Measuring the growth of matter fluctuations with third-order galaxy correlations

K. Hoffmann\(^1\), J. Bel\(^{2,3,4}\), E. Gaztañaga\(^1\), M. Crocce\(^1\), P. Fosalba\(^1\), F. J. Castander\(^1\)

\(^1\)Institut de Ciències de l’Espai (ICE, IEEC/CSIC), E-08193 Bellaterra (Barcelona), Spain

\(^2\)INAF - Osservatorio Astronomico di Brera, Via Brera 28, 20122 Milano, via E. Bianchi 46, 23807 Merate, Italy

\(^3\)Aix Marseille Université, CNRS, Centre de Physique Théorique, UMR 7332, F-13388, Marseille, France

\(^4\)Université de Toulon, CNRS, CPT, UMR 7332, F-83957 La Garde, France

ABSTRACT

Measurements of the linear growth factor \(D\) at different redshifts \(z\) are key to distinguishing among cosmological models. One can estimate the derivative \(dD(z)/d \ln(1+z)\) from redshift space measurements of the 3D anisotropic galaxy two-point correlation \(\xi(z)\), but the degeneracy of its transverse (or projected) component with galaxy bias, i.e. \(\xi_\perp(z) \propto D^2(z)b^2(z)\), introduces large errors in the growth measurement.

In this paper we present a detailed comparison of two methods that have been proposed in the literature to break this degeneracy. Both propose measuring \(b(z)\), and therefore \(D(z)\) via \(\xi_\perp\), by combining second- and third-order statistics. One uses the shape of the reduced three-point correlation and the other a combination of third-order one- and two-point cumulants. These methods take advantage of the fact that, for Gaussian initial conditions, the reduced third-order matter correlations are independent of redshift (and therefore of the growth factor) while the corresponding galaxy correlations depend on \(b\). One can therefore measure \(b\) and \(D\) by comparing the second- and third-order matter correlations to those of galaxies. We use matter and halo catalogs from the MICE-GC simulation to test how well we can recover \(b(z)\) and \(D(z)\) with these methods in 3D real space. We also present a new approach, which enables us to measure \(D\) directly from the redshift evolution of second- and third-order galaxy correlations without the need of modelling matter correlations.

For haloes with masses lower than \(10^{14} h^{-1} M_\odot\), we find a 10 percent agreement between the different estimates of \(D\). At higher masses we find larger differences that can probably be attributed to the breakdown of the local quadratic bias model and non-Poissonian shot-noise.

Key words: large scale structure, clustering, growth, bias, third-order one-, two- and three-point statistics

1 INTRODUCTION

Evidence that the expansion of the universe is accelerating (Riess et al. 1998; Perlmutter et al. 1999) has revived the cosmological constant \(\Lambda\), originally introduced by Einstein as an unknown fluid which may engage the observed dynamics of the universe. Alternative explanations for the accelerated expansion could involve a modification of the gravitational laws on cosmological scales. Since these modifications of gravity can mimic well the observed accelerated expansion it is difficult to just rely on the cosmological background (i.e. the overall dynamics of the universe) in order to verify which model is correct. However, alternative gravitational laws change the way matter fluctuations grow during the expansion history of our universe. Measuring the growth of matter fluctuations could therefore be a powerful tool to distinguish between cosmological models (see e.g. Gaztañaga & Lobo 2001; Lue, Scoccimarro & Starkman 2004).

On this basis, the goal of several future and ongoing cosmological surveys, such as BOSS, DES, MS-DESI, PAU, VIPERS or Euclid, is to measure the growth of matter fluctuations. This can be achieved by combining several observables, such as weak gravitational lensing, cluster abundance or redshift space distortions. Higher-order correlations in the galaxy distribution provide additional observables which also allow for proving the growth equation beyond linear theory from observations (e.g. see Gaztañaga & Lobo 2001; Bernardeau et al. 2002). Furthermore, higher-order correlations can be used to test the nature of the initial conditions.
and improve the signal-to-noise in recovering cosmological parameters (e.g. Sefusatti et al. 2006).

The relative simplicity of the fundamental predictions about amplitude and scaling of clustering statistics, must not make us overlook the fundamental difficulty that hampers large scale structure studies. The perfect, continuous (dark matter) fluid in terms of which we model the large-scale distribution of matter cannot be directly observed. Let’s imagine that we are able to locate in the universe all existing galaxies and that we know with an infinite precision their masses. Without any knowledge of how luminous galaxies trace the underlying continuous distribution of matter, even this ultimate galaxy sample would be of limited use. The problem of unveiling how the density fields of galaxies and mass map into each other is the so called galaxy biasing. Knowledge of galaxy bias, and therefore galaxy formation, can greatly improve our cosmological inferences from observations.

A common approach to model galaxy bias consists in describing the mapping between the fields of mass and galaxy density fluctuations (δ_{dm} and δ_g respectively) by a deterministic local function F, which can be approximated by its Taylor expansion if we smooth the density field on scales that are sufficiently large to ensure that fluctuations are small,

$$\delta_g = F[\delta_{dm}] \approx \sum_{i=0}^{N} \frac{1}{i!} \delta_{dm}^i,$$

(1)

where b_i are the bias coefficients. It has been shown that, in this large scale limit, such a local transformation preserves the hierarchical properties of matter statistics (Fry & Gaztañaga 1993). There is now convincing evidence about the non-linear character of the bias function (Gaztañaga 1994; Marinoni et al. 2005; Gaztañaga et al. 2005; Marinoni et al. 2008; Kovac et al. 2009). Since we only want to study correlations up to third order, in this paper we shall consider bias coefficients up to second order, i.e. b_1 and b_2, which is sufficient to leading order (Fry & Gaztañaga 1993).

To study the statistical properties of the matter field we need to find the most likely value for the coefficients b_i. A general approach aims at extracting them from redshift surveys using higher-order statistics. If the initial perturbations are Gaussian and if the shape of third-order statistics are correctly described by results of the weakly non-linear perturbation theory, then one can fix the amplitude of b_1 up to second order in a way which is independent from the overall amplitude of clustering (e.g. σ_8) and depends only on the shape of the linear power spectrum. This has been shown by several authors using the the skewness S_3 (Gaztañaga 1993; Gaztañaga & Frieman 1994), the bispectrum (Fry 1994; Gaztañaga & Frieman 1994; Scoccimarro 1998; Feldman et al. 2001; Verde et al. 2002), the three-point correlation function Q (Gaztañaga et al. 2001; Gaztañaga & Scoccimarro 2003; Pan & Szapudi 2005; Marin 2011; McBride et al. 2011; Marin et al. 2013), and the two-point cumulants C_{12} (Bernardeau 1996; Szapudi 1998; Gaztañaga, Fosalba, & Croft 2002; Bel & Marinoni 2012).

Recently, Bel & Marinoni (2012) demonstrated that it is possible to use these higher-order correlations to constrain bias and fundamental properties of the underlying matter field using a combination of S_3 and C_{12}, which we call $\tau = 3C_{12} - 2S_3$.

The main goal of this paper is to present for the first time a comparison of the bias derived from this new τ method with that of Q, using the same simulations and samples. We also show that, with a new approach, the growth of matter fluctuations can be measured directly from observations by getting rid of galaxy bias and without requiring any modelling of the underlying matter distribution.

This analysis is based on the new MICE-GC simulation and extends its validation presented recently by Fosalba et al. (2013); Crocce et al. (2013); Fosalba et al. (2013).

In Section 2 we present the simulation on which our work relies. Our estimators for both, the bias and the growth of matter fluctuations, are introduced in Section 3. We present our results in Section 4 and a summary of the work can be found in Section 5 together with our conclusions.

Table 1. Halo mass samples. N_p is the number of DM particles per halo, N_{hala} is the number of haloes per sample in the comoving output at redshift $z = 0.5$.

Sample	Mass range ($10^{12} h^{-1} M_{\odot}$)	N_p	N_{hala}
M0	0.58 - 2.32	20-80	122300728
M1	2.32 - 9.26	80-316	31765907
M2	9.26 - 100	316-3416	85056326
M3	≥ 100	≥ 3416	280837

2 SIMULATION AND HALO SAMPLES

Our analysis is based on the Grand Challenge run of the Marenostro Institut de Ciències de l’Espai (MICE) simulation suite to which we refer to as MICE-GC in the following. Starting from small initial density fluctuations at redshift $z = 100$ the formation of large scale cosmic structure was computed with 4096^3 gravitationally interacting collisionless particles in a $3072 h^{-1}$ Mpc box using the GADGET - 2 code (Springel 2005) with a softening length of $50 h^{-1}$ kpc. The initial conditions were generated using the Zel’dovich approximation and a CAMB power spectrum with the power law index of $n_s = 0.95$, which was normalised to be $\sigma_8 = 0.8$ at $z = 0$. The cosmic expansion is described by the ΛCDM model for a flat universe with a mass density of $\Omega_m = \Omega_{dm} + \Omega_b = 0.25$. The density of the baryonic mass is set to $\Omega_b = 0.044$ and Ω_{dm} is the dark matter density. The dimensionless Hubble parameter is set to $h = 0.7$. More details and validation test on this simulation can be found in Fosalba et al. (2013).

Dark matter haloes were identified as Friends-of-Friends groups (Davis et al. 1985) with a linking length of 0.2 in units of the mean particle separation. These halo catalogs and the corresponding validation checks are presented in Crocce et al. (2013).

To study the galaxy bias and estimate the growth as a function of halo mass we divide the haloes into the four redshift independent mass samples M0, M1, M2 and M3, shown in Fig. 4. These samples span a mass range from Milky Way like haloes up to massive galaxy clusters. We are
analysing two types of simulation outputs. For a detailed study of the dark matter growth we use the full comoving output at redshift at redshift $z = 0.0, 0.5, 1.0$ and 1.5. For studying the bias estimators with minimal shot noise and sampling variance we use haloes identified in the comoving outputs at redshift $z = 0.0$ and 0.5. The investigation of the redshift evolution of the bias and growth estimators is based on seven redshift bins of the light cone output with equal width of 400 h^{-1}Mpc in comoving space over one octant of the sky. Fig. (1) shows the number of haloes in the four mass samples for the comoving output and the light cone with respect to the redshift.

