Management of Duodeno-Jejunal Flexure Transection after Blunt Trauma - A Modified Approach

Mahim Koshariya, Vidhu Khare*, Sourabh Mishra, Rahul Rathod, Sagar Maggo, Shivangi Pandey, Arshad Khan, Vijay Tekam, M.C. Songra

Department of Surgery, Gandhi Medical College and Associated Hamidia Hospital, Bhopal, India

Rezumat

Managementul secțiunării post-traumatice a flexurii duodenal-jejunală în urma contuziilor abdominale - o metodă alternativă

Context: Leziunile intestinului subțire sunt rareori consecința contuziilor abdominale, însă, de obicei, afectează segmental intestinal fix. Gestionarea prematură a unor astfel de leziuni are ca rezultat o fistulă entero-cutanată cu debit crescut. În mod traditional, tratamentul perforărilor de la nivelul flexurii duodeno-jejunală constă în excluderea pilorului prin gastrojejunalostomie. Dovezi mai recente sugerează că enterorafia primară sau anastomoza termino-terminală duodeno-jejunală protejată prin o duodenostomie dirijată cu tub extern pot fi la fel de eficiente.

Obiectiv: Obiectivul studiului este de a oferi o variant alternativă de gestionare a leziunilor de flexură duodenal-jejunală prin evitarea duodenostomiei dirijate pe tub extern.

Material și metode: Pacienții internați în perioada 1 iulie 2015 - 1 iunie 2018 au fost identificați și examinați pentru prezența leziunilor de flexură duodenal-jejunală. Au fost excluse cazurile de leziuni non-accidentale.

Rezultate: În perioada studiului, s-au identificat 10 cazuri de secționare intestinală post-traumatică la nivelul flexurii duodenal-jejunală. Toți cei 10 pacienții au fost internați în stare de șoc, la 24 de ore după momentul traumatismului. După resuscitare volemică și investigații paraclinice, s-a practicat laparotomia în urgență. Duodenul a fost mobilizat în întregime, capetele sectionate au fost debridate și s-a practicat anastomoză duodenal-jejunală termino-terminală în două straturi. Un tub nazoejejunal (NJ) de 18-French a fost plasat distal de anastomoză și un tub nazogastric (NG) de 18-French...
Small Bowel Injuries are relatively uncommon after blunt trauma and typically affect fixed bowel segments viz. the duodenum, duodeno-jejunal (duodeno-jejunal) flexure, proximal jejunum, and terminal ileum. Duodenal injuries occur in 4.3% of all patients with abdominal injuries, ranging from 3.7% to 5%. The duodenum is rarely injured alone, because of its proximity to other important organs. The occurrence of multiple associated injuries is the rule, not the exception.

The liver is the most injured organ along
with the duodenum with a frequency of 17%. Other organs include the colon (13%); the pancreas (12%); the small intestine (11%); the stomach (9%), and vascular injuries (arterial and venous) (15%).

The mechanism of injury is complex in the case of blunt injuries when both ends may be blunt, and duodenal injuries are a consequence of crushing or compression. Crush injuries usually occur when a direct force is applied against the abdominal wall and transmitted to the duodenum, which is then projected against the spinal column, on which it lies, for example, when the steering wheel impacts the epigastrium. They also occur when acceleration and deceleration forces act on the mobile and non-mobile portions of the duodenum, such as during a fall from a great height (1). Untimely management of such injuries, especially transection at duodeno-jejunal flexure, typically results in a difficult high-output entero-cutaneous fistula. There have been extensive research and trials on different surgical techniques to repair duodenal and duodenopancreatic injuries, from duodeno-orrhaphy with external drainage/duodenostomy tube, triple-ostomies (gastrostomy, duodenostomy and jejunostomy), serosal and mucosal patches to duodenal resection (1). There have been extensive research and trials on different surgical techniques to repair duodenal and duodenopancreatic injuries, from duodenorrhaphy with external drainage/duodenostomy tube, triple-ostomies (gastrostomy, duodenostomy and jejunostomy), serosal and mucosal patches to duodenal resection (1). Management of Duodeno-Jejunal flexure transection has traditionally been done by pyloric exclusion with gastrojejunostomy, but recent evidence has suggested that end-to-end anastomosis or primary closure may be equally effective in which the Duodeno-Jejunal anastomosis is protected by external tube duodenostomy. A novel approach has been suggested by Sarada P Sahoo et al. which involves simultaneous use of a nasogastric and a nasojejunal tube for decompression avoiding external tube duodenostomy (2) (Fig. 1).

