Measurement of indirect CP-violating asymmetries in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays at CDF

T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annucci, J. Antos, G. Apollinari, J.A. Appel, T. Arisawa, A. Artikov, J. Asaad, W. Ashmanska, B. Auerbach, A. Aurisano, F. Azfar, W. Badgett, T. Bae, A. Barbaro-Galtieri, V.E. Barnes, B.A. Barnett, P. Barria, J.P. Bartos, M. Bause, F. Bedeschi, B. Behari, G. Bellettini, J. Bellinger, D. Benjamini, A. Beretvas, A. Bhatti, K.R. Bland, B. Blumenfeld, A. Bocci, A. Bodek, D. Bortoletto, J. Boudreau, A. Boveia, L. Brigliadori, C. Bromberg, E. Brucken, B. Budagov, H.S. Budd, K. Burkett, G. Busetto, P. Bussey, P. Butti, A. Buzatu, A. Calamba, S. Camarda, M. Campanelli, F. Canei, B. Carls, D. Carlsmith, R. Carosi, S. Carrillo, B. Casal, M. Casarsa, A. Castro, P. Catastini, D. Caño, V. Cavaliere, A. Cerri, L. Cerrito, Y.C. Chen, M. Chertok, G. Chierelli, G. Chlachidze, K. Cho, D. Chokheli, A. Clark, C. Clarke, M.E. Conway, J. Conn, M. Cordelli, C.A. Cox, D.J. Cox, M. Cremonesi, D. Cruz, J. Cuevas, R. Culberson, N. D’Ascanzo, M. Datta, P. de Barbaro, L. Demortier, M. Deninno, M. D’Errico, F. Devoto, A. Di Canto, B. Di Ruzza, J.R. Dittmann, S. Donati, M. D’Onofrio, F. Dorigo, A. Driutti, K. Elina, R. Edgar, A. Elaging, R. Erbacher, S. Errede, B. Esham, S. Farrington, J.P. Fernández Ramos, R. Field, G. Flanagan, R. Forrest, M. Franklin, J.C. Freeman, H. Frisch, Y. Funakoshi, C. Galloni, A.F. Garfinkel, P. Garosi, H. Gerberich, E. Gerchtein, S. Giagu, G. Giakoumopoulou, K. Gibson, C.M. Ginsburg, N. Giokaris, P. Giromini, V. Glagolev, D. Glenzinski, M. Gold, D. Goldin, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González López, I. Goren, A.T. Gosham, K. Goulianos, E. Granellín, C. Grosso-Pilcher, R.C. Group, J. Guimaraes da Costa, S.R. Hahn, J.Y. Han, K. Hara, M. Haro, R.F. Har, T. Harrington-Taber, K. Hatakeyama, C. Hays, J. Heinrich, M. Herndon, A. Hooker, Z. Hong, W. Hopkins, S. Hou, R.E. Hughes, U. Husemann, M. Hussein, J. Huston, G. Introzzo, M. Iori, A. Ivanno, E. James, D. Jang, B. Jayatilaka, E.J. Le, S. Jindariani, M. Jones, K.K. Joo, S.Y. Jun, T.R. Junk, M. Kambeitz, T. Kamon, J.E. Karchin, A. Kasmi, Y. Kato, W. Ketchum, J. Keung, B. Kilminster, D.H. Kim, H.S. Kim, J.E. Kim, M.J. Kim, S.B. Kim, J.Y. Kim, Y.K. Kim, N. Kimura, M. Kirby, K. Knoepfel, K. Kondo, D.J. Kong, J. Konigsberg, A.V. Kotwal, M. Kreps, J. Kroll, M. Kruse, T. Kuhr, M. Kurata, A.T. Lasanen, S. Lammel, M. Lancaster, K. Lannon, G. Latino, H.S. Lee, J.S. Lee, S. Leo, S. Leone, J.D. Lewis, A. Limosani, E. Lipecz, M. Lister, H. Liu, Q. Liu, T. Liu, S. Lockwitz, A. Loginov, D. Lucchesi, A. Luca, J. Lueck, P. Lujuan, P. Lukens, G. Lungu, J. Lys, R. Lysak, R. Madkar, P. Maestro, S. Malik, G. Manca, M. Manousakis-Katsikakis, M. Marchese, F. Margaroli, P. Marino, K. Matera, M.E. Mattson, A. Mazzacane, P. Mazzanti, R. McNulty, A. Mehta, P. Mehtal, C. Mesropian, T. Miao, D. Mietlicki, A. Mitra, H. Miyake, G. Moed, N. Moggi, C.S. Moon, R. Moore, M.J. Morello, A. Mukherjee, Th. Muller, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, J. Nagano, I. Nakano, A. Napier, J. Nett, C. Neu, T. Nigmanov, L. Nodulman, O. Noviella, L. Oakes, S.H. Oh, Y.D. Oh, I. Oksuzian, T. Okusawa, R. Orava, L. Ortolan, C. Pagliarone, E. Palencia, P. Palni, V. Papadimitriou, W. Parker, G. Paukett, M. Paulin, C. Paus, T.J. Phillips, E. Pianori, J. Pilot, K. Pitts, C. Plager, J. Pondrom, F. Poprocki, K. Potamianos, A. Pranko, F. Prokoshin, F. Ptohos, G. Punzi, I. Redondo Fernández, P. Renton, M. Rescigno, F. Rimestad, L. Ristori, A. Robson, T. Rodriguez, S. Rolli, M. Ronzaní, R. Roser, J.L. Rosner, F. Ruffini, A. Ruiz, J. Russ, V. Rusu, W.K. Sakamoto, Y. Sakurai, L. Sant, K. Sato, V. Saveliev, A. Savoy-Navarro, P. Schlabach, E.E. Schmidt, T. Schwarz, L. Scodellaro, F. Scuri, S. Seidel, Y. Seiya, A. Semenov, F. Sforza, S.Z. Shalhout, T. Shears, P.F. Shepard, M. Shimojima, M. Shochet, Shreyer-Tecker, A. Simonenko, K. Sliwa, J.R. Smith, F.D. Snider, H. Song, V. Sorin, R. St Denis, M. Stancari, D. Steutz, J. Strologas, Y. Sudo, A. Sukhanov, I. Suslov, K. Takemasa, Y. Takeuchi, T. Tang, M. Tecchio, P.K. Teng, J. Thom, E. Thomson, V. Thunral, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, T. Torretta, P. Totaro, M. Trovato, F. Ukegawa, S. Uozumi, F. Vázquez, G. Velev, C. Vellidis.
C. Vernieri4m, 41 M. Vidal,43 R. Vilar,8 J. Vizán46, 9 M. Vogel,34 G. Volpi,17 P. Wagner,40 R. Wallny15 S.M. Wang,1 D. Waters,28 W.C. Wester III,15 D. Whitesonc,40 A.B. Wicklund,2 S. Wilbur,7 H.H. Williams,40 J.S. Wilson,31 P. Wilson,15 B.L. Winer,35 P. Wittichc,15 S. Wolbers,15 H. Wolfe,35 T. Wright,31 X. Wu,18 Z. Wu,5 K. Yamamoto,37 D. Yamato,37 T. Yang,15 U.K. Yang,25 Y.C. Yang,25 W.-M. Yao,36 G.P. Yeh,15 K. Yim,15 J. Yoh,15 K. Yorita,52 T. Yoshida,3 G.B. Yu,14 I. Yu,25 A.M. Zanetti,48 Y. Zeng,14 C. Zhou,14 and S. Zucchelli1, 16

