Appendix A

A.1. AS04-adjuvanted HPV-16/18 vaccine (Cervarix, GSK; AS04-HPV-16/18v)

AS04-HPV-16/18v contains a proprietary adjuvant system (AS04; adjuvant system containing 50 µg of 3-O-desacyl-4’-monophosphoryl lipid A adsorbed on aluminium salt [500 µg Al³⁺]), which has been shown to produce an enhanced immune response compared with a formulation with aluminium salt only (Giannini et al., 2006).

A.2. Supplementary methods

A single-round consultation with two Malaysian clinical experts (RS and CMY, co-authors of this paper) was held in March and April 2015 with a single expert present at each meeting. Both experts are obstetrics & gynaecology experts undertaking current practice in Malaysia. Each meeting was organised around presenting the key input parameters for discussion and endorsement. Specific discussion points were around cervical intraepithelial neoplasia (CIN) treatment patterns, cervical cancer (CC) mortality, CC screening coverage and frequency, and genital warts incidence and treatment. Both experts suggested that CC mortality and screening frequency were important variables that necessitated specific attention. Genital warts incidence was suggested a lesser health issue in Malaysia. Both experts agreed with the data inputs and assumptions.
Appendix B

Table B.1. Age-specific mortality rates among the female population of Malaysia
(Department of Statistics Malaysia, 2015; Jabatan Perangkaan Malaysia (Department of Statistics Malaysia))

Age group (years)	Age-specific mortality rate (per thousand residents)
0-1	0.00550
0 – 4	0.00146
5 - 9	0.00102
10-14	0.00110
15 - 19	0.00161
20 – 24	0.00187
25 - 29	0.00228
30 - 34	0.00326
35 - 39	0.00531
40 - 44	0.00801
45 - 49	0.01341
50 - 54	0.02245
55 - 59	0.03396
60 - 64	0.05336
65 - 69	0.08106
70 - 74	0.14949
75 - 79	0.24058
80+	1.00000

Table B.2. Human papillomavirus (HPV) incidence used in the model, based on prevalence data (Bruni et al., 2015)

Age group (years)	HPV incidence range in the model (among females)
<15	0
15-19	0.07292 - 0.07765
20-24	0.05403 - 0.0694
25-29	0.04223 - 0.05077
30-34	0.04013 - 0.0412
35-39	0.04046 - 0.04142
40-44	0.04003 - 0.04145
45-49	0.03543 - 0.03929
50-54	0.03063 - 0.0344
55-59	0.02474 - 0.02976
60-64	0 - 0.02234
65-69	N/A
70-74	N/A
+75	N/A
Table B.3. Female genital warts incidence in Japan (Kumamoto et al., 2004)

Age groups (years)	Incidence of 1st attack genital warts
<15	0.0 (assumption)
15-19	87.8
20-24	146.3
25-29	112.3
30-34	48.3
35-39	32.0
40-49	5.7
50-54	5.6
55-59	2.3
60-64	1.2
≥65	0.0 (assumption)
Appendix C

Table C.1. Natural history of HPV infection

Parameter	Yearly transition probabilities	References
Low-risk HPV		
[No HPV] to [Low-risk HPV]	0 - 0.067	Age specific (Kumamoto et al., 2004; Richardson et al., 2003)
[Low-risk HPV] to [No HPV]	0.516	(Richardson et al., 2003)
[Low-risk HPV] to [Genital warts]*	0.0001 - 0.0592	Age-specific genital warts incidence (Kumamoto et al., 2004) and calibration
[Low-risk HPV] to [Low-risk CIN1]	0.036	(Van de Velde et al., 2007)
[Low-risk CIN1] to [No HPV]	0.500	(Van de Velde et al., 2007)
Oncogenic HPV		
[No HPV] to [Oncogenic HPV]	0 - 0.076	Age specific derived from (Bruni et al., 2015) Transition probability specific for Malaysia
[Oncogenic HPV] to [No HPV]	0.293 - 0.553	Age specific (Goldie et al., 2004; Melnikow et al., 1998; Moscicki et al., 2001; Schlecht et al., 2003)
[Oncogenic HPV] to [Oncogenic CIN1]	0.049	(Goldie et al., 2004; Sanders and Taira, 2003; Van de Velde et al., 2007)
[Oncogenic HPV] to [CIN2/3]	0	Assumption
[Oncogenic CIN1] to [No HPV]	0.449	Natural regression (Sanders and Taira, 2003; Van de Velde et al., 2007)
[Oncogenic CIN1] to [CIN2/3]	0.125	(Melnikow et al., 1998) including calibration
[CIN2/3] to [No HPV]	0.227	(Sanders and Taira, 2003; Van de Velde et al., 2007)
[CIN2/3] to [Oncogenic CIN1]	0	Spontaneous regression from [CIN2/3] to [CIN1] assumed to be 0 as all regressions assumed to go straight to [No HPV]
[CIN2/3] to [Persistent CIN2/3]	0.114	(Melnikow et al., 1998)
[Persistent CIN2/3] to [No HPV]	0.227	(Sanders and Taira, 2003; Van de Velde et al., 2007)
[Persistent CIN2/3] to [Cancer]	0.001 - 0.648	Age specific; from calibration
[Cancer] to [Death cancer]	0.106	Based on proportion of cervical cancer patients still alive after 5 years (assumed to be cured, N=6,130) and expected 5-year cumulative number of cases (N = 2,145*5 = 10,725) = 6,130/10,725 = 0.5716 Data retrieved from Globocan 2012 (Ferlay et al., 2013) Transition probability specific for Malaysia
[Cancer] to [Cancer cured]	0.156	The annual cervical survival rate was calculated as 1−(1−0.5716)^(1/5)) = 15.6% (Ferlay et al., 2013) Transition probability specific for Malaysia

Screening parameters

Parameter	Value	Reference
Pap sensitivity CIN1	0.580	Based on “screening” from (Fahey et al., 1995)
Proportion of CIN1 treated	0	(MoH Malaysia and Academy of Medicine, 2003)
Pap sensitivity CIN2/3	0.610	Based on “CIN2” from (Fahey et al., 1995)
Proportion of CIN2/3 treated	1.00	Expert opinion

C1b Cost methods

Part of these methods have been described in (Aljunid et al., 2010).

