ORIGINAL ARTICLE

Tumor suppressor protein Pdcd4 interacts with Daxx and modulates the stability of Daxx and the Hipk2-dependent phosphorylation of p53 at serine 46

N Kumar, N Wethkamp, LC Waters, MD Carr and K-H Klempnauer

The tumor suppressor protein Pdcd4 is a nuclear/cytoplasmic shuttling protein that has been implicated in the development of several types of human cancer. In the nucleus, Pdcd4 affects the transcription of specific genes by modulating the activity of several transcription factors. We have identified the Daxx protein as a novel interaction partner of Pdcd4. Daxx is a scaffold protein with roles in diverse processes, including transcriptional regulation, DNA-damage signaling, apoptosis and chromatin remodeling. We show that the interaction of both proteins is mediated by the N-terminal domain of Pdcd4 and the central part of Daxx, and that binding to Pdcd4 stimulates the degradation of Daxx, presumably by disrupting the interaction of Daxx with the de-ubiquitinylating enzyme Hausp. Daxx has previously been shown to serve as a scaffold for protein kinase Hipk2 and tumor suppressor protein p53 and to stimulate the phosphorylation of p53 at serine 46 (Ser-46) in response to genotoxic stress. We show that Pdcd4 also disrupts the Daxx–Hipk2 interaction and inhibits the phosphorylation of p53. We also show that ultraviolet irradiation decreases the expression of Pdcd4. Taken together, our results support a model in which Pdcd4 serves to suppress the phosphorylation of p53 in the absence of DNA damage, while the suppressive effect of Pdcd4 is abrogated after DNA damage owing to the decrease of Pdcd4. Overall, our data demonstrate that Pdcd4 is a novel modulator of Daxx function and provide evidence for a role of Pdcd4 in restraining p53 activity in unstressed cells.

Oncogenesis (2013) 2, e37; doi:10.1038/oncsis.2012.37; published online 14 January 2013

Subject Categories: molecular oncology

Keywords: Pdcd4; Daxx; protein–protein interaction; p53

INTRODUCTION

Pdcd4 (programmed cell death 4) is a tumor suppressor gene that was originally identified as a gene whose expression is increased during apoptosis. Subsequent work has shown that Pdcd4 is able to suppress tumor development in an in vitro mouse keratinocyte model of tumor promotion and in an in vivo mouse model of skin carcinogenesis. Decreased expression of Pdcd4 has been implicated in the development and progression of several types of cancer, including lung, colon, liver and breast cancer. Downregulation of Pdcd4 expression in tumor cells has been linked to increased expression of oncogenic micro-RNA miR-21, which targets the 3′-untranslated region of Pdcd4 mRNA. On the protein level, Pdcd4 is regulated by SK6-mediated phosphorylation, which triggers its ubiquitinylation via the E3 ubiquitin ligase complex SCF(ITRCP) and its subsequent degradation. Downregulation of Pdcd4 appears to contribute to tumor development at least in two ways: a number of studies have shown that decreased Pdcd4 expression increases the mobility and invasiveness of tumor cells. In addition, decreased Pdcd4 expression has been shown to deregulate the cellular response to DNA damage.

Pdcd4 encodes a highly conserved, predominantly nuclear phosphoprotein, which contains two so-called MA-3 domains, occupying the middle and C-terminal parts of the protein, and an N-terminal RNA-binding domain. Pdcd4 is able to shuttle between the nucleus and the cytoplasm, and its subcellular localization is controlled by protein kinase Akt-mediated phosphorylation. Several studies have shown that Pdcd4 modulates the transcription of specific genes by affecting the activity of certain transcription factors, including c-Jun, Sp1 and p53. An example is the upregulation of the p21 (Waf1/Cip1) gene after Pdcd4 knockdown, which is due to abrogation of Pdcd4-dependent inhibitory effects on the p300/CREB-binding protein-dependent acetylation of p53. In addition to its role in the nucleus, Pdcd4 acts as a translation suppressor. Pdcd4 interacts with the eukaryotic translation initiation factor eIF4A, which is required to unwind secondary structures in the structured untranslated regions.

1Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Münster, Germany; 2Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität Münster, Germany and 3Department of Biochemistry, Henry Wellcome Building, University of Leicester, Leicester, UK. Correspondence: Dr K-H Klempnauer, Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, Münster 48149, Germany.

