Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of *Passiflora edulis* Cultivated in Vietnam

To Dao Cuong¹²³*, Hoang Thi Ngoc Anh¹, Tran Thu Huong¹, Pham Ngoc Khanh¹, Vu Thi Ha¹, Tran Manh Hung⁵, Young Ho Kim⁶, and Nguyen Manh Cuong¹⁴*,

¹Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
²Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
³Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
⁴Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100803, Vietnam
⁵Department of Biomedical Sciences, Institute for Research and Executive Education (VNUK), The University of Danang, 158A Le Loi Street, Hai Chau district, Da Nang 551000, Vietnam
⁶College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract – Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, metabolize epoxy fatty acids to 1,2-diols. sEH in the metabolism of polyunsaturated fatty acids plays a key role in inflammation. In addition, the endogenous lipid mediators in cardiovascular disease are also broken down to diols by the action of sEH that enhanced cardiovascular protection. In this study, sEH inhibitory guided fractionation led to the isolation of five phenolic compounds *trans*-resveratrol (1), *trans*-piceatannol (2), sulfuretin (3), (+)-balanophonin (4), and cassigarol E (5) from the ethanol extract of the seeds of *Passiflora edulis* Sims cultivated in Vietnam. The chemical structures of isolated compounds were determined by the interpretation of NMR spectral data, mass spectra, and comparison with data from the literature. The soluble epoxide hydrolase (sEH) inhibitory activity of isolated compounds was evaluated. Among them, *trans*-piceatannol (2) showed the most potent inhibitory activity on sEH with an IC₅₀ value of 3.4 µM. This study marks the first time that sulfuretin (3) was isolated from *Passiflora edulis* as well as (+)-balanophonin (4), and cassigarol E (5) were isolated from *Passiflora* genus.

Keywords – *Passiflora edulis*, Passifloraceae, Phenolic, Stilbene, sEH

Introduction

Soluble epoxide hydrolase (sEH, EC 3.3.2.10) is the major enzyme responsible for the hydrolysis of epoxy fatty acids (EpFAs) to their corresponding vicinal diols in humans and other mammals.¹ These EpFAs include the epoxides of linoleic, arachidonic, eicosapentaenoic, and docosahexaenoic acid that are produced primarily by cytochrome P450s. These natural molecules are pleiotropic endogenous mediators with key functions in inflammation,¹ pain,² and blood pressure regulation.³ Increasing the levels of endogenous EpFAs by inhibiting sEH has been shown to block and resolve inflammation,⁴ reduce pain,² lower blood pressure, and prevent cardiovascular diseases.⁵ To overcome these problems, finding new inhibitors from natural plants has been investigated. A few sEH inhibitors from natural products have been identified. The results showed that natural compounds found to inhibit sEH were diverse including biflavonoids,⁶ selaginellin,⁷ stilbenes,⁸ anthraquinone derivatives,⁹ carbazole-type alkaloids (isomahanine, bisisomahanine),¹⁰ alkylphloroglucinol derivatives, and triterpenoids.¹¹ These results encourage us to continue our studies in discovery of sEH inhibitors from natural sources.

From our screening results, we found that the ethanol extract of *Passiflora edulis* Sims had appreciable inhibitory activity. *Passiflora edulis* Sims (Passifloraceae), a
popular tropical fruit throughout the world, is usually used for juice production,12 and widely cultivated in South America, Africa, and Asia. In Vietnam, \textit{P. edulis} is popularly cultivated in Tay Nguyen, Nghe An and Son La with areas of over ten thousand hectares. \textit{P. edulis} was found to possess biological activities including anti-inflammatory,13 antihypertensive,14 anti-oxidant,15 anti-tumor,16 anti-anxiety,17 antifungal,18 and found to inhibit melanogenesis and promote collagen synthesis.19 Previous studies on chemical constituents of \textit{P. edulis} showed the presence of triterpenoids,20 flavonoids,21 alkaloids,22 carotenoids,23 stilbenoids,24,25 oil, and tocopherols.25 In spite of the number of studies that have been performed,19,24,25 there has been no investigation of chemical constituents and sEH inhibitory activity of \textit{P. edulis} seeds cultivated in Vietnam. Therefore, this paper described the isolation and structural elucidation of these compounds as well as the evaluation of their inhibitory activity on sEH.