3 GROWTH AND BIAS ESTIMATORS

3.1 The growth factor

The large scale structure in the distribution of galaxies, observed today in cosmological surveys, is believed to originate from some small initially gaussian matter density fluctuations that grew with time due to gravitational collapse. The expansion of the universe acts against gravity and slows down this growth. By measuring the matter density fluctuations as a function of time or redshift we can therefore constrain models for the cosmic expansion as described below.

We adopt the common definition for density fluctuations, given by $\delta R(r) = \rho_R(r)/ρ - 1$, where $\rho_R(r)$ is the density at position r smoothed (with a spherical top-hat window) over the radius R, while ρ is the mean density of the universe. In the linear regime (large smoothing scales), density fluctuations of matter $\delta_m(r, z)$ evolve with the redshift z in a self similar way, thus

$$\delta_m(r, z) = D(z) \delta_m(r, z_0). \quad (2)$$

The reference redshift z_0 is usually arbitrarily chosen to be today, i.e. $z_0 = 0$. In the ΛCDM model the growth factor $D(z)$ depends on cosmological parameters via the Hubble expansion rate

$$H(z) = H(0)\sqrt{\Omega_m (1+z)^3 + (1-\Omega_m-\Omega_\Lambda)(1+z)^2 + \Omega_\Lambda}, \quad (3)$$

where Ω_m and Ω_Λ are the densities of matter and dark energy respectively, and the growth is then given by:

$$D(z) \propto H(z) \int_z^{\infty} \frac{1+z'}{H(z')} dz'.$$ \quad (4)

However, in general D is also quite sensitive to modifications of the gravity action on cosmological scales (e.g. see Gaztañaga & Lobo 2001 and references therein). Measurements of the growth factor as a function of redshift can therefore be used to constrain cosmological models and understand the nature of cosmic expansion.

Instead of computing the integral equation (4), one can also approximate the growth factor with an analytic expression, which is accurate at any redshift for a flat ΛCDM model. This approximations can be obtained in two steps. First, on deriving equation (4) one can express the growth factor in terms of the growth rate

$$f(z) \equiv \frac{d\ln D}{d\ln a}, \quad (5)$$

where $a = 1/(1+z)$. It follows that

$$D(z) \propto (1+z)^2 \left\{ f(z) + 1 + \frac{\Omega_m(z)}{2} - \Omega_\Lambda(z) \right\}^{-1}, \quad (6)$$

which is an exact solution for any ΛCDM (i.e. characterised by a curved space) cosmological model. Second, for a spatially flat universe, we can use the approximation:

$$f(z) \equiv [\Omega_m(z)]^{\alpha(z)}, \quad (7)$$

where Wang & Steinhardt (1998) found that

$$\alpha(z) \simeq \frac{6}{11} + \frac{30}{2662} [1 - \Omega_m(z)]$$

to give accurate values to better than 0.2%. Recently Steigerwald, Bel & Marinoni (2014) found an even better expression

$$\alpha(z) \simeq \frac{6}{11} - \frac{15}{2057} \ln[\Omega_m(z)] + \frac{205}{540421} \ln^2[\Omega_m(z)],$$

which increases the accuracy of equation (6) to better than 0.01% at all redshift ($0 \leq z \leq 100$).

Measuring the growth factor using equation (2) requires knowledge of the matter density fluctuations δ_m at different redshifts, while in practice only galaxies can be observed as biased tracers of the matter field. In the following sections we describe how we quantify and measure this galaxy bias.

3.2 The local bias model

Our bias estimations are based on the local bias model (Fry & Gaztanaga 1993), which assumes that the galaxy (number density) fluctuation δ_g can be described by a deterministic function of the matter density fluctuation δ_m at the same location: $\delta_g = F[\delta_m]$, while both fluctuations are smoothed at the same scale R. For sufficiently large smoothing scales the density fluctuations become small and we can expand this function, i.e. as in equation (1). For third-order statistics it is sufficient to expand to quadratic order (e.g. see Fry & Gaztanaga 1993)

$$\delta_g = b_1 \left\{ \delta_m + \frac{c_b}{2} (\delta_m^2 - \langle \delta_m^2 \rangle) \right\}, \quad (8)$$

Figure 1. Number of haloes in the four mass samples M0-M3 as a function of redshift in the comoving outputs (symbols) and the light-cone (dashed lines).
where b_1 and c_2 are, respectively, the linear and quadratic bias parameters which we are measuring. The term $\langle \delta_{\text{dm}}^2 \rangle$ ensures that $\langle \delta_b \rangle = 0$, where $\langle \ldots \rangle$ denotes the average over all spatial positions. Besides small density fluctuations the bias model, introduced above, assumes a one-to-one relation between δ_b and δ_{dm}. Such models are referred to as local bias models, as the density fluctuation of galaxies at position r is determined only by the smoothed density fluctuations of the total matter content at the same position, while it is unaffected by its environment or velocity field. Recent studies have shown that the local assumption might not be accurate for small smoothing scales when b_1 is large [Baldiau et al. 2012; Chan et al. 2012].

Using the information contained in the large scale distribution of galaxies at different scales we measure bias and growth with second- and third-order statistics, as described in the following sections.

3.3 Growth factor D from two-point correlation ξ

The spatial two-point correlation of density fluctuations can be defined as the mean product of density fluctuations δ_i at the positions r_1 that are separated by the distance $r_{12} \equiv |r_1 - r_2|$:

$$\xi(r_{12}) \equiv \langle \delta(r_1)\delta(r_2) \rangle = \langle \delta_1\delta_2 \rangle(r_{12}).$$ \hspace{1cm} (9)

Since $\langle \ldots \rangle$ denotes the average over pairs of any orientation, the two-point correlation is not sensitive to the shape of the matter distribution around a given location r, but only to its averaged radial density profile. This is in contrast with higher-order correlations: with three points we will also be able to measure deviations away from the spherically symmetric profile [Smith, Watts & Shell 2006].

From equations (2) and (9) one can derive that the growth factor is related to the two-point correlation of matter as

$$\xi_{\text{dm}}(r_{12}, z) = D(z)^2\xi_{\text{dm}}(r_{12}, z_0).$$ \hspace{1cm} (10)

Our measurements of the matter correlation function in the MICE-GC simulation, presented in Fig.2 indeed show a linear relation between the matter two-point correlations at different redshifts z with respect to $z = 0$ on a wide range of scales. Note how at scales around $r_{12} \sim 100 \text{ h}^{-1}\text{Mpc}$ the BAO peak induces some oscillations around the linear model, but the model works well for intermediate scales of $r_{12} \sim 20 - 60 \text{ h}^{-1}\text{Mpc}$.

We measured the two-point correlation by dividing the simulation volume into cubical $8 \text{ h}^{-1}\text{Mpc}$ grid cells and assigning density fluctuations to each of these cells. We then calculate the mean product of density fluctuations in grid cells that are separated by $r_{12} \pm dr$ according to definition (9). Errors are derived by Jackknife resampling as described in Section 5.6.

As shown in Fig.3 there is a good agreement between the growth factor measurements from the two-point correlation (symbols) and the theoretical prediction from equation (10) (dashed line) for the cosmology of the MICE-GC sim-

Figure 2. Top: two-point correlation ξ of the MICE-GC dark matter field measured in the comoving outputs at redshift $z = 0, 0.5, 1.0$ and 1.5 (blue circles, green crosses, orange squares and red triangles respectively) as a function of scale r_{12}. Lines show a fit of the amplitude of ξ at $z = 0$ to those from other redshifts, via equation (10). Bottom: growth factor $D = \sqrt{\xi(r_{12}, z)/\xi(r_{12}, 0)}$ obtained from the ratio of the upper correlation together with the fits displayed as dotted lines with the same colour code as the upper panel.

Figure 3. Comparison between the linear growth of matter D as a function of redshift z measured in the MICE-GC comoving outputs (symbols) and the corresponding theoretical predictions from equation (10) (dashed line). The MICE-GC measurements are the best fit values, shown as lines with the same colour coding in Fig.2.
The correlation functions of the halo samples M0 - M3 are shown in the top panel of Fig. 4, together with those of the dark matter field. The ratios of the matter and halo correlations, shown in the bottom panel, confirm that both quantities can be related by the almost scale independent bias factor b_g. We expect that $b_g(r_{12}) \simeq b_1$ at the mass and scale range of our analysis (Crocce et al. 2013). To estimate b_g we perform a χ^2-fit to the ratio of the halo and matter two-point correlation between $20 - 60 \ Mpc$ (fit and errors are described in Subsection 3.6). The fitted bias factors, shown as lines in the bottom panel of Fig. 4, reveal the well known increase of bias with the mass and redshift of the halo samples.

The results described above allow us to estimate the growth factor of matter fluctuations from equation (11) in terms of galaxy (or halo) correlation functions as:

$$D(z) \simeq \hat{b}(z)^{-1}D_g(z),$$

(13)

where the growth factor is normalised to unity at an arbitrary redshift z_0 (i.e. $D(z_0) \equiv 1$). The bias ratio $\hat{b}(z)$ is defined as

$$\hat{b}(z) \equiv b(z)/b(z_0)$$

(14)

and the galaxy (or halo) growth factor $D_g(z)$ is:

$$D_g(z) \equiv \sqrt{\xi_g(z)/\xi_g(z_0)}.$$

(15)

Both definitions refer to large scales, i.e r_{12} between 20-60 h^{-1}Mpc, while we find very similar results for 30-70 h^{-1}Mpc scale range.

Equation (13) shows that the matter growth factor,
measured from the galaxy (or halo) two-point correlation functions at different redshifts is fully degenerate with the ratio of the linear bias parameters. We therefore need an independent measurement of the bias ratio to break this degeneracy.

Note that the absolute values of the bias parameters, $b(z)$ and $b(z_0)$, do not need to be measured separately for measuring the differential growth factor between two redshift bins, as it is commonly done. Instead of the absolute bias values, we only need to measure their ratio \tilde{b}, which can be obtained directly from third-order galaxy correlations without assumptions on the clustering of dark matter, as we will explain in Subsection 3.4.

