Host-pathogen protein-nucleic acid interactions: A comprehensive review

Anuja Jain a, Shikha Mittal a,f, Lokesh P. Tripathi b,c, Ruth Nussinov d,e,* Shandar Ahmad a,*

a School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
b National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
c Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
d Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
e Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
f Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India

A R T I C L E I N F O

Article history:
Received 30 March 2022
Received in revised form 1 August 2022
Accepted 1 August 2022
Available online 04 August 2022

Keywords:
Host-pathogen interactions
Protein-nucleic acid interactions
Structural biology
Immunological response
Drug design
Toll-like receptors

A B S T R A C T

Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 4416
2. Types of HP-PNIs ... 4416
3. Specificity and structural basis of pathogen nucleic acid recognition by host PRRs ... 4418
4. Target recognition, drug design and resistance against HP-PNI .. 4421
 4.1. TLR3 pharmacological agents ... 4421
 4.2. TLR7/8 pharmacological agents ... 4426
 4.3. TLR9 pharmacological agents .. 4426
 4.4. RLRs pharmacological agents .. 4427
 4.5. cGAS-STING pharmacological agents ... 4427
 4.6. Common agonists .. 4428
 4.7. Common antagonists .. 4428
 4.8. PRR agonist or adjuvant mechanism ... 4428
5. Computational approaches to HP-PNIs .. 4428
 5.1. Predicting foreign (pathogenic) nucleotide sequences interacting with host ... 4429
 5.2. Gene regulatory networks .. 4429

* Corresponding authors.
E-mail addresses: nussinor@mail.nih.gov (R. Nussinov), shandar@jnu.ac.in (S. Ahmad).

https://doi.org/10.1016/j.csbj.2022.08.001
2001-0370/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Decoding the detailed mechanisms of infections and immune-related diseases can be helped by investigating the interactions between the molecules of the invading species (pathogens) and the cellular machinery of the invaded (host) organism tasked with counteracting them. These so-called, host-pathogen interactions involve the molecules from the pathogen cell called Pathogen-Associated Molecular Patterns (PAMPs) with those of the hosts called Pattern Recognition Receptors (PRRs). The interactions between PRRs and PAMPs enable the host immune system to discriminate between the self and a foreign body before the stimulation of adaptive immunity. PRRs are either present on the surface or in the interior compartments of various host cell types such as dendritic cells (DCs), epithelial cells, mast cells, monocytes and granulocytes [1]. They are primarily germline-encoded receptors recognizing PAMPs [2], closely associated with danger-associated molecular patterns (DAMPs) [3]. They are also involved in activating transcription factors, acting in the regulation of cytokine expression. There are many different groups of PRRs among which, the most studied are TLRs, NOD-like Receptors (NLRs) and RLRs, C-type lectin receptors (CLRs) and AIM2-like receptors (ALRs) [4,5]. These PRRs either recognize PAMPs in the nucleus and cytoplasm (such as cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and the RLRs) [6] or an extracellular environment (such as TLRs) [7–9]. As both of these interactions occur at the onset of the disease, they are attractive targets for potential preventive and therapeutic interventions.

The early PRRs recognition of PAMPs is aimed at eliminating the pathogen, preventing its entry into the host cells and triggering an adaptive immune response [9]. The PRR-PAMP host-pathogen interactions trigger a cascade of innate immune response reactions, including kinase pathway activation, production of effector molecules, and selective transcription factor stimulation. These events guide the immune system toward mounting either anti-inflammatory or pro-inflammatory responses [10]. From the molecular standpoint, PRR-PAMP host-pathogen molecular interactions include proteins, nucleic acids, carbohydrates and metabolites. Of these, protein–protein interactions (PPIs) have been widely studied and reviewed [11–13]. Host-virus and host-bacteria (microbe) interactions such as those involving non-coding RNAs and metabolites have also been well-documented [14–17]. On the other hand, although many protein-nucleic acid interactions, crucial to the host defence, immune response and pathogen life cycle have been investigated across different species, the information is widely scattered and sometimes incoherent. Analysis and in-depth structure-based understanding of host-pathogen recognition via pathogen nucleic acid fragments or more broadly their genomic DNA is generally lacking in the literature. Although the field of protein-nucleic acid interactions is one of the most actively pursued topics in computational and experimental biology, dominant studies on the subject have largely focused on host–host dynamics [18–20].

In this review, we aim to provide a comprehensive overview of studies on host-pathogen interactions from the perspective of pathogen nucleic acids and their recognition by host proteins. We observed that an extensive body of literature is available that may provide deep insights into target specificity, systems-level responses and drug targeting of nucleic acid recognition machinery. Currently, most of it is reported in a focused and domain-specific manner, making it inconvenient to develop a holistic assessment, integrating immunological, therapeutic and structural perspectives. Here, we first provide an overview of the nature of the interactions and the diseases in which specific HP-PNIs are implicated. Next, we examine the disease and cellular specificity of common pathogens and their receptors and the therapeutic interventions that are available and being actively pursued. We also survey sequence, structural and expression level studies in the context of individual interactions and high throughput analysis. Finally, we discuss potential applications and future directions in the study of pathogen nucleic acid sensing by proteins.

2. Types of HP-PNIs

Given the diversity of the interaction sites that pathogen molecules encounter upon gaining cellular entry, we first review the literature on the spatial regulation of pathogen recognition. Nucleic acids (DNA or RNA) are polyanionic molecules. They are intracellular but upon cell death or injury, they are released to the extracellular environment and can stimulate or inhibit host immune response by binding to PRRs. In general, PRRs are protein molecules that interact with a nucleic acid through different types of inter-molecular forces. These include electrostatic interactions (e.g., salt bridges), dipolar interactions (such as hydrogen bonding, van der waals interactions), entropic effects (hydrophobic interactions) and dispersion forces (base stacking) [21]. Often water molecules also facilitate the binding, for example by screening the electrostatic repulsion between similar charges on complementary molecules [22]. The interactions can be sequence-specific (tight) or non-specific (loose) manner [21,23–25]. Specific protein–DNA interactions are commonly mediated by an α-helical motif in the protein that inserts itself into the major groove of the DNA, thereby recognizing and interacting with a specific nucleotide sequence. The interactions are typically facilitated by H-bonds and salt bridges [26]. However, concomitant conformational changes in the DNA, sequence-dependent kinking, helical dislocation, untwisting, intercalation, etc., can contribute significantly to this recognition process [27].

Proteins that recognize DNA act through independently folded binding domains such as:

- Winged helix-turn-helix proteins, composed of two roughly perpendicular α-helices linked by a β-turn or loop;
- Zinc coordinating proteins, which entail the tetrahedral coordination of 1–2 zinc ions with conserved cysteine and histidine residues in α-helix and 2-stranded β-sheet;
- Zipper type proteins, such as the leucine zipper, which has an α-helix with a leucine at every 7th amino acid;
- Other α-helix proteins e.g., those using α-helices as the main binding motif;
- Other β-sheet proteins, which use β-strands as recognition and binding motifs and
β-hairpin/ribbon proteins, which contain small 2- and 3-stranded β-sheets or hairpin motifs that binds with DNA major or minor grooves [28].

Interestingly, some non-enzymatic proteins that do not have a well-defined secondary structural motif use multi-domain sub-units for DNA recognition. An enzyme is another group of proteins that recognizes DNA based on their biological function rather than structure. It mainly uses combinations of α-helices, β-strands, and loops to form domains such as DNA-recognition domain that reads sequence, a catalytic domain with the enzyme’s active site; where applicable, a dimerization domain [27,28].

While the interactions of RNA to proteins are similar to those of DNA, their complex secondary and tertiary structures provide an important additional mechanism. At the detailed structural level, RNA molecule is recognized by RNA-binding modules such as:

- **RNA recognition motifs (RRM):** a four-stranded anti-parallel β-sheet with two helices packed in π(3)|π(3)|π(2)|π(2) topology and interacts with 4 nucleotides of ssRNA through stacking, electrostatics and hydrogen bonding;
- **hnRNP K homology domain (KH domain):** a three-stranded β-sheet packed against three α-helices. It recognizes 4 nucleotides of ssRNA through hydrophobic interactions between non-aromatic residues. Based on its topology it can be further grouped into two subfamilies, type I (π(2)|π(2)|π(2) topology) and type II (π(2)|π(3)|π(2) topology);
- **Double-stranded RNA-binding domain (dsRBD), with a shape-specific dsRNA minor-major-minor groove pattern interacting with the sugar-phosphate backbone;**
- **Zinc fingers motifs:** typically classified based on the residues used to coordinate zinc, cysteine and histidine. For example, ZnF-C2H2, which contains nine C2H2 zinc fingers of which fingers 1–3, 5 and 7–9 interact with DNA through hydrogen binding in the major groove, while fingers 4–6 interact with the 5S RNA through electrostatic contacts to two RNA loops. Another group of Zinc Fingers (ZnF-CCCH) has a stacking interaction between aromatic residues and bases, and
- **Sterile alpha motif (SAM domain) has a shape-dependent recognition of RNA stem-loop, mainly through interactions with sugar-phosphate backbone and a single base in loop [29–35].**

In general HP-PNIs are affected by neighboring proteins, small molecules, and physical conditions such as temperature or pH. Such interactions are important to fully understand the physiological processes and pathology of the host, and drug design [21].

When it comes to first line of defense in terms of protein-nucleic interactions, the TLR family of receptors is the best characterized group of PRRs and most of its members can recognize intracellular as well as extracellular pathogen molecules. Most TLRs have been conserved through evolution [36]. Of these, TLR3, TLR7, TLR8 and TLR9 can recognize extracellular (pathogen) nucleic acids in the endosome [37]. Currently, 13 members are known in the mammalian TLR family [4]. Among those TLR1–TLR9 are conserved between humans and mice, TLR10 is not functional in mice because of a retrovirus insertion, and TLR11, TLR12 and TLR13 are lost in human genomes [380]. Even though the specific association between TLRs or other PRRs towards each pathogen is not fully understood, a broad range of pathways that they activate have been reported. Studies focused on characterizing (1) the nature of the immune response towards the types of involved diseases, (2) sub-cellular location in which the interaction occurs, and (3) types of pathogen molecules recognized by each PRR. For example, extracellular CpG-DNA and RNA have been responsible for the pathogenicity in rheumatoid arthritis, SLE, toxic shock and bacterial sepsis [38–40]. Blood coagulation under severe tissue damage conditions, caused by secreted nucleic acids has been presented as a possible mechanism of pathogenesis in these diseases [40].

