CLASSIFYING LOCALLY COMPACT SEMITOPOLOGICAL POLYCYCLIC MONOIDS

SERHII BARDYLA

ABSTRACT. We present a complete classification of Hausdorff locally compact polycyclic monoids up to a topological isomorphism. A polycyclic monoid is an inverse monoid with zero, generated by a subset λ such that $xx^{-1} = 1$ for any $x \in \lambda$ and $xy^{-1} = 0$ for any distinct $x, y \in \lambda$. We prove that any non-discrete Hausdorff locally compact topology with continuous shifts on a polycyclic monoid M coincides with the topology of one-point compactification of the discrete space $M \setminus \{0\}$.

INTRODUCTION

In this paper we present a complete classification of locally compact semitopological polycyclic monoids up to a topological isomorphism.

We shall follow the terminology of [8, 10, 19, 22]. First we recall some information on inverse semigroups and monoids. We identify cardinals with the sets of ordinals of smaller cardinality.

A semigroup is a set S endowed with an associative binary operation $\cdot : S \times S \to S$, $\cdot : (x, y) \mapsto xy$. An element $e \in S$ is called the unit (resp. zero) of S if $xe = x = ex$ (resp. $xe = e = ex$) for all $x \in S$. A semigroup can contains at most one unit (which will be denoted by 1) and at most one zero (denoted by 0). A monoid if a semigroup with a unit.

A semigroup S is called inverse if for every element $a \in S$ there exists a unique element a^{-1} (called the inverse of a) such that $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$. An inverse monoid is an inverse semigroup with unit. We say that an inverse monoid S is generated by a subset $\lambda \subset S$ if S coincides with the smallest subsemigroup of S containing the set $\lambda \cup \lambda^{-1}$.

A polycyclic monoid is an inverse monoid S with zero $0 \neq 1$, which is generated by a subset $\lambda \subset S$ such that $xx^{-1} = 1$ for all $x \in \lambda$ and $xy^{-1} = 0$ for any distinct $x, y \in \lambda$. If the generating set λ has cardinality λ, then S is called a λ-polycyclic monoid. We claim that $|\lambda| \geq 2$. In the opposite case, $\Lambda = \{x\}$ is a singleton and $0 \in S = \{x^{-n}x^m : n, m \in \omega\}$, which implies that $0 = x^{-n}x^m$ for some non-negative numbers n, m. Then $0 = x^{n+1} \cdot x^{-m} = x^{n+1}(x^{-n}x^m)x^{-m} = x$ and hence $1 = xx^{-1} = 0x^{-1} = 0$, but this contradicts the definition of a polycyclic monoid.

A canonical example of a λ-polycyclic monoid can be constructed as follows. Let M_{λ^\pm} be the monoid of all words in the alphabet $\{x, x^{-1} : x \in \lambda\}$, endowed with the semigroup operation of concatenation of words. The empty word is the unit 1 of the monoid M_{λ^\pm}. Let $M_{\lambda^\pm}^0 := M_{\lambda^\pm} \cup \{0\}$ be the monoid M_{λ^\pm} with the attached external zero, i.e., an element $0 \notin M_{\lambda^\pm}$ such that $0 \cdot x = 0 = x \cdot 0$ for all $x \in M_{\lambda^\pm}^0$. On the monoid $M_{\lambda^\pm}^0$ consider the smallest congruence \sim containing the pairs $(xx^{-1}, 1)$ and $(xy^{-1}, 0)$ for all distinct elements $x, y \in \lambda$. Then the quotient semigroup $M_{\lambda^\pm}^0/\sim$ is the required canonical example of a λ-polycyclic monoid, which will be denoted by P_{λ} and called the λ-polycyclic monoid.

Algebraic properties of the λ-polycyclic monoid were deeply investigated in [5]. According to [5, Theorem 2.5], the semigroup P_{λ} is congruence-free, which implies that each λ-polycyclic monoid is algebraically isomorphic to P_{λ}.

The aim of this paper is to describe Hausdorff locally compact topologies on P_{λ}, compatible with the algebraic structure of the semigroup P_{λ}. A suitable compatibility condition is given by the notion of a semitopological semigroup.
A semitopological semigroup is a semigroup S endowed with a Hausdorff topology making the binary operation $S \times S \to S$, $(x, y) \mapsto xy$, separately continuous. If this operation is jointly continuous, then S is called a topological semigroup.