E-mail: klempna@uni-muenster.de

Received 11 October 2012; revised 9 November 2012; accepted 28 November 2012
The scaffold protein Daxx was initially identified as a protein that binds to the death domain of the CD95 death receptor. However, this interaction was thought to activate the JNK pathway and, ultimately, to lead to apoptosis. However, the precise role of Daxx in apoptosis is controversial, because other work has shown that downregulation of Daxx by RNA interference also leads to increased levels of apoptosis, and disruption of the murine Daxx gene results in extensive apoptosis during embryonic development, indicating that Daxx also has antiapoptotic functions. Daxx is primarily a nuclear protein, which resides in the nucleoplasm or associates with the promyelocytic leukemia (PML) bodies, due to its ability to interact with sumoylated PML via a Sumo interaction motif. Several splice variants of Daxx that differ at the C terminus and with regard to their ability to interact with PML have been described. Daxx is a well-established regulator of transcription. Daxx binds to the transcriptional coregulators, CREB-binding protein and histone established regulator of transcription. Daxx binds to the stability of Daxx and has also been implicated in the control of de-ubiquitinylating enzyme Hausp has been shown to control the functions. Daxx is primarily a nuclear protein, which resides in the nucleoplasm or associates with the promyelocytic leukemia (PML) bodies, due to its ability to interact with sumoylated PML via a Sumo interaction motif. Several splice variants of Daxx that differ at the C terminus and with regard to their ability to interact with PML have been described. Daxx is a well-established regulator of transcription. Daxx binds to the transcriptional coregulators, CREB-binding protein and histone established regulator of transcription. Daxx binds to the stability of Daxx and has also been implicated in the control of de-ubiquitinylating enzyme Hausp has been shown to control the functions. Daxx is primarily a nuclear protein, which resides in the nucleoplasm or associates with the promyelocytic leukemia (PML) bodies, due to its ability to interact with sumoylated PML via a Sumo interaction motif. Several splice variants of Daxx that differ at the C terminus and with regard to their ability to interact with PML have been described. Daxx is a well-established regulator of transcription. Daxx binds to the transcriptional coregulators, CREB-binding protein and histone established regulator of transcription. Daxx binds to the stability of Daxx and has also been implicated in the control of de-ubiquitinylating enzyme Hausp has been shown to control the functions.
comigrated with the immunoglobulin heavy chain of the antibody used for immunoprecipitation, making it impossible to determine whether or not Daxx (491–740) co-precipitates with Pdcd4. We therefore analyzed the samples shown in Figure 2d also by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) in the absence of reducing agent to shift the immunoglobulin heavy chain to a different position in the gel. This showed that Myc-Daxx (491–740) also failed to co-precipitate with Pdcd4 (Supplementary Figure 1). Taken together, these data indicated that the binding site for Pdcd4 resides between amino acids 241 and 490 of Daxx.

Attempts to demonstrate interaction of Pdcd4 and Daxx in pull-down experiments using bacterially expressed GST-Daxx proteins have been unsuccessful. It is therefore possible that another protein, a specific covalent modification of Daxx or a specific three-dimensional structure of the relevant part of Daxx that is missing in the bacterially expressed protein, is involved in the binding of Pdcd4.

Pdcd4 competes with Hausp for binding to Daxx and stimulates the turnover of Daxx