Apart from the extracellular recognition, host-pathogen interactions also take place in various subcellular locations. The most studied cytosolic PRRs are DAI, AIM2, protein kinase receptor (PKR) and the RIG-I [41]. Specifically, TLR3 is reported to recognize dsRNA [42], TLR7 and TLR8 bind to ssRNA [43,44] and TLR9 identifies DNA-containing unmethylated CpGs [44]. Further DAI and AIM2 recognize dsDNA while PKR and RIG-I respond to single and double-stranded viral RNAs [41].

Aberrations arising due to an under-performing PRR-based recognition system pose a grave threat to hosts against a wide range of pathogens, whereas their hyperactivity poses a potential threat of autoimmune diseases [45]. Some nucleic acid-sensing hyperactivity autoimmune disorders include SLE, Aicardi-Goutieres syndrome, spondyloenchondrodysplasia, and STING-associated vasculopathy with onset in infancy [38,46,47]. The roles of host-pathogen interactions in some of these diseases are reviewed below.

SLE is an autoimmune disease involving HP-PNIs. TLR7 and TLR9 have been implicated with stimulation of type 1 IFNs in SLE [48]. The role of TLR7 has been clearly established by showing that its overexpression in lupus in mouse models leads to SLE; its absence protects from the disease [49]. On the other hand, the role of TLR9 in SLE is not as well understood. It is known that theTLR9 plays a significant role in SLE by producing auto antibodies in mice models [50] and its overexpression is observed in SLE patients [51]. However, in contrast to TLR7, deletion of TLR9 in mice results in a more severe disease phenotype suggesting a protective role of TLR9 [52]. The exact synergy or competition between TRL7 and TLR9 and their detailed mechanism of molecular recognition in SLE is still not fully understood.

Another autoimmune disease involving protein-nucleic acid interactions is Type-1 diabetes. Among the animal models, studies have shown that in the transgenic rat, insulin promoter (RIP)-B7.1 or RIP-LCMV mice, administration of TLR3 or TLR7 is required for stimulation of Type-1 diabetes [53]. Conversely, TLR3 was shown to protect against the disease occurrence in some studies [54]. TLR9 is also involved in the stimulation of Type 1 diabetes [55]. Again, a complete picture of various TLRs conferring or protecting from this disease remains to be completely understood.

Another autoimmune disease involving protein-nucleic acids is Rheumatoid arthritis, mediated by synovial fibroblast's hyper-activation [56] in synovial tissues and the overexpression of TLR3, TLR7, TLR9 together with TLR2 and TLR4 [57,58]. TLR3 and TLR4 are hyper-activated during the onset and the end stages, indicating their roles in disease pathogenesis [57,59–61]. However, the role of TLR9 appears contradictory in Rheumatoid arthritis [62], with TLR9 expression shown to have triggered the disease [63]. Injection of CpG DNA into mice produced an anti-inflammatory response and prevented arthritis [64,65]. These studies highlight how TLRs target specific types of nucleic acids to misunderstand self as a DAMP and how the introduction of a competitive DNA can intervene in this process.

Inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis in the gastrointestinal tract involve TLR2 and TLR4, wherein TLR3 and TLR9 have a protective role [66,67]. Similar to SLE protection, CpG injections in the murine model reduce the severity of the disease through a pro-inflammatory secretion [67].

TLR9 overexpression is involved in the onset of multiple sclerosis, characterized by immune response and inflammation that leads to neuronal injury [68]. Mouse models deficient in MyD88 of the TLR pathways are resistant to experimental autoimmune encephalitis (EAE) whereas mice deficient in TLR9 develop disease.
with decreased severity suggesting a synergistic role for EAE, MyD88 and TLR9 [69].

cGAS, is also involved in autoinflammatory diseases [70–74], with the cGAS-STING pathway triggering an anti-tumor immune response [75,76]. DNA derived cGAS recognizes endogenous tumour cells, triggers the cGAS-STING pathway, production of IFN and acts on CD8+ cells to kill tumour cells [77–79].

In summary, protein-nucleic acid host-pathogen interactions, are primarily driven by TLRs which are involved in either protecting against or triggering auto-immune diseases due to defective regulation of the immune system. Treatments may include injecting nucleic acid PAMP-like molecules and blocking the interaction of TLRs that recognize nucleic acids. The challenge lies in clearly deciphering the roles of individual TLRs in a disease before we use them as targets. The critical aspect of characterization is whether a TLR is protective against or serves as a promoter of autoimmune response and exact quantification of the consequences of a specific intervention. This leads to the question of the molecular specificity of PRRs beyond the animal models and available clinical data. Such issues can best be investigated by looking at the detailed atomic structures of involved molecules in isolation or complexity with their targets. In the next section, we review the status of knowledge on these very issues.

3. Specificity and structural basis of pathogen nucleic acid recognition by host PRRs

In the last section, we took a disease-level view of various PRR-PAMP interactions. At the molecular level, nucleic acids from different pathogens are recognized by endosomal and cytoplasmic PRRs. Nucleic-acid recognizing PRRs include endosomal TLRs and cytoplasmic DNA sensors like cGAS, DAI, IFN-γ-inducible protein (IFI16), AIM2 as well as RLRs (RIG-I, Melanoma differentiation-associated protein 5 (MDA5)) and NLRs. Each PRR recognizes a specific class of pathogen nucleic acids. For example, TLR3 recognizes dsRNA [80], TLR7 and TLR8 detect viral ssRNA [81,82] and TLR9 recognizes CpG motifs in viral and non-viral pathogens [83–85]. Similarly, cytoplasmic PRRs namely RIG-I, MDA-5 and LGP2 detect dsRNAs, whereas other cytoplasmic DNA sensors recognize dsDNAs highly specialized nucleic acid sensing PRR, the TLR13 recognizes a specific sequence in bacterial rRNA giving it a unique anti-bacterial function [86]. In general, PRR’s actions are mediated by cell-specific and condition-specific adaptors, leading to different downstream host defence pathways. A summary of PAMPs recognizing their respective PRRs, key adaptors involved in PRRs and their, downstream signaling events iissignalling, cross-talks and response especially some of representative agonist responses are provided in Fig. 1.

Although TLRs detect different types of PAMPs, most are found to have a common horseshoe-shaped structure. They are composed of ectodomain (also called leucine-rich repeat (LRR) domain), transmembrane domain and Toll/IL-1 receptor (TIR) domain (Fig. 2). It is actually the extracellular LRR domain that recognizes the PAMPs, and other ligands directly and hence is used as a drug target. Transmembrane Typically, the LRR domain is composed of 19–25 tandem copies of LRR motifs that contain the ‘xLxxLxLxx’ as well as ‘xUxxUxxxxUxxLx’ (U: hydrophobic) motif sequences. Generally, it is 20–30 amino acids long and contains a β-strand and an α-helix linked by loops, causing the horseshoe-like structure of the LRR [380]. Other, transmembrane and the intracellular TIR domains are responsible for the signal transduction. Domain wise availability of PDB structures for all domains of PRRs in humanhumans and mouuse are providedlisted in Table 1. Domain structures need to be listed separately. Although PDB structures are available for PRRs, the reported crystal data are only for a single domain or its fragment and does not tell us about the PRR’s complete folding. We discuss below nucleic acid recognition by specific TLRs areas known from the literature.

TLR3, an endosomal PRR, recognizes polyinosinic-polycytidylic poly(I:C). Earlier reports depicted TLR3 as involved in recognition of viral dsRNA such as reovirus [76], respiratory syncytial virus

Fig. 1. Nucleic acids are recognized by the pattern recognition receptors (PRRs) through key adaptors. Specific adaptors propagate the downstream signalling and cross-talk with other proteins, leading to the production of Type-I and Type-II IFNs, inflammatory cytokines and chemokines in the nucleus. Colours of dashed lines represents different key adaptors i.e., TRIF (black), MAVS (dark green), MyD88 (brown) and STING (purple). Representative agonists binding with their targets are shown through different shape (bright green). Common agonist shares same shape.
[87], west nile virus [88], dengue virus [89], Influenza A virus [90],
epstein-barr virus [91], hepatitis C virus (HCV) [92] and herpes
simplex virus (HSV) [93]. The TLR3-dsRNA complex has a horse-
shoe shaped structure with dsRNA bound to the amino and car-
boxyl termini on the lateral convex surfaces of the TLR3 ectodo-
mains [94,95]. Synthetic poly(I:C) is an important ligand used to
study this system. A typical structure of poly(I:C) and TLR3 inter-
acting residues and their hydrogen-bond and non-bonded contacts
to dsRNA (<3.35Å) are shown in Fig. 3.

In contrast to TLR3, which recognizes dsRNA, TLR7 and TLR8
recognize ssRNA in viruses and certain bacteria, which are also
U-rich [77,78]. Although TLR7 and TLR8 share high sequence sim-
ilarity, TLR7 prefers GU-rich ssRNA whereas TLR8 prefers AU-rich
ssRNA in humans [96] although, interestingly such a behaviour is
not observed in mice. TLR7 and TLR8 contain two ligand-binding
sites. In TLR8, the first site binds U while the second site binds to
an oligonucleotide like UG; both sites are required for activation
of signal transduction [97]. TLR7 is a dual receptor as it can bind
G and U-rich ssRNA. The structures of the ssRNA-binding sites of
TLR7 and TLR8 differ [98]. TLR7 recognizes a 3-mer UUU motif of
a long poly-U ssRNA. Crystal structure of TLR8-dsRNA complex
revealed that it undergoes large conformational changes upon
ligand binding, bringing the carboxyl terminals close to enable
dimerization with TIR domain and stimulate downstream signaling
[99].

