Ambulatory fludrocortisone suppression test in the diagnosis of primary aldosteronism: Safety, accuracy and cost-effectiveness

Ana Carasel1,2 | Jan Calissendorff1,2 | Kamila Avander3 | Ivan Shabo2,4
Cristina Volpe1,2 | Henrik Falhammar1,2

1Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
2Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
3Department of Endocrinology, Danderyd Hospital, Stockholm, Sweden
4Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden

Correspondence
Ana Carasel, Department of Endocrinology, Q885 Karolinska University Hospital, Stockholm 17176, Sweden.
Email: ana.carasel@ki.se

Abstract

Objective: The aims of this study were to explore if the ambulatory fludrocortisone suppression test (FST) was safe, accurate and cost-effective.

Context: The diagnosis of primary aldosteronism (PA) remains time-consuming and complex. The FST is used to confirm PA, but it is an in-patient test due to potentially serious complications such as hypokalemia. In Stockholm, FST has been performed since 2005 as an ambulatory procedure.

Design: This is a retrospective study including all patients investigated with FST in four hospitals in Stockholm, Sweden, during 2005–2019.

Patients/Measurements: In total, 156 cases of ambulatory FST (FSTamb) and 15 cases of in-patient FST (FSTin) were included. FSTamb and FSTin were compared regarding health costs, clinical characteristics and laboratory results.

Results: No difference was found in the outcomes of FSTamb and FSTin. No severe complications were reported in FSTamb patients. No difference was found in the median value for plasma potassium on Day 5 between the two groups. Only three patients (1.9%) in the FSTamb had to repeat the test due to incomplete intake of medications. FSTamb and FSTin were equally accurate. The cost of performing FSTamb was at least 50% lower compared with FSTin ($2400 vs. $5200 per patient). The time needed for FSTamb was 60 min of physician’s time and 150 min of nurse’s time which were lower than the 5 days in FSTin.

Conclusions: Ambulatory FST is safe and accurate and can be performed with significantly less healthcare costs compared to FSTin.

KEYWORDS
ambulatory, fludrocortisone suppression test, primary aldosteronism
INTRODUCTION

Primary aldosteronism (PA) is the most common endocrine cause of secondary hypertension. However, PA is underdiagnosed with reported prevalence rates among patients with hypertension of 4%–14% in primary care and 1%–29.8% in referral centres. The disease is characterised by hypertension, hypokalemia/normokalemia and metabolic alkalosis with diffuse clinical features such as muscle weakness, fatigue, polyuria and polydipsia. The cause is autonomous aldosterone production which results in sodium and water retention as well as renal potassium excretion. The excess production of aldosterone may occur in one (unilateral) or both (bilateral) adrenal glands. The unilateral disease is usually caused by a solitary adenoma and represents only one-third of all PA cases. Bilateral disease is caused by bilateral adenocortical hyperplasia or, rarely, by bilateral adenomas.

Patients with PA have an increased risk of heart disease, stroke, diabetes and metabolic syndrome. Due to the recognised efficiency of PA treatment (surgery and mineralocorticoid receptor antagonist treatment) and its positive impact on patient outcomes, including health cost gains, screening of risk populations for PA is important and beneficial.

Even though PA is a common disorder among patients with hypertension, only a relatively small number of patients undergo investigation for PA. For example, recent studies show that only 2.1%–2.7% of patients with hypertension were screened for PA.

The diagnosis of PA requires not only laboratory tests but often also complex confirmatory tests, radiological assessment and adrenal vein sampling for distinguishing between unilateral and bilateral disease. In PA, the increase in aldosterone is independent of renin pathway regulation, causing the suppression of renin secretion and, hence, elevation of the aldosterone to renin ratio (ARR). However, the ARR can be altered by other factors, such as medications interfering with the Renin-Angiotensin-Aldosterone System (RAAS), oral contraceptives or chronic kidney disease, why confirmatory tests are most often required to establish the diagnosis of PA.

In PA diagnosis, confirmatory tests aim to demonstrate the inability to suppress the aldosterone production by using various methods. The confirmatory tests recommended by international guidelines are the oral sodium loading test, the saline infusion test, the captopril challenge test and the fludrocortisone suppression test (FST). Currently, the FST is considered reliable and is used by some centres as a reference test for the evaluation of other confirmatory tests in diagnosing PA. The FST traditionally requires that the patient is hospitalised because the risk of hypokalemia has been perceived to be high. Consequently, most centres avoid the FST.

In the Stockholm area, the FST has been performed ambulatory (FSTamb) starting with the year 2005. The method used is a simplified variant proposed by the European Endocrine Society for the inpatient FST (FSTin). To our knowledge, no data on the FSTamb has been published to this day. The aim of this study was to evaluate the safety and accuracy of the FSTamb in diagnosing PA. Moreover, we also aimed to explore the cost benefits of using the FSTamb compared to the FSTin.