\textbf{Experimental}

\textbf{General experimental procedures} – 1H-NMR (500 MHz) and 13C-NMR (125 MHz) were measured on a Bruker Avance 500 MHz spectrometer. ESI-MS was obtained from a Varian FT-MS spectrometer and MicroQ-TOF III (Bruker Daltonics, Ettlingen Germany). Optical rotations were measured on a P-2000 polarimeter (JASCO, Tokyo, Japan). Column chromatography was carried out on silica gel (Si 60 F\textsubscript{254}, 40-63 mesh, Merck, St. Louis, MO, USA). All solvents were redistilled before use. Pre-coated TLC plates (Si 60 F\textsubscript{254}) were used for analytical purposes. Compounds were visualized under UV radiation (254, 365 nm) and by spraying plates with 10\% H\textsubscript{2}SO\textsubscript{4} followed by heating with a heat gun.

\textbf{Plant materials} – The seeds of \textit{Passiflora edulis} Sims were provided by Nafoods Group JSC (Nghe An Province, Vietnam) in 2016 and identified by botanist Dr. Nguyen Quoc Binh, Vietnam National Museum of Nature, VAST, Hanoi, Vietnam. A voucher specimen (C-573) was deposited in the Herbarium of the Institute of Natural Products Chemistry, VAST, Vietnam.

\textbf{Extraction and isolation} – The dried powdered seeds (1.0 kg) of \textit{P. edulis} were extracted three times with \textit{n}-hexane (3 \times 4.0 L) at room temperature for 3 days, filtered, and then concentrated under decreased pressure to give \textit{n}-hexane extract (200 g) and residue. The dried residue (700 g) was then extracted three times with ethanol (3 \times 3.0 L) by sonication for 6 hours. The ethanol extract (60 g) was suspended in hot-water (0.5 L) and partitioned with dichloromethane (CH\textsubscript{2}Cl\textsubscript{2}, 3 \times 3.0 L) and ethyl acetate (EtOAc, 3 \times 3.0 L) successively. The resulting fraction was concentrated under decreased pressure to give CH\textsubscript{2}Cl\textsubscript{2} (5.2 g) and EtOAc (20 g) fractions, respectively. By the guided-fractionation activity, the EtOAc soluble fraction was chromatographed on a silica gel column chromatography (CC) eluting with a gradient of CHCl\textsubscript{3}–MeOH (20:1 to 0:1) to afford eight fractions (Fr. E1 to Fr. E8). Fraction E3 (820 mg) was subjected on a silica gel CC eluting with a gradient of \textit{n}-hexane–acetone (4:1 to 0:1) to afford compounds 1 (6.2 mg) and 2 (200 mg). Fraction E4 (3.5 g) was also subjected to silica gel CC eluting with a gradient of CHCl\textsubscript{3}–acetone (4:1 to 0:1) to afford six sub-fractions (Fr. E4.1 to Fr. E4.6). Compounds 3 (15.8 mg) and 4 (16.2 mg) were obtained from sub-fraction E4.3 (250 mg) by using C18-RP silica gel CC and eluting with a gradient of MeOH–H\textsubscript{2}O (1:2 to 1:1). Fraction E5 (6.5 g) was also subjected to silica gel CC eluting with a gradient of CHCl\textsubscript{3}–MeOH (5.1 to 0:1) to afford eight sub-fractions (E5.1 to E5.8). The sub-fraction E5.6 (320 mg) was further subjected to C18-RP silica gel CC, eluted with a gradient of MeOH–H\textsubscript{2}O (1:3 to 1:1) to afford compound 5 (10.2 mg).

\textbf{Trans-resveratrol} (1) – Ivory amorphous powder; \textbf{1H-NMR} (500 MHz, Methanol-\textit{d}_4) \textit{δ}_H (ppm): 6.47 (2H, d, \textit{J} = 2.0 Hz, H-2/H-6), 6.18 (1H, t, \textit{J} = 2.0 Hz, H-4), 7.36 (2H, d, \textit{J} = 8.5 Hz, H-2'/H-6'), 6.78 (2H, d, \textit{J} = 8.5 Hz, H-3'/H-5'), 6.97 (1H, d, \textit{J} = 16.0 Hz, H-8), 6.81 (1H, d, \textit{J} = 16.0 Hz, H-7); \textbf{13}C-NMR (125 MHz, Methanol-\textit{d}_4) \textit{δ}_C (ppm): 159.6 (C-3/C-5), 158.3 (C-4), 141.3 (C-1), 130.4 (C-1'), 129.3 (C-8), 128.7 (C-2'/C-6'), 127.0 (C-7), 116.4 (C-3/C-5'), 105.7 (C-2/C-6), 102.6 (C-4); ESI-MS m/z 229.09 [M+H]+ (Calcd. for C\textsubscript{14}H\textsubscript{16}O\textsubscript{2}).