The third TLR group with nucleic acid recognition function is
TLR9, which recognizes ssDNA having an unmethylated CpG motif
in bacteria and viruses [100]. TLR9 CpG hexamer motif was first
described as “RRCGYU”, where R and Y represent purine and
pyrimidine respectively [101]. Following additional fine tuning
by other researchers, the CpG motif, GTCGTT and GACGTT have
been proposed to be the optimal TLR9 ligands for humans and mice
respectively [102,103]. Notably, TLR9 primarily recognizes the
hexamer consensus sequence of ssDNA [104]. Water-mediated
hydrogen bonding and vanderWaals interaction are required for
the recognition of the CpG motif by TLR9 although TLR9 also recog-
nizes DNA:RNA hybrids, with the ssDNA isolated from DNA:RNA
hybrids unable to activate TLR9 [105]. Furthermore, TLR9 recog-
nizes the CpG motif in viruses, including Human Papillomavirus
(HPV) [106], Herpes simplex virus (HSV) [107] and also in several
bacteria such as salmonella Typhimurium [108] and Mycobac-
terium tuberculosis (MTB) [109].

Unlike humans, mice express TLR13, an endosomal TLR that
recognizes its ligand in a sequence-specific manner, sensing a
highly conserved bacterial 23S rRNA sequence that contains 5’-
GAAAGACC-3’ [86,110]. Interestingly, a 13-nt ssRNA derived from
23S rRNA and a viral-derived 16-nt ssRNA, containing the same
sequence that bound to TLR13 and folds into a stem-loop-like
structure that is responsible for activation of TLR13 [111]. Notably,
this sequence is found within a region of RNA targeted by certain
antibiotics, and clinical isolates of Staphylococcus aureus resistant
to these antibiotics are unable to stimulate mouse TLR13 [86].
Overall, TLR13 functions as a sequence- and conformation-
specific PRR [112].

Apart from TLRs, RIG-I, MDA5 and LPG2 receptors are the best-
studied cytoplasmic receptors. The domain structure of most RLRs
consists of a Caspase recruitment domain (CARD) at the N-
terminal, a central ATPase/Dead-box helicase domain and a C-
terminal regulatory domain, with some notable omissions in speci-
fic groups as shown in Fig. 4. For example, in contrast to RIG-I,
LGP2 lacks an N-terminal CARD domain and hence functions as a
regulator in the signalling of RIG-I and MDA5 [113]. Crystal and
NMR structures revealed the presence of a groove within the C-
terminal domain, which represents the ligand binding site
RIG-I recognizes either viral dsRNA (>200 bp) or a base-paired untranslated region whereas in the case of the hantaan virus [117,118]. Modification in the sequences of the RNA ligand stimulates the activation of RIG-I and LGP2 NMR data pointed to secondary structural elements in ligand binding [114].

RIG-I recognizes either viral dsRNA (>200 bp) or a base-paired region of 18–20 nucleotides with a 5'-triphosphate end [116]. Previous studies reported that in the hepatitis c virus, RIG-I detected the poly-U/UC motif in the 3'-untranslated region whereas in the 5'-triphosphate in the case of the hantaan virus [117,118]. Modifications in the sequences of the RNA ligand stimulate the activation of RIG-I [119,120]. Next-generation sequencing (NGS) in viral infection has shown that RIG-I and MDA5 prefer binding to AU-rich RNAs in viral genomes [121–123]. Structural analysis of RIG-I indicated that for the recognition of the 5'-ppp end of RNA, the C-terminal binding site of RIG-I must be acidic. MDA5 detects different groups of viral RNAs. It has been shown that some viruses are specific to RIG-I and MDA-5 while others are sensitive to both RIG-I or MDA5. For example, RIG-I recognizes the Newcastle disease virus, Sendai virus, Influenza virus and Japanese encephalitis virus and MDA5 detects Picorna viruses like foot-and-mouth disease virus, Sendai virus, Influenza virus and Japanese encephalitis virus [124–129]. Previous studies had identified LGP2 as a negative regulator of RIG-I and MDA5 signalling [130,131]. However, more recent studies showed that LGP2 positively regulates these signalling pathways. For example, in LGP2 deficient mice, impaired type-I IFNs production was observed revealing the role of LGP2 as a positive regulator [113]. Structural studies have also suggested that the un-liganded RIG-I and MDA5 have a closed conformation [131] but ligand binding induces open active conformation that oligomerizes in an ATP-dependent manner [132].

In contrast to RNA PAMPs, it was initially believed that the DNA PAMPs are primarily recognized by TLR9 only. However, recent studies have identified additional cytoplasmic receptors which recognize either microbial DNA or self-DNA during cell damage leading to infection and stimulating production of Type I IFNs, Type III IFNs or IL-1β. For example, DAI [133,134], leucine-rich repeat flightless-interacting protein 1 (LRRFIP1) [135], RNA polymerase III [136,137], IFI16 [138], extrachromosomal histone H2B [139], DNA-PK [140], and MRE11[141] recognize dsDNA to induce type-I IFNs production. Similarly, DHX9, DHX36 and DDX41 is involved in recognition of DNA with different microbial specificities [142]. Finally, AIM2 and IFI16 have also been established as recognizing cytosolic DNA [143,144].

The cGAS-STING is another critical dsDNA-sensing PRR that provides an innate immune response to infections, inflammations, and cancers [145,146]. The dsDNA interacts with cGAS in a sequence-independent manner [147], promoting a conformational change of cGAS to catalyze the formation of 2′,3′-cyclic GMP-AMP (cGAMP). It is a cyclic dinucleotide from ATP and GTP, containing the phosphodiester linkages of both 2′ and 3′ that activates the STING, comprising an N-terminal transmembrane domain with four helices (aa 1–154), an acidic C-terminal tail (aa 342–379), and a central globular domain.
This cytosolic DNA sensing by cGAS-STING can induce type-I IFNs production, infiltration of T cells and natural killer (NK) cells [150,151]. Thus, we conclude that cell surface as well as cytosolic nucleic acid PRRs recognize specific pathogenic genomes. The primary grouping of these PAMPs and PRRs depends on whether the nucleic acid is single-stranded, double-stranded, RNA or DNA, methylated or unmethylated, rich in AU, GU and CpG etc. As we discuss below, these PAMPs’ specific attributes are crucial for designing therapeutic strategies against pathogen-specific PAMPs.

4. Target recognition, drug design and resistance against HP-PNI

Invading pathogens often hijack the cellular machinery of the host cells and subvert their immune system leading to disease [152]. Evidence indicates that under many conditions, correcting the aberrant nucleic acid sensors can be a robust therapeutic intervention [153]. However, obstacles such as drug resistance can arise [153]. Nonetheless, nucleic acid sensors remain attractive targets [154]. In Table 2, we have listed some representative agonists and antagonists, their mechanisms and effect on HP-PNI targets. Below, we review the status of designing molecular interventions in nucleic acid PRRs.

4.1. TLR3 pharmacological agents

Multiple drugs have been proposed for targeting host-pathogen interactions between proteins and nucleic acids. Most prominent among them is arguably the poly(I:C), a synthetic analogue of dsRNA used as a TLR3 agonist (a potent adjuvant) that is locally administered for viral prophylaxis and therapeutic anticancer vac-
Target	Agonist	Agonist mechanism	Agonist effects	Other agonist bound structure
TLR3	Poly(I:C)	Recruits NK cells and tumor specific CTL cells through maturation of DCs; TNF-related apoptosis of tumor growth.	Therapeutic agent for chronic fatigue syndrome, adjuvant to cancer vaccines, antiviral response in human immunodeficiency virus	3QDQ (TLR3/C1068) 3ULV (TLR3/TLR3ecd-2) 3ULJ (TLR3/TLR3ecd-1) 3ULS (TLR3/Fab12)
	ARNAX	Target immune checkpoint blocker; Promotes cross-priming of DCs	overcome resistance to agents targeting Programmed cell death in mice	
TLR7	Imiquimod (R-837)	Reverse the local immunosuppression; Induce secretion of pro-inflammatory cytokines, IFN-α, TNF-α and IL-12	Antiviral agent in cytomegalo virus & herpes simplex virus-2, genital warts, superficial basal cell carcinoma & actinic keratosis treatment	4QC0 (TLR8/compound53) 4QKZ (TLR8/compound9)
TLR8	Motolimod (VTX-2337)	Improve NK cells ability to mediate antibody-dependent cellular toxicity	Used in head and neck cancer and in chemotherapy with platinum-resistant ovarian cancer	
TLR7/8	Resiquimod (R-848) # 3W3N	Stimulates DCs maturation by IL-12 and other Th1 cytokines; Generate CD8+ T cell responses	Limits viral replication in monocytes isolated from human immunodeficiency virus-1 infected individuals; treatment of herpes simplex virus-2 infection or hepatitis c virus infection;	3W3K (TLR8/CL075) 3W3J (TLR8/CL097) 6KYA (TLR8/TH1027) 4R07 (TLR8/ORN06) 4R08 (TLR8/ssRNA40) 4R09 (TLR8/ORN05) 4R0A (TLR8/uridine)3WN4 (TLR8/DS-877) 6WML (TLR8/GS-9688)7CRF (TLR8/CU-CPD107) 5AWC (TLR8/MB-564) 5AWA (TLR8/MB-568)
TLR9	Lefitolimod	Increase the expression of surface markers, such as CD86, CD40, HLA-DR, CD169 and CD69 along with cytokines IL-6 and IL-8	Antiviral agent for human immunodeficiency virus-1; suppress IL-33 driven airway hyperreactivity in mice	5ZLN (TLR9/CpG DNA)
	CpG-1018 Agatolimod	Induces B-cell proliferation and cytokines production; Develop the Th2 and Th17 cell responses; Mediate superior immunostimulatory effects	Provide seroprotective responses against hepatitis b virus Adjuvant for prophylactic hepatitis b virus vaccination	
RIG-I	SB-9200	Culminates in type-I and type-III IFNs secretion and IL-1β release	Antiviral agents for hepatitis b virus and hepatitis c virus infected patients	
	BO-112 5’-pppRNA	Releasing type-I IFN, IFN-γ and CD8 + T lymphocytes	Used for tumor cell apoptosis; Activate systemic immunity against distant lesions	
	# 3QG8 # 3LRR # 5FB	Stimulates the innate antiviral response including IRF3, IRF7; STAT1 activation	Provide resistance against both RNA (dengue, chikungunya) and DNA (stomatitis, vaccinia) viruses	
cGAS-STING	DMXAA # 4QXR # 4QXQ # 4QXP # 4QXO # 4LOL	Potent vascular disrupting agent; Induce TNF-α and IFN-β production	Mediate antiviral activity in hepatitis b and herpes simplex virus infection	7SSM (hSTING/compound11) 5VDV (cGAS/compoundF3) 5VDU (cGAS/compoundF2)
	2,3’-cGAMP # 4L0J # 4L0H	Natural STING agonists; Enhanced type-I IFN signaling, Cxcl10, Ccl5, and T-cell migration	Effectively used in immunotherapy such as the combination with antigen-specific vaccinations	
	ADU-S100 # 7Q3B	Promote PBMC; Generate pro-inflammation cytokines	Tumour regressor in B16 melanoma, CT26 colon, and 4 T1 breast cancer murine models	

