Developmental toxicity and neurotoxicity assessment of R-, S-, and RS-propylene glycol enantiomers in zebrafish (Danio rerio) larvae

Chao Shen1 · Xijing Zhao1 · Chengyong He1 · Zhenghong Zuo1,2

Received: 2 June 2021 / Accepted: 11 November 2021 / Published online: 9 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Propylene glycol (PG) is widely used in the foods, pharmaceuticals, oil industry, animal feed, cosmetics and other industries. Because of the existence of a chiral carbon center, PG forms R (Rectus)- and S (Sinister)-enantiomers. Currently, the toxicity study of its R-, S-enantiomers is still very scarce. In this study, we have assessed the developmental toxicity and neurotoxicity of the R-, S-, and RS-PG enantiomers in zebrafish larvae. We found that exposure to R-, S-, and RS-PG enantiomers did not significantly affect the basic developmental endpoints of embryos or larvae (i.e., embryonic movement, hatching, mortality, malformation, heartbeat, body length), indicating that R-, S-, and RS-PG exposures did not exhibit the basic developmental toxicity in zebrafish larvae. The toxicity of three enantiomers was lower than that of ethanol, and there was no significant difference between them. However, R-, S-, and RS-PG exposures with high doses could significantly change the eye diameter and locomotor activity of larval zebrafish, indicating that R-, S-, and RS-PG enantiomers of high doses could potentially exhibit the neurotoxicity and ocular developmental toxicity in zebrafish larvae. Therefore, the potential neurotoxicity and ocular developmental toxicity of R-, S-, and RS-PG enantiomers for infants and toddlers should be considered.

Keywords Propylene glycol · Enantiomers · Danio rerio · Developmental toxicity · Neurotoxicity

Introduction
Propylene glycol (PG) is a colorless, tasteless, water-soluble liquid, which also known as 1,2-propanediol (Center for the Evaluation of Risks to Human Reproduction 2004). It belongs to the group of diols, which is a small aliphatic organic compound. Because of the existence of a chiral carbon center, PG forms R (Rectus)- and S (Sinister)-enantiomers (Ferreira et al. 2017). The S-enantiomer can be produced by microbes via the fermentation of L-rhamnose or L-fucose while the R-enantiomer can be produced from pentoses and hexoses via the methylglyoxal bypass (Ingvadottir et al. 2018). PG can dissolve hydrophobic substances; it is commonly present in poorly water-soluble intravenous medications and activated charcoal preparations (Greene and Krasowski 2020). Because of PG has very low toxicity and is currently considered as a non-carcinogenic or non-genotoxic compound, it is an important liquid for industrial and technological applications (Zaripov et al. 2020). As an important and safe intermediate, PG has been used in several industrial areas (Ferreira et al. 2017). It is widely used in foods, pharmaceuticals, oil industry, animal feed, cosmetics, and other industries (Zaripov et al. 2021). In 1999, 1083 million pounds of PG was produced in the USA with apparent consumption of 854 million pounds. About 170 million pounds of PG is consumed in human foods (Center for the Evaluation of Risks to Human Reproduction 2004). Thus, it is generally recognized as a safe food additive (Phillips et al. 2017). Besides, PG has numerous other applications in industry, including as a humectant, moisturizer, non-toxic antifreeze, and carrier in fragrance oils (Gaworski et al. 2010; Binks et al. 2013).

Several studies have examined the toxicity of RS-PG in the context of repeated exposure to these preparations. For instance, embryonic exposure to 0.625 or 1.25% RS-PG not only affects the behavioral parameters in zebrafish (Danio
terio) larvae, but cause persisting behavioral effects in adults (Massarsky et al. 2018). Besides, parenteral administration of RS-PG can cause certain behavioral effects in rodents, including locomotor suppression and anxiolytic effects (Lin et al. 1998; Silva & Elisabetsky, 2001; Harris et al. 2018). However, 0.45 and 2 g/kg RS-PG is intravenously administer for 28 days without exhibiting any discomfort or injury in rat (Pandey et al. 2017). Although the toxicity studies of RS-PG in different animal models have been very common, the toxicity study and safety evaluation of its R-, S-enantiomers are still very scarce.

Calcium/sodium ion conduction is an important process to maintain excitation–contraction coupling in neuron and muscle cells (Wu et al. 2013; Zhang et al. 2013; Shen et al. 2020b). Calcium/sodium ion conduction disorders can disturb the normal function of cells and cause the defects of organs or tissues (Ranasinghe et al. 2020). In the central nervous system (CNS) of vertebrates, γ-amino butyric acid (GABA) can couple with the GABA receptors (GABARs) to regulate the locomotor behavior of organisms (Shen et al. 2020). Dysregulated genes expression of GABA and its receptors can seriously affect the locomotor behavior in organisms (Stehr et al. 2006; Assad et al. 2020).

