Polynomial identities with involution for the algebra of 3×3 upper triangular matrices

Dimas José Gonçalves
Universidade Federal de São Carlos
Departamento de Matemática
13565-905 São Carlos, SP, Brasil
e-mail: dimasjg@ufscar.br

Dalton Couto Silva
Instituto Federal de Educação, Ciência e Tecnologia de São Paulo
11665-071 Caraguatatuba, SP, Brasil
e-mail: dalton.couto@ifsp.edu.br

July 9, 2020

Keywords: Involution, Upper triangular matrices, Identities with involution, Central polynomials with involution, PI-algebra.

2010 AMS MSC Classification: 16R10, 16R50, 16W10.

Abstract

Let \mathbb{F} be a field of characteristic p, and let $UT_n(\mathbb{F})$ be the algebra of $n \times n$ upper triangular matrices over \mathbb{F} with an involution of the first kind. In this paper we describe: the set of all $*$-central polynomials for $UT_n(\mathbb{F})$ when $n \geq 3$ and $p \neq 2$; the set of all $*$-polynomial identities for $UT_3(\mathbb{F})$ when \mathbb{F} is infinite and $p > 2$.

1 Introduction

Let \mathbb{F} be a field of characteristic $p \neq 2$. In this paper, every algebra is unitary associative over \mathbb{F} and every involution is of the first kind.

We will talk a little about the involutions of the matrix algebra $M_n(\mathbb{F})$ and its subalgebra $UT_n(\mathbb{F})$. There are two important involutions on $M_n(\mathbb{F})$: the transpose and symplectic. When \mathbb{F} is algebraically closed, these are the only involutions up to isomorphism. With respect to algebra $UT_n(\mathbb{F})$, there exist two classes of inequivalent involutions when n is even and a single class otherwise (see [12, Proposition 2.5]) for all \mathbb{F} (finite or infinite).
Given two disjoint infinite sets \(Y = \{y_1, y_2, \ldots\} \) and \(Z = \{z_1, z_2, \ldots\} \), denote by \(\mathbb{F}(Y \cup Z) \) the free unitary associative algebra, freely generated by \(Y \cup Z \), with the involution \(* \) where

\[
y_i^* = y_i \quad \text{and} \quad z_i^* = -z_i,
\]

for all \(i \geq 1 \). Given an algebra with involution \((A, \otimes) \), denote by \(\text{Id}(A, \otimes) \) the set of its \(*\)-polynomial identities, that is, the set of all \(f(y_1, \ldots, y_m, z_1, \ldots, z_n) \in \mathbb{F}(Y \cup Z) \) such that

\[
f(a_1, \ldots, a_m, b_1, \ldots, b_n) = 0
\]

for all \(a_1, \ldots, a_m \in A^+ \) and \(b_1, \ldots, b_n \in A^- \). Here, \(A^+ \) (\(A^- \)) is the set of all symmetric (skew-symmetric) elements of \(A \).

When we study \(\text{Id}(M_n(\mathbb{F}), \otimes) \) and \(F \) is infinite, it is sufficient to consider the transpose and symplectic involutions (see \[6\] Theorem 3.6.8). The case \(n = 2 \) was described as follows: Levchenko \[7, 8\] for \(p = 0 \) or \(\mathbb{F} \) finite; Colombo and Koshlukov \[4\] for \(\mathbb{F} \) infinite with \(p > 2 \).

With respect to \(\text{Id}(UT_n(\mathbb{F}), \otimes) \), the case \(n = 2 \) was described as follows: Di Vincenzo, Koshlukov and La Scala \[12\] when \(\mathbb{F} \) is infinite; Urure and Gonçalves \[10\] when \(\mathbb{F} \) is finite. The case \(n = 3 \) also was described in \[12\] when \(p = 0 \).

The main result of this paper is the description of \(\text{Id}(UT_3(\mathbb{F}), \otimes) \) for all involutions of the first kind \(\otimes \) when \(\mathbb{F} \) is infinite and \(p > 2 \) (see Theorem 3.43).

Recently, Aljadeff, Giambruno, Karasik \[1\] and Sviridova \[9\] proved that if \(A \) is an algebra with involution \(\otimes \) and \(p = 0 \), then \(\text{Id}(A, \otimes) \) is finitely generated as a \(T(\otimes) \)-ideal. We find a finite generating set of \(\text{Id}(UT_3(\mathbb{F}), \otimes) \) as a \(T(\otimes) \)-ideal when \(\mathbb{F} \) is infinite and \(p > 2 \). It is the same of the case \(p = 0 \) (see Theorem 3.43 and \[12\] Theorem 6.6).

Given an algebra with involution \((A, \otimes) \), denote by \(C(A, \otimes) \) the set of its \(*\)-central polynomials, that is, the set of all \(f(y_1, \ldots, y_m, z_1, \ldots, z_n) \in \mathbb{F}(Y \cup Z) \) such that

\[
f(a_1, \ldots, a_m, b_1, \ldots, b_n) \in Z(A)
\]

for all \(a_1, \ldots, a_m \in A^+ \) and \(b_1, \ldots, b_n \in A^- \). Here, \(Z(A) \) is the center of \(A \).

If \(\mathbb{F} \) is infinite, then Brandão and Koshlukov \[3\] described \(C(M_2(\mathbb{F}), \otimes) \). For every \(\mathbb{F} \) (finite and infinite), Urure and Gonçalves \[11\] described \(C(UT_2(\mathbb{F}), \otimes) \). Differently of central polynomials, there exists non trivial \(*\)-central polynomial for \(UT_2(\mathbb{F}) \). But this is not true in general. In this paper, we prove that if \(n \geq 3 \) then

\[
C(UT_n(\mathbb{F}), \otimes) = \text{Id}(UT_n(\mathbb{F}), \otimes) + \mathbb{F}
\]

for all \(\mathbb{F} \) and \(\otimes \).

2 Involution

We suggest to the reader to see Section 2, page 546 and Section 5 of \[12\]. We will use several results from there.
Given \(n \geq 1 \), let \(J \in M_n(F) \) and \(D \in M_{2m}(F) \) (if \(n = 2m \)) be the following matrices:

\[
J = \begin{bmatrix}
0 & \cdots & 0 & 1 \\
0 & \cdots & 1 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
1 & \cdots & 0 & 0
\end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix}
I_m & 0 \\
0 & -I_m
\end{bmatrix},
\]

where \(I_m \) is the identity matrix. Define the maps \(\ast : UT_n(F) \to UT_n(F) \) and \(s : UT_n(F) \to UT_n(F) \) (if \(n \) is even) by

\[
A^\ast = JA^tJ \quad \text{and} \quad A^s = DA^\ast D,
\]

where \(A^t \) is the transpose matrix of \(A \). We known that \(\ast \) and \(s \) are involutions on \(UT_n(F) \). Moreover:

a) The involution \(\ast \) is not equivalent to \(s \).

b) Every involution on \(UT_n(F) \) is equivalent either to \(\ast \) or to \(s \).

See [12, Propositions 2.5 and 2.6] for details. In particular, we have the following corollary:

Corollary 2.1. If \(\otimes \) is an involution on \(UT_3(F) \) then \(\otimes \) is equivalent to \(\ast \), where

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{bmatrix}^\ast = \begin{bmatrix}
a_{33} & a_{23} & a_{13} \\
0 & a_{22} & a_{12} \\
0 & 0 & a_{11}
\end{bmatrix}.
\]

Moreover, \(\text{Id}(UT_3(F), \otimes) = \text{Id}(UT_3(F), \ast) \).

3 \(\ast \)-Polynomial Identities for \(UT_3(F) \)

Let \(\ast \) be the involution on \(UT_3(F) \) defined in (1). From now on \(F \) is an infinite field of characteristic \(p > 2 \). We denote

\[
UT_3(F) = UT_3 \quad \text{and} \quad \text{Id}(UT_3(F), \ast) = \text{Id}.
\]

In this section we will describe \(\text{Id} \).

The vector spaces of symmetric and skew-symmetric elements of \(UT_3 \) are respectively

\[
UT_3^+ = \text{span} \{ e_{11} + e_{33}, e_{22}, e_{12} + e_{23}, e_{13} \} \quad \text{and} \quad UT_3^- = \text{span} \{ e_{11} - e_{33}, e_{12} - e_{23} \}.
\]

Thus, we have the following lemma.

Lemma 3.1. If \(f(y_1, \ldots, y_n, z_1, \ldots, z_m) \in F(Y \cup Z) \) and

\[
f(a_1, \ldots, a_n, b_1, \ldots, b_m) \in \text{span} \{ e_{11}, \ldots, e_{13} \}
\]

for all \(a_1, \ldots, a_n \in UT_3^+ \), \(b_1, \ldots, b_m \in UT_3^- \), then

\[
(f - f^\ast) \in \text{Id}.
\]
Proof. Since \(f - f^* \) is skew-symmetric we have that \((f - f^*)(a_1, \ldots, a_n, b_1, \ldots, b_m) \) is skew-symmetric. But \((f - f^*)(a_1, \ldots, a_n, b_1, \ldots, b_m) = \alpha e_{13} \) is symmetric, where \(\alpha \in \mathbb{F} \). Thus \(\alpha = 0 \) and \((f - f^*) \in Id \).

If \(f \in \mathbb{F}(Y \cup Z)^+ \) and \(g \in \mathbb{F}(Y \cup Z)^- \), we denote \(|f| = 1 \) and \(|g| = 0 \). Thus, if \(h \in \mathbb{F}(Y \cup Z)^+ \cup \mathbb{F}(Y \cup Z)^- \) then

\[
h^* = -(-1)^{|h|} h.
\]
From now on, we denote by \(x_i \) any element of \(\{ y_i, z_i \} \) and write \(|[x_i, x_j]| = |x_i x_j| \). Here,

\[
[x_i, x_j] = x_i x_j - x_j x_i \quad \text{and} \quad [x_1, \ldots, x_n] = [[[x_1, \ldots, x_{n-1}], x_n]
\]

are the commutators.

Proposition 3.2. The following polynomials belong to \(Id \):

1. \(s_3(z_1, z_2, z_3) = z_1 [z_2, z_3] - z_2 [z_1, z_3] + z_3 [z_1, z_2] \)
2. \((1)^{x_1 x_2}[x_1, x_2][x_3, x_4] - (1)^{x_1 x_4}[x_3, x_4][x_1, x_2] \)
3. \((1)^{x_1 x_3}[x_1, x_2][x_3, x_4] - (1)^{x_1 x_3}[x_1, x_3][x_2, x_4] + (1)^{x_3 x_4}[x_1, x_4][x_2, x_3] \)
4. \(z_1 [x_3, x_4] z_2 + (1)^{x_3 x_4} z_2 [x_3, x_4] z_1 \)
5. \([x_1, x_2] [x_3, x_4] \)
6. \(z_1 [x_4, x_5] z_2 [x_3, x_4] \)

Proof. Since \(s_3 \) is the standard polynomial and \(\dim UT^+_3 = 2 \) it follows that \(s_3 \in Id \).

By [2], the polynomial (ii) has the form \(f - f^* \) where \(f = (1)^{x_1 x_2}[x_1, x_2][x_3, x_4] \). Thus, by Lemma 3.1, it is a \(*\)-identity for \(UT^+_3 \).

Defining \(f = z_1 [x_3, x_4] z_2 \), we can use the same argument as in (ii) to prove that (iv) belongs to \(Id \).

Defining \(f = z_1 [x_4, x_5] z_2 x_3 \), we can use [2], Lemma 3.1 and (iv) to prove that (vi) belongs to \(Id \).

The proof that (iii) and (v) are \(*\)-identities for \(UT^+_3 \) consists of a straightforward verification.

Notation 3.3. From now on, we denote by \(I \) the \(T(\ast) \)-ideal generated by the polynomials of Proposition 3.2. We will deduce some consequences of these identities.

