Cannabis use history is associated with increased prevalence of ascites among patients with nonalcoholic fatty liver disease: A nationwide analysis

Catherine J Choi, Stanley H Weiss, Umair M Nasir, Nikolaos T Pyrsopoulos

Abstract

BACKGROUND
Recent studies have revealed the endocannabinoid system as a potential therapeutic target in the management of nonalcoholic fatty liver disease (NAFLD). Cannabis use is associated with reduced risk for NAFLD, we hypothesized that cannabis use would be associated with less liver-related clinical complications in patients with NAFLD.

AIM
To assess the effects of cannabis use on liver-related clinical outcomes in hospitalized patients with NAFLD.

METHODS
We performed a retrospective matched cohort study based on querying the 2014 National Inpatient Sample (NIS) for hospitalizations of adults with a diagnosis of NAFLD. The NIS database is publicly available and the largest all-payer inpatient database in the United States. The patients with cannabis use were selected as cases and those without cannabis were selected as controls. Case-control matching at a ratio of one case to two controls was performed based on sex, age, race, and comorbidities. The liver-related outcomes such as portal hypertension, ascites, varices, and variceal bleeding, and cirrhosis were compared between the groups.
Cannabis and nonalcoholic fatty liver disease

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is now one of the most common liver diseases worldwide, and its global burden is growing\(^1\). Weight loss remains the primary treatment for NAFLD, and other treatment modalities have been actively studied, including the use of cannabinoids. Emerging evidence suggests that cannabis may play an important role in the management of various chronic liver diseases\(^2\). A retrospective population study by Adejumo et al\(^3\) has shown a dose-dependent reduction in the prevalence of NAFLD with cannabis use, and cannabis has been suggested to suppress or even reverse the development of NAFLD. The prevalence of NAFLD parallels that of the obesity pandemic, and NAFLD is associated with increased prevalence of ascites among patients with nonalcoholic fatty liver disease: A nationwide analysis. World J Hepatol 2020; 12(11): 993-1003

CONCLUSION
Cannabis was associated with higher rates of ascites, but there was no statistical difference in the prevalence of portal hypertension, varices and variceal bleeding, and cirrhosis.

Core Tip: Recent studies showed the lower prevalence of nonalcoholic fatty liver disease (NAFLD) among cannabis users compared to non-cannabis users, therefore suggestive of cannabis’s modulatory role in the development of NAFLD. However, our case-control matching analysis, based on sex, age, race, and comorbidity, showed cannabis use as independently associated with higher rates of ascites in patients with NAFLD. A conceivable explanation for the finding is the dominant effect of cannabinoid receptor type 1 through its hepatic profibrotic effects in patients with NAFLD.

RESULTS
A total of 49911 weighed hospitalizations with a diagnosis of NAFLD were identified. Of these, 3820 cases were selected as the cannabis group, and 7625 non-cannabis cases were matched as controls. Patients with cannabis use had a higher prevalence of ascites (4.5% vs 3.6%), with and without cannabis use, \(P = 0.03\). The prevalence of portal hypertension (2.1% vs 2.2%), varices and variceal bleeding (1.3% vs 1.7%), and cirrhosis (3.7% vs 3.6%) was not different between the groups, with and without cannabis use, all \(P > 0.05\). Hyperlipidemia, race/ethnicity other than White, Black, Asian, Pacific Islander or Native American, and higher comorbidity score were independent risk factors for ascites in the cannabis group. Among non-cannabis users, obesity and hyperlipidemia were independent protective factors against ascites while older age, Native American and higher comorbidity index were independent risk factors for ascites.

Key Words: Nonalcoholic fatty liver disease; Fatty liver; Cannabis; Marijuana use; Liver diseases; Hospitalization

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
NAFLD, independent of metabolic risks. Yet, there has been conflicting evidence whether or not cannabis induces the progression of chronic liver diseases, but a systemic review by Farooqui \textit{et al} \cite{7} showed that when confirmed by liver biopsy, there was no association between cannabis use and prevalence of hepatic fibrosis. This lack of association is contrary to initial cross-sectional studies by Hézode \textit{et al} \cite{8} and Ishida \textit{et al} \cite{9} who suggested increased fibrosis in patients who use marijuana.

Here, we aimed to measure clinical outcomes of cannabis use at the national level among hospitalized patients with NAFLD. Given the previously demonstrated correlation between cannabis use and reduced prevalence of NAFLD, we hypothesized that cannabis would be associated with fewer liver-related complications in patients than in individuals who did not use cannabis. This is the first database study to investigate cannabinoids’ effects on liver-related outcomes in hospitalized patients with NAFLD. With our study, we hope to alert clinicians of the possible relevance of ascertainment of cannabis use, which in turn might alter future routine assessments to further probe about cannabis use, especially in light of trends showing recent increases in use in the United States.

