ABSTRACT: Primary aldosteronism is considered the commonest cause of secondary hypertension. In affected individuals, aldosterone is produced in an at least partially autonomous fashion in adrenal lesions (adenomas, [micro]nodules or diffuse hyperplasia). Over the past decade, next-generation sequencing studies have led to the insight that primary aldosteronism is largely a genetic disorder. Sporadic cases are due to somatic mutations, mostly in ion channels and pumps, and rare cases of familial hyperaldosteronism are caused by germline mutations in an overlapping set of genes. More than 90% of aldosterone-producing adenomas carry somatic mutations in K⁺ channel Kir3.4 (KCNJ5), Ca²⁺ channel CaV1.3 (CACNA1D), alpha-1 subunit of the Na⁺/K⁺ ATPase (ATP1A1), plasma membrane Ca²⁺ transporting ATPase 3 (ATP2B3), Ca²⁺ channel CaV3.2 (CACNA1H), Cl⁻ channel ClC-2 (CLCN2), β-catenin (CTNNB1), and/or G-protein subunits alpha q/11 (GNAQ/11). Mutations in some of these genes have also been identified in aldosterone-producing (micro)nodules, suggesting a disease continuum from a single cell, acquiring a somatic mutation, via a nodule to adenoma formation, and from a healthy state to subclinical to overt primary aldosteronism. Individual glands can have multiple such lesions, and they can occur on both glands in bilateral disease. Familial hyperaldosteronism, typically with early onset, is caused by germline mutations in steroid 11-beta hydroxylase/ aldosterone synthase (CYP11B1/2), CLCN2, KCNJ5, CACNA1H, and CACNA1D.

Key Words: adenoma • aldosterone • hyperaldosteronism • mutation

Aldosterone, the main mineralocorticoid hormone, is physiologically produced in the zona glomerulosa of the adrenal cortex. By binding to the mineralocorticoid receptor, it activates signaling cascades leading to increased renal salt and water reabsorption, as well as increased potassium and proton secretion. The production of aldosterone is normally tightly regulated. Angiotensin II (the main product of the renin-angiotensin system) and elevated serum potassium levels are the main stimuli of aldosterone production; adrenocorticotrophic hormone can also temporarily increase aldosterone levels.¹ In primary aldosteronism (PA), levels of aldosterone are inappropriate for salt, volume, and/or potassium status. This excess production causes variable degrees of hypertension, possible hypokalemia, and disproportionately high levels of cardiovascular disease.² PA is considered the most important cause of secondary hypertension. An Italian study of 1672 primary care patients with hypertension, following the Endocrine Society guidelines for diagnosis, reported an overall prevalence of 5.9%, ranging from 3.9 in stage 1 hypertension to 11.8% in stage 3 hypertension.³ Recently, using urinary aldosterone for diagnosis, even higher prevalence estimates for biochemically overt PA were reported, from 11.3% in normotension to 22.0% in stage 3 hypertension.⁴

Traditionally, several subforms of PA were distinguished: bilateral adrenal hyperplasia, also known as idiopathic hyperaldosteronism (about 60% of cases), aldosterone-producing adenomas (APAs; about 30% of cases), unilateral hyperplasia (less common), malignancy, and familial hyperaldosteronism (FH; both very rare).⁵ Recent histological and genetic studies have challenged this concept and will be discussed in this review. The diagnosis of PA is complicated, based upon the aldosterone/rein ratio as screening parameter and subsequent confirmatory testing. Of clinical importance is the distinction between unilateral and bilateral forms because unilateral forms are amenable to potentially curative surgery, whereas bilateral forms are treated with mineralocorticoid receptor antagonists.⁶
Until 2011, the molecular mechanisms underlying autonomous aldosterone production in PA were largely unknown. Discoveries made over the last decade, their potential future impact on clinical PA management and open questions in the field of PA genetics will be covered in this review.

SOMATIC MUTATIONS IN APAS

Because APAs are typically treated by unilateral adrenalectomy, tumor tissue is available for genetic studies. Advances in sequencing technology enabled the discovery of somatic (tumor specific) mutations in APAs. The initial study sequenced the exomes of 4 APAs and corresponding normal tissue. Two tumors carried heterozygous mutations in the \textit{KCNJ5} gene, which encodes the inward rectifier potassium channel Kir3.4. One mutation, G151R, was located within the selectivity filter of the channel, which allows K\(^+\) to pass through the channel and blocks the passage of Na\(^+\), and the second mutation, L168R, was close by. Both mutations led to abnormal sodium permeability and depolarization of the cell, which results in opening of voltage-gated calcium channels, calcium influx and increased aldosterone production. Sanger sequencing identified 6 additional somatic \textit{KCNJ5} mutations, all G151R and L168R, in 18 other APAs. Follow-up studies showed that G151R and L168R are recurrently mutated in APAs and account for >40% of APAs (Table 1). Other \textit{KCNJ5} mutations are rare. Among rare mutations, T158A has been functionally studied, demonstrating activation of transcriptional regulators \textit{NURR1} and \textit{ATF2} downstream of calcium signaling and upstream of \textit{CYP11B2}. Further exome sequencing studies of \textit{KCNJ5} (K\(^+\) channel Kir3.4)-negative tumors revealed heterozygous mutations in \textit{CACNA1D}, which encodes the L-type calcium channel Ca\(_{1.3}\). \textit{CACNA1D} is large, and mutations cluster much less than in \textit{KCNJ5}, which is why early Sanger sequencing may have missed mutations; recent studies (albeit with rather small case numbers) show frequencies between 14 and 42% (Table 1). Another frequently mutated gene with heterozygous somatic mutations is \textit{ATP1A1}, which encodes the α-1 subunit of the Na\(^+\)/K\(^+\)-ATPase. Somatic mutations cause abnormal permeability to Na\(^+\) or H\(^+\) and loss of pump function, leading to depolarization, aldosterone production and proliferation, likely via increased intracellular calcium and cellular acidification. Less frequently, plasma membrane Ca\(^{2+}\) ATPase (\textit{ATP2B3}) mutations cause abnormal Na\(^+\) and potentially Ca\(^{2+}\) permeability, along with reduced Ca\(^{2+}\) transport capacity, all resulting in elevated intracellular Ca\(^{2+}\) levels. Heterozygous somatic gain-of-function mutations in \textit{CACNA1H}, encoding the T-type calcium channel Ca\(_{3.2}\), are also infrequent. These mutations confer gain-of-function, with increased calcium influx, like \textit{CACNA1D} mutations. Similarly rare are mutations in the gene \textit{CLCN2}, encoding the CIC-2 chloride channel.

