Abstract

For a weighted directed multigraph, let \(f_{ij} \) be the total weight of spanning converging forests that have vertex \(i \) in a tree converging to \(j \). We prove that \(f_{ij} f_{jk} = f_{ik} f_{jj} \) if and only if every directed path from \(i \) to \(k \) contains \(j \) (a graph bottleneck equality). Otherwise, \(f_{ij} f_{jk} < f_{ik} f_{jj} \) (a graph bottleneck inequality). In a companion paper [1] (P. Chebotarev, A new family of graph distances, arXiv preprint math.CO/0810.2717, 2008. http://arXiv.org/abs/0810.2717. Submitted), this inequality underlies, by ensuring the triangle inequality, the construction of a new family of graph distances. This stems from the fact that the graph bottleneck inequality is a multiplicative counterpart of the triangle inequality for proximities.

Keywords: Spanning converging forest; Matrix forest theorem; Laplacian matrix

AMS Classification: 05C50, 05C05, 15A51

1 Introduction

Let \(\Gamma \) be a weighted directed multigraph with vertex set \(V(\Gamma) = \{1, \ldots, n\}, n > 1 \). We assume that \(\Gamma \) has no loops. For \(i, j \in V(\Gamma) \), let \(n_{ij} \in \{0, 1, \ldots\} \) be the number of arcs emanating from \(i \) to \(j \) in \(\Gamma \); for every \(p \in \{1, \ldots, n_{ij}\} \), let \(w_{ij}^p > 0 \) be the weight of the \(p \)-th arc directed from \(i \) to \(j \) in \(\Gamma \); let \(w_{ij} = \sum_{p=1}^{n_{ij}} w_{ij}^p \) (if \(n_{ij} = 0 \), we set \(w_{ij} = 0 \)) and \(W = (w_{ij})_{n \times n} \). \(W \) is the matrix of total arc weights. The outdegree and indegree of vertex \(i \) are \(\text{od}(i) = \sum_{j=1}^{n} n_{ij} \) and \(\text{id}(i) = \sum_{j=1}^{n} n_{ji} \), respectively.

A converging tree is a weakly connected weighted digraph in which one vertex, called the root, has outdegree zero and the remaining vertices have outdegree one. A converging forest is a weighted digraph all of whose weakly connected components are converging trees. The roots of these trees are referred to as the roots of the converging forest. A spanning converging forest of \(\Gamma \) is called an in-forest of \(\Gamma \).

By the weight of a weighted digraph \(H, w(H) \), we mean the product of the weights of all its arcs. If \(H \) has no arcs, then \(w(H) = 1 \). The weight of a set \(S \) of digraphs, \(w(S) \), is
the sum of the weights of the digraphs belonging to \(S \); the weight of the empty set is zero. If the weights of all arcs are unity, i.e., the graphs in \(S \) are actually unweighted, then \(w(S) \) reduces to the cardinality of \(S \).

For a fixed \(\Gamma \), by \(\mathcal{F}^{-\bullet} \) and \(\mathcal{F}^{i-j} \) we denote the set of all in-forests of \(\Gamma \) and the set of all in-forests of \(\Gamma \) that have vertex \(i \) belonging to a tree rooted at \(j \), respectively. Let \(f = w(\mathcal{F}^{-\bullet}) \) and

\[
 f_{ij} = w(\mathcal{F}^{i-j}), \quad i, j \in V(\Gamma);
\]

by \(F \) we denote the matrix with entries \(f_{ij} \): \(F = (f_{ij})_{n \times n} \). \(F \) is called the matrix of in-forests of \(\Gamma \).