By measuring the differential growth factor between two nearby redshift bins z_2 and z_1 one can also estimate the (velocity) growth rate $f(z)$ defined in equation (eq) at the mean redshift $\bar{z} \equiv \frac{z_2 + z_1}{2}$. Since the growth rate is defined as the logarithmic derivative of the growth factor, it follows that

$$f(\bar{z}) \approx \frac{\ln[D(z_2)/D(z_1)]}{\ln[(1 + z_2)/(1 + z_1)]},$$

where $D(z)$ is the linear growth factor.

Our new approach of measuring the bias ratio \tilde{b} with third-order galaxy correlations will enable us to measure the growth factor and the growth rate of the full matter distribution directly from the distribution of galaxies (or haloes) without assumptions on the clustering of dark matter, providing a new model independent constrain on cosmological parameters. This represents an additional tool to measure $f(z)$, which is independent of redshift space distortions method (Kaiser 1987).

3.4 Bias b_Q from the three-point correlation Q

In analogy to the two-point correlation, we can define the three-point correlation as

$$\zeta(r_{12}, r_{13}, r_{23}) \equiv \langle \delta(r_{12}) \delta(r_{13}) \delta(r_{23}) \rangle,$$

where the vectors r_{12}, r_{13}, r_{23} from triangles of different shapes and sizes. In contrast to the two-point correlation function ζ is sensitive to the shape of the matter density fluctuations. To access this additional information, we study the three-point correlation by fixing the length of the two triangle legs r_{12} and r_{13} while varying the angle between them $\alpha \equiv \cos(r_{12} \cdot r_{13})$. In the following we will therefore change the notation for characterising triangles from (r_{12}, r_{13}, r_{23}) to (r_{12}, r_{13}, α). Throughout the analysis we use triangles with $r_{13}/r_{12} = 2$ configurations, which restricts the minimum scale entering the measurements to the size of the smaller triangle leg r_{12}. Choosing configuration, such as $r_{13}/r_{12} = 1$ would introduce non-linear scales when triangles are collapsed ($\alpha = 0$).

For detecting the triples $\delta(r_{12}) \delta(r_{13}) \delta(r_{23})$ we employ the algorithm described by Barriga & Gaztañaga 2002, using the same kind of mesh as for calculating the two-point correlation with 4 and $8 \, h^{-1}$Mpc grid cells. From the three-point correlation we then construct the reduced three-point correlation, introduced by Groth & Peebles (1977) as

$$Q \equiv \frac{\zeta(r_{12}, r_{13}, \alpha)}{\xi_{12} \xi_{13} + \xi_{12} \xi_{23} + \xi_{13} \xi_{23}},$$

where $\xi_{ij} \equiv \xi(r_{ij})$. Perturbation theory (hereafter also referred to as PT) suggests that for the dark matter field Q (hereafter referred to as Q_{dm}) is almost independent of the growth factor (for sufficiently large triangles) while for galaxy it is sensitive to the bias parameters. These properties enable us to measure b_1 and c_2 and break the growth-bias degeneracy in equation (eq) (Fry 1994, Bernardeau et al. 2002).

We test the assumption that Q_{dm} is independent of the growth factor by comparing measurements at different redshifts and scales in the MICE-GC simulation with theoretical predictions derived from second-order perturbative expansion of ξ and ζ (Bernardeau et al. 2002; Barriga & Gaztañaga 2002). The predictions are based on the MICE-GC CAMB power spectrum. Fig. 5 shows Q_{dm} at $z = 0.0, 0.5$ and 1.5 for triangles with $r_{12} = 12 \, h^{-1}$ Mpc and $r_{12} = 24 \, h^{-1}$Mpc in the top panel using $r_{13} = 2r_{12}$ configurations. The measurements are based on a density mesh with $4 \, h^{-1}$Mpc grid cells. As for the two-point correlation we derive errors for Q by Jackknife resampling (see Section 3). The values of Q show the characteristic u-shape predicted...
by perturbation theory, which results from the anisotropic matter distribution. The amplitude of Q increases with triangle size because of the steeper slope in the two-point linear correlations at larger scales. As expected, Q depends only weakly on redshift while the deviations between predictions and measurements become more significant at low redshift and small scales (see bottom panel of Fig. 5). The same effect has been reported by Fosalba et al. (2013), who also find that the deviations decrease, when predictions are drawn from the measured instead of the CAMB power spectrum. Furthermore, these authors demonstrated that additional contributions to these deviations can result from the limited mass resolution of the simulation, especially at small scales and high redshift.

3.4.1 Non linear bias

A simple relation between the bias in the local model and Q can be derived in the limit of small density fluctuations and large triangles by using equation (9), (17) and (15), and keeping second-order terms in the perturbative expansion (Frieman & Gaztanaga 1994):

\[Q_b(\alpha) \approx \frac{1}{b_Q} [Q_{dm}(\alpha) + c_0]. \]

The subindices g and dm stand for galaxies (or haloes) and dark matter respectively. Instead of using Q_{dm}, we could also use the corresponding predictions, shown in Fig.6. However, this would introduce uncertainties in the bias measurement, due to the mismatch between measurements and predictions. We interpret the parameters b_Q and c_0 as the first- and second-order bias parameters b_1 and c_2 respectively, while we expect this interpretation to be valid only in the linear regime at scales larger than roughly 20 h^{-1}Mpc. We use the notation b_Q instead of b_1 to refer to the fact that we are estimating b_1 with Q.

To measure the bias we computed Q_g for the four mass samples M0 - M3 at redshift z = 0.0 and z = 0.5 using triangles of various scales with r_{13} = 2r_{12} configurations. The triangle legs consist of 3 and 6 grid cells. We vary the size of the triangles by changing the size of the grid cells. This reduces computation time, since the number of grid cells in the simulation volume required for the measurement is minimised. Our results for r_{12} = r_{13}/2 = 24 h^{-1}Mpc triangles, shown in the left panel of Fig.6 reveal a flattening of Q for high mass samples, as expected from equation (19) since b_1 increases with halo mass. In the right panel of the same figure we demonstrate that the linear relation between Q_g and Q_{dm}, given by equation (19) is in reasonable agreement with the measurements. We perform \chi^2-fits of the dark matter results to those of the four halo samples via equation (19) as described in Subsection 3.3 and obtain the bias parameters b_Q and c_0 which are given by the dotted lines in Fig.6. The linear fits show the strongest deviations from the measurements at the smallest and highest values of Q, which might result from measurements at small angles dominating \chi^2 as those have the smallest errors. Also note these results are affected by the covariance matrix in the fit which we only know very roughly using the Jackknife errors (see Section 5.3 and Appendix A).

In order to use the bias parameter b_Q to measure the growth factor via equation (15) we first need to quantify deviations between b_1 and b_Q, i.e. the linear bias b_1 inferred from the two-point function and the one from Q in the fit to equation (19). If the local bias model approximation works well, then we would expect b_Q \approx b_1. A comparison is shown for different triangle scales and mass ranges in Fig.6. In the top panel we show the linear bias derived with \xi and Q at redshift z = 0.5 as lines and symbols respectively. The horizontal axis show r_{12}, the size of the smaller triangle legs. As in Fig.6 we use triangles with r_{13} = 2r_{12}. The bottom panel shows the relative difference between b_1 and b_Q.

At large scales we find that b_Q is up to 30% higher than b_1, while differences increase for smaller scales and larger values of b_1. Such deviations between b_1 and b_Q have also been reported by, e.g. Manera & Gaztanaga (2011), Pollack, Smith & Porciani (2012), Baldauf et al. (2012) and Chan et al. (2012). Furthermore we find that b_Q for M3 is under predicted at small scales in contrast to results for the lower mass samples. Deviations for small triangle sizes indicate departures from the leading order perturbative expansion in which equation (19) is valid, while the strong deviations for the sample M3 suggest that the quadratic expansion of the bias function might not be sufficient for highly biased samples. Furthermore, differences between b_1 and b_Q are expected due to non-local contributions to the bias function, as it has been shown in k-space by Chan et al. (2012). Performing the same analysis at redshfit z = 0.0 gives very similar results, which are shown in Fig. A3 of the appendix. We find in that case slightly larger deviations at small scales presumably due to a higher impact of non-linearities on the measurement. The overestimations at large scales are slightly smaller possibly as a result of smaller bias values at low redshift. We will show in a second paper that deviations between b_1 and b_Q decrease, when galaxy-matter-matter cross-correlations instead of galaxy-galaxy auto-correlations are analysed. In the following we will focus on the results for r_{12} = 24 h^{-1}Mpc which is a compromise between having small errors and sufficiently large scales for linear bias estimation.

Despite the discrepancies between b_Q and b_1 shown in Fig.6 we will still be able to obtain a good approximation for the growth factor D(z) if b_Q and b_1 are related by the same multiplicative constant at different redshifts. This is because D(z) only depends on the bias ratio, as shown in equation (19).

3.4.2 Bias ratio b_Q from Q_g at different redshifts

A fundamental limitation for the growth factor measurement described in Section 5.3 is its dependence on the dark matter correlations, which cannot be directly observed. This problem is usually tackled by employing predictions for the dark matter correlations from N-body simulations or perturbation theory (see e.g. Verde et al. 2002, McBride et al. 2011, Marin et al. 2013). Alternatively weak lensing signals can be used as a direct probe of the total matter field (Jullo et al. 2012, Simon et al. 2013). Both approaches can add uncertainties and systematic effects to the galaxy bias measurement and will therefore affect constrains of cosmological parameters derived from the growth factor.

