Protective Role of Different Local Spices on Lambda Cyhalothrin Induced Nephrotoxicity in Male Mice

Eme Efioanwan Orlu a and Adetutu Olubunmi Obulor a*

a Department of Animal and Environmental Biology, Rivers State University, P.M.B 5080, Nkpolu-Owoworkwo, Rivers State, Port Harcourt, Nigeria.

ABSTRACT

Aim: This study was aimed at evaluating the protective role of different local spices on lambda cyhalothrin induced nephrotoxicity in male mice.

Experimental Design: A completely randomized experimental design using standard methods for analysis.

Place and Duration of Study: This study was carried out in the Animal house, Department of Animal and Environmental Biology of Rivers State University, Nkpolu-Owoworkwo Port Harcourt, Nigeria. GPS 4°47’50”N 6°58’49”E. This study lasted for 35 days.

Methodology: The experimental animals were separated into 6 groups (A–F) of seven mice each. Group A served as the control and Group B – F served as the test groups. At the end of the 35 day treatment period, feed was withdrawn from the mice 24 hours before termination of the experiment. Blood samples for analysis of kidney function test were collected from each mouse by ocular puncture into plain tubes. The blood was allowed to clot and centrifuged at 2500g to separate the serum from the cells. Total protein was analyzed using the spectrophotometric method of biuret, Bradford and erythrosine - b, albumin was estimated, creatinine and urea was done using enzymatic method. Vital organs were removed and weighed for organosomatic indices. Histological sections of the kidney were mounted on slides, stained with hematoxylin and eosin (H&E). Photomicrographs were generated.

*Corresponding author: E-mail: godwin.obulor1@ust.edu.ng;
**Results:** There is no significant difference (P=0.05) between the organ weight and bodyweight in group A compared with the treatment groups. The values of Albumin, total protein, urea, creatinine and total bilirubin increased significantly in group B administered lambda cyhalothrin alone but decreased in groups administered the local spices. Histopathological analysis of the kidney shows the regular structure of the kidney architecture in group A, tubular degeneration and several vacuolations were observed in group B. However, less degeneration of the epithelial cells, regeneration of renal tubular epithelium were observed in groups C- F.

**Conclusion:** Based on the results from liver biomarkers and histological micrographs from this study, pronounced degeneration was observed in the kidney cells exposed to lambda-cyhalothrin only. Moreover, all spices used had a regenerating ability on the kidney tubules. It is advocated therefore that consumption of this spices either singly or in combination should be encouraged especially for those exposed to insecticides poisoning.

**Keywords:** Antioxidant; biomarkers; insecticides; Nephrotoxicity; spices.

1. **INTRODUCTION**

Pesticides are used all over the world to enhance food production by eradicating unwanted pests, insects and controlling disease vectors [1]. The indiscriminate use over large agricultural and urban areas have been implicated in environmental pollution with adverse health hazards. However, health hazards resulting from human exposure to these insecticides especially indirect consumption through the food chain or as fumigants in developing countries have been a growing concern to researchers across the globe. Lambda Cyhalothrin is a non-systemic [2] synthetic pyrethroid widely used for pest eradication in different areas with humans inadvertently exposed to it. Since the important of Lambda-cyhalothrin in insect control can’t be overemphasized, there is great concern about the mechanism of action and its negative impact on the environment and non-target organisms.

Induction of oxidative stress is one of the main mechanisms of many of the pesticides action therefore, estimation of free radical generation in relation to decreased antioxidant defense has become an important aspect of investigation in mammals [2-6].

Several studies have shown that pyrethroids cause kidney injury, alteration in kidney biomarkers and induction of oxidative stress [7-10]. According to [8] an induction of kidney cell damage with a significant increase in the activities of the transaminases in deltamethrin exposed rats, disruption of renal function causing DNA damages in pubescent female rats has been reported [10]. Exposure to subchronic concentrations of Cypermethrin showed enlargement of sinusoid, shrinkage of glomeruli, congestion of blood vessels with hemorrhage between the groups treated with 5mg/kg/bw, 7.5mg/kg/bw, and 10mg of Cypermethrin [11].

In the histopathological observation of kidneys exposed to varying concentrations of deltamethrin, there was a significant alterations and lesions within proximal and distal tubules of the kidney of female wistar rats administered subcutaneous injections of deltamethrin at doses 0.003,0.03 and 0.3mg/kg/bw [9,12]. More so, kidney function test of some farm workers showed significant (p<0.05) elevation in serum urea and creatinine concentrations of Cypermethrin exposed farm workers compared to the control group. However, uric acid exhibited no significant difference between farm workers and controls (p>0.05). Serum total protein, albumin and globulin were significantly increased in farm workers compared to controls (p<0.05). In general, serum urea and creatinine concentrations increased with the farm worker’s age and work duration [9, 12].

