The Triton in a Finite Volume

Simon Kreuzer
in collaboration with Hans-Werner Hammer
[arXiv:1008.4499 [hep-lat]]

HISKP
Universität Bonn

15 September 2010
Overview

1 Introduction

2 Formalism
 • Pionless EFT
 • Partial Waves

3 Results
 • Physical Triton
 • Pion-Mass Dependence

4 Conclusions
Introduction

- **Aim:** Understanding of the volume dependence of the triton binding energy

- Two-body systems: Volume-dependence well known
 [Lüscher 86, 91; Beane et al. 03]

- Extraction of infinite volume scattering parameters possible

- NN-scattering lengths found to be of natural size for unphysical pion masses [Beane et al., 10]
First Lattice results in the triton channel have recently become available, but no properties were extracted [Beane et al. 09]

Three-body systems with unnaturally large scattering length show universal properties

Described by EFT using only contact interactions

Three identical bosons previously studied as a model case [SK & Hammer 09, 10]

Calculate changes to the bound state spectrum in finite volume
Formalism
Lagrangian

- Effective Lagrangian for a system of three nucleons in zero-range limit (cf., e.g., [Bedaque, Hammer, van Kolck 99])

\[
\mathcal{L} = N^\dagger \left(i\partial_t + \frac{1}{2} \nabla^2 \right) N + \frac{g_t}{2} t_j^\dagger t_j + \frac{g_s}{2} s_A^\dagger s_A \\
- \frac{g_t}{2} \left(t_j^\dagger (N^T \tau_2 \sigma_j \sigma_2 N) + \text{h.c.} \right) - \frac{g_s}{2} \left(s_A^\dagger (N^T \sigma_2 \tau_A \tau_2 N) + \text{h.c.} \right) \\
+ \mathcal{L}_3
\]

- \(t_j, s_A \): auxiliary dinucleon fields in the \(^3S_1 (^1S_0) \) channel

- \(\mathcal{L}_3 \sim (N^\dagger N)^3 \): Wigner SU(4)-symmetric 3-body contact interaction with a cutoff dependent coupling constant \(H(\Lambda) \) needed to renormalize the \(S = \frac{1}{2} \) sector
Renormalization

- Infrared finite-volume physics vs. renormalization in UV → Perform renormalization in infinite volume

- Regulate loop integrals via a cutoff Λ

- Match 2-body couplings $g_{s,t}$ with 2-body scattering lengths $a_{s,t}$

- Log-periodic dependence of $H(\Lambda)$ on the cutoff due to limit cycle

- One additional 3-body input is needed

- Renormalization in finite volume will be explicitly verified
Bound State Amplitude

- Compare residues of bound state poles in scattering amplitude
- Two coupled integral equations for two bound state amplitudes

\[
\frac{A_1}{A_2} = \frac{A_3}{A_4} + \frac{A_5}{A_6} = \frac{A_7}{A_8} + \frac{A_9}{A_10}
\]

- Energies for which integral equations are solvable \rightarrow binding energies
- Calculation of the finite volume dinucleon propagator:
 \[
 D_{s,t}(E) = \frac{32\pi}{g^2_{s,t}} \left[\frac{1}{a_{s,t}} - \sqrt{-E} + \frac{1}{L} \sum_{\vec{j} \neq \vec{0}} \frac{1}{|\vec{j}|^2} e^{-|\vec{j}|\sqrt{-EL}} \right]^{-1}
 \]
 - Reduces indeed to the infinite volume dinucleon propagator for $L \rightarrow \infty$
- Loop momenta are quantized \rightarrow Rewrite using Poisson’s sum equation
Partial Waves

Integral equation for bound state amplitude \mathcal{F}

\[
\begin{pmatrix}
\mathcal{F}_t(\vec{p}) \\
\mathcal{F}_s(\vec{p})
\end{pmatrix}
= \frac{1}{\pi^2} \sum_{\vec{n} \in \mathbb{Z}^3} \int_0^\Lambda d^3\vec{y} \ e^{i\vec{n} \cdot \vec{y}} \left[M(\vec{y}) \mathcal{Z}(\vec{p}, \vec{y}) + N(\vec{y}) \frac{2H(\Lambda)}{\Lambda^2} \right] \begin{pmatrix}
\mathcal{F}_t(\vec{y}) \\
\mathcal{F}_s(\vec{y})
\end{pmatrix}
\]

$M(\vec{y}) = \begin{pmatrix}
-d_t(\vec{y}) & 3d_s(\vec{y}) \\
3d_t(\vec{y}) & -d_s(\vec{y})
\end{pmatrix}$, \hspace{1cm} $N(\vec{y}) = \begin{pmatrix}
-d_t(\vec{y}) & d_s(\vec{y}) \\
d_t(\vec{y}) & -d_s(\vec{y})
\end{pmatrix}$

