The general public’s perspectives on telemedicine during the COVID-19 pandemic in Korea: analysis of a nationwide survey

EunKyo Kang¹,²*, Hyejin Lee³*, Ki Jeong Hong⁴, Jieun Yun⁵, Jin Yong Lee⁶,⁷,⁸, Yun-Chul Hong⁸,⁹

¹National Cancer Control Institute, National Cancer Center, Goyang, Korea; ²Department of Family Medicine, National Cancer Center, Goyang, Korea; ³Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; ⁴Department of Emergency Medicine, Seoul National University Hospital, Seoul, Korea; ⁵Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Korea; ⁶Public Healthcare Center, Seoul National University Hospital, Seoul, Korea; ⁷HIRA Research Institute, Health Insurance Review and Assessment Service, Wonju, Korea; ⁸Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; ⁹Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea

OBJECTIVES: We investigated the awareness, experience, approval, intention to use, and the desired type of telemedicine among Korean general public.

METHODS: From November to December 2020, we conducted an online self-reported survey on awareness, experience, approval, and intent to use telemedicine services among Korean residents aged 20 years or older. A total of 2,097 participants completed the survey.

RESULTS: Of the 2,097 participants, 1,558 (74.3%) were aware of, 1,198 (57.1%) approved of, and 1,474 (70.3%) had the intention to use telemedicine. Participants from regions other than the Seoul metropolitan area and Daegu–Gyeongbuk Province (adjusted odds ratio [aOR], 1.29; 95% confidence interval [CI], 1.02 to 1.63), households with a monthly household income of US$6,000 or more (aOR, 1.44; 95% CI, 1.01 to 2.08), participants who had a college/university or associate’s degree (aOR, 1.35; 95% CI, 1.04 to 1.75) or a master’s degree or above (aOR, 1.73; 95% CI, 1.20 to 2.50), and housewives (aOR, 1.30; 95% CI, 1.03 to 1.64) had higher odds of approval. Elderly participants, those with a chronic disease (aOR, 1.26; 95% CI, 1.04 to 1.54), those who had experienced delays of healthcare services (aOR, 1.94; 95% CI, 1.27 to 2.96), and those who had experience with telemedicine (aOR, 4.28; 95% CI, 1.69 to 10.82) were more likely to intend to use telemedicine services. Regarding types of telemedicine, teleconsultation between doctors showed the highest approval rate (73.1%).

CONCLUSIONS: In the context of the coronavirus disease 2019 pandemic, more than 70% of participants had already used or intended to use telemedicine at some point. Groups with a substantial need for telemedicine were more in favor of telemedicine.

KEY WORDS: COVID-19, Telemedicine, Awareness, Participation, Intention
INTRODUCTION

Following the World Health Organization's pandemic declaration in March 2020, the coronavirus disease 2019 (COVID-19) outbreak has resulted in an unprecedented global health crisis [1-3]. Social distancing became the global norm in order to prevent the spread of this novel disease. In addition, as a suboptimal substitute for in-person care, telemedicine has been recommended for patients with both chronic and acute diseases to prevent the transmission of the virus [4]. In Korea, telemedicine first emerged in Daegu and Gyeongsangbuk Province, which were most strongly affected by COVID-19 in the early stages of the outbreak.

Globally, telemedicine services have emerged as an alternative to in-person care that does not interfere with the continuity or quality of care. Before the pandemic, telemedicine improved access to care for those in underserved areas who experienced difficulty accessing healthcare [5,6]. Previous studies have reported that telemedicine positively affected the prevention, evaluation, management, and monitoring of disease [7] and reduced healthcare costs due to a decrease in emergency room visits and hospitalizations [8]. Patients who received telemedicine services reported satisfaction with the overall services, most specifically in regards to communication with healthcare professionals, cost-effectiveness, and time savings [9]. Healthcare professionals have also reported that telemedicine is advantageous for communicating with patients, as it is cost-effective and time-effective. However, despite these benefits for expanding healthcare access, there are concerns about health inequities among vulnerable populations who are in a lower socioeconomic status and less likely to have access to the necessary technology and knowledge of how to use it [10,11].

It has been argued that the telemedicine system, which was efficiently built during the COVID-19 pandemic, should be actively utilized even after COVID-19 [12,13]. Telemedicine, from the doctor's perspective, has desirable outcomes, such as efficiency and cost-effectiveness of care. However, there has been limited research from patients' and the general population's perspectives towards telemedicine; thus, demands for telemedicine, attitudes towards it, and the desired type of telemedicine are not fully understood. In Korea, changes in perspectives towards telemedicine may occur, since telemedicine has been temporarily allowed during the pandemic. The aim of this study is to investigate the awareness, experience, approval, and intention to use telemedicine, as well as the perceived reasonable cost range and the desired type of telemedicine, in a nationwide sample.

MEASUREMENTS AND METHODS

Data collection and recruitment

We performed a cross-sectional study using survey data (n = 2,097) from November 10 to December 4, 2020. The survey candidates were selected using stratified sampling by age, sex, and geographical region. Those who were informed of the purpose of the study and consented to participate were enrolled in the study.