MATERIALS AND METHODS

Data source and study population

This study is a retrospective analysis of the 2014 Healthcare Cost and Utilization Project-National Inpatient Sample (HCUP-NIS). The HCUP-NIS is the largest all-payer inpatient database in the United States, comprising more than 40 states with more than 7 million annual hospital discharges\cite{3}. Results were extracted from the NIS database by identifying hospitalized patients older than 18 years with a diagnosis of NAFLD, by using the corresponding International Classification of Diseases codes: 571.8 (other chronic nonalcoholic liver disease). We excluded common secondary causes of intrahepatic fat accumulation by excluding alcoholic liver disease, hemochromatosis, viral hepatitis B and C, primary biliary cirrhosis, autoimmune hepatitis, and toxic liver disease. The HCUP-NIS is publicly accessible, de-identified database, and it is considered a limited database. Under Health Insurance Portability and Accountability Act, a limited database does not require a review by the institutional review board (IRB). Therefore, Rutgers IRB approval was deemed not required in our study.

Model design

Patients with NAFLD with cannabis use were selected as cases, and those without cannabis use were used to produce the control group through case-control matching at a ratio of one case to two controls, on the basis of sex, age, race, and comorbidities. Sex was binary (women or men), race was categorical (White, Black, Hispanic, Asian or Pacific Islander, Native American, and other), and obesity was binary (no obesity or obesity). The age was converted into eight categorical variables for different age groups: 18-27, 28-37, 38-47, 48-57, 58-67, 68-77, 78-87, and 88 or older. The elixhauser comorbidity index (ECI) was used to assess comorbidities in patients. ECI is a method of categorizing comorbidities on the basis of the International Classification of Diseases, which calculates a weighted sum of each of the presence of 29 binary comorbidities\cite{10}. ECI uses 29 of the Agency for Healthcare Research and Quality comorbidity indicators to predict hospital use and in-hospital mortality\cite{11,12}. In our study, the ECI score ranged from -21 to 44, with a mean score of 3. ECI was converted into four groups: ECI ≤ 0, 1-5, 6-10, and ≥ 11.

Outcomes and predictive variables

The primary outcomes of the study were inpatient mortality, advanced liver disease-related complications including portal hypertension, ascites, varices and variceal bleeding, cirrhosis, and spontaneous bacterial peritonitis (SBP), as presented in Table 1. SBP and inpatient mortality were not included in our final analysis as it was not possible to conduct meaningful analysis due to their small sample sizes. For each hospitalization, baseline demographics and hospital characteristics were obtained. To address potential confounding factors, we added diabetes, hyperlipidemia, and obesity in Table 1 to compare their baseline prevalence between the case control groups.

Statistical analyses

A biomedical statistical expert (SHW) reviewed statistical analysis. All data analyses
	Cannabis users, n = 3820	Non-cannabis users, n = 7625	P value
Sex			
Female	36.0%	36.1%	NS
Male	64.0%	63.9%	
Patient age, mean (SD)	41.4 (12.9)	42.0 (12.9)	0.03
Patient age, in 10 years age groups			
18-27	16.8%	16.6%	
28-37	25.3%	25.3%	
38-47	20.4%	20.5%	
48-57	25.8%	25.8%	
58-67	11.0%	11.0%	
68-77	0.8%	0.8%	
Race/ethnicity			NS
White	60.6%	60.7%	
Black	21.6%	21.6%	
Hispanic	13.9%	13.9%	
Asian or pacific islander	0.4%	0.4%	
Native American	0.9%	0.9%	
Others	2.6%	2.4%	
ECI, mean (SD)	2.1 (9.4)	3.6 (8.1)	< 0.01
ECI, by category			NS
≤ 0	47.6%	47.7%	
1-5	15.8%	15.9%	
6-10	19.6%	19.5%	
11 or higher	16.9%	16.9%	
Insurance			< 0.05
Medicare	16.6%	17.2%	
Medicaid	42.8%	30.5%	
Private	21.9%	42.6%	
Self-Pay	13.4%	6.0%	
Others	5.4%	3.7%	
Cannabis abuse			
Non-dependent use	94.1%	0 (by definition)	
Dependent use	5.9%	0 (by definition)	
Length of stay (days)	5.1	4.9	0.18
Total hospitalization charges	$42503	$43183	NS
Comorbidities			
Diabetes	29.2%	34.8%	< 0.05
Obesity	29.5%	49.4%	< 0.05
Hyperlipidemia	24.2%	32.4%	< 0.05
Clinical outcomes			
Portal hypertension 80 (2.1%) 165 (2.2%) NS\(^5\)
Ascites 170 (4.5%) 275 (3.6%) 0.03\(^5\)
Varices and variceal bleeding 50 (1.3%) 130 (1.7%) 0.11\(^4\)
Cirrhosis 140 (3.7%) 275 (3.6%) NS\(^5\)

\(^1\)Chi-square, 2-tailed.
\(^2\)Student \(t\)-test, 2-tailed.
\(^3\)Patient ages ranged from 18 to 73, there was no one over 78.
\(^4\)Chi-square, 2-tailed, for 2 by \(n\) table: Statistical significance demonstrates that the two groups differ.
\(^5\)Condition absent \(vs\) present in the 2 groups, chi-square, 2-tailed. NS: Not statistically significant; ECI: Elixhauser comorbidity index.

