Stanley-Wilf limits are typically exponential

Jacob Fox
Massachusetts Institute of Technology
A permutation π of $[n]$ is called an n-permutation.
A permutation π of $[n]$ is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π.

Example: 7265314 contains 4312
A permutation π of $[n]$ is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π.

Example: 7265314 contains 4312 but avoids 1234.
A permutation π of $[n]$ is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ *contains* another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to *avoid* π.

Example: 7265314 contains 4312 but avoids 1234.

Definition

$S_n(\pi)$ is the number of n-permutations avoiding π.

Theorem: (McMahon 1915, Knuth 1968) For each 3-permutation π,

$$S_n(\pi) = \frac{1}{n+1} \left(2^n - \sum_{j=0}^{n} (-1)^j \binom{n}{j} (n-j)^n\right).$$
A permutation π of $[n]$ is called an n-permutation.

Definition

A permutation $\sigma = \sigma_1 \cdots \sigma_n$ contains another permutation $\pi = \pi_1 \cdots \pi_k$ if there exists indices $i_1 < \ldots < i_k$ such that $\sigma_{i_j} < \sigma_{i_\ell}$ if and only if $\pi_j < \pi_\ell$. Otherwise, σ is said to avoid π.

Example: 7265314 contains 4312 but avoids 1234.

Definition

$S_n(\pi)$ is the number of n-permutations avoiding π.

Theorem: (McMahon 1915, Knuth 1968)

For each 3-permutation π,

$$S_n(\pi) = \frac{1}{n+1} \binom{2n}{n}.$$
Conjecture: (Stanley-Wilf 1980)
For each \(\pi \), there is \(L(\pi) \) such that \(\lim_{n \to \infty} S_n(\pi)^{1/n} = L(\pi) \).
Conjecture: (Stanley-Wilf 1980)

For each π, there is $L(\pi)$ such that $\lim_{n \to \infty} S_n(\pi)^{1/n} = L(\pi)$.

Regev (1981): $L(12 \cdots k) = (k - 1)^2$.
Stanley-Wilf conjecture

Conjecture: (Stanley-Wilf 1980)
For each π, there is $L(\pi)$ such that $\lim_{n \to \infty} S_n(\pi)^{1/n} = L(\pi)$.

Regev (1981): $L(12 \cdots k) = (k - 1)^2$.

Theorem: (Alon-Friedgut 2000)
For each k-permutation π, $S_n(\pi) \leq C(\pi)^{n\gamma(n)}$, where $\gamma(n)$ is a very slow growing function, related to the Ackermann hierarchy.
Conjecture: (Stanley-Wilf 1980)
For each π, there is $L(\pi)$ such that $\lim_{n \to \infty} S_n(\pi)^{1/n} = L(\pi)$.

Regev (1981): $L(12 \cdots k) = (k - 1)^2$.

Theorem: (Alon-Friedgut 2000)
For each k-permutation π, $S_n(\pi) \leq C(\pi)^{n\gamma(n)}$, where $\gamma(n)$ is a very slow growing function, related to the Ackermann hierarchy.

Theorem: (Marcus-Tardos 2004)
For each k-permutation π, $L(\pi)$ exists and satisfies
\[
L(\pi) \leq 15^{2k^4}\binom{k^2}{k}.
\]
Problem

How large can $L(\pi)$ be for a k-permutation π?
Problem
How large can $L(\pi)$ be for a k-permutation π?

Conjecture: (Arratia 1999 $100)
$L(\pi) \leq (k - 1)^2$
Problem
How large can $L(\pi)$ be for a k-permutation π?

Conjecture: (Arratia 1999 100)
$L(\pi) \leq (k - 1)^2$

Disproved by Albert-Elder-Rechnitzer-Westcott-Zabrocki in 2006: $L(4231) > 9.47$, but conjectured to be at most 9.
Problem
How large can $L(\pi)$ be for a k-permutation π?

