Electronic Supporting Information for

Probing a variation of the inverse-trans-influence in americium and lanthanide tribromide tris(tricyclohexylphosphine oxide) complexes

Cory J. Windorff, Cristian Celis-Barros, Joseph M. Sperling, Noah C. McKinnon, Thomas E. Albrecht-Schmitt*

Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, USA. E-mail: talbrechtschmitt@fsu.edu;

Table of Contents

PHOTOGRAPHS OF AMERICIUM SYNTHESIS..S2
UV/vis/NIR SPECTRA WITH PHOTOGRAPHS OF COMPOUNDS............................S3–S7
MULTI NUCLEAR NMR SPECTRA...S8–S43
 AmBr₃(OPcy₃)₃...S8–S11
 NdBr₃(OPcy₃)₃...S12–S17
 PrBr₃(OPcy₃)₃...S18–S24
 CeBr₃(OPcy₃)₃...S25–S31
 LaBr₃(OPcy₃)₃...S32–S38
 OPcy₃..S39
 Stacked Spectra..S40–S43

THEORETICAL CALCULATIONS...S44–S54
ADDITIONAL ITI CALCULATIONS...S55
CRYSTALLOGRAPHY..S56–S69
REFERENCES...S70
PHOTOGRAPHS OF AMERICIUM SYNTHESIS

Figure S1. Photograph of AmBr₃(OPcy₃)₃ in ¹PrOH (left) and 9.0 mg of crystalline material (Right).

Figure S2. Photograph of AmBr₃(OPcy₃)₃ NMR sample in CDCl₃ (left), and additional photograph of isolated crystals (right).
Figure S3. Room temperature UV/vis/NIR spectra of LaBr$_3$(OPcy)$_3$ in MeOH (red trace), DCM (black trace) and in the solid state (purple trace, right axis) and a photograph of a typical crystal. Identifiable peaks labeled with their λ_{max} and ε values are labeled in their corresponding colors. No identifiable transitions occur past 500 nm and the spectra have been truncated for clarity.
Figure S4. Room temperature UV/vis/NIR spectra of CeBr$_3$(OPcy)$_3$ in MeOH (red trace), DCM (black trace) and in the solid state (purple trace, right axis) and a photograph of a typical crystal. Identifiable peaks labeled with their λ_{max} and ε values are labeled in their corresponding colors. No identifiable transitions occur past 500 nm and the spectra have been truncated for clarity.
Figure S5. Room temperature UV/vis/NIR spectra of PrBr$_3$(OPcy)$_3$ in MeOH (black trace), DCM (red trace) and in the solid state (purple trace, right axis) inset of 400-650 nm region and a photograph of a typical crystal. Identifiable peaks labeled with their λ_{max} and ε values are labeled in their corresponding colors with excitation symmetry labels. No identifiable transitions occur past 650 nm and the spectra have been truncated for clarity.
Figure S6. Room temperature UV/vis/NIR spectra of NdBr$_3$ (OPcy$_3$)$_3$ in MeOH (red trace), DCM (black trace) and in the solid state (purple trace, right axis) inset of 300-950 nm region of MeOH spectrum (left), inset of 500-650 region for DCM and solid state spectra (right) and a photograph of a typical crystal. Due to the high number of excitations only excitation symmetry labels have been included. No identifiable transitions occur past 950 nm and the spectra have been truncated for clarity.
Figure S7. Room temperature UV/vis/NIR spectra of OPcy₃ in MeOH (red trace), and DCM (black trace), identifiable excitation labeled with its λ_{max} and ε values. No identifiable transitions occur past 500 nm and the spectra have been truncated for clarity.
MULTI NUCLEAR NMR SPECTROSCOPY

Figure S8. 1H NMR spectrum of $\text{AmBr}_3(\text{OPcy}_3)_3$ in CDCl$_3$ at 295 K with expansion of 8 – 0 ppm region. Because the chemical identity of the peaks is unclear the peaks are not integrated.
Figure S9. 13C{1H} NMR spectrum of AmBr$_3$(OPcy)$_3$ in CDCl$_3$ at 295 K with expansion of 80 – 15 ppm region processed with a 5 Hz line broadening.
Figure S10. 31P-1H NMR spectrum of AmBr$_3$(OPcy)$_3$ in CDCl$_3$ at 295 K processed with a 10 Hz line broadening.
Figure S11. Multinuclear NMR spectra of AmBr$_3$(OPcy)$_3$ at 295 K in CDCl$_3$, 1H (black), 13C{1H} (red) and 31P{1H} (green).
Figure S12. 1H NMR spectrum of NdBr$_3$(OPcy)$_3$ at 298 K in CDCl$_3$.
Figure S13. 1H NMR spectrum of NdBr$_3$(OPcy)$_3$ at 298 K in CD$_2$Cl$_2$.
Figure S14. Multinuclear NMR spectra of NdBr₃(OPcy)₃ at 298 K in CD₂Cl₂, ^{13}C\{^1H\} (red) and ^{31}P\{^1H\} (green).
Figure S15. Multinuclear NMR spectra of NdBr$_3$(OPcy$_3$)$_3$ at 187 K in CD$_2$Cl$_2$ 1H (black), and 31P 1H (green).
Figure S16. Multinuclear NMR spectra of \(\text{NdBr}_3(\text{OPcy}_3)_3 \) at 298 K in MeOD-\(d_4 \) (black), and \(^{31}\text{P}\{^1\text{H}\} \) (green).
Figure S17. Multinuclear NMR spectra of NdBr$_3$(OPcy)$_3$ at 187 K in MeOD-d_4 1H (black), and 31P{1H} (green).
Figure S18. 1H NMR spectrum of PrBr$_3$(OPcy)$_3$ at 298 K in CDCl$_3$.
Figure S19. 1H NMR spectrum of PrBr$_3$(OPcy)$_3$ at 298 K in CD$_2$Cl$_2$.
Figure S20. Multinuclear NMR spectra of PrBr₃(OPcy₃)₃ at 298 K in CD₂Cl₂, 13C{¹H} (red) and 31P{¹H} (green).
Figure S21. Multinuclear NMR spectra of PrBr$_3$(OPcy)$_3$ at 187 K in CD$_2$Cl$_2$, 1H (black), and 31P{1H} (green).
Figure S22. 1H NMR spectrum of $\text{PrBr}_3(\text{OPcy})_3$ at 298 K in MeOD-d_4.

1H NMR spectrum of $\text{PrBr}_3(\text{OPcy})_3$ at 298 K in MeOD-d_4.

H_2O

HCD_2OD
Figure S23. Multinuclear NMR spectra of PrBr$_3$(OPcy)$_3$ at 298 K in MeOD-d_4, 13C{1H} (red) and 31P{1H} (green).
Figure S24. Multinuclear NMR spectra of PrBr₃(OPcy)₃ at 187 K in MeOD-d₄, H (black), and 3¹P₁H (green).
Figure S25. Multinuclear NMR spectra of CeBr$_3$(OPcy)$_3$ at 294 K in CDCl$_3$, 1H (black), 13C{1H} (red) and 31P{1H} (green).
Figure S26. 1H NMR spectrum of CeBr$_3$(OPcy)$_3$ at 298 K in CD$_2$Cl$_2$.