were conducted using SPSS, version 26 (IBM Corp, Armonk, NY, United States). NIS is based on a complex sampling design that includes stratification, clustering, and weighting. Weighting of patient-level observations was implemented to obtain estimates for the entire population in the United States of hospitalized patients with NAFLD. All statistical analyses were two-tailed, with \(P < 0.05\) considered statistically significant. Chi-squared tests were performed to compare categorical data, and Student \(t\)-tests were performed for continuous data. Univariate linear (continuous outcomes) or logistic (dichotomous outcomes) regression analysis were used to calculate unadjusted odds ratios for the primary outcomes. Subsequently, multivariate regression analysis was used to adjust the results for potential confounders. The final multivariate logistic regression model was built by including those factors associated with the outcome in univariate analysis with \(P < 0.20\).

RESULTS

Patient characteristics and demographics
A total of 3820 patients with NAFLD who had a history of cannabis use were identified in our study. 7625 patients with NAFLD and without cannabis use were matched and placed in the control group. Table 1 summarizes the patients’ baseline characteristics. There was no statistical difference of age, sex, race, ethnicity, and ECI between the groups (\(P > 0.05\)); therefore, these variables were successfully matched. Yet, patients who used cannabis were slightly younger (mean age: 41.4 vs 42.0, \(P = 0.03\)), and had fewer comorbidities (ECI mean: 2.1 vs 3.6, \(P < 0.01\)), with and without cannabis use. However, the differences in the mean age and mean ECI were not clinically different between the groups.

There were statistical differences in types of insurance in the case group compared with the control group. The proportion of Medicare holders was lower in the cannabis group (16.6\% vs 17.2\%), and a proportion of patients with private insurance was also less in cannabis group (21.9\% vs 42.6\%), with and without cannabis use; all \(P < 0.05\). Detailed patient demographics and hospital characteristics are presented in Table 1.

There were fewer patients with metabolic derangement such as diabetes (29.2\% vs 34.8\%), obesity (29.5\% vs 49.4\%), and hyperlipidemia (24.2\% vs 32.4\%) in the cannabis group compared to the non-cannabis group. Of note, 94.1\% of the cannabis users were coded under non-dependent use, and due to such a high proportion of non-dependent cannabis use, dose-dependent effects of cannabis on different liver-related complications were not able to be explored.

Liver disease-related complications
The cannabis group had a higher prevalence of ascites [4.5\% vs 3.6\%, OR 1.25; 95\% confidence interval (CI): 1.02-1.51]. There was no statistical difference in the prevalence of portal hypertension [2.1\% vs 2.2\%, not statistically significant (NS)], varices and variceal bleeding (1.3\% vs 1.7\%, \(P = 0.11\)), and cirrhosis (3.7\% vs 3.6\%, NS), with and without cannabis use. There was a small sample size, less than 10 in one of the groups for spontaneous bacterial peritonitis and inpatient mortality, and therefore not included in the analysis. Detailed chronic liver disease-related complications are presented in Table 1.

Healthcare resource utilization associated with index admission
The mean length of stay was longer for those who used cannabis compared to those
who did not use cannabis (5.1 d vs 4.9 d), but this difference was not statistically different, \(P = 0.18 \). Total hospitalization charges were lower for patients who used cannabis ($42503) compared with those who did not use cannabis ($43183), but this difference was also not statistically different either.

Independent predictors of ascites

The variables found to be independent predictors of ascites among cannabis users were hyperlipidemia (aOR 1.53; 95%CI: 1.08-2.17), racial group other than White, Black, Hispanic, Asian, Pacific Islanders or Native American (aOR 2.57; 95%CI: 1.24-5.31), and higher comorbidity index (aOR 1.08; 95%CI: 1.07-1.10), all \(P < 0.05 \). Among patients who did not use cannabis, older age (aOR 1.02; 95%CI: 1.01-1.03), Native Americans (aOR 2.60; 95%CI: 1.03-6.61), and higher comorbidity index (aOR 1.05; 95%CI: 1.04-1.06) were independent predictor of ascites. However, in the same group, obesity (aOR 0.61; 95%CI: 0.46-0.81) and hyperlipidemia (aOR 0.59; 95%CI: 0.44-0.80) were independent protective factors against ascites, all \(P < 0.05 \). The univariate and multivariate logistic regression analysis for ascites is further delineated in Table 2.

DISCUSSION

Cannabis is produced from *Cannabis sativa*, known as the marijuana plant, which contains more than 60 active chemical compounds called cannabinoids[1-3]. The primary effects of cannabinoids come from activation of cannabinoid receptors: The two types of G-protein coupled cannabinoid receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2)[4,5]. CB1 is primarily expressed in the brain while CB2 in immune tissue, and under normal physiologic conditions both CB1 and CB2 are very weakly expressed by the liver[6]. However, an upregulation of these receptors are markedly induced in the human liver with cirrhosis[7,8]. The levels of CB1 are six times greater in patients with chronic hepatitis C compared to control while twice greater in patients with cirrhosis compared to those at a lower fibrosis state[9,10]. CB1 and CB2 exert opposite effects on the liver; CB1 has profibrogenic properties while activation of CB2 in mice has been associated with antifibrotic and anti-inflammatory properties[7].

