The Relationship between Vitamin D Status and Visceral Fat Accumulation in Males with Type 2 Diabetes

Bowei Liu, Dongmei Fan and Fuzai Yin*

Department of Endocrinology, The First Hospital of Qinhuangdao, No. 258 Wenhua Road, Qinhuangdao, 066000, Hebei Province, China

(Received February 24, 2020)

Summary Vitamin D deficiency may play an important role in obesity. The aim of the study was to explore the relationship between vitamin D status and visceral fat accumulation in males with type 2 diabetes. A cross-sectional study was conducted on 128 adult males with type 2 diabetes in Qinhuangdao. The nutritional status of vitamin D was assessed by circulating levels of 25(OH)D, vitamin D deficiency <30 nmol/L, vitamin D insufficiency 30–50 nmol/L and vitamin D sufficiency >50 nmol/L. Accumulation of visceral fat was defined as visceral fat area ≥ 100 cm2. The prevalence of visceral fat accumulation was 35.9%. The prevalence of visceral fat accumulation was 14.6%, 45.1% and 50.0% in type 2 diabetes with vitamin D sufficiency, vitamin D insufficiency and vitamin D deficiency, respectively. In multiple logistic regression analysis, subjects with vitamin D insufficiency [OR=4.255, $p=0.012$] and vitamin D deficiency [OR=6.122, $p=0.022$] were more likely to have visceral fat accumulation compared with subjects with vitamin D sufficiency. Visceral fat accumulation linked to the cluster of cardiometabolic risk factor in males with type 2 diabetes. There was a significant correlation between vitamin D status and visceral fat accumulation in males with type 2 diabetes.

Key Words obesity, vitamin D deficiency, prevalence, cardiometabolic risk factor, diabetes

Type 2 diabetes is a serious threat to human health in China. Obesity plays an important role in the development and progression of type 2 diabetes. Obesity increased the risk of type 2 diabetes by aggravated insulin resistance (1, 2). Obesity also increased the risk of chronic complications of type 2 diabetes (3, 4). The fat distribution influences the outcomes of obesity. Excess visceral adipose is associated with vascular endothelial function, atherosclerosis and cardiovascular disease in type 2 diabetes (5–7).

Vitamin D deficiency is widespread around the world (8, 9). The classical role of vitamin D is about bone health. Vitamin D also has potential role in the prevention of nonskeletal disorders such as auto-immune disease, cancer, mental health problems and cardiovascular disease (10–13).

Vitamin D deficiency may play an important role in obesity. In a meta-analysis, vitamin D deficiency is associated with an increased level of body mass index (BMI) in both diabetic and non-diabetic subjects (14). Vitamin D deficiency was positively associated with both general and abdominal obesity (15). Abdominal visceral adipose tissue (VAT) are inversely associated with serum 25-hydroxyvitamin D [25(OH)D] concentrations in the general adult population from China, Germany and Denmark (16, 17). Hao et al. also found that 25(OH)D were inversely associated with visceral fat area (VFA) in Chinese males with normal glucose tolerance (18).

In type 2 diabetes, vitamin D deficiency is also associated with obesity (19, 20). However, obesity was evaluated by BMI, not VFA, in these studies. The aim of our study was to determine the relationship between vitamin D status and visceral fat accumulation in males with type 2 diabetes.

METHODS

Subjects. After obtaining informed consent from males with type 2 diabetes a cross-sectional study was conducted. All subjects were adult males with a diagnosis of type 2 diabetes (21). The exclusion criteria included the following: 1) subjects with type 1 diabetes, 2) subjects with clinical evidence of other endocrinopathy, 3) subjects were taking vitamin D, 4) subjects with renal dysfunction (estimate glomerular filtration rate (eGFR) less than 60 mL/min$^{-1}$×1.73 m$^{-2}$) or hepatic dysfunction (alanine aminotransferase (ALT) >100 U/L), 5) subjects with acute and chronic inflammation. This study was approved by the ethics committee of the First Hospital of Qinhuangdao (No. 2015C061). All subjects provided written informed consent before study initiation.

Measurements. Anthropometric measurements, including height, weight and waist circumference (WC) were obtained. WC was accurately measured at the level of midway between the lowest rib and the top of the iliac crest. Blood pressure was measured with a mercury sphygmomanometer while the subjects were seated after 10 min of rest. Sociodemographic variables were collected and included: age, duration of diabetes, family...
Table 1. Characteristics of adult males with type 2 diabetes.