Material and Method

Patients admitted from July 1, 2014 to June 1, 2018 were identified and examined for duodeno-jejunal flexure transection. The center is a tertiary healthcare center, addressing population of around 14,660,000, which is fifth of the population of the state it is in. Cases due to non-accidental injury were excluded. In the study period, 10 patients were admitted for duodeno-jejunal flexure transection.

Operative Method

After stabilisation of the patients, they were taken for urgent laparotomy and repair. No laparoscopic approach was used for initial visualisation. Initial repair was preordained for all cases as per the institutional protocol. Mobilisation of second and proximal third of the duodenum was done by Kocher’s and Cattel’s manoeuvre. Distal third part of

Figure 1. Traditional technique of duodeno-jejunal flexure transection repair: 1. gastrostomy, 2. primary repair and pyloric exclusion, 3. formation of gastrojejunostomy
duodenum was mobilised by dividing the parietal fold inferior to the paraduodenal fossa. The fourth part was mobilised by freeing the ligament of Treitz. The Duodenojejunal flexure was mobilised allowing duodenum and jejunum to be in a linear orientation. The transected ends were debrided back to healthy tissue and an end-to-end duodeno-jejunalostomy was performed in two layers, using interrupted 2-0 polyglactin (inner) and 2-0 silk (outer) sutures. Stapled anastomosis was not used as it was not cost effective. An 18 French non adapted Nasojejunal tube was inserted across the anastomosis before completion. Furthermore an 18 French non adapted Nasogastric tube was inserted in stomach for gastric decompression. The Nasojejunal tube was used for decompression and therefore not used for feeding. A Feeding Jejunostomy (latex catheter, 12 Fr) was inserted by Witzel technique in every case for nutritional supplementation in case of possible enterocutaneous fistulation. Open made jejunal feeds were used for nutrition. In all the cases, peritoneal wash was given, and two abdominal drains were inserted at the end of the procedure. The same operating team was used for all cases (Figs. 2, 3, 4).

Results

Both nasogastric and nasojejunal tubes were removed after bowel movements started around the 7th or 8th postoperative day and feeding jejunostomy was removed on first follow-up visit (around 3 weeks). There was no incidence of duodenum related complications in any of the patients, and all were doing well on follow-up.

Of the 10 patients, one had multiple jejunal tears, and one had splenic laceration (Grade III) along with hemoperitoneum as associated injuries.

On admission, all the patients were given fluid resuscitation and investigated by routine blood investigations, X-Rays of chest and abdomen, USG chest and abdomen, and CECT abdomen. All were taken for laparotomy as all indicated features of perforation peritonitis.

The above mentioned technique was used in all patients, along with repair of associated injuries. Median operating time was around 240 minutes. Average duration of ICU stay was 1.4 days. Average duration of total hospital stay was 8.8 days. One patient required secondary suturing under local anesthesia.
due to wound dehiscence, all the other patients recovered without any complications.

