Dysmenorrhea and related disorders [version 1; referees: 3 approved]

Mariagiulia Bernardi¹, Lucia Lazzeri¹, Federica Perelli², Fernando M. Reis³, Felice Petraglia²

¹Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy
²Department of Experimental, Clinical and Biomedical Sciences, Obstetrics and Gynaecology, University of Florence, Florence, Italy
³Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract
Dysmenorrhea is a common symptom secondary to various gynecological disorders, but it is also represented in most women as a primary form of disease. Pain associated with dysmenorrhea is caused by hypersecretion of prostaglandins and an increased uterine contractility. The primary dysmenorrhea is quite frequent in young women and remains with a good prognosis, even though it is associated with low quality of life. The secondary forms of dysmenorrhea are associated with endometriosis and adenomyosis and may represent the key symptom. The diagnosis is suspected on the basis of the clinical history and the physical examination and can be confirmed by ultrasound, which is very useful to exclude some secondary causes of dysmenorrhea, such as endometriosis and adenomyosis. The treatment options include non-steroidal anti-inflammatory drugs alone or combined with oral contraceptives or progesterons.
Introduction

Dysmenorrhea is defined as the presence of painful cramps of uterine origin that occur during menstruation and represents one of the most common causes of pelvic pain and menstrual disorder. The International Association for the Study of Pain defines pain as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”\(^1\). In particular, chronic pelvic pain is located in the pelvic area and lasts for 6 months or longer\(^1\).

The burden of dysmenorrhea is greater than any other gynecological complaint\(^2\); dysmenorrhea is the leading cause of gynecological morbidity in women of reproductive age regardless of age, nationality, and economic status\(^3,4\). The effects extend beyond individual women to society, resulting annually in an important loss of productivity\(^5,6\). Thus, the World Health Organization estimated that dysmenorrhea is the most important cause of chronic pelvic pain\(^7\).

The estimated prevalence of dysmenorrhea is high, although it varies widely, ranging from 45 to 93% of women of reproductive age\(^1,8,9\), and the highest rates are reported in adolescents\(^10,11\). Because it is accepted as a normal aspect of the menstrual cycle and therefore is tolerated, women do not report it\(^12\) and do not seek medical care\(^13,14\). Some women (3 to 33%) have very severe pain, severe enough to render them incapacitated for 1 to 3 days each menstrual cycle, requiring absence from school or work\(^15,16\). Indeed, dysmenorrhea has a high impact on women’s lives, resulting in a restriction of daily activities\(^17,18\), a lower academic performance in adolescents\(^19,20\), and poor quality of sleep\(^1\), and has negative effects on mood, causing anxiety and depression\(^21\).

Definition and pathogenesis

On the basis of pathophysiology, dysmenorrhea is classified as primary dysmenorrhea (menstrual pain without organic disease) or secondary dysmenorrhea (menstrual pain associated with underlying pelvic pathology)\(^22\). The cause of primary dysmenorrhea is not well established. However, the responsible cause has been identified on the hyper-production of uterine prostaglandins, particularly of PGF\(_2\alpha\) and PGF\(_\alpha\), thus resulting in increased uterine tone and high-amplitude contractions\(^23\). Women with dysmenorrhea have higher levels of prostaglandins, which are highest during the first two days of menses\(^23\). Prostaglandin production is controlled by progesterone: when progesterone levels drop, immediately prior to menstruation, prostaglandin levels increase\(^1,24\). If the exposure of endometrium to luteal phase is crucial for the increased production of progesterone, dysmenorrhea occurs only with ovulatory cycles. This could explain why primary dysmenorrhea onset is shortly after menarche and why dysmenorrhea responds well to ovulatory inhibition. However, multiple other factors may play a role in the perception and the severity of pain, which does not depend only on endocrine factors\(^25\).

The recurrent menstrual pain is associated with central sensitization, which is associated with structural and functional modification of the central nervous system\(^26,27\). Given that dysmenorrhea might led to important long-term consequences and may be increasing women’s susceptibility to others chronic pain conditions later in life, it is mandatory to treat menstrual pain in order to limit the noxious input into the central nervous system\(^28\). The most common causes of secondary dysmenorrhea in young women are endometriosis and adenomyosis.

