Role of the Cyclosporin-sensitive Transcription Factor NFAT1 in the Allergic Response

João PB Viola, Anjana Rao

The Center for Blood Research and the Department of Pathology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA

Proteins belonging to the NFAT (nuclear factor of activated T cells) family of transcription factors are expressed in most immune cell types, and play a central role in the transcription of cytokine genes, such as IL-2, IL-4, IL-5, IL-13, IFN-γ, TNF-α, and GM-CSF. The activity of NFAT proteins is regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a target for inhibition by CsA and FK506. Recently, two different groups have described that mice lacking the NFAT1 transcription factor show an enhanced immune response, with tendency towards the development of a late Th2-like response. This review evaluates the possible role of NFAT proteins in the Th2 immune response and in the eosinophil-mediated allergic response.

Key words: nuclear factor of activated T cells - interleukin - cyclosporin

The cytokine profiles of T cells differentiating down the Th1 and Th2 pathways have been described, Th1 cells preferentially produce IL-2 and IFN-γ, whereas Th2 cells produce IL-4, IL-5, IL-10 and IL-13 (Paul & Seder 1994, Carter & Dutton 1996). In many pathological situations, the balance between Th1 and Th2 immune response determines the outcome of different immunologically-mediated clinical syndromes including infectious, autoimmune, and allergic diseases (Carter & Dutton 1996).

Allergic disease is a broad range of disorders including rhinitis, conjunctivitis, systemic anaphylaxis, and asthma (Casolaro et al. 1996, Drazen et al. 1996). Atopic allergy is characterized by increased synthesis of IgE antibodies through the actions of IL-4 and IL-13 in B cell Ig isotype class switching, directed at groups of antigens that activate the CD4-dependent Th2-like immune response (Romagnani 1995). The IgE produced binds to Fcε receptors present on the surface of mast cells and basophils, priming them for activation by antigen, and triggers the release of vasoactive mediators, chemotactic factors and cytokines (Romagnani 1995, Drazen et al. 1996). In addition, eosinophils are also involved in the pathogenesis of allergic reactions, as these cells accumulate at the sites of allergic inflammation and significantly contribute to the tissue damage (Desreumaux & Capron 1996).

In asthma, some data suggest that the severity of the disease is related to the degree of inflammation (Peters 1990, Broide et al. 1991, Pare & Bai 1995), and that the magnitude of the asthmatic response is related to the number of eosinophils present in the lung (Bradley et al. 1991). Moreover, suppression of eosinophil accumulation at the site of inflammation impairs the development of asthma disease (Wagner et al. 1990, Foster et al. 1995). These data suggest that eosinophils could be a central mediator of the pathogenesis of allergic disease. We can hypothesize three sequential and interacting events for how eosinophils mediate inflammation at the site of allergic response, described as follows: first, eosinophil differentiation and maturation in the bone marrow; second, rolling, adhesion, and migration in the inflamed vascular endothelium; and third, activation and degranulation in the target organ (Fig. 1).

Eosinophil tissue infiltration is coordinated by an interacting network of cytokines, chemokines, adhesion molecules, and inflammatory mediators. In fact, GM-CSF, IL-3 and IL-5 have been described as factors that induce differentiation, maturation and proliferation of bone marrow eosinophils (Sanderson et al. 1985, Lopez et al. 1986, Clutterbuck & Sanderson 1988, Takatsu et al. 1988, Warren & Morre 1988, Yamaguchi et al. 1988). However, blood eosinophilia is not related to eosinophil tissue accumulation (Dent et al. 1990, Desreumaux et al. 1996), suggesting that overproduction of eosinophils is not enough for tissue infiltration by these cells, and chemoattractant production at the site of inflammation is essential for eosinophil recruitment.

*Corresponding author. Fax: +617-278.3280. E-mail: arao@cbr.med.harvard.edu
Received 3 September 1997
Accepted 30 September 1997
Rolling and adhesion of eosinophils on vascular endothelium is the first step for eosinophil infiltration in the target organ, and may depend on several adhesion molecules (Desreumaux & Capron 1996). However, eosinophils are the only granulocytes that express VLA-4, and may selectively bind to endothelial cells via VCAM-1 (Weller et al. 1991, Pretolani et al. 1994, Nakajima et al. 1994, Wardlaw et al. 1994). Moreover, it has been described that IL-4 and IL-13 upregulate VCAM-1 on human endothelial cells (Bochner et al. 1995), suggesting that interaction between VLA-4/VCAM-1 play a central role in eosinophil migration during the allergic response.

