Retrospective Study

Comparison of the reverse bevel versus Franseen type endoscopic ultrasound needle

Chi Wing Chow, Syeda Asma Haider, Krish Ragunath, Guruprasad P Aithal, Martin W James, Jacobo Ortiz-Fernandez-Sordo, Aloysious Dominic Aravinthan, Suresh Vasan Venkatachalapathy

ORCID number: Chi Wing Chow 0000-0002-7277-4799; Syeda Asma Haider 0000-0001-5978-4493; Krish Ragunath 0000-0001-6571-5435; Guruprasad P Aithal 0000-0003-3924-4830; Martin W James 0000-0002-1483-719X; Jacobo Ortiz-Fernandez-Sordo 0000-0001-6426-5920; Aloysious Dominic Aravinthan 0000-0003-0527-5137; Suresh Vasan Venkatachalapathy 0000-0001-5576-310X.

Author contributions: Venkatachalapathy SV did the conception of the study, design of the study, writing of manuscript, critical review and overall supervision of the study; Chow CW did the design of the study, data gathering, statistical analysis of data, writing of manuscript and critical review; Haider SA reviewed cytology and did critical review; Ragunath K, Aithal GP, James MW, Ortiz-Fernandez-Sordo J designed the study and did critical review; Aravinthan AD did the statistical analysis of data, writing of manuscript and critical review.

Institutional review board statement: This study was reviewed and approved by the Nottingham University Hospitals National Health Service Trust review board.

Abstract

BACKGROUND

Reverse bevel (RB) needle is widely used for endoscopic ultrasound fine needle biopsy (EUS-FNB). A 3-plane symmetrical needle with Franseen geometry (FG) has recently become available.

AIM

To compare the clinical efficacy of FG to that of RB needle.

METHODS

A retrospective cohort study of all adult patients who underwent EUS-FNB for solid and mixed lesions either with 22G RB needle or 22G FG needle between January 2016 and February 2019 was undertaken. All cytology slides were reviewed by an independent gastrointestinal cytopathologist blinded to the needle used and the initial cytology report. The primary and secondary outcomes were to assess the sample adequacy using Euro-cytology criteria and the number
of cell clusters, respectively.

RESULTS
Two hundred and twenty six procedures were included in the study. RB needle was used in 128 procedures and FG needle in 98 procedures. The baseline characteristics of both groups were comparable. On multivariable analysis, FG needle \((P = 0.02) \) and location of the lesion \((P < 0.01) \) were independently associated with adequate tissue. Further, the use of FG needle \((P = 0.04) \) and the size of the lesion \((P = 0.02) \) were independently associated with acquisition of increased number of cell clusters.

CONCLUSION
FG needle is superior to RB needle in acquiring adequate tissue and attaining higher number of cell clusters for solid and mixed lesions.

Key Words: Endoscopic ultrasound; Fine needle aspiration; Fine needle biopsy; Reverse bevel; Franseen geometry; Tissue acquisition

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Despite retrospective, it is the first paper to try to compare the performance of reverse bevel fine needle biopsy (FNB) needle with Franseen geometry FNB needle in term of tissue acquisition and number of cell clusters in specimen. Slides reviewed by an independent expert gastrointestinal cytopathologist blinded to needle type used and original cytology reports to minimize bias.

INTRODUCTION
Endoscopic ultrasound (EUS) is widely used as a diagnostic tool to obtain tissue from abdominal and thoracic lesions via the gastrointestinal (GI) tract. The procedure is minimally-invasive and well-tolerated by patients\(^6\). A number of factors have been shown to influence successful tissue acquisition including lesion position\(^7\), lesion size\(^8\), needle type\(^8\), needle size\(^9\), number of passes\(^9\), technical skills\(^9\) and the presence of rapid on-site cytological evaluation (ROSE)\(^10\).

Fine needle biopsy (FNB) needles have been in use since 2003\(^11\). European Society of Gastroenterology recommends using 22G or 25G needles for the sampling of solid masses and lymph nodes\(^5\). Reverse bevel (RB) needle (ProCore\(^{®}\), Cook Medical) is the most widely studied FNB needle\(^6\). Evidence for needles such as Franseen geometry (FG) needle (Acquire\(^{TM}\), Boston Scientific), fork-tip needle (Shark Core; Medtronic) and antegrade core trap needle (ProCore\(^{®}\) 20G, Cook Medical)\(^12\) are emerging, but limited. Two meta-analysis comparing RB needle with fine needle aspiration (FNA) needle reported no significant difference in sample adequacy, diagnostic accuracy or core tissue acquisition rate; however, RB needle was able to establish the diagnosis with less number of passes\(^13\),\(^14\).