Variables	VFA<100 cm² (n=82)	VFA≥100 cm² (n=46)	t or χ²	p
Age (y)	50.9±11.5	47.5±13.9	1.474	0.143
Duration of diabetes (y)	6.5±5.8	5.2±5.1	1.283	0.202
FHD [n (%)]	11 (13.4)	5 (10.9)	0.175	0.676
Hypertension [n (%)]	32 (39.0)	21 (45.7)	0.534	0.465
Smoking [n (%)]	41 (50.0)	26 (56.5)	0.502	0.478
Drinking [n (%)]	47 (57.3)	25 (54.3)	0.106	0.745
BMI (kg/m²)	25.5±2.4	29.4±2.9	7.496	<0.001
WC (cm)	88.7±7.1	102.5±7.8	10.096	<0.001
SBP (mmHg)	125.3±12.6	124.1±9.0	0.607	0.545
DBP (mmHg)	81.8±7.9	82.0±6.7	0.188	0.851
FPPG (mmol/L)	9.80±3.73	11.07±3.98	1.788	0.076
HbA1c (%)	8.5±1.9	8.9±1.9	1.083	0.281
TG (mmol/L)	2.13±1.71	3.53±4.01	2.255	0.028
HDL-C (mmol/L)	1.09±0.33	0.93±0.24	2.848	0.005
ALT (U/L)	26.4±16.5	30.1±18.6	1.138	0.257
Cr (μmol/L)	62.9±12.1	62.1±14.0	0.358	0.721
eGFR (mL×min⁻¹×1.73 m⁻²)	140.7±41.5	147.5±47.4	0.817	0.404
25(OH)D (nmol/L)	50.1±18.8	40.8±12.9	3.290	0.001

VFA: visceral fat area; FHD: family history of diabetes; BMI: body mass index; WC: waist circumference; SBP: systolic blood pressure; DBP: diastolic blood pressure; FPPG: fasting plasma glucose; HbA1c: glycosylated hemoglobin A1c; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol; ALT: alanine aminotransferase; Cr: creatinine; eGFR: estimate glomerular filtration rate; 25(OH)D: 25-hydroxyvitamin D.

Vitamin D and Visceral Fat Accumulation

history of diabetes (FHD, defined as mothers, fathers, offsprings or siblings with type 2 diabetes), hypertension (subjects with history of hypertension or systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) ≥140/90 mmHg for three screenings), smoking and drinking status.

After a 10-h overnight fast, blood samples were collected from an antecubital vein into heparinised tubes. Fasting plasma glucose (FPG) concentration was measured using the glucose oxidase method, and serum lipids, as well as renal and hepatic function, were measured using enzymatic assays with an autoanalyzer (Hitachi, Tokyo, Japan). Glycosylated hemoglobin A1c (HbA1c) was measured by high-performance liquid chromatography (HPLC). Serum 25-hydroxyvitamin D (>50 nmol/L) was measured using enzyme linked immunosorbent assay (ELISA) kits produced by UK IDS Company. eGFR=175×creatinine (Cr, mg/dL)⁻¹.214×age (y)⁻⁰.179 (22).

Definition of metabolic syndrome. Metabolic syndrome (MetS) was defined using the definition of Chinese Diabetes Society. Participants had to meet any 3 or more of the following 5 factors: 1) abdominal obesity: WC ≥90 cm, 2) abnormal glucose metabolism: FPG ≥6.1 mmol/L or 2-h plasma glucose levels ≥7.8 mmol/L after a 75-g oral glucose tolerance test (OGTT) or have been diagnosed with diabetes, 3) elevated blood pressure: blood pressure ≥130/85 mmHg or have been diagnosed with hypertension, 4) high triglyceride (TG): TG ≥1.7 mmol/L, 5) low high density lipoprotein cholesterol (HDL-C): HDL-C <1.04 mmol/L (23).

Vitamin D status. The nutritional status of vitamin D was assessed by circulating levels of 25(OH)D, vitamin D deficiency <30 nmol/L, vitamin D insufficiency 30–50 nmol/L and vitamin D sufficiency >50 nmol/L (24).

