Editor-in-Chief: Valentin Lychagin

Deputies of Editor-in-Chief:
Vladislav Goldberg,
Joseph Krasilshchik,
Vladimir Sharko.

Managing Editors:
Alexei Kushner
Viktor Kuzakon

Executive Secretary: Nadezhda Konovenko

Editorial Board:

Dmitry Alekseevsky Dmitrii Gurevich Alexander Prishlyak
Ian Anderson Izrail Kats Maida Rahula
Vladimir Balan Vadim Kirichenko Vladimir Roubtsov
Valentin Diskant Boris Kruglikov Alexandra Sergeeva
Leonid Evtushik Svyatoslav Leiko Alexander Shelekhov
Sergey Fedosov Grigory Litvinov Vadim Shurygin
Anatolii Fomenko Oleg Mashkov Eldar Straume
Valentin Fomenko Anatolii Milka Bronislav Yakubchik
Nail Ibragimov Petr Mormul Wassily Zadorozhnnyi
Уважаемый читатель!

Вы держите в руках первый выпуск нового журнала “Proceedings of the International Geometry Center”. Целью этого журнала, как и целью работы всего Геометрического центра $d\omega$, является поддержка “геометрической активности” на территории бывшего Союза.

Мы хотим сделать этот журнал максимально открытым как для авторов, так и для читателей. Журнал будет выходить в обычном, “бумажном”, а также электронном виде.

Электронная версия журнала будет доступна на web-странице Геометрического центра www.d-omega.org. Там же, на сайте, будет открыт форум для авторов и читателей журнала. На форуме могут обсуждаться любые вопросы, связанные с публикациями в этом журнале.

Мы надеемся устранить повсеместно принятую несправедливость в отношении авторов. Я имею в виду процесс тайного рецензирования статей. Для автора этот процесс тяжел, болезнен, хотя в большинстве случаев и очевиден. Для рецензента, в крайнем случае,— неприятен.

Мы предлагаем изменить это. А именно,

– на страницах форума помещать, конечно же, с согласия рецензента, как саму рецензию, так и различные отклики и комментарии к ней, а также
– если статья отклонена на основании отрицательных отзывов, то все равно, теперь уже с согласия автора, помещать ее в раздел на сайте журнала. Это можно рассматривать как препубликацию статьи, на нее можно теперь ссылаться и, что самое главное, автор может публично и аргументировано защитить свою работу и свои результаты.

Удачи!

Валентин Лычагин
Contents

V.V. Goldberg, V.V. Lychagin.
On a class of linearizable planar geodesic webs 5

А.А. Кадубовский.
Топологическая классификация гладких функций с одной критической точкой типа седло на неориентируемых поверхностях 13

В.Ф. Кириченко, В.М. Кузаконь, К.М. Тенюх
Обобщенные классы Грея-Хервеллы и голоморфные геодезические преобразования обобщенных почти эрмитовых структур – I 23

А.Г. Кушнер, Е.Н. Манжосова.
Симплектическая классификация гиперболических уравнений Монжа-Ампера 41

А.Д. Милка
Линейные изгибания звездчатых бинирамид 71

А.Д. Милка
Неопознанная египетская геометрия 97

J. Mikeš, M. Chodorová.
Geometrical properties of the special types of vector fields on compact manifolds 117

В.И. Паньженский. Почти эрмитовы структуры на касательном расслоении почти симплектического многообразия 125

М. Рахула, В. Речной.
Двойственные структуры: этажи и струи 131

Х. Худа, Й. Микеш.
Геодезические и F_2-планарные отображения при некоторых начальных условиях 155
On a class of linearizable planar geodesic webs

Vladislav V. Goldberg Valentin V. Lychagin

Abstract We present a complete description of a class of linearizable planar geodesic d-webs, $d \geq 4$, which contain a parallelizable 3-subweb.

Keywords Linearizable planar geodesic webs · The Liouville tensor

Mathematics Subject Classification (2000) 35J15, 35J60, 35L10

1 Introduction

The paper is a continuation of [3]. In the paper [3] we considered some classical problems of the theory of planar webs. In particular, at the end of the paper we proved that a planar d-web is linearizable if and only if the web is geodesic and the Liouville tensor of one of its 4-subwebs vanishes. In the current paper we describe all linearizable planar geodesic d-webs, $d \geq 4$, satisfying the following additional condition: the curvature K of one of its 3-subwebs vanishes.

2 The Problem

Below we give some (not all) definitions and notions which will be used in the paper. For additional information a reader is advised to look into [3].

We consider the plane M endowed with a torsion-free connection ∇ and a geodesic d-web in M, i.e., a d-web all leaves of all foliations of which are geodesic with respect to the connection ∇. We have proved in [3] that there is a unique projective structure associated with a planar 4-web in such a way that the 4-web is geodesic with respect to the structure.
The flatness of the projective structure can be checked by the Liouville tensor (see [6], [5], [4]). This tensor can be constructed as follows (see, for example, [7]).

Let ∇ be a representative of the canonical projective structure, and Ric be the Ricci tensor of the connection ∇. Define a new tensor \mathfrak{P} as

$$
\mathfrak{P}(X,Y) = \frac{2}{3} \text{Ric}(X,Y) + \frac{1}{3} \text{Ric}(Y,X),
$$

where X and Y are arbitrary vector fields.

The Liouville tensor \mathfrak{L} is defined as follows:

$$
\mathfrak{L}(X,Y,Z) = \nabla_X (\mathfrak{P})(Y,Z) - \nabla_Y (\mathfrak{P})(X,Z)
$$

where X, Y, and Z are arbitrary vector fields.

The tensor is skew-symmetric in X and Y, and therefore it belongs to

$$
\mathfrak{L} \in \Omega^1(\mathbb{R}^2) \otimes \Omega^2(\mathbb{R}^2).
$$

It is known (see [6], [7], [5], [4]) that the Liouville tensor depends on the projective structure defined by ∇ and vanishes if and only if the projective structure is flat.

For the case of the projective structure associated with a planar 4-web we shall call this tensor the Liouville tensor of the 4-web.

Let us consider a 4-web with a 3-subweb given by a web function $f(x,y)$ and a basic invariant a (see [3] for more details) and introduce the following three invariants:

$$
w = \frac{f_y}{f_x}, \quad \alpha = \frac{aa_y - wa_x}{wa(1-a)}, \quad k = (\log w)_{xy}.
$$

Then the Liouville tensor has the form [3]

$$
\mathfrak{L} = (L_1 \omega_1 + \frac{L_2}{w} \omega_2) \otimes \omega_1 \wedge \omega_2,
$$

where L_1 and L_2 are relative differential invariants of order three.

The explicit formulas for these invariants are

$$
3L_1 = w(-kw)_x + \alpha_{xx} + \alpha \alpha_x) + (\alpha w_{xx} + (\alpha^2 + 3\alpha_x)w_x - 2\alpha_{xy} - 2\alpha \alpha_y)
+ w^{-1}(-\alpha w_{xy} - 2\alpha_y w_x + \alpha w_x^2) + w^{-2} \alpha w_x w_y,
$$

$$
3L_2 = w^2(-kw^{-1})y + 2\alpha \alpha_x) + w(2\alpha^2 w_x - 2\alpha_{xy} - \alpha \alpha_y)
+ (-\alpha w_{xy} - 2\alpha_y w_x + \alpha_{yy}) + w^{-1}(\alpha w_x w_y - \alpha y w_y).
$$

As we said in Introduction, at the end of the paper [3] we proved that a planar d-web is linearizable if and only if the web is geodesic and the Liouville tensor of one of its 4-subwebs vanishes.
In the current paper we consider a class of planar d-webs for which the curvature K of one of its 3-subwebs vanishes.

In order to prove the main theorem, we need the following lemma.

Lemma 1 If $K = 0$, we can reduce w (see (1)) to one: $w = 1$.

Proof In fact, because

$$K = -\frac{1}{f_x f_y} \left(\log \frac{f_x}{f_y} \right)_{xy},$$

it follows from $K = 0$ that $(\log w)_{xy} = 0$. Hence $\log w = u(x) + v(y)$, where $u(x)$ and $v(y)$ are arbitrary functions. It follows that $w = a(x)b(y)$, where $a(x) = e^{u(x)}$ and $b(y) = e^{v(y)}$. Taking the gauge transformation $x \rightarrow X(x), y \rightarrow Y(y)$, with $X'(x) = e^{u(x)}$ and $Y'(y) = e^{-v(y)}$, we get that $w = 1$.

We shall prove now the main theorem.

Theorem 1 A planar d-web, for which the curvature K of one of its 3-subwebs vanishes, is linearizable if and only if the web is geodesic, and the invariants α defined by its 4-subwebs have one of the following forms:

(i)

$$\alpha = \frac{\varphi'(2x + y + \lambda_1, g_2, g_3) - \varphi'(x + 2y + \lambda_2, g_2, -g_3)}{\varphi(2x + y + \lambda_1, g_2, g_3) - \varphi(x + 2y + \lambda_2, g_2, -g_3)},$$

where φ is the Weierstrass function, g_2 and g_3 are invariants, and λ_1 and λ_2 are arbitrary constants.

(ii)

$$\alpha = k \frac{e^{k(x-y+C)} + 1}{e^{k(x-y+C)} - 1},$$

where k and C are arbitrary constants.

(iii)

$$\alpha = -k \tan \frac{x - y + C}{2},$$

where k and C are arbitrary constants.

(iv)

$$\alpha = \frac{2}{x - y + C},$$

where C is an arbitrary constant.

Here x, y are such coordinates that the 3-subweb is defined by the web functions x, y and $x + y$.

Proof By Theorem 9 of [3], the conditions of linearizability are $L_1 = 0, L_2 = 0$. By (1) and Lemma 1, the condition $K = 0$ implies $k = 0, w = 1$.

It follows that the conditions $L_1 = 0, L_2 = 0$ become

$$
\begin{align*}
\alpha_{xx} - 2\alpha_{xy} + \alpha\alpha_x - 2\alpha\alpha_y &= 0, \\
\alpha_{yy} - 2\alpha_{xy} + 2\alpha\alpha_x - \alpha\alpha_y &= 0.
\end{align*}
$$

Conditions (7) can be written in the form

$$
\begin{align*}
(\partial_x - 2\partial_y)(\alpha_x + \frac{1}{2}\alpha^2) &= 0, \\
(\partial_y - 2\partial_x)(\alpha_y - \frac{1}{2}\alpha^2) &= 0.
\end{align*}
$$

Therefore, relations (8) imply

$$
\begin{align*}
\alpha_x + \frac{1}{2}\alpha^2 &= A(2x + y), \\
\alpha_y - \frac{1}{2}\alpha^2 &= B(x + 2y)
\end{align*}
$$

for some functions A and B.

Differentiating the first equation of (9) with respect to y and the second one with respect to x, we get the following compatibility conditions for (9):

$$
\begin{align*}
\alpha\alpha_y + \alpha\alpha_x &= A' - B',
\end{align*}
$$

which by (9) is equivalent to

$$
A + B \neq 0. (The case A + B = 0 will be considered separately.) Then equation (10) implies

$$
\alpha = \frac{A' - B'}{A + B}.
$$

We assume that $A + B \neq 0$. Next, we substitute α from (11) into equations (7). As a result, we obtain that

$$
\begin{align*}
(2A'' - B'')(A + B) - (A' - B')(2A' + B') + \frac{1}{2}(A' - B'^2) \\
= A(A + B)^2, \\
(A'' - 2B'')(A + B) - (A' - B')(A' + 2B') - \frac{1}{2}(A' - B'^2) \\
= B(A + B)^2.
\end{align*}
$$
Adding and subtracting equations (12), we find that

\[(A'' - B'')(A + B) - (A'^2 - B'^2) = \frac{(A + B)^3}{3}\]

(13)

and

\[A'' + B'' = A^2 - B^2.\]

(14)

Therefore,

\[
\begin{cases}
A'' - A^2 = c, \\
(B'' + B^2 = -c,
\end{cases}
\]

(15)

for a constant \(c \in \mathbb{R}\).

Multiplying equations (15) by \(A'\) and \(B'\), respectively, we get

\[A'A'' - A'^2 = cA';\]
\[B'B'' + B'^2 = -cB',\]

and

\[
\begin{align*}
\left(\frac{1}{2}A'^2 - \frac{1}{3}A'^3 - cA\right)' &= 0; \\
\left(\frac{1}{2}B'^2 + \frac{1}{3}B'^3 + cB\right)' &= 0,
\end{align*}
\]

respectively.

This means that

\[\frac{1}{2}A'^2 - \frac{1}{3}A'^3 - cA = a(s)\]

(16)

and

\[\frac{1}{2}B'^2 + \frac{1}{3}B'^3 + cB = b(t),\]

(17)

where \(s = x + 2y\) and \(t = 2x + y\).

Now equations (16), (17) and (13) give

\[b = a = \text{const.} \in \mathbb{R}\]

(18)

Remind that solutions of the equation

\[y'^2 = 4y^3 - g_2 y - g_3\]

(19)

have the form

\[y = \wp(x + \lambda, g_2, g_3),\]

(20)

where \(\wp\) is the Weierstrass function, \(g_2\) and \(g_3\) are invariants, and \(\lambda\) is an arbitrary constant.
By (18), equations (16) and (17) can be written as
\[
A'^2 = \frac{2}{3}A^3 + 2cA + 2a,
\]
\[
B'^2 = -\frac{2}{3}B^3 - 2cB - 2a.
\]
(21)

Taking \(A = \beta \wp \) and \(B = \gamma \wp \), substituting them into (21) and comparing the result with (10), we find that
\[
\beta = 6, \gamma = -6; g_2 = -\frac{c}{3}, g_3 = -\frac{a}{18},
\]
i.e., \(g_2 \) and \(g_3 \) are the same for both equations (21).

By (20), the solutions of (21) are
\[
\begin{align*}
A &= 6\wp(t + \lambda_1, g_2, g_3), \\
B &= -6\wp(t + \lambda_2, g_2, -g_3),
\end{align*}
\]
(22)
where \(g_2 \) and \(g_3 \) are arbitrary constants.

Equations (22) can be now written as
\[
\begin{align*}
A &= 6\wp(2x + y + \lambda_1, g_2, g_3), \\
B &= -6\wp(x + 2y + \lambda_2, g_2, -g_3).
\end{align*}
\]
(23)

Finally, equations (11) and (23) give the following expression (3) for the invariant \(\alpha \):
\[
\alpha = \frac{\wp'(2x + y + \lambda_1, g_2, g_3) - \wp'(x + 2y + \lambda_2, g_2, -g_3)}{\wp(2x + y + \lambda_1, g_2, g_3) - \wp(x + 2y + \lambda_2, g_2, -g_3)}.
\]

Consider now the cases for which \(A + B = 0 \), i.e., the cases
\(A = v, \ B = -v, \ v \in \mathbb{R} \).

Then system (9) has the form
\[
\begin{align*}
\alpha_x + \frac{1}{2}\alpha^2 &= v, \\
\alpha_y - \frac{1}{2}\alpha^2 &= -v
\end{align*}
\]
(24)
and is consistent.

It follows from (24) that \(\alpha_x + \alpha_y = 0 \). The solution of this equation is \(\alpha = \alpha(x - y) \). As a result, we can write two equations (24) as one equation
\[
\alpha' + \frac{1}{2}\alpha^2 = v.
\]
(25)

Three cases are possible:
\((ii) \ v = \frac{1}{2} k^2, \ k \neq 0. \) Then the solution of (25) has the form (4).

\((iii) \ v = -\frac{1}{2} k^2, \ k \neq 0. \) Then the solution of (25) has the form (5).

\((ii) \ v = 0. \) Then the solution of (25) has the form (6).

Corollary 1 If for a geodesic \(d \)-web the basic invariants are solutions of the Euler equation and one of its 3-subwebs is parallelizable, then this web is linearizable.

References

1. Goldberg, V. V., Lychagin, V. V.: Abelian equations and rank problems for planar webs (Russian). Izv. Vyssh. Uchebn. Zaved. Mat. **2007**, no. 10, 40–76. English translation in Russian Math. (Iz. VUZ) **51**, no. 11, 39–75 (2007). MR2381928 (2008k:53029)

2. Goldberg, V. V., Lychagin, V. V.: Geodesic webs on a two-dimensional manifold and Euler equations. Acta Appl. Math. (2009) (to appear); see also arXiv: 0810.5392, pp. 1–15 (2009)

3. Goldberg, V. V., Lychagin, V. V.: On rank problems for planar webs and projective structures. In *The Abel Symposium* 2008, Springer (2009) (to appear); see also arXiv: 0812.0125v2, pp. 1–31 (2009)

4. Kruglikov, B.: Point classification of 2nd order ODEs: Tresse classification revisited and beyond. arXiv: 0809.4653, pp. 1–22 (2008)

5. Lie, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen \(x, y \), die eine Gruppe von Transformation gestatten. III, Archiv für Math. og Naturvidenskab **8** (Kristiania, 1883), 371–458 (JFM **15**, p. 751); see also Gesammelte Abhandlungen. Bd. 5 (1924), paper XIV, 362–427. JFM **50**, p. 2.

6. Liouville, R.: Mémoire sur les invariants de certaines équations différentielles et sur leurs applications. Journal de l’École Polytechnique **59**, 7–76 (1889). JFM **21**, p. 317

7. Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge Tracts in Mathematics, **111**, Cambridge University Press, Cambridge (1994). MR1311248 (96e:53014); Zbl 834:53002

Vladislav V. Goldberg
New Jersey Institute of Technology, Newark, NJ, USA.
E-mail: vladislav.goldberg@gmail.com

Valentin V. Lychagin
Tromsoe University, Tromsoe, Norway and the Institute of Control Sciences RAS, Moscow, Russia.
E-mail: lychagin@yahoo.com
Топологическая классификация гладких функций с одной критической точкой типа седло на неориентируемых поверхностях

Аннотация В работе исследуются гладкие функции на замкнутых неориентируемых поверхностях рода \(g \geq 1 \), у которых кроме локальных максимумов и минимумов только одна (вырожденная) критическая точка типа седло. Установлен критерий топологической эквивалентности функций из указанного класса. Для неориентируемых поверхностей рода \(g = 1, 2, 3, 4 \) подсчитано число топологически неэквивалентных функций, которые имеют только один максимум и один минимум.

Ключевые слова Неориентируемы поверхности · Гладкие функции · Топологическая классификация · Критические точки · Линии уровня

УДК 517.938.5, 519.514.17

Введение

Пусть \(N \) — гладкая замкнутая поверхность. Обозначим через \(C_1^\infty (N) \) пространство бесконечно дифференцируемых функций с тремя критическими значениями на \(N \), все критические точки которых изолированы.

Напомним, что две функции \(f, g \in C_1^\infty (N) \) называют топологически эквивалентными, если существуют гомеоморфизмы \(k : N \to N \) и \(l : \mathbb{R}^1 \to \mathbb{R}^1 \), такие что \(g = l \circ f \circ k^{-1} \).

В дальнейшем будем полагать, что гомеоморфизм \(l \) сохраняет ориентацию.

В работе [1] А. О. Пришляком доказано, что функция \(f \in C_1^\infty (N) \) в некоторой окрестности своей изолированной критической точки \(x \in N \) (не яв-
ляющейся локальным экстремумом) топологический тип линий уровня которой при переходе через x изменяется, непрерывной заменой координат приводится к виду $f = \text{Re} z^n + c$ ($n \geq 2$). В дальнейшем будем называть ее существенно критической точкой. Или же к виду $f = \text{Re} z$, если топологический тип линий уровня при переходе через x не изменяется.

Число k существенно критических точек x_i функции f вместе со значениями n_i (показателями представления $f = \text{Re} z^{n_i} + c_i$ в окрестностях критических точек x_i) называется топологическим сингулярным типом функции f.

В работе В. В. Шарко [3] изучены вопросы гладкой и топологической эквивалентности функций из класса $C_1^\infty(N)$, а так же установлено, что существует конечное число топологически неэквивалентных функций с фиксированным сингулярным типом.

Вопрос о подсчете числа топологически неэквивалентных функций с фиксированным сингулярным типом оказался очень сложной и в общем случае нерешенной задачей.

Если же ограничиться рассмотрением функций из класса $C^1(N) \subset C_1^\infty(N)$, у которых только одна (вырожденная) существенно критическая точка (в дальнейшем — критическая точка типа седло), то задача о классификации и подсчете числа неэквивалентных таких функций значительно упрощается. Обозначим через $C_{M,m}(N) \subset C^1(N)$ класс гладких функций с M максимумами, m минимумами и одной существенно критической точкой на замкнутой поверхности N. В работе [4] в терминах 2-цветных хордовых диаграмм специального вида дается критерий топологической эквивалентности функций класса $C_{M,m}(N)$ на ориентируемых поверхностях. В работе [5] подсчитано точное значение числа топологически неэквивалентных функций класса $C_{1,1}(N)$ в зависимости от рода $g \geq 1$ ориентированной поверхности N.

Данная статья посвящена вопросу топологической классификации функций класса $C_{M,m}(N)$ на замкнутой неориентируемой поверхности N. В терминах 2-цветных хордовых диаграмм специального вида установлен критерий топологической эквивалентности таких функций. Для неориентируемых поверхностей N рода $g = 1, 2, 3, 4$ подсчитано число топологически неэквивалентных функций из класса $C_{1,1}(N)$.
1 Вспомогательные определения

В дальнейшем под хордовой диаграммой с n хордами (или, коротко, n-диаграммой) будем понимать конфигурацию (фактически 3-граф) на плоскости, состоящую из окружности, $2n$ разных точек на ней (являющихся вершинами правильного $2n$-угольника) и n хорд, которые задают разбиение указанных $2n$ точек на пары.

Определение 1 2-цветной хордовой диаграммой будем называть n-диаграмму, дуги окружности которой раскрашены в два цвета (черный и белый) так, что любые соседние дуги разного цвета.

Занумеруем вершины диаграммы числами от 1 до $2n$ двигаясь, например, по часовой стрелке от некоторой фиксированной точки на окружности диаграммы.

Определение 2 2-цветную диаграмму, которая содержит (не содержит) хорду, соединяющую вершины с номерами одинаковой четности, будем называть N-диаграммой (O-диаграммой) – рис. 1 A, B.

Определение 3 Диаграммы D_1 и D_2 будем называть эквивалентными, если их можно совместить с помощью поворота либо в следствии переворота (зеркального отражения) и поворота на некоторый угол.

Определение 4 Черным (белым) циклом 2-цветной диаграммы будем называть чередующуюся последовательность черных (белых) дуг и хорд, которые образуют гомеоморфный образ ориентированной окружности.

Проиллюстрируем понятие цикла на примере диаграммы, изображенной на рис. 1 A. Эта диаграмма имеет два черных цикла:

$b_1 = (2, 1)\{1, 8\} (8, 7) (7, 3) (3, 4) (4, 2)$ и $b_2 = (6, 5)\{5, 12\} (12, 11) (11, 10) (10, 9) (9, 6)$.

Здесь (\cdot, \cdot) — ориентированные черные дуги диаграммы; $[\cdot, \cdot]$ — хорды диаграммы.

Аналогичным образом определяются белые циклы 2-цветной диаграммы.

Расширением 2-цветной диаграммы будем называть двухцветную поверхность с краем, которая получается следующим образом (рис. 2D):

1. утолстим окружность диаграммы (рис. 2 C) до двухцветного цилиндра
так, чтобы хорды принадлежали одной (например \(\omega_1 \)) из двух его граничных окружностей \(\omega_1, \omega_2 \);
2. в согласовании с цветами заклеим окружность \(\omega_2 \) двухцветным диском (рис. 2 A), который представляет собой круг с \(2n \) секторами, поочередно раскрашенных в черный и белый цвет;
3. вдоль каждой хорды подклеим черно-белые ленты (рис. 2 B) так, чтобы цвета были согласованы.

Заметим, что если 2-цветная диаграмма является \(N \)-диаграммой (\(O \)-диаграммой), то ее расширение является неориентируемой (ориентируемой) поверхностью с краем.

Очевидно, что если окружность (2-цветной) хордовой \(n \)-диаграммы стянуть в точку, то получим букет \(n \) окружностей, который гомотопически эквивалентен расширению диаграммы. Поэтому эйлерова характеристика расширения каждой 2-цветной \(n \)-диаграммы равна \(1 - n \).

\(N \)-диаграмм с \(n \) хордами, которая имеет \(M \) черных и \(m \) белых циклов, будем обозначать через \(D_{M,m}^n \), а множество всех таких диаграмм — \(\mathcal{I}_{M,m}^n \).
Определение 5 N-диаграммы с двумя циклами будем называть диаграммами максимального рода.

2 Топологическая классификация функций из класса $C_{M,m}(N)$

Предложение 1 Пусть N — замкнутая неориентируемая поверхность. Тогда для произвольных натуральных M и m существует гладкая функция $f : N \to \mathbb{R}^1$ с M максимумами, m минимумами и одной (вырожденной) существенно критической точкой.

Доказательство. Известно, что на замкнутой неориентируемой поверхности N рода g всегда можно построить функцию Морса h с M максимумами, m минимумами и r ($r = M + m + g - 2$) (невырожденными) седловыми критическими точками, которые принадлежат одной линии уровня. Как следует из работы [2], по функции h можно построить такую гладкую функцию f, которая отлична от h только в малой окрестности критического уровня функции h и имеет в этой окрестности только одну вырожденную критическую точку (типа седло).

Замечание 1 Как было отмечено ранее, функция f в некоторой окрестности своей существенно критической точки $x_f \in N$ (не являющейся локальным экстремумом) непрерывной заменой координат приводиться к виду $f = \text{Re}z^n + c$ ($n \geq 2$). Более того, для каждой функции $f \in C_{M,m}(N)$ показатель n в указанном представлении один и тот же и связан с ро́дом g поверхности N соотношением $n = g - 1 + m + M$.

Справедливость последнего следует из равенства эйлеровых характеристик.

Известно, что для замкнутой неориентируемой поверхности рода g эйлерова характеристика определяется равенством $\chi(N) = 2 - g$.

С другой стороны, прообраз вырожденной критической точки функции f является букетом n окружностей. А так как для каждого локального минимума (максимума) гладкой функции $f : N \to \mathbb{R}^1$ на замкнутой поверхности существует окрестность, в которой f непрерывной заменой координат приводится к виду $f = x^2 + y^2$ ($f = -x^2 - y^2$), то произведя клеточное разбиение поверхности N, не трудно установить, что $\chi(N) = 1 - n + (m + M)$, где 1, n, $m + M$ — число нульмерных, одномерных и двухмерных клеток соответственно.
Далее покажем, что каждой функции \(f \in C_{M,m}(N) \) ставится в соответствие класс эквивалентных \(D^n_{M,m} \)-диаграмм с \(n = g - 1 + M + m \) хордами.

Пусть \(x_f \in N \) — существенно критическая точка функции \(f \). Не теряя общности, можно считать, что \(x_f \) совпадает с началом координат \((0,0)\).

Так как \(f \) в некоторой окрестности точки \(x_f \) имеет вид \(f = \text{Re} z^n + c \), то окрестность \(D^f \) последней можно выбрать таким образом, чтобы она представляла собой дисковую окрестность этой точки, в которой пересекаются \(n \) отрезков линии уровня и разбивают диск на \(2n \) последовательно чередующихся черных и белых секторов, во внутренности которых функция \(f \) принимает значения больше или соответственно меньше \(c \) (рис. 2 А).

Рис. 3 Линия уровня критического значения функции \(f \) и соответствующая ей 2-цветная диаграмма \(D_f \)

Продолжения отрезков линии уровня (рис. 3) определяют хорды 2-цветной диаграммы \(D_f \), а цвет секторов — цвет дуг ее окружности. Так как \(N \) неориентируемая поверхность, то расширение диаграммы \(D_f \) (опред. ??) должно быть неориентируемой поверхностью с краем. Поэтому диаграмма \(D_f \) является \(N \)-диаграммой. А так как функция \(f \) имеет \(M \) максимумов и \(m \) минимумов на \(N \), то расширение диаграммы \(D_f \) должно иметь \(M \) черных (белых) и \(m \) белых (черных) компонент края. И поэтому диаграмма \(D_f \) является \(D^n_{M,m} \)-диаграммой.

Очевидно, что если черные и белые компоненты края расширения диаграммы \(D_f, f \in C_{M,m}(N) \) заклеить черными и, соответственно, белыми дисками, то полученная поверхность будет гомеоморфна \(N \).

Замечание 2 Так как расширения \(D^n_{M,m} \)-диаграмм являются неориентируемыми поверхностями, с одинаковой эйлеровой характеристикой \(\chi(N) = 1 - n \) и одинаковым числом компонент края соответствующего цвета (\(M \) черных и \(m \) белых), то расширения, которые соответствуют
неэквивалентным $D^n_{M,m}$-диаграммам являются гомеоморфными поверхностями с краем.

Теорема 1 Две функции $f, g \in C_{M,m}(N)$ топологически эквивалентны тогда и только тогда, когда эквивалентны соответствующие им 2-цветные диаграммы D_f и D_g.

Доказательство. Необходимость: пусть функции $f, g : N \rightarrow R^1$ топологически эквивалентны. Тогда существуют гомеоморфизмы $k : N \rightarrow N$ и $l : R^1 \rightarrow R^1$ (l сохраняет ориентацию), такие что $g = l \circ f \circ k^{-1}$. Это означает, что существенно критическая точка x_f отображается в существенно критическую точку x_g, каждая точка максимума (минимума) функции f — в точку максимума (минимума) функции g, а линия уровня функции f, содержащая точку x_f — в линию уровня функции g, содержащую x_g.

Не теряя общности, можно считать, что существенно критические точки x_f, x_g этих функций совпадают. В противном случае, этого можно добиться с помощью диффеоморфизма, изотопного тождественному.

Выберем окрестность этой точки таким образом, чтобы для каждой из функций f и g она представляла собой дисковую окрестность D_f (D_g) общей точки, в которой пересекаются n отрезков соответствующей линии уровня и разбивают этот диск на $2n$ черных и белых секторов, во внутренности которых f (функция g) принимает значения больше, соответственно меньше c.

Так как $l : R^1 \rightarrow R^1$ сохраняет ориентацию, то каждый черный (белый) сектор диска D_f переходит в черный (белый) сектор диска $k(D_f) \cap D_g$. Более того, так как каждая точка максимума (минимума) функции f отображается в точку максимума (минимума) функции g, то это означает, что каждая черная (белая) компонента края расширения диаграммы D_f переходит в черную (белую) компоненту края расширения диаграммы D_g. Из этого следует, что каждый черный (белый) цикл диаграммы D_f переходит в черный (белый) цикл диаграммы D_g.

Очевидно, что в окрестности D_f на соответствующих $2n$ отрезках можно двумя разными способами задать циклический порядок $(c_1, c_2, ..., c_{2n})$, то есть, зафиксировать направление на граничной окружности диска D_f.

Если гомеоморфизм $k : N \rightarrow N$ сохраняет выбранное направление на граничной окружности диска D_f, то циклические порядки отрезков линий уровня функций f и g совпадают с точностью до гомеоморфизма, сохраняющего ориентацию окружности. Это означает, что при выборе одинакового
направления на окружностях диаграмм D_f и D_g циклические порядки точек (концов отрезков линий уровня) совпадают.

В этом случае диаграмма D_g получается в результате поворота диаграммы D_f.

Если гомеоморфизм $k : N \to N$ изменяет выбранное направление на границной окружности диска D^f, то циклические порядки отрезков линий уровня функций f и g совпадают с точностью до гомеоморфизма, изменяющего ориентацию окружности. Это означает, что при выборе разных направлений на окружностях диаграмм D_f и D_g циклические порядки точек (концов отрезков линий уровня) совпадают.

В этом случае диаграмма D_g получается в следствии переворота (зеркального отражения) диаграммы D_f с последующим поворотом последней.

Таким образом, диаграммы D_f и D_g эквивалентны.

Достаточность очевидна.

Следствие 1 Число топологически неживерелентных функций из класса $C_{M,m}(N)$ равно числу неживерелентных $D^n_{M,m}$-диаграмм с $n = g - 1 + M + m$ хордами (где g — род поверхности N), расширения которых гомеоморфны N.

Таким образом, установлена биекция между классами топологической эквивалентности функций из множества $C_{M,m}(N)$ и классами эквивалентности хордовых N-диаграмм из множества $\Xi^n_{M,m}$, где $n = g - 1 + M + m$.

3 Число неэквивалентных минимальных функций

Функции из класса $C_{1,1}(N)$ будем называть минимальными функциями.

На проективной плоскости ($g = 1$) существует единственная минимальная функция, так как имеется только одна 2-цветная N-диаграмма максимального рода с $n = 2$ хордами — рис. 4 A.

Аналогичный факт имеет место и для бутылки Клейна ($g = 2$) — рис. 4 B.

Не сложно проверить, что имеется только 4 неэквивалентных 2-цветных N-диаграмм максимального рода с $n = 4$ хордами — рис. 4 1)–4). Поэтому на неориентируемой поверхности рода $g = 3$ существует 4 топологически неэквивалентных минимальных функций.
Как следует из работы [6], имеется только 14 неэквивалентных хордовых диаграмм с $n = 5$ хордами (на рис. 5 это диаграммы 1 – 8; 13 – 18), являющиеся N-диаграммами, и которые при фиксированной раскраске дуг окружности (поочередно в два цвета) содержат 2 цикла.

Так как имеется ровно два способа раскраски дуг каждой из 14 этих диаграмм, то число неэквивалентных 2-цветных диаграмм не более 28. Непосредственной проверкой не трудно установить, что точное число неэквивалентных 2-цветных N-диаграмм с $n = 5$ хордами равно 20 — рис. 5.

Таким образом, на неориентируемой поверхности рода $g = 4$ существует 20 топологически неэквивалентных минимальных функций.

Список литературы

1. Prishlyak, A.O.: Topological equivalence of smooth functions with isolated critical points on a closed surface. Topology and its Applications, 119, 257–267 (2002)
2. Takens, F.: The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelman category. Invent. Math., 6, 197–244 (1968)
3. Шарко, В.В.: Гладкая и топологическая эквивалентность функций на поверхностях. Укр. мат. жур. 55(5), 687–700 (2003)
На закриваних невиправленнях поверхнях генусу $g \geq 1$, ми розглядаємо функції, що мають один жорсткий критичний точку разом з локальними максимумами та мінімумами. Зрозуміло, що не можна сфокусуватись тільки на двох локальних точках, вони відносно критичні та не є критичними. Мінімуми та максимуми мають прямого зв'язку з теорією гамильтонової системи. Про водяний еквівалентність функцій на орієнтованих поверхнях, стосовно жорстких точок гамильтонової системи, ми досліджуємо в [4].

На невиправленній поверхні генусу $g = 1$, 2, 3, 4 ми розраховуємо кількість нееквівалентних функцій, що мають один максимум і один мінімум.

Александр А. Кадубовский
Славянский государственный педагогический университет, Славянск, Украина.
E-mail: kadubovs@imath.kiev.ua

Aleksander A. Kadubovsky

Topological classification of smooth functions that possess only one saddle critical point on non-oriented surfaces

On closed non-oriented surfaces of genus $g \geq 1$, we consider functions that possess only one saddle critical point in addition to local maxima and minima. The full topologically invariant for functions with given numbers of minima and maxima is constructed. For non-oriented surfaces of genus $g = 1, 2, 3, 4$ we calculate the number of topologically nonequivalent functions with one maximum and one minimum.
Обобщенные классы Грея-Хервеллы и голоморфные геодезические преобразования обобщенных почти эрмитовых структур – I

В. Ф. Кириченко В. М. Кузаконь К. М. Тенюх

Аннотация Доказано, что почти эрмитовы многообразия со знакопределяенной метрикой не допускают геодезических преобразований, сохраняющих почти комплексную структуру (голоморфных геодезических преобразований). Приведено новое описание и естественное обобщение классов Грея-Хервеллы на случай обобщенных почти эрмитовых структур.

Ключевые слова Геодезические отображения · Почти эрмитовы многообразия · Келеровы многообразия

УДК 514.7

Теория геодезических отображений псевдоримановых пространств составляет одно из старейших направлений исследований в римановой геометрии, истоки которого восходят к трудам Т. Леви-Чивита [1], Т. Томаса [2], Г. Вейля [3]. В последние десятилетия интерес к этой проблематике был возрожден в многочисленных работах как отечественных, так и зарубежных исследователей (см., напр., [4]). Во многих работах изучаются геодезические отображения псевдоримановых многообразий, наделенных дополнительной структурой. Одним из наиболее известных результатов в этом направлении является результат Уэстлейка [5] и Яно [6], утверждающий, что келерово многообразие не допускает геодезических отображений, сохраняющих ком-
плексную структуру. В недавней работе Радулович и Микеш этот результат распространили на локально конформно-келеровы многообразия [7].

В настоящей работе получено широкое обобщение этих результатов. Работа состоит из двух частей. В ее первой части доказано, что почти эрмито-вы многообразия со знакоопределенной метрикой не допускают геодезических преобразований, сохраняющих почти комплексную структуру (такие преобразования мы назвали голоморфными геодезическими преобразованиями). Приведено новое описание и естественное обобщение классов Грея-Хервеллы [8] на случай обобщенных почти эрмитовых структур.

Во второй части работы будут изучены особенности голоморфных гео- дезических преобразований структур этих классов, в частности, построены некоторые инварианты таких преобразований. Выявлены классы структур, не допускающих голоморфных геодезических преобразований, а также классы, инварианты относительно таких преобразований.

Пусть \((M, g = \langle \cdot, \cdot \rangle)\) — связное \(n\)-мерное \((n > 1)\) псевдориманово многообразие, \(X(M)\) — модуль гладких векторных полей на \(M\), \(\nabla\) — риманова связность метрики \(g\), \(R\) — тензор Римана-Кристоффеля, \(\delta\) — оператор ко- дифференцирования.

Определение 1. Диффеоморфизм \(\varphi : M \rightarrow \overline{M}\) псевдориманова многообразия \((M, g)\) на псевдориманово многообразие \((\overline{M}, \overline{g})\) называется геодезическим (в иной терминологии, проективным) отображением, если любую геодезическую многообразия \((M, g)\) оно переводит в геодезическую многообразия \((\overline{M}, \overline{g})\).

В этом случае на \(M\) возникает новая псевдориманова метрика \(\tilde{g} = \varphi^*\overline{g}\), которую мы назовем геодезическим преобразованием исходной метрики.

Ясно, что кривая является геодезической в метрике \(\tilde{g}\) тогда и только тогда, когда она является геодезической в метрике \(g\). Эта ситуация коротко выражается так: метрики \(g\) и \(\tilde{g}\) имеют общие геодезические.

Замечание 1. Если \(\overline{M} = M\), геодезическое отображение \(\varphi\) называется геодезическим преобразованием многообразия \((M, g)\).

Хорошо известно [4], что если \(\tilde{\nabla}\) — риманова связность метрики \(\tilde{g}\), то тензор \(T\) аффинной деформации от связности \(\nabla\) к связности \(\tilde{\nabla}\) имеет вид

\[
T(X, Y) \equiv \tilde{\nabla}_XY - \nabla_XY = \psi(X)Y + \psi(Y)X, \quad X, Y \in X(M),
\]
где ψ — точная 1-форма на M, вычисляемая по формуле

$$\psi = \frac{1}{2(n + 1)} d \left(\ln \left| \det \tilde{g} \right| \det g \right).$$

(2)

Назовем ее формой геодезического искажения.

Вектор ζ, дуальный форме ψ, назовем вектором геодезического искажения. Хорошо известно [4], что геодезическое преобразование сохраняет тензор W типа $(3, 1)$, задаваемый тождеством

$$W(X, Y)Z = R(X, Y)Z - \frac{1}{n-1} (\langle r(Z), X \rangle Y - \langle r(Z), Y \rangle X),$$

где $r_p(X) = -(g_p)^{ij} R_p(X, e_i)e_j$ — эндоморфизм Риччи метрики g в точке $p \in M$, вычисленный в каком-либо базисе $\{e_1, \ldots, e_n\}$ касательного пространства $T_p(M)$.

Тензор W называется тензором Вейля проективной кривизны. Его обращение в нуль необходимо и достаточно для того, чтобы многообразие M (локально) допускало геодезическое отображение на пространство \mathbb{R}^n (т.е. было проективно плоским). С другой стороны, легко видеть, что обращение этого тензора в нуль равносильно тому, что

$$R(X, Y)Z = \frac{\kappa}{n(n-1)} (\langle Z, X \rangle Y - \langle Z, Y \rangle X),$$

где κ — скалярная кривизна метрики g, т.е. равносильно постоянству кривизны этого многообразия. Таким образом, проективно плоскими являются пространства постоянной кривизны и только они [4].

Более обще, переход от псевдоримановой метрики g к псевдоримановой метрике \tilde{g} назовем геодезическим преобразованием метрики g, если эти метрики имеют общие геодезические. Как и выше, доказывается, что тензор T аффинной деформации от римановой связности ∇ метрики g к римановой связности $\tilde{\nabla}$ метрики \tilde{g} вычисляется по формулам (1)-(2). По-прежнему, 1-форму ψ, фигурирующую в этих уравнениях, будем называть формой геодезического искажения. Поднимая индекс у метрики \tilde{g} с помощью метрики g, мы приходим к самосопряженному эндоморфизму f модуля $X(M)$, задаваемому тождеством

$$\tilde{g}(X, Y) = g(X, fY); \quad X, Y \in X(M).$$

Назовем этот эндоморфизм оператором геодезической деформации.

Тривиальным примером геодезического преобразования метрики является гомотетия, т.е. переход от метрики g к метрике $\tilde{g} = \lambda g$, где λ — ненулевая вещественная константа. Очевидно, для такого преобразования $\tilde{\nabla} = \nabla$, а значит, $\psi = 0$.
Более обще, геодезическое преобразование метрики назовем **тривиальным**, если оно имеет нулевую форму геодезического искажения. В этом случае $\tilde{\nabla} = \nabla$, в частности, $\nabla g = \nabla \tilde{g} = 0$. Но тогда $\nabla f = 0$, а значит, если метрика g знакоопределенна, модуль $X(M)$ распадается в ортогональную прямую сумму собственных распределений эндоморфизма f, параллельных в связности ∇, а многообразие M локально изометрично произведению подмногообразий, сужения эндоморфизма f на которые являются скалярными эндоморфизмами.

В этом случае

$$(M, g) = \prod_{k=1}^{N} (M_k, g_k); \quad (M, \tilde{g}) = \prod_{k=1}^{N} (M_k, \tilde{g}_k);$$

для некоторого N, где $\tilde{g}_k = \lambda_k g_k$; λ_k — ненулевая константа.

Очевидно, верно и обратное. Таким образом, доказана

Теорема 1 Геодезическое преобразование метрики риманова многообразия тривиально тогда и только тогда, когда это многообразие локально изометрично произведению римановых многообразий, для которых соответствующие геодезические преобразования метрики являются гомотетиями.

Пусть теперь $S = \{J, g = \langle \cdot, \cdot \rangle\}$ — почти эрмитова (короче, $A\mathcal{H}$-) структура на M, $\dim M = 2n > 2$, $J^2 = -\text{id}$, $\langle JX, JY \rangle = \langle X, Y \rangle$; $X, Y \in X(M)$.

Определение 2 Геодезическое преобразование $g \to \tilde{g}$ метрики g назовем **голоморфным геодезическим**, короче, h-геодезическим, преобразованием $A\mathcal{H}$-структуры S, если $\{J, \tilde{g}\}$ — почти эрмитова структура, т.е. $\tilde{g}(JX, JY) = \tilde{g}(X, Y)$; $X, Y \in X(M)$.

Пример 1 Пусть $\varphi : M \to \overline{M}$ — геодезическое отображение почти эрмитова многообразия $\{M, J, g\}$ на почти эрмитово многообразие $\{\overline{M}, \overline{J}, \overline{g}\}$, сохраняющее почти комплексную структуру, т.е. $\overline{J} \circ \varphi_* = \varphi_* \circ J$. Тогда $g \to \tilde{g} = \varphi^* \overline{g}$ — h-геодезическое преобразование метрики g, поскольку

$$\tilde{g}(JX, JY) = \varphi^* \overline{g}(JX, JY) = \overline{g}(\varphi_* \circ J(X), \varphi \circ J(Y)) =$$

$$= \overline{g}(\overline{J} \circ \varphi_*(X), \overline{J} \circ \varphi_*(Y)) = \overline{g}(\varphi_* X, \varphi_* Y) = \varphi^* \overline{g}(X, Y) = \tilde{g}(X, Y).$$

Пусть $g \to \tilde{g}$ — h-геодезическое преобразование $A\mathcal{H}$-структуры S. Пусть $T = \psi \otimes \text{id} + \text{id} \otimes \psi$ — тензор аффинной деформации от связности ∇ к
связности \(\tilde{\nabla} \). Тогда

\[
\tilde{\nabla}_X (JY) \equiv \tilde{\nabla}_X (JY) - J \circ \tilde{\nabla}_X Y = \\
= \nabla_X (JY) + T(X, JY) - J \circ \nabla_X Y - J \circ T(X, Y) = \\
= \nabla_X (JY) + T(X, JY) - J \circ \tilde{\nabla}_X Y = \\
= \nabla_X (JY) + \psi(JY)X - \psi(Y)JX.
\]

Таким образом,

\[
\tilde{\nabla}_X (JY) = \nabla_X (JY) + \psi(JY)X - \psi(Y)JX; \quad X, Y \in X(M). (3)
\]

Лемма 1 Тензор \(\nabla J \) почти эрмитова многообразия \((M, J, g = \langle \cdot, \cdot \rangle)\) обладает свойствами:

1) \(\nabla X (J) \circ J + J \circ \nabla X (J) = 0; \)

2) \(\langle \nabla X (J)Y, Z \rangle + \langle Y, \nabla X (J)Z \rangle = 0; \quad X, Y, Z \in X(M). (4) \)

Доказательство Первое тождество получается, если применить оператор \(\nabla_X \) к обеим частям соотношения \(J^2 = - id \), а второе — если применить этот оператор к обеим частям тождества \(\langle JY, Z \rangle + \langle Y, JZ \rangle = 0 \).

