The Impact of Foreign Direct Investment on CO₂ Emissions in ASEAN Countries

Rizky Eriandani¹*, Saiful Anam², Dewi Prastiwí³, Ni Nyoman Alit Triani³

¹Universitas Surabaya, Indonesia, ²Stie Al-Anwar Mojokerto, Indonesia, ³Universitas Negeri Surabaya, Indonesia. *Email: rizky. eriandani@staff.ubaya.ac.id

Received: 07 May 2020 Accepted: 24 July 2020 DOI: https://doi.org/10.32479/ijeep.10230

ABSTRACT
The aim associated with the present study is to examine the sector-specific foreign direct investment and CO₂ emissions. This study employs panel Granger causality tests to investigate the association between sector-specific foreign direct investment and CO₂ emissions. Using a sample of 5 ASEAN countries for the period of 1980-2018, we find causality running from foreign direct investment in polluting intensive industries (“the dirty sector”) to CO₂ emissions per capita. This result is robust to controlling for other factors associated with CO₂ emissions and using the ratio of CO₂ emissions to GDP. For other sectors, we find no robust evidence that FDI causes CO₂ emissions. These findings are suitable for the regulation making authorities while developing the regulation related to the FDI and carbon emissions. This study provides the guidelines to the upcoming studies who wants to investigate this area in the future and suggested that upcoming studies should add other that FDI factor to investigate the carbon emissions.

Keywords: Carbon Emissions, Foreign Direct Investment, Granger Causality tests, ASEAN Countries
JEL Classifications: E22, F21

1. INTRODUCTION
The global-warming and change in climate have appeared a severe issue confronting the world society in current years. The effect of human on the weather structure is obvious and the current anthropogenic emission of greenhouse gases particularly CO₂ emissions is very high in the record. The changes of Climate have had a worldwide effect on human being and usual systems. Consequently, all over the world, a significant extent of concentration has been given to grasping CO₂ emissions and establishing an economy with low CO₂ emission. Economic growth and energy consumption are two more essential variables associated with environmental degradation. However, they have to suit conclusive elements in environment pollution and most of the researches restrict their researches simply to environment-pollutant, specifically CO₂ emissions, which associate with economic-growth and energy-consumption. CO₂ emissions may not explain by only energy consumption and economic growth (Ozturk and Acaravci, 2013; Zhang, 2011). Thus, we require to examine different variables that are connected to CO₂ emissions.

However, the most important variable has become FDI, in this regard, certain information’s have been addressed particularly in the ASEAN’s perspective. Certainly, the foreign direct investment flow of increasing in developing economies arouses a vital query concerning whichever it has any environment effect (Zeng and Eastin, 2012). In such a way, the effect of FDI on CO₂ emissions research is required. However, FDI is actively attracting by ASEAN, past researches without an investigation of the complication relationship of FDI and CO₂ emissions along with the causal relation, which brings to worse discrimination in the hypothesis of pollution haven. The comfortable environment standard in developing economies, with predictable examination may recommend that FDI may encourage carbon emissions at a large level (Pao and Tsai, 2011). To fascinate FDI, developing economies have a propensity to disregard environment issues
across comfortable or non-enforced directions; in economic theory, this phenomenon has selected the hypothesis of pollution haven. Although, when technologies of low carbon are provided to decrease the CO₂ emissions through FDI in overall, or when foreign direct investment flows to concentrate on the service-industry then the impact of foreign direct investment can be reversed. It is thought that outside enterprise employ improved administration exercises and highly developed technologies that are encouraging to a dirt-free environment in host-economies (Zarsky, 1999), this is recognized as the halo effect hypo-thesis. In the same way, Zeng and Eastin (2012) estimate that overall foreign direct investment in-flows in less developing economies encourage improved environmental consciousness.

In this paper, we examine the association among foreign direct investment and CO₂ emissions in ASEAN countries, during the period 1980-2018. Particularly, we develop a panel-granger-Causality test of the association among foreign direct investment and CO₂ emissions. Two important issues addressed by this approach. 1st, by addressing causative relationship it helps us to get more consistent estimates on the association among foreign direct investment and CO₂ emissions. 2nd, a panel model allows us to raise the observations in integer considerably and to describe findings that are specific with the region, because we are working with macro data. Moreover, using foreign direct investment data disaggregated by sectors, our study extends on earlier work. Therefore, we are competent to identify in pollution-intensive sectors increases in FDI are linked through very high CO₂ emissions in ASEAN countries.

The findings of our research show that in pollution-intensive sectors the foreign direct investment in-flows can be associated to rises in CO₂ emissions, but in other sectors, the same link does not hold for FDI. Consequently, policymakers in the country could benefit from examining this distinguished environment effect of foreign direct investment.

The organization of the study is as following way. In part 2nd, we present a review of the literature on the association between FDI and pollution. Part 3rd presents the methodology. In part 4th we discuss the findings with robustness-tests, and part 5th concluding remarks.

2. FDI AND THE ENVIRONMENT: A LITERATURE-REVIEW

The substantial researches are investigating foreign direct investment flows into less developed countries. This concern is based on several levels, to the significant rises of foreign direct investment in-flows to ASEAN-5 over the previous decade. Moreover, in developing economies foreign direct investment has concerned concentration as an economic-growth potential engine. The advantages of foreign direct investment as of its long-term nature on growth stem, the establishment of employment and stock of capital and the technology transfer and skills that bring to higher production (Borensztein et al., 1998). These prospective gains of foreign direct investment over another form of capital in-flows and the concern of multinational corporations to re-locate have made attracting foreign-direct-investment a vital aspect of the economic agenda in several developing economies.

The vital concern is whether negligent environment standards are an element of the growing aspiration of multinational corporations to relocate in a foreign country. The rivalry between LDC’s might probably have instigated a ‘battle to the lower’ in connection to environment parameter, wherever pollution-intensive multinational corporations re-locate to LDC’s with less severe environment conditions (Xing and Kolstad, 2002). This is called as the pollution-haven hypo-thesis (Mani and Wheeler, 1998). The several kinds of researches result never favour for the pollution-haven hypo-thesis and empiric confirmation has been varied (Mani and Wheeler, 1998; Wagner and Timmins, 2009).

The pollution haven hypo-thesis with lack of consistent evidence may indicate that environment provisions are unlikely to have an impact on the location of the plant since the multinational corporation’s reserves as of lower environment directive can be smaller. Furthermore, pollution intensive industries re-locating to less developed countries may probably have purifier methods of production than comparable domestic-industries. In this regard, in the long run, the foreign direct investment to less developed countries may lead to cleaner industries. Similarly, probably, domestic-firms will ultimately obtain the purifier technologies of foreign firms. This vision is identified as the pollution-halo hypo-thesis and sustains the concept that the existence of foreign-owned firms might give major environment advantages to less developed countries (Antweiler et al., 2001; Birdshall and Wheeler, 2001; Talukdar and Meisner, 2001; Zarsky, 1999). Generally, the observed support on the relationship among foreign direct investment and pollutant has been doubtful and tangible policy recommendations are complex to formulate.

A probable justification of the uncertainty in the empiric findings throughout researches reclines in the distinctions in the extent (or query) and the empiric method (counting lack of comparable data, distinctions in econometric-approaches, and proxies). The empiric method to examine the association among foreign-direct investment and environment may be view as of two prospects. The method concerns to the researches that endeavour to evaluate if enterprises decide to establish in regions with low environment conditions through employing data at the industry level, environment rigidity measures and pollution intentions via industries (utilization of pollution reduction expenditures moreover at residence and overseas). The greater part of this estimation is collected from case-studies or firm-level investigation. It is difficult to determine and to account for environment rigidity by the source of concern with this approach (Albornoz et al., 2009; Wagner and Timmins, 2009).

