Risk Factors and Patient Profile of Infective Endocarditis due to *Gemella* spp.

Pramod Theetha Kariyanna¹,²,³, Bayu Sutarjono³,⁴, Naga Pranavi Ellanti¹, Apoorva Jayarangaiah⁵, Amog Jayarangaiah⁶, Harshith Priyan Chandrakumar², Ashkan Tadayoni², Moro O. Salifu², Isabel M. McFarlane²

¹Division of Interventional Cardiology Fellow, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Morningside/Beth Israel, New York City, New York-10025
²Division of Cardiovascular Disease and Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
³Saba University School of Medicine, 27 Jackson Road, Devens, MA 01434, USA
⁴Department of Family Medicine, Mount Sinai Hospital, Chicago, IL 60608, USA
⁵Department of Internal Medicine, NYC Health and Hospitals/Jacobi Medical Center, Bronx, NY 10461, USA
⁶Trinity School of Medicine, 925 Woodstock Road, Roswell, GA 30075, USA

#These authors contributed equally to this work.

*Corresponding author: isabel.mcfarlane@downstate.edu

Received November 05, 2020; Revised December 06, 2020; Accepted December 13, 2020

Abstract Background. The diagnosis of infective endocarditis is difficult, especially when it involves atypical organisms. Therefore, our study identified risk factors of infective endocarditis caused by rare pathogen, *Gemella* spp. Methods. A systematic review was conducted to investigate characteristics of endocarditis patients infected with *Gemella* spp. using the search term “*Gemella*” and “endocarditis.” Case reports were gathered by searching Medline/Pubmed, Google Scholar, CINAHL, Cochrane CENTRAL, and Web of Science databases. 83 articles were selected for review. Results. Five species of *Gemella* were identified. Typical patients were males between 31 and 45 years of age. On admission, patients had fever, tachycardia, and normal blood pressure. Common clinical manifestation other than fever included fatigue and weakness, chills and sweating, and nausea, vomiting, diarrhea, and weight changes. One in four reported a history of congenital heart disease, and a recent oral cavity infection. Laboratory tests reveal anemia, leukocytosis, and elevated erythrocyte sedimentation in all age groups, elevated C-reactive protein is observed among adult and geriatric populations only. Mitral and aortic valves were most commonly infected by *Gemella* spp.. The most common *Gemella* spp.-susceptible antibiotics were penicillin, vancomycin, cephalosporin, macrolide, and aminoglycosides. However, antibiotic resistance was observed against penicillin, aminoglycoside, and fluoroquinolone. Antibiotic course of at least six weeks resulted in superior clinical improvements than durations under six weeks. Finally, one in two patients underwent valve replacement or repair, with common complications affecting the cardiovascular, neurological, and renal systems. Finally, death occurred in 1 in 8 patients, half of which occurred post-surgical procedure, and the majority occurring equal to or greater than 1 week from admission. Conclusion. Our systematic review highlights the importance of considering rare pathogens, particularly in the presence of predisposing risk factors.

Keywords: Gemella, endocarditis

Cite This Article: Pramod Theetha Kariyanna, Bayu Sutarjono, Naga Pranavi Ellanti, Apoorva Jayarangaiah, Amog Jayarangaiah, Harshith Priyan Chandrakumar, Ashkan Tadayoni, Moro O. Salifu, and Isabel M. McFarlane, “Risk Factors and Patient Profile of Infective Endocarditis due to *Gemella* spp.” *American Journal of Medical Case Reports*, vol. 9, no. 2 (2021): 103-115. doi: 10.12691/ajmcr-9-2-4.

1. Introduction

Infective endocarditis is a rare disease with an incidence of approximately 3-10 per 100,000 people per year in industrialized countries. [1,2,3,4] Recognizing infective endocarditis is difficult due to the non-specific symptoms, such as sepsis of unknown origin or fevers without recognizing the risk factors. [5] Currently, the accepted criteria for diagnosis are the modified Duke criteria. Furthermore, targeted antibiotic therapy for infective endocarditis should be guided by the results of two to three sets of blood cultures obtained from separate venipuncture sites. Any delay in treatment will have negative effects on clinical outcomes in acute bacterial infectious diseases [6] and raises the risk of developing complications including infectious recurrences, cardiac surgery because of the valvular sequelae of the disease, and death [7].
A number of factors predispose to the development of infective endocarditis, such as age, sex, injection drug use, and dental infection, as well as the presence of co-morbid conditions such as structural heart disease, valvular disease, or intravascular device. Presently, there is ample information available regarding the common causes of infective endocarditis: staphylococci, streptococci, and enterococci. [8,9,10] However, there is limited knowledge for lesser known pathogens. One prominent microorganism is Gemella spp.

Gemella spp. are facultatively anaerobic non-motile and non-spore forming Gram-positive cocci. Due to its misidentification as viridans group group streptococci, [11] it is very likely that Gemella is a more important cause of clinical disease than is presently recognized. These are organisms are present in the mouth, gastrointestinal tract, and genitourinary tract of humans and other warm-blood organisms are present in the mouth, gastrointestinal tract, of clinical disease than is presently recognized. These are it is very likely that Gemella is more important cause of clinical disease than is presently recognized. These are organisms are present in the mouth, gastrointestinal tract, and genitourinary tract of humans and other warm-blood animals, although serious systemic infections such as endocarditis usually lead to the clinical presentations. [12] Although Gemella spp. are associated with previous valvular injury or prosthetic valves, dental surgery, and colorectal surgery, [13] the true mode of infection leading to infective endocarditis still remains unclear.

To understand the pathogenicity of the microorganism, identify risk factors and susceptible patient populations, a systematic review was conducted to elucidate the characteristics of endocarditis patients infected with Gemella spp. based on existing case reports and case series.

2. Methods

2.1. Protocol and Registration

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was adhered to for this systematic review. The protocol was not registered.

2.2. Eligibility Criteria

2.2.1. Inclusion Criteria

Only articles that reported the association of the genus of the gram-positive bacteria Gemella spp. and endocarditis were included.

2.2.2. Exclusion Criteria

Studies were excluded if: (1) they were not case reports or case series, (2) they were not peer-reviewed, and (3) they were not in English.

2.3. Information Sources and Search Strategies

A comprehensive literature search using Medline/Pubmed, Google Scholar, CINAHL, Cochrane CENTRAL, and Web of Science databases up to and including 1 January 2020 using the terms “Gemella” and “endocarditis.”

