Robust large-gap topological insulator phase in transition-metal chalcogenide ZrTe₄Se

Xing Wang¹,², Wenhui Wan¹, Yanfeng Ge¹ and Yong Liu¹,∗

¹ State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People’s Republic of China
² College of Science, Hebei North University, Zhangjiakou 07500, People’s Republic of China
∗ Author to whom any correspondence should be addressed.
E-mail: yongliu@ysu.edu.cn andycliu@ysu.edu.cn

Keywords: topological insulator, strain, surface state, edge state

Abstract

Based on density functional theory, we investigate the electronic properties of bulk and single-layer ZrTe₄Se. The band structure of bulk ZrTe₄Se can produce a semimetal-to-topological insulator (TI) phase transition under uniaxial strain. The maximum global band gap is 0.189 eV at the 7% tensile strain. Meanwhile, the \(\mathbb{Z}_2 \) invariants (0; 110) demonstrate conclusively it is a weak topological insulator. The two Dirac cones for the (001) surface further confirm the nontrivial topological nature. The single-layer ZrTe₄Se is a quantum spin Hall insulator with a band gap 86.4 meV and \(\mathbb{Z}_2 = 1 \), the nontrivial metallic edge states further confirm the nontrivial topological nature. The maximum global band gap is 0.211 eV at 8% uniaxial tensile strain along the [100] direction. When the compressive strain is more than 1%, the band structure of single-layer ZrTe₄Se produces a TI-to-semimetal transition. These theoretical analysis may provide a method for searching large band gap TIs and platform for topological nanoelectronic device applications.

1. Introduction

Topological insulator (TI) is a new quantum state with gapped bulk band and gapless edge state, and the low-energy scattering of the edge states leads to dissipationless transport edge channels. The two dimension (2D) TI also called the quantum spin Hall (QSH) insulator was first theoretically predicted in 2006, experimentally observed in HgTe/CdTe quantum wells [1, 2] and then was predicted in silicene [3], germanene [4]. The three dimension (3D) TI was first predicted and observed in the Bi₁−ₓSbₓ alloy [5, 6]. These pioneering works opened up the exciting field of TIs, expanding at a rapid pace. In the past decade, the more and more compounds have been predicted to be TIs [7–15], which has undoubtedly a dramatic impact on the condensed matter physics. Recently, the researchers develop codes to compute all characters of all symmetries of stoichiometric materials and find more than 3000 TIs [16, 17]. However, the extremely small bulk band gaps hinder their applications due to weak spin–orbit coupling (SOC). Therefore, the researchers have strong motivation for exploring new TIs or transforming materials into TIs with large band gaps.

Nowadays, the ZrTe₅ has attracted broad attention because of their topological properties [18–24]. The 3D crystal is located near the phase boundary between strong and weak TIs, the 2D is predicted to be a QSH insulator [18]. Later studies indicate that the topological nature in this bulk material is very sensitive to the crystal lattice constants and detailed composition [25, 26]. Last year, the bulk ZrTe₅ was identified as a strong TI at low temperatures by using magneto-infrared spectroscopy [27]. However, there hasn’t yet been a consensus on the bulk topological phase of ZrTe₅ from experiments, especially with several recent contradicting temperature-dependent studies [28–31]. In addition, homologue substitution provides a useful guess for a novel material [32]. Here we modulate electronic structure by using selenium element substitution, which may change the topological properties of ZrTe₅. In order to design a large-gap band...
topological nontrivial phase, one widely used approach is applying strain, which has been proved to be able to regulate the topological properties, such as SiGe [33], TlSbH2 [34], Bi4Br3 [35] and HgSe [36], so we try to use strain to increase the band gap of ZrTe4Se.

In this paper, the first-principles calculations are used to investigate the electronic properties of the ZrTe4Se. We find the band structure of bulk ZrTe4Se can produce a semimetal-to-TI phase transition under certain uniaxial strain. Analyzing of topological properties of bulk ZrTe4Se under the 3% and 8% tensile strain, they are all weak topological insulators (WTIs) with \(Z_2 = (0; 110) \). The single-layer ZrTe4Se is a QSH insulator with \(Z_2 = 1 \), the edge states further confirm the nontrivial topological nature of this material. In addition, we discuss effect of strain on electronic properties of single-layer ZrTe4Se and find the QSH states survives at a large range of strain. When the compressive strain is more than 1%, the band structure of single-layer ZrTe4Se can produce a TI-to-semimetal transition.

