ABSTRACT

Gitelman syndrome is a rare inherited renal tubular disorder with features that resemble thiazide use, including a hypokalemic metabolic alkalosis, hypomagnesemia, hypocalciuria and a low or normal blood pressure, hyperreninemia and hyperaldosteronism. Treatment is primarily correction of the potassium and magnesium levels. The diagnosis is confirmed with genetic testing but Gitelman syndrome is often not suspected. However, the association with ectopic calcification in the retina, blood vessels and chondrocalcinosis in the joints is a useful pointer to this diagnosis. Bilateral symmetrical whitish deposits of calcium pyrophosphate are visible superotemporally on ophthalmoscopy and retinal photography but are actually located beneath the retina in the sclerochoroid. Optical coherence tomography is even more sensitive for their detection. These deposits increase in size with time, but the rate of progression slows with long-term correction of the hypomagnesemia. Calcification may be complicated by atrophy of the overlying retina and visual loss. The deposits often correlate with ectopic calcification in the aorta and coronary and cerebral vessels. Chondrocalcinosis occurs in the large joints such as the knees. Ectopic calcification in Gitelman syndrome indicates the need for more aggressive management of Mg levels. Calcification is much less common in Bartter syndrome, which itself is rarer and associated less often with hypomagnesemia.

Keywords: Bartter syndrome, chondrocalcinosis, Gitelman syndrome, hypertension

Gitelman syndrome (OMIM 263800) affects 1 in 40 000 individuals [1] and is an autosomal recessive inherited renal disease caused by mutations in the SLC12A3 gene [2], which codes for the thiazide-sensitive sodium chloride symporter (NCC) in the distal convoluted tubule [2, 3]. Affected individuals typically present in late adolescence or adulthood and have a metabolic hypokalemic alkalosis, hypomagnesemia, hypocalciuria and low or normal blood pressure, hyperreninemia and hyperaldosteronism [4]. Metabolic features resemble those found with thiazide diuretics. Some individuals have only mild symptoms such as tiredness, but others have seizures, tetany, muscle weakness, paresthesia, arrhythmias and an impaired quality of life [5]. Hypertension is not uncommon in late disease. Mutations in the SLC12A3 gene result in salt wasting, volume contraction and stimulation of renin and aldosterone secretion. The volume reduction produces a compensatory increase in proximal sodium (Na) reabsorption and passive proximal
Calcium (Ca) reabsorption that is responsible for the hypocalcemia [6]. Cell membrane depolarization in hypokalemic cells contributes to reduced magnesium (Mg) reuptake, hypomagnesemia and hypokalemic metabolic alkalosis [7]. Molecular genetic testing is not required for the diagnosis of Gitelman disease, but is helpful, especially in its distinction from Bartter syndrome. The diagnosis of Gitelman syndrome is important because treatment is available in the form of a liberal dietary salt intake and Mg and potassium (K) supplementation, but lifelong monitoring of K and Mg levels is required [4, 8].

Secondary chondrocalcinosis of the joints may require symptomatic pain relief. The clinical and metabolic features of Gitelman syndrome overlap with those found in some forms of Bartter syndrome and together these conditions represent a spectrum of clinical manifestations caused by defective chloride (Cl) reabsorption from genetic mutations acting at different locations in the nephron [9].

Bartter syndrome

Bartter syndrome is a much rarer recessively inherited disease affecting 1 in 1.2 million and characterized by a defect in the thick ascending limb of the loop of Henle [10, 11]. It also results in hypokalemic alkalosis, with low or normal blood pressure. Mg levels are often but not necessarily normal [12]. Mutations are found in SLC12A1 (NKCC2) or ROMK/KCNJ1 (neonatal form), CLCNKB (classic form), BSND (Bartter syndrome with sensorineural deafness) or CASR (autosomal dominant hypocalcemia) [13]. These genes code for the Na–K–Cl cotransporter, apical K channel or basolateral Cl channel. Mutations result in excess NaCl loss and defects in the ability to reabsorb electrolytes such as K and Ca.

Individuals with Bartter syndrome typically present in infancy or childhood with polyhydramnios, prematurity, polydipsia, polyuria, salt craving and growth retardation [14]. While both Bartter and Gitelman syndrome are associated with hypokalemic metabolic alkalosis, all individuals with Gitelman syndrome but only 20% of those with classic Bartter syndrome have hypomagnesemia. These diseases are usually differentiated by urinary calcium levels: in Gitelman syndrome, Ca excretion is low and Mg excretion is high, but in Bartter syndrome, Ca excretion is normal or high [8, 15]. Individuals with Bartter syndrome also have the elevated renin and aldosterone levels found in Gitelman syndrome. Increasingly Bartter syndrome is recognized in adults by genetic testing for variants in the Bartter genes.

