WIENER-HOPF OPERATORS ON SPACES OF FUNCTIONS ON \mathbb{R}^+ WITH VALUES IN A HILBERT SPACE

VIOLETA PETKHOVA

Abstract. A Wiener-Hopf operator on a Banach space of functions on \mathbb{R}^+ is a bounded operator T such that $P^+S_aTS_a = T$, $a \geq 0$, where S_a is the operator of translation by a. We obtain a representation theorem for the Wiener-Hopf operators on a large class of functions on \mathbb{R}^+ with values in a separable Hilbert space.

Key words: Wiener-Hopf operators, symbol, Fourier transformation, spectrum of translation operators

1. Introduction

This paper deals with Wiener-Hopf operators on Banach spaces of functions on \mathbb{R}^+ with values in a separable Hilbert space H. Let E be a Banach space of functions on \mathbb{R}^+ such that $E \subset L^1_{loc}(\mathbb{R}^+)$. For $a \geq 0$, define the operator

$$S_a : E \rightarrow L^1_{loc}(\mathbb{R}^+),$$

by the formula $(S_a f)(x) = f(x - a)$, for almost every $x \in [a, +\infty[$ and $(S_a f)(x) = 0$, for $x \in [0, a[$. For $a \geq 0$, introduce

$$S_{-a} : E \rightarrow L^1_{loc}(\mathbb{R}^+),$$

defined by the formula $(S_{-a} f)(x) = f(x + a)$, for almost every $x \in \mathbb{R}^+$. Notice that $S_{-a}S_a = I$ but $S_aS_{-a} \neq I$. From now, we suppose that $S_aE \subset E$ and $S_{-a}E \subset E$, $\forall a \in \mathbb{R}^+$. The Wiener-Hopf operators on E are the bounded operators

$$T : E \rightarrow E$$

satisfying

$$S_{-a}TS_a = T, \forall a \in \mathbb{R}^+.$$

Denote by P^+ the operator

$$P^+ : L^1_{loc}(\mathbb{R}) \rightarrow L^1_{loc}(\mathbb{R}^+)$$

defined by

$$(P^+ f)(x) = f(x), a.e. on \mathbb{R}^+.$$

The Wiener-Hopf operators which appear in theory of the signal and in control theory have been studied in a lot of papers. The problem we deal here is the existence of a symbol for
operators of this type. It is well-known that if T is a Wiener-Hopf operator on $L^2(\mathbb{R}^+)$ there exists $h \in L^\infty(\mathbb{R})$ such that

$$Tf = P^+ F^{-1}(h \hat{f}), \forall f \in L^2(\mathbb{R}^+).$$

Here F denotes the usual Fourier transformation from $L^2(\mathbb{R})$ into $L^2(\mathbb{R})$. The function h is called the symbol of T. Despite of the extensive literature related to Wiener-Hopf operators, there are not analogous representation theorem for Wiener-Hopf operators on general Banach spaces of functions even if the functions are with values in \mathbb{C}. Here we develop a theory of the existence of a L^∞ symbol for every Wiener-Hopf operator in a very large class of spaces of functions on \mathbb{R}^+ with values in a separable Hilbert space. Moreover, we obtain a caracterisation of $\text{spec}(S_1) \cap (\text{spec}(S_{-1}))^{-1}$. The determination of the spectrum of a translation operator is an open question in general spaces of functions on \mathbb{R}^+ and it plays an important role in the scattering theory. We are motivated by the results of [5] proving the existence of a symbol for every Wiener-Hopf operator on a weighted space $L^2_\omega(\mathbb{R}^+)$ (see Example 1 for the definition). On the other hand, the methods exposed in [6] and [2] show that the existence of the symbol of a multiplier (a bounded operator commuting with the translations) on spaces of scalar functions on \mathbb{R} implies an analogous result for the multipliers on a space of functions on \mathbb{R} with values in an Hilbert space. The arguments in [6] and [2] have been based on the link between the scalar and the vector-valued cases. However the results concerning the symbol of a multiplier do not imply analogous results about Wiener-Hopf operator in the general case. It is well-known that for every Wiener-Hopf operator T on $L^2(\mathbb{R}^+)$, there exists a multiplier M on $L^2(\mathbb{R})$ such that $P^+ M = T$. Unfortunaly, a such result is not known even for Wiener-Hopf operators on a weighed space $L^2_\omega(\mathbb{R}^+)$. Despite some progress (see [2], [6]) in the study of the symbol of a multiplier on a space of functions on \mathbb{R} with values in a Hilbert space, the analogous problem for Wiener-Hopf operators has been very few considered. Moreover, even in the case of the weighted spaces of functions on \mathbb{R}^+ with values in a Hilbert space the existence of the symbol of a Wiener-Hopf operator was an open problem still now. First in Section 2, we improve the results of [5] concerning the existence of the symbol of a Wiener-Hopf operator on $L^2_\omega(\mathbb{R}^+)$ replacing $L^2_\omega(\mathbb{R}^+)$ by a general Banach space of functions on \mathbb{R}^+ satisfying only three natural hypothesis given below. Next following the methods of [6] and [2] and using the results of Section 2, we obtain the existence of the symbol of a Wiener-Hopf operator on a very large class of spaces of functions on \mathbb{R}^+ with values in a separable Hilbert space. In Section 4 we explain how the setup considered here can by extended in several directions.

Let E be a Banach space of functions on \mathbb{R}^+ with values in \mathbb{C} satisfying the following three hypothesis.

(H1) We have $C^\infty_c(\mathbb{R}^+) \subset E \subset L^1_{\text{loc}}(\mathbb{R}^+)$, the inclusions are continuous and $C^\infty_c(\mathbb{R}^+)$ is dense in E.

(H2) For every $x \in \mathbb{R}$, $S_x E = E$ and $\sup_{x \in K} \|S_x\| < +\infty$, for every compact K of \mathbb{R}.

(H3) For all $a \in \mathbb{R}$, the operator Γ_a defined by

$$(\Gamma_a f)(x) = e^{iax} f(x), \ a.e., \forall f \in E$$

is bounded on E and

$$\sup_{a \in \mathbb{R}} \|\Gamma_a\| < +\infty.$$

Notice that (H3) is trivial, if we have $\|f\| = \||f||$ in E. Let $C^\infty_K(\mathbb{R}^+)$ be the space of C^∞ functions with a compact support included in K. For simplicity, we will write S instead of S_1. Since the norm of f given by $\sup_{a \in \mathbb{R}} \|\Gamma_a f\|$ is equivalent to the norm of E, we will assume from now that Γ_a is an isometry for every $a \in \mathbb{R}$. Denote by $\rho(A)$ the spectral radius of a bounded operator A. Set

$$I_E = [-\ln \rho(S^{-1}), \ln \rho(S)]$$
and

$$U_E = \{z \in \mathbb{C}, \Im z \in I_E\}.$$

For $f \in E$, denote by $(f)_a$ the function defined by $(f)_a(x) = e^{ax} f(x)$, a.e. on \mathbb{R}^+. In Section 2 we obtain the following result which generalizes Theorem 1 in [5].

Theorem 1. Let $T \in W(E)$.
1) For every $a \in I_E$ we have $(Tf)_a \in L^2(\mathbb{R}^+)$, for $f \in C^\infty_c(\mathbb{R}^+)$.
2) For every $a \in I_E$ there exists a function $\nu_a \in L^\infty(\mathbb{R})$ such that

$$(Tf)_a = P^+ \mathcal{F}^{-1}(\nu_a(\hat{f}))_a, \text{ for } f \in C^\infty_c(\mathbb{R}^+)$$

and we have $\|\nu_a\|_\infty \leq C\|T\|$, where C is a constant dependent only on E.
3) Moreover, if $\hat{I}_E \neq \emptyset$ (i.e. $\frac{1}{\rho(S^{-1})} < \rho(S)$), there exists a function $\nu \in \mathcal{H}^\infty(U_E)$ such that for every $a \in \hat{I}_E$ we have

$$\nu(x + ia) = \nu_a(x), \text{ almost everywhere on } \mathbb{R}.$$

Definition 1. If $\hat{I}_E \neq \emptyset$, ν is called the symbol of T, and if $I_E = \{a\}$, then ν_a is the symbol of T.

Using Theorem 1, we also obtain the following spectral result.

Theorem 2. We have

$$\text{spec}(S) \cap \left(\text{spec}(S^{-1})\right)^{-1} = \left\{z \in \mathbb{C}, \frac{1}{\rho(S^{-1})} \leq |z| \leq \rho(S)\right\}.$$

This result is new even in the case of the spaces $L^2_\omega(\mathbb{R}^+)$. In particular, we conclude that if $\rho(S) > \frac{1}{\rho(S^{-1})}$ the spectrum of S contains a disk. The proof of Theorem 2 is based on the existence of a symbol for every Wiener-Hopf operator and the construction of suitable cut-off function $f \in C^\infty_c(\mathbb{R}^+)$. This application was one of the motivations to search a symbol of a
Wiener-Hopf operator. Moreover, we extend below the same result for operators with values in a Hilbert space (see Theorem 4).

