MAGNETIC FLOODS: A SCENARIO FOR THE VARIABILITY OF THE MICROQUASAR GRS 1915+105

M. Tagger
Service d’Astrophysique (CNRS FRE 2591), CEA Saclay, 91911 Gif-sur-Yvette, France; and Fédération de Recherche Astroparticules et Cosmologie, Université Paris VII, 2 place Jussieu, 75251 Paris Cedex 05, France; tagger@cea.fr

P. Varnière
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627

J. Rodríguez
Service d’Astrophysique (CNRS FRE 2591), CEA Saclay, 91911 Gif-sur-Yvette, France; and INTEGRAL Science Data Centre, Chemin d’Écogia 16, CH-1290 Versoix, Switzerland

AND

R. Pellat
Centre de Physique Théorique, École Polytechnique, Palaiseau, France; and Physics Department, University of California, Los Angeles, CA 90095-1547

Received 2003 October 10; accepted 2004 January 29

ABSTRACT

We present a scenario for the variability of the microquasar GRS 1915+105. This starts from previous works, leading to the tentative identification of the accretion-ejection instability as the source of the low-frequency quasi-periodic oscillation of microquasars and other accreting sources. We follow the physics of this instability: its conditions (the magnetic field and geometry adapted to MHD jet models), its instability criterion, and its consequences (cooling down of the disk, heating and excitation of the corona). Comparing them to the observed properties of the source, in particular the detailed properties of its spectral states, we first derive a model of the ~30 minute cycles often exhibited by GRS 1915+105. In our model this is a limit cycle determined by the advection of poloidal magnetic flux to the inner region of the disk and its destruction by reconnection (leading to relativistic ejections) with the magnetic flux trapped in the vicinity of the central source. We show how this leads to natural explanations of observed behaviors of GRS 1915+105, including the three basic states of Belloni and coworkers. We then discuss how this could be extrapolated further to understand the longer term variability of this microquasar and others.

Subject headings: accretion, accretion disks — MHD — stars: individual (GRS 1915+105) — X-rays: stars

On-line material: color figures

1. INTRODUCTION

Since they were observed in X-ray binaries, quasi-periodic oscillations (QPOs) have been considered as an important clue to the physics of the inner region of accretion disks, at a few tens to hundreds of kilometers from the central source (a white dwarf, a neutron star, or a black hole). Their frequencies, typical of Keplerian rotation in this region, and their rms amplitude (typically a few percent, up to a few tens of percent, of the total luminosity), as well as a number of other elements, tend to indicate that they are associated with high-magnitude phenomena occurring in the disk and possibly at the base of the jet. However, no model has yet gained general acceptance for explaining any of the QPOs or given indications for a more general explanation of the accretion process.

We have in the last few years presented the accretion-ejection instability (AEI; Tagger & Pellat 1999) and shown that its properties make it a very promising explanation of the low-frequency (~1–10 Hz) QPO (hereafter LFQPO) prominent in black hole binaries and also present in certain states of binaries hosting a neutron star or a white dwarf. The goal of this paper is to present a model that has been elaborated gradually since the discovery of the AEI; earlier versions of this model were presented in Tagger (2000, 2003). It starts from the tentative identification of the AEI as the source of the QPO and extrapolates by seeking in the properties of the instability an explanation of the observed behavior of the most spectacular microquasar, GRS 1915+105.

Since its discovery (Castro-Tirado, Brandt, & Lund 1992; Castro-Tirado et al. 1994), this source has been the object of a large number of observations, from X-rays (mostly by the Rossi X-Ray Timing Explorer [RXTE]) to radio and IR. They have characterized it as the most permanently active black hole binary, showing a large variety of temporal and spectral behaviors. This occurs at all timescales: high- and low-frequency QPOs, but also repetitive patterns of behaviors during typically minutes or tens of minutes, a very long and steady “plateau” state, etc. Belloni et al. (2000) have given a classification of these modes of variability, showing that they fall into 12 distinctive classes that again can be reduced to oscillations between three basic states. These behaviors are so well characterized and so well observed at all wavelengths (including their connection with both a compact jet and relativistic ejections) that they are widely expected to contain clues to the accretion and ejection processes in all types of accreting sources, from young stars to X-ray binaries and active galactic nuclei (AGNs). We discuss this in more detail in §§ 3 and 4.5, and clearly we expect that our model will be found relevant to other accreting sources.

1 Deceased 2003 August 4.
In particular, in this paper we concentrate on the cycles where, with a periodicity of the order of 30 minutes, GRS 1915+105 alternates between a high-soft and a low-hard state and produces relativistic ejections. As shown by Belloni et al. (2000), this cycle is the most frequent type of variability observed in this source, besides a steady hard state. Our “magnetic flood” model owes its name to the fact that we are led, in our extrapolation process, to believe that these cycles, and maybe the longer term behavior of GRS 1915+105, are controlled by the accumulation and release of poloidal magnetic flux in the innermost region of the accretion disk.

In this sense our scenario has much in common with the model of Livio, Pringle, & King (2003), who propose that accreting sources switch between two states, controlled by the global poloidal magnetic field. This follows in particular the work of Merloni (2003), who finds that the low-hard state of GRS 1915+105 can be fitted by assuming that a substantial fraction f of the accretion energy is emitted to the corona and jet, rather than heating the disk. Our work is different in that we start from a definite physical model of accretion in the disk due to the AEI and build on that. This leads to a number of differences, for example as is seen in § 4.3 in the nature of state A, as defined by Belloni et al. (2000).

