Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editors-in-Chief

Asymptomatic deep vein thrombosis in critically ill COVID-19 patients despite therapeutic levels of anti-Xa activity

To the Editors-in-Chief:

Patients with severe COVID-19 pneumonia might experience a high cumulative incidence of thrombotic complications [1], due to coagulopathy, excessive inflammation, and vascular endothelial dysfunction [2]. Data regarding the incidence of deep vein thrombosis (DVT) in this patient subset, without clinical signs of venous thromboembolism (VTE), has not been deeply analyzed even though these patients are at higher risk of death [3]. Furthermore, thrombotic complications have been found in up to 31% of patients in the intensive care unit (ICU) despite systematic thromboprophylaxis [4,5]. A recent report has also addressed the incidence of asymptomatic DVT in hospitalized patients with COVID-19 [6], where screening ultrasound examination was performed > 72 h after admission, describing a DVT prevalence as high as 46.1%. Interestingly, 37.1% of patients were only given DVT prophylaxis, and 41.3% of patients received full-dose low-molecular-weight heparin (LMWH) therapy only after DVT ultrasound findings.

Thromboprophylaxis and high prophylactic doses have been the mainstay of treatment for VTE in COVID-19 hospitalized patients. Recommendations are based on the typical non-COVID-19 high VTE risk factors, and additional hypercoagulable state in severe COVID-19 [4,7]. Those rely on clinical suspicion, abrupt laboratory, or hemodynamic changes that are usually late VTE signs or have an emergency onset, not ideal for patients’ prognosis. Nevertheless, in this highly inflammatory novel viral illness, little has been explored of the role of screening ultrasound in patients admitted to the intensive care units (ICU) and the anticoagulation monitoring status by the time DVT is diagnosed.

We decided to (i) describe the clinical and ultrasonographic characteristics of patients critically ill COVID-19 who developed DVT during the stay at the ICU, and (ii) compare the characteristics of those with DVT against those who remained without DVT during the ICU stay. We performed a single-institution clinical and imaging screening to 30 critically ill COVID-19 patients admitted to the ICU, not suspected to have any VTE neither clinically nor calculated by a modified Well’s scale. The Institutional Ethics Committee approved the study, and all patients had informed written consent on admission.

Calf diameter was measured 10 cm below the tibial tuberosity, and patency of the superficial and deep venous system was evaluated with bedside compression ultrasound (C-US) and high-resolution mode B imaging (Sonoscape X5 Digital Color Doppler Ultrasound System equipped with an L741 Frequency Linear probe: 4.0–16.9 MHz). More than 3 cm of difference between calf sizing was considered significant along with the presence of unilateral swelling or pitting edema. The ultrasonographic examination included saphenous veins and its junctions, calf, popliteal, femoral, and iliac veins (assessed by phasicity and augmentation responses). DVT was defined as a non-compressible venous segment with or without echogenic thrombus within the lumen, increased venous diameter, or absence of spectral color Doppler signal. The echocardiographic assessment was performed in all patients found to have DVT with the same ultrasound system but equipped with a 3P-A probe (Frequency 1.0–6.0 Sweep sector: 90°).

All patients had COVID-19 diagnosis since admission and were considered as having high thrombotic risk (Padua score > 4) and received anticoagulation since day 1. Those with lower Padua scores received high-prophylactic doses; otherwise, they received full-dose anticoagulation. The anticoagulation scheme was instaurated either with LMWH (Enoxaparin) or unfractionated heparin according to the glomerular filtration rate. A multidisciplinary consensus was created for careful decision-making in prescribing anticoagulation in high IMPROVE bleeding score patients. Anti-factor-Xa Assay (Stago®) was systematically performed for anticoagulation monitoring and adjustment in obese patients (n = 12) and those with acute renal failure (n = 20) [8]. Platelet activity was also monitored in those found to have DVT despite therapeutic anti-factor-Xa activity, with Multiplate® due to its possible role when interacting with endothelial cells in the development of thrombosis and micro thrombosis in organs and tissues other than lungs [9].

Among the 30 evaluated patients, 30% developed asymptomatic DVT (Table 1). Patients in both groups had a high prevalence of the risk factors associated with severe SARS-CoV-2 pneumonia (age above 50 years old, male sex, hypertension, diabetes, obesity). None of them had previous chronic obstructive pulmonary disease or asthma. Few patients had previous cardiovascular disease: chronic heart failure (n = 2), acute myocardial infarction (n = 1), and cardiac surgery (n = 2). None of the patients had myocarditis, and only one had a previous VTE (non-DVT group). There were no differences in smoking between groups (33% vs. 48%, p = 0.691). All patients had mechanical ventilatory support.

