ONE-POT SYNTHESIS OF SPIRO-3,4-DIHYDRO-2H-PYRROLES THROUGH TANDEM NUCLEOPHILIC CYCLISATION REACTION

Nandkishor Chandan
Department of Chemistry, Siddharth College of Arts, Science and Commerce, Fort Mumbai-400 001, Maharashtra, INDIA.
Corresponding Author: nandkishorc@gmail.com

ABSTRACT
A very simple and convenient one-pot synthesis of Spiro-3,4-dihydro-2H-pyrrole has been developed while synthesizing 2,2,5-trisubstituted pyrrolidines. Initially, the Meldrum’s acid was treated with α,β-unsaturated ketones in presence of anhydrous carbonate base and phase transfer catalyst benzyltriethylammonium chloride in acetonitrile as a solvent to afforded the Michael adduct which was readily converted to the corresponding oxime using standard conditions. The crude oxime was treated directly with p-toluenesulfonyl chloride to tosylate the oxime but instead in presence of an excess of organic base as Et3N results in tandem nucleophilic cyclization to spirobicyclic compound as Spiro-3,4-dihydro-2H-pyrrole as product directly, instead of the tosyloxime. So, it was considered to be a novel route to synthesized spirocyclic compounds as it is the skeleton of many natural products and pharmaceutical products.

Keywords: Pyrrole, Spiro, Oxime, Tosyloxime, Cyclization, Meldrum’s Acid, Tandem, Nucleophilic, α,β-Unsaturated Ketone.

INTRODUCTION
The substituted Pyrroles are the most important and explored heterocyclic compounds as they are found in many natural products and biologically active compounds as well as privileged scaffolds for pharmaceutical products since they exhibit a diverse range of biological activities, including analgesic, anti-convulsant, anti-depressant, anti-allergic, anti-diabetic, anti-hyperlipidemic, anti-microbial, anti-fungal, anti-viral, anti-inflammatory, cholesterol-reducing, and anti-tumor properties. Therefore, substituted pyrroles are considered as a potential source of biologically active compounds with valuable properties.

The Spiro heterocyclic compounds are considered as a privileged framework because of their rigidity, three-dimensional geometries, and wide distribution in various natural products and synthetic molecules. Presently, the Spiro-heterobicyclic compounds are attracting considerable interest in synthetic organic chemistry because of their molecular structure and diverse biological activities. In addition, spiro-heterocycle systems impart structural novelty for drug discovery because of its broad range of medicinal properties as well important structural motifs that are entrenched in a variety of drugs, including the cardiovascular active Irbesartan, progestogenic agent Drospirenone and potassium-separating diuretic Spironolactone. The normally used approach in drug designing is to rigidify the ligand conformation by a spiro-ring fusion, which can impact ligand binding entropy upon binding to a protein target. Commonly, bioactive spirocyclic molecules have five-membered ring systems in their structures. In particular, spiro-pyrroles represent important structural motifs that can be found in many biologically active synthetic compounds and natural products.

We have recently reported that, under basic conditions, tosyloxime of Michael adduct with diethyl malonate results in the cyclization with C-N bond formation to pyrrolidine embedded with various functionality. We have recently reported that, under basic conditions, tosyloxime of Michael adduct with diethyl malonate results in the cyclization with C-N bond formation to pyrrolidine embedded with various functionality. In a similar line to introduced the rigidity, we have used Meldrum’s acid as a source of nucleophile in Michael addition reaction with different α,β-unsaturated ketones which on oximation and followed by tosylation more than basic condition results into the Spiro-3,4-dihydro-2H-pyrrole in good yield as one-pot synthesis (Fig.-1).
SPIRO-3,4-DIHYDRO-2H-PYRROLES

