Inlining External Sources in Answer Set Programs

Christoph Redl
Institute of Logic and Computation, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria
(e-mail: redl@kr.tuwien.ac.at)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

HEX-programs are an extension of answer set programs (ASP) with external sources. To this end, external atoms provide a bidirectional interface between the program and an external source. The traditional evaluation algorithm for HEX-programs is based on guessing truth values of external atoms and verifying them by explicit calls of the external source. The approach was optimized by techniques that reduce the number of necessary verification calls or speed them up, but the remaining external calls are still expensive. In this paper we present an alternative evaluation approach based on inlining of external atoms, motivated by existing but less general approaches for specialized formalisms such as DL-programs. External atoms are then compiled away such that no verification calls are necessary. The approach is implemented in the dlvhex reasoner. Experiments show a significant performance gain. Besides performance improvements, we further exploit inlining for extending previous (semantic) characterizations of program equivalence from ASP to HEX-programs, including those of strong equivalence, uniform equivalence and (H, B)-equivalence. Finally, based on these equivalence criteria, we characterize also inconsistency of programs wrt. extensions. Since well-known ASP extensions (such as constraint ASP) are special cases of HEX, the results are interesting beyond the particular formalism.

Under consideration in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: Answer Set Programming, External Computation, HEX-Programs, Inlining, Equivalence

1 Introduction

HEX-programs extend answer set programs (ASP) as introduced by Gelfond and Lifschitz (1991) with external sources. Like ASP, HEX-programs are based on nonmonotonic programs and have a multi-model semantics. External sources are used to represent knowledge and computation sources such as, for instance, description logic ontologies and Web resources. To this end, so-called external atoms are used to send information from the logic program to an external source, which returns values to the program. Cyclic rules that involve external atoms are allowed, such that recursive data exchange between the program and external sources is possible. A concrete example is the external atom &edge\[g\](x, y) which evaluates to true for all edges (x, y) contained in a graph that is stored in a file identified by a filename g.

The traditional evaluation procedure for HEX-programs is based on rewriting external atoms...
to ordinary atoms and guessing their truth values. This yields answer set candidates that are subsequently checked to ensure that the guessed values coincide with the actual semantics of the external atoms. Furthermore, an additional minimality check is necessary to exclude self-justified atoms, which involves even more external calls. Although this approach has been refined by integrating advanced techniques for learning (Eiter et al. 2012) and efficient minimality checking (Eiter et al. 2014), which tightly integrate the solver with the external sources and reduce the number of external calls, the remaining calls are still expensive. In addition to the complexity of the external sources themselves, also overhead on the implementation side, such as calls of external libraries and cache misses after jumps out of core algorithms, may decrease efficiency compared to ordinary ASP-programs.

In this paper we present a novel method for \textsc{hex}-program evaluation based on inlining of external atoms. In contrast to existing approaches for DL-programs (Heymans et al. 2010; Xiao and Eiter 2011; Bajraktari et al. 2017), ours is generic and can be applied to arbitrary external sources. Therefore, it is interesting beyond \textsc{hex}-programs and also applicable to specialized formalisms such as constraint ASP (Gebser et al. 2009; Ostrowski and Schaub 2012). The approach uses support sets (cf. e.g. Darwiche and Marquis (2002)), i.e., sets of literals that define assignments of input atoms that guarantee that an external atom is true. Support sets were previously exploited for \textsc{hex}-program evaluation (Eiter et al. 2014); however, this was only for speeding up but not for eliminating the necessary verification step. In contrast, our new approach compiles external atoms away altogether such that there are no guesses at all that need to be verified, i.e., the semantics of external atoms is embedded in the ASP-program. We use a benchmark suite to show significant performance improvements for certain classes of external atoms.

Next, we have a look at equivalence notions for ASP such as strong equivalence (Lifschitz et al. 2001), uniform equivalence (Eiter and Fink 2003) and the more general notion of \((\mathcal{H}, \mathcal{B})\)-equivalence (Woltran 2008); all these notions identify programs as equivalent also wrt. program extensions. Equivalence notions have received quite some attention and in fact have also been developed for other formalisms such as abstract argumentation (Baumann et al. 2017). Thus it is a natural goal to also use equivalence notions from ordinary ASP-programs for \textsc{hex}-programs (and again, also special cases thereof), which turns out to be possible based on our inlining approach. We are able to show that equivalence can be (semantically) characterized similarly as for ordinary ASP-programs. To this end, we show that the existing criteria for equivalence of ASP-programs characterize also the equivalence of \textsc{hex}-programs. Based on the equivalence characterization of \textsc{hex}-programs, we further derive a (semantic) characterization of inconsistency of a program wrt. program extensions, which we call persistent inconsistency. More precisely, due to non-monotonicity, an inconsistent program can in general become consistent when additional rules are added. Our notion of persistent inconsistency captures programs which remain inconsistent even under (certain) program extensions. While the main results are decision criteria based on programs and their reducts, we further derive a criterion for checking persistent inconsistency based on unfounded sets. Unfounded sets are sets of atoms which support each other only cyclically and are often used in implementations to realize minimality checks of answer sets. Thus, a criterion based on unfounded sets is convenient in view of practical applications in the course of reasoner development; we discuss one such application as the end of this paper.

To summarize the main contributions, we present

1. a technique for external source inlining and three applications thereof, namely
2. a new evaluation technique for HEX-programs,
3. a generalization of equivalence characterizations from ASP- to HEX-programs, and
4. a novel notion of inconsistency of HEX-programs wrt. program extensions and an according characterization.

Here, item 1. is the foundation for the contributions in items 2., 3., and 4.

After the preliminaries in Section 2 we proceed as follows:

- In Section 3 we show how external atoms can be *inlined* (embedded) into a program. To handle nonmonotonicity we use a *saturation encoding* based on *support sets*. For the sake of a simpler presentation we first restrict the discussion to positive external atoms and then extend our approach to handle also negated ones.
- In Section 4 we exploit this approach for performance gains. To this end, we implement the approach in the dlvhex system and perform an experimental evaluation, which shows a significant speedup for certain classes of external atoms. The speedup is both over traditional evaluation and over a previous approach based on support sets for guess verification.
- As another application of the inlining technique, Section 5 characterizes equivalence of HEX-programs, which generalizes results by Woltran (2008). The generalizations of strong (Lifschitz et al. 2001) and uniform equivalence (Eiter and Fink 2003) correspond to special cases thereof.
- In Section 6 we present a characterization of inconsistency of HEX-programs wrt. program extensions, which we call persistent inconsistency. This characterization is derived from the previously presented notion of equivalence. We then discuss an application of the criteria in context of potential further improvements of the evaluation algorithm.
- Section 7 discusses related work and concludes the paper.
- Proofs are outsourced to Appendix A.

A preliminary version of the results in this paper has been presented at AAAI 2017 (Redl 2017b; Redl 2017c); the extensions in this work consist of more extensive discussions of the theoretical contributions, additional experiments and formal proofs of the results.

2 Preliminaries

Our alphabet consists of possibly infinite, mutually disjoint sets of constant symbols C, predicate symbols P, and external predicates λ; in this paper we refrain from using variables in the formal part, as will be justified below.

In the following, a (ground) ordinary atom a is of form $p(c_1, \ldots, c_\ell)$ with predicate $p \in P$ and constant symbols $c_1, \ldots, c_\ell \in C$, abbreviated as $p(c)$; we write $c \in c$ if $c = c_i$ for some $1 \leq i \leq \ell$. For $\ell = 0$ we might drop the parentheses and write $p()$ simply as p. In the following we may drop ‘ordinary’ and call it simply an atom whenever clear from context.

An *assignment* Y over a set A of atoms is a set $Y \subseteq A$, where $a \in Y$ expresses that a is true under Y, also denoted $Y \models a$, and $a \notin Y$ that a is false, also denoted $Y \not\models a$. For a default-literal $\neg a$ over an atom a we let $Y \models \neg a$ if $Y \not\models a$ and $Y \not\models \neg a$ otherwise.

HEX-Programs. We recall HEX-programs (Eiter et al. 2016), which generalize (disjunctive) logic programs under the answer set semantics (Gelfond and Lifschitz 1991), as follows.

Syntax. HEX-programs extend ordinary ASP-programs by *external atoms* which provide a bidirectional interface between the program and external sources. A *ground external atom* is of the
form $\&g[p](c)$, where $\&g \in \mathcal{X}$ is an external predicate, $p = p_1, \ldots, p_k$ is a list of input parameters (predicates from \mathcal{P} or object constants from \mathcal{C}), called input list, and $c = c_1, \ldots, c_l$ are output constants from \mathcal{C}.

Definition 1
A HEX-program P consists of rules
\[a_1 \lor \cdots \lor a_k \leftarrow b_1, \ldots, b_m, \text{not } b_{m+1}, \ldots, \text{not } b_n, \]
where each a_i is an ordinary atom and each b_j is either an ordinary atom or an external atom.

For such a rule r, its head $H(r) = \{a_1, \ldots, a_k\}$, its body is $B(r) = \{b_1, \ldots, b_m, \text{not } b_{m+1}, \ldots, \text{not } b_n\}$, its positive body is $B^+(r) = \{b_1, \ldots, b_m\}$ and its negative body is $B^-(r) = \{b_{m+1}, \ldots, b_n\}$. For a program P we let $X(P) = \bigcup_{r \in P} X(r)$ for $X \in \{H, B, B^+, B^-\}$.

For a program P and a set of constants \mathcal{C}, let $HB_{\mathcal{C}}(P)$ denote the Herbrand base containing all atoms constructible from the predicates occurring in P and constants \mathcal{C}.

We restrict the formal discussion to programs without variables as suitable safety conditions guarantee the existence of a finite grounding that suffices for answer set computation, see e.g., Eiter et al. (2016).

Semantics. In the following, assignments are over the set of ordinary atoms constructible from predicates \mathcal{P} and constants \mathcal{C}. The semantics of an external atom $\&g[p](c)$ wrt. an assignment Y is given by the value of a decidable $1+k+l$-ary two-valued (Boolean) oracle function $f_{\&g}$ that is defined for all possible values of Y, p and c. We say that $\&g[p](c)$ is true relative to Y if $f_{\&g}(Y, p, c) = \text{T}$, and it is false otherwise. We make the restriction that $f_{\&g}(Y, p, c) = f_{\&g}(Y', p, c)$ for all assignments Y and Y' which coincide on all atoms over predicates in p. That is, only atoms over the predicates in p may influence the value of the external atom, which resembles the idea of p being the ‘input’ to the external source; we call such atoms also the input atoms of $\&g[p](c)$.

Satisfaction of ordinary rules and ASP-programs (Gelfond and Lifschitz 1991) is then extended to HEX-rules and -programs as follows. A rule r as by Definition 1 is true under Y, denoted $Y \models r$, if $Y \models h$ for some $h \in H(r)$ or $Y \not\models b$ for some $b \in B(r)$.

The answer sets of a HEX-program P are defined as follows. Let the FLP-reduct of P wrt. an assignment Y be the set $fP^Y = \{r \in P \mid Y \models b \text{ for all } b \in B(r)\}$. Then:

Definition 2
An assignment Y is an answer set of a HEX-program P if Y is a subset-minimal model of the FLP-reduct fP^Y of P wrt. Y.

Example 1
Consider the program $P = \{p \leftarrow \&id[p]()\}$, where $\&id[p]()$ is true iff p is true. Then P has the answer set $Y_1 = \emptyset$; indeed it is a subset-minimal model of $fP^{Y_1} = \emptyset$.

For an ordinary program P, the above definition of answer sets is equivalent to Gelfond & Lifschitz’ answer sets.

Traditional Evaluation Approach. A HEX-programs P is transformed to an ordinary ASP-program \hat{P} as follows. Each external atom $\&g[p](c)$ in P is replaced by an ordinary replacement atom $e_{\&g}[p](c)$ and a rule $e_{\&g}[p](c) \lor \neg e_{\&g}[p](c) \leftarrow$ is added. The answer sets of the resulting guessing program \hat{P} are computed by an ASP solver. However, the assignment Y extracted from
an answer set \hat{Y} of \hat{P} by projecting it to the ordinary atoms $A(P)$ in P may not satisfy P as $\&g[p](c)$ under $f_{\&g}$ may differ from the guessed value of $e_{\&g}[p](c)$. The answer set is merely a candidate. If a compatibility check against the external source succeeds, it is a compatible set as formalized as follows:

Definition 3

A compatible set of a program P is an answer set \hat{Y} of the guessing program \hat{P} such that $f_{\&g}(Y, p, c) = T$ iff $e_{\&g}[p](c) \in \hat{Y}$ for all external atoms $\&g[p](c)$ in P.

Example 2

Consider $P = \{ p(a) \lor p(b) \leftarrow \&atMostOne[p]() \}$, where $\&atMostOne[p]()$ is true under an assignment Y if $\{p(a), p(b)\} \not\subseteq Y$, i.e., at most one of $p(a)$ or $p(b)$ is true under Y, and it is false otherwise. Then we have $P = \{ p(a) \lor p(b) \leftarrow e_{\&atMostOne[p]}; e_{\&atMostOne[p]} \lor ne_{\&atMostOne[p]} \}$, which has the answer sets $Y_1 = \{p(a), e_{\&atMostOne[p]}\}$, $Y_2 = \{p(b), e_{\&atMostOne[p]}\}$, and $Y_3 = \{ne_{\&atMostOne[p]}\}$ (while $\{p(a), p(b), e_{\&atMostOne[p]}\}$ is not an answer set of P). However, although Y_3 is an answer set of P, its projection $P_3 = \emptyset$ to atoms $A(P)$ in P is not an answer set of P because $\hat{Y}_3 \models \&atMostOne[p]()$ but $e_{\&atMostOne[p]} \not\in \hat{Y}_3$, and thus the compatibility check for \hat{Y}_3 fails. In contrast, the compatibility checks for \hat{Y}_1 and \hat{Y}_2 pass, i.e., they are compatible sets of P, and their projections $Y_1 = \{p(a)\}$ and $Y_2 = \{p(b)\}$ to atoms $A(P)$ in P are answer sets of P.

However, if the compatibility check succeeds, the projected interpretation is not always automatically an answer set of the original program. Instead, after the compatibility check of an answer set \hat{Y} of \hat{P} was passed, another final check is needed to guarantee also subset-minimality of its projection Y wrt. fP^Y. Each answer set Y of P is the projection of some compatible set \hat{Y} to $A(P)$, but not vice versa.

Example 3

Reconsider $P = \{ p \leftarrow \&id[p]() \}$ from above. Then $\hat{P} = \{ p \leftarrow e_{\&id[p]}; e_{\&id[p]} \lor ne_{\&id[p]} \}$ has the answer sets $\hat{Y}_1 = \{ne_{\&id[p]}\}$ and $\hat{Y}_2 = \{p, e_{\&id[p]}\}$. Here, $Y_1 = \emptyset$ is a \subseteq-minimal model of $fP^Y_1 = \emptyset$, but $Y_2 = \{p\}$ not of $fP^Y_2 = P$.

There are several approaches for checking this minimality, e.g., based on unfounded sets, which are sets of atoms that support each other only cyclically (Faber 2005). However, the details of this check are not relevant for this paper, which is why we refer the interested reader to Eiter et al. (2014) for a discussion and evaluation of various approaches.

Learning Techniques. In practice, the guessing program \hat{P} has usually many answer sets, but many of them fail the compatibility check against external sources (often because of the same wrong guess), which turns out to be an evaluation bottleneck. To overcome the problem, techniques that extend conflict-driven learning have been introduced as external behavior learning (EBL) (Eiter et al. 2012).

As in ordinary ASP solving, the traditional HEX-algorithm translates the guessing program to a set of nogoods, i.e., a set of literals that must not be true at the same time. Given this representation, techniques from SAT solving are applied to find an assignment that satisfies all nogoods (Gebser et al. 2012). Notably, as the encoding as a set of nogoods is of exponential size due to loop nogoods that avoid cyclic justifications of atoms, those parts are generated only on-the-fly. Moreover, additional nogoods are learned from conflict situations, i.e., violated
nogoods that cause the solver to backtrack; this is called conflict-driven nogood learning, see e.g. Franco and Martin (2009).

EBL extends this algorithm by learning additional nogoods not only from conflict situations in the ordinary part, but also from verification calls to external sources. Whenever an external atom \(e \& \& e[p](e) \) is evaluated under an assignment \(Y \) for the sake of compatibility checking, the actual truth value under the assignment becomes evident. Then, regardless of whether the guessed value was correct or not, one can add a nogood that represents that \(e \& \& e[p](e) \) must be true under \(Y \) if \(Y \models \& e[p](e) \) or that \(e \& \& e[p](e) \) must be false under \(Y \) if \(Y \not\models \& e[p](e) \). If the guess was incorrect, the newly learned nogood will trigger backtracking, if the guess was correct, the learned nogood will prevent future wrong guesses.

Example 4

Suppose \&atMostOne[p]() is evaluated under \(Y = \{p(a), p(b)\} \). Then the real truth value of \&atMostOne[p]() under \(Y \) becomes evident: in this case \(Y \not\models \&atMostOne[p]() \). One can then learn the nogood \{p(a), p(b), e&atMostOne[p]()\} to represent that \(p(a), p(b) \) and \&atMostOne[p]() cannot be true at the same time.

Learning realizes a tight coupling of the reasoner and the external source by adding parts of the semantics on-demand to the program instance, which is similar to theory propagation in SMT (see e.g. Nieuwenhuis and Oliveras (2005)) and lazy clause generation (Ohrimenko et al. 2009; Drescher and Walsh 2012). However, while these approaches consider only specific theories such as integer constraints, EBL in HEX supports arbitrary external sources. Moreover, EBL does not depend on application-specific procedures for generating learned clauses but rather derives them from the observed behavior of the source. Experimental results show that EBL leads to a significant, up to exponential speedup, which is explained by the exclusion of up to exponentially many guesses by the learned nogoods, but the remaining verification calls are still expensive and – depending on the type of the external source – can account for large parts of the overall runtime (Eiter et al. 2014).

Evaluation Based on Support Sets. Later, an alternative evaluation approach was developed. While the basic idea of guessing the values of external atoms as in the traditional approach remains, the verification is now accomplished by using so-called support sets instead of explicit evaluation (Eiter et al. 2014). Here, a positive resp. negative support set for an external atom \(e \) is a set of literals over the input atoms of \(e \) whose satisfaction implies satisfaction resp. falsification of \(e \). Informally, the verification is done by checking whether the answer set candidate matches with a support set of the external atom. If this is the case, the guess is verified resp. falsified.

More precisely, for a set \(S \) of literals \(a \) or \(\neg a \), where \(a \) is an atom, let \(\neg S = \{\neg a \mid a \in S\} \cup \{a \mid \neg a \in S\} \) be the set of literals \(S \) with swapped sign. We call a set \(S \) of literals consistent if there is no atom \(a \) such that \(\{a, \neg a\} \subseteq S \). We formalize support sets as follows:

Definition 4 (Support Set)

Let \(e = \&g[y](x) \) be an external atom in a program \(P \). A support set for \(e \) is a consistent set \(S_e = S_e^+ \cup S_e^- \) such that \(e \in \{T, F\} \), \(S_e^+ \subseteq HB_C(P) \), and \(S_e^- \subseteq \neg HB_C(P) \) s.t. \(Y \models S_e^+ \) and \(Y \cap \neg S_e^- = \emptyset \) implies \(Y \models e \) if \(\sigma = T \) and \(Y \not\models e \) if \(\sigma = F \) for all assignments \(Y \).

We call the support set \(S_e \) positive if \(\sigma = T \) and negative if \(\sigma = F \).

Example 5
Suppose $\text{diff}[p, q](c)$ computes the set of all elements c that are in the extension\(^1\) of p but not in that of q. Then $\{p(a), \neg q(a)\}$ is a positive support set for $\text{diff}[p, q](a)$ because any assignment Y with $\{p(a)\} \subseteq Y$ but $Y \cap \{q(a)\} = \emptyset$ satisfies $\text{diff}[p, q](a)$.

We are in particular interested in families (= sets) of support sets which describe the behavior of external atoms completely:

Definition 5 ((Complete) Support Set Family)

A positive resp. negative family of support sets S_{σ} with $\sigma \in \{T, F\}$ for external atom e is a set of positive resp. negative support sets of e; S_{σ} is complete if for each assignment Y with $Y \models e$ resp. $Y \not\models e$ there is an $S_{\sigma} \in S_{\sigma}$ s.t. $Y \supseteq S_{\sigma}^+$ and $Y \cap \neg S_{\sigma}^- = \emptyset$.

Complete support set families S_{σ} can be used for the verification of external atoms as follows. One still uses the rewriting \hat{P}, but instead of explicit evaluation and comparison of the guess of a replacement atom to the actual value under the current assignment, one checks whether for some $S_{\sigma} \in S_{\sigma}$ we have $Y \supseteq S_{\sigma}^+$ and $Y \cap \neg S_{\sigma}^- = \emptyset$ for the current assignment Y. If this is the case, the external atom must be true if $\sigma = T$ and false if $\sigma = F$; otherwise, it must be false if $\sigma = T$ and true if $\sigma = F$. This method is in particular advantageous if the support sets in S_{σ} are small and few.

As a further improvement, positive support sets S_T for $\&g[p](c)$ can be added as constraints $\leftarrow S_T^+, \{\neg a \mid \neg a \in S_T\}$, not $\&g[p](c)$ to the program in order to exclude false negative guesses. Analogously, for negative support sets we can add $\leftarrow S_F^-, \{\neg a \mid \neg a \in S_F\}$, $\&g[p](c)$ to exclude false positive guesses. This was exploited in existing approaches for performance improvements (Eiter et al. 2014); we will also use this technique in Section 3 when comparing our new approach to the previous support-set-based approach. This amounts to a learning technique similar to EBL. However, note that this learns only a fixed number of nogoods at the beginning, while learning by EBL is not done here as external sources are not evaluated during solving. Note that even if all $S_T \in S_T$ are added as constraints, the verification check is still necessary. This is because adding a positive support set S_T as a constraint eliminates only false negative guesses, but not false positive guesses (since they encode only when the external atom is true but not when it is false). Conversely, adding all $S_F \in S_F$ prevents only false positive guesses but not false negative ones.

The approach was also lifted to the non-ground level (Eiter et al. 2014). Intuitively, non-ground support sets may contain variables as shortcuts for all ground instances. Prior to the use of non-ground support sets, the variables are substituted by all relevant constants that appear in the program. However, in the following we restrict the formal discussion to the ground level for simplicity.

To summarize, improvements in the traditional evaluation approach (learning) have reduced the number of verification calls, and the alternative support set approach has replaced explicit verification calls by matching an assignment with support sets, but neither of them did eliminate the need for guessing and subsequent verification altogether. In the next section we go a step further and eliminate this need.

Construction of Support Sets. Obviously, in order to make use of support sets there must be procedures that can effectively and efficiently construct them, which is why we have a look at this

\(^1\) The extension of a (unary) predicate p wrt. an assignment Y is the set $\{c \mid p(c) \in Y\}$; likewise for predicates with other arities.
aspect. Constructing support sets depends on the external source \(\text{Eiter et al. (2014)}\). In general, the developer of an external atom is aware of its semantic structure, which usually allows her/him to provide this knowledge in form of support sets. Then, providing support sets can be seen as an alternative way to define and implement oracle functions. For certain classes of external atoms, procedures for constructing support sets are in fact already in place.

Compactness of families of support sets is an important aspect for evaluation techniques based on families of support sets. It is therefore crucial for the approach by \(\text{Eiter et al. (2014)}\) and our contribution that, although there may be exponentially many support sets in the worst case, many realistic external sources have small support set families. For certain types of external sources, their small size is even provable and known before evaluating the program. External sources with provably small support set families include, for instance, the description logic \(\text{DL-Lite}_A\) \(\text{Calvanese et al. (2007)}\). Generally, support set families tend to be small for sources whose behavior is structured, i.e., whose output often depends only on parts of the input and does not change completely with small changes in the input \(\text{Eiter et al. (2014)}\). Note that such a structure in many realistic applications is also the key to parameterized complexity. In this paper, we focus on such sources; also the sources used in our benchmarks are guaranteed to have small families of support sets (whose sizes we will discuss together with the respective benchmark results).

