Abstract. A 1963 theorem of P. Csáki and J. Fischer deals with the “maximal correlation coefficient” in the context of independent pairs of σ-fields on a probability space. Here a somewhat restricted “cousin” of their result is presented for the same context, but involving in part an analogous measure of dependence based only on correlations of indicator functions. It was first proved by the author in an unpublished 1978 Ph.D. thesis. An example is constructed to show a limitation of this “cousin”. Also, this “cousin” is used to trivially embellish a very sharp 2013 example of R. Peyre in connection with the comparison of these two measures of dependence.
1. Introduction

Since the papers of Rosenblatt [22] and Ibragimov [16] and other related works, there has been an extensive development of limit theory under “strong mixing conditions”. (For more on such conditions, see e.g. [6].) That has motivated a study of “structural” properties of, and connections between, the strong mixing conditions themselves. That in turn has motivated a study of the properties of, and the connections between, the various “measures of dependence” that form the basis for such strong mixing conditions. The “maximal correlation coefficient”, the measure of dependence which is the basis for the “ρ-mixing condition”, has been of particular interest. Of special interest is a theorem of Csáki and Fischer [13] involving the maximal correlation coefficient in the context of independent pairs of σ-fields. Here a somewhat restricted “cousin” of their result is presented for the same context, but involving in part an analogous measure of dependence based only on correlations of indicator functions. An example is constructed to show a limitation of this “cousin”. Also, this “cousin” is used to trivially embellish a very sharp example of Peyre [20] in connection with the comparison of these two measures of dependence.

Suppose (Ω, \mathcal{F}, P) is a probability space. The indicator function of a given event A will be denoted by either I_A or $I(A)$. The term “σ-field” will always refer to a σ-field (always $\subset \mathcal{F}$) on Ω. For any two σ-fields A and $B \subset \mathcal{F}$, define the following four measures of dependence: First,

$$\psi(A, B) = \sup_{A \in A, B \in B} \frac{|P(A \cap B) - P(A)P(B)|}{P(A)P(B)}.$$ \hfill (1.1)

Next,

$$\lambda(A, B) := \sup_{A \in A, B \in B} \frac{|P(A \cap B) - P(A)P(B)|}{[P(A)P(B)]^{1/2}}.$$ \hfill (1.2)

Next,

$$\tau(A, B) := \sup_{A \in A, B \in B} |\text{Corr}(I_A, I_B)|$$

$$= \sup_{A \in A, B \in B} \frac{|P(A \cap B) - P(A)P(B)|}{[P(A) \cdot (1 - P(A)) \cdot P(B) \cdot (1 - P(B))]^{1/2}}.$$ \hfill (1.3)

Finally,

$$\rho(A, B) := \sup |\text{Corr}(X, Y)|$$ \hfill (1.4)

where the supremum in (1.4) is taken over all pairs of square-integrable random variables X and Y such that X is A-measurable and Y is B-measurable. In (1.1), (1.2), and (1.3), the fraction $0/0$ is interpreted as 0. In (1.3), the second equality is a standard elementary calculation. In (1.3) and (1.4), “Corr” denotes the correlation.

The quantity $\psi(A, B)$ was implicitly present in work of Doeblin [14] involving a “continued fraction process”; for some details, see e.g. Iosifescu [17]. Later on, more explicitly,
that quantity \(\psi(A, B) \) was, for general stochastic processes, the basis for the \(*\)-mixing condition in Blum, Hanson, and Koopmans [1] and for the \(\psi\)-mixing condition in Philipp [21] and other papers.

The quantity \(\rho(A, B) \) in (1.4) is the well known “maximal correlation” coefficient, first studied by Hirschfeld [15]. It was, for stochastic processes, the basis for the \(\rho\)-mixing condition, introduced by Kolmogorov and Rozanov [18].

The measures of dependence \(\lambda(A, B) \) and \(\tau(A, B) \), formulated exactly as in (1.2) and (1.3), were examined in [3], [9], and [12] with a view toward allowing arguments involving the maximal correlation coefficient \(\rho(A, B) \) to be simplified by the converting of such arguments from pairs of (square-integrable) random variables to pairs of events. With that in mind, let us look at the comparison of these three measures of dependence. First, the following inequalities hold:

\[
\lambda(A, B) \leq \tau(A, B) \leq \rho(A, B) \leq 1 \quad \text{and also} \quad \rho(A, B) \leq \psi(A, B). \tag{1.5}
\]

The first three are trivial; and the last one is well known and elementary (see e.g. [6, v1, Proposition 3.11(b)]). By a simple calculation, for any two events \(A \) and \(B \), the quantity \(|P(A \cap B) - P(A)P(B)| \) remains unchanged if either \(A \) or \(B \) is replaced by its complement. Consequently, the definition in (1.2) (as well as those in (1.1) and (1.3)) does not change if one restricts to pairs of events \(A \in A \) and \(B \in B \) such that \(P(A) \leq 1/2 \) and \(P(B) \leq 1/2 \). As a simple consequence, one also has the following inequality:

\[
\tau(A, B) \leq 2 \cdot \lambda(A, B). \tag{1.6}
\]

The author [3] proved the crude inequality \(\rho(A, B) \leq 13 \cdot [\tau(A, B)]^{1/31} \). Together with (1.6) and the first two inequalities in (1.5), that showed that the three measures of dependence \(\lambda(\ldots, \ldots) \), \(\tau(\ldots, \ldots) \), and \(\rho(\ldots, \ldots) \) are “equivalent”, in that they all become arbitrarily small as any one of them becomes sufficiently small. Later, the author and Bryc [9, Theorem 1.1(ii)], and independently Bulinskii [12, the Theorem], showed that there exists a universal positive constant \(C \) such that the inequality

\[
\rho(A, B) \leq C \cdot \lambda(A, B) \cdot [1 - \log \lambda(A, B)] \tag{1.7}
\]

always holds. For a quite gentle proof of that result, adapted partly from Bulinskii’s [12] very sharp improvement of the crude calculations in [3], see [6, v1, Theorem 4.15]. The author, Bryc, and Janson [10, Theorem 3.1] showed (as a special case of a more general result) that the inequality in (1.7) is within a constant factor of being sharp — i.e. that there exists a universal positive constant \(A \) such that the following holds: For any \(t \in [0, 1] \), there exist a probability space \((\Omega, \mathcal{F}, P) \) and \(\sigma\)-fields \(A \subset \mathcal{F} \) and \(B \subset \mathcal{F} \) such that \(\tau(A, B) \leq t \) and \(\rho(A, B) \geq A \cdot t \cdot (1 - \log t) \). For a more gentle proof of that particular result, see [6, v1, Theorem 4.16]. More recently, with a much more sophisticated argument, an “exact” (i.e. “best possible”) version of (1.7) (involving the measure of dependence \(\tau(\ldots, \ldots) \)) was proved by Peyre [20]; that result will be stated in Theorem 2 below.