EXPERIMENTAL

General Procedure for the Preparation of Michael Adduct

To a stirring solution, 7.63 mmol of Meldrumic acid (1.1g) in acetonitrile (20 ml) was added 8.39 mmol of anhydrous K$_2$CO$_3$ (1.15g) and 7.63 mmol of benzyltriethylammonium chloride (1.73g). The mixture was stirred for 15 min at rt and 7.63 mmol of methyl vinyl ketone (0.64ml) was then added and the resultant mixture was stirred for 8 hr at 50°C. After TLC was monitored, the mixture was cooled to rt and the reaction was quenched with water and mixture was washed with diethyl ether, then acidified by 6 N HCl. The adduct was extracted by diethyl ether and dried over Na$_2$SO$_4$. The adduct was extracted by diethyl ether and dried over Na$_2$SO$_4$, to give the crude product, which was purified by recrystallization using EtOAc and petroleum ether to afford methyl vinyl ketone (1.3ml) was then added and the resultant mixture was stirred for 8 hr at 50°C to give benzyltriethylammonium chloride (3.48g). The mixture was stirred for 15 min at rt and 15.3 mmol of acetonitrile (40 ml) was added 16.8 mmol of anhydrous K$_2$CO$_3$ (2.31g) and 15.3 mmol of benzyltriethylammonium chloride (3.48g). The mixture was then added and the resultant mixture was stirred for 1 hr and it was found in mass spectra showed the presence of the cyclized product. The reaction mixture was further stirred for 2 hrs and the reaction progress was monitored by TLC and on completion of the reaction mixture was allowed to cool to room temperature. EtOH was removed under reduced pressure and the residue was shown to give the cyclized product which was purified by flash column chromatography (eluting with EtOAc : petrol) to afford the Spiro-3,4-dihydro-2H-pyrrole.

General Procedure for Cyclization to Spiro-3,4-dihydro-2H-pyrrole

The stirring solution 2.18 mmol of 2 oxime (500mg) in dry 10 ml CH$_2$Cl$_2$ at 0°C was treated with 6.54 mmol of Et$_3$N or pyridine (660mg or 516mg) followed by slow addition of 2.61 mmol of p-toluenesulphonyl chloride (494mg) and the reaction was stirred for 1 hrs and it was found in mass spectra showed the presence of the cyclized product. The reaction mixture was further stirred for 2 hrs and the reaction progress was monitored by TLC and by mass spectra and it was found that instead of toslyoxime the cyclized product was formed and after completion of the reaction (1 M) HCl was added and the product was extracted by CH$_2$Cl$_2$ and the extracts were washed with saturated NaHCO$_3$ and dried over Na$_2$SO$_4$. The concentration of the organic layer was stirred for 1 hr. The progress of the reaction was monitored by TLC and on completion of the reaction mixture was allowed to cool to room temperature. EtOH was removed under reduced pressure and the residue was shown to give the cyclized product which was purified by flash column chromatography (eluting with EtOAc : petrol) to afford the Spiro-3,4-dihydro-2H-pyrrole.

(±) Dimethyl-5-(3-oxobutyl)-1,3-dioxane-4,6-dione

Following the general procedure 1, to the stirring solution 15.3 mmol of Meldrumic acid (2.21g) in acetonitrile (40 ml) was added 16.8 mmol of anhydrous K$_2$CO$_3$ (2.31g) and 15.3 mmol of benzyltriethylammonium chloride (3.48g). The mixture was stirred for 15 min at rt and 15.3 mmol of methyl vinyl ketone (1.3ml) was then added and the resultant mixture was stirred for 8 hr at 50 °C to give crude product, which was purified by recrystallization using EtOAc and petroleum ether to afford adduct 1 (2.67 g, 81%) as pale yellow solid (m.p. = 116-118 °C, lit 119-120 °C)99; R$_f$ = 0.16 (EtOAc : petrol, 1:1); \(\nu_{\text{max}} \) (film)/cm$^{-1}$ 2892, 1785, 1747, 1710, 1382, 1303, 1249, 1165, 1010, 986, 730; \(\delta_{\text{H}} \) (400 MHz; CDCl$_3$; MeSi) 1.74, 1.78 (6H, s, C(CH$_3$_3)), 2.13 (3H, s, COCH$_3$), 2.78 (2H, m, CH$_2$CH$_2$CH), 2.75 (2H, t, J 7.1 Hz, CH$_2$CH$_2$CH), 3.86 (1H, t, J 4.5 Hz, CH$_2$CH$_2$CH); \(\delta_{\text{C}} \) (100 MHz; CDCl$_3$; MeSi) 19.5 (CH$_2$CH$_2$CH), 25.8, 27.9 (C(CH$_3$_3)), 29.5 (COCH$_3$), 38.7 (CH$_2$CH$_2$CH), 44.0 (CH$_2$CH$_2$CH), 104.5 (C(CH$_3$_3)), 164.7 (2 x COO), 207.5 (CO); m/z (ESI) 213, ([M-H]', 100%), HRMS (ESI) C$_{10}$H$_{13}$O$_3$: ([M-H']) requires 213.0768; found 213.0762.

