Fundulus herminiamatildae: a new species of killifish (Teleostei: Fundulidae) from the upper Río Soto La Marina basin, Nuevo León, México

María Elena García-Ramírez*, María De Lourdes Lozano-Vilano2 & Mauricio De La Maza Benignos3

Abstract

Fundulus herminiamatildae sp. nov. Is endemic from the Marmolejo stream, a head water tributary of Río Soto La Marina basin, in the municipality of Aramberri, Nuevo León, México. Geologically, it is located in the Northeastern province of México, specifically in the Sierra Madre Oriental subprovince. The water temperature is a determinant and important factor for the species differentiation. Its closest relative is *F. philpisteri*. *Fundulus herminiamatildae* is distinguished from other killifishes by a large number of conspicuous and simple lateral bars, body with high profile, and the following proportions in cephalic length: snout (2.5-2.9, mean 2.7) eye diameter (4.1-4.9, mean 4.5), and Preorbital length (2.7-3.1, mean 2.9).

Keywords .- *Fundulus herminiamatildae* – Mexico – Marmolejo stream – Río Soto La Marina-New species.

Acknowledgments

The authors thank Dr. Anthony Echelle and Dr. Gorgonio Ruiz-Campos for the corrections made to the manuscript. Our thanks also go to the collectors of the specimens: A. J. Contreras-Balderas, J. A. Contreras-Lozano, J. E. Lozano-Vilano, and T. Rodriguez; to Biol. Hidalgo Rodríguez Vela for designing the map; to José Luis Gibaja for photos; to technician A. Ovalle Segovia for his assistance in the laboratory; and to T. Guadarrama for helping with the bibliographic material; and Universidad Autónoma de Nuevo León (PAICYT, contract CN 040-09). The authors are also thankful to everyone who has contributed their part in carrying out this research.
The genus *Fundulus* Lacépède, 1803 belongs to the American cyprinodontiform family, Fundulidae (Parenti, 1981), of Gondwanan origin (Nelson, 2006). This genus includes euryhaline and eurythermic species in habitating desertic and semi-desertic areas, springs, rivers, and lagoons of North America, including coastal areas in México. It is composed of approximately 40 species (Miller, 1955; Mayden et al. 1992; Nelson, 1994; García-Ramírez et al. 2006) among which eight are found in México: *Fundulus grandis* Baird & Girard, 1853 in States of Tamaulipas and Veracruz; *F. grandissimus* Hubbs, 1936 in North of Yucatan and Quintana Roo, *F. persimilis* Miller, 1955 Northern of Yucatan; *F. lima* Vaillant 1894; *F. parvipinnis* Girard, 1854 Baja California peninsula; *F. philpisteri* García-Ramírez et al., 2006 in Nuevo Léon; *F. similis* (Baird & Girard, 1853) in Tamaulipas and *F. zebrinus* Jordan & Gilbert, 1883 an exotic species in Mexico, found in Chihuahua. Currently, *F. grandissimus* and *F. persimilis*, are respectively considered as vulnerable and endangered species in the IUCN Red List of Threatened species (Collette, B, et al. 2015; Jelks, H., et al. 2015) and are under a special protection in México by NOM-059-ECOL-2001 (Norma Official Mexican). In addition, *F. philpisteri* presents amore alarming status, it is classified as a critically endangered species (Maíz-Tome, L. 2019) due to its fragile habitat and specialization. In México García-Ramírez (1997) reported that the population of Arroyo Marmolejo was different from *Fundulus grandis*.

The aim of this paper is to provide a morphological description of a new species (*F. herminiamatildae*) on the basis of specimens from a head water stream (ArroyoMarmolejo) of the Río Soto La Marina basin, in the municipality of Aramberri, Nuevo León, México.

Additionally, we compared morphological caracter soft his new species with those of termal spring (*F. philpisteri*) and estuarine/fresh water environments (*F. grandis*) in order to determine diagnostic and description characteristics.

