Prevalence and multilocus genotyping of potentially zoonotic *Giardia duodenalis* in pigs in Shanghai, China

Hua Liu*, Ning Xu*, Jianhai Yin, Zhongying Yuan, Yujuan Shen and Jianping Cao

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, MOH; Shanghai 200025, China

Abstract

Giardia duodenalis is a common intestinal parasite in humans and other mammals, and it causes major public and veterinary health problems worldwide. China is a major pig-raising country, and studies on *Giardia* in pigs have important public health significance. The present study was conducted to investigate the prevalence of *Giardia* and assess its genetic characterization. A total of 93 samples were collected from two farms in Shanghai. The presence of *Giardia* was determined using PCR and sequence analysis of glutamate dehydrogenase, beta-giardin and triose phosphate isomerase genes. The average prevalence of *G. duodenalis* infection was 26.88% (25/93) in the pigs, with 28.13% (18/64) in farm 1 vs 24.14% (7/29) in farm 2. All the PCR-positive products were successfully sequenced, and assemblage E was more prevalent. Zoonotic assemblages A and B and canine-specific assemblage C were identified in farm 1, whereas, only assemblage E was detected in farm 2. Interestingly, two pig isolates showed 100% homology with human-derived isolates from Australia and China at the bg and tpi loci respectively. Pigs infected with *Giardia* infect humans by polluting the environment; whether pigs are a potential environmental source of the human pathogen in China requires more epidemiological data.

Introduction

Giardia duodenalis (syn. *Giardia lamblia* and *Giardia intestinalis*) is an important intestinal protozoan that infects a wide range of mammalian species, for example, humans, wildlife, livestock and companion animals such as dogs and cats (Xu et al., 2016; Li et al., 2017b). Generally, infection with *Giardia* results in self-limited illness with weight loss and malabsorption, and asymptomatic giardiasis is common in developing countries (Hellard et al., 2000; Thompson, 2000). In 2004, giardiasis was classified as a neglected tropical disease by WHO because of its adverse effects on the growth and cognition development of children (Savioli et al., 2006). Giardiasis has a significant public health impact and affects veterinary health. The genus *Giardia* is divided into eight assemblages/genotypes (A to H) on the basis of genetic analysis. The zoonotic assemblages A and B can infect humans and many mammalian species, such as wild animals, nonhuman primates, domestic animals and companion animals. Other assemblages are more host-specific. Assemblages C and D infect domestic and wild canines, assemblage E infects domestic ruminants and pigs and assemblage F infects cats. Assemble G is mostly found in rodents, and assemblage H, in seals (Cacciò et al., 2018). However, some of these assemblages have also been identified in humans, such as assemblage F in children living under poor environmental conditions in Slovakia, assemblage E in people living in Australia and assemblage C in diarrhoea patients in Shanghai, China (Liu et al., 2014b; Zahedi et al., 2017; Pipiková et al., 2018). In fact, transmission of *Giardia* from humans to animals or vice versa has been detected in areas where humans have close contact with animals such as lambs (Traub et al., 2004; Lebbad et al., 2010). A previous study has also shown the possibility of sexual transmission of *Giardia* in endemic areas (Escobedo et al., 2018).

In humans, the number of giardiasis cases has been estimated to be about 28.5 million, with an average infection rate of 2.52%. The annual incidence of Giardia infection accounts for more than 10% of the total number of cases worldwide (Li et al., 2017b). In China, large-scale investigations of *G. duodenalis* in humans showed infection rates of 6.04% (81/1332) in Huainan, Anhui Province, and 9.46% in Shanghai (Fu et al., 2004; Wang et al., 2013). The infection rate of Giardia is higher in HIV/AIDS patients, with the highest rate of up to 16.2% in Guangzhou, China (Pand et al., 2015). In China, assemblages A and B are the main genotypes of Giardia in humans (Li et al., 2017a). Recently, assemblage C was identified as the predominant species in diarrhoea patients in Shanghai, China (Liu et al., 2014b), and assemblage E was identified to have an high infection rate (6.8%, 6/88) in humans in Queensland, Australia (Zahedi et al., 2017).