Пусть \(f \) — оператор \(h \)-геодезической деформации от метрики \(g \) к метрике \(\tilde{g} \), \(Y \) — собственный вектор эндоморфизма \(f \), причем \(f(Y) = \lambda Y \), \(\lambda \in C^\infty (M) \). С учетом Леммы 1 и формулы (3),

\[
0 = \tilde{g}(\tilde{\nabla}_X (J)Y, Y) = \tilde{g}(\nabla_X (J)Y, Y) + \psi(JY)\tilde{g}(X, Y) - \psi(Y)\tilde{g}(JX, Y).
\]

Заметим, что

\[
\tilde{g}(\nabla_X (J)Y, Y) = g(\nabla_X (J)Y, fY) = \lambda g(\nabla_X (J)Y, Y) = 0.
\]

Поэтому предыдущее тождество примет вид:

\[
\psi(JY)\tilde{g}(X, Y) - \psi(Y)\tilde{g}(JX, Y) = 0.
\]

В силу невырожденности метрики \(\tilde{g} \) отсюда следует, что

\[
\psi(JY)Y + \psi(Y)JY = 0.
\]

Ввиду линейной независимости векторов \(Y \) и \(JY \) получаем:

\[
\psi(Y) = 0; \quad \psi(JY) = 0.
\]

В частности, доказано
Предложение 1 Форма геодезического искажения обращается в нуль на собственных векторах оператора геодезической деформации.

Пусть, в частности, g — риманова метрика. Тогда в каждой точке $p \in M$ эндоморфизм f_p, будучи самосопряженным, допускает базис касательного пространства $T_p(M)$, состоящий из собственных векторов этого эндоморфизма. В силу Предложения 1, форма геодезического искажения равна нулю в каждой точке многообразия, а значит, $ψ = 0$. Доказана

Теорема 2 Почти эрмитова структура со знакоопределенной метрикой не допускает нетривиальных голоморфных геодезических преобразований.

Назовем это свойство геодезической жесткостью AH-структуры.

Случай индефинитной метрики и обобщенных почти эрмитовых структур требует гораздо более тонких рассмотрений. Пусть теперь $\{g, J\}$ — почти эрмитова структура классического либо гиперболического типа, короче, обобщенная почти эрмитова, или GAH-структура на M, $J^2 = α id$, $α = -1$ в классическом и $α = 1$ в гиперболическом случаях, $\langle JX, JY \rangle = -α \langle X, Y \rangle$; $X, Y \in \mathcal{X}(M)$, $Ω(X, Y) = \langle J^3X, Y \rangle$ — фундаментальная форма структуры. Хорошо известно, что в гиперболическом случае g — нейтральная метрика, т.е. ее сигнатура равна нулю. Определение h-геодезического преобразования AH-структуры очевидным образом обобщается на случай GAH-структур.

Напомним [10], [11], что модуль $\mathcal{X}(M)$ GAH-многообразия $\{M, J, g\}$ (а также касательное пространство $T_p(M)$, $p \in M$) имеет естественную структуру K-модуля, где K — поле \mathbb{C} комплексных чисел в классическом и кольцо \mathbb{D} двойных чисел в гиперболическом случаях. Операция умножения вектора $X \in \mathcal{X}(M)$ на элемент $z = α + iβ \in K \otimes C^∞(M)$ определяется формулой

$$(α + iβ)X = αX + β(JX); \quad α, β \in C^∞(M).$$

В этом $K \otimes C^∞(M)$-модуле внутренним образом определена эрмитова форма

$$\langle\langle X, Y \rangle\rangle = \langle X, Y \rangle + i\langle J^3X, Y \rangle; \quad X, Y \in \mathcal{X}(M).$$

Непосредственно проверяется, что эта форма K-линейна по первому и K-антилинейна по второму аргументам. Очевидно, при h-геодезическом преобразовании форма $h = \langle\langle \cdot, \cdot \rangle\rangle$ переходит в форму $\tilde{h}(X, Y) = h(X, fY)$.

Заметим, что Лемма 1, очевидно, остается справедливой и для GAH-многообразий. Кроме того, справедлива
Лемма 2 Пусть \(p \in M, \{ e_1, \ldots, e_n \} \) — ортонормированный базис касательного пространства \(T_p(M) \), рассматриваемого как \(K \)-модуль. Тогда

\[
\forall \xi \in T_p(M) \implies \xi = \sum_{a=1}^{n} \|e_a\|^2 \langle \xi, e_a \rangle e_a.
\]

Доказательство Т.к. \(J^2 = \alpha \text{id}, \langle JX, JY \rangle = -\alpha \langle X, Y \rangle \), имеем:

\[
\sum_{a=1}^{n} \|e_a\|^2 \langle \xi, e_a \rangle e_a - \sum_{a=1}^{n} \|e_a\|^2 \langle J\xi, e_a \rangle je_a = \\
\sum_{a=1}^{n} \|e_a\|^2 \langle \xi, e_a \rangle e_a - \sum_{a=1}^{n} \|e_a\|^2 \langle J\xi, e_a \rangle je_a = \\
\sum_{a=1}^{n} \|e_a\|^2 \langle \xi, e_a \rangle e_a + \sum_{a=1}^{n} \|e_a\|^2 \langle J\xi, e_a \rangle je_a = \xi,
\]

поскольку \(\{ e_1, \ldots, e_n, Je_1, \ldots, Je_n \} \) — ортонормированный базис \(R \)-линейного пространства \(T_p(M) \).

Введем в рассмотрение двуместные эндоморфизмы \(B \) и \(C \) модуля \(X(M) \) формулами

\[
B(X, Y) = \frac{1}{2}(\nabla_{JX}(JY) - \nabla_X(J)(JY)); \\
C(X, Y) = \frac{1}{2}(\nabla_{JX}(JY) + \nabla_X(J)(JY));
\]

и назовем их виртуальным и структурным тензорами \(GAH \)-структуры, соответственно.

Замечание 2 Очевидно, тензор \(C \) (с точностью до множителя \(2 \)) совпадает с композиционным тензором присоединенной \(Q \)-алгебры \(GAH \)-струтуры \([10],[11]\).

Предложение 2 Тензоры \(B \) и \(C \) обладают следующими свойствами:

1) \(J \circ B(X, Y) = B(JX, Y) = -B(X, JY); \)

2) \(\langle \langle B(X, Y), Z \rangle \rangle + \langle \langle Y, B(X, Z) \rangle \rangle = 0; \)

3) \(J \circ C(X, Y) = -C(JX, Y) = -C(X, JY); \)

4) \(\langle \langle C(X, Y), Z \rangle \rangle + \langle \langle Y, C(X, Z) \rangle \rangle = 0; \quad X, Y, Z \in X(M). \) (5)

Доказательство С учетом Леммы 1 (примененной к \(GAH \)-многобразиям) имеем:

1) \(2J \circ B(X, Y) = J \circ \nabla_{JX}(JY) - J \circ \nabla_X(J)(JY) = \\
= -\nabla_{JX}(J)(JY) + \alpha \nabla_X(J)(JY); \)

\[
2B(JX, Y) = \alpha \nabla_X(J)(JY) - \nabla_{JX}(J)(JY); \\
2B(X, JY) = \nabla_{JX}(J)(JY) - \alpha \nabla_X(J)(JY).
\]
Сравнивая эти соотношения, получаем первое утверждение.

\[2\langle\langle B(X,Y), Z\rangle\rangle = 2\langle B(X,Y) Z\rangle + 2\langle J^3 \circ B(X,Y), Z\rangle = \]
\[= \langle \nabla^2_{JX}(JY), Z\rangle - \langle \nabla^2_X(JY), Z\rangle + \langle J^3 \nabla^2_{JX}(JY), Z\rangle - \]
\[- \langle J^3 \nabla^2_X(JY), Z\rangle = -\langle Y, \nabla^2_{JX}(JY)\rangle + \langle J^3 Y, \nabla^2_{JX}(JY)\rangle \]
\[= -2\langle Y, B(X,Z)\rangle + 2\langle J^3 Y, B(X,Y)\rangle = -2\langle\langle Y, B(X,Z)\rangle\rangle. \]

Аналогично доказываются тождества 3 и 4.

Следствие 1 Виртуальный тензор \(K \)-линеен по первому и \(K \)-антилинеен по второму аргументам. Структурный тензор \(K \)-антилинеен по обоим аргументам.

Рассмотрим два линейных пространства на \(GAH \)-многообразии \(M \):

1. Линейное пространство \(B \) тензоров типа \((2, 1) \), обладающих свойствами \((5_1)-(5_2)\);
2. Линейное пространство \(C \) тензоров типа \((2, 1) \), обладающих свойствами \((5_3)-(5_4)\).

Изучим строение линейного пространства \(B \).

Определение 3 Следом тензора \(B \in B \) назовем вектор \(\text{tr} B \), в каждой точке \(p \in M \) вычисляемый по формуле

\[(\text{tr} B)_p = -\frac{1}{n-1} \sum_{a=1}^{n} \|e_a\|^2 B_p(e_a, e_a), \]

где \(\{e_1, \ldots, e_n\} \) — как обычно, ортонормированный базис касательного пространства \(T_p(M) \), рассматриваемого как \(K \)-модуль.

С учетом \((5_1)\) легко проверить, что вектор \(\text{tr} B \) определен корректно в смысле независимости от выбора базиса. Тензор \(B \in B \) называется бесслед-ным, если \(\text{tr} B = 0 \). Очевидно, совокупность \(B_0 \) всех бесследных тензоров образует подпространство пространства \(B \).

С другой стороны, рассмотрим подпространство \(B_1 \subset B \) тензоров вида \(T(X,Y) = \langle \langle \zeta, Y \rangle \rangle X - \langle \langle X, Y \rangle \rangle \zeta \), где \(\zeta \) — вектор, с необходимостью равный следу тензора \(T \) (что непосредственно следует из Леммы 2). Элементы этого подпространства назовем примитивными тензорами.
Теорема 3 Линейное пространство B распадается в прямую сумму подпространств бесследных и примитивных тензоров.

Доказательство Пусть $B \in B$, и пусть

$$B(X,Y) = B_0(X,Y) + \langle\langle \zeta, Y \rangle\rangle X - \langle\langle X,Y \rangle\rangle \zeta,$$

где B_0 — бесследный тензор. Тогда $\sum_{a=1}^n \|e_a\|^2 B(e_a, e_a) = (1 - n)\zeta$, а значит, $\zeta = \operatorname{tr} B$. Соответственно, $B_0(X,Y) = B(X,Y) - \langle\langle \zeta, Y \rangle\rangle X + \langle\langle X,Y \rangle\rangle \zeta$. Следовательно, если такое представление тензора B существует, то оно единственно.

Обратно, рассмотрим разложение тензора B по формуле (6), где выбрано $\zeta = \operatorname{tr} B$, $B_0(X,Y) = B(X,Y) - \langle\langle \zeta, Y \rangle\rangle X + \langle\langle X,Y \rangle\rangle \zeta$. Тогда

$$\operatorname{tr} B_{0\Rightarrow} = \frac{1}{n - 1} \sum_{a=1}^n \|e_a\|^2 B_0(e_a, e_a) = - \frac{1}{n - 1} \sum_{a=1}^n \|e_a\|^2 B(e_a, e_a) +$$

$$+ \frac{1}{n - 1} \sum_{a=1}^n \|e_a\|^2 \{\langle\langle \zeta, e_a \rangle\rangle e_a - \langle\langle e_a, e_a \rangle\rangle \zeta\} = \operatorname{tr} B - \zeta = 0,$$

а значит, $B_0 \in B_0$.

С качестве следствия получаем следующий результат:

Теорема 4 Виртуальный тензор $G\tilde{A}H$-структуры однозначно представляется в виде суммы бесследного и примитивного тензоров. Именно, $B = B_0 + B_1$; $\operatorname{tr} B_0 = 0$, $B_1(X,Y) = \frac{1}{2} \left(\langle\langle \xi, Y \rangle\rangle X - \langle\langle X,Y \rangle\rangle \xi \right)$, где ξ — обобщенный вектор Ли, т.е. вектор, дуальный обобщенной форме Ли

$$\omega = - \frac{\alpha}{n - 1} \delta \Omega \circ J.$$

Доказательство Заметим, что применение оператора ∇_X к обеим частям тождества $\Omega(Y, Z) = \alpha \langle JY, Z \rangle$ приводит к тождеству

$$\nabla_X (\Omega)(Y, Z) = \alpha \langle \nabla_X (J)Y, Z \rangle,$$

а значит, с учетом Леммы 1,

$$\delta \Omega(Y) \sum_{a=1}^n \left(\|e_a\|^2 \langle\langle \nabla_{e_a} (\Omega)(Y), e_a \rangle\rangle + \|Je_a\|^2 \langle\langle \nabla_{Je_a} (\Omega)(Y), Je_a \rangle\rangle \right) =$$

$$= \alpha \sum_{a=1}^n \left(\|e_a\|^2 \langle\langle \nabla_{e_a} (J)Y, e_a \rangle\rangle + \|Je_a\|^2 \langle\langle \nabla_{Je_a} (J)Y, Je_a \rangle\rangle \right) =$$

$$= - \alpha \sum_{a=1}^n \left(\|e_a\|^2 \langle\langle \nabla_{e_a} (J)e_a, Y \rangle\rangle + \|Je_a\|^2 \langle\langle \nabla_{Je_a} (J)e_a, Y \rangle\rangle \right).$$
С другой стороны, поскольку \(\xi = 2 \text{tr} \ B \), с учетом Предложения 2 и определения виртуального тензора имеем:

\[
J_\xi = -\frac{2}{n-1} \sum_{a=1}^{n} ||e_a||^2 J \circ B(e_a, e_a) = \frac{2}{n-1} \sum_{a=1}^{n} ||e_a||^2 B(e_a, Je_a) = \\
-\frac{1}{n-1} \sum_{a=1}^{n} ||e_a||^2 \left\{ \nabla_J e_a(J)(Je_a) - \nabla_{Je_a}(J^2 e_a) \right\} = \\
-\frac{\alpha}{n-1} \sum_{a=1}^{n} \left\{ ||Je_a||^2 \nabla_J e_a(J)(Je_a) + ||e_a||^2 \nabla_{Je_a}(J)(e_a) \right\}.
\]

Сравняя с предыдущим тождеством, найдем, что \(\langle J_\xi, Y \rangle = \frac{1}{n-1} \delta \Omega(Y) \).

Положив здесь \(Y = JX \), получаем окончательно, что

\[
\langle \xi, X \rangle = -\frac{\alpha}{n-1} \delta \Omega \circ J(X); \quad X \in X(M).
\]

Теперь рассмотрим линейное пространство \(\mathcal{C} \). В силу Предложения 2, его элементы естественно отождествляются с \(\mathbb{K} \)-линейными 3-формами (обозначаемыми той же буквой) по формуле

\[
C(X, Y, Z) = \langle \langle X, C(Y, Z) \rangle \rangle \quad C \in \mathcal{C}, \ X, Y, Z \in X(M).
\]

При таком отождествлении в \(\mathbb{K} \)-модуль \(\mathcal{C} \) внутренним образом определен проектор – оператор \(\text{Alt} \) альтернирования, а значит, \(\mathbb{K} \)-модуль \(\mathcal{C} \) распадается в прямую сумму ядра \(\mathcal{C}_0 \) и образа \(\mathcal{C}_1 \) этого проектора. Элементы ядра назовем квазисимметричными тензорами, а элементы образа — абсолютно кососимметричными тензорами. Таким образом, доказана

Теорема 5 При надлежащих отождествлениях \(\mathbb{K} \)-модуль \(\mathcal{C} \) распадается в прямую сумму подмодулей квазисимметричных и абсолютно кососимметричных тензоров.

Следствие 2 Структурный тензор \(GAH \)-структуры однозначно представляется в виде суммы квазисимметричного и абсолютно кососимметричного тензоров. Именно, \(C = C_0 + C_1 \); \(\text{Alt} C_0 = 0, \ C_1 = \text{Alt} C \).

Рассмотрим, наконец, линейное пространство \(T \) тензоров \(T \) типа \((2,1) \) на \(GAH \)-многообразии \(M \), удовлетворяющих тождествам

1) \(T(X, J Y) = -J \circ T(X, Y) \); 2) \(\langle \langle T(X, Y), Z \rangle \rangle = -\langle \langle Y, T(X, Z) \rangle \rangle \). \(\ast \)

Теорема 6 В принятых обозначениях \(T = \mathcal{B} \oplus \mathcal{C} \).
Доказательство Напомним [10],[11], что всякий тензор T типа $(r,1)$ на M, рассматриваемый как r-линейное отображение

$$T : X(M) \times \ldots \times X(M) \to X(M),$$

однозначно распадается в сумму тензоров того же вида, K-линейных либо K-антилинейных по своим аргументам. Совокупность таких тензоров называется спектром тензора T. Число элементов спектра равно, очевидно, 2^r, причем элементы спектра обозначаются символами $T^{(k)}$, где k — десятичное число, двоичная запись которого в s-м разряде имеет 0 либо 1 в зависимости от того, является ли тензор $T^{(k)}$ K-линейным либо K-антилинейным по s-му аргументу, соответственно. В явном виде тензор $T^{(k)}$ задается соотношением

$$T^{(k)}(X_1, \ldots, X_r) = \sigma \circ T(\theta X_1, \ldots, \theta X_r) + \overline{\sigma} \circ T(\overline{\theta} X_1, \ldots, \overline{\theta} X_r),$$

где $\theta X_s = \sigma X_s$, если в двоичной записи числа k в s-м разряде стоит нуль, и $\theta X_s = \overline{\sigma} X_s$, если в двоичной записи числа k в s-м разряде стоит единица.

Фиксируем $T \in T$. Пусть $\{T^{(0)}, T^{(1)}, T^{(2)}, T^{(3)}\}$ — спектр этого тензора.

Лемма 3 В принятых обозначениях,

1) $T^{(0)} (X,Y) = T^{(2)} = 0;
2) T^{(1)}(X,Y) = \frac{1}{2}(T(X,Y) + J^3 \circ T(JX,Y));
3) T^{(3)}(X,Y) = \frac{1}{2}(T(X,Y) - J^3 \circ T(JX,Y)).$

Доказательство Прежде всего, согласно [10], [11], внутренним образом определены взаимно дополнительные проекторы модуля $K \otimes X(M)$ на собственные распределения эндоморфизма J. Они определяются формулами

$$\sigma = \frac{1}{2}(\text{id} + iJ^3); \quad \overline{\sigma} = \frac{1}{2}(\text{id} - iJ^3).$$

В терминах этих проекторов, с учетом $(*)_1$,

1) $T^{(0)} (X,Y) = \sigma \circ T(\sigma X, \sigma Y) + \overline{\sigma} \circ T(\overline{\sigma} X, \overline{\sigma} Y) = \\
= \sigma \circ \overline{\sigma} \circ T(\sigma X, Y) + \overline{\sigma} \circ \sigma \circ T(\overline{\sigma} X, Y) = 0,$
поскольку \(\sigma \circ \sigma = 0 \). Аналогично,

2) \(T_{(2)}(X,Y) = \sigma \circ T(\sigma X, \sigma Y) + \sigma \circ T(\sigma X, \sigma Y) = 0 \);

3) \(T_{(1)}(X,Y) = \sigma \circ T(\sigma X, \sigma Y) + \sigma \circ T(\sigma X, \sigma Y) = \)
 \[\sigma^2 \circ T(\sigma X, Y) + \sigma^2 \circ T(\sigma X, Y) = \sigma \circ T(\sigma X, Y) + \sigma \circ T(\sigma X, Y) = \]
 \[= \frac{1}{4} \left\{ \left(\text{id} + iJ^3 \right) \circ T \left(\left(\text{id} + iJ^3 \right) X, Y \right) + \left(\text{id} - iJ^3 \right) \circ T \left(\left(\text{id} - iJ^3 \right) X, Y \right) \right\} = \]
 \[= \frac{1}{2} \left(T(X, Y) + J^3 \circ T(JX, Y) \right); \]
4) \(T_{(3)}(X,Y) = T(X,Y) - 0 - T_{(1)}(X,Y) = \frac{1}{2} \left(T(X,Y) - J^3 \circ T(JX, Y) \right). \)

Продолжим доказательство Теоремы 6. Прежде всего, из (7) вытекает, что тензор \(T \) однозначно распадается в сумму тензоров \(T_{(1)} \) и \(T_{(3)} \), для которых выполнены соотношения (2) и (3), соответственно. Далее, в силу очевидных тождеств \(\langle \langle \sigma X, Y \rangle \rangle = \langle \langle X, \sigma Y \rangle \rangle \) и \(\langle \langle \sigma X, Y \rangle \rangle = \langle \langle X, \sigma Y \rangle \rangle \) имеем:

\[\langle \langle T_{(1)}(X,Y), Z \rangle \rangle = \langle \langle \sigma \circ T(\sigma X, \sigma Y), Z \rangle \rangle + \langle \langle \sigma \circ T(\sigma X, \sigma Y), Z \rangle \rangle = \]
 \[= \langle \langle T(\sigma X, \sigma Y), \sigma Z \rangle \rangle + \langle \langle T(\sigma X, \sigma Y), \sigma Z \rangle \rangle = \]
 \[= -\langle \langle \sigma Y, T(\sigma X, \sigma Z) \rangle \rangle - \langle \langle \sigma Y, T(\sigma X, \sigma Z) \rangle \rangle = \]
 \[= -\langle \langle \sigma X, \sigma Y \rangle \rangle - \langle \langle \sigma X, \sigma Y \rangle \rangle = -\langle \langle Y, \sigma T(\sigma X, \sigma Z) \rangle \rangle - \langle \langle Y, \sigma T(\sigma X, \sigma Z) \rangle \rangle. \]

Аналогично это соотношение проверяется для тензора \(T_{(3)} \). Следовательно, \(T_{(1)} \in B, T_{(3)} \in C \).

Следствие 3 Во введенных обозначениях, \(T = B_0 \oplus B_1 \oplus C_0 \oplus C_1 \).

Назовем это разложение каноническим.

Теорема 7 Спектр тензора \(\nabla J \) \(GAH \)-многообразия имеет вид:

1) \(\nabla J_{(0)} = \nabla J_{(2)} = 0; \)
2) \(\nabla J_{(1)} = J^3 \circ B; \)
3) \(\nabla J_{(3)} = -J^3 \circ C. \)

Доказательство Поскольку, согласно (4), \(\nabla J \in T \), то с учетом Теоремы 6 имеем: \(\nabla J_{(0)} = \nabla J_{(2)} = 0 \). Далее, с учетом той же теоремы,

\[\nabla J_{(1)}(X,Y) = \frac{1}{2} \left(\nabla_X(J)Y + J^3 \nabla_JX(J)Y \right) = \]
 \[= \frac{1}{2} J^3 \left(-\nabla_X(J)(JY) + \nabla_JX(J)Y \right) = J^3 \circ B(X, Y). \]

Аналогично доказывается третье соотношение.
Следствие 4 Каноническое разложение тензора \(\nabla J \) имеет вид:

\[
\nabla J = J^3 B - J^3 C,
\]

где дальнейшие разложения виртуального и структурного тензоров находятся в соответствии с Теоремой 4 и Следствием из Теоремы 5.

Из проведенных рассуждений следует, что в классе всех \(GAH \)-структур естественно выделяются 16 подклассов в зависимости от того, в какое из 16 внутренним образом определенных подпространств пространства \(T \), определенных каноническим разложением, попадет тензор \(\nabla J \). Эти классы можно рассматривать как обобщения хорошо известных классов Грея-Хервеллы.

Напомним [8], что А. Греем и Хервеллой естественным образом выделены 16 классов почти эрмитовых структур классического типа. Именно, пусть \(V = 2n \)-мерное вещественное линейное пространство, в котором фиксирована эрмитова структура \((J, g = \langle \cdot, \cdot \rangle) \). Грей и Хервелла доказали, что унитарная группа \(U(n) \) вполне приводимо действует на пространстве \(W \) тензоров типа \((3,0)\) линейного пространства \(V \), обладающих определенными свойствами симметрии, и нашли четыре неприводимые компоненты \(W_1 - W_4 \) этого действия, так, что \(W = W_1 \oplus W_2 \oplus W_3 \oplus W_4 \). Тем самым в пространстве \(W \) внутренним образом определено 16 подпространств, инвариантных относительно этого действия. Оказывается, тензор \(\nabla \Omega \) в каждой точке почти эрмитова многообразия принадлежит пространству \(W \). Почти эрмитова структура, по Грею-Хервелле, принадлежит одному из 16 классов, если тензор \(\nabla \Omega \) лежит в соответствующем инвариантном подпространстве в каждой точке многообразия. Эти классы обозначаются как соответствующие им подпространства пространства \(W \). Например, класс \(QK \) квазикеллеровых структур в этой системе обозначается \(W_1 \oplus W_2 \), класс \(\mathcal{H} \) эрмитовых структур \(- W_3 \oplus W_4 \), и т.п. Система классов Грея-Хервеллы в известном смысле является полной и охватывает все ранее изучавшиеся классы \(AH \)-структур. Грей и Хервелла получили аналитические признаки принадлежности \(AH \)-структур соответственно классу [8]. Легко заметить, что в случае классических почти эрмитовых структур при отождествлении тензоров типа \((2,1)\) с тензорами типа \((3,0)\) с помощью операции опускания индексов имеют место следующие отождествления:

\[
B_0 \equiv W_3; \quad B_1 \equiv W_4; \quad C_0 \equiv W_2; \quad C_1 \equiv W_1.
\]

В силу этого для обозначения обобщенных классов Грея-Хервеллы \(GAH \)-структур естественно пользоваться обозначениями Грея-Хервеллы. Исполь-
зуя Следствие из Теоремы 7 и приведенные выше соображения, мы получаем удобные аналитические критерии принадлежности GAH-структуры к тому или иному обобщенному классу Грея-Хервеллы. Эти критерии наиболее удобно использовать, записывая их на пространстве G-структуры, присоединенной к данной GAH-структуре. Напомним [12], что пространство присоединенной G-структуры состоит из так называемых A-реперов, характеризующихся тем, что матрицы метрического тензора g индекса 2s и структурного эндоморфизма J в них имеют вид, соответственно:

$$(g_{jk}) = (g^{jk}) = \begin{pmatrix} 0 & I_{n,s} \\ I_{n,s} & 0 \end{pmatrix}; \quad (J^j_k) = \begin{pmatrix} iI_n & 0 \\ 0 & -iI_n \end{pmatrix};$$

$(j, k = 1, \ldots, 2n)$. Напомним [9], что A-репер $(p, \varepsilon_1, \ldots, \varepsilon_n, \varepsilon_1, \ldots, \varepsilon_n)$ получается из ортонормированного репера (p, e_1, \ldots, e_n) пространства $T_p(M)$, рассматриваемого как K-модуль, по формулам $\varepsilon_a = \sqrt{2\sigma(e_a)}$, $\varepsilon_\tilde{a} = \sqrt{2\tilde{\sigma}(e_a)}$, $a = 1, \ldots, n$, где $\sigma = \frac{1}{2}(\text{id} + i^3J)$, $\tilde{\sigma} = \frac{1}{2}(\text{id} - i^3J)$. Принимая традиционные обозначения [9]

$$B^{ab}_c = \frac{i^3}{2} \varepsilon(b)J^a_{b,c}, \quad B_{ab}^c = B^{ab}_c, \quad B^{abc} = -\frac{i^3}{2} \varepsilon(b, c)J^a_{[b,c]}, \quad B_{abc} = B^{abc}$$

где $\varepsilon(b) = g_{bb}^c$, $\varepsilon(b, c) = g_{bb}^c g_{cc}^\ell$, легко проверить, что на пространстве присоединенной G-структуры

$$B^{ab}_c = \frac{\alpha}{2} \varepsilon(b)B(\varepsilon_c, \varepsilon_b)^a, \quad B^{abc} = \frac{\alpha}{4} \varepsilon(b, c)(C(\varepsilon_b, \varepsilon_\tilde{c})^a - C(\varepsilon_\tilde{c}, \varepsilon_b)^a).$$

В самом деле,

$$\frac{\alpha}{2} \varepsilon(b) B(\varepsilon_c, \varepsilon_b)^a \frac{\alpha}{4} \varepsilon(b) \{ \nabla J_{\varepsilon_c}(J)\varepsilon_b - \nabla_{\varepsilon_c}(J)(J\varepsilon_b) \} =$$

$$= \frac{i^2}{4} \varepsilon(b) \{ i \nabla_{\varepsilon_c}(J)\varepsilon_b + i \nabla_{\varepsilon_c}(J)(J\varepsilon_b) \}^a = \frac{i^3}{2} \varepsilon(b)J^a_{b,c} = B^{ab}_c.$$

Аналогично доказывается второе соотношение. Далее,

$$B^{ab}_c \frac{\alpha}{2} \sum_{b=1}^{n} \varepsilon(b)B(\varepsilon_b, \varepsilon_b)^a = \frac{\alpha}{2} \sum_{b=1}^{n} \|e_b\|^2 B(e_b + i^3J e_b, e_b - i^3J e_b)^a =$$

$$= \frac{\alpha}{4} \sum_{b=1}^{n} \|e_b\|^2 (1 + 2i^3J + i^6J^2) B(e_b, e_b)^a =$$

$$= \frac{\alpha}{2} \sum_{b=1}^{n} \|e_b\|^2 (1 + iJ^3) B(e_b, e_b)^a = \alpha \sum_{b=1}^{n} \|e_b\|^2 (\sigma \circ B)(e_b, e_b)^a =$$

$$= \alpha \left(\sigma \left(\sum_{b=1}^{n} \|e_b\|^2 B(e_b, e_b) \right) \right)^a = -\alpha(n - 1)(\sigma(\text{tr} B))^a = -\frac{\alpha}{2}(n - 1)\xi^a,$$
откуда $\xi^a = -\frac{2\alpha}{n-1}B^{ab}_b$ и формулы, комплексно сопряженные. Отсюда следует, что на пространстве присоединенной G-структуры условие $B_1 = 0$, т.е. $\xi = 0$, запишется в форме $B^{ab}_b = 0$. С другой стороны, поскольку

$$
\langle\langle \xi, \varepsilon_b^c \rangle \rangle + iJ^3 \langle\langle \xi, \varepsilon_b^d \rangle \rangle + 2\langle\langle \xi, \varepsilon_b^e \rangle \rangle = 2\langle\langle \xi, \varepsilon_b^f \rangle \rangle = 2\varepsilon(b)\xi^b,
$$
$$
\langle\langle \varepsilon_a^c, \varepsilon_b^d \rangle \rangle = 2\varepsilon(b)\delta_a^d,
$$

условие $B_0 = 0$, т.е. $B(X,Y) = \frac{1}{2}\left(\langle\langle \xi, Y \rangle \rangle X - \langle\langle X, Y \rangle \rangle \xi \right)$, на пространстве присоединенной G-структуры запишется так:

$$
B^{ab}_c = \frac{\alpha}{2}\varepsilon(b)B(\varepsilon_c, \varepsilon_b)^a = \frac{\alpha}{4}\varepsilon(\langle\langle \xi, \varepsilon_b^c \rangle \rangle \delta_c^a - \langle\langle \varepsilon_c, \varepsilon_b^c \rangle \rangle \xi^a) = -\alpha\xi^{[a}\delta_b^c].
$$

С учетом этих соображений мы получаем критерии, перечисленные в Таблице 1 на стр. 38.
| Таблица 1. Обобщенные классы Грея-Хервеллы. |
Список литературы

1. Levi-Civita, T.: Sulle transformationi delle equazioni dinamiche. Ann. Math. Milano, Ser. 2, 24, 255–300 (1894)
2. Thomas, T.Y.: On projective and equiprojective geometries of paths. PWC Nat. Acad. Sci. USA 11, 198–203 (1925)
3. Weyl, H.: Zur Infinitesimalgeometrie Einordnung der projectiven und der conformen Auffassung. Göttingen Nachr., 99-112 (1921)
4. Синюков, Н.С.: Геодезические отображения римановых пространств. М., “Наука”, 1979.
5. Westlake, W.J.: Hermitian spaces in geodesic correspondence. Proc. AMS, 5(2), 301–303 (1954)
6. Yano, K.: Sur la correspondence projective entre deux espaces pseudohermitens. C.R. Acad. Sci. Paris, 239, 1346-1348 (1956)
7. Радулович, Ж., Микеш, Й.: Геодезические отображения конформно-келеровых пространств. Изв. ВУЗов. Матем. 3(382), 50–52 (1994)
8. Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Math. Pure ed Appl., 123(4), 35–58 (1980)
9. Арсеньева, О.Е., Кириченко, В.Ф.: Автодуальная геометрия обобщенных эрмитовых поверхностей. Изв. сб., 189(1), 21–44 (1998)
10. Кириченко, В.Ф.: Методы обобщенной эрмитовой геометрии в теории почти контактных многообразий. Итоги науки и тех. Проблемы геометрии ВИНИТИ АН СССР 18, 25–71 (1986)
11. Kirichenko, V.F.: Generalized quasi-Kaehlerian manifolds and axioms of CR-submanifolds in generalized Hermitian geometry, I. Geometriae Dedicata 51, 75-104 (1994)
12. Kirichenko, V.F.: Generalized quasi-Kaehlerian manifolds and axioms of CR-submanifolds in generalized Hermitian geometry, II. Geometriae Dedicata 52, 53-85 (1994)

В. Ф. Кириченко
Московский педагогический государственный университет, Москва, Россия.
E-mail: highgeom@yandex.ru

В. М. Кузаконь
Одесская национальная академия пищевых технологий, Одесса, Украина.
E-mail: kuzakon_v@ukr.net

К. М. Тенюх
Одесский государственный экономический университет, Одесса, Украина.
E-mail: tek2002@ukr.net
Симплектическая классификация гиперболических уравнений Монжа-Ампера

А. Г. Кушнер Е. Н. Манжосова

Аннотация Рассматривается задача классификации симплектических гиперболических уравнений Монжа-Ампера.

Ключевые слова Эффективные дифференциальные формы Инварианты Лапласа Симплектические преобразования

УДК 514.763.85

Введение

Классическое уравнение Монжа-Ампера имеет следующий вид:

\[Av_{xx} + 2Bv_{xy} + Cv_{yy} + D(v_{xx}v_{yy} - v_{xy}^2) + E = 0, \] (1)

где \(A, B, C, D \) и \(E \) — функции от независимых переменных \(x, y \), неизвестной функции \(v = v(x, y) \) и ее первых производных \(v_x, v_y \). Далее мы полагаем, что эти функции гладкие, т.е. принадлежат классу \(C^\infty \).

Класс уравнений Монжа-Ампера выделяется из всего многообразия уравнений второго порядка тем, что он замкнут относительно контактных преобразований и содержит квазилинейные уравнения. Этот факт был известен еще Софусу Ли, изучавшему уравнения Монжа-Ампера методами контактной геометрии.
В 1870-х и 1880-х годах в серии работ он поставил следующую проблему классификации уравнений Монжа-Ампера:

Найти классы эквивалентности уравнений Монжа-Ампера относительно псевдогруппы контактных преобразований.

Важные результаты на пути к решению этой задачи были получены Дарбу [18] и Гурса [20,21], которые, также как и Ли, преимущественно рассматривали гиперболические уравнения.

В частности, Гурса занимался проблемой эквивалентности уравнений Монжа-Ампера, интегрируемых методом Дарбу. Современный подход к этой проблеме изложен в работе Андерсона и Журас [14].

Сам Софус Ли сформулировал условия приведения гиперболических уравнений Монжа-Ампера к волновому уравнению $v_{xy} = 0$ при наличии у них двух промежуточных интегралов. Напомним, что промежуточным интегралом уравнения Монжа-Ампера называется дифференциальное уравнение первого порядка, каждое решение которого является решением данного уравнения Монжа-Ампера.

Заметим, что не все уравнения Монжа-Ампера обладают промежуточными интегралами. Поэтому результаты Ли применимы не ко всем уравнениям Монжа-Ампера, а только к тем из них, которые такими интегралами обладают. Кроме того, проверка наличия промежуточных интегралов у общего уравнения Монжа-Ампера, а тем более их построение, является не простой задачей. Доказательства полученных результатов Ли так и не опубликовал.

В 1978 г. Лычагин [11] предложил геометрическое описание широкого класса дифференциальных уравнений второго порядка на гладких многообразиях. Если размерность многообразия равна двум, то этот класс совпадает с классом уравнений Монжа-Ампера (1).

Основная идея Лычагина [11] заключается в представлении уравнений Монжа-Ампера и их многомерных аналогов дифференциальными формами на пространстве 1-джетов функций на гладком многообразии.

Преимуществом такого подхода перед классическим является редукция порядка пространства джетов: используется более простое пространство 1-джетов $J^1 M$ вместо пространства 2-джетов $J^2 M$, в котором, будучи уравнениями второго порядка, ad hoc должны лежать уравнения Монжа-Ампера (см. [1]).

Такая интерпретация уравнений Монжа-Ампера позволила по-новому взглянуть на проблему их классификации и послужила толчком к появлению множества работ других авторов.
В частности, в 1983 году Лычагиным и Рубцовым [13] была решена проблема приводимости невырожденных уравнений (1) к уравнениям Монжа-Ампера с постоянными коэффициентами в случае когда коэффициенты A, B, C, D, E не зависят от переменной v. Такие уравнения они назвали симплектическими. Оказалось, что если коэффициенты A, B, C, D, E уравнения — аналитические функции, то локальным симплектическим преобразованием оно может быть приведено к квазилинейному виду, то есть к виду (1), где $D = 0$.

Кроме того, они нашли условия, при котором симплектические уравнения приводится к уравнению Монжа-Ампера с постоянными коэффициентами A, B, C, D, E и показали, что если это условие выполняется, то гиперболические уравнения локально эквивалентны волновому уравнению $v_{xy} = 0$, а эллиптические — уравнению Лапласа $v_{xx} + v_{yy} = 0$.

1 Подход Лычагина

Пусть M — n-мерное гладкое многообразие, $J^k M$ — многообразие k-джетов гладких функций на M, $D(J^k M)$ и $\Omega^*(J^k M) = C^\infty(J^k M)$-модули векторных полей и дифференциальных s-форм на $J^k M$ соответственно. ($2n + 1$)-мерное гладкое многообразие 1-джетов $J^1 M$ снабжено естественной контактной структурой — распределением Картана $C : J^1 M \ni a \mapsto C(a) \subset T_a(J^1 M)$,

задаваемым дифференциальной 1-формой Картана U. Подпространство $C(a) = \ker U_a$ касательного пространства $T_a(J^1 M)$ называется подпространством Картана. В канонических локальных координатах Дарбу $(q, u, p) = (q_1, \ldots, q_n, u, p_1, \ldots, p_2)$ на $J^1 M$ форма Картана имеет вид

$$U = du - pdq = du - p_1 dq_1 - \cdots - p_n dq_n.$$

Диффеоморфизм $\varphi : J^1 M \to J^1 M$ называется контактным, если он сохраняет распределение Картана. В терминах формы Картана это означает что $\varphi^*(U) = \lambda U$ для некоторой не обращающейся в нуль функции $\lambda \in C^\infty(J^1 M)$.

Ограничение дифференциала формы Картана на подпространство Картана не выражено на нем и определяет симплектическую структуру

$$\Omega_a \overset{\text{def}}{=} dU|_{C(a)} \in \Lambda^2 (C^*(a)).$$
Всякая дифференциальная n-форма $\omega \in \Omega^n(J^1M)$ определяет нелинейный дифференциальный оператор
$$\Delta_\omega : C^\infty(M) \to \Omega^n(M),$$
dействующий на функцию $v \in C^\infty(M)$ по следующему правилу [12]:
$$\Delta_\omega(v) = \omega|_{j_1(v)(M)}.$$ \hspace{2cm} (2)
Здесь $j_1(v)(M) \subset J^1M$ — график 1-джета $j_1(v)$ и $\omega|_{j_1(v)(M)}$ — ограничение дифференциальной формы ω на этот график.

Оператор Δ_ω называется оператором Монжа-Ампера, а уравнение $E_\omega = \{\Delta_\omega(v) = 0\} \subset J^2M$
— уравнением Монжа-Ампера.

Заметим, что соответствие между дифференциальными n-формами на J^1M и операторами Монжа-Ампера не является взаимно-однозначным. Для установления взаимно-однозначного соответствия между дифференциальными формами и операторами необходимо ограничиться только так называемыми эффективными формами.

Дифференциальные формы на J^1M, исчезающие на любом интегральном многообразии распределения Картана и поэтому порождающие нулевой дифференциальный оператор, образуют идеал во внешней алгебре $\Omega^*(J^1M)$. Обозначим этот идеал
$I^* = \bigoplus I^s$, где $I^s \subset \Omega^s(J^1M)$.

В силу обобщения теоремы Лепажа [12], этот идеал порожден дифференциальными формами вида $U \wedge \alpha + dU \wedge \beta$, где α и β — некоторые дифференциальные формы. Заметим, что $I^0 = 0$ и $I^s = \Omega^s(J^1M)$ для $s \geq n + 1$.

Элементы фактор-модуля $\Omega^s(J^1M)/I^s$ называются эффективными s-формами ($s \leq n$):
$$\Omega^s(J^1M)/I^s \cong \Omega^s(J^1M)/I^s.$$

Пусть ω — дифференциальная s-форма на J^1M. Отвечающую ей эффективную форму мы будем обозначать ω_ε, то есть
$$\omega_\varepsilon = \omega \mod I^s.$$

Пусть X_1 — контактное векторное поле с производящей функцией 1. В каждой точке $a \in J^1$ касательное пространство T_aJ^1 распадается в прямую сумму
$$T_aJ^1 = X_{1,a} \oplus C(a)$$
Это разложение позволяет отождествить эффективные формы с дифференциальными формами на $J^1 M$.

Начиная с этого места мы рассматриваем случай, когда размерность гладкого многообразия M равна $n = 2$, являющийся для нас основным.

Для любого элемента фактор-модуля $\Omega^2_\mathbb{C}(J^1 M)$ может быть выбран единственный представитель $\omega \in \Omega^2(J^1 M)$ такой, что $X_1 \cdot \omega = 0$ и $\omega \wedge dU = 0$. В канонических координатах Дарбу $X_1 = \partial/\partial u$ и такие представители имеют следующий вид:

$$
\omega = Edq_1 \wedge dq_2 + B (dq_1 \wedge dp_1 - dq_2 \wedge dp_2) +
+ Cdq_1 \wedge dp_2 - Adq_2 \wedge dp_1 + Ddp_1 \wedge dp_2,
$$

где A, B, C, D, E — некоторые гладкие функции на $J^1 M$.

2 Проекция $J^1 M \to T^* M$ и симплектические уравнения

Если коэффициенты уравнения Монжа-Ампера не зависят от неизвестной функции v явным образом, то вместо контактной геометрии можно рассматривать симплектическую.

Пусть коэффициенты A, B, C, D и E уравнения (1) — функции от x, y и v_x, v_y. Это означает, что производная Ли вдоль контактного векторного поля X_1 от эффективной формы ω равна нулю:

$$
L_{X_1} \omega = 0.
$$

Это свойство не инвариантно относительно контактных преобразований, так как векторное поле X_1 не сохраняется, вообще говоря, при таких преобразованиях.

Но если мы ограничимся контактными преобразованиями, которые сохраняют одномерное распределение $\mathcal{F}(X_1)$, то мы сможем использовать четырехмерное кокасательное расслоение $T^* M$ вместо пятимерного расслоения 1-джетов $J^1 M$.

Действительно, в этом случае $\omega = \pi^*(\tilde{\omega})$ для некоторой дифференциальной 2-формы $\tilde{\omega} \in \Omega^2(T^* M)$, где

$$
\pi : J^1 M \to T^* M
$$

— естественная проекция. Симплектическая структура на $T^* M$ порождается универсальной дифференциальной 1-формой ρ: $\Omega = -d\rho$.

Уравнения Монжа-Ампера (1), коэффициенты которого не зависят от v, называются симплектическими.
Замечание 1 Для дифференциальной 2-формы $\omega \in \Omega^2(T^*M)$ оператор Монжа-Ампера может быть определен следующим образом:

$$\Delta_\omega(v) = (dv)^*(\omega),$$

где $dv : M \to T^*M$ — естественное сечение, ассоциированное с $v \in C^\infty(M)$.

Дифференциальную 2-форму ω на T^*M будем называть эффективной, если

$$\omega \wedge \Omega = 0.$$

Модуль эффективных 2-форм на T^*M обозначим $\Omega^2_\varepsilon(T^*M)$.
Пусть E_ω — симплектическое уравнение, где $\omega \in \Omega^2_\varepsilon(T^*M)$.
Функция $\text{Pf}(\omega) \in C^\infty(T^*M)$, определяемая равенством:

$$\text{Pf}(\omega) \Omega \wedge \Omega = \omega \wedge \omega,$$

называется \text{пфаФФиано}м дифференциальной 2-формы ω [33].

Определим оператор $A_\omega : D(T^*M) \to D(T^*M)$ по формуле

$$X \parallel \omega = A_\omega X \parallel \Omega.$$

Оператор A_ω обладает следующими свойствами.

