Verifying Catamorphism-Based Contracts using Constrained Horn Clauses

EMANUELE DE ANGELIS
IASI-CNR, Rome, Italy

FABIO FIORAVANTI
DEc, University of Chieti-Pescara, Pescara, Italy

ALBERTO PETTOROSSI
DICII, University of Rome ‘Tor Vergata’, Rome, Italy

MAURIZIO PROIETTI
IASI-CNR, Rome, Italy

Abstract

We address the problem of verifying that the functions of a program meet their contracts, specified by pre/postconditions. We follow an approach based on constrained Horn clauses (CHCs) by which the verification problem is reduced to the problem of checking satisfiability of a set of clauses derived from the given program and contracts. We consider programs that manipulate algebraic data types (ADTs) and a class of contracts specified by catamorphisms, that is, functions defined by simple recursion schemata on the given ADTs. We show by several examples that state-of-the-art CHC satisfiability tools are not effective at solving the satisfiability problems obtained by direct translation of the contracts into CHCs. To overcome this difficulty, we propose a transformation technique that removes the ADT terms from CHCs and derives new sets of clauses that work on basic sorts only, such as integers and booleans. Thus, when using the derived CHCs there is no need for induction rules on ADTs. We prove that the transformation is sound, that is, if the derived set of CHCs is satisfiable, then so is the original set. We also prove that the transformation always terminates for the class of contracts specified by catamorphisms. Finally, we present the experimental results obtained by an implementation of our technique when verifying many non-trivial contracts for ADT manipulating programs.

Under consideration for acceptance in TPLP.

1 Introduction

Many program verification techniques are based on the classical axiomatic approach proposed by Hoare [1969], where the functional correctness of a program is specified by a pair of assertions of first order logic: a precondition, which is assumed to hold on the program variables before execution, and a postcondition, which is expected to hold after execution. This pair of assertions is often referred to as a contract (Meyer 1992), and many programming languages provide built-in support for contracts associated with function definitions (see, for instance, Ada (Booch and Bryan 1994), Ciao (Hermenegildo et al. 2012), and Scala (Odersky et al. 2011)). In order to prove that all program functions meet their contracts, program verifiers generate verification conditions, that is, formulas of first order logic that have to be discharged by a theorem prover. Recent developments of Satisfiability Modulo Theory (SMT) solvers (de Moura and Björner 2008; Barrett et al. 2011; Komuravelli et al. 2014; Hoijat and Rümmer 2018) provide support for proving verification conditions in a wide range of logical theories that axiomatize data types, such as booleans, uninterpreted functions, linear integer or real arithmetic, bit vectors, arrays, strings, algebraic data types, and heaps. Among the program verifiers that use SMT solvers as a back-end, we mention Boogie (Barnett et al. 2018) and many others.
Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti

There are, however, various issues that remain to be solved when following this approach to contract verification. For programs manipulating ADTs, like lists or trees, one such issue is that the verifier often has to generate suitable loop invariants whose verification may require the extension of SMT solvers with inductive proof rules (Reynolds and Kuncak 2015).

An alternative approach is based on translating the contract verification problem into an equivalent satisfiability problem for constrained Horn clauses (CHCs), that is, Horn clauses extended with logical theories that axiomatize data types like the ones mentioned above (Jaffar and Maher 1994; Grebenshchikov et al. 2012; Biernacki et al. 2015; De Angelis et al. 2021). For clauses extended with theories on basic sorts, such as the theories of boolean values and linear integer arithmetic, various state-of-the-art CHC solvers are available. Among them, let us mention Eldarica (Hojjat and Rümmer 2018) and SPACER (Komuravelli et al. 2014) that are quite effective in checking clause satisfiability. For clauses defined on ADTs, some solvers that can handle them, have been recently proposed. They are based on the extension of the satisfiability algorithms by induction rules (Unno et al. 2017; Yang et al. 2019), tree automata (Kostyukov et al. 2021), and abstractions (Govind V. K. et al. 2022).

In this paper, we present a method for proving the satisfiability of CHCs defined on ADTs that avoids the need of extending the satisfiability algorithms and, instead, follows a transformational approach (De Angelis et al. 2018, 2022). A set of CHCs is transformed, by applying the fold/unfold rules (Etalle and Gabbrielli 1996; Tamaki and Sato 1984), into a new set of CHCs such that: (i) the ADT terms are no longer present, and hence no induction rules are needed to reason on them, and (ii) the satisfiability of the derived set implies the satisfiability of the original set. The transformational approach has the advantage of separating the concern of dealing with ADTs (which we face at transformation time) from the concern of dealing with simpler, non-inductive constraint theories (which we face at solving time by applying CHC solvers that support basic sorts only).

We show that the transformational approach is well suited for a significant class of verification problems where program contracts are specified by means of catamorphisms, that is, functions defined by a simple structural recursion schema on the ADTs manipulated by the program (Meijer et al. 1991; Suter et al. 2010).

The main contributions of this paper are the following. (i) We define a class of CHCs that represent ADT manipulating programs and their contracts. No restrictions are imposed on programs, while contracts can be specified by means of catamorphisms only (see Section 4). (ii) We define an algorithm that, by making use of the given contract specifications as lemmas, transforms a set of CHCs into a new set of CHCs without ADT terms such that, if the transformed clauses are satisfiable, so are the original ones, and hence the contracts specified by the original clauses are valid (see Section 5). (iii) Unlike previous work (De Angelis et al. 2018, 2022), we prove that the transformation algorithm terminates for all sets of CHCs in the given class, and it introduces in a fully automatic way new predicates corresponding to loop invariants (see Section 5). (iv) Finally, by using

1 In recent verification literature, the term constrained Horn clauses is often used instead of constraint logic programs, as the focus is on their logical meaning rather than their execution as programs.
a prototype implementation of our method, we prove many non-trivial contracts relative to programs that manipulate lists and trees (see Section 6).

