Sulphur isotopes in deep groundwater reservoirs: Evidence from post-stimulation flowback at the Pohang geothermal facility, Korea

David Banks a,*, Adrian J. Boyce a,b, Rob Westaway a, Neil M. Burnside a,c

a James Watt School of Engineering, University of Glasgow, James Watt Building South, Glasgow, G12 8QQ, UK
b Scottish Universities Environmental Research Centre (SUERC), East Kilbride, G75 0QF, UK
c Currently at Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ, UK

A R T I C L E I N F O

Keywords:
Pohang
Hydraulic stimulation
Sulphate
34-sulphur
Flowback
Anhydrite

A B S T R A C T

A hydraulic stimulation was carried out on a granodiorite reservoir in an enhanced geothermal system in August 2017 in Pohang, Korea. Water injected into the 4.2 km deep PX-1 well contained c. 330–360 mg/L sulphate, with a negative $\delta^{34}S$. The resulting flowback water became more saline with time, with sulphate and chloride concentrations and dissolved sulphate $\delta^{34}S$ all increasing. Compared with conservative advective-dispersive and mixing models, the flowback contained surplus sulphate with an elevated $\delta^{34}S$. The PX-1 reservoir fluid is saturated with respect to anhydrite at downhole temperatures and pressures. Dissolution by injected surface water of secondary anhydrite along fracture surfaces, most likely with elevated $\delta^{34}S$ reflecting the reservoir fluid, is likely to have resulted in an excess of ^{34}S-enriched sulphate in the flowback fluid. An alternative hypothesis involving oxidation of pyrite is also plausible but is stoichiometrically inadequate to account for the observed sulphate excess, and unlikely from a sulphur isotopic perspective. This analysis thus contributes to the evidence for water-rock reactions during stimulation of the Pohang granodiorite.

1. Introduction

The Pohang geothermal site (129°22′46.08″E, 36°06′23.34″N) is located c. 6 km north of the city of Pohang, on the east coast of the Korean peninsula (Fig. 1). Two 4.2 km deep wells have been drilled into a concealed granodiorite below the site, with the intention of creating an enhanced geothermal system (EGS). Five episodes of hydraulic stimulation have been applied to the wells to enhance their hydraulic performance and to achieve acceptable mutual connectivity.

It is widely observed that, in hydraulic stimulation operations, the chemistry of flowback fluid is often significantly different from that of the injected water. The flowback fluid can often be hypersaline, contain excess concentrations of cations (Sr^{2+}, Ba^{2+}, Ca^{2+}) contributing to scale-forming minerals and may also contain naturally occurring radioactive solutes (e.g. radium (Haluszczak et al., 2013)). Most of the published studies of the chemistry of flowback fluid come from the hydrocarbon sector, especially from the hydraulic fracturing of deep organic shales to produce “shale gas”. Most of these studies conclude that the dominant factor determining flowback chemistry is mixing between the injected water and a deep, connate, highly reducing brine, potentially of considerable age (Haluszczak et al., 2013; Zolfaghari et al., 2015; Balashov et al., 2015; Vazquez et al., 2014). One recent study (Owen et al., 2020), from the shaly Montney Formation of Canada, considered potential water-rock interaction and proposed a component of ion exchange and possible carbonate dissolution, superimposed on a dominant mixing trend, to account for the flowback chemistry. The study also found an early excess of sulphate in the flowback water, which the authors ascribed (albeit speculatively) to pyrite oxidation.

Similar examples of post-stimulation flowback hydrochemistry from geothermal prospects in other lithologies are scarce. However, a recent study (Burnside et al., 2019) documented the flowback chemistry from one of the deep boreholes in the Pohang granodiorite. It concluded that the dominant process was also mixing between fresh injected water and a saline formation water (though less saline, less reducing and more sulphate-rich than typical shale brines). The study found evidence of water-rock interaction (quartz dissolution and aluminosilicate hydrolysis) and an early excess of sulphate, which was also initially (Burnside et al., 2019) ascribed to sulphide oxidation.

The present study considers the sulphate chemistry and sulphur isotope systematics of this flowback water in more detail and seeks to explain the source of the sulphate excess. Dissolved sulphate is not regarded as a conservative tracer, as it is affected by a range of mineral
dissolution and precipitation reactions (gypsum/anhydrite, barite, celestite, pyrite) and is also redox-sensitive, being reduced to sulphide in strongly reducing environments (Miao et al., 2013).

Determination of dissolved sulphate sulphur isotopic composition can be valuable in identifying sources of sulphate (Seal, 2006). In particular, the ratio between 34S (natural abundance 4.21 %) and 32S (natural abundance 95.02 %), expressed as δ^{34}S, is important (Böttcher, 2011). In the context of groundwater, very little isotopic fractionation occurs when sulphate is released to the dissolved phase by dissolution of sulphate salts or oxidation of pyrite and other sulphide minerals (Seal, 2006; Taylor et al., 1984). Dissolved sulphate δ^{34}S in such cases thus reflects, and potentially identifies, the source mineral (Seal, 2006). However, an important isotopic fractionation occurs when sulphate is reduced to sulphide, especially when microbially facilitated, leaving the sulphide formed depleted in 34S, and the residual fluid enriched.

$$2\text{CH}_2\text{O} + \text{SO}_4^{2-} = \text{H}_2\text{S} + 2\text{HCO}_3^-$$

where CH$_2$O is generic organic matter (1)

Fractionations of down to -70% have been observed experimentally and in the field (Böttcher, 2011; Rye et al., 1981). Large fractionations are typical of situations where the net rate of reduction is low compared to the overall redox turnover of sulphur (Bottrell et al., 2000). The H$_2$S produced will often be partially immobilised in metal sulphide minerals. Another important fractionation mechanism is that of disproportionation, for example of magmatic SO$_2$ (Kusakabe et al., 2000; Rye, 2005), to form a sulphate phase enriched in 34S and a depleted sulphide phase (Bayon and Ferrer, 2005):

$$4\text{SO}_2 + 4\text{H}_2\text{O} = 3\text{HSO}_4^- + 3\text{H}^+ + \text{H}_2\text{S}$$

(2)

The importance of this research, based on the flowback water from Pohang, is two-fold. First, sulphate minerals can be important scale-forming minerals in geothermal systems, especially anhydrite (in higher temperature systems (Zarrouk and McLean, 2019)) and gypsum (Brehme et al., 2019). The solubility of both is very sensitive to calcium and sulphate concentrations and to temperature (anhydrite becomes less soluble with increasing temperature; gypsum has a solubility maximum at 35–40 °C (Roinick, 1954)). An understanding of sources of excess sulphate in geothermal systems will aid in mitigating scale formation. Second, at the Pohang site, an official study concluded that hydraulic stimulation had contributed to the occurrence of a M$_{W}$ 5.5 earthquake (GSK, 2019). Mineral dissolution within the stressed fault zone has been postulated as a contributory factor to seismic shear (Westaway and Burnsöde, 2019; Westaway et al., 2020). A clearer documentation of evidence of water-rock interaction during this hydraulic stimulation is thus timely and essential for further evaluation of this scenario.

2. Background: sulphur in granitoid environments

Section 2 provides a brief review of the occurrence of sulphur in granitoid rocks and their groundwaters, and provides a necessary background for understanding and interpreting the experimental data.

