Quantitative Assessment of the Association between Genetic Variants in MicroRNAs and Colorectal Cancer Risk

Xiao-Xu Liu, Meng Wang, Dan Xu, Jian-Hai Yang, Hua-Feng Kang, Xi-Jing Wang, Shuai Lin, Peng-Tao Yang, Xing-Han Liu, and Zhi-Jun Dai

1Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
2Center for Translational Medicine, Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, China
3Department of Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China

Correspondence should be addressed to Zhi-Jun Dai; dzj0911@126.com

Received 11 January 2015; Revised 22 April 2015; Accepted 5 May 2015

Background. The associations between polymorphisms in microRNAs and the susceptibility of colorectal cancer (CRC) were inconsistent in previous studies. This study aims to quantify the strength of the correlation between the four common polymorphisms among microRNAs (hsa-mir-146a rs2910164, hsa-mir-149 rs2292832, hsa-mir-196a2 rs11614913, and hsa-mir-499 rs3746444) and CRC risk.

Methods. We searched PubMed, Web of Knowledge, and CNKI to find relevant studies. The combined odds ratio (OR) with 95% confidence interval (95% CI) was used to estimate the strength of the association in a fixed or random effect model.

Results. 15 studies involving 5,486 CRC patients and 7,184 controls were included. Meta-analyses showed that rs3746444 had association with CRC risk in Caucasians (OR = 0.57, 95% CI = 0.34–0.95). In the subgroup analysis, we found significant associations between rs2910164 and CRC in hospital based studies (OR = 1.24, 95% CI = 1.03–1.49). rs2292832 may be a high risk factor of CRC in population based studied (OR = 1.18, 95% CI = 1.08–1.38).

Conclusion. This meta-analysis showed that rs2910164 and rs2292832 may increase the risk of CRC. However, rs11614913 polymorphism may reduce the risk of CRC. Rs3746444 may have a decreased risk to CRC in Caucasians.

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer death for both men and women in the USA [1]. In Europe, CRC represents one of the primary causes of cancer deaths [2], and, in Asia, CRC is the fourth leading cause of mortality by cancer, and its incidence is increasing [3]. Epidemiological evidences have suggested that the risk of colorectal neoplasm is affected by multiple factors including a positive family history, excessive meat consumption, smoking status, and alcohol consumption, as well as genetic alterations, such as genetic polymorphisms [2].

However, the mechanism of colorectal carcinogenesis is still not fully understood. Compared with other complex diseases, CRC may be caused by both genetic and environmental factors [4]. Because well-recognized genetic predisposition syndromes account for less than 3% of CRC, low-penetrance genetic factors alone or in combination with environmental factors probably contribute to the development of CRC [5].

MicroRNAs (miRNAs) are a large class of small noncoding RNAs, which participate in various biological processes and may regulate tumor suppressor genes or oncogenes [6]. Single nucleotide polymorphisms (SNPs) in miRNAs may alter the expression, processing, and transcription of miRNAs and thus contribute to cancer development [7]. Recently, many epidemiological studies have demonstrated that some SNPs in the miRNA genes could alter miRNA expression and/or maturation and also be associated with the susceptibility and progression of cancer [8]. R s2910164 in hsa-mir-146a locus resides at position +60 relative to the first nucleotide of the pre-miR-146a gene. The previous studies have shown that miR-146a plays an important role in cell proliferation and metastatic ability in cancers and the variation of miR-146a may be involved in carcinogenesis.
impact on the expression of its target gene, which may play the expression levels of mature miR-196a and may have an mature sequence of miR-196a-3P. Rs11614913 could influence (miR-196a-5P and miR-196a-3P) and rs11614913 located in the stem region of the mir-499 gene. And several studies have identified miR-499 rs3746444 as a possible biomarker for some cancers [11–13]. Compared with other three genes, there were few studies of rs2292932 in miR-149 up to now. But the T allele in miR-149 might be masked by the presence of other unidentified causal genes involved in cancer development [14]. Furthermore, several Genome-wide association studies have reported that these four common SNPs may be associated with cancer risk [8]. However, results of these studies remain inconsistent. To provide a more precise estimate of the association of miRNA polymorphisms with CRC risk, we performed a meta-analysis on all eligible published case-control studies and evaluated the effect of the four SNPs on CRC risk.

2. Methods

2.1. Publication Search. Relevant articles were independently searched by two authors (Wang M and Dai ZJ) in PubMed, Web of Science, and Chinese National Knowledge Infrastructure (CNKI). The keywords were as follows: colorectal cancer/colorectal carcinoma, microRNA 146a/149/196a2/499, and polymorphism/genotype/variant/SNP. All qualified studies prior to December 20, 2014, were included. The eligible literature must be published in English or Chinese. Furthermore, reference lists of main reports and review articles were also reviewed manually to identify additional relevant publications.

2.2. Selection Criteria. The following criteria were used to select eligible studies for further meta-analysis: (1) case-control design; (2) full-text study; (3) studies that evaluated the associations between miRNA polymorphisms and CRC risk; and (4) studies that included detailed genotyping data.