We therefore introduce a new approach for measuring the growth factor based on the following consideration: in equation (13) we see that for measuring the growth factor...
$D(z)$ we only require knowledge about the ratio of the linear bias parameters at the redshifts z_0 and z, while the absolute bias values are irrelevant. With the three-point correlation function we can measure this ratio directly from the distribution of galaxies without knowing Q_{dn}. We can write equation (19) for the two redshifts z_0 and z and combine them via Q_{dn} under the assumption that Q_{dn} is independent of redshift, as shown in Fig. 5. We find

$$Q_g(z) = \frac{1}{b_Q} [Q_g(z_0) + \hat{c}_Q],$$

where we have defined $\hat{b}_Q \equiv b_Q(z)/b_Q(z_0)$ and $\hat{c}_Q = [c_Q(z) - c_Q(z_0)]/b_Q(z_0)$. Equation (20) allows us to estimate the bias ratio b_Q from Q_g measurements at two different redshifts. The measurement of \hat{b} can then be used in equation (19) to estimate $D(z)$ from the measured $D_g(z)$. The results will be shown later in Section 4.2.

3.5 Bias b_r from third-order moments C_{12} and S_3

Here we are interested in the joint one- and two-point third-order cumulant moments taken at the locations r_1 and r_2. We will estimate the first and second-order biasing coefficients by combining the skewness S_3 and reduced correlator C_{12}. The skewness S_3 is the ratio of the one-point third-order cumulant, $\langle \delta^3 \rangle$, and the one-point variance, $\sigma^2 \equiv \langle \delta^2 \rangle$, squared:

$$S_3 \equiv \frac{\langle \delta^3 \rangle}{\langle \delta^2 \rangle^2} \equiv \frac{\langle \delta^3 \rangle}{\sigma^4},$$

and the product of the variance $\langle \delta^2 \rangle$ and the two-point correlation function $\langle \delta_1 \delta_2 \rangle$:

$$C_{12}(r_{12}) \equiv \frac{\langle \delta_1 \delta_2 \rangle}{\langle \delta^2 \rangle} \equiv \frac{\langle \delta_1 \delta_2 \rangle}{\sigma^2 \xi_{12}}.$$

Note that, due to the same isotropic property as for the two-point correlation function, C_{12} depends only on the modulus of the separation r_{12} and not in the shape of the overdensity. The same happens for S_3, which is a spherical average over some fix smoothing radius R. Both, the skewness S_3 and the correlator C_{12}, can be seen as two different collapsed forms of the reduced smoothed three-point correlation function $Q(r_{12}, r_{13}, \alpha)$, i.e. $S_3 = 3Q(0, 0, 0)$ and $C_{12}(r_{12}) = Q(r_{12}, r_{12}, 0)(2 + \xi_{12}/\sigma^2)$.

3.5.1 Non linear bias

Since it has been shown (Fry & Gaztañaga 1994, Bel & Marinoni 2012) that the local non linear bias model conserves the hierarchical properties of both, cumulants and correlators of matter, one can express such quantities for any biased tracers (haloes or galaxies) with respect to the linear and quadratic bias coefficients

$$S_{3,g} \simeq \frac{1}{b_1} (S_{3,dm} + 3c_2)$$

and

$$C_{12,g} \simeq \frac{1}{b_1} (C_{12,dm} + 2c_2).$$
Measuring the growth of matter fluctuations with third-order galaxy correlations

Following an orginal idea of Szapudi (1998), Bel & Marinoni (2012) worked out the explicit expressions of the bias coefficients up to fourth order. In the present paper we focus on the quadratic biasing model we recall the expressions they obtained at second order. By combining equations (23) and (24) one can find

\begin{equation}
\delta_r = \frac{\delta_{12, dm} - 2 \delta_{3, dm}}{3 \delta_{12, g} - 2 \delta_{3, g}} = \frac{\tau_{dm}}{\tau_g},
\end{equation}

\begin{equation}
\xi_r = \frac{\delta_{12, dm} \times \delta_{3, g} - \delta_{12, g} \times \delta_{3, dm}}{\tau_g}. \tag{26}
\end{equation}

As in the case of \(Q \) we interpret the parameters \(\delta_r \) and \(\xi_r \) as the first and second-order bias parameters \(b_1 \) and \(c_2 \) respectively, while we expect this interpretation to be valid only in the perturbation theory regime.

In practice, the skewness \(S_3 \) and the reduced correlator \(C_{12} \) can be estimated once the density fluctuations of haloes and matter (\(\delta_g \) and \(\delta_{dm} \) respectively) have been smoothed on a scale \(R \). In order to simplify the interfacing with theoretical predictions it is common to use a spherical Top-Hat window to smooth fluctuations. This is done by the count-in-cell estimators for the discrete \(S_{3,N} \) and \(C_{12,N} \), which are described in Bel & Marinoni (2012) and used in this analysis. We correct these estimations from shot noise by assuming the local Poisson process approximation (Lavely 1956). Note that, in order to be able to handle the large number of dark matter particles, we use only 1/700 of the total number of particles in the dark matter simulation output. This introduces additional shot-noise errors but we have tested that it does not affect the mean calculation. To measure \(S_{3,N} \), we set up a regular grid of spherical cells. From the number of dark matter particles per cell we derive the corresponding number density fluctuations, which we then use to estimate the skewness via

\begin{equation}
S_3 = \frac{3 (\delta_{q, dm})^2 - 3 (\delta_{q, g})^2 \bar{N}^{-1} + 2 \bar{N}^{-2}}{(\delta_{q, g}^2 - \bar{N}^{-1})^2},
\end{equation}

where \(\bar{N} \) is the number of particles per grid cell, averaged over the volume of the simulation box.

The reduced correlator, \(C_{12} \), is measured via the two-point count-in-cell estimator (Bel & Marinoni 2012). We therefore set up a regular grid of spherical cells, which are separated by \(n \) times the smoothing radius \(R \) (hereafter referred to as seeds) and place an isotropic motif of spheres around each seed, where \(n \) is an arbitrary factor. The two-point moments of the density field are then measured as the correlation between density fluctuations in the spheres of the motif and those in the seeds. This method allows for measurements of two-point statistics, even in the low separation limit when the spheres of the motif touch the spheres of the seeds, without being affected by any choice of distance bins. As for the skewness, we correct for shot noise assuming a Poisson sampling, which leads to

\begin{equation}
C_{12} = \frac{(\delta_{3,1} \delta_{3,2}) - 2 (\delta_{3,1} \delta_{1,2}) \bar{N}^{-1}}{(\delta_{1,1} \delta_{1,2}) (\delta_{3,1}^2 - \bar{N}^{-1})}, \tag{28}
\end{equation}

Bel & Marinoni (2012). Once we have measured the skewness and the reduced correlator, the linear and quadratic bias \(b_r \) and \(c_r \) can be estimated for any chosen smoothing radius \(R \) and for any ratio \(n \equiv r_{12} / R \) with equation (28). Errors of the measurements are computed by Jackknife resampling, as described in Section 3.6.

A theoretical prediction for the skewness and the reduced correlator can be derived with perturbation theory (PT, Bernardeau 1992, 1996):

\begin{equation}
S_3^{PT} = \frac{34}{7} + \gamma_R, \tag{27}
\end{equation}

\begin{equation}
C^{PT}_{12}(r_{12}) = \frac{68}{21} + \frac{\gamma_R}{3} + \frac{\beta_R(r_{12})}{3}, \tag{28}
\end{equation}

where \(\gamma_R \) is the logarithmic derivative of the variance and the two-point correlation function of the smoothed field of density fluctuations \(\delta_R \) with respect to the smoothing radius \(R \). Note that expression (28) has been obtained in the large separation limit \(r_{12} \gg 3R \).
Figure 8. Top: reduced correlator C_{12} of the MICE-GC dark matter field as a function of the separation r_{12} measured in the comoving outputs at redshifts 0.0, 0.5, 1.0 and 1.5 (diamonds, triangles, crosses and squares respectively) compared to the perturbation theory prediction using a linear power spectrum (dashed line) with smoothing radii $R = 5.0 \ h^{-1}\text{Mpc}$ (left) and $R = 9.9 \ h^{-1}\text{Mpc}$ (right). Bottom: relative difference between measurements and PT prediction. Black dashed lines denote ±5% deviation.

Figure 9. Skewness S_3 and reduced correlator C_{12} (top and bottom panel respectively) measured from the dark matter field (solid line) and the four halo mass samples M0-M3 (symbols) in the MICE-GC comoving outputs at redshifts $z = 0.0$ and $z = 0.5$ (left and right respectively) as a function of smoothing radius R. The blue dotted lines display the tree level perturbation theory predictions for S_3 and C_{12} respectively given by equations (27) and (28). Coloured lines denote S_3,g and $C_{12,g}$ expected from equations (23) and (24).

term in the prediction. Previously, this term was considered negligible (Bernardeau 1996; Gaztañaga, Fosalba, & Croft 2002) and this resulted in a mismatch with numerical simulations, attributed to non-linear effects in the spherical collapse model (Gaztañaga, Fosalba, & Croft 2002).

The Jackknife errors of C_{12} from the dark matter field increase with redshift. This can be explained by shot-noise being redshift independent as the number of particles is conserved, while the amplitude of the correlation decreases with redshift, causing smaller signal-to-noise ratios. Furthermore, one could expect that shot-noise has a higher impact on C_{12} at small smoothing scales since the smoothing window encloses on average less particles. However, we observe the opposite trend, presumably because a larger smoothing scale implies in a smaller number of independent measurements, due to the finite comoving volume of the simulation. This also explains the increase of errors with separation r_{12}. To increase the statistical signal of our measurements, we set the correlation length to be twice the smoothing radius, i.e. $r_{12} = 2R$. The cells, used for the $C_{12,g}$ measurements, are consequently positioned side by side.

S_3 and C_{12} measurements of the MICE-GC dark matter field are presented in Fig[1] where they are contrasted with the corresponding quantities measured for haloes. At large smoothing scales the S_3 measurements for dark matter are in good agreement with the prediction from equation (24), represented by the blue dotted line. At small smoothing radii ($R < 20 \ h^{-1}\text{Mpc}$) we find the measurements to be significantly higher than the predictions. For haloes we can see that S_3 does not vary monotonically with mass. In fact, at $R = 30 \ h^{-1}\text{Mpc}$ and $z = 0$, for the low mass sample M0 the skewness is around 1.3, then drops down to 0.8 for M1, increases to 1.2 for M2 and finally reaches the value 1.6 for the high mass sample M3. A similar tendency is observed at higher redshift. This non-monotonic behavior is qualitatively expected by the spherical collapse (Mo, Jing & White...
Figure 10. *Top:* linear bias parameter b_1 obtained from the τ estimator (b_τ) via equation (25) (diamonds) for various smoothing radii R compared to the reference linear bias obtained from the two-point correlation ξ via equation (12) (b_ξ, lines) at the redshifts $z = 0$ (black) and $z = 0.5$ (blue). *Bottom:* quadratic bias parameter c_2 estimated from equation (26) (diamonds) with same colour coding as in top panel. Columns show results for the mass samples M0-M3.

