Cographs and 1-Sums

Jagdeep Singh

Received: 7 November 2022 / Revised: 25 August 2023 / Accepted: 8 November 2023
© The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023

Abstract

A graph that can be generated from K_1 using joins and 0-sums is called a cograph. We define a sesquicograph to be a graph that can be generated from K_1 using joins, 0-sums, and 1-sums. We show that, like cographs, sesquicographs are closed under induced minors. Cographs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. We obtain an analogue of this result for sesquicographs, that is, we find those non-sesquicographs for which every proper induced subgraph is a sesquicograph.

Keywords Cographs · Join · 0-sum · 1-sum · Sesquicographs

Mathematics Subject Classification 05C40 · 05C75 · 05C83

1 Introduction

In this paper, we only consider finite and simple graphs. The notation and terminology follows [3] except where otherwise indicated. For graphs G and H having disjoint vertex sets, the 0-sum $G \oplus H$ of G and H is their disjoint union. A 1-sum $G \oplus_1 H$ of G and H is obtained by identifying a vertex of G with a vertex of H. The join $G \join H$ of two disjoint graphs G and H is obtained from the 0-sum of G and H by joining every vertex of G to every vertex of H. A cograph is a graph that can be generated from the single-vertex graph K_1 using the operations of join and 0-sum. We define a graph to be a sesquicograph if it can be generated from K_1 using the operations of join, 0-sum, and 1-sum. The class of cographs has been extensively studied over the last fifty years (see, for example, [2, 4, 9]). Many hard problems on graphs in general have been efficiently solved for cographs due to its simple structural decomposition. Due to the following characterization, cographs are also called P_4-free graphs [1].
Theorem 1.1 A graph G is a cograph if and only if G does not contain the path P_4 on four vertices as an induced subgraph.

Since we consider only simple graphs in this paper, when we write G/e for an edge e of a graph G, we mean the simple graph obtained from the multigraph that results from contracting the edge e by deleting all but one edge from each class of parallel edges. An induced minor of a graph G is a graph H that can be obtained from G by a sequence of operations each consisting of a vertex deletion or an edge contraction. In Section 2, we show that every induced minor of a sesquicograph is a sesquicograph. In addition, we provide an alternative definition of a sesquicograph in terms of the vertex connectivities of its induced subgraphs and their complements. The graph obtained from a 6-cycle by adding a chord to create two 4-cycles is called the dominograph. We let C_6^+ denote the domino; P_5 is the complement of a 5-vertex path. The next theorem is the main result of the paper.

Theorem 1.2 A graph G is a sesquicograph if and only if G does not contain any of the following graphs as an induced subgraph:

(i) Cycles of length exceeding four, and
(ii) $P_5, C_6^+, H_1, H_2, H_3, H_4,$ and H_5,

where the graphs in (ii) are shown in Fig. 1.

Its proof occupies most of Section 3. As a consequence of Theorem 1.2, we have the following characterization of sesquicographs in terms of forbidden induced minors.
Corollary 1.3 A graph G is a sesquicograph if and only if G has no induced minor isomorphic to a graph in \{C_5, P_5, H_1, H_2, H_3, H_4, H_5\}, where C_5 is the cycle of length five.

A graph G is a 2-cograph if it can be generated from K_1 using the operations of complementation, 0-sum, and 1-sum. The class of 2-cographs has been studied in [7]. This paper has some similarities with [7] although the arguments for sesquicographs are not as complex as they are for 2-cographs. Since the class of sesquicographs is the smallest class of graphs that contains K_1 and is closed under the operations of join, 0-sum, and 1-sum, it is a proper subclass of 2-cographs and, thus, of the class of perfect graphs. Note the path P_5 on five vertices is a sesquicograph but its complement P_5 is not. It follows that the class of sesquicographs is not closed under complementation unlike the classes of cographs and 2-cographs.

2 Preliminaries

Let G be a graph. A vertex u of G is a neighbour of a vertex v of G if uv is an edge of G. The neighbourhood $N_G(v)$ of v in G is the set of all neighbours of v in G. If G is connected, a t-cut of G is set X_t of vertices of G such that $|X_t| = t$ and $G - X_t$ is disconnected. A graph that has no t-cuts for all t less than k is k-connected. Viewing G as a subgraph of K_n where $n = |V(G)|$, we colour the edges of G green while assigning the colour red to the non-edges of G. Similar to the terminology in [7], we use the terms green graph and red graph for G and its complementary graph \overline{G}, respectively. An edge of G is called a green edge while a red edge refers to an edge of \overline{G}. The green degree of a vertex v of G is the number of green neighbours of v, while the red degree of v is its number of red neighbours.