As an example we have a closer look at constructing support sets for a \(\text{DL-Lite}_A\)-ontology that is accessed from the logic program using dedicated external atoms (also called \(\text{DL-atoms}\) \(\text{Eiter et al. (2008)}\)). \(\text{DL-atoms}\) allow for answering queries over the ontology under a (possibly) extended Abox based on input from the program. We use the external atom \&\text{DL}[ont, inpc, impr, con](X) to access an ontology \(\text{ont}\) and retrieve all individuals \(X\) in the concept \(\text{con}\), where the binary resp. ternary predicates \(\text{inpc}\) and \(\text{impr}\) allow for answering the query under the assumption that certain concept resp. role assertions are added to the Abox of the ontology before answering the query. More precisely, the query is answered wrt. an assignment \(Y\) under the assumption that concept assertion \(c(i)\) is added for each \(\text{inpc}(c, i) \in Y\) and role assertion \(r(i_1, i_2)\) is added for each \(\text{impr}(r, i_1, i_2) \in Y\).

For instance, suppose the program contains atoms of form \(\text{inpc}(\text{"Person"}, \cdot)\) to specify persons and atoms of form \(\text{impr}(\text{"childOf"}, \cdot, \cdot)\) to specify parent-child relations. Then the external atom \&\text{DL}[ont, inpc, impr, \text{"OnlyChild"]}(X) queries all members of concept \text{OnlyChild under the assumption that concepts \text{Person} and roles \text{childOf} has been extended according to the truth values of the \text{inpc} and \text{impr} atoms in the program}.\(^2\)

For this type of description logic, \(\text{Calvanese et al. (2007)}\) have proven that at most one assertion is needed to derive an instance query from a consistent ontology. Hence, for each concept \(c\) and individual \(i\) there is a (positive) support set either of form \(\emptyset\) or of form \(\{p(x)\}\), where the latter encodes that if \(p(x) \in Y\), then \(Y \models \&\text{DL}[ont, inpc, impr, c](i)\) for all assignments \(Y\). Moreover, at most two added ABox assertions are needed to make such an ontology inconsistent (in which case all queries are true). For each possibility where the ontology becomes inconsistent there is a (positive) support set of form \(\{p(x), p'(x')\}\). Then, each support set is of one of only three different forms, which are all at most binary. Moreover, \(\text{Lembo et al. (2011)}\) have proven that the number of different constants appearing in \(x\) resp. \(x'\) in these support sets is limited by

\(^2\) This is often written as \(\text{DL}[ont; \text{Person} \cup p, \text{childOf} \cup c; \text{OnlyChild\}]}(X)\) using a more convenient syntax tailored to \(\text{DL-atoms}\), where additions to concepts and rules are expressed by operator \(\cup\) and \(p\) and \(c\) are unary and binary (instead of binary and ternary) predicates, respectively.
three. The limited cardinality and number of constants also limits the number of possible support sets required to describe the overall ontology to a quadratic number in the size of the program and the Abox.

Moreover, as one can see, the support sets are easy to construct by a syntactic analysis of the ontology and the DL-atoms. For details regarding the construction of support sets for DL-Lite, we refer to Eiter et al. (2014).

3 External Source Inlining

In this section we present a rewriting which compiles HEX-programs into equivalent ordinary ASP-programs (modulo auxiliary atoms) based on support sets, and thus embeds external sources into the program; we call the technique inlining. Due to nonmonotonic behavior of external atoms, inlining is not straightforward. In particular, it is not sufficient to substitute external atoms by ordinary replacement atoms and derive their truth values based on their support sets, which is surprising at first glance. Intuitively, this is because rules that define replacement atoms can be missing in the reduct and it is not guaranteed any longer that the replacement atoms resemble the original semantics; we will demonstrate this in more detail in Section 3.1. Afterwards we present a sound and complete encoding based on the saturation technique (cf. e.g. Eiter et al. (2009)) in Section 3.2.

3.1 Observations

We start with observations that can be made when attempting to inline external sources in a straightforward way. The first intuitive attempt to inline an external atom e might be to replace it by an ordinary atom x_e and add rules of kind $x_e \leftarrow L$, where L is constructed from a positive support set S_T of e by adding S_T^+ as positive atoms and S_T^- as default-negated ones. However, this alone is in general incorrect even if repeated for all $S_T \in S_T$ for a complete family of support sets S_T, as the following example demonstrates.

Example 6

Consider $P = \{ a \leftarrow \&true[a]() \}$ where $e = \&true[a]()$ is always true; a complete family of positive support sets is $S_T = \{ \{a\}, \{-a\} \}$. The program is expected to have the answer set $Y = \{a\}$. However, the translated program $P' = \{ x_e \leftarrow a; x_e \leftarrow not_a; a \leftarrow x_e \}$ has no answer set because the only candidate is $Y' = \{a, x_e\}$ and $f_{P'Y} = \{ x_e \leftarrow a; a \leftarrow x_e \}$ has the smaller model \emptyset.

In the example, P' fails to have an answer set because the former external atom $\&true[a]()$ is true also if not a holds, but the rule $x_e \leftarrow not_a$, which represents this case, is dropped from the reduct wrt. Y' because its body not a is unsatisfied by Y'. Hence, although the external atom e holds both under Y' and under the smaller model \emptyset of the reduct which dismisses Y', this is not detected since the representation of the external atom in the reduct is incomplete. In such a case, the value of x_e and e under a model of the reduct can differ.

An attempt to fix this problem might be to explicitly guess the value of the external atom and represent both when it is true and when it is false. Indeed, $P'' = \{ x_e \lor \overline{x_e} \leftarrow a, not x_e; \leftarrow not_a, not x_e; a \leftarrow x_e \}$ is a valid rewriting of the previous program (Y' is an answer set). However, this rewriting is also incorrect in general, as the next example shows.
Example 7

Consider $P = \{ a \leftarrow \& id[a]() \}$ where $e = \& id[a]()$ is true iff a is true. The program is expected to have the answer set $Y = \emptyset$. However, the translated program $P' = \{ x_e \lor \overline{x_e} \leftarrow a; \overline{not \ x_e}; \overline{not \ a, x_e}; a \leftarrow x_e \}$ has not only the intended answer set $\{ x_e \}$ but also $Y' = \{ a, x_e \}$ because $f_{P'^Y}$ has no smaller model.

While the second rewriting attempt from Example 7 works for Example 6 and, conversely, the one applied in Example 6 works for Example 7 a general rewriting schema must be more elaborated.

In fact, since HEX-programs with recursive nonmonotonic external atoms are on the second level of the polynomial hierarchy, we present a rewriting which involves head-cycles. Before we start, let us first discuss this aspect in more detail. Faber et al. (2011) reduced 2QBF polynomially to a program without disjunctions but with nonmonotonic aggregates, which are special cases of external atoms. This, together with a membership proof, shows that programs with external atoms are complete for the second level, even in the disjunction-free case. Since ordinary ASP-programs without head-cycles are only complete for the first level, this implies that a further polynomial reduction to ordinary ASP must introduce disjunctions with head-cycles.

Interestingly, all aggregates used by Faber et al. (2011) depend only on two input atoms each, which implies that they can be described by a complete family of support sets of constant size (at most two support sets are needed if an optimal encoding is used). This shows that HEX-programs are already on the second level even if they are disjunction-free and all external atoms can be described by families of support sets with constant size.

The size of the encoding we are going to present depends linearly on the size of the given complete family of support sets; since there can be exponentially many support sets even for polynomial external sources (e.g. for the parity function), this can lead to an exponential encoding. However, for polynomial families of support sets our encoding remains polynomial as well. Because HEX-programs are already on the second level even if they are disjunction-free and all external atoms can be described by families of support sets with constant size (as discussed above), this is only possible because our rewriting to ordinary ASP uses head-cycles.

3.2 Encoding in Disjunctive ASP

In this section we present a general rewriting for inlining external atoms. In the following, for an external atom e in a program P, let $I(e, P)$ be the set of all ordinary atoms in P whose predicate occurs as a predicate parameter in e, i.e., the set of all input atoms to e. Furthermore, let $S_T(e, P)$ be an arbitrary but fixed complete positive support set family over atoms in P.

For a simpler presentation we proceed in two steps. We first restrict the discussion to positive external atoms, and then extend the approach to negative ones in Section 3.2.2.

3.2.1 Inlining Positive External Atoms

We present the encoding for inlining single positive external atoms into a program and explain it rule by rule afterwards. In the following, a new atom is an atom that does not occur in the program P at hand and such that its predicate does not occur in the input list of any external atom in P (but its building blocks occur in the vocabulary). This insures that inlining does not introduce any undesired interference with existing parts of the program.
For a HEX-program P and external atom e that occurs only positively in P, let

$$P_e = \{ x_e \leftarrow S_T^+ \cup \{ \overline{a} \mid a \in S_T^- \} \mid S_T \in S_T(e, P) \}$$

(1)

$$\cup \{ \overline{a} \leftarrow x_e \mid a \notin S_T^- \}$$

(2)

$$\cup \{ \overline{x_e} \leftarrow not x_e \}$$

(3)

$$\cup P|_{e \rightarrow x_e}$$

(4)

where \overline{a} is a new atom for each a, x_e and $\overline{x_e}$ are new atoms for external atom e, and $P|_{e \rightarrow x_e} = \bigcup_{r \in P} r|_{e \rightarrow x_e}$ where $r|_{e \rightarrow x_e}$ denotes rule r with every occurrence of e replaced by x_e.

The rewriting works as follows. The atom x_e represents the former external atom, i.e., that e is true, while $\overline{x_e}$ represents that it is false. The rules in (1) represent all input assignments that satisfy x_e (resp. e). More specifically, each rule in $\{ x_e \leftarrow S_T^+ \cup \{ \overline{a} \mid a \in S_T^- \} \mid S_T \in S_T(e, P) \}$ represents one possibility to satisfy the former external atom e, using the complete positive family of support sets S_T; in each such case x_e is derived. Next, for an input atom a, the atom \overline{a} represents that a is false or that x_e (resp. e) is true, as formalized by the rules (2). The latter is in order to ensure that for an assignment Y, all relevant rules in (1), i.e. those that might apply to subsets of Y, are contained in the reduct wrt. Y (because a could become false in a smaller model of the reduct); recall that in Example 6 the reason for incorrectness of the rewriting was exactly that these rules were dropped. The derivation of \overline{a} despite a being true is only necessary if x_e is true wrt. Y; if x_e is false then all rules containing x_e are dropped from the reduct anyway. The idea amounts to a saturation encoding (Eiter et al. 2009). Next, rule (3) enforces $\overline{x_e}$ to be true whenever x_e is false. Finally, rules (4) resemble the original program with x_e in place of e.

For the following Proposition 1 we first assume that the complete family of support sets $S_T(e, P)$ contains only support sets that contain all input atoms of e in P explicitly in positive or negative form. That is, for all $S_T \in S_T(e, P)$ we have that $S_T^+ \cup \neg S_T^- = I(e, P)$. Note that each complete family of support sets can be modified to fulfill this criterion: replace each $S_T \in S_T(e, P)$ with $S_T^+ \cup \neg S_T^- \subseteq I(e, P)$ by all of the support sets $C = \{ S_T^+ \cup S_T^- \cup R \mid R \subseteq U \cup \neg U, R \text{ consistent} \}$ where $U = I(e, P) \setminus (S_T^+ \cup \neg S_T^-)$. These are all the support sets constructible by adding "undefined atoms" (those which occur neither positively nor negatively in S_T) either in positive or negative form in all possible ways. The intuition is that S_T encodes the following condition for satisfaction of e: all of S_T^+ but none of S_T^- must be true, while the value of the atoms U are irrelevant for satisfaction of e. Thus, adding the atoms from U in all combinations of positive and negative polarities makes it only explicit that e is true in all of these cases. Formally, this means that for any $Y \subseteq I(e, P)$ we have that $Y \supseteq S_T^+$ and $Y \cap \neg S_T^- = \emptyset$ if $Y \supseteq C_T^+$ and $Y \cap \neg C_T^- = \emptyset$ for some $C \in C$. This might lead to an exponential blowup of the size of the family of support sets, but is made in order to simplify the first result and its proof; however, we show below that the result still goes through without this blowup.

We show now that for such families of support sets the rewriting is sound and complete. Here, we say that the answer sets of programs P and Q are equivalent modulo a set of atoms A, if there is a one-to-one correspondence between their answer sets in the sense that every answer set of P can be extended to one of Q in a unique way by adding atoms from A, and every answer set of Q can be shrunked to one of P by removing atoms that are also in A.

Proposition 1

For all HEX-programs P, external atoms e in P and a positive complete family of support sets...
$S_T(e, P)$ such that $S_T^+ \cup \neg S_T^- = I(e, P)$ for all $S_T \in S_T(e, P)$, the answer sets of P are equivalent to those of $P_{[e]}$, modulo the atoms newly introduced in $P_{[e]}$.

Next we show that the idea still works for arbitrary complete positive families of support sets $S_T(e, P)$. To this end, we first show that two rules $x_e \leftarrow B, b$ and $x_e \leftarrow B, \overline{b}$ in the above encoding, stemming from two support sets that differ only in b resp. \overline{b}, can be replaced by a single rule $x_e \leftarrow B$ without affecting the semantics of the program. Intuitively, this corresponds to the case where two support sets $\{a \in B\} \cup \{\neg a \mid \pi \in B\} \cup \{b\}$ and $\{a \in B\} \cup \{\neg a \mid \pi \in B\} \cup \{\neg b\}$ imply that e is true whenever all of B and one of b or \overline{b} hold, which might be also be expressed by a single support set $\{a \in B\} \cup \{\neg a \mid \pi \in B\}$ that expresses that B suffices as a precondition; this idea is similarly to resolution.

Proposition 2

Let X be a set of atoms and P be a HEX-program such that

\[
P \supseteq \{r_1: x_e \leftarrow B, b; r_2: x_e \leftarrow B, \overline{b}\} \\
\cup \{\pi \leftarrow \neg a; \overline{\pi} \leftarrow x_e; a \lor \overline{\pi} \leftarrow \neg \overline{\pi} \mid a \in X\} \\
\cup \{\overline{x_e} \leftarrow \neg x_e\}
\]

where $B \subseteq \{a, \overline{a} \mid a \in X\}$, $b \in X$, and $\overline{x_e}$ occurs only in the rules explicitly shown above. Then P is equivalent to $P' = (P \setminus \{r_1, r_2\}) \cup \{r: x_e \leftarrow B\}$.

The idea of the next corollary is then as follows. Suppose we start with a rewriting based on a positive complete family of support sets $S_T(e, P)$ such that $S_T^+ \cup \neg S_T^- = I(e, P)$ for all $S_T \in S_T(e, P)$. We know by Proposition 1 that this rewriting is sound and complete. Any other positive complete family of support sets can be constructed by iteratively combining support sets in $S_T(e, P)$ which differ only in the polarity of a single atom. Since the likewise combination of the respective rules in the rewriting does not change the semantics of the resulting program as shown by Proposition 2, the rewriting can be constructed from an arbitrary positive complete family of support sets right from the beginning.

Corollary 1

For all HEX-programs P, external atoms e in P and a positive complete family of support sets $S_T(e, P)$, the answer sets of P are equivalent to those of $P_{[e]}$, modulo the atoms newly introduced in program $P_{[e]}$.

We demonstrate the rewriting with an example.

Example 8

Consider $P = \{a \leftarrow \& a \lor \neg B[a, b()]\}$, where $e = \&a \lor \neg B[a, b()]$ evaluates to true if a is true or b is false. Let $S_T(e, P) = \{(a), \{\neg b\}\}$. Then we have:

\[
P_{[e]} = \{x_e \leftarrow a; x_e \leftarrow \overline{b} \\
\overline{a} \leftarrow \neg a; \overline{\pi} \leftarrow x_e; \overline{b} \leftarrow \neg b; \overline{\pi} \leftarrow x_e; \overline{a} \lor \overline{\pi} \leftarrow \neg \overline{\pi}; b \lor \overline{b} \leftarrow \neg \overline{x_e} \\
\overline{x_e} \leftarrow \neg x_e \\
a \leftarrow x_e\}
\]

The program has the unique answer set $Y' = \{a, x_e, \overline{\pi}, \overline{b}\}$, which represents the answer set $Y = \{a\}$ of P.
Multiple external atoms can be inlined by iterative application. For a program P and a set E of external atoms in P we denote by $P[E]$ the program after all external atoms from E have been inlined. Importantly, separate auxiliaries must be introduced for atoms that are input to multiple external atoms.

3.2.2 Inlining Negated External Atoms

Until now we restricted the discussion to positive external atoms based on positive support sets. One can observe that the rewriting from Definition 6 does indeed not work for external atoms e that occur (also) in form $not e$ because programs P and $P[e]$ are in this case not equivalent in general.

Example 9

Consider $P = \{ p \leftarrow not \& \neg e(p) \}$, where $\& \neg e(p)$ is true if p is false and vice versa. The only answer set of P is $Y = \emptyset$ but the rewriting from Definition 6 yields $P[\& \neg e(p)] = \{ x_e \leftarrow \bar{p} \}
\bar{p} \leftarrow not p; \bar{p} \leftarrow x_e; p \lor \bar{p} \leftarrow not x_e
x_e \leftarrow not x_e
\}$

which has the answer sets $Y_1' = \{x_e, p\}$ and $Y_2' = \{\bar{x_e}, p\}$ that represent the assignments $Y_1 = \emptyset$ and $Y_2 = \{p\}$ over P. However, only $Y_1' (= Y)$ is an answer set of P.

Intuitively, the rewriting does not work for negated external atoms because their input atoms may support themselves. More precisely, due to rule (3), an external atom is false by default if none of the rules (1) apply. If one of the external atom’s input atoms depends on falsehood of the external atom, as in Example 9, then the input atom might be supported by falsehood of the external atom, although this falsehood itself depends on the input atom.

In order to extend our approach to the inlining of negated external atoms $not e$ in a program P, we make use of an arbitrary but fixed negative complete family $SF(e, P)$ of support sets as by Definition 5. The idea is then to replace a negated external atom $not e$ by a positive one e' that is defined such that $Y \models e'$ iff $Y \not\models e$ for all assignments Y; obviously, the resulting program has the same answer sets as before. This reduces the case for negated external atoms to the case for positive ones. The semantics of e' is fully described by the negative complete family of support sets of e and we may apply the rewriting of Definition 6.

The idea is formalized by the following definition:

Definition 7 (Negated External Atom Inlining)

For a HEX-program P and negated external atom $not e$ in P, let $P[not e] = \{ x_e \leftarrow \bar{p} \}
\bar{p} \leftarrow not p; \bar{p} \leftarrow x_e; p \lor \bar{p} \leftarrow not x_e
x_e \leftarrow not x_e
\}$

where \bar{a} is a new atom for each a, x_e and \bar{x}_e are new atoms for external atom e, and $P[not e \to x_e] = \bigcup_{r \in P} r[not e \to x_e]$ where $r[not e \to x_e]$ denotes rule r with every occurrence of $not e$ replaced by x_e.
Informally, the effects of changing a negated external atom to a positive one and using a negative family of support sets cancel each other out. One can show that this rewriting is sound and complete.

Proposition 3
For all HEX-programs P, negated external atoms $\text{not } e$ in P and a negative complete family of support sets $S_F(e, P)$, the answer sets of P are equivalent to those of $P[\text{not } e]$, modulo the atoms newly introduced in program $P[\text{not } e]$.

As before, iterative application allows for inlining multiple negated external atoms. In the following, for a program P and a set E of either positive or negated external atoms in P, we denote by $P|_E$ the program after all external atoms from E have been inlined.

Transfoming Complete Families of Support Sets. For the sake of completeness we show that one can change the polarity of complete families of support sets:

Proposition 4
Let S_σ be a positive resp. negative complete family of support sets for some external atom e in a program P, where $\sigma \in \{T, F\}$. Then $S_\sigma = \{ S_{\sigma} \in \prod_{S_{\sigma} \in S_\sigma} \neg S_\sigma \mid S_\sigma \text{ is consistent} \}$ is a negative resp. positive complete family of support sets, where $T = F$ and $F = T$.

Intuitively, since a complete family family of positive support sets S_T fully describes under which conditions the external atom is true, one can construct a negative support set by picking an arbitrary literal from each $S_T \in S_T$ and changing its sign. Then, whenever the newly generated set is contained in the assignment, none of the original support sets in S_T can match. The case for families of negative support sets is symmetric.

However, similarly to the transformation of the formula from conjunctive normal form to disjunctive normal form or vice versa, this may result in an exponential blow-up. In the spirit of our initial assumption that compact complete families of support sets exist, it is suggested to construct families of support sets of the required polarity right from the beginning, which we will also do in our experiments.

4 Exploiting External Source Inlining for Performance Boosts

An application of the techniques from the previous section are algorithmic improvements by skipping explicit verification calls for the sake of performance gains. As stated in Section 2, learning techniques may reduce the number of required verification calls, and – alternatively – using support sets for verification instead of explicit calls may lead to an efficiency improvement when checking external source guesses, but neither of these techniques eliminates the checks altogether (Eiter et al. 2014). In contrast, inlining embeds the semantics of external sources directly in the logic program. Thus, no more checks are needed; the resulting program can actually be evaluated by an ordinary ASP solver.

4.1 Implementation

We implemented this approach in the *dlvhex* system, which is based on *gringo* and *clasp* from the Potassco suite. External sources are supposed to provide a complete set of support sets.

3. www.kr.tuwien.ac.at/research/systems/dlvhex
4. https://potassco.org
The system allows also for using universally quantified variables in the specification of support sets, which are automatically substituted by all constants occurring in the program. After external source inlining during preprocessing, the HEX-program is evaluated entirely by the backend without any external calls.

The rewriting makes both the compatibility check (cf. Definition 3) and the minimality check wrt. the reduct and external sources (cf. Section 2 and Eiter et al. (2014)) obsolete. With the traditional approach, compatible sets are not necessarily answer sets. This is because cyclic support of atoms that involves external sources is not detected by the ordinary ASP solver when evaluating \(\hat{P} \). But after inlining, due to soundness and completeness of our rewriting, the minimality check performed by the ordinary ASP solver suffices.

We evaluated the approach using the experiments described in the following.

4.2 Experimental Setup

We present several benchmarks with 100 randomly generated instances each, which were run on a Linux server with two 12-core AMD 6176 SE CPUs and 128GB RAM using a 300 seconds timeout. The instances are available from http://www.kr.tuwien.ac.at/research/projects/inthex/inlining, while the program encodings and scripts used for running the benchmarks are included in the source code repository of the dlvhex system, which is available from https://github.com/hexhex.

Although some of the benchmark problems are similar to those used by Eiter et al. (2014) and in the conference versions of this paper, the runtime results are not directly comparable because of technical improvements in the implementation of support set generation and other (unrelated) solver improvements. Moreover, for the taxi benchmark we use a different scenario since the previous one was too easy in this context. However, for the pre-existing approaches the fundamental trend that the approach based on support sets outperforms the traditional approach is the same.

In our tables we compare three evaluation approaches (configurations), which we evaluate both for computing all and the first answer set only. The runtimes specify the wall-clock time needed for the whole reasoning task including grounding, solving and side tasks; the observed runtime differences, however, stem only from the solving technique since grounding and other reasoning tasks are the same for all configurations. The numbers in parentheses indicate the number of timeout instances, which were counted as 300 seconds when computing the average runtime of the instances; otherwise timeout instances could even decrease the average runtime compared to instances which finish shortly before the deadline.\(^5\) The traditional evaluation algorithm guesses the truth values of external atoms and verifies them by evaluation. In our experiments we use the learning technique EBL (Eiter et al. 2012) to learn parts of the external atom’s behavior, i.e., there is a tight coupling of the reasoner with external sources. The second approach as by Eiter et al. (2014) is based on support sets (sup.sets), which are provided by the external source and learned at the beginning of the evaluation process. It then guesses external atoms as in the traditional approach, but verifies them by matching candidate compatible sets against support sets rather than by evaluation. While we add learned support sets as nogoods at the beginning, which exclude some but not all wrong guesses, recall that on-the-fly learning as by EBL is not done in this approach since external sources are only called at the beginning; this

\(^5\) Due to this it might happen in few cases that two configurations behave similar wrt. runtime but the number of timeout instances is different. This is explained by instances which terminate shortly before the deadline with one configuration and do not terminate in time with the other.
may be a drawback compared to traditional. The new inlining approach, based on the results from this paper, also learns support sets at the beginning similar to sup.sets, but uses them for rewriting external atoms as demonstrated in Section 3. Then, all answer sets of the rewritten ASP-program are accepted without the necessity for additional checks. Wrong guesses that are not detected by the ordinary ASP solver backend, cannot occur here.

