The logic of quantum mechanics incorporating time
dimension

Ivan Chajda and Helmut Länger

Abstract

Similarly as classical propositional calculus is based algebraically on Boolean
algebras, the logic of quantum mechanics was based on orthomodular lattices by
G. Birkhoff and J. von Neumann [3] and K. Husimi [14]. However, this logic does
not incorporate time dimension although it is apparent that the propositions oc-
curring in the logic of quantum mechanics are depending on time. The aim of the
present paper is to show that so-called tense operators can be introduced also in
such a logic for given time set and given time preference relation. In this case we
can introduce these operators in a purely algebraic way. We derive several impor-
tant properties of such operators, in particular we show that they form dynamic
pairs and, altogether, a dynamic algebra. We investigate connections of these op-
erators with logical connectives conjunction and implication derived from Sasaki
projections. Then we solve the converse problem, namely to find for given time
set and given tense operators a time preference relation in order that the resulting
time frame induces the given operators. We show that the given operators can be
obtained as restrictions of operators induced by a suitable extended time frame.

AMS Subject Classification: 03G12, 03B46, 06C15

Keywords: Complete orthomodular lattice, event-state system, logic of quantum me-
chanics, tense operator, time frame, dynamic pair, dynamic algebra

1 Introduction

It is well known that any physical theory determines an event-state system \((\mathcal{E}, \mathcal{S})\) where
\(\mathcal{E}\) contains the events that may occur with respect to the given system and \(\mathcal{S}\) contains the
states that such a physical system may assume. In quantum physics one usually identifies
\(\mathcal{E}\) with the set of projection operators of a Hilbert space \(\mathcal{H}\). This set of operators is
in bijective correspondence with the set \(\mathcal{C}(\mathcal{H})\) of closed subspaces of \(\mathcal{H}\). The set \(\mathcal{C}(\mathcal{H})\)
ordered by inclusion forms a complete orthomodular lattice. Such lattices were introduced
in 1936 by G. Birkhoff and J. von Neumann [3] and independently in 1937 by K. Husimi
[14] as a suitable algebraic tool for investigating the logical structure underlying physical
theories that, like mentioned quantum mechanics, do not obey the laws of classical logic.
For the theory of orthomodular lattices cf. the monographs [11] and [15].

\(^{0}\)Support of the research of the authors by the Austrian Science Fund (FWF), project I 4579-N, and the
Czech Science Foundation (GAČR), project 20-09869L, entitled “The many facets of orthomodularity”,
is gratefully acknowledged.
However, the logic based on orthomodular lattices does not incorporate the dimension of time. In order to organize this logic as a so-called tense logic (or time logic in another terminology, see e.g. [6] and [18]) we have to introduce the so-called tense operators P, F, H and G. Their meaning is as follows:

- P ... “It has at some time been the case that”,
- F ... “It will at some time be the case that”,
- H ... “It has always been the case that”,
- G ... “It will always be the case that”.

As the reader may guess, we need a time scale. For this reason a so-called time frame is introduced. It is a pair (T, R) consisting of a non-empty set T of time and a non-empty binary relation R on T, the so-called relation of time preference, i.e. for $s, t \in T$ we say that $s R t$ means s is before t or, equivalently, t is after s. For our purposes we will consider sometimes so-called serial relations R (see [6]), i.e. binary relations R such that for each $s \in T$ there exist $t, u \in T$ with $t R s$ and $s R u$. Every reflexive binary relation is serial. In physical theories R is usually considered to be an order or a quasiorder.

It is worth noticing that our tense operators are in fact special sorts of modal operators, see e.g. [8] and [16]. The theory of tense logic has its origin in works by A. N. Prior (cf. [16] and [17]) and in the monographs and chapters [10], [11], [12] and [13]. For the classical propositional calculus, these operators were studied in [2], for MV-algebras in [7], for intuitionistic logic in [8], and for De Morgan algebras in [9]. We hope that our approach for orthomodular lattices constitute an appropriate new achievement.

2 Preliminaries

First we recall several concepts used in lattice theory.

An antitone involution on a poset (P, \leq) is a mapping $'$ from P to P satisfying the following conditions for all $x, y \in P$:

(i) $x \leq y$ implies $y' \leq x'$,
(ii) $x'' = x$.

A complementation on a bounded poset $(P, \leq, 0, 1)$ is a mapping $'$ from P to P satisfying $x \lor x' = 1$ and $x \land x' = 0$ for all $x \in P$. An orthomodular lattice is an algebra $(L, \lor, \land, ', 0, 1)$ of type $(2, 2, 1, 0, 0)$ such that $(L, \lor, \land, 0, 1)$ is a bounded lattice, $'$ is an antitone involution that is a complementation and the orthomodular law holds:

$$\text{If } x, y \in L \text{ and } x \leq y \text{ then } y = x \lor (y \land x').$$