The histological changes induced by 0.32 ppm/kg-bw of Endosulfan in kidney of albino rat was reported with few histological changes in the cellular structure of unexposed rats or control [13]. However, large capsular space, degeneration and necrosis of renal tubular epithelia were reported in exposed animals with varying health stress conditions finally causing mortality at higher concentration.

There has been an immense effort for researchers to find a potent, natural supplements from indigenous plant parts in the reduction of oxidative stress and kidney injury.

Administration of lycopene along with deltamethrin resulted in the reversal of deltamethrin-induced biochemical changes in
kidney and increase in the level of renal antioxidant defense system [5]. Histopathological studies showed lycopene administration markedly reduced the toxicity of deltamethrin and preserve the normal histological architecture of the renal tissue [14,15].

However, report also showed that oral administration of *Allium sativum* extract and Vitamin C causes significant reduction of Urea, Albumin, Total protein in rats exposed to deltamethrin [13,14,16]. This researcher maintained that biological defense mechanisms against intracellular oxidative stress induced by pesticides are present in the organism as antioxidant enzymes and non-enzymatic antioxidants like carotenoids, vitamin E, Vitamin C, glutathione and Coenzyme Q10 [15,17].

Cyhalothrin is known to produce a variety of biochemical and histological changes on non-target organisms with few researchers proffering solution to this damage. The ameliorative effect of pomegranate as treatment for albino rats exposed to lambda-Cyhalothrin has been reported [14]

The potency of medicinal plants depend on their active phytochemical components. The phytochemical constituents of the fruits of *Xylopia aethiopica* showed the presence of cardiac glycoside, flavonoids, tannins, phenols anthraquinones, saponins, and steroids but absence of terpenoids and alkaloids proving its antimicrobial and antibacterial activity [15,17,18].

*Tetrapleura tetraptera* fruit is widely used in Nigeria as spice for the treatment and management of various medical conditions such as asthma, hypertension and painful arthritic inflammatory conditions. The analgesic and anticonvulsant effects of 50-800mg/kg of *T. tetraptera* in mice [16].

*Piper guineense* is a West African species of pepper. The spice derived from its dried fruit is known as West African pepper, uziza pepper, ashanti pepper with the presence of flavonoids, tannins, anthraquinones, steroids, coumarins, proteins, cardiac glycoside and terpenoids. The leaves and fruits are used as flavor in most dishes due to its assumed medicinal properties. The leaves assist in the treatment of cough, bronchitis, intestinal disease, rheumatism and while the fruits are used as an aphrodisiac and contraction of the uterus [18,19]. Moreover, [20] reported *Piper guineense* possesses phytochemicals with anti-plasmodial and analgesic potentials.

Several reports have shown the alarming increase of kidney diseases in both children and adults while the exact causative agent and treatment are not known. Moreover, on daily basis, people use plant natural spices without scientific knowledge of their components and effects. Therefore, there is need to evaluate the effect of *T. tetraptera*, *P. guineense* and *X. aethiopica* on lambda –Cyhalothrin induced nephrotoxicity.

2. MATERIALS AND METHODS

2.1 Experimental Location

This study was carried out in the Animal house, Department of Animal and Environmental Biology of Rivers State University, Nkpolu-Oroworukwo Port Harcourt, Nigeria. GPS 4°47'50"N 6°58'49"E.

2.2 Animal Care and Management

The animal house was properly washed and disinfected, drinkers and food trawlers were equally washed with soap and water. 42 Adult male Swiss mice of mean weight 20.57±3.35g were purchased from an animal farm in Rivers State, Nigeria. The mice were housed in wire mesh cages under standard conditions (12hrs:12hd) and allowed to acclimatize for 7days before the commencement of the experiment. The mice were fed with standard pellet and clean cool water *ad libitum*. All experiments were conducted according to the institutional protocols of animal care at Rivers State University, Port Harcourt, and the standard procedure for ethical treatment of Laboratory animals.

2.3 Chemicals

Lambda-Cyhalothrin was purchased from a reputable chemical store in Port Harcourt. The dosage was calculated based on information of the lethal dose (LD50) from literature [21].