– Оператор A_ω симметричен относительно Ω;
– Векторные поля X и $A_\omega X \in D(C)$ косоортогональны;
– Для любого многозначного решения L уравнения E_ω и любой точки $a \in L$

$$A_{\omega_a} : T_aL \to T_aL$$

– Квадрат оператора A_ω скаляр и

$$A^2_\omega + \text{Pf}(\omega) = 0. \quad (4)$$

Уравнение E_ω называется \text{гиперболическим}, \text{параболическим} или \text{эллиптическим} в точке $a \in J^1M$, если пфаФФиан $\text{Pf}(\omega)$ отрицательный, нулевой или положительный в этой точке.

Если $\text{Pf}(\omega)(a) \neq 0$, то уравнение называется \text{невырожденным} в точке a.
Уравнение E_ω \text{гиперболическое}, \text{параболическое} или \text{эллиптическое} в некоторой области, если оно таково во всех точках этой области.
Если уравнение E_ω невырождено в некоторой области, то форму ω можно нормировать так, чтобы $\text{Pf}(\omega) = -1$ в гиперболическом случае, или
Пf(ω) = 1 — в эллиптическом. Для этого достаточно вместо формы ω взять форму
\[\frac{ω}{\sqrt{|Pf(ω)|}}. \]

Оператор \(A_ω \), отвечающий нормированной форме ω, мы будем обозначать A. Нормированный оператор порождает на \(T^*M \) либо структуру почти произведения \((A_α^2 = 1) \) (для гиперболических уравнений), либо комплексную структуру \((A_α^2 = -1) \) (для эллиптических уравнений).

Пусть эффективная дифференциальная форма ω нормирована и \(E_{ω} \) — гиперболическое уравнение Монжа-Ампера.

Уравнение \(E_{ω} \) определяет структуру прямого произведения на \(T^*M \):
\[\mathcal{V}_+(a) \oplus \mathcal{V}_-(a) = T_a(T^*M) \] (5)
Здесь \(\mathcal{V}_±(a) \) — собственные пространства оператора \(A_ω \).

Распределения \(\mathcal{V}_+ \) и \(\mathcal{V}_- \) мы будем называть характеристическими.

Характеристические распределения косоортогональны друг другу и на каждом из них симплектическая структура невырождена [33].

2.1 Тензорные инварианты симплектических уравнений

Пусть \(E_{ω} \) — симплектическое гиперболическое уравнение Монжа-Ампера, \(ω \in \Omega^2_ε(T^*M) \).

Характеристические распределения \(\mathcal{V}_+ \) и \(\mathcal{V}_- \) обозначим через \(\mathcal{P}_1 \) и \(\mathcal{P}_2 \) соответственно.

Пусть \(a \in T^*M \) — некоторая фиксированная точка. Пространство внешних s-форм на \(T_aM \) распадается в прямую сумму
\[A^s(T^*_aM) = \bigoplus_{|\mathbf{k}|=s} A^\mathbf{k}(T^*_aM). \] (6)

Здесь
\[A^\mathbf{k}(T^*_aM) = \left\{ \sum_{j_1+j_2=|\mathbf{k}|} \theta_{j_1} \wedge \theta_{j_2}, \text{где } \theta_{j_i} \in A^{k_i}(\mathcal{P}_i(a)^*) \right\}, \]

и \(\mathbf{k} \in \mathbb{N}^2 \) — мультииндекс, \(\mathbf{k} = (k_1, k_2) \).

Элементы подпространства \(\mathcal{P}_i(a)^* \) мы отождествим с ковекторами, которые вырождаются вдоль \(\bigoplus_{i\neq j} \mathcal{P}_j(a) \).

Переходя к дифференциальным формам, мы получаем разложение в прямую сумму модуля дифференциальных s-форм на \(T^*M \):
\[\Omega^s(T^*M) = \bigoplus_{|\mathbf{k}|=s} \Omega^\mathbf{k}, \] (7)
где

\[\Omega^{k} = \left\{ \sum_{j_1 + j_2 = |k|} \alpha_{j_1} \wedge \alpha_{j_2}, \text{где } \alpha_{j_i} \in \Omega^{k_i} \right\} \subset \bigotimes_{i=1}^{2} \Omega^{k_i}, \]

а модули

\[\Omega^s_i = \{ \alpha \in \Omega^s(T^*M) \mid X|\alpha = 0 \forall X \in D_j, j \neq i \} \subset \Omega^s(T^*M) \]

состоит из внешних дифференциальных s-форм, вырождающихся на векторных полях \(D_j, j \neq i \). Здесь \(D_i \) — модули векторных полей из распределений \(\mathcal{P}_i (i = 1, 2) \).

Внешний дифференциал также распадается в прямую сумму

\[d = \bigoplus_{|t|=1} d_t, \tag{8} \]

где \(d_t : \Omega^k \to \Omega^{k+t} \) и \(t \in \mathbb{Z}^2 \) — мультииндекс длины 2.

Таким образом, мы получаем следующее разложение комплекса де Рама:

Операторы \(d_{-1,2} \) и \(d_{2,-1} \) являются \(C^\infty(T^*M) \)-гомоморфизмами и, таким образом, порождают тензорные поля \(\tau_{-1,2} \) и \(\tau_{2,-1} \) на \(T^*M \) [33].
3 Векторные дифференциальные инварианты гиперболических уравнений

Пусть E_ω — симплектическое гиперболическое уравнение Монжа-Ампера, где ω — эффективная дифференциальная 2-форма. Формула

$$W_\omega \mid \Omega^2 = 2d\omega,$$

где $\Omega^2 = \Omega \wedge \Omega$, однозначно определяет векторное поле W_ω на $T^* M$.

Невырожденное уравнение Монжа-Ампера E_ω, где ω — эффективная дифференциальная 2-форма, нормированная условием $\text{Pf}(\omega) = -1$, локально симплектически эквивалентно уравнению Монжа-Ампера с постоянными коэффициентами тогда и только тогда, когда 2-форма ω замкнута. При выполнении этого условия уравнение E_ω локально контактно эквивалентно либо волновому уравнению $v_{xx} - v_{yy} = 0$, либо уравнению Лапласа $v_{xx} + v_{yy} = 0$ [13].

Условие замкнутости нормированной формы ω равносилино условию полной интегрируемости характеристических распределений V_- и V_+ уравнения E_ω [33]. Последнее же условие равносилино тому, что инвариантные тензорные поля $\tau_{-1,2}$ и $\tau_{2,-1}$ аннулируются.

Поэтому имеет смысл рассматривать случай, когда хотя бы одно из тензорных $\tau_{-1,2}$ или $\tau_{2,-1}$ полей не аннулируется.

Если уравнение E_ω невырождено, то в силу нашего предположения, что $\tau_{-1,2} \neq 0$ или $\tau_{2,-1} \neq 0$, векторное поле W не нулевое.

Применив к W_ω оператор A_ω, мы получим новое векторное поле

$$V_\omega = A_\omega W_\omega.$$

Пусть X_ω — гамильтоново векторное поле с гамильтонианом $F_\omega = \text{Pf}(\omega)$, то есть

$$X_\omega \mid \Omega = -dF_\omega.$$

Лемма 1 Для любой гладкой функции h на $T^* M$ имеет место следующее равенство:

$$dh \wedge \omega = (A_\omega X_h \mid \Omega) \wedge \Omega,$$

где X_h — гамильтоново векторное поле с гамильтонианом h: $X_h \mid \Omega = -dh$.

Доказательство Так как дифференциальная 2-форма ω эффективна, то $\omega \wedge \Omega = 0$. Поэтому

$$0 = X_h \mid (\omega \wedge \Omega) = (A_\omega X_h \mid \Omega) \wedge \Omega - dh \wedge \omega.$$
Так как векторное поле X_ω гамильтоново и $A_{h\omega} = hA_\omega$, то

$$X_{h\omega} = X_{h^2F_\omega} = h^2X_\omega + 2hF_\omega X_h. \quad (9)$$

Из леммы 1 следует, что

$$W_{h\omega} \lceil \Omega^2 = 2d(h\omega) = 2(dh \land \omega + h\omega) = 2((A_\omega X_h + hW_\omega) \lceil \Omega) \land \Omega.$$

Поэтому

$$W_{h\omega} = hW_\omega + A_\omega X_h. \quad (10)$$

Для векторного поля $V_{h\omega}$ мы получаем:

$$V_{h\omega} = h^2V_\omega - hF_\omega X_h. \quad (11)$$

Поэтому векторное поле

$$Y_{1,\omega} = X_\omega + 2V_\omega \quad (12)$$

является относительным симплектическим инвариантом уравнения E_ω с весом 2:

$$Y_{1,h\omega} = h^2Y_{1,\omega}. \quad (13)$$

Векторное поле

$$Y_{2,\omega} = A_\omega Y_{1,\omega} \quad (14)$$

является относительным симплектическим инвариантом уравнения E_ω с весом 3:

$$Y_{2,h\omega} = h^3Y_{2,\omega}. \quad (15)$$

Если уравнение Монжа-Ампера невырождено, то, как следует из (13), векторное поле

$$\tilde{Y}_\omega = \frac{1}{\text{Pf}(\omega)}Y_\omega$$

является абсолютным дифференциальным инвариантом этого уравнения:

$$\tilde{Y}_{h\omega} = \tilde{Y}_\omega$$

для любой функции h.

Это означает, что \tilde{Y}_ω являются абсолютным дифференцированием, ассоциированным с уравнением E_ω: если контактное преобразование φ переводит уравнение E_ω в уравнение E_θ, то $\varphi_\ast(\tilde{Y}_\omega) = \tilde{Y}_\theta$.

Нормируем векторное поле \tilde{Y}_ω:

$$\nabla_\omega = \frac{1}{4}\tilde{Y}_\omega.$$
Симплектическая классификация уравнений Монжа-Ампера

Далее, если это не вызывает двусмысленности, символ ω в записи этих инвариантных дифференцирований мы будем опускать и писать просто ∇.

Проекции векторного поля ∇ на распределения \mathcal{V}_+ и \mathcal{V}_- будем обозначать ∇_+ и ∇_- соответственно.

Две дифференциальные 1-формы μ_+ и μ_-, определенные равенствами

$$\mu_+ \overset{\text{def}}{=} \nabla_+ \| \Omega \quad \text{и} \quad \mu_- \overset{\text{def}}{=} \nabla_- \| \Omega,$$

тоже являются абсолютными дифференциальными инвариантами уравнений.

В этой работе мы рассмотрим два случая:

- Оба распределения $\mathcal{F}(\mu_+)$ и $\mathcal{F}(\mu_-)$ — вполне интегрируемые.
- Оба распределения $\mathcal{F}(\mu_+)$ и $\mathcal{F}(\mu_-)$ не являются вполне интегрируемыми.

4 Интегрируемые распределения

Допустим, что распределения $\mathcal{F}(\mu_+)$ и $\mathcal{F}(\mu_-)$ — вполне интегрируемые.

В этом случае двумерное распределение $\mathcal{F}(\mu_+, \mu_-)$ вполне интегрируемое. Это распределение порождено векторными полями ∇_+ и ∇_-. Поэтому их коммутатор также лежит в этом распределении и

$$[\nabla_+, \nabla_-] = g_+ \nabla_+ + g_- \nabla_-$$

для некоторых функций $g_+ \in C^\infty(T^*M)$.

Функции g_+ и g_- являются абсолютными скалярными дифференциальными инвариантами второго порядка уравнения Монжа-Ампера.

Лемма 2 Дифференциальные 1-формы μ_+ и $\nabla_+ \| d\mu_+$ линейно зависят:

$$\nabla_+ \| d\mu_+ = g_0 \mu_+$$

для некоторой функции g_0.

Доказательство Так как распределения $\mathcal{F}(\mu_+)$ и $\mathcal{F}(\mu_-)$ вполне интегрируемые, то, согласно теореме Фробениуса, $\mu_+ \wedge d\mu_+ = 0$. Поэтому

$$\mu_+ \wedge (\nabla_+ \| d\mu_+) = \nabla_+ \| (\mu_+ \wedge d\mu_+) = 0.$$

То есть, равенство (16) выполняется для некоторой функции g_0.
Функция g_0 — еще один скалярный дифференциальный инвариант уравнения Монжа-Ампера.

Заметим, что

$$\nabla_- | d\mu_- = -g_0 \mu_-.$$

Определим теперь две инвариантные дифференциальные 1-формы $\gamma_+ \in \Omega^{1,0}$ и $\gamma_- \in \Omega^{0,1}$. Так как $\mu_+ \in \Omega^{1,0}$, то мы получаем:

$$d\mu_+ = d_{1,0} \mu_+ + d_{0,1} \mu_+ + d_{-1,2} \mu_+$$

По соображению размерности получаем, что $\mu_+ \wedge d_{1,0} \mu_+ = 0$. Тогда

$$\mu_+ \wedge d\mu_+ = \mu_+ \wedge d_{0,1} \mu_+ + \mu_+ \wedge d_{-1,2} \mu_+.$$

Так как $\mu_+ \wedge d\mu_+ = 0$, $\mu_+ \wedge d_{0,1} \mu_+ \in \Omega^{2,1}$ и $\mu_+ \wedge d_{-1,2} \mu_+ \in \Omega^{1,2}$, мы видим, что

$$\mu_+ \wedge d_{0,1} \mu_+ = 0$$

и $\mu_+ \wedge d_{-1,2} \mu_+ = 0$. Так как $d_{-1,2} \mu_+ \in \Omega^{0,2}$ и $\mu_+ \in \Omega^{1,0}$, последнее равенство реализуется тогда и только тогда, когда $d_{-1,2} \mu_+ = 0$.

Поэтому

$$d\mu_+ = d_{1,0} \mu_+ + d_{0,1} \mu_+.$$ (18)

Аналогично можно показать, что

$$d\mu_- = d_{1,0} \mu_- + d_{0,1} \mu_-.$$ (19)

Из формулы (17) следует, что

$$d_{0,1} \mu_+ = \mu_+ \wedge \gamma_-,$$

для некоторой однозначно определенной дифференциальной 1-формы $\gamma_- \in \Omega^{0,1}$.

Аналогично мы получаем однозначно определенную дифференциальную 1-форму $\gamma_+ \in \Omega^{1,0}$, такую, что

$$d_{1,0} \mu_- = \mu_- \wedge \gamma_+.$$

Лемма 3 Имеют место следующие равенства:

$$\gamma_- (\nabla_-) = g_+ \quad u \quad \gamma_+ (\nabla_+) = -g_-.$$
Доказательство В силу (18) и того, что
\[\nabla_-]d_{1,0}\mu_+ = W_+]d_{0,1}\mu_- = 0, \]
мы получаем:
\[\nabla_-]d\mu_+ = \nabla_-]d_{0,1}\mu_+ = \nabla_-](\mu_+ \wedge \gamma_-) = -\gamma_-(\nabla_-)\mu_+ \]
и
\[\nabla_+]d\mu_- = \nabla_+]d_{1,0}\mu_- = \nabla_+](\mu_- \wedge \gamma_+) = -\gamma_+(\nabla_+)\mu_- . \]
Применяя формулу
\[\iota_{[X,Y]} = [L_X, \iota_Y], \]
мы получаем:
\[[\nabla_+, \nabla_-]\Omega = [L_{\nabla_+}, \iota_{\nabla_-}] \Omega = \]
\[= L_{\nabla_+}(\nabla_-] \Omega) - \nabla_-] L_{\nabla_+} \Omega = \]
\[= \nabla_+]d\mu_- - \nabla_-]d\mu_+ = -\gamma_+(\nabla_+)\mu_- + \gamma_-(\nabla_-)\mu_. \]
С другой стороны,
\[[\nabla_+, \nabla_-]\Omega = g_+\mu_+ + g_-\mu_- . \]
Поэтому \(g_+ = \gamma_-(\nabla_-) \) и \(g_- = -\gamma_+(\nabla_+) \).

Пусть
\[X_\pm\Omega = \gamma_\pm. \]

По определению векторных полей \(\nabla_\pm, X_\pm \) и в силу леммы 3, мы получаем следующую таблицу значений инвариантных дифференциальных 1-форм на этих векторных полях:

	\(\nabla_+ \)	\(X_+ \)	\(\nabla_- \)	\(X_- \)
\(\mu_+ \)	0	\(g_- \)	0	0
\(\gamma_+ \)	-\(g_- \)	0	0	0
\(\mu_- \)	0	0	0	\(-g_+ \)
\(\gamma_- \)	0	0	\(g_+ \)	0

Лемма 4 \(\mu_+ \wedge \gamma_+ \wedge \mu_- \wedge \gamma_- = g_+g_-\Omega^2 \).
Доказательство Последовательно вычисляя внутренние произведения перечисленных векторных полей и формы объема Ω, получаем:

1. $\nabla_+ \Omega^2 = 2\mu_+ \wedge \Omega$;
2. $\nabla_- (\nabla_+ \Omega^2) = 2\nabla_- (\mu_+ \wedge \Omega) = 2\mu_- \wedge \mu_+$;
3. $X_+ (\nabla_- (\nabla_+ \Omega^2)) = 2X_+ (\mu_- \wedge \mu_+) = 2g_- \mu_-$;
4. $\Omega^2(\nabla_+, \nabla_-, X_+, X_-) = 2g_- X_- \mu_- = -2g_+ g_-.$

Следствие 1 Векторные поля $\nabla_+, \nabla_-, X_+, X_-$ линейно независимы в некоторой окрестности точки $a \in T^*M$ тогда и только тогда, когда $g_+ g_- \neq 0$ в этой точке.

Зафиксируем некоторую точку $a \in T^*M$ и допустим, что в этой точке выполнено следующее условие общего положения: $(g_+ g_-)(a) \neq 0$.

По лемме 4 векторные поля $\nabla_+, \nabla_-, X_+, X_-$ образуют локальный базис модуля $D(T^*M)$ в некоторой окрестности точки a.

Нормируем этот базис:

$X_1 = \nabla_+,$

$X_2 = \frac{1}{g_-} X_+,$

$X_3 = \nabla_-,$

$X_4 = -\frac{1}{g_+} X_-$

и построим дуальный базис:

$\theta_1 = -X_2 \Omega,$

$\theta_2 = X_1 \Omega,$

$\theta_3 = -X_4 \Omega,$

$\theta_4 = X_3 \Omega.$

Эти базисы образуют e-структуры $X = \{X_1, \ldots, X_4\}$ и $\Theta = \{\theta_1, \ldots, \theta_4\}$.

Теорема 1 Два симплектических гиперболических уравнения Монжа-Ампера E_1 и E_2, у которых первые производные характеристических распределений вполне интегрируемы, локально симплектически эквивалентны тогда и только тогда, когда эквивалентны их соответствующие e-структуры Θ_1 и Θ_2.
Доказательство В базисе Θ симплектическая структура имеет вид:

$$\Omega = \theta_1 \wedge \theta_2 + \theta_3 \wedge \theta_4.$$

Поэтому любой диффеоморфизм кокасательного расслоения, переводящий базис Θ_1 в базис Θ_2 является симплектическим.

Дифференциальная 2-форма

$$\tilde{\omega} = \theta_1 \wedge \theta_2 - \theta_3 \wedge \theta_4$$

является эффективной, так как $\tilde{\omega} \wedge \Omega = 0$. Кроме того, форма $\tilde{\omega}$ отвечает те же характеристические распределения, что и форме ω, и поэтому она порождает тоже самое уравнение E_ω.

Таким образом, если $\varphi : T^*M \to T^*M$ — некоторый диффеоморфизм, переводящий базис Θ_1 в базис Θ_2, то он переводит уравнение E_{ω_1} в уравнение E_{ω_2}.

Укажем координатные представления построенных тензорных и скалярных дифференциальных инвариантов. Для этих целей нам понадобится следующая теорема [33].

Теорема 2 Пусть распределения $F_{\langle \mu_+ \rangle}$ и $F_{\langle \mu_- \rangle}$ — вполне интегрируемые. Тогда уравнение Монжа-Ампера локально симплектически эквивалентно уравнению вида

$$v_{xy} = f(x, y, v_x, v_y),$$

где f — некоторая гладкая функция.

Для уравнения вида (21) в базисе

$$\frac{\partial}{\partial q_1}, \frac{\partial}{\partial q_2}, \frac{\partial}{\partial p_1}, \frac{\partial}{\partial p_2}$$

модуля $D\left(T^*M\right)$ мы получаем следующее представление оператора A_ω:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -2f & 1 & 0 \\ 2f & 0 & 0 & -1 \end{bmatrix}.$$

Характеристические распределения V_+ и V_- порождены векторными полями

$$X_1 = \frac{\partial}{\partial q_1} + f \frac{\partial}{\partial p_2}, \quad X_2 = \frac{\partial}{\partial p_1}.$$
и
\[Y_1 = \frac{\partial}{\partial q_2} + f \frac{\partial}{\partial p_1}, \quad Y_2 = \frac{\partial}{\partial p_2} \]
соответственно.
Базисы модулей \(\Omega^{1,0} \) и \(\Omega^{0,1} \) образованы дифференциальными 1-формами
\[\alpha_1 = dq_1, \quad \alpha_2 = dp_1 - fdq_2 \]
и
\[\beta_1 = dq_2, \quad \beta_2 = dp_2 - fdq_1 \]
соответственно.
Базисы \(X_1, X_2, Y_1, Y_2 \) и \(\alpha_1, \alpha_2, \beta_1, \beta_2 \) дуальны.
Тензорные поля \(\tau_{-1,2} \) и \(\tau_{2,-1} \) имеют вид:
\[\tau_{-1,2} = f_{p_2} (dq_2 \wedge dp_2 + fdq_1 \wedge dq_2) \otimes \frac{\partial}{\partial p_1}, \]
\[\tau_{2,-1} = f_{p_1} (dq_1 \wedge dp_1 - fdq_1 \wedge dq_2) \otimes \frac{\partial}{\partial p_2}. \]
Для уравнения (21) пфаффиан \(\text{Pf}(\omega) = -1 \). Поэтому \(X_\omega = 0 \),
\[\nabla = -f_{p_2} \frac{\partial}{\partial p_1} - f_{p_1} \frac{\partial}{\partial p_2} \]
и
\[\nabla_+ = -f_{p_2} \frac{\partial}{\partial p_1}, \quad \nabla_- = -f_{p_1} \frac{\partial}{\partial p_2}. \]
Таким образом,
\[\mu_+ = f_{p_2} dq_1, \quad \mu_- = f_{p_1} dq_2. \]
Скалярные дифференциальные инварианты имеют вид:
\[g_0 = -f_{p_1 p_2}, \quad g_+ = \frac{f_{p_1} f_{p_2 p_2}}{f_{p_2}} \quad \text{и} \quad g_- = -\frac{f_{p_2} f_{p_1 p_1}}{f_{p_1}}, \quad (23) \]
Получаем, что
\[d_{0,1} \mu_+ = -(f f_{p_1 p_2} + f_{q_2 p_2}) dq_1 \wedge dq_2 - f_{p_2 p_2} dq_1 \wedge dp_2, \]
\[d_{1,0} \mu_- = (f f_{p_1 p_2} + f_{q_1 p_1}) dq_1 \wedge dq_2 - f_{p_1 p_1} dq_2 \wedge dp_1 \]
и
\[\gamma_+ = -\frac{f_{p_1 p_1}}{f_{p_1}} (dp_1 - fdq_2) - \frac{f f_{p_1 p_2} + f_{q_1 p_1}}{f_{p_1}} dq_1, \]
\[\gamma_- = -\frac{f_{p_2 p_2}}{f_{p_2}} (dp_2 - fdq_1) - \frac{f f_{p_1 p_2} + f_{q_2 p_2}}{f_{p_2}} dq_2. \]
Симплектическая классификация уравнений Монжа-Ампера

Таким образом, векторные поля X_+ и X_- равны

$$X_+ = -\frac{f_{p_1 p_1}}{f_{p_1}} \left(\frac{\partial}{\partial q_1} + f \frac{\partial}{\partial p_2} \right) + \frac{ff_{p_1 p_1} + f_{q_1 p_1}}{f_{p_1}} \frac{\partial}{\partial p_1},$$

$$X_- = -\frac{f_{p_2 p_2}}{f_{p_2}} \left(\frac{\partial}{\partial q_2} + f \frac{\partial}{\partial p_1} \right) + \frac{ff_{p_1 p_2} + f_{q_2 p_2}}{f_{p_2}} \frac{\partial}{\partial p_2},$$

и с-структура X имеет вид:

$$X_1 = -f_{p_2} \frac{\partial}{\partial p_1},$$

$$X_2 = \frac{1}{f_{p_2}} \frac{\partial}{\partial q_1} - \frac{ff_{p_1 p_2} + f_{q_1 p_1}}{f_{p_2} f_{p_1 p_1}} \frac{\partial}{\partial p_1} + f \frac{\partial}{f_{p_2} \partial p_2},$$

(24)

$$X_3 = -f_{p_1} \frac{\partial}{\partial p_2},$$

$$X_4 = \frac{1}{f_{p_1}} \frac{\partial}{\partial q_2} + f \frac{\partial}{f_{p_1} \partial p_1} - \frac{ff_{p_1 p_2} + f_{q_2 p_2}}{f_{p_1} f_{p_2 p_2}} \frac{\partial}{\partial p_2}. $$

Дифференциальные инварианты $g_+,$ g_- и g_0 являются инвариантами второго порядка. Инварианты более высоких порядков можно получить, действуя на уже построенные инварианты дифференцирования X_i ($i = 1, \ldots, 4$). Укажем, например, координатные представления некоторых инвариантов третьего порядка:

$$X_1(g_+) = \frac{1}{f_{p_2}} (f_{p_1} f_{p_1 p_2} f_{p_2 p_2} - f_{p_2} f_{p_1 p_1} f_{p_2 p_2} - f_{p_1} f_{p_2} f_{p_1 p_2}),$$

$$X_1(g_-) = \frac{f_{p_2}}{f_{p_1}} (f_{p_1} f_{p_1 p_2} f_{p_1 p_1} + f_{p_1} f_{p_2} f_{p_1 p_1} - f_{p_1} f_{p_2} f_{p_1 p_2}),$$

$$X_3(g_+) = \frac{f_{p_1}}{f_{p_2}} (-f_{p_2} f_{p_1 p_2} f_{p_2 p_2} - f_{p_1} f_{p_2} f_{p_2 p_2} + f_{p_1} f_{p_2} f_{p_1 p_2}),$$

$$X_3(g_-) = \frac{1}{f_{p_1}} (f_{p_1} f_{p_1 p_1} f_{p_2 p_2} + f_{p_1} f_{p_2} f_{p_1 p_1} f_{p_1 p_2} - f_{p_1} f_{p_1 p_1} f_{p_1 p_2}),$$

$$X_1(g_0) = -f_{p_2} f_{p_1 p_2},$$

$$X_3(g_0) = -f_{p_1} f_{p_1 p_2}.$$
5 Классификация уравнений для постоянных g_+, g_- и g_0.

Рассмотрим случай, когда скалярные дифференциальные инварианты g_+, g_- и g_0 постоянные. Пусть $g_+ = 4\alpha$, $g_- = 4\beta$ и $g_0 = 4\gamma$, $\alpha, \beta, \gamma \in \mathbb{R}$. Без ограничения общности можно считать, что уравнение Монжа-Ампера имеет вид (21). Функция f удовлетворяет следующей переопределенной системе дифференциальных уравнений:

\[
\begin{cases}
 f_{p_2}f_{p_1} - \beta f_{p_1} = 0, \\
 f_{p_1}f_{p_2} - \alpha f_{p_2} = 0, \\
 f_{p_1} = \gamma
\end{cases}
\]

Из последнего уравнения получаем, что

\[
f(q, p) = \gamma p_1 p_2 + g(q, p_1) + h(q, p_2),
\]

где g и h — некоторые функции. Подставляя (25) в первые два уравнения системы (5) и дифференцируя полученные выражения по p_2 и p_1 соответственно, мы получаем, что $g_{p_1} + h_{p_2} = \alpha \gamma = \beta \gamma$, то есть $\gamma (\alpha - \beta) = 0$.

Прямые вычисления показывают, что могут реализоваться лишь следующие варианты:

1. $\alpha = \beta = \gamma = 0$;
2. $\alpha \neq 0$, $\beta = \gamma = 0$;
3. $\beta \neq 0$, $\alpha = \gamma = 0$;
4. $\alpha = \beta = 0$, $\gamma \neq 0$;
5. $\alpha = \beta = \gamma \neq 0$.

Соответствующие выражения для функции f приведены в следующей таблице:
Симплектическая классификация уравнений Монжа-Ампера

№	α	β	γ	\(f(q,p) \)
1	0	0	0	\(ap_1 + bp_2 + c \)
2	≠ 0	0	0	\(ap_1 + b \exp \frac{\alpha p_2}{a} + c \)
3	0	≠ 0	0	\(ap_2 + b \exp \frac{\beta p_1}{a} + c \)
4	0	0	≠ 0	\(\gamma p_1 p_2 + ap_1 + bp_2 + c \)
5	γ	γ	≠ 0	\(\frac{1}{4a}(2ap_1 + \gamma p_2)^2 + b(2ap_1 + \gamma p_2) + c \)

Здесь \(a, b, c \) — произвольные гладкие функции от \(q_1, q_2 \).

Учитывая, что в силу теоремы 2, любое симплектическое уравнение класса I локально симплектически эквивалентно уравнению вида (21), мы приходим к следующим двум теоремам.

Теорема 3 Пусть для уравнения Монжа-Ампера распределения \(F(\mu_+) \) и \(F(\mu_-) \) вполне интегрируемы.

Уравнение локально контактно эквивалентно линейному уравнению вида

\[
v_{xy} = a(x,y)v_x + b(x,y)v_y + c(x,y),
\]

где \(a, b, c \) — некоторые гладкие функции, тогда и только тогда, когда его скалярные дифференциальные инварианты \(g_+, g_- \) и \(g_0 \) равны нулю.

Теорема 4 Пусть для уравнения Монжа-Ампера распределения \(F(\mu_+) \) и \(F(\mu_-) \) вполне интегрируемы и скалярные дифференциальные инварианты \(g_+, g_- \) и \(g_0 \) постоянные.

1. Если \(g_+ \neq 0 \), а \(g_- = g_0 = 0 \), то уравнение локально контактно эквивалентно уравнению вида

\[
v_{xy} = a(x,y)v_x + b(x,y) \exp \frac{\alpha v_y}{a(x,y)} + c(x,y) \quad (\alpha \neq 0).
\]
2. Если \(g_- \neq 0, a g_+ = g_0 = 0 \), то уравнение локально контактно эквивалентно уравнению вида
\[
v_{xy} = a(x, y)v_y + b(x, y)\exp \frac{\beta v_x}{a(x, y)} + c(x, y) \quad (\beta \neq 0).
\]

3. Если \(g_- = g_+ = 0, a g_0 \neq 0 \), то уравнение локально контактно эквивалентно уравнению вида
\[
v_{xy} = \gamma \left(v_x v_y + \frac{1}{2}(v_x^2 + v_y^2) \right) + a(x, y)(v_x + v_y) + b(x, y) \quad (\gamma \neq 0).
\]

4. Если \(g_- \neq 0, g_+ \neq 0 \) и \(g_0 \neq 0 \), то уравнение локально контактно эквивалентно уравнению вида
\[
v_{xy} = \frac{1}{4a(x, y)}(2a(x, y)v_x + \gamma v_y)^2 + b(x, y)(2a(x, y)v_x + \gamma v_y) + c(x, y).
\]

Здесь \(a, b, c \) — некоторые гладкие функции.

Пример 1 (Уравнение Борна-Инфельда) Уравнение Борна-Инфельда [16] имеет вид:
\[
(1 - v_t^2)v_{xx} + 2v_t v_x v_{tx} - (1 + v_x^2)v_{tt} = 0. \quad (26)
\]

Ему отвечает эффективная дифференциальная 2-форма
\[
\tilde{\omega} = (1 - p_1^2)dq_1 \wedge dp_2 + p_1 p_2(dq_1 \wedge dp_1 - dq_2 \wedge dp_2) + (1 + p_2^2)dq_2 \wedge dp_1
\]
где \(q_1 = t, q_2 = x \). Пфаффиан этой формы равен
\[
Pf(\tilde{\omega}) = p_1^2 - p_2^2 - 1.
\]

Уравнение (26) мы будем рассматривать в области гиперболичности
\[
p_1^2 - p_2^2 - 1 < 0.
\]

Соответствующая нормированная форма имеет вид:
\[
\omega = \frac{\tilde{\omega}}{\sqrt{1 - p_1^2 + p_2^2}}.
\]

Для этой формы
\[
\mu_+ = \frac{-p_1 + p_2\sqrt{1 - p_1^2 + p_2^2}}{-1 + p_1^2 - p_2^2}dp_1 + \frac{p_2 - p_1\sqrt{1 - p_1^2 + p_2^2}}{-1 + p_1^2 - p_2^2}dp_2,
\]
\[
\mu_- = \frac{p_1 + p_2\sqrt{1 - p_1^2 + p_2^2}}{-1 + p_1^2 - p_2^2}dp_1 - \frac{p_2 + p_1\sqrt{1 - p_1^2 + p_2^2}}{-1 + p_1^2 - p_2^2}dp_2.
\]
Распределения F_{μ_+} и F_{μ_-} вполне интегрируемы. Кроме того,

$$g_0 = g_+ = g_- = 0.$$

Согласно теореме 4 уравнение (26) локально симплектически эквивалентно линейному уравнению. Построим линеаризующее симплектическое преобразование.

Интегралы распределений F_{μ_+} и F_{μ_-} имеют вид:

$$H_+ = \frac{p_1 + p_2}{1 + \sqrt{1 - p_1^2 + p_2^2}}$$

и

$$H_- = \frac{-p_1 + p_2}{1 + \sqrt{1 - p_1^2 + p_2^2}}$$

соответственно. Введем новые координаты на кокасательном расслоении:

$$Q_1 = \frac{p_1 + p_2}{1 + \sqrt{1 - p_1^2 + p_2^2}},$$

$$Q_2 = \frac{-p_1 + p_2}{1 + \sqrt{1 - p_1^2 + p_2^2}},$$

$$P_1 = -\frac{q_1}{2} \left(1 + p_1 p_2 - p_1^2 + \sqrt{1 - p_1^2 + p_2^2}\right) - \frac{q_2}{2} \left(1 - p_1 p_2 + p_2^2 + \sqrt{1 - p_1^2 + p_2^2}\right),$$

$$P_2 = \frac{q_1}{2} \left(1 - p_1^2 - p_1 p_2 + \sqrt{1 - p_1^2 + p_2^2}\right) - \frac{q_2}{2} \left(1 + p_1 p_2 + p_2^2 + \sqrt{1 - p_1^2 + p_2^2}\right).$$

Обратное преобразование имеет вид:

$$q_1 = \frac{(Q_1 Q_2 - 1)((1 + Q_1^2)P_1 - (1 + Q_2^2)P_2)}{2(1 + Q_1 Q_2)},$$

$$q_2 = \frac{(Q_1 Q_2 - 1)((1 - Q_1^2)P_1 + (1 - Q_2^2)P_2)}{2(1 + Q_1 Q_2)},$$

$$p_1 = \frac{-Q_1 + Q_2}{-1 + Q_1 Q_2},$$

$$p_2 = \frac{Q_1 + Q_2}{1 - Q_1 Q_2}.$$

Мы получаем эффективную дифференциальную 2-форму

$$\omega = \frac{4(Q_1 P_1 + Q_2 P_2)}{(Q_1 Q_2)^2 - 1}dQ_1 \wedge dQ_2 - dP_1 \wedge dQ_1 + dP_2 \wedge dQ_2,$$
Которая отвечает линейному уравнению

\[v_{Q_1, Q_2} = \frac{2(Q_1 v_{Q_1} + Q_2 v_{Q_2})}{(Q_1 Q_2)^2 - 1}. \] (27)

Пример 2 (Уравнение газовой динамики) Уравнение

\[(\varphi_x^2 - c^2) \varphi_{xx} + 2\varphi_x \varphi_y \varphi_{xy} + (\varphi_y^2 - c^2) \varphi_{yy} = 0 \] (28)

описывает двумерный стационарный изентропический поток газа [15]. Здесь \(\varphi \) — потенциал скорости и \(c \) — скорость звука. В области гиперболичности для этого уравнения \(g_0 = g_+ = g_- = 0 \) и поэтому оно линеаризуется контактным преобразованием. Линеаризующее преобразование это — преобразование Лежандра

\[(q_1, q_2, p_1, p_2) \mapsto (p_1, p_2, -q_1, -q_2), \]

известное в аэродинамике как преобразование годографа.

Как мы видим, если потребовать, чтобы все три дифференциальных инварианта \(g_+ \), \(g_- \) и \(g_0 \) являются постоянными, то их нельзя задавать произвольно, ибо между ними должны выполняться перечисленные выше соотношения.

Рассмотрим отдельно случай, когда векторные поля \(X_1, \ldots, X_4 \) образуют 4-мерную \(\mathbb{R} \)-алгебру Ли \(g \), то есть

\[[X_i, X_j] = \sum_{k=1}^{4} c_{ij}^k X_k, \]

где \(i, j = 1, \ldots, 4 \) и \(c_{ij}^k \in \mathbb{R} \) — структурные константы алгебры Ли \(g \).

Лемма 5 Если векторные поля \(X_1, X_2, X_3, X_4 \) образуют 4-мерную вещественную алгебру Ли, то дифференциальные инварианты \(g_0, g_+, g_- \) — постоянные.

Доказательство Заметим, что \(c_{ij}^k = \theta_k ([X_i, X_j]), \) и из формул

\[[X_1, X_3] = [W_+, W_-] = g_+ W_+ + g_- W_- = g_+ X_1 + g_- X_3 \]

следует, что \(g_+ = c_{13}^1 \) и \(g_- = c_{13}^3 \).

По определению дифференциального инварианта \(g_0 \) мы получаем:

\[X_1 | d\theta_2 = g_0 \theta_2. \] Тогда \(\theta_2 ([X_1, X_2]) = -d\theta_2 (X_1, X_2) = g_0 \) и мы видим, что \(g_0 = c_{12}^2 \).
Прямые вычисления показывают, что при условии \(g_+ g_- \neq 0 \) существует только одна алгебра Ли \(\mathfrak{g} \). Эта алгебра Ли может быть представлена набором векторных полей (24) для функции

\[
 f(q, p) = (p_1 + \kappa p_2)^2,
\]

где \(\kappa \) — некоторое отличное от нуля число.

Мы приходим к следующей теореме.

Теорема 5 Пусть для симплектического гиперболического уравнения \(E \) векторные поля \(X_1, X_2, X_3, X_4 \) образуют четырехмерную алгебру Ли. Тогда уравнение локально симплектически эквивалентно уравнению

\[
 u_{xy} = (v_x + \kappa v_y)^2,
\]

где \(\kappa \) — некоторая отличная от нуля постоянная.

Для уравнения (29) \(g_0 = g_- = g_+ = 2\kappa \). Уравнение (4) является частным случаем нормальной формы 4, приведенной в теореме 4, где \(a = 1, b = c = 0 \).

6 Неинтегрируемые распределения

Допустим теперь, что распределения \(\mathcal{F} \langle \mu_+ \rangle \) и \(\mathcal{F} \langle \mu_- \rangle \) — неинтегрируемые.

В этом случае, по теореме Фробениуса,

\[
 \mu_+ \wedge d\mu_+ \neq 0 \quad \text{и} \quad \mu_- \wedge d\mu_- \neq 0.
\]

Лемма 6 Для дифференциальных 1-форм \(\mu_+ \) и \(\mu_- \) выполняются следующие свойства:

1. \(\mu_+ \wedge d\mu_+ = \mu_+ \wedge d_{0,1}\mu_+ ; \)
2. \(\mu_- \wedge d\mu_- = \mu_- \wedge d_{0,1}\mu_- . \)

Доказательство Докажем первое свойство. Заметим, что так как \(\mu_+ = \nabla_+ \mathcal{O} \) и \(d_{-1,2} = \sigma \otimes \nabla_+ \) для некоторой дифференциальной 2-формы \(\sigma \in \mathcal{O}^{0,2} \), то \(d_{-1,2}\mu_+ = 0 \). Поэтому, в силу разложения внешнего дифференциала (см. диаграмму ...), получаем:

\[
 \mu_+ \wedge d\mu_+ = \mu_+ \wedge d_{1,0}\mu_+ + \mu_+ \wedge d_{0,1}\mu_+ .
\]

Так как \(\mu_+ \in \mathcal{O}^{1,0} \) и \(d_{1,0}\mu_+ \in \mathcal{O}^{2,0} \), то по соображению размерности \(\mu_+ \wedge d_{1,0}\mu_+ = 0 \), что и доказывает первое свойство. Второе свойство доказывается аналогично.
Из леммы 6 следует, что $\mu_+ \land d\mu_+ \in \Omega^{2,1}$ и $\mu_- \land d\mu_- \in \Omega^{1,2}$, что позволяет определить два векторных поля H_+ и H_- на T^*M из распределений \mathcal{V}_+ и \mathcal{V}_- соответственно:

$$H_+ \Omega^2 = \mu_- \land d\mu_-$$ и $$H_- \Omega^2 = \mu_+ \land d\mu_+. \quad (30)$$

Функции $h_+ = \Omega(\nabla_+, H_+)$ и $h_- = \Omega(\nabla_-, H_-)$ по построению являются дифференциальными инвариантами уравнения Монжа-Ампера.

Еще один скалярный дифференциальный инвариант второго порядка r мы определим равенством

$$4d\mu_+ \land \Omega = r\Omega^2.$$

В силу невырожденности симплектической структуры на каждом из характеристических распределений, получаем, что если $h_\pm(a) \neq 0$ в некоторой точке $a \in T^*M$, то касательные векторы $\nabla_{\pm,a}$ и $H_{\pm,a}$ линейно независимы.

Поэтому, если в некоторой точке $a \in T^*M$ произведение h_+h_- не обрашается в нуль, то в некоторой окрестности этой точки векторные поля ∇_+, H_+, ∇_- и H_- образуют локальный свободный базис модуля $D(T^*M)$. Нормируем этот базис:

$$X_1 \overset{\text{def}}{=} \nabla_+,$$

$$X_2 \overset{\text{def}}{=} \frac{1}{h_+}H_+,$$

$$X_3 \overset{\text{def}}{=} \nabla_-,$$

$$X_4 \overset{\text{def}}{=} -\frac{1}{h_-}H_-$$

и построим дуальний локальный свободный базис модума $\Omega^1(T^*M)$:

$$\theta_1 \overset{\text{def}}{=} -X_2 \lvert \Omega,$$

$$\theta_2 \overset{\text{def}}{=} X_1 \lvert \Omega,$$

$$\theta_3 \overset{\text{def}}{=} -X_4 \lvert \Omega,$$

$$\theta_4 \overset{\text{def}}{=} X_3 \lvert \Omega.$$

Эти базисы образуют e-структуры $X = \{X_1, \ldots, X_4\}$ и $\Theta = \{\theta_1, \ldots, \theta_4\}$.

64 А. Г. Кушнер, Е. Н. Манжосова
Teorema 6 Два симплектических гиперболических уравнения Монжа-Ампера E_1 и E_2, у которых первые производные характеристических распределений не являются вполне интегрируемыми, локально симплектически эквивалентны тогда и только тогда, когда эквивалентны их соответствующие e-структуры Θ_1 и Θ_2.

Доказательство этой теоремы аналогично доказательству теоремы 1.

7 Уравнение $v_{xx} - f^2(x, y, v_x, v_y)v_{yy} = 0$

В качестве иллюстрации рассмотрим гиперболическое уравнение

$$v_{xx} - f^2(x, y, v_x, v_y)v_{yy} = 0, \quad (31)$$

где f некоторая не обращающаяся в нуль гладкая функция.