CD$_2$Cl$_2$
Figure S27. Multinuclear NMR spectra of CeBr$_3$(OPcy)$_3$ at 298 K in CD$_2$Cl$_2$, 13C{1H} (red) and 31P{1H} (green).
Figure S28. Multinuclear NMR spectra of CeBr$_3$(OPcy)$_3$ at 187 K in CD$_2$Cl$_2$, 1H (black), and 31P{$_^1$H} (green).
Figure S29. 1H NMR spectrum of $\text{CeBr}_3(\text{OPcy}_3)_3$ at 298 K in MeOD-d_4. *unidentified impurity.
S29
Figure S30. Multinuclear NMR spectra of CeBr$_3$(OPcy)$_3$ at 298 K in MeOD-d_4, 13C{1H} (red) and 31P{1H} (green).
Figure S31. Multinuclear NMR spectra of CeBr$_3$(OPcy)$_3$ at 187 K in MeOD-d_4, 1H (black), and 31P{1H} (green).
Figure S32. Multinuclear NMR spectra of LaBr$_3$(OPcy$_3$)$_3$ at 298 K in CDCL$_3$, 1H (black), 13C{1H} (red) and 31P{1H} (green).
Figure S33. 1H NMR spectrum of $\text{LaBr}_3(\text{OPcy}_3)_3$ at 298 K in CD_2Cl_2. *unidentified impurity.
Figure S34. Multinuclear NMR spectra of LaBr$_3$(OPcy)$_3$ at 298 K in CD$_2$Cl$_2$, 13C$\{^1$H$\}$ (red) and 31P$\{^1$H$\}$ (green).
Figure S35. Multinuclear NMR spectra of LaBr$_3$(OPcy)$_3$ at 187 K in CD$_2$Cl$_2$, 1H (black), and 31P{1H} (green).
Figure S36. 1H NMR spectrum of $\text{LaBr}_3(\text{OPcy}_3)_3$ at 298 K in MeOD-d_4, *unidentified impurity.
Figure S37. Multinuclear NMR spectra of LaBr₃(OPcy)₃ at 298 K in MeOD-d₄, ¹³C{¹H} (red) and ³¹P{¹H} (green).
Figure S38. Multinuclear NMR spectra of LaBr$_3$(OPcy)$_3$ at 187 K in MeOD-d_4, 1H (black), and 31P{1H} (green), *unidentified impurity.

S38
Figure S39. Multinuclear NMR spectra of OPcy$_3$ at 298 K in CDCl$_3$, 1H (black), 13C{1H} (red) and 31P{1H} (green).
Figure S40. Stacked 31P$^{1\text{H}}$ NMR spectra of $\text{MBr}_3(\text{OPcy}_3)_3$ (M = Am, Nd, Pr, Ce, La) including OPcy$_3$ in CDCl$_3$ or CD$_2$Cl$_2$ at 298 K.
Figure S41. Stacked ^{31}P-{^1H} NMR spectra of $\text{MB}_{3}(\text{OPcy})_{3}$ ($\text{M} = \text{Nd, Pr, Ce, La}$) in CD_2Cl_2 at 187 K.
Figure S42. Stacked 31P-1H NMR spectra of $\text{MBr}_3(\text{OPcy}_3)_3$ ($M = \text{Nd, Pr, Ce, La}$) in MeOD-$d_4$ at 298 K.
Figure S43. Stacked 31P{1H} NMR spectra of $\text{MBr}_3(\text{OPcy}_3)_3$ ($M = \text{Nd, Pr, Ce, La}$) in MeOD-$d_4$ at 187 K.
THEORETICAL CALCULATIONS

Table S1. Bond distances (Å) of all-electron geometry optimizations of $\text{MBr}_3(\text{OPMe}_3)_3$ (M = Ce, Nd, Am) in gas phase at PBE/TZP level of theory.

Bond	Ce	Nd	Am
M – O1	2.406	2.376	2.366
M – O2	2.406	2.389	2.364
M – O3	2.431	2.391	2.411
M – Br1	2.881	2.839	2.866
M – Br2	2.917	2.886	2.856
M – Br3	2.994	2.903	2.857
Table S2. QTAIM metrics derived from SR-CAS wave functions for MBr\textsubscript{3}(OPcy)\textsubscript{3} (M = Ce, Nd, Am) complexes. With the following definitions: ρ(r) – electron density, (eÅ−3), δ(r) – delocalization indices, V(r) – potential energy density (kJmol−1Å−3), G(r) – kinetic energy density (kJmol−1Å−3), and H(r) – total energy density (kJmol−1Å−3). H(r)/ρ(r) represents a "normalized" energy density per electron (kJmol−1).

	C	N	A	e	d	m	C	N	A	e	d	m	C	N	A	e	d	m	C	N	A	e	d	m	
M(1)	0	0	0	0	3	3	-5	8	5	0	0	0	0	5	5	5	5	5	5	5	5	5	5		
Br(1)	5	6	8	2	1	5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	
Br(2)	1	4	9	0	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Br(3)	8	5	5	9	3	9	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
M(1)	0	0	0	0	3	3	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	
Br(4)	1	4	9	0	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
M(1)	0	0	0	0	3	3	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	
O(1)	9	5	8	5	2	9	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
O(2)	0	2	7	0	5	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M(1)	4	4	4	2	2	3	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
O(2)	7	8	6	2	6	7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
M(1)	6	4	8	6	2	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
M(1)	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	

S45
Table S2 Continued.

	V(r)/G(r)	H(r)	H(r)/ρ(r)						
	Ce	Nd	A	Ce	Nd	A			
	e	d	m	e	d	m	e	d	m
M(1)-Br(1)	1	1	1	50	52	77	97	95	72
M(1)-Br(2)	1	0	4	43	43	68	78	74	54
M(1)-Br(3)	9	9	2	9	9	4	9	9	4
M(1)-O(1)	1	1	1	54	50	82	97	92	84
M(1)-O(2)	5	4	4	.4	.9	.5	7	3	8
M(1)-O(3)	0	0	0	.6	.3	.6	4.6	1.1	9.3
Table S3. Molecular orbital (MO) composition of $\text{AmBr}_3(\text{OPMe}_3)_3$ for the following orbital populations: Am – 6p, 5f, 6d; O – 2s, 2p; Br – 4s, 4p; P – 3s, 3p. Percentages in bold represent the main contribution to the MO. Energies given are relative to the first O 2s MO.

