Observational Study

Serotonin transporter and cholecystokinin in diarrhea-predominant irritable bowel syndrome: Associations with abdominal pain, visceral hypersensitivity and psychological performance

Geng Qin, Yu Zhang, Shu-Kun Yao

ORCID number: Geng Qin (0000-0002-1197-2011); Yu Zhang (0000-0003-0764-0599); Shu-Kun Yao (0000-0002-8512-2589).

Author contributions: Qin G performed the study, analyzed the data and drafted the manuscript; Zhang Y contributed to the performance of the study and revised the manuscript; Yao SK designed the study, revised the manuscript, supervised the study performance and obtained the funding.

Supported by the National Key Technology Support Program during "12th Five-Year Plan" period of China, No. 2014BAI08B00; and the Leap-forward Development Program for Beijing Biopharmaceutical Industry (G20), No. Z1710000170008.

Institutional review board statement: This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of China-Japan Friendship Hospital.

Informed consent statement: All subjects were informed of the study details and provided written informed consent.

Conflict-of-interest statement: There are no conflicts of interest to report.

Data sharing statement: No additional data are available.

Geng Qin, Yu Zhang, Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China

Geng Qin, Shu-Kun Yao, Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China

Corresponding author: Shu-Kun Yao, MD, PhD, Professor, Department of Gastroenterology, China-Japan Friendship Hospital, 2nd Yinghua East Road, Chaoyang District, Beijing 100029, China. shukunyao@126.com

Abstract

BACKGROUND

Visceral hypersensitivity and psychological performance are the main pathophysiological mechanisms of irritable bowel syndrome (IBS). Previous studies have found that cholecystokinin (CCK) can enhance colon movement and that serotonin transporter (SERT) is a transmembrane transport protein with high affinity for 5-hydroxytryptamine, which can rapidly reuptake 5-hydroxytryptamine and then regulate its action time and intensity. We speculate that SERT and CCK might play a role in the pathogenesis of diarrhea-predominant IBS (IBS-D) by affecting visceral sensitivity and the brain-gut axis.

AIM

To determine SERT and CCK levels in IBS-D patients diagnosed using Rome IV criteria and to analyze their associations with abdominal pain, visceral hypersensitivity and psychological performance.

METHODS

This study collected data from 40 patients with IBS-D at the China-Japan Friendship Hospital from September 2017 to April 2018 and 18 healthy controls. The severity of abdominal pain, visceral sensitivity and psychological performance were evaluated in IBS-D patients and healthy controls, the levels of SERT and CCK in plasma and colonic mucosa were evaluated, and the correlations between them were analyzed.

RESULTS

There were significant differences in the initial sensation threshold (31.00 ± 8.41 mL vs 52.22 ± 8.09 mL, P < 0.001), defecating sensation threshold (51.75 ± 13.57 mL vs 89.44 ± 8.73 mL, P < 0.001) and maximum tolerable threshold (97.25 ± 23.64 mL vs 139.44 ± 22.30 mL, P < 0.001), and the levels of SERT in plasma and colonic mucosa were also significantly lower in IBS-D patients than in healthy controls.
STROBE statement: The manuscript was revised according to the STROBE statement.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: December 28, 2019
Peer-review started: December 28, 2019
First decision: January 11, 2020
Revised: January 21, 2020
Accepted: April 4, 2020
Article in press: April 4, 2020
Published online: May 6, 2020

P-Reviewer: Birk JW, El Amrousy D, Rodrigo L
S-Editor: Wang JL
L-Editor: Webster JR
E-Editor: Qi LL

INTRODUCTION

Irritable bowel syndrome (IBS) is the most common gastrointestinal condition[1] and mainly manifests as bloating, chronic or recurrent abdominal pain and a change in frequency or appearance of stool[2,3]. The prevalence of IBS varies from 1.1% to 45.0% among studies in different countries, and a meta-analysis showed that the pooled worldwide prevalence was 11.2%[4]. It is a multifaceted abnormality in neurogastroenterology and regulation of the gut-brain axis[5,6].