On the other hand, in recent studies, FG needle has been shown to have a better tissue acquisition, better tissue architecture, higher diagnostic accuracy compared to standard FNA needle\(^15\).\(^16\). Studies have also shown better performance of FG needle against other newer needles such as Echo-Tip Ultra needle (Cook Medical, Indiana)\(^17\) and antegrade core trap needle (ProCore\(^{®}\) 20G, Cook Medical)\(^18\). However, the literature on direct comparison of FG needle with the commonly used RB needle is lacking. In this retrospective study, we compare the real-life efficacy of 22G FG needle to that of 22G RB needle.
MATERIALS AND METHODS

Patient selection and data collection
A single centre retrospective cohort study was undertaken at Nottingham University Hospitals NHS Trust, a high-volume regional referral centre. All adult (age ≥ 18 years) patients who underwent EUS-FNB between January 2016 and February 2019, using either 22G RB needle or 22G FG needle were included in this study. Those who underwent EUS-FNB with other types of needles and 25G FG were excluded due to small numbers. Demographic characteristics, details of EUS procedure and cytopathology reports were extracted from the electronic patient record and endoscopy database.

The study was approved by Nottingham University Hospitals National Health Service Trust review board (ID number 19-551C).

Endoscopic ultrasound and tissue acquisition
All procedures were carried out under conscious sedation or deep sedation with general anaesthesia using either Olympus GF-UCT240 or Olympus GF-UCT260 curvilinear-array echo-endoscope. Fanning technique with dry suction or slow pull through was used for tissue acquisition. The specimens were collected in either Cytorpich preservative fluid or formalin, and then sent to pathology department for processing and reporting. ROSE of specimens was not performed in any of the procedures as it was not available. For the purposes of this study, location of the lesion was categorised into four groups–gut wall lesions, pancreatic lesions, extramural lesions and lymph nodes. The nature of lesion was categorised into solid or mixed (solid with cystic component).

Blinded review of cytology slides
All cytology slides were reviewed by an independent expert GI cytopathologist (Haider SA), who was blinded to the type of needle used and previous cytology report, and reported according to the Euro-cytology criteria (C1: Inadequate and non-diagnostic; C2: Benign; C3: Atypical cells found which favour benign; C4: Suspicious of malignancy; C5: Malignant). For the purpose of assessing tissue adequacy, C1 category was defined as inadequate tissue acquisition; C2, C3, C4, and C5 categories were defined as adequate tissue acquisition. The number of cell clusters per slide was also reported by the cytopathologist. A cell cluster was defined as group of cells with more than 2 cells; individual scattered cells were not counted as cell clusters. Cell cluster data was divided into greater than or equal to 50 cell clusters and less than 50 cell clusters for analysis.

Outcomes
The primary outcome was to identify factors that impact tissue adequacy (Euro-cytology C1 vs C2-C5) and the secondary outcome was to identify factors that impact the number of cell clusters in the specimen slides.

Statistical analysis
Continuous variables were presented as mean and standard deviation. Categorical variables were presented as number and percentage. All statistical analyses were performed using SPSS for Windows v26 (IBM Corp, Armonk, NY, United States). Fisher's exact test was used for categorical parameters with 2 × 2 contingency table and Pearson’s chi-square test was used for categorical parameters with contingency table dimensions that exceeded 2 × 2. Unpaired student’s t test or 1-way ANOVA test was used to study the relationship between categorical parameters with continuous parametric parameters. A P value of < 0.05 was considered significant. Variables with a P value ≤ 0.10 were included in the multivariable logistic regression analysis to identify independent factors. Cohen's kappa test was used to measure the inter-rater agreement between the interpretation of the independent GI cytopathologist and the original cytology reports.

RESULTS

Demographics and clinical characteristics
A total of 226 patient episodes were included in this study. Of which, 128 procedures were sampled using 22G RB needle and 98 were sampled using 22G FG needle. The
demographic characteristics of RB and FG needle groups were comparable and summarised in Table 1. There were no differences in age (P = 0.29), gender distribution (P = 0.42), location of the lesion (P = 0.55), nature of the lesion (P = 0.34), size of the lesion (P = 0.67), number of needle passes (P = 0.77), presence of trainee (P = 0.12) and the use of Sonovue contrast (P = 0.17) between the two groups.

Assessment by a GI cytopathologist
The kappa score of agreement between the independent GI cytopathologist review and the original cytology results was 0.671 (95% CI: 0.595-0.747; P < 0.01).

Primary outcome
The overall sample adequacy of the entire study cohort was 87.6%. The tissue adequacy in the FG needle group was 93% and RB needle group was 83%.

On univariable analysis, use of FG needle (P = 0.03) and the location of lesion (P < 0.01) were associated with adequate tissue acquisition (Table 2). Age (P = 0.88), gender (P = 1.00), presence of trainee (P = 1.00), lesion size (P = 0.11), nature of lesion (P = 0.62), number of passes (P = 0.61) and Sonovue contrast (P = 0.50) were not associated with adequate tissue acquisition (Table 2). On binary logistic regression analysis, the use of FG needle (OR 3.01; 95% CI: 1.15-7.86, P = 0.02) and the location of the lesion with pancreas (OR 9.42; 95% CI: 3.51-25.33, P < 0.01) were independently associated with adequate tissue acquisition (Table 2).

Secondary outcome
On univariable analysis, only the lesion size (P = 0.02) was associated with acquisition of ≥ 50 cell clusters; use of FG needle (P = 0.07) and solid lesions (P = 0.09) approached, but did not reach statistical significance (Table 3). Age (P = 0.67), gender (P = 0.13), location of the lesion (P = 0.39), presence of trainee (P = 0.25), number of passes (P = 0.65) and Sonovue contrast (P = 1.00) were not associated with acquisition of ≥ 50 cell clusters (Table 3). Lesion size, type of needle and nature of the lesion were included in the binary logistic regression analysis. Use of FG needle (OR 1.79; 95% CI: 1.02-3.12, P = 0.04) and larger lesion size (OR 1.02; 95% CI: 1.00-1.03, P = 0.02) were independently associated with acquisition of ≥ 50 cell clusters (Table 3).