E(eV)	Am 6p	Am 5f	Am 6d	O 2s	O 2p	Br 4s	Br 4p	P 3s	P 3p
0.0	14%			66%				8%	4%
0.1	6%			69%	3%			11%	5%
0.4				73%	3%			11%	5%
2.6	96%					4%			
2.7	89%					1%	3%	2%	
2.8	78%					5%	7%	5%	
8.1								100%	
8.3								100%	
8.4	2%							97%	
14.7							31%		
14.8							42%		10%
15.4							5%	40%	5%
17.4	3%							64%	
17.5	2%							68%	
17.7	3%							61%	
17.7								68%	
17.8								66%	
17.9								66%	
18.9	4%								84%
19.5	3%	3%							87%
19.7	2%	3%							91%
19.8	6%	3%							88%
19.9	3%								93%
20.0	2%								92%
20.0									91%
20.0									92%
20.3	2%								97%
22.2						100%			
22.3	95%								1%
22.3						100%			
22.3	95%								1%
22.5	89%								4%
22.5	89%								6%
22.5									91%
Table S4. Molecular orbital (MO) composition of CeBr₃(OPMe₃)₃ for the following orbital populations: Ce – 5p, 4f, 5d; O – 2s, 2p; Br – 4s, 4p; P – 3s, 3p. Percentages in bold represent the main contribution to the MO. Energies given are relative to the first O 2s MO.

E(eV)	Molecular orbital composition								
	Ce 5p	Ce 4f	Ce 5d	O 2s	O 2p	Br 4s	Br 4p	P 3s	P 3p
0.0	2%			71%	4%	11%	6%		
0.1	4%			72%	2%	10%	6%		
0.3				72%	1%		12%	6%	
4.6				68%	7%			9%	
4.7				70%	4%	1%		7%	
4.8				93%				5%	
8.2						100%			
8.4				2%				96%	
8.5				5%				94%	
14.7						37%			
14.8					4%	44%		4%	
15.5						23%			
17.3					3%	64%		1%	
17.4					2%	68%		1%	
17.5					3%	67%			
17.6						69%			
17.7						69%			
17.7						70%			
19.1					2%			85%	
19.6				1%	4%			89%	
19.8					6%			90%	
19.9					2%			93%	
19.9								94%	
20.0					3%	1%		93%	
20.0								100%	
20.1					1%			95%	
20.4								100%	
23.5					100%				
23.6					100%				
23.6						100%			
23.6								100%	
23.7					89%		2%		
23.7					94%		3%		
23.7					94%				
Table S5. Molecular orbital (MO) composition of \(\text{NdBr}_3(\text{OPMe}_3)_3 \) for the following orbital populations: Nd – 5\(p \), 4\(f \), 5\(d \); O – 2\(s \), 2\(p \); Br – 4\(s \), 4\(p \); P – 3\(s \), 3\(p \). Percentages in bold represent the main contribution to the MO. Energies given are relative to the first O 2\(s \) MO.

E (eV)	Nd 5\(p \)	Nd 4\(f \)	Nd 5\(d \)	O 2\(s \)	O 2\(p \)	Br 4\(s \)	Br 4\(p \)	P 3\(s \)	P 3\(p \)
0.0	4%			71%	3%			10%	5%
0.0	6%			70%	1%			10%	4%
0.3				72%	4%			12%	8%
3.6	82%	6%						5%	
3.6	89%	3%	1%	3%					
3.7	95%					3%			
8.2		1%					99%		
8.4						97%			
8.4	3%						97%		
14.8	4%			36%					
14.8				4%	42%			4%	
15.5	3%			6%	46%			6%	
17.3	3%				64%			1%	
17.5	2%				69%			1%	
17.6	3%				65%				
17.7							69%		
17.7							68%		
17.8							70%		
19.1	6%							85%	
19.6	2%	4%						88%	
19.8								92%	
19.9	4%	2%						92%	
19.9	2%							94%	
20.0	4%	2%						93%	
20.0								94%	
20.0								95%	
20.4								98%	
22.3	100%								
22.3	100%								
22.4	100%								
22.4	100%								
22.5								93%	2%
22.5								93%	4%
22.5								93%	4%

S50
Table S6. Slater-Condon parameters of the 5/6p semi-core electrons derived from LF-DFT for the free-ions, $[\text{M(H}_2\text{O)}_9]^3+$, and $\text{MBr}_3(\text{OPcy})_3$ complexes ($\text{M} = \text{Ce, Nd, Am}$).

	$F^2(p,p)$ (eV)	$\zeta_{5/6p}$ (eV)	
Free-ion			
$[\text{M(H}_2\text{O)}_9]^3+$	7.715	5.557	2.320
$\text{MBr}_3(\text{OPcy})_3$	1.774	1.454	0.938
Nd$^{\text{III}}$	7.970	6.259	4.520
$\text{MBr}_3(\text{OPcy})_3$	2.063	1.754	1.492
Am$^{\text{III}}$	7.583	6.112	4.207
$\text{MBr}_3(\text{OPcy})_3$	5.818	4.985	4.259

Table S7. Natural localized molecular orbitals (NLMOs) involving pseudo-core 5s (6s), 5p (6p), and 4f (5f) electrons in $\text{MBr}_3(\text{OPMe})_3$ ($\text{M} = \text{Ce, Nd, Am}$). Uranyl has been also included as a reference structure with strong ITI.

[UO$_2$]$^{2+}$	NLMO composition	Natural hybrid orbital composition
NLMO (1)	100% U	99% 6p + 1% 5f
NLMO (2)	100% U	99% 6p + 1% 5f
NLMO (3)	100% U	98% 6s + 2% 6d
NLMO (4)	99.8% U	76% 6p + 24% 5f
NLMO (5)	0.2% O	2% 2s + 98% 2p

CeBr$_3$(OPMe)$_3$	NLMO composition	Natural hybrid orbital composition
NLMO (1)	100% Ce	98% 5p + 2% 4f
NLMO (2)	100% Ce	2% 5p + 98% 4f
NLMO (3)	99.8% Ce	59% 5s + 41% 5p
	*0.2% O, P	
NLMO (4)	99.5% Ce	41% 5s + 59% 5p
	*0.5% O, P	
NLMO (5)	99.3% Ce	100% 5p
	*0.7% O, P	
NdBr₃(OPMe₃)₃	NLMO composition	Natural hybrid orbital composition
---------------	------------------	----------------------------------
NLMO (1)	99.9% Nd	100% 5p
NLMO (2)	99.8% Nd	55% 5s + 43% 5p + 2% 4f
	*0.2% O, P	
NLMO (3)	99.8% Nd	100% 4f
	*0.2% O, P	
NLMO (4)	99.7% Nd	4% 5s + 96% 4f
	*0.3% O, P	
NLMO (5)	99.6% Nd	2% 5s + 2% 5p + 96% 4f
	*0.4% O, P	
NLMO (6)	99.6% Nd	40% 5s + 54% 5p + 6% 4f
	*0.4% O, P	
NLMO (7)	99.5% Nd	100% 5p
	*0.5% O, P	

AmBr₃(OPMe₃)₃	NLMO composition	Natural hybrid orbital composition
NLMO (1)	100% Am	98% 6p + 2% 5f
NLMO (2)	100% Am	2% 6s + 5% 6p + 93% 5f
NLMO (3)	99.9% Am	44% 6s + 42% 6p + 14% 5f
	*0.1% O, P	
NLMO (4)	99.9% Am	31% 6s + 21% 6p + 48% 5f
	*0.1% O, P	
NLMO (5)	99.8% Am	11% 6s + 26% 6p + 63% 5f
	0.2% O, P	
NLMO (6)	99.8% Am	32% 6p + 68% 5f
	*0.2% O, P	
NLMO (7)	99.7% Am	9% 6s + 29% 6p + 62% 5f
	*0.3% O, P	
NLMO (8)	99.7% Am	2% 6s + 10% 6p + 88% 5f
	*0.3% O, P	
NLMO (9)	99.6% Am	1% 6s + 10% 6p + 89% 5f
	*0.4% O, P	
NLMO (10)	99.3% Am	28% 6p + 72% 5f
	*0.7% O, P	
O, P contributions are \(sp \) hybrid orbitals in different ratios, so they were not explicitly written for the sake of simplicity.