\textbf{Trans-piceatannol} (2) – Ivory amorphous powder; \textbf{1H-NMR} (500 MHz, Acetone-\textit{d}_6) \textit{δ}_H (ppm): 8.36 (2H, s, 3/5-OH), 8.16 (1H, br s, 4'-OH), 8.06 (1H, br s, 3'-OH), 7.07 (1H, d, \textit{J} = 2.0 Hz, H-2'), 6.93 (1H, d, \textit{J} = 16.5 Hz, H-8), 6.89 (1H, dd, \textit{J} = 8.5, 2.0 Hz, H-6'), 6.82 (1H, d, \textit{J} = 8.5 Hz, H-5'), 6.81 (1H, d, \textit{J} = 16.5 Hz, H-7), 6.53 (2H, d, \textit{J} = 2.0 Hz, H-2/6), 6.25 (1H, s, H-4'; \textbf{13}C-NMR (125 MHz, Acetone-\textit{d}_6) \textit{δ}_C (ppm): 159.5 (C-3/C-5), 146.0 (C-3/C-4'), 140.7 (C-1'), 130.5 (C-1), 129.2 (C-8), 126.8 (C-7), 119.8 (C-6'), 161.1 (C-5'), 113.7 (C-2'), 105.5 (C-2/C-6), 102.6 (C-4); ESI-MS m/z 245.08 [M+H]+ (Calcd. for C\textsubscript{14}H\textsubscript{16}O\textsubscript{2}).

\textbf{Sulfuretin} (3) – Yellow amorphous solid; \textbf{1H-NMR} (500 MHz, Methanol-\textit{d}_4) \textit{δ}_H (ppm): 7.63 (1H, d, \textit{J} = 8.5 Hz, H-5), 7.54 (1H, d, \textit{J} = 2.0 Hz, H-8), 7.26 (1H, dd, \textit{J} = 8.5, 2.0 Hz, H-6), 6.86 (1H, d, \textit{J} = 8.0 Hz, H-5'), 6.73 (1H, dd, \textit{J} = 8.0, 2.0 Hz, H-6'), 6.72 (1H, d, \textit{J} = 2.0 Hz, H-2'), 6.71 (1H, s, H-2); \textbf{13}C-NMR (125 MHz, Methanol-\textit{d}_4)}
δ_C (ppm): 196.1 (C-9'), 156.8 (C-4'), 156.1 (C-3'), 152.9 (C-11), 149.3 (C-20), 141.0 (C-9), 140.1 (C-9'), 132.6 (C-1), 129.4 (C-7), 128.4 (C-8), 121.0 (C-6), 120.7 (C-6), 118.1 (C-5), 115.9 (C-2), 115.8 (C-5'), 115.6 (C-2'), 107.4 (C-10/C-14'), 105.9 (C-10/C-14), 103.6 (C-12'), 102.9 (C-12), 82.2 (C-8'), 81.8 (C-7') (Calcd. for C_{28}H_{39}O_2).

Cassigarol E (5) – Brown amorphous powder; [α]_D^{25} \text{25}^-_{	ext{25}} -56.4^\circ (c 0.12, MeOH); \text{1}^H-NMR (500 MHz, Methanol-d_6): δ_H (ppm): 7.15 (1H, d, J = 2.0 Hz, H-2), 7.09 (1H, dd, J = 8.5, 2.0 Hz, H-6), 6.99 (1H, d, J = 16.0 Hz, H-7), 6.96 (1H, d, J = 8.5 Hz, H-5), 1.88 (1H, d, J = 16.0 Hz, H-8), 6.68 (1H, d, J = 2.0 Hz, H-2'), 6.67 (1H, d, J = 8.5 Hz, H-5'), 1.67 (1H, t, J = 2.0 Hz, H-4'), 1.61 (2H, dd, J = 2.0, 10.0 Hz, H-10'), 4.75 (2H, d, J = 2.5 Hz, H-7/H-8'); \text{13}C-NMR (125 MHz, Methanol-d_6): δ_C (ppm): 159.6 (C-11/C-11'), 115.2 (C-12/C-13'), 146.6 (C-4'), 146.1 (C-3'), 145.4 (C-4), 145.0 (C-3), 141.0 (C-9), 140.1 (C-9'), 132.6 (C-1), 129.4 (C-7), 128.4 (C-8), 121.0 (C-6), 120.7 (C-6), 118.1 (C-5), 115.9 (C-2), 115.8 (C-5'), 115.6 (C-2'), 107.4 (C-10/C-14'), 105.9 (C-10/C-14), 103.6 (C-12'), 102.9 (C-12), 82.2 (C-8'), 81.8 (C-7') (Calcd. for C_{28}H_{39}O_2).