For a cardinal $\lambda \geq 2$ by \mathcal{P}_λ^d we shall denote the λ-polycyclic monoid \mathcal{P}_λ endowed with the discrete topology and by \mathcal{P}_λ^c the monoid \mathcal{P}_λ endowed with the compact topology $\tau = \{ U \subset \mathcal{P}_\lambda : 0 \in U \Rightarrow (\mathcal{P}_\lambda \setminus U \text{ is finite}) \}$ of one-point compactification of the discrete space $\mathcal{P}_\lambda \setminus \{0\}$. It is clear that \mathcal{P}_λ^d is a topological monoid. On the other hand, \mathcal{P}_λ^c is a compact semitopological monoid, which is not a topological semigroup.

By [5], each locally compact topological λ-polycyclic monoid is discrete and hence is topologically isomorphic to \mathcal{P}_λ^d. In the semitopological case we have the following dichotomy, which is the main result of this paper.

Main Theorem. Any locally compact semitopological polycyclic monoid S is either discrete or compact. More precisely, S is topologically isomorphic either to \mathcal{P}_λ^d or to \mathcal{P}_λ^c for a unique cardinal $\lambda \geq 2$.

Since the compact semitopological λ-polycyclic monoid \mathcal{P}_λ^c fails to be a topological semigroup, Main Theorem implies the mentioned result of [5]:

Corollary. Any locally compact topological polycyclic monoid S is discrete. More precisely, S is topologically isomorphic to the topological λ-polycyclic monoid \mathcal{P}_λ^d for a unique cardinal $\lambda \geq 2$.

Some other topologizability results of the same flavor can be found in [24, 23, 17, 2, 20, 13, 4, 5, 6].

Proof of Main Theorem

The proof of Main Theorem is divided into a series of 12 lemmas.

Let S be a non-discrete locally compact semitopological polycyclic monoid and let Λ be its generating set. By [5, Proposition 2.2], S is algebraically isomorphic to the λ-polycyclic monoid \mathcal{P}_λ for a unique cardinal $\lambda \geq 2$. So, we can identify S with \mathcal{P}_λ and the cardinal λ with the generating set Λ of the inverse monoid S.

Let S^+ be the submonoid of S, generated by the set Λ (i.e., S^+ is the smallest submonoid of S containing the generating set Λ). Elements of S^+ can be identified with words in the alphabet Λ. Such words will be called positive. The relations between the generators of S guarantee that each non-zero element a of S can be uniquely written as $u^{-1}v$ for some positive words $u, v \in S^+$. Then by $\downarrow a$ we denote the set of all prefixes of the word $u^{-1}v$. For a subset $C \subset S$ we put $\downarrow C = \bigcup_{a \in C} \downarrow a$.

The following algebraic property of a polycyclic monoid is proved in [5, Proposition 2.7].

Lemma 1. For any non-zero elements $a, b, c \in S$, the set $\{ x \in S : axb = c \}$ is finite.

This lemma will be applied in the proof of the following useful fact, proved in [5, Proposition 3.1].

Lemma 2. All non-zero elements of S are isolated points in the space S.

Proof. For convenience of the reader we present a short proof of this important lemma. First we show that the unit 1 is an isolated point of the semitopological monoid S. Take any generator $g \in \Lambda$ and consider the idempotent $e = g^{-1}g$ of S. Since the map $S \to eS$, $x \mapsto ex$, is a retraction of the Hausdorff space eS onto eS, the principal right ideal $eS = g^{-1}S$ is closed in S. By the same reason, the principal left ideal $Se = Sg$ is closed in S. The separate continuity of the semigroup operation yields a neighborhood $U_1 \subset S \setminus (g^{-1}S \cup Sg)$ of 1 such that $0 \notin (e \cdot U_1) \cap (U_1 \cdot e)$. We claim that $U_1 = \{1\}$. In the opposite case, U_1 contains some element $a \neq 1$, which can be written as $u^{-1}v$ for some positive words $u, v \in S^+$. Since $a \neq 1$ one of the words u, v is not empty. If u is not empty, then $a \in U_1 \subset S \setminus g^{-1}S$ implies that the word u^{-1} does not start with g^{-1}. In this case $ea = g^{-1}gu^{-1}v = g^{-1} \cdot 0 = 0$, which contradicts the choice of the neighborhood $U_1 \ni a$. If the word v is not empty, then $a \in U_1 \subset S \setminus Sg$ implies that v does not end with g. In this case $ae = u^{-1}vg^{-1}g = 0$, again contradicting the choice of U_1. This contradiction shows that the unit 1 is an isolated point of S.

