Tuning the effective coupling of an AFM lever to a thermal bath

G Jourdan1,2,3, G Torricelli4, J Chevrier1,2,5 and F Comin5

1 Institut Néel CNRS Grenoble BP 166 38042, Grenoble Cedex 9, France
2 Université Joseph Fourier—BP 53—38041, Grenoble Cedex 9, France
3 Laboratoire Kastler Brossel, CNRS Paris, ENS, UPMC, 4 Place Jussieu, 75252 Paris Cedex 05, France
4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
5 ESRF, 6 rue Jules Horowitz, BP220, 38043 Grenoble Cedex, France

E-mail: guillaume.jourdan@grenoble.cnrs.fr

Received 14 September 2007
Published 19 October 2007
Online at stacks.iop.org/Nano/18/475502

Abstract
Fabrication of high quality nano-electromechanical systems (NEMS) is nowadays extremely efficient. These NEMS will be used as sensors and actuators in integrated systems. Their use, however, raises questions about their interface (actuation, detection, read out) with external detection and control systems. Their operation implies many fundamental questions related to single particle effects such as Coulomb blockade, light matter interactions such as radiation pressure, thermal effects, Casimir forces and the coupling of nanosystems to the external world (thermal fluctuations, back action effect). Here we specifically present how the damping of an oscillating cantilever can be tuned in two radically different ways: (i) through an electromechanical coupling in the presence of a strong Johnson noise, (ii) through an external feedback control of thermal fluctuations which is the cold damping closely related to Maxwell’s demon. This shows how the interplay between external control of micro-EMS (MEMS) or NEMS and their coupling to a thermal bath can lead to a wealth of effects that are nowadays extensively studied in different areas.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. General context
Nano-electromechanical systems (NEMS) with truly nanometric dimensions are fascinating objects. They are now described in numerous reviews \cite{1,2} and are interesting in many respects. They are geometrically and chemically very well defined model objects, with numerous potential applications. Well known examples are oscillators such as silicon levers or carbon nanotubes. As NEMS contain a large number of atoms (usually much more than a million), they are most often described as continuous objects but their linear dimensions can make them geometrically close to complex molecules and to viruses. They are used, for example, as accelerometers, mass detectors with sensitivity close to the atomic level \cite{3} and electromechanical filters at high frequencies. The description and analysis of their properties inherently touch some very fundamental issues related to electron or photon coupling with a mechanical oscillator. Driving effects in this field are certainly the Casimir force due to the zero point motion of the electromagnetic field in a vacuum, and observation of the quantum behaviour of a NEMS oscillator \cite{4–8}. It is interesting to notice that most groups involved in this research are readers of Braginsky’s pioneering works related to measurements of ultra small displacements, often in the context of gravitational wave detection \cite{9,10}. The small energies involved in NEMS excitations make them very sensitive to many external noises. Specifically one can mention measurement back action effects and Brownian motion, as they are always operated in contact with a thermal bath. Due to thermal fluctuations, it is hardly possible to define true quasi-static transformations as these NEMS
are driven from one stable state to another. In the last decade, in the context of molecular motors, this point has been addressed both theoretically and experimentally. It shows that far before touching any quantum limit, thermal fluctuations that are usually negligible in mechanics dealing with current objects (although not in electronics with strong Johnson noise often limiting performances) become a central ingredient in the description of NEMS behaviour. A decade ago, general theorems in statistical physics [11, 12], such as the Jarzynski equality, an equation that connects the free energy difference between two equilibrium states and the work needed to travel between these two states through non-equilibrium processes, and recently experimentally studied [13], have provided a framework for analysing the non-quasi-static processes induced by thermal fluctuations that are involved in NEMS operation at room temperature. This has already been applied to atomic force microscope (AFM) experiments [14, 15]. In this paper, we show how it is possible to alter the resonance curve width of an oscillator coupled to a thermal bath at temperature \(T \). We then present the results of two independent experiments performed using a UHV Omicron AFM and a home-made AFM. The two examples presented here have been chosen so that in one case it is the coupling to the thermal bath that has been directly changed by tuning the electromechanical coupling, whereas in the second case this coupling has remained the same but a very fast control of the thermal fluctuations has been set resulting in very efficient thermal energy extraction from the oscillator.