2.3. Data Extraction. Articles were reviewed independently by two reviewers and data with discrepancies were discussed by all authors. For each included study, the following information was collected: first author, year of publication, country of origin, ethnicity, source of control, total number of cases and controls, and genotyping methods as well as number of cases and controls with the different genotypes. Different ethnic groups were categorized as Caucasian, Asian, African, and “mixed.” All the case and control groups were well controlled.

2.4. Statistical Analysis. The associations between miRNA polymorphisms and CRC risk were measured by odds ratio (OR) with 95% confidence interval (CI). The significance of the pooled OR was determined by the Z test.

The meta-analysis assessed association by using 5 different genetic models: homozygous genetic model, heterozygote genetic model, dominant genetic model, recessive genetic model, and allelic model. Hardy-Weinberg equilibrium (HWE) among the control subjects was tested by the Chi-square test. Statistical heterogeneity among studies was assessed with the Q and I² statistics. If the P value of heterogeneity test was more than 0.05 (P > 0.05), the pooled OR estimate of the study was calculated by the fixed-effects model. Otherwise, the random-effects model was used. The value of the I index was used to assess the degree of heterogeneity (I² < 25%: no heterogeneity; 25% < I² < 50%: moderate heterogeneity; 50% < I² < 75%: high heterogeneity; and I² > 75%: extreme high heterogeneity). Publication bias was evaluated by the funnel plot. All statistical analyses were carried out with the review manager version 5.1 (Revman; The Cochrane Collaboration, Oxford, UK).

3. Results

3.1. Characteristics of Studies. According to the inclusion criteria defined above (Figure 1), fifteen studies on miRNA polymorphisms with CRC risk were identified [8], including 5,486 CRC patients and 7,184 cancer-free controls. All the included eligible studies were published in English or Chinese. Among the eligible fifteen studies, eleven studies were based on Asian backgrounds which were carried out in China and Korea. Only four studies were based on
Table 1: Characteristics of the studies included in the meta-analysis.

First author	Year	Country	Ethnicity	Genotyping method	Source of control	Number (case/control)	SNP number
Dikaiakos [28]	2015	Greek	Caucasian	PCR-RFLP	HB	157/299	1, 3, 4
Kupcinskas [29]	2014	Lithuania, Latvia	Caucasian	TaqMan	HB	193/428	1, 3
Mao [30]	2014	China	Asian	SNPScan	PB	554/566	1
Hu [31]	2014	China	Asian	PCR-RFLP	HB	276/373	1, 4
Wu [15]	2014	China	Asian	ASA	PB	175/300	1, 2, 4
Lv [8]	2013	China	Asian	PCR-RFLP	PB	353/540	1, 2, 3, 4
Chae [21]	2013	Korea	Asian	PCR-RFLP	PB	1147/1203	1
Ma [32]	2013	China	Asian	TaqMan	PB	160/178	1, 2, 3, 4
Vinci [16]	2013	Italy	Caucasian	TaqMan	PB	478/477	2, 3
Zhang [17]	2012	China	Asian	PCR-RFLP	PB	197/212	1, 3
Hezova [20]	2012	Czech	Caucasian	TaqMan	PB	446/502	1, 2, 3, 4
Min [22]	2012	Korea	Asian	PCR-RFLP	PB	573/588	3
Zhu [33]	2012	China	Asian	TaqMan	PB	252/543	3
Chen [34]	2012	China	Asian	PCR-LDR	PB	126/407	3
Zhan [35]	2011	China	Asian	PCR-RFLP	PB	315/510	3

HWE: Hardy-Weinberg equilibrium; PB: population based; HB: hospital based; PCR: polymerase chain reaction; RFLP: restriction fragment length polymorphism; LDR: ligation detection reaction; ASA: allele-specific amplification; SNP: single-nucleotide polymorphisms; SNP number 1: miR-146-a G>C (rs2910164); 2: miR-149 C>T (rs2292832); 3: miR-196a-2 C>T (rs11614913); 4: miR-499 A>G (rs3746444).

Caucasian, having been carried out in Greek, Lithuania, Italy, and Czech, respectively. Simultaneously, there were seven hospital based studies and eight population based studies. Main characteristics of the included studies were listed in Table 1.

3.2. Meta-Analysis Results. As shown in Table 2, the frequencies of the minor allele varied widely across the eligible studies, ranging from 0.14 to 0.80 (rs2910164), 0.33 to 0.82 (rs2292832), 0.34 to 0.66 (rs11614913), and 0.14 to 0.68 (rs3746444). The average frequencies of the minor allele in the four polymorphisms were 0.47, 0.66, 0.51, and 0.27, respectively. The distributions of genotypes in the controls were all in agreement with HWE except four studies [8, 15–17].