Now we can prove that each non-zero point \(a \in S \) is isolated. Write \(a \) as \(u^{-1}v \) for some positive words \(u, v \in S^+ \). Since \(uv^{-1} = 1 \), the separate continuity of the semigroup operation on \(S \), yields an open neighborhood \(O_a \subset S \) of \(a \) such that \(uO_av^{-1} \subset U_1 = \{1\} \). By Lemma 4, the neighborhood \(O_a \) is finite and hence the singleton \(\{a\} = O_a \setminus (O_a \setminus \{a\}) \) is open, which means that the point \(a \) is isolated in \(S \).

Lemma 2 implies that the locally compact space \(S \) has a neighborhood base at zero, consisting of compact sets. It also implies the following useful lemma.

Lemma 3. For any compact neighborhoods \(U_0, V_0 \subset S \) of zero the set \(U_0 \setminus V_0 \) is finite.

For an element \(u \in S \) by \(\mathcal{R}_u := \{x \in S : xS = uS\} \) we denote its Green \(\mathcal{R} \)-class in \(S \). Here \(uS = \{us : s \in S\} \) is the right principal ideal generated by the element \(u \).

Lemma 4. Every non-zero \(\mathcal{R} \)-class in \(S \) coincides with the \(\mathcal{R} \)-class \(\mathcal{R}_{u^{-1}} = \mathcal{R}_{u^{-1}u} \) for some positive word \(u \in S^+ \).

Proof. Each non-zero element of the semigroup \(\mathcal{P}_\Lambda \) can be written as \(u^{-1}v \) for some positive words \(u, v \in S^+ \). Taking into account that \(u^{-1}v \cdot v^{-1} = u^{-1} \), we conclude that \(\mathcal{R}_{u^{-1}} = \mathcal{R}_{u^{-1}u} \).

In the following Lemmas 5–12 we assume that \(U_0 \) is any fixed compact neighborhood of zero in the semitopological monoid \(S \). Since zero is a unique non-isolated point in \(S \), the neighborhood \(U_0 \) is infinite.

Lemma 5. The neighborhood \(U_0 \) has infinite intersection with some \(\mathcal{R} \)-class of \(S \).

Proof. To derive a contradiction, assume \(U_0 \) has finite intersection with each \(\mathcal{R} \)-class of the semigroup \(S \). Taking into account that \(U_0 \) is infinite and applying Lemma 4, we can see that the set \(B = \{u \in S^+ : \mathcal{R}_{u^{-1}} \cap U_0 \neq \emptyset\} \) is infinite. For every \(u \in B \) denote by \(v_u \) a longest positive word in \(S^+ \) such that \(u^{-1}v_u \in \mathcal{R}_{u^{-1}} \cap U_0 \) (such word \(v_u \) exists as the set \(\mathcal{R}_{u^{-1}} \cap U_0 \) is finite). It follows that \(\Lambda = \{u^{-1}v_u : u \in B\} \) is an infinite subset of \(U_0 \). Fix any element \(g \) of the generating set \(\Lambda \) of \(S \). Since \(0 \cdot g = 0 \), we can use the separate continuity of the semigroup operation of \(S \) and find a compact neighborhood \(V_0 \subset U_0 \) of zero such that \(V_0 \cdot g \subset U_0 \). But then \(V_0 \subset U_0 \setminus A \) which contradicts Lemma 3.

Lemma 6. The neighborhood \(U_0 \) has infinite intersection with each non-zero \(\mathcal{R} \)-class of the semigroup \(S \).