2.1. Sulphur in granitic rocks

Sulphur can exist in igneous rocks in several solid phases. It may be present in its oxidised form as a number of secondary sulphate minerals, including barite (BaSO$_4$) and the calcium sulphates, gypsum (CaSO$_4$.2H$_2$O, stable at low temperature) and anhydrite (CaSO$_4$, more stable at higher temperature (Van Driessche et al., 2017)). Gypsum has, for example, been observed at depths of down to 1 km in Precambrian granitoids in the Laxemar-Simpewarp area of eastern Sweden (Drake and Tullborg, 2009). Anhydrite is abundant through disproportionation reactions (eqn. 2) in potassic alteration zones of major porphyry mineralising systems (Richards, 2011). Anhydrite is reported (Vidal et al., 2018) as a common mineral within an altered fault plane in a c. 2.5 km deep granite geothermal reservoir at Rittershoffen, France. It is also documented as an alteration product (Savage et al., 1987) at elevated temperature in the Cornish Carnmenellis granite, UK. Secondary anhydrite is reported (Muramatsu et al., 2000) from several Japanese geothermal systems, including that associated with the Quaternary Kakkonda granite of NE Japan. The presence of considerable readily-soluble CaSO$_4$ in granites and gneisses from the Black Forest of Germany has been demonstrated by leaching experiments (Bucher and...
2.2. Sulphate in granitoid groundwaters

In non-granitic environments, anhydrite is also reported from several Icelandic geothermal systems including Krafla (volcanic) (Gudmundsson and Arnórsson, 2002) and Grimsey (sediment-hosted) (Kuhn et al., 2003).

The sulphur isotopic composition of such sulphates typically reflects that of the fluid from which they were precipitated (Drape and Tullborg, 2009). For example, the Kakkonda anhydrites exhibited δ34S values in the range -21.6 to -24.2‰, suggesting (Muramatsu et al., 2000) that the ultimate source of the sulphate was either marine water or Miocene sulphate evaporites.

Alternatively, sulphur may be present in its reduced state as sulphide minerals, which can be primary (lower crustal-mantle-derived magmatic) or hydrothermal in origin, or secondary precipitates (derived from dissolved sulphate in ground water / pore fluids). Primary / hydrothermal pyrite in granitic rocks typically has a δ34S of around or slightly above 0‰ (Koh et al., 2000; Seal, 2006; Lauar et al., 1990; Kohut and Recio, 2002) (albeit somewhat higher in S-type granites). For example, early stage hydrothermal pyrite (related to a nearby 1.45 Ga granite intrusion) in granitoids in Laxemar-Simpewarp (Sweden) exhibited δ34S of 3 to 3.8‰ (Drape and Tullborg, 2009); in Korea, primary granite pyrite has shown δ34S of +1.8 to +2.6‰ (Park et al., 1991). The formation of secondary sulphides from dissolved sulphate in fluids is widely documented. At low temperatures of up to 60–80 °C, sulphide minerals are typically formed by bacterial sulphate reduction (BSR) (Machel, 2001)). This process results in large fractionations, with the sulphide initially formed depleted in 34S (low δ34S), leaving the residual fluid with an elevated δ34S. As sulphide formation progresses in a closed system, the δ34S of the sulphide increases sharply as 34S becomes enriched in the parent fluid. Thus, in systems that are “open” with respect to sulphate, secondary pyrite produced by BSR typically have δ34S significantly lower than the parent fluid’s sulphate (Seal, 2006). In closed systems, however, late stage secondary sulphides can form with high δ34S, often as 34S-enriched zones around a core depleted in 34S. This was demonstrated in the Precambrian Laxemar granitoids (Drape et al., 2012) where pyrite was found as secondary fracture mineralisation down to 1 km depth, with bulk grain δ34S ranging from -42 to +54‰ and zonation within the crystals, with the highest δ34S in the outermost zones. The pyrite was interpreted as derived from BSR of sulphate in the groundwater, with progressive S-isotopic fractionation (Drape et al., 2013).

Although sulphate reducing bacteria (SRB) have been identified that can survive to 110 °C (Machel, 2001), the understood limit for microbial life is currently 122 °C (Takai et al., 2008). At temperatures above 140–160 °C (as at Pohang), sulphate reduction processes are abiotic and are termed thermochalamic sulphate reduction (TSR). TSR typically requires a source of carbon (often hydrocarbons (Li et al., 2019; Jia et al., 2015), but potentially other organic compounds, such as carboxylic acids (Kiyosu and Krouse, 1990)), although TSR using alternative electron donors is possible. TSR by ammonium has been inferred to be geologically plausible at temperatures of 50–60 °C (Ding, 2015) and TSR by Fe(II) in, for example, olivine, has also been demonstrated (Seal, 2006). TSR is subject to kinetic fractionations in the range -10 to -20‰, and typically -15% at 150 °C (Machel, 2001; Kiyosu and Krouse, 1990). In many natural situations, relatively little TSR fractionation is observed, with the sulphide mineral having a similar isotopic composition to the parent sulphate (Machel, 2001; Li et al., 2019; Jia et al., 2015; Machel et al., 1995), probably due to the kinetics determining initial sulphate mineral dissolution (Cross and Bottrell, 2000).

2.2. Sulphate in granitoid groundwaters

In deep crystalline rock groundwaters, sodium-chloride salinity increases with depth, and water-rock interaction elevates the Ca/Na ratio (Bucher and Stober, 2010; Bottomley et al., 1994; Stober and Bucher, 1999; Brady et al., 2019). The sulphate content of deep granite groundwaters is, however, variable and a simple explanation for its origin and behaviour remains elusive in many cases (Fontes et al., 1989). Sulphate could conceivably be derived from one or more of the following sources:

- Modern infiltration of seawater or inundation in the geological past (Stober and Bucher, 1999; Aquílina et al., 2013). Modern seawater has a δ34S of +20.6‰ (Tostevin et al., 2014) and a molar SO2 /Cl-ratio of 0.052 (Stanford University, 2019).
- Dissolution of evaporite minerals from overlying sedimentary rocks, infiltration of evaporitic brines (Bottomley et al., 1994), or, conceivably, dissolution of secondary sulphate minerals within the granite. Evaporite and secondary sulphate minerals typically have a δ34S closely corresponding to the seawater / brine from which they were derived (Strauss, 1997).
- Oxidation of pyrite / sulphide fracture minerals. The oxidation of sulphide minerals to aqueous sulphate is accompanied by negligible fractionation (Seal, 2006; Taylor et al., 1984).
- Disproportionation of magmatic SO2 (Bayon and Ferrer, 2005).

These hypotheses are very similar to those proposed for sulphate in the Stripa granite, Sweden (Fontes et al., 1989). Multiple sources are often invoked to explain the range of observed sulphate δ34S in deep groundwater reservoirs. For example, at Stripa, three different sulphate processes were hypothesised for groundwater down to 822 m: (i) atmospheric sulphate and sulphide oxidation (characterised by low δ34S) in the shallower waters, (ii) BSR, reducing the sulphate concentrations and elevating δ34S, in intermediate waters, (iii) an unknown sulphate source in the deepest waters, again progressively modified by sulphate reduction (Fontes et al., 1989). In the upper 400 m of the Laxemar granitoids, high dissolved sulphate δ34S (+25 to +37‰), coupled with low sulphate concentrations, was explained by the formation of secondary pyrite by BSR. In the same granitoids, a higher dissolved sulphate concentration, with lower δ34S (+9 to +20‰), at greater depths (400–700 m) was explained by dissolution of fracture-bound Palaeozoic gypsum (Drape et al., 2012, 2013). Both sulphide oxidation and anhydrite dissolution have invoked as sulphate sources in deep Alpine granitic and gneissic rocks (Bucher and Stober, 2010).

