Article Type:
Research Paper

Original Title of Article:
Design thinking: Opinions and experiences of middle school students

Turkish Title of Article:
Tasarım odaklı düşünme: Ortaokul öğrencilerinin görüş ve deneyimleri

Author(s):
Ayşe ÇİFTÇİ, Mustafa Sami TOPÇU

For Cite in:
Çiftçi, A. & Topçu, M. S. (2020). Design thinking: Opinions and experiences of middle school students. Pegem Eğitim ve Öğretim Dergisi, 10(3), 961-1000. http://dx.doi.org/10.14527/pegegog.2020.030

Makale Türü:
Özgün Makale

Orijinal Makale Başlığı:
Design thinking: Opinions and experiences of middle school students

Makalenin Türkçe Başlığı:
Tasarım odaklı düşünme: Ortaokul öğrencilerinin görüş ve deneyimleri

Yazar(lar):
Ayşe ÇİFTÇİ, Mustafa Sami TOPÇU

Kaynak Gösterimi İçin:
Çiftçi, A. & Topçu, M. S. (2020). Design thinking: Opinions and experiences of middle school students. Pegem Eğitim ve Öğretim Dergisi, 10(3), 961-1000. http://dx.doi.org/10.14527/pegegog.2020.030
Design thinking: Opinions and experiences of middle school students

Ayşe ÇİFTÇİ *a, Mustafa Sami TOPÇU **b

*a Muş Alparslan University, Faculty of Education, Muş/Turkey
**b Yıldız Technical University, Faculty of Education, İstanbul /Turkey

Abstract

The aim of the present research is to examine the opinions and experiences of 7th grade students towards design thinking. In this context, activities for design thinking about energy transformations included in the science curriculum were conducted for four weeks. Phenomenology method, one of the qualitative research methods, was used in the study carried out with thirty-six 7th grade students. The students' opinions about design thinking were obtained through open-ended questions and their experiences through diaries. Content analysis method was used to analyse the data collected from the open-ended questionnaire and the student diaries. In line with the students' views on design thinking, 7 themes emerged: Contributions of design thinking, difficulties encountered in the implementation of design thinking, difficulty level of design thinking stages, getting support during the implementation of design thinking, degree of appreciation of design thinking stages, spending time for design thinking activities in the future and participating in design thinking activities outside of school. As a result of the analysis of the diaries, three themes emerged: learning, satisfaction and criticism. It is thought that the opinions and experiences of middle school students towards design thinking will contribute to the design of learning environments in a more qualified way.

Keywords: Design thinking, Middle school students, Opinion, Experience.
Introduction

Today, students are expected to have the necessary skills to solve problems that they may encounter in the 21st century. Thus, educational politicians and researchers update educational and training activities of their countries in line with these expectations. Accordingly, in addition to traditional teaching methods in classroom settings, importance is attached to the application of innovative educational approaches that will ensure students' success in the 21st century. One of the innovative approaches is design thinking. Design thinking is a 21st century learning approach which promotes a prototype-driven innovation process, is human-centred, and is based on problem solving (Aflatoony, 2015; Carroll, 2015). In other words, design thinking can be interpreted as a student-centred and problem-solving approach encouraging an object- or service- (prototype) oriented innovation process that users can interact with.

In the literature, it is emphasized that design thinking develops the 21st century skills (problem solving, communication, cooperation, etc.) and enables students to be successful in the 21st century (Aflatoony & Wakkary, 2015; Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Lor, 2017; Retna, 2016; Rotherham & Willingham, 2009). Students' science content knowledge (Cook & Bush, 2018; Fortus, Dershimer, Krajcik, Marx & Mamlok Naaman, 2004; Kolodner et al., 2003; Kwek, 2011; Vest, 2006) and their conceptual understanding in mathematics subjects (Painter, 2018; Cook & Bush, 2018; Vest, 2006), support for improvement, promoting creative thinking and generating ideas (Lugmayr, 2011) are also included in the outcomes of design thinking. In this context, it can be said that design thinking approach has many positive effects on students. Therefore, it can be stated that importance should be attached to the application of design thinking approach in learning environments and to that students gain experience through this approach.

Aflatoony and Wakkary (2015) emphasize that design thinking practices should be applied before university level. Therefore, it should be emphasized that design thinking should be applied starting from a young age (Cook & Bush, 2018; Mentzer, Becker & Suttona, 2015). However, since the implementation of design thinking in education has only been given importance in recent years (Lor, 2017), there are very few studies on the implementation of design thinking in education (Razzouk & Shute, 2012). It is observed that studies on the subject generally focus on the effect of design thinking on the 21st century skills such as creativity and innovation, communication and cooperation (Aflatoony, Wakkary & Neustaedter, 2018; Anderson, 2012; Carroll, Goldman, Britos, Koh, Royalty ve Hornstein, 2010), and teachers' perceptions, views and experiences towards the application of design thinking (Aflatoony & Wakkary, 2015; Painter, 2018; Retna, 2016). However, in the literature on the subject, no research examining the views and experiences of middle school students towards the design thinking approach has been found. Therefore, it can be stated that examining the opinions and experiences of middle school students towards design thinking is significant in that it contributes to designing learning environments in a more qualified manner. In line with the reasons stated above, in the current research, a module for design thinking about energy transformations, which appears in the science curriculum, was developed and applied to 7th grade students. During the application process, two research questions were examined:

1) What are the opinions of middle school students towards design thinking?
2) What are the experiences of middle school students towards design thinking?

Design Thinking

Today, less time is devoted to practices that improve students' creativity, and instead, more emphasis is placed on teaching content through implementing traditional teaching methods (Canestraro, 2017). In order to support the training of students who can produce new ideas, student-centred innovative educational approaches should be replaced with traditional teaching methods. One of these innovative educational approaches is design thinking. The concept of design thinking was first introduced by Peter G. Rowe in 1987 in the book called "Design Thinking" (Aflatoony, 2015; Dorst, 2011). Design thinking is a human-centred approach that enables to establish empathy about how
problems affect people, to produce new solutions to these problems, to visualize ideas, and to test potential solutions through developing prototypes (Aflatoony, 2015; Carroll, 2015; Chesson, 2017). According to Aflatoony and Wakkary (2015), design thinking is a problem-solving approach that promotes innovation by enhancing individuals' creativity and places emphasis on human-centred activities based on collaboration and empathy. The difference of design thinking from other problem-solving approaches is that it emphasizes solving the problem rather than revealing the cause of the problem (Chesson, 2017). Creativity, empathy, interdisciplinarity, real world and problem/project-oriented emphases are at the center of design thinking (Canestraro, 2017; Henriksen, 2017). Design thinking allows people to engage in analytical thinking and intuitive thinking (Henriksen, 2017). In addition, design thinking supports students' critical thinking, social development, development of team working skills and academic achievements (Girgin, 2019). In line with these contributions stated in the literature, it can be said that design thinking approach should be applied in education.

Design thinking approach is benefited in many areas such as health, politics, business world and marketing. Today, the application of design thinking is also given emphasis in education. Because design thinking also plays a key role in learning and teaching processes (Norton & Hathaway, 2015) and it serves as a guiding framework for teachers regarding interdisciplinary teaching practices (Henriksen, 2017). However, the number of studies on the implementation of design thinking in education is very low. One of these studies was conducted by Carroll et al. (2010). They applied design thinking activities to middle school students in their geography course. In their research, they revealed that design thinking enables students to develop their metacognitive skills, to express their own ideas more easily and to learn cooperatively. Besides, they found that thanks to prototype development, it provides such contributions as focusing on the lesson more quickly and being motivated. In another study, Lugmayr (2011) applied design thinking to encourage university students to come up with new ideas on media industries and media education. In his study, Lugmayr (2011) explains the practices he implemented regarding the course he had designed for design thinking. Aflatoony and Wakkary (2015), on the other hand, applied the design thinking curriculum they had developed to high school students. The findings obtained from their interviews with 5 teachers and 39 students indicated that it is beneficial to apply design thinking to students, and that they enable students to make more thoughtful decisions in solving the problems they encounter in daily life. Moreover, their findings showed that performing an interactive and visual-based instruction instead of explaining phenomena verbally would help students fulfill the tasks they are assigned more quickly and effectively. In addition, they revealed that design thinking enables students to transfer the knowledge they gained to different contexts (Aflatoony & Wakkary, 2015).

In the research carried out by Painter (2018), teachers' perceptions about the application of design thinking in mathematics lessons in middle school were examined. The teachers stated that design thinking enables students to learn mathematics topics and applications more effectively. In line with the results obtained in these studies in the literature (Aflatoony & Wakkary, 2015; Carroll et al., 2010; Lugmayr, 2011; Painter, 2018), it can be said that the application of design thinking in learning environments has many contributions. However, there are some difficulties in implementing design thinking. For example, learning and teaching tools and curricula need to be developed in order to implement design thinking (Canestraro, 2017; Philloton & Miller, 2011). In addition, teacher training should be given importance in order to implement the design thinking approach and to overcome the difficulties in applying this approach (Carroll, 2014; Kwek, 2011). In this context, a module for the implementation of design thinking was developed in the current research. Afterwards, a science teacher, who volunteered to receive training on design thinking and to teach participants, was provided training. The science teacher applied this module, which had been developed regarding energy transformations, to 7th grade students.
In the current research, Stanford d.school design thinking model was used as a pedagogical framework in the process of applying the design thinking approach. Because this model provides students with a continuous iteration process between different stages to improve their end products. The stages in this model are shown in Figure 1 and explained in detail below.

Figure 1. Stanford d.school design thinking model (Taken from https://dschool.stanford.edu/).

Stages of design thinking (Carroll, 2015):

1. **Empathize**: At the empathy stage, what people need is determined through interviews and observation.
2. **Define**: In the defining stage, emphasis is placed on framing the problem and expressing an applicable problem statement.
3. **Ideate**: At this stage, the focus is on generating ideas for the solution of the problem. Emphasis is placed on generating various ideas.
4. **Prototype**: Prototype development is the 4th stage of design thinking. The prototype can be an object or service that users can interact with.
5. **Test**: It is the last stage of design thinking. At this stage, users test their prototypes. In addition, this stage allows the product to be improved in line with the opinions of users.

In the present research, the empathize, define, ideate, prototype and test steps of the Stanford d.school design thinking model, which are described above, were followed.

Method

Research Design

In the present study, qualitative research method was used in order to get more in-depth insight into the opinions and experiences of middle school students towards design thinking (Strauss & Corbin, 1998). Being one of the qualitative research methods, the phenomenology method was adopted. The purpose of the phenomenology method is to examine participants’ experiences, perceptions regarding a phenomenon and the meanings they attribute to this phenomenon in detail (Savin-Baden & Major, 2013; Yıldırım & Şimşek, 2016). Experience is a basic concept in phenomenological research and no phenomena can be isolated from experience (Baş & Akturan, 2013). In this context, in the current study, middle school students were enabled to experience the design thinking approach and their views and experiences regarding the process of living this phenomenon were examined according to phenomenological research. Similarly, in the literature, there are studies that use the phenomenology research method, where participants are provided with the experience related to a phenomenon and then their experiences about that phenomenon are examined. For example; Yuksel-Arslan, Yildirim and Robin (2016) also carried out a workshop on “digital storytelling” with teachers in their phenomenology study. After this workshop, they examined the experiences of the teachers. Similarly, Kabilan (2013) and Preciado-Babb, Metz and Marcotte (2013) also carried out professional development programs primarily in their research designed as phenomenology.
Participants

The participants of the study were thirty-six 7th grade students who were studying in the east part of Turkey during the fall semester of the 2018-2019 academic year. These students did not previously receive any education on design thinking. In addition, the students did not learn about energy transformations in the lower grade levels. 13 of the students were girls and 23 were boys. The age range of the students was between 11 and 14 years old. In the study, the real names of the students were not given and codes such as S1, S2, S3, ... were employed instead.

A science teacher carried out the design thinking activities. The teacher had not previously received any training on design thinking, and volunteered to receive and provide training on the subject. In this context, the teacher was provided training on the definition and characteristics of design thinking, and on Stanford d.school design thinking model for two days a week for 4 weeks, 3 hours a day, and sample activities for design thinking were carried out with the teacher. The teacher was male and 33 years old at the time. He has been a science teacher for 7 years.

Research Context

Within the scope of the current research, a module based on design thinking about energy transformations, which is a subunit of the ‘Force and Energy’ unit, was developed. The module was developed in line with the outcomes appearing in the Science Course Curriculum, which had been updated by the Ministry of National Education (MoNE) in 2018. The outcomes regarding the subject of energy transformations are as follows:

1- Students classify energy as kinetic and potential energy by associating it with the concept of work.
2- Based on the transformation of kinetic and potential energy types into one another, they conclude that energy is conserved.
3- They explain the effect of friction force on kinetic energy with examples.
4- They realize the effect of air or water resistance in life.
5- They design a tool to reduce the impact of air or water resistance (MoNE 2018).

Stanford d.school design thinking model (Figure 1) was chosen while developing the module. Accordingly, the following 5 stages were followed: Empathize, define, ideate, prototype and test. In this context, 3 basic activities (my roller coaster, I am designing a car and adventure lovers) and exercises/warm-up activities based on these activities were developed. The activities were carried out as group work. 6 groups, each consisting of 6 students, were formed. The application process of the research lasted 4 weeks. Detailed information about the implementation process is given in the table below.

A design notebook for each activity was prepared so that the students could more easily follow the stages of the design thinking process (empathize, define, ideate, prototype, and test). The students filled in the design notebooks in groups. Accordingly, the students tried to understand their needs by empathizing with the characters in the scenarios. Then they clearly identified the problem according to the scenarios in their design books. Next, the students developed ideas to solve the problem and developed a prototype according to the idea they chose as a group (Figure 2). In the last stage, they tested their prototypes. In line with deficiencies identified during the testing stage, the students returned to the beginning and tried to improve their prototypes. As shown in Figure 2, the students designed a roller coaster, a car that could go fast on the road with and without friction to quickly rescue casualties, and a helicopter to rescue injured climbers stranded in the mountain. At the end of each activity, students were also provided with information about engineering branches and occupations involved in the development of the product within the scope of the activity. In order to explain how the activities were carried out in more detail, the activity ‘I am designing a car’, which was carried out within the scope of the research, is provided in Appendix-1. In addition, the template used while developing the design thinking activities is given in Table 2.
Table 1.
Lessons and Activities.