1.2. Report on two AFM experiments

Experimental reports that thermally induced fluctuations of a mechanical nano- or micro-oscillator can be directly and efficiently influenced without changing the bath temperature are the central point of this paper. To exemplify this, we present two different AFM experiments. AFM levers are used as a model system for micro-electromechanical systems (MEMS) and NEMS. Although the oscillator has micrometre dimensions, displacements and distances of interaction are truly nanometric. Both experiments have in common the experimental control of the thermally induced fluctuations of the mechanical oscillator connected to a thermal bath. The signature of the dissipative coupling efficiency onto the resonance of a mechanical oscillator is as usual identified in the frequency resonance width. In the first case, a true increase of the dissipation is observed due to an added dissipative channel as the oscillator becomes part of an electrical circuit that includes a large resistance. In the second case in contrast, an apparent increase in dissipation is in fact due to detailed damping of thermal fluctuations by an external feedback loop. The resonance width clearly increases, but a simultaneous and large decrease of oscillator thermal energy is observed and is analysed as a strong reduction in temperature.

2. AFM: increased damping due to Johnson noise

As classically modelled by the Langevin equation, coupling of AFM levers or of micro/nano-oscillators to a thermal bath is essentially described by a viscous force \(- \Gamma \dot{x}\) in the dynamical equation. A characteristic time \(\tau = m/\Gamma \) can be associated with the friction coefficient \(\Gamma \), where \(m \) is the oscillator mass. The oscillator resonance frequency \(\omega_{\text{res}} \) is much larger than \(1/\tau \). Short timescale thermal fluctuations with a known force spectral density are described by the temperature and the same friction coefficient \(\Gamma \) through a constant spectral density of noise:

\[
S_0 = 2k_B T \Gamma.
\] (1)

The time \(\tau = m/\Gamma \), as discussed in [9], characterizes the long time oscillator behaviour and the kinetics of heat exchanges with the thermal bath. For time \(t \ll \tau \), the oscillator keeps the memory of its state at \(t = 0 \), whereas for time \(t \gg \tau \) this memory is lost and the average oscillator displacement is fixed by the thermal bath and described by the fluctuation–dissipation theorem (energy equipartition). Measurement of \(\tau \) from the oscillator resonance characteristics, essentially from the resonance width, enables us to investigate specific channels of energy dissipation in the thermal bath. Here we present the study of a dissipation channel associated with Johnson noise present in the set up described in figure 1.

The set up consists of a gold coated sphere with a radius \(R_s = 40 \mu \text{m} \) glued at the free end of an AFM cantilever creating a capacitance with the sample as the opposite electrode (figure 1). The micropore polarization circuit is controlled by a DC generator and includes a large resistance due to poor metallic coating of the probe (this resistance is shown in following section to be 30 M\(\Omega \)). When applying a DC voltage \(V_c \), an attractive capacitive force between the sphere and the sample surface is then generated and described by

\[
F_c = \frac{1}{2} C_0 V_c^2.
\] (2)
In the sphere–plane configuration, the derivative of the capacitance is given at small distances ($d \ll R$) by

$$C_0' = -\frac{2\pi\varepsilon_0 R}{d}. \quad (3)$$

This electromechanical coupling turns out to be a new damping channel for the main degree of freedom x_0 of the mechanical oscillator, since the latter is now connected to the thermal bath associated to the resistance.

2.1. The damping process

In this section we show that the mechanical energy can be dissipated by the Joule effect in addition to other mechanical friction processes described by Γ_0 (phonon collisions, etc). The potential between the sample and the sphere amounts to $V_c = V_0 - RI$ (figure 1(b)). Therefore, to first order in I, a contribution to the force that is directly proportional to the current is generated. According to the equation (2) this contribution is given by

$$F_c = -C_0' V_0 R I. \quad (4)$$

For small displacement in first order of x_0 and I:

$$Q = C(d_0 + x_0) V_c = (C_0 + C_0' x_0) V_0 - R C_0 I. \quad (5)$$

The charge Q located on the sphere depends on the lever motion x_0 because of the electromechanical coupling. The last term can be neglected when compared to Q, because the working frequency range determined by the resonance ($\omega_{eq}/2\pi = 5009.8$ Hz) is well below the cut frequency $1/RC_0$ (at 100 nm, a pessimistic estimation gives 12 000 Hz if the sphere is modelled by a flat 50 μm radius disc) of the low pass circuit. It results a current proportional to the speed of the lever according to the relation $I = dQ/dt = C_0' \dot{x}_0 V_0$, the force thus obtained turns out to be a damping process:

$$F_c = -C_0'^2 V_0^2 R \dot{x}_0. \quad (6)$$

Therefore the resistance transforms the current generated by the lever displacement into heat with a friction coefficient $\Gamma_R = (C_0')^2 V_0^2 R$. Experimentally an increase in the dissipation rate is clearly observed when a bias voltage is applied to the system. As shown in figure 2, at a distance of 90 nm a width increase from 30 rad s$^{-1}$ up to 52 rad s$^{-1}$ is observed in the resonance curve when the applied voltage is changed from 0 to 0.5 V. This is clear evidence that the increased dissipation has an electrostatic origin. It implies therefore the existence of a dissipative channel that is made efficient as the sphere–surface voltage is applied in agreement with equation (6). It means that this added dissipative channel is externally tuned by the applied voltage V_0.