VFA estimation by bioelectrical impedance analysis (BIA). In this study, VFA was measured by the InBody S10 (Biospace Co, Ltd, Seoul, Korea) as an indicator of visceral fat accumulation. The measurements were performed with the subjects in sitting position. Measurements were taken using the 4-electrode 8-point touch electrode method by wiping the areas where the 8 electrodes would be attached (one each on thumb and middle fingers on both hands and one each on both ankles) with electrolyte tissue and connecting the holder electrode. Visceral fat accumulation was defined as VFA≥100 cm² (25).

Statistical analyses. All analyses were performed using the SPSS 11.5 statistical software (SPSS, Inc., Chicago, IL). Numerical variables were reported as mean±standard deviation. Comparisons were conducted between groups using the t test. Comparison of prevalence data was performed by χ² analysis. Multiple logistic regression models were used for modeling relationships between vitamin D status and visceral fat accumulation in males with type 2 diabetes. Computed tomography (CT) is golden methods for evaluating visceral adipose tissue. The correlation between visceral fat area measured by InBody S10 and by CT weakened in males with BMI ≥30 kg/m² (26). We excluded subjects with BMI ≥30 kg/m² and analyzed again. p<0.05 was considered statistically significant.
RESULTS

This study enrolled 128 males with type 2 diabetes, age 49.7 ± 12.5 y, duration of diabetes 6.0 ± 5.6 y. Among these subjects, 46 males (35.9%) were characterized by the accumulation of visceral fat. The age, history of diabetes, FHD, smoking and drinking were similar between patients with VF A ≥ 100 cm² and VF A > 100 cm² (p > 0.05). The levels of BMI, WC and TG were all significantly higher in patients with VF A > 100 cm² than in patients with VF A < 100 cm² (p < 0.05). The levels of HDL-C and 25(OH)D were all significantly lower in patients with VF A > 100 cm² than in patients with VF A < 100 cm² (p < 0.05). The SBP, DBP, FPG and HbA1c were similar between patients with VF A < 100 cm² and VF A ≥ 100 cm² (p > 0.05) (Table 1).

Except elevated blood pressure, the prevalences of abdominal obesity, high TG, low HDL-C and MetS were all significantly higher in patients with VF A ≥ 100 cm² than in patients with VF A < 100 cm² (p < 0.05) (Table 2).

Among these subjects, 55.4% were characterized by the vitamin D insufficiency and 12.5% were characterized by the vitamin D deficiency. Multivariate-adjusted odds ratios (ORs) [and 95% confidence intervals (CIs)] for visceral fat accumulation across different vitamin D status are shown in Table 3. The prevalence of visceral fat accumulation was 14.6%, 45.1% and 50.0% in type 2 diabetes with vitamin D sufficiency, vitamin D insufficiency and vitamin D deficiency, respectively. When visceral fat accumulation was considered as the dependent variables in a multiple logistic regression analysis with age, duration of diabetes, FHD, smoking, drinking, HbA1c, ALT, eGFR, metabolic syndrome and vitamin D status as independent variables. BMI: body mass index; OR: odds ratio; CI: confidence interval; FHD: family history of diabetes; HbA1c: glycosylated hemoglobin A1c; ALT: alanine aminotransferase; eGFR: estimate glomerular filtration rate.

Table 2. Prevalence of metabolic syndrome in type 2 diabetes patients with different levels of visceral fat area.

Components	VFA<100 cm² (n=82)	VFA≥100 cm² (n=46)	χ²	p
Abdominal obesity [n (%)]	41 (50.0)	44 (95.7)	27.531	<0.001
Elevated blood pressure [n (%)]	42 (51.2)	26 (56.5)	0.333	0.564
High TG [n (%)]	36 (43.9)	29 (63.0)	4.320	0.038
Low HDL-C [n (%)]	37 (45.1)	36 (78.3)	13.206	<0.001
Metabolic syndrome [n (%)]	47 (57.3)	44 (95.7)	21.073	<0.001

VFA: visceral fat area; TG: triglyceride; HDL-C: high-density lipoprotein cholesterol.

Table 3. Prevalence of visceral fat accumulation across vitamin D status.

