A CHARACTERISTIC POLYNOMIAL FOR THE
TRANSITION PROBABILITY MATRIX OF A
CORRELATED RANDOM WALK ON A GRAPH

Takashi KOMATSU
Department of Bioengineering School of Engineering,
The University of Tokyo
Bunkyo, Tokyo, 113-8656, JAPAN
e-mail: komatsu@coi.t.u-tokyo.ac.jp

Norio KONNO
Department of Applied Mathematics, Faculty of Engineering,
Yokohama National University,
Hodogaya, Yokohama 240-8501, JAPAN
e-mail: konno@ynu.ac.jp

Iwao SATO
National Institute of Technology, Oyama College,
Oyama, Tochigi 323-0806, JAPAN
e-mail: isato@oyama-ct.ac.jp

December 21, 2020
Abstract

We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph G, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a determinant expression for the generalized weighted zeta function of G. As applications, we give the spectrum of the transition probability matrices for the CRWs induced from the Grover matrices of regular graphs and semi-regular bipartite graphs. Furthermore, we consider another type of the CRW on a graph.

2000 Mathematical Subject Classification: 05C50, 15A15.

Key words and phrases: zeta function, correlated random walk, transition probability matrix, spectra

The contact author for correspondence:
Iwao Sato
Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN
Tel: +81-285-20-2176
Fax: +81-285-20-2880
E-mail: isato@oyama-ct.ac.jp
1 Introduction

Zeta functions of graphs started from the Ihara zeta functions of regular graphs by Ihara [6]. In [6], he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [15,16]. Hashimoto [4] generalized Ihara’s result on the Ihara zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial by a determinant containing the edge matrix. Bass [1] presented another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Morita [12] defined a generalized weighted zeta function of a digraph which contains various zeta functions of a graph or a digraph. Ide et al [5] presented a determinant expression for the above generalized weighted zeta function of a graph.

The time evolution matrix of a discrete-time quantum walk in a graph is closely related to the Ihara zeta function of a graph. A discrete-time quantum walk is a quantum analog of the classical random walk on a graph whose state vector is governed by a matrix called the time evolution matrix (see [8]). Ren et al. [13] gave a relationship between the discrete-time quantum walk and the Ihara zeta function of a graph. Konno and Sato [10] obtained a formula of the characteristic polynomial of the Grover matrix by using the determinant expression for the second weighted zeta function of a graph.

In this paper, we define introduce a new correlated random walk induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph, and present a formula for the characteristic polynomial of its transition probability matrix.

In Section 2, we review for the Ihara zeta function and the generalized weighted zeta functions of a graph. In Section 3, we review for the Grover walk on a graph. In Section 4, we define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph G, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW. In Section 5, we give the spectrum of the transition probability matrix for this CRW of a regular graph. In Section 6, we present the spectrum for the transition probability matrix of this CRW of a semiregular bipartite graph. In Section 7, we present formulas for the characteristic polynomials of the transition probability matrices of another type of the CRW on a graph, and give the spectrum of its transition probability matrix.

2 Preliminaries

2.1 Zeta functions of graphs

Graphs and digraphs treated here are finite. Let G be a connected graph and D_G the symmetric digraph corresponding to G. Set $D(G) = \{(u,v),(v,u) \mid uv \in E(G)\}$. For $e = (u,v) \in D(G)$, set $u = o(e)$ and $v = t(e)$. Furthermore, let $e^{-1} = (v,u)$ be the inverse of $e = (u,v)$. For $v \in V(G)$, the degree $\deg v = \deg v = d_v$ is the number of vertices adjacent to v in G. A graph G is called k-regular if $\deg v = k$ for each $v \in V(G)$.

A path P of length n in G is a sequence $P = (e_1, \cdots, e_n)$ of n arcs such that $e_i \in D(G)$, $t(e_i) = o(e_{i+1})(1 \leq i \leq n-1)$. If $e_i = (v_{i-1}, v_i)$ for $i = 1, \cdots, n$, then we write $P = (v_0, v_1, \cdots, v_n)$. Set $|P| = n$, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P = (e_1, \cdots, e_n)$ has a backtracking if $e_{i+1}^{-1} = e_i$ for some i $(1 \leq i \leq n - 1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v = w$. The inverse cycle of a cycle $C = (e_1, \cdots, e_n)$ is the cycle $C^{-1} = (e_n^{-1}, \cdots, e_1^{-1})$.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, \cdots, e_m)$ and $C_2 = (f_1, \cdots, f_m)$ are called equivalent if there exists a positive number k such that $f_j = f_{j+k}$ for all j, where the subscripts are considered by modulo m. The inverse cycle of
2.2 The generalized weighted zeta functions of a graph

Let G be a connected graph with n vertices and m edges, and $D(G) = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_{2m}\}$, where $e_{m+i} = e_i^{-1}$ for $1 \leq i \leq m$. Furthermore, we consider two functions $\tau : D(G) \to \mathbb{C}$ and $\mu : D(G) \to \mathbb{C}$. Let $\theta : D(G) \times D(G) \to \mathbb{C}$ be a function such that

$$\theta(e, f) = \tau(f)\delta_{t(e)\alpha(f)} - \mu(f)\delta_{e^{-1}f}.$$

We introduce a $2m \times 2m$ matrix $M(\theta) = (M_{ef})_{e, f \in D(G)}$ as follows:

$$M_{ef} = \theta(e, f).$$

Then the generalized weighted zeta function $Z_G(u, \theta)$ of G is defined as follows (see [12]):

$$Z_G(u, \theta) = \det(I_{2m} - uM(\theta))^{-1}.$$

We consider two $n \times n$ matrices $A_G(\theta) = (a_{uv})_{u, v \in V(G)}$ and $D_G(\theta) = (d_{uv})_{u, v \in V(G)}$ as follows:

$$a_{uv} = \begin{cases} \tau(e)/(1 - u^2\mu(e)\mu(e^{-1})) & \text{if } e(u, v) \in D(G), \\ 0 & \text{otherwise}, \end{cases}$$

$$d_{uv} = \begin{cases} \sum_{e(v) = u} \tau(e)\mu(e^{-1})(1 - u^2\mu(e)\mu(e^{-1})) & \text{if } u = v, \\ 0 & \text{otherwise}. \end{cases}$$