Whereas the mutations discussed above affect ion channels or pumps and either directly or indirectly cause increased intracellular calcium levels (Figure 1), somatic mutations in \textit{CTNNB1}, encoding β-catenin, point to a different mechanism. β-Catenin is part of the Wnt signaling pathway. Somatic \textit{CTNNB1} mutations are present in several tumor types, including benign and malignant, hormone-producing and nonproducing tumors of the adrenal gland, among them APAs. One study suggested an association of \textit{CTNNB1} mutations in APAs with pregnancy; however, was doubted; such mutations were also found in males. Interestingly, unlike the mutations described above, \textit{CTNNB1} mutations have been described to frequently cooccur with other aldosterone-driver mutations, such as a \textit{CACNA1D} mutation or mutations in the \textit{GNA11} and \textit{GNAO} genes, encoding G-protein α subunits G11 and Gq, respectively, downstream of the AT1R (angiotensin 1 receptor). Mutations in \textit{GNA11} and \textit{GNAO} have only been found in conjunction with \textit{CTNNB1} mutations and are likely not sufficient for APA formation alone. Binding of angiotensin II to the AT1R results in exchange of guanosine diphosphate for guanosine triphosphate, liberation of G\(\beta\)γ and activation of downstream phospholipase C\(\beta\), which then cleaves phosphatidylinositol 4,5-bisphosphate into diacyl glycerol and inositol trisphosphate. Inositol trisphosphate causes Ca\(^{2+}\) release from intracellular stores (Figure 1). Somatic mutations prevent the hydrolysis of GTP that usually terminates signaling, causing constitutive activity and aldosterone production. Concurrent mutations in \textit{CTNNB1} and \textit{GNA11/Q} were associated with increased expression of luteinizing hormone/choriogonadotropin receptor (\textit{LHCGR}), potentially explaining an association with pregnancy. In mice, expression of a \textit{Ctnnb1} gain-of-function allele to the zona glomerulosa leads to a block of transdifferentiation of zona glomerulosa cells into zona fasciculata cells, resulting in progressive hyperplastic expansion of the zona glomerulosa and increased aldosterone levels.
observation suggests that \textit{CTNNB1} mutations may act primarily by increasing the number of aldosterone-producing cells, which may be sufficient to cause PA once tumors are large enough. Additional somatic mutations may cause increased aldosterone production on the individual cell level, aggravating the phenotype. \textit{GNA11} mutations may precede \textit{CTNNB1} mutations based on the finding of \text{single} \text{mutations} in hyperplastic areas outside of double-mutant APAs.33 Last, \textit{PRKACA} mutations, common in cortisol-producing adenomas, have been described in 2 PA cases, however, their role in causing PA is doubtful.35

Table 1. Somatic Mutation Frequencies in APAs From Different Ethnicities and Sexes8

% Mutations	White Americans (N=75)8–10	Black Americans (N=73)11	Japanese (N=106)12			
Sex	Male	Female	Total	Male	Female	Total
KCNJ5	24	70	41	13	57	70
CACNA1D	33	3	21	55	29	42
ATP1A1	22	10	17	13	3	8
ATP2B3	7	0	4	5	3	4
CTNNB1	0	7	3	3*	0	1
CACNA1H	4	3	4	NA	NA	NA
CLCN2	2	3	3	NA	NA	NA
Negative	7	3	5	13	9	11
				4	3	4

*Concomitant CACNA1D mutation.

Figure 1. Somatic and germline mutations in primary aldosteronism (PA).

In familial hyperaldosteronism (FH)-I, the \textit{CYP11B1/2} hybrid gene (1) is activated by adrenocorticotropic hormone (ACTH) via the MC2R (melanocortin 2 receptor) and cAMP signaling. \textit{KCNJ5} mutations (2) in aldosterone-producing adenomas (APAs) and in FH-III lead to abnormal Na+ influx, \textit{CLCN2} mutations (3) in APAs and in FH-II to higher Cl− efflux, and \textit{ATP1A1} (4) and \textit{ATP2B3} (5) mutations in APAs to channel-like permeabilities for Na+, H+, and Ca2+, as well as impaired pump function. These effects cause membrane depolarization, activation of voltage-gated calcium channels, calcium influx and increased calcium signaling, stimulating \textit{CYP11B2} expression and aldosterone production. Acidification may also play a role in \textit{ATP1A1} pathophysiology (not shown). Mutations in \textit{CACNA1D} (6) and \textit{CACNA1H} (7) directly increase calcium permeability. \textit{GNA11} and \textit{GNAQ} mutations (8) in APAs prevent termination of G-protein signaling downstream of the AT1R (angiotensin 1 receptor), leading to increased calcium release from intracellular stores. They coccur with \textit{CTNNB1} mutations (9) that prevent \(\beta\)-catenin degradation with increased signaling via the TCF/LEF (T-cell factor/lymphoid enhancer factor) family. Created with BioRender.com. DAG indicates diacyl glycerol; PLC, phospholipase C; IP\textsubscript{3}, inositol trisphosphate; and PIP\textsubscript{2}, phosphatidylinositol 4,5-bisphosphate.
SEX AND ETHNICITY ASPECTS IN APA SOMATIC MUTATION FREQUENCIES

Silent adrenal masses (incidentalomas, Figure 2) are common, especially in the elderly, and routine histopathology cannot distinguish between nonproducing and aldosterone-producing lesions. The most reliable data on mutations frequencies are from recent studies that identify the culprit lesion by immunohistochemistry for aldosterone synthase (Figure 2) and perform highly sensitive panel sequencing for mutation identification. When all known genes were sequenced, mutations were found in at least 95% of APAs. As noted for KCNJ5 in earlier studies, mutation frequencies differ between sexes and ethnicities (Table 1). KCNJ5 mutations are more frequent in women, whereas CACNA1D and ATP1A1 mutations are more frequent in men. KCNJ5 mutations have the highest prevalence in Asian populations, followed by those of European origin and African ancestry. In contrast, CACNA1D mutations are more frequent in blacks, outnumbering KCNJ5 mutations. Differences in diagnostic algorithms, salt or phytoestrogen ingestion cannot be excluded; however, biological differences among sexes and ethnicities, such as in circulating hormone levels, could well underlie these effects. Of note, female mice show a 3-fold higher adrenocortical tissue turnover than males. Female mice also use a stem cell/progenitor cell compartment in the adrenal capsule for renewal that is unused by males. Higher turnover and thus a higher probability of acquiring somatic mutations may thus underlie the higher frequency of adrenocortical tumors in women. It is also tempting to speculate that the mutational profile of APAs depends on their cells of origin, which may differ between sexes and, possibly, ethnicities.

