Robust Controller And Industrial Internet For The Industrial Nonlinear Level Process

Abstract. Automatic gain scheduling of PID controller gives monstrous yield reaction for controlling tank level away industrial application. This proposed strong controller furnishes tasteful yield reaction with least pinnacle overshoot, brisk settling time. The Industrial Internet of Things (IIoT) is generally used to interconnect accessible enterprises assets and give dependable, powerful and brilliant checking and control includes in process businesses. The proposed work outlines the use of IoT in a straight tank framework, checking and change set point and controller parameters from remote spots utilizing cloud administrations. In this paper, a basic straight tank exploratory setup is created and level in the direct tank framework is controlled utilizing PID controller. Using IoT and electronic administration blynk, the information can be checked and dissected from any piece of the world at whenever. Set point and PID controller parameter of the straight tank framework can likewise be adjusted.

Keywords— IIOT; Tank level; PID; gain scheduling; non-linear level process

1. INTRODUCTION

Modern liquid level checking structure based on the Internet of Things (IIoT) is a personalized device that gives the customer the suggested message or banner about liquid level in a certain tank and holds the liquid tank to surge [1]. By then, if we analyze at the nearby or present day level, we can see for the most part that we save the liquid in a round and empty or any other kind of tank, for example, water or some compound substance. There is an engine pump associated with this to round out this tank. It is physically controlled somewhere, and so it is controlled somewhere. Where it is physically controlled, the engine pump must be operated by a manager. That's a very broad course of action and nearby this, finally too much expensive liquid content or water is misused in view of manager remissness. So this liquid level watching device based on IIoT is profitable to a great extent for privately organized applications. At present, the strategy company is beginning to study and complete the thoughts and developments of IIoT. In process adventures, the IIoT vision is of an immensely instrumented universe of savvy sensors (basic and electronic) and actuators (basic and propelled) conferring to enhance execution and capability using Internet Protocol (IP). As one can without a
doubt imagine, any essential pledge to the development of the IIoT ought to generally be the outcome of synergetic activities organized in various fields of learning, for instance, communicate interchanges, informatics, tools, programming building and human science. Starting late, IoT and Cloud Computing (CC) are the two composite developments that are increasingly being produced and provide new open entryways for activities, such as data collection, cloud limitation and disengaged data taken care of in the cloud. In this paper, a system for direct tank close hover control using gain scheduling PID controller is proposed to remember the ultimate aim of using IoT and appropriate figures to screen level parameters from any part of the world at any point[2]. We are facing a range of emergency problems in this world so that we need to design a remote system to respond to those emergencies and to monitor them. In addition, level tracking is possible using a remote system, and level control is also possible in the same way. If we can build such a system, then we can prevent harm to the process station positively in the future. Late advancements in embedded structures and lightweight technologies are preparing for the subsequent chaos in enlisting the future to which all the latest technological improvements are going, showing the progress slants around the globe to make shrewd items, all unpreventable and suitably imperceptible to the customer. In this article, to outline the Arduino IDE, the Blynk application is used and Arduino IDE embedded C coding is used to change the PID parameters. The information is from the Differential Pressure Transmitter (DPT) and the control valve, which is the last control component, is given the yield.

2. PROPOSED METHOD

The basic purpose of our endeavor is to control and screen the set motivation behind level process in a straight tank structure. Thusly, we realized this arrangement using Arduino UNO, Ethernet shield for moving data into a cloud, blynk web application is used as an appropriated stockpiling and in Arduino IDE organize coding is done to make the control move of the procedure station and by this gear and programming plot the yield is gained. This undertaking is to viably control and screen the set purpose of the direct tank in light of IoT.

![Figure 1. Schematic view of Closed loop Tank Level Control](image)

The components used are micro controller, Arduino Uno, Ethernet shield, cayenne web application, RJ45 connector. Figure 1 indicate the schematic view for physical system with closed loop negative feedback.
In control hypothesis, gain scheduling is a way to deal with control of non-straight frameworks that uses a group of direct controllers, every one of which gives agreeable control to an alternate working purpose of the framework. At least one recognizable factor, called the scheduling factors, are utilized to figure out what working locale the framework is at present in and to empower the suitable straight controller. For instance, in an airplane flight control framework, the height and Mach number may be the scheduling factors, with various direct controller parameters accessible (and automatically connected to the controller) for different blends of these two factors. Figure 2 shows the robust control structure for controlling tank level.

As if we need to control the level of a linear tank, we use controllers to perform the action. The input from the process station is current which is then converted to voltage. With the help of microcontroller and by using I-P converter, the variation of results that is set point changes are viewed by using cloud.