Few patients in both groups had clinical signs of chronic venous

Abbreviations: VTE, Venous thromboembolism; DVT, Deep vein thrombosis; LMWH, Low molecular weight heparin; UFH, Unfractionated heparin; ICU, Intensive care unit; DD, D-Dimer; HS-CRP, High sensitivity C-Reactive protein; LDH, Lactate Dehydrogenase; PT, prothrombin time; aPTT, activated partial thromboplastin time; ASA, Acetylsalicylic acid; ADP, adenine diphosphate
DVT patients had increased platelet function and were additionally function using a commercially available aggregometry test [10]. Two parin IV infusion (Table 2). All DVT patients were tested for platelet patient with chronic renal failure on a continuous unfractioned he-pagulation warrant further study.

CRP = C reactive protein; PT = prothrombin time; aPTT = activated partial Thrombosis Research 196 (2020) 268–271

Table 1

Variable	Deep vein thrombosis	p	
	Yes (N = 9)	No (N = 21)	
Age (years)	64 (39–79)	61 (33–74)	0.454
Male sex	8 (69%)	15 (71%)	0.297
Diabetes mellitus	2 (22%)	11 (52%)	0.393
Hypertension	5 (56%)	6 (29%)	0.229
Body mass index (Kg/m²)	30.0 (23.5–43.0)	27.0	0.141
Obesity (class I or higher)	6 (66%)	6 (29%)	0.224
Previous heart disease	1 (11%)	4 (20%)	0.634
High sensitivity CRP (mg/L)	342 (264–463)	307 (73–521)	0.428
D-Dimer on admission (μg/mL)	0.80 (0.24–15.2)	0.46	0.021
D-Dimer max value (μg/mL)	6.30 (0.17–9.6)	< 0.001	
D-Dimer duplication	6 (67%)	11 (52%)	0.691
D-Dimer value > 1440 μg/mL	8 (89%)	6 (29%)	0.004
Thrombocytopenia (< 150 × 10³/μL)	3 (14%)	1 (11%)	1.000
Lymphopenia (< 990 cell/μL)	9 (100%)	21(100%)	–
Elevated fibrinogen (> 5.13 g/L)	9 (100%)	14(66%)	0.710
PT (s)	12.0 (10.0–14.7)	12.0	0.818
aPTT (s)	30.7 (26.0–40.0)	33.0	0.174
Lactic dehydrogenase (mg/dL)	443 (269–685)	357 (251–900)	0.230
Ferritin (ng/mL)	920 (377–1481)	1172	0.308
LMWH (enoxaparin)	8 (89%)	18 (86%)	1.000
Full dose anticoagulation	9 (100%)	8 (86%)	0.534
Antiviral treatment	8 (89%)	19 (91%)	1.000

CRP = C reactive protein; PT = prothrombin time; aPTT = activated partial thromboplastin time; LMWH = Low molecular weight heparin.
Table 2
Relevant findings and treatment of patients with DVT.

Patient	1	2	3	4	5	6	7	8	9
Affected limb	R	Bi	L	R	R	Bi	Bi	Bi	Bi
Laboratory									
DD (0.0–0.24 μg/mL)	0.9	0.5	15.2	0.5	0.8	13.4	6.3	0.2	0.7
DD abrupt increase (μg/mL)	1.8	6.7	b	3.2	5.6	13.4	6.3	1.0	13.3
PT (12.8–15.4 s)	12.6	12.9	b	12.1	14.6	13.4	14.7	13.5	15.0
aPTT (25.8–40.4 s)	34.7	30.5	b	36.2	35.7	27.4	27.7	25.0	37.6
Fibrinogen (1.9–5.3 g/L)	6.5	6.5	b	7.8	6.3	6.1	6.6	7.3	10.4
Fibrinolysis	658	998	1125	377	1218	666	920	548	1481
Lymphocytes (cel/μL)	800	400	100	300	900	600	800	600	300
Thrombocytes (x10³/μL)	339	382	233	211	280	112	344	274	336

Anticoagulation

Patient	1	2	3	4	5	6	7	8	9
Heparin									
Dose	80 mg BID	1800 U/h/2000 U/h							
Anti-Xa assay (U/mL)	0.61	0.4/0.8 b	0.51	0.42	0.98	0.83	0.54	0.26/0.4 f	
Platelet function									
ADP test (127–224 U)	165	237	b	83³	120	107	89	196	28
ASPI test (129–224 U)	222	232	b	48³	154	64	75	171	21
Additional ASA	No	Yes	No	Yes	No	No	No	No	No

R = right; L = left; Bi = bilateral; En = Enoxaparin; ASA = Acetylsalicylic acid; DVT/PE = Deep-vein thrombosis/Pulmonary Embolism; RV = Right ventricle; DD = D-Dimer; HSCRP = High-sensitivity C reactive protein; LDH = Lactate dehydrogenase; PT = Prothrombin time; aPTT = activated partial thromboplastin time; UFH = Unfractionated heparin; ADP = Adenosine diphosphate.

