Identification of key gene networks controlling vernalization development characteristics of *Isatis indigotica* by full-length transcriptomes and gene expression profiles

Pan Wang · Dong Liu · Fu-Hong Yang · Hui Ge · Xin Zhao · Hong-Gang Chen · Tao Du

Received: 14 September 2021 / Revised: 25 November 2021 / Accepted: 29 November 2021 / Published online: 24 December 2021
© The Author(s) 2021

Abstract *Isatis indigotica* Fort., as a common Chinese medicinal raw material, will lose its medicinal value if it blooms early, so it is highly valuable to clarify the induction mechanism of the vernalization of *I. indigotica* at low temperature. In this study, the concentrations of soluble sugar, proline, glutathione and zeatin in two germplasms of *I. indigotica* with different degrees of low temperature tolerance (Y1 and Y2) were determined at 10 days, 20 days and 30 days of low-temperature treatment, and the full-length transcriptome of 24 samples was sequenced by Nanopore sequencing with Oxford Nanopore Technologies (ONT). After that, the data of transcripts involved in the vernalization of *I. indigotica* at low temperature were obtained, and these transcripts were identified using weighted gene co-expression network analysis (WGCNA). The results revealed the massive accumulation of soluble sugar and proline in Y1 and Y2 after low temperature induction. A total of 18,385 new transcripts, 6168 transcription factors and 470 lncRNAs were obtained. Differential expression analysis showed that gibberellin, flavonoids, fatty acids and some processes related to low temperature response were significantly enriched. Eight key transcripts were identified by WGCNA, among which ONT.14640.1, ONT.9119.1, ONT.13080.2 and ONT.16007.1 encodes a flavonoid transporter, 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), growth factor gene and L-aspartate oxidase in plants, respectively. It indicated that secondary metabolites such as hormones and flavonoids play an important role in the vernalization of *I. indigotica*. qRT-PCR proved the reliability of transcriptome results. These results provide important insights on the low-temperature vernalization of *I. indigotica*, and provide a research basis for analyzing the vernalization mechanism of *I. indigotica*.

Keywords *Isatis indigotica* Fort. · Vernalization · Nanopore sequencing · Transcript · WGCNA

Abbreviations

I. indigotica: *Isatis indigotica* Fort.
A. thaliana: *Arabidopsis thaliana*

SS: Soluble sugar
GSH: Glutathione
PRO: Proline
ZT: Zeatin
WGCNA: Weighted Gene Co-Expression Network Analysis
TFS: Transcription factors
FL: Full-length
ORFs: Open reading frames
Introduction

Isatis indigotica Fort., a biennial herbaceous plant belonging to the *Cruciferae* family and classified into *Isatis*, has high medicinal value. Its dried roots Ban Lan Gen (*Radix Isatidis*) and dried leaves Da Qing Ye (*Folium Isatidis*) have good efficacies such as heat-clearing and detoxification, blood cooling and macula removal, and sore throat relieving (Chinese Pharmacopoeia Commission 2020). *Radix Isatidis* is one of the most commonly used Chinese herbal medicines. Modern pharmacological studies have revealed that *Radix Isatidis* contains many antiviral constituents represented by (R)- and (S)-Goitrin (Lin et al. 2005; Hsuan et al. 2009; Chen et al. 2021), and *Folium Isatidis* mainly contains chemical constituents such as indigo and indirubin (Wu et al. 2011; Jie et al. 2017; Zhang et al. 2016a, b). However, as a biennial plant, it is easily subjected to bolting and flowering after vernalization at low temperature, which induces lignification in roots, thereby leading to the loss of its medicinal value (Chinese Pharmacopoeia Commission 2020; Zhao et al. 2016). Therefore, it is increasingly important to clarify the important mechanisms by which *I. indigotica* senses low temperature and regulates bolting and flowering, and to search for key functional genes or pathways. At present, the vernalization mechanism of *I. indigotica* remains elusive, and the research on its genomes, transcriptomes and low-temperature stress still has limitations (Kang et al. 2020; Qu et al. 2021; Tang et al. 2014). In addition, *A. thaliana* (Arabidopsis thaliana; Hatano-Iwasaki and Ogawa 2012; Lei et al. 2019), radish (Nie et al. 2016a, b; Nie et al. 2016a, b) and other plants belonging to the *Cruciferae* family are the subjects of current studies on the gene functions related to the response to low temperature and early bolting and flowering.

As the high-throughput sequencing technology advances, transcriptome sequencing has been widely applied to explore the expression of functional genes at the genomic level and identify key genes involved in the biological processes. In recent years, constant progress has been observed in the transcriptome sequencing technology. With solutions to the short sequencing fragments of the second-generation transcriptome sequencing technology, the emerging third-generation sequencing technology has been successfully applied in the functional genomics research of maize (Wang et al. 2016; Zhang et al. 2021), loquat (Pan et al. 2020), poplar (Chao et al. 2019; Luo et al. 2021), etc. Gene family and stress-tolerant genes have been found using the second-generation sequencing technology (Ma et al. 2017; Qu et al. 2019; Qin et al. 2020), which show defects in gene function annotation and pathway analysis. Relative to the second-generation sequencing technology, the third-generation sequencing technology can achieve the processing of large amounts of data and the reading of long sequences and full-length (FL) gene transcripts, and it is more accurate in gene function annotation (Eid et al. 2009).

Weighted Gene Co-Expression Network Analysis (WGCNA) takes advantage of the interrelated characteristics of various life activities in plants to obtain many expression characteristics of life activities using high-throughput sequencing technology and calculates the correlation between genes to construct the scale-free network topology, that is, it links most genes with regulatory relationships with key regulatory genes as the core (Zhang and Horvath 2005). In most cases, this method is applied to identify the biological relationship between genes related to plant traits, and it also plays a role in the identification of key regulatory genes under the low-temperature induction in plants. Using WGCNA, it has been verified that ethylene, jasmonic acid, zinc finger-containing transcription factors (TFs) and auxin are involved during vernalization in *A. thaliana* acclimated at low temperature (Li et al. 2021). Li et al. (2020) identified that a gene *CpFT1* acclimated at low temperature in *Chimonanthus praecox*...
using WGCNA, and found that its overexpression in A. thaliana can promote flowering.