The most active and best-studied cannabinoids are tetrahydrocannabinol (THC) and cannabidiol (CBD)[11,12]. Both THC and CBD act on CB-1 and CB2, but they have different affinities for the receptors. CB1 activation has been shown to have proinflammatory effects and to be involved in hepatic fibrosis and steatosis[13]. For instance, in CB1 null mice, CB1 blockers increase fatty acid oxidation and decrease hepatic inflammation and lipogenesis[14]. In contrast, CB2 exerts anti-inflammatory effects. CB2 activation has also been shown to suppress obesity and steatohepatitis and to protect the liver from ischemia-reperfusion injury[15]. THC preferentially activates the CB1 pathway, whereas CBD triggers the dominant activation of CB2[16]. The clinical impact of receptor expression and the ratio of activated CB1 and CB2 are unclear among patients with NAFLD. Given the previous evidence of opposite hepatic effects of CB1 and CB2, it is conceivable to suspect the overall cannabinoid effects from both receptors. Ascites is the only liver-related complication that was significantly different between cannabis and non-cannabis groups out of the complications tested in our study, (OR 1.25; 95%CI: 1.02-1.51). Therefore, a possible explanation for higher prevalence of ascites is the dominant hepatic effects of activated CB1 compared to CB2.

Because marijuana use remains illegal in many states in the United States, most marijuana consumed is often not produced under a controlled setting. Therefore, marijuana varies in its contents and has a risk of containing other chemical contaminants, and it also varies in the amounts of active cannabinoids[17]. Different modes of administration along with dynamic pharmacokinetic processes of cannabinoids lead to different bioavailabilities of active cannabinoids ingested. The most common administration route is smoking through cigarettes, pipes, or water pipes[18]. Smoking is the principal route of cannabis administration as it provides a rapid and efficient delivery to the brain, and the ability to titrate dose to the desired effect[19]. The different inhalation methods lead to inconsistent delivery of cannabinoids in the body, thus making control of the dose of active cannabinoids difficult[20]. Oral administration of cannabis involves a slower absorption, and therefore it has a slower, more-delayed peak of THC, one of the primary psychoactive components of cannabis[21]. Wall et al[22] reported oral THC bioavailability as 10%-20%. Therefore, many cannabis users prefer smoking due to a quick onset of effects, but smoking is generally not recommended for therapeutic use[23]. Unfortunately, the mode of
Table 2 Independent predictors of ascites among patients with nonalcoholic fatty liver disease, stratified by cannabis use history

	Cannabis users (n = 3820)	Non-cannabis users (n = 7625)						
	Univariate logistic regression	Multivariate logistic regression	Univariate logistic regression	Multivariate logistic regression				
Ascites	OR (95%CI)	P value	aOR (95%CI)	P value	OR (95%CI)	P value	aOR (95%CI)	P value
Diabetes	1.17 (0.84-1.62)	NS			1.16 (0.91-1.49)	0.23		
Obesity	1.00 (0.71-1.40)	NS			0.41 (0.31-0.53)	< 0.01	0.61 (0.46-0.81)	< 0.01
Hyperlipidemia	1.32 (0.94-1.85)	0.11	1.53 (1.08-2.17)	0.02	0.57 (0.43-0.77)	< 0.01	0.59 (0.44-0.80)	< 0.01
Age (continuous)	0.99 (0.98-1.01)	0.22			1.02 (0.91-1.03)	< 0.01	1.02 (1.01-1.03)	< 0.01
Race/ethnicity (categoric)	Reference	White	Reference	White	1.13 (0.78-1.64)	NS	0.80 (0.58-1.10)	0.16
Black	0.87 (0.53-1.42)	NS			1.00 (0.70-1.42)	NS		
Hispanic	1.00 (0.3-1.3)	NS			1.00 (0.3-1.3)	NS		
Asian or pacific islander	1	Asian or pacific islander	1					
Native American	2.46 (1.24-4.87)	0.01	2.57 (1.24-5.31)	0.01	1.96 (0.78-4.92)	0.15	2.60 (1.03-6.61)	0.04
Others	1.08 (1.07-1.1)	< 0.01	1.08 (1.07-1.1)	< 0.01	1.06 (1.05-1.07)	< 0.01	1.05 (1.04-1.06)	< 0.01
Comorbidity (continuous)	0.80 (0.58-1.09)	0.15			0.99 (0.77-1.27)	NS		

1Univariate analysis with screening P < 0.02 was used to determine variables to include in the final multivariate analysis. Hyperlipidemia, Race/ethnicity, comorbidity index, and sex included in the regression.

2Univariate analysis with screening P < 0.02 was used again, and obesity, hyperlipidemia, age, race/ethnicity, and comorbidity index were included in the multivariate regression. NS: Not statistically significant.