Let us remark that according to the De Morgan’s laws the orthomodular law is equivalent to the following condition:

$$\text{If } x, y \in L \text{ and } x \leq y \text{ then } x = y \land (x \lor y').$$
In the following we consider a non-trivial (i.e. not one-element) complete (orthomodular) lattice \(L = (L, \lor, \land, 0, 1) \) and a given time frame \((T, R)\). We can define the tense operators as quantifiers over the time frame as follows:

\[
P(q)(s) := \bigvee \{ q(t) \mid t R s \},
\]

\[
F(q)(s) := \bigvee \{ q(t) \mid s R t \},
\]

\[
H(q)(s) := \bigwedge \{ q(t) \mid t R s \},
\]

\[
G(q)(s) := \bigwedge \{ q(t) \mid s R t \}
\]

for every \(q \in L^T \) and \(s \in T \). In such a case we call the tense operators \(P, F, H \) and \(G \) to be derived from or induced by the time frame \((T, R)\).

In complete orthomodular lattices there is a close connection between the tense operators \(P \) and \(H \) and the tense operators \(F \) and \(G \). Namely, if these tense operators are induced by the time frame \((T, R)\) then due to De Morgan’s laws we have \(H(q) = P(q')' \) and \(G(q) = F(q')' \) for all \(q \in L^T \).

Example 2.1. Consider the orthomodular lattice \(L \) depicted in Fig. 1:

```
1
  / \  
 c' b' a' d' c b a d
  \ /  
 0
```

Put \((T, R) := (\{1, 2, 3, 4, 5\}, \leq)\) and define time depending propositions \(p, q \in L^T \) as follows:

\[
\begin{array}{c|ccccc}
 t & 1 & 2 & 3 & 4 & 5 \\
p(t) & c' & b' & c' & a' & b' \\
\end{array}
\quad
\begin{array}{c|ccccc}
 t & 1 & 2 & 3 & 4 & 5 \\
q(t) & a & b' & d & a & a' \\
\end{array}
\]

Then we have

\[
\begin{array}{c|ccccc}
 t & 1 & 2 & 3 & 4 & 5 \\
P(p)(t) & c' & 1 & 1 & 1 & 1 \\
F(p)(t) & 1 & 1 & 1 & b' & 1 \\
H(p)(t) & c' & a & a & 0 & 0 \\
G(p)(t) & 0 & 0 & 0 & c & b' \\
\end{array}
\quad
\begin{array}{c|ccccc}
 t & 1 & 2 & 3 & 4 & 5 \\
P(q)(t) & a & b' & 1 & 1 & 1 \\
F(q)(t) & 1 & 1 & 1 & a' & 1 \\
H(q)(t) & a & a & 0 & 0 & 0 \\
G(q)(t) & 0 & 0 & 0 & c & b' \\
\end{array}
\]

3 Dynamic pairs

At first we prove that for tense operators as defined above the pairs \((P, G)\) and \((F, H)\) form so-called dynamic pairs, thus \((L, P, F, H, G)\) is a so-called dynamic algebra (see [6] for details).
Theorem 3.1. Let \((L, \lor, \land, 0, 1)\) be a complete lattice, \((T, R)\) a time frame with serial relation \(R\), \(P\), \(F\), \(H\) and \(G\) denote the tense operators induced by \((T, R)\) and \(p, q \in L^T\). Then the following holds:

(i) \(P(0) = F(0) = H(0) = G(0) = 0\) and \(P(1) = F(1) = H(1) = G(1) = 1\),
(ii) \(p \leq q\) implies \(P(p) \leq P(q)\), \(F(p) \leq F(q)\), \(H(p) \leq H(q)\) and \(G(p) \leq G(q)\),
(iii) \(PG(q) \leq q \leq GP(q)\), \(FH(q) \leq q \leq HF(q)\).

Proof. Let \(s \in T\).

(i) Since \(R\) is serial we have \(P(0)(s) = \bigvee \{0 \mid t R s\} = 0\) and \(P(1)(s) = \bigvee \{1 \mid t R s\} = 1\). The situation for \(F\), \(H\) and \(G\) is analogous.

(ii) Assume \(p \leq q\). Then
\[
 p(t) \leq q(t) \leq \bigvee \{q(u) \mid u R s\} = P(q)(s)
\]
for all \(t \in T\) with \(t R s\) and hence
\[
 P(p)(s) = \bigvee \{p(t) \mid t R s\} \leq P(q)(s).
\]
This shows \(P(p) \leq P(q)\). The inequality \(F(p) \leq F(q)\) can be shown analogously. Moreover,
\[
 H(p)(s) = \bigwedge \{p(u) \mid u R s\} \leq p(t) \leq q(t)
\]
for all \(t \in T\) with \(t R s\) and hence
\[
 H(p)(s) \leq \bigwedge \{q(t) \mid t R s\} = H(q)(s).
\]
This shows \(H(p) \leq H(q)\). The inequality \(G(p) \leq G(q)\) can be shown analogously.