In this study, the FL transcriptomes of *I. indigotica* seedlings with different vernalization characteristics under low temperature stress were obtained by Nanopore single molecule real-time sequencing technology. Additionally, the transcript regulatory networks of soluble sugar, glutathione, proline and zeatin affected by the vernalization of *I. indigotica* were identified by WGCNA, which will be beneficial for the identification of functional genes associated with the responses of *I. indigotica* to low temperature stress and the analysis of their molecular mechanisms.

Materials and methods

Plant materials and treatments

The seedlings of Y1 and Y2 growing till two leaves and a bud stage in the seedling cup were used as experimental materials, and the growth conditions was set as far as uniform. Then the seedlings were treated in a constant temperature incubator at 4 °C and exposed to light and darkness for 12 h each day, light intensity 2000lx, followed by sampling at 0 days (control), 10 days, 20 days and 30 days, respectively under the same relative humidity and light, which were marked as T1, T2, T3 and T4. During sampling, all the seedlings were washed and sucked dry, immediately after which they were frozen in liquid nitrogen and stored at −80 °C. A total of 24 samples (Y1 and Y2) received the same treatments, with three biological replicates in each treatment.

Detection of physiological indexes induced by low temperature

The test kits for soluble sugar (Batch No.: 20201124), glutathione (Batch No.: 20201115) and proline (Batch No.: 20201115) were provided by Nanjing Jiancheng Bioengineering Institute. The test kit for zeatin (Batch No.: 202011) was purchased from Shanghai Qincheng Biotechnology Co., Ltd. A total of 1 g of soluble sugar was extracted and ground to be prepared into homogenate by adding 9 mL of distilled water. Then the homogenate was poured into a covered centrifuge tube and kept in boiling water for 10 min. After cooling, the homogenate was centrifuged at 4000 rpm for 10 min at normal temperature, and the supernatant was diluted with distilled water for 10 times and shaken evenly to prepare sample supernatant for later use. Subsequently, 1 g of glutathione was extracted and ground into tissue homogenate by adding 9 mL of normal saline, and the homogenate was centrifuged at 2500 rpm for 10 min, after which the supernatant was taken to be measured. Moreover, 1 g of proline was extracted and added with 9 mL of reagent I to be prepared into tissue homogenate through mechanical homogenization in an ice-water bath. Then the homogenate was centrifuged at 3500 rpm for 10 min, and the supernatant was taken for later measurement. Additionally, 1 g of zeatin was extracted, added with 9 mL of PBS and ground into tissue homogenate. After that, the homogenate was centrifuged at 1000 rpm for 20 min, and the supernatant was taken for subsequent measurement.

RNA extraction, library construction, and sequencing

1 μg of total RNA was prepared for complementary deoxyribonucleic acid (cDNA) library construction using cDNA-PCR sequencing kit (SQK-PCS109) provided by Oxford Nanopore Technologies Inc. (ONT). A cDNA library was added to FLO-MIN109 Flowcell and run on the PromethION platform provided by Biomarker Technologies Inc. (Beijing, China). Firstly, the original reads were filtered, with the minimum average read quality score = 6 and the minimum read length = 200 bp. Secondly, the FL non-chemical (FLNC) transcripts were determined by searching for primers at both ends of the reads.

Transcriptome analysis and identification of differentially expressed transcripts (DETs)

Mimimap2 (Heng 2018) software was utilized for comparison with the reference genome (Kang et al. 2020) to obtain FLNC transcripts, and then the FL sequences obtained in the previous step were processed to obtain consistent sequences. Later, the expression level was quantified in StringTie (Pertea et al. 2015), and the differential expressions among sample groups were evaluated using DESeq2 (Love et al. 2014).

Functional enrichment, TF prediction, and SSR analysis

The new transcript sequences obtained were compared with NR, Swissprot, GO, COG, KOG, Pfam and KEGG databases to obtain annotation information of transcripts. GO enrichment analysis of DETs, statistical enrichment of KEGG pathway, TF identification and identification of SSR of transcriptomes were carried out using R package GOseq (Young et al. 2010), KOBAS software (Xie et al. 2011), iTAK (Zheng et al. 2016), and MISA (Beier et al. 2017), respectively.
Construction and module identification of co-expression network

The transcript expression matrix of 24 samples were used to filter the genes with CPM value < 1. Besides, R software (R version 3.4.4) and WGCNA (R version 1.6.6) package were employed to construct weighted gene co-expression network and divide related modules (Langfelder and Horvath 2008). Meanwhile, the soft threshold was calculated using pick Soft threshold in WGCNA package, and the optimum power value for the optimal network construction was selected. Furthermore, a scale-free network was constructed using blockwise Modules, with default parameter values. Finally, the visualized analysis of the expression network was performed using Cytoscape (Su et al. 2014).

qRT-PCR analysis

Transcripts of 6 genes were selected for qRT-PCR validation. Primer 3 was used to design quantitative PCR primers, and M-MuLV first-strand cDNA synthesis kits (TaKaRa) were employed to purify the extracted RNAs and reversely transcribed them into cDNAs. Then the fluorescence quantitative analysis was carried out by $2^{-\Delta\Delta CT}$ method with actin as an internal control gene, which was conducted for 3 times.

Results

Low temperature-induced physicochemical changes in endogenous metabolism of I. indigotica

The concentrations of soluble sugar, proline, glutathione and zeatin in the seedlings of two germplasms of I. indigotica, namely, Y1 and Y2 (both are insensitive to low temperature; Y1 has a higher bolting rate and flowers significantly earlier than Y2), at low temperature were determined at 0 days, 10 days, 20 days and 30 days, respectively. It was discovered that soluble sugar accumulated in Y1 and Y2 at different stages of low-temperature induction. The concentration of soluble sugar was the
highest at 10 days after low-temperature induction, and it was significantly higher in Y2 than that in Y1 (Fig. 1A). After measurement, it was found that compared with that in control, the concentration of glutathione in *I. indigotica* after low-temperature induction was decreased and it increased at 20 days after induction, and it was remarkably higher in Y1 than that in Y2 at each stage (Fig. 1B). Moreover, the concentration of proline displayed no obvious differences in *I. indigotica* between control and at 10 days and 20 days after induction, and it dramatically rose at 30 days after induction. Besides, this rise was sharp in Y2 (Fig. 1C). Furthermore, detection also revealed that the concentration of zeatin in Y1 and Y2 declined to a certain extent (Fig. 1D), but it was higher in Y2 than that in Y1 at 20 days after induction.