A determinant expression for the generalized weighted zeta function of a graph is given as follows (see [5]):
Theorem 2 (Ide, Ishikawa, Morita, Sato and Segawa) Let G be a connected graph with n vertices and m edges, and let $\tau : D(G) \to \mathbb{C}$ and $\mu : D(G) \to \mathbb{C}$ be two functions. Then
\[
Z_G(u, \theta)^{-1} = \prod_{j=1}^{m} (1 - u^2 \mu(e_j)\mu(e_j^{-1})) \det(I_n - uA_G(\theta) + u^2D_G(\theta)),
\]
where $D(G) = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_{2m}\}$ ($e_{m+j} = e_j^{-1}$ ($1 \leq j \leq m$)).

3 The Grover walk on a graph

Let G be a connected graph with n vertices and m edges, $V(G) = \{v_1, \ldots, v_n\}$ and $D(G) = \{e_1, \ldots, e_m, e_1^{-1}, \ldots, e_m^{-1}\}$. Set $d_j = d_{e_j} = \deg v_j$ for $i = 1, \ldots, n$. The Grover matrix $U = U(G) = (U_{ef})_{e,f \in R(G)}$ of G is defined by
\[
U_{ef} = \begin{cases}
2/d_{t(f)} (= 2/d_{o(e)}) & \text{if } t(f) = o(e) \text{ and } f \neq e^{-1}, \\
2/d_{t(f)} - 1 & \text{if } f = e^{-1}, \\
0 & \text{otherwise.}
\end{cases}
\]
The discrete-time quantum walk with the matrix U as a time evolution matrix is called the Grover walk on G.

Let G be a connected graph with n vertices and m edges. Then the $n \times n$ matrix $T(G) = (T_{uv})_{u,v \in V(G)}$ is given as follows:
\[
T_{uv} = \begin{cases}
1/(\deg GU) & \text{if } (u,v) \in D(G), \\
0 & \text{otherwise.}
\end{cases}
\]
Note that the matrix $T(G)$ is the transition matrix of the simple random walk on G(see [10]).

Theorem 3 (Konno and Sato) Let G be a connected graph with n vertices v_1, \ldots, v_n and m edges. Then the characteristic polynomial for the Grover matrix U of G is given by
\[
\det(\lambda I_{2m} - U) = (\lambda^2 - 1)^{m-n} \det((\lambda^2 + 1)I_n - 2\lambda T(G))
\]
\[
= (\lambda^2 + 1)^{m-n} \det((\lambda^2 + 1)I_n - 2\lambda A(G))
\]
\[
\frac{d_{v_1}, \ldots, d_{v_n}}{d_{v_1}, \ldots, d_{v_n}}.
\]

From this Theorem, the spectra of the Grover matrix on a graph is obtained by means of those of $T(G)$ (see [13]). Let $\text{Spec}(F)$ be the spectra of a square matrix F .

Corollary 1 (Emms, Hancock, Severini and Wilson) Let G be a connected graph with n vertices and m edges. The Grover matrix U has $2n$ eigenvalues of the form
\[
\lambda = \lambda_T \pm i\sqrt{1 - \lambda_T^2},
\]
where λ_T is an eigenvalue of the matrix $T(G)$. The remaining $2(m-n)$ eigenvalues of U are ± 1 with equal multiplicities.

4 A correlated random walk on a graph

Let G be a connected graph with n vertices and m edges, and U be the Grover matrix of G. Then we define a $2m \times 2m$ matrix $P = (P_{ef})_{e,f \in D(G)}$ as follows:
\[
P_{ef} = |U_{ef}|^2.
\]
Note that
\[
P_{ef} = \begin{cases}
4/d_{o(f)}^2 (= 4/d_{o(e)}^2) & \text{if } t(f) = o(e) \text{ and } f \neq e^{-1}, \\
(2/d_{t(f)} - 1)^2 & \text{if } f = e^{-1}, \\
0 & \text{otherwise}.
\end{cases}
\]

The random walk with the matrix \(P \) as a transition probability matrix is called the correlated random walk (CRM) (with respect to the Grover matrix) on \(G \) (see [7,9]).

Let \(R = (R_{ef})_{e,f \in D(G)} \) be a \(2m \times 2m \) matrix such that
\[
R_{ef} = \begin{cases}
4/d_{o(f)}^2 (= 4/d_{o(e)}^2) & \text{if } o(e) = o(f) \text{ and } f \neq e, \\
(2/d_{o(f)} - 1)^2 & \text{if } f = e, \\
0 & \text{otherwise}.
\end{cases}
\]

Then we have
\[P = J_0 R. \]

By Theorem 2, we obtain the following formula for \(P \).