Eosinophil migration into inflamed tissue involves several chemoattractant mediators, including cytokines, chemokines and lipid mediators, and occurs after adhesion to the vascular endothelium (Desreumaux & Capron 1996). GM-CSF, IL-3 and IL-5, are the key cytokines influencing eosinophil migration and activation (Broide et al. 1992, Weller 1993, Sullivan & Broide 1996). In fact, several reports demonstrated that IL-5 plays the central role in eosinophil-mediated allergic responses, since this cytokine is a selective chemoattractant for eosinophils (Sehmi et al. 1992), and has the ability to prime and activate these cells (Coefiier et al. 1991, Sehmi et al. 1992, Warringa et al. 1992). In addition, IL-5 deficient mice do not show eosinophilia (Kopf et al. 1996), and fail to develop airway hyperresponsiveness and eosinophil infiltration in an experimental model of asthma (Foster et al. 1995). Other important chemoattractants and activators of eosinophils are the C-C subfamily of chemokines (Desreumaux & Capron 1996). The eosinophil active chemokines include RANTES, MCP-2, MCP-3, MCP-4, MCP-5, MIP-1α, and eotaxin (Jia et al. 1996, Kita & Gleich 1996, Sarafi et al. 1997). Eotaxin, first described in guinea pigs and subsequently in mice and humans, is a potent and specific eosinophil chemoattractant (Jose et al. 1994, Gonzalo et al. 1996, Ponath et al. 1996), and disruption of the eotaxin gene partially reduces tissue eosinophil infiltration in a model of allergic response (Rothenberg et al. 1997).

Once eosinophils infiltrate the inflamed tissue, they degranulate and secrete several proinflammatory mediators and cytokines (Weller 1993). Activated eosinophils release their granule proteins, including the major basic proteins, eosinophil peroxidase (EPO), eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin (Desreumaux & Capron 1996).
1996). They also secrete lipid mediators, chemokines, and cytokines, which amplify the response and generate a feedback loop that perpetuates the allergic inflammatory response (Drazen et al. 1996). Together, these inflammatory mediators and cytokines generate tissue damage that could be related with the clinical symptoms of the different allergic diseases.

NFAT TRANSCRIPTION FACTORS IN IMMUNE RESPONSE

Many of the cytokines that regulate eosinophil function are under the control of proteins belonging to the NFAT (nuclear factor of activated T cells) family of transcription factors. These proteins play a key role in the regulation of cytokine gene transcription during the immune response (Crabtree & Clipstone 1994, Rao 1994, Jain et al. 1995b). The NFAT family encodes four distinct classes of proteins: NFAT1 (formerly NFATp), NFAT2 (NFATc), NFAT3 and NFAT4 (NFATx) (Rao et al. 1997). NFAT1, the first identified member of the family, was cloned from murine (Ar-5) and human (Jurkat) T cell cDNA libraries (McCaffrey et al. 1993, Luo et al. 1996). A distinct protein, NFATc (NFAT2), later was also cloned from a Jurkat T cell cDNA library (Northrop et al. 1994). cDNA clones encoding three other NFAT proteins: NFAT3, NFAT4 and NFATx (isoform of NFAT4), were isolated from Jurkat T cell, human peripheral blood (PBL) and human thymus cDNA libraries (Ho et al. 1995, Masuda et al. 1995).