Treatment cost

In order to assess the average direct costs per patient associated with cervical cancer, a retrospective review of patient records from four hospitals from the period January 2007 to December 2008 was
performed to identify cervical cancer patients and to characterise resource use in these patients. The four hospitals chosen in this study (one teaching hospital in Kuala Lumpur and three government hospitals in Central, Northern and East Coast region of Malaysia) are geographically dispersed and were carefully selected to provide data representative of the whole country. A total of 444 hospital admissions attributable to cervical cancer were identified at the selected hospitals, classified according to the ICD-10 code C53 for malignant neoplasm of the cervix uteri. Cervical cancer cases were categorised according to cancer stage.

The clinical treatment pathways and annual resource use (number of visits, medication use and procedures) of patients with precancerous lesions were estimated by an expert panel comprising obstetricians, pathologists, oncologists, radiotherapists, public health specialists and nurses as follows:

- Management of CC starts with Pap smear screening. The participants reported that around 0.86% to 3.1% of the results are abnormal. Out of these abnormal smears, 70% are usually ASCUS (atypical squamous cells of undetermined significance) which needs a repeat smear within 6 months. 30% are pathological in nature with colposcopic procedure to determine the diagnosis.
- Usually based on colposcopic examinations 40% are LGSIL (low-grade squamous intraepithelial lesion). The cytological slide needs to be reviewed by the pathologist to determine whether they are normal or abnormal. A normal result requires a repeat smear within 4-6 months and 2 repeated normal smears will entail the patient to a 3 yearly follow up. If a repeated smear turns out to be abnormal, a repeated colposcopy needs to be done. An abnormal result will require the patient to undergo Cone, LEEP (loop electrosurgical excision procedure) or LLETZ (large loop excision of the transformation zone) procedure.
- Another 60% are HGSIL (high-grade squamous intraepithelial lesion) which requires biopsy to determine the stage of the disease. From this biopsy usually 60% will turn out to be CIN1, 35% CIN2/3 and another 5% Invasive. 80% of CIN1 cases need a repeat smear within 6 months and out of that 80% will need a repeat colposcopy while 20% of CIN1 cases need cryotherapy either by ablation or excision. 95% of CIN2/3 cases need an excision either by Cone, LEEP or LLETZ procedure. Another 5% will end up requiring Total Abdominal Hysterectomy (TAH).
- Invasive disease stages 1, 2, 3 and 4. Usually 20% are Stage 1, 30% Stage 2, another 30% Stage 3 and 20% Stage 4. 90% of the patients in Stage 1 require surgical intervention and 10% end-up with chemotherapy. Patients in Stage 2-4a require either surgery or combined chemoradiotherapy or both while Stage 4b usually requires palliative treatment.

Overhead cost

Top-down costing

A top-down costing approach is employed to estimate the cost of treatment for in- and out-patient care. Clinical Cost Modelling Software Version 2.1 (CCM Ver. 2.1) is used to distribute the cost from Top Level Cost Centres to Intermediate and Patient Cost Centre. The final cost endpoint calculated using this methodology was cost per day of stay per patient with CC. In imputing the cost the following conventions were used:
Capital Cost

Costs of buildings and fixtures have been included according to the life span of the building estimated at 20 years with an annual depreciation of 5%, i.e. a 12.46 annualisation factor. This value was then applied in proportion to the area utilised for activities within the scope of the study. Costs of instruments have been determined at a life span of 5 years with an annual depreciation of 20%. Costs of transportation/vehicles have been calculated with the assumption of a life span of 5 years with an annual depreciation of 20%, i.e. a 4.32 annualisation factor. Only vehicles used within the activity scope of this study were considered.

Recurrent Cost

Emolument costs including salaries, bonuses and allowances to healthcare personnel involved in each activity within the scope of the study were applied according to the time ratio allotted to the relevant activities. The total gross income of individual healthcare personnel was divided by 10,400 to calculate an emolument cost per minute (assuming there are 260 total days of work, with each day consisting of 8 hours). The costs of supplies were calculated as the total cost of all purchases of medication and non-medicinal items (slides, reagent, disposable gloves, disposable speculum and spatulas etc.) used for the activities related to the study. Utility costs due to water, electricity supply, telephone and waste maintenance were calculated according to area of use for activities within the scope of the study.