2. Computational details

To study the structural and electronic properties of ZrTe4Se, all calculations are carried out using the Vienna *ab initio* simulation package (VASP) [37, 38]. We use the generalized gradient approximation (GGA) [39] for the exchange and correlation potential in the Perdew–Burke–Ernzerhof [40] form. The vacuum region is set to at least 20 Å along \(b \)-direction. The energy cutoff of the plane wave is set to 500 eV with the energy precision of \(10^{-6} \) eV. The atoms are relaxed until the force per atom falls below 0.01 eV Å\(^{-1} \). A \(11 \times 11 \times 4 \) \((11 \times 1 \times 4)\) \(\Gamma \)-centered Monkhorst–Pack grid [41] for the bulk materials (2D materials) is used to sample the Brillouin zone (BZ). The theoretical ground states of ZrTe4Se is obtained by fully optimization of the atom positions and lattice constants, then we vary the lattice constants and optimize the atom positions to study the possible topological transition in ZrTe4Se, but the crystal structure symmetry remains the same. To obtain good theoretical lattice constants, the van der Waals (vdw) corrected optB86b-vdw functionals [42, 43] are considered for the bulk materials. To analyze topological properties, the maximally localized Wannier functions (MLWFs) [44] of ZrTe4Se are constructed based on the Zr’s 4d, Se’s 4p and Te’s 5p orbitals by using the Wannier90 code [45]. After successful constructions of the MLWFs, the WannierTools [46] is used to evaluate topological invariants, surface states and edge states.

3. Results and discussion

The ZrTe4Se has the orthorhombic layered structure with \(Cmcm \) (No. 63) space group symmetry, as shown in figure 1(a). The trigonal prismatic chains \(\text{Te}_1-\text{Se}-\text{Te}_1 \) oriented along the \(a \) axis, and these prismatic chains are linked via parallel zigzag chains of \(\text{Te}_2 \) atoms along the \(c \) axis to form a 2D sheet of ZrTe4Se in the \(a-c \) plane. The sheets stack along the \(b \) axis, forming a layered structure. The structural parameters and BZ of ZrTe4Se are presented in table 1 and figure 1(b), respectively. The optimized lattice constants of bulk ZrTe4Se are \(a = 3.9179 \) Å, \(b = 14.3565 \) Å, \(c = 13.6428 \) Å, which are smaller than ZrTe5’s [25]. The binding energy of \(-1.70 \) eV atom\(^{-1} \) indicates the material is stable. The formation energy of 0.09 eV atom\(^{-1} \) indicates the single-layer of ZrTe4Se may be produced by mechanical exfoliation method [47]. Figures 1(c)–(e) show the crystal structure and BZ of the single-layer ZrTe4Se. The relaxed lattice constants are 3.9601 Å and 13.7411 Å, the bond lengths are also slightly different from bulk materials, which can be attributed to the interlayer interactions. We use the electron localization function (ELF) to describe and visualize chemical bonds in solids [48]. The ELF indicates that the probability of existence of a pair of electrons at a some position. The ELF value ranges between 0 and 1, which represents no to complete localization. We have plotted the ELF with an isosurface of 0.5–0.9, see supplemental material (SM) (https://stacks.iop.org/NJP/23/093046/mmedia) figure S1 and figure 2(a). The ELF value is around 0.5 near Zr atoms and 0.9 near Se (Te) atoms, which means that electrons are more localized towards Se and Te atoms. The type of electron localization indicates the ionic type of bonding between Zr and Te (Se) atoms. Moreover, the Te–Te bonding exhibit anti-bonding character rather than bonding character, because the electrons are more localized outside the Te–Te bond. To qualitatively analyze the charge transfer of Zr–Te (or Zr–Se) bond, difference charge density map is plotted in figure 2(b), the white/blue region represents charge accumulation/depletion, respectively. The difference pattern indicates the major charge transfer is from Zr atom to Te (or Se) atom.

