Supporting Information for

Synthesis of dinucleoside acylphosphonites by phosphonodiamidite chemistry and investigation of phosphorus epimerization

William H. Hersh*
Address: Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY 11367-1597, USA
Email: William H. Hersh - william.hersh@qc.cuny.edu
*Corresponding author

Experimental

Table of Contents

General Methods S2
(iPr₂N)₂PC(O)CH₃ (7). S2
(iPr₂N)₂PC(=CH₂)OC(O)CH₃ (8). S3
(iPr₂N)₂PC(O)C₆H₅ (9). S4
3'-5'-DMTr-OT)P(N(iPr)₂)C(O)CH₃ (10). S5
3'-5'-DMTr-OT)P(N(iPr)₂)C(O)C₆H₅ (11). S8
3'-5'-DMTr-OT)-5'-(3'-t-BuMe₂Si-OT)PC(O)CH₃ (12). S9
3'-5'-DMTr-OT)-5'-(3'-t-BuMe₂Si-OT)PC(O)C₆H₅ (13). S11
Conversion of 12 and 13 to 17. S12
Thermal decomposition of 12 and 13. S13
X-ray structure of 9. S14
Calculations. S15
References S16
¹H, ¹³C, ³¹P, COSY90, HETCOR, HSQC, and IR spectra. S17
XYZ coordinates from DFT optimization of 7. S58
XYZ coordinates from DFT optimization of 8. S59
XYZ coordinates from DFT optimization of 18. S60
XYZ coordinates from DFT optimization of 19. S62
XYZ coordinates from DFT optimization of 20. S63
XYZ coordinates from DFT optimization of 21. S65
Experimental

General methods. All reactions and sample analysis preparations were carried out in an inert-atmosphere glovebox with recirculating nitrogen, using oven-dried glassware. NMR spectra were recorded on 400 and 500 MHz Bruker spectrometers referenced to CDCl$_3$ solvent peaks [1,2] and for 31P NMR to external PPh$_3$ at -5.25 ppm. Peak assignments were made where possible using 2D COSY and HETCOR or HSQC spectra, with 13C-1H correlations shown in the spectral data where needed, as well as by comparison to the thymidine starting materials. Reaction solvents were distilled under nitrogen and then dried over activated 3 Å molecular sieves [3]. Column chromatography was carried out in the glovebox on 230-400 mesh silica gel that had been dried several hours at 250 °C under vacuum. For the peak assignments in the 1H NMR spectra of 12 and 13, the 3'-phosphorylated thymidine and the 5'-phosphorylated thymidine are labeled T1 and T2, respectively.

$(iPr_2N)_2PC(O)CH_3$ (7). The starting material $(iPr_2N)_2PH$ (4) was prepared via a modification of the literature procedure [4]. In the glovebox, powdered LiAlH$_4$ (0.242 g, 6.37 mmol, 1.17 equiv) was added in one portion to 1.451 g (5.44 mmol) of $(iPr_2N)_2PCl$ [5] in 10 mL of THF, and the suspension was stirred vigorously for two hours; while it was stoppered, the stopper was removed periodically to release pressure. The grey suspension was filtered through a layer of dry Celite (*CAUTION: the grey solid smokes and occasionally briefly ignites when removed from the glovebox*), and the solvent was then removed from the yellow solution using a vacuum pump. The resultant white solid suspended in a yellow oil was extracted with $7 \times \sim 8$ mL of hexanes, filtering each 8 mL extract through dried Celite. Solvent removal using a vacuum pump gave 1.16 g (5.00
mmol, 92% yield) of 4 as a white solid suspended in a clear oil, which on the basis of 1H and 31P NMR was ~93% pure. This material could be stored cold in the glovebox at −35 °C but was typically used immediately.

A sample of 4 (0.311 g, 1.34 mmol) was suspended in 7 mL CH$_2$Cl$_2$, the flask was fitted with a dropping funnel containing a solution of 0.119 g of CH$_3$C(O)Cl (1.52 mmol, 1.13 equiv) in 3 mL of CH$_2$Cl$_2$, and the dropping funnel was then attached to a solenoid-controlled vacuum valve. The acetyl chloride solution was added dropwise over ~1 min, while periodically opening the reaction to vacuum in order to keep the reaction under partial vacuum. Gentle bubbling of the solution occurred, presumably due to release of HCl gas, giving a yellow solution. Solvent removal gave a yellow solid that was then extracted with 3 × 5 mL of hexanes (the last extract was clear), filtering each extract through Celite. Final solvent removal gave 0.234 g (0.852 mmol, 64% yield) of 7 as a yellow oil at room temperature; storage at −35 °C gave a crystalline mass but it quickly melted at room temperature. The material so produced was used as is with no further purification; on the basis of 31P NMR it was > 95% pure. 1H NMR (400 MHz, CDCl$_3$) δ 3.29 (m, (CH$_3$)$_2$CH, 4H), 2.27 (d, 3J$_{PH}$ = 8.8 Hz, CH$_3$C(O) 3H), 1.23 (d, J = 6.8 Hz, 12H), 1.18 (d, J = 6.4 Hz, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 227.9 (d, 1J$_{PC}$ = 22.4 Hz), 49.8 (br d, (CH$_3$)$_2$CH, 2J$_{PC}$ = 9.1 Hz), 30.7 (d, CH$_3$C(O), 2J$_{PC}$ = 49.7 Hz), 24.4 (d, J = 6.2 Hz), 24.3 (d, J = 6.4 Hz); 31P NMR (162 MHz, CDCl$_3$) δ 63.5; IR (CDCl$_3$) 2969, 1654 cm$^{-1}$. HRMS (ESI): Calcd for C$_{14}$H$_{32}$N$_2$OP [M+H]$^+$ 275.2247, found 275.2247.

(iPr$_2$N)$_2$PC(=CH$_2$)OC(O)CH$_3$ (8). Reaction of 4 (0.876 g, 3.77 mmol), CH$_3$C(O)Cl (0.319 g, 4.06 mmol, 1.08 equiv), and Et$_3$N (0.392 g, 3.87 mmol, 1.03 equiv) in 13 mL of CH$_2$Cl$_2$ gave a mixture of 43% 8, 32% 7, and 25% unreacted 4, on the basis of
integration of the 1H and 31P NMR spectra. 1H NMR (400 MHz, CDCl$_3$) δ 5.48 (t, $J_{HH} = J_{PH} = 1.1$ Hz, 1H), 5.29 (dd, $J_{HH} = 1.1$ Hz, $J_{PH} = 7.3$ Hz, 1H), 2.09 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 168.8 (s), 161.5 (d, $J_{PC} = 8.8$ Hz), 111.4 (d, $J_{PC} = 16.8$ Hz), 48.0 (d, $J_{PC} = 12.0$ Hz, CH(CH$_3$)$_2$); 31P NMR (162 MHz, CDCl$_3$) δ 49.7. The iPr peaks could not be identified except as noted, and it appeared that the presumed OC(O)CH$_3$ carbon also overlapped the iPr region on the basis of the DEPT NMR.