C.2. Randomised controlled trials used to determine AS04-HPV-16/18v and HPV-6/11/16/18 vaccine (4vHPVv) efficacy

(Brown et al., 2009; Paavonen et al., 2009; Skinner et al., 2009; The FUTURE II Study Group, 2007; Tjalma et al., 2009).
Table C.3. Estimation of vaccine effectiveness

Parameter	HPV type distribution	Vaccine efficacy AS04-HPV-16/18v (95% CI)	Vaccine efficacy 4vHPVv (95% CI)
CIN1			
HPV-16/18	25.10% (South-East Asia) (Bruni et al., 2015)	98% - assumed same as for CIN2+ (Paavonen et al., 2009)	98% - assumed same as for CIN2+ (The FUTURE II Study Group, 2007)
Grouped non-vaccine types (HPV 31/33/35/39/45/51/52/56/58/59)	58.10% (South-East Asia) (Bruni et al., 2015)	47.7% (28.9–61.9%) (Paavonen et al., 2009; Tjalma et al., 2009)	23.4% (7.8–36.4%) (Brown et al., 2009)
HPV-6/11	4.40% (South-East Asia) (Bruni et al., 2015)	0%	98% - assumed same as for CIN2+ HPV-16/18 (The FUTURE II Study Group, 2007)
Overall effectiveness		52.31%	42.51%
Genital warts			
HPV-6/11	90% (expert opinion)	0%	98% - assumed same as for CIN2+ HPV-16/18 (The FUTURE II Study Group, 2007)
Overall effectiveness		0%	88.20%
CIN2/3			
HPV-16/18	49.30% (Bruni et al., 2015)	98% (Paavonen et al., 2009)	98% (The FUTURE II Study Group, 2007)
Grouped non-vaccine types (HPV 31/33/35/39/45/51/52/56/58/59)	50.60% (Bruni et al., 2015)	68.4% (45.7–82.4%) (Paavonen et al., 2009; Skinner et al., 2009)	32.5% (6.0–51.9%) (Brown et al., 2009)
Overall effectiveness		82.92%	64.76%
Cervical cancer			
HPV-16/18	59.26%* (Bruni et al., 2015)	98% - assumed same as for CIN2+ (Paavonen et al., 2009)	98% - assumed same as for CIN2+ (The FUTURE II Study Group, 2007)
Grouped non-vaccine types (HPV 31/33/35/39/45/51/52/56/58/59)	38.86%* (Bruni et al., 2015)	68.4% (45.7–82.4%) (Paavonen et al., 2009; Skinner et al., 2009)	33% (6–52%) (Brown et al., 2009)
Overall effectiveness		84.66%	70.71%

* Values were normalised to 100% as the individual HPV type prevalences added up to 149.5%

4vHPVv, HPV-6/11/16/18 vaccine; AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine; CIN1/2/3, cervical intraepithelial neoplasia grade 1/2/3; HPV, human papillomavirus

C.4. Clinical trials used to determine efficacy against non-vaccine HPV types:

(Brown et al., 2009; Paavonen et al., 2009; Skinner et al., 2009; Tjalma et al., 2009)

Non-vaccine types included: HPV types 31/33/35/39/45/51/52/56/58/59

C.5. HPV cost-effectiveness analyses used for yearly disutilities:

(Gold et al., 1998; Goldie et al., 2004; Insinga et al., 2005b; Institute of Medicine, 2000; Myers et al., 2004; Woodhall et al., 2011). HPV cost-effectiveness analyses were used to determine the yearly disutilities for precancerous and cancerous states (genital warts 0.018; CIN1/2/3-detected 0.0128; cancer 0.2730; cured cancer 0.062; death 1).
Fig. C.6. Observed vs. modelled cervical cancer incidence (Ferlay et al., 2013; World Health Organization (WHO), 2014)

CC, cervical cancer; CI5, Cancer Incidence in Five Continents

Fig. C.7. Observed vs. modelled cervical cancer mortality (Ferlay et al., 2013)

CC, cervical cancer
Fig. C.8. Modelled vs. observed annual incidence (per 100,000 women) of genital warts (Japan data) (Kumamoto et al., 2004)
Appendix D

Table D.1. Input variables values for one-way sensitivity analysis

	Base case	Min	Max
Vaccine efficacy cross protection			
CIN1 4vHPV	47.7%	28.9%	61.9%
AS04-HPV-16/18v	23.4%	7.8	36.4
Vaccine efficacy cross protection			
CIN2/3 and CC 4vHPV	68.4%	45.7%	82.4%
AS04-HPV-16/18v	32.5%	6.0%	51.9%
Discount rate	5%	1.5%	5%
HPV oncogenic infection rate in population	0 - 0.076	-20%	+20%
HPV-16/18 in CIN1	25.10%	20.08%	30.12%
HPV-16/18 in CIN2/3	49.30%	39.44%	59.16%
HPV-16/18 in CC	59.26%	47.41%	71.11%
Distribution cross protection			
HPV types CIN1	50.10%	46.48%	69.72%
HPv types CIN2/3	50.6%	40.5%	60.7%
HPV-6/11 in genital warts	90%	72%	100%
Distribution cross protection			
HPV types CC	38.86%	31.09%	46.63%
Disutility			
CIN1	0.0128	0.0102	0.0154
CIN2/3	0.0128	0.0102	0.0154
CC	0.2730	0.2184	0.3276
CC cured	0.0620	0.0496	0.0744
GW	0.0180	0.0144	0.0216
Regular screening coverage	59.7%	47.8%	71.6%
Pap screen sensitivity CIN1	58.0%	46.4%	69.6%
Pap screen sensitivity CIN2/3	61.0%	48.8%	73.2%
Cost			
Negative pap	MYR 30	MYR 34	MYR 36
False positive pap	MYR 1,190	MYR 952	MYR 1,428
CIN1	MYR 1,102	MYR 882	MYR 1,322
Genital warts	MYR 1,833.63	MYR 1,466.9	MYR 2,200.36
CIN2/3	MYR 2,461	MYR 1,969	MYR 2,953
CC	MYR 62,537.43	MYR 50,030	MYR 75,045
Disutility vaccine	MYR 134	MYR 107.2	MYR 160.8

