Application of introduced nano-diamonds for the study of carbon condensation during detonation of high explosives

K. A. Tena,*, V. M. Aulchenkoc, L. A. Lukjanchikova, E. R. Pruuela,
L. I. Shekhtmanc, B. P. Tolochob, I. L. Zhoginb, V. V. Zhulanovc

aLavrentjev Institute for Hydrodynamics SB RAS, Lavrentjev ave. 15, 630090 Novosibirsk, Russian Federation
bInstitute of Solid State Chemistry SB RAS, Kutateladze str. 18, 630128 Novosibirsk, Russian Federation
cBudker Institute of Nuclear Physics SB RAS, Lavrentjev ave. 11, 630090 Novosibirsk, Russian Federation

Abstract

This paper describes experimental studies of the formation of nano-diamonds during detonation of TNT/RDX 50/50 mixture with small-angle x-ray scattering (SAXS) method at a synchrotron radiation beam on VEPP-3 accelerator. A new experimental method with introduction of nano-diamonds into the explosive has been applied. Inclusion of the diamonds obtained after detonation into the TNT and RDX explosives allows modelling of the case of instant creation of nano-diamonds during detonation.

Key words: Small-Angle X-ray Scattering, high explosive (HE), products of detonation, nano-diamonds

PACS: 07.85.F, 47.40.N, 78.70.D

1. Introduction

Although quite large number of publications discusses a synthesis of nano-diamonds during an explosion, the question of its formation and even more common problem of carbon condensation at detonation of an explosive with negative oxygen balance is being under discussion till the present time. An answer to this question is important for both the understanding of physics of the phenomenon and for the estimation of energy which is generated during exothermal coagulation of carbon clusters.

The first direct experimental studies of growth of an exploded nano-diamonds became possible due to application of synchrotron radiation, namely the possibility of detection of photons after small-angle diffraction with a frequency up to 4 MHz. The results obtained demonstrated that the intensity of SAXS signal started to grow from zero at the detonation front and its growth continued during several microseconds [1–2].

A hypothesis suggested based on this result, that a creation of carbon particles (including nano-diamonds) takes place beyond the chemical reaction zone (in this case its size is around 0.7 mm). However this result can be used as well as confirmation of instantaneous creation of exploded nano-diamonds. One has to suppose for that the low value of SAXS intensity at the detonation front is due to small contrast of nano-diamonds. In SAXS method the intensity of scattered signal at the first approximation is proportional to squared difference of densities of the scattering particle and the medium (detonation products – DP). At DP density in the beginning of about 2 g/cm\(^3\) the signal can be too...
small to be detected and only during DP decay, i.e. when the density is reduced, it can be registered. This can also explain a tendency for the increase of the zone of the signal maximum delay with the diameter of the explosive [2], as DP decay will take more time in such case.

In the present work the study of the starting point of nano-diamonds formation is performed during detonation of the mixture of TNT/RDX 50/50 with SAXS method at the synchrotron radiation (SR) beam of VEPP-3 accelerator. A new experimental arrangement is applied with nano-diamonds introduced beforehand into the charge of high explosive (HE). Known initial presence of nano-diamonds in pressed HE allows to determine the dynamics of exploded nano-diamonds growth with better precision.

2. Experimental technique

Experimental work has been performed in Budker INP (at VEPP-3, wiggler with 2T field, average X-ray energy of 20 keV, bunch frequency of 4-8 MHz and bunch duration of about 1 ns). Electronic circuit of the detector allows recording of 32 frames with the position distribution of scattered photons performed every 500, 250 or 125 ns. In the last case the storage ring accelerates two bunches rotating at the opposite points of the orbit. As the average current of the accelerator have to stay the same, this arrangement leads to the decrease of the signal to noise ratio (the dispersion of experimental points is larger), but allows improvement of time resolution.

The experimental set-up is shown in Fig. 1. The SR beam was collimated with the bottom (K1) and top (K2) edges, and irradiation zone was formed at the central part of the explosive charge with 1 mm height and 12–15 mm width. In front of the detector (D) the direct beam was closed with another bottom edge (K3). Scattered photons were registered by the detector. For additional monitoring a part of the direct beam irradiated the detector through an absorber (1 mm thick copper filter). The distance between the edges (K1) and (K2) was ~200 mm. The HE charge was at the distance of 700 mm from the edge K2 and at ~640 mm from the edge K3. The distance between the detector and the edge K3 was ~200 mm. Scattered radiation was registered by the detector DIMEX [3] with the vertical channel pitch of 0.1 mm. Thus the angular range covered by the measurements was ~0.006–0.34 degrees. During one flash of SR the detector recorded all channels (make one frame) and measured the distribution of SAXS as a function of the angle. As the detonation front moved along the charge axis with constant speed 7.6 km/s the series of frames gave time dependence of the SAXS distribution.

In the investigated HE TNT/RDX 50/50 the duration of the chemical reaction zone is ~0.1 s [4] and the measurements of SAXS were performed every 125 ns. VEPP-3 was operating in two bunch mode for this with bunches rotating in the opposite points of the orbit. To realize this regime the problems of positioning, focusing and phase parameters of the bunches were solved.

3. Measurement of the dynamics of SAXS from high explosives with introduced nano-diamonds

The intensity of SAXS from mono-dispersed system of nano-particles can be described by the following formulae:

\[I(s) = n(t) (\rho - \rho_0)^2 F(s), \]

where \(s = s - s_0 \) – vector of scattering (\(|s| = 4\pi \sin \theta / \lambda\), \(2\theta \) – scattering angle, \(\lambda \) – wavelength of radiation), \(n(t) \) – number of nano-particles of density \(\rho \) in a unit volume, \(\rho_0 \) – density of the medium, \(F(s) \) – form-factor of an individual particle.