sEH Inhibitory Activity Assay – The sEH assay was performed as described previously. Briefly, 130 µL of sEH in 25.0 mM Bis-Tris-HCl buffer (pH 7.0) and 20.0 µL of the compounds (1–0.06 mM concentration) diluted in methanol, were added in 96-well plate, to which 50.0 µL of 20.0 µM PHOME was added in the mixture. After initiating the enzyme reaction at 37°C, the products by hydrolysis of the substrate were monitored at excitation and emission of 330 and 465 nm for one hour.

Inhibitory activity (%) = 100 − [(C_{40} − C_0) − (S_0 − S_0)] / (C_{40} − C_0) × 100

where C_0 and S_0 were the fluorescence of the control and inhibitor, respectively, after 40 min, S_0 and C_0 is the fluorescence of inhibitor and control, respectively, at 0 min. 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA) was used as a positive control.

Statistical Analysis – sEH inhibitory activity assay was performed in triplicate. The results are presented as the means ± standard error of the mean.

Result and Discussion

After removing the oil (vegetable oil) from the seeds of *P. edulis* by n-hexane, the residue was extracted with ethanol to obtain ethanol extract. In the search for sEH inhibitors from natural sources, we found that the ethanol extract of the seeds of *P. edulis* inhibited 64.7% of sEH activity at a concentration of 37.5 µg/mL. This extract was then partitioned with dichloromethane (CH_2Cl_2) ethyl acetate (EtOAc) fractions and aqueous residue. In the preliminary experiment, we tested the inhibitory activity of these fractions at 37.5, 75.0 and 150.0 µg/mL.

Based on the results in Table 1, CH_2Cl_2-soluble fraction showed 91.8% inhibition at the concentration of 37.5 µg/mL, which was approximately 2.0-fold more potent than aqueous layer (48.7%). Interestingly, the EtOAc-soluble fraction exhibited very potently with > 100% sEH activity at the same concentration. Considering that EtOAc-soluble fraction showed the strongest action, our subsequent studies focused on the isolation of active components. This sub-fraction was subjected to column chromatography on a silica gel and C18-RP silica gel column to obtain five compounds (1–5) (Fig. 1).

Compound 1 was obtained as an ivory amorphous powder. The \text{1}^H-NMR of 1 showed signals the presence of 1,3,5-trisubstituted benzene ring characterized with AB _2 system [δ_1 = 6.47 (2H, d, J = 2.0 Hz, H-2/H-6) and 6.18 (1H, t, J = 2.0 Hz, H-4)], and a 1,4-disubstituted benzene ring characterized with an AB_2 system [δ_2 = 7.36 (2H, d, J = 8.5 Hz, H-2/H-6) and 6.78 (2H, d, J = 8.5 Hz, H-3/H-5) together with trans-olefinic protons [δ_3 = 6.97 (1H, d, J = 16.0 Hz, H-8) and 6.81 (1H, d, J = 16.0 Hz, H-7)] (Fig. 1). The \text{13}C-NMR spectrum of 1 exhibited 14 carbon signals including 12 aromatic carbons [δ_C 102.6–159.6], belonging to two benzene rings, and two olefinic carbons [δ_C 129.3 (C-7), and 128.7 (C-8)] (Fig. 1). The ESI-MS data of 1 indicated the pseudo molecular ion at m/z 229.09 for the [M+H]^+ \text{229.09}, indicating a molecular weight of 228. Its molecular formula was determined to be C_{13}H_{33}O_3, according to ESI-MS, \text{1}^H- and \text{13}C-NMR spectroscopic data. Based on the above evidence and comparison with reported data, compound 1 was identified.
as trans-resveratrol. Compound 2, a derivative of 1, which the 1H- and 13C-NMR spectra were similar to those of 1 except for the presence of 1,3,4-trisubstituted benzene ring characterized with ABX system δ_1, 7.07 (1H, d, $J = 2.0$ Hz, H-2), 6.89 (1H, dd, $J = 8.5$, 2.0 Hz, H-6), and 6.82 (1H, d, $J = 8.5$ Hz, H-5') in 2 (Fig. 1). The ESI-MS spectrum of compound 2 showed the pseudo molecular ion at m/z 245.08 [M+H]$^+$, indicating the molecular formula C$_{14}$H$_{12}$O$_{6}$. Thus, compound 2 was identified as trans-piceatannol in comparison with literature data. These compounds (1−2) possess the basics of stilbene skeleton and are known to inhibit anti-oxidant, anti-inflammatory, anti-diabetes and anticancer.

