Lipocalin 2 Upregulation Protects Hepatocytes from IL1-β-Induced Stress

Ying Hu a Jihua Xue a Ying Yang a Xiaotang Zhou a Chaochao Qin a Min Zheng a Haihong Zhu a Yanning Liu a Weixia Liu a Guohua Lou a Jing Wang a Shanshan Wu a Zhi Chen a Feng Chen a

a State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China

Key Words
IL-1β • IL-6 • TNF-α • LCN2 • Hepatocytes

Abstract

Background: Lipocalin 2 (LCN2), a protein primarily produced by hepatocytes, is highly upregulated under various conditions that induce cellular stress, such as intoxication, infection or inflammation. However, the precise biological functions and underlying mechanisms of LCN2 in hepatocytes remains unknown. Methods: Hepatocyte stress was successfully induced by treating Huh7 cells with interleukin-1β (IL-1β). Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and LCN2 levels were measured in IL-1β treated Huh7 cells and supernatant. Additionally, microarray analysis was conducted to identify genes differentially expressed in LCN2-silenced and control Huh7 cells. Results: TNF-α, IL-6 and LCN2 were significantly elevated in Huh7 cells after IL-1β treatment. In LCN2-silenced Huh7 cells, expression of IL-6 and TNF-α was significantly increased when compared with the expression levels of control Huh7 cells. Furthermore, differentially expressed genes were observed between the LCN2-silenced and control cells. Microarray analysis indicated that LCN2 acted by influencing genes involved in protein metabolism, stress response, cell cycle and proliferation. Conclusions: Our results suggest that LCN2 upregulation protects hepatocytes from IL-1β-induced stress. Additionally, our microarray analysis of LCN2-silenced and control cells provides a better understanding of the mechanisms that may be influenced by LCN2 induction.

Introduction

The liver is an important immunological organ that responds quickly to bacterial infection, toxins and other sources of damaging cellular stress. Hepatic immune cells,
including Kupffer, dendritic, NK and NK T cells, constitute the bodies first line of defense against infection [1]. However, many of the cytokines produced by hepatic immune cells can cause hepatocyte injury, and IL-1β, IL-6 and TNF-α are especially dangerous [2, 3]. Furthermore, IL-1β has been reported to induce high levels of TNF-α [4, 5] and IL-6 [6] in hepatocytes and osteoblasts, respectively. Because 80% of the liver volume consists of hepatocytes [7], the prevention of hepatocyte injury is an important consideration when designing therapeutic strategies [2]. Hepatocytes have been demonstrated to synthesize numerous protective proteins in response to deleterious cytokine exposure [7], and one potentially protective protein whose induction has been reported in hepatocytes after cytokine exposure is Lipocalin 2 (LCN2).

LCN2, also known as neutrophil gelatinase-associated lipocalin (NGAL), is a 25-kDa secreted glycoprotein [8]. The production of LCN2 in hepatocytes has primarily been seen in response to bacterial infection or partial hepatectomy [9]. LCN2 is highly upregulated in response to intoxication, infection, inflammation and other forms of cellular stress [10-15]. Growing evidence suggests that LCN2 plays a protective role in hepatic injury [16]. Studies have reported that activation of the transcription factors STAT3 and NF-kB are responsible for LCN2 synthesis [9, 11, 17]; however, the mechanisms underlying LCN2’s induction and cellular protective role are still not fully understood. Among IL-1β, IL-6 and TNF-α, IL-1β is the strongest LCN2 inducer [10, 18]. In the present study, we assessed the protective effects of LCN2 on the liver, with special emphasis on the underlying molecular mechanisms, by establishing an hepatocyte IL-1β induced stress condition.

Materials and Methods

Cell culture

Huh7 cell were grown in DMEM medium (Gibco, Life Technologies, Grand Island, NY, USA) with 10% fetal bovine serum (Hyclone Laboratories, Logan, UT, USA), 100 U/ml penicillin and 100 µg/ml streptomycin in a humidified environment with 5% CO2 at 37°C.

