A second solvatomorph of poly[[μ₄-N₂,N’-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]-nickel(II)dipotassium]: crystal structure, Hirshfeld surface analysis and semi-empirical geometry optimization

Maksym O. Plutenko, a* Matti Haukka, b Alina O. Husak, a,c Irina A. Golenya a and Nurullo U. Mulloev d

Department of Chemistry, National Taras Shevchenko University, Volodymyrska, Street 64, 01601 Kyiv, Ukraine, b Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland, c PBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine, and d The Faculty of Physics, Tajik National University, Rudaki Avenue 17, 734025 Dushanbe, Tajikistan. *Correspondence e-mail: plutenkom@gmail.com

The title compound, poly[triaquabis[μ₂-N₂,N’-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]dinickel(II)tetrapotassium], [K₂Ni₂(C₇H₆N₄O₇)₂(H₂O)₃]n, is a second solvatomorph of poly[[μ₄-N₂,N’-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)nickel(II)dipotassium] reported previously [Plutenko et al. (2021). Acta Cryst. E77, 298–304]. The asymmetric unit of the title compound includes two structurally independent complex anions [Ni(C₇H₆N₄O₇)]²⁻, which exhibit an L-shaped geometry and consist of two almost flat fragments perpendicular to one another: the 1,3,5-oxadiazinane fragment and the fragment including other atoms of the anion. The central Ni atom is in a square-planar N₂O₂ coordination arrangement formed by two amide N and two carboxylate O atoms. In the crystal, the title compound forms a layered structure in which layers of negatively charged complex anions and positively charged potassium cations are stacked along the a-axis direction. The polymeric framework is stabilized by a system of hydrogen-bonding interactions in which the water molecules act as donors and the carboxylic, amide and water O atoms act as acceptors.

1. Chemical context

In 1976, the products of the metal-templated reaction of hydrazide and aldehyde were separated and structurally described (Clark et al., 1976). It was further shown that such a synthetic strategy makes it possible to obtain complexes with 3d metals in high oxidation states. In particular, there are several works devoted to copper(III) complexes obtained by this method (Oliver & Waters, 1982; Fritsky et al., 1998, 2006). Moreover, the preparation of an unprecedentedly stable iron(IV) clathrochelate complex was reported (Tomyn et al., 2017). Some such compounds are promising redox catalysts, as has been shown by Pap et al. (2011) and Shylin et al. (2019). Thus, the study of the conditions and peculiarities of hydrazide-aldehyde template interactions, as well as the isolation and characterization of their products, is an important task in modern coordination chemistry.

This work is a continuation of our investigation of the interaction of oxalohydrazidehydroxamic acid with formaldehyde and nickel(II) salts. Here we report the crystal structure of the title compound poly[triaquabis[μ₄-N₂,N’-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]-nickel(II)dipotassium]: crystal structure, Hirshfeld surface analysis and semi-empirical geometry optimization.
oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)dinickel(II)tetrapotassium \[(2K_2\[Ni(L\text{-}2H)]\cdot3H_2O)\cdot2n\cdot2H_2O\text{, which is the solvatomorph of the earlier published (Plutenko et al., 2021) complex poly[pentaaquabis[\(\mu\text{-}N_2N\text{-}(1,3,5\text{-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)}\text{]}nickel(II)tetrapotassium\text{,} \[(2K_2\[Ni(L\text{-}2H)]\cdot4.8H_2O)\cdotn\cdot2\text{,}H_2L = N_2\text{-}(1,3,5\text{-oxadiazinane-3,5-diyl)bis(aminooxoacetic acid)}\]]\text{. Both compounds can be obtained in a similar fashion as the result of a one-pot template reaction (see Fig. 1).}

2. Structural commentary

The title compound, 2, \((2K_2\[Ni(L\text{-}2H)]\cdot3H_2O)\cdotn\), crystallizes in space group \(P2_1/c\), while the previously reported compound 1, \((2K_2\[Ni(L\text{-}2H)]\cdot4.8H_2O)\cdotn\), crystallizes in \(Pbca\). Similarly to 1, the asymmetric unit of 2 (Fig. 2) includes two structurally independent complex anions \([Ni(L\text{-}2H)]^{2–}\) (namely A and B, which contain NiI and NiIB, respectively). In addition, the unit cell of 2 also contains four potassium cations and three solvent water molecules.

Figure 1
A plausible mechanism for the formation of the \([Ni(L\text{-}2H)]^{2–}\) complex anion.

Figure 2
The asymmetric unit of 2 with displacement ellipsoids shown at the 50% probability level.

Similarly to 1, the complex anion \([Ni(L\text{-}2H)]^{2–}\) has an L-shaped geometry and consists of two almost flat fragments perpendicular to one another: the 1,3,5-oxadiazinane fragment and the fragment including other atoms of the anion. The dihedral angles between the mean planes formed by the non-hydrogen atoms of these fragments are 95.06 (8) and 94.06 (8)\(^\circ\) for NiI and NiIB, respectively. The ligand molecule is coordinated in a tetradentate \([O\text{carboxyl,}N\text{amide,}N\text{amide,}O\text{carboxyl})\text{-mode. The central atom of the complex anion exhibits a square-planar coordination arrangement with the N_2O_2 chromophore. The deviation of the Ni\text{II} atom from the mean plane defined by the donor atoms is 0.0073 (13) and 0.0330 (12) Å for NiI and NiIB, respectively. The Ni–N bond distances are in the range 1.836 (3)–1.849 (3) Å and Ni–O bond lengths are 1.877 (2)–1.897 (2) Å, which is typical for square-planar nickel complexes with similar ligands (Fritsky et al., 1998) and close to the Ni–N and Ni–O bond distances of 1. The O–M–O\(^\circ\), O–M–N and N–M–N\(^\circ\) bond angles have typical values for a square-planar arrangement. The bite angles O\(_1\)–NiI–N\(_4\), N\(_1\)–NiI–O\(_2\) and N\(_1\)–N\(_1\)–N\(_4\) deviate from 90\(^\circ\), which is the result of the formation of the five-membered chelate rings. The N–N\(^\circ\), N–C and C–O bond lengths of the ligand have typical values for coordinated deprotonated hydrazide and carboxyl groups.

3. Supramolecular features

In the crystal, the nickel(II) complex anions \([Ni(L\text{-}2H)]^{2–}\) form layers parallel to the \(bc\) plane (Fig. 3a). neighbouring complex anion layers are sandwiched by layers of potassium counter-cations (Fig. 4). Thus, negatively charged complex anion layers and positively charged potassium cationic layers are stacked along the \(a\)-axis direction. It is useful to note that in the previous layered structure motif was observed in the crystal of the previously published compound 1. However, in the crystal of 1 the NiN\(_2\)O\(_2\) plane is almost perpendicular to the complex anion layer plane (Fig. 3b): the angle between NiN\(_2\)O\(_2\) and the \(ab\) plane is 84.43 (4) and 85.03 (5)\(^\circ\) for NiI and NiIB,
respectively. In contrast, in the crystal of 2 the angle between NiN₂O₂ and the bc plane is 78.30 (8) and 86.29 (7)° for Ni1 and Ni1B, respectively.

The demarcation of bonded and non-bonded K—X interactions (X = N or O) is still an unclear and debatable problem (Alvarez, 2013). Therefore, the criteria of such demarcation used in this paper need to be detailed. Based on the aforementioned publication (Alvarez, 2013), we propose 3.7 Å as the maximal distance for K—N bonds. Recently, it was shown (Gagné & Hawthorne, 2016) that K—O main and maximal bond distances depend on the coordination number of K. The results of this work permits 3.4, 3.5 and 3.6 Å to be proposed as the maximal distances for K—O bonds in the case of potassium coordination numbers 7, 8 and 9, respectively. In addition, K···Namide interactions were determined as non-bonding because the existence of such bonds would lead to the presence of unstable three-membered KNamideNoxadiazinane rings with extremely small N—K—N angles.

The potassium cations are bound to the nickel(II) complex anions through the carboxylic O atoms (K4) the carboxylic and the amide O atoms (K1, K2) or through the amide O and the oxadiazinane N atoms (K3). In addition, the potassium cations have contacts with the O atoms of water molecules, with the amide and the carboxylic O atoms, and with the oxadiazinane O and N atoms of neighbouring complex anions. The K1 and K2 cations exhibit an O6N coordination, while the K3 cations have contacts with the O atoms of water molecules, with the amide and the carboxylic O atoms, and with the oxadiazinane O and N atoms of neighbouring complex anions. The K1 and K2 cations exhibit an O6N coordination, while the K3 and K4 cations exhibit O6N and O3N coordinations, respectively.

For an evaluation of the coordination geometry of each potassium cation, SHAPE 2.1 software (Llunell et al., 2013) was used. A SHAPE analysis of the potassium coordination sphere (Table 1, Fig. 5) yields the lowest continuous shape measure (CShM) value for a distorted pentagonal bipyramid (5.142 for K1 and 3.122 for K2), a distorted muffin (3.691 for K3) and a distorted triangular dodecahedron (5.187 for K4). For K4, comparable CShM values were obtained for a square antiprism (5.463).

