OBJECTIVE: To compare the static postural balance between women suffering from chronic low back pain and healthy subjects, by moving the center of pressure. Methods: The study included 15 women with low back pain (LBP group) and 15 healthy women (healthy group). They were instructed to remain in standing on the force platform for 30 seconds. We analyzed the area and the speed of displacement of center of pressure of both groups. Data analysis was performed using the Student's t-test, with significance of 5%. Results: Individuals with chronic low back pain showed a larger area of displacement of the center of pressure relative to the healthy ones but there was no significant difference in the speed of displacement of the center of pressure. Conclusion: Individuals with chronic low back pain had alterations in static balance with respect to healthy ones.

Level of Evidence III, Prognostic Studies.

Keywords: Low back pain. Postural balance. Body weight.

INTRODUCTION
Low back pain is defined as painful symptoms in the lower lumbar, lumbosacral or sacroiliac regions of the spinal column. This type of pain is characterized as chronic when it persists for more than six months, and may be associated with chronic pathological processes that cause continuous or recurring pain. Its onset is often imprecise, with periods of exacerbation and regression. Low back pain is an important clinical, socioeconomic and public health problem that affects 70% of the population in general. It mainly affects the population of economically active age, and can be highly incapacitating besides being one of the causes of absenteeism. This type of continuous pain over long periods of time affects some aspects of the individual’s life. Recent studies indicate that patients with chronic low back pain present diminished postural control, manifesting problems in balance. Postural balance is controlled by sensory information, central processing and neuromuscular responses. The sensory components include the vestibular, visual and somatosensory (cutaneous and proprioceptive) systems, which provide information to the central nervous system, which in turn sends nerve impulses to the muscles to coordinate and control the body segments. Alterations in proprioception are pinpointed as one of the possible causes of alteration of postural balance in individuals with low back pain. This type of pain is associated with diminished proprioception and muscle strength, which can affect the quality of the sensory information and compromise the relation between postural responses and sensory information.

The force platform is commonly used to measure the postural balance by analyzing the center of pressure (CoP). The CoP is a displacement measure, which is influenced by the center of gravity position (CG). Small amplitude CoP displacements reflect a "good" control of balance, while higher displacement amplitudes reflect "poor" control. Thus, it becomes important to identify the balance deficit in individuals with chronic low back pain in order to assist in their rehabilitation. The aim of the study was to compare static postural balance between individuals with chronic back pain and healthy women, using the area and the average speed of displacement of the center of pressure.

MATERIAL AND METHODS
Study characterization
This trial is a noninterventionist, transversal exploratory study, approved by the Institutional Research Bureau of UNIOESTE under opinion no. 495/2009-CEP. For the performance of the study, the individuals agreed to take part and signed the Informed Consent Form.
Sample characterization

The sample was composed of 30 women, with age ranging between 30 and 50 years. They were divided into two groups: Healthy Group (HG / n = 15) composed of employees of the Rehabilitation Center of the Physiotherapy Clinic of UNIOESTE, and Low Back Pain Group (LBPG / n = 15) composed of individuals with clinical diagnosis of chronic low back pain, recruited from the waiting list of the Rehabilitation Center of the Physiotherapy Clinic of UNIOESTE. (Table 1)

Individuals who did not report any chronic or acute musculoskeletal disease, vestibular or visual abnormalities, diabetes or other systemic diseases and who did not make regular use of any kind of medication, were included in the healthy group (HG). In the low back pain group (LBPG) the inclusion criteria were: a) report of persistent low back pain lasting for more than six months; b) clinical diagnosis of specific or nonspecific low back pain; c) average score of pain in the last two months, prior to the evaluation, between three and seven, measured by the Visual Analogue Scale (VAS); d) subjects whose clinical and physical characteristics were compatible with categories 1 and 2 of the guidelines of evaluation and treatment proposed by the American College of Physicians and by the American Pain Society; 12 e) use of drugs that would affect the central nervous system or balance, such as sedatives or tranquilizers; f) patients with clinical history of spine surgery; g) alterations of the center of gravity such as in pregnancy; h) diabetic individuals; i) individuals with osteomuscular lesions in other joints and clinically diagnosed rheumatic diseases; j) use of drugs that would affect the central nervous system or balance, such as sedatives or tranquilizers; k) patients with clinical history of spine surgery; l) alterations of the center of gravity such as in pregnancy; m) diabetic individuals; n) individuals with osteomuscular lesions in other joints and clinically diagnosed rheumatic diseases; o) use of drugs that would affect the central nervous system or balance, such as sedatives or tranquilizers; p) patients with clinical history of spine surgery; q) alterations of the center of gravity such as in pregnancy; r) diabetic individuals; s) individuals with osteomuscular lesions in other joints and clinically diagnosed rheumatic diseases; t) use of drugs that would affect the central nervous system or balance, such as sedatives or tranquilizers; u) patients with clinical history of spine surgery; v) alterations of the center of gravity such as in pregnancy; w) diabetic individuals; x) individuals with osteomuscular lesions in other joints and clinically diagnosed rheumatic diseases; y) use of drugs that would affect the central nervous system or balance, such as sedatives or tranquilizers; z) patients with clinical history of spine surgery.