Vitamin D status	n (%)	Model 1	p	Model 2	p
Sufficiency (n=41)	6 (14.6)	1	1	1	1
Insufficiency (n=71)	32 (45.1)	4.786 (1.789–12.806)	0.002	4.255 (1.372–13.197)	0.012
Deficiency (n=16)	8 (50.0)	5.833 (1.577–21.572)	0.008	6.122 (1.298–28.881)	0.022

Model 1: univariate logistic regression analysis. Model 2: multiple logistic regression analysis, visceral fat accumulation was considered as the dependent variables in a multiple logistic regression analysis with age, duration of diabetes, FHD, smoking, drinking, HbA1c, ALT, eGFR, metabolic syndrome and vitamin D status as independent variables. OR: odds ratio; CI: confidence interval; FHD: family history of diabetes; HbA1c: glycosylated hemoglobin A1c; ALT: alanine aminotransferase; eGFR: estimate glomerular filtration rate.

Table 4. Prevalence of visceral fat accumulation across vitamin D status in subjects with BMI < 30 kg/m².

Vitamin D status	n (%)	Model 1	p	Model 2	p
Sufficiency (n=41)	6 (14.6)	1	1	1	1
Insufficiency (n=53)	16 (30.2)	2.523 (0.886–7.179)	0.083	3.292 (0.902–12.021)	0.071
Deficiency (n=13)	5 (38.5)	3.646 (0.887–14.988)	0.073	8.301 (1.195–57.643)	0.032

Model 1: univariate logistic regression analysis. Model 2: multiple logistic regression analysis, visceral fat accumulation was considered as the dependent variables in a multiple logistic regression analysis with BMI, age, duration of diabetes, FHD, smoking, drinking, HbA1c, ALT, eGFR, metabolic syndrome and vitamin D status as independent variables. BMI: body mass index; OR: odds ratio; CI: confidence interval; FHD: family history of diabetes; HbA1c: glycosylated hemoglobin A1c; ALT: alanine aminotransferase; eGFR: estimate glomerular filtration rate.
Vitamin D and Visceral Fat Accumulation

status as independent variables, subjects with vitamin D insufficiency [OR=4.255, p=0.012] and vitamin D deficiency [OR=6.122, p=0.022] were more likely to have visceral fat accumulation compared with subjects with vitamin D sufficiency. After subjects with BMI ≥30 kg/m² were excluded, subjects with vitamin D insufficiency [OR=2.523, p=0.083] and vitamin D deficiency [OR=3.646, p=0.073] were still more likely to have visceral fat accumulation compared with subjects with vitamin D sufficiency (Table 4). This difference was not statistically significant.

DISCUSSION

More than a third of males with type 2 diabetes have visceral fat accumulation. MetS were very common in type 2 diabetes (27). However, the prevalence of MetS increased further, nearly 100%, in males with visceral fat accumulation. When males present with these conditions together, the chances for MetS is greater than type 2 diabetes presenting alone.

In the Framingham Heart Study, the prevalence of MetS increased linearly across increasing VAT quartiles in males with normal-weight, overweight and obesity (28). In Chinese population, visceral fat was also a risk factor for MetS in males (29). Males with visceral fat obesity have higher risk of MetS even though with normal WC (30). Cohort study found that increased visceral fat promote the occurrence of metabolic abnormalities, especially abnormal lipid metabolism (31, 32). Consistent with previous research, dyslipidemia was worse in type 2 diabetes males co-exist with visceral fat accumulation.

The pattern of fat deposition exists gender differences. Males are more likely to deposit in the visceral fat (33). Visceral fat is mainly composed of mesenteric and omental fat and retroperitoneal adipose tissue (34). Mesenteric and omental fat are drained to the portal vein. Pro-inflammatory factors and free fatty acids from these depots are drained directly to the liver and eventually lead to hepatic insulin resistance and metabolic abnormalities (35). Epidemiologic studies also confirmed that VAT remains more strongly associated with MetS compared with subcutaneous adipose tissue (28, 36).

Vitamin D status is strongly associated with visceral adiposity in nonobese individuals (37). In our study, we found that vitamin D insufficiency and deficiency was also correlated with visceral fat accumulation in males with type 2 diabetes. The mechanism of vitamin D on fat metabolism is not very clear. In vitro experiments, 1,25-dihydroxyvitamin D3 restrains adipogenesis through suppressing the expression of CCAAT-enhancer-binding protein, peroxisome proliferator-activated receptor-gamma, involved in adipocyte differentiation (38). Preadipocytes have important role in the homeostasis of adipose tissue. Recent research found that 1,25-dihydroxyvitamin D3 modulate vitamin D receptor expression and cell cycle in preadipocytes (39).