We omit the straightforward proofs of the next three results.

Lemma 2.1 All graphs having at most four vertices are sesquicographs.

Lemma 2.2 A graph G is a join of two graphs if and only if its complement \overline{G} is disconnected.

Lemma 2.3 Let G be a graph and let uv be an edge e of G. Then \overline{G}/e is the graph obtained by adding a vertex w with neighbourhood $N_{\overline{G}}(u) \cap N_{\overline{G}}(v)$ to the graph $\overline{G} - \{u, v\}$.

Lemma 2.4 Every induced subgraph of a sesquicograph is a sesquicograph.

Proof Let G be a sesquicograph. It is enough to show that, for every vertex v of G, the graph $G - v$ is a sesquicograph. Note that if $|V(G)| \leq 5$, then our result follows by Lemma 2.1. Let $|V(G)| = n$. We proceed via induction on $|V(G)|$ and assume that the result is true for all sesquicographs with order less than n. Since G is a sesquicograph, G is a 0-sum, a 1-sum, or a join of proper induced subgraphs X and Y of G. Observe that if G is $X \oplus Y$ or $X \triangledown Y$, then $G - v$ equals $(X - v) \oplus Y$ or $(X - v) \triangledown Y$, and so the result follows by induction. Therefore we may assume that $G = X \oplus_1 Y$. Note that, in this case, $G - v$ is either $(X - v) \oplus (Y - v)$ or $(X - v) \oplus_1 Y$. Thus our result follows by induction. \qed

 Springer
The graph K_1 is called trivial. Cographs can also be characterized as the graphs in which every non-trivial connected induced subgraph has a disconnected complement. Similarly, a graph G is a 2-cograph if G has no non-trivial induced subgraph H such that both H and \overline{H} are 2-connected. Next we show that sesquicographs can be characterized in a similar way.

Proposition 2.5 A graph G is a sesquicograph if and only if, for every non-trivial induced subgraph H of G, the graph H is not 2-connected or \overline{H} is disconnected.

Proof Let G be a sesquicograph and let H be a non-trivial induced subgraph of G. By Lemma 2.4, H is a sesquicograph. Since H can be decomposed as a 0-sum, a 1-sum, or a join, it follows by Lemma 2.2, that H is not 2-connected or \overline{H} is disconnected.

Conversely, let G be a graph such that, for every non-trivial induced subgraph H of G, the graph H is not 2-connected or \overline{H} is disconnected. By Lemma 2.2, it follows that every non-trivial induced subgraph of G can be written as a 0-sum, a 1-sum, or a join of smaller induced subgraphs of G. Therefore G can be generated from K_1 using the operations of 0-sum, 1-sum, and join. Thus G is a sesquicograph. \Box

A slight variation of the proof of the closure of 2-cographs under contractions [7, Proposition 2.8] shows that sesquicographs are also closed under contractions.

Proposition 2.6 Let G be a sesquicograph and e be an edge of G. Then G/e is a sesquicograph.

Proof Assume to the contrary that G/e is not a sesquicograph. Then there is a non-trivial induced subgraph H of G/e such that H is 2-connected and \overline{H} is connected. Let $e = uv$ and let w denote the vertex in G/e obtained by identifying u and v. We may assume that w is a vertex of H, otherwise H is an induced subgraph of G, a contradiction. We assert that the subgraph H' of G induced on the vertex set $(V(H) \cup \{u, v\}) - \{w\}$ is 2-connected and its complement $\overline{H'}$ is connected. To see this, note that, since H is 2-connected, H' is 2-connected unless one of u and v, say u, is a leaf of H'. In the exceptional case, we have $H' - u \cong H$, so G has a 2-connected induced subgraph for which its complement is connected, a contradiction. We deduce that H' is 2-connected.

