A 6-year follow-up study in a community-based population: Is neighbourhood-level social capital associated with the risk of emergence and persistence of psychotic experiences and transition to psychotic disorder?

Ceylan Ergül1,2, Marjan Drukker2, Tolga Binbay3, Umut Kirlı4, Hayriye Elbi5, Köksal Alptekin3 and Jim van Os2,6,7

1Department of Psychiatry, Faculty of Medicine, Üsküdar University, Istanbul, Turkey; 2Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; 3Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey; 4Institute on Drug Abuse, Toxicology and Pharmaceutical Science, Ege University, Izmir, Turkey; 5Department of Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey; 6Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands and 7Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK

Abstract

Background. Social capital is thought to represent an environmental factor associated with the risk of psychotic disorder (PD). This study aims to investigate the association between neighbourhood-level social capital and clinical transitions within the spectrum of psychosis.

Methods. In total, 2175 participants, representative of a community-based population, were assessed twice (6 years apart) to determine their position within an extended psychosis spectrum: no symptoms, subclinical psychotic experiences (PE), clinical PE, PD. A variable representing change between baseline (T1) and follow-up (T2) assessment was constructed. Four dimensions of social capital (informal social control, social disorganisation, social cohesion and trust, cognitive social capital) were assessed at baseline in an independent sample, and the measures were aggregated to the neighbourhood level. Associations between the variable representing psychosis spectrum change from T1 to T2 and the social capital variables were investigated.

Results. Lower levels of neighbourhood-level social disorganisation, meaning higher levels of social capital, reduced the risk of clinical PE onset (OR 0.300; \(z = -2.75; p = 0.006\)), persistence of clinical PE (OR 0.314; \(z = -2.36; p = 0.018\)) and also the transition to PD (OR 0.136; \(z = -2.12; p = 0.034\)). The other social capital variables were not associated with changes from T1 to T2.

Conclusions. Neighbourhood-level social disorganisation may be associated with the risk of psychosis expression. Whilst replication of this finding is required, it may point to level of social disorganisation as a public health target moderating population psychosis risk.

Introduction

Social capital may represent an environmental factor influencing the geographical distribution of psychotic disorder (PD; Krabbendam & Van Os, 2005). The dynamic changes within the spectrum of psychosis expression, or extended psychosis phenotype may yield valuable implications. Here, we examine prospective associations between neighbourhood-level social capital and changes within the extended psychosis phenotype over time.

Social capital is generally used to describe the aspects of social networks, relations and trust either at the individual or area level (Whitley & McKenzie, 2005). It can be seen as an umbrella term including informal social control, social cohesion and trust, social disorganisation and cognitive social capital (Moore & Kawachi, 2017). Informal social control is the willingness of the group to enforce social norms for the common good (Kawachi & Berkman, 2015). Social cohesion and trust refers to the extent of connectedness and solidarity among individuals in a society (Kawachi & Berkman, 2015). Social disorganisation is defined as a disturbance in the patterns and mechanisms of human relations (Faris & Dunham, 1939). Cognitive social capital refers to people’s perceptions of trust, support and reciprocity (Harpham, Grant, & Thomas, 2002). Higher social capital has been associated with better physical and mental health outcomes (Ehsan, Klaas, Bastianen, & Spini, 2019). In 1939, a higher schizophrenia prevalence was observed in urban neighbourhoods with a higher level of social disorganisation (Faris & Dunham, 1939). Afterwards, it was claimed that one-third of schizophrenia incidence
was associated with environmental factors, and social capital has been hypothesised as a possible underlying environmental factor mediating the impact of urbanicity on the non-random geographical distribution of PD (Krabbe and Van Os, 2005).

Psychosis has been placed on a spectrum of severity, including PD and non-psychotic diagnoses in clinical populations and psychotic experiences (PE) in the general population, forming an extended psychosis phenotype (Kaymaz and Van Os, 2010; Linscott and Van Os, 2013; Van Os and Linscott, 2012). Findings indicate demographic (age), psychopathological (negative symptoms, cognitive alterations), genetic, environmental (childhood adversity, urbanicity) and temporal continuity between PE and PD (Linscott and Van Os, 2010; Stip and Letourneau, 2009; Van Os, Linscott, Myin-Germeys, Delespaul, and Krabbendam, 2009). Even though most PE recover spontaneously (Zammit et al., 2013), they increase the risk of developing PD later (Hanssen, Bak, Bijl, Vollebergh, and Van Os, 2005). Eighty per cent of PE are transitory, 20% are persistent and 7% change to a PD over time (Linscott and Van Os, 2013; Zammit et al., 2013). Factors predicting transition have been investigated in several longitudinal studies (Kaymaz and Van Os, 2010). The results suggest that number (Poulton et al., 2000) and rate of persistence of PE (Dominguez, Wichers, Lieb, Wittchen, and Van Os, 2011), type of coping (Bak et al., 2003) as well as the presence of affective dysregulation (Van Rossum, Dominguez, Lieb, Wittchen, and Van Os, 2011) and negative symptoms (Dominguez, Saka, Lieb, Wittchen, and Van Os, 2010) affect the likelihood of transition.

A recent review studying the association between social capital and psychosis reported conflicting results as a consequence of heterogeneous measures of social capital (Rotenberg, Anderson, and McKenzie, 2020). An earlier study did not find any association between social capital and schizophrenia incidence but did show that the quantity of inpatient service consumption was higher in neighbourhoods with a higher level of informal social control (Drukker, Krabbendam, Driessen, and Van Os, 2006). On the other hand, two studies, including large cohorts, concluded that low levels of social capital were associated with a higher incidence of PD. Kirkbride et al. suggested that the association between social capital and schizophrenia was not linear but U-shaped; incidence rates being higher in neighbourhoods with both low and high levels of social capital but not median levels of social capital (Kirkbride et al., 2008). In a non-clinical population, paranoia was associated with the measures of social capital, including decreased trust in others (Freeman et al., 2011). In that study, data regarding symptoms of psychosis and social capital were collected from the same population, raising the possibility of contamination of the social capital data with the individual perceptions of the study population (Drukker and Van Os, 2003). In conclusion, there is some evidence that the measures of social capital, including disorganisation and control, are associated with psychosis (Rotenberg et al., 2020).

The present paper is a part of The Izmir Mental Health Survey for Gene-Environment in Psychoses (TürkSch). The first wave of the TürkSch study confirmed the continuity of PE and PD and revealed that 25% of the general population has experiences that phenotypically are in the extended psychosis spectrum (Binbay et al., 2012c). Baseline data showed that as neighbourhood-level social capital (informal social control) and social deprivation increased, the expression of psychosis moved towards the clinical/syndromal end of the spectrum. Furthermore, the association between familial liability of severe mental illness and expression of psychosis was stronger in neighbourhoods with higher levels of deprivation and social control (Binbay et al., 2012b). This finding contradicts the results of studies from Maastricht and London, where the expression of psychosis was more at the clinical/syndromal end in neighbourhoods with lower levels of social capital (Drukker et al., 2006; Kirkbride et al., 2007). The contradiction may be attributed to the higher mean neighbourhood-level social control in Izmir (Dominguez et al., 2010; Lofors and Sundquist, 2007). The finding thus suggests that the effect of social capital on the expression of psychosis is not linear.