MATERIALS AND METHODS

2.1 Study population

In this retrospective study, we reviewed all medical records for patients who had been screened for PA during 2005–2019 at the Departments of Endocrinology in the four leading hospitals of the Stockholm region: Danderyd Hospital, Karolinska University Hospital Solna, Karolinska University Hospital Huddinge and Södersjukhuset. Only patients examined with FST were included.

The initial screening included measurement of ARR, plasma potassium concentration, blood pressure, body mass index (BMI), ongoing medical treatment, history of other diseases and smoking. If possible, considering the patient’s medical history, the antihypertensive treatment was modified by excluding drugs interfering with the ARR and, if needed, replaced by antihypertensive drugs not interfering with the ARR. Mineralocorticoid receptor antagonists, such as spironolactone and eplerenone, were stopped at least 6 weeks before the FST. Other drugs interfering with the RAAS were discontinued at least 2 weeks before the test.

The following data were obtained for all patients examined with FST: ARR, 24-h urinary aldosterone, 24-h urinary sodium, serum cortisol concentration, the incidence of hypokalemia during FST, episodes of arrhythmia, need for hospitalisation due to complications during FST, patients’ adherence to the FST protocol, blood pressure and intolerance to medications.

The accuracy of FST was assessed by comparing the results of the FST with the combined results of initial laboratory screening, radiological findings, confirmatory tests, adrenal vein sampling and histological findings for those operated, and treatment response.

Before the establishment of the FSTamb as a standard method in the entire Stockholm region, one centre was still performing the FSTin. As a control group, the 15 cases investigated with FSTin were recruited to compare the test safety and accuracy in relation to FSTamb.

The Regional Ethical Review Board approved the study in Stockholm, Sweden, and due to its retrospective nature, consent was waived.

2.2 Local protocol for FSTamb

Patients eligible for the FST were planned to perform the test as an outpatient test in all four centres. Antihypertensive medications were adjusted as required before the test. Fludrocortisone tablets 0.1 mg were administered four times daily (at 08.00, 12.00, 16.00 and 20.00) over 5 days, starting at 12.00 on Day 1 and finishing at 08.00 on Day 5. Sodium chloride capsules 500 mg (three capsules qid) were administered together with fludrocortisone. Slow-release potassium
chloride tablets of 750 mg were distributed according to potassium concentration. All patients received oral and written instructions. If needed, the patients had the opportunity to contact the outpatient clinic during office hours. Plasma potassium concentration was controlled once a day at all sites on Days 1, 2, 5 and at two sites also on Days 3 and 4. The dosage of slow-release potassium chloride tablets was adjusted and communicated to each patient at the visit to the investigating site on Days 1 and 5, and by telephone contact with an endocrine nurse on Days 2, 3 and 4. Blood pressure and heart rate were registered on Days 1 and 5.

On Days 1 and 5, the plasma aldosterone concentration (PAC), plasma renin concentration (PRC) and serum cortisol concentration were controlled in a recumbent posture after 20 min of rest and after 2 h in a seated posture. The patients were instructed to collect urine from the day before Day 1 of the FST\textsubscript{amb} and from Day 4 to the morning of Day 5 of the FST\textsubscript{amb} for the analysis of 24-h urinary aldosterone, sodium and potassium.

The FST was considered indicative of PA if PAC in the seated posture was over 220 pmol/L on Day 5 if PRC was inappropriately low and serum cortisol concentration was lower than the value obtained at 08.00 (to exclude a confounding ACTH effect) and/or if the 24-h urinary aldosterone was over 35 nmol/24 h. This cut-off was used in consensus with the local guidelines. A 24-h urinary sodium concentration at the end of the FST was used to determine if salt loading was adequate. A cut-off of 200 mmol/24 h for urinary sodium was considered acceptable.22

The protocol for the FST\textsubscript{in} included the same laboratory tests on Days 1 and 5. The difference was that the plasma potassium concentration was controlled one or more times daily, permitting more free adjustments of slow-released potassium tablets.

2.3 Cost

The cost of performing FST\textsubscript{amb} and FST\textsubscript{in} was calculated and reviewed by the Financial Departments of the hospitals. The costs for the FST\textsubscript{amb} included costs for 1 hour of physician’s time (30 min on Day 1 and 30 min on Day 5), 30 min per day x 5 days of nurse’s time, medications, ambulatory space, the cost for laboratory analyses and other consumables such as equipment to obtain blood and urine samples as well as patients’ lunches. For the FST\textsubscript{in}, the cost was calculated for 5 days of hospitalisation, including physicians’ and nurses’ time every day, medications, the cost for laboratory analyses and other consumables similar as above.