In addition, we perform *ab initio* molecular dynamics simulation with a supercell at 300 K to examine thermal dynamic stability of ZrTe4Se. After heating at 300 K for 8 ps with a time step of 2 fs, it is found that the mean value of total potential energy maintains invariable at whole simulation time, see SM figure S2. Neither structure reconstruction nor disruption occur in these materials in figures S3 and S4. These results clearly indicate the materials remain thermally stable at room temperature. Moreover, we
Figure 1. The crystal structure and BZ of ZrTe$_4$Se. (a) The crystal structure of bulk ZrTe$_4$Se. The crystal structure of (c) side and (d) top view single-layer ZrTe$_4$Se, the vacuum stack along the b direction. The BZ of (b) bulk and (e) single-layer ZrTe$_4$Se.

Table 1. The lattice constants a, b, c (Å) and bond lengths (Å) of ZrTe$_4$Se.

Material	a	b	c	d_{Zr-Te_1}	d_{Zr-Te_2}	d_{Zr-Se}
2D-ZrTe$_4$Se	3.9601	—	13.7411	2.98	2.99	2.79
3D-ZrTe$_4$Se	3.9179	14.3565	13.6428	2.96	2.96	2.79

Figure 2. ELF and difference charge density of single-layer ZrTe$_4$Se. (a) Structure plot of ELF. Isosurface corresponding to ELF value of 0.8. (b) Difference charge density (crystal density minus superposition of isolated atomic densities). The white (blue) isosurface plots correspond to the charge density accumulation (depletion). Isosurface corresponding to difference charge density of ± 0.0095 eV Å$^{-3}$.

Table 2. Elastic constants (GPa) of bulk ZrTe$_4$Se and ZrTe$_5$.

Material	C_{11}	C_{12}	C_{13}	C_{22}	C_{23}	C_{33}	C_{44}	C_{55}	C_{66}
3D-ZrTe$_5$	77.20	4.77	22.19	28.85	4.20	70.74	4.92	0.66	30.93
3D-ZrTe$_4$Se	90.12	2.92	21.59	28.20	9.30	67.07	1.27	24.43	1.43

study mechanical stability by calculating elastic constants of bulk materials. For the orthorhombic crystals, there are nine independent elastic stiffness constants in table 2. They fulfill the Born criteria of stability [49], $C_{11} > 0$, $C_{11}C_{22} > C_{12}^2$, $C_{11}C_{22}C_{33} + 2C_{22}C_{13}C_{23} - C_{11}C_{33} + C_{22}C_{13} - C_{33}C_{12} > 0$, $C_{44} > 0$, $C_{55} > 0$ and $C_{66} > 0$, indicating bulk ZrTe$_5$ and ZrTe$_4$Se are all mechanically stable.
Figure 3. The band structures of (a) bulk and (b) single-layer of ZrTe$_4$Se. The red and blue lines correspond to band structures without and with SOC, respectively. The Fermi energy is set to 0 eV.

Figure 4. The variation of band gap as a function of uniaxial strain along the (a) [100], (b) [111] direction of bulk ZrTe$_4$Se and (c) [100] direction of single-layer ZrTe$_4$Se. E_g and E_{Γ} represent the globe band gap and direct band gap at the Γ point, respectively. The nontrivial Z_2 topology survives as long as the globe band gap remains positive.

The calculated band structures for bulk ZrTe$_4$Se are shown in figure 3(a). Without SOC, the band structure presents a semimetal. With the consideration of SOC, the crossing point on the Γ–Z direction is separated and the conduction band minimum rises, but it has still a semimetal phase. We study the effect of different strain on electronic and topological properties in the bulk ZrTe$_4$Se and find the uniaxial strain along the [010] and [001] directions is little effect on the electronic properties, so the main research tasks focus on the uniaxial strain along the [100] and [111] directions. The variation of band gap (E_{Γ} and E_g) as a function of uniaxial strain along the [100] direction is presented figure 4(a). E_g and E_{Γ} represent the globe band gap and direct band gap at the Γ point, respectively. It can be seen that when the tensile strain is more than 1%, the phase transition from a semimetal to semiconductor occurs. The E_{Γ} increases monotonically under strain from 1% to 10%, reaching a maximum value of 0.336 eV at 10% and minimum value of 3.1 meV at 1%. The E_g increases first then decreases under tensile strain increases continuously, reaching a maximum value of 0.189 eV at 7%.