Note: In this table additional available PDB structures for human and mouse agonist not included in the text are included.
Target	Antagonist	Antagonist mechanism	Antagonist effects	Other antagonist bound structure
TLR3	CNT02424	Recognize extracellular domain of TLR3; Down-regulates the production of IL6, IL8, MCP-1 and IFN-10	Reduce NFkB activation in sepsis, bowel disease and diabetes etc.	
	Compound 4a	Competitive inhibitors of dsRNA binding to TLR3; Repressed the expression of TNF-R and IL-1β	Ameliorate the radiation-induced gastrointestinal syndrome	
TLR7	2’-O-ribose-methylated RNA	Abrogates cytokine production; Potent inhibitor of immunostimulatory RNA	Therapeutic tools for the management of SLE	6LVX (TLR7/Cpd-1)
TLR8	ODN-1411	Limits the deregulation of cytokines secretion and TNF production	Reduce disease progression in mouse model of psoriasis and human model of Rheumatoid Arthritis	
TLR9	COV08-0064 (MP-3964)	Blocked mRNA upregulation of TNF-α, IL-1β, NLRP3	Effective approach in liver surgeries including transplantation	
RIG-I	VP35	Suppress the DCs maturation followed by impaired expression of α/β-IFN	May be counteract to ebola virus immune evasion	
	# 3L26	Block the 5’ppp RNA motif associated with RIG-I activation	Block the downstream signaling in mammalian cells as well as in avian cells	
	# 4L62	Block the 5’ppp RNA motif associated with RIG-I activation	Block the downstream signaling in mammalian cells as well as in avian cells	
	# 3K58	Block the 5’ppp RNA motif associated with RIG-I activation	Block the downstream signaling in mammalian cells as well as in avian cells	
	VP8	Block the 5’ppp RNA motif associated with RIG-I activation	Block the downstream signaling in mammalian cells as well as in avian cells	
cGAS-STING	C-176 & H-151	Bind to Cys91 of STING; Reduced elevated levels of type-I IFNs and IL-6	Recapitulating autoantibody production; Aberrant T-cell activation in AGS patients	5VBO (cGAS/PF-06928213)
	Astin C	Exhibits anti-inflammatory activity; Blocks IRF3 recruitment	Used in STING-mediated cancer and autoimmune diseases	(cGAS/RU332)

Note: We have mentioned available PDB structures for only human and mouse for antagonist that are not describe in this review.
However, abundant preclinical data demonstrated that poly(I:C) is unstable with side effects including shock, renal failure, hypersensitivity reactions and limited therapeutic efficacy in early clinical trials with leukaemia patients [156], leading to the termination of its clinical development (source: http://www.clinicaltrials.gov). At least two poly(I:C) derivatives have been attempted to address some of the issues. First, poly(I:C12U) (rintatolimod or Ampligen) that contains uridylic acid in a 12:1 M ratio in the poly(C) strand for chronic fatigue syndrome [157], and shown to reduce the concentration of antiretroviral agents in human immunodeficiency virus-1 control [158] as an adjuvant to cancer vaccines in mice [159]. Second, poly(ICLC) (Hiltonol) is stabilized with poly(l-lysine) and carboxymethylcellulose [153]. Poly(I:C) has been shown to have a significant potential to boost the immune system [160–162] by mediating antitumor NK cell and tumor-specific cytotoxic T lymphocyte (CTL) activities through maturation of DCs [163–165]. Therefore, Clinical trials suggested its effectiveness in combination with cancer vaccines.
and chemotherapeutics for haematological conditions [166,167], solid malignancies [168–170], brain [171,172] and antiviral responses in human immunodeficiency-1-positive individuals [173]. Since, TLR3 is frequently expressed by various types of malignant cells and can directly trigger tumor cell apoptosis, poly(I:C) has been used to induce potent anti-tumor activity against various tumors [379]. Along these lines, it has been reported that poly(I:C) inhibits tumor growth in a TNF-related apoptosis inducing ligand (TRAIL)-dependent manner [174]. Both (poly(I:C12U) and poly-ICLC) favour cross-priming in human and mouse experimental systems [146,147]. Clinically, poly(I:C) has been used as an adjuvant to enhance cancer vaccine protocols [175]. Even though poly(I:C) was downgraded as a candidate drug for TLR3-targeted treatments, if suitably remodeled, it may emerge as a promising candidate in the future. Our in silico docking study (previously unpublished) suggested that poly-ICLC can bind to both TLR3 residues and dsRNA bases at four different locations. These are the locations where dsRNA electrostatically interacts with TLR3 [178]. Potential interactions of TLR3 with its ligands have been shown in Fig. 5 and Fig. 6 and the detailed results are presented in Table 3. Strong binding energy also suggested that it may stabilize the TLR3-dsRNA complex. Another TLR3 agonist, ARNAX (a novel synthetic DNA–dsRNA hybrid molecule), also promotes robust cross-priming by DCs. ARNAX with cancer vaccine and a programmed cell death 1 ligand 1 (PD-L1)-targeting immune checkpoint blocker overcame resistance to agents targeting programmed cell death 1 in mice [179].

Fig. 6. The interactions and key residues of TLR3 and important nucleic acids positions of dsRNA at four locations of the binding pocket in TLR3-dsRNA complex. Purple arrows illustrate hydrogen bonds (distance closer than 2.5 Å) between Poly-ICLC and TLR3-dsRNA complex.
induced production of IL-6, IL-8, MCP-1, and IP-10 in human lung epithelial cells [180]. Additionally, CNT04685 (rat anti-murine TLR3) and CNT05429 (CDRs grafted onto mouse IgG1 scaffolds from CNT04685) mAbs were also worked in a similar manner and reduced poly(I:C)-induced production of CCL2 and CXCL10 in murine macrophage RAW264.7 cells improves the ability of NK cells to mediate antibody-dependent cellular cytotoxicity and reduced poly(I:C)-induced production of CCL2 and CXCL10 in murine macrophage RAW264.7 cells.

4.2. TLR7/8 pharmacological agents

Some TLR7 agonists have been used for developing novel antiviral agents [184]. These are mostly imidazoquinoline and adenine derivatives [185]. Imiquimod or R-837 is a prototypic imidazoquinoline that shared resemblance with nucleoside analogue but lacks the fourth nitrogen atom present in purines. Imiquimod binding with TLR7 induces secretion of pro-inflammatory cytokines, predominantly IFN-α, TNF-α and IL-1β. Docking studies showed that CU-CPT4a forms hydrogen bonds with Asn541 residues to target asparagine glycosylation and prevent dsRNA binding to TLR3 in murine macrophage RAW [182,183].

4.3. TLR9 pharmacological agents:

TLR9 has been targeted by potent antiviral agents that may act via viral interference or immunostimulation [184,205]. One such synthetic immunomodulatory oligonucleotide (IMO) is tilositolimod (IMO-2125), which incorporates cytosine or guanine analogues and shows increased stability, species-independent activity and a clear structure activity relationship. It has been evaluated in clinical trials for toxicity in severely hepatitis c virus-infected patients resistant to recombinant IFNα [206]. Another TLR9 agonist is lefitolimod, a CpG-rich ODN with a covalently closed dumbbell shape structure and also known as MGN1703. According to structural and preclinical studies, MGN1703 showed limited interactions with molecules outside its target structure [207]. Although, MGN1703 significantly increased the expression of surface activa-

Table 3

The docking study provides information regarding the binding free energy and interaction of TLR3 agonist poly-ICLC with TLR3-dsRNA complex at four different locations.

S. No	Location of binding pocket	Binding energy (kcal/mol)	Interacting nucleic acid bases	Interacting protein residues
1	C-terminal of Chain B	-5.485	U-D:26	LYS:ChainB:467
			U-D:27	ALA:ChainB:519
2	C-terminal of Chain A	-5.76	A-C:26	ASN:ChainA:494
				VAL:ChainA:495
				ASN:ChainA:520
				ALA:ChainA:519
				ASN:ChainA:517
3	N-terminal of Chain A	-6.03	None	GLU:ChainA:110
				HIS:ChainA:156
4	N-terminal of Chain B	-5.17	G-D:4	HIS:ChainA:136
				HIE:ChainA:136
				LYS:ChainB:182
				GLY:ChainB:158

A. Jain, S. Mittal, L.P. Tripathi et al. Computational and Structural Biotechnology Journal 20 (2022) 4415–4436

![Table 3](image-url)
tion markers, such as CD86, CD40, HLA-DR, CD169 and CD69, as well as the release of a variety of cytokines and chemokines, including IFN-α, IFN-β, IL-6, and IL-8 [208]. MGN1703 was investigated in combination with chemotherapy or immunotherapy in cancer patients [209–211]. Only a single clinical study has tested leftolimod as an antiviral agent for human immunodeficiency virus-1–positive patients treated with human immunodeficiency virus-1–specific antibodies. It indicates that this drug is safe even as it induces robust virus-specific humoral and cellular immunity and prolonged control of viremia [212]. It was further confirmed to efficiently suppress IL-33–driven airway hyperreactivity in mice [213]. Furthermore, MGN1703 was evaluated as an adjuvant for the treatment against infectious diseases [187].