2.4 Assays

The methods for measuring PAC and PRC changed during the study period. The method for measuring PAC and PRC was changed on June 18, 2014, from Siemens Coat-A-Count RIA kit (Siemens Ltd) for PAC and Electrabox CISBIO IRMA kit for PRC to DiaSorin Liaison XL for both. Before mid-June 2014, the normal range for recumbent PAC was 80–440 and 190–830 pmol/L for seated PAC. The lower limit of detection for PAC was <69 pmol/L. From mid-June 2014, the normal range for recumbent PAC was <650 and 60–980 pmol/L for seated PAC. The lower limit for detection was <27 pmol/L. The normal range for PRC before mid-June 2014 was in the recumbent posture 3–16 ng/L and the seated posture 3–33 ng/L. The lower limit was <0.2 ng/L. After that, the normal range in recumbent position was 2.8–40 mIU/L and in seated posture 4.4–46 mIU/L. The lower limit was <0.3 mIU/L. Until mid-June 2014, the cut-off for the ARR was 100 pmol/ng and later in connection to the changes in the laboratory methods, it was defined as 60 pmol/mlU.

2.5 Statistical analysis

The data were analysed using the SPSS statistic programme (version 27/2021, IBM Corporation). The results were given as median (range) for numerical data and for categorical data, as number and percentage if not stated otherwise. For comparison between continuous values, the Mann–Whitney U-test was used. Comparisons of categorical values were made with Fisher’s exact test. A p-value < .05 was considered significant.

3 RESULTS

In total, 156 cases of FST\textsubscript{amb} and 15 cases of FST\textsubscript{in} were included. The main indications for PA investigation are shown in Table 1. The baseline characteristics of the FST\textsubscript{amb} and FST\textsubscript{in} patients are summarised in Table 2. The median (range) age was 52 (22–75) years and 50.9% were females. The patients had median blood pressure of 150 (120–239)/90 (57–120) mmHg, and the number of antihypertensive drugs was 2 (0–4). The initial screening showed an ARR for the entire group of 139.8 (1.65–2620.0) pmol/ng and 205.1 (37.09–1172.5) pmol/mIU, respectively, depending on the laboratory methods. The initial potassium concentration in the FST\textsubscript{amb} group, registered at the first visit to the centre was 3.2 (2.0–4.0) mmol/L. A history of cardiovascular disease was more

Tab 1	Referral causes for patients who had an ambulatory fludrocortisone suppression test in the Stockholm region, Sweden	
Cause for referral	Number	%
Hypertension and hypokalemia	81	51.9
Hypertension	46	29.4
Adrenal incidentaloma	13	8.3
Hypokalemia	8	5.1
Hypertension and adrenal incidentaloma	4	2.5
Hypertension, hypokalemia and adrenal incidentaloma	4	2.5
Total	156	100
common in the FST\textsubscript{in} patient group. In the FST\textsubscript{in} patient group, there were several more active smokers compared to in the FST\textsubscript{amb} group. The 24-h urinary aldosterone measured during FST\textsubscript{in} was higher than that measured in FST\textsubscript{amb}. No differences in other clinical data, such as gender, age, BMI, or blood pressure, were found between these two patient groups (Table 2).

Results of the FST\textsubscript{amb} and FST\textsubscript{in} are presented in Table 3. For the FST\textsubscript{amb} group, the median plasma potassium concentration during the FST was stable and varied from 3.5 to 3.6 mmol/L (Table 4, Figure 1A). The lowest plasma potassium concentration in the FST\textsubscript{amb} patient group was 2.8 mmol/L, measured on Day 3, and 2.8 mmol/L on Day 5 in the FST\textsubscript{in} group. None of the patients required hospitalisation or reported any arrhythmias during the FST.

In centre 1 (Figure 1B), the plasma potassium concentration was measured on Days 1, 2 and 5 but only in a very few cases on Days 3 and 4. This centre performed the FST\textsubscript{amb}, mostly from Thursday till Monday, that is, they did not check potassium during the weekend. When the plasma potassium concentration on Day 5 in this centre was compared with the other centres, a significant difference was found (3.1 [2.9–3.8] vs. 3.5 [2.9–4.8] mmol/L, \(p < .001\)) (Figure 1B).

When excluding centre 1, no difference was found in plasma potassium concentration on Day 5 between FST\textsubscript{amb} and FST\textsubscript{in} (\(p = .280\)) (Figure 1C).

In the FST\textsubscript{amb} group, the dose of slow-release potassium chloride tablets was increased in 113 cases (74.8%) with 4 (0–28) tablets, while in the FST\textsubscript{in} group, the dose was increased in nine patients (60%) with 10.52–25 tablets (\(p = .001\)) (Table 3). The dosage of slow-release potassium chloride tablets was usually increased on Days 1 or 2 (51 cases [29.8%] and 59 cases [34.5%], respectively). When dividing the FST\textsubscript{amb} group into those later diagnosed with PA and those without confirmed PA, the need for slow-release potassium chloride tablets was higher in the PA group (4.0 [0–28] vs. 2.0 [0–10] tablets, \(p = .005\)) (Table 4).

