We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,400
Open access books available

174,000
International authors and editors

190M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

Over the past 50 decades, porous materials, from zeolites, coordination polymers to metal organic frameworks (MOFs), have gained considerable attention. The interesting feature is their porosity that allows the diffusion of guest molecules into the bulk structure. The shape and size of pores govern the shape and size selectivity of the guests to be incorporated. MOFs as defined by Yaghi et al. are porous structures constructed from the coordinative bonding between metal ions and organic linkers or bridging ligands (Figure 1) [1]. MOFs are formed by anchoring metal-containing units or secondary-building units (SBUs) with organic linkers, by coordination, yielding open frameworks that show exceptional feature of permanent porosity, stable framework, enormous surface area, and pore volume. The porosity is a consequence of long organic linkers that confer large storage space and numerous adsorption sites within MOFs. They also bear the ability to systematically vary and functionalize their pore structure [2, 3]. In the history of MOFs, a benchmark was represented by the synthesis of MOF-5 (Zn₄O(bdc))₃ bdc = terephthalate) and HKUST-1 (Cu₃(btc))₂ btc = 1,3,5-benzenetricarboxylate) with high porosity and low pressure gas sorption, followed by the development of chromium(III) terephthalate (MIL-101) with high chemical stability, MOF-74 (Zn₄(dhbdc), dhbdc = 2,5-dihydroxy-1,4-benzenedicarboxylate) with low pressure adsorption of CO₂, and several isostructural analogs of Mg-MOF-74 termed as IRMOF-74-I to IRMOF-74-XI, with large pore apertures to accommodate protein, NU-110E with acetylene-expanded hexatopic linker, having material highest experimental Brunauer-Emmett-Teller (BET) surface area of any porous material reported to date (7140 m² g⁻¹) Some examples of MOFs and their applications are given in Table 1 [1–15].
Figure 1. Structure of MOF.

Application	MOF	Metal	Ligand	Year	Author
Drug delivery	MIL-101 [Cr₃O(OH,F,H₂O)₃(1,4-bdc)₃] and MIL-100	Cr	1,4-benzenedicarboxylate moieties (bdc) or H₃btc: Benzene-1,3,5-tricarboxylate	2006	Patricia Horcajada et al. [4]
Methane Storage	MOF-5 Zn₃(1,4-bdc)₃	Zn	bdc	2002	Li and Eddaoudi, et al. [5, 6]
Adsorption and storage	HKUST(Hong Kong University of Science and Technology)-1 Cu₅(H₂O)₃(CO₂)₄	Cu	H₃btc	2006	Rowsell and Yaghi [7]
Adsorption and storage	IRMOF-9 Zn₃O(bpdc)₃	Zn	4,4'-biphenyl dicarboxylate (bpdc)	2006	Rowsell and Yaghi [7]
Adsorption and storage	MOF-74, Zn₄(C₈H₂O₆)	Zn	2,5-dihydroxybenzene-1,4-dicarboxylic acid	2006	Rowsell and Yaghi [7]
Drug delivery	metal–organic Zn(bix) spheres with encapsulated DOX [DOX/Zn(bix)], SN-38 [SN-38/Zn(bix)], CPT [CPT/Zn(bix)] and DAU [DAU/Zn(bix)] Doxorubicin (DOX), SN-38, camptothecin (CPT) and daunomycin (DAU)	Zn	Bix: 1,4-bis(imidazol-1-ylmethyl)benzene	2010	Inhar Imaz et al. [9]
2. Chemistry

