Use of isolated Roux loop for pancreaticojejunostomy reconstruction after pancreaticoduodenectomy

Konstantinos Ballas, Nikolaos Symeonidis, Savvas Rafailidis, Theodoros Pavlidis, Georgios Marakis, Nikolaos Mavroudis, Athanasios Sakantamis

AIM: To evaluate the efficacy of the isolated Roux loop technique in decreasing the frequency of pancreaticojejunal anastomosis failure.

METHODS: We retrospectively reviewed 88 consecutive patients who underwent pancreaticoduodenectomy (standard or pylorus-preserving). Single jejunal loop was used in 42 patients (SL group) while isolated Roux loop was used in 46 patients (RL group). Demographic characteristics (age, gender) and perioperative results (major/minor complications, mortality, hospital stay) were compared between the two groups.

RESULTS: Mortality was almost equal in both groups and overall mortality was 2.27%. Leak rate from the pancreaticojejunal anastomosis and hospital stay were lower in the RL group without significant difference. Morbidity was 39.1% in the RL group, insignificantly higher than the SL group. Operative time was almost 30 min longer in the RL group.

CONCLUSION: The isolated Roux loop, although an equally safe alternative, does not present advantages over the traditional use of a single jejunal loop. Randomized controlled studies are required to further clarify its efficacy.

Key words: Pancreaticojejunal anastomosis; Isolated Roux loop; Whipple pancreaticoduodenectomy; Pancreatic leak

Peer reviewers: Dr. Joseph J Cullen, MD, Professor, Department of Surgery, University of Iowa Carver College of Medicine, 4605 JCP, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, United States; Ingmar Königsrainer, MD, Department of General, Visceral and Transplant Surgery, Hoppe Seyler Str. 3, 72076 Tübingen, Germany; Giedrius Barauskas, Professor, Department of Surgery, Kaunas University of Medicine, Eiveniu str. 2, Kaunas, LT-50009, Lithuania

© 2010 Baishideng. All rights reserved.

INTRODUCTION

Pancreaticoduodenectomy (PD) is the procedure of choice for the treatment of peri-ampullary and pancreatic head malignancies and was first described by Allen Whipple et al. back in the 1930s. Early enthusiasm concerning the procedure was followed by skepticism because of the associated high morbidity and mortality rates. However,
advances in operative techniques and perioperative patient care have resulted in lower hospital mortality and longer survival, making the procedure relatively safe in expert hands[3,4].

Despite recent favorable outcomes, leakage from the pancreaticojejunal anastomosis is still considered a significant source of morbidity and associated mortality. Various methods of surgical management of the pancreatic remnant have been proposed to address this serious problem. The rationale of creating an isolated Roux loop for the drainage of the pancreatic stump was initially introduced by Machado et al[5] in 1976. They proposed that this isolated Roux loop can prevent the activation of pancreatic fluid by the intestinal contents and bile, and therefore protect the pancreaticojejunal anastomosis from erosion.

The aim of this study was to assess the outcome of the pancreaticojejunal anastomosis formed with an isolated Roux loop compared to the standard single loop technique.

MATERIALS AND METHODS

Study design
We retrospectively studied all patients who underwent PD for malignancy in our department from 1994 to 2006. The medical records of 88 consecutive patients were reviewed. All PDs were performed by two experienced pancreatic surgeons. There have been two distinct periods in our study during which the management of the pancreatic remnant was different. In period I (1994 to 1999) the pancreatic stump was anastomosed sequentially to the single jejunal loop (followed by hepatico-jejunal and gastro-jejunal anastomoses) used for the reconstruction of all anastomoses (Group SL). During period II (2000 to 2006) an isolated Roux loop (Group RL) was used for the pancreatic reconstruction. Informed consent for the surgical procedures was obtained from each patient.

Preoperative assessment
Preoperative diagnostic workup during the early period of study included abdominal computerized tomography scan with oral/intravenous contrast, endoscopic retrograde cholangiopancreatography, percutaneous transhepatic cholangiography and mesenteric angiography in selected patients. The advent of magnetic resonance imaging and magnetic resonance cholangio-pancreatography in the late 1990s provided an excellent adjunct to diagnosis and a safe alternative for biliary-pancreatic evaluation.