As summarised above, the current literature provides conflicting results regarding the association between social capital and the expression of psychosis in cross-sectional designs. As far as we know, this is the first longitudinal study prospectively investigating the role of social capital in occasioning transitions across the severity spectrum of the extended psychosis phenotype. This paper aims to assess whether neighbourhood-level social capital is associated with the risk of psychosis transitions across a spectrum of severity, ranging from no PE, subclinical PE, clinical PE to PD, from baseline (T1) to 6-year follow-up (T2) in a general population sample. More specifically, we assessed whether:

1. baseline characteristics were associated with any of the dynamic transitions from T1 to T2 and specifically with emergence, persistence and transition.
2. social capital is associated with the risk of any transition from T1 to T2.
3. social capital is associated with the risk of three predefined transitions: emergence of PE, persistence of PE, transition to PD.

Methods

Study design and data collection

TürkSch is a prospective, longitudinal study designed to screen and follow up the extended psychosis phenotype and individual, family and neighbourhood-level variables (Binbay et al., 2011). Data were collected in Izmir, which is the third most urbanised area in Turkey (Türkiye İstatistik Kurumu, 2008). TürkSch consisted of a baseline (T1: 2007–2009) and a follow-up assessment (T2: 2013–2015), approximately 6 years apart (mean follow-up time: 6.11 ± 0.94 years). Each assessment consisted of several stages of data collection (T1: stages 1–3; T2: stages 4–5). The present paper used data collected at stages 1, 2 and 4. At stage 1, a baseline sample was randomly selected representing the wider Izmir metropolitan area using a multistage sampling procedure, stratified by urbanicity covering 11 districts and 302 neighbourhoods. The first stage was a cross-sectional study, including assessment of the extended psychosis spectrum and individual-level sociodemographic variables (T1, stage 1, n = 4011). For stage 2, a second address from the same neighbourhood was contacted for each participant of stage 1. Thus, a different sample from the same area provided neighbourhood-level social capital variables (T1, stage 2, n = 5819). Finally, 6 years after baseline, addresses of all T1 participants were revisited in person. The extended psychosis spectrum psychopathology was collected as well as changes in sociodemographic features, alcohol and cannabis use, and threatening life events from all stage 1 participants who could be reached (T2, stage 4, n = 2185). Details of stages 1–5 have been described elsewhere (Binbay et al., 2011, 2012a; Kılıç et al., 2019). The study was approved by the ethics committee of Ege University; written informed consent was obtained from all participants.
Assessment of the sociodemographic features

The T1 assessment included a sociodemographic questionnaire. At T2, the same questionnaire was used to determine changes over time. Level of education was dichotomised into ≤8 and >8 years; ethnicity into Turkish and non-Turkish; marital status into married and non-married; employment status into unemployed and not unemployed; alcohol and cannabis use into user and non-user; migration between ages 6 and 15 years into migrated v. not migrated; childhood adversity and traumatic events into none v. at-least once. Childhood adversity life events were the death of any parent, divorce of parents and separation from parents for at least 3 months between the age of 0 and 15 years. Traumatic events were war experience, life-threatening accident, fire, natural disasters, witnessing someone being badly injured or killed, rape, sexual molestation and being physically attacked or assaulted. Socioeconomic status was based on the participant’s profession, recoded into four ordinal categories: professional and non-manual high employees; non-manual low employees and skilled workers and technicians; owners of small businesses; manual workers. In order to estimate socioeconomic status at birth, parental socioeconomic status was coded similarly, using the highest position of the participant’s mother or father. The data included three urbanicity variables: urbanicity at birth, urbanicity at age 6–15 years and current urbanicity. Urbanicity at birth and in childhood was based on population density measures in the 1990 census, and the classification depended on the level of organised features of streets and buildings. If the participant lived at more than one address, the most urban one was included. Current urbanicity was coded into four categories: rural, low-urban, moderately-urban, highly-urban area. Family history of mental disorder was recoded into four categories (none, other/unknown, common mental disorder, severe mental disorder). Common mental disorder in the family included any diagnosis of depression, anxiety, conversion or somatisation in the absence of severe mental disorder among parents or siblings of the participant. Severe mental disorder in the family was coded positive if any of the participant’s first-degree relatives had been diagnosed with PD or bipolar disorder, had died because of suicide or had been admitted to a psychiatric inpatient unit.

Assessment of the extended psychosis spectrum

The procedure used to identify PE and PD has been described in detail elsewhere (Binbay et al., 2011). The assessed time frame was lifetime at T1, whereas it was the last 6 years at T2. Hallucinations, delusions, and associated impairment were assessed using the relevant sections of the Turkish version of the Composite International Diagnostic Interview (CIDI) 2.1 (Kılıç & Göğüş, 1997). The CIDI is a fully structured interview that can be used by both clinicians and trained interviewers (Andrews & Peters, 1998). It was designed by the WHO to be implemented in epidemiological studies of mental disorders, and it provides information about frequency, duration and severity of symptoms, psychosocial impairment and help-seeking (Robins et al., 1988). It enables diagnosing various mental disorders in accordance with the criteria of the ICD-10 (World Health Organisation, 1992) and DSM-IV (American Psychiatric Association, 1994). CIDI has excellent inter-rater reliability in almost all sections, with κ values ranging from 0.67 to 0.97 (Wittchen et al., 1991). The κ value for agreement between clinicians for delusions and hallucinations was 0.85 and 0.87, respectively. Sensitivity of the CIDI was higher than its specificity for both delusions (0.93 v. 0.55) and hallucinations (0.86 v. 0.50) (Cooper, Peters, & Andrews, 1998).

Assessment of the social capital of neighbourhoods

Four dimensions of neighbourhood-level social capital were assessed at stage 2: informal social control, social cohesion and trust, social disorganisation, and cognitive social capital. The informal social control scale included eight questions measuring the willingness to intervene in hypothetical neighbourhood-threatening situations such as children misbehaving, using a five-point Likert scale ranging from ‘strongly disagree’ to ‘strongly agree’. The questions were derived from the Sampson collective efficacy scale and adapted for use in the Turkish population (Sampson, Raudenbush, & Earls, 1997). The social cohesion and trust scale measured bonds and trust among neighbourhood residents (Araya et al., 2006; Sampson et al., 1997). The social disorganisation scale consisted of eight questions rating the frequency of certain scenarios occurring in the participant’s neighbourhood, such as the presence of graffiti, vandalism, burglary and racist attacks. Items were assessed using a four-point Likert scale ranging from ‘not at all common’ to ‘very common’, and the scale was derived from the McCulloch instrument (Buckner, 1988; McCulloch, 2003). The cognitive social capital scale included three questions measuring perceptions of support, reciprocity and sharing among the residents of the neighbourhood (Harpham et al., 2002).