Beyond the identification of the AEI as the source of the LFQPO, our model is built by extrapolation and does not rest on precise arguments, such as predictions or numerical values. It claims to be only a possible explanation of the observed behaviors, obtained by following the most straightforward line of deductions. On the other hand, as is seen in this paper, we find that it is already useful in guiding us as we seek new diagnostics of disk physics. It is encouraging that since it was first proposed, we have found it compatible with new elements gathered in the observations and that we obtain with it possible explanations of puzzling observations, such as the transitions between Belloni’s states (Belloni et al. 2000).

The paper is organized as follows: In § 2, so that this paper is reasonably self-contained, we review theoretical and numerical results on the AEI and its main properties. Section 3 is dedicated to a short review of the variability of GRS 1915+105 from the timescale of the QPOs to that of the ~30 minute cycles and to a review of properties observed on much longer timescales. Section 4 presents our model, and § 5 our conclusions.

2. THE ACCRETION-EJECTION INSTABILITY

2.1. Basic Theory

The AEI (Tagger & Pellat 1999) is a global mode occurring in magnetized disks threaded by a poloidal (vertical) magnetic field, i.e., the geometry used in MHD jet models. It belongs (Tagger et al. 1990) to the same family as the spiral instability of self-gravitating disks and the Papaloizou-Pringle instability (hereafter PPI) of unmagnetized, non–self-gravitating ones. It can also be viewed as the p-mode of diskoseismology models (Nowak & Wagoner 1991), modified by magnetic stresses; the big difference here is that as in galaxies (although less violently), this mode is linearly unstable, so that it does not rely on other mechanisms to reach the high amplitudes necessary to explain the LFQPO.

The global structure of these modes is formed by spiral waves traveling back and forth between the inner disk edge (or its center) and their corotation radius, where their angular phase velocity is equal to that of the gas or stars. The mode frequency is typically (depending on the profiles of various quantities) 0.1–0.3 times the rotation frequency of the gas at the inner disk edge, placing the corotation radius at ~2.5–4 times the inner radius. It is most unstable when the magnetic field is near equipartition, i.e., when the plasma $\beta = 8\pi p/B^2$ (the ratio of thermal to magnetic pressure) is of the order of 1, and requires that the radial gradient of the magnetic field be sufficient:

$$\frac{d}{dr} \ln \left(\frac{\kappa^2 \Sigma}{2\Omega B^2} \right) > 0,$$

where κ and Ω are the epicyclic and rotation frequencies (with $\kappa = \Omega$ in a Keplerian disk), Σ is the surface density of the disk, and B is the equilibrium magnetic field. It is noteworthy that this condition is always fulfilled in self-similar MHD models of jets (Blandford & Payne 1982; Lovelace 1986; Pelletier & Pudritz 1992).

The restricted radial extension and the condition that $\beta \sim 1$ make the AEI a complement to the magnetorotational instability (MRI) of Balbus & Hawley (1991). The MRI is a local instability (although modes are also possible; see Curry & Pudritz 1996) and thus can occur throughout a sufficiently ionized disk. On the other hand, it is restricted to weakly magnetized disks, i.e., those with $\beta > 1$.

Figure 1 shows a schematic description of the mode structure in and above the disk. The spirals are density waves, i.e., sound waves whose propagation is modified by differential rotation, by the Coriolis force (resulting in epicyclic motion), and, if they apply, by self-gravity and the Lorentz force. They become unstable by extracting energy and angular momentum from the inner region of the disk (thus causing accretion) and finding a way to transfer them outward; either (this is known as the swing mechanism) to another spiral wave, traveling outward beyond corotation, or (by the corotation resonance) to a Rossby wave at the corotation radius: this is the main amplification mechanism for the AEI.

The AEI owes the E in its name to a unique characteristic: as mentioned above, it grows by extracting energy and momentum from the disk and transferring them to a Rossby vortex. In a purely hydrodynamic or self-gravitating disk the process stops there, and this led Narayan, Goldreich, & Goodman (1987) to speculate, in the case of the PPI, that the corotation resonance might saturate nonlinearly when no more angular momentum can be absorbed at corotation. However, the AEI applies to disks threaded by a poloidal field. Thus the footprints of the magnetic field lines anchored in the disk are submitted to a twisting motion by the vortex, and this twist can now be propagated along the field lines as Alfvén waves. It was suggested by Tagger & Pellat (1999), and proven by Varnière & Tagger (2002), that these Alfvén waves could carry to the corona of the disk a substantial fraction of the energy and momentum extracted by the instability. This contrasts with other disk instability mechanisms and with the turbulent viscosity model of Shakura & Sunyaev (1973), where the energy and momentum are transported radially outward and would need an additional mechanism to be redirected upward. This gives the AEI the potential to directly feed the winds or jets observed in all types of accreting sources.

Note however that at the present stage of theoretical work, we have only shown that the energy and momentum are
emitted upward as Alfvén waves. It remains to be shown how these waves can deposit their energy in the corona, to really produce a jet. Work in progress already allows us to show how the instability can heat the corona, thus permitting the inverse Compton effect for the high-energy tail of the source spectrum. Theory shows (Tagger, Pellat, & Coroniti 1992) that, as for galactic spirals, the structure of the AEI is essentially constant across the disk thickness. Caunt & Tagger (2001) have used this property to perform numerical simulations, similar to early simulations of disk galaxies, considering an infinitely thin disk in vacuum. The drawback is that these simulations can describe neither the MRI (which develops within the disk thickness) nor the coupling of the AEI with Alfvén waves in the corona. But their relative simplicity allows very long simulations (tens of rotation periods), which are necessary to show the full nonlinear development of the instability. These simulations are in very good agreement with the theoretical predictions.