In animals, the prevalence of giardiasis varies greatly in different countries because of the animal species, sample methods, environment and development status. The infection rate has...
been reported to be as high as 52% in cattle in the United States and 66.4% in pigs in Canada (Hoar et al., 2009; Farzan et al., 2011). Recently, studies on *Giardia* in animals have been performed in at least 27 provinces and autonomous regions in China, with a prevalence rate of 0.51–50% in non-human primates, 1.04–22.6% in cattle, 0.27–78% in sheep and goats, 3.71–31.51% in dogs and cats, 1.7–11.1% in wild boar and domestic pigs, 1.9–8.38% in rabbits and 6.03–37.50% in rodents (Fan et al., 2017; Li et al., 2017a, 2017b; Wang et al., 2018; Zhang et al., 2018). Molecular methods have been used in several studies, and assemblages A and B have been isolated from animals. Assemblages A and E were found in a dog and cattle, respectively; assemblage B, in rabbits; assemblages C, D and F, in companion dogs and assemblage G, in racehorses (Li et al., 2017a, 2017b). The molecular studies of *Giardia* in animals in China mainly concentrated on cattle, sheep, cats and dogs. There is limited information on the prevalence and genetic characterization of *G. duodenalis* in pigs. Pigs are one of the main sources of meat products in China. Swine manure may cause environmental contamination through the water or other ways (Thurston-Enriquez et al., 2005), and a large number of *Giardia* spores in animal slurry can also enter streams and rivers from pasture run-off. In 2011, researchers investigated pollution by *Cryptosporidium* and *Giardia* in the water source of the Huangpu River and showed through genotyping that pigs are one of the sources of pollution (Feng et al., 2011). Therefore, it is essential to study *Giardia* in pigs in the area around Huangpu River.

Although several genes, such as small-subunit (SSU) rRNA, glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and beta-giardin (bg), are widely used to identify Giardia with PCR, a single gene may not accurately identify *Giardia* or fully describe its genetic characterization. Multilocus genotyping (MLG) based on more than three genes is being used to provide more genetic information and contribute to understanding possible zoonotic transmission linkages (Cacciò et al., 2008; Scorza et al., 2012). The aim of the present study was to assess the prevalence of *G. duodenalis* in pigs from two farms in Shanghai, which is the largest economic centre of the country, by amplification of gdh, bg and tpi and sequencing and investigate the possible zoonotic potential of *G. duodenalis* at a genetic level.

Materials and methods

Sample collection

In the two farms, permission to conduct the study was obtained from the managers. In 2014, a total of 93 faecal samples were collected from the farms. The samples were collected from freshly dropped faeces by using a sterile disposable latex glove, placed in clean plastic bags, transported on ice to the laboratory and stored at 4 °C until DNA extraction.

DNA extraction

The faecal samples were washed three times using sterile water, and genomic DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Valencia, USA), according to the manufacturer’s protocol. The DNA was eluted in 200 µL of AE elution buffer and stored at –30 °C until use.

Molecular methods

All the samples were analysed for the three loci. A 530 bp fragment of gdh, 530 bp fragment of tpi and 380 bp fragment of bg were amplified using nested PCR (Cacciò et al., 2002; Sulaiman et al., 2003; Scorza et al., 2012). For all three genes, primary PCR was performed with 12.5 µL of 2 × PCR master mix (Promega, Italy), 1 µL of each primer (10 µM), and 1 µL of DNA in a total reaction volume of 25 µL. For the nested PCR, 1 µL of the first PCR product was used as the template. The PCR cycling conditions were the same for gdh and tpi: initial hot start at 95 °C for 5 min, followed by 35 cycles (94 °C for 50 s, 57 °C for 45 s and 72 °C for 1 min) and a final extension step at 72 °C for 10 min. The secondary PCR cycling conditions were identical to the primary PCR cycling conditions. For bg, the cycling conditions were the same, except the annealing temperature was 60 °C. A *Giardia*-positive DNA specimen and distilled water were used as the positive and negative controls, and the PCR products were analysed using 2% agarose gel electrophoresis and ethidium bromide staining.

DNA sequencing and data analysis

For accurate analysis, all the genes were amplified at least three times and all PCR-positive products were sequenced in both directions using an ABI 3730 DNA Analyzer (Applied Biosystems, Foster City, USA), secondary primers and a Big Dye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems). ContigExpress was used to evaluate the wave peak and assemble the sequences. The nucleotide sequences were aligned and edited using BLAST, BioEdit (version 7.0.9), GenBank and ClustalX 1.83 (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/).

Results

Prevalence and PCR amplification of *G. duodenalis*

For the 93 samples, nested PCR amplification of gdh, tpi and bg was performed. On the basis of at least one gene, the average prevalence of *G. duodenalis* infection was 26.88% (25/93) in the pigs (Table 1). In farm 1, gdh, bg and tpi were detected in 11 (17.19%), 11 (17.19%) and 5 (7.81%) samples, respectively. Among the samples, all three loci were successfully amplified in two isolates, whereas gdh and bg were amplified in five isolates. On the basis of one locus, gdh, bg and tpi were successfully amplified in four, four and three isolates. In farm 2, gdh, bg and tpi were detected in five (17.24%), three (10.34%) and two (6.90%) samples. Among the samples, the three loci were successfully amplified in only one isolate, whereas gdh and bg were amplified in one isolate. In total, the prevalence of *G. duodenalis* was 28.13% (18/64) in farm 1 vs 24.14% (7/29) in farm 2, and gdh showed a higher amplification rate (17.20%, 16/93) than bg (15.05%, 14/93) and tpi (7.53%, 7/93). PCR results of representative samples for the gdh, tpi and bg genes are shown in Fig. 1.