Nanopore sequencing statistics of FL transcriptomes of* I. indigotica* under low-temperature treatment

The transcriptome data of Y1 and Y2 at low temperature were compared by Nanopore FL sequencing. There were 24 samples in total, with three biological replicates in each group (Table 1), generating 41.24 million clean reads, and finally 34,329 transcript sequences were obtained. And the FL reads between 86.17 and 88.39% were obtained. The comparison with reference genomes showed that the mapping rate ranged from 96.82 to 97.83%, and 18,385 new transcripts were identified, which enriched the available genome information of *I. indigotica*.

Subsequently, the coding region and amino acid sequence of the new transcripts obtained were predicted, and a total of 17,165 open reading frames (ORFs) were obtained, including 11,169 complete coding sequences (CDSs), whose length distribution is shown in Fig. 2A. Next, the identified transcripts were subjected to functional annotation based on clusters of Orthologous Groups (COGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Eukaryotic Orthologous Groups (KOGs), protein families (Pfam), Swiss protein (Swiss-Prot), evolutionary genealogy of genes: Non-Supervised Orthologous Groups (egg-NOG) and Non-Redundant Protein Sequence (NR) databases (Fig. 2B). After that, a total of 57,048 annotations were obtained, among which the largest number of annotations appeared based on GO database (47,984) and 34,069 annotations were obtained based on KEGG database. Sequences with a length of 300–1000 bp had 16,104 annotations, and those with a length of more than 1000 bp

Sample ID	Number of clean reads	Number of FL reads	FL percentage (FL%)
Y1T1-1	1,602,599	1,391,641	86.84
Y1T1-2	1,483,412	1,298,111	87.51
Y1T1-3	1,537,791	1,330,526	86.52
Y1T2-1	2,580,298	2,238,140	86.74
Y1T2-2	1,820,551	1,582,151	86.91
Y1T2-3	1,804,455	1,574,278	87.24
Y1T3-1	1,631,957	1,440,318	88.26
Y1T3-2	1,680,488	1,455,894	86.64
Y1T3-3	1,688,362	1,474,633	87.34
Y1T4-1	1,661,199	1,459,456	87.86
Y1T4-2	1,699,129	1,501,824	88.39
Y1T4-3	1,788,443	1,580,108	88.35
Y2T1-1	1,660,251	1,447,775	87.20
Y2T1-2	1,561,540	1,353,875	86.70
Y2T1-3	1,924,762	1,658,574	86.17
Y2T2-1	1,738,488	1,504,980	86.57
Y2T2-2	1,769,897	1,547,472	87.43
Y2T2-3	1,632,278	1,424,839	87.29
Y2T3-1	1,699,253	1,508,608	88.78
Y2T3-2	1,756,976	1,530,234	87.09
Y2T3-3	1,659,921	1,461,467	88.04
Y2T4-1	1,635,174	1,433,631	87.67
Y2T4-2	1,569,343	1,378,388	87.83
Y2T4-3	1,657,924	1,453,889	87.69
had 39,773 annotations. According to the statistics of GO annotations (Fig. 2C), the largest number of annotations appeared in “integral component of membrane” (11,499, GO: 0016021) among cellular components, in “ATP binding” (5788, GO: 0005524) among molecular function, and in “cellular processes” (2716, GO: 0009987) in cellular processes. The function of *I. indigotica* transcripts was annotated by NR database (Fig. 2D), among which the largest number of annotations was 18,167 in *Eutrema salsugineum*, accounting for about 37.97%, and there were 6249 annotations in *Brassica napus*, accounting for about 11%.

TF, simple sequence repeat (SSR) and long non-coding ribonucleic acid (lncRNA) annotation statistics of I. indigotica under low-temperature treatment

The candidate TFs were predicted from the identified transcripts (Fig. 3A), and 6168 candidate TFs were obtained, among which there were 275 bHLH TFs and 272 AP2/ERF TFs. As shown in Fig. 3B, the number of SSRs in transcripts, mainly including mononucleotides, dinucleotides, trinucleotides, tetranucleotides, pentanucleotides, hexanucleotides and mixed types (i.e., containing at least two SSRs, with a distance of less than 100 bp), were determined, and a total of 30,952 SSRs were finally obtained, including 15,918 SSRs of mononucleotide type and 51 SSRs of hexanucleotide type.

Later, transcripts were identified by Coding Potential Calculator (CPC), Coding-Non-Coding Index (CNCI), Coding-Potential Assessment Tool (CPAT) and Pfam database (Fig. 3C). These tools identified 1412, 575, 1235 and 470 transcripts, respectively, and a total of 470 lncRNAs were identified. According to the annotation information of lncRNAs in reference genomes, the 470 lncRNAs were classified into four categories (Fig. 3D), namely, long intergenic non-coding RNAs (lincRNAs) (n = 382, 81.3%), antisense-lncRNAs (n = 15), Intronic-lncRNAs (n = 19) and sense-lncRNAs (n = 54).

Identification and functional analysis of differential transcripts under low-temperature stress

Differences in Y1 and Y2 at different stages of low-temperature induction were analyzed (Fig. 4A). It was found...
that the number of differential transcripts at 10 days and 20 days after low-temperature induction was 1379 and 1401, respectively. Interestingly, there were 367 and 187 up-regulated differential transcripts at 10 days and 30 days after low-temperature induction, respectively, which were more than down-regulated differential transcripts. However, there was little difference between them at other stages of low-temperature induction, suggesting that *I. indigotica* shows the strongest sensitivity at 10 days after vernalization. As shown in the Venn diagram (Fig. 4B), statistics of differential transcripts at different stages illustrated that there were 105 differential transcripts at 10 days and 108 differential transcripts shared at 20 days and 30 days, respectively, and the number of transcripts shared at 10, 20 and 30 days was 29, which represented that the 29 transcripts were continuously expressed during vernalization.

