Validation and application of a total dietary fiber determination method to meat products

A Bajic1, R B Petronijevic1, D Vranic1, D Trbovic1, N Betic1, A Nikolic1 and L Milojevic1

1 Institute of Meat Hygiene and Technology, Kacanskog 13, 11000 Belgrade, Serbia

E-mail: radivoj.petronijevic@inmes.rs

Abstract. This paper presents a modification of the reference method for the determination of dietary fiber in food, its validation using two quality control materials and application to meat products. Dietary fiber is a very important food ingredient with multiple positive effects in human nutrition. In recent decades, efforts have been made to enrich with fiber some foods that do not naturally contain fiber to a significant extent, such as meat products. Fiber content must be declared in accordance with legal regulations, and it is necessary to have reliable methods for determining their amount in food. The results obtained show the described modified and optimized method can be applied to meat products, with significant savings in the preparation time and consumption of reagents.

1. Introduction

Dietary fiber is, generally, carbohydrates that are indigestible by the human population. There are several ways to classify this fiber, but the most widely used classification is according to their solubility in water. Insoluble fiber is poorly fermented, while soluble fiber is more easily fermented [1].

More recently, the addition of dietary fiber to meat products is gaining in importance with novel understanding of fiber’s role in nutrition and human health aspects. Consumption of dietary fiber has a preventive role in the onset of several diseases. Fiber can act as a protective agent against cardiovascular diseases. It reduces the concentration of LDL in the blood and thus acts as reducing agent for hypercholesterolemia and hyperlipidemia [2-5]. Fiber shows affinity for bile acids and cholesterol metabolites, binding them to the small intestine during digestion and preventing their absorption, resulting in a reduction in blood cholesterol [6]. The fiber binds to water, which has a beneficial effect in the gastrointestinal tract, as the volume of the contents increases, reducing the time food is unnecessarily retained in the colon. Thus, the release of toxins and the emergence of cancer are prevented [7]. One of the most popular dietary fiber roles is the ability to regulate overweight and prevent obesity. Fiber consumption slows down the emptying of the stomach by decreasing the absorption of nutrients [8, 9], and thus, the feeling of satiety is prolonged [10-12].

On the other hand, from the aspect of the food industry, the use of dietary fiber has multiple positive effects. Effects that will be manifested in meat products depend on the type and quantity of fiber or the mixture of added fiber. Some of fiber’s properties, for example, to bind water, have a positive effect on food consistency, and since fiber is neutral, it will not change the sensory properties of the product. Fiber also has the ability to bind oils, which is essential for the stabilization of
emulsions [13-17]. However, in the food industry, economic profitability is also important. As the sources of dietary fiber are predominantly agricultural by-products which are relatively cheap, their use is very cost-effective [1].

Dietary fiber in the meat industry is mostly used in boiled sausages, fermented sausages, and minced meat products [18-21]. The recommended daily intake of dietary fiber is regulated and is not the same in all countries. It is believed the daily amount of fiber load should not exceed 28-36 g for adults, with 70-80% being insoluble fiber [1]. The main negative effect of excessive fiber intake in humans is the appearance of diarrhea.

For determination of total dietary fiber (TDF) content in food, the reference AOAC 985.29 [22] method is most often used. The aim of this paper was to examine possible application of this method using the FibreBag system and adequate optimization of this analytical process to meat products.

2. Materials and methods
All chemicals were purchased from Sigma-Aldrich (Merck, Darmstadt, Germany). The total dietary fiber assay kit was also from Sigma. All other chemicals and solvents were analytical grade. FibreBags S were from Gerhardt (Koenigswinter, Germany). Quality control (QC) materials T2477QC porridge oats and T2479QC bread crumbs were from Fera Science FAPAS (Sand Hutton, York, UK).

2.1. Meat products
TDF in 37 meat products from retail were analyzed by the proposed method. Samples were from different brands, manufacturers and retailers. The group consisted of 15 frankfurters, 10 Parisian sausages and 12 chicken burgers. All products had a declared TDF content. Meat products were defatted and dried prior to analysis. Fat content was utilized in calculating the final result % TDF in the meat products.