It has also been suggested (Banks et al., 2020) that deep groundwater is a dissolved sulphate reservoir whose δ34S reflects a dynamic equilibrium between various inputs (pyrite oxidation, marine water, secondary sulphate dissolution) and sinks (precipitation of sulphates with little fractionation, formation of sulphides by BSR or TSR, with accompanying fractionation). As sulphide formation progressively dominates, sulphate concentrations become depleted in the reservoir, and residual dissolved sulphate δ34S increases. In essence, this is exactly the same model that is proposed for the ocean, with relative rates of inputs and outputs controlling marine sulphate δ34S through geological time (Fike et al., 2015).

Finally, the possibility of S isotope exchange between groundwater sulphate and mineral phases must be considered. While this is geologically slow at low temperatures, rapid equilibration can take place at temperatures > 350 °C, especially at low pH (Seal, 2006). Some degree of isotopic exchange cannot be excluded at lower temperatures, although circumneutral to alkaline pH conditions would be expected to retard the process.

3. The study site

3.1. Granodiorite mineralogy

At the Pohang geothermal site, a cover of c. 2356 m (Miocene marine sediments of the Heungbae Basin, Palaeogene and Cretaceous subduction-related volcanic and sedimentary rocks (Park et al., 2015; Westaway and Burnside, 2019)) overlies a Permian granodiorite, which hosts the target zone for the Pohang Enhanced Geothermal System (EGS) project. The granodiorite comprises quartz, plagioclase, microcline, hornblende, biotite (Lee et al., 2011; Kwon et al., 2019) intruded with
mafic gabbro and amphibolite dykes (Lee et al., 2014; Kim et al., 2018). Chlorite, laumontite (a zeolite: Ca(AlSi2O6)2⋅4H2O) and calcite have also been identified. Anhydrite has not been specifically reported from the Pohang granodiorite, although “gypsum” was detected as a trace fracture mineral at c. 3500–3800 m depth (Table 1, (GSK, 2019)). Pyrite (and other sulphides) are widespread in granitoids of the region around Pohang, as a result of magmatic-hydrothermal activity in the late Cretaceous (Koh et al., 2000; Jo and Shin, 2015).

The unconformity at the top of the granodiorite indicates that it was exhumed and eroded during the Mesozoic, prior to burial by subduction-related volcanics in the Late Cretaceous. This phase of magmatism was accompanied by large-scale regional secondary mineralization (Koh et al., 2003; Yoon and Jung, 2008), producing hydrothermal clays, quartz, Au, Ag and Cu-, Zn- and Pb-sulphides, pyrite and alunite. The δ34S of this hydrothermal pyrite ranges from around -10 to +10‰, with the lower values (around or below 0‰) indicating a magmatic origin, and the more positive values suggesting some contamination by sedimentary rocks (Koh et al., 2000). The values are broadly similar to regional granite-related ores, which exhibit a strong mode around c. +4 to +5‰ (Ishihara et al., 2000). Galena and sphalerite exhibit a similar, occasionally slightly higher, δ34S range (Jo and Shin, 2015; Choi et al., 2018). Alunites (a hydroxysulphate) exhibit a δ34S range from +3.9 to +16.5‰, but most fall within +5.2 to +8.6‰ (Yoon and Jung, 2008). No pyrite, sulphides or alunite have been documented from granodiorite samples recovered from the deep EGS site boreholes.

3.2. Geothermometry

In the region surrounding the EGS site, temperatures in excess of 90 °C have been recorded at 2000 m depth (Lee et al., 2015) and 103 °C at 2250 m depth (Yoon et al., 2015). Based on calculated geothermal gradients, a temperature of 160 °C has been inferred at 4.3 km depth (Kim and Lee, 2007). Thus, the top of the Pohang granodiorite, at 2356 m depth, is currently at c. 110 °C. Given that it was likely exposed to ambient surface temperatures of c. 30 °C in the Mesozoic, each point within this granodiorite was likely to have been c. 80 °C cooler than at present.

3.3. Drilled wells

At the geothermal site, two deep wells (PX-1 and PX-2) have been drilled to depths of c. 4.2 km in the granodiorite. These were intended to be operated as an Enhanced Geothermal System (EGS), with one borehole used for production of hot fluid and the second for reinjection.

The PX-1 well was initially constructed as a vertical borehole in 2012–13 and then side-tracked in 2016, completed as a deviated well (Fig. 2), with a measured depth of 4362 m and true vertical depth (TVD) of 4215 m (Yoon et al., 2015; Hofmann et al., 2019). The lowermost open hole section is 313 m long and 216 mm in diameter (Hofmann et al., 2019). The total volume of PX-1 borehole is calculated as 85 m3, with 74 m3 in the cased portion and 11 m3 in the lowest (open hole granodiorite) section (Burnside et al., 2019; Banks et al., 2019).

The PX-2 well was drilled and completed as a vertical hole in 2015 to 4348 m depth, with a lowermost 140 m long, 216 mm diameter open hole section (Hofmann et al., 2019).

Five episodes of hydraulic stimulation were applied to wells PX-1 and PX-2 between January 2016 and September 2017 in an attempt to increase reservoir transmissivity and establish an acceptable degree of hydraulic connectivity between the wells (Park et al., 2017). During these five stimulations (Lee et al., 2019), 5663 m3 water was injected into PX-1 and 7135 m3 into PX-2 (12,798 m3 total), while totals of 3968 m3 and 2989 m3 (6957 m3 combined) were recovered as flowback from PX-1 and PX-2, respectively. Thus, a total net unrecovered volume of 5841 m3 remains in the subsurface (1695 m3 in PX-1 and 4146 m3 in PX-2).

Work at the EGS site was terminated following a Mw 5.5 earthquake in the near vicinity on 15th November 2017 (Westaway and Burnside, 2019; Kim et al., 2018; Lee et al., 2019; Grigoli et al., 2018; Zastrow, 2019). An expert panel, appointed by the Republic of Korea government, has reported on this topic and concluded that “small earthquakes induced by high-pressure injection into the PX-2 well activated the fault that ultimately ruptured in the Mw 5.5 earthquake” (GSK, 2019; Lee et al., 2019). However, as Fig. 2 indicates, the main shock fault plane and the associated aftershock cluster are more closely concentrated around the bottom of well PX-1. Injection into this well, and chemical effects leading to mineral dissolution within the seismogenic fault, have been considered as an alternative mechanism for causing the large earthquake (Westaway and Burnside, 2019; Westaway et al., 2020).