2.4 Preparation of *Tetrapleura tetraptera*, *Xylopia aethiopica* and *Piper guineense*

*Tetrapleura tetraptera* fruit, *Xylopia aethiopica* and *Piper guineense* seeds were purchased from a reputable market near the study area. The
fruits and seeds were sun dried, blended into fine powder and stored for use.

2.5 Experimental Design

The experimental animals were separated into 6 groups (A-F) of seven mice each. Group A served as the control and received water and standard pellet only. Group B – F served as the test groups. Group B received the 10mg/kg/bw/day of Lambda-Cyhalothrin only, Group C received 10mg/kg/bw/day of Lambda-cyhalothrin and 30mg/kg/bw/day of Tetracleura tetraptera. Group D received 10mg/kg/bw/day of Lambda-cyhalothrin and 30mg/kg/bw/day of Piper guineense. Group E received 10mg/kg/bw/day of Lambda-cyhalothrin and 30mg/kg/bw/day Xylopia aethiopica while Group F received combination of 30mg/kg/bw/day of the three spices with 10mg/kg/bw/day of Lambda-Cyhalothrin.

2.6 Blood Collection

After the 35 days exposure of the mice, feed was withdrawn from the mice 24 hours before termination of the experiment. Blood samples for analysis of kidney function test were collected from each rat by ocular puncture modified [22] into plain tubes. The blood was allowed to clot and centrifuged at 2500g to separate the serum from the cells. Serum samples were stored in the freezer at 4°C for further analysis [23]. Total protein was analyzed using the spectrophotometric method of biuret, Bradford and erythrosine – B according to [24,25] Albumin was estimated using the method of [26, 27]. Creatinine and Urea was done using enzymatic method [28,29].

2.7 Histopathological Analysis of the Kidney

Immediately after dissection of each animal, 0.5g of kidney was fixed in 10% neutral formalin and sectioned with a digital Rotatory Microtome (AO spencer No. 820) at 5µm. Histological sections mounted on slides was stained with hematoxylin and counter-stained with eosin (H&E) according to [22,30]. Photomicrographs were generated with a digital microscope Biosphere Miller B with an image processor DN2 – microscopy image processing software [22] at x40 magnification.

Data obtained from the biochemical analysis of Kidney biomarkers were subjected to one-way ANOVA and graphs produced using SPSS 22 software.

3. RESULTS

3.1 Body weight and Organosomatic Indices of Male Mice Co-administered with Lambda-cyhalothrin and Different Local Spices

The effect of lambda-cyhalothrin exposure administered with different local spices on the mean weight in relation to their bodyweight is shown in Table 1.

There was no significant difference (P>0.05) between the percentage weight of liver in the control group and that in the treatment groups compared to their body weights. Also there was no significant difference in the heart, spleen, kidney and seminal vesicle of the animals in group B compared to those in other groups co-administered with lambda-cyhalothrin.

3.2 Potential Nephrotoxicity by Analysis of Kidney Biomarkers

The effect of lambda-cyhalothrin coadministered the three local spices in this study on some kidney biomarkers are shown in Fig 1A-1D. The value of albumin in the control was 43.3g/dl and increased significantly (P=0.05) to 47.01g/dl in group B, administered Cyhalothrin only. The administration of the three spices alongside Lambda-Cyhalothrin in groups C, D, E, F however recorded non-significant values of 45.11g/dl, 42.03g/dl, 41.14 g/dl and 45.1g/dl respectively when compared to the control group.

The concentration of total protein recorded in the control group was 69.12 g/dl. When compared to those in other groups, the value increased significantly (P=0.05) to 82.13g/dl in group B with administration of cyhalothrin only. The administration of the three spices alongside Lambda-Cyhalothrin in groups C, D, E, F however recorded non-significant values of 45.11g/dl, 42.03g/dl, 41.14 g/dl and 45.1g/dl respectively when compared to the control group.