(iPr$_2$N)$_2$PC(O)C$_6$H$_5$ (9). A sample of 4 (0.852 g, 3.67 mmol) prepared as described for the synthesis of 7 was suspended in 10 mL CH$_2$Cl$_2$ and Et$_3$N (0.402 g, 3.97 mmol, 1.08 equiv). The flask was fitted with a dropping funnel containing a solution of 0.563 g of C$_6$H$_5$C(O)Cl (4.01 mmol, 1.09 equiv) in 4 mL of CH$_2$Cl$_2$, which was then attached to a solenoid-controlled vacuum valve. The benzoyl chloride solution was added dropwise over ~1 min, while periodically opening the reaction to vacuum in order to keep the reaction under partial vacuum. Gentle bubbling of the solution occurred, presumably due to release of some HCl gas, giving an orange solution. Solvent removal gave an orange solid that was then extracted with 4×5 mL of hexanes (the last extract was clear), filtering each extract through Celite. Final solvent removal gave 1.10 g (3.27 mmol, 89% yield) of 9 as a yellow-orange solid. The material so produced was used as is with no further purification; on the basis of 31P NMR it was > 99.6% pure. 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (m, H_{ortho}, 2H), 7.46 (m, H_{para}, 1H), 7.38 (t, $J = 7.8$ Hz, H_{meta}, 2H), 3.32 (m, 4H), 1.21 (d, $J = 6.8$ Hz, 12H), 1.08 (d, $J = 6.8$ Hz, 12H); 13C NMR (100 MHz, CDCl$_3$) δ 220.9 (d, $^1J_{PC} = 23.7$ Hz), 140.8 (d, $^2J_{PC} = 39.7$ Hz, C$_{ipso}$), 132.3 (d, $^5J_{PC} = 1.5$ Hz, C$_{para}$), 128.2 (C$_{meta}$), 127.9 (d, $^3J_{PC} = 11.8$ Hz, C$_{ortho}$), 49.5 (br d, $^2J_{PC} = 8.1$ Hz), 24.3 (d, $^3J_{PC} = 5.7$ Hz), 23.9 (d, $^3J_{PC} = 6.1$ Hz); 31P NMR (162 MHz, CDCl$_3$) δ
59.3; IR (CDCl$_3$) 2969, 1631 cm$^{-1}$HRMS (ESI): Calcd for C$_{19}$H$_{34}$N$_2$OP [M+H]$^+$ 337.2403, found 337.2402.

3′-(5′-DMTr-OT)P(N(iPr)$_2$)C(O)CH$_3$ (10). Solid N-methylimidazolium triflate (NMI·Tf, 0.399 g, 1.72 mmol, 0.74 equiv) [6] was added to a suspension of 7 (0.639 g, 2.33 mmol,) and 5′-O-(4,4′-dimethoxytrityl)thymidine (5′-DMTr-OT) [7] (1.20 g, 2.21 mmol, 0.95 equiv) in 10 mL acetonitrile. After stirring for 1.25 h, only a small amount of solid remained and the solution was filtered through Celite. Solvent removal using a vacuum pump gave a foamy yellow solid that was taken up in 10 mL benzene, 20 mL ether was added to precipitate salts, the mixture was filtered, and the solvent was again removed using a vacuum pump to give a yellow solid. This was stirred with 10 mL hexane to remove some of the starting acyl, giving 1.56 g of product as a yellow powder (99% crude yield) that was 12% starting acyl and 85% product by 31P NMR but also contained impurities of DMTr-OT and iPr$_2$NH$_2^+$ Tf$^-$. Significant purification was achieved by taking up 1.32 g of this material in 8 mL benzene, filtering, and then precipitating out the product by addition of 24 mL of hexane. After cooling for 1 hr at −35 °C, the solvent was poured off and the residue pumped under vacuum to give a sticky orange solid; final solvent removal was achieved by addition of a small amount of ether and pulling a vacuum again to give a yellow foam (1.26 g, 95% recovery) that was 89% pure by 31P NMR.

Chromatography of 0.65 g of this material on 40 mL of silica gel on a 60 mL fritted funnel, eluting with 9:1 CH$_2$Cl$_2$:THF, gave a yellow band collected in three fractions (60 mL 9:1 CH$_2$Cl$_2$:THF, 20 mL 1:1 CH$_2$Cl$_2$:THF and 40 mL THF); all three fractions exhibited a spot with $R_f = 0.5$-0.55 on TLC (9:1 CH$_2$Cl$_2$:THF), with material at
the origin eluting at the end of the last fraction. Analysis by 31P NMR showed that the first two fractions (97.8 mg) were ~95% pure and ~86% the “fast” isomer at 117.6 ppm, while the third fraction (429 mg; 81% total recovery) was ~81% pure and ~33:67 “fast” : “slow” isomers at 117.6 and 116.8 ppm. The two samples were separately re-chromatographed.

The “fast” isomer was chromatographed on 10 mL of silica eluting only with 9:1 CH$_2$Cl$_2$: THF, and gave in the first two UV-active fractions 57.1 mg of material that was ~95% pure as a 93:7 mixture of “fast”: “slow” isomers. 1H NMR (500 MHz, CDCl$_3$) δ 8.51 (br s, NH, 1H), 7.66 (~q, 4J ≈ 1.2 Hz, H$_6$, 1H), 7.40 (m, Ph, 2H), 7.31 – 7.22 (m, Ph and 4H of MeOC$_6$H$_4$ AA'BB', 3H), 6.83 (m, 4H of MeOC$_6$H$_4$ AA'BB'), 6.40 (dd, 3J = 7.7, 5.9 Hz, H$_1$'), 4.65 (ddd, 3J ≈ 3.2 Hz, H$_3'$, 1H), 4.32 (~ddd, 3J ≈ 1.3 Hz, H$_4'$, 1H), 3.79 (s, MeOC$_6$H$_4$, 6H), 3.52 (dd, 2J = 10.7 Hz, 3J = 2.8 Hz, H$_5'$, 1H), 3.37 (dd, 2J = 10.7 Hz, 3J = 2.6 Hz, H$_5'$, 1H), 3.28 (m, CH(CH$_3$)$_2$, 2H), 2.51 (m, H$_2'$, 1H), 2.33 (m, H$_2'$, 1H), 2.24 (d, 3J$_{PH}$ = 5.4 Hz, CH$_3$C(O)P, 3H), 1.44 (d, 4J = 1.0 Hz, CH$_3$C$_1$, 3H), 1.19 (br d, 3J = 7.8 Hz, CH(CH$_3$)$_2$, 3H), 1.18 (br d, 3J = 7.3 Hz, CH(CH$_3$)$_2$, 3H); 13C NMR (125.8 MHz, CDCl$_3$) δ 226.9 (d, 1J$_{PC}$ = 25.3 Hz), 163.8, 158.9, 150.3, 144.4, 135.7 (CH$_1$), 135.5 (4°), 135.4 (4°), 130.27, 130.26 (Ar CH ~7.3; MeOC$_6$H$_4$ CH ~6.8), 128.3 (Ph CH ~7.4), 128.1, (Ar CH, ~7.3), 127.3 (Ar CH, ~7.25), 113.40, 113.38 (Ar CH, ~7.3; MeOC$_6$H$_4$ CH, ~6.8), 111.3 (4°), 87.1 (4°), 85.7 (d, 3J$_{PC4'}$ = 5.4 Hz, C$_4'$), 84.9 (CH$_1''$, 6.40), 77.6 (d, 2J$_{PC3''}$ = 19.9 Hz, CH$_3''$), 63.3 (CH$_5''$), 55.4 (MeO, 3.79), 46 (iPr CH, from HSQC cross peak with 1H at δ 3.28), 40.5 (d, 3J$_{PC2''}$ = 3.9 Hz, CH$_2''$), 30.8 (d, 2J$_{PC}$ = 36.4 Hz, CH$_3$C(O)P), ~25 (broad, iPr Me at 1.19 and 1.18), 15.4 (iPr Me at 1.19 and 1.18), 11.9 (CH$_3$C$_1$) ; 31P NMR (162
MHz, CDCl$_3$ δ 117.6, 116.8 (93.2:6.8); IR (CDCl$_3$) 3396, 2969, 1688 cm$^{-1}$. HRMS (ESI): Calcd for C$_{39}$H$_{49}$N$_3$O$_8$P [M+H]$^+$ 718.3252, found 718.3252.