The 2nd method in the review of literature has focused on the effect of foreign direct investment on the environment. Specifically, formerly firms are situated in other regions it is probable that the levels of pollution will rises. In this regard, it is claimed that levels of pollution can also be used as a proxy of environment rigidity. The study of the observed association between foreign-
direct-investment and pollution is a complicated chore. Foreign direct investment as an effect of pollution may be higher linked to several forms of industries while accessible country-level data of foreign direct investment for developing economies serves to be at the extent of aggregate. Further, pollution data for these types of regions by industry seldom exists.

The other constraint of both methods is that the majority of the presented studies do-not determine the causal relation among foreign direct investment, pollutant and environmental policy. The causal relation is essential as it is probable that multinational corporations re-locate to economies which until now have higher attentions of pollutants. In contrast, less developed countries may relocate by multi-national companies and this will bring to rise in attentions of pollution. Furthermore, these twin conditions are never jointly constrained. In the investigation, the general technique mostly indicates pollutant (or environmental regulation) is a function of foreign direct investment or vice versa. The effect of foreign direct investment on pollutants can go both intense when the method empirically must capture into regard this bidirectionality. This type of problem has addressed by few studies through conducting a causal investigation or co-integration (Acharyya, 2009; Hoffmann et al., 2005; Lee, 2009; Merican et al. 2007). In these researches, foreign direct investment can be connected to pollution (or environment degradation).

The chosen nations of ASEAN’s, i.e., Singapore, Malaysia, Philippines, Thailand, and Indonesia, have economically well developed in contrast to ASEAN’s other nations. In 1967 these 5 nations were the 1st founding members of ASEAN’s, and they still more dominant ASEAN members in the twenty-first century. Between the ASEAN’s nations, Singapore graded the very high (34,758 US.D), persisted through Malaysia (US.D 6318), Indonesia (US.D 1570), Thailand (US.D 3163) and the Philippines (US.D 1403), in the condition of per capita income in 2011. The ASEAN countries average yearly economic growth-rate from 2000 to 2013 continued more than 5%, which intense increase the OECD average 1.6% and is similar to the growth accomplished via India 7.2% and Africa 4.8%. A motivating query between policy-makers, the steady raises in ASEAN five growth.

The growth expertise of ASEAN believes that energy-demand will be greater with a 4% average yearly rate as contrasted to the 1.8% world average. Certainly, there is substantiation that exploits of high fossil fuels will be getting a difference for policy-makers particularly in circumstances of running the problem of environment changes. As an impact of primary energy consumption, CO₂ emissions are possible to increase by 5.1% yearly. The share of worldwide CO₂ emissions in ASEAN, which was 4% in 2013; however it will almost double via 2040, according to the current static.

The impact of Foreign direct investment on CO₂ emissions has obtained substantial concentration in developing-regions (He, 2006; Kearsley and Riddel, 2010), however aside from a small number of researches, small is presently recognized about ASEAN’s (Atici, 2012; Elliott and Shimamoto, 2008). ASEAN’s regions capture foreign direct investment led-growth policies to impel their economic growth, through appealing a large extent of foreign direct investment inflows to rises investment. Appreciably, the liberalization actions of every person nation have been long-lasting and as an intact, in attracting FDI ASEAN’s has become one of the important countries between developing regions. In specified, the ASEAN-five complete huge endeavour to captivate great amounts of foreign-direct-investment in the history with Singapore important the association.

By looking at the causative associations among foreign-direct-investment and the CO₂ emissions is our study contributes to the above literature. We use a panel method which extends the observations in numbers significantly and enables us to describe conclusions that are country especial. Moreover, by using disaggregated foreign direct investment data by regions, our investigation extends on prior work. We investigate whether foreign direct investment in a specific region is linked with specific CO₂ emissions in ASEAN’s. Also, we integrate time series techniques of econometric that give the most consistent outcome on the association among foreign direct investment and pollutant as our econometric technique different from prior estimations. After that, we explain the theoretical-framework and the data apply in our investigation and the econometric-technique.

3. METHODOLOGY

3.1. Theoretical Framework

The theoretical-framework slackly follows List and Co (2000). Since during production pollution-emissions are produced, we can believe that pollution emissions are in-puts to the process of production without loss of generalization. Therefore, by the following equation the earnings of a plant in region j are provided:

\[\pi_j = PQ - P_z G - P_z Z \]

(1)

There G denotes the inputs vector and different attributes which contain, export and import taxes, labour, distance to the markets, capital. \(P_z \) is the unit price of CO₂ emissions and Z is the amount of CO₂ emissions utilized in production. Context
\[\eta_G = \frac{G^2}{Q^2}, \eta_z = \frac{Z^2}{Q^2} \]

here the asterisk super-script shows the choice of profit-maximizing, the firm profits can be stated as follow:

\[\pi^*_j = \left(p - \eta_G P_G - \eta_z P_z \right) Q^* \]

(2)

Profits as a function of the input intensities and its prices indicate by Equation. 2. The emissions private marginal cost is zero (that is \(p_z = 0 \)), in the deficiency of any environmental regulation. \(P_z \) will raise with high rigid environment regulation. Therefore, the profits of the firm depend on the pollution-intensity of production; can affect by the degree that environment regulation (as reflected in \(p_z \)). Firms profits with higher \(\eta_z \) will be more delicate to changes in \(P_z \). Thus, we focus on whether foreign direct investment in industries with higher pollution-intensities has a different impact on pollutant in our study.

Therefore, where \(p_z \) is the lowest, another things equivalent a firm will re-locate to the region. Though, in different situations,
a recent site indicates also fresh prices set P_o related to differing labour cost, imports and exports tariffs, and energy transportation. The input intensities probably change, formerly a plant faces will also different prices.

This denotes that foreign direct investment will emerge from a country with steady to missing (or feeble) environment regulation whether the subsequent situation is fulfilled:

$$\pi_{j,s} = \left(p - \eta_{G,s} P_{G,s} - \eta_{Z,s} P_{Z,s} \right) Q_j^s$$

$$< \left(p - \eta_{G,w} P_{G,w} \right) Q_j^w = \pi_{j,w}$$

(3)

here the sub-script s shows the country effects of environmental regulation and w is the country with-out environment regulation.

We can suppose that $p_z = 0$ in the country with feeble environment regulation for simplifying Equation. 3. The country with low environment limitations will get foreign direct investment from industries with high pollution intensity, under the situation presented in Equation. 3. Although, observe that different inputs and properties in G can influence the plant location decision as mentioned prior.

The firm site resolution will rely on the parameters of actual-values in equation.3 which must be evaluating these values. We examine foreign direct investment inflows to ASEAN economies and ranked by differing sectors in sort to evaluate their impact on CO2 emissions, while it is complex to accumulate data at firm level persistent all over the country to evaluate the profit function for all plant. That is leading to higher emissions in these countries; we should presume to examine those pollution-intensive industries should re-locate to regions with negligent environment regulation if the above condition holds.

3.2. Data

The growth in per capita CO2 emissions is our pollution measure. CO2 is a pollution usually employ in the studies due to its contributions to global warming, and in international agreements, it is commonly concerned as a key variable of interest (Acharyya, 2009; Hoffmann et al., 2005; Merican et al., 2007; Talukdar and Meisner, 2001). Additionally, CO2 emissions are the single measure associated with the environment that is accessible constantly over the year for ASEAN nations.

CO2 emissions growth used by (Hoffmann et al., 2005), CO2 emissions in total (Acharyya, 2009), CO2 emissions GDP ratio and per-capita CO2 emissions in level (Talukdar and Meisner, 2001) in previous work. Different measures of pollution such as PT, NOX and SO2 have used in a few other studies (Waldkirch and Gopinath, 2008; Xing and Kolstad, 2002). We put a focus on the per-capita growth CO2 emissions since total CO2 emissions can be related with the growth of population. We assemble the CO2 emissions growth per capita as the 1st difference of the logarithm of per-capita CO2 emissions. We use an alternate indicator of pollutant, for the reason of robust-ness. We employ the CO2 emissions growth to GDP ratio at constant international dollars in 2005 (here growth is formed as the difference of the logarithm; by using purchasing power parity rates). We collected both CO2 emissions indicators from the WDI (WDI, 2018).

