Measurement of y_{CP} in D meson decays to CP eigenstates

I. Adachi,10 H. Aihara,51 D. Anipko,1 K. Arinstein,1 T. Aso,55 V. Aulchenko,1 T. Aushev,22,16 T. Aziz,47 S. Bahinipati,3 A. M. Bakich,46 V. Balagura,16 Y. Ban,38 E. Barberio,25 A. Bay,22 I. Bedny,1 K. Belous,15 V. Bhardwaj,37 U. Bitenc,17 S. Blyth,29 A. Bondar,1 A. Bozek,31 M. Braćko,24,17 J. Brodzicka,10,31 T. E. Browder,9 M.-C. Chang,4 P. Chang,30 Y.-W. Chang,30 Y. Chao,30 A. Chen,28 K.-F. Chen,30 B. G. Cheon,8 C.-C. Chiang,30 R. Chistov,16 I.-S. Cho,57 S.-K. Choi,7 Y. Choi,45 Y. K. Choi,45 S. Cole,46 J. Dalseno,10 M. Danilov,16 A. Das,47 M. Dash,56 A. Drutskoy,3 W. Dungal,14 S. Eidelman,1 D. Epifanov,1 S. Esen,3 S. Fratina,17 H. Fujii,10 M. Fujikawa,27 N. Gabyshov,1 A. Garmash,39 P. Goldenzweig,3 B. Golob,23,17 M. Grosse Perdekamp,12,40 H. Guler,9 H. Guo,42 H. Ha,19 J. Haba,10 K. Hara,26 T. Hara,36 Y. Hasegawa,44 N. C. Hastings,51 K. Hayasaka,26 H. Hayashii,27 M. Hazumi,10 D. Heffernan,36 T. Higuchi,10 H. Höldmoser,9 T. Hokune,26 Y. Horigi,50 Y. Hoshi,49 K. Hoshina,54 W.-S. Hou,30 Y. B. Hsiung,30 H. J. Hyun,21 Y. Igarashi,10 T. Iijima,26 K. Ikado,26 K. Inami,26 A. Ishikawa,41 H. Ishino,52 R. Itoh,10 M. Ishiwata,6 M. Iwasaki,51 Y. Iwasaki,10 C. Jacoby,22 N. J. Joshi,47 M. Kage,26 D. H. Kah,21 H. Kaji,28 H. Kakuno,51 J. H. Kang,57 P. Kapusta,31 S. U. Kataoka,27 N. Katayama,10 H. Kawai,2 T. Kawasaki,33 A. Kibayashi,10 H. Kichimi,10 H. J. Kim,21 H. O. Kim,21 J. H. Kim,45 S. K. Kim,43 Y. I. Kim,21 Y. J. Kim,6 K. Kinoshita,3 S. Korpar,24,17 Y. Kozakai,26 P. Križan,23,17 P. Krokovny,10 R. Kumar,37 E. Kurihara,2 Y. Kuroki,36 A. Kuzmin,1 Y.-J. Kwon,57 S.-H. Kyeong,57 J. S. Lange,5 G. Leder,14 J. Lee,43 J. S. Lee,45 M. J. Lee,43 S. E. Lee,43 T. Lesiak,31 J. Li,9 A. Limosani,25 S.-W. Lin,30 C. Liu,42 Y. Liu,6 D. Liventsev,16 J. MacNaughton,10 F. Mandl,14 D. Marlow,39 T. Matsumura,26 A. Matyja,31 S. McOnie,46 T. Medvedeva,16 Y. Mikami,50 K. Miyabayashi,27 H. Miyata,33 Y. Miyazaki,26 R. Mizuk,16 G. R. Moloney,25 T. Mori,26 T. Nagamine,50 Y. Nagasaka,11 Y. Nakahama,51 I. Nakamura,10 E. Nakano,35 M. Nakao,10 H. Nakayama,51 H. Nakazawa,28 Z. Natkaniec,31 K. Neichi,49 S. Nishida,10 K. Nishimura,9 Y. Nishio,26 I. Nishizawa,53 O. Nitho,54 S. Noguchi,27 T. Nozaki,10 A. Ogawa,40 S. Ogawa,48 T. Ohshima,26 S. Okuno,18 S. L. Olsen,9,13 S. Ono,52 W. Ostrowicz,31 H. Ozaki,10 P. Pakhlov,16 G. Pakhlova,16 H. Palka,31 C. W. Park,45 H. Park,21 H. K. Park,21 K. S. Park,45 N. Parslow,46 L. S. Peak,46 M. Pernicka,14 R. Pestotnik,17 M. Peters,9 L. E. Piilonen,56 A. Poluektov,1 J. Rorie,9 M. Rozanska,31 H. Sahoo,9 Y. Sakai,10 N. Sasao,20 K. Sayeed,3 T. Schietinger,22 O. Schneider,22 P. Schönmeier,50 J. Schümann,10 C. Schwanda,14 A. J. Schwartz,3 R. Seidl,12,40 A. Sekiya,27 K. Senyo,26 M. E. Sevior,25 L. Shang,13 M. Shapkin,15 V. Shebalin,1 C. P. Shen,9 H. Shibuya,48 S. Shinomiya,36 J.-G. Shiu,30 B. Shwartz,1 V. Sidorov,1 J. B. Singh,37 A. Sokolov,15 A. Somov,3 S. Stanić,34 M. Starić,17 J. Stypula,31 A. Sugiyama,41 K. Sunisawa,10 T. Sumiyoshi,53 S. Suzuki,41 S. Y. Suzuki,10 O. Tajima,10 F. Takasaki,10 K. Tamaí,10 N. Tamura,33 M. Tanaka,10 N. Taniguchi,20 G. N. Taylor,25 Y. Teramoto,23 I. Tikhomirov,35 K. Trabelsi,10 Y. F. Tse,25 T. Tsuboyama,10 Y. Uchida,6 S. Uehara,10 Y. Ueki,53 K. Ueno,30 T. Uglov,16 Y. Unno,8 S. Uno,10 P. Urquijo,25 Y. Ushiroda,10 Y. Usoskin,1 G. Varner,9 K. E. Varvell,46 K. Vervink,22 S. Villa,22 A. Vinokurova,1 C. C. Wang,30 C. H. Wang,29
J. Wang, M.-Z. Wang, P. Wang, X. L. Wang, M. Watanabe, Y. Watanabe, R. Wedd, J.-T. Wei, J. Wicht, L. Widhalm, J. Wiechczynski, E. Won, B. D. Yabsley, A. Yamaguchi, H. Yamamoto, M. Yamaoka, Y. Yamashita, M. Yamauchi, C. Z. Yuan, Y. Yusa, C. C. Zhang, L. Zhang, Z. P. Zhang, V. Zhilich, V. Zhulanov, T. Zivko, A. Zupanc, N. Zwahlen, and O. Zyukova