The main results of this meta-analysis were presented in Table S1, in Supplementary Material available online at http://dx.doi.org/10.1155/2015/276410. There were 11 studies with 3,937 cases and 5,120 controls for rs2910164. miR-146a rs2910164 polymorphism has no association with CRC risk in the overall population (C versus G: OR = 0.96, 95% CI = 0.81–1.20, P = 0.88; CC versus GG + GC: OR = 0.99, 95% CI = 0.76–1.27, P = 0.91; GC + CC versus GG: OR = 0.99, 95% CI = 0.82–1.20, P = 0.90). When stratifying analysis by ethnicity, there was also no significant association observed between the rs2910164 and CRC susceptibility in the five genetic models. In the analysis stratified by the source of control, significant associations were observed in the hospital based studies for recessive genetic model (CC versus GG + GC: OR = 1.24, 95% CI = 1.03–1.49, P = 0.02). No associations were found in population based studies.

The association of the rs2292832 polymorphism with CRC susceptibility was investigated in 5 studies with 1,568 cases and 1,824 controls. We failed to find any significant associations in any genotype (T versus C: OR = 1.05, 95% CI = 0.95–1.17, P = 0.36; T T versus CC: OR = 1.09, 95% CI = 0.87–1.37, P = 0.44; CT versus CC: OR = 1.35, 95% CI = 0.64–2.86, P = 0.43; TT versus CC + CT: OR = 0.91, 95% CI = 0.54–1.53, P = 0.71; TT + CT versus CC: OR = 1.24, 95% CI = 0.82–1.87, P = 0.31). And there was also no association existing in any genetic models after we rejected the studies which were not in agreement with HWE. There was only one study based on Caucasian. When excluding the Caucasian study, the null association remained in Asians. We further made stratified analysis based on the source of control. And we observed significant associations in population based studies in the recessive genetic model (TT versus CC + CT: OR = 1.18, 95% CI = 1.08–1.38, P = 0.04).

Ten studies with 2,906 cases and 4,150 controls were used to evaluate the relationship between rs11614913 polymorphism and CRC risk. No significant association was detected
Table 2: MiRNA polymorphisms genotype distribution and allele frequency in cases and controls.

First author	Genotype (N)	Allele frequency (N)	MAF	HWE (P value)	
	Case Control	Case Control			
	Total AA Aa aa	Total AA Aa aa	A a		
rs2910164					
Dikaiakos 2015 [28]	157 8 48 101 299	21 120 158	64 250 162 436	0.80	0.782
Kupcinskas 2014 [29]	193 140 50 2 428	275 134 15	330 54 684 164	0.14	0.789
Mao 2014 [30]	554 70 291 186 566	85 271 205	431 663 441 681	0.61	0.768
Hu 2014 [31]	200 34 82 84 373	44 187 142	250 150 275 471	0.38	0.137
Wu 2014 [15]	175 22 59 80 300	53 120 114	103 219 226 348	0.68	**0.035**
Lv 2013 [8]	331 54 230 47 513	96 274 143	338 324 560 466	0.49	0.080
Chae 2013 [21]	399 61 182 156 568	121 282 165	304 494 524 612	0.62	0.980
Ma 2013 [36]	1147 444 534 169 1203	397 614 192	1422 872 1408 998	0.38	0.075
Vinci 2013 [16]	160 17 57 86 178	13 65 100	91 229 91 265	0.72	0.590
Hezova 2012 [20]	197 115 70 12 212	124 79 9	300 94 327 97	0.24	0.415
Min 2012 [22]	446 151 233 62 502	188 245 69	535 357 621 383	0.40	0.443
rs2292832					
Wu 2014 [15]	175 21 123 28 300	76 58 116	165 179 210 290	0.52	**<0.001**
Lv 2013 [8]	347 30 64 253 459	48 103 308	124 570 199 719	0.82	**<0.001**
Vinci 2013 [16]	160 79 58 23 178	86 75 17	216 104 247 109	0.33	0.912
Zhang 2012 [14]	443 50 190 203 435	46 202 187	290 596 294 576	0.67	0.431
Min 2012 [22]	446 48 177 221 502	51 219 232	273 619 321 683	0.69	0.948
rs11614913					
Dikaiakos 2015 [28]	157 19 69 69 299	33 149 117	107 207 215 383	0.66	0.156
Kupcinskas 2014 [29]	193 79 87 27 428	199 174 54	245 141 572 282	0.37	0.104
Lv 2013 [8]	374 10 223 114 531	109 331 91	243 451 549 413	0.60	**<0.001**
Vinci 2013 [16]	160 62 86 12 178	83 84 11	210 110 250 106	0.34	0.087
Hezova 2012 [20]	197 82 89 26 212	87 103 22	253 141 277 147	0.36	0.291
Zhang 2012 [14]	455 79 204 172 463	81 197 185	362 548 359 567	0.60	**0.026**
Min 2012 [22]	466 120 201 125 502	100 254 148	441 451 454 550	0.48	0.633
Zhu 2012 [33]	573 140 303 130 588	121 295 172	583 563 537 639	0.49	0.790
Chen 2012 [34]	126 27 64 35 407	94 206 107	118 134 394 420	0.53	0.788
Zhan 2011 [35]	252 68 128 56 543	112 267 163	264 240 493 593	0.48	0.890
rs3746444					
Dikaiakos 2015 [28]	157 85 64 8 299	182 99 18	234 80 463 135	0.25	0.361
Hu 2014 [31]	211 157 49 5 373	282 81 10	363 59 654 101	0.14	0.162
Wu 2014 [15]	175 96 17 38 300	141 44 63	209 93 326 170	0.31	**<0.001**
Lv 2013 [8]	346 258 88 504 366	138	—	—	
Vinci 2013 [16]	160 35 32 93 178	17 56 105	102 218 90 266	0.68	**0.026**
Min 2012 [22]	446 292 142 12 502	334 154 14	726 166 822 182	0.19	0.453

