A proposed mechanism for the interaction between the *Candida albicans* Als3 adhesin and streptococcal cell wall proteins

Lois L. Hoyer1*, Soon-Hwan Oh1, Rhian Jones2 and Ernesto Cota2*

1 Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2 Department of Life Sciences, Imperial College London, London, UK

Introduction

C. albicans binds various bacterial species, participating in polymicrobial interactions in the normally healthy host (Shirtliff et al., 2009). One of these is the oral commensal bacterium *Streptococcus gordonii* (Holmes et al., 1996). Co-aggregation between the fungal and bacterial cells is mediated by binding of the adhesive, cell-wall-anchored *S. gordonii* SspB to *C. albicans* Als3 (Silverman et al., 2010). The N-terminal domain of Als3 binds various bacteria, including the oral commensal *Streptococcus gordonii*. Published reports documented the role of *C. albicans* Als3 and *S. gordonii* SspB in this interaction, and the importance of the Als N-terminal domain (NT-Als) in *C. albicans* adhesion. Here, we demonstrate that Als1 also binds *S. gordonii*. We also describe use of the NT-Als crystal structure to design mutations that precisely disrupt peptide-binding cavity (PBC) or amyloid-forming region (AFR) function in Als3. *C. albicans* displaying Als3 PBC mutant proteins showed significantly reduced binding to *S. gordonii*; mutation of the AFR did not affect the interaction. These observations present an enigma: the Als PBC binds free C termini of ligands, but the SspB C terminus is covalently linked to peptidoglycan and thus unavailable as a ligand. These observations and the predicted SspB elongated structure suggest that partial proteolysis of streptococcal cell wall proteins is necessary for recognition by Als adhesins.

Keywords: interkingdom interactions, streptococcal adhesin, SspB, Als3 adhesin, peptide-binding cavity, adhesion tethers, isopeptide bond

Correspondence:
Lois L. Hoyer, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
e-mail: lhoyer@illinois.edu;
Ernesto Cota, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
e-mail: e.cota@imperial.ac.uk
NT-Als structural data guided creation of precise site-directed mutations that disrupted function of the NT-Als3 PBC without altering any other aspect of the protein structure (Lin et al., 2014). Full-length ALS3 genes encoding these mutations were cloned into the ALS3 locus, resulting in display of the mutant protein on the C. albicans cell surface at physiological quantities and native localization (Lin et al., 2014). C. albicans strains with disrupted Als3 PBC function had a phenotype identical to the null Δals3/Δals3 strain in assays measuring adhesion to monolayers of human pharyngeal epithelial and umbilical vein endothelial cells, and freshly collected human buccal epithelial cells in suspension.

Mutations were also created in the Als amyloid-forming region (AFR), which has been suggested to be involved in C. albicans adhesive processes (Lipke et al., 2012). Destruction of the Als3 amyloidogenic potential had little effect on C. albicans adhesion to human cell types (Lin et al., 2014). These assays conclusively showed the essential and principal role of the PBC in Als3 adhesion. This system provides a powerful approach to probe Als3 binding functions in its interactions with other proteins. With these reagents and others, we began our effort to understand the interaction between C. albicans and S. gordonii in greater detail.

A ROLE FOR Als PROTEINS, IN ADDITION TO Als3, IN BINDING OF S. GORDONII TO C. ALBICANS

Initial experiments evaluated binding between wild-type and mutant C. albicans and S. gordonii strains. The interactions were quantified in categories based on the location and abundance of bacterial binding to germ tubes (Figure 1). Co-incubation of control C. albicans (Als3LA) and S. gordonii (SspB) strains showed significantly more C. albicans cells with high levels of bacterial adhesion (categories 4 and 5) than when either Als3 or SspB, or both, were absent (compare red bars to all other colors in Figure 1A in categories 4 and 5; \(P < 0.05 \)). Similarly, co-incubation of Als3LA and SspB strains showed fewer category 0 cells than some of the other strain combinations (\(P < 0.0001 \)).