Fig.-1: Cyclization Leads to Spiro Compound

RASĀYAN J. Chem.
Vol. 14 | No. 2 | 974-980 | April - June | 2021

Nandkishor Chandan
Following the general procedure 2, to the solution 6.44 mmol of Michael adduct 1 (1.38 g) in EtOH (30ml), 12.88 mmol of NH$_2$OH.HCl (888mg,) and 12.88 mmol of Et$_3$N (1.30g) was added and the mixture was gently heated (50 °C) for 1 hrs, to give crude product which was purified by flash column chromatography to afford compound (157 mg,) and mixture was stirred for 30 min instead tosyl oxime, isolated cyclized product as (±) 8,8-dimethyl-2-phenyl-7,9-dioxa-1-azaspiro[4.5]dec-1-ene-6,10-dione, 9 found 234.0737.

Following the general procedure 3, to the solution 0.95 mmol of oxime 5 (289 mg) in dry CH$_2$Cl$_2$ (15 ml) was added 2.85 mmol of Et$_3$N (288mg) at 0°C and followed by 1.14 mmol of p-toluenesulphonyl chloride (215 mg) and the mixture stirred for 30 min instead tosyl oxime, isolated cyclized product as spirobicyclic pyrrolidine which was purified by flash column chromatography to afford compound 3 (297 mg, 78%) as a crystalline solid; m.p. = 98 °C; R$_f$ = 0.63 (EtOAc : petrol, 1:1); ν_max(film)/cm$^{-1}$ 3078, 2956, 1779, 1737, 1170, 912, 740; δ_i(400 MHz; CDCl$_3$; MeSi) 1.75, 2.00 (CH$_3$), 7.3-7.9 (ArH); δ_i(100 MHz; CDCl$_3$; MeSi) 28.9, 28.2 (C(CH$_3$)$_3$), 31.9 (C4), 41.0 (C3), 89.7 (C5), 106.0 (C(CH$_3$)$_2$), 112-139 (ArC), 167.0 (2 x COO), 180.9 (C2); m/z (ESI$^+$) 310 ([M+Na]$^+$, 95%), HRMS (ESI$^+$) C$_{10}$H$_{15}$NNaO$_4^+$ ([M+Na]$^+$) requires 310.1055; found 310.1055.

Following the general procedure 3, to the solution 0.88 mmol of oxime 11 (215mg) in dry CH$_2$Cl$_2$ (10ml) was added 2.64 mmol of Et$_3$N (267mg) at 0°C and followed by 1.06 mmol of p-toluenesulphonyl chloride (216 mg) and the mixture was stirred for 30 min instead tosyl oxime, isolated cyclized product as (±) 2,8,8-Trimethyl-7,9-dioxa-1-azaspiro[4.5]dec-1-ene-6,10-dione, 6 found 234.1076.
chloride (201 mg,) and the mixture stirred for 30 min instead tosyl oxime, isolated cyclized product as spirobic
yclic pyrrolidine which was purified by flash column chromatography to afford compound 12 (111 mg, 56%) as a
crystalline solid; m.p. = 99 °C; Rf = 0.51 (EtOAc : petrol, 1:1); δmax(film)/cm\(^{-1}\) 2934, 1780, 1732, 1456, 1172, 915, 735; δ(400 MHz; CDCl\(_3\)); MeSi 0.98 (3H, d, CH\(_3\)), 1.79, 2.05 (C(CH\(_3\))\(_2\)),
2.16 (3H, s, N=CC\(_2\)H\(_5\)), 2.64 (1H, m, C(4)H), 2.94 (2H, d, J 7.5 Hz, C(3)H\(_2\)); δ(100 MHz; CDCl\(_3\);
MeSi) 18.2, (CH\(_3\)), 21.5 (N=CCH\(_3\)), 28.4, 28.7 (C(CH\(_3\))\(_2\)), 32.1 (C4), 43.2 (C3), 88.9 (C5), 106.7
(C(CH\(_3\))\(_2\)), 167.9 (2 x COO), 182.8 (C2); m/z (ESI\(^+\)) 248 ([M+Na\(^+\]", 95%), HRMS (ESI\(^+\)) C\(_{11}\)H\(_{15}\)NNaO\(_4\) ([M+Na\(^+\] requires 248.0899; found 234.0839.