(The Belle Collaboration)

1 Budker Institute of Nuclear Physics, Novosibirsk
2 Chiba University, Chiba
3 University of Cincinnati, Cincinnati, Ohio 45221
4 Department of Physics, Fu Jen Catholic University, Taipei
5 Justus-Liebig-Universität Gießen, Gießen
6 The Graduate University for Advanced Studies, Hayama
7 Gyeongsang National University, Chinju
8 Hanyang University, Seoul
9 University of Hawaii, Honolulu, Hawaii 96822
10 High Energy Accelerator Research Organization (KEK), Tsukuba
11 Hiroshima Institute of Technology, Hiroshima
12 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
13 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
14 Institute of High Energy Physics, Vienna
15 Institute of High Energy Physics, Protvino
16 Institute for Theoretical and Experimental Physics, Moscow
17 J. Stefan Institute, Ljubljana
18 Kanagawa University, Yokohama
19 Korea University, Seoul
20 Kyoto University, Kyoto
21 Kyungpook National University, Taegu
22 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
23 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
24 University of Maribor, Maribor
25 University of Melbourne, School of Physics, Victoria 3010
26 Nagoya University, Nagoya
27 Nara Women’s University, Nara
28 National Central University, Chung-li
29 National United University, Miao Li
30 Department of Physics, National Taiwan University, Taipei
31 H. Niewodniczanski Institute of Nuclear Physics, Krakow
32 Nippon Dental University, Niigata
33 Niigata University, Niigata
34 University of Nova Gorica, Nova Gorica
35 Osaka City University, Osaka
36 Osaka University, Osaka
37 Panjab University, Chandigarh
38 Peking University, Beijing
39 Princeton University, Princeton, New Jersey 08544
We present a measurement of the $D^0\overline{D}^0$ mixing parameter y_{CP} using a flavor-untagged sample of $D^0 \rightarrow K^0_S K^+ K^−$ decays. The measurement is based on a 673 fb$^{-1}$ data sample recorded by the Belle detector at the KEKB asymmetric-energy $e^+e^−$ collider. We find $y_{CP} = (0.21 ± 0.63(\text{stat.}) ± 0.78(\text{syst.}) ± 0.01(\text{model}))%$.

PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Ff
Particle-antiparticle mixing has been observed in several systems of neutral mesons: neutral kaons, B_d and B_s mesons. As in the kaon and B-meson systems, the $D^0 - \bar{D}^0$ are produced in flavor eigenstates. The mixing occurs through weak interactions between the quarks and gives rise to two different mass eigenstates $|D_{1,2}^0\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$, where p and q are complex coefficients satisfying $|p|^2 + |q|^2 = 1$. The time evolution of flavor eigenstates, D^0 and \bar{D}^0, is governed by the mixing parameters $x = (m_1 - m_2)/\Gamma$ and $y = (\Gamma_1 - \Gamma_2)/2\Gamma$, where $m_{1,2}$ and $\Gamma_{1,2}$ are the masses and widths of the two mass eigenstates $D_{1,2}$, and $\Gamma = (\Gamma_1 + \Gamma_2)/2$. In the Standard Model (SM), $D^0 - \bar{D}^0$ mixing is strongly GIM suppressed for d and s quarks and CKM suppressed for b quark box diagrams, and is dominated by long distance effects [1]. As the mixing rate is expected to be small within the SM, it is sensitive to the contribution of new, as yet unobserved processes and particles. The largest SM predictions for the parameters x and y, which include the impact of long distance dynamics, are of order 1% [1]. Various D^0 decay modes have been used to measure or constrain x and y [2]. Evidence for $D^0 - \bar{D}^0$ has been found in $D^0 \rightarrow K^+K^-/\pi^+\pi^- [3,4]$, $D^0 \rightarrow K^+\pi^- [5,6]$ and $D^0 \rightarrow K^+\pi^- \pi^0 [7]$ decays. The world average [8, 9] of D^0 mixing parameter y_{CP} measured in $D^0 \rightarrow K^+K^-/\pi^+\pi^-$ decays is $y_{CP} = (1.132 \pm 0.266)\%$, where $y_{CP} = y$ if CP is conserved. Here we study the self-conjugate decay $D^0 \rightarrow K_S^0 K^+ K^-$ [10].

The time dependent decay rate of an initially produced D^0 or \bar{D}^0 can be expressed as

\[
|M(s_0, s_+, t)|^2 = |A_1(s_0, s_+)|^2 e^{-\frac{(1+|y|)}{\tau} t} + |A_2(s_0, s_+)|^2 e^{-\frac{(1-|y|)}{\tau} t} \\
+ 2\text{Re}[A_1(s_0, s_+)A_2^*(s_0, s_+)]\cos\left(\frac{xt}{\tau}\right)e^{-\frac{t}{\tau}} \\
+ 2\text{Im}[A_1(s_0, s_+)A_2^*(s_0, s_+)]\sin\left(\frac{xt}{\tau}\right)e^{-\frac{t}{\tau}}
\]

(1)

\[
|\bar{M}(s_0, s_+, t)|^2 = |\bar{A}_1(s_0, s_+)|^2 e^{-\frac{(1-|y|)}{\tau} t} + |\bar{A}_2(s_0, s_+)|^2 e^{-\frac{(1+|y|)}{\tau} t} \\
+ 2\text{Re}[\bar{A}_1(s_0, s_+)\bar{A}_2^*(s_0, s_+)]\cos\left(\frac{xt}{\tau}\right)e^{-\frac{t}{\tau}} \\
+ 2\text{Im}[\bar{A}_1(s_0, s_+)\bar{A}_2^*(s_0, s_+)]\sin\left(\frac{xt}{\tau}\right)e^{-\frac{t}{\tau}},
\]

(2)

where $\tau = 1/\Gamma$ is the D^0 lifetime, s_0 and s_+ are invariant masses squared of K^+K^- and $K_S^0K^+$ pairs, respectively. The decay amplitudes A_1 and A_2 can be expressed with D^0 and \bar{D}^0 decay amplitudes A and \bar{A} as

\[
A(s_0, s_+) = \sum_r a_r e^{i\phi_r} A_r(s_0, s_+)
\]

(3)

\[
\bar{A}(s_0, s_+) = \sum_r \bar{a}_r e^{i\phi_r} \bar{A}_r(s_0, s_+)
\]

(4)

\[
A_1(s_0, s_+) = \frac{1}{2} \left(A(s_0, s_+) + \bar{A}(s_0, s_+) \right) = \sum \text{CP} = +1 \text{ and flavor eigenstates}
\]

(5)

\[
A_2(s_0, s_+) = \frac{1}{2} \left(A(s_0, s_+) - \bar{A}(s_0, s_+) \right) = \sum \text{CP} = -1 \text{ and flavor eigenstates},
\]