Concerning foreign-direct-investment, we extend the studies by examining foreign direct investment in-flows dis-aggregated through the sector. The high pollutant concentration in Plant sectors would be, more possible to be situated in countries with feeble environment policies, at- least in hypothesis, the same as stated in Section 3. Thus, we examine the main three differ sectors: secondary, primary, and tertiary to conclude the form of capital in-flows that are very harmful to the environment. We consider that dis-aggregation in sectors for ASEAN is vital contributes since aggregate measures of foreign-direct-investment uses in most of the existing literature. Approximately saying, the secondary sector includes manufacturing activities, the primary sector, mining and agricultural activities and the tertiary sector, services. An explanation of the industries integrated into each group shows in Table 1. Though, several industries inside the sectors have enormous disparities in pollution-intensities. Consequently, we examine an additional indicator that aggregates foreign direct investment just in pollutant intensive industries. Examining foreign direct investment in pollution-intensive industries is also an important input of this research.

The method to classifies an industry as pollutant-intensive differs in the studies. Jaffe et al. (1995) and Levinson (1996) employ capital-expenditures of pollution abatement as a per-centage of latest or whole capital expenditures to estimate pollution intensity indicator, Kahn (2003) employs toxic-inventory and the energy-use, while List and Co (2000) estimate CO2 emissions through industry and pollutant abatement operating expenditures. In some of the earlier papers, industries were studied as pollution-intensive in Table 1. Although the disparities in the aspect of sectors and methodology, as well as in the number to attain the pollution-intensity, there are immense analogies in the industries tagged as pollution-intensive. In most of the studies, primary, petroleum and chemicals metals are considered as pollutant-intensive. Based on the available data on disaggregated foreign direct investment and information, pollution-intensive we classify as motor vehicles and other transport equipment mining, quarrying and petroleum, electrical and electronic equipment, chemicals and chemical products, non-metallic mineral products, wood and wood products, paper and paper products, and metal and metal products. Therefore, we generate a pollution-intensive/dirty-sector composed of these industries. We also assemble foreign-direct-investment inflows as a share of GDP in differ sectors (dirty, tertiary, primary, secondary). The data on foreign direct investment dis-aggregated through sector arrives from the UNCTAD database (UNCTAD, 2018). We assemble foreign direct investment through the sector as a GDP share employ data from the world development indicator (WDI, 2018), and employ the logarithm of the sectoral foreign direct investment in-flow as a GDP share. In the investigation, different control variables examined are per capita real-GDP (US dollars constant 2000) and the manufacturing-value-added GDP share. These indicators are employed as the 1st difference of the natural log, we are concerned in the growth of these variables and were collected from the WDI (WDI, 2018). The five ASEAN countries selected for the investigation are Indonesia, Malaysia, Thailand, Philippines, and Singapore. The selected period of estimation is from 1980
to 2018 and Table 1. Provide summary statistics of the variables employ in this estimation.

3.3. Estimation Method

For the estimation of association among sector-oral foreign direct investment in-flows and pollutant emissions we employ a granger Causality test. The test of Granger Causality is related to the Vector-Auto-Regressive (VAR) framework. We contribute to the literature about the empirical method in the subsequent two ways. 1st, our estimation concentrate on ASEAN countries and employ sector-oral foreign direct investment. As we know, there is never any estimation that considers the country overall and employs data on FDI through the sector. Specifically, we test the impact of FDI in-flows, in those industries that are examined more pollute. 2nd, we extend on prior research through employing a test of Granger Causality in a framework that leads in to study country attributes and time particular impacts. To verify the robustness of our findings we: (1) expand our estimation to a multi-variate VAR, where we control for different variables linked to CO₂ emissions and (2) employ CO₂ emissions to GDP-ratio as an emissions alternative measure.

The model employed for the granger-Causality test, which related to Hoffmann et al. (2005) estimation is described in details below. In this analysis, the panel-VAR frame-work employed is specified as follow:

\[
Y_{ij} = \sum_{j=1}^{k} \alpha_j X_{i,j-1} + \sum_{j=1}^{k} \beta_j Y_{i,j-1} + \alpha_i + \tau_i + e_{i,j} \quad (4)
\]

\[
x_{ij} = \sum_{j=1}^{k} \delta_j X_{i,j-1} + \sum_{j=1}^{k} \gamma_j Y_{i,j-1} + \alpha_i + \tau_i + e_{i,j} \quad (5)
\]

Here Y shows the per capita CO₂ emissions growth and x is the foreign direct investment in-flows in a particular sector. The sub-script i shows the region (i = 1, 2, 3, …, N) and t shows the period (t = 1, 2, 3, …, T). K shows Y variables login number and x integrated as an independent variable, and a and τ shows the time fixed-effects and country. It is implicit that independent variables and dependent variable are stationary and in these equations, the error term is un-correlated white noise.

For the evaluation of equations (4, 5), we have an un-balanced panel for the reason of missing values for the sect-oral foreign direct investment variables. In our investigation, the Granger Causality test takes the subsequent steps. 1st, equation 4 using to test causative from foreign direct investment to pollutant, the following hypo-these is set:

\[H_0: \sum_{j=1}^{k} \alpha_j = 0 \quad \text{here foreign direct investment does not affect per-capa CO}_2 \text{ emissions growth} \]

\[H_a: \sum_{j=1}^{k} \alpha_j \neq 0 \quad \text{here foreign direct investment does affect per-capa CO}_2 \text{ emissions growth} \]

Employing the normal Wald-test for the limitations of coefficient, an F-statistic is constructed. If H₀ accepted, then we can conclude that there is no confirmation of causality operating from sect-oral foreign direct investment to CO₂ emissions. If H₀ is rejected, then we can conclude that there is confirmation that foreign direct investment in a particular sector granger-Causes growth of CO₂ emissions per-capita.

2nd, to check the causative relation from CO₂ emissions to sector-oral foreign direct investment, we set the following hypotheses by using equation 5:
H_0 : \sum_{j=1}^{k} y_j = 0, \text{ where } \text{CO}_2 \text{ emissions growth does not affect foreign direct investment in-flows}

H_a : \sum_{j=1}^{k} y_j \neq 0, \text{ where } \text{CO}_2 \text{ emissions growth does affect foreign direct investment in-flows}

In this context, rejection of H_0 will bring to conclude that in a specific sector CO\textsubscript{2} emissions will affect foreign direct investment in-flows. Our model is specified, bi-variate VAR form in Equations (4,5), but it can be expended to a multi-variate form through extending the independent variables in number. We restrict our Granger causality discussion operating from foreign-direct-investment to CO\textsubscript{2} emissions since our major focus is on the effect of foreign direct investment on CO\textsubscript{2} emissions. For the VAR multivariate, subsequent Talukdar and Meisner (2001) method, we contain manufacturing growth value-added as a GDP share and the per capita GDP growth. These measures are possible to be vital determinants of pollutant and levels of CO\textsubscript{2}.

The test of Granger-causality with fixed-effect employ in this investigation states the merits of accounting for nation time effects and characteristics. A vital feature when examining causative relation, comprising nation and time fixed-effect in VAR-panel evaluation enables us to tackle with omitted-variable-bias. In specific, country fixed-effect curb for the characteristic that does not vary for a specified country, for instance, the propinquity to the ASEAN’s or different markets. The effects of time contain for actions during a year that is general to all the countries for instance oil prices variations or economic crisis in the region.