Measurements

The online survey consisted of a set of questions on basic demographics, self-reported changes in health status during the COVID-19 pandemic, chronic disease management, awareness of telemedicine, and attitudes toward telemedicine. In the survey, telemedicine was defined as "the remote consultation and prescription to patients over a wired/wireless phone and video without a direct visit to healthcare providers when doing so is deemed to be safe according to the physician's judgment." The demographic variables included age, sex, area of residence, household income, education level, supplementary private insurance, marital status, and occupation. Participants were categorized into 5 age groups (20-29, 30-39, 40-49, 50-59, and 60 and older), and 3 groups in terms of the area of residence (Seoul metropolitan area, Daegu-Gyeongsangbuk Province, and others), which were categorized according to the magnitude of the COVID-19 outbreak. Monthly household income (US$) was divided into 4 groups (≤ 2,000, 2,000-3,999, 4,000-5,999, ≥ 6,000), and education level was divided into 3 groups (high school graduate and under, college/university graduate or associate's degree, and master's degree or above). Marital status was categorized into 3 groups (single, married, and divorced or widowed), and occupations were divided into 4 groups (office workers, manual workers, self-employed, and housewife/student/unemployed). Self-reported health status before and after the COVID-19 pandemic was measured on a 5-point Likert scale, and then divided into 3 groups (unchanged, improved, or worsened) [14,15]. The questions regarding chronic disease management asked whether participants currently had a chronic disease (yes/no); then, those who did were further asked whether they have experienced delays in healthcare services after the COVID-19 outbreak, for either chronic disease management ("Have you ever experienced delays in consultation or had problems while you needed a prescription refill or consultation resulting from an uncontrolled chronic disease?") or any other conditions ("Have you ever experienced delays or disruptions in healthcare services, such as consultations, tests, and treatment?").

Lastly, participants were asked about their awareness, experience, approval, and intent to use telemedicine services. They were asked to identify a reasonable range of cost as well as other factors important for telemedicine use. Regarding awareness, participants were asked to indicate whether they had heard of telemedicine. Those who indicated that they were aware of telemedicine were further asked whether they had experience with telemedicine. Then, a yes-or-no question inquired about participants' feeling of approval of telemedicine after the COVID-19 pandemic. Participants were also asked to indicate whether they had a very low, low, high, or very high degree of intention to use telemedicine services. Additionally, participants were asked to choose their level of approval for each of the 6 types of telemedicine, which included (1) tele-consultations between doctors, (2) telemedicine between a doctor and a patient, (3) telemedicine between a doctor and a patient's caregiver, (4) telemedicine for diagnosis or consultation (e.g. telepathology, teleradiology), (5) remote care in a ward or in-
tensive care unit (e.g., a tele-intensive care unit), and (6) telemedicine in which a doctor continuously monitors a patient’s condition. Regarding the reasonable cost of telemedicine, participants were asked an open-ended question and answered with a specific amount. Lastly, regarding the factors to be considered for telemedicine, participants were asked, among a choice of 5, to select the factor with the highest priority. The choices included (1) the possibility of connecting to face-to-face treatment, if necessary, (2) availability whenever the patient needs, (3) management tailored to each patient’s situation and characteristics, (4) accessibility for use independent of disease type, and (5) availability without economic burden.

Statistical analysis
We performed descriptive statistics and the chi-square test on demographics, awareness, experience, approval, intention to use, approval rate by type of telemedicine, and factors to be considered for telemedicine. We then performed multivariate logistic regression on factors associated with approval and intention to use telemedicine and the t-test or analysis of variance on the average reasonable copay amounts for telemedicine. Statistical significance was defined as a two-tailed p-value < 0.05. All statistical analyses were performed using Stata version 23 (StataCorp., College Station, TX, USA).

Ethics statement
This study protocol was approved by the Seoul National University Hospital Institutional Review Board (IRB approval No. E-2011-102-1173).

RESULTS
Baseline characteristics of participants and people who had experience with telemedicine
Table 1 shows the basic demographics and awareness of telemedicine among the study participants. The study participants were evenly distributed by sex and across all age groups. Of the 2,097 participants, 401 (19.1%) lived in the Seoul metropolitan area, 196 (9.4%) lived in Daegu-Gyeongbuk Province, and 1,500 (71.5%) lived in other areas. The lowest household income group (below US$2,000) was the least frequent, with 192 (9.2%) participants. The majority of participants were college/university graduates or had associate's degrees (n = 1,498, 71.4%), and 1,718 (81.9%) held supplementary private health insurance. Married participants (n = 1,251, 59.7%) and office workers comprised majorities (n = 1,110, 52.9%). There were 1,081 (51.6%) participants with more than one pre-existing chronic condition. The majority of participants were college/university graduates or had associate's degrees (n = 1,498, 71.4%), and 1,718 (81.9%) held supplementary private health insurance. Married participants (n = 1,251, 59.7%) and office workers comprised majorities (n = 1,110, 52.9%). There were 1,081 (51.6%) participants with more than one pre-existing chronic condition. The majority of participants were college/university graduates or had associate's degrees (n = 1,498, 71.4%), and 1,718 (81.9%) held supplementary private health insurance. Married participants (n = 1,251, 59.7%) and office workers comprised majorities (n = 1,110, 52.9%). There were 1,081 (51.6%) participants with more than one pre-existing chronic condition. The majority of participants were college/university graduates or had associate's degrees (n = 1,498, 71.4%), and 1,718 (81.9%) held supplementary private health insurance. Married participants (n = 1,251, 59.7%) and office workers comprised majorities (n = 1,110, 52.9%). There were 1,081 (51.6%) participants with more than one pre-existing chronic condition.