(In connection with (1.7), note that by simple calculus, the expression \(t(1 - \log t) \) is strictly increasing as \(t \) increases in [0, 1]. Here and below, \(0 \log 0 := 0 \).)
Via inequalities such as (1.7), the measures of dependence $\lambda(.,.)$ and $\tau(.,.)$ are useful in simplifying some arguments pertaining to the ρ-mixing condition and other conditions based on the maximal correlation coefficient $\rho(.,.)$. The measure of dependence $\lambda(.,.)$ is of course the easiest of the three to work with; and it has been used by the author [4][5][7][8] to simplify proofs of the following results: (1) the equivalence of the Rosenblatt [22] “strong mixing condition” with a certain condition of “ρ-mixing except on small sets” (a phrase coined by Magda Peligrad, who had originally brought that latter condition to the author’s attention); (2) the “ρ^*-mixing” property (the stronger, “interlaced” variant of ρ-mixing) for certain Markov chains, including as a special case the strictly stationary, finite-state, irreducible, aperiodic Markov chains, (3) the ρ^*-mixing property of INAR (“integer-valued autoregressive”) processes of order 1 with “Poisson innovations”; and (4) the existence of strictly stationary, countable-state, reversible Markov chains that satisfy ρ-mixing (and hence also geometric ergodicity) but fail to satisfy ρ^*-mixing. (For more on (1) and (2), see also [6, v2, pp. 415-423, and v1, Theorem 7.15].)

Also, when Magda Peligrad formulated, and developed some central limit theory under, a “two-part” mixing condition — in essence a “hybrid” of the (Rosenblatt [22]) strong mixing condition and the ρ-mixing condition — she adapted the measure of dependence $\lambda(.,.)$ to simplify the formulation of the “component” of her two-part mixing condition that was related to ρ-mixing. For details, see [11] and [19] and also [6, v2, Chapter 18].

Recall from (1.5) and (1.6) that the measures of dependence $\lambda(.,.)$ and $\tau(.,.)$ differ from each other by at most a factor of 2 — and hence trivially (1.7) holds (with at most a change in the constant factor C) replaced by $\tau(.,.)$. Of these two measures of dependence, the latter one seems better suited for making “exact comparisons” with the maximal correlation coefficient $\rho(.,.)$. Trivially, for any two σ-fields A and B that are each purely atomic with exactly two atoms, the equality $\rho(A,B) = \tau(A,B)$ holds. With a quite elementary argument, in the case where one of the σ-fields is purely atomic with exactly two atoms and the other σ-field is “unrestricted”, the author and Bryc [9, Theorem 4.3 and Example 4.4] derived the following result, giving an “exact” (i.e. “best possible”) inequality:

Theorem 1 ([9, Theorem 4.3 and Example 4.4]). (I) Suppose (Ω,\mathcal{F},P) is a probability space, A and B are σ-fields $\subset \mathcal{F}$, and the σ-field A is purely atomic with exactly two atoms; then

$$\rho(A,B) \leq \tau(A,B) \cdot [1 - \log \tau(A,B)]^{1/2}.$$ \hspace{1cm} (1.8)

(II) For any $t \in [0,1]$ and any $a \in (0,1)$, there exist a probability space (Ω,\mathcal{F},P) and σ-fields A and $B \subset \mathcal{F}$ such that (i) A is purely atomic with exactly two atoms A and A^c, such that $P(A) = a$ and $P(A^c) = 1 - a$, and (ii) $\tau(A,B) = t$ and $\rho(A,B) = t \cdot (1 - \log t)^{1/2}$.

The “sharp constant” in (1.8) is of course (implicitly) 1. Note that in the inequality in (1.8), the “log term” has an exponent 1/2 that is not present in (1.7). That exponent in (1.8) is of course connected with the extra restriction (not present in (1.7)) that one of the σ-fields is purely atomic with exactly two atoms.

4
(Again, by simple calculus, the expression \(t(1 - \log t)^{1/2}\) is strictly increasing as \(t\) increases in \([0, 1]\).)

In the original context involving no restriction on either \(\sigma\)-field, Peyre [20, Theorem 3.1 and Theorem 4.1] showed with a much more sophisticated argument that in the version of (1.7) with \(\lambda(.,.)\) replaced by \(\tau(.,.)\), the "sharp constant" is again 1 and the resulting inequality is "exact" (i.e. "best possible"). Here we shall state his result in the notations used here in this paper. (The notations used by Peyre [20] slightly conflict with those used here.)

Theorem 2 ([20, Theorems 3.1 and 4.1]). (I) Suppose \((\Omega, \mathcal{F}, P)\) is a probability space, and \(A\) and \(B\) are \(\sigma\)-fields \(\subset \mathcal{F}\); then

\[
\rho(A, B) \leq \tau(A, B) \cdot [1 - \log \tau(A, B)].
\]

(1.9)

(II) For any \(t \in (0, 1)\) and any \(\varepsilon \in (0, t)\), there exist a probability space \((\Omega, \mathcal{F}, P)\) and \(\sigma\)-fields \(A\) and \(B \subset \mathcal{F}\) such that \(\tau(A, B) \leq t\) and \(\rho(A, B) > [t \cdot (1 - \log t)] - \varepsilon\).

Obviously (1.9) is a “sharpest possible” version of (1.7) (with \(\lambda(.,.)\) replaced by \(\tau(.,.)\)); and the example described in (II) here gives a very sharp improvement compared to the special case of the example in [10] that was alluded to right after (1.7).