Attention was paid on 10 days and 20 days, when the number of differential transcripts was the largest, and GO enrichment was carried out for the differential transcripts at 10 days (Fig. 4C). The results manifested that the main enriched terms were hormone-related functions, including hormone response (GO: 0009725) and hormone-mediated signal transduction (GO: 0009755), gibberellin (GO: 0009739) and jasmonic acid (GO: 0009753), as well as flavonoids (GO: 0009813), carbohydrate metabolism (GO: 0044262) and active oxygen biosynthesis (GO: 1903409). At 20 days after low-temperature induction, chloroplasts (GO: 0009507), photosynthesis (GO: 0009521) and carbohydrate response (GO: 0009743), as well as hormone response (GO: 0009725), defense response (GO: 0006952) and low-temperature response (GO: 0009409) were found, most of which were associated with the stress response (Fig. 4D). Additionally, KEGG pathway enrichment analysis (Fig. 4E) was carried out, and the two pathways, namely, of zeatin biosynthesis (ko00908) and plant hormone signal transduction (ko04075) related to hormones, and secondary metabolite pathways such as phenylpropane metabolism (ko00940), fatty acid metabolism (ko00071) and flavonoid metabolism (ko00944) were mainly enriched.
at 10 days. Meanwhile, photosynthesis (ko00195) and MAPK signaling pathway (ko04016) were also enriched. At 20 days after low-temperature induction, the enriched pathways mainly included auxin-related tryptophan metabolism pathway (ko00380) and fatty acid (ko00062), folic acid (ko00790) and terpenoid (ko00905) secondary metabolism pathways. Besides, the photosynthesis (ko00195) pathway was also greatly affected. The above functions are crucial for plant growth and low-temperature stress.

Construction of a co-expression network module

To identify the key transcripts of *I. indigotica* in the process of low-temperature vernalization, a whole transcript co-expression network was constructed using 24 samples with a total of 15,410 transcripts, and the screening of transcripts with an expression level greater than 1 was performed to construct the co-expression network. A total of 25 co-expression clustering modules (Fig. 5B) were obtained by hierarchical clustering of dissTOM matrix (Fig. 5A). 4 modules were selected to show the transcript expression profile constructed by the co-expression network (Fig. 5C), and Yellow, Blue, Darkorange and
Darkgreen modules displayed the transcript expression level under the co-expression clustering module.

Identification of co-expression genes of endogenous metabolites of *I. indigotica* under low-temperature treatment

The correlations of the co-expression network with soluble sugar, glutathione, proline and zeatin were analyzed.
Figure 6 Core genes related to the concentrations of soluble sugar, glutathione, proline and zeatin in *I. indigotica* identified by co-expression modules. A Correlation heat map of the concentrations of soluble sugar, glutathione, proline and zeatin in *I. indigotica* identified by co-expression modules. In the x-axis, Sugar represents soluble sugar, GSH represents glutathione, PRO represents proline and ZT represents zeatin. A transcript co-expression network of identified modules related to soluble sugar (B), glutathione (C), proline (D), zeatin (E). F Functional prediction of the candidate hub gene

Yellow module had the most significant correlation with soluble sugar (*r* = 0.43, *p* = 0.04), Skyblue exhibited the closest correlation with glutathione (*r* = 0.58, *p* = 0.0003), Darkorange exhibited the most obvious correlation with
proline \((r = 0.78, p = 7e-06)\), and Darkgreen displayed a close correlation with zeatin \((r = 0.51, p = 0.01)\) (Fig. 6A). Subsequently, the key genes of modules showing close correlations with soluble sugar, glutathione, proline and zeatin were identified, and the module network was visualized using Cytoscape. The core transcripts were \(\text{ONT.14640.1}\) and \(\text{ONT.13080.2}\) in Yellow module (Fig. 6B), \(\text{ONT.9119.1}\) and \(\text{ONT.12316.2}\) in Skyblue module (Fig. 6C), \(\text{ONT.3262.1}\) and \(\text{ONT.4524.1}\) in Darkorange module (Fig. 6D), and \(\text{ONT.16007.1}\) and \(\text{ONT.12811.4}\) in Darkgreen module (Fig. 6E). The functions of transcripts identified in the modules in \(A.\ thaliana\) and rice were predicted, respectively (Fig. 6F). In Yellow module, \(\text{ONT.14640.1}\) was annotated as a flavonoid transporter in \(A.\ thaliana\) and a detoxification protein in rice, \(\text{ONT.13080.2}\) was predicted as a growth factor in \(A.\ thaliana\) and a MnuT domain protein in rice. In Skyblue module, \(\text{ONT.9119.1}\) was annotated as 9-cis-epoxycarotenoid dioxygenase (NCED3) in both \(A.\ thaliana\) and rice, and \(\text{ONT.12316.2}\) was annotated as a salt-tolerant homologue and a B-box zinc finger family protein. In Darkorange module, \(\text{ONT.3262.1}\) was annotated as L-aspartate oxidase in both \(A.\ thaliana\) and rice, and \(\text{ONT.4524.1}\) was annotated as ROP binding protein kinases 1 and protein kinase domain-containing protein. In Darkgreen module, \(\text{ONT.16007.1}\) was annotated as a multidrug resistance protein 11 in \(A.\ thaliana\) and ATP binding cassette transporter in rice respectively, and \(\text{ONT.12811.4}\) was annotated as Vesicle transport v-SNARE 11 in both \(A.\ thaliana\) and rice.

Later, with the aim of verifying the reliability of the transcriptome data, eight candidate transcripts, namely, \(\text{ONT.13080.2}, \text{ONT.13297.1}, \text{ONT.14640.1}, \text{ONT.17213.1}, \text{ONT.15448.1}, \text{ONT.12090.1}, \text{ONT.11185.1}\) and \(\text{ONT.16583.1}\), were selected for quantitative real-time polymerase chain reaction (qRT-PCR) verification. Data obtained by transcriptome sequencing and qRT-PCR of these candidate transcripts were transformed by log2, after which the expression trends were compared between the two technologies. It was found that the expression trends were basically the same \((r^2 = 0.78;\ \text{Fig. 7})\), which proved the reliability of the RNA-seq results.