Note that our goal is to show improvements compared to previous HEX-algorithms, but not to compare HEX to other formalisms or encodings in ordinary (disjunctive) ASP, which might be feasible for some of the benchmark programs. Compact (i.e., polynomial) complete families of support sets exist for all scenarios considered in the following; we make the statement about the sizes more precise when we discuss the individual benchmarks below.

Our hypothesis is that inlining outperforms both traditional and sup.sets for external sources with compact complete support set families. More precisely, we expect that inlining leads to a further speedup over sup.sets in many cases, especially when there are many candidate answer sets. Moreover, we expect that in cases where inlining cannot yield further improvements over sup.sets, then it does at least not harm much. This is because with inlining, (i) no external calls and (ii) no additional minimality checks are needed, which potentially leads to speedups. On the other hand, the only significant costs when generating the rewriting are caused by support set learning; however, this is also necessary with sup.sets, which was already shown to outperform traditional if small complete families of support sets exist. Hence, we expect further benefits but negligible additional costs.

House Problem. We first consider an abstraction of configuration problems, consisting of sets of cabinets, rooms, objects and persons (Mayer et al. 2009). The goal is to assign cabinets to persons, cabinets to rooms, and objects to cabinets, such that there are no more than four cabinets in a room or more than five objects in a cabinet. Objects belonging to a person must be stored in a cabinet belonging to the same person, and a room must not contain cabinets of more than one person. We assume that we have already a partial assignment to be completed. We use an existing guess-and-check encoding, which implements the check as external source. Instances of size n have n persons, $n+2$ cabinets, $n+1$ rooms, and $2n$ objects randomly assigned to persons; $2n−2$ objects are already stored.

The number and size of support sets is polynomially bounded by $(2n)^5$; this is due to the constraints that no more than four cabinets can be in a room and no more than five objects can be in a cabinet.

Table 1 shows the results. As expected, we have that sup.sets clearly outperforms traditional both when computing all answer sets and the first answer set only, which is because of faster candidate checking as already observed by Eiter et al. (2014). When computing all answer sets, the new inlining approach leads to a further speedup as it eliminates wrong guesses and the checking step altogether, while the additional initialization overhead is negligible. This is consistent with our hypothesis. When computing only a single answer set, inlining does not yield a further visible speedup, which can be explained by the fact that only few candidates must be checked before an answer set is found. In this case the additional initialization overhead compared to sup.sets is slightly visible, but as can be seen it is little such that the new technique does in fact not harm, as expected.

Taxi Assignment. We consider a program which uses external atoms to access a $DL-Lite_X$.
ontology, called a DL-atom (Eiter et al. 2008). As discussed in Section 2, Calvanese et al. (2007) have proven that for this type of description logic at most one assertion is needed to derive an instance query from a consistent ontology. Moreover, at most two added ABox assertions are needed to make such an ontology inconsistent. Hence, the support sets required to describe the ontology are of only few different and small forms, which limits also the number of possible support sets to a quadratic number in the size of the program and the Abox. Moreover, the support sets are easy to construct by a syntactic analysis of the ontology and the DL-atoms, for details we refer to Eiter et al. (2014).

The task in this benchmark is to assign taxi drivers to customers. Each customer and driver is in a region. A customer may only be assigned to a driver in the same region. Up to four customers may be assigned to a driver. We let some customers be e-customers who use only electronic cars, and some drivers be e-drivers who drive electronic cars. The ontology stores information about individuals such as their locations (randomly chosen but balanced among regions). The encoding is taken from http://www.kr.tuwien.ac.at/research/projects/inthex/partialevaluation. An instance of size $4 \leq n \leq 9$ consists of n drivers, n customers including $n/2$ e-customers and $n/2$ regions.

Table 1 shows the results. The sup.sets approach is faster than the traditional one. When computing all answer sets, the difference is still clearly visible but less dramatic than when computing only the first answer set or in other benchmarks. This is because there is a large number of candidates and answer sets in this benchmark, which allow the learning techniques used in traditional to learn the behavior of the external sources well over time. The reasoner can then prevent wrong guesses and verification calls effectively, such that the advantage of improved verification calls as in sup.sets decreases the longer the solver runs. However, the inlining approach leads to a significant speedup since wrong guesses are impossible from the beginning and all verification calls are spared.

Table 1: House configuration

n	all answer sets	first answer set				
	traditional	sup.sets	inlining	traditional	sup.sets	inlining
5	99.88 (17)	5.81 (0)	3.57 (0)	5.17 (0)	0.39 (0)	0.40 (0)
6	193.56 (35)	19.40 (1)	11.51 (0)	13.03 (0)	0.75 (0)	0.77 (0)
7	252.61 (81)	35.72 (3)	22.04 (2)	23.68 (2)	1.50 (0)	1.54 (0)
8	267.01 (85)	93.39 (13)	59.25 (11)	64.89 (10)	3.06 (0)	3.14 (0)
9	274.23 (81)	129.37 (29)	85.85 (13)	107.86 (12)	11.80 (0)	12.17 (0)
10	281.55 (83)	154.29 (42)	120.66 (16)	160.25 (49)	21.84 (0)	22.55 (0)
11	297.28 (86)	206.15 (53)	166.84 (45)	214.30 (65)	68.07 (0)	70.43 (0)
12	300.00 (100)	246.40 (57)	179.59 (41)	213.63 (63)	114.56 (0)	118.81 (0)
13	300.00 (100)	287.11 (91)	253.58 (65)	240.21 (75)	187.94 (0)	195.09 (0)
14	300.00 (100)	296.36 (92)	287.66 (75)	287.43 (99)	281.02 (91)	239.08 (69)
15	300.00 (100)	296.36 (92)	287.66 (75)	300.00 (100)	296.36 (92)	287.66 (75)

LUBM Diamond. While description logics correspond to fragments of first-order logic and are monotonic, their cyclic interaction with rules allow for default reasoning, i.e., making assumptions which might have to be withdrawn if more information becomes available (such as classifying an object based on absence of information). We consider default reasoning over the LUBM DL-Lite$_A$ ontology (http://swat.cse.lehigh.edu/projects/lubm/). Defaults express that assistants are normally employees and students are normally not employ-
es. The ontology entails that assistants are students, resembling Nixon’s diamond. The instance size is the number of persons who are randomly marked as students, assistants or employees. The task is to classify all persons in the ontology. Due to incomplete information the result is not unique.

Table 3 shows the results. As already observed by Eiter et al. (2014), sup.sets outperforms traditional. Compared to the taxi benchmark there is a significantly smaller number of model candidates, which makes learning in the traditional approach less effective. This can in particular be seen when computing all answer sets, since when computing the first answer set only, learning is less effective anyway (as described in the previous benchmark). The decreased effectiveness of learning from external calls is then more easily compensated by the more efficient compatibility check as by sup.sets, which is why the relative speedup is larger now. However, inlining is again the most efficient approach due to elimination of the compatibility check. Thanks to the existence of a quadratic family of support sets for DL-Lite,A-ontologies (see previous benchmark), the speedup is dramatic.

Non-3-Colorability. We consider the problem of deciding if a given graph is not 3-colorable, i.e., if it is not possible to color the nodes such that adjacent nodes have different colors. To make the problem more challenging, we want to represent the answer by a dedicated atom within the program. That is, we do not simply want to compute all valid 3-colorings and leave the program inconsistent in case there is no valid 3-coloring, but the program should rather be consistent...
In this case and a dedicated atom should represent that there is no 3-coloring; this allows, for instance, continuing reasoning based on the result.

We use a saturation encoding which splits the guessing part P_{col} from the checking part P_{check}. The latter, which is itself implemented as logic program

$$P_{check} = \{ \text{inv} \leftarrow \text{inp}(\text{col}, U, C), \text{inp}(\text{col}, V, C), \text{inp}(\text{edge}, U, V) \},$$

is used as an external source from the guessing part. For a color assignment, given by facts of kind $\text{inp}(\text{col}, v, c)$ where v is a vertex and c is a color, P_{check} derives the atom inv in its only answer set, otherwise it has an empty answer set. We then use the following program P_{col} to guess a coloring and check it using the external atom $\& \text{query}[P_{check}, \text{inp}, \text{inv}]()$ for query answering over subprograms. We let $\& \text{query}[P_{check}, \text{inp}, \text{inv}]()$ evaluate to true iff program P_{check}, extended with facts over predicate inp, delivers an answer set that contains inv. In this case we saturate the model. We add a constraint that eliminates answer sets other than the saturated one, thus each instance has either no or exactly one answer set. The size of the instances is the number of nodes n.

A compact complete family of support sets for $\& \text{query}[P_{check}, \text{inp}, \text{inv}]()$ exists: the number of edges to be checked is no greater than quadratic in the number of nodes and the number of colors is constant, which allows the check to be encoded by a quadratic number of binary support sets.

The encoding is as follows:

$$P_{col} = \{ \text{col}(V, r) \lor \text{col}(V, g) \lor \text{col}(V, b) \leftarrow \text{node}(V) \}
\text{inp}(p, X, Y) \leftarrow p(X, Y) \mid p \in \{ \text{col}, \text{edge} \}
\text{inval} \leftarrow \& \text{query}[P_{check}, \text{inp}, \text{inv}]()
\text{col}(V, c) \leftarrow \text{inval}, \text{node}(V) \mid c \in \{ r, g, b \}
\leftarrow \neg \text{inval} \}$$

The results are shown in Table 4. While sup.sets already outperforms traditional, inlining leads to a further small speedup when computing all answer sets. Compared to previous benchmarks, there are significantly fewer support sets, which makes candidate checking in sup.sets inexpensive. This explains the large speedup of sup.sets over traditional, and that avoiding the check in inlining does not lead to a large further speedup. However, due to a negligible additional overhead, inlining does at least not harm, which is in line with our hypothesis.

Interestingly, the runtimes when computing all and the first answer set only are almost the same. Although this effect occurs with all configurations and is not related to our new approach, we briefly discuss it. Each instance has either one or no answer set. Despite this, computing all answer sets can in principle be slower than computing the first answer set since the reasoner has to determine that there are no further ones. However, in this case, the instances terminate almost immediately after the (only) answer set has been found. Since the only answer set of a non-3-colorable instance is the saturated one, which is also the only classical model, the reasoner needs to perform only a single minimality check.

Nonexistence of a Vertex Covering. Next, we consider the coNP-complete problem of checking whether for a given undirected graph there is no vertex covering of a certain maximal size. More
Table 4: Non-3-colorability

n	all answer sets	first answer set				
	traditional	sup. sets	inlining	traditional	sup. sets	inlining
20	298.94 (99)	0.19 (0)	0.16 (0)	298.96 (99)	0.19 (0)	0.16 (0)
60	300.00 (100)	1.61 (0)	1.35 (0)	300.00 (100)	1.61 (0)	1.35 (0)
100	300.00 (100)	8.45 (0)	7.81 (0)	300.00 (100)	8.44 (0)	7.83 (0)
140	300.00 (100)	28.18 (0)	27.30 (0)	300.00 (100)	28.17 (0)	27.34 (0)
180	300.00 (100)	73.03 (0)	72.88 (0)	300.00 (100)	72.88 (0)	72.43 (0)
220	300.00 (100)	148.87 (20)	147.98 (20)	300.00 (100)	149.16 (19)	148.35 (20)
260	300.00 (100)	200.16 (44)	199.02 (45)	300.00 (100)	200.20 (45)	198.96 (46)
300	300.00 (100)	230.51 (60)	228.65 (60)	300.00 (100)	230.54 (60)	228.76 (60)
340	300.00 (100)	250.51 (70)	248.46 (70)	300.00 (100)	250.64 (70)	248.50 (70)
380	300.00 (100)	264.10 (80)	262.12 (80)	300.00 (100)	264.23 (80)	262.10 (80)
420	300.00 (100)	275.91 (80)	273.07 (80)	300.00 (100)	276.02 (80)	273.17 (80)
460	300.00 (100)	282.03 (90)	280.20 (90)	300.00 (100)	282.11 (90)	280.14 (90)

precisely, given a graph \((V,E)\), a vertex covering is a node selection \(C \subseteq V\) such that for each edge \(\{v,u\} \in E\) we have \(\{v,u\} \cap C \neq \emptyset\). As before we want the program to be consistent in case there is no vertex covering of the given maximum size, and a dedicated atom should represent this. Our instances consist of such a graph \((V,E)\), given by atoms of kind \(\text{node}(\cdot)\) and \(\text{edge}(\cdot,\cdot)\), and a positive integer \(L\) (\(\text{limit}\)), given by \(\text{limit}(L)\). The task is to decide whether there is no vertex covering containing at most \(L\) nodes. The size of the instances is the number of nodes \(n = |V|\).

Similarly as for the previous benchmark, we use an encoding which splits the guessing part \(P_{\text{nonVC}}\) from the checking part, where the latter is realized as an external source. An important difference to the previous benchmark is that the checking component must now aggregate over the node selection to check the size constraint. Since we want the program to be consistent whenever there is no vertex covering, we need again a saturation encoding. However, the size check requires aggregate atoms, which means that aggregate atoms must be used in a cycle; many reasoners do not support this. However, \text{HEX}-programs, which inherently support cyclic external atoms, allow for pushing the check into an external source.

The number and size of support sets is polynomial in the size of the graph, but exponential in the limit \(L\). In this benchmark we consider \(L\) to be a constant number that is for each instance randomly chosen from the range \(1 \leq L \leq 20\). We exclude instances with graphs \((V,E)\) and limits \(L\) such that \(L \geq |V|\) as in such cases the final answer to the considered problem is trivially false (since \(V\) is trivially a vertex covering of size no greater than \(L\)).

The encoding is as follows. The guessing part is similar as before and construct a candidate vertex covering given by atoms of kind \(\text{in}(n)\) or \(\text{out}(n)\) for nodes \(n\). In the checking part, the external atom \(\text{\&checkVC}[\text{in}, \text{out}, \text{edge}, L()][\) is true iff \(\text{in}\) and \(\text{out}\) encode an invalid vertex covering of the graph specified by \(\text{edge}\) of size no greater than limit \(L\). A complete family of support
Inlining External Sources in Answer Set Programs

Table 5: Nonexistence of a vertex covering

n	all answer sets	first answer set				
	traditional	sup.sets	inlining	traditional	sup.sets	inlining
8	15.45 (0)	4.13 (0)	0.61 (0)	15.42 (0)	4.12 (0)	0.61 (0)
9	62.89 (11)	31.23 (8)	7.72 (0)	62.81 (11)	31.26 (8)	7.64 (0)
10	102.15 (22)	80.65 (24)	36.09 (8)	102.17 (22)	80.57 (24)	36.11 (8)
11	181.35 (55)	89.87 (26)	47.42 (13)	181.41 (55)	89.96 (26)	47.45 (13)
12	222.05 (66)	135.79 (43)	89.43 (25)	222.05 (66)	135.82 (43)	89.36 (25)
13	256.16 (82)	158.63 (50)	110.26 (32)	256.16 (82)	158.71 (51)	110.19 (32)
14	288.93 (96)	189.18 (62)	152.59 (50)	288.94 (96)	189.24 (62)	152.60 (50)
15	284.97 (93)	178.66 (59)	145.46 (47)	284.96 (93)	178.66 (59)	145.42 (47)
16	294.77 (98)	219.03 (72)	191.25 (62)	294.74 (98)	218.98 (72)	191.21 (62)
17	300.00 (100)	219.19 (73)	175.57 (56)	300.00 (100)	219.19 (73)	175.45 (56)
18	300.00 (100)	231.10 (77)	195.14 (63)	300.00 (100)	231.10 (77)	195.13 (63)
19	300.00 (100)	243.12 (81)	220.70 (71)	300.00 (100)	243.11 (81)	220.72 (71)
20	300.00 (100)	237.07 (79)	217.87 (70)	300.00 (100)	237.07 (79)	217.86 (70)

sets for \(\& \text{checkVC}[\text{in}, \text{out}, \text{edge}, L]() \) is of size at most \(n^L \), where \(L \) is bounded in our scenario.

\[
P_{\text{nonVC}} = \{ \text{in}(V) \lor \text{out}(V) \leftarrow \text{node}(V) \}
\]

\[
\text{inval} \leftarrow \& \text{checkVC}[\text{in}, \text{out}, \text{edge}, L], \text{limit}(L)
\]

\[
\text{in}(V) \leftarrow \text{inval}, \text{node}(V)
\]

\[
\text{out}(V) \leftarrow \text{inval}, \text{node}(V)
\]

\[
\leftarrow \text{not inval}
\]

The results are shown in Table 5. Note that although \(L \) is bounded and the size of the family of support sets \(n^L \) is therefore polynomial in the size of the graph, it is in general still much larger than in the previous benchmark. This is because the order \(L \) of the polynom is randomly chosen such that \(1 \leq L \leq \min(20, |V|) \), where \(|V|\) is the size of the respective instance, while for non-3-colorability the family of support sets is always quadratic in the size of the input graph. The benchmark shows that the approach is still feasible in such cases. Here, checking guesses based on support sets in the \text{sup.sets} configuration is more expensive than for non-3-colorability because the verification of guesses requires a significantly larger number of comparisons to support sets. This makes the relative speedup of \text{sup.sets} over \text{traditional} smaller (but still clearly visible). On the other hand, there is now more room for further improvement by the \text{inlining} configuration. Eliminating the (more expensive) check against support sets altogether yields now a larger further speedup.

Discussion and Summary. As stated above, this paper focuses on external sources that possess a compact complete family of support sets. For the sake of completeness we still discuss also the case where a complete family of support sets is not small. As an extreme case, consider \(P = \{ p(n+1) \leftarrow \& \text{even}[p]() \} \cup \{ p(i) \leftarrow \mid 1 \leq i \leq n \} \) for a given integer \(n \), where \(\& \text{even}[p]() \) is true iff the number of true atoms over \(p \) is even. The program has a single answer set \(Y = \{ p(i) \mid 1 \leq i \leq n \} \) if \(n \) is odd, and no answer set if \(n \) is even. This is because \(p(n+1) \) would be derived based on \(\& \text{even}[p]() \), which makes the number of \(p \)-atoms odd and destroys support of \(p(n+1) \). In any case, \(\hat{P} \) has only two candidates which are easily checked in the \text{traditional} approach, while exponentially many support sets must be generated to represent the
semantics of \(\text{even}[p]() \) (one for each subset of \(\{ p(i) \leftarrow 1 \leq i \leq n \} \) with an even number of elements). In such cases, \text{traditional} might be exponentially faster than \text{sup.sets} and \text{inlining}.

However, this is not the case for many realistic types of external sources, where the existence of a compact family of support sets is often even provable, such as the ones we used in our experiments. The size of the \text{inlining} encoding is directly linked to the size of the complete family of support sets, and if this size is small then the \text{inlining} approach is clearly superior to \text{sup.sets} as it eliminates the compatibility check and minimality check w.r.t. external sources altogether, while it has only slightly higher initialization overhead. This overhead can be neglected even in cases where there is no further speedup by \text{inlining}. \text{Sup.sets} is in turn superior to \text{traditional} (even with learning technique EBL) as already observed by Eiter et al. (2014). We can therefore conclude that \text{inlining} is a significant improvement over \text{sup.sets} and, for the considered types of external sources, also over \text{traditional}.

5 Equivalence of \text{HEX}-Programs

In this section we present another application of the technique of external source inlining from Section 3. Two programs \(P \) and \(Q \) are considered to be equivalent if \(P \cup R \) and \(Q \cup R \) have the same answer sets for all programs \(R \) of a certain type, which depends on the notion of equivalence at hand. Most importantly, for \textit{strongly equivalent} programs we have that \(P \cup R \) and \(Q \cup R \) have the same answer sets for any program \(R \) (Lifschitz et al. 2001), while \textit{uniformly equivalent} programs guarantee this only if \(R \) is a set of facts (Eiter and Fink 2003). Later, these notions were extended to the non-ground case (Eiter et al. 2005). We will use the more fine-grained notion of \(\langle H, B \rangle \)-equivalence by Woltran (2008), where \(R \) can contain rules other than facts, but the sets of atoms that can occur in rule heads and bodies are restricted by sets of atoms \(H \) and \(B \), respectively. This notion generalizes both strong and uniform equivalence. Formal criteria allow for semantically characterizing equivalence of two programs.

We extend a characterization of \(\langle H, B \rangle \)-equivalence from ordinary ASP- to \text{HEX}-programs. Due to the support for external atoms, which can even be nonmonotonic, and the use of the FLP-reduct (Faber et al. 2011) instead of the GL-reduct (Gelfond and Lifschitz 1988) in the semantics of \text{HEX}-programs, this result is not immediate. Since well-known ASP extensions such as programs with aggregates (Faber et al. 2011) and constraint ASP (Gebser et al. 2009; Ostrowski and Schaub 2012) are special cases of \text{HEX}-programs, the results carry over.

We proceed as follows. In the first step (Section 5.1), only the programs \(P \) and \(Q \) can be \text{HEX}-programs, but the added program \(R \) must be ordinary. This amounts to a generalization of the results by Woltran (2008) from ordinary ASP to \text{HEX}-programs. In the second step (Section 5.2), we allow also the added program \(R \) to contain external atoms. For this purpose, we exploit the possibility to inline external atoms.

5.1 Generalizing Equivalence Results

In the following, for sets \(H \) and \(B \) of atoms we let \(\mathcal{P}_{\langle H, B \rangle} = \{ P \text{ is an ASP-program} \mid H(P) \subseteq H, B^+(P) \cup B^-(P) \subseteq B \} \) be the set of ordinary programs whose head and body atoms come only from \(H \) and \(B \), respectively. Ordinary ASP-programs \(P \) and \(Q \) are called \(\langle H, B \rangle \)-equivalent, if the answer sets of \(P \cup R \) and \(Q \cup R \) are the same for all ordinary ASP-programs \(R \) that use only head atoms from \(H \) and only body atoms from \(B \), i.e., \(R \in \mathcal{P}_{\langle H, B \rangle} \).
We first lift this definition to the case where \(P \) and \(Q \) are general \textsc{hex}-programs which possibly contain external atoms, while \(R \) remains an ordinary \textsc{asp}-program. Formally:

Definition 8

\textsc{hex}-programs \(P \) and \(Q \) are equivalent wrt. a pair \(\langle H, B \rangle \) of sets of atoms, or \(\langle H, B \rangle \)-equivalent, denoted \(P \equiv_{\langle H, B \rangle} Q \), if \(\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R) \) for all \(R \in \mathcal{P}_{\langle H, B \rangle} \).

Similarly, we write \(P \subseteq_{\langle H, B \rangle} Q \) if \(\mathcal{AS}(P \cup R) \subseteq \mathcal{AS}(Q \cup R) \) for all \(R \in \mathcal{P}_{\langle H, B \rangle} \).

Towards a characterization of equivalence of \textsc{hex}-programs, one can first show that if there is a counterexample \(R \) for \(P \equiv_{\langle H, B \rangle} Q \), i.e., an \(R \in \mathcal{P}_{\langle H, B \rangle} \) such that \(\mathcal{AS}(P \cup R) \not= \mathcal{AS}(Q \cup R) \), then there is also a simple counterexample in form of a positive program \(R' \in \mathcal{P}_{\langle H, B \rangle} \).