In 112 cases (71.8%) in the FST\textsubscript{amb} group and 10 cases (67%) in the FST\textsubscript{in} group, the 24-h urinary sodium concentration on Day 5 was \(\geq 200\) mmol/24 h. The 24-h urinary sodium concentration on Day 5 in the FST\textsubscript{amb} group was similar to that found in the FST\textsubscript{in} group (244.0 [49–741] vs. 248 [123–351] mmol/24 h, \(p = .784\)).

Serum cortisol concentrations at the end of the FST were lower within the FST\textsubscript{amb} group than in the FST\textsubscript{in} group (Table 3) and

Table 2: Clinical and biochemical variables in patients who had a fludrocortisone suppression test either as an ambulatory or as an in-patient in the Stockholm region

	Total	FST\textsubscript{amb}	FST\textsubscript{in}	\(p\)-Value
Number, n (%)	171	156	15	
Gender				0.792
Female, n (%)	87 (50.9)	80 (51.3)	7 (46.7)	
Male, n (%)	84 (49.1)	76 (48.7)	8 (53.3)	
Age median (range)	52 (22–75)	51 (22–75)	54 (33–73)	0.348
Body mass index (BMI)	27.3 (18–47)	27.4 (18–47)	26.4 (21–34)	0.754
Duration of HT (years)	4 (0–40)	4 (0–39)	4 (1–40)	0.764
History of CVD, n (%)	26 (15.2)	18 (11.5)	8 (53.3)	<0.001
History of diabetes, n (%)	28 (16.4)	26 (16.7)	2 (13.3)	1.000
History of dyslipidemia, n (%)	11 (6.4)	9 (5.8)	2 (13.3)	0.249
History of cancer, n (%)	18 (10.5)	16 (10.3)	2 (13.3)	0.661
Creatinine, (\(\mu\)mol/L) median (range)	75 (4.8–119)	74 (5–119)	77 (65–87)	0.429
SBP (mmHg) median (range)	150 (120–239)	152 (120–239)	150 (130–170)	0.462
DBP (mmHg) median (range)	90 (57–120)	90 (57–120)	90 (70–100)	0.237
BP medications screening, n	2 (0–4)	2 (0–4)	2 (1–4)	0.270
ARR screening (pmol/ng)	139.8 (1.65–2620)	133.1(1.7–2620)	277.5 (47–698)	0.074
Plasma potassium concentration at screening (mmol/L)	3.2 (2.0–4.0)	3.2 (2.0–4.0)	2.9 (2.0–4.0)	0.475
24-h urinary aldosterone (nmol/24 h)	65 (3–680)	63 (3–680)	106.5 (63–170)	0.028

Abbreviations: ARR, aldosterone–renin ratio; BMI, body mass index; BP medications, blood pressure medication; CVD, cardiovascular disease; DBP, diastolic blood pressure; n, number; If not n, then median (range); SBP, systolic blood pressure.
displayed a decrease from 08 AM to 12 AM in both groups consistent with the expected circadian rhythm.

PAC in a recumbent and seated posture and 24-h urinary aldosterone at Day 5 was lower within the FST\textsubscript{amb} group than in FST\textsubscript{in} group (Table 3).

All patients were questioned about adherence, and three patients (1.9%) in the FST\textsubscript{amb} group self-reported issues with medicines intake. Those had to repeat the test due to incomplete intake of medications during the test. When the FST was repeated, the patients received even more careful and detailed information, and the second test was performed adequately.

Out of 156 FST\textsubscript{amb} patients, five (3.2%) reported mild adverse events, which did not result in discontinuation of the test, and the patients did not require additional medical assistance. These adverse events were a mild and short episode of abdominal pain (n = 1), diffuse sense of chest discomfort (n = 1), nausea after taking the fludrocortisone tablets (n = 1), light headache (n = 1) and a short episode of palpitations (n = 1). In the FST\textsubscript{in} group there were no reports of adverse events during the test. In all patients reporting adverse events, normal plasma potassium concentration was found at that time.

Patients with confirmed PA in the FST\textsubscript{amb} group were more often active smokers and more had diabetes compared with the patients in the non-PA group. A tendency to higher systolic blood pressure and higher rates of cardiovascular disease was also noted in this group (Table 4).