2.2. AEI and QPO

Our identification of the AEI as a candidate to explain the QPO starts from its frequency and relies on various other elements:

1. The frequency of the AEI for the one-armed mode (usually the most unstable) is typically 0.1–0.3 times the Keplerian rotation frequency at the inner edge of the disk, Ω_{in}. This is consistent with the observed frequency of the LFQPO (typically in the range 1–10 Hz in black hole binaries) and the inner radius given by spectral fits. These are observed to be correlated in GRS 1915+105 (Muno, Morgan, & Remillard 1999). Furthermore, Psaltis, Belloni, & van der Klis (1999) have found that across a large number of sources of various types, the QPO frequency is correlated with a higher frequency QPO believed to be of the order of Ω_{in}.

2. The AEI is an instability; i.e., it grows spontaneously and does not need an external excitation or the formation and long-term survival of blobs of gas to reach a large amplitude. Furthermore, and by analogy with galactic spirals, we expect it to form a long-lived, nearly steady state feature, described in the galactic context as a quasi-stationary spiral structure, and indeed this is what we observe in our simulations. This gives it a clear potential to yield the observed QPOs.

3. The LFQPO is so frequent in the low-hard state of black hole binaries that it has been dubbed the “ubiquitous QPO” (Markwardt, Swank, & Taam 1999). For a detailed overview of the QPO properties in GRS 1915+105, see Muno et al. (1999), Reig et al. (2000), and Tomsick & Kaaret (2001). In the most common spectral analysis of the X-ray emission of these sources, as a multitemperature blackbody from the disk and a power-law tail from inverse Compton emission in the corona, this state is characterized by a weak or inexistent disk emission and a dominant coronal one. This is to be expected from the AEI, since one of its characteristics is that the accretion energy is transported away by waves rather than dissipated locally to heat the disk, as assumed in the standard model of turbulent viscosity (Shakura & Sunyaev 1973). Thus at comparable accretion rates the AEI should give a lower disk emission and a more active corona than other instability mechanisms. In the course of the work discussed below, in which we considered relativistic effects, we found possible evidence of this. We showed that at the transition between the high and the low
state, during a ~30 minute cycle of GRS 1915+105, the QPO appeared just before the spectral transition (Rodriguez et al. 2002b); as shown in Figure 7 of that paper, while the count rate decreases smoothly, the transition is marked by a sudden drop of the color temperature, which in one case is seen clearly to occur around 30 s after the appearance of the QPO. Although it is presently limited to one observation, this means that if there is a causal relation between the QPO and the transition to the low state, it is opposite to the one usually assumed: it is the appearance of the QPO that causes the transition, by stopping the heating of the disk and sending energy to its corona.

4. In Varnière, Rodríguez, & Tagger (2002) and Rodriguez et al. (2002b), we have given a possible explanation of the observation by Sobczak et al. (2000) that in the microquasar GRO J1655–40 the correlation between the color radius (taken as an indication of the disk inner radius \(r_{\text{int}} \)) and the LFQPO frequency was opposite to the one usually found. Our interpretation is based on the sensitivity of the AEI to relativistic effects on the rotation curve, when the inner disk edge approaches the last stable orbit. It can of course be taken only as tentative, given the uncertainties in fitting the observed emission with a standard model of a multitemperature black body plus a power law. It is however remarkable, given these uncertainties, that our best fits indicate a black hole mass in agreement with independent measurements.

5. As a by-product of our analysis of GRO J1655–40 we have also discussed how, when spectral fits give an anomalously low value for \(r_{\text{int}} \) (sometimes smaller than the Schwarzschild radius of the black hole), and if one retains the analysis in terms of a multicolor blackbody contribution to the spectrum, emission from a small area at high temperature is indicated. This might thus correspond to a hot spot at the spiral shock resulting from the AEI in the disk. Rodriguez et al. (2002a) found possible evidence for this in GRS 1915+105 by a determination of the energy spectrum of the QPO at high energies.

3. THE VARIABILITY OF GRS 1915+105

Belloni et al. (2000) have shown that the variability of GRS 1915+105 could be reduced to 12 basic classes (noted by Greek letters), which again could be analyzed as successions of three basic states, A, B, and C. They also found that after a steady hard class (noted \(\chi \)), the most frequent one was class \(\beta \), marked by the ~30 minute cycles that we are interested in. These cycles, a typical example of which is shown in Figure 2 (Mirabel et al. 1998; Chaty 1998), have been the object of multiwavelength observations that contain a large amount of information. X-rays show first a high and soft state (until time 8.1 in Fig. 2), then a rapid transition to a low and hard state; at time 8.23 an intermediate spike occurs, also marked by a sudden drop in the high-energy (“coronal”) emission. The low-energy (“disk”) emission keeps recovering until time 8.33, when the source transits back to the high state. IR and radio observations show a strong emission after some delay, which is consistent with synchrotron emission from an adiabatically expanding blob ejected at or near the intermediate spike. Eikenberry et al. (1998) analyze more such cycles, confirming this association between the spike and the blob ejection. More details can be found in Fender et al. (1997), Mirabel et al. (1998), Fender & Pooley (1998), and Dhawan, Mirabel, & Rodriguez (2001).

