THE OBATA SPHERE THEOREMS ON A QUATERNIONIC CONTACT MANIFOLD OF DIMENSION BIGGER THAN SEVEN

S. IVANOV, A. PETKOV, AND D. VASSILEV

ABSTRACT. We prove quaternionic contact versions of two of Obata’s sphere theorems. On a compact quaternionic contact (qc) manifold of dimension bigger than seven and satisfying a Lichnerowicz type lower bound estimate we show that if the first positive eigenvalue of the sub-Laplacian takes the smallest possible value then, up to a homothety of the qc structure, the manifold is qc equivalent to the standard 3-Sasakian sphere. The same conclusion is shown to hold on a non-compact qc manifold which is complete with respect to the associated Riemannian metric assuming the existence of a function with traceless horizontal Hessian. The third result of the paper is a qc version of Liouville’s theorem showing that a qc-conformal diffeomorphism between open connected sets of the 3-Sasakian sphere is a restriction of an element of the qc-conformal automorphism group of the sphere.

CONTENTS

1. Introduction 2
2. Quaternionic contact manifolds 4
2.1. Quaternionic contact structures and the Biquard connection 5
2.2. Invariant decompositions 6
2.3. The torsion tensor 6
2.4. Torsion and curvature 6
2.5. The Ricci identities, the divergence theorem. 8
3. Proof of the main Theorems 8
3.1. Some basic identities 9
3.2. Formulas for the derivatives of f 10
3.3. The elliptic eigenvalue problem 12
3.4. Formulas for the torsion tensors 13
3.5. Formulas for the covariant derivatives of the torsion tensors 16
3.6. Vanishing of the torsion 21
3.7. The Riemannian Hessian. 23
3.8. Quaternionic contact conformally flat manifolds and the Liouville theorem 24
3.9. Proof of Theorem 1.4. 26
3.10. Proof of Theorem 1.3. 26
4. Appendix 27
4.1. The P–form 27
4.2. A new proof of Theorem 1.1 28
References 30

Date: February 6, 2014.
2010 Mathematics Subject Classification. 53C26, 53C25, 58J60.
Key words and phrases. quaternionic contact structures, qc conformal flatness, qc conformal curvature, Einstein metrics, sub-Laplacian, Obata sphere theorem.
1. Introduction

Motivated by the classical Lichnerowicz [62] and Obata [71] theorems, earlier papers of the authors [40, 41] established a Lichnerowicz type lower bound estimate for the first eigenvalue of the sub-Laplacian on a compact quaternionic contact (qc) manifold. The case of equality in the lower bound estimate (Obata-type theorem) was settled in the special case of a 3-Sasakian compact manifold where it was shown that the lower bound for the first eigenvalue of the sub-Laplacian is achieved if and only if the 3-Sasakian manifold is isometric to the standard 3-Sasakian sphere. Quaternionic contact (qc) structures were introduced by O. Biquard [6] and are modeled on the conformal boundary at infinity of the quaternionic hyperbolic space. Thus, manifolds equipped with a qc structure are examples of sub-Riemannian geometries. The (locally) 3-Sasakian manifolds were characterized in [37, 43] by the vanishing of the torsion tensor of the Biquard connection. The qc geometry was a crucial geometric tool in finding the extremals and the best constant in the L^2 Folland-Stein Sobolev-type embedding, [27, 28], completely described on the quaternionic Heisenberg groups, [38, 39].

In this paper we prove the full qc version of Obata’s results for a general qc manifold of dimension bigger than seven. We find that the equality case of Lichnerowicz’ type inequality on a compact qc manifold of dimension at least eleven can be achieved only on the 3-Sasakian spheres. More general, we show that on a complete with respect to the associated Riemannian metric qc manifold a certain (horizontal) Hessian equation, cf. (1.6), allows a non-trivial solution if and only if the manifold is qc homothetic to the standard 3-Sasakian sphere.

The qc seven dimensional case was considered in [41], however, the general qc Obata results in dimension seven remain open.

Turning to some details, let us recall the mentioned classical results. Using the classical Bochner-Weitzenböck formula Lichnerowicz [62] showed that on a compact Riemannian manifold (M, h) of dimension n for which the Ricci curvature is greater than or equal to that of the round unit n-dimensional sphere $S^n(1)$, i.e., $\text{Ric}(X, Y) \geq (n-1)h(X, Y)$ the first positive eigenvalue λ_1 of the (positive) Laplace operator is greater than or equal to the first eigenvalue of the sphere, $\lambda_1 \geq n$. Subsequently Obata [71] proved that equality is achieved if and only if the Riemannian manifold is isometric to $S^n(1)$ by noting that the trace-free part of the Riemannian Hessian of an eigenfunction f with eigenvalue $\lambda = n$ vanishes, i.e., it satisfies the system

$$\nabla^h f = -fh$$

after which he defines an isometry using analysis based on the geodesics and Hessian comparison of the distance function from a point.

In fact, Obata showed that on a complete Riemannian manifold (M, h) equation (1.1) allows a non-constant solution if and only if the manifold is isometric to the unit sphere. In this case, the eigenfunctions corresponding to the first eigenvalue are the solutions of (1.1). Later, Gallot [30] generalized these results to statements involving the higher eigenvalues and corresponding eigenfunctions of the Laplace operator.

The interest in relations between the spectrum of the Laplacian and geometric quantities justified the interest in Lichnerowicz-Obata type theorems in other geometric settings such as Riemannian foliations (and the eigenvalues of the basic Laplacian) [58, 57], [50] and [72], to CR geometry (and the eigenvalues of the sub-Laplacian) [34], [4], [17, 15, 16], [18], [20], [59], and to general sub-Riemannian geometries, see [5] and [36]. In the CR case, Greenleaf [34] gave a version of Lichnerowicz’ result showing that if a compact strongly pseudo-convex CR manifold M of dimension $2n + 1$, $n \geq 3$ satisfies a Lichnerowicz type inequality

$$\text{Ric}(X, Y) + 4A(X, JY) \geq (n+1)g(X, X)$$

for all horizontal vectors X, where Ric and A are, correspondingly, the Ricci curvature and the Webster torsion of the Tanaka-Webster connection (in the notation from [47, 44]), then the first positive eigenvalue λ_1 of the sub-Laplacian satisfies the inequality $\lambda_1 \geq n$. The standard (Sasakian) CR structure on the sphere achieves equality in this inequality. Following [34] the above cited results on a compact CR manifold focused on adding a corresponding inequality for $n = 1, 2$ or characterizing the equality case mainly in the vanishing Webster-torsion case (the Sasakian case). The general case on a compact CR manifold satisfying the Lichnerowicz type condition was proved in [60, 61] using the results and the method of [45] while
introducing a new integration by parts step proving the vanishing of the Webster torsion assuming the first eigenvalue is equal to \(n \) (for the three dimensional case see [46]). On the other hand, a generalization of the Obata result in the complete non-compact case was achieved in [45], where the standard Sasakian structure on the unit sphere was characterized through the existence of a non-trivial solution of a (horizontal) Hessian equation on a complete with respect to the associated Riemannian metric CR manifold with a divergence free Webster torsion. To the best of our knowledge the case of a general torsion remains still open.

The main purpose of this paper is to prove the qc version of both results of Obata under no extra assumptions on the Biquard’ torsion when the dimension of the qc manifold is at least eleven, cf. Theorem 1.2 and Theorem 1.3.

The quaternionic contact version of the Lichnerowicz’ result was found in [40] in dimensions greater than seven and in [41] in the seven dimensional case. The following result of [40] gives a lower bound on the positive eigenvalues of the sub-Laplacian on a qc manifold.

Theorem 1.1 ([40]). Let \((M, \eta, g, Q)\) be a compact quaternionic contact manifold of dimension \(4n + 3 > 7\). Suppose that there is a positive constant \(k_0 \) such that the qc Ricci tensor and torsion of the Biquard connection satisfy the inequality

\[
Ric(X, X) + \frac{2(4n + 5)}{2n + 1}T^0(X, X) + \frac{6(2n^2 + 5n - 1)}{(n - 1)(2n + 1)}U(X, X) \geq k_0 g(X, X).
\]

Then any eigenvalue \(\lambda \) of the sub-Laplacian \(\triangle \) satisfies the inequality

\[
\lambda \geq \frac{n}{n + 2} k_0.
\]

The equality case of Theorem 1.1 is achieved on the 3-Sasakian sphere. It was shown in [39], see also [3], that the eigenspace of the first non-zero eigenvalue of the sub-Laplacian on the unit 3-Sasakian sphere in Euclidean space is given by the restrictions to the sphere of all linear functions.

The main results of this paper are the following three theorems.

Theorem 1.2. Let \((M, \eta, g, Q)\) be a compact quaternionic contact manifold of dimension \(4n + 3 > 7\) whose qc-Ricci tensor and torsion of the Biquard connection satisfy the inequality (1.2). Then, the first positive eigenvalue \(\lambda \) of the sub-Laplacian \(\triangle \) satisfies the equality

\[
\lambda = \frac{n}{n + 2} k_0
\]

if and only if the qc manifold \((M, g, Q)\) is qc-homothetic to the unit \((4n+3)\)-dimensional 3-Sasakian sphere.

According to [40, Remark 4.1], under the conditions of Theorem 1.1, an eigenfunction \(f \) corresponding to the first non-zero eigenvalue as in (1.3), \(\triangle f = \frac{n}{n + 2} k_0 f \) satisfies a linear PDE system, namely, the horizontal Hessian of \(f \) is given by (see Corollary 4.2 in the Appendix)

\[
\nabla df(X, Y) = -\frac{1}{4(n + 2)} k_0 f g(X, Y) - \sum_{s=1}^{3} df(\xi_s) \omega_s(X, Y).
\]

This brings us to our second main result.

Theorem 1.3. Let \((M, \eta, g, Q)\) be a quaternionic contact manifold of dimension \(4n + 3 > 7\) which is complete with respect to the associated Riemannian metric

\[
h = g + (\eta_1)^2 + (\eta_2)^2 + (\eta_3)^2.
\]

Suppose there exists a non-constant smooth function \(f \) whose horizontal Hessian satisfies

\[
\nabla df(X, Y) = -f g(X, Y) - \sum_{s=1}^{3} df(\xi_s) \omega_s(X, Y).
\]

Then the qc manifold \((M, \eta, g, Q)\) is qc homothetic to the unit \((4n+3)\)-dimensional 3-Sasakian sphere.
Clearly Theorem 1.3 implies Theorem 1.2 since any Riemannian metric on a compact manifold is complete and a qc-homothety, cf. Definition 3.12, allows us to reduce to the case $k_0 = 4(n + 2)$, which turns (1.4) in (1.6).

We achieve the proof of Theorem 1.3 by showing first that M is isometric to the unit sphere S^{4n+3} and then that M is qc-equivalent to the standard 3-Sasakian structure on S^{4n+3}. To this effect we show that the torsion of the Biquard connection vanishes and in this case the Riemannian Hessian satisfies (1.1) after which we invoke the classical Obata theorem showing that M is isometric to the unit sphere. In order to prove the qc-equivalence part we show that the qc-conformal curvatures vanish, which gives the local qc conformal equivalence with the 3-Sasakian sphere due to [42, Theorem 1.3], and then use the below Liouville-type result Theorem 1.4, which implies the existence of a global qc-conformal map between M and the 3-Sasakian sphere, cf. sub-section 3.8.

Theorem 1.4. Let $\Sigma \subset S^{4n+3}$ be a connected open subset of S^{4n+3}. If $F : \Sigma \to S^{4n+3}$ is a qc-conformal transformation then F is the restriction to Σ of an element of $PSp(n + 1, 1)$ - the isometry group of the quaternionic hyperbolic space.

The proof of Theorem 1.4 and background to this result can be found in sub-sections 3.8 and 3.9.

A version of Theorem 1.1 when $n = 1$ was established in [41, Theorem 1.1] assuming the positivity of the P-function of any eigenfunction. In the Appendix, for completeness, we recall the notion of the P-function introduced in [41] and give a different proof of Theorem 1.1 based on the positivity of the P-function in the case $n > 1$ established in [41, Theorem 3.3]. As a corollary of the proof, we show the validity of (1.4) for any eigenfunction of the sub-Laplacian with eigenvalue given by (1.3).

Convention 1.5.

a) We shall use X, Y, Z, U to denote horizontal vector fields, i.e. $X, Y, Z, U \in H$.

b) $\{e_1, \ldots, e_{4n}\}$ denotes a local orthonormal basis of the horizontal space H.

c) The summation convention over repeated vectors from the basis $\{e_1, \ldots, e_{4n}\}$ will be used. For example, for a $(0, 4)$-tensor P, the formula $k = P(e_b, e_a, e_a, e_b)$ means $k = \sum_{a,b=1}^{4n} P(e_b, e_a, e_a, e_b)$.

d) The triple (i, j, k) denotes any cyclic permutation of $(1, 2, 3)$.

e) The sum $\sum_{(ijk)}$ means the cyclic sum. For example,
\[
\sum_{(ijk)} df(I_1X)\omega_j(Y, Z) = df(I_1X)\omega_2(Y, Z) + df(I_2X)\omega_3(Y, Z) + df(I_3X)\omega_1(Y, Z).
\]

e) s will be any number from the set $\{1, 2, 3\}$, $s \in \{1, 2, 3\}$.

Acknowledgments The research is partially supported by the Contract “Idei”, DID 02-39/21.12.2009. S.I and A.P. are partially supported by the Contract 130/2012 with the University of Sofia ‘St.Kl.Ohridski’. D.V. would like to thank Professor Luca Capogna for some useful comments.

2. **Quaternionic contact manifolds**

In this section we will briefly review the basic notions of quaternionic contact geometry and recall some results from [6], [37] and [42] which we will use in this paper.

It is well known that the sphere at infinity of a non-compact symmetric space M of rank one carries a natural Carnot-Carathéodory structure, see [66, 70]. In the real hyperbolic case one obtains the conformal class of the round metric on the sphere. In the remaining cases, each of the complex, quaternion and octonionic hyperbolic metrics on the unit ball induces a Carnot-Carathéodory structure on the unit sphere. This defines a conformal structure on a sub-bundle of the tangent bundle of co-dimension $\dim \mathbb{K} - 1$, where $\mathbb{K} = \mathbb{C}, \mathbb{H}, \mathbb{O}$. In the complex case the obtained geometry is the well studied standard CR structure on the unit sphere in complex space. Quaternionic contact (qc) structure were introduced by O. Biquard, see [6], and are modeled on the conformal boundary at infinity of the quaternionic hyperbolic space. Biquard showed that the infinite dimensional family [55] of complete quaternion-Kähler deformations of the quaternion hyperbolic metric have conformal infinites which provide an infinite dimensional family of examples of qC structures. Conversely, according to [6] every real analytic qc structure on a manifold M of dimension at
least eleven is the conformal infinity of a unique quaternionic-Kähler metric defined in a neighborhood of \(M \). Furthermore, [6] considered CR and qc structures as boundaries of infinity of Einstein metrics rather than only as boundaries at infinity of Kähler-Einstein and quaternionic-Kähler metrics, respectively. In fact, in [6] it was shown that in each of the three cases (complex, quaternionic, octoninoic) any small perturbation of the standard Carnot-Carathéodory structure on the boundary is the conformal infinity of an essentially unique Einstein metric on the unit ball, which is asymptotically symmetric. In the Riemannian case the corresponding question was posed in [26] and the perturbation result was proven in [33].

Another natural extension of an interesting Riemannian problem is the quaternionic contact Yamabe problem, a particular case of which [31, 79, 37, 38] amounts to finding the best constant in the \(L^2 \) Folland-Stein Sobolev-type embedding and the functions for which the equality is achieved, [27] and [28] with a complete solution on the quaternionic Heisenberg groups given in [38, 39].

2.1. Quaternionic contact structures and the Biquard connection. A quaternionic contact (qc) manifold \((M, \eta, g, \mathbb{Q})\) is a \(4n + 3 \)-dimensional manifold \(M \) with a codimension three distribution \(H \) locally given as the kernel of a 1-form \(\eta = (\eta_1, \eta_2, \eta_3) \) with values in \(\mathbb{R}^3 \). In addition \(H \) has an \(Sp(n)Sp(1) \) structure, that is, it is equipped with a Riemannian metric \(g \) and a rank-three bundle \(\mathbb{Q} \) consisting of endomorphisms of \(H \) locally generated by three almost complex structures \(I_1, I_2, I_3 \) on \(H \) satisfying the identities of the imaginary unit quaternions, \(I_1^2 = -I_2 I_1 = I_3, \quad I_1 I_2 I_3 = -id_M \) which are hermitian compatible with the metric \(g(I_x, I_y) = g(., .) \) and the following compatibility condition holds \(2g(I_x X, Y) = d\eta_x(X, Y), \quad X, Y \in H. \)

The transformations preserving a given quaternionic contact structure \(\eta \), i.e., \(\tilde{\eta} = \mu \Psi \eta \) for a positive smooth function \(\mu \) and an \(SO(3) \) matrix \(\Psi \) with smooth functions as entries are called quaternionic contact conformal (qc-conformal) transformations, see Definition 3.12. If the function \(\mu \) is constant \(\tilde{\eta} \) is called qc-homothetic to \(\eta \). The qc conformal curvature tensor \(W_{qc} \), introduced in [42], is the obstruction for a qc structure to be locally qc conformal to the standard 3-Sasakian structure on the \((4n + 3)\)-dimensional sphere [37, 42].