(CDF Collaboration)
We report a measurement of the indirect CP-violating asymmetries (A_{Γ}) between effective lifetimes of anticharm and charm mesons reconstructed in $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb$^{-1}$ of integrated luminosity. The strong decay $D^{*+} \to D^0 \pi^+$ is used to identify the meson at production as D^0 or D^0. We statistically subtract D^0 and \bar{D}^0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charm decays as a function of decay time. We measure $A_{\Gamma}(K^+ K^-) = (-0.19 \pm 0.15 \text{ (stat)} \pm 0.04 \text{ (syst)})\%$ and $A_{\Gamma}(\pi^+ \pi^-) = (-0.01 \pm 0.18 \text{ (stat)} \pm 0.03 \text{ (syst)})\%$. The results are consistent with the hypothesis of CP symmetry and their combination yields $A_{\Gamma} = (-0.12 \pm 0.12)\%$.

PACS numbers: 13.25.Ft 14.40.Lb

The noninvariance of the laws of physics under the simultaneous transformations of parity and charge conjugation (CP violation) is described in the standard model (SM) through an irreducible complex phase in the weak-interaction couplings of quarks. A broad class of SM extensions allows for additional sources of CP violation, which, if observed, could provide indirect indications of unknown particles or interactions. To date, CP violation has been established in transitions of strange and bottom hadrons, with effects consistent with the SM predictions \cite{1,2}. Studies of CP violation in the interactions of charm quarks offer a unique probe for non-SM physics. Charm transitions are complementary to the SM particles, which could enhance the magnitude of the observed CP violation with respect to the SM expectation. The asymmetry $A_{\Gamma}(t)$ thus receives contributions from any difference between D^0 and \bar{D}^0 decay amplitudes (direct CP violation) and from any difference in oscillation probabilities between charm and anticharm mesons or interference between decays that follow, or not, an oscillation (indirect CP violation). Because of the slow oscillation rate of charm mesons \cite{1}, Eq. (1) is approximated to first order as \cite{5}

$$A_{\Gamma}(t) \approx A_{\Gamma}^{\text{dir}}(h^+ h^-) - \frac{t}{\tau} A_{\Gamma}(h^+ h^-),$$

(2)

where t is the proper decay time and τ is the CP-averaged D-meson lifetime \cite{6}. The first term arises from direct CP violation and depends on the decay mode; the second term is proportional to the asymmetry between the effective lifetimes $\hat{\tau}$ of anticharm and charm mesons,

$$A_{\Gamma} = \frac{\hat{\tau}(\bar{D}^0 \to h^+ h^-) - \hat{\tau}(D^0 \to h^+ h^-)}{\hat{\tau}(D^0 \to h^+ h^-) + \hat{\tau}(\bar{D}^0 \to h^+ h^-)},$$

and is mostly due to indirect CP violation \cite{7}. Effective lifetimes are defined as those resulting from a single-exponential fit of the time evolution of neutral meson decays that may undergo oscillations. In the SM, A_{Γ} is universal for all final states with the same CP-parity \cite{8}, such
as K^+K^- and $\pi^+\pi^-$; contributions from non-SM processes may introduce channel-specific differences. Measurements have been reported from electron-positron collisions at the $\Upsilon(4S)$ resonance \cite{10} and from high-energy proton-proton collisions \cite{11}. All results are consistent with the hypothesis of CP symmetry with $O(10^{-3})$ uncertainties.

Any independent measurement of comparable precision further constrains the phenomenological bounds and may improve the knowledge of CP violation in the charm sector. Decays $D \to h^+h^-$ are well suited for a measurement of A_T at the Collider Detector at Fermilab (CDF). Fully reconstructed final states provide a precise determination of the decay time, and large signal yields with moderate backgrounds allow for reduced systematic uncertainties.

In this Letter, we report a measurement of CP-violating asymmetries between the effective lifetimes of anticharm and charm mesons reconstructed in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays. We use the full data set from 1.96 TeV proton-antiproton collisions collected by the online event-selection system (trigger) on charged particles displaced from the primary collision and corresponding to 9.7 fb$^{-1}$ of integrated luminosity. The analysis uses D-meson candidates produced in the decay of an identified D^{*+} or D^{*-} meson to determine whether the decaying state was initially produced as a D^0 or a \bar{D}^0 meson. Flavor conservation in the strong-interaction processes $D^{*+} \to D^0\pi^+$ and $D^{*-} \to \bar{D}^0\pi^-$ allows identification of the initial flavor through the charge of the low-momentum π meson (soft pion, π_s). Each decay-mode sample is divided into subsamples according to production flavor and decay time. In each subsample, a fit to the $D\pi^\pm$ mass distribution is used to determine the relative proportions of signal and background. These proportions are used to construct a background-subtracted distribution of the D impact parameter, the minimum distance from the beam of the D trajectory. This distribution is fit to identify $D^{*\pm}$ mesons from b-hadron decays (secondary decays), whose observed decay-time distribution is biased by the additional decay length of the b-hadron, and to determine the yields of charm (N_{D^0}) and anticharm ($N_{\bar{D}^0}$) mesons directly produced in the pp collision (primary decays). The yields are combined into the asymmetry $A = (N_{D^0} - N_{\bar{D}^0})/(N_{D^0} + N_{\bar{D}^0})$, which is fit according to Eq. (2). The slope yields A_T. The intercept determines the asymmetry at $t = 0$, $A(0)$, which receives contributions from direct CP violation and possible instrumental asymmetries. We check that the latter are constant in decay time using a low-background control sample of $13 \times 10^6 D^{\pm} \to D(\to K^\mp\pi^\pm)\pi^\pm$ signal decays. Sample selection, studies of background composition, and fit modeling follow previous measurements \cite{12,13}.

