Pierson Syndrome Associated with Hypothyroidism and Septic Shock

Areeba Ejaz,1 Meher B. Ali,2 Fatima Siddiqui,2 Mashal B. Ali,2 Ammarah Jamal2,3

Abstract: Pierson syndrome is caused by mutations in the laminin β2 gene causing absent β2 laminin, which is a normal component of the basement membranes of the mature glomerulus, structures in the anterior eye and neuromuscular junctions. The mutations manifest as congenital nephrotic syndrome and microcoria which are characteristic ocular abnormalities of this disease. These mutations may also result in neurological abnormalities such as hypothyroidism and psychomotor retardation. We report a two-month-old boy who presented to the Pediatrics Department of Dr. Ruth K. M. Pfau Civil Hospital, Karachi, Pakistan, in 2015, with the typical features of microcoria and congenital nephrotic syndrome. The hypocalcaemia, hypoproteinaemia and probable immunocompromised state consequent to nephrotic state resulted in seizures, hypothyroidism and urosepsis. Despite being treated aggressively with high dose antibiotics, ionotropic support, angiotensin-converting enzyme inhibitors, thyroxine replacement and nutritional support, the infant died due to significant multiorgan disease including renal failure and septic shock.

Keywords: Pierson Syndrome; Microcoria and Congenital Nephrotic Syndrome; Congenital Microcoria; Hypothyroidism; Septic Shock; Case Report; Pakistan.

Pierson Syndrome is a rare disease inherited in an autosomal recessive pattern, often fatal within a few months of life; it is known to mainly affect the eyes and kidneys at infancy.1 Those infants that survive are affected by developmental and neurological abnormalities.2,3 This syndrome is caused by homozygous or compound heterozygous mutations on chromosome 3p21 in the laminin β2 (LAMB2) gene.4 This causes absent β2 laminin, which is a normal component of the basement membranes of the mature glomerulus, structures in the anterior eye and neuromuscular junctions. Kidney involvement presents within three months of life in the form of congenital nephrotic syndrome (NS) which can cause complications such as hypercoagulability, hypothyroidism, growth delay and immunosuppression. The disease generally has a poor prognosis due to renal failure and hence most infants do not survive.5 There have been less than 100 cases of Pierson syndrome described in literature so far and the exact prevalence of this syndrome is not yet known.6 Previously, a case of Pierson Syndrome in a child born to a Pakistani couple living in Spain has been reported. However, to the best of the authors’ knowledge, no cases in Pakistan have been reported in the literature.7 This report presents the case of an infant with Pierson syndrome and hypothyroidism complicated by sepsis.

Case Report

A two-month old boy, weighing 3.4 kg, presented to the Pediatrics Department of Dr. Ruth K. M. Pfau Civil Hospital, Karachi, Pakistan, in 2015, with the typical features of microcoria and congenital nephrotic syndrome. The hypocalcaemia, hypoproteinaemia and probable immunocompromised state consequent to nephrotic state resulted in seizures, hypothyroidism and urosepsis. Despite being treated aggressively with high dose antibiotics, ionotropic support, angiotensin-converting enzyme inhibitors, thyroxine replacement and nutritional support, the infant died due to significant multiorgan disease including renal failure and septic shock.
Civil Hospital, Karachi, Pakistan, in 2015, with a history of fever, seizures and generalised oedema for one month and decreased urine output for one week. The infant would have one to two episodes of generalised tonic-clonic seizures per day without loss of consciousness in between the episodes. Later, oedema developed starting from the legs and periorbital area and progressed to the entire body. History of undocumented, low-grade fever was present which occurred on-and-off for one month. No history of haematuria or dysuria was reported. The infant had not achieved any developmental milestones at presentation; social smile was not present and he did not respond to loud voices or to the voice of the mother.

The patient was born at home by normal vaginal delivery to a consanguineous couple after an uneventful pregnancy, during which the mother did not receive any antenatal care. He had three other siblings, of whom one brother died at the age of one month, due to seizures. The brother’s seizures were generalised tonic-clonic with loss of consciousness but without fever. The brother was taken to a nearby hospital where he was given an injection to control the seizures; however, the seizures did not stop and he soon died. The parents noticed a similar generalised oedema in the brother but did not seek medical care. Further information could not be obtained as medical records of the sibling were not available and thus the underlying cause of the seizures could not be confirmed.

Upon examination at the time of admission, the patient was afebrile, obtunded with shortness of breath and generalised pitting oedema. Length and weight were found to be less than the 3rd centile. Occipitofrontal circumference was 35 cm. Heart rate and respiratory rate were increased and blood pressure was 99/75 mmHg (>90th centile). Peripheries were cold and capillary refill time was delayed. There was mild anaemia. Both anterior and posterior fontanelles were wide open. The infant had macroglossia, umbilical hernia and generalised oedema. These findings were suggestive of congenital nephrotic syndrome and hypothyroidism [Figure 1]. Abdomen was grossly distended and non-tender, with evidence of free fluid.