![Experimental setup and results](image-url)
FIGURE 2 | S. gordonii co-aggregation with C. albicans strains lacking Als1, Als3 or both proteins. (A) The co-aggregation assay was conducted and analyzed as described above. William Fonzi, Georgetown University, provided C. albicans control strain CAI12 (ALS1/ALS1 ALS3/ALS3; Porta et al., 1999). Aaron Mitchell, Carnegie Mellon University, provided strains DAY185 (ALS1/ALS1 ALS3/ALS3; Nobile et al., 2008), Δals1 Δals3 (CJN1348; als1/als1 als3/als3; Nobile et al., 2008), Als1 Δals3 (CJN1352; als1/als1::ALS1 als3/als3; Nobile et al., 2008), and Δals1 Als3 (CJN1396; als1/als1 als3/als3::ALS2; Nobile et al., 2008). All assays used S. gordonii strain SspB. The full set of comparisons between means is provided as Table 2 in Supplementary Material. (B) C. albicans hyphae were grown for 90 min, then immunolabeled with a monoclonal antibody that recognizes either Als1 (Coleman et al., 2010) or Als3 (antibody 3-A5; Coleman et al., 2009). Genotypes of each strain are shown below the images. (C) C. albicans hyphae were grown for 90 min and immunolabeled with a monoclonal antibody that recognizes either Als2 or Als4 (Coleman et al., 2012). Methods for immunolabeling of C. albicans germ tubes and for fluorescence microscopy and image processing were published previously (Coleman et al., 2009).
compared to Als3LA & ΔsspB and Δals3 & ΔsspB). Interestingly, there was no significant difference in category 0 cells for the combinations of Als3LA & SspB and Δals3 & SspB (P = 0.2), despite the lack of Als3 in the latter pair. Rather than occupying category 0, cells from the Δals3 & SspB combination tended to populate categories 1 and 2, which reflected S. gordonii binding to regions of the C. albicans germ tube with high abundance of other Als proteins including Als1, Als2, and Als4 (Coleman et al., 2010, 2012; Figure 2). Together, these data confirm the importance of Als3 and SspB in binding of S. gordonii to C. albicans, and also suggest the involvement of other Als proteins in the interaction.

C. ALBICANS Als1 BINDS S. GORDONII

Wild-type S. gordonii was incubated with C. albicans strains lacking either Als1, Als3, or both proteins (Figure 2A). Als protein localization and abundance on these C. albicans strains are shown in Figure 2B. Results for the two control strains (CA112 and DAY185; wild-type for ALS1 and ALS3) statistically were indistinguishable in each category (P > 0.05). Deleting both Als3 and ALS1 (strain Δals1 Δals3) resulted in significantly more observations in category 0, and concomitantly, fewer in categories 3, 4 or 5 (P < 0.0001 for all comparisons). Only approximately 4% of C. albicans cells of the Δals1 Δals3 strain bound any S. gordonii, with observations divided evenly between categories 1 and 3. These results suggested that other Als proteins localized to the C. albicans germ tube played an almost undetectable role in the C. albicans/S. gordonii interaction. Immunolabeling of the control and double-mutant strains confirmed the presence of Als2 and Als4 in these locations (Figure 2C).

Reintegration of ALS1 into the Δals1 Δals3 strain (to produce strain Als1 Δals3) significantly decreased the number of adhesion-negative C. albicans cells (Figure 2A, category 0, compare green and blue bars; P < 0.0001) and significantly increased the number of C. albicans cells in category 1 (P < 0.0001) and category 2 (P = 0.01). These results supported the conclusion that Als1 functions in adhesion of S. gordonii to C. albicans. Reintegration of ALS3 into the Δals1 Δals3 strain significantly decreased the number of adhesion-negative C. albicans cells (Figure 2A, category 0, compare green and purple bars; P < 0.0001). The ALS3 reintegrant strain (Δals1 Als3) showed significant increases in cells assigned to categories 3, 4, and 5 compared to the Δals1 Δals3 strain; these categories reflected locations on the germ tube where Als3 is found (Figure 2B). There were no differences in categories 1 and 2 when comparing the Δals1 Δals3 strain to the ALS3 reintegrant (P > 0.05). Comparison between results for the ALS1 and ALS3 reintegrant strains (Als1 Δals3 vs. Δals1 Als3) showed no significant difference in category 0, but significant differences between strains in categories that emphasized the effects of protein localization. Overall, these results demonstrated that both Als3 and Als1 participated in adhesion of S. gordonii to C. albicans, with little contribution from Als2 or Als4, indicating that a common feature of Als proteins, not only present in Als3, is involved in the mechanism of association with SspB.

THE Als3 PBC MEDIATES INTERACTION BETWEEN C. ALBICANS AND S. GORDONII WITHOUT CONTRIBUTION FROM THE AFR

C. albicans strains with precise, site-directed Als3 mutations were co-incubated with wild-type S. gordonii (SspB) to assess the effect of the PBC and AFR on the cross-kingdom microbial interaction (Figure 3). A control C. albicans strain (Als3LA) and the Δals3 null mutant were included for comparison. Results for the null mutant were similar to those described above: decreased numbers of C. albicans cells with abundant S. gordonii binding (P = 0.0001 for category 4, P = 0.004 for category 5), an increased frequency of C. albicans cells without any bound S. gordonii (category 0; P = 0.0005) and increased frequency of C. albicans with S. gordonii bound only in regions rich in Als1 (P < 0.0001 for category 1; P = 0.05 for category 2).