The effective friction coefficient $\Gamma_R = m \gamma_R$ can be used to analyse the continuous increase of the resonance width as the sphere–surface distance d is decreased at constant applied voltage of 0.5 V. The behaviour of the width parameter $\gamma = \gamma_0 + \gamma_R$ is consistent with a $1/d^2$ power laws predicted by equations (3) and (6):

$$\gamma_R = \frac{4\pi^2 \varepsilon_0^2 R^2 V_0^2 R}{d^2 m}. \quad (7)$$

The mass of the oscillator is dominated by the microsphere and estimated to $m = 2.8 \times 10^{-10}$ kg ($\rho_{sphere} = 1040$ kg m$^{-3}$). In figure 3, a resistance of 30 MΩ is used to quantitatively describe the experimental result. This is the single adjustable parameter as all other quantities are experimentally measured in this model geometry.

2.2. The fluctuation–dissipation theorem: thermal equilibrium

The new dissipative channel can then be externally controlled as the electromechanical coupling is made efficient using a circuit that includes a dissipative element such as a resistor. However, this increased damping does not mean that mechanical position fluctuations are more damped than without any coupling. Conversely the Johnson noise V_3 introduced by the resistance in the circuit above turns out to be a new source of thermal excitation of the lever (figure 1). It indeed produces an additional fluctuating force on the sphere through the crossing term $2 V_0 V_3$:

$$F_1 = C_0' V_0 V_3. \quad (8)$$
For the noisy force F_r by oscillator vibrations are dissipated in the resistance established and dissipation takes place as currents induced and a thermal bath. Here an electromechanical coupling is experimental example shows how it is possible to control flux is nil. The equipartition theorem therefore provides the bath increase, but the balance remains the same: the overall energy exchanges between the microlever and the thermal fluctuation intensity as well as the friction rate gets higher. The oscillator is in thermal equilibrium with its surroundings, the whole system remains in thermodynamic equilibrium with.

whose power density spectrum is given by $S_{F_r} = (C^\prime_0)^2 V_0^2 S_{V_i}$ with $S_{V_i} = 2k_B T R$. Although not original, it remains interesting for consistency of the analysis to show that the results comply with the fluctuation dissipation theorem which establishes that the damping rate Γ is related to the Langevin fluctuation force F_L:

$$\Gamma = \frac{1}{2k_B T} \int \langle F_L(t) F_L(0) \rangle \, dt. \tag{9}$$

For the noisy force F_i, this comes from equation (8) and $S_{V_i} = \int V_0(t) V_0(t) \, dt$:

$$\Gamma_1 = (C^\prime_0 V_0)^2 R. \tag{10}$$

This is the rate Γ_e derived in equation (6). Since the oscillator is in thermal equilibrium with its surroundings, the fluctuation intensity as well as the friction rate gets higher. Energy exchanges between the microlever and the thermal bath increase, but the balance remains the same: the overall flux is nil. The equipartition theorem therefore provides the average energy of the system $\frac{1}{2} k < \omega_0^2 > = \frac{1}{2} k_B T$. This experimental example shows how it is possible to control dissipative coupling between a micromechanical oscillator and a thermal bath. Here an electromechanical coupling is established and dissipation takes place as currents induced by oscillator vibrations are dissipated in the resistance R also at the origin of Johnson noise shown in equation (3). The coupling between the thermal bath and the oscillator is then truly tuned. Finally, it is important to note that the whole system remains in thermodynamic equilibrium with the thermal bath: the energy exchange is balanced. This is in contrast with the experimental strategy explored in next section.

3. AFM and cold damping

As indicated by the title of the pioneering article by Milatz, Van Zolingen and Van Iperen [16] in 1953, 'The reduction in the Brownian motion of electrometers', it is possible to damp thermal fluctuations. However, this cannot be done through a simple increase of the friction coefficient as this would immediately increase the thermal noise spectral density of force (equation (1)) with a cancellation of both effects to maintain fluctuations on position fixed by the equipartition principle of energy at thermal equilibrium.