(iii) The following are equivalent:

\[
 PG(q)(s) \leq q(s),
\]
\[
 \bigvee \{G(q)(t) \mid t R s\} \leq q(s),
\]
\[
 G(q)(t) \leq q(s) \text{ for all } t \in T \text{ with } t R s,
\]
\[
 \bigwedge \{q(u) \mid t R u\} \leq q(s) \text{ for all } t \in T \text{ with } t R s.
\]
Since the last statement is true, the same holds for the first statement. Analogously, one can prove \(FH(q) \leq q\). Now the following are equivalent:

\[
 q(s) \leq GP(q)(s),
\]
\[
 q(s) \leq \bigwedge \{P(q)(t) \mid s R t\},
\]
\[
 q(s) \leq P(q)(t) \text{ for all } t \in T \text{ with } s R t,
\]
\[
 q(s) \leq \bigvee \{q(u) \mid u R t\} \text{ for all } t \in T \text{ with } s R t.
\]
Since the last statement is true, the same holds for the first statement. Analogously, one can prove \(q \leq HF(q)\).
If the operators P, F, H and G on the complete lattice L satisfy (i), (ii) and (iii) of Theorem 3.1 then the quintuple (L, P, F, H, G) will be referred to as a dynamic algebra.

Example 3.2. For p and q of Example 2.1 we obtain

t	1	2	3	4	5
$p(t)$	c'	b'	c'	a'	b'
$PG(p)(t)$	0	0	0	c	b'
$GP(p)(t)$	c'	1	1	1	1

t	1	2	3	4	5
$q(t)$	a	b'	d	a	a'
$PG(q)(t)$	0	0	0	0	a'
$GP(q)(t)$	a	b'	1	1	1

showing that $PG(p) \leq p \leq GP(p)$ and $PG(q) \leq q \leq GP(q)$ and, moreover, that these inequalities are strict.

In the following we establish several properties of tense operators on complete lattices that are in accordance with the general approach presented in [6] and [18].

Theorem 3.3. Let $(L, \lor, \land, 0, 1)$ be a complete lattice, (T, R) a time frame with serial relation R, P, F, H and G denote the tense operators induced by (T, R) and $q \in LT$. Then the following hold:

(i) $H(q) \leq P(q)$ and $G(q) \leq F(q)$,

(ii) if R is reflexive then $H(q) \leq q \leq P(q)$ and $G(q) \leq q \leq F(q)$.

Proof. Let $s \in T$.

(i) Since R is serial there exists some $u \in T$ with $u \mathbin{R} s$ and we have

$$H(q)(s) = \bigwedge \{q(t) \mid t \mathbin{R} s\} \leq q(u) \leq \bigvee \{q(t) \mid t \mathbin{R} s\} = P(q)(s).$$

The proof for G and F is analogous.

(ii) We have

$$H(q)(s) = \bigwedge \{q(t) \mid t \mathbin{R} s\} \leq q(s) \leq \bigvee \{q(t) \mid t \mathbin{R} s\} = P(q)(s).$$

The proof for G and F is analogous.

We define $A \leq B$ for $A, B \in \{P, F, H, G\}$ by $A(q) \leq B(q)$ for all $q \in LT$.

Theorem 3.4. Let $(L, \lor, \land, 0, 1)$ be a complete lattice, (T, R) a time frame with reflexive R, P, F, H and G denote the tense operators induced by (T, R), $A \in \{P, F, H, G\}$, $B \in \{P, F\}$ and $C \in \{H, G\}$. Then the following hold:

(i) $A \leq AB$ and $AC \leq A$,

(ii) if R is, moreover, transitive then $AA = A$.
Proof.

(i) This follows from Theorems 3.3 and 3.1.

(ii) According to (i) we have \(P P \leq P P \). Let \(q \in L^T \) and \(s \in T \). Then the following are equivalent:

\[
P P(q)(s) \leq P(q)(s),
\]

\[
\bigvee \{ P(q)(t) \mid t R s \} \leq P(q)(s),
\]

\[
P(q)(t) \leq P(q)(s) \text{ for all } t \in T \text{ with } t R s,
\]

\[
\bigvee \{ q(u) \mid u R t \} \leq P(q)(s) \text{ for all } t \in T \text{ with } t R s,
\]

\[
q(u) \leq \bigvee \{ q(w) \mid w R s \} \text{ for all } t \in T \text{ with } t R s \text{ and all } u \in T \text{ with } u R t.
\]

Since, due to transitivity of \(R \), \(t R s \) and \(u R t \) together imply \(u R s \), the last statement is true and hence the same holds for the first statement. Therefore \(P P \leq P \), and together we obtain \(P P = P \). The proof of \(F F = F \) is analogous.