For each social capital dimension, sum scores were (negative items were reversed) divided by the number of items and aggregated to the neighbourhood level. Lower scores on the informal social control variable (ISC-variable) indicated higher levels of informal social control, meaning higher social capital. Similarly, lower scores on the social cohesion and trust variable (SCT-variable) indicated higher levels of social cohesion and trust, meaning higher social capital. On the other hand, lower scores on the social disorganisation variable (SocD-variable) indicated higher levels of social disorganisation, meaning lower social capital. Similarly, lower scores on the cognitive social capital variable (Cogn-variable) indicated lower levels of cognitive social capital, meaning lower social capital (Binbay et al., 2012b). All four social capital variables were significantly correlated with each other. The correlation coefficients varied: ISC-variable, SCT-variable and Cogn-variable were moderately to strongly correlated with each other, whereas the SocD-variable was weakly correlated with the others (Table 1).
Finally, an extended psychosis phenotype variable was constructed based on the relevant CIDI items, clinical registries and the SCID-I results. The variable consisted of four categories:

1. **No PE**: No positive rating on any of the items of the CIDI psychosis section.
2. **Subclinical PE**: Presence of PE not leading to any distress, impairment or help-seeking.
3. **Clinical PE**: Presence of PE and positive score on any of the seven CIDI impairment items in the absence of a diagnosis of a PD.
4. **PD**: Current or past DSM-IV diagnosis of any disorder with psychotic features, based on either clinical registries or evaluation by the clinician as a part of the TürkSch study.

Dependent variable

The dependent variable was constructed using the extended psychosis phenotype variable of all the participants who were interviewed at both T1 and T2 and who were residing in neighbourhoods with social capital data (N = 2175). Figure 1 shows all possible combinations of values at T1 and T2.

For the purpose of the analyses, three groups were defined as follows:

- **Emergent group**: Those who had no PE at T1 but had subclinical (n = 119) or clinical (n = 84) PE at T2, as well as those who had subclinical PE at T1 and clinical PE at T2 (n = 39), yielding a total of 242.
- **Persistent group**: Those who had either subclinical PE at both T1 and T2 (n = 55) or clinical PE at T1 and T2 (n = 64), yielding a total of 119.
- **Transition group**: Those who had no PE (n = 10) or some subclinical (n = 5) or clinical (n = 13) PE at T1 and PD at T2, yielding a total of 28.

Statistical analyses

All analyses were performed using Stata, version 13.1 (StataCorp, 2013). In the present data, social capital was a characteristic at the neighbourhood level. Thus, data had a multilevel structure with subjects clustered in neighbourhoods. All statistical analyses were, therefore, performed with the equivalent multilevel format of the specific command, thus taking into account the hierarchical structure of the data.

In order to investigate whether neighbourhood-level social capital is associated with dynamic transitions within different levels of the extended psychosis phenotype over the follow-up period (T1 to T2), a multinomial logistic regression analysis was performed, including all 2175 cases. The first model included age, gender and parental socioeconomic status. Unfortunately, the multinomial analysis did not reach convergence and this forced us to remove parental socioeconomic status. The four neighbourhood-level social capital variables were added in separate models to avoid collinearity. Participants without expression of psychosis at any level at both T1 and T2 were used as the reference group. Three groups consisting of ≤5 participants were combined with the group above, resulting in 11 groups to be compared (labelled M1–11) with the reference group (Fig. 1).

Then, emergence, persistence and transition outcomes were analysed separately:

1. **Emergence of PE**: emergent (n = 242) (M3, M6–7) v. non-emergent (n = 1395) (Ref)
2. **Persistence of PE**: persistent (n = 119) (M4, M8) v. non-persistent (n = 343) (M1–2, M5)
3. **Transition to PD**: transition (n = 28) (M9–10) v. non-transition (n = 2103) (Ref, M1–8)

The baseline sociodemographic characteristics of the three outcome groups were compared using χ^2 test. Mixed-effects logistic regression analysis was performed with neighbourhood-level social capital as the macro-level independent variable and emergence, persistence and transition as the three dependent variables. First, a model was analysed, including gender, age categories and parental socioeconomic status (model 1). Following this, each of the four neighbourhood-level social capital variables was added to model 1 in separate models.

Additional analyses were performed comparing the social capital data of the participants who moved to another neighbourhood during the 6-year follow-up with the ones who did not move in order to examine if this is also relevant.

Results

At T1, the majority of the 2175 participants were female (59.4%), married (70.4%), of Turkish ethnicity (72.1%), and educated for ≥8 years (60.5%). The mean age of the participants was 38.6 ± 13.3 (15–65). The proportion of participants who used alcohol was 45.4, and 2.9% were cannabis users.

Any transitions over time within the extended psychosis phenotype

Multinomial logistic regression analysis revealed that women recovered more frequently from clinical PE (M2; Table 2). Older people were less likely to have emergent subclinical PE (M3). However, if they did, they were less likely to recover

Table 1. Spearman’s rank order correlation values between the four social capital variables (p < 0.001 for all correlations)

	ISC-variable	SCT-variable	Cogn-variable	SocD-variable
ISC-variable	1.000			
SCT-variable	0.593	1.000		
Cogn-variable	−0.511	−0.790	1.000	
SocD-variable	−0.256	−0.259	0.227	1.000

ISC-variable, informal social control variable. Higher scores on the ISC-variable indicate lower levels of informal social control, meaning lower social capital.
SCT-variable, social control and trust variable. Higher scores on the SCT-variable indicate lower levels of social control and trust, meaning lower social capital.
Cogn-variable, cognitive social capital variable. Higher scores on the Cogn-variable indicate higher levels of cognitive social capital, meaning higher social capital.

SocD-variable, social disorganisation variable. Higher scores on the SocD-variable indicate lower levels of social disorganisation, meaning higher social capital.
Having persistent clinical PE was less likely for older people (M8), who were also less likely to transition to PD (M10). Participants living in neighbourhoods with higher scores on the SocD-variable, indicating lower levels of social disorganisation and thus higher social capital, were less likely to have emergent clinical PE (M6). Even if they did, their clinical PE were less likely to persist (M8). They were also less likely to transition to PD (M10). The other social capital variables were not associated with the transitions within the extended psychosis spectrum variable.

Emergence, persistence and transition

Baseline sociodemographic characteristics and the level of social capital of the three outcome groups (emergence, persistence and transition) are summarised in Table 3. Lower levels of education and cannabis use were associated with all outcome groups. Family history of mental disorder was associated with persistence and transition. Lower age, not being married and being unemployed were associated with both emergence and transition. Current higher urbanicity, lower socioeconomic status, the presence of traumatic events and lower scores on the SocD-variable (meaning lower social capital) were associated with emergence.