Lemma 3.4. The following polynomials belong to \(I \):

1. \([x_1, x_2][x_3, x_4][x_5, x_6] \)
2. \([x_1, x_2][x_3, x_4] x_5 + (1)^{x_3 x_5}[x_1, x_2][x_3, x_4] \)
3. \([x_1, x_2, x_5][x_3, x_4] - (1)^{x_3 x_5}[x_1, x_2][x_3, x_4, x_5] \)

4
Proof. The proof of this lemma is similar to the proof of Lemma 5.2, Lemma 5.3 and Lemma 5.5 in [12]. □

Lemma 3.5. Consider the quotient algebra $F(Y,Z)/I$. If $\sigma \in \text{Sym}(n)$ and $\rho \in \text{Sym}(m)$ then:

a) $[z_a, z_b, z_{\sigma(1)}, \ldots, z_{\sigma(n)}] + I = [z_a, z_b, z_1, \ldots, z_n] + I$,
b) $z_\rho(1) \ldots z_\rho(m) [x_a, x_b, x_{\sigma(1)}, \ldots, x_{\sigma(n)}] [x_c, x_d] + I = z_1 \ldots z_m [x_a, x_b, x_1, \ldots, x_n] [x_c, x_d] + I$,
c) $[x_a, x_b, x_{\sigma(1)}, \ldots, x_{\sigma(n)}, y_1] + I = [x_a, x_b, x_1, \ldots, x_n, y_1] + I$,
d) $x_{\sigma(1)} \ldots x_{\sigma(n)} z_j [x_a, x_b] + I = x_1 \ldots x_n z_j [x_a, x_b] + I$,
e) $[x_a, x_b] z_j x_{\sigma(1)} \ldots x_{\sigma(n)} + I = [x_a, x_b] z_j x_1 \ldots x_n + I$.

Proof. Here, Sym$\,(n)$ is the symmetric group of $\{1, \ldots, n\}$. The proof of this lemma is similar to the proof of Remark 5.4 and Remark 5.19 in [12]. □

The next result is the Lemma 5.6 of [12]. In the page 554 line 6 there is a little error and we correct it bellow.

Lemma 3.6. For all $n \geq 0$, the following polynomial belongs to I:

\begin{align*}
(-1)^{|x_4 x_5|} [x_4, x_3, x_{i_1}, \ldots, x_{i_n}] [x_2, x_1] \\
-(-1)^{|x_4 x_2|} [x_4, x_2, x_{i_1}, \ldots, x_{i_n}] [x_3, x_1] \\
+(-1)^{|x_3 x_2|} [x_3, x_2, x_{i_1}, \ldots, x_{i_n}] [x_4, x_1].
\end{align*}

Proof. The proof is by induction on n. Note that it suffice to prove that the following polynomial is in I:

$g = (-1)^{|x_4 x_3|} [x_4, x_3] x_5 [x_2, x_1] \\
-(-1)^{|x_4 x_2|} [x_4, x_2] x_5 [x_3, x_1] \\
+(-1)^{|x_3 x_2|} [x_3, x_2] x_5 [x_4, x_1].$

If x_5 is skew-symmetric then $g \in I$ by Proposition 3.2 - (v).
Suppose that x_5 is symmetric and denote $x_5 = y_5$. Write

$\begin{align*}
f(x_1, x_2, x_3, x_4) &= (-1)^{|x_4 x_3|} [x_4, x_3] [x_2, x_1] \\
&\quad -(-1)^{|x_4 x_2|} [x_4, x_2] [x_3, x_1] \\
&\quad +(-1)^{|x_3 x_2|} [x_3, x_2] [x_4, x_1].
\end{align*}$

By the identities (ii) and (iii) of Proposition 3.2 we have that $f \in I$ and therefore $f(y_5 x_1, x_2, x_3, x_4) \in I$. Now we use the equality

$[x_1, y_5 x_1] = y_5 [x_1, x_1] + [x_1, y_5] x_1$

to finish the proof. □
Lemma 3.7. The following polynomials belong to I:

i) $[z_1, z_2][x_3, x_4] - z_1[x_3, x_4]z_2$, when $|x_3| = |x_4|$.

ii) $[z_1, z_2][z_3, y_4] + z_1[z_2, y_4]z_3 = z_2[z_1, y_4]z_3$.

Proof. The proof of this lemma is similar to the proof of Lemma 5.10 in [12].

Lemma 3.8. For all $n \geq 3$, the following polynomial belongs to I:

$$f_n = \sum_{i=1}^{n} z_i[z_3, z_2, x_4, \ldots, x_n] - \sum_{i=1}^{n} z_i[z_1, x_4, \ldots, x_n] + \sum_{i=1}^{n} z_i[z_2, z_1, x_4, \ldots, x_n].$$

Proof. The proof of this lemma is similar to the proof of Lemma 5.11 in [12].

Lemma 3.9. For all $m \geq 2$, the following polynomials are elements of I:

a) $z_1z_2[y_1, y_2, \ldots, y_m] - z_2[y_2, z_1, y_1, y_3, \ldots, y_m] + z_2[y_1, z_1, y_2, \ldots, y_m]$.

b) $z_1z_2[y_1, z_3, y_2, \ldots, y_m] + z_2[y_1, z_3, z_1, y_2, \ldots, y_m]$.

c) $z_1z_2[z_3, z_4, y_1, \ldots, y_m] + z_2[z_3, z_4, z_1, y_1, \ldots, y_m]$.

Proof. The proof of this lemma is similar to the proof of Lemma 5.13, Lemma 5.14 and Lemma 5.15 in [12].

Let B be the subspace of $\mathbb{F}(Y, Z)$ formed by all Y-proper polynomials. Since F is an infinite field, it is known that Id and I are generated, as a $T(*)$-ideals, by its multihomogeneous elements in B. See [5] Lemma 2.1 and [12] Page 546 for details.

If $M = (m_1, \ldots, m_k)$ and $N = (n_1, \ldots, n_s)$, denote by B_{MN} the following multihomogeneous subspace of B:

$$B_{MN} = \{ f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in B : \deg_y f = m_i, \deg_z f = n_j, 1 \leq i \leq k, 1 \leq j \leq s \}.$$

We shall prove that $I = Id$, that is, $I \cap B_{MN} = Id \cap B_{MN}$ for all M, N.

Observation 3.10. Let $\sigma \in \text{Sym}(k)$ and $\rho \in \text{Sym}(s)$. Since the $T(*)$-ideals generated by

$$f(y_1, \ldots, y_k, z_1, \ldots, z_s) \quad \text{and} \quad f(y_{\sigma(1)}, \ldots, y_{\sigma(k)}, z_{\rho(1)}, \ldots, z_{\rho(s)})$$

are equal it is sufficient to prove $I \cap B_{MN} = Id \cap B_{MN}$ for

$$1 \leq m_1 \leq \ldots \leq m_k \quad \text{and} \quad 1 \leq n_1 \leq \ldots \leq n_s.$$

From now on we assume (3).

Denote $B_{MN}(I) = B_{MN}/I \cap B_{MN}$ and $B_{MN}(Id) = B_{MN}/Id \cap B_{MN}$.

When $m_1 = \cdots = m_k = n_1 = \cdots = n_s = 1$, we write $B_{MN} = \Gamma_{ks}$.

6
Suppose \(m_1, \ldots, m_k \geq 1 \) and \(n_1, \ldots, n_s \geq 1 \). Write \(m_1 + \cdots + m_k = m \) and \(n_1 + \cdots + n_s = n \). Let \(\varphi_{MN} : \Gamma_{mn}(I) \to B_{MN}(I) \) be the linear map defined by

\[
\varphi_{MN}(f(y_1, \ldots, y_m, z_1, \ldots, z_n) + I \cap \Gamma_{mn}) = f(y_1, \ldots, y_{m_k}, y_k, \ldots, y_{m_k}, z_1, \ldots, z_{n_1}, \ldots, z_{n_s}) + I \cap B_{MN}.
\]

Since \(\varphi_{MN} \) is onto, we have the following proposition:

Proposition 3.11. Consider the above notations. If the vector space \(\Gamma_{mn}(I) \) is spanned by a subset \(S \), then \(B_{MN}(I) \) is spanned by \(\varphi_{MN}(S) \).

Fix the following order on \(Y \cup Z \):

\[
z_1 < z_2 < \ldots < y_1 < y_2 < \ldots
\]

Definition 3.12. Let \(S_1 \) be the set of all polynomials

\[
f = z_{i_1} \cdots z_{i_t} [x_{j_1}, \ldots, x_{j_l}] [x_{k_1}, \ldots, x_{k_q}]
\]

where \(t, l, q \geq 0, l \neq 1, q \neq 1 \), \(z_i \leq \ldots \leq z_i, x_{j_1} > x_{j_2} \leq \ldots \leq x_{j_l} \) and \(x_{k_1} > x_{k_2} \leq \ldots \leq x_{k_q} \). We say that \(f \) is an \(S_1 \)-standard polynomial.

Definition 3.13. Let \(S_2 \subset S_1 \) be the set of all polynomials

\[
f = z_{i_1} \cdots z_{i_t} [x_{j_1}, \ldots, x_{j_l}] [x_{k_1}, \ldots, x_{k_q}] \in S_1
\]

such that: if \(l \geq 2 \) then \(q = 0 \) or \(q = 2 \), and when \(q = 2 \) we have that \(x_{j_1} \geq x_{k_1} \) and \(x_{j_2} \geq x_{k_2} \). If \(f \in S_2 \) we say that \(f \) is an \(S_2 \)-standard polynomial.

Proposition 3.14. The vector space \(B_{MN}(I) \) is spanned by the set of all elements \(f + I \cap B_{MN} \) where \(f \in B_{MN} \) is \(S_2 \)-standard.

Proof. This proposition is true for \(\Gamma_{mn}(I) \). In fact, we can use the same proof as in [12] Proposition 5.8]. Now, if \(x_i < x_j \) then \(\varphi_{MN}(x_i) \leq \varphi_{MN}(x_j) \). Thus, by Proposition 6.11 the general case is proved.

Observation 3.15. Let \(F[y_{ij}, z_{ij}] = F[y_{ij}^k, z_{ij}^k : i, j, k \geq 1] \) be the free commutative algebra freely generated by the set of variables \(L = \{ y_{ij}^k, z_{ij}^k : i, j, k \geq 1 \} \).

Given an order \(> \) on \(L \), consider the order on the monomials of \(F[y_{ij}, z_{ij}] \) induced by \(> \) as follows: if \(w_1 \geq w_2 \geq \ldots \geq w_n \), \(w'_1 \geq w'_2 \geq \ldots \geq w'_m \) are in \(L \) then

\[
w_1 w_2 \ldots w_n > w'_1 w'_2 \ldots w'_m
\]

if and only if

- either \(w_1 = w'_1, \ldots, w_l = w'_l, w_{l+1} > w'_{l+1} \) for some \(l \),
- or \(w_1 = w'_1, \ldots, w_m = w'_m \) and \(n > m \).
Given \(f \in F[y_{ij}^k, z_{ij}^k] \), we denote by \(m(f) \) its leading monomial.

In \(UT_3(F[y_{ij}^k, z_{ij}^k]) \) consider the \(q \)generic matrices

\[
Z_k = \begin{bmatrix}
y_{11}^k & y_{12}^k & 0 \\
0 & 0 & -y_{12}^k \\
0 & 0 & -y_{11}^k
\end{bmatrix} \quad \text{and} \quad Y_k = \begin{bmatrix}
y_{11}^k & y_{12}^k & y_{13}^k \\
0 & 0 & y_{12}^k \\
0 & 0 & y_{11}^k
\end{bmatrix}.
\]

Note, the \((2, 2)\)-entry of \(Y_k \) is 0.

By using an analogous argument to the \([12, \text{Lemma 6.1}]\) we obtain the next lemma.

Lemma 3.16. If \(f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in Id \), then \(f(Y_1, \ldots, Y_k, Z_1, \ldots, Z_s) = 0 \).