The CDF II detector is a multipurpose magnetic spectrometer surrounded by calorimeters and muon detectors. The detector components relevant for this analysis are outlined as follows; a detailed description is in Ref. \cite{12}. A silicon microstrip vertex detector and a cylindrical drift chamber immersed in a 1.4 T axial magnetic field allow reconstruction of charged-particle trajectories (tracks) in the pseudorapidity range $|\eta| < 1$. The vertex detector contains seven concentric layers of single- and double-sided silicon sensors at radii between 1.5 and 22 cm, each providing a position measurement with up to 15 (70) μm resolution in the azimuthal (proton-beam) direction \cite{13}. The drift chamber has 96 measurement layers, between 40 and 137 cm in radius, organized into alternating axial and $\pm 2^\circ$ stereo superlayers \cite{14}. The component of a charged-particle-momentum transverse to the beam (p_T) is determined with a resolution of $\sigma_{p_T}/p_T \approx 0.07\% (\text{GeV}/c)^{-1}$, corresponding to a typical mass resolution of 8 MeV/c^2 for a two-body charm-meson decay.

The data are collected by a three-level trigger. At level 1, custom hardware processors reconstruct tracks in the transverse plane of the drift chamber \cite{15}. Two oppositely-charged particles are required, with reconstructed transverse momenta $p_T > 2 \text{ GeV}/c$, scalar sum $\sum p_T > 5.5 \text{ GeV}/c$, and azimuthal opening angle $D\phi < 90^\circ$. At level 2, drift-chamber tracks are combined with silicon-detector hits and their impact parameters (transverse distances of closest approach to the beam line) are determined with 45 μm resolution (including the beam spread) \cite{16} and required to be between 0.12 and 1.0 mm. A more stringent opening-angle requirement of $2^\circ < D\phi < 90^\circ$ is also applied. Each track pair is then used to form a D-meson candidate, whose flight distance in the transverse plane projected onto the transverse momentum (L_{xy}) is required to exceed 200 μm. At level 3, the selection is reapplied on events fully reconstructed by an array of commercial processors.

The offline reconstruction of signal candidates is solely based on tracking information, without using particle identification. Two tracks from oppositely-charged particles compatible with the trigger requirements are combined, with pion or kaon assignment, in a kinematic fit to a common decay vertex to form a D candidate. A charged particle with $p_T > 400 \text{ MeV}/c$ is associated with each D candidate to form $D^{*\pm}$ candidates. We improve the reconstruction with respect to Ref. \cite{11} by using the position of the beam as a constraint in the fit of the $D^{*\pm}$ decay and retain only candidates with good fit quality. Since the beam position is determined more accurately than the trajectory of the soft pion, this provides a 25% improvement in $D^{*\pm}$ mass resolution. Other offline requirements are based on a more accurate determination of the quantities used in the trigger and are detailed in Ref. \cite{11}. The $D \to K^+K^-$ and $D \to \pi^+\pi^-$ samples are separated by requiring the selected candidates to have the relevant h^+h^- mass within 24 MeV/c^2 of the known D mass, m_D \cite{9}. We reconstruct $6.1 \times 10^5 D^0 \to K^+K^-$,
The effect of the bias is assumed to be independent of decay time. The fit allows for asymmetries between combinatorial and misreconstructed backgrounds as that expected in the signal region. We select as background the candidates with $m_D - 64 \text{MeV}/c^2 < M(K^+K^-) < m_D - 40 \text{MeV}/c^2$ and with $M(D\pi^\pm)$ within 2.4 MeV/c^2 of the known $D^{*\pm}$ mass. Checks on data show that the final results are robust against variations of these choices. We perform a χ^2 fit of the background-subtracted D impact parameter distributions in each subsample of decay-time and flavor using double-Gaussian models for both the primary and secondary components. Since we determine impact parameters using information associated with the D decay only, the shapes of the impact-parameter distributions of D^0 and \bar{D}^0 mesons are consistent. The parameters of the primary component are fixed in all fits. They are derived from a fit of candidates in the first decay-time bin ($t/\tau < 1.18$), where any bias from the $O(\%)$ secondary contamination is negligible, as supported by repeating the fit using an alternative model derived from the second bin and observing no significant difference in the results. The parameters of the secondary component are determined by the fit independently for each decay-time bin. Example impact-parameter fits are shown in Fig. 2.