In Corollary 5 below, we shall show that a variant or “cousin” of a result of Csáki and Fischer [13, Theorem 6.2] allows one to trivially “embellish” Peyre’s example described in Theorem 2(II) in such a way that (also) there exist events \(A \in \mathcal{A}\) and \(B \in \mathcal{B}\) such that \(\text{Corr}(I_A, I_B) = t\) (recall (1.3)). So far, apparently no way has been found to also achieve “equality in (1.9)” in such an example, that is, to achieve the equality \(\rho(A, B) = [t \cdot (1 - \log t)]\).

First let us state the result of Csáki and Fischer [13, Theorem 6.2] itself:

Theorem 3 ([13, Theorem 6.2]). Suppose \((\Omega, \mathcal{F}, P)\) is a probability space, and \(\mathcal{A}_n\) and \(\mathcal{B}_n\), \(n \in \mathbb{N}\) are \(\sigma\)-fields \(\subset \mathcal{F}\) such that the \(\sigma\)-fields \(\mathcal{A}_n \vee \mathcal{B}_n\), \(n \in \mathbb{N}\) are independent. Then

\[
\rho\left(\bigvee_{n \in \mathbb{N}} \mathcal{A}_n, \bigvee_{n \in \mathbb{N}} \mathcal{B}_n\right) = \sup_{n \in \mathbb{N}} \rho(\mathcal{A}_n, \mathcal{B}_n).
\]

(1.10)

For a generously detailed proof of this theorem (essentially, an induction argument given by Witsenhausen [23], followed by a standard measure-theoretic argument, all with plenty of detail), see [6, v1, Theorem 6.1]. Theorem 3 has been used in the proofs of results in [5][7][8][13][23] and many other papers, as well as in the proofs of numerous results in [6].

Now let us look at a variant or “cousin” — in some limited sense — of Theorem 3. The following result was stated and proved years ago by the author (in an equivalent form, without explicit use of the notations \(\tau(.,.)\) and \(\psi(.,.)\)) in [2, Theorem 6], in an unpublished
Theorem 4 ([2, Theorem 6]). Suppose (Ω, \mathcal{F}, P) is a probability space, and \mathcal{A}_1, \mathcal{B}_1, \mathcal{A}_2, and \mathcal{B}_2 are σ-fields $\subset \mathcal{F}$ such that the σ-fields $\mathcal{A}_1 \vee \mathcal{B}_1$ and $\mathcal{A}_2 \vee \mathcal{B}_2$ are independent. Then
\[
\tau(\mathcal{A}_1 \vee \mathcal{A}_2, \mathcal{B}_1 \vee \mathcal{B}_2) \leq \max\{\tau(\mathcal{A}_1, \mathcal{B}_1), \psi(\mathcal{A}_2, \mathcal{B}_2)\}.
\] (1.11)

The proof (from [2]) of Theorem 4 will be given in Section 2. A limitation of Theorem 4 in connection with the term $\psi(\mathcal{A}_2, \mathcal{B}_2)$ in (1.11) will be treated in Theorem 6 below.

Of course by Theorem 4 and induction, followed by a standard measure-theoretic argument, as an analog of (1.10), one has that under the hypothesis of Theorem 3,
\[
\tau\left(\bigvee_{n \in \mathbb{N}} \mathcal{A}_n, \bigvee_{n \in \mathbb{N}} \mathcal{B}_n\right) \leq \sup\left\{\tau(\mathcal{A}_1, \mathcal{B}_1), \sup_{n \geq 2} \psi(\mathcal{A}_n, \mathcal{B}_n)\right\}.
\] (1.12)

As an application of Theorem 4, the example given by Peyre [20, Theorem 4.1] described in Theorem 2(II) will be trivially “embellished”, in a certain way alluded to above:

Corollary 5 (trivial embellishment of Peyre’s [20] example). For any $t \in (0, 1)$ and any $\varepsilon > 0$, there exist a probability space (Ω, \mathcal{F}, P) and σ-fields \mathcal{A} and $\mathcal{B} \subset \mathcal{F}$ with the following properties:
(i) there exist events $A \in \mathcal{A}$ and $B \in \mathcal{B}$ such that $\tau(\mathcal{A}, \mathcal{B}) = \text{Corr}(I_A, I_B) = t$; and
(ii) $\rho(\mathcal{A}, \mathcal{B}) > [t \cdot (1 - \log t)] - \varepsilon$.

The proof of Corollary 5 will be given in Section 3 below. Its proof will make critical use of Peyre’s [20] example itself (as described in Theorem 2(II)).

The final result, Theorem 6 below, will show that in Theorem 4, in eq. (1.11), the term $\psi(\mathcal{A}_2, \mathcal{B}_2)$ cannot be replaced by $\tau(\mathcal{A}_2, \mathcal{B}_2)$. It seems to be an open question whether or not in Theorem 4, in eq. (1.11), that term $\psi(\mathcal{A}_2, \mathcal{B}_2)$ can be replaced by $\rho(\mathcal{A}_2, \mathcal{B}_2)$.

Theorem 6. Suppose
\[
0 < t < 1.
\] (1.13)
Then there exist a probability space (Ω, \mathcal{F}, P) and σ-fields \mathcal{A}_1, \mathcal{B}_1, \mathcal{A}_2, and \mathcal{B}_2 ($\subset \mathcal{F}$) with the following properties:
\[
\mathcal{A}_1 \vee \mathcal{B}_1 \text{ and } \mathcal{A}_2 \vee \mathcal{B}_2 \text{ are independent}
\] (1.14)
and
\[
\tau(\mathcal{A}_1, \mathcal{B}_1) = \tau(\mathcal{A}_2, \mathcal{B}_2) = t,
\] (1.15)
but
\[
\tau(\mathcal{A}_1 \vee \mathcal{A}_2, \mathcal{B}_1 \vee \mathcal{B}_2) > t.
\] (1.16)
Theorem 6 will be proved in Section 4. Its proof will make critical use of Peyre’s [20] example. (For sufficiently small \(t \), the proof could instead use in a similar way the example from [10] alluded to right after (1.7).)

2. Proof of Theorem 4

The proof is essentially as given by the author [2, Theorem 6 (its proof)]. The proof will be divided into several small “steps”.