Lessons	Activities
Lessons 1 & 2 (80 min)	• Presenting and explaining Design Thinking and its stages
	• Defining the concepts of energy, potential energy, kinetic energy and energy transformation with examples from daily life
	• Implementation of warm-up activities for the activity 'My Roller Coaster'
	• Journal writing
Lessons 3 & 4 (80 min)	• Defining the concepts of energy, potential energy, kinetic energy and energy transformation with examples from daily life
	• Implementation of warm-up activities for the activity 'My Roller Coaster'
	• Journal writing
Lessons 5 & 6 (80 min)	• Making and testing designs within the scope of the activity 'My Roller Coaster'
	• Journal writing
Lessons 7 & 8 (80 min)	• The explanation of friction force and its effect on kinetic energy with examples from daily life
	• Implementation of warm-up activities for the activity 'I am Designing a Car'
	• Journal writing
Lessons 9 & 10 (80 min)	• Making and testing designs within the scope of the activity 'I am Designing a Car'
	• Journal writing
Lessons 11 & 12 (80 min)	• Defining the concepts of air resistance and water resistance with examples from daily life
	• Implementation of warm-up activities for the activity 'Adventure Lovers'
	• Journal writing
Lessons 13 & 14 (80 min)	• Making and testing designs within the scope of the activity 'Adventure Lovers'
	• Journal writing
Lesson 15 (40 min)	• Students respond to the assessment tool consisting of open-ended questions to evaluate their views on design thinking

Table 2.
Design Thinking Activity Template.

Name of the activity
Class Level
Name of the Unit
Topic
Time
Scientific Concepts
Safety Precautions (if applicable)
Purpose and Brief Summary
Learning Outcomes
Material and Technical Hardware
Warm-up/Adaptation Activities
Scenario – Story
Design Thinking Process
• Empathize
• Define
• Ideate
• Prototype
• Test
Occupations Regarding the Activity
Key Questions
References
Figure 2. Pictures of students’ experiences.

Data Collection Tools

The data collection sources of the research were open-ended questionnaire and student diaries. The open-ended questionnaire was used to examine students’ views on design thinking. The student diaries were preferred to evaluate students’ experiences regarding design thinking. Detailed information about the data collection tools is provided below.

Open-ended questionnaire: In this form, there were 8 structured questions about design thinking. In the process of preparing these questions, the literature on design thinking was reviewed. After the questions were prepared, expert opinions were received from a faculty member who is an expert in design thinking and another faculty member who is an expert in Turkish Language and Literature. The questions were finalized in line with the opinions, criticisms and suggestions received from these experts. The questions in the form are given below:

1- Do you like the design thinking approach? Why?
2- In what ways has design thinking provided contributions/benefits? Please explain.
3- Have there been any negative aspects of design thinking? If so, what are they?
4- In which stage of design thinking have you had the biggest challenge? Why?
5- What did you do when you had difficulty? Please explain.
6- Which stage of design thinking do you like the most? Why?
7- Would you like to spare time for design thinking in the future?
8- Would you like to participate in design thinking outside of school?

Student diaries: Student diaries are different from design notebooks and have been used for data collection. Design notebooks were used only to facilitate the implementation of the activities and to make it easier for the students to follow the activity stages. As stated in Table 1, the students were asked to write their experiences related to the activity carried out that day in their diaries in the last 10 minutes of the lesson in accordance with the below mentioned criteria:
What did you do and what did you notice while conducting these activities?
How did you feel about the activities you did?
What did you learn?
What are your suggestions and criticisms?

Data Collection

The open-ended questionnaire was distributed to the students after the module developed for energy transformations and intended for design thinking was carried out, that is, at the end of the 4-week application process. Before the forms were distributed to the students, they were told that it was important to volunteer to fill in the form and they were free to fill in the form or not. 2 students did not fill in the open-ended questionnaire because they did not volunteer. The students filled in the open-ended questionnaire in one lesson, in other words, in 40 minutes. In addition, the students wrote their experiences in their diaries after the activity ended every week. To this end, students were given 10 minutes each week.

Data Analysis

Within the scope of the research, content analysis method was utilized to analyse the data obtained from both the open-ended questionnaire and the student diaries. To this end, codes were created, these codes were grouped under certain categories and themes were revealed (Savin-Baden & Major, 2013; Yıldırım & Şimşek, 2016). 40.00% of the data obtained from the research was coded independently by the two researchers. In many studies in the literature, a certain part of the data is examined by another researcher and it is seen that this rate is below from 40.00%. For example, in Felton's study (2004), only 30.00% of the data was coded by two researchers for inter-coder reliability. In Forbes, Zangori and Schwarz's (2015) study, 10.00% of the data was examined, and in Zangori and Cole's (2019) study, the drawings of 6 students (16.00%) were examined by two researchers. In present research, inter-coder reliability was calculated with the formula ([Consensus / Consensus + Disagreement] * 100.00) developed by Miles and Huberman (1994). Accordingly, reliability among the coders was calculated as 91.00% for the data obtained from the open-ended questionnaire and 94.00% for the data obtained from the diaries. These values are sufficient values for inter-coder reliability. Because Miles, Huberman and Saldaña (2014) also suggest that an agreement between 85.00% and 90.00% should be reached between coders. In the areas where there was disagreement, the researchers discussed and compromised. Since compliance was achieved, the remaining data were analysed by the first author.

Findings

In the present study, students' opinions and experiences regarding design thinking were examined. Accordingly, the obtained data were evaluated through content analysis. The findings are discussed under two headings: Middle school students' opinions on design thinking and middle school students' experiences on design thinking.

Middle School Students' Opinions on Design Thinking

The students expressed their views on design thinking through the open-ended questionnaire they filled out. In line with the opinions of the students, 7 themes came into the picture: Contributions of design thinking, difficulties encountered during the implementation of design thinking, difficulty level of the design thinking stages, getting support during the implementation of design thinking, degree of appreciation of the design thinking stages, sparing time for design thinking activities in the future and participating in design thinking activities outside of school. 31 students stated that they liked the design thinking activities and 2 students said that they did not like these activities. One student did not express any opinion on this matter. The findings regarding the opinions of the students on the contributions of design thinking are given in Table 3 below.
As seen in Table 3, following categories of the contributions of design thinking emerged in line with the opinions of middle school students: Ensuring and facilitating learning, developing the 21st century skills, preparing for the future and the profession. Some of the students' opinions about the contributions of design thinking are given below.

I have learned to work as a group. I have learned to empathize. I have learned how to behave in the face of problems, how I can solve them, and my design skills have improved (S4).

I have learned about teamwork and an easy way to learn. We learn with fun thanks to these activities (S8).

I did not use to believe the idea of "I can do anything if I want to." However, I have learned here that this can be true, thanks to these activities. I think that a new perspective has come to my life thanks to this idea. In addition, my design skills have improved with these activities (S14).

Yes, these activities have contributed. Because I have become more curious. These activities make you curious to learn (S18).

I have learned the subject of energy transformations in science class. The saying 'Invention is the future of the people' may also contribute to learning lessons (S19).

These activities have taught us to think and generate ideas. In addition, our design skills have improved (S11).

16 students stated that they did not have any difficulties in the activities aimed at design thinking, and 2 students stated that they were neutral in this regard. The remaining 6 students stated that they only had difficulty, but did not mention what kind of difficulty they faced. The difficulties faced by the students during the implementation process of design thinking are detailed in Table 4.
As can be seen in Table 4, 3 categories emerged regarding the difficulties encountered in the implementation of the design thinking approach: Physical conditions, in-group responsibility and in-group communication. Some students' opinions about the difficulties encountered during the design thinking applications are cited below.

We have often discussed a lot about our ideas. We have argued about the distribution of our roles. We could not often understand each other because everybody was speaking at the same time (S9).

We could have carried out a better activity in a bigger and larger area. However, this does not mean that the activities are boring (S14).

Actually, there are not many negative aspects. Sometimes I just could not find the materials I imagined (S15).

Since we all had different thoughts, we could not understand each other (S30).

In Table 5, the findings regarding the stages in which the students had most difficulty in the design thinking approach are given.

In Table 5, it is seen that the students had most difficulty in developing prototypes (n=9) and then in following stages respectively: ideate (n=7), testing (n=6), empathy (n=5) and defining (n=4). Three students did not express any opinion on this matter. Some students' views on the subject are given below.

I have had most difficulty in empathy. Because it is very difficult to put ourselves in someone else’s shoes (S11).

I have had a hard time testing. Some shortcomings have appeared. We have constantly tried to fix and make them up (S14).

I have had a hard time generating ideas. Because it is very upsetting that some of the people in the group were designing without consulting any of us. Therefore, it was very bad. The problem of generating ideas has been one of the most important issues. That is why it happened (S20).

I have had a hard time developing prototypes. It has forced us to think about how to make and create a product. Because some ideas are needed. It is not possible when there is none (T21).

Table 4.
Opinions on Difficulties Encountered in the Application of Design Thinking.

Categories	Codes	Students	f
Physical Conditions	Lack of variety of material	S15	1
	Confined space for activities	S14	1
In-Group Responsibility	Experiencing problems in distribution of roles	S9	1
	Failure of group members to fulfil their responsibilities	S25	1
In-Group Communication	Having problems in communicating with group members	S1, S5, S22	3
	Everyone in the group talking at the same time	S9	1
	Failure to build consensus within the group	S4, S12, S30	3

Table 5.
Opinions on Difficulty Level of Design Thinking Stages.

Categories	Students	f
Empathize	S3, S11, S19, S25, S28	5
Define	S16, S24, S26, S33	4
Ideate	S4, S9, S17, S18, S20, S22, S23	7
Prototype	S2, S5, S6, S7, S15, S21, S30, S31, S32	9
Test	S1, S8, S10, S12, S14, S29	6
I have had a hard time defining the problem (T24).

In Table 6, the findings regarding the support that middle school students received when they had difficulties during the application process of the design thinking approach are given.

Table 6.
Opinions on Getting Support in the Application Process of Design Thinking.

Categories	Students	f
Getting Support from Group Friends	S1, S2, S3, S4, S5, S7, S8, S10, S11, S12, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S25, S26, S27, S28, S29, S30, S31, S32, S33	25
Getting Support From Teacher	S9, S14, S19, S21, S33	5
Getting No Support	S6, S13, S20, S24, S25, S32	6

In Table 6, it is seen that the students got support from their group friends (n = 25) and teachers (n = 5) or did not receive any support (n = 6) when they had difficulties during the activities based on design thinking. The opinions of the students regarding the support they received when they had problems are cited below.

I got support from my friends when I had difficulty. I asked my teacher and produced ideas (S19).

I have not done anything. Because my friends just asked me to bring stuff. They have not let me do anything (S20).

I produced ideas and got support from my friends when I had difficulties (S26).

In Table 7, the findings regarding which stages the students liked most in the design thinking approach are given.

Table 7.
Opinions on Degree of Appreciation of Design Thinking Stages.

Categories	Students	f
Empathize	S6, S12, S18	3
Define	S1, S8, S20	3
Ideate	S2, S5, S7, S10, S11, S17, S32	6
Prototype	S14, S17, S19, S22, S23, S26, S28, S29	8
Test	S3, S4, S9, S15, S16, S21, S25, S27, S30, S31, S33	11

In Table 7, it is seen that the students liked the testing (n=11) stage most and it is followed by the prototype development (n=8) and ideate (n=6) stages respectively. Besides, it was revealed that they liked the empathy (n=3) and defining (n=3) stages equally. However, three students did not comment on the degree of appreciation of the stages of the design thinking approach. Below are examples of the students' views on which stages they liked most in the design thinking approach.

I have really liked producing ideas. Because we find common ideas and produce ideas in group and it is very fun (S2).

I like testing. Because we have learned and observed how the design we made was and how it worked (S4).

I like empathy. Because, by putting ourselves in each other’s shoes, we bring out the best design (S6).

I have really liked developing prototypes. Because we test ourselves on product creation. We get to know how we design and ourselves (S17).

I like identifying the problem. Because if we comprehend the problem well, the invention becomes the best (S20).

The findings obtained from the opinions of the students to spare time to activities for design thinking in the future are presented in Table 8.
Table 8.
Opinions on Sparing Time to Design Thinking Activities in the Future.

Categories	Students	f
Yes	S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S31, S33	28
No	S2, S30, S32	3
Neutral	S13, S29	2

In Table 8, it is seen that 28 students would like to spare time to design thinking activities in the future, 3 would not like to spare time and 2 are neutral. On the other hand, one student did not comment on spending time on design thinking activities in the future. Some of the students' views on sparing time to design thinking activities in the future are cited below.

Yes. Because I want to be an engineer when I grow up (S18).
No. I do not want to spare time (S2).
Yes, I would like to spare time. Because science and invention are the best things. They are the future of the people (S20).
Yes, because doing activities has never been this fun (S33).

In Table 9, the findings regarding participating in design thinking activities outside of school are provided.

Table 9.
Opinions on Participation in Design Thinking Activities outside of School.

Categories	Students	f
Yes	S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S14, S15, S16, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S31, S32, S33	28
No	S13, S18	2
Neutral	S17, S29, S30	3

When Table 9 is examined, it is seen that 28 students would like to participate in design thinking activities outside of school, 3 are neutral and 2 would not like to participate. On the other hand, one student did not comment on spending time on design thinking activities in the future. The students' views about participating in design thinking activities outside of school are cited below.