Sample characterization

Table 1 presents the sample characterization, through anthropometric data and the Visual Analogue Scale (VAS) of the evaluated groups. The values of the area of displacement of the center of pressure (A_CoP) and of the average speed of displacement of the center of pressure (V_CoP), in the low back pain (LBPG) and healthy (HG) groups are illustrated in Figures 1 and 2, respectively.

Table 1. Characterization of the sample with mean and standard deviation. LBPG – Low back pain group; HG – Healthy group.

Variables	LBPG (n=15)	HG (n=15)
Age (years)	40±7.03	42±5.78
Height (m)	1.67±0.03	1.69±0.04
Weight (Kg)	64.2±6.08	61±3.20
The mean of the area of displacement observed was 1.59±0.93 cm² in LBPG, and 0.89±0.58 cm² in HG, showing a statistically significant difference (p=0.01).

The average speed of displacement of the center of pressure (V_{CoP}) observed was 5.14±0.95 cm/s in LBPG, and 5.19±0.61 cm/s in HG, without statistically significant difference (p=0.84).

DISCUSSION

Low back pain may alter the sensory information for postural control, originating from the paraspinous muscles. This may be related to an increase in the parasympathetic inhibition of muscle input due to the pain. Adaptation of the cortical processing of the proprioceptive information can occur in chronic low back pain. A significant difference was found in the A_{CoP} between the groups analyzed in this study, which suggests a reduction of postural control in individuals with low back pain. The factors that cause this reduction include limited ability for use of a hip strategy in individuals with low back pain, due to the reduction in the strength and flexibility of the lumbopelvic region, as well as the deficit in the perception of position of the hip region, using the ankle strategy to maintain the erect posture for this reason. Mann et al. analyzed the amplitude of the center of pressure displacement in the anterior-posterior (AP) and mediolateral (ML) directions and the displacement speed in healthy young women and women with low back pain with eyes open and closed, encountering a significant increase in the AP and ML displacement in the low back pain group both with eyes open and closed. In relation to V_{CoP}, the authors observed a significant increase in the low back pain group with eyes closed.

This study corroborates the findings of the present study, which observed an increase in the A_{CoP} (AP and ML displacement) in individuals with chronic low back pain analyzed only with eyes open. Moreover, there were no significant differences found in the V_{CoP} with eyes open in either one of the studies. This may be due to the fact that the individuals presented moderate pain intensity during the data collection and, despite the alteration of proprioception, had intact information systems (visual, vestibular and somatosensory). However, Brumagne et al. analyzing the anterior-posterior center of pressure (CoP) displacement on stable and unstable surface in individuals with recurrent low back pain compared to healthy individuals, did not find significant difference between the groups on stable surface. Nevertheless, the authors selected young individuals of both sexes and with average age of 23 years for the sample, while in the present study the sample was only composed of women with average age of 40 years. Individuals with low back pain can present postural alteration. Considering pain as the only factor that contributes to changes in postural control, this alteration of the normal erect position leads to an increase of lumbar muscle activation, which will result in an increase in the rate of muscle fatigue. These changes in the muscle activation pattern can occur as a strategy to limit spinal movements, regardless of the pain intensity, leading to the alteration of balance. The influence of muscle fatigue due to the alteration in the trunk position associated with pain can increase lumbar instability, especially if the individuals present chronic pain. Lemos et al. analyzed the influence of lumbar pain on the balance of athletes from the Brazilian female canoe team and found an increase in the magnitude of CoP displacement in the athletes with presence of pain, which is associated with the results of this study.

Note that the difference in balance can be related to the presence of pain, both in individuals with low back pain and in healthy individuals who engage or do not engage in physical activity.

CONCLUSION

Thus it is concluded that individuals with chronic low back pain present alteration in static postural balance, since there was an increase in A_{CoP} in relation to healthy individuals of a similar age, yet these did not present a significant difference in V_{CoP}.