| TABLE 3 Results of the fludrocortisone suppression test performed either as an ambulatory or as an in-patient in the Stockholm region |
|---|-----------------|-----------------|
| Variable 1 | FST\textsubscript{amb} | FST\textsubscript{in} | p-Value |
| Plasma potassium concentration (mmol/L), Day 1 offludrocortisone suppression test (FST) median (range) | 3.6 (2.9–4.3) | 3.8 (3.5–4.1) | .019 |
| Plasma potassium concentration (mmol/L), Day 2 of FST median (range) | 3.6 (2.9–4.1) | 3.6 (3.2–3.9) | .691 |
| Plasma potassium concentration (mmol/L), Day 3 of FST median (range) | 3.5 (2.8–4.4) | 3.6 (3.0–3.9) | .659 |
| Plasma potassium concentration (mmol/L), Day 4 of FST median (range) | 3.6 (3.0–4.2) | 3.5 (3.4–4.1) | .836 |
| Plasma potassium concentration (mmol/L), Day 5 of FST median (range) | 3.6 (2.9–4.8) | 3.5 (2.8–4.2) | .75 |
| Increase potassium tablets n (%) | 113 (74.8) | 9 (60) | .086 |
| Increase potassium tablets, n median (range) | 4 (0–28) | 10.5 (2–25) | .001 |
| Potassium tablets, n, Day 1 median (range) | 6 (0–24) | 9.5 (2–33) | .019 |
| Potassium tablets, n, Day 2 median (range) | 8 (0–24) | 14.5 (3–36) | .03 |
| Potassium tablets, n, Day 3 median (range) | 8 (0–26) | 15.5 (3–36) | .015 |
| Potassium tablets, n, Day 4 median (range) | 8 (0–40) | 18 (3–36) | .004 |
| Potassium tablets, n, Day 5 median (range) | 8 (0–35) | 8.5 (2–34) | .274 |
| 24 h urinary sodium, Day 5 FST (mmol/24 h) | 244.0 (49–741) | 248.0 (123–351) | .784 |
| S-cortisol recumbent posture, Day 5 FST (nmol/L) | 298.0 (132–1750) | 356.0 (249–667) | .031 |
| S-cortisol seated posture, Day 5 FST (nmol/L) | 230 (102–866) | 334.0 (121–556) | .094 |
| PAC recumbent posture Day 5 FST (pmol/L) | 268.5 (69–1580) | 512.0 (69–1560) | .024 |
| PAC seated posture, Day 5 FST (pmol/L) | 333.5 (69–1320) | 538.0 (117–1980) | .018 |
| 24 h urinary aldosterone, Day 5 FST (nmol/24 h) | 53 (1.9–310) | 107.5 (20–290) | .015 |
| SBP (mmHg), recumbent posture Day 1 | 148 (113–210) | 160 (140–160) | .618 |
| DBP (mmHg), recumbent posture, Day 1 | 90 (65–128) | 100 (90–100) | .705 |
| SBP (mmHg), recumbent posture Day 5 | 150 (104–210) | 165 (145–166) | .339 |
| DBP (mmHg), recumbent posture, Day 5 | 90 (56–125) | 90 (88–100) | .515 |
| PA, n (%) | 109 (69.8) | 12 (80) | .387 |

Abbreviations: DBP, diastolic blood pressure; n, number. If not n, then median (range); PA, primary aldosteronism; PAC, plasma aldosterone concentration; SBP, systolic blood pressure.
	Total	PA	Non-PA	p-Value
Number, n (%)	156	109 (69.9)	47 (30.1)	
Gender				.037
Female n (%)	80 (51.3)	49 (45.4)	31 (64.6)	
Male n (%)	76 (48.7)	59 (54.6)	17 (35.4)	
Age (years)	54 (33–73)	52 (22–75)	51 (26–74)	.997
BMI (kg/m²)	22.4 (21–34)	27.3 (18–45)	27.9 (18–35)	.827
Duration of HT (years)	4 (0–39)	5 (0–39)	4 (0–27)	.221
History of CVD, n (%)	18 (11.5)	16 (14.6)	2 (4.2)	.061
History of diabetes, n (%)	26 (16.6)	23 (21.1)	3 (6.3)	.020
History of dyslipidemia, n (%)	9 (5.8)	8 (7.4)	1 (2.1)	.277
History of cancer, n (%)	16 (10.3)	8 (7.3)	8 (17.0)	.091
Active smoking, n (%)	17 (13.2)	8 (8.7)	9 (24.3)	.024
SBP (mmHg)	152 (120–239)	156 (120–239)	149 (120–200)	.07
DBP (mmHg)	90 (57–120)	90 (64–120)	90 (57–120)	.572
Creatinine (μmol/L)	74 (4.8–119)	76 (37–119)	70 (4.8–105)	.264
BP medications screening, n	2 (0–4)	2 (0–4)	2 (0–4)	.176
ARR screening (pmol/ng)	133.1 (1.65–2620)	179.1 (1.65–2620)	107.6 (12–316.2)	.02
ARR (pmol/mIU)	205.1 (37.09–1172.5)	208 (37.0–1172.5)	194.5 (101.1–820)	.136
24 h urinary aldosterone, screening (nmol/24 h)	72 (25–680)	72 (25–680)	53 (3–100)	.01
Initial potassium concentration (mmol/L)	3.2 (2–4)	3.1 (2–4)	3.35 (3–4)	<.01
Increase potassium tablets n (%)	113 (72.4)	81 (79.4)	32 (71.1)	.518
Increase potassium, n tablets	4.0 (0–28)	4.0 (0–28)	2.0 (0–10)	.005
SBP follow-up (mmHg)	134 (105–210)	132 (105–210)	137.5 (110–180)	.120
DBP follow-up (mmHg)	80 (50–120)	80 (50–1110)	85 (55–120)	.015
BP medication follow-up, n	2 (0–6)	2 (0–6)	2 (0–5)	.630
Potassium concentration follow-up(mmol/L)	4.0 (3.0–5.6)	4.0 (3.0–5.6)	3.9 (3.2–4.8)	.005
MRA follow-up, n	69	69	0	
Spironolactone dosage (mg)	22.0 (0–150)	22.0 (0–150)	0	
Eplerenon dosage (mg)	6.59 (0–50)	6.59 (0–50)	0	