The main result of this paper is an analogous result for Wiener-Hopf operators on spaces of functions on \mathbb{R}^+ with values in a separable Hilbert space. Denote by $\langle u, v \rangle$ the scalar product of $u, v \in H$ and let $\|u\|_H$ be the norm of $u \in H$. Denote by $L^1_{\text{loc}}(\mathbb{R}^+, H)$ the space of functions $F : \mathbb{R}^+ \to H$ such that $(\mathbb{R}^+ \ni x \mapsto \|F(x)\|_H) \in L^1_{\text{loc}}(\mathbb{R}^+)$. Let $L(H)$ be the space of bounded operators on H. Introduce the vector space $C_c^\infty(\mathbb{R}^+) \otimes H$ generated by fu for $f \in C_c^\infty(\mathbb{R}^+)$ and $u \in H$. Denote by $C_0(\mathbb{R}^+, H)$ the Banach space of all norm continuous functions $\Phi : \mathbb{R}^+ \to H$ such that for every $\epsilon > 0$, there exists a compact set K_ϵ such that $\|\Phi(x)\|_H = 0$, $\forall x \in \mathbb{R}^+ \setminus K_\epsilon$.

Let E be a Banach space of functions on \mathbb{R}^+ with values in \mathbb{C} satisfying (H1), (H2) and (H3). Denote by \overline{E} the Banach space of functions $F : \mathbb{R}^+ \to H$ such that $(\mathbb{R}^+ \ni x \mapsto \|F(x)\|_H) \in E$. We will see in Section 3 that $C_c^\infty(\mathbb{R}^+) \otimes H$ is dense in \overline{E}. For illustration, we give below some examples.

Example 1. Let $E = L^p_\omega(\mathbb{R}^+)$, where ω is a weight on \mathbb{R}^+ and $p \in [1, +\infty]$. We recall that ω is a weight on \mathbb{R}^+ if ω is a non-negative measurable function on \mathbb{R}^+ such that for all $y \in \mathbb{R}^+$,

$$0 < \sup_{x \in \mathbb{R}^+} \frac{\omega(x + y)}{\omega(x)} < +\infty$$

and

$$0 < \sup_{x \in \mathbb{R}^+} \frac{\omega(x)}{\omega(x + y)} < +\infty.$$
equipped with the norm
\[\|f\|_{\omega,p} = \left(\int_{\mathbb{R}^+} |f(x)|^p \omega(x) dx \right)^{\frac{1}{p}}. \]

It is easy to see that \(L^p_\omega(\mathbb{R}^+) \) satisfies the hypothesis (H1), (H2) and (H3). For the study of the Wiener-Hopf operators on \(L^2_\omega(\mathbb{R}^+) \) the reader may consult [5]. The space \(\mathcal{E} \) associated to \(L^p_\omega(\mathbb{R}^+) \) is the space usually denoted by \(L^p_\omega(\mathbb{R}^+, H) \) of functions
\[F : \mathbb{R}^+ \rightarrow H \]
such that
\[\int_{\mathbb{R}^+} \|F(x)\|^p_H \omega(x)^p dx < +\infty. \]

Example 2. Let \(A \) be a real-valued continuous function on \([0, +\infty[\), such that \(A(0) = 0 \) and let \(\frac{A(y)}{y} \) be non-decreasing for \(y > 0 \). Let \(L_A(\mathbb{R}^+) \) be the set of all complex-valued, measurable functions on \(\mathbb{R}^+ \) such that
\[\int_{\mathbb{R}^+} A\left(\frac{|f(x)|}{t}\right) dx < +\infty, \]
for some positive number \(t \) and let
\[\|f\|_A = \inf \left\{ t > 0 \mid \int_{\mathbb{R}^+} A\left(\frac{|f(x)|}{t}\right) dx \leq 1 \right\}, \]
for \(f \in L_A(\mathbb{R}^+) \). Then \(L_A(\mathbb{R}^+) \) is a Banach space called a Birnbaum-Orlicz space (see [1]). It is easy to check that \(L_A(\mathbb{R}^+) \) satisfies (H1), (H2) and (H3). If \(E = L_A(\mathbb{R}^+) \), the associated space \(\mathcal{E} \) is the set \(L_A(\mathbb{R}^+, H) \) of measurable functions
\[F : \mathbb{R}^+ \rightarrow H \]
such that for some \(t > 0 \), we have
\[\int_{\mathbb{R}^+} A\left(\frac{\|F(x)\|_H}{t}\right) dx < +\infty. \]

Example 3. Let \(A \) be a function satisfying the properties described in Example 2. Let \(\omega \) be a weight on \(\mathbb{R}^+ \). Define \(L_{A,\omega}(\mathbb{R}^+) \) as the space of measurable functions on \(\mathbb{R}^+ \) such that
\[\int_{\mathbb{R}^+} A\left(\frac{|f(x)|}{t}\right) \omega(x) dx < +\infty, \]
for some positive number \(t \) and let
\[\|f\|_{A,\omega} = \inf \left\{ t > 0 \mid \int_{\mathbb{R}^+} A\left(\frac{|f(x)|}{t}\right) \omega(x) dx \leq 1 \right\}. \]
for $f \in L_{A, \omega}(\mathbb{R}^+)$. Then $L_{A, \omega}(\mathbb{R}^+)$ is a Banach space called a weighted Orlicz space. It is easy to check that $L_{A, \omega}(\mathbb{R}^+)$ satisfies (H1), (H2) and (H3). If $E = L_{A, \omega}(\mathbb{R}^+)$, the associated space \overline{E} is the set $L_{A, \omega}(\mathbb{R}^+, H)$ of measurable functions

$$F : \mathbb{R}^+ \rightarrow H$$

such that for some $t > 0$,

$$\int_{\mathbb{R}^+} A\left(\frac{\|F(x)\|_H}{t}\right) \omega(x) dx < +\infty.$$

For $a > 0$, we define the operators

$$S_a : E \rightarrow \overline{E}$$

and

$$S_{-a} : E \rightarrow \overline{E}$$

by

$$(S_a F)(x) = F(x - a), \text{ a.e. on } [a, +\infty[,$$

$$(S_a F)(x) = 0, \forall x \in [0, a[,$$

$$(S_{-a} F)(x) = F(x + a), \text{ a.e. on } \mathbb{R}^+.$$

For simplicity, we will write S instead of S_1. For $F \in \overline{E}$, we denote by $\|F\|_H$ the function

$$\|F\|_H : \mathbb{R}^+ \ni x \rightarrow \|F(x)\|_H \in \mathbb{C}.$$

For fixed $a \in \mathbb{R}$, we see that for $F \in \overline{E}$, $F \neq 0$, we have

$$\frac{\|S_a F\|}{\|F\|} = \frac{\|S_a(\|F\|_H)\|}{\|\|F\|_H\|} \leq \|S_a\|.$$

We conclude that S_a is bounded and $\|S_a\| \leq \|S_a\|$. If $\|f\| = \|\|f\|\|$, for every $f \in E$, obviously we get $\|S_a\| = \|S_a\|$. Introduce the operator

$$P^+ : L^1_{loc}(\mathbb{R}, H) \rightarrow L^1_{loc}(\mathbb{R}^+, H)$$

defined by the formula

$$(P^+ F)(x) = F(x), \text{ a.e. on } \mathbb{R}^+.$$

Definition 2. We call a Wiener-Hopf operator on \overline{E} every bounded operator T on \overline{E} such that

$$T \Phi = S_{-a} TS_a \Phi, \forall a > 0, \forall \Phi \in \overline{E}.$$}

Denote by $W(\overline{E})$ the set of the Wiener-Hopf operators on \overline{E}.

The main result of this paper is the following.
Theorem 3. Let E be a Banach space satisfying (H1), (H2) and (H3). Let $T \in W(E)$.
1) We have $(T\Phi)_a \in L^2(\mathbb{R}^+, H), \forall \Phi \in C_c^\infty(\mathbb{R}^+) \otimes H, \forall a \in I_E.$
2) There exists $V_a \in L^\infty(\mathbb{R}, L(H))$ such that
 $$(T\Phi)_a = P^+\mathcal{F}^{-1}(\mathcal{F}(\Phi)_a(\cdot)), \forall a \in I_E, \forall \Phi \in C_c^\infty(\mathbb{R}^+) \otimes H.$$ Moreover, $\text{ess sup}_{x \in \mathbb{R}} \|V_a(x)\| \leq C\|T\|$, where C is a constant dependent only on E.
3) If $\hat{U}_E \neq \emptyset$, set
 $$\mathcal{V}(x + ia) = V_a(x), \forall a \in \hat{U}_E,$$ for almost every $x \in \mathbb{R}.$
 Then for $u, v \in H$, the function
 $$z \mapsto <u, \mathcal{V}(z) [v]>$$
is in $\mathcal{H}^\infty(\hat{U}_E)$ and $\sup_{z \in \hat{U}_E} \|\mathcal{V}(z)\| \leq C\|T\|.$

Remark 1. We will see later that $\rho(S) = \rho(S)$, $\rho(S_{-1}) = \rho(S_{-1})$ and
 $$I_E = [-\ln \rho(S_{-1}), \ln \rho(S)] = [-\ln \rho(S_{-1}), \ln \rho(S)].$$

We also obtain the following.