Moreover, the variables employed in the investigation are stationary is a vital state for the validity of our investigation. The panel unit-root test perform by us that expects unit-root of individual procedures suggested via Im et al. (2003) in the subsequent variables: per capita CO\textsubscript{2} growth, CO\textsubscript{2} in GDP ratio growth FDI through sector levels (all in logarithm form), manufacturing value added in GDP growth share and GDP per-capita growth (growth determined as the 1st difference of the logarithm, for all variables). As stated to the Akaike-Information-Criterion (AIC), the number of lags added in the investigation is elected. The series are non-stationary at the 5% level for all the variables, so we reject the null hypothesis.

4. RESULTS

Table 1 shows the summary-statistics of all variables in this investigation. In summary statistics series are provide in two forms first, difference and log transformation second, without difference and log transformation.

The granger-Causality test results by fixed-effect particular in the methodology section for the bivariate and multivariate vector autoregressive shows in Table 2. The table in the estimation shows the F test, by the probabilities in parenthesis, and the Table 2 shows the sum of the coefficients of the causation lagged prior independent variables in brackets. In Table 2 lags and observations in number are also given.

The column 1 estimates show the Granger Causality test when we employ foreign direct investment in-flows in total and columns 2 to 4 when we employ in secondary, tertiary and primary sectors, in Table 2. The test of Granger-causality estimates, when we employ the aggregated foreign direct investment in-flows to dirty industries indicate in column 5 of Table 2. There is confirmation that sectoral foreign direct investment granger causes CO\textsubscript{2} emissions in two situations at the significance level of 5%, considering the bi-variate VAR outcome. Respectively, when employing foreign-direct-investment in the dirty and tertiary sectors, this

Table 2: Granger causality test
Total FDI
(1)
Bi-variate
(0.138)
<3, 226>
Multi-variate
(0.684)
[-0.001]
<2, 171>

Null-hypothesis: **FDI does not granger cause CO\textsubscript{2} growth**

Total FDI	**Prim FDI**	**SecFDI**	**Ter FDI**	**DirtyFDI**		
(7)	**(8)**	**(9)**	**(10)**	**(11)**		
Bi-variate	0.680	0.114	1.078	0.185	0.245	0.263
(0.344)	(0.687)	(0.121)	(0.633)	(0.674)	(0.661)	
<3, 243>	<3, 237>	<2, 213>	<3, 243>	<3, 374>	<2, 374>	
Multi-variate	0.717	0.0287	1.588	0.434	0.472	0.472
(0.374)	(0.852)	(0.157)	(0.470)	(0.448)	(0.448)	
[6, 120]	[1, 728]	[2, 363]	[1, 371]	[−3, 871]	[−3, 871]	
<2, 375>	<3, 380>	<2, 366>	<3, 213>	<3, 355>	<3, 355>	

The coefficients sum of the causation prior lagged regressor’s in brackets, F-values with probabilities in parenthesis. Numbers of observation and lag showed by < >. The test of granger-causality investigated through country time-fixed-effects and 1 measure of foreign direct investment at the time in logs. We employ the CO\textsubscript{2} per-capita growth for estimation in column 1 to 5, whereas we employ the CO\textsubscript{2} growth as a share of real-GDP in column 6.
null hypothesis is rejected at level 5 and 1%. When considering causative relationship from \(\text{CO}_2 \) emissions to sectoral foreign direct investment for the bi-variate VAR, we identify that the null hypothesis do not rejected, \(\text{CO}_2 \) emissions do not granger cause foreign direct investment, at the level of 5%.

We evaluate the test of Granger-causality in a multi-variate VAR that contain the GDP per-capita growth and manufacturing-value-added, for the objective of robustness. In Table 2 the Granger Causality test results, for the multi-variate VAR are also given. We estimate that, when we employ foreign-direct-investment inflows in the dirty sector, the null hypothesis that foreign direct investment does not granger causes \(\text{CO}_2 \) emissions is rejected only. We failed to reject the hypothesis that foreign direct investment does not granger-cause \(\text{CO}_2 \) emissions, that employ a foreign direct investment in different sectors (primary, secondary, tertiary, and total), for all the other findings. We estimate that, in all cases, we accept the hypothesis that \(\text{CO}_2 \) emissions granger causes foreign direct investment for the multi-variate VAR.

We also investigate, whether our findings are robustness to employing the growth ratio of \(\text{CO}_2 \) emissions to real-GDP. This measure is effective since the changes of economic-activity can influence \(\text{CO}_2 \) emissions and it directly shows the emission to output production intensity. Therefore, in low emissions of per unit \(\text{CO}_2 \) of real-GDP, cleaner technologies could be reflected. The estimates received for the test of granger Causality employing the growth-ratio of \(\text{CO}_2 \) emissions to real-GDP and foreign direct investment in dirty sectors Table 3 of column 6. We just estimate evidence of causation operating from foreign direct investment in dirty-sectors to \(\text{CO}_2 \) emissions at the level of 1%, when we employ this different measure of pollutant emission for the bivariate and multi-variate VAR. This supports our earlier findings.

It is required to converse the extent of the impact that foreign direct investment in the dirty-sector has on \(\text{CO}_2 \) emissions. Employing the findings presents in Table 2 for the bi-variate VAR (where the dependent variable is the growth of per capita \(\text{CO}_2 \) emissions and the independent variable is for foreign direct investment in the dirty-sector), for the average country, we determine the following impact. The rise in foreign direct investment as a share of GDP in the dirty sector through one-standard-deviation rises per capita \(\text{CO}_2 \) emissions with 0.96% in the two periods next behind the early rise in foreign direct investment in the dirty sector. The rise in per capita \(\text{CO}_2 \) emissions of 0.96% for the country average shows a rise of 0.03 in metric tons per capita \(\text{CO}_2 \) emissions. For 2018, this impact is considering that significant magnitude, the \(\text{CO}_2 \) emissions range among 1 and 2 per capita metric-tons in the sample for the most of the nations (value in this range have 13 out of 18).

The Table 3 shows the findings for the bi-variate and multi-variate VAR models with aggregate foreign direct investment in dirty industries. Column 1, 2 present the findings for the bi-variate model (in parenthesis coefficients with standard-errors). We observe that in dirty sectors the first and second lag of foreign direct investment is significant statistically at the level of 5 and 1%, respectively, when we use \(\text{CO}_2 \) emissions as dependent-variable in the bi-variate VAR. Columns 3, 4 shows the findings for the multi-variate VAR. For the multi-variate VAR, we estimate that in the dirty sector foreign-direct-investment remains to have

Table 3: VAR estimation

Dependent variable: \(\text{CO}_2 \) growth	Bi-variate (\(\text{CO}_2 \) per-capita)	Multi-variate (\(\text{CO}_2 \) per-capita)	Bi-variate (\(\text{CO}_2 \) GDP share)
FDI dirty t−1	0.001 (0.002)**	0.002 (0.001)	0.001 (0.002)*
FDI dirty t−2	0.001 (0.002)***	0.001 (0.002)***	0.001 (0.002)***
FDI dirty t−3	0.001 (0.002)	0.001 (0.002)	0.001 (0.002)**
\(\text{CO}_2 \) growth t−1	−0.165 (0.105)***	−0.086 (0.064)	−0.176 (0.114)***
\(\text{CO}_2 \) growth t−2	+0.226 (0.086)***	−0.205 (0.069)***	−0.389 (0.077)***
\(\text{CO}_2 \) growth t−3	−0.012 (0.073)	−0.012 (0.073)	−0.031 (0.075)
GDP per-capita growth t−1	0.182 (0.144)**	0.003 (0.005)	0.211 (0.015)***
GDP per-capita growth t−2	0.258 (0.107)	0.240	0.285
Manuf. val. add. growth t−1	0.033 (0.041)	0.033 (0.041)	0.285
Manuf. val. add. growth t−2	0.123 (0.040)***	0.123 (0.040)***	0.285
Constant.	0.210 (0.012)***	0.003 (0.005)	0.211 (0.015)***
R-square	0.235	0.240	0.285

Dependent-variable: FDI			
FDI dirty t−1	0.321 (0.103)**	0.223 (0.171)	0.314 (0.302)**
FDI dirty t−2	−0.218 (0.146)	0.128 (0.128)	−0.218 (0.142)
FDI dirty t−3	0.366 (0.215)*	0.366 (0.213)*	0.364 (0.213)*
\(\text{CO}_2 \) growth t−1	−1.583 (1.117)	−2.868 (2.861)	−2.033 (2.333)
\(\text{CO}_2 \) growth t−2	−3.017 (2.124)	−2.001 (2.171)	−0.466 (2.466)
\(\text{CO}_2 \) growth t−3	−0.061 (1.778)	−0.061 (1.778)	0.242 (1.271)
GDP per-capita growth t−1	11.571 (22.416)**	11.571 (22.416)**	11.571 (22.416)**
GDP per-capita growth t−2	−22.510 (21.380)	−22.510 (21.380)	−22.510 (21.380)
Manuf. val. add. growth t−1	1.446 (1.614)	1.446 (1.614)	1.446 (1.614)
Manuf. val. add. growth t−2	1.701 (1.166)	1.701 (1.166)	1.701 (1.166)
Constant.	−4.348 (2.683)	−4.348 (2.683)	−4.348 (2.683)
R-square	0.406	0.473	0.408

VAR model estimated and Std errors are in parenthesis. ‘***’, ‘**’, ‘*’ denote 1, 5, and 10% significance level.
a considerable impact on CO₂ emissions still when we curb for different variables, where in the dirty-sector 2nd lag of foreign-direct-investment is significant statistically at the level of 1%. We estimate that the per capita GDP growth of first lag and the manufacturing-value-added growth of second lag have a positive and statistically significant impact on CO₂ emissions at the level of 5 and 1%, for the control variables, respectively. The columns 5, 6 are shown findings from the bi-variate VAR, when we employ the growth ratio of CO₂ emissions as GDP. For the bi-variate VAR with per capita CO₂ emissions, these results are very identical to those presents in columns 1, 2. When employing growth ratio of CO₂ emissions as GDP, in the dirty sector the first lag of foreign direct investment has a positive and significant impact on CO₂ emissions at the level of 10%, while the 2nd and 3rd lag have a significant impact at the level of 1 and 5%, respectively.

Shortly, our results indicate that there is evidence of robust that foreign-direct-investment in the dirty-sector granger cause CO₂ emissions. This implies that, though later managing for nation and characteristics of time-specific, when foreign direct investment in the dirty-sector rises, CO₂ emissions are expected to rises. Though, we find foreign direct investment in other sectors has no robust impact on CO₂ emissions. Our findings contradict with several earlier studies via (Birdsall and Wheeler, 2001; Carrada-Bravo, 1995). Though, the function of dirty industries individually and the probable endogeneity in the foreign direct investment and pollutant association, these researches did not consider.

5. CONCLUDING REMARKS

Foreign direct investment has risen over the previous ten years in LDCs. Consequently, policymakers and academics are concerned about identifying the environmental impacts of these flows. We investigate the association between FDI and CO₂ emissions in ASEAN-5 from 1980 to 2018 and present insights on the environment impact of foreign-direct-investment, in this study.

The results show that foreign-direct-investment in-flows in pollutant-intensive industries can be associated with rises in per-capita CO₂ emissions and GDP per-unit, in the case of some ASEAN nations. Discriminating the environment impact of foreign direct investment through sectors is appropriate for policymakers. It is improbable that ASEAN nations would desire to control the in-flows of foreign-direct-investment in the pollutant intensive-sectors while this outline of investment shows a huge contribute to total foreign direct investment. About 38% of total foreign-direct-investment in-flows have on average spent to pollutant intensive-industries, in our sample.

In our estimation, a vital policy suggestion is that foreign-direct-investment in pollutant intensive industries must be intimately controlled. The negative impacts that this form of foreign-direct-investment has on the environment, it is important for governments to be aware in the state. It may be a probable policy-action that will secure improved environment condition in the region is the construction of a fund for environment enhancement in these nations. The extent of this funding must be reliant on the total of foreign-direct-investment in the pollute sectors, and the environmental-damage findings are linked with the rise in CO₂ emissions, here the private and non-private sectors can contribute.

We are not capable to immediately accept or reject the pollutant halo or pollutant haven hypo-thesis, although our investigation represents that foreign direct investment in pollutant intensive sectors causes higher CO₂ emissions in ASEAN. The shortage of immediately accessible data of firm-level for ASEAN does not enable us to analysis these hypotheses empirically.

REFERENCES

Acharyya, J. (2009), FDI, growth and the environment: Evidence from India on CO₂ emission during the last two decades. Journal of Economic Development, 34(1), 43-50.
Albornoz, F., Cole, M.A., Elliott, R.J., Ercolani, M.G. (2009), In search of environmental spillovers. World Economy, 32(1), 136-163.
Antweiler, W., Copeland, B.R., Taylor, M.S. (2001), Is free trade good for the environment? American Economic Review, 91(4), 877-908.
Atici, C. (2012), Carbon emissions, trade liberalization, and the Japan-ASEAN interaction: A group-wise examination. Journal of the Japanese and International Economies, 26(1), 167-178.
Birdsall, N., Wheeler, D. (2001), Trade policy and industrial pollution in Latin America: Where are the pollution havens. International Trade and the Environment, 2, 355-365.
Borensztein, E., De Gregorio, J., Lee, J.W. (1998), How does foreign direct investment affect economic growth? Journal of International Economics, 45(1), 115-135.
Carrada-Bravo, F. (1995), Trade, foreign direct investment, and environmental policy: The case of Mexico. The North American Journal of Economics and Finance, 6(2), 203-210.
Elliott, R.J., Shimamoto, K. (2008), Are ASEAN countries havens for Japanese pollution-intensive industry? World Economy, 31(2), 236-254.
He, J. (2006), Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO₂) in Chinese provinces. Ecological Economics, 60(1), 228-245.
Hoffmann, R., Lee, C.G., Ramasamy, B., Yeung, M. (2005), FDI and pollution: A granger causality test using panel data. Journal of International Development: The Journal of the Development Studies Association, 17(3), 311-317.
Im, K.S., Pesaran, M.H., Shin, Y. (2003), Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53-74.
Jaffe, A.B., Peterson, S.R., Portney, P.R., Stavins, R.N. (1995), Environmental regulation and the competitiveness of US manufacturing: What does the evidence tell us? Journal of Economic Literature, 33(1), 132-163.
Kahn, M.E. (2003), The geography of US pollution intensive trade: Evidence from 1958 to 1994. Regional Science and Urban Economics, 33(4), 383-400.
Kearsley, A., Riddel, M. (2010), A further inquiry into the pollution haven hypothesis and the environmental Kuznets curve. Ecological Economics, 69(4), 905-919.
Lee, C.G. (2009), Foreign direct investment, pollution and economic growth: Evidence from Malaysia. Applied Economics, 41(13), 1709-1716.
Levinson, A. (1996), Environmental regulations and manufacturers’ location choices: Evidence from the census of manufactures. Journal of Public Economics, 62(1-2), 5-29.
List, J.A., Co, C.Y. (2000), The effects of environmental regulations on foreign direct investment. Journal of Environmental Economics and Management, 40(1), 1-20.
Mani, M., Wheeler, D. (1998), In search of pollution havens? Dirty industry in the world economy, 1960 to 1995. The Journal of Environment and Development, 7(3), 215-247.

Merican, Y., Yusop, Z., Noor, Z.M., Hook, L.S. (2007), Foreign direct investment and the pollution in five ASEAN nations. International Journal of Economics and Management, 1(2), 245-261.