Proposition 5

Let \(P \) and \(Q \) be \textsc{hex}-programs, \(R \) be an ordinary \textsc{asp}-program, and \(Y \) be an assignment s.t. \(Y \subseteq \mathcal{AS}(P \cup R) \) but \(Y \not\subseteq \mathcal{AS}(Q \cup R) \). Then there is also a positive ordinary \textsc{asp}-program \(R' \) such that \(Y \subseteq \mathcal{AS}(P \cup R') \) but \(Y \not\subseteq \mathcal{AS}(Q \cup R') \) and \(B(R') \subseteq B(R) \) and \(H(R') \subseteq H(R) \).

The idea of the constructive proof is to show for given programs \(P, Q \) and \(R \) and an assignment \(Y \) that the \textsc{gl}-reduct (Gelfond and Lifschitz 1988) \(R^Y \), which is a positive program, is such a simple counterexample.

Next, we show that the concepts on equivalence generalize from ordinary \textsc{asp} to \textsc{hex}-programs. In the following, for an assignment \(Y \) and a set of atoms \(A \) we write \(Y|_A \) for the projection \(Y \cap A \) of \(Y \) to \(A \). Moreover, for sets of atoms \(X, Y \) we write \(X \leq^B_H Y \) if \(X|_H \subseteq Y|_H \) and \(X|_B \supseteq Y|_B \). Intuitively, if \(X \leq^B_H Y \) then \(Y \) satisfies all positive \textsc{asp} programs from \(\mathcal{P}_{\langle H, B \rangle} \) that are also satisfied by \(X \) because it satisfies no fewer heads and no more bodies than \(X \). We write \(X \prec^B_H Y \) if \(X \leq^B_H Y \) and \(X|_{H \cup B} \not= Y|_{H \cup B} \).

We use the following concept for witnessing that \(\mathcal{AS}(P \cup R) \subseteq \mathcal{AS}(Q \cup R) \) does not hold.

Definition 9

A witness for \(P \not\subseteq_{\langle H, B \rangle} Q \) is a pair \((X, Y)\) of assignments with \(X \subseteq Y \) such that

(i) \(Y \models P \) and for each \(Y' \subseteq Y \) with \(Y'|_H \models fP^Y \) we have \(Y'|_H \not\subseteq Y|_H \); and

(ii) if \(Y \models Q \) then \(X \subseteq Y \), \(X \models fQ^Y \) and for all \(X' \) with \(X \leq^B_H X' \subseteq Y \) we have \(X' \not\models fP^Y \).

The idea is that a witness represents a counterexample to the containment. To this end, \(X \) characterizes a program \(R \) and \(Y \) is an assignment that is an answer set of \(P \cup R \) but not of \(Q \cup R \). One can show that the existence of a witness and the violation of the containment are equivalent.

Because some steps in the according considerations for ordinary \textsc{asp} depend on the fact that \textsc{gl}-reducts of programs wrt. assignments are positive programs (cf. \(\leq^B_H \)), it is an interesting result that the following propositions still hold in its generalized form. Because we use \textsc{flp}-reducts instead, and \(P \) and \(Q \) might even contain nonmonotonic external atoms, the results do not automatically carry over. However, a closer analysis reveals that the property of being a positive program is only required for the reduct of \(R \) but not the reducts of \(P \) or \(Q \). Since we restricted \(R \) to ordinary \textsc{asp}-programs for now, and Proposition 5 allows us to further restrict it to positive

8 Note that Woltran (2008) called this a witness for \(P \subseteq_{\langle H, B \rangle} Q \), but since it is actually a witness for the violation of the containment, we change the terminology.
programs, the use of the FLP-reduct does not harm: if \(R \) is positive from the beginning, then also its FLP-reduct (wrt. any assignment) is positive. Hence, the main idea is that due to restrictions of the input program, the reduct is still guaranteed to be positive despite the switch from the GL- to the FLP-reduct. This allows for lifting the proof of the following proposition from ordinary ASP to HEX.

Proposition 6
For HEX-programs \(P \) and \(Q \) and sets \(\mathcal{H} \) and \(B \) of atoms, there is a program \(R \in \mathcal{P}(\mathcal{H}, B) \) with \(\mathcal{AS}(P \cup R) \not\subseteq \mathcal{AS}(Q \cup R) \) iff there is a witness for \(P \not\subseteq_{\mathcal{H}, B} Q \).

While witnesses compare the sets of answer sets of two programs directly, the next concept of \(\langle \mathcal{H}, B \rangle \)-models can be used to characterize a single program. In the following, for two sets of atoms \(\mathcal{H} \) and \(B \), a pair \((X, Y)\) of assignments is called \(\leq_{\mathcal{H}} \)-maximal for \(P \) if \(X \models fP \) and for all \(X' \) with \(X \leq_{\mathcal{H}} X' \subseteq Y \) we have \(X' \not\models fP \).

Definition 10
Given sets \(\mathcal{H}, B \) of atoms, a pair \((X, Y)\) of assignments is an \(\langle \mathcal{H}, B \rangle \)-model of a program \(P \) if

(i) \(Y \models P \) and for each \(Y' \subseteq Y \) with \(Y' \models fP \) we have \(Y'|_{\mathcal{H}} \subseteq Y|_{\mathcal{H}} \); and

(ii) if \(X \subseteq Y \) then there exists an \(X' \subseteq Y \) with \(X'|_{\mathcal{H} \cup B} = X \) such that \((X', Y)\) is \(\leq_{\mathcal{H}} \)-maximal for \(P \).

Intuitively, \(\langle \mathcal{H}, B \rangle \)-models \((X, Y)\) characterize potential answer sets \(Y \) of a program \(P \) and the models of its reducts \(fP \). More precisely, the assignments \(Y \) represent classical models of a program which can potentially be turned into an answer set by adding a program from \(R \in \mathcal{P}(\mathcal{H}, B) \) (which can be empty if \(Y \) is already an answer set of \(P \)). Turning \(Y \) into an answer set requires that smaller models of the reduct \(fP \) (if existing) can be eliminated, which is only possible if they contain fewer atoms from \(\mathcal{H} \) since these are the only atoms which can get support by adding \(R \) (cf. Condition (i)). Furthermore, for such a classical model \(Y \), different models of the reduct \(fP \) that coincide on \(\mathcal{H} \) and \(B \) behave the same over \(f(P \cup R) \) for any \(R \in \mathcal{P}(\mathcal{H}, B) \): either all or neither of them are models of the extended reduct; such different models are represented by a single \(\langle \mathcal{H}, B \rangle \)-model \((X, Y)\) as formalized by Condition (ii).

One can show that \(\langle \mathcal{H}, B \rangle \)-equivalence of two programs can be reduced to a comparison of their \(\langle \mathcal{H}, B \rangle \)-models. We denote the set of all \(\langle \mathcal{H}, B \rangle \)-models of a program \(P \) by \(\sigma_{\langle \mathcal{H}, B \rangle}(P) \).

Proposition 7
For sets \(\mathcal{H} \) and \(B \) of atoms and HEX-programs \(P \) and \(Q \), we have \(P \equiv_{\langle \mathcal{H}, B \rangle} Q \) iff \(\sigma_{\langle \mathcal{H}, B \rangle}(P) = \sigma_{\langle \mathcal{H}, B \rangle}(Q) \).

We demonstrate the lifted results using three examples.

Example 10
Consider the programs \(P = \{ a \leftarrow &a\text{OrNot}B[a, b]() \} \) and \(Q = \{ a \leftarrow a; a \leftarrow \text{not } b \} \) where \&a\text{OrNot}B[a, b]()\) evaluates to true whenever \(a \) is true or \(b \) is false, and to false otherwise. Let \(\mathcal{H} = B = \{ a, b \} \). We have that \(\sigma_{\langle \mathcal{H}, B \rangle}(P) = \sigma_{\langle \mathcal{H}, B \rangle}(Q) = \{ (\emptyset, \{ b \}), (\{ a \}, \{ a \}), (\{ b \}, \{ b \}), (\{ a \}, \{ a, b \}), (\{ b \}, \{ a, b \}), (\{ a, b \}, \{ a, b \}) \} \), and thus \(P \) and \(Q \) are \(\langle \mathcal{H}, B \rangle \)-equivalent.

It is easy to see that for any of the \(\langle \mathcal{H}, B \rangle \)-models of form \((Y, Y)\), \(Y \) is a model both of \(P \) and \(Q \), and for any \(Y' \not\subseteq Y \) we have \(Y'|_{\mathcal{H}} \not\subseteq Y|_{\mathcal{H}} \); for the fourth candidate \((\emptyset, \emptyset)\) one can observe that \(\emptyset \) is neither a model of \(P \) nor of \(Q \).

For the \(\langle \mathcal{H}, B \rangle \)-models of form \((\{ a \}, \{ a, b \})\) resp. \((\{ b \}, \{ a, b \})\), one can observe that \(X' = \)
$\{a\}$ resp. $X' = \{b\}$ satisfies Condition (ii) of Definition [10] both for P and Q, while for $(\emptyset, \{a, b\})$ the only candidate for $X' \subseteq \{a, b\}$ with $X'|_{\mathcal{H}\sqcup \mathcal{B}} = X$ is $X' = \emptyset$, but $(\emptyset, \{a, b\})$ is neither $\leq_{\mathcal{H}}$-maximal for P nor for Q because $\emptyset \not\models fP^{(a, b)}$ and $\emptyset \not\models fQ^{(a, b)}$.

For unary Y, the only $\langle \mathcal{H}, \mathcal{B}\rangle$-model (X, Y) with $X \neq Y$ of P or Q is $(\emptyset, \{b\})$ because for $X' = \emptyset$ we have $\emptyset \models fP^{(b)}$ and $\emptyset \models fQ^{(b)}$, and $(\emptyset, \{b\})$ is also $\leq_{\mathcal{H}}$-maximal for P and for Q. On the other hand, $(\emptyset, \{a\})$ fails to be an $\langle \mathcal{H}, \mathcal{B}\rangle$-model because the only candidate for X' is \emptyset, but $\emptyset \not\models fP^{(a)}$ and $\emptyset \not\models fQ^{(a)}$.

Example 11
Consider the programs $P = \{a \leftarrow \mathrm{neg}[b]() ; b \leftarrow \mathrm{neg}[a]() ; a \leftarrow b\}$ and $Q = \{a \vee b \leftarrow ; a \leftarrow b\}$ where $\&\mathrm{neg}[x]()$ evaluates to true whenever x is false and to true otherwise.

For $\mathcal{H} = \{a, b\}$ and $\mathcal{B} = \{b\}$ we have that $\sigma_{\langle \mathcal{H}, \mathcal{B}\rangle}(P) = \sigma_{\langle \mathcal{H}, \mathcal{B}\rangle}(Q) = \{\{a\}, \{a\}, \{a, b\}, \{a, b\}, \{a, b\}\}$, and thus the programs are $\langle \mathcal{H}, \mathcal{B}\rangle$-equivalent. The most interesting candidate which fails to be an $\langle \mathcal{H}, \mathcal{B}\rangle$-model of either program is $(\emptyset, \{a, b\})$. For P we have that $fP^{(a, b)} = \{a \leftarrow b\}$, of which \emptyset is a model, but for $\{a\}$ we have $\emptyset \not\leq_{\mathcal{H}} \{a\} \subseteq Y$ and $\emptyset \models fP^{(a, b)}$, thus \emptyset is not $\leq_{\mathcal{H}}$-maximal for P; for Q we have that $fQ^{(a, b)} = \{a \vee b; a \leftarrow b\}$, which is unsatisfied under \emptyset.

Example 12
Consider the programs P and Q from Example [11] and $\mathcal{H} = \{a, b\}$ and $\mathcal{B} = \{b\}$. We have that $\sigma_{\langle \mathcal{H}, \mathcal{B}\rangle}(P) = \{\{a\}, \{a\}, \{a, b\}, \{a, b\}, \{a, b\}\}$. Note that $(\emptyset, \{a, b\})$ is now an $\langle \mathcal{H}, \mathcal{B}\rangle$-model of P because \emptyset is a model of $fP^{(a, b)} = \{a \leftarrow b\}$ and there is no X' with $\emptyset \leq_{\mathcal{H}} X' \subseteq Y$ with $X' \models fP^{(a \leftarrow b)}$ (because now $\emptyset \not\leq_{\mathcal{H}} \{a\}$); thus \emptyset is $\leq_{\mathcal{H}}$-maximal for P. On the other hand, $\sigma_{\langle \mathcal{H}, \mathcal{B}\rangle}(Q) = \{\{a\}, \{a\}, \{a, b\}, \{a, b\}, \{a, b\}\}$. That is, $(\emptyset, \{a, b\})$ is still not an $\langle \mathcal{H}, \mathcal{B}\rangle$-model of Q because \emptyset is not a model of $fQ^{(a, b)} = \{a \vee b \leftarrow ; a \leftarrow b\}$. And thus the programs are not $\langle \mathcal{H}, \mathcal{B}\rangle$-equivalent.

Indeed, for $R = \{b \leftarrow a\} \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B}\rangle}$ we have that $Y = \{a, b\}$ is an answer set of $Q \cup R$ but not of $P \cup R$.

5.2 Adding General HEX-Programs

Up to this point we allowed only the addition of ordinary ASP-programs $R \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B}\rangle}$. As a preparation for the addition of general HEX-programs, we show now that if programs P and Q are $\langle \mathcal{H}, \mathcal{B}\rangle$-equivalent, then sets \mathcal{B} and \mathcal{H} can be extended by atoms that do not appear in P and Q and the programs are still equivalent wrt. the expanded sets. Intuitively, this allows introducing auxiliary atoms without harming their equivalence. This possibility is needed for our extension of the results to the case where R can be a general HEX-program.

Expanding Sets \mathcal{B} and \mathcal{H}
If programs P and Q are $\langle \mathcal{H}, \mathcal{B}\rangle$-equivalent, then they are also $\langle \mathcal{H}', \mathcal{B}'\rangle$-equivalent whenever $\mathcal{H'} \setminus \mathcal{H}$ and $\mathcal{B'} \setminus \mathcal{B}$ contain only atoms that do not appear in P or Q. This is intuitively the case because such atoms cannot interfere with atoms that are already in the program.

Formally, one can show the following result:

Proposition 8
For sets \mathcal{H} and \mathcal{B} of atoms, HEX-programs P and Q, and an atom a that does not occur in P or Q, the following holds:
show that for any program P

For an external atom q

Lemma 1

P semantics of $wlog.\ that P \not\subseteq_{(H \cup \{a\}, B)} Q$ and $P \not\subseteq_{(H, B)} Q$. The proof is done by contraposition. The main idea of the (\Rightarrow)-direction of (i) is to assume wlog. that $P \not\subseteq_{(H \cup \{a\}, B)} Q$ and start with a witness thereof. One can then construct also a witness for $P \not\subseteq_{(H, B)} Q$. The (\Leftarrow)-direction is trivial because $P \equiv_{(H \cup \{a\}, B)} Q$ is a stronger condition than $P \equiv_{(H, B)} Q$. The proof for (ii) is analogous.

By iterative applications of this result we get the desired result:

Corollary 2

Let $\mathcal{H}, \mathcal{B}, \mathcal{H}'$ and \mathcal{B}' be sets of atoms and let P and Q be programs such that the atoms in $\mathcal{H}' \cup \mathcal{B}'$ do not occur in P or Q. Then we have $P \equiv_{(H, B)} Q$ iff $P \equiv_{(H \cup \mathcal{H}', \mathcal{B} \cup \mathcal{B}') \mathcal{B}} Q$.

Addition of General HEX-Programs. In the following, for sets \mathcal{H}, \mathcal{B} of atoms we define the set

$$\mathcal{P}^e_{(H, B)} = \left\{ \text{hex-program } P \mid H(P) \subseteq \mathcal{H}, B^+(P) \cup B^-(P) \subseteq \mathcal{B}, \right. \right.$$
only B are input to external atoms.

of general HEX-programs whose head atoms come only from \mathcal{H} and whose body atoms and input atoms to external atoms come only from \mathcal{B}

We then extend Definition 8 as follows.

Definition 11

HEX-Programs P and Q are e-equivalent wrt. a pair $(\mathcal{H}, \mathcal{B})$ of sets of atoms, or $(\mathcal{H}, \mathcal{B})^e$-equivalent, denoted $P \equiv_{(H, B)}^e Q$, if $\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R)$ for all $R \in \mathcal{P}^e_{(H, B)}$.

Towards a characterization of $(\mathcal{H}, \mathcal{B})^e$-equivalence, we make use of external atom inlining as by Definition[10] without changing the answer sets of a program, cf. Proposition[11]

We start with a technical result which allows for renaming a predicate input parameter $p_i \in P$ of an external atom $e = \&q[p](c)$ in a program P to a new predicate q that does not occur in P. This allows us to rename predicates such that inlining does not introduce rules that derive atoms other than auxiliaries, which is advantageous in the following.

The idea of the renaming is to add auxiliary rules that define q such that its extension represents exactly the former atoms over p_i, i.e., each atom $p_i(d)$ is represented by $q(p_i, d)$. Then, external predicate $\&q$ is replaced by a new $\&q'$ whose semantics is adopted to this encoding of the input atoms.

For the formalization of this idea, let $p|_{p_i \rightarrow q}$ be vector p after replacement of its i-th element p_i by q. Moreover, for an assignment Y let $Y^q = Y \cup \{p_i(d) \mid q(p_i, d) \in Y\}$ be the extended assignment which ‘extracts’ from each atom $q(p_i, d) \in Y$ the original atom $p_i(d)$. One can then show that for any program P, renaming input predicates of an external atom does not change the semantics of P (modulo auxiliary atoms):

Lemma 1

For an external atom $e = \&q[p](c)$ in program P, $p_i \in P$, a new predicate q, let $e' = \&q'[p|_{p_i \rightarrow q}](c)$ s.t. $f_{\&q'}(Y, p|_{p_i \rightarrow q}, e) = f_{\&q}(Y^q, p, c)$ for all assignments Y.

For $P' = P|_{e \rightarrow e'} \cup \{ q(p_i, d) \leftarrow p_i(d) \mid p_i(d) \in A(P) \}$, $\mathcal{AS}(P)$ and $\mathcal{AS}(P')$ coincide, modulo atoms $q(\cdot)$.

9 Input atoms to external atoms must also be in B as they appear in bodies of our rewriting by Lemma [11] below.
We now come to the actual inlining. Observe that Definitions 6 and 7 are modular in the sense that inlining external atoms \(E \) in a program \(P \) affects only the rules of \(P \) containing some external atom from \(E \) and adds additional rules, but does not change the remaining rules (i.e., our transformation performs only changes that are ‘local’ to rules that contain some external atom from \(E \)). One can formally show:

Lemma 2

For a \(\text{HEX} \)-program \(P \) and a set of (positive or negative) external atoms \(E \) in \(P \), we have \(P \cap P_E = \{ r \in P \mid \text{none of } E \text{ occur in } r \} \).

This equips us to turn to our main goal of characterizing equivalence of \(\text{HEX} \)-programs. If programs \(P \) and \(Q \) are \(\langle \mathcal{H}, \mathcal{B} \rangle \)-equivalent, then \(P \cup R \) and \(Q \cup R \) have the same answer sets for all ordinary ASP-programs \(R \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B} \rangle} \). We will show that equivalence holds in fact even for \(\text{HEX} \)-programs \(R \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B} \rangle}^e \). To this end, assume that \(P \) and \(Q \) are \(\langle \mathcal{H}, \mathcal{B} \rangle \)-equivalent for some \(\mathcal{H} \) and \(\mathcal{B} \) and let \(R \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B} \rangle}^e \).

We want to inline all (positive or negative) occurrences of external atoms from \(E \) in \(P \cup R \) and \(Q \cup R \) that appear in the \(R \) part, but not the occurrences in the \(P \) part or \(Q \) part. However, since the application of the transformation as by Definition 6 to \(P \cup R \) resp. \(Q \cup R \) would inline all occurrences of \(E \), we first have to standardize occurrences in \(R \) apart from those in \(P \) resp. \(Q \). This can be done by introducing a copy of the external predicate; we assume in the following that external atoms have been standardized apart as needed, i.e., the external atoms \(E \) appear only in \(R \) but not in \(P \) and \(Q \). Note that although external atoms from \(E \) appear only in program part \(R \), the transformation is formally still applied to \(P \cup R \) and \(Q \cup R \) and not just to \(R \). The overall transformation is then given as follows:

1. rename their input parameters using Lemma 1 and
2. subsequently inline them by applying Definition 6 to \(P \cup R \) and \(Q \cup R \).

Note that neither of the two steps modifies the program parts \(P \) or \(Q \); for (1) this is by construction of the modified program in Lemma 1 for (2) this follows from Lemma 2. Hence, what we get are programs of form \(P \cup R' \) and \(Q \cup R' \), where \(R' \) consists of modified rules from \(R \) and some auxiliary rules. As observable from Lemma 1 and Definition 6 head atoms \(H(R') \) in \(R' \) come either from \(H(R) \) or are newly introduced auxiliary atoms; the renaming as by Lemma 1 prohibits that \(H(R') \) contains input atoms to external atoms in \(R \). Body atoms \(B(R') \) in \(R' \) come either from \(B(R) \), from input atoms to external atoms in \(R \) (see rules 2), or are newly introduced auxiliary atoms. Since \(R \in \mathcal{P}_{\langle \mathcal{H}, \mathcal{B} \rangle}^e \), this implies that \(H(R') \subseteq \mathcal{H} \cup \mathcal{H}' \) and \(B(R') \subseteq \mathcal{B} \cup \mathcal{B}' \), where \(\mathcal{H}' \) and \(\mathcal{B}' \) are newly introduced auxiliary atoms. Since the auxiliary atoms do not occur in \(P \) and \(Q \), by Corollary 2 they do not harm equivalence, i.e., \(\langle \mathcal{H}, \mathcal{B} \rangle \)-equivalence implies \(\langle \mathcal{H} \cup \mathcal{H}', \mathcal{B} \cup \mathcal{B}' \rangle \)-equivalence. Thus, \(\langle \mathcal{H}, \mathcal{B} \rangle \)-equivalence of \(P \) and \(Q \) implies that \(P \cup R' \) and \(Q \cup R' \) have the same answer sets.

The claim follows then from the observation that, due to Lemma 1 and soundness and completeness of inlining (cf. Proposition 1), \(P \cup R \) and \(Q \cup R \) have the same answer sets whenever \(P \cup R' \) and \(Q \cup R' \) have the same answer sets.

Example 13

Consider the programs

\[
P = \{ a \leftarrow \text{\&neg}[b](); \ b \leftarrow \text{\&neg}[a](); \ a \leftarrow b \}\]

\[
Q = \{ a \lor b \leftarrow ; \ a \leftarrow b \}\]
and let $\mathcal{H} = \{a,c\}$ and $\mathcal{B} = \{b\}$. Note that $P \equiv_{(\mathcal{H},\mathcal{B})} Q$, To observe this result, recall that we know $P \equiv_{\langle a,b\rangle,\langle b\rangle} Q$ from Example \[11\] which implies $P \equiv_{\langle a\rangle,\langle b\rangle} Q$. As $c \notin A(Q)$, Proposition \[8\] further implies that $P \equiv_{\langle a,c\rangle,\langle b\rangle} Q$.

Let $R = \{c \leftarrow \&\neg[b()]\} \subseteq P^e_{(\mathcal{H},\mathcal{B})}$. Renaming the input predicate of $\&\neg[b()]$ by step (1) yields the program $\{q(b) \leftarrow b; c \leftarrow \&\neg[q()]\}$. After step (2) we have:

$$R' = \{q(b) \leftarrow b; c \leftarrow x_e; x_e \leftarrow q(b); \overline{q(b)} \leftarrow \text{not } x_e$$

$$\overline{q(b)} \leftarrow \text{not } q(b); q(b) \leftarrow x_e; q(b) \lor \overline{q(b)} \leftarrow x_e\}$$

Here, rule $q(b) \leftarrow b$ comes from step (1), $c \leftarrow x_e$ represents the rule in R, and the remaining rules from inlining in step (2). Except for new auxiliary atoms, we have that $H(R')$ use only atoms from \mathcal{H} and $B(R')$ only atoms from $B(R')$. One can check that $P \cup R'$ and $Q \cup R'$ have the same (unique) answer set $\{a,c, x_e, q(b)\}$, which corresponds to the (same) unique answer set $\{a,c\}$ of $P \cup R$ and $Q \cup R$, respectively.