The 32:68 "fast" :"slow" mixture was chromatographed on 30 mL of silica eluting only with 9:1 CH$_2$Cl$_2$:THF, giving three fractions as white foams consisting of isomeric mixtures of the "fast" :"slow" isomers as follows: 46:54 (~96% pure, 81.5 mg), 25:75 (~91% pure, 40.0 mg), and 18:82 (~92% pure, 55.7 mg). Detailed spectra were obtained for the 46:54 mixture (only peaks for the "slow" isomer are given except as noted): 1H NMR (500 MHz, CDCl$_3$) δ 8.82, 8.77 (fast, slow, br s, NH), 7.60 (~q, 4J \approx 1.3 Hz, H$_1$), 7.39 (m, 2H, Ph), 7.30 – 7.26 (m, 3H, Ph and 4H of MeOC$_6$H$_4$ AA‘BB’), 6.83 (m, 4H of MeOC$_6$H$_4$ AA‘BB’), 6.48 (dd, 3J $= 8.2$, 5.7 Hz, H$_{1'}$), 4.64 (m, H$_3$), 4.19 (~q, 3J \approx 2.6 Hz, H$_4$), 3.78 (s, 6H, MeOC$_6$H$_4$), 3.47 (dd, 2J $= 10.6$ Hz, 3J $= 2.7$ Hz, H$_{5'}$), 3.32 (dd, 2J $= 10.6$ Hz, 3J $= 2.7$ Hz, H$_{5'}$), 2.65 (m, H$_2'$, 1H), 2.33 (m, H$_2'$, 1H), 2.34 (d, 3J$_{PH}$ = 5.4 Hz, CH$_3$C(O)P), 1.44 (br s (overlaps fast isomer), CH$_3$C$_1$), 1.40 (d, 3J $= 6.7$ Hz, part of CH(CH$_3$)$_2$), 1.17 (br m, CH(CH$_3$)$_2$), 1.04 (br d, 3J $= 5.3$ Hz, part of CH(CH$_3$)$_2$); 13C NMR (125.8 MHz, CDCl$_3$) δ 226.8 (d, 1J$_{PC}$ = 25.3 Hz), 163.9, 158.9, 150.4, 144.3, 135.7 (CH$_1$), 135.5 (4°), 135.4 (4°), 130.25, 130.21 (Ar CH, ~7.3; MeOC$_6$H$_4$ CH ~6.8), 128.3 (Ph CH ~7.4), 128.1, (Ar CH, ~7.3), 127.3 (Ar CH, ~7.25), 113.39, 113.37 (Ar CH, ~7.3; MeOC$_6$H$_4$ CH, ~6.8), 111.4 (4°), 87.1 (4°), 85.8 (d, 3J$_{PC4'}$ = 4.7 Hz), 84.9 (CH$_1'$, 6.48), 78.0 (d, 2J$_{PC3'}$ = 19.0 Hz), 63.5 (C$_5'$), 55.3 (MeO, 3.79), 46.7 (iPr CH, from HSQC cross peak with 1H at δ 3.3), 40.1 (d, 3J$_{PC2'}$ = 4.7 Hz), 30.83 (d, 2J$_{PC} = 36.8$ Hz, CH$_3$C(O)P), ~25 (broad, iPr Me at 1.17, 1.04), 19.3 (iPr Me at 1.40), 11.9 (CH$_3$C$_1$); 31P NMR (162 MHz, CDCl$_3$) δ 117.6, 116.8 (46:54); IR (CDCl$_3$) 3396,
2969, 1688 cm\(^{-1}\). HRMS (ESI): Calcd for C\(_{39}\)H\(_{49}\)N\(_3\)O\(_8\)P [M+H]\(^+\) 718.3252, found 718.3254.

\(3'-(5'\text{-DMTr-OT})\)P(N(iPr)\(_2\))C(O)C\(_6\)H\(_5\) (11). An orange suspension of 9 (0.502 g, 1.49 mmol, 1.07 equiv), DMT-OT (0.758 g, 1.39 mmol), and NMI-Tf (0.326 g, 1.40 mmol, 1.01 equiv) in 10 mL acetonitrile was stirred for 2 h to give a clear orange solution. Solvent removal using a vacuum pump gave an orange-yellow foam. Chromatography on 30 mL of silica gel on a 60 mL fritted funnel, eluting with 9:1 CH\(_2\)Cl\(_2\):THF gave a yellow band in 60 mL of solvent, discarding a pale yellow tail; solvent removal gave 0.757 g (70% crude yield) of yellow foam consisting of product and starting material. Final purification was achieved by taking up the material in 4 mL ether, and precipitating out product by addition of 10 mL of hexane with swirling, cooling briefly to −35 °C, and filtration to give the product as a yellow solid. Addition of CH\(_2\)Cl\(_2\) followed by solvent removal was required to remove the hexane, giving 0.632 g of yellow foam (58% yield). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.70, 8.62 (minor, major, br s, NH, 1H), 7.91 (m, 2H of Ph), 7.69, 7.62 (minor, major, \(~q\), \(^4\)J \(\approx\) 1.6, 1.3 Hz, H\(_1\), 1H), 7.62 – 7.2 (m, 8H of Ph and 4H of MeOC\(_6\)H\(_4\) AA′BB′), 6.80 (m, 4H of MeOC\(_6\)H\(_4\) AA′BB′), 6.51, 6.40 (major, minor, dd, \(^3\)J \(\approx\) 7.8, 6.2, and 7.2, 6.2 Hz, H\(_4\)' 1H), 4.70 (m, H\(_3\)', 1H), 4.43, 4.26 (minor, major, \(~q\), \(^3\)J \(\approx\) 3.0, 2.7 Hz, H\(_4\)', 1H), 3.781, 3.779 and 3.73, 3.71 (major, minor, each two diastereotopic s, MeOC\(_6\)H\(_4\), 6H), 3.52, 3.43 (m, (H\(_5\)′)\(_2\), 2H), 3.27 (m, CH(CH\(_3\))\(_2\), 2H), 2.73 (major, ddd, \(^2\)J = 13.8 Hz, \(^3\)J = 6.1, 2.7 Hz, H\(_2\)', \(~0.5\) H), 2.58 (minor, ddd, \(^2\)J = 13.6 Hz, \(^3\)J = 5.9, 3.2 Hz, H\(_2\)', \(~0.5\) H), 2.34 (m, H\(_2\)', 1H), 1.45 (br s, CH\(_3\)C\(_1\), 3H), 1.22, 1.09, 0.7 (br, CH(CH\(_3\))\(_2\), 6H); \(^{13}\)C NMR (125.8 MHz, CDCl\(_3\)) \(\delta\) 217.2, 217.1 (major, minor, d, \(^1\)J\(_{PC}\) = 30.6, 29.9 Hz), 163.94, 163.90, 163.86, 163.84, 163.82,
158.83, 158.81, 158.77, 158.73, 150.34, 150.30, 144.58, 144.46, 139.08, 139.02, 138.83, 158.81, 158.77, 158.73, 150.34, 150.30, 144.58, 144.46, 139.08, 139.02, 138.83, 138.75 (all 4°), 135.92 (CH\textsubscript{1} (major) 7.62), 135.82 (CH\textsubscript{1} (minor) 7.69), 135.55, 135.52, 135.51 (4°), 133.16, 133.08 (Ar CH ~7.5), 128.5, 128.4, 128.3, 128.09, 128.06, 127.89, 127.83, 127.24, 127.17 (Ar CH 7.9-7.2), 113.36, 113.34, 113.32 (MeOC\textsubscript{6}H\textsubscript{4}CH ~6.8), 111.22, 111.14 (4°), 86.99, 86.98 (4°), 85.8, 85.6 (d, \textit{J}_{PC4} = 5.5, 4.3 Hz), 85.0, 84.8 (CH\textsubscript{1}', major, minor), 77.32, 77.16, 76.96 (visible in DEPT\textsubscript{145}, C\textsubscript{3}H 4.70), 63.5, 63.1, 55.4, 55.30, 55.28 (MeO, 3.78-3.71), 46.6, 40.2, ~24.5 (broad, iPr Me), 11.9 (CH\textsubscript{3}C\textsubscript{1}); 31P NMR (162 MHz, CDCl\textsubscript{3} \ \delta 119.8, 116.7 (42.5:57.5); IR (CDCl\textsubscript{3}) 3396, 2970, 1688 cm-1. HRMS (ESI): Calcd for C\textsubscript{44}H\textsubscript{51}N\textsubscript{3}O\textsubscript{8}P [M+H]+ 780.34083, found 780.33935.