Surgical approach
Standard Whipple type operation was performed in 63 patients while the remaining 25 patients underwent a pylorus-preserving PD (PPPD) according to Traverso et al[6]. In the majority of cases an end-to-side, duct-to-mucosa pancreaticojejunal anastomosis with transanastomotic stent was preferred. Only in cases where the pancreatic remnant was considered to be very friable was invagination of pancreatic stump into the jejunal loop preferred.

Patient data concerning postoperative complications, mortality and hospital stay were evaluated and compared between the two groups. Pancreatic anastomotic failure was initially as described according to the Heidelberg and Johns Hopkins groups as the drainage of more than 50 mL of fluid in 24 h, with an amylase content of more than 3 times the serum amylase activity for more than 10 d after operation[7,8]. In order to adopt a more universally uniform definition we used the ISGPF (International Study Group on Pancreatic Fistula) proposal which is based on the high amylase content of the drain fluid on or after the third postoperative day[9].

Statistical analysis
Statistical analysis was performed by using the Statistical Package for Social Sciences 13.0 for Windows (SPSS Inc., Chicago, IL). Demographic, operative data and postoperative outcome were collected retrospectively. Continuous variables were compared by using Mann-Whitney U test and categorical variables were compared by using the χ² or Fisher’s exact test, depending on the frequency distribution. P < 0.05 was considered statistically significant.

RESULTS

Between 1994 and 2004, 88 patients underwent PD for malignancy. The underlying disease was pancreatic head carcinoma (n = 59), ampullary carcinoma (n = 13), cholangiocarcinoma (n = 8), duodenal carcinoma (n = 6) and two rare cases of ampullary carcinoid. The male to female ratio was 52:36. The patients’ mean age was 62.7 ± 10.5 years (range 33-78). Period I (1994 to 1999-single loop group) included 42 patients, while period II (2000 to 2004-isolated Roux loop group) included 46 patients. The demographic data of these patients are shown in Table 1.

Perioperative outcomes
Postoperative complications are demonstrated in Table 2. Mean operative time for the RL group was 366.1 min (range 270-520), which was significantly longer (P = 0.046) than the operative time of 338.8 min (range 240-470) recorded in the SL group. No major intraoperative compli-

Table 1 Demographic characteristics of the patients and type of operation for the two different groups
Patients (n)

Gender
Men/women
Type of operation
Standard Whipple
Traverso-Longmire
The present study failed to demonstrate any significant reduction of pancreatic anastomosis failure when the isolated Roux loop technique was performed for the construction of pancreaticojejunostomy instead of the single loop technique.

The operative mortality rate of pancreaticoduodenectomy, which had remained at unacceptably high levels since the 1970s,[6,10,11] dropped dramatically in the last two decades to less than 5% in many reports.[12,13,18] The improved mortality rates can be attributed to a variety of reasons including better perioperative care, accumulated experience on the part of the pancreatic surgeons, refinement of surgical instruments and materials and better anesthesiologic management[14].

Despite reductions in mortality after pancreaticoduodenectomy, the incidence of postoperative morbidity remains high, ranging between 30%-50%.[21,13,14] Common postoperative complications include pancreatic fistula, delayed gastric emptying and wound infection. Pancreatic anastomosis failure, which is a major source of morbidity, is considered as the “Achilles’ heel” of the procedure. Pancreatic fistula rate can reach 20% even in specialized centers and does not seem to have declined in the same way as mortality rate has done over the last few decades.[13,14,17] Hemorrhage and sepsis are the most frequent sequels of pancreatic fistula, both of which contribute largely to the mortality (20%-40%) as well as to prolonged hospitalization and increased hospital cost.[15,18,19]