To address the functional consequences of the Daxx–Pdcd4 interaction, we decided to investigate the potential influence of Pdcd4 on the interaction of Daxx with known interaction partners. One of the proteins that we studied is the de-ubiquitylating enzyme Hausp whose binding site in the amino-terminal half of Daxx overlaps with that of Pdcd4. Binding of Hausp has been shown to increase the stability of Daxx by reducing its ubiquitylation. To address whether Hausp and Pdcd4 compete with each other for binding to Daxx, we co-transfected expression vectors for HA-Daxx and Myc-Hausp together with increasing amounts of a Flag-Pdcd4 expression vector and then analyzed the amount of Daxx interacting with Hausp. As shown in Figure 3a, a fraction of Daxx was co-precipitated via Hausp (lane 1), whereas no co-precipitation was observed in the absence of Hausp (lane 5). In the presence of increasing amounts of Pdcd4, the co-precipitation of Daxx was strongly diminished (lanes 2–4), indicating that Pdcd4 disrupts the Daxx–Hausp interaction. This observation suggested that Daxx might be prone to degradation when bound to Pdcd4. To find out if the interaction with Pdcd4 decreases the half-life of Daxx, we cotransfected cells with expression vectors for Daxx and Pdcd4, followed by treatment with cycloheximide to block new protein synthesis. The cells were then incubated for different times in the presence of cycloheximide before the total amounts of Daxx and Pdcd4, as well as the amounts of Daxx bound to Pdcd4 were analyzed. The result of this experiment is shown in Figure 3b. The amounts of Daxx and Pdcd4 on the interaction of Daxx with known interaction partners.
Pdcd4 present in the total cell extract decreased only slightly during an 11-h time period, consistent with a relatively slow turnover of Daxx. By contrast, the amount of Daxx that was co-precipitated via Pdcd4 decreased much faster. This suggested that the interaction with Pdcd4 shortens the half-life of Daxx, consistent with the displacement of the de-ubiquitinylating enzyme Hausp.

We also used cells transfected with expression vectors for HA-Daxx and Flag-Pdcd4 to analyze the effect of the proteasome inhibitor MG132 on the total amount of Daxx. MG132 significantly increased the amount of Daxx bound to Pdcd4 but not the total amount of Daxx (Figure 3c). A similar experiment was performed with untransfected HeLa cells to analyze the effect of MG132 on the amount of endogenous Daxx co-precipitated with endogenous Pdcd4 (Figure 3d). As in the experiment shown in Figure 3c, MG132 significantly increased the amount of Daxx bound to Pdcd4, while the total amount of Daxx was not affected. The results of these experiments are consistent with the notion that Pdcd4-bound Daxx is degraded faster than the bulk of Daxx.

An alternative interpretation of these results would be that the interaction of Pdcd4 and Daxx depends on the presence of an unknown protein with a short half-life. To address this possibility, we were interested to see if a reduction of the amount of Pdcd4 would affect the overall level of Daxx. We therefore performed...
knockdown experiments employing transient transfection of Pdcd4-specific small interfering RNA (siRNA) (Figure 3e) or stable expression of Pdcd4-specific short hairpin RNA (Figure 3f). In both cases, there was a slight increase of the amount of Daxx, supporting the notion that Pdcd4 decreases the half-life of at least a fraction of Daxx.

Pdcd4 disrupts the interaction of Daxx with protein kinase Hipk2 and inhibits Ser-46 phosphorylation of p53. Daxx has been shown to act as a scaffold that stimulates the phosphorylation of p53 by the protein kinase Hipk2. Hipk2 interacts with the amino-terminal half of Daxx and phosphorylates the tumor suppressor protein p53 at Ser-46 in response to DNA damage. We therefore wondered whether the interaction of Pdcd4 with Daxx would influence the phosphorylation of p53 at Ser-46. To see if Pdcd4 affects the binding of Hipk2 to Daxx, we performed a co-precipitation experiment, using cells transfected with expression vectors for HA-Hipk2 and green fluorescent protein (GFP)-Daxx together with increasing amounts of Flag-Pdcd4 expression vector. We then analyzed the amount of Hipk2 that was co-precipitated with Daxx. Figure 4a shows that Hipk2 was efficiently co-precipitated via Daxx (lane 3), whereas no co-precipitation was observed in the absence of Daxx (lane 2), indicating that the co-precipitation was specific and that a significant amount of Hipk2 was associated with Daxx. The co-precipitation of Hipk2 was strongly diminished by increasing amounts of Pdcd4 (lanes 4 and 5), demonstrating that Pdcd4 interferes with the formation of the Daxx–Hipk2 complex.

The data shown in Figure 4a are consistent with the idea that Pdcd4 disrupts the Daxx–Hipk2 interaction and, as a consequence, suppresses the phosphorylation of p53 at the Ser-46. To investigate whether the manipulation of the Pdcd4 expression level affects the phosphorylation of p53 also in cells not overexpressing Pdcd4, Daxx or Hipk2, we performed a Pdcd4 knockdown experiment and analyzed the level of the phosphorylation of p53. If Pdcd4 suppresses the phosphorylation, we expected the Ser-46 phosphorylation of p53 to increase after knock down of Pdcd4. To address this issue, we used an antiserum whose specificity for phosphorylated Ser-46 of p53 was confirmed by its ability to detect p53 in etoposide-treated but not in -untreated cells (Supplementary Figure 2). Figure 4b shows that Pdcd4 knockdown indeed increased the phosphorylation of p53 at Ser-46. This experiment, therefore, supports a model in