2 Preliminaries on Constrained Horn Clauses

We consider CHCs defined in a many-sorted first order language with equality that includes the language of linear integer arithmetic (LIA) and boolean expressions (Bool). For notions not recalled here we refer to the literature [Jaffar and Maher 1994; Bjørner et al. 2015]. A constraint is a quantifier-free formula \(c \), where the linear integer constraints may occur as subexpressions of boolean constraints, according to the SMT approach [Barrett et al. 2009]. The formula \(c \) is constructed as follows:

\[
\begin{align*}
c & ::= d \mid B \mid \text{true} \mid \text{false} \mid \neg c \mid c_1 \land c_2 \mid c_1 \lor c_2 \mid c_1 \Rightarrow c_2 \mid \text{ite}(c, c_1, c_2) \mid t = \text{ite}(c, t_1, t_2)
\end{align*}
\]

\[
\begin{align*}
d & ::= t_1 = t_2 \mid t_1 \geq t_2 \mid t_1 > t_2 \mid t_1 \leq t_2 \mid t_1 < t_2
\end{align*}
\]

where \(B \) is a boolean variable and \(t \), possibly with subscripts, is a LIA term of the form \(a_0 + a_1 X_1 + \cdots + a_n X_n \) with integer coefficients \(a_0, \ldots, a_n \) and variables \(X_1, \ldots, X_n \). The ‘\(\sim \)’ symbol denotes negation. The ternary function \(\text{ite} \) denotes the if-then-else operator. The equality ‘\(= \)’ symbol is used for both integers and booleans.

An atom is a formula of the form \(p(t_1, \ldots, t_m) \), where \(p \) is a predicate symbol not occurring in \(\text{LIA} \cup \text{Bool} \), and \(t_1, \ldots, t_m \) are first order terms. A constrained Horn clause (or a CHC, or simply, a clause) is an implication of the form \(H \leftarrow c, G \). The conclusion (or head) \(H \) is either an atom or \(\text{false} \), the premise (or body) is the conjunction of a constraint \(c \) and a (possibly empty) conjunction \(G \) of atoms. A clause is called a goal if its head is \(\text{false} \), and a definite clause, otherwise. Without loss of generality, we assume that every atom occurring in the body of a clause has distinct variables (of any sort) as arguments. By \(\text{vars}(e) \) we denote the set of all variables occurring in an expression \(e \). Given a formula \(\varphi \), we denote by \(\forall(e) \) its universal closure. Let \(\mathbb{D} \) be the usual interpretation for the symbols of theory \(\text{LIA} \cup \text{Bool} \). By \(M(P) \) we denote the least \(\mathbb{D} \)-model of a set \(P \) of definite clauses [Jaffar and Maher 1994]. In the examples, we will use the Prolog syntax and the teletype font. Moreover, we will often prefer writing \(B1 = \text{true} \) and \(B2 = \text{false} \), instead of the equivalent constraints \(B1 = \text{true} \) and \(B2 = \text{false} \), respectively.

3 A Motivating Example

The CHC translation of a contract verification problem for a functional or an imperative program [Grebenschikov et al. 2012; De Angelis et al. 2021] produces three sets of clauses, as shown in Figure 1, where we refer to a program that reverses a list of integers (we omit the source functional program for lack of space). The first set (clauses 1–4) is the translation of the operational semantics of the program. The second set (clauses 5–12) is the translation of the properties needed for specifying the contracts. The third set (goals 13–14) is the translation of the contracts for the \(\text{rev} \) and \(\text{snoc} \) functions. In particular, goal 13 is the translation of the contract for \(\text{rev} \), which, written in relational form, is the following universally quantified implication:

\[
\forall L, R. \ is_asorted(L, \text{true}) \land \text{rev}(L, R) \rightarrow \text{is_dsorted}(R, \text{true})
\]

The atoms \(\text{is_asorted}(L, \text{true}) \) and \(\text{is_dsorted}(R, \text{true}) \) are the precondition and the postcondition for \(\text{rev} \), respectively, stating that, if a list \(L \) of integers is sorted in ascending
order with respect to the ‘\(\leq\)’ relation, then the list \(R\) computed by the \texttt{rev} function for input \(L\) is sorted in descending order.

The problem of checking the validity of the contracts for the functions \texttt{rev} and \texttt{snoc} is reduced to the problem of proving the satisfiability of the set \textit{Reverse} of clauses shown in Figure 1. The set \textit{Reverse} is indeed satisfiable, but state-of-the-art CHC solvers, such as Eldarica and SPACER, fail to prove its satisfiability. This is basically due to the fact that those solvers lack any form of inductive reasoning on lists and, moreover, they do not use the information about the validity of the contract for \texttt{snoc} during the proof of satisfiability of the goal representing the contract for \texttt{rev}.

The algorithm we will present in Section 5 transforms the set \textit{Reverse} of clauses into a new set \textit{TransfReverse} of clauses (see Figure 2) without occurrences of list terms, such that if \textit{TransfReverse} is satisfiable, so is \textit{Reverse}. Since in the set \textit{TransfReverse} there are only integer and boolean terms, no induction rule is needed for proving its satisfiability.

The transformation works by introducing, for each predicate \(p\) representing a program function (in our case, \texttt{rev} and \texttt{snoc}), a new predicate symbol \textit{newp} (in our case, \textit{new3} and

Figure 1: The set \textit{Reverse} of CHCs. For technical reasons (see Definition 1) all program properties are defined by total functions. In particular, for the empty list, the \texttt{hd} function returns the arbitrarily chosen value 0 (which is never used).