Yes, I would like to participate outside of school. Because these activities are very funny and make me think (S15).
I would definitely like to participate. Because I know the activities are funny (S33).
I am neutral (S29).
No, I would not like to participate outside of school (S13).

Middle School Students’ Experiences on Design Thinking

The students expressed their experiences on design thinking through diaries. As a result of the analysis of the data obtained from the diaries, 3 themes related to the students' experiences of design thinking were found out: Learning, satisfaction and criticism (Figure 3).

As seen in Figure 3, 3 themes emerged as a result of evaluating the student diaries through the content analysis method: Learning, satisfaction and criticism. The findings related to these themes and the categories under these themes are discussed in detail below. The findings regarding the learning theme are given in Table 10.
There are 4 categories for the learning theme: Learning the subject of energy transformations (n=8), learning group work (n=7), learning the causes of success and failure (n=17) and learning to struggle (n=6). Students coded as S3, S6, S7, S9, S12, S15, S22, S27, S28, S30 and S34 did not express any opinion on the theme of learning. The students stated in their diaries that they learned the subject of energy transformations, they had not been accustomed to group work before, and that they learned group work thanks to design thinking activities. In addition, the students stated in their diaries that they did not give up when their design failed and they tried to improve their designs, so they learned to struggle. Students also made inferences about why their designs were successful or why they failed. Below are sample statements on this topic.

Dear diary, today we have designed a roller coaster with my teammates. We have failed a lot, but we have not given up hope. We were running out of time. We made trials in our last minutes. Just as we were about to run out of time, we made the last trial as a group and it worked out (S23). - Learning to Struggle

Today, we have tried to make a car called Canavar Kaos (Monster Chaos). It was not nice at first. We tried to design in the last moments. After completing it as a group, it was time to present "Monster Chaos". We eliminated 4 teams, but the group called Army Engineers was more successful and they came in first. Although we came in second, we learned about teamwork (S17). Learning Group Work

Dear diary, thanks to this project (My Roller Coaster), I learned to increase and decrease kinetic and potential energy. I learned the difference between kinetic and potential energy in a roller coaster example. I grasped the subject of energy transformations well. Our roller coaster also turned out well. We also made a loop after a peak (T29) - Learning Subject of Energy Transformations

One of the themes obtained in line with the statements from the students’ diaries is the theme of satisfaction. The findings regarding the theme of satisfaction are given in Table 11. When Table 11 is analysed, it is seen that 4 categories regarding the theme of satisfaction are revealed. These categories are as follows: Satisfaction with group (n = 9), satisfaction with activities (n = 6), satisfaction with
teacher (n = 7) and having fun (n = 20). Students coded as S4, S20, S22, S24, S26, S28, S30 and S32 did
not express any opinions about the theme of satisfaction. In Table 11, it is seen that the majority of
the students had fun during the implementation process of design thinking activities. In addition, it was
concluded that the students were satisfied with their group, the teacher and the activities. Some
students' views on the subject are cited below.

Table 11.
Findings Regarding Students' Satisfaction.

Categories	Students	f
Satisfaction with Group	S2, S3, S8, S12, S13, S14, S19, S25, S27	9
Satisfaction with Activities	S9, S11, S14, S16, S18, S33	6
Satisfaction with Teacher	S9, S14, S16, S17, S21, S33, S29	7
Having Fun	S1, S3, S5, S6, S7, S8, S9, S10, S11, S12, S14, S15, S16, S17, S19, S23, S25, S29, S31, S33	20

I have enjoyed and had fun a lot today. We did a good job as a team. I would like to do it again. I
have learned how to make a roller coaster, I have learned a lot. I have had so much fun with my
friends. I thank my teammates very much. The lesson has been very good (S25). Satisfaction with
Group, Having Fun

Today, we have learned how to make a helicopter. I have really liked this activity. I am very satisfied
with my teacher. However, some of my group mates have not helped much and tried to make a horse
carriage (S29). Satisfaction with Teacher

Another theme obtained regarding the students' experiences of design thinking is the theme of
criticism. In Table 12, the findings regarding the theme of criticism are given in detail.

Table 12.
Findings Related to Students' Criticism.

Categories	Students	f
Criticisms against Group	S1, S5, S9, S10, S17, S18, S20, S28, S29, S30, S31, S33	12
Criticisms against Materials	S1, S3, S9, S14	4
Criticisms against Time Allocated for Activities	S2, S17, S30	3

When Table 12 is analysed, it is seen that the categories for the theme of criticism are as follows:
Criticisms against group (n=12), criticisms against materials (n=4) and criticisms against time allocated
for activities (n=3). Students coded as S4, S6, S7, S8, S11, S12, S13, S15, S16, S19, S21, S22, S23, S24, S25,
S26, S27, S32, S34 did not express any opinions within the scope of the criticism theme. Below are
example sentences for the experiences under the theme of criticism.

I was disturbed by my group friends not listening to me. As they did not listen to me, their designs
were not very good. As I said, I think 2 loops and 1 peak were enough. Security was not even provided
(T20). - Criticism against Group

I have not learned anything today. Because none of my teammates listens to each other. Everyone
designs something having a mind of their own. I think it would be better if we worked as a team. In
addition, I think very little time is allocated for activities (S17). Criticisms against Time Allocated for
Activities, Criticisms against Group

Today I have learned that if the propeller is a little shorter, it can float in the air longer. It would be
better if there were an engine in the helicopter. However, there is no engine (S14). Criticisms against
Materials

974
Discussion, Conclusion and Implications

In the current research, the module developed for design thinking about energy transformations was applied to 7th grade students by a science teacher. Within the scope of the research, the views and experiences of the students towards design thinking were examined.

As a result of the analysis of the opinions presented in the open-ended questionnaire, it was revealed that the majority of the students liked the activities for design thinking, they wanted to participate in design thinking activities outside of school and they wanted to spare time for such activities in the future. In line with the opinions of the students, it has been determined that design thinking has such contributions as ensuring and facilitating learning, developing the 21st century skills, preparing for the future and the profession. Similarly, it is stated in the literature that design thinking contributes to ensuring and facilitating learning (Aflatoony & Wakkary, 2015; Cook & Bush, 2018; Painter, 2018; Vest, 2006), developing the 21st century skills (Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Retna, 2016; Rotherham & Willingham, 2009), preparing for the future and the profession (Rotherham & Willingham, 2009). Although these studies in the literature (Aflatoony & Wakkary, 2015; Aflatoony et al., 2018; Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Painter, 2018; Retna, 2016; Rotherham & Willingham, 2009; Vest, 2006) support the findings obtained within the scope of the current research in terms of the contributions of design thinking, the current research expands this literature by examining middle school students’ views and experiences towards design thinking. For example, the study conducted by Aflatoony et al. (2018) on design thinking was carried out to examine the development of design thinking skills (problem solving, collaboration, and being human-centred) in high school students. Painter (2018) conducted her study to examine teachers’ perceptions about the application of design thinking approach in mathematics lessons at middle school level. Retna (2016), on the other hand, examined teachers’ experiences with design thinking in her study. Although there are differences between previous studies and the current research on the subject, the findings obtained within the scope of this research and the studies in the literature (Aflatoony & Wakkary, 2015; Aflatoony, Wakkary & Neustaedter, 2018; Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Painter, 2018; Retna, 2016; Rotherham & Willingham, 2009; Vest, 2006) support the idea that design thinking should be included in learning environments.

Within the scope of the theme of the difficulties that the students faced during the implementation of design thinking, the following categories were revealed: physical conditions (n = 2), in-group responsibility (n = 2) and in-group communication (n = 7). Similarly, it is observed in the literature that students experiencing problems among themselves while doing group work is one of the most common problems in the application of the design thinking approach (Aflatoony et al., 2018; Retna, 2016). Aflatoony et al. (2018) also stated that high school students have problems in group work and sharing roles in design thinking applications. The fact that students have problems in group work can be explained by that the middle school students in the classroom environment in our country mostly focus on preparing themselves for the high school entrance exams, and therefore, the group work is not given enough importance. For this reason, learning environments that can benefit from the outcomes of group teaching can be created by eliminating exam anxiety. It is observed that students criticize physical conditions mostly in terms of variety of materials and confined space for activities. The lack of variety of materials in the current research is related to the fact that this situation may bring some limitations in the design process. In other words, students are expected to make a design using materials given to them. The problem of confined space where the application is carried out can be solved by creating large learning environments so that activities can be performed effectively in schools. In addition, it was concluded that students receive support from their group friends and teachers when they have difficulties. It was found out that students mainly solve their problems by receiving support from their group friends. Similarly, Aflatoony et al. (2018) concluded that peer support and peer feedback are important in solving problems encountered during the implementation of design thinking. Therefore, more attention should be paid to group work in learning environments.
In addition, in the current research, it was revealed that the stages of prototype, ideate and testing are both the most challenging and the most favoured stages for the students. The reason why students have difficulties in the stages of prototype, ideate and testing is that these stages require higher level of thinking skills compared to empathy and defining stages. For example, in empathy, the needs of the individual are tried to be determined through observation and interview. In defining, the limits of the problem are determined. However, in the stages of ideate, prototype, and testing, the focus is on solving the problem rather than determining it. Because solving problems is a difficult process (Byun, Ha & Lee, 2008). The fact that students like the stages of ideate, prototype and testing most can be explained by that ideas turn into products and these products are tested in line with the needs of users within these stages. For example, the student coded S4 stated the following regarding the testing stage: ‘I like testing. Because we have learned and observed how the design we made was and how it worked’. The student coded S17 has the following opinion about the prototype development stage: ‘I have really liked developing prototypes. Because we test ourselves on product creation. We get to know how we design and ourselves’.

As a result of the analysis of the data obtained from the diaries, the students’ experiences were evaluated under 3 themes: learning, satisfaction and criticism. Within the scope of the students' experiences about the theme of learning, the following categories were determined: Learning the subject of energy transformations, learning group work, learning the causes of success and failure, and learning to struggle. These findings obtained within the scope of the experiences support the findings obtained from the opinions of the students on the contributions of design thinking (learning the subject of energy transformations, learning group work). Similarly, it is emphasized in the literature that design thinking enables students to learn group work (Aflatoony et al., 2018) and to develop their conceptual understanding on science subjects (Cook & Bush, 2018; Fortus et al., 2004; Kolodner et al., 2003; Vest, 2006). In addition, it was concluded that design thinking contributes students to learn the causes of success and failure and to struggle. The fact that the Stanford d.school model, which is used in the design thinking approach, includes an iterative and experience-based process might have contributed the students to learn the causes of success and failure and to struggle. In the theme of satisfaction, it was found that the students were satisfied with the design thinking activities, the science teacher who applied these activities and their group friends and had fun in this process. In line with these results, it can be said that including design thinking approach in learning environments will have many contributions.

Another theme obtained in line with the students’ experiences is the theme of criticism. The categories obtained within the scope of the theme of criticism are as follows: Criticisms against group, criticisms against materials and criticisms against time allocated for activities. Similarly, it is stated in the literature that students have problems in group work during the application of design thinking approach (Aflatoony et al., 2018; Retna, 2016) and it is difficult to provide materials and physical conditions in the classroom (Retna, 2016). Accordingly, it can be said that there is a need for more collaborative learning environments to improve students’ group work skills. Students brought criticism about the materials. For example, the student coded S14 stated this situation as follows: ‘Today I have learned that if the propeller is a little shorter, the helicopter can float in the air longer. It would be better if there were an engine in the helicopter. However, there is no engine’. In order to overcome this problem, materials that students want for design thinking activities can be provided. To ensure this, students may be asked to provide information about what materials they want to use for a while before the activity is implemented. Depending on the availability of materials, the school management, teachers or students can provide the materials. The problem of lack of time allocated to such activities can be overcome by reducing the number of subjects and outcomes in the science curriculum or by adjusting the appropriate time for the subjects containing plenty of activities in the program.

In the current research, a module for design thinking on energy transformations was developed and applied to 7th grade middle school students. In this context, the opinions and experiences of middle school students towards design thinking were examined. In future research, modules and units
regarding design thinking can be developed and applied for different subjects in science course. In addition, in other studies, the opinions and experiences of both students and teachers who practice design thinking activities can be examined.