Reference, publication year	Country	Patient profile (age in years, sex)	Species of Gemella	Diagnosis and association
Agrawal N et al, 2014 [14]	India	40, female	Gemella morbillorum	Endocarditis
Agrawal T et al, 2019 [15]	USA	38, male	Gemella haemolytica	Endocarditis
Akyama K et al, 2001 [16]	Japan	55, male	Gemella morbillorum	Endocarditis
Al Chekakie MO et al, 2009 [17]	USA	44, male	Gemella morbillorum	Endocarditis and prosthetic valve
Al Souh H et al, 2003 [18]	Sri Lanka	41, female	Gemella morbillorum	Endocarditis
Al-Hujailan G et al, 2007 [19]	Canada	37, male	Gemella morbillorum	Endocarditis and prosthetic valve
Almaghrabi R et al, 2009 [20]	Saudi Arabia	23, male	Gemella sanguinis	Endocarditis
Ando A et al, 2016 [21]	USA	24, male	Gemella haemolytica	Endocarditis, aneurysm and stroke
Avgoustidis N et al, 2011 [22]	Greece	56, female	Gemella haemolytica	Endocarditis and systemic lupus erythematosus
Bell E et al, 1992 [23]	UK	19, male	Gemella morbillorum	Endocarditis, intravenous drug users and body piercing
Benes J et al, 2002 [24]	Czech	31, male	Gemella morbillorum	Endocarditis
Brack MJ et al, 1991 [25]	UK	74, male	Gemella haemolytica	Endocarditis
Breathnach AS et al, 1997 [26]	UK	6, male	Gemella haemolytica	Endocarditis and anti-Streptolysin-O
Calopa M et al, 1990 [27]	Spain	45, male	Gemella morbillorum	Endocarditis, aneurysm and stroke
Carano N et al, 2010 [28]	Italy	18, female	Gemella morbillorum	Endocarditis, intravenous drug users and body piercing
Chadha S et al, 2013 [29]	USA	73, male	Gemella sanguinis	Endocarditis
Constantinou M et al, 2015 [30]	Cyprus	80, female	Gemella morbillorum	Endocarditis and tricuspid valve
Czamecki A et al, 2007 [31]	Canada	75, male	Gemella morbillorum	Endocarditis and septic arthritis
Devuyst O et al, 1993 [32]	Belgium	53, female	Gemella haemolytica	Endocarditis
Elsayed S et al, 2004 [33]	Canada	32, male	Gemella bergeriae	Endocarditis
Emmanouilidis G et al, 2019 [34]	Greece	85, female	Gemella sanguinis	Endocarditis
Farmaki E et al, 2000 [35]	Greece	9, female	Gemella morbillorum	Endocarditis and children
Fresard A et al, 1993 [36]	France	42, male	Gemella haemolytica	Endocarditis
Gimigliano F et al, 2005 [37]	Italy	10, female	Gemella morbillorum	Endocarditis and children
Godinho AR et al, 2013 [38]	Portugal	72, male	Gemella morbillorum	Endocarditis
Gandre PR et al, 2011 [39]	USA	28, female	Gemella sanguinis	Endocarditis
Helft G et al, 1993 [40]	France	71, male	Gemella haemolytica	Endocarditis and colorectal cancer
Reference, publication year	Country	Patient profile (age in years, sex)	Species of Gemella	Diagnosis and association
----------------------------	---------	------------------------------------	--------------------	--------------------------
Hikone M et al, 2017 [41]	Japan	52, female	Gemella taiwanensis	Endocarditis
Holland J et al, 1996 [42]	Australia	84, female	Gemella morbillorum	Endocarditis and prosthetic valve
Hull JE, 2010 [43]	USA	87, male	Gemella morbillorum	Endocarditis
Hussain K et al, 2014 [44]	Philippines	24, male	Gemella bergeriae	Endocarditis, aneurysm and stroke
Jayananda S et al, 2017 [45]	USA	82, male	Gemella spp.	Endocarditis and bacteremia
Kaufhold A et al, 1989 [46]	Germany	62, female	Gemella haemolysans	Endocarditis
Kerr JR et al, 1994 [47]	Northern Ireland	29, female	Gemella morbillorum	Endocarditis and hypertrophic obstructive cardiomyopathy
Khan R et al, 2004 [48]	USA	80, male	Gemella haemolysans	Endocarditis
Kofteridis DP et al, 2006 [49]	Greece	46, male	Gemella morbillorum	Endocarditis and anti-microbial resistance
Kofteridis DP et al, 2006 [49]	Greece	53, male	Gemella morbillorum	Endocarditis and anti-microbial resistance
Kolkari VB et al, 2014 [50]	India	34, female	Gemella morbillorum	Endocarditis and hypertrophic obstructive cardiomyopathy
Kumar G et al, 2017 [51]	UAE	12, female	Gemella morbillorum	Endocarditis and children
La Scola B et al, 1998 [52]	France	63, male	Gemella haemolysans	Endocarditis
La Scola B et al, 1998 [52]	France	74, male	Gemella morbillorum	Endocarditis
La Scola B et al, 1998 [52]	France	Age unknown, male	Gemella morbillorum	Endocarditis
Li D et al, 2017 [53]	China	28, male	Gemella morbillorum	Endocarditis
Liu D et al, 2016 [54]	USA	87, female	Gemella haemolysans	Endocarditis and multiple myeloma
Logan LK et al, 2008 [55]	USA	15, male	Gemella bergeriae	Endocarditis and children
Lopez-Dupla M et al, 1996 [56]	Spain	73, female	Gemella morbillorum	Endocarditis and colonic cancer
Maraki S et al, 2019 [57]	Greece	21, male	Gemella sanguinis	Endocarditis and bicuspid aortic valve
Martin MJ et al, 1995 [58]	UK	75, male	Gemella morbillorum	Endocarditis
Matsis PP et al, 1994 [59]	New Zealand	20, male	Gemella haemolysans	Endocarditis
Morea P et al, 1991 [60]	Italy	47, male	Gemella haemolysans	Endocarditis and prosthetic valve
Mosquera JD et al, 2008 [61]	Spain	77, male	Gemella haemolysans	Endocarditis and hemochromatosis
Mugunthan M et al, 2016 [62]	India	4, male	Gemella sanguinis	Endocarditis and children
Murai M et al, 2006 [63]	Japan	53, male	Gemella morbillorum	Endocarditis, aneurysm and stroke
Nandakumar R et al, 1997 [64]	USA	71, male	Gemella morbillorum	Endocarditis and tricuspid valve
Pachirat O et al, 2015 [65]	Thailand	37, male	Gemella bergeriae	Endocarditis and tricuspid valve
Palma G et al, 2011 [66]	Italy	13, male	Gemella spp.	Endocarditis and prosthetic valve
Purecell LK et al, 2001 [67]	Canada	12, female	Gemella spp.	Endocarditis and children
Raja NS et al, 2009 [68]	UK	72, male	Gemella haemolysans	Endocarditis
Raja NS et al, 2009 [68]	UK	69, male	Gemella haemolysans	Endocarditis
Ramchandani MS et al, 2014 [69]	USA	40, female	Gemella haemolysans	Endocarditis and prosthetic valve
Rosa RG et al, 2015 [70]	Brazil	72, male	Gemella morbillorum	Endocarditis, cardiogenic shock and STEMI
Rousseau-Gagnon M et al, 2013 [71]	Canada	67, male	Gemella sanguinis	Endocarditis, acute kidney injury and glomerulonephritis
Sadaune L et al, 2019 [72]	France	86, female	Gemella haemolysans	Endocarditis and geriatric assessment
Samuel L et al, 1995 [73]	UK	34, male	gemella haemolysans	Endocarditis and prosthetic valve
Satake K et al, 2011 [74]	Japan	76, male	Gemella morbillorum	Endocarditis, acute kidney injury and glomerulonephritis
Seeburger J et al, 2009 [75]	Germany	76, male	Gemella morbillorum	Endocarditis and prosthetic valve
Shahani L, 2014 [76]	USA	73, male	Gemella morbillorum	Endocarditis and prosthetic valve
Shinha T, 2017 [77]	USA	37, male	Gemella spp.	Endocarditis
Shukla SK et al, 2002 [78]	USA	69, male	Gemella sanguinis	Endocarditis
Sroup JS et al, 2007 [79]	USA	50, male	Gemella spp.	Endocarditis
Taimur S et al, 2010 [80]	Pakistan	31, female	Gemella morbillorum	Endocarditis and bacteremia
Terada H et al, 1994 [81]	Japan	64, male	Gemella morbillorum	Endocarditis
Ukimura A et al, 1999 [82]	Japan	57, male	Gemella spp.	Endocarditis and prosthetic valve
Ukudcwea A et al, 2017 [83]	USA	63, male	Gemella bergeriae	Endocarditis
Ural S et al, 2014 [84]	turkey	67, male	Gemella morbillorum	Endocarditis
Virgilio E et al, 2014 [85]	Brazil	50, male	Gemella bergeriae	Endocarditis
Winkler J et al, 2016 [86]	USA	67, male	Gemella spp.	Endocarditis, cardiogenic shock and STEMI
Yang CH et al, 2014 [87]	Taiwan	67, male	Gemella sanguinis	Endocarditis
Youssef D et al, 2019 [88]	USA	81, male	Gemella haemolysans	Endocarditis
Zaidi SJ et al, 2018 [89]	USA	23, male	Gemella bergeriae	Endocarditis
Zakir RM et al, 2004 [90]	USA	44, male	Gemella morbillorum	Endocarditis and prosthetic valve
Zheng M et al, 2008 [91]	Singapore	67, male	Gemella morbillorum	Endocarditis and end-stage renal disease
Zingaro L et al, 1999 [92]	Italy	49, male	Gemella haemolysans	Endocarditis, acute kidney injury and glomerulonephritis
2.4. Study Selection

Initial triage of articles was based on whether titles or abstracts met the inclusion criteria. Full-text articles were reviewed, and those that did not satisfy the inclusion were excluded. A summary of study characteristics is given in Table 1.