Note that, by Lemma 2.3, \overline{H} is obtained from $\overline{H'}$ by adding a vertex w with neighbourhood $N_{\overline{H'}}(u) \cap N_{\overline{H'}}(v)$ to the graph $\overline{H'} - \{u, v\}$. Since \overline{H} is connected, it follows that $\overline{H'}$ is connected, a contradiction. \Box

It now follows that the class of sesquicographs is closed under taking induced minors. For an input graph G and, for t in \{0, 1\}, the algorithm in Fig. 2 attempts to decompose G as joins of t-sums of graphs having at most four vertices. Note that such graphs are sesquicographs by Lemma 2.1. Since we can compute the components and blocks of a graph in polynomial time [10, 4.1.23], the algorithm in Fig. 2 recognizes sesquicographs in polynomial time.

\[\copyright\] Springer
Fig. 2 Algorithm for recognizing a sesquicograph

3 Induced-subgraph-minimal non-sesquicographs

We noted in Section 2 that sesquicographs are closed under induced subgraphs. In this section, we consider those non-sesquicographs for which every proper induced subgraph is a sesquicograph. We call these minimal non-sesquicographs induced-subgraph-minimal non-sesquicographs. The goal of this section is to characterize such graphs. We begin by showing that all cycles of length exceeding four are examples of such graphs.

Lemma 3.1 Let G be a cycle of length exceeding four. Then G is an induced-subgraph-minimal non-sesquicograph.

Proof Note that both G and \overline{G} are 2-connected and so, by Proposition 2.5, G is not a sesquicograph. For any vertex v of G, the graph $G - v$ is a path and so is a sesquicograph. \hfill \Box

The next result can be easily checked by examining the graphs.

Lemma 3.2 The graphs \overline{P}_5, C_6^+, H_1, H_2, H_3, H_4, and H_5 are induced-subgraph-minimal non-sesquicographs.

Lemma 3.3 Let G be an induced-subgraph-minimal non-sesquicograph. Then G is 2-connected and \overline{G} is connected.

Proof Assume the contrary. Then for some proper induced subgraphs X and Y of G, we can decompose G as $X \oplus Y$, as $X \oplus_1 Y$, or, by Lemma 2.2, as $X \triangledown Y$. Since G is an induced-subgraph-minimal non-sesquicograph, both X and Y are sesquicographs. It now follows that G is a sesquicograph, a contradiction. \hfill \Box
A 2-connected graph H is critically 2-connected if, for each vertex v of H, the graph $H - v$ is not 2-connected.

Lemma 3.4 Let G be an induced-subgraph-minimal non-sesquicograph. Then G is critically 2-connected, or G has connectivity two and \overline{G} has connectivity one.

Proof Note that, by Lemma 3.3, G is 2-connected and \overline{G} is connected, and, by Proposition 2.5, for each vertex v of G, the graph $G - v$ is not 2-connected or $\overline{G} - v$ is disconnected. Observe that G has a vertex v such that $\overline{G} - v$ is connected and so $G - v$ is not 2-connected. Therefore G has connectivity two. Suppose that G is not critically 2-connected. Then there is a vertex w of G such that $G - w$ is 2-connected and so $\overline{G} - w$ is disconnected. Therefore the connectivity of \overline{G} is one. \(\square\)

Next we find those induced-subgraph-minimal non-sesquicographs G such that G is critically 2-connected. We will use the following result of Nebesky [6].

Lemma 3.5 Let G be a critically 2-connected graph such that $|V(G)| \geq 6$. Then G has at least two distinct paths of length exceeding two such that the internal vertices of these paths have degree two in G.

Lemma 3.6 Let G be an induced-subgraph-minimal non-sesquicograph such that G is not isomorphic to a cycle and let $wxyz$ be a path P of G such that both x and y have degree two in G. Then w and z are adjacent.

Proof Assume that w and z are not adjacent. By Lemma 3.3, G is 2-connected, so there is a path P' joining w and z such that P and P' are internally disjoint. We may assume that P' is a shortest such path. It now follows that G has a cycle C of length exceeding four as an induced subgraph. Since a cycle of length exceeding four is not a sesquicograph, $G = C$, a contradiction. \(\square\)

Proposition 3.7 Let G be an induced-subgraph-minimal non-sesquicograph such that G is critically 2-connected. Then G is isomorphic to a cycle of length exceeding four or to the domino.