4vHPV, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); CC, cervical cancer; CIN1/2/3, cervical intraepithelial neoplasia grade 1/2/3; GW, genital warts; HPV, human papillomavirus; MYR, Malaysian Ringgits; Pap, Papanicolaou test.
Health states	Distribution	Source
Age-specific mortality	Uniform distribution (−−)	Assumption. Multiplied at each age by a uniform distribution from 0.8–1.2
Oncogenic HPV infection		
[Oncogenic HPV] to [No HPV]	Uniform distribution (0.234–0.442; 0.352–0.664)	Assumption. Multiplied at each age by a uniform distribution from 0.8–1.2
[Oncogenic HPV] to [CIN1]	Normal distribution 0.049 (SD 0.009)	(Moskicki et al., 2001)
[Oncogenic HPV] to [CIN2/3]	Fix (0)	Assumption
[Oncogenic CIN1] to [Cancer cured]	Normal distribution 0.449 (SD 0.142)	(Sanders and Taira, 2003; Van de Velde et al., 2007)
[CIN1] to [CIN2/3]	Normal distribution 0.125 (SD 0.021)	(Melnikow et al., 1998; Sanders and Taira, 2003; Van de Velde et al., 2007)
[CIN2/3] to [Cancer cured]	Normal distribution 0.227 (SD 0.058)	(Melnikow et al., 1998)
[CIN2/3] to [Oncogenic CIN1]	Fix (0)	Assumption
[Persistent CIN2/3] to [Cancer]	Uniform distribution (0.091–0.137)	(Melnikow et al., 1998)
% CIN2/3 detected undergoing treatment	Fix (1)	Assumption
CIN2/3 treatment success	Uniform distribution (0.72–1)	Assumption based on expert opinion
[Cancer] to [Death from CC]	Uniform distribution (0.085–0.127)	Assumption
[Cancer] to [Cancer cured]	Uniform distribution (0.125–0.187)	Assumption
Low-risk HPV infection		
[Low-risk HPV] to [No HPV]	Uniform distribution (0.413–0.619)	(Richardson et al., 2003)
[Low-risk HPV] to [Genital warts]	Uniform distribution (0.0001–0.0474; 0.0001–0.071)	Multiplied at each age by a uniform distribution from 0.8–1.2 (Kumamoto et al., 2004)
[Low-risk HPV] to [Low-risk CIN1]	Normal distribution 0.036 (SD 0.005)	(Van de Velde et al., 2007)
% GW resistant	Uniform distribution 0.28–0.42	(Woodhall et al., 2011)
[Low-risk CIN1] to [No HPV]	Normal distribution 0.500 (SD 0.145)	(Van de Velde et al., 2007)
Cost of regular screening for subjects with negative pap smear	Uniform distribution (MYR 24–MYR 36)	Expert panel
Cost of regular screening for positive pap smear subject, plus colposcopy/biopsy	Uniform distribution (MYR 952 – MYR 1,428)	Expert panel
Treatment cost of CIN1	Uniform distribution (MYR 1,681.6 – MYR 2,522.4)	Expert panel
Treatment cost of CIN2/3	Uniform distribution (MYR 1,968.8 – MYR 2,953.2)	Expert panel
Average yearly treatment cost for GW and resistant GW in females	Uniform distribution MYR 1,467.2 - MYR 2,200.8	Expert panel
Composite average yearly treatment costs accounting for each stage of CC	Uniform distribution (MYR 50,029.6 - MYR 75,044.4)	Expert panel
Price vaccine per dose (both vaccine)	Fix (MYR 107.2 - MYR 160.8)	Assumption
Disutilities		
No HPV	Fix (0)	
HPV, CIN1, CIN2/3 undetected	Fix (0)	
CIN1 detected	Uniform distribution (0.010–0.015)	(Insinga et al., 2005a; Myers et al., 2004)
CIN2/3 detected	Uniform distribution (0.010–0.015)	(Insinga et al., 2005a; Myers et al., 2004)
GW	Uniform distribution (0.014–0.022)	(Gold et al., 1998; Myers et al., 2004)
Cancer	Uniform distribution (0.216–0.328)	(Insinga et al., 2005a; Myers et al., 2004)
Cancer cured	Uniform distribution (0.050–0.074)	(Insinga et al., 2005a; Myers et al., 2004)

Table D.2. Input variables values for probabilistic sensitivity analysis
Screening effectiveness	
CIN1 detected	Normal distribution 0.58 (SD 0.045) (Fahey et al., 1995)
CIN2/3 detected	Normal distribution 0.61 (SD 0.045) (Fahey et al., 1995)

Vaccine effectiveness	
AS04-HPV-16/18v effect against 16/18	Fix (0.980) (Paavonen et al., 2009)
AS04-HPV-16/18v effect against other 10 HPV-types in CIN1	Normal distribution 0.477 (SD 0.083) (Paavonen et al., 2009; Tjalma et al., 2009)
AS04-HPV-16/18v effect against other 10 HPV-types in CIN2/3	Normal distribution 0.684 (SD 0.083) (Paavonen et al., 2009; Skinner et al., 2009)
AS04-HPV-16/18v effect against other 10 HPV-types in CC	Normal distribution 0.684 (SD 0.083) (Paavonen et al., 2009; Skinner et al., 2009)
4vHPVv effectiveness against 16/18	Fix (0.980) (The FUTURE II Study Group, 2007)
4vHPVv effectiveness against other 10 HPV-types in CIN1	Normal distribution 0.231 (SD 0.072) (Brown et al., 2009)
4vHPVv effectiveness against other 10 HPV-types in CIN2/3	Normal distribution 0.332 (SD 0.111) (Brown et al., 2009)
4vHPVv effectiveness against other 10 HPV-types in CC	Normal distribution 0.332 (SD 0.111) (Brown et al., 2009)
4vHPVv effectiveness against HPV-6/11	Normal distribution 0.980 (SD 0.065) (Garland et al., 2007; The FUTURE II Study Group, 2007; Villa, 2006)