Percentage and distribution of *G. duodenalis* assemblages

In this study, assemblages A, B, C and E were found in the pigs. Using the gdh locus, 16 specimens were identified to be assemblage A and 14, assemblage E, whereas, using the tpi locus, two specimens were identified to be assemblage C and five, assemblage E. The expected fragment of bg was successfully amplified in 14 specimens, and assemblage A (1), assemblage B (1) and assemblage E (12) were identified. In general, assemblage E was predominant in the pigs in the investigated areas. This result is consistent with those obtained in China and other countries.

In addition, the different farms yielded different genotypes. In farm 1, the genotypes were diverse, and assemblages A, B, C and E were identified. However, in farm 2, only assemblage E was detected.
Homology analyses of *G. duodenalis* assemblages

Sequence comparison with *G. duodenalis* sequences available in the GenBank database revealed that the isolates listed in Table 2 showed 100% homology with the sequences reported previously. One isolate was confirmed to be assemblage A by amplification of *gdh* (KJ668144) and *bg* (KJ668152), which have been reported in the grey seal (GU176079) from the United States and ferret (AB469365) from Japan, respectively. The other assemblage A isolate was identical to a cattle-derived isolate (KF843930) from China. The assemblage B isolate (KJ668151) showed 100% homology with human-derived isolates from Australia (HQ176079) and the United States and ferret (AB469365) from Japan, respectively. The other assemblage A isolate was identical to a cattle-derived isolate (KF843930) from China. The assemblage B isolate (KJ668151) showed 100% homology with human-derived isolates from Australia (HQ179586).

Two assemblage C isolates were identical to a dog-derived isolate from the United States (AY178741) and a human-derived isolate from China (KF271451). Six (KJ668142) and four (KJ668138) assemblage E isolates have been found in pig- (AY178741) and cattle-derived (AY178740) isolates from Australia. On the basis of the *tpi* locus, two isolates were identical to cattle-derived isolates (KF843930) from China. The assemblage B isolate (KJ668151) showed 100% homology with human-derived isolates from Australia (HQ179586).

Two assemblage C isolates were identical to a dog-derived isolate from the United States (AY178741) and a human-derived isolate from China (KF271451). Six (KJ668142) and four (KJ668138) assemblage E isolates have been found in pig- (AY178741) and cattle-derived (AY178740) isolates from Australia. On the basis of the *tpi* locus, two isolates were identical to cattle-derived isolates from Japan and the United States. On the basis of the *bg* loci, eight isolates have been described in pigs from the Czech Republic (AY072729) and one in sheep from the United States (DQ116624).

Genetic diversity of assemblage E

In addition to the above-mentioned sequences, other assemblage E isolates were analysed, and a multiple alignment was performed (Table 3). In this study, intra-genotypic diversity of *G. duodenalis* assemblage E was observed. On the basis of the *bg* loci, three subtypes were noted using AY072729 as the reference sequence (Table 3). On the basis of the *tpi* loci, the obtained isolates could also be divided into three subtypes, with five- to six-base variations at seven nucleotide sites. The subtyping analysis revealed that three isolates have not been described on the basis of the *gdh* loci, and a detailed description of the single nucleotide polymorphisms is provided in Table 3.

Discussion

Pigs are complicated hosts of many diseases caused by bacteria, viruses and parasites. Globally, *Giardia* assemblages A, B, C, D, E and F have been identified in pigs, with assemblage E being the predominant species (Wang et al., 2018). In the United Kingdom and Australia, pigs have been implicated as sources of *G. duodenalis*, and zoonotic genotypes occur frequently. However, only a few studies have investigated the infection and molecular epidemiology of *Giardia* in pigs in China (Wang et al., 2017, 2018; Shi et al., 2018), which is a major pig-raising country. Recently, African swine fever was reported in pigs in different cities in China, causing wide public concern (Ge et al., 2018). Therefore, considering that pigs are the main economic animals in China and the importance of zoonotic *Giardia*, we performed multilocus genotyping of *G. duodenalis* in pigs. To the best of our knowledge, this is the first report of the occurrence and genetic characterization of *Giardia* in pigs in Shanghai, China. *Giardia* spp. were identified in 26.88% (25/93) of the pigs by using nested PCR, with 28.13% (18/64) in farm 1 vs

Farm	Prevalence^a	No. of positive (%)	Assemblage (n)	No. of positive (%)	Assemblage (n)	No. of positive (%)	Assemblage (n)	Total assemblages^b
Farm 1	28.13% (18/64) 11 (17.19) A (2), E (9) 5 (7.81) C (2), E (3) 11 (17.19) A (1), B (1), E (9)	A (2), B (1), C (2), E (13)						
Farm 2	24.14% (7/29) 5 (17.24) E (5) 2 (6.90) E (2) 3 (10.34) E (3)	E (7)						
Total	26.88% (25/93) 16 (17.20) A (2), E (14) 7 (7.53) C (2), E (5) 14 (15.05) A (1), B (1), E (12)	A (2), B (1), C (2), E (20)						

^aPrevalence based on one locus.