Theorem 4 Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges, and let \(P \) be the transition probability matrix of the CRW with respect to the Grover matrix. Then
\[
\det(I_{2m} - uP) = \prod_{j=1}^{m} (1 - u^2(4/d_{o(e_j)}^2 - 1)(4/d_{t(e_j)}^2 - 1)) \det(I_n - uA_{CRW} + u^2D_{CRW}),
\]
where
\[
(A_{CRW})_{xy} = \begin{cases}
4/d_{o(e)}^2(4/d_{t(e)}^{-1} - 1) & \text{if } (x,y) \in D(G), \\
0 & \text{otherwise}.
\end{cases}
\]
\[
(D_{CRW})_{xy} = \begin{cases}
\sum_{o(e) = x} 4/d_{o(e)}^2(4/d_{t(e)}^{-1} - 1) & \text{if } x = y, \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. For the matrix \(P \), we have
\[
P_{ef} = 4/d_{o(f)}^2 \delta_{t(f)o(e)} - (4/d_{o(e)}^2 - 1)\delta_{f^{-1}e}.
\]
The we let two functions \(\tau : D(G) \rightarrow \mathbb{C} \) and \(\mu : D(G) \rightarrow \mathbb{C} \) as follows:
\[
\tau(e) = \frac{4}{d_{o(e)}^2} \quad \text{and} \quad \mu(e) = \frac{4}{d_{o(e)}^2} - 1.
\]
Furthermore, let
\[
\theta(e,f) = \frac{4}{d_{o(f)}^2} \delta_{t(e)o(f)} - (4/d_{o(f)}^2 - 1)\delta_{e^{-1}f}.
\]
Then we have
\[P = \iota M(\theta). \]
Thus, we obtain
\[
\det(I_{2m} - uP) = \det(I_{2m} - u \iota M(\theta)) = \det(I_{2m} - uM(\theta)) = Z_G(u, \theta)^{-1}.
\]
By Theorem 3, we have
\[
\det(I_{2m} - uP) = \prod_{j=1}^{m} (1 - u^2(4/d_{o(e_j)}^2 - 1)(4/d_{t(e_j)}^2 - 1)) \det(I_n - uA_{CRW} + u^2D_{CRW}),
\]

\[J_0 R \]

\[P = J_0 R. \]
Thus, we have
\[
(A_{CRW})_{xy} = \begin{cases} \
\frac{d + 4(4-d)}{d^2} & \text{if } (x, y) \in D(G), \\
0 & \text{otherwise},
\end{cases}
\]
\[
(D_{CRW})_{xy} = \begin{cases} \
\frac{4/d_x^2}{4/d_y^2} & \text{if } x = y, \\
0 & \text{otherwise}.
\end{cases}
\]

By Theorem 4, we obtain the spectrum of the transition probability matrices for the CRWs induced from the Grover matrices of regular graphs and semiregular bipartite graphs.

5 An application to the correlated random walk on a regular graph

We present spectra for the transition matrix of the correlated random walk on a regular graph with respect to the Grover matrix.

Theorem 5 Let G be a connected d-regular graph with n vertices and m edges, where $d \geq 2$. Furthermore, let P be the transition probability matrix of the CRW with respect to the Grover matrix. Then

\[
\det(I_{2m} - uP) = \frac{(d^2 - u^2(4 - d)^2)^{m-n}}{d^{2m}} \det(d + (4 - d)u^2)I_n - 4uA(G).
\]

Proof. Let G be a connected d-regular graph with n vertices and m edges, where $d \geq 2$. Then we have

\[
d_{v(e)} = d(e) = d \text{ for each } e \in D(G).
\]

Thus, we have

\[
1 - u^2(d_{v(e)} - 1) = \frac{d^2 - u^2(4 - d)^2}{d^2},
\]

\[
(A_{CRW})_{xy} = \frac{4/d_x^2}{1 - u^2(4/d_x - 1)(4/d_y - 1)} = \frac{4}{d^2} \text{ if } (x, y) \in D(G)
\]

and

\[
(D_{CRW})_{xy} = \sum_{o(e) = x} \frac{4/d_x^2(4/d_y - 1)}{1 - u^2(4/d_x - 1)(4/d_y - 1)} = \frac{4d(4 - d)}{d(d^2 - u^2(4 - d)^2)} = \frac{4(4 - d)}{d^2 - u^2(4 - d)^2}.
\]

Therefore, it follows that

\[
A_{CRW} = \frac{4}{d^2 - u^2(4 - d)^2} A(G) \text{ and } D_{CRW} = \frac{4(4 - d)}{d^2 - u^2(4 - d)^2} I_n.
\]

By Theorem 4, we have

\[
\det(I_{2m} - uP)
\]

\[
= \frac{(d^2 - u^2(4 - d)^2)^{m-n}}{d^{2m}} \det((d^2 - u^2(4 - d)^2)I_n - 4uA(G) + 4(4 - d)u^2 I_n)
\]

\[
= \frac{(d^2 - u^2(4 - d)^2)^{m-n}}{d^{2m}} \det((d + (4 - d)u^2)I_n - 4uA(G)).
\]

By substituting $u = 1/\lambda$, we obtain the following result.
Corollary 2 Let G be a connected d-regular graph with n vertices and m edges, where $d \geq 2$. Furthermore, let P be the transition probability matrix of the CRW with respect to the Grover matrix. Then
\[
\det(\lambda^2m - P) = \frac{(d^2\lambda^2 - (4 - d)^2)^{m-n}}{d^m} \det(d(d\lambda^2 + (4 - d))I_n - 4\lambda A(G))
\]
\[
= (\lambda^2 - (\frac{4}{d} - 1)^2)^{m-n} \lambda^n \det((\lambda + (\frac{4}{d} - 1))\frac{1}{\lambda}I_n - \frac{4}{d^2}A(G)).
\]

The second identity of Corollary 2 is considered as the spectral mapping theorem for P.