Cannabis use is not systematically recorded in the NIS, and our retrospective study would be unlikely to reliably capture mode data to compare different modes in the cannabis group. A large prospective study in which mode and dose of cannabis would be ascertained and monitored would be of interest to study the effects of dose and mode on the clinical outcomes.

The patients who used cannabis had higher prevalence of ascites compared to non-cannabis group (OR 1.25; 95%CI: 1.02-1.51). Possible explanations for this finding can be related to 1) hypoalbuminemia due to the toxicity of cannabis use or 2) lower body mass, which is a potential indicator for inadequate nutritional status. Hypoalbuminemia was described as a spectrum of toxic reactions from intravenous cannabis use along with fulminant gastroenteritis, toxic hepatitis, acute renal failure, electrolyte disturbances, leukocytosis, anemia, and relative thrombocytopenia from a study of 4 cases of intravenous cannabis use by Payne et al in 1975. Serum albumin is the most abundant plasma protein and therefore binding to albumin is a key determinant of the drug efficacy, distribution and possible toxicity of cannabinoids. The increase in plasma albumin may reduce the unbound fraction of cannabinoids, which further reduces the efficacy of the drug. Along the same reasoning, it is conceivable to hypothesize more cannabinoid toxicity in patients with hypoalbuminemia due to more unbound cannabinoids. A study by Blüml et al showed an inverse relationship between body mass index (BMI) and illicit drug use including cannabis use among young males, and therefore along with the toxicity of high-dose cannabis use, hypoalbuminemia from poor nutritional status may explain higher rate of ascites in cannabis users due to the low oncotic pressure from hypoalbuminemia. The aforementioned explanation for hypoalbuminemia can partly explain the isolated finding of higher rates of ascites in cannabis users without higher rates of portal hypertension, varices and variceal bleeding and cirrhosis. Another explanation of such finding can be related to a lack of long-term follow-up. As the NIS is limited to hospitalized data, a spectrum of clinical presentations of decompensated
cirrhosis such as varices and variceal bleeding and actual clinical diagnosis of cirrhosis outside of hospital may not be captured in our study design. Further studies with a long-term follow-up investigating cannabis use in patients with NAFLD are warranted to further evaluate the rates of clinical manifestations of decompensated cirrhosis.

The patients with cannabis group had a higher rate of ascites compared to the non-cannabis group despite higher baseline rates of metabolic risks in non-cannabis group such as diabetes, hyperlipidemia, and obesity. This suggests that cannabis may not be a magic bullet for the management of NAFLD. In cannabis group, higher comorbidity index was an independent risk factor for ascites, and this is expected as older patients with more comorbidity are associated with worse prognosis in patients with chronic liver diseases. In non-cannabis group, age and higher comorbidity were again independent risk factors for ascites. However, strikingly obesity (aOR 0.61; 95%CI: 0.46-0.81) and hyperlipidemia (aOR 0.59; 95%CI: 0.44-0.88) were independent protective factors against ascites in patients with NAFLD who did not use cannabis. A possible explanation for this finding can be related to nutritional status in patients with ascites. Metabolic derangements such as obesity and insulin resistance predispose to NAFLD[6,7], and therefore they are risk factors for development of NAFLD. However, at terminal stage of liver disease with evidence of decomposition such as ascites, the increased BMI and appropriate albumin levels can be protective against developing ascites. Previous studies showed that muscle wasting was worse in obese patients[34] with cirrhosis, and these patients are at high risk for fat-and water-soluble vitamin depletions[35]. Therefore, our finding of the association between obesity and reduced prevalence of ascites is surprising. However, a study by Li et al[36] showed that patients with higher BMI had lower rates of liver-related mortality compared to lower BMI among patients with cirrhosis and hepatocellular carcinoma. We were not able to measure nutritional status in our study; therefore although obesity often co-exists with malnutrition, we can speculate that our study population with an obesity diagnosis may have better nutrition than those without obesity.

Patients with cirrhosis are at higher risk for poor tolerance of fasting, and therefore aggressive energy restriction is avoided in these patients[37]. Due to the risk of sarcopenia with weight loss, patients who are advised to lose weight should be monitored for changes in body muscle mass and muscle strength[38]. Therefore, increased BMI in the setting of end-stage liver disease may suggest better nutritional status compared to non-obese patients. In the meantime, sarcopenic obesity is associated with a higher rate of mortality in patients with cirrhosis, and therefore further distinction between sarco obesity and obesity is warranted. The impairment of liver lipogenesis is prominent in decompensated NAFLD, and subsequently low levels of cholesterol in advanced NAFLD is not surprising. Therefore, in patients with decompensated NAFLD as seen with ascites, hyperlipidemia and obesity can be associated with less prevalence of ascites due to a better nutritional status in this vulnerable population with advanced liver disease.