1997) and ellipsoidal collapse (Sheth, Mo & Tormen 2001) predictions and is in quantitative agreement with the measurements of Angulo, Baugh & Lacey (2008), performed in a different simulation with a lower mass resolution and on a smaller mass range than the one reachable with the MICE-GC simulation.

The bottom panel of Fig. 9 shows for the first time how the mass of the chosen haloes affects the reduced correlator, C_{12}. Comparing the effect of biasing on the shape of S_3 with its effect on C_{12}, one can see that both follow the local bias model for large smoothing radii R. The local bias model seems to be less accurate for S_3 as a function of R, since its shape is systematically affected in a non-linear way. Moreover, we find the shape modification to increase with halo mass. Despite the fact that the predictions from equation (28) reproduce the large scale behavior of C_{12} for haloes, we confirm significant deviation from the dark matter measurements, at small separation ($r_{12} = 2R$), even after taking into account the β-term.

But note that equation (28) has been obtained in the large separation limit, $r_{12} >> R$ so this is not totally unexpected. However, one can see in Fig. 8 that for larger separations the theory is in remarkably good agreement with measurements even for small smoothing radii such as $R = 5$ h^{-1}Mpc. The local bias model works for C_{12} if we use the matter measurements as input, despite their disagreement with perturbation theory. This is because the local model is an expansion on δ and we do not need to use the additional assumption that $r_{12} >> R$.

Turning to bias estimators, using equations (25) and (26) we measured b_τ and c_2 in each mass sample at both redshifts with respect to the smoothing radius R. Measurements are displayed in Fig.10 together with the bias estimator b_ξ previously described. Estimators in equation (25) for b_1 and c_2 exhibit an important scale dependency before converging to a constant value. This allows us to set up effective scale ranges in the fitting procedure used to measure the linear and quadratic bias. In fact, comparing the scale dependency obtained for the various mass bins and redshifts we conclude that above 26 h^{-1}Mpc both b_τ and c_τ are independent from the considered smoothing scale. We therefore measure them by performing a fit between $R = 26$ and 40 h^{-1}Mpc. As we showed that the shape of S_3 is highly affected at small scales, in particular at high halo masses, we can reasonably conclude that, on one hand, the scale dependency of b_τ and c_τ results from the skewness of haloes and, on the other hand, the large discrepancy observed between b_ξ and b_τ (right panel of Fig. 10) is due to an underestimation of the skewness for massive haloes (we discuss this effect in Section 4.1).

3.5.2 Bias ratio b from τ at different redshifts

In Subsection 3.4.2 we introduced a way to estimate the bias ratio b using Q_8 to measure the linear growth of structures directly from galaxies (or haloes), i.e. without assuming any modelling of the power spectrum nor of the bispectrum of matter fluctuations. Following the same idea we show now that we can measure b using the b_τ estimator from equation...
at the two redshifts: \(\tau_{\text{dm}} = 0 \) and \(z \). Assuming that \(\tau_{\text{dm}} \) does not depend on redshift, it is straightforward to show that:

\[
\hat{b}_r \equiv \frac{b_r(z)}{b_r(z_0)} = \frac{\tau(z)}{\tau(z_0)}
\]

(29)

The assumption that \(\tau_{\text{dm}} \equiv 3C_{12,\text{dm}} - 2S_{3,\text{dm}} \) does not evolve with redshift is strongly supported by theory and simulations. Both \(S_2 \) and \(C_{12} \) are expected to be weakly sensitive to redshift in perturbation theory. Measurements shown in Fig. 8 illustrate that \(C_{12,dm} \) is weakly affected by redshift evolution, while results in Fig. 9 show that, on large scales (> 20 h^{-1} Mpc), the skewness \(S_{3,dm} \) does not present significant redshift dependency (see also Bernardeau et al. (2002) and references therein).

3.6 Errors estimation and fitting

Since we use either one simulation at various comoving outputs (\(z = 0 \), \(z = 0.5 \), \(z = 1 \), and \(z = 1.5 \)), or one light cone, we estimate the errors of \(\xi \), \(Q \), \(S_2 \), \(b_\xi \), \(b_Q \), \(b_r \), \(c_Q \), \(c_\tau \) and \(D \) measurements by Jackknife resampling. The Jackknife samples of the complete comoving output are constructed from 64 cubical sub-volumes while in case of the light cone we use 100 angular regions (with equal volume at each redshift bin) in right ascension and declination on the sky. Following Norberg et al. (2009), we generate for any statistical quantity \(X \) a set of pseudo-independent measurements \((X_i) \), from which we compute the standard deviation \(\sigma_X \) around the mean \(\bar{X} \) (computed on the complete volume) as

\[
\sigma_X = \sqrt{\frac{(n-1)}{n} \sum_{j=0}^{n} (X_j - \bar{X})^2},
\]

(30)

where \(n \) is the number of Jackknife samples.

For all three bias estimations \(b_\xi \), \(b_Q \) or \(b_r \), we use the same fitting procedure, which takes into account the covariance between \(\xi \), \(Q \) and \(\tau \) measurements at different separations, opening angles and smoothing scales \((r_{12}, \alpha, R \) respectively). The covariance matrix \(C \) is computed from the deviation matrix \(A \), which in turn is estimated by Jackknife resampling as well: a measurement in the \(j^{th} \) Jackknife sub-volume and for the \(i^{th} \) separation, angle or scale is written \(X_{ij} \). Each element \(A_{ij} \) of the deviation matrix is calculated as \(A_{ij} = X_{ij} - \bar{X} \). Again the mean \(\bar{X} \) is the measurement on the complete volume. The covariance matrix can then be computed straightforwardly

\[
C = \frac{n-1}{n} A^T A.
\]

(31)

The bias ratio \(\hat{b}_r \) can be fitted from results at different smoothing scales in a very simple way, because the first- and second-order bias coefficients can be estimated separately in the \(\tau \) formalism (see equation 28). Deriving \(b_Q \) is more complicated as it requires a two-parameter fit, due to the mixing of the bias coefficients (see equation 28). The main problem arises from the fact that at a given redshift the errors of \(Q_s \) are correlated between the various angles.

Furthermore the reduced three-point correlation can also be correlated between the two redshifts \(z_0 \) and \(z \), where \(z_0 \) is the reference redshift. Based on equation 23, we define the variable

\[
Z \equiv Q_g(z_0) - (\hat{b}Q_g(z) + \hat{c}),
\]

(32)

and vary \(\hat{b} \) and \(\hat{c} \) in order to obtain \(Z = 0 \) for all angles \(\alpha \). In other words we want to measure the posterior probability distribution (hereafter referred to as likelihood \(L(\hat{b}, \hat{c}) \)) of the two parameters \(\hat{b} \) and \(\hat{c} \) given that \(Z \) is expected to be \(\text{null} \). Assuming a multivariate normal distribution of \(Z \), one can write the log-likelihood \(L \equiv -2 \ln(L) \) as for measuring a given \(Z \)

\[
L = B + \ln(|C_Z|) + \chi^2,
\]

(33)

where \(C_Z \) is the covariance matrix of the \(Z \), \(B \) is a normalisation constant and \(\chi^2 \equiv \sum_{\alpha, \tau} (Z - C_Z \bar{Z})^2 \). Note that, if the covariance matrix does not depend on the parameters of the model, then the second term in expression 23 can be absorbed in the normalisation constant \(B \). However, from definition 22 follows that \(C_Z \) explicitly depends on the fitting parameters \(\hat{b} \) and \(\hat{c} \). It can therefore be obtained from the covariance matrix of \(Q_g(z_0) \) and \(Q_g(z_j) \) and from the cross-covariance of \(Q_g(z_0) \) and \(Q_g(z_j) \):

\[
C_Z = C_X + \hat{b}^2 C_Y - \hat{b}(C_{XY} + C_{X}^0),
\]

(34)

which explicitly shows the dependency of the covariance matrix \(C_Z \) on the fitting parameter \(\hat{b} \). Note that \(C_X \) and \(C_Y \) are respectively the covariance matrix of \(Q_g(z_0) \) and \(Q_g(z_j) \) computed with equation 31. The cross-covariance matrix \(C_{XY} \) is defined as

\[
C_{X,Y} = \frac{n-1}{n} (X_j - \bar{X})(Y_i - \bar{Y}),
\]

(35)

where \(n \) is the number of elements in both \(X \) and \(Y \). In practice we shall neglect the correlation between redshift bins, so that \(C_{XY} = C_{X}^0 = 0 \) in equation 34. Otherwise the inverse covariance matrix \(C_{X,Y}^{-1} \) had to be computed for each tested value of \(\hat{b} \). The estimate of \(\hat{b} \) and its error are obtained by marginalising over the \(\hat{c} \) parameter via the posterior marginalised log-likelihood

\[
L(\hat{b}) = -2 \ln \left\{ \int L(\hat{b}, \hat{c}) d\hat{c} \right\}.
\]

Testing the assumption that measurements at different redshifts are uncorrelated, we verified that the correlation coefficient remains very small compared to unity. It follows that the square of the relative error for the bias ratio is obtained by summing in quadrature the relative errors of \(b_X(z_1) \) and \(b_X(z_0) \). Then, since \(b_Q \) and \(b_r \) are third-order estimators, we checked that the error of the halo growth factor \(D_h \) is negligible with respect to the error obtained for the bias ratio \(\hat{b} \).