Endometriosis

Endometriosis is characterized by the presence of endometrial tissue (glands and stroma) outside the uterine cavity and is the most common cause of secondary dysmenorrhea\(^7,29\). Pain symptoms negatively influence physical and psychological well-being of women with endometriosis. All forms of pain induce elevated sympathetic nervous system activity and this is considered a stressor, inducing changes in neuromediators, neuroendocrine, and hormonal secretions\(^27,29\).

Given that women with endometriosis wait before getting the right diagnosis\(^30\), a great deal of effort has been made in recent years to try to find signs and symptoms that would help in making an earlier diagnosis. The early identification of these symptoms could help reduce the delay necessary for diagnosis\(^31\) and enable the use of less invasive procedures\(^32\). An early age onset of dysmenorrhea is considered a risk factor for endometriosis\(^33\); other menstrual characteristics such as cycle length and menstrual bleeding duration and quantity are not related to the development of endometriosis. Parameters that may predict a later finding of deep infiltrating endometriosis are prolonged use of oral contraceptives (OCs) for treating primary dysmenorrhea, absenteeism from school during menstruation, and a positive family history of dysmenorrhea\(^34\).

The endometriosis prevalence is higher in adolescents with chronic pelvic pain resistant to treatment with OC pills and non-steroidal anti-inflammatory drugs (NSAIDs) and in girls with dysmenorrhea\(^35\). Therefore, severe dysmenorrhea that does not respond to medical therapy warrants further investigation such as by laparoscopy\(^36\).

Adenomyosis

Adenomyosis is defined as the presence of endometrial glands and stroma within the myometrium and is associated with dysmenorrhea and abnormal uterine bleeding (AUB). Adenomyosis is one of the most common causes of AUB\(^37\). The diagnosis is usually confirmed through transvaginal ultrasonography and magnetic resonance imaging. Via specific ultrasonographic criteria by bidimensional and tridimensional transvaginal ultrasound (morphological uterus sonographic assessment)\(^38\), the detection of adenomyosis features by imaging is accepted and the association with menstrual pain, heavy menstrual bleeding, and infertility may facilitate the diagnosis of adenomyosis\(^39\). A 34% incidence of adenomyosis ultrasonographic features is found in young nulligravid women 18 to 30 years of age and is associated with dysmenorrhea\(^39\).

Risk factors

Heavy menstrual bleeding and longer menstrual bleeding duration are often associated with dysmenorrhea\(^1,30\). Childbearing is a very influential factor for the decrease of dysmenorrhea\(^1\). Increasing age is also associated with less severe dysmenorrhea\(^3\), although a longitudinal study found that the proportion of women with moderate to severe dysmenorrhea remained constant with increasing age\(^1\).
The early onset of pain is associated with more severe pain\(^1\), and a family history of dysmenorrhea is associated with a significantly higher prevalence of dysmenorrhea\(^2\). Since anxiety and depression are often associated, dysmenorrhea may be part of a somatoform syndrome\(^3\).

Diagnosis

A focused history and physical examination are usually sufficient for making a diagnosis of primary dysmenorrhea\(^2\),\(^3\),\(^26\). The onset of primary dysmenorrhea is usually 6 to 12 months after menarche. The typical pain is sharp and intermittent, is located in the suprapubic area, and develops within hours of the start of menstruation and peaks with maximum blood flow\(^2\). The physical examination is completely normal, and the menstrual pain may be associated with systemic symptoms, such as nausea, vomiting, diarrhea, fatigue, fever, headache, and insomnia\(^1\),\(^16\),\(^40\). There is no evidence for routine use of ultrasound in the evaluation of primary dysmenorrhea, although ultrasound is very useful in excluding the secondary causes of dysmenorrhea, such as endometriosis and adenomyosis\(^26\) (Figure 1).