Zebrafish is one of the most widely used model species in previous studies (Ge et al. 2015). Zebrafish has been used not only to assess effects on aquatic biota but also to bridge the gap to other vertebrates (Ma et al. 2019). It has many suitable features, which makes it an ideal vertebrate model for toxicology research (Chen et al. 2020; Sun et al. 2020; Shen and Zuo 2020). Due to its unique advantages, such as small size, rapid external development, high fecundity, transparency, easy access, and maintenance, make it easy to carry out experiments (Wang et al. 2018, 2020a; Jia et al. 2020). In particular, its high homology with mammalian genes is favorable for assessing developmental toxicity and neurotoxicity of chemical substances (Jia et al. 2020; Shen et al. 2020). Besides, using zebrafish embryos to address scientific questions is more suitable to meet current legislation (Teng et al. 2019).

In the present study, zebrafish embryos and larvae were employed to assess the developmental toxicity and neurotoxicity of R-, S-, and RS-PG enantiomers. Basic developmental endpoints (i.e., embryonic movement, hatching, mortality, malformation, heartbeat, body length, and diameter of eyes), locomotor activity, and relative transcripts of calcium/sodium ion conduction and GABARs-involved genes were assessed in zebrafish embryos or larvae. These results will play a vital role for the formulation of safety guidelines regarding potential hazards of PG in the early warnings to human health.

Materials and methods

Chemicals

Racemic RS-PG was purchased from Sigma-Aldrich (St. Louis, MO, USA; > 99% purity). R-PG and S-PG were produced by a recombinant E. coli-1 and E. coli-2, respectively (S-Methods). The enantiomeric excess (ee) of isolated PG was determined by chiral chromatography on a 30 m × 0.25 mm × 0.25 μm Alpha DEX™ 120 column. The purity of isolated PG (R-PG and S-PG) was 98% while the enantiomeric excess was 99.9% (S-Fig. 1). Ethanol (CAS 64–17-5; > 99.7% purity) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All other chemicals with analytical grade were purchased from commercial sources.

Zebrafish maintenance and embryonic acute toxicity test

Zebrafish maintenance and embryos collection were performed according to our previous studies (Shen et al. 2020; Tang et al. 2020). The concentration of alcohol to be 1% and 5% has been used for the acute alcohol exposure to zebrafish in some previous studies (Chen et al. 2011; Tsang et al. 2018; Zindler et al. 2019). The positive control groups (1 and 5% ethanol, v/v) and test groups of R-, S-, and RS-PG (0.2, 1, and 5%, v/v, respectively) were prepared in zebrafish culture medium (1 L H2O dissolved 3.5 g NaCl and 0.05 g KCl, NaHCO3, and CaCl2, respectively). The control group contained zebrafish culture medium only. 40 embryos between 0.5 and 1.0 h post fertilization (hpf) were cultured in a 10-mL exposure solution (three replicates for each treatment) and renewed solutions once daily.

Embryonic movement, heartbeat, body length, and diameter of eyes assessment

Basic developmental endpoints (24 hpf embryonic movement, 72 hpf heartbeat, 72 hpf body length, and 72 hpf diameter of eyes) were assessed and indirectly analyzed using DanioScope 1.1 (Noldus IT, Wageningen, the Netherlands). The morphologically normal embryos and larvae were kept in the treatment plate, and were recorded videos or images. The embryonic movement (n ≥ 20 embryos for each treatment) and heartbeat (n ≥ 15 larvae for each treatment) were recorded videos in a 45 s and 30 s, respectively. The body length and diameter of eyes (n ≥ 18 larvae for each treatment) were measured from images.
Locomotor behavioral analysis

The detailed locomotor behavioral analysis was implemented according to our previous study (Shen et al. 2020). Briefly, the 5 days post fertilization (dpf) larvae treated with R-, S-, and RS-PG for 5 days were selected by simple random sampling and assigned gently into 24-well plates with one larva per well contained a 2-mL embryo medium (24 larvae for each treatment). Behavioral movements of larval zebrafish were video-recorded and analyzed using Ethovision XT 11.5 software (Noldus IT, Wageningen, the Netherlands).

Gene expression levels analysis

The total RNA of 5 dpf zebrafish larvae (n = 20 larvae/sample, six biological replicates for each treatment) was extracted using a TRIzol Reagent (TaKaRa, Dalian, China). cDNA synthesis and gene expression levels analysis were performed according to our previous references (Zhou et al. 2019; Shen et al. 2020). The primer information used for mRNA expression analysis is listed in S-Table 1.

Statistical analysis

The data were analyzed using the Duncan’s post hoc test after one-way analysis of variance (ANOVA) and performed using Graphpad Prism 7.0 software. All results were showed as the mean and standard error of the mean (SEM). *P < 0.05, **P < 0.01, ***P < 0.001.

Results

Effects of R−, S−, and RS-PG on the developmental endpoints in zebrafish

Survival rate.