A: the major allele; a: the minor allele; MAF: minor allele frequencies.
Study or subgroup	Experimental Events	Control Events	Weight	Odds ratio M-H, random, 95% CI	Odds ratio M-H, random, 95% CI
2.1.1 Asian					
Chae et al. 2013	494	798	10.1%	1.39 [1.16, 1.67]	
Hu et al. 2014	250	400	9.0%	0.97 [0.76, 1.25]	
Lv et al. 2013	324	662	9.9%	0.76 [0.63, 0.93]	
Ma et al. 2013	872	2294	11.0%	0.87 [0.77, 0.97]	
Mao et al. 2014	663	1094	10.3%	1.00 [0.84, 1.18]	
Min et al. 2012	357	892	10.1%	1.08 [0.90, 1.30]	
Wu 2014	219	322	8.4%	1.38 [1.04, 1.84]	
Subtotal (95% CI)	**6462**	**7994**	**69.0%**	**1.03 [0.88, 1.21]**	**1.03 [0.88, 1.21]**
Total events	3179	4053			

Heterogeneity: $r^2 = 0.04; \chi^2 = 30.93, df (P < 0.0001); I^2 = 81$

Test for overall effect: $Z = 0.37 (P = 0.71)$

2.1.2 Caucasian

Study or subgroup	Experimental Events	Control Events	Weight	Odds ratio M-H, random, 95% CI	Odds ratio M-H, random, 95% CI
Dikaiakos et al. 2015	250	314	7.8%	1.45 [1.05, 2.02]	
Hezova et al. 2012	94	694	8.0%	0.53 [0.39, 0.72]	
Kupcinskas et al. 2014	54	384	7.7%	0.68 [0.49, 0.95]	
Vinci et al. 2013	229	320	7.6%	0.86 [0.61, 1.21]	
Subtotal (95% CI)	**1712**	**2226**	**31.0%**	**0.82 [0.53, 1.26]**	**0.82 [0.53, 1.26]**
Total events	627	962			

Heterogeneity: $r^2 = 0.16; \chi^2 = 20.39, df (P = 0.0001); I^2 = 85$

Test for overall effect: $Z = 0.91 (P = 0.36)$

Total (95% CI) | 8174 | 10220 | 100.0% | 0.96 [0.82, 1.12] |

Heterogeneity: $r^2 = 0.05; \chi^2 = 56.08, df (P < 0.00001); I^2 = 82$

Test for overall effect: $Z = 0.49 (P = 0.62)$

Test for subgroup differences: $\chi^2 = 0.97, df = 1 (P = 0.32), I^2 = 0$

Figure 2: Forest plot of miR-146a rs2910164 polymorphism and CRC risk (C versus G). The squares and horizontal lines correspond to the study specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.

Under all the genetic models (haploid model: OR = 1.10, 95% CI = 0.84–1.43, $P = 0.50$; homozygote comparison: OR = 1.18, 95% CI = 0.76–1.83, $P = 0.47$; heterozygote comparison: OR = 1.11, 95% CI = 0.82–1.50, $P = 0.49$; dominant model: OR = 1.13, 95% CI = 0.83–1.55, $P = 0.44$ and recessive model: OR = 1.07, 95% CI = 0.82–1.38, $P = 0.63$, Figure 4). When excluding the studies which were inconsistent with HWE, the results showed a significant association between rs11614913 polymorphism and CRC risk in the homozygous genetic model (TT versus CC: OR = 1.18, 95% CI = 0.76–1.83, $P = 0.47$; heterozygote comparison: OR = 1.11, 95% CI = 0.82–1.50, $P = 0.49$; dominant model: OR = 1.13, 95% CI = 0.83–1.55, $P = 0.44$ and recessive model: OR = 1.07, 95% CI = 0.82–1.38, $P = 0.63$, Figure 4). Further subgroup analysis by ethnicity showed no association between rs11614913 and CRC risk either in Caucasians or in Asians. And no significant associations were observed in population based studies and hospital based studies for all genetic models.