Figure 3. Pdcd4 disrupts the interaction of Daxx and Hausp and decreases the half-life of Daxx. (a) QT6 cells were transfected with the indicated combinations of expression vectors for HA-Daxx, Myc-Hausp and Pdcd4, as indicated below the lanes. Cells were lysed after 24 h and protein extracts were either analyzed directly by western blotting (panels labeled TCE (total protein extract)) or were first immunoprecipitated with antibodies against the HA-tag before western blot analysis (top panel). (b) QT6 cells were transfected with expression vectors for HA-Daxx and Flag-Pdcd4. At 24 h after transfection, 50 µg/ml cycloheximide was added to the growth medium and the cells were harvested immediately or after growing them for additional times, as indicated at the top. Cell extracts were immunoprecipitated with anti-Flag antibodies, followed by SDS–PAGE and western blotting with anti-HA antibodies (upper panel). Aliquots of the TCEs were analyzed with the indicated antibodies to demonstrate the Daxx and Pdcd4 expression levels (lower panels). (c) QT6 cells were transfected with expression vectors for HA-Daxx and Flag-Pdcd4. The cells were incubated with or without 10 nM MG132 for 4 h before they were lysed and immunoprecipitated with anti-Flag antibodies, followed by SDS–PAGE and western blotting with anti HA antibodies (upper panel). Aliquots of the TCEs were analyzed with the indicated antibodies to demonstrate the total expression levels of the proteins (lower panels). (d) HeLa cells were incubated with or without 10 nM MG132 for 4 h before they were lysed. Cell extracts were then immunoprecipitated with anti-Flag-Pdcd4 antibodies, followed by SDS–PAGE and western blotting with anti-Daxx antibodies (upper panel). Aliquots of the TCEs were analyzed with the indicated antibodies to demonstrate the expression levels of endogenous Daxx, Pdcd4 and -actin (lower panels). To demonstrate the MG132-dependent increase of co-precipitated transfected or endogenous Daxx, the upper panels of (c) and (d) were exposed for a short time only. Daxx co-precipitated from cells not treated with MG132 is therefore only weakly visible. (e) MCF7 cells were transfected with control siRNA or Pdcd4-specific siRNA. The cells were analyzed after 2 days by western blotting for the expression of Daxx, Pdcd4 and -actin. (f) HeLa wild-type cells or a clone of HeLa cells stably expressing Pdcd4-specific short hairpin RNA (HeLa-K11) were analyzed as described in (e).
Figure 4. Pdcd4–Daxx interaction

DISCUSSION

We have identified Daxx as a novel protein that is present in a complex with the tumor suppressor protein Pdcd4. Interactions of Daxx and Pdcd4 were demonstrated by in vitro pull-down experiments as well as by co-immunoprecipitation in vivo, utilizing cells that had been transfected with expression vectors for both proteins. Importantly, Pdcd4 and Daxx were also co-precipitated from extracts of untransfected cells expressing both proteins at their endogenous levels. This demonstrates that Daxx is a bona fide interaction partner of Pdcd4. However, this does not imply that the presence of Daxx and Pdcd4 in the same complex is due to their direct physical interaction, as we cannot exclude that other proteins are involved in the interaction.

Mapping experiments showed that the interaction of both proteins is mediated by the central part of Daxx (amino acids 241–492) and the N-terminal domain of Pdcd4 (amino acids 1–150). This part of Pdcd4 contains a large number of hydrophilic and charged amino acids and is predicted to have an intrinsically disordered structure. Such disordered regions are often found in proteins involved in cell signaling and transcriptional regulation and are able to fold into defined structures when they interact with other macromolecules. Intrinsically disordered regions are also interesting because they may fold into alternative structures, which allows them to interact with different partners and to function as nodal points in regulatory networks. Analysis of the bacterially expressed N-terminal domain of Pdcd4 by circular dichroism and nuclear magnetic resonance spectroscopy has failed to reveal any stable secondary or tertiary structure in this part of Pdcd4 (LW and MDC, unpublished data), consistent with the idea that this region is intrinsically disordered. In contrast to the C-terminal two-thirds of the protein, which contain two MA-3 domains that form stable structures and allow tight interaction with eIF4A, the function of the N-terminal domain of Pdcd4 is less well understood at present. Our recent work has demonstrated that the N-terminal domain of Pdcd4 functions as an RNA-binding domain and is required for stable association of Pdcd4 with translational initiation complexes in vivo. The binding of Daxx to the N-terminal domain of Pdcd4 highlights the potential of this domain to interact with protein as well as with RNA interaction partners. Whether there is cross-talk between the Daxx- and RNA-binding activities of Pdcd4 remains to be addressed in future work.