2. Methods

The specimens examined of the genus *Fundulus* for this study were collected along coastal environments, comprising the Laguna Madre Tamaulipas system, including its associated streams, and in headwater streams of the San Fernando and Soto La Marina river basins, between 1966-2004 (Fig. 1). The examined material was housed at the Fish Collection of the Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL) and several paratypes were deposited indifferent institutions: Museum of Zoology University of Michigan (UMMZ–248753), Tulane Museum of Natural History (TUHC–204176), University of Texas at Austin (TNHC–39831), Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional (IPN–ENCB–P5592), United States National Museum (USNM–391644). Abbreviations for institutions and collections cited follow Leviton (1991). The examined specimens were catalogued with the acronymous, number of catalog, number of specimens, standard length as minimum and maximum in millimeters, locality, basin, state, country, collector(s), and collecting dates were added.

Thirty-five body measures and 16 meristic characters of the standardized method of Hubbs and Lagler (1958) were considered for the morphometric analysis of the specimens (Fig4). All the measurements were made on the left side of each specimen using a digital caliper (precision, 0.01 mm). Proportions are expressed in base of the TSL = times in standard length; TCL = times in cephalic length. Count sof the cephalic pores follow Gosline(1949) were considered.

For a multivariate approach a canonical discriminant function was realised using SPSS (version10.0) was performed. To carry out this analysis, we examined 20 specimens of *Fundulus grandis* (Laguna Madre, Tamaulipas), 18 specimens of *F. philpisteri* (Baño de San Ignacio, Linares, Nuevo León) and 15 from specimens of *F. herminiamatildae* (new species of Marmolejo stream, Aramberri, Nuevo León).

2.1. Comparative material. *Fundulus philpisteri*. - Baño de San Ignacio springs, Linares, Nuevo León, México, Río San Fernando: UANL 15031 (26:28-83.7mm); Coll.: S. Contreras-Balderas and grupo de la Universidad Autónoma de Tamaulipas; 7 Sep. 2001; UANL 9031 (1: 63.4 mm); Coll.: S. Contreras-Balderas and A. Contreras-Argüeta; 6 Aug. 1988; UANL 11146 (5:31.6-37.3 mm); Coll.: S. Contreras-Balderas, M. L. Lozano-Vilano, M. E. García-Ramírez, and A. J. Contreras-Balderas, 12 oct. 1992; UANL-16147 (1: 56.1mm); Coll.: M. L. Lozano-Vilano, A. J. Contreras-Balderas, Jorge A. Contreras-Lozano and J. E. Lozano-Vilano, 23 jul. 2004.

Fundulus grandis. - Río Bravo: UANL 2138 (34:35.2-71.0 mm) Presa Falcón cerca de Nueva Cd. Guerrero, Tamaulipas, México; Coll.: S. Contreras-B. and Gpo. de Fac. de Biología, 29 Jul. 1975; UANL 1523 (4:31.3-48.4mm) Presa Marte R. Gómez, 6 km NNW of Comales; Coll.: S. Contreras-B. and Gpo. FCB, 24 Sep. 1973; UANL 6154 (25:50.6-61.3 mm) Río Bravo en Miguel Alemany; Coll.: S. Contreras-B. and Gpo. FCB, 30 Jul.1982; UANL 6097 (1: 31.6 mm) Río Bravo en Matamoros; Coll. S. Contreras-B. and Gpo.
The canonical discriminant analysis showed that the three species compared here can be separate.

4. Discussion

4.1. Diagnosis. Fundulus herminiamatilidae is distinguished from the other species in northeastern Mexico, using the following combination of characters: 12-17 conspicuous and simple lateral bars, subangular head, thickened body, and slightly convex predorsal profile. Proportions in SL of the new species (Table II) and its comparison with other relatives is as follows: head length of 2.9-3.5 (3.2) versus 1.3-2.1 (1.6) in F. grandis; least depth short of 5.4-6.9 (6.1), versus 5.7-6.4 (6.2) in F. grandis and 6.0-7.1 (6.6) in F. philpisteri.