Despite their name, NFAT proteins are expressed not only in T cells, but also in other classes of immune and non-immune cells. At the protein level, NFAT1 and NFAT2 are expressed in peripheral T cells and T cell lines, and NFAT1 is also expressed in B cells, mast cells, NK cells, monocytes and macrophages (Ho et al. 1994, Aramburu et al. 1995, Ruff & Leach 1995, Wang et al. 1995, Weiss et al. 1996). Moreover, NFAT1 is expressed in a neuronal cell line and in the nervous system (Ho et al. 1994), and an endothelial cell line (Cockerill et al. 1995a, Wang et al. 1995). NFAT1 and NFAT2 mRNAs are expressed in peripheral lymphoid tissue (spleen and PBL), and NFAT2 mRNA is upregulated in activated T cells and NK cells (Northrop et al. 1994, Aramburu et al. 1995, Hoey et al. 1995, Masuda et al. 1995, Park et al. 1996). NFAT4 mRNA is expressed at high levels in the thymus (Hoey et al. 1995, Ho et al. 1995, Masuda et al. 1995), and NFAT3 is expressed at low levels in lymphoid tissues (Hoey et al. 1995).

Several isoforms have been described for NFAT1, NFAT2 and NFAT4. Sequence homology represented in all the isoforms suggests two different domains, comprising the DNA-binding domain (DBD) and the NFAT homology region (NHR) (Jain et al. 1995a, Luo et al. 1996). The DBD, which is located between amino acid residues 400 and 700, is highly conserved within the NFAT family, and shows moderate sequence similarity to the DNA-binding domains of Rel-family proteins (Nolan 1994, Jain et al. 1995a, Chytil & Verdine 1996). This domain contains the highly conserved RAHYETEG sequence in which residues contact DNA (Jain et al. 1995a, Chytil & Verdine 1996). The NHR is located in the N-terminal region, comprising 300 amino acids, and shows a strong conservation of several sequence motifs characteristic of the NFAT family (Ho et al. 1995, Hoey et al. 1995, Masuda et al. 1995, Luo et al. 1996) (Fig. 2).

![Fig. 2: schematic diagram of the primary structure of the NFAT1 protein, as deduced from analysis of cDNA clones. The region of highest homology within NFAT proteins is the DNA-binding domain (DBD), which shows similarity to the Rel homology region of Rel-family transcription factors, and encodes the amino acids that contact DNA. Other regions such as transactivation domain (TAD), NFAT homology region (NHR), and splicing variants isoforms are indicated.](image-url)
NFAT proteins and their translocation to the nucleus, and dephosphorylated proteins show increased affinity for DNA (Shaw et al. 1995, Loh et al. 1996a,b). Receptor stimulation and calcium mobilization result in activation of the calmodulin-dependent phosphatase calcineurin (Weiss & Littman 1994). Each step of NFAT activation is blocked by the calcineurin inhibitors CsA or FK506, suggesting that calcineurin is a major upstream regulator of NFAT proteins, and that dephosphorylation is the initial step of NFAT activation (Fig. 3).

Stimulated cells inducibly transcribe a large number of genes, such as genes encoding transcription factors, signalling proteins, cytokines, cell surface receptors, and other effector proteins (Leonard et al. 1987, Crabtree 1989, Cockerill et al. 1995b, Kelly & Siebenlist 1995). NFAT was first identified in T cells as a rapidly-inducible nuclear factor binding to the distal antigen receptor response element of the human IL-2 promoter (Shaw et al. 1988). Over the next few years, studies from several laborato-

Fig. 3: signal transduction mechanisms leading to transcription of cytokine genes in activated T cells (and other cells of the immune system) upon stimulation through surface receptors capable of mobilizing calcium. Abbreviations: TCR, T-cell receptor; BCR, B-cell receptor; FcR, Fcy and Fcε receptors; CsA, cyclosporin A; PKC, protein kinase C; CaM kinase, calmodulin-dependent kinase; P, phosphorylation.
ROLE OF NFAT1 TRANSCRIPTION FACTOR IN THE ALLERGIC RESPONSE

The response of the immune system to antigen is coordinated by an interacting network of transcription factors that dictate expression of different effector proteins that regulate the immune response (Crabtree 1989, Paul & Seder 1994). However, it is not known how the same stimuli can be responsible for encoding the specificity of cellular response. Recently, it has been described that different calcium signalling patterns can activate different transcription factors, demonstrating that the same second messenger can drive specificity in signalling to the nucleus (Dolmetsch et al. 1997). Nevertheless, the molecular basis for the tissue-specific expression of Th1/Th2-like cytokines has remained elusive. Over the next few years, several groups have been described important advances in signaling and gene transcription in the immune system using *in vivo* gene disruption.