Proof. By Lemma 4 any non-zero \(\mathcal{R} \)-class of the semigroup \(S = \mathcal{P}_\Lambda \) is of the form \(\mathcal{R}_{v^{-1}} \) for some positive word \(v \in S^+ \). By Lemmas 4 and 6 for some element \(u \in S^+ \) the intersection \(U_0 \cap \mathcal{R}_{u^{-1}} \) is infinite. Observe that \(v^{-1}u \cdot \mathcal{R}_{u^{-1}} \subset \mathcal{R}_{v^{-1}} \). By the separate continuity of the semigroup operation at \(0 = v^{-1}u \cdot 0 \), there exists a neighborhood \(V_0 \subset S \) of zero such that \(v^{-1}u \cdot V_0 \subset U_0 \). By Lemma 5 the difference \(U_0 \setminus V_0 \) is finite, which implies that the intersection \(V_0 \cap \mathcal{R}_{u^{-1}} \) is infinite. Then the set \(v^{-1}u \cdot (V_0 \cap \mathcal{R}_{u^{-1}}) \subset U_0 \cap \mathcal{R}_{v^{-1}} \) is infinite, too.

Lemma 7. If the generating set \(\Lambda \) is finite, then the neighborhood \(U_0 \) contains all but finitely many elements of the \(\mathcal{R} \)-class \(\mathcal{R}_1 = \{x \in S : xS = S\} \).

Proof. To derive a contradiction, assume that the set \(A := \mathcal{R}_1 \setminus U_0 \) is infinite. We claim that for every \(g \in \Lambda \) the set \(A_g = \{a \in A : ag \in U_0\} \) is finite. Indeed, suppose that \(A_g \) is infinite. By Proposition 11 \(A_g \cdot g \) is an infinite subset of \(U_0 \). Since \(0 \cdot g^{-1} = 0 \), the separate continuity of the semigroup operation on \(S \) yields a compact neighborhood \(V_0 \subset U_0 \) of zero such that \(V_0 \cdot g^{-1} \subset U_0 \). Then \(V_0 \subset U_0 \setminus (A_g \cdot g) \) which contradicts Lemma 5.

Let \(A^* = A \setminus \bigcup_{g \in \Lambda} \downarrow A_g \) (we recall that \(\downarrow A_g = \bigcup_{a \in A_g} \downarrow a \) where \(\downarrow a \) is the set of all prefixes of the word \(a \)). It follows that \(A^* \) is a cofinite (and hence infinite) subset of \(A \). Now we are going to show that \(A^* \) is a right ideal of \(\mathcal{R}_1 \). In the opposite case we could find elements \(c \in \mathcal{R}_1 \) and \(v \in A^* \) such that \(vc \notin A^* \). Let \(c^* \) be the longest prefix of \(c \) such that \(vc^* \in A^* \) (the word \(c^* \) can be empty, in which case it is the unit of \(S \)). Then \(vc^*g \notin A^* \) for some \(g \in \Lambda \). Observe that \(vc^* \in A^* \subset A \cap \mathcal{R}_1 \) implies \(vc^*g \in \mathcal{R}_1 \).
Assuming that $ve^g \in U_0$, we conclude that $ve^g \in A_g \subset \downarrow A_g$, which contradicts the inclusion $ve^g \in A^*$. So, $ve^g \notin U_0$ and hence $ve^g \in A$. Then $ve^g \notin A^*$ implies that $ve^g \notin \downarrow A_f$ for some $f \in \Lambda$ and thus $ve^g \notin \downarrow A_f$, too. But this contradicts the inclusion $ve^g \in A^*$. The obtained contradiction implies that A^* is a right ideal of R_1.

Let $u \in A^*$ be an arbitrary element. Since $u \cdot 0 = 0$, the separate continuity of the semigroup operation yields a compact neighborhood $V_0 \subset U_0$ of zero such that $u \cdot V_0 \subset U_0$. Proposition 1 and Lemma 6 imply that $u \cdot (V_0 \cap R_1)$ is an infinite subset of $A^* \cap U_0 \subset A \cap U_0$. In particular, $A \cap U_0$ is not empty, which contradicts the definition of the set $A := R_1 \setminus U_0$.

