CONSTRUCTING STRONGLY EQUIVALENT NONISOMORPHIC MODELS FOR UNSUPERSTABLE THEORIES, PART C

Tapani Hyttinen and Saharon Shelah

Abstract

In this paper we prove a strong nonstructure theorem for $\kappa(T)$-saturated models of a stable theory T with dop. This paper continues the work started in [HT].

1. Introduction and basic definitions

By a strong nonstructure theorem we mean a theorem, which claims that in a given class of structures, there are very equivalent nonisomorphic models. The equivalence is usually measured by the length of Ehrenfeucht-Fraisse games in which \exists has a winning strategy. The idea behind this is, that if models are very equivalent but still nonisomorphic, they must be very complicated, i.e. there is a lot nonstructure in the class.

For more background for the theorems of this kind, see [HT].

In this paper we prove the following strong nonstructure theorem (see Definitions 1.2 and 1.3).

1.1 Theorem. Let T be a stable theory with dop and $\kappa = cf(\kappa) = \lambda(T) + \kappa^{<\kappa(T)} \geq \omega_1$, $\lambda = \lambda^\kappa > \kappa^+$ and for all $\xi < \lambda$, $\xi^+ < \lambda$. Then there is $\mathcal{F}_{\kappa}^\kappa$-saturated model $M_0 \models T$ of power λ such that the following is true: for all λ^+, λ-trees t there is a $\mathcal{F}_{\kappa}^\kappa$-saturated model M_1 of power λ such that $M_0 \equiv_\lambda M_1$ and $M_0 \not\equiv M_1$.

In [HT] Theorem 1.1 was proved for $\mathcal{F}_{\omega}^\omega$-saturated models of a countable superstable theory with dop. There we used Ehrenfeucht-Mostowski models to construct

* Research supported by the United States-Israel Binational Science Foundation. Publ. 602.
the required models. To prove that the models are not isomorphic, it was essential that the sequences in the skeletons of the models were of finite length. In the case of unsuperstable theories we cannot guarantee this. Another problem was, of course, that with Ehrenfeucht-Fraisse models we cannot construct more than F^α_{κ}-saturated models.

In this paper we overcome these problems by using F^α_{κ}-prime models instead of Ehrenfeucht-Mostowski models.

1.2 Definition.

(i) Let λ be a cardinal and α an ordinal. Let t be a tree (i.e. for all $x \in t$, the set $\{y \in t \mid y < x\}$ is well-ordered by the ordering of t). If $x, y \in t$ and $\{z \in t \mid z < x\} = \{z \in t \mid z < y\}$, then we denote $x \sim y$, and the equivalence class of x for \sim we denote $[x]$. By a λ, α-tree t we mean a tree which satisfies:

(a) $|[x]| < \lambda$ for every $x \in t$;
(b) there are no branches of length $\geq \alpha$ in t;
(c) t has a unique root;
(d) if $x, y \in t$, and x and y have no immediate predecessors and $x \sim y$, then $x = y$.

(ii) If η is a tree and α is an ordinal then we define the tree $\alpha \times \eta = (\alpha \times \eta, <)$ so that $(x, y) < (v, w)$ iff $y < w$ or $y = w$ and $x < v$.

1.3 Definition. Let t be a tree and α a cardinal. The Ehrenfeucht-Fraisse game of length t between models A and B, $G^\alpha_t(A, B)$, is the following. At each move α:

(i) player \forall chooses $x_\alpha \in t$, $\kappa_\alpha < \kappa$ and either $a^\alpha_\alpha \in A$, $\beta < \kappa_\alpha$, or $b^\alpha_\alpha \in B$, $\beta < \kappa_\alpha$, we will denote this sequence by X_α;

(ii) if \forall chose from A then \exists chooses $b^\beta_\alpha \in B$, $\beta < \kappa_\alpha$, else \exists chooses $a^\beta_\alpha \in A$, $\beta < \kappa_\alpha$, we will denote this sequence by Y_α.

\forall must move so that $(x_\beta)_{\beta \leq \alpha}$ form a strictly increasing sequence in t. \exists must move so that $\{(a^\gamma_\beta, b^\gamma_\beta)\mid \gamma \leq \alpha, \beta < \kappa_\gamma\}$ is a partial isomorphism from A to B. The player who first has to break the rules loses.