References

[1] S. Lax, K. Skok, P. Zechnor, H. Kessler, N. Kaufmann, C. Koelblinger, et al., Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series, Ann. Intern. Med. (2020), https://doi.org/10.7326/M20-2566.

[2] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet 395 (2020) 1054–1062, https://doi.org/10.1016/S0140-6736(20)30566-3.

[3] C. Zhang, Z. Zhang, J. Mi, X. Wang, Y. Zou, X. Chen, et al., The cumulative venous thromboembolism incidence and risk factors in intensive care patients receiving the guideline-recommended thromboprophylaxis, Medicine 98 (23) (2019) e15833, https://doi.org/10.1097/MD.0000000000015833.

[4] P. Ekel, M. Krupi, N. van der Meer, M. Arbous, D. Gommers, K. Kant, et al., Incidence of thrombotic complications in critically ill ICU patients with COVID-19, Thromb. Res. (2020), https://doi.org/10.1016/j.thromres.2020.04.013.

[5] F. Ekel, M. Krupi, N. van der Meer, M. Arbous, D. Gommers, K. Kant, et al., Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis, Thromb. Res. (2020), https://doi.org/10.1016/j.thromres.2020.04.013.

[6] L. Zhang, X. Feng, D. Zhang, C. Jiang, C. Mei, J. Wang, et al., Deep vein thrombosis in hospitalized patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: prevalence, risk factors, and outcome, Circulation (2020), https://doi.org/10.1161/CIRCULATIONAHA.120.046702.

[7] F. Violi, D. Pastori, R. Cangemi, P. Pignatelli, L. Loffredo, Hypercoagulability and antithrombotic treatment in coronavirus 2019: a new challenge, Thromb. Haemost. 120 (06) (2020) 949–956, https://doi.org/10.1055/s-0040-1710317.

[8] C. Penazzi, A. Prataz, M. Scherfer, Utility of anti-factor Xa monitoring in surgical patients receiving prophylactic doses of enoxaparin for venous thromboembolism prophylaxis, Am. J. Surg. 213 (6) (2017) 1143–1152, https://doi.org/10.1016/j.amjsurg.2016.08.010.

[9] F. Salamanna, M. Maglio, M. Landini, M. Fini, Platelet functions and activities as potential hematologic parameters related to coronavirus disease 2019 (COVID-19), Platelets 31 (5) (2020) 627–632, https://doi.org/10.1080/09537104.2020.1762852.

[10] S. Pedersen, E. Grove, H. Nielsen, J. Mortensen, S. Kristensen, A. Hvas, Evaluation of aspirin response by Multiplate® whole blood aggregometry and light transmission aggregometry, Platelets 20 (6) (2009) 415–420, https://doi.org/10.1080/0953710090310642.

[11] D. Wichmann, J. Sperhake, M. Lütghehmann, S. Steurer, C. Edler, A. Heinemann, et al., Autopsy findings and venous thromboembolism in patients with COVID-19, Ann. Intern. Med. (2020), https://doi.org/10.7326/M20-2003.

[12] M. Gheblawi, K. Wang, A. Viverio, Q. Nguyen, J. Zhong, A. Turner, et al., Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system, Circ. Res. 126 (10) (2020) 1456–1474, https://doi.org/10.1161/CIRCRESAHA.120.317015.

[13] S. Ahmed, P. Anirvan, Targeting the immunology of coronavirus disease-19: synchronisation creates symphony, Rheumatol. Int. 40 (8) (2020) 1343–1345, https://doi.org/10.1007/s00296-020-04624-2.

[14] Adriana Torres-Machorro a, Victor Manuel Anguiano-Álvarez b, Flavio Adrián Grimaldo-Gómez c, Hugo Rodríguez-Zanella a, Evelyn Cortina de la Rosa a, Sergio Mora-Canel a, Claudia Lerma a, Edgar García-Cruz d, Ángel Ramos-Enriqueza, Gustavo Rojas-Velasco d.

a Surgery Department, “Ignacio Chávez” National Institute of Cardiology, Mexico
b Haematology Department, “Ignacio Chávez” National Institute of Cardiology, Mexico
c Echocardiography Department, “Ignacio Chávez” National Institute of Cardiology, Mexico
d Intensive Care Unit, “Ignacio Chávez” National Institute of Cardiology, Mexico

E-mail address: gustavo.rojas@cardiologia.org.mx (G. Rojas-Velasco).
Corresponding author at: Intensive Care Unit, “Ignacio Chávez” National Institute of Cardiology, Juan Badiano 1, Belisario Domínguez Sección XVI, Tlalpan, 14080 Mexico City, Mexico.

* Corresponding author at: Intensive Care Unit, “Ignacio Chávez” National Institute of Cardiology, Juan Badiano 1, Belisario Domínguez Sección XVI, Tlalpan, 14080 Mexico City, Mexico.