Daxx is sumoylated at several sites and contains two Sumo interaction motifs; hence, protein–protein interactions of Daxx are often mediated by sumoylation of one of the interacting proteins. However, the binding of Pdcd4 and Daxx appears to be Sumo/Sumo interaction motif-independent. A fraction of Daxx in the nucleus is present in the PML oncogenic domains, due to binding of Daxx to sumoylated PML. We have not observed a recruitment of Pdcd4 to PML-oncogenic domains, suggesting that Pdcd4 interacts with the nucleoplasmic fraction of Daxx.

To begin to address the functional relevance of the interaction of Daxx and Pdcd4, we have asked if Pdcd4 affects the interaction of Daxx with other proteins of known function whose binding regions within Daxx overlap with that of Pdcd4. Our data show that the binding of Pdcd4 to Daxx disrupts the interaction of Daxx and Hau, suggesting that Pdcd4 interferes with the de-ubiquitylation of Daxx by Hau, leading to increased turnover of Pdcd4-bound Daxx. Furthermore, we have shown that Pdcd4 interferes with the binding of Hipk2 to Daxx and thereby diminishes the Hipk2-dependent phosphorylation of p53 at Ser-46. Phosphorylation of Ser-46 of p53 by Hipk2 is induced by DNA damage and stimulates the activation of proapoptotic genes by p53. We have shown previously that the expression of Pdcd4...
itself is decreased after induction of DNA damage. Based on our data, we propose a model in which Pdcd4 serves to suppress the activity of p53 in the absence of DNA damage, while the suppressive effect of Pdcd4 is abrogated after DNA damage due to the decrease of Pdcd4. Thus, one role of Pdcd4 appears to be to contribute to the maintenance of a low level of p53 phosphorylation at Ser-46 that is crucial for the homeostasis of unstimulated cells. Interestingly, previous work has already demonstrated that Pdcd4 counteracts p53 in unstimulated cells on several levels. We have shown that Pdcd4 inhibits the activity of p53 by interfering with the CREB-binding protein-dependent transcriptional activity of p53. More recently, we have found that Pdcd4 inhibits the activity of p53 both by several mechanisms, resulting in the suppression of the activity of p53. The multiplicity of these inhibitory mechanisms underlines the importance of the role of Pdcd4 as a guardian of p53 in unstimulated cells. Furthermore, the finding that Pdcd4 counteracts p53 on several levels also raises the intriguing possibility that Pdcd4 might also exert pro-oncogenic functions.

P53 has been implicated in numerous aspects of cellular physiology beyond its role in the response to acute genotoxic stress. There is evidence for a role of p53 in the regulation of the cellular energy metabolism and antioxidant function, autophagy, invasion and motility, angiogenesis, differentiation, necrosis and inflammation. By affecting p53 expression and activity, Pdcd4 is likely to exert pleiotropic effects on these biological processes and thereby influence the cellular homeostasis. Similarly, the interaction with Pdcd4 might affect other functions of Daxx in addition to its role as a scaffold for p53 phosphorylation. The identification of Daxx as a novel interaction partner of Pdcd4, therefore, opens new perspectives for future studies on the function of Pdcd4.

MATERIALS AND METHODS

Expression vectors
Eukaryotic expression vectors for Flag-tagged full-length human Pdcd4, the Pdcd4 mutants Flag-Pdcd4ΔRBD, Flag-Pdcd4mut1, Flag-Pdcd4mut2 and Flag-Pdcd4mut1–2 and the bacterial expression vectors for GST-Pdcd4 fusion proteins have been described. Plasmids encoding HA- and GFP-tagged full-length Daxx and GFP-p53 have been described before. The expression vector for Myc-Hausp was obtained from M Maurie. Expression vectors for Myc-tagged Daxx constructs Myc-Daxx (1–240), Myc-Daxx (241–490) and Myc-Daxx (491–740) were gifts from T Matsuda. The expression vector for HA-Hipk2 was obtained from T Hofmann.