\textbf{3'-\textit{(5'-DMTr-OT)-5'-\textit{(3'-\textit{t-BuMe\textsubscript{2}Si-OT})PC(O)CH\textsubscript{3}} (12)}. To a stirred solution of 69.4 mg of 10 (0.097 mmol, 1.46 equiv) and 23.6 mg of 3'-\textit{O-\textit{(\textit{t}-butyldimethylsilyl)thymidine [8,9] (3'-TBS-OT, 0.066 mmol, 1 equiv) in 1 mL of acetonitrile was added 0.95 g (1.2 mL) of 0.20 M/0.10 M pyridinium trifluoroacetate/N-methylimidazole (PTFA/NMI) in acetonitrile (0.24/0.12 mmol, 2.5/1.2 equiv relative to 10), in one portion. The clear solution was stirred for 25 min, the solution was concentrated to about half its volume using a vacuum pump, and the solution was applied to a column of 6 mL of silica gel packed in THF. A UV-active band was eluted in about 10 mL of THF, the solvent was removed using a vacuum pump, and triturated with ether to give 105.4 mg of pale yellow foam. 31P NMR indicated complete reaction of 10 and the presence of ~12% of unidentified material in the dinucleoside acyl region, and 1H NMR indicated ~14% of unreacted 3'-TBS-OT. The mixture was applied in 2 mL of CH\textsubscript{2}Cl\textsubscript{2} to a 15 mL column of silica packed in 5% THF in CH\textsubscript{2}Cl\textsubscript{2}. After elution with 20
mL of 5% THF in CH₂Cl₂ followed by 10 mL of 10% THF in CH₂Cl₂, unidentified weakly UV-active material (6.6 mg total) eluted in 5 mL of 10% THF in CH₂Cl₂ followed by 20 mL of 20% THF in CH₂Cl₂. The remaining UV-active material eluted in 30 mL of 20-30% THF in CH₂Cl₂ followed by 20 mL of THF, giving 54.5 mg of 12 (~85% yield) that was ~84% pure by ³¹P NMR and contained ~14 mol% unreacted 3'-TBS-OT.

Rechromatography of this material combined with similar fractions from prior syntheses (99 mg total) on a 15 mL column of silica packed in 10% THF in ethyl acetate gave after a 17 mL forerun an 8 mL UV-active fraction with virtually all the 12 recovered (55 mg), containing 6% of an unidentified impurity (³¹P NMR: 142.9 ppm) and ~36 mol% of 3'-TBS-OT. ¹H NMR (500 MHz, CDCl₃) ⁹ 9.57-9.35 (5 s, NH, 2H), 7.59, 7.55 (q, ⁴J ≈ 1.2, 1.1 Hz, H₆, 1H), 7.37 (m, 3H), 7.26 (m, 7H), 6.83 (d, J = 7.5 Hz, 4H of MeOC₆H₄AA’BB’), 6.42, 6.39 (dd, ³J ≈ 8.5, 6.0 Hz and 7.5, 6.0 Hz, T¹H₁’, 1H), 6.29, 6.24 (t, ³J ≈ 6.5, 6.8 Hz, T²H₁’, 1H), 4.80 (~q, ³J ≈ 6.8 Hz, T¹H₃’, 0.5 H), 4.38, 4.21, 4.06 (m, ~2H), 3.93, 3.89 (m, 2H, overlapping with 3'-TBS-OT), 3.781, 3.778 (s, MeO, 6H), 3.52, 3.36 (m, T¹H₅’, 1.5H), 2.91 (m, T¹H₅’, 0.5 H), 2.6-2.2 (m, H₂’, 4H), 2.36, 2.28 (d, J = 4.0 and 4.0 Hz, CH₃C(O), 3H, with overlapping 3'-TBS-OT), 1.87, 1.83 (s, T²CH₃C-5, 3H), 1.46, 1.45 (d, ⁴J ≈ 0.5 Hz, T¹CH₃C-5, 3H), 0.88 (s, t-Bu, 9H), 0.078, 0.054, 0.040 (s, Me₂Si, 6H); ¹³C NMR (125.8 MHz, CDCl₃) ⁹ 223.28, 223.25 (d, JPC = 38.6, 41.4 Hz), 164.11, 164.04, 158.9, 150.68, 150.63, 150.51, 144.20, 144.16 (all 4°), 137.15, 136.0, 135.24 (CH₆ 7.59, 7.55), 135.17 (CH₆ 7.59, 7.55), 130.2, 128.2, 127.4, 113.4, (MeOC₆H₄ 6.83), 111.7 (4°), 111.27 (4°), 111.20 (4°), 111.11 (4°), 87.7 (3'-TBS-OT, CH₁’), 87.33, 87.28, 87.0, 86.0, 85.7, 85.4, 85.1, 84.75, 84.69, 71.7, 71.36, 71.32, 68.4, 66.7, 63.2, 63.1, 62.1, 55.4 (MeO), 40.75, 40.59, 39.9, 30.2 (CH₃C(O)), 29.9 (CH₃C(O)), 25.83 (t-Bu),
25.79 (t-Bu), 18.06, 18.04, 18.00 (t-Bu 4° C), 12.63, 12.54 (\(T^2\)CH₃C-5), 11.99, 11.92
\((T^1\)CH₃C-5), -4.52, -4.58, -4.72, -4.74 (CH₃Si); \(^{31}\)P NMR (202 MHz, CDCl₃) \(\delta\) 148.2,
145.2 (49:51); IR (CDCl₃) 3395, 2957, 2932, 1690 cm\(^{-1}\). HRMS (ESI): Calcd for
C\(_{49}\)H\(_{62}\)N\(_4\)O\(_{13}\)PSi\(^+\) [M+H\(^+\)] 973.38148, found 973.38100.

