Supplementary Information for

The esophageal gland mediates host immune evasion by the human parasite *Schistosoma mansoni*

Jayhun Lee, Tracy Chong, and Phillip A. Newmark

Phillip A. Newmark
Email: pnewmark@morgridge.org

This PDF file includes:

- Figures S1 to S6
- Tables S1 to S3
- Legends for Movies S1 to S2

Other supplementary materials for this manuscript include the following:

- Movies S1 to S2
Fig. S1. Stem cell-driven differentiation of host-parasite interfaces in schistosomula. (A) Scheme of using mechanically transformed in vitro schistosomula and in vivo lung-stage schistosomula for EdU pulse-chase experiments. (B) Number of h2b+ EdU+ (left) and tsp2+ EdU+ (right) double-positive cells as percentages of total single-positive populations in in vitro schistosomula pulsed with EdU D0-D4 and chased until D6. Mean ± sd. Statistical analysis: Welch’s t-test. (C) Number of h2b+ EdU+ (green) and tsp2+ EdU+ (magenta) cells as a percentage of total h2b+ or tsp2+ cells (left) or total EdU+ cells (right) from in vivo schistosomula. Mean ± sd. N: number of worms analyzed. (D) Expression of tsp2 mRNA (marker of tegument progenitors) in cercariae, detected by FISH (maximum-intensity projection). (E) Quantification of tsp2+ cells from cercariae and schistosomula harvested at the indicated time points. Each dot represents a single worm. Mean ± sd. Statistical analysis: one-way ANOVA followed by Tukey’s multiple comparisons test. (F) Quantification of cathepsin B+ cells from cercariae and schistosomula harvested at indicated time points. Each dot represents a single worm. Median with interquartile range shown. Statistical analysis: one-way ANOVA followed by Tukey’s multiple comparisons test. (G) EdU pulse-chase experiment combined with FISH to detect cathepsin B mRNA in schistosomula that were pulsed with EdU from D7-D9 and chased until D14 (maximum-intensity projection). A magnified single confocal z-section of the boxed area is shown on the right with cathepsin B (top) and without cathepsin B (bottom). Arrows: cathepsin B+ cells.
Fig. S2. Stem cell-driven development of host-parasite interfaces in juveniles. (A) Gut...
development in juvenile schistosomes (3-weeks post-infection) as revealed by cathepsin B FISH (maximum-intensity projections). Different sizes represent different times of arrival at the hepatic portal vein, with the smallest arriving latest. Schistosomes first merge the two gut lobes in both male and female worms; branching patterns then diverge between males and females as they develop further. Asterisks: developing gonads. A: anterior; P: posterior. (B-D) Expression of cell type-specific markers by FISH in 3-week-old juvenile schistosomes (maximum-intensity projections): (B) meg4.1 (esophageal gland); (C) pla2 (esophageal anterior cell mass); and (D) tsp2 (tegument progenitors). (E-I) EdU pulse-chase experiments in juvenile schistosomes. Parasites were harvested 3-weeks post-infection from mice that received a single EdU injection between 0-7 days prior to sacrifice. (E) cathepsin B (top) and tsp2 (bottom) FISH in juvenile gut and tegument, respectively. Single confocal sections. Yellow arrowheads: cathepsin B+ EdU+ cells within the gut; red arrows: tsp2+ EdU+ cells near the tegument. (F) Quantification of cathepsin B+ EdU+ cells over total cathepsin B+ cells (magenta) and tsp2+ EdU+ cells over total tsp2+ cells (green) in juvenile parasites harvested from mice given a single EdU injection. Dotted lines indicate quantifications from adult worms for comparison to the juvenile worms. The numbers of worms and cells analyzed for each condition are listed in the box below. Mean ± sd shown. (G-I) EdU incorporation and double FISH of h2b with (G) pla2 (anterior cell mass), (H) meg4.1, or (I) tsp2, single confocal sections. Arrows: h2b+ EdU+ cells; arrowheads: lineage+ EdU+ cells; eg: esophageal gland. N=3-5 worms were analyzed for each condition.
Figure S3. Phylogenetic analysis of foxA and its esophageal gland-enriched expression. (A) Circular cladogram including all forkhead domain-containing S. mansoni Fox proteins with forkhead domains of FOX proteins extracted from multiple species. Analyzed species include