Lemma 8. If the cardinal $\lambda = |\Lambda|$ is finite, then the neighborhood U_0 contains all but finitely many elements of any R-class R_x, $x \in S$.

Proof. The lemma is trivial if $x = 0$. So we assume that $x \neq 0$. By Lemma 4, $R_x = R_{u^{-1}}$ for some positive word $u \in S^+$. Since $u^{-1} \cdot 0 = 0$, the separate continuity of the semigroup operation yields an neighborhood $V_0 \subset U_0$ of zero such that $u^{-1} \cdot V_0 \subset U_0$. By Lemmas 8 and 7, $R_1 \subset * V_0$ (which means that $R_1 \setminus V_0$ is finite). Then $R_x = R_{u^{-1}} = u^{-1} \cdot R_1 \subset u^{-1} \cdot V_0 \subset U_0$, which means that U_0 contains all but finitely many points of the R-class R_x.

The following lemma proves Main Theorem in case of finite cardinal $\lambda = |\Lambda|$.

Lemma 9. If the cardinal λ is finite, then the set $S \setminus U_0$ is finite.

Proof. To derive a contradiction, assume that $S \setminus U_0$ is infinite. By Lemma 8 for each $u \in S^+$ the set $R_{u^{-1}} \setminus U_0$ is finite. Since the complement $S \setminus U_0 = \bigcup_{u \in S^+} R_{u^{-1}} \setminus U_0$ is infinite, the set $B = \{u \in S^+ : R_{u^{-1}} \setminus U_0 \neq \emptyset\}$ is infinite, too. For every $u \in B$ denote by v_u the longest word in S^+ such that $u^{-1} v_u \in R_{u^{-1}} \setminus U_0$. Then $C = \{u^{-1} v_u : u \in B\} \subset R_{u^{-1}} \setminus U_0$ is infinite and by Proposition 1, for every $g \in \Lambda$ the set $C \cdot g$ is an infinite subset of U_0. Since $0 \cdot g^{-1} = 0$, the separate continuity of the semigroup operation yields a neighborhood $V_0 \subset U_0$ of zero such that $V_0 \cdot g^{-1} \subset U_0$. By Lemma 8 the set $U_0 \setminus V_0$ is finite. Since the set $C g \subset U_0$ is infinite, there is an element $c \in C$ with $c g \in V_0$. Then $c = c g g^{-1} \in V_0 g^{-1} \subset U_0$, which contradicts the inclusion $C \subset R_1 \setminus U_0$.

Lemma 10. The set $R_1 \setminus U_0$ is finite.

Proof. To derive a contradiction, assume that the complement $A := R_1 \setminus U_0$ is infinite. By Lemma 6 the set $U_0 \cap R_1$ is finite.

For a finite subset $F \subset \Lambda$, let S_F be the smallest subsemigroup of S containing the set $F \cup F^{-1} \cup \{0, 1\}$. If $|F| \geq 2$, then S_F is a polycyclic monoid. Separately, we shall consider two cases.

1. First assume that for every finite subset $F \subset \Lambda$ the set $U_0 \cap S_F$ is finite. In this case for every point $g \in \Lambda$, consider the set $W_g = \{a \in U_0 \cap R_1 : ag \notin U_0\}$. The separate continuity of the semigroup operation yields a neighborhood $V_0 \subset U_0$ of zero such that $V_0 \cdot g \subset U_0$. Lemma 8 implies that the set $W_g \subset U_0 \setminus V_0$ is finite and hence for every non-empty finite subset $F \subset \Lambda$ the set $U_F := (U_0 \cap R_1) \setminus \bigcup_{g \in F} W_g$ is finite. We claim that $U_F \cdot y \subset U_F$ for every $y \in S_F \cap R_1$. In the opposite case, there exist elements $y \in S_F \cap R_1$ and $x \in U_F$ such that $xy \notin U_F$. Let y^* be the longest prefix of y such that $xy^* \in U_F$ (note that y^* could be equal to 1). Then $xy^* g \notin U_F$ for some $g \in F$. Hence $xy^* \in W_g$ which contradicts the definition of $U_F \ni xy^*$. Hence $U_F \cdot y \subset U_F$ for each element $y \in S_F \cap R_1$.