One of the most important TLR9 agonists that were formulated in licensed vaccine (Heplisav-B) for Hepatitis B is CpG-1018, derived from nucleotide backbone sequence modification of CpG-ODN to produce immunostimulatory activity. CpG-1018 is a type B CpG-ODN that contains a phosphorothioate backbone throughout their entire sequence with one or several CpG-hexamer motifs [214,215]. It induces strong B–cell proliferation, cytokines production, and has some effect on the maturation and activation of plasmacytoid DCs, monocytes, and NK cells [216–218]. Administration of two doses of heplisav-B induced higher seroprotective responses against hepatitis B virus with a faster onset rate compared with the administration of three doses of Engerix-B vaccine with similar safety profiles [219,220].

Agatolimod (Cpg-7909 or PF-3512676) is another synthetic CpG-rich ODN tested as an adjuvant for prophylactic hepatitis B virus vaccination [221]. It is wrapped with non–agonistic ligands for DC receptors such as C-type lectin domain containing 7A (CLEC7A) that mediate the superior immune stimulatory effects for DC receptors such as C-type lectin domain containing 7A (CLEC7A) that mediate the superior immune stimulatory effects against hepatitis B virus with a faster onset rate compared with the administration of three doses of Engerix-B vaccine with similar safety profiles [219,220].

TLR9 antagonist COV08-0064 (MP-3964) limited neurodegeneration in mice exposed to Parkinson’s disease [223] (source: http://www.clinicaltrials.gov). Also, selectively blocked mRNA upregulation of TNF-α, IL-1β, NLRP3 and MCP-1 in macrophages and IFN-β mRNA in dendritic cells induced by the TLR9 agonist CpG-ODNT. This leads to inhibition of JNK and ERK phosphorylation. TLR9 signaling inhibition by COV08-0064 may be an effective approach in liver surgeries including transplantation [224].

4.4. RLRs pharmacological agents

Several agonists have been developed to target RLRs. Some have effectively cleared the clinical trials and were used for the treatment of severe diseases. Mostly, RIG-I agonists are being explored in a diverse range of cancers. RIG-I activation in cancer patients could stimulate three distinct immune responses: 1) direct activation of tumor apoptosis and pyroptosis that is programmed necrosis; 2) IFNs and cytokine-mediated activation and maturation of macrophages, DCs, natural killer cells, and 3) increased recruitment and cross priming of adaptive immune effectors e.g. CD8+ T-lymphocytes and enhanced activity of APCs [225–227]. The SB-9200 (inavirgin soproxil or GS-9992) is an orally available prodrug of a dinucleotide agonist that targets RIG-I with cytosolic PRR nucleotide-binding oligomerization domain-containing protein 2 (NOD2) for the elimination of invading pathogens [228,229]. It also culminates in type-I and type-III IFNs secretion and IL-1β release downstream of inflammasome activation [230]. SB 9200 mediated robust antiviral effects and tested in clinical trials as a stand-alone agent or combined with entecavir in chronically hepatitis B virus and hepatitis C virus–infected patients [228,231]. In addition, it is known that poly(I:C) mimics the dsRNA and also acts as a RIG-I and MDA5 agonist. The BO-112 is another agonist based on a nanoplexed formulation of poly(I:C) complexed with polyethyleneimine. It is used for tumour cell apoptosis and activation of systemic immunity against distant lesions via releasing type-I IFN, IFN-γ and CD8+ T lymphocytes [232]. A clinical trial just commenced testing the activity of BO-112 in adults with aggressive solid tumours (source https://www.clinicaltrials.gov).

Natural RIG-I agonist 5′-triphosphate RNA (5′-pppRNA) acquires resistance against infection of some RNA viruses such as dengue and chikungunya virus [233] as well as DNA viruses such as vesicular stomatitis and vaccinia virus [234]. But, 5′-pppRNA is unstable and unable to cross the plasma membrane. To resolve this issue, short stem–loop RNA molecules that present a single duplex terminus and a triphosphorylated 5′ end (and hence retain strong RIG-I-binding capacity) have been developed. It stimulates innate antiviral response including IRF3, IRF7 and STAT1 activation in human lung epithelial A549 cells [235]. Only a few RIG-I agonists such as RTG100 and MK-4621 entered clinical stage but their development was ultimately terminated [153]. According to a 2017 report, KIN1000 is a benzobisthiazole compound identified as a potent RLR inducer via high-throughput screening-based approach. It was developed as an immunological adjuvant. Another compound having adjuvant-like activity for RLRs is KIN1148 as a prophylactic mice vaccination against a pandemic human influenza virus [236].

RIG-I antagonist such as ebola virus VP35 is a dsRNA binding protein that suppresses DCs maturation followed by impaired expression of α/β-IFN and proinflammatory cytokines, abnormal upregulation of costimulatory markers, and inhibition of naïve T cells activation. It may be possible to counteract EBOV immune evasion by using treatments that bypass the VP35–imposed block to DC maturation [237]. Another is picorna viruses Vpg protein that serve to block the 5′ppp RNA motif associated with RIG-I activation thus preventing RIG-I recognition and signaling. The V proteins of several paramyxoviruses have been shown to directly bind MDA5 and block its downstream signaling actions mainly IFN-β induction in a range of mammalian cells as well as in avian cells [238,239].

4.5. cGAS–STING pharmacological agents

The most important function of cGAS–STING is to direct cancer cell senescence through the secretion of chemokines, proinflammatory cytokines, growth factors, and proteases, thus mediating oncosuppressive effects either by autonomously controlling tumor cells or by stimulating immune cells (CD8+ T cells cross-priming via DCs) against tumors [240,241].

STING agonists were modelled on their natural partner cGAS. Among them, 5,6-Dimethylxanthine-4-acetic acid (DMXAA, vadi-mezan or ASA404) developed as potent vascular disrupting agent and induce production of cytokines like TNF-α and IFN-β [242]. Study suggests that it presented therapeutic efficacy in preclinical models of acute myeloid leukemia and mammary carcinoma and was shown to be safe in chemotherapy [243,244,245,246], and was shown to be safe in chemotherapy [247,248]. However, later structural studies suggested that it binds to STING protein in mice but not in humans [73,249]. Cyclic GMP–AMP (cGAMP) 2′,3′-Cyclic GMP–AMP (2′,3′-cGAMP) and other cyclic dinucleotide (CDNs) of bacterial origins are natural STING agonists that enhanced the type-I IFN signaling, Cxcl10, Ccl5, and T-cell migration into the brain of glioma-bearing mice and effectively used in immunotherapy such as the combination with antigen-specific vaccinations [74,250] successful in mouse tumor models [251] and combinatorial therapeutics [252].

Second-generation STING agonists are synthetic CDNs that include 2′,3′-cGASASMP and ADU-S100. Both are potent inducers
of IFN-β secretion from THP-1 cells, 2′-3′-cGSASMP is phospho-
rho-phytioate analogue of 2′,3′-cGAMP and ~40 times more resistant to
ENPP1 hydrolysis [382]. On the other hand, ADU-S100 (MW815 or ML RR-S2 CDA) showed improved stability, lipophilici-
ity, and comparable activity toward mouse and human STING, making it the first candidate to move to early clinical studies
[381]. ADU-S100 could promote human peripheral blood mononu-
clear cell (PBMC) to generate pro-inflammation cytokines such as
IFN-β and resulted in profound tumour regression in B16 mela-
noma, CT26 colon, and 4T1 breast cancer murine models
[110,253-255].

Pharmaceutical companies are actively exploring multiple
cGAS–STING antagonists [256]. Among other actively pursued
compounds are Astin C, A-176 and H-151. C-176 and H-151 occupy
the CDN binding site at transmembrane domain and prevent STING
from acquiring an “active” conformation in human and mouse,
thus acting as competitive antagonists of STING activators. It irre-
versibly binds to Cys91 of STING and markedly reduces the ele-
vated levels of type-I IFNs and IL-6, inhibits TBK1 phosphorylation and suppresses Cys91 palmitoylation in various cellular
sites of Treg1−/− mice. These inhibitions are capable of
reversing the strong tissue inflammation, recapitulating the
autoantibody production and aberrant T-cell activation in
Acardi-Goutieres syndrome (AGS) patients [257-259]. Another
antagonist is Astin C, a cyclopeptide from Aser tetricus that exhi-
bits anti-inflammatory activity and blocks the recruitment of IRF3
to the STING signalosome. Therefore, it is used in STING-mediated
cancer and autoimmune diseases [258,260].

4.6. Common agonists

A novel TL7R, TL8R and RIG-I agonist (CV8102) was used alone
or with doses of a rabies vaccine to test its safety, tolerability and
immunogenicity for various types of cancers such as melanoma
and hepatocellular carcinoma with a PD-1 blocker [261]. NAB2 is
an agonist of TL3R and MDA5 that is a dsRNA molecule isolated
from yeast. It is complexed with a cationic agent and effectiv-
ely acts as an adjuvant to a prophylactic cancer vaccine [252].

Although, MDA5 stands out as a promising cancer therapy, its
agonists and adenosine deaminase RNA (ADAR) inhibitors may be
combinatorial partners in immunotherapy for IC8-resistant tumours [252]. IC3 is ODN based poly(I:C), combined
with antimicrobial peptide KLKLkKLKk, to develop the agonist effect of
both TL9R and TL3R. Studies in mice demonstrated that IC3
helped to induce potent antigen-specific CTL cells, strong
protein-specific humoral responses and T cell proliferation and dif-
ferentiation [377]. IC3 has been used as potent adjuvant against
infectious disease mostly in the candidate tuberculosis vaccine
H56:IC3. It is a novel vaccine consisting of a triple antigen
(Ag85B, ESAT-6 and Rv2660c), demonstrated tolerability and
immunogenicity, inducing antigen-specific IgG and persistent
H56-specific CD4+ T cell responses [378].

4.7. Common antagonists

Above, we reviewed drugs that can induce or inhibit host
nucleic acid-sensing efficacy of PRRs on a one-on-one basis. More
recently, antagonists were used to effectively target multiple
nucleic acid-recognizing PRRs. For example, inhibitory ODNs
(INH-ODNs) are mixed TL3R and TL9R antagonists that mediate
therapeutics in an experimental model of SLE. IMO-8400 is a com-
bined TL7R, TL8R and TL9R antagonist that demonstrates efficacy in
placebo-controlled moderate-to-severe plaque psoriasis
[262]. Another TL7R, TL8R and TL9R antagonist is CPG-52364,
quinoxaline derivative which inhibits the disease progression of
SLE and other autoimmune diseases in animal models [263]. Like-
wise, IMO-3100 blocks the TL7R and TL9R and reduce the expres-
sion of inflammatory genes such as IL-17A, β-defensin, CXCL1,
keratin 16, TNF-α and IFNα [264].