Mixed-effects logistic regression analysis revealed that participants who were living in neighbourhoods with lower scores on the SocD-variable were more likely to be in the emergent group compared with the non-emergent group (Table 4). The other social capital variables were not associated with any of the three outcome groups.

Participants who moved to a different neighbourhood during the follow-up

Five hundred forty-five participants moved to a different neighbourhood between T1 and T2. Baseline social capital levels of those who moved were not significantly different from those who did not move. Five hundred and twenty of those who had moved had T2 social capital data (ISC-variable and SCT-variable). At T2, these 520 participants were living in a neighbourhood with significantly higher scores on the ISC-variable (meaning lower social capital) than the neighbourhood they were living in at the T1 assessment (2.28 ± 0.81; 2.06 ± 0.34; t = 5.61; p < 0.001). Mean scores on SCT-variable were not significantly different.

Discussion

Conducted in a large community-based sample representative of the general population in a highly urbanised area of Turkey, TürkSch yielded comprehensive, high-quality data with a primary focus on the extended psychosis spectrum. In this longitudinal epidemiological survey of 2175 participants, we investigated whether neighbourhood social capital is associated with the risk of transitions within the extended psychosis spectrum over a 6-year follow-up period. The main finding of the primary analysis was that lower levels of social disorganisation decreased the risk of emergence and persistence of clinical PE and also the transition to PD. The finding that lower levels of social disorganisation decreased the risk of emergence was confirmed in our secondary analysis. The results, therefore, suggest that social disorganisation may be associated with transition towards the more severe end of the extended psychosis phenotype.

Multinomial v. mixed-effects logistic regression analysis results

The multinomial regression showed significant associations between social disorganisation and emergent PE, persistent PE and transition to PD, whereas the mixed-effects regression
Table 2. Multinomial logistic regression analysis of sociodemographic characteristics and neighbourhood-level social capital including all dynamic transitions from T1 to T2 compared with the healthy control group (n = 1395)

Model	Categories of the dependent variable*	M1 (n = 233)	M2 (n = 92)	M3 (n = 119)	M4 (n = 55)	M5 (n = 19)	M6 (n = 84)	M7 (n = 39)	M8 (n = 67)	M9 (n = 15)	M10 (n = 13)	M11 (n = 44)
	OR, odds ratio; CI, confidence interval, 95%.											
1	Gender											
	Male	Ref										
	Female	0.935	–0.46	1.818	2.47	0.830	–0.96	0.772	–0.93	1.515	0.83	1.276
		0.70–1.25	0.647	0.13–2.92	0.014	0.57–1.21	0.338	0.45–1.33	0.353	0.357–4.02	0.404	0.80–2.03
	Age											
	15–30	Ref										
		0.580	–3.11	0.790	–0.91	0.600	–2.25	0.552	–1.78	0.470	–1.31	0.899
		0.70–1.25	0.647	0.13–2.92	0.014	0.57–1.21	0.338	0.45–1.33	0.353	0.357–4.02	0.404	0.80–2.03
		0.041	0.082	0.002	0.48–1.31	0.360	0.38–0.94	0.025	0.29–1.06	0.076	0.15–1.46	0.191
		–0.97	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57
		–3.14	0.605	–1.83	0.512	–2.82	0.530	–1.90	0.561	–1.06	0.617	–1.66
		0.491	0.365	–3.02	0.329	–1.60	0.083	–2.36	0.811	–0.57	–0.57	–0.57
2	ISC-variable	0.992	–0.04	1.572	1.42	1.403	1.17	1.532	1.05	1.543	0.65	1.020
		0.64–1.55	0.971	0.84–2.94	0.156	0.80–2.47	0.242	0.69–3.39	0.292	0.42–5.70	0.515	0.52–2.01
3	SCT-variable	1.087	0.39	1.190	0.56	1.716	1.90	1.023	0.06	1.469	0.58	0.970
		0.72–1.64	0.694	0.65–2.19	0.575	0.98–2.99	0.057	0.48–2.20	0.954	0.40–5.35	0.560	0.52–1.82
		0.47–1.79	0.59	0.70	1.023	0.06	1.469	0.58	0.970	–0.10	1.324	0.60
		0.706	0.90	0.721	–0.25	1.983	0.90	0.721	–0.43	1.487	0.89	–0.43
4	SocD-variable	0.769	–0.81	0.375	–2.25	0.501	–1.70	0.537	–1.08	0.769	–0.26	0.300
		0.41–1.48	0.420	0.47–1.29	0.331	0.23–1.11	0.089	0.17–1.67	0.282	0.11–5.54	0.794	0.13–0.71
		–0.91	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57	–0.57
		–2.75	0.469	–1.13	0.314	–2.36	0.366	–0.99	0.136	–2.12	0.511	–1.06
5	Cogn-variable	0.769	–1.42	0.680	–1.40	0.672	–1.60	0.893	–0.34	1.361	0.59	0.974
		0.54–1.11	0.156	0.40–1.17	0.160	0.41–1.09	0.109	0.46–1.73	0.737	0.49–3.78	0.554	0.57–1.66

The significant p values are bold.

*CATEGORIES OF THE DEPENDENT VARIABLE AS PRESENTED IN FIG. 1. ALL CATEGORIES ARE COMPARED TO THE REFERENCE CATEGORY.
Table 3. Comparison of baseline sociodemographic characteristics of the three outcome groups and the three reference groups