The results of vitamin D supplementation on visceral fat accumulation were disagreement. In 2017, a systematic review evaluated the effect of vitamin D supplementation on non-skeletal disorders. Vitamin D supplementation had no significant effect on markers of adiposity. In this study, adiposity was evaluated by BMI and weight (40). Several clinical trials verified that vitamin D with or without calcium supplementation contributes to a beneficial reduction of VAT (41–43). But another clinical trial found that vitamin D treatment have no effects on VAT (44). In type 2 diabetes, Shab-Bidar et al. found that daily intake of vitamin D3-fortified doogh for 12 wk improved the visceral fat accumulation (45). Vitamin D supplementation may be an effective means for preventing visceral fat accumulation and metabolic disorder in type 2 diabetes. The effect of vitamin D supplementation should be proved in type 2 diabetes by further study.

However, there are limitations to our study. First, the causality between visceral fat accumulation and vitamin D deficiency is debatable. In viscerally obese males, adipose tissue loss can increase the levels of 25(OH)D after 1-y lifestyle intervention (46). Vitamin D is a fat soluble hormone and is stored in adipose tissue. Volumetric dilution can partly explain the low vitamin D status of obesity (47). The decreased expression of the 25-hydroxylase in liver and subcutaneous adipose tissue could be another reason (48, 49). Because of the cross-sectional design of this study, we could not identify the causal relationship between visceral fat accumulation and vitamin D deficiency. Second, VAT were measured by bioelectrical impedance analysis in our study. Magnetic resonance imaging (MRI) and computed tomography (CT) are golden methods for evaluating visceral adipose tissue (50). The correlation between VFA measured by CT and measured by BIA did not display consistently on all studies. Some of them showed good correlations between VFA measured by CT and measured by BIA (51, 52). However, the correlation weakened with an advancing degree of obesity. The correlation coefficient reached 0.994 in males with BMI <30 kg/m² and declined to 0.736 in males with BMI ≥30 kg/m² (26). In our study, 21 males (16.4%) have BMI ≥30 kg/m². This might partly influence the outcome of our study. So we excluded subjects with BMI ≥30 kg/m² and analyzed again. Vitamin D insufficiency and vitamin D deficiency were still more likely to have visceral fat accumulation. But this difference was not statistically significant. This may be due to the decreased sample size. Third, insulin resistance is a potential confounding factor with visceral fat accumulation. Homeostasis model assessment of insulin resistance (HOMA-IR) is a major assessment of insulin resistance. However, insulin levels were not measured in our study. As we know, metabolic syndrome reflect the status of insulin resistance. In model 2, the relationship between vitamin D status and visceral fat accumulation has not changed after adjusted MetS.

CONCLUSION

In summary, visceral fat accumulation linked to the cluster of cardiometabolic risk factor in males with type
2 diabetes. There was a significant correlation between vitamin D deficiency and visceral fat accumulation. Further work will be necessary to confirm whether vitamin D supplementation can prevent visceral fat accumulation or lose weight can improve vitamin D status in type 2 diabetes.

Authorship

Research conception and design: FZY; experiments: DMF; statistical analysis of the data: BWL; writing of the manuscript: BWL.

Disclosure of state of COI

All authors declare that they have no conflict of interest.

Funding

No funding.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

REFERENCES

1) Wang C, Li J, Xue H, Li Y, Huang J, Mai J, Chen J, Cao J, Wu X, Guo D, Yu L, Gu D. 2015. Type 2 diabetes mellitus incidence in Chinese: contributions of overweight and obesity. *Diabetes Res Clin Pract* **107**: 424–432.

2) Xue H, Wang C, Li Y, Chen J, Yu L, Liu X, Li J, Cao J, Deng Y, Guo D, Yang X, Huang J, Gu D. 2016. Incidence of type 2 diabetes and number of events attributable to abdominal obesity in China: A cohort study. *J Diabetes* **8**: 190–198.

3) Zhu W, Wu Y, Meng YE, Xing Q, Tao JJ, Lu J. 2018. Association of obesity and risk of diabetic retinopathy in diabetes patients: A meta-analysis of prospective cohort studies. *Medicine (Baltimore)* **97**: e11807.

4) Man RK, Gan ATL, Fenwick EK, Gupta P, Wong MYZ, Wong TY, Tan GSW, Teo BW, Sabanayagam C, Lamoureux EL. 2018. The relationship between generalized and abdominal obesity with diabetic kidney disease in type 2 diabetes: A multiethnic Asian study and meta-analysis. *Nutrients* **10**: 1685.