Figure 2: The set \textit{TransfReverse} of transformed CHCs. The clauses shown here are those derived from clauses 1–12 of \textit{Reverse} and goal 13. The clauses derived from goal 14 are listed in Appendix A.
new7) defined in terms of \(p \) together with predicates defining program properties used in the contracts (in our case, \texttt{is_asorted}, \texttt{is_dsorted}, \texttt{hd}, and \texttt{leq_all}). The arguments of \texttt{newp} are the variables of basic sorts occurring in the body of its defining clause, and hence \texttt{newp} specifies a relation among the values of the catamorphisms that are applied to \(p \). For example, the transformation algorithm introduces the following predicate \texttt{new3}:

\[
\texttt{new3(K,D,J,G,H,I) :- is_asorted(F,I), hd(F,G,H), rev(F,C), is_dsorted(C,K), leq_all(D,C,J)}.
\]

Then by applying the fold/unfold transformation rules, the algorithm derives a recursive definition of \texttt{newp}. During the transformation, the algorithm makes use of the user-provided contracts as lemmas, thus adding new constraints that ease the subsequent satisfiability proof. By construction, the recursive definition of \texttt{newp} is a set of clauses that do not manipulate ADTs. Note that while the contract specifications are provided by the users, the introduction of the new predicate definitions, which is the key step in our transformation algorithm is done in a fully automatic way, as we will show in Section 5.

If the predicates defining program properties are in the class of catamorphisms (formally defined in Section 4), then our transformation is guaranteed to terminate. Thus, we eventually get, as desired, a set of clauses that are defined on basic sorts only, whose satisfiability can be checked by CHC solvers that handle the \texttt{LIA ∪ Bool} theory. In our example, both Eldarica and SPACER are able to show the satisfiability of TransfReverse.

4 Specifying Contracts using Catamorphisms

The notion of a catamorphism has been popularized in the field of functional programming [Meijer et al. 1991] and many generalizations of it have been proposed in the literature [Hinze et al. 2013]. Catamorphisms have also been considered in the context of many-sorted first order logic with recursively defined functions [Suter et al. 2010; Pham et al. 2016; Govind V. K. et al. 2022], as we do in this paper.

Let \(f \) be a predicate symbol whose \(m+n \) arguments (for \(m,n \geq 0 \)) have sorts \(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n \), respectively. We say that \(f \) is \textit{functional} from \(\alpha_1 \times \ldots \times \alpha_m \) to \(\beta_1 \times \ldots \times \beta_n \), with respect to a set \(P \) of definite clauses, if \(M(P) \models \forall X,Y,Z. f(X,Y) \land f(X,Z) \rightarrow Y = Z \), where \(X \) is an \(m \)-tuple of distinct variables, and \(Y \) and \(Z \) are \(n \)-tuples of distinct variables. \(X \) and \(Y \) are said to be tuples of the \textit{input} and \textit{output} variables of \(f \), respectively. Predicate \(f \) is said to be \textit{total} if \(M(P) \models \forall X \exists Y. f(X,Y) \). In what follows, a ‘total, functional predicate’ \(f \) from \(\alpha \) to \(\beta \) will be called a ‘total function’ and denoted by \(f \in [\alpha \rightarrow \beta] \) (the set \(P \) of clauses that define \(f \) will be understood from the context).

Definition 1 (Catamorphisms)

A \textit{list catamorphism}, shown in Figure 3(A), is a total function \(h \in [\sigma \times \text{list(\beta)} \rightarrow \varrho] \), where: (i) \(\sigma, \beta, \) and \(\varrho \) are (products of) basic sorts, (ii) \text{list(\beta)} is the sort of any list of elements each of which is of sort \(\beta \), (iii) base1 is a total function in \([\sigma \rightarrow \varrho] \), and (iv) combine1 is a total function in \([\sigma \times \beta \times \varrho \rightarrow \varrho] \). Similarly, a (binary) \textit{tree catamorphism} (or a \textit{tree catamorphism}, for short) is a total function \(t \in [\sigma \times \text{tree(\beta)} \rightarrow \varrho] \) defined as shown in Figure 3(B).

The parameter \(x \) and some atoms in the body of the clauses in Figure 3 may be absent (see, for instance, the predicate \texttt{hd} in Figure 1). The definition of catamorphisms we consider here slightly extends the usual first order definitions [Suter et al. 2010; Pham et al. 2016; Govind V. K. et al. 2022] by allowing the parameter \(x \), which gives
an extra flexibility for specifying contracts. Catamorphisms with parameters have also been considered in functional programming [Hinze et al. 2013]. To see an example, the predicate leq_all (see Figure 1) is a catamorphism in \([\text{int} \times \text{list(int)} \rightarrow \text{bool}]\), where: (i) base1(X,Res) is the function in \([\text{int} \rightarrow \text{bool}]\) defined by the constraint Res = true (i.e., it binds the output boolean variable Res to true), and (ii) combine1(X,H,R,Res) is the function in \([\text{int} \times \text{int} \times \text{bool} \rightarrow \text{bool}]\) defined by the LIA ∪ Bool constraint Res = (X=<H & R).

The schemata presented in Figure 3 can be extended by adding to the bodies of the clauses extra atoms that have the list tail or the left and right subtrees as arguments. These extensions are shown in Figure 4, where base3, combine3, base4, and combine4 are total functions on basic sorts, and f and g are defined by instances of the same schemata (C) and (D), respectively. Strictly speaking, these schemata are a CHC translation of the zygomorphism recursion schemata [Hinze et al. 2013] extended with parameter X. However, schemata (C) and (D) can be transformed into schemata (A) and (B), respectively (see Appendix B), and hence we prefer not to introduce a different terminology and we call them simply catamorphisms.

