A. 2015. The impact of hybrid public and market-oriented financing mechanisms on scientific portfolio and performances of public research labs: a scientometric analysis, Scientometrics, vol. 102, n. 1, pp. 151-168, https://doi.org/10.1007/s11192-014-1427-z

Coccia M., Finardi U. 2012. Emerging nanotechnological research for future pathway of biomedicine. International Journal of Biomedical nanoscience and nanotechnology, vol. 2, nos. 3-4, pp. 299-317. DOI: 10.1504/IJBNN.2012.051223

Coccia M., Finardi U. 2013. New technological trajectories of non-thermal plasma technology in medicine. Int. J. Biomedical Engineering and Technology, vol. 11, n. 4, pp. 337-356, DOI: 10.1504/IJBET.2013.055665

Coccia M., Rolfo S. 2008. Strategic change of public research units in their scientific activity, Technovation, vol. 28, n. 8, pp. 485-494. https://doi.org/10.1016/j.technovation.2008.02.005

Coccia M., Rolfo S. 2009. Project management in public research organization: strategic change in complex scenarios. International Journal of Project Organisation and Management, vol. 1, n. 3, pp. 235-252. https://doi.org/10.1504/IJPOM.2009.027537

Coccia M., Wang L. 2015. Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy, Technological Forecasting & Social Change, 94(May):155–169. https://doi.org/10.1016/j.techfore.2014.09.007

Coccia M., Watts J. 2020. A theory of the evolution of technology: technological parasitism and the implications for innovation management, Journal of Engineering and Technology Management, vol. 55, 101552, https://doi.org/10.1016/j.jengtecman.2019.11.003