The required spiro-heterobiclic compound 3 could be synthesized by following the sequence of
reactions. The reaction of Meldrum’s acid with methyl vinyl ketone in presence of 1.1 eq. of anhydrous
K\(_2\)CO\(_3\) and 1 eq. of benzyltriethylammonium chloride in acetonitrile as the solvent, at 50-60 °C for 8-10
hr\(^2\) afforded the Michael adduct 1 in 81% yield with some double Michael addition product as a by-
product which was minimized by using 1.1eq. base. The Michael adduct 1 was readily converted to the
corresponding oxime using standard conditions (NH\(_2\)OH.HCl and Et\(_3\)N in EtOH stirred at 50\(^°\)C for 1 hr) and
afforded 2 in 77% yield. The crude oxime 2 was used directly and treatment with p-toluensulfonyl
chloride and base (excess Et\(_3\)N in dry CH\(_2\)Cl\(_2\) at rt) gave the cyclized product as Spiro-3,4-dihydro-2H
pyrrole 3 directly in 78% of yield (Scheme-1) instead of the expected tosyl oxime (Scheme-1).

RESULTS AND DISCUSSION

Spiro-heterobicycles appear in countless natural products and clinically valuable compounds\(^2\) possibly
among the most challenging structural motifs to synthesize, spirocyclic synthesis has inspired chemists
for decades. Meldrum’s acid appears to be an attractive reagent in organic synthesis owing to its high
acidity, steric rigidity and high reactivity. Following the methodology developed\(^\) using oxime ether
mediated ring closure, Meldrum’s acid could be very useful to synthesize spiro-heterobiclic rings.
Indeed, the spiro-heterobicycle 3 could be helpful to construct non-natural amino acid by solvolysis of
Meldrum’s acid with alcohols would give a diastereomeric mixture of a half acid ester; and there could be
further interconverted. The half carboxylic acid can be converted into amine or carbamate, through acid
azide formation and followed by Curtius rearrangement would give an isocyanate, which could be easily
converted into amine or carbamate by hydrolysis or alcohol treatment.\(^3\)

The resultant Spiro-3,4-dihydro-2H-pyrrole 3 is crystalline and this product was fully characterized by
single-crystal X-ray crystallographic analysis (Fig.-2), clearly demonstrating the fully orthogonal nature
of the two heterocyclic rings. The spiro-heterbiclic 3 was previously reported by Danheiser\(^4\) and he
obtained it as oil but NMR data agree.

\(^{977}\)

SPIRO-3,4-DIHYDRO-2H-PYRROLES

Nandkishor Chandan
Similarly, the Michael addition reaction with Meldrum’s acid and α,β-unsaturated ketones such as 1-phenylbut-2-en-1-one, 1-phenylprop-2-en-1-one, pent-3-en-2-one and chalcone were carried out in presence of anhydrous K$_2$CO$_3$ and 1 eq. of benzyltriethylammonium chloride in acetonitrile as the solvent, at 50-60 °C for 8-10 hr except chalcone other ketone gave good yield as Michael adduct as shown in scheme 2. The same Michael adduct on oximation using standard condition and followed by treatment with p-toluenesulfonyl chloride and base (excess Et$_3$N in dry CH$_2$Cl$_2$ at rt) gave the cyclization product Spiro-3,4-dihydro-2H-pyrrrole as 6, 9 and 12 in good yield as shown in Scheme-2 but as the compounds are solid but the formation of single crystal was so difficult and all compounds are characterized by Mass and NMR spectroscopy. The same click chemistry was not possible with chalcone may be due to high steric factor.