Dysmenorrhea that occurs any time after menarche, that is associated with other gynecological symptoms such as dyspareunia, heavy menstrual bleeding, AUB, and infertility, and that does not respond to treatment with NSAIDs or OCs might be suspicious for secondary dysmenorrhea\(^23\),\(^24\). In particular, the analysis of menstrual bleeding abnormalities associated with dysmenorrhea might be helpful for the diagnosis of adenomyosis (Figure 1).

Figure 1. Flowchart for the management of patients with dysmenorrhea. Flowchart for the management of patients with dysmenorrhea.
Treatment
The aim of the treatment for primary dysmenorrhea is pain relief.

Non-steroidal anti-inflammatory drugs
NSAIDs are usually the first-line therapy for dysmenorrhea and should be tried for at least three menstrual periods. If NSAIDs alone are not sufficient, OCs can be combined with it. NSAIDs are drugs that act by blocking prostaglandin production through the inhibition of cyclooxygenase, an enzyme responsible for formation of prostaglandins. Common NSAIDs (aspirin, naproxen, and ibuprofen) are very effective in relieving period pain. They make the menstrual cramps less severe and can prevent other symptoms such as nausea and diarrhea. NSAIDs reduce moderate to severe pain in women with primary dysmenorrhea. With the widespread availability of NSAIDs, the management of dysmenorrhea is mainly self-care.

Oral contraceptives
Contraceptive hormones act by suppressing ovulation and causing no endometrial proliferation. OCs bring almost immediate relief from symptoms associated with menstruation: heavy periods, painful periods, and irregular bleeding. In addition, OCs often are used as therapeutic drugs for women with symptomatic menstrual pain and endometriosis. The effectiveness of OC therapy for treating dysmenorrhea, regardless of the administration route (oral, transdermal, intravaginal, or intraterine), has been shown. The use of OCs in a continuous fashion can be considered to treat primary dysmenorrhea, with two main advantages: the reduction of associated menstrual disorders and the improvement in women’s pain relief. However, limited evidence supports the use of OCs as a standard treatment.

The choice between the use of combined OCs and oral progesterone should be guided by the patient’s pain relief, the tolerability of possible adverse effects especially linked to the frequency of breakthrough bleeding and weight gain, and the patient’s basal risk of venous thromboembolism.

Progestins
Hormonal progestins-only treatment produces a benefit on menstrual pain, causing endometrial atrophy and inhibiting ovulation. Several long-acting reversible progestin contraceptives have been found to be effective treatments for primary dysmenorrhea. These include 52-mg (20 µg/day) levonorgestrel-releasing intruterine system, the etonogestrel-releasing subdermal implant, and depot medroxyprogesterone.

Author contributions
MB helped to carry out the research and to prepare the first draft of the manuscript. LL designed the study, helped to carry out the research, and helped to prepare the first draft of the manuscript. F Perelli helped to carry out the research and contributed to the preparation of the manuscript. FMR contributed to the research, provided expertise in the literature review, and contributed to the preparation of the manuscript. F Petragnia conceived the study and contributed to the preparation of the manuscript. All authors were involved in the revision of the draft manuscript and have agreed to the final content.

Competing interests
The authors declare that they have no competing interests.

Grant information
The author(s) declared that no grants were involved in supporting this work.