The topological properties of ZrTe$_4$Se have been checked and nontrivial topological phases exists from 1% to 10% strain range. We choose ZrTe$_4$Se under [100] strain at 3% as a typical example, the four Z_2 invariants are (0; 110) and it is a WTI according to method proposed by Fu, Kane and Mele [50]. The existence of gapless surface states is an additional commonly employed criterion for TI. The band structure and (001) surface state are shown in figure 5. The VBM and CBM are separated resulting 0.103 eV band gap. In the exotic topological surface state, two Dirac cones located at the T and K points respectively for the (001) surface. Then we study the effect of uniaxial strain along the [111] direction, the variation of band gap as a function of strain is presented figure 4(b). The E_{Γ} increases monotonically under strain from 1% to 9%, the E_g increases with strain and reaches a maximum value of 91.6 meV at 8%. When the strain is more than 2%, a semiconductor phase occurs. In addition, we find it is still a WTI with same Z_2 under 2% to 9% uniaxial strain. The band structure and (001) surface state for ZrTe$_4$Se under 8% strain are presented in figures 5(c) and (d), two Dirac cones located at the R and K points confirm it is WTI.

The calculated band structures for a single-layer ZrTe$_4$Se are displayed in figure 3(b). It is a gapless semimetal with the CBM across the Fermi energy without consideration of SOC, the VBM and CBM near the Γ point almost touch each other. With consideration of SOC, the band structure produces a
semimetal-to-semiconductor transition with a band gap of 86.4 meV. By presenting the orbitals-resolved band structures in figure 6, it can be seen the bands around the Fermi level are mainly derived from Te2-5p and Se-4p orbitals. It is noticed that GGA results are relatively reasonable in ZrTe\textsubscript{5} system \cite{29, 51–53}, while HSE06 results (see figure S5) will generate a larger band gap and may require a larger strain to make the phase transition occur.

The evolution lines of Wannier centers in figure S6 show it is a nontrivial QSH insulator with $Z_2 = 1$ and the important character of helical edge states also appear, as shown in figure 7. Helical edge states \cite{54, 55} are very useful for electronics and spintronics owing to their robustness against scattering. There is a Dirac cone at the Γ for the a axis edge. Fermi velocity of helical edge states, which is an important quantity related to applications, is about 3.2×10^5 m s$^{-1}$, comparable to 10^6 m s$^{-1}$ in graphene \cite{56}. For
the c axis edge, the symmetric edge structure leads to two Dirac cones located at opposite Γ points. The nontrivial metallic edge states further confirm the nontrivial topological nature of the monolayer ZrTe$_4$Se.

To get a physical understanding of the topological nature, we start from atomic orbitals and consider the effect of chemical bonding on the energy levels at the Γ point for monolayer ZrTe$_4$Se. For the convenience of discussion, we define coordinate system with x, y along a, c axes, respectively. The origin of the coordinate system located on Zr site, so the inversion center located at (0.25, 0.25). We note single-layer ZrTe$_4$Se has space group $Pmmn$ (D_{12}^h), which is nonsymmorphic, the Z_2 index of the material is fully determined by the energy order of the bands at the Γ point [18]. From the orbitals-resolved band structures, we find the band inversion happens between the Te$_2$-p$_x$ and Se-p$_y$, as shown in figure 8. For (I) process, there are four equivalent Te$_2$ atoms; they are fourfold degenerate. There are two equivalent Se atoms, they are double degenerate. For (II) process, the strong intrachain covalent bonding will split them into bonding and antibonding states. The Te$_2$ and Se have inversion symmetry and can be divided into two classes with $p = +1$ or $p = -1$. For (III) process, the weak interchain coupling will further change the Se’s states and split Te$_2$ states to single non-degenerate states. As a result, only the Te$_2$ state has odd parity, which leads to the QSH state. The band gap is opened by SOC effect, but SOC effect has nothing to do with topological properties.