Conjecture: (Arratia 1999 $100)

$$L(\pi) \leq (k - 1)^2$$

Disproved by Albert-Elder-Rechnitzer-Westcott-Zabrocki in 2006: $L(4231) > 9.47$, but conjectured to be at most 9.
Conjecture

\[L(\pi) = \Theta(k^2) \]
Stanley-Wilf limits

Conjecture

\[L(\pi) = \Theta(k^2) \]

Definition

A permutation is *layered* if it is a concatenation of decreasing sequences, the letters of each sequence being smaller than the letters in the following sequences.

Theorem: (Claesson-Jelínek-Steingrímsson 2012)

Every layered \(k \)-permutation \(\pi \) satisfies \(L(\pi) \leq 4k^2 \).
Conjecture

\[L(\pi) = \Theta(k^2) \]

Definition

A permutation is *layered* if it is a concatenation of decreasing sequences, the letters of each sequence being smaller than the letters in the following sequences.

Conjecture: (Bóna)

Over all \(k \)-permutations \(\pi \), the Stanley-Wilf limit \(L(\pi) \) is maximized on some layered permutation.
Stanley-Wilf limits

Conjecture

\[L(\pi) = \Theta(k^2) \]

Definition

A permutation is *layered* if it is a concatenation of decreasing sequences, the letters of each sequence being smaller than the letters in the following sequences.

Conjecture: (Bóna)

Over all \(k \)-permutations \(\pi \), the Stanley-Wilf limit \(L(\pi) \) is maximized on some layered permutation.

Theorem: (Claesson-Jelínek-Steingrímsson 2012)

Every layered \(k \)-permutation \(\pi \) satisfies \(L(\pi) \leq 4k^2 \).
Stanley-Wilf limits are typically exponential
Stanley-Wilf limits are typically exponential

Theorem (F.)

There is a k-permutation π with

$$L(\pi) = 2^{\Omega(k^{1/4})}.$$
Extremal Problem for Matrices

All matrices we consider are binary, with all entries are 0 or 1.
All matrices we consider are *binary*, with all entries are 0 or 1.

The *mass* of a matrix is the number of one-entries.
All matrices we consider are \textit{binary}, with all entries are 0 or 1.

The \textit{mass} of a matrix is the number of one-entries.

Matrix \(A \) \textit{contains} a \(k \times \ell \) matrix \(P = (p_{ij}) \) if there is a \(k \times \ell \) submatrix \(D = (d_{ij}) \) of \(A \) such that if \(p_{ij} = 1 \), then \(d_{ij} = 1 \). Otherwise, \(A \) \textit{avoids} \(P \).
All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

$\text{ex}(n, P)$ is the maximum mass of an $n \times n$ matrix which avoids P.
All matrices we consider are *binary*, with all entries are 0 or 1.

The *mass* of a matrix is the number of one-entries.

Matrix A *contains* a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A *avoids* P.

Definition

$\text{ex}(n, P)$ is the maximum mass of an $n \times n$ matrix which avoids P.

$\text{ex}(n, \pi) := \text{ex}(n, P)$, where P is the permutation matrix of π.
Extremal Problem for Matrices

All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

$\text{ex}(n, P)$ is the maximum mass of an $n \times n$ matrix which avoids P.

$\text{ex}(n, \pi) := \text{ex}(n, P)$, where P is the permutation matrix of π.

Conjecture: (Füredi-Hajnal 1992)

For every permutation π, $\text{ex}(n, \pi) = O(n)$.
All matrices we consider are binary, with all entries are 0 or 1.

The mass of a matrix is the number of one-entries.

Matrix A contains a $k \times \ell$ matrix $P = (p_{ij})$ if there is a $k \times \ell$ submatrix $D = (d_{ij})$ of A such that if $p_{ij} = 1$, then $d_{ij} = 1$. Otherwise, A avoids P.

Definition

$\text{ex}(n, P)$ is the maximum mass of an $n \times n$ matrix which avoids P.

$\text{ex}(n, \pi) := \text{ex}(n, P)$, where P is the permutation matrix of π.

Conjecture: (Füredi-Hajnal 1992)

For every permutation π, $\text{ex}(n, \pi) = O(n)$.