3. IIOT IMPLEMENTATION

3.1. Cloud Environment:

Cloud computing is a worldview of data innovation (IT) that provides omnipresent access to shared pools of configurable framework assets and higher quantity benefits that can be generated easily with negligible administration effort, the Internet is frequently completed[5] Cloud computing relies on sharing assets to achieve intelligibility and economies of scale, such as an accessible utility.
3.2. Voltage to Current Signal Conversion

Op-amps can be utilized to "change over" a voltage motion into a current flag effortlessly. Voltage signals are generally simple to deliver straightforwardly from transducer gadgets, though precise current signs are not. In instrumentation hardware, DC signals are frequently utilized as simple portrayals of physical estimations, for example, temperature, weight, stream, weight, and movement. Most normally, DC current signs are utilized as a part of inclination to DC voltage signals, since current signs are precisely equivalent in size all through the arrangement circuit loop conveying current from the source (estimating gadget) to the heap (marker, recorder, or controller), though voltage motions in a parallel circuit may fluctuate from one end to the next because of resistive wire misfortunes. Moreover, current-detecting instruments regularly have low impedances (while at the same time voltage-detecting instruments have high impedances), which gives current-detecting instruments more noteworthy electrical clamor insusceptibility. Another name for this circuit is transconductance intensifier.

3.3. Current to Pressure Converter

A "pressure current" transformer (I / P) switches to a linear proportional pneumatically (3 to 15 psig) via a simple signal (4 to 20 mA). The goal is to decode the simple output from an accurate, repetitive pressure from a control framework into an incentive to track pneumatic actuators, pneumatic valves, dampers, fan valves etcetera. The nucleus of the frame is the paddle amplifier. It changes the varying air pressure via small (micron-arranged) displacement signal. Air pressure constant (20psi) is supplied on one end of the pipeline to create a flapper punch amplifier. At this end there is an aperture. There is a nozzle and a flapper on the opposite side of the tube. Input signal [6] sets the distance between the nozzle and the flapper. With the flapper entering the pipe, less air flow is given through the pipe and there would be a rise in air pressure in the pipe. Arduino Uno, Ethernet shield, Blynk web application, RJ45, Arduino IDE is used as hardware.

3.4. Arduino Uno

In light of the ATmega328 (data sheet), the Arduino Uno is a microcontroller board. It consists of 14 input / input pins (6 of which can be used as PWM output), 6 plain sources of information, a fired resonator with 16 MHz, a USB association, a power jack, an ICSP and a reset button. The microcontroller contains all you want to help; only connect it to a PC using a USB connection or power it to the start of an AC-to-DC adapter or a battery. The Uno varies from every single going before board in that it doesn't utilize the FTDI USB - to - serial driver chip. Rather, the Atmega16U2, modified as a USB - to - serial converter, comprises the atmega 8U2 to R2 adaptation.

3.5. Ethernet Shield

The Arduino board will connect to the Internet through the Ethernet Shield. It is based on the Ethernet chip (data sheet) of Wiz net W5100. Wiz net W5100 offers a TCP and UDP network (IP) stack. Up to 4 concurrent socket links are supported. To write sketches which link to the Internet with the shield, use the Ethernet library. The ethernet shield is connected by long wire wrap headers to an Arduino
module, which stretches the shield. The pin configuration is left unchanged and helps to add another shield on top.

3.6. RJ45 Connector

RJ45 is a type of connector widely used for networking with Ethernet. There has been a misunderstanding. Because there is an RJ45 connector at either end, Ethernet connections are often referred to as RJ45 connections. The RJ in RJ45 remains "enlisted jack," since the networking protocol is institutionalized. The 'RJ' in RJ45 stays for 'enlisted jack' since the network interface is institutionalized. The "45" only refers to the number of the basic GUI. Any RJ45 connector has 8 pins and there are eight separate wires on the RJ45 connections. When you're off, you should look at eight cables, each one of them an alternative shade, for the finishing of an Ethernet connections. Four are dominant hues, while the remaining four are streaked at the same time. Two different ways to wire the RJ45 connections.

3.7. Blynk Web Application

Blynk is a website for Arduino, Raspberry Pi and the Internet for iOS and Android applications. It is a digital Dashboard in which you can easily drag and drop widgets to create a user framework for your project. It's so simple to set it up and in less than 5 minutes you'll start tinkering. There is a certain board or shield not connected to Blynk. Rather, it supports your choice of hardware. If it is by Wi-Fi, Ethernet or a new chip, the Arduino or the Raspberry Pi, Blynk is ready for the Internet with Your Stuff. You are ready for use with Blynk. Not just is Blynk 'another IoT cloud.' It is a complete solution that saves time and money as you create applications for goods and services associated with each other. Blynk helps one engineer to connect any electronic computer to the Internet and create a smartphone application for remote monitoring and control within minutes. For the sake of reason Blynk is regarded as the most user-friendly IoT application [6]. Try our mobile app maker Drag-n-drop and see for yourself. The cloud is secure, portable, lightweight, and quick, quick, and lightweight. Ready to receive thousands of requests from your edge computers. Blynk Cloud is open-source and can be implemented in minutes. Blynk Cloud is open-source in a matter of minutes. It can run locally or in a dedicated Blynk in your setting Business Server.