**All structures differ in number of NLMOs due to occupancy of \(f \)-electrons, i.e. in addition to the 4 orbitals \((3p + 1s)\) \(\text{U}^{6+} \) corresponds to an \(f^0 \) configuration, \(\text{Ce}^{3+} \) to an \(f^1 \), \(\text{Nd}^{3+} \) to an \(f^3 \), and \(\text{Am}^{3+} \) to an \(f^6 \), giving rise to 4, 5, 7, and 10 NLMOs, respectively.

Table S8. NLMOs involving main Am–Ligand interactions in \(\text{CeBr}_3(\text{OPMe}_3)_3 \).

\(\text{CeBr}_3(\text{OPMe}_3)_3 \)	NLMO composition	Natural hybrid orbital composition
NLMO (6)	2% Ce	1% \(6s \) + 72% \(5d \) + 27% \(4f \)
	92% O1	100% \(2p \)
	4% P1	76% \(3p \) + 24% \(3d \)
NLMO (7)	2% Ce	72% \(5d \) + 28% \(4f \)
	92% O2	100% \(2p \)
	4% P2	76% \(3p \) + 24% \(3d \)
NLMO (8)	2% Ce	71% \(5d \) + 29% \(4f \)
	92% O3	100% \(2p \)
	4% P3	76% \(3p \) + 24% \(3d \)
NLMO (9)	8% Ce	26% \(6s \) + 57% \(5d \) + 17% \(4f \)
	92% Br1	31% \(4s \) + 69% \(4p \)
NLMO (10)	8% Ce	26% \(6s \) + 57% \(5d \) + 17% \(4f \)
	87% Br2	31% \(4s \) + 69% \(4p \)
NLMO (11)	8% Ce	26% \(6s \) + 57% \(5d \) + 17% \(4f \)
	89% Br3	31% \(4s \) + 69% \(4p \)
Table S9. NLMOs involving main Am–Ligand interactions in NdBr$_3$(OPMe$_3$)$_3$.

NdBr$_3$(OPMe$_3$)$_3$	NLMO composition	Natural hybrid orbital composition
NLMO (8)	1% Nd	1% 6s + 81% 5d + 18% 4f
	92% O1	100% 2p
	4% P1	76% 3p + 24% 3d
NLMO (9)	2% Nd	4% 6s + 71% 5d + 25% 4f
	92% O2	100% 2p
	4% P2	76% 3p + 24% 3d
NLMO (10)	1% Nd	81% 5d + 19% 4f
	92% O3	100% 2p
	4% P3	77% 3p + 23% 3d
NLMO (11)	10% Nd	24% 6s + 49% 5d + 27% 4f
	92% Br1	24% 4s + 76% 4p
NLMO (12)	10% Nd	24% 6s + 50% 5d + 26% 4f
	87% Br2	24% 4s + 76% 4p
NLMO (13)	9% Nd	24% 6s + 51% 5d + 25% 4f
	89% Br3	25% 4s + 75% 4p
Table S10. NLMOs involving main Am–Ligand interactions in $^{\text{AmBr}}_3(\text{OPMe}_3)_3$.

$^{\text{AmBr}_3(\text{OPMe}_3)_3}$	NLMO composition	Natural hybrid orbital composition	
NLMO (11)	3% Am	10% 7s + 51% 6d + 39% 5f	
		91% O1	3% 2s + 97% 2p
		4% P1	79% 3p + 21% 3d
NLMO (12)	3% Am	9% 7s + 56% 6d + 35% 5f	
		91% O2	3% 2s + 97% 2p
		4% P2	79% 3p + 21% 3d
NLMO (13)	3% Am	10% 7s + 48% 6d + 42% 5f	
		91% O3	3% 2s + 97% 2p
		4% P3	79% 3p + 21% 3d
NLMO (14)	13% Am	22% 7s + 39% 6d + 39% 5f	
		87% Br1	17% 4s + 83% 4p
NLMO (15)	13% Am	22% 7s + 40% 6d + 38% 5f	
		87% Br2	18% 4s + 82% 4p
NLMO (16)	11% Am	24% 7s + 47% 6d + 29% 5f	
		89% Br3	21% 4s + 79% 4p
Further Electronic Structure Discussion.

The ground and low-lying excited states in $\text{AmBr}_3(\text{OPcy}_3)_3$ were calculated to gain a better understanding what role the ligands play in bonding to americium. For comparison, the same calculations were performed on the cerium and neodymium complexes to determine the ground state multiplet splitting. The ground multiplet splitting in $\text{CeBr}_3(\text{OPcy}_3)_3$ corresponds to the usual $J = \frac{5}{2}$ for a Ce(III) complex, and is reflected in the splitting of the low-lying Kramer's doublets (KDs) at 831.5 cm$^{-1}$. The closest reported value is 1036.6 cm$^{-1}$ for $\{(\text{C}_8\text{H}_6(\text{SiMe}_3)_2)_2\text{Ce}\}^-$. A simple calculation of the free-Ce(III) ion shows a splitting of 2 cm$^{-1}$, which highlights the role of the phosphine oxide ligand. When the same analysis is performed on $\text{NdBr}_3(\text{OPcy}_3)_3$, a ground state $J = \frac{9}{2}$ multiplet that spans an energy window of 413.8 cm$^{-1}$ is calculated and is comparable to the ~495 cm$^{-1}$ experimentally determined value for Nd$_2$O$_3$ crystals. Unfortunately, this analysis cannot be performed for $\text{AmBr}_3(\text{OPcy}_3)_3$ because there is no splitting due to the $J = 0$ ground state. However, it is clear that the quasi-octahedral environment provides a strong ligand field environment capable of modifying the electronic properties of these complexes.
ITI COMPARISONS AND CALCULATIONS OF LITERATURE COMPOUNDS

Table S11. ITI Calculations of Newly Reported and Previously Reported LnBr₃(OPcy₃)₃ Compounds,a,b

	La³	La³	Ce³	Pr³	Pr³	Nd³	Nd³	Gd³	Ho³
Radius (Å)	1.032	1.032	1.01	0.99	0.99	0.983	0.983	0.938	0.901
ITI M–Br	99.1(1)	99.7(1)	99.0(2)	98.9(2)	98.7(5)	98.9(2)	98.7(3)	98.7(3)	98.7(3)
ITI M–O	99.0(3)	99.0(3)	98.56(8)	98.4(2)	98.3(2)	98.6(3)	98.7(2)	99.0(1)	98.5(3)

aGiven with calculated standard error in parentheses b6-Coordinate Shannon Ionic Radius.4 cThis work