Step 1. As in the statement of Theorem 4, suppose \((\Omega, \mathcal{F}, P)\) is a probability space, and \(A_1, B_1, A_2, \) and \(B_2\) are \(\sigma\)-fields \((\subset \mathcal{F})\) such that
\[
A_1 \lor B_1 \text{ and } A_2 \lor B_2 \text{ are independent.}
\] (2.1)

If \(\psi(A_2, B_2) = \infty\), then (1.11) holds trivially and we are done. Therefore we assume that \(\psi(A_2, B_2) < \infty\). With a reminder of that assumption built in (see also (1.5)), define the nonnegative quantity
\[
\theta := \max\{\tau(A_1, B_1), \psi(A_2, B_2)\} < \infty.
\] (2.2)

Our task is to show that \(\tau(A_1 \lor A_2, B_1 \lor B_2) \leq \theta\).

Refer to (1.3). Suppose
\[
A_0 \in A_1 \lor A_2 \text{ and } B_0 \in B_1 \lor B_2.
\] (2.3)

It suffices to prove that
\[
|P(A_0 \cap B_0) - P(A_0)P(B_0)| \leq \theta \cdot [P(A_0) \cdot (1 - P(A_0)) \cdot P(B_0) \cdot (1 - P(B_0))]^{1/2}.
\]

Suppose \(\varepsilon > 0\). It suffices to prove that
\[
|P(A_0 \cap B_0) - P(A_0)P(B_0)| \leq \theta \cdot [P(A_0) \cdot (1 - P(A_0)) \cdot P(B_0) \cdot (1 - P(B_0))]^{1/2} + \varepsilon.
\] (2.4)

Step 2. We shall first make a long statement (ending with eq. (2.6) below), and then briefly justify it. By (2.3) and a standard measure-theoretic argument, there exist events \(A^* \in A_1 \lor A_2\) and \(B^* \in B_1 \lor B_2\) with the following three properties (P1), (P2), and (P3):

(P1) \(A^* = \bigcup_{i=1}^{I} (C_i \cap D_i) \) where
(i) \(I \) is a positive integer,
(ii) \(C_i \in A_1 \text{ and } D_i \in A_2 \text{ for each } i \in \{1, 2, \ldots, I\}, \) and
(iii) the events \(D_1, D_2, \ldots, D_I \) together form a partition of the sample space \(\Omega \).

(P2) \(B^* = \bigcup_{j=1}^{J} (E_j \cap F_j) \) where
(i) \(J \) is a positive integer,
(ii) \(E_j \in B_1 \text{ and } F_j \in B_2 \text{ for each } j \in \{1, 2, \ldots, J\}, \) and
(iii) the events \(F_1, F_2, \ldots, F_J \) together form a partition of the sample space \(\Omega \).
(P3) One has that
\[
|P(A^* \cap B^*) - P(A^*)P(B^*)| - |P(A_0 \cap B_0) - P(A_0)P(B_0)| \leq \varepsilon/2 \quad (2.5)
\]
and (recall the “<∞” in (2.2))
\[
\begin{align*}
\theta \cdot [P(A^*) - (1 - P(A^*))] \cdot [P(B^*) - (1 - P(B^*))]^{1/2} \\
- \theta \cdot [P(A_0) - (1 - P(A_0))] \cdot [P(B_0) - (1 - P(B_0))]^{1/2} \leq \varepsilon/2 . \quad (2.6)
\end{align*}
\]

Let us briefly review the justification of this assertion involving properties (P1), (P2), and (P3):

Let the symmetric difference of any two events G and H be denoted $G \triangle H$. It is well known that (i) for any two events G and H, one has that $|P(G) - P(H)| \leq P(G \triangle H)$, and (ii) for any four events G_1, H_1, G_2, and H_2, one has that $P((G_1 \cap H_1) \triangle (G_2 \cap H_2)) \leq P(G_1 \triangle G_2) + P(H_1 \triangle H_2)$.

By the first part of (2.3) and a well known measure theoretic argument, for each $\gamma > 0$, there exist positive integers K and I and partitions $\{G_1, G_2, \ldots, G_K\}$ and $\{D_1, D_2, \ldots, D_I\}$ of Ω, with $G_k \in A_1$ for each $k \in \{1, 2, \ldots, K\}$ and $D_i \in A_2$ for each $i \in \{1, 2, \ldots, I\}$, and an event A^* which is the union of some (or all or none) of the “rectangles” $G_k \cap D_i$, such that $P(A^* \triangle A_0) \leq \gamma$. Then for each fixed $i \in \{1, 2, \ldots, I\}$, one can let $C_i := \bigcup_k G_k$ where the union (possibly empty) is taken over all $k \in \{1, 2, \ldots, K\}$ such that $G_k \cap D_i \subset A^*$. Then the set A^* has the form specified in property (P1) (and satisfies $P(A^* \triangle A_0) \leq \gamma$). Similarly for each $\gamma > 0$, there exists an event B^* satisfying property (P2) such that $P(B^* \triangle B_0) \leq \gamma$. By taking $\gamma > 0$ sufficiently small, and using observations (i) and (ii) in the preceding paragraph, one can ensure that property (P3) (both eqs. (2.5) and (2.6) — recall again the “<∞” in (2.2)) holds as well.

To prove (2.4) and thereby complete the proof of Theorem 4, it now suffices to prove that the events A^* and B^*, satisfying properties (P1), (P2), and (P3), satisfy
\[
|P(A^* \cap B^*) - P(A^*)P(B^*)| \leq \theta \cdot [P(A^*) - (1 - P(A^*))] \cdot [P(B^*) - (1 - P(B^*))]^{1/2} . \quad (2.7)
\]