The polyhedra around the neighbouring potassium cations are connected with each other through common vertices (K1 with K3, K1 with K4, K2 with K4), edges (K3 with K4) and faces (K1 with K2, K1 with K3, K2 with K3). The K—O bond lengths are in the range 2.628 (2)–3.271 (3) Å, K—N 2.887 (3)–3.025 (3) Å, which is close to those reported for the structures of related carboxylate and amide complexes (Fritsky et al., 1998; Mokhir et al., 2002).

The polyhedra around the neighbouring potassium cations are connected with each other through common vertices (K1 with K3, K1 with K4, K2 with K4), edges (K3 with K4) and faces (K1 with K2, K1 with K3, K2 with K3). The K—O bond lengths are in the range 2.628 (2)–3.271 (3) Å, K—N 2.887 (3)–3.025 (3) Å, which is close to those reported for the structures of related carboxylate and amide complexes (Fritsky et al., 1998; Mokhir et al., 2002).
The polymeric framework of 2 is stabilized by an extensive system of hydrogen-bonding interactions in which the water molecules act as donors and the carboxylic, the amide and the water O atoms act as acceptors (Table 2). Similarly to 1, the hydrogen bonds are localized mainly at the potassium cation layers (Fig. 6). Moreover, in comparison to 1, the unit cell of 2 contains a smaller number of water molecules, which causes a smaller number of hydrogen-bond interactions in the crystal structure.

4. Hirshfeld analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with Crystal-Explorer17 (Turner et al., 2017). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (d_{norm}) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii).

The Hirshfeld surface of the title compound is mapped over d_{norm}, in the colour ranges

\[
\begin{align*}
&C_{0.6388}^{0.9164} \\&C_{0.6768}^{0.7286}
\end{align*}
\]

for Ni1 and Ni1B complex anions, respectively (Fig. 7). Similarly to 1, the complex anions of 2 are connected to the other elements of the crystal packing mainly via the amide and the carboxylic O atoms. However, in contrast to 1, one of the oxadiazinane O atoms of 2 is also involved in intermolecular bond formation.

A fingerprint plot delineated into specific interatomic contacts contains information related to specific intermolecular interactions. The blue colour refers to the frequency of occurrence of the (d_i, d_e) pair with the full fingerprint plot outlined in gray. Fig. 8a and 9a show the two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode for the Ni1 and Ni1B complex anions, respectively.

The most significant contribution to the Hirshfeld surface is from O···H/H···O contacts (36.9% and 38.7% for the Ni1 and Ni1B complex anions, respectively; Fig. 8b and 9b). In addition, O···K/K···O (20.9% and 18.2% for the Ni1 and Ni1B complex anions; Fig. 8c and 9c) and H···H (10.4% and 13.1% for the Ni1 and Ni1B complex anions, respectively;

Table 2
Hydrogen-bond geometry (A, °).

D—H···A	D—H	H···A	D···A	D—H···A
O8—H8O···O9i	0.85	2.02	2.869 (4)	173
O8—H8P···O4Bii	0.85	2.01	2.858 (3)	166
O9—H9P···O4iii	0.86	1.91	2.722 (3)	157
O9—H9O···O6Biv	0.86	2.07	2.864 (3)	153
O10—H10P···O4v	0.88	2.02	2.887 (3)	168
O10—H10O···O7Bvi	0.87	2.04	2.882 (3)	164

Symmetry codes: (i) x, −y + 1, z + 1/2; (ii) x, y, −z + 1/2; (iii) −x + 1, −y + 1, −z; (iv) x, −y + 1, z − 1/2; (v) −x + 1, y + 1/2, −z + 1/2; (vi) x, y + 1, z.

Figure 5
Polyhedral views of the coordination environments for the potassium cations.

Figure 6
Crystal packing of the title compound. C—H hydrogen atoms are omitted for clarity. Hydrogen bonds are indicated by dashed lines.

Figure 7
The Hirshfeld surfaces of the Ni1 (A) and Ni1B (B) complex anions mapped over d_{norm}.

Figure 8
Fingerprint plot delineated into specific interatomic contacts contains information related to specific intermolecular interactions.
Fig. 8d and 9d make very significant contributions to the total Hirshfeld surface. This indicates that there are more K···O contacts and fewer O···H contacts compared to the crystal of 1.

5. Geometry optimization

The searching of computationally ‘cheap’ but still sufficiently accurate methods of transition-metal complex geometry optimization is an important task of modern computational chemistry. The geometry optimization calculations were carried out with three semi-empirical methods: PM7, DFTB and GFN2-xTB. The PM7 (Stewart, 2013) calculations were performed with MOPAC2016 software (Stewart, 2016). The DFTB calculations were carried out with the DFTB+ software package (Hourahine et al., 2020) using the ‘mio-1-l’ (Elstner et al., 1998) and the ‘trans3d-0-1’ (Zheng et al., 2007) Slater–Koster parameterization sets. The GFN2-xTB (Bannwarth et al., 2019) calculations were applied with xtb 6.4 package (Grimme, 2019). The geometry of the Ni1 complex anion obtained from the crystal structure was used as the starting geometry for the calculations.

In general, for all described semi-empirical methods, the calculated geometric parameters of the oxadiazinane ring are in reasonable agreement with experimental values (see Table 3). On the other hand, the accuracy of the non-oxadiazinane fragment geometry prediction varies greatly depending on the method. The worst agreement with experiments is from the PM7 method, mainly because of the pyramidalization of the amide nitrogen atom (Table 3). Such non-planarity of the amide fragment is a well-known problem of the PMx methods (Feigel & Strassner, 1993). In contrast, the DFTB method predicts the amide geometric parameters with high accuracy but demonstrates longer than experimental carboxylate C—O bonds and a slight tetragonal distortion of the nickel(II) coordination polyhedra (Table 3). The best results were obtained with the GFN2-xTB method for which the calculated geometric parameters correlate nicely with experimental values (Table 3). The maximal difference between the calculated and the experimental bond lengths concerns the C—O lengths (shorter than the experimental values within 0.024–0.033 Å). A superimposed analysis of the Ni1 complex anion with its optimized structure gives an

Geometric parameter	X-ray	PM7	DFTB	GFN2-xTB
Oxadiazinane ring				
C—O	1.434	1.413	1.467	1.410
C—N	1.463	1.489	1.463	1.452
Carboxylate moiety				
C—O	1.287	1.276	1.451	1.260
C—O	1.233	1.224	1.196	1.208
Hydrazide moiety				
C—O	1.249	1.232	1.227	1.216
C—N	1.321	1.357	1.393	1.332
N—N	1.432	1.413	1.413	1.415
C—Namide—Ni—N_oxadizine	175.74	133.89	169.00	162.81
Ni coordination arrangement				
Ni—O	1.892	1.776	1.788	1.871
Ni—N	1.840	1.955	1.974	1.871
O—Ni—N chelate	85.24	93.35	81.32	82.94
O—Ni—N non-chelate	178.29	173.19	162.52	176.77
N—Ni—N	85.53	88.09	90.73	94.40

5. Geometry optimization

Table 3

Comparison of selected geometric data (Å; mean values) for the Ni1 complex anion from calculated and X-ray data.

Figure 8
(a) Full two-dimensional fingerprint plot of the Ni1 complex anion and those delineated into (b) O···H/H···O (36.9%) (c) O···K/K···O (20.9%) and (d) H···H (10.4%) contacts.

Figure 9
(a) Full two-dimensional fingerprint plot of the Ni1B complex anion and those delineated into (b) O···H/H···O (38.7%) (c) O···K/K···O (18.2%) and (d) H···H (13.1%) contacts.
6. Database survey

A search in the Cambridge Structural Database (CSD version 5.39, update of May 2018; Groom et al., 2016) resulted in 11 hits dealing with 3d-metal complexes with macrocyclic or pseudo-macrocyclic ligands formed by template binding of several hydrazide groups by formaldehyde molecules. These complexes contain the following 3d metals: NiII (Fritsky et al., 1998), CuII (Clark et al., 1976; Fritsky et al., 2006), CuIII (Oliver & Waters, 1982; Fritsky et al., 1998, Fritsky et al., 2006) and FeIV (Tomyn et al., 2017). Thus, such macrocyclic and pseudo-macrocyclic ligand systems exhibit a tendency to stabilize the high oxidation states of 3d metals.

7. Synthesis and crystallization

A solution of Ni(ClO₄)₂·6H₂O (0.091 g, 0.25 mmol) in 5 ml of water was added to a warm solution of oxalohydrazide-hydroxamic acid (0.06 g, 0.5 mmol) in 5 ml of water. The resulting light-green mixture was stirred with heating (320–330 K) for 20 min and then 1 ml of 4M KOH solution was added. As a result, the colour of the solution changed to pink. After 5 min of stirring, 0.03 g of the paraformaldehyde (1 mmol) was added and stirring with heating (323–333 K) was continued for 30 min. The resulting orange solution was left for crystallization by slow evaporation in air. After one week, crystals were filtered off, washed with diethyl ether and dried in the air. Yield 0.044 g (42%). Elemental analysis for C₁₂H₁₀N₄O₇Ni₂ (mol. mass 844.18), calculated, %: C 19.92; H 2.15; N 13.27; Found, %: C 19.69; H 2.16; N 13.11. UV–vis (H₂O), λmax (ε, mol⁻¹ dm³ cm⁻¹): 520 nm (1380). IR (KBr, cm⁻¹): 3420 br ν(O–H) stretch, 2981, 2910, 2860 ν(C–H) stretch, 1643 (vs) ν(C=O) amide I, 1590 νas(COO⁻), 1435 νs(COO⁻).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were positioned geometrically (O—H = 0.85–0.88, C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2 Ueq(O, C).