Table S12. ITI Calculations of LnI₃(Et₂O)₃ Compounds,a,b

	Ce	Pr	Nd	Sm	Gd	Tb
Radius (Å)	1.01	0.99	0.983	0.958	0.938	0.923
ITI M–I	101.21(2)	101.22(2)	99.87[7]	101.16(2)	100.96(2)	101.00(2)
ITI M–O	95.8(1)	95.4(2)	97.6[7]	95.1(2)	96.1(1)	95.9(2)

aGiven with calculated standard errors in parentheses and propagated error in square brackets. b6-Coordinate Shannon Ionic Radius.4

Table S13. ITI Calculations of LnCl₃(HMPA)₃ Compounds,a,b

	Pr⁶	Dy⁷	Yb⁸
Radius (Å)	0.99	0.912	0.868
ITI M–Cl	100.8(1)	100.4(1)	100.3(1)
ITI M–O	100.1(1)	98.92(2)	100.3(1)

aGiven with calculated standard errors in parentheses. b6-Coordinate Shannon Ionic Radius.4

Table S14. ITI Calculations of YbX₃(THF)₃ Compounds,a

	Cl⁹	Br¹⁰	I¹¹
ITI M–X	100.7(1)	101.6[1]	101.34[2]
ITI M–O	96.9(5)	96.8[5]	97.3[3]

aGiven with calculated standard errors in parentheses and propagated error in square brackets.
CRYSTALLOGRAPHY

Table S15. Summary of Crystallographic Collections for MB₃(OPcy₃)₃.

Compound	Am	La	Ce	Pr	Nd
Empirical Formula	C₅₄H₉₉O₃P₃Br₃Am	C₅₄H₉₉O₃P₃Br₃La	C₅₄H₉₉O₃P₃Br₃Ce	C₅₄H₉₉O₃.₅P₃Br₃Pr	C₅₄H₉₉O₃P₃Br₃Nd
Temperature (K)	120(2)	130(2)	120(2)	120(2)	120(2)
Crystal System	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space Group	Pca₂₁	Pca₂₁	Pca₂₁	Pca₂₁	Pca₂₁
a (Å)	28.768(9)	28.879(2)	28.920(5)	28.716(1)	28.706(1)
b (Å)	11.456(4)	11.4223(7)	11.434(2)	11.4126(4)	11.4228(4)
c (Å)	18.185(6)	18.208(1)	18.209(3)	18.1299(8)	18.1359(7)
α(°)	90	90	90	90	90
β(°)	90	90	90	90	90
γ(°)	90	90	90	90	90
Volume (Å³)	5993(3)	6006.3(6)	6021(2)	5941.5(4)	5946.8(4)
Z	4	4	4	4	4
ρcalcd (Mg/m³)	1.521	1.402	1.400	1.420	1.422
μ (mm⁻¹)	3.398	2.824	2.864	2.956	3.007
R1^a (I > 2.0σ(I))	0.0399	0.0348	0.0353	0.0317	0.0405
wR2 (all data)	0.0858	0.0620	0.0726	0.0617	0.0777

| **BASF** | 0.02978 | 0.01767 | 0.03608 | 0.00891 | -0.00554 |

^aDefinitions:
\[wR2 = \frac{\sum[w(F_o^2 - F_c^2)]}{\sum[w(F_o^2)]}^{1/2}\]
\[R1 = \frac{\sum||F_o| - |F_c||}{\sum|F_o|}\]

\[\text{Goof} = S = \frac{\sum[w(F_o^2 - F_c^2)]}{(n-p)}^{1/2}\] where \(n\) is the number of reflections and \(p\) is the total number of parameters refined.
Table S16. Relevant bond lengths [Å] and angles [°] for $\text{AmBr}_3(\text{OPcy}_3)_3$.

Bond/Angle	Value 1	Value 2	Value 3	Value 4
Am(1)-Br(1)	2.882(1)	O(1)-Am(1)-Br(2)	89.73(19)	
Am(1)-Br(2)	2.870(1)	O(1)-Am(1)-Br(3)	89.44(18)	
Am(1)-Br(3)	2.912(1)	O(1)-Am(1)-O(3)	90.2(3)	
Am(1)-O(1)	2.312(7)	O(2)-Am(1)-Br(1)	90.44(18)	
Am(1)-O(2)	2.302(7)	O(2)-Am(1)-Br(2)	91.00(18)	
Am(1)-O(3)	2.349(6)	O(2)-Am(1)-Br(3)	88.81(18)	
P(1)-O(1)	1.520(8)	O(2)-Am(1)-O(1)	178.1(2)	
P(2)-O(2)	1.523(7)	O(2)-Am(1)-O(3)	91.6(3)	
P(3)-O(3)	1.518(6)	O(3)-Am(1)-Br(1)	87.6(2)	
Br(1)-Am(1)-Br(3)	95.60(5)	O(3)-Am(1)-Br(3)	176.7(2)	
Br(2)-Am(1)-Br(1)	172.74(3)	P(1)-O(1)-Am(1)	159.4(5)	
Br(2)-Am(1)-Br(3)	91.54(5)	P(2)-O(2)-Am(1)	164.8(5)	
O(1)-Am(1)-Br(1)	89.05(18)	P(3)-O(3)-Am(1)	170.8(5)	

Table S17. Relevant bond lengths [Å] and angles [°] for $\text{LaBr}_3(\text{OPcy}_3)_3$.

Bond/Angle	Value 1	Value 2	Value 3	Value 4
La(1)-Br(1)	2.9365(7)	O(1)-La(1)-Br(2)	90.73(10)	
La(1)-Br(2)	2.9425(7)	O(1)-La(1)-Br(3)	88.27(9)	
La(1)-Br(3)	2.9649(5)	O(1)-La(1)-O(2)	178.16(13)	
La(1)-O(1)	2.351(4)	O(1)-La(1)-O(3)	91.97(14)	
La(1)-O(2)	2.363(4)	O(2)-La(1)-Br(1)	89.62(10)	
La(1)-O(3)	2.382(3)	O(2)-La(1)-Br(2)	88.79(10)	
P(1)-O(1)	1.511(4)	O(2)-La(1)-Br(3)	90.01(10)	
P(2)-O(2)	1.513(4)	O(2)-La(1)-O(3)	89.78(15)	
P(3)-O(3)	1.513(3)	O(3)-La(1)-Br(1)	85.23(12)	
Br(1)-La(1)-Br(2)	172.59(2)	O(3)-La(1)-Br(3)	176.61(12)	
Br(1)-La(1)-Br(3)	91.39(3)	O(1)-O(1)-La(1)	166.3(2)	
Br(2)-La(1)-Br(3)	95.84(3)	P(2)-O(2)-La(1)	160.7(2)	
O(1)-La(1)-Br(1)	91.08(10)	P(3)-O(3)-La(1)	170.9(3)	
Table S18. Relevant bond lengths [Å] and angles [°] for CeBr₃(OPcy₃)₃.