3.1 Subspaces \(B_{MN} \) where \(N = 0 \)

If \(M = (m_1, \ldots, m_k) \) and \(N = (0) \), then denote \(B_{MN} = B_{M0} \), that is

\[
B_{M0} = \{ f(y_1, \ldots, y_k) \in B : \deg_y f = m_i, \ 1 \leq i \leq k \}.
\]

A polynomial in \(S_2 \cap B_{M0} \) has the form

\[
f^{(i_1)} = [y_{i_1}, y_{i_2}, \ldots, y_{i_m}] \quad \text{or} \quad f^{(i_1, j_1)} = [y_{i_1}, y_{i_2}, \ldots, y_{i_{m-2}}][y_{i_1}, y_{j_2}]
\]

where \(i_1 > i_2 \leq i_3 \leq \ldots \leq i_m \) for \(f^{(i_1)} \); \(i_1 > i_2 \leq i_3 \leq \ldots \leq i_{m-2} \leq i_1 \geq j_1 > j_2 \) and \(i_2 \geq j_2 \) for \(f^{(i_1, j_1)} \).

Proposition 3.17. The set \(\{ f + Id \cap B_{M0} : f \in S_2 \cap B_{M0} \} \) is a basis for the vector space \(B_{M0}(Id) \). In particular, \(Id \cap B_{M0} = I \cap B_{M0} \).

Proof. Since \(I \subseteq Id \) we have, by Proposition 3.14

\[
B_{M0}(Id) = \text{span}\{ f + Id \cap B_{M0} : f \in S_2 \cap B_{M0} \}.
\]

We will use the notations of Observation 3.15. Consider some order \(> \) on \(L \) such that

\[
y_1^{i+1} > y_1^i > y_1^{i+1} > y_1^i
\]

for all \(i \geq 1 \). By using the \(q \)generic matrices we have the following equalities:

(a) \([Y_1, Y_2, \ldots, Y_{2l}] = (y_{11}^{1} y_{12}^{2} - y_{11}^{2} y_{12}^{1}) \left(\prod_{s=3}^{2l} y_{11}^{s} \right) (e_{12} - e_{23}),\]

(b) \([Y_1, Y_2, \ldots, Y_{2l+1}] = -(y_{11}^{1} y_{12}^{2} - y_{11}^{2} y_{12}^{1}) \left(\prod_{s=3}^{2l} y_{11}^{s} \right) (y_{11}^{2l+1} (e_{12} + e_{23}) - 2y_{12}^{2l+1} e_{13}),\]

(c) \([Y_1, Y_2, \ldots, Y_{2l-2}] [Y_{2l-1}, Y_{2l}] = (y_{11}^{1} y_{12}^{2} - y_{11}^{2} y_{12}^{1}) \left(\prod_{s=3}^{2l-2} y_{11}^{s} \right) (y_{11}^{2l-1} y_{12}^{2l+1} - y_{12}^{2l-1} y_{11}^{2l-1}) e_{13} ,\]

8
(d) \([Y_1, Y_2, \ldots, Y_{2l-1}, Y_{2l}, Y_{2l+1}] = -(y_{11} y_{12}, y_{21} y_{22}) \left(\prod_{s=3}^{2l-1} y_{s1}\right) (y_{11} y_{12}, y_{21} y_{22}) e_{13}\).

Let \(f^{(i)}, f^{(i, j)}\) as in (4). Write

\(f^{(i)}(Y_1, \ldots, Y_k) = \sum f^{(i)} e_{ij}\) and \(f^{(i, j)}(Y_1, \ldots, Y_k) = \sum f^{(i, j)} e_{ij}\).

We shall prove that \(\{f + \text{Id} \cap B_{M0} : f \in S_2 \cap B_{M0}\}\) is a linearly independent set of \(B_{M0}(\text{Id})\). Suppose

\[\sum \alpha_{i1} f^{(i)} + \sum \alpha_{i, j} f^{(i, j)} \in \text{Id},\]

where \(\alpha_{i1}, \alpha_{i, j} \in \mathbb{F}\). By Lemma 3.16 we have

\[\sum \alpha_{i1} f^{(i)}(Y_1, \ldots, Y_k) + \sum \alpha_{i, j} f^{(i, j)}(Y_1, \ldots, Y_k) = 0.\]

The leading monomials of \(f^{(i)}\) and \(f^{(i, j)}\) are

\[m(f_{12}^{(i)}) = y_{12}^{j} \left(\prod_{s=2}^{m} y_{s1}\right)\] and \[m(f_{13}^{(i, j)}) = y_{12}^{j} y_{11}^{j} \left(\prod_{s=2}^{m} y_{s1}\right) y_{11}^{j}.\]

Moreover, the coefficients of \(m(f_{12}^{(i)})\) and \(m(f_{13}^{(i, j)})\) in \(f_{12}^{(i)}\) and \(f_{13}^{(i, j)}\) are \(\alpha_{i1}\) and \(\alpha_{i, j}\), respectively.

Since \(f_{12}^{(i, j)} = 0\), we have \(\sum \alpha_{i1} f_{12}^{(i)} = 0\). Thus, the coefficient of the maximal monomial of the set \(\{m(f_{12}^{(i)}) : i_1 \geq 1\}\) is 0. By induction, every coefficient \(\alpha_{i1}\) is 0. This implies \(\sum \alpha_{i1} f_{13}^{(i, j)} = 0\) and we can use similar argument to prove that every \(\alpha_{i, j}\) is 0.

\[\square\]

3.2 Subspaces \(B_{MN}\) where \(M = (0)\)

If \(M = (0)\) and \(N = (n_1, \ldots, n_s)\), then denote \(B_{MN} = B_{0N}\), that is

\[B_{0N} = \{f(z_1, \ldots, z_s) \in B : \deg_{z_i} f = n_i, 1 \leq i \leq s\}.\]

Definition 3.18. Let \(S_3 \subset S_2\) be the set of all polynomials \(f, f^{(j)}; f^{(i, j)} \in B_{0N}\) such that:

- \(f = z_1^{n_1} \ldots z_s^{n_s} \in S_2,\)
- \(f^{(j)} = [z_j, z_{j+1}, \ldots, z_s] \in S_2,\)
- \(f^{(i, j)} = z_i [z_j, \ldots, z_{j-1}] \in S_2\) where \(i \leq j_1.\)

If \(f \in S_3\) we say that \(f\) is an \(S_3\)-standard polynomial.

Proposition 3.19. The vector space \(B_{0N}(I)\) is spanned by the set of all elements \(f + I \cap B_{0N}\) where \(f \in B_{0N}\) is \(S_3\)-standard.
Proof. This proposition is true for $\Gamma_{0n}(I)$. In fact, we can use the same proof as in [12 Proposition 5.12]. Now, if $z_i < z_j$ then $\varphi_{0N}(z_i) \leq \varphi_{0N}(z_j)$. Thus, by Proposition 3.11 the general case is proved. □

Proposition 3.20. The set $\{ f + Id \cap B_{0N} : f \in S_3 \}$ is a basis for the vector space $B_{0N}(Id)$. In particular, $Id \cap B_{0N} = I \cap B_{0N}$.

Proof. Since $I \subseteq Id$ we have, by Proposition 3.19

\[B_{0N}(Id) = \text{span}\{ f + Id \cap B_{0N} : f \in S_3 \}. \]

We will use the notations of Observation 3.15. Consider some order $> \in D$ such that

\[z_i^{1+} > z_i^{1-} > z_i^{1+} > z_i^{1-} \]

for all $i \geq 1$. By using the generic matrices we have the following equalities:

(a) $[Z_1, Z_2, \ldots, Z_n] = (-1)^n \left(z_{11}^1 z_{12}^2 - z_{12}^1 z_{11}^2, \prod_{i=3}^{n} z_{ii}^i \right)(\epsilon_{12} - \epsilon_{23}),$

(b) $Z_1[Z_2, Z_3, \ldots, Z_n] = (-1)^{n-1} \left(z_{11}^2 z_{12}^3 - z_{12}^2 z_{11}^3, \prod_{i=4}^{n} z_{ii}^i \right)(\epsilon_{11}^2 - \epsilon_{12}^1, \epsilon_{13}^1, \epsilon_{23}^1).$

Let $f, f^{(j_1)}$ and $f^{(i_1, j_1)}$ as in (5). Write $f(Z_1, \ldots, Z_s) = \sum f_{ij} e_{ij}$, $f^{(j_1)}(Z_1, \ldots, Z_s) = \sum f_{ij}^{(j_1)} e_{ij}$ and $f^{(i_1, j_1)}(Z_1, \ldots, Z_s) = \sum f_{ij}^{(i_1, j_1)} e_{ij}$.

Suppose

\[\alpha f + \sum \alpha_{j_1} f^{(j_1)} + \sum \alpha_{i_1, j_1} f^{(i_1, j_1)} \in Id, \]

where $\alpha, \alpha_{j_1}, \alpha_{i_1, j_1} \in \mathbb{F}$. By Lemma 3.16 we have

\[\alpha f(Z_1, \ldots, Z_s) + \sum \alpha_{j_1} f^{(j_1)}(Z_1, \ldots, Z_s) + \sum \alpha_{i_1, j_1} f^{(i_1, j_1)}(Z_1, \ldots, Z_s) = 0. \]

Since $f^{(j_1)}_{11} = f^{(i_1, j_1)}_{11} = 0$, we obtain $\alpha f_{11} = 0$ and so $\alpha = 0$. Note that

\[m(f^{(j_1)}_{23}) = z_{12}^1 \prod_{i=2}^{n} z_{ii}^i \] and \[m(f^{(i_1, j_1)}_{13}) = z_{12}^1 z_{1i}^1 \prod_{i=2}^{n} z_{ii}^i. \]

Moreover, the coefficients of $m(f^{(j_1)}_{23})$ and $m(f^{(i_1, j_1)}_{13})$ in $f^{(j_1)}_{23}$ and $f^{(i_1, j_1)}_{13}$ are $\pm \alpha_{j_1}$ and $\pm \alpha_{i_1, j_1}$, respectively.

Since $f^{(i_1, j_1)}_{23} = 0$, we have $\sum \alpha_{j_1} f^{(j_1)}_{23} = 0$. Thus, the coefficient of the maximal monomial of the set $\{ m(f_{23}^{(j_1)} : j_1 \geq 1 \}$ is 0. By induction, every coefficient α_{j_i} is 0. We can use similar argument to prove that every α_{i_1, j_1} is 0. □
3.3 Subspaces B_{MN} where $M \neq (0), (1)$ and $N = (1)$

If $M = (m_1, \ldots, m_k) \neq (0), (1)$ and $N = (1)$, then denote $B_{MN} = B_{M1}$, that is, \[B_{M1} = \{ f(y_1, \ldots, y_k, z_1) \in B : \deg y_i f = m_i \text{ and } \deg z_1 f = 1, 1 \leq i \leq k \} \]
and $m = m_1 + \cdots + m_k > 1$.

Definition 3.21. Let $S_3 \subset S_2$ be the set of all polynomials $f^{(i_1)}, g^{(i_1)}, f^{(i_1, i_j)} \in B_{M1}$ such that:

\begin{itemize}
 \item $f^{(i_1)} = [y_{i_1}, z_1, y_{i_2}, \ldots, y_{i_m}] \in S_2$;
 \item $g^{(i_1)} = z_1[y_{i_1}, y_{i_2}, \ldots, y_{i_m}] \in S_2$,
 \item $f^{(i_1, i_j)} = [y_{i_1}, y_{i_2}, \ldots, y_{i_m-1}][y_{i_j}, z_1] \in S_2$.
\end{itemize}

If $f \in S_3$, we say that f is an S_3-standard polynomial.

Proposition 3.22. The vector space $B_{M1}(I)$ is spanned by the set of all elements $f + I \cap B_{M1}$ where $f \in B_{M1}$ is S_3-standard.

Proof. This proposition is true for $\Gamma_m(I)$. In fact, we can use the same proof as in [12, Proposition 5.17]. Now, if $y_i < y_j$ then $\varphi_{M1}(y_i) \leq \varphi_{M1}(y_j)$. Thus, by Proposition 3.11, the general case is proved.

Proposition 3.23. The set $\{ f + Id \cap B_{M1} : f \in S_3 \}$ is a basis for the vector space $B_{M1}(Id)$. In particular, $Id \cap B_{M1} = I \cap B_{M1}$.