Этому уравнению отвечает нормированная1 эффективная дифференциальная 2-форма

$$\omega = f dq_1 \wedge dp_2 + \frac{1}{f} dq_2 \wedge dp_1.$$

Оператор A для этого уравнения в базисе (22) имеет следующее представление:

$$A = \begin{pmatrix}
0 & \frac{1}{f} & 0 & 0 \\
\frac{1}{f} & 0 & 0 & 0 \\
0 & 0 & 0 & f \\
0 & 0 & \frac{1}{f} & 0
\end{pmatrix}.$$

Характеристические распределения \mathcal{V}_+ и \mathcal{V}_- задаются наборами векторных полей

$$X_1 = \frac{\partial}{\partial p_2} + f \frac{\partial}{\partial p_1}, \quad X_2 = \frac{\partial}{\partial p_1} + f \frac{\partial}{\partial q_2},$$

$$Y_1 = \frac{\partial}{\partial p_2} - f \frac{\partial}{\partial p_1}, \quad Y_2 = -\frac{\partial}{\partial q_1} + f \frac{\partial}{\partial q_2}$$

соответственно. Дуальный базис имеет вид:

$$\alpha_1 = \frac{1}{2} \left(dp_2 + \frac{1}{f} dp_1 \right), \quad \alpha_2 = \frac{1}{2} \left(dq_1 + \frac{1}{f} dq_2 \right)$$

и

$$\beta_1 = \frac{1}{2} \left(dp_2 - \frac{1}{f} dp_1 \right), \quad \beta_2 = \frac{1}{2} \left(-dq_1 + \frac{1}{f} dq_2 \right).$$

1 То есть с пфаффианом, равным -1
Векторное поле

\[W_\omega = \frac{f_{p_2}}{f^2} \frac{\partial}{\partial q_1} - f_{p_1} \frac{\partial}{\partial q_2} + f_{q_2} \frac{\partial}{\partial p_1} + \frac{f_{q_1}}{f^2} \frac{\partial}{\partial p_2}. \]

Поэтому

\[\nabla_+ = \frac{1}{4f^2} \left(ff_{p_1} - f_{p_2} \right) \left(\frac{\partial}{\partial q_1} + f \frac{\partial}{\partial q_2} \right) + \left(f_{q_1} - ff_{q_2} \right) \left(\frac{\partial}{\partial p_1} + f \frac{\partial}{\partial p_2} \right), \]

\[\nabla_- = \frac{1}{4f^2} \left(ff_{p_1} - f_{p_2} \right) \left(\frac{\partial}{\partial q_1} + f \frac{\partial}{\partial q_2} \right) + \left(f_{q_1} - ff_{q_2} \right) \left(\frac{\partial}{\partial p_1} + f \frac{\partial}{\partial p_2} \right), \]

и

\[\mu_+ = \frac{1}{4f^2} \left(ff_{q_2} - f_{q_1} \right) (dq_2 + fdq_1) + \left(ff_{p_1} - ff_{p_2} \right) (dp_1 + fdp_2), \]

\[\mu_- = \frac{1}{4f^2} \left(ff_{q_2} + f_{q_1} \right) (dq_2 - fdq_1) + \left(ff_{p_1} + ff_{p_2} \right) (dp_1 - fdp_2). \]

Распределение \(\mathcal{F}(\mu_+) \) не является вполне интегрируемым, если либо

\[a = \left(f_{q_1} - ff_{q_2} \right) \left(ff_{q_1p_1} + ff_{q_2p_2} - f_{q_1p_2} - f^2f_{q_2p_1} + 2(f_{p_1}f_{q_1} - f_{p_2}f_{q_2}) \right) + \left(ff_{p_2} - ff_{p_1} \right) \left(f^2f_{q_2q_2} - 2ff_{q_1q_2} + f_{q_1q_1} \right) \neq 0, \]

либо

\[b = \left(ff_{p_1} - ff_{p_2} \right) \left(-ff_{q_1p_1} - ff_{q_2p_2} + f_{q_1p_2} + f^2f_{q_2p_1} + 2(f_{p_1}f_{q_1} - f_{p_2}f_{q_2}) \right) + \left(ff_{q_2} - f_{q_1} \right) \left(-f^2ff_{p_1p_1} + 2ff_{p_1p_2} - f_{p_2p_2} \right) \neq 0. \]

Распределение \(\mathcal{F}(\mu_-) \) не является вполне интегрируемым, если либо

\[c = \left(f_{q_1} + ff_{q_2} \right) \left(-ff_{q_1p_1} - ff_{q_2p_2} + f_{q_1p_2} + f^2f_{q_2p_1} + 2(f_{p_1}f_{q_1} - f_{p_2}f_{q_2}) \right) + \left(ff_{p_2} + ff_{p_1} \right) \left(f^2f_{q_2q_2} - 2ff_{q_1q_2} + f_{q_1q_1} \right) \neq 0, \]

либо

\[d = \left(ff_{p_1} + ff_{p_2} \right) \left(-ff_{q_1p_1} - ff_{q_2p_2} + f_{q_1p_2} + f^2f_{q_2p_1} + 2(f_{p_1}f_{q_1} - f_{p_2}f_{q_2}) \right) + \left(f_{q_1} + ff_{q_2} \right) \left(ff_{p_1p_1} + 2ff_{p_1p_2} + f_{p_2p_2} \right) \neq 0. \]

Эти условия мы будем считать выполненными.

Векторные поля \(H_+ \) и \(H_- \) имеют вид:

\[H_+ = \frac{1}{32f^4} \left(\frac{\partial}{\partial q_1} + f \frac{\partial}{\partial q_2} \right) + \left(\frac{\partial}{\partial p_1} + f \frac{\partial}{\partial p_2} \right), \]

\[H_- = \frac{1}{32f^4} \left(\frac{\partial}{\partial q_1} - f \frac{\partial}{\partial q_2} \right) + \left(\frac{\partial}{\partial p_1} - f \frac{\partial}{\partial p_2} \right). \]
Мы получаем следующие скалярные дифференциальные инварианты:

$$h_+ = \frac{1}{64 f^5} \left((f^2 f_{p_2} - f^3 f_{f_{p_1}}) f_{q_1 q_2} + 2(f^2 f_{f_{p_2}} - f^3 f_{p_1 p_2}) + (f^2 f_{f_{p_1}} - f^3 f_{f_{p_2}}) f_{p_1 p_2} + 2(f^2 f_{f_{p_2}} - f^3 f_{p_1 p_2}) + 2(f^2 f_{f_{p_2}} - f^3 f_{p_1 p_2}) \right)$$

$$h_- = \frac{1}{64 f^5} \left((f^2 f_{p_2} - f^3 f_{f_{p_1}}) f_{q_1 q_2} + 2(f^2 f_{f_{p_2}} - f^3 f_{p_1 p_2}) + (f^2 f_{f_{p_1}} - f^3 f_{f_{p_2}}) f_{p_1 p_2} + 2(f^2 f_{f_{p_2}} - f^3 f_{p_1 p_2}) + 2(f^2 f_{f_{p_2}} - f^3 f_{p_1 p_2}) \right)$$

Отметим, что вместо инвариантов h_+ и h_- удобнее взять инварианты $h_1 = 16(h_+ - h_-)$ и $h_2 = 32(h_+ + h_-)$:

$$h_1 = \frac{1}{f^4} \left((f^2 f_{p_1} - f^2 f_{p_2}) f_{q_1 q_2} + (f^2 f_{f_{p_2}} - f^2 f_{q_1}) f_{p_1 p_2} - (f^2 f_{f_{p_2}} - f^2 f_{q_1}) (f_{q_1 p_1} + f_{p_2 q_2}) \right)$$

$$h_2 = \frac{1}{f^5} \left(f^2 f_{q_2} - f^2 f_{q_1} (f^2 f_{p_1 p_1} + f_{p_2 p_2}) + 2(f^2 f_{f_{p_2}} - f^2 f_{p_1 p_2}) (f_{q_1 p_2} + f^2 f_{q_2 p_1}) + (f^2 f_{p_1} - f^2 f_{p_2}) (f_{q_1 q_1} + f^2 f_{q_2 q_2}) - 4f (f^2 f_{p_2} - f^2 f_{p_1} f_{q_1}) \right)$$

Инвариант $r \chi$ имеет вид:

$$r = \frac{1}{f^2} (f_{q_2} f_{p_2} - f f_{q_2 p_2} - f_{p_1} f_{q_1} + f f_{q_1 p_1})$$

Список литературы

1. Виноградов, А.М., Красильщик И.С., Лычагин В.В.: Введение в геометрию нелинейных дифференциальных уравнений. М. “Наука”, 1986, 336 стр.

2. Кушнер, А.Г.: Нормальные формы Чаплыгина и Келдыша уравнений Монжа-Ампера. Математические заметки, 52(5) 63–67, (1992). English translation in Mathematical Notes 52(5), 1121–1124 (1992)

3. Кушнер, А.Г.: Уравнения Монжа-Ампера и е-структуры. ДАН, 361(5), 595–596 (1998). English translation in Doklady Mathematics, 58(1), 103–104 (1998)

4. Кушнер, А.Г.: Гиперболические уравнения Монжа-Ампера: проблема Софуса Ли контактной линеаризации. Сборник научных трудов I международного семинара “Симметрии: теоретический и методический аспекты”, Астрахань, 20–23, (2005)

5. Кушнер, А.Г.: Симплектическая классификация гиперболических операторов Монжа-Ампера. Вестник Астраханского государственного технического университета, 1(36), 15–18 (2007)
6. Кушнер, А.Г.: Контактная классификация уравнений Монжа-Ампера. Proceedings of the International Workshop “Idempotent and Tropical Mathematics and Problems of Mathematical Physics” (Moscow, August 25–30, 2007) Eds. G.L. Litvinov, B.P. Maslov, 2, 99–104 (2007)

7. Кушнер, А.Г.: Контактная линеаризация невырожденных уравнений Монжа-Ампера. Изв. ВУЗов, Математика, №4, 43–58 (2008). English translation in Russian Math. (Iz. VUZ) 52(4), 38–52 (2008)

8. Кушнер, А.Г.: Контактная линеаризация уравнений Монжа-Ампера и инварианты Лапласа. ДАН, 422, 597–600 (2008)

9. Кушнер, А.Г.: Приведение гиперболических уравнений Монжа-Ампера к линейным уравнениям с постоянными коэффициентами. ДАН, 423(5), 609–611 (2008)

10. Кушнер, А.Г.: Нормальные формы для уравнений Монжа-Ампера: телеграфное уравнение и уравнение Гельмгольца. Труды Международной конференции “Геометрия в Одессе – 2008” (19–24 мая 2008, Одесса, Украина). Институт математики национальной академии наук Украины (2008) (В печати)

11. Лычагин, В.В.: Контактная геометрия и нелинейные дифференциальные уравнения в частных производных второго порядка. ДАН СССР 238(5), 273–276 (1978)

12. Лычагин, В.В.: Контактная геометрия и нелинейные дифференциальные уравнения в частных производных второго порядка. УМН, 34(1 (205)), 137–165 (1979)

13. Лычагин, В.В., Рубцов В.Н.: О теоремах Софуса Ли для уравнений Монжа-Ампера. ДАН БССР 27(5), 396–398 (1983)

14. Anderson, I.M., Juras, M.: Generalized Laplace invariants and the method of Darboux. Duke J. Math. 89, 351–375 (1997)

15. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley and Sons (1958)

16. Born M., Infeld L.: Foundation of a New Field Theory, Proc. Roy. Soc. 144, pp. 425–451 (1934)

17. Cotton, E.: Sur les invariants différentiels de quelques équations linéaires aux dérivées partielles du second ordre. Ann. Sci. Ecole Norm. Sup. 17, 211–244 (1900)

18. Darboux, G.: Leçons sur la théorie générale des surfaces. Vol. I (1887), II (1915), III (1894). Paris, Gauthier-Villars.

19. Euler, L.: Calculi integralis. Vol.3. Petropli, Impenfis Academiac Imperialis Scientiarium, 1770.

20. Goursat, E.: Sur les équations du second ordre à n variables analogues à l’équation de Monge-Ampère, Bull. Soc. Math. France 27, 1–34 (1899)

21. Goursat, E.: Sur le problème de Monge. Bull. Soc. Math. France 33, 201–210 (1905)

22. Ibragimov, N.H.: Group classification of second order differential equations. Doklady Akademii Nauk SSSR 183(2), 274–277 (1968) (Russian); English translation in Soviet Math. Dokl. 9(6), 1365–1369 (1968)

23. Kruglikov, B.S.: On some classification problems in four-dimensional geometry: distributions, almost complex structures, and the generalized Monge-Ampère equations. Matem. Sbornik 189(11), 61–74 (1998)

24. Kruglikov, B.S.: Symplectic and contact Lie algebras with application to the Monge-Ampère equations. Tr. Mat. Inst. Steklova 221, 232–246 (1998)

25. Kruglikov, B.S., Lychagin, V.V.: Mayer Brackets and PDEs solvability – I. Differ. Geom. Appl. 17(2-3), 251–272 (2002)

26. Kushner, A.G.: Classification of mixed type Monge-Ampère equations. In: Pråstaro, A., Rassias, Th.M. (ed) Geometry in Partial Differential Equations. Singapore New-Jersey London Hong-Kong, World Scientific, 173–188 (1993)

27. Kushner, A.G.: Symplectic geometry of mixed type equations. In: Lychagin, V.V. (ed) The Interplay between Differential Geometry and Differential Equations. Amer. Math. Soc. Transl. Ser. 2, 167, 131–142 (1995)

28. Kushner, A.G.: Almost product structures and Monge-Ampère equations. Lobachevskii Journal of Mathematics, http://ljm.ksu.ru 23, 151–181 (2006)

29. Kushner, A.G.: Symplectic classification of elliptic Monge-Ampère operators. Proceedings of the 4-th International colloquium “Mathematics in Engineering and Numerical Physics” October 6-8, 2006, Bucharest, Romania, pp. 87-94. Balkan Society of Geometers, Geometry Balkan Press (2007)

30. Kushner, A.G.: A contact linearization problem for Monge-Ampère equations and Laplace invariants. Acta Appl. Math. 101(1–3), 177–189 (2008)
31. Kushner, A.G.: Contact equivalence of Monge-Ampère equations to linear equations with constant coefficients. Acta Appl. Math. (to be published)
32. Kushner, A.G.: Classification of Monge-Ampère equations. Proceedings of the Abel Symposium – 2008, June 18–21, 2008, Tromso, Norway (to be published)
33. Kushner, A.G., Lychagin, V.V., Rubtsov, V.N.: Contact geometry and nonlinear differential equations. Encyclopedia of Mathematics and Its Applications 101, Cambridge University Press, Cambridge, 2007, xxii+496 pp.
34. Laplace, P.S.: Recherches sur le calcul intégrals aux différences partielles. Mémoires de l'Académie royale des Sciences de Paris 23 24 (1773). Reprinted in: Laplace, P.S.: Oeuvres complètes, t. IX, Gauthier-Villars, Paris, 1893; English Translation, New York, 1966.
35. Lie, S.: Ueber einige partielle Differential-Gleichungen zweiter Ordnung, Math. Ann. 5, 209–256 (1872)
36. Lie, S.: Begrundung einer Invarianten-Theorie der Berührungs-Transformationen. Math. Ann. 8, 215–303 (1874)
37. Lychagin, V.V.: Lectures on geometry of differential equations. Vol. 1,2. “La Sapienza”, Rome, 1993.

А. Г. Кушнер
Астраханский государственный университет, Астрахань, Россия и Институт проблем управления РАН, Москва, Россия
E-mail: kushnera@mail.ru

Е. Н. Манжосова
Астраханский государственный университет, Астрахань, Россия
E-mail: elena_manzhosova@mail.ru

Alexei G. Kushner & Elena N. Manzhosova

Symplectic classification of hyperbolic Monge-Ampère equations

We consider a problem of local symplectic equivalence of hyperbolic Monge-Ampère equations. We find scalar invariants and construct normal forms of equations when these invariants are constants.
Линейные изгибания звездчатых бипирамид

Анатолий Д. Милка

Аннотация Линейные изгибания звездчатых бипирамид. Расширенный вариант статьи [A. D. Milka, Linear bending of star-like pyramids, C. R. Mecanique, 331 (12) (2003) 805–810]. Найдено семейство полиэдров, обладающих необычными, противоречивыми с точки зрения геометрии и классической механики деформационными свойствами. С одной стороны, модели полиэдров допускают свободные непрерывные большие обратимые изгибания без видимого искажения материала. С другой стороны, сами полиэдры математически жесткие и не допускают непрерывных изгибаний по О. Коши. Найденные полиэдры названы модельными флексорами в отличие от теоретических флексоров Р. Коннелли. Изгибания моделей асимптотически точно аппроксимируются линейными изгибаниями полиэдров. Они представляют собой нежесткую, мягкую или затянутую, потерю устойчивости, что соответствует потере устойчивости в малом по Л. Эйлеру. Это новое явление в механике деформаций твердых тел можно квалифицировать как оригинальную геометрическую машину катастроф, дополняющую известные физические модели Э. К. Зимана и Т. Постона.

Ключевые слова Жесткие и изгибаемые полиэдры · Теоретические и модельные флексоры · Закритические деформации оболочек · Линейные изгибання · Динамические системы · Нежесткая, мягкяя или затянутая, потеря устойчивости

УДК 514
1 Общее представление результатов

В 1978 г. американский математик Р. Коннелли обнаружил флексор, нежесткий многогранник – простой замкнутый многогранник, непрерывно изгибающийся по О. Коши [1]. Физическая полиздравная модель этого многогранника допускает свободные, без видимых искажений материала геометрические изгибания. Естественно, причиной изгибаемости модели является классическая математическая изгибаемость самого многогранника. Изгибаемость, при которой грани непрерывно перемещаются как твердые пластины и изменяются только двугранные углы между гранями.

В 2000 г. автор обнаружил любопытное семейство жестких многогранников, звездчатых бипирамид А. Д. Александрова и С. М. Владимировой [2], названных модельными флексорами [3,4]. Модельный флексор есть жесткий, то есть не изгибающийся непрерывно по О. Коши многогранник, физическая полиздравная модель которого допускает свободные, без видимого искажения материала геометрические изгибания, как и модель Р. Коннелли. В этом случае причиной изгибаемости модели является математическое линейное изгибание самого многогранника.

Линейное изгибание многогранника есть его изометрическая непрерывная деформация в классе многогранников с изменением размеров и формы отдельных граней. Такого сорта изометрические деформации многогранников, когда грани переламываются и на них возникают подвижные ребра, были введены в геометрические исследования автором, В. А. Залгаллером и Ю. Д. Бурого, Д. Д. Бликером в связи с изучением нестандартных изгибаний многогранников и соответствующих им деформирующих моделей, а также проблем погружений полиздравных метрик (1994–1996).

Линейные изгибы рассматриваемых бипирамид могут быть квалифицированы, в терминах теории особенностей динамических систем В. И. Арнольда [5], как нежесткая, мягкая или затянутая, потеря устойчивости с большими, следующими за начальным моментом закритическими деформациями. Деформациями, не освоенными и даже вовсе не предполагавшимися в классической механике.

В этой статье структурно представляется вся динамика модельных флексоров - даются геометрическое, аналитическое, численное и графическое описания линейных изгибаний семейства звездчатых пирамид при скольжении их граничных ребер в плоскости. Применяемая схема изгибаний в качественном плане была предложена автором в статье [3]. Здесь она конкретизуется и интерпретируется соответствующими формулами.
Выход на механику деформаций оболочек осуществляется на уровне асимптотически точного, по толщине и по габаритным размерам пирамиды, математического моделирования, которое — подчеркнем — обосновывается выработанными в широкой технической практике и в многочисленных лабораторных экспериментах механиков (прошлого столетия) общими положениями. Известными качественными положениями, относящимися к закритическим деформациям оболочек, позволявшими однозначно определить схему их математических изгибаний. Этот выход одновременно обеспечивается адекватным компьютерным анализом изучаемых деформаций.

Согласно с геометрической теорией А.В. Погорелова [6], математические деформации пирамид численно отождествляются с непрерывными изгибаниями срединных поверхностей пирамид-оболочек - это исходный, изученный из инженерно-физического опыта принцип теории, его естественно называть принципом изометрии.

Рассматриваемые каждое как динамическая система, линейные изгибания семейства пирамид представляют собой своеобразную однопараметрическую геометрическую машину катастроф, дополняющую хорошо исследованнные элементарные физические модели Э.К. Зимана и Т. Постона [7] — модели с геометрически наглядной жесткой потерей устойчивости. Этот существенный признак семейства пирамид имеет содержательное чисто синтетическое изложение методом, намеченным в [3]. В синтетическом изложении, которое здесь не приводится, структурно предугадывается аналитическая динамика системы, представленная далее на Рисунках 2 и 3.

Принято, что результат Р. Коннелли опровергает гипотезу Л. Эйлера о невозможности непрерывных изгибаний, безусловно — в определенных классах регулярности, поверхностей и моделей, имеющих вид сфер. С другой стороны результаты автора на простых примерах подтверждают гипотезу Л. Эйлера об общем типе потери устойчивости поверхностью и моделью как о переходе к статически возможным, бесконечно близким к исходным равновесным формам [8]. Качественно дополняя неожиданное открытие Р. Коннелли, эти результаты устанавливают - что непосредственно проверяется на материальных моделях - новое явление в области больших закритических деформаций твердых тел. Области, всегда представлявшейся механикам как область хаоса и неконтролируемых разрушений.
2 Аналогии в классической механике

Известно, что в приложениях за критерий устойчивости принимается жесткость срединной поверхности упругой оболочки. В строительной механике для полиэдрических моделей этот принцип жесткости оболочечных конструкций сформулирован группой канадских математиков и архитекторов в [9] в 1978 г. Без надлежащих обоснований, этот принцип до сих пор применяется в строительной механике [10]. Обнаружение модельных флексоров показывает, что принцип жесткости оболочечных конструкций недостаточен, и он должен быть дополнен характеристикой жесткой оболочки по типу ее потери устойчивости.

Интuitiveэтот вывод был известен Р. Коннелли еще 1974 г., когда им фактически высказывалась и обсуждалась гипотеза о модельных флексорах [11]. Он допускал существование полиэдрической оболочки с жесткой срединной поверхностью, теряющей устойчивость под сколь угодно малой нагрузкой. И видел в этом одну из причин разрушения технических конструкций. Он предполагал, что подобная оболочка "будет постепенно деформироваться так, чтобы получилась устойчивая структура" - мы называем такую за-критическую деформацию нежесткой затянутой потерей устойчивости.

Объяснение этим необычным для строительной механики явлением он усматривал, на основании теоремы Г. Глюка [12], в математической близости к срединному полиэдру оболочки теоретического флексора, нежесткого полиэдра с той же комбинаторной структурой. Хотя в общем случае найти близкий флексор практически просто невозможно.

Для деформаций звездчатых бипирамид близкого флексора не существует. Иначе их срединные поверхности были бы нежесткими полиэдрами. В данной статье естественный класс теоретических флексоров, предложенный Р.Коннелли, существенно дополняется. Его дополняет широкий класс линейно изгибающихся полиэдров. Соответственно уточняется и прикладная направленность результатов — в статье приводятся характерные инженерно-физические примеры, на моделях подтверждающие сформулированные гипотезы Р. Коннелли.

Для регулярных оболочек обсуждаемый вывод был сделан А. Л. Гольденвейзером в 1979 г. [13]. Дело в том, что в классической механике, где рассматриваются малые деформации оболочек, также придерживались принципа жесткости - теоремы о возможных изгибаниях. Суть его в следующем.

Жесткая, то есть не изгибающаяся в бесконечно малом поверхност, имеет своей моделью жесткую оболочку. Но были обнаружены невыпуклые изги-
баемые оболочки - торы, изогнутые трубы - с неизгибаемыми срединными поверхностями. Причиной такого неожиданного и противоречивого для данного класса оболочек явления оказалась упущенная механиками тангенциальная изгибаемость поверхности, названная псевдоизгибаемостью.

Изгибаемость с потерей непрерывности поля смещения или поля вращения вдоль некоторых линий. Этого вида изгибаия применялись ранее А. В. Погореловым при определении верхних критических нагрузок для строго выпуклых оболочек, находящихся под внешним давлением - нагрузок в момент потери устойчивости [6].

Явление псевдоизгибаемости изучалось в школе А. Л. Гольденвейзера в плане математического моделирования, чисто геометрическими методами и в русле математической теории устойчивости упругих оболочек. Были внесены существенные поправки в теорию, введен новый фундаментальный объект — физически нежесткая оболочка: математически жесткая оболочка, допускающая псевдоизгибания. И выяснилось, что подобные оболочки давно уже применяются в технике как различного рода компенсаторы деформаций.

Как подчеркивает В. И. Арнольд в юбилейной лекции в Филдсовском институте [14] в 1997 г., им высказывалась А. Л. Гольденвейзеру гипотеза о динамической природе псевдоизгибания. Однако, динамика псевдоизгибаний оболочек так и не исследовалась и составляет сейчас актуальную, геометрически интересную и нетривиальную проблему.

Модельный флексор, введенный автором для характеристики за-критических деформаций упругой оболочки, является аналогом физически нежесткой оболочки, введенной А. Л. Гольденвейзером для характеристики предкритических деформаций. Геометрически оба варианта изгибаий поверхностей, соответствующие таким необычным деформациям оболочек, предусматривались еще С. Э. Кон-Фоссеном (1936), когда им выделялись изгибаия с разрывами и с блуждающими линиями сгиба.

Надо полагать, что эти варианты деформаций оболочек с особенностями, вызванные потерей устойчивости, имел в виду и Л. Эйлер, о чем свидетельствует формулировка его знаменитой гипотезы: "замкнутая пространственная фигура не допускает изменений, пока она не рвется" — пока она ... не рвется, под этим следует, очевидно, понимать внезапное снижение регулярности рассматриваемой поверхности, которая может быть и многогранником.
Парадоксально, но явление нежесткой потери устойчивости оболочкой могли найти только геометры и притом на уровне математического моделирования. Их обращению к обсуждаемой тематике — А. В. Погорелова, Р. Коннелли, автора — способствовали качественные положения, выработанные в технической практике, где информация о геометрической изгибаемости-неизгибаемости срединной поверхности конструкции имеет первостепенное значение.

Приведем высказывания по этому поводу В. В. Новожилова, ученого, военного инженера, одного из основателей современной механики оболочек, сделанные им еще в годы становления этой теории [15]. Вовсе не придерживаясь принципа жесткости, он и подчеркивает главную практическую проблему - строить устойчивые конструкции, и прогнозирует "промышлению заинтересованность" в подвижных конструкциях: "Дело в том, что оболочка, не закрепленная в отношении чистого изгиба, будет терять устойчивость... при весьма малых критических нагрузках и будет весьма чувствительна к малым изгибным возмущениям. Поэтому полное устранение (или по крайней мере достаточное ограничение) деформирования оболочек по всем формам чистого изгиба должно являться законом для конструктора, проектирующего оболочки. Исключением из этого правила могут являться только те случаи, когда либо нагрузка на оболочку незначительна, либо от оболочки, по условиям ее работы, требуется не столько высокая прочность, сколько значительная податливость (с чем можно встретиться, например, в приборостроении или в конструкциях музыкальных инструментов)....".

Обнаружение модельных флексоров подтверждает интуитивное научно-техническое предвидение В. В. Новожилова. Вот только найти теоретически для конкретной оболочки все потенциальные формы чистого изгиба, в частности нежесткую потерю устойчивости, невозможно - здесь требуется, как и в классической механике, экспериментальный опыт или непосредственный эксперимент. Да и аналитического аппарата к описанию закритического поведения оболочки при больших деформациях классическая механика не имеет, подходящие аппарат и терминология находятся, как оказывается, в теории динамических систем. Поэтому надо принять, что динамическая гипотеза В. И. Арнольда по поводу псевдоизгибаний в равной степени может быть отнесена и к линейным изгибаниям модельных флексоров, поскольку речь идет о геометрически и физически близких и сходных явлениях.

В настоящей статье такая интерпретация этой гипотезы подтверждается. Напомним коротко, следя В. И. Арнольду [5], некоторые определения.
Динамической системой называется совокупность объектов, непрерывно упорядоченная по времени.

Время часто называют амплитудным параметром, а любую численную характеристику особенностей объектов - к примеру, складок или сборок по Уитни на объектах-поверхностях, зависящую от времени, называют фазой.

Эволюцию системы описывают фазовой кривой в фазовой плоскости фаза-время. В принципе, какой из параметров именовать фазой и какой временем — вопрос удобства исследования. Исходный объект, т.е. объект в пулевое время, и все дополнительное по времени подмножество объектов называются равновесными состояниями системы; факт перехода, бифуркацию объекта из исходного, стационарного, в другое равновесное состояние называют потерей устойчивости системы.

Различают жесткую или нежесткую потерю устойчивости, когда в момент перехода фазовая кривая соответственно разрывная или непрерывная.

Нежесткая потеря устойчивости, при которой фаза на начальном этапе квадратична по времени, называется мягкой потерей устойчивости, или бифуркацией Хопфа.

Мягкая потеря устойчивости, при которой фаза некоторое время остается вблизи исходного значения, затем резко изменяется на конечную величину, называется затянутой потерей устойчивости; аналитически такая "потеря устойчивости кажется жесткой"[5].

Обычно рассматривают не единичную, а целое семейство динамических систем, зависящих от внешних, управляющих параметров. В области управляющих параметров тогда выделяют подобласти динамических систем общего положения, имеющих сходные по определенному признаку фазовые кривые.

Множества раздела этих подобластей называются сепаратрисами. Переход системы через сепаратрису всегда называют катастрофой, имея в виду и специфическое вырождение на сепаратрисе аналитических свойств фазовой кривой. Далее изучаются только модельные пирамиды-флексоры с нежесткой потерей устойчивости.

3 Геометрия и динамика изгибаний пирамид

Флексорные, в общем — разновысотные, би пирамиды строятся из правильных звездчатых пирамид, не допускающих, как установлено автором ранее [3], классических непрерывных изгибаний по Коши при скольжении края в плоскости. Рассматриваются специальные звездчатые пирамиды и их специ-
алььные изометрические деформации в классе полизэдров — линейные изгибиання. Эти специальные линейные изгибання однозначно и асимптомически точно аппроксимируют свободные и без видимых искажений материала изгибання моделей звездчатых бипирамид.

Каждая из пирамид представляет собой фигуру с осесимметрическим циклическим планом, базой, в форме звезды. Циклически повторяющийся элемент, лепесток звезды, есть выпуклый четырехугольник, составленный из двух равных треугольников. Принимается, что составляющий треугольник имеет примыкающими к краю звезды внутренний и внешний удвоенные углы, равные $\pi/2 - \alpha$ и $\pi/2 + \alpha$, где $\alpha < \pi/2$ — третий угол треугольника.

Такие звездчатые пирамиды вводились А. Д. Александровым и С. М. Владимировой с целью построения на их основе дискретных классических изгибаний. Лепесток пирамиды тоже составлен из двух равных треугольников, граней пирамиды.

Пусть β и γ — углы граней пирамиды, проектирующиеся соответственно в угол α и в другой острый угол треугольника ее звезды, H — высота пирамиды, η — угол наклона ее вогнутого ребра к оси.

Рис. 1 Нормированная треугольная пирамида и кривая деформации.

На Рис.1 слева показан план нормированной, для исключения подобия, треугольной пирамиды, трилистника, и обозначены длины сторон треугольников звезды. Радиальные стороны, меньшая p и большая q, составляющего треугольника звезды n-угольной пирамиды определяются равенствами $p^2 = 2/(1 + \sin \alpha)$ и $q^2 = 2/(1 - \sin \alpha)$, где $\alpha = \pi/n$ есть угол треугольника у центра звезды, пусть a - третья сторона треугольника. Пирамида вполне определяется углом $\alpha = \pi/n$ и высотой H.
Линейные изгибания звездчатых бипирамид

Звездчатая нормированная пирамида допускает следующее линейное изгибание. Вершина пирамиды смещается по вертикали. Гранничные вершины смещаются по лучам, идущим из центра звезды в основании пирамиды. Границы пирамиды переламываются, и на ее поверхности образуются подвижные складки с ребрами излома на лепестках, как это показано в плане пунктирными линиями на Рис.1.

Каждая грань переламывается по одному отрезку с началом в грааничной вершине пирамиды, и переламываются, каждое в одной точке, только большие наклонные ребра. У каждого лепестка точка излома ребра пирамиды пробегает все ребро и остается при деформации в плоскости симметрии лепестка. Циклическая симметрия пирамиды в процессе деформации сохраняется.

Обозначим \(u \) смещение вершины пирамиды, считая его положительным при сдвиге вершины к плоскости основания, \(z \) — отклонение точки излома ребра от оси пирамиды, считая его положительным, когда сломанное ребро не пересекает ось, \(s \) — длину отрезка излома между вершиной пирамиды и точкой излома, \(\nu \) — наклон дополнительного отрезка сломанного ребра к плоскости основания пирамиды, считая наклон положительным или отрицательным, если точка излома располагается соответственно над или под плоскостью основания. Переменная \(u \) — это параметр, \(z \) и \(s \) - фазы изгиба нормированной звездчатой пирамиды. Область изменения \(u \) есть область определения и положительных, и отрицательных значений угла \(\nu \). Аналитически это линейное изгибание характеризует

Лемма 1 Для линейно изгибающейся звездчатой нормированной пирамиды функции переменной \(u \) — наклон \(\nu \), фаза \(z \), длина \(s \) отрезка излома представляются формулами:

\[
\sin^2 \nu = \frac{(H^2 + p^2) \sin^2 \beta - (p^2 + w) \sin^2 \alpha}{a^2 - (p^2 + w) \sin^2 \alpha},
\]

\[
z = Q - (\sqrt{H^2 + q^2 - s}) \cos \nu,
\]

\[
s^2 = (Q - (\sqrt{H^2 + q^2 - s}) \cos \nu)^2 + (H - u - (\sqrt{H^2 + q^2 - s}) \sin \nu)^2,
\]

где

\[
\sin^2 \beta = 1 - \frac{(H^2 + 2)^2}{(H^2 + p^2)(H^2 + q^2)},
\]

\[
w = H^2 - (H - u)^2,
\]

\[
Q = \sqrt{p^2 + w \cos \alpha} + \sqrt{a^2 - (p^2 + w) \sin^2 \alpha},
\]

\[
\frac{H^4}{H^2 + q^2} \leq (H - u)^2 \leq H^2 + p^2.
\]
Сепаратрисы, координата точки перемены знака фазы \tilde{y} и отвечающая этой точке длина отрезка излома \tilde{s} представляются уравнениями:

$$\frac{1}{H^2} = \frac{q^2}{4} - 1, \quad \frac{H^2}{4} = \frac{q^2}{4} - 1, \quad \sqrt{H^2 + p^2 \cos \beta} = H - \tilde{u},$$

$$(\sqrt{H^2 + q^2} - (H - \tilde{u}))\tilde{s} = \sin \alpha (\tilde{w} \sin \alpha + 2 - \sqrt{(\tilde{w} \sin \alpha + 2)^2 - \tilde{w}^2}).$$

Установленные леммой формулы и геометрическая схема линейного изгибаения распространяются также на вырожденные, с высотой $H = 0$, нормированные пирамиды. В целом, эти формулы аналитически полностью и однозначно представляют и геометрию, и динамику линейного изгибаения пирамид. Соответствующая динамика управляется уравнением движения

$$\dot{z} = \varphi(z, u, \alpha, H),$$

в котором сложная функция φ определяется на основании формул.

На Рис.1 справа в фазовой плоскости (u, z) показана кривая деформации треугольной звездчатой пирамиды, трилистника с $H = 1$, при которой складки образуются у вершины. На начальном этапе изгибаение кривая имеет вид параболы - мягкая потеря устойчивости. Интервал $0 < u < \tilde{u} = 0.2483...$ отвечает этапу затянутой потери устойчивости, когда изгибающаяся пирамида имеет вдоль вогнутых ребер самопересечения — сборки динамического типа бабочки. Тонкой линией на рисунке намечена полная фазовая кривая.

Рис. 2 Сепаратриса и бифуркационная кривая (слева) и план нормированной пирамиды (слева).
На Рис.2 слева в плоскости управляющих параметров \((H, \alpha)\) семейства нормированных звездчатых пирамид показана сепаратриса \(S\), бифуркационная кривая с уравнением \(\beta = \eta\), разделяющая пирамиды, которые отличаются по характеру затрудненной потери устойчивости. Трилистник в этой плоскости включается в линейное семейство треугольных пирамид, представленных точками на вертикальном луче \((H, \pi/3)\). Луч пересекает сепаратрису в особой точке \(H = 0.6050\ldots\) - светлый кружечек, точке катастрофы по терминологии теории динамических систем. Пунктиром показана другая сепаратриса, с уравнением \(\beta = \gamma\), разделяющая пирамиды, физические модели которых, повидимому, отличаются спецификой места иначалного изгибаания — при возникновении подвижных складок у вершины или у края.

Характерна здесь и вертикальная разделяющая линия, соответствующая шестиугольным звездчатым пирамидам с углами \(\alpha = \pi/6\); такие нормированные пирамиды показаны в плане на Рис.2 справа.

Примечательно, что начало \(H = 0\) есть точка трех равновесных состояний линейно изгибающейся шестиугольной пирамиды как динамической системы. Исходного, стационарного, неустойчивого состояния пирамиды и двух ему близких состояний, когда при линейном изгибаании излом развивается у вершины или когда излом развивается у края, деформирующейся пирамиды.

Сформулируем те общие положения из практической механики, геометрически характеризующие деформации оболочек, предшествующие разрушению, которые и позволили качественно установить вид изгибаания срединной поверхности звездчатой бипирамиды-оболочки при ее свободном и без видимых искажений материала деформировании.

Общие положения особенно четко выражены для оболочек нулевой кривизны, такими оболочками являются и рассматриваемые нами звездчатые пирамиды [16, §§127-129; 17, §§79-83, §§97]. Применяя эти положения, мы следуем Г. Минковскому (Г. Минковский, Пространство и время, В кн. "Принцип относительности", ОНТИ, Москва-Ленинград, 1935), показавшему непреходящую роль геометрии в естествознании, поскольку предметно опираемся одновременно как на физические, так и на геометрические начала.

Актуальность такого подхода при изучении явления потери устойчивости еще в пятидесятие годы подчеркивалась А. С. Вольмиром [17]: "Надо установить границы применимости исходных дифференциальных уравнений и рассмотреть деформацию оболочек при перемещениях, сравнимых с
габаритными размерами оболочки. Желательно более подробно с помощью методов современной дифференциальной геометрии проанализировать форму изогнутой поверхности оболочки при закритической деформации".

Напомним, что по характеру деформации оболочки нами принят основной принцип - геометрический принцип изометрии [6], который фактически подтверждается первым из положений. Общие положения и выводы из них формулируются для моделей звездчатых пирамид, деформирующихся под незначительной поперечной нагрузкой, при скольжении края в плоскости, при сохранении элементов их исходной симметрии.

Ввиду свободной изгибаемости отдельной модели, эти положения, относящиеся к моменту потери устойчивости, распространяются также на весь процесс деформирования модели, чем достигается полнота исследования - охватываются оптимальные варианты изгибания звездчатой пирамиды. Вот эти общие положения.

* При деформации пирамиды напряжения в грани концентрируются у ее граничного контура [16,17]. Отсюда и из свободной изгибаемости звездчатой пирамиды постулируется, что при деформации пирамиды выполняются принцип изометрии, и что пирамида испытывает линейное изгибание, осуществляемое подвижными изломами граней.

* При деформации пирамиды на ней стабилизируется несущая нагрузку скелетная система прямолинейных ребер [16,17]. Отсюда постулируется, что исходная система ребер в основном сохраняется. А так как исходная система содержит три типа ребер, то при изломах граней, при экономии затрачиваемой природой энергии, переломам подвергаются лишь ребра одного типа.

* При деформации пирамиды в ее сжатых, вогнутых участках формируются выпучины, направленные в сторону от пирамиды — "направленные в сторону кривизны как говорят в механике в этом случае [16,17]. Отсюда постулируется, с учетом незначительности энергии деформации, что на каждом вогнутом участке формируется только одна выпучина. И далее — что гребень выпучины, малое наклонное ребро пирамиды, подвергается жесткой, без переломов, изометрической деформации. А так как пирамида изгибается линейно, то каждая ее грань переламывается только по одному ребру. Из геометрических оценок тогда следует, что у пирамиды переламываются, каждое в одной точке, только большие наклонные ребра.

Этими положениями и устанавливается вид изгибаия срединной поверхности звездчатой бицилиндрической оболочки, которое аналитически описано в Лемме. Будучи сами экспериментально-физическими, сформулированные...
положения полностью заменяют реальный эксперимент. Они переводят проблему об исследовании деформаций оболочки в область чистого математического моделирования. Геометрически линейные изгибания срединных поверхностей пирамид находятся однозначно, и они совпадают с изгибаниями, рассмотренными в Лемме. Значит, ими асимптотически точно по толщине, согласно с геометрической теорией [6], приближаются деформации пирамид-оболочек. А согласно с динамической теорией [5], эти изгибы квалифицируются как мягкая или затянутая потеря устойчивости - и для математических, и для физических моделей.

Подчеркнем, что в рассматриваемом случае выяснение деформированного состояния оболочки удается осуществить без одновременного изучения ее напряженного состояния.

Таким образом, нами предлагается математическая модель эволюции механической системы, в которой однозначно и полностью описываются только геометрические составляющие. Для этого не понадобились ни анализ нагрузок, ни нахождение экстремумов соответствующей потенциальной функции, ни какие-либо характеристики материала оболочки, что является обязательным в классической механике. Не понадобилось и исследование векторного поля динамики изгиба пирамид по управляющему дифференциальному уравнению. Решение уравнения было найдено чисто синтетическим методом.

Напряженное состояние такой оболочки при технической ее реализации будет анализировать инженер, учитывая уже полученную определенность геометрического деформирования; как подчеркивает А. В. Погорелов [6], напряженное состояние оболочки устанавливается как следствие деформированного состояния, если последнее известно.

Динамические характеристики также подтверждают, что математические приближения изгибаний пирамид-оболочек асимптотически точные и по толщине, и по габаритным размерам пирамид. В объединении с геометрическими характеристиками это означает, что модельные флексоры можно использовать в равной степени и на макро-, и на микроуровне, причем на микроуровне их флексорные свойства проявляются наиболее эффективным образом. Это указывает на возможность применения модельных флексоров в микромеханике и в микроэлектронике, областях с уникально геометрическими технологиями.
4 Элементарные физические модели

Математическая жесткость и свободная изгибаеомость модельных флекссоров легко проверяются на простых примерах равновысотных треугольных звездчатых би пирамид. Они имеют оптимальные — восемь (!) вершин — подвижные модели; теоретические флекссоры с минимальными восемью вершинами до сих пор не обнаружены, что составляет серьезную геометрическую проблему. Для моделирования выбираются следующие размеры в м m границных (a) и радиальных (b,c) ребер составляющих пирамид, полученных из подобно увеличенных, с коэффициентом 2.5083, нормированных с высотами $H = 1$ и $H = 0$ трислинков: 87, 36, 100 и 87, 26, 97.

Здесь отклонения от истинных размеров не превосходят 0.1мм, а высоты составляющих пирамид в исходном положении равны 25мм и 00мм. Эти отклонения не превосходят погрешностей, возникающих при изготовлении выкроек моделей с помощью обычно применяющегося набора чертежных инструментов. Содержательный пример свободно изгибаеомой модели — шестигранныя звездчатая би пирамида с нулевыми высотами составляющих пирамид (правый Рис.2).

На левом Рис.2 эти примеры составляющих пирамид отмечены темными кружочками. Реальные модели би пирамид строились из качественного картона толщиной 0.25мм. Первая из моделей, выдержавшая сотни циклов изгибаний, исправно работает с 1997 года.

При деформации би пирамид у них переламываются, каждое в одной точке, только большие ребра. В начальной, мягкой стадии деформирования длина s отрезков излома и отклонение z точек излома от оси имеют по прогибу u вершин пирамид второй порядок малости; при этом вдоль вогнутых ребер образуются резкие надломы граней, геометрически четко определяющие на пирамидах характерные выпучины.

Затянутой потере устойчивости отвечают деформации с уменьшением на четверть высот пирамид в первом — это 25 толщин модели — и с увеличением от нуля до 13мм высот составляющих пирамид в третьем ($c = q = 100$) случаях; точкам перемены знака фазы — времени затягивания — отвечают острые, сложенные из надломов граней вдоль вогнутых ребер строго вертикальные выпучины. Относительное изменение длин больших ребер в процессе деформаций би пирамид на этом показательном этапе, называемое в механике закритичностью, не превосходит соответственно величин 0.00269 и 0.00137. Такая закритичность сравнима с техническими характеристиками основных конструкционных материалов, металлов и их сплавов [6].
Формально аналогичные типы изгибания, как мягкой и затянутой потери устойчивости, характерны для всех рассматриваемых звездчатых бипирамид. А также для построенных на их основе с сохранением элементов симметрии более общих полиэдрических моделей.

База сложного модельного флексора из элементов треугольной и шестиугольных пирамид показана на Рис.3 слева; пунктиром в плане условно отмечены ребра изломов на лепестках; для построения физической модели можно использовать размеры, включающие указанные ранее для треугольной бипирамиды:

\[a = 87,\ b = 36,\ c = 100,\ g = 56,\ r = 61.3,\ f = 32.3,\ s = 40.\]

Модельным элементарным и универсальным флексором является четырехугольная осесимметричая звездчатая пирамида, имеющая две проходящие через ось взаимно ортогональные плоскости симметрии, у которой углы \(\alpha \) треугольников в плане, с соблюдением принятых ограничений на граничные углы, произвольные — в этом универсальность — и не обязательно вида \(\pi/n \) (Рис.3 справа).

Лемма и рисунки 1 и 2 полностью характеризует изгибания лепестков такой пирамиды при скольжении ее края в плоскости. Для лепестков общего положения фазовые параметры \(z \) и \(s \) в начальной стадии деформирования, когда складки образуются у вершины пирамиды, имеют по прогибу \(u \) второй порядок малости. Для лепестков на сепаратрисе \(S \) параметр \(s \) — второго, а \(z \) — третьего порядков.
Элементы универсальной пирамиды можно использовать для построе-
ния более общих флексоров, заодно и правильных пирамид. Чтобы предста-
вить поведение точки излома в начальной стадии деформирования у края
пирамиды, введем новую, подвижную, фазовую плоскость \((w, z)\).

Примем, что в исходном положении, когда \(u = 0\), ось \(z\) направлена из
граничной вершины \(Q\) большого наклонного ребра пирамиды вертикально
ввех, ось \(w\) направлена из вершины \(Q\) под плоскость основания пирамиды,
будучи отражением от плоскости луча, определяемого наклонным ребром.

Примем далее, что с изменением параметра \(u\) оси \(z\) и \(w\) перемещаются
параллельно вместе с вершиной \(Q\). Тогда в подвижной фазовой плоскости
\((w, z)\) точка излома большого наклонного ребра описывает определенную
траекторию, и из Леммы следует, что в окрестности вершины \(Q\) в исходном
положении смещение вершины \(Q\), к центру или от центра звезды пирамиды,
имеет порядок \(u\), а фазовая траектория точки излома в подвижной плос-
кости асимптотически является полукубической параболой с некоторыми
ненулевыми постоянными \(D\):

\[
\begin{align*}
 w &= Du^2, \\
 z &= Du^3.
\end{align*}
\]

Этот результат проверяется на материальной модели лишь тонким техни-
ческим экспериментом, к примеру — с шестиугольной звездчатой бирири-
мидой с нулевыми высотами.