Discussion

Most of the cases of hollow viscous perforation after blunt trauma occur are caused by Road Traffic Accidents and fall from heights and are often associated with multiple injuries. Duodenal injuries are relatively uncommon, around up to 4.1% of severe abdominal injuries (3); blunt duodenal injuries are much less common than penetrating injury (4). Maingot states that often the signs and symptoms in rupture of the small bowel may be vague and misleading,

| Table 1. Details of Cases of duodeno-jejunal flexure transection treated by end-to-end anastomosis with decompression via nasogastric and nasojejunal tubes, along with a feeding jejunostomy |
|---|---|---|---|---|---|---|---|
| No. | Age/ Sex | MOI | AIS | Delay to surgery (hrs) | Injuries on surgery* | Details of associated injuries | Duration of ICU stay (days) | Total hospital stay (days) | Outcome# |
| 1 | 24/M | RTA | 3 | 26 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 8 | Grade I |
| 2 | 17/M | RTA | 3 | 24 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 7 | Grade I |
| 3 | 32/F | RTA | 3 | 24 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 8 | Grade I |
| 4 | 36/M | RTA | 4 | 32 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | Jejunal loop resection and duodenojejunostomy | 2 | 10 | Grade IIIa (wound dehiscence) |
| 5 | 28/M | RTA | 4 | 24 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 9 | Grade I |
| 6 | 21/M | RTA | 3 | 26 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 8 | Grade I |
| 7 | 26/F | RTA | 3 | 36 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 8 | Grade I |
| 8 | 24/F | RTA | 5 | 28 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | Splenic laceration (Grade III) Hemoperitoneum | 4 | 14 | Grade I |
| 9 | 19/M | RTA | 3 | 30 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 8 | Grade I |
| 10 | 43/M | RTA | 3 | 28 | DJ flexure transection (Grade III) | Perforation Peritonitis (Purulent) | 1 | 8 | Grade I |

All cases were given a peritoneal wash and 2 abdominal drains were inserted at the end of the procedure.

*Injuries graded according to the American Association for the Surgery of Trauma Grading Systems.

#Outcomes graded according to the Clavien-Dindo Classification.

MOI - Mechanism of Injury, RTA - Road Traffic Accident, AIS - Abbreviated Injury Scale

![Nasojejunal tube](image4.png)
especially in retroperitoneal segments, so that the condition may go undiagnosed (5).

The diagnosis of duodenal or duodeno-jejunal injuries require a high degree of suspicion. Cope stated that occasionally, when complete transection of bowel occurs, the two ends may be temporarily closed due to contraction of the intestinal muscle, and the peristaltic movements are inhibited (6). If intestinal juice, including bile and pancreatic juice, leaks from the transected part, it will damage the surrounding tissues and lead to high-grade edema and inflammation. Late diagnosis is associated with increased morbidity and a longer hospital stay, relating to intestinal and mesenteric injury.

Immediate surgery following diagnosis is the current standard. The immediate control of bleeding from vascular structures or solid organs, such as the kidney or spleen, must be the gold standard manoeuvre in abdominal trauma surgery, followed by an immediate control of gastrointestinal contamination. The next step in the laparotomy must consist of a thorough abdominal cavity examination. The entire duodenum, including its four portions, must be carefully explored. Suspicious findings for a duodenal or duodeno-jejunal injury include duodenal subcutaneous emphysema, bile in the duodenal wall, free biliary fluid, the presence of retroperitoneal haematoma around the duodenum or a perirenal haematoma (1). Pyloric Exclusion usually entails a duodenal repair along with closure of the pylorus internally via an anterior gastrotomy, which is then used for a Gastrojejunostomy. Although technically simple, the Gastrojejunostomy permanently alters the gastrointestinal tract. The main concern in direct repair of a duodenal injury is protection of the suture line from the proteolytic action of upper gastrointestinal secretions.

Besides primary closure, other methods for diversion have been suggested such as use of tube duodenostomy for protection of duodenal suture line (7), ‘triple-tube’ decompression (nasogastric tube or gastrostomy, a retrograde and antegrade tubes for both duodenal decompression and feeding jejunostomy, respectively), or a ‘quadruple tube’ decompression by using an additional T-tube in the common bile duct (8-10). Girgin et al. reported that the addition of tube duodenostomy in primary repairs resulted in significant increase of the duration of hospital stay (11).