We analyzed a series of 88 consecutive patients who underwent PD in our department. During the first period (1994-1999), the pancreatic stump was anastomosed sequentially to the single jejunal loop used for the reconstruction of all anastomoses. Mortality (2.3%), morbidity (30.9%) and failure rate of the pancreaticojejunal anastomosis (7.1%) did not differ significantly from those reported in the literature. Although initial reports concerning the use of an isolated jejunal loop for the construction of the pancreaticojejunal anastomosis were far from encouraging with high fistula rates,[20-28], various studies published during this first period supported this alternative technique, presenting considerably improved results.[21-24] These studies demonstrated extremely low anastomotic leak rates ranging from 0% to 5.7% and zero fistula-related mortality. Table 3 demonstrates results of the isolated Roux loop technique from various studies.[20-28]

The concept of isolation of the pancreatic anastomosis was based mainly on the rationale of diverting biliary from pancreatic secretions. On one hand, this results in avoidance of activation of pancreatic enzymes which could, in theory, erode the anastomotic line and weaken the anastomosis. On the other hand, the jejuno-jejunal anastomosis carries the risk of occlusion due to edema which could increase intraluminal pressure with probably detrimental consequences for the pancreatic anastomosis.

Influenced by these data and aiming to reduce the anastomotic leak rate, in the second period of the study (2000-2006) we adopted the isolated Roux loop technique. However, in our study no significant advantage of this method was found. Although many previous studies utilizing an isolated Roux loop reported zero anastomotic leaks,[21,25,25,26] in our study the leak rate was higher (4.3%).

Table 2 Major and minor complications in both groups n (%)
Single loop group (SL)

Major complications
PJ anastomosis failure
Hemorrhage
Minor complications
Wound infection
Pulmonary infection
Delayed gastric emptying
Subhepatic fluid collection
Cardiac failure
Morbidity
Mortality
Operative time (min)
Hospital stay (d)

PJ: Pancreaticojejunostomy; NS: Non-significant.
This rate was lower than the leak rate of the group in which a single loop of jejunum was used, but without statistical significance. In contrast to previous series of isolated Roux-en-Y pancreaticojejunal anastomosis, which presented no pancreatic fistula-associated mortality, both our fatalities (one from each group) died due to sequelae of pancreatic anastomosis failure.

Overall postoperative morbidity in our study is in accordance with major series.[29,30] The lower anastomotic failure rate reported in the RL group possibly contributes to the shorter hospital stay, but also increases the duration of the operation (adding 30 min) and subsequently exposes patients with concomitant diseases to increased risk of complications not related to the operation. Delayed gastric emptying occurred at an increased frequency in patients of the isolated Roux loop group due to the small percentage of pylorus-preserving procedures taken place in this group.

Our study does not confirm that construction of the pancreaticojejunal anastomosis with an isolated Roux loop proves beneficial. Success may well depend on already known parameters, such as consistency of the pancreatic parenchyma and diameter of the pancreatic duct. Hard pancreatic tissue accompanied by wide, dilated duct, as seen in chronic pancreatitis, can result in a safer anastomosis than one constructed over soft tissue and thin duct.[31,32]

In conclusion, creation of an isolated Roux-en-Y loop in 46 out of 88 patients in our study did not provide sufficient evidence of superiority over the single loop technique regarding the leak rate, morbidity, mortality and hospital stay.

Innovations and breakthroughs

Although the isolated Roux loop technique has been previously described and evaluated, its comparison with the standard single loop technique was not fully studied.

Applications

The isolated Roux loop technique has not been proven to reduce the incidence of pancreatic fistula formation and additionally prolonged the operation time. Single loop technique with sequentially constructed anastomoses remains the operation of choice for reconstruction after pancreaticoduodenectomy. Further randomized controlled studies could strengthen this conclusion.

Peer review

This is a nice series of pancreaticoduodenectomies. The mortality is acceptable and the authors note the limitations of their study.