HPV type distribution	
HPV-6/11 in CIN1	Uniform distribution (0.04 - 0.05) (Bruni et al., 2015)
HPV-16/18 in CIN1	Uniform distribution (0.2 - 0.3) (Bruni et al., 2015)
HPV-16/18 in CIN2/3	Uniform distribution (0.39 - 0.59) (Bruni et al., 2015)
HPV-16/18 in CC	Uniform distribution (0.47 - 0.71) (Aubin et al., 2008; Garland et al., 2009)
HPV-6/11 in GW	Normal distribution (0.72 – 1) (Bruni et al., 2015)

4vHPVv, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); CC, cervical cancer; CIN1/2/3, cervical intraepithelial neoplasia grade 1/2/3; GW, genital warts; HPV, human papillomavirus; lr, low risk; MYR, Malaysian Ringgits; Pap, Papanicolaou test; SD, standard deviation.
Fig. D.3. Probabilistic sensitivity analysis result

GDP, gross domestic product; QALY, quality-adjusted life year

IV: 2.4%

II: 96.3%

Threshold: 3xGDP/capita

I: 1.2%

III: 0.1%
Appendix E

Table E.1. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPVv, cost outcomes base-case mortality

Cost outcomes (MYR)	Duration (year)	10	15	20	25	30	35	40	45	50	100
AS04-HPV-16/18v	10	MYR 14,286,390	MYR 11,588,074	MYR 8,884,296	MYR 6,530,295	MYR 4,490,474	MYR 2,809,284	MYR 1,528,112	MYR 3,020,305	MYR 3,189,125	MYR 3,192,056
	15	MYR 18,615,966	MYR 15,917,650	MYR 13,213,872	MYR 10,859,871	MYR 8,820,050	MYR 7,138,860	MYR 5,857,688	MYR 1,309,271	MYR 1,140,451	MYR 1,137,521
	20	MYR 23,244,632	MYR 20,546,316	MYR 17,842,538	MYR 15,488,537	MYR 13,448,716	MYR 11,767,526	MYR 10,486,354	MYR 5,937,937	MYR 5,769,117	MYR 5,766,187
	25	MYR 27,265,845	MYR 24,567,530	MYR 21,863,752	MYR 19,509,751	MYR 17,469,929	MYR 15,786,740	MYR 14,507,568	MYR 9,959,150	MYR 9,790,331	MYR 9,787,400
	30	MYR 30,761,019	MYR 28,062,703	MYR 25,358,925	MYR 23,004,924	MYR 20,965,103	MYR 19,283,913	MYR 18,002,741	MYR 13,454,324	MYR 13,285,504	MYR 13,282,573
	35	MYR 33,620,630	MYR 30,922,314	MYR 28,218,536	MYR 25,864,353	MYR 23,824,714	MYR 22,143,524	MYR 20,862,352	MYR 16,313,935	MYR 16,145,115	MYR 16,142,185
	40	MYR 39,278,779	MYR 36,580,463	MYR 33,876,685	MYR 31,522,684	MYR 29,482,863	MYR 27,801,673	MYR 26,520,502	MYR 21,972,084	MYR 21,803,264	MYR 21,800,334
	45	MYR 40,582,451	MYR 37,894,135	MYR 35,190,357	MYR 32,836,356	MYR 30,796,535	MYR 29,115,345	MYR 27,834,173	MYR 23,285,756	MYR 23,116,936	MYR 23,114,005
	50	MYR 40,973,646	MYR 38,275,331	MYR 35,571,553	MYR 33,217,552	MYR 31,177,730	MYR 29,496,541	MYR 28,215,369	MYR 23,666,951	MYR 23,498,132	MYR 23,495,201
	100	MYR 40,980,237	MYR 36,281,921	MYR 35,378,143	MYR 33,224,142	MYR 31,184,321	MYR 29,503,131	MYR 26,221,959	MYR 23,673,542	MYR 23,504,722	MYR 23,501,792

4vHPVv, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgit

Table E.2. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPV, QALY outcomes, base-case mortality

QALY	Duration (year)	10	15	20	25	30	35	40	45	50	100
AS04-HPV-16/18v	10	222.1	203.1	188.3	168.6	160.2	155.3	153.4	153.0	152.9	152.9
	15	265.3	246.3	227.0	212.7	203.5	198.5	196.6	196.1	196.1	196.1
	20	309.2	290.2	276.9	256.7	247.3	242.4	240.5	240.1	240.0	240.0
	25	341.7	322.7	303.4	289.2	279.8	274.9	273.0	272.6	272.6	272.6
	30	363.2	344.2	324.9	310.6	301.2	296.3	294.5	294.0	294.0	294.0
	35	374.3	355.3	336.0	321.7	312.4	307.5	305.6	305.1	305.1	305.1
	40	378.0	359.0	339.7	325.4	316.0	311.1	309.3	308.8	308.8	308.8
	45	379.6	360.6	341.3	327.0	317.6	312.8	310.9	310.4	310.4	310.4
	50	379.6	360.6	341.3	327.0	317.7	312.8	310.9	310.5	310.4	310.4
	100	379.6	360.6	341.3	327.1	317.7	312.8	310.9	310.4	310.4	310.4