According to (i) we have \(HH \leq H \). Now the following are equivalent:

\[
H(q)(s) \leq HH(q)(s),
\]

\[
H(q)(s) \leq \bigwedge \{ H(q)(t) \mid t R s \},
\]

\[
H(q)(s) \leq H(q)(t) \text{ for all } t \in T \text{ with } t R s,
\]

\[
H(q)(s) \leq \bigwedge \{ q(u) \mid u R t \} \text{ for all } t \in T \text{ with } t R s,
\]

\[
\bigwedge \{ q(w) \mid w R s \} \leq q(u) \text{ for all } t \in T \text{ with } t R s \text{ and all } u \in T \text{ with } u R t.
\]

Since, due to transitivity of \(R \), \(t R s \) and \(u R t \) together imply \(u R s \), the last statement is true and hence the same holds for the first statement. This shows \(H \leq HH \), and together we obtain \(HH = H \). The proof of \(G G = G \) is analogous.

\[\square\]

4 Connections with logical connectives

Considering the logic based on an orthomodular lattice \((L, \lor, \land, \prime, 0, 1)\) one can ask for logical connectives. One way how to introduce the conjunction \(\odot \) and the implication \(\rightarrow \) is based on the so-called Sasaki projections (see [1]). This method was successfully used by the authors in [4] and [5] for investigating left adjointness. Let us recall the corresponding definitions:

\[
x \odot y := (x \lor y') \land y,
\]

\[
x \rightarrow y := (y \land x) \lor x'
\]

for all \(x, y \in L \). The Sasaki projection \(p_y \) on \([0, y]\) is given by \(p_y(x) := (x \lor y') \land y \) for all \(x \in L \). Hence we have \(x \odot y = p_y(x) \) and \(x \rightarrow y = (p_x(y'))' \) for all \(x, y \in L \).

The following result was proved in [4] and [5].
Proposition 4.1. Let \((L, \vee, \wedge, ', 0, 1)\) be an orthomodular lattice, \(\odot\) and \(\to\) defined by (1) and \(a, b, c \in L\). Then the following holds:

(i) \(a \odot 1 = 1 \odot a = a\),

(ii) \(a \odot b \leq c\) if and only if \(a \leq b \to c\) (left adjoinness),

(iii) \(a' = a \to 0\).

The following lemma will be used in the next proof.

Lemma 4.2. Let \((L, \vee, \wedge, ', 0, 1)\) be an orthomodular lattice, \(\odot\) and \(\to\) defined by (1) and \(a, b \in L\). Then the following holds:

(i) \((a \to b) \odot a = a \wedge b\),

(ii) \(a \leq b \to (a \odot b)\).

Proof.

(i) Using the orthomodular law we obtain

\[(a \to b) \odot a = ((b \wedge a) \vee a') \land a = a \wedge ((a \land b) \lor a') = a \land b.\]

(ii) Using again the orthomodular law we obtain

\[a \leq a \lor b' = b' \lor ((a \lor b') \land b) = ((a \lor b') \land b \land b) \lor b' = b \to (a \odot b).\]

Proof. Let \(p, q \in L^T\). First assume (i). According to (i) we have

\[A(p \to q) \odot A(p) \leq A((p \to q) \odot p)\]

Now

\[(p \to q) \odot p = p \land q\]

because of Lemma 4.2 and hence

\[A((p \to q) \odot p) = A(p \land q).\]
Applying Theorem 3.1 to $p \land q \leq q$ yields

$$A(p \land q) \leq A(q).$$

Altogether, we obtain

$$A(p \rightarrow q) \odot A(p) \leq A(q).$$

Thus, by Proposition 4.1 we conclude

$$A(p \rightarrow q) \leq A(p) \rightarrow A(q)$$

displaying (ii). Conversely, assume (ii). According to Lemma 4.2 we have

$$p \leq q \rightarrow (p \odot q).$$

Applying Theorem 3.1 we conclude

$$A(p) \leq A(q \rightarrow (p \odot q)).$$

Using (ii) we obtain

$$A(q \rightarrow (p \odot q)) \leq A(q \rightarrow A(p \odot q)).$$

Altogether, we have

$$A(p) \leq A(q) \rightarrow A(p \odot q).$$

Thus, by Proposition 4.1 we conclude

$$A(p) \odot A(q) \leq A(p \odot q)$$

displaying (i).

However, we can prove also further interesting connections between these operators.

Theorem 4.4. Let $(L, \lor, \land, \lnot, 0, 1)$ be a complete orthomodular lattice, (T, R) a time frame with reflexive R, P, F, H and G denote the tense operators induced by (T, R), $A, A_1, A_2 \in \{P, F\}$, $B, B_1, B_2 \in \{H, G\}$ and $p, q \in LT$. Then the following holds:

(i) $p \leq q \rightarrow A_1(A_2(p) \odot q)$,

(ii) $B(p \odot q) \leq A(p) \odot q$,

(iii) $B(p) \leq q \rightarrow A(p \odot q)$,

(iv) $B_1(B_2(p) \odot q) \leq p \odot q$,

(v) $p \rightarrow q \leq A_1(p \rightarrow A_2(q))$,

(vi) $B(p \rightarrow q) \odot p \leq A(q)$,

(vii) $p \rightarrow B(q) \leq A(p \rightarrow q)$,

(viii) $B_1(p \rightarrow B_2(q)) \odot p \leq q$.

