Defected Photonic Crystal Array Using Porous GaN as Malaria Sensor

M.T. Tammam¹, Zaky A. Zaky*¹, Arvind Sharma², Z.S.Matar³, Arafa H. Aly¹, *, M.A. Mohaseb¹,³
¹TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, Egypt
²Department of Physics, Government Dungar College, Bikaner, Rajasthan, India -334001
³Umm-Al-Qura University, Faculty of Applied Science, Department of Physics, Mecca, Saud Arabia
*Corresponding authors. E-mail: zaky.a.zaky@science.bsu.edu.eg (Zaky A. Zaky)
arafaaly@aucegypt.edu (Arafa H. Aly)

Abstract. A defective one-dimensional photonic crystal is investigated as a biosensor to detect malaria disease. The proposed photonic structure is air/(GaN/Porous GaN)N/Sample/(GaN/Porous GaN)N/Substrate. The red blood cells sample of the human being is used as a sample defect in the proposed optical device. The pioneer transfer matrix method is used to analyze the transmittance spectra. A change in sample refractive index highly affects the transmittance resonant peak and this shift in the peak plays a key role in the operation of the device. The relatively high figure of merit of 1022 RIU⁻¹ with a sensitivity of 1472 nm/RIU and quality factor of 1076 is detected. The proposed sensor is relatively better than others available to detect malaria disease.

Keywords: Photonic Crystal, Biosensor, Porous materials, Malaria Diagnosis

1. Introduction

In the last few decades, defected one dimensional photonic crystal (1D-PC) have attracted more attention in many potential applications such as biosensors [1-11], temperature sensors [12-16], solar cells [17-22], filters [23-30], air purifier [31], water desalination [32, 33] and others [34-36]. The most amazing feature of 1D-PC is the photonic bandgaps (PBG) originated due to multiple scattering at interfaces, and the incident waves are blocked to propagate within the PBGs [37, 38]. Because of the resonance of Fabry-Perot, a defect resonant peak appears within the PBG when a defect layer is introduced into 1D-PC [39]. As a result of the law of Bragg Snell’s, by changing the index of refraction of the defect layer, the resonant peak will be shifted. This dependence between the optical properties of the sample layer sample and the resonant peak is the principle of PC sensors.

Recently, Porous and two-dimensional layers have gained the attention of scholars in biosensing applications [40-42]. Defected 1D-PC of porous layers can sense different solutions based on their refractive indices change. Porous Gallium nitride (GaN) can be used as a multilayer PC with perfect lattice matching [43-45]. Porous GaN is more interesting than porous dielectrics because it can easily be incorporated with active electronics [42]. The optical properties of GaN can be adjusted by changing the
porosity [46]. Lheureux et al. [43] used standard photolithography to prepare the porous GaN utilizing the wet EC etching procedure.

Malaria is a serious disease that might kill 405,000 persons in 2018 according to WHO report [47]. Early diagnosis contributes to the high speed of achieving a cure for the disease. Malaria can be diagnosed using a variety of approaches, including quantitative buffy coat (QBC) method [48], microscopic diagnosis [49], rapid diagnostic tests (RDT) [50], indirect fluorescent antibody (IFA) [51], and others [52]. Most of these techniques have limitations such as not detect early stages effectively [48], take a large testing time [53], and not being cost-effective [54]. Human tissues are injected with a parasite during its sporozoite phase and cause malarial infection. This parasite moves through various stages (ring, trophozoite, and schizont) in red blood cells (RBCs). These phrases cause a change in the indices of refraction of the infected RBCs, as clear in Table 1. So, detecting the index of refraction of the RBCs is considered the key factor for malaria detection [55, 56].

Table 1: Average index of refraction values of different cells of RBCs [57]:

Name	Average refractive index
Normal RBC cells	1.402
Ring phase cells	1.395
Trophozoite phase cells	1.383
Schizont phase cells	1.373

In this paper, we will try to overcome such limitations with defected 1D-PC malaria sensor using Porous GaN. The proposed structure has the potential to aid in the early detection of malaria.