2.2. TDF determination
Reference method AOAC 985.29 “Total Dietary Fiber in Foods Enzymatic-Gravimetric Method” was optimized and applied to meat product samples [22]. The Gerhardt manual fiber analysis FibreBag system FBS6 was used for digestion.

According to the method procedure [22], TDF is determined on duplicate samples of dried and defatted (if fat content is >10%) material. Foods are cooked with heat stable α-amylase to induce gelatinization, hydrolysis and depolymerization of starch; incubated at 60°C with protease (to solubilize and depolymerize proteins) and amyloglucosidase (to hydrolyze starch fragments to glucose); and treated with four volumes of ethanol to precipitate soluble fiber and remove depolymerized protein and glucose (from starch). The residue is filtered; washed with 78% ethanol, 95% ethanol, and acetone; dried; and weighed. One duplicate is analyzed for protein and the other used to determine ash. The TDF is the weight of the filtered and dried residue less the weight of the protein and ash.

Taking advantage of FibreBag utilization, further investigations were also performed to optimize the process to digest multiple meat samples simultaneously.

2.3. Statistical analysis
Statistical evaluation of validation results was performed in MS Office Excel with Data Analysis ToolPack add-in.

3. Results and discussion
3.1. Method optimization and validation using QC materials
According to application notes from the manufacturer [23], FibreBags are used to determine TDF in the method’s filtration step, before determination of ash and proteins in the residue. The FibreBag method was optimized to digest six simultaneous probes (three samples, each in duplicate), and
considering savings of time and material, was evaluated using two QC materials. Six FibreBags with sample portions approximately 1g were placed in the holder and then subsequently digested in accordance with method procedure [22]. After rinsing with ethanol and acetone, FibreBags with samples were dried for 3 h in an oven and consecutively subjected to ash and protein content determination. This procedure provided six times lower consumption of reagents for digestion, and it reduced the analysis runtime.

Validation results of this method procedure are presented in Table 1. The TDF contents determined were inside the declared limits. Interday repeatability was calculated from three replicas of the same sample materials on three different days. TDF determination in QC material T2477QC showed better matching and lower dispersion than results for material T2479QC.

Table 1. Validation results of optimized method (* results are in %)

Material	Assigned value*	Low*	High*	Determined*	Low*	High*	Repeatability
T2477QC	9.50	6.92	12.09	9.52	9.23	9.71	0.25
T2479QC	6.58	4.79	8.37	5.42	4.82	7.01	0.71

3.2. Determination of TDF in meat products

Results of determination of TDF in meat products from retail are shown in Table 2. The TDF contents in the examined meat products were relatively uniform. Slightly greater amounts of TDF were observed in chicken burgers, due to their higher content of vegetables. Uncorrected TDF analysis results showed the fiber content in dried, defatted meat samples was from 2.5 to almost 5 percent.

Table 2. TDF in meat products

Meat products	Number of samples	TDF range (%)	Average TDF (%)	Uncorrected range (%)
Frankfurters	15	0.50-0.89	0.69	1.35-3.66
Sausages	10	0.61-0.83	0.71	1.43-3.86
Chicken burgers	12	0.68-1.07	0.88	1.67-4.71

4. Conclusion

The proposed modified procedure of the reference AOAC 985.29 method for determination of TDF in food using FibreBags can be satisfactorily employed in analysis of both meat products and fiber-rich, vegetable origin food.

The optimization results showed the time required for analysis is significantly reduced, and the consumption of the digestion reagent is six times lower than in the procedure given by the reference method and method recommended by the manufacturer. The consequences are a cost effective method and a larger number of analyzes completed in less time.

Acknowledgment

This work was supported by grants from the Ministry of Education, Science and Technological Development of the Republic of Serbia (project no. III 46009).