Step 3. By property (P1)(iii) (in Step 2), the events $C_i \cap D_i$, for different values of i, are (pairwise) disjoint. Thus from property (P1), the events $C_i \cap D_i$, $i \in \{1, 2, \ldots, I\}$ (some of those events may be empty) form a partition of the event A^*. Similarly from property (P2), the events $E_j \cap F_j$, $j \in \{1, 2, \ldots, J\}$ (some of those events may be empty) form a partition of the event B^*. It follows that the events $C_i \cap D_i \cap E_j \cap F_j$, $(i, j) \in \{1, 2, \ldots, I\} \times \{1, 2, \ldots, J\}$ (some of those events may be empty) form a partition of the event $A^* \cap B^*$. It follows that
\[
\begin{align*}
P(A^* \cap B^*) - P(A^*)P(B^*) \\
= \sum_{i=1}^{I} \sum_{j=1}^{J} P(C_i \cap D_i \cap E_j \cap F_j) - \left[\sum_{i=1}^{I} P(C_i \cap D_i) \right] \cdot \left[\sum_{j=1}^{J} P(E_j \cap F_j) \right] . \quad (2.8)
\end{align*}
\]
Applying properties (P1)(ii) and (P2)(ii) and eq. (2.1) to (2.8), one obtains
\[P(A^* \cap B^*) - P(A^*)P(B^*) \]
\[= \sum_{i=1}^{I} \sum_{j=1}^{J} P(C_i \cap E_j)P(D_i \cap F_j) - \sum_{i=1}^{I} \sum_{j=1}^{J} P(C_i)P(D_i)P(E_j)P(F_j) \]
\[= \sum_{i=1}^{I} \sum_{j=1}^{J} P(D_i \cap F_j) \cdot [P(C_i \cap E_j) - P(C_i)P(E_j)] \]
\[+ \sum_{i=1}^{I} \sum_{j=1}^{J} [P(D_i \cap F_j) - P(D_i)P(F_j)] \cdot P(C_i)P(E_j) \cdot (2.9) \]

Step 4. The next task is to obtain a useful alternative formulation of the very last double sum in (2.9). For that purpose, let us make some observations. First, by properties (P1)(ii) and (P2)(ii) and eq. (2.1), followed by property (P2)(iii),
\[\sum_{i=1}^{I} \sum_{j=1}^{J} [P(D_i \cap F_j) - P(D_i)P(F_j)] \cdot P(C_i) \cdot P(B^*) \]
\[= P(B^*) \cdot \sum_{i=1}^{I} \sum_{j=1}^{J} [P(C_i \cap D_i \cap F_j) - P(C_i \cap D_i)P(F_j)] \]
\[= P(B^*) \cdot \sum_{i=1}^{I} [P(C_i \cap D_i) - P(C_i \cap D_i)] = 0 \cdot (2.10) \]

Next, by an exactly analogous argument, this time finishing with an application of property (P1)(iii),
\[\sum_{i=1}^{I} \sum_{j=1}^{J} [P(D_i \cap F_j) - P(D_i)P(F_j)] \cdot P(A^*) \cdot P(E_j) \]
\[= P(A^*) \cdot \sum_{i=1}^{I} \sum_{j=1}^{J} [P(D_i \cap E_j \cap F_j) - P(D_i)P(E_j \cap F_j)] \]
\[= P(A^*) \cdot \sum_{j=1}^{J} [P(E_j \cap F_j) - P(E_j \cap F_j)] = 0 \cdot (2.11) \]

Also of course by properties (P1)(iii) and (P2)(iii),
\[\sum_{i=1}^{I} \sum_{j=1}^{J} [P(D_i \cap F_j) - P(D_i)P(F_j)] \cdot P(A^*)P(B^*) \]
\[= P(A^*)P(B^*) \cdot \left[\sum_{i=1}^{I} \sum_{j=1}^{J} P(D_i \cap F_j) - \sum_{i=1}^{I} \sum_{j=1}^{J} P(D_i)P(F_j) \right] \]
\[= P(A^*)P(B^*) \cdot [1 - 1] = 0 \cdot (2.12) \]
Now by incorporating (2.10), (2.11), and (2.12) into the very last double sum in (2.9), one obtains from (2.9) itself that

\[
P(A^* \cap B^*) - P(A^*)P(B^*)
\]

\[
= \sum_{i=1}^{I} \sum_{j=1}^{J} P(D_i \cap F_j) \cdot [P(C_i \cap E_j) - P(C_i)P(E_j)]
\]

\[
+ \sum_{i=1}^{I} \sum_{j=1}^{J} [P(D_i \cap F_j) - P(D_i)P(F_j)] \cdot [P(C_i) - P(A^*)] \cdot [P(E_j) - P(B^*)].
\]

Hence by the triangle inequality and then (2.2), (1.3), and (1.1) (and properties (P1)(ii) and (P2)(ii)),

\[
|P(A^* \cap B^*) - P(A^*)P(B^*)|
\]

\[
\leq \sum_{i=1}^{I} \sum_{j=1}^{J} P(D_i \cap F_j) \cdot |P(C_i \cap E_j) - P(C_i)P(E_j)|
\]

\[
+ \sum_{i=1}^{I} \sum_{j=1}^{J} |P(D_i \cap F_j) - P(D_i)P(F_j)| \cdot |P(C_i) - P(A^*)| \cdot |P(E_j) - P(B^*)|
\]

\[
\leq \left(\sum_{i=1}^{I} \sum_{j=1}^{J} P(D_i \cap F_j) \cdot \theta \cdot |P(C_i) \cdot (1 - P(C_i)) \cdot P(E_j) \cdot (1 - P(E_j))|^{1/2} \right.
\]

\[
+ \sum_{i=1}^{I} \sum_{j=1}^{J} \theta \cdot P(D_i)P(F_j) \cdot |P(C_i) - P(A^*)| \cdot |P(E_j) - P(B^*)| \right)^{1/2}.
\]

Step 5. Now we shall apply to (2.13) the Cauchy-Schwarz Inequality. To put this a little informally, think of a discrete measure space with exactly \(2IJ\) points, with a positive measure that assigns masses \(\theta \cdot P(D_i \cap F_j)\) respectively to the “first \(IJ\) points” and masses \(\theta \cdot P(D_i)P(F_j)\) to the “other \(IJ\) points”. With that interpretation (in an obvious form), applying the Cauchy-Schwarz Inequality to (2.13), and then applying properties (P2)(iii) and (P1)(iii), one obtains

\[
|P(A^* \cap B^*) - P(A^*)P(B^*)|
\]

\[
\leq \left[\sum_{i=1}^{I} \sum_{j=1}^{J} \theta \cdot P(D_i \cap F_j) \cdot |P(C_i) \cdot (1 - P(C_i))| \right.
\]

\[
+ \sum_{i=1}^{I} \sum_{j=1}^{J} \theta \cdot P(D_i)P(F_j) \cdot |P(C_i) - P(A^*)|^2 \right]^{1/2}
\]

\[
\cdot \left[\sum_{i=1}^{I} \sum_{j=1}^{J} \theta \cdot P(D_i \cap F_j) \cdot |P(E_j) \cdot (1 - P(E_j))| \right]^{1/2}
\]