We write $A \equiv^\kappa B$ if \exists has a winning strategy for $G^\kappa_t(A, B)$.

The following theorem is frequently used in this paper.

1.4 Theorem. ([Sh]) Let T be a stable theory. Assume I is an infinite indiscernible sequence over A, $I \subseteq B$ and $J \subseteq I$ is countable.

(i) $Av(I, B)$ does not fork over J and $Av(I, J)$ is stationary.

(ii) $I \cup \{a\}$ is indiscernible over A iff $t(a, A \cup I) = Av(I, A \cup I)$.

Proof. See [Sh] Lemma III 4.17. ☐

1.5 Corollary. Let T be a stable theory. Assume I is an infinite indiscernible sequence over A and $J \subseteq I$ is infinite. Then $I - J$ is independent over $A \cup J$.

Proof. Follows immediately from Theorem 1.4. ☐

2. Construction

Throughout this paper we assume that T is a stable theory with dop, $\kappa = cf(\kappa) = \lambda(T) + \kappa^{<\kappa(T)} \geq \omega_1$, $\lambda = \lambda^{<\lambda} > \kappa^{+}$ and for all $\xi < \lambda$, $\xi^{< \kappa} < \lambda$.

2.1 Theorem. ([Sh]) There are models A_i, $i < 3$, of cardinality $< \kappa$ and infinite indiscernible sequence I over $A_1 \cup A_2$ such that

(i) $A_0 \subseteq A_1 \cap A_2$, $A_1 \downarrow_{A_0} A_2$,
(ii) $Av(I, I \cup A_1 \cup A_2) \parallel A_1$, $Av(I, I \cup A_1 \cup A_2) \parallel A_2$,
(iii) $t(I, A_1 \cup A_2)$ is almost orthogonal to A_1 and to A_2,
(iv) if B_i, $i < 3$ are such that $B_0 \downarrow_{A_0} A_1 \cup A_2$, $B_1 \downarrow_{A_1 \cup B_0} A_2 \cup B_2$ and $B_2 \downarrow_{A_3 \cup B_0} A_1 \cup B_1$ then

$$t(I, A_1 \cup A_2) \vdash t(I, A_1 \cup A_2 \cup \bigcup_{i < 3} B_i).$$
Proof. This is [Sh] X Lemma 2.4, except that in (iv), only

\[(*) \quadstp(I, A_1 \cup A_2) \vdash t(I, A_1 \cup A_2 \cup \bigcup_{i<3} B_i) \]

is proved. But since \(\kappa \geq \kappa_c(T) \), by [Sh] XI Lemma 3.1 \(A_1 \cup A_2 \) is a good set. It is easy to see that this together with (*) implies

\[t(I, A_1 \cup A_2) \vdash t(I, A_1 \cup A_2 \cup \bigcup_{i<3} B_i). \]

\[\Box \]

In [HT] the following theorem is proved.

2.2 Theorem. ([HT] Theorem 3.4) There is a \(\lambda^+, \lambda + 1 \)-tree \(\eta \) such that it has a branch of length \(\lambda \) and for every \(\lambda^+, \lambda \)-tree \(t \) there is a \(\lambda^+, \lambda \)-tree \(\xi \) such that \(\eta \equiv^\lambda_\lambda \xi \).

Let \(\eta \) be a tree. We define a model \(M(\eta) \). Let \(A, B, C \) and \(I \) be as \(A_0, A_1, A_2 \) and \(I \) in Theorem 2.1. We may assume that \(|I| = \lambda \).

For all \(t \in \eta \) we choose \(A_t, B_t \) and \(C_t \) so that

(i) there is an automorphism \(f_t \) (of the monster model) such that \(f_t(B_t) = B \), \(f_t(C_t) = C \) and \(f_t^{-1} \downarrow A = id_A \),

(ii) \(B_t \cup C_t \downarrow \bigcup \{ B_s \cup C_s \mid s \in \eta, s \neq t \} \).

For all \(s, t \in \eta \), \(s < t \), we choose \(I_{st} \) so that

(i) there is an automorphism \(g_{st} \) such that \(g_{st} \upharpoonright B_s = f_s \upharpoonright B_s, g_{st} \upharpoonright C_t = f_t \upharpoonright C_t \) and \(g_{st}(I_{st}) = I \),

(ii) \(I_{st} \downarrow_{B_s \cup C_t} \{ B_p \cup C_p \mid p \in \eta \} \cup \{ I_{pr} \mid p < r, p \neq s \} \cup \{ I_{rs} \mid r \neq t \} \).