Let \(L = (\ell_{ij}) \) be the Laplacian matrix of \(\Gamma \), i.e.,

\[
 \ell_{ij} = \begin{cases}
 -w_{ij}, & j \neq i, \\
 \sum_{k \neq i} w_{ik}, & j = i.
 \end{cases}
\]

Consider the matrix

\[
 Q = (q_{ij}) = (I + L)^{-1}. \tag{2}
\]

By the matrix forest theorem\[^2\] \[^3\], for any weighted digraph \(\Gamma \), \(Q \) does exist and

\[
 q_{ij} = \frac{f_{ij}}{f}, \quad i, j = 1, \ldots, n. \tag{3}
\]

Therefore \(F = fQ = f \cdot (I + L)^{-1} \). The matrix \(Q \) can be considered as a proximity (similarity) matrix of \(\Gamma \) \[^2\] \[^6\].

In Section 2, we present the graph bottleneck inequality involving the \(f_{ij} \)'s and a necessary and sufficient condition of its reduction to equality.

2 A graph bottleneck inequality and a graph bottleneck equality

Theorem 1 Let \(\Gamma \) be a weighted directed multigraph and let the values \(f_{ij} \) be defined by \(^1\). Then for every \(i, j, k \in V(\Gamma) \),

\[
 f_{ij} f_{jk} \leq f_{ik} f_{jj}. \tag{4}
\]

Moreover,

\[
 f_{ij} f_{jk} = f_{ik} f_{jj} \tag{5}
\]

if and only if every directed path from \(i \) to \(k \) contains \(j \).

\[^1\] Versions of this theorem for undirected (multi)graphs can be found in \[^4\] \[^5\].
Since (4) reduces to (5) when \(j \) is a kind of bottleneck in \(\Gamma \), (5) is called a \textit{graph bottleneck equality}; by the same reason, (4) is referred to as a \textit{graph bottleneck inequality}. It is readily seen that the graph bottleneck inequality is a multiplicative counterpart of the triangle inequality for proximities (see, e.g., [2]).

It turns out that it is not easy to construct a direct bijective proof to Theorem 1. We present a different proof; it requires some additional notation and two propositions given below.

For a fixed multidigraph \(\Gamma \), let us choose an arbitrary \(\varepsilon > 0 \) such that \(0 \leq \varepsilon \cdot \max_{1 \leq i \leq n} \ell_{ii} < 1 \).

It is easy to verify that the matrix \(P = (p_{ij}) = I - \varepsilon L \) (6) is row stochastic: \(0 \leq p_{ij} \leq 1 \) and \(\sum_{k=1}^{n} p_{ik} = 1, \ i, j = 1, \ldots, n \).

Denote by \(\Gamma^\circ \) the weighted multidigraph with loops whose matrix \(W(\Gamma^\circ) \) of total arc weights is \((1+\varepsilon)^{-1}P \). More specifically, every vertex \(i \) of \(\Gamma^\circ \) has a loop with weight \((1+\varepsilon)^{-1}p_{ii} \); the remaining arcs of \(\Gamma^\circ \) are the same as in \(\Gamma \), their weights being the corresponding weights in \(\Gamma \) multiplied by \((1+\varepsilon)^{-1} \varepsilon \).

Recall that a \(v_0 \to v_k \) \textit{route} in a multidigraph with loops is an alternating sequences of vertices and arcs \(v_0, x_1, v_1, \ldots, x_k, v_k \) where each arc \(x_i \) is \((v_{i-1}, v_i) \). The length of a route is the number \(k \) of its arcs (including loops). The \textit{weight} of a route is the product of the weights of all its arcs. We assume that for every vertex \(i \), there is a unique route of length 0 from \(i \) to \(i \), the weight of this route being 1. The \textit{weight of a set of routes} is the total weight of the routes the set contains.

Let \(r_{ij} \) be the weight of the set \(\mathcal{R}^{ij} \) of all \(i \to j \) routes in \(\Gamma^\circ \), provided that this weight is finite (this reservation is essential because the set of \(i \to j \) routes is infinite whenever \(j \) is reachable from \(i \)). \(R = (r_{ij})_{n \times n} \) will denote the \textit{matrix of the total weights of routes}.