By Corollary 2, we obtain the spectra for the transition matrix P of the CRW with respect to the Grover matrix on a regular graph.

Corollary 3 Let G be a connected $d(\geq 2)$-regular graph with n vertices and m edges. Then the transition probability matrix P has $2n$ eigenvalues of the form
\[
\lambda = \frac{2\lambda_A \pm \sqrt{4\lambda_A^2 - d^2(4 - d)}}{d^2},
\]
where λ_A is an eigenvalue of the matrix $A(G)$. The remaining $2(m - n)$ eigenvalues of P are $\pm(4 - d)/d$ with equal multiplicities $m - n$.

Proof. By Corollary 2, we have
\[
\det(\lambda^2m - P) = \frac{(d^2\lambda^2 - (4 - d)^2)^{m-n}}{d^m} \prod_{\lambda_{A} \in \text{Spec}(A(G))} (d(d\lambda^2 + 4 - d) - 4\lambda_{A}\lambda)
\]
\[
= (\lambda^2 - (\frac{4}{d} - 1)^2)^{m-n} \prod_{\lambda_{A} \in \text{Spec}(A(G))} (d^2\lambda^2 - 4\lambda_{A}\lambda + d(4 - d)).
\]
Thus, solving
\[
d^2\lambda^2 - 4\lambda_{A}\lambda + d(4 - d) = 0,
\]
we obtain
\[
\lambda = \frac{2\lambda_A \pm \sqrt{4\lambda_A^2 - d^2(4 - d)}}{d^2}.
\]

In the case of $d = 4$, we consider $P = (P_{ef})_{e,f \in E(G)}$ be the transition probability matrix of the CRW with respect to the Grover matrix on a d-regular graph G. If $t(f) = o(e)$ and $f \neq e^{-1}$, then $P_{ef} = 4/d^2 = 4/4^2 = 1/4$. If $f = e^{-1}$, then $P_{ef} = 4/d^2 - (4/d - 1) = 4/4^2 - (4/4 - 1) = 1/4$. Thus, this CRW is considered to be a simple random walk on G which the particle moves over each arc in terms of the same probability. Furthermore, an $n \times n$ Hadamard matrix is a unitary matrix whose elements have the absolute value $1/\sqrt{n}$ (see [2]). The Grover matrix of a d-regular graph is an Hadamard matrix if and only if $d = 4$.

6 An application to the correlated random walk on a semiregular bipartite graph

We present spectra for the transition probability matrix of the correlated random walk on a semiregular bipartite graph. Hashimoto [4] presented a determinant expression for the Ihara zeta function of a semiregular bipartite graph. We use an analogue of the method in the proof of Hashimoto’s result.

A bipartite graph $G = (V_1, V_2)$ is called (q_1, q_2)-semiregular if $\deg_G v = q_i$ for each $v \in V_i (i = 1, 2)$. For a $(q_1 + 1, q_2 + 1)$-semiregular bipartite graph $G = (V_1, V_2)$, let $G^{[i]}$ be the graph with vertex set V_i and edge set $\{P : \text{reduced path } | | P | = 2; o(P), t(P) \in V_i\}$ for $i = 1, 2$. Then $G^{[1]}$ is $(q_1 + 1)q_2$-regular, and $G^{[2]}$ is $(q_2 + 1)q_1$-regular.
Theorem 6 Let $G = (V, W)$ be a connected (r, s)-semiregular bipartite graph with n vertices and e edges. Set $|V| = m$ and $|W| = n(m \leq n)$. Furthermore, let P be the transition probability matrix of the CRW with respect to the Grover matrix of G, and

$$Spec(A(G)) = \{ \pm \lambda_1, \cdots, \pm \lambda_m, 0, \ldots, 0 \}.\]$$

Then

$$det(I_{2e} - uP) = (1 - u^2(4/r - 1)(4/s - 1))^{n-m} (1 - u^2(4/r - 1))^{n-m} \times \prod_{j=1}^{m} ((1 - u^2(4/s - 1))(1 - u^2(4/r - 1)) - 16 \frac{\lambda_j^2}{r^2 s^2} u^2).$$

Proof. Let $e \in D(G)$. If $o(e) \in V$, then

$$d_{o(e)} = r, \ d_{t(e)} = s.$$Thus, we have

$$1 - u^2(\frac{4}{d_{o(e)}} - 1)(\frac{4}{d_{t(e)}} - 1) = \frac{rs - u^2(4 - r)(4 - s)}{rs},$$

$$(A_{CRW})_{xy} = \frac{4/d_x^2}{1 - u^2(4/d_x - 1)(4/d_y - 1)}$$

$$= \begin{cases} \frac{4x}{rs - u^2(4-r)(4-s)} & \text{if } (x, y) \in D(G) \text{ and } x \in V, \\ \frac{1}{rs - u^2(4-r)(4-s)} & \text{if } (x, y) \in D(G) \text{ and } x \in W, \end{cases}$$

and

$$(D_{CRW})_{xx} = \sum_{o(e) = x} \frac{4/d_x^2(4/d_{t(e)}) - 1}{1 - u^2(4/d_x - 1)(4/d_{t(e)})}$$

$$= \begin{cases} r \cdot \frac{4(4-s)}{r(s - u^2(4-r)(4-s))} = \frac{4(4-s)}{rs - u^2(4-r)(4-s)} & \text{if } x \in V, \\ s \cdot \frac{4(4-r)}{s(r - u^2(4-r)(4-s))} = \frac{4(4-r)}{rs - u^2(4-r)(4-s)} & \text{if } x \in W. \end{cases}$$