One can then show that equivalence wrt. program extensions that contain external atoms is characterized by the same criterion as extensions with ordinary ASP-programs only.

Proposition 9

For sets \mathcal{H} and \mathcal{B} of atoms and HEX-programs P and Q, we have $P \equiv_{(\mathcal{H},\mathcal{B})} Q$ iff $\sigma_{(\mathcal{H},\mathcal{B})}(P) = \sigma_{(\mathcal{H},\mathcal{B})}(Q)$.

The idea of the proof is to reduce the problem to the case where R is free of external atoms and apply Proposition \[7\] To this end, we inline the external atoms in R. This reduction is possible thanks to the fact that inlining introduces only auxiliary atoms that to not appear in P and Q, which do not affect equivalence as stated by Corollary \[2\].

For the Herbrand base $HB_C(P)$ of all atoms constructible from the predicates in P and the constants C, strong equivalence \[Lifschitz et al. 2001\] corresponds to the special case of $\langle HB_C(P), HB_C(P) \rangle$-equivalence, and uniform equivalence \[Eiter and Fink 2003\] corresponds to $\langle HB_C(P), \emptyset \rangle$-equivalence; this follows directly from definition of strong resp. uniform equivalence.

6 Inconsistency of HEX-Programs

We turn now to inconsistency of HEX-programs. Similarly to equivalence, we want to characterize inconsistency wrt. program extensions. Inconsistent programs are programs without answer sets. Observe that due to nonmonotonicity, inconsistent HEX-program can become consistent under program extensions.

Example 14

Consider the program $P = \{p \leftarrow \&\neg[p()]\}$, which resembles $P' = \{p \leftarrow \text{not } p\}$ in ordinary ASP. The program is inconsistent because $Y_1 = \emptyset$ violates the (only) rule of the program, while $Y_2 = \{p\}$ is not a minimal model of the reduct $fP^{Y_2} = \emptyset$. However, the extended program $P \cup \{p \leftarrow \}$ has the answer set Y_2.

Some program extensions preserve inconsistency of a program, and it is a natural question under which program extensions this is the case. Akin to equivalence, sets \mathcal{H} and \mathcal{B} constrain the atoms that may occur in rule heads, rule bodies and input atoms to external atoms of the
added program, respectively. In contrast to equivalence, the criterion naturally concerns only a single program. However, we are still able to derive the criterion from the above results.

Deriving a Criterion for Inconsistency. We formalize our envisaged notion of inconsistency from above as follows:

Definition 12
A HEX-program \(P \) is called *persistently inconsistent* wrt. sets of atoms \(\mathcal{H} \) and \(\mathcal{B} \), if \(P \cup R \) is inconsistent for all \(R \in \mathcal{P}_r^{(\mathcal{H}, \mathcal{B})} \).

Example 15
The program \(P = \{ p \leftarrow \neg p \} \) is persistently inconsistent wrt. all \(\mathcal{H} \) and \(\mathcal{B} \) such that \(p \notin \mathcal{H} \). This is because any model \(Y \) of \(P \), and thus of \(P \cup R \) for some \(R \in \mathcal{P}_r^{(\mathcal{H}, \mathcal{B})} \), must set \(p \) to true due to the rule \(p \leftarrow \neg p \). However, \(Y \setminus \{ p \} \) is a model of \(f(P \cup R)^Y \) if no rule in \(R \) derives \(p \) and thus \(Y \) is not a subset-minimal model of \(f(P \cup R)^Y \).

We now want to characterize persistent inconsistency of a program wrt. sets of atoms \(\mathcal{H} \) and \(\mathcal{B} \) in terms of a formal criterion. We start deriving the criterion by observing that a program \(P_\perp \) equivalent to \(P \) does not even have classical models for any \(R \in \mathcal{P}_r^{(\mathcal{H}, \mathcal{B})} \), hence \(Y \) is not a subset-minimal model of \(f(P \cup R)^Y \). This allows us to derive the desired criterion in fact as a special case of the one for equivalence.

Classically inconsistent programs do not have \(\langle \mathcal{H}, \mathcal{B} \rangle \)-models either. To this end, it is necessary that each classical model \(Y \) of \(P \) violates Property (i) of Definition 10, otherwise \(Y, Y \) (and possibly \(X, Y \) for some \(X \subseteq Y \)) would be \(\langle \mathcal{H}, \mathcal{B} \rangle \)-models of \(P \). Formally:

Proposition 10
A HEX-program \(P \) is persistently inconsistent wrt. sets of atoms \(\mathcal{H} \) and \(\mathcal{B} \) iff for each classical model \(Y \) of \(P \) there is an \(Y' \subseteq Y \) such that \(Y' \models fP^Y \) and \(Y'|_\mathcal{H} = Y|_\mathcal{H} \).

Example 16 (cont’d)
For the program \(P \) from Example 15 we have that \(Y \models \{ p \} \) holds for each classical model \(Y \) of \(P \). However, for each such \(Y \) we have that \(Y' = Y \setminus \{ p \} \) is a model of \(fP^Y \), \(Y' \subseteq Y \) and \(Y'|_\mathcal{H} = Y'|_\mathcal{H} \), which proves that \(P \cup R \) is inconsistent for all \(R \in \mathcal{P}_r^{(\mathcal{H}, \mathcal{B})} \).

Example 17
Consider the program \(P = \{ a \leftarrow \& a \lor \neg b[a, b](); \leftarrow a \} \). It is persistently inconsistent wrt. all \(\mathcal{H} \) and \(\mathcal{B} \) such that \(b \notin \mathcal{H} \). This is the case because the rule \(a \leftarrow \& a \lor \neg b[a, b]() \) derives \(a \) whenever \(b \) is false, which violates the constraint \(\leftarrow a \). Formally, one can observe that we have \(a \notin Y \) and \(b \in Y \) for each classical model \(Y \) of \(P \). But then \(Y' = Y \setminus \{ b \} \) is a model of \(fP^Y \), \(Y' \subseteq Y \) and \(Y'|_\mathcal{H} = Y'|_\mathcal{H} \).

The criterion for inconsistency follows therefore as a special case from the criterion for program equivalence.

Applying the Criterion using Unfounded Sets. Proposition 10 formalizes a condition for deciding persistent inconsistency based on models of the program’s reduct. However, practical
implementations usually do not explicitly generate the reduct, but are often based on *unfounded sets* (Faber 2005). For a model Y of a program P, smaller models $Y' \subseteq Y$ of the reduct fP^Y and unfounded sets of P wrt. Y correspond to each other one-by-one. This allows us to transform the above decision criterion such that it can be directly checked using unfounded sets.

We use unfounded sets for logic programs as introduced by Faber (2005) for programs with arbitrary aggregates.

Definition 13 (Unfounded Set)

Given a program P and an assignment Y, let U be any set of atoms appearing in P. Then U is an unfounded set for P wrt. Y if, for each $r \in P$ with $H(r) \cap U \neq \emptyset$, at least one of the following holds:

(i) some literal of $B(r)$ is false wrt. Y; or
(ii) some literal of $B(r)$ is false wrt. $Y \setminus U$; or
(iii) some atom of $H(r) \setminus U$ is true wrt. Y.

Lemma 3

For a HEX-program P and a model Y of P, a set of atoms U is an unfounded set of P wrt. Y iff $Y \setminus U \models fP^Y$.

The lemma is shown for all rules of the program ony-by-one. By contraposition, the lemma implies that for a model Y of P and a model $Y' \subseteq Y$ of fP^Y we have that $Y \setminus Y'$ is an unfounded set of P wrt. Y. This allows us to restate our decision criterion as follows:

Corollary 3

A HEX-program P is persistently inconsistent wrt. sets of atoms \mathcal{H} and \mathcal{B} iff for each classical model Y of P there is a nonempty unfounded set U of P wrt. Y s.t. $U \cap Y \neq \emptyset$ and $U \cap \mathcal{H} = \emptyset$.

Example 18 (cont’d)

For the program P from Example 17 we have that $U = \{b\}$ is an unfounded set of P wrt. any classical model Y of P; by assumption $b \notin \mathcal{H}$ we have $U \cap \mathcal{H} = \emptyset$.

Application. We now want to discuss a specific use-case of the decision criterion for program inconsistency. However, we stress that this section focuses on the study of the criterion, which is interesting by itself, while a detailed realization of the application is beyond its scope and discussed in more detail by Redl (2017a).

The state-of-the-art evaluation approach for HEX-programs makes use of *program splitting* for handling programs with variables. That is, the overall program is partitioned into components that are arranged in an acyclic graph. Then, beginning from the components without predecessors, each component is separately grounded and solved, and each answer set is one-by-one added as facts to the successor components. The process is repeated in a recursive manner such that eventually the leaf components will yield the final answer sets, cf. Eiter et al. (2016).

The main reason for program splitting is *value invention*, which is supported by non-ground HEX-programs, i.e., the introduction of constants by external sources that do not occur in the input program. In general, determining the set of relevant constants is computationally expensive. This may lead to a grounding bottleneck if evaluated as monolithic program. This is because the grounder needs to evaluate external atoms under all possible inputs in order to ensure that all possible outputs are respected in the grounding, as demonstrated by the following example.
Inlining External Sources in Answer Set Programs

Let $P = \{r_1, r_2\}$ and $P = \{r_3, r_4\}$.

Fig. 1: Evaluation of P from Example 19 based on program splitting.

Example 19

Consider the program

$$P = \{r_1: \text{in}(X) \lor \text{out}(X) \leftarrow \text{node}(X)\}
$$

$$r_2: \leftarrow \text{in}(X), \text{in}(Y), \text{edge}(X,Y)$$

$$r_3: \text{size}(S) \leftarrow \&\text{count}[\text{in}](S)$$

$$r_4: \leftarrow \text{size}(S), S<\text{limit}\}$$

where facts over $\text{node}(\cdot)$ and $\text{edge}(\cdot)$ define a graph. Then r_1 and r_2 guess an independent set and r_3 computes its size, that is limited to a certain minimum size limit in r_4. The grounder must evaluate $\&\text{count}$ under all exponentially many possible extensions of in in order to instantiate rule r_3 for all relevant values of variable S.

In this example, program splitting allows for avoiding unnecessary evaluations. To this end, the program might be split into $P_1 = \{r_1, r_2\}$ and $P_2 = \{r_3, r_4\}$ as illustrated in Figure 1. Then the state-of-the-art algorithm grounds and solves P_1, which computes all independent sets, and for each of them P_2 is grounded and solved.

Since the number of independent sets can be exponentially smaller than the set of all node selections, the grounding bottleneck can be avoided. However, program splitting has the disadvantage that nogoods learned from conflict-driven algorithms cannot be effectively propagated through the whole program, but only within a component.

The results from Section 6 can be used to identify a program component as persistently inconsistent wrt. possible input facts from the predecessor component. This information might be used to construct a constraint that describes the reason R for this inconsistency in terms of the input facts, which can be added as constraint c_R to predecessor components in order to eliminate assignments earlier, that would make a successor component inconsistent anyway. The idea is visualized in Figure 2.

For details about the computation of inconsistency reasons, exploiting them for the evaluation and experiments we refer to Redl (2017a).
7 Discussion and Conclusion

Applying the Results to Special Cases of HEX. The results presented in this paper carry over to special cases of HEX, which, however, often use a specialized syntax. Considering the example of constraint ASP we briefly sketch how the results can still be applied using another rewriting.

Constraint ASP allows for using constraint atoms in place of ordinary atoms, which are of kind $a_1 \odot a_2$, where a_1 and a_2 are arithmetic expressions over (constraint) variables and constants, and \odot is a comparison operator. A concrete example is $\text{work}(\text{lea}) + \text{work}(\text{john}) > 10$, which expresses that the sum of the working hours of lea and john, represented by constraint variables $\text{work}(\text{lea})$ and $\text{work}(\text{john})$, is greater than 10.

Consider the program

$$P = \{ \text{project1} \lor \text{project2} \leftarrow \text{work}(\text{lea}) + \text{work}(\text{john}) > 10 \leftarrow \text{project1} \}
\text{work}(\text{lea}) + \text{work}(\text{john}) > 15 \leftarrow \text{project2}$$
$$\leftarrow \text{work}(\text{lea}) > 6$$
$$\leftarrow \text{work}(\text{john}) > 6\},$$

which represents that either project1 or project2 is to be realized. If project1 is chosen, then lea and john together have to spend more than 10 hours working on the project, for project2 they have to work more than 15 hours. However, neither of them wants to spend more than 6 hours on the project.

Here, the ASP solver assigns truth values to the ordinary and to the constraint atoms, while a constraint solver at the backend ensures that these truth values are consistent with the semantics of the constraint theory, i.e., that there is an assignment of integers to all constraint variables that witness the truth values of the constraint atoms assigned by the ASP solver. For instance, the ASP solver may assign project1 and $\text{work}(\text{lea}) + \text{work}(\text{john}) > 10$ to true, and $\text{work}(\text{lea}) + \text{work}(\text{john}) > 15$, $\text{work}(\text{lea}) > 6$ and $\text{work}(\text{john}) > 6$ to false in order to satisfy all rules of the program. This assignment is consistent with the constraint solver since assigning both $\text{work}(\text{lea})$ and $\text{work}(\text{john})$ to 6 is consistent with the truth values of the constraint atoms.

In contrast, if the ASP solver assigns project2 and $\text{work}(\text{lea}) + \text{work}(\text{john}) > 15$ to true and both $\text{work}(\text{lea}) > 6$ and $\text{work}(\text{john}) > 6$ to false, then one cannot assign integers to $\text{work}(\text{lea})$ and $\text{work}(\text{john})$ that are each smaller or equal to 6 but whose sum is greater than 15. Thus, as expected, the only solution is to realize project1.

Although the syntax is tailored and different from HEX, constraint ASP is in fact a special case and can be rewritten to a standard HEX-program. To this end, one may introduce a guessing rule of kind $\text{ctrue}(\text{work}(\text{lea}) > 6) \lor \text{cfalse}(\text{work}(\text{lea}) > 6)$ \leftarrow for each constraint atom and feed the guesses as input to a special external atom of kind $\&\text{constraintSolverOk}[\text{ctrue}, \text{cfalse}]()$, which interfaces the constraint solver. We assume that $\&\text{constraintSolverOk}[\text{ctrue}, \text{cfalse}]()$ evaluates to true iff the guess is consistent with the constraint solver and to false otherwise. Then an ASP-constraint of form $\leftarrow \text{not } \&\text{constraintSolverOk}[\text{ctrue}, \text{cfalse}]()$ in the HEX-program can check the guesses. For details of this rewriting we refer to De Rosis et al. (2015).

One way to apply the results in this paper to special cases of HEX is therefore to first translate dedicated syntax to standard HEX-syntax using a rewriting whose correctness was shown. Conversely, using such a rewriting as a starting point, one may also translate the results of this paper to the language of special cases of HEX.
Applying the results of this paper to special cases of HEX allows for making use of the inlining technique also when evaluating programs or when checking equivalence of programs that belong to such special cases. For instance, one can use the inlining technique for evaluating programs with constraint theories or check equivalence of DL-programs.

Related Work. Our external source inlining approach is related to inlining-based evaluation approaches for DL-programs (Eiter et al. 2008), i.e., programs with ontologies, cf. Heymans et al. (2010), Xiao and Eiter (2011) and Bajraktari et al. (2017), but it is more general. The former approaches are specific for embedding (certain types of) description logic ontologies. In contrast, ours is generic and can handle arbitrary external sources as long as they are decidable and have finite output for each input (cf. Section 2). Note that DL-programs can be seen as HEX-programs with a tailored syntax, cf. Eiter et al. (2008) for formal rewritings of DL-programs to HEX. When abstracting from these syntactic differences, one can say that our rewriting is correct for a larger class of input programs compared to existing rewritings.

Our rewriting uses the saturation technique, similar to the one by Alviano et al. (2015) (cf. also Alviano (2016)), who translated nonmonotonic (cyclic) aggregates to disjunctions. However, an important difference to our approach is that they support only a fixed set of traditional aggregates (such as minimum, maximum, etc) whose semantics is directly exploited in a hard-coded fashion in their rewriting, while our approach is generic and thus more flexible. Our approach can be seen as a generalization of previous approaches for specialized formalisms to an integration of ASP with arbitrary sources. Another important difference is that existing rewritings still use simplified (monotonic) aggregates in the resulting rewritten program while we go a step further and eliminate external atoms altogether. Hence, our rewriting not only supports a larger class of input programs, but also rewrites this larger class to a program from a narrower class. This allows the resulting program to be directly forwarded to an ordinary ASP solver, while support for aggregates of any kind or additional compatibility checks of guesses are not required.

Based on this inlining approach, we further provided a characterization of equivalence of HEX-programs. The criteria generalize previous results for ordinary ASP by Woltran (2008). Strong (Lifschitz et al. 2001) and uniform equivalence (Eiter and Fink 2003) are well-known and important special cases thereof and carry over as well.

Woltran (2004) also discussed the special cases of head-relativized equivalence (\(\mathcal{H} = HB_C(P)\) while \(\mathcal{B}\) can be freely chosen), and body-relativized equivalence (\(B = HB_C(P)\) while \(\mathcal{H}\) can be freely chosen). Also the cases where \(\mathcal{B} \subseteq \mathcal{H}\) and \(\mathcal{H} \subseteq \mathcal{B}\) were analyzed. Corollaries have been derived that simplify the conditions to check for these special cases. They all follow directly from an analogous version of Proposition 9 for plain ASP by substituting \(\mathcal{H}\) or \(\mathcal{B}\) by a fixed value. Since we established by Proposition 9 that the requirements hold also for HEX-programs, their corollaries, as summarized in Section 5 by Woltran (2008), hold analogously.

The work is also related to the one by Truszczynski (2010), who extended strong equivalence to propositional theories under FLP-semantics. However, the relationship concerns only the use of the FLP-semantics, while the notion of equivalence and the formalism for which the equivalence is shown are different. In particular, \(\langle \mathcal{H}, \mathcal{B} \rangle\)-equivalence and external sources were not considered.

Conclusion and Outlook. We presented an approach for external source inlining based on support sets. Due to nonmonotonicity of external atoms, the encoding is not trivial and requires a saturation encoding. We note that the results are interesting beyond HEX-programs since well-known ASP extensions, such as programs with aggregates (Faber et al. 2011) or with specific
external atoms such as constraint atoms (Gebser et al. 2009), are special cases of HEX, and thus the results are applicable in such cases.

One application of the technique can be found in an alternative evaluation approach, which is intended to be used for external sources that have a compact representation as support sets. Previous approaches had to guess the truth values of external atoms and verify the guesses either by explicit evaluation (as in the traditional approach) or by matching guesses against support sets (as in the approach by Eiter et al. (2014)). Instead, the new inlining-based approach compiles external atoms away altogether such that the program can be entirely evaluated by an ordinary ASP solver. For the considered class of external sources, our experiments show a clear and significant improvement over the previous support-set-based approach by Eiter et al. (2014), which is explained by the fact that the slightly higher initialization costs are exceeded by the significant benefits of avoiding external calls altogether, and for the considered types of external sources also over the traditional approach.

Another application is found in the extension of previous characterizations of program equivalence from ordinary ASP to HEX-programs. We generalize such characterizations from ordinary ASP to HEX-programs. Since this is a theoretical result, compact representation of external sources is not an issue here. From the criterion for program equivalence we derive further criteria for program inconsistency wrt. program extensions, which have applications in context of evaluation algorithms for HEX-programs.

Potential future work includes refinements of the rewriting. Currently, a new auxiliary variable \(\pi \) is introduced for all input atoms \(a \) of all external atoms. Thus, a quadratic number of auxiliary atoms is required. While the reuse of the auxiliary variables is not always possible, the identification of cases were auxiliary variables can be shared among multiple inlined external atoms is interesting. For the equivalence criterion, future work may also include the extension of the results to non-ground programs, cf. Eiter et al. (2005).

Moreover, currently we do not distinguish between body atoms and input atoms to external atoms when we define which programs are allows to be added. A more fine-grained approach that supports this distinction may allow for identifying programs as equivalent that are not equivalent wrt. to the current notion. Also allowing only external atoms with specific properties, such as monotonicity, may lead to more fine-grained criteria.

Furthermore, a recent alternative notion of equivalence is rule equivalence (Bliem and Woltran 2016). Here, not the set of atoms that can occur in the added program is constrained, but the type of the rules. In particular, proper rules may be added, while the addition of facts is limited to certain atoms; generalizing this notion to HEX-programs is a possible starting point for future work.

References

Alviano, M. 2016. Evaluating answer set programming with non-convex recursive aggregates. *Fundamenta Informaticae* 149, 1-2, 1–34.

Alviano, M., Faber, W., and Gebser, M. 2015. Rewriting recursive aggregates in answer set programming: back to monotonicity. *TPLP* 15, 4-5, 559–573.

Bajraktari, L., Ortiz, M., and Simkus, M. 2017. Clopen knowledge bases: Combining description logics and answer set programming. In *Proceedings of the 30th International Workshop on Description Logics, Montpellier, France, July 18-21, 2017.*, A. Artale, B. Glimm, and R. Kontchakov, Eds. CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org.

Baumann, R., Dvorák, W., Linßbichler, T., and Woltran, S. 2017. A general notion of equivalence for abstract argumentation. In *Proceedings of the Twenty-Sixth International Joint Conference on...*
Inlining External Sources in Answer Set Programs

Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. C. Sierra, Ed. ijcai.org, 800–806.

Bliem, B., and Woltran, S. 2016. Equivalence between answer-set programs under (partially) fixed input. In FoKs. Lecture Notes in Computer Science, vol. 9616. Springer, 95–111.

Calvanese, D., Lembo, D., Lenzerini, M., and Rosati, R. 2007. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning 39, 3 (October), 385–429.

Darwiche, A., and Marquis, P. 2002. A knowledge compilation map. J. Artif. Intell. Res. (JAIR) 17, 229–264.

De Rossis, A., Eiter, T., Redl, C., and Ricca, F. 2015. Constraint answer set programming based on HEX-programs. In Eighth Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2015), August 31, 2015, Cork, Ireland (August 31, 2015).

Drescher, C., and Walsh, T. 2012. Answer set solving with lazy nogood generation. In Technical Communications of the 28th International Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, A. Dovier and V. S. Costa, Eds. LIPIcs, vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 188–200.

Eiter, T., and Fink, M. 2003. Uniform equivalence of logic programs under the stable model semantics. In Logic Programming, 19th International Conference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings, C. Palamidessi, Ed. Lecture Notes in Computer Science, vol. 2916. Springer, 224–238.

Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., and Schüller, P. 2016. A model building framework for answer set programming with external computations. TPLP 16, 4, 418–464.

Eiter, T., Fink, M., Krennwallner, T., and Redl, C. 2012. Conflict-driven ASP solving with external sources. TPLP 12, 4-5, 659–679.

Eiter, T., Fink, M., Krennwallner, T., and Redl, C. 2016. Domain expansion for ASP-programs with external sources. Artificial Intelligence 233, 84–121.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., and Schüller, P. 2014. Efficient HEX-program evaluation based on unfounded sets. Journal of Artificial Intelligence Research 49, 269–321.

Eiter, T., Fink, M., Redl, C., and Stepanova, D. 2014. Exploiting support sets for answer set programs with external evaluations. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., C. E. Brodley and P. Stone, Eds. AAAI Press, 1041–1048.

Eiter, T., Fink, M., and Stepanova, D. 2014. Towards practical deletion repair of inconsistent dl-programs. In Proceedings of the Twenty-first European Conference on Artificial Intelligence. ECAI’14. IOS Press, Amsterdam, The Netherlands, The Netherlands, 285–290.

Eiter, T., Fink, M., Tompits, H., and Woltran, S. 2005. Strong and uniform equivalence in answer-set programming: Characterizations and complexity results for the non-ground case. In Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, M. M. Veloso and S. Kambhampati, Eds. AAAI Press / The MIT Press, 695–700.