Table 1: Biochemical investigation findings of a two-month-old boy with Pierson syndrome at admission

Biochemical investigation	Finding	Normal value
Haemoglobin level in g/dL	9.0	9.5–13.5
Haematocrit level in %	25.9	29–41
Mean corpuscle volume in femtolitres	82.2	72.0–82.0
Total leucocyte count in ×10⁹/L	24	4.5–11.0
Platelet count in ×10⁹/L	319	150–400
C-reactive protein level in mg/dL	108	<0.3
Serum calcium level in mg/dL	4.5	8.0–10.7
Total liver protein level in g/dL	2.5	5.1–7.3
Albumin level in g/dL	0.7	2.8–5.0
Globulin level in g/dL	1.8	2.0–3.5
Prothrombin time in seconds	22.4	12.2–15.5
Activated partial thromboplastin time in seconds	35.6	26.5–35.5
International normalised ratio	1.62	0.8–1.2
Spot urinary protein to creatinine ratio	80.3	<0.2
Serum cholesterol level in mg/dL	409	50–120
Serum triglyceride level in mg/dL	380	20–150
Thyroid stimulating hormone level in mIU/mL	20.2	0.6–10.1
Free T4 level in ng/dL	0.26	0.8–2
Free T3 level in ng/dL	0.20	0.24–0.65

IU = international units.
The patient’s liver span was 6 cm and gut sounds were audible. On neurological examination, Glasgow Coma Scale (GCS) was 10/15 (eye = 3, verbal = 2 and motor = 5). Pupils were fixed, equal in size and non-reactive to light (microcoria) [Figure 2]. Moro, rooting, sucking and grasping reflexes were weak. On motor examination, power was found to be 3/5 with increased tone and diminished reflexes in all four limbs.

On laboratory investigation, complete blood panel showed mild anaemia. Total leucocyte count (TLC) was elevated with 44% neutrophils and 53% lymphocytes. Platelet count was normal but C-reactive protein was raised. Blood urea nitrogen, creatinine, random blood sugar and electrolytes were within normal ranges. Serum calcium levels were below normal. Arterial blood gases were suggestive of metabolic acidosis. Liver function tests showed decreased levels of total protein, albumin and globulin. Prothrombin time, activated partial thromboplastin time and international normalised ratio were all raised. Detailed urine report revealed 3+ proteinuria, 3+ granular casts, 2+ leukocytes, 2+ blood and 45 to 50 red blood cells/high power field. Spot urinary protein to creatinine ratio was raised. Blood cultures were negative but urine culture showed growth of E. coli of more than 100,000 colony-forming unit/mL. Serum cholesterol and triglyceride levels were also raised. These findings indicated a diagnosis of congenital NS. Thyroid profile showed raised thyroid stimulating hormone and low levels of free T4 and free T3 [Table 1]. Ultrasound abdomen confirmed gross ascites. Both kidneys were of normal size with grade 3 parenchymal changes. Chest X-ray was normal.

The characteristic features of microcoria and congenital NS helped establish a diagnosis of Pierson Syndrome. Tachycardia, tachypnoea, increased TLC and microcoria were present, thus it is imperative to examine the eyes of newborns with kidney problems.1 In the current case, the patient did present with microcoria.

Other syndromes may involve the kidney, but Pierson syndrome specifically causes congenital NS, characterised by proteinuria, hypercholesterolemia and triglyceridaemia. Loss of protein causes hypoalbuminemia and fluid retention manifesting as oedema. Histologically there is diffuse mesangial sclerosis and crescent formation.2 Congenital NS is associated with enlargement of placenta and increased alpha-fetoprotein antenatally.3 In the current case, the mother delivered the baby at home and did not have any tests done during pregnancy, these factors could not be examined.

Due to the history of seizures and death, possibly due to a similar case of sepsis in one sibling, two healthy remaining siblings and the parent’s consanguineous marriage, it was assumed that the disease affecting the family was an autosomal recessive disorder. Thus, autosomal dominant isolated congenital microcoria was excluded. Multiorgan disease, as was present in the current patient, is also not a feature of this disorder.4 Autosomal recessive polycystic kidney disease with sepsis, seemed unlikely due to the presence of Pierson syndrome’s most characteristic feature of microcoria.

Galloway-Mowat syndrome is another autosomal recessive ocular-renai disorder, in which infants have...
low birth weight, hypotonia and hiatus hernia; 80% of these infants have microcephaly and micrognathia may be severe.1,11 The current patient did not have these features, therefore, Galloway-Mowat syndrome was excluded.

Proteinuria can sometimes cause loss of other proteins in the urine leading to further complications. Loss of thyroid proteins, causing hypothyroidism can manifest as a low T3, T4 and increased TSH as seen in the current patient.12 Thyroxine supplementation should be started in these patients to prevent adverse effects such as lack of brain development.12 Eventual kidney failure leads to the early fatality of congenital nephrotic syndrome and only renal transplant has been shown to be effective while corticosteroids are of no value.13 Nephrectomy has also been shown to reverse the hypothyroid state thus proving the kidney-related cause.13 In Pakistan, nephrectomy in children less than 10 kg is not possible due to lack of advanced techniques. In addition, in the current patient renal transplantation, with the necessary prior administration of immunosuppressants, was not possible due to the unstable condition of the patient. As Pierson syndrome is inherited in an autosomal recessive pattern, it is more likely to be found in consanguineous marriages with multiple children being affected, as was found in the current case. Confirmatory testing should be done by genetic analysis; however, due to a lack of adequate resources for mutation analysis at the authors’ institution and limited analysis being done at certain institutes which are too expensive, it was not possible to obtain this significant information.