Small Interfering RNA (siRNA) Gene Silencing

Huh7 cells were divided into the following groups: a blank group, an IL-1β treatment (10 ng/ml) group, an LCN2-silenced (siRNA) group and a negative control group. LCN2-siRNA (100 nM) and negative control siRNA were synthesized by RiboBio (RiboBio Co. Ltd., Guangzhou, China). siRNA constructs were transfected into Huh7 cells using Lipofectamine® RNAiMAX Reagent (Invitrogen, Life Technologies) according to the manufacturer’s protocol. After 24 h, IL-1β (10 ng/ml) was added to the media, and the cells were incubated for another 24 h. After incubation with IL-1β, the cell culture media was collected and cells were lysed for further analysis. siRNA sequences were as follows:

Sense: 5’ – GAAUGCAAUUCUCAGAGAAdTdT – 3’
Antisense: 3’ - dTdTCUUACGUUAAGAGUCUCUU – 5’

RNA isolation and real-time PCR

Total RNA was isolated from cells using Trizol (Invitrogen) according to the manufacturer’s instructions [19, 20]. RNA was quantified using a GeneQuant pro RNA/DNA Calculator spectrophotometer (Amersham Biosciences, Freiburg, Germany), and then first-strand cdNA was synthesized from 1 µg RNA in a 20 µl reaction volume using a PrimeScriptTM RT reagent Kit with gDNA Eraser (RR047A; Takara, Shiga, Japan) according to the manufacturer’s instructions. β-actin was used as a control to normalize total mRNA input and confirm cdNA synthesis efficiency. LCN2, IL-6, TNF-α, HSPA1A, SOCS5, CITED2 and β-actin mRNA expression was quantified via quantitative PCR using Power SYBR Green PCR Master MIX (RR820A; Applied Biosystems, Life Technologies) in an ABI Prism 7900 (Applied Biosystems) according to the manufacturer’s instructions. The primers were purchased from Sangon Biotech (Shanghai, China), and their sequences were as follows:

LCN2:
5’ - AAAGACCCGCAAAGATGTATG - 3’ (sense)
5’ - AACCTGGAACAAAAGTCCTGAT - 3’ (anti-sense)
IL-6:
5’ – ACCCCTGACCCAACCACAAAT - 3’ (sense)
5’ – AGCTGGGAGAATAGATGAGT - 3’ (anti-sense)

TNF-α:
5’ – CTGTAGCCATGTTGACAAAC - 3’ (sense)
5’ – GCTGTGATCTCTCAGCTCCAC - 3’ (anti-sense)

HSPA1A:
5’ –AGCTGGAGCAGTGTTAAC - 3’ (sense)
5’ – CAGCAATCTTGGAAGGCC - 3’ (anti-sense)

SOCS5:
5’ –AGAGCGCGCACCCAAG - 3’ (sense)
5’ – AGAGGAGGAGGTAGGCTC - 3’ (anti-sense)

CITED2:
5’ –GGCTGATTTAATGCCTGAAGACT - 3’ (sense)
5’ – TATGTGCTCGCCCATTAGGG - 3’ (sense)

β-actin:
5’ – GTGGCCGAGGACTTTGATTG - 3’ (sense)
5’ – AGTGGGGTGGCTTTTAGGATG - 3’ (anti-sense)

Western blot
Cell lysates (40 µg) were subjected to 10% SDS-PAGE and transferred onto PVDF membranes. Membranes were incubated in blocking solution containing 5% non-fat dry milk in TBST buffer for 1 h at room temperature, followed by overnight incubation at 4°C with the following primary antibodies: anti-NGAL (1:1,000, Abcam, USA) and anti-β-actin (1:3,000, MAI BIO Technology Co, Ltd., China). Antibodies were diluted in TBST with 5% milk powder. After incubation, the membranes were washed three times in TBST for 10 min, followed by incubation in goat anti-rabbit or goat anti-mouse secondary antibody (1:3,000) for 1 h at room temperature. After incubation with the secondary antibody, the washing step was repeated. Signals were detected by chemiluminescence (ECL) and exposure to X-ray film [21, 22].