4 RESULTS

As we have pointed out in the sections 3.3-3.5 we use growth independent bias measurements from third-order statistics...
to break the growth-bias degeneracy that appears in growth measurements from two-point correlations. This approach is limited by the accuracy and the precision with which third-order statistics can measure galaxy bias. We study the differences between bias from second- and third-order correlations for different redshifts and halo mass ranges and present the results in Section 4.1.1 In Section 4.1.2 we show the resulting estimations for the linear growth measurements.

Alternatively to the direct approach of growth measurement described above, we have introduced a new method which does not require any modelling of third-order clustering of dark matter. It takes advantage of the fact that only the ratio of the bias parameters at two redshifts needs to be known to break the growth-bias degeneracy. This bias ratio can be directly measured from third-order statistics of the halo field (see Section 3.6). In Section 4.2.1 we compare growth factor measurements from our new method and the more common method of combining second- and third-order statistics with theoretical predictions (or simulations) for the dark matter field. In Section 4.2.2 we present growth rate measurements derived with and without third-order correlations of dark matter.

4.1 Bias comparison

4.1.1 Measurements in the comoving outputs

In Fig.11 we show the values of the linear and quadratic bias parameters b_1 and c_2, measured with the Q and τ estimators (b_Q, c_Q and b_τ, c_τ) in the comoving outputs at redshift $z = 0.0$ and $z = 0.5$. The bias parameters from Q are estimated from triangles with fixed legs of 24 and 48 h$^{-1}$Mpc using 18 opening angles α with values between 0 and 180 degree as shown in Fig.3. The τ bias estimations are based on fits of b_τ and c_τ between $26 < R < 40$ h$^{-1}$Mpc using $(r_{12} = 2R)$ configurations (see Fig.10). All error bars denote the standard deviation derived from 64 Jackknife samples as described in Section 4.2.4.

In the same figure we compare our measurements of the linear bias parameter from third-order statistics with b_Q computed from the two-point correlation between 20 and 60 h$^{-1}$Mpc by showing the absolute values as well as the relative differences. In case of c_2 we show the absolute instead of the relative difference since we have no reference values from two-point correlations.

The linear and quadratic bias parameters from both estimators increase with mass and redshift, while their absolute values differ in several aspects. As demonstrated already in Fig.4 Q overestimates the linear bias in all mass samples by a factor between 20 – 30% with respect to b_τ. The good agreement between b_Q and b_τ for the high mass sample M3 only appears for the chosen triangle configuration of (24,48,α). The overestimations confirm findings from Manera & Gaztañaga (2011), Pollack, Smith & Porciani (2012) and Chan et al. (2012), while the large volume and resolution of the MICE-GC simulation allows us to extend this bias comparison to a wider range of masses than probed previously. Chan et al. (2012) argued that the mismatch of the linear bias by Q is expected from non-local contributions to the bias function. But note that the comparison with the results here is not direct. Our results are in configuration space (not in Fourier space), for halo-halo-halo correlations (not halo-matter-matter) and for a different cosmology. Moreover, the deviations found in Chan et al. (2012) depend linearly on the b_1 value, while we find here a shift by a factor that is roughly independent of mass (and therefore of b_1). We will explore some of these differences in a separate paper.

On the other hand, the τ bias estimation, b_τ, shows a good agreement with b_1 for the lower mass bins, but at a price of larger errors. This suggests that the τ estimator is less affected by such non-local contributions than b_Q, which is also expected from theory, since the isotropy of the estimators of S_3 and C_{12} could wash out the non-local effects. τ strongly underestimates the linear bias parameter for the highest mass bin (M3). This might be caused by discrete-ness effects which need to be corrected in the τ estimation (note that this does not affect Q). Here we have used Poisson shot-noise corrections, but these are likely to be incorrect for massive haloes because of exclusion effects (see e.g. Manera & Gaztañaga 2011). As a result, for haloes which are too massive, the correct estimation of the skewness is far from being trivial. Assuming a wrong shot noise correction leads to an underestimation of $S_{2,3}$, which causes τ to be over-predicted and translates for the b_τ estimator into a large underestimation of the linear bias and presumably of the second-order bias (left panel of Fig.11).

Besides non-local terms, the discrepancies between b_τ, b_Q, and b_τ, highlighted in Fig.11 can be caused by various other effects, such as stochasticity or contributions of higher-order terms to the bias expansion (equation 5). The Jackknife estimation of the errors and the covariance matrix introduces an additional uncertainty in the bias measurement (see Appendix A).

The larger errors of the b_τ measurements with respect to those from b_Q are a consequence of the larger errors in C_{12} and S_3 with respect to Q in Fig.6 and 7. The larger errors in S_2 and C_{12} result from the larger smoothing scales compared to those used to compute Q, which leads to a lower number of independent measurements. An additional contribution to the higher scatter of the S_3 and C_{12} results from the grid used in the estimation which roughly neglects 50% of the volume, since the spheres do not overlap with each other. An additional minor source of error comes from the fact that, for practical reasons, only 1/700 of the total number of dark matter particles are used to measure S_2 and C_{12} of matter, which is discussed in Subsection 3.5.1. For both τ and Q errors could be improved by including more configurations and optimal weighting.

Regarding the quadratic bias coefficient c_2 we found that the estimated values of c_Q and c_τ are in significant disagreement for mostly all mass bins. We will study this results in more detail by comparing similar estimations from halo-matter-matter cross-correlation with predictions from the peak background split model in a separate paper.

4.1.2 Measurements in the light cone

To be more realistic, we conduct bias measurements in a light cone, which is constructed from the MICE-GC simulation and includes redshift evolution of structures. The total volume probed by the light cone is about 15 h$^{-3}$ Gpc3 and we consider an octant of the sky (about 5000 deg2). We study the deviation between the different bias estimations
in five redshift bins between $0.4 < z < 1.42$ using the mass samples M0, M1 and M2. We do not present results for the highest mass sample M3 and for smaller redshifts, since the results are strongly scattered due to small numbers of haloes (see Fig. 1). However, this mass and redshift range was previously analysed using the comoving outputs of the same simulation.

For measuring the bias we use the same $(24, 48, \alpha)$ configurations for Q as in the comoving output. In the case of b_τ we use $(r_{12} = 2R)$ configurations as in the previous analysis and we perform a fit over the scale range $16-30 \, h^{-1}\text{Mpc}$ for the mass bins M0 and M1, while we restrict this range to $25-30 \, h^{-1}\text{Mpc}$ in case of M2. These new fitting ranges are motivated by Fig. 10 which shows that at the higher redshift $z = 0.5$ the scale dependency of b_τ can be neglected on those ranges and for the corresponding mass bins. To maximize the statistical power of the estimator we now use overlapping cells to avoid neglecting roughly half of the data in the space between the spheres used to smooth the particle distribution. Note that in this case we estimate errors by Jackknife resampling of 100 angular regions of the light cone (see Section 3.6).

The results for the b_Q and b_τ estimator are shown together with b_ξ in Fig. 12. They confirm that b_Q tends to overestimate the bias for the lower mass bins by about 30%. Moreover it shows that the ratio between b_ξ and b_Q is roughly a constant with respect to the redshift or mass bins. On the other hand b_τ seems to be an unbiased estimate of the linear bias coefficient, while the measurements are noisier.

Since in our approach we aim at measuring the linear bias in order to extract information about the growth factor D of linear matter fluctuations, we focus on deriving a direct measurement of it in the following section.

4.2 Growth Measurements

In this subsection we present measurements of the growth factor D and the growth rate f in the MICE-GC light cone obtained via the bias estimated with Q and τ. These measurements are compared to those from our new approach for measuring the growth factor with a direct combination of second- and third-order halo correlations at two redshifts,
measuring the growth of matter fluctuations with third-order galaxy correlations

4.2.1 Growth factor measured with Q_{dm} and τ_{dm}

Fig. 13 shows measurements of the growth factor D, derived from the mass samples M0, M1 and M2 in the MICE-GC light cone. Symbols denote results, which were derived by using the same mass bins at both redshifts, $z_0 = 1.25$ and z. Exploring the variation of our results for different choices of mass bins, we measure the growth factor from all combinations of mass bins. The median growth factor and the median error from all combinations are shown as grey shaded areas in the same figure. The top panels show results, derived by using the bias parameters b_Q and b_τ (left and right respectively), which were measured at each redshift separately from equation (19) and (25). This approach requires the knowledge or modelling of the dark matter Q_{dm} and τ_{dm}. Note that we normalised all measurements with respect to the highest redshift bin by setting $z_0 = 1.25$ in equation (13). This allows us to have a normalisation, which is performed as much as possible in the linear regime and with the lowest possible sampling variance. The measurements are compared to the theoretical prediction from equation (1), shown as dashed lines in the same figure. To be independent of the normalisation we χ^2-fit the normalisation of the predictions to the median measurements from all mass sample combinations.

Our results in Fig. 13 show that the growth factor, measured with the bias from the third-order statistics, decreases with redshift, as expected from predictions for the linear growth factor. In the case of Q (top left panel of Fig. 13) the good agreement between measured and predicted growth factor is remarkable since the bias estimation, on which the growth factor measurement is based on, shows a 30% over estimation (see left panel of Fig. 12). We explain this finding by a cancellation in the bias ratio b_Q of the multiplicative factor by which b_Q is shifted away from b_ξ. This cancellation also happens for the median results from all mass bin combination, since multiplicative this factor is similar for all masses and redshifts. Fluctuations of the growth factor measurements at high redshift probably result from fluctuations in the bias measurement.

The growth factor measurements based on the τ estimator (top right panel) are significantly noisier than the b_Q estimation, as expected from the linear bias estimations displayed in Fig. 12. Note that the growth factor, measured via b_τ, appears to be more strongly biased at higher mass ranges. However, this is only the propagation of the statistical fluctuation of the bias measurements in the higher redshift bin, which is used to normalise the measured growth factor in all the other redshift bins (see Fig. 12). Thus, we can conclude the τ estimator provides an unbiased estimate of the growth factor.