(6)

where A and \bar{A} are summed over resonant contributions r found in $D^0 \rightarrow K_S^0 K^+ K^-$ decays. In the limit of CP conservation $a_r = \bar{a}_r$, $\phi_r = \phi_r$ and $\bar{A}(s_0, s_+) = A(s_0, s_+)$. The existing Dalitz plot analyses of $D^0 \rightarrow K_S^0 K^+ K^-$ decays [13, 14] observed contribution of
FIG. 1: s_0 (left) and s_+ (right) Dalitz plot projections of $|\mathcal{M}(s_0, s_+)|^2$ (black line), $|\mathcal{A}_1(s_0, s_+)|^2$ (blue line), $|\mathcal{A}_2(s_0, s_+)|^2$ (red line), $2Re[\mathcal{A}_1(s_0, s_+)\mathcal{A}_2^*(s_0, s_+)]$ (green solid line), and $2Im[\mathcal{A}_1(s_0, s_+)\mathcal{A}_2^*(s_0, s_+)]$ (green dashed line) for Dalitz model given in [14].

$CP (K^0_S a_0(980)^0, K^0_S \phi(1020), K^0_S f_0(1370), K^0_S f_2(1270), K^0_S a_0(1450)^0, K^0_S f_0(980))$, Cabbibo-allowed $(K^- a_0(980)^+, K^- a_0(1450)^+)$ and doubly Cabbibo-suppressed $(K^+ a_0(980)^-)$ flavor eigenstates. Figure 1 shows time integrated s_0 and s_+ projections of $|\mathcal{M}(s_0, s_+)|^2$, $|\mathcal{A}_1(s_0, s_+)|^2$, $|\mathcal{A}_2(s_0, s_+)|^2$, $2Re[\mathcal{A}_1(s_0, s_+)\mathcal{A}_2^*(s_0, s_+)]$ and $2Im[\mathcal{A}_1(s_0, s_+)\mathcal{A}_2^*(s_0, s_+)]$ obtained by Dalitz model given in Ref. [14]. The integral of $2Re[\mathcal{A}_1(s_0, s_+)\mathcal{A}_2^*(s_0, s_+)]$ and $2Im[\mathcal{A}_1(s_0, s_+)\mathcal{A}_2^*(s_0, s_+)]$ over s_+ yields 0.

The $|\mathcal{A}_1|^2$ and $|\mathcal{A}_2|^2$ parts of the decay rate have different time dependence (Eq. 1 and 2) and also very different dependence in the s_0 (Fig. 1 (left)). In any given s_0 region the lifetime of D^0 candidates is given by

$$\tau' = f_1 \tau \left(\frac{1}{1 + y_{CP}} + (1 - f_1) \frac{1}{1 - y_{CP}} \right),$$

where τ is the mean D^0 lifetime $1/\Gamma$, $f_1 = \frac{1}{2} |\mathcal{A}_1|^2 / \frac{1}{2} (|\mathcal{A}_1|^2 + |\mathcal{A}_2|^2)$ and CP conservation is assumed. The lifetime difference of D^0 candidates in two different regions is then proportional to the mixing parameter y_{CP}

$$\Delta \tau = \frac{\tau' - \tau''}{\tau' + \tau''} = y_{CP} \left(f_1'' - f_1' \right) \left(1 + y_{CP} \right) \approx y_{CP} (f_1'' - f_1').$$

The best $m(K^+K^-)$ intervals from which D^0 lifetimes are measured and compared are those that minimize the statistical uncertainty on y_{CP} and are found to be: region around $\phi(1020)$ peak $m(K^+K^-) \in [1.015, 1.025]$ GeV/c2 (denoted as ON) and intervals $m(K^+K^-) \in [2m_{K^\pm}, 1.010]$ GeV/c2 and $m(K^+K^-) \in [1.033, 1.100]$ GeV/c2 (the union of this two intervals is denoted as OFF), where m_{K^\pm} is the nominal K^\pm mass.

The data were recorded by the Belle detector at the KEKB asymmetric-energy collider [15]. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM). The detector is described in detail elsewhere [16]. Two inner detector configurations were used. A 2.0 cm beampipe and a 3-layer silicon vertex detector was used for the first
FIG. 2: The distribution of $m(K_S)$ with $m(K_S^0K^+K^-) \in [1.85, 1.88]$ GeV/c^2 (left) and $m(K_S^0K^+K^-)$ with $m(K_S) \in [0.490, 0.505]$ GeV/c^2 (right). Superimposed on the data (points with error bars) are projections of the $m(K_S) - m(K_S^0K^+K^-)$ fit (result from the fit (solid blue line), signal contribution (solid green line), true K_S^0 (solid black line) and rest of the background (solid red line)).

sample of 156 fb$^{-1}$, while a 1.5 cm beampipe, a 4-layer silicon detector and a small-cell inner drift chamber were used to record the remaining 517 fb$^{-1}$ of data.