Bond	Length	Angle	Value
Ce(1)-Br(1)	2.9268(8)	O(1)-Ce(1)-Br(2)	91.16(10)
Ce(1)-Br(2)	2.9166(8)	O(1)-Ce(1)-Br(3)	88.33(11)
Ce(1)-Br(3)	2.9504(8)	O(1)-Ce(1)-O(2)	177.66(14)
Ce(1)-O(1)	2.332(4)	O(1)-Ce(1)-O(3)	92.37(16)
Ce(1)-O(2)	2.336(4)	O(2)-Ce(1)-Br(1)	89.08(11)
Ce(1)-O(3)	2.368(4)	O(2)-Ce(1)-Br(2)	89.55(11)
P(1)-O(1)	1.516(4)	O(2)-Ce(1)-Br(3)	89.42(11)
P(2)-O(2)	1.515(4)	O(2)-Ce(1)-O(3)	89.91(16)
P(3)-O(3)	1.523(4)	O(3)-Ce(1)-Br(1)	87.42(13)
Br(1)-Ce(1)-Br(3)	95.47(3)	O(3)-Ce(1)-Br(2)	85.48(13)
Br(2)-Ce(1)-Br(1)	172.78(2)	P(1)-O(1)-Ce(1)	166.2(3)
Br(2)-Ce(1)-Br(3)	91.61(3)	P(2)-O(2)-Ce(1)	171.2(3)
O(1)-Ce(1)-Br(1)	90.50(10)	P(3)-O(3)-Ce(1)	160.7(3)

Table S19. Relevant bond lengths [Å] and angles [°] for PrBr₃(OPcy₃)₃.

Bond	Length	Angle	Value
Pr(1)-Br(1)	2.8781(7)	O(1)-Pr(1)-Br(2)	90.53(10)
Pr(1)-Br(2)	2.8894(7)	O(1)-Pr(1)-Br(3)	88.55(10)
Pr(1)-Br(3)	2.9145(5)	O(1)-Pr(1)-O(2)	177.63(13)
Pr(1)-O(1)	2.294(4)	O(1)-Pr(1)-O(3)	92.17(15)
Pr(1)-O(2)	2.302(4)	O(2)-Pr(1)-Br(1)	89.61(10)
Pr(1)-O(3)	2.336(3)	O(2)-Pr(1)-Br(2)	89.18(10)
P(1)-O(1)	1.514(4)	O(2)-Pr(1)-Br(3)	89.13(10)
P(2)-O(2)	1.515(4)	O(2)-Pr(1)-O(3)	90.17(15)
P(3)-O(3)	1.510(3)	O(3)-Pr(1)-Br(1)	85.72(12)
Br(1)-Pr(1)-Br(2)	173.18(2)	O(3)-Pr(1)-Br(3)	87.57(12)
Br(1)-Pr(1)-Br(3)	91.37(3)	P(1)-O(1)-Pr(1)	165.4(3)
Br(2)-Pr(1)-Br(3)	95.32(2)	P(2)-O(2)-Pr(1)	159.6(3)
O(1)-Pr(1)-Br(1)	90.95(10)	P(3)-O(3)-Pr(1)	171.0(3)
Table S20. Relevant bond lengths [Å] and angles [°] for NdBr$_3$(OPcy$_3$)$_3$.

Bond	Distance	Angle	
Nd(1)-Br(1)	2.8796(8)	O(1)-Nd(1)-Br(2)	90.45(13)
Nd(1)-Br(2)	2.8908(9)	O(1)-Nd(1)-Br(3)	88.59(12)
Nd(1)-Br(3)	2.9168(6)	O(1)-Nd(1)-O(2)	177.70(16)
Nd(1)-O(1)	2.297(5)	O(1)-Nd(1)-O(3)	92.20(19)
Nd(1)-O(2)	2.309(5)	O(2)-Nd(1)-Br(1)	89.81(14)
Nd(1)-O(3)	2.336(4)	O(2)-Nd(1)-Br(2)	88.95(13)
P(1)-O(1)	1.513(5)	O(2)-Nd(1)-Br(3)	89.26(13)
P(2)-O(2)	1.511(5)	O(2)-Nd(1)-O(3)	89.99(19)
P(3)-O(3)	1.513(4)	O(3)-Nd(1)-Br(1)	85.78(15)
		O(3)-Nd(1)-Br(2)	87.49(15)
Br(1)-Nd(1)-Br(2)	173.15(3)	O(3)-Nd(1)-Br(3)	177.06(14)
Br(1)-Nd(1)-Br(3)	91.38(3)	P(1)-O(1)-Nd(1)	165.2(3)
Br(2)-Nd(1)-Br(3)	95.34(3)	P(2)-O(2)-Nd(1)	159.2(3)
O(1)-Nd(1)-Br(1)	91.04(13)	P(3)-O(3)-Nd(1)	171.2(3)
X-ray Data Collection, Structure Solution and Refinement for AmBr$_3$(OPcy$_3$)$_3$.

An amber crystal of approximate dimensions 0.06 x 0.12 x 0.196 mm was mounted on a nylon loop and transferred to a Bruker D8 Quest diffractometer. The APEX312 program package was used to determine the unit-cell parameters and for data collection (17 sec/frame scan time for a calculated scan of diffraction data and a detector distance of 41 mm). The raw frame data was processed using SAINT13 and SADABS14 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL15 or OLEX216 program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups $Pbcm$ and Pca_2_1. It was later determined that space group Pca_2_1 was correct.

The initial structure was solved by direct methods using Pu in place of Am, since Am is not recognized by APEX3. The structure was refined on F^2 by full-matrix least-squares techniques using Am, the scattering factors for which were taken from the International Tables for Crystallography Volume C.17 The analytical scattering factors for neutral atoms were used throughout the analysis.17 Hydrogen atoms were included using a riding model.

The absolute structure was assigned by refinement of the Flack parameter.18 Based on the Flack parameter, the data was refined as a 2-component twin with BASF = 0.02978. The compound was found to isomorphous with its lanthanide analogs: Pr (BUGRIG),3 Nd (BUGROM),3 Gd (BUGRUS),3 Ho (ROVNUN),3 which are all reported as a hemi-hydrate, which was not located in the Fourier map for Am.

Figure S44. Thermal ellipsoid plot of AmBr$_3$(OPcy$_3$)$_3$ drawn at the 50% probability level with hydrogen atoms omitted for clarity.
Table S21. Crystal data and structure refinement for $\text{AmBr}_3(\text{OPcy}_3)_3$.