SOMATIC MUTATIONS IN ALDOSTERONE-PRODUCING (MICRO)NODULES AND IN BILATERAL DISEASE

Small nodules of cells with increased expression of aldosterone synthase that protrude beyond the zona glomerulosa into the zona fasciculata occur in healthy individuals and PA patients. They were first described as aldosterone-producing cell clusters (APCCs) in 2010 and are now, according to a recently published international consensus, referred to as aldosterone-producing micronodules (formerly aldosterone-producing cell clusters [APCCs]) are not recognizable by hematoxylin and eosin staining but stain positive for aldosterone synthase expression. Aldosterone-producing nodules are visible on hematoxylin and eosin staining and are distinguished from aldosterone-producing adenoma (APA) by size. Multiple (micro)nODULES can cooccur within a single gland. Aldosterone-producing diffuse hyperplasia shows a broad, uninterrupted strip of aldosterone synthase-positive cells. Nonproducing adenomas stain negative for aldosterone synthase. Brown color indicates aldosterone synthase positivity on immunohistochemistry. Created with BioRendor.com.
micronodules (Figure 2).36 Using panel sequencing of APA disease genes, Nishimoto et al45 in 2015 discovered that APCCs from healthy kidney donors carried somatic mutations in \textit{CACNA1D} (6/23) and \textit{ATP1A1} (2/23).46 Nanba et al46 expanded on these findings by demonstrating that the APCC area increases with age in healthy kidney donors, contrary to normal zona glomerulosa CYP11B2 expression. Interestingly, in a separate clinical study, they detected an increase of the aldosterone/renin ratio with age on a high-sodium diet, whereas aldosterone stimulation on a low-sodium diet was blunted with age, suggesting that autonomous aldosterone production may increase with age due to the development of aldosterone-producing (micro)nodules, whereas normal zona glomerulosa recedes.46 Micronodules resembling those in normal individuals were also found in adrenals from patients with unilateral PA without adenoma; they carried somatic mutations in \textit{CACNA1D, KCNJ5, ATP1A1,} and \textit{ATP2B3} whereas no such mutations were found in nonnodular diffuse hyperplasia.47 Furthermore, 15 cases with bilateral disease who, as an unusual measure, underwent unilateral adrenalectomy, showed more and larger APCCs than normotensive controls. Sequencing of aldosterone-producing lesions revealed mutations in \textit{CACNA1D} in 58\% of APCCs, and of \textit{KCNJ5} in 1\% (in a lesion considered by the authors as micro-APA).48 suggesting that somatic mutations in aldosterone-producing (micro)nodules may underlie bilateral disease. Interestingly, adrenal hyperplasia, including (micro)nodules, can also occur in adrenals carrying a circumscribed APA. De Sousa et al18 investigated such adrenal glands using CYP11B2 immunohistochemistry and next-generation sequencing. Sequencing of 57 APCCs adjacent to an APA revealed mutations in known APA driver genes in 15, distinct from the mutation in the APA, with different mutations among different APCCs within the same gland. Besides mutations in \textit{CACNA1D} and \textit{ATP1A1}, interestingly, mutations in \textit{KCNJ5}, previously considered rare or absent in APCCs, but also mutations in \textit{CACNA1H, PRKACA,} and \textit{CTNNB1} were observed.18 Taken together, these results suggest that somatic mutations causing autonomous aldosterone production frequently occur in human adrenal glands. They contribute to variable degrees of autonomous aldosterone secretion.

IMPACT OF SOMATIC MUTATIONS ON PROLIFERATION AND SECOND-HIT HYPOTHESIS

A controversy in the field has been whether mutations in aldosterone-driver genes are sufficient only to cause increased/at least partially autonomous aldosterone production or also increased proliferation. In the APCC model, a somatic mutation in a single cell is assumed to cause increased aldosterone production and proliferation, leading to an aldosterone-producing micronodule, aldosterone-producing nodule, and eventually APA. In the alternative concept of a second-hit hypothesis, genetic or environmental factors cause proliferation, with additional somatic mutations leading to APA formation.49 Whether \textit{KCNJ5} mutations cause proliferation has been debated. The overexpression of mutant \textit{KCNJ5} in cultured cells increases lethality rather than proliferation, likely due to massive Na+ influx.50,51 In vivo, however, \textit{KCNJ5}-positive tumors show particularly low \textit{KCNJ5} expression.52 Evidence for germline \textit{KCNJ5} mutations (see below) and, specifically individuals with mosaicism for \textit{KCNJ5} mutations suggest that these mutations either increase proliferation or block transdifferentiation, leading to hyperplasia in vivo.50,53,54 APA-associated \textit{ATP1A1} mutations would likely be lethal if present in the germline. However, a recent study provided evidence for proliferative effects of an \textit{ATP1A1} mutation in the HAC15 adrenocortical cancer cell line in vitro, an effect that was serum dependent.21 Evidence for the second-hit hypothesis includes an individual with bilateral macronodular adrenal hyperplasia due to familial adenomatous polyposis with \textit{APC} mutation and \textit{KCNJ5}-positive APA.55 Zona glomerulosa hyperplasia but also increased nodulation and decreased vascularity and expression of stem/progenitor cell markers in areas surrounding APAs has also been suggested to support the second-hit hypothesis.56,57 However, such lesions typically carry independent somatic mutations.18

GERMLINE MUTATIONS IN FH

Genetic testing for FH subtypes (Table 2) is recommended in affected individuals with early onset and a positive family history of PA.58 Familial aggregation of PA was first described in 1966 in a father and a son whose phenotype was relieved by administration of dexamethasone (glucocorticoid-remediable aldosteronism, later also FH-I).59 This autosomal-dominant disorder is characterized by early-onset hypertension, often with a positive family history; hemorrhagic stroke and ruptured intracranial aneurysm are common in individuals without appropriate therapy.60 Incomplete penetrance or mild forms have been reported.61,62 In one study of 300 consecutive PA patients, 2 had FH-I. FH-I is caused by a hybrid gene that occurs due to a recombination event between \textit{CYP11B1} (11\β-hydroxylase, involved in cortisol synthesis under the control of adrenocorticotropic hormone) and \textit{CYP11B2} (aldosterone synthase). This leads to ectopic expression of aldosterone synthase in the zona fasciculata under the control of adrenocorticotropic hormone and the formation of hybrid steroids 18-oxocortisol and 18\β-hydroxycortisol, indicating the abnormal colocalization of enzymes involved in aldosterone and cortisol synthesis. Treatment with glucocorticoids suppresses adrenocorticotropic hormone and, sometimes in
combination with mineralocorticoid receptor antagonists, normalizes aldosterone and blood pressure. Unlike other FH genes, the chimeric CYP11B1/2 gene has not been found in APAs.64