In order to address the specialized functions of NFAT1 transcription factor in the *in vivo* immune response, mutant mice carrying a disrupted NFAT1 gene have been described (Hodge et al. 1996, Xanthoudakis et al. 1996). In both cases the targeted exon was in the DNA-binding domain encoding the Rel-homology region (see above), and the disruption resulted either in the expression of a truncated protein without DNA-binding activity (Hodge et al. 1996), or in no protein expression (null phenotype) (Xanthoudakis et al. 1996). Except for a moderate degree of splenomegaly, NFAT1-deficient mice developed normally, did not exhibit any obvious behavioral deficiencies, and were immunocompetent.

In the primary immune response, NFAT1-deficient mice showed no impairment in IL-2, IL-4, IFN-γ and TNF-α production by *in vitro* stimulation of spleen cells with anti-CD3 antibody or Con A (Xanthoudakis et al. 1996). However, in an *in vivo* model of primary response NFAT1-deficient mice showed an early impairment of several cytokines, such as IL-4, IL-13, TNF-α and GM-CSF, and cell surface receptors, including CD40L and FasL (Hodge et al. 1996). These results suggest that the NFAT1 protein played an important role in the primary *in vivo* immune response that could not have been predicted from the *in vitro* experiments.

Surprisingly, certain primary and secondary immune responses were markedly enhanced. In fact, CD4 T cells hyperproliferated in an *in vitro* response to anti-CD3 antibody, and an *in vitro* model of T helper (Th) differentiation, NFAT1-deficient mice showed an increased level of IL-4 production at later timepoints (Hodge et al. 1996). In addition, these mice presented high serum IgE levels in response to immunization with ovalbumin (Hodge et al. 1996, Xanthoudakis et al. 1996). Moreover, NFAT1-deficient mice consistently showed a marked increase in the secondary immune response using two different experimental models. First, cells from draining lymph nodes of mice that had been sensitized with ovalbumin hyperproliferated after a secondary *in vitro* stimulation with the same antigen (Xanthoudakis et al. 1996). Second, an allergic/inflammatory response to antigen was assessed *in vivo*. Mice that had been previously sensitized to ovalbumin were restimulated by intrapleural injection of antigen, and the accumulation of eosinophils in the pleural cavity was assessed. NFAT-deficient mice showed a marked increase in the number of eosinophils in the pleural cavity and a corresponding increase in the level of serum IgE (Xanthoudakis et al. 1996).

The immune phenotype of NFAT1-deficient mice illustrates three important points. First, these mice are immunocompetent rather than immunodefective and do not show any gross impairment in the production of NFAT-dependent cytokines, indicating that the lack of NFAT1 is compensated for by the presence of other NFAT proteins. Second, the increased secondary immune responses and increased cell proliferation observed in NFAT1-deficient mice suggests that NFAT1 may actually have an overall negative effect on immune responsiveness in normal mice. This behaviour is not unprecedented: for example, in signal transduction pathways, kinases that are activated early during a response often activate feedback processes that contribute to the late downregulation of the same response. Finally, the unusual hyper-eosinophilia of NFAT1-deficient mice in a model of allergy, and their tendency towards the late production of Th2-type cytokines, suggests that NFAT1 critically influences Th differentiation during the normal immune response. NFAT1 could act to promote the transcription of genes encoding immunosuppressive cytokines, cytokines that skew T cell differentiation towards the Th1 pathway, or cytokines that suppress differentiation towards the Th2 pathway. Alternatively, NFAT1 could inhibit the production of cytokines having the opposite effect. These possibilities are not mutually exclusive. Given the importance of Th1-Th2 cytokine production in asthma, allergy, and other clinical situations, it is of considerable interest to understand the mechanisms by which NFAT1 exerts its profound effects on T cell differentiation and function.