MOFs consist of both inorganic and organic units. The organic units (linkers/bridging ligands) consist of carboxylates, or anions, such as phosphonate, sulfonate, and heterocyclic compounds (Figures 2 and 3). The inorganic units are the metal ions or clusters termed as SBUs. Its geometry is determined by the coordination number, coordination geometry of the metal ions, and the nature of the functional groups. A variety of SBU geometries with different number of points of extension such as octahedron (six points), trigonal prism (six points), square paddle-wheel (four points), and triangle (three points) have been observed in MOF structures (Figure 4). In principle, a bridging ligand (ditopic, tritopic, tetratopic, or multitopic linkers) reacts with a metal ion with more than one vacant or labile site. The final framework topology of MOF is governed by both SBU connectors and organic ligand linkers. Depending upon the nature of the system used, infinite-extended polymeric or discrete-closed oligomeric structures can arise (Figure 4). Metal-containing units and organic linkers can be varied resulting in a variety of MOFs, tailored for different applications [3]. MOFs with large spaces may result in the formation of interpenetrating structures. Thus, it is very important to inhibit interpenetration by carefully choosing the organic linkers. The pore size is allowed to be tuned and spatial cavity arrangement be controlled, by judicious selection of metal centers.
and organic ligands and also by adjusting their conditions of synthesis. The large porosity allows their applications in adsorption and separation of gaseous molecules, catalysis, microelectronics, optics, sensing applications, bioreactors, drug delivery, and others. MOFs have pore openings up to 2-nm size, which can accommodate small molecules. However, the pore openings rarely allow the inclusion of large molecules (e.g., proteins and enzymes). Attempts have been taken to increase the pore size to mesopore regime (pore size of 2–50 nm) and to decrease the crystal size to the nanometer scale. The large pore aperture benefits surface modification with a number of functionalities, without sacrificing the porosity of MOFs, also allowing the encapsulation of large molecule MOFs. The synthesis of MOFs involves reaction conditions and simple methods such as solvothermal, ionothermal, diffusion, microwave methods, ultrasound-assisted, template-directed syntheses, and others [2, 3].

An interesting and significant advancement in the field is to combine MOFs with functional nanoparticles, yielding new nanocomposite materials with unparalleled properties and performance. Nano-MOFs are advantageous over conventional nanomedicines owing to their structural and chemical diversity, high loading capacity, and biodegradability. The final properties are dependent on the particle composition, size, and morphology. These can be obtained as either crystalline or amorphous materials. As soft porous crystals, framework flexibility (triggered by an external stimulus, e.g., mechanical stress, temperature, light interactions) may be shown by MOFs, also in the absence of guests or with no involvement of adsorption and desorption [1–3, 16].

![Figure 2. Some examples of organic ligands with carboxylic functionality used for the preparation of MOFs.](image-url)
Figure 3. Some examples of ligands containing nitrogen, sulfur, phosphorous and heterocycles used for the preparation of MOFs.

Figure 4. MOFs resulting from different metal nodes and bridging ligands.
3. Metal biomolecule frameworks (BioMOFs)

Biomolecules are naturally and abundantly available. They are cost-effective, rigid, and flexible with different coordination sites, rendering structurally diverse, biologically compatible MOFs. MOFs have also been synthesized from nontoxic endogenous cations (such as Ca, Mg, Fe, and Zn) and ligands consisting of naturally occurring derivatives or biomolecules [17]. These BioMOFs are usually biocompatible and suitable for biomedical applications [17–47]. Such combinations of natural ligands with endogenous cations are also associated with several therapeutic effects (anti-allergic, anti-inflammatory, antimicrobial, anticarcinogenic activities). Table 2 shows some examples of BioMOFs and their applications [18–47]. Such biologically and environmentally compatible MOFs are designed and constructed based on specific composition criteria governed by judiciously selecting metal ions and organic linkers as building blocks, which are nontoxic and biologically and environmentally compatible. Biomolecules such as amino acids, peptides, proteins, nucleobases, carbohydrates, and other natural products such as cyclodextrins, porphines, and some carboxylic acids (Figure 5) serve as emerging building blocks for the design and construction of metal-biomolecule frameworks with novel and interesting properties and applications that cannot be obtained through the use of traditional organic linkers [17, 43, 44, 48, 49].

