The Effect of Using Composite Column for Enhancing Structural Stiffness

Christian Juniarto, Sunarjo Leman
Civil Engineering Department, Faculty of Engineering
Universitas Tarumanagara

* Christian.325160081@stu.untar.ac.id

Abstract. The aims from this study is to determine which story has the greatest effect on the structure by using a structural column from composite material that is consist of steel and concrete combined together. Using the help of MIDAS GEN software to do the structural analysis. 5 models were made to capture the lateral displacement due to earthquake loading using linear dynamic procedure. Model 1 is a steel only structure followed by next model using composite material starting from the bottom 2 floors (model 2) , 4 floors (model 3), 6 floor (model 4), all floors (model 5). From all of the models that is used, we can conclude that the bottom 2 story is the one that has greatest impact in lowering the lateral displacement.

1. Introduction
By combining 2 or more materials we can make a new one called composite materials. In civil engineering it’s quite usual for combine steel and concrete together to take advantages of the two, because they have their own weakness such as lack of stiffness for steel structure moment frame, meanwhile for reinforce concrete, it’s usually take much more space because concrete as a material has a lower capacity than steel. But sometimes we don’t really have to use composite structure especially column in all story of the buildings. It can be used in the lower portion of the buildings, because the lower story will tend to have more capacity and stiffness demand than the upper one.

2. Material
Steel materials that is used refer to ASTM standard with A572-50 grade, the specification for A572-50 type is 345 Mpa for Fy and 450 Mpa for Fu, with modulus of elasticity (Es) 200000 Mpa. For concrete, this study use F’c 30 with compression stress up to 30 Mpa and modulus of elasticity (Ec) 25643 Mpa.

3. Structure Modelling
In this study, the buildings consist of 8 story located in Serang, with soft soil classification. The story height is 3.5 m high, the loading type is dead load, live load, and earthquake load. The boundary condition at the base is taken as hinge that restraint 3 degree of freedom (translation in x, y, and z direction). The beam and column connection is assume as rigid connection.
3.1. Member dimension

In Figure 2, 5 models of structure it’s shown all the models of the structure, for the steel profile the author assign WF 450x200x09x14 for beams, meanwhile for the steel columns the author assign WF 600x300x14x23, and last for encased composite column the structure models use C 800/500, the section for the profile member is shown in Figure 3. Member Dimension.
3.2. *Gravity Load and Seismic Load*

The gravity loading consist of live load base on rooms and corridors type of loading, and dead load plus superimposed dead load that work on whole floor plan in the structure and present in Table 1. Gravity Load. For seismic load, the author input the parameter to the MIDAS GEN and the force result from the analysis is on Table 2. Story Forces (kN).

Table 1. Gravity Load

Story	Live Load
2	Room 1.92 kN/m²
	Corridor 4.8 kN/m²
3-8	Room 1.92 kN/m²
	Corridor 4.8 kN/m²

Dead Load

wall	2.5 kN/m²
Slab	4.32 kN/m²

SDL

ceramic	1.1 kN/m²
Mechanical	0.19 kN/m²
Ceiling	0.1 kN/m²
Hanger	0.05 kN/m²
SDL Total	1.44 kN/m²

(Sumber: ASCE 7-10, 2010)
Figure 4. Design Spectrum Input Data

Table 2. Story Forces (kN)

Story	Model 1	Model 2	Model 3	Model 4	Model 5			
	Ex	Ey	Ex	Ey	Ex	Ey	Ex	Ey
8	282.83	134.02	298.35	302	302	302	302	302
7	219.74	116.89	229.7	233.19	228.42	228.42	228.42	228.42
6	158.1	97.15	162.03	141.11	173.48	173.48	173.48	173.48
5	121.52	83.75	122.32	106.39	136.3	136.3	136.3	136.3
4	103.39	73.98	103.09	111.22	123.04	123.04	123.04	123.04
3	97.2	67.01	96.61	115.48	114.59	109.49	109.49	109.49
2	97.52	62.41	107	117.9	114.4	100.25	111.1	111.1
1	67.3	52.45	81.6	77.76	79.2	78.2	78.1	78.1

4. Lateral Displacement
Lateral displacement is computed on x direction due to seismic loading on the x direction (Ex), and also displacement on y direction due to seismic load Ey acting on y axes. The author taking the values of lateral displacement on the center of mass of structure due to the simetrical configuration. The lateral displacement is calculated using respons spectrum load with dead load, SDL, and 50% of live load is present as an assumption for the load case. The lateral displacement is calculated by equation [1]:

$$\delta_i = \delta_d C_d / I_e$$

with δ_i = Lateral displacement at story i, C_d = Amplification factor for deflection, I_e = Importance factor.

4.1. Lateral displacement on x direction
The values for the lateral displacement in x direction due to Ex is on Table 3. Lateral Displacement on x Direction, and the graph of the lateral displacement is on Figure 5. Lateral displacement on x direction graph.
Table 3. Lateral Displacement on x Direction

Story	Model 1	Model 2	Model 3	Model 4	Model 5
8	167.2	164.45	166.1	168.3	172.15
7	160.6	157.85	159.5	162.25	165.55
6	150.7	147.95	149.6	151.8	155.1
5	136.95	134.2	135.85	138.05	141.35
4	119.9	116.6	117.7	121.0	123.75
3	99.55	95.7	96.8	99.55	101.75
2	74.25	69.85	72.05	73.7	75.35
1	42.9	39.6	40.7	41.8	42.9

Figure 5. Lateral displacement on x direction graph

Shown in the Figure 5. Lateral displacement on x direction graph there is no significant changes in 5 models. If we choose roof displacement as the target point, we can see that the lowest value is reach on the 2nd model that is 164.46 mm.

4.2. Lateral displacement on y direction

The values for the lateral displacement in x direction due to Ex is Table 4. Lateral Displacement on y Direction, and the graph of the lateral displacement is on Figure 5. Lateral displacement on x direction graph.

Table 4. Lateral Displacement on y Direction

Story	Model 1	Model 2	Model 3	Model 4	Model 5
8	271.7	218.9	209.55	200.2	196.9
7	266.2	211.2	201.3	191.95	191.95
6	256.3	196.9	185.9	177.1	183.15
5	242	177.1	164.45	165.0	169.95
4	223.3	151.8	137.5	149.05	153.45
3	200.2	121.55	119.35	129.25	133.1
2	173.8	86.9	97.9	106.15	108.9
1	138.05	61.05	68.75	74.8	77
Figure 6. Lateral displacement on x direction graph.

In y direction, the biggest lateral displacement on the target point is 271.7 mm located in model 1, and the lowest is 196.6 mm in model 5. The most significant change happen in model 2 compared to model 1, there is a reduction in the target point displacement from 271.7 to 218.9. Meanwhile, the other models do not really have a significant impact in reducing the displacement.

5. Conclusion
It is shown that even if we choose a higher stiffness member, it won’t really mean that the lateral displacement will always be smaller. Because the mass is also participate in the dynamic characteristic of structures. And from this study, we can conclude that the lowest 2nd story is the one that has greatest impact on lowering the lateral displacement for a structural building in a 8 story tall buildings.

References
[1] Badan Standardisasi Nasional SNI 1726:2012 Tata Cara Ketahanan Gempa untuk Bangunan Gedung dan Non Gedung (Jakarta: BSN)
[2] ASCE 7-10, Minimum Design Load for Buildings and Other Structures. (Reston Virginia: American Society of civil engineers)