5 Заключение

Изложенные результаты автора развивают конкретные математические и
физические положения А. Д. Александрова и Р. Коннелли, В. И. Арнольда,
А. Л. Гольденвейзера и А. В. Погорелова. Они определяют приоритетное
направление теоретического и прикладного изучения процессов изгибаения
поверхностей и их моделей, рассматриваемых в идеологии динамических
систем. Они стимулируют нестандартные исследования причин достаточно
распространенных, часто необъяснимых технических аварий и медленных
разрушений тонких упругих оболочек при больших деформациях.

Исследования, сближающие явления нежесткой и жесткой потери устой-
чивости, также, оказывается, подчиняющейся естественному положению
Г. Минковского о единстве геометрических и физических начал.

Явление нежесткой потери устойчивости представляет интерес для раз-
личных, в частности для строительных, архитектурных и геофизических
приложений. Оно может быть также применено в точном приборостроении.
и в инженерии для проектирования подвижных технических конструкций с изменяемой геометрической формой, например, сильфонов.

Укажем простое технологически выгодное в приложениях устройство, построенное на базе звездчатых оболочек-пирамид: шатровое перекрытие с переменной полезной покрываемой в плане площадью (см. [10], стр. 161).

Найденное материально, явление нежесткой потери устойчивости звездчатых оболочек-пирамид имеет значение и для теории динамических систем, где в свое время как сенсационное было аналитически открыто и изучено явление затянутой потери устойчивости — М. А. Шишковой и А. И. Нейштадт [5]; назовем также недавнюю работу А.И.Нейштадт [18], в которой оценивается время затягивания системой потери устойчивости.

Согласно А. В. Погорелову [6], определенность деформированного состояния оболочки влечет определенность и ее напряженного, физического состояния.

Согласно В. И. Арнольду [14], напряженное состояние может описываться методами теории динамических систем; это описание, безусловно, должно основываться на характерной двойственности "деформации-напряжения" — ссылка приводится далее - в состоянии упругой оболочки.

Поэтому семейство линейных изгибаний звездчатых пирамид, названное нами геометрической машиной катастроф, относится к числу нелинейных динамических систем математической физики.

Согласно Г. М. Заславскому и Р. З. Сагдееву [19], геометрическая машина катастроф есть система простейшая — имеет одну степень свободы, допускающая точный и полный анализ — задана явно аналитически, и в силу новизны требующая нахождения "реального физического аналога" в общем представлении нелинейной динамики физических явлений.

Говоря о началах явления жесткой потери устойчивости, с которой связывается много открытых проблем — преимущественно для выпуклых оболочек, автор имеет в виду следующее предположение. Обращение к геометрии расширит возможности практической механики.

В ряде задач предварительным этапом исследования этого явления должно быть геометрическое изучение больших изгибаний оболочки на базе экспериментальных данных. Ведь и сейчас справедливо давнее замечание А. С. Вольмира [16]: "До сих пор при определении размеров проектируемых конструкций исходят обычно из сопоставления с аналогичными уже осуществленными сооружениями либо из "интуитивных" соображений, а затем проводят проверку на устойчивость.".
С пятидесятих годов в геометрии "в целом" накоплены результаты, явно и эффективно применимые для такого исследования. Назовем теоремы А. Д. Александрова о гладкости и строгой выпуклости выпуклой поверхности с ограниченной кривизной [20]. Есть основания утверждать, что с помощью этих теорем разрешается известная проблема о так называемой статико-геометрической Аналогии — двойственности деформацион-напряжения — в системе уравнений деформаций оболочки [21].

Назовем также замеченную А. Д. Александровым аналогию-двойственность между системой векторов угловых скоростей изгибающегося "в малом" многогранника и системой векторов растяжений-сжатий в ребрах многогранника [22]. Аналогия "находится рядом" с геометрически интерпретируемой жесткой потерей устойчивости оболочки и с многочисленными явлениями внезапных разрывов в материалах оболочек.

Примерами для анализа и сравнения в механике служат неопределенность геометрических форм закритических деформаций продольно сжатого кругового цилиндра и непреодолимая загадка быстрых и длинных трещин. Решение этих проблем находится в геометрии.

В [23] теоремы А. Д. Александрова обобщены по размерности с качественными, близкими к описанным в Аналогии и определяемыми вариантами теорем представлениями изгибаний выпуклой поверхности, которые связаны с поведением геодезических линий.

Резкое выпрямление геодезической сопровождается закручиванием поверхности вокруг этой линии, что инициирует большие поперечные разрывы в материальной поверхности; резкое возникновение изолированного ребра вдоль геодезической сопровождается выпрямлением этой линии и распространением ребра на всю геодезическую, что инициирует быстрые и длинные трещины в материальной поверхности — на практике это явление успешно применяется при раскрое стекол; обобщение теорем по размерности впервые объясняет нигде не обсуждаемую физиками причину уплощенности трещин в материалах твердых тел.

Указанные чисто иллюстративно механиками три теоретически возможных типа закритических деформаций сжатого по оси цилиндра [16,17] также имеют надлежащее геометрическое обоснование, определяемое отмеченной спецификой геодезических линий.

Примеры жесткой потери устойчивости демонстрируют машины катастроф Э. К. Зимана и Т. Постона. Характерным примером жесткой поте-
ри устойчивости является разрушение ньюйорского небоскреба вследствие террористического акта 11 сентября 2001 г.

Механизм разрушения коробки здания от взрыва внутри коробки около 150 тонн авиационного горючего совпадает с механизмом извержения вулкана с образованием вершинной кальдеры при динамичном возрастании давления внутри конуса вулкана. Если магма не удается прорваться через вершину вулкана, то конус мгновенно опоясывается поперечной трещиной, через которую изливается магма, верхняя часть конуса плавно погружается в магму и вулкан приобретает форму усеченного конуса. Деформация исходного конуса представляет собой его изометрическое преобразование с увеличением объема.

Геометрическая модель такого преобразования для выпуклых пирамид, которой обобщались известные оценки Д. Д. Бликера относительного увеличения объемов правильных многогранников, излагалась в докладе автора [24]. Невероятно, но доклад состоялся в тот же день 11 сентября 2001 г. за несколько часов до непредвиденной трагедии.

Приведем оценку Д. Д. Бликера и ее обобщение автором для тетраэдра: 1.37718257 и 1.41575603; предполагается оптимальная оценка сверху 1.420.

Ясно, что при использовании модельного флексора как устойчивой, по принципу жесткости, инженерной конструкции возникнут побочные эффекты, связанные с геометрией мягкой потери устойчивости, сходные с эффектами певдоизгибаемости у физически нежесткой оболочки [13]. Это слишком опасные эффекты, приводящие к возникновению многочисленных и трудно регистрируемых усталостных микротрещин.

В природных процессах могут наблюдатьсь и явления затянутой потери устойчивости. Также имеющие причиной геометрическую изгибае-
мость. Приведем характерные инженеро-физические примеры, когда, исходя только из классической механики, нельзя верно восстановить сложную динамику явления, поскольку основания явления существенно определяются и геометрией. Эти примеры полностью согласуются с моделью физически-
ских разрушений по Р. Коннелли и допускают прямое сравнение с численны-
ми фазовыми примерами модельных деформаций треугольных звездчатых пирамид.

Опровержение принципа жесткости есть событие, которое необходимо в дальнейшем учитывать в строительной механике. Сейчас инженер видел бы в звездчатой пирамиде устойчивую в эксплуатации конструкцию — пирамида не допускает непрерывных изгибаний по О. Коши при скольжении
края в плоскости. Но материальная модель пирамиды разрушится под нагрузкой, значительно меньшей расчетной, может, "под собственным весом" [9]. Здесь "аналогии с известным" и "интуитивные соображения" теперь недостаточны, они должны быть дополнены и экспериментом, и его геометрическим анализом. Тогда и может быть принято верное решение, строить устойчивую или строить подвижную техническую конструкцию.

Авария советского лайнера Ту-144 на международном авиасалоне в Лебурже в 1973 г. Причины катастрофы остались для специалистов не выясненными, так как, по заключению комиссии, в момент аварии все системы корабля действовали исправно. А существенная возможная причина аварии — усталостное разрушение крыла, самого уязвимого участка в конструкции сверхзвукового лайнера, в его средней, вогнутой зоне и на его жестком стыке с фюзеляжем. Все дело в том, что пологое крыло с вогнутой изломанной передней кромкой, как и элемент модельного флексора — звездчатой бипирамиды-оболочки, потенциально подготовлено к мягкой потере устойчивости. Это подтверждают и мнения авиаторов о недостаточной прочности крыла, и фото в плане собранного из кусков после аварии планера лайнера, на котором заметно выделяются разрушения в отмеченных зонах, и последующие технические работы по усилению крыла [25].

По наблюдениям ученых, северная и южная границы Швейцарии сближаются на 3 мм в год, а вершины Альп за тот же период поднимаются на 1.5 мм. Объяснение этому дается простое и неопределенное: европейская и африканская плиты земной коры надвигаются на стыке одна на другую. Вообще, в геофизических теориях, хотя кора Земли, со времени У. Томсона, и принимается как тонкая упругая оболочка, однозначных ответов на узловые вопросы о характере ее формоизменения пока не выработано [26]. И можно рассмотреть иную, альтернативную тектонику плит модельную интерпретацию, основанную на идее затянутой потери устойчивости оболочки. Плиты надламываются у стыка каждая на 1.5 мм, участки надломов складываются и образуют остroe поднятие-выпучину в 1.5 мм, встречный сдвиг плит — 3 мм. Конечно, подсчет должен выполняться квалифицированно, не только по средним поверхностям плит, нужны и полевые измерения. Предлагаемый геометрический подход, который лишь намечается, дает также новую возможную модельную интерпретацию причин океанических и континентальных разломов земной коры, переворачивания рудных слоев, возникновения островных дуг, глубоководных впадин и возникновения особенно странного и непредсказуемого для геофизиков тихоокеанского бассейна; не-
давний пример — катастрофическое Суматро-Андаманское землетрясение 2004 г.

Семейство звездчатых пирамид — актуальный и богатый объект и для геометрических, и для смежных с геометрией математических исследований.

Геометрические фракталы. Большой научный интерес представляют инвариантные функции семейства звездчатых пирамид. Они неожиданным и загадочным образом связывают семейство пирамид как математический объект с фракталами [3]. Динамическая система \(z \to \frac{z^2}{z^2 + c} \), определяемая инвариантной функцией \(\frac{\cos^2 \beta}{(\cos^2 \beta - \cos^2 \alpha)} \) семейства нормированных звездчатых пирамид, рисует в комплексной \(c \)-плоскости с предельной точностью — как и классическая система \(z \to z^2 + c \) — известное фрактальное множество Мандельброта (см. Рис. 4).

В отличие от обычного подхода, здесь нами разрисовывается внутренность этого множества. При этом нестандартно и однозначно также разрисовывается и внешность множества, что опровергает расхожий тезис о ее хаотичности. А параллельное рисование внешности множества Мандельброта двойственной к указанной выше инвариантной функцией, с принятием бесконечно удаленной точки за начало комплексных координат, только подтверждает это высказывание.
Характерные точки -0.25, -0.5 и -0.75 на оси фрактального множества, расположенные в пределах кардиоиды, отвечают значениям c для трех-, четырех- и шестиугольной пирамид, точно следуя рисунку в плоскости управляющих параметров (H, α). Диапазон значений c для всех возможных звездчатых пирамид - это открытый отрезок, соединяющий центры c = 0 и c = −1 кардиоиды и большой почки. Интересен и, видимо, не случаен факт, что точка шестиугольной пирамиды разделяет эти две фигуры фрактального множества и что сходная картина наблюдается также на Рис.2 в плоскости управляющих параметров, определяемой звездчатыми пирамидами динамической системы.

Объяснения всем этим интригующим математическим и фрактально-геометрическим фактам пока не найдено. Зато обнаружен конкретный путь от фракталов к геометрии. В 1994 г. аналогичные результаты с необычной, на много порядков увеличенной областью изменения параметра c при рисовании того же фрактального множества Мандельброта, были установлены автором для инвариантной функции семейства полиэдров типа шеддок А. Дуади [3]. На этом семействе действует ангармоническая группа и инвариантом является модулярная функция, которая определяется полученным геометрически в качестве характеристики семейства известным аналитическим тождеством Коши-Кэли.

Такое представление этого семейства полиэдров нетривиально, поскольку модулярная функция — исключительно содержательный объект исследований в различных математических дисциплинах, например, в теории эллиптических функций, в проективной геометрии, в теории икосаэдра Ф. Клейна.

Не надо обосновывать, что эти связи теории полиэдров со столь важными разделами математики порождают содержательную проблематику и весьма перспективны для геометрии. Достаточно напомнить показательные и глубокие результаты Р. Коннелли, полученные при изучении изгибаний подвесок [11], где им применялись и инвариантная функция — ориентированный объем подвески, и групповые операции на семействе кубических кривых, и эллиптическая функция Вейерштрасса.

Стимулами настоящего исследования явились пioniерские разработки Р. Коннелли и Г. Глюка связей изгибаний поверхностей с явлениями неустойчивости оболочек, решение и обобщения И. Х. Сабитовым и В. А. Александровым известной в геометрии изгибаний проблемы Сулливана-Коннелли "кузнечных мехов" и обнаружение в школе
А. Л. Гольденвейзера неожиданных для механики и для геометрии явлений псевдоизгибаемости жестких упругих оболочек.

Теория В. И. Арнольда и теория А. В. Погорелова позволили реализовать эти стимулы в иначинальном и перспективном изучении модельных флексоров. Первые примеры модельных флексоров, без представления структуры их линейных изгибаний, были предъявлены автором в работе [27] в 1994 г., где в основном рассматривались только изгибания правильных многоугольников.

В то же время дискретные линейные изгибания вводились в геометрические исследования В. А. Залгаллером и Ю. Д. Бураго [28], а также Д. Д. Бликером [29]. Предъявленные модельные флексоры — это многоугольник-щеддок А. Дуади и, как статистический парадокс, любой теоретический флексор.

Об этих многоугранниках и флексорах-бицирамидах сообщалось в докладе [30] на Математическом конгрессе Берлин-1998 в секции "Дифференциальная геометрия и глобальный анализ" и в докладе [4] на Математическом конгрессе Пекин–2002 в секции "Обыкновенные дифференциальные уравнения и динамические системы".

Настоящая работа является расширенным вариантом статьи [31], первой и краткой публикации автора по рассматриваемым модельным флексорам.

Изложенная там схема линейных изгибаний звездчатых пирамид была намечена в статье [3] и обосновывалась экспериментальными положениями механики в докладе автора на международной геометрической конференции Одесса–2004 [32]. Напомним, что в этой схеме у пирамиды переламываются большие наклонные ребра — каждое в одной точке, и на деформирующихся лепестках возникают подвижные особенности типа складки.

Оказывается, это — анонс. Существует еще одна, также обоснованно определяемая, схема аппроксимирующего линейного изгиба звездчатой пирамиды. В новой схеме большие наклонные ребра переламываются каждое в двух точках, на лепестках возникают подвижные особенности типа сборки, а вдоль вогнутых наклонных ребер пирамида уже не имеет самопересечений.

Таким образом, одна и та же деформация материальной модели пирамиды характеризуется двумя различными математическими динамическими системами. Особенности в этих системах представлены складками и сборками — основными типами динамических особенностей по Уитни [5].
Эти системы между собой аналитически тесно связаны. В частности, они имеют общий временной интервал нежесткой затянутой потери устойчивости. Какая из математических схем и для каких подклассов звездчатых пирамида асимптотически более точная, могут прояснить только геометрический анализ и физический эксперимент.

Эти вопросы должны быть предметом дальнейших исследований, которые полнее выяснится, что означает новое математическое и физическое явление — модельный флексор, такая неожиданная для исследователей геометрическая машина катастроф.

Благодарности Автор признателен Леониду Панкратову и Василию Горьковому за неоценимую поддержку и компетентные обсуждения материалов этой статьи.

Список литературы

1. Connelly, R.: A flexible sphere. Math. Intell. 1(3), 130-131 (1978)
2. Александров, А.Д., Владимирова, С.М.: Об изгибании многогранников с твердыми гранями. Вестн. ЛГУ. Мат., мех., астр. 13(3), 138-140 (1962)
3. Milka A.D.: Nonrigid Starlike Bipyramids of A.D.Alexandrov and S.M.Vladimirova. Siberian Adv. Math. 12(2), 56-72 (2002)
4. Milka, A.D.: Bendings of Surfaces, Bifurcation, Dynamical Systems and Stability of Shells. Abstr. Intern. Congr. of Math., Beijing, (2002)
5. Арнольд, В.И.: Теория катастроф. Наука, Москва, 128 с. (1990)
6. Погорелов, А.В.: Изгибы поверхностей и устойчивость оболочек. Наукова дума, Киев, 200 с. (1998)
7. Постон, Т., Стуарт И.: Теория катастроф и ее приложения. Мию, Москва, 607 с. (1980)
8. Григорюк, Э.И.: Кабанов, В.В.: Устойчивость оболочек. "Наука", Москва, 360 с. (1978)
9. Baracs, J., Crapo, H., Rosenberg, I., Whiteley, W.: Mathematiques et architecture. La topologie structurale, 41-42, pp. 44-59 (1978)
10. Современные пространственные конструкции (железобетон, металл, дерево, пластмассы): Справочник. Под ред. Ю.А.Дыховичного и Э.З.Жуковского. Высшая школа, Москва, 544 с. (1991)
11. Connelly, R.: An Attack on Rigidity. Preprint. Cornell Univ., (1974)
12. Gluck, H.: Almost all simply connected closed surfaces are rigid. Lectures notes in Mathematics, 438, pp. 225–240 (1975)
13. Гольденвейзер, А.Л.: Математическая жесткость поверхностей и физическая жесткость оболочек. Изв. АН СССР, МТТ. 6, 66–77 (1979)
14. Arnold, V.I.: From Hilbert’s Superposition Problem to Dynamical Systems. Filds Institute Communications, pp. 1-17
15. Новожилов, В.В.: Теория точных оболочек. Судпромиздат, Ленинград, 430 с. (1962)
16. Вольмир, А.С.: Устойчивость упругих систем. Физматгиз, Москва, 880 с. (1963)
17. Вольмир, А.С.: Гибкие пластинки и оболочки. Гостехиздат, Москва, 420 с.
18. Neishtadt, A.I.: On Calculation of Time of Stability Loss delay for Dynamical Bifurcations. XIth Intern. Congress of Math. Physics, Book of Abstracts, Paris, (1994)
19. Заславский, Г.М., Сагдеев, Р.З.: Введение в нелинейную физику: От маятника до турбулентности и хаоса. "Наука", Москва, 368 с. (1988)
20. Погорелов, А.В.: Внешняя геометрия выпукльых поверхностей. “Наука”, Москва, 760 с. (1969)
21. Гольденвейзер, А.Л.: Теория упругих тонких оболочек. Гостехиздат, Москва, 512 с. (1956)
22. Александров, А.Д.: Выпуклые многогранники. Гостехиздат, Москва-Ленинград, 428 с. (1950)
23. Милка, А.Д.: Кратчайшие линии на выпуклых поверхностях. Доклады АН СССР, 248(1) (1979)
24. Милка, А.Д.: Решение проблемы Бликера. Тез. 4-й междунар. конф. по геометрии и топологии. Черкассы, (2001)
25. Совенко, А.: Потерянная эпоха Ту-144. “Авиация и время”, 4 (2002) 4-23
26. Резанов, И.А.: Спорные аспекты тектоники плит и возможные альтернативы. Вестник РАН, 71(11),1031–1036 (2001)
27. Милка А.Д.: Линейные изгибания правильных выпуклых многогранников. Мат. физика, анализ, геометрия. 1(1), 116–130 (1994)
28. Буряко, Ю.Д., Залгаллер В.А.: Изометрические кусочно-линейные погружения двумерных многообразий с полиэдральной метрикой в R^3. Алгебра и анализ, 7(3), 76–95 (1995)
29. Bleecker, D.D.: Volume increasing isometric deformations of convex polyhedra. J.Diff. Geometry, 43, 505-526 (1996)
30. Milka, A.D.: Linear isometric deformations of polyhedra. Abstr. Intern. Congr. of Math., Berlin (1998)
31. Milka, A.D.: Linear bending of star-like pyramids. C.R.Mecanique, 331(12), 805–810 (2003)
32. Милка, А.Д.: Геометрия изгибаний звездчатых оболочек-бипирамид. Тез. междунар. конф. по геометрии и ее приложениям. Одесса, 2004

Anatomil D. Milka
GST Joint Stock Company, Харьков, Украина.
E-mail: milka@ilt.kharkov.ua

Anatoly D. Milka
Linear bendings of star-like bipyramids

Revised and extended version of the article [A. D. Milka, Linear bending of star-like pyramids, C. R. Mecanique, 331(12) (2003) 805–810]. A family of polyhedra possessing unusual deformation properties is found.

On one hand, models of these polyhedra admit free continuous large reversible bendings without visible distortions of the material. On the other hand, the polyhedra themselves are mathematically rigid and do not admit continuous bendings accordingly to O.Cauchy. The found polyhedra are called model flexors in order to distinguish them from theoretical flexors of R.Connelly.

Bendings of the models are asymptotically exactly approximated by linear bendings of polyhedra. They represent a nonrigid, soft or slow, loss of stability
that corresponds to the loss of stability in small accordingly to L.Euler. This new phenomenon in mechanics of deformable solid bodies may be considered as an original geometric machine of catastrophe which supplements known physical models of E.C. Ziman and T. Poston.
Неопознанная египетская геометрия

Анатолий Д. Милка

Аннотация Теоремы, что мы собираемся обсуждать, хорошо известны в математике. Они относятся к основаниям геометрии, к геометрии "в целом к истории геометрии. Речь идет о трех замечательных древних теоремах, авторами которых — так считают историки, точнее, так теперь придется считать — являются Архимед (теорема о месте падения камня), Евклид и египтянин-писец Ахмес (задачи из египетских папирусов). Парадокс, но представляя нами впервые теорема Евклида есть не замеченное учеными широкое обобщение фундаментальных теорем единственности для замкнутых выпуклых многогранников, принадлежащих О. Коши и Г. Минковскому. Сами три теоремы безупречны, однако существующая в литературе их интерпретация, теоретическая или историческая, оказывается неудовлетворительной. Наше новое мнение заключается в том, что эти теоремы пришли к грекам из далекой шумеро-вавилоно-египетской цивилизации. Из той далекой цивилизации, которая, как предполагается наукой египтологией, превосходила современную цивилизацию по многим параметрам. Обобщения, доказательства и буквальные реконструкции теорем, что будут предложены, убедительно подтверждают это мнение.

Ключевые слова Теорема Архимеда· Теоремы Евклида, О. Коши и Г. Минковского · Теорема Ахмеса

УДК 514

...геометрия была открыта в Египте...

Прокл
Формы пирамид свидетельствуют о знакомстве с определенными геометрическими фигурами... простыми геометрическими построениями... уже на первых ступенях развития народов.

Г.Г. Цейтен

Надо сказать, что в большей части исторических трудов этот вопрос или вовсе не рассматривается, или на него даются совершенно неудовлетворительные ответы.

Б.Л. Ван дер Варден

Памяти Вениамина Федоровича КАГАНА

Теоремы, что мы собираемся обсуждать, хорошо известны в математике. Они относятся к основаниям геометрии, к геометрии "в целом к истории геометрии. Речь идет о трех замечательных древних теоремах, авторами которых — так считают историки, точнее, так теперь придется считать — являются Архимед (теорема о месте падения камня), Евклид и египтянин-писец Ахмес (задачи из египетских папирусов). Парадокс, но представляющая нами впервые теорема Евклида есть не замеченные учеными широкое обобщение фундаментальных теорем единственности для замкнутых выпуклых многогранников, принадлежащих О. Коши и Г. Минковскому. Сами три теоремы безупречны, однако существующая в литературе их интерпретация, теоретическая или историческая, оказывается неудовлетворительной. Наши новое мнение заключается в том, что эти теоремы пришли к гре-кам из далекой шумеро-вавилонской цивилизации. Из той далекой цивилизации, которая, как предполагается научной египтологией, превосходила современную цивилизацию по многим параметрам. Обобщения, до-казательства и буквальные реконструкции теорем, что будут предложены, убедительно подтверждают это мнение.

1 Теорема Архимеда

Пусть ABC — угол, вписанный в дугу окружности ACD, и точка D — середина дуги, расположенная над большей сороной AB. Пусть E — основание перпендикуляра DE, опущенного на сторону AB из точки D. Тогда точка E делит ломанную ABC пополам.
Доказательство Отложим дугу AH, равную дуге BD. Дуги DH и CB, дополнительные в половинках AHD и CBD дуги ADC будут равные, что влечет равенства замыкающих хорд $AH = BD$ и $DH = CB$. Хорды AD и BH, замыкающие равные дуги AHD и BDH, тоже будут равные. Тогда равны треугольники HAB и DBA, по трем сторонам (Предложение 7 книги I "Начал" Евклида [1]). Значит, равны углы HAB и DBA.

Отложим на хорде AB отрезок AG, равный отрезку BE, и соединим точки G и H отрезком GH. Теперь, в свою очередь, будут равны треугольники HAG и DBE, по двум сторонам и углу между ними (Предложение 4 книги I "Начал"). Значит, $GH = ED$, каждый из углов AGH и BED прямой и стороны треугольников GH и ED параллельны (Предложение 27 книги I "Начал").

Пересечем параллельные прямые GH и ED прямой DG. Углы EDG и HGD будут равны как накрестлежащие (Предложение 29 книги I "Начал"). Значит, будут равны треугольники EDG и HGD, по двум сторонам и углу между ними (Предложение 4 книги I "Начал"), и будут равны соответствующие стороны DH и EG этих треугольников. В итоге имеем искомое равенство для величин отрезков: $AE = AG + GE = BE + DH = BE + CB$.

Подчеркнем те Предложения книги I "Начал на которые опирается наше, оптимальное, доказательство теоремы. Это - принадлежащие абсолютной геометрии Предложения 4, 7, 27 и Предложение 29, обратное к Предложению 27, в доказательстве которого Евклидом впервые применяется Пятый
постулат [1, Постулаты, стр. 15]. В новое время Пятый постулат квалифицируется как аксиома параллельных линий [1, Комментарии, стр. 242-244].

Само доказательство теоремы Архимеда по существу инициируется Определением 17 книги I "Начал". Это Определение, аксиоматически выражающее симметрию плоскости относительно прямой, представляет эту теорему как очевидную. Достаточно лишь выбрать на Рис. 1 в роли линии симметрии обозначенный пунктиром диаметр окружности, ортогональный хорде AB. И хотя доказательство теоремы, проведенное на базе симметрии, более громоздко, оно тоже не выходит за пределы Предложения 29. Отметим, что теорема Архимеда вместе с приведенным доказательством распространяется также на псевдоевклидовую плоскость.

Обсуждение. Согласно изложению И.Н. Веселовского [2], известно три архимедовы доказательства теоремы, дошедшие до нас в трактатах средневекового ученого ал-Бируни, и еще 38 других ее доказательств арабскими математиками того же периода. Современное доказательство см. в [3, задача 13.18]. Все эти доказательства - неоптимальные. Они существенно основываются на предположениях, вытекающих из Предложения 29 книги I "Начал" и включающих, в частности, слишком сложное Предложение 20 книги II о вписанном и центральном углах в окружности. Стоит отметить, что при строгом подходе к доказательству Предложения 20 необходимо рассматривать девять (а не классических три) случаев расположения вписанных углов. Это было обнаружено автором при экспертизе школьного учебника геометрии в процессе его подготовки А.В. Погореловым.

Сказанное позволяет сделать вывод, что приведенные ал-Бируни три доказательства не принадлежат Архимеду. Никак не мог Архимед с его гениальной интуицией не заметить оптимального доказательства. Сама теорема досталась грекам как готовый и наглядный важный результат предшествующих им геометров — шумеров, вавилонян, египтян.

Процитируем мы в подтверждение выдержку из легенды времени фараона Хеопса [4, стр. 120]: "Херихаб Джаджааманх, произнес магическое заклинание, положил одну половину озера на другую, чтобы достать подвеску, оброненную гребущей девушкой". Это — неожиданная и прекрасная интерпретация геометрического факта "диметр делит круг пополам" из Определения 17 книги I "Начал". Приведем также другой вариант легенды, из Энциклопедии [5, глава 11], в котором поэтизируется положение об условиях существования в плоскости параллельных прямых, Предложение 27 книги I "Начал": "Главный писец... произнес заклинание..., воды озера рас-
стулись, открыв полоску сухого dna,... он спустился вниз, нашел зеленый камень, который потеряла девушка, и вернул ей ей". Здесь термин "полоска" ориентирует и на другие геометрические положения, безусловно знакомые египтянину — на следствие или один из известных эквивалентов Пятого постулата: параллельные прямые равно отстоят друг от друга [1, Комментарии, стр. 242-244]. Эти примеры показывают, что египетские математики профессионально владели такими важными понятиями планиметрии как параллельность, ортогональность, симметрия.

Примечательно, что схемы доказательств, приведенных ал-Бируни, сами по себе небезинтересны. Они также могли исходить из догреческой математики; здесь классикой является то, что арабские ученые средневековья сохранили и приумножили достижения древних. Несколько видоизмененные, предназначенные для обратных теорем, эти схемы позволяют строить на окружности, определяемой тремя точками, новые системы точек в предписанном расположении. Видоизмененные схемы могли иметь применение в геодезическом планировании масштабных работ на местности, которые интенсивно велись в древнем Египте.

Дальнейший анализ рассматриваемых греческих и египетских текстов приводит к выводам, которые могут очень озадачить историков математики: Евклид не преподавал в Александрии, когда там находился Архимед. Геометрию в Александрии осваивали уже по "испорченному Евклиду"; это не противоречит правильно понимаемому свидетельству Прокла "Архимед был в Александрии среди учеников Евклида" — просто геометрию в Александрии все ученики осваивали по Евклиду. "Испорченность Евклида" связана с различными трактовками термина "равные и подобные фигуры встречающегося у Платона, у Евклида и у Архимеда в третьем из "его" доказательств обсуждаемой теоремы и в его работе по механике равновесия плоских тел. Эти вопросы рассматриваются в следующем разделе, посвященном теореме Евклида.

2 Теорема Евклида.

Заключные одинаково составленные выпуклые многоугольники равны, если у них соответствующие плоские углы равны и площади соответствующих граней равны.

За основу "Начал" Евклидом принимается аксиоматическое положение, что однородные геометрические объекты имеют определенную величину: линии — длину, плоские фигуры — площадь, тела - объем. Однородные
фигуры называются равными, если они имеют равные величины. Еще одно положение у Евклида, а также у Платона и у Архимеда, связано с термином "равны и подобны". Этот термин используется в двух вариантах, которые мы продемонстрируем на примере многоугольников.

Первый вариант употребляется Платоном в описании строения "пяти правильных космических тел": Четыре равносторонних треугольника соединяются так, что ... мы получаем первый объемный вид [правильный тетраэдр], имеющий свойство делить всю описанную вокруг него сферу на равные и подобные части.

Он также употребляется в третьем из доказательств теоремы Архимеда, приведенных ал-Бируни, и в работе Архимеда "О равновесии плоских фигур"[2]. Эту работу по образцу Евклида Архимед начинает с постулатов. Вот его постулат, который нас должен заинтересовать:

А4. При совмещении друг с другом равных и подобных плоских фигур совместятся друг с другом и их центры тяжести.

В цитируемых источниках "равными и подобными" фигурами называются многоугольники, у которых при обходе по контуру соответствующие стороны равны и соответствующие углы равны, то есть в современном понимании "равными и подобными" называются конгруентные многоугольники.

Второй вариант без каких либо пояснений употребляется Евклидом в Определениях 9 и 10 книги XI "Начал":

Е9. Подобными телесными фигурами будут заключенные между равными по количеству подобными плоскостями.

Е10. Равные же и подобные телесные фигуры будут заключенные между равными по количеству и по величине подобными плоскостями.

Отсутствие пояснений связано с тем, что в планиметрии — книги I-VI "Начал" — равными по величине называются фигуры равной площади, соответственно - равного объема. Подобными у Евклида в Определении 10 называются многоугольники, у которых при обходе по контуру соответствующие углы равны. По свидетельству Аристотеля, такое определение подобия применялось в школе Пифагора; Прокл также пишет, заимствуя данные из "Истории математики" Евдема, что Фалес по древнему обычаю называл равные углы не "равными а "подобными". Поэтому "равные и подобные" плоские многоугольники в Определении 10 суть подобные по Пифагору многоугольники равной площади. Явная неэквивалентность двух вариантов трактовки термина "равны и подобны" исключает возможность обучения Архимеда у Евклида в Александрии.
Приведенные евклидовские формулировки очень напоминают готовые математические утверждения. Хотя в тексте "Начал" они являются аксиомами, относящимися только к треугольным пирамидам и призмам и предназначенными для построения теории объемов. По-видимому, эти формулировки заимствованы греками, больше занимавшимися построениями строгой аксиоматики — особенно в школе Пифагора, у предшествующих геометров, скорее у египтян. Со временем истинное содержание формулировок Евклида было забыто. Традиционной стала первая трактовка термина "равны и подобны". И математики стальным образом два с половиной тысячелетия не замечали противоречия традиционной трактовки всему духу "Начал". Парадокс — эта трактовка применяется и в Определении 13 фигуры-призмы в книге XI "Начал". Здесь очевидна ошибочность "исправления Евклида", внесенного в давние времена терминами "равны" и "подобны" в оригинальный текст:

Е13. Призма есть телесная фигура, заключенная между плоскостями, из которых две противоположные равны, подобны и параллельны, остальные же параллелограммы.

Теорема, сформулированная в начале раздела, получена нами в 1984 г. и опубликована в работах [6, 7]. Целью работы [6] было установление связей между классическими теоремами единственности для выпуклых многогранников. Принадлежность Евклиду полученной теоремы была обнаружена нами позже. Эта новая теорема восстанавливает неаксиоматическое содержание Определения 10 книги XI "Начал потому теорема и названа нами теоремой Евклида. Без ссылок новая теорема обеспечивает исследования правильных тел в книгах XIII-XV "Начал". Из этой теоремы вытекают известные теоремы единственности О. Коши и Г. Минковского. Новая теорема имеет возможное обобщение, которое допускает распространение и на многомерные пространства:

Замкнутые одинаково составленные выпуклые многогранники равны, если их полные углы при соответствующих вершинах равны, средние кривизны при соответствующих ребрах равны, площади соответствующих граней равны.

Приведем вариант теоремы в пространствах постоянной кривизны [7]:

Замкнутые одинаково составленные выпуклые многогранники в сферическом или гиперболическом пространствах равны, если их соответствующие плоские углы равны.
Традиционно подобная теорема формулировалась для этих пространств, как и в случае евклидова пространства, с более жестким исходным условием конгруэнтности соответствующих граней [8].

Схема доказательства теоремы Евклида следует методам О. Коши и А.Д. Александрова [8, 6, 7]. Теми же методами, причем без применения аналога формулы Эйлера, повидимому — с применением аналога теоремы Жордана [8], пользовались и древние. На это указывает присутствие в книге I "Начал" Определения 9. Определение 9 служит важным вспомогательным утверждением, доказательство которого сейчас дополняется соответствующими леммами О. Коши и А.Д. Александрова о "четырех переменах знаков" при деформациях многоугольников. Известно, что теорему Евклида предложили О. Коши для доказательства А. Лежандр и Б. Малюс. О. Коши дал доказательство теоремы с первым вариантом трактовки термина "равны и подобны" - "конгруэнтны".

З Теорема Ахмеса

"Наиболее обширными дошедшими до нас текстами древнеегипетской математики являются два папируса"[9], лондонский и московский. Специалисты относят их к началу второго тысячелетия до новой эры. Автор лондонского папируса - писец Ахмес. Особенное внимание математиков привлекали в этих папирусах две задачи на вычисление площадей фигур. Эти задачи и будут предметом настоящего обсуждения.

В лондонском папирусе дается численное приближенное решение задачи о квадратуре круга. Как было получено приближение — этот интересный для геометров вопрос оставался открытым. Нами дается ответ на этот вопрос. Вторая задача, из московского папируса, тесно связана с первой, условимся ее называть задачей Ахмеса. Объединение обеих задач вместе с их решениями будем называть теоремой Ахмеса. Расшифровки текста задачи Ахмеса, которые предложили В.В. Струве (W.W. Struve, 1930), Т.Е. Пит (T.E. Peet, 1931) и О. Нейгебауэр (O. Neugebauer, 1934) [10], полагая, что речь идет о вычислении площади поверхности, проблематичны — они незавершенные и неоднозначные. Напротив, мы полагаем, что речь идет о приближенных квадратурах круга и полукружности. Наша трактовка задачи и объяснение ее решения оказываются адекватными и полными. Все изложение удобно и целесообразно начинать с доказательного этапа. Мы предваряем это изложение чисто теоретической теоремой, которая устанавливается в схеме доказательства Ахмеса.
Рассмотрим целое — величину, составленную из четырех равных частей, каждая из которых принята за единицу. Разобьем каждую единицу на 9 равных частей, назовем части средними величинами и отнимем от каждой единицы по одной средней величине. Разобьем каждую из оставшихся средних величин на 9 равных частей, назовем части малыми величинами и отнимем от каждой средней величины по одной малой величине. Остаток от каждой средней величины назовем малой средней величиной. Мы имеем 32 малые средние величины, каждая из которых равна 8/9 от 1/9 единицы. Тогда целое, составленное из всех малых средних величин будет равно

\[
(8/9) \cdot (1/9) \cdot 8 \cdot 4 = (8/9) \cdot (1/9) \cdot 32 = (8/9)^2 \cdot 4.
\]

Вычислим целое иначе. Остаток из восьми малых средних величин в каждой из четырех единиц будет равен 64/9 = 7 + 1/9 от 1/9 единицы. Тогда весь остаток в целом из четырех единиц будет равен \((8/9)^2 \cdot 4\).

Примем в качестве единицы на прямой линии отрезок единичной длины, а в качестве единицы в плоскости — квадрат со стороной единица. В теореме египтянина Ахмеса утверждается, что площадь круга радиуса единица и длина его полуокружности равны приблизительно \((8/9)^2 \cdot 4\) соответствующих единиц. По Рис. 2 (слева) на примере большого квадрата, разбитого на четыре "единичных" квадрата, можно проследить получение этого числа. Каждый единичный квадрат разбивается на девять "средних" квадратов, из которых один, центральный, удаляется. Каждый средний квадрат
разбивается на девять "малых" квадратов, из которых один, центральный, удаляется. Оставшаяся от большого квадрата площадь из "малых средних квадратов численно указанная в сформулированной теореме, представляет приближенную квадратуру круга, что подробнее мы поясним позже. Такая же процедура "разбиения-удаления" одновременно проводится с отрезком на прямой линии, составленным из четырех "единичных" отрезков. Оставшаяся длина есть длина отрезка, представляющего приближенную квадратуру полуокружности. Этот отрезок составляет из 32 равных отрезков длины \((8/9) \cdot (1/9)\) и строится с помощью циркуля и линейки - необходимый признак квадратуры. На Рис.2 (слева) в правом верхнем углу жирной линией обозначено половину периметра квадрата, осуществляющего приближенно квадратуру окружности. Жирными точками в левом нижнем углу указаны малые квадраты, которые удаляются из единичного квадрата.

Московский папирус. Приведенная теорема есть доказательная часть решения задачи египетским писцом Ахмесом, содержащегося в папирусе и изложенного в переводе А.Е. Раик и Б.А. Розенфельда в [9]. Эта часть нами отредактирована в соответствии с теорией величин из книг VII-IX "Начал" Евклида. Надо полагать, что текст в папирусе есть испорченный еще древними переписчиками вариант оригинального текста Ахмеса. Текст переписчиков логически неупорядочен. Видимо, в оригинальном тексте отсутствовало как само собой разумеющееся число \((8/9)^2 \cdot 4\). А это ведь есть конечный результат. Абсолютно не понимая решения Ахмеса, переписчики прияли за конечный результат число 32 из первого способа вычислений. От второго способа вычислений, видимо, у переписчиков осталось только число \(64/9 = 7 + 1/9\). И переписчики, смешивая оба способа вычислений и выбирая "с потолка" число 4.5, выполняют "во спасение" бессмысленную операцию

\[(64/9) \cdot (4.5) = 32.\]

Перечисленные искажения древними переписчиками оригинального текста привели к неверным расшифровкам современными математиками замечательной задачи Ахмеса [9]. Близко к правильному переводу подошла А.Е. Раик, признававшая, однако, достоверными расшифровки предшествующих математиков. Но А.Е. Раик не отражены ни динамика геометрического построения площади \((8/9)^2 \cdot 4\), ни связь такого построения с основной задачей - квадратурой полуокружности, присутствующие в решении Ахмеса [9]. Приведем постановочную часть задачи.
"Форма вычисления корзины, если тебе называют корзину с устьем. О дай мне знать ее поверхность. ...корзина есть половина яйца".

Сформулируем предлагаемую нами, логически допустимую интерпретацию задачи. "Яйцо" - это круг; "корзина" — это часть круга, сегмент, отсеченный хордой; "корзина с устьем" — это сегмент с максимальной хордой, диаметром. "Поверхность корзины" - это длина дуги окружности, принадлежащей "корзине".

Дело в том, что в египетских текстах термин "найти поверхность" означает или "найти длину граничной линии плоской фигуры или "найти площадь поверхности пространственной фигуры". Исследователи задачи Ахмеса приняли второе толкование. Мы принимаем первое толкование как более соответствующее папирусной структуре решения задачи Ахмеса - простейшей квадратуре полуокружности.

Лондонский папирус. В этом папирусе указывается приближающий квадрат, дающий решение задачи о квадратуре единичного круга. Стороной этого квадрата является диаметр круга, уменьшенный на 1/9 часть. Этот приближающий квадрат видно на Рис. 2 (слева). Он получается удалением из большого квадрата всех малых квадратов, примыкающих к его граничному контуру. Удаленные из единичного квадрата малые квадраты отмечены точками в нижнем левом углу большого квадрата. Их ровно столько, сколько было удаленных из единичного квадрата малых квадратов при получении малых средних квадратов.

Площадь приближающего квадрата равна \((8/9)^2\cdot 4\) единиц. Как Ахмес нашел такое приближение площади круга и почему оно является приближением, этот вопрос волнует математиков уже более ста лет [10, 11]. Видно, ученые ожидают, что здесь скрыт недоступный нам прием древней египетской математики. Вопрос же решается просто и экспериментально, с помощью технологии "натягивания веревок в которой, по свидетельству философа Демокрита, так преуспели египетские геометры.

Построим контрольный материальный круг с радиусом, например, 1 метр. Вычислим площади трех приближающих квадратов, стороны которых равны диаметру круга, уменьшенному на 1/10, 1/9, 1/8 соответственно. Примем удвоенные численные значения площадей за длины линий, возьмем три нити-веревки с этими длинами и уложим нити вдоль окружности круга. Третья нить не покроет всю окружность, первая нить покроет окружность с перекрытием. Отсюда следует, что длина второй линии, отвечающей числу 1/9, действительно является приближением длины окружности. Сравнение
недокрытый-перекрытий практически покажет, с оценкой отклонения, что приближение второй линией является наилучшим. Конечно, можно строить приближения не только приближающими квадратами, а и урезанием углов квадрата, описанного вокруг окружности, как это изображено на рисунке, приведенном в лондонском папирусе [9, 10]. Но этот способ приближения, что, видимо, проверили египтяне, оказывается неудовлетворительным.

Заключение. Историки давно обсуждают вопрос, была ли в древнем Египте наука геометрия. Некоторые ученые отвечают отрицательно, даже характеризуют египетскую геометрию как "прикладную арифметику" [11]. Как показывают наши обсуждения, в этом и предыдущих пунктах, в древнем Египте была весьма содержательная наука геометрия, хотя, быть может, и без разработанных последовательно аксиоматических оснований. Мы воочию убедились, как мастерски владеет египтянин знакомой всем нам планиметрией. Владение стереометрией на таком совершенном материале является для математика лишь делом техники; вряд ли египтяне, строя свои великие пирамиды, не знали теоремы о трех перпендикулярах.

По-видимому, схема Ахмеса разбиения единицы, имела в древности религиозное значение. Она также могла служить одним из стандартов в инженерном проектировании элементов дворцов и храмовых комплексов. На это ориентирует египетская легенда о волшебнике Деди с его магическими книгами, представленном фараону Хеопсу [5, глава 11]: "Он может заставить льва следовать за собой, и ему известны тайны мест обитания бога Тота, которые Вашему Величеству будет интересно узнать, чтобы наилучшим образом расположить камеры Вашей пирамиды".

Схема Ахмеса разбиения единицы оптимальна. Применение этой схемы делает очевидным нормированный переход от единиц площади круга к единицам длины окружности. У Евклида подобный переход обосновывается Предложением 1 Книги VI "Начал".

Безусловно, задача приближенной квадратуры круга преобразованием квадрата, описанного вокруг круга, имеет неограниченное число решений с результатом \((8/9)^2 \cdot 4\). Для этого случая — только в задаче о квадратуре круга — египтяне, конечно, знали решение, наиболее выразительное геометрически и простое в построении. Таким оптимальным решением является преобразование большого квадрата по схеме, примененной к единичному квадрату. Именно это красивое приближенное решение использовал греческий поэт Аристофан в поучительной комедии "Птицы".
Комментарий. Этот результат был хорошо освоен древними греками. В Золотой Век в Элладе буквально воспевалась египетская квадратура круга. Свидетельства этому мы находим у Б.Л. ван дер Вардена [11]:

"КВАДРАТУРА КРУГА"

...Вообще эта задача к концу 5-го века стала очень популярной. Автор комедий Аристофан даже шутил на эту тему. В своей комедии "Птицы" он выводит астронома Метона, который держит такую речь:

Возьму линейку, проведу прямую,
И мигом круг квадратом обернется!
Посередине рынок мы устроим,
А от него уж улицы пойдут -
Ну, как на Солнце! Хоть оно само
И круглое, а ведь лучи прямые!