Proof. We use Theorems 3.1 and 3.3 (1) and Proposition 4.1
(i) We have
\[p \circ q \leq A_1(p \circ q) \text{ by Theorem } 3.3 \]
\[p \leq A_2(p) \text{ by Theorem } 3.3 \]
\[p \circ q \leq A_2(p) \circ q \text{ by (1)} \]
\[A_1(p \circ q) \leq A_1(A_2(p) \circ q) \text{ by Theorem } 3.1 \]
\[p \circ q \leq A_1(A_2(p) \circ q) \text{ by transitivity, } \]
\[p \leq q \rightarrow A_1(A_2(p) \circ q) \text{ by Proposition } 4.1 \]

The other statements follow in an analogous way.

(ii) follows from \(B(p \circ q) \leq B(A(p) \circ q) \leq A(p) \circ q \),

(iii) follows from \(B(p) \circ q \leq A(B(p) \circ q) \leq A(p \circ q) \) by applying Proposition 4.1,

(iv) follows from \(B_1(B_2(p) \circ q) \leq B_1(p \circ q) \leq p \circ q \),

(v) follows from \(p \rightarrow q \leq A_1(p \rightarrow q) \leq A_1(p \rightarrow A_2(q)) \),

(vi) follows from \(B(p \rightarrow q) \leq B(p \rightarrow A(q)) \leq p \rightarrow A(q) \) by applying Proposition 4.1,

(vii) follows from \(p \rightarrow B(q) \leq A(p \rightarrow B(q)) \leq A(p \rightarrow q) \),

(viii) follows from \(B_1(p \rightarrow B_2(q)) \leq B_1(p \rightarrow q) \leq p \rightarrow q \) by applying Proposition 4.1.

\[\Box \]

5 A construction of the time frame

A tense logic is established if for a given logic a time frame \((T, R)\) exists such that
the lattice together with the tense operators forms a dynamic algebra and the logical
connectives are related with tense operators in the way shown in Section 4. Hence, if
such a logic incorporating time dimension is created, we can define tense operators \(P, F, H\) and \(G\). The question is whether, conversely, for given tense operators
there exists a suitable time frame \((T, R)\) such that the given tense operators
are derived from it. In other words, we ask if for given tense operators \(P, F, H\) and \(G\)
on a time set \(T\) one can find some time preference relation \(R\) such that these operators
are induced by \((T, R)\). To show that this is possible is the goal of Section 5.

If \(P, F, H\) and \(G\) are tense operators on a complete lattice \((L, \vee, \wedge, 0, 1)\) with time set
\(T\) then the relations
\[R_1 := \{(s, t) \in T^2 \mid q(s) \leq P(q)(t) \text{ and } q(t) \leq F(q)(s) \text{ for all } q \in L_T\}, \]
\[R_2 := \{(s, t) \in T^2 \mid H(q)(t) \leq q(s) \text{ and } G(q)(s) \leq q(t) \text{ for all } q \in L_T\}, \]
\[R_3 := R_1 \cap R_2 \]
are called the relation induced by \(P\) and \(F\), the relation induced by \(H\) and \(G\) and the
relation induced by \(P, F, H\) and \(G\), respectively.
Observe that whenever tense operators P, F, H and G on a complete lattice L are induced by an arbitrarily given time frame then (L, P, F, H, G) forms a dynamic algebra, and if, moreover, L is a complete orthomodular lattice then Theorems 4.3 and 4.4 hold for these operators.

At first we show the relationship between given tense operators P and F and the corresponding operators P^* and F^* induced by the time frame (T, R) where R is induced by P and F.

Theorem 5.1. Let P and F be tense operators on a complete lattice $(L, ∨, ∧, 0, 1)$ with time set T, R denote the relation induced by these operators and P^* and F^* denote the tense operators induced by the time frame (T, R). Then $P^* ≤ P$ and $F^* ≤ F$.

Proof. If $q ∈ L^T$ and $s ∈ T$ then

$$P^*(q)(s) = \bigvee \{q(t) \mid t R s\} ≤ P(q)(s),$$

$$F^*(q)(s) = \bigvee \{q(t) \mid s R t\} ≤ F(q)(s).$$

Analogously, one can prove

Theorem 5.2. Let H and G be tense operators on a complete lattice $(L, ∨, ∧, 0, 1)$ with time set T, R denote the relation induced by these operators and H^* and G^* denote the tense operators induced by the time frame (T, R). Then $H ≤ H^*$ and $G ≤ G^*$.

From Theorems 5.1 and 5.2 we obtain

Corollary 5.3. Let P, F, H and G be tense operators on a complete lattice $(L, ∨, ∧, 0, 1)$ with time set T, R denote the relation induced by these operators and P^*, F^*, H^* and G^* denote the tense operators induced by the time frame (T, R). Then $P^* ≤ P$, $F^* ≤ F$, $H ≤ H^*$ and $G ≤ G^*$.