The newest diagnostic criterion is Rome IV, which was promulgated in 2016[7]. It defines IBS as recurrent abdominal pain on average at least 1 d/wk in the last 3 mo, associated with two or more of the following criteria: (1) Related to defecation; (2) Associated with a change in frequency of stool; and (3) Associated with a change in form (appearance) of stool. IBS was divided into four subtypes based on the predominant stool form, i.e., constipation-predominant IBS (IBS-C), diarrhea-predominant (IBS-D), mixed stool pattern (IBS-M) and (IBS-U), of which IBS-D refers to predominant irritable bowel syndrome: Associations with abdominal pain, visceral hypersensitivity and psychological performance. World J Clin Cases 2020; 8(9): 1632-1641
URL: https://www.wjgnet.com/2307-8960/full/v8/i9/1632.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i9.1632

Core tip: This study comprehensively evaluated the symptoms, mental state and visceral sensitivity of patients with diarrhea-predominant irritable bowel syndrome (IBS-D), and further determined serotonin transporter (SERT) and cholecystokinin (CCK) levels in IBS-D patients diagnosed using Rome IV criteria and analyzed their associations with abdominal pain, visceral hypersensitivity and psychological performance. The results showed that the expression of CCK was positively correlated with abdominal pain, while the expression of SERT was negatively correlated with abdominal pain, anxiety and depression, which revealed that SERT and CCK might be involved in the pathogenesis of IBS-D and may provide a new potential method for identifying a more specific and effective therapeutic target.

Citation: Qin G, Zhang Y, Yao SK. Serotonin transporter and cholecystokinin in diarrhea-predominant irritable bowel syndrome: Associations with abdominal pain, visceral hypersensitivity and psychological performance. World J Clin Cases 2020; 8(9): 1632-1641

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
severe and frequent depressive symptoms than healthy controls, which suggests that there were interactions between IBS and psychological factors. Enterochromaffin cells (ECs) were the first endocrine cells of the gastrointestinal tract to be chemically distinguished. Previous animal studies have shown that 5-hydroxytryptamine (5-HT) and cholecystokinin (CCK) co-expressing EC cells can be seen in the small intestine and large intestine. Previous studies have found that 5-HT can inhibit gastric emptying, trigger and enhance the propulsion of the small and large intestine, promote secretion, aggravate intestinal inflammation and regulate appetite. The function of the serotonin transporter (SERT) is to rapidly re-uptake 5-HT in the effective site, and to regulate the action time and intensity of 5-HT. 5-HT is also found in the limbic system. Previous studies showed that exogenous CCK injection did not affect rectal movement or sensation. However, it can increase abdominal pain in IBS patients during rapid intermittent expansion. It has been found that CCK-8 peptide can enhance colonic motility and induce abdominal pain in IBS patients, but the mechanism is unclear.

Previous studies reported that mucosal 5-HT, SERT immunoreactivity and SERT messenger RNA (SERT-mRNA) were all significantly reduced in IBS-C and IBS-D patients. This study focused on the pathogenesis of IBS-D from the aspects of abnormal regulation of the gut-brain axis and mental disorders. We aimed to compare IBS-D patients, who met the diagnostic criteria of Rome IV, to healthy controls with regard to clinical characteristics, SERT and CCK levels in plasma and mucous membrane and then to examine the correlations between SERT, CCK and abdominal pain, visceral hypersensitivity and psychological performance.

MATERIALS AND METHODS

Study population
A total of 40 IBS-D patients, who were treated at the Department of Gastroenterology of the China-Japan Friendship Hospital from September 2017 to April 2018, and 18 age- and sex-matched healthy controls were recruited for the study. All IBS-D patients were diagnosed based on the Rome IV criteria. Healthy controls consisted of patient spouses, medical examiners and volunteers. The patients and healthy controls were included if they did not take the following drugs within 2 wk of the study: Antispasmodics, analgesics, microecological preparations, antidepressants, anti-inflammatory drugs, antibiotics, other drugs and antacids that can affect gastrointestinal motility. The exclusion criteria were as follows: (1) Gastrointestinal organic diseases, endocrine system diseases, metabolic diseases, connective tissue diseases and other organ diseases; (2) A history of gastrointestinal or abdominal surgery; and (3) A previous or current diagnosis of mental illness.

All subjects were informed of the study details and provided written informed consent. This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of China-Japan Friendship Hospital.

Study procedures
Clinical symptoms and psychosocial assessment: The severity of clinical symptoms was evaluated using the IBS symptom severity scale, the VAS pain scale and the frequency course scale. The visceral sensitivity index was used to evaluate visceral sensitivity and gastrointestinal-specific anxiety. Psychiatric symptoms were assessed using the validated Hospital Anxiety and Depression Scale. The IBS-specific quality of life was used to evaluate the quality of life of IBS patients in this disease state.