Theorem 4. We have
 $$\text{spec}(S) \cap \left(\text{spec}(S_{-1})\right)^{-1} = \left\{z \in \mathbb{C}, \frac{1}{\rho(S_{-1})} \leq |z| \leq \rho(S)\right\}.$$

The spectral characterization in Theorem 4 has not been known until now even in particular cases when E is a weighted L^p space with a simple weight.

2. Wiener-Hopf Operators on Banach Spaces of Scalar Functions on \mathbb{R}^+

In this section, we prove Theorem 1. We follow the arguments of [5] in our more general case. For the reader convenience we give the details of the steps which need some modifications. First, we show that every Wiener-Hopf operator is associated to a distribution. Denote by $C^\infty_0(\mathbb{R}^+)$ the space of functions of $C^\infty(\mathbb{R})$ with support in $]0, +\infty[.$ Set
 $$H^1(\mathbb{R}) = \{f \in L^2(\mathbb{R}) \mid f' \in L^2(\mathbb{R})\},$$
the derivative of $f \in L^2(\mathbb{R})$ being computed in the sense of distributions.

Lemma 1. If $T \in W(E)$ and $f \in C^\infty_K(\mathbb{R}^+)$, then $(Tf)' = T(f').$
Consequently, Proposition 1.

If E is a Wiener-Hopf operator, then there exists a distribution μ_T of order 1 such that

$$Tf = P^+(\mu_T * f),$$

for $f \in C_c^\infty(\mathbb{R}^+)$.

The proof of Proposition 1 follows the arguments of that of Theorem 2 in [5] and we omit it. We just give the definition of μ_T. We have

$$< \mu_T, f > = \lim_{x \to +\infty} (TS_x \tilde{f})(x),$$

for $f \in C_c^\infty(\mathbb{R})$, where \tilde{f} is the function defined by $\tilde{f}(x) = f(-x)$, for $f \in C_c^\infty(\mathbb{R})$, $x \in \mathbb{R}$.

Definition 3. If $\phi \in C_c^\infty(\mathbb{R})$, we denote by T_ϕ the Wiener-Hopf operator such that

$$T_\phi f = P^+(\phi * f), \forall f \in C_c^\infty(\mathbb{R}^+).$$

Proposition 2. If $T \in W(E)$, then there exists a sequence $(\phi_n)_{n \in \mathbb{N}} \subset C_c^\infty(\mathbb{R}^+)$ such that

$$\lim_{n \to +\infty} \|T_{\phi_n} f - T f\| = 0, \forall f \in E$$

and

$$\|T_{\phi_n}\| \leq C\|T\|, \forall n \in \mathbb{N},$$

where C is a constant depending only on E.

Proof. The proof follows the idea of the proof of Theorem 3 in [5], but here we must work with Bochner integrals and this leads to some difficulties. For the convivance of the reader we give the details. Let $T \in W(E)$ and set $\mathcal{T}(t) = \Gamma_t \circ T \circ \Gamma_{-t}$, $\forall t \in \mathbb{R}$. For $a > 0$, and $f \in E$ we have

$$\mathcal{T}(t)S_a f(x) = (T(t)S_a f)(x + a) = e^{it(x+a)} \left(T(f(s-a)e^{-its}) \right)(x + a) = e^{itx} \left(S_a T \left(f(s-a)e^{-its-a} \right) \right)(x) = e^{itx} (S_a T_{\Gamma_t} f)(x) \in (\mathcal{T}(t)f)(x), \text{ a.e.}$$
This shows that $T(t) \in W(E)$. Moreover, we have $\|T(t)\| = \|T\|$, for $t \in \mathbb{R}$ and $T(0) = T$.

The application T is continuous from \mathbb{R} into $W(E)$. For $n \in \mathbb{N}$, $\eta \in \mathbb{R}$, $x \in \mathbb{R}$, set

$$g_n(\eta) := \left(1 - \left|\frac{\eta}{n}\right|\right)\chi_{[-n,n]}(\eta)$$

and

$$\gamma_n(x) = \frac{1 - \cos(nx)}{\pi x^2 n}.$$

We have $\hat{\gamma}_n(\eta) = g_n(\eta)$, $\forall \eta \in \mathbb{R}$, $\forall n \in \mathbb{N}$. Clearly, $\|\gamma_n\|_{L^1} = 1$ for all n and

$$\lim_{n \to +\infty} \int_{|x| \geq a} \gamma_n(x) dx = 0, \forall a > 0.$$

Set $Y_n := (T \ast \gamma_n)(0)$. Then for $f \in E$ we obtain

$$\lim_{n \to +\infty} \|Y_n f - T f\| = 0.$$

We claim that for $f \in C_c^\infty(\mathbb{R}^+)$, we have

$$(Y_n f)(y) = \int_\mathbb{R} (T(x) f)(y) \gamma_n(-x) dx, \forall y \in \mathbb{R}^+$$

From Lemma 1, we know that for fixed $x \in \mathbb{R}$ the function

$$\mathbb{R}^+ \ni y \longrightarrow (T(x) f)(y)$$

is C^∞. Let K_0 be a compact subset of \mathbb{R}^+ and let $\psi \in C_c^\infty(\mathbb{R}^+)$. We see that

$$|\psi(y)(T(x) f)(y)| = |\psi(y)(\mu_T \ast \Gamma_{-x}(f))(y)| = |\psi(y) \mu_T \ast \Gamma_{-x}(f)(z-y)e^{-ix(z-y)}| \leq C(\mu)\|\psi\|_{L^\infty} (\|S_y \Gamma_{-x} f\|_{L^\infty} + \|S_y \Gamma_{-x} f\|'_{L^\infty})$$

$$\leq C(\mu)\|\psi\|_{L^\infty} (\|f\|_{L^\infty} + \|f\|'_{L^\infty}), \forall y \in K_0.$$

Consequently,

$$\int_\mathbb{R} \|\psi T(x) f\|_{L^\infty} \gamma_n(-x) dx < +\infty$$

and hence the integral

$$\int_\mathbb{R} \psi(T(x) f) \gamma_n(-x) dx$$

is a well-defined Bochner integral with values in $C_c^\infty(\mathbb{R}^+)$. The map

$$C_c^\infty(\mathbb{R}^+) \ni g \longrightarrow g(x) \in \mathbb{C},$$

is a continuous linear form for every $x \in \mathbb{R}^+$. Since Bochner integrals commute with continuous linear forms (see [3]) we have

$$\psi(y) (Y_n f)(y) = \psi(y) \int_\mathbb{R} (T(x) f)(y) \gamma_n(-x) dx, \forall y \in \mathbb{R}^+$$
and the claim \([2,1]\) is proved.

It is clear that

\[
\|Y_n f\| \leq \int_{\mathbb{R}} \|T(x)f\|\gamma_n(-x)dx \leq \|T\|\|f\|, \forall f \in E.
\]

Since \(\|T\| = \|T\|\), we get \(\|Y_n\| \leq \|T\|\), \(\forall n \in \mathbb{N}\).

Now consider the distribution associated to \(Y_n\). Let \(K\) be a compact subset of \(\mathbb{R}\) and let \(z_K \geq 1\) be such that \(K \subset [-\infty, z_K]\). Choose \(g \in C_c^\infty(\mathbb{R}^+)\) such that \(g\) is positive, \(\text{supp}\, g \subset [z_K - 1, z_K + 1]\) and \(g(z_K) = 1\). For \(f \in C_c^\infty(\mathbb{R})\), we have \(gT(S_{z_K}(\tilde{f}g_n)) \in H^1(\mathbb{R})\) and it follows from Sobolev’s lemma (see \([7]\)) that

\[
\|(TS_{z_K}(\tilde{f}g_n))(z_K)\| = |g(z_K)(TS_{z_K}(\tilde{f}g_n))(z_K)|
\]

\[
\leq C\left(\int_{|y-z_K|\leq 1} g(y)^2|(TS_{z_K}(\tilde{f}g_n)(y)|^2dy\right)^{\frac{1}{2}} + \left(\int_{|y-z_K|\leq 1} |(g(TS_{z_K}(\tilde{f}g_n))'(y)|^2dy\right)^{\frac{1}{2}},
\]

where \(C > 0\) is a constant. Taking into account \((H1)\), \(T\) may be considered as a bounded operator from \(C_c^\infty(\mathbb{R}^+)\) into \(L^1_{loc}(\mathbb{R}^+)\) and we have

\[
\|(TS_{z_K}(\tilde{f}g_n))(z_K)\|
\]

\[
\leq C(K)\|T\|\|\tilde{f}g_n\|_{\infty} + \|(\tilde{f}g_n)'\|_{\infty}
\]

\[
\leq \tilde{C}(K)(\|f\|_{\infty} + \|f'\|_{\infty}),
\]

where \(C(K)\) and \(\tilde{C}(K)\) are constants depending only on \(K\). Therefore

\[
|(TS_z(\tilde{f}g_n))(z)| \leq \tilde{C}(K)(\|f\|_{\infty} + \|f'\|_{\infty}), \forall z \geq z_K, \forall f \in C_c^\infty(\mathbb{R})
\]

and we conclude that \(\mu_{Tg_n}\) defined by

\[
< \mu_{Tg_n}, f > := \lim_{z \to +\infty} (TS_z(\tilde{f}g_n))(z)
\]

is a distribution of order 1. On the other hand, we have

\[
(Y_n f)(y) = \int_{\mathbb{R}} (T(-s)f)(y)\gamma_n(s)ds = \int_{\mathbb{R}} e^{-isy}(T(\Gamma_s f))(y)\gamma_n(s)ds
\]

\[
= \int_{\mathbb{R}} < \mu_{T,x}, f(y-x) e^{-isx} > \gamma_n(s)ds
\]

\[
= \int_{\mathbb{R}} < \mu_{T,x}, f(y-x)g_n(x) > = < \mu_{Tg_n, f}(y), \forall y \geq 0, \forall f \in C_c^\infty(\mathbb{R}^+)\).
\]