Application	BioMOF	Metal	Ligand	Year	Author
Ar and CH₄ sorption	[Cu(trans-fum)]	Cu	Fum:Fumaric acid	2001	K. Seki et al [18]
Reversible H₂O sorption/desorption	[Ni₇(suc)₆(OH)₆(H₂O)₂]	Ni	Succ Succinic acid	2002	Forster et al. [19]
–	[Ni₇(suc)₄(OH)₆(H₂O)₃]·TH₂O	Ni	Succ	2003	Guillou et al. [20]
Sorption of more than 30 kinds of guests (e.g. DMF, benzene, etc.); structural change	[Mn₃(HCOO)₆]·(CH₃OH)·(H₂O)	Mn	Formic acid	2004	Wang et al. [21]
Selective CO₂ and H₂ sorption	Mn(HCOO)₂·1/3(C,H,O)	Mn	Formic acid	2004	Dybtsev et al. [22]
Adsorption	Fe₄O(MeOH)₃(fum)₃(CO₂CH₃)·4.5MeOH	Fe	Fum	2004	Serre et al. [23]
1,3-Butanediol sorption	[Ni₂(O-L-Asp)·H₂O]·4H₂O	Ni	Amino acid L-Asp: aspartic acid	2004	Anokhina et al. [24]
Enantioselective separation and catalytic	Zn₂(bdc)·L-lac(DMF)	Zn	bdc: 1,4-benzenedicarboxylic acid and L-lac:Lactic acid	2006	Dybtsev et al. [25]
Application	BioMOF	Metal	Ligand	Year	Author(s)
--	--	-------	-----------------------------	------	-----------
CO₂ sorption	[Ni₂(L-Asp)₂(4,4’-bipy)]₂H₂O	Ni	L-Asp and 4,4’-bipy: 1,2-bis(4-pyridyl)ethane	2006	Vaidhyanathan et al. [26]
H₂ sorption	Co₂(L-Asp)₂(4,4’-bipy)₂H₂O	Co	L-Asp and 4,4’-bipy	2008	Zhu et al. [27]
Heterogeneous asymmetric catalysts for the methanolysis of rac-propylene oxide	Ni₂(L-Asp)₂(4,4’-bipy)(HCl)₁.₈(MeOH)	Ni	L-Asp and 4,4’-bipy	2008	Ingleson et al. [28]
Heterogeneous asymmetric catalysts for the methanolysis of rac-propylene oxide	Cu₂(2-Asp)₂(bpe)(HCl)₁.₈(H₂O)₂	Cu	2-Asp and bpe: 1,2-bis(4-pyridyl)ethane	2008	Ingleson et al. [28]
Cation exchange capabilities, including cationic drugs and lanthanide ions	Zn₆(Ade)₁(bpdc)₁₀₂(Me₂NH₅)₁₈(8DMF-1₁H₂O)	Zn	Nucleobases: Adenine: Ade and bpdc: biphenyldicarboxylate	2009	An et al. [29]
Selective CO₂ sorption	Co₂(Ade)₂(CO₂CH₃)₁₂·2DMF·0.5H₂O	Co	Ade	2010	An et al. [30]
Drug delivery and imaging	Fe₃O(MeOH)₃(fumarate)₁₃.₈(CO₂CH₃)₁₈·4.₅MeOH and [Fe₃O(MeOH)]₁₈(C,H₄O₈)₃Cl·6MeOH	Fe	Fumarate and C₆H₄O₈ is galactarate	2010	Horcajada et al. [31]
Therapeutic agent	BioMIL-1	Fe	Nicotinic acid (pyridine-3-carboxylic acid, also called niacin or vitamin B₃)	2010	Miller et al. [32]
Reversible flexible structure; CO₂, MeOH and H₂O sorption	[Zn(GlyAla)₂]₁(solvent)	Zn	Peptide; Glycine-adenine	2010	Rabone et al. [33]
Inclusion of several molecules (e.g. Rhodamine B, ...)	(γ-CD)₁(KOH)₁(Pb₂₅(NO₃)₂)	K	Saccharides γ-CD: cyclodextrins	2010	Smaldone et al. [35]
	(γ-CD)₁(Rb₆O₇)₁(Pb₂₅(NO₃)₂)	Rb	γ-CD is a (chiral) cyclic oligosaccharide	2010	Smaldone et al. [34]
Application	BioMOF	Metal	Ligand	Year	Author
---	------------------	-------	-------------------------------------	------	----------------------
4-phenylazoplenol etc.)					
Highly selective adsorption of CO₂	CD-MOF-2	Rb	γ-CD	2011	Jeremiah J. Gassensmith et al. [35]
Photostable O₂ sensor	Zn₈(Ade)₄(bpdc)₆·2Me₂NH₂] loaded with lanthanide cations (Tb(III), Sm(III), Eu(III) and Yb(III))	Zn and lanthanide	Ade and bpdc	2011	An et al. [36]
–	M(II/III) Gallates	Fe, Mn, Co and Ni	H₄gal: gallic acid	2011	Saines et al. [37]
Porous	α-CD-MCF	Rb	α-CD	2012	Gassensmith et al. [38]
Adsorption	CD-MOF-1 and CD-MOF-2 and CD-MOF-3	K, Rb and Cs	γ-CD	2012	Forgan et al. [39]
Drug storage and release or for the immobilization and organization of large biomolecules	Bio-MOF-100	Zn	Ade	2012	Jihyun An et al. [40]
–	MIL-151 to -154	Zr	H₄gal	2014	Cooper et al. [41]
Antibacterial carrier	BioMIL-5	Zn	AzA: azelaic acid	2014	Tamames-Tabár et al. [42]
Antioxidant carrier	Mg(H₄gal)	Mg	H₄gal	2015	Cooper et al. [43]
Inclusion and	CD-MOF-1	Na	β-CD:	2015	Lu et al.
Application	BioMOF	Metal	Ligand	Year	Author
---	----------	-------	--	------	---------------------------
loading the drug molecules	MOF-525	Zr	H₄tcpp: meso-tetra(4-carboxyphenyl) porphine	2015	Kung et al. [44]
Electrochemical nitrite detection	Al-PMOF	Al	H₄tcpp	2015	Wilcox et al. [45]
Ammonia uptake	[Zn(ain)(atz)]ₙ	Zn	Hatz : 5-aminotetrazole and Hai: 2-amino-4-isonicotinic	2016	David Briones et al. [47]