2. Materials and method

The proposed structure of the malaria sensor is air/(GaN/Porous GaN)N/Sample/(GaN/Porous GaN)N/Substrate as clear in Fig.1. At the center of the structure, a defect layer is inserted between two identical 1D-PC of (GaN/Porous GaN)N. N is the total number of layers of 1D-PC. A transverse electric (TE) polarization will fall on the structure. The thicknesses of the first and second layers are \(d_1 = 163\) nm and \(d_2 = 208\) nm, with refractive indices as in Eq. 1 and Eq. 2. This porosity of porous GaN will be 53% [43]. Experimentally and theoretically, a multilayer of GaN/Porous GaN was studied [43, 45, 58]. As clear in Fig. 1, by injecting the sample at the top of the structure, the pores will be infiltrated with the analyte sample. The index of refraction of the porous GaN (\(n_2\)) is calculated by using volume average theory [46]:

\[
n_2 = \sqrt{(1 - P) n_1^2 + P n_{sam}^2},
\]

where \(P\), \(n_{sam}\), and \(n_1\), are the porosity ratio, the index of refraction of the analyte that is infiltrated inside the pores (index of the RBCs sample), and the index of refraction of GaN. The index of refraction of GaN as a function of wavelength (\(\lambda\)) is calculated as [59]:

\[
n_1 = \sqrt{3.6 + \frac{1.75\lambda^2}{\lambda^2 - 0.256^2} + \frac{4.1\lambda^2}{\lambda^2 - 17.86^2}}.
\]
Figure 1. The structure of the proposed 1D-PC sensor.

Multilayer structure problems can be solved and analyzed by the famous transfer matrix method (TMM). The TMM is explained by several authors [60-63]. The transmittance of the proposed device is calculated using TMM. Here we are considering the interaction between incident transverse electromagnetic (TE) waves with normal incidence. It is given by the overall matrix as follows:

\[
C = \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} = (c_1 c_2)^N c_{sam}(c_1 c_2)^N,
\]

where \(C_{11}, C_{12}, C_{21}, \) and \(C_{22}\) are elements of the transfer matrix. Here \(c_1, c_2\) and \(c_{sam}\) are characteristic matrix corresponding to GaN, porous GaN, and sample which are as follows:

\[
c_k = \begin{pmatrix}
\cos \phi_k & -i \frac{p_E}{\lambda} \sin \phi_k \\
-i p_E \sin \phi_k & \cos \phi_k
\end{pmatrix},
\]

where \(k = 1, 2, \) and \(sam\). The \(\phi_k\) is phase difference at each layer and it is denoted by:

\[
\phi_k = \frac{2\pi n_k d_k \cos \theta_k}{\lambda}.
\]

The values of \(p_k\) for the TE(S) polarisation is given by \(p_k = n_k \cos(\theta_k)\).

The incident angle \(\theta_0, \theta_1, \theta_2, \theta_{sam}\), and \(\theta_s\) are at the surfaces of air, GaN, porous GaN, sample, and substrate. Here angle \(\theta_0\) represents the angle of incidence of the incident light from the air to the proposed device and satisfying the Snells law as follows:

\[
n_0 \sin(\theta_0) = n_1 \sin(\theta_1) = n_2 \sin(\theta_2) = n_{sam} \sin(\theta_{sam}) = n_s \sin(\theta_s).
\]

The matrix \((c_1 c_2)^N\) can be calculated by using the Chebyshev polynomials of the second kind. The transmission coefficient \(t\) using the above equations is given below[48-50]:

\[
t = \frac{2p_s}{(C_{11} + C_{12}p_0)p_s - (C_{21} + C_{22}p_0)}
\]

Hence, the transmittance \(T\) of the proposed device is given by,

\[
T(\%) = 100 \times \frac{p_0}{p_s} |t|^2.
\]
3. Results and discussions

The proposed structure of the malaria sensor is as air/(GaN/Porous GaN)N/Sample/(GaN/Porous GaN)N/Substrate. At the middle of the structure, a defect red blood cell sample is inserted between two identical 1D-PC of (GaN/Porous GaN)N. A transverse electric (TE) polarization will be incident on the structure. The transmittance of the proposed sensor without defect layer (black line), and with defect layer (red line) at $n_{sam}=1.731$ is depicted in Fig. 2. Without defect layer resonant peak non exists but using the defect layer of refractive index 1.731 a clear sharp resonant peak of 100% and large photonic bandgap exist.