Markwardt et al. (1999) performed a detailed timing analysis of the same X-ray data. They found that the LFQPO was prominent from the transition to the low state until the spike. From spectral fits they found that the inner disk radius \(r_{\text{int}} \) was near a minimal value at the transition to the low state; it then increased progressively to a maximum and decreased again until, just before the spike, it was back to its minimal value. During the same period of time the QPO frequency started from a maximal value, decreased, and then grew again, with variations opposite those of \(r_{\text{int}} \). Since this particular observation had been intensively analyzed and discussed, it is the one we chose to analyze in our more recent work (Rodriguez et al. 2002b).

The longer term variability of GRS 1915+105 is more of a puzzle, since it exhibits the 12 classes described by Belloni et al. (2000). We return to this in § 4.5.

4. MAGNETIC FLOODS

4.1. The Transition to the Low State

Our magnetic flood scenario starts from the assumption, following the discussion in § 2.2, that the AEI is indeed at the origin of the QPO; we then wonder what this may tell us about the physics of the inner region of the disk and seek in the properties of the AEI an explanation of the observations discussed in § 3. As already mentioned, the low state associated with the QPO can be understood in this context since the AEI transports the accretion energy by spiral waves, rather than depositing it locally to heat the disk.

Let us now consider what can explain the appearance of the QPO. It should mean that an instability threshold has been crossed: either the radial profiles have evolved so that condition (1) becomes true, or the plasma \(\beta \) becomes of the order of 1. We prefer the second hypothesis for two reasons:

1. The power density spectrum (PDS) of the source changes radically at the transition: it is close to a power law in the high state (see, e.g., Reig, Kylafis, & Giannios 2003), while in the low state it shows broadband noise at low frequencies, with a break just below the QPO frequency. In the high state, we assume that turbulence in the disk is due to the MRI of Balbus & Hawley (1991), which is not sensitive to the radial profiles but precisely has the property to be suppressed when \(\beta \leq 1 \). This suppression would explain why, in addition to the appearance of the LFQPO, the PDS (which we associate with turbulence in the disk) changes so strongly at the transition.

2. Furthermore, this would explain why the transition to the low state is so sharp, since as soon as the AEI appears the disk cools down, further reducing the gas pressure and thus \(\beta \).

A gradual reduction of \(\beta \) during the high state thus becomes our working hypothesis. There are two possible reasons for this:

1. Advection.—When considering the magnetic field in a disk, one should distinguish between the horizontal and vertical (i.e., parallel and perpendicular to the disk plane) components of the magnetic flux. The horizontal (azimuthal and radial) flux can easily change, e.g., when a horizontal flux tube is lifted by buoyancy and leaves the disk (this is the elementary mechanism of the Parker instability) or when horizontal flux is generated by a turbulent dynamo.

Lifting a vertical flux tube, on the other hand, will not change the total flux threading the disk. The only way to do this is either by reconnection with the magnetic structure in the inner hole surrounding the central object (this will be discussed in § 4.4) or by letting the vertical flux diffuse radially outward against the accretion flow, which may not be an easy process, with advection competing against the turbulent magnetic diffusivity.
2. Dynamo.—The second possibility is that of a turbulent dynamo, associated with the MRI, which would create vertical flux of opposite polarities in the inner and outer disk regions.

These possibilities ultimately depend on the transport properties of the MRI; at this stage, numerical simulations have not been able to give clear conclusions about the radial transport of vertical magnetic flux by the MRI, i.e., a turbulent magnetic diffusivity together with a turbulent viscosity. Dynamo action has been observed by Brandenburg et al. (1995) but not yet fully characterized. On the other hand, the MRI is linearly an ideal MHD instability and as such should cause accretion of the magnetic flux together with the gas. Magnetic diffusivity is involved in the nonlinear evolution of the MRI and should break this property. To get an answer on this, we may have to wait for more complex simulations permitting in particular the magnetic flux to cross freely the boundaries of the computational domain. Or we could find an indication in the observation of strong magnetic fields in the inner few tens of parsecs of the Milky Way: there the field is vertical and measured in milligauss, rather than horizontal and measured in microgauss elsewhere in the disk. Chandran et al. (2000) have

![Figure 2](https://example.com/figure2.png)

Figure 2. Cycle (β-state of Belloni et al. 2000) of GRS 1915+105, observed on 1997 September 9 (Mirabel et al. 1998; Chaty 1998). **Top:** X-ray emission in various bands. **Bottom:** Total X-ray, IR, and radio emissions. [See the electronic edition of the Journal for a color version of this figure.]
argued that this may be fossil magnetic flux, advected with the gas during the history of the Galaxy.

Thus further studies are needed to assess the fraction of its embedded magnetic flux that the gas is able to transport inward. Whatever the result, that fraction will accumulate near the central object, and we consider it very likely that this will cause β to gradually decrease in the inner region of the disk. A final argument for this is that MHD models of jets (Blandford & Payne 1982; Lovelace 1986; see also Casse & Ferreira 2000 and references therein) all require an “hourglass” magnetic geometry, i.e., vertical flux threading the disk, and $\beta \sim 1$. These are axisymmetric equilibrium models, which as mentioned previously are unstable to the AEI. Our work can thus be considered an elaboration on this line of models, assuming that turbulence in the disk self-consistently generates this configuration.

We also note that the accretion of gas can noticeably change the mass of the central object only on a very long term. The same applies to the magnetic flux of a neutron star. On the other hand, the magnetic flux threading a black hole is not anchored in the black hole but is due to currents near the inner edge of the disk. A secular evolution of this flux may thus have a much stronger effect on the disk behavior.