Finally, we obtain

\[
Y_n f = P^+(\mu_{Tg_n} * f), \forall f \in C_c^\infty(\mathbb{R}^+), \forall n \in \mathbb{N}.
\]

Since \(\text{supp}\, \mu_{Tg_n} \subset [-n, n]\), it is sufficient to obtain the Proposition 2 for \(T \in W(E)\) such that \(\mu_T\) is a distribution with compact support. Without lost of generality we assume that \(\mu_T\)
is with compact support. Let \((\theta_n)_{n \in \mathbb{N}} \subset C_c^\infty(\mathbb{R}^+)\) be a sequence such that \(\text{supp}\theta_n \subset [0, \frac{1}{n}]\), \(\theta_n \geq 0\),

\[
\lim_{n \to +\infty} \int_{x \geq a} \theta_n(x)dx = 0, \forall a > 0
\]

and \(\|\theta_n\|_{L^1} = 1\), for \(n \in \mathbb{N}\). For \(f \in E\) we have

\[
\lim_{n \to +\infty} \|\theta_n * f - f\| = 0.
\]

Set

\[
T_n f = T(\theta_n * f), \forall f \in E.
\]

We conclude that \((T_n)_{n \in \mathbb{N}}\) converges to \(T\) with respect to the strong operator topology and \(T_n = T\phi_n\), where \(\phi_n = \mu T * \theta_n \in C_c^\infty(\mathbb{R}^+)\). For \(f \in E\), we have

\[
\|T_n f\| = \left\|P^+ \left(\int_0^{\frac{1}{n}} \theta_n(y)S_y(\mu T * f)dy \right) \right\|
\]

\[
\leq \left\| \int_0^{\frac{1}{n}} \theta_n(y)P^+ (\mu T * S_y f)dy \right\|
\]

\[
\leq \int_0^{\frac{1}{n}} \theta_n(y)\|T\|\|S_y\|\|f\|dy, \forall f \in C_c^\infty(\mathbb{R}^+).
\]

Then we obtain

\[
\|T_n\| \leq \left(\int_0^{\frac{1}{n}} \theta_n(y)\|S_y\|dy \right)\|T\|, \forall n \in \mathbb{N}
\]

and this completes the proof of the proposition. \(\square\)

We need also the following lemma.

Lemma 2. For every \(\phi \in C_c^\infty(\mathbb{R}^+)\), we have

\[
|\hat{\phi}(\alpha)| \leq \|\phi\|, \forall \alpha \in U_E.
\]

(Proof. We use the fact that for a bounded operator \(A\) on \(E\), there exists a sequence \((f_n)_{n \in \mathbb{N}} \subset E\) such that:

\[
\lim_{n \to +\infty} \|Af_n - \rho(A)f_n\| = 0 \text{ and } \|f_n\| = 1, \forall n \in \mathbb{N}.
\]

Fix \(\lambda = \rho(S)\). Let \((f_{n,1})_{n \in \mathbb{N}}\) be a sequence of \(E\) such that

\[
\lim_{n \to +\infty} \|Sf_{n,1} - \rho(S)f_{n,1}\| = 0
\]

and

\[
\|f_{n,1}\| = 1, \forall n \in \mathbb{N}.
\]

For \(p \in \mathbb{N}^*\), observe that

\[
\lambda^\frac{1}{p} = \rho(\int S_{\frac{1}{p}}).
\]
Let \((f_{n,p})_{n \in \mathbb{N}} \subset E\) be a sequence such that
\[
\lim_{n \to +\infty} \left\| S_{\frac{1}{p}} f_{n,p} - \rho(S_{\frac{1}{p}} f_{n,p}) \right\| = 0
\]
and
\[
\left\| f_{n,p} \right\| = 1, \ \forall n \in \mathbb{N}.
\]
Notice that for all \(q \in \mathbb{N}^*, \) such that \(q \leq p\) we have:
\[
\left\| S_{\frac{1}{q}} f_{n,p} - \lambda_{\frac{1}{q}} f_{n,p} \right\| = \left\| (S_{\frac{1}{q}})^{\frac{1}{q}} f_{n,p} - (\lambda^{\frac{1}{q}})^{\frac{1}{q}} f_{n,p} \right\|
\leq \left(\prod_{u \in C, \ u \neq 1} \left\| S_{\frac{1}{q}} - u\lambda^{\frac{1}{q}} \right\| \right) \left\| S_{\frac{1}{q}} f_{n,p} - \lambda^{\frac{1}{q}} f_{n,p} \right\|.
\]
We have
\[
\prod_{u \in C, \ u \neq 1, \ u \neq 1} \left\| S_{\frac{1}{q}} - u\lambda^{\frac{1}{q}} \right\| \leq C,
\]
where \(C\) is a constant independent of \(n\) and hence we have
\[
\lim_{n \to +\infty} \left\| S_{\frac{1}{q}} f_{n,p} - \lambda_{\frac{1}{q}} f_{n,p} \right\| = 0.
\]
Consequently, by a diagonal extraction, we can construct \((f_n)_{n \in \mathbb{N}}\) such that:
\[
\lim_{n \to +\infty} \left\| S_{\frac{1}{p}} f_n - \lambda^{\frac{1}{p}} f_n \right\| = 0, \ \forall p \in \mathbb{N}^*
\]
and
\[
\left\| f_n \right\| = 1, \ \forall n \in \mathbb{N}.
\]
For all \(p \in \mathbb{N}^*\) and for all \(q \in \mathbb{N},\) we have
\[
S_{\frac{1}{p}} f_n - \lambda^{\frac{1}{p}} f_n = C_{q,p} \left(S_{\frac{1}{p}} - \lambda^{\frac{1}{p}} I \right) f_n,
\]
where \(C_{q,p}\) is a linear combination of translations. Then
\[
\left\| S_{\frac{1}{p}} f_n - \lambda^{\frac{1}{p}} f_n \right\| \leq \left\| C_{q,p} \right\| \left\| S_{\frac{1}{p}} f_n - \lambda^{\frac{1}{p}} f_n \right\|, \ \forall n \in \mathbb{N}
\]
and
\[
\lim_{n \to +\infty} \left\| S_{\frac{1}{p}} f_n - \lambda^{\frac{1}{p}} f_n \right\| = 0.
\]
On the other hand,
\[
\left\| S_{-\frac{1}{p}} f_n - \lambda^{-\frac{1}{p}} f_n \right\| \leq \left| \lambda^{-\frac{1}{p}} \right| \left\| S_{-\frac{1}{p}} \right\| \left\| \lambda^{\frac{1}{p}} f_n - S_{\frac{1}{p}} f_n \right\|, \ \forall n \in \mathbb{N}
\]
and
\[
\lim_{n \to +\infty} \left\| S_{-\frac{1}{p}} f_n - \lambda^{-\frac{1}{p}} f_n \right\| = 0, \ \forall p \in \mathbb{N}^*, \ \forall q \in \mathbb{N}.
\]
Since \(Q \) is dense in \(\mathbb{R} \), we deduce that

\[
\lim_{n \to +\infty} \| S_t f_n - \lambda^t f_n \| = 0, \quad \forall t \in \mathbb{R}.
\]

Now, fix \(\phi \in C_c(\mathbb{R}^+) \). Notice that

\[
\int_{\mathbb{R}} \phi(x) S_x f_n \, dx
\]

is a well-defined Bochner interval on \(E \) and

\[
T_\phi f_n = \int_{\mathbb{R}} \phi(x) (S_x f_n) \, dx.
\] \hfill (2.4)