^bTotal assemblages indicating that if one isolate had the same assemblage at different loci, it was considered as one assemblage.

Fig. 1. PCR results of representative samples for the *gdh*, *tpi* and *bg* genes.
In this study, the infection rate was higher than that detected in pigs in Henan (8%), Sichuan (3.1%), Shanxi (1.7%) and Yunnan (1.55%) and lower than that reported in Canada (50.8%), Western Australia (31.1%) and the United Kingdom (57.1%) (Armson et al., 2009; Farzan et al., 2011; Minetti et al., 2014; Wang et al., 2017, 2018; Shi et al., 2018). The results showed that the amplification rate of gdh was higher (16, 17.20%) than that of bg (14, 15.05%) and tpi (6, 6.45%). In fact, infection rates are complicated and related to many factors, such as the selected locus, detection methods, different seasons and farms and the structure of the specimens (Geurden et al., 2008). In addition, a different management system, involving differences in animal stocking density, water supply or hygiene regimes, could increase the potential risk of infection by intestinal parasites like *Giardia*.

Globally, few studies on the genotyping of *Giardia* have been conducted, with the infection rate being 0–66.4%. The genotypes are mainly assemblages A, B, C, E and F with assemblage E being predominant, except for a study in Canada, in which assemblage B was the main genotype (Farzan et al., 2011; Wang et al., 2017).

Table 2. Homology analyses of pig-derived isolates of *G. duodenalis* assemblages

Assemblage	Accession no. (This study)	Loci amplified	Country	Host	Accession no.	Ref
A	KJ668143	gdh	China	Cattle	KF843930	Unpublished
	KJ668144	gdh	USA	Grey seal	GU176079	Lasek-Nesselquist et al. (2010)
	KJ668152	bg	Japan	Ferret	AB463965	Unpublished
B	KJ668151	bg	Australia	Human	HQ179586	Wielinga et al. (2011)
C	KJ668133	tpi	USA	Dog	AY228641	Minetti et al. (2014)
	KJ668131	tpi	China	Human	KF271451	Liu et al. (2014b)
E	KJ668142	gdh	Australia	Pig	AY178741	Unpublished
	KJ668138	gdh	Australia	Cattle	AY178740	Unpublished
	KJ668137	gdh	China	Sheep	KC960647	Liu et al. (2014a). Unpublished
	KJ668130	tpi	Japan	Cattle	AB569406	Suzuki et al. (2011).
	KJ668132	tpi	USA	Cattle	EF654692	Feng et al. (2008)
	KJ668149	bg	Czech Republic	Pig	AY072729	Cacciò et al. (2002)
	KJ668146	bg	USA	Sheep	DQ116624	Di Giovanni et al. (2006)

Table 3. *G. duodenalis* assemblage E subtypes on the basis of the gdh, bg and tpi loci

Accession no.	bg Position 86 101 236 242 266	tpi Position 21 94 106 347 348 456 474	gdh Position 65 83 89 125 194 266 334 439 461 464
AY072729	A T G T C	T G G A T A A	T C C C G G G
KJ668150	G C G G C	T A A G G G G	C T C C G G G
KJ668147	G T G C C	C A G G G G G	C G C C G G G
KJ668148	G C A T T	T A G G G G G	A T A A A A A
JF792419	T G G A T A A	T A A G G G G	T C C C G G G
KJ668134	T A A A G G G G	T A A G G G G	C T C C G G G
KJ668135	C A G G G G G	C A G G G G G	T A A A A A A
KJ668136	T A G G G G	C T C C G G G	T C C C G G G
KJ668145	T C C C G G	C T C C G G G	A T A A A A A
KJ668141	T C C C G G	C T C C G G G	T A A A A A A
KJ668138	T C T A G	T C C C G G G	T C C C G G G
In this study, the obtained sequences were all aligned with reference sequences; the specimens determined to be assemblages A, B, C or E, with assemblage E being more prevalent. This is consistent with the results of previous studies conducted in other countries (Langkjaer et al., 2007; Armson et al., 2009), but different from those of a study performed in Ontario, Canada (Farzan et al., 2011). No assemblage swapping was found in the specimens (different assemblages at different loci in the same isolate). Interestingly, different assemblages were found at the two farms. Assemblages A, B, E and canine-specific assemblage C were identified at farm 1, and only assemblage E was found at farm 2. This may be because the two farms are in different parts of Shanghai, with farm 1 in the middle of the city and farm 2 in southwestern Shanghai. In addition, the difference in the number of samples from the farms could have influenced the results, as only 29 specimens were collected from farm 2.

All the assemblage A isolates have been described previously in different hosts. The sequence analysis showed that two isolates typed as assemblages B and C in the study were identical to the human-derived isolates on the basis of typed assemblages B and C in the study were identical to the different hosts. The sequence analysis showed that two isolates identified at farm 1, and only assemblage E was found at farm 2. This may be because the two farms are in different parts of Shanghai, with farm 1 in the middle of the city and farm 2 in southwestern Shanghai. In addition, the difference in the number of samples from the farms could have influenced the results, as only 29 specimens were collected from farm 2.