Bartter syndrome is treated with K supplementation, prostaglandin synthetase inhibitors such as indomethacin and K-sparing diuretics including spironolactone [14].

Table 1. Clinical and biochemical features of eight reported cases of Gitelman syndrome with sclerochoroidal calcification (SCC)

Characteristics	Case 1 [18]	Case 2 [16]	Case 3 [17]	Case 4 [17]	Case 5 [17]	Case 6 [17]	Case 7 [19]	Case 8 [19]
Gender, age (years)	F, 49	F, 58	NA, 84	NA, 70	NA, 49	NA, 73	F, 50	F, 26
Features of SCC								
Laterality	Bilateral	Bilateral	Bilateral	Right side	Bilateral	Left side	Bilateral	Bilateral
Location	Superotemporal	Superotemporal	NA	NA	NA	NA	Superotemporal	Superotemporal
Number of lesions	Multiple	Multiple	Single	Multiple	Single	Multiple	Multiple	Multiple
Color	Yellow–white	Yellow–white	Single	Single	Single	Single	Yellow	NA
Elevation	Yes	Yes	NA	NA	NA	NA	Low	Low
Clinical features								
Muscle weakness/pain	NA	Present	Absent	Absent	Present	Absent	Absent	Absent
Arthritis	Present	NA	Absent	Absent	Present	Absent	Absent	Absent
Blood pressure	NA	NA	NA	NA	NA	NA	Low	Low
Chondrocalcinosis	Present	Present	Absent	Absent	Present	Absent	Absent	Absent
Biochemical features								
Metabolic alkalosis	Present							
Serum bicarbonate	Elevated							
Hypokalemia	Present							
Hypomagnesemia	Present							
Hypocalciuria	Present							
Hyperkalemia	Present							
Hypermagnesemia	Absent	Normal						
Serum Ca	Normal							
Parathyroid hormone	Normal							
Hyperreninism	NA	Present	Absent	Absent	Present	Absent	Absent	Absent
Hyperaldosteronism	NA	Present	Absent	Absent	Present	Absent	Absent	Absent
Ophthalmic examination								
Symptoms	None							
Visual acuity	Normal							
Anterior chamber	Normal							
Fundus examination	SCC							
Ophthalmic imaging								
Autofluorescence	NA	SCC						
B-scan	SCC	NA	SCC	SCC	SCC	SCC	SCC	SCC
Fluorescein angiography	RPE atrophy	Subretinal lesion						

SCC, sclerochoroidal calcification; NA, not available; F, female; RPE, retinal pigment epithelium.
caused by urinary K losses due to activation of the renin–angio-
tensin–aldosterone system. KCl supplements are preferred be-
cause of the associated Cl deficiency. Spironolactone binds to
the receptors at the aldosterone-dependent Na–K exchange site
in the distal convoluted tubule and increases water excretion
but retains K. Non-steroidal anti-inflammatory drugs decrease
prostaglandin E2 synthesis, which otherwise causes the pressor
response to angiotensin II. The resulting hyporeninemic hypo-
aldosteronism results in K retention. Low-dose angiotensin con-
verting enzyme (ACE) inhibitors may be used to limit the
aldosterone-mediated electrolyte disturbances. Early diagnosis
of Bartter syndrome with genetic testing and subsequent treat-
ment is critical in infants and young children. Sustained hypo-
kalemia and hyperreninemia may result in kidney failure, but
the prognosis is generally good with early treatment of the elec-
trolyte disturbance.

Retinal calcification

Retinal, or more accurately, sclerochoroidal calcification is
found in both Gitelman [16–19] and Bartter [20, 21] syndromes
but occurs more often in Gitelman syndrome because it is more
common and Mg levels are lower.

Sclerochoroidal calcification appears as solid yellow–white
irregular multilobulated and moderately elevated subretinal
lesions in the superotemporal mid-periphery between the tem-
poral arcades and the equator (Tables 1 and 2 and Figure 1). The
lesions are 4 mm wide (range 1–9) and up to 2 mm deep. They
are located within the sclera and inner surface topography dem-
onstrates ‘mountainlike’, ‘flat’, ‘rolling’, ‘rocky-rolling’ and ‘ta-
ble mountain’ patterns. Lesions are bilateral and symmetrical in
at least half the cases and sometimes multiple. These deposits
comprise Ca and possibly calcium pyrophosphate. They may be
accompanied by overlying retinal thinning and a choroidal neo-
vascular membrane [18].

Deposits are noted from about the age of 40 years, increase
in size and number with increasing years and are more com-
mon after the age of 70. The rate of progression is slower with
long-term correction of the hypomagnesemia. Calcification may
be complicated by atrophy of the overlying retina and visual
loss. The deposits often correlate with ectopic calcification in
the aorta, coronary and cerebral vessels. The deposits may also
be associated with the hypertensive retinopathy that accompa-
nies late-onset hypertension in Gitelman disease.