Abbreviations: ARR, aldosterone-renin ratio; BMI, body mass index; BP, medication, blood pressure medication; CVD, cardiovascular disease; DBP, diastolic blood pressure; n, number. If not n, then median (range); non-PA, patients without primary aldosteronism; PA, patients with primary aldosteronism; SBP, systolic blood pressure.
FIGURE 1 (A) Plasma potassium variation during fludrocortisone suppression test (FST) in-patient FST (FST)\textsubscript{in} and ambulatory FST (FST\textsubscript{amb}). (B) Plasma potassium variation during FST\textsubscript{amb} in the four centres in Stockholm. (C) Plasma potassium variation FST\textsubscript{amb} and FST\textsubscript{in} in Stockholm when excluding the centre without daily control of plasma potassium.
Adrenal venous sampling (AVS) was performed in 59 patients (54.1%) of the confirmed PA cases. All patients in which AVS indicated unilateral disease \((n = 40) \) underwent unilateral adrenalectomy. In the \(\text{FST}_\text{amb} \) group, adrenalectomy was performed in 34 patients (31.2%), and treatment with a mineralocorticoid receptor antagonist was offered to the other 75 patients (68.8%). In the \(\text{FST}_\text{ip} \) group, 12 patients (80%) were diagnosed with PA, and out of those, six cases (50%) underwent adrenalectomy. Patients with confirmed PA and bilateral aldosterone secretion according to AVS, as well as those who were not deemed suitable for, or did not accept surgery, were treated with a mineralocorticoid receptor antagonist. Outcomes of the patients in the PA group are described in Table 5. To our knowledge, none of the patients deemed not having PA were later referred for re-evaluation to our centres.

After treatment, a reduction in blood pressure was obtained in the PA group \((\text{pretreatment vs. posttreatment: systolic blood pressure was } 156 \ [120–239] \text{ vs. } 132 \ [105–145] \text{ mmHg}, p = .007; \text{diastolic blood pressure } 90 \ [64–120] \text{ vs. } 80 \ [60–100] \text{ mmHg}, \text{respectively, } p = .013) \).

In patients with PA confirmed by \(\text{FST}_\text{amb} \), the serum potassium concentration after treatment was 4.1 \((3.7–5.6) \text{ mmol/L} \).

The costs for FST were much lower when performed ambulatory than in an in-patient setting. The cost for \(\text{FST}_\text{amb} \) was 20,330 SEK per patient \((\text{about } $2400) \) compared to 44,928 SEK \((\text{about } $5200) \) per patient for the \(\text{FST}_\text{ip} \).

4 | DISCUSSION

To the best of our knowledge, this is the first study to explore the safety and accuracy of FST performed in an ambulatory setting. In Stockholm, there is a long tradition of performing \(\text{FST}_\text{amb} \) but this practice had not been evaluated systematically. We found that the \(\text{FST}_\text{amb} \) is safe, accurate, and can be performed with about 50% reduction in health costs compared to the \(\text{FST}_\text{ip} \).

The FST is considered to be reliable. Still, it is often avoided because of its complexity and high costs. The major concerns about performing \(\text{FST}_\text{amb} \) are associated with undiagnosed and untreated hypokalemia. The fludrocortisone administered in the FST is associated with a risk of hypokalemia and hence, risk of cardiac arrhythmia. To avoid this, patients selected for FST are admitted to the hospital. A normal plasma potassium concentration is desired in all patients.22 A normal plasma potassium concentration after treatment was 4.1 \((3.7–5.6) \text{ mmol/L} \).

According to the Endocrine Society Clinical Practice Guideline, during the FST, the measurement of plasma potassium concentration is needed four times a day requiring that the patients are carefully controlled in the hospital. Our findings indicate that the \(\text{FST}_\text{amb} \) could be performed with only one daily measurement of plasma potassium concentration. This is an improvement for the patients as they will be able to continue normal daily activities without the need for hospital care or sick leave.

Another concern with performing \(\text{FST}_\text{amb} \) is the risk of failing to achieve correct results. The patients are required to take a large number of tablets four times a day. Hence, it is essential to rigorously inform the patient and achieve controlled patient compliance during the procedure. In our centres, the patients received both written and oral information before starting \(\text{FST}_\text{amb} \). Only 1.9% of the patients had to repeat the test due to inappropriate intake of medicines.