Indeed, let \(K \) be a compact subset of \(\mathbb{R}^+ \). We have \(T_\phi(C_c^\infty(\mathbb{R}^+)) \subset C_c^\infty(K + \text{supp}(\phi)(\mathbb{R}^+)) \) and the restriction of \(\int_{\mathbb{R}} \phi(x) S_x dx \) to \(C_c^\infty(K^+) \) can be considered as a Bochner integral on \(C_c^\infty(K^+) \) with values in \(C_c^\infty(K^+ + \text{supp}(\phi)(\mathbb{R}^+)) \). It is clear that for \(x \in \mathbb{R}^+ \), the map

\[
f \mapsto f(x)
\]

is a continuous linear form on \(C_c^\infty(K^+) \), for every compact \(K_0 \). Since Bochner integrals commute with continuous linear forms, we obtain, for \(g \in C_c(\mathbb{R}^+) \),

\[
(T_\phi g)(x) = (\phi \ast g)(x) = \int_{\mathbb{R}} \phi(y)g(x - y) \, dy = \int_{\text{supp}(\phi)} \phi(y)(S_y g)(x) \, dy
\]

\[
= \left(\int_{\text{supp}(\phi)} \phi(y)S_y g \right)(x), \quad \forall x \in \mathbb{R}^+
\]

and the formula (2.4) follows from the density of \(C_c(\mathbb{R}^+) \) in \(E \). Then, for all \(n \in \mathbb{N} \), we get

\[
\left| \int_{\mathbb{R}} \phi(x) \lambda^x \, dx \right| = \left\| \left(\int_{\mathbb{R}} \phi(x) \lambda^x \, dx \right) f_n \right\|
\]

\[
\leq \left\| \int_{\mathbb{R}} \phi(x) \lambda^x f_n \, dx - \int_{\mathbb{R}} \phi(x) S_x f_n \, dx \right\| + \left\| \int_{\mathbb{R}} \phi(x) S_x f_n \, dx \right\|
\]

\[
\leq \int_{\mathbb{R}} |\phi(x)||\lambda^x f_n - S_x f_n| \, dx + \| T_\phi \|.
\]

Taking into account the properties of \((f_n)_{n \in \mathbb{N}} \) and the dominated convergence theorem, it follows that

\[
\lim_{n \to +\infty} \int_{\mathbb{R}} |\phi(x)||\lambda^x f_n - S_x f_n| \, dx = 0.
\]

Denote by \(C_r \) the circle of radius \(r \) and denote by \(D_r \) the line

\[
D_r = \{ z \in \mathbb{C} \mid \text{Im } z = r \}.
\]

We will write \(e^{iax} \) for the function

\[
x \mapsto e^{iax}.
\]
Since \(\|T_\phi\| = \|T_{\phi \alpha}\| \), for all \(\alpha \in \mathbb{R} \), we obtain
\[
\left| \int_{\mathbb{R}} \phi(x)x^\lambda dx \right| \leq \|T_\phi\|, \forall \lambda \in \mathcal{C}_p(S).
\]
We conclude that
\[
|\hat{\phi}(\alpha)| \leq \|T_\phi\|, \forall \phi \in \mathcal{C}_\infty^c(\mathbb{R}), \forall \alpha \in \mathcal{D}_{in,p}(S).
\]
Denote by \(E^* \) the dual space of \(E \) and denote by \(\|\cdot\|_* \) the norm of \(E^* \). For \(\lambda \in \mathcal{C}_{\mathbb{R}^{-1}} \), applying the same methods in \(E^* \), we obtain that there exists a sequence \((g_n)_{n \in \mathbb{N}} \subset E^*\) such that
\[
\lim_{n \to +\infty} \|(S_x)^* g_n - \lambda^2 g_n\|_* = 0
\]
and
\[
\|g_n\|_* = 1, \forall n \in \mathbb{N}.
\]
We notice that we have
\[
T^*_\phi = \left(\int_{\mathbb{R}^+} \phi(x)S_x dx \right)^* = \int_{\mathbb{R}^+} \phi(x)(S_x)^* dx, \forall \phi \in \mathcal{C}_c^\infty(\mathbb{R}), \quad (2.5)
\]
see [3]. Then we obtain as above that
\[
|\hat{\phi}(\alpha)| \leq \|T^*_\phi\| = \|T_\phi\|, \forall \phi \in \mathcal{C}_c^\infty(\mathbb{R}), \forall \alpha \in \mathcal{D}_{-in,p(S)}.
\]
From the Phragmen-Lindelöf theorem, it follows that
\[
|\hat{\phi}(\alpha)| \leq \|T_\phi\|, \forall \phi \in \mathcal{C}_c^\infty(\mathbb{R}), \forall \alpha \in U_E.
\]
\[\square\]

The proof of Theorem 1 follows from Proposition 2 and Lemma 2 exactly in the same way as in the proof of Theorem 1 in [4] and we omit the details.

In the proof of Theorem 2, we need the following technical lemma.

Lemma 3. Let \(\epsilon > 0, \eta_0 > 0 \) and \(V = \{\xi \in \mathbb{R}^+ : |\eta_0 - \xi| \leq \delta \} \subset \mathbb{R}^+ \) be fixed. Let \(C_0 > 0 \) be a fixed constant. For \(t_0 > 0 \) sufficiently large there exists a function \(f \in \mathcal{C}_c^\infty(\mathbb{R}^+) \) with the properties:
\[
\int_{\mathbb{R} \setminus V} |\hat{f}(\xi)| d\xi \leq \epsilon / C_0. \quad (2.6)
\]
\[
\int_{\mathbb{R}} |\hat{f}(\xi)| d\xi \leq 2\sqrt{2\pi}. \quad (2.7)
\]
\[
|f(t_0)| = 1. \quad (2.8)
\]
Proof. Introduce the function \(g \) with Fourier transform
\[
\hat{g}(\xi) = \frac{1}{a} e^{-\frac{(\xi - \eta_0)^2}{2a^2}} e^{-it_0 \xi},
\]
where \(a > 0 \) will be taken small enough below. We have
\[
\int_{\mathbb{R} \setminus V} |\hat{g}(\xi)| d\xi = \frac{1}{a} \int_{|\xi - \eta_0| \geq \delta} e^{-\frac{(\xi - \eta_0)^2}{2a^2}} d\xi
\leq e^{-\frac{\delta^2}{4a^2}} \frac{1}{a} \int_{\mathbb{R}} e^{-\frac{(\xi - \eta_0)^2}{4a^2}} d\xi \leq \frac{e}{2C_0}
\]
for \(a > 0 \) small enough. We fix \(a > 0 \) with this property. Obviously,
\[
\int_{\mathbb{R}} |\hat{g}(\xi)| d\xi = \int_{\mathbb{R}} e^{-\mu^2/2} d\mu = \sqrt{2\pi}.
\]
On the other hand,
\[
g(t) = \frac{1}{2\pi a} \int_{\mathbb{R}} e^{-\frac{(\xi - \eta_0)^2}{2a^2}} e^{i(t-t_0) \xi} d\xi
= \frac{1}{2\pi} e^{i(t-t_0)\eta_0} \int_{\mathbb{R}} e^{-\mu^2/2} e^{i(t-t_0)\mu} d\mu = e^{-\frac{a^2(t-t_0)^2}{2}} e^{i(t-t_0)\eta_0}
\]
and \(|g(t_0)| = 1 \).

Now we will take \(t_0 > 2 \) sufficiently large. Let \(\varphi \in C_c^\infty(\mathbb{R}) \) be a fixed function such that \(\varphi(t) = 0 \) for \(t \leq 1/2 \) and for \(t \geq 2t_0 - 1/2 \) and let \(\varphi(t) = 1 \) for \(1 \leq t \leq 2t_0 - 1, \ 0 \leq \varphi \leq 1 \). Introduce the function \(f = \varphi g \in C_c^\infty(\mathbb{R}^+) \). The property (2.8) is trivial. We will show that (2.6) is satisfied for \(t_0 > 0 \) large enough depending on the choice of \(a > 0 \). The proof of (2.7) is similar and easier.

The function \(F = (\varphi - 1)g \) has a small Fourier transform. Moreover, given \(\epsilon > 0 \) we can take \(t_0 > 0 \) large enough in order to have
\[
|(1 + \xi^2) \hat{F}(\xi)| \leq \frac{\epsilon}{2\pi C_0} \tag{2.9}
\]
Indeed, for \(\xi^2 \hat{F}(\xi) \) we use an integration by parts with respect to \(t \) using the fact that
\[
\xi^2 e^{-it\xi} = -\partial_t^2 \left(e^{-it\xi}\right).
\]
On the support of \((\varphi - 1) \) we have \(|t - t_0| > t_0 - 1 \). Thus after the integration by parts in the integral \(\int_{\mathbb{R}} e^{-it\xi}(1 + \xi^2) F(t) dt \) we are going to estimate an integral
\[
\int_{|t-t_0| \geq t_0 - 1} e^{-\frac{a^2(t-t_0)^2}{2}} |P(t)| dt
\]
with \(P \) a polynomial of degree not greater than 2.
To get (2.9), remark that this integral is bounded by
\[C\left[\int_{-\infty}^{1-t_0} y^2 e^{-a^2 y^2/2}dy + \int_{t_0-1}^{\infty} y^2 e^{-a^2 y^2/2}dy\right] \]
and taking \(t_0 > 0 \) sufficiently large we arrange (2.9). Next we obtain
\[\int_{R\backslash V} |\hat{f}(\xi)|d\xi \leq \int_{R\backslash V_t} |\hat{g}(\xi)|d\xi + \int_{R\backslash V_c} |\hat{F}(\xi)|d\xi \]
\[\leq \frac{\epsilon}{2C_0} + \frac{\epsilon}{2\pi C_0} \int_{R} (1 + \xi^2)^{-1}d\xi \leq \frac{\epsilon}{C_0}. \]
The proof of the lemma is complete. \(\square \)

Proof of Theorem 2. First, we show that
\[\left\{ z \in \mathbb{C}, \frac{1}{\rho(S-z)} \leq |z| \leq \rho(S) \right\} \subset spec(S). \tag{2.10} \]
Fix \(\lambda \notin \text{spec}(S) \). Then the operator \((S - \lambda I)^{-1}\) is a Wiener-Hopf operator and following 2) of Theorem 1, we get
\[(S - \lambda I)^{-1}(f)_a = P^+ \mathcal{F}^{-1}(\nu_a(f)_a), \forall a \in I_E, \forall f \in C_c^\infty(\mathbb{R}^+), \]
where \(\nu_a \in L^\infty(\mathbb{R}) \). Replacing, \(f \) by \((S - \lambda I)g\), we obtain
\[(g)_a = P^+ \mathcal{F}^{-1}\left(\nu_a \mathcal{F}\left((S - \lambda I)g\right)\right), \forall g \in C_c^\infty(\mathbb{R}^+). \]
Denote by \(e^{a+ix} \) the function \(x \rightarrow e^{a+ix} \).