For miR-499 rs3746444 polymorphism, our meta-analysis contained 6 studies with 1,471 cases and 2,104 controls. Overall, the rs3746444 polymorphism has no association with CRC risk (haploid model: OR = 0.96, 95% CI = 0.84–1.10, $P = 0.58$; homozygote comparison: OR = 0.90, 95% CI = 0.67–1.22, $P = 0.50$; heterozygote comparison: OR = 0.83, 95% CI = 0.54–1.26, $P = 0.38$; dominant model: OR = 0.91, 95% CI = 0.71–1.17, $P = 0.45$ and recessive model: OR = 0.95, 95% CI = 0.73–1.25, $P = 0.73$). Further analysis of the studies which were in agreement with HWE also showed no association between the rs3746444 polymorphism and CRC. And null associations were found in hospital based studies or population based studies. However, in the stratified analysis according to ethnicity, the homozygote model demonstrated a significant decrease in the CRC risk in

For miR-499 rs3746444 polymorphism, our meta-analysis contained 6 studies with 1,471 cases and 2,104 controls. Overall, the rs3746444 polymorphism has no association with CRC risk (haploid model: OR = 0.96, 95% CI = 0.84–1.10, $P = 0.58$; homozygote comparison: OR = 0.90, 95% CI = 0.67–1.22, $P = 0.50$; heterozygote comparison: OR = 0.83, 95% CI = 0.54–1.26, $P = 0.38$; dominant model: OR = 0.91, 95% CI = 0.71–1.17, $P = 0.45$ and recessive model: OR = 0.95, 95% CI = 0.73–1.25, $P = 0.73$). Further analysis of the studies which were in agreement with HWE also showed no association between the rs3746444 polymorphism and CRC. And null associations were found in hospital based studies or population based studies. However, in the stratified analysis according to ethnicity, the homozygote model demonstrated a significant decrease in the CRC risk in
Study or subgroup

Study or subgroup	Experimental Events	Total Events	Weight M-H, fixed, 95% CI	Odds ratio M-H, fixed, 95% CI
1.1.1 Asian				
Lv et al. 2013	570	694	16.3%	1.27 [0.99, 1.63]
Min et al. 2012	619	892	28.9%	1.07 [0.88, 1.29]
Wu 2014	179	344	16.7%	0.79 [0.60, 1.04]
Zhang et al. 2012	596	886	28.0%	1.05 [0.86, 1.28]
Subtotal (95% CI)	2816	3292	89.8%	1.05 [0.94, 1.17]
Total events	1964	2268		

Heterogeneity: $\chi^2 = 6.53$, df = 3 ($P = 0.09$); $I^2 = 54\%$
Test for overall effect: $Z = 0.79$ ($P = 0.43$)

1.1.2 Caucasian				
Vinci et al. 2013	104	320	10.2%	1.09 [0.79, 1.51]
Subtotal (95% CI)	320	356	10.2%	1.09 [0.79, 1.51]
Total events	104	109		

Heterogeneity: not applicable
Test for overall effect: $Z = 0.53$ ($P = 0.60$)

| **Total (95% CI)** | 3136 | 3648 | 100.0% | 1.05 [0.95, 1.17] |
| **Total events** | 2068 | 2377 | | |

Heterogeneity: $\chi^2 = 6.59$, df = 4 ($P = 0.16$); $I^2 = 39\%$
Test for overall effect: $Z = 0.92$ ($P = 0.36$)
Test for subgroup differences: $\chi^2 = 0.06$, df = 1 ($P = 0.81$), $I^2 = 0\%$

Figure 3: Forest plot of miR-149 rs2292832 polymorphism and CRC risk (T versus C). The squares and horizontal lines correspond to the study specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.

Caucasians (GG versus AA: OR = 0.57, 95% CI = 0.34–0.95, $P = 0.03$, Figure 5).

3.3. Publication Bias
In this meta-analysis, we performed funnel plot to access the publication bias. As showed in Figure 6, the funnel plots failed to reveal any obvious asymmetry in all genotypes in overall population. Therefore, the results indicated that publication bias was not significant in this meta-analysis.

4. Discussion

Allelic variants in the sequence of mature miRNAs represent a particularly interesting potential source of phenotypic diversity of genetic diseases, which may contribute directly to disease susceptibility [18]. Accumulating evidence has shown that miRNAs regulate the expression of roughly 30% of the all human genes through posttranscriptional mechanisms [19]. SNPs in miRNA genes could function through three ways: firstly, the transcription of the primary transcript; secondly, pri-miRNA and pre-miRNA processing; and thirdly, effects on miRNA-mRNA interactions [7]. Genetic effects connected to SNPs at the level of miRNA genes may have a significant relationship with the expression and clinical features in CRC [16].

A large number of studies had highlighted several associations between SNPs in miRNAs and the risk of CRC [8]. However, controversial experimental data were obtained. For example, there was no significant association between rs2910164 and CRC in Hezova et al.'s study [20], whereas Chae et al. reported that miR-146a rs2910164 polymorphism of genotype CC may contribute to a higher risk of CRC [21]. Min et al. from Korea [22] demonstrated that miR-196a2 rs11614913 polymorphism had a decreased risk to CRC, whereas Lv et al. [8] reported that T allele in rs11614913 was associated with an increased risk of CRC compared with the C allele.