ELISA
Huh7 cells were cultured in 24-well plates. After 24 hr of pre- and post-transfection IL-1β exposure, the cells were lysed (as described above), the supernatants were collected and the levels of IL-6 (Dakewe Biotech Company Limited, Beijing, China), TNF-α (R&D Systems, Inc., Minneapolis, MN, USA) and LCN2 protein (Ray Biotech, Inc. Norcross, GA, USA) were detected using commercial ELISA kits according to the manufacturer’s instructions. Absorbance was read at 450 nm with a microtiter plate reader (Bio-Rad, Hercules, CA, USA) [21]. Standard curves prepared with various concentrations of purified recombinant IL-6, TNF-α and LCN2 were used to calculate the levels of IL-6, TNF-α and LCN2 protein.

Microarray and gene ontology (GO) analysis
Total RNA was isolated from LCN2-silenced and negative control Huh7 cells. Differential expression was detected using an Agilent gene chip (Agilent Technologies Inc. Santa Clara, CA, USA) and subsequent data analysis was done using GO-analysis. Microarray analysis of 14,900 transcripts was performed. GO-analysis classified significantly different gene expression from three different angles, biological processes, cellular components and molecular functions [23]. Within the each category, a p value < 0.05 was used as the threshold of significance.

Statistical analysis
Data were analyzed using SPSS 17.0 for Windows (SPSS Inc., Chicago, IL, USA). Statistical analysis was performed using independent t-tests to evaluate differences between groups. Each in vitro experiment was repeated at least three times, and data were expressed as means ± SEM. p < 0.05 was considered statistically significant.
Results

Expression of LCN2, IL-6 and TNF-α were increased in IL-1β-induced hepatocytes

When compared with the control group, the mRNA expression levels of LCN2, IL-6 and TNF-α were significantly increased in Huh7 cells after IL-1β exposure (p < 0.01; Fig. 1). Furthermore, LCN2, IL-6 and TNF-α protein levels were also markedly higher after IL-1β exposure than in the control group (p < 0.01).

LCN2 silencing increased IL-6 and TNF-α mRNA and protein levels

After LCN2-siRNA treatment, LCN2 mRNA and protein levels were significantly lower than in control cells (p < 0.01; Fig. 2). In contrast, IL-6 and TNF-α mRNA expression levels in the LCN2-silenced group were significantly elevated (p < 0.01; Fig. 3A). The IL-6 and TNF-α protein levels in the supernatant of the LCN2-silenced group were also significantly higher when compared with the negative controls (p < 0.05).

GO-analysis results

When compared with negative controls, 180 genes were upregulated and 268 genes were downregulated in the LCN2-silenced group. Biological processes related to genes with differential expression were analyzed (Fig. 4A and Table 1). Genes related to the stress response, protein metabolism, cell cycle, proliferation, developmental processes and RNA metabolism were significantly differentially expressed (Table 2).

All five differentially expressed stress response genes were upregulated. Notably, among these genes, heat shock 70 kDa protein 1a (HSPA1A) and crystallin alpha B (CRYAB) were elevated 3.6- and 6.2-fold, respectively. Nine differentially regulated genes were involved in protein metabolism: Asb11, Dnajb5, Stk40, Plk2, Limk2, Bhs10, Abi1, Socs5, Cct8 and Pik3ca. Of these, the first five were upregulated and the last four were downregulated. Among the differentially regulated cell cycle and proliferation genes, four were upregulated and three
were downregulated. Notably, CITED2 exhibited a 7.1-fold decline. Additionally, three RNA metabolism genes were upregulated and four were downregulated, and five developmental genes were upregulated and six were downregulated.

Differentially expressed genes were localized in the membranes (32%), nucleus (19%), mitochondrion (4%), ER/Golgi (4%) and cytoskeleton (3%; Fig. 4B). Functionally, 13% of the differentially expressed genes were related to nucleic acid binding activity and 11% to signal transduction activity. A small percentage of these genes were also related to transcription...
regulatory, kinase, enzyme regulator, transporter and cytoskeletal activity. However, no molecular functions could be assigned to 56% of the differentially expressed genes (Fig. 4C).