The Als3-pbc strain displays a mutant Als3 that mimics the “bound” form of the protein (K59M, A116V, Y301F; Lin et al., 2014). Als3-pbc lacks PBC function, while maintaining the surface properties of the wild-type protein. S. gordonii binding by strain Als3-pbc was indistinguishable from the null mutant in all categories, emphasizing that Als3-pbc has the same activity as a strain without any Als3. Als3-pbc was significantly different from the control strain in all categories except category 2, a result attributable to the low number of category 2 observations for both isolates. Als3-gk has a “gatekeeper” mutation in Als3 that blocks entry of a peptide ligand to the PBC (Lin et al., 2014). Relative to the control, strain Als3-gk (S170Y; Lin et al., 2014) was enriched for cells in lower category numbers and depleted for cells in higher category numbers, just like Als3-pbc. However, the degree of deletion was not as severe for Als3-gk as for Als3-pbc. Als3 mutations in strain Als3-afr (I311S, I313S; Lin et al.,...
FIGURE 4 | SspB structural features and proposed mode of interaction with Als proteins. (A) SspB includes a “pseudo” alpha-helical repeat (pA), three alpha-helical repeats (A), a variable domain (V) and three polyproline-helix repeats (P), followed by three Ig-like domains (C1, C2, and C3), a Pro-rich region and a C-terminal LPxTG motif for sortase-mediated anchoring to the cell wall (Demuth et al., 1990; Forsgren et al., 2010). Structures were solved for two of the three Ig-like domains (C2 and C3), revealing isopeptide bonds formed by residues K1082-N1232 and K1259-N1393, respectively (Forsgren et al., 2010). A topology diagram of C2 is shown as representative of the C domain structure. Structure of the C1 domain was predicted by homology modeling (Forsgren et al., 2010) and shows the potential to form an isopeptide bond between residues K925-N1041. The isopeptide bonds flank large cyclized regions proposed to be substrates for partial proteolysis. (B) Adhesion tethers resulting from partial proteolysis of the V domain remain anchored to the streptococcal cell wall by association to the proteolytically resistant AP stalk. (C) Partial proteolysis of C domains can also generate adhesion tethers. The proline-rich region immediately N-terminal to the LPxTG motif is likely to

(Continued)
HYPOTHESIS AND PERSPECTIVES: HOW TO GENERATE FREE, FLEXIBLE SspB C TERMINI FOR INTERACTION WITH THE PBC OF Als PROTEINS?

Data presented above demonstrate the primary role of the PBC in mediating interaction between C. albicans Als3 and S. gordonii SspB. The PBC functions by burying up to six amino acids from flexible C termini of polypeptide ligands (Salgado et al., 2011; Lin et al., 2014). For interactions with host surfaces, it is easy to envision PBC binding to ligands such as extracellular matrix proteins. Less evident, however, is a mechanism for PBC binding to bacterial cell surface proteins such as SspB. The SspB C terminus is not accessible for Als-mediated adhesion, because sortase A cleaves the C-terminal LPxTG recognition sequence and covalently links the exposed Thr to the bacterial peptidoglycan (Nobbs et al., 2007; Figure 4). Furthermore, the sequence of this protein has no detectable “lipobox,” preventing insertion of a diglyceride group for membrane anchoring by the N terminus (Sutcliffe and Harrington, 2002), and the mature form lacks cysteine residues capable to form intermolecular disulfides, as alternative modes of association with the S. gordonii cell surface.

Nonetheless, the unusual elongated structure of SspB (157 kDa) provides clues about its potential mode of binding to Als proteins. The SspB globular variable domain (V; Figure 4) is flanked by two non-contiguous A (alanine-rich) and P (polyproline type II) helical regions that associate to form a stalk-like structure (Larson et al., 2010), followed by a C-terminal region containing three tandem Ig-like domains (C1, C2, and C3). Covalent isopeptide bonds between lysine and asparagine residues in the C domains create “cyclized polypeptides” spanning up to 150 amino acids. We hypothesize that selective proteolytic cleavage within the V or C domains generates stable fragments that remain anchored to the cell wall and simultaneously expose multiple C termini, acting as “adhesion tethers” for Als proteins (Figures 4B,C). While C. albicans produces an abundance of secreted degradative enzymes that could mediate these activities (Sorgo et al., 2013), proteolytic activity could be of bacterial or even host origin in environments where polymicrobial interactions occur. Although discussions here are focused on SspB, it is important to note that SspB is homologous to SpA and shares the same domain organization with the antigen I/II (Agl/Ill) family of streptococcal adhesins (Brady et al., 2010). The high level of sequence (Hoyer et al., 2008) and structural (Salgado et al., 2011; Lin et al., 2014) similarity between Als proteins suggests that Als3 functional properties may be extended to the remaining adhesins in the family. Although it remains to be tested directly, it is reasonable to expect that each NT-Als adhesin will have a PBC and display binding sites compatible with a diverse set of C termini created by partial digestion of SspB. More generally, the presence of similar cell-surface proteins in a variety of streptococci provides many potential binding partners, facilitating a broad mechanism for cross-kingdom adhesive interactions.