The most serious complication possible following repair of duodenal injury is duodenal fistula. Other complications include intra-abdominal abscess, duodenal obstruction, pancreatitis, and bile duct fistula. The overall mortality rate following duodenal injuries is 17%.

In our study, placing the NJ tube beyond the anastomotic site helps in decompression of the duodenal and pancreatic secretions, and 18-French NG tube in stomach helps in gastric decompression without need for duodenostomy or gastrostomy, respectively. Feeding jejuno-stomy enables early enteral nutrition that has a positive effect on immune function and nutrition status. Additional factors that contribute to the success of procedure are proper kocherization of the duodenum (ensuring tension-free repair), and good positioning of the biliary drainage tube. Thus, the procedure relies mainly on keeping the area empty and tension-free by decompressing all of the fluids that either enter in, or are secreted from, the region.

As it is a retrospective study and due to an overall low incidence of the Duodeno-Jejunal flexure transection, it would need a larger number of patients over a longer period of time to fully describe duodenum-related complications.

Conclusion

In Duodeno-Jejunal flexure transectional injury, prompt management in patients by end-to-end anastomosis, augmented with the placement of a Nasojejunal tube beyond the site of anastomosis along with a Nasogastric tube is an alternate, safe, and simple procedure in comparison with difficult procedures such as pyloric exclusion and gastrojejuno-stomy or external tube duodenostomy in patients with early or delayed presentation.
Conflict of Interest

The authors declare no conflicts of interests.

Ethics Approval

For performing this study ethical approval was obtained.

References

1. Santos EG, Sanchez AS, Verde JM, Marini CP, Asensio JA, Petrone P. Duodenal injuries due to trauma: Review of the literature. Cir Esp. 2015; 93(2):68-74. English, Spanish
2. Sahoo SP, Pattanayak SP, Mallick SN, Nayak SK, Pramanik S. A modified approach to decompression of primary repair of the Duodeno-jejunal flexure transection after blunt trauma. Trauma. 2014;16:2017-213.
3. Chinnery GE, Madiba TE. Pancreaticoduodenal injuries: re-evaluating current management approaches. S Afr J Surg. 2010;48(1):10-4.
4. Ballard RB, Badellino MM, Eynon CA, Spott MA, Slaz CF, Buckman Jr RF. Blunt duodenal rupture: a 6-year statewide experience. J Trauma. 1997; 43(2):229-32; discussion 233.
5. Mainioglu R. Abdominal operations. 2nd edn. New York: Appleton-Century-Crofts, Inc., 1948, p.806.
6. Cope Z. The early diagnosis of the acute abdomen. 9th edn. New York: Oxford University Press, 1946, p.211.
7. Chen G-q, Yang H. Management of duodenal trauma. Chin J Traumatol. 2011;14(1):61-4.
8. Crippa S, Falconi M, Bettini R, Barugola G, Germania S, Salvia R, et al. Isolated blunt duodenal trauma: delayed diagnosis and favorable outcome with “quadruple tube” decompression. JOP. 2007 Sep 7;8(5):617-20.
9. Ali WM, Ansari MM, Rizvi SAA, Rabb AZ, Mansoor T, Harris SH, et al. Ten-Year Experience of Managing Giant Duodenal Ulcer Perforations with Triple Tube Ostomy at Tertiary Hospital of North India. Indian J Surg. 2018;80(1):9-13.
10. Telfah MM. Isolated duodenal rupture: primary repair without diversion; is it safe? Review of literature. BMJ Case Rep. 2017;2017:bcr2016215251.
11. Girgin S, Gedik E, Yagmur Y, Uysal E, Baç B. Management of duodenal injury: our experience and the value of tube duodenostomy. Ulus Travma Acil Cerrahi Derg. 2009;15(3):467-72.