Vision is usually normal but is impaired when the overlying
choroid, retinal pigment epithelium and other retinal tissues
are damaged.

The deposits may be overlooked. They are usually evident
on fundus examination or retinal photography, but their loca-
tion may be just outside the normal range for retinal views.
Ultrasound (B scans), optical coherence tomography (OCT,
which resembles ultrasound but uses the reflection of light
rather than sound to define the retinal layers and demonstrate
surface topography) and orbital CT scans are all more sensitive
[19]. OCT is also useful in distinguishing sclerochoroidal calcifi-
cation from retinal nevi, melanoma and tumors.

Other rare causes of sclerochoroidal calcification include un-
derlying systemic disorders such as hyperparathyroidism, pneu-
dohypoparathyroidism, hypervitaminosis D and other causes of
calcium pyrophosphate dehydrate deposition disease [22, 23].
Often no cause is found.

Sclerochoroidal calcification must also be distinguished
from choroidal metastasis, choroidal melanoma, choroidal oste-
oma and intraocular lymphoma, which are all rare, and from

Characteristics	Case 1 [20]	Case 2 [21]
Gender, age (years)	M, 59	F, 42
Features of sclerochoroidal calcification		
Laterality	Bilateral	Bilateral
Location	Posterior pole	Superotemporal, superonasal
Number of SCCs	Multiple	Multiple
Color	White	Yellow–white
Elevation	Minimal	NA
Clinical features		
Disease duration (years)	18	26
Blood pressure	Normal	NA
Chondrocalcinosis in joints	NA	NA
Biochemical features		
Metabolic alkalosis	Present	Present
Hypokalemia	Present	Present
Hypomagnesemia	Present	Present
Hypercalciuria	Present	NA
Serum phosphate	Normal	NA
Serum calcium	Normal	Normal
Ophthalmic features		
Symptoms	None	None
Visual acuity	Normal	Normal
Anterior chamber	Normal	Normal
Fundus examination	Sclerochoroidal calcification	Sclerochoroidal calcification
Ophthalmic imaging		
OCT	NA	Sclerochoroidal calcification
B-scan	Sclerochoroidal calcification	Sclerochoroidal calcification

SCC, sclerochoroidal calcification; ST, superotemporal; SN, superonasal; OU, both eyes; NA, not available.
other even less common conditions such as chorioretinitis, regressed retinoblastoma, retinal astrocytic hamartoma, choroidal hemangioma and eccentric macular degeneration (Table 3) [24].

Chondrocalcinosis

Chondrocalcinosis of the large joints, such as knee joints, wrists, metacarpophalangeal joints, hips, shoulders and elbows, as well as ectopic calcification in the blood vessels is a feature of Gitelman syndrome [17]. Calcification affects the hyaline cartilage, fibrocartilage and other soft tissue structures, and where it affects joints is associated with arthritic pain [25]. Chondrocalcinosis also occurs in 20% of the normal elderly [25].

Calcium pyrophosphate dihydrate is deposited in the tissues (‘pseudogout’), probably due to excess extracellular inorganic pyrophosphate [16, 18]. In individuals with hypophosphatasia, a deficiency of tissue nonspecific alkaline phosphatase increases extracellular inorganic pyrophosphate resulting in calcium pyrophosphate deposition [18]. Calcium pyrophosphate precipitates with low serum Mg levels, which reduces both pyrophosphate crystal solubility and alkaline phosphatase activity [7].

Mechanism underlying ectopic calcification

In Gitelman syndrome, the low Mg level is associated with reduced alkaline phosphatase activity, resulting in excess
Table 3. Differential diagnosis for sclerochoroidal calcification [24]

Features	Choroidal calcification	Choroidal metastasis	Choroidal melanoma	Choroidal osteoma	Intraocular lymphoma
Age of onset	Elderly	Adults	Adults	Young adults	Adults
Colour	Yellow, white, orange	Homogeneous	Irregularly pigmented	Yellow-orange	Whitish
Location	Superior or inferior arcade	Macular, or within the vascular arcades	Near the optic disc		
Laterality Number	Bilateral	Unilateral or bilateral	Unilateral or bilateral	Single lesion, unilateral	Unilateral
Number	Single or multiple	Single or multiple	Single or multiple	Multiple or diffused	Multiple or diffused
B scan ultrasound	Calcified	Not calcified	Not calcified	Not calcified	Not calcified
CT scan	Calcified	Not calcified	Not calcified	Calcified	Not calcified
Other retinal abnormalities	Minimal, or choroidal	Lymphocytes in vitreous	Calcified	Calcified	Secondary retinal detachment
Secondary retinal detachment					
Risk factors	Age		History of primary cancer		Visceral or central nervous system lymphoma
extracellular inorganic pyrophosphate deposition. Low Mg levels are also associated with reduced calcium pyrophosphate solubility. Thus, a low serum Mg results in calcium pyrophosphate formation in soft tissues and joints by inhibition of pyrophosphate hydrolysis and reduced crystal solubility.