Compound 3 was obtained as yellow amorphous solid. The 1H-NMR spectrum of 3 showed signals of 1,2,4-trisubstituted benzene rings characterized with two ABX systems δ_1, 7.63 (1H, d, $J = 8.5$ Hz, H-5), 7.54 (1H, d, $J = 2.0$ Hz, H-8), and 7.26 (1H, dd, $J = 8.5$, 2.0 Hz, H-6); δ_1, 6.86 (1H, d, $J = 8.5$, Hz, H-5'), 6.73 (1H, d, $J = 2.0$ Hz, H-2'), and 6.72 (1H, dd, $J = 8.5$, 2.0 Hz, H-6')), together with an olefinic proton at δ_1, 6.71 (1H, s, H-2) (Fig. 1). The 13C-NMR and distortionless enhancement by polarization transfer (DEPT) spectra of 3 showed signals for six aromatic quaternary carbon δ_{C} 169.8 (C-7), 168.4 (C-9), 149.3 (C-4'), 146.7 (C-3'), 125.5 (C-1'), 114.8 (C-10) and six aromatic carbons δ_{C} 126.8 (C-5), 126.3 (C-6'), 118.9 (C-2'), 116.7 (C-5'), 114.6 (C-6) and 99.3 (C-8') (Fig. 1). Furthermore, a carbonyl carbon at δ_{C} 184.5 (C-4), together with two olefinic carbons δ_{C} 147.7 (C-3), and 114.1 (C-2') were also observed in the 13C NMR spectrum indicated that 3 was aurone skeleton (Fig. 1). The ESI-MS spectrum of compound 3 showed the pseudo molecular ion at m/z 357.14 for the [M+H]$^+$, indicating a molecular weight of 356. Its molecular formula C$_{20}$H$_{20}$O$_{6}$ was determined to be C$_{20}$H$_{20}$O$_{6}$ according to ESI-MS, 1H- and 13C-NMR spectroscopic data. Therefore, compound 4 was identified as (+)-balanophonin, which was isolated from Passiflora genus for the first time. This compound was known to possess anti-oxidant, anti-cholinesterase, anti-inflammatory, anticancer, and anti-neurodegenerative activities.

Compound 5 was isolated as brown amorphous powder. The 1H-NMR spectrum of 5 showed the presence of twelve aromatic carbons, two olefinic carbons, an aldehyde carbon δ_{C} 196.1 (C-9'), a hydroxymethyl carbon δ_{C} 64.5 (C-9) and two methoxy carbons δ_{C} 56.8 (3-OCH$_3$), and 56.4 (3'-OCH$_3$) (Fig. 1). The HMBC correlations of proton H-2 at δ_1, 6.97 (1H, s) and methoxy protons at δ_1, 3.84 (3H, s) to carbon signal at δ_{C} 149.2 (C-3), as well as proton H-2' at δ_1, 7.25 (1H, s) and methoxy protons at δ_1, 3.92 (3H, s) to carbon signal at δ_{C} 156.1 (C-3'), suggested that two methoxy groups were located at C-3 and C-3' (Fig. 1). Further analysis of these signals by the COSY, HMQC and HMBC spectra led to the partial structures of 4. The ESI-MS data of 4 indicated the pseudo molecular ion at m/z 357.14 for the [M+H]$^+$, indicating a molecular weight of 356. Its molecular formula was determined to be C$_{20}$H$_{20}$O$_{6}$, according to ESI-MS, 1H- and 13C-NMR spectroscopic data. Therefore, compound 4 was identified as (+)-balanophonin, which was isolated from Passiflora genus for the first time. This compound was known to possess anti-oxidant, anti-cholinesterase, anti-inflammatory, anticancer, and anti-neurodegenerative activities.