A special phenomena, noted in [6], is that the contact form \(\eta \) determines the quaternionic structure and the metric on the horizontal distribution in a unique way.

On a qc manifold with a fixed metric \(g \) on \(H \) there exists a canonical connection defined first by O. Biquard in [6] when the dimension \((4n + 3) > 7\), and in [25] for the 7-dimensional case. Biquard showed that there is a unique connection \(\nabla \) with torsion \(T \) and a unique supplementary subspace \(V \) to \(H \) in \(TM \), such that:

(i) \(\nabla \) preserves the decomposition \(H \oplus V \) and the \(Sp(n)Sp(1) \) structure on \(H \), i.e. \(\nabla g = 0, \nabla \sigma \in \Gamma(\mathbb{Q}) \) for a section \(\sigma \in \Gamma(\mathbb{Q}) \), and its torsion on \(H \) is given by \(T(X, Y) = -[X, Y]_H \);
(ii) for \(\xi \in V \), the endomorphism \(T(\xi, .)_H \) of \(H \) lies in \(Sp(n)Sp(1) \perp \subset G(4n) \);
(iii) the connection on \(V \) is induced by the natural identification \(\phi \) of \(V \) with the subspace \(sp(1) \) of \(H \), i.e. \(\nabla \phi = 0 \).

This canonical connection is also known as the Biquard connection. When the dimension of \(M \) is at least eleven [6] also described the supplementary distribution \(V \), which is (locally) generated by the so called Reeb vector fields \(\{\xi_1, \xi_2, \xi_3\} \) determined by

\[
\begin{align*}
\eta_s(\xi_k) &= \delta_{sk}, \\
(\xi_s, d\eta_k)_{|H} &= 0, \\
(\xi_s, d\eta_k)_{|H} &= -((\xi_k, d\eta_s)_{|H},
\end{align*}
\]

where \(\omega \) denotes the interior multiplication. If the dimension of \(M \) is seven Duchemin shows in [25] that if we assume, in addition, the existence of Reeb vector fields as in (2.1), then the Biquard result holds. Henceforth, by a qc structure in dimension 7 we shall mean a qc structure satisfying (2.1).

Notice that equations (2.1) are invariant under the natural \(SO(3) \) action. Using the triple of Reeb vector fields we extend the metric \(g \) on \(H \) to a metric \(h \) on \(M \) by requiring \(\text{span}\{\xi_1, \xi_2, \xi_3\} = V \perp H \) and \(h(\xi_s, \xi_k) = \delta_{sk} \). The Riemannian metric \(h \) as well as the Biquard connection do not depend on the action of \(SO(3) \) on \(V \), but both change if \(\eta \) is multiplied by a conformal factor [37]. Clearly, the Biquard connection preserves the Riemannian metric on \(TM, \nabla h = 0 \). Since the Biquard connection is metric it is connected with the
Levi-Civita connection ∇^h of the metric h by the general formula
\[
(2.2) \quad h(\nabla A B, C) = h(\nabla^h_A B, C) + \frac{1}{2} \left[h(T(A, B), C) - h(T(B, C), A) + h(T(C, A), B) \right], \quad A, B, C \in \Gamma(TM).
\]

The covariant derivative of the qc structure with respect to the Biquard connection and the covariant derivative of the distribution V are given by
\[
(2.3) \quad \nabla I_i = -\alpha_j \odot I_k + \alpha_k \odot I_j, \quad \nabla \xi_i = -\alpha_j \odot \xi_k + \alpha_k \odot \xi_j.
\]
The vanishing of the $\text{sp}(1)$-connection 1-forms on H implies the vanishing of the torsion endomorphism of the Biquard connection (see [37]).

The fundamental 2-forms ω_\bullet of the quaternionic structure Q are defined by
\[
(2.4) \quad 2\omega_\bullet|_H = d\eta_\bullet|_H, \quad \xi_\odot \omega_\bullet = 0, \quad \xi \in V.
\]

Due to (2.4), the torsion restricted to H has the form
\[
(2.5) \quad T(X, Y) = -[X, Y]|_V = 2\omega_1(X, Y)\xi_1 + 2\omega_2(X, Y)\xi_2 + 2\omega_3(X, Y)\xi_3.
\]

2.2. Invariant decompositions. An endomorphism Ψ of H can be decomposed with respect to the quaternionic structure (Q, g) uniquely into four $\text{Sp}(n)$-invariant parts $\Psi = \Psi^{+++} + \Psi^{−−} + \Psi^{−−+} + \Psi^{++−}$, where Ψ^{+++} commutes with all three I_i, $\Psi^{−−}$ commutes with I_1 and anti-commutes with the others two and two. The two $\text{Sp}(n)\text{Sp}(1)$-invariant components $\Psi_3 = \Psi^{+++}$, $\Psi_{−1} = \Psi^{−−} + \Psi^{−−+} + \Psi^{++−}$ are determined by
\[
\Psi = \Psi_3 \quad \iff \quad 3\Psi + I_1\Psi I_1 + I_2\Psi I_2 + I_3\Psi I_3 = 0,
\]
\[
\Psi = \Psi_{−1} \quad \iff \quad \Psi - I_1\Psi I_1 - I_2\Psi I_2 - I_3\Psi I_3 = 0.
\]

With a short calculation one sees that the $\text{Sp}(n)\text{Sp}(1)$-invariant components are the projections on the eigenspaces of the Casimir operator $\mathcal{Y} = I_1 \odot I_1 + I_2 \odot I_2 + I_3 \odot I_3$ correspondingly, to the eigenvalues 3 and $−1$, see [12]. If $n = 1$ then the space of symmetric endomorphisms commuting with all I_\bullet is 1-dimensional, i.e. the $[3]$-component of any symmetric endomorphism Ψ on H is proportional to the identity, $\Psi_3 = -\frac{\text{tr}\Psi}{3} I_id_H$. Note here that each of the three 2-forms ω_\bullet belongs to its $[−1]$-component, $\omega_\bullet = \omega_\bullet_{[−1]}$ and constitute a basis of the Lie algebra $\text{sp}(1)$.

2.3. The torsion tensor. The properties of the Biquard connection are encoded in the properties of the torsion endomorphism $T_\xi = T(\xi, \cdot) : H → H$, $\xi \in V$. Decomposing the endomorphism $T_\xi \in (\text{sp}(n) + \text{sp}(1))$ into its symmetric part T^0_ξ and skew-symmetric part b_ξ, $T_\xi = T^0_\xi + b_\xi$, O. Biquard shows in [6] that the torsion T_ξ is completely trace-free, $\text{tr} T_\xi = \text{tr} T_\xi \circ I_\bullet = 0$, its symmetric part has the properties $T^0_\xi I_1 = -I_1 T^0_\xi; I_2 (T^0_\xi)^{++−} = I_1 (T^0_\xi)^{−−} + I_3 (T^0_\xi)^{−−+} = I_2 (T^0_\xi)^{−−+} − I_3 (T^0_\xi)^{−−} − I_1 (T^0_\xi)^{−−+}$, where the upper-scripts $++$, $−−$, $++−$ mean commuting with all three I_i, $+ −$ indicates commuting with I_1 and anti-commuting with the other two, and etc. The skew-symmetric part can be represented as $b_\xi = u I_\bullet$, where u is a traceless symmetric (1,1)-tensor on H which commutes with I_1, I_2, I_3. Therefore we have $T_\xi = T^0_\xi + I_\bullet u$.

If $n = 1$ then the tensor u vanishes identically, $u = 0$, and the torsion is a symmetric tensor, $T_\xi = T^0_\xi$.

Any 3-Sasakian manifold has zero torsion endomorphism, $T_\xi = 0$, and the converse is true if in addition the qc scalar curvature (see 2.6) is a positive constant [37] (the case of negative qc-scalar curvature can be treated very similarly, see [43, 44]). We remind that a $(4n + 3)$-dimensional Riemannian manifold (M, g) is called 3-Sasakian if the cone metric $g_c = t^2 h + dt^2$ on $C = M × \mathbb{R}^+$ is a hyper Kähler metric, namely, it has holonomy contained in $\text{Sp}(n+1)$ [9]. A 3-Sasakian manifold of dimension $(4n + 3)$ is Einstein with positive Riemannian scalar curvature $(4n + 2)(4n + 3)$ [51] and if complete it is a compact manifold with a finite fundamental group (see [8] for a nice overview of 3-Sasakian spaces).

2.4. Torsion and curvature. Let $R = |\nabla, \nabla| - \nabla_{|\nabla|}$ be the curvature tensor of ∇ and the dimension is $4n + 3$. We denote the curvature tensor of type $(0,4)$ and the torsion tensor of type $(0,3)$ by the same letter, $R(A, B, C, D) := h(R(A, B)C, D)$, $T(A, B, C) := h(T(A, B), C)$, $A, B, C, D \in \Gamma(TM)$. The Ricci tensor,
the normalized scalar curvature, the Ricci 2-forms and the Ricci type-tensor ζ of the Biquard connection, called \textit{qc-Ricci tensor} Ric, \textit{normalized qc-scalar curvature} S, \textit{qc-Ricci forms} ρ_s, respectively, are given by

$$
Ric(A, B) = R(e_b, A, B, e_b), \quad 8n(n + 2)S = R(e_b, e_a, e_a, e_b),
$$

(2.6)

$$
\rho_s(A, B) = \frac{1}{4n}R(A, B, e_a, I_se_a), \quad \zeta_s(A, B) = \frac{1}{4n}R(e_a, A, B, I_se_a).
$$

The $sp(1)$-part of R is determined by the Ricci 2-forms and the connection 1-forms by

$$
R(A, B, \xi_i, \xi_j) = 2\rho_k(A, B) = (d\alpha_k + \alpha_1 \wedge \alpha_j)(A, B), \quad A, B \in \Gamma(TM).
$$

(2.7)

The two $Sp(n)Sp(1)$-invariant trace-free symmetric 2-tensors $T^0(X, Y) = g((T^0\xi_1 + T^0\xi_2 + T^0\xi_3)X, Y)$, $U(X, Y) = g(uX, Y)$ on H, introduced in [37], have the properties:

$$
T^0(X, Y) + T^0(I_1X, I_1Y) + T^0(I_2X, I_2Y) + T^0(I_3X, I_3Y) = 0,
$$

(2.8)

$$
U(X, Y) = U(I_1X, I_1Y) = U(I_2X, I_2Y) = U(I_3X, I_3Y).
$$

In dimension seven $(n = 1)$, the tensor U vanishes identically, $U = 0$.

We shall need the following identity taken from [42, Proposition 2.3] $4T^0(\xi_s, I_sX, Y) = T^0(X, Y) - T^0(I_sX, I_sY)$ which implies the formula

$$
T(\xi_s, I_sX, Y) = T^0(\xi_s, I_sX, Y) + g(I_suI_sX, Y) = \frac{1}{4}[T^0(X, Y) - T^0(I_sX, I_sY)] - U(X, Y).
$$

(2.9)

We recall that a qc structure is said to be \textit{qc-Einstein} if the horizontal qc-Ricci tensor is a scalar multiple of the metric, $Ric(X, Y) = 2(n + 2)Sg(X, Y)$. The horizontal Ricci-type tensor can be expressed in terms of the torsion of the Biquard connection [37] (see also [38, 42]). We collect below the necessary facts from [37, Theorem 1.3, Theorem 3.12, Corollary 3.14, Proposition 4.3 and Proposition 4.4] with slight modification presented in [42]

$$
Ric(X, Y) = (2n + 2)T^0(X, Y) + (4n + 10)U(X, Y) + 2(n + 2)Sg(X, Y),
$$

$$
\rho_s(X, I_sY) = -\frac{1}{2}[T^0(X, Y) + T^0(I_sX, I_sY)] - 2U(X, Y) - Sg(X, Y),
$$

(2.10)

$$
\zeta_s(X, I_sY) = \frac{2n + 1}{4n}T^0(X, Y) + \frac{1}{4n}T^0(I_sX, I_sY) + \frac{2n + 1}{2n}U(X, Y) + \frac{S}{2}g(X, Y),
$$

$$
T(\xi_s, \xi_s) = \frac{2n + 1}{4n}T^0(X, Y) + \frac{1}{4n}T^0(I_sX, I_sY) + \frac{2n + 1}{2n}U(X, Y) + \frac{S}{2}g(X, Y),
$$

$$
\zeta_s(X, I_sY) = -S\rho_k - [\xi_s, \xi_s]_H, \quad S = -h(\xi_s, \xi_s),
$$

$$
g(T(\xi_s, \xi_s), X) = -\rho_k(I_sX, \xi_s) = -\rho_k(I_sX, \xi_s) = -h([\xi_s, \xi_s], X).
$$

For $n = 1$ the above formulas hold with $U = 0$. Hence, the qc-Einstein condition is equivalent to the vanishing of the torsion endomorphism of the Biquard connection. In this case the normalized qc scalar curvature S is constant and the vertical distribution V is integrable provided $n > 1$. If $S > 0$ then the qc manifold is locally 3-Sasakian [37], (see [43] for the negative qc scalar curvature).

We shall also need the general formula for the curvature [42, 44]

$$
R(\xi_i, X, Y, Z) = -\nabla_XU(I_iY, Z) + \omega_j(X, Y)\rho_k(I_iZ, \xi_j) - \omega_k(X, Y)\rho_j(I_iZ, \xi_i)
$$

$$
- \frac{1}{4}\left[(\nabla_YT^0)(I_iZ, X) + (\nabla_YT^0)(Z, I_iX)\right] + \frac{1}{4}\left[(\nabla_ZT^0)(I_iY, X) + (\nabla_ZT^0)(Y, I_iX)\right]
$$

$$
- \omega_j(X, Z)\rho_k(I_iY, \xi_j) + \omega_k(X, Z)\rho_j(I_iY, \xi_j) - \omega_j(Y, Z)\rho_k(I_iX, \xi_j) + \omega_k(Y, Z)\rho_j(I_iX, \xi_i),
$$

(2.11)

where the Ricci two forms are given by, cf. [42, Theorem 3.1] or [44, Theorem 4.3.11]

$$
6(2n + 1)\rho_s(\xi_s, X) = (2n + 1)X(S) + \frac{1}{2}(\nabla_eT^0)[(e_a, X) - 3(I_se_a, I_sX)] - 2(\nabla_eU)(e_a, X),
$$

$$
6(2n + 1)\rho_i(\xi_j, I_kX) = (2n - 1)(2n + 1)X(S) - \frac{1}{2}(\nabla_eT^0)[(4n + 1)(e_a, X) + 3(I_se_a, I_sX)]
$$

$$
- 4(n + 1)(\nabla_eU)(e_a, X).
$$

(2.12)
2.5. The Ricci identities, the divergence theorem. We shall use repeatedly the following Ricci identities of order two and three, see also [42] and [40]. Let ξ_i, $i = 1, 2, 3$ be the Reeb vector fields, f a smooth function on the qc manifold M and ∇f its horizontal gradient, $g(\nabla f, X) = df(X)$. We have:

$$
\nabla^2 f(X,Y) - \nabla^2 f(Y,X) = -2 \sum_{s=1}^{3} \omega_s(X,Y) df(\xi_s),
$$

$$
\nabla^2 f(X,\xi_s) - \nabla^2 f(\xi_s, X) = T(\xi_s, X, \nabla f),
$$

$$
\nabla^3 f(X,Y,Z) - \nabla^3 f(Y,X,Z) = -R(X,Y,Z,\nabla f) - 2 \sum_{s=1}^{3} \omega_s(X,Y) \nabla^2 f(\xi_s, Z),
$$