Table 1

Depth (m)	Qz	Pc	Kf	Am	Ch	Mica	La	Cc	Ge	Composition (weight %)
3535	4	37	17	trace	13	6	16	8	trace	3544 20 48 20 nd 5 2 nd 4 nd
3790	10	43	8	nd	15	10	9	5	nd	3791 6 50 10 nd 19 6 3 6 nd
3792	14	34	17	6	11	12	1	4	nd	3793 8 42 11 10 10 10 5 4 nd
3804	7	45	13	7	11	6	5	6	nd	3807 9 41 10 5 13 11 5 7 nd
3808	5	35	14	6	14	12	8	6	nd	3814 10 35 13 12 11 10 4 5 nd

Fig. 2. Schematic section showing the geometric relationship of PX-1 and PX-2 at Pohang; the bottom-hole separation is c. 600 m. Locations of earthquakes at Pohang in November 2017 are also shown, as is the interpreted plane of the Namsong Fault (dashed red line). Modified after (Westaway and Burnside, 2019), which also provides further stratigraphic details. Unit 1 is Middle Miocene marine mudstone (the Yeonil Group, to 206 m depth), underlain by Early Miocene tuff (the Beomgokri Group, to 330 m). Unit 2, dominated by lacustrine mudstone, is latest Cretaceous and Palaeocene (the Yucheon Group, to 1250 m). Unit 3, dominated by subduction-related andesitic lavas and tuffs (the Gyeongsang volcanics, to 2356 m), is Late Cretaceous. Unit 4 is the Permian Pohang Granodiorite. (For interpretation of the references to colour in the Figure, the reader is referred to the web version of this article).
4. Materials and methods

Hydraulic stimulation at Pohang was typically applied as a series of short-term cyclic injections of surface water, as summarised below and detailed in (Westaway and Burnside, 2019; Kim et al., 2018; Burnside et al., 2019; Park et al., 2017; Lee, 2017; Lee et al., 2019):

- initial stimulation of PX-2; in January – February 2016 (Park et al., 2017)
- initial stimulation of PX-1; in December 2016 - January 2017.
- second stimulation of PX-2; in April 2017.
- second stimulation of PX-1; in August 2017 – reported by (Burnside et al., 2019; Banks et al., 2019; Hofmann et al., 2019).
- third stimulation of PX-2; in September 2017, with wellhead pressures of up to 85 MPa and flow rates of up to 20 L/s (Lee et al., 2019).

This paper specifically considers flowback from the August 2017 stimulation of PX-1.

4.1. August 2017 stimulation of PX-1

The water used for stimulation was primarily sourced from a surface pond for irrigation water – the Namdong No.2 Reservoir - c. 250 m NNE of the borehole site. The site also possesses a shallow groundwater borehole, and it cannot be excluded that some of the water, in the earliest stages of stimulation, may have been derived from this.

For the August 2017 PX-1 stimulation, water was pumped from the pond, with no treatment, to a storage tank, from which it was injected under pressure into the well. For this stimulation, a 180 μm filter had been installed between the initial pond water storage tanks and wellhead storage tanks.

This August 2017 stimulation involved the cyclic injection of c. 1756 m³ water to PX-1 between 7th and 14th August, at rates of up to 10 L/s and wellhead pressures of up to c. 23 MPa (Kim et al., 2018; Hofmann et al., 2019; Lee et al., 2019). Following injection, flowback from the well started on 09:34 on 14th August. Flowback water was collected in storage tanks, prior to removal off site by tanker. Flowback rates declined rapidly from over 6 L/s to around 0.6 L/s after c. 140 h flowback (Westaway and Burnside, 2019; Burnside et al., 2019). Between 16th-24th August, works were carried out to remove casing from well PX-1, to permit the installation of a submersible pump at c. 800 m depth. A production test was carried out on PX-1 between 25th August and 1st September 2017, using the submersible pump (Westaway and Burnside, 2019). The total water recovered, via flowback and pumping, following the August 2017 stimulation, is estimated as c. 1771 m³ (Hofmann et al., 2019), slightly in excess of the volume injected.

4.2. Sampling

A water sampling program was undertaken at the Pohang site. Water from the pond used as a source of injection water (samples SK1 - SK3 from different locations in the pond) was sampled prior to the hydraulic stimulation (3rd August).

On 7th August, the injection water was sampled both before (SK21) and after (SK20) the 180 μm filter in the injection line.

Samples of flowback water from Pohang PX-1 were collected at 2–3hly intervals from the commencement of flowback (14th August) until 15th August. Subsequently, sampling frequency was reduced to 2 per day and then to 1 per day (Samples SK22 - SK46). Based on observations of declining flowback rates, sample times were also correlated with cumulative flowback (m³) at that time (Burnside et al., 2019). No samples were collected in the period 21st - 24th August, due to casing-cutting works. Following 25th August, samples were again collected during production testing (SK47 - SK51). Samples were also collected from well PX-2 (SK52 - SK53, 27th - 28th August).

Finally, a range of bulk samples (SK5 - SK19) acquired and stored by Korean staff from various previous air-lift and bleed-off events from PX-1 and PX-2 in the period Dec. 2016 to 3rd August 2017 were recovered, divided into aliquots, and shipped to the UK for analysis.

The sampling and analysis protocols have previously been described (Burnside et al., 2019), but will be briefly summarized below.

Determinations of pH, temperature, electrical conductivity (EC), and oxidation-reduction potential (ORP) were carried out on site (with the exception of SK47 - SK53) using a Myron Ultrameter II 6PFC instrument (with results corrected to 25 °C), at the points where samples were collected. Following the wellhead and flowback tank determinations, replicate determinations of pH and EC were carried out on sampled water at a site building using a Thermo Scientific Orion Star A329 portable meter.

For logistical reasons, no operations using acid could be carried out in the field (alkalinity titration, acid preservation). Samples SK1 - SK21 (collected 3rd-7th August) were subdivided into the following: (a) 3 × 15 mL filtered (0.45 μm) aliquots in polypropylene screw capped flasks for ion chromatography (IC); (b) 1 × 50 mL unfiltered aliquot in polypropylene screw capped flasks (alkalinity); (c) 3 × 10 mL unfiltered aliquots in glass vials (stable isotope analysis); (d) 3 × unfiltered 10 mL aliquots in glass vials (inductively coupled plasma optical emission spectrometry; ICP-OES).

Samples SK22 - SK53 (collected 14th August onwards) were collected either at the point of entry to the fluid flowback tank or at the wellhead, depending on wellhead operations, and immediately transferred to either 2 × 500 mL or 1 × 1000 mL plastic flasks which were sealed (unfiltered and unacidified) and returned to the University of Glasgow (UoG). On arrival at UoG, these samples were used to prepare filtered and unfiltered sample aliquots as described above.

4.3. Analysis

UoG laboratory determinations follow previously documented protocols (Burnside et al., 2016). Anions and cations were measured using Dionex ICS-900 and ICS-1100 Ion Chromatography (IC) equipment. δD and δ18O stable isotopes were measured using VG Optima and Thermo Scientific Delta V isotope ratio mass spectrometers at the Scottish Universities’ Environmental Research Centre (SUEC). ICP-OES (including dissolved silica, major, minor and trace elements) was carried out on laboratory filtered and acidified aliquots by the commercial laboratory CLS, East Kilbride, UK (UKAS accreditation ISO/IEC 17025:2005).

Total alkalinity (corresponding to bicarbonate concentration), was determined at UoG by titration using 0.16 or 1.6 M sulphuric acid, to a pH end-point of c. 4.5 (bromocresol green - methyl red indicator), with Hach Model 16900 digital titrator (Hach Company, Loveland, Colorado).