REFERENCES

1. Cordeiro Q, Khouri ML, Ota D, Ciamp D, Corbet CE. Lombalgia e cefaléia como aspectos importantes da dor crônica na atenção primária à saúde em uma comunidade da região amazônica brasileira. Acta Fisiatr. 2008;15(2):101-5.

2. Ocarino JM, Gonçalves GGP, Vaz DV, Catral AA, Porto JV, Silva MT. Correlação entre um questionário de desempenho funcional e testes de capacidade física em pacientes com lombalgia. Rev Bras Fisioter. 2009;13(4):343-9.

3. Falcão ICCS. Qualidade de vida e capacidade funcional em idosos com dor lombar crônica (dissertação): Campinas: Faculdade de Educação da Universidade Estadual de Campinas – UNICAMP; 2006.

4. Almeida IGB, Bittencourt. Apresentação de dados referente à prevalência de dor lombar em idosos da região de Camboriú, Santa Catarina. Rev Bras Fisioter. 2009;13(4):343-9.

5. Shumway-Cook A, Woollacott MH. Controle motor: teoria e aplicações práticas. 2a. ed. São Paulo: Manole; 1999.

6. Costa FL, Fonseca GCS, Ferrão YA, Zylbersztejn S. Avaliação fisioterapica da lombalgia e cefaléia. Acta Ortop Bras. 2012;20(4):156-60.

7. Nies N, Szymkowiak. Prevalence of low back pain in women. J Adv Nurs. 2004;47(4):296-302.

8. Karimi N, Ebrahimi I, Kahrizi S, Torkaman G. Evaluation of postural balance using the biodex balance system in subjects with and without low back pain. Pak J Med Sci. 2008;24(3):372-7.

9. Carvalho RL, Almeida GL. Aspectos sensoriais e cognitivos do controle postural. Rev Neurolog. 2005;17(2):115-60.

10. Wieczorek SA. Equilibrio em adultos e idosos: relação entre tempo de movimento e acurácia durante movimentos voluntários na postura em pé [dissertação]. São Paulo: Escola de Educação Física e Esporte da Universidade de São Paulo, 2003.

11. Viegas PA, Sousa FF, de Lima ES, de Souza LA, de Carles PW. Ação de um programa para o melhora do equilíbrio em adultos. Rev Bras Fisioter. 2008;14(4):361-6.

12. Brumagnhe F, Reinehr FB, Mota CB. Effects of a program for trunk strength and stability in patients with lumbar disc herniation. Man Ther. 2008;14(1):22-30.

13. Brumagne S, Janssens L, Knapen S, Cools R, D'hoore M, Janssens K, et al. Proprioceptive weighting changes in persons suffering from chronic low back pain compared to healthy adults: influence of pain intensity. Gait Posture. 2015;44:12-17.

14. Mann K, Kleinpauf JF, Pereira Moro AR, Mota CB, Carpes FP. Effect of LBP on postural balance in young women. J Bodyw Mov Ther. 2010;14(4):361-6.

15. Carpes FP, Reinehr FB, Mota CB, Effects of a program for trunk strength and stability on pain, low back and pelvic kinematics, and body balance: a pilot study. J Bodyw Mov Ther. 2008;12(1):22-30.

16. Brumagne S, Janssens L, Knapen S, Cools R, D'hoore M, Janssens K, et al. Proprioceptive weighting changes in persons suffering from chronic low back pain compared to healthy adults: influence of pain intensity. Gait Posture. 2015;44:12-17.

17. Viegas PA, Sousa FF, de Lima ES, de Souza LA, de Carles PW. Ação de um programa para o melhora do equilíbrio em adultos. Rev Bras Fisioter. 2008;14(4):361-6.

18. Brumagne S, Janssens L, Knapen S, Cools R, D'hoore M, Janssens K, et al. Proprioceptive weighting changes in persons suffering from chronic low back pain compared to healthy adults: influence of pain intensity. Gait Posture. 2015;44:12-17.

19. Viegas PA, Sousa FF, de Lima ES, de Souza LA, de Carles PW. Ação de um programa para o melhora do equilíbrio em adultos. Rev Bras Fisioter. 2008;14(4):361-6.

20. Brumagne S, Janssens L, Knapen S, Cools R, D'hoore M, Janssens K, et al. Proprioceptive weighting changes in persons suffering from chronic low back pain compared to healthy adults: influence of pain intensity. Gait Posture. 2015;44:12-17.