(2.13)

$$
\nabla^3 f(X,Y,\xi_i) - \nabla^3 f(Y,X,\xi_i) = -2df(\xi_i)\rho_k(X,Y) + 2df(\xi_k)\rho_j(X,Y) - 2 \sum_{s=1}^{3} \omega_s(X,Y) \nabla^2 (\xi_s, \xi_i),
$$

$$
\nabla^3 f(\xi_s, X,Y) - \nabla^3 f(X,\xi_s, Y) = -R(\xi_s, X,Y,\nabla f) - \nabla^2 f(T(\xi_s, X), Y),
$$

$$
\nabla^3 f(\xi_s, X,Y) - \nabla^3 f(X,\xi_s, Y) = -\nabla^2 f(T(\xi_s, X), Y) - \nabla^2 f(X, T(\xi_s, Y)) - df(\nabla_X T(\xi_s, Y)) - R(\xi_s, X,Y,\nabla f).
$$

The horizontal sub-Laplacian $\triangle f$ and the norm of the horizontal gradient ∇f of a smooth function f on M are defined respectively by

$$
\triangle f = -tr_H(\nabla^2 f) = \nabla^* df = -\nabla^2 f(e_a, e_a), \quad |\nabla f|^2 = df(e_a)\, df(e_a).
$$

The function f is an eigenfunction with eigenvalue λ of the sub-Laplacian if, for some constant λ we have

$$
\triangle f = \lambda f.
$$

From the Ricci identities we have the following formulas for the traces through the almost complex structures of the Hessian

$$
g(\nabla^2 f, \omega_s) = \nabla^2 f(e_a, I_s e_a) = -4n df(\xi_s).
$$

(2.14)

For a fixed local 1-form η and a fix $s \in \{1, 2, 3\}$ the form $Vol_\eta = \eta_1 \wedge \eta_2 \wedge \eta_3 \wedge \omega_s^{2n}$ is a locally defined volume form. Note that Vol_η is independent on s as well as it is independent on the local one forms η_1, η_2, η_3. Hence it is globally defined volume form denoted with Vol_η. The (horizontal) divergence of a horizontal vector field/one-form $\sigma \in \Lambda^1 (H)$ defined by $\nabla^* \sigma = -tr_H \nabla \sigma = -\nabla \sigma(e_a, e_a)$ supplies the "integration by parts" formula [37], see also [79],

$$
\int_M (\nabla^* \sigma) Vol_\eta = 0.
$$

3. Proof of the main Theorems

The proof of Theorem 1.3 is lengthy and requires a number of steps which we present in the following sub-sections. Throughout this section we shall assume the assumptions of Theorem 1.3. In particular, f is a non-constant smooth function whose horizontal Hessian satisfies (1.6). Our first step is to show the vanishing of the torsion tensor, $T^0 = 0$ and $U = 0$. We start by expressing the remaining parts of the Hessian (w.r.t. the Biquard connection) in terms of the torsion tensors and show that f satisfies an elliptic equation on M. A simple argument shows that $T^0(I_s \nabla f, \nabla f) = U(I_s \nabla f, \nabla f) = 0$, $s = 1, 2, 3$. Furthermore, using the $[-1]$-component of the curvature tensor we show that $T^0(I_s \nabla f, I_t \nabla f) = 0$, $s, t \in \{1, 2, 3\}, s \neq t$. In addition, we determine the torsion tensors T^0 and U in terms of the horizontal gradient of f and the tensor $U(\nabla f, \nabla f)$. The analysis proceeds by finding formulas of the same type for the covariant derivatives of T^0 and U. Thus, the crux of the matter in showing that the torsion vanishes is the proof that $U(\nabla f, \nabla f) = 0$. This fact will be achieved with the help of the Ricci identities, the contracted Bianchi second identity and thus far established results. In the next step of the proof of Theorem 1.3 we compute the Riemannian Hessian of f, with respect to the Levi-Civita connection of the metric (1.5) which allow us to invoke Obata’s result thus proving that M equipped with the Riemannian metric (1.5) is homothetic to the unit sphere in quaternion space. The final step is to show that M is qc-homothetic to the $(4n+3)$-dimensional 3-Sasakian unit sphere.
Here, we employ a standard monodromy argument showing that a compact simply connected locally qc-conformally flat manifold is globally qc-conformal to the 3-Sasakian unit sphere. The key is Theorem 1.4, which is a generalization of the Liouville theorem, showing that every qc-conformal transformation between open subsets of the 3-Sasakian unit sphere is the restriction of a global qc-conformal transformation, i.e., an element of the group \(PSp(n + 1, 1) \), see subsection 3.8 for further details.

3.1. **Some basic identities.** We start our analysis by finding a formula for the the third covariant derivative of a function which satisfies (1.6).

Lemma 3.1. With the assumptions of Theorem 1.3 we have the following formula for the third covariant derivative of the function \(f \),

\[
\nabla^3 f(A, X, Y) = -df(A)g(X, Y) - \sum_{s=1}^{3} \omega_s(X, Y)\nabla^2 f(A, \xi_s), \quad A \in \Gamma(TM).
\]

Proof. The claimed formula is obtained by differentiating the Hessian equation (1.6). Indeed, the covariant derivative along \(A \in \Gamma(TM) \) of (1.6) gives

\[
\nabla^3 f(A, X, Y) = -df(A)g(X, Y) - \sum_{s=1}^{3} \left[\nabla^2 f(A, \xi_s)\omega_s(X, Y) + df(\nabla_A \xi_s)\omega_s(X, Y) + df(\xi_s) (\nabla_A \omega_s)(X, Y) \right],
\]

which together with (2.3) gives the identity, cf. also Convention 1.4 c),

\[
\nabla^3 f(A, X, Y) = -df(A)g(X, Y) - \sum_{s=1}^{3} \left[\nabla^2 f(A, \xi_s)\omega_s(X, Y) \right]
- \sum_{(ijk)} \left[-\alpha_j(A)df(\xi_k) + \alpha_k(A)df(\xi_j) \right] \omega_i(X, Y)
- \sum_{(ijk)} \left[-\alpha_j(A)\omega_k(X, Y) + \alpha_k(A)\omega_j(X, Y) \right] df(\xi_i)
- \sum_{s=1}^{3} \left[\nabla^2 f(A, \xi_i)\omega_i(X, Y) \right],
\]

which completes the proof. \(\square \)

After this technical Lemma, our first goal is to find a formula for the curvature tensor \(R(Z, X, Y, \nabla f) \), for \(f \) satisfying (1.6), using Lemma 3.1 with \(A = Z \), the Ricci identities (2.13), and the properties of the torsion. In fact, after some standard calculations it follows

\[
R(Z, X, Y, \nabla f) = \left[df(Z)g(X, Y) - df(X)g(Z, Y) \right]
+ \sum_{s=1}^{3} \left[\nabla df(\xi_s, Z)\omega_s(X, Y) - \nabla df(\xi_s, X)\omega_s(Z, Y) - 2\nabla df(\xi_s, Y)\omega_s(Z, X) \right]
+ \sum_{s=1}^{3} \left[T(\xi_s, Z, \nabla f)\omega_s(X, Y) - T(\xi_s, X, \nabla f)\omega_s(Z, Y) \right].
\]

By taking traces in (3.2) we can derive formulas for the various contracted tensors (2.6). We shall use the following,

\[
Ric(Z, \nabla f) = (4n - 1)df(Z) - \sum_{s=1}^{3} T(\xi_s, I_s Z, \nabla f) - 3 \sum_{s=1}^{3} \nabla df(\xi_s, I_s Z),
\]

\[
4n \zeta(4n - 1)(I_s Z, \nabla f) = -df(Z) + (4n - 1)T(\xi_s, I_s Z, \nabla f) + T(\xi_s, I_s Z, \nabla f) + T(\xi_s, I_k Z, \nabla f)
+ (4n + 1)\nabla df(\xi_s, I_s Z) - \nabla df(\xi_s, I_s Z) - \nabla df(\xi_s, I_k Z).
\]
The above formulas imply some other basic identities to which we turn next. Note that with the help of (2.10) we can rewrite the Lichnerowicz type assumption (1.2) in the form

\begin{equation}
L(X, X) \overset{\text{def}}{=} 2(n + 2)g(X, X) + \alpha'_{n}T^{0}(X, X) + \beta'_{n}(X, X) \geq k_{0}g(X, X), \quad X \in H,
\end{equation}

\[
\begin{align*}
\alpha'_{n} &= \frac{2(2n + 3)(n + 2)}{2n + 1}, & \beta'_{n} &= \frac{4(2n - 1)(n + 2)^{2}}{(2n + 1)(n - 1)},
\end{align*}
\]

which allows to write the first claim of the following Lemma in the form \(L(Z, \nabla f) = 0\) for all \(Z \in H\) whenever \(f\) satisfies (1.6) taking \(k_{0} = 4(n + 2)\).

Lemma 3.2. With the assumptions of Theorem 1.3, the next identity holds true

\begin{equation}
(S - 2)df(Z) + \frac{2n + 3}{2n + 1}T^{0}(Z, \nabla f) + \frac{2(2n - 1)(n + 2)}{(2n + 1)(n - 1)}U(Z, \nabla f) = 0.
\end{equation}

Furthermore, we have

\begin{equation}
T^{0}(I_{s}\nabla f, \nabla f) = 0, \quad U(I_{s}\nabla f, \nabla f) = 0.
\end{equation}

Proof. The first equations in (3.3) and (2.10) together with (2.9) imply

\begin{equation}
\sum_{s=1}^{3} \nabla df(\xi_{s}, I_{s}Z) = \left[4n - 1 - (2n + 4)S\right]df(Z) - (2n + 3)T^{0}(Z, \nabla f) - (4n + 7)U(Z, \nabla f).
\end{equation}

The sum over 1, 2, 3 of the second equality in (3.3) together with the third equality of (2.10) and (2.9) gives

\begin{equation}
(4n - 1) \sum_{s=1}^{3} \nabla df(\xi_{s}, I_{s}Z) = (3 - 6nS)df(Z) - (2n + 3)T^{0}(Z, \nabla f) - 3U(Z, \nabla f).
\end{equation}

Subtracting (3.7) from (3.8) we obtain

\[
4(n - 1) \sum_{s=1}^{3} \nabla df(\xi_{s}, I_{s}Z) = 4(1 - n)(1 + S)df(Z) + 4(n + 1)U(Z, \nabla f),
\]

which for \(n > 1\) yields

\begin{equation}
\sum_{s=1}^{3} \nabla df(\xi_{s}, I_{s}Z) = -(1 + S)df(Z) + \frac{n + 1}{n - 1}U(Z, \nabla f).
\end{equation}

The sum of (3.7) and (3.8) gives

\begin{equation}
(2n + 1) \sum_{s=1}^{3} \nabla df(\xi_{s}, I_{s}Z) = (2n + 1)(1 - 2S)df(Z) - (2n + 3)T^{0}(Z, \nabla f) - (2n + 5)U(Z, \nabla f).
\end{equation}

Equalities (3.9) and (3.10) imply (3.5). Letting \(Z = I_{s}\nabla f\) in the latter it follows \(T^{0}(I_{s}\nabla f, \nabla f) = 0\) since \(U(I_{s}\nabla f, \nabla f) = 0\).

3.2. Formulas for the derivatives of \(f\). By assumption, the second order horizontal derivatives of \(f\) satisfy the Hessian equation (1.6). We derive next formulas for the second order derivatives involving a horizontal and a vertical directions.

Lemma 3.3. With the assumptions of Theorem 1.3 we have

\begin{equation}
\nabla df(\xi_{i}, I_{i}Z) = -df(Z) + \frac{2n + 3}{4(2n + 1)}\left[T^{0}(Z, \nabla f) - T^{0}(I_{i}Z, I_{i}\nabla f)\right] + \frac{2n^{2} + 3n - 1}{(2n + 1)(n - 1)}U(Z, \nabla f)
\end{equation}

and

\begin{equation}
\nabla df(Z, \xi_{i}) = df(I_{i}Z) - \frac{n + 1}{2n + 1}\left[T^{0}(I_{i}Z, \nabla f) + T^{0}(Z, I_{i}\nabla f)\right] - \frac{4n}{(2n + 1)(n - 1)}U(I_{i}Z, \nabla f).
\end{equation}
Proof. The second equality of (3.3) can be written in the form

\[
4n\zeta_i(I,Z,\nabla f) = -df(Z) + (4n-2)T(\xi_i, I,Z, \nabla f) + \sum_{s=1}^{3} T(\xi_s, I_s Z, \nabla f) + (4n + 2)\nabla df(\xi, I,Z) - \sum_{s=1}^{3} \nabla df(\xi_s, I_s Z)
\]

\[
= -df(Z) + (4n-2) \left[\frac{1}{4}T^0(Z, \nabla f) - T^0(I,Z, \nabla f) \right] + U(Z, \nabla f) + (4n + 2)\nabla df(\xi_i, I,Z)
\]

where we used (2.9) and (3.9). Now, equalities (3.13), (3.5) and the third equality in (2.10) imply

\[
\nabla df(\xi, I,Z) = -\frac{S}{2} df(Z) - \frac{2n + 3}{4(2n + 1)} \left[T^0(Z, \nabla f) - T^0(I,Z, \nabla f) \right] + \frac{1}{(2n + 1)(n-1)} U(Z, \nabla f)
\]

\[
= -df(Z) + \frac{2n + 3}{4(2n + 1)} \left[T^0(Z, \nabla f) - T^0(I,Z, \nabla f) \right] + \frac{2n^2 - n - 2}{(2n + 1)(n-1)} U(I,Z, \nabla f)
\]

Finally, the Ricci identity, (2.9) and (3.11) yield

\[
\nabla^2 f(Z, \xi, I) = \nabla df(\xi, I,Z) + T(\xi, Z, \nabla f)
\]

\[
= df(I,Z) - \frac{n + 1}{2n + 1} \left[T^0(I,Z, \nabla f) + T^0(I,Z, \nabla f) \right] - \frac{4n}{(2n + 1)(n-1)} U(I,Z, \nabla f),
\]

which completes the proof. \qed

Next, we compute the second vertical derivatives of \(f \). We start with a basic useful identity involving only vertical derivatives.

Lemma 3.4. With the assumptions of Theorem 1.3 the following identity holds

\[
\nabla^2 f(\xi, \xi) = -f - \frac{n + 1}{4n(2n + 1)} \left[(\nabla_{e_a} T^0)\left(\frac{e_a}{\nabla f} \right) + (\nabla_{e_a} T^0)\left(\frac{e_a}{\nabla f} \right) \right] - \frac{1}{(2n + 1)(n-1)} (\nabla e_a U)(e_a, \nabla f).
\]

Proof. Differentiating (3.12), using (1.6) and (2.3) we obtain

\[
\nabla^3 f(X, Y, \xi) = \alpha_j(X) \nabla^2 f(Y, \xi) + \alpha_k(X) \nabla^2 f(Y, \xi)
\]

\[
= \frac{n + 1}{2n + 1} \left[(\nabla_{e_a} T^0)(I,Y, \nabla f) + (\nabla_{e_a} T^0)(I,Y, \nabla f) \right] - \frac{4n}{(2n + 1)(n-1)} (\nabla_{e_a} U)(I,Z, \nabla f)
\]

\[
+ \left\{ \omega_j(X,Y) + \frac{n + 1}{2n + 1} \left[T^0(I,Y, \nabla f) + T^0(I,Y, \nabla f) \right] + \frac{4n}{(2n + 1)(n-1)} U(X, I,Y) \right\}
\]

\[
+ \left\{ \omega_k(X,Y) + \frac{n + 1}{2n + 1} \left[T^0(I,Y, \nabla f) + T^0(I,Y, \nabla f) \right] + \frac{4n}{(2n + 1)(n-1)} U(X, I,Y) \right\}
\]

\[
- \alpha_j(X) \left[df(I,Y) - \frac{n + 1}{2n + 1} T^0(I,Y, \nabla f) \right] - \frac{n + 1}{2n + 1} T^0(I,Y, \nabla f) - \frac{4n}{(2n + 1)(n-1)} U(I,Y, \nabla f)
\]

\[
+ \alpha_k(X) \left[df(I,Y) - \frac{n + 1}{2n + 1} T^0(I,Y, \nabla f) \right] - \frac{n + 1}{2n + 1} T^0(I,Y, \nabla f) - \frac{4n}{(2n + 1)(n-1)} U(I,Y, \nabla f).
\]
Applying again (3.12) to the second and the third terms in the first line we see that the terms involving the connection 1-forms cancel and (3.17) takes the following form

\[(3.18) \quad \nabla^3 f(X, Y, \xi) = -\frac{n+1}{2n+1} \left[(\nabla X T^0)(I, Y, \nabla f) + (\nabla X T^0)(Y, I, \nabla f) \right] - \frac{4n}{(2n+1)(n-1)}(\nabla X U)(I, Z, \nabla f) + f \left\{ \omega_i(X, Y) + \frac{n+1}{2n+1} \left[T^0(X, I, Y) + T^0(I, X, Y) \right] \right\} \]

\[+ df(\xi_i) \left\{ -g(X, Y) + \frac{n+1}{2n+1} \left[T^0(I, X, I, Y) - T^0(X, Y) \right] \right\} + \frac{4n}{(2n+1)(n-1)}U(X, IY) \]

\[+ df(\xi_j) \left\{ \omega_k(X, Y) + \frac{n+1}{2n+1} \left[T^0(I, kX, I, Y) + T^0(I, kX, I, Y) \right] \right\} + \frac{4n}{(2n+1)(n-1)}U(X, IY) \]

\[+ df(\xi_k) \left\{ -\omega_j(X, Y) + \frac{n+1}{2n+1} \left[T^0(I, kX, I, Y) - T^0(I, jX, Y) \right] \right\} - \frac{4n}{(2n+1)(n-1)}U(X, IY) \] \]