Sulphur isotopic determinations were made at SUEC on the sulphate fraction of sealed unfiltered aliquots of water samples. Samples were acidified to pH 3–4 using 10% HCl, then dosed with excess 5% barium chloride solution to precipitate sulphate as barium sulphate (Carmody et al., 1998), which was allowed to settle. This precipitate was recovered from the flask and cleaned repeatedly in de-ionised water, then dried. To analyse sulphur isotopes in this precipitate, SO2 gas was generated by combustion at 1065 °C with excess CuO and silica (Coleman and Moore, 1978), then measured isotopically using a VG Isotech SIRA II mass spectrometer. The ratio between 34S and 32S was reported as δ34S, as per mille (%), variations from the Vienna Canyon Diablo Troilite (V-CDT) reference (Beaudoin et al. (1994); Krouse and Coplen (1997)).

$\delta^{34}S = \left(\frac{[34S/32S]_{sample} - [34S/32S]_{reference}}{[34S/32S]_{reference}} \right) \times 1000$ \hspace{1cm} (3)
4.4. Quality of data

Degassing, for example of CO₂, and storage can affect analytical quality. For this reason, sensitive parameters such as pH, dissolved oxygen and oxidation-reduction potential were determined in the field. For the last samples (SK47–53) where field determinations were not logistically possible, and where pH was determined in the laboratory, caution should be exercised.

Several of the major ion parameters (SO₄²⁻, K⁺, Na⁺, Ca²⁺, Mg²⁺) were determined both by IC and ICP-OES. Good correlations were observed between the two data sets, although the correlation for K⁺ was somewhat poorer (see Fig. A2 in (Burnside et al., 2019)). A decision was reached to prefer in-house IC data, due to method transparency and generally shorter intervals between sampling and analysis. In (Burnside et al., 2019) and the current paper, the UoG IC data is cited for SO₄²⁻, Na⁺, Mg²⁺, Ca²⁺, NH₄ and all anionic species, while CLS ICP-OES data is cited for K⁺, silica and other elements.

Ion balance error was calculated for each of the 57 samples, based on major cations and anions. All samples had an ion balance error of within ±10 % and 42 samples had an ion balance within ±5%, which is typically regarded as sufficiently accurate for groundwaters (Bartram and Ballance, 1996; Misssteer et al., 2017).

Five aliquots of sample SK51 were analysed by IC allowing reproducibility to be evaluated. Standard deviations were less than 0.3 % for ions occurring at high concentration (Cl⁻, SO₄²⁻, Na⁺), with reproducibility declining for ions occurring at lower concentrations (c. 2.7 % for calcium and 6 % for potassium). A standard deviation of 44 % was recorded for Mg²⁺ in sample SK51, where magnesium only occurred at c. 1 mg/L, close to the limit of quantification. Samples SK1 - SK3 of fresh pond water also exhibited good reproducibility by IC with standard deviations for Cl⁻, SO₄²⁻, Na⁺, Ca²⁺, Mg²⁺, K⁺ all less than 4 %.

Reproducibility of δ¹³C and δ¹⁸O of the results was evaluated through repeated analysis of standards NBS-123 (+17.1 ‰), IAEA-S-3 (-32.3 ‰) and SUERC’s internal standard CP-1 (–17.3 ‰) and was typically around ±0.3 ‰ during these analyses.

5. Results

The inorganic chemistry of the flowback water following the August 2017 well stimulation (injection) attempt has already been reported (Burnside et al., 2019; Westaway et al., 2020; Banks et al., 2019); only selected parameters will be discussed in detail in this paper.

5.1. General hydrochemical evolution

The injected surface water was a relatively fresh, oxidising, calcite-undersaturated, circumneutral calcium-sulphate water (Table 2). As flowback progressed, the produced water became increasingly brackish (reaching a 25 °C-corrected EC of c. 3500 μS/cm) and reducing, and began to display a sodium chloride, calcite-saturated composition. Flowback water temperature peaked at 65 °C after 75 h and then declined, due to heat loss during a progressively slower ascent as flowback rate decreased. It has been suggested (Burnside et al., 2019) that the in-situ redox condition was iron-, manganese-, and nitrate-reducing, and around the sulphate-reduction threshold. Na⁺/Cl⁻ and Br⁻/Cl⁻ ratios evolved towards values consistent with an ultimately marine origin for salinity. On the other hand, δ¹⁸O and δ¹³C tended towards a composition close to the meteoric water line, but somewhat enriched in ¹⁸O. This suggests that the produced water originated as meteoric water, but has undergone oxygen isotope exchange with the mineral matrix at elevated temperature (Burnside et al., 2019). In other words, the water and the salinity have differing origins.

Many dissolved solute concentrations, such as chloride (which is typically regarded as conservative), and electrical conductivity exhibit an early rapid increase when plotted against time or (more meaningfully, given that flowback rate decreases with time) cumulative flowback volume. Researchers have fitted two types of idealised curve to the flowback data: (1) a homogeneous mixed tank model (Winkel, 1994), representing the progressive flushing of injected water by in-situ granodiorite fluid, and (2) Sauty’s (Sauty, 1980) advective dispersive solute transport model. The former was favoured by (Burnside et al., 2019; Banks et al., 2019) and conceptualises the fracture network and borehole as a combined reservoir; the second was favoured by (Westaway et al., 2020) and regards the fracture network and borehole primarily as a transport conduit. Both approaches produce very similar results that closely fit the data (Fig. 3). The water quality evolves towards that of a putative in-situ granodiorite groundwater with a chloride content in excess of 1000 mg/L – although the composition may have been influenced by drilling and the previous well stimulation episode of January 2017. The flowback curves can be normalised, by setting the lowest recorded concentration (usually one of the initial samples) as 0 % and the highest recorded value (usually, the final sample) as 100 %. The chloride curve then appears as shown in Fig. 4.

Like chloride, normalised concentrations of many other solutes (e.g. ammonium, arsenic, boron, bromide, strontium and molybdenum (Burnside et al., 2019)) exhibit quasi-conservative behaviour. Fig. 4 shows, for example, that the normalised boron plot approximately coincides with chloride, albeit with a slight deficit at late flowback times.

Table 2

Summary of injection water quality from surface pond and final produced water quality from Pohang PX-1. Nd = not determined. Dissolved oxygen as % saturation. ORP = oxidation-reduction potential. * not measured in field on SK51; cited determinations are the final field determinations for Sample SK46 (20/8/17). ** measured temperature of injection water on 7th August 2017 was 29.6 °C. $ measured in laboratory on SK51.