Example 5.4. Consider the lattice L and the time set $T = \{1, 2, 3, 4, 5\}$ from Example 2.1. Define new tense operators P, F, H and G as follows:

$$P(q)(t) := \begin{cases} q(t) & \text{if } t = 2, \\ 1 & \text{otherwise} \end{cases} \quad F(q)(t) := \begin{cases} q(t) & \text{if } t = 1, \\ 1 & \text{otherwise} \end{cases}$$

$$H(q)(t) := \begin{cases} q(t) & \text{if } t = 1, \\ 0 & \text{otherwise} \end{cases} \quad G(q)(t) := \begin{cases} q(t) & \text{if } t = 2, \\ 0 & \text{otherwise} \end{cases}$$

for all $q ∈ L^T$ and all $t ∈ T$. Note that these operators satisfy the conditions

$$H(q) ≤ q ≤ P(q) \text{ and } G(q) ≤ q ≤ F(q)$$

for all $q ∈ L^T$ which were considered in Theorem 3.3. Let R denote the relation induced by P, F, H and G. Then $R = \{1\}^2 ∪ \{2\}^2 ∪ \{3, 4, 5\}^2$. This can be seen as follows: Obviously, $\{1\}^2 ∪ \{2\}^2 ∪ \{3, 4, 5\}^2 ⊆ R$. Now let $(s, t) ∈ R$.

$s = 1 ≠ t$ would imply $q(t) ≤ F(q)(1) = q(1)$ for all $q ∈ L^T$, a contradiction.

$s = 2 ≠ t$ would imply $q(2) = G(q)(2) ≤ q(t)$ for all $q ∈ L^T$, a contradiction.

$s ≠ 1 = t$ would imply $q(1) = H(q)(1) ≤ q(s)$ for all $q ∈ L^T$, a contradiction.
s ≠ 2 = t would imply q(s) ≤ P(q)(2) = q(2) for all q ∈ L^T, a contradiction. This shows R = \{1\}^2 \cup \{2\}^2 \cup \{3,4,5\}^2. For p from Example 2.1 we have

p(t)	1	2	3	4	5
P(p)(t)	1	b'	1	1	1
F(p)(t)	c'	1	1	1	1
P*(p)(t)	c'	b'	1	1	1
F*(p)(t)	c'	b'	1	1	1

showing P* ≤ P and F* ≤ F in accordance with Corollary 5.3. but P* ≠ P and F* ≠ F, thus this inequality is strict.

Remark 5.5. Although the new tense operators P*, F*, H* and G* constructed as shown in Corollary 5.3 satisfy only the inequalities P* ≤ P, F* ≤ F, H ≤ H* and G ≤ G* and, by Example 5.4, these inequalities may be strict, it is almost evident from the construction of these operators that (L, P*, F*, H*, G*) forms a dynamic algebra and that these operators are connected with the logical connectives ⊓ and ⊔ in the way shown in Theorems 4.3 and 4.4 provided L is a complete orthomodular lattice.

Conversely, if a time frame (T, R) on a complete lattice is given and we consider the tense operators P, F, H and G induced by (T, R) then the relation induced by these operators coincides with R, see the following result.

Theorem 5.6. Let (L, ∨, ∧, 0, 1) be a complete lattice, (T, R) a time frame, P, F, H and G denote the tense operators induced by (T, R) and R* denote the relation induced by these operators. Then R = R* and hence the tense operators induced by the time frame (T, R*) coincide with those induced by the time frame (T, R).

Proof. If s R t then

\[
H(q)(t) = \bigwedge \{ q(u) \mid u R t \} \leq q(s) \leq \bigvee \{ q(u) \mid u R t \} = P(q)(t),
\]

\[
G(q)(s) = \bigwedge \{ q(u) \mid s R u \} \leq q(t) \leq \bigvee \{ q(u) \mid s R u \} = F(q)(s)
\]

for all q ∈ L^T and hence s R* t. This shows R ⊆ R*. Now assume R ≠ R*. Then there exists some (s, t) ∈ R* \ R. For every u ∈ T let q_u denote the following element of L^T:

\[
q_u(t) := \begin{cases}
1 & \text{if } t = u, \\
0 & \text{otherwise}
\end{cases}
\]

(t ∈ T). Now we would obtain

\[
1 = q_s(s) \leq P(q_s)(t) = \bigvee \{ q_u(u) \mid u R t \} = \bigvee \{ 0 \mid u R t \} = 0,
\]

a contradiction. This shows R = R*. □

Remark 5.7. Assume that tense operators P, F, H and G on a complete lattice with time set T are given. We want to know if such operators are induced by a suitable time frame with possibly unknown time preference relation. We construct the relation R on T induced by these operators and then we construct the tense operators P*, F*, H* and G*.
induced by the time frame \((T, R)\). Now two cases can happen: Either \(P^* = P\), \(F^* = F\), \(H^* = H\) and \(G^* = G\) or at least one of these equalities is violated, it means it is a proper inequality. In the first case the given operators \(P\), \(F\), \(H\) and \(G\) are induced by the time frame \((T, R)\) whereas in the second case \(P\), \(F\), \(H\) and \(G\) are not induced by any time frame because of Theorems 5.6.