It has been demonstrated in several circumstances that, using an external feedback loop that acts against thermal fluctuations with an applied force proportional to the oscillator speed, it is really possible to damp these fluctuations. This is the so-called cold damping procedure [17–19].

In the case of the cold damping experiment based on an AFM set up, an active cooling can be implemented using an external laser applied onto the lever [20], and either using a capacitive coupling or a bimorph piezo actuator, normally used to excite the lever at resonance, to rapidly react against the thermal fluctuations. We have successfully used the two latter strategies. We shall here describe a third one usable on any AFM. Compared to capacitive coupling it seems to be less intuitive. The experimental set-up is schematically described in figure 4.

The measured lever position x_0 is directly used through a feedback loop to apply a damping force F_D proportional to the lever velocity, i.e. the x_0 time derivative, that counteracts the displacement. The ratio between the damping force F_D and the lever speed is Γ_e. The measured spectral density of the lever displacement is shown in figure 5 as Γ_e is increased. As it is well known, when cold damping is applied to an oscillator the peak width is increased, and therefore the apparent friction coefficient is also increased. However, the peak area decreases gradually, which is classically described as a temperature reduction for the vibration mode. These new characteristics can be compared to the friction coefficient Γ_0 and the temperature T when no active loop is present. The characteristic time $\tau_0 = m / \Gamma_0$ defined with no active loop becomes $\tau_e = m / (\Gamma_0 + \Gamma_e)$ with cold damping operating.

As the spectral density of force remains the same with and without cold damping operating, neither the thermal bath nor the system coupling to thermal bath are affected, and the spectral density of force remains the same whatever the value
Nanotechnology 18 (2007) 475502 G Jourdan et al

Figure 5. (a) Displacement spectral density: the thermal fluctuations are progressively cancelled as the loop gain G is increased from G_0 to G_7 (figure 4). The large thermal displacement at resonance has almost vanished. The small resonance frequency shift is due to a remaining proportional gain in the feedback loop device. (b) The effective temperature is proportional to the area under each Lorentzian curve, namely the motion dispersion $\langle x^2 \rangle$. As the feedback loop system is implemented, it decreases from room temperature down to about 30 K.

Figure 6. (a) The capacitive coupling adds a classical dissipative channel due to an electromechanical coupling that couples the Johnson noise to the oscillator. The damping is increased but thermal fluctuations are accordingly increased. (b) The cold damping feedback loop extracts thermal energy from the oscillator by direct damping of thermal fluctuations. The damping is increased but no energy is randomly provided by the feedback loop to the oscillator. The temperature is decreased as thermal energy is extracted much more rapidly than what can be provided by the thermal bath.

The thermal fluctuations measured at frequencies around this resonance are then progressively decreased as the feedback loop gain is increased. A quantitative and detailed analysis of this cold damping procedure shows that as the loop gain is increased, the peak integral is strongly reduced and the apparent resonant mode temperature is strongly decreased from 300 K down to 30 K. This is an apparent temperature, as this is by no means a thermal bath temperature but the result of the stationary oscillator energy exchange with the thermal and with the external applied force. We shall analyse this below.

4. Conclusion: comparison of these two experiments

In both experiments presented here, the resonance curve is broadened which is immediately analysed as an increase of the effective friction coefficient. This is a common point between the two experiments. However, a discussion of the thermal energy transfer in both cases shows how much these two procedures differ.

In the first case, adding a capacitive coupling in the presence of a large resistance does not introduce a qualitative change. The friction coefficient is increased and the oscillator coupling to the thermal bath is made more efficient with a shorter time τ. This added coupling induces a broadening of the resonant peak but the integral of the resonance peak is essentially preserved and fixed by the thermal bath temperature. The thermal noise spectral density of force increases accordingly. The major change is then an increased coupling of the oscillator to the thermal bath with consequently faster heat exchanges but also a larger thermal noise spectral density of force applied to the oscillator. Originality here relies on the fact that the increased dissipation is due to the charge fluctuation at the sphere/surface due to the Johnson noise of the resistance. In the second case, the resonant peak also broadens. Although this is an apparent increase of the friction coefficient, this is not due to an increased direct coupling between the oscillator and the thermal bath. This coupling to the thermal bath does not change as the feedback loop is activated to induce cold damping. A new coupling is introduced with an external ‘intelligent’ system which very rapidly and efficiently extracts thermal energy from the oscillator. This real time precise and detailed action directly on the thermal fluctuations is very much reminiscent of the way a Maxwell demon is acting, as noticed in [14] that provides a theoretical description of this type of experiment related to general theorems [11, 12]. In practice this extraction is so fast and so efficient that there is no time for the heat bath to impose its own temperature of 300 K.
Thermal fluctuations are damped in detail and the temperature subsequently decreases. As this is a fast process of thermal energy extraction, the measured characteristic time τ_T on the resonance curve is now much shorter than τ_k the characteristic time of heat exchange when there is no cold damping.