On the other hand, the skew-symmetric part of (3.18) and the Ricci identity listed in the fourth line of (2.13) yield

\[(3.19) \quad \nabla^3 f(X, Y, \xi) - \nabla^3 f(Y, X, \xi) = \frac{n+1}{2n+1} \left[(\nabla X U)(I, Y, \nabla f) - (\nabla Y U)(I, X, \nabla f) - (\nabla Y T^0)(X, I, \nabla f) \right] \]

\[+ 2df(\xi_j) \left\{ \omega_k(X, Y) + \frac{n+1}{2n+1} \left[T^0(I, kX, I, Y) - T^0(I, kX, I, Y) \right] \right\} + \frac{4n}{(2n+1)(n-1)}U(X, IY) \]

\[+ 2df(\xi_k) \left\{ -\omega_j(X, Y) + \frac{n+1}{2n+1} \left[T^0(I, kX, I, Y) - T^0(I, jX, Y) \right] \right\} - \frac{4n}{(2n+1)(n-1)}U(X, IY) \] \]

\[= -2df(\xi_j)\rho_k(X, Y) + 2df(\xi_k)\rho_j(X, Y) - 2 \sum_{s=1}^{3} \omega_s(X, Y)\nabla^2 f(\xi_s, \xi_i). \]

The trace \(X = e_a, Y = I_t e_a\) of (3.19) and the second equality of (2.10) give (3.16), which completes the proof. \(\square\)

Remark 3.5. The detailed proof of (3.18) shows a particular consequence of (2.3) which is that a covariant derivative of identities that are not Sp(1) invariant can lead to formulas which do not involve the connection one-forms. In the rest of the paper we shall usually skip many straightforward calculations some of which rely on a similar use of (2.3).

3.3. The elliptic eigenvalue problem

In this sub-section we will show that (1.6) implies that \(f\) satisfies an elliptic PDE. Let \(\Delta^h\) be the Riemannian Laplacian of the metric (1.5).

Lemma 3.6. On a qc manifold of dimension bigger than seven any smooth function satisfying (1.6) obeys the following identity

\[(3.20) \quad \Delta^h f = (4n + 3)f + \frac{n+1}{n(2n+1)}(\nabla e_a T^0)(e_a, \nabla f) + \frac{3}{(2n+1)(n-1)}(\nabla e_a U)(e_a, \nabla f). \]

Proof. It is shown in [40, Lemma 5.1] that the Riemannian Laplacian \(\Delta^h\) and the sub-Laplacian \(\Delta\) of a smooth function \(f\) are connected by

\[(3.21) \quad \Delta^h f = \Delta f - \sum_{s=1}^{3} \nabla^2 f(\xi_s, \xi_s). \]

Equation (3.21) is a consequence of the formula (2.2), \(\Delta^h f = -\sum_{s=1}^{3} \nabla^h df(e_a, e_a) - \sum_{s=1}^{3} \nabla^h df(\xi_s, \xi_s)\), and the identities \(T(e_a, A, e_a) = T(\xi_s, A, \xi_s) = 0, A \in (TM)\) which follow from the properties of the torsion.
tensor \(T \) of \(\nabla \) listed in (2.10). Lemma 3.4 and (2.8) imply

\[
\sum_{s=1}^{3} \nabla^2 f(\xi_s, \xi_s) = -3f - \frac{n+1}{n(2n+1)}(\nabla e_a T^0)(e_a, \nabla f) - \frac{3}{(2n+1)(n-1)}(\nabla e_a U)(e_a, \nabla f).
\]

(3.22)

A substitution of (3.22) in (3.21), taking into account that \(f \) satisfies (1.6) hence \(\Delta f = 4nf \), we obtain (3.20) which proves the lemma.

A consequence of Lemma 3.6 and Aronsajn’s unique continuation result, [2], is that \(|\nabla f| \) cannot vanish on any open set. We note this important fact in the next remark.

Remark 3.7. If \(M \) and \(f \) are as in Theorem 1.3 then \(|\nabla f| \neq 0 \) in a dense set since \(f \neq \text{const.} \)

3.4. **Formulas for the torsion tensors.** In this sub-section we derive formulas for the components \(T^0 \) and \(U \) of the torsion tensor.

Lemma 3.8. With the assumption of Theorem 1.3 the following identities hold true for any \(X, Y, Z \in H \)

\[
T^0(I_s \nabla f, I_t \nabla f) = 0, \quad s \neq t, \quad s, t \in \{1, 2, 3\},
\]

(3.23)

\[
T^0(\nabla f, \nabla f) = -\frac{6n}{n-1} U(\nabla f, \nabla f), \quad T^0(I_s \nabla f, I_s \nabla f) = \frac{2n}{n-1} U(\nabla f, \nabla f), \quad s \in \{1, 2, 3\},
\]

(3.24)

\[
|\nabla f|^2 T^0(Z, \nabla f) = -\frac{6n}{n-1} U(\nabla f, \nabla f) df(Z), \quad |\nabla f|^2 U(Z, \nabla f) = U(\nabla f, \nabla f) df(Z),
\]

(3.25)

\[
|\nabla f|^4 T^0(X, Y) = -\frac{2n}{n-1} U(\nabla f, \nabla f) \left[3df(X) df(Y) - \sum_{s=1}^{3} df(I_s X) df(I_s Y) \right],
\]

(3.26)

\[
|\nabla f|^4 U(Z, X) = -\frac{1}{n-1} U(\nabla f, \nabla f) \left[|\nabla f|^2 g(Z, X) - n \left(df(Z) df(X) + \sum_{s=1}^{3} df(I_s Z) df(I_s X) \right) \right].
\]

(3.27)

Proof. To determine the torsion tensors \(T^0 \) and \(U \) we are going to apply the following identity [42, 44] for the \([-1]\) component of the curvature

\[
3R(Z, X, Y, \nabla f) - R(I_1 Z, I_1 X, Y, \nabla f) - R(I_2 Z, I_2 X, Y, \nabla f) - R(I_3 Z, I_3 X, Y, \nabla f)
\]

\[
= 2 \left[g(X, Y) T^0(\nabla f, \nabla f) + g(\nabla f, \nabla f) T^0(Y, X) - g(Y, Z) T^0(X, \nabla f) - g(\nabla f, X) T^0(Y, Z) \right]
\]

\[- 2 \sum_{s=1}^{3} \left[\omega_s(X, Y) T^0(Z, I_s \nabla f) + \omega_s(Z, \nabla f) T^0(X, I_s Y) - \omega_s(Z, \nabla f) T^0(X, I_s \nabla f) - \omega_s(X, \nabla f) T^0(Z, I_s Y) \right]
\]

\[+ \sum_{s=1}^{3} \left[2 \omega_s(Z, X) \left(T^0(Y, I_s \nabla f) - T^0(I_s Y, \nabla f) \right) - 8 \omega_s(Y, \nabla f) U(I_s Z, X) - 4S \omega_s(Z, X) \omega_s(Y, \nabla f) \right].
\]

With the help of the Ricci identity, cf. the second equality of (2.13), we write the curvature tensor given by (3.2) in the form

\[
R(Z, X, Y, \nabla f) = \left[df(Z) g(X, Y) - df(X) g(Z, Y) \right]
\]

\[+ \sum_{s=1}^{3} \left[\nabla df(Z, \xi_s) \omega_s(X, Y) - \nabla df(X, \xi_s) \omega_s(Z, Y) - 2 \nabla df(\xi_s, Y) \omega_s(Z, X) \right].
\]

(3.29)
A calculation shows

\begin{equation}
(3.30) \quad \sum_{s=1}^{3} \left[df(I_s Z)\omega_s(X, Y) - df(I_s X)\omega_s(Z, Y) \right] + \sum_{s,t=1}^{3} \left[\nabla df(I_s Z, \xi_s)\omega_s(I_t X, Y) - \nabla df(I_t X, \xi_t)\omega_s(I_s Z, Y) - 2\nabla df(\xi_s, Y)\omega_s(I_t Z, I_s X) \right] = \sum_{s=1}^{3} \left[df(I_s Z)\omega_s(X, Y) - df(I_s X)\omega_s(Z, Y) + 2\nabla df(\xi_s, Y)\omega_s(Z, X) \right] - g(X, Y) \sum_{s=1}^{3} \nabla df(I_s Z, \xi_s) + g(Z, Y) \sum_{s=1}^{3} \nabla df(I_s Z, \xi_s) - \sum_{(ijk)} \omega_i(X, Y) \left[\nabla df(I_s Z, \xi_k) - \nabla df(I_k Z, \xi_j) \right] + \sum_{(ijk)} \omega_i(Z, Y) \left[\nabla df(I_s X, \xi_k) - \nabla df(I_k X, \xi_j) \right],
\end{equation}

where \(\sum_{(ijk)} \) denotes the cyclic sum. Now, (3.29) and (3.30) together with (3.11) and (3.12) yield

\begin{equation}
(3.31) \quad 3R(Z, X, Y, \nabla f) - R(I_1 Z, I_1 X, Y, \nabla f) - R(I_2 Z, I_2 X, Y, \nabla f) - R(I_3 Z, I_3 X, Y, \nabla f) = g(X, Y) \left[3df(Z) + \sum_{s=1}^{3} \nabla^2 f(I_s Z, \xi_s) \right] - g(Z, Y) \left[3df(X) + \sum_{s=1}^{3} \nabla^2 f(I_s X, \xi_s) \right] - 8 \sum_{s=1}^{3} \omega_s(Z, X)\nabla df(\xi_s, Y)
\end{equation}

\begin{align*}
&= g(X, Y) \left[4n + 4 \frac{T^0(Z, \nabla f) + \frac{12n}{(2n + 1)(n - 1)} U(Z, \nabla f)}{2n + 1} \right] - \sum_{s=1}^{3} \omega_s(Z, X) \left[4n + 4 \frac{T^0(I_s Y, \nabla f) - T^0(Y, I_s \nabla f) - 8 \frac{U(I_s Y, \nabla f)}{2n + 1}(n - 1)}{2n + 1} \right] + \sum_{s=1}^{3} \omega_s(X, Y) \left[4n + 4 \frac{T^0(Z, I_s \nabla f) + \frac{4n}{(2n + 1)(n - 1)} U(I_s Z, \nabla f)}{2n + 1} \right]
\end{align*}

Subtracting (3.28) from (3.31) and applying (3.11), (3.12) and the properties of the torsion we come to

\begin{equation}
(3.32) \quad 0 = g(X, Y) \left[T^0(Z, \nabla f) + \frac{6n}{n - 1} U(Z, \nabla f) \right] - g(Z, Y) \left[T^0(X, \nabla f) + \frac{6n}{n - 1} U(X, \nabla f) \right] - \sum_{s=1}^{3} \omega_s(Z, X) \left[T^0(Z, I_s \nabla f) + \frac{2n}{n - 1} U(I_s Z, \nabla f) \right] + \sum_{s=1}^{3} \omega_s(Z, Y) \left[T^0(X, I_s \nabla f) + \frac{2n}{n - 1} U(I_s X, \nabla f) \right] - \sum_{s=1}^{3} \omega_s(Z, X) \left[2T^0(I_s Y, \nabla f) - 2T^0(Y, I_s \nabla f) - \frac{4}{n - 1} U(I_s Y, \nabla f) \right] - \sum_{s=1}^{3} \omega_s(Z, X) \left[\frac{df(I_s X)T^0(Z, I_s Y) - df(I_s Z)T^0(X, I_s Y) - 4df(I_s Y)U(I_s Z, X)}{(2n + 1)df(X)T^0(Z, Y) - (2n + 1)df(Z)T^0(X, Y)}.\right]
\end{equation}
Setting $Z = \nabla f$ into (3.32), after some calculations, we obtain

\begin{equation}
(3.33) \quad (2n + 1)|\nabla f|^2 T^0(X, Y) = (2n + 1)df(X)T^0(\nabla f, Y) + g(X, Y) T^0(\nabla f, \nabla f) + \frac{6n}{n-1} U(\nabla f, \nabla f) - df(Y) T^0(\nabla f, \nabla f) + \frac{6n}{n-1} U(X, \nabla f)
\end{equation}

\begin{equation}
+ \sum_{s+1} df(I_s X) \left[T^0(X, I_s \nabla f) + \frac{8n^2 - 2n - 4}{n-1} U(I_s X, \nabla f) \right]
\end{equation}

\begin{equation}
- \sum_{s+1} df(I_s X) \left[2T^0(Y, I_s \nabla f) + (2n - 1)T^0(I_s Y, \nabla f) + \frac{4}{n-1} U(I_s Y, \nabla f) \right].
\end{equation}

Letting $Y = \nabla f$ in (3.33), then using (3.34) and (3.6) shows

\begin{equation}
(3.34) \quad |\nabla f|^2 T^0(X, \nabla f) = T^0(\nabla f, \nabla f) df(X) + \frac{3n}{(n+1)(n-1)} [U(\nabla f, \nabla f) df(X) - |\nabla f|^2 U(X, \nabla f)].
\end{equation}

On the other hand, letting $X = I_1 \nabla f$ in (3.33), using (3.6) and (3.34) gives

\begin{equation}
(3.35) \quad 0 = -df(I_1 Y) \left[T^0(\nabla f, \nabla f) + T^0(I_1 \nabla f, I_1 \nabla f) - \frac{8n^2 - 2n - 4}{n-1} U(\nabla f, \nabla f) \right]
\end{equation}

\begin{equation}
- df(I_2 Y) T^0(I_1 \nabla f, I_2 \nabla f) - df(I_3 Y) T^0(I_1 \nabla f, I_3 \nabla f)
\end{equation}

\begin{equation}
- (2n - 1)|\nabla f|^2 \left[T^0(Y, I_1 \nabla f) - T^0(I_1 Y, \nabla f) \right] + |\nabla f|^2 \frac{4}{n-1} U(I_1 Y, \nabla f).
\end{equation}

From (3.35) with $Y = I_2 \nabla f$ and (3.8) the identity (3.23) follows since $|\nabla f|^2 \neq 0$. Setting $Y = I_1 \nabla f$ into (3.35) implies

\begin{equation}
(3.36) \quad T^0(\nabla f, \nabla f) + T^0(I_1 \nabla f, I_1 \nabla f) = -\frac{4n}{n-1} U(\nabla f, \nabla f).
\end{equation}

The latter equality together with the (2.8) yield (3.24).