Eiter, T., Ianni, G., and Krennwallner, T. 2009. Answer Set Programming: A Primer. In 5th International Reasoning Web Summer School (RW 2009), Brixen/Bressanone, Italy, August 30–September 4, 2009, S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousseit, and R. A. Schmidt, Eds. LNCS, vol. 5689. Springer, 40–110.

Eiter, T., Ianni, G., Krennwallner, T., and Schindlauer, R. 2008. Exploiting Conjunctive Queries in Description Logic Programs. Tech. Rep. INF SY SR 1843-08-02, Institut für Informationssysteme, TU Wien, Favoritenstraße 9-11, A-1040 Vienna. Mar.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. 2008. Combining answer set programming with description logics for the semantic web. Artif. Intell. 172, 12-13, 1495–1539.
Faber, W. 2005. Unfounded sets for disjunctive logic programs with arbitrary aggregates. In *Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005)*, Diamante, Italy, September 5-8, 2005. Vol. 3662. Springer, 40–52.

Faber, W., Leone, N., and Pfeifer, G. 2011. Semantics and complexity of recursive aggregates in answer set programming. *Artificial Intelligence* 175, 1 (January), 278–298.

Franco, J. and Martin, J. 2009. A History of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Chapter 1, 3–74.

GeiBer, M., Kaufmann, B., and Schaub, T. 2012. Conflict-driven answer set solving: From theory to practice. *Artificial Intelligence* 187–188, 52–89.

GeiBer, M., Ostrowski, M., and Schaub, T. 2009. Constraint answer set solving. In *Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP’09)*, P. Hill and D. Warren, Eds. Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, 235–249.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Programming. In *Logic Programming: Proceedings of the 5th International Conference and Symposium*, R. Kowalski and K. Bowen, Eds. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Disjunctive Databases. *New Generation Computing* 9, 3–4, 365–386.

Heymans, S., Eiter, T., and Xiao, G. 2010. Tractable reasoning with dl-programs over datalog-rewritable description logics. In *ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010*, Proceedings, H. Coelho, R. Studer, and M. Wooldridge, Eds. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS Press, 35–40.

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F. 2011. Query Rewriting for Inconsistent DL-Lite Ontologies. Springer Berlin Heidelberg, Berlin, Heidelberg, 155–169.

Lifschitz, V., Pearce, D., and Valverde, A. 2001. Strongly equivalent logic programs. *ACM Trans. Comput. Logic* 2, 4 (Oct.), 526–541.

Mayer, W., Stumptner, M., Bettes, M., and Falkner, A. 2009. On solving complex rack configuration problems using csp methods. In *Proceedings of the Workshop on Configuration at the 21st International Conference on Artificial Intelligence*, M. Stumptner and P. Albert, Eds. Pasadena, CA, USA, 53–60.

Nieuwenhuis, R. and Oliveras, A. 2005. DPLL(T) with exhaustive theory propagation and its application to difference logic. In *CAV’05 LNCS 3576*. Springer, 321–334.

Ohrimenko, O., Stuckey, P. J., and Codish, M. 2009. Propagation via lazy clause generation. *Constraints* 14, 3 (Sept.), 357–391.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: the clingcon system. *TPLP* 12, 4–5, 485–503.

Redl, C. 2017a. Conflict-driven ASP solving with external sources and program splits. In *Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017)*, August 19–25, 2017, Melbourne, Australia (August 19–25, 2017). AAAI Press, 1239–1246.

Redl, C. 2017b. Efficient evaluation of answer set programs with external sources based on external source inlining. In *Proceedings of the Thirty-First AAAI Conference (AAAI 2017)*, February 4–9, 2016, San Francisco, California, USA (February 4–9, 2016). AAAI Press.

Redl, C. 2017c. On equivalence and inconsistency of answer set programs with external sources. In *Proceedings of the Thirty-First AAAI Conference (AAAI 2017)*, February 4–9, 2016, San Francisco, California, USA (February 4–9, 2016). AAAI Press.

Truszczynski, M. 2010. Reductions of propositional theories, satisfiability relations, and generalizations of semantics of logic programs. *Artificial Intelligence* 174, 16, 1285 – 1306.

Woltran, S. 2004. Characterizations for relativized notions of equivalence in answer set programming. In *Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004*, Proceedings, J. J. Alferes and J. A. Leite, Eds. Lecture Notes in Computer Science, vol. 3229. Springer, 161–173.

Woltran, S. 2008. A common view on strong, uniform, and other notions of equivalence in answer-set programming. *TPLP* 8, 2, 217–234.
XIAO, G. AND EITER, T. 2011. Inline evaluation of hybrid knowledge bases - PhD description. In Web Reasoning and Rule Systems - 5th International Conference, RR 2011, Galway, Ireland, August 29-30, 2011. Proceedings. S. Rudolph and C. Gutierrez, Eds. Lecture Notes in Computer Science, vol. 6902. Springer, 300–305.
Appendix A Proofs

Proposition 7
For all HEX-programs \(P \), external atoms \(e \in P \) and a positive complete family of support sets \(S_T(e, P) \) such that \(S^\pi_T \cup S^\neg_T = I(e, P) \) for all \(S_T \in S_T(e, P) \), the answer sets of \(P \) are equivalent to those of \(P_{\{e\}} \), modulo the atoms newly introduced in \(P_{\{e\}} \).

Proof

(\(\Leftarrow \)) Let \(Y' \) be an answer set of \(P_{\{e\}} \). We show that its restriction \(Y \) to ordinary atoms in \(P \) is an answer set of \(P \).

- We first show that \(Y \) is a model of \(P \). It suffices to show that \(Y \models x_e \) iff \(Y \models e \). Since \(Y' \) and \(Y \) coincide on the input atoms of \(e \) (they coincide on all ordinary atoms in \(P \)), we have that \(Y \models e \) iff \(Y \models e \), and thus it further suffices to show \(Y' \models x_e \) iff \(Y' \models e \).

The if-direction is obvious as the rules in \((1)\) force \(x_e \) to be true whenever \(e \) is. For the only-if-direction, observe that if \(Y' \not\models e \) but \(x_e \in Y' \), then \(Y' \setminus \{x_e \} \cup \{Y | a \in Y'\} \not\subseteq Y' \) is a model of \(fP_{\{e\}}^{Y'} \) because it does not satisfy any body in \((1)\), which contradicts the assumption that \(Y' \) is an answer set of \(P_{\{e\}} \).

- Suppose there is a smaller model \(Y_\prec \not\subseteq Y \) of \(fP' \). We show by case distinction that also \(fP'_{\{e\}} \) has a smaller model than \(Y' \).

(a) Case \(x_e \in Y' \):

We show that \(Y'_e = Y_\prec \cup \{\overline{a} \mid a \in I(e, P) \setminus Y_\prec \} \cup \{\overline{a} \mid a \in I(e, P), Y_e \models e \} \cup \{x_e \mid Y_e \models e \} \) is a model of \(fP'_{\{e\}} \) and that \(Y'_e \not\subseteq Y' \). For the rules in \((1)\), if \(Y_\prec \cup \{\overline{a} \mid a \in I(e, P) \setminus Y_\prec \} \) satisfies one of their bodies, then we have that \(Y_e \models e \) and we set \(x_e \) to true, thus the rules are all satisfied. If \(Y_\prec \cup \{\overline{a} \mid a \in I(e, P) \setminus Y_\prec \} \) does not satisfy one of their bodies but \(Y'_e \) does, then the additional atoms in \(Y'_e \) can only come from \(\{\overline{a} \mid a \in I(e, P), Y_e \models e \} \), which implies \(Y_e \models e \) (by construction) and thus \(x_e \in Y_\prec \) also in this case. Hence, the rules in \((1)\) are all satisfied. The construction satisfies also the rules in \((2)\) because we set \(\theta \) to true whenever \(a \) is false or \(x_e \) is true in \(Y'_e \) (due to \(Y' \models e \)). Rule \((3)\) is not in \(fP'_{\{e\}} \) because \(x_e \in Y' \) by assumption. For the rules \(P_{\{e\} \rightarrow \neg \neg x_e} \) in \((4)\) satisfaction is given because \(r \models fP' \) iff \(r_{\neg \neg \neg x_e} \in fP'_{\{e\}} \) (since \(Y \models e \) iff \(Y' \models x_e \)), and by construction of \(Y'_e \), we set \(x_e \) to true iff \(Y'_e \models e \).

Now suppose \(Y'_e \not\subseteq Y' \). We have that \(Y_\prec \not\subseteq Y \subseteq Y' \) and that \(Y' \setminus Y \) contains only atoms from \(S = \{\overline{a} \mid a \in I(e, P)\} \cup \{x_e, \overline{x_e}\} \), and therefore \(Y' \setminus Y_\prec \) contains some atom not in \(S \). But then \(Y'_e \not\subseteq Y' \) is only possible if \(Y_e \) adds an atom from \(S \) to \(Y_e \) that is not in \(Y'_e \) i.e., \(Y'_e \setminus Y_{\prec} \) contains an atom from \(S \). But this is impossible since \(x_e \in Y' \), thus we also have \(\theta \in Y' \) for all \(a \in I(e, P) \), while \(\overline{\theta} \not\in Y' \) by construction.

Moreover, \(Y'_e \not\subseteq Y' \) because they differ in an atom other than \(\{\overline{a} \mid a \in I(e, P)\} \cup \{x_e, \overline{x_e}\} \) due to \(Y_\prec \not\subseteq Y \).

(b) Case \(\overline{x_e} \in Y' \):

We show that \(Y'_e = Y_\prec \cup \{\overline{a} \mid a \in I(e, P) \setminus Y' \} \cup \{\overline{x_e}\} \) is a model of \(fP'_{\{e\}} \) and that \(Y'_e \not\subseteq Y' \).

The rules in \((1)\) are all eliminated from \(fP'_{\{e\}} \) because \(x_e \not\in Y' \) implies \(Y' \not\models e \) and thus \(Y' \) does not satisfy any body of the rules in \((1)\); this is because due to minimality of \(Y' \) and falsehood of \(x_e \), no \(\overline{\theta} \) is set to true if \(a \) is already true in \(Y' \). The rules in \((2)\) are satisfied because for every \(a \in I(e, P) \) we have that either \(\theta \not\models \neg \theta \) is not in \(fP'_{\{e\}} \) (if \(a \in Y' \)) or \(\overline{\theta} \in Y'_e \) by construction (each such \(\theta \) is also in \(Y' \)). We further have \(\overline{x_e} \in Y'_e \) by construction.
and thus rule (3) is satisfied. For the rules \(r' \in f(P)[e \rightarrow x_e]Y' \) in (4), observe that there are corresponding rules \(r \in fPY \), and that \(Y'_c \) coincides with \(Y_c \) on atoms other than \(x_e \). If \(Y_c \models r \) because \(Y_c \models H(r) \) or \(Y_c \not\models B(r) \setminus \{e\} \), then this implies \(Y'_c \models r' \). If \(Y_c \models r \) because \(Y_c \not\models e \), then \(Y'_c \models r' \) because \(Y'_c \not\models x_e \) by construction of \(Y'_c \).

Moreover, \(Y'_c \subseteq Y' \) because they differ in an atom other than \(\{\overline{a} \mid a \in I(e, P)\} \cup \{x_e, \overline{x_e}\} \) due to \(Y_c \not\subseteq Y \).

\((\Rightarrow)\) Let \(Y' \) be an answer set of \(P \). We show that
\[
Y' = Y \cup \{\overline{a} \mid a \in I(e, P) \setminus Y\} \cup \{\overline{a} \mid a \in I(e, P), Y \models e\}
\]
\[
\cup \{x_e \mid Y \models e\} \cup \{\overline{a} \mid Y \not\models e\}
\]
is an answer set of \(P[e] \); afterwards we show that \(Y' \) is actually the only extension of \(Y \) to an answer set of \(P[e] \).

- We first show that \(Y' \) is a model of \(P[e] \). If \(Y \cup \{\overline{a} \mid a \in I(e, P) \setminus Y\} \) satisfies one of the rule bodies in (1), then \(S_T \subseteq Y \) and \((I(e, P) \setminus S_T) \cap Y = \emptyset \) (if some \(a \in I(e, P) \setminus S_T \) would be in \(Y \), then \(\overline{a} \) would not be in \(Y \cup \{\overline{a} \mid a \in I(e, P) \setminus Y\} \) and the rule body would not be satisfied) for some \(S_T \in S_T(e, P) \); this implies \(Y \models e \) and, by construction, \(x_e \in Y' \). If only \(Y' \) but not \(Y \cup \{\overline{a} \mid a \in I(e, P) \setminus Y\} \) satisfies one of the rule bodies in (1), then additional atoms of kind \(\overline{a} \) must be in \(Y' \), which are only added if \(Y \models e \); this also implies, by construction, \(x_e \in Y' \). Thus we have \(x_e \in Y' \) whenever \(Y' \) satisfies one of the rule bodies in (1), and thus these rules are all satisfied. We further add \(\overline{a} \) whenever \(a \not\in Y \) or \(x_e \) is added (due to \(Y \models e \)) for all \(a \in I(e, P) \), which satisfies rules (2), and we add \(x_e \) whenever \(x_e \) is not added (due to \(Y \not\models e \)), thus the rule (3) is satisfied. Moreover, the rules in (4) are satisfied because \(Y' \) is a model of \(P \) and the value of \(x_e \) under \(Y' \) coincides with the value of \(e \) under \(Y \) by construction.

- Suppose there is a smaller model \(Y'_c \subseteq Y' \) of \(fPY' \) and assume that this \(Y'_c \) is subset-minimal. We show that then, for the restriction \(Y_c' \) of \(Y'_c \) to the atoms in \(P \) it holds that (i) \(Y_c' \) is a model of \(fPY' \) and (ii) \(Y_c' \subseteq Y_e \), which contradicts the assumption that \(Y \) is an answer set of \(P \).

(i) Suppose there is a rule \(r \in fPY' \) such that \(Y_c \not\models r \). Observe that for \(r' = r[e \rightarrow x_e] \), we have \(r' \in fPY' \) because we have \(Y \models B(r) \) (since \(r \in fPY \) and \(Y' \models x_e \)) iff \(Y \models e \) (by construction of \(Y' \)), which implies \(Y' \models B(r') \). Moreover, since \(Y'_c \models r' \), we either have \(Y'_c \models H(r') \) or \(Y'_c \not\models B(r') \). In the former case we also have \(Y'_c \models H(r) \), and thus \(Y_c \models r \), because the two assignments resp. rules coincide on ordinary atoms in \(P \); with the same argument \(Y_c \models r \) holds also in the latter case if a body atom in \(B(r') \setminus \{x_e\} \) is unsatisfied under \(Y_c' \).

Hence, \(Y_c' \models r' \) and \(Y'_c \not\models r \) is only possible if \(e \in B(r) \), \(Y'_c \not\models x_e \), and \(Y_c \models e \); the latter implies \(Y'_c \models e \) as \(Y_c' \) and \(Y'_c \) coincide on \(I(e, P) \). Moreover, \(Y' \models B(r') \) implies \(Y' \models x_e \); by construction of \(Y' \) this further implies \(\overline{e} \not\in Y' \).

Since \(x_e \) could not be false in \(Y_c' \) if (at least) one of the rules \(r_1, \ldots, r_n \) in (1) would be in \(P[e] \), and had a satisfied body, for each \(r_i, 1 \leq i \leq n \), one of \(Y' \not\models B(r_i) \) (then \(r_i \) is not even in \(P[e] \)) or \(Y'_c \not\models B(r_i) \) must hold; but since \(Y'_c \subseteq Y' \) and \(B(r_i) \) consists only of positive atoms, the former case in fact implies the latter, thus \(Y'_c \not\models B(r_i) \) must hold for all \(1 \leq i \leq n \).

Moreover, we have that \(\overline{a} \in Y'_c \) whenever \(a \not\in Y'_c \) for all \(a \in I(e, P) \). This is because \(\overline{a} \not\in Y' \) and thus \(a \lor \overline{a} \not\models \overline{a} \in P[e] \) for all \(a \in I(e, P) \) (cf. rules (2)) and \(\overline{a} \not\in Y'_c \) or \(a \not\in Y'_c \), which implies \(Y'_c \not\models e \), which contradicts our previous observation, thus the initial assumption that \(Y_c \not\models r \) is false and we have \(Y_c \models P \).

(ii) Finally, we show that \(Y_c \not\subseteq Y \), i.e., \(Y' \setminus Y_c \) contains not only atoms from \(\{\overline{a} \mid a \in I(e, P)\} \cup \{x_e, \overline{x_e}\} \)
\{x_e, \overline{e}\}$. We first consider the case $\overline{\pi} \in Y'$. Then $Y' \setminus Y'_e$ cannot contain x_e (because it is not even in Y' by construction) or $\overline{\pi}$ (because it would leave rule (3) unsatisfied). It further cannot contain any $\overline{\pi}$ because Y'_e is assumed to be subset-minimal and thus contains $\overline{\pi}$ only if $a \not\in Y'$ (and thus $a \not\in Y'_e$); this is because $x_e \not\in Y'$ and thus all rules in (2) which force $\overline{\pi}$ to be true, except $\overline{\pi} \leftarrow \neg a$, are dropped from $fP[e]$; but then removal of any $\overline{\pi}$ would lead the rule $\pi \leftarrow \neg a$ in (2), which is contained in $fP[Y'_e]$, unsatisfied.

In case $x_e \in Y'$, if $Y' \setminus Y'_e$ contains only atoms from $\{\overline{\pi} \mid a \in I(e, P)\} \cup \{x_e, \overline{\pi}\}$, then it contains x_e (because $\overline{\pi} \not\in Y'$ and all $\overline{\pi}$ for $a \in I(e, P)$ must be true whenever x_e is due to the rules in (2), which are all also in $P[Y'_e]$). Moreover, we have that $\pi \in Y'_e$ whenever $a \not\in Y'_e$ because $a \lor \pi \leftarrow \neg \overline{\pi} \in fP[Y'_e]$ for all $a \in I(e, P)$ (cf. rules in (2)); $a \not\in Y'_e$ and $\pi \not\in Y'_e$ would violate this rule. But then Y'_e does not fulfill any of the cases in which e is true (otherwise Y'_e would satisfy a body of (1), which would also be satisfied by $Y' \supseteq Y'_e$, such that the rule would be in $P[e]$ and x_e could not be false in Y'_e, hence $Y'_e \not\vdash e$; since $x_e \in Y'$ implies that $Y' \models e$ we have that $Y' \setminus Y'_e$ must contain at least one of $I(e, P)$ such that the truth values of e can differ under the two assignments, thus it does not only contain atoms from $\{\overline{\pi} \mid a \in I(e, P)\} \cup \{x_e, \overline{\pi}\}$.

It remains to show that Y' is the only extension of Y that is an answer set of $P[e]$. To this end, consider an arbitrary answer set Y'' of $P[e]$ which coincides with Y' on the atoms in P (i.e., they are both extensions of Y); we have to show that $Y'' = Y'$. Since the only rules in the encoding which support x_e are the rules in (1), minimality of answer sets implies that $Y' \models e$ iff $Y' \models x_e$ and $Y'' \models e$ iff $Y'' \models x_e$; since the value of e depends only on atoms in P and is thus the same under Y' and Y'', this further implies $Y' \models x_e$ iff $Y'' \models x_e$, i.e., the value of x_e under Y' and Y'' is the same. Then the value of $\overline{\pi}_e$, which is only defined in rule (3), is also the same in Y' and Y''. Finally, since Y' and Y'' coincide on each atom a in P, and the value of π, which is defined only in rules (2), depends only on atoms which have already been shown to be the same under Y' and Y'', we have that also the value of π is the same under Y' and Y''. Thus $Y' = Y''$. \qed

Proposition 2

Let X be a set of atoms and P be a HEX-program such that

$$P \supseteq \{r_1 : x_e \leftarrow B, b; r_2 : x_e \leftarrow B, \overline{b}\}$$

$$\cup \{\pi \leftarrow \neg a; \overline{\pi} \leftarrow x_e; a \lor \pi \leftarrow \neg \overline{\pi} \mid a \in X\}$$

$$\cup \{\overline{\pi}_e \leftarrow \neg x_e\}$$

where $B \subseteq \{a, \overline{a} \mid a \in X\}$, $b \in X$, and $\overline{\pi}_e$ occurs only in the rules explicitly shown above. Then P is equivalent to $P' = (P \setminus \{r_1, r_2\}) \cup \{r : x_e \leftarrow B\}$.

Proof

We have to show that an assignment Y is an answer set of P iff it is an answer set of P'. It suffices to restrict the discussion to $r_1, r_2 \in P$ and the corresponding rule $r \in P'$ because the other rules in P vs. P' and their reducts P' vs. P' wrt. a fixed assignment Y coincide.

(\Rightarrow) Let Y be an answer set of P. We first show that $Y \models P'$. It suffices show that $Y \models r$. Towards a contradiction, suppose $Y \not\models x_e$ and $Y \models B$. Since we have (at least) one of $b \in Y$ or $\overline{b} \in Y$ (otherwise Y could not satisfy the rule $b \leftarrow \neg b$), we also have $Y \not\models r_1$ or $Y \not\models r_2$, which is impossible because Y is an answer set of P.

Thus $Y' \models P'$. Towards a contradiction, suppose there is a smaller model $Y < Y$ of P'^Y. If $r \not\in fP'^Y$, then $Y \not\models B(r)$, which implies that $Y \not\models B(r_1)$ and $Y \not\models B(r_2)$, and thus neither r_1 nor r_2 is in fP'. Otherwise, since $Y < \models fP'$ we have $Y \models r$ and thus either $Y < \models x_e$ or
Y_<(\neq B). But in both cases also Y_\models r_1 and Y_\models r_2, thus Y_\models P^Y, which contradicts the assumption that Y is an answer set of P.

(\iff) Let Y be an answer set of P'. We immediately get Y \models P because Y \models r and r_1 and r_2 are even easier to satisfy than r.

Towards a contradiction, suppose there is a smaller model Y_\subseteq Y of fP^Y. If Y \not\models B we have that r \not\in fP^Y and thus Y_\models fP^Y, which contradicts the assumption that Y is an answer set of P'.

Then Y \models B and we have that r \in fP^Y and have to show that Y_\models r.

If Y \models \overline{x_e} then Y \not\models x_e (otherwise Y \setminus \{\overline{x_e}\} \models fP^Y, contradicting our assumption that Y is an answer set of P'). Moreover, due to the rule b \leftarrow \lnot b, one of b or \overline{b} must be true in Y. But then Y cannot not satisfy both r_1 and r_2, hence Y \not\models \overline{x_e}.

Then Y \models x_e (since Y \models \overline{x_e} \iff \lnot x_e). If Y_\models x_e or Y \not\models B then also Y_\models r and we are done. Otherwise, since Y_\models fP^Y, we have (i) either Y \not\models b (thus r_1 \not\in fP^Y) or Y \not\models b (thus Y_\models r_1), where the former case implies the latter since Y_\subseteq Y, and (ii) either Y \not\models \overline{b} (thus r_2 \not\in fP^Y) or Y \not\models b (thus Y_\models r_2), where the former case implies the latter since Y_\subseteq Y. Thus, we have in any case both Y_\not\models b and Y \not\models \overline{b}. But then Y \not\models b \lor \overline{b} \leftarrow \lnot \overline{x_e}, and since this rule is in fP^Y because Y \not\models \overline{x_e}, we get Y_\not\models \lnot fP^Y. This contradicts our initial assumption that fP^Y has a smaller model than Y, hence Y is an answer set. □

Corollary

For all HEX-programs P, external atoms e in P and a positive complete family of support sets \mathcal{S}_T(e, P), the answer sets of P are equivalent to those of P_{[e]}, modulo the atoms newly introduced in program P_{[e]}.