2.5. Data Collection Process and Data Items

Data extracted from articles included name of first author, year of publication, country, and study design. Variables for which data were sought included viral strain, patient age and sex, presenting complaints on admission, past medical and surgical histories, laboratory tests, diagnostic studies, management of endocarditis, and outcome of the patient.

2.6. Synthesis of Results and Summary of Measures

Data were tabulated, evaluated, and summarized.

2.7. Risk of Bias across Studies

Potential bias across studies were analyzed within study characteristics. Two independent reviewers evaluated the methodological quality of the eligible studies. A third reviewer evaluated papers where there was no agreement. The Joanna Briggs Institute critical appraisal tool for case reports was selected for use in this systematic review. Bias was evaluated using a checklist of 8 questions. Each question is specified in Supplementary Table S1 concerning risk of bias whereby an overall appraisal was made of each article: risk of bias is low (included), high (excluded), or uncertain (more information is required). For the purpose of this study, an answer of “yes” equal to or greater than 50% of the questions was considered to be low risk of bias. Similarly, an answer of “no” equal to or greater than 50% of questions was determined to be high risk of bias, whereas “unclear” answers were equal to or less than 50% response.

3. Results

3.1. Study Selection

From five databases, 118 articles were selected with relevance to Gemella spp. and endocarditis. 83 case reports were selected once assessed for eligibility. [14-92] A PRISMA flow diagram detailing the process of identification, inclusion, and exclusion of studies is shown in Figure 1.

3.2. Study Characteristics

All studies were published between 1989 and 2019. The majority of studies were conducted in Europe and the UK [22,23,24,25,26,27,28,30,32,34,35,36,37,38,40,46,47, 49,52,56,57,58,60,61,66,68,72,73,75,84,92] followed by North America [15,17,19,21,29,31,33,39,43,45,48,54,55, 64,67,69,71,76,77,78,79,83,86,88,90] and Asia. [14,16, 18,20,41,44,50,51,53,62,63,65,74,80,81,82,87,91] USA [15,17,21,29,39,43,45,48,54,55,64,69,76,77,78,79,83,86, 88,89,90] reported the most number of cases in the world, followed by the UK. [23,25,26,58,68,73] Japan [16,41,63,74,81,82] reported the most cases among Asia, Oceania, and South America.

3.3. Risk of Bias within Studies

Results are found in Supplementary Table S1. All articles were rated as low risk of bias, although three studies recorded 50.0% “yes” response to the questions. [14,52,65] Two articles were missing either sex [14] or age [52] with regards to demographic characteristics. Fifteen case reports did not have satisfy the patient’s history and timeline criteria, [18,25,32,34,40,44,45,49, 51,56,58,59,62,65,92] while five articles omitted details of intervention. [14,52,65,77,86] 71.4% of studies did not include the post-intervention clinical condition of the patients and/or adverse or unanticipated events. [14,15,16,18,19,22-26,28-32,34,36-43,46-50,52,53,57-63, 65-68,71-73,76-78,80,81,84,85,87,89,90,92]
3.4. Results of Individual Studies

A summary of findings is presented in Table 1.

3.4.1. Gemella spp. and Endocarditis

Fifty five articles involved the discovery of the gram-positive bacteria Gemella spp. in adult patients with infective endocarditis. [14-20,24,25,29,30,32-34,36,38,39,41,43,46,48,49,52,53,57-60,64-66,68,69,72,73,75-85,87-90] While the majority of these studies reported the presence of the bacteria in predominately native-valves, [14-16,18,20,24,25,29,30,32-34,36,38,41,43,46,48,49,52,53,57-59,64,65,68,72,77-81,83-85,87-89] 12 of those studies highlighted the association of prosthetic valve endocarditis by Gemella spp. [17,19,39,42,60,66,69,73,75,76,82,90]

The remaining 20 studies investigated the possible implication of a second disease in relation to endocarditis as caused by Gemella spp. Three articles investigated the association of endocarditis and cancer, particular colonic carcinoma [40,56] and multiple myeloma, [54] while four studies reported the association aneurysms and strokes. [21,27,44,61] was the subject of one article, while systemic lupus erythematus was the topic the other. [22]

In terms of population studies, six studies observed Gemella spp. in the pediatric population, [35,37,51,55,62,67] while two articles found the bacteria in the intravenous drug users or body piercing populations. [23,28]

3.5. Synthesis of Results

3.5.1. Species

Five different species of Gemella spp. were identified as shown in Table 1. The most common species was Gemella morbillorum (44.6%) [14,16,19,23,24,27,28,30,31,35,37,38,42,43,47,49-53,56,58,63,64,70,74-76,80,81,83-85,87-90] followed by Gemella haemolysans (26.5%). [15,21,22,25,26,32,36,40,46,48,52,54,59,61,68,69,72,73,88,92] The predominant strains in studies published in Europe and North America were Gemella morbillorum [17,19,23,24,27,28,30,31,35,37,38,43,47,49,52,56,57,64,75,76,84,90] and Gemella haemolysans. [15,21,22,25,26,32,36,40,46,48,52,54,60,61,68,69,72,73,88,91] whereas articles from Asia involved mainly Gemella morbillorum. [14,16,18,50,51,63,72,80,81,91]

3.5.2. Patient Profile

The distribution of age, shown in Supplementary Figure S1, was stratified in groups of 15 years of age, as well as according to gender. Nearly three-quarter of studies involved male patients. [14-17,19-21,23-27,29,31,33,36,38,40,43-45,48,49,52,53,55,57-66,68,70,71,73-79,81-92]

3.5.3. Presenting Complaints

The average temperature recorded at admission was 38.2 +/- 0.8°C ranging from 36.0°C to 40.4°C, [16-19,21,24,25,28-30,32-37,39,41,45-49,51,52,55,58,63,65,68,70,76,79-85,87-90,92] while the average heart rate and blood pressure was 103.0 +/- 21.5 bpm [15-17,21,28,30,32-34,39,41,43,45-47,49-51,53,55,57,59,62,65,67,68,76,79-84,86,87,90,92] and 120.6/67.9 +/- 25.3/17.0 mmHg [16-18,24,28,30,32,34,36,39,41,44,45-47,49,51,53,59,65,68,70,74-79,84,86,87,90,92] respectively. Distribution of presenting complaints and associated symptoms are found in Table 2. There were noticeable differences when organized according to age. The predominant symptom was fever, [16,18-24,26,28-42,45,47-53,56,57,59,62-66,68,69,70,72-85,87,90-92] while fatigue, malaise, lethargy, and weakness were common to all age groups. [14,21-23,26,27,29-33,36,40,42,45,47,48,51,53,55,59-61,66,67,71,73-77,83,84,87,88] Nausea, vomiting, diarrhea, and weight change were present in the pediatric [26,35,37,51,55,62,66,67] and geriatric populations, [25,29,31,34,38,40,42,43,45,46,48,52,54,56,58,61,64,68,70-72,74-76,78,81,83,84,86-88,91] while shortness of breath, cough, and dyspnea were exclusively found in the adult population. [14-24,27,28,32,33,36,38,39,41,44,46,47,49,50,52,53,57,59,60,63,65,69-71,73,76-87,89-92] The pediatric and adult populations exhibited chills and sweating, while rigor, myalgia, back pain and joint pain were observed in the adult and geriatric populations.