Next, let $V = \{v_1, \cdots, v_m\}$ and $W = \{w_1, \cdots, w_n\}$. Arrange vertices of G as follows: $v_1, \cdots, v_m; w_1, \cdots, w_n$. We consider the matrix $A = A(G)$ under this order. Then, let

$$A = \begin{bmatrix} 0 & E \\ t & 0 \end{bmatrix}.$$Since A is symmetric, there exists an orthogonal matrix $F \in O(n)$ such that

$$EF = \begin{bmatrix} R & 0 \\ \end{bmatrix} = \begin{bmatrix} \mu_1 & 0 & 0 & \cdots & 0 \\ & \ddots & \vdots & \vdots & \vdots \\ & & \mu_m & 0 & \cdots \end{bmatrix}.$$Now, let

$$H = \begin{bmatrix} I_m & 0 \\ 0 & F \end{bmatrix}.$$Then we have

$$t^\dagger H A H = \begin{bmatrix} 0 & R & 0 \\ t^\dagger R & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$Furthermore, let

$$\alpha = \frac{4}{rs - u^2(4-r)(4-s)}.$$
Then we have
\[\mathbf{A}_{CRW} = \begin{bmatrix} 0 & \alpha s/r \mathbf{E} \\ \alpha r/s \mathbf{E} & 0 \end{bmatrix}, \]
and
\[\mathbf{D}_{CRW} = \begin{bmatrix} \alpha(4-s)\mathbf{I}_m & 0 \\ 0 & \alpha(4-r)\mathbf{I}_n \end{bmatrix}. \]
Thus, we have
\[\mathbf{t} \mathbf{HA}_{CRW} \mathbf{H} = \begin{bmatrix} 0 & \alpha s/r \mathbf{R} \\ \alpha r/s \mathbf{R} & 0 \end{bmatrix} \]
and
\[\mathbf{t} \mathbf{HD}_{CRW} \mathbf{H} = \begin{bmatrix} \alpha(4-s)\mathbf{I}_m & 0 \\ 0 & \alpha(4-r)\mathbf{I}_n \end{bmatrix}. \]

By Theorem 4,
\[
\begin{aligned}
\det(\mathbf{I}_2 - u\mathbf{P}) &= \frac{(rs-u^2(4-r)(4-s))^{s}}{r^s s^r} \det(\mathbf{I}_{\nu} - u\mathbf{A}_{CRW} + u^2\mathbf{D}_{CRW}) \\
&= \frac{(rs-u^2(4-r)(4-s))^{s}}{r^s s^r} \det \left(\begin{bmatrix} \mathbf{I}_m + \alpha(4-s)u^2\mathbf{I}_m & -\alpha su/r \mathbf{R} \\ -\alpha ru/s \mathbf{R} & \mathbf{I}_m + \alpha(4-r)u^2\mathbf{I}_m \end{bmatrix} \right) \cdot \det \left(\begin{bmatrix} \mathbf{I}_m & 0 \\ 0 & \frac{1}{1+\alpha(4-s)u^2} \alpha su/r \mathbf{R} \end{bmatrix} \right) \\
&= \frac{(rs-u^2(4-r)(4-s))^{s+m-2}}{r^s s^r} (rs + u^2(4-r)s)^{n-m} \cdot \det \left(\begin{bmatrix} (1+\alpha(4-s)u^2)\mathbf{I}_m & 0 \\ -\alpha ru/s \mathbf{R} & (1+\alpha(4-r)u^2)\mathbf{I}_m - \frac{\alpha^2 u^2}{1+\alpha(4-s)u^2} \mathbf{RR} \end{bmatrix} \right) \\
&= \frac{(rs-u^2(4-r)(4-s))^{s+m-2}}{r^s s^r} (rs + u^2(4-r)s)^{n-m} \cdot \det((1+\alpha(4-s)u^2)(1+\alpha(4-r)u^2)\mathbf{I}_m - \alpha^2 u^2 \mathbf{RR}).
\end{aligned}
\]

Since \(\mathbf{A} \) is symmetric, \(\mathbf{t} \mathbf{RR} \) is symmetric and positive semi-definite, i.e., the eigenvalues of \(\mathbf{t} \mathbf{RR} \) are of form:
\[\lambda_1^2, \ldots, \lambda_m^2 (\lambda_1, \ldots, \lambda_m \geq 0). \]
Furthermore, we have
\[\det(\lambda \mathbf{I}_{\nu} - \mathbf{A}(G)) = \lambda^{n-m} \det(\lambda^2 - \mathbf{t} \mathbf{RR}), \]
and so,
\[\text{Spec}(\mathbf{A}(G)) = \{ \pm \lambda_1, \ldots, \pm \lambda_m, 0, \ldots, 0 \}. \]
Then the transition matrix has the form
\[\text{det}(I_{2r} - uP) \]
\[= \frac{(rs-u^2(4-r)(4-s))^{n-m}}{rs} (rs + u^2(4-r)s)^{n-m} \]
\[\times \prod_{j=1}^{m} ((1 + \alpha(4-s)u^2)(1 + \alpha(4-r)u^2)I_m - \alpha^2 \lambda_j^2 u^2) \]
\[= \frac{(rs-u^2(4-r)(4-s))^{n-m}}{rs} (rs + u^2(4-r)s)^{n-m} \]
\[\times \prod_{j=1}^{m} \frac{rs+u^2(4-r)s}{rs-u^2(4-r)(4-s)} \]
\[\times \frac{16u^2}{\lambda_j^2 (rs-u^2(4-r)(4-s))^2} \]
\[= \frac{(rs-u^2(4-r)(4-s))^{n-m}}{rs} (rs + u^2(4-r)s)^{n-m} \]
\[\times \prod_{j=1}^{m} (rs(s+u^2(4-s))(r+u^2(4-r)) - 16\lambda_j^2 u^2) \]
\[= (1 - u^2(4/r - 1)(4/s - 1))^n - \nu(1 + u^2(4/r - 1))^n - m \]
\[\times \prod_{j=1}^{m} ((1 + u^2(4/s - 1))(1 + u^2(4/r - 1)) - 16\lambda_j^2 u^2). \]

\[\square \]

Now, let \(u = 1/\lambda \). Then we obtain the following result.