Table 1. Baseline characteristics of the study participants

Characteristics	Total	Experienced	p-value
Total	2,097 (100)	67 (4.3)	
Sex			
Male	1,058 (50.5)	37 (4.7)	
Female	1,039 (49.6)	30 (3.9)	0.450
Age (yr)			
20-29	377 (18.0)	10 (4.4)	
30-39	411 (19.6)	14 (5.0)	0.720
40-49	485 (23.1)	18 (5.0)	0.710
50-59	479 (22.8)	13 (3.2)	0.470
≥60	345 (16.5)	12 (4.2)	0.920
Region			
Seoul metropolitan area	401 (19.1)	23 (7.9)	0.240
Daegu-Gyeongbuk Province	196 (9.4)	7 (4.8)	0.001
Others	1,500 (71.5)	37 (3.3)	
Household income (US$)			
<2,000	192 (9.2)	4 (3.2)	
2,000-3,999	684 (32.8)	26 (5.3)	0.340
4,000-5,999	610 (29.2)	16 (3.5)	0.890
≥6,000	600 (28.8)	21 (4.4)	0.550
Educational status			
High school graduate and under	359 (17.1)	7 (2.7)	
College/university graduate	1,498 (71.4)	51 (4.6)	0.190
Master’s degree or above	240 (11.4)	9 (5.0)	0.220
Private insurance			
Yes	1,718 (81.9)	63 (4.8)	
No	379 (18.1)	4 (1.6)	0.030
Marital status			
Single	755 (36.0)	17 (3.3)	
Married	1,251 (59.7)	48 (4.9)	0.160
Widowed/divorced	91 (4.3)	2 (2.9)	0.830
Job			
Office worker	1,110 (52.9)	40 (4.8)	
Manual worker	212 (10.1)	8 (5.4)	0.760
Own business	193 (9.2)	7 (4.5)	0.860
Housewife/Student/Unemployed	582 (27.8)	12 (2.9)	0.110
Having a chronic illness			
No	1,016 (48.5)	13 (1.8)	<0.001
Yes	1,081 (51.6)	54 (6.3)	
Subjective change in health status			
No change	1,478 (70.5)	32 (3.0)	0.001
Improved	199 (9.5)	13 (8.3)	
Worsened	420 (20.0)	22 (6.9)	0.002
Delayed treatment for chronic conditions			
No	973 (90.0)	22 (2.9)	<0.001
Yes	108 (10.0)	32 (34.4)	
Delayed elective treatment and treatment for non-chronic conditions			
No	1,938 (92.4)	33 (2.3)	
Yes	159 (7.6)	34 (25.0)	<0.001

Values are presented as number (%).
Awareness, approval, and intention to use telemedicine

Of the 2,097 participants, 1,558 (74.3%) responded that they were aware of telemedicine. Older participants were more likely to be aware of telemedicine. All age groups showed a higher awareness rate than those 20-29 years old (p<0.05). Participants with higher monthly household income, corresponding to US$4,000-$5,999 (75.6 vs. 64.6%, p = 0.003) and ≥ US$6,000 (78.8 vs. 64.6%, p<0.001), participants who had supplementary health insurance (75.7 vs. 67.8%, p = 0.001), participants who were married (78.2 vs. 67.6%, p<0.001), and participants with underlying chronic diseases (78.9 vs. 69.4%, p<0.001) were more likely to be aware of telemedicine than their counterparts. Participants who had experienced delays in healthcare services for reasons other than chronic diseases were more likely to be aware of telemedicine than those who had not (85.5 vs. 73.4%, p = 0.001). With regard to approval, 1,198 (57.1%) of the total study population approved of telemedicine services. Females had a lower rate of approval than males (53.4 vs. 60.8%, p = 0.001). All age groups showed a higher approval rate than those 20-29 years old (p = 0.02). Participants with a monthly income of more than US$6,000 (60.3 vs. 50.0%, p = 0.010), participants with a master’s degree or above (63.8 vs. 54.0%, p = 0.020), married participants (61.7 vs. 49.3%, p<0.001), self-employed participants (65.8 vs. 55.7%, p = 0.009) had higher rates of approval of telemedicine. Participants with chronic diseases (60.8 vs. 53.3%, p = 0.001), and participants who experienced delays in healthcare for conditions other than chronic diseases (66.0 vs. 56.4%, p = 0.020) were more likely to approve telemedicine than their counterparts. Among all participants, 1,474 (70.3%) intended to use telemedicine. Compared to those in their 20s, all other age groups were significantly more likely to use telemedicine (p<0.03). Those without supplementary health insurance were less likely to use telemedicine treatment (62.5 vs. 72.0%, p<0.001). Married participants, (74.3 vs. 63.7%, p<0.001), those with chronic diseases (66.6 vs. 73.7%, p<0.001). Additionally, those who experienced delays in healthcare for a chronic disease after the COVID-19 outbreak (72.6 vs. 84.3%, p = 0.010) or for any other conditions (69.4 vs. 81.8%, p = 0.001), as well as those who had previously received telemedicine (72.6 vs. 92.5%, p = 0.001) had more intent to use telemedicine (Table 2).
Table 2. Awareness, approval, and intention to use telemedicine