3.8. Arduino Software (IDE)

The Arduino open source software (IDE) helps you to create and pass your code to the board quickly. It runs on Mac OS X, Linux, and Windows. The world has Java and other open-source applications. It is composed. A word processor for writing code, the message area, the material comfort bar, the toolbar with the fundamental capacities button and the progress of the menus are located in Arduino's integrated development environment—or Arduino software’s (IDE). It integrates the Arduino and True devices with the delivery and collaboration of programmes. The outlines are called composed projects using Arduino Software (IDE). These representations are composed in the material tool and are not included in the ion expansion archive. The publisher has highlights to cut / stick and to search / replace content. The area for the message offers feedback while also preserving and selling. The comfort shows the Arduino Program (IDE) material return, including full error messages and other information. The lower right corner displays the board and serial port built. The window. You can search, move, build, open and replay outlines and open your serial monitor with the toolbar buttons..
Amid tests it is signified that blynk permits to send esteems and the dashboard permits to review the esteem and it facilitates while adding the related gadgets to that esteem. For the control of the Led in Arduino IDE, the capacity log of cayenne as a matter of course is designed, which actually tunes in to the parameters of any channel that sends information from blynk to the ESP, for this situation the gadget button? It takes the estimation of the channel allocated to the button and that esteem goes from String to whole number to activate the GPIO 04.

4. PID IMPLEMENTATION IN ARDUINO

PID controller provides satisfactory closed loop set point tracking capability under servo and regulatory operation. The output of PID controller given as [7],

\[U(t)_{PID} = K_p[E(t) + K_iE(t) + K_d \frac{dE(t)}{dt}] \] ………. (1)

Where,
- \(K_p \)=Proportional gain
- \(K_i \)=Integral gain
- \(K_d \)=Derivative gain
- \(E(t) \)=Setpoint-Process variable=Error
- \(U(t) \)=Controller output

5. RESULT AND DISCUSSION

![Figure 4. Process Station Setup](image)

Figure 4 shows the Physical plant for automatic level control process with 60cm tank height. DPT (Differential Pressure Transmitter) used for measuring level of the tank.
Figure 5. Step Response Analysis for tank level control

Figure 5 indicates the open loop step response for linear tank and the control moves are plotted. This shows the lag of output response produces offset error.

Figure 6. Actuator Dynamic model Response

Figure 6 shows the dynamic output response for air to open control valve actuator response operating with 3-15psi air supply.

Figure 7. Frequency Response Analysis
Figure 7 shows the relative bounds and modeling errors for safer operating points with 0-60cm.

![Figure 7](image)

Figure 8. Closed loop Response Analysis under flow disturbance

Figure 8 shows the pipeline flow disturbance profile for continuous operating range up to 0-1500lph.

![Figure 8](image)

Figure 9. Set point tracking analysis

Figure 8 shows the set point tracking capability with servo mechanism. This is noted that the proposed controller provides optimum set point tracking behavior with lower peak overshoot.
Figure 10. Sample Online results for tank level control

Figure 9 shows the sample data for tank level control with IIOT implementation.

Figure 11. PID implementation in IOT platform using blynk

Figure 10 shows the Blynk open source IoT platform for implementing robust PID controller for tank level control.

6. CONCLUSION

A basic and clear method for outlining level control of direct tank in light of IoT with Cloud based Technologies. The advanced form of vigorous gain scheduling PID controller gives great set point following and least settling time. The adequacy and appropriateness of this innovation are shown utilizing Arduino UNO board. To start with, the procedure station is interfaced with Arduino UNO board flag molding module and consequently the procedure station is associated with web. Reasonable execution of PID control conspire for the straight tank framework is setup utilizing Arduino program. Utilizing Arduino program and Blynk web benefit and easy to control and screen the set purpose of our procedure station anywhere and whenever. From this undertaking, it is comprehended that IoT
interconnect accessible ventures assets and give solid, compelling and shrewd checking and control includes in process enterprises. The proposed control strategy provides lower peak overshoot with less settling time and fast IOT output response communication.