In conclusion, ectopic calcification occurs in both Gitelman and Bartter syndrome, but is much more common in Gitelman syndrome. The finding of calcification in retinal photographs suggests the diagnosis of Gitelman syndrome. Metabolic and possibly genetic testing should be undertaken to confirm this diagnosis. This finding also suggests the need for better management of Mg levels.

PATIENT CONSENT

The authors would like to thank the patient whom they studied for this review. This person provided signed informed consent.

CONFLICT OF INTEREST STATEMENT

The authors have no financial or non-financial conflicts of interest for this review. This person provided signed informed consent.

REFERENCES

1. Nakhoul F, Nakhoul N, Dorman E et al. Gitelman’s syndrome: a pathophysiological and clinical update. Endocrine 2012; 41: 53–57
2. Simon DB, Nelson-Williams C, Bia MJ et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 1996; 12: 24–30
3. Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Phys 1966; 79: 221–235
4. Blanchard A, Bockenhauer D, Bolignano D et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2017; 91: 24–33
5. Cruz DN, Shaer AJ, Bia M et al. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int 2001; 59: 710–717
6. Iqbal Z, Sayer JA. Chondrocalcinosis and Gitelman syndrome. QJM 2016; 109: 563–564
7. Calo L, Punzi L, Semplicini A. Hypomagnesemia and chondrocalcinosis in Bartter’s and Gitelman’s syndrome: review of the pathogenetic mechanisms. Am J Nephrol 2000; 20: 347–350
8. Rodriguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol 1998; 12: 315–327
9. Seyberth HW. Pathophysiology and clinical presentations of salt-losing tubulopathies. Pediatr Nephrol 2016; 31: 407–418
10. Rudin A. Bartter’s syndrome. A review of 28 patients followed for 10 years. Acta Med Scand 2009; 224: 165–171
11. Konrad M, Vollmer M, Lemmink HH et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 2000; 11: 1449–1459
12. Cruz AJ, Castro A. Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation. BMJ Case Rep 2013; 2012007929
13. Seyberth HW. An improved terminology and classification of Bartter-like syndromes. Nat Rev Nephrol 2008; 4: 560–567
14. Al Shibli A, Narchi H. Bartter and Gitelman syndromes: spectrum of clinical manifestations caused by different mutations. World J Methodol 2015; 5: 55–61
15. Naesens M, Steels P, Verberckmoes R et al. Bartter’s and Gitelman’s syndromes: from gene to clinic. Nephron Physiol 2004; 96: 65–78
16. Bourcier T, Blain P, Massin P et al. Sclerochoroidal calcification associated with Gitelman syndrome. Am J Ophthalmol 1999; 128: 767–768
17. Honavar SG, Shields CL, Demirci H et al. Sclerochoroidal calcification: clinical manifestations and systemic associations. Arch Ophthalmol 2001; 119: 833–840
18. Gupta R, Hu V, Reynolds T et al. Sclerochoroidal calcification associated with Gitelman syndrome and calcium pyrophosphate dihydrate deposition. J Clin Pathol 2005; 58: 1334–1335
19. Vezzoli G, Soldati L, Jansen A et al. Choroidal calcifications in patients with Gitelman’s syndrome. Am J Kidney Dis 2000; 36: 855–858
20. Marchini G, Tosi R, Farolini B et al. Choroidal calcification in Bartter syndrome. Am J Ophthalmol 1998; 126: 727–729
21. Sun H, Demirci H, Shields CL et al. Sclerochoroidal calcification in a patient with classic Bartter’s syndrome. Am J Ophthalmol 2005; 139: 365–366
22. Shields CL, Hasanreisoglu M, Saktanastase J et al. Sclerochoroidal calcification: clinical features, outcomes, and relationship with hypercalcemia and parathyroid adenoma in 179 eyes. Retina 2015; 35: 547–554
23. Shields JA. Sclerochoroidal calcification in calcium pyrophosphate dihydrate deposition disease (pseudogout). Arch Ophthalmol 1997; 115: 1077–1079
24. Shields JA, Shields CL. CME review: sclerochoroidal calcification: the 2001 Harold Gifford Lecture. Retina 2002; 22: 251–261
25. Ea HK, Blanchard A, Dougados M et al. Chondrocalcinosis secondary to hypomagnesemia in Gitelman’s syndrome. J Rheumatol 2005; 32: 1840–1842