In the present experiments the maximal registered scattering angle was \(2\theta_{\text{max}} = 0.014 \), minimum angle was \(2\theta_{\text{min}} = 0.0006 \). Integration in this range of angles leads to the following formulae for the integral intensity of SAXS:

\[I_0(\lambda, R) \sim R^6 (\rho - \rho_0)^2 N. \]
Total SAXS intensity can be obtained by integration through all wavelengths according to the spectrum of irradiation from VEPP-3 storage ring.

In the performed experiments the intensity in (1) is summed from scattering on atoms (molecules) and scattering on nano-particles. Analysis shows that scattering on atoms is constant and small due to strong dependence on the size in (1). The registered scattering on atoms is constant and small due to scattering on nano-particles. Analysis shows that is summed from scattering on atoms (molecules) and spectrum of irradiation from VEPP-3 storage ring.

Maximal size of particles is determined by minimal registered scattering angle θ_{min}, that is given by the accuracy of alignment of the edge that is closing the direct SR beam (around 0.5 mm). For the present experiments $d_{\text{max}} \approx \lambda/\theta_{\text{min}} \approx 70$.

SAXS method does not allow distinguishing of signals from nano-diamonds and non-diamond carbon forms. As shown in [5] fraction of nano-diamond in a solid residue can reach 80% (for initial HE TNT/RDX 50/50).

In all experiments detecting SAXS [2] the signal started from zero in the zone of maximal compression. One of the possible reasons of such behavior of SAXS can be very low contrast $(\rho_D - \rho_1)^2$ of nano-diamond in this moment. At the density of HE in the chemical reaction zone of about $\rho_1 \sim 2.1 \text{ g/cm}^3$ the SAXS signal might not be visible for the detector and only during the decay of detonation products, i.e. reduction of the density, it becomes detectable. Thus it is necessary to know if this method can distinguish condensed nano-diamonds $(\rho_D \sim 3.5 \text{ g/cm}^3)$ at the background of shock compressed HE.

In order to answer this question the experiments on SAXS measurements were performed with detonation of TNT and RDX with introduced 8% (weight fraction) of nano-diamonds produced by NPO “Altaj”. Such amount of nano-diamonds corresponds to its yield at detonation of TNT/RDX 50/50 [5].

The results of the measurements of SAXS are shown in Fig.2. The initial signal level in TNT and RDX (curves B and D) corresponds to 8% of introduced nano-diamonds. At the moment when detonation front passes through (zero moment in the figure) their SAXS signal is reduced proportionally to the change of contrast. For RDX the change of signal have to be equal to factor of $(\rho_D - \rho_1)^2 / (\rho_D - \rho_0)^2 = 1.89$ where $\rho_D \sim 3.5 \text{ g/cm}^3$ is density of nano-diamonds, $\rho_0 \sim 1.71 \text{ g/cm}^3$ is initial density of RDX and $\rho_1 \sim 2.2 \text{ g/cm}^3$ is its maximal density.

For TNT the reduction of signal is equal to a factor of $(\rho_D - \rho_1)^2 / (\rho_D - \rho_0)^2 = 1.6$, where $\rho_0 = 1.69 \text{ g/cm}^3$ and $\rho_1 = 2.08 \text{ g/cm}^3$ are corresponding densities for TNT. From the plot one can see that the level of SAXS signal is one order of magnitude higher than the zero level (noise level). If at detonation of TNT/RDX 50/50 all nano-diamonds were produced within narrow chemical reaction zone (in $\sim 0.1 \mu s$), the jump of SAXS signal to the same level as in TNT and RDX with introduced nano-diamonds must be observed in this zone. The behavior of SAXS for TNT/RDX 50/50 (the curve C) demonstrates that in the chemical reaction zone the signal is practically equal to zero and minimal level of curves B and D is reached after $\sim 0.75 \mu s$ that significantly exceeds duration of the chemical reaction. The contrast factor in experiments B and C is practically the same as their decay dynamics of the explosion products differs a little. The SAXS signal in TNT/RDX 50/50 smoothly grows due to the increase of the number of nano-particles and their sizes (1), that does not confirm instant creation of detonation nano-diamonds. Due to specially taken measures the accuracy of time alignment of results of different experiments is not worse than 20 ns. Phase shift between curves B and C at similar level of the signal significantly exceeds this value.
one of TNT in spite of that the decay of detonation products in these two cases is approximately the same. Such behavior of SAXS means destruction of nano-diamonds in the decaying detonation products of RDX. And combustion happens not instantly, but behind the chemical reaction zone.

4. Conclusion

The performed experiments demonstrate that the proposed method of measurement of SAXS reliably distinguishes exploded nano-diamonds at the background of substance compressed in a detonation wave. At detonation of TNT/RDX 50/50 carbon condensation into nano-diamonds (with sizes > 2 nm) occurs behind the chemical reaction zone.

References

[1] O.V. Evdokov, M.G. Fedotov, N.Z. Lyakhov, et al., Nucl. Instr. and Meth. A 470 (2001) 236–239.
[2] A.N. Aleshaev, M.G. Fedotov, G.N. Kulipanov, et al., Combustion, Explosion, and Shock Waves 37 (2001) 585–593.
[3] V. Aulchenko, V. Zhulanov, L. Shekhtman, B. Tolochnko, I. Zhogin, O. Evdokov, K. Ten, Nucl. Instr. and Meth. A543 (2005) 350–356.
[4] K.A. Ten, O.V. Evdokov, P.I. Zubkov, et al., Combustion, Explosion, and Shock Waves 43 (2007) 204–211.
[5] V.M. Titov, V.F. Anisichkin, I.Yu. Malkov, Combustion, Explosion, and Shock Waves 35 (2007) 1174–126.