Proporitions in head length (HL, Table II) of the new species are pelvic-pectoral origin length of 3.9-4.7 (4.2) in F. philpisteri; snout-pelvic origin length of 1.7-2.0 (1.8) versus 1.9-2.1 (2.0) in F. grandis and 1.8-2.2 (1.9) in F. philpisteri; dorsal-anal origin length of 3.7-4.3 (3.9) versus 3.7-4.6 (4.1) in F. grandis and 3.9-4.9 (4.3) in F. philpisteri, least depth short of 5.4-6.9 (6.1), versus 5.7-6.4 (6.2) in F. grandis and 6.0-7.1 (6.6) in F. philpisteri.

Proportions in head length (HL, Table II) of the new species are pelvic-pectoral origin length of 3.5-4.5 (4.1) versus 4.8-5.3 (5.0) in F. grandis and 3.6-5.0 (4.4) in F. philpisteri; the organism is also characterized by big snout of 2.5-2.9 (2.7) versus 3.1-4.0 (3.5) in F. grandis and 2.5-3.4 (3.2) in F. philpisteri; small eyes of 4.1-4.9 (4.5) versus 3.8-4.4 (4.0). In F. grandis and 3.1-4.8 (4.0) in F. philpisteri; preorbital width of 2.7-3.1 (2.9) versus 3.2-3.7 (3.4) in F. grandis and 3.0-3.8 (3.4) in F. philpisteri; anal length depressed to 1.3-1.9 (1.5) versus 1.3-1.4 (1.3) in F. grandis and 1.3-2.1 (1.6) in F. philpisteri.

The canonical discriminant analysis showed that the three species compared here can be separate completely (Fig. 2). A total of 35 morphometric variables on 15 specimens of F. herminiamatilidae, 18 of F.
and 20 of *F. grandis* were compared and analyzed through discriminant analysis. The Wilk’s Lambda values changed from 0.001 to 0.056, which was interpreted as firm discrimination among the compared species.

Canonical functions 1 (F1) and 2 (F2) explained 75.2% and 24.8% of variance (p<0.000) respectively.

4. 1. 1. Description. The physiognomy of the Holotype is shown in figure 3 and its morphometric characters are presented in tables I and table II with comparison of more distinctive features in proportional measures in the three species. The characters observed in both the sexes include wide preorbital 2.7-3.1(2.9) times of the head length (the average is shown in parenthesis); small eyes of 4.1-4.9 (4.5) times of the head length, located closer to the snout than the operculum, snout projected up ward, dorsal fin inserted slightly in front of the anal origin, reaching three-fourths of the caudal peduncle, flattened occipital region, rounded anal dorsal, pectoral, and pelvic fins.

The following characteristics were observed among males: thickened body, with body depth higher than the females; nuptial tubers above the dorsal and ventral zone; dorsal, anal, pectoral, and caudal fins; long dorsal and anal fins projected three-fourths over the caudal peduncle; and pectoral fins extended until or beyond the anus.

The females posses longated body; short pelvic fins, not reaching the anus; and dorsal fin extended to the half of the caudal peduncle.

The meristic data are as follows (holotype in parenthesis): fin rays: dorsal 9-11(11); anal 9-11(11); pectorals 15-19 (18); pelvics 5-7 (7); and caudal 18-20(18). Scales: lateral Line 35-38 (37); dorsal to anal 12-15(13); dorsal-pelvic insertion13-15(13); predorsals 21-24(21); around caudal peduncle 21-27(22); around the body 31-37(35); gill rakers 9-12 (9); and head pores: mandibulars 5(5); cephalic8-9(9), lachrymals 4(4); and Preoperculars 7(7).

4.1.1. 1. Coloration. Live coloration.- Mature males with body and posterior part of dorsal fin olive with white spots; pectorals, pelvics and anal fins orange, anal with white spots, caudal yellowish or olive with white spots, body side with 13-17 conspicuous dark bars (juveniles with bars more evident).