Corollary 4 Let \(G = (V, W) \) be a connected \((r, s)\)-semiregular bipartite graph with \(\nu \) vertices and \(\epsilon \) edges. Set \(|V| = m \) and \(|W| = n(m \leq n) \). Furthermore, let \(P \) be the transition probability matrix of the CRW with respect to the Grover matrix and
\[\text{Spec}(A(G)) = \{ \pm \lambda_1, \ldots, \pm \lambda_m, 0, \ldots, 0 \}. \]

Then
\[\text{det}(\lambda I_{2r} - P) = (\lambda^2 - (4/r - 1)(4/s - 1))^\nu (\lambda^2 + (4/r - 1))^n - m \]
\[\times \prod_{j=1}^{m} ((\lambda^2 + (4/s - 1))(\lambda^2 + (4/r - 1)) - 16\lambda_j^2 u^2). \]

By Corollary 4, we obtain the spectra for the transition probability matrix \(P \) of the CRW with respect to the Grover matrix of a semiregular bipartite graph.

Corollary 5 Let \(G = (V, W) \) be a connected \((r, s)\)-semiregular bipartite graph with \(\nu \) vertices and \(\epsilon \) edges. Set \(|V| = m \) and \(|W| = n(m \leq n) \). Furthermore, let \(P \) be the transition probability matrix of the CRW with respect to the Grover matrix and
\[\text{Spec}(A(G)) = \{ \pm \lambda_1, \ldots, \pm \lambda_m, 0, \ldots, 0 \}. \]

Then the transition matrix \(P \) has 2\(\epsilon \) eigenvalues of the form

1. 4\(r \)m eigenvalues:
\[\lambda = \pm \sqrt{\frac{2r^2 s^2 - 4rs^2 - 4r^2 s + 16\lambda_j^2 \pm \sqrt{(2r^2 s^2 - 4rs^2 - 4r^2 s + 16\lambda_j^2)^2 - 4r^2 s^3(4-r)(4-s)}}{2r^2 s^2}}; \]
2. \(2n - 2m\) eigenvalues:

\[
\lambda = \pm i \sqrt{\frac{4}{r} - 1};
\]

3. \(2(\epsilon - \nu)\) eigenvalues:

\[
\lambda = \pm \sqrt{\left(\frac{4}{r} - 1\right)\left(\frac{4}{s} - 1\right)}.
\]

Proof. Solving

\[
(\lambda^2 + (4/s - 1))(\lambda^2 + (4/r - 1)) - 16\frac{\lambda^2}{r^2s^2}\lambda^2 = 0,
\]

i.e.,

\[
\lambda^4 + \left(\frac{4}{r} + \frac{4}{s} - 2 - \frac{16\lambda^2}{r^2s^2}\right)\lambda^2 + \left(\frac{4}{r} - 1\right)\left(\frac{4}{s} - 1\right) = 0,
\]

we obtain

\[
\lambda = \pm \sqrt{\frac{1}{2}(2 - \frac{4}{r} - \frac{4}{s} + \frac{16\lambda^2}{r^2s^2}) \pm \sqrt{(2 - \frac{4}{r} - \frac{4}{s} + \frac{16\lambda^2}{r^2s^2})^2 - 4\left(\frac{4}{r} - 1\right)\left(\frac{4}{s} - 1\right),}
\]

i.e.,

\[
\lambda = \pm \sqrt{\frac{2r^2s^2 - 4rs^2 - 4r^2s + 16\lambda^2}{2r^2s^2}} \pm \sqrt{(2r^2s^2 - 4rs^2 - 4r^2s + 16\lambda^2)^2 - 4r^3s^3(4-r)(4-s)};
\]

\(\Box\)

7 Another type of the correlated random walk on a cycle graph

The CRW is defined by the following transition probability matrix \(P\) on the one-dimensional lattice:

\[
P = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix},
\]

where

\(a + c = b + d = 1, \ a, b, c, d \in [0, 1]\).

As for the CRW, see [7,9], for example.

We formulate a CRW on the arc set of a graph with respect to the above matrix \(P\). The cycle graph is a connected 2-regular graph. Let \(C_n\) be the cycle graph with \(n\) vertices and \(n\) edges. Furthermore, let \(V(C_n) = \{v_1, \ldots, v_n\}\) and \(e_j = (v_j, v_{j+1})(1 \leq j \leq n)\), where the subscripts are considered by modulo \(m\). Then we introduce a \(2n \times 2n\) matrix \(U = (U_{ef})_{e,f \in D(C_n)}\) as follows:

\[
U_{ef} = \begin{cases}
d & \text{if } t(f) = o(e), f \neq e^{-1} \text{ and } f = e_j, \\
b & \text{if } f = e^{-1} \text{ and } f = e_j, \\
a & \text{if } t(f) = o(e), f \neq e^{-1} \text{ and } f = e_j^{-1}, \\
c & \text{if } f = e^{-1} \text{ and } f = e_j^{-1}, \\
0 & \text{otherwise.}
\end{cases}
\]
Note that U is be able to write as follows:

$$U = \begin{bmatrix} dQ^{-1} & dI_n \\ bI_n & aQ \end{bmatrix},$$

where $Q = P_\sigma$ is the permutation matrix of $\sigma = (12\ldots n)$. The CRW with U with a transition probability matrix is called the second type of CRW on C_n with respect to the above matrix P.