Property	Value/Details
Identification code	cjw84 (Cory Windorff)
Empirical formula	$\text{C}_{54}\text{H}_{99}\text{O}_3\text{P}_3\text{Br}_3\text{Am}$
Formula weight	1371.97
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	$Pca2_1$
Unit cell dimensions	
a	28.768(9) Å
α	90°
b	11.456(4) Å
β	90°
c	18.185(6) Å
γ	90°
Volume	5993(3) Å 3
Z	4
Density (calculated)	1.521 Mg/m3
Absorption coefficient	3.398 mm$^{-1}$
F(000)	2768
Crystal color	clear yellow
Crystal size	0.196 x 0.12 x 0.06 mm3
Theta range for data collection	2.217 to 27.521°
Index ranges	$-35 \leq h \leq 37, -14 \leq k \leq 14, -23 \leq l \leq 20$
Reflections collected	70455
Independent reflections	12088 [R(int) = 0.0751]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi–empirical from equivalents
Max. and min. transmission	0.0949 and 0.0640
Refinement method	Full–matrix least–squares on F2
Data / restraints / parameters	12088 / 1 / 578
Goodness-of-fit on F2	1.081
Final R indices [I>2sigma(I) = 9606 data]	R1 = 0.0399, wR2 = 0.0787
R indices (all data, 0.77 Å)	R1 = 0.0606, wR2 = 0.0858
Absolute structure parameter	0.004(7)
Largest diff. peak and hole	2.033 and −2.008 e.Å^{-3}
BASF	0.02978

S63
X-ray Data Collection, Structure Solution and Refinement for LaBr$_3$(OPcy$_3$)$_3$.

A colorless crystal of approximate dimensions 0.153 x 0.157 x 0.267mm was mounted on a nylon loop and transferred to a Bruker D8 Quest diffractometer. The APEX312 program package was used to determine the unit-cell parameters and for data collection (15 sec/frame scan time for a calculated scan of diffraction data and a detector distance of 33 mm). The raw frame data was processed using SAINT13 and SADABS14 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL15 or OLEX216 program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups $Pbcm$ and Pca_2_1. It was later determined that space group Pca_2_1 was correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis.17 Hydrogen atoms were included using a riding model.

The absolute structure was assigned by refinement of the Flack parameter.18 Based on the Flack parameter, the data was refined as a 2-component twin with BASF = 0.01767. The compound was not isomorphous with its previous report (BUGREC),3 and was found to isomorphous with its other lanthanide analogs: Pr (BUGRIG),3 Nd (BUGROM),3 Gd (BUGRUS),3 and Ho (ROVNUN),3 which are all reported as a hemi-hydrate, which was not located in the Fourier map for La.

Figure S45. Thermal ellipsoid plot of LaBr$_3$(OPcy$_3$)$_3$ drawn at the 50% probability level with hydrogen atoms omitted for clarity.
Crystal data and structure refinement for LaBr$_3$(OPcy)$_3$$_3$.
Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
b = 11.4223(7) Å, $\beta = 90^\circ$.
c = 18.2083(10) Å, $\gamma = 90^\circ$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal color
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.50$^\circ$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [I>2sigma(I) = 11489 data]
R indices (all data, 0.77 Å)
Absolute structure parameter
Largest diff. peak and hole
BASF
X-ray Data Collection, Structure Solution and Refinement for CeBr₃(OPcy₃)₃.

An orange crystal of approximate dimensions 0.123 x 0.156 x 0.268 mm was mounted on a nylon loop and transferred to a Bruker D8 Quest diffractometer. The APEX³ program package was used to determine the unit-cell parameters and for data collection (60 sec/frame scan time for a calculated scan of diffraction data and a detector distance of 42 mm). The raw frame data was processed using SAINT¹³ and SADABS¹⁴ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL¹⁵ or OLEX2¹⁶ program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups Pbcm and Pca₂₁. It was later determined that space group Pca₂₁ was correct.

The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis.¹⁷ Hydrogen atoms were included using a riding model.

The absolute structure was assigned by refinement of the Flack parameter.¹⁸ Based on the Flack parameter, the data was refined as a 2-component twin with BASF = 0.03608. The compound is isomorphous with its other lanthanide analogs: Pr (BUGRIG),³ Nd (BUGROM),³ Gd (BUGRUS),³ and Ho (ROVNUN),³ which are all reported as a hemihydrate, which was not located in the Fourier map for Ce.

Figure S46. Thermal ellipsoid plot of CeBr₃(OPcy₃)₃ drawn at the 50% probability level with hydrogen atoms omitted for clarity.
Table S23. Crystal data and structure refinement for CeBr₃(OPcy)₃.

Property	Value
Identification code	cjw61 (Cory Windorff)
Empirical formula	C₅₄H₉₉O₃P₃Br₃Ce
Formula weight	1269.09
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pca2₁
Unit cell dimensions	a = 28.920(5) Å, b = 11.434(2) Å, c = 18.209(3) Å
Volume	6021.2(18) Å³
Z	4
Density (calculated)	1.400 Mg/m³
Absorption coefficient	2.864 mm⁻¹
F(000)	2620
Crystal color	clear orange
Crystal size	0.268 x 0.156 x 0.123 mm³
Theta range for data collection	2.218 to 27.511°
Index ranges	−37 ≤ h ≤ 37, −14 ≤ k ≤ 14, −23 ≤ l ≤ 23
Reflections collected	122286
Independent reflections	13805 [R(int) = 0.0685]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi–empirical from equivalents
Max. and min. transmission	0.7456 and 0.6448
Refinement method	Full–matrix least–squares on F²
Data / restraints / parameters	13805 / 1 / 578
Goodness-of-fit on F²	1.057
Final R indices [I>2sigma(I) = 11775 data]	R1 = 0.0353, wR2 = 0.0664
R indices (all data, 0.77 Å)	R1 = 0.0499, wR2 = 0.0726
Absolute structure parameter	−0.001(4)
Largest diff. peak and hole	0.956 and −0.784 e.Å⁻³
BASF	0.03608
X-ray Data Collection, Structure Solution and Refinement for PrBr$_3$(OPcy$_3$)$_3$.

A colorless crystal of approximate dimensions 0.315 x 0.205 x 0.188 mm was mounted on a nylon loop and transferred to a Bruker D8 Quest diffractometer. The APEX312 program package was used to determine the unit-cell parameters and for data collection (15 sec/frame scan time for a calculated scan of diffraction data at a detector distance of 35 mm). The raw frame data was processed using SAINT13 and SADABS14 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL15 or OLEX216 program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups $Pbcm$ and $Pca2_1$. It was later determined that space group $Pca2_1$ was correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis.17 Hydrogen atoms were included using a riding model.

The absolute structure was assigned by refinement of the Flack parameter.18 Based on the Flack parameter, the data was refined as a 2-component twin with BASF = 0.00891. The compound is a redetermination of the previously data (BUGRIG),3 and is isomorphous with its other lanthanide analogs: Nd (BUGROM),3 Gd (BUGRUS),3 and Ho (ROVNUN).3

![Figure S47. Thermal ellipsoid plot of PrBr$_3$(OPcy$_3$)$_3$ drawn at the 50% probability level with hydrogen atoms (and lattice solvent) omitted for clarity.](image-url)
Table S24. Crystal data and structure refinement for $\text{PrBr}_3(\text{OPcy}_3)_3$.