Cell culture, transient transfections and siRNA experiments
Cells were grown in Iscove’s modified Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum. Transfection of QT6 cells was carried out by calcium-phosphate co-precipitation, as described previously. RNA interference was performed as described.

Immunoprecipitation and western blot analysis
For immunoprecipitation, cells were lysed in ELB buffer (50 mM Tris/HCl (pH 7.5); 120 mM NaCl; 20 mM NaF, 1 mM benzamidine; 1 mM EDTA; 6 mM EGTA; 15 mM sodium pyrophosphate; 1 mM phenylmethylsulfonyl fluoride; 0.5% NP-40). After incubation on ice for 30 min, lysates were centrifuged at 140 000 g for 30 min and the supernatant was used as total protein extract. Immunoprecipitations were carried out using aliquots of the total protein extract supplemented with the appropriate antibodies. After 1 h of incubation at 4 °C, protein-A Sepharose beads (GE Healthcare, Munich, Germany) were added and incubated further for 1 h at 4 °C under constant agitation. Immune complexes were then collected by centrifugation, washed three times with lysis buffer and finally subjected to SDS-PAGE. Immunostaining of proteins transferred to nitrocellulose membranes was performed with the following antibodies: anti-Flag (M2; Sigma-Aldrich, Munich, Germany), anti-HA (HA.11; Hist Diagnostics, Freiburg, Germany), anti-Myc (9E11); anti-Daxx (Novocastra Laboratories, Newcastle upon Tyne, UK; NCL-Daxx), anti-Pdcd4, and anti-phospho-p53 (Ser-46) (Cell Signaling Technologies, Frankfurt, Germany) and anti-β-actin (Sigma-Aldrich). Commercial antibodies were usually used at a 1:1000 dilution for western blotting.

GST pull-down assay
GST fusion protein expression was induced in cultures of transformed Escherichia coli BL21 (pLyS5) bacteria by adding isopropyl-D-thiogalactopyranoside to a final concentration of 0.5 mM. After additional 3 h of growth at 37 °C, the bacteria were harvested by centrifugation for 10 min at 5000 g. Bacterial pellets were suspended in GST lysis buffer (50 mM Tris–HCl (pH 8.0); 150 mM NaCl; 1% Triton X-100; 1 mM dithiothreitol; 0.1 mM phenylmethylsulfonyl fluoride) and lysed by three freeze–thaw cycles and sonication. An extract of soluble protein was prepared by ultracentrifugation for 1 h at 100 000 g. Extracts containing 5–10 μg of GST fusion protein were then mixed with 30 μl of glutathione-Sepharose (GE Healthcare) and incubated at 4 °C for 1 h. The sepharose beads were then washed three times with ELB buffer and used for GST pull-down assays as follows: QT6 cells transfected with the appropriate expression vectors were lysed in ELB buffer and aliquots of the lysate were then incubated under constant agitation for 1 h at 4 °C with bacterially expressed GST fusion protein coupled to glutathione-Sepharose. Subsequently, beads were washed three times with ELB buffer. Bound proteins were eluted from the beads by boiling in SDS sample buffer and analyzed by SDS–PAGE, followed by staining with Coomassie Brilliant Blue or western blotting using appropriate antibodies.

Fluorescence microscopy
HeLa cells were seeded on coverslips and analyzed without transfection or were transfected with the desired plasmids. 24 h later, cells were washed with phosphate-buffered saline (PBS) and fixed with 2% paraformaldehyde in PBS for 10 min at room temperature. The cells were then permeabilized with PBST (PBS containing 0.1% Triton X-100) and incubated with blocking buffer (PBST containing 5% bovine serum albumin). Primary antibodies against the FLAG-tag (Sigma), Daxx (Novocastra Laboratories) or Pdcd4 (Biomol, Hamburg, Germany) were diluted in blocking buffer and incubated for 1 h at room temperature. Subsequently, cells were washed five times with PBST, followed by incubation with tetramethyl rhodamine isothiocyanate-coupled goat-antibody-mouse (Sigma-Aldrich), Alexa Fluor 546 Goat Anti-Mouse (Invitrogen, Darmstadt, Germany, A11030) or Alexa Fluor 488 Goat Anti-Rabbit (Invitrogen A-11034) secondary antibody in blocking buffer for 1 h at room temperature. Finally, cells were washed five times with PBS, mounted in Aqua Poly/Mount (Polysciences, Eppelheim, Germany) and analyzed by confocal laser scanning microscopy.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank T Hofmann, M Maurie, T Matsuda and M Paganio for plasmids. This work was supported by grants from the Deutsche Krebshilfe, the Wilhelm-Sander-Stiftung and the Wellcome Trust. NK was supported by a fellowship from the Graduate School of Chemistry (GSC-MS) at the University of Münster.