Discussion

\(I.\ indigotica\) is a crucial medicinal resource, but it is easily subjected to bolting and flowering after vernalization at low temperature, which induces the lignification in roots, thereby leading to the loss of its medicinal value. Therefore, clarifying the mechanism of \(I.\ indigotica\) in response to vernalization is highly valuable. In this study, the soluble sugar, glutathione, proline and zeatin in the two \(I.\ indigotica\) germplasms, Y1 and Y2, were detected under continuous low-temperature induction. It was found that the concentration of glutathione was higher in Y1 than that in Y2, and the concentrations of soluble sugar, proline and zeatin were also higher in Y1 than those in Y2 at different stages. This is consistent with the results of low-temperature stress in peach and kiwifruit. A large amount of proline accumulated in early stage of low temperature induction (Qian et al. 2021; Sun et al. 2021). Soluble sugar and proline, the main osmotic adjustment substances, are widely distributed in plants, which are related to the response of plants to low-temperature stress and will accumulate in plants to a certain extent under stress (Couée et al. 2006; Santarius 1973). Besides, the results manifested that soluble sugar and zeatin began to accumulate in Y2 at 10 days after low-temperature treatment, and the zeatin concentration in Y2 was dramatically higher than that in Y1. Zeatin is a natural cytokinin in plants crucial for the early abiotic stress of plants. It accumulates remarkably at 4 days after low-temperature induction in pea seedlings (Vaseva et al. 2009).

Nanopore sequencing is superior in the evaluation of the expression level of transcripts (Seki et al. 2019). Much more information can be provided by transcripts than by genes in the genome. For example, about 25,000 genes have 300,000 transcripts in \(A.\ thaliana\) (Hilson et al. 2004). In the present study, the vernalization process of \(I.\ indigotica\) at low temperature was tracked in detail by Nanopore FL sequencing. After that, a total of 34,329 transcripts of \(I.\ indigotica\) were captured, 18,385 new transcripts were identified, and 11,169 CDS sequences, 6168 TFs and 30,952 SSR types were completely identified, which greatly enriched the data source of \(I.\ indigotica\). LncRNAs are non-coding RNAs with 200 nt in length, and they have been reported to exert vital effects in plant growth and flowering (Zhao et al. 2018), reproductive development (Wang et al. 2014) and adversity stress (Cui et al. 2017).
VAS has been identified as a lncRNA in wheat that can be induced to regulate the transcription of target gene TaVRNI and promote the flowering of wheat at the early stage of vernalization (Xu et al. 2021). In A. thaliana, lncRNA SVALKA related to cold induction has also been identified to be involved in the cascade regulation of CBF (Kindgren et al. 2019). In this study, 470 lncRNAs related to low-temperature induction were identified in total, and these newly identified lncRNAs laid a foundation for the research on the response of I. indigotica to vernalization at low temperature.

FL transcriptomes are able to identify key transcripts indispensable to regulation, which strongly supported the functional role. In this study, the whole transcript co-expression network of I. indigotica was constructed at low temperature using the identified transcripts. 25 co-expression modules were constructed using 15,410 transcripts filtered from 24 samples, and these modules were correlated with soluble sugar, glutathione, proline and zeatin receiving low-temperature induction of I. indigotica, and finally 8 related transcripts were identified. Because these transcripts were induced by low temperature stress of I. indigotica, the highly related transcripts identified after associating with these low temperature marker metabolite scan reflect the potential regulatory mechanism between genes and metabolites to a certain extent. Among them, ONT.14640.1 identified in Yellow module was annotated as a flavonoid transporter in A. thaliana. Flavonoids exert crucial effects in plant growth and abiotic stress (Taylor and Grotewold 2005). The high concentration of flavonoids in apple varieties has been regarded as an important indicator for high storability and freshness retaining (Lu et al. 2021), suggesting that flavonoids play a vital role in the low-temperature vernalization of I. indigotica. Moreover, NCED3 was also identified in this study. NCED3, as a key enzyme for abscisic acid accumulation, encodes 9-cis-epoxycarotenoid dioxygenase 3, and it is widely reported that abscisic acid is involved in the low-temperature stress of plants (Sato et al. 2018). Abscisic acid, as an important plant hormone, is widely involved in plant reproductive development and stem (Liu et al. 2018; Xu et al. 2019). ONT. 16,007.1 is highly homologous to At3G28860 that can encode auxin transport facilitators in A. thaliana. The cold stress inducing changes in the plant growth and development is tightly linked to the intracellular auxin gradient (Rodrigues et al. 2009; Rahman 2013). Glutathione (GSH) is one of the most important factors for rice plants to resist cold stress, and a large amount of NAD + is required in this process (Yu et al. 2020). ONT.3262.1 encodes l-aspartate oxidase in I. indigotica, and ATASPO is a key metabolic step to catalyze NAD + synthesis (Hao et al. 2018). The analysis that ONT.3262.1 may regulate GSH accumulation in I. indigotica and needs to be verified by subsequent experiments. The above results reveal the reliability of WGCNA analyses in identifying key genes of I. indigotica at low temperature in this study. The low temperature stress of I. indigotica is a great significance for its delayed vernalization. In this study, the FL transcriptome sequencing technology was used to compare I. indigotica with different low temperature stress, and the transcripts related to low temperature stress were identified, including the functions involved in the synthesis, transport and metabolism of abscisic acid, auxin and flavonoids. It provides a certain research basis for molecular breeding of I. indigotica for better low temperature stress responses.

Conclusions

I. indigotica is a vital medicinal plant resource, so analyzing its vernalization mechanism and exploring the genes resistant to low temperature are of great significance. In the current study, two transcripts of I. indigotica with different degrees of low-temperature tolerance were identified using Nanopore technology, and the important transcript types related to physiological indexes such as soluble sugar, glutathione, proline and zeatin were identified by WGCNA. The experimental results of this study strongly support the research on the vernalization mechanism of I. indigotica and the exploration of the genes resistant to low temperature.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s12298-021-01110-2.

Acknowledgements

Thanks to Gansu University of traditional Chinese medicine and HeZheng Botanical Garden of Medicinal Plants for providing laboratories and other experimental materials to support the experiment.

Authors’ contributions

H.G. Cheng, T.D. and P.W. conceived and designed the main content. P.W., H.G. and X.Z. conducted the experiments. D.L. and F.H.Y. constructed the manuscript outline. P.W. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by China Agriculture Research System of MOF and MARA (CARS-21) and Study on Selection and Breeding Methods and Planting Quality Control Techniques of Excellent Varieties of I. indigotica (201507002-I-07).

Availability of data and material

Not applicable.

