On definition of CI-quasigroup

N.N. Didurik and V.A. Shcherbacov

June 21, 2018

Abstract

Groupoid \((Q, \cdot)\) in which equality \((xy)Jx = y\) is true for all \(x, y \in Q\), where \(J\) is a map of the set \(Q\), is a CI-quasigroup.

2000 Mathematics Subject Classification: 20N05

Key words and phrases: quasigroup, loop, CI-quasigroup, CI-groupoid, left CI-groupoid.

1 Introduction

Necessary definitions can be found in [4, 2, 6, 7].

Definition 1. Binary groupoid \((Q, \circ)\) is called a quasigroup if for any ordered pair \((a, b) \in Q^2\) there exist the unique solutions \(x, y \in Q\) to the equations \(x \circ a = b\) and \(a \circ y = b\) [2].

Definition 2. A quasigroup \((Q, \cdot)\) with an element \(1 \in Q\), such that \(1 \cdot x = x \cdot 1 = x\) for all \(x \in Q\), is called a loop.

We start from classical definition of Artzy [1].

Definition 3. Loop \((Q, \cdot)\) satisfying one of the equivalent identities \(x \cdot yJx = y\), \(xy \cdot Jx = y\), where \(J\) is a bijection of the set \(Q\) such that \(x \cdot Jx = 1\), is called a CI-loop.

In [1] it is proved that \(J\) is an automorphism of loop \((Q, \cdot)\).

Definition 4. Quasigroup \((Q, \cdot)\) with the identity \(xy \cdot Jx = y\), where \(J\) is a map of the set \(Q\), is called a CI-quasigroup [3].

Notice, in this case the map \(J\) is a permutation of the set \(Q\) [3]. In any CI-quasigroup the permutation \(J\) is unique [7, Lemma 2.25].

Definition 5. Groupoid \((Q, \cdot)\) with the identity

\[xy \cdot J_r x = y, \]

where \(J_r\) is a map of the set \(Q\) into itself, is called a left CI-groupoid.

Groupoid \((Q, \cdot)\) with the identity

\[J_l x \cdot yx = y, \]

where \(J_l\) is a map of the set \(Q\) into itself, is called a right CI-groupoid.

Groupoid \((Q, \cdot)\) with both identities [1] and (2) is called a CI-groupoid.
Definition 5 is given in [3]. A groupoid with the equations (1) and (2) is called a CI-groupoid in [5].

Any CI-groupoid is a quasigroup [3]. In CI-quasigroup the identities (1) and (2) are equivalent [3]. From the results of [3] it follows that any left CI-groupoid is a left quasigroup.

From the results of Keedwell and Shcherbacov (see, for example, [7, Proposition 3.28]) it follows that the left CI-groupoid in which the map \(J_r \) is bijective, is a CI-quasigroup. Any finite left CI-groupoid is a quasigroup [5].

2 Result

Lemma 1. Any left CI-groupoid is a left quasigroup [3].

Proof. We prove that in the left CI-groupoid \((Q, \cdot)\) the equation

\[a \cdot x = b \]

has the unique solution. From the equation (3) we have \(ax \cdot J_r a = b \cdot J_r a \). If we substitute last expression in (3), then we obtain the following equality:

\[a \cdot b J_r a = b. \]

Uniqueness. Suppose that there exist two solutions of equation (3), say, \(x_1 \) and \(x_2 \). Then \(ax_1 = ax_2 \), \(ax_1 \cdot J_r a = ax_2 \cdot J_r a \) and from equality (1) we obtain that \(x_1 = x_2 \).

Therefore any left translation \(L_x \) of groupoid \((Q, \cdot)\) is a bijective map.

Lemma 2. There exists a bijection between the set \(Q \) and the set \(R \), the map \(J_r \) is bijective and \(J_r Q = Q \).

Proof. We can rewrite the identity (1) in the following translation form:

\[R_{J_r x} L_x = \varepsilon. \]

From the equality (5) and Lemma 1 it follows that the map \(R_{J_r d} \) is a bijection of the set \(Q \) for any fixed element \(d \in Q \).

There exists a bijection between the set \(Q \) and the set \(L \) of all left translations of groupoid \((Q, \cdot)\). Namely \(x \leftrightarrow L_x, Q \leftrightarrow L \).

From the equality (5) we have that there exists a bijection between the set \(L \) and the set \(R \) of all translations (bijections) of the form \(R_{J_r x} \), namely, \(L_x \leftrightarrow R_{J_r x}, L \leftrightarrow R \).

Therefore there exists a bijection between the set \(Q \) and the set \(R \), the map \(J_r \) is bijective and \(J_r Q = Q \).

Theorem 1. Any left CI-groupoid \((Q, \cdot)\) is a CI-quasigroup.

Proof. Taking into consideration Lemma 1 we must only prove that in the left CI-groupoid \((Q, \cdot)\) the equation

\[y \cdot a = b \]

2
has the unique solution. Using the language of translations we re-write equation (6) in the following form: \(R_a y = b \). By Lemma 2, the map \(R_a \) is a bijection and right translation \(R_a \) there exists for any \(a \in Q \). Then \(y = R_a^{-1} b \).

Therefore any left CI-groupoid \((Q, \cdot)\) is a CI-quasigroup.

Notice, Theorem 1 can be proved using Lemmas 1, 2 and Proposition 3.28 from [7].

References

[1] R. Artzy. On loops with a special property. Proc. Amer. Math. Soc., 6:448–453, 1955.

[2] V.D. Belousov. Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967. (in Russian).

[3] V.D. Belousov and B.V. Tsurkan. Crossed-inverse quasigroups (CI-quasigroups). Izv. Vyssh. Uchebn. Zaved. Mat., 82(3):21–27, 1969. (in Russian).

[4] R.H. Bruck. A Survey of Binary Systems. Springer Verlag, New York, third printing, corrected edition, 1971.

[5] V. Izbash and N. Labo. Crossed-inverse-property groupoids. Bul. Acad. Științe Repub. Mold. Mat., (2):101–106, 2007.

[6] H.O. Pflugfelder. Quasigroups and Loops: Introduction. Heldermann Verlag, Berlin, 1990.

[7] Victor Shcherbacov. Elements of Quasigroup Theory and Applications. CRC Press, Boca Raton, 2017.

Natalia Didurik
Faculty of Physics and Mathematics
Shevchenko Transnistria State University
25 October str., 128, Tiraspol, MD-3300
Moldova
E-mail: natnikkr83@mail.ru

Victor Shcherbacov
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chișinău MD-2028
Moldova
E-mail: scerb@math.md