Acknowledgement

This study was produced from the first author’s doctoral dissertation conducted under the supervision of the Prof. Dr. Mustafa Sami Topçu. The present study was completed with the support of the Scientific Research Projects Office of Yıldız Technical University under the Grant Number SDK-2018-3373.
Giriş

Günümüzde öğrencilerden 21. yüzyılda karşılaşabilecekleri problemleri çözme becerilerine sahip olmaları beklenmektedir. Eğitim politikacıları ve araştırmacıları da ülkelerin eğitim ve öğretim faaliyetlerini bu beklentilere göre güncellemektedirler. Bu doğrultuda sınıf ortamlarında geleneksel öğretim yöntemlerinin yanı sıra öğrencilere de 21. yüzyıldaki problemleri çözmeye dayalı bir 21. yüzyıl öğrenme yaklaşımı uygulanması önemlidir (Aflatoony, 2015; Carroll, 2015). Tasarım odaklı düşünme (prototip odaklı bir yenileşme sürecini teşvik eden, öğrencinin merkezli ve problem çözme dayalı bir yaklaşım) da bu beklentiler doğrultusunda kullanılmaktadır. Tasarım odaklı düşünmenin, öğrencilerin 21. yüzyılda problem çözme, iletişim ve işbirliği gibi becerilerini geliştirdiği ve öğrencilerin 21. yüzyılda başarılı olmalarını sağladığı vurgulanmaktadır (Aflatoony & Wakkary, 2015; Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Lor, 2017; Retna, 2016; Rotherham & Willingham, 2009). Tasarım odaklı düşünmenin sunduğu eğitimin öğrencinin fen içerik bilgilerinin (Cook & Bush, 2018; Fortus, Dershimer, Krajcik, Marx & Mamlok Naaman, 2004; Kolodner et al., 2003; Kwek, 2011; Vest, 2006) ve matematik konularındaki kavramsal anlayışlarının (Painter, 2018; Cook & Bush, 2018; Vest, 2006) gelişimi ile öğrencilerin fikir ve fikir üretmelerini teşvik etmesi (Lugmayr, 2011) de yer almaktadır. Tasarım odaklı düşünmenin öğrencilerin fen bilimleri dersi öğretim programına ek olarak uygulanmasına ve öğrencilerin bu yaklaşıma ilgili deneyim edinmelerine önem verilmesi gerektiği söylenebilir.
Tasarım Odaklı Düşünme

Günümüzde öğrencilerin üretkenlikleri geliştiren uygulamalar arasında az zaman ayrılmaktadır ve bunun yerine geleneksel öğretim yöntemleri uygulanarak içeriğin öğretilmesine daha fazla önem verilmektedir (Canestroaro, 2017). Yeni fikirler üretmek için öğrencilerin yetişirilmesini desteklemek için derslerde geleneksel öğretim yöntemlerinin yerine öğrenci merkezi yenilikçi eğitim yaklaşımlarına yer verilmelidir. Bu yenilikçi eğitim yaklaşımlarından biri de tasarım odaklı düşünmedir. Tasarım odaklı dönüşüm kavramı, ilk kez Peter G. Rowe tarafından ‘Design Thinking’ adlı eserinde 1987 yılında tanımlanmıştır (Aflatoony, 2015; Dorst, 2011). Tasarım odaklı düşünceye yönelik yeni çözümlerin üretimi, fikirlerin gerçekleştirmesi ve prototiplerin geliştirilmesi yoluyla potansiyel çözümlerin test edilmesi sağlayıcı bir yaklaşımdır (Aflatoony, 2015; Carroll, 2015; Chesson, 2017). Tasarım odaklı düşünmenin diğer problemler için uygulanmasına olanak sağladığı için, öğrencinin inovasyon tarzını tespit etmesi ve empatiyle dayalı insan merkezi faaliyetlere önem vermesi önemlidir. Tasarım odaklı düşünce, öğrencinin inovasyon tarzını tespit etmeyi ve empatiyle dayalı inovasyon tarzını tespit etmeyi sağlar (Aflatoony & Wakkary, 2015). Tasarım odaklı düşünce, öğrencinin inovasyon tarzını tespit etmeyi ve empatiyle dayalı inovasyon tarzını tespit etmeyi sağlar (Aflatoony & Wakkary, 2015).

Tasarım odaklı düşünce, öğrencinin inovasyon tarzını tespit etmeyi ve empatiyle dayalı inovasyon tarzını tespit etmeyi sağlar (Aflatoony & Wakkary, 2015).

Tasarım odaklı düşünce, öğrencinin inovasyon tarzını tespit etmeyi ve empatiyle dayalı inovasyon tarzını tespit etmeyi sağlar (Aflatoony & Wakkary, 2015).
uygulanabilmesi için öğrenme ve öğretme araçlarının ve programların geliştirilmesi gerekmektedir (Canestraro, 2017; Phillorton & Miller, 2011). Bununla birlikte tasarım odaklı düşünce yaklaşımının uygulanabilmesi ve bu yaklaşımın uygulanmasındaki zorlukları giderilebilmek için öğretmenlerin eğitilmesine de önem verilmelidir (Carroll, 2014; Kwek, 2011). Bu kapsamda mevcut araştırmada tasarım odaklı düşünceye yönelik bir modül geliştirilmiştir. Sonrasında tasarım odaklı düşünceye yönelik eğitim alma ve katılımcılara eğitim verme konusunda gözlü olan bir fen bilimleri öğretmenine eğitim verilmiştir. Fen bilimleri öğretmeni de enerji dönüşümleri konusunda geliştirilen bu modülü 7. sınıf öğrencilerine uygulamıştır.

Mevcut araştırmada, tasarım odaklı düşünce yaklaşımının uygulanması sürecinde Stanford d.school tasarım odaklı düşünce modeli pedagojik çerçeve olarak kullanılmıştır. Çünkü bu model öğrencilere son ürünleri iyileştirmeleri için farklı aşamalar arasında sürekli bir yineleme işlemi sağlar. Bu modelde yer alan aşamalar Şekil 1'de gösterilmiş ve aşağıda ayrıntılı bir şekilde açıklanmıştır.

Şekil 1. Stanford d.school tasarım odaklı düşünce modeli (https://dschool.stanford.edu/adresinden alınmıştır).

Tasarım odaklı düşünceye yönelik empati, tanımlama, fikir üretme, prototip geliştirme ve test etme aşamaları (Carroll, 2015):
1- Empati: Empati aşamasında, görüşme ve gözlem yoluya insanların ihtiyaçlarının neler olduğu belirlenir.
2- Tanımlama: Tanımlama aşamasında, problemin çerçevelenmesine ve uygulanabilir bir problem çözümünün ifade edilmesine önem verilir.
3- Fikir Üretme: Bu aşamada problemin çözümüne yönelik fikir üretmeye odaklanılır. Çeşitli fikirlerin üretilmesine önem verilir.
4- Prototip Geliştirme: Prototip geliştirme, tasarım odaklı düşünceye yönelik bir modül önemlidir. Prototip, kullanıcıların etkileşiminde bulunabileceğini bir nesne veya hizmet olabilir.
5- Test Etme: Tasarım odaklı düşünceye yönelik bir son aşaması olup, bu aşamada kullanıcılara prototip prototipi değerlendirilmesi söz konusudur. Ayrıca bu aşamada ürünün kullanıcıların görüşlerini doğrultusunda iyileştirilmesine imkan verir.

Mevcut araştırmada da Stanford d.school tasarım odaklı düşünce modelinde yer alan ve yukarıda açıklanan empati, tanımlama, fikir üretme, prototip geliştirme ve test etme aşamaları takip edilmiştir.

Yöntem

Araştırma Modeli

Mevcut araştırmada, ortaokul öğrencilerinin tasarım odaklı düşünceye yönelik görüş ve deneyimleri hakkında daha derinlemesine bilgi edinebilmek amacıyla nitel araştırma yönteminde yararlanılmıştır (Strauss & Corbin, 1998). Nitel araştırma yöntemlerinden fenomenoloji yöntemi kullanılmıştır. Fenomenoloji yönteminin amacı katılımcıların bir olgu ile ilgili deneyimlerini, algılarını ve bu olguyla 980
yükledikleri anlamları ayrıntılı bir şekilde incelemektedir (Savin-Baden & Major, 2013; Yıldırım & Şimşek, 2016). Deneyim, fenomenolojik araştırmalarla temel bir kavram olarak olgu deneyiminden soyutlanarak düşünülemektedir (Baş & Akturan, 2013). Bu bağlamda mevcut araştırmada da ortaokul öğrencilerin tasarım odaklı düşünce yaklaşımlarını deneyimlemeleri sağlanmış olup fenomenoloji araştırmasına göre olguyu yaşam sürecindeki görüş ve deneyimleri incelemiştir. Benzer şekilde literatürde de öncelikle katılmcıların incelenen olguyla ilgili yaşadığı sağlanıp daha sonra o olguya ilişkin deneyimlerinin incelendiği, fenomenoloji araştırma yöntemi kullanlan araştırmalar bulunmaktadır. Örneğin; Yuksel-Arslan, Yıldırım ve Robin (2016) de yaptıkları fenomenoloji çalışmasında öncelikle öğretmenlerle ‘diğer hikaye anlatımı’ konusundaki atölye gerçekleştirmişlerdir. Bu atölyeden sonra öğretmenlerin deneyimlerini incelemiştir. Benzer şekilde Preciado-Babb, Metz ve Marcotte (2013) de fenomenoloji olarak tasarladıkları araştırmalarında öncelikle mesleki gelişim programlarını gerçekleştirmiştirler.

Katılımcılar

Araştırmmanın çalışma grubunu, 2018-2019 eğitim-öğretim yılının güz döneminde Doğu Anadolu Bölgesinde yer alan bir lisede öğrenim gören 36 ortaokul 7. sınıf öğrencisi oluşturmuştur. Bu öğrenciler, tasarım odaklı düşünceye yönelik eğitim almamıştır. Ayrıca öğrenciler, alt sınıf kademelerinde enerji dönüşümleri konusunu öğrenmemişlerdir. Öğrencilerin 13’ü kız, 23’ü erkektir. Öğrencilerin yaş aralığı, 11-14 arasındadır. Araştırmada öğrencilerin gerçek isimleri kullanılmamış olup bunun yerine Ö1, Ö2, Ö3, … gibi kodlar kullanılmıştır.

Tasarım odaklı düşünceye yönelik etkinlikleri, bir fen bilimleri öğretmenine gerçekleştirmiştir. Fen bilimleri öğretmeni daha önce tasarım odaklı düşünceye yönelik eğitim almamış olup bu konuda eğitim alma ve katılmcılar adına eğitim vermekle görevlendirilmiş. Bu kapsamda öğretmenin 4 hafta boyunca haftada iki gün, günde 3 saat tasarım odaklı düşünceye yönelik eğitim verilmiş ve öğretmenle birlikte tasarım odaklı düşünceye yönelik örnek etkinlikler gerçekleştirmiştir. Öğretmenin cinsiyeti erkek olup, yaş ise 33’tür. Öğretmen, 7 yıldır fen bilimleri öğretmenliği yapmaktadır.

Araştırmının Bağlamı

Mevcut araştırma kapsamında, ‘Kuvvet ve Enerji’ ünitesinin bir alt bölümü olan enerji dönüşümleri konusunda tasarım odaklı düşünceye yönelik bir modül geliştirilmiştir. Modül, Milli Eğitim Bakanlığı tarafından 2018 yılında güncellenen Fen Bilimleri Dersi Öğretim Programı’nda yer alan kazanımlar doğrultusunda geliştirilmiştir. Enerji dönüşümleri konusunu ile ilgili kazanımlar şunlardır:

1- Enerjiyi iş kavramı ile ilişkilendirecek, kinetik ve potansiyel enerji olarak sınıflandırır.
2- Kinetik ve potansiyel enerji türlerinin birbirine dönüşümünden hareketle enerjinin korunduğu sonucunu çıkarır.
3- Sürtünme kuvvetinin kinetik enerji üzerindeki etkisini örneklerle açıklar.
4- Hava veya su direncinin yaşamda etkisini fark eder.
5- Hava veya su direncinin etkisi azaltmaya yönelik bir araç tasarlar (Milli Eğitim Bakanlığı [MEB], 2018).

Modülün geliştirilmesinde Stanford d.school tasarım odaklı düşünce modelinden (Şekil 1) yararlanmıştır. Bu modülün 3 temel etkinlik (lunapark hız treni, arabalar tasarlayor ve macera severler) ve bu etkinliklere yönelik alıştırma/ısındırma etkinlikleri geliştirilmiştir. Etkinlikler grup çalışması yapılarak gerçekleştirilmişdir. Her biri 6 öğrenciden oluşan 6 grup oluşturulmuştur. Araştırmının uygulama süreci, 4 hafta sürmüştür. Uygulama süreci ile ilgili ayrıntılı bilgi aşağıdaki tabloda verilmiştir.
Dersler	Etkinlikler
1. ve 2. Ders (80 dk.)	- Tasarım Odaklı Düşünmenin ve aşamalarının açıklanması, tanıtılması
3. ve 4. Ders (80 dk.)	- Enerji, potansiyel enerji, kinetik enerji ve enerji dönüşümü kavramlarının günlük hayat anlamda önleme yapımaları
5. ve 6. Ders (80 dk.)	- ‘Lunapark Hız Treni’ etkinliğine yönelik içerisinde/alıştırma etkinliklerinin gerçekleştirilmesi
7. ve 8. Ders (80 dk.)	- Sürtünme kuvveti ve sürünme kuvvetinin kinetik enerji üzerindeki etkisinin günlük hayat anlamda önleme yapımaları
9. ve 10. Ders (80 dk.)	- ‘Araba Tasarlıyor’ etkinliği kapsamında tasarımların yapılması ve test etme etkinliklerinin gerçekleştirilmesi
11. ve 12. Ders (80 dk.)	- Hava direnci ve su direnci kavramlarının günlük hayat anlamda önleme yapımaları
13. ve 14. Ders (80 dk.)	- ‘Araba Tasarlıyor’ etkinliği kapsamında tasarımların yapılması ve test etme etkinliklerinin gerçekleştirilmesi
15. Ders (40 dk.)	- Öğrenciler tasarım odaklı düşünme ile ilgili görüşlerini değerlendirme açık uçlu soru formunu dolduruyor

Öğrencilerin tasarım odaklı düşünce sürecinin aşamalarını (empati, tanımlama, fikir üretme, prototip geliştirme ve test etme) daha kolay takip edebilmeleri için her bir etkinliğe yönelik tasarım defteri hazırlanmıştır. Öğrenciler, tasarım defterleri grup olarak doldurmuşlardır. Bu doğrultuda öğrenciler tasarım defterlerinde yer alan senaryolardaki karakterlere empati kurararak onların ihtiyaçlarını anlamaya çalışmışlardır. Daha sonra problemin ne olduğunu açık ve net bir şekilde tanımlamışlardır. Sonrasında öğrenciler, problemi çözme yöntemi fikirler üretmiş, grup içinde fikirler fikre göre prototip geliştirilmişlerdir (Şekil 2). En son aşamada prototipleri test etmişlerdir. Test etme aşamasında belirlenen eksipleri doğrultusunda öğrenciler tekrar başka çözmü üretip prototiplerini iyileştirmeye çalışmışlardır. Şekil 2’de görüldüğü gibi, öğrenciler lunapark hız treni, kazazededele hızlı bir şekilde kurmaktadır için sürünme ve sürünmesiz yolda hızlı gidebilecek bir araba ve dağda mahsur kalan yaralı dağçılar kurmaktan helikopter tasarlamışlardır. Her bir etkinliğin sonunda öğrencilerle etkinliğinde gerçekleştirilen ürünün geliştirilmesi ile ilgilenen mühendislik dalları ve mesleklerle ile ilgili bilgi de verilmiştir. Etkinliklerin nasıl gerçekleştirildiğini daha detaylı bir şekilde açıklayabilme için araştırma kapsamında gerçekleştirilen ‘Araba Tasarlıyor’ etkinliği Ek-1’de verilmiştir. Bunun yanı sıra tasarım odaklı düşünce etkinliklerinin geliştirilmesinde kullanılan şablon Tablo 2’de verilmiştir.