Table 4

Crystal data	Chemical formula
[K₂Ni₄(C₂H₆N₄O₇)₂(H₂O)₃]	M₄
Monoclinic, P2₁/c	
Temperature (K)	100
a, b, c (Å)	20.3825 (5), 7.7039 (3), 17.3078 (6)
V (Å³)	98.240 (2)
Z	4
Radiation type	Mo Kα
μ (mm⁻¹)	2.12
Crystal size (mm)	0.15 × 0.09 × 0.08

RMSD of 0.131 Å (Fig. 10). Thus, the GFN2-xTB method is a promising geometry prediction method for transition-metal complexes based on hydrazide and carboxylate ligands.

Funding information

This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv.

References

Alvarez, S. (2013). *Dalton Trans.* 42, 8617–8636.
Bannwarth, C., Ehler, S. & Grimmie, S. (2019). *J. Chem. Theory Comput.* 15, 1652–1671.
Brandenburg, K. (2009). *DIAMOND.* Crystal Impact GbR, Bonn, Germany.
Brucker (2008). *COLLECT.* Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, G. R., Skelton, B. W. & Waters, T. N. (1976). *J. Chem. Soc. Dalton Trans.* pp. 1528–1536.
Elsner, M., Porezag, D., Jungnickel, G., Eilsner, J., Haugk, M., Frauenheim, Th., Suhai, S. & Seifert, G. (1998). *Phys. Rev. B*, 58, 7260–7268.
Feigel, M. & Strassner, T. (1993). *J. Mol. Struct. Theochem*, 283, 33–48.
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). *Chem. Commun.* pp. 4125–4127.

Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). *J. Chem. Soc. Dalton Trans.* pp. 3269–3274.

Gagné, O. C. & Hawthorne, F. C. (2016). *Acta Cryst.* B72, 602–625.

Grimme, S. (2019). *xtb 6.4*. Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.

Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C., Deshaye, M. Y., Dumitrić, T., Domínguez, A., Ehlert, S., Elstner, M., van der Heide, T., Hermann, J., Irle, S., Kranz, J. J., Köhler, C., Kowalczyk, T., Kubai, T., Lee, I. S., Lutzker, V., Maurer, R. J., Min, S. K., Mitchell, I., Negré, C., Niehaus, T. A., Niklasson, A. M. N., Page, A. J., Persson, M. P., Rezáč, J., Sánchez, C. G., Sternberg, M., Stöhr, M., Stuckenberg, F., Tkatchenko, A., Yu, V. W. & Frauenheim, T. (2020). *J. Chem. Phys.* 152, 124101.

Llunell, M., Casanova, D., Cirera, J., Alemay, P. & Alvarez, S. (2013). *SHAPE*. Barcelona, Spain.

McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.

Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J. J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Silva, T. Yu. (2002). *Inorg. Chim. Acta.* 329, 113–121.

Oliver, K. J. & Waters, T. N. (1982). *J. Chem. Soc. Chem. Commun.* pp. 1111–1112.

Otwinowski, Z. & Minor, W. (1997). *Methods Enzymol.* 276, 307–326.

Palatinus, L. & Chapuis, G. (2007). *J. Appl. Cryst.* 40, 786–790.

Pap, J. S., Szywriel, Ł., Rówinska-Żyrek, M., Nikitin, K., Fritsky, I. O. & Kozłowski, H. J. (2011). *J. Mol. Catal. A Chem.* 334, 77–82.

Plutenko, M. O., Haukka, M., Husak, A. O., Iskenderov, T. S. & Mulloev, N. U. (2021). *Acta Cryst.* E77, 298–304.

Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.

Shylin, S. I., Pavliuk, M. V., D’Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019). *Chem. Commun.* 55, 3335–3338.

Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, 11, 19–32.

Stewart, J. J. P. (2013). *J. Mol. Model.* 19, 1–32.

Stewart, J. J. P. (2016). *MOPAC2016*. Stewart Computational Chemistry, Colorado Springs, CO, USA.

Tomy, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). *Nat. Commun.* 8, 14099.

Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia.

Zheng, G., Witek, H. A., Bobadova-Parvanova, P., Irle, S., Musaev, D. G., Prabhakar, R., Morokuma, K., Lundberg, M., Elstner, M., Köhler, C. & Frauenheim, T. (2007). *J. Chem. Theory Comput.* 3, 1349–1367.
A second solvatomorph of poly\([\mu_4-N,N'-\text{(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)}]\text{n}
ike(II)dipotassium\]: crystal structure, Hirshfeld surface analysis and semi-empirical geometry optimization

Maksym O. Plutenko, Matti Haukka, Alina O. Husak, Irina A. Golenya and Nurullo U. Mulloev

Computing details

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Poly[triaquabis[\mu_4-N,N'-\text{(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)}]\text{n}
ike(II)tetrapotassium\]

Crystal data

\[\text{[K}_4\text{Ni}_2\text{(C}_7\text{H}_6\text{N}_4\text{O}_7)2\text{(H}_2\text{O})_3]\]
\[M_r = 844.18\]
Monoclinic, \(P\text{2}_1/c\)
\(a = 20.3825\) (5) Å
\(b = 7.7039\) (3) Å
\(c = 17.3078\) (6) Å
\(\beta = 98.240\) (2)°
\(V = 2689.69\) (16) Å³
\(Z = 4\)

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 16 pixels mm⁻¹
\(\varphi\) scans and \(\omega\) scans with \(\kappa\) offset
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)

Refinement

Refinement on \(F^2\)
Least-squares matrix: full
\(R[F^2 > 2\sigma(F^2)] = 0.041\)
\(wR(F^2) = 0.082\)
\(S = 1.14\)

\(F(000) = 1704\)
\(D_x = 2.085\) Mg m⁻³
Mo \(K\alpha\) radiation, \(\lambda = 0.71073\) Å
Cell parameters from 12179 reflections
\(\theta = 1.0–30.0^\circ\)
\(\mu = 2.12\) mm⁻¹
\(T = 100\) K
Orange, block
0.15 × 0.09 × 0.08 mm

\(T_{\text{min}} = 0.746, T_{\text{max}} = 0.842\)
25068 measured reflections
6148 independent reflections
5118 reflections with \(I > 2\sigma(I)\)
\(R_{\text{int}} = 0.043\)
\(\theta_{\text{max}} = 27.5^\circ, \theta_{\text{min}} = 2.5^\circ\)
\(h = -26\rightarrow 26\)
\(k = -10\rightarrow 10\)
\(l = -22\rightarrow 22\)

Hydrogen site location: mixed
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + 8.0539P]$
where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\text{max}} < 0.001$

