Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A Less Restrictive Policy for Liver Transplantation in Coronavirus Disease 2019 Positive Patients, Based Upon Cycle Threshold Values

Yehuda Raveh, Jacques Simkins, Rodrigo Vianna, Akin Tekin, and Ramona Nicolau-Raducu

Department of Anesthesia, University of Miami/Jackson Memorial Hospital, Miami, Florida; Department of Medicine, Division of Infectious Diseases, Miami Transplant Institute, University of Miami School of Medicine, Miami, Florida; and Department of Surgery, Miami Transplant Institute, University of Miami/Jackson Memorial Hospital, Miami, Florida

ABSTRACT

Coronavirus disease 2019 drastically impacted solid organ transplantation. Lacking scientific evidence, a very stringent but safer policy was imposed on liver transplantation (LT) early in the pandemic. Restrictive transplant guidelines must be reevaluated and adjusted as data become available. Before LT, the prevailing policy requires a negative severe acute respiratory syndrome coronavirus 2 real-time polymerase chain reaction (RT-PCR) of donors and recipients. Unfortunately, prolonged viral RNA shedding frequently hinders transplantation. Recent data reveal that positive test results for viral genome are frequently due to noninfectious and prolonged convalescent shedding of viral genome. Moreover, studies demonstrated that the cycle threshold of quantitative RT-PCR could be leveraged to inform clinical transplant decision-making. We present an evidence-adjusted and significantly less restrictive policy for LT, where risk tolerance is tiered to recipient acuity. In addition, we delineate the pretransplant clinical decision-making, intra- and post-operative management, and early outcome of 2 recipients of a liver graft performed while their RT-PCR of airway swabs remained positive. Convalescent positive RT-PCR results are common in the transplant arena, and the proposed policy permits reasonably safe LT in many circumstances.

THE SEVERE acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic has had an unprecedented and drastic impact on the solid organ transplant population worldwide [1]. Concerns include accepting transplantation donors and recipients with unrecognized SARS-CoV-2 infections, the impact of diminished post-transplant immunity on SARS-CoV-2 severity, and infection control.

At the onset of the pandemic, the absence of scientific evidence compelled transplant policymakers to impose stringent but safer policy for liver transplantation (LT). As such, the a priori approach for LT during the pandemic was delineated in a clinical algorithm that is primarily based on a binary positive or negative result of real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for the SARS-CoV-2 genome in airway samples [1,2], along with clinical and epidemiologic screening [1,2]. A recently updated approach requires, before organ retrieval, a negative SARS-CoV-2 RT-PCR respiratory specimen from donors previously known to have had coronavirus disease 2019 (COVID-19), unless >20 days from onset of symptoms to donation evaluation [3]. For recipients previously known to have had COVID-19, a negative RT-PCR is required within 24 hours of LT; if positive, LT should be deferred [4]. Restrictive transplant guidelines must, however, be reevaluated as data become available, and when supported by scientific evidence, less restrictive criteria are to be carefully considered and executed. Indeed, recent data show that 1. prolonged (up to 12 weeks) respiratory viral RNA shedding is common among adult patients, especially following severe illness [5,6]; 2. in some cases early convalescent negative results later became positive [7,8]; and 3. shedding of viral genome does not equate to infectivity, which depends on the replication capability of the virus [9–12]. In this this article...
we propose an evidence-adjusted and significantly less restrictive transplant policy for LT in RT-PCR positive patients, based on scientific data gained this far in the pandemic (Fig 1). We introduce the proposed algorithm by delineating the pretransplant clinical decision-making, post-transplant immunosuppression and monitoring for SARS-CoV-2 infection, and early outcome of 2 LTs performed on recipients who recovered from a documented SARS-CoV-2 infection while airway swabs remained RT-PCR positive.