Visceral sensitivity test: The visceral sensitivity test was performed in the Gastroenterology Kinetic Laboratory by the same investigator. Before the examination, the subjects were given glycerin to eliminate feces. The subjects were placed in the left lateral decubitus position and were asked to relax. After the mass was eliminated by digital rectal examination, the lubricating pressure measuring catheter was slowly inserted into the rectum, with an insertion depth of 15 cm and a balloon placed above the anal margin of 8 cm. After the subject had adapted for 3 min, the examination began. Air was slowly injected (at a rate of 10 mL/s) into the balloon by a 100 mL syringe. The subject's feeling after every 10 mL gas injected was recorded. When the subject felt the initial swelling, continuous defecation sensation, pain discomfort or intolerance, the amount of gas injected (in mL) was recorded,
which reflected the initial feeling threshold, continuous defecation threshold and maximum tolerance threshold, respectively.

Specimen collection: Participants were not allowed to take gastrointestinal motility drugs, laxatives, anti-diarrheal drugs, microecological agents, antidepressants or other drugs that affect gastrointestinal motility one week prior to the examination. The participants underwent colonoscopy after standard bowel preparation with polyethylene glycol electrolyte powder (Fortrans, BEAUFOUR IPSEN Industrie, Dreux, France), and four mucosal pinch biopsies were taken from the rectosigmoid junction. Two specimens were immediately fixed in 10% formalin for at least 72 h, embedded in paraffin and sectioned (4 μm) for routine hematoxylin and eosin staining and immunohistochemistry. The other specimens were immediately immersed in storage reagent (RNA-Be-Locker A; Sangon, Shanghai, China) and stored at -80 °C for quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Venous blood was centrifuged at 2000 r/min for 10 min within 30 min after collection, and the supernatant was taken for analysis.

Histology and immunohistochemistry: Paraffin sections were stained with hematoxylin eosin and processed for immunohistochemistry. The latter section was incubated with primary antibody (rabbit polyclonal anti-SERT antibody, 1:400, Affinity Biosciences, United States; rat monoclonal anti-serotonin antibody, 1:100, Santa, United States; rabbit polyclonal anti-CCK antibody, 1:100, Abcam, United Kingdom) overnight at 4 °C after dewaxing, antigen retrieval, endogenous peroxidase inhibition, and nonspecific antigen blocking. After washing with phosphate buffered saline, the sections were incubated with anti-rat and anti-rabbit secondary antibodies (1/200, Zhongshan Golden Bridge, Beijing, China) combined with horseradish peroxidase at room temperature for 1 h and then visualized using diaminobenzidine. Finally, the sections were counters stained with hematoxylin and observed under a light microscope to examine the average optical density (OD value) of positive expression of the stain.

Quantitative real-time PCR detection: The expression of CCK and SERT was analyzed by real-time quantitative PCR. Total RNA in the tissue was extracted by TRIzol Reagent (Invitrogen Life Technologies, Waltham, MA, United States) and reverse transcribed into cDNA. Real-time quantitative PCR was then carried out in a StepOnePlus Real-Time PCR system (Applied Biosystems, Waltham, MA, United States) using the FastStart Universal SYBR Green Master Rox Kit (Roche, Shanghai, China). Finally, the mRNA of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal reference. The primers were designed and synthesized by Beijing Aoke Biotechnology Co., Ltd. The upstream region of SERT was 5'-CAGCGTGTGAAGATGGAGAAG-3', and the downstream region of SERT was 5'-TGCCATAGAGTCGCGGTGTGT-3'. The upstream region of CCK was 5'-CAGAGGAGGCAGAATAAGAA-3', and the downstream region of CCK was 5'-CAGAGGAGGCAGAATAAGAA-3'. The upstream housekeeping gene GAPDH (internal reference) was 5'-GGAAGCTTGTCATCAATGGAAATC-3', and the downstream housekeeping gene GAPDH was 5'-TGATGACCCTTTTGGCTCCC-3'. The above were used for quantitative real-time PCR. The total reaction volume was 10 μL, including 5 μL of SYBR master mix (Bio-Rad, United States), 0.2 μL of upstream and downstream primers, 1 μL of template cDNA and 3.6 μL of ddH₂O. The reaction conditions consisted of 5 min at 95 °C, 10 s at 94 °C, 10 s at 94 °C for 40 cycles, and the temperature change rate was 20 °C/s, followed by 10 s at 95 °C, 15 s at 65 °C and then increased to 95 °C/10 s at a rate of 0.1 °C/s.