Survival rate of zebrafish embryos or larvae after treatment with R−, S−, and RS-PG for 24, 48, 72, 96, and 120 h are shown in Table 1. Ethanol was employed as a positive control. Zebrafish embryos after treatment with 5% ethanol for 24 h and 5% R−, S−, and RS-PG for 72 h caused 100% mortality, which indicated that R−, S−, and RS-PG showed lower toxicity than ethanol. As shown in Table 1, zebrafish embryos treated with 5% S−, and RS-PG for 24 h compared with the blank control group decreased the survival rate to 75.08 ± 6.28% and 63.47 ± 4.68%, respectively. And zebrafish embryos treated with 5% R−, S−, and RS-PG for 48 h decreased the survival rate to 34.95 ± 3.22%, 48.26 ± 8.26%, and 13.01 ± 1.59%, respectively.

Embryonic movement.

The effects of R−, S−, and RS-PG exposure on embryonic movement are shown in Fig. 1a. A 5% R−, S−, and RS-PG exposure resulted in significant decreases on embryonic movement at 24 hpf. However, 1% ethanol exposure significantly increased embryonic movement compared with the blank control group.

Hatching.

The effects of R−, S−, and RS-PG exposure on hatching rate are shown in S-Fig. 2. Compared with the blank control group, the hatching rate was not affected at 60 and 72 hpf.

Heartbeat.

The effects of R−, S−, and RS-PG exposure on heartbeat are shown in Fig. 1b. The heartbeat was decreased in 1% ethanol, 1% R-PG, and 1% RS-PG treated groups. However,

Treated groups	24 hpf	48 hpf	72 hpf	96 hpf	120 hpf
Control	94.75 ± 2.82	92.73 ± 3.70	92.73 ± 3.70	92.73 ± 3.70	91.66 ± 4.18
1% ethanol	93.81 ± 3.12	92.70 ± 3.90	88.65 ± 2.66	84.81 ± 1.72	70.71 ± 0.71*
5% ethanol	0.00 ± 0.00***	0.00 ± 0.00***	0.00 ± 0.00***	0.00 ± 0.00***	0.00 ± 0.00***
0.2%-(R)-PG	89.20 ± 2.62	87.16 ± 2.43	87.16 ± 2.43	86.26 ± 2.71	
1%-(R)-PG	94.12 ± 2.94	94.12 ± 2.94	94.12 ± 2.94	94.12 ± 2.94	93.14 ± 2.59
5%-(R)-PG	91.61 ± 2.35	34.95 ± 3.22***	0.00 ± 0.00***	0.00 ± 0.00***	0.00 ± 0.00***
0.2%-(S)-PG	95.20 ± 2.49	94.28 ± 3.21	94.28 ± 3.21	93.35 ± 4.02	
1%-(S)-PG	95.34 ± 1.84	95.34 ± 1.84	92.51 ± 3.33	92.51 ± 3.33	88.86 ± 4.20
5%-(S)-PG	75.08 ± 6.28*	48.26 ± 8.26**	0.00 ± 0.00***	0.00 ± 0.00***	0.00 ± 0.00***
0.2%-(RS)-PG	97.32 ± 1.56	95.52 ± 0.93	92.82 ± 2.41	91.92 ± 2.73	87.44 ± 3.65
1%-(RS)-PG	93.62 ± 2.36	89.09 ± 5.59	78.03 ± 2.53*	76.20 ± 3.07*	66.04 ± 2.52**
5%-(RS)-PG	63.47 ± 4.68***	13.01 ± 1.59***	0.00 ± 0.00***	0.00 ± 0.00***	0.00 ± 0.00***

hpf, hours post fertilization. *P < 0.05, **P < 0.01, ***P < 0.001
The effects of R-, S-, and RS-PG exposure on body length are shown in Fig. 3a. A significant decrease of body length was observed in 1% ethanol-treated group. However, a significant increase was observed in 0.2% S-PG-treated group.

Diameter of eyes.

The effects of R-, S-, and RS-PG exposure on diameter of eyes X- and Y-axis are shown in Fig. 3b and 3c. Embryonic exposure to R-, S-, and RS-PG for 72 h could significantly increase the diameter of eyes X-axis of zebrafish larvae. A significant decrease of the diameter of eyes Y-axis was observed in 1% ethanol and 1% RS-PG-treated groups. However, a significant increase of the diameter of eyes Y-axis was observed in 0.2% R-PG-treated group.

Behavioral effects

Locomotor activity was implemented in 120 hpf larvae (Fig. 4). Our results showed that zebrafish larvae exposed with R-, S-, and RS-PG for 120 h displayed incremental total moved distance (Fig. 4a) and average movement speed (velocity) (Fig. 4b). However, exposure to 1% ethanol did not affect the total moved distance and velocity of larvae. The behavioral trajectory (Fig. 4c) of larvae was more chaotic in 1% ethanol, 1% R-, S-, and RS-PG-treated groups compared with the blank control group.