In Theorem 5.6 we showed that if a complete lattice \((L, \lor, \land, 0, 1)\) and a time frame \((T, R)\) are given and \(P\), \(F\), \(H\) and \(G\) denote the tense operators induced by this time frame then the relation \(R^*\) induced by these operators coincides with \(R\). If, conversely, the tense operators \(P\) and \(F\) are given on a complete lattice with a given time set \(T\), we can ask whether we can construct a relation inducing these operators. In Theorem 5.1 we showed that if \(R\) is induced by given tense operators \(P\) and \(F\) on a given time set \(T\) in the complete lattice \(L\) then the operators \(P^*\) and \(F^*\) induced by the time frame \((T, R)\) need not coincide with \(P\) and \(F\), respectively, they satisfy only the inequalities \(P^* \leq P\) and \(F^* \leq F\). However, such tense operators \(P^*\) and \(F^*\) are still related with the logical connectives \(\oplus\) and \(\rightarrow\) as shown in Theorems 4.3 and 4.4 provided the complete lattice \(L\) is orthomodular. We are going to show that the given time set \(T\) can be extended to some set \(\bar{T}\) and \(R\) can be extended to some binary relation \(\bar{R}\) on \(\bar{T}\) such that the tense operators induced by the time frame \((\bar{T}, \bar{R})\) can be considered in some sense as extensions of the given tense operators \(P\) and \(F\), respectively. Put

\[
\bar{T} := T_1 \cup T \cup T_2 \text{ where } T_1 := T \times \{1\} \text{ and } T_2 := T \times \{2\}.
\]

We extend our “world” \(L^T\) by adding two of its copies, so-called “parallel worlds”, namely the “past” \(L^{T_1}\) and the “future” \(L^{T_2}\). In this way we obtain our “new world” \(L^\bar{T}\) over the extended time set \(\bar{T}\). We also extend our time depending propositions \(q \in L^T\) to \(\bar{q} \in L^\bar{T}\) by defining

\[
\begin{align*}
\bar{q}((s, 1)) &:= P(q)(s), \\
\bar{q}((s, 2)) &:= F(q)(s)
\end{align*}
\]

for all \(s \in T\).

Now we show that the given operators \(P\) and \(F\) can be considered in some sense as restrictions of the operators \(\bar{P}\) and \(\bar{F}\) induced by the time frame \((\bar{T}, \bar{R})\), respectively.

Theorem 5.8. Let \(P\) and \(F\) be tense operators on a complete lattice \((L, \lor, \land, 0, 1)\) with time set \(T\) and \(R\) denote the relation induced by these operators. Define \(\bar{T}\) by (2), put

\[
\bar{R} := \{((s, 1), s) \mid s \in T\} \cup R \cup \{(s, (s, 2)) \mid s \in T\}.
\]

and let \(\bar{P}\) and \(\bar{F}\) denote the tense operators induced by the time frame \((\bar{T}, \bar{R})\). Moreover, for every \(q \in L^T\) let \(\bar{q} \in L^\bar{T}\) denote the extension of \(q\) defined by (3). Then \(\bar{R}|T = R\) and

\[
(\bar{P}(\bar{q}))|T = P(q) \text{ and } (\bar{F}(\bar{q}))|T = F(q)
\]

for all \(q \in L^T\).

Proof. We have \(\bar{R}|T = \bar{R} \cap T^2 = R\). If \(q \in L^T\) and \(s \in T\) then \(q(t) \leq P(q)(s)\) for all \(t \in T\) with \(t R s\) and hence \(\bigvee\{q(t) \mid t R s\} \leq P(q)(s)\) which implies

\[
\bar{P}((s, 1)) = \bigvee\{\bar{q}(t) \mid t R s\} = \bar{q}((s, 1)) \lor \bigvee\{\bar{q}(t) \mid t R s\} = P(q)(s) \lor \bigvee\{q(t) \mid t R s\} = P(q)(s)
\]

showing \((\bar{P}(\bar{q}))|T = P(q)\). Analogously, one can prove \((\bar{F}(\bar{q}))|T = F(q)\). \(\square\)
An analogous result holds for H and G instead of P and F, respectively, but the extensions of $q \in L^T$ to $\bar{q} \in \hat{L}^T$ must be slightly modified.

Theorem 5.9. Let H and G be tense operators on a complete lattice $(L, \lor, \land, 0, 1)$ with time set T and R denote the relation induced by these operators. Define \hat{T} by (2), put

$$\tilde{R} := \{(s, 1), s) \mid s \in T\} \cup R \cup \{(s, (s, 2)) \mid s \in T\}.$$

and let \tilde{H} and \tilde{G} denote the tense operators induced by the time frame (\tilde{T}, \tilde{R}). Moreover, for every $q \in L^T$ let $\bar{q} \in \hat{L}^T$ denote the extension of q defined by

$$\bar{q}(s, 1) := H(q)(s),$$

$$\bar{q}(s) := q(s),$$

$$\bar{q}(s, 2) := G(q)(s)$$

for all $s \in T$. Then $\tilde{R}|T = R$ and

$$(\tilde{H}(q))|T = H(q) \text{ and } (\tilde{G}(q))|T = G(q)$$

for all $q \in L^T$.