Veri Toplama Araçları

Araştırmanın veri toplama kaynakları, açık uçlu soru formu ve öğrenci günlükleridır. Açık uçlu soru formu, öğrencilerin tasarım odaklı düşünceye yönelik görüşlerini incelemek için kullanılmıştır. Öğrenci günlükleri ise öğrencilerin tasarım odaklı düşünceye yönelik deneyimlerini değerlendirme amacıyla tercih edilmiştir. Aşağıda veri toplama araçları ile ilgili ayrıntılı bilgi verilmiştir.

982
Etkinlik Adı	Sınıf Seviyesi	Ünite Adı	Konu	Süre	Bilimsel Kavramlar	Güvenlik Önlemleri (Eğer uygunsa)	Amaç ve Kısa Özet	Kazanımlar-Öğrenme Hedefleri	Materyal ve Teknik Donanım	Isındırma/Alıştırma Etkinlikleri	Senaryo-Hikâye	Tasarım Odaklı Düşünme Süreci	- Empati	- Tanımlama	- Fikir Üretme	- Prototip Geliştirme	- Test Etme	Etkinlikle İlgili Meslekler	Anahtar Sorular	Kaynaklar

Şekil 2. Öğrenci deneyimlerine ilişkin resimler.

Aşık uçlu soru formu: Bu formda tasarım odaklı düşünmeye yönelik 8 yapılandırılmış soru bulunmaktadır. Bu soruların hazırlanması sürecinde tasarım odaklı düşünmeye yönelik literatür tariştırılmıştır. Sorular hazırlanıktan sonra tasarım odaklı düşünme konusunda uzman olan bir öğretmen...
üyesinden ve Türk Dili ve Edebiyatı alanında uzman olan bir öğretim üyesinden görüş alınmıştır. Uzmanların sundukları görüş, eleştiri ve öneriler doğrultusunda sorulara son halı verilmiştir. Formda yer alan sorular aşağıdaki verilmiştir:

1- Tasarım odaklı düşünme yaklaşımlını beğendiniz mi? Neden?

2- Tasarım odaklı düşünmenin size nasıl katkıları/yararları oldu? Açıklayınız.

3- Tasarım odaklı düşünmenin olumsuz yönleri var mıydı? Varsa nelerdir?

4- Tasarım odaklı düşünmenin en çok hangi aşamasında zorlandınız? Neden?

5- Zorlandığınız kısımlarda neler yaptınız? Açıklayınız.

6- Tasarım odaklı düşünmenin en çok hangi aşamasını beğeniniz? Neden?

7- İleride tasarım odaklı düşünmeye zaman ayırın istersiniz?

8- Okul dışında da tasarım odaklı düşünmeye katılsın ister misiniz?

Öğrenci günlükleri: Öğrenci günlükleri tasarım defterlerinden farklı olup veri toplama amacıyla kullanılmıştır. Tasarım defterleri sadece etkinliklerin uygulanmasını kolaylaştırmak ve öğrencilerin etkinlik aşamalarını daha kolay takip edebilme amacıyla kullanılmıştır. Öğrenciler Tablo 1’de de belirtiliği gibi etkinliklerin gerçekleştirildiği her gün dersin son 10 dakikasında aşağıda belirtilen kriterler doğrultusunda günlüklerine deneyimlerini yazmaları istenmiştir. Bu kriterler:

- Etkinliklerin uygulanması sürecinde neler yaptınız, neler fark ettiniz?
- Yaptığınızı etkinliklerle ilgili neler hissettiniz?
- Neler öğrendiniz?
- Önerileriniz ve eleştirileriniz nelerdir?

Verilerin Toplanması

Açık uçlu soru formu, enerji dönüşümü konusunda geliştirilen ve tasarım odaklı düşünmeye yönelik olan modül uygulandıktan sonra, yanı 4 haftalık uygulama sürecinin sonunda öğrencilerle dağıtılmıştır. Formlar, öğrencilere dağıtildiğinde önce formu doldurdu ama sonrasında fotoğraflı olmayan score neden verildiği, formu doldurup doldurmadan konusunda özgür olduklarını belirttilmiştir. 2 öğrencinin doldurması için açık uçlu soru formunu bir ders saatinde yanı 40 dakikada doldurmuştur. Ayrıca öğrenciler her hafta etkinlik sonraki hafta günlüklerine deneyimlerini yazmıştır. Bunun için öğrenciler her hafta 10 dakikalık süre verilmiştir.

Verilerin Analizi

Araştırma kapsamında hem açık uçlu soru formundan hem de öğrenci günlüklerinden elde edilen verilerin analizinde içerik analizi yöntemi kullanılmıştır. Bu kapsamda kodlar oluşturulmuştur, bu kodlar belli kategoriler altında toplanmıştır ve temalar ortaya çıkartılmıştır (Savin-Baden & Major, 2013; Yıldırım & Şimşek, 2016). Araştırma döneminde elde edilen verilerin %40.00’i iki araştırmacı tarafından farklı bir şekilde kodlanmıştır. Literatürdeki birçok araştırmada da verilerin %10 luk kısmının, %20 luk kısmının, %30.00 luk kısmının iki araştırmacı tarafından kodlanması, %40.00’ün altında olduğu görülmektedir. Örneğin, Felton’ın (2004) çalışmasında da kodlayıcılar arası güvenirlik için verilerin %30.00’lik bir kısmını iki araçtırma tarafından kodlanmıştır. Forbes, Zangori ve Schwartz’in (2015) çalışmalarıda ise verilerin %10 u’luk kısmı, Zangori ve Cole’un (2019) çalışmasında ise 6 öğrencinin %16.00 çizimleri iki araştırmacı tarafından incelenmiştir. Kodlayıcılar arasi güvenirlik, Miles ve Huberman’a (1994) ait olan formül ([Görüş Birliği/Görüş Birliği+ Görüş Ayrılığı]*100.00) ile hesaplanmıştır. Bu doğrultuda kodlayıcılar arasi güvenirlik açık uçlu soru formundan elde edilen veriler için %91.00, günlüklerden elde edilen veriler için %94.00 olarak hesaplanmıştır. Bu değerler, kodlayıcılar arasi güvenirlik için yeterli değerlerdir. Çünkü Miles, Huberman ve Saldaña (2014) da kodlayıcılar arasında %85.00-%90.00 arasında bir anlaşıma vurgulamış gerektiği önermiştir. Görüş ayrıllığının olduğu kısımlarında araştırmacılar tartışmış ve uygulamışlardır. Uzlaşmaya sağlanlığı için geriye kalan veriler, birinci yazar tarafından analiz edilmiştir.
Bulgular

Mevcut araştırmada, öğrencilerin tasarım odaklı düşünmeye yönelik görüş ve deneyimleri incelenmiştir. Bu doğrultuda elde edilen veriler, içerik analiziyle değerlendirilmiştir. Elde edilen bulgular iki başlık altında ele alınmıştır: Ortaokul öğrencilerinin tasarım odaklı düşünmeye yönelik görüşleri ve ortaokul öğrencilerinin tasarım odaklı düşünmeye yönelik deneyimleri.

Ortaokul Öğrencilerinin Tasarım Odaklı Düşünmeye Yönelik Görüşleri

Öğrenciler, doldurdukları açık uçlu soru formu aracılığıyla tasarım odaklı düşünmeye yönelik görüşlerini belirtmişlerdir. Öğrencilerin görüşleri doğrultusunda 7 tema ortaya çıkartılmıştır: Tasarım odaklı düşünmenin katkıları, tasarım odaklı düşünmenin uygulanması sürecinde karşılaşılan zorluklar, tasarım odaklı düşünme aşamalarının zorluk derecesi, tasarım odaklı düşünmenin uygulanması sürecinde destek alma, tasarım odaklı düşünme aşamalarının beğenilme derecesi, ileride tasarım odaklı düşünme etkinliklerine zaman ayırma ve okul dışında tasarım odaklı düşünme etkinliklerine katılma. 31 öğrenci tasarım odaklı düşünmeye yönelik etkinlikleri beğendiğini, 2 öğrenci ise bu etkinlikleri beğenmediğini ifade etmiştir. 1 öğrenci ise bu konuda herhangi bir görüş bildirmemiştir. Öğrencilerin tasarım odaklı düşünmenin katkılarını ile ilgili görüşlerine yönelik bulgular aşağıda, Tablo 3’te verilmiştir.

Kategoriler	Kodlar	Öğrenciler	
Öğrenmeyi	Enerji dönüşümleri konusunu	Ö3, Ö13, Ö19, Ö22, Ö23	5
Sağlama ve Kolaylaştırma	öğrenme	Öğrenciler	
	Matematıği öğrenme	Ö7, Ö32	2
	Feni öğrenme	Ö2, Ö28, Ö32	3
	Öğrenme merakını artırırma	Ö18	1
	Yaparak ve yaşayarak öğrenme	Ö17	1
	Eğlenerek öğrenme	Ö6, Ö7, Ö8, Ö13, Ö15, Ö20, Ö23, Ö31	8
	Düzenmeyi ve fikir üretmeyi	Ö3, Ö5, Ö6, Ö11, Ö12, Ö16, Ö28	7
	öğrenme	Öğrenciler	
	Öğrenmeyi kolaylaştırma	Ö2, Ö8, Ö17, Ö32	4
21. Yüzyıl	Problem çözme	Ö4	1
Becerilerini	Takım çalışması	Ö1, Ö2, Ö3, Ö4, Ö8, Ö20, Ö22, Ö30	8
Gelişirme	iletişim kurma	Ö24	1
	Analitik düşünme	Ö26	1
	Empati kuruma	Ö4, Ö13, Ö16, Ö24, Ö26, Ö31	6
	Yarıdırma	Ö9	1
	Ozgüveni geliştirme	Ö14	1
	Tasarım becerisi	Ö4, Ö10, Ö11, Ö13, Ö14, Ö16, Ö21, Ö25, Ö29, Ö30	10
	Sabırlı olma	Ö22	1
Geleceğe ve Mesleğe Hazırlama	Geleceğe hazırlama	Ö9	1
	Bilim insani olmaya hazırlama	Ö19	1
	Mühendislik mesleğine hazırlama	Ö9, Ö17	2

Tablo 3’teki görüldüğü gibi ortaokul öğrencilerinin görüşleri doğrultusunda tasarım odaklı düşünmenin katkılarına yönelik şu kategoriler ortaya çıkarmıştır: Öğrenmeyi sağlama ve kolaylaştırma, 21. yüy becerilerini geliştirme, geleceğe ve mesleğe hazırlama. Bazi öğrencilerin tasarım odaklı düşünmenin katkılarına yönelik görüşleri aşağıda belirtilmiştir.

Grup halinde çalışmayı öğrendim. Empati kurmayı öğrendim. Sorunlar karşısında nasıl davranacağımı, onları nasıl çözebileceğimi öğrendim ve tasarım becerim geliştii (Ö4).
Takım çalışmasını öğrendim ve öğrenmenin kolay yolunu. Bu etkinlikler sayesinde eğlencelik öğreniyorum (Ö8).

‘Ben istersen her şeyi yapabilirim.’ fikrine çok inanmazdim. Ama burada bu etkinliklerle bunun gerçek olabileceğini öğrendim. Artık bu fikirle hayatımı yeni bir bakış açısı geldiğini düşünüyorum. Ayrıca bu etkinliklerle tasarım becerim de gelişti (Ö14).

Evet, bu etkinliklerin katkıları oldu. Çünkü daha meraklı oldu. Bu etkinlikler öğrenmeye meraklandındı (Ö18).

Fen bilimleri dersindeki enerji dönüşümleri konusunu öğrendim. ‘İçat insanların geleceğidir’ sözünün belki de derslerin öğrenilmesi için de katkı olabilir (Ö19).

Bu etkinlikler bize dönüşümeyi ve fikir üretmeyi öğrendi. Ayrıca tasarım becerim de gelişti (Ö11).

16 öğrenci tasarım odaklı düşünmeye yönelik uygulamalarında herhangi bir zorluk yaşamadığı, 2 öğrenci ise bu konuda kararsız olduğunu belirtmiştir. Geriye kalan 6 öğrenci ise sadece zorluk yaşadığını belirtmiş ancak ne tür bir zorluk olduğuna değinmemiştir. Tasarımların zorlukları Tablo 4’te ayrıntılı bir şekilde belirtilmiştir.

Tablo 4.
Tasarım Odaklı Düşünmenin Uygulanması Sürecinde Karşılaşılan Zorluklara İlişkin Görüşler.

Kategoriler	Kodlar	Öğrenciler	f
Fiziksel Koşullar	Malzeme çeşidinin az olması	Ö15	1
	Etkinlik alanının dar olması	Ö14	1
Grup İçi Sorumluluk	Rollerin paylaşımında sorun yaşama	Ö9	1
	Grup üyelerinin sorumluluklarını yerine getirmemesi	Ö25	1
Grup İçi İletişim	Grup üyeleryle iletişim kurmada problem yaşama	Ö1, Ö5, Ö22	3
	Grup içinde herkesin aynı anda konuşması	Ö9	1
	Grup üyeleryle ortak bir fikirde buluşamama	Ö4, Ö12, Ö30	3

Tablo 4’teki görüldüğü gibi tasarım odaklı düşünme yaklaşımının uygulanması sürecinde karşılaşılan zorluklara yönelik 3 kategori ortaya çıkmıştır: Fiziksel koşullar, grup içi sorumluluk ve grup içi iletişim. Bazı öğrencilerin tasarım odaklı düşünme uygulamaları sürecinde karşılaşılan zorluklara yönelik görüşleri aşağıdaki örnek olarak belirtilmiştir.