FH-II initially referred to all non-FH-I cases of FH.65 An often-quoted prevalence of 6% in PA66 is likely a considerable overestimate due to chance associations of sporadic PA cases in families. Because a heterozygous R172Q CLCN2 mutation was discovered in a family from the original report,65 FH-II now denotes individuals with germline mutations in the CLCN2.67 Mutations were found in 7 additional families, among them 2 de novo. FH-II patients typically had early-onset hypertension with elevated aldosterone/renin ratios, with age at diagnosis typically before age 20 years, although, as in FH-I, incomplete penetrance was reported.67 Hypertension responded to therapy with mineralocorticoid receptor antagonists or other antihypertensive agents. Another de novo germline N-terminal mutation was reported in a family with survival or serum aldosterone.69 Severely enlarged adrenals showed severe therapy-resistant PA in childhood. Due to a positive dexamethasone suppression test, she was initially suspected to have glucocorticoid-remediable aldosteronism, but genetic analysis for the chimeric CYP11B1/2 gene was negative. CIC-2, the chloride channel encoded by CLCN2, mediates net efflux of chloride in the zona glomerulosa.67 CLCN2 mutations lead to increased chloride efflux, cellular depolarization, calcium influx, and aldosterone production (Figure 1).67,68

FH-III refers to patients with heterozygous germline mutations in the KCNJ5 gene. The initially published kindred showed severe therapy-resistant PA in childhood. Hybrid steroids were even higher than in FH-I, but treatment with dexamethasone failed to normalize blood pressure or serum aldosterone.69 Severely enlarged adrenal glands were found upon bilateral adrenalectomy, with a large zone of lipid-laden cells that expressed aldosterone synthase and enzymes involved in cortisol synthesis, explaining hybrid steroid synthesis.69,70 Genetic analysis identified a KCNJ5 T158A mutation.6 Additional kindreds, often with bilateral adrenal hyperplasia, were subsequently identified, for example, patients with G151R mutation that is common as somatic mutation in APAs.50

Interestingly, patients with another mutation, G151E, do not show massive hyperplasia and can be treated medically.52,71; this mutation appears to cause extreme Na+ influx that may interfere with cellular survival. This mutation does not occur in APAs, but, interestingly, has been identified in an APCC.18

FH-IV denotes patients with heterozygous germline mutations in the CACNA1H gene. One recurrent identical mutation, M1549V, was identified in 5 families with early-onset PA without other remarkable characteristics.72 An additional early-onset case with de novo M1549I mutation had PA and multiplex developmental disorder. The pathogenicity of additional variants is less certain.73,74 CACNA1H mutations lead to gain of channel function, with increased calcium influx and aldosterone production.72,75

A complex syndrome comprising PA, seizures, and neurological abnormalities was described in 2 individuals with de novo heterozygous gain-of-function CACNA1D mutations.18 Both were diagnosed with cerebral palsy. Variable associated abnormalities included transient hypoglycemia and cardiac defects. Expression of the channel in several other organs, including brain, pancreas, and heart, likely accounts for associated abnormalities; PA is variable.76–78 Several individuals with de novo CACNA1D mutations have been diagnosed with autism spectrum disorder without major endocrine abnormalities.79–81

Finally, any roles of ARMC5 and phosphodiesterase germline variants in PA remain to be confirmed.82,83 ATPase mutations have not been reported in FH, suggesting incompatibility of such germline mutations with survival.

GENETIC MOUSE MODELS OF PA

Several mouse models of human PA have been generated. A mouse model with transgenic expression of human CYP11B2 under the control of the human CYP11B1 promoter (resembling FH-I), shows elevated aldosterone levels and hypertension on a high-salt diet.84 A knockin mouse (Clcn2^{180Q/+}) models the commonest FH-II mutation, with normal adrenal weight and morphology, mildly elevated aldosterone levels and mildly elevated blood pressure. Intracellular Ca²⁺ oscillatory

Table 2. FH Subforms
FH-I
FH-II
FH-III
FH-IV
PASNA syndrome

FH indicates familial hyperaldosteronism; MRA, mineralocorticoid receptor antagonist; and PASNA, primary aldosteronism, seizures and neurological abnormalities.
activity in the adrenal zona glomerulosa is elevated.85 A second model carries a gain-of-function N-terminal deletion of 8 amino acids. In the homozygous state, the zona glomerulosa cells in this model are depolarized, with increased intracellular Ca2+ levels, elevated aldosterone and decreased renin, elevated blood pressure, hypokalemia, and moderate albuminuria.86 \textit{Kcnj5} is not expressed in rodent adrenal glomerulosa.67 A mouse model expressing wild type or mutant human \textit{KCNJ5} under the \textit{Akr1b7} promoter, reported only as an abstract, appears to lack adrenal hypertrophy.88 A knockin mouse with \textit{Cacna1h}M1560V/+ mutation (FH-IV model) shows normal adrenal morphology, elevated adrenal \textit{Cyp11b2} expression and elevated blood pressure. Adrenals from these animals have elevated baseline and peak intracellular Ca2+ levels.89 Last, a transgenic mouse with adenocortical expression of a Gq-coupled designer receptor develops disorganization of adrenal zonation and hyperaldosteronism,90 as in \textit{GNAQ} mutations in APAs. Additional models with mutations in \textit{KCNK3} and \textit{KCNK9} potassium channels or cryptochrome genes have been reviewed elsewhere.91

DIAGNOSTIC AND THERAPEUTIC ADVANCES BASED ON GENETIC DISCOVERIES

Of particular interest regarding clinical diagnosis are APAs with \textit{KCNJ5} mutations. Beyond their high prevalence, they are associated with early diagnosis, high aldosterone levels, large tumors,13 high cure rates,92 and lower precontrast Hounsfield units on computed tomography93 due to lipid-rich fasciculata-like tumor cells.130,94 Like FH-III patients, patients with \textit{KCNJ5}-positive APAs have elevated concentrations of hybrid steroids,95 allowing prediction of unilateral disease based on steroid profiling.96 This, together with imaging, may in the future help to bypass adrenal venous sampling in individuals with \textit{KCNJ5} mutations.