ACKNOWLEDGMENTS

To Drs Patricia Bozza and Heidi Okamura for critical reading of this manuscript. Work in the A Rao labo-
Chen L, Oakley MG, Glover JNM, Jain J, Dervan PB, Casolaro V, Georas SN, Song Z, Ono SJ 1996. Biology

REFERENCES

Aramburu J, Azzoni L, Rao A, Perussia B 1995. Activation

and expression of the nuclear factor of activated

cells, NFATp and NFATc, in human natural killer
cells: regulation upon CD16 ligand binding. J Exp

Med 182: 801-810.

Bochner BS, Klunk DA, Sternsky SA, Coffman RL,
Schleimer RP 1995. IL-13 selectively induces vascu-
lar cell adhesion molecule-1 expression in human
endothelial cells. J Immunol 154: 799-803.

Boss V, Talpade DJ, Murphy TJ 1996. Induction of

NFAT-mediated transcription by Gq-coupled recep-
tors in lymphoid and non-lymphoid cells. J Biol

Chem 271: 10429-10432.

Brabletz T, Pietrowski I, Serfling E 1991. The

immunosuppressives FK506 and cyclosporin A in-
hibit the generation of protein factors binding to the

two purine boxes of the interleukin 2 enhancer.

Nucleic Acids Res 19: 61-67.

Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins

JV, Irani AMA, Schwartz LB, Durham SR, Jeffrey

PK, Kay AB 1991. Eosinophils, T-lymphocytes,
mast cells, neutrophils and macrophages in bronchial
biopsy specimens from atopic subjects with asthma:
comparison with biopsy specimens from atopic sub-
jects without asthma and control subjects and rela-
tionship to bronchial hyperresponsiveness. J Allergy
Clin Immunol 88: 661-670.

Broide DH, Gleich GJ, Cuomo AJ, Coburn DA,
Federman LB, Schwartz LB, Wasserman SI 1991.
Evidence of ongoing mast cells and eosinophil de-
granulation in symptomatic asthma airway. J Allergy
Clin Immunol 88: 637-648.

Broide DH, Paine MM, Firestein GS 1992. Eosinophils
express interleukin 5 and granulocyte macrophage-
colonystimulating factor mRNA at sites of allergic
inflammation in asthmatics. J Clin Invest 90: 1414-
1424.

Brown DA, Nelson FB, Reinherz EL, Diamond DJ 1991.
The human interferon-γ gene contains an inducible
promoter that can be transactivated by tax I and II.
Eur J Immunol 21: 1879-1885.

Campbell PM, Pimm J, Ramassar V, Halloran PF 1996.
Identification of a calcium-inducible, cyclosporine-
sensitive element in the IFN-g promoter that is a
potential NFAT binding site. Transplantation 61:
933-939.

Carter LL, Dutton RW 1996. Type 1 and type 2: a fun-
damental dichotomy for all T-cell subsets. Curr

Opin Immunol 8: 336-342.

Casolaro V, Georas SN, Song Z, Zubkoff ID, Abdulkadir
SA, Thonas D, Ono SJ 1995. Inhibition of NF-AT-
dependent transcription by NF-kB: implications for
differential gene expression in T helper cell subsets.
Proc Natl Acad Sci USA 92: 11623-11627.

Casolaro V, Georas SN, Song Z, Ono SJ 1996. Biology
and genetics of atopic disease. Curr Opin Immunol
8: 796-803.

Chen L, Oakley MG, Glover JNM, Jain J, Dervan PB,
Hogan PG, Rao A, Verdin GL 1995. Only one of the
two DNA-bound orientations of AP-1 found in
solution cooperates with NFATp. Current Biology
5: 882-889.

Choi MSK, Brines RD, Holman MJ, Klaus GGB 1994.
Induction of NF-AT in normal B lymphocytes by
anti-immunoglobulin or CD40 ligand in conjunction
with IL-4. Immunity 1: 179-187.

Chytíl M, Verdin GL 1996. The Rel family of eukary-
otic transcription factors. Curr Opin Struct Biol 6:
91-100.

Clutterbuck EJ, Sanderson CJ 1988. Human eosinophil
hematopoiesis studied in vitro by means of murine
eosinophil differentiation factor (IL-5): production of
functionally active eosinophils from normal human
bone marrow. Blood 71: 646-651.