3.5.4. Past Medical History/Past Surgical History

Twenty studies reported a history of congenital heart disease. [14,15,17,19,20,24,26,37,50,52,53,55,57,66,67,69,80,85,87,89] Bicuspid aortic valve was observed in 50.0% of these studies, [15,17,19,52,57,66,80,85,87,89] followed by ventricular septal defect (VSD) (20.0%) [20,37,53,76] and tetralogy of Fallot (15.0%). [24,55,66]

A history of some form of infection was found in 21 studies. [16,21,31,36,37,39,41,47,49,52,53,60,63,64,67,71,73,76,78,91]. The majority of these patients were found to have had an infection of the mouth (57.14%). [16,21,37,41,49,60,63,64,71,73,76,78]

Table 2. Most common clinical manifestations on admission of all patients, and pediatric, adult, and geriatric populations with Gemella-infected endocarditis

	All patients (n=83)	%	Pediatric population (n=8)	%	Adult population (n=40)	%	Geriatric population (n=22)	%
Fever	76.2		Fever	75.0	Fever	80.0	Fever	72.3
Fatigue	41.7		Fatigue	75.0	Chills and/or Sweating	47.5	Fatigue	50.0
Chills and/or Sweating	40.5		Chills and/or Sweating	62.5	Chills and/or Sweating	40.0	Chills and/or Sweating	40.9
Cough and/or Dyspnea	38.1		Cough and/or Dyspnea	40.0	Cough and/or Dyspnea	35.0	Cough and/or Dyspnea	31.8

A history of invasive procedure was recalled in 37 articles, [17,19,20,22,24,26,28,30,35,37,41,42,48-50,55,57,60,66-70,73,74,76,80-84,88-90] the most being aortic valve replacement or aortic arch repair (45.9%) [8,10,11,15,21,28,30,52,59,61,65,66,68,71,73,80] and dental procedure (32.4%). [22,28,35,39,41,48-50,57,68,81,83] Mitral valve replacement, [39,60,67,90] pulmonary repair or pulmonary artery repair, [24,37,55,66] and VSD repair [20,26,37,68] were cited in 4 articles each.

3.5.5. Laboratory Tests

A summary of laboratory tests is found in Table 3. All population groups showed anemia, [16-18,23,24,27,28,32-36,41,44,46,49,51,52,54-59,62,67,68,70,71,74,76,79-82,84,87,88,90] leukocytosis [15-19,21,23,24,27,28,29,32-36,41,44-49,50,52,55-59,61,67,74,76,79,80,82,84,87-90,91] and elevated erythrocyte sedimentation rate. [18,24,27,28,29,32,34,35,38,46,47,49,50,52,55-59,61,67,70,79,81,85,89,91] C-reactive protein was elevated in the adult and geriatric populations [16,23,24,28,29,32,34,36,38,44,46,49,50,57,63,68,70,72,74,80-82,84,85,87,89,91] but remained normal in the pediatric population. [35,55]

3.5.6. Diagnostic Studies

Sixty-four patients were evaluated by transthoracic echocardiogram [16-19,21,23,25-30,32,34,35,37-39,41,43-48,50-52,53-69,71,72,74,76-78,80,81,83-92] whereas 34 cases used transesophageal echocardiogram. [14,15,18-22,24,30,31,33,39,41-43,48,49,52,56,68,70,71,73,75,76,78,79,82,86,90] The mitral valve was the most common location of vegetation in the pediatric and geriatric populations, whereas the aortic valve vegetation predominated in the adult age group. *Gemella haemolysans, Gemella bergeriae, Gemella sanguinis* were mainly found on aortic valves [15-17,19-22,29,30,33,34,38,39,43,44,49,52,54,56,57,59-61,63,68,69,71-77,80-82,84,85,87,89,91,92] while *Gemella morbillorum* and *Gemella taiwanensis* were discovered predominantly on the mitral valve. [16-18,21,22,25-29,31,32,34,35,37,38,41,43,44,46-52,56,58,67,68,70,71,74,75,78-81,83,86-91]

3.5.7. Management of Endocarditis

Management of endocarditis by *Gemella spp.* was governed by antibiotic susceptibility in 43 studies, [17-19,23,24,30,32,35,39,41,42,44-46,48-50,51,53-62,64,67,68,70,71,73,76,81,82,84,87-90] most commonly beta-lactam treatment, as shown in Supplementary Table S2. Five studies, however, demonstrated antibiotic resistance, in particular penicillin, [49,62] aminoglycoside [49] and fluoroquinolone. [41,62]

In studies where patients survived the course of treatment, more patients showed clinical improvement after receiving six weeks or more of antibiotic therapy [16,19,21,25,30-34,38,39,41,47-51,55,57,62,66,67,71,72,76,80,82,87,89] than patients who received under six weeks of antibiotic therapy, [15,23,24,27,35-37,46,52,53,58,59,61,63,65,69,81,84,85,90] as demonstrated in Figure 2.

Of the 45 patients who underwent surgical procedure, 43 required valve replacement or repair. [14-18,21,27-29,32,33,38-41,49,50,52,53,56,59,60,62,63,65,66,68-72,75,76,78,79,81-83,87-89,92] Furthermore, patients who received longer treatment courses [16,19,21,25,30-34,38,39,41,47-51,55,57,62,66,67,71,72,76,80,82,87,89] underwent less surgical procedures for valve repair than shorter treatment courses. [15,23,24,27,35-37,46,52,53,58,59,61,63,65,69,81,84,85,90]

Table 3. Trends of laboratory values of endocarditis patients infected with *Gemella* combined and as divided by age group

	All patients (n=83)	Pediatric (n=8)	Adults (n=40)	Geriatric (n=22)	(Standard range)
Temperature (°C)	↓	↓	↓	↓	(36.1 - 37.2)
Hemoglobin (g/dl)	↓	↓	↓	↓	(12.0 - 16.0)
Highest WBC (cells/mm^3)	↓	↓	↓	↓	(4,500 - 11,000)
ESR (mm/hr)	↓	↓	↓	↓	(0 - 20)
CRP (mg/dl)	↓	↓	↓	↓	(<8.0)

Figure 2. Comparison between antibiotic therapy 6 weeks or more (dark) to treatment duration under 6 weeks (light) (n=51)
Two-thirds of infective endocarditis in low-income countries are caused by community-acquired penicillin-sensitive streptococci entering via the oral cavity leading to rheumatic heart disease. [97] Infective endocarditis in high-income countries, on the other hand, is due to degenerative valve disease, diabetes, cancer, intravenous drug use, and congenital heart disease. [98] This is in large due to improved living standards and availability of antibiotics for streptococcal pharyngitis resulting in substantially reduced incidence of rheumatic heart disease. [99] In parallel, the incidence of cases attributable to oral streptococci has decreased due to oral antibiotic prophylaxis. [100] Interestingly, we showed that one in four patients reported a history of congenital heart disease, such as bicuspid aortic valve, ventricular septal defect, and tetralogy of Fallot. Furthermore, one in four patients had a recent history of oral infection, and one in two had undergone surgical procedure, such as heart valve replacement or dental repairs. This poses the question whether the incidence and prevalence of infective endocarditis by Gemella spp. is under-reported in low-income countries.

Typically, clinical examination of infective endocarditis shows variable signs of disease, with fever present in 90% of cases and cardiac murmurs in 85% of patients. Splenomegaly or cutaneous manifestations, such as petechiae or splinter haemorrhages, are supportive signs. [101,102] Osler’s nodes, Janeway lesions, and Roth spots are rare, while signs of complications such as heart failure, stroke, or metastatic infection (eg, vertebral osteomyelitis, peripheral abscess) are more prevalent. [5] Patients with infective endocarditis by Gemella spp. showed fever, tachycardia, and normal blood pressure. The most common clinical manifestations for all patients were fever, fatigue, and chills or sweating. Nausea, vomiting, diarrhea or anorexia were more commonly found in children, while adults displayed chills or sweating. The elderly, on the other hand, exhibited fatigue.