Further more, we study electronic properties of single-layer ZrTe$_4$Se under different strain to explore the possible phase transition. For the uniaxial strain along the [100] direction, the variation of band gap as a function of strain is presented figure 4(c). The E_F increases monotonically under strain from -6% to 10%. The E_g increases under tensile strain increases continuously and reaches a maximum value of 0.211 eV at 8% tensile strain. It can be seen that the nontrivial topological phases exists over a wide strain from -1% to 10%, such robust topology against lattice deformation makes it easier for experimental realization and characterization on different substrate. When the compressive strain is more than 1%, the band structure produces a TI-to-semimetal transition.
4. Conclusion

In summary, the bulk and single-layer ZrTe₄Se is mechanically and dynamically stable, so it is possibly to be prepared. The bulk ZrTe₄Se is predicted a new 3D WTI with Z_2 invariants $(0; 110)$ under a large range of uniaxial strain. When the tensile strain along the $[100]$ ($[111]$) direction is more than 1% (2%), the band structure of bulk ZrTe₄Se produces a semimetal-to-TI transition. The maximum global band gap is 0.189 eV at the 7% tensile strain along the $[100]$ direction. The two Dirac cones for the (001) surface confirm the nontrivial topological nature at the $[100]$ ($[111]$) tensile strain 3% (8%). These calculations demonstrate the bulk ZrTe₄Se can be turned into a 3D TI via proper strain engineering. The single-layer ZrTe₄Se is a QSH insulator with a band gap 86.4 meV and $Z_2 = 1$, the edge states further confirm the nontrivial topological nature of this material. The Dirac point located at the band gap has a high velocity about 3.2×10^5 m s$^{-1}$. The QSH state survives at a large range of strain from -1% to 10%, indicating its robust stability against the strain. The maximum global band gap is 0.211 eV at 8% uniaxial tensile strain along the $[100]$ direction. When the compressive strain is more than 1%, the band structure of single-layer ZrTe₄Se produces a TI-to-semimetal transition. These findings make the ZrTe₄Se is an excellent candidate for large-gap TI and may provide a platform for realizing low-dissipation quantum spintronic devices.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 11904312 and 11904313), the Project of Department of Education of Hebei Province, China (No. BJ2020015), and the Natural Science Foundation of Hebei Province (Nos. A2019203507 and A2020203027). The authors thank the High Performance Computing Center of Yanshan University.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Wenhui Wan https://orcid.org/0000-0002-6824-0495
Yong Liu https://orcid.org/0000-0002-5435-9217

References

[1] Bernevig B A, Hughes T L and Zhang S-C 2006 Quantum spin Hall effect and topological phase transition in HgTe quantum wells Science 314 1757
[2] König M, Wiedmann S, Brüne C, Roth A, Buhrmann H, Molenkamp L W, Qi X-L and Zhang S-C 2007 Quantum spin Hall insulator state in HgTe quantum wells Science 318 766
[3] Liu C C, Feng W and Yao Y 2011 Quantum spin Hall effect in silicene Phys. Rev. Lett. 107 076802
[4] Liu C C, Hua J and Yao Y 2011 Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin Phys. Rev. B 84 4193
[5] Fu L and Kane C 2006 Topological insulators with inversion symmetry Phys. Rev. B 72 045302
[6] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 A topological Dirac insulator in a quantum spin Hall phase Nature 452 970–4
[7] Xia Y, Qian D, Hsieh D, Wray L and Pal A 2009 Observation of a large-gap topological-insulator class with a single Dirac cone on the surface Nat. Phys. 5 398–402
[8] Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z and Zhang S-C 2009 Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface Nat. Phys. 5 438–42
[9] Zhang R W, Zhang Z Y, Liu C C and Yao Y G 2020 Nodal line spin-gapless semimetals and high-quality candidate materials Phys. Rev. Lett. 124 016402
[10] Lin S Y, Chen M, Yang X B, Zhao Y J, Wu S C and Felser C 2015 Theoretical search for half-Heusler topological insulators Phys. Rev. B 91 0941071
[11] Lin H, Markiewicz R S, Wray L A, Fu L, Hasan M Z and Bansil A 2010 Single-Dirac-cone topological surface states in TiBiSe$_2$ class of topological insulators Phys. Rev. Lett. 105 036404
[12] Liu C C, Guan S, Song Z, Yang S Y, Yang J B and Yao Y G 2014 Low-energy effective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb X-hydride/halide (X = N-Bi) monolayers Phys. Rev. B 90 085341
[13] Fang Y et al 2012 Spatial and energy distribution of topological edge states in single Bi (111) bilayer Phys. Rev. Lett. 109 016801
[14] Wang Z F et al 2013 Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions Nat. Commun. 4 1384
[15] Luo W and Xiang H 2015 Room temperature quantum spin Hall insulators with a buckled square lattice Nano Lett. 15 3230–5