Proof. Since $I \subset Id$, we have, by Proposition 3.22
\[B_{M1}(Id) = \text{span}\{ f + Id \cap B_{M1} : f \in S_3 \}. \]

We will use the notations of Observation 3.14. Consider some order $>$ on L such that \[y_{i_1}^{z_{i_2}^2} > y_{i_2}^{z_{i_1}^2} > y_{i_1}^{z_{i_2}^2} > y_{i_2}^{z_{i_1}^2} > z_{i_2}^{z_{i_1}^2} > z_{i_1}^{z_{i_2}^2} \]
for all $i \geq 1$. By using the generic matrices we have the following equalities:

\begin{align*}
[Y_1, Z_{1}, Y_{2}, \ldots, Y_{2l}] &= - (y_{i_1}^{z_{i_2}^2} - y_{i_2}^{z_{i_1}^2}) \left(\prod_{s=2}^{2l} y_{i_1}^{s} \right) (e_{12} - e_{23}), \\
[Y_1, Z_{1}, Y_{2}, \ldots, Y_{2l+1}] &= (y_{i_1}^{z_{i_2}^2} - y_{i_2}^{z_{i_1}^2}) \left(\prod_{s=2}^{2l+1} y_{i_1}^{s} \right) (y_{i_1}^{2l+1}(e_{12} + e_{23}) - 2y_{i_2}^{2l+1}e_{13}), \\
Z_{1}[Y_1, Y_{2}, \ldots, Y_{2l}] &= (y_{i_1}^{z_{i_2}^2} - y_{i_2}^{z_{i_1}^2}) \left(\prod_{s=3}^{2l} y_{i_1}^{s} \right) (z_{i_1}^{z_{i_2}^2}e_{12} - z_{i_2}^{z_{i_1}^2}e_{13}), \\
Z_{1}[Y_1, Y_{2}, \ldots, Y_{2l+1}] &= - (y_{i_1}^{z_{i_2}^2} - y_{i_2}^{z_{i_1}^2}) \left(\prod_{s=3}^{2l+1} y_{i_1}^{s} \right) (z_{i_1}^{z_{i_2}^2}y_{i_1}^{2l+1}e_{12} + (-2z_{i_1}^{z_{i_2}^2}y_{i_1}^{2l+1} + z_{i_2}^{z_{i_1}^2}y_{i_1}^{2l+1})e_{13}).
\end{align*}
Let \(B \) is 0. By induction, every coefficient \(\alpha \) is 0. Thus, the coefficient of the maximal monomial of the set \(f \) where \(g \) is 3.4.

\[Y_1, \ldots, Y_{2l-1}, \alpha(G) = \frac{1}{2} \left(\prod_{i=3}^{2l-1} y_i \right) \left(y_1^2 - y_1 y_2 \right) \left(y_1^2 - y_1 y_{2l-1} \right) \epsilon_{l1}. \]

\[Y_{2l}, \ldots, Y_{2l+1}, \alpha(G) = \frac{1}{2} \left(\prod_{i=3}^{2l} y_i \right) \left(y_1^2 - y_1 y_{2l+1} \right) \epsilon_{l1}. \]

Let \(f^{(i_1)}, g^{(i_1)}, f^{(i_1,i_2)} \) as in (b). Write \(f^{(i_1)}(Y_1, \ldots, Y_k, Z_1) = \sum f^{(i_1)} e_{ij}, g^{(i_1)}(Y_1, \ldots, Y_k, Z_1) = \sum g^{(i_1)} e_{ij} \) and \(f^{(i_1,i_2)}(Y_1, \ldots, Y_k, Z_1) = \sum f^{(i_1,i_2)} e_{ij}. \)

Suppose \(\sum \alpha_i f^{(i_1)} + \sum \beta_i g^{(i_1)} + \sum \alpha_{i_1,i_2} f^{(i_1,i_2)} \in I_1, \) where \(\alpha_i, \beta_i, \alpha_{i_1,i_2} \in \mathbb{F}. \)

Note that

\[m(f^{(i_1)}) = y_1^{i_1} \left(\prod_{i=2}^{m} y_i \right) z_1^{i_1}, \]

and its coefficient in \(f^{(i_1)} \) is \(-\alpha_i\). Since \(g^{(i_1)} = f^{(i_1,i_2)} = 0 \), we have \(\sum \alpha_i f^{(i_1)} = 0. \) Thus, the coefficient of the maximal monomial of the set \(\{ m(f^{(i_1)}): i_1 \geq 1 \} \) is 0. By induction, every coefficient \(\alpha_i \) is 0. Now,

\[m(g^{(i_1)}) = y_1^{i_1} \left(\prod_{i=2}^{m} y_i \right) z_1^{i_1}, \]

and its coefficient in \(g^{(i_1)} \) is \(\pm \alpha_i \). Since \(f^{(i_1,i_2)} = 0 \), we have \(\sum \beta_i g^{(i_1)} = 0. \) Thus, the coefficient of the maximal monomial of the set \(\{ m(g^{(i_1)}): i_1 > 1 \} \) is 0. By induction, every coefficient \(\beta_i \) is 0. This implies \(\sum \alpha_{i_1,i_2} f^{(i_1,i_2)} = 0. \) Since

\[m(f^{(i_1,i_2)}) = y_1^{i_1} y_2^{i_2} \left(\prod_{i=3}^{m} y_i \right) z_1^{i_1}, \]

and its coefficient in \(f^{(i_1,i_2)} \) is \(\pm \alpha_{i_1,i_2} \), we can use similar argument to prove that every \(\alpha_{i_1,i_2} \) is 0.

3.4 Subspaces \(B_{MN} \) where \(M = (1) \) and \(N \neq (0) \)

If \(M = (1) \) and \(N = (n_1, \ldots, n_s) \neq (0) \), then denote \(B_{MN} = B_{1N} \), that is

\[B_{1N} = \{ f(y_1, z_1, \ldots, z_s) \in B : \deg y_i f = 1 \text{ and } \deg z_i f = n_i, 1 \leq i \leq s \}. \]

Definition 3.24. Let \(S_3 \) be the set of all polynomials \(f^{(j)}, g^{(j)}, h^{(j)}, f^{(i,j)} \in B_{1N} \) such that

(a) \(f^{(j)} = z_1^{n_1} \ldots z_j^{n_j-1} \ldots z_s^{n_s} [y_1, z_j] \), where \(1 \leq j \leq s. \)

(b) \(g^{(j)} = [y_1, z_j] z_1^{n_1} \ldots z_j^{n_j-1} \ldots z_s^{n_s} \), where \(1 \leq j \leq s. \)

(c) \(h^{(j)} = z_1^{n_1} \ldots z_j^{n_j-1} \ldots z_s^{n_s-1} [y_1, z_j] z_s \), where \(1 \leq j \leq s. \)
Proposition 3.11. The general case is proved.

If f as in [12, Proposition 5.20]. Now, if z this proposition is true for Γ

Proof. The vector space $B_{1N}(I)$ is spanned by the set of all elements $f + I \cap B_{1N}$ where f is S_3-standard.

Proposition 3.25. The vector space $B_{1N}(I)$ is spanned by the set of all elements $f + I \cap B_{1N}$ where f is S_3-standard.

Proof. This proposition is true for $\Gamma_{1n}(I)$. In fact, we can use the same proof as in [12 Proposition 5.20]. Now, if $z_i < z_j$ then $\varphi_{1N}(z_i) \leq \varphi_{1N}(z_j)$. Thus, by Proposition 3.11 the general case is proved.

3.4.1 Subspace B_{1N} where $n_s > 1$

We start this subsection with the next proposition. By using similar arguments as the ones used in [2] Theorem 6 in Chapter 4 we obtain:

Proposition 3.26. Let F be an infinite field of $\text{char}(F) = p > 2$. If H is a $T(\ast)$-ideal then H is generated, as a $T(\ast)$-ideal, by its multihomogeneous elements $f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in H$ with multidegree $(p^{a_1}, \ldots, p^{a_k}, p^{b_1}, \ldots, p^{b_v})$ where $a_1, \ldots, a_k, b_1, \ldots, b_s \geq 0$.

We want to show that $I = Id$ by proving $Id \cap B_{MN} = I \cap B_{MN}$. By the last proposition, in this subsection is sufficient to consider the case $1 < n_s = p^{b_v}$. Since $\text{char}(F) = p \geq 3$ we have $n_s \geq 3$. Thus, from now on, we assume $n_s \geq 3$ in B_{1N}.

Definition 3.27. Let S_4 be the set of all polynomials $f^{(j)}, g^{(j)}, h^{(s)}, p^{(i,j)} \in B_{1N}$ such that:

- $f^{(j)}, g^{(j)}, h^{(s)} \in S_3$ as in Definition 3.24
- $p^{(i,j)} = z_1^{n_1} \cdots z_i^{n_{i-1}} \cdots z_j^{n_{j-1}} \cdots z_s^{n_{s-1}}[z_1, \ldots, z_s][y_1, z_j], 1 \leq i \leq j \leq s$ and $i < s$.

If $f \in S_4$, we say that f is an S_4-standard polynomial.

Proposition 3.28. If $n_s \geq 3$, then the vector space $B_{1N}(I)$ is spanned by the set of all elements $f + I \cap B_{1N}$ where f is S_4-standard.

Proof. Let $\Lambda = \text{span}\{f + I \cap B_{1N} : f \in S_4\}$. By Proposition 3.26 it is enough to prove that

- $h^{(j)} + I \cap B_{1N} \in \Lambda, j < s$;
- $f^{(i,j)} + I \cap B_{1N} \in \Lambda, 1 \leq i \leq j \leq s$ and $i < s$.

By Lemma 3.3 (4) it follows that $f^{(i,j)} + I = p^{(i,j)} + f^{(j)} + I$. Thus $f^{(i,j)} + I \cap B_{1N} \in \Lambda$.

13
Write \(h^{(j)} = wz_s z_{[y_1, z_j]} z_k \) where \(w = z_1^{n_1} \ldots z_j^{n_j-1} \ldots z_s^{n_s-3} \). By Lemma 3.7 ii), Lemma 3.5 d) and Lemma 3.4 ii) we obtain:

\[
\begin{align*}
&h^{(j)} + I = wz_s z_{[y_1, z_s]} z_k + wz_s z_{[y_1, z_s]} z_k + I \\
&= wz_s z_{[y_1, z_s]} z_k + w[z_s, z_j][y_1, z_s] z_k - wz_s z_{[y_1, z_s]} z_k + I \\
&= h(s) - wz_s z_{[y_1, z_s]} z_k - wz_s z_{[y_1, z_s]} z_k + I \\
&= h(s) - 2p^{(j,s)} + I.
\end{align*}
\]

Therefore, \(h^{(j)} + I \cap B_{1N} \in \Lambda \).

\[\square\]

Proposition 3.29. If \(n_s \geq 3 \), then \(\{f + Id \cap B_{1N} : f \in S_4\} \) is a basis for the vector space \(B_{1N}[Id] \). In particular, \(Id \cap B_{1N} = I \cap B_{1N} \).