All mass and impact parameter fits show good agreement with data. Extreme variations of model parameters yield large changes in fit χ^2 but negligible changes of the results.

Final χ^2 fits of the asymmetries between the resulting yields of primary charm and anticharm decays as functions of decay time are used to determine the values of A_F in the two samples. The fits are shown in Fig. 3 and yield $A_F(K^+K^-) = (-0.19 \pm 0.15 \text{ (stat)})\%$ and $A_F(\pi^+\pi^-) = (-0.01 \pm 0.18 \text{ (stat)})\%$. In both samples we observe $A(0) \approx -2\%$, due to the known vector sum of the momenta of the three particles to determine the $D^{*\pm}$ momentum and the known D and charged pion masses [6]. The signal shapes are determined from the sample of $D \rightarrow K^{\mp}\pi^{\pm}$ decays; the parameters of the background shapes [5] are determined by the fit. All mass shapes are determined independently for each flavor and decay-time bin. The fit allows for asymmetries between combinatorial and misreconstructed background event yields, respectively, of the D^{*+} and D^{*-} samples. The resulting shapes and background proportions are used to derive signal-only distributions of the D-meson impact parameter in each bin and for each flavor.
The independence of instrumental asymmetries from decay time is checked by performing the analysis on $D \to K^\pm \pi^\pm$ decays, where no indirect CP violation occurs and instrumental asymmetries are larger due to the additional effect from the difference in interaction probability with matter of opposite-charge kaons; an asymmetry slope compatible with zero is found, $(-0.5 \pm 0.3) \times 10^{-3}$. The width of the impact-parameter distribution of primary D mesons increases as a function of decay time, as predicted in simulation. This has no significant effect on A_Γ, as verified by repeating the measurement with a floating width that linearly increases with decay time.

The dominant systematic uncertainty in the measurement of $A_\Gamma(\pi^+\pi^-)$, arises from the contribution of $\pm 0.028\%$ from the choice of the impact-parameter shape (single or double Gaussian function) of the secondary component whereas for $A_\Gamma(K^+K^-)$ this effect contributes a smaller uncertainty of $\pm 0.013\%$. The choice of the background sideband has a dominant effect in the K^+K^- analysis ($\pm 0.038\%$) and a minor impact ($\pm 0.010\%$) on the $\pi^+\pi^-$ result. Other minor effects are associated with the uncertainty on the vertex-detector length-scale ($\pm 0.001\%$ to $\pm 0.002\%$); the neglected 0.93% contamination of misreconstructed $K^-\pi^+$ decays in the $\pi^+\pi^-$ sample ($< 0.001\%$); the neglected bin-by-bin migration due to the decay-time resolution ($< 0.001\%$); and any possible fit biases ($< 0.001\%$), probed by repeating the analysis on the $\pi^+\pi^-$ sample with random flavor assignment.

In summary, we measure the difference in effective lifetime between anticharm and charm mesons reconstructed in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays using the full CDF data set. The final results,

$$A_\Gamma(K^+K^-) = (-0.19 \pm 0.15 \text{ (stat)} \pm 0.04 \text{ (syst)})\%,$$

$$A_\Gamma(\pi^+\pi^-) = (-0.01 \pm 0.18 \text{ (stat)} \pm 0.03 \text{ (syst)})\%,$$

are consistent with the hypothesis of CP symmetry. Their combination yields $A_\Gamma = (-0.12 \pm 0.12)\%$, assuming that uncertainties are uncorrelated. The results are consistent with the current best determinations [9] [10] and improve the global constraints on indirect CP violation in charm-meson dynamics.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Foundation for Basic Research; and the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