Examples of list catamorphisms that are instances of the schema of Figure 3 (A) are the functions is_asorted and is_dsorted shown in Figure 1 of Section 3. For instance, is_asorted is a catamorphism in \([\text{list(int)} \rightarrow \text{bool}]\), where: (i) base3 is the constant function defined by the constraint Res = true, (ii) the auxiliary function f is \(\text{hd} \in [\text{list(int)} \rightarrow \text{bool} \times \text{int}]\), and (iii) combine3 is the function in \([\text{bool} \times \text{int} \times \text{bool} \rightarrow \text{bool}]\) defined by the LIA ∪ Bool constraint Res = (IsDefHdT => (H=<HdT & ResT)). Two more examples are given in Figure 5, where count counts the occurrences of a given element in a list, bstree checks whether or not a tree is a binary search tree (duplicate keys are not allowed), treemax and treemin compute, respectively, the maximum and the minimum element in a binary tree.

In the sets of CHCs we consider, we identify two disjoint sets of predicates: (1) the program predicates, defined by any set of CHCs not containing occurrences of catamorphisms, and (2) the catamorphisms, defined by instances of the schemata in Figure 4. An atom is said to be a program atom (or a catamorphism atom) if its predicate symbol is a program predicate (or a catamorphism, respectively).
Define a contract is a formula of the form (where the implication is right-associative):

\[(K) \quad \text{pred}(Z) \rightarrow c, \text{cata}_1(X_1, T_1, Y_1), \ldots, \text{cata}_n(X_n, T_n, Y_n) \rightarrow d\]

where: (i) \text{pred} is a program predicate and \(Z\) is a tuple of distinct variables, (ii) \(c\) is a constraint such that \(\text{vars}(c) \subseteq \{X_1, \ldots, X_n, Z\}\), (iii) \(\text{cata}_1, \ldots, \text{cata}_n\) are catamorphisms, (iv) \(X_1, \ldots, X_n, Y_1, \ldots, Y_n\) are pairwise disjoint tuples of distinct variables of basic sort, (v) \(T_1, \ldots, T_n\) are ADT variables occurring in \(Z\), and (vi) \(d\) is a constraint, called the postcondition of the contract, such that \(\text{vars}(d) \subseteq \{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\}\).

The following are the contracts for \text{rev} and \text{snoc}:

\[
\text{rev}\(L,R\) \Rightarrow \text{is_asorted}(L,BL), \text{is_dsorted}(R,BR) \Rightarrow (BL \Rightarrow BR).
\]

\[
\text{snoc}(A,X,C) \Rightarrow \text{is_dsorted}(A,BA), \text{leq_all}(X,A,BX), \text{is_dsorted}(C,BC) \Rightarrow ((BX \land BA) \Rightarrow BC).
\]

Definition 3

Let \(\text{Catas}\) denote the conjunction \(\text{cata}_1(X_1, T_1, Y_1) \land \ldots \land \text{cata}_n(X_n, T_n, Y_n)\) of the catamorphisms in the contract \(K\) (see Definition 2), and let \(P\) be a set of definite CHCs. We say that contract \(K\) is valid (with respect to the set \(P\) of CHCs) if \(M(P) \models \forall (\text{pred}(Z) \land c \land \text{Catas} \rightarrow d)\).

Theorem 1 (Correctness of the CHC translation)

For contract \(K\), let \(\gamma(K)\) denote the goal \(false \leftarrow \neg d, c, \text{pred}(Z), \text{Catas}\). Contract \(K\) is valid with respect to a set \(P\) of CHCs if and only if \(P \cup \{\gamma(K)\}\) is satisfiable.

The proof of this theorem is given in Appendix C. The use of the catamorphism schemata (C) and (D) guarantees the termination of the transformation algorithm (see Theorem 2) and, at same time, allows the specification of many nontrivial contracts (see our benchmark in Section 6). Among the properties that cannot be specified by our notion of catamorphisms, we mention ADT equality (indeed ADT equality has more than one ADT argument). Thus, in particular, the property \(\forall L, RR. \text{double_rev}(L, RR) \rightarrow L=RR\), where \text{double_rev}(L, RR) holds if the conjunction ‘\text{rev}(L, R), \text{rev}(R, RR)’ holds, cannot be written as a contract in our framework. We leave it for future work to identify larger classes of contracts that can be handled by our transformation-based approach.

5 Catamorphism-based Transformation Algorithm

In this section we present Algorithm \(\mathcal{T}_{\text{cata}}\) (see Figure 5) which, given a set \(P\) of definite clauses manipulating ADTs and a set \(\text{Cns}\) of contracts, derives a set \(\text{TransfCls}\) of CHCs with new predicates manipulating terms of basic sorts only, such that if \(\text{TransfCls}\) is satisfiable, then \(P \cup \{\gamma(K) \mid K \in \text{Cns}\}\) is satisfiable. By Theorem 1, the satisfiability of \(\text{TransfCls}\) implies the validity of the contracts in \(\text{Cns}\) with respect to \(P\).

During the while-do loop, \(\mathcal{T}_{\text{cata}}\) iterates the Define, Unfold, and Apply-Contracts procedures as we now explain. Their formal definition is given in Figures 7, 8, and 9.

- Procedure Define works by introducing suitable new predicates defined by clauses, called definitions, of the form: \text{newp}(U) \leftarrow c, A, \text{Catas}_A\), where \(U\) is a tuple of variables of basic sort, \(A\) is a program atom, and \(\text{Catas}_A\) is a conjunction of catamorphism atoms

\[\text{In concrete contract specifications we use the keyword ‘spec’ and the two distinct implication symbols ‘\Rightarrow’ and ‘\rightarrow’}.\]
Algorithm T_{cata}.