$\Delta \rho_{\text{max}} = 0.63 \text{ e Å}^{-3}$

$\Delta \rho_{\text{min}} = -0.45 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U_{iso}^{*}/U_{eq}		
Ni1	0.47434 (2)	0.39867 (5)	0.07544 (2)	0.01087 (9)		
K1	0.17619 (4)	0.53183 (9)	0.11705 (4)	0.01892 (16)		
K2	0.19572 (3)	0.36084 (9)	−0.07023 (4)	0.01670 (15)		
K3	0.27474 (3)	0.87045 (9)	0.01255 (4)	0.01761 (15)		
K4	0.37676 (4)	0.05611 (9)	−0.14504 (4)	0.02025 (16)		
O1	0.41934 (10)	0.2347 (3)	0.01666 (13)	0.0155 (5)		
O2	0.55123 (10)	0.2576 (3)	0.08187 (12)	0.0138 (4)		
O3	0.66101 (11)	0.2786 (3)	0.11647 (14)	0.0178 (5)		
O4	0.63860 (11)	0.6017 (3)	0.18521 (13)	0.0175 (5)		
O5	0.43257 (10)	0.6088 (3)	0.23723 (12)	0.0144 (4)		
O6	0.28491 (10)	0.5095 (3)	0.04127 (13)	0.0144 (5)		
O7	0.31296 (10)	0.1927 (3)	−0.03135 (13)	0.0145 (4)		
O8	0.23728 (13)	0.4224 (4)	0.26454 (15)	0.0296 (6)		
H8O	0.234956	0.311841	0.266821	0.044*		
H8P	0.220280	0.460928	0.303719	0.044*		
O9	0.22781 (12)	0.4456 (3)	−0.21414 (15)	0.0260 (6)		
H9P	0.270092	0.459040	−0.210682	0.039*		
H9O	0.209842	0.522979	−0.245902	0.039*		
O10	0.32908 (13)	1.1134 (4)	0.14694 (15)	0.0306 (6)		
H10O	0.287037	1.137097	0.135669	0.046*		
H10P	0.338827	1.126557	0.197749	0.046*		
N1	0.52942 (12)	0.5586 (3)	0.13120 (14)	0.0113 (5)		
N2	0.51068 (13)	0.7242 (3)	0.15852 (15)	0.0124 (5)		
N3	0.39268 (13)	0.6979 (3)	0.10530 (15)	0.0131 (5)		
N4	0.39871 (13)	0.5297 (3)	0.07165 (15)	0.0122 (5)		
C1	0.60452 (15)	0.3371 (4)	0.11225 (18)	0.0137 (6)		
C2	0.59253 (16)	0.5163 (4)	0.14705 (18)	0.0146 (6)		
C3	0.45459 (15)	0.7945 (4)	0.10429 (19)	0.0140 (6)		
H3A	0.447429	0.917052	0.118117	0.017*		
H3B	0.466161	0.792495	0.050662	0.017*		
C4	0.49161 (15)	0.7092 (4)	0.23624 (18)	0.0140 (6)		
H4A	0.528350	0.654533	0.271547	0.017*		
H4B	0.484584	0.826836	0.256513	0.017*		
C5	0.37883 (16)	0.6825 (4)	0.18499 (18)	0.0155 (6)		
H5A	0.368739	0.799144	0.204239	0.019*		
H5B	0.338951	0.609318	0.185349	0.019*		
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
-------	-----------	-----------	-----------	-----------	-----------	-----------
Ni1	0.0117 (2)	0.00866 (18)	0.01215 (19)	0.00042 (14)	0.00137 (14)	-0.00210 (15)
K1	0.0225 (4)	0.0128 (3)	0.0229 (4)	0.0021 (3)	0.0082 (3)	0.0018 (3)
K2	0.0181 (4)	0.0124 (3)	0.0182 (3)	0.0002 (3)	-0.0022 (3)	-0.0009 (3)
K3	0.0162 (3)	0.0130 (3)	0.0229 (4)	-0.0001 (3)	0.0006 (3)	0.0043 (3)
K4	0.0253 (4)	0.0118 (3)	0.0265 (4)	-0.0019 (3)	0.0134 (3)	-0.0026 (3)
O1	0.0140 (11)	0.0129 (11)	0.0195 (12)	-0.0001 (9)	0.0021 (9)	-0.0028 (9)
O2	0.0149 (11)	0.0116 (10)	0.0149 (11)	0.0018 (8)	0.0020 (8)	-0.0011 (9)
O3	0.0124 (11)	0.0158 (11)	0.0253 (13)	0.0022 (9)	0.0030 (9)	-0.0007 (10)
O4	0.0151 (11)	0.0154 (11)	0.0207 (12)	-0.0003 (9)	-0.0016 (9)	-0.0013 (9)
O5	0.0159 (11)	0.0146 (11)	0.0135 (11)	-0.0009 (9)	0.0044 (8)	0.0014 (9)
O6	0.0135 (11)	0.0127 (11)	0.0168 (11)	0.0013 (9)	0.0016 (9)	-0.0016 (9)
O7	0.0144 (11)	0.0138 (11)	0.0148 (11)	-0.0021 (9)	0.0005 (8)	-0.0015 (9)
O8	0.0368 (16)	0.0286 (14)	0.0253 (14)	0.0059 (12)	0.0103 (11)	0.0025 (11)
O9	0.0159 (13)	0.0345 (15)	0.0268 (14)	-0.0018 (11)	0.0006 (10)	0.0045 (11)
O10	0.0259 (14)	0.0390 (16)	0.0269 (14)	0.0052 (12)	0.0038 (11)	0.0047 (12)
N1	0.0137 (13)	0.0095 (12)	0.0107 (12)	0.0008 (10)	0.0022 (10)	-0.0013 (10)
N2	0.0151 (13)	0.0104 (12)	0.0118 (12)	0.0006 (10)	0.0018 (10)	-0.0017 (10)
Atom	U1	U2	U3	U4	U5	U6
------	-----	-----	-----	-----	-----	-----
N3	0.0177 (14)	0.0090 (12)	0.0125 (13)	0.0001 (10)	0.0021 (10)	−0.0040 (10)
N4	0.0176 (14)	0.0075 (12)	0.0116 (12)	0.0018 (10)	0.0024 (10)	−0.0028 (10)
C1	0.0176 (16)	0.0137 (15)	0.0105 (14)	−0.0010 (12)	0.0042 (12)	0.0031 (12)
C2	0.0179 (17)	0.0124 (15)	0.0141 (15)	−0.0020 (12)	0.0039 (12)	0.0019 (12)
C3	0.0158 (16)	0.0091 (14)	0.0164 (15)	0.0002 (12)	0.0002 (12)	−0.0002 (12)
C4	0.0174 (16)	0.0141 (15)	0.0106 (14)	0.0009 (12)	0.0022 (12)	0.0019 (12)
C5	0.0177 (16)	0.0152 (15)	0.0139 (15)	−0.0005 (12)	0.0036 (12)	−0.0020 (12)
C6	0.0149 (15)	0.0110 (14)	0.0092 (14)	−0.0001 (12)	0.0023 (11)	0.0008 (11)
C7	0.0165 (16)	0.0098 (14)	0.0105 (14)	−0.0003 (11)	0.0026 (11)	0.0020 (11)

Atom	U1	U2	U3	U4	U5	U6
Ni1B	0.0128 (2)	0.00920 (19)	0.0149 (2)	−0.00029 (15)	0.00073 (15)	0.00233 (15)
O1B	0.0159 (12)	0.0116 (11)	0.0224 (12)	−0.0001 (9)	0.0028 (9)	0.0032 (9)
O2B	0.0159 (12)	0.0122 (11)	0.0179 (11)	−0.0007 (9)	−0.0001 (9)	0.0019 (9)
O3B	0.0165 (12)	0.0134 (11)	0.0246 (13)	0.0028 (9)	0.0003 (9)	0.0034 (10)
O4B	0.0149 (12)	0.0140 (11)	0.0203 (12)	0.0005 (9)	0.0021 (9)	0.0004 (9)
O5B	0.0202 (12)	0.0165 (12)	0.0138 (11)	0.0000 (9)	0.0007 (9)	−0.0009 (9)
O6B	0.0139 (11)	0.0157 (11)	0.0251 (12)	0.0009 (9)	0.0004 (9)	−0.0003 (10)
O7B	0.0164 (12)	0.0168 (12)	0.0277 (13)	−0.0025 (9)	0.0067 (10)	0.0025 (10)
N1B	0.0168 (14)	0.0075 (12)	0.0152 (13)	−0.0003 (10)	0.0009 (10)	0.0000 (10)
N2B	0.0158 (13)	0.0095 (12)	0.0149 (13)	0.0000 (10)	0.0021 (10)	0.0021 (10)
N3B	0.0154 (13)	0.0094 (12)	0.0154 (13)	−0.0013 (10)	0.0014 (10)	0.0048 (10)
N4B	0.0146 (13)	0.0101 (12)	0.0170 (13)	−0.0006 (10)	0.0018 (10)	0.0021 (10)
C1B	0.0197 (17)	0.0128 (15)	0.0109 (14)	−0.0019 (12)	0.0023 (12)	−0.0021 (12)
C2B	0.0188 (17)	0.0114 (14)	0.0104 (14)	−0.0001 (12)	0.0004 (12)	−0.0018 (11)
C3B	0.0133 (15)	0.0122 (15)	0.0176 (16)	−0.0013 (12)	0.0002 (12)	−0.0008 (12)
C4B	0.0157 (16)	0.0129 (15)	0.0165 (15)	−0.0008 (12)	0.0009 (12)	0.0037 (12)
C5B	0.0177 (17)	0.0127 (15)	0.0168 (16)	0.0014 (12)	0.0014 (12)	0.0041 (12)
C6B	0.0170 (16)	0.0154 (16)	0.0137 (15)	0.0001 (12)	0.0017 (12)	−0.0035 (12)
C7B	0.0163 (16)	0.0144 (15)	0.0122 (15)	−0.0005 (12)	0.0017 (12)	−0.0007 (12)

Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	
Ni1—N4	1.836 (3)	O5—C4	1.433 (4)
Ni1—N1	1.844 (3)	O5—C5	1.434 (4)
Ni1—O1	1.887 (2)	O6—C6	1.244 (4)
Ni1—O2	1.897 (2)	O7—C7	1.236 (4)
K1—O6B	2.628 (2)	O8—H8O	0.8546
K1—O7B	2.717 (2)	O8—H8P	0.8575
K1—O6	2.737 (2)	O9—H9P	0.8615
K1—O8	2.805 (3)	O9—H9O	0.8567
K1—O3B	2.834 (2)	O10—H10O	0.8704
K1—O1B	2.998 (2)	O10—H10P	0.8792
K1—N3B	3.025 (3)	N1—C2	1.317 (4)
K1—C7B	3.130 (3)	N1—N2	1.431 (3)
K1—C6B	3.368 (3)	N2—C4	1.457 (4)
K1—K2	3.5736 (10)	N2—C3	1.474 (4)
K1—K3	3.8927 (10)	N3—N4	1.433 (3)
K2—O6	2.708 (2)	N3—C5	1.452 (4)
K2—O7	2.717 (2)	N3—C3	1.467 (4)
K2—O3Bii 2.725 (2) N4—C6 1.324 (4)			
K2—O9 2.743 (3) C1—C2 1.540 (4)			
K2—O4Biii 2.760 (2) C3—H3A 0.9900			
K2—O7B 2.864 (2) C3—H3B 0.9900			
K2—N2Biii 2.984 (3) C4—H4A 0.9900			
K2—C6 3.401 (3) C4—H4B 0.9900			
K2—C7 3.443 (3) C5—H5A 0.9900			
K2—C2Biii 3.458 (3) C5—H5B 0.9900			
K2—K3iv 4.2728 (10) C6—C7 1.544 (4)			
K3—O7i 2.742 (2) Ni1B—N4B 1.839 (3)			
K3—O3Bii 2.810 (2) Ni1B—N1B 1.849 (3)			
K3—O4Bii 2.826 (2) Ni1B—O2B 1.877 (2)			
K3—O6 2.827 (2) Ni1B—O1B 1.895 (2)			
K3—O3i 2.976 (2) O1B—C7B 1.287 (4)			
K3—N3 3.003 (3) O2B—C1B 1.281 (4)			
K3—O10 3.066 (3) O3B—C1B 1.235 (4)			
K3—O6Bii 3.095 (2) O4B—C2B 1.249 (4)			
K3—O7Bi 3.271 (2) O5B—C5B 1.430 (4)			
K3—C2Bii 3.475 (3) O5B—C4B 1.434 (4)			
K3—C2Bii 3.501 (3) O6B—C6B 1.255 (4)			
K3—C1Bi 3.512 (3) O7B—C7B 1.235 (4)			
K3—H10O 2.9446 N1B—C2B 1.323 (4)			
K4—O7 2.721 (2) N1B—N2B 1.434 (3)			
K4—O4i 2.733 (2) N2B—C4B 1.457 (4)			
K4—O3i 2.756 (2) N2B—C3B 1.469 (4)			
K4—O5iii 2.779 (2) N3B—N4B 1.431 (3)			
K4—N2v 2.887 (3) N3B—C5B 1.456 (4)			
K4—O2i 2.955 (2) N3B—C3B 1.480 (4)			
K4—O8vi 3.047 (3) N4B—C6B 1.320 (4)			
K4—C1vii 3.095 (3) C1B—C2B 1.546 (4)			
K4—O1 3.127 (3) C3B—H3B1 0.9900			
K4—C7 3.201 (3) C3B—H3B2 0.9900			
K4—C2v 3.354 (3) C4B—H4B1 0.9900			
K4—C5i 3.474 (3) C4B—H4B2 0.9900			
C1—C7 1.282 (4) C5B—H5B1 0.9900			
O2—C1 1.291 (4) C5B—H5B2 0.9900			
O3—C1 1.229 (4) C6B—C7B 1.528 (4)			
O4—C2 1.254 (4)			
N4—Ni1—N1 95.53 (11) N2v—K4—O1 72.10 (7)			
N4—Ni1—O1 85.30 (10) O2vi—K4—O1 88.24 (6)			
N1—Ni1—O1 178.66 (11) O8vi—K4—O1 123.68 (7)			
N4—Ni1—O2 177.92 (11) C1vi—K4—O1 104.79 (7)			
N1—Ni1—O2 85.18 (10) O7—K4—C7 22.25 (7)			
O1—Ni1—O2 94.02 (9) O4v—K4—C7 70.87 (7)			
O6B—K1—O7B 165.68 (7) O3vi—K4—C7 106.35 (7)			
O6B—K1—O6 95.50 (7) O5viii—K4—C7 162.77 (8)			
O7B—K1—O6 70.41 (7) N2v—K4—C7 86.82 (8)			
Bond	Distance (Å)	Bond	Distance (Å)
---------------	--------------	---------------	--------------
O6Bi—K1—O8	96.75 (8)	O2vi—K4—C7	104.10 (7)
O7B—K1—O8	83.03 (8)	O8vi—K4—C7	100.36 (8)
O6—K1—O8	97.64 (7)	C1vi—K4—C7	113.38 (8)
O6Bi—K1—O3Bi	75.65 (7)	O1—K4—C7	23.34 (7)
O7Bi—K1—O3Bi	100.07 (7)	O7—K4—C2v	74.75 (7)
O6—K1—O3Bii	66.54 (7)	O4v—K4—C2v	20.73 (7)
O8—K1—O3Bii	161.46 (8)	O3vi—K4—C2v	167.98 (8)
O6Bi—K1—O1B	147.71 (7)	O5vi—K4—C2v	110.16 (7)
O7B—K1—O1B	45.58 (6)	N2v—K4—C2v	43.27 (7)
O6—K1—O1B	110.52 (7)	O2vi—K4—C2v	136.36 (7)
O8—K1—O1B	98.30 (7)	O8vi—K4—C2v	95.92 (8)
O3Bi—K1—O1B	96.98 (7)	C1vi—K4—C2v	160.86 (8)
O6Bi—K1—N3Bi	58.41 (7)	O1—K4—C2v	63.19 (7)
O7B—K1—N3Bi	135.57 (7)	C7—K4—C2v	61.97 (8)
O6—K1—N3Bi	147.07 (7)	O7—K4—C5vii	151.88 (7)
O8—K1—N3Bi	104.66 (8)	O4v—K4—C5vii	108.05 (7)
O3Bi—K1—N3Bi	86.25 (7)	O3vi—K4—C5vii	72.21 (7)
O1B—K1—N3Bi	90.10 (7)	O5vi—K4—C5vii	23.29 (7)
O6Bi—K1—C7B	171.25 (8)	N2v—K4—C5vii	97.79 (7)
O7B—K1—C7B	23.02 (7)	O2vi—K4—C5vii	79.33 (7)
O6—K1—C7B	92.84 (8)	O8vi—K4—C5vii	73.58 (7)
O8—K1—C7B	84.73 (8)	C1vi—K4—C5vii	67.75 (8)
O3Bi—K1—C7B	105.44 (8)	O1—K4—C5vii	162.73 (7)
O1B—K1—C7B	24.11 (7)	C7—K4—C5vii	173.84 (8)
N3Bi—K1—C7B	112.86 (8)	O7—K4—C5vii	119.08 (8)
O6Bi—K1—C6Bi	19.63 (7)	C7—O1—Ni1	113.14 (19)
O7B—K1—C6Bi	166.68 (8)	C7—O1—K4	81.58 (17)
O6—K1—C6Bii	106.83 (7)	Ni1—O1—K4	147.60 (10)
O8—K1—C6Bii	110.29 (8)	C1—O2—Ni1	113.09 (19)
O3Bi—K1—C6Bii	67.44 (7)	C1—O2—K4vi	83.85 (17)
O1B—K1—C6Bii	128.70 (7)	Ni1—O2—K4vi	148.49 (10)
N3Bi—K1—C6Bi	42.60 (7)	C1—O3—K4vi	94.03 (19)
C7Bi—K1—C6Bi	152.81 (8)	C1—O3—K3v	127.3 (2)
O6Bi—K1—K2	120.51 (6)	K4vi—O3—K3v	86.44 (6)
O7B—K1—K2	52.02 (5)	C2—O4—K4v	108.80 (19)
O6—K1—K2	48.63 (5)	C4—O5—C5	110.2 (2)
O8—K1—K2	128.47 (6)	C4—O5—K4viii	133.50 (17)
O3Bi—K1—K2	48.67 (5)	C5—O5—K4viii	106.70 (16)
O1B—K1—K2	69.47 (5)	C6—O6—K2	113.52 (19)
N3Bi—K1—K2	124.43 (6)	C6—O6—K1	147.0 (2)
C7Bi—K1—K2	63.86 (6)	K2—O6—K1	82.02 (6)
C6Bi—K1—K2	116.01 (6)	C6—O6—K3	112.75 (18)
O6Bi—K1—K3	52.41 (5)	K2—O6—K3	105.41 (7)
O7B—K1—K3	114.82 (5)	K1—O6—K3	88.76 (6)
O6—K1—K3	46.56 (5)	C7—O7—K2	116.01 (19)
O8—K1—K3	115.66 (6)	C7—O7—K4	101.30 (18)
O3Bi—K1—K3	46.14 (5)	K2—O7—K4	119.99 (8)
O1B—K1—K3	139.50 (5)	C7—O7—K3iv	123.27 (19)
N3B---K1---K3 101.21 (5) K2---O7---K3 103.04 (7)
C7B---K1---K3 134.40 (6) K4---O7---K3 91.98 (7)
C6B---K1---K3 60.40 (6) K1---O8---K4 135.32 (10)
K2---K1---K3 72.16 (2) K1---O8---H8O 108.7
O6---K2---O7 63.15 (6) K4---O8---H8O 94.8
O6---K2---O3Bii 68.50 (7) K1---O8---H8P 116.0
O7---K2---O3Bii 130.88 (7) K4---O8---H8P 91.6
O6---K2---O9 108.86 (7) H8O---O8---H8P 106.1
O7---K2---O9 91.30 (7) K2---O9---H9P 109.4
O3Bii---K2---O9 96.29 (8) K2---O9---H9O 127.8
O6---K2---O4Biii 127.95 (7) H9P---O9---H9O 107.0
O7---K2---O4Biii 71.65 (7) K3---O10---H10O 73.8
O3Bii---K2---O4Biii 153.83 (7) K3---O10---H10P 146.5
O9---K2---O4Biii 96.17 (8) H10O---O10---H10P 105.9
O6---K2---O7B 68.65 (7) C2---N1---N2 116.8 (3)
O7---K2---O7B 71.37 (7) C2---N1---Ni1 116.5 (2)
O3Bii---K2---O7B 99.16 (7) N2---N1---Ni1 126.66 (19)
O9---K2---O7B 161.85 (8) N1---N2---C4 110.7 (2)
O4Biii---K2---O7B 73.70 (7) N1---N2---C3 109.7 (2)
O6---K2---N2Bii 153.59 (7) N1---N2---K4v 104.06 (16)
O7---K2---N2Bii 129.35 (7) C4---N2---C3 116.19 (18)
O3Bii---K2---N2Bii 98.31 (7) C4---N2---K4v 106.62 (17)
O9---K2---N2Bii 94.92 (7) C3---N2---K4v 106.2 (2)
O4Biii---K2---N2Bii 57.71 (7) C2---N3---C5 110.6 (18)
O7B---K2---N2Bii 92.22 (7) C2---N3---C3 109.3 (2)
O6---K2---C6 19.59 (7) C2---N3---K3 109.7 (2)
O7---K2---C6 44.71 (7) C5---N3---K3 106.96 (16)
O3Bii---K2---C6 86.20 (7) C5---N3---K3 107.10 (18)
O9---K2---C6 99.55 (7) C3---N3---K3 113.13 (18)
O4Bii---K2---C6 114.21 (7) C6---N4---N3 115.7 (2)
O7B---K2---C6 72.17 (7) C6---N4---Ni1 116.7 (2)
N2Bii---K2---C6 164.29 (7) N3---N4---Ni1 127.1 (2)
O6---K2---C7 45.08 (7) O3---C1---O2 125.2 (3)
O7---K2---C7 18.82 (7) O3---C1---C2 120.4 (3)
O3Bii---K2---C7 112.08 (7) O2---C1---C2 114.4 (3)
O9---K2---C7 93.17 (7) O3---C1---K4vi 62.64 (17)
O4Bii---K2---C7 79.08 (7) O2---C1---K4vi 71.65 (16)
O7B---K2---C7 72.22 (7) C2---C1---K4vi 145.90 (19)
N2Bii---K2---C7 147.43 (7) O4---C2---N1 127.9 (3)
C6---K2---C7 26.07 (7) O4---C2---C1 121.8 (3)
O6---K2---C2Biii 134.22 (7) N1---C2---C1 110.2 (3)
O7---K2---C2Biii 88.06 (7) O4---C2---K4vi 50.47 (16)
O3Bii---K2---C2Biii 134.59 (7) N1---C2---K4vi 86.15 (18)
O9---K2---C2Biii 106.44 (8) C1---C2---K4vi 146.74 (19)
O4Bii---K2---C2Biii 19.29 (7) N3---C3---N2 113.3 (2)
O7B---K2---C2Biii 68.67 (7) N3---C3---H3A 108.9
N2Bii---K2---C2Biii 42.10 (7) N2---C3---H3A 108.9
C6---K2---C2Biii 126.35 (7) N3---C3---H3B 108.9