PATIENT 1

A 55-year-old man presented with pyogenic arthritis of a prosthetic knee was treated with 2 g of ceftriaxone intravenously daily for 6 weeks, during which acute on chronic liver failure developed (Table 1). Nasopharyngeal SARS-CoV-2 RT-PCR swabs on days 3 and 5 were negative, and he was listed for LT with a diagnosis of alcoholic cirrhosis. On day 9, a nasopharyngeal RT-PCR swab became positive with cycle threshold (Ct) of 14.6 and his listing was put on hold (status 7). Over the following weeks he developed respiratory distress, hemodynamic instability, and acute renal failure; he required respiratory support with high flow nasal cannula, vasopressors, and renal replacement therapy. Remdesivir was not given because of his severe liver disease. Subsequent weekly nasopharyngeal RT-PCR swabs remained positive with Ct values of 17.2, 24.6, and 25.3. SARS-CoV-2 IgG and total antibody, drawn 15 days after initial positive RT-PCR, were reactive (Fig 2). Given his critical condition, frailty, Model for End-Stage Liver Disease score of 40, and RT-PCR Ct greater than 24, the patient was cleared for a combined liver and kidney transplant 27 days after his initial positive RT-PCR. Transplantation, however, was delayed due to a superimposed *Burkholderia cepacia* pneumonia that necessitated initiation of mechanical ventilation, as well as vancomycin-resistant *Enterococcus faecium* bacteremia. LT from a SARS-CoV-2 RT-PCR-negative donor took place 53 and 6 days after his initial and most recent positive RT-PCR swab (Ct 14.6 and 35.1, respectively). Intraoperatively the patient received 500 mg of methylprednisolone. The kidney was grafted 2 days later. Post-LT immunosuppression included methylprednisolone and tacrolimus; a single dose of antithymocyte...
globulin was added after his kidney transplant. The recipient had an adequate liver function but a delayed graft function of the kidney. His overall recovery was slow. Two nasopharyngeal RT-PCR swabs taken on postoperative days 9 and 20 were negative, and during his postoperative period, no clinical findings suggestive of an ongoing SARS-CoV-2 infection were found. All personnel involved in the intra- and postoperative care donned personal protective equipment and remained asymptomatic. SARS-CoV-2 IgG and total antibody 66 days after initial positive RT-PCR were reactive.

PATIENT 2
A 37-year-old woman on the LT waitlist was admitted with fever, chills, cough, bilateral patchy opacities on chest x-ray, and with a SARS-CoV-2 RT-PCR–positive result from a nasopharyngeal swab with Ct value of 42. She did not require oxygen supplementation (Table 1). Her mycophenolate mofetil was held and her prednisone was increased to 10 mg daily. She was discharged home after 72 hours. A month later she had 2 negative SARS-CoV-2 RT-PCR results a week apart. She was admitted 94 days later for LT with a Model for End-Stage Liver Disease score of 23 and was found to have a positive nasopharyngeal SARS-CoV-2 RT-PCR with Ct of 39.9. SARS-COV-2 IgG and total antibody were reactive (Fig 2). The donor was SARS-CoV-2 negative with a Model for End-Stage Liver Disease score of 23 and associated with low probability (<8.5%) for cultivable virus [15,20–22,25]. This expanding data indicate that clinical and transplant strategies regarding an ongoing SARS-CoV-2 infection or its infectivity are better informed via the Ct value. Moreover, safer, more redefined, and less restrictive clinical decision-making is achieved when the Ct value is interpreted in the clinical context of days from symptom onset to test as well as illness severity [8,15,21,26]. A conceivably riskier approach is justified in high acuity recipients, similar to our patient 1, where LT is their ultimate option [2]. Accordingly, the critically ill patient 1 was deemed