Proof

A support set of kind \mathcal{S}_T with S^+_T \cup \neg S^-_T \subseteq I(e, P) is equivalent to the set \mathcal{C} = \{S^+_T \cup S^-_T \cup R \mid R \subseteq U \cup \neg U, R \text{ consistent}\} of support sets, where U = I(e, P) \setminus (S^+_T \cup \neg S^-_T), in the sense that \mathcal{S}_T is applicable if one of \mathcal{C} is applicable. Conversely, each such support set can be retrieved by recursive resolution-like replacement of support sets in \mathcal{C} which differ only in the polarity of a single atom. According to Proposition such a replacement in \mathcal{S}_T(e, P) does not change the semantics of the program P_{[e]} constructed based on \mathcal{S}_T(e, P). Thus the encoding can be constructed from an arbitrary positive complete family of support sets right from the beginning. □

Proposition

For all HEX-programs P, negated external atoms \lnot e in P and a negative complete family of support sets \mathcal{S}_T(e, P), the answer sets of P are equivalent to those of P_{[\lnot e]}, modulo the atoms newly introduced in program P_{[\lnot e]}.

Proof

Using a negative complete family of support sets for defining the auxiliary variable x_e in the rules \eqref{auxiliary}, and replacing \lnot e by x_e amounts to the replacement of \lnot e by a new external atom e', and applying the rewriting from Definition afterwards. □

Proposition

Let \mathcal{S}_T be a positive resp. negative complete family of support sets for some external atom e in a program P, where e \in \{T, F\}. Then \mathcal{S}_T = \{S_\sigma \in \prod_{S_\sigma \subseteq \mathcal{S}_T} \neg S_\sigma \mid \mathcal{S}_T \text{ is consistent}\} is a negative resp. positive complete family of support sets, where \overline{T} = F and \overline{F} = T.
Proof
We restrict the proof to the case $\sigma = T$; the case $\sigma = F$ is symmetric.

If S_T is a positive complete family of support sets, then the support sets $S_T \in S_T$ describe
the possibilities to satisfy e exhaustively. Thus, in order to falsify e, at least one literal of each
$S_T \in S_T$ must be falsified, i.e., at least one literal in $\neg S_T$ must be satisfied. Thus amounts to the
Cartesian product of all sets $\neg S_T$ with $S_T \in S_T$. □

Proposition 5
Let P and Q be HEX-programs, R be an ordinary ASP-program, and Y be an assignment s.t. $Y \in \mathcal{AS}(P \cup R)$ but $Y \notin \mathcal{AS}(Q \cup R)$. Then there is also a positive ordinary ASP-program R' such
that $Y \in \mathcal{AS}(P \cup R')$ but $Y \notin \mathcal{AS}(Q \cup R')$ and $B(R') \subseteq B(R)$ and $H(R') \subseteq H(R)$.

Proof
Let P and Q be HEX-programs, R be an ordinary ASP-program, and Y be an assignment such
that $Y \in \mathcal{AS}(P \cup R)$ but $Y \notin \mathcal{AS}(Q \cup R)$. We have to show that there is a positive R' such
that $Y \in \mathcal{AS}(P \cup R')$ but $Y \notin \mathcal{AS}(Q \cup R')$. As [Woltran (2008), we show this in particular
for $R' = R^Y$, where $R^Y = \{ H(r) \leftarrow B^+(r) \mid r \in R, Y \not\models b \text{ for all } b \in B^-(r) \}$ is the GL-
reduct [Gelfond and Lifschitz 1988], not to be confused with the FLP-reduct which is used in the
definition of the HEX-semantics. Obviously we have $B(R') \subseteq B(R)$ and $H(R') \subseteq H(R)$.

- We first show that $Y \in \mathcal{AS}(P \cup R')$. For modellhood, we know that Y is a model of P, thus
it suffices to discuss R'. Let $r' \in R'$. Then there is a corresponding rule $r \in R$ such that r' is
the only rule in $\{ r \}^Y$. We have that $Y \not\models b^-(r)$, otherwise r' would not be in $\{ r \}^Y$. But then,
since $Y \models r$ (because $Y \models R$ since $Y \in \mathcal{AS}(P \cup R)$ by assumption), we have that $Y \models H(r)$
or $Y \not\models b^+(r)$, which implies that $Y \models r'$.

It remains to show that there is no $Y' \subseteq Y$ such that $Y' \models f(P \cup R')^Y$. Towards a contradiction,
suppose there is such an Y'; we show that it is also a model of $f(P \cup R)^Y$, which contradicts
the assumption that Y is an answer set of $P \cup R$. Obviously we have $Y' \models f P^Y$. Now consider
$r \in f R^Y$. Then $Y \models b^+(r)$ and $Y \not\models b^-(r)$. But then $H(r) \leftarrow b^+(r) \in R'$ and $H(r) \leftarrow
b^+(r) \in f R^Y$. Since $Y' \models f R^Y$, we have that $Y' \models H(r)$ or $Y' \not\models b^+(r)$ and thus $Y' \models r$.

Since this holds for all $r \in f R^Y$ this implies $Y' \models f(P \cup R)^Y$, which contradicts the assumption
that Y is an answer set of $P \cup R$, thus Y' cannot exist and Y is an answer set of $P \cup R'$.

- We now show that $Y \not\in \mathcal{AS}(Q \cup R')$. If $Y \not\models Q \cup R$ then also $Y \not\models Q \cup R'$ because for each
$r \in R$ we either have that $Y \models b^-(r)$ (and thus r is not relevant for the inconsistency of $Q \cup R$
or R' contains $H(r) \leftarrow b^+(r)$ instead, which is even harder to satisfy (i.e., is violated whenever
r is).

If $Y \models Q \cup R$ then there is an $Y' \subseteq Y$ such that $Y' \models f(Q \cup R)^Y$. We show that Y' is also
a model of $f(Q \cup R')^Y$. Towards a contradiction, suppose there is an $r' \in f(Q \cup R')^Y$ such
that $Y' \not\models r'$. Then r' must be in $f R^Y$ because if it would be in $f Q^Y$ then Y' could not be a
model of $f(Q \cup R)^Y$. Then $Y' \not\models H(r')$ but $Y' \models b^+(r')$. But then there is a rule $r \in f R^Y$
with $H(r) = H(r')$ and $b^+(r) = b^+(r')$ such that $Y' \not\models b^-(r)$ (otherwise $Y' \models b^-(r)$ and
r' could not be in R' and thus also not in $f(Q \cup R)^Y$). However, then $Y' \not\models r$ and thus
$Y' \not\models f(Q \cup R)^Y$, which contradicts our assumption.

□

Proposition 6
For HEX-programs P and Q and sets \mathcal{H} and B of atoms, there is a program $R \in \mathcal{P}_{\langle \mathcal{H}, B \rangle}$ with
$\mathcal{AS}(P \cup R) \not\subseteq \mathcal{AS}(Q \cup R)$ iff there is a witness for $P \not\subseteq_{\langle \mathcal{H}, B \rangle} Q$.

Proof

(⇒) If $AS(P \cup R) \nsubseteq AS(Q \cup R)$ for a program R, then there is an assignment Y such that $Y \in AS(P \cup R)$ but $Y \notin AS(Q \cup R)$. Due to Proposition 5, we can assume that R is a positive program.

We show that Y satisfies Condition (i) of Definition 9. Since $Y \in AS(P \cup R)$ we have $Y \models P$. Towards a contradiction, suppose there is an $Y' \subseteq Y$ such that $Y' \models fP^Y$ and $Y' \models Y \models Y$. Then, since $Y' \subseteq Y$, we have $Y' \models fP^Y$ and $Y' \models Y$. We further have $Y' \models fP^Y$ and $Y' \models Y$. Since R is positive, $Y \models R$ implies $Y' \models R$, and since $fR^Y \subseteq R$ this further implies $Y' \models fR^Y$. Since we further have $Y' \models fP^Y$, this gives $Y' \models f(P \cup R)^Y$ and thus Y cannot be an answer set of $P \cup R$, which contradicts our assumption and therefore Condition (i) is satisfied.

We show now that there is an X such that (X, Y) satisfies also Condition (ii), i.e., is a witness as by Definition 9. If $Y \not\models Q$ then Condition (ii) is trivially satisfied for any $X \subseteq Y$ and e.g. (Y, Y) is a witness. Otherwise $(Y \models Q)$, note that we have $Y \models R$ since $Y \in AS(P \cup R)$. Together with the precondition that $Y \notin AS(Q \cup R)$ this implies that there is an $X \subseteq Y$ such that $X \models f(Q \cup R)^Y$, which is equivalent to $X \models fQ^Y$ and $X \models fR^Y$. We show that for this X, Condition (ii) is satisfied, hence (X, Y) is a witness. As we already have $X \subseteq Y$ and $X \models fQ^Y$, it remains to show that for any X' with $X \subseteq X'$ we have $X' \not\models fP^Y$. If there would be an X' with $X \subseteq X' \subseteq Y$ with $X' \not\models fP^Y$, then, since we also have $X' \models fR^Y$ (because $X \models fR^Y$ and fR^Y is positive), this implies $X' \models f(P \cup R)^Y$, which contradicts the precondition that $Y \in AS(P \cup R)$. Thus such an X' cannot exist and Condition (ii) is satisfied by (X, Y).

(⇐) Let (X, Y) be a witness for $AS(P \cup R) \nsubseteq AS(Q \cup R)$. We make a case distinction: either $Y \not\models Q$ or $Y \models Q$.

• Case $Y \not\models Q$:

 We show for the following $R \in P_{(H,B)}$ that $Y \in AS(P \cup R)$ but $Y \notin AS(Q \cup R)$:

 $$R = \{a \leftarrow \mid a \in Y \models H\}$$

 Since (X,Y) is a witness, by Property (i) we have $Y \models P$. We further have $Y \models R$, thus $Y \models P \cup R$. Moreover, we obviously have $fR^Y \subseteq R$, which contains all atoms from Y as facts. Suppose there is a $Y' \subseteq Y$ such that $Y' \models f(P \cup R)^Y$; then $Y' \models fP^Y$, and by Property (i) we have $Y' \models f(P \cup R)^Y$, i.e., at least one atom from $Y \models H$ is unsatisfied under Y'. But then $Y' \not\models fR^Y$ and thus $Y' \models \not\models f(P \cup R)^Y$, i.e., Y is an answer set of $P \cup R$. On the other hand, $Y \not\models Q$ implies $Y \not\models Q \cup R$ and therefore Y cannot be an answer set of $Q \cup R$.

• Case $Y \models Q$:

 We show for the following $R \in P_{(H,B)}$ that $Y \in AS(P \cup R)$ but $Y \notin AS(Q \cup R)$:

 $$R = \{a \leftarrow \mid a \in X \models H\} \cup$$

 $$\{a \leftarrow b \mid a \in (Y \setminus X) \models H, b \in (Y \setminus X) \models B\}$$

 We first show that $Y \in AS(P \cup R)$. Since (X,Y) is a witness as by Definition 9, we have $Y \models P$. We further have $Y \models R$ by construction of R because all heads of its rules are in Y. Thus it remains to show that it is also a subset-minimal model of $f(P \cup R)^Y$. Towards a contradiction, assume that there is a $Z \subseteq Y$ such that $Z \models f(P \cup R)^Y$, which is equivalent to $Z \models fP^Y$ and $Z \models fR^Y$, where $fR^Y = R$ (by construction of R). By construction of R, $Z \models R$ implies that $X \models Z \models Y$, which further implies $Z \models Y$ and $X \models X \models Y$. This implies that there is an $a \in (Y \setminus X) \models H$ which is not in Z. Since $Y \models Q$, $Z \subseteq Y$, $Z \models fP^Y$ and $X \models X \models Z \models Y$, Property (ii) further implies $Z \models X$.
(since violating $X \leq_{\mathbb{H}}^P Z$ is the only remaining option to satisfy the property). As we also have $Z|_{\mathcal{B}} \subseteq Y|_{\mathcal{B}}$ (because $Z \subseteq Y$), there is a $b \in (Y \setminus X)|_{\mathcal{B}}$ which is also in Z. Hence, we have an $a \in (Y \setminus X)|_{\mathcal{H}}$ and a $b \in (Y \setminus X)|_{\mathcal{B}}$ such that only b is also in Z, hence the rule $a \leftarrow b \in R$ (and $a \leftarrow b \in fR^Y$) is violated by Z, thus $Z \not\models fR^Y$ and $Z \not\models f(P \cup R)^Y$, which contradicts our assumption.

It remains to show that $Y \not\in \mathcal{AS}(Q \cup R)$. We already know that $Y \models Q \cup R$ and must show that $f(Q \cup R)^Y$ has a smaller model than Y. Since (X, Y) is a witness, we have $X \subseteq Y$ and $X \models fQ^Y$ by Property (ii). As $X \models R$ (it satisfies all facts $\{a \leftarrow a \in X|_{\mathcal{H}}\}$ and no other rules of R are applicable as their bodies contain only atoms that are not in X), we get $X \models fR^Y$ and have $X \models f(Q \cup R)^Y$. Therefore $Y \not\in \mathcal{AS}(Q \cup R)$.

\[
\square
\]

Towards a characterization of equivalence in terms of $\langle \mathcal{H}, \mathcal{B} \rangle$-models we introduce the following lemma.

Lemma 4

For sets \mathcal{H} and \mathcal{B} of atoms and programs P, Q, $(Y, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P) \setminus \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$ iff there is a witness (X, Y) for $P \subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ with $X|_{\mathcal{H}} = Y|_{\mathcal{H}}$.

Proof

(\Rightarrow) Since $(Y, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$, Property (i) of Definition 9 holds because Property (i) of Definition 10 is the same and holds. For Property (ii) of Definition 9 $(Y, Y) \not\in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$ implies that either $Y \not\models Q$ or there is a $Y' \subseteq Y$ such that $Y' \models fQ^Y$ and $Y'|_{\mathcal{H}} = Y|_{\mathcal{H}}$. In the former case, Property (ii) of Definition 9 holds trivially for all $X \subseteq Y$ and, e.g., (Y, Y) is witness for $P \subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$, for which $Y|_{\mathcal{B}} = Y|_{\mathcal{H}}$ clearly holds. In case $Y \models Q$ we have that there is some $X \subseteq Y$ with $X \models fQ^Y$ and $X|_{\mathcal{B}} = Y|_{\mathcal{B}}$. In order to show that (X, Y) satisfies Property (ii), it remains to show that for all X' with $X \leq_{\mathcal{H}}^P X' \subseteq Y$ we have $X' \models fP^Y$. If there would be an X' with $X \leq_{\mathcal{H}}^P X' \subseteq Y$ and $X' \models fP^Y$, then $X|_{\mathcal{B}} = Y|_{\mathcal{B}}$ would imply $X'|_{\mathcal{B}} = Y|_{\mathcal{B}}$, and thus Property (i) of Definition 10 would be violated by (Y, Y) wrt. P, which contradicts the assumption that $(Y, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$.

(\Leftarrow) For a witness (X, Y) for $P \subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ with $X|_{\mathcal{H}} = Y|_{\mathcal{H}}$, Property (i) of Definition 9 implies that $(Y, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$ and it remains to show that $(Y, Y) \not\in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$. Since (X, Y) is a witness with $X|_{\mathcal{H}} = Y|_{\mathcal{H}}$, we have either $Y \not\models Q$ or $X \subseteq Y$ and $X \models fQ^Y$. In the former case (Y, Y) cannot be an $\langle \mathcal{H}, \mathcal{B} \rangle$-model of Q due to violation of Property (i) of Definition 10. In the latter case (Y, Y) cannot be an $\langle \mathcal{H}, \mathcal{B} \rangle$-model of Q since our assumption $X|_{\mathcal{H}} = Y|_{\mathcal{H}}$ also contradicts Property (i) of Definition 10.

\[
\square
\]

Proposition 7

For sets \mathcal{H} and \mathcal{B} of atoms and HEX-programs P and Q, we have $P \equiv_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ iff $\sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P) = \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$.

Proof

(\Rightarrow) We make a proof by contraposition. Wlog. assume there is an $(X, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P) \setminus \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$ (the case $(X, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q) \setminus \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$ is symmetric). We have to show that then $P \equiv_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ does not hold.

Since $(X, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$, we also have $(Y, Y) \in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(P)$ (cf. Definition 10). If $(Y, Y) \not\in \sigma_{\langle \mathcal{H}, \mathcal{B} \rangle}(Q)$ then by Lemma 4 there is a witness (X, Y) for $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ and thus by Proposition 6...
there is a program $R \in \mathcal{P}_{(H,B)}$ with $\text{AS}(P \cup R) \not\subseteq \text{AS}(Q \cup R)$, hence $P \equiv_{(H,B)} Q$ does not hold.

In case $(Y, Y) \in \sigma_{(H,B)}(Q)$ we have $X \subseteq Y$ (and Y cannot be equal because $(X, Y) \not\in \sigma_{(H,B)}(Q)$). We make a case distinction.

- Case 1: There exists an X' with $X \leq_{H} X' \subseteq Y$ such that $(X', Y) \in \sigma_{(H,B)}(Q)$:

 Since $(Y, Y) \in \sigma_{(H,B)}(Q)$ but $(X, Y) \not\in \sigma_{(H,B)}(Q)$, the latter fails to satisfy Definition\[10\] due to Property (ii). Then $X \leq_{H} X'$ must hold (rather than $X|_{H\cup B} = X'|_{H\cup B}$) because only in this case satisfaction of Property (ii) of Definition\[10\] wrt. X can differ from satisfaction wrt. X'. Then there is a $Z \subseteq Y$ with $Z|_{H\cup B} = X'$ such that (Z, Y) is \leq_{H}-maximal for Q and thus $Z \models fQ^Y$.

 We show that (Z, Y) is a witness for $P \not\subseteq_{(H,B)} Q$. Since $(Y, Y) \in \sigma_{(H,B)}(P)$, Property (i) of Definition\[9\] holds for (Z, Y). Moreover, we have $Z \models fQ^Y$ and, since $(X, Y) \in \sigma_{(H,B)}(P)$, we have by Property (ii) of Definition\[10\] for all X'' with $X \leq_{H} X'' \subseteq Y$ that $X'' \not\models fP^Y$. Since $X \leq_{H} Z$ (as a consequence of $Z|_{H\cup B} = X'$ and $X \leq_{H} X'$), Property (ii) of Definition\[9\] holds for Z and thus (Z, Y) is a witness for $P \not\subseteq_{(H,B)} Q$.

- Case 2: For each X' with $X \leq_{H} X' \subseteq Y$ we have $(X', Y) \not\in \sigma_{(H,B)}(Q)$:

 We already have $(X, Y) \in \sigma_{(H,B)}(P)$ and thus there is a $Z \subseteq Y$ with $Z|_{H\cup B} = X$ such that $Z \models fP^Y$. We show that (Z, Y) is a witness for the reverse problem $Q \not\subseteq_{(H,B)} P$. Since $(Y, Y) \in \sigma_{(H,B)}(Q)$ we have that Property (i) of Definition\[9\] is satisfied. We have $Y \models P$ (due to Property (i) of Definition\[10\] wrt. $(X, Y) \in \sigma_{(H,B)}(P)$), thus for satisfaction of Property (ii) of Definition\[9\] recall that we have $Z \models fP^Y$ and it remains to show that for each X'' with $X \leq_{H} X'' \subseteq Y$ we have $X'' \not\models fQ^Y$. If there would be such an X'' with $X'' \models fQ^Y$, then there would also a \leq_{H}-maximal one X''' and $(X'''$, $Y)$ would be an (H,B)-model of Q, which contradicts our assumption that $(X', Y) \not\in \sigma_{(H,B)}(Q)$ for each X' with $X \leq_{H} X' \subseteq Y$.

(\Leftarrow) We make a proof by contraposition. Suppose $P \not\equiv_{(H,B)} Q$, then either $P \subseteq_{(H,B)} Q$ or $Q \subseteq_{(H,B)} P$ does not hold; we assume wlog. that $P \subseteq_{(H,B)} Q$ does not hold (the other case is symmetric). We have to show that $\sigma_{(H,B)}(P) = \sigma_{(H,B)}(Q)$ does not hold either.

By Proposition\[6\] there is a witness (X, Y) for $P \not\subseteq_{(H,B)} Q$. Then by Property (i) of Definition\[9\] we have $Y \models P$ and for all $Y' \subseteq Y$ with $Y' \models fP^Y$ we have $Y'|_{H} = Y|_{H}$, which implies that $(Y, Y) \in \sigma_{(H,B)}(P)$.

If $(Y, Y) \not\in \sigma_{(H,B)}(Q)$, it is proven that $\sigma_{(H,B)}(P) \not\equiv_{(H,B)} (Q)$.

Otherwise we have $(Y, Y) \in \sigma_{(H,B)}(Q)$. By Property (i) of Definition\[9\] we then have $Y \models Q$ and by Lemma\[4\] we have $X|_{H} \neq Y|_{H}$ and thus $X \not\subseteq Y$. Since (X, Y) is a witness for $P \not\subseteq_{(H,B)} Q$ we have $X \models fQ^Y$ and for all X' with $X \leq_{H} X' \subseteq Y$ we have $X' \not\models fP^Y$. Take an arbitrary pair (Z, Y) of assignments with $Z \subseteq Y$ for which $X \leq_{H} Z$ holds and which is \leq_{H}-maximal for Q (such a pair exists because we already know that $X \models fQ^Y$). Moreover, $(Y, Y) \in \sigma_{(H,B)}(Q)$ implies that Property (ii) of Definition\[10\] holds for $(Z|_{H\cup B}, Y)$. Therefore $(Z|_{H\cup B}, Y) \in \sigma_{(H,B)}(Q)$.

On the other hand, $(Z|_{H\cup B}, Y) \not\in \sigma_{(H,B)}(P)$ because (X, Y) is a witness for $P \not\subseteq_{(H,B)} Q$ and therefore for all X' with $X \leq_{H} X' \subseteq Y$ we have $X' \not\models fP^Y$. Since $X \leq_{H} Z \subseteq Y$ we also have that $X'' \not\models fP^Y$ for all X'' such that $Z|_{H\cup B} \leq_{H} X'' \subseteq Y$. But then there cannot be an X'' with $X''|_{H\cup B} = Z|_{H\cup B}$ such that $X'' \models fP^Y$. Therefore Property (ii) of Definition\[10\] cannot be satisfied due to failure to find a pair (X'', Y) with $X'' \subseteq Y$ and $X''|_{H\cup B} = Z|_{H\cup B}$ that is \leq_{H}-maximal for P. \hfill \(\blacksquare\)

Proposition\[8\]
For sets \mathcal{H} and \mathcal{B} of atoms, HEX-programs P and Q, and an atom a that does not occur in P or Q, the following holds:

(i) $P \equiv_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ iff $P \equiv_{\langle \mathcal{H} \cup \{a\}, \mathcal{B} \rangle} Q$; and
(ii) $P \equiv_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ iff $P \equiv_{\langle \mathcal{H}, \mathcal{B} \cup \{a\} \rangle} Q$.

Proof

Property (i) We make a proof by contraposition. If $P \equiv_{\langle \mathcal{H} \cup \{a\}, \mathcal{B} \rangle} Q$ does not hold, then either $P \not\subseteq_{\langle \mathcal{H} \cup \{a\}, \mathcal{B} \rangle} Q$ or $Q \not\subseteq_{\langle \mathcal{H} \cup \{a\}, \mathcal{B} \rangle} P$; as the two cases are symmetric it suffices to consider the former. If $P \not\subseteq_{\langle \mathcal{H} \cup \{a\}, \mathcal{B} \rangle} Q$ does not hold then by Proposition \ref{prop:subset}, there is a witness (X, Y) for $P \not\subseteq_{\langle \mathcal{H} \cup \{a\}, \mathcal{B} \rangle} Q$. We show that we can also construct a witness for $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$, which implies by another application of Proposition \ref{prop:subset} that $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ and thus $P \equiv_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$ do not hold.

In particular, $(X \setminus \{a\}, Y \setminus \{a\})$ is a witness for $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$. We show this separately depending on the type of (X, Y).

- If neither X nor Y contains a, then (X, Y) itself is also a witness for $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$. Property (i) of Definition \ref{def:subset} holds because we know that $Y \models P$ and for each $Y' \subseteq Y$ with $Y' \models f_P^Y$ we have that $Y'|_{\mathcal{H} \cup \{a\}} \models Y|_{\mathcal{H} \cup \{a\}}$; the latter implies $Y'|_{\mathcal{H}} \models Y|_{\mathcal{H}}$ since $a \notin Y$ and thus Y' and Y must differ in an atom from \mathcal{H}.