The present meta-analysis, including 5,486 CRC patients and 7,184 cancer-free controls from 15 case-control studies, was conducted to evaluate the association between the four common SNPs in miRNAs (miR-146a rs2910164, miR-149 rs2292832, miR-196a2 rs11614913, and miR-499 rs3746444)
and CRC risk. In this study, we found that rs3746444 polymorphism has no association with CRC risk in the overall population. However, accumulative data from two studies based on Caucasian background (317 cases and 477 controls) showed significantly decreased cancer risks in the homozygous model. Considering the limited sample size, we need more large well-designed studies to evaluate the result. Simultaneously, we failed to find any significant correlation between the rs2910164, rs2292832, and rs11614913 polymorphisms and risk of CRC in overall studies or in different ethnic groups for all genetic models. But significant association between rs2910164 and CRC was observed in hospital based studies in the recessive model. And we found that rs2292832 polymorphisms may be associated with increased the risk of CRC in population based studies for recessive model. While T allele of rs11614913 was a protect factor of CRC in the homozygous model when we excluded the studies which were not in agreement with HWE.

Although the biological mechanism of SNPs in miRNAs contributing to the regulation of cancer susceptibility and development remains unknown, a large quantity of meta-analyses has been engaged in the newly developed field in the past few years [23]. A previous meta-analysis by K. Srivastava and A. Srivastava [23] was demonstrated that miR-196a2 rs11614913 polymorphisms have significant associations with overall cancer risk. In Xu et al’s meta-analysis [24], TT genotype of rs11614913 polymorphism was associated with decreased cancer risk. Rs2910164 C allele was associated with decreased overall cancer risk especially for cervical cancer and prostate cancer risk in Chinese population. Rs3746444 G allele was a risk factor in Chinese population, especially for breast cancer. Different results were also presented in several

Study or subgroup	Experimental Events	Total	Control Events	Total	Weight	Odds ratio M-H, random, 95% CI	Odds ratio M-H, random, 95% CI
4.4.1 Asian							
Chen et al. 2012	35	126	107	407	9.7%	1.08 [0.69, 1.69]	
Lv et al. 2013	114	347	91	531	11.3%	3.27 [1.72, 3.25]	
Min et al. 2012	125	446	148	502	11.7%	0.93 [0.70, 1.23]	
Zhan et al. 2011	56	252	163	543	10.9%	0.67 [0.47, 0.94]	
Zhang et al. 2012	172	455	185	463	11.9%	0.91 [0.70, 1.19]	
Zhu et al. 2012	130	573	172	588	11.9%	0.71 [0.54, 0.92]	
Subtotal (95% CI)	2199	8304	673	2199	67.3%	1.00 [0.70, 1.44]	
Total events	632	866					

Heterogeneity: $r^2 = 0.18; \chi^2 = 40.50$, df ($P < 0.00001$); $I^2 = 88$

Test for overall effect: $Z = 0.01$ ($P = 0.99$)

4.4.2 Caucasian							
Dikaiakos et al. 2015	69	157	117	299	10.4%	1.22 [0.82, 1.80]	
Hezova et al. 2012	26	197	22	212	7.8%	1.31 [0.72, 2.40]	
Kupcinskas et al. 2014	27	193	54	427	9.0%	1.12 [0.68, 1.85]	
Vinci et al. 2013	12	160	11	178	5.5%	1.23 [0.53, 2.87]	
Subtotal (95% CI)	707	1116			32.7%	1.21 [0.93, 1.57]	
Total events	134	204					

Heterogeneity: $r^2 = 0.00; \chi^2 = 0.16$, df ($P = 0.98$); $I^2 = 0$

Test for overall effect: $Z = 1.43$ ($P = 0.15$)

| **Total (95% CI)** | 2906 | 4150 | 100.0% | | 1.07 [0.82, 1.38] | |
| **Total events** | 766 | 1070 | | | | | |

Heterogeneity: $r^2 = 0.13; \chi^2 = 42.77$, df ($P < 0.00001$); $I^2 = 79$

Test for overall effect: $Z = 0.49$ ($P = 0.63$)