Proof. Since \(I \subset Id \), we have, by Proposition 3.28

\[
B_{1N}(Id) = \text{span}\{f + Id \cap B_{1N} : f \in S_4\}.
\]

We will use the notations of Observation 3.15. Consider some order \(> \) on \(L \) such that

\[
z_{i_1}^{j_1} > z_{i_2}^{j_2} > z_{i_3}^{j_3} > z_{i_4}^{j_4} > z_{i_5}^{j_5} > z_{i_6}^{j_6} > z_{i_7}^{j_7} > z_{i_8}^{j_8} > z_{i_9}^{j_9} > z_{i_10}^{j_10} \]

for all \(1 \leq l \leq s - 2 \) and \(i \geq 1 \). By using the \(q \)-generic matrices we have the following equalities:

\[
\begin{align*}
&\bullet Z_1 \ldots Z_j \ldots Z_m[Y_1, Z_j] = \left[\prod_{i=1}^{m} \left(z_{i_1}^{j_1} \right) \right] (y_{11}^{j_1} z_{i_2}^{j_2} - y_{12}^{j_2} z_{i_1}^{j_1}) e_{12} + ue_{13}, \\
&\bullet [Y_1, Z_j]Z_1 \ldots Z_j \ldots Z_m = (-1)^{m-1} (y_{11}^{j_1} z_{i_2}^{j_2} - y_{12}^{j_2} z_{i_1}^{j_1}) \left[\prod_{i=1}^{m} \left(z_{i_1}^{j_1} \right) \right] e_{23} + ve_{13}, \\
&\bullet Z_1 \ldots Z_{s-1} Z_s[Y_1, Z_s] = -\left[\prod_{i=1}^{s} \left(z_{i_1}^{j_1} \right) \right] (y_{11}^{j_1} z_{i_2}^{j_2} - y_{12}^{j_2} z_{i_1}^{j_1}) z_{i_1}^{j_1} e_{13}, \\
&\quad + \left(\sum_{i=1}^{s} \left(z_{i_1}^{j_1} \right) (y_{12}^{j_2} z_{i_3}^{j_3} + y_{13}^{j_3} z_{i_2}^{j_2}) z_{i_1}^{j_1} - \left[\prod_{i=1}^{s} \left(z_{i_1}^{j_1} \right) \right] z_{i_2}^{j_2} (y_{11}^{j_1} z_{i_2}^{j_2} - y_{12}^{j_2} z_{i_1}^{j_1}) z_{i_1}^{j_1} \right) e_{13}, \\
&\bullet Z_1 \ldots Z_i \ldots Z_s[Z_s, Z_i][Y_1, Z_j] = \left[\prod_{i=1}^{s} \left(z_{i_1}^{j_1} \right) \right] (z_{i_1}^{j_1} z_{i_2}^{j_2} - z_{i_2}^{j_2} z_{i_1}^{j_1}) (y_{11}^{j_1} z_{i_2}^{j_2} - y_{12}^{j_2} z_{i_1}^{j_1}) e_{13}.
\end{align*}
\]

for some polynomials \(u, v \in F[L] \).

Let \(f^{(j)}, g^{(j)}, h^{(s)}, p^{(j,s)} \) as in [4]. Write

\[
\begin{align*}
f^{(j)}(Y_1, Z_1, \ldots, Z_s) &= \sum f_{ab}^{(j)} e_{ab}, \quad g^{(j)}(Y_1, Z_1, \ldots, Z_s) = \sum g_{ab}^{(j)} e_{ab}, \\
h^{(s)}(Y_1, Z_1, \ldots, Z_s) &= \sum h_{ab}^{(s)} e_{ab}, \quad p^{(j,s)}(Y_1, Z_1, \ldots, Z_s) = \sum p_{ab}^{(j,s)} e_{ab}.
\end{align*}
\]
and suppose
\[\sum \alpha_j f^{(j)} + \sum \beta_j g^{(j)} + \gamma h^{(s)} + \sum \beta_{i,j} p^{(i,j)} \in \text{Id}, \]
where \(\alpha_j, \beta_j, \gamma, \beta_{i,j} \in \mathbb{F} \). Now we use the same arguments as Propositions 3.17, 3.20 and 3.23. In short, by the following table

Entry	Information	Monomial	Its coefficient
(1, 2)	\(g^{(1,2)} = h^{(s)}_{12} = p^{(i,j)}_{12} = 0 \)	\(m(f^{(1,2)}_{12}) \)	\(\alpha_j \)
(2, 3)	\(h^{(s)}_{23} = p^{(i,j)}_{23} = 0 \)	\(m(g^{(2,3)}_{23}) \)	\(\pm \beta_j \)
(1, 3)		\(w \)	\(2 \gamma \)
(1, 3)		\(m(p^{(i,j)}_{13}) \)	\(\beta_{i,j} \)

where
\[
\begin{align*}
 m(f^{(1,2)}_{12}) &= (z_{11}^{n_1} \cdots z_{1j}^{n_{j-1}} \cdots z_{11}^{n_j})^{n_s} y_{11}^{12}, \\
 m(g^{(2,3)}_{23}) &= y_{11}^{12} z_{2j}^{n_1} \cdots (z_{11}^{n_j})^{n_s}, \\
 w &= y_1^{13} (z_{11}^{n_1})^{n_s}, \\
 m(p^{(i,j)}_{13}) &= (z_{11}^{n_1} \cdots z_{1j}^{n_{j-1}} \cdots z_{11}^{n_j})^{n_s} y_{11}^{12} z_{12}^{ij},
\end{align*}
\]
we have \(\alpha_j = 0, \beta_j = 0, \gamma = 0, \beta_{i,j} = 0 \) respectively. \(\square \)

3.4.2 Subspace \(B_{1N} \) where \(n_s = 1 \)

By Observation 3.10 if \(n_s = 1 \) then \(n_1 = \ldots = n_s = 1 \). In this case, \(B_{1N} = \Gamma_{1s} \).

Proposition 3.30. If \(n_s = 1 \), then \(\{ f + \text{Id} \cap \Gamma_{1s} : \ f \in S_3 \} \) is a basis for the vector space \(\Gamma_{1s}(\text{Id}) \). In particular, \(\text{Id} \cap \Gamma_{1s} = \Gamma \cap \Gamma_{1s} \).

Proof. If \(f \) is \(S_3 \)-standard then \(f \) is \(T_2 \)-standard in [12, Definition 5.18]. Now we can use the same proof of [12, Lemma 6.5]. \(\square \)

3.5 Subspaces \(B_{MN} \) where \(M \neq (0), (1) \) and \(N \neq (0), (1) \)

Let \(M = (m_1, \ldots, m_k) \) and \(N = (n_1, \ldots, n_s) \). In this section,
\[
m = m_1 + \ldots + m_k \geq 2 \quad \text{and} \quad n = n_1 + \ldots + n_s \geq 2.
\]

Definition 3.31. Let \(S_3 \subset S_2 \) be the set of all polynomials \(f^{(i)}, g^{(i)}, f^{(i,i)}, g^{(i,i)}, h^{(j,ji)} \in B_{MN} \) such that:

- \(f^{(i)} = [z_{i_1}, z_{i_2}, \ldots, x_{i-t_i}] \in S_2 \),
- \(g^{(i)} = [y_{i_1}, z_{i_2}, \ldots, x_{i-t_i}] \in S_2 \),
- \(f^{(i,i)} = z_i [z_{i_1}, x_{i_2}, \ldots, x_{i-t_i}] \in S_2 \) and \(z_i \leq z_{i_1} \),
- \(g^{(i,i)} = z_i [y_{i_1}, x_{i_2}, \ldots, x_{i-t_i}] \in S_2 \),
- \(h^{(j,ji)} = [y_{j_1}, x_{j_2}, \ldots, x_{j_{t_j}}][y_{p_1}, z_1] \in S_2 \).
where $t = m + n$. If $f \in S_3$, we say that f is an S_3-standard polynomial.

Proposition 3.32. The vector space $B_{MN}(I)$ is spanned by the set of all elements $f + I \cap B_{MN}$ where f is S_3-standard.

Proof. This proposition is true for $\Gamma_{mn}(I)$. In fact, we can use the same proof as in [12] Proposition 5.17. Now, if $x_i < x_j$, then $\varphi_{MN}(x_i) \leq \varphi_{MN}(x_j)$. Thus, by Proposition 3.11 the general case is proved. \hfill \Box

In $UT_3(F[y_{ij}^k, z_{ij}^k])$ consider the *generic* matrices

$$Z_i = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad Z_l = \begin{bmatrix} 1 & z_{i2}^l & 0 \\ 0 & 0 & -z_{i2}^l \\ 0 & 0 & -1 \end{bmatrix} \quad \text{and} \quad Y_j = \begin{bmatrix} 1 & y_{i1}^j & y_{i3}^j \\ 0 & 0 & y_{i2}^j \\ 0 & 0 & 1 \end{bmatrix}$$

for all $l \geq 2$ and $j \geq 1$. If $w(y_1, \ldots, y_k, z_1, \ldots, z_s)$ is S_3-standard then we write

$$w(Y_1, \ldots, Y_k, Z_1, \ldots, Z_s) = \sum_{a,b=1}^3 w_{ab} e_{ab}.$$

Since F is an infinite field we have the following lemma:

Lemma 3.33. Let $Y_1, \ldots, Y_k, Z_1, \ldots, Z_s$ be generic matrices. If $f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in Id$, then $f(Y_1, \ldots, Y_k, Z_1, \ldots, Z_s) = 0$.

Lemma 3.34. Let Z_i and Y_i be the generic matrices, where $l \geq 1$.

a) If $m \geq 2$ is even then:

$$[Z_{i1}, Z_{i2}, \ldots, Z_{in}, Y_{j1}, \ldots, Y_{jm}] = (-1)^n(z_{i2}^{j1} - z_{i2}^{j1})(e_{12} - e_{23}), \quad \text{where} \quad n \geq 2;$$

$$[Y_{j1}, Z_{i2}, \ldots, Z_{in}, Y_{j2}, \ldots, Y_{jm}] = (-1)^n(z_{i2}^{j1} - y_{i1}^{j1})(e_{12} - e_{23}), \quad \text{where} \quad n \geq 2;$$

$$Z_i[Z_{i1}, Z_{i2}, \ldots, Z_{in-1}, Y_{j1}, \ldots, Y_{jm}] = (-1)^{n-1}(z_{i2}^{j1} - z_{i2}^{j1})e_{12} + (-1)^n z_{i2}^{j1}(z_{i2}^{j1} - z_{i2}^{j1})e_{13}, \quad \text{where} \quad n \geq 3;$$

$$Z_i[Y_{j1}, Z_{i2}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm}] = (-1)^{n-1}(z_{i2}^{j1} - y_{i1}^{j1})e_{12} + (-1)^n z_{i2}^{j1}(z_{i2}^{j1} - y_{i1}^{j1})e_{13}, \quad \text{where} \quad n \geq 2;$$

$$[Y_{j1}, Z_{i1}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm-1}][Y_{p1}, Z_{p2}] = (-1)^n(z_{i1}^{j1} - y_{i1}^{j1})(z_{i2}^{p1} - y_{i1}^{p1})e_{13},$$

where $n \geq 2$.

b) If $m \geq 2$ is odd then:

$$[Z_{i1}, Z_{i2}, \ldots, Z_{in}, Y_{j1}, \ldots, Y_{jm}] = (-1)^{n-1}(z_{i2}^{j1} - z_{i2}^{j1})(e_{12} + e_{23}) + 2(-1)^n(z_{i2}^{j1} - z_{i2}^{j1})y_{i2}^m e_{13}, \quad \text{where} \quad n \geq 2;$$

$$[Y_{j1}, Z_{i1}, \ldots, Z_{in}, Y_{j2}, \ldots, Y_{jm}] = (-1)^{n-1}(z_{i2}^{j1} - y_{i1}^{j1})(e_{12} + e_{23}) + 2(-1)^n(z_{i2}^{j1} - y_{i1}^{j1})y_{i2}^m e_{13}, \quad \text{where} \quad n \geq 2;$$

16
\[Z_i[Z_{i1}, Z_{i2}, \ldots, Z_{in-1}, Y_{j1}, \ldots, Y_{jm}] = (-1)^n(z_{12}^i - z_{12}^l)e_{12} + \\
- (-1)^n(z_{12}^i - z_{12}^l)(-2y_{12}^i + z_{12}^i)e_{13}, \text{ where } n \geq 3; \]
\[Z_i[Y_{j1}, Z_{i1}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm}] = (-1)^n(z_{12}^i - y_{12}^j)e_{12} + \\
- (-1)^n(z_{12}^i - y_{12}^j)(-2y_{12}^i + z_{12}^i)e_{13}, \text{ where } n \geq 2; \]
\[[Y_{j1}, Z_{i1}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm-1}][Y_{p1}, Z_{p2}] = (-1)^{n-1}(z_{12}^i - y_{12}^j)(z_{12}^i - y_{12}^j)e_{13}, \]
\[\text{where } n \geq 2. \]

Proof. We leave the proof to the reader. \(\square\)

3.5.1 Case \(m\) even and \(n_1 > 1\)

Let \(M = (m_1, \ldots, m_k), N = (n_1, \ldots, n_s), m = m_1 + \ldots + m_k \geq 2\) and \(n = n_1 + \ldots + n_s \geq 2\). In this subsection, we consider the case where \(m\) is even and \(n_1 > 1\).