	Emergent	Non-emergent	Persistent	Non-persistent	Transition	Non-transition	
	n = 242	n = 1395	n = 119	n = 343	n = 28	n = 2103	
n %	χ² p	n %	χ² p	n %	χ² p	n %	χ² p
Gender							
Male							
100 41.3 568 40.7	0.03 0.860	50 42.0 129 37.6	0.72 0.395	12 42.9 851 40.5	0.06 0.798		
Female							
142 58.7 827 59.3							
Age							
15–30							
94 38.8 392 28.1	12.78 0.002	50 42.0 133 38.8	1.39 0.500	16 57.1 671 31.9	8.85 0.012		
31–45							
81 33.5 494 35.4							
46–65							
67 27.7 509 36.5							
Education level							
≤8 years							
169 69.8 799 57.3	13.46 <0.001	87 73.1 207 60.4	6.21 0.013	24 85.7 1265 60.2	7.55 0.006		
>8 years							
73 30.2 596 42.3							
Ethnicity							
Turkish							
183 75.6 1009 72.3	1.13 0.288	80 67.2 244 71.1	0.64 0.422	20 71.4 1519 72.2	0.01 0.925		
Non-Turkish							
59 24.4 386 27.7							
Marital status							
Married							
159 65.7 1048 75.1	9.45 0.002	70 58.8 218 63.6	0.84 0.359	14 50.0 1497 71.2	6.01 0.014		
Not married							
83 34.3 347 24.9							
Employment status							
Unemployed							
15 6.2 49 3.5	3.96 0.047	9 7.6 22 6.4	0.19 0.666	4 14.3 95 4.5	5.95 0.015		
Not unemployed							
227 93.8 1346 96.5							
Cannabis use							
User							
13 5.4 16 1.2	21.15 <0.001	11 9.2 8 2.3	10.70 0.001	7 25.0 49 2.3	55.5 <0.001		
Non-user							
229 94.6 1379 98.9							
Alcohol use							
User							
109 45.0 623 44.7	0.01 0.912	58 48.7 161 46.4	0.11 0.735	14 50.0 953 45.3	0.24 0.621		
Non-user							
133 54.7 772 55.3							
Current urbanicity							
Rural							
6 2.5 34 2.4	19.50 <0.001	1 0.8 11 3.2	5.53 0.137	0 0.0 53 2.5	3.18 0.365		
Low-urban							
26 10.7 312 22.4							
Moderately urban							
136 56.2 622 44.6							
Highly urban							
74 30.6 427 30.6							
Urbanicity at birth	Village or district, population <50 000	Population between 50 000 and 150 000	Province with population >150 000	District in metropolitan area			
---------------------	--	--------------------------------------	----------------------------------	-----------------------------			
	122 50.4 719 51.5 0.96 0.811	29 12.0 165 11.8 6 5.0 45 13.1	6 2.5 49 3.5 4 3.4 14 4.1	85 35.1 462 33.1 52 43.7 140 40.8			
	6.23 0.101 13 46.4 1044 49.6 0.21 0.976	3 10.7 245 11.7	1 3.8 73 3.5	11 39.3 741 35.2			

Urbanicity between ages 6 and 15	Village or district, population <50 000	Population between 50 000 and 150 000	Province with population >150 000	District in metropolitan area
	98 40.5 532 38.1 0.75 0.861	23 9.5 153 11.0 5 4.2 42 12.2	13 5.4 74 5.3 5 4.2 14 4.1	108 44.6 636 45.6 71 59.7 179 52.2
	6.54 0.088 6 21.4 777 37.0 3.31 0.347	4 14.3 224 10.6	1 3.6 106 5.0	17 60.7 996 47.4

Migration between ages 6 and 15	Migrated	Not migrated
	25 10.3 175 12.5 0.94 0.332	217 89.7 1220 87.5 0.33 0.664
	19 16.0 36 10.3 2.5 0.112	100 84.0 307 89.5 24 85.7 1847 87.8

Socioeconomic status*	High employees	Skilled workers	Small proprietors	Manual workers
	34 14.1 355 25.5	65 26.9 368 26.9	46 19.0 213 15.3	97 40.1 459 32.9
	16.25 0.001	2.33 0.507	11 39.3 566 26.9	3 10.7 205 9.8

Socioeconomic status at birth*:

	High employees	Skilled workers	Small proprietors	Manual workers
	19 7.9 157 11.3	40 16.5 241 17.3	95 39.3 509 36.5	88 36.4 488 35.0
	2.83 0.419	20 16.8 73 21.3	43 36.1 131 38.2	51 42.3 115 33.5

Childhood adversity:

	None	At least one
	204 84.3 1219 87.4 1.73 0.189	38 15.7 176 12.6 25 21.0 55 16.0

Traumatic events	None	At least one
	140 57.9 945 68.4 10.33 0.001	102 42.2 441 31.6

Family history of mental disorder	None	Other/unknown	Common mental disorder	Severe mental disorder
	195 80.6 1150 82.4 4.21 0.240	18 7.4 63 4.5 12 10.1 21 6.1	25 10.3 148 10.6 25 21.0 36 10.5	4 1.7 34 2.4 3 2.5 12 3.5

| | 79 66.4 274 79.9 11.70 0.008 | 12 10.1 21 6.1 | 25 21.0 36 10.5 | 2 7.1 53 2.5 |

(Continued)
Table 3. (Continued)

Neighbourhood-level Mean	Non-persistent	Persistent	Emergent	Non-transition	Transition					
Neighbourhood-level Mean	Mean	s.d.	OR							
ISC-variable	2.07	0.34	2.05	0.34	1.96	0.36	2.06	0.34	0.41	0.01
SCT-variable	2.32	0.37	2.29	0.37	2.30	0.34	2.31	0.31	2.31	0.31
SocD-variable	3.52	0.26	3.57	0.22	3.55	0.29	3.54	0.29	3.54	0.29
Cogn-variable	3.51	0.42	3.56	0.42	3.54	0.36	3.51	0.36	3.51	0.36

ISC-variable, informal social control variable. Higher scores on the ISC-variable indicate lower levels of informal social control, meaning lower social capital.
SCT-variable, social control and trust variable. Higher scores on the SCT-variable indicate lower levels of social control and trust, meaning lower social capital.
SocD-variable, social disorganisation variable. Higher scores on the SocD-variable indicate lower levels of social disorganisation, meaning higher social capital.
Cogn-variable, cognitive social capital variable. Higher scores on the Cogn-variable indicate higher levels of cognitive social capital, meaning higher social capital.

The significant p values are bold.

A Top to bottom: professional and non-manual high employee; non-manual low employee and skilled workers and technicians; small proprietors with or without employees; manual workers.

Ceylan Ergül et al.

showed a significant association between social disorganisation and emergent PE only. In the secondary analyses, the associations between the social disorganisation and the persistence of PE and transition to PD were not significant but in the same direction. The non-significance of the associations with persistence and transition in the secondary analysis may be related to the fact that multiple categories of the outcome measure were combined.

Neighbourhood-level social capital

The results of the multinomial regression analyses showed that participants living in neighbourhoods with lower levels of social disorganisation were less likely to have emergent or persistent clinical PE and less likely to transition to PD. Even though the associations were in the same direction for all 11 groups, only three of them were statistically significant. Therefore, the overall association may not be very strong. The results of the mixed-effects regression analyses showed that the SocD-variable was only significantly associated with the emergence of PE.

There are no other longitudinal studies investigating social capital and the extended psychosis spectrum. Therefore, we could not compare our results directly. Within cross-sectional studies, there were only two that used social disorganisation as a measure of social capital (Binbay et al., 2012b; Kirkbride et al., 2008). One of them analysed the baseline data of TürkSch, and the authors showed that in neighbourhoods with more social disorganisation, respondents scored higher on the psychosis spectrum variable. They also reported that the association between the psychosis spectrum and severe mental illness in the family was stronger in disorganised neighbourhoods. However, the effect of social disorganisation was reducible to the other neighbourhood variables (Binbay et al., 2012b). Another study showed that social disorganisation was associated with schizophrenia incidence, but the association was not significant after considering social cohesion and trust (Kirkbride et al., 2008). Briefly, our findings are similar to those of previous studies, but contrary to their results, the current analyses revealed social disorganisation as the only social capital dimension significantly associated with the psychosis spectrum.