It is then interesting to notice that it is the high quality factor of the oscillator, i.e. the low friction coefficient, that prevents the heat bath from efficiently maintaining the energy oscillator at the value of $k_B T$ when the cold damping is acting. In the stationary regime, the temperature determined from the oscillator fluctuation distribution is much smaller than the heat bath temperature, i.e. the cold damping process finally extracts energy from the heat bath through the oscillator (figure 6). The whole process can then be described as a microscopic fridge, as quoted in [14]. However, an estimate of heat fluxes involved shows that it is not easy to make this fridge efficient enough to really cool down a thermal bath, even if it is a non-realistic isolated nanosystem.

As a final remark regarding NEMS sensor resolution, two different outcomes can be drawn from these two damping processes. In both cases, the mechanical response function of the lever is tuned as a result of the introduction of a new force on the system. However, force measurement accuracy is at best set by the fluctuation level of the thermal bath. The Johnson noise coupling is then undesirable for applications such as an accelerometer, a tiny force sensor etc. Therefore one has to pay attention to this additional damping process when implementing capacitive coupling in a nanosystem. In contrast, the cold damping technique does not affect the force measurement noise. However, this comment remains rigorously true if the outside control system can be considered as perfect. Detection noise indeed limits the cold damping efficiency and will be studied in a further article.

References

[1] Ekinci K and Roukes M 2005 Nanoelectromechanical systems Rev. Sci. Instrum. 76 061101
[2] Roukes M 2001 Plenty of room, indeed Sci. Am. 285 48–57
[3] Ekinci K, Huang X M H and Roukes M 2004 Ultrasensitive nanoelectromechanical mass detection Appl. Phys. Lett. 84 4469–71
[4] Schwab K C and Roukes M L 2005 Putting mechanics into quantum mechanics Phys. Today 58 (7) 36–42
[5] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 Approaching the quantum limit of a nanomechanical resonator Science 304 74–7
[6] Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Radiation-pressure cooling and optomechanical instability of a micromirror Nature 444 71–4
[7] Kleckner D and Bouwmeester D 2006 Sub-kelvin optical cooling of a micromechanical resonator Nature 444 75–8
[8] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Self-cooling of a micromirror by radiation pressure Nature 444 67–70
[9] Braginsky V B, Mitrofanov V P and Panov V I 1986 Systems with Small Dissipation vol 2 (Chicago, IL: University of Chicago Press)
[10] Braginsky V B, Khalili F Y and Thorne K S 1992 Quantum Measurement vol 9 (Cambridge: Cambridge University Press)
[11] Jarzynski C 1997 Nonequilibrium equality for free energy differences Phys. Rev. Lett. 78 2690–3
[12] Crooks G E 1998 Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems J. Stat. Phys. 90 (5/6) 1481
[13] Douarche F, Ciliberto S, Petrosyan A and Rabbiosi I 2005 An experimental test of the jarzynski equality in a mechanical experiment Europhys. Lett. 70 (5) 593–9
[14] Kim K H and Qian H 2007 Fluctuation theorems for a molecular refrigerator Phys. Rev. E 75 022102
[15] Noy A 2004 Direct determination of the equilibrium unbinding potential profile for a short dna duplex from force spectroscopy data Appl. Phys. Lett. 85 4792–4
[16] Milatz J M W, Van Zolingen J J and Van Iperen B B 1953 The reduction in the Brownian motion of electrometers Physica 19 195–202
[17] Cohadon P F, Heidmann A and Pinard M 1999 Cooling of a mirror by radiation pressure Phys. Rev. Lett. 83 3174–7
[18] Pinard M, Cohadon P F, Briant T and Heidmann A 2000 Full mechanical characterization of a cold damped mirror Phys. Rev. A 63 013808
[19] Hopkins A, Jacobs K, Habib S and Schwab K 2003 Feedback cooling of a nanomechanical resonator Phys. Rev. B 68 235328
[20] Mertz J, Marti O and Mlynek J 1993 Regulation of a microcantilever response by force feedback Appl. Phys. Lett. 62 2344–6