Country	Loci amplified	A	B	E	Others	Reference
Australia	18S rRNA	17	35	1(F)	2(A+E)	Armson et al. (2009)
Brazil	gdh	2	1(D)			Fava et al. (2013)
	tpi				1	
Demark	Unspecified	10	52	1(D)		Langkjaer et al. (2007)
Europe	Unspecified	29	1	109	1(D)	Sprong et al. (2009)
Italy	SSU rRNA+gdh+tpi+bg	1				Lalle et al. (2005)
Canada (Ontario)	SSU rRNA, bg	58	5			Farzan et al. (2011)
UK	SSU rRNA			1(C), 1(F)		Minetti et al. (2014)
China	tpi	3	0	9	3(C)	Wang et al. (2018)
China	MLGs	9	0	36		Wang et al. (2017)
China	TPI	2				Shi et al. (2018)
China	bg	2	0	9		Feng et al. (2011)
China	gdh	2		14		This study
	tpi			5	2(C)	
	bg	1	1	12		

In 2005, three Egyptians were identified to be infected with G. duodenalis. Unexpectedly, the assemblage C isolate (KJ668131) has been reported in diarrhoea patients in the investigated area (Liu et al., 2014b). Thus, the occurrence of assemblages A, B and C isolates is a potential zoonotic risk for humans. In our study, the molecular epidemiological data showed that assemblage E was the most common in the pigs in the investigated areas, and similar results have been reported in many countries (Maddox-Hyttel et al., 2006; Langkjaer et al., 2007; Armson et al., 2009; Sprong et al., 2009).

Sequence analysis of the bg locus of G. duodenalis revealed three subtypes in 12 assemblage E isolates, with two to four nucleotide variations; AY072729 was used as the reference sequence. Intra-genotype variations were also found on the basis of the tpi locus, and three novel isolates had only one or two nucleotide variations within seven sites. However, using JF792419 as the reference sequence, the single nucleotide polymorphisms increased to five or six sites, suggesting that the novel subtypes may represent endemic genetic characterizations in the investigated areas. On the basis of the gdh locus, 11 of 14 isolates have been reported in different animals, and three novel subtypes have been reported for the first time in pigs in Shanghai.

Currently, molecular analysis is being widely used to identify G. duodenalis in pigs (Table 4). In Australia, although assemblage E was the most common Giardia genotype, zoonotic assemblage A and feline-specific assemblage F were identified in pigs, with two mixed infections (A + E) (Armson et al., 2009). Similarly, assemblage F and a canine-specific assemblage C isolate were found in the United Kingdom (Minetti et al., 2014). In Denmark, assemblage E and zoonotic assemblage A have been identified (Langkjaer et al., 2007; Petersen et al., 2015). In Canada and Poland, assemblage E and zoonotic assemblage B have been identified (Farzan et al., 2011; Stojecki et al., 2015). In the study, two pig-derived isolates were also typed as assemblage C on the basis of tpi. The occurrence revealed that the host-adapted assemblages were no longer confined to specific hosts. Likewise, the canine-specific assemblage D was also found in pigs from Denmark and Europe, whereas assemblage E was more prevalent. In China, Giardia assemblages A, B, C, E and F have been reported in Shanxi, Yunnan, Henan and Sichuan Provinces (Li et al., 2017a; 2017b; Wang et al., 2017; 2018; Shi et al., 2018). In fact, contaminated water, food and fomites are considered to be the sources of infection for G. duodenalis (Feng and Xiao L, 2011). To our knowledge, the pig farms involved in our study were not industrialized pig farms and faeces may pollute the environment through water or other routes during the treatment process; similar findings have been reported by Hutchison et al. (2004). In addition, children or adults in close contact with farm animals are at increased risk of Giardia infection (Hoque et al., 2002, 2003).

In 2005, three Egyptians were identified to be infected with G. duodenalis. In 2008, in view of the aforementioned infection factors, the pigs infected with G. duodenalis in the two farms may also be considered as a potential source of infectious cysts.
that affect humans. Because our study was a cross-sectional survey, and the farms were selected on the basis of the willingness of the owners, our data may not reflect the true population prevalence of *G. duodenalis* in farm animals in Shanghai. However, MLG based on three loci was used to detect the specimens, so our results demonstrate that *G. duodenalis* is a common intestinal parasite of pigs in the investigated areas. Previous studies have illustrated the difficulties of confirming the assemblage of an isolate by using MLG with different loci; however, the detection method provides clues for understanding assemblage exchange and potential zoonotic transmission (Lebbad et al., 2010; Beck et al., 2012; Scorzà et al., 2012). Recently, Cacciò et al. (2008) proposed an MLG model for easily defining *G. duodenalis* assemblages and sub-assemblages in humans, proving it can provide more information on the genetic diversity and transmission dynamics of *G. duodenalis* (Alyousefi et al., 2013; Huey et al., 2013).