We define \(M(\eta) \) to be the \(\kappa^\alpha \)-primary model over \(S(\eta) = \{ \{ B_t \cup C_t \mid t \in \eta \} \cup \{ I_{st} \mid s < t \} \).

By Theorem 2.2, Theorem 1.1 follows immediately from the theorem below.

2.3 Theorem. Let \(\eta \) be as in Theorem 2.2 and \(M_0 = M(\eta) \). Assume \(t \) is a \(\lambda^+, \lambda \)-tree. Let \(\xi \) be a \(\lambda^+, \lambda \)-tree such that \(\eta \equiv^\lambda_\lambda \xi \). If \(M_1 = M(\xi) \), then \(M_0 \equiv^\lambda_\lambda M_1 \), \(M_0 \not\equiv M_1 \) and the cardinality of the models is \(\lambda \).

The claim on the cardinality of the models follows immediately from the assumptions on \(\lambda \). The other two claims are proved in the next two chapters.

Notice that in \(\xi \) there are no branches of length \(\lambda \). Since in \(\eta \) there is such a branch, this enables us to prove the nonisomorphism of the models.

3. Equivalence

In this chapter we prove the first part of Theorem 2.3. We want to remind the reader of the assumptions made in the beginning of Chapter 2.

Let \(\langle S(\eta), \{ d_i \mid i < \alpha \}, \{ D_i \mid i < \alpha \} \rangle \) and \(\langle S(\xi), \{ e_i \mid i < \alpha \}, \{ E_i \mid i < \beta \} \rangle \) be \(\kappa^\alpha \)-constructions of \(M(\eta) \) and \(M(\xi) \), respectively, see [Sh] IV Definition 1.2. If we choose the constructions carefully we can assume \(\alpha = \beta = \lambda \).

We enumerate \(\eta \) and \(\xi \): \(\eta = \{ t_\eta^i \mid i < \lambda \} \) and \(\xi = \{ t_\xi^i \mid i < \lambda \} \). Furthermore we do this so that if \(t_\eta^i < t_\xi^j \), then \(i < j \), \(* \in \{ \eta, \xi \} \). If \(\gamma \leq \lambda \), we write \(\eta(\gamma) = \{ t_\eta^i \mid i < \gamma \} \) and similarly for \(\xi(\gamma) \).

We also enumerate all \(I_{st} : I_{st} = \{ a_{st}^i \mid i < \lambda \} \).

We write \(S(\eta, \gamma) \) for \(\bigcup \{ B_i \mid t \in \eta(\gamma) \} \cup \bigcup \{ C_i \mid t \in \eta(\gamma) \} \cup \bigcup \{ a_{st}^i \mid s < t, s, t \in \eta(\gamma), i < \gamma \} \)

and similarly for \(S(\xi, \gamma) \).

If \(\gamma < \lambda \) and \(g : S(\eta, \gamma) \rightarrow S(\xi, \gamma) \) is a partial isomorphism then by \(g^* \) we mean the function from \(S(\eta, \gamma) \) onto \(S(\xi, \gamma) \) which satisfies:

(i) if \(g(t) = t' \) then for all \(a \in B_t \) and \(b \in C_t \), \(g^*(a) = f_t^{-1}(f_t(a)) \) and \(g^*(b) = f_t^{-1}(f_t(b)) \),

(ii) if \(g(t) = t' \), \(g(s) = s' \), \(t < s \) and \(a \in I_{ts} \) then \(g^*(a) = g_{ts}^{-1}(g_{ts}(a)) \).
3.1 Lemma. If $\gamma < \lambda$ and $g : \eta(\gamma) \rightarrow \xi(\gamma)$ is a partial isomorphism then g^* is a partial isomorphism.

Proof. Immediate by the definitions.

We write

$$M(\eta, \gamma) = S(\eta, \gamma) \cup \{d_i \mid i < \gamma\}$$

and similarly for $M(\xi, \gamma)$. We say that $\gamma < \lambda$ is good if for all $i < \gamma$, $D_i \subseteq M(\eta, \gamma)$ and $E_i \subseteq M(\xi, \gamma)$. Notice that the set of all good ordinals is cub in λ. Notice also that the set of those ordinals $\gamma < \lambda$ for which $M(\eta, \gamma)$ is F^κ_α-saturated, is $\geq \kappa$-cub, i.e. it is unbounded in λ and closed under increasing sequences of cofinality $\geq \kappa$.