4.2.2 Growth factor measured without Q_{dm} and τ_{dm}

In the bottom panels of Fig. 13 we show the growth factor measurements based on the new approach, which uses the bias ratios b_Q and b_τ derived from equations (20) and (29) (left and right respectively). This means that we compare the statistical properties only of the halo density field at different redshifts, without requiring knowledge about the dark matter quantities Q_{dm}, τ_{dm}. As in the top panels, the symbols denote measurements using the same mass bins at both redshifts, while median growth measurements and errors from all mass bin combinations are shown as grey shaded areas.
Figure 13. Growth factor measured from haloes in the mass samples M0, M1, M2 from the MICE-GC light cone. Measurements are normalised to be unity at the reference redshift $z_0 = 1.25$. Symbols show results derived by using the same mass bin at redshift z and z_0. Median results with median errors from combining all mass bins are shown as grey areas. Measurements shown in the left panels are derived using the linear bias from $Q(24, 48, \alpha)$, while results in the right panel are based the linear bias from $\tau = 3C_{12} - 2S_{3}$.

We find for both estimators slightly larger deviations from the linear theory compared to the results from the separate bias measurement (i.e. compared to the upper panels). This discrepancy tends to be larger as the redshift is decreasing, possibly due to three effects: i) noise in the measurements of third-order galaxy (or halo) correlations (Q_g, τ_g) enters twice, ii) non-linearities in the dark matter field become stronger at small redshift, iii) sampling variance does not cancel out since the two halo correlations, on which the measurement is based on, come from different redshifts.

In practice that last point iii) will also affect the first method, which uses Q_{dm} and τ_{dm} to get the absolute bias at each redshift. In our analysis, sampling variance cancels out between redshifts because we use Q_{dm} and τ_{dm} measured in the same simulation where we measure the corresponding halo values Q_g and τ_g. But in a real survey this is not possible and we will use a model of Q_{dm} and τ_{dm}, whose fluctuations will not cancel with real observations of Q_g and τ_g. Therefore the sampling variance should not cancel out as it now happens in the top panel of Fig.13.

We demonstrate this effect in Fig.14. The top panel shows the growth, measured with the separate bias estimates of b_Q, as shown on the top panel of Fig.13. Here, to show how the estimate changes as a function of the triangles used in the fit, we restrict the fitting range in $Q(r_{12}, r_{13}, \alpha)$ to opening angles of the triangles between $0 < \alpha < 60$ degree. In the central panel we show the more realistic growth measurements based on the same approach, but instead of using the dark matter measurements in the same redshift as the halo measurements, we always use the dark matter results of Q from the highest redshift bin $z_0 = 1.25$ (which is in good agreement with the results from the co-moving output, as it contains more volume than the other redshift bins). Here, the sampling variance does not cancel, since the dark matter and halo correlations are measured at different redshifts. This results in a larger scatter in the central panel than in the top panel. Quantifying this scatter with respect to the predictions as $\sigma = \sqrt{\langle (D - D_{PT})^2 \rangle}$ confirms the visual impression (values are shown in Fig.14).

This latter approach corresponds more closely to how the
first method would be applied in a real survey: i.e. assuming a cosmology to run the dark matter model and running a simulation for that cosmology (sampling variance will not cancel as the simulation has different seeds than the real universe). These latter growth measurements are distributed in a similar way around the theoretical predictions as the results derived from the ratio bias approach using \(Q \) and \(\xi \) at the redshift \(z \) and redshift \(z = 1.25 \), shown in the bottom panel of Fig.14. This demonstrates that most of the difference between the top and bottom panels of Fig.14 comes from the artificial sampling variance cancelation in the top panel.

4.2.3 Growth rate measured with and without \(Q_{dm} \)

We derived the growth rate \(f \) from the measured growth factor \(D \) via equation (16). The product \(f\sigma \) can also be probed by redshift space distortions, while our measurements represent an additional, independent approach to the growth rate. Especially at higher redshifts, where growth rate measurements via redshift space distortions are difficult to obtain, such additional information is valuable. Besides the relation to redshift space distortions another advantage of the growth rate with respect to the growth factor is that it is independent of the normalisation. The latter cancels out in the ratio of the growth factors, which appears in equation (16).

However, measuring \(f \) via \(D \) at a given redshift is not straightforward, since it depends on measurements at two different redshifts. We derived \(f \) at the redshift bin \(z_i \) from growth factor measurements at \(z_{i+1} \) and \(z_{i-1} \). This approach is motivated by the fact that the redshift bins have equal width in comoving space. Constrains of cosmological parameters with such measurements would require a more careful treatment of the assigned redshift. The employed growth factors are the median results, derived via \(Q \) from all mass combinations, which are shown as grey areas in the left panels of Fig.13.

The results for \(f \) from \(D \) at a given redshift are shown in Fig.15. In both cases the measurements are strongly scattered around the theoretical predictions for the MICE simulation, while the scatter is stronger for results derived without \(Q_{dm} \). The increased scatter at lower redshifts probably results from the smaller volume of the light cone, which causes stronger fluctuations in \(D \) (see Fig.13).

The MICE prediction is computed from equation (7) with \(\Omega_m = 0.25 \) and \(\gamma = 0.55 \). To compare the scatter in our measurements with variations of the growth rate for different cosmologies we also show predictions for \(\gamma = 0.35 \) and 0.75. We find that our errors in the measurements are larger than the expected variations in the growth rate due to cosmology. It would be worthwhile to conduct a similar comparison using larger mass bins and combining measurements from different scales and configurations of \(Q \), to decrease the error, but the goal here is just to demonstrate the possibility of such measurements.

Figure 14. Impact of sampling variance on the linear growth factor, measured with \(Q(24, 48, 0 < \alpha < 60) \) and normalised at \(z_0 = 1.25 \). The angular range excludes widely opened triangles which are expected to be more strongly affected by sampling variance. The top panel shows \(D(z) \) estimated from separate measurements of bias at each redshift, by comparing \(Q \) in haloes with the corresponding dark matter measurements in the same redshift bin. The central panel shows the same measurements when we use instead the dark matter measurements from \(z_0 \) for all redshifts. In this case sampling variance between halo and dark matter fluctuations does not cancel out, as it does in the top panel. Results in the bottom panel are based on ratio measurements of bias at two redshifts, by comparing \(Q \) at different redshifts (no dark matter is used). Quantifying the scatter we show the standard deviation \(\sigma = \sqrt{\langle (D - \langle D \rangle)^2 \rangle} \), where \(\langle D \rangle \) is the predicted growth factor (shown as black dashed line) and \(\langle \ldots \rangle \) denotes the mean over all redshifts and mass samples.
are shown as thick dashed lines. By changing the values of \(\gamma \)

Growth rate

\[f = -\frac{d\ln D}{d\ln(1+z)} \]

measurements of \(D \) from all mass bin combinations (shown as grey areas in the left panels of Fig. 15) via equation \(\text{(10)} \). MICE predictions, derived from equation \(\text{(7)} \) with \(\Omega_m = 0.25 \) and \(\gamma = 0.55 \) are shown as thick dashed lines. By changing the values of \(\gamma \) to 0.35 and 0.75, we derive the predictions for different cosmologies, shown as dotted and dash-dotted lines, respectively. The large errors could be decreased by measuring the bias \(b_Q \) using a combination of different triangle configurations.

Figure 15. Growth rate \(f \), estimated from the median measurements of \(D \) from all mass bin combinations (shown as grey areas in the left panels of Fig. 15) via equation \(\text{(10)} \). MICE predictions, derived from equation \(\text{(7)} \) with \(\Omega_m = 0.25 \) and \(\gamma = 0.55 \) are shown as thick dashed lines. By changing the values of \(\gamma \) to 0.35 and 0.75, we derive the predictions for different cosmologies, shown as dotted and dash-dotted lines, respectively. The large errors could be decreased by measuring the bias \(b_Q \) using a combination of different triangle configurations.

5 SUMMARY & DISCUSSION

The amplitude of the transverse (or projected) two-point correlation of matter density fluctuations allows us to measure the growth factor \(D \), which can be used as a verification tool for cosmological models. Galaxies (in our study represented by haloes) are biased tracers of the full matter field as their two-point correlation at large scales is shifted by a constant bias factor \(b \) with respect to the matter two-point correlation. This bias factor is fully degenerate with \(D \). The reduced matter and galaxy third-order statistics are independent of \(D \), while the galaxy versions are sensitive to \(b \). Combining second- and third-order statistics could therefore enable us to break the growth-bias degeneracy, if the difference between the effective linear bias \(b_1 \) probed by both statistics is smaller than the errors required for the growth measurements.

In this paper we have tested these assumptions and how well we can recover the true growth of the new MICE-GC simulation (Fosalba et al. 2013; Crocce et al. 2013; Fosalba et al. 2013) with it. We also further validate the MICE-GC simulation by comparing the linear growth with the two-point matter correlation (Fig. 2 and 3) and the different third order statistics of the matter field to non-linear perturbation theory predictions (Fig. 5 and 8). In particular, previous analysis (Gaztañaga, Fosalba, & Croft 2002) found a mismatch between simulations and predictions for \(C_{12} \) (Bernardeau 1996), which we find here originated in neglecting one of the smoothing terms (i.e. \(\beta_R \) in Eq. 28). After taking this into account, the MICE-GC simulations agrees well with predictions for all redshifts (see Fig. 8). This, therefore, provides a validation of the approach adopted by Bel & Marinoni (2012) to measure the linear galaxy bias using only galaxy clustering.

The main goal of this paper is to compare bias (and the resulting growth) measurements from two different third-order statistics proposed in the literature. One uses the reduced three-point correlation \(Q \) while the other uses a combination of the skewness \(S_3 \) and two-point third-order correlator, \(C_{12} \), which is called \(\tau \equiv 3C_{12} - 2S_3 \). We estimated these quantities from density fields of matter in the MICE-GC simulation and those of haloes in different mass samples, expanding previous studies significantly to a wider range of masses (between \(5.8 \times 10^{12} \) and \(5 \times 10^{14} h^{-1} M_\odot \)) and redshifts (between 0 and 1.2) with linear bias values \(b_1 \) between 0.9 and 4.