The fluorescence signal was continuously monitored for dissolution curve analysis, and GAPDH was used as an internal reference for relative quantitative analysis. The 2-ΔΔCt method was used to determine the expression level of the SERT gene relative to the internal reference (ΔCt = Ct target gene - Ct internal reference).

Plasma SERT and CCK levels: The levels of SERT and CCK in plasma were determined by double antibody sandwich ELISA (SERT/CCK kit).

Statistical analyses
Data were analyzed using SPSS version 24.0 (SPSS Inc, Chicago, IL, United States), and the significance level was set at $P < 0.05$ (two-tailed). The Shapiro-Wilk test was used to test the normal distribution of continuous variables. Comparisons between IBS patients and healthy controls regarding sociodemographic and clinical characteristics were examined using the independent sample t-test, Mann-Whitney U test, and χ^2 test as appropriate. The correlations between continuous variables were examined using Pearson correlation analyses if normally distributed; otherwise, Spearman correlation analyses were conducted.
RESULTS

Basic characteristics

The 40 IBS-D patients had a mean age of 44.50 ± 9.27 years, and 75% (n = 30) of these patients were male. The mean age of the 18 healthy controls was 42.33 ± 12.81 years, and 72.2% (n = 13) were male. The comparisons between IBS-D patients and healthy controls with regard to clinical characteristics are shown in Table 1. There were significant differences in the visceral sensitivity index (75.78 ± 9.31 vs 53.39 ± 4.49, \(P < 0.001 \)), initial sensation threshold (31.00 ± 8.41 mL vs 52.22 ± 8.09 mL, \(P < 0.001 \)), defecating sensation threshold (51.75 ± 13.57 mL vs 89.44 ± 8.73 mL, \(P < 0.001 \)) and maximum tolerable threshold (97.25 ± 23.64 mL vs 171.11 ± 20.83 mL, \(P < 0.001 \)) between patients and healthy controls. Anxiety (7.78 ± 2.62 vs 2.89 ± 1.02, \(P < 0.001 \)) and depressive (6.38 ± 2.43 vs 2.06 ± 0.73, \(P < 0.001 \)) symptoms were also significantly different between IBS-D patients and healthy controls.

The levels of CCK and SERT in the mucosal membrane and plasma

The levels of SERT and CCK in plasma were determined by ELISA. CCK and SERT-mRNA expression in colonic mucosa was quantified by qRT-PCR. Immunohistochemistry showed that the cytoplasm of cholecystokinin immunoreactive (CCK-IR) cells contained brown granules with a clear background (Figure 1). SERT-positive products were brownish yellow and observed on the membrane (Figure 1). The levels of CCK in the mucosal membrane and plasma were significantly higher in IBS-D patients than in healthy controls, and SERT showed the opposite trend (Table 2).

Correlations between CCK, SERT and other parameters

Spearman correlations between key continuous variables in IBS-D patients are shown in Table 3, Table 4 and Table 5. In IBS-D patients, CCK expression was positively correlated with the severity of abdominal pain. Furthermore, the level of SERT was negatively correlated with the severity of abdominal pain and visceral sensitivity (Table 3, Table 4 and Table 5).

DISCUSSION

In this case-control study, we aimed to evaluate psychological and clinical characteristics and visceral sensitivity in IBS-D patients and determine the roles of SERT and CCK in IBS-D patients.

Depressive and anxiety symptoms were more likely to be experienced by IBS-D patients compared to healthy controls, which agreed with previous studies\(^2\). Mental disorders, such as depression, anxiety and sleep disorders, are commonly reported in gastrointestinal disorders\(^23,24\). For example, one cohort study showed that anxiety increased the hazard for postinfectious IBS, and the study also indicated that the mechanism was partly due to the enhancement of susceptibility to develop infectious gastroenteritis\(^25\). Several studies have demonstrated the effectiveness of psychological treatments on lessening and relieving bowel symptoms in IBS patients, such as cognitive behavioral therapy, mindfulness-based therapies and hypnosis\(^26-29\). Therefore, psychotherapy should be simultaneously included in clinically IBS-specific treatment to improve IBS patients’ conditions in a timely manner.