Code availability

Not applicable.

Declarations

Conflict of interest

There are no conflicts of interest.
An YW, Yuan B, Wang JC, Wang C, Liu TT, Song S, Liu HQ (2021a) Clinical characteristics and impacts of traditional Chinese medicine treatment on the convalescents of COVID-19. Int J Med Sci 18:646–651. https://doi.org/10.7150/ijms.52664

An XD, Zhang YH, Duan LY, Jin D, Zhao SH, Zhou RR, Duan YY, Chen Q, Lan HY, Peng W, Rahman K, Liu QC, Luan X, Zhang H (2021b) The effective direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother 137:111267. https://doi.org/10.1016/j.biopha.2021.111267

Arabia S, Shah M, Sami AA, Ghosh A, Islam T (2021) Identification and expression profiling of proline metabolizing genes in Arabidopsis thaliana and Oryza sativa to reveal their stress-specific transcript alteration. Physiol Mol Biol Plants 7:1469–1485. https://doi.org/10.1016/j.s12298-021-01023-0

Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198

Chang SJ, Chang YC, Lu KZ, Tsou YY, Lin CW (2012) Antiviral activity of Isatis indigotica extract and its derived indirubin against Japanese encephalitis virus. Evid Based Complement Alternat Med 2012:1–7. https://doi.org/10.1155/2012/925830

Chao Q, Gao ZF, Zhang D, Zhao BG, Dong FQ, Fu CX, Liu LJ, Wang BC (2019) The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol J 17:206–219. https://doi.org/10.1111/pbi.12958

Chen JF, Dong X, Li Q, Zhou X, Gao SH, Chen RB, Sun LN, Zhang L, Chen WS (2013) Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC Genom 14:857. https://doi.org/10.1186/1471-2164-14-857

Chen Q, Lan HY, Peng W, Rahman K, Liu QC, Luan X, Zhang H (2021) Isatis indigotica: a review of phytochemistry, pharmacological activities and clinical applications. J Pharm Pharmacol. https://doi.org/10.1111/jphp.15041

Chinese Pharmacopoeia Commission (2020) Pharmacopoeia of the People’s Republic of China, vol I. China Medical Science Press, Beijing, pp 214–215 (in Chinese

Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459. https://doi.org/10.1093/jxb/erj027

Cui J, Luan YS, Jiang N, Bao H, Meng J (2017) Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of IncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Plant J 89:577–589. https://doi.org/10.1111/tpj.13408

Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Biliblo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sehra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

Garcia-Macias P, John P (2004) Formation of natural indigo derived from woad (Isatis tinctoria L.) in relation to product purity. J Agric Food Chem 52:7891–7896. https://doi.org/10.1021/jf0486803

Hao JF, Périacq P, Bont DL, Hodges M, Gakître B (2018) Characterization of l-aspartate oxidase from Arabidopsis thaliana. Plant Sci 271:133–142. https://doi.org/10.1016/j.plantsci.2018.03.016

Hatano-Iwasaki A, Ogawa K (2012) Overexpression of GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis. Plant Cell Physiol 53:1195–1203. https://doi.org/10.1093/pcp/pcs075

Heng L (2010) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. https://doi.org/10.1093/bioinformatics/btq329

Hilson P, Allemersch J, Alltmann T, Aubourg S, Avon A, Beynon J, Blaleroa RP, Bitton P, Caboche M, Cachoow B, Chardakov V, Cognet-Holliger C, Colot V, Crowe M, Darimont C, Durinck S, Eickhoff H, Longevialle AF, Farmer EE, Grant M, Kuiper MT, Lehrach H, Léon C, Levy A, Lundeberg J, Linur C, Moreau Y, Nietfeld W, Paz-Ares J, Reymond P, Rouzé P, Sandberg G, Segura MD, Serizet C, Tabrett A, Taconnat L, Thareau V, Van HP, Ver Courcyse S, Vuylsteke M, Weisgarter M, Weisbeek PJ, Wirta V, Wittink FR, Zabeau M, Small I (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189. https://doi.org/10.1101/gr.254404

Hsuan SL, Chang SC, Wang SY, Liao TL, Jong TT, Chien MS, Lee WC, Chen SS, Liao JW (2009) The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J Ethnopharmacol 123:61–67. https://doi.org/10.1016/j.jep.2009.02.028

Jie C, Luo Z, Chen H, Wang M, Yan C, Mao ZF, Xiao GK, Kurihara H, Li YF, He RR (2017) Indirubin, a bisindole alkaloid from Isatis indigotica, reduces H1N1 susceptibility in stressed mice by regulating MAVS signaling. Oncotarget 8:105615–105629. https://doi.org/10.18632/oncotarget.22350

Kang MH, Wu HL, Yang Q, Huang L, Hu QF, Ma T, Li ZY (2020) The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol J 17:206–219. https://doi.org/10.1111/pbi.12958

Kindgren P, Aréndt, Ivanov M, Marquardt S (2019) Transcriptional read-through of the long non-coding RNA SVALKA1 promotes plant cold acclimation. Nat Commun 10:5141. https://doi.org/10.1038/s41467-019-13269-0

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:1–13. https://doi.org/10.1186/1471-2105-9-559

Lei M, Li ZY, Wang JB, Fu YL, Xu L (2019) Ectopic expression of the Aechmea fasciata APETALA2 gene AAP2-2 reduces seed size and delays flowering in Arabidopsis. Plant Physiol Biochem 139:642–650. https://doi.org/10.1016/j.plaphy.2019.03.034

Li ZN, Liu N, Zhang W, Wu CY, Jiang YJ, Ma J, Li MY, Sui SZ (2020) Integrated transcriptome and proteome analysis provides
Liang XL, Huang Y, Pan XP, Hao YB, Chen XW, Jiang HM, Li J, Li F, Hu Q, Chen FD, Jiang JF (2021) Transcriptome analysis reveals insights into chilling-induced dormancy breaking in *Chimonanthus praecox*. Hortic Res 7:198. https://doi.org/10.1038/s41438-020-00421-x

Li F, Hu Q, Chen FD, Jiang JF (2021) Transcriptome analysis reveals vernalization is independent of cold acclimation in Arabidopsis. BMC Genom 22:462. https://doi.org/10.1186/s12864-021-07763-3