Proof We may assume that G is not isomorphic to a cycle exceeding four otherwise we have our result. Note that, by Lemma 2.1, $|V(G)| \geq 5$. Since the cycle of length five is the only critically 2-connected graph on five vertices, we may assume that $|V(G)| \geq 6$. By Lemma 3.5, G has two distinct paths $P_1 = abcd$ and $P_2 = wxyz$ of length three such that their internal vertices have degree two. By Lemma 3.6, a and d are adjacent, and w and z are adjacent. Consider the graph $G' = G - \{b, c\}$. Note that G' is 2-connected and so, by Lemma 2.5, \overline{G} is disconnected. It is now easy to check that $|V(G')| = 4$ and so G is isomorphic to the domino. \(\square\)

Proof of Theorem 1.2 We may assume that G is not critically 2-connected; otherwise we are done by Proposition 3.7. By Lemma 3.3, G has connectivity two and \overline{G} has connectivity one. We first show the following.

3.7.1 \overline{G} has at most three cut vertices.
Set FinalList ← ∅, i ← 0
Generate all two connected graphs of order 6 using nauty geng [5] and
store in an iterator L
for g in L such that connectivity of g is 2 and g is 1 do
 for v in V(g) do
 h = g\v
 if connectivity of h < 2 or connectivity of \(\overline{h} < 1 \) then
 i ← i + 1
 if i equals |V(g)| then
 Add g to FinalList

Fig. 3 Algorithm to find induced-subgraph-minimal non-sesiquicographs of order six

Let \(\{u, v\} \) be a 2-cut of \(G \) and let the components of \(G - \{u, v\} \) be partitioned into subgraphs \(A \) and \(B \) such that \(|V(A)| \geq |V(B)| \) and \(|V(A)| - |V(B)|\) is a minimum. Observe that \(\overline{G} - x \) is connected for a vertex \(x \) in \(V(G) \) unless \(x \) is the only red neighbour of \(u \) or the only red neighbour of \(v \), or \(|V(B)| = 1\) and \(x \) is in \(V(B) \). Thus 3.7.1 holds.

We show next that the number of vertices of \(G \) can be bounded.

3.7.2 \(|V(G)| \leq 6\).

Assume that \(|V(G)| > 6\). By 3.7.1, \(\overline{G} \) has at most three cut vertices. First suppose that \(\overline{G} \) has one cut vertex \(x \). Let the components of \(\overline{G} - x \) be partitioned into subgraphs \(R_1 \) and \(R_2 \) such that \(|V(R_1)| \geq |V(R_2)|\) and \(|V(R_1)| - |V(R_2)|\) is a minimum. Since \(|V(G)| \geq 7\), we have \(|V(R_1)| \geq 3\). Observe that, if \(|V(R_2)| \geq 2\), then there exists a vertex \(r \) in \(R_1 \) such that \(x \) has two green neighbours in \(G - r \). Note that every edge joining a vertex in \(R_1 \) to a vertex in \(R_2 \) is a green edge and so \(G - r \) is connected. Since every vertex in \(V(G) - x \) is in a green 2-cut, this is a contradiction. Therefore \(|V(R_2)| = 1\) and so \(|V(R_1)| \geq 5\). Let \(R_2 = \{\alpha\} \). Note that \(G - x \) is 2-connected since \(G \) is not critically 2-connected. It is now clear that \(G - \{x, \alpha\} \) is connected.

If \(G - \{x, \alpha\} \) has a vertex \(r \) such that \(G - \{x, \alpha, r\} \) is connected and contains two green neighbours of \(x \), then \(G - \alpha \) is 2-connected, a contradiction. It now follows that \(G - \{x, \alpha\} \) is a path and its leaves are the only green neighbours of \(x \). Note that \(G - \alpha \) is a cycle of length exceeding four, a contradiction.