Gene expression analysis

The relative transcripts of genes on calcium/sodium ion conduction.

Calcium/sodium ion conduction related genes play a vital role in excitation–contraction coupling in skeletal muscle and neuron cells (Shen et al. 2020). To further understand the effects of R-, S-, and RS-PG on locomotor activity in larvae, the expression levels of genes involved with calcium/sodium ion conduction were analyzed (Fig. 5a). The relative transcripts of three genes (cacna1aa, ryr3, and slc8a3) exhibited significant dysregulation compared with the blank control. The expression level of cacna1aa was significantly upregulated in 0.2% and 1% RS-PG-treated groups. The expression level of ryr3 was significantly upregulated in 0.2% RS-PG, 1% R-, S-, and RS-PG-treated groups. However, the expression level of slc8a3 was significantly down-regulated in 0.2% R- and S-PG and 1% R-PG-treated groups.

The relative transcripts of genes on GABA receptors.

Glutamate decarboxylase (gad1) is vitally involved in GABA synthesis (Soghomonian & Martin, 1998). The expression level of gad1 was not changed after treatment with ethanol or R-, S-, and RS-PG (S-Fig. 3). In the CNS of vertebrates, GABARs play an important part in regulating the vast majority of rapid inhibitory synaptic transmission (Shen et al. 2020b). The relative transcripts of 16 genes involved in GABARs exhibited significant
dysregulation compared with the blank control (Fig. 5b-e). The relative transcripts of seven genes (gabra1, gabra2a, gabbr1b, gabbr2, gabrb4, and gabrg1) were significantly upregulated in 0.2% RS-PG, 1% R-, S-, and RS-PG-treated groups. The relative transcripts of seven genes (gabra2b, gabra3, gabra4, gabrb1, gabrb2, and gabrg3) were significantly upregulated in 0.2% and 1% RS-PG-treated groups. In addition, the relative transcripts of nine genes (gabra1, gabra2a, gabra3, gabrb1b, gabrb2, gabrb4, gabrg1, and gabrg3) were significantly upregulated in 0.2% R-PG-treated group. The expression levels of gabrb1a and gabrg2 genes were significantly upregulated in 0.2% RS-PG-treated group. The relative transcripts of seven genes (gabra1, gabra3, gabrb1, gabrb2, gabrb3, and gabrb4) were significantly upregulated in 1% ethanol-treated group. However, the expression levels of gabra3 and gabrb1 genes were significantly down-regulated in 0.2% S-PG-treated group.

Discussion

The behavior of an organism is directly associated with feeding, mating, and survival (Wu et al. 2020). Locomotor behaviors have frequently been employed to study the neurodevelopmental effects of various chemicals (Ding et al. 2020). Usually, animals exposed to hazardous chemicals can change their behavior and these changes may affect their survival, growth, and reproduction (Wang et al. 2018). Previous study has been reported that embryonic exposure to PG can result in behavioral changes in zebrafish larvae (Massarsky et al. 2018). In the present...
study, we found that embryonic exposure to R-, S-, and RS-PG of high doses could significantly induce the locomotor hyperactivity of zebrafish larvae, demonstrating that R-, S-, and RS-PG of high doses could cause the neurodevelopmental effect in zebrafish larvae. The neurobehavioral abnormalities as a major pathophysiological hallmark are mainly caused by the hypoglutamatergic and hyperGABAergic alterations (Probst et al. 2020). As one of the main inhibitory neurotransmitters in vertebrate brain, GABA plays a critical role for regulating the circuitry underlying locomotor behavior (Yan et al. 2017). GABA displays rapid inhibitory action through the GABARs (Shen et al. 2020). We found that the relative transcripts of several genes (gabra1, gabra2a, gabra1b, gabbr2, gabbr3, gabbr4, and gabrg1) involved in GABARs exhibited significant upregulation in R-, S-, and RS-PG-treated larvae. Increased gene expression levels of GABARs could regulate the vast majority of rapid inhibitory synaptic transmission in the CNS (Shen et al. 2020).