$\mathcal{Z}(\vec{p}, \vec{y}) = (p^2 + \vec{p} \cdot \vec{y} + y^2 - E)^{-1}$, \hspace{1cm} $d_{s,t}(y) = \frac{g_{s,t}^2}{8\pi} D_{s,t}(E - \frac{y^2}{2}, \vec{y})$

- Bound state amplitudes in G_1 representation of the double cover of the cubic group
- Expand angular dependence of amplitudes in terms of basis functions $|jm\rangle$ (see, e.g., [Bernard et al. 08])
- Perform angular integration and project on Jth partial wave
Partial Waves

Coupled integral equations for partial waves

\[
\begin{pmatrix}
F_t^{(J)}(y) \\
F_s^{(J)}(y)
\end{pmatrix} = \frac{4}{\pi} \int_0^\Lambda dy \, y^2 \sum_j \left[M(y) \, Z^{(\ell(J))}(p, y) + N(y) \, \frac{2H(\Lambda)}{\Lambda^2} \delta_{\ell(J),0} \right]
\]

\[
\times \left[\delta_{Jj} + \sum_{\vec{n} \in \mathbb{Z}^3 \backslash \{0\}} \sum_{\ell'} i^{\ell'} j_{\ell'}(L|\vec{n}|y) \sqrt{\frac{(2\ell(j) + 1)(2\ell' + 1)}{2\ell(J) + 1}} \right]
\]

\[
\times \sum_{m(\ell(j)), s(\frac{1}{2})} \frac{\tilde{C}_{j,m+s}}{\tilde{C}_{JM}} Y^*_{\ell'}(M-s-m)(\hat{n})(C-G \text{ coeffs}) \left(\begin{array}{c}
F_t^{(j)}(y) \\
F_s^{(j)}(y)
\end{array} \right)
\]

\[
Z^{(\ell)}(p, y) = \frac{(2\ell+1)}{py} Q_{\ell} \left(\frac{p^2 + y^2 - E}{py} \right), \quad Q_{\ell}: \text{Legendre function of the 2nd kind}
\]

\[
j_{\ell}: \text{spherical Bessel function}
\]
Specialization to $J = \frac{1}{2}$

Result for $J = \frac{1}{2}$

\[
\begin{pmatrix}
F_{t}^{(\frac{1}{2})}(y) \\
F_{s}^{(\frac{1}{2})}(y)
\end{pmatrix}
= \frac{4}{\pi} \int_{0}^{\Lambda} dy \, y^2 \sum_{j} \left(G_{1}^{+} \right)
\left[
M(y) \, Z^{(0)}(p, y) + N(y) \, \frac{2H(\Lambda)}{\Lambda^2}
\right]
\begin{pmatrix}
F_{t}^{(j)}(y) \\
F_{s}^{(j)}(y)
\end{pmatrix}
\times \left[\delta_{j, \frac{1}{2}} + \sum_{\vec{n} \in \mathbb{Z}^3 \, \vec{n} \neq \vec{0}} \sqrt{4\pi i} \, j_{\ell(j)}(L | \vec{n}| y)
\right]
\times \sum_{m(\ell(j))} (-1)^m \tilde{C}_{j,m} C_{\ell(j)m}^{j M + \frac{1}{2} M} Y_{\ell(j)m}(\hat{n})
\]

\[
Z^{(0)}(p, y) = \frac{1}{2py} \ln \left(\frac{p^2 + py + y^2 - E}{p^2 - py + y^2 - E} \right)
\]

- First approach: Neglect higher partial waves
Results
The Triton in Finite Volume

- $E_3^{\infty} = -8.4818$ MeV
- Size of the triton ~ 2 fm
- Results are renormalized
- Shift at volumes typical in Lattice QCD already more than 100%

- Fit of the form $E_3(L) = E_3(L = \infty) \left[1 + \frac{c}{L} e^{-L/L_0} \right]$

- Comparison to data from Chiral EFT on the lattice [Epelbaum et al, 10]: study higher partial waves, higher orders
Corrections – Higher Partial Waves

- Corrections from higher partial waves: More important for smaller volumes
- Inclusion straightforward but numerically expensive
- Estimate from case of three identical bosons: 20% for volumes three times larger than the state itself

L/a	$E_3(L)\, ma^2$, s-wave only	$E_3(L)\, ma^2$, $\ell = 0, 4$	δ_{rel}
∞	-5.05	N/A	N/A
1	-11.1	-11.8	6%
0.7	-19.0	-20.7	9%