ACKNOWLEDGMENTS

This work was supported by Public Health Service grant DE14158 from the National Institute of Dental and Craniofacial Research and by grant BB/K003887/1 from the Biotechnology and Biological Sciences Research Council, UK. The investigation was conducted in a facility constructed with support from a Public Health Service Research Facilities Improvement Program grant (C06 RR16515-01). We thank Howard Jenkinson, Aaron Mitchell, and Bill Fonzi for providing microbial strains.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fmicb.2014.00564/abstract

REFERENCES

Brady, L. J., Maddocks, S. E., Larson, M. R., Forsgren, N., Persson, K., Deivanayagam, C. C., et al. (2010). The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol. Microbiol. 77, 276–296. doi: 10.1111/j.1365-2958.2010.07121.x

Coleman, D. A., Oh, S.-H., Manfra-Maretta, S. L., and Hoyer, L. L. (2012). A monoclonal antibody specific for Candida albicans Als4 demonstrates overlapping localization of Als family proteins on the fungal cell surface and highlights differences between Als localization in vitro and in vivo. FEMS Immunol. Med. Microbiol. 64, 321–333. doi: 10.1111/j.1574-695X.2011.00914.x

Coleman, D. A., Oh, S.-H., Zhao, X., and Hoyer, L. L. (2010). Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody. Microbiology 156, 3643–3659. doi: 10.1099/mic.0.038351-0

Coleman, D. A., Oh, S.-H., Zhao, X., Zhao, H., Hutchins, J. T., Vernachio, J. H., et al. (2009). Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J. Microbiol. Methods 78, 71–78. doi: 10.1016/j.mimet.2009.05.002

Demuth, D. R., Golub, E. E., and Malamud, D. (1990). Streptococcal-host interaction: Structural and functional analysis of a Streptococcus sanguis receptor for a human salivary glycoprotein. J. Biol. Chem. 265, 712–716.

Forsgren, N., Lamont, R. J., and Persson, K. (2010). Two intramolecular isopeptide bonds are identified in the crystal structure of the Streptococcus gordonii SspB C-terminal domain. J. Mol. Biol. 397, 740–751. doi: 10.1016/j.jmb.2010.01.065

Holmes, A. R., McNab, R., and Jenkinson, H. F. (1996). Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect. Immun. 64, 4680–4685.

Hoyer, L. L., Green, C. B., Oh, S.-H., and Zhao, X. (2008). Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med. Mycol. 46, 1–15. doi: 10.1080/13693780701435537

Larson, M. R., Rajashankar, K. R., Patel, M. H., Robinette, R. A., Crowley, P. J., Michalek, S., et al. (2010). Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of alpha- and PPII-helices. Proc. Natl. Acad. Sci. U.S.A. 107, 5983–5988. doi: 10.1073/pnas.0912293107

Lin, J., Oh, S.-H., Jones, R., Garnett, J. A., Salgado, P. S., Rusnakova, S., et al. (2014). The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells. J. Biol. Chem. 289, 18401–18412. doi: 10.1074/jbc.M114.547877
Lipke, P. N., Garcia, M. C., Alsteens, D., Ramsook, C. B., Klotz, S. A., and Dufrene, Y. F. (2012). Strengthening relationships: amyloids create adhesion nanodomains in yeasts. *Trends Microbiol.* 20, 39–65. doi: 10.1016/j.tim.2011.10.002

Nobbs, A. H., Vajna, R. M., Johnson, J. R., Zhang, Y., Erlandsen, S. L., Oli, M. W., et al. (2007). Consequences of a sortase a mutation in *Streptococcus gordonii*. *Microbiology* 153, 4088–4097. doi: 10.1099/mic.0.2007/007252-0

Nobile, C. J., Schneider, H. A., Nett, J. E., Sheppard, D. C., Filler, S. G., Andes, D. R., et al. (2008). Complementary adhesin function in *C. albicans* biofilm formation. *Curr. Biol.* 18, 1017–1024. doi: 10.1016/j.cub.2008.06.034

Nobbs, A. H., Vajna, R. M., Johnson, J. R., Zhang, Y., Erlandsen, S. L., Oli, M. W., et al. (2007). Consequences of a sortase a mutation in *Streptococcus gordonii*. *Microbiology* 153, 4088–4097. doi: 10.1099/mic.0.2007/007252-0

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.