Generally, laboratory tests for infective endocarditis is non-specific, showing raised inflammatory markers and normocytic-normochromic anemia. [103] Our systematic review revealed that patients with infective endocarditis by Gemella spp. have anemia, leukocytosis, and elevated erythrocyte sedimentation rate in all age groups, while the adult and geriatric populations have an elevation in C-reactive protein. Diagnostic studies commonly showed mitral valve vegetation in the pediatric and geriatric population, and aortic valve vegetation in the adult age group. Gemella haemolysans, bergeriae, and sanguinis were mainly found on aortic valves, whereas Gemella morbillorum and taiwanensis were discovered predominantly on mitral valves.

The most common Gemella-susceptible antibiotics are penicillin, vancomycin, cephalosporin, macrolide, and aminoglycosides. However, antibiotic resistance was observed against penicillin, aminoglycoside, and fluoroquinolone. This management is similar current approach to patients with uncomplicated community-acquired native valve or late prosthetic valve endocarditis due to highly sensitive streptococci, where combination therapy with a beta-lactam antibiotic and aminoglycoside is used. [104] Finally, patients who received treatment course for at least six weeks or greater showed greater clinical
improvement than patients who received antibiotic therapy for less than six weeks. This finding indicates that special attention should be placed on the duration of treatment for Gemella cases.

One out of two cases in the systematic review underwent either valve replacement or repair where removal of the infected tissues and reconstruction of cardiac morphology were accomplished. Typically, surgery is undertaken in 40-50% of patients with infective endocarditis. [105] In mitral valve infective endocarditis, successful valve repair is achieved in up to 80% of patients. [106]

Finally, patients with infective endocarditis by Gemella spp. commonly suffered complications involving the cardiovascular, neurological, and renal systems. Death occurred in one of eight patients, half of which occurred in the post-surgical period with the majority occurring equal to or greater than 1 week from admission. This is similar to in-hospital mortality of infective endocarditis, which is estimated at 20% and increases to 25-30% at six months. [106,107]

Although the strength of the study is an extensive review of infective endocarditis due Gemella spp. data were limited with regards to recurrent infections with the same organism.

In conclusion, infective endocarditis by Gemella spp. is more likely to infect men ages 31 to 45 years with a history of congenital heart disease, recent oral infection, or surgical procedures, such as heart valve replacement or dental repairs. Laboratory tests will likely indicate anemia, leukocytosis, and elevated erythrocyte sedimentation rate, while diagnostic studies will commonly show mitral or aortic valve vegetation, which is dependent of population or Gemella species. Infective endocarditis by Gemella spp. is managed by empiric treatment with beta-lactam and aminoglycosides combination therapy for at least 6 weeks in duration, or valve replacement or repair, with death occurring in 12.5% of the cases. Therefore, our systematic review highlights the importance of considering rare pathogens, particularly in the presence of predisposing risk factors.

Acknowledgement

This work is supported in part by the efforts of Dr. Moro O. Salifu M.D., M.P.H., M.B.A., M.A.C.P., Professor and Chairman of Medicine through NIH Grant number S21MD012474.

References

[1] Murdoch DR, Corey GR, Hoen B, et al, and the International Collaboration on Endocarditis-Prospective Cohort Study (ICEPCS) Investigators. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med 2009; 169: 463-73.
[2] Selton-Suty C, Céard M, Le Moing V, et al, and the AEPEI Study Group. Preeminence of Staphylococcus aureus in infective endocarditis: a 1-year population-based survey. Clin Infect Dis 2012; 54: 1230-39.
[3] Duval X, Delahaye F, Alla F, et al, and the AEPEI Study Group. Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J Am Coll Cardiol 2012; 59: 1968-76.
[4] Hoen B, Alla F, Selton-Suty C, et al, and the Association pour l’Etude et la Prévention de l’Endocardite Infecieuse (AEPEI) Study Group. Changing profile of infective endocarditis: results of a 1-year survey in France. JAMA 2002; 288: 75-81.
[5] Cahill TJ, Prendergast BD. Infective endocarditis. Lancet 2016; 387: 892-93.
[6] Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 2003; 36: 1418-23.
[7] Thuny F, Grisoli D, Collart F, Habib G, Raoult D. Management of infective endocarditis: challenges and perspectives. Lancet 2012; 379: 965-75.
[8] Chu VH, Cabell CH, Benjamin DK Jr, et al. Early predictors of in-hospital death in infective endocarditis. Circulation 2004; 109: 1745-49.
[9] Meine TJ, Nettles RE, Anderson DJ, et al. Cardiac conduction abnormalities in endocarditis defined by the Duke criteria. Am Heart J 2001; 142: 280-85.
[10] Li JS, Sexton DJ, Mick N, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis 2000; 30: 633-38.
[11] Durack DT, Kaplan EL, Bisno AL. Apparent failures of endocarditis prophylaxis: analysis of 52 cases submitted to a national registry. JAMA 1983; 250: 2318-22.
[12] Habib G, Badano L, Tribouilloy C, et al. Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr 2010; 11: 202-19.
[13] Brouqui P, Raoult D. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev 2001; 177-207.
[14] Agrawal N, Kariyappa M, Kolhari VB, Manjunath CN. Cauliflower-like deformation of pulmonary valve in a case of infective endocarditis by a rare organism: Gemella morbillorum. BMJ Case Rep 2014.
[15] Agrawal T, Irani M, Rojas SF, et al. A rare case of infective endocarditis caused by Gemella haemolytoma. Cureus 2019 Nov; 11(11): e6234.
[16] Akyama K, Taniyasu N, Hirota J, et al. Recurrent aortic valve endocarditis caused by Gemella morbillorum: report of a case and review of the literature. Jpn Circ J 2001; 65: 997-1000.
[17] Al Chekakie MO, Heroux A, Montpetit M, Neme H. Gemella morbillorum prosthetic valve endocarditis. Congest Heart Fail 2009 Nov-Dec; 15(6): 291-2.
[18] Al Soub H, El-Shafie SS, Al-Khal AL, Salam AM. Gemella morbillorum endocarditis. Saudi Med J 2003 Oct; 24(10): 1135-7.
[19] Al-Hujailan G, Lagace-Wiens P. Mechanical valve endocarditis caused by Gemella morbillorum. J Medical Microbiology 2007; 56: 1689-91.
[20] Almaghrabi R, Halim M, Kherallah M, Sheikh A. Infective endocarditis caused by Gemella sanguinis. International Journal of Antimicrobial Agents 2009 Jun; 33(2): S44.
[21] Ando A, Kagihara J, Chung H, Bolger Jr DT. Native bivalvular endocarditis by Gemella morbillorum: review of the literature. Folia Microbiol (Praha) 2002; 47(6): 737-41.
[22] Brack MJ, Avery PG, Hubner PJB, Swann RA. Gemella haemolytica: a rare and unusual cause of infective endocarditis. Postgrad Med J 1991; 67: 210.
[23] Breathnach AS, Gould FK, Bain HH, Aucken HM. Gemella haemolytica endocarditis associated with a raised streptolysin-O titre. J Infect 1997 Jan; 34(1): 87-8.
[24] Calopa M, Rubio F, Aguilar M, Peres J. Giant basilar aneurysm in a patient with systemic lupus erythematosus. J Heart Valve Dis 2011 Jan; 20(1): 107-9.
[25] Bell E, McCartney AC. Gemella morbillorum endocarditis in an intravenous drug abuser. J Infect 1992 Jul; 25(1): 110-2.
[26] Benes J, Picha D, Kabelkova M, et al. Infective endocarditis caused by unusual gram-positive pathogens: report of 4 patients. Folia Microbiol (Praha) 2002; 47(6): 737-41.
[27] Black MJ, Avery PG, Hubner PJB, Swann RA. Gemella haemolytica: a rare and unusual cause of infective endocarditis. Postgrad Med J 1991; 67: 210.
[28] Breathnach AS, Gould FK, Bain HH, Aucken HM. Gemella haemolytica endocarditis associated with a raised streptolysin-O titre. J Infect 1997 Jan; 34(1): 87-8.
[29] Calopa M, Rubio F, Aguilar M, Peres J. Giant basilar aneurysm in the course of subacute bacterial endocarditis. Stroke 1990 Nov; 21(11): 1625-7.
[30] Carano N, Agnelli A, Allegri V, et al. Infective endocarditis following body piercing: presentation of one case due to Gemella morbillorum and review of the literature. Med Sci Monit 2010; 16(10): CS124-8.
American Journal of Medical Case Reports