Variables	Awareness	p-value	Approval	p-value	Intention to use	p-value
Total	1,558 (74.3)		1,198 (57.1)		1,474 (70.3)	
Sex						
Male	790 (74.7)		643 (60.8)		757 (71.6)	
Female	768 (73.9)	0.690	555 (53.4)	0.001	717 (69.0)	0.200
Age (yr)						
20-29	230 (61.0)		169 (44.8)		226 (60.0)	
30-39	278 (67.6)	0.050	219 (53.3)	0.020	278 (67.6)	0.030
40-49	359 (74.0)	<0.001	263 (54.2)	0.006	342 (70.5)	0.001
50-59	403 (84.1)	<0.001	312 (65.1)	<0.001	348 (72.7)	<0.001
≥60	288 (83.5)	<0.001	235 (68.1)	<0.001	280 (81.2)	<0.001
Region						
Seoul metropolitan area	291 (72.6)		214 (53.4)		279 (69.6)	
Daegu-Gyeongbuk Province	145 (74.0)	0.720	109 (55.6)	0.610	137 (69.9)	0.940
Others	1,122 (74.8)	0.360	875 (58.3)	0.070	1,058 (70.5)	0.710
Household income (US$)						
<2,000	124 (64.6)		96 (50.0)		126 (65.6)	
2,000-3,999	491 (71.8)	0.060	386 (56.4)	0.110	483 (70.6)	0.190
4,000-5,999	461 (75.6)	0.003	352 (57.7)	0.060	428 (70.2)	0.240
≥6,000	473 (78.8)	<0.001	362 (60.3)	0.010	432 (72.0)	0.090
Educational status						
High school graduate and under	257 (71.6)		194 (54.0)		249 (69.4)	
College/university graduate	1,121 (74.8)	0.210	851 (56.8)	0.340	1,052 (70.2)	0.750
Master's degree or above	180 (75.0)	0.360	153 (63.8)	0.020	173 (72.1)	0.470
Private insurance						
Yes	1,301 (75.7)		998 (58.1)		1,237 (72.0)	
No	257 (67.8)	0.001	200 (52.8)	0.060	237 (62.5)	<0.001
Marital status						
Single	510 (67.6)		372 (49.3)		481 (63.7)	
Married	978 (78.2)	<0.001	772 (61.7)	<0.001	929 (74.3)	<0.001
Widowed/divorced	70 (76.9)	0.070	54 (59.3)	0.070	64 (70.3)	0.210
Job						
Office worker	835 (75.2)		618 (55.7)		781 (70.4)	
Manual worker	149 (70.3)	0.130	125 (59.0)	0.380	158 (74.5)	0.220
Own business	157 (81.4)	0.070	127 (65.8)	0.009	144 (74.6)	0.230
Housewife/Student/Unemployed	417 (71.7)	0.110	328 (56.4)	0.790	391 (67.2)	0.180
Having a chronic illness						
No	705 (69.4)	<0.001	541 (53.3)	0.001	677 (66.6)	<0.001
Yes	853 (78.9)		657 (60.8)	0.001	797 (73.7)	<0.001
Subjective change in health status						
No change	1,084 (73.3)		843 (57.0)		1,042 (70.5)	
Improved	156 (78.4)	0.130	117 (58.8)	0.640	144 (72.4)	0.590
Worsened	318 (75.7)	0.330	238 (56.7)	0.890	288 (68.6)	0.470
Delayed treatment for chronic conditions						
No	760 (78.1)		592 (60.8)		706 (72.6)	
Yes	93 (86.1)	0.060	65 (60.2)	0.890	91 (84.3)	0.010
Delayed elective treatment and treatment for non-chronic conditions						
No	1,422 (73.4)		1,093 (56.4)		1,344 (69.4)	
Yes	136 (85.5)	0.001	105 (66.0)	0.020	130 (81.8)	0.001
Experience with telemedicine						
No	-	965 (64.7)		0.360	1,083 (72.6)	
Yes	-	47 (70.2)		0.360	62 (92.5)	0.001