![Scheme-2: Synthesis of Substituted Spiro Compounds](image)

Reagent and conditions: (a) Anhydrous K$_2$CO$_3$, benzyltriethylammonium chloride, acetonitrile heated 50-60°C; (b) NH$_2$OH.HCl, Et$_3$N, EtOH, heated 50°C; (c) pTsCl, Et$_3$N, CH$_2$Cl$_2$, rt.

Scheme-2: Synthesis of Substituted Spiro Compounds

CONCLUSION

In summary, we have developed a one-pot methodology for the synthesis of spiro-heterobicyclic compounds as Spiro-3,4-dihydro-2H-pyrrroles with alkyl and aryl substitutions on the five-member heterocycle. It was also concluded that both aryl groups as substitution were not possible as we have started with chalcone as starting material and reaction did not work. The method is useful to synthesize the rigid spiro-heterocycle which can also be converted to the non-natural amino acids by hydrolysis to half acid ester and interconvert to amino group thought Curtius rearrangement reaction. This methodology developed will be very useful to get quick access to synthesize Spiro-3,4-dihydro-2H-pyrrroles which is a part of many natural products of high importance.
ACKNOWLEDGEMENT

I am very much thankful to Prof. Mark Moloney Oxford University, the UK for their kind support. I also extend my gratitude to my Management PES and principal and my family for continuous help in my research.