Example 5.10. Consider the time set T, the proposition p and the tense operators P and F from Example 2.1 and write t_i instead of (t, i) for $t \in T$ and $i = 1, 2$. Let R denote the relation induced by P and F. Then

$$R = \{(s, t) \in \{1, 2, 3, 4, 5\}^2 \mid s \leq t\},$$

$$\tilde{R} = \{(s1, s) \mid s \in T\} \cup R \cup \{(s, (s, 2)) \mid s \in T\}.$$

Let \bar{P} and \bar{F} denote the tense operators induced by the time frame (\tilde{T}, \tilde{R}). Then we have

t	11	21	31	41	51	1	2	3	4	5	12	22	32	42	52
$p(t)$	c'	1	1	1	1	b'									
$F(p)(t)$	c'	1	1	1	1	b'									
$F(p)(t)$	1	1	1	1	b'										
$\bar{p}(\bar{t})$	c'	1	1	1	1	b'									
$\bar{F}(\bar{p})(\bar{t})$	0	0	0	0	c'	1	1	1	1	c'	b'	c'	a'	b'	
$\bar{F}(\bar{p})(\bar{t})$	c'	b'	c'	a'	b'	1	1	1	1	b'	0	0	0	0	0

where

$$T_1 = \{11, 21, 31, 41, 51\}, T = \{1, 2, 3, 4, 5\} \text{ and } T_2 = \{12, 22, 32, 42, 52\}.$$

Evidently, $\tilde{R}|T = R$, $(\bar{P}(q))|T = P(q)$ and $(\bar{F}(q))|T = F(q)$ in accordance with Theorem 5.8.

References

[1] L. Beran, Orthomodular Lattices. Algebraic Approach. Reidel, Dordrecht 1985. ISBN 90-277-1715-X.
[2] J. P. Burgess, Basic tense logic. Handbook of Philosophical Logic, Vol. 2, 89-133. Reidel, Dordrecht 1984.

[3] G. Birkhoff and J. von Neumann, The logic of quantum mechanics. Ann. of Math. 37 (1936), 823–843.

[4] I. Chajda and H. Länger, Orthomodular lattices can be converted into left residuated l-groupoids. Miskolc Math. Notes 18 (2017), 685–689.

[5] I. Chajda and H. Länger, Residuation in orthomodular lattices. Topol. Algebra Appl. 5 (2017), 1–5.

[6] I. Chajda and J. Paseka, Algebraic Approach to Tense Operators. Heldermann, Lemgo 2015. ISBN 978-3-88538-235-5.

[7] D. Diaconescu and G. Georgescu, Tense operators on MV-algebras and Lukasiewicz-Moisil algebras. Fund. Inform. 81 (2007), 379–408.

[8] W. B. Ewald, Intuitionistic tense and modal logic. J. Symbolic Logic 51 (1986), 166–179.

[9] A. V. Figallo and G. Pelaitay, Tense operators on De Morgan algebras. Log. J. IGPL 22 (2014), 255–267.

[10] M. Fisher, D. Gabbay and L. Vala (eds.), Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier, Amsterdam 2005. ISBN 0-444-51493-7/hbk.

[11] D. M. Gabbay, I. Hodkinson and M. Reynolds, Temporal Logic. Vol. 1. Mathematical Foundations and Computational Aspects. Oxford Univ. Press, New York 1994. ISBN 0-19-853769-7.

[12] A. Galton, Temporal logic and Computer Science: an overview. Temporal Logics and Their Applications, 1–52. Academic Press, London 1987.

[13] I. Hodkinson and M. Reynolds, Temporal logic. Handbook of Modal Logic, 655–720. Elsevier, Amsterdam 2007.

[14] K. Husimi, Studies on the foundation of quantum mechanics. I. Proc. Phys.-Math. Soc. Japan 19 (1937), 766–789.

[15] G. Kalmbach, Orthomodular Lattices. Academic Press, London 1983. ISBN 0-12-394580-1.

[16] A. N. Prior, Time and Modality. Oxford Univ. Press, Oxford 1957.

[17] A. N. Prior, Past, Present and Future. Clarendon Press, Oxford 1967.

[18] N. Rescher and A. Urquhart, Temporal Logic. Springer, New York 1971.

Authors’ addresses:
Ivan Chajda
Palacký University Olomouc
Faculty of Science
Department of Algebra and Geometry
17. listopadu 12
771 46 Olomouc
Czech Republic
ivan.chajda@upol.cz

Helmut Länger
TU Wien
Faculty of Mathematics and Geoinformation
Institute of Discrete Mathematics and Geometry
Wiedner Hauptstraße 8-10
1040 Vienna
Austria, and
Palacký University Olomouc
Faculty of Science
Department of Algebra and Geometry
17. listopadu 12
771 46 Olomouc
Czech Republic
helmut.laenger@tuwien.ac.at