Title
Monotone dynamical systems with polyhedral order cones and dense periodic points

Permalink
https://escholarship.org/uc/item/0n97b9c4

Journal
AIMS Mathematics, 2(1)

ISSN
2473-6988

Author
Hirsch, MW

Publication Date
2017

DOI
10.3934/Math.2017.1.24

Peer reviewed
Research article

Monotone Dynamical Systems with Polyhedral Order Cones and Dense Periodic Points

Morris W. Hirsch

Department of Mathematics, University of Wisconsin, Madison WI 53706, USA

*Correspondence: Email: mwhirsch@chorus.net

Abstract: Let $X \subset \mathbb{R}^n$ be a set whose interior is connected and dense in X, ordered by a closed convex cone $K \subset \mathbb{R}^n$ having nonempty interior. Let $T: X \approx X$ be an order-preserving homeomorphism. The following result is proved: Assume the set of periodic points of T is dense in X, and K is a polyhedron. Then T is periodic.

Keywords: Dynamical systems; ordered spaces; convex cones; periodic orbits

1. Introduction

The following postulates and notation are used throughout:

- $K \subset \mathbb{R}^n$ (Euclidean n-space) is a solid order cone: a closed convex cone that has nonempty interior $\text{Int}(K)$ and contains no affine line.
- \mathbb{R}^n has the (partial) order \geq determined by K:
 \[y \geq x \iff y - x \in K, \]
 referred to as the K-order.
- $X \subset \mathbb{R}^n$ is a nonempty set whose $\text{Int}(X)$ is connected and dense in X.
- $T: X \approx X$ is homeomorphism that is monotone for the K-order:
 \[x \geq y \implies Tx \geq Ty. \]

A point $x \in X$ has period k provided k is a positive integer and $T^kx = x$. The set of such points is $\mathcal{P}_k = \mathcal{P}_k(T)$, and the set of periodic points is $\mathcal{P} = \mathcal{P}(T) = \bigcup_k \mathcal{P}_k$. T is periodic if $X = \mathcal{P}_k$, and pointwise periodic if $X = \mathcal{P}$.

Our main concern is the following speculation:
Conjecture. If \mathcal{P} is dense in X, then T is periodic.

The assumptions on X show that T is periodic iff $T|\text{Int}(X)$ is periodic. Therefore we assume henceforth:

- X is connected and open \mathbb{R}^n.

We prove the conjecture under the additional assumption that K is a polyhedron, the intersection of finitely many closed affine halfspaces of \mathbb{R}^n:

Theorem 1 (Main). Assume K is a polyhedron, $T : X \approx X$ is monotone for the K-order, and \mathcal{P} is dense in X. Then T is periodic.

For analytic maps there is an interesting contrapositive:

Theorem 2. Assume K is a polyhedron and $T : X \approx X$ is monotone for the K-order. If T is analytic but not periodic, \mathcal{P} is nowhere dense.

Proof. As X is open and connected but not contained in any of the closed sets \mathcal{P}_k, analyticity implies each \mathcal{P}_k is nowhere dense. Since $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$, a well known theorem of Baire [1] implies \mathcal{P} is nowhere dense. \blacksquare

The following result of D. Montgomery [4]* is crucial for the proof of the Main Theorem:

Theorem 3 (Montgomery). Every pointwise periodic homeomorphism of a connected manifold is periodic.

Notation

i, j, k, l denote positive integers. Points of \mathbb{R}^n are denoted by $a, b, p, q, u, v, w, x, y, z$.

$x \preceq y$ is a synonym for $y \succeq x$. If $x \preceq y$ and $x \neq y$ we write $x < y$ or $y > x$.

The relations $x \preceq y$ and $y \succeq x$ mean $y - x \in \text{Int}(K)$.

A set S is totally ordered if $x, y \in S \implies x \preceq y$ or $x \succeq y$.

If $x \preceq y$, the order interval $[x, y]$ is $\{z : x \preceq z \preceq y\} = K_x \cap -K_y$.

The translation of K by $x \in \mathbb{R}^n$ is $K_x : = \{w + x, w \in K\}$.

The image of a set or point ξ under a map H is denoted by $H\xi$ or $H(\xi)$. A set S is positively invariant under H if $HS \subset S$, invariant if $H\xi = \xi$, and periodically invariant if $H^k\xi = \xi$.

2. Proof of the Main Theorem

The following four topological consequences of the standing assumptions are valid even if K is not polyhedral.

Proposition 4. Assume $p, q \in \mathcal{P}_k$ are such that

\[p \preceq q, \quad p, q \in \mathcal{P}_k. \quad [p, q] \subset X. \]

Then $T^k((p, q]) = [p, q]$.

*See also S. Kaul [3].
Proof. It suffices to take \(k = 1 \). Evidently \(T \mathcal{P} = \mathcal{P} \), and \(T[p, q] \subset [p, q] \) because \(T \) is monotone, whence \(\text{Int}([p, q]) \cap \mathcal{P} \) is positively invariant under \(T \). The conclusion follows because \(\text{Int}([p, q]) \cap \mathcal{P} \) is dense in \([p, q]\) and \(T \) is continuous.

Proposition 5. Assume \(a, b \in \mathcal{P}_k, a \ll b, \) and \([a, b] \subset X\). There is a compact arc \(J \subset \mathcal{P}_k \cap [a, b] \) that joins \(a \) to \(b \), and is totally ordered by \(\ll \).