Table 3 Roux-en-Y pancreaticojejunostomy results from various studies

Series	Study type	Patients (total)	Fistulae (%)	Mortality related to fistula (%)	Overall mortality (%)	Hospital stay (d)
Machado et al[5]	CS	15	2 (13.3)	0	0	20.0
Funovics et al[4]	CS	48	9 (18.7)	0	3 (6.2)	NA
Kingsworth et al[2]	CS	52	0	0	3 (5.8)	18.4
Albertson et al[3]	CS	25	0	0	0	12.2
Meyer et al[6]	CS	35	2 (5.7)	0	4 (11.4)	NA
Papadimitriou et al[7]	CS	109	0	0	1 (0.9)	7.6
Khan et al[8]	CS	41	0	0	1 (2.4)	19.6
Sutton et al[9]	CS	61	0	0	3 (5)	16.0
Jover et al[10]	CS	80	16 (20)	3 (60)	5 (6.6)	20.6
Kamin et al[11]	RC	60 (111)	6 (10)	2 (33.3)	5 (8.3)	17.75

NA: Not available; CS: Case series; RC: Retrospective comparative.

REFERENCES

1. Whipple AO, Parsons WB, Mullins CR. Treatment of carcinoma of the ampulla of vater. Ann Surg 1935; 102: 763-779
2. Lansing PB, Blalock JB, Ochsner JL. Pancreato-duodenectomy: a retrospective review 1949 to 1969. Ann Surg 1972; 28: 79-86
3. Trede M, Schwall G, Saeger HD. Survival after pancreaticoduodenectomy. 118 consecutive resections without an operative mortality. Ann Surg 1990; 211: 447-458
4. Crist DW, Sitzmann JV, Cameron JL. Improved hospital morbidity, mortality, and survival after the Whipple procedure. Ann Surg 1987; 206: 358-365
5. Machado MC, da Cunha JE, Bacchella T, Bove P. A modified technique for the reconstruction of the alimentary tract after pancreaticoduodenectomy. Surg Gynecol Obstet 1976; 143: 271-272
6. Traverso LW, Longmire WP Jr. Preservation of the pylorus in pancreaticoduodenectomy. Surg Gynecol Obstet 1978; 146: 959-962
7. Büchler MW, Friess H, Wagner M, Kulli C, Wagener V, Z Graggen K. Pancreatic fistula after pancreatic head resection. Br J Surg 2003; 87: 883-889
8. Yeo CJ, Cameron JL, Maher MM, Sauter PK, Zahrak ML, Talamini MA, Lillelme KD, Pitt HA. A prospective randomized trial of pancreaticogastrostomy versus pancreaticojejunostomy after pancreaticoduodenectomy. Ann Surg 1995; 222: 580-586; discussion 588-592
9. Bassi C, Dervenis C, Butturini G, Fingerhut A, Yeo C, Izibicki J, Neoptolemos J, Sarr M, Traverso W, Buchler M. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 2005; 138: 8-13
10. Crile G Jr. The advantages of bypass operations over radical pancreaticoduodenectomy in the treatment of pancreatic carcinoma. Surg Gynecol Obstet 1970; 130: 1049-1053
11. Shapiro TM. Adenocarcinoma of the pancreas: a statistical analysis of biliary bypass vs Whipple resection in good risk
Ballas K et al. Isolated Roux loop pancreaticojejunostomy

patients. Ann Surg 1975; 182: 715-721

12 Yeo CJ, Cameron JL, Sohn TA, Lillemoe KD, Pitt HA, Talamini MA, Hruban RH, Ord SE, Sauter PK, Coleman J, Zaharak ML, Grochow LB, Abrams RA. Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg 1997; 226: 248-257; discussion 257-260

13 Neoptolemos JP, Russell RC, Bramhall S, Theis B. Low mortality following resection for pancreatic and periampullary tumours in 1026 patients: UK survey of specialist pancreatic units. UK Pancreatic Cancer Group. Br J Surg 1997; 84: 1370-1376

14 Lillemoe KD. Current management of pancreatic carcinoma. Ann Surg 1995; 221: 133-148

15 Böttger TC, Junginger T. Factors influencing morbidity and mortality after pancreaticoduodenectomy: critical analysis of 221 resections. World J Surg 1999; 23: 164-171; discussion 171-172

16 Jimenez RE, Fernandez-del Castillo C, Rattner DW, Chang Y, Warshaw AL. Outcome of pancreaticoduodenectomy with pylorus preservation or with antrectomy in the treatment of chronic pancreatitis. Ann Surg 2000; 231: 293-300