Liang XL, Huang Y, Pan XP, Yao YB, Chen XW, Jiang HM, Li J, Zhou BX, Yang ZF (2020) Eruic acid from *Isatis indigotica* Fort. suppresses influenza A virus replication and inflammation *in vitro* and *in vivo* through modulation of NF-kB and p38 MAPK pathway. J Pharm Anal 10:130–146. https://doi.org/10.1016/j.jpha.2019.09.005

Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao YC, Lai CC, Tsai FJ, Su G, Morris JH, Demchak B, Bader GD (2014) Biological network analysis uncovers conserved pathways involved in adventitious root formation in poplar. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-021-01054-7

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

Lu L, Zuo WF, Wang CC, Li CX, Feng T, Li X, Wang C, Yao YX, Zhang ZY, Chen CH (2021) Analysis of the postharvest storage characteristics of the new red-fleshed apple cultivar “meihong.” Food Chem 354:129470. https://doi.org/10.1016/j.foodchem.2021.124970

Luo Z, Liu LF, Wang XH, Li W, Jie C, Chen H, Wei FQ, Lu DH, Yan CY, Liu B, Kurihara Li, Yi YF, He RR (2019) Epigoitrin, an alkaloid from *Isatis indigotica*, reduces H1N1 Infection in stress-induced susceptible model in vivo and in vitro. Front Pharmacol 10:78. https://doi.org/10.3389/fphar.2019.00078

Luo J, Nvsrot T, Wang N (2021) Comparative transcriptomic analysis uncovers conserved pathways involved in adventitious root formation in poplar. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-021-01054-7

Ma RF, Xiao Y, Ly ZY, Tan HX, Chen RB, Li Q, Chen JF, Wang Y, Yin J, Zhang L, Chen WS (2017) AP2/ERF transcription factor, *il049*, positively regulates lignan biosynthesis in *Isatis indigotica* through activating salicylic acid signaling and lignan/lignin pathway genes. Front Plant Sci 8:1361. https://doi.org/10.3389/fpls.2017.01361

Ma J, Wu HY, Chen YZ, Huang M, Zhang LS (2021) Thoughts on traditional chinese medicine treatment of novel coronavirus pneumonia based on two cases. Chin J Integr Med 27:375–378. https://doi.org/10.1007/s11655-020-3485-9

Nie SS, Li C, Wang Y, Xu L, Muleke EM, Tang MJ, Sun XC, Liu LW (2016a) Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in radish (*Raphanus sativus* L.). Front Plant Sci 7:682. https://doi.org/10.3389/fpls.2016.00682

Nie SS, Li C, Xu L, Wang Y, Huang DQ, Muleke EM, Sun XC, Xie Y, Liu LW (2016b) De novo transcriptome analysis in radish (*Raphanus sativus* L.) and identification of critical genes involved in bolting and flowering. BMC Genom 17:389. https://doi.org/10.1186/s12864-016-2633-2

Pan CP, Wang YQ, Tao L, Zhang H, Deng QX, Yang ZW, Chi ZH, Yang YM (2020) Single-molecule real-time sequencing of the full-length transcriptome of loquat under low-temperature stress. PLoS ONE 15:e0238942. https://doi.org/10.1371/journal.pone.0238942

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) String Tie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

Qian CL, Ji ZJ, Zhu Q, Qi XH, Li QQ, Yin JD, Liu J, Kan J, Zhang M, Jin CH, Xiao LX (2021) Effects of 1-MCP on proline, polyamine, and nitric oxide metabolism in postharvest peach fruit under chilling stress. Horticultural Plant Journal 7:188–196. https://doi.org/10.1016/j.hpj.2020.12.007

Qin MM, Wang J, Zhang TY, Hu XY, Liu R, Gao TE, Zhao SJ, Yuan YL, Zhang JY, Wang ZR, Wei XY, Li T (2020) Genome-wide identification and analysis on YUCCA gene family in *Isatis indigotica* Fort. and IiYUCCA6-1 functional exploration. Int J Mol Sci 21:2188. https://doi.org/10.3390/ijms21062188

Qu RJ, Miao YJ, Cui YJ, Cao YW, Zhou Y, Tang QX, Yang J, Wang FQ (2019) Selection of reference genes for the quantitative real-time PCR normalization of gene expression in *Isatis indigotica* fortune. BMC Mol Biol 20:9. https://doi.org/10.1186/s12867-019-0126-y

Qu RJ, Cao YW, Tang QX, Sun LQ, Wei L, Wang KC (2021) Identification and expression analysis of the WRKY gene family in *Isatis indigotica*. Gene 783:145561. https://doi.org/10.1016/j.gene.2021.145561

Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35. https://doi.org/10.1111/j.1399-3054.2012.01617.x

Rodrigues A, Santiago J, Rubio S, Saez A, Osmont KS, Gadea J, Hardtke CS, Rodriguez PL (2009) The Short-rooted phenotype of the Brevis radix mutant partly reflects root abscisic acid hypersensitivity. Plant Physiol 149:1917–1928. https://doi.org/10.1104/pp.109.133819

Salvinini M, Boccardi TM, Sani E, Bernardi R, Tozzi S, Pugliesi C, Durante M (2008) Alpha-tryptophan synthase of *Isatis tinctoria*: gene cloning and expression. Plant Physiol Biochem 46:715–723. https://doi.org/10.1016/j.phyto.2008.04.002

Sanitarius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113:105–114. https://doi.org/10.1007/BF00388196

Sato H, Takahashi F, Takahashi H, Suzuki T, Iuchi S, Mutsuda N, Ohmata-Kagai M, Ikeda M, Seo M, Yamaguchi-Shinozaki K, Shinozaki K (2018) Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc Natl Acad Sci U S A 115:11178–11187. https://doi.org/10.1073/pnas.1811491115

Seki M, Katsumata E, Suzuki A, Sereewattanawoot S, Sakamoto Y, Mizushima-Sugano J, Sugano S, Kohno T, Frith MC, Tsucihira K, Suzuki Y (2019) Evaluation and application of RNA-Seq by MinION. DNA Res 26:55–65. https://doi.org/10.1093/dnares/dsy038

Spataro G, Taviani P, Negri V (2007) Genetic variation and population structure in a Eurasian collection of *Isatis tinctoria*. Genet Resour Crop Evol 54:573–584. https://doi.org/10.1007/s11052-006-9014-4