Compound 5 was isolated as brown amorphous powder. The 1H-NMR spectrum of 5 showed the presence of two ABX system signals for the A ring δ_1, 6.68 (1H, d, $J = 2.0$ Hz, H-2'), 6.67 (1H, d, $J = 8.5$ Hz, H-5'), 6.50 (1H,
Cassigarol E possessed anti-HIV-1, IC_{50} values of 14.2 ± 0.6, 3.4 ± 4.8, 15.8 ± 1.0, and 14.4 ± 0.8 μM, respectively (Table 2). The sEH inhibitory activities of isolated compounds from *P. edulis* were determined using recombinant human sEH incubated with PHOME, an artificial substrate for fluorescence detection with AUDA (IC_{50} value 6.8 ± 0.3 μM), a sEH inhibitor as the positive control. The result showed that compound 4 had no inhibitory (N.I) effect on the activity of enzyme sEH at a concentration of 100 μM, while compounds 1 and 2 at a concentration of 100 μM exhibited the highest sEH inhibitory activity (>100%) (Table 1). Sulfuretin (3), and cassigarol E (5) also showed a strong inhibitory effect on sEH with their inhibition values in the range of 74.6 and 77.7%, respectively (Table 1). Compounds 1 - 3, and 5 showed inhibitory rates over 50% and were further evaluated at concentrations ranging from 6.2 to 100 μM, to elucidate the IC_{50} values. These inhibitors (1 - 3, and 5) showed dose-dependent inhibition, with IC_{50} values of 14.2 ± 0.6, 3.4 ± 4.8, 15.8 ± 1.0, and 14.4 ± 0.8 μM, respectively (Table 2).

Previously, natural plant components with stilbene skeletons from other plants have also shown inhibitory effects on sEH activity. Rhapontigenin, isorhapontin and astrinigin from *Rheum undulatum* (Polygonaceae), and 2-isopropyl-5-{[(E)-2-phenylvinyl]benzene-1,3-diol have displayed potent sEH inhibitory activity. Several stilbene from *Polygonum multiflorum* (Polygonaceae), such as (E)-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, (E)-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-xylloside, and (E)-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-(6''-O-acetyl)-glucoside completely inhibited sEH in a dose-dependent manner, with low IC_{50} values. As in this study, some isolated stilbenes from *P. edulis* can manifest sEH inhibitory activity. Such compounds have been purified from natural medicinal plants for many years all over the world. In addition to other medicinal properties, such as anti-inflammatory, anticancer, and antioxidant activities, the sEH inhibitory activity is worthy of notice, because low-molecular-weight materials can easily reach the site of action following oral administration since they cross the blood-brain barrier.

Acknowledgments

We would like to thank Vietnam Academy of Science and Technology (VAST), Vietnam for financial support (under grand No. VAST.CTG03/17-18) and Nafoods Group JSC for providing materials.

Table 1. Effects of extracts of *P. edulis* on sEH inhibitory activity

Fractions	Inhibition rate (%)		
	37.5 μg/mL	75 μg/mL	150 μg/mL
EtOH	64.7 ± 0.4	97.9 ± 0.7	> 100
CH3Cl	91.8 ± 3.3	95.4 ± 0.4	> 100
EtOAc	> 100	> 100	> 100
Aqueous	48.7 ± 0.9	61.8 ± 2.2	71.5 ± 1.5

a Extracts and fractions were tested three times.

Table 2. The sEH inhibitory activities of isolated compounds from *P. edulis*

Compound	100 μM (%)	IC_{50} value (μM)*
1	>100	14.2 ± 0.6
2	>100	3.4 ± 4.8
3	74.6 ± 0.4	15.8 ± 1.0
4	N.I	N.T
5	77.7 ± 1.3	14.4 ± 0.8
AUDA	68.9 ± 0.3	4.4 ± 0.1 (nM)

N.I: Not inhibition.
N.T: Not tested.
a Compounds were tested three times.
a AUDA was used as a positive control.