In addition, the significance of the variations found for genes, such as \(HSPA1A, SOCS5 \) and \(CITED2 \), was verified by qRT-PCR (Fig. 5).

Table 1. Summary of differentially expressed genes in thirteen GO terms

GO Term	Count	p-value	Up-count	Down-count
cell cycle and proliferation	31	0.001025	14	17
Stress response	24	0.026066	15	9
transport	33	0.545953	11	22
developmental processes	47	0.033359	22	25
RNA metabolism	51	0.010529	18	33
DNA metabolism	5	0.675099	5	0
Protein metabolism	57	0.00065	25	32
Other metabolic processes	42	0.322742	14	28
Cell organization and biogenesis	34	0.073693	18	16
cell-cell signaling	6	0.319699	3	3
Signal transduction	49	0.677046	21	28
Cell adhesion	13	0.085557	6	7
death	14	0.25941	5	9

Discussion

Hepatocyte cellular stress was successfully induced via IL-1β treatment of Huh7 cells to investigate the precise biological functions and underlying mechanisms of LCN2. We demonstrated that TNF-α, IL-6 and LCN2 levels were significantly elevated in Huh7 cells after IL-1β treatment. Additionally, after siRNA knockdown of \(LCN2 \), IL-6 and TNF-α levels...
were significantly increased. Our results are supported by the results of a previous study by Erawan Borkham-Kamphorst et al. that reported that liver damage and the levels of pro-inflammatory cytokines in LCN2-/ mice were significantly increased after the mice were subjected to LPS, CCl4 and ConA treatment [16].

To investigate the mechanisms underlying LCN2’s hepatocyte protective role, microarray analysis of the differences between the LCN2-silenced and negative control groups was conducted. The resultant data indicated that the protective role of LCN2 was tightly related to genes involved in the stress response, protein metabolism, cell cycle and proliferation.

Heat shock proteins (HSPs) are molecular chaperones produced by cells in response to various stressful conditions. They are named according to their molecular weight, and HSP family members include HSP100, HSP90, HSP70, HSP60 and small HSP (sHSP) [24]. When activated by stressful stimuli, HSPs protect against inappropriate protein interactions and misfolding [25]. In the current study, heat shock 70kDa protein 1a (HSPA1A) was significantly elevated in the LCN2-silenced group. HSPA1A is a member of the HSP70 family, and protects proteins from aggregation and works together with other HSPs to mediate the folding of newly translated proteins in the cytosol and organelles [26]. In our study, the increased HSP expression in the LCN2-silenced cells indicated that the cells were under increased stress when LCN2 was knocked down. Supporting this conclusion, others have reported that LCN2 plays a protective role.

| Table 2. Differentially expressed genes involved in protein and RNA metabolism, developmental processes, stress response, cell cycle and proliferation |
|---|---|---|---|
| **Stress response** | Up | Fold change | Down | Fold change |
| Ndhp1 | 2.006045 | Elf2a | 2.284116 |
| Vgf | 4.842413 | Fbox31 | 2.199312 |
| Mtr1 | 2.264259 | Jasp2 | 2.222018 |
| P parad | 2.658682 | Rux1 | 2.390595 |
| Mapk9 | 2.976285 | Cat | 2.154408 |
| Cry2 | 2.996746 | Npm1 | 2.225445 |
| Foxo3 | 2.325413 | Tnf | 2.293686 |
| Hspal1 | 3.603816 | Prg | 2.965046 |
| Cyrb | 2.020697 | Mdk | 2.347856 |
| F9 | 13.292180 | | |
| Akrin | 2.531604 | Gita | 2.163245 |
| Herpud | 2.319134 | | |