4.2. The Low-Hard State

Following our scenario, in the low state the AEI transports the accretion energy outward to its corotation radius; a sizable fraction of it can then be transported to the corona, as shown by Varnière & Tagger (2002), so that the disk cools down and the corona becomes more active. The rest of the energy is dissipated in the disk at a spiral shock, forming a hot spot, as shown by the numerical simulations of Caunt & Tagger (2001); indications of such a hot spot, associated with the QPO in GRS 1915+105, have been discussed by Rodríguez et al. (2002a).

From the transition to the low state, the inner radius of the disk is observed to move gradually outward; this may be the result of the equilibrium between the standard, optically thick disk and whatever lies between it and the black hole: a radiatively inefficient disk, e.g., an advection-dominated accretion flow (ADAF; in which case the inner radius of the optically thick disk that we are concerned with is set by the conditions of transition to the ADAF), or, e.g., the force-free magnetic structure associated with the Blandford & Znajek (1977) process, formed by a current ring at the inner edge of the disk. In that case the change in r_{int} would be set by the MHD equilibrium between this structure and the disk, whose pressure has changed at the transition.

Then after some time, r_{int} is observed to decrease again, until it returns to the minimal value observed in the high state. This may be attributed to the viscous refilling of the disk, as indicated by the correlation (Belloni et al. 1997) between the maximal value reached by r_{int} (during this or other types of events) and the time it takes to return to its minimal value. During this evolution the QPO frequency first decreases, then increases, leaving its ratio to the Keplerian frequency at r_{int} in the range predicted by the AEI.

The low-hard state stops when r_{int} has returned to near its minimal value, which it is of course tempting to identify with the last stable orbit. This is when the intermediate spike occurs, presumably causing the relativistic ejections. Eikenberry & van Putten (2003) show that this is consistent with a reconnection event. We do not discuss here their “magnetic bomb” model, which involves a specific configuration of the central magnetic structure connecting the black hole with the inner edge of the disk. Whatever this configuration is, reconnection should cause the ejection of a large part of the corona, as seen in Figure 2, where after the spike the hard X-ray flux has significantly dropped, which may indicate the ejection of part of the corona (Chaty 1998).

Reconnection destroys magnetic flux: this will allow the disk to return to a state of low magnetization and thus to a high state. However, this does not occur right away, and we should also seek an explanation for this delay, which extends from the spike to time ≈ 8.32 in Figure 2.

4.3. Belloni’s States

The answer might lie in the work of Belloni et al. (2000), who have shown that the twelve classes of variability of GRS 1915+105 they had identified can be reduced to alternations between three basic states, labeled A, B, and C, identified by the position of the source in a color–color diagram. This allows a much more detailed view of the evolution of the source. State B is a conventional high-soft state, with strong disk emission and weak coronal emission, state C is a low-hard state, with weak disk and relatively strong corona (high hardness ratio) emission, while state A is characterized by low emission in all bands. The LFQPO is seen only in state C. The “high state” during the cycles turns out, once analyzed on very short timescales, to be actually a succession of these three basic states, while the “low state” is C, and after the spike the source is in state A.

Following our line of inferences, we assume that state C is subject to the AEI: the inner region of the disk must thus be moderately magnetized with $\beta \leq 1$ and obey the instability condition (eq. [1]). The cool disk and active corona, as well as the presence of the compact jet (see, e.g., Reig et al. 2003), are consistent with the presence of the AEI.

It is also natural to consider state B as a weakly magnetized ($\beta > 1$) state subject to the MRI, which is our best candidate for producing turbulence leading to a local heating of the disk by the accretion energy (whether or not the effects of the MRI can be modeled by a standard α disk; see, e.g., Balbus & Hawley 1998).

We still have to understand in this context the nature of state A. It cannot be a state where the inner region of the disk is weakly magnetized, since it would be subject to the MRI whatever the other disk parameters are and should thus show properties similar to state B. It must thus have $\beta \leq 1$ and be stable to the AEI: this can occur if the instability criterion of equation (1) is not verified, i.e., if the quantity B^2/Σ does not decrease faster than Ω outward.

The association of the spike with a reconnection event makes this a very likely possibility: reconnection, destroying magnetic flux at the inner disk edge, should weaken or even reverse the radial magnetic field gradient in the inner disk region while leaving the disk cool enough (in the absence of turbulence) to keep $\beta \leq 1$. It could thus make both the AEI and MRI stable, leading to state A. Accretion proceeding from the outer part of the disk, and gradually refilling the inner disk with weakly magnetized gas, would after some time allow the observed return to state B. Figure 3 sketches the corresponding profiles of β in Belloni’s three basic states, in the inner disk region.

This immediately leads to a possible explanation of the striking observation of Belloni et al. (2000) that all transitions
between their basic states are seen except the transition from state C to B: in our scenario, state C means that the disk has accumulated a critical amount of vertical magnetic flux in its inner region. Once it is in that state, it can decrease its magnetization only by a reconnection event, leading to state A. Then accretion from the outer regions replenishes the inner disk with low-magnetization material, allowing the MRI-unstable region to progress inward until it reaches the inner disk edge, seen as a return to state B. This would then explain the smooth transition observed from state A to B, in contrast with the sharp transitions from C to A (due to reconnection) and from B to C: there, as discussed in §4.2, the transition is sharp because as β falls below 1, the MRI stops and so the disk cools down, further decreasing β.