![Figure 2](image)

Figure 2. The transmittance of the proposed sensor without defect layer (black line), and with defect layer (red line) at $n_{sam}=1.731$.

The sensitivity (S) of any sensor, figure of merit (FoM), and Q factor can be calculated as [64-66]:

\[
S = \frac{\Delta \lambda_R}{\Delta n_{sam}}
\]

(9)

\[
FoM = \frac{S}{FWHM'}
\]

(10)

\[
Q = \frac{\lambda_R}{FWHM}
\]

(11)

![Fig. 3](image)

Fig. 3: The sensitivity and FoM at different thicknesses of the sample layer.
The performance parameters of the investigated sensor at different thicknesses of the sample layer are clear in Fig. 3. The rise in the defect layer of the sample analyte thickness raises the sensitivity of the photonic sensor. The rise in defect of the sample analyte layer thickness from 3000 nm to 15000 nm raises sensitivity value from 652.3 nm/RIU to 1472.2 nm/RIU. Initially, the rise in sensitivity value is sharper. If defect layer thickness increases onwards 11000 nm, the sensitivity is approximately constant. The variation in the position of resonance mode is that it depends upon the total index of refraction of all structures and thickness of periodic PC. The standing wave formation due to defect at the resonant wavelength obey the condition [4, 67]

\[O = z\lambda = n_{\text{eff}}g, \]

(12)

where \(O \) is the optical path length, \(z \) is a scalar bomber, \(\lambda \) is the incident wavelength, \(n_{\text{eff}} \) is the refractive index of the whole device and \(g \) is the path length. Here, we are increasing \(g \) but \(z \) and \(n_{\text{eff}} \) remain constant hence the resonant wavelength shift towards a longer wavelength. The FoM increases approximately linearly from 152.3 RIU to 1022.6 RIU with a rise from 3000 nm to 15000 nm in the sample layer thickness, respectively. It is clear from the investigation that the optimum value of sample layer thickness obtained was 15000 nm for different RBCs. The human tissues are injected with a parasite with a mosquito bite during its sporozoite phase and cause malarial infection. This parasite goes through different phases in RBCs. These phrases cause a change in the indices of refraction of the infected RBCs, as clear in Table 1. The transmittance of the proposed sensor with an optimum sample layer thickness of 15000 nm for different phases in RBCs is depicted in Fig. 4. For the phases normal RBC, ring, trophozoite, and schizont in red blood cells (RBCs) the refractive index is decreasing. For the phases ring, trophozoite, and schizont in red blood cells (RBCs) concerning normal RBC, the resonant peak shifted towards lower wavelength (blue shift) due to decreasing values of refractive index.

![Figure 4](image.png)

Figure 4. The transmittance of the investigated sensor with a sample layer thickness of 15000 nm for different RBCs.

The performance comparison of our work is represented in the following table 2. The relatively high sensitivity of 1472 nm/RIU with a figure of merit of 1022 RIU and quality factor 1076 is detected.
Table 2: Performance comparison (NC= not be calculated).

Reference	S (nm / RIU)	FoM (RIU⁻¹)	Q-factor
2017, [68]	17	233	3*10⁴
2019, [6]	1000	----	35 517
2020, [2]	1400	6*10⁶	3.5*10⁶
2020, [69]	777	----	2576
2020, [70]	656	1.13	2719
2020, [43]	10	15.1	300
2021, [52]	496	----	203000
This work	**1472**	**1022**	**1076**

4. Conclusion

A GaN and porous GaN-based one-dimensional defective photonic crystal is investigated as an optical sensor to detect malaria disease. The red blood cells sample of the human being is used as a sample defect in the proposed optical sensor. The notable change in sample refractive index affects the transmission resonant peak and the shift in the peak plays a vital role in the operation of the photonic sensor. The relatively high sensitivity of 1472 nm/RIU with a figure of merit 1022 RIU⁻¹ and quality factor 1076 was detected. The proposed optical sensor is relatively better than others available to detect malaria disease.