Ryanodine receptors (RyRs) are calcium-dependent calcium release channels embedded in the sarcoplasmic/endoplasmic reticulum (SR/ER), which regulate calcium-dependent signal transduction in neurons or skeletal muscles (Frank et al. 2018; Tanaka et al. 2018). RyRs subunits contain a calcium-binding site that mediates calcium release and triggers intracellular calcium-induced calcium release, which is vital for muscle contraction (Ouyang et al. 2019; Wang et al. 2020b). RyRs have been characterized in many vertebrates including fish, birds, and amphibians (Darbandi & Franck, 2009; Murayama & Kurebayashi, 2011; Wang et al. 2020b). The ryr3 gene is mainly expressed in brain tissue, and low level in mammalian skeletal muscle (Darbandi & Franck, 2009). Calcium voltage-gated channel subunit alpha1A (cacna1a) is mainly expressed in neuronal tissue.
that plays a crucial part in excitation–contraction coupling via interaction with ryr3 (Shen et al. 2020). In the previous study, Shen et al. (2020) has reported that increased ryr3 and cacna1aa expression could significantly stimulate the neuron-mediated contraction. Currently, we found that the relative transcripts of ryr3 and cacna1aa genes were significantly upregulated in R-, S-, and RS-PG-treated larvae, indicating that the intracellular calcium release was significantly increase, and neuron-mediated contraction might be stimulative. Solute carrier family 8 member A3 (slc8a3) is mainly expressed in brain and muscle tissue, which contribute to cellular Ca$^{2+}$ homeostasis in excitable cells (Shen et al. 2020b). We found that the relative transcript of slc8a3 was significantly downregulated in R-, S-, and RS-PG-treated larvae, demonstrating that exposure to R-, S-, and RS-PG of high doses could disrupt the cellular Ca$^{2+}$ homeostasis of neuron and muscles.

Observed teratogenic effects such as small eyes and eye diameter, high ocular distance, and large inter-eye distance are characteristic of eye defects (Cadena et al. 2020). These eye defects such as microphthalmia, coloboma, anophthalmia, retinal dystrophies, and congenital cataract can occur in the prenatal and perinatal periods (Kim et al. 2019). Previous studies show that zebrafish exposed to ethanol can cause severe eye defects including microphthalmia and abnormal photoreceptor differentiation (Muralidharan et al. 2015, 2018). The microphthalmia is a small eye normally defined by corneal diameter or axial length (Huang et al. 2013). Many behaviors are correlative with visual function in vertebrates (Shi et al. 2019). Decreased eye diameter can affect the visual function and lead to a reduced ability to capture prey (Qian et al. 2021). In the present study, we found that embryonic exposure to R-, S-, and RS-PG of high doses could significantly affect the eye diameter of zebrafish.

Fig. 4 Locomotor activity of zebrafish larvae exposed to R-, S-, and RS-PG at 5 dpf. a Total moved distance, b mean velocity, c behavioral trajectory. Data presented as mean ± SE (n = 24 per treatment). **P < 0.01, ***P < 0.001
larvae, indicating that R-, S-, and RS-PG could impair the visual function of larvae. Besides, RyRs signaling pathway has been directly linked to visual functionality (Ma et al. 2015; Frank et al. 2019). We found that the relative transcript of ryr3 was significantly upregulated in R-, S-, and RS-PG-treated larvae, demonstrating that exposure to R-, S-, and RS-PG of high doses have the potential to affect visual sensory system.

From birth to 3 years old is a crucial window for the promotion of optical growth, health, and development (Ojuri et al. 2018). Especially in infants below 16 weeks of age, the enzymes involved in the metabolism of exogenous substances are not as efficient as in adults (Nougadère et al. 2020). The development processes of this period are also more likely disturbed (Nougadère et al. 2020). Infants and toddlers have differing diet patterns than adults, consequently, different intake scenario are required in risk assessment (Stroheker et al. 2019). The variety of foods is ceaselessly growing and changing for infants and toddlers, which can result in specific dietary exposure (Chekri et al. 2019). Processed cereal-based foods and other infant foods should be free from chemical and biological hazards (Ojuri et al. 2018). Currently, PG is generally recognized as a safe food additive, which is oversupplied in Chinese market (Phillips et al. 2017; Tao et al. 2020; Zhao et al. 2020). PG has very low toxicity and is considered to be a non-toxic or non-carcinogenic compound for adults (Zaripov et al. 2020). However, newborns and infants are especially susceptible to the effects of PG (Massarsky et al. 2018).

In the present study, our results showed that R-, S-, and RS-PG enantiomers of high doses can exhibit the neurotoxicity and ocular developmental toxicity in zebrafish larvae, indicating that R-, S-, and RS-PG exposures of high doses have potential neurotoxicity and ocular developmental toxicity for infants and toddlers.

![Fig. 5](image-url) R-, S-, and RS-PG exposure induced the mRNA expression of genes involved in calcium/sodium ion conduction and GABA receptors at 5 dpf larvae (n=6 per treatment). a The expression of genes involved in calcium/sodium ion conduction. b The expression of genes involved in type A GABA receptor subunit alpha. c The expression of genes involved in type B GABA receptor. d The expression of genes involved in type A GABA receptor subunit beta. e The expression of genes involved in type A GABA receptor subunit gamma.
In the present study, we demonstrate that exposure to R-, S-, and RS-PG enantiomers of high doses could significantly change the eye diameter and locomotor activity of larval zebrafish. Besides, the expression levels of 16 genes involved in γ-amino butyric acid receptors (GABARs) and three genes associated with calcium/sodium ion conduction exhibited significant dysregulation, indicating that R-, S-, and RS-PG enantiomers of high doses can affect the CNS and visual sensory system. However, the toxicity of three enantiomers was lower than that of ethanol, and there was no significant difference between them. Taken together, our results indicate that R-, S-, and RS-PG enantiomers of high doses can exhibit the neurotoxicity and ocular developmental toxicity in zebrafish larvae. Therefore, we suggest that potential neurotoxicity and ocular developmental toxicity of R-, S-, and RS-PG enantiomers for infants and toddlers should be considered.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-17538-8.