3.2 Lemma. Assume $A \subseteq B$, a_i and C_i, $i < \alpha$, are such that

(i) $C_i \subseteq A \cup \{a_j \mid j < i\}$ is of power $< \kappa$,
(ii) $t(a_i, C_i) \models t(a_i, B \cup \{a_j \mid j < i\})$.

Then for all sequences $\underline{a} \in \{a_i \mid i < \alpha\}$, there is $D \subseteq A$ of power $< \kappa$ such that $t(\underline{a}, D) \models t(\underline{a}, B)$. Especially, $\underline{a} \downarrow_A B$.

Proof. See the proof of [Sh] Theorem IV 3.2.

3.3 Lemma. Let $\gamma < \lambda$ be good, $\gamma < \delta < \lambda$, $g : \eta(\delta) \rightarrow \xi(\delta)$ is a partial isomorphism, $f : M(\eta, \gamma) \rightarrow M(\xi, \gamma)$ is a partial isomorphism and $g^* \upharpoonright S(\eta, \gamma) \subseteq f$. Then $f \cup g^*$ is a partial isomorphism from $M(\eta, \gamma) \cup S(\eta, \delta)$ onto $M(\xi, \gamma) \cup S(\xi, \delta)$.

Proof. Follows immediately from Lemmas 3.1, 3.2 and the definition of a good ordinal.

3.4 Lemma. Assume $\gamma < \lambda$ is good, $g : \eta(\gamma) \rightarrow \xi(\gamma)$ and $f : M(\eta, \gamma) \rightarrow M(\xi, \gamma)$ are partial isomorphism, $g^* \subseteq f$ and

$$(\eta, \alpha)_{a \in \eta(\gamma)} \equiv^\lambda \langle \xi, f(a) \rangle_{a \in \eta(\gamma)}.$$

If $A \subseteq M_0$ is of power $< \lambda$ then there are good $\gamma' < \lambda$, partial isomorphisms $g' : \eta(\gamma') \rightarrow \xi(\gamma')$ and $f' : M(\eta, \gamma') \rightarrow M(\xi, \gamma')$ such that $(g')^* \subseteq f'$, $f \subseteq f'$, $g \subseteq g'$ and $A \subseteq M(\eta, \gamma')$.

Proof. By playing the Ehrenfeucht-Fraïssé game we can find a good $\gamma' < \lambda$ such that

(i) there is a partial isomorphism $g' : \eta(\gamma') \rightarrow \xi(\gamma')$ such that $g \subseteq g'$,
(ii) $M(\eta, \gamma')$ is F^κ_α-primary over $S(\eta, \gamma')$ and $M(\xi, \gamma')$ is F^κ_α-primary over $S(\xi, \gamma')$,
(iii) $A \subseteq M(\eta, \gamma')$.

By (i) above and Lemma 3.3, $f \cup (g')^*$ is a partial isomorphism from $M(\eta, \gamma) \cup S(\eta, \gamma')$ onto $M(\xi, \gamma) \cup S(\xi, \gamma')$. From (ii) it follows that $M(\eta, \gamma')$ is F^κ_α-primary over $M(\eta, \gamma) \cup S(\eta, \gamma')$ and $M(\xi, \gamma')$ is F^κ_α-primary over $M(\xi, \gamma) \cup S(\xi, \gamma')$. So the existence of the required f' follows from the uniqueness of the F^κ_α-primary models ([Sh] Conclusion IV 3.9).

3.5 Theorem. $M_0 \equiv^\lambda_1 M_1$.

Proof. By Lemma 3.4, it is easy to translate the winning strategy of \exists in $G^\lambda_{\kappa \times 1}(\eta, \xi)$ to her winning strategy in $G^\lambda_1(M_0, M_1)$.

4. Nonisomorphism

In this chapter we prove the second part of Theorem 2.3, i.e. $M_0 \not\equiv M_1$. Again we want to remind the reader of the assumptions made in the beginning of Chapter 2.