It is easy to see that
\[\mathcal{F}((Sg)_a)(t) = e^{-it} \mathcal{F}((g)_a)(t), \forall a \in I_E, \forall t \in \mathbb{R}, \forall g \in C_c^\infty(\mathbb{R}^+). \]
Consequently,
\[(g)_a(t) = \mathcal{F}^{-1}[(e^{a-i} - \lambda)\nu_a(\widehat{g})_a](t), \forall a \in I_E, \forall t \in \mathbb{R}^+, \forall g \in C_c^\infty(\mathbb{R}^+). \tag{2.11} \]
We have
\[\| \mathcal{F}^{-1}[(e^{a-i} - \lambda)\nu_a(\widehat{g})_a]\|_\infty \leq \| (e^{a-i} - \lambda)\nu_a(\widehat{g})_a\|_{L^1(\mathbb{R})}, \forall a \in I_E, \forall g \in C_c^\infty(\mathbb{R}^+). \tag{2.12} \]
Now, suppose that \(|\lambda| = e^b \), for some \(b \in I_E \). Choose a small \(\epsilon \in]0,1[\). It is easy to find an interval \(V_\epsilon \subset \mathbb{R}^+ \) such that
\[|e^{b-it} - \lambda| \leq \frac{\epsilon}{2\|\nu_b\|_\infty}, \forall t \in V_\epsilon. \]
Taking into account Lemma 3, we can choose \(g \in C_c^\infty(\mathbb{R}^+) \) satisfying the following three conditions:
\[1) \int_{R\backslash V_\epsilon} |(g)_b(t)|dt \leq \frac{\epsilon}{4\|\nu_b\|_\infty} \]
2) $\int_{V_e} |(g)_{b}(t)| dt \leq 1$
3) There exists $t_0 \in \mathbb{R}^+$, such that $|(g)_{b}(t_0)| \geq \epsilon$.

Taking into account that (2.11) and (2.12) hold for $g \in C_c^\infty(\mathbb{R}^+)$, we get

$$|(g)_{b}(t_0)| \leq \int_{V_e} |e^{b-it} - \lambda\|\nu_b\|_\infty|(g)_{b}(t)| dt + \int_{\mathbb{R}\setminus V_e} |e^{b-it} - \lambda\|\nu_b\|_\infty|(g)_{b}(t)| dt \leq \epsilon.$$

Hence we obtain a contradiction so $|\lambda| \neq e^a$, $\forall a \in I_E$ and (2.10) follows.

We will prove now that

$$\left\{ z \in \mathbb{C}, \frac{1}{\rho(S)} \leq |z| \leq \rho(S-1) \right\} \subset \text{spec}(S-1). \quad (2.13)$$

Let $\lambda \notin \text{spec}(S-1)$. Then $(S-1 - \lambda I)^{-1} \in W(E)$. Indeed, for all $x \in \mathbb{R}^+$, we observe that

$$S_{-x}(S-1 - \lambda I)^{-1}S_x = (S-1 - \lambda I)^{-1}(S-1 - \lambda I)S_{-x}(S-1 - \lambda I)^{-1}S_x = (S-1 - \lambda I)^{-1}. $$

Hence, for all $g \in C_c^\infty(\mathbb{R}^+)$ and for each $a \in I_E$, we have

$$((S-1 - \lambda I)^{-1}g)_a = P^+ F^{-1}(h_a\hat{g}_a),$$

for some $h_a \in L^\infty(\mathbb{R})$ and

$$(f)_a = P^+ F^{-1}\left(h_a F(((S-1 - \lambda I)f)_a)\right), \forall f \in C_c^\infty(\mathbb{R}^+).$$

Then

$$F\left(((S-1 - \lambda I)f)_a\right)(t) = (e^{it-a} - \lambda)(f)_a(t), \text{ a.e. on } \mathbb{R}^+,$$

if we suppose that $\text{supp}(f) \subset [1, \infty[$. Repeating the argument of the proof of (2.10), we get a contradiction if $|\lambda| = e^{-a}$, for some $a \in I_E$. We conclude that

$$\left\{ z \in \mathbb{C}, \frac{1}{\rho(S)} \leq |z| \leq \rho(S-1) \right\} \subset \text{spec}(S-1).$$

It follows that, if $z \in \mathbb{C}$ is such that $\frac{1}{\rho(S-1)} \leq |z| \leq \rho(S)$ then $\frac{1}{z} \in \text{spec}(S-1)$ and we deduce that

$$\left\{ z \in \mathbb{C}, \frac{1}{\rho(S-1)} \leq |z| \leq \rho(S) \right\} \subset \text{spec}(S) \cap \left(\text{spec}(S-1)\right)^{-1}.$$

From the definition of the spectral radius we get immediately that

$$\text{spec}(S) \cap \left(\text{spec}(S-1)\right)^{-1} \subset \left\{ z \in \mathbb{C}, \frac{1}{\rho(S-1)} \leq |z| \leq \rho(S) \right\}$$

and the proof of Theorem 2 is complete. \(\square\)
Proposition 3. If $\phi \in C_c^\infty(\mathbb{R})$, then

$$\widehat{\phi}(U_E) \subset \text{spec}(T_\phi).$$

Proof. Fix $\lambda \notin \text{spec}(T_\phi)$. Then $(T_\phi - \lambda I)^{-1}$ is a Wiener-Hopf operator and we obtain as above

$$(g)_a = P^+ F^{-1}(\nu_a[\widehat{(\phi)} - \lambda \widehat{(g)}]_a), \forall g \in C_c^\infty(\mathbb{R}^+), \forall a \in I_E,$$

where $\nu_a \in L^\infty(\mathbb{R})$. Choosing a suitable $g \in C_c^\infty(\mathbb{R}^+)$, we obtain in the same way as in the proof of (2.10) a contradiction if

$$\widehat{(\phi)}_a(t) = \lambda,$$

for some $a \in I_E$ and some $t \in \mathbb{R}$ and the proposition follows immediately. □

3. Wiener-Hopf operators on Banach spaces of functions on \mathbb{R}^+ with values in a Hilbert space H

Now let H be a separable Hilbert space. Denote by $< u, v >$ the scalar product of $u, v \in H$. Let $\|u\|_H$ be the norm of $u \in H$. In this section we prove Theorem 3. Let E be the Banach space of functions from \mathbb{R}^+ into H satisfying (H1), (H2) and (H3). Let \overline{E} be a Banach space of functions $F : \mathbb{R}^+ \rightarrow H$

such that

$$\left(\mathbb{R}^+ \ni x \rightarrow \|F(x)\|_H \right) \in E.$$

We have the following two lemmas.

Lemma 4. The space $C_c^\infty(\mathbb{R}^+) \otimes H$ is dense in \overline{E}.

Proof. Let $\Phi \in \overline{E}$. Then there exists a positive sequence $(\phi_n)_{n \in \mathbb{N}} \subset C_c^\infty(\mathbb{R}^+)$ such that

$$\lim_{n \rightarrow +\infty} \|\phi_n - \|\Phi(.)\|_H\|_E = 0.$$

For almost every $x \in \mathbb{R}^+$, set

$$\Phi_n(x) = \phi_n(x) \frac{\Phi(x)}{\|\Phi(x)\|_H}, \text{ if } \Phi(x) \neq 0,$$

$$\Phi_n(x) = 0, \text{ if } \Phi(x) = 0.$$

We have

$$\|\Phi_n - \Phi\|_{\overline{E}} = \|\Phi_n(.) - \Phi(.)\|_H \|_E = \|\phi_n - \|\Phi(.)\|_H\|_E$$

and it is clear that

$$\lim_{n \rightarrow +\infty} \|\Phi_n - \Phi\|_{\overline{E}} = 0.$$

Since $C_c^\infty(\mathbb{R}^+) \otimes H$ is dense in $C_0(\mathbb{R}^+, H)$, the space $C_c^\infty(\mathbb{R}^+) \otimes H$ is dense in \overline{E}. □
Lemma 5. If $\Phi \in \overline{E}$ and $u \in H$, then the function defined by
$$\mathbb{R}^+ \ni x \mapsto \langle \Phi(x), u \rangle \in \mathbb{C}$$
is a element of E.