17 Bassi C, Butturini G, Molinari E, Mascetta G, Salvia R, Falconi M, Gumbs A, Pederzoli P. Pancreatic fistula rate after pancreatic resection. The importance of definitions. Dig Surg 2004; 21: 54-59

18 Trede M, Schwall G. The complications of pancreatectomy. Ann Surg 1988; 207: 39-47

19 Cullen JJ, Sarr MG, Ilstrup DM. Pancreatic anastomotic leak after pancreaticoduodenectomy: incidence, significance, and management. Ann J Surg 1994; 168: 295-298

20 Funovics JM, Zách G, Wenzl E, Schulz F. Progress in reconstruction after resection of the head of the pancreas. Surg Gynecol Obstet 1987; 164: 545-548

21 Papadimitriou JD, Fotopoulos AC, Smyrniotis B, Prahalias AA, Kostopanagiotou G, Papadimitriou LJ. Subtotal pancreaticodudodenectomy: use of a defunctionalized loop for pancreatic stump drainage. Arch Surg 1999; 134: 135-139

22 Kingsnorth AN. Safety and function of isolated Roux loop pancreaticojejunostomy after Whipple’s pancreaticoduodenectomy. Ann R Coll Surg Engl 1994; 76: 175-179

23 Albertson DA. Pancreaticoduodenectomy with reconstruction by Roux-en-Y pancreaticojjunostomy: no operative mortality in a series of 25 cases. South Med J 1994; 87: 197-201

24 Meyer C, Rohr S, De Manzini N, Thiry CL, Firtion O. [Pancreatico-jejunal anastomosis with invagination on isolated loop after cephalic pancreaticoduodenectomy] Ann Ital Chir 1997; 68: 613-615

25 Sutton CD, Garcea G, White SA, O’Leary E, Marshall LJ, Berry DP, Dennison AR. Isolated Roux-loop pancreaticojjunostomy: a series of 61 patients with zero postoperative pancreaticocentric leaks. J Gastrointest Surg 2004; 8: 701-705

26 Khan AW, Agarwal AK, Davidson BR. Isolated Roux Loop duct-to-mucosa pancreaticojjunostomy avoids pancreatic leaks in pancreaticoduodenectomy. Dig Surg 2002; 19: 199-204

27 Jover JM, Carabias A, Fuerte S, Rios R, Ortega I, Limones M. [Results of defunctionalized jejunal loop after pancreaticoduodenectomy] Cir Esp 2006; 80: 373-377

28 Kaman L, Sanyal S, Behera A, Singh R, Katariya RN. Isolated roux loop pancreaticojjunostomy vs single loop pancreaticojjunostomy after pancreaticoduodenectomy. Int J Surg 2008; 6: 306-310

29 Shrikhande SV, Barrete G, Shukla PJ. Pancreatic fistula after pancreaticoduodenectomy: the impact of a standardized technique of pancreaticojjunostomy. Langenbecks Arch Surg 2008; 393: 87-91

30 Schmidt CM, Powell ES, Yiannoutsos CT, Howard TJ, Wiebke EA, Wiesenerauer CA, Baumgardner JA, Cummings OW, Jacobson LE, Broadie TA, Canal DF, Goulet RJ Jr, Curie EA, Cardenes H, Watkins JM, Loehrer PJ, Lillemoe KD, Madura JA. Pancreaticoduodenectomy: a 20-year experience in 516 patients. Arch Surg 2004; 139: 718-725; discussion 725-727

31 Rossi RL, Rothschild J, Braasch JW, Munson JL, ReMine SG. Pancreaticoduodenectomy in the management of chronic pancreatitis. Arch Surg 1987; 122: 416-420

32 Stone WM, Sarr MG, Nagorney DM, McIlrath DC. Chronic pancreatitis. Results of Whipple’s resection and total pancreatectomy. Arch Surg 1988; 123: 815-819

S- Editor Wang YR I- Editor Logan S E- Editor Ma WH