Input: A set P of definite clauses and a set Cns of contracts, one for each program predicate.

Output: A set TransfCls of clauses (including goals) on basic sorts such that, if TransfCls is satisfiable, then every contract in Cns is valid with respect to P.

\[
\text{InCls} := \{ \gamma(K) \mid K \in Cns \}; \quad \text{Defs} := \emptyset; \quad \text{OutCls} := \text{InCls};
\]

\[\textbf{while } \text{InCls} \neq \emptyset \textbf{ do} \]

Define(InCls, Defs, NewDefs);

Unfold(NewDefs, P, UnfCls);

Apply-Contracts(UnfCls, Cns, RCls);

$\text{InCls} := \text{not-foldable}(\text{RCls}, \text{Defs})$;

$\text{OutCls} := \text{OutCls} \cup \text{foldable}(\text{RCls}, \text{Defs})$;

\[\text{Fold}(\text{OutCls}, \text{Defs}, \text{TransfCls})\]

Figure 6: The Transformation Algorithm T_{cata}.

whose ADT variables occur in A. Thus, $\text{newp}(U)$ defines the projection onto $\text{LIA} \cup \text{Bool}$ of the relation between the variables of the program atom A and the catamorphisms acting on the ADT variables of A. In particular, for each program atom A occurring in the body ‘c, G’ of a definite clause or a goal in InCls, the Define procedure may either (i) introduce a new definition whose body consists of A, together with the conjunction of all catamorphism atoms in G that share an ADT variable with A, and the constraints on the input variables of A of basic sort (case Project) or (ii) extend an already introduced definition for the program predicate of A by (ii.1) adding new catamorphism atoms to its body and/or (ii.2) generalizing its constraint (case Extend). The new predicate definitions introduced by a single application of the Define procedure are collected in NewDefs, while the set of all definitions introduced during the execution of T_{cata} are collected in Defs.

- Then, Procedure Unfold (1) unfolds the program atoms occurring in the body of the definitions belonging to NewDefs, and then (2) unfolds all catamorphism atoms whose ADT argument is not a variable. Finally, (3) by the functionality property (see Section 4), repeated occurrences of a function with the same input are removed.

- Next, Procedure Apply-Contracts applies the contracts in Cns for the program predicates occurring in the body of the clauses generated by the Unfold procedure. This is done in two steps. First, (1) for each program atom A in a clause C obtained by unfolding, the procedure adds the catamorphism atoms (with free output variables) that are present in the contract for A and not in the body of C. Note that, since catamorphisms are total functions, their addition preserves satisfiability of clauses. Then, (2) if the constraints on the input variables of the added catamorphisms are satisfiable, the procedure adds also the postconditions of the contracts. Thus, the effect of the Apply-Contracts procedure is similar to the one produced by the application of user-provided lemmas.

The Unfold and Apply-Contracts procedures may generate clauses that are not foldable, that is, clauses whose body ‘c, G’ contains a conjunction of a program atom and catamorphism atoms which is not a variant of the body of any definition in Defs, or, if there is such a definition in Defs, the constraint c does not imply the constraint occurring in that definition. By using the function not-foldable, those clauses are added to the set InCls of clauses to be further processed by the while-do loop, while the others, by using the function foldable, are added to the set OutCls of clauses that are output by the loop.

The termination of the while-do loop is guaranteed by the following two facts: (i) there are finitely many catamorphism atoms that can be added to the body of a
definition, and (ii) by implementing constraint generalization through a widening operator (Couvat and Halbwachs, 1978), a most general constraint is eventually computed. When Algorithm \(T_{\text{cata}} \) exits the \textbf{while-do} loop, it returns a set \(\text{OutCls} \) of clauses (which are all foldable) and a set \(\text{Defs} \) of new predicate definitions. Then, the \textit{Fold} procedure (Figure 10) uses the definitions in \(\text{Defs} \) for removing ADT variables from the clauses in \(\text{OutCls} \). By construction, (i) the head of each clause \(C \) in \(\text{OutCls} \) is either false or an atom \(\text{newp}(V) \), where \(V \) is a tuple of variables of basic sort, and (ii) for each conjunction of a program atom \(A \) and catamorphism atoms \(B \) in the body of \(C \) sharing an ADT variable with \(A \), there is in \(\text{Defs} \) a definition \(\text{newp}(U) \leftarrow c, A, \text{Catas}_A \) such that \(B \) is a subconjunction of \(\text{Catas}_A \) and \(c \) is implied by the constraint in \(C \). The \textit{Fold} procedure removes all ADT variables by replacing in \(C \) the atom \(A \) by \(\text{newp}(U) \) and removing the subconjunction \(B \).

Let us introduce some notions used in the procedures \textit{Define}, \textit{Unfold}, \textit{Apply-Contracts}, and \textit{Fold}. Given a conjunction \(G \) of atoms, by \(\text{bvars}(G) \) and \(\text{adt-vars}(G) \) we denote the set of variables in \(G \) that have a basic sort and an ADT sort, respectively.

Definition 4
The projection of a constraint \(c \) onto a tuple \(V \) of variables is a constraint \(\pi(c, V) \) such that: (i) \(\text{vars}(\pi(c, V)) \subseteq V \) and (ii) \(\mathcal{D} \models \forall(c \rightarrow \pi(c, V)) \).

A generalization of two constraints \(c_1 \) and \(c_2 \) is a constraint, denoted \(\alpha(c_1, c_2) \), such that \(\mathcal{D} \models \forall(c_1 \rightarrow \alpha(c_1, c_2)) \) and \(\mathcal{D} \models \forall(c_2 \rightarrow \alpha(c_1, c_2)) \).