When we compare our results with those of other studies measuring various aspects of social capital, our finding is broadly consistent with several previous studies showing the protective effects of social capital in psychotic symptoms and disorders (Freeman et al., 2011; Kirkbride et al., 2007; Lofors & Sundquist, 2007; O’Donoghue et al., 2016). Kirkbride et al.’s finding that there is a U-shaped association between social capital and schizophrenia incidence (Kirkbride et al., 2008) is different from ours. A possible explanation may be the difference between the two measures of social capital. When analysing social cohesion and trust and schizophrenia, Kirkbride et al. showed a significant association, and we did not. Social cohesion and trust is a dimension of social capital, of which both lower and higher levels may increase the risk of psychosis expression. On the other hand, social disorganisation can be expected to have a one-way effect because the problems defined in the scale are more concrete and less open to interpretation. The causal mechanisms linking social disorganisation and psychosis expression are unclear. It is possible that neighbourhoods with higher levels of social disorganisation may facilitate or enhance factors related with psychosis such as immigration, traumatic events, cannabis use and air pollution (March et al., 2008).
Model 1	Emergence	Persistence	Transition
	OR % 95 CI	OR % 95 CI	OR % 95 CI
Gender			
Male	Ref	Ref	Ref
Female	0.96	0.74	0.91
	0.71–1.28	0.45–1.22	0.42–1.95
	−0.31	−1.19	−0.25
	0.757	0.236	0.804
Age			
15–30	Ref	Ref	Ref
31–45	0.65	1.08	0.47
	0.46–0.92	0.61–1.90	0.20–1.10
	−2.47	0.26	−1.74
	0.014	0.794	0.82
46–65	0.52	0.71	0.24
	0.37–0.75	0.39–1.29	0.08–0.73
	−3.56	−1.13	−2.56
	<0.001	0.260	0.10
Parental SES	1.09	1.38	1.26
	0.94–1.27	1.04–1.83	0.84–1.89
	1.12	2.23	1.10
	0.262	0.026	0.27
Model 2			
ISC-variable	1.31	0.91	0.46
	0.82–2.07	0.42–1.98	0.14–1.55
	1.14	−0.25	−1.25
	0.256	0.806	0.210
Model 3			
SCT-variable	1.39	1.01	1.18
	0.90–2.15	0.46–2.22	0.41–3.42
	1.47	0.03	0.30
	0.142	0.975	0.761
Model 4			
SocD-variable	0.39	0.58	0.30
	0.21–0.74	0.21–1.60	0.08–1.15
	−2.90	−1.05	−1.76
	0.004	0.294	0.079
Model 5			
Cogn-variable	0.73	1.11	1.17
	0.50–1.08	0.57–2.13	0.49–2.83
	−1.57	0.30	0.36
	0.116	0.765	0.721

OR, odds ratio; CI, confidence interval; SES, socioeconomic status. Lower SES compared with higher SES. ISC-variable, informal social control variable. Higher scores on the ISC-variable indicate lower levels of informal social control, meaning lower social capital. SCT-variable, social control and trust variable. Higher scores on the SCT-variable indicate lower levels of social control and trust, meaning lower social capital. SocD-variable, social disorganisation variable. Higher scores on the SocD-variable indicate lower levels of social disorganisation, meaning higher social capital. Cogn-variable, cognitive social capital variable. Higher scores on the Cogn-variable indicate higher levels of cognitive social capital, meaning higher social capital. The significant *p* values are bold.
Of all four social capital variables, we found significant results for only the SocD-variable; however, we did not find any significant results for the other three social capital variables. There may be several reasons for this pattern of results. First, the ISC-variable, SCT-variable and Cogn-variable were moderately to strongly correlated with each other, whereas the SocD-variable was not. An explanation for this might be that the SocD-variable represents a different dimension of social capital. The ISC-variable, SCT-variable and Cogn-variable may represent a more cognitive aspect of social capital that is called ‘collective efficacy’ (Sampson, 1997), whereas the SocD-variable may represent more structural aspects such as concentrated disadvantage and population density (McCulloch, 2003). Second, various aspects of social capital may be more important in different contexts. In İzmir, social disorganisation may represent a more robust effect of social capital on psychosis (Saraçoğlu & Demirtaş-Mılz, 2014) given very large differences between neighbourhoods in concentrated disadvantage and population density (Sömmez, 2007; Metropolitan Municipality of İzmir, 2007). Finally, social disorganisation may more powerfully represent the social contextual change in Turkey between T1 and T2 because of the socioeconomic impact of the 2008 financial crisis (2010–2014) (Aytaç, Rankin, & İbikoğlu, 2015).

Demographic and background characteristics

In general, the findings are in line with the literature (Linscott & Van Os, 2013; Van Os & Reininghaus, 2016). However, it is noteworthy that we did not find ethnicity to be a significant risk factor for psychosis. A plausible explanation for this might be that the risk factor is not being a minority per se but rather occupying a minority position in society (Van Os, Kenis, & Rutten, 2010). The minority groups investigated in our study do not stand out in relation to the general population in terms of easily distinguishable traits (e.g. skin colour, religious practices).

Methodological issues

Our findings should be considered in light of several limitations. First of all, a limitation is the possibility of selection bias caused by attrition over time. However, the attrition analysis revealed very small effect sizes; details have been published elsewhere (Kiriş et al., 2019). Second, around a quarter of the participants had moved to neighbourhoods with lower levels of social capital between baseline and follow-up. Since it is not known how long it takes for environmental factors to cause changes in mental health, we chose to use the baseline social capital data in our analyses. In addition, the follow-up social capital data were collected from the participants themselves and thus, the follow-up social capital data could be biased by the mental health status of the participants. Since we found no significant difference between the baseline neighbourhood-level social capital data of those who moved and those who did not move, it is unlikely that the mobility of the participants might have affected our results. Third, psychotic patients may tend to neglect or underreport their symptoms. In order to minimise this bias, additional information was gathered through clinical interviews and health records. Fourth, we defined the extended psychosis spectrum categories based on the presence of positive symptoms and the clinical impairment they cause. This definition is arbitrary, and the spectrum could be constructed in different ways. However, the sensitivity of CIDI is high for delusions and hallucinations, and this increased the clinical validity of our spectrum. As a result, our results cannot be generalised to negative or disorganised dimensions of psychosis. Finally, some of the questions used in the social disorganisation scale rely on subjective moral values, such that the results of this investigation cannot be generalised to every culture.