For a contradiction we assume that $f : M_0 \rightarrow M_1$ is an isomorphism. If $a \in M_0$ then we write α_a for the least α such that $a \in M(\eta, \alpha)$ and similarly for $a \in M_1$. By α_a we mean $\bigcup \{\alpha_a \mid a \in A\}$.

Let $X \subseteq \eta$ be such that $|X| = \lambda$ and for all $x, y \in X$ if $x \neq y$ then either $x < y$ or $y < x$. For every $x \in X$ we choose u^i_x, S^i_x and N^i_x, $i \in \{0, 1\}$, so that

(i) $x \in u^0_x \subseteq \eta$ and $u^1_x \subseteq \xi$,
(ii) $S^i_x = \bigcup \{B|_t \mid t \in u^i_x\} \cup \bigcup \{C|_t \mid t \in u^i_x\} \cup \bigcup \{I^*_|_{st} \mid s, t \in u^i_x, s < t\}$, where $I^*_|_{st}$ is of infinite power at most κ,
(iii) $N^i_x \subseteq M_1$ is F^κ_α-primary over S^i_x and furthermore if $a \in N^0_x - S(\eta)$ and $a = d_i$ in the construction of M_0 then $D_i \subseteq N^0_x$ and similarly for N^1_x,
(iv) $f \upharpoonright N^0_x$ is onto N^1_x.
(v) \(|N^i_x| \leq \kappa\),
(vi) if \(M(\eta, \alpha)\) is \(F^a_i\)-saturated, then so is \(M(\eta, \alpha) \cap N^0_x\).

It is easy to see that these sets exist.

4.1 Lemma. Assume \(A_i, i < \lambda\), are sets of power \(\leq \kappa\). Then there are \(X \subseteq \lambda\) and \(B\) such that \(|X| = \lambda\) and for all \(i, j \in X\), \(A_i \cap A_j = B\).

Proof. Without loss of generality we may assume that for all \(i < \lambda\), \(A_i \subseteq \lambda\). We define \(f(\alpha) = \text{sup}(A_i \cap (\cup_{j < i} A_j))\). Since \(\lambda > \kappa^+\) is regular, this function is regressive on a stationary set.

By Fodor’s lemma, it is constant on some set \(X'\) of power \(\lambda\). Since for all \(\theta < \lambda\), \(\theta^\kappa < \lambda\), the claim follows by the pigeon hole principle.

By Lemma 4.1 and the pigeon hole principle we may assume that \(X\) is chosen so that it satisfies the following:

(i) There are \(u^i, S^i\) and \(N^i, i \in \{1, 2\}\), such that for all \(x, y \in X\), if \(x \neq y\) then \(u^i_x \cap u^i_y = u^i\), \(S^i_x \cap S^i_y = S^i\), and \(N^i_x \cap N^i_y = N^i\).

(ii) For all \(x \in X\), \(M(\eta, \alpha N^a) \cap N^0_x = N^0\), and if \(x < y\) then \(M(\eta, \alpha N^a) \cap N^0_y = N^0\) and similarly for 1 instead of 0.

(iii) For all \(x, y \in X\), there are elementary maps \(f^i_{xy} : N^i_x \to N^i_y\) and an order isomorphisms \(g^i_{xy} : u^i_x \to u^i_y\) such that

(a) \(f^i_{xy} \upharpoonright N^i = \text{id}_{N^i}\), \(g^i_{xy} \upharpoonright u^i = \text{id}_{u^i}\), and \(g^0_{xy}(x) = y\),

(b) for all \(t \in u^i_x\) and \(a \in B_t \cup C_t\), \(f^i_{xy}(a) = f^{-1}_{g^i_{xy}(t)}(f_t(a))\),

(c) for all \(s, t \in u^i_x\), \(s < t\), \(f^i_{xy} \upharpoonright I^i_{st}\) is onto \(I^i_{g^i_{xy}(s)g^i_{xy}(t)}\)

(d) for all \(a \in N^0_x\), \(f(f^0_{xy}(a)) = f^1_{xy}(f(a))\).

4.2 Lemma. Let \(x, y \in X\), \(x < y\).

(i) \(N^1\) is \(F^a_i\)-primary over \(S^i\).

(ii) \(N^i_x \downarrow S^i, S^i_x \uparrow S^i\).

(iii) \(N^i_x \downarrow N^1, N^1_x \uparrow N^i\).

(iv) \(I^i_{xy} \uparrow_{B_x \cup C_y} N^0_x \cup N^0_y\).