DISCUSSION
This is the first study to report on the comparative performance of 22G FG needle and 22G RB needle in acquiring adequate tissue after blinded assessment. There was good correlation between the independent cytopathological review and original report. The location of the lesion and the use of FG needle were independent predictors of improved tissue adequacy; however, the latter was the only modifiable variable in this study that could improve tissue acquisition.

The superior performance of FG needle is likely due to its three plane (Franseen geometry) cutting tip which may have enhanced tissue acquisition. A prospective study comparing FG needle and FNA needle reported that the FG needle performed significantly better compared to FNA needle for median area of total tissue and cell block diagnostic yield[1]. However, the study did not report an independent association between FG needle and improved sample adequacy.

Lesion location was also independently associated with improved sample adequacy. This finding is in line with a retrospective study analysing EUS-guided Trucut biopsy from 247 patients which reported that the site of biopsy was an independent predictor of diagnostic yield[1].

In addition to Euro-cytology classification, we also assessed the number of cell clusters as an indirect marker of tissue acquisition. Larger lesions and the use of FG FNB needle were significantly associated with ≥ 50 cell clusters in the specimens. Bethesda system of classification for thyroid nodule FNA specimens suggests that there should be at least 6 cell clusters with each cluster having at least 10 representative cells for the sample to be deemed adequate[9]. However, no such requirement exists for GI and pancreatic lesions to assess sample adequacy. Based on cytopathologist review, 50 or more cell clusters with at least two cells in each cluster was chosen as the most reliable alternate indicator of tissue adequacy. We speculate that 50 or more cell clusters with at least 2 cells in each cluster would enable the cytopathologist to make a diagnosis with high confidence in distinguishing benign from malignant lesions. This, however, needs further evaluation and validation in future studies.
Table 1 Baseline characteristics of patients included in this study (n = 226)

Baseline characteristic	22G RB needle (n = 128)	22G FG needle (n = 98)	P value
Location of lesion			
Gut wall lesions	17 (13)	13 (13.3)	0.55
Pancreatic lesions	65 (51)	58 (59.2)	
Lymph node	23 (18)	15 (15.3)	
Extramural lesions	23 (18)	12 (12.2)	
Lesion nature			
Solid	124 (97)	92 (94)	0.34
Mixed	4 (5)	6 (6)	
Lesion size (mm)	35.0 (20.9)	36.0 (16.0)	0.67
Age (year)	66.3 (12.4)	68.1 (11.6)	0.29
Gender			
Female	58 (45)	39 (40)	0.42
Male	70 (55)	59 (60)	
Presence of trainee			
Yes	39 (30)	40 (41)	0.12
No	89 (70)	58 (59)	
Number of passes	3.1 (0.8)	3.2 (0.7)	0.77
Contrast sonovue			
Yes	1 (1)	4 (4)	0.17
No	127 (99)	94 (96)	

1Gut wall lesions include oesophageal, gastric, duodenal or rectal wall lesions.
2Extramural lesions does not include pancreatic lesions and lymph node. RB: Reverse bevel; FG: Franseen geometry.

The independent association between lesion size and higher number of cell clusters corroborates previous study findings. A retrospective study on 583 patients reported a strong correlation between diagnostic yield and the size of the lesion\[^4\]. Another retrospective study involving 271 patients reported that the size of the lesion was an independent factor for tissue acquisition\[^8\]. These indicate that care is needed with smaller lesions and the type of needle used, a modifiable factor, become even more important in smaller lesions.

Three passes is being considered sufficient when using 22G for tissue acquisition. Three or more number of passes with FNA needle has been shown to have a satisfactory sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 84.3%, 97%, 99%, 64%, and 84%, respectively\[^10\]. Given that the FNB needle requires significantly lower passes for adequate tissue acquisition\[^10\], it is not unreasonable to speculate that the number of passes made in this study was more than adequate for tissue acquisition in both needle groups (mean > 3 in both FG and RB needle groups), and therefore could be the reason why it was not an independent predictor of adequate tissue acquisition. This is further supported by a previous retrospective study which showed adequate yield of histological material with lower number of passes\[^10\].