Values are presented as number (%).
Variables	Total	1,386 (66.1)	1,345 (64.8)	1,476 (70.4)				
Sex								
Male	763 (72.1)	0.030	770 (74.1)	0.020	759 (71.7)	0.020	736 (70.8)	0.050
Female	623 (60.8)	0.280	658 (63.3)	0.230	627 (60.7)	0.220	600 (58.6)	0.250
Age (yr)								
20-29	214 (56.8)	0.040	238 (57.9)	0.020	251 (61.4)	<0.001	223 (62.4)	0.020
30-39	275 (66.9)	0.001	314 (64.7)	0.001	364 (75.1)	<0.001	318 (70.3)	0.009
40-49	381 (69.5)	0.001	322 (72.5)	<0.001	378 (75.9)	<0.001	374 (70.3)	<0.001
≥60	71 (54.3)	0.001	84 (53.9)	<0.001	120 (51.1)	0.001	124 (51.1)	0.001
Region								
Seoul-Gangnam area	310 (77.3)	0.070	269 (67.1)	0.020	259 (63.8)	0.060	298 (74.3)	0.380
Daegu-Gyeongbuk Province	138 (70.4)	0.050	129 (65.9)	0.020	131 (69.2)	0.060	123 (69.0)	0.590
Others	1,085 (72.3)	0.050	988 (65.9)	0.050	926 (61.7)	0.080	974 (64.9)	0.080
Household income (US$)								
<2,000	135 (70.3)	0.070	111 (57.8)	0.030	100 (52.1)	0.020	124 (64.6)	0.120
2,000-3,999	472 (69.1)	0.050	396 (66.4)	0.050	471 (68.9)	0.050	406 (64.6)	0.110
4,000-5,999	469 (66.4)	0.050	421 (66.9)	0.050	450 (71.3)	0.050	416 (64.4)	0.380
6,000-9,999	453 (66.3)	0.050	417 (66.9)	0.050	430 (71.2)	0.050	414 (71.2)	0.380
Educational status								
High school graduate and under	251 (69.4)	0.010	226 (63.0)	0.010	224 (64.4)	0.010	231 (64.5)	0.010
College/university graduate	1,109 (70.4)	0.010	988 (66.6)	0.010	930 (62.1)	0.010	965 (64.2)	0.070
Master’s degree or above	1,157 (72.3)	0.010	1,022 (67.5)	0.010	1,093 (67.1)	0.010	1,065 (69.2)	0.070
Private insurance								
Yes	1,276 (74.3)	0.010	1,199 (68.5)	0.010	1,256 (72.5)	0.010	1,217 (70.8)	0.440
No	257 (67.8)	0.010	227 (59.9)	0.010	219 (59.9)	0.010	228 (58.2)	0.010
Marital status								
Married	594 (66.8)	0.001	438 (58.0)	<0.001	409 (64.1)	<0.001	481 (65.1)	<0.001
Widowed/divorced	71 (78.0)	0.030	61 (67.5)	0.001	59 (74.4)	0.050	70 (76.9)	0.050
Educational status								
Private insurance								
Yes	1,276 (74.3)	0.010	1,199 (68.5)	0.010	1,256 (72.5)	0.010	1,217 (70.8)	0.440
No	257 (67.8)	0.010	227 (59.9)	0.010	219 (59.9)	0.010	228 (58.2)	0.010
Job								
Office worker	803 (72.3)	0.030	698 (62.1)	0.020	790 (71.1)	0.010	785 (70.7)	0.020
Manual worker	154 (72.6)	0.030	134 (65.9)	0.020	153 (72.2)	0.030	148 (75.2)	0.040
Household	147 (67.6)	0.020	131 (67.9)	0.020	147 (70.3)	0.050	134 (70.4)	0.350
Student/Unemployed	425 (72.7)	0.050	385 (66.2)	0.050	430 (71.1)	0.050	381 (71.1)	0.050
Have a chronic illness								
Yes	707 (66.8)	0.010	691 (66.8)	0.010	706 (69.5)	0.010	706 (69.5)	0.010
No	826 (76.4)	0.010	754 (69.8)	<0.001	785 (70.9)	0.010	785 (70.9)	0.010
Table 3. Continued

Variables	Tele-consultations between doctors	p-value	Telemedicine between a doctor and a patient	p-value	Telemedicine between a doctor and a patient’s caregiver	p-value	Telemedicine for diagnosis or consultation	p-value	Remote care in a ward or ICU	p-value	Telemedicine in which the doctor continuously monitors the patient’s condition	p-value
Subjective change in health status												
No change	1,067 (72.2)	0.810	973 (65.8)	0.160	1,058 (71.6)	0.220	945 (63.9)	0.510	130 (65.3)	0.100	1,049 (71.0)	0.920
Improved	142 (71.4)		121 (60.8)		134 (67.3)		132 (66.3)		130 (65.3)		130 (65.3)	
Worsened	324 (77.1)	0.040	292 (69.5)	0.160	305 (72.6)	0.680	282 (67.1)	0.230	297 (70.7)	0.920	1,124 (75.4)	0.130

Delayed treatment for chronic conditions

| No | 1,170 (78.5) | 0.680 | 1,059 (71.0) | 0.250 | 1,008 (67.6) | 0.860 | 654 (67.2) | 0.780 | 714 (73.4) | | 1,124 (75.4) | |
| Yes | 54 (80.6) | | 47 (70.2) | | 52 (77.6) | | 46 (68.7) | | 45 (67.2) | | 1,124 (75.4) | |

Delayed elective treatment and treatment for non-chronic conditions

| No | 748 (76.9) | 0.280 | 682 (70.1) | 0.460 | 718 (73.8) | 0.170 | 74 (68.5) | 0.780 | 71 (65.7) | 0.090 | 1,363 (70.3) | |
| Yes | 78 (72.2) | | 72 (66.7) | | 65 (60.2) | | 74 (68.5) | | 71 (65.7) | | 1,363 (70.3) | |

Experience with telemedicine

| No | 1,409 (72.7) | 0.150 | 1,268 (65.4) | 0.030 | 1,371 (70.7) | 0.020 | 1,254 (64.7) | 0.740 | 113 (71.1) | 0.840 | 1,363 (70.3) | |
| Yes | 124 (78.0) | | 118 (74.2) | | 109 (68.6) | | 105 (66.0) | | 113 (71.1) | | 1,363 (70.3) | |

Values are presented as number (%).