Protein metabolism	Up	Fold change	Down	Fold change
Asb11	15.370274	Ab1	3.394974	
Hpn	2.242927	Elf2a	2.410745	
Psmh9	2.697259	March1	2.739084	
Dnajk1	4.802749	Cpd	2.407891	
Ube2e	2.564038	Pmch	2.374533	
Cskl1d	2.111092	Pesa27	2.084690	
Trbl1	2.213055	Hsc	2.538136	
Fbox33	2.682089	Utp2	2.214078	
Elf5	2.444075	Pigs	2.063632	
Ppp1rb	2.190372	Pik3r1	2.718698	
Pcm1	0.970623	Socs5	6.253598	
Red	2.290869	Tolr1	2.089313	
Mrp16	2.424925	Cellt	3.060617	
Sdk40	3.235775	Pik3r1	2.351721	
Sox7	2.103468	Rgl7	2.660059	
Pdcd4	2.407791	Cat2	2.759068	
Eps6ka1	2.322223	Acaca	2.173593	
Uspl2	2.529919	Prpf4b	2.404165	
Limk2	4.503347	Ppnt2	2.290155	
Bbs10	14.320525	Eps6ka3	2.077773	
Elf3h	2.034143	Pik3ca	6.901063	
Wbs1	2.598028			

Cell cycle and proliferation	Up	Fold change	Down	Fold change
Mync	3.996117	Adrn	11.463231	
Aktr2	3.345361	Slk	2.235528	
Trd1	2.945981	Det	2.246368	
H2afx	2.603217	Calc3	2.635705	
Rarg	2.575744	Kfl	2.249511	
Fox1c	2.332431	Rasb	2.164372	
Cebpe	2.787830	Fse	2.531148	
Mafg	2.027328	Pmfg	2.196084	
Espl1	2.645516	Vegla	4.090032	
Tnnp1	3.217375	Gnb1	2.322321	
Pkcb	3.399897	Cled2	2.125572	
Calm1	2.247160	Smo	2.556038	
Csk1	3.459275			

RNA metabolism	Up	Fold change	Down	Fold change
Zlfp503	2.478194	Ifd2	2.561707	
Med26	2.488779	Rnmt	2.128601	
Mync	3.996117	Nfl3	3.947778	
Dnajk1	2.499442	Cen1425	2.816671	
Rarg	2.573744	Srr1m	2.622486	
Fox1c	2.332431	Evr1r	2.166625	
Pup3e	4.689774	Img14c	2.216034	
Akrin2	2.531604	Nud1r2	3.336175	
Ctnf	2.557107	Irtp2p2	2.804514	
Hoxc	2.984191	Sp5	2.697480	
Ets2	2.067439	Zfip3602	2.185453	
Zfip3602	2.185453	Id2	2.343360	
Ccnl1	2.286740	Dcpx	2.058455	
Eppc1	2.290560	Atf2	2.221728	
Zrnb2b	2.470666	Vps36	2.413733	
Crpr	2.296580	Axl1	2.573926	
Sertad2	3.451000			
against cellular stress [12, 27]. In LCN2 deficient cells, HSPs were overexpressed to protect against protein denaturation and cellular stress. Therefore, LCN2 appears to act in collaboration with HSPs to protect hepatocytes from environmental insults.

The balance between protein synthesis and degradation is crucial for the maintenance of a healthy cellular environment. The accumulation of misfolded or redundant proteins causes toxicity to the cells [28]. Many of the differentially expressed genes identified by the current study, such as the suppressor of cytokine signaling 5 (SOCS5), are involved in protein metabolism. SOCS5 is a negative regulator of the JAK-STAT pathway [29-31], and was substantially decreased in LCN2-silenced cells. Recent data indicate that hepatocyte production of LCN2 is primarily regulated by the transcriptional factors STAT3 and NF-κB [9]. IL-1β and IL-6 are thought to enhance LCN2 levels by activating the NF-κB and JAK-STAT pathways, respectively [9, 10]. In our experiments, IL-1β treatment induced IL-6 expression, which may have contributed, in turn, to LCN2 elevation, indicating that IL-1β is a strong inducer of LCN2. It was reported that STAT1 and STAT3 phosphorylation were sustained and acute liver injury was enhanced in LCN2-/- mice exposed to LPS [16]. Additionally, bacteria-mediated serum LCN2 protein elevation was significantly reduced in IL-6RHep-/- mice. These results suggest that the LCN2 protein is closely associated with the JAK-STAT pathway [9]. In brief, our data strongly suggest that LCN2 plays a regulatory role in cytokine-induced hepatocyte stress by activating SOCS5, which, in turn, negatively regulates the JAK-STAT pathway.