Natural Product Sciences

352
References

(1) Morisseau, C.; Hammock, B. D. Ann. Rev. Pharmacol. Toxicol. 2013, 53, 37-58.
(2) Morisseau, C.; Inceoglu, B.; Schmelzer, K.; Tsai, H. J.; Jinns, S. L.; Hegeduš, C. M.; Hammock, B. D. J. Lipid Res. 2010, 51, 3481-3490.
(3) Lin, W. K.; Falck, J. R.; Wong, P. Y. Biochem. Biophys. Res. Commun. 1990, 167, 977-981.
(4) Inceoglu, B.; Jinns, S. L.; Schmelzer, K. R.; Waite, T.; Kim, I. H.; Hammock, B. D. Life Sci. 2006, 79, 2311-2319.
(5) Yu, Z.; Xu, F.; Huse, L. M.; Morisseau, C.; Draper, A. J.; Newman, J. W.; Parker, C.; Graham, L.; Hammock, B. D.; Zeldin, D. C.; Kroetz, D. L. Circ. Res. 2000, 87, 992-998.
(6) Kim, J. H.; Tai, B. H.; Yang, S. Y.; Kim, J. E.; Kim, S. K.; Kim, Y. H. Bull. Korean Chem. Soc. 2015, 36, 300-304.
(7) Kim, J. H.; Cho, C. W.; Tai, B. H.; Yang, S. Y.; Choi, G. S.; Kang, J. S.; Kim, Y. H. Molecules 2015, 20, 21405-21414.
(8) Jo, A. R.; Kim, J. H.; Yan, X. T.; Yang, S. Y.; Kim, Y. H. J. Enzyme Inhib. Med. Chem. 2016, 31, 70-78.
(9) Lee, G. Y.; Kim, J. H.; Choi, S. K.; Kim, Y. H. Bioorg. Med. Chem. Lett. 2015, 25, 5997-5010.
(10) Kim, J. H.; Morgan, A. M. A.; Tai, B. H.; Van, D. T.; Cuong, N. M.; Kim, Y. H. J. Enzyme Inhib. Med. Chem. 2016, 31, 640-644.
(11) Khanh, P. N.; Du, H. V.; Huang, T. T.; Son, N. T.; Ha, V. T.; Van, D. T.; Tai, B. H.; Kim, J. E.; Jo, A. R.; Kim, Y. H.; Cuong, N. M. Fitoterapia 2016, 109, 39-44.
(12) Thokchom, R.; Mandal, G. J. Agric. Eng. Food Technol. 2017, 4, 27-30.
(13) Beninca, J. P.; Montanher, A. B.; Zacalotto, S. M.; Schenkel, E. P.; Frode, T. S. Food Chem. 2007, 104, 1097-1105.
(14) Ichimura, T.; Yamanaka, A.; Ichiba, T.; Toyokawa, T.; Kamada, Y.; Tamamura, T.; Maruyama, S. Biosci. Biotechnol. Biochem. 2006, 70, 718-721.
(15) Lourith, N.; Kanlayavattanakul, M. J. Oleo Sci. 2013, 64, 235-240.
(16) Puricelli, L.; Dell'Aica, I.; Sartorb, I.; Garbisa, S.; Caniato, R. Fitoterapia 2003, 74, 302-304.
(17) Coleta, M.; Campos, M. G.; Cotrim, M. D.; Proença da Cunha, A. Pharmacopsychiatry 2001, 34, S20-S21.
(18) Pelegriini, P. B.; Noronha, E. F.; Muniz, M. A.; Vasconcelos, I. M.; Chiarelio, M. D.; Oliveira, J. T.; Franco, O. L. Biochim. Biophys. Acta. 2006, 1764, 1141-1146.
(19) Matsui, Y.; Sugiyama, K.; Kamei, M.; Takahashi, T.; Suzuki, T.; Katagata, Y.; Ito, T. J. Agric. Food Chem. 2010, 58, 11112-11118.
(20) Bombardelli, E.; Bonati, A.; Gabetta, B.; Martinelli, E. M.; Mustich, G; Danieli, G. Phytochemistry 1975, 14, 2661-2665.
(21) Mareck, U.; Hermann, K.; Galensa, R.; Wray, V. Phytochemistry 1991, 30, 3486-3487.
(22) Seigler, D. S.; Pauli, G. F.; Nahristedt, A.; Leen, R. Phytochemistry 2002, 60, 873-882.