Proposition 3.35. If \(m\) is even and \(n_1 > 1\), then \((f + \text{Id} \cap B_{MN} : f \in S_3)\) is a basis for the vector space \(B_{MN}(\text{Id})\). In particular, \(\text{Id} \cap B_{MN} = I \cap B_{MN}\).

Proof. Since \(I \subset \text{Id}\), we have, by Proposition 3.32

\[B_{MN}(\text{Id}) = \text{span}\{f + \text{Id} \cap B_{MN} : f \in S_3\}. \]

Consider some order \(>\) on \(L\) such that

\[z_{12}^{i+1} > z_{12}^l > y_{12}^{i+1} > y_{12}^i \]

for all \(i \geq 1\). Let \(Z_i\) and \(Y_i\) be the generic matrices, where \(l \geq 1\). By Lemma 3.34 we have

\[[Z_{i1}, Z_{i2}, \ldots, Z_{in-1}, Y_{j1}, \ldots, Y_{jm}] = (-1)^{n+1}z_{12}^i(e_{12} - e_{23}), \]
\[[Y_{j1}, Z_{i1}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm}] = (-1)^{n+1}y_{12}^j(e_{12} - e_{23}), \]
\[Z_i[Y_{j1}, Z_{i1}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm}] = (-1)^n z_{12}^i y_{12}^j e_{12} - (-1)^n z_{12}^i z_{12}^j e_{13}, \]
\[Z_i[Y_{j1}, Z_{i1}, \ldots, Z_{in-1}, Y_{j2}, \ldots, Y_{jm-1}][Y_{p1}, Z_{p2}] = (-1)^ny_{12}^j y_{12}^p e_{13}. \]

Let \(f^{(i)}(j_1), f^{(i,j_1)}, g^{(i,j_1)}, h^{(j_1,p_1)}\) as in (12) and suppose

\[\sum \alpha_i f^{(i)} + \sum \beta_j g^{(j_1)} + \sum \alpha_{i,j_1} f^{(i,j_1)} + \sum \beta_{i,j_1} g^{(i,j_1)} + \sum \gamma_{j_1,p_1} h^{(j_1,p_1)} \in \text{Id}, \]

where \(\alpha_i, \beta_j, \alpha_{i,j_1}, \beta_{i,j_1}, \gamma_{j_1,p_1} \in \mathbb{F}\). Now we use the same arguments as in the previous propositions. In short, by the following table
Entry	Information	Monomial	Its coefficient
(2,3)	$f_{(i,1)}^{(i,1)} = g_{(i,1)}^{(i,1)} = h_{(i,1)}^{(i,1)} = 0$	$m(f_{(i,1)}^{(i,1)})$	$\pm a_{i,1}$
(2,3)	$f_{23}^{(i,1)} = g_{23}^{(i,1)} = h_{23}^{(i,1)} = 0$	$m(g_{23}^{(i,1)})$	$\pm b_{i,1}$
(1,3)	$i > 1$	$m(f_{13}^{(i,1)})$	$\pm a_{1,1}$
(1,3)	$i > 1$	$m(g_{13}^{(i,1)})$	$\pm b_{1,1}$
(1,2)	$i = 1$	$m(f_{12}^{(1,1)})$	$\pm a_{1,1}$
(1,2)	$i = 1$	$m(g_{12}^{(1,1)})$	$\pm b_{1,1}$
(1,3)		$m(h_{13}^{(1,1)})$	$\pm g_{1,1,1}$

where

$$m(f_{23}^{(i,1)}) = z_{12}^{i}, \quad m(g_{23}^{(i,1)}) = y_{12}^{i},$$

$$m(f_{13}^{(1,1)}) = z_{12}^{1}y_{12}^{1}, \quad m(g_{13}^{(1,1)}) = y_{12}^{1},$$

$$m(f_{12}^{(1,1)}) = z_{12}^{1}, \quad m(g_{12}^{(1,1)}) = y_{12}^{1},$$

$$m(h_{13}^{(1,1)}) = y_{12}^{1}y_{12}^{1},$$

we have $a_{1,1} = 0$, $b_{1,1} = 0$, $a_{1,1} = 0$, $b_{1,1} = 0$, $a_{1,1} = 0$, $b_{1,1} = 0$, $g_{1,1,1} = 0$, respectively.

3.5.2 Case m even and $n_1 = 1$

Let $M = (m_1, \ldots, m_k)$, $N = (n_1, \ldots, n_s)$, $m = m_1 + \ldots + m_k \geq 2$ and $n = n_1 + \ldots + n_s \geq 2$. In this subsection, we consider the case where m is even and $n_1 = 1$.

Proposition 3.36. If m is even and $n_1 = 1$, then $\{f + Id \cap B_{MN} : f \in S_3\}$ is a basis for the vector space $B_{MN}(Id)$. In particular, $Id \cap B_{MN} = I \cap B_{MN}$.

Proof. Since $I \subset Id$, we have, by Proposition 3.32,

$$B_{MN}(Id) = \text{span}\{f + Id \cap B_{MN} : f \in S_3\}.$$

Consider some order $>$ on L such that

$$y_{12}^{i+1} > y_{12}^{i} > z_{12}^{i+1} > z_{12}^{i}$$

for all $i \geq 1$. Let Z_l and Y_l be the sgeneric matrices, where $l \geq 1$. By Lemma

18
we have

\[
\begin{align*}
[Z_{i_1}, Z_{i_2}, \ldots, Y_{j_m}] &= (-1)^{n+1} z_{12}^i (e_{12} - e_{23}), \\
[Y_{j_1}, Z_{i_1}, \ldots, Y_{j_m}] &= (-1)^{n+1} y_{12}^i (e_{12} - e_{23}), \\
Z_i [Z_{i_1}, Z_{i_2}, \ldots, Y_{j_m}] &= (-1)^n z_{12}^i e_{12} - (-1)^n z_{12}^i z_{12}^i e_{13}, \\
Z_i [Z_{i_1}, Z_{i_2}, \ldots, Y_{j_m}] &= (-1)^{n-1} (z_{12}^i - z_{12}^i) e_{12}, \\
Z_i [Z_{j_1}, Z_{j_2}, \ldots, Y_{j_m}] &= (-1)^n y_{12}^i e_{12} - (-1)^n y_{12}^i y_{12}^i e_{13}, \\
Z_i [Y_{j_1}, Z_{j_2}, \ldots, Y_{j_m}] &= (-1)^{n-1} (z_{12}^i - y_{12}^i) y_{12}^i e_{13}. \\
\end{align*}
\]

Let \(f^{(i_1)}, g^{(j_1)}, f^{(i_1)}, g^{(i_2, p_1)}, h^{(j_1, p_1)} \) as in (12) and suppose

\[
\sum \alpha_i f^{(i_1)} + \sum \beta_j g^{(j_1)} + \sum \alpha_{i,i} f^{(i_1)} + \sum \beta_{i,j} g^{(i_1, j_1)} + \sum \gamma_{j_1, p_1} h^{(j_1, p_1)} \in Id,
\]

where \(\alpha_i, \beta_j, \alpha_{i,i}, \beta_{i,j}, \gamma_{j_1, p_1} \in F \). Now we use the same arguments as in the previous propositions. In short, by the following table

Entry	Information	Monomial	Its coefficient
(2,3)	\(f^{(i_1)} \)	\(g^{(i_1, j_1)} = h^{(j_1, p_1)} = 0 \)	\(\pm \beta_{j_1} \)
(2,3)	\(f^{(i_1)} \)	\(g^{(i_1, j_1)} = h^{(j_1, p_1)} = 0 \)	\(\pm \alpha_{i,i} \)
(1,3)	\(i > 1 \)	\(g^{(i_1, j_1)} \)	\(\pm \beta_{i,j_1} \)
(1,3)	\(i > 1 \)	\(f^{(i_1)} \)	\(\pm \alpha_{i,i} \)
(1,2)	\(i = 1 \)	\(g^{(i_1, j_1)} \)	\(\pm \beta_{1,j_1} \)
(1,2)	\(i = 1 \)	\(f^{(i_1)} \)	\(\pm \alpha_{1,i} \)

where

\[
\begin{align*}
m(g^{(i_1, j_1)}) &= g_{12}^i, \\
m(h^{(j_1, p_1)}) &= g_{12}^i y_{12}^i, \\
m(g^{(i_1, j_1)}) &= z_{12}^i e_{12}, \\
m(g^{(i_1, j_1)}) &= y_{12}^i, \\
m(f^{(i_1)}) &= z_{12}^i, \\
m(f^{(i_1)}) &= z_{12}^i, \\
\end{align*}
\]

we have \(\beta_{i_1} = 0, \alpha_{i,i} = 0, \gamma_{j_1, p_1} = 0, \beta_{i,j_1} = 0, \alpha_{i,i} = 0, \beta_{1,j_1} = 0, \alpha_{1,i} = 0 \), respectively.

\(\square \)

3.5.3 Case \(m \) odd and \(n_1 > 1 \)

Let \(M = (m_1, \ldots, m_k), N = (n_1, \ldots, n_s), \) \(m = m_1 + \ldots + m_k \geq 2 \) and \(n = n_1 + \ldots + n_s \geq 2. \) In this subsection, we consider the case where \(m \) is odd and \(n_1 > 1. \)

Proposition 3.37. If \(m \) is odd and \(n_1 > 1, \) then \(\{ f + Id \cap B_{MN} : f \in S_3 \} \) is a basis for the vector space \(B_{MN}(Id) \). In particular, \(Id \cap B_{MN} = I \cap B_{MN}. \)
Proof. Let Z_l and Y_l be the generic matrices, where $l \geq 1$. By Lemma 3.34 we have

\[[Z_1, Z_1, \ldots, Z_m] = (-1)^n z_{12}^1 (e_{12} + e_{23}) - 2(-1)^n z_{12}^1 y_{12} e_{13}, \]
\[[Y_1, Z_1, \ldots, Y_m] = (-1)^n y_{12}^1 (e_{12} + e_{23}) - 2(-1)^n y_{12}^1 y_{12}^1 e_{13}, \]
\[Z_i[Z_1, Z_1, \ldots, Z_m] = (-1)^{n+1} z_{12}^1 e_{12} + (-1)^{n+1} z_{12}^1 (2y_{12}^1 + z_{12}^1) e_{13}, \]
\[Z_i[Y_1, Z_1, \ldots, Y_m] = (-1)^{n+1} y_{12}^1 e_{12} + (-1)^{n+1} y_{12}^1 (2y_{12}^1 + z_{12}^1) e_{13}, \]
\[[Y_1, Z_1, \ldots, Y_{m-1}][Y_{p_1}, Z_1] = (-1)^{n+1} y_{12}^1 y_{12}^1 e_{13}. \]

Now we use the same order $>$, table and leading monomials in Proposition 3.35.

3.5.4 Case m odd where $n_1 = 1$ and $m_k > 1$

Let $M = (m_1, \ldots, m_k)$, $N = (n_1, \ldots, n_s)$, $m = m_1 + \ldots + m_k \geq 2$ and $n = n_1 + \ldots + n_s \geq 2$. In this subsection, we consider the case m odd where $n_1 = 1$ and $m_k > 1$.

Proposition 3.38. If m is odd, $n_1 = 1$ and $m_k > 1$, then $\{f + Id \cap B_{MN} : f \in S_3\}$ is a basis for the vector space $B_{MN}(Id)$. In particular, $Id \cap B_{MN} = I \cap B_{MN}$.