Now, we define a function $w : D(C_n) \rightarrow \mathbb{R}$ as follows:

$$w(e) = \begin{cases} d & \text{if } e = e_j (1 \leq j \leq n), \\ a & \text{if } e = e_j^{-1} (1 \leq j \leq n). \end{cases}$$

Furthermore, let an $n \times n$ matrix $W(C_n) = (w_{uv})_{u,v \in V(C_n)}$ as follows:

$$w_{uv} = \begin{cases} w(u,v) & \text{if } (u,v) \in D(C_n), \\ 0 & \text{otherwise.} \end{cases}$$

The characteristic polynomial of U is given as follows.

Theorem 7 Let C_n be the cycle graph with n vertices, and U the transition probability matrix of the second type of CRW on C_n. Then

$$\det(\lambda I_{2n} - U) = \det((\lambda^2 + (ad - bc))I_n - \lambda W(C_n)).$$

Proof. At first, we consider two $2n \times 2n$ matrices $2n \times 2n$ matrices $B = (B_{ef})_{e,f \in D(C_n)}$ and $J = (J_{ef})_{e,f \in D(C_n)}$ as follows:

$$B_{ef} = \begin{cases} w(f) & \text{if } t(e) = o(f), \\ 0 & \text{otherwise,} \end{cases} \quad J_{ef} = \begin{cases} b - a & \text{if } f = e^{-1} \text{ and } e = e_j, \\ c - d & \text{if } f = e^{-1} \text{ and } e = e_j^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$U = \imath B + \imath J.$$

Now, we define two $2n \times n$ matrices $K = (K_{ev})_{e \in D(C_n) : v \in V(C_n)}$ and $L = (L_{ev})_{e \in D(C_n), v \in V(C_n)}$ as follows:

$$K_{ev} = \begin{cases} 1 & \text{if } t(e) = v, \\ 0 & \text{otherwise,} \end{cases} \quad L_{ev} = \begin{cases} w(e) & \text{if } o(e) = v, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$K \imath L = B, \quad LK = W(C_n).$$

If A and B are an $m \times n$ matrix and an $n \times m$ matrix, respectively, then we have

$$\det(I_m - AB) = \det(I_n - BA).$$

Thus,

$$\det(I_{2n} - uU) = \det(I_{2n} - u(\imath B + \imath J))$$

$$= \det(I_{2n} - u(B + J))$$

$$= \det(I_{2n} - uJ - uB)$$

$$= \det(I_{2n} - uJ - uK \imath L)$$

$$= \det(I_{2n} - uK \imath L(I_{2n} - uJ)^{-1}) \det(I_{2n} - uJ)$$

$$= \det(I_n - u \imath L(I_{2n} - uJ)^{-1}K) \det(I_{2n} - uJ).$$
But, we have
\[
\det(I_{2n} - uJ) = \begin{bmatrix} I_n & -(b - a)uI_n \\ -(c - d)uI_n & I_n \end{bmatrix} \cdot \begin{bmatrix} I_n & (b - a)uI_n \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} I_n \quad 0 \\ -(c - d)uI_n \quad I_n - u^2(b - a)(c - d)I_n \end{bmatrix} = (1 - (a - c)(d - b)u^2)^n.
\]

Furthermore, we have
\[
(I_{2n} - uJ)^{-1} = \frac{1}{1 - (a - b)(d - c)u^2} (I_{2n} + uJ).
\]

Therefore, it follows that
\[
\det(I_{2n} - uU) = (1 - (a - b)(d - c)u^2)^n \det(I_n - u/(1 - (a - b)(d - c)u^2) \mathcal{L}(I_{2n} + uJ)K)
\]
\[
= \det((1 - (a - b)(d - c)u^2)I_n - u \mathcal{L}K - u \mathcal{L}JK)
\]
\[
= \det((1 - (a - b)(d - c)u^2)I_n - uW(C_n) - u^2 \mathcal{L}JK).
\]

The matrix \(\mathcal{L}JK \) is a diagonal, and its \((v_i, v_i)\) entry is equal to
\[
(c - d)w(e_{i-1}^-) + (b - a)w(e_i) = (c - d)a + (b - a)d = c + bd - 2ad.
\]

That is,
\[
\mathcal{L}JK = (ab + cd - 2ad)I_n.
\]

Thus,
\[
\det(I_{2n} - uU) = \det((1 - (a - b)(d - c)u^2)I_n - uW(C_n) - u^2(ac + bd - 2ad)I_n)
\]
\[
= \det(((1 + (ad - bc)u^2)I_n - uW(C_n)).
\]

Substituting \(u = 1/\lambda \), the result follows. \(\square \)

By Theorem 7, we obtain the spectra for the transition probability matrix \(U \) of the second type of the CRW on \(C_n \). The matrix \(W(C_n) \) is given as follows:

\[
W(C_n) = \begin{bmatrix}
0 & d & 0 & \ldots & a \\
0 & a & 0 & d & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \ldots & 0 & d \\
0 & 0 & 0 & \ldots & a & 0
\end{bmatrix}
\]