Çoğu zaman fikirlerimiz üzerine çok tartıştık. Rollerimizi paylaşılramakta tartıştık. Herkes aynı anda konuştuğu için çoğu zaman birbirimizi anlayamadık (Ö9).

Daha büyük ve geniş bir alanda daha güzel bir etkinlik yapabildik. Ancak bu demek olmuyor ki etkinlikler sıkıcıdır (Ö14).

Çok fazla olumsuz yön yok aslında. Sadece bazıları hayal ettiğim malzemeleri bulamıyorum (Ö15).

Tablo 5’te ise öğrencilerin tasarım odaklı düşünme yaklaşımında en çok hangi aşamalarda zorlandıklarına yönelik bulgular verilmiştir.

Tablo 5.
Tasarım Odaklı Düşünmenin Aşamalarının Zorluk Derecesine İlişkin Görüşler.

Kategoriler	Öğrenciler	f
Empati	Ö3, Ö11, Ö19, Ö25, Ö28	5
Tanımlama	Ö16, Ö24, Ö26, Ö33	4
Fikir Üretme	Ö4, Ö9, Ö17, Ö18, Ö20, Ö22, Ö23	7
Prototip Geliştirme	Ö2, Ö5, Ö6, Ö7, Ö15, Ö21, Ö30, Ö31, Ö32	9
Test Etme	Ö1, Ö8, Ö10, Ö12, Ö14, Ö29	6
Tablo 5'te öğrencilerin en çok prototip geliştirirken (n=9) zorlandıkları, daha sonra sırasıyla fikir üretme (n=7), test etme (n=6), empati (n=5) ve tanımlama (n=4) aşamalarında zorlandıkları görülmektedir. 3 öğrencisi ise bu konuda herhangi bir görüş bildirmememiştir. Bazı öğrencilerin konu ile ilgili görüşleri aşağıda belirtilmiştir.

- En çok empatide zorlandım. Çünkü kendimizi başkasının yerine koymak çok zor (Ö11).
- Fikir üretmede çok zorlandım. Bazı eksiğimiz ortaya çıktı. Habire onları düzelteceğimyz (Ö14).
- Prototip geliştirmede zorlandım. Ürünü nasıl yapacağımıza ve oluşturacağımızı düşünmek zor idi. Çünkü biraz zorlu bir şey. Bu yüzden çok zor olduğunu, fikir üretme sorununun en önemli konulardan biri olduğu (Ö21).
- Problem tanımlama aşamasında çok zorlandım (Ö24).

Tablo 6'da ortaokul öğrencilerinin tasarım odaklı düşünceye yönelik bulgular verilmiştir.

Tablo 6.
Tasarım Odaklı Düşünmenin Uygulanması Sürecinde Destek Almaya İlişkin Görüşler.

Kategoriler	Öğrenciler	f
Grup Arkadaşlarından	Ö1, Ö2, Ö3, Ö4, Ö5, Ö7, Ö8, Ö10, Ö11, Ö12, Ö14, Ö15, Ö16	25
Destek Alma	Ö17, Ö18, Ö19, Ö22, Ö23, Ö26, Ö27, Ö28, Ö29, Ö30, Ö31, Ö33	5
Öğretmen Destek Alma	Ö9, Ö14, Ö19, Ö21, Ö33	5
Herhangi Bir Destek Alma	Ö6, Ö13, Ö20, Ö24, Ö25, Ö32	6

Tablo 6'da öğrencilerin tasarım odaklı düşünceye dayalı etkinliklerde zorlandıkları kısımlarda grup arkadaşlarından (n=25) ve öğretmenlerinden (n=5) destek aldıkları veya herhangi bir destek almamışlardır (n=6) görülmektedir. Öğrencilerin problem yaşadıkları kısımlarda aldıkları desteklere yönelik görüşleri aşağıda örneklere verilmştir.

- Zorlandığım kısımlarda arkadaşlarımдан destek aldım. Öğretmenime sordum ve fikir ürettim (Ö19).
- Hiçbir şey yapmadım. Çünkü arkadaşlarım sadece malzeme getirmemi istediler. Benim bir şey yapmama izin vermediler (Ö20).

Tablo 7'de ise öğrencilerin tasarım odaklı düşünceye yönelik bulgular verilmiştir.

Tablo 7.
Tasarım Odaklı Düşünmenin Aşamalarını Beğenilme Derecesine İlişkin Görüşler.

Kategoriler	Öğrenciler	f
Empati	Ö6, Ö12, Ö18	3
Tanımlama	Ö1, Ö8, Ö20	3
Fikir Üretme	Ö2, Ö5, Ö7, Ö10, Ö11, Ö32	6
Prototip Geliştirme	Ö14, Ö17, Ö19, Ö22, Ö23, Ö26, Ö28, Ö29	8
Test Etme	Ö3, Ö4, Ö9, Ö15, Ö16, Ö21, Ö25, Ö27, Ö30, Ö31, Ö33	11

Tablo 7'de öğrencilerin en çok test etme (n=11) aşamasını beğenmişlerdir, daha sonra sırasıyla prototip geliştirme (n=8), fikir üretme (n=6) aşamalarını beğenmişlerdir. Bu nedenle öğrencilerin bu aşamalarını en beğenmişlerdir. Bu nedenle öğrencilerin bu aşamalarını en beğenmişlerdir. Bu nedenle öğrencilerin bu aşamalarını en beğenmişlerdir. Bu nedenle öğrencilerin bu aşamalarını en beğenmişlerdir.
Fikir üretmeyi çok beğeniyorum. Çünkü grupca ortak fikirleri bularak fikir üretiyoruz ve çok eğlenceli olyor (Ö2).

Test etmeyi beğeniyorum. Çünkü yaptığımız tasarımın nasıl olduğunu, nasıl çalıştığını öğrendik ve gördük (Ö4).

Empatiyi beğeniyorum. Çünkü kendimizi birbirimizin yerine koyarak en iyi tasarımını ortaya çıkarmırız (Ö6).

Prototip geliştirmeyi çok beğeniyorum. Çünkü ürün oluşturma konusunda kendimizi test ediyoruz. Nasıl tasarladığımızı ve kendimizi tanyoruz (Ö17).

Problemi tanımlamayı beğeniyorum. Çünkü problemi iyi anlarsak icat en güzel olur (Ö20).

Öğrencilerin ileride tasarım odaklı düşünme ile ilgili etkinliklere zaman ayırma yönelik görüşlerinden elde edilen bulgular Tablo 8’de sunulmuştur.

Tablo 8.
İleride Tasarım Odaklı Düşünme Etkinliklerine Zaman Ayırmaya İlişkin Görüşler.

Kategoriler	Öğrenciler
Evet	Ö1, Ö3, Ö4, Ö5, Ö6, Ö7, Ö8, Ö9, Ö10, Ö11, Ö12, Ö14, Ö15, Ö16, Ö17, Ö18, Ö19, Ö20, Ö21, Ö22, Ö23, Ö24, Ö25, Ö26, Ö27, Ö28, Ö31, Ö33
Hayır	Ö2, Ö30, Ö32
Kararsızım	Ö13, Ö29

Tablo 8’in incelediğinde 28 öğrencinin ileride de tasarım odaklı düşünce etkinliklerine zaman ayırma isteği, 3’ünün zaman ayırma istemediği ve 2’sinin kararsız olduğunu görülmektedir. 1 öğrenci ise ileride tasarım odaklı düşünce etkinliklerine zaman ayırma konusunda herhangi bir görüş bildirmemiştir. Bazı öğrencilerin ileride tasarım odaklı düşünce etkinliklerine zaman ayırma ilişkin görüşleri aşağıda örnek olarak verilmiştir.

Evet. Çünkü büyüyence mühendis olmak istiyorum (Ö18).

Hayır, zaman ayırma istemem (Ö2).

Evet, zaman ayırma isterim. Çünkü bilim ve icat en güzel şeydir. İnsanların geleceği (Ö20).

Evet, çünkü etkinlik yapmak böyle eğlenceli olmamışı hiç (Ö33).

Tablo 9’da ise okul dışında tasarım odaklı düşünce etkinliklerine katılmaya yönelik bulgular verilmiştir.

Tablo 9.
Okul Dışında Tasarım Odaklı Düşünme Etkinliklerine Katılmaya İlişkin Görüşler.

Kategoriler	Öğrenciler
Evet	Ö1, Ö2, Ö3, Ö4, Ö5, Ö6, Ö7, Ö8, Ö9, Ö10, Ö11, Ö12, Ö14, Ö15, Ö16, Ö19, Ö20, Ö21, Ö22, Ö23, Ö24, Ö25, Ö26, Ö27, Ö28, Ö31, Ö32, Ö33
Hayır	Ö13, Ö18
Kararsızım	Ö17, Ö29, Ö30

Tablo 9’da ise okul dışında tasarım odaklı düşünce etkinliklerine katılmaya yönelik bulgular verilmiştir.
Ortaokul Öğrencilerinin Tasarım Odaklı Düşünmeye Yönelik Deneyimleri

Öğrenciler tasarım odaklı düşünceye yönelik deneyimlerini günlük aracılığıyla ifade etmişlerdir. Günlüklerden elde edilen verilerin analizi sonucunda öğrencilerin tasarım odaklı düşünceye yönelik deneyimleri ile ilgili 3 temaya ulaşılmıştır: Öğrenme, memnuniyet ve eleştiri (Şekil 3).

Şekil 3. Öğrenci deneyimlerine ilişkin temalar.

Şekil 3’te de görüldüğü gibi öğrenci günlüklerinin içerik analizi yöntemi ile değerlendirilmesi sonucunda 3 tema ortaya çıkmıştır: Öğrenme, memnuniyet ve eleştiri. Bu temalara ve bu temalar kapsamında kategorilere ilişkin bulgular aşağıda ayrıntılı olarak ele alınmıştır. Tablo 10’da öğrenme temasına yönelik bulgular belirtilmiştir.

Tablo 10. Öğrenme Temasına Yönelik Bulgular.

Kategoriler	Öğrenciler	f
Enerji Dönüşümleri Konusunu Öğrenme	Ö2, Ö17, Ö18, Ö24, Ö26, Ö29, Ö31, Ö32	8
Grup Çalışmasını Öğrenme	Ö2, Ö5, Ö14, Ö17, Ö25, Ö26, Ö32	7
Başarının ve Başarısızlığın Nedenlerini Öğrenme	Ö1, Ö2, Ö4, Ö8, Ö10, Ö11, Ö14, Ö16, Ö18, Ö19, Ö20, Ö21, Ö25	17
Nedenlerini Öğrenme	Ö23, Ö24, Ö25, Ö31, Ö33	6
Mücadeleyi Öğrenme	Ö4, Ö13, Ö16, Ö21, Ö23, Ö25	6

Öğrenme temasına yönelik 4 kategori ortaya çıkmıştır: Enerji dönüşümleri konusunu öğrenme (n=8), grup çalışmasını öğrenme (n=7), başarının ve başarısızlığın nedenlerini öğrenme (n=17) ve mücadeleleri öğrenme (n=6). Öğrenciler, günlüklerinde enerji dönüşümleri konusunu öğrenmişler, daha önce grup çalışmasına alışkan olmadıklarını ve tasarım odaklı düşünce etkinlikleri sayesinde grup çalışmasını öğrenmişlerini ifade etmişlerdir. Bununla birlikte öğrenciler günlüklerinde yaptıkları tasarım başarılsız olunca pes etmediğini ve tasarlarını iyileştirmeye çalışıklarını belirtmişlerdir. Ayrıca öğrenciler, yaptıkları tasarımların neden başarılı ya da neden başarısız olduğuna yönelik çıkarımlarla da bulunmuşlardır. Aşağıda bu konuya ilişkin örnek ifadeler verilmştir.

Sevgili günlük, bugün takım arkadaşlarımla bir hız treni tasarladık. Çok başarısız oldu ama umudumuzu kesmedik. Sürəmiz bitmek üzere idi. Son dakikalarımızda denemeler yaptık. Tam sürəmiz bitməcti ki, gruapa son denemeyi yaptık ve başarı olma (Ö23).-Mücadeleyi Öğrenme

Bugün, Canavar Kaos adında bir arabayapmayı çalıṣtık. İlk başta güzel olmamı. Son anlarda tasarlamaya çıkmıştik. Grupça yaptktan sonra ‘Canavar Kaos’u sunmaya geldi sira. 4 takımı eledik
ama Army Mühendisler grubu daha başarılı oldu ve onlar birinci oldu. Biz ikinci olsak da biz yine de takım çalışmasını öğrendik (Ö17). Grup Çalışmasını Öğrenme

Sevgili günlük, bu proje soyesinde (Lunapark Hız Trenim) kinetik ve potansiyel enerjiyi arttırmayı öğrendim. Bir hız treni döngüsü içinde kinetik ve potansiyel enerji farkını öğrendim. Enerji dönüşümüne iyice kavradım. Hız trenimiz de güzel oldu. Bir tepeeden sonra bir de dönü yaptık (Ö29)-Enerji Dönüştümleri Konusunu Öğrenme

Öğrencilerin günlüklerinde yer alan ifadeler doğrultusunda elde edilen temalardan biri de memnuniyet temasıdır. Tablo 11’de memnuniyet temasına yönelik bulgular verilmiştir.

Tablo 11.
Öğrencilerin Memnuniyetleri ile İlgili Bulgular.