References

[1] Hauser J, Sastry S, Kokotovic P. Nonlinear control via approximate input output linearization the ball and beam example. IEEE Trans. Automatic Control, Vol.37, Issue.3, pp. 392-398, 2006

[2] Wei Wang. Control of a Ball and Beam System. Master’s Thesis. 2007

[3] Nenad Muskinja, Matej Rizner, “Optimized PID Position Control of a Nonlinear system Based on Correlating the Velocity with Position Error”, Mathematical Problems in Engineering, Vol. 2015, 2015

[4] Aidan O’Dwyer. Handbook of PI and PID Controller Tuning Rules. 2nd edition

[5] Dinesh Kumar and B. Meenakshipriya. "Design of Heuristic Algorithm for Non-linear System”, Rev. Téc. Ing. Univ. Zulia. Vol. 39, Issue 6, pp.10 - 15, 2016

[6] Prem, P., Sugavanam, V., Abubakar, A. I., Ali, J. S. M., C Sengodan, B., Krishnasamy, V., & Padmanaban, S. (2020). A novel cross-connected multilevel inverter topology for higher number of voltage levels with reduced switch count. International Transactions on Electrical Energy Systems, e12381.

[7] Skogestad S. Probably the best simple PID tuning rules in the world. Journal of Process control. 2001.

[8] Tao iu, DanyingGu, Weidong Zhang. A H infinity design method of PID controller for second order process with integrator and time delay. IEEE conference on Decision and Control. Vol.6, pp.6044-6049, 2003

[9] K.M.Nandhini, S.Kaushik,”Control of a Non Linear System Using Imc-Pid Controller”, International Journal of Innovative Research in Technology, Science & Engineering (IJIRTSE), Volume .2, Issue.3. pp 41-47, March 2016

[10] M. Dorigo and G. Di Caro, “The Ant Colony Optimization meta-heuristic”, in New Ideas in Optimization, D. Corne et al., Eds., McGraw Hill, London, UK, pp. 11-32, 1999

[11] M. Dorigo, Vittorio, Maniezzo and Alberto Colorni, “The Ant system:Optimization by A Colony of Cooperating Agents”, IEEE Transaction on system, man, and cybernetics, part B, Volume. 26, Issue. 1, 1996

[12] P. Jungie, W. Dingwei, "An Ant Colony Optimization Algorithm for Multiple Travelling Salesman Problem", ICICIC apos; 06. first international conference on Volume 1, Issue, 30, pp. 210-213, Aug. 2006

[13] Manojkumar P Veena P and Jeyabharath R 2019 Sustainable development of universal electronic control unit for fuel saving in automobiles to protect the environment pollution Journal of Electrical Engineering Vol 19.

[14] J. Holland, “Adaptation in Natural and Artificial Systems”, Ann Arbor: University of Michigan Press, 1975

[15] R. Vilanova, “IMC based Robust PID design: Tuning guidelines and automatic tuning” Journal of Process Control Volume.18,pp. 61–70, www.elsevier.com/locate/jprocont, 2008

[16] Zakirhussain FARHAD, Ibrahim EKE, Suleyman Sungur TEZCAN, Shah Jahan SAFI, A Robust PID Power System Stabilizer Design of Single Machine Infinite Bus System using Firefly Algorithm, Gazi University Journal of Science, GU J Sci, Volume.31,Issue 1, pp.155-
J.S. Sakti Suriya Raj, P. Sivaraman, P. Prem, A. Matheswaran, Wide Band Gap semiconductor material for electric vehicle charger, Materials Today: Proceedings, 2020, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2020.02.916.

Nandan and S. Imtiaz, “Nonlinear model predictive control of managed pressure drilling,” ISA Transactions, Volume. 69, no. Supplement C, pp. 307 – 314, 2017

E. Ceravolo, M. Gabellone, M. Farina, L. Bascetta, and M. Matteucci, “Model predictive control of an autonomous wheelchair,” IFAC-PapersOnLine, Volume. 50, Issue. 1, pp. 9821 – 9826, 2017

Mujumdar, B. Tamhane, and S. Kurode, “Fractional order modeling and control of a flexible manipulator using sliding modes,” in 2014 American Control Conference, pp. 2011–2016, June 2014

Y. Youdao, R. A. Wagan, and A. H. S. B. Rector, “Parametric identification for fractional order model based on hybrid artificial bee colony algorithm,” in 2016 5th International Conference on Computer Science and Network Technology (ICCSNT), pp. 401–406, Dec 2016,

T. Poinot and J.-C. Trigeassou, “Identification of fractional systems using an output-error technique,” Nonlinear Dynamics, Volume. 38, Issue. 1, pp. 133–154, Dec 2004.

Tepljakov, E. Petlenkov, and J. Belikov, “Closed-loop identification of fractional-order models using fomcon toolbox for matlab,” in 2014 14th Biennial Baltic Electronic Conference (BEC), pp. 213–216, Oct 2014