3’-(5’-DMTr-OT)-5’-(3’-t-BuMe\(_2\)Si-OT)PC(O)C\(_6\)H\(_5\) (13). To a stirred solution of
118.0 mg of 11 (0.151 mmol, 1.34 equiv) and 40.0 mg of 3’-TBS-OT (0.112 mmol, 1
equiv) in 2 mL of acetonitrile was added 1.51 g (1.93 mL) of 0.20 M/0.10 M PTFA/NMI
in acetonitrile (0.385/0.193 mmol, 2.6/1.3 equiv relative to 11), in one portion. The
yellow solution was stirred for 30 min, the solution was concentrated to about half its
volume using a vacuum pump, and the solution was applied to a column of 7 mL of
silica gel packed in THF. The yellow band was eluted in about 10 mL of THF, the
solvent was removed using a vacuum pump, and triturated with ether to give 156.8 mg
of yellow foam. \(^{31}\)P NMR indicated the mixture contained 34 mol% of 11. The mixture
was applied in 3 mL of CH\(_2\)Cl\(_2\) to a 15 mL column of silica packed in 5% THF in CH\(_2\)Cl\(_2\).
After elution with 32 mL of 5% THF in CH\(_2\)Cl\(_2\) followed by 10 mL of 10% THF in CH\(_2\)Cl\(_2\),
unreacted 11 eluted in 45 mL of 10% THF in CH\(_2\)Cl\(_2\), towards the end of which ~6 mg of
13 was eluted. The main yellow band eluted in 30 mL of 1:1 THF:CH\(_2\)Cl\(_2\), giving 88 mg
of 13 as a yellow solid, containing 7.5% of unidentified impurities \((\(^{31}\)P NMR: 150.1,
148.0 ppm, 5.5% and 2% respectively), a trace of 11, and ~12% of 3’-TBS-OT. \(^1\)H NMR
(500 MHz, CDCl₃) \(\delta\) 9.19-9.05 (4 s, NH, 2H), 7.96-7.93 (m, Ar, 2H), 7.60-7.19 (m, Ar,
\(T^1\)H\(_6\), \(T^2\)H\(_6\), 14H), 6.84-6.81 (m, 4H of MeOC\(_6\)H\(_4\) AA’BB’), 6.44, 6.40 (dd, \(3\)\(J\) = 7.8, 6.3 Hz
and 8.5, 5.5 Hz, \(T^1\)H\(_1\), 1H), 6.30 (m, \(T^2\)H\(_1\), 1H), 4.86, 4.79 (~br dd, \(3\)\(J\) ≈ 6.9, 6.9 Hz, \(T^1\)H\(_3\),
1 H), 4.43, 4.34 (~dd and m, \(3\)\(J\) ≈ 9.0, 5.0 Hz, \(T^2\)H\(_3\), 1 H), 4.2-4.00 (m, 1H, \(T^1\)H\(_4\), 2H,
T²H₅′), 3.93 (m, 1H overlapping with 3′-TBS-OT, T²H₄′), 3.786, 3.785, 3.77 (s, MeO, 6H),
3.44-3.34 (m, T¹H₅′, 1.5 H), 3.11 (dd, ³J = 2.3 Hz, ²J = 10.8 Hz, T¹H₅′, 0.5 H), 2.50, 2.42
(br dd, ³J = 12.3, 5.3 Hz and 13.1, 5.8 Hz, T¹H₂′, 1H), 2.38-2.23 (m, T¹H₂′, 1H), 2.22-2.11
(m, T²H₂′, 2H), 1.85, 1.79 (d, ⁴J = 0.7 Hz, T²CH₃C-5, 3H), 1.45, 1.38 (d, ⁴J = 0.7 Hz,
T¹CH₃C-5, 3H), 0.86 (s, t-Bu, 9H), 0.032, 0.028, 0.014, 0.003 (s, Me₂Si, 6H); ¹³C NMR
(125.8 MHz, CDCl₃) δ 211.6, 211.1 (minor, major, d, ¹JPC = 44.3, 42.4 Hz), 163.9, 158.9,
150.6, 150.4, 144.28, 144.22, 137.4 (all 4°), 137.17, 136.9 (4°), 136.3, 135.9, 135.4,
135.3, 135.22 (4°), 135.19 (4°), 135.18 (4°), 134.49, 134.41, 130.20, 130.13, 129.19,
129.16, 128.44, 128.37, 128.31, 128.19, 128.13, 127.38, 113.47 (MeOC₆H₄ 6.84-6.81),
113.42 (MeOC₆H₄ 6.84-6.81), 113.41 (MeOC₆H₄ 6.84-6.81), 111.67 (4°), 111.62 (4°),
111.4 (4°), 111.20 (4°), 111.16 (4°), 87.7, 87.3, 86.1, 85.8, 85.5, 85.4, 84.9 (C₄H₁’), 84.7
(C₄H₁’), 84.6 (C₄H₁’), 71.8, 71.6, 68.6, 68.5, 66.95, 66.91, 63.29 (T¹CH₅’), 63.17 (T¹CH₅’),
62.2 (CH₅’ of 3′-TBS-OT), 55.39 (MeO), 55.37 (MeO), 40.67 (CH₂’), 40.58 (CH₂’), 39.94,
25.8 (t-Bu), 18.0 (t-Bu 4° C), 12.59, 12.56 (T²CH₃C-5), 11.9, 11.8 (T¹CH₃C-5), -4.52,
-4.59, -4.71, -4.76 (CH₃Si); ³¹P NMR (202 MHz, CDCl₃) δ 151.5, 150.2 (46:54); IR
(CDCI₃) 3395, 2955, 2932, 1690 cm⁻¹. HRMS (ESI): Calcd for C₅₄H₆₅N₄NaO₁₃PSi⁺
[M+Na]^+ 1057.37907, found 1057.37949.

Conversion of 12 and 13 to 17. Sulfurization of 13 occurred by reaction in
CD3CN with excess phenylacetyl disulfide (PADS) [10] or DDTT [11] and gave new
peaks at 66.4 and 66.0 ppm in the ³¹P NMR spectrum consistent with formation of the
tetraental sulfides. Reaction with 2 M triethylammonium bicarbonate (TEAB) or with
bis(trimethylsilyl)acetamide (BSA) [12] followed by TEAB gave material with only one
major peak in the ³¹P NMR spectrum at 113.3 ppm, and it could not be identified.
Oxidation of 13 in acetonitrile with anhydrous 3.3 M tert-butyl hydroperoxide [13] gave two peaks in the 31P NMR spectrum for the diastereomeric oxides at -0.9 and -1.1 ppm. Treatment with TEAB gave the H-phosphonate (31P NMR (CDCl$_3$): 8.8, 7.5 ppm [12]), and treatment with PADS gave the diastereomeric phosphorothioates (31P NMR (CDCl$_3$): 58.0, 57.9 ppm [12]).

Oxidation of 12 in the same manner gave the diastereomeric oxides (31P NMR (CDCl$_3$): -2.5, -2.7 ppm), and TEAB and PADS gave the same H-phosphonate and phosphorothioate spectra as for 13.