Fix any element $v \in U_F$ and find a finite subset $D \subset \Lambda$ such that $v \in S_D$, $F \subset D$ and $|D| \geq 2$. Proposition 1 implies that $v \cdot (S_F \cap R_1)$ is an infinite subset of $U_F \cap S_D$, which contradicts our assumption.

2. Next, assume that for some finite subset $F \subset \Lambda$ the intersection $U_0 \cap S_F$ is infinite. For every $g \in F$ consider the subset $A_g := \{a \in A : ag \in U_0\}$ of the infinite set $A = R_1 \setminus U_0$. The separate continuity of the semigroup operation yields a neighborhood $V_0 \subset S \setminus U_0$ of zero such that $V_0 \cdot g^{-1} \subset U_0$. We claim that for every $a \in A_g$ we get $ag \notin V_0$. In the opposite case we would get $a = agg^{-1} \in V_0 \cdot g^{-1} \subset U_0$, which contradicts the inclusion $a \in A$. Then $A_g = \{a \in A : ag \in U_0 \setminus V_0\}$ and this set is finite by Lemmas 8 and 1. It follows that $A_F = A \setminus \bigcup_{g \in F} A_g$ is a cofinite (and hence infinite) subset of A.

We claim that $A_F \cdot y \subseteq A_F$ for every $y \in S_F \cap \mathcal{R}_1$. In the opposite case, we can find elements $y \in S_F \cap \mathcal{R}_1$ and $x \in A_F$ such that $xy \notin A_F$. Let y^* be the longest prefix of y such that $xy^* \in A_F$ (note that y^* could be equal to 1). Then $xy^* g \notin A_F$ for some $g \in F$. It follows from $xy^* \in A_F \subseteq A = \mathcal{R}_1 \setminus U_0$ and $gg^{-1} = 1$ that $xy^* g \in \mathcal{R}_1$. Assuming that $xy^* g \in U_0$, we conclude that $xy^* \in A_g$, which contradicts the inclusion $xy^* \in A_F$. So, $xy^* g \in \mathcal{R}_1 \setminus U_0 = A$ and then $xy^* g \notin A_F$ implies that $xy^* g \in \downarrow A_h$ for some $h \in F$ and finally $xy^* \in \downarrow A_h$, which contradicts the inclusion $xy^* \in A_F$. This contradiction completes the proof of the inclusion $A_F \cdot y \subseteq A_F$ for each $y \in S_F \cap \mathcal{R}_1$.

Fix any element $v \in A_F$ and find a finite subset $D \subseteq \Lambda$ such that $v \in S_D$, $F \subseteq D$ and $|D| \geq 2$. The subset S_D contains the unique non-isolated point of the space S and hence is closed in S. The local compactness of S implies the local compactness of the polycyclic monoid S_D endowed with the subspace topology. Lemma 3 and our assumption guarantee that the semitopological polycyclic monoid S_D is not discrete. By Proposition 1, $v \cdot (S_F \cap \mathcal{R}_1)$ is an infinite subset of $A_F \cap S_D \subseteq S_D \setminus U_0$. But this contradicts Lemma 9 (applied to the locally compact polycyclic monoid S_D and the neighborhood $U_0 \cap S_D$ of zero in S_D).

Lemma 11. The neighborhood U_0 contains all but finitely many points of each \mathcal{R}-class in S.

Proof. By Lemma 4, it suffices to check that for any $u \in S^+$ the set $\mathcal{R}_{u^{-1}} \setminus U_0$ is finite. The separate continuity of the semigroup operation yields a compact neighborhood $V_0 \subseteq U_0$ of zero such that $u^{-1} V_0 \subseteq U_0$. By Lemmas 11 and 3 we get $\mathcal{R}_1 \cap S^* V_0$. Then $\mathcal{R}_{u^{-1}} = u^{-1} \cdot \mathcal{R}_1 \cap S^* u^{-1} \cdot V_0 \subseteq U_0$, which means that the set $\mathcal{R}_{u^{-1}} \setminus U_0$ is finite.

Our final lemma combined with Lemma 2 proves Main Theorem and shows that the semitopological polycyclic monoid S carries the topology of one-point compactification of the discrete space $S \setminus \{0\}$.