Our results in Fig. 11 show that the linear bias from \(Q \), \(b_Q \), systematically over estimates the linear bias from the two-point correlation, \(b_2 \), by roughly 20 – 30% at all mass and redshift ranges, whereas the linear bias from \(\tau \), \(b_\tau \), seems to be an unbiased estimator at the price of decreased precision. Non-local contributions to galaxy bias, like tidal effects, are anisotropic and therefore could be more important for \(b_Q \) than for \(b_\tau \), as \(\tau \) is isotropic (i.e. it comes from higher-order one- and two-point correlations, while \(Q \) comes from three points). In Fig. 10 we illustrate the different impacts of the local bias model and the non-local model of Chan et al. (2012) with \(\tau_2 = 2(b_1 - 1.43)/7 \) on \(Q \) (dashed and solid lines respectively). The non-local model seems to approximate \(Q \) measurements from halo samples better but there are still some discrepancies that we will explore in a separate analysis. Besides non-local contributions to the bias model, further reasons for the difference between \(b_Q \) and \(b_\tau \) might be that non-linear terms in the bias function and the matter field have different impacts on \(Q \) and \(\tau \). In addition we found that estimations of the quadratic bias parameter \(c_2 \) from \(Q \) and \(\tau \) can also differ significantly from each other.

Understanding the differences between \(b_Q \), \(b_\tau \) and \(b_1 \) is crucial for constraining cosmological models with observed third-order halo statistics. We will therefore deepen our analysis in a second paper by studying bias from halo-matter-matter statistics, direct analysis of the halo versus matter fluctuations and predictions from the peak-background split model to disentangle between non-linear and non-local effects on the different estimators.

For measuring the growth factor \(D \) we have introduced a new method. This new method uses the bias ratio \(\hat{b}(z) = b(z)/b(z_0) \), derived directly from halo density fluctuations with reduced third-order statistics. Its main advantage with respect to the approach of measuring \(b(z) \) and \(b(z_0) \) separately is that it does not require the modelling of (third-order) dark matter statistics. Instead, it works with the hypothesis that

(i) the reduced dark matter three point statistics is independent of redshift \(z \)

(ii) the bias ratio \(\hat{b}(z) = b(z)/b(z_0) \) from two- and three-point statistics is equal.

The first assumption was tested in this study numerically, while the validity of the second follows directly from our bias comparison.

In general the comparison between \(D \) from perturbation theory with measurements from our new method and the
standard approach reveals a good agreement. In the case of Q we explain this result by a cancellation in the bias ratio \(b_Q \) of the multiplicative factor by which \(b_Q \) is shifted away from \(b_\xi \). The growth factor measured with \(\tau \) has larger errors than the results from Q as a consequence of the larger errors in the bias estimation.

Our analysis shows that the new way to measure the growth factor from bias ratios is competitive with the method based on two separate bias measurements. While having larger errors the new method has the advantage of requiring much weaker assumptions on dark matter correlations than the standard method and therefore provides an almost model independent way to probe the growth factor of dark matter fluctuations in the universe.

We demonstrated that besides the growth factor, \(D \), the growth rate of matter, \(f \), can also be directly measured from the galaxy (or halo) density fields with bias ratios from third-order statistics. This provides an alternative method to derive the growth rate, which is usually obtained from velocity distortions probed by the anisotropy of the two-point correlation function.

Given that the two methods explored here use different information from higher-orders correlation (Q uses the shape, while \(\tau \) uses collapse configurations) one can reasonably guess that the two methods are not strongly correlated. So a possible strategy would be to use the Q method (more precise) to measure the (velocity) growth rate and, in parallel, to use the \(\tau \) method to extract the growth factor. This would help to break degeneracies between cosmological parameters in different gravitational frameworks.

Our analysis is performed in real space to have clean conditions for comparing different bias and growth estimates. This is a good approximation for the reduced higher-order correlations on the large scales considered in this study, as measurements in redshifts space always seem to be within one sigma error of the corresponding real space result (see Fig.16). Note how the small, but systematic, distortions in redshifts space seem to agree even better with the local bias model than in real space on the largest scales.

Applying the methods described above to obtain accurate bias and growth measurements from observations will require additional treatment of redshifts space distortions or projection effects. Two possible paths could be followed. In a three dimensional analysis redshifts space distortions need to be modeled (e.g. Gaztañaga & Scoccimarro 2003). The projected three-point correlation can also be studied separated by in redshift (Frieman & Gaztañaga 1998, Buchalter, Kamionkowski & Jaffe 2000, Zheng 2004). Both ways will result in larger errors, but we do not expect this to be a limitation because our error budget is totally dominated by the uncertainty in the bias. A more detailed study of this issue is beyond the scope of this paper and will be presented elsewhere. Mock observations like the galaxy MICE catalogues (see Crocce et al. 2013; Carretero et al in prep.) might help to verify the validity of such growth measurements under more realistic conditions.

ACKNOWLEDGEMENTS

Funding for this project was partially provided by the Spanish Ministerio de Ciencia e Innovación (MICINN), project AYA2009-13936, Consolider-Ingenio CSD2007- 00060, European Commission Marie Curie Initial Training Network CosmoComp (PITN-GA-2009-238356) and research project 2009- SGR-1398 from Generalitat de Catalunya. K.D.H. is supported by beca FI from Generalitat de Catalunya.

References

Angulo R. E., Baugh C. M., Lacey C. G., 2008, MNRAS, 387, 921
Baldauf T., Seljak U., Desjacques V., McDonald P., 2012, PhRvD, 86, 083540
Barriga J., Gaztañaga E., 2002, MNRAS, 333, 443
Bel J., Marinoni C., 2012, MNRAS, 424, 971
Bernardeau F., 1996, A&A, 312, 11
Bernardeau F., 1992, ApJ, 392, 1
Bernardeau F., Colombi S., Gaztañaga E., Scoccimarro R., 2002, PhR, 367, 1
Buchalter A., Kamionkowski M., Jaffe A. H., 2000, ApJ, 530, 36
Chan K. C., Scoccimarro R., Sheth R., 2012, Phys. Rev. D, 85, 083509
Crocce M., Castander F., Gaztañaga E., Fosalba P., Carretero, J., 2013, arXiv:1312.213
Davis M., Efstathiou G., White S. D. M., 1985, ApJ, 292, 371
Feldman H. A. et al., 2001, Phys. Rev. Lett, 86, 1434
Fosalba, P.; Crocce, M.; Gaztanaga, E.; Castander, F. J., 2013, arXiv:1312.1707
APPENDIX A: IMPACT OF COVARIANCE IN Q ON LINEAR BIAS ESTIMATION

The jackknife estimation of the covariance matrix for Q, C_{ij}, measured for different opening angles α_i, is a potential reason for the discrepancy between the linear bias from
two- and reduced three-point correlations (b_ξ and b_Q respectively). Studying how strong our bias estimation is affected by the covariance matrix we compare b_Q derived with the jackknife covariance matrix to results measured without taking covariance into account, i.e. by setting $C_{ij} = \delta_{ij}$.

We show the covariance matrixes of Q with (24,48) configurations in Fig. A1. For the low mass sample M0 C_{ij} has a similar shape as results of Gaztañaga & Scoccimarro (2005). The off-diagonal elements are close to unity, which corresponds to Q at intermediate opening angles (70-80 deg) having covariance with values at large and small angles. For the high mass sample M3 the covariance is dominated by noise.

Examples for how well the fits to equation (19) match the measured relation between of Q_g and Q_m are shown in Fig. A2. The fits are shown as coloured line, while their inverse slope corresponds to b_Q and the crossing point with the y-axis marks c_Q/b_Q. Especially for the low mass sample at redshift $z = 0.0$ bias measurements preformed without jackknife covariance seem to deliver better fits to the measurements. According to the covariance of Fig. A1 the fit allows deviations in the intermediate angle that are compensated with correlated deviations at large and small scales. This produces a change in the value of the fitted bias. Whether this change is correct or not depends on whether the covariance is correct or not.

For the higher mass samples and for both mass samples at redshift $z = 0.5$ results derived with and without covariance appear to be more similar. In these cases the off-diagonal regions of the covariance matrixes are less pronounced, especially for the high mass sample. In the same figure we compare these fits to results, expected for a linear bias model with $b_Q = b_\xi$ and $c_Q=0$. For the low mass sample M0 at $z = 0.5$ we find that the slopes from such a model match neither the measured $Q_g - Q_{dm}$ relations nor the fits to these measurements from equation (19). In all other cases differences between the slopes expected from the linear bias model and the measured $Q_g - Q_{dm}$ relations are less obvious.

A comparison between b_ξ and b_Q measured with and without covariance at different scales is given in Fig. A3. Bias measurements from Q performed without covariance tend to lie closer to the linear bias from the two-point correlation ξ, while the overall trend towards overestimation remains. The fact that b_Q measurements at large scales for low mass samples at $z = 0.0$, measured without covariance, lie very close to the corresponding b_ξ values suggests that, besides the jackknife estimation of the covariance, departures from the quadratic bias model for strongly biased halo samples with high mass at high redshift contribute in a non negligible way to the b_ξ and b_Q discrepancy. Furthermore non-local contribution to the bias model are expected to be strongest for such highly biased samples (Chan et al. 2012). We concluded that the discrepancy between b_Q and b_ξ cannot be only due to uncertainties in the covariance matrix estimation.
Figure A2. Q for dark matter and the high and low galaxy (or halo) mass samples M0 and M3 versus Q_{dm} at the corresponding opening angle. Dotted and dash-dotted lines are χ^2-fits to the Q_g-Q_{dm} relation expected from perturbation theory (equation (19)). The fits were performed with and without taking the jackknife covariance of Q_g between different opening angles into account (left and right panel respectively). Long-dashed and double dotted lines show expected results for a linear bias model, using the linear bias measurement from the two-point correlation, b_L. Bottom and top panels show results at redshift $z = 0.0$ and $z = 0.5$.
Figure A3. Relative deviation between linear bias parameters b_ξ and b_Q derived from two-point correlation and reduced three-point correlation respectively. b_Q was derived using triangles with $r_{13}/r_{12} = 2$ configurations, while the r_{12} values are shown on the x-axis. Left and right panels show, respectively, results obtained with and without taking the jackknife covariance of Q at different opening angles into account. Bottom and top panels show results at redshift $z = 0.0$ and $z = 0.5$.