Proof. Immediate by (ii) in the choice of \(X\) and Lemma 3.2.

4.3 Corollary. Let \(x, y \in X\), \(x < y\).

(i) If \(A, B\) and \(C\) are such that \(A \downarrow N^0_x \cup N^0_y\), and \(B \cup N^0_x \downarrow_{N^0_x \cup A} N^0_y \cup C\) then

\[t(I^i_{xy}, B_x \cup C_y) \vdash t(I^i_{xy}, I^i_{xy} \cup N^0_x \cup N^0_y \cup A \cup B \cup C) \]

(ii) \(t(I^i_{xy} \cup N^0_x \cup N^0_y, \emptyset)\) does not depend on \(x\) and \(y\).

Proof. (i) By the first assumption on \(A\) and Lemma 4.2 (iii)

\[A \cup N^0 \downarrow_{S^0} B_x \cup C_y. \]

By the construction of \(M_0\), this implies

\[(A) \quad A \cup N^0 \downarrow A B_x \cup C_y. \]

From the second assumption it follows easily that

\[(B) \quad B \cup N^0_x \downarrow_{B_x \cup N^0_x \cup A} N^0_y \cup C \]

and

\[(C) \quad C \cup N^0_y \downarrow_{C_y \cup N^0_y \cup A} N^0_x \cup B. \]

By Theorem 2.1 (iv), (A), (B) and (C) imply the claim.

(ii) By (iii) in the choice of \(X\) and Lemma 4.2 (iv), for all \(x' < y'\), \(f^0_{x'y'} \cup f^0_{y'x'}\) is an elementary map. So the claim follows from (A), (B) and (C) above and Theorem 2.1 (iv).

For \(x, y \in X\), \(x < y\), let \(I^i_{xy}\) be some countable subset of \(I^i_{xy}\).
4.4 Lemma. Assume \(x, y \in X \), \(x < y \). Then there are \(s \in u^1_x - u^1 \) and \(t \in u^1_y - u^1 \) such that either

(i) \(s < t \) and \(\text{Av}(f(I_{xy}), f(I_{xy} \cup B_x \cup C_y)) \) is not orthogonal to \(\text{Av}(I_{st}, I_{st} \cup B_s \cup C_t) \),

or

(ii) \(t < s \) and \(\text{Av}(f(I_{xy}), f(I_{xy} \cup B_x \cup C_y)) \) is not orthogonal to \(\text{Av}(I_{is}, I_{is} \cup B_t \cup C_s) \).

Proof. For a contradiction, we assume that such \(s \) and \(t \) do not exist.

Let

\[\xi^0(x, y) = \{(s, t) \mid s < t \text{ and } s \in u^1_x - u^1, \ t \notin u^1_y - u^1 \text{ or } t \in u^1_y - u^1, \ s \notin u^1_y - u^1 \} \]

\[\xi^1(x, y) = \{(s, t) \mid s < t \text{ and } s \notin u^1_x - u^1, \ t \in u^1_y - u^1 \text{ or } t \notin u^1_y - u^1, \ s \notin u^1_y - u^1 \} \]

and

\[\xi^2(x, y) = \{(s, t) \mid s < t \text{ and } s \in u^1_x - u^1, \ t \in u^1_y - u^1 \text{ or } t \notin u^1_y - u^1, \ s \in u^1_y - u^1 \}. \]

For \(i \in \{0, 1, 2\} \), let

\[S^i(x, y) = S(\xi) - (S^1_x \cup S^1_y \cup \bigcup_{i \geq 1} \{I_{st} \mid (s, t) \in \xi^i(x, y)\}) \]

and

\[R^i(x, y) = \{I_{st} \mid (s, t) \in \xi^i(x, y)\}. \]

Now it is easy to see that \(S^0(x, y) \downarrow S^1_x \cup S^1_y \). By Lemma 3.2 \(N^1 \downarrow S^1_x \cup S^1_y \). So

\[S^0(x, y) \downarrow N^1 \uparrow S^1_x \cup S^1_y. \]

By Lemma 4.2 this implies

\[(A) \quad S^0(x, y) \downarrow N^1 \uparrow N^1_x \cup N^1_y. \]

By the construction

\[(B) \quad R^0(x, y) \cup S^1_x \downarrow S^1 \cup S^0(x, y) \uparrow R^1(x, y) \cup S^1_y. \]