References
1. Hanoch Kumar K, Elavaraip: Definition of pain and classification of pain disorders. Journal of Advanced Clinical & Research Insight. 2016; 3: 87–90. PubMed Abstract
2. ACOG Committee on Practice Bulletins–Gynecology: ACOG Practice Bulletin No. 51. Chronic pelvic pain. Obstet Gynecol. 2004; 103(3): 689–605. PubMed Abstract
3. Patel V, Tankasale V, Sahasrabhojanee M, et al.: The burden and determinants of dysmenorrhea: a population-based survey of 2262 women in Goa, India. BJOG. 2006; 113(4): 453–63. PubMed Abstract | Publisher Full Text
4. Harlow SD, Campbell OM: Epidemiology of menstrual disorders in developing countries: a systematic review. BJOG. 2004; 111(1): 6–16. PubMed Abstract | Publisher Full Text
5. Weissman AM, Hartz AJ, Hansen MD, et al.: The natural history of primary dysmenorrhea: a longitudinal study. BJOG. 2004; 111(4): 345–52. PubMed Abstract | Publisher Full Text
6. Wong LP, Kho EM: Dysmenorrhea in a multiethnic population of adolescent Asian girls. Int J Gynaecol Obstet. 2010; 108(2): 139–42. PubMed Abstract | Publisher Full Text
7. De Sanctis V, Soliman A, Bemascro S, et al.: Primary Dysmenorrhea in Adolescents: Prevalence, Impact and Recent Knowledge. Pediatr Endocrinol Rev. 2015; 13(2): 512–20. PubMed Abstract
8. Thomas SL, Ellerton C: Nuisance or natural and healthy: should monthly menstruation be optional for women? Lancet. 2000; 355(9207): 922–4. PubMed Abstract | Publisher Full Text
9. Eryilmaz G, Ozdemir F, Pasinlioglu T: Dysmenorrhea prevalence among adolescents in eastern Turkey: its effects on school performance and relationships with family and friends. J Pediatr Adolesc Gynecol. 2010; 23(5): 267–72. PubMed Abstract | Publisher Full Text
10. Latthe P, Latthe M, Say L, et al.: WHO systematic review of prevalence of chronic pelvic pain: a neglected reproductive health morbidity. BMC Public Health. 2006; 6: 177. PubMed Abstract | Publisher Full Text | Free Full Text
11. Parker MA, Sneddon AE, Arbon P: The menstrual disorder of teenagers (MDOT) study: determining typical menstrual patterns and menstrual disturbance in a large population-based study of Australian teenagers. BJOG: 2010; 117(2): 185–92. PubMed Abstract | Publisher Full Text
12. Lindh I, Ellström MA, Milson I: The effect of combined oral contraceptives and age on dysmenorrhea: an epidemiological study. Hum Reprod. 2012; 27(3):
676–82. PubMed Abstract | Publisher Full Text

13. Wong CL, Farquhar C, Roberts H, et al.: Oral contraceptive pill for primary dysmenorrhea. Cochrane Database Syst Rev. 2009; (4): CD00120. PubMed Abstract | Publisher Full Text

14. Subasinghe AK, Hapro L, Jayasinghe YL, et al.: Prevalence and severity of dysmenorrhea, and management options reported by young Australian women. Aust Fam Physician. 2016; 45(11): 829–34. PubMed Abstract

15. Annunziata C, Giorgi M, Spagnolo E, et al.: Dysmenorrhea, absenteeism from school, and symptoms suspicious for endometriosis in adolescents. J Pediatr Adolesc Gynecol. 2014; 27(5): 258–65. PubMed Abstract | Publisher Full Text

16. Ortiz MI, Rangel-Flores E, Carrillo-Alarcón LC, et al.: Prevalence and impact of primary dysmenorrhea among Mexican high school students. Int J Gynaecol Obstet. 2009; 107(3): 240–3. PubMed Abstract | Publisher Full Text

17. Chang Y, Mitchell D, Fuller A: Actigraphy quantifies reduced voluntary physical activity in women with primary dysmenorrhea. J Pain. 2009; 10(1): 38–46. PubMed Abstract | Publisher Full Text

18. Banikarim C, Chacko MR, Kelder SH: Primary dysmenorrhea magnitude, chronic pelvic pain and endometriosis. J Adolesc Health. 2010; 47(2): 138–45. PubMed Abstract | Publisher Full Text

19. Baker FC, Driver HS, Rogers GG, et al.: High nocturnal body temperatures and disturbed sleep in women with primary dysmenorrhea. Am J Physiol. 1999; 277(6 Pt 1): E1063–21. PubMed Abstract

20. Dorndorf LD, Negriff S, Huang B, et al.: Dysmenorrhea, absenteeism from school, and low dose combined oral hormonal pill for the treatment of idiopathic chronic pelvic pain: a randomised trial. Hum Reprod Update. 2013; 19(5): 570–82. PubMed Abstract | Publisher Full Text | F1000 Recommendation