Table 2. Some examples of BioMOFs and their applications.

Figure 5. Examples of organic linkers used for the synthesis of BioMOFs.
4. Summary

MOFs find versatile applications as drug-delivery agents, sensors, storage and separation systems, catalysts, and others. Nontoxic nano-MOFs bearing tailored cores and surfaces can be used as nanodrug carriers for antitumor and anti-HIV drugs (biomedicine, nontoxic, drug). MOFs with biomolecules as organic linkers are still in cradle stage in contrast to their counterparts bearing traditional organic linkers. However, biomolecules confer biological compatibility and easy recyclability to MOFs. They also confer unique characteristics such as chirality and specific recognition, self-assembly characteristic, separation, ion exchange, and catalytic properties, also rendering bioinspired structures. In future, a better understanding and control of chemistry and design of MOFs may provide plethora of opportunities towards their structures, properties, and applications in different fields.

Acknowledgements

Dr Fahmina Zafar is thankful to UGC (New Delhi, India) for Dr DS Kothari Postdoctoral Fellowship, Ref. # F.4/2006(BSR)/13-986/2013(BSR). The author is also thankful to Prof. Nahid Nishat (Mentor), Inorganic Materials Research Lab, Department of Chemistry, Jamia Millia Islamia (a Central University) New Delhi, India, for her kind support.

Author details

Eram Sharmin¹ and Fahmina Zafar²*

*Address all correspondence to: fahmzafar@gmail.com

1 Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

2 Inorganic Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India

References

[1] James SL. Metal-organic frameworks. Chem. Soc. Rev. 2003;32:276–288. DOI: 10.1039/b20393g.

[2] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science 2013;341:1230444. DOI: 10.1126/science.12304.
[3] Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle III T, Bosch M, Zhou H-C. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014;43:5561–5593. DOI: 10.1039/C4CS00003J.

[4] Horcajada P, Serre C, Vallet-Reg M, Sebban M, Taulelle F, Frey G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006;45:5974 –5978. DOI: 10.1002/anie.200601878.

[5] Li H, Eddaoudi M, O’Keefe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402:276–279. doi: 10.1038/46248.

[6] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keefe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002;295:469–472. DOI: 10.1126/science.1067208.

[7] Rowsell JLC, Yaghi OM. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006;128:1304–1315. DOI: 10.1021/ja056639q.

[8] Savonnet M, Farrusseng D. PCT Appl. WO2011048284, 2011.

[9] Imaz I, Rubio-Martínez M, García-Fernández L, García F, Ruiz-Molina D, Hernando J, Puntes V, Maspol D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010;46:4737–4739. DOI: 10.1039/c003084h.

[10] Canivet J, Aguado S, Bergeret G, Farrusseng D. Amino acid functionalized metal–organic frameworks by a soft coupling–deprotection sequence. Chem. Commun. 2011;47:11650–11652. DOI: 10.1039/C1CC15541E.

[11] Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY. Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulose fibers. J. Appl. Polym. Sci. 2014. DOI: 10.1002/APP.40815.

[12] Zhuang W, Yuan D, Li J-R, Luo Z, Zhou H-C, Bashir S, Liu J. Highly potent bactericidal activity of porous metal-organic frameworks. Adv. Healthcare Mater. 2012;1:225–238. DOI: 10.1002/adhm.201100043.

[13] Eubank JF, Wheatley PS, Lebars G, McKinlay AC, Leclerc H, Horcajada P, Daturi M, Vimont A, Morris RE, Serre C. Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. Apl. Mater. 2014;2:124112. DOI: 10.1063/1.4902996.