The equalities (3.35), (3.23) and (3.24) imply

\begin{equation}
(3.37) \quad (2n - 1)|\nabla f|^2 T^0(Y, I_1 \nabla f) = (2n - 1)|\nabla f|^2 T^0(I_1 Y, \nabla f) + |\nabla f|^2 \frac{4}{n-1} U(I_1 Y, \nabla f)
\end{equation}

\begin{equation}
- df(I_4 Y) \left[T^0(\nabla f, \nabla f) + T^0(I_4 \nabla f, I_4 \nabla f) - \frac{8n^2 - 2n - 4}{n-1} U(\nabla f, \nabla f) \right]
\end{equation}

\begin{equation}
= (2n - 1)|\nabla f|^2 T^0(I_1 Y, \nabla f) + |\nabla f|^2 \frac{4}{n-1} U(I_1 Y, \nabla f) + 4(2n + 1) df(I_4 Y) U(\nabla f, \nabla f).
\end{equation}

Let $Y = I_1 \nabla f$ in (3.32) in order to see

\begin{equation}
(3.38) \quad 2(2n + 1)|\nabla f|^2 U(I_1 Z, X) = \omega_1(Z, X) \left[T^0(\nabla f, \nabla f) + T^0(I_1 \nabla f, I_1 \nabla f) - \frac{2}{n-1} U(\nabla f, \nabla f) \right]
\end{equation}

\begin{equation}
+ ndf(X) \left[T^0(Z, I_1 \nabla f) - \frac{1}{n-1} U(I_1 Z, \nabla f) \right] - ndf(Z) \left[T^0(X, I_1 \nabla f) - \frac{1}{n-1} U(I_1 X, \nabla f) \right]
\end{equation}

\begin{equation}
+ ndf(I_1 X) \left[T^0(Z, \nabla f) - \frac{3}{n-1} U(Z, \nabla f) \right] - ndf(I_1 Z) \left[T^0(\nabla f, \nabla f) - \frac{3}{n-1} U(\nabla f, \nabla f) \right]
\end{equation}

\begin{equation}
+ ndf(I_3 X) \left[T^0(Z, I_3 \nabla f) - \frac{1}{n-1} U(I_3 Z, \nabla f) \right] - ndf(I_3 Z) \left[T^0(\nabla f, \nabla f) - \frac{1}{n-1} U(I_3 X, \nabla f) \right]
\end{equation}

\begin{equation}
- ndf(I_3 X) \left[T^0(Z, I_3 \nabla f) - \frac{1}{n-1} U(I_3 Z, \nabla f) \right] - ndf(I_3 Z) \left[T^0(X, I_3 \nabla f) - \frac{1}{n-1} U(I_3 X, \nabla f) \right].
\end{equation}

Letting $X = \nabla f$ in (3.38) and applying (3.24) we obtain

\begin{equation}
(3.39) \quad (4n^2 - n - 2) U(Z, \nabla f) |\nabla f|^2 = (6n^2 - n - 2) U(\nabla f, \nabla f) df(Z) - n(n-1) T^0(I_1 Z, I_1 \nabla f) |\nabla f|^2.
\end{equation}

Therefore,

\begin{equation}
(3.40) \quad |\nabla f|^2 \left[n(n-1) T^0(Z, \nabla f) - 3(4n^2 - n - 2) U(Z, \nabla f) \right] = -3(6n^2 - n - 2) U(\nabla f, \nabla f) df(Z).
\end{equation}
On the other hand, taking into account (3.24), equality (3.34) yields

\[
\|\nabla f\|^2 \left[(n^2 - 1)T^0(Z, \nabla f) + 3nU(Z, \nabla f) \right] = -3n(2n + 1)U(\nabla f, \nabla f)dZ.
\]

Solving the system of equations (3.40) and (3.41), we obtain (3.45).

A substitution of (3.25) and (3.43) in (3.33) gives (3.26). Now, a substitution of (3.25) and (3.43) in (3.38) shows (3.27).

We finish this section with a few useful facts. As a direct corollary from (3.5), (3.25) and (3.43) it follows

\[
\|\nabla f\|^2 (S - 2) = \frac{4(n + 1)}{n - 1} U(\nabla f, \nabla f).
\]

In addition, from (3.25) and (3.37) it follows

\[
\|\nabla f\|^2 T^0(Z, I_s \nabla f) = \frac{2n}{n - 1} U(\nabla f, \nabla f)dI_s Z, \quad \|\nabla f\|^2 T^0(I_s Y, I_s \nabla f) = \frac{2n}{n - 1} U(\nabla f, \nabla f)dZ.
\]

The equalities (3.25) and (3.43) yield

\[
T^0(I_s Z, \nabla f) = 3T^0(Z, I_s \nabla f), \quad T^0(Z, \nabla f) = -3T^0(I_s Z, I_s \nabla f), \quad T^0(Z, \nabla f) = -\frac{6n}{n - 1} U(Z, \nabla f),
\]

3.5. Formulas for the covariant derivatives of the torsion tensors. Here we shall prove formulas for the covariant derivative of the torsion tensor.

Lemma 3.9. If \(M \) and \(f \) are as in Theorem 1.3, then we have the following identities for the covariant derivatives of the torsion tensor at the points where \(|\nabla f| \neq 0 \),

\[
\|\nabla f\|^2 (\nabla_Z T^0)(X, Y, Z) = \frac{4n + 2}{n + 2} dZ T^0(X, Y)
\]

\[
- \frac{2n}{n - 1} U(\nabla f, \nabla f) f \left[-3df(Y)g(X, Z) - 3df(X)g(Y, Z) + \sum_{s=1}^3 (df(I_s Y)\omega_s(X, Z) + df(I_s X)\omega_s(Y, Z)) \right]
\]

\[
- \frac{2n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{(ijk)} df(\xi_i) \left[3df(Y)\omega_i(X, Z) + df(I_i Y)g(X, Z) - df(I_j Y)\omega_k(X, Z) + df(I_k Y)\omega_j(X, Z) \right]
\]

\[
- \frac{2n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{(ijk)} df(\xi_i) \left[3df(X)\omega_i(Y, Z) + df(I_i X)g(Y, Z) - df(I_j X)\omega_k(Y, Z) + df(I_k X)\omega_j(Y, Z) \right]
\]

and

\[
\|\nabla f\|^2 (\nabla_Z U)(X, Y) - 2df(Z)U(X, Y) - 2\sum_{s=1}^3 df(\xi_s)df(I_s Z)U(X, Y) = \frac{2n - 2}{n + 2} df(Z)U(X, Y)
\]

\[
- 2\frac{df(\xi_s)df(I_s Z)U(X, Y) - \frac{1}{n - 1} U(\nabla f, \nabla f) f \left[-2df(Z) - 3df(\xi_s)df(I_s Z) \right] g(X, Y)}{\n}\]

\[
- \frac{n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left[df(Y)g(X, Z) + df(X)g(Y, Z) + \sum_{s=1}^3 (df(I_s Y)\omega_s(X, Z) + df(I_s X)\omega_s(Y, Z)) \right]
\]

\[
+ \frac{n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{(ijk)} df(\xi_i) \left[df(Y)\omega_i(X, Z) - df(I_i Y)g(X, Z) + df(I_j Y)\omega_k(X, Z) - df(I_k Y)\omega_j(X, Z) \right]
\]

\[
+ \frac{n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{(ijk)} df(\xi_i) \left[df(X)\omega_i(Y, Z) - df(I_i X)g(Y, Z) + df(I_j X)\omega_k(Y, Z) - df(I_k X)\omega_j(Y, Z) \right],
\]

where \(\sum_{(ijk)} \) means the cyclic sum, cf. Convention 1.5.
Proof. The contracted Bianchi identity reads [37, 44]

\[(\nabla_{e_a} T^0)(e_a, X) + \frac{2n + 4}{n - 1} (\nabla_{e_a} U)(e_a, X) - (2n + 1) dS(X) = 0.\]

After taking the trace in the covariant derivatives of (3.25) and (3.42) we obtain

\[(\nabla_{e_a} T^0)(e_a, \nabla f) = -\frac{6n}{n - 1} \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) + \frac{24n^2}{n - 1} f U(\nabla f, \nabla f),\]

\[(\nabla_{e_a} U)(e_a, \nabla f) = \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) - 4n f \frac{U(\nabla f, \nabla f)}{|\nabla f|^2}.
\]

The system (3.48) and (3.47) imply

\[\nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) = \frac{2n - 1}{n + 2} f U(\nabla f, \nabla f).\]

Similarly, using in addition (3.44), we have

\[(\nabla_{e_a} T^0)(e_a, I_s \nabla f) = \frac{2n}{n - 1} I_s \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) + \frac{8n^2}{n - 1} df(\xi_s) \frac{U(\nabla f, \nabla f)}{|\nabla f|^2},\]

\[(\nabla_{e_a} U)(e_a, I_s \nabla f) = I_s \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) + 4n df(\xi_s) \frac{U(\nabla f, \nabla f)}{|\nabla f|^2}.
\]

Since the differentiation of (3.43) involves covariant derivatives of the almost complex structures the derivation of (3.50) requires some care we do it explicitly again, cf. Remark 3.5. We start with the proof of the first formula in (3.50). Differentiating the first equation in (3.43), taking into account (2.3), we have

\[\nabla_{X} T^0(Z, I_s \nabla f) = -\frac{2n}{n - 1} \sum_{i=1}^{3} \left\{ X \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) df(I_i Z) + \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} g(\nabla_X(\nabla f), I_i Z) \right\}
\]

\[\quad - \frac{2n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left[-\alpha_j(X) df(I_k Z) + \alpha_k(X) df(I_j Z) \right].\]

The formula for the Hessian (1.6) gives

\[\nabla_X T^0(Z, I_s \nabla f) = -\frac{2n}{n - 1} \left\{ X \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) df(I_i Z) + \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left(f g(X, I_i Z) + \sum_{s=1}^{3} df(\xi_s) g(I_s X, I_i Z) \right) \right\}
\]

\[\quad - \frac{2n}{n - 1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left[-\alpha_j(X) df(I_k Z) + \alpha_k(X) df(I_j Z) \right].\]

Taking the trace in the above identity and then applying the first equation in (3.43) to the obtained equality we see that the terms involving the connection 1-forms cancel, which gives the first identity in (3.50).

The second line in (3.50) follows similarly.

The system (3.50) and (3.47) yields

\[I_s \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) = 2 df(\xi_s) \frac{U(\nabla f, \nabla f)}{|\nabla f|^2}.\]
We calculate the divergence of T^0 differentiating (3.26), taking the trace in the obtained equality and applying (3.49), (3.51). After a short computation we obtain

\[
(3.52) \quad |\nabla f|^2 (\nabla_{e_a} T^0)(e_a, Y) - 2fT^0(Y, \nabla f) + 2 \sum_{s=1}^3 df(\xi_s) T^0(Y, I_s \nabla f) = \\
- \frac{2n}{n-1} \left[3\nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) df(Y) + 3 \sum_{s=1}^3 I_s \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) df(I_s Y) \right] \\
- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left[3\nabla^2 f(e_a, e_a) df(Y) - 3 \sum_{s=1}^3 \nabla^2 f(e_a, I_s e_a) df(I_s Y) \right] \\
- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left[3\nabla^2 f(Y) + 3 \sum_{s=1}^3 \nabla^2 f(I_s \nabla f, I_s Y) \right].
\]

Applying (1.6), (3.25), (3.43), (3.49) and (3.51) to (3.52), we get

\[
(3.53) \quad |\nabla f|^2 (\nabla_{e_a} T^0)(e_a, Y) = \\
- \frac{12n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} df(Y) + \frac{4n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{s=1}^3 df(\xi_s) df(I_s Y) - \frac{12n}{n+2} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} fdf(Y) \\
- \frac{4n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{s=1}^3 df(\xi_s) df(I_s Y) + \frac{24n^2}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} fdf(Y) - \frac{8n^2}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{s=1}^3 df(\xi_s) df(I_s Y) \\
+ \frac{6n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} fdf(Y) - \frac{6n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \sum_{s=1}^3 df(\xi_s) df(I_s Y) \\
- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \left[\sum_{l=1}^3 \left[-f df(Y) + df(\xi_l) df(I_l Y) - df(\xi_j) df(I_j Y) - df(\xi_k) df(I_k Y) \right] \right] \\
= \frac{12n (n+1)(2n+1)}{(n+2)(n-1)} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} fdf(Y) - \frac{4n}{n-1} \frac{2n+1}{|\nabla f|^2} \sum_{s=1}^3 df(\xi_s) df(I_s Y).
\]

Applying (3.25) and (3.43) to (3.53), we derive

\[
(3.54) \quad |\nabla f|^2 (\nabla_{e_a} T^0)(e_a, Y) = - \frac{(4n+2)(n+1)}{n+2} fT^0(Y, \nabla f) + (4n+2) \sum_{s=1}^3 df(\xi_s) T^0(Y, I_s \nabla f).
\]
Now, we calculate the divergence of \(U \) differentiating (3.27), taking the trace in the obtained equality and applying (1.6), (3.49) and (3.51). We have

\[
(3.55) \quad |\nabla f|^2 (\nabla_{e_a} U)(e_a, Y) - 2f U(Y, \nabla f) + 2 \sum_{s=1}^{3} df(\xi_s) U(Y, I_s \nabla f) = \\
- \frac{1}{n-1} Y \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) |\nabla f|^2 + \frac{n}{n-1} \left[\nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) df(Y) - \sum_{s=1}^{3} I_s \nabla f \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) df(I_s Y) \right] \\
- \frac{1}{n-1} U(\nabla f, \nabla f) \left[2\nabla^2 f(Y, \nabla f) - n \nabla^2 f(e_a, e_a) df(Y) - n \sum_{s=1}^{3} \nabla^2 f(e_a, I_s e_a) df(I_s Y) \right] \\
+ \frac{n}{n-1} U(\nabla f, \nabla f) \left[\nabla^2 f(\nabla f, Y) - \sum_{s=1}^{3} \nabla^2 f(I_s \nabla f, I_s Y) \right] \\
= - \frac{1}{n-1} Y \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) |\nabla f|^2 + \frac{2n}{n-1} \left[\frac{n-1}{n+2} f U(Y, \nabla f) - \sum_{s=1}^{3} df(\xi_s) U(I_s Y, \nabla f) \right] \\
+ \frac{2n}{n-1} f U(Y, \nabla f) + \frac{2n}{n-1} \sum_{s=1}^{3} df(\xi_s) U(I_s Y, \nabla f) - \frac{4n^2 - 2}{n-1} \left[f U(Y, \nabla f) + \sum_{s=1}^{3} df(\xi_s) U(I_s Y, \nabla f) \right].
\]

Thus, from (3.55) we obtain

\[
(3.56) \quad |\nabla f|^2 (\nabla_{e_a} U)(e_a, Y) = - \frac{1}{n-1} Y \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) |\nabla f|^2 \\
- \frac{4n^2 + 6n}{n+2} f U(Y, \nabla f) - \frac{4n^2 - 2n}{n-1} \sum_{s=1}^{3} df(\xi_s) U(I_s Y, \nabla f).
\]

A substitution of (3.54), (3.56) and

\[
|\nabla f|^2 Y(S) = \frac{4n+4}{n-1} Y \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) |\nabla f|^2
\]

in (3.47) implies

\[
(3.57) \quad Y \left(\frac{U(\nabla f, \nabla f)}{|\nabla f|^2} \right) |\nabla f|^2 = \frac{2n-2}{n+2} f U(Y, \nabla f) - 2 \sum_{s=1}^{3} df(\xi_s) U(I_s Y, \nabla f).
\]

The equalities (3.56) and (3.57) yield

\[
(3.58) \quad |\nabla f|^2 (\nabla_{e_a} U)(e_a, Y) = - \frac{2(n+1)(2n+1)}{n+2} f U(Y, \nabla f) - 2(2n+1) \sum_{s=1}^{3} df(\xi_s) U(I_s Y, \nabla f).
\]
We calculate from (3.26) using (1.6), (3.25) and (3.57) that

\[|\nabla f|^2 (\nabla \nabla T^0)(X, Y) - 2f df(Z)T^0(X, Y) - 2 \sum_{s=1}^{3} df(\xi_s)df(I_s Z)T^0(X, Y) \]

\[= \frac{2n-2}{n+2} f df(Z)T^0(X, Y) - 2 \sum_{s=1}^{3} df(\xi_s)df(I_s Z)T^0(X, Y) \]

\[- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} f \left[-3df(Y)g(X, Z) + \sum_{s=1}^{3} df(I_s Y)\omega_s(X, Z) \right] \]

\[- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} f \left[-3df(X)g(Y, Z) + \sum_{s=1}^{3} df(I_s X)\omega_s(Y, Z) \right] \]

\[- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} df(\xi_1) 3df(Y)\omega_1(X, Z) + df(I_1 Y)g(X, Z) - df(\xi_2 Y)\omega_3(X, Z) + df(I_2 Y)\omega_2(X, Z) \]

\[- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} df(\xi_2) 3df(X)\omega_1(Y, Z) + df(I_1 X)g(Y, Z) - df(\xi_2 X)\omega_3(Y, Z) + df(I_2 X)\omega_2(Y, Z) \]

\[- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} df(\xi_3) 3df(Y)\omega_3(X, Z) + df(I_3 Y)g(X, Z) - df(\xi_3 Y)\omega_2(X, Z) + df(I_3 Y)\omega_1(X, Z) \]

\[- \frac{2n}{n-1} \frac{U(\nabla f, \nabla f)}{|\nabla f|^2} df(\xi_3) 3df(X)\omega_3(Y, Z) + df(I_3 X)g(Y, Z) - df(\xi_3 X)\omega_2(Y, Z) + df(I_3 X)\omega_1(Y, Z) \].

The last equality yields (3.45). Finally, equation (3.46) follows from (3.27) using (1.6), (3.25) and (3.57).