Acta Cryst. (2021). E77, 1289-1295 sup-7
Bond	Angle (deg)	Deviation (deg)	
C7—K2—C2Bⅲ	105.43 (7)	N2—C3—H3B	108.9
O6—K2—K1	49.34 (5)	H3A—C3—H3B	107.7
O7—K2—K1	99.18 (5)	O5—C4—N2	112.9 (2)
O3Bⅲ—K2—K1	51.36 (5)	O5—C4—H4A	109.0
O9—K2—K1	143.89 (6)	N2—C4—H4A	109.0
O4Bⅲ—K2—K1	119.94 (5)	O5—C4—H4B	109.0
O7B—K2—K1	48.41 (5)	N2—C4—H4B	109.0
N2Bⅲ—K2—K2—K1	104.38 (6)	H4A—C4—H4B	107.8
C6—K2—K1	66.77 (5)	O5—C5—N3	113.3 (2)
C7—K2—K1	86.75 (5)	O5—C5—K4ⅷ	50.01 (13)
C2Bⅲ—K2—K1	108.36 (5)	N3—C5—K4ⅷ	151.1 (2)
O6—K2—K3ⅵ	87.29 (5)	O5—C5—H5A	108.9
O7—K2—K3ⅵ	38.69 (5)	N3—C5—H5A	108.9
O3Bⅲ—K2—K3ⅵ	147.21 (6)	K4ⅷ—C5—H5A	99.6
O9—K2—K3ⅵ	112.80 (6)	O5—C5—H5B	108.9
O4Bⅲ—K2—K3ⅵ	40.67 (5)	N3—C5—H5B	108.9
O7B—K2—K3ⅵ	49.92 (5)	K4ⅷ—C5—H5B	65.4
N2Bⅲ—K2—K2—K3ⅵ	94.10 (5)	H5A—C5—H5B	107.7
C6—K2—K3ⅵ	74.71 (5)	O6—C6—N4	128.1 (3)
C7—K2—K3ⅵ	53.87 (5)	O6—C6—C7	123.0 (3)
C2Bⅲ—K2—K3ⅵ	52.13 (5)	O6—C6—K2	46.89 (15)
K1—K2—K3ⅵ	96.17 (2)	O6—C6—K2	162.9 (2)
O7ⅷ—K3—O3Bⅷ	130.32 (7)	C7—C6—K2	78.47 (16)
O7ⅷ—K3—O4Bⅷ	70.29 (6)	O6—C6—K3	48.13 (15)
O3Bⅲ—K3—O4Bⅷ	60.07 (7)	N4—C6—K3	87.33 (18)
O7ⅷ—K3—O6	157.32 (7)	C7—C6—K3	147.92 (19)
O3Bⅲ—K3—O6	65.69 (6)	K2—C6—K3	79.28 (7)
O4Bⅲ—K3—O6	121.88 (7)	O7—C7—O1	124.8 (3)
O7ⅷ—K3—O3ⅷ	88.18 (7)	O7—C7—C6	119.9 (3)
O3Bⅲ—K3—O3ⅷ	92.43 (7)	O7—C7—K4	56.45 (16)
O4Bⅲ—K3—O3ⅷ	88.69 (7)	O1—C7—K4	75.08 (16)
O6—K3—O3ⅷ	73.94 (6)	C6—C7—K4	148.43 (19)
O7ⅷ—K3—N3	108.15 (7)	C6—C7—K2	45.16 (15)
O3Bⅲ—K3—N3	120.86 (7)	O1—C7—K2	164.7 (2)
O4Bⅲ—K3—N3	168.61 (7)	C6—C7—K2	75.46 (16)
O6—K3—N3	55.78 (7)	K4—C7—K2	90.18 (8)
O3ⅷ—K3—N3	79.96 (7)	N4B—Ni1B—N1B	95.93 (11)
O3Bⅲ—K3—O10	136.54 (7)	N4B—Ni1B—O2B	178.25 (11)
O4Bⅲ—K3—O10	115.82 (7)	N1B—Ni1B—O2B	85.75 (10)
O6—K3—O10	117.23 (7)	N4B—Ni1B—O1B	85.46 (10)
O3ⅷ—K3—O10	130.90 (7)	N1B—Ni1B—O1B	178.61 (11)
N3—K3—O10	71.96 (7)	O2B—Ni1B—O1B	92.86 (9)
O7ⅷ—K3—O6Bⅳ	115.43 (7)	C7B—O1B—Ni1B	112.2 (2)
O3Bⅲ—K3—O6Bⅳ	69.03 (7)	C7B—O1B—K1	83.73 (17)
O4Bⅲ—K3—O6Bⅳ	94.66 (6)	Ni1B—O1B—K1	152.27 (11)
O6—K3—O6Bⅳ	84.13 (6)	C1B—O2B—Ni1B	113.4 (2)
O3ⅷ—K3—O6Bⅳ	155.90 (7)		
Bond	Distance (Å)	Angle (°)	
---	--------------	-----------	
N3—K3—O6B	96.08 (7)	132.9 (2)	
O10—K3—O6B	68.32 (7)	114.8 (2)	
O7i—K3—O7Bi	64.91 (6)	105.44 (8)	
O3Bii—K3—O7Bi	92.46 (6)	124.0 (2)	
O4Bii—K3—O7Bi	66.72 (6)	79.97 (6)	
O6—K3—O7Bi	136.08 (6)	87.20 (7)	
O3v—K3—O7Bi	147.96 (7)	113.82 (19)	
N3—K3—O7Bi	123.44 (7)	110.98 (19)	
O10—K3—O7Bi	53.97 (6)	99.81 (7)	
O6B—K3—O7Bi	52.04 (6)	109.9 (2)	
O7i—K3—C2Bi	87.34 (7)	115.7 (2)	
O3Bii—K3—C2Bii	43.53 (7)	107.9 (2)	
O4Bii—K3—C2Bii	19.60 (7)	85.30 (7)	
O6—K3—C2Bii	108.83 (7)	97.60 (19)	
O3v—K3—C2Bii	99.07 (7)	115.0 (2)	
N3—K3—C2Bii	164.39 (7)	79.58 (6)	
O10—K3—C2Bii	118.22 (7)	106.4 (2)	
O6B—K3—C2Bii	78.38 (7)	155.85 (9)	
O7B—K3—C2Bii	64.41 (7)	88.02 (6)	
O7i—K3—C6	138.54 (7)	117.3 (3)	
O3Bii—K3—C6	83.02 (7)	115.9 (2)	
O4Bii—K3—C6	133.08 (7)	126.6 (2)	
O6—K3—C6	19.12 (6)	110.4 (2)	
O3v—K3—C6	63.31 (7)	109.6 (2)	
N3—K3—C6	41.19 (7)	109.0 (2)	
O10—K3—C6	110.86 (7)	106.33 (17)	
O6B—K3—C6	98.09 (7)	106.21 (18)	
O7B—K3—C6	148.73 (7)	115.23 (18)	
C2Bii—K3—C6	124.54 (7)	110.0 (2)	
O7i—K3—C1Bii	112.89 (7)	109.1 (2)	
O3Bii—K3—C1Bii	18.63 (7)	109.6 (2)	
O4Bii—K3—C1Bii	43.75 (7)	103.54 (16)	
O6—K3—C1Bii	84.28 (7)	109.54 (18)	
O3v—K3—C1Bii	99.41 (7)	114.86 (18)	
N3—K3—C1Bii	138.92 (7)	116.8 (3)	
O10—K3—C1Bii	128.16 (7)	116.5 (2)	
O6B—K3—C1Bii	67.97 (7)	126.6 (2)	
O7B—K3—C1Bii	77.36 (7)	125.3 (3)	
C2Bii—K3—C1Bii	25.56 (7)	119.7 (3)	
C6—K3—C1Bii	101.59 (7)	115.0 (3)	
O7i—K3—H100	64.6	46.60 (16)	
O3Bii—K3—H100	122.7	160.3 (2)	
O4Bii—K3—H100	102.2	75.88 (17)	
O6—K3—H100	124.2	128.7 (3)	
O3v—K3—H100	144.2	121.8 (3)	
N3—K3—H100	86.8	109.5 (3)	
O10—K3—H100	16.5	46.89 (15)	
O6B—K3—H100	58.1	87.87 (18)	
Bond/Angle	Distance/Value	Bond/Distance/Value	
------------	---------------	-------------------	
O7B—K3—H10O	37.8	C1B—C2B—K2iii	150.1 (2)
C2Bii—K3—H10O	102.2	O4B—C2B—K3iv	49.41 (15)
C6—K3—H10O	122.8	N1B—C2B—K3iv	154.7 (2)
C1Bii—K3—H10O	112.1	C1B—C2B—K3v	78.56 (17)
O7—K4—O4v	76.22 (7)	K2ii—C2B—K3v	76.10 (7)
O7—K4—O3vi	93.28 (7)	N2B—C3B—N3B	113.8 (3)
O4—K4—O3vi	157.43 (7)	N2B—C3B—H3B1	108.8
O7—K4—O5vii	174.39 (7)	N3B—C3B—H3B1	108.8
O4—K4—O5vii	107.36 (7)	N2B—C3B—H3B2	108.8
O3vi—K4—O5vii	81.84 (7)	N3B—C3B—H3B2	108.8
O7—K4—N2v	107.43 (7)	H3B1—C3B—H3B2	107.7
O4—K4—N2v	58.50 (7)	O5B—C4B—N2B	112.4 (3)
O3vi—K4—N2v	143.96 (7)	O5B—C4B—H4B1	109.1
O5v—K4—N2v	78.18 (7)	O5B—C4B—H4B1	109.1
O7—K4—O2vi	108.20 (7)	O5B—C4B—H4B2	109.1
O4—K4—O2vi	156.33 (7)	N2B—C4B—H4B2	109.1
O3vi—K4—O2vi	45.97 (6)	H4B1—C4B—H4B2	107.9
O5iv—K4—O2vi	70.34 (6)	O5B—C5B—N3B	113.5 (2)
N2—K4—O2vi	98.69 (7)	O5B—C5B—H5B1	108.9
O7—K4—O8vii	80.97 (7)	N3B—C5B—H5B1	108.9
O4—K4—O8vii	75.67 (7)	O5B—C5B—H5B2	108.9
O3vi—K4—O8vii	83.04 (7)	N3B—C5B—H5B2	108.9
O5v—K4—O8vii	95.62 (7)	H5B1—C5B—H5B2	107.7
N2—K4—O8vii	128.35 (8)	O6B—C6B—N4B	129.5 (3)
O2ii—K4—O8vii	127.72 (7)	O6B—C6B—C7B	121.0 (3)
O7—K4—C1iv	107.76 (8)	N4B—C6B—C7B	109.5 (3)
O4—K4—C1iv	175.75 (8)	O6B—C6B—K1v	44.70 (15)
O3vi—K4—C1iv	23.33 (7)	N4B—C6B—K1v	90.89 (19)
O5v—K4—C1iv	68.56 (7)	C7B—C6B—K1v	149.0 (2)
N2—K4—C1iv	120.66 (8)	O7B—C7B—O1B	124.2 (3)
O2—K4—C1iv	24.50 (7)	O7B—C7B—C6B	120.1 (3)
O8iv—K4—C1iv	103.22 (8)	O1B—C7B—C6B	115.7 (3)
O7—K4—O1	44.19 (6)	O7B—C7B—K1	59.38 (17)
O4—K4—O1	79.06 (6)	O1B—C7B—K1	72.16 (17)
O3vi—K4—O1	107.45 (7)	C6B—C7B—K1	150.1 (2)
O5v—K4—O1	140.07 (6)	\multicolumn{3}{l}{}	