Equivalent to $c(\pi) := \lim_{n \to \infty} \frac{\text{ex}(n, \pi)}{n}$ exists.
Klazar proved $L(\pi) \leq 15c(\pi)$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$
Klazar proved $L(\pi) \leq 15c(\pi)$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$
Klazar proved $L(\pi) \leq 15c(\pi)$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π, $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.
Klazar proved $L(\pi) \leq 15^c(\pi)$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4\binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π, $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Hence $L(\pi) = 2^{O(k \log k)}$.
Klazar proved $L(\pi) \leq 15^c(\pi)$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π, $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Hence $L(\pi) = 2^{O(k \log k)}$.

Theorem: (F.)

$L(\pi) = 2^{O(k)}$.
Klazar proved $L(\pi) \leq 15c(\pi)$.

Theorem: (Marcus-Tardos 2004)

$$c(\pi) \leq 2k^4 \binom{k^2}{k}.$$

Theorem: (Cibulka 2009)

For every permutation π, $L(\pi) = O(c(\pi)^2)$ and $c(\pi) = O(L(\pi)^{4.5})$.

Hence $L(\pi) = 2^{O(k \log k)}$.

Theorem: (F.)

$L(\pi) = 2^{O(k)}$.
Definition: Contraction

The *contraction* of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.
Interval Minors

Definition: Contraction

The *contraction* of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an *interval minor* of *A* if *P* is contained in a matrix obtained from *A* by contraction of consecutive rows or columns.
Definition: Contraction

The contraction of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an interval minor of A if P is contained in a matrix obtained from A by contraction of consecutive rows or columns.

J_ℓ is the $\ell \times \ell$ all ones matrix. J_ℓ contains all ℓ-permutations.
Definition: Contraction
The *contraction* of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor
P is an *interval minor* of *A* if *P* is contained in a matrix obtained from *A* by contraction of consecutive rows or columns.

\(J_{\ell} \) is the \(\ell \times \ell \) all ones matrix. \(J_{\ell} \) contains all \(\ell \)-permutations.

Lemma
\[\exists \; \ell^2 \text{-permutation } \pi \text{ whose matrix contains } J_{\ell} \text{ as an interval minor.} \]
Definition: Contraction

The contraction of two consecutive rows of a matrix replaces the two rows by a single row, with a one in an entry of the new row if at least one of the two entries in the original two rows is a one. Contraction of columns is defined similarly.

Definition: Interval Minor

P is an interval minor of A if P is contained in a matrix obtained from A by contraction of consecutive rows or columns.

J_ℓ is the $\ell \times \ell$ all ones matrix. J_ℓ contains all ℓ-permutations.

Lemma

$\exists \ell^2$-permutation π whose matrix contains J_ℓ as an interval minor.

π is given by $\pi(a\ell + b + 1) = b\ell + a + 1$ for $0 \leq a, b \leq \ell - 1$.
Theorem: (F.)

Let \(r = \frac{1}{8} \ell \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.

Proof: Let \(q = \frac{1}{8^r} \) and \(N' = 2N - 1 \).

Let \(B = (b_{IJ}) \) be the \(N' \times N' \) matrix with a row for each \(I \in V(T_R) \) and a column for each \(J \in V(T_C) \) and each entry is one with probability \(1 - q \) independently of the other entries.

Let \(M = (m_{ij}) \) be the \(N \times N \) matrix with \(m_{ij} = 1 \) iff \(b_{IJ} = 1 \) for every ancestor \(I \) of \{i\} in \(T_R \) and every ancestor \(J \) of \{j\} in \(T_C \).

There is a choice of \(B \) that is \(J_\ell \)-free and \(M \) has mass at least \(N^{3/2} \).

Suppose for contradiction that, in \(M \), \(I_1, \ldots, I_\ell \) are intervals of rows and \(L_1, \ldots, L_\ell \) are intervals of columns which contract to make \(J_\ell \).

Assign each \(I_a \) a vertex \(v_a \) of \(T_R \) of largest height which contains \(I_a \).

Similarly assign each \(L_b \) a vertex \(u_b \) of \(T_C \).

\(v_1, \ldots, v_\ell \) are distinct and \(u_1, \ldots, u_\ell \) are distinct.

Each \(v_a \) and \(u_b \) must be adjacent in \(B \), contradicting \(B \) is \(J_\ell \)-free.
Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.