Parameter	Pond water (injection water)	Field determinations	Average of SK1 to SK3	Final sample from production testing
pH	6.4	7.2 *		
Temperature (°C)	31.4 **	47 *		
Electrical conductivity (μS/cm)	926	3584 $		
ORP (mV)	-169	-183 *		
Dissolved oxygen (%)	80	Nd		
Total alkalinity by titration				
Total alkalinity (meq/L)	0.51	1.4		
IC analysis (mg/L) University of Glasgow				
Sulphate as SO₄²⁻	336	949		
Chloride	57.7	459		
Nitrate as NO₃	3.5	0.3		
Calcium	96.4	181		
Magnesium	32.4	1.5		
Sodium	51.8	611		
ICP-OES analysis (ppm)				
Potassium	10.8	35.6		
Silicon as SiO₂	25.3	160		
Arsenic	-0.01	0.31		
Boron	0.18	12.1		
Barium	0.016	0.3		
Iron	-0.02	0.81		
Manganese	-0.013	0.43		
Ion balance				
Sum cations (meq/L)	10.6	36.9		
Sum anions (meq/L)	9.2	37.9		
Ion balance error	6.6 %	-1.4%		
Br⁻ /Cl⁻ molar ratio	0.023			
Isotopic analysis				
δ¹³C (%a)	-30.9	-47.9		
δ¹⁸O (%a)	-4.5	-6.0		
δ³⁴S (%a)	-17.3	+8.2		
Sodium initially exhibits slight excess concentrations (lying above the chloride curve, Fig. 4), suggesting hydrolysis of silicate minerals by the injected water and release of Na$^+$ (and K$^+$ (Burnside et al., 2019)) to the dissolved phase. This effect is even more pronounced in the case of silica: as the cool, silica-poor injected surface water is heated in the granodiorite fracture network, it becomes dramatically undersaturated with respect to quartz, allowing silica to be dissolved rapidly into solution. This temperature-dependence allows dissolved silica to be used as a geothermometer (Burnside et al., 2019; Westaway et al., 2020): assuming quartz to be the controlling silica phase, a reservoir temperature of 165–169 $^\circ$C is calculated (Fournier, 1977). A chalcedony geothermometer yields a slightly lower figure of 138–142 $^\circ$C (Arnórsson et al., 1983). These temperatures coincide with independent estimates (Section 3.2). Sulphate also exhibits a significant excess concentration in flowback water (Fig. 4).

5.2. Sulphur isotopes

The 34S isotopic determinations on the selected water samples are presented (along with corresponding sulphate and chloride concentrations) in Table 3, and graphically in Fig. 5. The covariation of 34S with sulphate is presented in Fig. 6.

The injected surface water exhibited a relatively high sulphate concentration of 330–360 mg/L and a dissolved sulphate 34S of -16.8 to -17.8‰. This highly negative value strongly suggests that the sulphate in the pond water was derived from oxidation of sedimentary sulphide minerals in its catchment. In the initially produced flowback water the value is similarly negative, but thereafter starts to rise, reaching +7‰ after c. 935 m3 flowback. Subsequently, the value decreased a little, but then rose again to reach +8.2‰ by the end of the production testing (Table 3). The evolutionary trend of the 34S lies generally above the
normalised chloride curve (Fig. 5), suggesting that it represents not merely a conservative transition between two end members, but also a component of additional input of 34S-enriched sulphur.

5.3. Well PX-2

In PX-2, the water is much more saline than PX-1 (up to 5750 mg/L chloride, as opposed to up to 1000 mg/L in PX-1, Table 3). Bleed-off water from March and May 2017 had molar SO4²⁻/Cl⁻ ratios less than ocean water, and with higher δ34S (around +13‰) than observed in PX-1. In samples from PX-2 recovered during production testing of PX-1 in August 2017, the molar SO4²⁻/Cl⁻ ratio was extremely low (<0.01) and the δ34S reached +26‰.

6. Discussion

6.1. Source of sulphate in Pohang geothermal reservoir

The fluid chemistry at the end of the flowback – production period in PX-1 is assumed to approach the chemistry of the in-situ granodiorite groundwater (albeit possibly modified by previous cyclic injection). Fig. 7 and Table 3 also show the evolution of the Na⁺/Cl⁻ and SO4²⁻/
Cl⁻ molar ratios in the flowback fluid. The Na⁺/Cl⁻ ratio tends towards a marine ratio, suggesting that some components of salinity could be derived from a seawater or halite source. The SO₄²⁻/Cl⁻ falls from a ratio of c. 2.1–2.3 (characteristic of the injected water) towards a ratio of around 0.2, significantly higher than the marine value of 0.052 (Stanford University, 2019). This suggests that there is a ‘surplus’ sulphate content in the in-situ granodiorite groundwater, which cannot be explained by marine salts.

The dissolved sulphate δ³⁴S after extensive flowback is positive and arguably still rising (Fig. 5, Table 3). It thus seems reasonable to assume that the sulphate in the in-situ granodiorite formation water has a positive δ³⁴S of c. +10‰. Such a value is significantly lower than modern ocean water (+20.6‰ (Tostevin et al., 2014)), or seawater throughout most of the geological past (Bottrell and Newton, 2006). It is also too high to be solely derived solely from oxidation of primary or early stage hydrothermal pyrite of the type reported regionally (Koh et al., 2000; Ishihara et al., 2000) (although late stage hydrothermal pyrite could yield higher δ³⁴S).

Previous researchers have often found it difficult to explain the origin of sulphate in deep groundwaters with a single hypothesis and have had to invoke multiple sources (Fontes et al., 1989; Banks et al., 2020). With the information available from Pohang, we can merely state that the sulphate in the in situ granodiorite groundwater at Pohang has a likely δ³⁴S of c. +10‰ and a concentration, relative to chloride, in excess of that which can be explained by a marine source. It is likely that the sulphate content represents a mixture of:

- δ³⁴S-enriched sulphate derived from a marine origin or from dissolution of evaporites in overlying strata (e.g. the Yucheon Group (Chough et al., 2000).
- Sulphate derived from oxidation of sulphides in the granite or overlying strata. Such sulphides could potentially be primary or hydrothermal within the granite (likely δ³⁴S around 0‰), or secondary sulphides within the granite or overlying sediments (potentially wide range of δ³⁴S from highly negative to positive).
- Given the known Cretaceous volcanic / hydrothermal activity (Koh et al., 2003, 2000), a disproportionation source of the type described in Eq. 2 is not inconceivable.

When considering the oxidation of sulphides as a source of sulphate in deep groundwater, one should note the paucity of oxidising species in current groundwater (ORP around −160 mV and nitrate < 1 mg/L in late flowback fluid from PX-1). Whilst this implies that in situ pyrite oxidation is currently implausible, it does not preclude episodes of sulphide oxidation in the geological past (e.g. during the Mesozoic, when the granodiorite was exposed to subaerial conditions).

6.2. Well PX-2

Before progressing to consider the source of excess sulphate in the flowback fluid from PX-1, it is instructive to examine the chemistry and δ³⁴S of water sourced from PX-2. The granodiorite water chemistry is very different in the hydrogeological niche around PX-1 from that in PX-2 (Section 5.3). This suggests, at the very least, stratification or compartmentalisation of the aquifer hydrogeochemistry. It has been suggested that the Namsong fault itself represents a low permeability
barrier between the reservoirs accessed by the two boreholes (Westaway et al., 2020). The sulphate deficit relative to marine water, and the strong inverse relationship in PX-2 between δ^{34}S and sulphate concentration (Fig. 6), are suggestive of sulphate reduction, with accompanying isotopic fractionation. This could be thermochemical sulphate reduction (TSR) at reservoir depth, although fractionations accompanying TSR are modest (typically $\leq 20\%$ (Macel, 2001)). It could also represent bacterial sulphate reduction (BSR) within the well bore itself at a depth where the temperature is low enough to permit it. We speculate that BSR could be favoured in a relatively “stagnant” well bore (PX-2 had not been stimulated since April 2017), where injection of untreated surface water could have provided nutrients and inorganic carbon required by the microbiota, and could even have “seeded” the borehole with microorganisms (Lawson et al., 2016).