In conclusion, to the best of our knowledge, this is the first report on pig giardiasis in Shanghai, China, and *Giardia* assemblage E was prevalent in the pigs in the investigated area. The occurrence of zoonotic assemblages A and B was also detected. In addition, the canine-specific assemblage C was found in two pigs. The finding that pig-derived assemblages B and C have 100% homology with human-derived *G. duodenalis* isolates at the Ig and tpi loci implies the possibility of zoonotic transmission in the investigated areas. A better understanding of the distribution of *Giardia* in animals will help to establish more targeted measures for its prevention and control. Further studies with a larger number of samples and farms, and evaluation of the farmers in contact with pigs, are needed to investigate *G. duodenalis* infection and transmission dynamics and assess the zoonotic risk for humans.

Author ORCIDs. Jianping Cao, 0000-0002-1974-0047

Acknowledgements. We thank Mr Yuxin Xu for assistance in collecting the stool samples.

Financial support. This study was supported by the National Key R&D Program of China (Nos. 2016YFC1201900 to JC, 2017YFD05000-00 to HL), the Chinese Special Program for Scientific Research of Public Health (No.201502021 to JC), the National Science and Technology Major Program of China (No. 2018ZX1002001-002-004) and Shanghai Municipal Commission of Health and Family Planning (No. 20164Y0225 to HL).

Conflict of interest. None.

Ethical standards. This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention. The protocol was approved by the Laboratory Animal Welfare & Ethics Committee (LAWEC), National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Permit Number: IPD 2012-6). No animals were harmed during the study.

References

Alyousefi NA, Mahdy MA, Xiao L, Mahmud R and Lim YA (2013) Molecular characterization of *Giardia duodenalis* in Yemen. *Experimental Parasitology* 134, 141–147.

Armson A, Yang R, Thompson J, Johnson J, Reid S and Ryan UM (2009) *Giardia* genotypes in pigs in Western Australia: prevalence and association with diarrhea. *Experimental Parasitology* 121, 381–383.

Beck R, Sprong H, Pozio E and Cacciò SM (2012) Genotyping *Giardia duodenalis* isolates from dogs: lessons from a multilocus sequence typing study. *Vector-Borne and Zoonotic Diseases* 12, 206–213.

Cacciò SM, De Giacomo M and Pozio E (2002) Sequence analysis of the beta-giardin gene and development of a polymerase chain reaction-restriction fragment length polymorphism assay to genotype *Giardia duodenalis* cysts from human faecal samples. *International Journal for Parasitology* 32, 1023–1030.

Cacciò SM, Beck R, Lalle M, Marinucci A and Pozio E (2008) Multilocus genotyping of *Giardia duodenalis* reveals striking differences between assemblages A and B. *International Journal for Parasitology* 38, 1523–1531.

Cacciò SM, Lalle M and Svard S G (2018) Host specificity in the *Giardia duodenalis* species complex. *Infection, Genetics and Evolution* 66, 335–345.

Di Giovanni GD, Betancourt WQ, Hernandez J, Assadain NW, Flores Marge JP and Lopez EI (2006) Investigation of potential zoanthropo- tic transmission of cryptosporidiosis and giardiasis through agricultural use of reclaimed wastewater. *International Journal of Environmental Research and Public Health* 16, 405–418.

Escoberdo AA, Acosta-Ballester G, Almirall P, Rodriguez-Morales AJ, Ortiz C, Labutta A and Chirino E (2018) Potential sexual transmission of *Giardia* in an endemic region: a case series. *Le Infezioni in Medicina* 26, 171–175.

Fan Y, Wang T, Koehler AV, Hu M and Gasser RB (2017) Molecular investigation of *Cryptosporidium* and *Giardia* in pre- and post-weaned calves in Hubei Province, China. *Parasites & Vectors* 10, 519.

Farrar A, Parrington L, Collin T, Cook A, Pintar K, Pollari F, Friendship R, Farber J and Dixon B (2011) Detection and characterization of *Giardia duodenalis* and *Cryptosporidium* spp. on swine farms in Ontario, Canada. *Foodborne Pathogens and Disease* 8, 1207–1213.

Fava NM, Soares RM, Scala LA, Kalapothakis E, Pena IF, Vieira CU, Faria ES, Cunha MJ, Couto TR and Cury MC (2013) Performance of glu- tamate dehydrogenase and triose phosphate isomerase genes in the analysis of genotypic variability of isolates of *Giardia duodenalis* from livestock. *Biomed Research International* 2013, 875048.

Feng Y and Xiao L (2011) Zoonotic potential and molecular epidemiology of *Giardia* species and giardiasis. *Clinical Microbiology Review* 24, 110–140.

Feng Y, Ortega Y, Cama V, Terrel J and Xiao L (2008) High intragenotypic diversity of *Giardia duodenalis* in dairy cattle on three farms. *Parasitology Research* 103, 87–92.