* Deceased

1 With visitors from 1University of British Columbia, Vancouver, BC V6T 1Z1, Canada, 2Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, 3University of California Irvine, Irvine, CA 92697, USA, 4Institute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic, 5CERN, CH-1211 Geneva, Switzerland, 6Cornell University, Ithaca, NY 14853, USA, 7University of Cyprus, Nicosia CY-1678, Cyprus, 8Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, 9University College Dublin, Dublin 4, Ireland, 10ETH, 8092 Zürich, Switzerland, 11University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0117, 12Universidad Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal, 13University of Iowa, Iowa City, IA 52242, USA, 14Kinki University, Higashi-Osaka City, Japan 577-8502, 15Kansas State University, Manhattan, KS 66506, USA, 16Brookhaven National Laboratory, Upton, NY 11973, USA, 17Queen Mary, University of London, London, E1 4NS, United Kingdom, 18University of Melbourne, Victoria 3010, Australia, 19Muons, Inc., Batavia, IL 60510, USA, 20Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan, 21National Research Nuclear University, Moscow 115409, Russia, 22Northwestern University, Evanston, IL 60208, USA, 23University of Notre Dame, Notre Dame, IN 46556, USA, 24Universidad de Oviedo, E-33007 Oviedo, Spain, 25CNRS-IN2P3, Paris, F-75205 France, 26Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile, 27The University of Jordan, Amman 11942, Jordan, 28Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium, 29University of Zürich, 8006 Zürich, Switzerland. 30Massachusetts General Hospital, Boston, MA 02114 USA, 31Harvard Medical School, Boston, MA 02114 USA, 32Hampton University, Hampton, VA 23668, USA, 33Los Alamos National Laboratory, Los Alamos, NM 87544, USA, 34Université degli Studi di Napoli Federico I, I-80138 Napoli, Italy

[1] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158 and online update at http://www.slac.stanford.edu/xorg/hfag.

[2] M. Antonelli et al., Phys. Rept. 494, 197 (2010).

[3] S. Bianco, F. L. Fabbri, D. Benson, and I. I. Bigi, Riv. Nuovo Cim. 26N7, 1 (2003); G. Burdman and I. Shipsey, Annu. Rev. Nucl. Part. Sci. 53, 431 (2003); I. Shipsey, Int. J. Mod. Phys. A 21, 5381 (2006); M. Artuso, B. Meadows, and A. A. Petrov, Annu. Rev. Nucl. Part. Sci. 58, 249 (2008).

[4] M. Golden and B. Grinstein, Phys. Lett. B 222, 501 (1989); A. Le Yaouanc, L. Oliver, and J. C. Raynal, Phys. Lett. B 292, 353 (1992); F. Buccella, M. Lusignoli, G. Miele, A. Pugliese, and P. Santorelli, Phys. Rev. D 51, 3478 (1995).

[5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 85, 012009 (2012); A. Di Canto, Ph.D. thesis, University of Pisa, 2011, FERMILAB-THESIS-2011-29.

[6] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).

[7] M. Gersabeck, M. Alexander, S. Borghii, V. V. Gligorov and C. Parkes, J. Phys. G 39, 045005 (2012).

[8] Y. Grossman, A. L. Kagan, and Y. Nir, Phys. Rev. D 75, 036008 (2007).

[9] M. Staric et al. (Belle Collaboration), Phys. Rev. Lett. 98, 211803 (2007) and preliminary update in arXiv:1212.3478; J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 87, 012004 (2013).

[10] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 041801 (2014).

[11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 109, 111801 (2012).

[12] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 94, 122001 (2005).

[13] A. Sill et al., Nucl. Instrum. Methods A 447, 1 (2000); C. S. Hill et al., Nucl. Instrum. Methods A 530, 1 (2004); A. Affolder et al., Nucl. Instrum. Methods A 453, 84 (2000).

[14] T. Affolder et al., Nucl. Instrum. Methods A 526, 249 (2004).

[15] E. J. Thomson et al., IEEE Trans. Nucl. Sci. 49, 1063 (2002); R. Downing et al., Nucl. Instrum. Methods, A 570, 36 (2007).

[16] L. Ristori and G. Punzi, Annu. Rev. Nucl. Part. Sci. 60, 595 (2010); W. Ashmanskas et al., Nucl. Instrum. Methods, A 518, 532 (2004).