Thermal decomposition of 12 and 13. Samples of 12 or 13 were dissolved in acetonitrile and added to a one-piece teflon vacuum stopcock-sealed heavy-walled glass vessel. The vessel was evacuated using a vacuum pump and then heated in a thermostatted oil bath. Periodically the solvent was removed under vacuum and the contents analyzed by NMR after extraction into CDCl$_3$ solution; after adding the NMR sample back to the vessel, the solvent was once again removed under vacuum and replaced with acetonitrile. Two samples of 12 were examined. A 1:1 mixture of diastereomers was heated for 12 h at 50 °C followed by 4 h at 75 °C, with no change in diastereomer ratio but extensive decomposition to unidentified materials that exhibited very broad bands in the 1H and particularly the 31P NMR spectra. A 42:58 sample of diastereomers was heated sequentially for 1.5 h at 100 °C, 1.5 h at 130°C, and 1.5 h at 150 °C. No change in diastereomer ratio occurred, but decomposition was nearly complete at the end. One sample of 13 was heated, for 2.5 h at 75 °C and 6 h at 100 °C, with no change in the 1:1 diastereomer ratio, and again with nearly complete decomposition.
X-ray structure of 9. A yellow fragment of 9 with approximate dimensions 0.31 mm x 0.37 mm x 0.41 mm, cleaved from a large crystal obtained by slow cooling of a saturated hexanes solution at –35 °C, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker Smart Breeze CCD system equipped with a graphite monochromator at 100(2) K, cooled by an Oxford Cryosystems 700 Series Cryostream. A total of 1464 frames were collected. The total exposure time was 12.20 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 21786 reflections to a maximum θ angle of 27.10° (0.78 Å resolution), of which 4311 were independent (average redundancy 5.054, completeness = 100.0%, \(R_{\text{int}} = 2.00\%, \ R_{\text{sig}} = 1.47\% \)) and 3921 (90.95%) were greater than 2\(\sigma(F^2) \). The final cell constants of \(a = 15.8768(8) \) Å, \(b = 9.2589(5) \) Å, \(c = 14.0614(7) \) Å, \(\beta = 108.8770(10)\° \), volume = 1955.87(17) Å\(^3\), were based upon the refinement of the XYZ-centroids of 9998 reflections above 20 \(\sigma(I) \) with 5.168° < 2\(\theta \) < 54.18°. Data were corrected for absorption effects using the numerical method (SADABS). The ratio of minimum to maximum apparent transmission was 0.927. The calculated minimum and maximum transmission coefficients (based on crystal size) were 0.9430 and 0.9550.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P2\(_1\)/c, with Z = 4 for the formula unit, \(\text{C}_{19}\text{H}_{33}\text{N}_2\text{OP} \). The final anisotropic full-matrix least-squares refinement on \(F^2 \) with 249 variables converged at \(R_1 = 3.11\% \), for the observed data and \(wR_2 = 8.21\% \) for all data. The goodness-of-fit was 1.048. The largest peak in the final difference electron density synthesis was 0.412
e⁻/Å³ and the largest hole was -0.202 e⁻/Å³ with an RMS deviation of 0.041 e⁻/Å³. On the basis of the final model, the calculated density was 1.143 g/cm³ and F(000), 736 e⁻.

Cambridge Crystallographic Data Centre deposition number for 9: CCDC 1030743. The data can be obtained free from Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Calculations. All geometry and NMR calculations were carried out using Gaussian 09 Revision A.02 and D.01 [14] by first carrying out a geometry optimization (DFT, 6-31G(d), B3LYP) with modeling of solvation in chloroform using the polarization continuum model (IEFPCM), with calculation of vibrational frequencies to insure the finding of an energy minimum; NMR calculations (GIAO) were then carried out on the optimized structures using the 6-311+G(2d,p) basis set and the same IEFPCM solvation method.

Each of the inversion barrier calculations was carried out by optimizing using the 6-31+G(d) basis set, but without solvation modeling, with the exception of the phosphite triester where acetonitrile modeling was used. Following optimization, one of the groups was rotated to give the inverted structure, which was then reoptimized; 18 and 19 gave back the same structures but in the opposite configuration at phosphorus. For the transition state calculations, one enantiomer of each optimized structure was converted to a trigonal planar structure, and then used as the starting point for the transition state search. Both the QST3 option in Gaussian as well as the simpler Berny TS option ts=(opt,estmfc,noeigentest) described by the Collum group [15] were successfully used. The reported barriers are the smaller barrier from each ground state, as the sum of the electronic and thermal free energies at 298.15 K.
References

1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., *J. Org. Chem.* **1997**, *62*, 7512-7515.
2. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., *Organometallics* **2010**, *29*, 2176-2179.
3. Williams, D. B. G.; Lawton, M., *J. Org. Chem.* **2010**, *75*, 8351-8354.
4. King, R. B.; Sundaram, P. M., *J. Org. Chem.* **1984**, *49*, 1784-1789.
5. Dellinger, D. J.; Sheehan, D. M.; Christensen, N. K.; Lindberg, J. G.; Caruthers, M. H., *J. Am. Chem. Soc.* **2003**, *125*, 940-950.
6. Xie, C.; Stasak, M. A.; Quatroche, J. T.; Sturgill, C. D.; Khau, V. V.; Martinelli, M. J., *Org. Process Res. Dev.* **2005**, *9*, 730-737.
7. Schaller, H.; Weimann, G.; Lerch, B.; Khorana, H. G., *J. Am. Chem. Soc.* **1963**, *85*, 3821-3827.
8. Ogilvie, K. K.; Thompson, E. A.; Quilliam, M. A.; Westmore, J. B., *Tetrahedron Lett.* **1974**, 2865-2868.
9. Ogilvie, K. K., *Can. J. Chem.* **1973**, *51*, 3799-3807.
10. Chervuallath, Z. S.; Carty, R. L.; Moore, M. N.; Capaldi, D. C.; Krotz, A. H.; Wheeler, P. D.; Turney, B. J.; Craig, S. R.; Gaus, H. J.; Scozzari, A. N.; Cole, D. L.; Ravikumar, V. T., *Org. Process Res. Dev.* **2000**, *4*, 199-204.
11. Guzaev, A. P., *Tetrahedron Lett.* **2011**, *52*, 434-437.
12. Mukhlall, J. A.; Hersh, W. H., *Nucleosides, Nucleotides Nucleic Acids* **2011**, *30*, 706-725.
13. Hill, J. G.; Rossiter, B. E.; Sharpless, K. B., *J. Org. Chem.* **1983**, *48*, 3607-3608.
14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*, Gaussian, Inc.: Wallingford, CT, 2009.
15. Collum, D. B. Electronic Structure calculations in Gaussian.
 http://collum.chem.cornell.edu/documents/Gaussian_optimization.pdf (accessed October 29, 2014).
| Name | whil0273e4 |
|----------|------------|
| RXN no. | 10 |
| Date | 2014/10/25 |
| Time | 10:45 |
| Instrument | spect |
| Probe | 5 mm QXI 1H 2- |
| Pulsprog | zgbl |
| Solvent | CHDCl3 |
| NMR | 16 |
| SS | 2 |
| SMe | 64 |
| SMe2 | 10320.376 Hz |
| PDMES | 0.107652 Hz |
| AQ | 3.171992 sec |
| DW | 48.400 usec |
| TE | 7.500 usec |
| T1 | 1.0000000000 sec |
| T2g | 1 |

CHANNEL 1
No.
PI1
PLC1
PLC1.W
SPM1
SI
SF
WCM
SFO
LB
GR
FC
SR
XYZ Coordinates for 7 from DFT optimization;
E(6-311G+(2d,p)) = -1078.49563987 au