human, mouse, *D. melanogaster* (DROME), *C. elegans* (CAEEL), *S. mediterranea* (Smed), *S. cerevisiae* (Yeast), *S. pombe* (SCHPO), *X. laevis* (XENLA), *X. tropicalis* (XENTR). The numbers before each branch indicate bootstrap value (%). Magnified view of the FOXA family is shown on the right. (B) Whole-mount in situ hybridization (WISH) of foxA in adult male (left) and female (right) worms. (C) foxA FISH in less developed (left) and more developed (right) juvenile schistosomes, single confocal sections. (D) Double FISH of tsp2 and foxA in adult worms, showing co-localization of foxA with tsp2, a tegument progenitor marker (single confocal sections).
Figure S4. foxA RNAi results in esophageal gland loss, but other cell types are not affected. (A) qPCR analysis of schistosomula RNA collected after one week of exposure to foxA dsRNA. Genes known to be expressed in the esophageal gland, gut, tegument, and stem cells were tested. Mean ± sd. (B) Double FISH of h2b and tsp2 in control and foxA RNAi male juvenile parasites showing accumulation of stem cells (h2b+) and progenitor (tsp2+) near the missing esophageal gland (single confocal sections). Bracket: anatomical location of the esophageal gland. Number of worms analyzed: 17 control RNAi worms; 18 foxA RNAi worms from three independent RNAi batches. (C) foxA knockdown in adults leads to down-regulation of known esophageal gland markers. qPCR analysis of RNA isolated from adult head fragments collected after 2 weeks (5 feedings) of exposure to foxA dsRNA. Head fragments were cut posterior to the ventral sucker. Mean ± sd. (D) FISH of different cell-type markers in adult worms showing similarities in their expression patterns between control and foxA knockdown animals (maximum-intensity projections). N=9 control RNAi worms; N=12 foxA RNAi worms.
Figure S5. Characterization of stunted foxA RNAi parasites recovered after transplantation. (A) Representative brightfield images of recovered parasites 25 days post-transplantation. Note that foxA knockdown animals are shorter and thinner than control animals. (B) FISH of different cell-type markers in control and stunted foxA RNAi worms recovered from WT and Rag1^{−/−} mice >3 weeks post-transplantation. Note that foxA RNAi worms recovered from Rag1^{−/−} mice lack PNA lectin and have little or no expression of meg4.1, while they express cathepsin B at high levels along the thickened gut branch. Also, note a slight increase in the number of stem cells (h2b⁺) and progenitors (tsp2⁺) near the missing esophageal gland, similar to juvenile worms after foxA knockdown. Other cell-type markers are expressed at similar levels in foxA RNAi worms compared to control worms recovered from WT or Rag1^{+/−} mice (maximum-intensity projections). Scale bars: 50µm.
Figure S6. Reproductive system regression in foxA RNAi schistosomes and reduced disease pathology in host mice. (A) Characterization of the reproductive system of control and
foxA RNAi schistosomes recovered from WT and Rag^{-/-} mice >3 weeks post-transplantation. FISH to detect h2b, which is expressed in germ cells and vitellocytes (6), in addition to stem cells (maximum-intensity projections). Scale bars: 50 µm. (B) H&E staining of liver sections recovered from WT, Rag1^{-/-}, and µMT^{-/-} mice >3 weeks after transplantation of control or foxA RNAi parasites. Note that dead worms are found in WT mice that received foxA RNAi parasites but are not found in Rag1^{-/-} and µMT^{-/-} mice. Also, note that granulomas were formed around eggs laid in livers of WT and µMT^{-/-} mice but not formed around eggs laid in livers of Rag1^{-/-} mice. Eggs were not found in any mice that received foxA RNAi parasites. Scale bars: 100 µm. (C) Percentage of foxA RNAi parasites recovered 6 days after transplantation. Mean ± sd. Statistical analysis: Unpaired t-test. (D) Length of parasites recovered 6 days after transplantation. Each dot represents a single male worm. Mean ± sd. Statistical analysis: Unpaired t-test.
Table S1. Raw data of parasite transplantation and recovery (Figure 5A)