Proof: Let \(q = 1/(8r) \) and \(N' = 2N - 1 \).
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.

Proof: Let \(q = 1/(8r) \) and \(N' = 2N - 1 \).

Let \(B = (b_{IJ}) \) be the \(N' \times N' \) matrix with a row for each \(I \in V(T_R) \) and a column for each \(J \in V(T_C) \) and each entry is one with probability \(1 - q \) independently of the other entries.
Theorem: (F.)

Let $r = \frac{1}{8} \ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let $q = 1/(8r)$ and $N' = 2N - 1$.

Let $B = (b_{IJ})$ be the $N' \times N'$ matrix with a row for each $I \in V(T_R)$ and a column for each $J \in V(T_C)$ and each entry is one with probability $1 - q$ independently of the other entries.

Let $M = (m_{ij})$ be the $N \times N$ matrix with $m_{ij} = 1$ iff $b_{IJ} = 1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C.
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.

Proof: Let \(q = 1/(8r) \) and \(N' = 2N - 1 \).

Let \(B = (b_{IJ}) \) be the \(N' \times N' \) matrix with a row for each \(I \in V(T_R) \) and a column for each \(J \in V(T_C) \) and each entry is one with probability \(1 - q \) independently of the other entries.

Let \(M = (m_{ij}) \) be the \(N \times N \) matrix with \(m_{ij} = 1 \) iff \(b_{IJ} = 1 \) for every ancestor \(I \) of \(\{i\} \) in \(T_R \) and every ancestor \(J \) of \(\{j\} \) in \(T_C \).

There is a choice of \(B \) that is \(J_\ell \)-free and \(M \) has mass at least \(N^{3/2} \).
Theorem: \((F.) \)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.

Proof: Let \(q = 1/(8r) \) and \(N' = 2N - 1 \).

Let \(B = (b_{IJ}) \) be the \(N' \times N' \) matrix with a row for each \(I \in V(T_R) \) and a column for each \(J \in V(T_C) \) and each entry is one with probability \(1 - q \) independently of the other entries.

Let \(M = (m_{ij}) \) be the \(N \times N \) matrix with \(m_{ij} = 1 \) iff \(b_{IJ} = 1 \) for every ancestor \(I \) of \(\{i\} \) in \(T_R \) and every ancestor \(J \) of \(\{j\} \) in \(T_C \).

There is a choice of \(B \) that is \(J_\ell \)-free and \(M \) has mass at least \(N^{3/2} \).

Suppose for contradiction that, in \(M \), \(I_1, \ldots, I_\ell \) are intervals of rows and \(L_1, \ldots, L_\ell \) are intervals of columns which contract to make \(J_\ell \).
Theorem: (F.)

Let $r = \frac{1}{8} \ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let $q = 1/(8r)$ and $N' = 2N - 1$.
Let $B = (b_{IJ})$ be the $N' \times N'$ matrix with a row for each $I \in V(T_R)$ and a column for each $J \in V(T_C)$ and each entry is one with probability $1 - q$ independently of the other entries.
Let $M = (m_{ij})$ be the $N \times N$ matrix with $m_{ij} = 1$ iff $b_{IJ} = 1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C.
There is a choice of B that is J_ℓ-free and M has mass at least $N^{3/2}$.
Suppose for contradiction that, in M, I_1, \ldots, I_ℓ are intervals of rows and L_1, \ldots, L_ℓ are intervals of columns which contract to make J_ℓ.
Assign each I_a a vertex v_a of T_R of largest height which contains I_a.
Similarly assign each L_b a vertex u_b of T_C.
Theorem: (F.)

Let $r = \frac{1}{8} \ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ which avoids J_ℓ as an interval minor.

Proof: Let $q = 1/(8r)$ and $N' = 2N - 1$.

Let $B = (b_{IJ})$ be the $N' \times N'$ matrix with a row for each $I \in V(T_R)$ and a column for each $J \in V(T_C)$ and each entry is one with probability $1 - q$ independently of the other entries.