3.3 Histopathological Analysis of the Kidney of Swiss Mice Exposed to Lambda-Cyhalothrin and Different Local Spices

Histopathological analysis of the kidney of male mice exposed to lambda-cyhalothrin and the
Table 1. Effect of co-administration of the spices on organosomatic indices of male mice exposed to Cyhalothrin

| GRPS | Body wt (g) | Hepatosomatic (%) | Cardiosomatic (%) | Spleenosomatic (%) | Renosomatic (%) | Sem.Vesicle (%) |
|------|-------------|-------------------|-------------------|-------------------|----------------|----------------|
| A    | 27.40±3.06  | 4.79±0.26         | 0.55±0.08         | 0.39±0.05         | 1.45±0.08      | 0.61±0.21      |
| B    | 28.61±2.36  | 4.74±0.34         | 0.52±0.05         | 0.39±0.07         | 1.59±0.20      | 0.53±0.17      |
| C    | 25.22±2.53  | 4.82±0.32         | 0.11±0.03         | 0.51±0.12         | 1.62±0.08      | 0.60±0.11      |
| D    | 26.93±2.47  | 5.57±0.56         | 0.52±0.08         | 0.67±0.20         | 1.54±0.17      | 0.73±0.20      |
| E    | 30.94±2.33  | 5.05±0.53         | 0.49±0.15         | 0.56±0.16         | 1.47±0.29      | 0.69±0.12      |
| F    | 26.32±1.72  | 4.51±0.39         | 0.52±0.17         | 0.45±0.16         | 1.35±0.25      | 0.56±0.23      |
| P>0.05 | 0.03    | 0.02              | 0.02              | 0.04              | 0.02           |

*Values are Mean±SD, level of significance (P=0.05)
Fig 1A: Concentration of Albumin (ALB g/dl) in the treatment groups

Fig. 1b. Concentration of total protein (TPG/DL) in treatment groups

Fig. 1c. Concentration of urea (UR/g/dl) in the treatment groups

Fig. 1d. Concentration of creatinine (CR/g/dl) in the treatment groups

Fig. 1d. Concentration of TB (total bilirubin g/dl) in the treatment groups

Fig. 1. Analysis of kidney markers in treated group. (A) Concentration of albumin; (B) Concentration of total protein, (C) Concentration of urea; (D) Concentration of creatinine; (E) Concentration of total bilirubin
three different local spices are shown in Fig. 2A-2F. Fig. 2A shows the regular structure of the kidney architecture showing epithelial cells (+), Bowman capsule’s space (*), regular structure of capillaries, tubules and glomeruli of animals in the control group. Close examination of the micrograph in Fig. 2B shows tubular degeneration and several vacuolations, alteration in Bowman’s, space impaired epithelium mononuclear inflammatory cells (+), infiltration of blood corpuscles. Fig. 2C shows less pronounced changes in areas of renal cortex containing corpuscles and associated tubules co-administered the spices, presence of epithelial vacuolation(*) in the group co-administered *Tetrapleura tetraptera*. Fig. 2D shows less degeneration of the epithelial cells and restoration of renal tubular epithelium in the group co-administered *Xylopia aethiopica*. Fig. 2E shows full restoration of the unique renal tubular epithelium in the group co-administered *Piper guineense*. Fig. 2F shows fully regenerated renal epithelium with Bowman’s capsule space and normal cellular architecture in the group co-administered the combination of the three spices.
4. DISCUSSION

The kidney is a specialized organ that selectively removes toxic substances from the body thereby maintaining its internal environment (Homeostasis). The non-significant differences observed in the organ and bodyweight of the experimental animals shows that lambda cyhalothrin is not a systemic toxin. Therefore, it can silently destroy the vital organs of the body without conspicuous changes in the bodyweight. This finding is also supported by [2]. Cyhalothrin is a synthetic pyrethroid implicated in the induction of oxidative stress by elevation of serum total bilirubin (TB) which was significantly (p<0.05) higher in group B administered Cyhalothrin alone than the control. The level of urea, total protein, albumin and creatinine were also significantly (p<0.05) elevated in group B (fig 1). This is at variance with studies by [29] who reported no significant difference in the creatinine level of rats exposed to 20mg/kg/bw/day of Cypermethrin. The increase in the level of urea in group B indicates the decreased ability of the kidney to filter and excrete the waste product of metabolism. Moreover, [2,5,30,31] reported a significant elevation of total bilirubin and creatinine known to be associated with kidney pathology including tubular necrosis in rats exposed to deltamethrin, cypermethrin and lambda- Cyhalothrin respectively. The significant increase in the level of glucose, urea, creatinine and total bilirubin of rats exposed to deltamethrin and a significant decrease in this biochemical parameters when coadministered vitamin E was reported by [32]

Also [33] reported an increase in kidney weight, total bilirubin, urea, creatinine in rats induced lambda-cyhalothrin but pomegranate fruit ameliorated lambda cyhalothrin induced toxicity in exposed rats. The histological micrographs of the kidneys of mice in the group administered lambda-cyhalothrin alone, show pronounced degeneration of the tubules, several vacuolations, and widened tubular lumen, alteration in Bowman’s, space, impaired epithelium, mononuclear inflammatory cells(+) and infiltration of blood corpuscles. [32] reported severe vacuolations, cell infiltration and widened tubular lumen in rats administered lambda cyhalothrin alone. The decrease in all the kidney biomarkers evaluated and regeneration of the renal tubules in the groups coadministered Tetrapleura tetraptera, Xylopia aethiopica, Piper guineense alone or in combination show the contributive antioxidant and regenerating ability of these spices against lambda-Cyhalothrin induced kidney injury.