Bond/Angle	Distance/Value	Bond/Distance/Value	
N4—Ni1—O1—C7	−5.2 (2)	K3—C6—C7—O1	121.4 (3)
O2—Ni1—O1—C7	172.8 (2)	O6—C6—C7—K4	80.9 (5)
N4—Ni1—O1—K4	106.9 (2)	N4—C6—C7—K4	−98.5 (4)
O2—Ni1—O1—K4	−75.08 (19)	K2—C6—C7—K4	65.4 (3)
N1—Ni1—O2—C1	−6.6 (2)	K3—C6—C7—K4	18.5 (7)
O1—Ni1—O2—C1	172.3 (2)	O6—C6—C7—K2	15.5 (3)
N1—Ni1—O2—K4iv	111.6 (2)	N4—C6—C7—K2	−163.9 (2)
O1—Ni1—O2—K4iv	−69.5 (2)	K3—C6—C7—K2	−46.9 (3)
N4—Ni1—N1—C2	−179.1 (2)	N4B—Ni1B—O1B—C7B	4.4 (2)
O2—Ni1—N1—C2	2.9 (2)	O2B—Ni1B—O1B—C7B	−175.1 (2)
N4—Ni1—N1—N2	0.5 (2)	N4B—Ni1B—O1B—K1	−117.2 (2)
Bond	Value (°)		
---	-------------		
O2—Ni1—N1—N2	-177.6 (2)		
C2—N1—N2—C4	-90.7 (3)		
Ni1—N1—N2—C4	89.7 (3)		
C2—N1—N2—C3	148.5 (3)		
Ni1—N1—N2—C3	-31.1 (3)		
C2—N1—N2—K4v	34.8 (3)		
Ni1—N1—N2—K4v	-144.78 (16)		
C5—N3—N4—C6	83.1 (3)		
C3—N3—N4—C6	-156.0 (3)		
K3—N3—N4—C6	-33.3 (3)		
C5—N3—N4—Ni1	-88.9 (3)		
C3—N3—N4—Ni1	32.0 (3)		
K3—N3—N4—Ni1	154.80 (16)		
Ni1—Ni1—N4—C6	-172.8 (2)		
O1—Ni1—N4—C6	8.2 (2)		
N1—Ni1—N4—N3	-1.0 (2)		
O1—Ni1—N4—N3	-179.9 (2)		
K4vi—O3—C1—O2	-36.9 (3)		
K3—O3—C1—O2	51.7 (4)		
K4vi—O3—C1—C2	141.0 (2)		
K3—O3—C1—C2	-130.4 (2)		
K3—O3—C1—K4vi	88.59 (18)		
Ni1—O2—C1—O3	-173.4 (2)		
K4vi—O2—C1—O3	34.2 (3)		
Ni1—O2—C1—C2	8.5 (3)		
K4vi—O2—C1—C2	-143.9 (2)		
Ni1—O2—C1—K4vi	152.39 (15)		
K4vi—O4—C2—N1	-41.1 (4)		
K4vi—O4—C2—C1	139.8 (2)		
N2—N1—C2—C4	2.0 (5)		
Ni1—N1—C2—O4	-178.4 (3)		
N2—N1—C2—C1	-178.8 (2)		
Ni1—N1—C2—C1	0.8 (3)		
N2—N1—C2—K4v	-28.5 (2)		
Ni1—N1—C2—K4v	151.09 (15)		
O3—C1—C2—O4	-5.2 (5)		
O2—C1—C2—O4	173.0 (3)		
K4vi—C1—C2—O4	79.9 (4)		
O3—C1—C2—N1	175.5 (3)		
O2—C1—C2—N1	-6.3 (4)		
K4vi—C1—C2—N1	-99.3 (4)		
O3—C1—C2—K4v	60.0 (5)		
K4vi—C1—C2—K4v	-121.8 (3)		
N4—N3—C3—N2	145.1 (2)		
N4—N3—C3—N2	-69.2 (3)		
C5—N3—N4—C6	52.2 (3)		
K3—N3—N4—Ni1	171.75 (18)		
N1—N2—C3—N3	69.0 (3)		