Among cannabis users, hyperlipidemia was an independent risk factor for ascites (aOR 1.53; 95%CI: 1.08-2.17). Previous few studies showed significantly diminished level of serum high-density lipoprotein, low-density lipoprotein, and total cholesterol in liver cirrhosis[39,40]. Similarly, some studies showed a decrease in triglyceride in cirrhosis[41]. Liver biosynthesis is reduced with the progression of cirrhosis[42]. Although there were mixed findings of the relationship between cholesterol values and cirrhosis, our findings are compatible with the abovementioned relationship.

This is the national retrospective study to evaluate the clinical effects of cannabis among hospitalized patients with NAFLD at the national level. Strengths of our manuscript are a large sample size as well as the use of case-control matching analysis, where the groups are matched on age, sex, race, comorbidity. To address potential confounding factors, we also examined diabetes, hyperlipidemia, obesity as co-variates in multi-variate analysis.

Despite these strengths, our study has some limitations that are mainly associated with the nature of large population database studies, in which patients are typically not routinely tested for cannabis use upon admission, and the diagnosis of cannabis use is often made from patient reports. Therefore, unless patients are forthcoming with their caregivers regarding cannabis use, cannabis use may be missed or under-coded. The NIS also relies on accurate billing by clinicians to accurately record diseases and complications, which may lead to an underestimate of diagnosis. In addition, monitoring long-term clinical outcomes, such as liver-related complications not recorded in NIS, remains challenging.

Another limitation of this study is the inability to characterize different concentrations or modes of cannabis administration. 94.1% of the cannabis users were coded under non-dependent use, and due to the limited sample size, we could not
provide dose-dependent data. A possible explanation for the low baseline percentage of dependent cannabis use is a lack of available data, limited current routine clinician assessment, or truly low number of patients who abuse cannabis. We were unable to characterize the concentrations and effects of each cannabinoid, as well as the dose-dependent effects of these cannabinoids. Long-term randomized controlled studies with different levels of cannabinoid types and amounts are warranted to better understand each cannabinoid’s effects on the cannabinoid system in the body.

CONCLUSION

In conclusion, this was the first database study investigating progressive liver disease-related clinical outcomes in hospitalized patients with NAFLD. Cannabis was associated with higher rates of ascites, but there was no statistical difference in the prevalence of portal hypertension, varices and variceal bleeding, and cirrhosis. In the cannabis group, hyperlipidemia was an independent risk factor for ascites but in non-cannabis group hyperlipidemia and obesity were independent protective factors against ascites. A large prospective study in which mode and dose of cannabis would be ascertained and monitored would be of interest.

ARTICLE HIGHLIGHTS

Research background
The impact of cannabis on the progression of chronic liver diseases has been unclear in prior studies. Systemic reviews showed no association between the increased prevalence of hepatic fibrosis and cannabis use, but cannabis use was still associated with a reduced prevalence of nonalcoholic fatty liver disease.

Research motivation
Because of the modulatory effects of cannabis on risk factors for the development of nonalcoholic fatty liver disease (NAFLD), we wanted to measure the correlation between cannabis use and clinical outcomes related to chronic liver diseases. Without clear evidence between the cannabis use and progression of established NAFLD, it is critical for clinicians to educate the patients on the use of cannabis due to limited evidence on cannabinoid effects. Therefore, our study is motivated to alert clinicians of the possible relevance of ascertainment of cannabis use, which in turn might alter future routine assessments to further probe about cannabis use, especially in light of trends showing recent increases in use in the United States.

Research objectives
Our study aimed to assess the association between cannabis use and clinical liver-related outcomes among hospitalized patients with NAFLD.

Research methods
In our study, we performed a retrospective matched cohort study for hospitalized adult patients with NAFLD. Case-control matching at a ratio of one case to two controls was performed based on sex, age, race, and comorbidities to adjust for confounders. The liver-related complications including portal hypertension, ascites, varices and variceal bleeding, and cirrhosis were measured and compared between two groups.

Research results
The cannabis group had a higher prevalence of ascites compared to patients with NAFLD who did not use cannabis. Obesity and hyperlipidemia were independent protective effects against ascites in the non-cannabis group.

Research conclusions
Cannabis use was associated with higher rates of ascites despite higher rates of metabolic risks in the non-cannabis group such as diabetes, hyperlipidemia, and obesity. This suggests that cannabis may not be a magic bullet for the management of NAFLD, and therefore judicious use of cannabis in advanced NAFLD is warranted.
Research perspectives

A large prospective study in which mode and dose of cannabis use would be warranted to further explore the effects of administration mode and dose of cannabis on the liver-related clinical complications.