In the next, key step of the proof, where we show that the torsion tensor vanishes, we shall use the following particular cases of Lemma 3.9. For \(Z = \nabla f \), (3.45) gives

\[(\nabla \nabla T^0)(X, Y) = \frac{2n-2}{n+2} f T^0(X, Y) + \frac{df(\xi_1)}{\partial} \left[T^0(I_1 X, Y) + T^0(X, I_1 Y) \right] \]

\[+ \frac{df(\xi_2)}{\partial} \left[T^0(I_2 X, Y) + T^0(X, I_2 Y) \right] + \frac{df(\xi_3)}{\partial} \left[T^0(I_3 X, Y) + T^0(X, I_3 Y) \right] \].

Similarly, letting \(Z = I_s \nabla f \) in (3.45) we obtain

\[(\nabla I_s \nabla T^0)(X, Y) = 2f \left[T^0(I_s X, Y) + T^0(X, I_s Y) \right] \]

\[- \frac{df(\xi_3)}{\partial} \left[T^0(I_s X, Y) + T^0(X, I_s Y) \right] + \frac{df(\xi_k)}{\partial} \left[T^0(I_k X, Y) + T^0(X, I_k Y) \right] \].

The substitution of \(Y = \nabla f \) in (3.54) taking into account (3.24) and Lemma 3.2 gives

\[|\nabla f|^2 (\nabla_{\nabla f} T^0)(\epsilon_a, \nabla f) = \frac{12n(n+1)(2n+1)}{(n+2)(n-1)} fU(\nabla f, \nabla f) \]

while the substitution \(Z = \epsilon_a, X = I_s \epsilon_a, Y = I_s \nabla f \) in (3.45) and (3.43) gives

\[|\nabla f|^2 (\nabla_{\nabla f} T^0)(I_s \epsilon_a, I_s \nabla f) = \frac{4n(n+1)(2n+1)}{(n+2)(n-1)} fU(\nabla f, \nabla f). \]

Finally, letting \(Z = \nabla f, I_s \nabla f \) in (3.46) shows the next equality

\[(\nabla \nabla U)(X, Y) = \frac{2n-2}{n+2} f U(X, Y), \quad (\nabla I_s \nabla U)(X, Y) = 2df(\xi_a)U(X, Y). \]
3.6. **Vanishing of the torsion.** In this section we show the vanishing of the torsion, \(T^0 = U = 0 \), by calculating in two ways the mixed third covariant derivatives of a function satisfying (1.6).

Lemma 3.10. If \(M \) satisfies the assumptions of Theorem 1.3, then the torsion tensor vanishes, \(T^0 = 0 \), \(U = 0 \), i.e., \(M \) is a \(qc \)-Einstein manifold.

The proof occupies the remaining part of this sub-section.

3.6.1. **The Ricci identities.** We are going to use the sixth line in (2.13). A substitution of the contracted Bianchi identity (3.47) in the second formula of (2.12) gives

\[
(3.64) \quad (2n + 1)\rho_i(\xi_j, I_k X) = -(2n + 1)\rho_i(\xi_k, I_j X)
= -\frac{1}{4}[(\nabla_{e_a} T^0)(e_a, X) + (\nabla_{e_a} T^0)(I_i e_a, I_j X)] + \frac{n}{n-1}(\nabla_{e_a} U)(e_a, X).
\]

Let \(Z = \nabla f \) in (2.11), and then substitute the obtained equality in the sixth formula of (2.13), after which use (3.64) in order to see

\[
(3.65) \quad \nabla^3 f(\xi_i, X, Y) - \nabla^3 f(X, Y, \xi_i)
= -\nabla^2 f(T(\xi_i, X), Y) - \nabla^2 f(X, T(\xi_i, Y)) - df((\nabla_X T)(\xi_i, Y)) + (\nabla_X U)(I_Y, \nabla f)
+ \frac{1}{4} [(\nabla_Y T^0)(I_i \nabla f, X) + (\nabla_Y T^0)(\nabla f, I_i X)] - \frac{1}{4} [(\nabla_Y U T^0)(I_i, Y, I_i X)]
+ \frac{1}{2n+1} \left[-\frac{1}{4} (\nabla_{e_a} T^0)[(e_a, I_k \nabla f) - (I_k e_a, \nabla f)] + \frac{n}{n-1} (\nabla_{e_a} U)(e_a, I_k \nabla f) \right] \omega_j(\nabla f, Y)
- \frac{1}{2n+1} \left[-\frac{1}{4} (\nabla_{e_a} T^0)[(e_a, I_j \nabla f) - (I_j e_a, \nabla f)] + \frac{n}{n-1} (\nabla_{e_a} U)(e_a, I_j \nabla f) \right] \omega_k(\nabla f, Y)
+ \frac{1}{2n+1} \left[-\frac{1}{4} (\nabla_{e_a} T^0)[((e_a, I_k Y) - (I_k e_a, Y)] - \frac{n}{n-1} (\nabla_{e_a} U)(e_a, I_k Y) \right] df(I_j X)
- \frac{1}{2n+1} \left[-\frac{1}{4} (\nabla_{e_a} T^0)[((e_a, I_j Y) - (I_j e_a, Y)] - \frac{n}{n-1} (\nabla_{e_a} U)(e_a, I_j Y) \right] df(I_k X)
+ \frac{1}{2n+1} \left[-\frac{1}{4} (\nabla_{e_a} T^0)[((e_a, I_k X) - (I_k e_a, X)] - \frac{n}{n-1} (\nabla_{e_a} U)(e_a, I_k X) \right] df(I_j Y)
- \frac{1}{2n+1} \left[-\frac{1}{4} (\nabla_{e_a} T^0)[((e_a, I_j X) - (I_j e_a, X)] - \frac{n}{n-1} (\nabla_{e_a} U)(e_a, I_j X) \right] df(I_k Y).
\]

Note that from (2.9) we have

\[
(3.66) \quad T(\xi_i, X, Y) = -\frac{1}{4} \left[T^0(I_i, X, Y) + T^0(X, I_i Y) \right] - U(X, I_i Y).
\]

Differentiating the above formula we find, applying (2.3),

\[
(3.67) \quad df ((\nabla_X T)(\xi_i, Y)) = -\frac{1}{4} \left[(\nabla_X T^0)(I_i, Y, \nabla f) + (\nabla_X T^0)(Y, I_i \nabla f) \right] + (\nabla_X U)(I_i, Y, \nabla f).
\]
Using (1.6), (3.66), (3.67) and the properties of torsion tensor listed in (2.8), we obtain from (3.65)

\[
\nabla^3 f(\xi, X, Y) - \nabla^3 f(X, Y, \xi) \\
= \frac{1}{4} \left[(\nabla X T^0)(I, Y, \nabla f) + (\nabla Y T^0)(Y, I, \nabla f) \right] + \frac{1}{4} \left[(\nabla Y T^0)(I, X, \nabla f) + (\nabla Y T^0)(X, I, \nabla f) \right] \\
- \frac{1}{4} \left[(\nabla \nabla f T^0)(X, I, Y) + (\nabla \nabla f T^0)(I, X, Y) - \frac{1}{2} \left[T^0(I, X, Y) + T^0(X, I, Y) \right] f \right] \\
+ \frac{1}{2} \left(T^0(I, X, Y) - T^0(I_k X, Y) + 2U(X, I_k Y) \right) df(\xi) \\
+ \left[\frac{1}{2} \left(T^0(I_j X, Y) - T^0(X, I_j Y) \right) + 2U(I_j X, Y) \right] df(\xi_k) \\
+ \frac{1}{2n+1} \left[\frac{1}{4} \left(\nabla e_a T^0 \right) \left[(e_a, I_k \nabla f) - (I_k e_a, \nabla f) \right] + \frac{n}{n-1}(\nabla e_a)(e_a, I_k \nabla f) \right] \omega_j(X, Y) \\
- \frac{1}{2n+1} \left[\frac{1}{4} \left(\nabla e_a T^0 \right) \left[(e_a, I_j \nabla f) - (I_j e_a, \nabla f) \right] + \frac{n}{n-1}(\nabla e_a)(e_a, I_j \nabla f) \right] \omega_k(X, Y) \\
+ \frac{1}{2n+1} \left[\frac{1}{4} \left(\nabla e_a T^0 \right) \left[(e_a, I_j \nabla f) - (I_j e_a, \nabla f) \right] - \frac{n}{n-1}(\nabla e_a)(e_a, I_j \nabla f) \right] df(I_j X) \\
- \frac{1}{2n+1} \left[\frac{1}{4} \left(\nabla e_a T^0 \right) \left[(e_a, I_j X) - (I_j e_a, X) \right] - \frac{n}{n-1}(\nabla e_a)(e_a, I_j X) \right] df(I_j Y) \\
- \frac{1}{2n+1} \left[\frac{1}{4} \left(\nabla e_a T^0 \right) \left[(e_a, I_k X) - (I_k e_a, X) \right] - \frac{n}{n-1}(\nabla e_a)(e_a, I_k X) \right] df(I_k Y).
\]

For \(X = I_j \nabla f, Y = \nabla f \) equation (3.68) together with (3.59), (3.60), (3.6) and (2.23) imply

\[
\nabla^3 f(\xi, I_j \nabla f, \nabla f) - \nabla^3 f(I_j \nabla f, \nabla f, \xi) = 0.
\]

On the other hand, a subtraction of (3.18) from (3.1) with \(A = \xi \) gives

\[
\nabla^3 f(\xi, X, Y) - \nabla^3 f(X, Y, \xi) = \frac{n+1}{2n+1} \left[(\nabla X T^0)(I, Y, \nabla f) + (\nabla Y T^0)(Y, I, \nabla f) \right] \\
+ \frac{4n}{(2n+1)(n-1)}(\nabla X U)(I, Y, \nabla f) - f \frac{2n+1}{2n+1} \left[T^0(I, X, Y) + T^0(I, X, Y) \right] + \frac{4n}{(2n+1)(n-1)}fU(X, I, Y) \\
- df(\xi_i) \frac{n+1}{2n+1} \left[T^0(I, X, Y) - T^0(X, Y) \right] + \frac{4n}{(2n+1)(n-1)}df(\xi_i)U(X, Y) \\
- df(\xi_j) \frac{n+1}{2n+1} \left[T^0(I_j X, I, Y) + T^0(I_k X, I, Y) \right] + \frac{4n}{(2n+1)(n-1)}df(\xi_j)U(X, I_k Y) \\
- df(\xi_k) \frac{n+1}{2n+1} \left[T^0(I_k X, I, Y) - T^0(I_j X, I, Y) \right] - \frac{4n}{(2n+1)(n-1)}df(\xi_k)U(X, I_j Y) \\
- \sum_{s=1}^{3} \left[\nabla^2 f(\xi, \xi_s) + f \right] \omega_s(X, Y).
\]

Letting \(X = I_j \nabla f, Y = \nabla f \) in (3.70) and then applying (3.6) and (2.23) we obtain

\[
\nabla^3 f(\xi, I_j \nabla f, \nabla f) - \nabla^3 f(I_j \nabla f, \nabla f, \xi) = \frac{2n+1}{2n+1} \left(\nabla f, \nabla f T^0 \right)(I_j \nabla f, \nabla f) \\
+ \frac{4n}{(2n+1)(n-1)}(\nabla f, \nabla f U)(I_j \nabla f, \nabla f) - \frac{n+1}{2n+1} f \left[T^0(I_j \nabla f, I_j \nabla f) - T^0(\nabla f, \nabla f) \right] \\
+ \frac{4n}{(2n+1)(n-1)}fU(\nabla f, \nabla f) + \left[\nabla^2 f(\xi, \xi) + f \right] |\nabla f|^2.
\]
Using (3.60), (3.63) as well as (3.24) in (3.71) we conclude
\begin{equation}
\nabla^3 f(\xi_i, I_i \nabla f, \nabla f) - \nabla^3 f(I_i \nabla f, \nabla f, \xi_i) = \frac{4n}{n-1} f U(\nabla f, \nabla f) + \left[\nabla^2 f(\xi_i, \xi_i) + f \right] |\nabla f|^2.
\end{equation}

The formula for the last term is given in (3.16) to whose right-hand side we apply (3.61), (3.62) and (3.58) in order to obtain
\begin{equation}
\nabla^2 f(\xi_i, \xi_i) + f = -\frac{2(n+1)(2n+1)}{(n+2)(n-1)} f U(\nabla f, \nabla f)
\end{equation}
Now (3.73) applied to (3.72) allows us to conclude
\begin{equation}
\nabla^3 f(\xi_i, I_i \nabla f, \nabla f) - \nabla^3 f(I_i \nabla f, \nabla f, \xi_i) = \frac{2}{n+2} f U(\nabla f, \nabla f).
\end{equation}

Comparing (3.69) and (3.74) we obtain $f U(\nabla f, \nabla f) = 0$, which implies $U(\nabla f, \nabla f) = 0$ taking into account Remark 3.7. Hence, $T^0 = U = 0$ due to (3.26) and (3.27). This completes the proof of Lemma 3.10.

3.7. The Riemannian Hessian. Here we show that if $T^0 = U = 0$ the equality (1.6) implies that the Riemannian Hessian satisfies (1.1) and therefore the manifold is the standard sphere due to the Obata’s theorem.

Lemma 3.11. Let (M, η, g, Q) be a qc-Einstein manifold, $T^0 = U = 0$, of dimension $4n + 3 > 7$. Let h be the associated Riemannian metric (1.5). If f is smooth function whose horizontal Hessian satisfies (1.6), then the Riemannian Hessian of f with respect to the metric h satisfies (1.1).

Proof. Taking into account (2.2) we have the following formula relating the Hessian with respect to the Levi-Civita and the Biquard connections
\begin{equation}
(\nabla^h)^2 f(A, B) = \nabla^2 f(A, B) + \frac{1}{2} \left[h(T(A, B), df) - h(T(B, df), A) + h(T(df, A), B) \right], A, B \in \Gamma(TM).
\end{equation}

From (3.75), (2.5) and (1.6) it follows that
\begin{equation}
(\nabla^h)^2 f(X, Y) = -fh(X, Y).
\end{equation}
Let us recall that a qc-Einstein manifold, $T^0 = U = 0$, has integrable vertical space [37] thus the fourth line in (2.10) shows
\begin{equation}
h(T(\xi_i, \xi_i), X) = 0,
\end{equation}
Now, using (3.12) with $T^0 = U = 0$, we calculate from (3.75)
\begin{equation}
(\nabla^h)^2 f(X, \xi_i) = df(I_i X) + \frac{1}{2} h(T(X, \xi_i), \nabla f) - \frac{1}{2} h(T(\xi_i, \nabla f), X) - \frac{1}{2} h(T(\sum_{s=1}^3 df(\xi_s) \xi_s, X) + \frac{1}{2} h(T(\nabla f, \xi_i), \xi_i) + \frac{1}{2} h(T(\sum_{s=1}^3 df(\xi_s) \xi_s, X), \xi_i) = df(I_i X) + \omega_i(\nabla f, X) = 0,
\end{equation}
Taking into account (3.77) and the properties of the torsion (2.9) and (2.5). A similar argument shows the identity
\begin{equation}
(\nabla^h)^2 f(\xi_i, \xi_i) = \nabla^2 f(\xi_i, \xi_i) = -f,
\end{equation}
where we have used (3.16) taken with $T^0 = U = 0$.

Finally, we have to show $(\nabla^h)^2 f(\xi_i, \xi_i) = 0$. The trace with respect to $X = e_a, Y = I_j e_a$ in (3.19) together with the second equality in (2.10) and the condition $T^0 = U = 0$ yields
\begin{equation}
\nabla^2 f(\xi_j, \xi_i) = (1 - S) df(\xi_k).
\end{equation}
Now, the equality (3.75) together with the fourth equality in (2.10), (3.77) and (3.80) imply
\begin{equation}
(\nabla^h)^2 f(\xi_i, \xi_j) = (1 - S) df(\xi_k) + \frac{1}{2} S df(\xi_k) = (1 - \frac{1}{2} S) df(\xi_k) = 0,
\end{equation}
since (3.5) shows $S = 2$ in the case $T^0 = U = 0$.
\hfill \Box
At this point, applying the Obata theorem we conclude that our manifold is isometric to the unit sphere. In order to show that it is qc-equivalent to the sphere we shall use a Liouville-type result in the quaternionic contact case which we present next.

3.8. Quaternionic contact conformally flat manifolds and the Liouville theorem. We start by recalling some basic definitions and facts.

Definition 3.12 ([37, Section 7.2]). A diffeomorphism F of a qc manifold (M, η) is called a conformal quaternionic contact automorphism (abbr. conformal qc-automorphism or qc-conformal map) if F preserves the qc structure, i.e. $F^*\eta = \mu \Psi \cdot \eta$, for some positive smooth function μ and matrix $\Psi \in SO(3)$ with smooth functions as entries, where $\eta = (\eta_1, \eta_2, \eta_3)^t$ is a local 1-form considered as an element of \mathbb{R}^3. If $\mu = \text{const}$ we call F a quaternionic contact homothety (abbr. qc-homothety). Finally, if $\mu = 1$ then F is called a quaternionic contact automorphism (abbr. qc-automorphism).