Feng Y, Zhao X, Chen J, Jin W, Zhou X, Li N, Wang L and Xiao L (2011) Occurrence, source, and human infection potential of *Cryptosporidium* and *Giardia* spp. in source and tap water in Shanghai, China. *Applied Environmental Microbiology* 77, 3609–3616.

Foronda P, Barques MD, Abreu-Acosta N, Periago MV, Valero MA, Valladares B and Mas-Coma S (2008) Identification of genotypes of *Giardia intestinalis* of human isolates in Egypt. *Parasitology Research* 103, 1177–1181.

Fu M, Sun Q and Su L (2004) Survey of *Giardia* infection among students in a certain area. *Chinese journal of School Doctor* 18, 167–168.

Ge S, Li J, Fan X, Liu F, Li L, Wang Q, Ren W, Bao J, Liu C, Wang H, Liu Y, Zhang Y, Xu T, Wu X and Wang Z (2018) Molecular characterization of African swine fever virus, China, 2018. *Emerging Infectious Diseases* 24, 2131–2133.

Geurden T, Thomas P, Casaert S, Vercruysse J and Claerebout E (2008) Prevalence and molecular characterization of *Cryptosporidium* and *Giardia* in lambs and goat kids in Belgium. *Veterinary Parasitology* 155, 142–145.

Hellard ME, Sinclair MI, Hogg GG and Fairley CK (2000) Prevalence of enteric pathogens among community based asymptomatic individuals. *Journal of Gastroenterology and Hepatology* 15, 290–293.

Hoar BR, Paul RR, Siembieda J, Pereira M and Atwill ER (2009) *Giardia duodenalis* in feedlot cattle from the central and western United States. *BMRC Veterinary Research* 5, 37–46.

Houcke ME, Hope VT, Kjellström T, Scragg R and Lay-Yee R (2002) Risk of giardiasis in Aucklanders: a case-control study. *International Journal of Infectious Diseases* 6, 191–197.

Houcke ME, Hope VT, Scragg R and Kjellström T (2003) Children at risk of giardiasis in Auckland: a case-control analysis. *Epidemiology Infection* 131, 655–662.

Huey CS, Mahdy MA, Al-Mekhlafi HM, Nasr NA, Lim YA, Mahmud R and Surin J (2013) Multilocus genotyping of *Giardia duodenalis* in Malaysia. *Infection Genetics & Evolution* 17, 269–276.

Hutchinson ML, Walters LD, Avery SM, Syng BA and Moore A (2004) Levels of zoonotic agents in British livestock manures. *Letters in Applied Microbiology* 39, 207–214.
Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D and Cacciò SM (2005) Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. International Journal for Parasitology 35, 207–213.

Langkjaer RB, Vigré H, Enemark HL and Maddox-Hyttel C (2007) Molecular and phylogenetic characterization of Cryptosporidium and Giardia from pigs and cattle in Denmark. Parasitology 134, 339–350.

Lasek-Nesselquist E, Welch DM and Sogin ML (2006) Molecular and phylogenetic characterization of genotypes and assemblages in livestock in the UK. Veterinary Parasitology 134, 231–239.

Li J, Wang H, Wang R and Zhang I. (2017a) Giardia duodenalis infections in humans and other animals in China. Frontiers in Microbiology 8, 2004.

Li W, Deng L, Wu K, Huang X, Song Y, Su H, Hu Y, Fu H, Zhong Z and Peng G (2017b) Presence of zoonotic Cryptosporidium scrofarum, Giardia duodenalis assemblage A and Enterocytozoon bieneusi genotypes in captive Eurasian wild boars (Sus scrofa) in China: potential for zoonotic transmission. Parasites & Vectors 10, 10–17.

Liu A, Yang F, Shen Y, Zhang W, Wang R, Zhao W, Zhang L, Ling H and Cao J (2014a) Genetic analysis of the Gdh and Bg genes of animal-derived Giardia duodenalis isolates in Northeastern China and evaluation of zoonotic transmission potential. PLoS ONE 9, e95291.

Liu H, Shen Y, Yin J, Yuan Z, Jiang Y, Xu Y, Pan W, Hu Y and Cao J (2014b) Prevalence and genetic characterization of Cryptosporidium, Enterocytozoon, Giardia and Cyclospora in diarrheal outbreaks in China. BMC Infectious Diseases 14, 25–30.

Maddox-Hyttel C, Langkjaer RB, Enemark HL and Vigré H (2006) Cryptosporidium and Giardia in different age groups of Danish cattle and pigs—occurrence and management associated risk factors. Veterinary Parasitology 141, 48–59.

Minetti C, Taweesan W, Hogg R, Featherstone C, Randle N, Latham SM and Wastling JM (2014) Occurrence and diversity of Giardia duodenalis assemblages in livestock in the UK. Transboundary and Emerging Disease 61, e60–e67.