Conflicts of interest/Competing interests

The authors declare no conflicts of interest.

ORCID IDs

https://orcid.org/0000-0003-0795-378X (A. H. Aly)
https://orcid.org/0000-0002-8300-7755 (Z. A. Zaky)

References

[1] Zaky Z A and Aly A H 2021 Modeling of a biosensor using Tamm resonance excited by graphene Appl. Optics 60 1411-9
[2] Aly A H, Zaky Z A, Shalaby A S, Ahmed A M and Vigneswaran D 2020 Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor Phys. Scr. 95 035510
[3] Ramanujam N R, El-Khozondar H J, Dhasarathan V, Taya S A and Aly A H 2019 Design of one dimensional defect based photonic crystal by composites superconducting material for bio sensing applications Physica B 572 42-55
[4] Aly A H and Zaky Z A 2019 Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor Cryogenics 104 102991
[5] Aly A H, Mohamed D, Zaky Z A, Matar Z S, Abd El-Gawad N S, Shalaby A S, Tayeboun F and Mohaseb M 2021 Novel Biosensor Detection of Tuberculosis Based on Photonic Band Gap Materials Mater. Res.-Ibero-am. J. Mater. 24 e20200483
[6] Arunkumar R, Suaganya T and Robinson S 2019 Design and analysis of 2D photonic crystal based biosensor to detect different blood components Photonic Sensors 9 69-77
[7] Abd El-Ghany S E, Noum W M, Matar Z, Zaky Z A and Aly A H 2020 Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor Phys. Scr. 96 035501
[8] Banerjee A 2020 Design of enhanced sensitivity gas sensors by using 1D defect ternary photonic band gap structures Indian J. Phys. 94 535-9
[9] Quth, S R Aly, A H, Sabra, W, 2021 Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material International Journal of Modern Physics B, Vol. 35, No. 1 (2021) 2150012-13
[10] Ahmed A M and Shaban M 2020 Highly sensitive Au–Fe$_2$O$_3$–Au and Fe$_2$O$_3$–Au–Fe$_2$O$_3$ biosensors utilizing strong surface plasmon resonance Appl. Phys. B-Lasers Opt. 126 1-10

[11] Aly A H, Mohamed D, Mohaseb M, El-Gawaad N S A and Trabelsi Y 2020 Biophotonic sensor for the detection of creatinine in blood serum based on 1D photonic crystal RSC Adv. 10 31765-72

[12] Amiri I S, Paul B K, Ahmed K, Aly A H, Zakaria R, Yupapin P and Vigneswaran D 2019 Tri-core photonic crystal fiber-based refractive index dual sensor for salinity and temperature detection Microw. Opt. Technol. Lett. 61 847-52

[13] Zaky, Z. A, Aly, A H 2021 Highly Sensitive Salinity and Temperature Sensor Using Tamm Resonance, Plasmonics, https://doi.org/10.1007/s11468-021-01487-6

[14] Banerjee A 2009 Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures Progress In Electromagnetics Research 11 129-37

[15] Zaky Z., Ahmed A. M and Aly A. H 2021 Remote Temperature Sensor Based on Tamm Resonance Silicon https://doi.org/10.1007/s12633-021-01064-w

[16] Aly, A H, Abdel Ghany, S E-S., Fadlallah, M M, Salman, F E, and Kamal, B M 2015 Transmission and Temperature Sensing Characteristics of a Binary and Ternary Photonic Band Gap, J. Nanoelectron. Optoelectron. 10, 9-14.