The K_S^0 candidates are reconstructed in the $\pi^+\pi^-$ final state; we require that the pion candidates form a common vertex at least 0.9 mm from the e^+e^- interaction point (IP) in plane perpendicular to the beam axis and have an invariant mass within ± 30 MeV/c^2 of K_S^0 nominal mass. We reconstruct D^0 candidates by combining the K_S^0 candidate with two oppositely charged tracks assigned as kaons. These tracks are required to have at least one SVD hit in both $r-\phi$ and z coordinates. A D^0 momentum greater than 2.55 GeV/c in the e^+e^- center-of-mass (CM) frame is required to reject D mesons produced in B mesons decays and to suppress combinatorial background.

The decay point of D^0 candidate is determined by refitting one of the charged kaons and K_S^0 candidate to a common vertex [18]; confidence levels exceeding 10^{-3} are required for the both fits. Out of two possibilities the one with lowest χ^2 value of the fit is used. In addition we require that $K_S^0K^+K^-$ and K^+K^- combinations originate from the common vertex by rejecting candidates of this two fits with confidence levels lower than 10^{-3}. The D^0 production point is taken to be the intersection of the D^0 momentum vector with the IP. The proper decay time of the D^0 candidate is then calculated from the projection of the vector joining the production and decay points, \vec{L}, onto the D^0 momentum vector, $t = (m_{D^0}/p_{D^0})\vec{L} \cdot (\vec{p}_{D^0}/p_{D^0})$, where m_{D^0} is the nominal D^0 mass. The decay time uncertainty σ_t is evaluated event-by-event, and we require $\sigma_t < 600 \text{ fs}$ (the maximum of σ_t distribution is at $\sim 230 \text{ fs}$).

The signal and background yields are determined from a two-dimensional fit to the in-
The lifetime of signal events is obtained in the following way. For each event category where σ masses, functions. The m in the MC event-by-event in order to achieve better agreement in fit is performed to obtain scaling factors for the background fractions, and then tune them from K_S^0 decay. These events are peaking in $m(K_S^0 K^+ K^-)$, but not in $m(K_S^0)$. The projections of $m(K_S^0 K^+ K^-)$ for events in $m(K_S^0)$ sidebands are checked for possible contribution of $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays. We find no contribution of $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays. The fit is performed to obtain scaling factors for the background fractions, and then tune them in the MC event-by-event in order to achieve better agreement in $m(K_S^0)$ and $m(K_S^0 K^+ K^-)$ distributions between MC and data events.

The sample of events for the lifetime measurement is selected using $|m'(K_S^0)|$ and $|m'(K_S^0 K^+ K^-)|$, where $m'(K_S^0)$ and $m'(K_S^0 K^+ K^-)$ are rotated K_S^0 and D^0 candidate masses according to

$$m'(K_S^0) = \frac{m(K_S^0) - m_{K_S^0}}{\sigma(K_S^0)}$$

$$m'(K_S^0 K^+ K^-) = \frac{m(K_S^0) - m_{K_S^0}}{\sigma(K_S^0) \sqrt{1 - \rho^2}} - \frac{m(K_S^0 K^+ K^-) - m_{D^0}}{\sigma(K_S^0 K^+ K^-) \sqrt{1 - \rho^2}},$$

where $m_{K_S^0} = 497.57 \pm 0.01$ MeV/c^2 and $m_{D^0} = 1864.96 \pm 0.01$ MeV/c^2 are fitted K_S^0 and D^0 masses, $\sigma(K_S^0) = 1.826 \pm 0.006$ MeV/c^2 and $\sigma(K_S^0 K^+ K^-) = 2.915 \pm 0.009$ MeV/c^2 are widths of the core Gaussian function and $\rho = 0.602 \pm 0.002$ is the correlation coefficient. The above uncertainties are statistical only. We define the signal box in the plane of rotated masses $m'(K_S^0)$ and $m'(K_S^0 K^+ K^-)$ in order to minimize correlations. Signal window in $|m'(K_S^0)|$ and $|m'(K_S^0 K^+ K^-)|$ is chosen to minimize the expected statistical error on y_{CP}, using the tuned MC: we require $|m'(K_S^0)| < 3.9$ and $|m'(K_S^0 K^+ K^-)| < 2.2$. The selection criteria on σ, K_S and K_S^0 candidate flight distance in $r - \phi$ plane, given above, are determined in the same way. We find 139×10^3 signal events with purity of 94%.