4vHPVv, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix)
Table E.3. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPVv, ICER, base-case mortality

ICER	Duration (year)	10	15	20	25	30	35	40	45	50	100
	AS04-HPV-16/18v										
10	Cx dominant	Cx									
15	Cx dominant	Cx									
20	Cx dominant	Cx									
25	Cx dominant	Cx									
30	Cx dominant	Cx									
35	Cx dominant	Cx									
40	Cx dominant	Cx									
45	Cx dominant	Cx									
50	Cx dominant	Cx									
100	Cx dominant	Cx									

4vHPVv, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix)
Table E.4. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPVv, Cost outcomes mortality
(Razak et al., 2013)

Cost outcomes (MYR)	Duration (year)	10	15	20	25	30	35	40	45	50	100
AS04-HPV-16/18v	4vHPVv	MYR 19,037,353	MYR 16,083,774	MYR 13,058,630	MYR 10,393,505	MYR 8,049,836	MYR 6,102,700	MYR 4,630,799	MYR 11,527	MYR 231,753	MYR 235,530
15	MYR 23,947,192	MYR 20,993,612	MYR 17,968,469	MYR 15,303,344	MYR 12,959,675	MYR 11,012,538	MYR 9,540,637	MYR 4,888,311	MYR 4,878,085	MYR 4,674,309	
20	MYR 29,307,681	MYR 26,354,101	MYR 23,328,958	MYR 20,663,833	MYR 18,320,164	MYR 16,373,027	MYR 14,901,126	MYR 10,258,800	MYR 10,038,574	MYR 10,034,798	
25	MYR 34,040,125	MYR 31,086,546	MYR 28,061,402	MYR 25,396,277	MYR 23,052,608	MYR 21,105,472	MYR 19,633,571	MYR 14,991,245	MYR 14,771,019	MYR 14,767,242	
30	MYR 38,230,277	MYR 35,276,697	MYR 32,251,554	MYR 29,586,429	MYR 27,242,760	MYR 25,295,623	MYR 23,823,722	MYR 19,181,396	MYR 18,961,170	MYR 18,957,394	
35	MYR 41,696,998	MYR 38,743,419	MYR 35,716,275	MYR 33,053,151	MYR 30,709,481	MYR 28,762,345	MYR 27,290,444	MYR 22,648,118	MYR 22,427,892	MYR 22,424,115	
40	MYR 47,585,382	MYR 44,631,803	MYR 41,606,659	MYR 38,941,634	MYR 36,597,865	MYR 34,650,729	MYR 33,178,828	MYR 29,536,502	MYR 28,316,276	MYR 28,312,499	
45	MYR 49,316,290	MYR 46,362,711	MYR 43,337,567	MYR 40,672,442	MYR 38,328,773	MYR 36,381,637	MYR 34,909,736	MYR 30,267,410	MYR 30,047,184	MYR 30,043,407	
50	MYR 49,813,564	MYR 46,859,985	MYR 43,834,841	MYR 41,169,716	MYR 38,826,047	MYR 36,878,911	MYR 35,407,009	MYR 30,764,684	MYR 30,544,457	MYR 30,540,681	
100	MYR 49,822,058	MYR 46,868,478	MYR 43,843,335	MYR 41,178,210	MYR 38,834,541	MYR 36,887,404	MYR 35,415,503	MYR 30,773,177	MYR 30,552,951	MYR 30,549,175	

4vHPVv, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgits

Table E.5. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPV, QALY outcomes, mortality
(Razak et al., 2013)

QALY	Duration (year)	10	15	20	25	30	35	40	45	50	100
AS04-HPV-16/18v	4vHPVv	332.7	306.2	280.3	262.0	250.9	245.9	244.6	244.6	244.9	244.9
15	392.6	366.2	340.2	322.0	310.8	305.8	304.5	304.5	304.8	304.8	
20	451.7	425.3	399.3	381.0	369.9	364.9	363.6	363.6	363.9	363.9	
25	493.4	466.9	441.0	422.7	411.6	406.6	405.3	405.3	405.5	405.6	
30	518.7	492.3	466.4	448.1	437.0	431.9	430.7	430.6	430.9	430.9	
35	530.2	503.7	477.8	459.5	448.4	443.4	442.1	442.1	442.9	442.9	
40	533.6	507.2	481.2	462.9	451.8	446.8	445.5	445.5	445.9	445.9	
45	533.1	506.7	480.7	462.4	451.3	446.3	445.0	445.0	445.3	445.3	
50	532.4	506.0	480.0	461.8	450.6	445.6	444.3	444.3	444.6	444.6	
100	532.4	506.0	480.0	461.8	450.6	445.6	444.3	444.3	444.6	444.6	

4vHPV, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgits
Table E.6. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPVv, ICER, mortality (Razak et al., 2013)

ICER	Duration (year)	10	15	20	25	30	35	40	45	50	100
4vHPV											
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								
	Cx dominant	Cx dominant	Cx								

4vHPV, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgits
Table E.7. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPV, HPV-16/18 distribution unadjusted