Thus, we conclude that drugs targeting various protein-nucleic
acid interactions are a highly pursued field and hold great promise
in combating infectious diseases. Among them, multi-target ago-
nists appear promising for multi-disease vaccination and
treatments.

4.8. PRR agonist or adjuvant mechanism

When PRRs recognize an agonist or an adjuvant that helps to
promote immune responses within a few hours of stimulus, an
agonist mechanism is activated through the development of innate
immunity [265,266]. In this first phase, adjuvant-induced antigen-
indipendent innate immune responses are critical for the subse-
quent development of antigen-specific immune responses. During
this phase, gene expression increases; chemokines and proinflam-
matory cytokines are released from TLR-expressing cells; and
innate immune cells including monocytes, macrophages, DCs, NK
cells, and neutrophils are recruited to the site of injection. The
expression of cell surface molecules, including the cluster of differ-
entiation 80 (CD80), CD86, and molecules of the major histocom-
patibility complex (MHC) are increased. APCs at the injection
sites uptake the agonist antigen and migrate to the lymph node
or primary lymphocytes [267,268].

These TLR agonist-activated early immune responses are fol-
lowed by a second phase of adaptive immune responses that occur
several days later. During this second phase, activated APCs pro-
cede cytokines to shape the differentiation of naïve CD4+ T cells
different T helper (Th) cell. Th1, Th2, and IFNs promote
Th1 polarization and IL-6, IL-23 promote Th17 polarization.
Th1 cells produce IFN-γ and proinflammatory cytokines,
and Th17 cells are the major source of IL-17. The second phase of
adaptive immune responses results in the expansion of antigen-
specific CD8+ T cells that recruits B cells. In this way, TLRs regulate
the development and differentiation of B cells and increase the
production of antigen-specific antibodies. The class switching
recombination process in the B cells further differentiate it into
antibody-secreting plasma cells and memory B cells, which are
long-lived and provide the adaptive immunity for later life [269-
273].

Despite the fact that different TLR ligands share a common
mechanism to develop the immune responses, their immunologi-
ocal inducing profiles are not entirely the same. TLRs have overlap-
ping but different cell-type expression profiles [274,275]. Their
adjuvant effects are also distinct. These TLR adjuvants preferen-
tially utilize different signal transductions and transcription factors
activities for controlling gene expression. Studies involving human
blood also revealed the differences in the cytokine-inducing pro-
files of the TL7R/8, and TL9R agonists [276,277]. The specific mecha-
nisms of PRR agonist are noted in Table 2.

5. Computational approaches to HP-PNIs

Advancements in high-throughput omics technologies has facili-
tated large-scale mapping of the highly complex and rapidly
evolving host-pathogen interactions. Computational methods have
emerged as primary tool for the analysis of the voluminous exper-
imental host-pathogen interaction data. Most of them aim to iden-
tify the key pathogen and host targets in infection, generate and
test new hypotheses and help develop novel anti-pathogen drugs
[278,279].

PNIs are deemed to be most important among the host-
pathogen interactions hence, and have been the most widely stud-
Computational systems biology approaches evolved to investigate, analyze, predict and model host-pathogen PPI networks [207]. These include interface structural mimicry [280,282–285], structure-based mimicry, or homology [286–296] and interactome-based and systems biology [278,297–302].

In addition to encouraging progress in PPI modeling of host-pathogen interactions, the roles of immune cell receptors in sensing pathogen-derived nucleic acids have also been widely acknowledged. Consequently, there is a growing interest in implementing computational approaches to predict and analyze protein-nucleic acid interactions. Below we review some of these approaches and strategies.

5.1. Predicting foreign (pathogenic) nucleotide sequences interacting with host

Knowledge of the molecular interactions between hosts and their pathogens is critical to the understanding the mechanisms of infections and identifying potential targets for therapeutics. In that respect, structural approaches predict not only which pathogen protein interacts with which host protein, but also define the drug target. The same rationale holds for pathogen nucleic acids host protein interaction. However, the task is challenging, with a greater likelihood of false-positive predictions. Yet, the technical challenges in experimental identification on a large scale are daunting, emphasizing a pressing need for efficient and powerful computational approaches for the analysis and prediction of host-pathogen interactions [301].

The initial set of computational approaches focused on distinguishing pathogenic DNA from the host DNA, which later evolved into more complex algorithms to pinpoint the patterns that discriminate the invading pathogenic from the host genomes [305].

Statistical approaches to identifying sequence and structure motifs, which may inform us about the specificity and viability of PRR-PAMP interactions, have been outperformed by machine learning-based approaches such as semi-supervised [306], and supervised learning [307], random forest and Support Vector Machine based classifiers. Some research has adopted specialized techniques including transfer and multitask learning [308], domain and motifs models [309], and sequence homology combined with others [310,311]. Other machine learning-based methods such as multiple linear regression partial least squares analysis [312] and Gradient Boosting Regressor [313] were also reported. More recently, deep learning-based Artificial Neural Network [314] and Convolution Neural Network [315] methods have been used for binding affinity prediction. Chemical feature-based pharmacophore models used the HypoGen algorithm for TLR7 agonist prediction [316]. Similarly, mouse TLR9 agonists have been predicted through a random forest approach [317]. In summary, machine learning methods provided a better mapping of the sequence and structural features in PPRs and PAMPs that contribute to the host’s ability to defend against a pathogen.

Machine learning and closely related statistical approaches have also provided much data on protein-nucleic acid interactions, which will help understand scenarios for host-pathogen pairs. Our work in these directions relates to the study of specificity, thermodynamics and clustering patterns [318,319], sequence-based predictions of protein-nucleic acid interactions [320,321], patterns of electrical moments of nucleic acids binding proteins [322] and co-operativity between gene expression and sequence [323]. Some of the purely data-driven and computational approaches can provide deep insights into the biological and mechanistic nature of protein-nucleic acid interactions, including host-pathogen interactions. This belief is borne out by the broad literature on the prediction of DNA binding sites and affinities and the key principles which are involved, recently including cooperativity [324–333].

On the technical side, the prediction of DNA-binding sites and the proteins that specifically interact with them is a non-trivial task. Strategies can be sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modelling. Structurally, protein recognition may take place through positively charged amino acids, primarily lysine and arginine, and hydrophobic residues that interact with the bases. GC-rich regions are often recognized by arginine side chains through hydrogen bonding and cation–π interactions; AT-rich regions are often recognized via minor groove contacts that sterically exclude the N2 atom of GC base pairs. Recognition may involve the major and minor grooves; it may also involve Hoogsteen base pairs. DNA binding specificity arises from all of the above. The shape is also a key factor, and recently a database that annotated transcription factor binding sites based on shape was described [334]. Algorithms for RNA binding sites have also been constructed [335]. Large-scale prediction of nucleic acid-host protein interactions, particularly structural predictions can serve as targets in drug discovery.

5.2. Gene regulatory networks

Systems-level approach for studying HP-PNIs is based on modelling of signalling and gene regulatory networks, which can also provide considerable insight into the interactions between the host and pathogen in infectious diseases [336]. This, the so-called network-based analysis of host-pathogen interactions is highly useful in improving our understanding of pathogenesis and pinpointing novel experimental and drug targets [279]. While signalling networks are driven primarily through PPIs, the gene regulatory networks (GRNs), i.e. a network of regulatory relationships between transcription factors and their targets are also crucial and gaining more attention recently. These networks are based on the time-series gene expression data and have been particularly effective both in predicting host-pathogen interactions and in understanding the mechanistic basis of the underlying PHI networks [337]. One of the most widely used tools for this purpose is NetGenerator, a computational tool to infer small-scale GRNs, that has been used to predict PHI networks [337,338]. More recently, Castro and colleagues proposed Gene regulatory networks of transfer entropy (GRNTE), to examine the transcriptional regulatory network of the plant pathogen Phytophthora infections as it infected two different host organisms [339].

5.3. Databases related to HP-PNIs

Several web-based databases provide quick references on protein-nucleic interactions between host and pathogen, either exclusively or as part of a broader theme. Most significant among them are (1) LRRML: a conformational database and an XML description of LRRs [340], (2) TollML: a database of TLRs structural motifs [341], and (3) PRRDB 2.0: a comprehensive database of pattern-recognition receptors and their ligands [342], and (4) ProNIT database that uses structural and quantitative binding interaction data to elucidate the molecular mechanism of protein-nucleic acid recognition [343]. The sequence arrangement of amino acid or base pairs and stable conformation of protein or DNA/RNA molecules indicates specificity towards each other.
6. Current trends and evolving perspectives

With the emergence of genomic technologies, host-pathogen genetic studies have transitioned from single candidate gene studies to whole-genome studies of hosts and pathogens [344]. NGS techniques have enabled us to identify and feature the regulatory mechanism through which hosts and pathogens interact with each other either in a diseased or in a healthy state. Such studies have pointed out that host-pathogen interactions not only depend on the host and pathogen genomic sequences but also on the ecological, immunological and epigenetic context in which the genomic data are collected [345]. For example, in a study of mucus, it was revealed that in addition to genetic factors, post-translational modification plays a significant role in defence against pathogens [346,347].

Pathogens represent a major portion of the biomass and diversity of several ecosystems [348–352]. PCR-based technologies and recently high throughput technologies have helped in the identification of novel pathogens especially viral sensing pathogens [353–358]. Metagenomics approaches have further exposed pathogen- and host-associated microbial communities playing a significant role in infection and disease development suggesting that a pathogen may not occur alone but may belong to a larger community [359–362]. Several immune gene families including TLRs, IFNs and antimicrobial peptides have gained attention in host-pathogen interaction studies [363–370]. These studies have highlighted the positive selection and rapid evolution of these immune genes in the innate immune system [371–373]. Metagenomics studies have also provided key insights into host-pathogen interactions. For example, several metagenomics studies unearthed the links between the gut microbiome and diseases like RA, diabetes, and depression [374–376]. Thus, multi-target drug discovery, metagenomics, NGS and identification of better derivatives of natural agonists are likely to remain the focus areas of research in HP-PNIs for the foreseeable future.