Ozturk, I., Acaravci, A. (2013), The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey. Energy Economics, 36, 262-267.

Pao, H.T., Tsai, C.M. (2011), Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) Countries. Energy, 36(1), 685-693.

Talukdar, D., Meisner, C.M. (2001), Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries. World Development, 29(5), 827-840.

UNCTAD. (2018), United Nations Conference on Trade and Development Data Extract Service Desk. Geneva: UNCTAD.

Wagner, U.J., Timmins, C.D. (2009), Agglomeration effects in foreign direct investment and the pollution haven hypothesis. Environmental and Resource Economics, 43(2), 231-256.

Waldkirch, A., Gopinath, M. (2008), Pollution control and foreign direct investment in Mexico: An industry-level analysis. Environmental and Resource Economics, 41(3), 289-313.

WDI. (2018), World Development Indicators (WDI).

Xing, Y., Kolstad, C.D. (2002), Do lax environmental regulations attract foreign investment? Environmental and Resource Economics, 21(1), 1-22.

Zarsky, L. (1999), Havens, halos and spaghetti: Untangling the evidence about foreign direct investment and the environment. Foreign Direct Investment and the Environment, 13(8), 47-74.

Zeng, K., Eastin, J. (2012), Do developing countries invest up? The environmental effects of foreign direct investment from less-developed countries. World Development, 40(11), 2221-2233.

Zhang, Y.J. (2011), The impact of financial development on carbon emissions: An empirical analysis in China. Energy Policy, 39(4), 2197-2203.
EDITORIAL TEAM

EDITORS

Ilhan Ozturk, Editor-in-Chief, Cag University, Mersin, Turkey
Ali ACARAVCI, Co-Editor, Mustafa Kemal University, Hatay, Turkey

SECTION EDITORS

Serkan Yilmaz KANDIR, Co-Editor, Çukurova University, Adana, Turkey
Muhttin KAPLAN, Istanbul University, Istanbul, Turkey
Alper ASLAN, Nevsehir Haci Bektaş Veli University, Nevsehir, Turkey
Seyfettin ARTAN, Karadeniz Technical University, Trabzon, Turkey
Gazi Salah UDDIN, Linköping University, Sweden
Constantinos ALEXIOU, Cranfield University, Bedfordshire, United Kingdom
Abdulnasser Hatemi-J, UAE University, United Arab Emirates
Hooi Hooi Lean, Universiti Sains Malaysia, Penang, Malaysia
Muhammad Shahbaz, School of Management and Economics, Beijing Institute of Technology, China
Cem SAAATCIIOGLU, Istanbul University, Istanbul, Turkey
Faik BILGILI, Erciyes University, Kayseri, Turkey
Abu N.M. WAHID, Tennessee State University, United States
Chor Foon TANG, Universiti Sains Malaysia, Penang, Malaysia
Yunke YU, Louisiana State University, Louisiana, United States
Yu Hsing, Southeastern Louisiana University, United States
Yue-Jun ZHANG, Business School of Hunan University, China
Aviral Kumar Tiwari, ICFAI University Tripura, India
Nicholas Apergis, University of Derby, United Kingdom
Mohamed El Hedi Arouri, EDHEC Business School, France
Usama Al-mulali, Multimedia University, Melaka, Malaysia
Mohammad SALAHUDDIN, Trent University (Canada) & University of Southern Queensland, Australia
Abdul JALIL, Quaid-i-Azam University, Pakistan
Diana Mihaela Pocioalisteau, ‘Constantin Brancusi’ University of Targu-Jiu, Romania
Vincenzo Bianco, University of Genoa, Italy
Mita Bhattacharya, Monash University, Australia
Abbas Ali Chandio, Sichuan Agricultural University Chengdu, Chengdu, China
Arshian Sharif, Universiti Utara Malaysia, Malaysia

Indexing / Abstracting

Journal Help

User

Username
Password
Remember me
Login

Notifications

View
Subscribe

Journal Content

Search Scope

Search
Browse
By Issue
By Author
By Title
Other Journals

Font Size

Information

For Readers
For Authors
For Librarians
Hoang Phong Le, University of Economics Ho Chi Minh City & Ho Chi Minh City University of Law, Viet Nam
Festus Victor Bekun, Istanbul Gelisim University, Turkey
Oludele Folarin, University of Ibadan, Nigeria
Festus Adedoyin, Bournemouth University, United Kingdom
Adedoyin I. Lawal, Landmark University, Omu Aran, Nigeria
Muddassar Sarfraz, Nanjing University of Information Science & Technology, Wuxi, Jiangsu, China
Ionel Bostan, Ștefan cel Mare University of Suceava, Romania
Bashar H. Malkawi, University of Sharjah, Sharjah, United Arab Emirates
Andrew Adewale Alola, Istanbul Gelisim University, Turkey
Fabio Pizzutilo, University of Bari “Aldo Moro”, Italy
Sana Ullah, Quaid-i-Azam University, Islamabad, Pakistan
Nuno Carlos Leitão, Évora University, Évora, Portugal
Idiano D'Adamo, Sapienza Università di Roma, Italy
Fayyaz Ahmad, Lanzhou University - Lanzhou, Gansu, China

ISSN: 2146-4553
TABLE OF CONTENTS

ARTICLES

Modeling the Efficiency of Using Digital Technologies of Energy and Resource Saving Technologies at Petrochemical Enterprises
Alexey I. Shinkevich
PDF 1-6

Rule of Law and Environment Nexus in Saudi Arabia
Haider Mahmood, Awad Ali Alanzi
PDF 7-12

Analysis and Prospects for the Development of Regional Energy Integration of the Eurasian Economic Union Countries
Natalya Yuryevna Sopilko, Nataliya Vital’evna Bondarchuk, Natalia Anatolyevna Navrotskaia, Tatyana Evgenyevna Migaleva
PDF 13-20

Renewable Energy Projects on Isolated Islands in Europe: A Policy Review
Marula Tsagkari, Jordi Roca Jusmet
PDF 21-30

Energy Consumption and Sustainable Economic Welfare: New Evidence of Organization of Petroleum Exporting Countries
Somayeh Azami, Shabnam Almasi
PDF 31-40

The Investments in Energy Distribution Networks: Does Company Ownership Matter?
Francesca Di Pillo, Nathan Levialdi, Laura Marchegiani
PDF 41-49

Renewable Energy Use and Its Effects on Environment and Economic Growth: Evidence from Malaysia
Muhammad Raza, Ahmed E. Ahmed, Ali Saleh Alshebami, Aleksandra G. Polyakova
PDF 50-57

Analysis of Economic Growth, Oil Stocks and SIN Stocks in United States
Iis Nurasiah, Nugraha Nugraha, Disman Disman, Rozmita Dewi Yuniarti, Kharisya Ayu Effendi
PDF 58-63

Future Natural Gas Price Forecasting Model and Its Policy Implication
Ambya Ambya, Toto Gunarto, Ernie Hendrawaty, Fajrin Satria Dwi Kesumah, Febryan Kusuma Wisnu
PDF 64-70

Examining the Driving Forces Affecting Energy Intensity during Financial Crisis: Evidence from ASEAN-6 Countries
Dhani Setyawan, Rakhmim Dyarto, Hadi Setiawan, Rita Helbra Tenrini, Sofia Arie Damayanty
PDF 71-81

Energy Price Formation and Energy Consumption by Households as a Factor of Ensuring Energy Safety
Valeriy Prasolov, Valery Bezpalov, Svetlana Doguchava, Rodion Rogulin
PDF 82-93

The Driving Forces of Change in Energy-related CO2 Emissions in the Polish...
Iron and Steel Industry in 1990-2017
Zbigniew Golaś
94-102