In addition, blockers of mutant \textit{KCNJ5} channels could serve as diagnostic or therapeutic tools in PA. A drop in blood pressure or aldosterone in response to short-term treatment may help to identify \textit{KCNJ5}-positive tumors. Long-term therapy might lead to tumor shrinkage.96 Sensitivity of mutant \textit{KCNJ5} channels to blockers of Na+ and Ca2+ transporting proteins such as verapamil (for \textit{G151R} and \textit{L168R}) and amiloride (only \textit{L168R} analyzed) has been reported.7 In a high-throughput screen, macrolide antibiotics such as roxithromycin and clarithromycin were identified as specific blockers of both \textit{G151R} and \textit{L168R}, but not WT \textit{KCNJ5}. Similarly, the nonantibiotic macrolide motilin receptor agonist idremcinal and synthesized macrolide derivatives without antibiotic or motilide activity specifically inhibited mutant \textit{KCNJ5} channels.96 Macrolide compounds decrease the excessive aldosterone production associated with expression of mutant \textit{KCNJ5} channels in an aldosterone-producing cell line in vitro96 and in APA cells carrying \textit{KCNJ5} mutations ex vivo.97 Results of proof-of-concept studies in humans evaluating macrolides for the diagnosis of PA are pending.98

The finding that intracellular calcium is the key signal for aldosterone also raises the question whether calcium channel blockers could be used to inhibit aldosterone production. Therapeutic use of calcium channel blockers in PA was considered long before the discovery of calcium channel mutations99 but approved compounds target vascular calcium channels, and their antihypertensive effect is mostly aldosterone-independent.5 Normal aldosterone values in \textit{Cacna1h} knockout mice89,100 and the phenotype of \textit{Cacna1d} knockout mice (deafness and sinoatrial node dysfunction with bradycardia and arrhythmia)101 argue against these channels as therapeutic targets.

Finally, the finding of a likely genetic continuum between hyperplastic lesions and APAs, combined with the availability of highly specific \textit{CYP11B2} antibodies, has led to a new histopathology consensus for the description of unilateral disease96 (Figure 2).

SUMMARY AND FUTURE PERSPECTIVES

Genetic studies, published over the last decade, have—perhaps unexpectedly—established PA as a largely genetic disorder. The initial discovery that APAs are due to somatic mutations, mostly in ion channels and pumps, was followed by the finding that similar mutations are highly prevalent in what are now called aldosterone-producing (micro)nodules, particularly in bilateral disease. There is probably a biologic continuum between somatic mutations in single cells in otherwise healthy individuals, (micro)nodule formation and eventually APA development,102 making cutoffs for diagnosis of PA somewhat arbitrary. Indeed, there is clinical evidence that subclinical PA is present in normotensive individuals and is associated with an increased risk for the development of hypertension.103 One study, based on urinary aldosterone and oral sodium suppression tests, found a continuum of renin-independent aldosterone production, paralleling the severity of hypertension.4 Small lesions could be the histopathologic correlate of subclinical PA with low renin,103 in particular in individuals with resistant hypertension, as suggested by the good response to spironolactone in the PATHWAY-2 study.104

The recognition of this biological continuum also to some extent questions the distinction between unilateral and bilateral disease; hyperplastic or nodular areas are common in APA patients and can lead to contralateral recurrence.105 In addition, asymmetrical aldosterone production with bilateral lesions can prevent cure after adrenalectomy.106
Unanswered questions regarding the genetics and pathophysiology of PA include:

In which cell(s) does the initial somatic mutation occur—stem/progenitor cells and/or glomerulosa cells? What are the mechanisms underlying proliferation of aldosterone-producing lesions? Are there additional mutations to discover? Additional disease genes will explain only small fractions of APAs, but it is tempting to speculate that aldosterone-producing micronodules could carry mutations without major effects on proliferation, similar to GNA11/Q mutations discussed above, and that more FH cases will be solved. Last, how can more disease genes could carry mutations without major effects on proliferation and all stages of hypertension suggests that simple screening tests, such as that for plasma renin should be performed in most hypertensive patients.

ARTICLE INFORMATION
Affiliation
Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Germany.

Sources of Funding
This work was funded by the Stiftung Charité (BiH_PRO_406) and the German Research Foundation (DFG, CRC 1453 (Project-ID 431984000) and CRC 1365).

Disclosures
Rockefeller University holds a patent Compositions and methods for diagnosing and treating diseases and disorders associated with mutant KCNJ5 listing U.I. Scholl as an inventor.

REFERENCES
1. Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84:489–539. doi: 10.1152/physrev.00030.2003
2. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Vezio F, Gaita F, Mutareo P. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6:41–50. doi: 10.1016/S2213-8587(17)30319-4
3. Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, Gabetti L, Mengozzi G, Williams TA, Rabbia F, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69:1811–1820. doi: 10.1016/j.jacc.2017.01.052
4. Brown JM, Siddiqui M, Calhoun DA, Carey RM, Hopkins PN, Williams GH, Vayda A. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann Intern Med. 2020;172:10–20. doi: 10.7326/M20-0065
5. Funder JW, Carey RM, Mantero F, Murad MH, Reinecke M, Shibata H, Stowasser M, Young WF Jr. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:1889–1916. doi: 10.1210/jc.2015-4061
6. Choi M, Scholl UI, Yue F, Björklund P, Zhao B, Nelson-Wilson C, Ji W, Cho Y, Patel A, Men CJ, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331:768–772. doi: 10.1126/science.1198785
7. Tauber P, Denton D, Sindl J, Humberg E, Tegtmeyer I, Sterner C, Beuschlein F, Reinecke M, Barhanin J, Bandulik S, et al. Pharmacology and pathophysiology of mutated KCNJ5 found in adrenal aldosterone-producing adenomas. Endocrinology. 2014;155:1553–1562. doi: 10.1210/en.2013-1944
8. Nanba K, Rainey WE. Genetics in endocrinology: impact of race and sex on genetic causes of aldosterone-producing adenomas. Eur J Endocrinol. 2021;185:R1–R11.
9. Nanba K, Omata K, Else T, Beck P, Turner AF, Miller BS, Giordano T, Tomlins SA, Rainey WE. Targeted molecular characterization of aldosterone-producing adenomas in white americans. J Clin Endocrinol Metab. 2018;103:3869–3876. doi: 10.1210/jc.2018-01004
10. Nanba K, Binder AR, Rege J, Hattangady NG, Else T, Liu CJ, Tomlins SA, Vats P, Kumar-Sinha C, Giordano TJ, et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension. 2020;75:645–649. doi: 10.1161/HYPERTENSIONAHA.119.14349
11. Nanba K, Omata K, Gomez-Sanchez CE, Stratakis CA, Demidowich AP, Suzuki M, Thompson LDR, Cohen DL, Luther JM, Geller L, et al. Genetic characteristics of aldosterone-producing adenomas in blacks. Hypertension. 2019;73:886–892. doi: 10.1161/HYPERTENSIONAHA.118.12070
12. Nanba K, Yamazaki Y, Bick N, Onodera K, Tezuka Y, Omata K, Ono Y, Binder AR, Tomlins SA, Rainey WE, et al. Prevalence of somatic mutations in aldosterone-producing adenomas in Japanese patients. J Clin Endocrinol Metab. 2020;105:dgaa955. doi: 10.1210/cjci/dgaa955
13. Lenzoni L, Rossoitt G, Malogolino G, Letizia C, Funder JW, Rossi GP. A meta-analysis of somatic kcnj5 k channel mutations in 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metab. 2015;100:E1098–1105. doi: 10.1210/jc.2015-2149
14. Hattangady NG, Karashima S, Yuan L, Ponce-Balbuena D, Jalife J, Gomez-Sanchez CE, Auchus RJ, Rainey WE, Else T. Mutated KCNJ5 activates the acute and chronic regulatory steps in aldosterone production. J Mol Endocrinol. 2016;57:1–11. doi: 10.1530/JME-15-0324
15. Oku K, Plonczynski MW, Luis Lam M, Gomez-Sanchez EP, Gomez-Sanchez CE. Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology. 2012;153:1774–1782. doi: 10.1210/en.2011-1733
16. Scholl UI, Goh G, Stölling G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013;45:1050–1054. doi: 10.1038/ng.2695
17. Azizan EA, Poulsen H, Tulp D, Zhou J, Claussen M, Lieb A, Maniero C, Garg S, Bochukova EG, Zhao W, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 2013;45:1055–1065. doi: 10.1038/ng.2716
18. De Sousa K, Bouklouk S, Baron S, Nanba K, Wack M, Rainey WE, Roso A, Giscos-Douriez I, Meotchi T, Amar L, et al. Genetic, cellular, and molecular heterogeneity in adenals with aldosterone-producing adenoma. Hypertension. 2020;75:1034–1044. doi: 10.1161/HYPERTENSIONAHA.119.14177
19. Beuschlein F, Bouklouk S, OSSWALD A, Wieland T, Nielsen HN, Lichtnauer UD, Periton D, Schack VR, Amar L, Fischer E, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013;45:440–444. doi: 10.1038/ng.2666
20. Stindl J, Tauber P, Sterner C, Tegtmeyer I, Warth R, Bandulik S. Pathogenesis of adrenal aldosterone-producing adenomas carrying mutations of the Na+/K(+)/ATPase. Endocrinology. 2015;156:4582–4591. doi: 10.1210/en.2015-1466
21. Kubuke K, Oku K, Gomez-Sanchez CE, Gomez-Sanchez EP, Itcho K, Ohno H, Nagano G, Yoshi Y, Baba R, Kodama T, et al. ATP1A1 mutant in...
aldosterone-producing adenoma leads to cell proliferation. J Int Med Sci. 2021;9:1096. doi: 10.3390/jims2021091096