[17] Aly A H and Sayed H 2017 Enhancement of the solar cell based on nanophotonic crystals J. Nanophotonics 11 046020

[18] De la Mora M, Jaramillo O, Nava R, Tagüeña-Martínez J and Del Río J 2009 Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems Solar energy materials and solar cells 93 1218-24

[19] Zhang X-L, Song J-F, Li X-B, Feng J and Sun H-B 2012 Optical Tamm states enhanced broad-band absorption of organic solar cells Appl. Phys. Lett. 101 243901

[20] Aly A H and Sayed H 2018 Photonic band gap materials and monolayer solar cell Surf. Rev. Lett. 25 1850103

[21] Aly A H, Sayed H and Elsayed H A 2019 Development of the Monolayer Silicon Solar Cell Based on Photonic Crystals Silicon 11 1377-82

[22] Sayed H and Aly A H 2021 Salinity optical sensor by using two-dimensional photonic crystals: computational study Mat. Sci. Eng. B. 269 115169

[23] Aly A H, Ahmed A M and Shaban M 2020 Multilayer angular optical filter as a smart window Indian J. Phys. 94 95-103

[24] Pandey A, Tripathi A, Srivastava S and Jit S 2017 Analysis of ternary layer photonic band gap tunable filters for wavelength division multiplexing applications J. Nanolectron. Optoelectron. 12 331-6

[25] Sabra W, Azzam S I, Song M, Povolotskyi M, Aly A H and Kildishev A V 2018 Plasmonic metasurfaces for subtractive color filtering: optimized nonlinear regression models Opt. Lett. 43 4815-8

[26] Awasthi S K and Ojha S P 2008 Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material Progress in Electromagnetics Research 4 117-32

[27] Aly A H, Barakat S and Amin A 2020 Tunable filter based on the 1D photonic crystal within ultraviolet radiations IOP Conf. Ser.: Mater. Sci. Eng. 956 012010.

[28] Usievich B, Prokhorov A and Sychugov V 2002 A photonic-crystal narrow-band optical filter Laser Phys. 12 898-902

[29] Aly A H, Ameen A A, Elsayed H A, Mohamed S and Singh M R 2019 One-dimensional metallo-superconductor photonic crystals as a smart window J. Supercond. Nov. Magn. 32 2313-8

[30] Aly A H, Ameen A A and Vigneswaran D 2019 Superconductor nanometallic photonic crystals as a novel smart window for low-temperature applications J. Supercond. Nov. Magn. 32 191-7

[31] Ameen A A, Elsayed H and Aly A H 2021 Towards a highly efficient air purifier using annular photonic crystals in UV regimes RSC Adv. 11 14915-21

[32] Sayed H, Krauss T F and Aly A H 2020 Versatile photonic band gap materials for water desalination Optik 219 165160

[33] Trabelsi Y, Belhadj W, Ben Ali N, Aly A H 2021 Theoretical Study of Tunable Optical Resonators in Periodic and Quasiperiodic One-Dimensional Photonic Structures Incorporating a Nematic Liquid Crystal. Photonics, 8, 150.

[34] Aly A H, Mohamed D, Matar Z, Trabelsi Y, Vigneswaran D, Tayeboun F and Mohaseb M 2021 Tunability and Fano Resonance Properties in Different Types of One-Dimensional Superconductor Photonic Crystals, Mat. Res. 24(4)

[35] Malek C, Aly A H and Sabra W 2021 Tunable PBGs with a cutoff frequency feature in Fibonacci quasi-periodic designs containing a superconductor material at THz region Phys. Scr. 96, 105501.

[36] Aly A H, Shaban S M and Mehaney A 2021 High-performance phoxonic cavity designs for enhanced acousto-optical interaction Appl. Optics 60 3224-31

[37] Yablonovitch E 2001 Photonic crystals: semiconductors of light Sci. Am. 285 46-55

[38] Yablonovitch E and Gmitter T 1989 Photonic band structure: The face-centered-cubic case Phys. Rev. Lett. 63 1950
van Popta A C, Hawkeye M M, Sit J C and Brett M J 2004 Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition Opt. Lett. 29 2545-7

Agarwal V, Del Rio J, Malpuech G, Zamfirescu M, Kavokin A, Coquillet D, Scalbert D, Vladimirova M and Gil B 2004 Photon Bloch oscillations in porous silicon optical superlattices Phys. Rev. Lett. 92 097401

Hidalgo N, Calvo M E, Colodrero S and Miguez H 2010 Porous one-dimensional photonic crystal coatings for gas detection IEEE Sens. J. 10 1206-12