A randomized control trial (RCT) comparing FG needle and fork tip needle reported a diagnostic cell block yield of 92% and 96%, respectively with no statistical significance between the two needles\[^10\]. Another RCT comparing FG and FNA needles reported a diagnostic cell block yield of 97.8% for FG needle\[^10\]. An observational study comparing 20G forward bevel needle and 22G FG needle found no difference in histological diagnosis rate, but FG needle achieved longer mean cumulative length of tissue core biopsies per needle pass\[^10\]. A prospective study comparing FG needle with standard FNA (expect, Boston scientific) needle reported increased rate of tissue
Table 2 Factors associated with tissue adequacy—univariable and multivariable logistic regression analysis

Factors	Univariable analysis	Multivariable analysis			
	Insufficient tissue (C1) ($n = 29$)	Sufficient tissue (C2-C5) ($n = 197$)	P value	OR (95%CI)	P value
--------------------------------	----------------------	------------------------	-----------	------------	-----------
FNB needle used					
22G RB needle	22 (76)	106 (59)	0.03	3.01 (1.15-7.86)	0.02
22G FG needle	7 (24)	91 (41)			
Gender					
Female	12 (41)	85 (43)	1.00		
Male	17 (59)	112 (57)			
Age (years)	66.7 (16.4)	67.2 (11.4)	0.88		
Presence of trainee					
Yes	7 (24)	72 (37)	0.22		
No	22 (76)	125 (63)			
Location of lesion					
Gut wall lesions	6 (20)	24 (12)	< 0.01	2.64 (0.85-8.19)	0.09
Pancreatic lesions	8 (28)	115 (58)		9.42 (3.51-25.33)	< 0.01
Lymph node	15 (52)	23 (12)		1.18 (0.00-669.44)	0.99
Extramural lesions	0 (0)	35 (18)			
Lesion size (mm)	30.1 (20.4)	36.2 (18.6)	0.11		
Lesion nature					
Solid	27 (94)	189 (96)	0.62		
Mixed	2 (6)	8 (4)			
Number of passes made	3.1 (0.7)	3.1 (0.8)	0.61		
Sonovue contrast					
Yes	1 (97)	4 (2)	0.50		
No	28 (3)	193 (98)			

*Parameters with a $P < 0.10$ on univariable analysis were included in the multivariable analysis and these parameters are indicated by an asterisk.

1Gut wall lesions include oesophageal, gastric, duodenal or rectal wall lesions.

2Extramural lesions do not include pancreatic lesions and lymph node. Tissue adequacy: C1: Insufficient; C2: Benign; C3: Atypical; C4: Suspicious; C5: Malignant. FNB: Fine needle biopsy; RB: Reverse bevel; FG: Franseen geometry.

In conclusion, tissue adequacy of 22G FG FNB needle was superior to 22G RB FNB. Further, the type of needle seems to be the only modifiable factors that impacts adequate tissue acquisition. Multicentre prospective trials are needed to further evaluate the utility of different needle types.
Table 3 Factors associated with number of cell groups-univariable and multivariable logistic regression analysis

Factors	Univariable analysis	Multivariable analysis			
	< 50 cell clusters \(n = 138\)	≥ 50 cell clusters \(n = 88\)	\(P\) value	OR (95%CI)	\(P\) value
FNB needle used\(^a\)					
22G RB needle	85 (62)	43 (49)	0.07	1.79 (1.02 - 3.12)	0.04
22G FG needle	53 (38)	45 (51)			
Gender					
Female	65 (47)	32 (36)	0.13		
Male	73 (53)	56 (64)			
Age (yr)	66.8 (12.3)	67.5 (11.7)	0.67		
Presence of trainee					
Yes	44 (32)	35 (40)	0.25		
No	94 (68)	53 (60)			
Location of lesion					
Gut wall lesions\(^1\)	20 (14)	10 (11)	0.39		
Pancreatic lesions	78 (57)	45 (51)			
Lymph node	23 (17)	15 (17)			
Extramural lesions\(^2\)	17 (12)	18 (21)	0.39		
Lesion size (mm)\(^3\)	33.1 (16.9)	39.0 (21.2)	0.02	1.02 (1.00 – 1.03)	0.02
Lesion nature\(^4\)					
Solid	129 (95)	87 (99)	0.09	0.13 (0.02 - 1.10)	0.06
Mixed	9 (7)	1 (1)			
Number of passes made	3.1 (0.8)	3.2 (0.8)	0.65		
Sonovue contrast					
Yes	3 (2)	2 (2)	1.00		
No	135 (98)	86 (98)			

\(^a\)Parameters with a \(P < 0.10\) on univariable analysis were included in the multivariable analysis and these parameters are indicated by an asterisk.

\(^1\)Gut wall lesions include oesophageal, gastric, duodenal or rectal wall lesions.

\(^2\)Extramural lesions do not include pancreatic lesions and lymph node. FNB: Fine needle biopsy; RB: Reverse bevel; FG: Franseen geometry.

ARTICLE HIGHLIGHTS

Research background

Many factors can affect endoscopic ultrasound fine needle biopsy (EUS-FNB) procedures tissue acquisition efficacy, with needle type and design being one of the possible factors.

Research motivation

Currently, there is no direct comparison of tissue acquisition efficacy between reverse bevel (RB) and Franseen geometry (FG) needles.

Research objectives

To look any for different in tissue acquisition performance between RB and FG needles, which can potentially be a modifiable factor to improve EUS-FNB accuracy in making a confident diagnosis.
Research methods
A retrospective study of all EUS-FNA/FNB procedures by either 22G RB needle or 22G FG needle between January 2016 and February 2019. All cytology slides were reviewed by an independent gastrointestinal cytopathologist blinded to the needle used and the initial cytology report. The primary and secondary outcomes were to assess the sample adequacy using Euro-cytology criteria and the number of cell clusters, respectively.