This is the first longitudinal community-based study investigating whether social capital is associated with the risk of transitions within the extended psychosis spectrum over a 6-year follow-up period. The strengths of our study are having high-quality data of a large number of participants at two different time points and the data being collected by house visits by trained interviewers. The longitudinal design allowed us to create categories based on dynamic transitions within the extended psychosis spectrum, and this approach is more useful than working with categories based on cross-sectional data. Working with a general population sample was advantageous because we were more likely to include individuals who might not be captured in a clinical sample. The fact that data were collected randomly throughout a geographical area prevented help-seeking bias, thus revealing the spectrum, including subclinical manifestations. Another strength is that the neighbourhood-level variables were independently collected from a different sample. In addition to this, social capital was measured directly, whereas, in many other studies, proxy measurements such as voter turnout were implemented.

Conclusion

In conclusion, we found that lower levels of social disorganisation decreased the risk of emergence and persistence of clinical PE and also the transition to PD. The evidence about emergence was particularly robust. Our findings implicate that one dimension of social capital may reduce the risk of psychosis expression. Whilst replication of this finding is required, it may point to targeting the levels of social disorganisation as a public health measure associated with population psychosis risk.

Financial support. This work is part of the TürkSch project, which was funded by the Scientific and Technological Council of Turkey 1001 programme (Project numbers: 107S053 and 112S476).

Conflict of interest. None.

References

American Psychiatric Association. (1994). *Diagnostic and statistical manual of mental disorders – (DSM-IV-TR)* (4th ed.). Washington, DC: American Psychiatric Association.

Andrews, G., & Peters, L. (1998). The psychometric properties of the composite international diagnostic interview. *Social Psychiatry and Psychiatric Epidemiology*, 33, 80–80.

Aytaç, I. A., Rankin, B. H., & İbikoğlu, A. (2015). The social impact of the 2008 global economic crisis on neighborhoods, households, and individuals in Turkey. *Social Indicators Research*, 124(1), 1–19. https://doi.org/10.1007/s11205-014-0769-5.

Bak, M., Myin-Germeys, I., Hansen, M., Bijl, R., Vollebergh, W., Delespaul, P., & Van Os, J. (2003). When does experience of psychosis result in a need for care? A prospective general population study. *Schizophrenia Bulletin*, 29(2), 349–358. https://doi.org/10.1093/schbul/bst07010.

Binbay, T., Alptekin, K., Elbi, H., Zadli, P. N., Drukker, M., Aksu Tank, F., … Van Os, J. (2012a). Lifetime prevalence and correlates of schizophrenia and...
disorders with psychotic symptoms in the general population of Izmir, Turkey. Turk Psikiyatri Dergisi, 23(3), 149–160.

Binbay, T., Drukker, M., Alptekin, K., Elbi, H., Tanik, F. A., Ozkinay, F., ... Van Os, J. (2012b). Evidence that the wider social environment moderates the association between familial liability and psychosis spectrum outcome. Psychological Medicine, 42(12), 2499–2510. https://doi.org/10.1017/S0033291712007000.

Binbay, T., Drukker, M., Elbi, H., Tanik, F. A., Ozkinay, F., Onay, H., ... Alptekin, K. (2012c). Testing the psychosis continuum: Differential impact of genetic and nongenetic risk factors and comorbid psychopathology across the entire spectrum of psychosis. Schizophrenia Bulletin, 38(5), 992–1002. https://doi.org/10.1093/schbul/sbr003.

Binbay, T., Elbi, H., Alptekin, K., Tanik, F. A., Drukker, M., Onay, H., ... Van Os, J. (2011). Izmir mental health survey for gene-environment interaction in psychoses (TürkSch): Objectives and methodology. Turk Psikiyatri Dergisi, 22(2), 65–76. https://doi.org/10.5080/a6380.

Buckner, J. C. (1988). The development of a neighborhood scale to measure social cohesion. American Journal of Community Psychology, 16(6), 771–791.

Cooper, L., Peters, L., & Andrews, G. (1998). Validity of the composite international diagnostic interview (CIDI) psychosis module in a psychiatric setting. Journal of Psychiatric Research, 32(6), 361–368. https://doi.org/10.1016/S0022-3956(98)00021-3.

Dominguez, M. D. G., Saka, M. C., Lieb, R., Wittchen, H. U., & Van Os, J. (2010). Early expression of negative/disorganized symptoms predicting psychotic experiences and subsequent clinical psychosis: A 10-year study. American Journal of Psychiatry, 167(9), 1075–1082. https://doi.org/10.1176/appi.ajp.2010.09060883.

Dominguez, M. D. G., Wichers, M., Lieb, R., Wittchen, H. U., & Van Os, J. (2011). Evidence that onset of clinical psychosis is an outcome of progressively more persistent subclinical psychotic experiences: An 8-year cohort study. Schizophrenia Bulletin, 37(1), 84–93. https://doi.org/10.1093/schbul/sbp022.

Drukker, M., Krabbeendam, L., Driessen, G., & van Os, J. (2006). Social disadvantage and schizophrenia: A combined neighbourhood and individual-level analysis. Social Psychiatry and Psychiatric Epidemiology, 41(8), 595–604. https://doi.org/10.1007/s00212-006-0081-z.

Drukker, M., & van Os, J. (2003). Mediators of neighbourhood socioeconomic deprivation and quality of life. Social Psychiatry and Psychiatric Epidemiology, 38(12), 698–706. https://doi.org/10.1007/s00212-003-0690-8.

Ehsan, A., Klaas, H. S., Bastianen, A., & Spini, D. (2019). Social capital and health: A systematic review of systematic reviews. SSM – Population Health, 8(April), 100425. https://doi.org/10.1016/j.ssmph.2019.100425.

Faris, R. E. L., & Dunham, H. W. (1939). The development of a neighbourhood scale to measure social cohesion. Psychological Medicine, 7(1), 1083–1094. https://doi.org/10.1017/S0033291707002085.

Kirkbride, J., Boydell, J., Ploubidis, G. B., Morgan, C., Dazzan, P., McKenzie, K., ... Jones, P. B. (2008). Testing the association between the incidence of schizophrenia and social capital in an urban area. Psychological Medicine, 38(8), 1083–1094. https://doi.org/10.1017/S0033291710000538.

Kirkbride, J., Morgan, C., Fearon, P., Dazzan, P., Murray, R. M., & Jones, P. B. (2007). Neighbourhood-level effects on psychoses: Re-examining the role of context. Psychological Medicine, 37(10), 1413–1425. https://doi.org/10.1017/S0033291707000499.

Klici, C., & Göğüş, A. (1997). Uluslararası Bileşik Tam Görüşmesi 2.1. Ankara: Dünüya Sağlık Örgütü ve Hacettepe Üniversitesi Tıp Fak. Psikiyatri A.D. İşbirliği Merkezi.