Bond	Value (°)
O2B—Ni1B—O1B—C1B	63.2 (2)
N1B—Ni1B—O2B—C1B	-1.5 (2)
O1B—Ni1B—O2B—C1B	178.5 (2)
N4B—Ni1B—N1B—C2B	177.3 (2)
O2B—Ni1B—N1B—C2B	-3.2 (2)
N4B—Ni1B—N1B—N2B	2.3 (3)
O2B—Ni1B—N1B—N2B	-178.2 (2)
C2B—N1B—N2B—C4B	-86.4 (3)
Ni1B—N1B—N2B—C4B	88.5 (3)
C2B—N1B—N2B—C3B	153.5 (3)
Ni1B—N1B—N2B—C3B	-31.3 (3)
C2B—N1B—N2B—K2iii	28.4 (3)
Ni1B—N1B—N2B—K2ii	-156.67 (16)
C5B—N3B—N4B—C6B	89.9 (3)
C3B—N3B—N4B—C6B	-149.9 (3)
K1iv—N3B—N4B—C6B	-27.1 (3)
C5B—N3B—N4B—Ni1B	-85.9 (3)
C3B—N3B—Ni1B—Ni1B	34.3 (3)
K1iv—N3B—Ni1B—Ni1B	157.07 (16)
C1B—O3—C1B—O2B	-179.7 (2)
K3ii—O3B—C1B—C2B	0.3 (2)
K3ii—O3B—C1B—C2B	176.1 (2)
K2ii—O3B—C1B—O2B	-57.3 (4)
K3ii—O3B—C1B—O2B	156.7 (2)
K2ii—O3B—C1B—C2B	52.5 (4)
K2ii—O3B—C1B—C2B	124.0 (3)
K2ii—O3B—C1B—C2B	-22.0 (3)
K1iv—O3B—C1B—C2B	-126.2 (2)
K2ii—O3B—C1B—K3i	146.0 (3)
K2ii—O3B—C1B—K3i	-104.2 (2)
K2ii—O3B—C1B—K3i	-173.6 (3)
Ni1B—O2B—C1B—O3B	5.2 (3)
Ni1B—O2B—C1B—C2B	-115.0 (6)
Ni1B—O2B—C1B—K3i	-35.3 (4)
Ni1B—O2B—C1B—C2B	-147.0 (3)
Ni1B—O2B—C1B—K3i	144.7 (2)
K3ii—O4B—C2B—C1B	33.1 (3)
K3ii—O4B—C2B—C2B	-111.64 (18)
K2ii—O4B—C2B—K3ii	111.64 (18)
Ni1B—N1B—C2B—O4B	1.8 (5)
Ni1B—N1B—C2B—C1B	-173.7 (3)
Ni1B—N1B—C2B—K2ii	6.2 (3)
N2B—N1B—C2B—C1B	-178.3 (2)
N2B—N1B—C2B—C1B	6.2 (3)
N2B—N1B—C2B—K2ii	161.31 (15)
N2B—N1B—C2B—K3ii	-73.4 (6)
Ni1B—N1B—C2B—K3ii	111.1 (5)

Acta Cryst. (2021). E77, 1289-1295
Bond	Value (deg)
C4—N2—C3—N3	-52.6 (3)
K4v—N2—C3—N3	-178.98 (19)
C5—O5—C4—N2	-57.2 (3)
K4viii—O5—C4—N2	162.24 (18)
N1—N2—C4—O5	-66.0 (3)
C3—N2—C4—O5	54.9 (3)
K4v—N2—C4—O5	175.62 (17)
C4—O5—C5—N3	56.9 (3)
K4viii—O5—C5—N3	-151.9 (2)
C4—O5—C5—K4v	-151.2 (2)
N4—N3—C5—K4v	66.4 (3)
C3—N3—C5—O5	-54.2 (3)
K3—N3—C5—O5	-177.35 (19)
N4—N3—C5—K4v	18.2 (5)
C3—N3—C5—K4v	-102.4 (4)
K3—N3—C5—K4v	134.4 (3)
K2—O6—C6—N4	158.3 (3)
K1—O6—C6—N4	-88.6 (5)
K3—O6—C6—N4	38.5 (4)
K2—O6—C6—C7	-21.0 (3)
K1—O6—C6—C7	92.1 (4)
K3—O6—C6—C7	-140.8 (2)
K1—O6—C6—K2	113.1 (4)
K3—O6—C6—K2	-119.79 (19)
K2—O6—C6—K3	119.79 (19)
K1—O6—C6—K3	-127.1 (4)
N3—N4—C6—O6	-0.9 (5)
Ni1—N4—C6—O6	171.9 (2)
N3—N4—C6—C7	178.5 (2)
Ni1—N4—C6—C7	-8.7 (3)
N3—N4—C6—K2	65.3 (8)
Ni1—N4—C6—K2	-121.9 (6)
N3—N4—C6—K3	26.8 (2)
Ni1—N4—C6—K3	-160.42 (15)
K2—O7—C7—O1	-164.9 (2)
K4—O7—C7—O1	-33.2 (3)
K3v—O7—C7—O1	66.7 (4)
K2—O7—C7—C6	113.3 (3)
K4—O7—C7—C6	142.9 (2)
K3v—O7—C7—C6	-117.1 (2)
K2—O7—C7—K4	-131.67 (18)
K3v—O7—C7—K4	99.98 (18)
K4—O7—C7—K2	131.67 (18)
K3v—O7—C7—K2	-128.3 (2)
Ni1—O1—C7—O7	178.1 (2)
K4—O1—C7—O7	28.2 (3)
Ni1—O1—C7—C6	1.8 (3)
K4—O1—C7—C6	-148.1 (2)
supporting information

Ni1—O1—C7—K4 149.87 (15) Ni1B—O1B—C7B—K1 −156.51 (16)
Ni1—O1—C7—K2 133.7 (7) O6B—C6B—C7B—O7B 7.6 (5)
K4—O1—C7—K2 −16.1 (8) N4B—C6B—C7B—O7B −173.3 (3)
O6—C6—C7—O7 7.3 (4) K1iv—C6B—C7B—O7B −44.8 (5)
N4—C6—C7—O7 −172.2 (3) O6B—C6B—C7B—O1B −171.3 (3)
K2—C6—C7—O7 −8.2 (2) N4B—C6B—C7B—O1B 7.8 (4)
K3—C6—C7—O7 −55.2 (5) K1iv—C6B—C7B—O1B 136.3 (3)
O6—C6—C7—O1 168.3 (2) K1iv—C6B—C7B—K1 −124.7 (4)
N4—C6—C7—O1 4.4 (4) N4B—C6B—C7B—K1 106.7 (4)
K2—C6—C7—O1 168.3 (2) K1iv—C6B—C7B—K1 −124.7 (4)

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z; (iii) −x, −y, −z; (iv) x, y−1, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y, −z; (vii) x, −y+1/2, z−1/2; (viii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O8—H8O···O9viii	0.85	2.02	2.869 (4)	173
O8—H8P···O4Bv	0.85	2.01	2.858 (3)	166
O9—H9P···O4v	0.86	1.91	2.722 (3)	157
O9—H9O···O6Bvi	0.86	2.07	2.864 (3)	153
O10—H10P···O4v	0.88	2.02	2.887 (3)	168
O10—H10O···O7Bv	0.87	2.04	2.882 (3)	164

Symmetry codes: (i) x, y+1, z; (v) −x+1, −y+1, −z; (vii) x, −y+1/2, z−1/2; (viii) x, −y+1/2, z+1/2; (ix) −x+1, y+1/2, z−1/2; (x) −x+1, y+1/2, −z+1/2.