Wang Z, Zhang J, Xu S, Wang L, Cao Z, Zhan P and Wang Z 2007 1D partially oxidized porous silicon photonic crystal reflector for mid-infrared application J. Phys. D-Appl. Phys. 40 4482

Lheureux G, Monavariam M, Anderson R, DeCrescent R A, Bellessa J, Symonds C, Schuller J A, Speck J, Nakamura S and DenBaars S P 2020 Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics Opt. Express 28 17934-43

Yerino C D, Zhang Y, Leung B, Lee M L, Hsu T-C, Wang C-K, Peng W-C and Han J 2011 Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes Appl. Phys. Lett. 98 251910

Zhu T, Liu Y, Ding T, Fu W Y, Jarman J, Ren C X, Kumar R V and Oliver R A 2017 Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification Sci. Rep. 7 1-8

Zhang C, Park S H, Chen D, Lin D-W, Xiong W, Kuo H-C, Lin C-F, Cao H and Han J 2015 Mesoporous GaN for Photonic Engineering Highly Reflective GaN Mirrors as an Example ACS photonics 2 980-6

https://www.who.int/malaria/ W r a a and publications/world-malaria-report-2019/en/

Bendib S and Bendib C 2018 Photonic crystals for malaria detection J. Supercond. Nov. Magn 31 1291-9

Clendennen T E, Long G W and Baird J K 1995 QBC® and Giemsa-stained thick blood films: diagnostic performance of laboratory technologists Transactions of the Royal Society of Tropical Medicine and Hygiene 89 183-4

Erdman L K and Kain K C 2008 Molecular diagnostic and surveillance tools for global malaria control Travel medicine and infectious disease 6 82-99

Bell D, Wongrinchanalai C and Barnwell J W 2006 Ensuring quality and access for malaria diagnosis: how can it be achieved? Nature Reviews Microbiology 4 682-95

She R C, Rawlins M L, Mohl R, Perkins S L, Hill H R and Litwin C M 2007 Comparison of immunofluorescence antibody testing and two enzyme immunoassays in the serologic diagnosis of malaria Journal of travel medicine 14 105-11

Suthar B and Bhargava A 2021 Biosensor Application of 1D Photonic Crystal for Malaria Diagnosis Plasmonics 16 59-63

Sulzer A, Wilson M and Hall E C 1969 Indirect fluorescent-antibody tests for parasitic diseases The American journal of tropical medicine and hygiene 18 199-205

Hänscheid T and Grobusch M P 2002 How useful is PCR in the diagnosis of malaria? Trends in parasitology 18 395-8

Liu P Y, Chin L, Ser W, Chen H, Hsieh C-M, Lee C-H, Sung K-B, Ayi T, Yap P and Liedberg B 2016 Cell refractive index for cell biology and disease diagnosis: past, present and future Lab Chip 16 634-44

Bendib S and Bendib C 2018 Photonic crystals for malaria detection J. Biosens. Bioelectron 9 3 1000257

Shaftat A, Rashid A N Z, El-Hageen H M and Alawi A M 2021 Design and analysis of a single elliptical channel photonic crystal fiber potential for malaria detection Journal of Sol-Gel Science and Technology 98 202-211

Zaky Z A, Sharma A, Alamri S and Aly A H 2021 Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals Appl. Nanosci. https://doi.org/10.1007/s13204-021-01965-7

Zaky Z A, Ahmed A M, Shalaby A S and Aly A H 2020 Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation Sci. Rep. 10 9736

Zeng C, Luo C, Hao L and Xie Y 2014 The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle Chin. Opt. Lett. 12
[68] Klimov V V, Pavlov A A, Treshin I V and Zabkov I V 2017 Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing. *J. Phys. D-Appl. Phys.* 50 285101

[69] Mohammed N A, Hamed M M, Khalaf A A and EL-Rabaie S 2020 Malaria biosensors with ultra-sensitivity and quality factor based on cavity photonic crystal designs *The European Physical Journal Plus* 135 1-22

[70] Gao Y, Dong P and Shi Y 2020 Suspended slotted photonic crystal cavities for high-sensitivity refractive index sensing *Opt. Exp.* 28 12272-8