Karlı, U., Binbay, T., Elbi, H., Drukker, M., Kayahan, B., Ozkinay, F., ... van Os, J. (2019). Izmir mental health cohort for gene-environment interaction in psychosis (TürkSch): Assessment of the extended and transdiagnostic psychosis phenotype and analysis of attrition in a 6-year follow-up of a community-based sample. Frontiers in Psychiatry, 10(August), 1–12. https://doi.org/10.3389/fpsyt.2019.00554.

Krabbeendam, L., & Van Os, J. (2005). Schizophrenia and urbanicity: A major environmental influence – conditional on genetic risk. Schizophrenia Bulletin, 31(4), 795–799. https://doi.org/10.1093/schbul/bsh060.

Linscott, R., & Van Os, J. (2010). Systematic reviews of categorical versus continuum models in psychosis: Evidence for discontinuous subpopulations underlying a psychometric continuum. Implications for DSM-V, DSM-VI, and DSM-VII. Annual Review of Clinical Psychology, 6, 391–419. https://doi.org/10.1146/annurev.clinpsy.032408.135506.

Linscott, R., & Van Os, J. (2013). An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: On the pathway from proneness to persistence to dimensional expression across mental disorders. Psychological Medicine, 43(6), 1133–1149. https://doi.org/10.1017/S0033291712001626.

Lofors, J., & Sundquist, K. (2007). Low-linking social capital as a predictor of mental disorders: A cohort study of 4.5 million Swedes. Social Science and Medicine, 64(1), 21–34. https://doi.org/10.1016/j.socscimed.2006.08.024.

March, D., Hatch, S. L., Morgan, C., Kirkbride, J., Bresnahan, M., Fearon, P., & Sesser, E. (2008). Psychosis and place. Epidemiologic Reviews, 30(1), 84–100. https://doi.org/10.1093/epirev/mxn006.

McCulloch, A. (2003). An examination of social capital and social disorganisation in neighbourhoods in the British household panel study. Social Science and Medicine, 56, 1425–1438. https://doi.org/10.1016/S0277-9536(02)00139-9.

Metropolitan Municipality of Izmir. (2007). Metropolitan Municipality of Izmir: Metropolitan Municipality of Izmir. Moore, S., & Kawachi, I. (2017). Twenty years of social capital and mental health research: A glossary. Journal of Epidemiology and Community Health, 71(5), 1–5. https://doi.org/10.1136/jech-2016-208313.

O’Donoghue, B., Lyne, J. P., Renwick, L., Lane, A., Madigan, K., Staines, A., ... Clarke, M. (2016). Neighbourhood characteristics and the incidence of first-episode psychosis and duration of untreated psychosis. Psychological Medicine, 46(7), 1367–1378. https://doi.org/10.1017/s003329171500266x.

Poulton, R., Caspi, A., Moffitt, T. E., Cannon, M., Murray, R., & Harrington, H. (2000). Children’s self-reported psychotic symptoms and adult schizophrenia-form disorder: A 15-year longitudinal study. Archives of General Psychiatry, 57(11), 1053–1058. https://doi.org/10.1001/archpsyc.57.11.1053.

Robins, L. N., Wing, J., Wittchen, H. U., Helzer, J. E., Babor, T. F., Burke, J., ... Towle, L. H. (1988). The composite international diagnostic interview: An epidemiologic instrument suitable for use in conjunction with different diagnostic systems and in different cultures. Archives of General Psychiatry, 45, 1069–1077.

Rotenberg, M., Anderson, K. K., & McKenzie, K. (2020). Social capital and psychosis: A scoping review. Social Psychiatry and Psychiatric Epidemiology, 55(6), 659–671. https://doi.org/10.1007/s00127-019-01812-9.

Samson, R. J. (1997). Collective regulation of adolescent misbehavior: Validation results from eighty Chicago neighborhoods. Journal of Adolescent Research, 12(2), 227–244.

Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277(5328), 918–924.

Saracoğlu, Ç., & Demirtaş-Müüz, N. (2014). Disasters as an ideological strategy for governing neoliberal urban transformation in Turkey: Insights from Izmir/Kadifekale. Disasters, 38(1), 178–201. https://doi.org/10.1111/disa.12038.

Sönmez, İ. Ö. (2007). Concentrated urban poverty: The case of Izmir inner area, Turkey. European Planning Studies, 15(3), 319–338. https://doi.org/10.1080/09654310601017026.
Stip, E., & Letourneau, G. (2009). In review psychotic symptoms as a continuum between normality and pathology. *Canadian Journal of Psychiatry, 54*(3), 140–151. https://doi.org/10.1177/070674370905400302.

Türkiye İstatistik Kurumu. (2008). *Adrese dayalı nüfus kayıt sistemi 2007 nüfus sayımı sonuçları*. Ankara: Türkiye İstatistik Kurumu.

Van Os, J., Kenis, G., & Rutter, B. P. F. (2010). The environment and schizophrenia. *Nature, 468*(7321), 203–212. https://doi.org/10.1038/nature09563.

Van Os, J., & Linscott, R. (2012). Introduction: The extended psychosis phenotype – relationship with schizophrenia and with ultrahigh risk status for psychosis. *Schizophrenia Bulletin, 38*(2), 227–230. https://doi.org/10.1093/schbul/sbr188.

Van Os, J., Linscott, R., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. *Psychological Medicine, 39*(2), 179–195. https://doi.org/10.1017/S0033291708003814.

Van Os, J., & Reininghaus, U. (2016). Psychosis as a transdiagnostic and extended phenotype in the general population. *World Psychiatry, 15*(2), 118–124. https://doi.org/10.1002/wps.20310.

Van Rossum, I., Dominguez, M. D. G., Lieb, R., Wittchen, H. U., & Van Os, J. (2011). Affective dysregulation and reality distortion: A 10-year prospective study of their association and clinical relevance. *Schizophrenia Bulletin, 37*(3), 561–571. https://doi.org/10.1093/schbul/sbp101.

Whitley, R., & McKenzie, K. (2005). Social capital and psychiatry: Review of the literature. *Harvard Review of Psychiatry, 13*(2), 71–84. https://doi.org/10.1080/10673220590956474.

Wittchen, H. U., Robins, L. N., Cottler, L. B., Sartorius, N., Burke, J. D., & Regier, D. (1991). Cross-cultural feasibility, reliability and sources of variance of the composite international diagnostic interview (CIDI). *British Journal of Psychiatry, 159*(NOV.), 645–653. https://doi.org/10.1192/bjp.159.5.645.

World Health Organisation (1992). *The ICD-10 classification of mental and behavioural disorders* (Vol. 55). Geneva: World Health Organisation.

Zammit, S., Kounali, D., Cannon, M., David, A. S., Gunnell, D., Heron, J., … Lewis, G. (2013). Psychotic experiences and psychotic disorders at age 18 in relation to psychotic experiences at age 12 in a longitudinal population-based cohort study. *American Journal of Psychiatry, 170*(7), 742–750. https://doi.org/10.1176/appi.ajp.2013.12060768.