REFERENCES

1 Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, Honjo T. Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene 1995; 166: 297–301.
2 Cinarik JL, Min H, Hegamyer G, Zhan S, Kulesz-Martin M, Yoshinaga H et al. Differentially expressed protein Pdc4d inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci USA 1999; 96: 14037–14042.
3 Jansen AP, Camalier CE, Colburn NH. Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 2005; 65: 6034–6041.
4 Chen Y, Kessel T, Kristiansen G, Peters A, Garber ME, Matsuhashi S et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 2003; 200: 640–646.
5 Afonja O, Juste D, Das S, Matsuhashi S, Samuels HH. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis. Oncogene 2004; 23: 8135–8145.
6 Zhang H, Ozaki I, Mizuta T, Hamajima H, Yasutake T, Eguichi Y et al. Involvement of programmed cell death 4 in transforming growth factor-beta1-induced apoptosis in human hepatocellular carcinoma. Oncogene 2006; 25: 6101–6112.

7 Mudduluru G, Medved F, Grohholz R, Jost C, Gruber A, Leupold JH et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007; 110: 1697–1707.

8 Wang G, Sun Z, Yang H-S. Downregulation of tumour suppressor Pdcd4 promotes invasion and activates both β-catenin/TCE and AP-1-dependent transcription in colon carcinoma cells. Oncogene 2008; 27: 1527–1535.

9 Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. The programmed cell death 4 gene relates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in primary colorectal cancer. Proc Natl Acad Sci USA 2007; 104: 1297–1306.

10 Lu Z, Liu M, Striker GY, Klinge CM, Ramos KS, Colburn NH. MicroRNA-21 regulates translation and cell growth. Science 2006; 314: 467–471.

11 Schmid T, Jansen AP, Baker AR, Hegamyer G, Hagan JP, Colburn NH. Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res 2005; 65: 1254–1262.

12 Chang JH, Cho YH, Sohn SY, Choi JM, Kim A, Kim YC. Programmed cell death 4 in transforming growth factor-beta1-induced apoptosis and programmed cell death 4 in colorectal cancer. Oncogene 2008; 27: 2128–2136.

13 Yang HS, Matthews CP, Clark T, Wang Q, Baker AR, Li CC et al. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 2006; 26: 1297–1306.

14 Leupold JH, Yang HS, Colburn NH, Asangani I, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumour suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 4373–4379.

15 Chang JH, Cho YH, Sohn SY, Choi JM, Kim A, Kim YC. Tumor suppressor protein Pdcd4 inhibits invasion by regulating the translation of p53 mRNA. J Biol Chem 2011; 286: 42855–42862.

16 Eto K, Goto S, Nakashima W, Ura Y, Abe S. Loss of programmed cell death 4 induces apoptosis by promoting the translation of procaspase-3 mRNA. Cell Death Differ 2012; 19: 573–581.

17 Yang X, Khorasavi-Far R, Chang HY, Baltimore D. Daxx-a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997; 90: 1067–1076.

18 Perlman R, Schieman WP, Brooks MW, Lodish HF, Weinberg RA. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 2001; 3: 708–714.

19 Michaelson JS, Bader D, Kuo F, Kazok C, Leder P. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 1999; 13: 1918–1923.

20 Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 1997; 144: 221–234.

21 Chang JH, Cho YH, Sohn SY, Choi JM, Kim A, Kim YC. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 2006; 24: 341–354.

22 Wethkamp N, Hanenberg H, Funke S, Suschek CV, Wetzel W, Heikal A et al. Daxx-beta and Daxx-gamma, two novel splice variants of the transcriptional corepressor Daxx. J Biol Chem 2001; 276: 19576–19588.