22. Tauber P, Aichinger B, Christ C, Stindl J, Rhayem Y, Beuschlein F, Warth R, Bandulik S. Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca(2+)/ATPase ATP2B3. Endocrinology. 2016;157:2489–2499. doi: 10.1210/en.2015-2059

23. Dutta RK, Arnesen H, Heie A, Waiz M, Alesina P, Söderkvist P, Gimm G. O.A. somatic mutation in CLCN2 is identified in a sporadic aldosterone-producing adenoma. Eur J Endocrinol. 2019;181:K37–K41. doi: 10.1530/EJE-19-0377

24. Rege J, Nanba K, Blinder AR, Plaska S, Udager AM, Vats P, Kumar Sinha C, Giordano TJ, Rainey WE, Else T. Identification of somatic mutations in CLCN2 in aldosterone-producing adrenocortical tumors. J Endocrinol Soc. 2020;4:34a123. doi: 10.1210/jendos/bva123

25. Kim S, Jeong H. Somatic mutation hotspots in the beta-catenin gene: lessons from the human cancer genome databases. Mol Cells. 2019;42:8–16. doi: 10.14348/molcells.2018.0346

26. Tadjine M, Lampron A, Ouali L, Bourdeau I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf). 2008;68:264–270. doi: 10.1111/j.1365-2265.2007.03033.x

27. Assil G, Letouzé E, Fissnacht M, Jouinot A, Barreau O, Omeiri H. Activating mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab. 2015;65:622–628. doi: 10.1016/j.clinendmet.2015.04.012

28. Audefet M, Jœjean A, Chartier-Kastler E, Rouprêt M. Adrenal tumours are more predominant in females regardless of their histological subtype: a review. World J Urol. 2013;31:1037–1043. doi: 10.1007/s00345-012-1116-1

29. Nishimoto K, Nakagawa K, Li D, Kosaka T, Oya M, Mikami S, Shibata H, Itoh H, Mitiati F, Yamazaki T, et al. Adrenocortical zonation in humans under normal and pathological conditions. J Clin Endocrinol Metab. 2010;95:2296–2305. doi: 10.1210/jc.2009-2010

30. Nishimoto K, Tomlins SA, Kuck R, Cani AK, Giordano TJ, Hovesson DH, Liu CJ, Sanjanawala AR, Edwards MA, Gomez-Sanchez CE, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci U S A. 2015;112:E4591–E4599. doi: 10.1073/pnas.1505529112

31. Nanba K, Vaidya A, Williams GH, Zhang I, Else T, Rainey WE. Age-related autonomous aldosteronism. Circulation. 2017;136:347–355. doi: 10.1161/CIRCULATIONAHA.117.028021

32. Gurnell M, Happerfield L, Marker A, Bienz M, Azizan EA, et al. Pregnancy, APC-dependent familial adenomatous polyposis. J Clin Endocrinol Metab. 2016;101:3010–3017. doi: 10.1210/jcem.2015-2029

33. Audenet F, Méjean A, Chartier-Kastler E, Rouprêt M. Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. J Endocrinol. 2015;26:2489–2499. doi: 10.1210/en.2015-2059

34. Assil G, Letouzé E, Fissnacht M, Jouinot A, Lescar JP, Barreau O, Omeiri H. Activating mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab. 2015;65:622–628. doi: 10.1016/j.clinendmet.2015.04.012

35. Assil G, Letouzé E, Fissnacht M, Jouinot A, Lescar JP, Barreau O, Omeiri H. Activating mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas. J Clin Endocrinol Metab. 2015;65:622–628. doi: 10.1016/j.clinendmet.2015.04.012

36. Rodriguez S, Perlemoine K, René-Corail F, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet. 2014;46:607–612. doi: 10.1038/ng.2963

37. Bonnet S, Gaujoux S, Launay P, Baudry C, Chokri I, Ragazzon B, et al. Wnt/beta-catenin pathway activation in adrenocortical adenomas is frequently due to somatic ctnnb1-activating mutations, which are associated with later-onset and nonsecreting tumours in a study of cortical-secreting and -nonsecreting tumours. J Clin Endocrinol Metab. 2011;96:E191–E26. doi: 10.1210/jc.2010-1885

38. Teo AE, Garg S, Shaikh LH, Zhou J, Karel Stenberg F, Gurnell M, Happerfield L, Marker A, Bier AU, Zitzelsberger H, et al. Pregnancy, APC-dependent familial adenomatous polyposis. J Clin Endocrinol Metab. 2008;93:1360–1367. doi: 10.1083/jcb.200703033