Property	Value
Identification code	cjw94 (Cory Windorff)
Empirical formula	$\text{C}_{54}\text{H}_{99}\text{O}_3\text{P}_3\text{Br}_3\text{Pr}$
Formula weight	1269.88
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	$Pca2_1$
Unit cell dimensions	$a = 28.716(1)$ Å, $\alpha = 90^\circ$.
	$b = 11.4126(4)$ Å, $\beta = 90^\circ$.
	$c = 18.1299(8)$ Å, $\gamma = 90^\circ$.
Volume	5941.5(4) Å
Z	4
Density (calculated)	1.420 Mg/m³
Absorption coefficient	2.956 mm⁻¹
$F(000)$	2624
Crystal color	clear colorless
Crystal size	0.315 x 0.205 x 0.188 mm³
Theta range for data collection	2.225 to 27.551°
Index ranges	$-37 \leq h \leq 37$, $-14 \leq k \leq 14$, $-23 \leq l \leq 23$
Reflections collected	106432
Independent reflections	13677 [R(int) = 0.0613]
Completeness to theta	25.500°
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6775
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	13677 / 1 / 578
Goodness-of-fit on F^2	1.055
Final R indices [I>2sigma(I) = 11537 data]	$R_1 = 0.0317$, $wR_2 = 0.0556$
R indices (all data, 0.77 Å)	$R_1 = 0.0481$, $wR_2 = 0.0617$
Absolute structure parameter	0.009(9)
Largest diff. peak and hole	0.990 and -0.720 e.Å⁻³
BASF	0.00891
X-ray Data Collection, Structure Solution and Refinement for NdBr$_3$(OPcy$_3$)$_3$.

A colorless crystal of approximate dimensions 0.224 x 0.202 x 0.170 mm was mounted on a nylon loop and transferred to a Bruker D8 Quest diffractometer. The APEX312 program package was used to determine the unit-cell parameters and for data collection (10 sec/frame scan time for a hemisphere of diffraction data with a scan width of 0.5° and a detector distance of 35 mm). The raw frame data was processed using SAINT13 and SADABS14 to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL15 or OLEX216 program. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space groups $Pbcm$ and Pca_2_1. It was later determined that space group Pca_2_1 was correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis.17 Hydrogen atoms were included using a riding model.

The absolute structure was assigned by refinement of the Flack parameter.18 Based on the Flack parameter, the data was refined as a 2-component twin with BASF = -0.00554. The structure is known (BUGROM)3 and was re-determined. The compound is isomorphous with its other lanthanide analogs: Pr (BUGRIG),3 Gd (BUGRS),3 and Ho (ROVNUN),3 which are all reported as a hemihydrate, which was not located in the Fourier map for Nd.

Figure S48. Thermal ellipsoid plot of NdBr$_3$(OPcy$_3$)$_3$ drawn at the 50% probability level with hydrogen atoms omitted for clarity.
Table S25. Crystal data and structure refinement for \(\text{NdBr}_3(\text{OPcy}_3)_3\).

Property	Value
Identification code	cjw93 (Cory Windorff)
Empirical formula	\(C_{54}H_{99}O_3P_3Br_3Nd\)
Formula weight	1273.21
Temperature	120(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	\(Pca2_1\)
Unit cell dimensions	\(a = 28.7074(14) \text{ Å}, \alpha = 90^\circ\)
	\(b = 11.4137(6) \text{ Å}, \beta = 90^\circ\)
	\(c = 18.1291(10) \text{ Å}, \gamma = 90^\circ\)
Volume	5946.8(4) Å
\(Z\)	4
Density (calculated)	1.422 Mg/m³
Absorption coefficient	3.007 mm\(^{-1}\)
\(F(000)\)	2628
Crystal color	clear colorless
Crystal size	0.224 x 0.202 x 0.170 mm³
Theta range for data collection	2.223 to 27.557°
Index ranges	\(-37 \leq h \leq 37, -14 \leq k \leq 14, -22 \leq l \leq 23\)
Reflections collected	106339
Independent reflections	13649 [R(int) = 0.0874]
Completeness to theta	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6784
Refinement method	Full-matrix least-squares on \(F^2\)
Data / restraints / parameters	13649 / 1 / 578
Goodness-of-fit on \(F^2\)	1.037
Final R indices \([I>2\sigma(I) = 11307\text{ data}]\)	\(R_1 = 0.0405, wR_2 = 0.0680\)
\(R\) indices (all data, 0.77 Å)	\(R_1 = 0.0608, wR_2 = 0.0777\)
Absolute structure parameter	-0.006(12)
Largest diff. peak and hole	1.021 and \(-1.569\) e.Å\(^{-3}\)
BASF	-0.00554

S71
REFERENCES

1. Singh, S. K.; Gupta, T.; Ungur, L.; Rajaraman, G., *Chem. Eur. J.* **2015**, *21*, 13812-13819.

2. Mann, M. M.; DeShazer, L. G., *J. Appl. Phys.* **1970**, *41*, 2951-2957.

3. Bowden, A.; Lees, A. M. J.; Platt, A. W. G., *Polyhedron* **2015**, *91*, 110-119.

4. Shannon, R., *Acta Cryst.* **1976**, *A32*, 751-767.

5. Gompa, T. P.; Rice, N. T.; Russo, D. R.; Aguirre Quintana, L. M.; Yik, B. J.; Bacsa, J.; La Pierre, H. S., *Dalton Trans.* **2019**, *48*, 8030-8033.

6. Radonovich, L. J.; Glick, M. D., *J. Inorg. Nucl. Chem.* **1973**, *35*, 2745-2752.

7. Zhang, X.-W.; Li, X.-F.; Benetollo, F.; Bombieri, G., *Inorg. Chim. Acta* **1987**, *139*, 103-104.

8. Hou, Z.; Kobayashi, K.; Yamazaki, H., *Chem. Lett.* **1991**, *20*, 265-268.

9. Deacon, G. B.; Feng, T.; Junk, P. C.; Skelton, B. W.; Sobolev, A. N.; White, A. H., *Aust. J. Chem.* **1998**, *51*, 75-89.

10. Deacon, G. B.; Feng, T.; Junk, P. C.; Meyer, G.; Scott, N. M.; Skelton, B. W.; White, A. H., *Aust. J. Chem.* **2000**, *53*, 853-865.

11. Emge, T. J.; Kornienko, A.; Brennan, J. G., *Acta Cryst.* **2009**, *C65*, m422-m425.

12. *APEX3*, 2017.3-0; Bruker AXS, Inc.: Madison, WI, 2017.

13. *SAINT*, 8.34a; Bruker AXS, Inc: Madison, WI, 2013.

14. Sheldrick, G. M. *SADABS*, 2012/1; Bruker AXS, Inc: Madison, WI, 2012.

15. Sheldrick, G. M. *SHELXTL*, Bruker AXS, Inc: Madison, WI, 2012.

16. *Olex2*, 1.2.10; OlexSys Ltd: 2004-2018.

17. Prince, E., 1st online ed.; International Union of Crystallography: 2006; Vol. C: Mathematical, Physical and Chemical Tables.

18. Flack, H., *Acta Cryst.* **1983**, *A39*, 876-881.