Kategoriler	Öğrenciler	f
Gruptan Memnun Olma	Ö2, Ö3, Ö8, Ö12, Ö13, Ö14, Ö19, Ö25, Ö27	9
Etkinliklerden Memnun Olma	Ö9, Ö11, Ö14, Ö16, Ö18, Ö33	6
Öğretmenden Memnun Olma	Ö9, Ö14, Ö16, Ö17, Ö21, Ö33, Ö29	7
Eğlenme	Ö1, Ö3, Ö5, Ö6, Ö7, Ö8, Ö9, Ö10, Ö11, Ö12, Ö14, Ö15, Ö16, Ö17, Ö19, Ö23, Ö25, Ö29, Ö31, Ö33	20

Tablo 11 incelendiğinde, memnuniyet temasına ilişkin 4 kategorinin elde edildiği görülmektedir. Bu kategoriler şunlardır: Eğlenme (n=20), gruptan memnun olma (n=9), öğretmenden memnun olma (n=7), etkinliklerden memnun olma (n=6). Ö4, Ö20, Ö22, Ö24, Ö26, Ö28, Ö30 ve Ö32 kodlu öğrenciler ise memnuniyet teması ile ilgili bir görüş belirtmemiştir. Tablo 11’de öğrencilerin çoğunluğunun tasarım odaklı düşünme etkinliklerinin uygulanması sürecinde eğlendikleri görülüktedir. Bununla birlikte öğrencilerin gruptan, öğretmenden ve etkinliklerden de memnun oldukları sonucuna ulaşılmıştır. Bazı öğrencilerin konuya ilgili görüşlerini aşağıda örnekle örnek olarak verilmiştir.

Bugün çok zevk aldım ve eğlendim. Takımda iyi bir iş çıkardık. Bir daha yapmak isterdim. Hız treni yapmayı öğrendim, çok şey öğrendim. Arkadaşlarıma çok teşekkür ederim. Ders çok güzel geçti (Ö25). Gruptan Memnun Olma, Eğlenme

Burun, helikopter yapmayı öğrendik. Bu etkinliği çok beğenildim. Öğretmenimden çok memnunum. Ama grup arkadaşlarınızdan bazıları pek yardımcı olmadılar ve at arabası yapmaya çalıştılar (Ö29). Öğretmenden Memnun Olma

Öğrencilerin tasarım odaklı düşünceye yönelik deneyimlerine ilişkin elde edilen bir başka tema ise eleştiri temasıdır. Tablo 12’de eleştiri temasına yönelik bulgular ayrıntılı olarak verilmiştir.

Tablo 12.
Öğrencilerin Eleştirileri ile İlgili Bulgular.

Kategoriler	Öğrenciler	f
Gruba Yönelik Eleştiriler	Ö1, Ö5, Ö9, Ö10, Ö17, Ö18, Ö20, Ö28, Ö29, Ö30, Ö31, Ö33	12
Malzemelere Yönelik Eleştiriler	Ö1, Ö3, Ö9, Ö14	4
Etkinliklere Ayrılan Süreye Yönelik Eleştiriler	Ö2, Ö17, Ö30	3

Tablo 12 incelendiğinde eleştiri temasına yönelik kategorilerin şunlar olduğu görülmektedir: Gruba yönelik eleştiriler (n=12), malzemelere yönelik eleştiriler (n=4) ve etkinliklere ayrılan süreye yönelik eleştiriler (n=3). Ö4, Ö6, Ö7, Ö8, Ö11, Ö12, Ö13, Ö15, Ö19, Ö21, Ö22, Ö23, Ö24, Ö25, Ö26, Ö27, Ö32, Ö34 kodlu öğrenciler ise eleştiri teması kapsamında herhangi bir görüş bildirmemişlerdir. Aşağıda eleştiri teması kapsamında dedeniyimler için örnek cümleler verilmiştir.

Grup arkadaşlarının beni dinlememesinden rahatsız oldum. Beni dinlemekleri için tasarımları da çok güzel olmamış. Benim dediğim gibi 2 dönü ve 1 tepe yeterliydi bence. Güvenlik bile sağlanmamış (Ö20).-Gruba Yönelik Eleştiriler
Bugün hiçbir şey öğrenmedim. Çünkü takım arkadaşından hiç kimse birbirini dinlemiyor. Herkes kendi kafasına göre bir şeyler tasarlıyor. Bence takım ile beraber çalışsak daha iyi olur. Ayrıca bence etkinlikte çok kısa süreler veriliyor (Ö17). Etkinliklere Ayrılan Süre Eleştiriler, Gruba Yönelik Eleştiriler.

Bugün pervane biraz daha kısa oldu ama havada kalabileceği öğrendim. Helikopterde motor olsaydı daha iyi olurdu. Ama motor yok (Ö14). Malzemeye Yönelik Eleştiriler

Mevcut araştırmada enerji dönüşümleri konusunda tasarım odaklı düşüncenin etkili geliştirilen modul, bir senin bilimleri öğretmeni tarafından ortaokul 7. sınıf öğrencilere uygulanmıştır. Araştırmaya sürecinde ortaokul 7. sınıf öğrencilerin tasarım odaklı düşünmenin etkili görüşleri ve deneyimleri incelenmiştir.

Açık uçlu soru formunda sunulan görüşlerin analizi sonucunda, öğrencilerin çoğunluğunun tasarım odaklı düşünmenin etki etme becerilerini keşfettiği, okul dışında da tasarım odaklı düşünme etkinliklerine katılmak istedikleri ve ileride böyle etkinliklere zaman ayırarak istedikleri belirlenmiştir. Öğrencilerin görüşleri doğrultusunda tasarım odaklı düşünmenin öğrenmeyi sağlamış ve kolaylaştırmış, 21. yüzyıl becerilerini geliştirmiş, geleceğe ve mesleğe hazırlığı gününder gibi katkılarını olduğu belirtilmiştir. Benzer şekilde literatürde de tasarım odaklı düşünmenin öğrenmeyi sağlamış ve kolaylaştırmış (Aflatoony & Wakkary, 2015; Cook & Bush, 2018; Painter, 2018; Vest, 2006), 21. yüzyıl becerilerini geliştirmiş (Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Retna, 2016; Rotherham & Willingham, 2009), geleceğe ve mesleğe hazırlığa (Rotherham & Willingham, 2009) gibi katkılarının olduğu belirtilmektedir. Literatürdeki bu araştırmalar (Aflatoony & Wakkary, 2015; Aflatoony et al., 2018; Anderson, 2012; Canestraro, 2017; Carroll, 2014; Cook & Bush, 2018; Painter, 2018; Retna, 2016; Rotherham & Willingham, 2009; Vest, 2006), mevcut araştırma kapsamında edilen bulgular tasarım odaklı düşünmenin uygulanması sürecinde eğitim ve öğretim ortamlarına dâhil edilmesi gerektiği fikrini desteklemektedir.

Öğrencilerin tasarım odaklı düşünmenin uygulanması sürecinde karşılaştıkları zorluklar kapsamında şu kategorilere ulaşılmıştır: Grup içi iletişim (n=7), fiziksel koşullar (n=2), grup içi sorumluluk (n=2). Benzer şekilde literatürde de öğrencilerin grup çalışması yaparken kendi aralarında problem yaşamaları, tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin ortaokul düzeyindeki matematik derslerinde tasarım odaklı düşünmenin uygulanmasına yönelik algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla gerçekleştirilmiş. (Painter, 2018) çalışması, öğrencilerin tasarım odaklı düşünmenin etkili algılarını incelemek amacıyla实行げれきがトリクに実現した。
materyalleri kullanarak bir tasarım gerçekleştirmesi beklenmektedir. Uygulamanın yaptığı alanın dar olması sorunu ise okullarda etkinliklerin etkili bir şekilde gerçekleştirelimemesi için geniş öğrenme ortamlarını oluşturulması ile çözülebilir. Ayrıca öğrencilerin zorlandıkları kısımlarda grup arkadaşlarından ve öğretmenden destek aldıkları sonucuna ulaşılmıştır. Öğrencilerin daha çok grup arkadaşlarından destek alarak problemlerini çözükleri tespit edilmişdir. Benzer şekilde Aflatoony vd. (2018) de tasarım odaklı düşünmenin uygulamasını sürecinde karşılaşılan problemlerin çözülmesi için akran desteğinin ve akran geribildiriminin önemli olduğu sonucuna ulaşmıştır. Dolayısıyla öğrenme ortamlarında grup çalışmalarına daha fazla önem verilmelidir.

Bununla birlikte mevcut araştırma prototip geliştirme, fikir üretme ve test etme aşamalarının öğrencilerin hem en çok zorlandıkları hem de en çok beğendikleri aşamalar olduğunu belirlemiştir. Öğrencilerin prototip geliştirme, fikir üretme ve test etme aşamalarında zorlanmasını sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını beğenmeyi, prototiplerini test etme ve test etme aşamalarını belirlemesini test etme aşamalarında zorlanmasına neden olmuştur.

Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını beğenmeyi, prototiplerini test etme ve test etme aşamalarını belirlemesini test etme aşamalarında zorlanmasına neden olmuştur.

Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yapılarak bireyin ihtiyaçlarını belirlenmeye çalışılır. Tanımlamada ise problemin sınırları belirlenir. Ancak fikir üretme, prototip geliştirme ve test etme aşamalarında artıktır problemin belirlenmesinden ziyade o problemin çözülmesine odaklanılır. Çünkü problemleri çözümek, zor bir süreçtir (Byun, Ha & Lee, 2008). Öğrencilerin en çok fikir üretme, prototip geliştirme ve test etme aşamalarını zorlanmasına sebebi, bu aşamaların empati ve tanımlama aşamalarına göre daha üst düzey düşünme becerileri gerektirmesidir. Örneğin empatide gözlem ve görüşme yap
uygulanmasından bir süre önce öğrencilerden kullanmak istediğiniz malzemelerin neler olduğuna dair bilgi vermek istenediğiniz durumunun durumuna göre okul yönetimi, öğretmen ya da öğrenciler materyalleri sağlayabilir. Etkinliklere ayrılan süre uzun bir süre olmasa ise fen bilimleri dersi öğretim programındaki konu ve kazanım sayısıının azaltılması ya da programda bol etkinlik içeren konular için uygun süre ayarlaması yapılması ile sağlanabilir.

Mevcut araştırmada enerji dönüşümleri konusunda tasarım odaklı düşünmeye yönelik bir modül geliştirilmiş ve ortaokul 7. sınıf öğrencilere uygulanmıştır. Bu çerçevede, ortaokul öğrencilerinin tasarım odaklı düşünmeye yönelik görüşleri ve deneyimleri incelenmiştir. İleride yapılacak olan araştırmalarda fen bilimleri dersinde yer alan farklı konulara yönelik modüller ve üniteler geliştirilmiş tasarım odaklı düşünce yaklaşımı uygulanabilir. Ayrıca başka araştırmalarda hem öğrencilerin hem de tasarım odaklı düşünce etkinliklerini uygulayan öğretmenlerin görüşleri ve deneyimleri incelenebilir.

Bilgilendirme

Bu çalışma, birinci yazarın Prof. Dr. Mustafa Sami Topçu’nun danışmanlığında hazırladığı doktora tezinin üretilmiş olduğu doktora tezinin üretilmiştir. Çalışma, SDK-2018-3373 numaralı proje kapsamında Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Ofisi desteği ile tamamlanmıştır.
References

Aflatoony, L. (2015). Development, implementation, and evaluation of an interaction design thinking course in the context of secondary education. Unpublished doctoral dissertation, Simon Fraser University, Canada.

Aflatoony, L. & Wakkary, R. (2015). Thoughtful thinkers: secondary schoolers’ learning about design thinking., In R. VandeZande, E. Bohemia & I. Digranes [Eds] LearnxDesign: Proceedings of the 3rd International Conference for Design Education Researchers, Chicago. Aaalto: Aalto University School of Arts, Design and Architecture, Vol. II, pp. 563–74.

Aflatoony, L., Wakkary, R., & Neustaedter, C. (2018). Becoming a design thinker: assessing the learning process of students in a secondary level design thinking course. International Journal of Art & Design Education, 37(3), 438-453.

Anderson, N. (2012). Design thinking: Employing an effective multidisciplinary pedagogical framework to foster creativity and innovation in rural and remote education. Australian and International Journal of Rural Education, 22(2), 43–52.

Baş, T., & Akturan, U. (2013). Nitel araştırma yöntemleri: NVivo ile nitel veri analizi, örnekleme, analiz, yorum. Seçkin Yayıncılık.

Byun, T., Ha, S., & Lee, G. (2008, October). Identifying student difficulty in problem solving process via the framework of the House Model (HM). In AIP Conference Proceedings (Vol. 1064, No. 1, pp. 87-90). American Institute of Physics.

Canestraro, N. (2017). The impact of design thinking on education: The case of active learning lab. Unpublished master’s thesis, Universita Ca’ Foscari Venezia, Italy.

Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A., & Hornstein, M. (2010). Destination, imagination and the fires within: Design thinking in a middle school classroom. International Journal of Art & Design Education, 29(1), 37-53.

Carroll, M. (2014). Shoot for the moon! The mentors and the middle schoolers explore the intersection of design thinking and STEM. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 14–30.

Carroll, M. (2015). Stretch, dream, and do: A 21st century design thinking & STEM journey. Journal of Research in STEM Education, 1(1), 59-70.

Chesson, D. (2017). Design thinker profile: Creating and validating a scale for measuring design thinking capabilities. Unpublished doctoral, Antioch University, USA.

Cook, K. L., & Bush, S. B. (2018). Design thinking in integrated STEAM learning: Surveying the landscape and exploring exemplars in elementary grades. School Science and Mathematics, 118(3-4), 93-103.

Dorst, K. (2011). The core of ‘design thinking’and its application. Design Studies, 32(6), 521-532.

Felton, M. K. (2004). The development of discourse strategies in adolescent argumentation. Cognitive development, 19(1), 35-52.

Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students' model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895-921.

Fortus, D., Dershimer, R. C., Krajcik, J., Marx, R. W., & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.