10
\[
\sum_{i=1}^{I} \sum_{j=1}^{J} \theta \cdot P(D_i)P(F_j) \cdot [P(E_j) - P(B^*)]^2 \right]^{1/2}
\]

\[
= \theta \cdot \left[\sum_{i=1}^{I} P(D_i) \cdot [P(C_i) \cdot (1 - P(C_i))] + \sum_{i=1}^{I} P(D_i) \cdot [P(C_i) - P(A^*)]^2 \right]^{1/2}
\cdot \left[\sum_{j=1}^{J} P(F_j) \cdot [P(E_j) \cdot (1 - P(E_j))] + \sum_{j=1}^{J} P(F_j) \cdot [P(E_j) - P(B^*)]^2 \right]^{1/2}
\]

\[
= \theta \cdot \left[\sum_{i=1}^{I} P(D_i) \cdot [P(C_i) - 2P(C_i)P(A^*) + (P(A^*))^2] \right]^{1/2}
\cdot \left[\sum_{j=1}^{J} P(F_j) \cdot [P(E_j) - 2P(E_j)P(B^*) + (P(B^*))^2] \right]^{1/2}
\]

\[= \theta \cdot \left[\sum_{i=1}^{I} P(D_i) \cdot [P(C_i) - 2P(C_i)P(A^*) + (P(A^*))^2] \right]^{1/2}
\cdot \left[\sum_{j=1}^{J} P(F_j) \cdot [P(E_j) - 2P(E_j)P(B^*) + (P(B^*))^2] \right]^{1/2}.
\] (2.14)

Step 6. Now let us look at the very last product in (2.14). To start off, note that by (2.1) and property (P1) (see both (ii) and (iii) there)

\[
\sum_{i=1}^{I} P(D_i) \cdot [P(C_i) - 2P(C_i)P(A^*) + (P(A^*))^2]
\]

\[
= (1 - 2P(A^*)) \sum_{i=1}^{I} P(D_i)P(C_i) + (P(A^*))^2 \sum_{i=1}^{I} P(D_i)
\]

\[
= (1 - 2P(A^*)) \sum_{i=1}^{I} P(D_i \cap C_i) + (P(A^*))^2 \cdot 1
\]

\[
= (1 - 2P(A^*)) \cdot P(A^*) + (P(A^*))^2 = P(A^*) \cdot (1 - P(A^*)).
\] (2.15)

By an exactly analogous argument, using property (P2) instead of (P1), one has that

\[
\sum_{j=1}^{J} P(F_j) \cdot [P(E_j) - 2P(E_j)P(B^*) + (P(B^*))^2] = P(B^*) \cdot (1 - P(B^*)).
\] (2.16)

Applying (2.15) and (2.16) to the last product in (2.14), one obtains from (2.14) itself that (2.7) holds. That completes the proof of Theorem 4.

3. Proof of Corollary 5

As in the statement of Corollary 5, suppose \(t \in (0, 1) \) and \(\varepsilon > 0 \).

The construction given by Peyre [20, Theorem 4.1], described in Theorem 2(II), can be interpreted in the following way: On some probability space \((\Omega, \mathcal{F}, P)\), there exists a
random vector \((X_1, X_2)\) such that
\[
\begin{align*}
\tau(\sigma(X_1), \sigma(X_2)) &\leq t & \text{and} \\
\rho(\sigma(X_1), \sigma(X_2)) &> [t \cdot (1 - \log t)] - \varepsilon.
\end{align*}
\] (3.1)
(3.2)

Here and below, the notation \(\sigma(\ldots)\) means the \(\sigma\)-field generated by \((\ldots)\). The details of Peyre’s construction, which is intricate and quite long, need not be spelled out here.

Enlarging the probability space if necessary, let \((Y_1, Y_2)\) be a random vector which is independent of the random vector \((X_1, X_2)\) and has the following distribution: For each element \((y_1, y_2)\in\{-1,1\}\times\{-1,1\},\)
\[
P((Y_1, Y_2) = (y_1, y_2)) = \frac{1}{4}(1 + ty_1y_2).
\] (3.3)

By (3.3) and a simple calculation,
\[
\text{Corr}(I(Y_1 = 1), I(Y_2 = 1)) = \tau(\sigma(Y_1), \sigma(Y_2)) = \psi(\sigma(Y_1), \sigma(Y_2)) = t. \tag{3.4}
\]
(In working here with the definitions of \(\tau(\ldots)\) and \(\psi(\ldots)\) in (1.3) and (1.1), one only needs to check the events of the form \(\{Y_1 = y_1\}\) and \(\{Y_2 = y_2\}\) for \(y_1, y_2, \in\{-1,1\}\), since \(P(A \cap B) - P(A)P(B) = 0\) whenever either \(A\) or \(B\) is the event \(\Omega\) or \(\emptyset\).)

By (3.4), and then by (3.1), (3.4) (again), and Theorem 4,
\[
t = \tau(\sigma(Y_1), \sigma(Y_2)) \leq \tau(\sigma(X_1) \lor \sigma(Y_1), \sigma(X_2) \lor \sigma(Y_2)) \leq t,
\]
which forces the equality
\[
\tau(\sigma(X_1) \lor \sigma(Y_1), \sigma(X_2) \lor \sigma(Y_2)) = t. \tag{3.5}
\]

Also, by (3.2),
\[
\rho(\sigma(X_1) \lor \sigma(Y_1), \sigma(X_2) \lor \sigma(Y_2)) \geq \rho(\sigma(X_1), \sigma(X_2)) > [t \cdot (1 - \log t)] - \varepsilon. \tag{3.6}
\]

Letting \(A:=\sigma(X_1) \lor \sigma(Y_1)\) and \(B:=\sigma(X_2) \lor \sigma(Y_2)\), one now obtains Corollary 5 from (3.4), (3.5), and (3.6).