Table 4. Factors affecting approval and intention to use telemedicine

Variables	Approval of telemedicine	Intention to use telemedicine
Sex		
Male	1.00 (reference)	1.00 (reference)
Female	0.73 (0.61, 0.88)	0.93 (0.76, 1.13)
Age (yr)		
<20	1.00 (reference)	1.00 (reference)
≥20	1.00 (reference)	1.00 (reference)
Region		
Seoul metropolitan area	1.00 (reference)	1.00 (reference)
Daegu–Gyeongbuk Province	1.00 (reference)	1.00 (reference)
Others	1.00 (reference)	1.00 (reference)
Household income (US$)		
<2,000	1.00 (reference)	1.00 (reference)
2,000–3,999	1.00 (reference)	1.00 (reference)
4,000–5,999	1.00 (reference)	1.00 (reference)
≥6,000	1.00 (reference)	1.00 (reference)
Educational status		
High school graduate and under	1.00 (reference)	1.00 (reference)
College/university graduate	1.00 (reference)	1.00 (reference)
Master’s degree or above	1.00 (reference)	1.00 (reference)
Private insurance	1.00 (reference)	1.00 (reference)
Having a chronic illness	1.00 (reference)	1.00 (reference)
Delayed elective treatment and treatment for non-chronic conditions	1.00 (reference)	1.00 (reference)

(Continued to the next page)
Table 4. Continued

Variables	Approval of telemedicine	Intention to use telemedicine
Experience with telemedicine³		
No	1.00 (reference)	1.00 (reference)
Yes	1.16 (1.01, 1.32)	4.28 (1.69, 10.82)

Values are presented as adjusted odds ratio (95% confidence interval).
¹Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, and having a chronic illness.
²Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, having a chronic illness, and experience with telemedicine.
³Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, and change in health status.
⁴Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, having a chronic illness, change in health status, and experience with telemedicine.
⁵Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, having a chronic illness, change in health status, and experience with telemedicine.

Table 4. Continued

Experience with telemedicine

Values are presented as adjusted odds ratio (95% confidence interval).
¹Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, and having a chronic illness.
²Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, having a chronic illness, and experience with telemedicine.
³Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, and change in health status.
⁴Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, having a chronic illness, change in health status, and experience with telemedicine.
⁵Adjustment for sex, age, region, household income, educational status, private insurance, marital status, job status, having a chronic illness, change in health status, and experience with telemedicine.

face treatment if necessary (23.6%). Socio-demographic factors, including sex, monthly household income, education level, supplementary private insurance, and occupation, were associated with the prioritization of factors considered to be important for telemedicine (Supplementary Material 2).

DISCUSSION

Telemedicine has contributed to the ability to continue delivering healthcare services under emergency circumstances in order to prevent the collapse of the health system [16]. The use of telemedicine to contain the spread of COVID-19 has become a global phenomenon [17,18]. Correspondingly, the Korean government has temporarily allowed teleconsultations starting on March 2, 2020 [19]. In this study, we investigated public opinion on telemedicine through a representative sample of the Korean population. We found that more than half of the total study population agreed with the implementation of telemedicine. Although telemedicine has been useful during emergency circumstances such as COVID-19 [20], several concerns remain that it is difficult to conduct direct consultations and complete lab tests. The main reported barriers to the implementation of telemedicine are insufficient understanding and access among users [21]. Furthermore, the sustainability of telemedicine in Korea is still controversial due to legal and ethical issues, as well as safety and responsibility among healthcare providers [22]. We explored these questions through the perspective of the public, as healthcare consumers, towards telemedicine, which will affect whether telemedicine will be implemented in the long term.

In this study, more than 70% of participants intended to use telemedicine, and this intention was associated with older age. Considering that the usage rate of telemedicine was higher among the younger age group [23], our study result suggests that older people have a high awareness of telemedicine and intention to use it, but there are barriers to actual use. Having additional private health insurance and a pre-existing chronic disease also showed a positive association with intention to use telemedicine. These findings aligned with previous studies that people with higher household income and chronic diseases were more likely to receive telemedicine services during the COVID-19 pandemic [23]. Similar to previous findings that people who received guidance on how to use the telemedicine platform and who had previously experienced telemedicine were more likely to approve of telemedicine, we found that those who previously used telemedicine were more in favor of the long-term use of telemedicine. In addition, participants who experienced delays in healthcare due to the COVID-19 outbreak were more likely to approve of telemedicine, which may reflect the need for remote care [24]. The main advantage felt by patients who have actually experienced telemedicine was convenience, and non-delayed care delivery and the benefits of receiving care in their own home were important factors for patients [25].