Experiment	Mouse Strain / Background	Mouse Genotype	Mouse Sex	Parasite age (weeks) at start of RNAi	Parasite age (weeks)	Parasite condition	Parasite condition	Days post-transplantation (days)	Days fed RNAi	% Recovery
Exp 1 Swiss-Webster	wild type	female	5	pJC (control)	6	feedings	15	10	4	40.0
Exp 1 Swiss-Webster	wild type	female	5	pJC (control)	6	feedings	15	10	9	90.0
Exp 1 Swiss-Webster	wild type	female	5	pJC (control)	6	feedings	15	11	6	54.5
Exp 1 Swiss-Webster	wild type	female	5	pJC (control)	6	feedings	15	12	1	8.3
Exp 1 Swiss-Webster	wild type	female	5	foxA	6	feedings	15	9	0	0.0
Exp 1 Swiss-Webster	wild type	female	5	foxA	6	feedings	15	12	3	25.0
Exp 1 Swiss-Webster	wild type	female	5	foxA	6	feedings	15	8	1	12.5
Exp 1 Swiss-Webster	wild type	female	5	foxA	6	feedings	15	9	3	33.3
Exp 1 Swiss-Webster	wild type	female	5	foxA	6	feedings	15	3	1	33.3
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	9	4	44.4
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	11	5	45.5
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	6	3	50.0
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	5	4	80.0
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	7	3	42.9
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	9	7	77.8
Exp 1 Swiss-Webster	wild type	female	5.5	pJC (control)	5	feedings	25	5	1	20.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	10	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	8	2	25.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	12	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	14	1	7.1
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	13	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	15	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	5	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	6	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	17	4	23.5
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	11	0	0.0
Exp 1 Swiss-Webster	wild type	female	5.5	foxA	5	feedings	25	12	2	16.7
Exp 3 BL6	wild type	male	5	pJC (control)	6	feedings	21	10	6	60.0
Exp	BL6	wild-type	male	5 weeks	pJC (control)	6 feedings	21 days	6	4	66.7
-----	-----	-----------	------	---------	--------------	-----------	---------	---	---	-----
Exp 3	BL6	wild-type	male	5 weeks	foxA	6 feedings	21 days	9	0	0.0
Exp 3	BL6	Rag1 KO	male	5 weeks	pJC (control)	6 feedings	21 days	8	7	87.5
Exp 3	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	7	6	85.7
Exp 3	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	8	1	12.5
Exp 4	BL6	wild-type	male	5 weeks	pJC (control)	7 feedings	22 days	18	12	66.7
Exp 4	BL6	wild-type	male	5 weeks	pJC (control)	7 feedings	22 days	20	15	75.0
Exp 4	BL6	wild-type	male	5 weeks	pJC (control)	7 feedings	21 days	16	9	56.3
Exp 4	BL6	wild-type	male	5 weeks	pJC (control)	4 feedings	21 days	16	9	56.3
Exp 4	BL6	wild-type	male	5 weeks	foxA	7 feedings	22 days	16	0	0.0
Exp 4	BL6	wild-type	male	5 weeks	foxA	7 feedings	22 days	9	3	33.3
Exp 4	BL6	wild-type	male	5 weeks	foxA	7 feedings	22 days	18	2	11.1
Exp 4	BL6	wild-type	male	5 weeks	foxA	7 feedings	22 days	18	1	5.6
Exp 4	BL6	wild-type	male	5 weeks	foxA	4 feedings	21 days	16	0	0.0
Exp 4	BL6	Rag1 KO	male	5 weeks	pJC (control)	7 feedings	22 days	19	4	21.1
Exp 4	BL6	Rag1 KO	male	5 weeks	pJC (control)	7 feedings	22 days	20	9	45.0
Exp 4	BL6	Rag1 KO	male	5 weeks	pJC (control)	7 feedings	22 days	16	11	68.8
Exp 4	BL6	Rag1 KO	male	5 weeks	pJC (control)	4 feedings	21 days	16	5	31.3
Exp 4	BL6	Rag1 KO	male	5 weeks	foxA	7 feedings	22 days	10	1	10.0