Let $M = (m_{ij})$ be the $N \times N$ matrix with $m_{ij} = 1$ iff $b_{IJ} = 1$ for every ancestor I of $\{i\}$ in T_R and every ancestor J of $\{j\}$ in T_C.

There is a choice of B that is J_ℓ-free and M has mass at least $N^{3/2}$.

Suppose for contradiction that, in M, I_1, \ldots, I_ℓ are intervals of rows and L_1, \ldots, L_ℓ are intervals of columns which contract to make J_ℓ. Assign each I_a a vertex v_a of T_R of largest height which contains I_a. Similarly assign each L_b a vertex u_b of T_C.

v_1, \ldots, v_ℓ are distinct and u_1, \ldots, u_ℓ are distinct.
Lower bound construction

Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) which avoids \(J_\ell \) as an interval minor.

Proof: Let \(q = 1/(8r) \) and \(N' = 2N - 1 \).

Let \(B = (b_{IJ}) \) be the \(N' \times N' \) matrix with a row for each \(I \in V(T_R) \) and a column for each \(J \in V(T_C) \) and each entry is one with probability \(1 - q \) independently of the other entries.

Let \(M = (m_{ij}) \) be the \(N \times N \) matrix with \(m_{ij} = 1 \) iff \(b_{IJ} = 1 \) for every ancestor \(I \) of \(\{i\} \) in \(T_R \) and every ancestor \(J \) of \(\{j\} \) in \(T_C \).

There is a choice of \(B \) that is \(J_\ell \)-free and \(M \) has mass at least \(N^{3/2} \).

Suppose for contradiction that, in \(M \), \(I_1, \ldots, I_\ell \) are intervals of rows and \(L_1, \ldots, L_\ell \) are intervals of columns which contract to make \(J_\ell \).

Assign each \(I_a \) a vertex \(v_a \) of \(T_R \) of largest height which contains \(I_a \). Similarly assign each \(L_b \) a vertex \(u_b \) of \(T_C \).

\(v_1, \ldots, v_\ell \) are distinct and \(u_1, \ldots, u_\ell \) are distinct.

Each \(v_a \) and \(u_b \) must be adjacent in \(B \), contradicting \(B \) is \(J_\ell \)-free.
Theorem: (F.)

Let \(r = \frac{1}{8} \ell \frac{1}{2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^3/2 \) and avoids \(J_\ell \) as an interval minor.

Let \(k = \ell^2 \).

As there exists a \(k \)-permutation \(\pi \) whose matrix contains \(J_\ell \) as an interval minor, then \(M \) avoids \(\pi \).

Hence, \(\text{ex}(N, \pi) \geq N^3/2 \).

Since \(\text{ex}(n, \pi) \) is super-additive, \(c(\pi) \geq N^{1/2} \).

As \(L(\pi) \) and \(c(\pi) \) are polynomially related, \(L(\pi) = c(\pi) \Omega(1) = 2^{\Omega(k^{1/4})} \).
Theorem: (F.)

Let $r = \frac{1}{8} \ell^{1/2}$ and $N = 2^r$. There is an $N \times N$ matrix M with mass at least $N^{3/2}$ and avoids J_ℓ as an interval minor.
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) and avoids \(J_\ell \) as an interval minor.

Let \(k = \ell^2 \).
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) and avoids \(J_\ell \) as an interval minor.

Let \(k = \ell^2 \).

As there exists a \(k \)-permutation \(\pi \) whose matrix contains \(J_\ell \) as an interval minor, then \(M \) avoids \(\pi \).
Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) and avoids \(J_\ell \) as an interval minor.

Let \(k = \ell^2 \).

As there exists a \(k \)-permutation \(\pi \) whose matrix contains \(J_\ell \) as an interval minor, then \(M \) avoids \(\pi \).

Hence,

\[
\text{ex}(N, \pi) \geq N^{3/2}.
\]
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^{r} \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) and avoids \(J_{\ell} \) as an interval minor.

Let \(k = \ell^{2} \).

As there exists a \(k \)-permutation \(\pi \) whose matrix contains \(J_{\ell} \) as an interval minor, then \(M \) avoids \(\pi \).