Research results
A total of 226 procedures were included. RB needle was used in 128 procedures and FG needle in 98 procedures. The baseline characteristics of both groups were comparable. On multivariable analysis, FG needle ($P = 0.02$) and location of the lesion ($P < 0.01$) were independently associated with adequate. Further, the use of FG needle ($P = 0.04$) and the size of the lesion ($P = 0.02$) were independently associated with acquisition of increased number of cell clusters.

Research conclusions
FG needle is superior to RB needle in acquiring adequate tissue and attaining higher number of cell clusters for solid and mixed lesions.

Research perspectives
Multicentre prospective trials are needed to further evaluate the utility of different needle types.

ACKNOWLEDGEMENTS
We thank the colleagues of Department of Pathology in Queen’s Medical Centre, Nottingham for their help in specimen slides retrieval.

REFERENCES
1. Polkowski M, Jensen C, Kaye P, Carrara S, Deprez P, Gines A, Fernandez-Esparcich G, Eisendrath P, Aithal GP, Arcidiacono P, Barthet M, Bastos P, Fornelli A, Gaggin K, Iglesias-Garcia J, Seicean A, Larbi A, Hassan C, van Hooft JE, Dumonceau JM. Technical aspects of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Technical Guideline. - March 2017. Endoscopy 2017; 49: 989-1006 [PMID: 28898917 DOI: 10.1055-s-0043-119219]
2. Horwhat JD, Paulson NK, Branch MS, Baillie J, Tyler D, Pappas T, Enns R, Robuck G, Stiffer H, Jowell P. A randomized comparison of EUS-guided FNA versus CT or US-guided FNA for the evaluation of pancreatic mass lesions. Gastrointest Endosc 2006; 63: 966-975 [PMID: 16733111 DOI: 10.1016/j.gie.2005.09.028]
3. Thomas T, Kaye PV, Ragnath K, Aithal G. Efficacy, safety, and predictive factors for a positive yield of EUS-guided Trucut biopsy: a large tertiary referral center experience. Am J Gastroenterol 2009; 104: 584-591 [PMID: 19262518 DOI: 10.1038/ajg.2008.97]
4. Hunt GC, Smith PP, Faigel DO. Yield of tissue sampling for submucosal lesions evaluated by EUS. Gastrointest Endosc 2003; 57: 68-72 [PMID: 12518134 DOI: 10.1016/j.gie.2003.04]
5. Siddiqui AA, Brown LJ, Hong SK, Draganova-Tacheva RA, Korenbli J, Loren DE, Kowalski TE, Solomides C. Relationship of pancreatic mass size and diagnostic yield of endoscopic ultrasound-guided fine needle aspiration. Dig Dis Sci 2011; 56: 3370-3375 [PMID: 21688127 DOI: 10.1007/s10620-011-1782-z]
6. Wu L, Guo W, Li Y, Cheng T, Yao Y, Zhang Y, Liu B, Zhong M, Li S, Deng X, Zhu W. Value of endoscopic ultrasound-guided fine needle aspiration in pretest prediction and diagnosis of pancreatic ductal adenocarcinoma. Nan Fang Yi Ke Da Xue Xue Bao 2018; 38: 1171-1178 [PMID: 30377133 DOI: 10.3969/j.issn.1673-4254.2018.10.04]
7. Mecky MA, Yamasaki K, Sawai A, Mizuno N, Hara K, Nafeh MA, Osman AM, Koshikawa T, Yatabe Y, Bhatia V. Diagnostic utility of EUS-guided FNA in patients with gastric submucosal tumors. Gastrointest Endosc 2010; 71: 913-919 [PMID: 20226456 DOI: 10.1016/j.gie.2009.11.044]
8. Cooray M, Nistor I, Pham J, Bair D, Arya N. Accuracy of endoscopic ultrasound-fine needle aspiration of solid lesions over time: Experience from a new endoscopic ultrasound program at a Canadian community hospital. Endosc Ultrasound 2017; 6: 187-194 [PMID: 28621296 DOI: 10.1007/s10620-017-08177]
9. Trindade AJ, Benias PC, Alshelleh M, Barzabashi AN, Tharian B, Inamdar S, Sharma N, Zelt C, Korrapati P, Barakat M, Seijpal DV, Ryou M. Fine-needle biopsy is superior to fine-needle aspiration of suspected gastrointestinal stromal tumors: a large multicenter study. Endosc Int Open 2019; 7: 931-E936 [PMID: 31044239 DOI: 10.1055/a-0953-1640]
10. Ayres LR, Kmiotek EK, Lam E, Telford JJ. A Comparison of Endoscopic Ultrasound-Guided Fine-Needle Aspiration and Fine-Needle Biopsy in the Diagnosis of Solid Pancreatic Lesions. Can J Gastroenterol Hepatol 2018; 2018: 1415062 [PMID: 29850451 DOI: 10.1155/2018/1415062]
11. Tian L, Tang AL, Zhang L, Liu XW, Li JB, Wang F, Shen SR, Wang XY. Evaluation of 22G fine-needle
aspiration (FNA) versus fine-needle biopsy (FNB) for endoscopic ultrasound-guided sampling of pancreatic lesions: a prospective comparison study. Surg Endosc 2018; 32: 5533-5539 [PMID: 29404720 DOI: 10.1007/s00464-018-6075-6]