Author contribution Chao Shen: conceptualization, methodology, investigation, writing — original draft preparation, writing — reviewing and editing; Xijing Zhao: methodology, investigation; Chengyong He: supervision, validation, writing — reviewing and editing; Zhonghong Zuo: funding acquisition, project administration, resources, visualization, writing — reviewing and editing.

Funding This work was supported by the collaborative project propylene glycol enantiomers toxicity assays (XDHT2020543A) from the OAMIC BIOTECH CO., LTD. (Lonemen Road, Haicang Xinyang Industrial Zone, Xiamen, China).

Data availability The obtained and analyzed data of this study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

Ethics approval All experiments using zebrafish were performed according to the animal protocol approved by the guides of Animal Ethics Committee of Xiamen University.

References

Assad N, Luz WL, Santos-Silva M, Carvalho T, Moraes S, Piccano-Diniz DLW, Bahia CP, de Batista EJO, da Passos AC, Oliveira KRHM, Herculano AM (2020) Acute restraint stress evokes anxiety-like behavior mediated by telencephalic inactivation and GabAergic dysfunction in zebrafish brains. Scientific Reports 10:5551

Binks BP, Fletcher PDI, Thompson MA (2013) Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions. Langmuir 29:5723–5733

Cadena PG, Cadena MRS, Sarmah S, Marrs JA (2020) Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reprod Toxicol 96:249–257

Center for the Evaluation of Risks to Human Reproduction (2004) NTP-CERHR Expert Panel report on the reproductive and developmental toxicity of propylene glycol. Reprod Toxicol 18:533–579

Chekri R, Calvez EL, Zinck J, Leblanc JC, Sirot V, Hulin M, Noël L, Guérin T (2019) Trace element contents in foods from the first French total diet study on infants and toddlers. J Food Compos Anal 78:108–120

Chen TH, Wang YH, Wu YH (2011) Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: Implications for behavioral toxicity bioassays. Aquat Toxicol 102:162–166

Chen XG, Teng MM, Zhang J, Qian L, Duan MM, Cheng Y, Zhao F, Zheng JY, Wang CJ (2020) Tropomyosin induces developmental toxicity in zebrafish embryo (Danio rerio) by disrupting the thyroid system and metabolism. Sci Total Environ 746:141860

Darbandi S, Franck JPC (2009) A comparative study of ryanodine receptor (Ryanodine) gene expression levels in a basal ray-finned fish, bichir (Polypterus ornatus) and the derived euteleost zebrafish (Danio rerio). Comp Biochem Physiol b: Biochem Mol Biol 154(4):443–448

Ding XS, Sun W, Dai LL, Liu CS, Sun Q, Wang JH, Zhang PW, Li K, Yu LQ (2020) Parental exposure to environmental concentrations of tris(1,3-dichloro-2-propyl)phosphate induces abnormal DNA methylation and behavioral changes in F1 zebrafish larvae. Environ Pollut 267:115305

Ferreira ESC, Voroshylova IV, Koverga VA, Pereira CM, Cordeiro MNDS (2017) New force field model for propylene glycol: insight to local structure and dynamics. The Journal of Physical Chemistry Part B 121:10906–10921

Frank DF, Brander SM, Hasenbein SJ, Harvey DJ, Lein PJ, Geist J, Connon RE (2019) Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). Aquat Toxicol 206:1–13

Frank DF, Miller GW, Harvey DJ, Brander SM, Geist J, Connon RE, Lein PJ (2018) Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat Toxicol 200:50–61

Gaworski CL, Oldham MJ, Coggins CRE (2010) Toxicological considerations on the use of propylene glycol as a humectant in cigarettes. Toxicology 269:54–66

Ge WL, Yan SH, Wang JH, Zhu LS, Chen AM, Wang J (2015) Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J Agric Food Chem 63:1856–1862

Greene HR, Krasowski MD (2020) Correlation of osmolal gap with measured concentrations of acetone, ethylene glycol, isopropanol, methanol, and propylene glycol in patients at an academic medical center. Toxicol Rep 7:81–88

Harris AC, Muelken P, Haave Z, Swain Y, Smethells JR, LeSage MG (2018) Propylene glycol, a major electronic cigarette constituent, attenuates the adverse effects of high-dose nicotine as measured by intracranial self-stimulation in rats. Drug Alcohol Depend 193:162–168

Huang LX, Wang CG, Zhang YY, Wu MF, Zuo ZH (2013) Phenylthiourea causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. J Hazard Mater 261:172–180