Table 1. Preoperative Variables of Patients 1 and 2

	Patient 1	Patient 2	
Age, y	55	37	
Sex	Male	Female	
Race	Hispanic	Hispanic	
BMI, kg/m²	47.5	25	
MELD	40	23	
Redo-transplantation, n%	no	no	
Portal vein	Patent	Patent	
TIPS	no	no	
Etiology	Alcoholic	Primary biliary cirrhosis-autoimmune hepatitis overlap syndrome	
Associated HCC	no	no	
Comorbidities	Hypertension, hypothyroidism, septic arthritis	none	
Pretransplant RRT	Yes	No	
Pretransplant hospitalization	Yes	No	
Pretransplant ICU	Yes	No	
Pretransplant vasopressors	Yes	No	
Pretransplant intubation	Yes	0	
Platelet count, × 10⁹/L	29	80	
INR	2.4	1.7	
Hematocrit, %	28.8	31	
Bilirubin, mg/dL	3.2	16.4	
Serum sodium, mmol/L	143	140	
Creatinine, mg/dL	0.3	0.4	
Albumin, g/dL	1.3	2.8	
Glucose, mg/dL	83	114	
White blood count, × 10⁹/L	5.4	6.7	
Absolute lymphocyte, × 10⁹/L	0.1	0.4	
Ct, lowest/pretransplant	14.6/35.1	42/39.9	
Length of surgery, h	4.9	4.8	
Blood product:	pRBCs, units	27	3
	FFP, units	27	6
	Platelets, units	3	1
	Cryoprecipitate, units	2	0
Donor age (y) and type	56/DCD	6/DBD	

Abbreviations: BMI, body mass index; Ct, cycle threshold; DBD, donation after brain death; DCD, donation after circulatory death; FFP, fresh frozen plasma; HCC, hepatocellular carcinoma; ICU, intensive care unit; INR, international normalized ratio; MELD, Model for End-Stage Liver Disease; pRBCs, packed red blood cells; RRT, renal replacement therapy; TIPS, transjugular intrahepatic portosystemic shunt.
clear of an ongoing SARS-CoV-2 infection or infectivity preoperatively based on the clinical constellation of 1. 27 days since onset of symptoms; 2. improvement of his respiratory status; and 3. an increase in his Ct from 14 to 25 [13]. Likewise, a post-transplant reinfection [28] or exacerbation of an ongoing SARS-CoV-2 should be suspected when new pulmonary infiltrates are accompanied by inflammatory markers (eg, c-reactive protein, D-dimers, ferritin, or interleukin 6) [29], along with low or decreasing Ct values. On admission for LT, patient 2 was asymptomatic.
but with a positive SARS-CoV-2 RT-PCR swab. Yet, despite having lower acuity end-stage liver disease, she was cleared for transplantation in view of her mild SARS-CoV-2 illness 94 days earlier and a Ct of 40. Serologic tests are helpful in cases with high clinical suspicion despite negative nucleic acid testing [30]. Although seroconversion may offer temporary immunity [31], serology is not currently recommended to establish absence of infectivity [4,12,30,32].

During the pandemic, our empirically modified post-LT immunosuppression induction regimen included steroids in lieu of antithymocyte globulin [33]. Both recipients received the modified regimen and did not appear to be negatively impacted by the prolonged shedding of viral genetic material. Undoubtedly, studies pursuing safe and efficacious regimens for induction of immunosuppression after solid organs transplant during this pandemic are necessary.

In light of the current resurgence of SARS-CoV-2 both worldwide and nationally, prolonged convalescent shedding of SARS-CoV-2 genome, in both recipients and donors, is becoming a common occurrence in the transplant arena. An evidence-adjusted algorithm for LT is presented in Fig 1. The new algorithm is guided primarily by Ct of RT-PCR and employs the previously proposed cut-off Ct values of 24 and 35, tiered to recipient acuity [8,13]. There remains a small but real risk of grafting a liver to a recipient with an ongoing SARS-CoV-2 infection, despite Ct value ≥ 24. Personal protective equipment should be donned during the perioperative management, and recipients should be monitored closely. Likewise, no Ct cut-off value uniformly predicts good outcomes. Several factors of specimen collection and handling impact the RT-PCR detectable viral RNA. SARS-CoV-2 Ct values may vary considerably between and within platforms, laboratories, and target genes [34]. Published Ct values should be compared with local RT-PCR assay reference values prior to clinical applicability [34,35]. Our results support the gradual implementation of less restrictive criteria for LT. The collection of additional data is recommended before the new policy is extended to transplantations of other organs, as these procedures mandate higher intensity post-transplant immunosuppression.