Cockerill GW, Bert AG, Ryan GR, Gamble JR, Vadas
MA, Cockerill PN 1995a. Regulation of granulo-
cyte-macrophage colony-stimulating factor and E-
selectin expression in endothelial cells by
cyclosporin A and the T-cell transcription factor
NFAT. Blood 86: 2689-2698.

Cockerill PN, Bert AG, Jenkins F, Ryan GR, Shannon
MF, Vadas MA 1995b. Human granulocyte-mac-
rophage colony-stimulating factor enhancer function
is associated with cooperative interactions between
AP-1 and NFATp. Mol Cell Biol 15: 2071-2079.

Coffier E, Joseph D, Vergaftig BB 1991. Activation of
guinea pig eosinophils by human recombinant IL-5.
Selective priming to platelet-activating factor-acether
and interference of its antagonists. J Immunol 147:
2595-2602.

Crabtree GR 1989. Contingent genetic regulatory events
in T lymphocyte activation. Science 243: 355-361.

Crabtree GR, Clipstone NA 1994. Signal transmission
between the plasma membrane and nucleus of T-
lymphocytes. Annu Rev Biochem 63: 1045-1083.

Dent LA, Strath M, Mellor AL, Sanderson CJ 1990.
Eosinophilia in transgenic mice expressing
interleukin 5. J Exp Med 172: 1425-1431.

Desai DM, Newton ME, Kadlec W, Weiss A 1990.
Stimulation of the phosphatidylinositol pathway can
induce T-cell activation. Nature 348: 66-69.

Desreumaux P, Bloget F, Seguy D, Capron M, Cortot A,
Colombel JF, Janin A 1996. Interleukin-3, granulo-
cyte-macrophage colony-stimulating factor and
interleukin-5 synthesis in eosinophilic gastroenteri-
tis. Gastroenterology 110: 768-774.

Desreumaux P, Capron M 1996. Eosinophils in aller-
genic reactions. Curr Opin Immunol 8: 790-795.

Drazen JM, Arm JP, Austen KF 1996. Sorting out the
cytokines of asthma. J Exp Med 183: 1-5.

Dolganov G, Bert S, Lovett M, Burr J, Schubert L, Short
D, McGurn M, Gibson C, Lewis DB 1996. Coexpression of
the interleukin-13 and interleukin-

4 genes correlates with their physical linkage in the
cytokine gene cluster on human chromosome 5q23-
31. Blood 87: 3316-3326.

Dolmetsch RE, Lewis RS, Goodnow CC, Healy J 1997.
Differential activation of transcription factors in-
duced by Ca2+ response amplitude and duration.
Nature 386: 855-858.
Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG 1995. IL-5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. *J Exp Med* 183: 195-201.

Gonzalo JA, Jia QQ, Aguirre V, Friend D, Coyle AJ, Jenkins NA, Lin GS, Katz H, Lichtman A, Copeland N, Kopf M, Gutierrez-Ramos JC 1996. Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but not restricted to a Th2-type response. *Immunity* 4: 1-14.

Ho AM, Jain J, Rao A, Hogan PG 1994. Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. *J Biol Chem* 269: 28181-28186.

Ho SN, Thomas DJ, Timmerman LA, Li X, Francke U, Crabtree GR 1995. NFATc3, a lymphoid-specific NFATc family member that is calcium-regulated and exhibits distinct DNA binding specificity. *J Biol Chem* 270: 1998-19907.

Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby M, Glimcher LH 1996. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. *Immunity* 4: 397-405.

Hoey T, Sun Y-L, Williamson K, Xu X 1995. Isolation and characterization of the interleukin 2 gene. *J Exp Med* 183: 1939-1951.

Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby M, Glimcher LH 1996. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. *Immunity* 4: 397-405.

Ho AM, Jain J, Rao A, Hogan PG 1994. Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. *J Biol Chem* 269: 28181-28186.

Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby M, Glimcher LH 1996. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. *Immunity* 4: 397-405.

Ho AM, Jain J, Rao A, Hogan PG 1994. Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. *J Biol Chem* 269: 28181-28186.

Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby M, Glimcher LH 1996. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. *Immunity* 4: 397-405.

Ho AM, Jain J, Rao A, Hogan PG 1994. Expression of the transcription factor NFATp in a neuronal cell line and in the murine nervous system. *J Biol Chem* 269: 28181-28186.

Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby M, Glimcher LH 1996. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. *Immunity* 4: 397-405.
Novel NFAT sites that mediate activation of the interleukin 2 gene by inhibiting the expression of the interleukin 2 promoter: a reflection of T cell lympocyte activation. Biochem Biophys Acta 1263: 181-200.

Tsai EY, Jain J, Pesavento PA, Rao A, Goldfeld AE 1996. Tumor necrosis factor alpha gene regulation in activated T cells-binding motifs which require AP-1 binding and cooperative roles for NFAT and AP-1 in the regulation of the interleukin-2 promoter. Mol Cell Biol 16: 459-467.

Tsytsoyko AV, Tsitsikov EN, Geha RS. 1996 The CD40L promoter contains nuclear factor of activated T cells-binding motifs which require AP-1 binding for activation of transcription. J Biol Chem 271: 3763-3770.

Ullman KS, Flanagan WM, Edwards CA, Crabtree GR 1991. Activation of early gene expression in T lymphocytes by Oct-1 and an inducible protein, OAP40. Science 254: 558-562.

Venkataraman L, Francis DA, Wang Z, Liu J, Rothstein TL, Sen R 1994. Cyclosporin A-sensitive induction of NF-AT in murine B cells. Immunity 1: 189-196.

Wagner C, Gundel R, Reily P, Haynes N, Letts L, Rothlein R 1990. Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247: 456-459.

Wang DZ, McCaffrey PG, Rao A 1995. The cyclosporin-sensitive transcription factor NFATp is expressed in several classes of cells in the immune system. Ann N Y Acad Sci 766: 182-194.

Wardlaw AJ, Symon FS, Walsh GM 1994. Eosinophil adhesion in allergic inflammation. J Allergy Clin Immunol 93: 247-266.

Wang DZ, McCaffrey PG, Rao A 1995. The cyclosporin-sensitive transcription factor NFATp is expressed in several classes of cells in the immune system. Ann N Y Acad Sci 766: 182-194.

Wardlaw AJ, Symon FS, Walsh GM 1994. Eosinophil adhesion in allergic inflammation. J Allergy Clin Immunol 93: 247-266.
Immunol 94: 1163-1171.
Warren DJ, Moore MAS 1988. Synergism among interleukin 1, interleukin 3 and interleukin 5 in the production of eosinophils from primitive hematopoietic stem cells. J Immunol 140: 94-99.
Warringa RAJ, Mengelers HJJ, Kuijper PHM, Raaijmakers JAM, Bruijnzeel PBL, Koenderman L 1992. In vivo priming of platelet-activating factor-induced eosinophil chemotaxis in allergic asthmatic individuals. Blood 79: 1836-1841.
Weiss A, Littman DR 1994. Signal transduction by lymphocyte antigen receptors. Cell 76: 263-274.
Weiss DL, Hural J, Tara D, Timmerman LA, Henkel G, Brown MA 1996. Nuclear factor of activated T cells is associated with a mast cell interleukin 4 transcription complex. Mol Cell Biol 16: 228-235.
Weller PF, Rand TH, Goelz SE, Chi-Rosso G, Lobb RJ 1991. Human eosinophil adherence to vascular endothelium mediated by binding VCAM-1 and ELAM-1. Proc Natl Acad Sci USA 88: 7430-7435.
Weller PF 1993. Lipid, peptide and cytokine mediators elaborated by eosinophils, p. 25-42. In H Smith, RM Cook (eds.), Immunopharmacology of Eosinophils. Academic Press Incorporated, London.
Wu J, Katzav S, Weiss A 1995. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol Cell Biol 15: 4337-4346.
Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, Tominaga A, Takatsu K 1988. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 167: 43-56.
Yaseen NR, Maizel AL, Wang F, Sharma S 1993. Comparative analysis of NFAT (nuclear factor of activated T cells) complex in human T and B lymphocytes. J Biol Chem 268: 14285-14293.
Xanthoudakis S, Viola JPB, Shaw KTY, Luo C, Wallace JD, Bozza PT, Curran T, Rao A 1996. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272: 892-895.