Hence,

\[
\text{ex}(N, \pi) \geq N^{3/2}.
\]

Since \(\text{ex}(n, \pi) \) is super-additive, \(c(\pi) \geq N^{1/2} \).
Theorem: (F.)

Let \(r = \frac{1}{8} \ell^{1/2} \) and \(N = 2^r \). There is an \(N \times N \) matrix \(M \) with mass at least \(N^{3/2} \) and avoids \(J_\ell \) as an interval minor.

Let \(k = \ell^2 \).

As there exists a \(k \)-permutation \(\pi \) whose matrix contains \(J_\ell \) as an interval minor, then \(M \) avoids \(\pi \).

Hence,

\[
\text{ex}(N, \pi) \geq N^{3/2}.
\]

Since \(\text{ex}(n, \pi) \) is super-additive, \(c(\pi) \geq N^{1/2} \).

As \(L(\pi) \) and \(c(\pi) \) are polynomially related,

\[
L(\pi) = c(\pi)^\Omega(1) = 2^{\Omega(k^{1/4})}.
\]
Upper Bound

Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000) $T_n(\pi) = 2^{\Theta(ex(n,\pi))}$

This follows by induction from $T_{2n}(\pi) \leq T_n(\pi)^2$.

Theorem: (Cibulka) $L(\pi) = O(c(\pi)^2)$

New simple proof: For $N = t_n$, we have $S_N(\pi) \leq T_n(\pi) t^2 N$.

For $t = c(\pi)$, this is $S_N(\pi) \leq 2^{O(N)} c(\pi)^2 N$ and we are done.
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000) $T_n(\pi) = 2^{\Theta(ex(n, \pi))}$.

This follows by induction from $T_2(n(\pi)) \leq T_n(\pi) \cdot \frac{2}{ex(n, \pi)}$.

Theorem: (Cibulka) $L(\pi) = O(c(\pi)^2)$.

New simple proof: For $N = t_n$, we have $S_N(\pi) \leq T_n(\pi) \cdot t^2 N$. For $t = c(\pi)$, this is $S_N(\pi) \leq 2^{O(N \cdot c(\pi)^2)}$ and we are done.
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\text{ex}(n,\pi))}$$
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\text{ex}(n, \pi))}$$

This follows by induction from
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^\Theta(\text{ex}(n, \pi))$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi)15^{\text{ex}(n, \pi)}$$
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\text{ex}(n, \pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\text{ex}(n, \pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\text{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi) 15^{\text{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

New simple proof:
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\text{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi)15^{\text{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

New simple proof: For $N = tn$, we have

$$S_N(\pi) \leq T_n(\pi)t^{2N}.$$
Let $T_n(\pi)$ be the number of $n \times n$ matrices which avoid π.

Lemma: (Klazar 2000)

$$T_n(\pi) = 2^{\Theta(\text{ex}(n,\pi))}$$

This follows by induction from

$$T_{2n}(\pi) \leq T_n(\pi)15^{\text{ex}(n,\pi)}$$

Theorem: (Cibulka)

$$L(\pi) = O(c(\pi)^2)$$

New simple proof: For $N = tn$, we have

$$S_N(\pi) \leq T_n(\pi)t^{2N}.$$

For $t = c(\pi)$, this is $S_N(\pi) \leq 2^{O(N)c(\pi)^{2N}}$ and we are done.
Marcus-Tardos theorem

Theorem: (Marcus-Tardos 2004)\\
$ex(n, \pi) \leq 2k^{4/k^2}n$.

Proof: This follows by induction from $ex(n, \pi) \leq (k-1)2ex(n/k^2, \pi) + 2k^3(k^2/k^2)n$.

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks. Define a block to be wide (tall) if it contains k different columns (rows).

Form $n^{k^2} \times n^{k^2}$ matrix B from A by contracting intervals of size k^2. Each column of B has less than $k(k^2/k^2)$ ones from wide blocks. Hence, mass of A in wide or tall blocks is at most $2n^{k^2}k^{4/k^2}k(k^2/k^2)$.