Proof. Let $\left(\sum_{n=1}^{N} \phi_n u_n \right)_{N \geq 0}$ be a sequence in $C^\infty_c(\mathbb{R}^+) \otimes H$ such that $\phi_n \in C^\infty_c(\mathbb{R}^+)$, $\forall n \in \mathbb{N}$ and
$$\lim_{N \to +\infty} \left\| \sum_{n=1}^{N} \phi_n u_n - \Phi \right\|_E = 0.$$Let $u \in H$. Then we have
$$\lim_{N \to +\infty} \left\| \sum_{n=1}^{N} \phi_n(.) u_n, u > - \langle \Phi(.), u \rangle \right\|_E$$
$$\leq \lim_{N \to +\infty} \left\| \sum_{n=1}^{N} \phi_n(.) u_n - \Phi(.) \right\|_H \left\| u \right\| = 0.$$Now, it is clear that
$$x \mapsto \langle \Phi(x), u \rangle \in \mathbb{C}$$is a element of E. \square

In the proof of Theorem 3 we will also use the following lemma.

Lemma 6. Let $G \in L^2(\mathbb{R}, H)$ and $v \in H$. Then we have
$$\mathcal{F}(\langle G(.), v \rangle)(x) = \langle \mathcal{F}(G)(x), v \rangle,$$for almost every $x \in \mathbb{R}$.

The reader may find the proof of Lemma 6 in [6]. Next we pass to the proof of our main result.

Proof of Theorem 3. Let $T \in W(\overline{E})$. Fix $u, v \in H$. Define $T_{u,v}$ on E by the formula
$$(T_{u,v}f)(x) = \langle T(fu)(x), v \rangle, \forall f \in E, a.e.$$From Lemma 5, it follows that $T_{u,v}$ is an operator from E into E. It is clear that
$$S_{-x} \langle S_x fu, v \rangle = \langle S_{-x}T(S_x fu), v \rangle = \langle T(fu), v \rangle, \forall x \in \mathbb{R}^+.$$Then we see that $T_{u,v} \in W(E)$. Following Theorem 1, for $a \in I_E$ there exists a function $\nu_{a,u,v} \in L^\infty(\mathbb{R})$ such that
$$(T_{u,v}f)_a = P^+ \mathcal{F}^{-1}(\nu_{a,u,v}(f)_a), \forall f \in C^\infty_c(\mathbb{R}^+)$$.
Let B be an orthonormal basis of H and let O be the set of finite linear combinations of elements of B. We have
\[|\nu_{a,u,v}(x)| \leq C \|T_{u,v}\|, \quad \forall x \in \mathbb{R} \setminus N_{u,v}, \]
where $N_{u,v}$ is a set of measure zero. Without loss of generality, we can modify $\nu_{a,u,v}$ on $N = \bigcup_{(u,v) \in O \times O} N_{u,v}$ in order to obtain
\[|\nu_{a,u,v}(x)| \leq C \|M_{u,v}\| \leq C \|T\| \|u\| \|v\|, \quad \forall u, v \in O, \text{a.e.} \]
For fixed $x \in \mathbb{R} \setminus N$ we observe that $O \times O \ni (u,v) \rightarrow \nu_{a,u,v}(x) \in C$ is a sesquilinear and continuous form on $O \times O$ and since O is dense in H, we conclude that there exists an unique map
\[(H \times H \ni (u,v) \rightarrow \tilde{\nu}_{a,u,v}(x) \in C \]
such that
\[\tilde{\nu}_{a,u,v}(x) = \nu_{a,u,v}(x), \quad \forall u, v \in O. \]
Consequently, there exists an unique map
\[\mathcal{V}_a : \mathbb{R} \rightarrow \mathcal{L}(H) \]
such that
\[\langle \mathcal{V}_a(x)[u], v \rangle = \tilde{\nu}_{a,u,v}(x), \forall u, v \in H, \text{a.e.} \]
It is clear that
\[\| \mathcal{V}_a(x) \| = \sup_{\|u\|=1,\|v\|=1} | \langle V_a(x)[u], v \rangle | \leq C \|T\|, \text{a.e.} \]
Fix $a \in I_E$ and $f \in C^\infty_c(\mathbb{R}^+)$. It is obvious that we have $(\hat{f})_a(x)u \in H, \forall x \in \mathbb{R}$. Next for almost every $x \in \mathbb{R}^+$, we obtain
\[\mathcal{F}^{-1}(\langle \mathcal{V}_a(.)[(\hat{f})_a(.)]u, v \rangle)(x) = \mathcal{F}^{-1}(\langle V_a(.)[u], v \rangle = (f)_a(.)u)(x) = \mathcal{F}^{-1}(\tilde{\nu}_{a,u,v}(.)(\hat{f})_a(.)u)(x) = (T_{u,v}f)_a(x). \]
Consequently,
\[\mathcal{F}^{-1}(\langle \mathcal{V}_a(.)[(\hat{f})_a(.)]u, v \rangle)(x) = (T[fu](.), v >)_a(x), \quad (3.1) \]
for almost every $x \in \mathbb{R}^+$. Now, consider the function Ψ_a on \mathbb{R}^+ defined for almost every $x \in \mathbb{R}^+$ by the formula
\[\Psi_a(x) = \mathcal{V}_a(x)[(\hat{f})_a(x)u] \]
and observe that $\Psi_a \in L^2(\mathbb{R}^+, H)$. Indeed, we have
\[\int_{\mathbb{R}^+} \| \mathcal{V}_a(x)[(\hat{f})_a(x)u] \|^2 dx \]
\[\leq \int_{\mathbb{R}^+} \|V_a(x)\| \|\hat{(f)}_a(x)u\|^2 dx \]
\[\leq C^2 \|T\|^2 \int_{\mathbb{R}^+} |\hat{(f)}_a(x)|^2 \|u\|^2 dx < +\infty. \]

This makes possible to apply Lemma 6, and we get
\[\mathcal{F}^{-1}(\langle V_a(.)\hat{(f)}_a(.)u, v >)(x) = \mathcal{F}^{-1}(V_a(.)\hat{(f)}_a(.)u)(x), \]
for almost every \(x \in \mathbb{R}^+ \). It follows from (3.1) that we have
\[(T[fu])_a(x) = \mathcal{F}^{-1}(V_a(.)\hat{(f)}_a(.)u)(x), \]
for almost every \(x \in \mathbb{R}^+ \) and this yields
\[(T[fu])_a \in L^2(\mathbb{R}^+, H). \]

This completes the proof of 1) and 2). The proof of 3) uses the same argument as the proof of the assertion 3) of Theorem 1. \(\Box \)

Proof of Theorem 4. Fix \(\alpha \in \mathbb{C} \) and suppose that \(\alpha \not\in \text{spec}(S) \). Then we have \((S - \alpha I)^{-1} \in W(E)\) and from Theorem 3, we get
\[((S - \alpha I)^{-1}F)_a = \mathcal{F}^{-1}(V_a(.)\hat{(F)}_a(.)], \forall a \in I_E, \forall F \in C_c^\infty(\mathbb{R}^+) \otimes H. \]
Replacing \(F \) by \((S - \alpha I)G\), we get
\[(G)_a(x) = \mathcal{F}^{-1}(V_a(.)\mathcal{F}[(S - \alpha I)G(.)](x) = \mathcal{F}^{-1}\left(V_a(.)[(e^{\alpha - i} - \alpha)(\hat{G})_a(.)]\right)(x). \]

We have
\[\|G\|_{1, \infty} \leq \|V_a(.)[(e^{\alpha - i} - \alpha)(\hat{G})_a(.)]\|_{L^1(\mathbb{R})}, \forall a \in I_E. \]
Then if \(|\alpha| = e^a \), for some \(a \in I_E \) choosing a suitable \(G \in C_c^\infty(\mathbb{R}^+) \otimes H \) in the same way as in the proof of Theorem 2, we obtain a contradiction. Hence,
\[\left\{ z \in \mathbb{C}, \frac{1}{\rho(S-1)} \leq |z| \leq \rho(S) \right\} \subset \text{spec}(S). \]

In the same way, we obtain
\[\left\{ z \in \mathbb{C}, \frac{1}{\rho(S-1)} \leq |z| \leq \rho(S) \right\} \subset (\text{spec}(S-1))^{-1}. \]

It follows that
\[\left\{ z \in \mathbb{C}, \frac{1}{\rho(S-1)} \leq |z| \leq \rho(S) \right\} \subset \text{spec}(S) \cap \left(\text{spec}(S-1)\right)^{-1}. \]

Taking into account that
\[\text{spec}(S) \cap \left(\text{spec}(S-1)\right)^{-1} \subset \left\{ z \in \mathbb{C}, \frac{1}{\rho(S-1)} \leq |z| \leq \rho(S) \right\} \]
and
\[\|S\| \leq \|S\|, \quad \|S_{-1}\| \leq \|S_{-1}\|, \]
(see Section 1), we observe that
\[\rho(S) = \rho(S), \quad \rho(S_{-1}) = \rho(S_{-1}). \]
We deduce that
\[\text{spec}(S) \cap \left(\text{spec}(S_{-1}) \right)^{-1} = \left\{ z \in \mathbb{C}, \frac{1}{\rho(S_{-1})} \leq |z| \leq \rho(S) \right\} \]
and the proof of Theorem 4 is complete. □