[SK & Hammer, EPJ A43 (2010) 229]
Corrections – EFT

- NLO of the EFT: Corrections of types r_e/a and kr_e
- First type dominated by spin-triplet channel, about 30%
- Estimate for typical momentum in three-body bound states:
 \[\frac{2}{3} \sqrt{mB_3} \rightarrow 90 \text{ MeV for infinite volume triton} \]
- Second type about 40% for large volumes, growing with binding energy
- Inclusion of higher orders needed for precise extrapolations
- Infinite volume: Corrections up to N^2LO under control
 \[\rightarrow \text{Extension of finite volume framework straightforward} \]
Pion-Mass Dependence – Introduction

- Lattice QCD calculations are performed at unphysical pion masses
- Conjectured closeness of QCD to an infrared limit cycle in 3N-sector
- $a_s(M_\pi) = a_t(M_\pi) = \infty$ compatible w/ χEFT near $M_\pi = 197$ MeV
- Efimov effect: Excited states of the triton appear

![Graph](image)

[Hammer, Phillips, Platter, 2007]

- Pion-mass dependence of observables under control in χEFT
 → Obtain input data by chiral extrapolation
Pion-Mass Dependence – Ground State

Shift to more negative energies, small effect on the slopes
Pion–Mass Dependence – Spectrum

Excited state crosses threshold!
“Crossing volume” predictable from universality?

Simon Kreuzer (Uni Bonn)
Universality of Finite Volume Corrections?

- Form dimensionless number \(r = -mE_3 \infty L^2_{100\%} \)

- Results for ground state:

\(m_\pi \)	\(E_3 \infty / \text{MeV} \)	\(E_3 \infty / B_2 \)	\(L_{100\%} / \text{fm} \)	\(r \)
phys.	8.48	3.8	5.62	6.47
190	4.31	93	7.62	6.03
195	3.85	613	8.05	6.01
196	3.74	1,407	8.13	5.97
197	3.65	6,374	8.25	5.98
200	3.41	26,368	8.52	5.97
205	3.14	2,092	8.82	5.90

- Hints for universal behavior away from threshold

- Formula for binding energies in infinite volume [Efimov 79]

\[
mE_3 + 1/a^2 = (515)^{n-n^*} \exp[\Delta(\xi)/s_0] \kappa^2, \quad \tan \xi = -a \sqrt{mE_3}
\]

- Is there a similar formula for finite volume states with a \(\Delta(\xi, L) \)?
Summary

- Derivation of integral equations for partial waves of 3-nucleon bound state amplitude

- Numerical solution of the equations → modifications of the spectrum

- Renormalization in finite volume verified explicitly

- Infinite volume extrapolation for the triton is possible

- Calculated pion-mass dependence of triton ground and excited state in finite volume
 → Ground state: dominant shift to more negative energies, small effect on slopes
 → Excited states: Cross threshold

- Access to scattering phase shifts a la Lüscher implicit in the results
Outlook

- Include higher partial waves
- Include next-to-leading order of the EFT
- Universality in the finite volume?
 - Efimov equation for binding energies in finite volume?
 - “Crossing volume” for shallow states predictable?
- Extend formalism to include nucleon-deuteron scattering
Outlook

- Include higher partial waves
- Include next-to-leading order of the EFT
- Universality in the finite volume?
 - Efimov equation for binding energies in finite volume?
 - “Crossing volume” for shallow states predictable?
- Extend formalism to include nucleon-deuteron scattering

Thank you for your attention!
Bonus material
Introduction (2)

- Three-body systems with large scattering length show universal properties
- Described by EFT using only contact interactions
- Efimov effect: Sequence of three-body bound states [Efimov 70]
 Signature of ultraviolet limit cycle in renormalization of EFT

 ![Diagram showing three-body states](image)

- Calculate changes to the bound state spectrum in finite volume
Pion-Mass Dependence – Excited state

- $M_\pi = 190$ MeV:

L/fm	$B^{(1)}_3$/MeV	B_2/MeV
∞	0.052	0.047
19.7	0.742	0.486
14.8	0.890	0.823
14.4	0.884	0.865
14.2	N/A	0.888

- $M_\pi = 195$ MeV:

L/fm	$B^{(1)}_3$/MeV	B_2/MeV
∞	0.016	0.006
19.7	0.686	0.431
14.8	0.761	0.753
14.4	N/A	0.794

- $M_\pi = 197$ MeV:

L/fm	$B^{(1)}_3$/MeV	B_2/MeV
∞	0.009	5.7×10^{-4}
39.5	0.184	0.105
27.6	0.240	0.211
26.4	0.233	0.231
26.2	N/A	0.234

- $M_\pi = 200$ MeV:

L/fm	$B^{(1)}_3$/MeV	B_2/MeV
∞	0.038	1.3×10^{-4}
29.6	0.355	0.182
19.7	0.625	0.407
15.6	0.662	0.651
15.4	N/A	0.668