References

[1] Mehta N, Ahlawat S S, Sharma D P and Dabur R S 2015 Novel trends in development of dietary fiber rich meat products – a critical review J. Food Sci. Technol. 52 633–647

[2] Bosaeus I, Carlsson N G, Sandberg A S and Andersson H 1986 Effect of wheat bran and pectin on bile acid and cholesterol excretion in ileostomy patients Hum. Nutr. Clin. Nutr. 40 429–40
[3] Arjmandi B H, Sohn E, Juma S, Murthy S R and Daggy B P 1997 Native and partially hydrolyzed psyllium have comparable effects on cholesterol metabolism in rats J. Nutr. 127 463–469
[4] Chau C F, Huang Y L and Lin C Y 2004 Investigation of the cholesterol-lowering action of insoluble fiber derived from the peel of Citrus sinensis L. cv. Liucheng Food Chem. 87 361–366
[5] Kendall C W, Esfahani A and Jenkins D J A 2009 The link between dietary fiber and human health Food Hydrocoll. 24 42–48
[6] Eastwood M A 1992 The physiological effect of dietary fiber: an update Annu. Rev. Nutr. 12 19–35
[7] Gibson G R 2004 Fibre and effects on probiotics (the prebiotic concept) Clin. Nutr. Suppl. 1 25–31
[8] Behall K M 1997 Dietary fiber: nutritional lessons for macronutrient substitutes Anderson G H, Rolls B J, Steffen D G Nutritional implications of macronutrient substitutes (New York: Ann NY Acad Sci) pp 142–154
[9] Brennan C S 2005 Dietary fibre, glycaemic response, and diabetes Mol. Nutr. Food Res. 49 560–570
[10] Sharma A, Yadav B S and Ritika B 2008 Resistant starch: physiological roles and food applications Food Rev. Int. 24 193–234
[11] Mikusova L, Sturdik E, Mosovska S, Brindzova L and Mikulajova A 2009 Development of new bakery products with high dietary fibre content and antioxidiant activity for obesity prevention. Proceed. of 4th Int Dietary Fibre Conference Int Assoc for Cereal Science and Technology, Vienna, p 185
[12] Jane M, McKay J and Pal S 2019 Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review Nutrition 57 84–91
[13] García A B G, Rodríguez M I C, Hidalgo M D Rd Á and Bertram H C 2017 Water mobility and distribution during dry-fermented sausages “Spanish type” manufacturing and its relationship with physicochemical and textural properties: a low-field NMR study Eur. Food Res. Technol. 243 455–466
[14] Gibis M, Schuh V and Weiss J 2015 Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties Food Hydrocoll. 45 236–246
[15] Henning S S C, Tshalibue P and Hoffman L C 2016 Physico-chemical properties of reduced-fat beef species sausage with pork back fat replaced by pineapple dietary fibres and water LWT - Food Sci. Technol. 74 92–98
[16] Kehlet U, Pagter M, Aaslyng M D and Raben A 2017 Meatballs with 3% and 6% dietary fibre from rye bran or pea fibre - Effects on sensory quality and subjective appetite sensations Meat Sci. 125 66–75
[17] Oz F, Kızıl M, Zaman A and Turhan S 2016 The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop LWT - Food Sci. Technol. 65 861–867
[18] Garcia M L, Caceres E and Selgas M D 2006 Effect of inulin on the textural and sensory properties of mortadella, a spanish cooked meat product Int. J. Food Sci. Technol. 41 1207–1215
[19] Lin K W and Huang H Y 2003 Konjac/gellan gum mixed gels improve the quality of reduced-fat frankfurters Meat Sci. 65 749–755
[20] Fernandez-Lopez J, Sendra E, Sayas-Barbera E, Navarro C and Perez-Alvarez J A 2008 Physico-chemical and microbiological profiles of “salchichon” (Spanish dry-fermented sausage) enriched with orange fiber Meat Sci. 80 410–417
[21] Serdaroglu M 2006 The characteristics of beef patties containing different levels of fat and oat flour Int. J. Food Sci. Tech. 41 147–153
[22] AOAC International 2007 *Official Methods of Analysis of AOAC International*, 18th Ed. (Gaithersburg: AOAC International)

[23] Application FibreBags 2015 *Total dietary fibre in food*, Gerhardt Analytical systems