Proposition 1 For every weighted multidigraph \(\Gamma \) and every \(\varepsilon > 0 \) such that \(0 \leq \varepsilon \max_{1 \leq i \leq n} \ell_{ii} < 1 \), the matrix \(R \) of the total weights of routes in \(\Gamma^\circ \) exists and it is proportional to the matrix \(F \) of \textit{in-forests} of \(\Gamma \).

Proof. Observe that for every \(k = 0, 1, 2, \ldots \), the matrix of total weights of \(k \)-length routes in \(\Gamma^\circ \) is \(((1+\varepsilon)^{-1}P)^k \). Therefore the matrix \(R \), whenever it exists, can be expressed as follows:

\[
R = \sum_{k=0}^{\infty} ((1+\varepsilon)^{-1}P)^k. \tag{7}
\]

Since the spectral radius of \(P \) is 1 and \(0 < (1+\varepsilon)^{-1} < 1 \), the sum in (7) does exist\(^2\); therefore

\(^2\)On counting routes see [7]. Related finite topological representations that involved paths were obtained in [8]. For a connection with matroid theory see, e.g., [9].
\(R = (I - (1 + \varepsilon)^{-1})^{-1} = (I - (1 + \varepsilon)^{-1}(I - \varepsilon L))^{-1} \)
\[
= \left(\frac{\varepsilon}{1 + \varepsilon} (I + L) \right)^{-1} = (1 + \varepsilon^{-1}) Q = (1 + \varepsilon^{-1}) f^{-1} F,
\]
which completes the proof.

Proposition 2 For any weighted multidigraph with loops and any vertices \(i, j, \) and \(k, \) if the total weights of routes \(r_{ij}, r_{jj}, r_{jk}, \) and \(r_{ik} \) are finite, then
\[
r_{ij} r_{jk} \leq r_{ik} r_{jj}. \tag{8}
\]
Moreover,
\[
r_{ij} r_{jk} = r_{ik} r_{jj} \tag{9}
\]
if and only if every directed path from \(i \) to \(k \) contains \(j.\)

Proof. Suppose that the total weights of routes \(r_{ij}, r_{jj}, r_{jk}, \) and \(r_{ik} \) are finite. Let \(R_{ij}^{(1)} \) be the set of all \(i \to j \) routes that contain only one appearance of \(j. \) Let \(r_{ij}^{(1)} = w(R_{ij}^{(1)}). \) Then every \(i \to j \) route \(r_{ij} \in R_{ij}^{ij} \) can be uniquely decomposed into a route \(r_{ij}^{(1)} \in R_{ij}^{ij}(1) \) and a route (possibly, of length 0) \(r_{jj} \in R_{jj}^{jj}. \) And vice versa, linking an arbitrary route \(r_{ij}^{(1)} \in R_{ij}^{ij}(1) \) with an arbitrary \(r_{jj} \in R_{jj}^{jj} \) results in a certain route \(r_{ij} \in R_{ij}^{ij}. \) This determines a natural bijection between \(R_{ij}^{ij} \) and \(R_{ij}^{ij(1)} \times R_{jj}^{jj}. \) Therefore
\[
r_{ij} = r_{ij}^{(1)} r_{jj}. \tag{10}
\]

Let \(R_{ijk} \) and \(R_{ijk}^{jk} \) be the sets of all \(i \to k \) routes that contain and do not contain \(j, \) respectively. Then \(R_{ik} = R_{ijk} \cup R_{ijk}^{jk} \) and \(R_{ijk} \cap R_{ijk}^{jk} = \emptyset, \) consequently,
\[
r_{ik} = r_{ijk} + r_{ijk}^{jk}, \tag{11}
\]
where \(r_{ijk} = w(R_{ijk}) \) and \(r_{ijk}^{jk} = w(R_{ijk}^{jk}). \)

Furthermore, by the argument similar to that justifying (10) one obtains
\[
r_{ijk} = r_{ij}^{(1)} r_{jk}. \tag{12}
\]

Combining (11), (12), and (10) yields
\[
r_{ik} r_{jj} = (r_{ijk} + r_{ijk}^{jk}) r_{jj} = r_{ij}^{(1)} r_{jk} r_{jj} + r_{ijk} r_{jj} = r_{ij} r_{jk} + r_{ijk} r_{jj} \geq r_{ij} r_{jk},
\]
with the equality if and only if \(R_{ijk}^{jk} = \emptyset. \)

Proof of Theorem 1. Theorem 1 follows immediately by combining Propositions 1 and 2.