4. Generalizations

In this section we first deal with the Wiener-Hopf operators in a larger class of Banach spaces of functions on \(\mathbb{R}^+ \) with values in a separable Hilbert space. Let \(W \) be an operator-valued weight on \(\mathbb{R}^+ \). It means that \(W \) is an operator-valued weight on \(\mathbb{R}^+ \), and it satisfies the property
\[0 < \sup_{x \in \mathbb{R}^+} \frac{\|W(x + y)\|}{\|W(x)\|} < +\infty, \quad \forall y \in \mathbb{R}^+. \]
(4.1)
This implies (see [4], [5]) that for every compact \(K \) of \(\mathbb{R}^+ \), we have
\[\sup_{x \in K} \|W(x)\| < +\infty. \]
Notice that if \(H \) has a finite dimension, \(W \) is given by a matrix. We denote by \(L^p_W(\mathbb{R}^+, H) \) the space of measurable functions \(F \) on \(\mathbb{R}^+ \) with values in \(H \) such that
\[\int_{\mathbb{R}^+} \|W(x)[F(x)]\|_H^p dx < +\infty. \]
For illustration we give a simple example.

Example. If \(H \) is the space \(\mathbb{R}^5 \), the operator-valued weight \(W \) defined for \(x \) by the matrix
\[
\begin{pmatrix}
 1 & e^x & e^{3x} & 1 & 1 \\
 1 + x & x & e^x & 1 & e^{3x} \\
 e^x & 1 & 1 & x & x + 1 \\
 1 & 1 & e^x & e^{2x} & 1 \\
 x & x & 1 + x & e^x & \frac{x^2}{2}
\end{pmatrix}
\]
is such that the condition (4.1) trivially holds.
The space $L^p_W(\mathbb{R}^+, H)$ is equipped with the norm
\[
\left(\int_{\mathbb{R}^+} \|W(x)[F(x)]\|_H^p \, dx \right)^{\frac{1}{p}}.
\]
Let T be a Wiener-Hopf operator on $L^p_W(\mathbb{R}^+, H)$. We fix $u, v \in H$. Notice that for $u \in H$ and $f \in L^p_W(\mathbb{R}^+)$, we have $fu \in L^p_W(\mathbb{R}^+, H)$. Indeed,
\[
\int_{\mathbb{R}^+} \|W(x)[f(x)u]\|_H^p \, dx \leq \int_{\mathbb{R}^+} \|W(x)\|_H^p |f(x)|^p \|u\|_H^p \, dx < +\infty.
\]
Introduce the operator $T_{u,v}$ defined on $L^p_W(\mathbb{R}^+)$ by the formula
\[
(T_{u,v}f)(x) = \langle T(fu)(x), v \rangle, \text{ a.e., } \forall f \in L^p_W(\mathbb{R}^+).
\]
It is easy to see that
\[
\int_{\mathbb{R}^+} \|W(x)[f(x)u]\|_H^p \, dx \leq \int_{\mathbb{R}^+} \|W(x)\|_H^p |f(x)|^p \|u\|_H^p \, dx < +\infty.
\]
Consequently, $T_{u,v}$ is a Wiener-Hopf operator on $L^p_W(\mathbb{R}^+)$. Therefore $T_{u,v}$ has a symbol following Theorem 1. Applying the methods exposed in Section 3, we obtain that Theorem 3 holds also if we replace E by $L^p_W(\mathbb{R}^+)$, for $1 \leq p < \infty$. Denote by I_E (resp. U_E) the set I_E (resp. U_E) for $E = L^p_W(\mathbb{R}^+)$. We recall that I_E and U_E are defined in the Introduction.

We have the following.

Theorem 5. Let T be a Wiener-Hopf operator on $L^p_W(\mathbb{R}^+, H)$, for $1 \leq p < \infty$.
1) We have $(T\Phi)_a \in L^2(\mathbb{R}^+, H)$, $\forall \Phi \in C^\infty_c(\mathbb{R}^+) \otimes H$, $\forall a \in I_W$.
2) There exists $\mathcal{V}_a \in L^\infty(\mathbb{R}, \mathcal{L}(H))$ such that
\[
(T\Phi)_a = \mathcal{P}^+ F^{-1}(\mathcal{V}_a([\hat{\Phi}]_a)(\cdot)), \forall a \in I_W, \forall \Phi \in C^\infty_c(\mathbb{R}^+) \otimes H.
\]
Moreover, $\esssup_{x \in \mathbb{R}} \|\mathcal{V}_a(x)\| \leq C\|T\|$.
3) If $U_W \neq \emptyset$, set
\[
\mathcal{V}(x+ia) = \mathcal{V}_a(x), \forall a \in \overset{\circ}{I}_W, \text{ for almost every } x \in \mathbb{R}
\]
We have $\sup_{z \in \overset{\circ}{U}_W} \|\mathcal{V}(z)\| \leq C\|T\|$ and for $u, v \in H$, the function
\[
z \rightarrow \mathcal{V}(z)u, v
\]
is analytic on $\overset{\circ}{U}_W$.

23
The results of Section 3 and Section 4 hold if we replace H by a separable Banach space B satisfying the following conditions:
1) B has a countable basis.
2) The dual space of B denoted by B^* has a countable basis.
For example these conditions are satisfied if $B = l^p_\omega(Z)$, where ω is a weight on Z and $1 \leq p < +\infty$. We recall that ω is a weight on Z, if ω is a positive sequence on Z satisfying
$$0 < \sup_{k \in Z} \frac{\omega(k + n)}{\omega(k)} < +\infty, \forall n \in \mathbb{Z}.$$

It is easy to see that $B^* = l^{q*}_\omega(Z)$, where q is such that $\frac{1}{p} + \frac{1}{q} = 1$. The weight ω^* is given by the formula
$$\omega^*(n) = \frac{1}{\omega(-n)}, \forall n \in \mathbb{Z}.$$

Denote by e_n the sequence defined by $e_n(k) = 0$ if $n \neq k$ and $e_n(n) = 1$. Considering the family $\{e_n\}_{n \in \mathbb{Z}}$ included in $l^p_\omega(Z)$ and in $l^{q*}_\omega(Z)$, it is trivial to see that les conditions 1) and 2) are satisfied.

Let B be a Banach space satisfying 1) and 2). Let E be a Banach space of functions on \mathbb{R}^+ satisfying (H1)-(H3). Denote by $<,>_B$ the duality between B and B^*. Let E be the space of functions $F: \mathbb{R}^+ \rightarrow B$ such that $\|F(.)(x)\|_B \in E$. Let T be a Wiener-Hopf operator on E. Then using the operators $T_{u,v}$ defined by
$$(T_{u,v}f)(x) = < T(fu)(x), v>_B, \forall u \in B, \forall v \in B^*, \text{ a.e.}$$
and the arguments of the proof of Theorem 3, we obtain an extended version of Theorem 3 in the case of spaces of functions on \mathbb{R}^+ with values in B. For example Theorem 3 holds for the Wiener-Hopf operators on spaces of the form $L^p_{\omega_1}(\mathbb{R}^+, l^q_{\omega_2}(Z))$, for $1 \leq p < \infty$, $1 \leq q < \infty$, where ω_1 (resp. ω_2) is a weight on \mathbb{R}^+ (resp. Z). The arguments developed in this paper do not hold if we replace $l^q_{\omega_2}(Z)$ by $L^q_{\omega_2}(\mathbb{R})$, for $q \neq 2$. The existence of the symbol of a Wiener-Hopf operator on the family of spaces $L^p_{\omega_1}(\mathbb{R}^+, L^q_{\omega_2}(\mathbb{R}))$ for $q \neq 2$ is an interesting direction of investigation.

References

[1] I. M. Bund, Birnbaum-Orlicz spaces of functions on groups, Pacific J. Math. 58 (1975), 351-359.
[2] G.I. Gaudry, B.R.F. Jefferies, W.J. Ricker, Vector-valued multipliers: convolution with operator-valued measures, Dissertations Math. 385 (2000).
[3] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. (1957).
[4] V. Petkova, Symbole d’un multiplicateur sur $L^p_{\omega_1}(\mathbb{R})$, Bull. Sci. Math. 128 (2004), 391-415.
[5] V. Petkova, Wiener-Hopf operators on $L^q_{\omega_2}(\mathbb{R}^+)$, Arch. Math.(Basel), 84 (2005), 311-324.
[6] V. Petkova, *Multipliers on spaces of functions on a locally compact abelian group with values in a Hilbert space*, Serdica Math. J. 32 (2006), 215-226.

[7] G. Roos, *Analyse et Géométrie, Méthodes hilbertiennes*, Dunod, Paris, 2002.

Violeta Petkova, Université Paul Sébertier., UFR: MIG, Laboratoire Emile Picard, 118 route de Narbonne, 31062 Toulouse Cedex 4, France.,

E-mail address: petkova@math.ups-tlse.fr