The lifetime difference Δ_r (Eq. 5) is determined from $D^0 \rightarrow K_S^0 K^+ K^-$ proper decay time distributions by measuring lifetime of signal events in ON and OFF $m(K^+ K^-)$ regions. The lifetime of signal events is obtained in the following way. For each event category i the proper decay time distribution $P_i(t)$ is assumed to be either exponential or a delta function, convoluted with a resolution function $R_i(t)$. The distribution for all event categories is then

$$P(t) = \sum_i p_i P_i(t) \otimes R_i(t),$$

where $p_i = N_i / \sum_j N_j$ is a fraction of the category i. By grouping the events into the signal and background one can also write

$$P(t) = p \frac{1}{\tau_s} e^{-t/\tau_s} \otimes R_s(t) + (1 - p) B(t),$$

where τ_s is the signal decay constant and $B(t)$ is the background distribution.
where the first term represents the measured distribution of a signal with lifetime τ_s, $R_s(t)$ is a signal resolution function and $p = N_s/(N_s + N_b)$ is a fraction of signal events. The last term represents the distribution of background events. The mean of the above distribution (Eq. 12) is

$$< t > = p(\tau_s + t_0) + (1 - p) < t >_b, \quad (13)$$

where t_0 is the mean of the signal resolution function $R_s(t)$ and $< t >_b$ is the mean lifetime of the background. The lifetime of signal events, shifted for the resolution function offset, can be calculated from Eq. (13)

$$\tau_s + t_0 = \frac{< t > - (1 - p) < t >_b}{p}. \quad (14)$$

with uncertainty

$$\sigma^2_{\tau_s} = \left(\frac{1}{p}\right)^2 + \left(\frac{1 - p}{p}\sigma_b\right)^2 + \left(\frac{< t > - < t >_b}{p^2\sigma_p}\right)^2, \quad (15)$$

where σ, σ_b and σ_p are determined from the proper decay time distributions of all events $P(t)$ and background events $B(t)$ in the following way

$$\sigma = \frac{\text{rms}(P)}{\sqrt{N}}, \quad \sigma_b = \frac{\text{rms}(B)}{\sqrt{N_b}} \quad \text{and} \quad \sigma_p = \sqrt{\frac{p(1-p)}{N}}.$$

The $B(t)$ distribution of background events populating the signal window is approximated by the proper decay time distribution of events taken from $m'(K^0_SK^+K^-)$ sideband of equal size as signal window. No scaling factor is needed, since the background events are linearly distributed in $m'(K^0_SK^+K^-)$. The tuned MC is used to select the sideband region that best reproduces the timing distribution of background events in $m'(K^0_SK^+K^-)$ signal window, which is chosen to be $9.7 < |m'(K^0_SK^+K^-)| < 11.9$.

In Table I the numbers of reconstructed events in the signal window N_{sw} and sideband N_{sb}, mean proper decay times of events in the signal window $< t >_{sw}$ and $< t >_{sb}$, fraction of signal events in the signal window $p = 1 - N_{sb}/N_{sw}$ and reconstructed lifetime $\tau_s + t_0$ (Eq. 14) shifted for resolution function offset obtained on real data sample are given for 3 different regions: OFF left ($m(K^+K^-) < 1.010$ GeV/c^2), ON ($1.015 < m(K^+K^-) < 1.025$ GeV/c^2) and OFF right ($1.033 < m(K^+K^-) < 1.100$ GeV/c^2). Figure [3] shows proper decay time distributions for events populating OFF left, ON and OFF right $m(K^+K^-)$ regions.