5) Bouchi T, Takeuchi T, Akihisa M, Ohara N, Nakano Y, Nishitani R, Murakami M, Fukuda T, Fujita M, Minami I, Izumiyama H, Hashimoto K, Yoshimoto T, Ogawa Y. 2015. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. *Cardiovasc Diabetol* **14**: 136.

6) Smith JD, Borel AL, Nazare JA, Haffner SM, Balkau B, Ross R, Massien C, Almers N, Despres JP. 2012. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. *J Clin Endocrinol Metab* **97**: 1517–1525.

7) Kuruzumi A, Okada Y, Arao T, Tanaku Y. 2016. Excess visceral adipose tissue worsens the vascular endothelial function in patients with type 2 diabetes mellitus. *Intern Med* **55**: 3091–3095.

8) Parva NR, Tadepalli S, Singh P, Qian A, Joshi R, Kandalam H, Nookala VK, Cheriyath P. 2018. Prevalence of vitamin D deficiency and associated risk factors in the US population (2011–2012). *Cureus* **10**: e2741.

9) Yu S, Fang H, Han J, Cheng X, Xia L, Li S, Liu M, Tao Z, Wang L, Hou L, Qin X, Li P, Zhang R, Su W, Qiu L. 2015. The high prevalence of hypovitaminosis D in China: a multicenter vitamin D status survey. *Medicine* **94**: e585.

10) Agmon-Levin N, Theodor E, Segal RM, Shoemfeld Y. 2013. Vitamin D in systemic and organ-specific autoimmune diseases. *Clin Rev Allergy Immunol* **45**: 256–266.

11) Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. 2014. The role of vitamin D in reducing cancer risk and progression. *Nat Rev Cancer* **14**: 342–357.

12) Lerner PP, Sharony L, Miodownik C. 2018. Association between mental disorders, cognitive disturbances and vitamin D serum level: Current state. *Clin Nutr ESPEN* **23**: 89–102.

13) Norman PE, Powell JT. 2014. Vitamin D and cardiovascular disease. *Circ Res* **114**: 379–393.

14) Rafiq S, Jeppesen PB. 2018. Body mass index, vitamin D, and type 2 diabetes: A systematic review and meta-analysis. *Nutrients* **10**: 1182.

15) Mansouri M, Mirti A, Varmughani M, Abbasi R, Taha P, Ramezani S, Rahmani E, Armughan R, Sadeghi O. 2019. Vitamin D deficiency in relation to general and abdominal obesity among high educated adults. *Eat Weight Disord* **24**: 83–90.

16) Zhang M, Li P, Zhu Y, Chang H, Wang X, Liu W, Zhang Y, Huang G. 2015. Higher visceral fat area increases the risk of vitamin D insufficiency and deficiency in Chinese adults. *Nutr Metab (Lond)* **12**: 50.

17) Hannemann A, Thuesen BH, Friedrich N, Volzke H, Steveling A, Ittermann T, Hegenscheid K, Nauck M, Linneberg A, Wallaschofski H. 2015. Adiposity measures and vitamin D concentrations in Northeast Germany and Denmark. *Nutr Metab (Lond)* **12**: 24.

18) Hao Y, Ma X, Shen Y, Ni J, Luo X, Xiao Y, Bao Y, Jia W. 2014. Associations of serum 25-hydroxyvitamin D3 levels with visceral adipose tissue in Chinese men with normal glucose tolerance. *PLOS One* **9**: e86773.

19) Taheri E, Saedisomeolia A, Djalali M, Qorbani M, Madani Civi M. 2012. The relationship between serum 25-hydroxy vitamin D concentration and obesity in type 2 diabetic patients and healthy subjects. *J Diabetes Metab Disord* **11**: 16.

20) Cocot J, Dziemidok P, Kielczyskowska M, Kurzepa J, Szczesniak G, Musiak I. 2017. Is there any relationship between plasma 25-hydroxyvitamin D(3), adipokine profiles and excessive body weight in type 2 diabetic patients? *Int J Environ Res Public Health* **14**: e201703489.

21) American Diabetes Association. 2014. Diagnosis and classification of diabetes mellitus. *Diabetes Care* **37** (Suppl 1): S81–S90.

22) Xu Q, Li X, Gao B, Xu Y, Wang Y, Zhang N, Bond Lau W, Zhou J. 2013. Comparative performance of four equations estimating glomerular filtration rate in adult Chinese diabetics. *J Endocrinol Invest* **36**: 293–297.