B avoids π and hence has mass at most $ex(n^{k^2}, \pi)$. The blocks which are neither wide nor tall each have at most $(k-1)2$ ones, and the desired inequality follows.
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from

\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]
Theorem: (Marcus-Tardos 2004)

$$\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n.$$

Proof: This follows by induction from

$$\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n.$$

Partition $n \times n$ matrix A which avoids π into $k^2 \times k^2$ blocks.
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from

\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]

Partition \(n \times n \) matrix \(A \) which avoids \(\pi \) into \(k^2 \times k^2 \) blocks. Define a block to be wide (tall) if it contains 1-entries in at least \(k \) different columns (rows).
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from

\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]

Partition \(n \times n \) matrix \(A \) which avoids \(\pi \) into \(k^2 \times k^2 \) blocks.
Define a block to be wide (tall) if it contains 1-entries in at least \(k \) different columns (rows).
Form \(\frac{n}{k^2} \times \frac{n}{k^2} \) matrix \(B \) from \(A \) by contracting intervals of size \(k^2 \).
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from

\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]

Partition \(n \times n \) matrix \(A \) which avoids \(\pi \) into \(k^2 \times k^2 \) blocks. Define a block to be **wide** (**tall**) if it contains 1-entries in at least \(k \) different columns (**rows**). Form \(\frac{n}{k^2} \times \frac{n}{k^2} \) matrix \(B \) from \(A \) by contracting intervals of size \(k^2 \). Each column of \(B \) has less than \(k \binom{k^2}{k} \) ones from wide blocks.
Marcus-Tardos theorem

Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from
\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]

Partition \(n \times n \) matrix \(A \) which avoids \(\pi \) into \(k^2 \times k^2 \) blocks.
Define a block to be wide (tall) if it contains 1-entries in at least \(k \) different columns (rows).
Form \(\frac{n}{k^2} \times \frac{n}{k^2} \) matrix \(B \) from \(A \) by contracting intervals of size \(k^2 \).
Each column of \(B \) has less than \(k \binom{k^2}{k} \) ones from wide blocks.
Hence, mass of \(A \) in wide or tall blocks is at most \(2 \cdot \frac{n}{k^2} \cdot k^4 \cdot k \binom{k^2}{k} \).
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from

\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]

Partition \(n \times n \) matrix \(A \) which avoids \(\pi \) into \(k^2 \times k^2 \) blocks. Define a block to be wide (tall) if it contains 1-entries in at least \(k \) different columns (rows). Form \(\frac{n}{k^2} \times \frac{n}{k^2} \) matrix \(B \) from \(A \) by contracting intervals of size \(k^2 \). Each column of \(B \) has less than \(k \binom{k^2}{k} \) ones from wide blocks. Hence, mass of \(A \) in wide or tall blocks is at most \(2 \cdot \frac{n}{k^2} \cdot k^4 \cdot k \binom{k^2}{k} \). \(B \) avoids \(\pi \) and hence has mass at most \(\text{ex} \left(\frac{n}{k^2}, \pi \right) \).
Theorem: (Marcus-Tardos 2004)

\[\text{ex}(n, \pi) \leq 2k^4 \binom{k^2}{k} n. \]

Proof: This follows by induction from

\[\text{ex}(n, \pi) \leq (k - 1)^2 \text{ex} \left(\frac{n}{k^2}, \pi \right) + 2k^3 \binom{k^2}{k} n. \]

Partition \(n \times n \) matrix \(A \) which avoids \(\pi \) into \(k^2 \times k^2 \) blocks.
Define a block to be wide (tall) if it contains 1-entries in at least \(k \) different columns (rows).
Form \(\frac{n}{k^2} \times \frac{n}{k^2} \) matrix \(B \) from \(A \) by contracting intervals of size \(k^2 \).
Each column of \(B \) has less than \(k \binom{k^2}{k} \) ones from wide blocks.
Hence, mass of \(A \) in wide or tall blocks is at most \(2 \cdot \frac{n}{k^2} \cdot k^4 \cdot k \binom{k^2}{k} \).
\(B \) avoids \(\pi \) and hence has mass at most \(\text{ex} \left(\frac{n}{k^2}, \pi \right) \).
The blocks which are neither wide nor tall each have at most \((k - 1)^2 \) ones, and the desired inequality follows.