Proof. Since $I \subset Id$, we have, by Proposition 3.32

\[B_{MN}(Id) = \text{span}\{f + Id \cap B_{MN} : f \in S_3\}. \]

Consider some order $>$ on L such that

\[z_{12}^{i+1} > z_{12}^i > y_{12}^{i+1} > y_{12}^i \]

for all $i \geq 1$. Let Z_l and Y_l be the generic matrices, where $l \geq 1$. By Lemma 3.34 we have

\[[Z_1, Z_1, \ldots, Z_k] = (-1)^n z_{12}^1 (e_{12} + e_{23}) - 2(-1)^n z_{12}^1 y_{12} e_{13}, \]
\[[Y_1, Z_1, \ldots, Y_k] = (-1)^n y_{12}^1 (e_{12} + e_{23}) - 2(-1)^n y_{12}^1 y_{12}^1 e_{13}, \]
\[Z_i[Z_1, Z_1, \ldots, Z_k] = (-1)^{n+1} z_{12}^1 e_{12} + (-1)^{n+1} z_{12}^1 (2y_{12}^1 + z_{12}^1) e_{13}, \]
\[Z_i[Y_1, Z_1, \ldots, Y_k] = (-1)^{n+1} y_{12}^1 e_{12} + (-1)^{n+1} y_{12}^1 (2y_{12}^1 + z_{12}^1) e_{13}, \]
\[Z_i[Y_1, Z_1, \ldots, Y_{k-1}][Y_{p_1}, Z_1] = (-1)^n (z_{12}^1 - y_{12}^1) y_{12}^1 e_{13}. \]

Let $f^{(i)}, g^{(j)}, f^{(i; i)}, g^{(i; j)}, h^{(i; p_1)}$ as in (12), and suppose

\[\sum \alpha_i f^{(i)} + \sum \beta_j g^{(j)} + \sum \alpha_{i; i} f^{(i; i)} + \sum \beta_{i; j} g^{(i; j)} + \sum \gamma_{j; p_1} h^{(j; p_1)} \in Id, \]

where $\alpha_i, \beta_j, \alpha_{i; i}, \beta_{i; j}, \gamma_{j; p_1} \in \mathbb{F}$. By the following table
For the remaining coefficients, by the following table

Entry	Information	Monomial	Its coefficient
(1, 3)	$j_1 < k$	$m(g_{13}^{(2, j_1)})$	$\pm \beta_{2, j_1}$
(1, 3)	$j_1 < k$	u	$\pm \beta_{3, j_1}$
(1, 2)	$j_1 = k$	$m(g_{12}^{(1, k)})$	$\pm \beta_{1, k}$
(1, 2)	$j_1 = k$	$m(g_{12}^{(2, k)})$	$\pm \beta_{2, k}$

where

$m(g_{13}^{(2, j_1)}) = y_{i_2}^{j_1} z_{j_2}, \quad u = y_{i_2}^{j_1} y_{k_1}^{j_2}$

we have $\beta_{2, j_1} = 0, \beta_{1, j_1} = 0, \beta_{1, k} = 0$ and $\beta_{2, k} = 0$, respectively.
3.5.5 Case \(m \) odd where \(n_1 = m_k = 1 \) and \(\text{char}(F) > 3 \)

Let \(M = (m_1, \ldots, m_k) \), \(N = (n_1, \ldots, n_s) \), \(m = m_1 + \ldots + m_k \geq 2 \) and \(n = n_1 + \ldots + n_s \geq 2 \). In this subsection, we consider the case \(m \) odd where \(n_1 = m_k = 1 \) and \(\text{char}(F) > 3 \).

Proposition 3.39. If \(m \) is odd, \(n_1 = m_k = 1 \) and \(\text{char}(F) > 3 \), then \(\text{Id} \cap B_{MN} = I \cap B_{MN} \).

Proof. By Observation 3.10 we have \(m_1 = \ldots = m_{k-1} = m_k = 1 \).

If \(n_s = 1 \) then \(n_1 = n_2 = \ldots = n_s = 1 \) and we can use the same proof of [12 Lemma 6.4].

Suppose \(n_s > 1 \). By a change of variables \(z_1 \leftrightarrow z_s \) we can suppose \(n_1 > 1 \).

Note that

\[
\begin{align*}
n_s &\leq n_2 \leq n_3 \leq \ldots \leq n_{s-1} \leq n_1.
\end{align*}
\]

But the Proposition 3.37 is also true in this case, the proof is the same. \(\square \)

3.5.6 Case \(m \) odd where \(n_1 = m_k = 1 \) and \(\text{char}(F) = 3 \)

Let \(M = (m_1, \ldots, m_k) \), \(N = (n_1, \ldots, n_s) \), \(m = m_1 + \ldots + m_k \geq 2 \) and \(n = n_1 + \ldots + n_s \geq 2 \). In this subsection, we consider the case \(m \) odd where \(n_1 = m_k = 1 \) and \(\text{char}(F) = 3 \).

We remember that \(S_3 \) is the set of all polynomials defined in [12].

Definition 3.40. Denote by \(S_4 \) the set

\[
S_4 = S_3 - \{g^{(1,k)}\}.
\]

We say that the polynomials in \(S_4 \) are \(S_4 \)-standard.

Proposition 3.41. The vector space \(B_{MN}(I) \) is spanned by the set of all elements \(f + I \cap B_{MN} \) where \(f \in B_{MN} \) is \(S_4 \)-standard.

Proof. We work modulo \(I \). By Proposition 3.32 it is sufficient to prove that \(g^{(1,k)} \) is a linear combination of \(S_4 \)-standard polynomials. In fact, we will prove that

\[
g^{(1,k)} = g^{(1,k-1)} - g^{(2,k-1)} + g^{(2,k)}. \tag{13}
\]

By Lemma 3.39 (b,c), we have

\[
z_{i_n} \ldots z_{i_3} z_1[y_k, z_l, y_1, \ldots, y_{k-1}] = (-1)^n z_1[y_k, z_l, z_{i_3}, \ldots, z_{i_n}, y_1, \ldots, y_{k-1}].
\]

Thus it is sufficient to prove (13) when \(n = 2 \) that is

\[
z_1[y_k, z_2, y_1, \ldots, y_{k-1}] = z_1[y_{k-1}, z_2, y_1, \ldots, y_k] - z_2[y_{k-1}, z_1, y_1, \ldots, y_k] + z_2[y_k, z_1, y_1, \ldots, y_{k-1}].
\]
Claim: If \(i \neq j \) and \(a \neq b \), then:

\[
2i[y_1, z_j, y_0, \ldots, y_k] = 2i[y_1, z_j, y_1, \ldots, y_0] - 2i[y_0, y_1, z_j, \ldots, y_0] + 2z_i[y_1, z_j, \ldots, [y_0, y_b]].
\]

In fact, by Lemma 3.4-iii), equality \([a, b], c, d] = [[a, b], [c, d]],\) Jacobi identity and Proposition 3.8-b), we obtain

\[
2i[y_1, z_j, y_0, \ldots, y_k] = 2i[y_1, z_j, \ldots, y_0, y_k] + 2z_i[y_1, z_j, \ldots, [y_0, y_b]]
\]

and the claim is proved.

Now, by the Jacobi identity, we have

\[
g^{(1,k)} = 2i[y_1, z_2, y_k, \ldots, y_{k-1}] - 2i[y_1, y_k, z_2, \ldots, y_{k-1}]
\]

and applying Lemma 3.8 and Jacobi identity in the second summand,

\[
g^{(1,k)} = 2i[y_1, z_2, y_k, \ldots, y_{k-1}] - 2i[y_1, y_k, z_2, \ldots, y_{k-1}]
+ [y_1, y_k][z_2, z_1, \ldots, y_{k-1}]
\]

\[
= z_1[y_1, z_2, y_k, \ldots, y_{k-1}] + g^{(2,k)}
- 2z_2[y_1, z_1, y_k, \ldots, y_{k-1}] + [y_1, y_k][z_2, z_1, \ldots, y_{k-1}].
\]

By applying the Claim in the summands \(z_1[y_1, z_2, y_k, \ldots, y_{k-1}]\) and \(z_2[y_1, z_1, y_k, \ldots, y_{k-1}]\), we have

\[
g^{(1,k)} = g^{(1,k-1)} - g^{(2,k-1)} + g^{(2,k)} + f
\]

where

\[
f = - z_1[y_k, y_k-1, y_1, z_2, \ldots, y_{k-1}] + z_2[y_k, y_1, z_2, \ldots, y_{k-1}]
- 2z_2[y_1, z_1, \ldots, y_{k-1}] + z_3[y_1, z_2, \ldots, y_{k-1}]
+ [y_1, y_k][z_2, z_1, \ldots, y_{k-1}].
\]

We shall prove that \(f = 0 \). By Lemma 3.8 and Lemma 3.4-iii),

\[
- z_1[y_k-1, y_1, z_2, \ldots, y_k] + z_2[y_k-1, y_1, z_1, \ldots, y_k] = [y_k-1, y_1][z_2, z_1, \ldots, y_{k-1}]
\]

By Lemma 3.4-iii),

\[
[y_1, y_k][z_2, z_1, \ldots, y_{k-1}] = -[y_1, y_k, y_k-1][z_2, z_1, \ldots, y_{k-1}]
\]
and then, applying the Jacobi identity, Lemma 3.4-iii), Lemma 3.5-b) and Proposition 3.4-ii) we have:

\[-[y_{k-1}, y_1, y_k][z_2, z_1, \ldots] - [y_1, y_k, y_{k-1}][z_2, z_1, \ldots] = [y_k, y_{k-1}, y_1][z_2, z_1, \ldots] = -[y_k, y_{k-1}][z_2, z_1, y_1, \ldots] = [z_2, z_1, y_1, \ldots][y_k, y_{k-1}] = [y_1, z_1, z_2, \ldots][y_k, y_{k-1}] - [y_1, z_2, z_1, \ldots][y_k, y_{k-1}].\]

By Proposition 3.2-v) and Lemma 3.5-b),

\[-2z_2[y_1, z_1, \ldots][y_k, y_{k-1}] + 2z_1[y_1, z_2, \ldots][y_k, y_{k-1}] = 2[y_1, z_1, z_2, \ldots][y_k, y_{k-1}] - 2[y_1, z_2, z_1, \ldots][y_k, y_{k-1}].\]

Therefore, since \(\text{char}(F) = 3\), we have

\[f = [y_1, z_1, z_2, \ldots][y_k, y_{k-1}] - [y_1, z_2, z_1, \ldots][y_k, y_{k-1}] + 2[y_1, z_1, z_2, \ldots][y_k, y_{k-1}] - 2[y_1, z_2, z_1, \ldots][y_k, y_{k-1}] = 3[y_1, z_1, z_2, \ldots][y_k, y_{k-1}] - 3[y_1, z_2, z_1, \ldots][y_k, y_{k-1}] = 0.\]

We finished the proof.

Proposition 3.42. If \(m \) is odd, \(n_1 = m_k = 1 \) and \(\text{char}(F) = 3\), then \(\{f + \text{Id} \cap B_{MN} : f \in S_4\} \) is a basis for the vector space \(B_{MN}(\text{Id})\). In particular, \(\text{Id} \cap B_{MN} = I \cap B_{MN}\).