39. Dutta RK, Arnesen H, Heie A, Warth R, Bandulik S, Gimm G. O.A. somatic mutation in CLCN2 is identified in a sporadic aldosterone-producing adenoma. J Endocrinol Soc. 2020;4:34a123. doi: 10.1210/jendos/bva123

40. Cheng CJ, Sung CC, Wu ST, Lin YC, Sytwu HK, Huang CL, Lin SH. Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.3 membrane abundance. J Clin Endocrinol Metab. 2015;100:E155–E163. doi: 10.1210/en.2014-3009

41. Lytki R, Schedi A. The sexually dimorphic adrenal cortex: implications for adrenal disease. Int J Mol Sci. 2021;22:4889. doi: 10.3390/ijms22044889

42. Grabek A, Dolfi B, Klein B, Jian-Motamed F, Chaboisseric MC, Schedi A. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell. 2015;29:290–296.e2. doi: 10.1016/j.stem.2019.04.012

43. Audenet F, Méjean A, Chartier-Kastler E, Rouprêt M. Adrenal tumours are more predominant in females regardless of their histological subtype: a review. World J Urol. 2013;31:1037–1043. doi: 10.1007/s00345-012-1116-1

44. Nishimoto K, Nakagawa K, Li D, Kosaka T, Oya M, Mikami S, Shibata H, Itoh H, Mitiati F, Yamazaki T, et al. Adrenocortical zonation in humans under normal and pathological conditions. J Clin Endocrinol Metab. 2010;95:2296–2305. doi: 10.1210/jc.2009-2010

45. Nishimoto K, Tomlins SA, Kuck R, Cani AK, Giordano TJ, Hovesson DH, Liu CJ, Sanjanawala AR, Edwards MA, Gomez-Sanchez CE, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci U S A. 2015;112:E4591–E4599. doi: 10.1073/pnas.1505529112

46. Nishimoto K, Tomlins SA, Kuck R, Cani AK, Giordano TJ, Hovesson DH, Liu CJ, Sanjanawala AR, Edwards MA, Gomez-Sanchez CE, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci U S A. 2015;112:E4591–E4599. doi: 10.1073/pnas.1505529112

47. Scholl Primary Aldosteronism Genetics 2022;79:887–897. DOI: 10.1161/HYPERTENSIONAHA.121.16498

May 2022 895

Review
69. Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Scholl UI, Stölting G, Schewe J, Thiel A, Tan H, Nelson-Williams C, Mulatero P, Tizzani D, Viola A, Bertello C, Monticone S, Mengozzi G, Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL. Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Am J Hum Genet. 2022;109:1041–1061. doi: 10.1016/j.ajh.2021.102190

70. Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intra-adrenal hyperaldosteronism type II: five families with a new variety of primary aldosteronism. J Clin Endocrinol Metab. 1996;81:4310–4312. doi: 10.1210/jcem.81.12.8954032

71. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by demeclocaine. Can Med Assoc J. 1966;95:1099–1119.

72. Litchfield WR, Anderson BF, Weiss RJ, Lifton RP, Dluhy RG. Intra-adrenal hyperaldosteronism type II: five families with a new variety of primary aldosteronism. J Clin Endocrinol Metab. 1996;81:4310–4312. doi: 10.1210/jcem.81.12.8954032

73. Reinier EN, Walenda G, Seidel E, Scholl UI. Cacna1h mutant calcium channel causes autonomous aldosterone production in hac15 cells and is inhibited by mibebradil. Endocrinology. 2016;157:3016–22. doi: 10.1207/s15309538endo161107-20

74. Mulatero P, Monticone S, Deinum J, Amor L, Prejbisz A, Zennaro MC, Beuschlein F, Rossi GP, Nishikawa T, Morganst E, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension. J Hypertens. 2020;38:1919–1928. doi: 10.1097/HJH.0000000000002510

75. Sutherland DJ, Ruse JL, Laidlaw JC. Hypertension, increased aldosterone secretion and low plasma renin activity relieved by demeclocaine. Can Med Assoc J. 1966;95:1099–1119.

76. Semenova NA, Ryzhova OR, Strokova TV, Tarar NN. [The third case report a patient with primary aldosteronism, seizures, and neurologic abnormalities (PASNA) syndrome de novo variant mutations in the CACNA1D gene]. Zh Nevrol Psikhiatr Im S S Korsakova. 2018;118:49–52. doi: 10.17116/jnevro201811121419

77. De Mingo Almeyde MC, Mitsuf Grau L, Moreno Macián F, Ferrer Lorente B, León Carriéna S. A de novo CACNA1D mutation in a patient with congenital hyperinsulinism, primary hyperaldosteronism and hypotonia. Channels (Austin). 2020;14:175–180. doi: 10.1007/s13248-020-00248-w

78. Flanagan SE, Vario F, Johnson MB, Caswell R, Laver TW, Lango Allen H, Hassan K, Ellard S. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. Pediatr Diabetes. 2017;18:320–323. doi: 10.1111/pedi.12512

79. Otterhu N, Kasjer T, Copeland JN, Strens K. De novo CACNA1D Ca2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch. 2020;472:755–773. doi: 10.1007/s00424-020-20418-w

80. O’Roak BJ, Vives L, Girirajan S, Karakoc N, Coe BP, Levy R, Ko A, Lee C, Smith JD, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:252–256. doi: 10.1038/nature10989

81. Pintér J, Lieb A, Benedetti L, Lampert M, Montelone S, Liedl KR, Tuluc P, Strens K. CACNA1D de novo mutations in autism spectrum disorder activate Cav1.3 L-type calcium channels. Biol Psychiatry. 2015;77:816–822. doi: 10.1016/j.biopsych.2014.11.020

82. Zilbermint M, Xekouki P, Fauz FR, Benabou A, Giorgiorgioli A, Schernthaner-Reiter MH, Batsis M, Sinai N, Quezado MM, Menino M, et al. Familial hyperaldosteronism type I and II: common and pathogenetic mechanisms. Endocr Rev. 2019;40:141–199. doi: 10.1210/edr-2018-00410

83. Hassi-Rouci X, Maria AG, Faucz FR, Berthon A, Gkourogianni A, Zarras S, Nonneke M, Bousset TL, Hellmig N, Peters J, Muller DN, Fahike C, Stallings G, Scholl U. Elevated aldosterone blood pressure in a mouse model of familial hyperaldosteronism with CIC-2 mutation. Nat Commun. 2019;10:5155. doi: 10.1038/s41467-019-13033-4

84. Göppner C, Orozco I, Hoegh-Berthelsen M, Soria AH, Hübner CA, Fernandes-Rosa FL, Boulkroun S, Zennaro MC, Jentsch TJ. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nat Commun. 2019;10:4167. doi: 10.1038/s41467-019-12113-9