TABLE 5	Follow-up outcomes of the cases of treated patients with primary aldosteronism		
	Operated PA	MRA treated PA	\(p \)-Value
Number	40	69	
\(\text{FST}_\text{amb} \)	23	13	
\(\text{PAC pmol/L} \)	202 \((93–702) \)	NA	
\(\text{PRC ng/L} \)	14 \((3–220) \)	NA	
\(\text{PRC mIU/L} \)	16 \((6–87) \)	NA	
\(\text{ARR pmol/ng} \)	19.54 \((2–48) \)	NA	
\(\text{ARR pmol/mIU} \)	9.1 \((0.4–10) \)	NA	
\(\text{Systolic blood pressure (mmHg)} \)	130 \((108–170) \)	135 \((105–210) \)	.140
\(\text{Diastolic blood pressure (mmHg)} \)	80 \((60–100) \)	80 \((50–110) \)	.095
\(\text{BP medication, } n \)	1 \((0–6) \)	2 \((0–5) \)	<.001
\(\text{Plasma potassium concentration (mmol/L)} \)	4.1 \((3.6–5.6) \)	4.0 \((3.0–4.8) \)	.083
\(\text{Patients treated with, } n \)	1	69	<.001
\(\text{Spironolactone dosage (mg)} \)	50	25 \((0–150) \)	<.001
\(\text{Eplerenone dosage (mg)} \)	0	10.81 \((0–25) \)	<.001

Abbreviations: ARR, aldosterone–renin ratio; BP, blood pressure medication; BP, blood pressure; MRA, mineralocorticoid receptor antagonist; \(n \), number; NA, not available; PAC, plasma aldosterone concentration; PRC, plasma renin concentration.
Furthermore, only a few minor adverse events were reported without causing discontinuation of the ongoing test.

The hospital environment is associated with increased stress levels and thereby with an activation of the ACTH-cortisol axis when compared with the home environment.29 This increase in ACTH might interfere with aldosterone suppression during FST resulting in false-positive results.21 Although not statistically significant, FSTamb patients exhibited a lower serum cortisol concentration compared to FSTin patients. These findings indicate that the FSTamb patient feels more comfortable, suggesting that performing FST in ambulatory settings might achieve a more reliable result compared to FSTin.

In the present study, we investigated the costs of the FST performed as an ambulatory test. We found that the time needed for health professionals to complete the FSTamb was only 2.5 h of nurse time and 1 h of physician time, respectively. This is a considerable reduction compared with the FSTin. Further, the total health care costs with the FSTamb compared to the FSTin was significantly reduced by more than 50%. We are aware that the health costs will vary depending on the hospital and the country where FST is performed. Nevertheless, we believe that our calculation gives a fair estimation of the cost reduction.

The 24-h urinary sodium concentration on Day 5 was similar in both the FSTamb and FSTin groups which suggest that both tests were equally accurate. The outcomes of the FSTamb were reliable and could confirm the diagnosis of PA. The PA diagnosis was confirmed by pathology reports after adrenalectomy in 40 cases (33%), and by the correct response to treatment with mineralocorticoid receptor antagonist in the non-operated PA group of 69 cases (66.9%). After PA treatment, the blood pressure was considerably improved in all patients.

The complexity and concerns regarding the potentially serious complications of the FST have resulted in the use of other confirmatory tests that do not require hospitalisation, such as the oral sodium loading test, the saline infusion test, and the captopril challenge test. However, several studies have reported that the sensitivity and specificity of these confirmatory tests are less compared to FST23,30 and FST is regarded as a reliable confirmatory test.22,27 Hence, by demonstrating the FSTamb as a feasible, reliable and safe test, we believe that the FST will continue to be used as a routine confirmatory test for PA in clinical practice.

There are limitations to the present study. This is a retrospective study with the inherent risk of selection and information bias. The FSTin group was 10 times smaller than the FSTamb. Moreover, the reported data were not homogeneous due to variation in the local FST protocols regarding plasma potassium controls between the four centres. The lack of homogeneous follow-up is also a limitation.

5 | CONCLUSIONS

The FSTin is considered the most reliable confirmatory test in PA but is not used frequently due to its cost and complexity. In this study, we report that the FSTamb is a safe and accurate test with a significant reduction in health costs compared to the FSTin. Hence, we believe that the FSTamb can be used as a safe confirmatory test for PA, both in clinical and research contexts. To our knowledge, this is the first study that systematically evaluates FSTamb and compares it to FSTin. Confirmation of our findings in other patient populations and other centres is needed.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID
Ana Carasel d http://orcid.org/0000-0002-5296-2346
Henrik Falhammar d http://orcid.org/0000-0002-5622-6987