Mature females with head bluish, body yellow is hand ventral región cornsilk, sides with13-17 conspicuous dark bars; all fins oranges.

4.1.2. Preserved specimens.- Males body well-pigmented in the dorsal región with dark-brown head; orange ventral region) body and dorsal fin, anal and caudal with colorless spots; 13-17 simple and double conspicuous lateral bars (better marked in juveniles than in adults).

Females: melanophores in the anterior part of the body and head.

4.1. 2. 2. Sexual dimorphism. Males have deeper bodies and generally longer fins than females. Nuptial tubercles presents in body and fins. Females as in the other members of the species flock had a membranous bag extended to the third or fourth anal radius.

4.1. 2. 2. 2. Habitat and associates. The Marmolejo área is located 11 km downstream the river of the city hall of Aramberri, Nuevo León, in the physiogeographical subprovince of plains and hills (SPP, 1985). The average altitude of the área is 930 masl. The local fish assemblage of *F. herminiamatildae* sp. nv. Comprises *Xiphophorus zebroides* and *Cyprinella sp.* The hábitat consist of cold mountain streams with rocky bottoms and riparian vegetation composed by sxyamore trees (*Platanus occidentalis*) and mule fat (*Baccharis salicifolia*).

4.1.3. Etymology. The scientific name of *herminiamatildae* is patronymic for Herminia Ramírez and Matilde García, parents of the main author, who were important pillars in the profesional and personal growth of the author, and who have a great respect for nature.

4. 1.3.1 Distribution. *Fundulus herminiamatildae* sp. nov. is endemic to the surrounding área of Aramberri, in the upper Soto La Marina River basin, Nuevo León, México (24°09’38.6”Nand 99°45’15.7”W).

5. References
Collette, B., Grubbs, D., Pezold, F., Simons, J., Carlson, J., McEachran, J. D., Brenner, J., Tornabane, L., Chakrabarty, P., Roberson, R., Chao, L., Tolan, J., Espinosa-Perez, H., Vega-Cendejas, M., & Jelks, H. (2015). *Fundulus grandissimus*. The IUCN Red List of Threatened Species 2015: e.T191311A1975554. http://dx.doi.org/10.2305.

García-Ramírez M. E., (1997). Revisión Sistemática del Complejo *Fundulus grandis* (Pisces: Fundulidae) del Noreste de México. Tesis de Maestría Inédita, 128 p. Univ. Autónoma de Nuevo León, México.

García-Ramírez M.E., Contreras-Balderas S., & Lozano-Vilano M.L. (2006). – *Fundulus philpisteri* sp. nv. (Teleostei: Fundulidae) from the río San Fernando Basin, Nuevo León, México. In: M. L. Lozano-Vilano & A. J. Contreras Balderas., (Eds)Studies of North American Desert Fishes in Honor of E.P. (Phil) Pister Conservationist. Universidad Autónoma de Nuevo León, Monterrey, México, (pp13-19).

Gosline, W.A. (1949). The sensory Canals of the head in some Cyprinodont fishes, with particular reference to the genus *Fundulus*. Occ. Pap. Mus. Zool. Univ. Mich.,519:1-17.

Hubbs, C.L.,&Karl F. Lagler (1958). Fishes of the Great Lakes Region. Cranbrook Inst. Sci. Bull., 26:i-xi, 1-213 (2d.Ed.)

Jelks, H., Espinosa-Perez, H., Vega-Cendejas, M., & Tolan, J. (2015). *Fundulus persimilis* The IUCN Red List of Threatened Species 2015: e. T169374A1274789.http://dx.doi.org/10.2305
Leviton, A. E., R. H. Gibbs., J. R., E. Heal & C. E. Dawson. (1985). Standards in Herpetology and Ichthyology: Part 1 Standard symbolic codes for institutional resources in collections in herpetology and ichthyology. Copeia. 1985 (3): 802-832.