The Effect of Ownership and Financial Performance on Firm Value of Oil and Gas Mining Companies in Indonesia
Hasanudin Hasanudin, Andini Nurwulan, I. Made Adnyana, Novi Loviana
103-109

Rooftop PV System Policy and Implementation Study for a Household in Indonesia
Elieser Tarigan
110-115

The Impact of the Oil and Oil Products Market on Economic Development: A National Aspect
Aralym Suleimenova, Kulyash Turkeyeva, Aigul Tulemetova, Nazigul Zhanakova
116-122

How Oil Price and Exchange Rate Affect Non-oil GDP of the Oil-rich Country – Azerbaijan?
Famil Majidli, Hasraddin Guliyev
123-130

Nuclear Power Production: The Future or the Past?
Sergey Kashurnikov, Valeriy Prasolov, Vladimir Gorbanyov, Rodion Rogulin
131-141

Stock Prices Reaction to Oil Price Fluctuations: Empirical Evidence from Nigeria
Henry Inegbedion, Eseosa Obadiaru, Olamide Adeyemi
142-149

Relationship between Oil and Stock Markets: Evidence from Pakistan Stock Exchange
Muhammad Hanif
150-157

Strategic Energy Partnership between Russia and China
Pavel Baboskin
158-163

Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries
Dimitrios Kartsonakis-Mademlis, Nikolas Dritsakis
164-182

Drivers of the Quality of Electricity Supply
Remy Tehero, Emmanuel Brou Aka
183-195

Macro Economics of Virtual Power Plant for Rural Areas of Botswana
Sampath Kumar Venkatachary, Jagdish Prasad, Ravi Samikannu, Annamalai Alagappan, Leo John Baptist, Raymond Antony Raj
196-207

Analysis of the Effects of Cell Temperature on the Predictability of the Solar Photovoltaic Power Production
Sameer Al-Dahidi, Salah Al-Nazer, Osama Ayadi, Shuruq Shawish, Nahed Omran
208-219

Cross-country Analysis of the Comparative Efficiency of Government Support for Coal and Lignite Production
Alan Karaev, Vadim Ponkratov, Andrey Masterov, Elena Kireeva, Maria Volkova
220-227

Accurate Estimated Model of Volatility Crude Oil Price
Toto Gunarto, Rialdi Azhar, Novita Tresiana, Supriyanto Supriyanto, Ayi Ahadiat
228-233

The Relationship Between Crude Oil Prices, EUR/USD Exchange Rate and Gold Prices
Benlaria Houcine, Gheraia Zouheyr, Belbali Abdessalam, Hadji Youcef, Abdelli Hanane
234-242

Foreign Direct Investment, Electricity Power Supply and Economic Growth in Nigeria
Sherifatu O. Onayemi, Philip A. Olomola, Philip O. Alege, Oluwakemi O. Onayemi
243-247

A Look to the Biogas Generation from Organic Wastes in Colombia
Michel Durán Contreras, Rodrigo Sequeda Barros, Jorlany Zapata, Marley Vanegas Chamorro, Alberto Albis Arrieta
248-254

Oil and Food Prices for a Net Oil Importing-country: How Are Related in Indonesia?
Agus Widarjono, Indah Susantun, Sarasri M. Ruchba, Ari Rudatin
255-263

Relationship Between Crude Oil prices and Macro-economic Variables: Evidence from BRICS Countries
Guntur Anjana Raju, Shirpad Ramchandra Marathe
264-271

Clean Energy in the EAEU in the Context of Sustainable Development: Compliance and Prospects
Natalia A. Sadovnikova, Valery L. Abramov, Andrey A. Ogyryzov, Olga A. Makhova
272-280

Factors Associated with Electricity Losses: A Panel Data Perspective
Hugo Briseño, Omar Rojas
281-286
The Influence of Board Diversity on Environmental Disclosures and Sustainability Performance in Malaysia
Rohaidah Abdul Latif, Nurul Huda Yahya, Kamarun Nisham Taufil Mohd, Hasnah Kamardin, Arifatul Husna Mohd Ariffin

Do Electricity Consumption and Economic Growth Lead to Environmental Pollution? Empirical Evidence from Association of Southeast Asian Nations Countries
Van Chien Nguyen, Hai Phan Thanh, Thu Thuy Nguyen

Oil Rent, Geopolitical Risk and Banking Sector Performance
Naif Alsagr, Stefan F. Van Hemmen Almazor

Identifying the Dynamic Connectedness between Propane and Oil Prices: Evidence from Wavelet Analysis
Ngo Thai Hung

An Approach to the Large-scale Integration of Wind Energy in Albania
Lorenc Malka, Ilirian Kononomi, Ardit Gjeta, Skerdri Drenova, Jugert Gjikoka

The Influence of Fiscal Progress on Energy Consumption in Kazakhstan
Azamat Zhansitov, Guluur Raikhanov, Sagynshy Mammetova, Serik Daribekov, Yerbolsyn Akbayev

World Practice of Using Biogas as Alternative Energy
Aslan B. Tasmaganbetov, Zhumabay Ataniyazov, Zhangul Bdashieva, Abu U. Muhammadov, Anar Yessengeldina

Time Series Analysis of Carbon Dioxide Emission, Population, Carbon Tax and Energy use in South Africa
Rufaro Garidzirai

An Analysis of Electricity Generation with Renewable Resources in Germany
Eduardo Vicente Mendoza Merchán, Moisés David Velásquez Gutiérrez, Diego Armando Medina Montenegro, José Ricardo Nuñez Alvarez, John William Grimaldo Guerrero

Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling
Zeeshan Arshad, Margarita Robaina, Anabela Botelho

Determinants of Diversification from Oil Sector in Saudi Arabia
Khalid Abdullah Alkhanalth, Tarek Tawfik Yousef Alkhateeb, Haider Mahmood, Wardah Abdulrahman Bindabel

Energy Prices, Income and Electricity Consumption in Africa: The Role of Technological Innovation
Taiwo Owoneye, Dayo Benedict Olanipekun, Akindele John Ogunsola, Augustine Adebayo Kutu

Evaluation of the Gas Industry Company’s Competitiveness in the Domestic Market
Natalya S. Shcherbakova, Yulia A. Nazarova, Natalia A. Navrotskaia, Nataliya V. Bondarchuk, Alia V. Vavilina

The Lead Lag Relationship between Spot and Futures Markets in the Energy Sector: Empirical Evidence from Indian Markets
Guntur Anjana Raju, Sanjeeta Shirodkar

An Investigation of the Causal Relationship between Energy Consumption and Economic Growth: A Case Study of Vietnam
Xuan Hoi Bui

The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India
Bharat Kumar Meher, Iqbal Thonse Hawaldar, Latasha Mohapatra, Adel M. Sarea

Price and Volatility Spillovers between Crude Oil and Natural Gas markets in Europe and Japan-Korea
Theodosios Perifanis, Athanasios Dagoumas

Energy Intensity of Kazakhstan’s GDP: Factors for its Decrease in a Resource-export Developing Economy
Nurlan Kurmanov, Ulukbek Aliyev, Aizhan Satbayeva, Gulmira Kabdullina, Darkhan Baxultanov

Management of Sustainable Consumption of Energy Resources in the Conditions of Digital Transformation of the Industrial Complex
Marina V. Shinkevich, Nikolay A. Mashkin, Izida I. Ishmuradov, Valeria V. Kolosova, Olga V. Popova

The Effect of Oil Price Fluctuation on the Economy of Nigeria
Jelilov Gylych, Abdullahi Ahmad Jbrin, Bilal Celik, Abdurrahman Isik

Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria
Iyabo Adeola Olanrele, Adedoyin I. Lawal, Ezekiel Oseni, Ahmed Oluwatobi Adekunle, Bukola, B. Lawal-Adeyin, Crystal O. Elleke, Racheal Ojekajo-John, Henry Nweke-Love