Finally, consider the graph bottleneck inequality and the graph bottleneck equality for undirected graphs.
Corollary 1 (to Theorem 1) Let G be a weighted undirected multigraph and let f_{ij}, $i, j \in V(G)$, be the total weight of all spanning rooted forests of G that have vertex i belonging to a tree rooted at j. Then for every $i, j, k \in V(G)$,

$$f_{ij} f_{jk} \leq f_{ik} f_{jj}.$$ \hspace{1cm} (13)

Moreover,

$$f_{ij} f_{jk} = f_{ik} f_{jj} \hspace{1cm} (14)$$

if and only if every path from i to k contains j.

Proof. Consider the weighted multidigraph Γ obtained from G by replacing every edge by two opposite arcs carrying the weight of that edge. Then, by the matrix forest theorems for weighted and unweighted graphs, $f_{ij}(G) = f_{ij}(\Gamma)$, $i, j \in V(G)$. Observe that for every $i, j, k \in V(G)$, every path from i to k contains j if and only if every directed path in Γ from i to k contains j. Therefore, by virtue of Theorem 1, inequality (13) follows for G; moreover, equality (14) holds true if and only if every path in G from i to k contains j. \hfill \square

In a companion paper [1], the graph bottleneck inequality for undirected graphs is used to ensure the triangle inequality for a new parametric family $\{d_\alpha(\cdot, \cdot)\}$ of graph distances. In turn, the bottleneck equality provides a necessary and sufficient condition under which the triangle inequality $d_\alpha(i, j) + d_\alpha(j, k) \geq d_\alpha(i, k)$ for a triple i, j, k of graph vertices reduces to equality.

References

[1] P. Chebotarev, A new family of graph distances, arXiv preprint math.CO/0810.2717, 2008. \[http://arXiv.org/abs/0810.2717\]. Submitted.

[2] P. Yu. Chebotarev, E. V. Shamis, The matrix-forest theorem and measuring relations in small social groups, Autom. Remote Control 58 (1997) 1505–1514.

[3] P. Chebotarev, R. Agaev, Forest matrices around the Laplacian matrix, Linear Algebra Appl. 356 (2002) 253–274.

[4] P. Yu. Chebotarev, E. Shamis, On the proximity measure for graph vertices provided by the inverse Laplacian characteristic matrix, in: Abstracts of the conference “Linear Algebra and its Applications,” 10–12 July, 1995, University of Manchester, Manchester, UK, 1995, pp. 6–7, \[http://www.ma.man.ac.uk/~higham/laa95/abstracts.ps\]

[5] R. Merris, Doubly stochastic graph matrices, Publikacije Elektrotehnickog Fakulteta Univerziteta U Beogradu, Serija: Matematika 8 (1997) 64–71.

[6] P. Chebotarev, Spanning forests and the golden ratio, Discrete Appl. Math. 156 (2008) 813–821.
[7] P. W. Kasteleyn, Graph theory and crystal physics, in: F. Harary (Ed.), Graph Theory and Theoretical Physics, Academic Press, London, 1967, pp. 43–110.

[8] J. Ponstein, Self-avoiding paths and the adjacency matrix of a graph, SIAM J. Appl. Math. 14 (1966) 600–609.

[9] A. Schrijver, Matroids and linking systems, ser. Mathematics Centre Tracts, No. 88. Mathematics Centre, Amsterdam, 1978.