"Поистине это сам Фалес премудрый!/емdash.cyr восклицает на это предводитель птиц Пейфетер и гонит Метона прочь, осыпая его тумаками. Я думаю, ясно, каким образом здесь был "начерчен квадратный круг" при помощи двух взаимно перпендикулярных улиц, встречающихся в его центре. Но разве не удивительно, что ученая проблема была настолько общеизвестна в Афинах того времени, что из нее можно было сделать забаву для театральных зрителей. Метонова квадратура была только шуткой."

Текст Аристофана — действительно шуточный. Однако, глубинное содержание этого текста оказывается вполне математическим, серьезным и последовательным. Известно, что греческие интеллектуалы любили излагать тот или иной значимый факт, то или иное значимое событие в стихотворной форме. Такую удивительную традицию древние эллины, видимо, заимствовали у своих древних предшественников. Приведем наше толкование текста Аристофана. Здесь мы имеем, в понимании греков, другое решение проблемы квадратуры круга, полностью совпадающее в методике исполнения с уже изложенным египетским решением.

Обратимся к квадрату, изображенному на Рис.2 справа. Для начала пример, что он представляет собой большой квадрат из Рис.2, в котором внутри сохраняется только решетка "малых" квадратов. Оперируя группами "малых" квадратов, Метон занимается "геометрическим градостроительством устраивая "рынок устраивая "улицы". Отметим, что термин "улица" логически эквивалентен термину "квартал" так как без кварталов нет улиц
и наоборот. По умолчанию, "архитектор" Метон одновременно устраивает в его "городе" и "улицы и "городские кварталы".

Будем комбинаторно преобразовывать большой квадрат, изображенный на Рис.2 справа, как это выполнялось для единичного квадрата слева.

Разобьем большой квадрат на 9 "средних равных между собой квадратов. В центральном "среднем" квадрате - посередине, как говорит Метон — устроим "рынок". "Рынок" обозначим квадратом, в котором точками помечены составляющие его "малые" квадраты. Это есть исходный устроительный шаг Метона, далее им выполняется второй устроительный, без сомнения - итерационный, шаг. Разобьем каждый из 8 оставшихся квадратов на 9 "промежуточных" равных между собой квадратов. Из центральных "промежуточных" квадратов устроим "кварталы" пометив точками составляющие их "малые" квадраты. Все "кварталы" обозначены квадратами. При этом устроенными оказываются и "улицы". "Улицы" выделены на рисунке дополнительными линиями, расходящимися по Метону от "рынка" и "улиц" как прямые лучи от Солнца".

Пометим на Рис.3 мелкими точками "малые" квадраты, примыкающие к границе большого квадрата. Обозначим также на этом рисунке второй большой квадрат, отделяющий изнутри граничные "малые" квадраты. Теперь, "мигом" вторя градостроителю Метону, мы можем сказать: проблема квадратуры круга решена. Площадь большого квадрата без учета площадей "рынка" и "кварталов" равна площади второго большого квадрата; площадь второго большого квадрата равна площади круга, вписанного в исходный большой квадрат; здесь не требуется пояснять подробнее, иначе придется дословно повторить уже изложенное египетское решение. Добавим только следующее.

Как в большинстве древних текстов, в тексте Аристофана нет лишних слов, каждое слово — значимое. Необязательным может показаться употребление слова "линейка". Но это слово - технический термин, им утверждается, что данное решение осуществляется построением одной линейкой с масштабной меткой. Ведь речь идет о круге вполне определенного, единичного радиуса.

Напомним, что обсуждаемое решение проблемы квадратуры круга — приближенное. И Аристофан в своей комедии под занавес ее действа образно и художественно подчеркивает этот неординарный факт. Исполненный возмущением математик Пейфетер, обладатель неувалимых, как птицы, строгих теорем, награждает астронома-прикладника Метона, новоиспеченно-
го Фалеса, за его градостроительные амбиции "гумаками". А "забаву для театральных зрителей" скорее представляло обыгрывание Аристофаном известной неприязни греческих ученых к приближенным решениям математических задач. Здесь стоит подчеркнуть факт, что Метон у Аристофана есть комедийный образ реального Метона, современника философа Сократа и афинских стратегов-соперников Алкивиада и Никия. Астролога, прорицателя, толкователя явлений природы, морочившего "головы всех, кто по своему невежеству или суеверию привык с трепетом взирать на подобные явления" (Плутарх. Избранные жизнеописания: т. 1, Алкивиад и Гай Марций Кориолан; т. 2, Никий и Красс. Москва, "Правда" 1987). Похоже, что уже в те времена образованные люди одинаково отрицали и неуместные математические приближения, и сомнительные гадания о будущем.

Геометрическое и идейное сходство рисунков 2 и 3 подтверждает изложенную трактовку теоремы Ахмеса. В то же время это сходство указывает на египетские истоки "общеизвестного проекта архитектора Метона который запечатлел грек Аристофан. Указывает и подтверждает высочайший уровень утерянной, но не безнадежно, древней математики.

Ф. Кэджори в его энциклопедической книге "История элементарной математики" ("Матезис. Одесса, 1917) сообщает, что "египетская геометрия процветала уже в очень ранние времена что "их открытия в математике, равно как и в медицине, заносились в ранние времена в их священные книги" и что "в последующие века считалось ересью изменять или увеличивать заключающиеся в них знания". "Ранние времена" принадлежат периоду около 2000 г. до н.э., тогда также процветали искусство, инженерия, строительство. Однако, замечено, что в египетских папирусах, датируемых около 1000 г. до н.э., ис кажается оригинальный текст и употребляются неверные математические формулы. Примером служит задача писца Ахмеса из московского папираса, подобный факт подчеркивает и Ф. Кэджори. Это прямо свидетельствует о глубоком упадке в позднем Египте и общего, и специального образования.

Истоки процветания и причины его упадка представляются в литературе загадочными, не объяснимыми, даже мифологическими. Некоторые историки полагают, что "древние египтяне унаследовали свою мудрость от более древней культуры [прародительских Богов], которая сумела передать им факел знаний, прежде чем исчезнуть с лица земли" (Э. Коллинз. "Боги Эдема. Секреты древних технологий." Стр. 23. Москва, "Эксмо" -2005). А "секре-
ты древних технологий" имели свои истоки в цивилизации Шумер, Боги не оставляли Землю.

Возможной главной причиной упадка древней культуры был уход из Египта в середине второго тысячелетия до н.э. народа израильтян. Израильтяне не выдержали непомерного рабского гнета, постоянных унизительных религиозных гонений и открытой политики государства на их уничтожение. Лидирующий народ, один из коренных народов древнейшего Египта покинул свою Родину и ушел на север. Вот как излагает Священное писание ("Intermedia Servis LTD London, England; Исход. Глава 14) Начало исторического события — переход моря народом израильтян под водительством великого пророка Моисея:

И простер Моисей руку свою на море, и гнал Господь море сильным восточным ветром всю ночь, и сделал море сушою; и расступились воды.

А сыны Израилевы пошли по суше среди моря: воды были им стеною по правую и по левую сторону.

Свои святые события каждый народ отмечает в истории своими святыми символами. И в Библии, согласно с Ф. Кэджори, прототипом построения пророком Моисеем "суши и водных стен по правую и по левую сторону" от израильтян является понятие параллельных линий из священной книги геометрии, связанное с Предложениями 27 и 29 книги I "Начал" о существовании параллельных линий. Из той же египетской священной книги черпал вдохновение и главный писец в легенде, который ради любимой девушки магически раздвинул воды озера.

В Библии пророк Моисей одновременно решает также задачу о защите уходящих израильтян от преследования. Божественным благословением он поворачивает водные стены до их пересечения непосредственно перед войском египетского Фараона. Прототипом этого действия является построение треугольника с боковыми сторонами - основаниями повернутых водных стен.

Святыми символами этого прототипа являются взаимно обратные положения о сумме углов треугольника: Предложение 17 книги I "Начал" (Во всяком треугольнике два угла, взятые вместе при всяком их выборе, меньше
двух прямых) и аксиома параллельных — Пятый постулат (И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы меньше двух прямых).

Такая формулировка аксиомы параллельных во всех отношениях — логически естественная и оптимальная. Она представляет собой величайшее достижение древних математиков в построении Начал и научной, и особенно педагогической геометрии.

Пятый постулат, после доказательства Предложения 17, понятен любому школьнику, так как он выражает актуальное явление — существование пересечения двух прямых. Этот эффект психологически усиливается формулами аксиом промежуточных Предложений 27 и 28 из Книги I "Начал" о существовании параллельных прямых. В них рассматриваются случаи, когда соответствующие углы в сумме равны двум прямым. Наиболее употребительные эквиваленты Пятого постулаты (например: через точку проходит только одна прямая, не пересекающая данную) не подсказываются интуицией и являются результатами чисто научного творчества; они описывают потенциальные, непроверяемые явления. Здесь уместно отметить еще следующее.

Древним, по-видимому, была известна и аксиоматическая псевдоевклидова геометрия, в которой имеет место тот же Пятый постулат, но с заменой в его формулировке, для углов между временными и пространственно-подобными линиями, условия "меньше двух прямых" на условие "большие двух прямых".

На это ориентирует содержательная Аксиома 8 из Книги I "Начал": "И целое больше части". Ее отрицание ведет к неевклидовой "неархимедовой" геометрии; В.Ф. Каган [12; Аксиоматика прямой, Постулат Архимеда]. Эта аксиома, как квадратура круга, была на слуху у греков, о чем повествует впечатляющая побасенка, пересказанная Диогеном Лаэртским.

Мэр одного полиса при уходе на пенсию получил в подарок от благодарных ему горожан обширный земельный участок; половину земли он тут же передал Храму, при сем очень убежденно произнес: "И часть больше целого".

Сравнение легендарных и исторических свидетельств показывает и процветание геометрии в ранние египетские времена, и ее истинных творцов. Главная роль в ее построении принадлежит израильтянам. И неизбежен был
упадок культуры Египта, трагически лишенного массы грамотных людей в жизненных областях.

За тысячелетие все забылось. Греческим математикам пришлось и восстанавливать, и аксиоматически развивать элементарную геометрию, посещая жрецов Вавилона и Египта.

Благодарности Работа выполнена частично благодаря поддержке "Благотворительного фонда АВЕК" (г.Харьков)

Список литературы

1. Мордухай-Болтовской, Д.Д.: Начала Евклида. "Гостехиздат" Москва – Ленинград, 448 с. (1948)
2. [2] Веселовский, И.Н.: Архимед, сочинения. "Физматгиз Москва, 640 с. (1962)
3. Прасолов, В.В.: Задачи по планиметрии. "Наука Москва, 288 с. (1986)
4. Симонов, П.В., Ершов, П.М., Вяземский, Ю.П.: Происхождение духовности. "Наука Москва, 351 с. (1989)
5. Египетская мифология: Энциклопедия, "Эксмо Москва, 592 с. (2005)
6. Милка, А.Д.: Что такое геометрия "в целом". "Знание Москва, 31 с. (1986)
7. Milka, A.D.: Space-like Convex Surfaces in Pseudo-Euclidean Spaces. Amer. Math. Soc. Transl., Ser. 2, 176, pp. 97 – 150 (1996)
8. Александров, А.Д.: Выпуклые многогранники. "Гостехиздат Москва - Ленинград, 428 с. (1950)
9. Ранк, А.Е.: Очерки по истории математики в древности. "Мордовское книжное издательство Саранск, 350 с. (1967)
10. Нейгебауер, О.: Лекции по истории античных математических наук, т. 1, догреческая математика. "Главная редакция общетехнической и техно-теоретической литературы Москва-Ленинград, 243 с. (1937)
11. Ван дер Варден, Б.Л.: Пробуждающаяся наука. "Гостехиздат Москва, 460 с. (1959)
12. Каган, В.Ф.: Основания геометрии, т. 2. Учение об основании геометрии. "Гостехиздат Москва, 344 с. (1956)

Анатолий Д. Милка

GST Joint Stock Company, Харьков, Украина.
E-mail: milka@ilt.kharkov.ua

Anatoly D. Milka

Unidentified Egyptian Geometry

Theorems that we will discuss are well-known in mathematics. They are related to the foundations of geometry, to the geometry "in large" and to the history of
geometry. Namely, we are dealing with three beautiful ancient theorems whose authors are Archimedes (theorem on the drop of a stone), Euclid and an Egyptian writer Ahmes (problems from Egyptian papyruses).

It seems to be a paradox that the mentioned theorem by Euclid went unnoticed as a generalization of the fundamental uniqueness theorems by Cauchy and Minkowski about convex closed polyhedra.

Three discussed theorems are absolutely flawless, but their theoretical and historical interpretations are still rather inadequate.

In our opinion, these theorems belong to the ancient civilizations of Babylon, Egypt and Sumer, which were superior to our modern civilization by numerous aspects. This opinion will be confirmed by generalizations, proofs and a precise reconstruction of ancient theorems.
Geometrical properties of the special types of vector fields on compact manifolds

Josef Mikeš Marie Chodorová

Abstract Certain properties of torse-forming, K-torse-forming, concircular and convergent vector fields on manifolds with affine connection are studied. Connections of manifolds in which such vector fields exist are found. Moreover, examples of mentioned manifolds in case if they are compact and metrizable are presented.

Keywords Concircular vector field · Convergent vector field · Torse-forming vector field · K-torse-forming vector field · Manifold with affine connection · Compact · Metrizable

Mathematics Subject Classification (2000) 53B05, 53B30, 53B3, 53C05

1 Introduction

This paper is devoted to the study of geometrical properties of special torse-forming vector fields. Torse-forming vector fields were introduced by K. Yano [16] in 1944 and their properties in Riemannian manifolds have been studied by various mathematicians.

The special types of these vector fields (covariantly constant, recurrent, convergent, concircular) have been studied more earlier. The Riemannian manifolds, in which these fields exist, have a specific form of a metric, i.e. warped product manifolds, see [8,9,8,13,13,15].

The vector fields have been studied mostly in Riemannian manifolds. Their definitions, as it is shown, depend first of all on an affine connection and basically not on a metric, see [13].
In this paper we introduced local and global conditions of an existence of studied vector fields in manifolds A_n with an affine connections and the conditions of setting the metric in A_n.

2 Torse-forming, convergent and concircular vector fields

First we note the definitions and some properties of torse-forming vector fields, via them define recurrent, convergent and concircular vector fields.

Definition 1 A vector field ξ in a manifold A_n with an affine connection ∇ is called *torse-forming*, if the condition

$$\nabla X \xi = \rho \cdot X + a(X) \cdot \xi,$$

holds for any vector field X from TA_n, ρ is a function on A_n, a is a linear form on A_n.

Every vector field, which is collinear with a torse-forming vector field, is torse-forming too.

Definition 2 A torse-forming vector field ξ, which is defined by the form (1), is called:

1. *recurrent*, if $\rho \equiv 0$,
2. *concircular*, if the form a is gradient (or locally gradient), i.e. there exists (locally) a function $\varphi(x)$ such that $a = d\varphi(x) = \partial_i \varphi(x) \, dx^i$,
3. *convergent*, if ξ is concircular and $\rho(x) = \text{const} \cdot e^{\varphi(x)}$.

So the recurrent vector field ξ is characterized by the equation $\nabla X \xi = a(X) \xi$, $\forall X \in TV_n$. The basic equation of a concircular vector field ξ is possible after its normalization to write in a more known form:

$$\nabla X \xi = \rho \cdot X, \quad \forall X \in TV_n.$$ \hspace{1cm} (2)

If $\rho \equiv \text{const}$ then the concircular vector field is convergent.

We mention that any concircular vector field in a Kählerian manifold K_n is convergent. The metrics of all Kählerian manifolds, in which non isotropic convergent vector fields exist, you can see [8].

Torse-forming, concircular and convergent vector fields were studied mostly in Riemannian manifolds. As it is shown in equations (1) and (2), which define these vector fields, there does not figure the metric tensor. These fields are defined
by us more generally in manifolds A_n with the affine connection, see Definition
2.1 and 2.2.

The fundamental question is existence of manifolds A_n, in which mentioned
vector fields exist; for example, such global vector fields live on compact mani-
folds.

The finding of all manifolds A_n with affine connection ∇, in which these
fields are defined, is easy from a locally aspect. It is known, that a chart (x,U)
in manifolds exists for non vanishing vector field ξ and it holds:

$$\xi^h(x) = \delta_1^h, \ \forall x \in U.$$ \hfill (3)

We note $\xi^h = \partial_i \xi^h + \xi^\alpha \Gamma_i^h\alpha$, where ξ^h and $\Gamma_i^h\alpha$ are components of a vector field ξ
and of an affine connection ∇ of manifolds A_n. We substitute (3) in the locally
expression (1) and (2) obtain step-by-step the expression of components $\Gamma_i^h\alpha$ of
A_n in which torse-forming and concircular vector fields are defined respectively:

$$\Gamma_i^h(x) = \rho(x)\delta_i^h + a_i(x)\delta_1^h,$$ \hfill (4)

$$\Gamma_i^h(x) = \rho(x)\delta_i^h,$$ \hfill (5)

where $\rho(x), a_i(x)$, are some functions defined on U, the others components $\Gamma_i^h\alpha$ are arbitrary functions defined on U.

An analysis of these formula it follows that a set of manifolds A_n with men-
tioned vector fields is very broad. It is possible to verify that the majority of
manifolds A_n are not metrizable, i.e. there does not exist a metric g, for which
a connection of A_n is not a Levi-Civita connection of g.

The components (4) and (5) in general case can define connection ∇ with
torsion. If $\Gamma_i^h\alpha = \Gamma_i^h\beta$ then these connections ∇ are without torsion.

3 K-torse-forming vector fields

Let A_n be an n-dimensional manifold with affine connection ∇ (shortly – $space$
with affine connection ∇), on which an affinor structure F is defined (i.e. F is a
tensor field of type (1^1) on A_n), we can define more generalized vector fields.

Definition 1 A vector field ξ is called K-torse-forming if

$$\nabla_X \xi = \rho \cdot X + \sigma \cdot FX + a(X) \cdot \xi + b(X) \cdot F\xi, \ \forall X \in TV_n,$$ \hfill (1)

where ρ, σ are some function, and a, b are linear forms on A_n.
In local coordinates x it is

$$\xi^h_{,i} = \rho \delta^h_i + \sigma F^h_i + a_i \xi^h + b_i F^h_{\alpha} \xi^\alpha,$$

where ξ^h, F^h_i, a_i, b_i are components of ξ, F, a, b, and "", denote the covariant derivative.

These vector fields are studied on Kählerian, eventually on Hermitian, spaces from many others aspects, see for example S. Yamaguchi [3, 14], K.R. Esenov [2], J. Mikeš, G.A. Starko [10], see [9].

It is easy to prove an integral curve $\ell: x = x(t)$ of a K-torse-forming vector field ξ is F-planar, because its tangent vector $dx/dt = \xi$ satisfies a following condition ([4, 9, 12])

$$\nabla \xi \xi = \varrho_1(t) \xi + \varrho_2(t) F \xi,$$

where ϱ_1, ϱ_2 are functions of a parameter t.

An existence of K-torse-forming vector fields on spaces with affine connection has two aspects — local and global. These aspects were studied for torse-forming and concircular vector fields in [11].

The fundamental question is an existence of spaces A_n, on which mentioned vector fields exist; for example, such global vector fields live on compact spaces.

4 Concircular and convergent vector fields on compact n-dimensional manifolds

An example of a manifold with a flat connection (hence locally metrizable and not globally metrizable) can be constructed on the n-dimensional torus.

Let $A^n = S^1 \times S^1 \times \cdots \times S^1$, and x^1, x^2, \ldots, x^n be the corresponding angles on the circles. We have global vector fields $X_1 = \partial_1, X_2 = \partial_2, \ldots, X_n = \partial_n$. We define the connection ∇ through its action on these vector fields, as follow:

$$\nabla_{X_i} X_1 = \rho X_i, \quad \nabla_{X_1} X_i = \rho X_i,$$

and for the others: $\nabla_{X_i} X_j = \sum_{k=1}^n \omega^k_{ij} X_k$, ρ and $\omega^k_{ij} (= \omega^k_{ji})$ are functions on A_n.

It holds:

- This A_n is a compact manifold with affine connection ∇ without torsion.
- The vector $\xi \equiv X_1$ is concircular, which $\nabla_X \xi = \rho X$.
- In case $\rho = \text{const}$, this vector field ξ is convergent.

Lemma 1 There exist compact manifolds A_n with affine connection without torsion and with global defined concircular, resp. convergent, vector field.
It is possible to show if ρ is a constant and above mentioned coefficients $\omega^h_{ij} = 0$, then the Riemannian tensor on A_n is vanishing. In this case, A_n is locally euclidean. A vector field ξ is convergent, then according to [2] a manifold A_n is not globally metrizable. Then it holds

Lemma 2 There exist compact locally euclidean manifolds A_n with a global defined convergent vector field, which are not globally metrizable.

It is elementary to show the existence of compact locally non-euclidean manifolds A_n, which are not locally metrizable and have convergent vector fields.

5 Local and global existence K-torse-forming vector fields on compact n-dimensional manifolds

At first we construct all affine connections on spaces A_n (locally) on which K-torse-forming vector fields exist.

The finding of all spaces A_n with affine connection ∇, on which these fields are defined, is easy from a locally aspect. It is known, that a chart (x, U) exists on manifolds for non vanishing vector field ξ and it holds:

$$\xi^h(x) = \delta^h_i, \quad \forall x \in U.$$

We note $\xi^h_i \equiv \partial_i \xi^h + \xi^a \Gamma^h_{ai}$, where ξ^h and Γ^h_{ij} are components of a vector field ξ and of an affine connection ∇ on spaces A_n. We get the following expression Γ^h_{ij} of affine connection ∇ on spaces A_n on which K-torse-forming vector spaces are defined if we substitute this to the equations (1):

$$\Gamma^h_{ij}(x) = \rho(x) \delta^h_i + \sigma(x) F^h_i(x) + a_i(x) \delta^h_i + b_i(x) F^h_1(x),$$

where $\rho(x), \sigma(x), a_i(x), b_i(x)$ are some functions defined on U, $F^h_i(x)$ are components of a structure F on U; the other components $\Gamma^h_{ij}(x)$ are arbitrary functions defined on U.

In general case the components (2) can define a connection ∇ with torsion. If $\Gamma^h_{ij} = \Gamma^h_{ji}$ then this connection ∇ is torsion-free.

An analysis of these formulas it follows that a set of manifolds A_n on which mentioned vector fields live is very broad. It is possible to verify that the majority of manifolds A_n are not metrizable, i.e. there does not exist a metric g, for which a connection on A_n is not a Levi-Civita connection of g.

The affinor structure F is arbitrary. Evidently, in the event, if F is complex or almost complex structure, in general case space A_n is not Kählerian or Hermitian space.
It is well-known [9] a Kählerian space is a Riemannian space on which there are defined metric \(g\) and complex structure \(F\) satisfying
\[
F^2 = -\text{Id}, \quad g(X, FY) + g(FX, Y) = 0, \quad \nabla F = 0,
\]
for all tangent vectors \(X, Y\).

In paper by J. Mikeš and G.A. Starko [10] there was introduced a metric of a Kählerian space and in this space there exists a \(K\)-torse-forming (or \(K\)-concircular) vector field. In the canonical coordinate system \(x\) this metric has a following expression:
\[
g_{ab} = g_{a+mb+m} = \partial_{ab}G + \partial_{a+mb+m}G, \quad g_{ab+m} = g_{a+mb} = \partial_{ab+m}G - \partial_{a+mb}G,
\]
where \(G = G(x^1 + s(x^2, x^3, \ldots, x^{m+2}, x^{m+3}, \ldots, x^{m+m})),\) \(G', G'' \neq 0,\) \(G, s \in C^3,\) are functions of mentioned arguments, \(a, b = 1, \ldots, m,\) \(m = n/2,\) the structure \(F\) is canonical, i.e. \(F^a_{b+m} = -F^a_{b+m} = \delta^a_b,\) \(F^a_a = F^a_{a+m} = 0,\) and \(\partial_i = \partial/\partial x^i.\) In this coordinate system a \(K\)-torse-forming vector field is expressed:
\[
\xi = \partial_1.
\]

We introduce an example of a space with affine connection which is made on \(n\)-dimensional torus.

Let \(A^n = S^1 \times S^1 \times \cdots \times S^1,\) and \(x^1, x^2, \ldots, x^n,\) be the corresponding angles on the circles. We have global vector fields \(X_1 = \partial_1, X_2 = \partial_2, \ldots, X_n = \partial_n.\)

We define the affine connection \(\nabla\) through its actions on these vector fields, as follow:
\[
\nabla_{X_i}X_1 = \rho(x)X_i + \sigma(x)FX_i + a(X_i)X_1 + b(X)FX_1,
\]
and for the others
\[
\nabla_{X_i}X_j = \sum_{k=1}^n \omega_{ij}^k(x)X_k, \quad j \neq 1,
\]
where \(\rho, \sigma, \omega_{ij}^k\) are functions and \(a, b\) are linear forms on \(A_n,\) and \(F\) is an affinor structure on \(A_n.\)

Evidently, the space \(A_n\) is compact, and \(\xi \equiv X_1\) is a \(K\)-torse-forming vector field.

The structure \(F\) on even-dimensional \(A_n,\) for which the following conditions hold
\[
FX_a = X_{a+m}, \quad FX_{a+m} = -X_a, \quad \forall a = 1, \ldots, m, \quad 2m = n,
\]
is a globally complex structure. It is known, the following expression \(F^2 = -\text{Id}\) holds for this structure.
We introduce an example of a compact space with torsion-free affine connection and covariantly constant complex structure which is made on \(n \)-dimensional torus.

Let \(A^n = S^1 \times S^1 \times \cdots \times S^1 \), and \(x^1, x^2, \ldots, x^n \), \(n = 2m \), be corresponding angles in circles. Global vector fields are defined: \(X_1 = \partial_1, X_2 = \partial_2, \ldots, X_n = \partial_n \).

We define complex structure \(F \) and affine connection \(\nabla \), by actions of these vector fields:

\[
FX_a = X_{a+m}, \quad FX_{a+m} = -X_a, \quad \forall a = 1, \ldots, m, \quad (3)
\]

\[
\nabla X_i X_j = \sum_{k=1}^{n} \omega_{ij}^k(x) X_k, \quad (4)
\]

where \(\omega_{ij}^k (= \omega_{ji}^k) \) are functions on \(A_n \).

It has been assumed that the functions \(\omega_{ij}^k \) satisfies

\[
\omega_{ab}^c = \omega_{a b+m}^{c+m} = -\omega_{a+m b+m}^c = \omega_{a+b+m}^{c} = -\omega_{b a}^{c+m}, \quad a, b, c = 1, 2, \ldots, m.
\]

Then we prove that the structure \(F \) is covariantly constant, i.e. \(\nabla F = 0 \), see [5].

Moreover, if

\[
\omega_{a1}^c = \omega_{a 1+m}^{c+m} = \omega_{a+m 1+m}^c = -\omega_{a+m1+m}^c = \psi_a \delta_1^c + \psi_1 \delta_a^c,
\]

\[
\omega_{a+m 1+m}^c = \omega_{a 1+m}^c = -\omega_{a 1}^{c+m} = \psi_a \delta_1^c - \psi_1 \delta_a^c,
\]

where \(\psi_i \) are functions on \(A_n \), then the vector field \(\xi = X_1 \) is \(K \)-torse-forming.

Lemma 1 There exists a compact manifold \(A_n \) with torsion-free affine connection and globally defined covariantly constant complex structure and \(K \)-torse-forming vector field.

Furthermore we suppose that

\[
\omega_{11}^1 = \omega_{1 1+m}^{1+m} = \omega_{1+m 1+m}^1 = -\omega_{1+m1+m}^1 = 1,
\]

and the other components of \(\omega \) are zero. The formulas (4) and (3) define a torsion-free affine connection \(\nabla \) and a covariantly constant affine structure \(F \) on \(A_n \), respective. A vector field \(\xi = X_1 \) is \(K \)-torse-forming.

Locally this connection \(\nabla \) is calculated in terms of a metric \(g = \text{diag}(g_{11}, g_{22}, \ldots, g_{nn}) \), where

\[
g_{11} = g_{1+m 1+m} = \exp(2x^1), \quad g_{aa} = g_{a+m a+m} = 1, \quad a = 2, \ldots, m, \quad 2m = n.
\]

Evidently, this metric locally generates a Kählerian space with the structure \(F \).

In other hand, the constructed space \(A_n \) is not globally metrizable.
From this follows that $\nabla_{\xi} \xi = \xi$, and for the length $|\xi| = \sqrt{g(\xi, \xi)}$, we have $\nabla_{\xi} |\xi| = |\xi|$. Because, A_n is compact, this case does not exist. **Acknowledgments** This work has been partially supported by the Council of Czech Government MSM 6198959214.

References

1. Cocos, M.: A note on symmetric connections. J. of Geometry and Physics 56, 337-343 (2006)
2. Esenov, K.R.: On properties of generalized equidistant Kählerian spaces, which admit special almost geodesic mappings of second type. (Russian) Collect. Sci. Works, Frunze (Kyrgyzstan), 81–84 (1988)
3. Fueki, S., Yamaguchi S.: Kählerian torse-forming vector fields and Kählerian submersions. SUT J. Math. 33(2), 257–275 (1997)
4. Hinterleitner, I.: Conformally-projective harmonic diffeomorphisms of equidistant manifolds. Publ. de la RSME 11, 296–301 (2007)
5. Mikeš, J.: On Sasaki spaces and equidistant Kaehler spaces. Sov. Math., Dokl. 34, 428–431 (1987) Transl. of Dokl. Akad. Nauk SSSR 291, 33–36 (1986)
6. Mikeš, J.: Geodesic mappings of an affine-connected and Riemannian spaces. J. Math. Sci., New York, 78(3), 311–333 (1996)
7. Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York, 89(3), 1334–1353 (1998)
8. Mikeš, J., Rachunek, L.: On tensor fields semiconjugated with torse-forming vector fields. In Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 44, 296–301 (1997)
9. Mikeš, J., Sinyukov, N.S.: On quasiplanar mappings of spaces of affine connection. Sov. Math. 27(1), 63–70 (1983). Translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1983, No.1 (248), 55–61 (1983).
10. J. Mikeš, J., Starko G. A.: K-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 46 (1997), 123–127.
11. Mikeš J., Škodová, M.: Concircular vector fields on compact spaces. Publ. de la RSME, Vol. 11, 302–307 (2007)
12. Petrov, A.Z.: New Methods in Theory of General Relativity. Nauka, Moscow (1966)
13. Shandra, I.G.: Concircular vector fields on semi-Riemannian spaces. J. Math. Sci., New York, 31, 53–68 (2003)
14. Yamaguchi, S.: On infinitesimal projective transformations in non-Riemannian recurrent spaces. Tensor 18, 271–278 (1967)
15. Yano, K.: Concircular Geometry. I-IV. Proc. Imp. Acad., Tokyo, 16 195-200, 354-360, 442-448, 505-511 (1940)
16. Yano, K.: On torse-forming directions in Riemannian spaces. Proc. Imp. Acad., Tokyo, 20, 701-705 (1944)

Josef Mikeš
Palacky University, Olomouc, Czech Republic.
E-mail: mikes@inf.upol.cz

Marie Chodorová
Palacky University, Olomouc, Czech Republic.
E-mail: chodorova@inf.upol.cz
Почти эрмитовы структуры на касательном расслоении почти симплектического многообразия

Владимир И. Паньженский

Аннотация На касательном расслоении гладкого многообразия, наделенного почти симплектической структурой, исследуются специальные почти эрмитова и соответствующая ей почти симплектическая структуры. Установлена верхняя граница размерности алгебры Ли инфинитезимальных автоморфизмов этих структур.

Ключевые слова Почти симплектическая структура · Почти эрмитова структура

УДК 514.76

1. Пусть ω — невырожденная дифференциальная 2-форма, определяющая на гладком n-мерном многообразии M почти симплектическую структуру, TM — касательное расслоение над M, $\tilde{\nabla}$ — инфинитезимальная (нелинейная) связность, задающая горизонтальное распределение на TM.

На касательном расслоении TM рассмотрим (псевдо)риманову метрику G, определенную следующими условиями [2]:

$$G(X^h, Y^h) = G(X^v, Y^v) = 0,$$

$$G(X^h, Y^v) = \omega(X, Y)^v, \ G(X^v, Y^h) = -\omega(X, Y)^v, \quad (1)$$

где X^h, Y^h, X^v, Y^v — горизонтальные и вертикальные лифты векторных полей X, Y базисного многообразия M. Эта метрика является эрмитовой от-
носительно канонической почти комплексной структуры I:

$$IX^h = X^v, IX^v = -X^h$$

(2)

tак как $G(IX, IY) = G(X, Y)$. Фундаментальная 2-форма $\Omega(X, Y) = G(X, Y)$ почти эрмитовой структуры (G, I) определяет на TM почти симплектическую структуру:

$$\Omega(X^h, Y^h) = \Omega(X^v, Y^v) = \omega(X, Y)^v,$$

$$\Omega(X^h, Y^v) = \Omega(X^v, Y^h) = 0.$$

(3)

Пусть $x \rightarrow (x^i) -$ локальные координаты на $M, z = (x, y) \rightarrow (x^i, x^{n+i} = y^i) -$ естественные локальные координаты на $TM, \omega = \frac{1}{2} \omega_{ij} dx^i \wedge dx^j, \omega_{ij} = -\omega_{ji}, det|\omega_{ij}| \neq 0$. Векторные поля $\delta_i = \partial_i^h = \partial_i - N^k_i \hat{\partial}_k$ образуют локальный базис горизонтального распределения H_z, связности $\hat{\nabla}$, где $N^k_i = N^k_i(x, y)$ - коэффициенты этой связности, $\partial_i = \partial/\partial x^i, \hat{\partial}_k = \partial/\partial y^k, a \delta_{n+i} = \partial_i^v = \hat{\partial}_i -$ локальный базис вертикального распределения V_z. Тогда векторные поля $\delta_A = (\delta_i, \delta_{n+i})$ есть локальный базис векторных полей, адаптированный к структуре почти произведения $T_z(TM) = H_z \oplus V_z$. Дуальный ему базис $\delta^A = (\delta^i, \delta^{n+i})$ состоит из форм $\delta^i = dx^i, \delta^{n+i} = dy^i + N^i_k dx^k$. Коммутаторы векторных полей δ_A имеют вид:

$$[\delta_i, \delta_j] = R^k_{ij} \hat{\partial}_k, \ [\delta_i, \hat{\partial}_j] = L^k_{ij} \hat{\partial}_k, \ [\hat{\partial}_i, \hat{\partial}_j] = 0,$$

(4)

где

$$R^k_{ij} = \delta_j N^k_i - \delta_i N^k_j, L^k_{ij} = \hat{\partial}_j N^k_i$$

(5)

— подобъекты объекта неголономности R_{AB}^C, преобразующиеся по тензорному закону и закону коэффициентов линейной связности соответственно.

В адаптированных координатах матрицы эрмитовой метрики (1), почти комплексной структуры (2) и почти симплектической структуры (3) выглядят так:

$$G_{AB} = \begin{pmatrix} 0 & \omega_{ij} \\ -\omega_{ij} & 0 \end{pmatrix}, I^B_A = \begin{pmatrix} 0 & \delta^j_i \\ -\delta^j_i & 0 \end{pmatrix}, \Omega_{AB} = \begin{pmatrix} \omega_{ij} & 0 \\ 0 & \omega_{ij} \end{pmatrix}$$

(6)

Почти эрмитова структура (G, I) на TM будет почти келеровой, если фундаментальная форма Ω этой структуры замкнута: $d\Omega = 0$, т.е. почти симплектическая структура является симплектической. Найдем условия почти келеровости структуры (G, I). Для внешнего дифференциала от 2-формы имеем следующую вычислительную формулу:

$$(d\Omega)(X, Y, Z) = \frac{1}{3} \{X \Omega(Y, Z) + Y \Omega(Z, X) + Z \Omega(X, Y) -$$
Почти эрмитовы структуры на касательном расслоении 127

\[-\Omega([X,Y],Z) - \Omega([Y,Z],X) - \Omega([Z,X],Y). \tag{7}\]

Локализуя данную формулу, в адаптированных координатах будем иметь

\[(d\Omega)_{ABC} = \frac{1}{3}\{\delta_A \Omega_{BC} + \delta_B \Omega_{CA} - \delta_C \Omega_{AB} - R^D_{AB} \Omega_{DC} - R^D_{BC} \Omega_{DA} - R^D_{CA} \Omega_{DB}\}. \tag{8}\]

Расписывая условия \((d\Omega)_{ABC} = 0\) для различных серий индексов, получим следующие условия

\[\partial_i \omega_{jk} + \partial_j \omega_{ki} + \partial_k \omega_{ij} = 0, \tag{9}\]
\[R^k_{ij} = 0, \tag{10}\]
\[\partial_i \omega_{jk} - \omega_{dk} L^d_{ij} - \omega_{jd} L^d_{ik} = 0. \tag{11}\]

Откуда следует

Теорема 1 Почти эрмитова структура \((G,I)\) на TM будет почти келеровой тогда и только тогда, когда почти симплектическая структура на основе является симплектической, горизонтальное распределение интегрируемо, а 2-форма \(\omega\) ковариантно постоянна.

Напомним, что почти келерова структура является келеровой, если почти комплексная структура является интегрируемой, т.е. ее тензор кручения

\[T(X,Y) = 2\{[IX,IY] - [X,Y] - I[X,Y] - I[IX,Y]\} \tag{12}\]

обращается в нуль.

Анализ этого условия, приводит нас к следующему утверждению

Теорема 2 Почти келерова структура \((G,I)\) на TM является келеровой тогда и только тогда, когда связность \(L^k_{ij}\) не имеет кручения.

2. Пусть теперь \(\nabla\) некоторая линейная связность, согласованная с почти симплектической структурой: \(\nabla \omega = 0\). Такие связности существуют, и если структура не симплектическая \((d\omega \neq 0)\), то они необходимо имеют кручение [1]. Предположим теперь, что исходная инфинитезимальная связность, порождена симметричной частью связности \(\nabla\), т.е. \(N^k_i = \hat{\Gamma}^k_{ij}(x)y^j\), где \(\hat{\Gamma}^k_{ij} = \Gamma^k_{ij} + \Gamma^k_{ji}\).

Векторное поле \(X\) на \(M\) назовем абсолютным инфинитезимальным автоморфизмом почти симплектической структуры, если

\[\mathcal{L}_X \omega = 0, \mathcal{L}_X \nabla = 0, \tag{13}\]

где \(\mathcal{L}_X\) – производная Ли вдоль \(X\).

Имеет место следующее утверждение [2]
Теорема 3 Размерность алгебры Ли абсолютных инфнитезимальных автоморфизмов почти симплектической структуры ω не превосходит $n(n+3)/2$.

На касательном расслоении TM рассмотрим вполне приводимую связность $\tilde{\nabla}$ [3], однозначно определенную следующими условиями

$$\tilde{\nabla}_{X^h}Y^h = (\nabla_X Y)^h, \tilde{\nabla}_{X^v}Y^h = \tilde{\nabla}_{X^v}Y^v = 0, \tilde{\nabla}_{X^h}Y^v = (\nabla_X Y)^v.$$

(14)

Нетрудно убедиться, что связность $\tilde{\nabla}$ согласована как с G так и с Ω: $\tilde{\nabla}G = 0, \tilde{\nabla}\Omega = 0$.

Векторное поле X на TM назовем абсолютным инфнитезимальным автоморфизмом почти эрмитовой структуры (G, I) на TM, если

$$\mathcal{L}_X G = 0, \mathcal{L}_X I = 0, \mathcal{L}_X \tilde{\nabla} = 0.$$

(15)

Аналогично, X назовем абсолютным инфнитезимальным автоморфизмом почти симплектической структуры Ω, если

$$\mathcal{L}_X \Omega = 0, \mathcal{L}_X \tilde{\nabla} = 0,$$

(16)

Справедлива следующая

Теорема 4 Для того, чтобы полный лифт X^C векторного поля X базисного многообразия M был абсолютным инфнитезимальным автоморфизмом почти эрмитовой (почти симплектической) структуры на TM необходимо и достаточно, чтобы X являлось абсолютным инфнитезимальным автоморфизмом исходной почти симплектической структуры на базе.

Справедливость этого утверждения проверяется непосредственно, расписывая (13), (15) и (16) в локальных координатах.

Из теорем 3 и 4 следует

Теорема 5 Размерность алгебры Ли естественных абсолютных инфнитезимальных автоморфизмов почти эрмитовой и почти симплектической структур на TM не превосходит $n(n+3)/2$.

3. Естественные инфнитезимальные автоморфизмы на TM сохраняют расслоенную структуру. Наиболее общие автоморфизмы, сохраняющие слои, определяются проектируемыми векторными полями [4]. Векторное поле X на TM называется проектируемым, если $d\pi X$ есть векторное поле на M ($\pi : TM \to M$ — каноническая проекция расслоения).
Рассмотрим на TM сохраняющие слои абсолютные инфинитезимальные автоморфизмы почти эрмитовой структуры (G, I) и почти симплектической структуры $Ω$. Наряду с переменными $ξ^A$ — компонентами автоморфизма $X = ξ^A δ_A$ введем новые переменные

$$ξ^C_B = \tilde{∇}_B ξ^C - ξ^P S^C_{BP}.$$

(17)

Тогда уравнения (15) примут вид

$$ξ_{AB} + ξ_{BA} = 0,$$

(18)

$$ξ^A I^B_C - ξ^B I^C_A = 0,$$

(19)

$$\tilde{∇}_A ξ^C_B = -ξ^P K^C_{PAB},$$

(20)

где $ξ_{AB} = ξ^P G_{PB}, K^C_{PAB}$ — компоненты тензора кривизны связности $\tilde{∇}$.

Таким образом, мы имеем смешанную систему дифференциальных уравнений в частных производных первого порядка (17), (18), (19), (20), разрешимых относительно первых производных от $4n^2+2n$ неизвестных функций $ξ^C, ξ^C_B$, причем алгебраические уравнения (18) и (19) с учетом проектируемости X накладывают на неизвестные функции $3n^2 + n(n−1)/2$ условий. Если теперь условия интегрируемости уравнений (17) и (20) выполняются тождественно, то общее решение системы (17)-(20) содержит максимальное число независимых параметров равное $r = 4n^2+2n-(3n^2+n(n−1)/2) = n(n+5)/2$.

Для почти симплектической структуры вместо уравнений (18) и (19) имеем

$$ξ_{AB} - ξ_{BA} = 0,$$

(21)

и получаем систему дифференциальных уравнений (17), (20), (21). В этом случае, как нетрудно убедиться, $r = n(n+3)$. Таким образом, справедлива

Теорема 6 Размерность алгебры Ли абсолютных инфинитезимальных автоморфизмов, сохраняющих слои касательного расслоения не превосходит $n(n+5)/2$ для почти эрмитовой структуры (G, I) и $n(n+3)$ — для почти симплектической структуры $Ω$.

Список литературы

1. Левин, Ю.И.: Об аффинных связностях, присоединенных к кососимметрическому тензору. ДАН СССР 128(4), 668–671 (1959)
2. Паньженский, В.И.: Об инфинитезимальных автоморфизмах почти симплектических структур. Ученые записки Казан. гос. ун-та, 147(1), 148–153 (2005)
3. Шапуков, Б.Н.: Линейные связности векторного расслоения. Труды геом. сем. КГУ, №8, 118–131 (1975)
Almost Hermitian structures on the tangent bundle of symplectic manifold

In this paper we consider almost Hermitian and symplectic structures of special kind on the tangent bundle of a smooth manifold.
Двойственные структуры: этажи и струи

Майдо Рахула Виталий Речной

Аннотация В статье говорится о стыковке двух структур, секторов Уайта [20] со струями Вагнера [19], (см. справа налево): $W \otimes W$. Это – двойственные понятия, как аргументы и функции, векторы и ковекторы, как решения и интегралы дифференциальных уравнений или как движение частиц и окружающие поля в физике. При наличии связности эта стыковка происходит по тензорному закону. Связность понимается как обратимая струя или подвижной репер и происходящее в связи с этим воспринимается на фоне движений высших порядков.

Ключевые слова Касательный функтор · Джеты отображений · Связность в расслоении

УДК 514.7

1 Этажи

Касательный функтор T сопоставляет многообразию M его первый этаж TM, объединение касательных к M векторных пространств, или касательное расслоение с естественной проекцией π_1, а отображению $\varphi : M_1 \to M_2$ – его дифференциал, касательное отображение $T\varphi$ и морфизм этажей TM_1 и TM_2. Можно говорить о k-ой итерации касательного функтора

$$T^k : \begin{align*}
M & \sim T^k M, \\
\varphi & \sim T^k \varphi,
\end{align*}$$
когда многообразию M сопоставляется его k-ый этаж $T^k M$, многообразие размерности

$$\dim T^k M = 2^k \dim M,$$

и отображению $\varphi : M_1 \to M_2$ – его k-ое касательное отображение, морфизм k-ых этажей $T^k M_1$ и $T^k M_2$.