$m(K^+K^-)$	N_{sw}	N_{sb}	$< t >_{sw}$ [fs]	$< t >_{sb}$ [fs]	p [%]	$\tau_s + t_0$ [fs]
OFF left	19618	763	400.2 ± 4.5	121.2 ± 27.7	96.11 ± 0.14	411.5 ± 4.8
ON	66112	2104	403.0 ± 2.4	41.2 ± 13.8	96.82 ± 0.07	414.9 ± 2.6
OFF right	40634	4879	381.6 ± 3.2	138.6 ± 10.2	87.99 ± 0.16	414.7 ± 3.9
FIG. 3: Proper decay time distributions for events populating \(m(K^+K^-) < 1.010\) GeV/\(c^2\) (left), 1.015 < \(m(K^+K^-) < 1.025\) GeV/\(c^2\) (middle) and 1.033 < \(m(K^+K^-) < 1.100\) GeV/\(c^2\) (right). The hatched area histograms show the contribution of events populating the \(m'(K_S^0K^+K^-)\) sideband. The free parameters of the fit are also the coupling constant \(\chi\) and the fraction difference \(\phi(1020)\) resonance and the mass and width of the \(\phi(1020)\) resonance. In Table II fractions \(f_{1s}^{ON}\) and \(f_{1s}^{OFF}\) are given for both Dalitz models. In Table II fractions \(f_{1s}^{ON}\) and \(f_{1s}^{OFF}\) are given for both Dalitz models. The reconstructed lifetimes shifted for the resolution function \(\tau_s + t_0\) of \(D^0\) candidates in ON and OFF regions are 414.9 ± 2.6 fs and 413.6 ± 3.1 fs, respectively, from which \(\Delta t = (0.16 ± 0.48)\%\) is obtained. We assumed that the resolution function offset, \(t_0\), is equal for the events populating the ON and OFF regions and much smaller than \(D^0\) lifetime.
FIG. 4: \(s_0\) distribution of \(D^0 \to K_S^0 K^+ K^-\) decays with superimposed fit results with Dalitz model given in Ref. [14] (right). The blue solid line is the overall fitted function and the red line is the background contribution.

Model	Nominal \(f_{ON}^1\)	Fitted \(f_{ON}^1\)	\(f_{ON}^1 - f_{OFF}^1\)	Nominal \(f_{ON}^1 - f_{OFF}^1\)	Fitted \(f_{ON}^1 - f_{OFF}^1\)
4 res. [13]	0.117 0.847 -0.730 ± 0.031	0.113 0.844 -0.732 ± 0.003			
8 res. [14]	0.124 0.877 -0.753 ± 0.004	0.111 0.880 -0.769 ± 0.005			

TABLE II: Fractions \(f_{ON}^1\) and \(f_{OFF}^1\) \((f_{ON/Off}^1)^2 = f_{ON/Off}^1 |A_1|^2 / f_{ON/Off}^1(|A_1|^2 + |A_2|^2)\) and the fraction difference \(f_{ON}^1 - f_{OFF}^1\) for the two Dalitz models Ref. [13, 14]. The nominal values are calculated using the given Dalitz models in Ref. [13, 14] and fitted values using the obtained values of free parameters of the fit to the \(s_0\) distribution. Uncertainties on \(f_{ON}^1 - f_{OFF}^1\) were calculated using the statistical errors of amplitudes and phases given for each model, without taking into account any correlation between the amplitudes and phases.

Using the Eq. 8 and the fraction difference \(f_{ON}^1 - f_{OFF}^1 = -0.769\), obtained by fitting \(s_0\) distribution with Dalitz model given in Ref. [14], yields \(y_{CP} = (0.21 ± 0.63(\text{stat.}))\%\).

We consider systematic uncertainties arising from both experimental sources and from the \(D^0 \to K^0_S K^+ K^-\) model. First, we check on the MC sample if the resolution function offsets, \(t_0^0\) and \(t_0^{\text{OFF}}\) are equal. They are in agreement within the statistical uncertainty and small \((t_0 = 0.7\% \cdot \tau_{D^0})\). Next, we vary the sideband in \(m'(K_S^0 K^+ K^-)\) used to describe the background populating the signal window and measure for each sideband the \(\Delta_\tau\). For different sidebands used the obtained \(\Delta_\tau\) values are in agreement. The maximal difference in \(\Delta_\tau\) was taken to estimate the systematic uncertainty. Finally, possible systematic effects
of selection criteria were studied by varying the signal box sizes, and cut values on σ_t and K_0^S flight distance in $r-\phi$ plane. Again no statistical significant deviation was observed and the maximal difference in Δ_{τ} was taken to estimate the systematic uncertainty. We add all different sources in quadrature to obtain the overall experimental systematic uncertainty summarized in Table III.