Exp 4	BL6	Rag1 KO	male	5 weeks	foxA	7 feedings	22 days	17	11	64.7
Exp 4	BL6	Rag1 KO	male	5 weeks	foxA	7 feedings	22 days	17	12	70.6
Exp 4	BL6	Rag1 KO	male	5 weeks	foxA	7 feedings	22 days	19	13	68.4
Exp 4	BL6	Rag1 KO	male	5 weeks	foxA	7 feedings	22 days	17	9	52.9
Exp 4	BL6	muMT KO	male	5 weeks	pJC (control)	4 feedings	21 days	17	11	64.7
Exp 4	BL6	muMT KO	male	5 weeks	pJC (control)	7 feedings	21 days	16	2	12.5
Exp 4	BL6	muMT KO	male	5 weeks	pJC (control)	7 feedings	21 days	12	10	83.3
Exp 4	BL6	muMT KO	male	5 weeks	pJC (control)	4 feedings	21 days	16	15	93.8
Exp 4	BL6	wild-type	male	5 weeks	pJC (control)	8 feedings	22 days	15	9	60.0
Exp 5	BL6	wild-type	male	5 weeks	pJC (control)	8 feedings	22 days	16	9	56.3
Exp 5	BL6	wild-type	male	5 weeks	foxA	8 feedings	22 days	18	0	0.0
Exp 5	BL6	wild-type	male	5 weeks	foxA	8 feedings	22 days	16	0	0.0
Exp 5	BL6	wild-type	male	5 weeks	foxA	5 feedings	22 days	16	3	18.8
Exp 5	BL6	wild-type	male	5 weeks	foxA	5 feedings	22 days	18	0	0.0
Exp	BL6	Rag1 KO	male	5 weeks	jC (control)	5 feedings	21 days	7	4	57.1
-----	-----	---------	------	---------	-------------	-----------	--------	---	---	-----
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	5 feedings	21 days	7	4	100.0
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	8 feedings	21 days	12	11	91.7
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	8 feedings	21 days	19	17	89.5
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	5 feedings	22 days	14	9	64.3
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	5 feedings	22 days	21	16	75.0
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	8 feedings	21 days	16	3	18.8
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	8 feedings	22 days	10	6	60.0
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	8 feedings	22 days	15	11	73.3
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	8 feedings	22 days	13	1	7.7
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	8 feedings	22 days	15	3	20.0
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	13	13	100
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	18	1	6.555555556
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	15	12	80
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	17	16	94.1176471
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	13	13	100
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	17	14	82.3529412
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	14	12	85.7142857
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	16	12	75
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	13	0	0
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	18	12	66.6666666
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	11	8	72.2727272
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	12	1	8.333333333
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	14	12	85.7142857
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	13	13	100
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	13	11	84.6153846
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	14	13	92.8571429
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	15	7	46.6666666
Exp 5	BL6	Rag1 KO	male	5 weeks	foxA	6 feedings	21 days	14	9	64.2857143
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	14	10	71.4285714
Exp 5	BL6	Rag1 KO	male	5 weeks	jC (control)	6 feedings	21 days	12	6	50
Table S2. Raw data of worm length measures (millimeters), >3 weeks post-transplantation (Figure 5B)