This has thus suggested to us that we seek an interpretation of the LFQPO sometimes seen during short dips occurring when the source is in the high-soft state. This is discussed and shown in particular in Figure 1 of Markwardt et al. (1999): they find that the high state of a class-β cycle is interrupted by such dips, during which the source is in a spectral state similar to the long dips (this, shown by black intervals in the center bar of their figure, must thus be state C), and the LFQPO appears. Following our scenario, this occurs at times where the radial profile of B still leaves $\beta > 1$, while magnetic flux is slowly accreted to the inner disk region. A possible explanation, following our scenario, would be that at these times β in the inner disk is not much larger than 1, so the AEI can appear but these episodes remain transient until a necessary condition is met to let the long dips occur. This condition would then certainly concern the global magnetic field profile, allowing during the low state the outward motion of the inner disk edge that characterizes the long dips.

Seeking an indication in favor of this explanation, we have examined the PDS of the source, comparing a short dip with a long one. The results are shown in Figure 4. The first spectrum, obtained near the minimum of the long dip in Figure 2, shows the characteristic aspect with band-limited noise at low frequencies, a break, and the QPO (here near 3 Hz). The second spectrum is taken during the short dip shown at time $\sim 2450–2500$ in Figure 1 of Markwardt et al. (1999) and is indeed very different: it shows a power-law spectrum, as usually found in the high-soft state (state B), onto which the QPO is superposed near 9 Hz. We would expect the break at a frequency higher than 1 Hz, but the interval analyzed is 53 s long, so although the disk properties are more transient here than during the long dip, we do not believe that its absence is due to the limited time window. On the other hand interpretation is difficult, since the disk emission is more present here than during the long dip, we do not believe that its absence is due to the limited time window. On the other hand interpretation is difficult, since the disk emission is more present here than during the long dip, but the interval analyzed is 53 s long, so although the disk properties are more transient here than during the long dip, we do not believe that its absence is due to the limited time window. However, and although this would need to be analyzed in more detail over a number of occurrences, it might thus indicate that these occurrences of state C are in fact slightly different; in our interpretation, during the short dip the formation of the QPO does not manage to quench the MRI turbulence associated with the power-law PDS, which is characteristic of the high-soft state.

4.4. The Central Magnetic Structure

Reconnection at the inner edge of the disk is the best explanation of the spike leading to the relativistic ejections; it would merge magnetic field lines from the disk and field lines
from the central magnetic structure surrounding the black hole. We consider here the same magnetic structure involved in the Blandford-Znajek process (Blandford & Znajek 1977), whether or not this process is efficient enough to generate a jet in its force-free initial form or in more elaborate forms such as used by Eikenberry & van Putten (2003). Their model of the global magnetic configuration, involving opposite current loops in a torus around the black hole, is not unique but is different from ours, where the disk is threaded by open field lines. Rather than reconnection, one might possibly find alternative explanations based on other types of large-scale magnetic events, but reconnection is clearly the first possibility to consider. However, for this to occur the poloidal magnetic flux accreted with the gas and the flux trapped in the central magnetic structure, in the inner hole surrounding the central object, must have opposite signs.

This would mean that the classes of variability where ejections occur can happen only when the poloidal fluxes in the disk and this structure are antiparallel, and thus that during certain periods the source is in that configuration, while during other periods the fluxes have the same sign. This would lead to a dichotomy, similar to the one observed at the interface between the terrestrial magnetic field and the one carried by the solar wind: it is only when these fields are antiparallel that reconnection is observed, while in the parallel configuration more complex behaviors occur.

Thus, although it may seem to be a far-fetched assumption for the interface between the disk and the central magnetic structure, it is hard to escape if reconnection is involved. One also has to remember that the central magnetic structure is not anchored in the black hole, but in a current ring at the inner edge of the disk; the poloidal flux it contains is thus not a constant, as in neutron stars whose flux can vary only over very long periods. Here the trapped flux is the sum of all the magnetic flux accreted during the whole history of the source, while the gas itself will end up in the black hole.

On the other hand, the flux advected with the gas may also change over time: as discussed in § 4.1, this flux may have its origin either in the companion star the gas comes from or in a turbulent dynamo in the disk. In both cases the sign of this flux is expected to vary, although the characteristic timescale of this variation is difficult to assess (there is for instance still no quantitative explanation for the duration of the 22 yr cycle of the Sun, which is associated with such field reversals, and convection must be much more complex in a companion star stirred by tidal effects). We discuss below how the timescale observed in GRS 1915+105, which we would associate with this long-term evolution, is of the order of 1 to a few years. This is certainly not unreasonable for either process.

Thus the processing of magnetic flux in the disk and the central magnetic structure would be responsible for two timescales: a short one, responsible for the ~30 minute cycles, corresponding to the accumulation and release of magnetic flux in the inner region of the disk, and a much longer one, corresponding to changes in the sign of the flux advected with the disk and due to changes at the source of this flux, be it a dynamo in the disk itself or the companion star.

4.5. Long-Term Behavior

That there is an unknown parameter, besides the accretion rate, regulating the long-term behavior of GRS 1915+105 has long been suspected; from a statistical analysis Greenhough et al. (2003) have found a 12–17 day timescale that might be associated with the orbital motion of the binary. More recently, Rau, Greiner, & McCollough (2003) found in its hard X-ray and radio fluxes a 590 day period. Their preferred explanation involves the precession of a warp in the disk, but they find it difficult in this context to understand that this periodicity is seen in the coronal emission only and not in the soft X-ray flux from the disk. We will first note here that a turbulent dynamo model would appear as a better candidate since the magnetic field in the disk directly affects dissipation in the corona. As mentioned in § 4.4, such a period would not be unrealistic for field reversals in the disk or even in the companion star.