Proof. An application of Zorn’s Lemma yields a maximal set \(J \subset [a, b] \cap \mathcal{P} \) such that: \(J \) is totally ordered by \(\ll \), \(a = \text{max} J \), \(b = \text{min} J \). Maximality implies \(J \) is compact and connected and \(a, b \in J \), so \(J \) is an arc (Wilder [7], Theorem I.11.23).

Proposition 6. Let \(M \subset X \) be a homeomorphically embedded topological manifold of dimension \(n - 1 \), with empty boundary.

(i) \(\mathcal{P} \) is dense in \(M \).

(ii) If \(M \) is periodically invariant, it has a neighborhood base \(\mathcal{B} \) of periodically invariant open sets.

Proof. (i) \(M \) locally separates \(X \), by Lefschetz duality [5] (or dimension theory [6]). Therefore we can choose a family \(\mathcal{V} \) of nonempty open sets in \(X \) that the family of sets \(\mathcal{V}_M := \{ V \cap M : V \in \mathcal{V} \} \) satisfies:

- \(\mathcal{V}_M \) is a neighborhood basis of \(M \),
- each set \(V \cap M \) separates \(V \).

By Proposition 5, for each \(V \in \mathcal{V} \) there is a compact arc \(J_V \subset \mathcal{P} \cap V \) whose endpoints \(a_V, b_V \) lie in different components of \(V \setminus M \). Since \(J_V \) is connected, it contains a point in \(V \cap M \cap \mathcal{P} \). This proves (i).

(ii) With notation as above, let \(B_V := [a_V, b_V] \setminus \partial [a_V, b_V] \). The desired neighborhood basis is \(\mathcal{B} := \{ B_V : V \in \mathcal{V} \} \).

From Propositions 4 and 6 we infer:

Proposition 7. Suppose \(p, q \in \mathcal{P}, \ p \ll q \) and \([p, q] \subset X\). Then \(\mathcal{P} \) is dense in \(\partial [p, q] \).

Let \(T(m) \) stand for the statement of Theorem 1 for the case \(n = m \). Then \(T(0) \) is trivial, and we use the following inductive hypothesis:

Hypothesis (Induction). \(n \geq 1 \) and \(T(n - 1) \) holds.

Let \(Q \subset \mathbb{R}^n \) be a compact \(n \)-dimensional polyhedron. Its boundary \(\partial Q \) is the union of finitely many convex compact \((n - 1)\)-cells, the *faces* of \(Q \). Each face \(F \) is the intersection of \(\partial [p, q] \) with a unique affine hyperplane \(E^{n-1} \). The corresponding *open face* \(F^o := F \setminus \partial F \) is an open \((n - 1)\)-cell in \(E^{n-1} \). Distinct open faces are disjoint, and their union is dense and open in \(\partial Q \).

Proposition 8. Assume \(p, q \in \mathcal{P}_k, \ p \ll q, \ [p, q] \subset X \). Then \(T|\partial [p, q] \) is periodic.

This result is adapted from Hirsch & Smith [2], Theorems 5.11 & 5.15.
Proof. \([p,q]\) is a compact, convex \(n\)-dimensional polyhedron, invariant under \(T^k\) (Proposition 4). By Proposition 6 applied to \(M := \partial[p,q]\), there is a neighborhood base \(B\) for \(\partial[p,q]\) composed of periodically invariant open sets. Therefore if \(F^* \subset \partial[p,q]\) is an open face of \([p,q]\), the family of sets

\[
B_{F^*} := \{W \in B: W \subset F^*\}
\]

is a neighborhood base for \(F^*\), and each \(W \in B_{F^*}\) is a periodically invariant open set in which \(P\) is dense.

For every face \(F\) of \([p,q]\) the Induction Hypothesis shows that \(F^* \subset P\). Therefore Montgomery’s Theorem implies \(T|F^*\) is periodic, so \(T|F\) is periodic by continuity. Since \(\partial[p,q]\) is the union of the finitely many faces, it follows that \(T|\partial[p,q]\) is periodic.

To complete the inductive proof of the Main Theorem, it suffices by Montgomery’s theorem to prove that an arbitrary \(x \in X\) is periodic. As \(X\) is open in \(\mathbb{R}^n\) and \(P\) is dense in \(X\), there is an order interval \([a,b] \subset X\) such that

\[
a \ll x \ll b, \quad a, b \in P_k.
\]

By Proposition 5, \(a\) and \(b\) are the endpoints of a compact arc \(J \subset P_k \cap [a,b]\), totally ordered by \(\ll\). Define \(p, q \in J:\)

\[
p := \sup \{y \in J: y \leq x\}, \quad q := \inf \{y \in J: y \geq x\}.
\]

If \(p = q = x\) then \(x \in P_k\). Otherwise \(p \ll q\), implying \(x \in \partial[p,q]\), whence \(x \in P\) by Proposition 8.

Conflict of Interest

The author declares no conflicts of interest in this paper.

References

1. R. Baire, *Sur les fonctions de variables réelles*, Ann. di Mat. 3 (1899), 1-123.
2. M. Hirsch and H. Smith, *Monotone Dynamical Systems*, Handbook of Differential Equations, volume 2, chapter 4. A. Cañada, P. Drabek & A. Fonda, editors. Elsevier North Holland, 2005.
3. S. Kaul, *On pointwise periodic transformation groups*, Proceedings of the American Mathematical Society 27 (1971), 391-394.
4. D. Montgomery, *Pointwise periodic homeomorphisms*, American Journal of Mathematics 59 (1937), 118-120.
5. E. Spanier, *Algebraic Topology*, McGraw Hill, 1966.
6. W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton University Press, 1941.
7. R. Wilder, *Topology of Manifolds*, American Mathematical Society, 1949.

©2016, M. W. Hirsch, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)