[14] Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, Zhao LZQ, Ning G. Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility. J. Inorg. Biochem. 2014;138:114–121. DOI: 10.1016/j.jinorgbio.2014.05.005.
[15] Zhao Y-P, Yang H, Wang F, Du Z-Y. A microporous manganese-based metal-organic framework for gas sorption and separation. J. Mol. Struct. 2014;1074:19–21. DOI: 10.1016/j.molstruc.2014.05.033.

[16] Tamames-Tabar C, Cunha D, Imbuluzqueta E, Ragon F, Serre C, Blanco-Prieto M J, Horcajada P. Cytotoxicity of nanoscaled metal–organic frameworks J. Mater. Chem. B. 2014;2:262. DOI: 10.1039/c3tb20832j.

[17] Imaz I, Rubio-Martinez M, An J, Sole-Font I, Rosi NL, Maspoch D. Metal–biomolecule frameworks (MBioFs). Chem. Commun. 2011;47:7287–7302. DOI: 10.1039/c1cc11202c.

[18] Seki K, Takamizawa S, Mori W. Characterization of microporous copper (II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 2001;122–123. doi:10.1246/cl.2001.122.

[19] Forster PM, Cheetham AK. Open-framework nickel succinate, [Ni₇(C₄H₄O₄)₆(OH)₂(H₂O)₂]·2H₂O: a new hybrid material with three-dimensional ni-oi-ni connectivity. Angew. Chem., Int. Ed. 2002;41:457–459N.

[20] Guillou N, Livage C, van Beek W, Nogues M, Ferey G. A layered nickel succinate with unprecedented hexanickel units: structure elucidation from powder-diffraction data, and magnetic and sorption properties. Angew. Chem. Int. Ed. 2003;42:643–647. DOI: 10.1002/anie.200390177.

[21] Wang ZM, Zhang B, Fujiwara H, Kobayashi H, Kurmoo M. Mn₃(HCOO)₆: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn₄ tetrahedron and guest-modulated ordering temperature. Chem. Commun. 2004;416–417. DOI: 10.1039/b314221c.

[22] Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 2004;126:32–33. DOI: 10.1021/ja038678c.

[23] Serre C, Millange F, Surble S, Ferey G. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 2004;43:6285–6289. DOI: 10.1002/anie.200454250.

[24] Anokhina EV, Jacobson AJ. [Ni₃O(L-Asp)(H₂O)₂]·4H₂O: a homochiral 1D helical chain hybrid compound with extended Ni-O-Ni bonding. J. Am. Chem. Soc. 2004;126:3044–3045. DOI: 10.1021/ja031836f.

[25] Dybtsev DN, Nuzhdin AL, Chun H, Bryliakov KP, Talsi EP, Fedin VP, Kim K. A homochiral metal–organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angew. Chem. Int. Ed. 2006;45:916–920. DOI: 10.1002/anie.200503023.
[26] Vaidhyanathan R, Bradshaw D, Rebilly JN, Barrio JP, Gould JA, Berry NG, Rosseinsky MJ. A family of nanoporous materials based on an amino acid backbone. Angew. Chem., Int. Ed. 2006;45:6495–6499. DOI: 10.1002/anie.200602242.

[27] Zhu P, Gu W, Cheng FY, Liu X, Chen J, Yan SP, Liao DZ. Design of two 3D homochiral Co(II) metal–organic open frameworks by layer-pillar strategy: structure and properties. Cryst. Eng. Commun. 2008;10:963–967. DOI: 10.1039/B801177J.

[28] Ingleson MJ, Barrio JP, Bacsa J, Dickinson C, Park H, Rosseinsky MJ. Generation of a solid Brønsted acid site in a chiral framework. Chem. Commun. 2008;11:1287–1289. DOI: 10.1039/B718443C.

[29] An J, Geib SJ, Rosi NL. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc. 2009;131:8376–8377. doi: 10.1021/ja902972w.

[30] An J, Geib SJ, Rosi NL. High and selective CO₂ uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine and amino-decorated pores. J. Am. Chem. Soc. 2010;132:38–39. DOI: 10.1021/ja909169x.

[31] Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayton P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Ferey G, Couvreur P, Gref R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010;9:172–178. doi: 10.1038/nmat2608.

[32] Miller SR, Hertaux D, Baati T, Horcajada P, Greneche JM, Serre C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. 2010;46:4526–4528. DOI: 10.1039/C001181A.

[33] Rabone J, Yue YF, Chong SY, Stylianou KC, Bacsa J, Bradshaw D, Darling GR, Berry NG, Khimyak YZ, Ganin AY, Wiper P, Claridge JB, Rosseinsky MJ. Science 2010;329:1053–1057. doi: 10.1126/science.1190672.