Test for subgroup differences: $\chi^2 = 0.69$, df ($P = 0.40$), $I^2 = 0$

Figure 4: Forest plot of miR-196a2 rs11614913 polymorphism and CRC risk (TT versus CC + CT). The squares and horizontal lines correspond to the study specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.
Study or subgroup	Experimental Events	Experimental Total	Control Events	Control Total	Weight	Odds ratio M-H, fixed, 95% CI	Odds ratio M-H, fixed, 95% CI
3.2.1 Asian							
Hu et al. 2014	5	162	10	292	7.8%	0.90 [0.30, 2.67]	
Min et al. 2012	12	304	14	348	14.1%	0.98 [0.45, 2.15]	
Wu 2014	38	134	63	272	33.4%	1.31 [0.82, 2.10]	
Subtotal (95% CI)	**600**	**912**	**55.3%**	**1.17 [0.80, 1.71]**			
Total events	55	87					
Heterogeneity: $\tau^2 = 0.65$, df = 2 ($P = 0.72$); $I^2 = 0\%$							
Test for overall effect: $Z = 0.82$ ($P = 0.41$)							
3.2.2 Caucasian							
Dikaiakos et al. 2015	8	93	18	200	11.7%	0.95 [0.40, 2.28]	
Vinci et al. 2013	93	128	105	322	33.0%	0.43 [0.23, 0.82]	
Subtotal (95% CI)	**221**	**322**	**44.7%**	**0.57 [0.34, 0.95]**			
Total events	101	123					
Heterogeneity: $\tau^2 = 2.06$, df = 1 ($P = 0.15$); $I^2 = 52\%$							
Test for overall effect: $Z = 2.15$ ($P = 0.03$)							
Total (95% CI)	**821**	**1234**	**100.0%**	**0.90 [0.67, 1.22]**			
Total events	156	210					
Heterogeneity: $\tau^2 = 7.61$, df = 4 ($P = 0.11$); $I^2 = 47\%$							
Test for overall effect: $Z = 0.68$ ($P = 0.50$)							
Test for subgroup differences: $\tau^2 = 4.91$, df = 1 ($P = 0.03$); $I^2 = 79.6\%$							

Figure 5: Forest plot of miR-499 rs3746444 polymorphism and CRC risk (GG versus AA). The squares and horizontal lines correspond to the study specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI.

Meta-analyses which evaluated the relationship between miRNAs and CRC risk [25]. Wan et al.’s study demonstrates that miR-196a2 rs11614913 most likely contributes to decreased risk of CRC, whereas miR-146a rs2910164 may not be associated with the susceptibility to CRC [25]. While the pooled data from Du et al.’s meta-analysis supported that the miR-196a2 rs11614913 and miR-149 rs2292832 polymorphisms may contribute to susceptibility to CRC [26]. The latest meta-analysis, which related to the associations between miRNA polymorphisms and colorectal cancer, performed by Wu et al. indicated that SNP rs11614913 but not SNP rs2910164 and SNP rs2292832 may contribute to susceptibility to CRC in an Asian-specific manner [27]. This result was unconformable with our results. Compared with Wu’s meta-analysis which included 9 relevant studies, our research totally identified 15 studies including 5,486 CRC cases and 7,184 controls. Thus, our meta-analysis contained the newest data and largest sample size on the study of the relationship between miRNAs and colorectal cancer. Additionally, we performed subgroup analyses by different data information in more detail.

Some limitations still existed in this meta-analysis. Firstly, the included studies are mainly based on Asian background. There were only five studies based on Caucasian background and no studies on African background. Secondly, some detailed information (such as sex, age, life-style, and environmental factors) was not considered. Further large scale multicenter studies based on Caucasian or African will be needed to clarify the possible roles of these polymorphisms in CRC. Though many investigators have been devoted to identify the roles of the miRNAs in carcinogenesis, the mechanisms were still unclear. Further biologically functional studies are warranted to explain the molecular mechanisms.

In summary, this meta-analysis showed that there were no associations between the four polymorphisms and CRC risk in the overall population. Further analysis stratified by the source of control showed that rs2910164 polymorphism is associated with CRC risk in hospital based studies, and rs2292832 polymorphism may contribute to the susceptibility of CRC in population based studies. In the pooled analysis from all studies which are in agreement with HWE revealed that rs11614913 TT carriers may have a decreased CRC risk. Moreover, in the stratified analysis according to ethnicity, rs3746444 polymorphism may reduce the risk of CRC in Caucasians.
Conflict of Interests

No conflict of interests exists for any of the authors.

Authors’ Contribution

Meng Wang and Dan Xu contributed equally to this work.

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (no. 81471670); China Postdoctoral Science Foundation (no. 2014M560791); the Fundamental Research Funds for the Central Universities, China (no. 2014qmgz-04); and Specialized Research Fund of the Second Affiliated Hospital of Xi’an Jiaotong University, China (RC (GG) 201203).

References

[1] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.

[2] J. Ferlay, D. M. Parkin, and E. Steliarova-Foucher, “Estimates of cancer incidence and mortality in Europe in 2008,” European Journal of Cancer, vol. 46, no. 4, pp. 765–781, 2010.

[3] J. J. Y. Sung, J. Y. W. Lau, K. L. Goh et al., “Increasing incidence of colorectal cancer in Asia: implications for screening,” The Lancet Oncology, vol. 6, no. 11, pp. 871–876, 2005.
R. Hezova, A. Kovarikova, J. Bienertova-Vasku et al., “Evaluation of SNPs in miR-196-a2, miR-27-a and miR-146a as risk factors of colorectal cancer,” *World Journal of Gastroenterology*, vol. 18, no. 22, pp. 2827–2831, 2012.

S. Vinci, S. Gelmini, I. Mancini et al., “Genetic and epigenetic functions,” *Clinical Genetics*, vol. 77, no. 4, pp. 306–313, 2010.