23) Chinese Diabetes Society. 2014. Chinese guideline for type 2 diabetes. *Clin J Endocrinol Metab* **30**: 893–942.

24) Aspray TJ, Bowring C, Fraser W, Gittoes N, Javaid MK, Macdonald H, Patel S, Selby P, Tanna N, Francis RM, National Osteoporosis Society. 2014. National Osteoporosis Society vitamin D guideline summary. *Age Ageing* **43**: 592–595.

25) Examination Committee of Criteria for ‘Obesity Disease’
in Japan. Japan Society for the Study of O. 2002. New
criteria for ‘obesity disease’ in Japan. Curr Opin Lipidol 13:
987–992.
26 Berker D, Koparal S, Isik S, PASAOGUL L, Aydin Y, Erol K,
Delibas T. Guler S. 2010. Compatibility of different
methods for the measurement of visceral fat in different
body mass index strata. Diagn Interv Radiol 16: 99–105.
27 Ma CM, Lu N, Wang R, Liu XL, Lu Q, Yin FZ. 2017.
Three novel obesi indicators perform better in monitor-
ing management of metabolic syndrome in type 2 dia-
betes. Sci Rep 7: 9843.
28 Fox CS, Massaro JM, Hoffmann U, Pou KM, Mau-
rovi-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs
JB, Cupples LA. D’Agostino RB Sr, O’Donnell CJ. 2007.
Abdominal visceral and subcutaneous adipose tissue
compartments: association with metabolic risk factors
in the Framingham Heart Study. Circulation 116:
39–48.
29 Wang C, Wang X, Tian H, Fang E, Han X. 2014. Associ-
ation of abdominal fat distribution by computed tomog-
raphy with body mass index and metabolic syndrome in
Chinese elders. Zhonghua Yi Xue Za Zhi 94: 908–912.
30 He HB, Zhao ZG, Pu YF, Chen J, Ni XY, Zhong J, Liu HY,
Li YS, Yan ZC, Liu DY, Zuo ZM. 2008. Relationship of
different types of abdominal obesity to risk of metabolic
syndrome. Zhonghua Yi Xue Za Zhi 88: 1251–1254.
31 Matsushita Y, Nakagawa T, Yamamoto S, Takahashi Y,
Yokoyama T, Mizoue T, Noda M. 2012. Effect of longitudi-
dinal changes in visceral fat area and other anthropo-
metric indices to the changes in metabolic risk factors in
Japanese men: the Hitachi health study. Diabetes Care
35: 1139–1143.
32 Matsushita Y, Nakagawa T, Yamamoto S, Takahashi Y,
Yokoyama T, Mizoue T, Noda M. 2013. Effect of longitudi-
dinal changes in visceral fat area on incidence of meta-
abolic risk factors: the Hitachi health study. Obesity (Sil-
ver Spring) 21: 2126–2129.
33 Schorr M, Dichtel E, Gerweck AV, Valera RD, Torriani
M, Miller KK, Bredella MA. 2018. Sex differences in
body composition and association with cardiometabolic
risk. Biol Sex Differ 9: 28.
34 Marin P, Andersson B, Ottosson M, Olbe L, Chowdhury
B, Krist H, Holm G, Sjostrom L, Bjorntrö P. 1992. The
morphology and metabolism of intraabdominal adipose
tissue in men. Metabolism 41: 1242–1248.
35 Item F, Konrad D. 2012. Visceral fat and metabolic
inflammation: the portal theory revisited. Obes Rev 13
(Suppl 2): 30–39.
36 Tu AW, Humphries KH, Lear SA. 2017. Longitudinal
changes in visceral and subcutaneous adipose tissue and
metabolic syndrome: Results from the Multicultural
Community Health Assessment Trial (M-CHAT). Diabetes
Metab Syndr 11 (Suppl 2): S957–S961.
37 Cheng S, Massaro JM, Fox CS, Larson MG, Keyes MJ,
McCabe EL, Robins SJ, O’Donnell CJ, Hoffmann U,
Jacques PF, Booth SL, Vasan RS, Wolf M, Wang TJ,
2010. Adiposity, cardiometabolic risk, and vitamin D
status: the Framingham Heart Study. Diabetes 59:
242–248.
38 Kong J, Li YC. 2006. Molecular mechanism of
1,25-dihydroxyvitamin D3 inhibition of adipogenesis in