Этаж $T^k M$ обладает структурой k-кратного векторного расслоения, с k проекциями на $(k-1)$-ый этаж $T^{k-1} M$. Именно, если к последовательности естественных проекций (к верхней строке) применить функтор T^k раз:

$$
\begin{align*}
T^k M & \xrightarrow{\pi_k} T^{k-1} M \xrightarrow{\pi_{k-1}} T^{k-2} M \xrightarrow{\pi_{k-2}} \ldots \xrightarrow{\pi_2} T M \xrightarrow{\pi_1} M, \\
T^k M & \xrightarrow{T \pi_{k-1}} T^{k-1} M \xrightarrow{T \pi_{k-2}} T^{k-2} M, \\
T^k M & \xrightarrow{T \pi_{k-1}} T^{k-1} M,
\end{align*}
$$

то, глядя снизу вверх (такая нумерация проекций будет нам удобнее), определяются k различных проекций $T^k M \to T^{k-1} M$:

$$T^{k-1} \pi_1, T^{k-2} \pi_2, \ldots, T^2 \pi_{k-2}, T \pi_{k-1}, \pi_k.$$

Разъясним ситуацию в координатах. Во-первых, с заданием координатных функций (u^i) на окрестности $U \subset M$ ($i = 1, 2, \ldots, n; n = \dim M$) на окрестностях $T^k U \subset T^k M$ определяются координаты автоматически:

$$U \leadsto (u^i), \quad TU \leadsto (u^i, u^i_1), \quad T^2 U \leadsto (u^i, u^i_1, u^i_2, u^i_{12}), \quad T^3 U \leadsto (u^i, u^i_1, u^i_2, u^i_{12}, u^i_{13}, u^i_{23}, u^i_{123}), \ldots$$

Предлагается следующее правило и вместе с тем обусловимся в обозначениях:

координатные функции с окрестности $T^{k-1} U$ поднимаются на окрестность $T^k U$ (без указания композиции с π_k) и к ним приписываются дифференциалы этих функций, которые обозначаются теми же символами, но с дополнительным индексом k. Тогда при l-ой проекции $T^{k-l} \pi_l$ координаты с индексом l, как слоевые для данной проекции, изымаются, $l = 1, 2, \ldots, k$.

Касательный вектор $u_1 \in T_u M$ можно понимать как мгновенную скорость, фиксацию движущейся точки u в данный момент. Будем говорить,
что пара \((u, u_1) \in TM\) – это стоп-кадр движения 1-го порядка. Четвёрка \((u, u_1, u_2, u_{12}) \in T^2M\) трактуется как стоп-кадр движения 2-го порядка, когда точка \(u\) смещается в направлении \(u_2\), а инфинитезимальное преобразование вектора \(u_1\) определяется величиной \(u_{12}\). Аналогично, элемент \(k\)-го этажа \(T^kM\) понимается как стоп-кадр движения \(k\)-го порядка.3

Покажем, как осуществляются две проекции \(\pi_1\) и \(\pi_2\) со второго этажа на первый:

\[
\begin{array}{ccc}
(u^i, u^i_1, u^i_2, u^i_{12}) & \xrightarrow{T\pi_1} & (u^i, u^i_1) \\
\downarrow & & \downarrow \\
(u^i, u^i_2) & & (u^i, u^i_1)
\end{array}
\]

и три проекции \(T^2\pi_1\), \(T\pi_2\) и \(\pi_3\) с третьего этажа на второй:

\[
\begin{array}{ccc}
(u^i, u^i_1, u^i_2, u^i_{12}, u^i_3, u^i_{13}, u^i_{23}, u^i_{123}) & \xrightarrow{T^2\pi_1} & (u^i, u^i_1, u^i_2, u^i_{12}) \\
\downarrow & & \downarrow \\
(u^i, u^i_2, u^i_3, u^i_{23}) & & (u^i, u^i_1, u^i_3, u^i_{13})
\end{array}
\]

Следует уточнить: на окрестности \(U\), как сказано, определены координатные функции \((u^i)\) и они индуцируют координатные функции на окрестностях \(TU, T^2U, T^3U, \ldots\):

\[
\begin{array}{l}
U : \quad (u^i), \\
TU : \quad (u^i \circ \pi_1; du^i) \rightsquigarrow (u^i; u^i_1), \\
T^2U : \quad (u^i \circ \pi_1\pi_2, du^i \circ \pi_2; d(u^i \circ \pi_1), d^2u^i) \rightsquigarrow (u^i, u^i_1; u^i_2, u^i_{12}), \\
T^3U : \quad (u^i \circ \pi_1\pi_2\pi_3, du^i \circ \pi_2\pi_3, d(u^i \circ \pi_1) \circ \pi_3, d^2u^i \circ \pi_3; d(u^i \circ \pi_1\pi_2), d(du^i \circ \pi_2), d^2(u^i \circ \pi_1), d^3u^i) \rightsquigarrow (u^i, u^i_1, u^i_2, u^i_{12}; u^i_3, u^i_{13}, u^i_{23}, u^i_{123}), \\
\ldots
\end{array}
\]

Ясно, что функции \((u^i)\) поднимаются с \(U\) на \(TU, T^2U, T^3U, \ldots\), дифференциалы \((du^i)\) поднимаются с \(TU\) на \(T^2U, T^3U, \ldots\) и т.д. Обозначения \(u^i, u^i_1, \ldots\), поднимаясь с этажа на этаж, мы сохраняем, но при этом всегда нужно помнить, на каком этаже работаем.

Любая функция \(f : M \rightarrow \mathbb{R}\) поднимается на этажи следующим образом:

\[
f \rightsquigarrow f \circ \pi_1, f \circ \pi_1\pi_2, \ldots
\]

3 По Уайту [20] элемент \(k\)-го этажа \(T^kM\) называется \(k\)-сектором.
Её дифференциал df, скалярная функция на TM, на окрестности TU записывается в виде $df = f_i u^i_1$, где $f_i = f_i \circ \pi_1$ – частные производные функции f, поднятые с U на TU (и здесь композицию с π_1 опускаем). Далее, для функции df определяется дифференциал $d^2 f$ – скалярная функция на T^2M, для $d^2 f$ определяется дифференциал $d^3 f$ – скалярная функция на T^3M, и т.д., в локальной записи на $TU, T^2 U, T^3 U, \dots$ имеем:

\[
\begin{align*}
 df &= f_i u^i_1, \\
 d^2 f &= f_{ij} u^i_1 u^j_2 + f_i u^i_{12}, \\
 d^3 f &= f_{ijk} u^i_1 u^j_2 u^k_3 + f_{ij} (u^i_1 u^j_2 + u^j_2 u^i_1 + u^i_1 u^j_2) + f_i u^i_{123}, \\
 \vdots
\end{align*}
\]

На самом деле дифференциал df поднимается с TM на T^2M двумя способами:

\[
\begin{align*}
 df \circ \pi_2 &= df = f_i u^i_1, \\
 df \circ T \pi_1 &= d(f \circ \pi_1) = f_i u^i_2,
\end{align*}
\]

второй дифференциал $d^2 f$ поднимается с T^2M на T^3M тремя способами:

\[
\begin{align*}
 d^2 f \circ \pi_3 &= d^2 f = f_{ij} u^i_1 u^j_2 + f_i u^i_{12}, \\
 d^2 f \circ T \pi_2 &= d(d^2 f \circ \pi_2) = f_{ij} u^i_1 u^j_3 + f_i u^i_{13}, \\
 d^2 f \circ T^2 \pi_1 &= d^2 (f \circ \pi_1) = f_{ij} u^i_2 u^j_3 + f_i u^i_{23},
\end{align*}
\]

и т.д., но когда мы пишем $d^k f$, то речь идёт о дифференциалид скалярной функции $d^{k-1} f$ на $T^{k-1}M$ и это понимается однозначно.

Следует отметить, что дифференциал $d^k f$ является скалярной функцией на k-ом этаже $T^k M$, линейной и однородной на слоях каждой проекции $T^{k-1} \pi_1, \ldots, T^2 \pi_{k-2}, T \pi_{k-1}, \pi_k$. По Уайту [20], скалярная функция на k-ом этаже $T^k M$, линейная и однородная на слоях всех проекций, называется k-сектор-формой.

Исчисление сектор-форм включает метод внешних форм Картана. Во-первых, 1-сектор-форма $\Phi = \varphi_i u^i_1$ – это обычная дифференциальная форма, или просто 1-форма. Можно говорить о дифференциалах этой формы, как
Двойственные структуры: этажи и струи

скалярной функции на TM:

$$\Phi = \varphi_i u^i_1,$$
$$d\Phi = \varphi_{i,j} u^i_1 u^j_2 + \varphi_i u^i_{12},$$
$$d^2 \Phi = \varphi_{i,j,k} u^i_1 u^j_2 u^k_3 + \varphi_{i,j} (u^i_{13} u^j_2 + u^i_1 u^j_{23} + u^i_{12} u^j_3) + \varphi_i u^i_{123},$$

где имеем

$$\varphi_{i,j} = \frac{\partial \varphi_i}{\partial u^j}, \quad \varphi_{i,j,k} = \frac{\partial^2 \varphi_i}{\partial u^j \partial u^k}, \quad \ldots,$$

но, заметим, если в выражении $(u^i_1 u^j_{23} + u^i_2 u^j_{13} + u^i_3 u^j_{12})$ для $d^3 f$ осуществляется циклическая перестановка индексов 1, 2, 3, то здесь в выражении $(u^i_3 u^j_2 + u^i_1 u^j_{23} + u^i_{12} u^j_3)$ это допустимо только тогда, когда $\varphi_{i,j} = \varphi_{j,i}$, т. е. когда форма Φ замкнута и её внешний дифференциал $d\Phi = \varphi_{[i,j]} u^i_1 u^j_2$ равен нулю. Если произвести альтернирование и симметрирование коэффициентов по индексам, $\varphi_{i,j} = \varphi_{[i,j]} + \varphi_{(i,j)}$, то в формуле для $d\Phi$ можно внешний дифференциал специально выделить: $d\Phi = d\Phi + \varphi_{(i,j)} u^i_1 u^j_2 + \varphi_i u^i_{12}$. В этой связи встаёт вопрос: при каком условии данная k-сектор-форма является дифференциалом некоторой l-сектор-формы, где $l < k$? Понятно, что этот вопрос более общий, чем вопрос о замкнутости 1-форм.

В этажах (в сектор-расслоениях по Уайту) выделяются важные подрасслоения, т. н. касательные составные многообразия Вагнера, см. [19], стр. 182. Именно, равенством всех проекций

$$T^{k-1} \pi_1 = T^{k-2} \pi_2 = \ldots = T^2 \pi_{k-2} = T \pi_{k-1} = \pi_k$$

в $2^k n$-мерном этаже $T^k M$ высекается $(k + 1)n$-мерное подрасслоение. При этом, поднимаясь с этажа на этаж, размерность не удавливается, а каждый раз увеличивается на n. На локальной карте это означает, что все соответствующие координаты с одинаковым числом оконных индексов считаются равными. Так, во втором этаже подрасслоение Вагнера выделяется равенством $u^i_1 = u^i_2$, в третьем этаже — равенствами $u^i_1 = u^i_2 = u^i_3$, $u^i_{12} = u^i_{23} = u^i_{13}$, и т.д.

Чтобы лучше понять подрасслоение Вагнера, напр., во втором этаже, положим:

$$n = 1, M = \mathbb{R}, T^1 M = \mathbb{R}^2, T^2 M = \mathbb{R}^4, (u, u_1, u_2, u_{12}) = (u, x, y, z).$$

Для функции $f(u)$ её второй дифференциал

$$d^2 f = f'' xy + f' z$$
является однородной линейной функцией как относительно координат \((x, z)\), так и относительно координат \((y, z)\). В пространстве \(xyz\), т.е. в слое сквозной проекции \(\pi_1 \circ T \pi_1 = \pi_1 \circ \pi_2\), этой функцией определяется семейство гиперболических параболоидов. При этом два семейства прямолинейных образующих свидетельствуют о структуре двойного векторного расслоения, а равенство \(x = y\) высекает на гиперболоидах параболы, которые и являются слоями по Вагнеру. Ясно, что на параболах, т.е. в подрасслоении Вагнера, о структуре параболоидов как линейчатых поверхностей, и о структуре двойного векторного расслоения второго этажа говорить не приходится.

В связи с секторами и сектор-формами встаёт следующая проблема. В выражениях для \(d^2 f, d^3 f, \ldots\) и для \(d\Phi, d^2\Phi, \ldots\) секторы стыкуются со струями \((f_i, f_{ij}, f_{ijk}, \ldots)\) и \((\varphi_i, \varphi_{i,j}, \varphi_{i,j,k}, \ldots)\). Струйные координаты, кроме \(f_i\) и \(\varphi_i\), как и координаты секторов, кроме \(u_{i1}, u_{i2}, \ldots\), преобразуются не по тензорному закону. Однако, при наличии на многообразии \(M\) аффинной связности, с коэффициентами \(\Gamma_{jk}^{i}\) на \(U\), в окрестности \(T^2 U\) возможен переход к ковариантным производным и адаптированным координатам:

\[
\varphi_{i,j} \sim \nabla_j \varphi_i = \varphi_{i,j} - \varphi_k \Gamma_{ij}^k, \quad u_{12}^i \sim U_{12}^i = u_{12}^i + \Gamma_{jk}^i u_{1j}^j u_{2k}^k,
\]

и это обеспечит тензорную стыковку сектора \((u^i, u_1^i, u_2^i, u_{12}^i)\) со струёй \((\varphi_i, \varphi_{i,j})\) в выражении

\[
d\Phi = \nabla_j \varphi_i u_1^j u_2^j + \varphi_i U_{12}^i.
\]

Если исходить из структуры связности \(\Delta_h \oplus \Delta_o\) в общем расслоении

\[\pi : M_1 \to M,\]

tо речь идёт о разложении оператора \(d\), как единичного аффинора, на инвариантные блоки. На окрестности \(U \subset M_1\), где координаты \((u^i, u^\alpha)\) согласованы с расслоением, определяется адаптированный базис, см. [11], стр. 22,

\[
(X_i X_\alpha) = \left(\frac{\partial}{\partial u^i} \frac{\partial}{\partial u^\alpha} \right) \cdot \left(\begin{array}{cc} \delta^i_j & 0 \\ \Gamma_i^\beta \delta^\beta_{\alpha} & 0 \end{array} \right) \cdot \left(\begin{array}{c} \omega^i \\ \omega^\alpha \end{array} \right) = \left(\begin{array}{cc} \delta^i_j & 0 \\ -\Gamma_i^\alpha \delta^\beta_{\alpha} & \delta^\beta_{\alpha} \end{array} \right) \cdot \left(\begin{array}{c} dw^i \\ dw^\beta \end{array} \right),
\]

в котором это разложение выглядит следующим образом:

\[
d = X_i \otimes \omega^i + X_\alpha \otimes \omega^\alpha.
\]

При преобразовании адаптированного базиса,

\[
(\tilde{X}_i \tilde{X}_\alpha) = (X_j X_\beta) \cdot \left(\begin{array}{cc} \tilde{a}^j_i & 0 \\ 0 & \tilde{a}^\alpha_{\beta} \end{array} \right) \cdot \left(\begin{array}{c} \tilde{\omega}^i \\ \tilde{\omega}^\alpha \end{array} \right) = \left(\begin{array}{cc} a^j_i & 0 \\ 0 & a^\alpha_{\beta} \end{array} \right) \cdot \left(\begin{array}{c} \omega^j \\ \omega^\beta \end{array} \right),
\]
блоки остаются в этом разложении инвариантными. Таким образом, в случае линейной связности в расслоении $\pi_1 : TM \to M$ инвариантная стыковка в формуле для $d\Phi$ будет обеспечена.

Далее, на втором этаже T^2M разложение оператора d в структуре $\Delta \oplus \Delta_1 \oplus \Delta_2 \oplus \Delta_{12}$, см. [11], стр. 155, обеспечит нам инвариантную стыковку в формуле для $d^2\Phi$. Вообще, подобные структуры строятся индуктивно на высших этажах, где сектор-формы имеют инвариантную стыковку с секторами любых порядков.

2 Струи

На струйные темы мы располагаем обширной литературой, но в связи с этим нужно обратить внимание на то, что всё здесь происходящее прекрасно смотрится на фоне экспоненциального закона, который господствует в пространстве $J_{n,m}$. Так мы обозначаем пространство бесконечных струй отображений $\mathbb{R}^n \to \mathbb{R}^m$.

Дальнейшие рассуждения будем проводить в пространстве $J_{1,1}$, т.е. когда $n = m = 1$. Ниже будет дана чисто алгебраическая схема в виде пяти импликаций, где основную роль играет экспоненциал e^{tc}. При этом ничто не мешает нам пользоваться мульти-индексами и распространить наши формулы по определённым правилам на общий случай. Мы не заботимся также о таких вопросах, как дифференцируемость функций, сходимость рядов, соотношение локального-глобального и пр., т.к. схема даётся для "чистых струй", хотя каждый, кто решает некоторую задачу и обращается к нашей схеме, естественно должен эти вопросы конкретно продумать.

Чистая струя, элемент пространства $J_{1,1}$, понимается как система символов

$$t, u, u', u'', \ldots, \quad (2.1)$$

которые, вообще говоря, никак между собой не связаны. Величины (2.1) принимаются за координатные функции в пространстве $J_{1,1}$, представимое как тривиальное расслоение $\mathbb{R} \times \mathbb{R}^\infty$ с временной осью \mathbb{R} в качестве базы и бесконечномерными слоями \mathbb{R}^∞. Параметр t (время) является базисной координатой, а величины u, u', u'', \ldots – слоевыми.

Если в последовательности (2.1) символ u обозначает гладкую функцию аргумента t и за ней следуют её производные, то эта последовательность представляет бесконечную струю этой функции – сечение расслоения $\mathbb{R} \times \mathbb{R}^\infty$.

4 См., напр., [2], [4], [6], [7], [8], [9], [18], [22].
Например, для $u = \sin t$ последовательность (2.1) становится струей функции $\sin t$:

$$t, \sin t, \cos t, -\sin t, -\cos t, \sin t, \ldots,$$

а при различных фиксациях аргумента, напр. $t = 0, \pm \frac{\pi}{3}, \pm \frac{\pi}{2}, \ldots$, эта последовательность даёт каждый раз числовую последовательность, струю функции $\sin t$ в данной точке.

Поскольку, рассуждая о структуре пространства $J_{1,1}$, мы не говорим о струях конкретных функций, а говорим о чистых струях вообще⁵.

Любая связь между величинами (2.1) может восприниматься как обыкновенное дифференциальное уравнение (ОДУ). Будучи продолженным, это уравнение определяет в $J_{1,1}$ некоторую поверхность. Например, ОДУ порядка n

$$u^{(n)} = F(t, u, u', u'', \ldots, u^{(n-1)})$$

позволяет в ходе продолжения выразить величины $u^{(n)}, u^{(n+1)}, \ldots$ через $n+1$ величин $t, u, u', u'', \ldots, u^{(n-1)}$ и в результате можно говорить о параметрическом задании $(n+1)$-мерной поверхности в пространстве $J_{1,1}$. Функция $u(t)$ при этом называется решением ОДУ, если её струя, кривая линия в виде сечения расслоения $\mathbb{R} \times \mathbb{R}^\infty$, укладывается на эту поверхность. Таким образом, теория дифференциальных уравнений получает в пространстве струй геометрическую трактовку, но наши цели не в этом, мы стремимся к формализации этих действий.

Начнём с того, что введём в пространстве $J_{1,1}$ бесконечные матрицы

$$C = \begin{pmatrix} 0 & 1 & 0 & \ldots \\ 0 & 0 & 1 & \ldots \\ 0 & 0 & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \quad e^{tC} = \begin{pmatrix} 1 & t & t^2 & \ldots \\ 0 & 1 & t & \ldots \\ 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

$$U = \begin{pmatrix} u \\ u' \\ u'' \\ \vdots \end{pmatrix}, \quad U' = \begin{pmatrix} u' \\ u'' \\ u''' \\ \vdots \end{pmatrix}, \quad U_t = \begin{pmatrix} u_t \\ u'_t \\ u''_t \\ \vdots \end{pmatrix}, \quad I = \begin{pmatrix} i_0 \\ i_1 \\ i_2 \\ \vdots \end{pmatrix},$$

где C — т.н. матрица сдвига, которая получается из единичной матрицы E путём сдвига на шаг вправо её главной диагонали, e^{tC} — экспоненциал матрицы tC, играющий главную роль в импликациях ниже, и U, U', U_t, I —

⁵ Этим отличается наше изложение от традиционной теории струй [14].
матрицы-столбцы с указанными в них элементами. Кроме того, нам понадобится бесконечная матрица-строка

\[\frac{\partial}{\partial U} = \left(\frac{\partial}{\partial u} \frac{\partial}{\partial u'} \frac{\partial}{\partial u''} \ldots \right). \]

Первая (двойная) импликация записывается в виде:

\[
\begin{align*}
U' &= CU \quad \Rightarrow \quad U_t = e^{tC}U \quad \Rightarrow \quad I = e^{-tC}U.
\end{align*}
\]

В ней каждая стрелка \(\Rightarrow \) означает "из \ldots следует \ldots". Равенство \(U' = CU \) понимается как ОДУ и решение этого уравнения записывается в виде \(U_t = e^{tC}U \). Точка \(U_t \), в начальный момент \(t = 0 \) занимающая положение \(U \), с изменением времени перемещается в слое по интегральной кривой уравнения. Если в этой формуле осуществить замену \(t \mapsto -t \), получим постоянные на кривых \((t, U_t)\) функции \(I = e^{-tC}U \), полный комплект базисных инвариантов оператора \(D \), см. ниже. Две формулы \(U_t = e^{tC}U \) и \(I = e^{-tC}U \) могут быть представлены в виде систем

\[
\begin{align*}
u^{(k)}_t &= \sum_{l=0}^{\infty} u^{(k+l)}t^l \frac{1}{l!}, & k &= 0, 1, 2, \ldots, \\
i_k &= \sum_{l=0}^{\infty} u^{(k+l)}(-t)^l \frac{1}{l!}, & k &= 0, 1, 2, \ldots.
\end{align*}
\]

Если речь идёт о струе конкретной функции \(u(t) \), то формула (2.2) при \(k = 0 \) даёт нам разложение функции \(u(t) \) в ряд Маклорена, а при \(k > 0 \) – такое же разложение её \(k \)-ой производной. В общем случае, как сказано, это лишь формальная запись для чистой струи.

Формулой \(U_t = e^{tC}U \) определяется действие аддитивной группы \(\mathbb{R} \) на слое. Экспоненциал \(e^{tC} \) понимается как 1-параметрическая подгруппа \(\mathbb{R} \) бесконечной линейной группы \(GL(\mathbb{R}) \), соответствующая элементу \(C \) алгебры Ли \(gl(\mathbb{R}) \).

В пространстве \(J_{1,1} \) определяется оператор полного дифференцирования (ОПД), или просто оператор \(D \), как линейное векторное поле

\[D = \frac{\partial}{\partial t} + \frac{\partial}{\partial U} U'. \]

Вместе с оператором \(D \) определяются формы Картана

\[\omega = dU - U'dt. \]

В общем случае мы говорим о представлении аддитивной группы \(\mathbb{R}^n \) с \(n \)-мерными орбитами в слоях \(J_{n,m} \).

\footnote{В общем случае мы говорим о представлении аддитивной группы \(\mathbb{R}^n \) с \(n \)-мерными орбитами в слоях \(J_{n,m} \).}
Именно, если в натуральном репере оператор \(\frac{\partial}{\partial t} \) заменить на оператор \(D \), то в дуальном корепере дифференциалы \(dU \) заменяются автоматически на формы \(\omega \):

\[
\begin{pmatrix}
D \\
\frac{\partial}{\partial U}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial}{\partial t} & \frac{\partial}{\partial U}
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\
U' & E
\end{pmatrix},
\]

(2.6)

\[
\begin{pmatrix}
dt \\
\omega
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
-U' & E
\end{pmatrix} \cdot \begin{pmatrix}
dt \\
dU
\end{pmatrix}.
\]

(2.7)

Наблюдаем полное сходство с формулами адаптированного базиса из теории связностей, с той лишь разницей, что здесь слои бесконечномерные и база одномерная\(^7\).

Производные Ли тензорных полей относительно оператора \(D \), также как и производные обычных функций, обозначаются штрихами\(^8\).

Вдоль кривых \((t, U_t)\) осуществляется *поток* оператора \(D \) как векторного поля в пространстве \(J_{1,1} \). То, что величины \(I = e^{-tC}U \) — инварианты оператора \(D \), проверяется непосредственно:

\[
I' = e^{-tC}(U' - CU) = 0.
\]

Далее, для форм Картана имеется место двойная импликация, такая же, как импликация (I) для слоевых координат \(U \):

\[
\omega' = C\omega \Rightarrow \omega_t = e^{tC}\omega \Rightarrow dI = e^{-tC}\omega.
\]

(II)

Действительно, формы (2.5) расписываются в систему

\[
\begin{align*}
\omega &= du - u'dt, \\
\omega' &= du' - u''dt, \\
\omega'' &= du'' - u'''dt, \\
&\vdots
\end{align*}
\]

где каждая последующая форма является производной Ли предыдущей относительно \(D \). Значит, справедливо равенство \(\omega' = C\omega \). Это, впрочем, можно выяснить и путём непосредственного дифференцирования форм (2.5) с учётом \(U' = CU \). Как и в импликации (I), из равенства \(\omega' = C\omega \) выводится равенство \(\omega_t = e^{tC}\omega \), показывающее, как увлекаются формы \(\omega \) в потоке \(D \).

\(^7\) В расслоении \(J_{n,m} \) с \(n \)-мерной базой \(\mathbb{R}^n \) имеем систему \(n \) операторов \(D_i \). На эти операторы натягивается \(n \)-мерное распределение, которое вполне интегрируемо. В \(J_{n,m} \) определяется линейная связность нулевой кривизны.

\(^8\) В общем случае, когда дифференцирование осуществляется относительно операторов \(D_i \), пользуемся нижними индексами, напр., \(f_i = D_i f \).
Отсюда, если осуществить замену $t \rightsquigarrow -t$, получаем систему инвариантных форм, точных дифференциалов $dI = e^{-tC} \omega$. Это равенство выводится и из $I = e^{-tC} U$ с учётом (2.5). Примечательно, что экспоненциал e^{-tC} является для форм Картана ω интегрирующей матрицей, которая обращает эти формы в точные дифференциалы dI.

Если импликация (II) показывает, что происходит с формами ω в потоке оператора D, то следующая импликация (III) показывает, что происходит с вертикальным репером $\partial / \partial U$ в этом потоке:

$$
\left(\frac{\partial}{\partial U} \right)' = - \frac{\partial}{\partial U} C \Rightarrow \left(\frac{\partial}{\partial U} \right)_t = \frac{\partial}{\partial U} e^{-tC} \Rightarrow \frac{\partial}{\partial I} = \frac{\partial}{\partial U} e^{tC}.
$$

Во-первых, существует такая матрица \tilde{C}, что $\left(\frac{\partial}{\partial U} \right)' = \frac{\partial}{\partial U} \tilde{C}$, но так как $\omega' = C \omega$, то из $\omega \left(\frac{\partial}{\partial U} \right)' = E$ выводим:

$$
\omega' \left(\frac{\partial}{\partial U} \right) + \omega \left(\left(\frac{\partial}{\partial U} \right)' \right) = 0, \quad C + \tilde{C} = 0.
$$

Следовательно, $\tilde{C} = -C$ и справедливо первое левое равенство. Конечно, это равенство можно вывести и индуктивно путём непосредственного вычисления скобок: $\left(\frac{\partial}{\partial U} \right)' = [D, \frac{\partial}{\partial U}]$. Среднее равенство написано как решение ОДУ слева. Замена в этом равенстве $t \rightsquigarrow -t$ даёт нам систему инвариантных вертикальных операторов, см. правую формулу, – в расписанном виде:

$$
\frac{\partial}{\partial t_0} = \frac{\partial}{\partial u},
\frac{\partial}{\partial t_1} = t \frac{\partial}{\partial u} + \frac{\partial}{\partial u'},
\frac{\partial}{\partial t_2} = \frac{t^2}{2} \frac{\partial}{\partial u} + t \frac{\partial}{\partial u'} + \frac{\partial}{\partial u''},
$$

...

Можно рассуждать подругому. Формула $I = e^{-tC} U$ позволяет заменить слоеевые координаты U инвариантами I. Преобразование $U \rightsquigarrow I$ сопровождается точечным преобразованием φ. Тогда пишем

$$
t \circ \varphi = t, \quad I \circ \varphi = U,
$$

и наблюдаем преобразование вертикального базиса, репера и корепера, следующим образом:

$$
T \varphi^{-1} \frac{\partial}{\partial I} = \frac{\partial}{\partial U} e^{tC}, \quad dI \circ T \varphi = e^{-tC} \omega.
$$
В пространстве $J_{1,1}$ определяется инвариантный базис, репер и корепер:

$$T\varphi^{-1}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial U}\right) = \left(D \frac{\partial}{\partial I}\right) \cdot \begin{pmatrix} 1 & 0 & e^{tC} \\ 0 & e^{tC} & \end{pmatrix},$$

$$\left(\frac{dt}{dI}\right) \circ T\varphi = \begin{pmatrix} 1 & 0 \\ 0 & e^{tC} \end{pmatrix} \cdot \begin{pmatrix} dt \\ \omega \end{pmatrix}.$$

О преобразовании φ нельзя забывать, так как в противном случае при записи инвариантного репера, без $T\varphi^{-1}$, можно натолкнуться на абсурдное равенство $\frac{\partial}{\partial t} = D$.

Спрашивается: при каком условии некоторое вертикальное векторное поле P коммутирует с оператором D, т.е. $P' = 0$? Представим это поле P как в натуральном, так и в инвариантном репере компонентами $\mu = PU$ и $\nu = PI$, и вычислим в обоих реперах его производную Ли относительно D:

$$P = \frac{\partial}{\partial U}\mu = \frac{\partial}{\partial I}\nu, \quad P' = \frac{\partial}{\partial U}(\mu' - C\mu) = \frac{\partial}{\partial I}\nu'.$$

Получаем: векторное поле P коммутирует с оператором D, т.е. $P' = 0$, тогда и только тогда, когда выполняется одно из условий $\mu' = C\mu$ или $\nu' = 0$. Эти условия эквивалентны, что видно из связывающего компоненты μ и ν соотношения $\nu = e^{-tC}\mu$.

Поскольку имеет место равенство $\mu' = C\mu$, пишем импликацию:

$$\mu' = C\mu \Rightarrow \mu_t = e^{tC}\mu \Rightarrow \nu = e^{-tC}\mu. \quad \text{(IV)}$$

Равенство $\mu' = C\mu$ показывает, что в столбце μ каждый последующий элемент является производной (относительно D) предыдущего элемента, или же, что все элементы столбца μ, начиная со второго, являются производными соответствующего порядка первого элемента — производящей функции μ_0, т.е.

$$\mu_k = \mu_0^{(k)}, \quad k = 1, 2, \ldots$$

Средняя формула в импликации (IV) показывает, как увлекаются компоненты μ в потоке оператора D. Правая формула показывает, что инварианты ν соотносятся к компонентам μ так же, как в импликации (I) инварианты I — к слоевым координатам U. Словом, импликация (IV) повторяет импликации (I) и (II), но, естественно, совсем в иной ситуации.

Возвращаясь к импликации (III), заметим, что инвариантный репер $\frac{\partial}{\partial I}$ состоит из вертикальных полей Ли с производящими функциями соответственно $1, t, t^2, \ldots$
Можно спросить, при каких условиях общее векторное поле P, необязательно вертикальное, является инфинитезимальной симметрией оператора D, т.е. когда выполняется условие $P' \parallel D$, где знак \parallel означает равенство с точностью до множителя. Такое векторное поле называется в пространстве $J_{1,1}$ векторным полем Ли. Представим поле P снова в натуральном, адаптированном и инвариантном реперах, выпишем соотношения между его компонентами в разных реперах:

$$P = \xi \frac{\partial}{\partial t} + \frac{\partial}{\partial U} \lambda = \xi D + \frac{\partial}{\partial U} \mu = \xi D + \frac{\partial}{\partial I} \nu,$$

где

$$\xi = Pt, \ \lambda = PU = \mu + U'\xi, \ \mu = \omega(P), \ \nu = PI = e^{-tC} \mu,$$

и вычислим производную Ли относительно D:

$$P' = \xi' D + \frac{\partial}{\partial U}(\lambda' - C\lambda - \xi' U') = \xi' D + \frac{\partial}{\partial U}(\mu' - C\mu) = \xi' D + \frac{\partial}{\partial I} \nu'.$$

Получаем следующие эквивалентные условия:

$$P' \parallel D \iff \lambda' - C\lambda - \xi' U' = 0 \iff \mu' = C\mu \iff \nu' = 0.$$

К условиям, которые уже рассматривались, $\mu' = C\mu$ и $\nu' = 0$, добавляется ещё условие $\lambda' - C\lambda - \xi' U' = 0$. Из этого условия получаем важное правило\(^9\) для продолжения векторного поля в натуральном репере:

Пусть на плоскости tu дано векторное поле $P_0 = \xi \frac{\partial}{\partial t} + \lambda_0 \frac{\partial}{\partial u}$. По компонентам ξ и λ_0 определяется $\mu_0 = \lambda_0 - \xi u'$ - производящая функция; затем вычисляются производные μ', которые вводятся в формулу $C\lambda = \mu' + \xi U''$, чтобы достроить столбец λ для поля Ли $P = \xi \frac{\partial}{\partial t} + \frac{\partial}{\partial U} \lambda$.

Двойственная ситуация наблюдается с 1-формой вида $\Psi = \psi \omega$, линейной комбинацией форм Картана ω с коэффициентами $\psi = (\psi_0, \psi_1, \psi_2, \ldots)$.

Спрашивается, при каком условии эта форма будет инвариантна относительно оператора D?

Поскольку $\omega' = C\omega$ и $\Psi' = (\psi' + \psi C)\omega$, выводим условие:

$$\Psi' = 0 \iff \psi' = -\psi C.$$

Форма Ψ будет инвариантна относительно оператора D тогда и только тогда, когда выполняется условие $\psi' = -\psi C$. Это значит, что

\(^9\) Именно так продолжаются групповые операторы в разных геометриях и с их помощью вычисляются дифференциальные инварианты изучаемых объектов, см. [23].
первый элемент ψ_0 в ряду ψ является инвариантом относительно D, т.е. $\psi_0' = 0$, и что каждый следующий элемент этого ряда является первообразной предыдущего элемента, но с противоположным знаком, $\psi_k' = -\psi_{k-1}$, или же, что величина $(-1)^k\psi_k$ является k-ой первообразной инварианта ψ_0, $k = 1, 2, 3, \ldots$. Исходя из равенства $\psi' = -\psi C$, записывается импликация

$$\boxed{\psi' = -\psi C \implies \psi_t = \psi e^{-tC} \implies \chi = \psi e^{tC}}. \quad (V)$$

Равенство слева рассматривается как ОДУ. В середине записано его решение, описывающее увлечение величин ψ в потоке D. Изменяя знак у аргумента t, выводим отсюда систему инвариантов $\chi = \psi e^{tC}$, бесконечную строку из элементов

$$\chi_0 = \psi_0;$$
$$\chi_1 = t \psi_0 + \psi_1;$$
$$\chi_2 = \frac{t^2}{2} \psi_0 + t\psi_1 + \psi_2;$$
$$\vdots$$

Таковы компоненты 1-формы $\Psi = \chi dI$ в инвариантном кобазисе. По аналогии с полем Ли, назовём такую 1-форму формой Ли.

Главное, что следует ценить в описываемой структуре пространства $J_{1,1}$, это то, что тройка (D, t, U), т.е. оператор D, параметр t и слоевые координаты U, играет роль конечного объекта в категории троек (X, s, F), где X – векторное поле на некотором многообразии M, s – его канонический параметр и F – множество, состоящее из некоторой функции f и её производных f', f'', \ldots относительно X. Когда

$$\Omega = ds \wedge df \wedge df' \wedge \ldots \wedge df^{(k-1)} \neq 0, \quad \Omega \wedge df^{(k)} = 0,$$

поле X может быть представлено в виде

$$X = \partial s + f' \partial f + f'' \partial f' + \ldots + f^{(k)} \partial f^{(k-1)}.$$

Отображение

$$\varphi : M \to J_{1,1} : (s, F) \leadsto (t, U), \quad \begin{cases} t \circ \varphi = s, \\ U \circ \varphi = F, \end{cases}$$

погружает многообразие M в пространство $J_{1,1}$ как $(k + 1)$-мерную поверхность и поле X будет φ-связано с оператором D. Это значит, что для любой
Двойственные структуры: этажи и струи 145

функции I, заданной в пространстве $J_{1,1}$, на многообразии M имеет место равенство

$$(DI) \circ \varphi = X(I \circ \varphi).$$

В таком случае все инварианты оператора D переносятся на M в инварианты поля X,

$$DI = 0 \implies X(I \circ \varphi) = 0.$$

В частности, это относится к базисным инвариантам, которые переносятся в инварианты поля X:

$$I = e^{-tC}U \implies I \circ \varphi = e^{-sC}F.$$

Это относится к формам Картана10:

$$\omega = dU - U' dt \implies \omega \circ T \varphi = dF - F' ds,$$

где последовательность производных Ли относительно D переносится в последовательность производных Ли относительно X,

$$L_D \omega = C \omega \implies L_X (\omega \circ T \varphi) = C(\omega \circ T \varphi).$$

Это относится, вообще, и ко всем ковариантным величинам, которые переносятся из $J_{1,1}$ на многообразие M и дают нам информацию для нашей тройки (X, s, F).

Example 1 Пусть на плоскости \mathbb{R}^2 и в пространстве $J_{2,1}$ определены координаты соответственно $t = (t_1, t_2)$ и $(t_1, t_2, u_{(i)})$, где $(i) = (i_1 \ldots i_p)$ означает мульти-индекс, $i_p = 1, 2, 3$; $p = 0, 1, 2, \ldots$ Зададим на \mathbb{R}^2 гладкую функцию h, обладающую частными производными (h_i, h_{ij}, \ldots), и определим иммерсию

$$\varphi : \mathbb{R}^2 \to J_{2,1}, \quad \begin{cases} t_i \circ \varphi = t_i, \\ u_{(i)} \circ \varphi = h_{(i)}. \end{cases}$$

Ввиду того, что формы Картана принадлежат коядру $\text{Coker} T \varphi$, они при перенесении на плоскость \mathbb{R}^2 аннулируются:

$$\omega_{(i)} = du_{(i)} - u_{(i)j} dt^j \implies \omega_{(i)} \circ T \varphi = dh_{(i)} - h_{(i)j} dt^j = 0.$$

Рассмотрим в $J_{2,1}$ следующую ситуацию: в потоке векторного поля

$$X = u_1 \frac{\partial}{\partial t_1} + u_2 \frac{\partial}{\partial t_2}.$$

10 Здесь штрихи следует понимать следующим образом: $U' = DU, F' = XF$. При такой договорённости неплохо записать и равенство выше $(DI) \circ \varphi = X(I \circ \varphi)$ в виде $I' \circ \varphi = (I \circ \varphi)'$.

увлекается 2-форма $\Omega = dt_1 \wedge dt_2$. Вычислим её производные Ли относительно X,

\[
\Omega' = du_1 \wedge dt_2 + dt_1 \wedge du_2 = \omega_1 \wedge dt_2 + dt_1 \wedge \omega_2 + (u_{11} + u_{22}) \cdot \Omega,
\]

\[
\Omega'' = 2 du_1 \wedge du_2 = 2 \omega_1 \wedge \omega_2 + 2 \begin{vmatrix} u_{11} & u_{12} \\ u_{12} & u_{22} \end{vmatrix} \cdot \Omega.
\]

Обнаруживается, что $\Omega''' = 0$, и что форма Ω увлекается в потоке X как квадратичная функция:

\[
\Omega_\tau = \Omega + \Omega' \tau + \frac{1}{2} \Omega'' \tau^2.
\]

За канонический параметр поля X можно взять

\[
s = \frac{1}{2} \left(\frac{t_1}{u_1} + \frac{t_2}{u_2} \right).
\]

Спускась из $J_{2,1}$ на плоскость \mathbb{R}^2, получаем:

\[
\begin{align*}
\Omega & \rightsquigarrow \Omega \circ T\varphi = \Omega, \\
\Omega' & \rightsquigarrow \Omega' \circ T\varphi = (h_{11} + h_{22}) \cdot \Omega, \\
\Omega'' & \rightsquigarrow \Omega'' \circ T\varphi = 2 \begin{vmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{vmatrix} \cdot \Omega.
\end{align*}
\]

Лапласиан и гессиан функции h, операторы Монжа-Ампера [7], появляются благодаря тому, что тройка $(\frac{\partial}{\partial t_i}, t_i, h_{(i)})$ с плоскости \mathbb{R}^2 связывается с тройкой $(D_i, t_i, u_{(i)})$ в $J_{2,1}$. Заметим, градиент функции h при этом φ-связан с полем X.

3 Движения

Следующая коммутативная диаграмма изображает преобразование отображения f, когда в пространствах (на многообразиях) M_1 и M_2 осуществляются преобразования a и b:

\[
\begin{array}{ccc}
M_1 & \xrightarrow{f} & M_2 \\
\downarrow{a} & & \downarrow{b} \\
M_1 & \xrightarrow{\tilde{f}} & M_2
\end{array}
\]

Такому преобразованию подвергается отображение $f : M \to M$ при преобразовании $a : M \to M$,

\[
f \rightsquigarrow \tilde{f} = bfa^{-1}.
\]
Так преобразуется преобразование $b : M \to M$ при преобразовании $a : M \to M$,
$$
b \leadsto \tilde{b} = aba^{-1}.
$$
Так преобразуется поток векторного поля Y при преобразовании $a : M \to M$,
$$
b_s = \exp sY \leadsto aba^{-1} = \exp s(TaY),
$$
и таким же образом увлекается поток b_s поля Y в потоке a_t поля X, когда поле Y увлекается в поле Ta_tY. В таком случае мы говорим о движении движения, или о движении порядка 2.

Увлечение $Y \leadsto Ta_tY$ происходит в потоке полного лифта $Ta_t = \exp tX^C$ поля X на первом этаже TM. Если поле X мы трактуем как инфинитезимальную версию (стоп-кадр) потока a_t на многообразии M, то полный лифт X^C следует понимать как стоп-кадр потока Ta_t на этаже TM. При этом, если на M происходит обычное дифференцирование функций $f \leadsto Xf$, то на TM происходит дифференцирование (Ли) сектор-форм $\Phi \leadsto X^C\Phi = L_X\Phi$. Можно говорить о движениях высших порядков, когда поток a_t и векторное поле X поднимаются на этажи:
$$
a_t \leadsto Ta_t \leadsto T^2a_t \leadsto \ldots, \quad X \leadsto L_X \leadsto L_{L_X} \leadsto \ldots
$$

Эти рассуждения переносятся на группу преобразований G, действующей в пространстве M. Тогда речь пойдет о действии касательных групп TG, T^2G, \ldots на этажах TM, T^2M, \ldots, а также о присоединённых представлениях группы G и её алгебры Ли g.

Особое отношение должно быть у нас к матрицам. Дело в том, что якобиана матрица отображения φ – это линейный элемент отображения $T\varphi$, как касательный элемент к графику функции, а из линейных элементов складываются любые непрерывные процессы. Идея дифференцирования и интегрирования, как идея инфинитезимальных методов вообще, состоит в линеаризации и, с другой стороны, в реконструкции, как говорят, нелинейного мира из линейных кусков. В связи с этим встаёт естественный вопрос, как изменяются соответствующие матрицы, когда отображения подвергаются преобразованию, или, как ещё говорят, если отображение расшевелить?