REFERENCES

1. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, G. Jones, Edition Pergamon-Elsevier: Oxford, pp.1–388 (2008)
2. D. L. Quin, J. A. Tyrell, Fundamentals of Heterocyclic Chemistry; Wiley: New Jersey, pp. 222–225 (2010), DOI: 10.1021/acs.joc.0e00109
3. J. Alvaroz-Builla, J. Vaquero, Barluenga, Edition Wiley-VCH: Weinheim, pp.269–375 (2011)
4. B. A. Trofimov, A. I. Mikhailova, E. Y. Schmidt, L. N. Sobenina, Chemistry of Pyrroles; CRC Press: Boca Raton, (2015)
5. G. W. Gribble, J. A. Joule, Edition Elsevier Oxford, pp.165 (2016)
6. E. A. Vessally, RSC Advances, 6, 18619 (2016), DOI: 10.1039/C5RA20706A
7. N. Zhou, H. T. Zhu, D. S. Yanga, Z. H. Guan, Organic Biomolecular Chemistry, 14, 7136(2016), DOI: 10.1039/C6OB00962J
8. A. Sharma, P. Pipiani, Journal of Heterocyclic Chemistry, 54(1), 27(2017), DOI: 10.1002/jhet.2550
9. V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Advances, 5, 15233(2015), DOI: 10.1039/c4ra15710a
10. R. Khajuria, S. Dham, K. K. Kapoor, RSC Advances, 6, 37039(2016), DOI: 10.1039/c6ra03411j
11. M. S. Mohamed, R. H. A. El-Hameed, A. Sayed, Journal of Advanced Pharmaceutical Research, 1(1), 1(2017), DOI: 10.21608/APRH.2017.16155
12. R. Kaur, V. Rani, V. Abbot, Y. Kapoor, D. Konar, K. Kumar, Journal of Pharmaceutical Chemistry and Chemical Science, 1, 17(2017)
13. M. R. Kumar, A. Manikandan, A. Sivakumar, V. V. Dhayabaran, Bioorganic Chemistry, 81, 44 (2018), DOI: 10.1016/j.bioorg.2018.07.037
14. M. Aldeghi, S. Malhotra, D. L. Selwood, A.W.E. Chan, Chemical Biology and Drug Design, 83(4), 450 (2014), DOI: 10.1111/cbdd.12260
15. T. J. Richie, S. J. Macdonald, Drug Discovery Today, 14(21), 1011(2009), DOI: 10.1016/j.drudis.2009.07.014
16. Y. Zheng, C. M. Tice, S.B. Singh, Bioorganic Medical Chemistry Letters, 24(16), 3673(2014), DOI: 10.1016/j.bmcl.2014.06.081
17. Santos, Tetrahedron, 70(552), 9735(2014), DOI: 10.1016/j.tet.2014.08.005
18. Gubba Reddy, Gopal Reddy, M. Durgaprasad, M. P. Bhadra, Organic Biomolecule Chemistry, 13, 8729(2015), DOI: 10.1039/C5OB01077B
19. E. J. Lewis, L. G. Hunsicker, W. R. Clarke, T. Berl, M. A. Pohl, J. B. Lewis, E. Ritz, R. C. Atkins, R. Rohde, I. Raz, New England Journal of Medicine, 345, 851(2001), DOI: 10.1056/NEJMo011303
20. B. M. Massie, P. E. Carson, J. J. McMurray, M. Komajda, R. McKelvie, M. R. Zile, S. Anderson, M. Donovan, E. Iverson, C. Staiger, New England Journal of Medicine., 359, 2456(2008), DOI: 10.1056/NEJMo0805450
21. H. Kuhl, Cimatics, 8, 3(2005), DOI: 10.1080/13697130500148875
22. H. Wiesinger, M. Berse, S. Klein, S. Schwend, J. Hochel, F. S. Zollmann, Journal of Clinical Pharmacology, 50, 1399(2015), DOI: 10.1111/bcp.12745
23. M. Claire, H. Faraj, G. Grassy, A. Aumelas, A. Rondot, G. Auzou, Journal of Medicinal Chemistry, 36, 2404(1993), DOI: 10.1021/jm00068a018
24. A. J. Friedman, Cutis, 96, 216(2015), DOI: 10.2147/CCID.S137794
25. J. Bariwal, L. G. Voskressensky, Van der Eycken, Chemical Society Review, 47, 3831(2018), DOI: 10.1039/C8OB03122C
26. A. Iwata, S. Inuki, S. Oishi, N. Fujii, H. Ohno, Tetrahedron,71, 6580(2015), DOI: 10.3987/COM-19-S(F)40
27. Nandkishor Chandan, Amber L. Thompson and Mark G. Moloney, Organic Biomolecule Chemistry, 10, 7863(2012), DOI: 10.1039/c2ob26423d
28. T. D. Wahyuningsih, N. Kumar, D. Black, *Tetrahedron*, 62, 6343(2006)
29. M. Sannigrahi, *Tetrahedron*, 55, 9007(1999), [DOI]:10.1016/S0040-4020(99)00482-2
30. B. C. Chen, *Heterocycles*, 32, 529(1991), [DOI]:10.3987/REV-90-422
31. J. Sapi, J. Y. Laronze, *Archive for Organic Chemistry*, 7, 208(2004), [DOI]:10.3998/ark.5550190.0005.717
32. H. Tomori, K. Shibutani, K. Ogura, *Synthesis*, 3, 224(1984), [DOI]:10.1055/s-1984-30779
33. A. R. Renslo, R. L. Danheiser, *Journal of Organic Chemistry*, 63, 7840(1998), [DOI]:10.1021/jo026258k
34. P. A. Bonvallet, E. M. Todd, Y. S. Kim, R. J. McMahon, *Journal of Organic Chemistry*, 67, 9031(2002), [DOI]:10.1021/jo020304z
35. V. Singh, S. Kanojiya, S. Batra, *Tetrahedron*, 62, 10100(2006), [DOI]:10.1016/j.tet.2006.08.045
36. Nandkishor Chandan, *Rasayan Journal of Chemistry*, 13(4), 2352(2020), [DOI]:10.31788/RJC.2020.1345745
[RJC-6151/2020]