Exp	UBC-GFP	wild-type	male	7 weeks	pJC (control)	8 feedings	6 days	15	14	93.333333 3	
4.92	6.71	3.56	2.71	4.88	6.06	3.41	2.88	9.13	8.35	2.63	2.23
6.38	4.72	2.58		3.55	4.62	2.56	2.75	7.36	9.30	3.32	2.55
4.72	5.21	3.26		3.84	4.95	2.59	2.65	8.84	6.50	1.81	2.92
5.46	5.64	2.93		5.33	4.45	2.76	2.03	7.43	9.53	1.94	3.04
5.66	5.42	3.16		5.37	3.78	2.22	2.58	7.75	8.39	3.47	2.33
4.32	6.96	3.45		4.53	4.53	2.52	2.04	7.48	8.00	2.11	3.38
5.65	3.82	2.26		3.37	5.26	3.01	2.92	5.79	9.29	2.78	2.76
10.30	5.68	2.21		3.58	4.01	2.67	2.65	8.71	8.26	2.72	2.57
9.83	5.04	3.01		4.69	3.69	2.16	2.34	8.88	4.01	2.06	2.36
9.87	4.69	2.75		6.27	3.25	2.26	1.92	6.60	6.49	3.73	2.66
7.67	5.34	3.15		4.59	4.00	2.45	1.94	4.99	5.71	4.62	2.47
8.70	7.88			6.48	5.73	2.51	2.55	5.60	4.48	3.36	1.92
7.17	8.60			6.26	4.31	2.97	2.69	5.21	7.44	4.37	2.12
6.23	8.09			6.45	6.50	2.37	2.65	6.95	6.16	4.07	
5.81	8.39			6.04	5.44	2.67	1.83	8.44	6.93	3.04	
9.05	7.86			6.69	5.96	4.04	2.54	5.35	6.18	3.71	
8.94	8.33			3.30	6.41	2.62	4.03	7.45	4.85	3.34	
7.45	8.73			5.54	5.14	2.52	2.35	5.59	5.00	3.40	
5.55	7.82			6.15	3.54	2.82	4.09	5.23	9.12	2.28	
8.20	5.46			7.72	5.72	3.87	4.43	6.95	9.68	2.82	
7.81	9.00			4.43	5.18	3.57	2.55	6.81	7.81	3.03	
6.91	7.75			6.28	7.07	3.54	4.19	6.50	8.88	2.32	
8.88	7.29			6.19	6.24	2.87	3.14	6.32	6.72	2.91	
5.36	6.90			6.51	7.05	3.01	2.06	9.47	8.98	3.16	
7.92	7.81			4.82	5.03	2.56	3.27	7.76	8.50		
7.90	7.33			6.79	5.02	4.04	3.43	7.92	7.32		
6.94	7.19			2.97	7.90	3.07	2.51	8.52	9.46		
7.46	6.88			4.97	7.37	3.31	3.29	9.98	8.82		
7.66	7.19			4.43	7.90	2.82	4.18	8.43	8.80		
5.79	8.52			7.75	9.29	2.66	2.60	8.43	8.83		
7.48	8.27			8.98	4.82	2.97	3.79	8.80	6.07		
---	---	---	---	---	---	---					
5.81	8.30	7.39	9.74	3.21	2.85	7.78	7.80				
6.06	7.05	7.42	6.20	2.47	2.93	8.24	6.44				
7.88	7.49	7.00	6.79	3.73	2.91	8.20	9.49				
4.19	6.80	7.78	7.29	3.74	2.86	4.51	9.65				
5.94	7.52	6.96	7.34	2.61	4.01	8.40	8.92				
4.93	7.44	6.45	7.92	4.34	3.07	8.37	10.97				
8.20	5.50	6.88	7.87	3.69	2.89	6.40	8.80				
6.84	5.14	8.01	6.99	5.26	2.83	6.77	10.48				
7.23	5.92	8.20	8.95	2.40	3.02	4.26	10.27				
7.82	6.55	8.79	9.38	4.54	2.50	6.36	10.70				
6.50	6.39	4.47	7.70	4.02	2.00	6.96	10.49				
5.64	4.92	8.19	8.48	3.64	2.84	9.49	9.96				
7.08		7.13	7.60	3.68	2.79	8.20	9.43				
6.49		8.26	9.04	3.68	3.29	9.22	10.77				
5.94		8.99	8.20	3.11	3.69	9.37	8.77				
7.56		8.72	6.74	3.30	2.30	8.80	5.54				
7.30		8.14	5.78	2.88	2.37	7.81	5.86				
6.81		9.34	9.34	3.55	2.57	4.81	4.69				
7.69		8.34	8.42	2.91	2.53	9.25	5.59				
5.59		8.49	6.93	1.98	2.54	8.97	6.31				
7.05		7.01	5.94	2.04	2.93	7.81	5.45				
2.35		8.43	6.47	3.19	2.87	8.12	6.05				
4.11		7.24	5.40	3.87	3.00	9.09	6.64				
5.98		8.38	8.37	3.21	2.28	9.28					
6.61		8.01	7.03	3.06	2.09	9.61					
6.00		6.65	5.48	3.50	2.58	7.97					
5.96		6.61	7.18	2.37	2.18	8.15					
5.77		5.89	7.31	4.03	1.94	8.97					
6.36		7.04	7.04	2.42	3.10	6.94					
6.68		6.80	2.94	2.93	5.95						
5.87		5.05	3.77	2.14	5.55						
5.96		6.98	3.77	2.84	3.96						
6.60		3.96	2.19	3.79							
6.11		3.28	6.38								
7.70		3.39	6.41								
8.37		3.17	4.76								
6.56		2.32	3.52								
7.55		3.19									
7.54		3.32									
Table S3. Oligonucleotide sequence used for this study