5. CONCLUSION AND RECOMMENDATION

Based on the results from liver biomarkers and histological micrographs from this study, lambda-cyhalothrin induced pronounced degeneration of the tubules, several vacuolations, and widened tubular lumen. Moreover, all spices used had a regenerating ability on the kidney tubules, an indication that the different local spices may serve as remedy against kidney injury. It is advocated therefore that consumption of these different local spices alone or in combination
should be encouraged especially for those exposed to insecticides poisoning.

ETHICAL APPROVAL

The experiment was conducted according to the institutional animal care protocols at the Rivers State University Nkpolu-Oworukwo, Port Harcourt, Rivers state, Nigeria and followed approved guidelines for the ethical treatment of experimental animals.

ACKNOWLEDGEMENTS

The following people are acknowledged for their various contributions in ensuring the completion of this research: Nwoke Kasarachi, Toby Emmanuel, and Okachi Ngozi

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Aslan A, Cemek M, Eser O, Altunbas K, Buyukokuuroglu ME, Cosar M, et al. Does dextrometorphan reduce secondary damage after spinal cord injury? An experimental study. European Spine Journal. 2009;18:336–344.
2. Titus LK, Orlu EE, Obulor AO. Evaluation of the Therapeutic Role of *Citrullus lanatus* and *Annona muricata* Fruit Extracts on Cyhalothrin-induced Toxicity. Journal of Advances in Biology & Biotechnology. 2019;22(4):1-10.
3. Abdollahi M, Mostafalou S, Pourournomahmadi S, Shadnia S. Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to Malathion. Comparative Biochemistry and Physiology Part C. 2004;137:29–34.
4. Abu El-Saad AM. Lycopene protects against Deltamethrin-induced Oxidative renal dysfunction in rats. Egyptian Journal of Experimental Biology. 2011;7(2):111-121.
5. Orlu EE. Deltamethrin-induced Alterations in sperm morphology and spermatogenesis impairment in Adult. Sprague-Dawley Rats. Research Journal of Applied Sciences, Engineering and Technology. 2014;7 (11):2324-2331.
6. Obulor AO, Orlu EE. Inhibitory Activity of lycopene on Cypermethrin-induced hepatotoxicity and liver injury in male Sprague Dawley Rats. Journal of pharmacy and Biological Sciences. 2018;13:63-73.
7. Sangha GK, Kaur K, Khera K, Singh B. Toxicological effects of Cypermethrin on female rats. Toxicology International. 2011;18(1):5-8.
8. Huang C, Li X. Maternal Cypermethrin Exposure during the Perinatal Period Impairs Testicular Development in C57BL Male Offspring. Public Library of Science ONE. 2014;9(5):e96781. DOI:10.1371/journal.pone.0096781.
9. Grewal KK, Sandhu GS, Ranjit K, Brar RS, Sandhu HS. Toxic Impacts of Cypermethrin on Behavior and Histology of Certain Tissues of Albino Rats. Toxicology International. 2010;17(2): 94–98.
10. Farag AT, El-Aswad AF, Shaaban NA. Assessment of reproductive toxicity of orally administered technical dimethoate in male mice. Reproductive Toxicology. 2007;23(2):232–238.
11. Grewal KK, Sandhu GS, kaur R, Brar RS, Sandhu HS. Toxic impacts of Cypemethrin on behavior and histology of certain tissues of albino rats. Toxicology International. 2010;17(2):94-98.
12. Mamum A, Illa J, Haque F, Ferdousi Z. Histological study of the effect of cypermethrin on liver and kidney tissues of mice model. Journal of pharmacy and biological science. 2014;9 (5):121-128.
13. Sabihy K. Study of histopathological changes induced by endosulfan in kidney of albino rats. Journal of drug delivery and therapeutics. 2014;4(3):121-128.
14. El-Gerbed MSA. Protective effect of lycopene on deltamethrin-induced histological and ultrastructural changes in kidney tissue of rats. Toxicology and Industrial Health. 2014;30(2):160–173.
15. Yasmin E, Abdel-Mobdy Emam A. Abdel-Rahim. Toxicological influences of LCT and evaluation of the toxicity ameliorative effect of pomegranate in albino rats. Global Veterinaria. 2015; 14(6):913-921.
16. Illusnaya OAF, Odunbaku OA, Adesetan OT, Amosun OT. Antimicrobial activity of fruit extracts of *Xylopia aethiopica* and its combination with antibiotics against clinical bacterial pathogens. Journal of Biology, Agriculture and Healthcare. 2012;2(9):1-9.
17. Ojewole IAO, Adewumi OC. Anti-inflammatory and hypoglycemic effects of Tetrapleura tetraptera. Journal of Ethnopharmacology. 2004;95:177-182.