REFERENCES

[1] Di Maira T, Berenguer M. COVID-19 and liver transplantation. Nat Rev Gastroenterol Hepatol 2020;17:526–8.
[2] Ritschl PV, Nevermann N, Wiering L, Wu HH, Moroder P, Brandl A, et al. Solid organ transplantation programs facing lack of empiric evidence in the COVID-19 pandemic: a By-proxy Society Recommendation Consensus approach. Am J Transplant 2020;20:1826–36.
[3] American Society of Transplantation. SARS-CoV-2 (Coronavirus, 2019-nCoV): Recommendations and guidance for organ donor testing. https://www.myast.org/sites/default/files/Donor Testing_100520_revised_ReadyToPostUpdated10-12.pdf [accessed 08.11.20].
[4] American Society of Transplantation. 2019-nCoV (Coronavirus): FAQs for Organ Transplantation. https://www.myast.org/sites/default/files/COVID19 FAQ Tx Centers 10.26.2020.pdf [accessed 08.11.20].
[5] Li N, Wang X, Lv T. Prolonged SARS-CoV-2 RNA shedding: not a rare phenomenon. J Med Virol 2020;92:2286–7.
[6] Liu W-D, Chang S-Y, Wang J-T, Tsai M-J, Hung C-C, Hsu C-L, et al. Prolonged virus shedding even after seroconversion in a patient with COVID-19. J Infect 2020;81:318–56.
[7] Yuan J, Kou S, Liang Y, Zeng J, Pan Y, Liu L. Polymerase chain reaction assays reverted to positive in 25 discharged patients with COVID-19. Clin Infect Dis 2020;71:2230–2.
[8] Tom MR, Mina MJ. To interpret the SARS-CoV-2 Test, consider the cycle threshold value. Clin Infect Dis 2020;71:2252–4.
[9] Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-19. Nature 2020;581:465–9.
[10] Korea Disease Control and Prevention Agency. Findings from investigation and analysis of re-positive cases. https://www.cdc.go.kr/board/board.es?mid=a304020000000&brd=0030&act=detail&list_no=307267&enPage=1 [accessed 06.10.20].
[11] World Health Organization. Criteria for releasing COVID-19 patients from isolation. https://www.who.int/news-room/commentaries/detail/criteria-for-releasing-covid-19-patients-from-isolation [accessed 06.10.20].
[12] Center for Disease Control and Prevention. Duration of isolation and precautions for adults with COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html [accessed 06.10.20].
[13] Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, et al. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis 2020;71:2663–6.
[14] van Kampen JJA, van de Vijver DAMC, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. medRxiv 2020:2020.06.08.20125310.
[15] Folgueira MD, Luczkowiak J, Lasala F, Perez-Rivilla A, Delgado R. Persistent SARS-CoV-2 replication in severe COVID-19. medRxiv 2020;2020.06.10.2027837.
[16] Basile K, McPhie K, Carter I, Alderson S, Rahman H, Donovan L, et al. Cell-based culture of SARS-CoV-2 infombs infectivity and safe de-isolation assessments during COVID-19 [e-pub ahead of print]. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1491, accessed February 4, 2021.
[17] Brown CS, Clare K, Chand M, Andrews J, Auckland C, Beshir S, et al. Snapshot PCR surveillance for SARS-CoV-2 in hospital staff in England. J Infect 2020;81:427–34.
[18] Gniazdowski V, Morris CP, Wohl S, Mehoke T, Ramakrishnan S, Thielen P, et al. Repeat COVID-19 molecular testing: correlation with recovery of infectious virus, molecular assay cycle thresholds, and analytical sensitivity. medRxiv 2020.08.05.20168963.
[19] Huang C-G, Lee K-M, Hsiao M-J, Yang S-L, Huang P-N, Gong Y-N, et al. Culture-based virus isolation to evaluate potential infectivity of clinical specimens tested for COVID-19. J Clin Microbiol 2020;58: e01068-20.
[20] Jaafar R, Aherfi S, Wurtz N, Grimaldier C, Hoang VT, Colson P, et al. Correlation between 3790 qPCR positives samples and positive cell cultures including 1941 SARS-CoV-2 isolates [e-pub ahead of print]. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1579, accessed February 4, 2021.
[21] Brown CS, Clare K, Chand M, Andrews J, Auckland C, Beshir S, et al. Snapshot PCR surveillance for SARS-CoV-2 in hospital staff in England. J Infect 2020;81:427–34.
[22] Gianfaldowski V, Morris CP, Wohl S, Mehoke T, Ramakrishnan S, Thielen P, et al. Repeat COVID-19 molecular testing: correlation with recovery of infectious virus, molecular assay cycle thresholds, and analytical sensitivity. medRxiv 2020.08.05.20168963.
culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur J Clin Microbiol Infect Dis 2020;39:1059–61.