By Lemma 3.2

\[N^1_x \downarrow S^1_x \uparrow S^0(x, y) \uparrow R^0(x, y) \cup R^1(x, y) \cup S^1_y. \]

and so

\[R^0(x, y) \cup N^1_x \downarrow S^1 \cup S^0(x, y) \cup R^0(x, y) \uparrow R^1(x, y) \cup N^1_x \cup S^1_y. \]

By (B) this implies

\[(C) \quad R^0(x, y) \cup N^1_x \downarrow S^1 \cup S^0(x, y) \uparrow R^0(x, y) \cup R^1(x, y) \cup N^1_x. \]

By Lemma 3.2 and (ii) in the choice of \(X \),

\[N^1_y \downarrow S^1_y \uparrow S^0(x, y) \uparrow R^0(x, y) \cup R^1(x, y) \cup N^1_x \]

and so

\[R^1(x, y) \cup N^1_y \downarrow S^1_x \cup S^0(x, y) \cup R^1(x, y) \uparrow R^0(x, y) \cup N^1_x. \]

By (C) this implies

\[(D) \quad R^1(x, y) \cup N^1_y \downarrow N^1 \cup S^0(x, y) \uparrow R^1(x, y) \cup N^1_x. \]

Then by (A), (D) and Corollary 4.3 (i), \(f(I_{xy}) \) is indiscernible over \(N^1_x \cup N^1_y \cup S^2(x, y) \).

By Lemma 3.2 and (ii) in the choice of \(X \), we see that for all \(\langle s, t \rangle \in \xi^2(x, y) \), \(I_{st} \) is indiscernible over \(N^1_x \cup N^1_y \cup S^2(x, y) \) and \(\langle s, t \rangle \in \xi^2(x, y) \) is independent over \(N^1_x \cup N^1_y \cup S^2(x, y) \).

For all \((u, v) \in \xi^2(x, y) \cup \{ (x, y) \} \) we choose infinite \(I^*_{uv} \subseteq I_{uv} \) of power \(< \lambda \) such that

(i) for all \((u, v) \in \xi^2(x, y) \), if we write \(B(u, v) = N^1_x \cup N^1_y \cup S^2(x, y) \cup I^*_{uv} \), then

\[I_{uv} - I^*_{uv} \downarrow B(u,v) \cup f(I_{xy}) \cup \bigcup \{I_{st} \mid (s, t) \in \xi^2(x, y), \ (s, t) \neq (u, v)\}. \]

(ii) \(I^*_{xy} \subseteq I^*_{xy} \) and if we write \(B(x, y) = N^1_x \cup N^1_y \cup S^2(x, y) \cup f(I_{xy}) \), then

\[f(I_{xy} - I^*_{xy}) \downarrow B(x,y) \cup \bigcup \{I_{st} \mid (s, t) \in \xi^2(x, y)\}. \]

Because \(|\xi^2(x, y)| < \lambda \), it is easy to see that such \(I^*_{uv} \) exist.

Since \(\text{Av}(f(I^*_{xy}), f(I^*_{xy} \cup B_x \cup C_y)) \) is orthogonal to \(\text{Av}(I_{st}, I_{st} \cup B_s \cup C_t) \) for all \(\langle s, t \rangle \in \xi^2(x, y) \) we see that \(I_{xy} - I^*_{xy} \) is indiscernible over \(S(\xi) \). Because \(|I_{xy} - I^*_{xy}| = \lambda \), this contradicts [Sh] Theorem IV 4.9 (2).

If \(s, t \in \xi \), then we write \(\Theta_{st} \) for the set of all infinite \(J \) such that for some \(J' \), \(J \subseteq J' \) and there is an automorphism \(g \) for which \(g \upharpoonright B_s = f_s \upharpoonright B_s \), \(g \upharpoonright C_t = f_t \upharpoonright C_t \) and \(g(J') = I \).
4.5 Lemma. Assume $x, y \in X$, $x < y$, $s \in u_x^1 - u_x^1$, $t \in u_y^1 - u_y^1$ and s and t are incomparable in ξ. If $J \in \Theta_{st}$, then $Av(f(I_{xy}^x), f(I_{xy}^y \cup B_x \cup C_y))$ is orthogonal to $Av(J, J \cup B_s \cup C_t)$. Also if $J \in \Theta_{ts}$, then $Av(f(I_{xy}^x), f(I_{xy}^y \cup B_t \cup C_y))$ is orthogonal to $Av(J, J \cup B_t \cup C_s)$.