Su G, Morris HJ, Demchak B, Bader GD (2014) Biological network exploration with Cytoscape 3. Curr Protoc Bioinform 2014:1–24. https://doi.org/10.1002/0471250953.bi081347

Sun SH, Hu CG, Qi XJ, Chen JY, Zhong YP, Muhammad A, Lin MM, Fang JB (2021) The AaCBF4-AaABAM3.1 module enhances freezing tolerance of kiwifruit (*Actinidia arguta*). Hortic Res 8:97. https://doi.org/10.1038/s41438-021-00530-1
Tang XQ, Xiao YH, Lv TT, Wang FQ, Zhu QH, Zheng TQ, Yang J (2014) High-throughput sequencing and De Novo assembly of the *Isatis indigotica* transcriptome. PLoS ONE 9:e102963. https://doi.org/10.1371/journal.pone.0102963.eCollection2014

Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323. https://doi.org/10.1016/j.pbi.2005.03.005.

Vaseva I, Todorova D, Malbeck J, Travnickova A, Machackova I (2009) Mild temperature stress modulates cytokinin content and cytokinin oxidase/dehydrogenase activity in young pea plants. Acta Agron Hung 57:33–40. https://doi.org/10.1556/AAgr.57.2009.1.4

Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, Deng XW (2014) Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 111:10359–10364. https://doi.org/10.1073/pnas.1409457111

Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D (2016) Unveiling the complexity of the maize-tran-scriptome by single-molecule long-read sequencing. Nat Commun 7:11708. https://doi.org/10.1038/ncomms11708.

Wang TB, Wang XW, Zhuo Y, Si CY, Yang L, Meng LJ, Zhu B (2020) Antiviral activity of a polysaccharide from Radix Isatidis against hepatitis B virus (HBV) in vitro via activation of JAK/STAT signal pathway. J Ethnopharmacol 257:112782. https://doi.org/10.1016/j.jep.2020.112782

Wu YX, Zhang ZX, Hu H, Li DM, Qiu GF, Hu XM, He XJ (2011) Novelindole C-glycosides from *Isatis indigotica* and their potential cytotoxic activity. Fitoterapia 82:288–292. https://doi.org/10.1016/j.fitote.2010.10.016

Xie C, Mao XX, Huang JJ, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:316–322. https://doi.org/10.1093/nar/gkr483.

Xu J, Zhang YF (2020) Traditional Chinese medicine treatment of COVID-19. Complement Ther Clin Pract 39:101165. https://doi.org/10.1016/j.ctcp.2020.101165

Xu SJ, Xiao J, Yin F, Guo XY, Xing LJ, Xu YY, Chong K (2019) The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat. Plant Physiol 180:1436–1449. https://doi.org/10.1004/pp.19.00081

Xu SJ, Dong Q, Deng M, Lin DX, Xiao J, Cheng PL, Xing LJ, Niu YD, Gao CX, Zhang WH, Xu YU, Chong K (2021) The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat. Mol Plant 21:187–188. https://doi.org/10.1016/j.molp.2021.05.026

Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:14. https://doi.org/10.1186/gb-2010-11-2-r14

Yu PH, Jiang N, Fu WM, Zheng GJ, Li GG, Feng BH, Chen TT, Ma JY, Li HB, Tao LX, Fu GF (2020) ATP hydrolysis determines cold tolerance by regulating available energy for glutathione synthesis in rice seedling plants. Rice 13:1–16. https://doi.org/10.1186/s12284-020-00383-7

Zang YC, Miao Y, Wu T, Cheng ZH (2020) Development of a thin-layer chromatography bioautographic assay for neuraminidase inhibitors hyphenated with electrostatic field induced spray ionisation-mass spectrometry for identification of active *Isatis indigotica* root compounds. J Chromatogr A 1638:461597. https://doi.org/10.1016/j.chroma.2020.461597

Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17. https://doi.org/10.2202/1544-6115.1128

Zhang L, Chen JF, Zhou X, Chen XF, Li Q, Tan HX, Dong X, Xiao Y, Chen LD, Chen WS (2016a) Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in *Isatis indigotica* Fort. Plant Biotechnol J14:2217–2227. https://doi.org/10.1111/pbi.12576

Zhang WJ, Zheng XX, Cheng N, Gai WW, Xue XH, Wang YX, Gao YW, Shan JJ, Yang ST, Xie XZ (2016b) *Isatis indigotica* root polysaccharides as adjuvants for an inactivated rabies virus vaccine. Int J Biol Macromol 87:7–15. https://doi.org/10.1016/j.ijbiomac.2016.02.023

Zhang DD, Sun Y, Shi YH, Wu XM, Jia Q, Chen KX, Li YM, Wang R (2020) Four new indole alkaloids from the roots of *Isatis tinctoria*. Nat Prod Res 1:1–7. https://doi.org/10.1080/14786419.2020.1779716

Zhang PY, Qiu X, Fu JX, Wang GR, Wang TC (2021) Systematic analysis of differentially expressed ZmMYB genes related to drought stress in maize. Physiol Mol Biol Plants 6:1295–1395. https://doi.org/10.1007/s12284-021-01013-2

Zhao DY, Hao QX, Kang LP, Zhang Y, Chen ML, Wang TL, Guo LP (2016) Advance in studying early bolting of Umbelliferae medicinal plant. Zhongguo Zhong Yao Za Zhi 41:20–23. https://doi.org/10.1046/j.cjcm.201601040.

Zhao WL, Jin L, Wang HZ, Cui ZJ, Hou J, Lu YY, Du T (2017) Production regionalization study of Isatidis Radix. Zhongguo Zhong Yao Za Zhi 42:4414–4418. https://doi.org/10.19540/j.cnki.cjcm.2017.0193

Zhao XY, Li JR, Lian B, Gu HQ, Li Y, Qi YJ (2018) Global identification of Arabidopsis IncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9:5056. https://doi.org/10.1038/s41467-018-07500-7

Zheng Y, Jiao C, Sun HH, Rosli HG, Pombo MA, Zhang PF, Banf M, Dai XX, Martin GB, Giovanni JJ, Zhao PX, Rhee SY, Fei ZJ (2016) iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9:1667–1670. https://doi.org/10.1016/j.molp.2016.09.014

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.