Pand X, Chen S, Gao K, Mai H, Han Z, Xu H and Yang Z (2015) Serum epidemiological analysis of opportunistic infection of pathogenic protozoa in HIV/AIDS. Journal of Tropical Medicine 15, 1425–1428, 1438.

Petersen HH, Jhannwin K, Katakan KK, Mejer H, Thambsorg SM, Dalsgaard A, Olsen A and Enemark HL (2015) Cryptosporidium and Giardia in Danish organic pig farms: seasonal and age-related variation in prevalence, infection intensity and species/genotypes. Veterinary Parasitology 214, 29–39.

Pipiková J, Papajová I, Majláthová V, Šoltys J, Bystrianska J, Schusterová I and Vargová V (2018) First report on Giardia duodenalis assemblage F in Slovakian children living in poor environmental conditions. Journal of Microbiology, Immunology and Infection (in press). doi: 10.1016/j.jmii.2018.04.007.

Savioli L, Smith H and Thompson A (2006) Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative’. Trends in Parasitology 22, 203–208.

Scorza AV, Ballweber LR, Tangtrongsup S, Panuska C and Lappin MR (2012) Comparisons of mammalian Giardia duodenalis assemblages based on the beta-giardin, glutamate dehydrogenase and triose phosphate isomerase genes. Veterinary Parasitology 189, 182–1186.

Shi L, Feng Y, Wu J, Yan Y, Yang J, Zhou F and Zhao G (2018) Molecular detection and analysis of Giardia in some swine farms of Yunnan Province. China Animal Health Inspection 35, 19–21.

Spong H, Cacciò SM and van der Giessen JW and ZOOPNET network and partners (2009) Identification of zoonotic genotypes of Giardia duodenalis. PloS Neglected Tropical Diseases 3, e558.

Stojecki K, Sroka J, Cencek T and Dukiäæwicz J (2015) Epidemiological survey in Leczyñsko-W³odawskie Lake District of eastern Poland reveals new evidence of zoonotic potential of Giardia intestinalis. Annals of Agricultural and Environmental Medicine 22, 594–598.

Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, Schantz PM, Das P, Lal AA and Xiao L. (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerging Infectious Disease 9, 1444–1452.

Suzuki J, Murata R, Kobayashi S, Dadamasu K, Kai A and Takeuchi T (2011) Risk of human infection with Giardia duodenalis from cats in Japan and genotyping of the isolates to assess the route of infection in cats. Parasitology 138, 493–500.

Thompson RC (2000) Giardiasis as a re-emerging infectious disease and its zoonotic potential. International Journal for Parasitology 30, 1259–1267.

Thurston-Enriquez JA, Gilley JE and Eghball B (2005) Microbial quality of runoff following land application of cattle manure and swine slurry. Journal of Water and Health 3, 157–171.

Traub RJ, Monis PT, Robertson I, Irwin P, Mencke N and Thompson RC (2004) Epidemiological and molecular evidence supports the zoonotic transmission of Giardia among humans and dogs living in the same community. Parasitology 128, 253–262.

Wang L, Xiao L, Duan L, Ye J, Guo Y, Guo M, Liu L and Feng Y (2013) Concurrent infections of Giardia duodenalis, Enterocytozoon bieneusi, and Clostridium difficile in children during a cryptosporidiosis outbreak in a pediatric hospital in China. PLoS Neglected Tropical Disease 7, e2437.

Wang S, Yuan Y, Yin Y, Hu R, Song J and Zhao G (2017) Prevalence and multilocus genotyping of Giardia duodenalis in pigs of Shaanxi Province, northernwestern China. Parasites & Vectors 10, 490–497.

Wang H, Zhang Y, Wu Y, Li J, Qi M, Li T, Wang J, Wang R, Zhang S, Jian F, Ning C and Zhang L (2018) Occurrence, molecular characterization, and assessment of zoonotic risk of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Pigs in Henan, Central China. The Journal Eukaryot Microbiol 65, 893–901.

Wielinga C, Ryan U, Andrew Thompson RC and Monis P (2011) Multi-locus analysis of Giardia duodenalis intra-assemblage B substitution patterns in cloned culture isolates suggests sub-assemblage B analyses will require multi-locus genotyping with conserved and variable genes. International Journal for Parasitology 41, 495–503.

Xu H, Jin Y, Wu W, Li P, Wang L, Li N, Feng Y and Xiao L. (2016) Genotypes of Cryptosporidium spp. Enterocytozoon bieneusi and Giardia duodenalis in dogs and cats in Shanghai, China. Parasites & Vectors 9, 121–129.

Zahedi A, Field D and Ryan U (2017) Molecular typing of Giardia duodenalis in humans in Queensland – first report of Assemblage E. Parasitology 144, 1154–1161.

Zhang X, Qi M, Jing B, Yu F, Wu Y, Chang Y, Zhao A, Wei Z, Dong H and Zhang L. (2018) Molecular characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in rabbits in Xingjiang, China. The Journal Eukaryot Microbiol 65, 854–859.