Higher visceral sensitivity index, lower initial sensation threshold, lower defecating sensation threshold and lower maximum tolerable threshold were found in IBS-D patients compared with healthy controls. There have been inconsistent reports on the association between visceral sensitivity and functional gastrointestinal (GI) disorders\(^30\). Some previous studies showed that there were no relationships between hypersensitivity and GI disorder symptoms\(^31,32\), which likely explain our results. In contrast, a large number of studies have identified that IBS patients have higher visceral sensitivity than controls\(^33\) and visceral hypersensitivity is associated with the severity of GI symptoms\(^34\). The existing discrepancies could be partly due to the various patient-related or research-related factors, such as selection bias in patients or healthy controls and different assessment tools\(^35\).

Mucosa and plasma CCK were significantly higher in IBS patients than in controls. Abdominal pain was reported as a dominant symptom in IBS patients\(^36\), and we identified positive correlations between pain rulers, pain symptoms, pain frequency and mucosa and plasma CCK. Simultaneously, we observed that mucosa and plasma SERT were significantly lower in the IBS-D patients. There were negative correlations between abdominal pain and mucosa and plasma SERT. Negative correlations between psychological performance and mucosa and plasma SERT were also observed.
Table 1 Sociodemographic and clinical characteristics in irritable bowel syndrome patients and healthy controls
IBS-D patients (n = 40)
Age (yr)
Male
BMI (kg/m²)
IBS-SSS
VSI
IBS-QOL
HADS(A)
HADS(D)
Visceral sensitivity
Initial sensation threshold (mL)
Defecating sensation threshold (mL)
Maximum tolerable threshold (mL)
Severity of abdominal pain
Pain ruler
Pain symptom
Pain frequency

The data are presented as mean ± SD or median (interquartile range). IBS-D: Diarrhea-predominant irritable bowel syndrome; IBS-SSS: Irritable bowel syndrome symptom severity scale; VSI: Visceral sensitivity index; IBS-QOL: Irritable bowel syndrome-specific Quality of Life; HADS: Hospital Anxiety and Depression Scale; HC: Healthy control; NA: Not applicable.

This study compared the clinical characteristics and biomarker levels between IBS-D patients and healthy controls and the correlation between patients’ GI severity level and biomarker levels. There are some limitations in our study. First, only IBS-D patients were included, and the selection bias could limit the generalization to other types of IBS patients. Second, only patients from one hospital were recruited. Third, the sample size was small. In addition, the disadvantages of a cross-sectional study design lead to the impossibility of identifying causality.

In conclusion, IBS patients had poorer mental health status and visceral hypersensitivity than healthy controls but higher mucous membrane CCK and lower SERT levels. Psychotherapy should be simultaneously included in clinically IBS-specific treatment to improve IBS patients’ conditions in a timely manner, and further large-scale perspective studies are needed to explore the correlation between patients’ GI severity level and biomarker levels.
Table 2 The level of cholecystokinin and serotonin transporter in mucosa membrane and plasma

	IBS-D patients (n = 40)	HC (n = 18)	P value
Plasma			
CCK	330.88 ± 61.08	208.63 ± 30.65	< 0.001
SERT	14.26 ± 2.94	21.15 ± 2.09	< 0.001
Mucous membrane (RNA)			
CCK	2.29 ± 0.30	1.66 ± 0.17	< 0.001
SERT	1.90 ± 0.51	3.03 ± 0.23	< 0.001
Immunohistochemical OA			
CCK	0.044 ± 0.007	0.028 ± 0.003	< 0.001
SERT	0.005 ± 0.001	0.010 ± 0.001	< 0.001

The data are presented as mean ± SD. IBS-D: Diarrhea-predominant irritable bowel syndrome; HC: Healthy control; CCK: Cholecystokinin; SERT: Serotonin transporter.

Table 3 The correlations between visceral sensitivity and symptom severity scale, and visceral sensitivity index in diarrhea-predominant irritable bowel syndrome patients

	SSS	VSI
Initial sensation threshold	-0.64	-0.47
Defecating sensation threshold	-0.64	-0.47
Maximum tolerable threshold	-0.64	-0.45

SSS: Symptom severity scale; VSI: Visceral sensitivity index.

Table 4 The correlations between abdominal pain and the level of cholecystokinin in mucosa membrane and plasma

	Pain ruler	Pain symptom	Pain frequency
Plasma CCK	0.97	0.94	0.95
Mucous membrane CCK	0.96	0.93	0.94
OA CCK	0.97	0.93	0.95

CCK: Cholecystokinin.