REFERENCES

1. Galati SJ. Primary aldosteronism: challenges in diagnosis and management. Endocrinol Metab Clin North Am. 2015;44(2):355-369.
2. Gkaniatsa E, Ekerstad E, Gavric M, et al. Increasing incidence of primary aldosteronism in Western Sweden during 3 decades—yet an underdiagnosed disorder. J Clin Endocrinol Metab. 2021;106(9):e3603-e3610.
3. Xu Z, Yang J, Hu J, et al. Primary aldosteronism in patients in China with recently detected hypertension. J Am Coll Cardiol. 2020;75(16):1913-1922.
4. Monticone S, Burrello J, Tizzano D, et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol. 2017;69(14):1811-1820.
5. Libianto R, Russell GM, Stowasser M, et al. Detecting primary aldosteronism in Australian primary care: a prospective study. Med J Aust. 2022;216:408-412.
6. Käyser SC, Dekkers T, Groenewoud HJ, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J Clin Endocrinol Metab. 2016;101(7):2826-2835.
7. Hannemann A, Wallaschek M. Prevalence of primary aldosteronism in patient’s cohorts and in population-based studies—a review of the current literature. Horm Metab Res. 2012;44(3):157-162.
8. Fagugli RM, Taglioni C. Changes in the perceived epidemiology of primary hyperaldosteronism. Int J Hypertens. 2011;2011:162804.
9. Douma S, Petidis K, Doumas M, et al. Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet. 2008;371(9628):1921-1926.
10. Funder JW, Carey RM, Fardella C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(9):3266-3281.
11. Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf). 2007;66(5):607-618.
12. Melby JC. Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am. 1991;20(2):247-255.
13. Monticone S, D’Ascenzo F, Moretti C, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6(1):41-50.
14. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. *Lancet Diabetes Endocrinol*. 2018;6(1):51-59.
15. Funder JW. Primary aldosteronism and cardiovascular risk, before and after treatment. *Lancet Diabetes Endocrinol*. 2018;6(1):5-7.
16. Lubitz CC, Economopoulos KP, Sy S, et al. Cost-effectiveness of screening for primary aldosteronism and subtype diagnosis in the resistant hypertensive patients. *Circ Cardiovasc Qual Outcomes*. 2015;8(6):621-630.
17. Schwartz GL. Screening for adrenal-endocrine hypertension: overview of accuracy and cost-effectiveness. *Endocrinol Metab Clin North Am*. 2011;40(2):279-294.
18. Velasco A, Chung O, Raza F, et al. Cost-effectiveness of therapeutic drug monitoring in diagnosing primary aldosteronism in patients with resistant hypertension. *J Clin Hypertens (Greenwich)*. 2015;17(9):713-719.
19. Jaffe G, Gray Z, Krishnan G, et al. Screening rates for primary aldosteronism in resistant hypertension: a cohort study. *Hypertension*. 2020;75(3):650-659.
20. Ruhle BC, White MG, Alsafra S, Kaplan EL, Angelos P, Grogan RH. Keeping primary aldosteronism in mind: deficiencies in screening at-risk hypertensives. *Surgery*. 2019;165(1):221-227.
21. Funder JW, Carey RM, Mantero F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. *J Clin Endocrinol Metab*. 2016;101(5):1889-1916.
22. Stowasser M, Gordon RD. Primary aldosteronism: changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. *Physiol Rev*. 2016;96(4):1327-1384.
23. Ahmed AH, Cowley D, Wolley M, et al. Seated saline suppression testing for the diagnosis of primary aldosteronism: a preliminary study. *J Clin Endocrinol Metab*. 2014;99(8):2745-2753.
24. Liu B, Hu J, Song Y, et al. Seated saline suppression test is comparable with captopril challenge test for the diagnosis of primary aldosteronism: a prospective study. *Endocr Pract*. 2021;27(4):326-333.
25. Song Y, Yang S, He W, et al. Confirmatory tests for the diagnosis of primary aldosteronism: a prospective diagnostic accuracy study. *Hypertension*. 2018;71(1):118-124.
26. Giacchetti G, Mulatero P, Mantero F, Veglio F, Boscaro M, Fallo F. Primary aldosteronism, a major form of low renin hypertension: from screening to diagnosis. *Trends Endocrinol Metab*. 2008;19(3):104-108.
27. Williams TA, Reincke M. Management of endocrine disease: diagnosis and management of primary aldosteronism: the endocrine society guideline 2016 revisited. *Eur J Endocrinol*. 2018;179(1):R19-R29.
28. Young WF, Jr. Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. *J Intern Med*. 2019;285(2):126-148.
29. Scheer FA, Van Paassen B, Van Montfrans GA, et al. Human basal cortisol levels are increased in hospital compared to home setting. *Neurosci Lett*. 2002;333(2):79-82.
30. Wu S, Yang J, Hu J, et al. Confirmatory tests for the diagnosis of primary aldosteronism: a systematic review and meta-analysis. *Clin Endocrinol (Oxf)*. 2019;90(5):641-648.

How to cite this article: Carasel A, Calissendorff J, Avander K, Shabo I, Volpe C, Falhammar H. Ambulatory fludrocortisone suppression test in the diagnosis of primary aldosteronism: safety, accuracy and cost-effectiveness. *Clin Endocrinol (Oxf)*. 2022;97:730-739. doi:10.1111/cen.14793