Corollary 6 Let \(C_n \) be the cycle graph with \(n \) vertices, and \(U \) the transition probability matrix of the second type of CRW on \(C_n \). Then the transition probability matrix \(U \) has \(2n \) eigenvalues of the form

\[
\lambda = \frac{\mu \pm \sqrt{\mu^2 - 4(ad - bc)}}{2}, \quad \mu \in \text{Spec}(W(C_n)).
\]
Proof. At first, we have

$$\det(I_{2n} - uU) = \prod_{\mu \in \text{Spec}(W(C_n))} (\lambda^2 - \mu \lambda + (ad - bc)),$$

Solving

$$\lambda^2 - \mu \lambda + (ad - bc) = 0,$$

we obtain

$$\lambda = \frac{\mu \pm \sqrt{\mu^2 - 4(ad - bc)}}{2}.$$

Now, we consider the case of $$a = b = c = d = 1/2$$. Then the matrix $$W(C_n)$$ is equal to $$W(C_n) = \frac{1}{2}A(C_n)$$.

By Corollary 6, we obtain the spectra for the transition probability matrix $$U$$ of the second type of CRW on $$C_n$$.

Corollary 7 Let $$C_n$$ be the cycle graph with $$n$$ vertices, and $$U$$ the transition probability matrix of the second type of the CRW on $$C_n$$. Assume that $$a = b = c = d = 1/2$$. Then the transition probability matrix $$U$$ has $$n$$ eigenvalues of the form

$$\lambda = \cos \theta_j, \quad \theta_j = \frac{2\pi j}{n} (j = 0, 1, \ldots, n - 1) \quad (\star).$$

The remaining $$n$$ eigenvalues of $$U$$ are 0 with multiplicities $$n$$.

Proof. It is known that the spectrum of $$A(C_n)$$ are

$$2 \cos \theta_j, \quad \theta_j = \frac{2\pi j}{n} (j = 0, 1, \ldots, n - 1).$$

Note that the spectrum of (\star) are those of the transition probability matrix of the simple random walk on a cycle graph $$C_n$$.

We can generalize the result for $$a = b = c = d = 1/2$$ on $$C_n$$ to a $$d$$-regular graph($$d \geq 2$$). Let $$G$$ be a connected $$d$$-regular graph with $$n$$ vertices and $$m$$ edges. Furthermore, let $$P$$ be the $$d \times d$$ matrix as follows:

$$P = \frac{1}{d}J_d,$$

where $$J_d$$ is the matrix whose elements are all one. Let $$U = (U_{ef})_{e,f \in D(G)}$$ be the transition probability matrix of a CRW on $$G$$ with respect to $$P$$. Then we have

$$U_{ef} = \begin{cases}
1/d & \text{if } t(e) = o(f), \\
0 & \text{otherwise},
\end{cases}$$

and so,

$$U = \frac{1}{d}B.$$

Similarly to The proof of Theorem 7, we obtain the following result.

Theorem 8 Let $$G$$ be a connected $$d$$-regular graph with $$n$$ vertices and $$m$$ edges. Furthermore, let $$U$$ the transition probability matrix of the CRW on $$G$$ with respect to $$P = 1/dJ_d$$. Then

$$\det(\lambda I_{2m} - U) = \lambda^{2m-n} \det(\lambda I_n - \frac{1}{d}A(G)).$$
Thus,

Corollary 8 Let G be a connected d-regular graph with n vertices and m edges. Furthermore, let U the transition probability matrix of the CRW on G with respect to $P = 1/dJ_d$. Then the transition probability matrix U has n eigenvalues of the form

$$
\lambda = \frac{1}{d} \lambda_A, \ \lambda_A \in \text{Spec}(A(G)).
$$

The remaining $2(m - n)$ eigenvalues of U are 0 with multiplicities $2m - n$.

References

[1] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992) 717-797.

[2] I. Bengtsson, W. Bruzda, A. Ericsson, J-A. Larsson, W. Tadej and K. Zyczkowski, Mutually unbiased bases and Hadamard matrices of order six, Journal of Mathematical Physics, 48, 052106 (2007).

[3] D. Foata and D. Zeilberger, A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.

[4] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, Adv. Stud. Pure Math. Vol. 15, Academic Press, New York, 1989, pp. 211-280.

[5] Y. Ide, A. Ishikawa, H. Morita, I. Sato and E. Segawa, The Ihara expression for the generalized weighted zeta function of a simple graph, preprint.

[6] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966) 219-235.

[7] N. Konno, Quantum Walks (in Japanese), Sangyou Tosho, Tokyo (2008).

[8] N. Konno, Quantum Walks, In: Lecture Notes in Mathematics: Vol.1954, pp.309-452, Springer-Verlag, Heidelberg (2008)

[9] N. Konno, Limit theorems and absorption problems for one-dimensional correlated random walks, Stochastic Models 25 (2009), 28-49.

[10] N. Konno and I. Sato, On the relation between quantum walks and zeta functions, Quantum Inf. Process. 11 (2012), no. 2, 341-349.

[11] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.

[12] H. Morita, Ruelle zeta functions for finite digraphs, Linear Algebra and its Applications 603 (2020), 329-358.

[13] P. Ren, T. Aleksic, D. Emms, R. C. Wilson and E. R. Hancock, Quantum walks, Ihara zeta functions and cospectrality in regular graphs, Quantum Inf. Process. 10 (2011), 405-417.

[14] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.

[15] T. Sunada, L-Functions in Geometry and Some Applications, in Lecture Notes in Math., Vol. 1201, Springer-Verlag, New York, 1986, pp. 266-284.

[16] T. Sunada, Fundamental Groups and Laplacians (in Japanese), Kinokuniya, Tokyo, 1988.

16