Ingavadottir EM, Scully SM, Orlygsson J (2018) Production of (S)-1,2-propanediol from L-rhamnose using the moderately thermophilic Clostridium strain AK1. Anaerobe 54:26–30
Jia M, Teng MM, Tian SN, Yan J, Meng ZY, Yan S, Li RS, Zhou ZQ, Zhu WT (2020) Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio). Environ Pollut 267:115450
Kim J, Kim C, Oh H, Ryu B, Kim U, Lee JM, Jung CR, Park JH (2019) Trimethyltin chloride induces reactive oxygen species-mediated apoptosis in retinal cells during zebrafish eye development. Sci Total Environ 653:36–44
Lin HQ, Burden PM, Johnston GAR (1998) Propylene glycol elicits anxiolytic-like responses to the elevated plus-maze in male mice. J Pharm Pharmacol 50(10):1127–1131
Ma S, Venkatesh A, Langellotto F, Le YZ, Hall MN, Rüegg MA, Punzo C (2015) Loss of mTOR signaling affects cone function, core structure and expression of cone specific proteins without affecting cone survival. Exp Eye Res 135:1–13
Ma X, Li HZ, Xiong JJ, Mehler WT, You J (2019) Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos. J Agric Food Chem 67:2429–2436
Massarsky A, Abdel A, Glazer L, Levin ED, Di Giulio RT (2018) Neurobehavioral effects of 1,2-propanediol in zebrafish (Danio rerio). Neurotoxicology 65:111–124
Muralidharan P, Sarmah S, MArrs JA (2015) Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 49:149–163
Muralidharan P, Sarmah S, MArrs JA (2018) Retinal Wnt signaling defect in a zebrafish lethal alcohol spectrum disorder model. PLoS One 13:e0201659
Murayama T, Kurebayashi N (2011) Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. Prog Biophys Mol Biol 105(3):134–144
Nougadère A, Sirot V, Cravedi JP, Vasseur P, Feidi C, Fussell RJ, Hu RW, Leblanc JC, Jean J, Rivièere G, Sarda X, Merlo M, Hulin M (2020) Dietary exposure to pesticide residues and associated health risks in infants and young children: results of the French infant total diet study. Environ Int 137:105529
Ojuri OT, Ezekiel CN, Sulyok M, Ezeokoli OT, Oyedele OA, Ayeni KI, Eskola MK, Šarkanj B, Hajšlová J, Adeleke RA, Nwangburuka CC, Elliott CT, Krska R (2018) Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem Toxicol 121:37–50
Ouyang L, Zhang W, Du GH, Liu HZ, Xie J, Gu JW, Zhang SY, Zhou JZ, Wang CJ (2019) Effect of propiconazole on the lipid metabolism of zebrafish embryos (Danio rerio), and the mechanisms involved. Chemosphere 256:127106
Pandey SK, Goyal VK, Nalge P, Are P, Vincent S, Nirogi R (2017) Assessment of toxicity and tolerability of a combination vehicle: 5% Pharmasolve, 45% Propylene glycol and 50% Polyethylene glycol 400 in rats following repeated intravenous administration. Regul Toxicol Pharmacol 91:103–108
Phillips B, Titz B, Kogel U, Sharma D, Leroy P, Xiang Y, Vuillaume G, Pandey SK, Goyal VK, Nalge P, Are P, Vincent S, Nirogi R (2017) Assessment of toxicity and tolerability of a combination vehicle: 5% Pharmasolve, 45% Propylene glycol and 50% Polyethylene glycol 400 in rats following repeated intravenous administration. Regul Toxicol Pharmacol 91:103–108
Probst J, Kölker S, Okun JG, Kumar A, Gursky E, Posset R, Hoffmann FP, Geravali R, Zielonka M (2020) Chronic hyperammonemia causes a hypoglutamatergic and hyperGABAergic metabolic state associated with neurobehavioral abnormalities in zebrafish larvae. Exp Neurol 331:113330
Qian L, Qi SZ, Wang Z, Magnuson JT, Volz DC, Schlenk D, Jiang JZ, Wang CJ (2021) Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. J Hazard Mater 404:124083
Ranasinghe P, Thorn RJ, Seto R, Creton R, Bridges WC, Chapman SC, Lee CM (2020) Embryonic exposure to 2,2′,3,5,6-penta-chlorobiphenyl (PCB-95) causes developmental malformations in zebrafish. Environ Toxicol Chem 39(1):162–170
Shen C, Zuo ZH (2020) Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. Environ Sci Pollut Res 27:43599–43614
Shen C, Zhou YX, Tang C, He CY, Zuo ZH (2020) Developmental exposure to mepanipyrim induces locomotor hyperactivity in zebrafish (Danio rerio) larvae. Chemosphere 256:127106
Shi QP, Wang ZY, Chen LG, Fu JJ, Han J, Hu B, Zhou BS (2019) Optical toxicity of triphenyl phosphate in zebrafish larvae. Aquat Toxicol 210:139–147