23 Puto LA, Reed JC. Daxx represses REL target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes Dev 2008; 22: 998–1010.

24 Li R, Pei H, Watson DK, Papas TS. EAP1/Daxx interacts with ETS1 and repression transcriptional activation of ETS1 target genes. Oncogene 2000; 19: 745–753.

25 Lehembre F, Muller S, Pandolfi PP, Dejean A. Regulation of Pax3 transcriptional activity by SUMO-1 modifie. Oncogene 2001; 20: 1–9.

26 Lin DY, Fang H, Ma AH, Huang YS, Pu YS, Jenster G et al. Negative modulation of androgen receptor transcriptional activity by Daxx. Mol Cell Biol 2004; 24: 10529–10541.

27 Chang CC, Lin DY, Fang H, Chen RH, Shih HM, Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem 2005; 280: 10164–10173.

28 Kuo HY, Chang CC, Jeng JC, Hu HM, Lin DY, Maul GG et al. SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA 2005; 102: 16973–16978.

29 Wethkamp N, Klempnauer K-H. Daxx is a transcriptional repressor of CCAT/ enhancer-binding protein beta. J Biol Chem 2009; 284: 28783–28794.

30 Shih HM, Chang CC, Kuo HY, Lin DY. Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans 2007; 35: 1397–1400.

31 Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J et al. Daxx cooperates with the Axin/ Hippk/p53 complex to induce cell death. Cancer Res 2007; 67: 66–74.

32 Tang J, Qu KL, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. Critical role of Daxx in regulating Mdm2. Nat Cell Biol 2006; 8: 855–862.

33 Song MS, Song SJ, Kim SY, Oh HJ, Lim DS. The tumour suppressor RASSF1A promotes MDM2 self-ubiquityation by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 2008; 27: 1863–1874.

34 Tang J, Qu L, Pang M, Yang X. Daxx is reciprocally regulated by Mdm2 and Hausp. Biochem Biophys Res Commun 2010; 393: 542–545.

35 Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J et al. The debiquitylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 2008; 455: 13–18.

36 Goldberg AD, Basasnyski LA, Noh KM, Lewis PW, Elsaezer SJ, Stadler S et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010; 140: 678–691.

37 Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein, results in extensive apoptosis in early mouse development. Genes Dev 1999; 13: 1918–1923.

38 Lewis PW, Elsaezer SJ, Noh KM, Stadler SC, Allis CD. Daxx is an H3.3-specific histone chaperone involved in the replication-indepen- dent deposition of H3.3. Genes Dev 2004; 18: 1918–1923.

39 Michaelson JS, Bader D, Kuo F, Kazok C, Leder P. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 1999; 13: 1918–1923.

40 Zhan T, Leupold J, Yang HS, Colburn NH, Asangani I, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumour suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 4373–4379.

41 Chang JH, Cho YH, Sohn SY, Choi JM, Kim A, Kim YC. Tumor suppressor protein Pdcd4 inhibits invasion by regulating the translation of p53 mRNA. J Biol Chem 2011; 286: 42855–42862.

42 Eto K, Goto S, Nakashima W, Ura Y, Abe S. Loss of programmed cell death 4 induces apoptosis by promoting the translation of procaspase-3 mRNA. Cell Death Differ 2012; 19: 573–581.

43 Yang X, Khorasavi-Far R, Chang HY, Baltimore D. Daxx-a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997; 90: 1067–1076.

44 Perlman R, Schieman WP, Brooks MW, Lodish HF, Weinberg RA. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 2001; 3: 708–714.

45 Chen LY, Chen JD. Daxx silencing sensitizes cells to multiple apoptotic pathways. Mol Cell Biol 2003; 23: 7108–7112.
Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 2002; 4: 11–19.

Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 2008; 10: 812–824.

Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005; 6: 197–208.

Linking folding and binding. Curr Opin Struct Biol 2009; 19: 31–38.

A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 2005; 7: 143–153.

HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 2007; 6: 139–143.

The PML/RARA is essential for leukemic transformation. Cancer Cell 2005; 7: 143–153.

Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 4: 1–10.

Profiling autophagy in cancer. Mol Cell Biol 1997; 17: 6609–6617.

Oncogenesis is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/