Proof. Since \(I \subset \text{Id}\), we have, by Proposition 3.4-ii)

\[B_{MN}(\text{Id}) = \text{span}\{f + \text{Id} \cap B_{MN} : f \in S_4\}.\]

Consider some order \(\succ\) on \(L\) such that

\[z_{12}^{i+1} > z_{12}^i > y_{12}^{i+1} > y_{12}^i\]

for all \(i \geq 1\). Let \(Z_1\) and \(Y_1\) be the generic matrices, where \(l \geq 1\). By Lemma 3.34 we have

\[
\begin{align*}
[Z_{11}, Z_{12}, \ldots, Y_k] &= (-1)^n z_{12}^{i1}(e_{12} + e_{23}) - 2(-1)^n z_{12}^{i1}y_{12}^{i}e_{13}, \\
[Y_{j1}, Z_{12}, \ldots, Y_{jm}] &= (-1)^n y_{12}^{j1}(e_{12} + e_{23}) - 2(-1)^n y_{12}^{j1}y_{12}^{m}e_{13}, \\
Z_{1}[Z_{11}, Z_{12}, \ldots, Y_k] &= (-1)^{n+1} z_{12}^{i1}e_{12} + (-1)^{n+1} z_{12}^{i1}(-2y_{12}^{k} + z_{12}^{k})e_{13}, \\
Z_{1}[Z_{12}, \ldots, Y_{k-1}] &= (-1)^n (z_{12}^2 - z_{12}^{i1})e_{12} - 2(-1)^n (z_{12}^2 - z_{12}^{i1})y_{12}^{i}e_{13}, \\
Z_{1}[Y_{j1}, Z_{12}, \ldots, Y_{kj}] &= (-1)^{n+1} y_{12}^{j1}e_{12} + (-1)^{n+1} y_{12}^{j1}(-2y_{12}^{k} + z_{12}^{k})e_{13}, \\
Z_{1}[Y_{j1}, \ldots, Y_{jm}] &= (-1)^n (z_{12}^2 - y_{12}^{j1})e_{12} - 2(-1)^n (z_{12}^2 - y_{12}^{j1})y_{12}^{j}e_{13}, \\
Y_{j1}, Z_{12}, \ldots, Y_{jm-1}][Y_{pi}, Z_1] &= (-1)^n (z_{12}^2 - y_{12}^{p1})y_{12}^{i}e_{13}. \\
\end{align*}
\]
Let $f^{(i_1)}, g^{(j_1)}, f^{(i,i_1)}, g^{(i,j_1)}, h^{(j_1,p_1)}$ be S_4-standard polynomials, and suppose
\[
\sum \alpha_{i_1} f^{(i_1)} + \sum \beta_{j_1} g^{(j_1)} + \sum \alpha_{i,i_1} f^{(i,i_1)} + \sum \beta_{i,j_1} g^{(i,j_1)} + \sum \gamma_{j_1,p_1} h^{(j_1,p_1)} \in Id,
\]
where $\alpha_{i_1}, \beta_{j_1}, \alpha_{i,i_1}, \beta_{i,j_1}, \gamma_{j_1,p_1} \in \mathbb{F}$. Now we use the same arguments as in the previous propositions. In short, by the following table

Entry	Information	Monomial	Its coefficient
(2,3)	$f^{(i,i_1)}_{23} = g^{(j_1,i_1)}_{23} = h^{(j_1,p_1)}_{23} = 0$	$m(f^{(i,i_1)}_{23})$	$\pm \alpha_{i_1}$
(2,3)	$f^{(i,i_1)}_{33} = g^{(j_1,i_1)}_{33} = h^{(j_1,p_1)}_{33} = 0$	$m(g^{(j_1,i_1)}_{33})$	$\pm \beta_{j_1}$
(1,3)	$i > 1$	$m(f^{(1,i)}_{i,j})$	$\pm \alpha_{i,j}$
(1,2)	$i = 1$	$m(f^{(1,1)}_{1,j})$	$\pm \alpha_{1,j}$
(1,3)	$i > 2$	$m(g^{(1,i)}_{i,j})$	$\pm \beta_{i,j}$
(1,2)	$j_1 < k$	$m(g^{(2,k)}_{j_1})$	$\pm \beta_{2,k}$

where
\[
\begin{align*}
m(f^{(i,i_1)}_{23}) &= z_{12}^{i}, \\
m(g^{(j_1,i_1)}_{23}) &= y_{12}^{j_1}, \\
m(f^{(1,i)}_{13}) &= z_{12}^{1}, \\
m(g^{(1,i)}_{13}) &= y_{12}^{1}, \\
m(g^{(1,i)}_{12}) &= y_{12}^{1}, \\
m(g^{(2,k)}_{j_1}) &= y_{12}^{k},
\end{align*}
\]
we have $\alpha_{i_1} = 0$, $\beta_{j_1} = 0$, $\alpha_{i,i_1} = 0$ for $i > 1$, $\alpha_{1,i_1} = 0$, $\beta_{i,j_1} = 0$ for $i > 2$, $\gamma_{j_1,p_1} = 0$ for $j_1 < k$ and $\beta_{2,k} = 0$, respectively.

Thus, now we have
\[
\sum_{j_1=1}^{k-1} \beta_{2,j_1} g^{(2,j_1)} + \sum_{j_1=1}^{k-1} \beta_{1,j_1} g^{(1,j_1)} + \sum_{p_1=1}^{k-1} \gamma_{k,p_1} h^{(k,p_1)} \in Id.
\]

By the monomial $y_{12}^{j_1}$ in the (1,2)-entry, we have
\[
\beta_{1,j_1} + \beta_{2,j_1} = 0
\]
for all $j_1 = 1, \ldots, k-1$, and by the monomial $y_{12}^{j_1}y_{12}^{k}$ in the (1,3)-entry we have
\[
-2\beta_{1,l} - 2\beta_{2,l} + \gamma_{k,l} = 0
\]
for all $l = 1, \ldots, k-1$. Therefore, $\gamma_{k,l} = 0$ for all $l = 1, \ldots, k-1$.

For the remaining coefficients, by the following table

Entry	Information	Monomial	Its coefficient
(1,3)	$m(g^{(2,j_1)}_{13})$	$\pm \beta_{2,j_1}$	
(1,3)	$m(g^{(1,j_1)}_{13})$	$\pm 2\beta_{1,j_1}$	
where
\[m(g(z_{13}^{(2,j_1)})) = y_{12}^{-1} y_{12}^{2} \quad u = y_{12}^{j_1} y_{12}^{k}, \]
we have \(\beta_{2,j_1} = 0 \) and \(\beta_{1,j_1} = 0 \), respectively.

3.6 Conclusion

Since \(\mathbb{F} \) is an infinite field and \(B_{MN} \cap Id = B_{MN} \cap I \) for all \(M, N \), we have the first main result of this paper.

Theorem 3.43. Let \(\mathbb{F} \) be an infinite field with \(\text{char}(\mathbb{F}) > 2 \). If \(\ast \) is an involution of the first kind on \(UT_3(\mathbb{F}) \) then \(\text{Id}(UT_3(\mathbb{F}), \ast) \) is the \(T(\ast) \)-ideal generated by the polynomials of Proposition \(3.2 \).

Note that this theorem is also true when \(\text{char}(\mathbb{F}) = 0 \). See [12, Theorem 6.6].

4 \(\ast \)-Central Polynomials for \(UT_n(\mathbb{F}) \)

Let \(\mathbb{F} \) be a field (finite or infinite) of characteristic \(\neq 2 \). In this section we study the \(\ast \)-central polynomials for \(UT_n(\mathbb{F}) \), where \(n \geq 3 \).

Consider the involutions \(\ast \) and \(s \) in Section [2]. If \(\circ \) is an involution on \(UT_n(\mathbb{F}) \) then \(\circ \) is equivalent either to \(\ast \) or to \(s \), see Section [2]. Thus

\[C(UT_n(\mathbb{F}), \circ) = C(UT_n(\mathbb{F}), \ast) \quad \text{or} \quad C(UT_n(\mathbb{F}), \circ) = C(UT_n(\mathbb{F}), s). \quad (14) \]

Theorem 4.1. If \(\circ \) is an involution on \(UT_n(\mathbb{F}) \) and \(n \geq 3 \) then

\[C(UT_n(\mathbb{F}), \circ) = \text{Id}(UT_n(\mathbb{F}), \circ) + \mathbb{F}. \]

Proof. By [14] we can suppose \(\circ = \ast \) or \(\circ = s \). In this case we have that \(e_{11}^\circ = e_{nn} \).

In particular, \(A = e_{11} + e_{nn} \) and \(B = e_{11} - e_{nn} \) are symmetric and skew-symmetric elements respectively.

Since

\[C(UT_n(\mathbb{F}), \circ) \supseteq \text{Id}(UT_n(\mathbb{F}), \circ) + \mathbb{F} \]

we shall prove the inclusion \(\subseteq \). Let \(g(y_1, \ldots, y_k, z_1, \ldots, z_s) \in C(UT_n(\mathbb{F}), \circ) \).

Write

\[g(y_1, \ldots, y_k, z_1, \ldots, z_s) = f(y_1, \ldots, y_k, z_1, \ldots, z_s) + \lambda \]

where \(f(0,0, \ldots, 0) = 0 \) \((f \) without constant term) and \(\lambda \in \mathbb{F} \).

Claim 1: \(f(y_1, \ldots, y_k, z_1, \ldots, z_s) \) is a polynomial identity for \(\mathbb{F} \).

In fact, let \(a_1, \ldots, a_k, b_1, \ldots, b_s \in \mathbb{F} \). Write

\[f(a_1 A, \ldots, a_k A, b_1 B, \ldots, b_s B) = \sum \alpha_{ij} e_{ij}. \]

Since \(\alpha_{11} = f(a_1, \ldots, a_k, b_1, \ldots, b_s), \ \alpha_{22} = 0 \) and \(f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in C(UT_n(\mathbb{F}), \circ) \) it follows that \(\alpha_{11} = \alpha_{22} = 0 \) as desired.
Claim 2: \(f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in Id(UT_n(F), \circ). \)

Let \(A_1, \ldots, A_k \in UT_n(F)^+ \) and \(B_1, \ldots, B_s \in UT_n(F)^- \) where
\[
A_l = \sum a_{ij}^l e_{ij} \quad \text{and} \quad B_l = \sum b_{ij}^l e_{ij}.
\]

Write
\[
f(A_1, \ldots, A_k, B_1, \ldots, B_s) = \sum \alpha_{ij} e_{ij}.
\]

Since \(f(y_1, \ldots, y_k, z_1, \ldots, z_s) \in C(UT_n(F), \circ) \) it follows that
\[
f(A_1, \ldots, A_k, B_1, \ldots, B_s) = \sum_{i=1}^{n} \alpha e_{ii},
\]
where \(\alpha = \alpha_{11} = \ldots = \alpha_{nn} \). Since \(\alpha_{11} = f(a_{11}^1, \ldots, a_{11}^k, b_{11}^1, \ldots, b_{11}^s) \), by Claim 1 we have \(\alpha = 0 \) as desired.

By Claim 2 we have \(g(y_1, \ldots, y_k, z_1, \ldots, z_s) \in Id(UT_n(F), \circ) + F. \) \(\square \)

Funding

Dalton Couto Silva was supported by Ph.D. grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Dimas José Gonçalves was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant No. 2018/23690-6.

References

[1] Aljadeff, Eli; Giambruno, Antonio; Karasik, Yakov. Polynomial identities with involution, superinvolutions and the Grassmann envelope. Proc. Amer. Math. Soc. 145 (2017), no. 5, 1843–1857.

[2] Bahturin, Yu. A. Identical relations in Lie algebras. Translated from the Russian by Bahturin. VNU Science Press, b.v., Utrecht, 1987. x+309 pp.

[3] Brandão Jr., Antônio Pereira; Koshlukov, Plamen. Central polynomials for \(Z_2 \)-graded algebras and for algebras with involution. J. Pure Appl. Algebra 208 (2007), no. 3, 877–886.

[4] Colombo, Jones; Koshlukov, Plamen. Identities with involution for the matrix algebra of order two in characteristic \(p \). Israel J. Math. 146 (2005), 337–355.

[5] Drensky, Vesselin; Giambruno, Antonio. Cocharacters, codimensions and Hilbert series of the polynomial identities for \(2 \times 2 \) matrices with involution. Canad. J. Math. 46 (1994), no. 4, 718–733.

[6] Giambruno, Antonio; Zaicev, Mikhail. Polynomial identities and asymptotic methods. Mathematical Surveys and Monographs, 122. American Mathematical Society, Providence, RI, 2005. xiv+352 pp.
[7] Levchenko, Diana V. Finite basis property of identities with involution of a second-order matrix algebra. (Russian) Serdica 8 (1982), no. 1, 42-56.

[8] Levchenko, Diana V. Bases of identities with involution of second-order matrix algebras over finite fields. (Russian) Serdica 10 (1984), no. 1, 55-67.

[9] Sviridova, Irina. Finite basis problem for identities with involution. (2014). arXiv: 1410.2233.

[10] Urure, Ronald Ismael Quispe; Gonçalves, Dimas José. Identities with involution for 2×2 upper triangular matrices algebra over a finite field. Linear Algebra Appl. 544 (2018), 223–253.

[11] Urure, Ronald Ismael Quispe; Gonçalves, Dimas José. Central polynomials with involution for the algebra of 2×2 upper triangular matrices. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2019.1648374.

[12] Di Vincenzo, Onofrio Mario; Koshlukov, Plamen; La Scala, Roberto. Involutions for upper triangular matrix algebras. Adv. in Appl. Math. 37 (2006), no. 4, 541–568.