Chadha S, Chen O, Shetty V, et al. "Kissing" vegetation in a rare case of infective endocarditis by Gemella sanguinis. Am J Med Sci 2013 Jan; 345(6): 507-8.

Constantinos M, Marios S. Gemella morbillorum tricuspid valve endocarditis resulting in septic pulmonary emboli in a patient with intracranial hemorrhage. Int J Cardiol 2015 Apr; 184: 769-71.

Czarnecki A, Ong GH, Pieroni P, et al. Gemella morbillorum septic arthritis of the knee and infective endocarditis. Am J Orthop (Belle Mead NJ) 2007 Jan; 36(1): E7-9.

Devyust O, Hainaut P, Gigi J, Wauters G. Rarity and potential severity of Gemella haemolysans endocarditis. Acta Clin Belg 1993; 48(1): 52-3.

Elsayed S, Zhang K. Gemella bergeriae endocarditis diagnosed by sequencing of rDNA genes in heart valve tissue. J Clin Microbiology 2004 Oct; 42(10): 4897-900.

Emmanouilidou G, Voukelatou P, Vrettos I, et al. A case report of successful conservative treatment for infective endocarditis caused by Gemella sanguinis. Case Report in Infectious Diseases 2019; 9382395: 1-3.

Farmaki E, Roiilides E, Darilis E, et al. Gemella morbillorum endocarditis in a child. Pediatr Infect Dis J 2000 Aug; 19(8): 751-3.

Fresard A, Michel VP, Rueda X, et al. Gemella haemolysans endocarditis. Clin Infect Dis 1993 Apr; 16(4): 586-7.

Gimigliano F, Carletti M, Carducci G, et al. Gemella haemolysans endocarditis in a child. Pediatr Infect Dis J 2005 Feb; 24(2): 190.

Godinho AR, Eiras e, Vaz A, et al. Gemella endocarditis: an aggressive entity. Revista Portuguesa de Cardiologia 2013 Dec; 32(12): 1027-30.

Gundre P, Pascal W, Abrol S, et al. Prosthetic valve endocarditis caused by Gemella sanguinis: a consequence of persistent dental infection. Am J Med Sci 2011 Jun; 341(6): 512-3.

Helft G, Tabone X, Metzger JP, Vacheron A. Gemella haemolysans endocarditis with colonic carcinoma. Eur J Med 1993 Jun-Jul; 2(6): 369-70.

Hikone M, Sakamoto N, Ota M, et al. The first case report of infective endocarditis caused by Gemella taiwanensis. Journal of Infection and Chemotherapy 2017; 23(8): 567-71.

Holland J, Wilson R, Cumpston N. Gemella morbillorum prosthetic valve endocarditis. NZ Med J 1996 Sep; 109(1030): 367.

Hull JE. Multisystem organ failure due to Gemella morbillorum native valve endocarditis. Mil Med 2010 Nov; 175(11): 923-5.

Hussain K, Abubaker J, Al Deesi ZO, Ahmed R. Unreported organism causing a large vegetation and abscess in an uncommon setting. Scand J Infect Dis 2004; 36: 885-8.

Jayananda S, Gollol-Raju NS, Fadul N. Gemella species bacteremia and stroke in an elderly patient with respiratory tract infection. Case Reports in Medicine 2017; 1098527: 1-2.

Kaufhold A, Franzen D, Lutticken R. Endocarditis caused by Gemella haemolysans. Infection 1989; 17(6): 385-7.

Kerr JR, Webb CH, McGimpsey JG, Campbell NP. Infective endocarditis due to Gemella morbillorum complicating hypertrophic obstructive cardiomyopathy. Ulster Medical Journal 1994; 63(1): 108-10.

Khan R, Urban C, Rubin D, Segal-Maurer S. Subacute endocarditis caused by Gemella haemolysans and a review of the literature. Scand J Infect Dis 2004; 36: 885-8.

Kofleridis DP, Anastasopoulos T, Panagiotakis S, et al. Endocarditis caused by Gemella morbillorum resistant to beta-lactams and aminoglycosides. Scand J Infect Dis 2006; 38(11-12): 1125-7.

Kollhari VB, Kumar VV, Agrawal N, Prakash SS. Gemella morbillorum endocarditis in hypertrophic cardiomyopathy: a rare organism causing a large vegetation and abscess in an uncommon setting. BMJ Case Rep 2014.

Kumar G, Al Ali AS, Bhatti NG Rare bacteria infecting the heart and affecting the kidney of a young child. Case Rep Nephrol Dial 2017; 7: 138-43.

La Scola B, Raoult D. Molecular identification of Gemella species from three patients with endocarditis. J Clin Microbiol 1998 Apr; 36(4): 866-71.

Li D, Zhu Z, Zheng X, et al. Gemella morbillorum endocarditis of pulmonary valve: a case report. Journal of Cardiothoracic Surgery 2017; 12(16): 1-5.

Liu D, Bateman T, Carr E. Endocarditis due to Gemella haemolysans in a newly diagnosed multiple myeloma patient. Journal of Community Hospital Internal Medicine Perspectives 2016; 6(32357): 1-3.

Logan LK, Zheng X, Shulman S. Gemella bergeriae endocarditis in a boy. Pediatric infectious disease journal 2008 Feb; 27(2): 184-6.

Lopez-Dupla M, Creus C, Navarro O, Raga X. Association of Gemella morbillorum endocarditis with adenomatous polyps and carcinoma of the colon: case report and review. Clin Infect Dis 1996 Feb; 22(2): 379-80.

Maraki S, Plevritaki A, Kofferidis D, et al. Bicuspid aortic valve endocarditis caused by Gemella sanguinis: case report and literature review. Journal of Infection and Public Health 2019; 12: 304-8.

Martin MJ, Wright DA, Jones AR. A case of Gemella morbillorum endocarditis. Postgrad Med J 1995 Mar; 71(833): 188.

Matisis PP, Easthope RN. Gemella haemolysans endocarditis. Aust N Z Med 1994 Aug; 24(4): 417-8.

Morea P, Toni M, Bressan M, Stritoni P. Prosthetic valve endocarditis by Gemella haemolysans. Infection 1991; 6: 74.

Mosquera JD, Zabalza M, Lantero M, Blanco Jr. Endocarditis due to Gemella haemolysans in a patient with hemochromatosis. Clinical Microbiology and Infection 2008 Jul; 6(10): 566-8.

Mugunthan M, Bhalla S, Shete V, Grover N. Gemella sanguinis: a rare cause of native valve endocarditis in a child. Medical Journal Armed Forces India 2016; 72: 584-586.

Murai M, Fukuno H, Negoro N, et al. Evidence of active endocarditis, caused by Gemella morbillorum, related to acute embolic stroke. Int J Cardiol 2006 Sep; 112(2): e17-8.

Nandakumar R, Raji G. Isolated tricuspid valve endocarditis in nonaddicted patients: a diagnostic challenge. Am J Med Sci 1997 Sep; 314(3): 207-12.