However, we also wish to mention work by Fitzgibbon (2000) that also indicates order in the long-time variability of GRS 1915+105, including its disk emission: examining over 350 RXTE observations of GRS 1915+105 between 1996 and 1999, he first defined nine basic classes of variability of GRS 1915+105, analogous (and generally similar) to the 12 ones independently found by Belloni et al. (2000); he ordered these classes (numbered 1 to 9) by various criteria, the main one being the direct observation of transitions between two classes. Then he plotted, over this period of nearly 4 years, the observed class of variability. His result, reproduced in Figure 5, shows that the source follows a regular pattern, going from class 1 to class 9 before it returns to a steady state (not included among the nine classes and not shown in Fig. 5). Then after some time it starts over at class 1. He also finds that there is no strong correlation between this and the total flux of the source. We cannot reproduce here his analysis, which deserves to be repeated in more detail and in terms of the 12 classes of Belloni et al. (2000), since these have become the standard description of the variability of GRS 1915+105; a comparison between this and the periodicity of Rau et al. (2003) would also of course be necessary. We only note that these classes are very similar to Belloni’s and that the ~30 minute cycle (class β) is his class 8. Our main interest here is the quite unexpected existence of such a regularity in the long-term behavior of GRS 1915+105, which must be considered as an outstanding challenge to any model of accretion in this source.

In § 4.4 we concluded that if reconnection events are involved in the spike of the ~30 minute cycles and in the relativistic ejections, this is most likely to occur during periods during which the poloidal fluxes in the disk and the central
hole have opposite signs; we must then expect the source to be in this configuration (antiparallel vertical fields) part of the time, and in the opposite one (with parallel fields) at other times. Changing from one configuration to the other requires a change in the sign of either the magnetic flux advected with the gas in the disk or the total flux trapped in the central magnetic structure.

A change in the sign of the advected magnetic flux may result from a field reversal in the dynamo generating the advected flux, in the companion star, or in the disk itself. Field reversals are to be expected in turbulent dynamos, but not much is known about their characteristic timescale. The orientation of the magnetic field should not affect the main body of the disk (weakly magnetized anyway); on the other hand, it should strongly affect the interaction with the central magnetic structure and thus the accretion process in the inner region of the disk. On the long term, a sufficient number of reconnection events might eventually cancel the trapped flux and change its sign.

Since we are elaborating on a model of the cycles, which is itself an extrapolation of our candidate for the low-frequency QPO, we will not try to go further in this direction. We consider it very possible, however, that the long-term evolution seen in Figure 5 could result from the processing of poloidal magnetic flux in the disk and the central magnetic structure.

5. DISCUSSION

In this paper we began by presenting our model of the low-frequency quasi-periodic oscillation of X-ray binaries, particularly the microquasar GRS 1915+105, based on the accretion-ejection instability predicted to occur in the inner region of magnetized disks. Assuming that the AEI does explain the LFQPO, we have then proceeded by extrapolation, seeking in the properties of the instability an explanation of the observed behavior of the source.

This has allowed us to build up a scenario for the ~30 minute cycles (Belloni’s class β) of GRS 1915+105. We call this a “magnetic flood” model because it explains the cycles by the gradual accumulation of magnetic flux in the inner region of the disk and sudden release in reconnection events producing the relativistic ejections. The scenario is consistent with both the observations and the physical properties of the instability, i.e., its instability conditions, and its transport of accretion energy outward and to the corona (so that the disk cools down and the corona is energized when the AEI is present). This allows us to find a natural explanation for the observation that the appearance of the QPO occurs just before the transition to the low state, so that the QPO may cause the transition, rather than be its consequence.

Turning to the reduction, by Belloni et al. (2000), of the variability of GRS 1915+105 to 12 classes and then to three basic states, A, B, and C, we then identify these states of the inner disk region as follows:

State B.—A standard, weakly magnetized disk ($\beta > 1$) subject to the magnetorotational instability; the local deposition of accretion energy heats the disk, resulting in a high-soft state.

State C.—A more (although moderately) magnetized state, in which the poloidal field has become of the order of equipartition with the gas pressure ($\beta \leq 1$); in this state the MRI is stabilized and the AEI is unstable, producing the LFQPO, reducing the disk heating, and exciting the corona, where part of the accretion energy is transported.

State A.—A state that is still moderately magnetized ($\beta < 1$, preventing the MRI), but where magnetic flux near the inner edge of the disk has been destroyed in the reconnection; the resulting magnetic field profile does not allow the AEI to be unstable, so the inner disk is essentially calm until accretion proceeding from larger radii increases β and allows a return to state B.

This allows us to give a possible explanation of the observation of Belloni et al. (2000) that a direct transition from state C to state B is never observed: magnetic flux has to be destroyed, leading to state A, before the accretion of gas from larger radii allows a return to state B.

We have then explored how this could allow a further extrapolation to the other classes of variability of GRS 1915+105 and its behavior on longer timescales. For this we started from the conclusion of our model, that the source must be part of the time in a configuration in which the vertical magnetic flux in the disk and the one trapped in the central structure surrounding the black hole are parallel, while at other times they are antiparallel. This is in fact unescapable if the relativistic ejections are due to a large-scale reconnection event between the disk and the central magnetic structure. We confronted this with the work of Fitzgibbon (2000), which shows a surprising regularity in the manner of GRS 1915+105 and explores its different classes of variability. We are led to suggest that this regularity in the long-term evolution is ruled by reversals in the sign of the magnetic flux advected to the inner disk region. This flux may result from a dynamo in the companion star or in the disk itself and is eventually accreted to the central magnetic structure, which may thus also reverse its sign periodically.