REFERENCES

1. Alswat KA, Fallahat HI, Al-Judaibi B, Elaissy HA, Al-Hamoudi WK, Qutab AN, Alturaify N, Al-Osaimi A. Position statement on the diagnosis and management of non-alcoholic fatty liver disease. Saudi Med J 2019; 40: 531-540 [PMID: 31219486 DOI: 10.15537/smj.2019.6.23980]

2. Patensen E, Stickel F. Cannabinoids in liver diseases. Clin Liver Dis (Hoboken) 2016; 7: 21-25 [PMID: 31041021 DOI: 10.1016/cld.527]

3. Adejumo AC, Alliu S, Ajayi TO, Adejumo KL, Adeghala OM, Onyeakusi NE, Akinjero AM, Durojaiye M, Bukon TN. Cannabis use is associated with reduced prevalence of non-alcoholic fatty liver disease: A cross-sectional study. PLoS One 2017; 12: e0176416 [PMID: 28441459 DOI: 10.1371/journal.pone.0176416]

4. Carr RM, Oranu A, Khungar V. Nonalcoholic Fatty Liver Disease: Pathophysiology and Management. Gastroenterol Clin North Am 2016; 45: 639-652 [PMID: 27837778 DOI: 10.1016/j.gcc.2016.07.003]

5. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and paracrine Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9: 25-53 [PMID: 22974359 DOI: 10.2174/157399131084143225]

6. Kim D, Kim W, Kwak MS, Chung GE, Yim JY, Ahmed A. Inverse association of marijuana use with nonalcoholic fatty liver disease among adults in the United States. PLoS One 2017; 12: e0186702 [PMID: 29049354 DOI: 10.1371/journal.pone.0186702]

7. Farooqui MT, Khan MA, Cholankeril G, Khan Z, Mohammed Abdul MK, Li AA, Shah N, Wu L, Haq K, Solanki S, Kim D, Ahmed A. Marijuana is not associated with progression of hepatic fibrosis in liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2019; 31: 149-156 [PMID: 30234644 DOI: 10.1097/EJG.0000000000001263]

8. Hézode C, Roudot-Thoraval F, Nguyen S, Grenard P, Zafrani ES, Pawlotsky JM, Dhumeaux D, Lotersztajn S, Mallat A. Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology 2005; 42: 63-71 [PMID: 15892090 DOI: 10.1002/hep.20733]

9. Ishida JH, Peters MG, Jin C, Louie K, Tan V, Bacchetti P, Terrault NA. Influence of cannabis use on severity of hepatitis C disease. Clin Gastroenterol Hepatol 2008; 6: 69-75 [PMID: 18166478 DOI: 10.1016/j.cgh.2007.10.021]

10. Healthcare Cost and Utilization Project (HCUP). HCUP Elixhauser Comorbidity Software, Version 3.7 [Internet]. Agency Healthc. Res. Qual. 2017; Rockville, MD. 2017. Available from: http://www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp

11. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care 1998; 36: 8-27 [PMID: 9431328 DOI: 10.1097/00005650-199801000-00004]

12. Rotundo L, Afridi F, Feurdean M, Ahlawat S. Effect of hospital teaching status on endoscopic retrograde cholangiopancreatography mortality and complications in the USA. Surg Endosc 2020;: [PMID: 3203551 DOI: 10.1007/s00464-020-07403-z]

13. Quezada SM, Cross RK. Cannabis and Turmeric as Complementary Treatments for IBD and Other Digestive Diseases. Curr Gastroenterol Rep 2019; 21: 2 [PMID: 30635796 DOI: 10.1007/s11894-019-00670-0]

14. Esfandyari T, Camilleri M, Ferber I, Burton D, Baxter K, Zimmeister AR. Effect of a cannabinoid agonist on gastrointestinal transit and postprandial satiation in healthy human subjects: a randomized, placebo-controlled study. Neurogastroenterol Motil 2006; 18: 831-838 [PMID: 16918762 DOI: 10.1111/j.1365-2982.2006.00834.x]

15. Baldassarre M, Giannone FA, Napoli L, Tovoli A, Ricci CS, Tufoni M, Caraceni P. The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives. Liver Int 2017; 33: 1298-1308 [PMID: 23899208 DOI: 10.1111/liv.12263]

16. Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M, Zimmer A, Mallat A, Lotersztajn S. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 2005; 128: 742-755 [PMID: 15765409 DOI: 10.1053/j.gastro.2004.12.050]

17. Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. Hepatic fibrosis: molecular mechanisms and drug targets. Expert Rev Pharmacol Toxicol 2005; 4: 605-628 [PMID: 15471534 DOI: 10.1515/erpt.2005.4.5.605]

18. Xu X, Liu Y, Huang S, Liu G, Xie C, Zhou J, Fan W, Li Q, Wang Q, Zhong D, Xiao X. Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma. Cancer Genet Cytogenet 2006; 171: 31-38 [PMID: 17074588 DOI: 10.1016/j.cancergencyto.2006.09.014]

19. van der Poorten D, Shahidi M, Tay E, Seshu J, Tran K, McLeod D, Milliken JS, Ho V, Hebbard LW, Douglas MW, George J. Hepatitis C virus induces the cannabinoid receptor 1. PLoS One 2010; 5 [PMID: 20862263 DOI: 10.1371/journal.pone.0012841]