3T3-L1 cells. Am J Physiol Endocrinol Metab 290:
E916–E924.
39 Felicidante I, Sartori D, Coort SLM, Semprebon SC, Niwa
AM, D’Epiro GFR, Biazi BL, Marques LA, Evelo CT,
Manovani MS, Ribeiro LR. 2018. Role of 1alpha,25-dihy-
droxyvitamin D3 in adipogenesis of SGBS cells: New
insights into human preadipocyte proliferation. Cell
Physiol Biochem 48: 397–408.
40 Autier P, Mullie P, Macucci A, Dragomir M, Boniol M,
Coppens K, Piaot C, Boniol M. 2017. Effect of vitamin D
supplementation on non-skeletal disorders: a systematic
review of meta-analyses and randomised trials. Lancet
Diabetes Endocrinol 5: 986–1004.
41 Rosenblum JL, Castro VM, Moore CE, Kaplan LM. 2012.
Calcium and vitamin D supplementation is associated
with decreased abdominal visceral adipose tissue in
overweight and obese adults. Am J Clin Nutr 95:
101–108.
42 Zhu W, Cai D, Wang Y, Lin N, Hu Q, Qi Y, Ma S, Ama-
rasekara S. 2013. Calcium plus vitamin D3 supplemen-
tation facilitated fat loss in overweight and obese college
students with very-low calcium consumption: a ran-
donized controlled trial. Nutr J 12: 8.
43 Nikooyeh B, Neyestani TR, Zahedirad M, Mohammad
M, Hosseini SH, Abdollahi Z, Salehi F, Mirzay Razaz J,
Shariatzadeh N, Kalaji A, Lotfollahi N, Maleki MR.
2016. Vitamin D-fortified bread is as effective as supple-
ment in improving vitamin D status: A randomized clin-
cial trial. J Clin Endocrinol Metab 101: 2511–2519.
44 Wamberg L, Kampmann U, Stokilde-Jorgensen H,
Rejnimark L, Pedersen SB, Richelsen B. 2013. Effects of
vitamin D supplementation on body fat accumulation,
inflammation, and metabolic risk factors in obese adults
with low vitamin D levels—results from a randomized trail. Eur J Intern Med 24:
644–649.
45 Shab-Bidar S, Neyestani TR, Djazayery A. 2015. Vита-
min D receptor Cdx-2-dependent response of central
obesity to vitamin D intake in the subjects with type 2
diabetes: a randomised clinical trial. Br J Nutr 114:
1375–1384.
46 Gangloff A, Bergeron J, Pelletier-Beaumont E, Nazare
JA, Smith J, Borel AL, Lemieux I, Tremblay A, Poirier P,
Almeras N, Despres JP. 2015. Effect of adipose tissue
volume loss on circulating 25-hydroxyvitamin D levels:
results from a 1-year lifestyle intervention in viscerally
obe men. Int J Obes (Lond) 39: 1618–1643.
47 Drincic AT, Armus LA, Van Diest EE, Heaney RP. 2012.
Volumetric dilution, rather than sequestration best
explains the low vitamin D status of obesity. Obesity (Sil-
ver Spring) 20: 1444–1448.
48 Park JM, Park CY, Han SN. 2015. High fat diet-induced
obesity alters vitamin D metabolizing enzyme expres-
sion in mice. Biofactors 41: 175–182.
49 Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask
P, Rejnimark L, Richelsen B, Pedersen SB. 2013. Express-
ion of vitamin D-metabolizing enzymes in human adi-
pose tissue—the effect of obesity and diet-induced
weight loss. Int J Obes (Lond) 37: 651–657.
50 Fang H, Berg E, Cheng X, Shen W. 2018. How to best
assess abdominal obesity. Curr Clin Nutr Metab Care
21: 360–365.
51 Ryo M, Maeda K, Onda T, Katsuhisa M, Okumiya A,
Nishida M, Yamaguchi T, Umahashi T, Matuszawa Y,
Nakamura T, Shimomura I. 2005. A new simple method
for the measurement of visceral fat accumulation by
bioelectrical impedance. Diabetes Care 28: 451–453.
52 Demura S, Sato S. 2007. Prediction of visceral fat area
at the umbilicus level using fat mass of the trunk: The
validity of bioelectrical impedance analysis. J Sports Sci
25: 823–833.