Silva AL, Elisabetsky E (2001) Interference of propylene glycol with the hole-board test. Braz J Med Biol Res 34:545–547
Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505
Stehr CM, Linbo TL, Incardona JP, Scholz NL (2006) The developmental neurotoxicity of ipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci 92(1):270–278
Stroheker T, Chung YJ, Scholz G, Mazzarotta P (2019) A global approach for prioritizing chemical contaminants in raw materials of food for infants and young children. Food Control 105:71–77
Sun YQ, Cao Y, Tong LL, Tao FY, Wang XN, Wu HM, Wang MC (2020) Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. Chemosphere 251:126418
Tanaka Y, Fujisawa M, Shinoda A, Yin GJ, Kitazawa T, Teraoka H (2018) Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. Chemosphere 193:1207–1215
Tang C, Shen C, Zhu KY, Zhou YX, Chuang YJ, He CY, Zuo ZH (2020) Exposure to the AhR agonist cyprednol impacts the cardiac development and function of zebrafish larvae. Ecotoxicol Environ Saf 201:110808
Tao W, Wang AL, Yin HB (2020) Interaction between Pa and Cu nanoparticles in bimetallic CuPd1 nanoparticles and its impact on oxidation of 1,2-propanediol to aliphatic acids. Chin J Chem Eng 28(4):1085–1094
Teng MM, Zhao F, Zhou YM, Yan S, Tian SN, Yan J, Meng ZY, Bi S, Wang CJ (2019) Effect of propiconazole on the lipid metabolism of zebrafish embryos (Danio rerio). J Agric Food Chem 67:4623–4631
Tsang B, Ansari R, Azhar A, Gerlai R (2018) Drinking in the morning versus evening: time-dependent differential effects of acute alcohol administration on the behavior of zebrafish. Pharmacol Biochem Behav 175:174–185
Wang M, Chen XP, Zhang R, Zhao JF, Yang CM, Wu LL (2020) Developmental toxicity and transcriptome analysis of 4-epiandrosterone to zebrafish (Danio rerio) embryos. SciTotal Environ 734:139227
Wang XL, Cao XW, Jiang D, Yang YH, Wu YD (2020) CRISPR/Cas9 mediated ryanodine receptor I4790M knockin confers unequal resistance to diamides in Plutella xylostella. Insect Biochem Mol Biol 125:103453
Wang YC, Shen C, Wang CG, Zhou YX, Gao DX, Zuo ZH (2018) Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved. Chemosphere 191:7–16
Wu M, Qiu XC, Chen C, Chen K, Li M, Xu H, Wu XY, Shimasaki Y, Oshima Y (2020) Short-term and persistent impacts of sublethal...
exposure to diazepam on behavioral traits and brain GABA levels in juvenile zebrafish (Danio rerio). Sci Total Environ 740:140392
Wu MF, Zuo ZH, Li BW, Huang LX, Chen M, Wang CG (2013) Effects of low-level hexabromocyclododecane (HBCD) exposure on cardiac development in zebrafish embryos. Ecotoxicology 22:1200–1207
Yan W, Li L, Li GY, Zhao SJ (2017) Microcystin-LR induces changes in the GABA neurotransmitter system of zebrafish. Aquat Toxicol 188:170–176
Zaripov ZI, Aetov AU, Nakipov RR, Khairutdinov VF, Gumerov FM, Abdulagatov IM (2020) Isobaric heat capacity of 1,2-propanediol at high temperatures and high pressures. J Mol Liq 307:112935
Zaripov ZI, Aetov AU, Nakipov RR, Khairutdinov VF, Gumerov FM, Abdulagatov IM (2021) Isobaric heat capacity of the binary liquid (water + 1,2-propanediol) mixtures at high-temperatures and high-pressures. J Chem Thermodyn 152:106270
Zhang YY, Huang LX, Zuo ZH, Chen YX, Wang CG (2013) Phenanthrene exposure causes cardiac arrhythmia in embryonic zebrafish via perturbing calcium handling. Aquat Toxicol 142–143:26–32
Zhao HY, Zheng LP, Li XW, Chen P, Hou ZY (2020) Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: a short review. Catal Today 355:84–95
Zhou YX, Shen C, Du H, Bao YY, He CY, Wang CG, Zuo ZH (2019) Bioassay system for the detection of aryl hydrocarbon receptor agonists in waterborne pesticides using zebrafish cyp1a1 promoter-luciferase recombinant hepatic cells. Chemosphere 220:61–68
Zindler F, Beedgen F, Braunbeck T (2019) Time-course of coiling activity in zebrafish (Danio rerio) embryos exposed to ethanol as an endpoint for developmental neurotoxicity (DNT)-Hidden potential and underestimated challenges. Chemosphere 235:12–20

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.