Let \(D: \text{newp}(U) \leftarrow c, A, \text{Catas}_A \) be a clause in \(\text{Defs} \), where: (i) \(A \) is a program atom with predicate \(p \), (ii) \(\text{Catas}_A \) is a conjunction of catamorphism atoms, and (iii) \(c \) is a constraint on input variables of \(A \), and \(U \) is a tuple of variables of basic sort. We say that \(D \) is maximal for \(p \) if, for all definitions \(\text{newp}(V) \leftarrow d, A, B \) in \(\text{Defs} \), we have that: (i) \(B \) is a subconjunction of \(\text{Catas}_A \), (ii) \(\mathcal{D} \models \forall(d \rightarrow c) \), and (iii) \(V \) is a subtuple of \(U \).

For a concrete definition of a generalization operator, based on widening, we refer to the existing literature (De Angelis et al., 2021).

Note that, by the \textit{Extend} case of the \textit{Define} procedure, for every program predicate \(p \) occurring in \(\text{Defs} \), there is a unique maximal definition.

Example 1 (Reverse, continued)
\(\text{InCls} \) is initialized to the set \{13, 14\} of goals (see Figure 1). The \textbf{while-do} loop starts by applying the \textit{Define} procedure to goal 13. (For lack of space, we will not show here the transformation steps starting from goal 14.) No definitions for predicate \(\text{rev} \) are present in \(\text{Defs} \), and hence the case \textit{Project} applies. Thus, the \textit{Define} procedure introduces the following clause defining the new predicate \(\text{new1} \):

\[
\text{D1. new1(BL,BR) :- is_asorted(L,BL), rev(L,R), is_dsorded(R,BR).}
\]

where: (i) the body is made out of the program atom \(\text{rev}(L,R) \) and the catamorphisms on the lists \(L \) and \(R \) occurring in goal 13, (ii) \(BL \) and \(BR \) are the variables of basic sort in the body of \(\text{D1} \), and (iii) the projection of the constraint of goal 13 onto the (empty) tuple of input variables of basic sort of the body of \(\text{D1} \) is \text{true} (and thus, omitted). \(\square \).

Definition 5 (Unfolding)
Let \(C: H \leftarrow c, G_L, A, G_R \) be a clause, where \(A \) is an atom, and let \(P \) be a set of definite clauses with \(\text{vars}(C) \cap \text{vars}(P) = \emptyset \). Let \(\text{Cls} \): \{\(K_1 \leftarrow c_1, B_1, \ldots, K_m \leftarrow c_m, B_m \)\}, with \(m \geq 0 \), be the set of clauses in \(P \), such that: for \(j = 1, \ldots, m \), (i) there exists a
Procedure Define(InCls, Defs, NewDefs)
Input: A set InCls of clauses and a set Defs of definitions.
Output: A set NewDefs of new definitions.

NewDefs := ∅;

for each clause C: H ← c, G in InCls and each program atom A in G do
 let Catas_A = \{F | F is a catamorphism atom in G and adt-vars(A) \cap adt-vars(F) ≠ ∅\};

 (Clause is foldable) if in Defs there is a clause newp(U) ← d, A, B, with U = bvars(\{d, A, B\}),
 such that: (i) Catas_A is a subconjunction of B, and (ii) \[D \models \forall(c \rightarrow d)\], then skip;

 (Extend) else if the maximal definition for the predicate of A in Defs ∪ NewDefs is a clause
 newp(U) ← d, A, B, such that: (i) Catas_A is not a subconjunction of B, or (ii) \[D \not\models \forall(c \rightarrow d)\],
 then introduce definition ExtD: extp(V) ← α(d, c), A, B', where: (i) extp is a new predicate
 symbol, (ii) V = bvars(\{α(d, c), A, B'\}), and B' = \{F | F occurs either in B or in Catas_A\};
 NewDefs := NewDefs ∪ \{ExtD\}; Defs := Defs ∪ \{ExtD\};

 (Project) else if there is no clause in Defs with A in its body
 then introduce definition D: newp(U) ← π(c, I), A, Catas_A, where: (i) newp is a new predicate
 symbol, (ii) I is the tuple of the input variables of basic sort in \{A, Catas_A\}, and (iii) U =
 bvars(\{π(c, I), A, Catas_A\}); NewDefs := NewDefs ∪ \{D\}; Defs := Defs ∪ \{D\};

Figure 7: The Define procedure.

most general unifier θ_j of A and K_j, and (ii) the conjunction of constraints (c, cj)θ_j is
satisfiable. We define: Unf(C, A, P) = \{(H ← c, cj, G_L, B_j, G_R)θ_j | j = 1, . . . , m\}.

Example 2 (Reverse, continued)
The Unfold procedure first (1) unfolds the program atom rev(L, R) in clause D_1, and then
(2) unfolds the catamorphism atoms with non-variable ADT arguments. We get:

C1. new1(A, B) := A & B.

C2. new1(A, B) := A = (G => (D = H & I)) & I = K & (K & J) => B, is_asorted(F, I), hd(F, G, H),
 rev(F, C), snoc(C, D, E), is_dsorted(E, B).

Finally, functionality is not applicable, and Unfold terminates.

Figure 8: The Unfold procedure.

Procedure Unfold(NewDefs, P, UnfCls)
Input: A set NewDefs of definitions and a set P of definite clauses.
Output: A set UnfCls of clauses.