20. Toyoda M, Kitaoka A, Machida K, Nishinakagawa T, Yada R, Kohjima M, Kato M, Kotok K, Sakamoto N, Shiota G, Nakamura M, Nakashima M, Enjoji M. Association between lipid accumulation and the cannabinoid system in Huh7 cells expressing HCV genes. Int J Mol Med 2011; 27: 619-624 [PMID: 21331443 DOI: 10.3892/ijmm.2011.622]

21. Trebicka J, Racz I, Siegmund SV, Casa E, Granzow M, Schierwagen R, Klein S, Wojtalla A, Hennenberg M, Huß S, Fischer HP, Heller J, Zimmer A, Sauerbruch T. Role of cannabinoid receptors in alcoholic hepatic injury: steatosis and fibrogenesis are increased in CB2 receptor-deficient mice and decreased in CB1 receptor knockout mice. Liver Int 2011; 31: 860-870 [PMID: 21645218 DOI: 10.1111/j.1478-3231.2011.02496.x]
Choi CJ et al. Cannabis and nonalcoholic fatty liver disease

22 Kirkham TC, Tucci SA. Endocannabinoids in appetite control and the treatment of obesity. CNS Neurol Drug Targets 2006; 5: 272-292 [PMID: 16787229 DOI: 10.2174/187152706777452272]

23 Urits I, Borchard M, Hasegawa M, Kochanski J, Orhuru V, Viswanath O. An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain Ther 2019; 8: 41-51 [PMID: 30721403 DOI: 10.1007/s40222-019-0114-4]

24 Goyal H, Singla U, Gupta U, May E. Role of cannabis in digestive disorders. Eur J Gastroenterol Hepatol 2017; 29: 135-143 [PMID: 27792038 DOI: 10.1097/EJG.0000000000000779]

25 Huestis MA. Human cannabinoid pharmacokinetics. CNS Neurol Disord Drug Targets 2006; 5: 272-292 [PMID: 16787229 DOI: 10.2174/187152706777452272]

26 Wall ME, Sadler BM, Brine D, Taylor H, Perez-Reyes M. Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin Pharmacol Ther 1983; 34: 352-363 [PMID: 6309462 DOI: 10.1038/clpt.1983.179]

27 Payne RJ, Brand SN. The toxicity of intravenously used marihuana. JAMA 1975; 233: 351-354 [PMID: 1173650 DOI: 10.1001/jama.233.4.351]

28 Leboffe P, di Masi A, Trezza V, Politicelli F, Ascenzi P. Human serum albumin: A modulator of cannabinoid drugs. IUBMB Life 2017; 69: 834-840 [PMID: 28976704 DOI: 10.1002/iub.1682]

29 Blüm V, Kapusta N, Vyssočí B, Kogoj D, Walter H, Lesch OM. Relationship between substance use and body mass index in young males. Am J Addict 2012; 21: 72-77 [PMID: 22211349 DOI: 10.1111/j.1521-0391.2011.00192.x]

30 Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism 2016; 65: 1109-1121 [PMID: 27237577 DOI: 10.1016/j.metabol.2016.05.003]

31 Vidot H, Kline K, Cheng R, Finegan L, Lin A, Kemple E, Strasser SI, Bowen DG, McCaughan GW, Carey S, Allman-Farinelli M, Shackel NA. The Relationship of Obesity, Nutritional Status and Muscle Wasting in Patients Assessed for Liver Transplantation. Nutrients 2019; 11 [PMID: 31487854 DOI: 10.3390/nu11092097]

32 Schiavo L, Busetto L, Cesaretti M, Zelber-Sagi S, Deutsch L, Iannelli A. Nutritional issues in patients with obesity and cirrhosis. World J Gastroenterol 2018; 24: 3330-3346 [PMID: 30122874 DOI: 10.3748/wjg.v24.i30.3330]

33 Li Q, Xing H, Liu D, Li H. Negative impact of low body mass index on liver cirrhosis patients with hepatocellular carcinoma. World J Surg Oncol 2015; 13: 294 [PMID: 26446677 DOI: 10.1186/s12957-015-0713-4]

34 Eslamparast T, Montano-Loza AJ, Raman M, Tandon P. Sarcopenic obesity in cirrhosis-The confluence of 2 prognostic titans. Liver Int 2018; 38: 1706-1717 [PMID: 29738109 DOI: 10.1111/liv.13876]

35 Cicognani C, Malavolti M, Morselli-Labate AM, Zamboni L, Sama C, Barbara L. Serum lipid and lipoprotein patterns in patients with liver cirrhosis and chronic active hepatitis. Arch Intern Med 1997; 157: 792-796 [PMID: 9125012 DOI: 10.1001/archinte.1997.00440280120012]

36 Ghadir MR, Rashin AA, Havaspour A, Noori-anpour M, Habibnejad AA. The relationship between lipid profile and severity of liver damage in cirrhotic patients. Hepat Mon 2010; 10: 285-288 [PMID: 22312394]

37 Phukan JP, Sinha A, Deka JP. Serum lipid profile in alcoholic cirrhosis: A study in a teaching hospital of north-eastern India. Niger Med J 2013; 54: 5-9 [PMID: 23661892 DOI: 10.4103/0300-1652.108886]