In regard to types of telemedicine services, teleconsultations between doctors had the highest approval rate, followed by teleradiology or telepathology. These results were different from those of previous studies, according to which patients agreed most with routine doctor visits, followed by post-surgery visits, expert consultations, and surgical remote mentoring in previous studies [26]. Teleconsultation between doctors was occasionally used in practice prior to the pandemic because it promoted access to healthcare in rural areas and increased the capacity of primary healthcare physicians [27,28], and a report found that medical staff working at private hospitals experienced fewer restrictions or barriers to telemedicine than medical staff working at university hospitals [29]. Thus, there was already a certain level of social acceptance for teleconsultation prior to its widespread use during the pandemic. Telemedicine between a doctor and a patient’s caregiver had the lowest approval rate, which may reflect the anxiety of the public regarding non-face-to-face care through a patient’s caregiver without direct patient contact.

In this study, the factor considered to be most important among study participants was management tailored to each patient’s situation and characteristics. According to Loeb et al. [30], selecting appropriate patients for telemedicine should be included in the task checklist for telemedicine launch. Likewise, it is remarkably important not only that appropriate patients should be selected for telemedicine services, but that the type of telemedicine should be tailored to each individual [31]. Previous studies that dealt with the advantages and disadvantages of telemedicine found that the main advantage was a reduction in travel and associated costs. Next, tailored care should be considered important, considering that physical examinations are limited in telemedicine. The possibility of connecting to face-to-face treatment if necessary is also an important factor related to previously reported limitations. The factor rated important by the fewest participants was accessibility for use independent of disease type, reflecting that patient-specific
characteristics were considered more significant than disease-specific characteristics in telemedicine.

There are several limitations of this study. First, since the study population was limited to those speaking Korean and residing in Korea, our results may have limited generalizability to other populations. Second, although the study participants were recruited by stratifying the Korean population by age, sex, and region, selection bias may have occurred because they were given the option to participate in this study.

In conclusion, the COVID-19 pandemic has marked a turning point for not only healthcare providers, but patients and society. When we analyzed the survey results, it was found that the majority of the public was in favor of the use of telemedicine even after COVID-19. Interestingly, the approval of telemedicine had a positive correlation with age, indicating that technology use may not be a barrier to using telemedicine. Individuals with healthcare needs, such as those with chronic diseases and experiences of delays in healthcare services due to COVID-19, had a higher approval rate of telemedicine. Additionally, the financial status of patients (e.g., having supplementary health insurance) may potentially affect the approval of telemedicine. The general population considered individually tailored management to be important. Aspects for ensuring safety in care should be also considered while building infrastructure for telemedicine services after the COVID-19 pandemic. Telemedicine has demonstrated advantages in delivering timely care while minimizing exposure to COVID-19 and protecting healthcare providers and patients amid the COVID-19 pandemic, and it may be widely utilized after the pandemic.

SUPPLEMENTARY MATERIALS
Supplementary materials are available at http://www.e-epih.org/.

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare for this study.

FUNDING
None.

ACKNOWLEDGEMENTS
We would like to express our gratitude to survey participants. In addition, we appreciate the effort made by the field workforce to conduct the survey and for the support and advice provided by the related academic societies and expert advisory groups.

AUTHOR CONTRIBUTIONS
Conceptualization: Kang E, Lee H, Lee JY, Hong YC. Data curation: Kang E, Lee JY. Formal analysis: Kang E. Funding acquisition: None. Methodology: Kang E, Lee H, Lee JY, Hong YC. Project administration: Kang E, Hong KJ. Visualization: Yun J, Lee H. Writing–original draft: Kang E, Lee H, Yun J, Lee JY. Writing–review & editing: Kang E, Lee H, Hong KJ, Yun J, Lee JY, Hong YC.

ORCID
EunKyo Kang: https://orcid.org/0000-0001-5844-5625; Hyejin Lee: https://orcid.org/0000-0001-5279-340X; Ke Jong Hong: https://orcid.org/0000-0003-3334-817X; Jieun Yun: https://orcid.org/0000-0002-4241-4274; Jin Yong Lee: https://orcid.org/0000-0002-7752-2697; Yun-Chul Hong: https://orcid.org/0000-0001-9010-7271