12 Cheng B, Zhang Y, Chen Q, Sun B, Deng Z, Shan H, Dou L, Wang J, Li Y, Yang X, Jiang T, Xu G, Wang G. Analysis of Fine-Needle Biopsy vs Fine-Needle Aspiration in Diagnosis of Pancreatic and Abdominal Masses: A Prospective, Multicenter, Randomized Controlled Trial. Clin Gastroenterol Hepatol 2018; 16: 1314-1321 [PMID: 28735257 DOI: 10.1016/j.cgh.2017.07.010]

13 Mavrogenis G, Weynard B, Sibille A, Hassaini H, Deprez P, Gillain C, Warrie P. 25-gauge histology needle versus 22-gauge cytology needle in endoscopic ultrasonography-guided sampling of pancreatic lesions and lymphadenopathy. Endosc Int Open 2015; 3: E63-E68 [PMID: 26134775 DOI: 10.1055/s-0034-1390889]

14 Berzosa M, Villa N, El-Serag HB, Segui DV, Patel KK. Comparison of endoscopic ultrasound guided 22-gauge core needle with standard 25-gauge fine-needle aspiration for diagnosing solid pancreatic lesions. Endosc Ultrason 2015; 4: 28-33 [PMID: 25789281 DOI: 10.4103/2303-9027.151320]

15 Park SW, Chung MJ, Lee SH, Lee HS, Lee HJ, Park JY, Park SW, Song SY, Kim H, Chung JB, Bang S. Prospective Study for Comparison of Endoscopic Ultrasound-Guided Tissue Acquisition Using 25- and 22-Gauge Core Biopsy Needles in Solid Pancreatic Masses. PLoS One 2016; 11: e0154401 DOI: 10.1371/journal.pone.0154401

16 Aithal GP, Anagnostopoulos GK, Tam W, Dean J, Zaioun A, Koçjan G, Ragunath K, Pereira SP. EUS-guided tissue sampling: comparison of “dual sampling” (Trucut biopsy plus FNA) with “sequential sampling” (Trucut biopsy and then FNA as required). Endoscopy 2007; 39: 725-730 [PMID: 17620230 DOI: 10.1055/s-2007-966400]

17 Vanhiervliet G, Napoléon B, Saint Paul MC, Sakarovicth C, Wangermez M, Richard P, Subtil C, Koch S, Grandval D, Gincul B, Karsenti D, Heyeis L, Duchmann JC, Bourgaux JF, Levy M, Calament G, Fumex F, Pujol B, Lefort C, Poincloux L, Paganauti M, Bonin EA, Fabre M, Bartheil M. Core needle versus standard needle for endoscopic ultrasound-guided biopsy of solid pancreatic masses: a randomized crossover study. Endoscopy 2014; 46: 1063-1070 [PMID: 25996612 DOI: 10.1055/s-0034-1375579]

18 Hucel T, Wei E, Anuradha S, Gupta R, Ramchandani M, Rakesh K, Shrestha R, Reddy DN, Lahlakatia S. Feasibility and efficiency of a new 22G core needle: a prospective comparison study. Endoscopy 2013; 45: 792-798 [PMID: 24068588 DOI: 10.1055/s-0033-1344217]

19 Chen VK, Eloubeidi MA. Endoscopic ultrasound-guided fine-needle aspiration of intramural and extraintestinal mass lesions: diagnostic accuracy, complication assessment, and impact on management. Endoscopy 2005; 37: 984-989 [PMID: 16189771 DOI: 10.1055/s-2005-870272]

20 Mouzauri R, Yen R, Marshall C, Sams S, Mehrotra S, Said MS, Obuch JC, Brauer B, Attwell A, Fukami N, Shah R, Amateau A, Hall M, Hosford L, Wilson R, Rastogi A, Wani S. Interobserver agreement among endoscopists in the evaluation of pancreatic endoscopic ultrasound-guided fine-needle aspiration cytopathology specimens. Endosc Int Open 2016; 4: E812-E819 [PMID: 27556103 DOI: 10.1055/s-0042-108188]

21 Eloubeidi MA, Chen VK, Ellotum IA, Jalha D, Chhieng DC, Jalha N, Vickers SM, Wilcox CM. Endoscopic ultrasound-guided fine-needle aspiration biopsy of patients with suspected pancreatic cancer: diagnostic accuracy and acute and 30-day complications. Am J Gastroenterol 2003; 98: 2663-2668 [PMID: 14687813 DOI: 10.1111/j.1572-0241.2003.00666.x]

22 Niimi K, Goto O, Kawakubo K, Nakai Y, Minatsuki C, Asada-Hirayama I, Mochizuki S, Ono S, Kodashina S, Yamamichi N, Iyama H, Fujishiro M, Koike K. Endoscopic ultrasound-guided fine-needle aspiration skill acquisition of gastrointestinal submucosal tumor by trainee endoscopists: A pilot study. Endosc Ultrason 2016; 5: 157-164 [PMID: 27386472 DOI: 10.1016/j.eust.2013.09.003]