Maiz-Thome, L., Daniels, A. & Contreras MacBeath, T. (2019). Fundulus philpisteri. The IUCN Red List of Threatened Species 2019: e. T191313A1975683.http://dx.doi.org/10.2305.

Mayden, R. L., B., M. Burr., L. M. Page., & R. R. Miller. (1992). The native freshwater fishes of North America. In R. L. Mayden ed. Systematics, Historical Ecology, & North American Fishes. Stanford University Press, Stanford, California. (pp.825-863).

Miller, R.R., (1955). Anannotated list of theAmerican Cyprinodontid fishes of the genus Fundulus with the description of Fundulus persimilis fromYucatán. Occ. Pap. Mus. Zool. Univ. MI.568:1-25,1pl.

Nelson, J. S. (1994 a). Fishes of the world (3rd edn.). New York: John Wiley & Sons .

Nelson, J. S. (2006b) Fishes of the world (4rdedn.)601p.NewYork: JohnWiley&Sons.

Norma Oficial Mexicana NOM-059-SEMARNAT- (2001). De protección ambiental Especies Nativas de México de Flora y Fauna Silvestre - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - Lista de especies en riesgo. DiarioOficial de la Federación, Miércoles, 6de marzo, SegundaSección. (pp.81).

Parenti L.R.(1981). A phylogenetic and biogeography analysis of cyprinodontiform fishes (Telostei:Atherinomorpha) Bull. Am. Mus. Nat. Hist. 168:341-557.
Figure 1. – Sampling sites of the type of locality (circle) of Fundulus herminiamatildae, Marmolejo stream (24°09’38.6”N 99°45’15.7”W) Aramberri, Nuevo León, Río Soto La Marina, México; (triangle) F. philpisteri Baño de San Ignacio, Nuevo León (24°52’04”N 99°21’07”W) San Fernando River, México; (square) F. grandis (25°10’32”N97°40’16”W) norte de la Media Luna, Laguna Madre Tamaulipas.
Canonical Discriminant Functions

LOCALITIES
- Group Centroids
- ArroyoMarmolejo
- BañodeSanIgnacio
LagunaMadre

Function1

Figure 2.- Scatter plots of the canonical discriminant analysis among taxa of the genus *Fundulus* from northeastern México, using 35 morphometric characters. Triangles = *F. herminiamatilidae*, squares=*F.philpisteri*, circles=*F.grandis*
Figure 3.- Holotype.- UANL-18803, adult male, 88.7 mm SL; Marmolejo stream Aramberri, Río Soto La Marina, Nuevo León, México
Figure 4.- Landmarks of morphometric used for the comparative analysis of the genus Fundulus from the Marmolejo stream, Nuevo León, México. Standard method of Hubbs and Lagler (1958).

(2-10) Standard length, (2-21) Head length, (2-6) Predorsal length, (6-10) Postdorsal length, (1-27) Mouth width (between commisures), (22-23) Eye width, (24-25) Pupil diameter, (3-4) Inter orbital width, (2-23) Preorbital width, (21-22) Postorbital length, (2-26) Upper jaw length, (2-27) Length jaw, (6-8) Dorsal fin base, (6-7) Depressed dorsal fin, (6-14) Dorsal fin origin- Anal fin origin, (8-14) Postdorsal fin-Anal fin origin, (6-12) Dorsal fin origin-Postanal base, (8-12) Postdorsal base-Post. anal base, (6-20) Dorsal fin origin- Pectoral fin origin, (8-10) Postdorsal base-Hypural base, (12-14) Anal base, (2-14) Snout-Anal fin origin, (13-14) Depressed anal fin, (10-14) Anal fin origin-Hypural base, (10-12) Caudal peduncle length, (14-16) Anal origin-Pelvic origin, (5-18) Body depth, (9-11) Caudal peduncle depth, (19-20) Pectoral fin base, (17-20) Pectoral fin length, (15-16) Pelvic fin length, (2-16) Snout-Pelvic fin origin, (16-20) Pectoral fin-Pelvic origin (2-20) Snout-pectoral fin origin, (8-16) Pelvic fin Base-Post dorsal fin base.
Table I. – Comparison of morphometric characters of *Fundulus herminiamatildae* new species, from Arroyo Marmolejo taken on 15 paratypes, expressed as thousandths of Standard Length (except SL are in mm).