LCN2 is reported to act as a growth factor in multiple cell types [32]. Our data supported this view by demonstrating that LCN2 expression affected the expression of cell cycle and proliferation related genes. Although leading to some proliferation inhibitor genes upregulation, LCN2 knockdown was more associated with the downregulation of genes whose downregulation has been closely linked with cell death. Our data also indicated that CITED2 expression, which has been reported to increase G1/S cell cycle progression and inhibit cellular quiescence [33], was significantly downregulated in LCN2-silenced cells. These findings indicate that LCN2 may improve hepatocyte survival by promoting cell cycle progression and proliferation.

Fig. 5. qRT-PCR verification of gene differential expression obtained with chip data. The differential expression of HSP1A1, SOCS5 and CITED2 was confirmed by qRT-PCR.
Conclusions

Our results suggest that LCN2 upregulation protects hepatocytes from IL-1β-induced stress. Additionally, microarray analysis indicates that LCN2 regulates protein metabolism, stress response, cell cycle and proliferation. Further studies are needed to investigate the mechanisms accounting for the protective effect of LCN2.

Abbreviations

IL-1β (interleukin-1β); IL-6 (interleukin-6); TNF-α (Tumor Necrosis Factor-α); LCN2 (Lipocalin 2); HSPs (heat shock proteins).

Disclosure Statement

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the State S&T Projects of 12th Five Year (2012ZX10002007 and 2012ZX10002005-003-005).

References

1 Racanelli V, Rehermann B: The liver as an immunological organ. Hepatology 2006;43:S54-62.
2 Malhi H, Gores GJ: Cellular and molecular mechanisms of liver injury. Gastroenterology 2008;134:1641-1654.
3 Szabo G, Mandrekar P, Dolganivc A: Innate immune response and hepatic inflammation. Semin Liver Dis 2007;27:339-350.
4 Yoshigai E, Hara T, Inaba H, Hashimoto I, Tanaka Y, Kaibori M, Kimura T, Okumura T, Kwon AH, Nishizawa M: Interleukin-1beta induces tumor necrosis factor-alpha secretion from rat hepatocytes. Hepatol Res 2014;44:571-583.
5 Olishi M, Kiyono T, Sato K, Tokuhara K, Tanaka Y, Miki H, Nakatake R, Kaibori M, Nishizawa M, Okumura T, Kon M: Pyroglu-leu inhibits the induction of inducible nitric oxide synthase in interleukin-1beta-stimulated primary cultured rat hepatocytes. Nitric Oxide 2015;44:81-87.
6 Kondo A, Otsuka T, Matsushima-Nishiwaki R, Kuroyanagi G, Mizutani J, Wada I, Kozawa O, Tokuda H: Inhibition of sapk/jnk leads to enhanced il-1-induced il-6 synthesis in osteoblasts. Arch Biochem Biophys 2013;535:227-233.
7 Gao B, Jeong WI, Tian Z: Liver: An organ with predominant innate immunity. Hepatology 2008;47:729-736.
8 Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N: Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1 beta through nuclear factor-kappa b activation. Liver Int 2011;31:656-665.
12 Roudkenar MH, Kuwahara Y, Baba T, Roushandeh AM, Ebishima S, Abe S, Okubo Y, Fukumoto M: Oxidative stress induced lipocalin 2 gene expression: Addressing its expression under the harmful conditions. J Radiat Res 2007;48:39-44.