7. Conclusion

Investigations into the detailed interactions and recognition of pathogen nucleic acids by host factors such as TLRs, RLRs and NLRs have yielded common as well as specific insights into the mechanisms underlying such interactions. However, significant challenges remain in deciphering the full spectrum of host-pathogen interactions and their potential implications in countering infection and in therapeutics. A deeper understanding of these interactions will help in identification of new drug targets and clinical and therapeutic strategies to manipulate them and counter infectious diseases. Such associations also offer a means to explore alternative approaches such as targeting host proteins instead of pathogenic components to bypass the vexing pathogenic variability and genetic mutations. Further studies will improve strategies to inhibit host-pathogen interactions and clinical outcomes.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by a research grant (no. BT/PR24208/BID/7/801/2017) from the Department of Biotechnology, Government of India, India awarded to SA.

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120150003I. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This Research was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

This work was also supported in part by a Senior Research Fellowship by Indian Council of Medical Research to A.J. (Grant no. ICMR-SRF:2020-8554).

References

[1] Bassett C et al. Innate immunity and pathogen-host interaction. Vaccine 2003;21(Suppl 2):S12–23.
[2] Janeway CAJ, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.
[3] Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.
[4] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):785–801.
[5] Olsorz F, Souza CR. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunol 2011;34(5):651–64.
[6] Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 2016;14(6):369–73.
[7] Medzhitov R, Preston-Hurlbut P, Janeway CAJ. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388(6640):394–7.
[8] Damhuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol 2015;32:21–7.
[9] Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805–20.
[10] Moengsen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22(2):240–73.
[11] Stebbins CE. Structural microbiology at the pathogen-host interface. Cell Microbiol 2005;7(9):1227–36.
[12] Zoraghi R, Reiner NE. Protein interaction networks as starting points to identify novel antimicrobial drug targets. Curr Opin Microbiol 2013;16(5):566–72.
[13] Korkin D, et al., Mining Host-Pathogens Interactions. 2011: InteScience.
[14] Gottweis E, Cullen BR. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 2008;3(6):375–87.
[15] Skalsky RL, Cullen BR. Viruses, microRNAs, and host responses. Annu Rev Microbiol 2010;64:123–41.
[16] Eisenreich W, et al., Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 2013; 9: p. 3-24.
[17] Saayman S et al. An HIV-encoded antitoxin long noncoding RNA epigenetically regulates viral transcription. Mol Ther 2014;22(2):1164–75.
[18] Steitz TA. Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding | Quarterly Reviews of Biophysics | Cambridge Core. Q Rev Biophys 1990;23(3):205–80.
[19] Ahmad S et al. Protein–DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins. Nucleic Acids Res 2008;36(18):3922–32.
[20] Pandey P, Hasnain S, Ahmad S. Protein–DNA Interactions. Encycl Bioinformatics Comput Biol 2018;2:142–54.
[21] Valuchova S et al. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement. Sci Rep 2016;6:39653.
[22] Jayaram B, Jain T. The role of water in protein–DNA recognition. Annu Rev Biophys Biomol Struct 2004;31:343–61.
[23] Cazzolin F et al. Protein–DNA/RNA interactions: an overview of investigation methods in the–omics era. J Proteome Res 2021;20(6):3018–30.
[24] Luscombe NM, Laskowski RA, Thornton JM. Amino acid-base interactions: a three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res 2001;29(13):2860–74.
[25] Y., Z., et al., Predicting indirect readout effects in protein–DNA interactions. Proc Natl Acad Sci USA 2004;101(22):8337–41.
[26] C., S.N., J.M. Rosenberg, Rich, Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 1976; 73(3): 804-08.
[27] Olson WK. Protein-nucleic acid interactions. 2009.
[28] Luscombe NM et al. An overview of the structures of protein–DNA complexes. Genome Biol 2001;11(1):1–37.
[29] Oubridge C et al. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomnal protein complexed with an RNA hairpin. Nature 1994;372(6505):432–8.
[30] Lewis HA et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 2000;100(3):323–32.
Lu D, Searles MA, Klug. Crystal structure of a zinc-finger-RNA complex reveals

Thwaites R, Chamberlain G, Sacre S. Emerging role of endosomal toll-like

Nasirudeen AM et al. RIG-I, MDA5 and TLR3 synergistically play an important

Diebold SS et al. Innate antiviral responses by means of TLR7-mediated

Ranjan P et al. Cytoplasmic nucleic acid sensors in antiviral immunity. Trends

Davis MLR et al. Associations of toll-like receptor (TLR)-4 single nucleotide

Batsford S, Dunn J, Mihatsch M. Induction of experimental arthritis by

Hemmi H et al. A Toll-like receptor recognizes bacterial DNA. Nature

Goffic RL et al. Detrimental contribution of the toll-like receptor (TLR)3 to

Bauer S et al. Human TLR9 confers responsiveness to bacterial DNA via

Woo SR et al. STING-dependent cytosolic DNA sensing mediates innate

Radstake TRDJ et al. Expression of toll-like receptors 2 and 4 in rheumatoid

Maelfait J et al. Restriction by SAMHD1 limits cGAS/STING-dependent innate

Hron JD, Peng SL. Type I IFN protects against murine lupus. J Immunol

Gorden KB et al. Synthetic TLR agonists reveal functional differences between

Jackson AP et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent

Nündel K et al. Cell-intrinsic expression of TLR9 in autoreactive B cells

Hochrein H et al. TLR13 recognizes bacterial 23S rRNA devoid of

Cavassani KA et al. TLR3 is an endogenous sensor of tissue necrosis during

Li K et al. Activation of chemokine and inflammatory cytokine response in

Bernuth HV et al. TLR3 deficiency in patients with herpes simplex

Lamphier M et al. Novel small molecule inhibitors of TLR7 and TLR9:

Li S et al. The cyclopeptide Astin C specifically inhibits the innate immune

Guiducci C et al. Autoimmune skin inflammation is dependent on

Ng KW et al. cGAS-STING and cancer: dichotomous roles in tumor immunity

Wu H-J et al. Inflammatory arthritis can be reined in by CpG-induced DC-NK

Miranda-Hernandez S et al. Role for MyD88, TLR2 and TLR9 but not TLR1,

Tanji H et al. Toll-like receptor 8 senses degradation products of single-

Oberstrass FC et al. Shape-specific recognition in the structure of the Vts1p

Herman S et al. A TLR 9 antagonist diminishes arthritis severity in a rat model

Guillot L et al. Involvement of toll-like receptor 3 in the immune response of

Lijnen C et al. Human TLR2 and new double-stranded RNA ligands for Toll-like

Laursen AM et al. Recognition of ssDNA by TLR9 facilitates innate immune

Bernard ME, Fibbe WE. Safety and efficacy of mesenchymal stromal cell

Li et al. Recognition of single stranded RNA and activation of IFN-κB by Toll-like receptor 3. Nature 2004;413(6857):732–8.

Diebold SS et al. Innate antiviral responses by means of TLR7-mediated

Hed J F et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303(5653):1526–9.

Lund J et al. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2005;201(9):513–20.

Bauer S et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001;98(16):9527–32.

Hemmi H et al. A Toll-like receptor 9 agonist recognizes bacterial DNA. Nature 2000;408(6813):746–50.

Hochrein H et al. TLR13 recognizes bacterial 23S rRNA devoid of

Bagnaud-Baule A et al. The human metanephrine virus matrix stimulates the inflammatory immune response in vitro. PLoS One 2011;6(6):e17818.

Wang T et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004;10(12):1366–73.

Nasrudeen AM et al. RIG-I, MDA5 and TLR3 synergistically play an important

Bernhasth V et al. TLR3 deficiency in patients with herpes simplex

Li K et al. Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology 2012;55(3):666–75.

Bhardwaj et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. Immunity 2010;32(6):739–49.

Choe J, Keirer MS, Wilson IA. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 2005;309(5734):581–5.

Forisch A et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. Immunity 2010;32(6):739–49.

Tanji H et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 2015;22(2):109–15.

Zhang Z et al. Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 2016;45(4):457–68.

Tanji H et al. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 2013;339(6126):1426–9.

Ashman RF et al. Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding. Int Immunol 2011;23(3):203–14.
Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000;164(2):944–53.

Vertehlyi D et al. Human peripheral blood dendritic cells differentially recognize and respond to unmethylated CpG DNA. J Immunol 2001;166(4):2372–7.

Oho U et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015;528(7594):702–5.

Rigby RE et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 2014;33(1):542–58.

Barbalat R et al. Nucleic acid recognition by the innate immune system. Annu Rev Immunol 2011;29:185–214.

Hochrein H et al. Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 3-dependent and -independent pathways. PNAS 2004;101(13):11416–21.

Arpaia N et al. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011;144(5):675–88.

Saiga H, Shimada Y, Takeo K. Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011;2011:347594.

Li XD, Chen ZJ. Sequence specific detection of bacterial 23S ribosomal RNA by TLR3. eLife 2012;1:e00102.

Fenster Y., s.d.r., et al. Comparative analysis of viral RNA signatures on different RIG-I family members. Immunity 2016;45(4):576–91.

Hammerich L et al. Systemic clinical tumor regressions and potentiation of antitumor immune responses to DNA vaccines. Cancer Res 2008;68(10):3777–85.

Szames A et al. TLR7 agonists (cf: C.A. Murphy, H. L. Gaidt, and P. P. Borriello. J Clin Invest 2010;120:1589–96) promote antitumor T cell responses in vivo. J Immunother 2010;33(3):285–91.

Jain A., K., et al., Therapeutic Immune Modulation against Solid Cancers with Inflammasome-Targeting Agents. Clinical Cancer Research 2018;24(1):60–71.

Terhiäinen H et al. Differential efflux pump activities in multidrug-resistant Mycobacterium tuberculosis. PLoS pathogens 2014;10(4):ev10.i04.

Aptcos P et al. Chemicals that protect genomic DNA from endogenous and exogenous damage and induce apoptosis. Cancer Res 2016;75(1):1–16.