Next suppose that \(\overline{G} \) has two cut vertices \(x_1 \) and \(x_2 \). For \{i, j\} = \{1, 2\}, let \(R_i \) be the disjoint union of the components of \(\overline{G} - x_i \) that do not contain \(x_j \). Let \(R_3 \) be the subgraph induced on \(V(G) - (V(R_1) \cup V(R_2) \cup \{x_1, x_2\}) \). We first consider the case when \(V(R_3) \) is empty. We may assume that \(|V(R_1)| \geq |V(R_2)|\) and so \(|V(R_1)| \geq 3\). Note that if \(|V(R_2)| \geq 2\), then there is a vertex \(r \) in \(R_1 \) such that \(G - r \) is 2-connected, a contradiction. Therefore \(|V(R_2)| = 1\) and so \(|V(R_1)| \geq 4\). Let \(\beta \) be a green neighbour of \(x_1 \) in \(R_1 \). Note that \(G - r \) is 2-connected for every vertex \(r \) in \(V(R_1) - \beta \), a contradiction. Therefore \(V(R_3) \) is non-empty. Observe that, if both \(R_1 \) and \(R_2 \) have at least two vertices, then \(G - r \) is 2-connected for any vertex \(r \) in \(R_3 \), a contradiction. Therefore we may assume that \(|V(R_1)| = 1\). We show that neither \(R_2 \) nor \(R_3 \) has more than two vertices. Assume that \(R_i \) has more than two vertices for some \(i \) in \{2, 3\}. Then there exists a vertex \(r \) in \(V(R_i) \) such that both \(x_1 \) and \(x_2 \) have at least two green neighbours in \(G - r \). Note that \(G - r \) is 2-connected, a contradiction.
Therefore \(|V(R_2)| = |V(R_3)| = 2\). Observe that there is a vertex \(r\) in \(R_3\) such that both \(x_1\) and \(x_2\) have green degree at least two in \(G - r\). It follows that \(G - r\) is 2-connected, a contradiction. Thus \(G\) has three cut vertices.

Let \(X = \{x_1, x_2, x_3\}\) be the set of cut vertices of \(\overline{G}\). We may assume that for the cut vertex \(x_1\) of \(\overline{G}\), the components of \(\overline{G} - x_1\) can be partitioned into subgraphs \(P\) and \(Q\) such that \(x_2\) is in \(P\) and \(x_3\) is in \(Q\), and \(|V(P)| \geq |V(Q)| \geq 2\). Note that all vertices in \(P\) are green neighbours of \(x_3\) and all vertices in \(Q\) are green neighbours of \(x_2\). If \(|V(P)| \geq 4\), then there is a vertex \(r\) in \(P\) such that all vertices in \(X\) have at least two green neighbours in \(G - r\) and so \(G - r\) is 2-connected, a contradiction. Therefore \(|V(P)| = |V(Q)| = 3\). Note that there is a vertex \(r\) in \(P \cup Q\) such that all vertices in \(X\) have at least two green neighbours in \(G - r\) and so \(G - r\) is 2-connected, a contradiction. Thus 3.7.2 holds.

By Lemma 2.1, it is clear that \(|V(G)| \geq 5\) and so \(|V(G)|\) is either 5 or 6. Suppose \(|V(G)| = 5\). Since \(P_5\) is the only graph on five vertices that is not critically 2-connected, has connectivity two, and whose complement has connectivity one, by Lemma 3.2, we have \(G \cong P_5\). Next suppose that \(|V(G)| = 6\). Implementing the algorithm in Fig. 3 in Sagemath [8], it can be easily checked that \(G\) is isomorphic to one of the graphs in \(\{H_1, H_2, H_3, H_4, H_5\}\). This completes the proof. \(\square\)

Proof of Corollary 1.3 Note that every cycle of length exceeding five has the cycle of length five as an induced minor. Also, the domino graph \(C_{6}^+\) contains \(P_5\) as an induced minor. The result now follows by Theorem 1.2.

Acknowledgements The author thanks James Oxley for helpful suggestions. The author also thanks Thomas Zaslavsky for helpful discussions.

Funding The author declares that no funds or grants were received during the preparation of this manuscript.

Data Availability All data generated or analysed during this study are included in this published article.

Declarations

Conflict of interest The author has no relevant financial or non-financial interests to disclose.

References

1. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs. Disc. Appl. Math. 3, 163–174 (1981)
2. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition for cographs. SIAM J. Comput. 14, 926–934 (1985)
3. Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005)
4. Jung, H.A.: On a class of posets and the corresponding comparability graphs. J. Combin. Theory Ser. B 24, 125–133 (1978)
5. McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symb. Comput. 60, 94–112 (2014)
6. Nebesky, L.: On induced subgraphs of a block. J. Graph Theory 1, 69–74 (1977)
7. Oxley, J., Singh, J.: Generalizing cographs to 2-cographs (submitted). arxiv:2103.00403
8. SageMath: The Sage Mathematics Software System (Version 8.2). The Sage Developers (2019). http://www.sagemath.org
9. Seinsche, D.: On a property of the class of \(n\)-colourable graphs. J. Combin. Theory Ser. B 16, 191–193 (1974)
10. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.