13 Roudkenar MH, Halabian R, Roushandeh AM, Nourani MR, Masroori N, Ebrahimii M, Nikogoftar M, Rouhbakhsh M, Bahmani P, Najafabadi AJ, Shokrgozar MA: Lipocalin 2 regulation by thermal stresses: Protective role of lcn2/ngal against cold and heat stresses. Exp Cell Res 2009;315:3140-3151.

14 Chakraborty S, Kaur S, Guha S, Batra SK: The multifaceted roles of neutrophil gelatinase associated lipocalin (ngal) in inflammation and cancer. Biochim Biophys Acta 2012;1826:129-169.

15 Chen F, He JL, Zheng M, Zhu HH, Li SP, Wang K, Zhang XX, Zhao YR, Wu SS, Chen Z: Complementary laboratory indices for predicting the disease status of patients with hepatitis B virus infection. J Viral Hepat 2013;20:566-574.

16 Borkham-Kamphorst E, de Leur Ev, Zimmermann HW, Karlmark KR, Tihaa L, Haas U, Tacke F, Berger T, Mak TW, Weiskirchen R: Protective effects of lipocalin-2 (lcn2) in acute liver injury suggest a novel function in liver homeostasis. Biochimica Et Biophysica Acta-Mol Basis Dis 2013;1832:660-673.

17 Guo H, Jin D, Chen X: Lipocalin 2 is a regulator of macrophage polarization and nf-kappab/stat3 pathway activation. Mol Endocrinol 2014;28:1616-1628.

18 Cowland JB, Muta T, Borregaard N: Il-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin (ngal) is controlled by ikappab-zeta. J Immunol 2012;179:5985-5991.

19 Sola A, Weigert A, Jung M, Vinuesa E, Brecht K, Weis N, Brune B, Borregaard N, Hotter G: Sphingosine-1-phosphate signalling induces the production of lcn-2 by macrophages to promote kidney regeneration. J Pathol 2011;225:597-608.

20 Asimakopoulou A, Borkham-Kamphorst E, Henning M, Yagmur E, Gassler N, Liedtke C, Berger T, Mak TW, Weiskirchen R: Lipocalin-2 (lcn2) regulates plin5 expression and intracellular lipid droplet formation in the liver. Biochim Biophys Acta 2014;1842:1513-1524.

21 Yang Y, Li S, Yang Q, Shi Y, Zheng M, Liu Y, Chen F, Song G, Xu H, Wan T, He J, Chen Z: Resveratrol reduces the proinflammatory effects and lipopolysaccharide-induced expression of hmgb1 and tlr4 in raw264.7 cells. Cell Physiol Biochem 2014;31:3:1283-1292.

22 Liu WX, Zhu HH, Wu W, He JL, Chen Z: Inhibition effect produced by dominant negative mutant fusion protein pres2-thm-scfv-hbcdn on hbv replication in vitro. J Viral Hepat 2012;19:295-300.

23 Weber B, Bader N, Lehnh C, Simm A, Silber RE, Bartling B: Microarray-based gene expression profiling suggests adaptation of lung epithelial cells subjected to chronic cyclic strain. Cell Physiol Biochem 2014;33:1452-1466.

24 Doyle SM, Genest O, Wickner S: Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 2013;14:617-629.

25 Bozaykut P, Ozer NK, Karademir B: Regulation of protein turnover by heat shock proteins. Free Radical Biol Med 2014;71:195-209.

26 Shorter J: The mammalian disaggregate machinery: Hsp110 synergizes with hsp70 and hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 2011;6:e26319.

27 Roudkenar MH, Halabian R, Ghasemipour Z, Roushandeh AM, Rouhbakhsh M, Nekogoftar M, Kuwahara Y, Fukumoto M, Shokrgozar MA: Neutrophil gelatinase-associated lipocalin acts as a protective factor against h(2)o(2) toxicity. Arch Med Res 2008;39:560-566.

28 Amm I, Sommer T, Wolfr DH: Protein quality control and elimination of protein waste: The role of the ubiquitin-proteasome system. Biochim Biophys Acta 2014;1843:182-196.