Ari K., et al., Clinical investigation of a novel antagonist of the tumor necrosis factor receptor-1-mediated signaling pathway. Oncoimmunology 2018;7(4):e1407899.

A. Jain, S. Mittal, L.P. Tripathi et al. Computational and Structural Biotechnology Journal 20 (2022) 4415–4436.

Volpe E et al. When the TLR7 agonist imiquimod interferes with TLR9, you have to pay! J Invest Dermatol 2015;135(11):2722–35.

Gately S.K., et al. The interferon-inducing activity of all RNA and DNA viruses is mediated by RIG-I and MDA5. Proc Natl Acad Sci U S A 2012;109(31):12560–7.

Kojima T et al. LGP2 is a positive regulator of RIG-I– and MDA5-mediated antiviral innate immunity. eLife 2013;2:e00290.

Rehwinkel J et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2009;138(5):947–58.

Unterholzner L et al. IFI16 is an innate immune sensor for intracellular DNA. Cell 2010;141(3):542–58.

Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009;138(3):576–91.

Klinkert J et al. IFI16 promotes interferon-stimulated gene expression in non-tumour cells and is required for tumour-mediated type I interferon induction. Cancer Immunol Immunother 2014;63(11):1521–33.

Roh J et al. A clinical grade poly I:C-analogue (Ampligen) promotes innate and adaptive antitumor immune responses in a Phase II trial of a complex polyriboinosinic-polyribocytidylic acid in patients with advanced solid tumors. Cancer Immunol Immunother 2015;64(11):1591–602.

Chen X et al. Oligodeoxynucleotide-based cGAS inhibitors control cGAS signaling and suppress autoimmunity. Immunity 2016;45(5):614–53.

Bhattacharyya C., et al., A phase I-I trial of multiple-dose polyribosinic-polyribocytidylic acid in patients with leukemia or solid tumors. J Natl Cancer Inst 1976;57(3):599–602.

Vabret N, Bhardwaj N, Greenbaum BD. Sequence-specific sensing of nucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 2008;205(7):1601–10.

Baum A, Sachidanandam R, Garcia-Sastre A. Preference of RIG-I for short viral RNA. Cell 2004;117(5):975–85.

Hammerich L et al. Systemic clinical tumor regressions and potentiation of antitumor immune responses to DNA vaccines. Cancer Res 2008;68(10):3777–85.

Kudoh T et al. LGP2 acts as a nucleic acid-sensing cytokine of the RIG-I–MDA5–LGPR family. Oncogene 2017;36(2):260–7.

Keru N et al. IFI16 acts as a nucleic acid-sensing cytokine of the RIG-I–MDA5–LGPR family. Oncogene 2017;36(2):260–7.

Jiang M et al. cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol 2020;13(1):1–11.

Civelek E et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013;498(7454):332–7.

Hammerich L et al. Systemic clinical tumor regressions and potentiation of antitumor immune responses to DNA vaccines. Cancer Res 2008;68(10):3777–85.

Zhang J et al. Anti-tumor macrophages activated by ferumoxytol combined or with IFN-β enhance anti-tumor immunity. Front Immunol 2018;9:1477.

Chen X et al. Oligodeoxynucleotide-based cGAS inhibitors control cGAS signaling and suppress autoimmunity. Immunity 2016;45(5):614–53.

Robinson RA et al. A phase I-I trial of multiple-dose polyribosinic-polyribocytidylic acid in patients with leukemia or solid tumors. J Natl Cancer Inst 1976;57(3):599–602.

Strayer DR et al. A controlled clinical trial with a specifically configured RNA drug, poly(I):poly(C12U), in chronic fatigue syndrome. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 1994;18(Suppl 1):S88–95.

Mitchell WM et al. Mismatched double-stranded RNA (ampligen) reduces concentration of zincodione (zardizodine) for in vivo inhibition of human immunodeficiency virus. Lancet (London, England) 1987;1(8538):890–2.

Navabi H et al. A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and melanoma patients in vitro. Vaccine 2009;27(1):107–15.

Pauwels P et al. Poly(I:C) primes human primary glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncocimmunology 2018;7(3):e1407899.

C., K., et al., Therapeutic Immune Modulation against Solid Cancers with Intratumoral Poly-ICLC: A Pilot Trial. Clinical cancer research : an official journal of the American Association for Cancer Research, 2018;24(20):4937–40.

Zhang J et al. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly(I:C) promote melanoma regression. Theranostics 2018;8(2):e307–21.

Matsumoto M et al. Toll-like receptor 3 signaling in dendritic cells benefits cancer immunotherapy. Front Immunol 2017;8:p. 8:1897.

Takeda Y et al. Tumor-specific effector CD8+ T cells during chemotherapy-induced immune suppression and potentiation of PD-L1 blockade with in situ vaccination. Nat Med 2019;25(5):814–24.

Lampkin BC et al. Phase II trial of a complex polyribosinic-polyribocytidylic acid with poly(I-Lysine) and carbomethylcellulose in the treatment of children with acute leukemia and neuroblastoma: a report from the Children’s Cancer Study Group. Cancer Res 1985;45(11 Pt 2):5904–9.

Mohrtra et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol 2017;10(1):82.
Mariatahas S et al. Cryoprotin activates the inflammasome response in to ATM and TGF. Nature 2004; 440(7081):228–32.

Suresh M et al. Antiviral efficacy and host immune response induction during sequential treatment. Proc Natl Acad Sci 2012; 119(12):7590–5.

Teijeira A et al. Immune-thrombotic effects of intratumoral nanoparticle polyether glycol. J Immunol 2019; 201(4):1319–29.

Olahanov D et al. Inhibition of denugick and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J Virol 2014;88(6):3180–96.

Lamarré A et al. Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity. PLoS Pathog 2013;9(4):e1003298.

Linehan MM et al. A minimal RNA ligand for potent RIG-I activation in living mice. Sci Adv 2018;4(2):e1701854.

Probst P et al. Small-molecule FFR3 agonist functions as an influenza virus vaccine adjuvant by modulating the antiviral immune response. Vaccine 2017;35(15):1964–71.

Yen B et al. Molecular basis of ebolavirus VP35 suppression of human dendritic cell maturation. J Virol 2014;88(21):12500–10.

Childs K et al. md-5, but not RIG-L, is a common target for paramyxovirus V proteins. Virology 2007;359(1):190–200.

Ramos HJ, Gale JM. RIG-I-like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Immunol 2011;13(1):167–76.

Dou Z et al. Cytosolic chromatin triggers inflammation in senescence and cancer. Nature 2017;550(7676):402–6.

Ranso DRE et al. STING promotes homeostasis via regulation of cell proliferation and cellular senescence. Cancer Res 2015;75(9):1465–70.

Prantner D et al. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) activates IFN-stimulating receptor (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J Biol Chem 2012;287(47):40776–88.

Guo F et al. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob Agents Chemother 2015;59(2):1273–81.

Cerdán S et al. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease. Virology 2019;529:23–8.

Curran E et al. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep 2016;15(11):2357–66.

Wess JM et al. The STING agonist DMXAA targets a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology 2019;8(10):e1346760.

McKeage MJ et al. 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 2006;12(6):1776–84.

Pili R et al. Phase II study on the addition of AS404 (vadimezan; 5,6-dimethylxanthenone-4-acetic acid) to docetaxel in CRPC. J Clin Cancer Res 2010;16(10):2906–14.

Conlon J et al. Mouse, but not human STING, binds and signals in response to 5,6-dimethylxanthenone-4-acetic acid. J Immunol 2013;190(10):5126–25.

Burdette DL et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 2011;478(7370):515–8.

O'hagan T et al. STING contributes to antigen immunoactivity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res 2014;2(12):1199–208.

Chandra D et al. STING ligand c-di-GMP increases cancer immunity against breast cancer. Cancer Immunol Res 2014;2(9):901–10.

Aval LM et al. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J Clin Med 2020;9(10):3323.

Corrales L et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015;11(7):1018–30.

Morales A et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 2018;564(7736):439–43.

Sherrard D. Drug developers switch gears to inhibit STING. Nat Biotechnol 2018;36(2):1279–81.

Cerbonesco MN et al. agonist activation induces lupus-like autoimmune disorders in a Thy1.1 mutant setting. J Autoimmunity 2019;100:1–9.

Decour A et al. The GAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 2021;21(9):548–69.

Lima C et al. NLRP3-induced neutrophil is dependent on STING/STING activation via type I IFN signaling pathway. Int J Mol Sci 2022;13(7):3600.

Y. C. et al. The cGAS-STING pathway: a novel target for cancer therapy. Front Immunol 2022; 12:759401.

Tang CHA et al. agonist-mediated activation of STING induces apoptosis in tumor-educated B cells. J Immunol 2016;196(7):3927–32.

Balak DMW et al. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin Immunol 2017;183:63–72.

Hennessy EJ, Parker AE, O’Neill LAJ. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discovery 2010;9(4):293–307.

Patinote, C., et al., Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112338.
...
[371] Carlin AF et al. Deconvolution of pro- and antiviral genomic responses in Zika virus-infected and bystander macrophages. PNAS 2018;115(39):E9172–81.

[372] Sviderská Z et al. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Sci Rep 2018;8(1):1–11.

[373] Harpur BA et al. Integrative genomics reveals the genetics and evolution of the honey bee’s social immune system. Genome Biol Evol 2022;11(3):937–48.

[374] Adrian J et al. Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor - SEARCH. Curr Biol 2019;29(4):616–630.e5.

[375] Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 2011;7(10):569–78.

[376] Foster JA, Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013;36(5):305–12.

[377] Schellack C et al. IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 2006;24:5461–72.

[378] Luchner M et al. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics 2021;13(2):142.

[379] Cheng YS, Xu F. Anticancer function of polyinosinic-polycytidylic acid. Cancer Biol Ther 2010;10(12):1219–23.

[380] Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009;21(4):317–37.

[381] Guerini D. STING agonist/antagonist: their potential as therapeutics and future developments. Cells 2022;11(7):1159.

[382] Aval LM et al. Challenges and Opportunities in the Clinical Development of STING Agonists for Cancer Immunotherapy. J Clin Med 2020;9(10):3323.