Atom Number	Atomic Number	Coordinates (Angstroms)		
1	15	-0.023368 0.169733 -0.826094		
2	8	-0.734670 2.771713 -0.257079		
3	7	1.421462 -0.241278 0.007741		
4	7	-1.433560 -0.180628 0.076356		
5	6	0.110745 2.055204 -0.770891		
6	6	1.954595 0.457598 1.206204		
7	1	1.265477 1.285959 1.401025		
8	6	1.230538 2.668374 -1.604044		
9	6	-2.595677 -0.749460 -0.660859		
10	1	-3.379189 -0.882476 0.091785		
11	6	-1.855706 -1.127351 2.350269		
12	1	-2.792431 -1.634746 2.091102		
13	1	-1.905181 -0.875026 3.416413		
14	1	-1.036204 -1.837205 2.199139		
15	6	1.979011 -0.427224 2.465267		
16	1	0.992353 -0.847254 2.677949		
17	1	2.295303 0.163317 3.333244		
18	1	2.686572 -1.257599 2.360206		
19	6	-2.779004 1.157441 1.746813		
20	1	-2.595511 2.066033 1.170573		
21	1	-2.825313 1.416214 2.811931		
22	1	-3.758830 0.751448 1.469363		
23	6	2.194976 -1.423811 -0.461701		
24	1	3.064451 -1.485386 0.199956		
25	6	-2.317140 -2.137115 -1.256476		
26	1	-1.558304 -2.085880 -2.044680		
27	1	-3.231916 -2.549515 -1.699533		
28	1	-1.966114 -2.830066 -0.485131		
29	6	-1.647562 0.143043 1.506400		
30	1	-0.723446 0.615459 1.849028		
31	6	3.342222 1.078660 0.960888		
32	1	4.107956 0.313744 0.789077		
33	1	3.652009 1.658062 1.838532		
34	1	3.331079 1.748489 0.096710		
35	6	-3.151826 0.212103 -1.724480		
36	1	-3.361303 1.194693 -1.291130		
37	1	-4.079940 -0.183996 -2.155062		
38	1	-2.434737 0.346880 -2.542690		
39	6	1.428934 -2.746677 -0.313775		
40	1	1.066611 -2.878333 0.711023		
41	1	2.081359 -3.593516 -0.559514		
Atom Number	Atomic Number	X	Y	Z
-------------	---------------	-----------	-----------	-----------
1	15	-0.029622	-0.290573	0.388031
2	7	0.331583	1.370506	0.127581
3	7	-1.665212	-0.645341	-0.027312
4	6	0.948391	-1.059218	-0.988680
5	6	0.515259	2.018791	-1.196116
6	1	0.261494	1.256220	-1.938670
7	6	-2.398183	-1.560601	0.891703
8	1	-3.421917	-1.602572	0.507199
9	6	-3.469202	1.043516	-0.454945
10	1	-4.234176	0.527592	0.137127
11	1	-3.986613	1.599798	-1.246116
12	1	-2.961397	1.759847	0.197151
13	6	-0.430970	3.213073	-1.412570
14	1	-1.476769	2.926987	-1.271244
15	1	-0.315832	3.602647	-2.431171
16	1	-0.209777	4.036209	-0.722980
17	6	-3.187529	-0.907068	-2.031617
18	1	-2.496339	-1.610535	-2.504175
19	1	-3.673304	-0.327311	-2.825358
20	1	-3.969733	-1.488157	-1.530399
21	6	0.680811	2.191272	1.319254
22	1	0.898673	3.191351	0.931461
23	6	-2.492367	-1.055986	2.341422
24	1	-1.508460	-1.038454	2.821093
25	1	-3.139745	-1.718740	2.928592
26	1	-2.912087	-0.045719	2.380395
27	6	-2.463810	0.047196	-1.062340
28	1	-1.749262	0.620925	-1.657532
29	6	1.974576	2.429447	-1.467459
30	1	2.313301	3.208932	-0.775176
XYZ Coordinates for 18 from DFT optimization;

Sum of electronic and thermal Free Energies(6-31G+(d))= -691.998977 au

Atom Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	6	-2.395875	1.348909	-0.250561	
2	6	-3.305990	0.289175	-0.329180	
3	6	-2.852673	-1.023242	-0.180918	
4	6	-1.494845	-1.272653	0.045765	
5	6	-0.567901	-0.220820	0.125882	
6	6	-1.041285	1.094246	-0.025389	
7	15	1.215158	-0.658838	0.419399	
8	6	3.553367	0.041777	-1.053137	
9	6	2.026509	0.204764	-1.039799	
10	6	1.656013	0.528174	1.795329	
11	1	-2.742049	2.373614	-0.364742	
12	1	-4.360560	0.487733	-0.503957	
13	1	-3.552962	-1.853029	-0.239194	
14	1	-1.147473	-2.296842	0.162938	
XYZ Coordinates for 18 transition state from DFT optimization;
Sum of electronic and thermal Free Energies(6-31G+(d))= -691.947172 au

Atom Number	Atomic Number	X	Y	Z
1	6	2.834870	0.855352	0.234687
2	6	3.291750	-0.457361	0.077929
3	6	2.356301	-1.472865	-0.150160
4	6	0.993569	-1.189413	-0.220144
5	6	0.521841	0.135172	-0.067570
6	6	1.474714	1.154192	0.164504
7	15	-1.211261	0.519598	-0.172081
8	6	-2.907505	-1.648502	0.691271
9	6	-2.448595	-0.806549	-0.510153
10	6	-1.747138	2.266628	0.029452
11	1	3.543851	1.660685	0.413915
12	1	4.352566	-0.684755	0.134037
13	1	2.688778	-2.501371	-0.272497
14	1	0.293032	-2.002527	-0.392960
15	1	1.151979	2.184737	0.289689
16	1	-3.630047	-2.411115	0.367984
17	1	-2.062127	-2.159287	1.164162
18	1	-3.384740	-1.022485	1.452597
19	1	-3.304314	-0.295947	-0.969505
20	1	-2.033203	-1.451322	-1.294621
21	1	-2.831058	2.284109	-0.127840
22	1	-1.545628	2.658341	1.032032
23	1	-1.289018	2.927039	-0.714681
XYZ Coordinates for 19 from DFT optimization;
Sum of electronic and thermal Free Energies \((6-31G+(d)) = -766.036587\) au

Atom Number	Atomic Number	Coordinates (Angstroms)
X	Y	Z
1	6	-2.332829 0.055021 1.437940
2	6	-3.290100 0.279684 0.442357
3	6	-2.916996 0.225074 -0.902225
4	6	-1.591192 -0.054336 -1.249886
5	6	-0.619296 -0.279242 -0.261478
6	6	-1.009530 -0.221243 1.088513
7	15	1.115680 -0.640195 -0.806029
8	6	2.067601 0.734962 0.082548
9	6	1.611924 -2.080081 0.258289
10	8	3.045519 0.467672 0.759838
11	6	1.636892 2.166326 -0.180619
12	1	-2.616854 0.097075 2.486675
13	1	-4.320150 0.494524 0.715388
14	1	-3.655643 0.394879 -1.681664
15	1	-1.307673 -0.102437 -2.298680
16	1	-0.278035 -0.389503 1.875496
17	1	2.673771 -2.281415 0.089696
18	1	1.036429 -2.959498 -0.048406
19	1	1.463815 -1.902480 1.327786
20	1	2.364152 2.854252 0.259292
21	1	0.646606 2.350259 0.252646
22	1	1.555374 2.348894 -1.259133

XYZ Coordinates for 19 transition state from DFT optimization;
Sum of electronic and thermal Free Energies \((6-31G+(d)) = -766.002998\) au

Atom Number	Atomic Number	Coordinates (Angstroms)
X	Y	Z
1	6	-2.989774 0.765051 -0.679087
2	6	-3.506502 -0.367112 -0.041367
3	6	-2.644195 -1.224481 0.647920
4	6	-1.277615 -0.945800 0.715989
5	6	-0.742794 0.176661 0.054693
6	6	-1.619274 1.026889 -0.648425
7	15	1.026577 0.550220 0.110624
8	6	2.354735 -0.621259 -0.172889
9	6	1.551401 2.259579 0.518064
10	8	3.522774 -0.254005 -0.063112
11	6	1.989009 -2.043502 -0.557687
12	1	-3.651756 1.436440 -1.220293
XYZ Coordinates for 20 from DFT optimization;
Sum of electronic and thermal Free Energies (6-31G+(d)) = -936.138233 au