REFERENCES
1. Jeong E, Hagose M, Jung H, Ki M, Flahault A. Understanding South Korea’s response to the COVID-19 outbreak: a real-time analysis. Int J Environ Res Public Health 2020;17:9571.
2. World Health Organization. WHO coronavirus (COVID-19) dashboard [cited 2020 Dec 26]. Available from: https://covid19.who.int/.
3. Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics 2020;52:549-557.
4. Khairat S, Meng C, Xu Y, Edson B, Gianforcaro R. Interpreting COVID-19 and virtual care trends: cohort study. JMIR Public Health Surveill 2020;6:e18811.
5. Bradford NK, Caffery LJ, Smith AC. Telehealth services in rural and remote Australia: a systematic review of models of care and factors influencing success and sustainability. Rural Remote Health 2016;16:3808.
6. Zhou L, Parmanto B. Reaching people with disabilities in underserved areas through digital interventions: systematic review. J Med Internet Res 2019;21:e12981.
7. Hazenberg CE, aan de Stegge WB, Van Baal SG, Moll FL, Bus SA. Telehealth and telemedicine applications for the diabetic foot: a systematic review. Diabetes Metab Res Rev 2020;36:e3247.
8. Hong Y, Lee SH. Effectiveness of tele-monitoring by patient severity and intervention type in chronic obstructive pulmonary disease patients: a systematic review and meta-analysis. Int J Nurs Stud 2019;52:1-15.
9. Polinski JM, Barker T, Gagliano N, Sussman A, Brennan TA, Shrank WH. Patients’ satisfaction with and preference for telehealth visits. J Gen Intern Med 2016;31:269-275.
10. Katzow MW, Steinway C, Jan S. Telemedicine and health disparities during COVID-19. Pediatrics 2020;146:e20201586.
11. U.S. Department of Health & Human Services. Notification of enforcement discretion for telehealth remote communications during the COVID-19 nationwide public health emergency; 2020 [cited 2020 Dec 26]. Available from: https://www.hhs.gov/hipaa/for-professionals/special-topics/emergency-preparedness/notification-enforcement-discretion-telehealth/index.html.
12. Wosik J, Fudim M, Cameron B, Gellad ZF, Cho A, Phinney D, et
al. Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Inform Assoc 2020;27:957-962.
13. Hollander JE, Carr BG. Virtually perfect? Telemedicine for COVID-19. N Engl J Med 2020;382:1679-1681.
14. Lindström M. Marital status, social capital, material conditions and self-rated health: a population-based study. Health Policy 2009;93:172-179.
15. Wu S, Wang R, Zhao Y, Ma X, Wu M, Yan X, et al. The relationship between self-rated health and objective health status: a population-based study. BMC Public Health 2013;13:320.
16. Monaghesh E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health 2020;20:1193.
17. Elson EC, Oermann C, Duehlmeyer S, Bledsoe S. Use of telemedicine to provide clinical pharmacy services during the SARS-CoV-2 pandemic. Am J Health Syst Pharm 2020;77:1005-1006.
18. Hur J, Chang MC. Usefulness of an online preliminary questionnaire under the COVID-19 pandemic. J Med Syst 2020;44:116.
19. Kim HS. Lessons from temporary telemedicine initiated owing to outbreak of COVID-19. Healthc Inform Res 2020;26:159-161.
20. Li P, Liu X, Mason E, Hu G, Zhou Y, Li W, et al. How telemedicine integrated into China’s anti-COVID-19 strategies: case from a National Referral Center. BMJ Health Care Inform 2020;27:e100164.
21. Dubin JM, Wyant WA, Balaji NC, Ong WL, Kettache RH, Haffaf M, et al. Telemedicine usage among urologists during the COVID-19 pandemic: cross-sectional study. J Med Internet Res 2020;22:e21875.
22. Clark PA, Capuzzi K, Harrison J. Telemedicine: medical, legal and ethical perspectives. Med Sci Monit 2010;16:RA261-RA272.
23. Horrell LN, Hayes S, Herbert LB, MacTurk K, Lawhon L, Valle CG, et al. Telemedicine use and health-related concerns of patients with chronic conditions during COVID-19: survey of members of online health communities. J Med Internet Res 2021;23:e23795.
24. Almathami HK, Win KT, Vlahu-Gjorgjevska E. Barriers and facilitators that influence telemedicine-based, real-time, online consultation at patients’ homes: systematic literature review. J Med Internet Res 2020;22:e16407.
25. Powell RE, Henstenburg JM, Cooper G, Hollander JE, Rising KL. Patient perceptions of telehealth primary care video visits. Ann Fam Med 2017;15:225-229.
26. Abdualhiai S, Glenn IC, McNinch NL, Craner D, Chou E, Ponsky TA. Public perception of telemedicine and surgical telementoring in the pediatric population: results of a parental survey. J Laparoscopic Adv Surg Tech A 2018;28:215-217.
27. Zanaboni P, Scalvini S, Bernocchi P, Borghi G, Tridico C, Masella C. Teleconsultation service to improve healthcare in rural areas: acceptance, organizational impact and appropriateness. BMC Health Serv Res 2009;9:238.
28. Waldhura JE, Neff S, Dehlelendorf C, Goldschmidt RH. Teleconsultation improves primary care clinicians’ confidence about caring for HIV. J Gen Intern Med 2013;28:793-800.
29. Peine A, Paffenholz P, Martin L, Dohmen S, Marx G, Loosen SH. Telemedicine in Germany during the COVID-19 pandemic: multi-professional national survey. J Med Internet Res 2020;22:e19745.
30. Loeb AE, Rao SS, Ficke JR, Morris CD, Riley LH 3rd, Levin AS. Departmental experience and lessons learned with accelerated introduction of telemedicine during the COVID-19 crisis. J Am Acad Orthop Surg 2020;28:e469-e476.
31. Huygens MW, Vermeulen J, Swinkels IC, Friele RD, van Schayck OC, de Witte LP. Expectations and needs of patients with a chronic disease toward self-management and eHealth for self-management purposes. BMC Health Serv Res 2016;16:232.