Gene Name	Gene ID	Purpose	Forward Sequence	Reverse Sequence
h2b	Smp_108390	ISH	GCCCTCCTAAAGTTGTCTGG	GACCCACTGTACTCGTCAG
tsp2	Smp_181530	ISH	ATGGGCTCTGTGGTGAGT	CCGGCTTTATAGCCAATAAG
cathepsin B	Smp_103610	ISH	TCAGATTCCAGGAAGAAATGG	TCATCACGACACGCACTAT
meg4.1	Smp_163630	ISH	TTTGATATATATGATGTTGTTGA	ATTTTTTGTCAATAGATTTTGG
foxA	Smp_331700	ISH	GGACCATACCATTTCTATTG	GAGGTGTTGGAGGAAGAA
pla2	Smp_031190	ISH	TGGTGAGAATTAGAGGGCTTTT	ACTTTAGCTTGGGGCCATTTT
7b2	Smp_073270	ISH	GTGCCGATCAATTTGCTTTA	GTGCCGAGAGAAGCACTAT
actin	Smp_307020/307010	ISH	CAGTGTTCCCTCCATCGTT	GTGAACAATACCAGCAG
gtp-4	Smp_105410	ISH	ATCTCTCGTGGGTGTAATCG	CTGTTGACGCTTTGTTGGA
foxA	Smp_331700	qPCR	TCACCTCAACAGAAAACA	TCTTCCTTCTGCTATGTTG
foxA	Smp_331700	qPCR	CAGGGAAATGTTGAAAATTG	TTGTTGCGTTGGCCATT
meg4.1	Smp_163630	qPCR	CAATTACCCAGGAGGAGAAGA	AAAATCGGCTATGGGACTT
meg4.1	Smp_163630	qPCR	CAATTACCCAGGAGGAGAAGA	AAAATCGGCTATGGGACTT
meg8b	Smp_172180	qPCR	AGAACATCTATTTTGGGAGACG	GTTTGCGTTGGGACCTTT
meg14	Smp_124000	qPCR	CCAGGAATACGCCAGAATG	ATCCGCCACAATCTCCAG
meg15	Smp_010550	qPCR	CAAGGTTCAAGAAGAATCCACA	TCCGCGTTGATGCTAGGAC
pla2	Smp_031190	qPCR	TGGCCGAGTCTTCTTCTTCTC	GGTGCGAGATCATGTTGTA

Movie S1 (separate file). Recovered foxA RNAi parasites >3 weeks post-transplantation are stunted.

Movie S2 (separate file). Feeding of GFP+ immune cells *in vitro* in control and foxA knockdown schistosomes.