UnfCls := NewDefs;

(1) (Unfold program atom) for all clauses D: newp(U) ← c, A, Catas_A in UnfCls, where A has
a program predicate do UnfCls := (UnfCls − \{D\}) ∪ Unf(D, A, P);

(2) (Unfold catamorphisms) while there exists a clause C: H ← d, L, B, R in UnfCls, for some
conjunctions L and R of atoms, such that B is a catamorphism atom whose input argument
of ADT sort is not a variable do UnfCls := (UnfCls − \{C\}) ∪ Unf(C, B, P);

(3) (Apply Functionality) while there exists a clause C: H ← d, L, h(X, Y), h(X, Z), R in UnfCls,
for some catamorphism h do UnfCls := (UnfCls − \{C\}) ∪ \{H ← d, Y = Z, L, h(X, Y), R\};

Figure 7: The Define procedure.

Example 3 (Reverse, continued)
The Apply-Contracts procedure first (1) adds the catamorphism atoms is_dsorted(C, K),
leq_all(D, C, J) to the body of clause C_2, and then (2) adds the postconditions of the
contracts for rev and snoc. We get:

C3. new1(A, B) := A = (G => (D = H & I)) & I = K & (K & J) => B, is_asorted(F, I), hd(F, G, H),
 rev(F, C), snoc(C, D, E), is_dsorted(C, K), leq_all(D, C, J), is_dsorted(E, B).
Then, Algorithm \(\mathcal{T}_{\text{cata}} \) outputs each clause for the fold procedure. Let \(P \) be the tuple of variables occurring in the head of \(\mathcal{T}_{\text{cata}} \)
and each program atom \(c_{1}, \ldots, c_{k} \) be the constraints on the input variables of the catamorphisms in the contracts used for deriving \(E \), and let \(d_{1}, \ldots, d_{k} \) be the corresponding contract postconditions; if \(\mathcal{D} \models \forall(e \rightarrow \exists Z. c_{1} \land \ldots \land c_{k}) \) then \(R\mathcal{C}s := R\mathcal{C}s \cup \{ H \leftarrow e, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}, G' \} \)

Figure 9: The Apply-Contracts procedure.

Now, in the second iteration of the while-do loop of \(\mathcal{T}_{\text{cata}} \), clause \(c_{3} \) is processed by the Define procedure. The following new definition \(D_{2} \) relative to the program atom \(\text{rev}(F,C) \), is introduced according to the Extend case because the catamorphism atoms in \(c_{3} \) that share ADT variables with \(\text{rev}(F,C) \) is not a subset of the catamorphism atoms in \(D_{1} \).

\(D_{2}. \) \(\text{new3}(K,D,J,G,H,I) := \text{is_asorted}(F,I), \text{hd}(F,G,H), \text{rev}(F,C), \text{is_dsorted}(C,K), \text{leq_all}(D,C,J). \)

Figure 10: The Fold procedure.

Example 4 (Reverse, continued)

When Algorithm \(\mathcal{T}_{\text{cata}} \) exits the while-do loop, we get a set \(\mathcal{O}ut\mathcal{C}s \) of clauses including:

\(\text{C4. new3}(A,B,C,D,E,F) := \{ D \& E \& G \& F = (H = G = \text{true} \& J) \& J = \text{true} \& K \& (K \& L) \Rightarrow A \}, \)
\(\text{is_asorted}(M,J), \text{hd}(M,H,I), \text{rev}(M,N), \text{is_dsorted}(N,K), \text{leq_all}(G,N,L), \)
\(\text{snoc}(N,G,V), \text{is_dsorted}(V,A), \text{leq_all}(B,V,C). \)

and a set \(\mathcal{D}ef\mathcal{s} \) of definitions including clause \(D_{2} \) and the following clause relative to \(\text{snoc} \):

\(\text{D3. new7}(A,B,C,D,E,F,G,H,D,I,J) := \text{hd}(K,A,B), \text{is_dsorted}(K,C), \text{leq_all}(D,L,E), \)
\(\text{hd}(L,F,G), \text{is_dsorted}(L,H), \text{snoc}(L,D,K), \text{leq_all}(I,K,J). \)

By the Fold procedure, from clause \(C_{4} \), using \(D_{2} \) and \(D_{3} \), we get clause \(T_{4} \) of Figure 2. \(\square \)

Theorem 2 (Termination of Algorithm \(\mathcal{T}_{\text{cata}} \))

Let \(P \) be a set of definite clauses and \(\mathcal{C}ns \) a set of contracts specified by catamorphisms. Then, Algorithm \(\mathcal{T}_{\text{cata}} \) terminates for \(P \) and \(\mathcal{C}ns \).
Theorem 3 (Soundness of Algorithm T_{cata})

Let P and Cns be the input of Algorithm T_{cata}, and let $TransfCls$ be the output set of clauses. Then, every clause in $TransfCls$ has basic sort, and if $TransfCls$ is satisfiable, then all contracts in Cns are valid with respect to P.

The proofs of Theorems 2 and 3 are given in Appendix C. The converse of Theorem 3 does not hold. Thus, the unsatisfiability of $TransfCls$ means that our transformation technique is unable to prove the validity of the contract at hand, and not necessarily that the contract is not valid.

6 Experimental Evaluation

In this section we describe a tool, called VeriCaT, implementing our verification method based on the use of catamorphisms and we present some case studies to which VeriCaT has been successfully applied (see https://fmlab.unich.it/vericat/ for details).

VeriCaT implements the two steps of our method: (i) the $Transf$ step, which realizes the CHC transformation algorithm presented in Section 5, and (ii) the $CheckSat$ step, which checks CHC satisfiability. For the $Transf$ step, VeriCaT uses VeriMAP ([De Angelis et al. 2014](https://fmlab.unich.it/vericat/)), a tool for fold/unfold transformation of CHCs. It takes as input a set of CHCs representing a program manipulating ADTs, together with its contracts, and returns a new set of CHCs acting on variables of basic sorts only. For the $CheckSat$ step, VeriCaT uses SPACER to check the satisfiability of the transformed CHCs.