Подойдём с этим вопросом к линейной группе $GL = GL(2, \mathbb{R})$ и её алгебре Ли $gl = gl(2, \mathbb{R})$. Элементами группы GL и алгебры gl являются соответственно матрицы:
$$
A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}, \quad C = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix},
$$
где \(A \) – регулярная и \(C \) – произвольная матрица. Экспоненциальное отображение \(\kappa : gl \to GL \) сопоставляет аддитивной подгруппе \(Ct \) алгебры \(gl \) одно-параметрическую подгруппу \(e^{Ct} \) группы \(GL \). На \(GL \) под действием левых и правых сдигов определяются левоинвариантный и правоинвариантный базисы, поля реперов и кореперов:

\[
\begin{pmatrix}
X_1 & X_2 \\
X_3 & X_4
\end{pmatrix} =
\begin{pmatrix}
a_1 & a_3 \\
a_2 & a_4
\end{pmatrix}
\cdot
\begin{pmatrix}
\partial_1 & \partial_2 \\
\partial_3 & \partial_4
\end{pmatrix},
\]

\[
\begin{pmatrix}
\omega^1 & \omega^2 \\
\omega^3 & \omega^4
\end{pmatrix} =
\begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix}
^{-1}
\cdot
\begin{pmatrix}
da_1 & da_2 \\
da_3 & da_4
\end{pmatrix};
\]

\[
\begin{pmatrix}
\tilde{X}_1 & \tilde{X}_2 \\
\tilde{X}_3 & \tilde{X}_4
\end{pmatrix} =
\begin{pmatrix}
\partial_1 & \partial_2 \\
\partial_3 & \partial_4
\end{pmatrix}
\cdot
\begin{pmatrix}
a_1 & a_3 \\
a_2 & a_4
\end{pmatrix},
\]

\[
\begin{pmatrix}
\tilde{\omega}^1 & \tilde{\omega}^2 \\
\tilde{\omega}^3 & \tilde{\omega}^4
\end{pmatrix} =
\begin{pmatrix}
da_1 & da_2 \\
da_3 & da_4
\end{pmatrix}
\cdot
\begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix}
^{-1},
\]

где \(\partial_i = \frac{\partial}{\partial a_i}, i = 1, 2, 3, 4 \). При присоединённом представлении группы \(GL \) имеется в виду её действие на себе внутренними автоморфизмами и, в инфинитезимальной трактовке, операторы этого представления:

\[
\begin{pmatrix}
Y_1 & Y_2 \\
Y_3 & Y_4
\end{pmatrix} =
\begin{pmatrix}
\partial_1 & \partial_2 \\
\partial_3 & \partial_4
\end{pmatrix}
\cdot
\begin{pmatrix}
a_1 & a_3 \\
a_2 & a_4
\end{pmatrix}
- \begin{pmatrix}
a_1 & a_3 \\
a_2 & a_4
\end{pmatrix}
\cdot
\begin{pmatrix}
\partial_1 & \partial_2 \\
\partial_3 & \partial_4
\end{pmatrix}.
\]

Таблица коммутаторов для операторов \(Y_i \) имеет такой же вид, что для операторов \(\tilde{X}_i \), или что для операторов \(X_i \) с обратными знаками,

\(\rightarrow \)	\(Y_1 \)	\(Y_2 \)	\(Y_3 \)	\(Y_4 \)
\(Y_1 \)	0	-\(Y_2 \)	\(Y_3 \)	0
\(Y_2 \)	\(Y_2 \)	0	\(Y_4 - Y_1 \)	-\(Y_2 \)
\(Y_3 \)	-\(Y_3 \)	\(Y_1 - Y_4 \)	0	\(Y_3 \)
\(Y_4 \)	0	\(Y_2 \)	-\(Y_3 \)	0

но с разницей, что здесь эти операторы линейно зависимы:

\[
Y_1 + Y_4 = 0, \quad a_1 Y_1 + a_2 Y_2 + a_3 Y_3 + a_4 Y_4 = 0.
\]

На операторы \(Y_i \) натягивается двумерное интегрируемое распределение и их общими инвариантами являются функции

\[
\text{det} A = a_1 a_4 - a_2 a_3 \quad \text{и} \quad \text{tr} A = a_1 + a_4.
\]
Двойственные структуры: этажи и струи

Общий оператор присоединённого представления – линейное векторное поле с постоянными коэффициентами:

\[Y = c_1 Y_1 + c_2 Y_2 + c_3 Y_3 + c_4 Y_4. \]

Поток оператора \(Y \) определяется импликацией (I), что в данном случае даёт:

\[A' = CA - AC \quad \Rightarrow \quad A_t = e^{Ct} A e^{-Ct}. \]

С помощью таблицы коммутаторов можно описать увлечение операторов \(Y_i \) в потоке поля \(Y \):

\[
\left(\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{array} \right) \Rightarrow \left(\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{array} \right) \\
\left(\begin{array}{c}
c_1 \\
c_2 \\
c_3 \\
c_4
\end{array} \right) \times \left(\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{array} \right),
\]

\[\left(\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{array} \right)'''' = 4\Delta \cdot \left(\begin{array}{c}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{array} \right)', \quad \Delta = \frac{1}{4} \text{tr}^2 C - \det C. \]

Решение ОДУ \(f'''' = 4\Delta \cdot f' \), в зависимости от знака \(\Delta \), записывается в виде:

\[\Delta < 0 \quad \Rightarrow \quad f_t = f + \frac{1}{\lambda} f' \sin \lambda t + \frac{1}{\lambda^2} f''(1 - \cos \lambda t), \quad \lambda = 2\sqrt{-\Delta}, \]

\[\Delta > 0 \quad \Rightarrow \quad f_t = f + \frac{1}{\lambda} f' \sinh \lambda t + \frac{1}{\lambda^2} f''(1 - \cosh \lambda t), \quad \lambda = 2\sqrt{\Delta}, \]

\[\Delta = 0 \quad \Rightarrow \quad f_t = f + f't + f'' \frac{t^2}{2}. \]

Оператор центра, как векторное поле на \(gl \),

\[P = \frac{\partial}{\partial c_1} + \frac{\partial}{\partial c_4} \]

определяет в \(gl \) поток:

\[\left(\begin{array}{c}
c_1 \\
c_2 \\
c_3 \\
c_4
\end{array} \right) \Rightarrow \left(\begin{array}{c}
c_1 \\
c_2 \\
c_3 \\
c_4
\end{array} \right)_t = \left(\begin{array}{c}
c_1 + t \\
c_2 \\
c_3 \\
c_4 + t
\end{array} \right). \]

Алгебра Ли присоединённой группы \(G_1 = GL/Z \) отождествляется с пространством инвариантов \(xyz \) оператора \(P \), в которое при отображении (вдоль траекторий этого оператора)

\[\pi : gl \rightarrow \mathbb{R}^3 : \left(\begin{array}{c}
c_1 \\
c_2 \\
c_3 \\
c_4
\end{array} \right) \Rightarrow (x, y, z), \quad \left\{ \begin{array}{l}
x \circ \pi = \frac{1}{2}(c_1 - c_4), \\
y \circ \pi = c_3, \\
z \circ \pi = c_2
\end{array} \right. \]

проектируются операторы \(Y_i \),

\[
\left(\tilde{Y}_1 \tilde{Y}_2 \tilde{Y}_3 \right) = \left(\partial_x \partial_y \partial_z \right) \cdot \left(\begin{array}{ccc}
0 & y & -z \\
-y & 0 & 2x \\
z & -2x & 0
\end{array} \right). \]
Поля \tilde{Y}_1 являются операторами псевдо-евклидовой группы с общим инвариантом $x^2 + yz$. В \mathbb{R}^3 определяется семейство гиперболоидов, где каждый гиперболоид изображает границу тени, отбрасываемой на экран xyz квадрикой $\det C = \text{const}$ при её освещении потоком поля P. В случае $\det C > 0$ гиперболоид однополостный, а в случае $\det C < 0$ – двуполостный. Сама квадрика, увлекаясь потоком поля P, образует 1-параметрическое семейство с огибающей поверхностью $\Delta = 0$. Сказанное обосновывается равенствами

$$P(\det C) = \text{tr} C, \quad P^2(\det C) = P\text{tr} C = 2,$$

$$(\det C)_t = \det(C + tE), \quad (\text{tr} C)_t = \text{tr} C + 2t,$$

а также и тем, что Δ – инвариант поля P, т. е. $P\Delta = 0$. При этом упомянутый гиперболоид является образом складки при проектировании соответствующей квадрики в пространство xyz. Величина Δ будет ниже называться дискриминантом.

Оператор \tilde{Y}_1 является инфинитезимальной симметрией для операторов \tilde{Y}_2 и \tilde{Y}_3 и в его гиперболическом потоке параболические потоки \tilde{Y}_2 и \tilde{Y}_3 образуют две системы импримитивности (изменяется только параметр $t \sim te^{\pm s}$). Потоки определяются следующими системами:

$$\tilde{Y}_1 \sim \begin{cases} x_s = x, \\
y_s = ye^{-s}, \\
z_s = ze^{s}, \end{cases} \quad \tilde{Y}_2 \sim \begin{cases} x_t = x + yt, \\
y_t = y, \\
z_t = z - 2xt - yt^2, \end{cases}$$

$$\tilde{Y}_3 \sim \begin{cases} x_t = x - zt, \\
y_t = y + 2xt - zt^2, \\
z_t = z. \end{cases}$$

При проекции на плоскость инвариантов uv оператора \tilde{Y}_1,

$$\rho : \mathbb{R}^3 \to \mathbb{R}^2 : (x, y, z) \sim (u, v), \begin{cases} u \circ \rho = x, \\
v \circ \rho = yz, \end{cases}$$

поля \tilde{Y}_2 и \tilde{Y}_3 с плоскостей $y = \text{const}$ и $z = \text{const}$ отображаются на векторное поле (с точностью до постоянного коэффициента)

$$\hat{Y} = \frac{\partial}{\partial u} - 2u \frac{\partial}{\partial v}, \begin{cases} u_\tau = u + \tau, \\
v_\tau = v - 2u\tau - \tau^2. \end{cases}$$

\(^{11}\) См. [1], стр. 179.
Двойственные структуры: этажи и струи 151

Плоскость uv, на которой действует поток поля \hat{Y} (см. справа), отождествляется с присоединённой группой группы G_1. Дискриминант Δ будет при отображениях π и ρ связан с инвариантами $x^2 + yz$ и $u^2 + v$,

$$\Delta = \frac{1}{4}(a_1 - a_4)^2 + a_2a_3 = (x^2 + yz) \circ \pi = (u^2 + v) \circ \rho\pi.$$

Таким образом, когда матрица C подвергается преобразованию внутренними автоморфизмами, то её инвариантами будут определитель и след, $\det C$ и $\tr C$, и если ситуацию расшевелить оператором P, то $\det C$ и $\tr C$ будут изменяться, но появится общий инвариант операторов Y_i и P – дискриминант Δ. Дискриминант Δ играет ключевую роль при отображении $\zeta : \mathfrak{gl} \to \mathbb{R}^2 : C \sim (u, u')$,

$$\begin{aligned} u \circ \zeta &= \frac{1}{2} \det C, \\
(u') \circ \zeta &= \frac{1}{2} \tr C, \\
\end{aligned}$$

когда оператор центра P проектировается в векторное поле $T\zeta P$,

$$P \sim T\zeta P = u' \frac{\partial}{\partial u} + \frac{\partial}{\partial u'}, \quad \begin{aligned} u_t &= u + u't + \frac{t^2}{2}, \\
u'_t &= u' + t, \end{aligned}$$

поток $C_t = C + tE$ оператора P отображается в поток поля $T\zeta P$ (см. справа), а дискриминант Δ будет связан с дискриминантом квадратичной функции u_t,

$$((u')^2 - 2u) \circ \zeta = \Delta.$$

Проектирующий цилиндр $\Delta = 0$, т.е. все его прямолинейные образующие, укладывается при отображении ζ на дискриминантную параболу $(u')^2 - 2u = 0$.

Опноительно дискриминантной параболы на плоскости $u'u'$ осуществляется классификация линейных потоков12. Линейный поток на плоскости, согласно правилу $U' = CU \Rightarrow U_t = e^{Ct}U$, определяется экспоненциалом e^{Ct}, а точнее, собственными значениями матрицы C, корнями характеристического уравнения

$$\lambda^2 - \tr C \cdot \lambda + \det C = 0,$$

числами либо действительными $\lambda_{1,2} = \alpha \pm \beta$, либо комплексно-сопряженными $\lambda_{1,2} = \alpha \pm i\beta$, либо совпавшими $\lambda_1 = \lambda_2 = \alpha$. Числа $\alpha, \beta \in \mathbb{R}$ определяются из формул:

$$\begin{aligned} \tr C &= \lambda_1 + \lambda_2 = 2\alpha, \\
\det C &= \lambda_1\lambda_2 = \alpha^2 \pm \beta^2, \end{aligned}$$

12 См. [2], стр. 86; [13], стр. 73.
где знак „+” соответствует случаю комплексных корней и знак „−” случаю, когда эти корни действительные. При этом
\[\Delta = \frac{1}{4}(\lambda_1 - \lambda_2)^2 = \mp \beta^2. \]

Экспоненциал матрицы \(C t \) записывается соответственно:
\[
e^{C t} = \begin{cases}
e^{at}[E \cos \beta t + (C - \alpha E)\sin \frac{\beta t}{\beta}], & \text{если } \Delta < 0, \\ e^{at}[E \cosh \beta t + (C - \alpha E)\sinh \frac{\beta t}{\beta}], & \text{если } \Delta > 0, \\ e^{at}[E + (C - \alpha E)t], & \text{если } \Delta = 0. \end{cases}
\]

Точкам из области, где \(\Delta < 0 \), соответствуют эллиптические потоки с фокусами, точкам из области, где \(\det C < 0 \), − гиперболические потоки с седлами, точкам из области, где \(\det C > 0 \) и \(\Delta > 0 \), − гиперболические узлы, а точкам с дискриминантной параболы \(\Delta = 0 \) − параболические узлы. Узлы и фокусы устойчивы, когда \(\alpha < 0 \), и неустойчивы, когда \(\alpha > 0 \).

Отображения Виета\(^{13} \) \(\varphi_1 \) и \(\varphi_2 \),
\[
\varphi_1 : \mathbb{R}^2 \to \mathbb{R}^2 : (\alpha, \beta) \rightsquigarrow (u, u'), \quad \begin{cases} u \circ \varphi_1 = \frac{1}{2} (\alpha^2 - \beta^2), \\ u' \circ \varphi_1 = -\alpha, \\ \end{cases}
\]
\[
\varphi_2 : \mathbb{R}^2 \to \mathbb{R}^2 : (\alpha, \beta) \rightsquigarrow (u, u'), \quad \begin{cases} u \circ \varphi_2 = \frac{1}{2} (\alpha^2 + \beta^2), \\ u' \circ \varphi_2 = -\alpha, \\ \end{cases}
\]

накрывают плоскостью \(\alpha \beta \), складывая её предварительно вдоль прямой \(\alpha = 0 \) пополам (две точки с координатами \((\alpha, \pm \beta) \) имеют один образ), плоскость \(uu' \) по одну и другую сторону от дискриминантной параболы. Отображение \(\varphi_1 \) накрывает двукратно внешнюю область от дискриминантной параболы, а отображение \(\varphi_2 \), тоже двукратно, внутреннюю область между её ветвями:
\[
((u')^2 - 2u) \circ \varphi_1 = \beta^2 \geq 0, \quad ((u')^2 - 2u) \circ \varphi_2 = -\beta^2 \leq 0.
\]

Прямые \(\beta = \text{const} \), траектории векторного поля \(\frac{\partial}{\partial \alpha} \), укладываются при этом на траектории векторного поля \(T \zeta P \) − на параболы при \(\varphi_1 \) и \(\varphi_2 \) по разные стороны от дискриминантной параболы.

Короче, матрица понимается как линейный элемент движения и если движение расшевелить, то эта матрица подвергается внутреннему автоморфизму и её инвариантами становятся определитель и след. При следующем возмущении, когда вступает в силу оператор \(P \), инвариантом становится

\(^{13} \) В этих отображениях, если в первом случае полагать \(t_{1,2} = \alpha \pm \beta \) и во втором \(t_{1,2} = \alpha \pm \beta i \), узнаём теорему Виета для квадратичной функции \(u_t \).
дискриминант Δ. Оператор P окажется связанным через отображение ζ с оператором D в пространстве $J_{1,1}$. Это наблюдается на плоскости, когда $k = 2$. В случае высших размерностей 3, 4, ... инварианты являются коэффициенты в формуле Гамильтона-Кэли, в т.ч. определитель и след матрицы, и речь идёт о движениях высших порядков.

Таким образом, в общих струйных построениях усматриваются глубокие связи между матрицами, полиномами и движениями. Остаётся провести аналогию с моментами в теории вероятностей и моментами в механике.

4 К теории моментов

В теории вероятностей для случайной величины X определяются начальные моменты ν_k и центральные моменты μ_k:

$$\nu_k = E X^k,$$
$$\mu_k = E (X - E X)^k,$$

где символ E означает математическое ожидание. При этом центральные моменты выражаются через начальные:

$$\mu_1 = 0,$$
$$\mu_2 = \nu_2 - \nu_1^2,$$
$$\mu_3 = \nu_3 - 3\nu_2\nu_1 + 2\nu_1^3,$$
$$\mu_4 = \nu_4 - 4\nu_3\nu_1 + 6\nu_2\nu_1^2 - 3\nu_1^4,$$

Оказывается, если начальные моменты отождествить с коэффициентами некоторого полинома u_t, то инварианты этого полинома будут совпадать с центральными моментами. Покажем это для полиномов степени $k = 2, 3, 4$.

$k=2$	
$u_t = \frac{1}{2} E (X + t)^2,$	$u = \frac{1}{2} E X^2 = \frac{1}{2} \nu_2,$
$u'_t = E (X + t),$	$u' = E X = \nu_1,$

14 См. [21], стр. 85; [5], стр. 99.
расписываем квадратичную функцию \(u_t \) и её произвольную \(u'_t \):

\[
\begin{align*}
u_t &= u + u't + \frac{t^2}{2}, \\
u'_t &= u' + t.
\end{align*}
\]

Определяя подстановку \(t \sim -u' \) и получаем слоевой инвариант, совпадающий, с точностью до коэффициента, с дискриминантом квадратичной функции и с центральным моментом \(\mu_2 \):

\[
\Delta = u - \frac{1}{2}(u')^2, \quad \Delta = \frac{1}{2} \mu_2.
\]

\[
\kappa = 3
\]

Принимая обозначения

\[
\begin{align*}
u_t &= \frac{1}{3!}E(X + t)^3, \\
u' &= \frac{1}{3!}EX^3 = \frac{1}{3!} \nu_3, \\
u'' &= \frac{1}{2}E(X + t)^2, \\
u'' &= \frac{1}{2}EX = \nu_2,
\end{align*}
\]

расписываем кубическую функцию \(u_t \) и её производные \(u'_t, u''_t \):

\[
\begin{align*}
u_t &= u + u't + u''t^2 + \frac{t^3}{3!}, \\
u'_t &= u' + \frac{t^2}{2}, \\
u''_t &= \frac{t^3}{2},
\end{align*}
\]

Определяя подстановку \(t \sim -u'' \) и получаем два слоевых инварианта, совпадающие, с точностью до коэффициентов, с центральными моментами \(\mu_2 \) и \(\mu_3 \):

\[
\begin{align*}i_0 &= u - u'u'' + \frac{1}{3}(u'')^3, \\
i_0 &= \frac{1}{3!} \mu_3, \\
i_1 &= u' - \frac{1}{2}(u'')^2, \\
i_1 &= \frac{1}{2} \mu_2.
\end{align*}
\]

Дискриминант кубической функции \(u_t \) выражается через инварианты \(i_0 \) и \(i_1 \) и центральные моменты \(\mu_2 \) и \(\mu_3 \):

\[
I = (3i_0)^2 + (2i_1)^3 = \frac{1}{4} \mu_3^2 + \mu_2^3.
\]

\[
\kappa = 4
\]
Принимая обозначения

\[u_t = \frac{1}{4!} E(X + t)^4, \quad u = \frac{1}{4!} EX^4 = \frac{1}{4!} \nu_4 \]
\[u'_t = \frac{1}{3!} E(X + t)^3, \quad u' = \frac{1}{3!} EX^3 = \frac{1}{3!} \nu_3, \]
\[u''_t = \frac{1}{2} E(X + t)^2, \quad u'' = \frac{1}{2} EX^2 = \frac{1}{2} \nu_2, \]
\[u'''_t = E(X + t), \quad u''' = EX = \nu_1, \]

расписываем \(u_t, u'_t, u''_t \) и \(u'''_t \):

\[u_t = u + u'_t + u''_t t^2 + u'''_t t^4, \]
\[u'_t = u' + u''_t t + u'''_t t^2, \]
\[u''_t = u'' + u'''_t t + \frac{t^2}{2}, \]
\[u'''_t = u''' + t. \]

Осуществляем подстановку \(t \rightarrow -u'''_t \) и получаем для полинома 4-ой степени \(u_t \) инварианты \(I_0, I_1, I_2 \), совпадающие, с точностью до числовых коэффициентов, с центральными моментами \(\mu_4, \mu_3, \mu_2 \):

\[I_0 = u - u'u''' + \frac{1}{2} u''(u''')^2 - \frac{1}{8} (u''')^4, \quad I_0 = \frac{1}{4!} \mu_4, \]
\[I_1 = u' - u''u''' + \frac{1}{3} (u''')^3, \quad I_1 = \frac{1}{3!} \mu_3, \]
\[I_2 = u'' - \frac{1}{2} (u''')^2, \quad I_2 = \frac{1}{2} \mu_2. \]

Всё это согласуется с экспоненциальным законом в пространстве \(J_{1,1} \)

\[U_t = e^{tC} U \quad \Rightarrow \quad I = e^{-tC} U, \]

и правилом для вычисления инвариантов оператора полного дифференцирования

\[D = \frac{\partial}{\partial t} + u' \frac{\partial}{\partial u} + u'' \frac{\partial}{\partial u'} + u''' \frac{\partial}{\partial u''} + \ldots, \]

с учётом, соответственно, условий \(u'' = 1, u''' = 1, u'''' = 1 \).

Аналогия наблюдается с моментами в механике. Так, математическому ожиданию \(\nu_1 = EX \) соответствует в механике статистический момент, центральному моменту \(\mu_2 = E(X - EX)^2 \), дисперсии – момент инерции и т. д. Если дискриминант квадратичной функции \(u_t \) записать в виде \(\Delta = uu'' - \frac{1}{2} (u')^2 \) и величины \(u, u' \) и \(u'' \) понимать как начальный путь, скорость и ускорение, тогда первое слагаемое в этом выражении выражает сделанную
к моменту \(t = 0 \) работу, или потенциальную энергию, второе – кинетическую энергию, а равенство \(\Delta' = 0 \) следует понимать как закон сохранения энергии. При этом нельзя не заметить, что дискриминант \(\Delta \) повторяется в виде \(i_1 \) и \(I_2 \) на высших этажах. В бильярд можно играть и в движущихся системах.

Список литературы

1. Bröcker, Th., Lander, L.: Differentiables Germs and Catastrophes. Cambridge UP (1975)
Перевод: Брёкер Т., Ландер Л. Дифференцируемые ростки и катастрофы, М., Мир (1977)
2. Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge UP (2002)
3. Ehresmann, Ch.: Catégories doubles et catégories structurées. C.R.A.S., 256, pp.1198–1201 (1963)
4. Hill, J.M.: Differential Equations and Group Methods. CRC (1993)
5. Kendall, M. G., Stuart, A.: The Advanced Theory of Statistics, 1, Distribution Theory.
London
Перевод: Теория распределений М., Наука (1966)
6. Krasil’shchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Non-linear Partial Differential Equations. NY, Gordon and Breach (1986)
7. Lychagin, V.V.: Lectures on Geometry of Differential Equations. Roma (1992)
8. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, (1993)
9. Ovsianikov, L.V.: Group Analysis of Differential Equations. Ac. Press, N.-Y., 1982
Овсянников Л. В. Групповой анализ дифференциальных уравнений. М., Наука, (1978)
10. Pradines, J.: Suites exactes vectorielles doubles et connexions. Archives de l’Académie des Sciences, 278, série A, pp. 1587–1590 (1974)
11. Rahula, M.: New Problems in Differential Geometry. WSP (1993)
12. Rahula, M.: Exponential Law in the Lie-Cartan Calculus. Rediconti del Seminario Matematico di Messina, Atti del Congresso Internazionale in onore di Pasquale Calapso, pp. 264–291 (1998)
13. Rahula, M.: Vector Fields and Symmetries. (Russian), Tartu UP (2004)
14. Saunders, D.J.: The Geometry of Jet Bundles. Cambridge UP, (1989)
15. Schouten, J.A., Struik, D.J.: Introduction in New Methods of Differential Geometry
Перевод: Схутен И.А., Стройк Д.Дж. Введение в новые методы дифференциальной геометрии. ГОНТИ, М.-Л., (1939)
16. Veblen, O., Whitehead, J.H.C.: The Foundations of Differential Geometry. (1932)
Перевод: Веблен О., Уайтхед Дж. Основания дифференциальной геометрии. М., ИЛ (1949)
17. Vilms, J.: Connections on Tangent Bundles. J. Diff. Geometry, pp. 235–243 (1967)
18. Vinogradov, A.M.: Local Symmetries and Conservation Laws. Acta Appl. Math., 2(1), 21–78 (1984)
19. Wagner, V.V.: Theory of Differential Objects and Foundations of Differential Geometry.
Из [16]
В.В.Вагнер Теория дифференциальных объектов и основы дифференциальной геометрии, в книге [16], стр. 135–223.
20. White, J.E.: The Method of Iterated Tangents with Applications in Local Riemannian Geometry. Pitman Publ. (1982)
21. Гмурман, В. Е.: Теория вероятностей и математическая статистика. М., Высшая школа (1977)
22. Симметрии и законы сохранения уравнений математической физики. (под ред. А.М. Виноградова и И.С. Красильщика), М., Факториал (1997)
23. Чеботарёв, Н.Г.: Теория групп Ли. М.-Л., ГИТТЛ (1940)
Maido Rahula & Vitali Retchnoi

Dual structures: floors and jets

A coupling of two structures, sectors after White and jets after Wagner, is considered. These structures are dual, as argument and functions, vectors and covectors, solutions and integrals of a differential equation, movements of particles and surrounding fields in physics. A connection, as a convertible jet or moving frame, ensures a tensor law for the coupling. It all holds true for the movements of the higher order.
Геодезические и F_2-планарные отображения при некоторых начальных условиях

Хана Худа Йозеф Микеш

Аннотация Настоящая статья посвящена вопросам однозначной определенности геодезических и F_2-планарных отображений n-мерных (псевдо-) римановых пространств $V_n \rightarrow \bar{V}_n$. Если метрики V_n и \bar{V}_n в конечном числе фиксированных точек (определенным способом расположенных в V_n) связаны условиями $\bar{g}(X,Y) = f g(X,Y)$, то F_2-планарное отображение гомотетично.

Ключевые слова Геодезические отображения · F_2-планарные отображения · Псевдо-римановы пространства

УДК 513

1 Введение

Вопросам геодезических, голоморфно-проективных F-планарных отображений “в целом” посвящено много работ, см. [8,9]. Большинство этих исследований проведено для собственно римановых пространств без края.

Используя метод А. Швеца [20], Й. Микеш [6,8,9] получил следующую теорему

Теорема 1 Пусть компактное ориентируемое собственное риманово пространство V_n с краем ∂V допускает F_2-планарное (или геодезическое) отображение на риманово пространство \bar{V}_n. Если во всех точках $m \in V_n$ секторная кривизна неположительна и во всех точках $m \in \partial V$ выполняется условие $\bar{g}(X,Y) = f g(X,Y)$ для метрик V_n и \bar{V}_n, где X,Y – произвольные касательные векторы, то это отображение является гомотетическим.
В настоящей статье рассматриваем F_2-планарные отображения n-мерных (псевдо-) римановых пространств $V_n \to \bar{V}_n$, метрики которых в конечном числе точек связаны условием $\bar{g}(X,Y) = f g(X,Y)$. При этих условиях F_2-планарные отображения являются гомотетическими.

2 К теории F-планарных отображений

Рассмотрим n-мерное аффинно-связное пространство A_n со связностью Γ без кручения и с аффиннорной структурой F, т.е. с тензорным полем типа $(1,1)$.

Кривая $x(t)$ называется F-планарной [9,12], если ее касательный вектор $\lambda = dx(t)/dt$ при параллельном перенесении остается в площадке образованной касательным вектором λ и ему сопряженным вектором $F\lambda$, т.е. $\nabla_\lambda \lambda = \varrho_1 \lambda + \varrho_2 F\lambda$, где ϱ_1, ϱ_2 — функции параметра t, ∇_λ — ковариантная производная вдоль вектора λ.

F-планарные кривые естественным образом обобщают геодезические, аналитически планарные (см. [8,9,15,21]) и квази-геодезические кривые ([13]).

Рассмотрим два пространства A_n и \bar{A}_n аффинной связности без кручения со связностями ∇ и $\bar{\nabla}$, соответственно. Далее на A_n и \bar{A}_n определены аффиннорные структуры F и \bar{F}, соответственно.

Определение 1 ([9,12]) Диффоморфизм $f: A_n \to \bar{A}_n$ называется F-планарным отображением, если при f все F-планарные кривые пространства A_n отображаются на \bar{F}-планарные кривые \bar{A}_n.

Соглашение. При диффоморфизме f мы будем предполагать, что ∇, $\bar{\nabla}$, F и \bar{F} определены на одном многообразии A_n.

При условии, что $\text{rank}\|F - \varrho I\| > 1$ во всех точках $x \in A_n$ (ϱ — некоторый инвариант, I — тождественный оператор) отображение A_n на \bar{A}_n является F-планарным тогда и только тогда, когда выполняются условия ([4,7,9,12])

$$\bar{\Gamma}(X,Y) = \Gamma(X,Y) + X\psi(Y) + Y\psi(X) + FX\varphi(Y) + FY\varphi(X), \quad (1)$$

$$\bar{F}X = \alpha FX + \beta X \quad (2)$$

для всех касательных векторов $X,Y \in T_x, T_x$ — касательное пространство в точке $x \in A_n$ и $\bar{\Gamma}$ — аффинная связность \bar{A}_n, ψ и φ — линейные формы, и α, β — инварианты.
F-планарные отображения обобщают геодезические, квази-геодезические, голоморфно-проективные, планарные и почти геодезические (типа π_2) отображения, см. [9,12,13,15,16,17,18,19,21].

Если A_n допускает F-планарное отображение на риманово пространство \bar{V}_n, то условия (1) равносильны уравнениям

$$\nabla_Z \bar{g}(X,Y) = 2\psi(Z)\bar{g}(X,Y) + \psi(X)\bar{g}(Y,Z) + \psi(Y)\bar{g}(X,Z) + \varphi(Z)(\bar{g}(X,FY) + \bar{g}(Y,FX)) + \varphi(X)\bar{g}(Y,FZ) + \varphi(Y)\bar{g}(X,FZ),$$

где \bar{g} является метрикой \bar{V}_n.

При условиях $\text{rank} \|F - \varrho I\| > 5$ уравнения (3) можно привести к виду системы типа Коши, общее решение которой зависит от $r \leq \frac{1}{2}n(n + 5) + 3$ параметров [7,9].

Известно, что $\nabla_Z \bar{g}(X,Y) = 2\psi(Z)\bar{g}(X,Y) + \psi(X)\bar{g}(Y,Z) + \psi(Y)\bar{g}(X,Z)$ характеризует геодезическое отображение, и $\nabla_Z \bar{g}(X,Y) = 0$ — аффинное (или тривиальное геодезическое), см. [1,2,8,9,11,13,15,21].

3 Первый квадратичный интеграл геодезических

Пусть A_n — пространство с аффинной связностью ∇. В A_n определяют геодезические пути γ. Геодезический путь $\gamma: x = x(s)$ — это интегральная кривая A_n, характеризующаяся уравнениями:

$$\nabla_{\dot{x}} \dot{x} = 0,$$

где \dot{x} — касательный вектор к γ, “·” — означает дифференцироване относительно аффинного параметра s геодезической γ [2,11,?].

Первым квадратичным интегралом геодезических (однородным) называется выражение

$$a(\dot{x}, \dot{x}) = \text{const},$$

где a — симметрическая билинейная форма на A_n. Билинейная форма допускает первый квадратичный интеграл геодезических тогда и только тогда, когда выполняется условие [1,2]:

$$\nabla_X a(Z,Y) + \nabla_Y a(X,Z) + \nabla_Z a(Y,X) = 0,$$

для всех касательных векторов $X,Y,Z \in T A_n$.

Если пространство A_n является (псевдо-) римановым V_n с метрикой g, тогда $\text{const} \cdot g$ является первым квадратичным интегралом геодезических. Этот интеграл принято называть тривиальным.
4 F_2-планарные отображения и их первый квадратичный интеграл геодезических

При изучении вопросов моделирования физических полей А.З. Петров [13] ввел в рассмотрение квази-геодезические отображения псевдо-римановых пространств $V_4 \rightarrow \bar{V}_4$. По существу, эти отображения определяются тем, что все геодезические пространства V_4 отображаются на квази-геодезические кривые пространства \bar{V}_4 (в нашей терминологии – F-планарные) при дополнительных условиях.

Если V_4 допускает квази-геодезическое отображение на \bar{V}_4, то выполняются условия (1) и $\bar{g}(X, FX) = 0$, для всех X, причем эти условия не являются достаточными. В 1980 г. Я. Шапиро [14] обобщил идею квази-геодезических отображений на случай $A_n \rightarrow \bar{A}_n$. Много геометров изучали квази-геодезические отображения $A_n \rightarrow \bar{A}_n$ и $A_n \rightarrow \bar{V}_n$ в смысле Шапиро. В работе [5] отображения (псевдо-) римановых пространств $V_n \rightarrow \bar{V}_n$, при выполнении условий (1) и $\bar{g}(X, FX) = 0$ названы квази-геодезическими.

F-планарное отображение A_n на (псевдо-) риманово пространство V_n называем F_1-планарным, если при нем выполняется условие

$$\bar{g}(X, FX) = 0,$$

для всех $X \in T_x$.

Доказано, что основные уравнения F_1-планарных отображений A_n на \bar{V}_n можно привести к системе типа Коши и общее решение зависит от $r \leq \frac{1}{2}(n + 1)(n + 2)$ числовых параметров.

Далее предполагаем, что форма $\psi(X)$ является градиентом некоторой функции ψ, т.е.

$$\psi(X) = \nabla_X \psi.$$ \hspace{1cm} (8)

Этот вид F_1-планарных отображений назовем F_2-планарными [7].

Имеет место

Теорема 2 Пусть A_n допускает F_2-планарные (или геодезические) отображение на риманово пространство \bar{V}_n. Тогда

$$\exp(-4\psi(x)) \bar{g}(\dot{x}, \dot{x})$$

является первым квадратичным интегралом геодезических пространства A_n, где $\dot{x} = dx/ds$ – касательный вектор геодезических $x(s)$ пространства A_n и s – канонический параметр.
Доказательство Пусть \(x(s) \) является геодезической пространства \(A_n \) и \(s \) – ее канонический параметр. Тогда \(\nabla_{\dot{x}} \dot{x} = 0 \). Легко убедиться, что на основании формул (3), (7) и (8) выполняются условия

\[
\nabla_{\dot{x}} (\exp(-4\psi(x)) \bar{g}(\dot{x}, \dot{x})) = 0.
\]

Это означает, что (9) является первым квадратичным интегралом геодезических \(x(s) \).

5 Об \(F_2 \)-планарных отображениях при специальных краевых условиях

Предварительно докажем следующее предложение.

Предложение 1 Если \(V_n \) допускает аффинное (т.е. тривиальное геодезическое) отображение на \(\bar{V}_n \) и в некоторой точке \(x \in V_n \) выполняется условие

\[
\bar{g} = k g,
\]

то это отображение является гомотетическим, т.е. в каждой точке \(V_n \) выполняется (10), где \(k \) – постоянная.

Доказательство Аффинное отображение \(V_n \) на \(\bar{V}_n \) характеризуется уравнениями \(\nabla_Z \bar{g}(X,Y) = 0 \). Известно, что начальные условия (10) в некоторой точке определяют единственное решение этих уравнений. Очевидно, что тогда \(\bar{g} = k g \) (во всех точках \(V_n \)) является искомым единственным решением уравнений (10). С другой стороны, этим условием характеризуются гомотетические отображения.

Далее будем изучать \(F_2 \)-планарное (или геодезическое) отображение \(f \): \(V_n \rightarrow \bar{V}_n \) (псевдо-) римановых пространств \(V_n \) и \(\bar{V}_n \).

Предположим, что в \(V_n \) существует связная область \(V \) так, что ее граница \(\partial V \) является Липшицовой границей, см. [3], р. 46, и дополнительно в \(V \) выполняются следующие условия:

Пусть \(x \) – некоторая внутренняя точка области \(V \), т.е. \(x \in \text{int} \ V \). Метрика \(g \) пространства \(V_n \) в этой точке является билинейной формой \(g_x \), такой что: \(T_x \times T_x \rightarrow R \), где \(T_x \) – касательное пространство в точке \(x \), \(\dim T_x = n \). С другой стороны \(g_x \): \(S^2T_x \rightarrow R \), где \(S^2T_x \) – симметрическая часть второго порядка \(T_x \). Очевидно, \(\dim S^2T_x = N = \frac{1}{2}n(n+1) \).

Построим в точке \(x \) векторы \(v_1, v_2, \ldots, v_N \in T_x \) так, что

1. \(v_1 \circ v_1, v_2 \circ v_2, \ldots, v_N \circ v_N \) образуют базис \(S^2T_x \),
2. \(g(v_i, v_i) \neq 0 \), для \(\forall i = 1, 2, \ldots, N \).

Очевидно, имеет место

\[
\bar{g}(v_i, v_i) = k g(v_i, v_i), \quad \forall i = 1, 2, \ldots, N \iff \bar{g} = k g. \tag{11}
\]

Далее построим \(N \) геодезических путей \(\gamma_i(s), i = 1, \ldots, N \), для которых \(x \in \gamma_i \) и векторы \(v_i \) являются касательными к \(\gamma_i \) в точке \(x \). Построим точки \(x_i \) на каждой из этих геодезических \(\gamma_i \) и предполагаем, что дуга геодезической \((x, x_i) \) находится целиком в области \(V \).

Через \(\gamma_{ij} \) обозначим геодезические дуги соединяющие точки \(x_i \) и \(x_j \). Предположим, что \(\gamma_{ij} \) являются неизотропными и дуги \((x_i, x_j) \) тоже находятся в области \(V \). Эта система геодезических \(\gamma_{ij} \) может быть "неполная".

Достаточно, чтобы любые две точки \(x_i \) и \(x_j \) было можно соединить геодезическими дугами этой системы. Это означает, что необязательно чтобы все точки \(x_i \) и \(x_j \) были соединены геодезической \(\gamma_{ij} \) (т.е. она может не существовать).

Естественно, что существует открытая окрестность \(U \subset V \) данной точки \(x \), так, что для всех точек \(y \in U \) существуют неизотропные геодезические дуги \((\subset V) \) соединяющие \(y \) с точками \(x_i \), для которых касательные векторы являются базисом в \(S^2 T_y \).

Имеет место

Лемма 1 Пусть имеем \(F_2 \)-планарное (или геодезическое) отображение \(f: V_n \rightarrow \tilde{V}_n \). Если в \(V_n \) существует выше описанная область \(V \) и в точках \(x_i, i = 1, 2, \ldots, N \), выполняются условия

\[
\bar{g}_{x_i} = k_i g_{x_i}, \tag{12}
\]

тогда в точке \(x \) и ее окрестности \(U \) выполняется условие \(\bar{g} = k g \), где \(k \) – постоянная, это значит, что \(U \) допускает гомотетическое отображение на \(\tilde{U} \subset \tilde{V}_n \).

Доказательство На основании теоремы 2 следует, что вдоль неизотропной геодезической линии \(\gamma: x = x(s) \), где \(s \) - параметр дуги (т.е. \(g(\dot{x}, \dot{x}) = \pm 1 \)), имеет место

\[
\bar{g}_x(\dot{x}, \dot{x}) = \exp(4\psi(x)) C_\gamma g_x(\dot{x}, \dot{x}), \tag{13}
\]

где \(C_\gamma \) являются коэффициентами, которые зависят от геодезической \(\gamma \).

На основании условий (13) для геодезических дуг \(\gamma_{ij} \) между точками \(x_i \) и \(x_j \), учитывая (12), получим

\[
\exp(-4\psi(x_i)) k_i = \exp(-4\psi(x_j)) k_j. \tag{14}
\]
Геодезические и F_2-планарные отображения

Так как все точки x_1, x_2, \ldots, x_N связаны между собой системой геодезических дуг, то условия (14) верны для всех $i, j = 1, 2, \ldots, N$. Поэтому эти условия можем записать так

$$\exp(-4\psi(x_i)) k_i = C, \quad \text{for} \quad i = 1, 2, \ldots, N. \quad (15)$$

Затем для геодезических γ_i связывающих точки x_i и x_i, после применения формулы (13) в точке x имеем

$$\bar{g}_x(\dot{x}, \dot{x}) = \exp(4\psi(x)) C \gamma_i g_x(\dot{x}, \dot{x}), \quad (16)$$

и в точке x_i:

$$k_i = \exp(4\psi(x_i)) C \gamma_i. \quad (17)$$

Применив формулу (15) получим, что $C \gamma_i = C$, для всех $i = 1, 2, \ldots, N$. Окончательно из формулы (16) получим

$$\bar{g}_x(\dot{x}, \dot{x}) = \exp(4\psi(x)) C g_x(\dot{x}, \dot{x}),$$

для всех геодезических $\gamma_i, i = 1, 2, \ldots, N$.

Очевидно, что

$$\bar{g}_x(v_i, v_i) = \exp(4\psi(x)) C g_x(v_i, v_i), \quad i = 1, 2, \ldots, N \quad (17)$$

Из (11) следует

$$\bar{g} = C \exp(4\psi(x)) g. \quad (18)$$

Аналогичным образом докажем, что эта формула верна и для всех точек области U, которая является окрестностью точки x. Следовательно, область U допускает конформное отображение на некоторую область $\bar{U} \subset V_n$. После подстановки (18) в (3) убедимся, что $\psi(X) = \varphi(X) = 0$ и $\nabla_Z \bar{g}(X, Y) = 0$. Следовательно, отображение является аффинным и на основании леммы 1 вытекает, что рассматриваемое отображение области U является гомотетичным.

Так как, для F_2-планарных (или геодезических) отображений основные уравнения (3) сводятся к системе уравнений типа Коши и в области U существует единственное ее решение, то решение этой системы должно быть единственное и в соответствующей области V, и более того “в целом” на V_n.

Очевидно, это единственное решение имеет вид

$$\bar{g} = k g,$$

где k — const, и тогда рассматриваемое F_2-планарное (или геодезическое) отображение $V \rightarrow \bar{V}$ является гомотетическим.

Таким образом, мы доказали следующую теорему.
Теорема 3 Пусть имеем F_2-планарное (или геодезическое) отображение $f: V_n \to \bar{V}_n$, пусть в V_n существует выше описанная область V и в точках $x_i, i = 1, 2, \ldots, N$, выполняются условия

$$\bar{g}_{x_i} = k_i g_{x_i}. \quad (12)$$

Тогда это отображение f является гомотетическим.

Сформулированная теорема существенно обобщает Теорему 1, так как не нужны ограничения на кривизну V_n. С другой стороны, Теорема 1 интересна для случая, когда $\partial V = 0$ (что не исключается) или когда граница ∂V более специфическая.

Благодарности Работа выполнена при поддержке грантов MSM 6198959214 Чешской Республики.

Список литературы

1. Aminova, A.V.: Projective transformations of pseudo-Riemannian manifolds. J. Math. Sci., New York, 113(3), 367–470 (2003)
2. Eisenhart, L.P.: Riemannian geometry. Princenton Univ. Press (1926).
3. Fučík, S. Kufner, A.: Nonlinear differential equations. (Czech). TKI, SNTL, Praha (1978)
4. Hinterleitner, I., Mikeš, J.: On F-planar mappings of spaces with affine connections. Note di Matematica, 27(1), 111–118 (2007)
5. Kurbatova, I.N.: HP-mappings of H-spaces. Ukr. Geom. Sb. 27, 75–83 (1984)
6. Mikeš, J.: Global geodesic mappings and their generalizations for compact Riemannian spaces. Proc. of Conf. Diff. Geom. and its Appl. Opava, 143–149 (1992)
7. Mikeš, J.: Special F-planar mappings of affinely connected spaces onto Riemannian spaces. Mosc. Univ. Math. Bull. 49(3), 15–21 (1994). Translation from Vestn. Mosk. Univ., Ser. I, No. 3, 18–24 (1994)
8. Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78(3), 311–333 (1996)
9. Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89(3), 1334–1353 (1998)
10. Mikeš, J.: F-planar mappings onto Riemannian spaces. Sb. trudov mezhd. konf. “Invariantnye metody issl. na mnogoobrazijah struktur geometrii, analiza i mat. fiziki”. Mosc. Univ. Tom 2, 138–145 (2001)
11. Mikeš, J., Kiosak, V. Vanžurová, A.: Geodesic mappings of manifolds with affine connection. Palacky University Press, 220pp. (2008)
12. Mikeš, J., Sinyukov, N.S.: On quasiplanar mappings of spaces with affine connection. Sov. Math. 27(1), 63-70 (1983). Translation from Izv. Vyssh. Uchebn. Zaved., Mat. No. 1 (248), 55–61 (1983)
13. Petrov, A.Z.: New Methods in Theory of General Relativity. “Nauka”, Moscow, (1966)
14. Shapiro, Ya.L.: On a quasi-geodesic mapping. Sov. Math. 24(9), 63–67 (1980)
15. Sinyukov, N.S.: Geodesic mappings of Riemannian spaces. “Nauka”, Moscow, (1979)
16. Sinyukov, N.S.: Almost geodesic mappings of affine connected and Riemannian spaces. Math. Notes 17, 450–454 (1975). Translation from Itogi Nauki Tekh., Ser. Probl. Geom. 13, 3–26 (1982)
17. Sobchuk, V.S.: Interior almost geodesic mappings. Sov. Math. 33(5), 97-101 (1989). Translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1989, No. 5 (324), (1989) 62–64.
18. Sobchuk, V.S.: Intrinsic almost geodesic mapping. Izv. Vyssh. Uchebn. Zaved., Mat. 1989, No. 5 (324), (1989) 62–64.
19. Sobchuk, V.S.: On almost geodesic mappings in the class of semi-symmetric pseudo-Riemann spaces. (Ukrainian. English summary) Nauk. Visn. Chernivets’kogo Univ., Mat. 76, 107–108 (2000)

20. ˇSvec, A. Afwat, M.: Global differential geometry of hypersurfaces. Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. 88(7), 75 pp. (1978)

21. Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, Oxford, (1965)

Хана Худа
Университет им. Т. Бати, Злин, Чешская республика.
E-mail: chuda@ft.utb.cz

Йозеф Микеш
Университет им. Ф. Палацкого, Оломоуц, Чешская республика.
E-mail: mikes@inf.upol.cz

Hana Chudá & Josef Mikeš

Geodesic and F_2-planar mappings with certain initial conditions

In this paper we investigate special F-planar mappings of n-dimensional (pseudo) Riemannian spaces $V_n \rightarrow V_n$ with metric satisfying at a finite number of points following conditions $\bar{g}(X,Y) = f g(X,Y)$. It comes out that even under this conditions it holds that F-planar mapping is homothetic.