D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” *Cell*, vol. 136, no. 2, pp. 215–233, 2009.

P. Lichtenstein, N. V. Holm, P. K. Verkasalo et al., “Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland,” *The New England Journal of Medicine*, vol. 343, no. 2, pp. 78–85, 2000.

S. P. Cleary, M. Cotterchio, E. Shi, S. Gallinger, and P. Harper, “Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk,” *American Journal of Epidemiology*, vol. 172, no. 9, pp. 1000–1014, 2010.

K. Ruan, X. Fang, and G. Ouyang, “MicroRNAs: novel regulators in the hallmarks of human cancer,” *Cancer Letters*, vol. 285, no. 2, pp. 116–126, 2009.

B. M. Ryan, A. I. Robles, and C. C. Harris, “Genetic variation in microRNA networks: the implications for cancer research,” *Nature Reviews Cancer*, vol. 10, no. 6, pp. 389–402, 2010.

M. Ly, W. Dong, L. Li et al., “Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population,” *Journal of Cancer Research and Clinical Oncology*, vol. 139, no. 8, pp. 1405–1410, 2013.

T. Xu, Y. Zhu, Q.-K. Wei et al., “A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma,” *Carcinogenesis*, vol. 29, no. 11, pp. 2126–2131, 2008.

K. Jadzewska, E. L. Murray, K. Franssila, B. Jarzab, D. R. Schoenberg, and A. De La Chapelle, "Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 105, no. 20, pp. 7269–7274, 2008.

M. Okubo, T. Tahara, T. Shibata et al., “Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population,” *Helicobacter*, vol. 15, no. 6, pp. 524–531, 2010.

I. Catucci, R. Yang, P. Verderio et al., “Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases,” *Human Mutation*, vol. 31, no. 1, pp. E1052–E1057, 2010.

Z. S. Liu, G. J. Li, S. Wei et al., “Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck,” *Cancer*, vol. 116, no. 20, pp. 4753–4760, 2010.

J. Zhang, Y.-F. Liu, and Y. Gan, “Lack of association between miR-149 C>T polymorphism and cancer susceptibility: a meta-analysis based on 4,677 cases and 4,830 controls,” *Molecular Biology Reports*, vol. 39, no. 9, pp. 8749–8753, 2012.

R. R. Wu, *The Association of miR-SNP with the Susceptibility of Colorectal Cancer and Response to Chemotherapy*, Sookhoun University, Suzzhou, China, 2014.

S. Vinci, S. Gelmini, I. Mancini et al., “Genetic and epigenetic factors in regulation of microRNA in colorectal cancers,” *Methods*, vol. 59, no. 1, pp. 138–146, 2013.

M. W. Zhang, *Study on the Associations of Lifestyle-Related Factors, Genetic Variants in miRNA Encoding Regions and miRNA Binding Sites with Colorectal Cancer Risk*, Zhejiang University, Zhejiang, China, 2012.

S. Bandiera, E. Hatem, S. Lyonnet, and A. Henrion-Caudre, “MicroRNAs in diseases: from candidate to modifer genes,” *Clinical Genetics*, vol. 77, no. 4, pp. 306–313, 2010.

D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” *Cell*, vol. 136, no. 2, pp. 215–233, 2009.

X. Hu, L. Li, M. Shang et al., “A functional polymorphism in miRNA-146a with risk of colorectal cancer: a population-based case-control study,” *Tumor Biology*, vol. 35, no. 7, pp. 6961–6967, 2014.

X. Hu, L. Li, M. Shang et al., “Association between microRNA genetic variants and susceptibility to colorectal cancer in Chinese population,” *Tumor Biology*, vol. 35, no. 3, pp. 2151–2156, 2014.

L. Ma, L. Zhu, D. Gu et al., “A genetic variant in miR-146a modifies colorectal cancer susceptibility in a Chinese population,” *Archives of Toxicology*, vol. 87, no. 5, pp. 825–833, 2013.

L. Zhu, H. Chu, D. Gu et al., “A functional polymorphism in miRNA-196a2 is associated with colorectal cancer risk in a Chinese population,” *DNA and Cell Biology*, vol. 31, no. 3, pp. 350–354, 2012.

H. Chen, L.-Y. Sun, L.-L. Chen, H.-Q. Zheng, and Q.-F. Zhang, “A variant in microRNA-196a2 is not associated with susceptibility to and progression of colorectal cancer in Chinese,” *Internal Medicine Journal*, vol. 42, no. 6, pp. e115–e119, 2012.

J. F. Zhan, L. H. Chen, Z. X. Chen et al., “A functional variant in microRNA-196a2 is associated with susceptibility of colorectal cancer in a Chinese population,” *Archives of Medical Research*, vol. 42, no. 2, pp. 144–148, 2011.

X. P. Ma, T. Zhang, B. Peng, L. Yu, and D. K. Jiang, “Association between microRNA polymorphisms and cancer risk based on the findings of 66 case-control studies,” *PLoS ONE*, vol. 8, no. 11, Article ID e79584, 2013.