In terms of the outcome of congenital NS, it is fatal within a few years due to renal failure and nephrectomy and renal transplant are the only modalities to save the infant’s life. It is necessary to counsel parents of such patients regarding the limited treatment options for this disease and the importance of lifelong monitoring. Ophthalmic and neurological screening for patients of congenital NS should be done, along with regular monitoring of thyroid function tests. Consanguineous parents must be warned about the possibility of their offspring being affected by congenital NS and antenatal check-ups for any indication to congenital NS in the foetus must be suggested. The option of genetic diagnosis by analysing the \textit{LAMB2} gene must also be explained to the parents.

Conclusion

Pierson syndrome consisting of microcoria and congenital NS has a poor prognosis due to renal failure. The current patient had the additional complications of hypothyroidism and septic shock, which along with renal failure proved fatal for the infant.

References

1. Zenker M, Tralau T, Lennert T, Pitz S, Mark K, Madlon H, et al. Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: An autosomal recessive syndrome. Am J Med Genet A 2004; 130:138–45. https://doi.org/10.1002/ajmg.a.30310.

2. The University of Arizona Health Sciences. Nephrotic syndrome. From: https://disorders.eyes.arizona.edu/category/clinical-features/nephrotic-syndrome Accessed: Apr 2020.

3. Wühl E, Kogan J, Zuwrowska A, Matejas V, Vandevoorde RG, Aigner T, et al. Neurodevelopmental deficits in Pierson syndrome. From: https://disorders.eyes.arizona.edu/category/clinical-features/nephrotic-syndrome Accessed: Apr 2020.https://doi.org/10.1002/ajmg.a.31564.

4. Aydin B, Ipek MS, Ozaltin FA, Zenciroğlu A, Dilli D, Beken S, et al. A novel mutation of laminin β-2 gene in Pierson syndrome manifested with nephrotic syndrome in the early neonatal period. Genet Couns 2013; 24:141–7.

5. Beaufils C, Farlay D, Machuca-Gayet I, Fassier A, Zenker M, Freychet C, et al. Skeletal impairment in Pierson syndrome: Is there a role for laminin β2 in bone physiology? Bone 2018; 106:187–93. https://doi.org/10.1016/j.bone.2017.10.015.
6. Zhu HT, Maimaiti M, Cao C, Luo YF, Julaiti D, Liang L, et al. A novel homozygous truncating mutation in LAMB2 gene in a Chinese Uyghur patient with severe phenotype Pierson syndrome. Front Med (Lausanne) 2019; 6:12. https://doi.org/10.3389/fmed.2019.00012.

7. Peña-González L, Guerra-García P, Sánchez-Calvín MT, Delgado-Ledesma F, de Alba-Romero C. [New genetic mutation associated with Pierson syndrome]. An Pediatr (Barc) 2016; 85:321–2. https://doi.org/10.1016/j.anpede.2016.01.003.

8. Pierson M, Cordier J, Hervouet E, Rauber G. [An unusual congenital and familial congenital malformative combination involving the eye and kidney]. J Genet Hum 1963; 12:184–213. https://doi.org/10.1001/jama.1963.03700190169139.

9. Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004; 13:2625–32. https://doi.org/10.1093/hmg/ddh284.

10. Arima M, Tsukamoto S, Akiyama R, Nishiyama K, Kohno RI, Tachibana T, et al. Ocular findings in a case of Pierson syndrome with a novel mutation in laminin β2 gene. J AAPOS 2018; 22:401–3.e1. https://doi.org/10.1016/j.jaapos.2018.03.016.

11. McLean RH, Kennedy TL, Rosoulpour M, Ratzan SK, Siegel NJ, Kauschansky A, et al. Hypothyroidism in the congenital nephrotic syndrome. J Pediatr 1982; 101:72–5. https://doi.org/10.1007/BF00858084.

12. Muranjan MN, Kher AS, Nandkarni UB, Kamat JR. Congenital nephrotic syndrome with clinical hypothyroidism. Indian J Pediatr 1995; 62:233–5. https://doi.org/10.1007/BF02752333.

13. Park SI, Shin JI. Complications of nephrotic syndrome. Korean J Pediatr 2011; 54:322–8. https://doi.org/10.3345/kjp.2011.54.8.322.

14. Nithya T, Rai BS, Khan HU, Varghese AD. Hypothyroidism & nephrotic syndrome: A cause or effect? Karnataka Pediatr J 2011; 25:36–7.

15. The University of Arizona Health Sciences. Pierson Syndrome. https://disorders.eyes.arizona.edu/disorders/pierson-syndrome/ Accessed: Apr 2020.