Renewable Energy, Foreign Direct Investment and Sustainable Development: An Empirical Evidence PDF 479-484
Narayan Parab, Ramashanti Naik, Y. V. Reddy

Effect of Oil Revenues on Government Size in Selected Oil-exporters with an Emphasis on Iran’s Economy PDF 485-497
Davood Danesh Jafari, Hamid Nazemian, Javid Bahrami, Mohammad Hassan Kheiravard

Biogas Fed-fuel Cell Based Electricity Generation: A Life Cycle Assessment Approach PDF 498-502
S. M. Shafie, Z. Othman, N. Hami, S. Omar, A. H. Nu'man, N. N.A.N. Yusoff, A. Shaf

Negating the Role of Institutions in the Long Run Growth of an Oil Producing Country PDF 503-509
Mohammad Imdadul Haque

Do Oil Price Shocks Give Impact on Financial Performance of Manufacturing Sectors in Indonesia? PDF 510-514
Sudarso Kaderi Wiryono, Oktofa Yudha Sudrajad, Eko Agus Prasetio, Marla Setiawati

Decovidization through Rurbanization: The Re-development Option for Sustainable Energy Access PDF 515-523
Salil K. Sen

Bosnia and Herzegovina’s Renewable Energy Policy and Perspective PDF 524-530
Amir Tokic, Tahir Cetin Akinci, Aydin Tarik Zengin

Venture Financing and the Fuel and Energy Complex: Investing in Alternative Energy PDF 531-538
Arslan Kulanov, Assiya Issakhova, Olga Koshkina, Parida Issakhova, Alma Karosalova

International Economic Cooperation of Central Asian Countries on Energy Efficiency and use of Renewable Energy Sources PDF 539-545
Gulnar Shaimardanovna Kaliakparova, Yelena Evgenyevna Gridneva, Sara Sarsebekovna Assanova, Sandugash Babagaliyzy Sauranbay, Abdizhapar Djamanoovich Saparbayev

Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households PDF 546-554
Muhammad Abrar Ul Haq, Muhammad Atif Nawaz, Farheen Akram, Vinodh K. Natarajan

The Impact of Environmental, Social and Governance Index on Firm Value: Evidence from Malaysia PDF 555-562
Muhammad Sadiq, Jaspal Singh, Muhammad Raza, Shafi Mohamad

Effect of Economic Growth and Foreign Direct Investment on Carbon emission in the Asian States PDF 563-569
Toto Gunarto

Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Transport, Railway Transport, and Air Transport Intensity in Thailand PDF 570-576
Chaisri Tarasawatpipat, Thammarak Srimarut, Witthaya Mekhum

What Difference Urban Sprawl, Industrialization and Migration Can make in Energy Consumption?: A Time-series Analysis of Thailand PDF 577-583
Chomnapat Torasa, Waleerak Sittisom, Witthaya Mekhum

The Impact of Foreign Direct Investment on CO2 Emissions in ASEAN Countries PDF 584-592
Rizky Eriandani, Saiful Anam, Dewi Prastiti, Ni Nyoman Alit Triani

Long Run Association of Oil Prices and Stock Prices: A Case of Indonesia PDF 593-600
Venkata Sai Srinivasa Rao Muramalla, Hassan Ali Alqahtani

Energy Consumption and Economic Growth in Indonesia PDF 601-607
Nguyen Duy Dat, Nguyen Hoang, Mai Thanh Huyen, Dinh Tran Ngoc Huy, Luong Minh Lan

Estimating the Impact of Energy Consumption on Carbon Emissions Using Environmental Kuznets Curve PDF 608-614
Naif Dalish N. Alanazi, Zavyalov Dmitriy, Aleksandra G. Polyakova

The Influence of Biological Asset Accounting Policies and Corporate Governance Practices on the Financial Performance: Moderating Role of Knowledge about Renewable Energy PDF 615-622
Retho Martantini Endah Lestari, Wahyuadin Zarkasyi, Ida Farida

Development and Challenges for the Functioning of the Renewable Energy
Prosumer in Poland: A Legal Perspective
Dawid Stadniczenko
623-630

Utilization of Energy Sources, Financial Stability and Prosperity in the Economy of Indonesia
Hoang Thanh Hanh, Dinh Tran Ngoc Huy, Pham Minh Dat
631-637

Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan
Sholpan Saimova, Gulism Makenova, Aizhan Skakova, Aiïtkyn Moldagaliyeva, Artïk Beïsembînova, Zhaniïya Berdiyârova, Bagdagul Imanbekova
638-646

Impact of Accounting Information System and Intensity of Energy on Energy Consumption in Sugar Industry of Indonesia: Moderating Role of Effectiveness of Supply
Meiryani Meiryani, Leny Suzan, Jajat Sudrajat, Watcharin Joemsittiprasert
647-654

Impact of Energy consumption and Economic Growth on Environmental Performance: Implications for Green Policy Practitioners
Mahmoud Radwan Hussein AlZgool, Syed Mir Muhammad Shah, Umair Ahmed
655-662

The Increasing of Competitiveness of Agro-Industry Products Through Institutional Empowerment to Support the Achievement of Sustainable Agricultural Development
Achmad Faqih, Roosganda Elizabeth, Delima Hasri Azahari
663-671

Impact of Energy Consumption, and Economic Dynamics on Environmental Degradation in ASEAN
Tri Andjarwati, N. Anggoro Panji, Agus Utomo, Linda Nur Susila, P. Anton Respati, Abdul Talib Bon
672-678

Analysis of the Level of Implementation of Programs for the Efficient Use of Energy and Unconventional Sources: Case Study Colombia
Marlen Fonseca Vigoya, José García Mendoza, Sofia Orjuela Abril
679-686

ISSN: 2146-4553
International Journal of Energy Economics and Policy

Country
Turkey

Subject Area and Category
- Economics, Econometrics and Finance
- Economics
- Econometrics and Finance (miscellaneous)
- Energy
- Energy (miscellaneous)

Publication Type
Journals

ISSN
21654553

Coverage
2011-2020

Information
- Homepage
- How to publish in this journal
- Info@econjournals.com

SCOPE

International Journal of Energy Economics and Policy (IJEEP) is the international academic journal, and is a double-blind, peer-reviewed academic journal publishing high quality conceptual and measure development articles in the areas of energy economics, energy policy and related disciplines. The journal has a worldwide audience. The journal's goal is to stimulate the development of energy economics, energy policy and related disciplines theory worldwide by publishing interesting articles in a highly readable format. The journal is published bimonthly (6 issues per year) and covers a wide variety of topics including (but not limited to): Energy Consumption, Electricity Consumption, Economic Growth - Energy, Energy Policy, Energy Planning, Energy Forecasting, Energy Pricing, Energy Politics, Energy Financing, Energy Efficiency, Energy Modelling, Energy Use, Energy - Environment, Energy Systems, Renewable Energy, Energy Sources, Environmental Economics, Environmental Management, Oil & Gas.
Source details

International Journal of Energy Economics and Policy

Open Access

Scopus coverage years: from 2011 to 2021

Publisher: EconJournals

ISSN: 2146-4553

Subject area: Economics, Econometrics and Finance: General Economics, Econometrics and Finance, Energy: General Energy

Source type: Journal

View all documents Set document alert Save to source list

CiteScore 2020 3.5

SJR 2020 0.449

SNIP 2020 1.302

Improved CiteScore methodology

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more

CiteScore 2020 3.5

CiteScoreTracker 2021

4.0 = 4,891 Citations to date

1,215 Documents to date

CiteScore rank 2020

Category Rank Percentile

Economics, Econometrics and Finance

#20/243 91st

General Economics, Econometrics and Finance

Energy

General Energy

#20/65 70th

View CiteScore methodology CiteScore FAQ Add CiteScore to your site