[34] Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AMZ, Yaghi OM, Stoddart JF. Metal–organic frameworks from edible natural products. Angew. Chem. Int. Ed. 2010;49:8630–8634. DOI: 10.1002/anie.201002343.

[35] Gassensmith JJ, Furukawa H, Smaldone RA, Forgan SS, Botros YY, Yaghi OM, Stoddart JF. J. Am. Chem. Soc. 2011;133:15312–15315. DOI: 10.1021/ja206525x.

[36] An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL. Strong and reversible binding of carbon dioxide in a green metal organic framework. J. Am. Chem. Soc. 2011;133:1220–1223. DOI: 10.1021/ja206525x.

[37] Saines PJ, Yeung HH-M, Hester JR, Lennir AE, Cheetham AK. Detailed investigations of phase transitions and magnetic structure in Fe(III),Mn(II), Co(II) and Ni(II) 3,4,5-trihydroxybenzoate (gallate) dihydrates by neutron and X-ray diffraction. Dalton Trans. 2011;40:6401–6410. DOI: 10.1039/c0dt01687j.
[38] Gassensmith JJ, Smaldone RA, Forgan RS, Wilmer CE, Cordes DB, Botros YY, Slawin AMZ, Snurr RQ, Stoddart JF. Polyporous metal-coordination frameworks. Org. Lett. 2012;14:1460–1463. DOI: 10.1021/ol300199a.

[39] Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li Q, Wilmer CE, Botros YY, Snurr RQ, Slawin AMZ, Stoddart JF. Nanoporous carbohydrate metalorganic frameworks. J. Am. Chem. Soc. 2012;134:406–417. DOI: 10.1021/ja208224f.

[40] An J, Farha OK, Hupp JT, Pohl E, Yeh JI, Rosi NL. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature Commun. 2012;3:604–609. DOI: 10.1038/ncomms1618.

[41] Cooper L, Guillou N, Martineau C, Elkaim E, Taulelle F, Serre C, Devic T. Zr IV coordination polymers based on a naturally occurring phenolic derivative. Eur. J. Inorg. Chem. 2014;36:6281–6289. DOI:10.1002/ejic.201402891.

[42] Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller SR, Elkaïm E, Horcajada P, Blanco-Prieto M. A Zn azelate MOF: combining antibacterial effect. Cryst. Eng. Commun. 2015;17:456–462 DOI:10.1039/c4ce00885e.

[43] Cooper L, Hidalgo T, Gorman M, Lozano-Fernandez T, Simon-Vazquez R, Olivier C, Guillou N, Serre C, Martineau C, Taulelle F, Damasceno-Borges D, Maurin G, Gonzalez-Fernandez A, Horcajada P, Devic T. A biocompatible porous Mg-gallate metal-organic framework as an antioxidant carrier. Chem. Commun. 2015;51:5848–5851. DOI: 10.1039/c5cc00745c.

[44] Lu H, Yang X, Li S, Zhang Y, Sha J, Li C, Sun J. Study on a new cyclodextrin based metal-organic framework with chiral helices. Inorg. Chem. Commun. 2015;61:48–52. DOI: 10.1016/j.inoche.2015.08.015.

[45] Kung C-W, Chang T-H, Chou L-Y, Hupp JT, Farha OK, Ho K-C. Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection. Electrochem. Commun. 2015;58:51–56. DOI: 10.1016/j.elecom.2015.06.003.

[46] Wilcox OT, Fateeva A, Katsoulidis AP, Smith MW, Stone CA, Rosseinsky MJ. Acid loaded porphyrin-based metal-organic framework for ammonia uptake. Chem. Commun. 2015;51:14989–14991. DOI: 10.1039/C5CC06209H.

[47] Briones D, Fernández B, Calahorro AJ, Fairen-Jimenez D, Sanz R, Martínez F, Orcajo G, Sebastián ES, Seco JM, González CS, Llopis J, Rodríguez-Díez A. Highly active anti-diabetic metal-organic framework. Cryst. Growth Des. 2016;16:537–540. DOI: 10.1021/acs.cgd.5b01274.

[48] Keskin S, Kızılel S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res. 2011;50:1799–1812. DOI: 10.1021/ie101312k.

[49] Imaz I, Rubio-Martinez M, Garcia-Fernandez L, Garcia F, Ruiz-Molina D, Hernando J, Puntesa V, Maspoch D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010;46:4737–4739. DOI: 10.1039/C003084H.