[23] Ladhani SN, Chow JY, Janarthanan R, Fok J, Crawley-Boevey E, Vusirikala A, et al. Investigation of SARS-CoV-2 outbreaks in six care homes in London, April 2020. EClinicalMedicine 2020;26:100533.

[24] Pereira MR, Mohan S, Cohen DJ, Hasain SA, Dube GK, Ratner LE, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. Am J Transplant 2020;20:1800–8.

[25] Singanayagam A, Patel M, Charlett A, Lopez Bernal J, Saliba V, Ellis J, et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Euro Surveill 2020;25:2001483.

[26] Young BE, Ong SWX, Ng LFP, Anderson DE, Chia WN, Chia PY, et al. Viral dynamics and immune correlates of COVID-19 disease severity [e-pub ahead of print]. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1280, accessed February 4, 2021.

[27] Public Health Ontario. An overview of cycle threshold values and their role in SARS-CoV-2 real-time PCR test interpretation. https://www.publichealthontario.ca/-/media/documents/ncov/main/2020/09/cycle-threshold-values-sars-cov2-pcr.pdf?la=en [accessed 08.11.20].

[28] To KK-W, Hung IF-N, Ip JD, Chu AW-H, Chan W-M, Tam AR, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing [e-pub ahead of print]. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1275, accessed February 4, 2021.

[29] Velavan TP, Meyer CG. Mild versus severe COVID-19: laboratory markers. Int J Infect Dis 2020;95:304–7.

[30] Infectious Diseases Society of America. Guidelines on the Diagnosis of COVID-19: Serologic Testing. https://www.idsociety.org/practice-guideline/covid-19-guideline-serology/ [accessed 04.11.20].

[31] Peterhoff D, Glück V, Vogel M, Schuster P, Schütz A, Neubert P, et al. A highly specific and sensitive serological assay detects SARS-CoV-2 antibody levels in COVID-19 patients that correlate with neutralization. Infection 2021;49:75–82.

[32] Bahar B, Jacquet C, Mo YD, DeBiasi RL, Campos J, Delaney M. Kinetics of viral clearance and antibody production across age groups in children with severe acute respiratory syndrome coronavirus 2 infection. J Pediatr 2020;227:31–37.e1.

[33] Maggiore U, Abramowicz D, Crespo M, Mariat C, Myoen G, Peruzzi L, et al. How should I manage immunosuppression in a kidney transplant patient with COVID-19? An ERA-EDTA DESCARTES expert opinion. Nephrol Dial Transplant 2020;35:899–904.

[34] Rhoads D, Peaper DR, She RC, Nolte FS, Wojewoda CM, Anderson NW, et al. College of American Pathologists (CAP) Microbiology Committee Perspective: caution must be used in interpreting the cycle threshold (Ct) value [e-pub ahead of print]. Clin Infect Dis https://doi.org/10.1093/cid/ciaa1199, accessed February 4, 2021.

[35] Rao SN, Manissero D, Steele VR, Pareja J. A narrative systematic review of the clinical utility of cycle threshold values in the context of COVID-19. Infect Dis Ther 2020;9:573–86.