Lemma 12. The complement $S \setminus U_0$ is finite and hence S is compact.

Proof. To derive a contradiction, assume that the set $S \setminus U_0$ is infinite. By Lemma 11, for each $u \in S^+$ the set $\mathcal{R}_{u^{-1}} \setminus U_0$ is finite. Since $S = \bigcup_{u \in S^+} \mathcal{R}_{u^{-1}}$, the set $B = \{u \in S^+ : \mathcal{R}_{u^{-1}} \setminus U_0 \neq \emptyset\}$ is infinite. For every $u \in B$ denote by v_u the longest word in S^+ such that $u^{-1} v_u \in \mathcal{R}_{u^{-1}} \setminus U_0$. Then $C = \{u^{-1} v_u : u \in B\}$ is an infinite subset of $S \setminus U_0$. By Lemma 11, for any $g \in \Lambda$ the set $C \cdot g$ is infinite. The separate continuity of the semigroup operation yields a neighborhood $V_0 \subseteq U_0$ of zero such that $V_0 \cdot g^{-1} \subseteq U_0$. Then $V_0 \subseteq U_0 \setminus (C \cdot g)$ which contradicts Lemma 3.

Acknowledgements

The author acknowledges professors Taras Banakh and Oleg Gutik for their fruitful comments and suggestions.

References

[1] L.W. Anderson, R.P. Hunter, R.J. Koch, Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521–529.
[2] T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31:2 (2009), 211–218.
[3] T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157:18 (2010), 2803–2814.
[4] S. Bardyla, On a semitopological α-bicyclic monoid, Visn. L’viv. Univ., Ser. Mekh.-Mat. 81 (2016), (to appear).
[5] S. Bardyla and O. Gutik, On a semitopological polycyclic monoid, Algebra Discr. Math. 21 (2016), no. 2, 163–183.
[6] S. Bardyla and O. Gutik, On a complete topological inverse polycyclic monoid, Carpathian Math. Publ. (submitted), arXiv:1603.08147
[7] M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76:21–23 (1976), 219–226.
[8] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.
[9] C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115–126.
[10] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
[11] I. R. Fihel and O. V. Gutik, *On the closure of the extended bicyclic semigroup*, Carpathian Math. Publ. 3:2, (2011) 131–157.
[12] J. A. Green, *On the structure of semigroups*, Ann. Math. (2) 54 (1951), 163-172.
[13] O. Gutik, *On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero*, Visn. L’viv. Univ., Ser. Mekh.-Mat. 80 (2015), 33–41.
[14] J. A. Hildebrant and R. J. Koch, *Swelling actions of Γ-compact semigroups*, Semigroup Forum 33:1 (1986), 65–85.
[15] D. G. Jones, *Polycyclic monoids and their generalizations*. PhD Thesis, Heriot-Watt University, 2011.
[16] D. G. Jones and M. V. Lawson, *Graph inverse semigroups: Their characterization and completion*, J. Algebra 409 (2014), 444–473.
[17] J. W. Hogan *Hausdorff topologies on the α-bicyclic semigroup*, Semigroup forum 36:1 (1987), 189–209.
[18] J. W. Hogan, *Bisimple semigroup with idempotents well-ordered*, Semigroup forum 6 (1973), 296–316.
[19] M. Lawson, *Inverse Semigroups. The Theory of Partial Symmetries*, Singapore: World Scientific, 1998.
[20] Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. H. Péresse, *Topological graph inverse semigroups*, Topology Appl. 208 (2016), 106–126.
[21] M. Nivat and J.-F. Perrot, *Une généralisation du monoïde bicyclique*, C. R. Acad. Sci., Paris, Sér. A 271 (1970), 824–827.
[22] W. Ruppert, *Compact Semitopological Semigroups: An Intrinsic Theory*, Lect. Notes Math., 1079, Springer, Berlin, 1984.
[23] A. A. Selden, *A nonlocally compact nondiscrete topology for the α-bicyclic semigroup*, Semigroup forum 31 (1985), 372–374.
[24] A. Weil, *L’intégration dans les groupes topologiques et ses applications*, Actualites Scientifiques No. 869, Hermann, Paris, 1938.

Faculty of Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
E-mail address: sbardy@abv.com