Character	Holotype	Min	Mean	Max
Standard length	88.7	74.7	(84.9)	106.4
Head length	345	287	(323)	345
Predorsal length	649	632	(659)	699
Postdorsal length	380	319	(376)	402
Mouth width	132	98	(114)	135
Eye width	75	62	(69)	75
Interorbital width	158	126	(142)	158
Preorbital width	119	98	(106)	119
Postorbital length	174	153	(167)	176
Pupil diameter	39	25	(33)	43
Upper jaw length	117	105	(116)	132
Dorsal fin base	146	127	(146)	171
Depressed dorsal fin	282	209	(257)	312
Dorsal fin origin-Anal fin origin	258	234	(254)	271
--------------------------------	-----	-----	-----	
Post-dorsal fin-Anal fin origin	251	237	(250) 264	
Dorsal fin origin-Post-anal base	248	212	(241) 271	
Post-dorsal base-Post-anal base	185	158	(180) 202	
Dorsal fin origin-Pectoral fin origin	372	361	(394) 427	
Post-dorsal base-Hypural base	234	197	(231) 251	
Anal base	108	93	(110) 137	
Snout-Anal fin origin	697	666	(690) 761	
Depressed anal fin	248	176	(223) 255	
Anal fin origin-Hypural base	362	291	(348) 379	
Caudal peduncle length	252	193	(238) 259	
Anal origin-Pelvic origin	155	143	(167) 190	
Body depth	294	247	(279) 314	
Caudal peduncle depth	177	144	(167) 187	
Pectoral fin base	82	71	(80) 89	
Pectoral fin length	199	181	(191) 211	
Pelvic fin length	151	118	(140) 168	
Snout-Pelvic fin origin	557	506	(539) 569	
Pectoral fin-Pelvic origin	248	219	(250) 321	
Pelvic fin Base-Post-dorsal fin base	357	330	(358) 379	
Table II. – Comparison of more distinctive features in proportional measures *F. herminiamatildae* sp. nv., *F. grandis*, and *F. philpisteri*; TSL=times in standard length; TCL=times in cephalic length.

Feature	F. herminiamatildae	F. grandis	F. philpisteri
1. Cephalic length in TSL	2.9(3.2)3.5	3.0(3.2)3.3	2.8(3.0)3.2
2. Anal fin origin-Hypural base in TSL	2.6(2.8)3.0	2.6(2.6)2.8	2.7(3.0)3.3
3. Caudal peduncle length in TSL	3.9(4.1)4.2	3.4(3.8)4.1	3.9(4.2)4.7
4. Snout-Pelvic fin origin in TSL	1.7(1.8)2.0	1.9(2.0)2.1	1.8(1.9)2.2
5. Dorsal fin origin-Anal fin origin in TSL	3.7(3.9)4.3	3.7(4.1)4.6	3.9(4.3)4.9
6. Caudal peduncle depth	5.4(6.1)6.9	5.7(6.2)6.4	6.0(6.6)7.1
7. Pelvic fin-Pectoral fin length in TLS	3.5(4.1)4.5	4.8(5.0)5.3	3.6(4.4)5.0
8. Snout width in TCL	2.5(2.7)2.9	3.1(3.5)4.0	2.5(3.2)3.4
9. Ocular diameter in TCL	4.1(4.5)4.9	3.8(4.0)4.4	3.1(4.0)4.8
10. Pre-orbital length TCL	2.7(2.9)3.1	3.2(3.4)3.7	3.0(3.4)3.8
11. Depressed anal fin in TCL	1.3(1.5)1.9	1.3(1.3)1.4	1.3(1.6)2.1