Girgin, D. (2019). Öğretmenlerin tasarım odaklı düşünceye ilişkin bilisel yapıları ve kavramsal değişimleri. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 459-482.
Henriksen, D. (2017). Creating STEAM with design thinking: Beyond STEM and arts integration. The STEAM Journal, 3(1), 1-11.

Kabilan, M. K. (2013). A phenomenological study of an international teaching practicum: Pre-service teachers' experiences of professional development. Teaching and Teacher Education, 36, 198-209.

Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., & Ryan, M. (2003). Promoting deep science learning through case-based reasoning: Rituals and practices in learning by design classrooms. In N. M. Steel (Ed.), Instructional design: International perspectives (pp. 89 – 114). Mahwah, NJ: Lawrence Erlbaum.

Kwek, S. H. (2011). Innovation in the classroom: Design thinking for 21st century learning (Master’s thesis). Retrieved March 1, 2020, from https://redlab.sites.stanford.edu/sites/g/files/sbiybj7141/f/kwek-innovation_in_the_classroom.pdf

Lor, R. R. (2017). Design thinking in education: A critical review of literature. ACEP Asian Conference on Education and Psychology, May 24-26, Bangkok, Thailand.

Lugmayr, A. (2011, September). Applying “design thinking” as a method for teaching in media education. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments (pp. 332-334).

Mentzer, N., Becker, K., & Suttona, M. (2015). Engineering design thinking: High school students' performance and knowledge. Journal of Engineering Education, 104(4), 417–432.

Miles, M.B., & Huberman, A.M. (1994). Qualitative data analysis. Thousand Oaks, Ca: Sage Publications.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). London, UK: SAGE.

Ministry of National Education [MoNE]. (2018). İlköğretim kurumları için fen bilimleri dersi öğretim programı [Primary education institutions science instruction program]. Ankara: Talim Terbiye Kurulu Başkanlığı.

Norton, P., & Hathaway, D. (2015). In search of a teacher education curriculum: Appropriating a design lens to solve problems of practice. Educational Technology, 55(6), 3-14.

Painter, D. (2018). Using design thinking in mathematics for middle school students: a multiple case study of teacher perspectives. Doctoral dissertation, Concordia University, Portland.

Philloenton, E., & Miller, M. (2011). Design, build, transform. Retrieved February 20, 2019, from http://wwwstudio-h.org/about

Preciado-Babb, A. P., Metz, M., & Marcotte, C. (2013). A phenomenological study of teachers’ professional learning and their understanding of mathematics-for-teaching. In A. P. Preciado-Babb, A. Solares Rojas, I. T. Sandoval Cáceres, & C. Butto Zarzar (Eds.), Proceedings of the First Meeting between the National Pedagogic University and the Faculty of Education of the University of Calgary (pp. 79–84). Calgary: Faculty of Education of the University of Calgary.

Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important?. Review of Educational Research, 82(3), 330-348.

Retna, K. S. (2016). Thinking about “design thinking”: A study of teacher experiences. Asia Pacific Journal of Education, 36(sup1), 5-19.

Rotherham, A. J., & Willingham, D. (2009). To work, the 21st century skills movement will require keen attention to curriculum, teacher quality, and assessment. Educational Leadership, 9 (1), 15-20.

Savin-Baden, M., & Major, C. H. (2013). Qualitative research: The essential guide to theory and practice. Milton Park, Abingdon, Oxon: Routledge.

995
Strauss, A. L., & Corbin, J. (1998). *Basics of qualitative research*. Newbury Park, CA: Sage.

Vest, C. M. (2006). *Educating engineers for 2020 and beyond. In The bridge linking engineering and society (pp. 38–44)*. Washington, DC: National Academy of Engineering.

Yıldırım, A., & Şimşek, H. (2016). *Sosyal bilimlerde nitel araştırma yöntemleri*. Ankara: Seçkin Publishing.

Yuksel-Arslan, P., Yildirim, S., & Robin, B. R. (2016). A phenomenological study: teachers’ experiences of using digital storytelling in early childhood education. *Educational Studies, 42*(5), 427-445.

Zangori, L., & Cole, L. (2019). Assessing the contributions of green building practices to ecological literacy in the elementary classroom: an exploratory study. *Environmental Education Research, 1-23*.

996
EK 1-Araba Tasarlıyorum Etkinliği

ETKİNLİK 2

Araba Tasarlıyorum

SINIF SEVİYESİ: 7

ÜNİTE ADI: F.7.3. Kuvvet ve Enerji / Fiziksel Olaylar

KONU: F.7.3.3. Enerji Dönüşümleri

ÖNERİLEN SÜRE: 3 Ders Saati (40dk+40dk+40dk)

KAVRAMLAR: Sürtünme kuvveti, kinetik enerji

AMAÇ VE KISA ÖZET:

Etkinliğin amacı, öğrencilerin fen bilimleri temel kavramlarından kinetik enerji ve sürünme kuvveti ile ilgili bilgilerini kullanarak, verilen materyallerle hızlı olan ve uzun mesafe yol alan bir araba tasarlamalarılar.

Öğrencilere verilen malzemelerden (Pet şişe, pipet, teneke kola şişesi, kâğıt havlu kartonu, pet şişe kapakları, CD, kürdan, çöp şiş, makas, silikon tabancası, rampa yapımı için gerekli malzemeler (tahta takoz, siyah mukavva, taş, beton), renkli el işi kağıtları, karton, dondurma çubuğu, renkli el işi kâğıtları, karton, dondurma çubuğu, cetvel, kronometre) müşteri taleplerini düşünerek hızlı olan ve uzun mesafe yol alan bir araba tasarlamalarını inşa etmeleri istenir. Rampa, öğretmen tarafından hazırlanır.

KAZANIMLAR-ÖĞRENME HEDEFLERİ

Fen Bilimleri:
- Sürtünme kuvvetinin kinetik enerji üzerindeki etkisini örneklerle açıklar.
 - Sürtünme kuvvetinin kinetik enerji üzerindeki etkisinin örneklandırılması, sürünmeli yüzeyler, hava direnci ve su direnci dikkate alınır.
 - Sürtünen yüzeylerin ısıtıldığı, basit bir deneyle gösterecek kinetik enerji kaybının ısı enerjisine dönüştüğü vurgulanır.

Matematik:
- Uzunluk (cetvel) ölçümlerini yapar.
- Tam sayılarla çarpma ve bölme işlemlerini yapar.

21. Yıllık Beceriler/Sosyal Beceriler:
- Grupta bulunan her birin iletişim kurma yoluyla kendi düşüncelerini, fikirlerini, sorularını ve bu sorularla çözüm önerilerini grubun diğer üyelerine paylaşır. Bu sayede grup çalışmasına aktif bir rol üstlenmiş olur. Problemlere farklı bir perspektifle yaklaşırlar ve disiplinlerarası bir bağlantı kurar. İnovasyon yoluya yeni üreticiler ortaya koyar. Grup olarak geliştirilen ürün, sınıf ortamında diğer arkadaşlarıyla sunar.

MATERIAL VE TEKNİK DONANIM

Araba ve rampa tasarımında gerekli malzemeler:
- Pet şişe, pipet, teneke kola şişesi, kägit havlu kartonu, pet şişe kapakları, CD, kürdan, çöp şiş, makas, silikon tabancası, rampa yapımı için gerekli malzemeler (tahta takoz, siyah mukavva, taş, beton), renkli el işi kâğıtları, karton, dondurma çubuğu, cetvel, kronometre.

Alıştırma etkinlikleri için gerekli malzemeler:
- Aynı boyuttaki 3 oyuncak araba, buz parçaları, cetvel

ALIŞTIRMALAR ETKİNLİKLERİ

1- Aşağıdaki özelliklerdeki üç oyuncak arabayi, belirlediğiniz bir başlangıç noktasından aynı kuvvetle iterek, farklı yüzeylerde (tahta, cam, mermer) aldıkları yol cetvelle ölçüp karşılaştırınız. Hangisi daha uzun yol alır? Neden?

2- Bir öğrencinin buz parçasını sadece elinde tutması, başka bir öğrencinin buz parçasını elleyle sürekli hızlandırması sağlanır. Bir buz parçası da masa üzerine bırakılır. Bu durumda hangi buz parçası daha hızlı erir? Neden?

3- Göktaşının, Dünya atmosferine girdiğinde yanması nedeni nedir? Açıklayınız.
SENARYO-HİKÂYE

Zeynep ve arkadaşları güneşli bir pazar gününde kendi arabalarıyla gezintiye çıkmışlardı. Zeynep, sürücü koltuğunda oturmanın ona yüklemiş olduğu sorumluluğun farkında olarak trafik kurallarına mümkün mertebe uyarak trafikte ilerlerken hiç beklemedikleri bir anda bir traktör yola çıktı ve bütün yolu kapattı. Zeynep, bütün çabalarına rağmen aracını kurtaramayarak traktöre çarptı. Çarpmanın etkisiyle traktör römorkuyla beraber yola devrildi ve yol tamamen trafıge kapandı. Zeynep, arkadaşları ve traktör sürücüsü kazada ağır yaralandı. Kazayı gören vatandaşlar hemen ambulans çağırdı. Kaza yerine çıkan tüm yolların betonlu ve taşlı olması yaralıların gelen ambulansın kaza yerine ulaşmasını geciktirdi. Bunun sonucunda yaralılara acil yapılması gereken müdahale yapılamadığı için kazazedelerin tedavisi gecikti.

Siz olsaydınız bu türden olaylarda kazazedelerle anađa müdahale edilmesi için betonlu ve taşlı yollarda daha ufak bir araç tasarlamak isterdiniz?

- 5’er ya da 6’şar kişilik gruplar oluşturulur.
- Grup üyelerinin rolleri belirlenir. Roller şu şekildedir: Grup sözü, tasarımın çiziminden sorumlu üye, ihtiyaç duyulan malzemeleri temin eden üye.
- Öğretmen, sürünme kuvvetinin kinetik enerji üzerindeki etkisini günlük hayattan örneklerle açıklar.
- Öğrencilere, kazazedeleri-trafiğin yola kapanması durumunu anlatmak için “Car accident causes traffic jam on Shaikh Zayed Road” ve “Accident causes 18 hours traffic jam from Konza to Mtito Andei” videoları izletir (https://youtu.be/jEJz_Qtdwz0, https://youtu.be/G1BV3qf_Aao). Böylece öğrencilerin kazazedelerle empati kurmaları ve kazazedelerin ihtiyaçlarını anlamaları sağlanır.
- Kazazedelerle anađa müdahale edilmesi için gruplar arabalarını betonlu ve taşlı yollarda daha uzaga ve daha hızlı gidebilen bir araç tasarlayarak
- Öğrenciler, tasarımın hızını ve uzaklığı ele alır.
- Öğretmen, sürünme kuvveti ve kinetik enerji kavramlarını, sürünme kuvvetinin kinetik enerjiye etkisini yapıkları arabaların hızını ve uzaklığını analiz eder.
- Gruplar, tasarlanan arabaların hızı ve uzaklığı ölçülür.
- Gruplar, tasarımın hızını ve uzaklığı analiz eder.
- Gruplar, kendi arabalarını pazarlamak için icatlarını tanıttılar.

TASARIM ODAKLI DÜŞÜNME SÜRECİ

1- Empati Kurma: Öğrencilere “Car accident causes traffic jam on Shaikh Zayed Road” ve “Accident causes 18 hours traffic jam from Konza to Mtito Andei” videoları izletir (https://youtu.be/jEJz_Qtdwz0, https://youtu.be/G1BV3qf_Aao). Böylece öğrencilerin kazazedelerle empati kurmaları ve kazazedelerin ihtiyaçlarını anlamaları sağlanır. (5 dakika)

2- Problemi Tanımlama: Öğrenciler, problemi net bir şekilde ifade ederler. (5 dakika)
Zeynep, arkadaşları ve traktör sürücüsünün şu problemi çözmem için onlara yardım etmemiz gerekıyor:……...………………

Not: Bu kısımda, kazazedeleri kurtarmak için tasarlanacak aracın özellikleri vurgulanabilir.

3- Fikir Üretme: Öğrenciler, problemi çözme için beyin fırtınası yaparak birden fazla fikir üretir. (10 dakika)

4- Prototip Oluşturma: Öğrenciler geliştirikleri fikri; pet şişe, pipet, teneke kola şişesi, kağıt havlu kartonu, pet şişe kapakları gibi malzemeleri kullanarak prototip haline getirirler. (20 dakika)

5- Test Etme: Öğrenciler, oluşturdukları prototip hakkında geribildirim alırlar. (10 dakika)

Değerlendirme Kriterleri:
1. Araba en hızlı gidecek şekilde tasarım yapmak,
2. Araba uzun mesafe yol alacak şekilde tasarım yapmak.

Not: Öğrenciler, icatlarını tanıtan bir yazı ya da broşür hazırlayarak oluşturdukları ürünü sınıfta açıklarlar. (20 dakika)

BU ETKİNLİĞİ BEĞENDİYSENİZ İLGİLI MESLEKLERİ ARAŞTIRABİLİRSİNİZ:

Otomotiv Mühendisliği:
Otomotiv Mühendisliği; Makine Mühendisliği, Elektrik Mühendisliği, Elektronik Mühendisliği, Yazılım Mühendisliği ve Güvenlik Mühendisliği dallarının tasarımında ve üretimde ortak olarak çalışarak yapılar.

Otomotiv mühendisi; kamyon, otobüs, motosiklet, otomobil gibi motorlu kara taşıtların planlayıcı ve üretimini denetleyen kişidir.

ANAHTAR SORULAR
Araba tasarmında hızı ve alınan mesafeyi arttırmak için nelerde dikkat edersiniz?

KAYNAKLAR
https://www.google.com/amp/s/muhendislikler.net/otomotiv-muhendisi-nedir-ne-is-yapar-nerelerde-calisir/amp/

Görseller için yararlanılan kaynaklar;
http://www.sabidem.org/detay.aspx?dt=haber-detay&id=299