23 Wani S, Coté GA, Keswani R, Mullady D, Azar D, Murad F, Edmundowicz S, Komannduri S, McHenry L, Al-Haddad MA, Hall M, Hovis CE, Hollander TG, Early D. Learning curves for EUS by using cumulative sum analysis: implications for American Society for Gastrointestinal Endoscopy recommendations for training. Gastrointest Endosc 2013; 77: 558-565 [PMID: 23260317 DOI: 10.1016/j.gie.2012.10.012]

24 Hauser BE, Lichter J, Khamaysi I, Kamyabi L, Malkin L, Keren R, Gelfbium R, Kluger Y. Accuracy and Quality Assessment of EUS-FNA: A Single-Center Large Cohort of Biopsies. Diagn Ther Endosc 2012; 2012: 139563 [PMID: 23197929 DOI: 10.1155/2012/139563]

25 Mertz H, Gautman S. The learning curve for EUS-guided FNA of pancreatic cancer. Gastrointest Endosc 2004; 59: 33-37 [PMID: 14722544 DOI: 10.1016/S0016-5107(03)02028-5]

26 Iglesias-Garcia J, Domínguez-Munoz JE, Abdulkader I, Larino-Noia J, Eugeneyeva E, Lozano-Leon A, Forteza-Vila J. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. Am J Gastroenterol 2011; 106: 1705-1710 [PMID: 21483466 DOI: 10.1038/ajg.2011.119]

27 Klapman JB, Lograsso R, Dye CE, Waxman I. Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine-needle aspiration. Am J Gastroenterol 2003; 98: 1289-1294 [PMID: 12818271 DOI: 10.1111/j.1572-0241.2003.07472.x]

28 Hébert-Ratine S, Bae S, Varadarajulu S, Ramesh J, Frost AR, Eloubeidi MA, Ellotum IA. The presence of a cytopathologist increases the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration cytology for pancreatic adenocarcinoma: a meta-analysis. Cytopathology 2013; 24: 159-171 [PMID: 23711182 DOI: 10.1111/cyt.12071]

29 James TW, Baron TH. A comprehensive review of endoscopic ultrasound core biopsy needles. Expert Rev Med Devices 2018; 15: 127-133 [PMID: 29334842 DOI: 10.1080/17434440.2018.1425137]

30 Bang JY, Hawes R, Varadarajulu S. A meta-analysis comparing ProCore and standard fine-needle aspiration needles for endoscopic ultrasound-guided tissue acquisition. Endoscopy 2016; 48: 339-349 [PMID: 26561917 DOI: 10.1055/s-0034-1393354]
DA. The cellularity yield of three different 22-gauge endoscopic ultrasound fine needle aspiration needles. *Digestion* 2017; 95: 426-432 [PMID: 28261978 DOI: 10.1002/dig.23669]

Lee BS, Cho CM, Jung MK, Jang JS, Bae HI. Comparison of Histologic Core Portions Acquired from a Core Biopsy Needle and a Conventional Needle in Solid Mass Lesions: A Prospective Randomized Trial. *Gut Liver* 2017; 11: 559-566 [PMID: 2820006 DOI: 10.5009/gnl16284]

Sternacci W, Sioulas AD, Veits L, Gönülilli P, Schachschal G, Groth S, Anders M, Kontos CK, Topalidis T, Hinsch A, Vieth M, Rösch T, Denzer UW. 22-gauge core vs 22-gauge aspiration needle for endoscopic ultrasound-guided sampling of abdominal masses. *World J Gastroenterol* 2016; 22: 8880-8830 [PMID: 27818598 DOI: 10.3748/wjg.v22.i39.8820]

Aasdam AA, Wani S, Amick A, Shah JN, Bhat YM, Hamerski CM, Klappman JB, Muthusamy VR, Watson RR, Rademaker AW, Keswani RN, Keefer L, Das A, Komanduri S. A randomized controlled trial and cost analysis comparing endoscopic ultrasound fine needle aspiration and fine needle biopsy. *Endosc Int Open* 2016; 4: E497-E505 [PMID: 27227104 DOI: 10.1055/s-0042-166958]

Kamata K, Kitano M, Yasakiwaka S, Kudo M, Chiba Y, Ogura T, Higuchi K, Fukutake N, Ashida R, Yamaseki T, Nebiki H, Hirose S, Hoki N, Asada M, Yazumi S, Takaoka M, Okazaki K, Matsuda F, Okabe Y, Yanagisawa A. Histologic diagnosis of pancreatic masses using 25-gauge endoscopic ultrasound needles with and without a core trap: a multicenter randomized trial. *Endoscopy* 2016; 48: 632-638 [PMID: 27129137 DOI: 10.1055/s-0042-166294]

Alfawzi A, Bevon F, Grabar S, Leblanc S, Chaussade S, Tersis B, Barret M, Prat F. Comparison of 22G reverse-beveled versus standard needle for endoscopic ultrasound-guided sampling of solid pancreatic lesions. *United European Gastroenterol J* 2015; 3: 343-352 [PMID: 26279842 DOI: 10.1177/2050640615575533]

Lee YN, Moon JH, Kim HK, Choi HJ, Choi MH, Kim DC, Lee TH, Cha SW, Cho YD, Park SH. Core biopsy needle versus standard aspiration needle for endoscopic ultrasound-guided sampling of solid pancreatic masses: a randomized parallel-group study. *Endoscopy* 2014; 46: 1056-1062 [PMID: 25098611 DOI: 10.1055/s-0034-1377551]