Pachirat O, Watt G, Pussadhamma B. First case of tricuspid valve endocarditis caused by Gemella bergeri. Case Reports in Medicine 2015; 704785: 1-3.

Palma G, Giodano R, Russolillo V, Vosa C. Percutaneous pulmonary valve implantation after endocarditis of Contegra valve conduit: a case report. Thorac Cardiovasc Surg 2011 Mar; 59(2): 123-5.

Purcell KL, Finley JP, Halperin SA. Gemella species endocarditis in a child. Can J Infect Dis 2001 Sep-Oct; 12(5): 317-20.

Raja NS, Meyers M, Parratt D, et al. Gemella haemolysans endocarditis: report of 2 cases and review of literature. Infect Dis Clin Pract 2009; 17: 335-34.

Rameschandani MS, Rakita RM, Freeman RV, et al. Total artificial heart as bridge to transplantation for severe culture-negative prosthetic valve endocarditis due to Gemella haemolysans. ASAIO J 2014 Jul-Aug; 60(4): 479-81.

Rosa RG, Rosa MD, Ascoli AM, et al. Cardiogenic shock due to Gemella morbillorum native mitral valve endocarditis. Clinical Case Reports 2015; 3(6): 342-344.

Rousseau-Gagnon M, Röpel J, Desjardins A, et al. Gemella sanguinis endocarditis with c-ANCA/anti-PR-3-associated immune complex necrotizing glomerulonephritis with a ‘full-house’ pattern on immunofluorescence microscopy. Clin Kidney J 2013; 6: 300-4.

Sadaune L, Roca F, Bordage M, et al. Benefits of a pre-treatment comprehensive geriatric assessment in a rare case of Gemella haemolysans endocarditis in an 86-year-old patient and a review of the literature. Medicina 2019; 55(292): 1-5.

Samuel I, Bloomfield P, Ross P. Gemella haemolysans prosthetic valve endocarditis. Postgrad Med J 1995 Mar; 71(833): 188.

Satake K, Ohsawa I, Koboyashi N, et al. Three cases of PR3-ANCA positive subacute endocarditis caused by attenuated bacteria (Propionibacterium, Gemella, and Bartonella) complicated with kidney injury. Mod Rheumatol 2011 Oct; 21(5): 536-4.

Seeburger J, Groesdonk H, Borger MA, et al. Quadripule valve replacement for acute endocarditis. J Thorac Cardiovasc Surg 2009 Jun; 137: 1564-5.

Shahani L. Gemella morbillorum prosthetic aortic valve endocarditis. BMJ Case Rep 2014.

Shinha T. Endocarditis due to Gemella morbillorum. Intern Med 2017; 56(13): 1751.
Second case of infective endocarditis caused by Gemella sanguinis.

caused by Gemella morbillorum in a haemodialysis patient.

infected endocarditis caused by an indigenous bacterium (Gemella morbillorum). Intern Med 1994 Oct; 33(10): 628-31

Prosthetic ball valve endocarditis due to Gemella species. Jpn Circ J 1998 Aug; 62(8): 626-8.

Second fatal case of infective endocarditis caused by Gemella bergeriae. Int J of Biomed 2017; 7(1): 63-66.

Ural S, Yurtsever SG, Ormen B, et al. Gemella morbillorum endocarditis. Case Reports in Infectious Diseases 2014; 456471: 1-4.

Virgilio E, Chieco PA. Sixth case of infective endocarditis caused by Gemella bergeri. Braz J Infect Dis 2014.

Winkler J, Chaudhry SP, Stockwell PH. Gemella endocarditis presenting as an ST-segment-elevation myocardial infarction. Tex Heart Inst J 2016; 43(3): 258-60.

Yang CH, Tsai KT. Gemella sanguinis endocarditis: first case report in Taiwan and review of the literature. Journal of the Formosan Medical Association 2014; 113: 562-565.

Youssef D, Youssef I, Marroush TS, Sharma M. Gemella endocarditis: a case report and a review of the literature. Avicenna J Med 2019 Oct; 9(4): 64-8.

Zaidi SJ, Hysayni T, Collins MA. Gemella bergeri infective endocarditis: a case report and brief review of literature. Cardiology in the Young 2018; 28: 762-4.

Zakir RM, Al-Dehneh A, Dabu L, et al. Mitral bioprosthesis valve endocarditis caused by an unusual microorganism, Gemella morbillorum, in an intravenous drug user. J Clin Microbiology 2004 Oct; 42(10): 4893-6.

Zheng M, Ng OT, Two BW. Aortic and mitral valve endocarditis caused by Gemella morbillorum in a haemodialysis patient. Singapore Med J 2008 Dec; 49(12): e385-7.

Zingaro L, Bartoli E, Sechi LA. Post-infectious glomerulonephritis in a patient with Gemella haemolysans endocarditis. Am J Med 1999 Jan; 106(1): 125-6.

Kilpper-Balz R, Schleifer KH. Transfer of Streptococcus morbillorum to the genus Gemella as Gemella morbillorum comb. nov. Int J Syst Bacteriol 1988; 38: 442-3.

Collins MD. The Genus Gemella. The Prokaryotes, ed. 3, Dworkin M, Falkow S, Rosenber E, et al., eds. New York: Springer 2006: 511-8.

Hung WC, Chen HJ, Tsai JC, et al. Gemella parahaemolysans sp. nov. and Gemella taiwanensis sp. nov. isolated from human clinical specimens. Int J Syst Evol Microbiol 2014; 64: 2060-5.

Jaillon S, Berthonet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol 2019; 56: 308-21.

Marjon E, Ou P, Celemajer DS, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med 2007; 357: 470-76.

Correa de Sa DD, Tleyjeh IM, Anavekar NS, et al. Epidemiological trends of infective endocarditis: a population-based study in Olmsted County, Minnesota. Mayo Clin Proc 2010; 85: 422-26.

Correa de Sa DD, Hoke TR. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol 2011; 3: 67-84.

Pasquali SK, He X, Mohamad Z, et al. Trends in endocarditis hospitalizations at US children’s hospitals: impact of the 2007 American Heart Association Antibiotic Prophylaxis Guidelines. Am Heart J 2012; 163: 894-99.

Silverman ME, Upshaw CB Jr. Extra-cardiac manifestations of infective endocarditis and their historical descriptions. Am J Cardiol 2007; 100: 1802-07.

Servy A, Valeyrrie-Alanore L, Alla F, et al., and the Association Pour l’Étude et la Prévention de l’Endocardite Infecetueuse Study Group. Prognostic value of skin manifestations of infective endocarditis. JAMA Dermatol 2014; 150: 494-500.

Meine TJ, Nettles RE, Anderson DJ, et al. Cardiac conduction abnormalities in endocarditis defined by the Duke criteria. Am Heart J 2001; 142: 280-85.

Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the management of infective endocarditis. European Heart Journal 2015; 36: 3073-123.

Prendergast BD, Tornos P. Surgery for infective endocarditis: who and when? Circulation 2010; 121: 1141-52.

Hill EE, Herijgers P, Claus P, et al. Infective endocarditis: changing epidemiology and predictors of 6-month mortality: a prospective cohort study. Eur Heart J 2007; 28: 196-203.