4. Proof of Theorem 6

In the construction for the proof of Theorem 6, a key role will be played by the example of Peyre [20, Theorem 4.1] described in Theorem 2(II), via the trivially embellished form in (the proof of) Corollary 5. To set that process up, the following technical lemma (involving just basic calculus) will be proved first.

12
Lemma 7. For every \(t \in (0, 1) \), one has that \(t(1 - \log t) > \sin((\pi/2)t) \).

Proof of Lemma 7. With again the usual convention \(0 \log 0 := 0 \), define the function \(f : [0, \infty) \to \mathbb{R} \) as follows: For \(t \in [0, \infty) \),

\[
f(t) := t(1 - \log t) - \sin((\pi/2)t) .
\]

This function \(f \) is continuous on \([0, \infty)\) and has continuous derivatives of all orders on the open half line \((0, \infty)\). For \(t \in (0, \infty) \), its first three derivatives are as follows:

\[
\begin{align*}
f'(t) &= -\log t - (\pi/2) \cos((\pi/2)t) ; \\
\quad \text{with} \quad f''(t) &= -(1/t) + (\pi/2)^2 \sin((\pi/2)t) ; \\
f'''(t) &= (1/t^2) + (\pi/2)^3 \cos((\pi/2)t) .
\end{align*}
\]

Now \(f'''(t) > 0 \) for every \(t \in (0, 1] \). Hence \(f'''(t) \) is strictly increasing for \(t \in (0, 1] \). Also \(\lim_{t \to 0^+} f''(t) = -\infty \) and \(f''(1) = -1 + (\pi/2)^2 > 0 \). Hence there exists a number \(c \in (0, 1) \) such that

\[
f''(t) < 0 \text{ for } t \in (0, c); \quad f''(c) = 0; \quad \text{and} \quad f''(t) > 0 \text{ for } t \in (c, 1]. \tag{4.1}
\]

By (4.1) \(f'(t) \) is strictly increasing for \(t \in [c, 1] \). Also, \(f'(1) = 0 \). Hence \(f'(t) < 0 \) for every \(t \in [c, 1] \). Hence \(f \) itself is strictly decreasing on \([c, 1]\). Also, \(f(1) = 1 - 1 = 0 \). Hence

\[
f'(t) > 0 \text{ for every } t \in [c, 1]. \tag{4.2}
\]

Now \(f(0) = 0 \) and (by (4.2)) \(f(c) > 0 \). By (4.1), \(f \) is “concave” \((-f \text{ is convex})\) on the interval \([0, c]\). It follows that \(f(t) > 0 \) for every \(t \in (0, c) \). Combining that with (4.2), one has that \(f(t) > 0 \) for all \(t \in (0, 1) \). Consequently, Lemma 7 holds.

Proof of Theorem 6. We can (and will) let \((\Omega, \mathcal{F}, P)\) be a probability space “rich” enough to accommodate all random variables defined below.

Suppose (1.13) holds. Applying Lemma 7, let \(\varepsilon > 0 \) be fixed sufficiently small that

\[
t(1 - \log t) - \varepsilon > \sin((\pi/2)t) . \tag{4.3}
\]

(Referring to (1.13), note that both sides of (4.3) are positive.)

It is well known that (with respect to their respective Borel \(\sigma \)-fields), the sets \(\mathbb{R} \times \mathbb{R} \) and \(\mathbb{R} \) are bimeasurably isomorphic. Referring to the final paragraph of Section 3 (i.e. the final paragraph of the proof of Corollary 5) and using such an isomorphism, let \((V, W)\) be a random vector such that

\[
\tau(\sigma(V), \sigma(W)) = t \quad \text{and} \quad \rho(\sigma(V), \sigma(W)) > t(1 - \log t) - \varepsilon . \tag{4.4}
\]

\[
\rho(\sigma(V), \sigma(W)) > t(1 - \log t) - \varepsilon . \tag{4.5}
\]

13
Applying (4.5), let \(g : \mathbb{R} \rightarrow \mathbb{R} \) and \(h : \mathbb{R} \rightarrow \mathbb{R} \) be bounded Borel functions such that

\[
r := \text{Corr}(g(V), h(W)) > t(1 - \log t) - \varepsilon. \tag{4.6}
\]

(The existence of such functions \(f \) and \(g \) with which one can make \(\text{Corr}(g(V), h(W)) \) arbitrarily close to \(\rho(\sigma(V), \sigma(W)) \), is a well known measure-theoretic fact.) Of course the correlation in (4.6) is positive (by the sentence after (4.3)). We can (and will) normalize those bounded functions \(g \) and \(h \) so that one also has

\[
E[g(V)] = E[h(W)] = 0 \quad \text{and} \quad \text{Var}[g(V)] = \text{Var}[h(W)] = 1. \tag{4.7}
\]

Let \(((V_1, W_1), (V_2, W_2), (V_3, W_3), \ldots)\) be a sequence of independent random vectors such that for each \(n \geq 1 \), the distribution of the random vector \((V_n, W_n)\) is the same as that of \((V, W)\).

For each \(n \geq 1 \), define the random vector \((Y_n, Z_n)\) as follows:

\[
Y_n := n^{-1/2} \sum_{k=1}^{n} g(V_k) \quad \text{and} \quad Z_n := n^{-1/2} \sum_{k=1}^{n} h(W_k). \tag{4.8}
\]

By (4.6), (4.7), (4.8), and the classic central limit theorem for independent, identically distributed random vectors whose coordinates have finite second moments, one has that

\[
(Y_n, Z_n) \Rightarrow (Y, Z) \quad \text{as} \quad n \to \infty, \tag{4.9}
\]

where (i) the symbol \(\Rightarrow \) denotes convergence in distribution, and (ii) \((Y, Z)\) is a bivariate normal random vector such that \(EY = EZ = 0, \text{Var}(Y) = \text{Var}(Z) = 1, \) and \(\text{Corr}(Y, Z) = r\) (where \(r\) is as in (4.6)). In particular,

\[
P(Y_n > 0) \to 1/2 \quad \text{as} \quad n \to \infty, \tag{4.10}
\]

\[
P(Z_n > 0) \to 1/2 \quad \text{as} \quad n \to \infty, \quad \text{and} \tag{4.11}
\]

\[
P(\{Y_n > 0\} \cap \{Z_n > 0\}) \to P(\{Y > 0\} \cap \{Z > 0\}) \quad \text{as} \quad n \to \infty. \tag{4.12}
\]