The above definition extends in the obvious manner to a map between two qc manifolds giving the notion of a qc-conformal map. The qc-conformal curvature tensor W^{qc}, introduced in [42], is the obstruction for a qc structure to be locally qc-conformal to the flat structure on the quaternionic Heisenberg group $G(\mathbb{H})$. A qc-conformally flat structure is also locally qc-conformal to the standard 3-Sasaki sphere due to the local qc-conformal equivalence of the standard 3-Sasakian structure on the $(4n + 3)$-dimensional sphere and the quaternionic Heisenberg group [37, 42] via the Cayley transform whose definition we recall below, see also [44, Section 2.3.1] for the history and references of the Cayley transform on groups of Heisenberg type. In view of the uniqueness of the possible associated almost complex structures [6], (see also [37, Lemma 2.2]), a conformal quaternionic contact automorphism will also preserve, unlike the situation in the CR case, the associated almost complex structures and the conformal class $[g]$ of the horizontal metric g on H.

We shall use the following model of the quaternionic Heisenberg group $G(\mathbb{H})$, see [37, Section 5.2] or [44, Section 4.3.4]. Define $G(\mathbb{H}) = \mathbb{H}^n \times \text{Im} \mathbb{H}$ with the group law given by

$$\tag{3.82} (q_0, \omega_0) \circ (q, \omega) = (q_0 + q, \omega + \omega_0 + 2 \text{Im } q_0 \bar{q}),$$

where $q, q_0 \in \mathbb{H}^n$, $\omega, \omega_0 \in \text{Im} \mathbb{H}$ and \mathbb{H} is the space of quaternions. We shall denote with (q, ω) the elements of $G(\mathbb{H})$. The standard 3-contact form $\tilde{\Theta} = (\tilde{\Theta}_1, \tilde{\Theta}_2, \tilde{\Theta}_3)$ written as a purely imaginary quaternion valued 1-form is defined by

$$\tag{3.83} \tilde{\Theta} = \frac{1}{2} (d\omega - q \cdot d\bar{q} + d\bar{q} \cdot q).$$

Let $S^{4n+3} = \{ |q'|^2 + |p'|^2 = 1 \} \subset \mathbb{H}^n \times \mathbb{H}$ be the unit sphere in the $(n+1)$-dimensional quaternion space equipped with the qc structure defined by the standard contact form $\tilde{\eta}$ on the sphere,

$$\tag{3.84} \tilde{\eta} = dq' \cdot d\bar{q}' + dp' \cdot \bar{d}p' - q' \cdot d\bar{q}' - \bar{p}' \cdot dp'.$$

Note that $\tilde{\eta}$ is twice the standard 3-Sasakian form on the sphere. Following [37], see also [44], we identify the quaternionic Heisenberg group $G(\mathbb{H})$ with the boundary of a Siegel domain in $\mathbb{H}^n \times \mathbb{H}$,

$$G(\mathbb{H}) = \{ (q, p) \in \mathbb{H}^n \times \mathbb{H} : \Re \ p = |q|^2 \},$$

using the map $(q, \omega) \mapsto (q, |q|^2 - \omega)$. Under this identification we have

$$\tag{3.85} \tilde{\Theta} = \frac{1}{2} \left[-dp + 2dq \cdot \bar{q} \right] = \frac{1}{4} \left[(dp - d\bar{p}) + 2d\bar{q} \cdot q - 2q \cdot d\bar{q} \right].$$

The Cayley transform, see [52] and [21], is the map $\mathcal{C} : S^{4n+3} \setminus \{ (-1, 0) \} \rightarrow G(\mathbb{H})$, $(-1, 0) \in \mathbb{H}^n \times \mathbb{H}$, from the sphere $S^{4n+3} = \{ |q'|^2 + |p'|^2 = 1 \} \subset \mathbb{H}^n \times \mathbb{H}$ minus a point to the Heisenberg group $G(\mathbb{H})$, with \mathcal{C} defined by

$$\tag{3.86} (q, p) = \mathcal{C} \left((q', p') \right), \quad q = (1 + p')^{-1} q', \quad p = (1 + p')^{-1} (1 - p').$$

and with an inverse map $(q', p') = \mathcal{C}^{-1} \left((q, p) \right)$ given by $q' = 2(1 + p)^{-1} q$, $p' = (1 + p)^{-1} (1 - p)$. The Cayley transform is a conformal quaternionic contact diffeomorphism between the quaternionic Heisenberg...
group with its standard quaternionic contact structure $\tilde{\Theta}$ and the sphere minus a point with its standard structure $\tilde{\eta}$ [37]. In fact, by [37, Section 8.3] we have
\[
\lambda \cdot (\mathcal{E}^{-1})^* \tilde{\eta} \cdot \bar{\lambda} = \frac{8}{|1 + p|^2} \tilde{\Theta}.
\]
where $\lambda = |1 + p| (1 + p)^{-1}$ is a unit quaternion and $\tilde{\eta}$ is defined in (3.84).

Besides the Cayley transform, we shall need the generalization of the Euclidean inversion transformation to the qc setting. We recall that in [52] Korányi introduced such an inversion and an analogue of the Kelvin transform on the Heisenberg group, which were later generalized in [22] and [21] to all groups of Heisenberg type. The inversion and Kelvin transform enjoy useful properties in the case of the four groups of Iwasawa type of which $G(\mathbb{H})$ is a particular case. For our goals it is necessary to show that the inversion on $G(\mathbb{H})$ is a qc-conformal map. In order to prove this fact we shall represent the inversion as the composition of two Cayley transforms, see [38, 44] where the seven dimensional case was used. Let $P_1 = (-1, 0)$ and $P_2 = (1, 0)$ be correspondingly the ‘south’ and ‘north’ poles of the unit sphere $S^{4n+3} = \{|q|^2 + |p|^2 = 1\} \subset \mathbb{H}^n \times \mathbb{H}$. Let \mathcal{C}_1 and \mathcal{C}_2 be the corresponding Cayley transforms defined, respectively, on $S^{4n+3} \setminus \{P_1\}$ and $S^{4n+3} \setminus \{P_2\}$. Note that \mathcal{C}_1 was defined in (3.86), while \mathcal{C}_2 is given by $(q, p) = \mathcal{C}_2 \left((q', p')\right)$.

\[
q = -(1 - p')^{-1} q', \quad p = (1 - p')^{-1} (1 + p'), \quad (q', p') \in S^{4n+3} \setminus \{P_2\}
\]
The inversion on the quaternionic Heisenberg group (with center the origin) with respect to the unit gauge sphere is the map
\[
\sigma = \mathcal{C}_2 \circ \mathcal{C}_1^{-1} : G(\mathbb{H}) \setminus \{(0, 0)\} \rightarrow G(\mathbb{H}) \setminus \{(0, 0)\}.
\]
In particular, $\sigma = \mathcal{C}_2 \circ \mathcal{C}_1^{-1}$ is an involution on the group. A small calculation shows that σ is given by the formula (in the Siegel model)
\[
q^* = -q, \quad p^* = p^{-1},
\]
or, equivalently, in the direct product model $G(\mathbb{H})$
\[
q^* = -(|q|^2 - \omega)^{-1} q, \quad \omega^* = -\frac{\omega}{|q|^4 + |\omega|^2}.
\]
Recalling (3.55) and (3.83) it follows
\[
\sigma^* \Theta = \frac{1}{|p|^2} \bar{\mu} \Theta \mu, \quad \mu = \frac{|p|}{|p|^2} \quad \text{(in the Siegel model)}
\]
\[
\sigma^* \Theta = \frac{1}{|q|^4 + |\omega|^2} \bar{\mu} \Theta \mu, \quad \mu = \frac{|q|^2 + \omega}{(|q|^4 + |\omega|^2)^{1/2}} \quad \text{(in the product model)}.
\]
Thus, we have the following fundamental fact.

Lemma 3.13. The inversion transformation (3.88) is a qc-conformal transformation on the quaternionic Heisenberg group.

As usual, using the dilations and translations on the group, it is a simple matter to define an inversion with respect to any gauge ball. We recall that the gauge norm of a point $(q, \omega) \in G(\mathbb{H})$ is $N(q, \omega) = \left(|q|^4 + |\omega|^2\right)^{1/4}$ which allows to define a distance on the group using the translation structure.

After these preliminary facts, our next goal is to prove a version of Liouville’s theorem in the case of the quaternionic Heisenberg group and the 3-Sasakian sphere equipped with their standard qc structures. In the Euclidean case Liouville [63], [64] showed that every sufficiently smooth conformal map (C^4 in fact) between two connected open sets of the Euclidean space \mathbb{R}^3 is necessarily a restriction of a Möbius transformation. The latter is the group generated by translations, dilations and inversions of the extended Euclidean space obtained by adding an ideal point at infinity. Liouville’s result generalizes easily to any dimension $n > 3$. Subsequently, Hartman [35] gave a proof requiring only C^1 smoothness of the conformal map, see also [67], [7], [49], [48] and [29] for other proofs. A CR version of Liouville’s result can be found in [77] and [1]. Thus, a smooth CR diffeomorphism between two connected open subsets of the $2n + 1$ dimensional sphere is the restriction of an element from the isometry group $SU(n + 1, 1)$ of the unit ball equipped with the complex
hyperbolic metric. The proof of Alexander [1] relies on the extension property of a smooth CR map to a biholomorphism. Tanaka, see also [73], [13, 14] and [19], in his study of pseudo-conformal equivalence between analytic real hypersurfaces of complex space showed a more general result [77, Theorem 6] showing that any pseudo-conformal homeomorphism between connected open sets of the quadric

\[- \sum_{i=1}^{r} |z_i|^2 + \sum_{i=r+1}^{n} |z_i|^2 = 1, \quad (z_1, \ldots, z_n) \in \mathbb{C}^n,\]

is the restriction of a projective transformation of \(P^n(\mathbb{C}) \).

A new stage began with the introduction of quasiconformal maps, which imposed metric conditions on the maps, [32] and [75] and with the works of Mostow [66] and Pansu [70]. In particular, in [70] it was shown that every global 1-quasiconformal map on the sphere at infinity of each of the hyperbolic metrics is an isometry of the corresponding hyperbolic space. The local version of the Liouville’s property for 1-quasiconformal map of class \(C^4 \) on the Heisenberg group was settled in [53] by a reduction to the CR result. The optimal regularity question for quasiconformal maps in much greater generality, including the cases of all Iwasawa type groups, was proven later by Capogna [10], see also [78] and [11].

A closely related property is the so called rigidity property of quasiconformal or multicontact maps, also referred to as Liouville’s property, but where the question is the finite dimensionality of the group of (locally defined) quasiconformal or multicontact maps, see [80], [74], [23, [68], [69], [65], [24], [56].

In Theorem 1.4 we give a local Liouville type property in the setting of a sufficiently smooth qc-conformal maps relying only on the qc geometry.

3.9. Proof of Theorem 1.4

Since in the case \(\Sigma = S^{4n+3} \) there is nothing to prove we shall assume that \(\Sigma \neq S^{4n+3} \). We shall transfer the analysis to the quaternionic Heisenberg group using the Cayley transform, thereby reducing to the case of a qc-conformal transformation \(\tilde{F} : \tilde{\Sigma} \to G(\mathbb{H}) \) between two domains of the quaternionic Heisenberg group such that \(\Theta = \tilde{F}^* \tilde{\Theta} = \frac{1}{4\pi} \tilde{\Theta} \) for some positive smooth function \(\mu \) defined on the open set \(\tilde{\Sigma} \). By its definition \(\Theta \) is qc-Einstein structure, hence the proof of [37, Theorem 1.1] shows that \(\mu \) satisfies a system of partial differential equations whose solution is a family of polynomial of degree four. In fact, with a small change of the parameters in [37, Theorem 1.1], \(\mu \) has the form

\[(3.90) \quad \mu(q, \omega) = c_0 \left[(\sigma + |q + q_0|^2)^2 + |\omega + \omega_0 + 2 \text{Im} q_o \bar{q}_o|^2 \right], \]

for some fixed \((q_0, \omega_0) \in G(\mathbb{H})\) and constants \(c_0 > 0\) and \(\sigma \in \mathbb{R}\). A small calculation using (3.90) and the Yamabe equation [37, (5.8)] shows \(Scal_q = 128n(n + 2)c_0 \sigma \). Since \(\Theta \) is qc-conformal to \(\tilde{\Theta} \) via the map \(F \), it follows that \(\sigma = 0 \). Hence, \(F \) is a composition of a translation, cf. (3.82), followed by an inversion and a homothety, cf. Lemma 3.13.

The above analysis implies that \(F \) is the restriction of an element of \(PSp(n + 1, 1) \). This completes the proof of Theorem 1.4.

Similar to the Riemannian and CR cases Theorem 1.4 and a standard monodromy type argument, see [54] and [76, Theorem VI.1.6], show the validity of the next

Theorem 3.14. If \((M, \eta)\) is a simply connected qc-conformally flat manifold of dimension \(4n + 3\), then there is a qc-conformal immersion \(\Phi : M \to S^{4n+3} \), where \(S^{4n+3} \) is the 3-Sasakian unit sphere in the \((n + 1)\)-dimensional quaternion space.

3.10. Proof of Theorem 1.3

From Lemma 3.10, Lemma 3.11 and the classical Obata theorem it follows that \((M, h)\) is isometric to the unit sphere in Euclidean space, i.e., there is a diffeomorphism \(i : M \to S^{4n+3} \) such that \(h = \i^* ds^2 \), where \(ds^2 \) denotes the round metric on \(S^{4n+3} \) which we take to be of constant Riemannian scalar curvature \(Scal^h = (4n + 3)(4n + 2) \). Thus, the curvature tensor \(R^h \) of the Levi-Civita connection \(\nabla^h \) of \(h \) is given by

\[(3.91) \quad R^h(A, B, C, D) = h(B, C)h(A, D) - h(B, D)h(A, C). \]
The relation between the curvature tensors of the Levi-Civita and the Biquard connection [37, Corollary 4.13] or [44, Theorem 4.4.3] together with (3.91) yield
\[
(3.92) \quad R(X, Y, Z, V) = g(Y, Z)g(X, V) - g(Y, V)g(X, Z) \\
+ \sum_{s=1}^{3} \left[\omega_s(Y, Z)\omega_s(X, V) - \omega_s(X, Z)\omega_s(Y, V) - 2\omega_s(X, Y)\omega_s(Z, V) \right].
\]

In the case \(T^0 = U = 0, S = 2 \), the formula for the qc-conformal curvature tensor given in [42, Proposition 4.2] reads
\[
(3.93) \quad W^{qc}(X, Y, Z, V) = \frac{1}{4} \left[R(X, Y, Z, V) + \sum_{s=1}^{3} R(I_sX, I_sY, Z, V) \right] + g(X, Z)g(Y, V) - g(Y, Z)g(X, V) \\
+ \sum_{s=1}^{3} \left[\omega_s(Y, Z)\omega_s(X, V) - \omega_s(X, Z)\omega_s(Y, V) \right].
\]

With a small calculation we see from (3.93), taking into account (3.92), that the qc-conformal curvature tensor vanishes, \(W^{qc} = 0 \) and \((M, g, \eta, \mathbb{Q})\) is locally qc-conformal to the sphere due to [42, Theorem 1.3]. Hence, taking into account Theorem 3.14, \((M, g, \eta, \mathbb{Q})\) is qc-conformal to \(S^{4n+3} \), i.e., \(\eta = \kappa \Psi F^* \tilde{\eta} \) for some diffeomorphism \(F : M \to S^{4n+3} \). Comparing the metrics we obtain \(\kappa = 1 \) which shows that \(M \) is qc-homothetic to the 3-Sasakian unit sphere in the \((n + 1)\)-dimensional quaternion space. This completes the proof of Theorem 1.3. The proof of Theorem 1.2 follows as already noted after the statement of Theorem 1.3.