6.3. Source of excess sulphate in flowback water

An excess of sulphate in the August 2017 flowback water from PX-1, relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes. We propose that relative to the normalised conservative chloride curve (Fig. 4) cannot be explained by simple dispersion or mixing processes.
saturated with oxygen, it would only be capable of oxidising 0.07 mmol/L pyrite and releasing 4 mg/L iron and 14 mg/L sulphate. The stoichiometry for other sulphides is even less favourable: for example, 8 mmol oxygen oxidise 4 mmol sphalerite (ZnS) to release 4 mmol sulphate.

The process can also be simulated in the hydrochemical model PHREEQC (Parkhurst and Appelo, 2013). 8.2 mg/L oxygen is added to the injection water (to simulate saturation). This is ‘generous’ as the injection water had a measured temperature of 29.6 °C rather than 25 °C, and the measured dissolved oxygen saturation varied between 63 and 88 %. The water is equilibrated in the model with pyrite and calcite at reservoir pressure and temperature, allowing anhydrite to precipitate if oversaturated. The modelling predicts the dissolution of 0.0097 mmol pyrite per litre at 70 °C and 0.0098 mmol at 160 °C, releasing only 2 mg/L sulphate at 70 °C (and this sulphate is reprecipitated as anhydrite at 160 °C) and 0.54 mg/L iron. The amount of pyrite oxidised is lower than predicted by Eq. (4) because the injection water also contains c. 7 mg/L ammonium, which consumes much of the available oxygen.

Comparable modelling of sphalerite oxidation produces similarly low sulphate concentrations. We thus conclude that sulphide oxidation is stoichiometrically inadequate to account for the observed sulphate excess in the flowback water.

PHREEQC has also been used to verify whether barite dissolution could contribute significant sulphate. Simulations indicate that the injection water could dissolve only 0.4 μmol barite per litre under downhole conditions, due to its low solubility.

Moreover, PHREEQC was used to demonstrate that, under prevailing circumneutral pH conditions, the hydroxysulphate alunite, which is occasionally observed as an alteration mineral resulting from late Cretaceous magmatic hydrothermal activity regionally (Koh et al., 2000; Yoon and Jung, 2008), is highly undersaturated under reservoir conditions. It is thus not regarded as a likely component of the deep

![Flowback water PX 1: Saturation Indices of various mineral phases at ambient and reservoir temperature and pressure](image)

Table 4
Results of PHREEQC (Parkhurst and Appelo, 2013) modelling of the injection water sample SK21, under ambient (29.6 °C and 1 atmosphere) and reservoir (70 to 160 °C and 416 atm.) conditions, allowing equilibration with various minerals species. n/a = not applicable, < = iron lower than detection limit in injection water.

Initial conditions	Temperature (°C)	29.6	70	160	70	160
Pressure (atm)	Atmospheric	416	416	416	416	416
Dissolved oxygen (mg/L)	n/a	n/a	n/a	n/a	8.2	8.2
PHREEQC Conditions	Speciation only	Equilibrate with anhydrite and calcite	Equilibrate with pyrite and calcite, allow anhydrite to precipitate			

Resulting Saturation Indices	Anhydrite	Barite	Calcite	Gypsum
Saturation index	−1.28	−0.21	−1.42	−1.03
Resulting concentrations				
Ca (mg/L)	107.5	107.5	107.5	725
SO₄²⁻ (mg/L)	355	355	355	1810
Fe (mg/L)	<	<	<	<

Mineral dissolution (positive) or precipitation (negative)	Pyrite (mmol/L)	n/a	n/a	n/a	n/a	n/a	n/a	+0.0097	+0.0098
Calcite (mmol/L)	n/a	n/a	n/a	n/a	0.259			+0.486	+0.156
Anhydrite (mmol/L)	n/a	n/a	n/a	n/a	+15.15			0	−0.303

Comment	Goethite oversaturated
granodiorite reservoir and not tenable as a source mineral for excess sulphate.

Finally, one can speculate that, if anhydrite dissolution were the source of excess sulphate in the flowback, there might be some correlation with calcium. If pyrite were the source of the sulphate, one might expect to see either a correlation with dissolved iron, a negative correlation with pH or a correlation with base cations released by proton hydrolysis. Fig. 9 plots all of these potential correlations on a single diagram.

The sulphate data exhibit a significant excess in the flowback water, which is highest between 100 and 700 m³ cumulative flowback. This is not clearly reflected in the calcium data, which exhibits an initial decline then closely follows the chloride trajectory, although does tentatively show a modest excess in the region 300 - 600 m³. There is some indication of correlation in the detail of the IC data for Ca and SO₄²⁻ in Fig. 9; we suspect this may be partially due to salinity interference and method-specific (IC) factors. There is, however, little clear correlation in the overall trends between Ca and SO₄²⁻ in the flowback water, although one might expect calcium solubility to also be controlled by calcite dissolution and precipitation, interactions with silicates and ion exchange, rather than solely by anhydrite dissolution.

pH exhibits a decline from around 50–400 m³, but iron concentrations exhibit a “deficit” relative to the conservative chloride trajectory, suggesting that iron solubility is suppressed by the injection water (indeed, PHREEQC modelling suggests oversaturation with respect to goethite, suggesting iron may be immobilised in ferric form by any residual oxygen in the injected surface water). It is only in the late flowback samples that iron concentrations increase dramatically, reaching over 3 mg/L (higher than predicted by pyrite oxidation – Eq. 4), suggesting an alternative mechanism for iron mobilisation in the in situ granodiorite groundwater; for example, reductive dissolution of iron minerals (Burnside et al., 2019).

7. Conclusions

Boreholes PX-1 and PX-2 at Pohang appear to have intersected different groundwater niches within the deep granodiorite reservoir. The granodiorite groundwater at PX-1 was brackish (>1000 mg/L chloride) and relatively sulphate-rich (>500 mg/L) with a sulphate/chloride ratio exceeding seawater and a sulphate ³⁴S around +10‰. The water from PX-2 was considerably more saline (up to 5700 mg/L chloride) but showed indications of either thermochemical (within reservoir) or microbial (within borehole) sulphate reduction processes affecting dissolved sulphate concentrations and isotopic compositions.

While some components of the salinity in PX-1 may indicate a marine source, the sulphate/chloride ratio is too high to ascribe a marine origin to most of the sulphate. The reservoir sulphate concentration and its ³⁴S will depend on the dynamic equilibrium between various possible sources (marine water, sulphate minerals in the overlying sediments, sulphide minerals in the granodiorite or overlying sediments) and sinks (sulphur removal via sulphate reduction or sulphate precipitation).

Water injected to borehole PX-1 at Pohang in August 2017 contained

Fig. 9. pH, sulphate, chloride, iron and calcium concentrations the flowback water from Pohang PX-1 in August 2017, plotted against cumulative flowback. In the upper diagram, data are normalised between 0% (lowest concentration) and 100 % (highest concentration). In the lower diagram, excesses or deficits relative to the conservative chloride trajectory (Sauty model) are presented. pH is presented both as field data and as laboratory determinations by Seoul National University (SNU).
In PX-1, the reservoir fluid is saturated with respect to anhydrite at downhole temperatures and pressures. Anhydrite is likely to exist as an alteration product along fracture surfaces, with a relatively δ³⁴S-enriched δ³４S. As post-stimulation flowback progressed, the water became more saline, the sulphate and chloride contents increased and the sulphate δ³４S became increasingly positive. Compared with conservative advective-dispersive and mixing models, the injection of water released surplus sulphate to the flowback, via water-rock interaction, which had a relatively high sulphate δ³４S.