Kim GJ, Cho YK, Kim EY, Kim HK, Cho JW, Lee TH, Moon JS; Korean EUS Study Group. Comparison of 22-gauge aspiration needle with 22-gauge biopsy needle in endoscopic ultrasonography-guided subepithelial tumor sampling. *Scand J Gastroenterol* 2014; 49: 347-354 [PMID: 24325591 DOI: 10.3109/03005521.2013.867361]

Bang JY, Hebert-Magee S, Trevino J, Ramesh J, Varadarajulu S. Randomized trial comparing the 22-gauge aspiration and 22-gauge biopsy needles for EUS-guided sampling of solid pancreatic mass lesions. *Gastrointest Endosc* 2012; 76: 321-327 [PMID: 22658389 DOI: 10.1016/j.gie.2012.03.1392]

DeWitt J, Cho CM, Lin J, Al-Haddad M, Canto MI, Salamone A, Hruban RH, Messalam AA, Khashab MA. Comparison of EUS-guided tissue acquisition using two different 19-gauge core biopsy needles: a multicenter, prospective, randomized, and blinded study. *Endosc Int Open* 2015; 3: E471-E478 [PMID: 26258504 DOI: 10.1055/s-0034-1392222]

Bang JY, Hebert-Magee S, Navaneethan U, Hasan MK, Hawes R, Varadarajulu S. EUS-guided fine needle biopsy of pancreatic masses can yield true histology. *Gut* 2018; 67: 2081-2084 [PMID: 28988195 DOI: 10.1136/gutjnl-2017-315154]

Matsumo J, Ogura T, Kurisu Y, Miyano A, Imanishi M, Onda S, Okada A, Nishikawa N, Higuchi K. Prospective comparison study of fransense needle and standard needle use for pancreatic lesions under EUS guidance. *Endosc Ultrasound* 2019; 8: 412-417 [PMID: 31417069 DOI: 10.1016/j.eus.euos.38_19]

Fujita A, Ryozawa S, Kobayashi M, Araki R, Nagata K, Minami K, Tanisaka Y, Kobatake T, Mizuide M. Diagnostic ability of a 22G Fransense needle in endoscopic ultrasound-guided fine needle aspiration of subepithelial lesions. *Med Clin Oncol* 2018; 9: 527-531 [PMID: 30345047 DOI: 10.3892/mco.2018.1709]

Alkhateeb K, Lee BB, Alattasi H, Sanders MA, Orner EM, McClave SA, Fraig M. Comparison between two types of needles for Endoscopic Ultrasound (EUS)-guided fine aspiration biopsy of pancreatic and upper gastrointestinal lesions. *Digestion* 2020; 8; 197-202 [PMID: 31809660 DOI: 10.1002/dig.24361]

Kurita A, Yasakiwaka S, Zen Y, Yoshimura K, Ogura T, Ozawa E, Okabe Y, Asada M, Nebiki H, Shigekawa M, Ikura T, Eguchi T, Maruyama H, Uchi T, Itagawa M, Hashimoto S, Shiomi H, Minami R, Hoki N, Takenaka M, Itoyaka Y, Uza N, Hashigo S, Yasuda H, Takada R, Kamada H, Kawamoto H, Kawakami H, Moriyama I, Fujita K, Matsumoto H, Hanada K, Takemura T, Yazumi S. Comparison of a 22-gauge Fransense-tip needle with a 20-gauge forward-bevel needle for the diagnosis of type 1 autoimmune pancreatitis: a prospective, randomized, controlled, multicenter study (COMPAS study). *Gastrointest Endosc* 2020; 91: 373-381.e2 [PMID: 31656434 DOI: 10.1016/j.gie.2019.10.012]

El Hajj JH, Wu H, Reuss S, Randolph M, Harris A, Gromski MA, Al-Haddad M. Prospective Assessment of the Performance of a New Fine Needle Biopsy Device for EUS-Guided Sampling of Solid Lesions. *Clin Endosc* 2018; 51: 576-583 [PMID: 30001616 DOI: 10.5964/ce.2018.053]

Mondal SK, Sinha S, Basak B, Roy DN, Sinha SK. The Bethesda system for reporting thyroid fine needle aspiration: A cytologic study with histologic follow-up. *J Cytol* 2013; 30: 94-99 [PMID: 23833397 DOI: 10.4103/0970-9371.937112650]

Bang JY, Hebert-Magee S, Navaneethan U, Hasan MK, Hawes R, Varadarajulu S. Randomized trial comparing the Fransense and Fork-tip needles for EUS-guided fine-needle biopsy sampling of solid pancreatic mass lesions. *Gastrointest Endosc* 2018; 87: 1432-1438 [PMID: 29365839 DOI: 10.1016/j.gie.2017.11.036]

Karsenti D, Thariss G, Zeitoun JD, Denis P, Perrot B, Denzer UW. Endoscopic ultrasound fine needle biopsy needles for EUS-FNB of solid pancreatic masses: an observational study. *Scand J Gastroenterol* 2019; 54: 499-505 [PMID: 31067140 DOI: 10.1080/00365521.2019.1594918]