The authors wish to acknowledge a great number of discussions on the elaboration of this model with T. Belloni, S. Chaty, S. Corbel, Ph. Durochoux, R. Fender, J. Ferreira, Y. Fuchs, R. N. Henriksen, F. Mirabel, E. Morgan, M. Munu, and R. Remillard. They also wish to express special thanks to the anonymous referee for a very constructive discussion leading to a sharp clarification of our arguments.

REFERENCES

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Belloni, T., Klein-Wolt, M., Mendez, M., van der Klis, M., & van Paradijs, J. 2000, A&A, 355, 271
Belloni, T., Mendez, M., King, A. R., van der Klis, M., & van Paradijs, J. 1997, ApJ, 488, L109
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Brandenburg, A., Nordlund, Å., Stein, R. F., & Torkelsson, U. 1995, ApJ, 446, 741
Casse, F., & Ferreira, J. 2000, A&A, 361, 1178
Castro-Tirado, A. J., Brandt, S., & Lund, N. 1992, IAU Circ. 5590
Castro-Tirado, A. J., Brandt, S., Lund, N., Lapshov, I., Sunyaev, R. A., Shlyapnikov, A. A., Guzy, S., & Pavlenko, E. P. 1994, ApJS, 92, 469
Caunt, S. E., & Tagger, M. 2001, A&A, 367, 1095
Chandran, B. D. G., Cowley, S. C., & Morris, M. 2000, ApJ, 528, 723
Chary, S. 1998, Ph.D. thesis, Univ. Paris-Sud
Curry, C. P., & Pudritz, R. E. 1996, MNRAS, 281, 119
Dhawan, V., Mirabel, I. F., & Rodríguez, L. F. 2001, ApJSS Suppl., 276, 107
Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. A., & Nelson, R. W. 1998, ApJ, 494, L61
Eikenberry, S. S., & van Putten, M. H. M. 2003, ApJ, submitted (astro-ph/0304386)
Fender, R. P., & Pooley, G. G. 1998, MNRAS, 300, 573
Fender, R. P., Pooley, G. G., Brockopp, C., & Newell, S. J. 1997, MNRAS, 290, L65
Fitzgibbon, R. 2000, M.S. thesis, MIT
Greenhough, J., Chapman, S. C., Chaty, S., Dendy, R. O., & Rowlands, G. 2003, MNRAS, 340, 851
Livio, M., Pringle, J. E., & King, A. R. 2003, ApJ, 593, 184
Lovelace, R. V. E., Mehanian, C., Mobarry, C. M., & Sulkane, M. E. 1986, ApJS, 62, 1
Markwardt, C. B., Swank, J. H., & Taam, R. E. 1999, ApJ, 513, L37
Merloni, A. 2003, MNRAS, 341, 1051
Mirabel, I. F., Dhawan, V., Chaty, S., Rodriguez, L. F., Robinson, C., Swank, J. H., & Geballe, T. 1998, A&A, 330, L9
Mirabel, I. F., & Rodriguez, L. F. 1994, Nature, 371, 46
Muno, M. P., Morgan, E. H., & Remillard, R. A. 1999, ApJ, 527, 321
Narayan, R., Goldberg, P., & Goodman, J. 1987, MNRAS, 228, 1
Nowak, M. A., & Wagoner, R. V. 1991, ApJ, 378, 656
Pelletier, G., & Pudritz, R. E. 1992, ApJ, 394, 117
Psaltis, D., Belloni, T., & van der Klis, M. 1999, ApJ, 520, 262
Rau, A., Greiner, J., & McClusky, M. L. 2003, ApJ, 590, L37
Reig, P., Belloni, T., van der Klis, M., Mendez, M., Kylafis, N. D., & Ford, E. C. 2000, ApJ, 541, 883
Reig, P., Kylafis, N. D., & Giannios, D. 2003, A&A, 403, L15
Rodriguez, J., Durouchoux, Ph., Mirabel, I. F., Ueda, Y., Tagger, M., & Yamaoka, K. 2002a, A&A, 386, 271
Rodriguez, J., Varnière, P., Tagger, M., & Durouchoux, Ph. 2002b, A&A, 387, 487
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sobczak, G. J., McClintock, J. E., Remillard, R. A., Cui, W., Levine, A. M., Morgan, E. H., Orosz, J. A., & Bailyn, C. D. 2000, ApJ, 531, 537
Tagger, M. 2000, in AIP Conf. Proc. 510, The Fifth Compton Symposium, ed. M. L. McConnell & J. M. Ryan (Melville: AIP), 129
———. 2003, in New Views on Microquasars: Proc. Fourth Microquasars Workshop, ed. Ph. Durouchoux, Y. Fuchs, & J. Rodriguez (Kolkata: Centre for Space Physics), 68
Tagger, M., Henriksen, R. N., Sygnet, J. F., & Pellat, R. 1999, ApJ, 353, 654
Tomsick, J. A., & Kaaret, P. 2001, ApJ, 548, 401
Varnière, P., Rodriguez, J., & Tagger, M. 2002, A&A, 387, 497
Varnière, P., & Tagger, M. 2002, A&A, 394, 329