Cost outcomes (MYR)	4vHPV	AS04-HPV-16/18v	AS04-HPV-16/18v adjuvanted							
	10	15	20	25	30	35	40	45	50	100
Duration (year)	MYR 6,627,899	MYR 9,609,605	MYR 12,547,452	MYR 15,067,210	MYR 17,203,293	MYR 18,922,072	MYR 20,199,095	MYR 23,999,376	MYR 24,156,911	MYR 24,159,430
	MYR 2,291,509	MYR 5,273,215	MYR 8,211,063	MYR 10,730,820	MYR 12,866,903	MYR 14,585,682	MYR 15,862,706	MYR 19,662,986	MYR 19,820,521	MYR 19,823,040
	MYR 2,222,697	MYR 759,009	MYR 3,696,856	MYR 6,216,614	MYR 8,352,696	MYR 10,071,475	MYR 11,348,499	MYR 15,148,779	MYR 15,306,315	MYR 15,308,834
	MYR 6,083,558	MYR 3,101,852	MYR 164,005	MYR 2,355,753	MYR 4,491,836	MYR 6,210,615	MYR 7,487,638	MYR 11,287,919	MYR 11,445,454	MYR 11,447,973
	MYR 9,370,122	MYR 6,388,416	MYR 3,450,569	MYR 930,811	MYR 1,205,272	MYR 2,924,051	MYR 4,201,074	MYR 8,001,355	MYR 8,158,890	MYR 8,161,409
	MYR 12,006,766	MYR 9,025,060	MYR 6,087,213	MYR 3,567,455	MYR 1,431,373	MYR 287,406	MYR 1,564,430	MYR 5,364,710	MYR 5,522,246	MYR 5,524,765
	MYR 16,833,766	MYR 13,852,060	MYR 10,914,213	MYR 8,394,455	MYR 6,258,373	MYR 4,539,594	MYR 3,262,570	MYR 537,710	MYR 695,246	MYR 697,765
	MYR 17,949,807	MYR 14,968,101	MYR 12,030,253	MYR 9,510,496	MYR 7,374,413	MYR 5,655,634	MYR 4,378,610	MYR 578,330	MYR 420,795	MYR 418,276
	MYR 18,256,616	MYR 15,274,911	MYR 12,337,063	MYR 9,817,306	MYR 7,681,223	MYR 5,962,444	MYR 4,685,420	MYR 885,140	MYR 727,605	MYR 725,085
	MYR 18,261,322	MYR 15,279,817	MYR 12,341,969	MYR 9,822,212	MYR 7,688,129	MYR 5,967,350	MYR 4,690,326	MYR 890,046	MYR 732,511	MYR 729,991

4vHPV, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgits

Table E.8. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPV, HPV-16/18 distribution unadjusted

QALY	Duration (year)	4vHPV	AS04-HPV-16/18v	AS04-HPV-16/18v adjuvanted						
	10	15	20	25	30	35	40	45	50	100
	-42.7	-63.5	-84.4	-99.7	-109.7	-114.9	-116.8	-117.3	-117.3	-117.3
	-2.4	-23.1	-44.0	-59.4	-69.4	-74.5	-76.9	-77.0	-77.0	-77.0
20	38.2	17.5	-3.4	-18.7	-28.8	-33.9	-35.8	-36.3	-36.3	-36.3
25	68.1	47.3	26.4	11.1	1.1	-4.0	-6.0	-6.5	-6.5	-6.5
30	87.6	66.8	46.0	30.6	20.6	15.5	13.0	13.0	13.0	13.0
35	97.6	76.9	56.0	40.6	30.6	20.5	23.5	23.1	23.0	23.0
40	100.9	80.1	59.2	43.9	33.9	28.7	26.8	26.3	26.3	26.3
45	102.3	81.6	60.7	45.4	35.4	30.2	28.3	27.8	27.8	27.8
50	102.4	81.6	60.7	45.4	35.4	30.3	28.3	27.8	27.8	27.8
100	102.4	81.6	60.7	45.4	35.4	30.3	28.3	27.8	27.8	27.8

4vHPV, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgits
Table E.9. Two-way sensitivity analysis on duration of cross-protection AS04-HPV-16/18v vs. 4vHPV, HPV-16/18 distribution unadjusted

4vHPV	10	15	20	25	30	35	40	45	50	100
10	Cx	Cx								
15	Cx	Cx								
20	Cx	Cx								
25	Cx	Cx								
30	Cx	Cx								
35	Cx	Cx								
40	Cx	Cx								
45	Cx	Cx								
50	Cx	Cx								
100	Cx	Cx								

4vHPV, HPV-6/11/16/18 vaccine (Gardasil); AS04-HPV-16/18v, AS04-adjuvanted HPV-16/18 vaccine (Cervarix); MYR, Malaysian Ringgits
References:

Aljunid S, Zafar A, Saperi S, Amrizal M (2010). Burden of disease associated with cervical cancer in Malaysia and the potential costs and consequences of HPV vaccination. Asian Pac J Cancer Prev, 11, 1551-9.

Aubin F, Pretet JL, Jacquard AC, et al (2008). Human papillomavirus genotype distribution in external acuminata condylomata: a Large French National Study (EDiTH IV). Clin Infect Dis, 47, 610-5.

Brown DR, Kjaer SK, Sigurdsson K, et al (2009). The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16-26 years. J Infect Dis, 199, 926-35.

Bruni L, Barrionuevo-Rosas L, Albero G, et al (2015). Information Centre on HPV and Cancer (HPV Information Centre): Human Papillomavirus and Related Diseases in Malaysia - Summary Report 19 April 2017. http://www.hpvcentre.net/dataquery.php (accessed 05 October 2015).

Demarteau N, Standaert B (2010). Modelling the economic value of cross- and sustained-protection in vaccines against cervical cancer. J Med Econ, 13, 324-38.