21. Munro MG, Critchley HO, Broder MS, et al.: FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int J Gynaecol Obstet. 2011; 113(1): 3–13. PubMed Abstract | Publisher Full Text

22. van den Bosch T, Dueholm M, Leone FP, et al.: Terms, definitions and measurements to describe sonographic features of myometrium and uterine masses: a consensus opinion from the Morphological Uterus Sonographic Assessment (MUSA) group. Ultrasound Obstet Gynecol. 2015; 46(3): 284–98. PubMed Abstract | Publisher Full Text

23. F Hailemese Selassie S, Demissie A, Asfaw A: Primary dysmenorrhea magnitude, associated risk factors, and its effect on academic performance: evidence from female university students in Ethiopia. Int J Womens Health. 2016; 8: 489–96. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

24. Unsal A, Ayanci U, Tuzon M, et al.: Prevalence of dysmenorrhea and its effect on quality of life among a group of female university students. Ups J Med Sci. 2010; 116(2): 138–45. PubMed Abstract | Publisher Full Text | Free Full Text

25. Dorn LD, Negriff S, Huang B, et al.: The prevalence of dysmenorrhea and low dose combined oral hormonal pill for dysmenorrhea associated with endometriosis: a placebo-controlled, double-blind, randomized trial. Fertil Steril. 2009; (4): CD002120. PubMed Abstract | Publisher Full Text | F1000 Recommendation

26. Dunselman GA, Vermeulen N, Becker C, et al.: ESHRE guideline: management of women with endometriosis. Hum Reprod. 2014; 29(3): 400–12. PubMed Abstract | Publisher Full Text | F1000 Recommendation

27. Harada T, Norpoth N, Schmitzer J, et al.: Clinical experience with a modern low-dose oral contraceptive in almost 100,000 users. Contraception. 1991; 43(2): 101–10. PubMed Abstract | Publisher Full Text

28. Harada T, Momooda M, Taketani Y: Low-dose oral contraceptive pill for dysmenorrhea associated with endometriosis: a placebo-controlled, double-blind, randomized trial. Fertil Steril. 2008; 90(5): 1583–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

29. Harada T, Momooda M, Terakawa N, et al.: Evaluation of a low-dose oral contraceptive pill for primary dysmenorrhea: a placebo-controlled, double-blind, randomized trial. Fertil Steril. 2011; 95(6): 1928–31. PubMed Abstract | Publisher Full Text | F1000 Recommendation

30. Harada T, Momooda M: Evaluation of an ultra-low-dose oral contraceptive for dysmenorrhea: a placebo-controlled, double-blind, randomized trial. Fertil Steril. 2016; 106(7): 1807–14. PubMed Abstract | Publisher Full Text | F1000 Recommendation

31. Priya K, Rajaram S, Goel N: Comparison of combined hormonal vaginal ring and low dose combined oral hormonal pill for the treatment of idiopathic chronic pelvic pain: a randomised trial. Eur J Obstet Gynecol Reprod Biol. 2016; 207: 141–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

32. Vercellini P, Buggino L, Berlenda N, et al.: Estrogen-progestins and progestins for the management of endometriosis. Fertil Steril. 2016; 107(7): 1552–1571.e2. PubMed Abstract | Publisher Full Text | F1000 Recommendation

33. Ryan SA: The treatment of dysmenorrhea. Pediatr Clin North Am. 2017; 64(2): 331–42. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✓ ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Caio Parente Barbosa
Collective Health Department, Division of Sexual and Reproductive Health Care and Population Genetics, Faculty of Medicine ABC, Santo André, Brazil
Competing Interests: No competing interests were disclosed.

1 Juan Luis Alcázar
Department of Obstetrics and Gynecology, University of Navarra, School of Medicine, Pamplona, Spain
Competing Interests: No competing interests were disclosed.

1 Luis Bahamondes
Department of Obstetrics and Gynecology, University of Campinas Medical School, Campinas, Brazil
Competing Interests: No competing interests were disclosed.