Atom Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	6	-2.054739	0.044486	-0.300289	
2	6	-2.940209	-0.973618	0.436752	
3	6	-4.354482	-0.822392	0.088488	
4	7	-5.473514	-0.692587	-0.196166	
5	8	-0.715862	-0.157069	0.161113	
6	15	0.549743	0.223342	-0.890229	
7	6	2.194851	-1.760140	-0.121028	
8	8	1.762588	-0.374544	0.055362	
9	8	0.768444	1.827666	-0.628002	
10	6	0.941617	2.429625	0.686626	
11	1	-2.376141	1.066377	-0.070372	
12	6	3.679172	-1.744192	-0.465997	
13	1	1.632212	-2.195611	-0.958582	
14	6	1.879371	-2.532016	1.155251	
15	1	-2.124125	-0.106865	-1.384949	
16	1	-2.830468	-0.843861	1.519349	
17	1	-2.623123	-1.992938	0.190102	
18	6	0.911972	3.938642	0.525724	
19	1	1.897357	2.090180	1.097187	
20	1	0.135627	2.082099	1.340833	
21	1	2.189290	-3.578210	1.047850	
22	1	4.046169	-2.767518	-0.606859	
23	1	0.806554	-2.509073	1.370993	
24	1	4.255394	-1.279126	0.342726	
25	1	3.858506	-1.182683	-1.389140	
26	1	2.416489	-2.099480	2.007732	
27	1	1.048171	4.414954	1.503946	
28	1	-0.046243	4.270960	0.111374	
29	1	1.716107	4.277961	-0.136549	
XYZ Coordinates for 20 after rotation to opposite configuration, from DFT optimization;
Sum of electronic and thermal Free Energies (6-31G+(d)) = -936.137960 au

Atom Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	6	2.038365	-0.332346	-0.240296
2	6	3.087921	0.468896	0.548525
3	6	4.451315	0.020820	0.257507
4	7	5.528094	-0.343814	0.017209
5	8	0.752412	0.148930	0.158980
6	15	-0.469082	0.263299	-0.999639
7	6	-1.769137	-1.737475	0.390085
8	8	-1.269116	-1.154859	-0.863489
9	8	-1.476091	1.214423	-0.089394
10	6	-1.168394	2.624497	0.038825
11	1	2.118076	-1.399170	-0.005565
12	6	-3.291884	-1.751465	0.329960
13	1	-1.435138	-1.103132	1.216732
14	6	-1.160049	-3.127471	0.525561
15	1	2.191481	-0.200461	-1.318705
16	1	2.905330	0.360018	1.623658
17	1	3.006766	1.533670	0.303516
18	6	-2.384660	3.333245	0.607938
19	1	-0.904939	3.031720	-0.946485
20	1	-0.302105	2.736384	0.700578
21	1	-1.508658	-3.600495	1.451239
22	1	-3.699301	-2.185614	1.250883
23	1	-0.066781	-3.075602	0.557092
24	1	-3.638513	-2.355275	-0.517218
25	1	-3.686643	-0.736653	0.221907
26	1	-1.455285	-3.762723	-0.317953
27	1	-2.166838	-4.401092	0.726783
28	1	-2.649296	2.924937	1.589570
29	1	-3.247082	-2.283555	-0.059309

XYZ Coordinates for 20 transition state from DFT optimization;
Sum of electronic and thermal Free Energies (6-31G+(d)) = -936.072122 au

Atom Number	Atomic Number	Coordinates (Angstroms)		
		X	Y	Z
1	6	2.370958	-0.332605	0.000023
2	6	3.536484	-1.341651	0.000325
3	6	4.840569	-0.675170	0.000196
4	7	5.865295	-0.126270	0.000115
5	8	1.155797	-1.069680	0.000426
Number	Atomic Number	X	Y	Z
--------	---------------	------	------	------
1	6	0.417580	2.965013	0.584131
2	8	-1.854501	2.326648	0.122276
3	1	-0.021325	3.905237	0.930003
4	6	-0.671930	2.036281	0.104336
5	15	-0.234200	0.359015	-0.690536
6	6	2.076795	-0.948312	-0.244079
7	8	1.188423	0.141491	0.130612
8	8	-1.273562	-0.595438	0.194031
9	6	-2.430370	-1.164635	-0.454690
10	1	0.984150	2.484599	1.390053
11	6	3.467341	-0.359128	-0.453263
12	1	1.717047	-1.377673	-1.191180
13	6	2.031773	-2.012664	0.848426
14	1	1.132742	3.159813	-0.225472

XYZ Coordinates for 21 from DFT optimization;
Sum of electronic and thermal Free Energies(6-31G+(d))= -842.668118 au
Atom Number	Atomic Number	X	Y	Z
1	6	-0.203875	-2.883460	0.605711
2	8	-2.288031	-1.829577	0.045501
3	1	-0.833309	-3.694144	0.983372
4	6	-1.071232	-1.791765	0.019087
5	15	-0.207857	-0.382810	-0.949807
6	6	2.258944	0.466609	-0.258749
7	8	1.035201	-0.200323	0.157097
8	8	-1.226791	0.881889	-0.693503
9	6	-1.755834	1.274144	0.598913
10	1	0.489900	-3.270217	-0.151996
11	6	2.209174	1.936934	0.149920
12	2	2.330849	0.394450	-1.354175
13	6	3.421097	-0.287633	0.377602
14	1	0.412596	-2.469757	1.412216
15	6	-2.491640	2.591130	0.423588
16	1	-0.923033	1.374861	1.304831
17	1	-2.430248	0.488949	0.952252
18	1	4.375615	0.169691	0.091203
19	1	3.130944	2.448328	-0.153256
20	1	3.430087	-1.334494	0.056135
21	1	2.106926	2.028068	1.237886
22	1	1.363926	2.447995	-0.322829
23	1	3.341383	-0.262169	1.470843
24	1	-2.915317	2.911199	1.383559
25	1	-3.309599	2.482887	-0.296466
26	1	-1.815692	3.374834	0.064331

XYZ Coordinates for 21 after rotation to opposite configuration, from DFT optimization; Sum of electronic and thermal Free Energies (6-31G(d)) = -842.668984 au
XYZ Coordinates for 21 transition state from DFT optimization;
Sum of electronic and thermal Free Energies (6-31G+(d)) = -842.601643 au

Atom Number	Atomic Number	Coordinates (Angstroms)	X	Y	Z
1	6	-0.495296	3.064340	0.146405	
2	8	1.842796	2.421002	0.257126	
3	1	-0.537962	3.485847	1.157291	
4	6	0.675162	2.104010	0.067021	
5	15	0.248203	0.420344	-0.364057	
6	6	-2.065146	-0.832641	0.334162	
7	8	-1.265434	-0.115225	-0.672690	
8	8	1.433060	-0.680735	-0.578212	
9	6	2.034054	-1.350955	0.570492	
10	1	-0.312104	3.884990	-0.556750	
11	6	-3.476388	-0.266813	0.253700	
12	1	-1.625936	-0.618516	1.317330	
13	6	-1.997499	-2.325226	0.036178	
14	1	-1.450141	2.590396	-0.095224	
15	6	3.222689	-2.146085	0.065840	
16	1	1.280585	-2.002751	1.030266	
17	1	2.337103	-0.590808	1.297488	
18	1	-0.966589	-2.692094	0.080269	
19	1	-4.130162	-0.777711	0.970548	
20	1	-2.392330	-2.533157	-0.964714	
21	1	-3.888864	-0.407929	-0.751758	
22	1	-3.484175	0.803656	0.484008	
23	1	-2.592642	-2.885608	0.767380	
24	1	3.700070	-2.669410	0.903321	
25	1	3.961262	-1.482838	-0.395788	
26	1	2.910014	-2.889352	-0.675379	