Department of Statistics Malaysia (2015). Population by age and sex, Malaysia, 2014. http://pqi.stats.gov.my/searchBI.php?tahun=2014&kodData=2&kodJadual=1&kodCiri=3&kodNegeri=0 0 (accessed 30 September 2015).

Fahey MT, Irwig L, Macaskill P (1995). Meta-analysis of Pap test accuracy. Am J Epidemiol, 141, 680-9.

Ferlay J, Soerjomataram I, Ervik M, et al (2013). GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer (IARC); 2013. http://globocan.iarc.fr (accessed 31 January 2014).

Garland SM, Hernandez-Avila M, Wheeler CM, et al (2007). Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med, 356, 1928-43.

Garland SM, Steben M, Sings HL, et al (2009). Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J Infect Dis, 199, 805-14.

Giannini SL, Hanon E, Moris P, et al (2006). Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine, 24, 5937-49.

Gold MR, Franks P, McCoy KL, Fryback DG (1998). Toward consistency in cost-utility analyses: using national measures to create condition-specific values. Med Care, 36, 778-92.

Goldie SJ, Kohli M, Grima D, et al (2004). Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst, 96, 604-15.

Insiinga RP, Dasbach EJ, Elbasha EH (2005a). Assessing the annual economic burden of preventing and treating anogenital human papillomavirus-related disease in the US: analytic framework and review of the literature. Pharmacoeconomics, 23, 1107-22.
Inسینگا RP, Glass A, Rush B (2005b). Health state transitions following an abnormal pap smear: implications for health utility assessment in cost-effectiveness analyses. Abstract W-02 presented at the 22nd International Papillomavirus Conference & Clinical Workshop, 30 April - 6 May 2005, Vancouver, BC, Canada.

Institute of Medicine (2000). Vaccines for the 21st Century: A Tool for Decisionmaking. In: The National Academies Press. Washington, DC, USA.

Jabatan Perangkaan Malaysia (Department of Statistics Malaysia) (2014). Jadual hayat Ringkas (Abridged life tables) Malaysia 2011-2014. http://www.statistics.gov.my (accessed 13 February 2015).

Kumamoto Y, Tsukamoto J, Sugiyama T, et al (2004). National surveillance of sexually transmitted diseases of Japan in 2002. Japanese Journal of Sexually Transmitted Diseases, 15, 17-45.

Melnikow J, Nuovo J, Willan AR, Chan BK, Howell LP (1998). Natural history of cervical squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol, 92, 727-35.

MoH Malaysia, Academy of Medicine (2003). Management of cervical cancer. Clinical Practice Guidelines. http://www.acadmed.org.my/cpg/CPG-Management%20of%20CervicalCancer.pdf (accessed 01 December 2015).

Moscicki AB, Hills N, Shiboski S, et al (2001). Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA, 285, 2995-3002.

Myers ER, Green S, Lipkus I (2004). Patient preferences for health states related to HPV infection: visual analog scale versus time trade-off elicitation. Abstract 542 presented at the 21st International Papillomavirus Conference, 20-27 February 2004, Mexico City, Mexico.

Paavonen J, Naud P, Salmerón J, et al (2009). Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet, 374, 301-14.

Razak NA, Mn K, Zubairi YZ, Naing NN, Zaki NM (2013). Estimating the five-year survival of cervical cancer patients treated in hospital universiti sains malaysi a. Asian Pac J Cancer Prev, 14, 825-8.

Richardson H, Kelsall G, Tellier P, et al (2003). The natural history of type-specific human papillomavirus infections in female university students. Cancer Epidemiol Biomarkers Prev, 12, 485-90.

Sanders GD, Taira AV (2003). Cost-effectiveness of a potential vaccine for human papillomavirus. Emerg Infect Dis, 9, 37-48.

Schlecht NF, Platt RW, Duarte-Franco E, et al (2003). Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst, 95, 1336-43.

Skinner R, Apter D, Chow SN, Wheeler C, Dubin G (2009). Cross-protection efficacy of Cervarix(tm) against oncogenic HPV types beyond HPV-16/18. Abstract no 0-29.01 presented at the 25th International Papillomavirus Conference, 08 - 14 May 2009, Malmö, Sweden.

The FUTURE II Study Group (2007). Quadrivalent Vaccine against Human Papillomavirus to Prevent High-Grade Cervical Lesions. N Engl J Med, 356, 1915-27.
Tjalma W, Paavonen J, Naud P, et al (2009). Efficacy of the HPV-16/18 AS04-adjuvanted vaccine against abnormal cytology and low-grade histopathological lesions in an oncogenic HPV-naïve population. Abstract n° A-171-0004-01446 presented at the 16th International Meeting of the European Society for Gynaecological Oncology (ESGO), 11 - 14 Oct, Belgrade, Serbia. Int J Gynecol Cancer, 19, 1008.

Van de Velde N, Brisson M, Boily MC (2007). Modeling human papillomavirus vaccine effectiveness: quantifying the impact of parameter uncertainty. Am J Epidemiol, 165, 762-75.

Villa LL (2006). Vaccines against papillomavirus infections and disease. Rev Chilena Infectol, 23, 157-63.

Woodhall SC, Jit M, Soldan K, et al (2011). The impact of genital warts: loss of quality of life and cost of treatment in eight sexual health clinics in the UK. Sex Transm Infect, 87, 458-63.

World Health Organization (WHO) (2014). Human papillomavirus vaccines: WHO position paper, October 2014. Wkly Epidemiol Rec, 89, 465-91.