18. Ekpo IA, Osuagwu AI, Agbor AB, Okpako EC, Ekanem BE. Phytochemical composition of Afromo- mum melegueta and Piper guineense seeds, Journal of Current Research in Science. 2013;1:24-27.

19. Ejele AE, Duru IA, Oze RN, Iwu IC, Ogukwe CE. Composition of antimicrobial potential of Piper guineense, Ocimum gratissimum and Newboudia leaves extracts," International Research Journal Biochemistry and Bioinformatics. 2013;2(2):35-40.

20. Kabiru AY, Ibibunle GF, Innaegwu DA, Bola BM, Madaki FM. In vivo antiplasmodial and analgesic effect of crude thanol extract of Piper guineense leaf extract in Albino mice. Scientifica. 2016;ID 8687313:6pp

21. Pesticide fact sheet number 171:KARATE (PP321); U.S. Environmental protection Agency, Office of Pesticide Programs, U.S. Government printing Office: Washington, DC; 1988.

22. Obulor AO, Orlu EE. Inhibitory Activity of lycopene on Cypermethrin-induced hepatotoxicity and liver injury in male Sprague Dawley Rats. Journal of pharmacy and Biological Sciences. 2018;13:63-73.

23. Orlu EE, Gabriel EU. Liver and Plasma Biochemical profiles of male Gravid Clarias gariepinus (Burch. 1822) Broodstock exposed to Sublethal concentrations of aqueous leaf extracts of Lepidagathis alopecuroides (Vahl). American Journal of Scientific Research. 2011;26:106-115.

24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72:248-54.

25. Soedjak HS. Colorimetric micromethods in protein determination with erythrosine-B.

26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Total protein estimation by Lowry’s method. Journal of Biology and Chemistry. 1951;193:265-270.

27. Doumas BT, Watson WA, Biggs HG. Albumin standards and measurement of serum-albumin with bromocresol green. Clinical Chimica Acta Journal. 1971;31:87-92.

28. Atasayar S, Gurer-Orhan H, Orhan H, Gurel B, Girgin G, Ozgunes H. Preventive effect of aminoguanidine compared to vitamin on cisplatin-induced Nephrotoxicity in rats. Experimental Toxicology and Pathology. 2009;6:23-32.

29. Abu-El-Zahab HS, Amer MM, Awadallah R, Abdel-Aal WE, El-Khyat ZA. Physiological and histopathological studies on long-term inhalation of adult alino rats to pyrethroids. J. Egypt Ger Soc. Zool. 1993;11:311-334.

30. Issam C, Intissar G, Fatma B, Yahia HM, Samir H, Zohra H, Hassen B. Oxidative Stress, Biochemical and Histopathological Alterations in the Liver and Kidney of Female Rats Exposed to Low Doses of Deltamethrin (DM): A Molecular Assessment. Biomed Environ Sci. 2012;25(6):672-683.

31. Ahmed M, Nasr HM. Dimethoate-induced changes in biochemical parameters of experimental rat serum and its neutralization by black seed (Nigella sativa L.) oil, Slovak J Anim Sci. 2009;42:87-94.

32. Fetoui H, Makni M, Garoué E, Zeghal N. Toxic effects of lambda cyhalothrin, a synthetic pyrethroid pesticide, on the rat kidney: involvement of oxidative stress and protective role of ascorbic acid. Experimental toxicology pathology. 2010; 62(6):593-599.

33. Abdel-Mobdy, Abdel Raham GA. Toxicological influences of lambda cyhalothrin and evaluation of the toxicity ameliorative effects of pomegrate in albino rat, Global veterinaria. 2015;14(6):913-721.