(23) Pereira, C. A.; Yariwake, J. H.; Lances, F. M.; Wauters, J. N.; Tits, M.; Angenot, L. Phytochem. Anal. 2004, 15, 241-248.
(24) Sano, S.; Sugiyama, K.; Ito, T.; Katano, Y.; Ishihata, A. J. Agric. Food Chem. 2011, 59, 6209-6213.
(25) Piombo, G.; Barosh N.; Barea, B.; Boulander, R.; Brat, P.; Pina, M.; Villeneuve, P. OCL 2006, 13, 195-199.
(26) Mattivi, F.; Reniero, F.; Korhammer, S. J. Agric. Food Chem. 1995, 43, 1820-1823.
(27) Mathi, P.; Das, S.; Nikhil, K.; Roy, P.; Yerra, S.; Ravada, S. R.; Bokka, V. R.; Botlagunta, M. Int. J. Prev. Med. 2015, 6, 101.
(28) Kukreja, A.; Wadhwa, N.; Tiwari, A. J. Blood Disord. Transfus. 2014, 5, 240.
(29) Gaur, R.; Kumar, S.; Trivedi, P.; Bhakuni, R. S.; Bawankule, D. U.; Pal, A.; Shanker, K. Nat. Prod. Commun. 2010, 5, 1243-1246.
(30) Júnior, G. M. V.; Sousa, C. M. M.; Cavaileiro, A. J.; Lago, J. H. G.; Chaves, M. H. Hev. Chim. Acta 2008, 91, 2159-2167.
(31) Lee, D. S.; Jeong, G. S.; Li, B.; Park, H.; Kim, Y. C. Int. Immunopharmacol. 2010, 10, 850-858.
(32) Lee, K. W.; Chung, K. S.; Seo, J. H.; Yim, S. V.; Park, H. J.; Choi, J. H.; Lee, K. T. J. Cell. Biochem. 2012, 113, 2833-2844.
(33) Pariyar, R.; Lamichhane, R.; Jung, H. J.; Kim, S. Y.; Seo, J. Int. J. Mol. Sci. 2017, 18, E2753.
(34) Li, J. L.; Li, N.; Xing, S. S.; Zhang, N.; Li, B. B.; Chen, J. G.; Ahn, J. S.; Cui, L. J. Arch. Pharm. Res. 2017, 40, 1265-1270.
(35) Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R. P.; Mencherini, T. Int. J. Mol. Sci. 2017, 18, E392.
(36) Boğa, M.; Yılmaz, P. K.; Cebe, D. B.; Fatima, M.; Siddiqui, B. S.; Kolak, U. Z. Naturforsch C J. Biosci. 2014, 69, 381-390.
(37) Lim, S. Y.; Subedi, L.; Shin, D.; Kim, C. S.; Lee, K. R.; Kim, S. Y. Biomol. Ther. 2017, 25, 519-527.
(38) Baba, K.; Kidó, T.; Taniguchi, M.; Kozawaqa, M. Phytochemistry 1994, 36, 1509-1513.
(39) Bunluepueech, K.; Wattanapiromsakul, C.; Teowtrakul, S. Songklanakarin J. Sci. Technol. 2013, 35, 665-669.
(40) Tran, H. H. T.; Nguyen, M. C.; Le, H. T.; Nguyen, T. L.; Pham, T. B.; Chau, V. M.; Nguyen, H. N.; Nguyen, T. D. Pharm. Biol. 2014, 52, 74-77.
(41) Yuenyongsawad, S.; Bunluepueech, K.; Wattanapiromsakul, C.; Teowtrakul, S. Songklanakarin J. Sci. Technol. 2014, 36, 189-194.
(42) Buscatò, E.; Büttner, D.; Brüggerhoff, A.; Klinger, F. M.; Weber, J.; Scholz, B.; Zivković, A.; Marschalek, R.; Stark, H.; Steinhilber, D.; Bode, H. B.; Proschak, E. ChemMedChem 2013, 8, 919-923.
(43) Sun, Y. N.; Li, W.; Kim, J. H.; Yan, X. T.; Choi, J. E.; Yang, S. Y.; Kim, Y. H. Arch. Pharm. Res. 2015, 38, 998-1004.
(44) Broadwell, R. D.; Sofroniew, M. V. Exp. Neurol. 1993, 120, 245-263.

Received August 28, 2019
Revised October 17, 2019
Accepted October 21, 2019