Table 5 The correlations between abdominal pain, psychological performance and the level of serotonin transporter in mucosa membrane and plasma

	HADS(A)	HADS(D)	HAMA	HAMD	Pain ruler	Pain symptom	Pain frequency
Plasma SERT	-0.97	-0.97	-0.95	-0.92	-0.94	-0.91	-0.92
Mucous membrane SERT	-0.98	-0.99	-0.97	-0.94	-0.96	-0.93	-0.95
OA SERT	-0.97	-0.97	-0.93	-0.91	-0.93	-0.91	-0.90

SERT: Serotonin transporter; HADS: Hospital Anxiety and Depression Scale; HAMA: Hamilton Anxiety Scale; HAMD: Hamilton Depression Scale.
ARTICLE HIGHLIGHTS

Research background
Diarrhea-predominant irritable bowel syndrome (IBS-D) patients have psychosomatic disorders and visceral hypersensitivity. Preclinical studies have shown that the expression of serotonin transporter (SERT) in the gut can affect the mental and psychological symptoms of IBS patients. Patients with lower expression of SERT are more likely to have negative emotions (somatization, anxiety, depression, hostility). An injection of cholecystokinin (CCK) can enhance and induce colonic motility, resulting in abdominal pain. Few studies have reported the relationship between mucous SERT, CCK levels and symptom severity, anxiety, depression and visceral hypersensitivity in patients. It has been suggested that SERT and CCK may be involved in the pathogenesis of IBS-D.

Research motivation
The present research includes three aspects: (1) General demographic characteristics, symptoms, psychological factors and visceral sensitivity; (2) The expression of SERT and CCK in colonic mucosa of IBS-D patients; and (3) Correlations between CCK, SERT and other parameters. Similar to preclinical studies in IBS-D patients, SERT and CCK may be involved in the pathogenesis of IBS-D, which provides a new potential method for identifying a more specific and effective therapeutic target.

Research objectives
The purpose of this study was to determine the expression of SERT and CCK in colonic mucosa of IBS-D patients, and analyze the relationship between SERT, CCK and general demographic characteristics, symptoms, psychological factors and visceral hypersensitivity.

Research methods
The participants were evaluated by questionnaires (IBS symptom severity scale, visceral sensitivity index, hospital anxiety and Depression Scale) to obtain clinical and psychological characteristics, and underwent colonoscopy and mucosal biopsies. Visceral sensitivity was detected by a high-resolution manometric system, and the expression of SERT and CCK were detected by immunohistochemistry. Mucosal SERT and CCK mRNA levels were measured by real-time quantitative PCR. These parameters were statistically analyzed using SPSS version 24.0.

Research results
The results showed that the anxiety and depression symptoms and visceral sensitivity in IBS-D
patients were significantly increased. The levels of CCK in the mucosal membrane and plasma were significantly higher in IBS-D patients than in healthy controls, and SERT showed the opposite trend. The expression of CCK was positively correlated with the severity of abdominal pain, and the level of SERT was negatively correlated with the severity of abdominal pain and visceral sensitivity.

Research conclusions

IBS-D patients had psychosomatic disorders and visceral hypersensitivity. SERT and CCK might be involved in the pathogenesis of IBS-D by regulating the brain-gut axis and affecting visceral sensitivity. This provides a new potential method for identifying a more specific and effective therapeutic target.

Research perspectives

Our study determined the role of SERT and CCK in the pathogenesis of IBS-D. There are some limitations in our study. First, only IBS-D patients were included, and selection bias could limit the generalization to other types of IBS patients. Second, only patients from one hospital were recruited. Third, the sample size was small. According to the existing research results, no causal inferences can be made. Therefore, more carefully designed clinical studies are needed.
Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszky H, Crowell MD, Sharkey KA, Gershon MD, Mawe GM, Moses PL. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004; 126: 1657-1664 [PMID: 15183153 DOI: 10.1053/gast.2004.03.013]

Foley S, Garsed K, Singh G, Durozier NP, Swan C, Hall IP, Zaitoun A, Bennett A, Marsden C, Holmes G, Wallis A, Spiller RC. Impaired uptake of serotonin by platelets from patients with irritable bowel syndrome correlates with duodenal immune activation. Gastroenterology 2011; 140: 1434-43.e1 [PMID: 21357220 DOI: 10.1053/j.gastro.2011.01.052]

Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res 2002; 52: 69-77 [PMID: 11872252 DOI: 10.1016/s0022-3999(01)00296-3]

Posserud I, Syros A, Lindström I, Tack J, Abrahamsson H, Simrén M. Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology 2007; 133: 1113-123 [PMID: 17919478 DOI: 10.1053/j.gastro.2007.07.024]

Jones MP, Tack J, Van Oudenhove L, Walker MM, Holtmann G, Koloski NA, Talley NJ. Mood and Anxiety Disorders Precede Development of Functional Gastrointestinal Disorders in Patients but Not in the Population. Clin Gastroenterol Hepatol 2017; 15: 1014-1020.e4 [PMID: 28087404 DOI: 10.1016/j.cgh.2016.12.032]

Bouchouca M, Mary F, Bon C, Bejou B, Airinei G, Benamouzig R. Sleep quality and functional gastrointestinal disorders. A psychological issue. J Dig Dis 2018; 19: 84-92 [PMID: 29316246 DOI: 10.1111/1751-2980.12577]

Wouters MM, Van Wanrooy S, Nguyen A, Dooley J, Aguilera-Lizarra J, Van Brabant W, Garcia-Perez JE, Van Oudenhove L, Van Ranst M, Verhaeghen J, Liston A, Boeckxstaens G. Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop infectious gastroenteritis. Gut 2016; 65: 1279-1288 [PMID: 26071133 DOI: 10.1136/gutjnl-2015-309460]

Surdea-Blaga T, Bahcan A, Nedelcu L, Dumitrascu DL. Psychological Interventions for Irritable Bowel Syndrome. J Gastrointestin Liver Dis 2016; 25: 359-366 [PMID: 27689201 DOI: 10.15403/jgld.2014.1121.253.1b5]

Hanlon I, Hewitt C, Bell K, Phillips A, Mikocka-Walus A. Systematic review with meta-analysis: online psychological interventions for mental and physical health outcomes in gastrointestinal disorders including irritable bowel syndrome and inflammatory bowel disease. Aliment Pharmacol Ther 2018; 48: 244-259 [PMID: 29901820 DOI: 10.1111/apt.14840]

Ballou S, Keefe L. Psychological Interventions for Irritable Bowel Syndrome and Inflammatory Bowel Diseases. Clin Transl Gastroenterol 2017; 8: e214 [PMID: 28102860 DOI: 10.1038/ctg.2016.69]

Kenswrigth M, McDonald J, Talbot J, Janjua K. Do Symptoms of Irritable Bowel Syndrome Improve when Patients Receive Cognitive Behavioural Therapy for Co-morbid Anxiety Disorders in a Primary Care Psychological Therapy (IAPT) Service? Behav Cogn Psychother 2017; 45: 433-447 [PMID: 28478779 DOI: 10.1177/135246581701253.lhs]

Simrén M, Tönnblom H, Paxson OS, van Tilburg MAL, Van Oudenhove L, Tack J, Whitehead WE. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut 2018; 67: 255-262 [PMID: 28104632 DOI: 10.1136/gutjnl-2016-312361]

Sabate JM, Veyrac M, Mion F, Siproudhis L, Ducrotte P, Zerbib F, Grimaud JC, Dapoigny M, Dyard F, Coffin B. Relationship between rectal sensitivity, symptoms intensity and quality of life in patients with irritable bowel syndrome. Aliment Pharmacol Ther 2008; 28: 484-490 [PMID: 18544074 DOI: 10.1111/j.1365-2036.2008.07359.x]

Boeckxstaens GE, Hirsch DP, Kuiken SD, Heisterkamp SH, Tytgat GN. The proximal stomach and postprandial symptoms in functional dyspepsia. Am J Gastroenterol 2002; 97: 40-48 [PMID: 11811168 DOI: 10.1111/j.1572-0241.2002.05421.x]

Jarrett ME, Han CJ, Cain KC, Burr RL, Shulman RJ, Barney PG, Naliboff BD, Zia J, Heitkemper MM. Relationships of abdominal pain, reports to visceral and temperature pain sensitivity, conditioned pain modulation, and heart rate variability in irritable bowel syndrome. Neurogastroenterol Motil 2016; 28: 1094-1103 [PMID: 26993039 DOI: 10.1111/nmo.12812]