4. APPENDIX

4.1. The \(P \)-form. Let \((M, g, \mathbb{Q})\) be a compact quaternionic contact manifold of dimension \(4n+3\) and \(f\) a smooth function on \(M\). We recall the notion of a \(P\)-function introduced in [41]

Definition 4.1. [41]

a) For a fixed \(f \) we define a one form \(P \equiv P_f \equiv P[f] \) on \(M\), which we call the \(P \)-form of \(f \), by the following equation
\[
P_f(X) = \nabla^3 f(X, e_b, e_b) + \sum_{i=1}^{3} \nabla^3 f(I_iX, e_b, I_ie_b) - 4nSdf(X) + 4nT^0(X, \nabla f) - \frac{8n(n-2)}{n-1} U(X, \nabla f).
\]

b) The \(P \)-function of \(f \) is the function \(P_f(\nabla f) \).

c) The \(C \)-operator is the fourth-order differential operator on \(M\) (independent of \(f! \)) defined by
\[
Cf = -\nabla^2 P_f = (\nabla_{e_a} P_f)(e_a).
\]

d) We say that the \(P \)-function of \(f \) is non-negative if its integral exists and is non-positive
\[
(4.1) \quad \int_M f \cdot Cf \text{Vol}_\eta = -\int_M P_f(\nabla f) \text{Vol}_\eta \geq 0.
\]

If (4.1) holds for any smooth function of compact support we say that the \(C \)-operator is non-negative.

The \(Sp(n)Sp(1) \)-invariant decomposition of the horizontal Hessian \(\nabla^2 f \) are given by
\[
(\nabla^2 f)_{[3]}(X, Y) = \frac{1}{4} \left[\nabla^2 f(X, Y) + \sum_{s=1}^{3} \nabla^2 f(I_sX, I_sY) \right]
\]
\[
(4.2) \quad (\nabla^2 f)_{[-1]}(X, Y) = \frac{1}{4} \left[3\nabla^2 f(X, Y) - \sum_{s=1}^{3} \nabla^2 f(I_sX, I_sY) \right].
\]

Let \((\nabla^2 f)_{[3][0]}\) be the trace-free part of the 3-component of the horizontal Hessian,
\[
(4.3) \quad (\nabla^2 f)_{[3][0]}(X, Y) = (\nabla^2 f)_{[3]}(X, Y) + \frac{1}{4n} \Delta f g(X, Y).
\]
The next local formula, established in [41],
\begin{equation}
(\nabla e_{\alpha}(\nabla^2 f)(\mathbb{S}[0]))(e_{\alpha}, X) = \frac{n-1}{4n} P_f(X).
\end{equation}
implies the non-negativity of the $C-$operator on a compact qc manifold of dimension at least eleven [41, Theorem 3.3]. Indeed, using (4.4) we have
\begin{equation}
\frac{n-1}{4n} \int_M f.Cf Vol_\eta = -\frac{n-1}{4n} \int_M P_f(\nabla f) Vol_\eta = \int_M |(\nabla^2 f)(\mathbb{S}[0])|^2 Vol_\eta,
\end{equation}
after using an integration by parts and the orthogonality of the components of the horizontal Hessian.

4.2. **A new proof of Theorem 1.1.** Here we use the non-negativity of the P-function $P(\nabla f)$ of a smooth function f established in [41, Theorem 3.3] to give a new proof of Theorem 1.1.

Proof. Let f be an eigenfunction of the sub-Laplacian with eigenvalue λ, i.e., we assume that (2.14) holds. An integration by parts gives
\begin{equation}
\int_M (\triangle f)^2 Vol_\eta = \lambda \int_M f\triangle f Vol_\eta = \lambda \int_M |\nabla f|^2 Vol_\eta.
\end{equation}
We recall the qc-Bochner identity [40, (4.1)]. Applying the first equality in (2.10), (2.9) and the properties of the torsion, (2.8), we can write the qc-Bochner formula [40, (4.1)] in the form
\begin{equation}
\frac{1}{2} \triangle |\nabla f|^2 = |\nabla^2 f|^2 - g(\nabla(\triangle f), \nabla f) + 2(n+2)S|\nabla f|^2 + 2(n+2)T^0(\nabla f, \nabla f)
\end{equation}
\begin{equation*}
+2(2n+2)U(\nabla f, \nabla f) + 4 \sum_{s=1}^{3} \nabla^2 f(\xi_s, I_s \nabla f).
\end{equation*}
One of the key identities which relates the P-function and the qc-Bochner formula (4.7) is given by the following equation [41, Lemma 3.2]
\begin{equation}
\int_M \sum_{s=1}^{3} \nabla^2 f(\xi_s, I_s \nabla f) Vol_\eta = \int_M \left[-\frac{1}{4n} P_n(\nabla f) - \frac{1}{4n} (\triangle f)^2 - S|\nabla f|^2 + \frac{(n+1)}{n-1} U(\nabla f, \nabla f) \right] Vol_\eta.
\end{equation}
An integration of (4.7) over the compact M, followed by a substitution of (2.14) and (4.8) in the obtained integral equality, and then a use of the divergence formula (2.16) give
\begin{equation}
0 = \int_M \left[|\nabla^2 f|^2 - \lambda |\nabla f|^2 + 2nS|\nabla f|^2 + 2(n+2)T^0(\nabla f, \nabla f) + \frac{4n(n+1)}{n-1} U(\nabla f, \nabla f) \right]
\end{equation}
\begin{equation*}
-\frac{1}{n} P_n(\nabla f) - \frac{1}{n} (\triangle f)^2 \right] Vol_\eta.
\end{equation*}
The latter formula can be written in the form
\begin{equation}
0 = \int_M \left\{ |\nabla^2 f|^2 - \lambda |\nabla f|^2 + T^0(\nabla f, \nabla f) - \frac{2(n-2)}{n-1} U(\nabla f, \nabla f) \right\}
\end{equation}
\begin{equation*}
+\frac{2n+1}{2n+2} \left[2(n+2)S|\nabla f|^2 + \frac{4n^2+14n+12}{2n+1} T^0(\nabla f, \nabla f) + \frac{4(n+2)(2n-1)}{n-1}(2n+1) U(\nabla f, \nabla f) \right]
\end{equation*}
\begin{equation*}
-\frac{1}{n} P_n(\nabla f) - \frac{1}{n} (\triangle f)^2 \right] Vol_\eta.
\end{equation*}
Now we invoke the next integral identity proved in [40, Lemma 3.4]
\begin{equation}
\int_M \sum_{s=1}^{3} \nabla^2 f(\xi_s, I_s \nabla f) Vol_\eta = -\int_M \left[4n \sum_{s=1}^{3} (df(\xi_s))^2 + \sum_{s=1}^{3} T(\xi_s, I_s \nabla f, \nabla f) \right] Vol_\eta.
\end{equation}
From (4.11) and (4.8) it follows the equality

\[
(4.12) \int_M \left[-S|\nabla f|^2 + T^0(\nabla f, \nabla f) - \frac{2(n-2)}{n-1}U(\nabla f, \nabla f) \right] Vol_\eta = \int_M \left\{ \frac{1}{4n} P_n(\nabla f) + \frac{1}{4n}(\triangle f)^2 - \frac{1}{4n} \sum_{s=1}^3 [g(\nabla^2 f, \omega_s)]^2 \right\} Vol_\eta.
\]

A substitution of (4.12) in (4.10) yields

\[
(4.13) \quad 0 = \int_M \left\{ |\nabla^2 f|^2 - \frac{1}{4n} [(\triangle f)^2 + \sum_{s=1}^3 [g(\nabla^2 f, \omega_s)]^2] - \frac{3}{4n} P_n(\nabla f) + \frac{2n+1}{2} \left[2S|\nabla f|^2 + \frac{4n^2 + 14n + 12}{(2n+1)(n+2)} T^0(\nabla f, \nabla f) + \frac{4(n+2)(2n-1)}{(n-1)(2n+1)} U(\nabla f, \nabla f) - \frac{\lambda}{n} |\nabla f|^2 \right] \right\} Vol_\eta.
\]

The equality (4.13), the Lichnerowicz type assumption (3.4) and (4.6) imply the inequality

\[
(4.14) \quad 0 \geq \int_M \left\{ |\nabla^2 f|^2 - \frac{1}{4n} [(\triangle f)^2 + \sum_{s=1}^3 [g(\nabla^2 f, \omega_s)]^2] - \frac{3}{4n} P_n(\nabla f) + \frac{2n+1}{2} \left(\frac{k_0}{n+2} - \frac{\lambda}{n} \right) |\nabla f|^2 \right\} Vol_\eta.
\]

Note that in the proof of (4.14) we supposed implicitly that \(n > 1 \). But it works also for \(n = 1 \), when \(U = 0 \) trivially, we have only to remove the torsion tensor \(U \) (cf. [41]).

Using that \(\left\{ \frac{1}{2\sqrt{n}} \omega_s \right\} \) is an orthonormal set in \(\Psi_{[-1]} \) we have

\[
(4.15) \quad \| (\nabla^2 f)_{[-1]} \|^2 \geq \frac{1}{4n} \sum_{s=1}^3 [g(\nabla^2 f, \omega_s)]^2
\]

while a projection on \(\left\{ \frac{1}{2\sqrt{n}} g \right\} \) gives

\[
(4.16) \quad \| (\nabla^2 f)_{[3]} \|^2 \geq \frac{1}{4n} (\triangle f)^2.
\]

Next, using the \(Sp(n)Sp(1) \)-invariant orthogonal decomposition (4.2) of horizontal Hessian and the estimates (4.15) and (4.16), we obtain the inequality

\[
(4.17) \quad |\nabla^2 f|^2 \geq \frac{1}{4n} [(\triangle f)^2 + \sum_{s=1}^3 [g(\nabla^2 f, \omega_s)]^2].
\]

Finally, using the non-negativity of the \(P \)-function for \(n > 1 \), see (4.5), we obtain from (4.14) the desired estimate

\[
\lambda \geq \frac{n}{n+2} k_0.
\]

\[\square\]

Corollary 4.2. If the case of equality in Theorem 1.2 holds, i.e., we have

\[\lambda = \frac{n}{n+2} k_0, \quad \triangle f = \frac{n}{n+2} k_0 f,\]

then the horizontal Hessian of the eigenfunction \(f \) is given by (1.4).

Proof. The result follows from (4.13), (3.4) and (4.17) which asserts that the equalities in (4.15) and (4.16) must hold, which imply (1.4). \[\square\]
References

[1] Alexander, H., Holomorphic mappings from the ball and polydisc., Math. Ann., 209, (1974), 249–257.
[2] Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36 (1957), 235–249.
[3] Astengo, F., Cowling, M., & Di Blasio, B., The Cayley transform and uniformly bounded representations. J. Funct. Anal. 213 (2004), no. 2, 241–269.
[4] Barletta, E., The Lichnerowicz theorem on CR manifolds. Tsukuba J. Math. 31 (2007), no. 1, 77–97.
[5] Baudoin, F., & Garofalo, N., Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, arXiv:1101.3590.
[6] Biquard, O., Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), 2, 4, 5, 6, 24.
[7] Bojarski, B., & Iwaniec, T., Another approach to Liouville theorem. Math. Nachr. 107 (1982), 253-262.
[8] Boyer, Ch. & Galicki, K., 3-Sasakian manifolds, Surveys in differential geometry: essays on Einstein manifolds, 123–184, Surv. Differ. Geom., VI, Int. Press, Boston, MA, 1999.
[9] Boyer, Ch., Galicki, K. & Mann, B., The geometry and topology of 3-Sasakian manifolds, J. Reine Angew. Math., 455 (1994), 183–220.
[10] Capogna, L., Regularity of quasi-linear equations in the Heisenberg group. Comm. Pure Appl. Math. 50 (1997), no. 9, 867–889.
[11] Capogna, L., & Cowling, M., Conformality and Q-harmonicity in Carnot groups. Duke Math. J. 135 (2006), no. 3, 455–479.
[12] Capria, M. & Salamon, S., Yang-Mills fields on quaternionic spaces Nonlinearity 1 (1988), no. 5, 151–530.
[13] Cartan, É, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. Mat. Pura Appl. (4) 11 (1932), 17–90.
[14] Cartan, É, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II. Ann. Scuola Norm. Sup. Pisa (2) 1 (1932), 33.354.
[15] Chang, S.-C., & Chiu, H.-L., Nonnegativity of CR Paneitz operator and its application to the CR Obata’s theorem. J. Geom. Anal. 19 (2009), 261–287.
[16] Chang, S.-C., & Chiu, H.-L., On the CR analogue of Obata’s theorem in a pseudohermitian 3-manifold. Math. Ann. 345 (2009), 33–51.
[17] Chang, S.-C., & Chiu, H.-L., On the estimate of the first eigenvalue of a subLaplacian on a pseudohermitian 3-manifold. Pacific J. Math. 232 (2007), no. 2, 269–282.
[18] Chang, S.-C., & Wu, C.-T., The entropy formulas for the CR heat equation and their applications on pseudohermitian (2n + 1)-manifolds. Pacific J. Math., 246 (2010), no. 1, 1–29.
[19] Chern, S.S. & Moser, J., Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271.
[20] Chiu, H.-L., The sharp lower bound for the first positive eigenvalue of a subLaplacian on a pseudohermitian 3-manifold. Ann. Global Anal. Geom. 30 (2006), no. 1, 81–96.
[21] Cowling, M., Dooley, A. H., Korányi, A. & Ricci, F., H-type groups and Iwasawa decompositions, Adv. Math., 87 (1991), 1–41.
[22] Cowling, M. & Korányi, A., Harmonic analysis on Heisenberg type groups from a geometric viewpoint, in “Lie Group Representation III”, pp.60-100, Lect. Notes in Math., 1077 (1984), Springer-Verlag.
[23] Cowling, M., De Mari, F., Korányi, A., & Reimann, H.M., Contact and conformal maps in parabolic geometry. I. Geom. Dedicata 111 (2005), 65–86.
[24] De Mari, F., Ottazzi, A., Rigidity of Carnot groups relative to multicontact structures. Proc. Amer. Math. Soc. 138 (2010), no. 5, 1889–1895.
[25] Duchemin, D., Quaternionic contact structures in dimension 7. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 851–885.
[26] Fefferman, C., & Graham, C.R., Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque 1985, Numéro Hors Série, 95–116.
[27] Folland, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Math., 13 (1975), 161–207.
[28] Folland, G.B., & Stein, E.M., Estimates for the ∂b Complex and Analysis on the Heisenberg Group, Comm. Pure Appl. Math., 27 (1974), 429–522.
[29] Frances, C., Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique. (French) [Proof of the Liouville theorem of conformal geometry in the analytic case] Enseign. Math. (2) 49 (2003), no. 1-2, 95–100.
[30] Gallot, S., Équations différentielles caract “eristiques de la sphère. Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 235–267.
[31] Garofalo, N. & Vassilev, D., Symmetry properties of positive entire solutions of Yamabe type equations on groups of Heisenberg type, Duke Math J, 106 (2001), no. 3, 411–449.
[32] Gehring, F. W., Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 1962 353–393.
[33] Graham, C. R., & Lee, John M., Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87 (1991), no. 2, 186–225.
[34] Greenleaf, A., The first eigenvalue of a subLaplacian on a pseudohermitian manifold. Commun. Partial Diff. Equations, 10 (1985), no. 2, 191–217.
[35] Hartman, P., On isometries and on a theorem of Liouville. Math. Z. 09 1958 202–210.
The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold in dimension 23.
[73] Poincaré, H., *Les fonctions analytiques de deux variables et la représentation conforme*. Rend. Circ. Mat. Palermo, 23 (1907), 185–220; Oeuvres, t. IV, 244–289.

[74] Reimann, H.M., *Rigidity of H-type groups*. Math. Z. 237 (2001), no. 4, 697–725.

[75] Reshetnjak, Ju. G., *Liouville’s conformal mapping theorem under minimal regularity hypotheses*. (Russian) Sibirsk. Mat. Ž. 8 1967 835–840.

[76] Schoen, R., & Yau, S.-T., *Lectures on differential geometry*, Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.

[77] Tanaka, N., *On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables*. J. Math. Soc. Japan 14 1962 397–429.

[78] Tang, P., *Regularity and extremality of quasiconformal homeomorphisms on CR 3-manifolds*. Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 2, 289–308.

[79] Wang, W., *The Yamabe problem on quaternionic contact manifolds*, Ann. Mat. Pura Appl., 186 (2007), no. 2, 359–380.

[80] Yamaguchi, K., *Differential systems associated with simple graded Lie algebras*, In: Progress in Differential Geometry, Adv. Stud. Pure Math. 22, Math. Soc. Japan, Tokyo, 1993, pp. 413–494.

(Stefan Ivanov) University of Sofia, Faculty of Mathematics and Informatics, Blvd. James Bourchier 5, 1164, Sofia, Bulgaria

E-mail address: ivanovsp@fmi.uni-sofia.bg

(Alexander Petkov) University of Sofia, Faculty of Mathematics and Informatics, Blvd. James Bourchier 5, 1164, Sofia, Bulgaria

E-mail address: a.petkov.fmi@abv.bg

(Dimiter Vassilev) Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, 87131-0001

E-mail address: vassilev@math.unm.edu