For Property (ii), if $Y \not\models Q$ we are done. Otherwise we know that $X \subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Y$ and that for all X' with $X \leq_{\mathcal{H} \cup \{a\}} X'$ we have $X' \not\models f_Q^{Y'}$ (since (X, Y) satisfies Property (ii) wrt. $\mathcal{H} \cup \{a\}$ and \mathcal{B}). We have to show that $X' \not\models f_P^{Y'}$ holds also for all X' with $X \leq_{\mathcal{H}} X' \subseteq Y$. However, each X' such that $X \leq_{\mathcal{H}} X'$ has to satisfy $X'|_{\mathcal{H}} \supseteq X|_{\mathcal{H}}$ and $X'|_{\mathcal{B}} \subseteq X|_{\mathcal{B}}$; the former implies $X'|_{\mathcal{H} \cup \{a\}} \supseteq X|_{\mathcal{H} \cup \{a\}}$ because $a \notin Y$, $X \subseteq Y$ and $X' \subseteq Y$. Then for this X' also $X \leq_{\mathcal{H} \cup \{a\}} X'$ holds, and therefore satisfaction of Property (ii) wrt. $\mathcal{H} \cup \{a\}$ and \mathcal{B} implies $X' \not\models f_P^{Y'}$. Thus Property (ii) holds also wrt. \mathcal{H} and \mathcal{B}.

- If only Y but not X contains a, then $(X, Y \setminus \{a\})$ is also a witness for $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$. For Property (i), $Y \models P$ implies $Y \setminus \{a\} \models P$ because a does not occur in P. Now suppose there is a $Y' \subseteq Y \setminus \{a\}$ such that $Y' \models f_Q^{Y'}$ and $Y'|_{\mathcal{H}} = Y|_{\mathcal{H}}$. Then Y' and Y differ in an atom other than a and we have that $Y' \cup \{a\} \subseteq Y$ and $Y' \cup \{a\} \models Y|_{\mathcal{H} \cup \{a\}} = Y|_{\mathcal{H} \cup \{a\}}$; this contradicts the assumption that Property (i) holds wrt. $\mathcal{H} \cup \{a\}$ and \mathcal{B}.

For Property (ii), if $Y \not\models Q$ then also $Y \setminus \{a\} \not\models Q$ because a does not occur in Q and we are done. Otherwise we know that $X \subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Y$ and $X \models f_Q^{Y'}$ and that for all X' with $X \leq_{\mathcal{H} \cup \{a\}} X'$ we have $X' \not\models f_P^{Y'}$ (since (X, Y) satisfies Property (ii) wrt. $\mathcal{H} \cup \{a\}$ and \mathcal{B}). In this case, X and Y must in fact differ in more atoms than just a: otherwise $Y \models P$ would imply $X \models f_P^{Y'}$ (because a does not occur in P and $f_P^{Y'} \subseteq P$); since $X \leq_{\mathcal{H} \cup \{a\}} X' \subseteq Y$ for any X' with $X'|_{\mathcal{H} \cup \{a\}} = X|_{\mathcal{H} \cup \{a\}}$ this would contradict the assumption that Property (ii) holds wrt. $\mathcal{H} \cup \{a\}$ and \mathcal{B}. But then $X \subseteq Y \setminus \{a\}$. Moreover, each X' such that $X \leq_{\mathcal{H}} X' \subseteq Y \setminus \{a\}$ has to satisfy $X'|_{\mathcal{H}} \supseteq X|_{\mathcal{H}}$ and $X'|_{\mathcal{B}} \subseteq X|_{\mathcal{B}}$; the former implies $X'|_{\mathcal{H} \cup \{a\}} \supseteq X|_{\mathcal{H} \cup \{a\}}$ because $a \notin Y \setminus \{a\}$, $X \subseteq Y$ and $X' \subseteq Y$. Then for this X' also $X \leq_{\mathcal{H} \cup \{a\}} X'$ holds, and therefore satisfaction of Property (ii) wrt. $\mathcal{H} \cup \{a\}$ and \mathcal{B} implies $X' \not\models f_P^{Y'}$. Thus Property (ii) holds also wrt. \mathcal{H} and \mathcal{B}.

- If both X and Y contain a, then $(X \setminus \{a\}, Y \setminus \{a\})$ is also a witness for $P \not\subseteq_{\langle \mathcal{H}, \mathcal{B} \rangle} Q$. For Property (i), $Y \models P$ implies $Y \setminus \{a\} \models P$ because a does not occur in P. Now suppose there is a $Y' \subseteq Y \setminus \{a\}$ such that $Y' \models f_P^{Y'}$ and $Y'|_{\mathcal{H}} = (Y \setminus \{a\})|_{\mathcal{H}}$. Then Y' and $Y \setminus \{a\}$ differ in an atom other than a and we have that $Y' \cup \{a\} \subseteq Y$, $Y' \cup \{a\} \models f_P^{Y'}$ (since a does not occur
in P) and $Y' \cup \{a\}|_{H \cup \{a\}} = Y|_{H \cup \{a\}}$; this contradicts the assumption that Property (i) holds wrt. $H \cup \{a\}$ and B.

For Property (ii), if $Y \not\models Q$ then also $Y\setminus\{a\} \not\models Q$ because a does not occur in Q and we are done. Otherwise we know that $X \subseteq Y$ (and thus $X \setminus \{a\} \subseteq Y \setminus \{a\}$) and $X \models fQ^Y$ and that for all X' with $X \leq^B_{H \cup \{a\}} X' \subseteq Y$ we have $X' \not\models fP^Y$ (since (X, Y) satisfies Property (ii) wrt. $H \cup \{a\}$ and B). We have to show that $X' \not\models fP^Y$ holds also for all X' with $X \setminus \{a\} \leq^B_{H'} X' \subseteq Y \setminus \{a\}$. Consider such an X', then $X'|_H \geq (X \setminus \{a\})|_H$, $X'|_B \subseteq (X \setminus \{a\})|_B$, and $X' \subseteq Y \setminus \{a\}$. Now let $X'' = X' \cup \{a\}$. Then $X''|_{H \cup \{a\}} \geq X|_{H \cup \{a\}}$ because a is added to X'' and the superset relation is already known to hold for all other atoms from H. Moreover, $X''|_B \subseteq X|_B$ still holds because $X'|_B \subseteq X|_B$ and the only element a added to X'' is also in X. Moreover, we still have $X'' \subseteq Y$ because $a \in Y$ and X' and Y differ in at least one atom other than a due to $X' \nsubseteq Y \setminus \{a\}$. These conditions together imply $X \leq^B_{H \cup \{a\}} X'' \nsubseteq Y$, and thus satisfaction of Property (ii) wrt. $H \cup \{a\}$ and B implies $X'' \not\models fP^Y$. Since X'' and X' differ only in a, that does not appear in fP^Y, this further implies $X' \not\models fP^Y$. Hence Property (ii) holds also wrt. H and B.

Property 4\(\equiv\) Trivial because $P \equiv_{(H \cup \{a\}, B)} Q$ is a stronger condition than $P \equiv_{(H, B)} Q$ since it allows a larger class of programs to be added.

Property 5\(\Rightarrow\) We make a proof by contraposition. If $P \equiv_{(H, B \cup \{a\})} Q$ does not hold, then either $P \nsubseteq_{(H, B \cup \{a\})} Q$ or $Q \nsubseteq_{(H, B \cup \{a\})} P$; as the two cases are symmetric it suffices to consider the former. If $P \nsubseteq_{(H, B \cup \{a\})} Q$ does not hold then by Proposition 6 there is a witness (X, Y) for $P \nsubseteq_{(H, B \cup \{a\})} Q$. We show that we can also construct a witness for $P \nsubseteq_{(H, B)} Q$, which implies by another application of Proposition 6 that $P \nsubseteq_{(H, B)} Q$ and thus $P \equiv_{(H, B)} Q$ does not hold.

We show in particular that (X, Y) is also a witness for $P \nsubseteq_{(H, B)} Q$. Property (i) of Definition 2 is also satisfied wrt. H and B (instead of H and $B \cup \{a\}$) as this condition is independent of B.

If $Y \not\models Q$ then Property (ii) is also satisfied and we are done. Otherwise we know, that $X \subseteq Y$, $X \models fQ^Y$ and for all X' with $X \leq^B_{H \cup \{a\}} X' \subseteq Y$ we have $X' \not\models fP^Y$. We have to show that $X' \not\models fP^Y$ holds also for all X' with $X \leq^B_{H'} X' \subseteq Y$. Consider such an X', then $X'|_H \supseteq X|_H$, $X'|_B \subseteq X|_B$ and $X' \subseteq Y$. Now let $X'' = X' \setminus \{a\}$ if $a \in X'$ and $a \not\in X$, and $X'' = X'$ otherwise. We have then $X''|_{B \cup \{a\}} \subseteq X|_{B \cup \{a\}}$ because a is removed from X'' whenever it is not in X, and the subset relation is known for all other atoms from B. Moreover, $X''|_H \supseteq X|_H$, $X''|_B \subseteq X|_B$ and the only element a which might be missing in X'' compared to X is only removed if it is not in X anyway. These conditions together imply $X \leq^B_{H \cup \{a\}} X' \subseteq Y$, and thus satisfaction of Property (ii) wrt. H and $B \cup \{a\}$ implies $X'' \not\models fP^Y$. Since X'' and X' may only differ in a, which does not appear in fP^Y, this implies $X' \not\models fP^Y$. Hence Property (ii) holds also wrt. H and B.

Property 6\(\equiv\) Trivial because $P \equiv_{(H, B \cup \{a\})} Q$ is a stronger condition than $P \equiv_{(H, B)} Q$ since it allows a larger class of programs to be added.

Corollary 2
Let H, B, H' and B' be sets of atoms and let P and Q be programs such that the atoms in $H' \cup B'$ do not occur in P or Q. Then we have $P \equiv_{(H, B)} Q$ iff $P \equiv_{(H \cup H', B \cup B')} Q$.

Proof
The claim follows immediately by applying Proposition \([\square]\) iteratively to each element in \(\mathcal{H}'\) resp. \(\mathcal{B}'\).

Lemma

For an external atom \(e = \&q[p](c)\) in program \(P\), \(p_i \in p\), a new predicate \(q\), let \(e' = \&q'[p_{p_i \rightarrow q}](c)\) s.t. \(f_{\&q}(Y, p_{p_i \rightarrow q}, c) = f_{\&q'}(Y^q, p, c)\) for all assignments \(Y\).

For \(P' = P|_{e \rightarrow e'} \cup \{q(p_i, d) \leftarrow p_i(d) \mid p_i(d) \in A(P)\}\), \(\text{AS}(P)\) and \(\text{AS}(P')\) coincide, modulo atoms \(q(.)\).

Proof

(\(\Rightarrow\)) For an answer set \(Y\) of \(P\) we show that \(Y' = Y \cup \{q(p_i, d) \mid p_i(d) \in Y\}\) is an answer set of \(P'\).

Since input parameter \(q\) in \(e'\) behaves like \(p_i\) in \(e\), \(Y' \models q(p_i, d)\) iff \(Y \models p_i(d)\) for all \(p_i(d) \in A(P)\) by construction, and \(Y'\) satisfies all rules \(r \in \{q(p_i, d) \leftarrow p_i(d) \mid p_i(d) \in A(P)\}\) by construction, we have that \(Y'\) is a model of \(P'\).

Now suppose towards a contradiction that there is a smaller model \(Y' \subseteq Y\) of \(fP^{P'}\) and let this model be subset-minimal. Then \(Y' \cap Y\) must contain at least one atom other than over \(q\) because switching an atom \(q(p_i, d)\) to false is only possible if the respective atom \(p_i(d)\) is also switched to false, otherwise a rule \(r \in \{q(p_i, d) \leftarrow p_i(d) \mid p_i(d) \in A(P)\}\) (which is contained in the reduct \(fP^{P'}\) because \(Y' \models B(r)\)) would remain unsatisfied. But then for \(Y' = Y' \cap A(P)\) we have that \(Y' \subseteq Y\). Now consider some \(r \in fP^{P'}\) then there is a respective \(r' \in fP^{P'}\) with \(e'\) in place of \(e\) and such that \(Y' \models r'\). Observe that \(p_i(d) \in Y'\) implies \(q(p_i, d) \in Y'\) (otherwise a rule in \(fP^{P'}\) remains unsatisfied under \(Y'\)) and that \(q(p_i, d) \in Y'\) implies \(p_i(d) \in Y'\) due to assumed subset-minimality of \(Y'\) (there is no reason to set \(q(p_i, d)\) to true if \(p_i(d)\) is false). This gives in summary that \(q(p_i, d) \in Y'\) iff \(p_i(d) \in Y'\) for all atoms \(p_i(d) \in A(P)\). But then we have also \(Y' \models r\) because the only possible difference between \(r\) and \(r'\) is that \(r'\) might contain \(e\) while \(r\) contains \(e'\), but since \(q(p_i, d) \in Y'\) iff \(p_i(d) \in A(P)\) for all atoms \(p_i(d) \in A(P)\), we have that \(Y' \models r'\) implies \(Y' \models r\). That is, \(Y' \subseteq Y\) is a smaller model of \(fP^{P'}\), which contradicts the assumption that \(Y'\) is an answer set.

(\(\Leftarrow\)) For an answer set \(Y'\) of \(P'\) we show that \(Y = Y' \cap A(P)\) is an answer set of \(P\). First observe that for any \(p_i(d) \in A(P)\) we have that \(q(p_i, d) \in Y'\) iff \(p_i(d) \in Y\): the if-direction follows from satisfaction of the rules in \(P'\) under \(Y'\), the only-if direction follows from subset-minimality of \(Y'\).

Then the external atoms \(e\) in \(P\) behave under \(Y'\) like the respective \(e'\) in \(P'\) under \(Y'\), which implies that \(Y \models P\).

Now suppose towards a contradiction that there is a smaller model \(Y' \subseteq Y\) of \(fP^{P'}\). We show that then for \(Y' \subseteq Y \cup \{q(p_i, d) \mid p_i(d) \in Y\}\) we have \(Y' = fP^{P'}\). But this follows from the observation that \(fP^{P'}\) consists only of (i) rules that correspond to rules in \(fP^{P'}\) but with \(e'\) in place of \(e\), and (ii) the rule \(q(p_i, d) \leftarrow p_i(d)\) for all \(p_i(d) \in Y'\). Satisfaction of (i) follows from the fact that \(Y \models e\) iff \(Y' \models e'\), satisfaction of (ii) is given by construction of \(Y'\). Moreover, we have that \(Y' \subseteq Y'\): we have \(Y' \subseteq Y \subseteq Y'\) and all atoms \(q(p_i, d)\) added to \(Y'\) are also in \(Y'\) because it satisfies the rule \(q(p_i, d) \leftarrow p_i(d) \in P'\); properness of the subrelation follows from \(Y' \subseteq Y\). Therefore we have \(Y' \subseteq Y'\) and \(Y' = fP^{P'}\), which contradicts the assumption that \(Y'\) is an answer set of \(P'\). \(\square\)

Lemma

For a HEX-program \(P\) and a set of (positive or negative) external atoms \(E\) in \(P\), we have \(P \cap P[E] = \{r \in P \mid \text{none of } E \text{ occur in } r\}\).
Proof
For a single external atom \(e \in E \) observe that all rules \(r \in P_e \), which were constructed by \(\{1\} \) in Definition \(\{2\} \) contain at least one atom that does not appear in \(P \). Thus these rules can only be in \(P_e \) but not in \(P \) and thus not in \(P \cap P_e \). For the rules \(r \in P_e \) constructed by \(\{3\} \) in Definition \(\{4\} \) note that \(r \in P \) iff \(e \) does not appear in \(r \). This is further the case iff \(r \in P \cap P_e \).

In summary, \(P \cap P_e \) contains all and only the rules from \(P \) that do not contain \(e \).

By iteration of the argument, one gets the same result for the set \(E \) of external atoms. ☐

Proposition \(\{5\} \)
For sets \(\mathcal{H} \) and \(\mathcal{B} \) of atoms and HEX-programs \(P \) and \(Q \), we have \(P \equiv (\mathcal{H}, \mathcal{B}) Q \) iff \(\sigma_{(\mathcal{H}, \mathcal{B})}(P) = \sigma_{(\mathcal{H}, \mathcal{B})}(Q) \).

Proof
(\(\Rightarrow \)) If \(\mathcal{A}S(P \cup R) = \mathcal{A}S(Q \cup R) \) for all \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \), then this holds in particular for all programs \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \) without external atoms. Then by Proposition \(\{7\} \) we have \(\sigma_{(\mathcal{H}, \mathcal{B})}(P) = \sigma_{(\mathcal{H}, \mathcal{B})}(Q) \).

(\(\Leftarrow \)) Suppose \(\sigma_{(\mathcal{H}, \mathcal{B})}(P) = \sigma_{(\mathcal{H}, \mathcal{B})}(Q) \), then by Proposition \(\{7\} \) we have \(P \equiv (\mathcal{H}, \mathcal{B}) Q \) and by Corollary \(\{2\} \) we have \(P \equiv (\mathcal{H}, \mathcal{H}', \mathcal{B}', \mathcal{B}') \) \(Q \) for all sets \(\mathcal{H}', \mathcal{B}' \) of atoms that do not occur in \(P \) or \(Q \). Now consider \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \). We have to show that \(\mathcal{A}S(P \cup R) = \mathcal{A}S(Q \cup R) \).

Let \(R' \) be the ordinary ASP-program after standardizing input atoms to external atoms apart from the atoms in \(P \) and \(Q \) (using Lemma \(\{1\} \) and subsequent inlining all external atoms in \(R \) using Definition \(\{6\} \)). Note that \(R' \) uses only atoms from \(\mathcal{H} \) in its heads, atoms from \(\mathcal{B} \) in its bodies, and newly introduced atoms \(A(R') \setminus A(R) \); the latter are selected such that they do not occur in \(P \) or \(Q \). We further have that \(R' \) is free of external atoms, thus \(R' \in \mathcal{P}_{(\mathcal{H}, \mathcal{H}', \mathcal{B}', \mathcal{B}')} \) for \(\mathcal{H}' = \mathcal{B}' = A(R') \setminus A(R) \).

We then have \(P \equiv (\mathcal{H}, \mathcal{H}', \mathcal{B}', \mathcal{B}') \) \(Q \) (by Corollary \(\{3\} \) as discussed above). By definition of \(\equiv (\mathcal{H}, \mathcal{H}', \mathcal{B}', \mathcal{B}') \) this gives \(\mathcal{A}S(P \cup R') = \mathcal{A}S(Q \cup R') \). Then by Proposition \(\{1\} \) we have that \(\mathcal{A}S(P \cup R) = \mathcal{A}S(Q \cup R) \).

Proposition \(\{10\} \)
A HEX-program \(P \) is persistently inconsistent wrt. sets of atoms \(\mathcal{H} \) and \(\mathcal{B} \) iff for each classical model \(Y \) of \(P \) there is an \(Y' \subsetneq Y \) such that \(Y' \models f P Y' \) and \(Y'|_H = Y|_H \).

Proof
Let \(P_\perp \) be a program without classical models (e.g., \(\{a \leftarrow a\} \)). Then, by monotonicity of classical logic, \(P_\perp \cup R \) is inconsistent (wrt. the HEX-semantics) for all \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \), i.e., we have that \(\mathcal{A}S(P_\perp \cup R) = \emptyset \) for all \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \).

We have to show that \(\mathcal{A}S(P \cup R) = \emptyset \) for all \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \) iff for each model \(Y \) of \(P \) there is an \(Y' \subsetneq Y \) such that \(Y' \models f P Y' \) and \(Y'|_H = Y|_H \). Due to Proposition \(\{1\} \) each program with external atoms may be replaced by an ordinary ASP-program such that the answer sets correspond to each other one-by-one; therefore the former statement holds iff \(\mathcal{A}S(P \cup R) = \emptyset \) for all \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \), i.e., it suffices to consider ordinary ASP-programs \(R \). The claim is proven if we can show that \(\mathcal{A}S(P \cup R) \subsetneq \mathcal{A}S(P_\perp \cup R) \) for all \(R \in \mathcal{P}_{(\mathcal{H}, \mathcal{B})} \).

This corresponds to deciding \(P \not\subseteq_{(\mathcal{H}, \mathcal{B})} P_\perp \). By Proposition \(\{8\} \) \(P \not\subseteq_{(\mathcal{H}, \mathcal{B})} P_\perp \) is the case iff no witness for \(P \not\subseteq_{(\mathcal{H}, \mathcal{B})} P_\perp \) exists. Since \(P_\perp \) does not have any classical models, each pair \((X, Y) \) of assignments trivially satisfies Condition (ii) because \(Y \not| P_\perp \) thus a pair \((X, Y) \) is not a witness iff it violates Property (i). This condition is violated by \((X, Y) \) iff \(Y \not| P \) or there exists a \(Y' \subsetneq Y \) such that \(Y' \models f P Y' \) and \(Y'|_H = Y|_H \); this is exactly the stated condition. ☐
Lemma 3

For a HEX-program \(P \) and a model \(Y \) of \(P \), a set of atoms \(U \) is an unfounded set of \(P \) wrt. \(Y \) iff \(Y \setminus U \models fP^Y \).

Proof

(\(\Rightarrow \)) We have to show that any rule \(r \in fP^Y \) is satisfied under \(Y \setminus U \). First observe that \(Y \models H(r) \) because otherwise we also had \(Y \not\models B(r) \) (since \(Y \) is a model of \(P \)) and thus \(r \not\in fP^Y \). If \(Y \setminus U \models H(r) \) we are done (\(Y \setminus U \models r \)). Otherwise we have \(H(r) \cap U \neq \emptyset \) and thus one of the conditions of Definition 13 holds for \(r \). This cannot be Condition (i) because otherwise we had \(r \not\in fP^Y \). If it is Condition (ii) then \(Y \setminus U \not\models B(r) \) and thus \(Y \setminus U \models r \). If it is Condition (iii) then \(Y \setminus U \models H(r) \) and thus \(Y \setminus U \models r \).

(\(\Leftarrow \)) Let \(Y' \subseteq Y \) be a model of \(fP^Y \). We have to show that \(U = Y \setminus Y' \) is an unfounded set of \(P \) wrt. \(Y \). To this end we need to show that for all \(r \in P \) with \(H(r) \cap U \neq \emptyset \) one of the conditions of Definition 13 holds. If \(r \not\in fP^Y \) then \(Y \not\models B(r) \) and thus Condition (i) holds. If \(r \in fP^Y \) then we either have \(Y' \not\models B(r) \) or \(Y' \models H(r) \). If \(Y' \not\models B(r) \) then \(Y \setminus U \not\models B(r) \) because \(Y \setminus U = Y' \), i.e., Condition (ii) holds. If \(Y' \models H(r) \) then there is an \(h \in H(r) \) s.t. \(h \in Y \) and \(h \in Y' \) and thus \(h \not\in U \). Then we have \(h \in Y \setminus U \) and thus \(Y \models h \), i.e., Condition (iii) holds.

Corollary 3

A HEX-program \(P \) is persistently inconsistent wrt. sets of atoms \(\mathcal{H} \) and \(\mathcal{B} \) iff for each classical model \(Y \) of \(P \) there is a nonempty unfounded set \(U \) of \(P \) wrt. \(Y \) s.t. \(U \cap Y \neq \emptyset \) and \(U \cap \mathcal{H} = \emptyset \).

Proof

By Proposition 10 we know that \(P \cup R \) is inconsistent for all \(R \in \mathcal{P}(\mathcal{H}, \mathcal{B}) \) iff for each model \(Y \) of \(P \) there is an \(Y' \subseteq Y \) such that \(Y' \models fP^Y \) and \(Y'|_{\mathcal{H}} = Y'|_{\mathcal{H}} \). Each such model \(Y' \) corresponds one-by-one to a nonempty unfounded set \(U = Y \setminus Y' \) of \(P \) wrt. \(Y' \), for that we obviously have \(U \cap Y' \neq \emptyset \) and \(Y'|_{\mathcal{H}} = Y'|_{\mathcal{H}} \) iff \(U \cap \mathcal{H} = \emptyset \).