By a well known standard calculation involving bivariate normal distributions, one has that

\[
P(\{Y > 0\} \cap \{Z > 0\}) = (1/4) + (2\pi)^{-1} \arcsin r.
\]

(See e.g. Bradley [2007, Theorem A902 in the Appendix].) Hence by (4.10), (4.11), and (4.12),

\[
\lim_{n \to \infty} [P(\{Y_n > 0\} \cap \{Z_n > 0\}) - P(Y_n > 0)P(Z_n > 0)] = (2\pi)^{-1} \arcsin r.
\]

Hence by (4.10), (4.11), and a simple calculation,

\[
\lim_{n \to \infty} \text{Corr}(I(Y_n > 0), I(Z_n > 0)) = (2/\pi) \arcsin r.
\]
Hence by (4.8), (4.6), and (4.3) (and (1.13)), one has that for all sufficiently large positive integers n,

$$
\tau(\sigma(V_1, V_2, \ldots, V_n), \sigma(W_1, W_2, \ldots, W_n)) \geq \text{Corr}(I(Y_n > 0), I(Z_n > 0)) \\
> \frac{2}{\pi} \arcsin[t(1 - \log t) - \varepsilon] \\
> \frac{2}{\pi} \arcsin[\sin((\pi/2)t)] = \frac{2}{\pi} \cdot (\pi/2)t = t.
$$

(4.13)

Now $\tau(\sigma(V_1), \sigma(W_1)) = \tau(\sigma(V), \sigma(W)) = t$ by (4.4). (Hence for any positive integer n, the very first term in (4.13) is trivially bounded below by t.) Referring to the entire sentence containing (4.13), let m be the greatest positive integer such that $\tau(\sigma(V_1, V_2, \ldots, V_m), \sigma(W_1, W_2, \ldots, W_m)) = t$. Define the σ-fields $A_1 := \sigma(V_1, V_2, \ldots, V_m)$, $B_1 := \sigma(W_1, W_2, \ldots, W_m)$, $A_2 := \sigma(V_{m+1})$, and $B_2 := \sigma(W_{m+1})$. Then (again see (4.4)), eqs. (1.14), (1.15), and (1.16) hold. That completes the proof of Theorem 6.

REFERENCES

[1] J.R. Blum, D.L. Hanson, and L.H. Koopmans. On the strong law of large numbers for a class of stochastic processes. *Z. Wahrsch. verw. Gebiete* 2 (1963) 1-11.

[2] R.C. Bradley. Ph.D. Dissertation. University of California at San Diego, La Jolla, California, 1978.

[3] R.C. Bradley. Equivalent measures of dependence. *J. Multivariate Anal.* 13 (1983) 167-176.

[4] R.C. Bradley. On ρ-mixing except on small sets. *Pacific J. Math.* 146 (1990) 217-226.

[5] R.C. Bradley. Every “lower psi-mixing” Markov chain is “interlaced rho-mixing”. *Stochastic Process. Appl.* 72 (1997) 221-239.

[6] R.C. Bradley. *Introduction to Strong Mixing Conditions*, Vols. 1, 2, and 3. Kendrick Press, Heber City (Utah), 2007.

[7] R.C. Bradley. On mixing properties of some INAR models. *Zapiski Nauchnyh Seminarov POMI* 441 (2015) 56-72.

[8] R.C. Bradley. On mixing properties of reversible Markov chains. *New Zealand J. Math.* 45 (2015) 71-87.

[9] R.C. Bradley and W. Bryc. Multilinear forms and measures of dependence between random variables. *J. Multivariate Anal.* 16 (1985) 335-367.

[10] R.C. Bradley, W. Bryc, and S. Janson. On dominations between measures of dependence. *J. Multivariate Anal.* 23 (1987) 312-329.

[11] R.C. Bradley and M. Peligrad. Invariance principles under a two-part mixing assumption. *Stochastic Process. Appl.* 22 (1986) 271-289.

[12] A.V. Bulinski. On mixing conditions of random fields. *Theor. Probab. Appl.* 30 (1985) 219-220.
[13] P. Csáki and J. Fischer. On the general notion of maximal correlation. *Magyar Tud. Akad. Mat. Kutató Int. Kozl.* 8 (1963) 27-51.

[14] W. Doeblin. Remarques sur la théorie métrique fractions continues. *Compositio Math.* 7 (1940) 353-371.

[15] H.O. Hirschfeld. A connection between correlation and contingency. *Proc. Camb. Phil. Soc.* 31 (1935) 520-524.

[16] I.A. Ibragimov. Some limit theorems for stationary processes. *Theor. Probab. Appl.* 7 (1962) 349-382.

[17] M. Iosifescu. Doeblin and the metric theory of continued fractions: A functional theoretic solution to Gauss’ 1812 problem. In: *Doeblin and Modern Probability, Proceedings of the Doeblin Conference held November 2-7, 1991 at the University of Tubigen’s Heinrich Fabri Institut, Blaubeuren, Germany*, (H. Cohn, ed.), pp. 97-110. Contemporary Mathematics 149. American Mathematical Society, Providence (Rhode Island), 1993.

[18] A.N. Kolmogorov and Yu.A. Rozanov. On strong mixing conditions for stationary Gaussian processes. *Theor. Probab. Appl.* 5 (1960) 204-208.

[19] M. Peligrad. On the central limit theorem for weakly dependent sequences with a decomposed strong mixing coefficient. *Stochastic Process. Appl.* 42 (1992) 181-193.

[20] R. Peyre. Sharp equivalence between ρ- and τ-mixing coefficients. *Studia Math.* 216 (2013) 245-270.

[21] W. Philipp. The central limit problem for mixing sequences of random variables. *Z. Wahrsch. verw. Gebiete* 12 (1969) 155-171.

[22] M. Rosenblatt. A central limit theorem and a strong mixing condition. *Proc. Natl. Acad. Sci. USA* 42 (1956) 43-47.

[23] H.S. Witsenhausen. On sequences of pairs of dependent random variables. *SIAM J. Appl. Math.* 28 (1975) 100-113.