PHREEQC (Parkhurst and Appelo, 2013) modelling indicates that at 70 °C the injection water has the capacity to dissolve up to 15.15 mmol anhydrite per litre of water, releasing up to 1450 mg/L sulphate. Stoichiometry suggests that the same water could have oxidised up to 0.07 mmol pyrite per litre, releasing 14 mg/L sulphate. However, PHREEQC modelling suggests that much of the available oxygen would have been consumed oxidising ammonium, resulting in the oxidation of <0.01 mmol pyrite per litre, and the release of as little as 2 mg/L sulphate. Given that the flowback water contained excess sulphate concentrations of up to 50 mg/L, anhydrite dissolution is the preferred hypothesis.

Previous work (Westaway and Burnside, 2019; Burnside et al., 2019; Westaway et al., 2020) demonstrates that the injection of cool silica-poor surface water at depth into a hot granodiorite reservoir was able to solubilise significant quantities of quartz from fracture surfaces. This work has demonstrated that injection of surface water (which may be undersaturated with respect to several other minerals in the reservoir assemblage) has also been able to mobilise sulphate from the reservoir, most likely by the dissolution of secondary anhydrite from fracture surfaces. Anhydrite dissolution by injected water could increase the anhydrite, gypsum or barite scaling potential of produced geothermal water in an EGS system. Moreover, mineral dissolution within a seismogenic fault by injected surface water can be considered as a supplementary mechanism facilitating seismic slip (Westaway and Burnside, 2019; Westaway et al., 2020).

Data availability

The full hydrogeochemical data set from the Pohang hydraulic stimulation has been published as supplementary material (Appendix B) to (Burnside et al., 2019), and is available at https://doi.org/10.1016/j.apgeochem.2019.104445. The sulphur isotope data additional to this published data set are contained in Table 3 of this paper.

Funding

This work was funded by the European Commission Horizon 2020 LCE ‘DESTRESS’ project (grant number EC-691728). AJB was funded by SUERC and the NERC Facilities, with isotopic analyses carried out at the ICSF in SUERC (NERC Facility contract number F14/66/11/01). MBM was supported by a University of Glasgow Lord Kelvin Adam Smith Research Fellowship.

CRediT authorship contribution statement

David Banks: Conceptualization, Formal analysis, Writing - original draft. Adrian J. Boyce: Resources, Writing - review & editing. Rob Westaway: Conceptualization, Investigation, Formal analysis, Writing - review & editing. Neil M. Burnside: Conceptualization, Resources, Investigation, Writing - review & editing, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank: NexGeo for access to the Pohang site for sampling; Anne McGarry and Alison McDonald for analyses; Eunbyea Chung and Kir Bok Min, and their respective teams, of Seoul National University for collecting samples and providing additional data; and many DESTRESS co-workers for helpful discussions. Günter Zimmermann and Hannes Hofmann of the German GeoForschungszentrum (GFZ) collected data on flowback rate. We especially thank Paul Younger (deceased 21 April 2018), who led UoG involvement in DESTRESS and helped to secure the funding for this work.

References

Aquilina, L., Armandine-Les Landesa, A., Ayraud-Vergnau, V., Labaquesa, T., Roques, C., Davy, P., Pauwels, H., Petetel-Giraud, E., 2013. Evidence for a saline component at shallow depth in the crystalline Armorican basement (W France). Procedia Earth Planet. Sci. 7, 19–22. https://doi.org/10.1016/j.proeps.2013.03.157.
Arnórsson, S., Gunnlaugsson, E., Svarvarsson, H., 1983. The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim. Cosmochim. Acta 47 (3), 567–577. https://doi.org/10.1016/0016-7037(83)90278-8.
Balsabov, V.N., Engelder, T., Gu, X., Fante, M.S., Branlety, S.L., 2015. A model describing flowback chemistry changes with time after Marcellus Shale hydraulic fracturing. AAPG Bull. 99 (1), 143–154. https://doi.org/10.1306/0604141119.
Banks, D., Burnside, N., Westaway, R., Zimmermann, G., Hofmann, H., 2019. Exponential trends in flowback chemistry from a hydrothermally stimulated deep geothermal borehole in granite; Pohang, South Korea. In: Proc. 16th International Symposium on Water-Rock Interaction and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference) July 21-26, 2019.
Toms, R., Westaway, D., Boyce, A.J., Burnside, N., Janssen, E., Roquenin Gutierrez, N., 2020. On the common occurrence of sulphate with elevated δ³４S in European mine waters: sulphides, evaporites or seawater? Int. J. Coal Geology 232. https://doi.org/10.1016/j.coal.2020.103619 article 103619.
Bartram, J., Ballance, R., 1996. Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programs. E & FN Spon on behalf of United Nations Environment Programme and the World Health Organization, London.
Bayon, F.E.B., Ferrer, H., 2005. Sulphur isotope ratios in Philippine geothermal system. “In Use of isotopic techniques to trace the origin of acidic fluids in geothermal systems. IAEA Publication IAEA-TEDOC-1448. International Atomic Energy Agency (IAEA), Vienna, Austria, pp. 111–132.
Beaupré, G., Tavlor, B.E., Rumble, D., Thieman, M., 1994. Variations in the sulfur isotope composition of truffite from the Canion Diablo iron meteorite. Geochim. Cosmochim. Acta 58 (19), 4253–4255. https://doi.org/10.1016/S0016-7037(94)00277-9.
Bottcher, M.E., 2011. In: Reimer, J., Dordrecht, Thiel V. (Eds.), “Sulfur isotopes.” In Encyclopedia of Geobiology (Encyclopedia of Earth Sciences Series). Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-9212-1.
Bottomley, D.J., Gregoire, D.G., Raven, K.G., 1994. Saline groundwaters and brines in the Canadian Shield: geochemical and isotopic evidence. Geochim. Cosmochim. Acta 58 (5), 1483–1498. https://doi.org/10.1016/0016-7037(94)00517-7.
Bottrell, S.H., Newton, R.J., 2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Sci. Rev. 75, 59–83. https://doi.org/10.1016/j.earscirev.2005.10.004.
Bottrell, S.H., Moncaster, S.J., Tellam, J.H., Lloyd, J.W., Fisher, Q.J., Newton, R.J., 2000. Controls on bacterial sulphate reduction in a dual porosity aquifer system: the Lincolnshire Limestone aquifer, England. Chem. Geol. 169 (3), 461–470. https://doi.org/10.1016/S0009-2541(00)00229-9.
Brady, P., Lopez, C., Sassani, D., 2019. Granite hydrolysis to form deep brines. Energies 12. https://doi.org/10.3390/en12112180. Article 2180.
Brehme, M., Nowak, K., Banks, D., Petruskaus, S., Valicaks, R., Bauer, K., Burnside, N., Boyce, A., 2019. A review of the hydrochemistry of a deep sedimentary aquifer and its consequences for geothermal operation: Klaipeda, Lithuania. Geofluids 2019. https://doi.org/10.1155/2019/4363592. Article 4363592.
Buchner, K., Stober, I., 2010. Fluids in the upper continental crust. Geoﬂuids 10 (1-2), 241–253. https://doi.org/10.1111/j.1468-8123.2010.00279.x.