85. Chen AX, Nishimori K, Nakano K, Rainey WE. Potassium channels related to primary aldosteronism: expression similarities and differences between human and rat adrenals. Mol Cell Endocrinol. 2015;417:141–148. doi: 10.1016/j.mce.2015.09.011

86. Lichtenerauer U, Schmid PL, Ohwaid A, Renner-Müller I, Reincke M, Warth R, Wolf E, Beuschlein F. Establishment of an in vivo model for KCNJ5 dependent hyperaldosteronism. Exp Clin Endocrinol Diabetes. 2015;123:309–312. doi: 10.1055/s-0035-1547718

87. Seidel E, Schewe J, Zhang J, Dinh HA, Forslund SK, Marko L, Helling N, Peters J, Muller DN, Lifton RP, et al. Enhanced Ca(2+) signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model (cacna1h m1560v+/+). Proc Natl Acad Sci U S A. 2021;118:e2020791115. doi: 10.1073/pnas.2020791115

88. Taylor MJ, Ullenhoff MR, Frucci EC, Rege J, Ansorge MS, Gomez-Sanchez CE, Begum S, Lauffer E, Breault DT, Rainey WE. Chemo-genetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupted functional zonation. J Clin Invest. 2020;130:933–93. doi: 10.1172/JCI127492

89. Seidel E, Schewe J, Scholl UI. Genetic causes of primary aldosteronism. Exp Mol Med. 2019;51:11–12. doi: 10.1038/s41419-019-0337-9

90. Eisenhofer G, Durán C, Cannistraci CV, Peitzsch M, Williams TA, Riester A, Burrello J, Buffolof P, Prejbisz A, Beuschlein F, et al. Use of steroid profiling combined with machine learning for identification and subtype classification in primary aldosteronism. JAMA Netw Open. 2020;3:e2016209. doi: 10.1001/jamanetworkopen.2020.16209

91. Scholl UI, Healy JM, Thiel A, Fonsec A, Brown TC, Kunstman JW, Horne MJ, Dietrich D, Riemer J, Kückköyl S, et al. Novel somatic mutations in primary hyperaldosteronism are related to the clinical, radiological and pathological phenotype. Clin Endocrinol (Oxf). 2015;83:779–789. doi: 10.1111/cen.12873
94. Ono Y, Yamaaki Y, Otsuka K, Else T, Tomlins SA, Rhayem Y, Williams TA, Reincke M, Carling T, Monticone S, et al. Histological characterization of aldosterone-producing adrenocortical nodules with different somatic mutations. J Clin Endocrinol Metab. 2020;105:e282–e289. doi: 10.1210/cjme/dgz2235

95. Williams TA, Peitzsch M, Dietz AS, Dekkers T, Bidlingmaier M, Riester A, Treff M, Rhayem Y, Beuschlein F, Lenders JW, et al. Genotype-specific steroid profiles associated with aldosterone-producing adrenocortical adenomas. Hypertension. 2016;67:139–145. doi: 10.1161/HYPERTENSIONAHA.115.06186

96. Scholl UI, Abriola L, Zhang C, Reimer EN, Plummer M, Kazmierczak Bt, Jiang J, Hoyer D, Merkel JS, Wang W, et al. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma. J Clin Invest. 2017;127:2739–2750. doi: 10.1172/JCI91733

97. Caroccia B, Prisco S, Seccia TM, Piazza M, Maiolino G, Rossi GP, Macrolides blunt aldosterone biosynthesis: a proof-of-concept study in KCNJ5 mutated adenoma cells ex vivo. Hypertension. 2017;70:1238–1242. doi: 10.1161/HYPERTENSIONAHA.117.10226

98. Maiolino G, Ceolotto G, Battistel M, Barbiero G, Cesari M, Amar L, Caroccia B, Padroni R, Azzi M, Rossi GP. Macrolides for KCNJ5-mutated aldosterone-producing adenoma (MAPA): design of a study for personalized diagnosis of primary aldosteronism. Blood Press. 2018;27:200–205. doi: 10.1080/08037051.2018.1436961

99. Nadler JL, Hsueh W, Horton R. Therapeutic effect of calcium channel blockade in primary aldosteronism. J Clin Endocrinol Metab. 1985;60:986–989. doi: 10.1210/jcem-60-6-989

100. Thuesen AD, Finsen SH, Rasmussen LL, Andersen DC, Jensen BL, Hansen PBL. Deficiency of t-type Ca(2+) channels Cav3.1 and Cav3.2 has no effect on angiotensin II-induced hypertension but differential effect on plasma aldosterone in mice. Am J Physiol Renal Physiol. 2019;317:F254–F263. doi: 10.1152/ajprenal.00121.2018

101. Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Stiessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000;102:889–97. doi: 10.1016/s0092-8674(00)00113-1

102. Nishimoto K, Seki T, Kurihara I, Yokota K, Omura M, Nishikawa T, Shibata H, Kosaka T, Oya M, Suematsu M, et al. Case Report: nodule development from subcapsular aldosterone-producing cell clusters causes hyperaldosteronism. J Clin Endocrinol Metab. 2016;101:6–9. doi: 10.1210/jc.2015-3285

103. Brown JM, Robinson-Cohen C, Luque-Fernandez MA, Allison MA, Baudrand R, Ix JH, Kestenbaum B, de Boer IH, Vaidya A. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann Intern Med. 2017;167:630–641. doi: 10.7326/M17-0882

104. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McIntnies G, Ford I, Cruickshank JK, Caulfield MJ, Salsbury J, et al; British Hypertension Society’s PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386:2059–2068. doi: 10.1016/S0140-6736(15)00257-3

105. Kong L, Zhang J, Dong L, Xu X, Gao PJ, Wang JG, Zhu L. Recurrence of primary aldosteronism 10 years after left adrenalectomy for aldosterone-producing adenoma: a case report. Front Endocrinol (Lausanne). 2021;12:728565. doi: 10.3389/fendo.2021.728565

106. Hacini I, De Sousa K, Boukroun S, Meatchi T, Amar L, Zennaro MC, Fernandes-Rosa FL. Somatic mutations in adrenals from patients with primary aldosteronism not cured after adrenalectomy suggest common pathogenic mechanisms between unilateral and bilateral disease. Eur J Endocrinol. 2021;185:405–412. doi: 10.1530/EJE-21-0338

107. Jaffe G, Gray Z, Krishnan G, Stedman M, Zheng Y, Han J, Chertow GM, Leppert JT, Bhalla V. Screening rates for primary aldosteronism in resistant hypertension: a cohort study. Hypertension. 2020;75:650–659. doi: 10.1161/HYPERTENSIONAHA.119.14359