The systematic uncertainty due to our choice of $D^0 \to K_0^S K^+ K^-$ decay model is evaluated as follows. First, we compare the fraction difference $f_{1\text{ON}} - f_{1\text{OFF}}$ obtained using the Dalitz Models in Ref. [13, 14]. Despite the differences between the two models in terms of the resonant structure [19], the fraction differences $f_{1\text{ON}} - f_{1\text{OFF}}$ (given in Tab. II) are in agreement. We assign 3% relative error for measured y_{CP} due to small difference in the above fractions. An additional 2% relative error for measured y_{CP} is assigned due to the small difference between fitted and nominal values of fraction difference $f_{1\text{ON}} - f_{1\text{OFF}}$ (given in Tab. II). The real and imaginary part of the interference term $A_1 A_2^*$ in the decay rate (Eq. 1) are zero after integrating over the s_π. Since the reconstruction efficiency is not constant in s_π, this is not entirely true. However, even if the observed s_π reconstruction efficiency is taken into account this has negligible effect and Eq. 8 still holds. This was also verified by MC with non-zero x and y values of mixing parameters, where the detector response was simply simulated by randomly rejecting events according to the observed dependence of efficiency in s_π. The difference between the obtained Δ_{τ} values (with and without taking into account the efficiency in s_π) are in agreement within statistical uncertainty, so no additional systematical uncertainty is assigned. Adding all variations in quadrature, the obtained relative model systematic uncertainty is 4%.

In summary, we determine y_{CP} by measuring the difference in lifetimes between D^0 mesons decaying to $K_0^S K^+ K^-$ in two different $m(K^+ K^-)$ regions with different contributions of CP even and odd eigenstates to be

$$y_{CP} = (0.21 \pm 0.63(\text{stat.}) \pm 0.78(\text{syst.}) \pm 0.01(\text{model}))\%.$$

The result is in agreement with world average of y_{CP} of previous measurements [8, 9].

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and SINET3 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Natural Science Foundation of China under contract No. 10575109 and 10775142; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea, the CHEP SRC program and Basic Research program (grant No. R01-2005-000-10089-0) of the Korea Science and Engineering Foundation, and the Pure Basic
Research Group program of the Korea Research Foundation; the Polish State Committee for Scientific Research; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

[1] I.I. Bigi, N. Uraltsev, Nucl. Phys. B 592, 92 (2001); A.F. Falk, Y. Grossman, Z. Ligeti, A.A. Petrov, Phys. Rev. D 65, 054034 (2002); A.F. Falk, Y. Grossman, Y. Nir, A.A. Petrov, Phys. Rev. D 69, 114021 (2004).

[2] For a review see: D.M. Asner, D$_0$-\bar{D}_0 Mixing, in Ref. [20].

[3] M. Staric et al. [Belle Collaboration], Phys. Rev. Lett. 98, 211803 (2007).

[4] B. Aubert et al. [BABAR Collaboration], arXiv:0712.2249 [hep-ex].

[5] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 65, 054034 (2002); A.F. Falk, Y. Grossman, Z. Ligeti, A.A. Petrov, Phys. Rev. D 69, 114021 (2004).

[6] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100, 121802 (2008).

[7] B. Aubert et al. [BABAR Collaboration], arXiv:0807.4544 [hep-ex].

[8] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag.

[9] A. J. Schwartz, arXiv:0803.0082 [hep-ex].

[10] Throughout this paper, the inclusion of the charge conjugate mode decay is implied unless otherwise stated.

[11] L.M. Zhang et al. [BELLE Collaboration], Phys. Rev. Lett. 99, 131803 (2007).

[12] D. M. Asner et al. [CLEO Collaboration], Phys. Rev. D 72, 012001 (2005) and arXiv: hep-ex/0503045v3.

[13] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 72, 052008 (2005).

[14] B. Aubert et al. [BABAR Collaboration], arXiv:0804.2089 [hep-ex].

[15] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.

[16] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 479, 117 (2002).

[17] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instr. and Meth. A 560, 1 (2006).

[18] If both charged kaons are used to determine the D^0 candidate’s decay point a reconstructed proper time and $m(K^+K^-)$ correlation is observed around nominal mass of the $\phi(1020)$.

[19] In the Dalitz analysis of $D^0 \to K_S^0 K^+ K^-$ decays [13] the Dalitz model consists of $K_S^0 a_0(980)^0$, $K_S^0 f_0(1370)$, $K_S^0 f_0(980)$, and $K^- a_0(980)^+$. The fitted fractions of the latter two are consistent with 0 and authors do not quote their amplitudes and phases, so these contributions are not used in this paper. In the Dalitz analysis [14] the Dalitz model consists of $K_S^0 a_0(980)^0$, $K_S^0 f_0(1370)$, $K_S^0 f_0(1270)$, $K_S^0 a_0(1450)^0$, $K^- a_0(980)^+$, $K^- a_0(1450)^+$ and $K^+ a_0(980)^-$.

[20] W.-M. Yao et al. [Particle Data Group], J. Phys. G33, 1 (2006).