Proof. For a contradiction assume that $Av(f(I_{xy}^x), f(I_{xy}^y \cup B_x \cup C_y))$ is not orthogonal to $Av(J, J \cup B_s \cup C_t)$, the other case is similar. Then we can choose J so that in addition, $|J| = \omega$ and $J \subseteq M_1$.

By Theorem 2.1 (iv), J is indiscernible over $S(\xi)$. By [Sh] Theorem IV 4.14, $Av(J, M_1)$ is F_κ^a-isolated. Then we can find a model $D \subseteq M_1$ of power $\leq \kappa$ such that
\begin{enumerate}
 \item[(a)] $f(I_{xy}^x \cup B_x \cup C_y) \cup J \cup B_s \cup C_t \subseteq D$,
 \item[(b)] $Av(f(I_{xy}^x), D)$ is not almost orthogonal to $Av(J, D)$,
 \item[(c)] $Av(J, D) \nrightarrow Av(J, M_1)$.
\end{enumerate}

(Fac (c), notice that because D is a model, $t(a, D) \vdash stp(a, D)$.) But since $|D| < \lambda$ and $|f(I_{xy})| = \lambda$, it is easy to see that $Av(f(I_{xy}^x), D)$ is satisfied in M_1, a contradiction. \qed

Let $x, y \in X$ be such that $x < y$. By Lemma 4.4 we can find s_{xy} and t_{xy} such that there is $J \in \Theta_{s_{xy}t_{xy}} \cap \Theta_{t_{xy}s_{xy}}$ for which $Av(f(I_{xy}^x), f(I_{xy}^y \cup B_x \cup C_y))$ is not orthogonal to $Av(J, J \cup B_{s_{xy}} \cup C_{t_{xy}})$ or to $Av(J, J \cup B_{t_{xy}} \cup C_{s_{xy}})$. By Lemma 4.3 (ii) we can choose these so that for all y and y' from X, if $x < y$ and $x < y'$ then $s_{xy} = s_{xy'}$. We call this element just s_x. Similarly we can choose t_{xy} so that it does not depend on x ($x < y$). We call this element t_y.

4.6 Lemma. For all x and x' from X, s_x and $s_{x'}$ are comparable in ξ.

Proof. By Lemma 4.5, for all $y \in X$, if $y > x$ and $y > x'$ then t_y is comparable to s_x and to $s_{x'}$. Since $\{|z \in \xi| z \leq s_x \cup z \leq s_{x'}\}| < \lambda$ and if $y \neq y'$ then $t_y \neq t_{y'}$, we can find $y \in X$ such that $s_x < t_y$ and $s_{x'} < t_y$, which implies the claim. \qed

4.7 Theorem. $M_0 \not\equiv M_1$.

Proof. If $M_0 \cong M_1$ then by Lemma 4.6 we can find $Y \subseteq \xi$ of power λ such that for all $s, t \in Y$ if $s \neq t$ then either $s < t$ or $t < s$. Clearly this contradicts the fact that ξ is a λ^+, λ-tree. \qed

Together with Theorem 3.5, Theorem 4.7 implies Theorem 2.3, and so Theorem 1.1 is proved.

4.8 Remark. As in [HT], we can see that Theorem 1.1 implies the following: Under the assumptions of Theorem 1.1, for every λ^+, λ-tree t there are models $M_i \models T$, $i < \lambda^+$, such that for all $i < j < \lambda^+$, $M_i \equiv^\lambda M_j$ and $M_i \not\equiv M_j$.

References.

[HT] T. Hyttinen and H. Tuuri, Constructing strongly equivalent nonisomorphic models for unstable theories, APAL 52, 1991, 203-248.

[Sh] S. Shelah, Classification Theory, Stud. Logic Found. Math. 92 (North-Holland, Amsterdam, 2nd rev. ed., 1990).

Tapani Hyttinen
Department of Mathematics
P.O. Box 4
00014 University of Helsinki
Finland

Saharon Shelah
Institute of Mathematics
The Hebrew University
Jerusalem
Israel

Rutgers University
Hill Ctr-Bush
New Brunswick
New Jersey 08903
U.S.A.