Chu VH, Cabell CH, Benjamin DK Jr, et al. Early predictors of in-hospital death in infective endocarditis. Circulation 2004; 109: 1745-49.
Supplementary Table 1. Risk of bias across studies

Reference, publication year	Missing sex	Treatment procedure(s) clearly described?	Clinical condition clearly described?	Unanticipated events identified?	Total score
Agrawal N et al, 2014 [14]	✓	✓	✓	X	50%
Agrawal T et al, 2019 [15]	✓	✓	✓	X	75%
Akyama K et al, 2001 [16]	✓	✓	✓	X	75%
Al Chekakie MO et al, 2009 [17]	✓	✓	✓	X	100%
Al Soub H et al, 2003 [18]	✓	✓	✓	X	63%
Al-Hujailan G et al, 2007 [19]	✓	✓	✓	X	75%
Almaghrabi R et al, 2009 [20]	✓	✓	✓	X	100%
Ando A et al, 2016 [21]	✓	✓	✓	X	100%
Avgoustidis N et al, 2011 [22]	✓	✓	✓	X	75%
Bell E et al, 1992 [23]	✓	✓	✓	X	75%
Benes J et al, 2002 [24]	✓	✓	✓	X	75%
Brack MJ et al, 1991 [25]	✓	✓	✓	X	63%
Breathnach AS et al, 1997 [26]	✓	✓	✓	X	75%
Calopa M et al, 1990 [27]	✓	✓	✓	X	100%
Carano N et al, 2010 [28]	✓	✓	✓	X	75%
Chadha S et al, 2013 [29]	✓	✓	✓	X	75%
Constantinos M et al, 2015 [30]	✓	✓	✓	X	75%
Carnevei A et al, 2007 [31]	✓	✓	✓	X	75%
Devuyse O et al, 1993 [32]	✓	✓	✓	X	63%
Elsayed S et al, 2004 [33]	✓	✓	✓	X	100%
Emmanouilidou G et al, 2019 [34]	✓	✓	✓	X	63%
Farmaki E et al, 2000 [35]	✓	✓	✓	X	100%
Fresard A et al, 1993 [36]	✓	✓	✓	X	75%
Gimigliano F et al, 2005 [37]	✓	✓	✓	X	75%
Godinho AR et al, 2013 [38]	✓	✓	✓	X	75%
Gundre P et al, 2011 [39]	✓	✓	✓	X	75%
Helf G et al, 1993 [40]	✓	✓	✓	X	63%
Hikone M et al, 2017 [41]	✓	✓	✓	X	75%
Holland J et al, 1996 [42]	✓	✓	✓	X	75%
Hull JE, 2010 [43]	✓	✓	✓	X	75%
Hussain K et al, 2014 [44]	✓	✓	✓	X	88%
Jayananda S et al, 2017 [45]	✓	✓	✓	X	88%
Kaufhold A et al, 1989 [46]	✓	✓	✓	X	75%
Kerr JR et al, 1994 [47]	✓	✓	✓	X	75%
Khan R et al, 2004 [48]	✓	✓	✓	X	75%
Kolferidis DP et al, 2006 [49]	✓	✓	✓	X	75%
Kohlhar VB et al, 2014 [50]	✓	✓	✓	X	75%
Kumar G et al, 2017 [51]	✓	✓	✓	X	88%
La Scola B et al, 1998 [52]	✓	✓	✓	X	50%
Li D et al, 2017 [53]	✓	✓	✓	X	75%
Liu D et al, 2016 [54]	✓	✓	✓	X	100%
Logan LK et al, 2008 [55]	✓	✓	✓	X	100%
Lopez-Dupla M et al, 1996 [56]	✓	✓	✓	X	88%
Maraki S et al, 2019 [57]	✓	✓	✓	X	75%
Martin MJ et al, 1995 [58]	✓	✓	✓	X	63%
Matsis PP et al, 1994 [59]	✓	✓	✓	X	63%
Morea P et al, 1991 [60]	✓	✓	✓	X	75%
Mosquera JD et al, 2008 [61]	✓	✓	✓	X	75%
Mugunthanh M et al, 2016 [62]	✓	✓	✓	X	63%
Murai M et al, 2006 [63]	✓	✓	✓	X	75%
Were patient’s demographic characteristics clearly described? | Was the patient’s history clearly described and presented as a timeline? | Was the current clinical condition of the patient on presentation clearly described? | Were diagnostic tests or assessment methods and results clearly described? | Was the intervention(s) or treatment procedure(s) clearly described? | Was the post-intervention clinical condition clearly described? | Were adverse events (harms) or unanticipated events identified and described? | Does the case report provide takeaway lessons? | Total score

Reference, publication year	✓	✓	✓	✓	✓	✓	✓	Total score
Nandakumar R et al, 1997	✓	✓	✓	✓	✓	✓	✓	100%
Pachirat O et al, 2015	✓	X	✓	✓	✓	✓	X	50%
Palma G et al, 2011	✓	✓	✓	✓	✓	✓	X	75%
Purcell LK et al, 2001	✓	✓	✓	✓	✓	✓	X	75%
Raja NS et al, 2009	✓	✓	✓	✓	✓	✓	X	75%
Ramchandani MS et al, 2014	✓	✓	✓	✓	✓	✓	✓	100%
Rosa RG et al, 2015	✓	✓	✓	✓	✓	✓	✓	100%
Rousseau-Gagnon M et al, 2013	✓	✓	✓	✓	✓	✓	X	75%
Sadaule L et al, 2019	✓	✓	✓	✓	✓	✓	X	75%
Samuel L et al, 1995	✓	✓	✓	✓	✓	✓	X	75%
Satake K et al, 2011	✓	✓	✓	✓	✓	✓	✓	100%
Sceuberger J et al, 2009	✓	✓	✓	✓	✓	✓	✓	100%
Shahani L, 2014	✓	✓	✓	✓	✓	✓	✓	75%
Shinha T, 2017	✓	✓	✓	✓	✓	✓	X	63%
Shukla SK et al, 2002	✓	✓	✓	✓	✓	✓	X	75%
Stroup JS et al, 2007	✓	✓	✓	✓	✓	✓	✓	100%
Taimur S et al, 2010	✓	✓	✓	✓	✓	✓	X	75%
Terada H et al, 1994	✓	✓	✓	✓	✓	✓	X	75%
Ukimura A et al, 1998	✓	✓	✓	✓	✓	✓	✓	100%
Ukudeeva A et al, 2017	✓	✓	✓	✓	✓	✓	✓	100%
Ural S et al, 2014	✓	✓	✓	✓	✓	✓	X	75%
Virgilio E et al, 2014	✓	✓	✓	✓	✓	✓	X	75%
Winkler J et al, 2016	✓	✓	✓	✓	✓	✓	X	88%
Yang CH et al, 2014	✓	✓	✓	✓	✓	✓	X	75%
Youssif D et al, 2019	✓	✓	✓	✓	✓	✓	✓	100%
Zaidi SI et al, 2018	✓	✓	✓	✓	✓	✓	X	75%
Zahir RM et al, 2004	✓	✓	✓	✓	✓	✓	X	75%
Zheng M et al, 2008	✓	✓	✓	✓	✓	✓	✓	100%
Zingaro L et al, 1999	✓	X	✓	✓	✓	✓	X	63%

Supplementary Figure 1. Distribution of males (A) and females (B) patients with infective endocarditis by Gemella spp. according to age.
Supplementary Table S2. Antibiotic susceptibility and resistance of *Gemella* in order of most commonly discovered (n=43)

Antibiotic susceptibility	Antibiotic resistance
Penicillin (penicillin, ampicillin)	Penicillin (penicillin, ampicillin)
Vancomycin	Aminoglycosides (gentamicin)
Cephalosporin (cefazolin, cefotaxime, ceftriaxone, cephalotin)	Fluoroquinolone (levofloxacin, ciprofloxacin)
Macrolide (erythromycin)	Chloramphenicol
Aminoglycosides (gentamicin)	
Lincomycin (clindamycin)	
Fluoroquinolone (levofloxacin, ciprofloxacin)	
Antimycobacerial (rifampicin)	
Doxycycline (tetracycline, minocycline)	
Carbapenem (imipenem, meropenem)	
Chloramphenicol	
Oxazolidinones (linezolid)	
Penicillin-like (amoxicillin-clavulanic acid)	
Glycopeptide (teicoplanin)	
Sulfonamides	

© The Author(s) 2021. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).