We have applied our method to prove the validity of contracts for programs implementing various algorithms for concatenating, permuting, reversing, and sorting lists of integers, and also for inserting and deleting elements in binary search trees. The contracts specify properties defined by catamorphisms such as: list length, tree size, tree height, list (or tree) minimum and maximum element, list sortedness (in ascending or descending order), binary search tree property, element sum, and list (or tree) content (defined as sets or multisets of elements). For instance, for the sorting programs implementing Bubblesort, Insertionsort, Mergesort, Quicksort, Selectionsort, and Treesort, VeriCaT was able to prove the following two contracts:

\[
\text{:- spec sort}(Xs,Ys) \implies \text{is_ascending}(Ys,B) \Rightarrow B.
\]

stating that the output Ys of sort is a list in ascending order, and

\[
\text{:- spec sort}(Xs,Ys) \implies \text{count}(X,Xs,N1), \text{count}(X,Ys,N2) \Rightarrow N1=N2.
\]

stating that the input and output of the sort program have the same multiset of integers.

As an example of a verification problem for a tree manipulating program, in Figure 11 we present: (i) the clauses for $\text{bstdel}(X,T1,T2)$, which deletes the element X from the binary search tree $T1$, thereby deriving the tree $T2$, and (ii) a contract for bstdel (catamorphism bstree is shown in Figure 5). VeriCaT proved that contract by first transforming the clauses of Figure 11 and the following goal that represents the contract for bstdel:

\[
\text{false} :- (B1=B2), \text{bstree}(T1,B1), \text{bstdel}(X,T1,T2), \text{bstree}(T2,B2).
\]

In Table 1 we summarize the results of our experiments performed on an Intel Xeon CPU E5-2640 2.00GHz with 64GB RAM under CentOS. The columns report the name of the program, the number of contracts proved by VeriCaT for each program, and the total time, in milliseconds, needed for the $Transf$ and $CheckSat$ steps. Finally, as a baseline, we report the number of contracts proved by AdtRem ([De Angelis et al. 2022](https://fmlab.unich.it/vericat/)), which does not take advantage of the user-provided contract specifications and, instead, tries to discover lemmas by using the differential replacement transformation rule. Our
Verifying Catamorphism-Based Contracts using Constrained Horn Clauses

\[
\begin{align*}
\text{bstdel}(X,\text{leaf},\text{leaf}). \\
\text{bstdel}(X,\text{node}(A,\text{leaf},R),R) & :- X=A. \\
\text{bstdel}(X,\text{node}(A,L,\text{leaf}),L) & :- X=A. \\
\text{bstdel}(X,\text{node}(A,L,R),\text{node}(A,L,T)) & :- X=A \land \text{delmin}(R,T,A,D). \\
\text{bstdel}(X,\text{node}(A,L,R),\text{node}(A,L,R)) & :- A<X, \text{bstdel}(X,R,R1). \\
\text{delmin}(\text{leaf},\text{leaf},M,D) & :- M=0 \land \lnot D. \\
\text{delmin}(\text{node}(A,L,R),R,M,D) & :- M=A \land D. \\
\text{delmin}(\text{node}(A,\text{node}(B,U,V),R),\text{node}(A,T,R),M,D) & :- D, \text{delmin}(\text{node}(B,U,V),T,M,D). \\
\text{:} & :- \text{spec bstdel}(X,T1,T2) \implies \text{bstree}(T1,B1), \text{bstree}(T2,B2) \implies (B1=B2).
\end{align*}
\]

Figure 11: Deleting an element from a binary search tree: \text{bstdel} and its contract.

Program	VeriCaT: # of proved contracts	VeriCaT: time needed for Transf	VeriCaT: time needed for CheckSat	AdtRem: # of proved contracts
List Membership	3	4410	160	3
List Permutation	12	17840	1150	12
List Concatenation	9	14430	2280	4
Reverse	20	27790	2350	12
Double Reverse	6	9810	1930	0
Reverse w/Accumulator	6	9780	380	3
Bubblesort	18	27300	1270	18
Insertionsort	12	17670	1300	11
Mergesort	25	35810	2060	17
Quicksort (version 1)	19	27200	3770	12
Quicksort (version 2)	18	25930	4700	11
Selectionsort	20	31160	2680	18
Treesort	10	15250	3530	1
Binary Search Tree	13	21330	4820	3
Total	191	285710	32380	125

Table 1: Contracts proved by the VeriCaT and AdtRem tools. Times are in ms.

results show that VeriCaT is indeed able to exploit the extra information provided by the contracts, and performs better than previous transformational approaches.

In order to compare the effectiveness of our method with that of other tools, we have also run solvers such as AdtInd (Yang et al. [2019]), CVC4 extended with induction (Reynolds and Kuncak [2015]), Eldarica (2.0.6), and SPACER (with Z3 4.8.12) on the CHC specifications (translated to SMT-LIB format) before the application of the Transf step. Eldarica and SPACER proved the satisfiability of the CHCs for 12 and 1 contracts, respectively, while the AdtInd and CVC4 did not solve any problem within the time limit of 300 s. However, it might be the case that better results can be achieved by those tools by using some different encodings of the verification problems. Finally, we ran the Stainless verifier (0.9.1) (Hamza et al. [2019]) on a few manually encoded specifications of programs for reversing a list, deleting an element from a binary search tree, and sorting a list using the Quicksort algorithm. Stainless can prove some, but not all contracts of each of these specifications. For a more exhaustive comparison we would need an automated translator, which is not available yet, between CHCs and Stainless specifications.

7 Related Work and Conclusions

Many program verifiers are based on Hoare’s axiomatic notion of correctness (Hoare [1969]) and have the objective of proving the validity of pre/postconditions. Some of those
verifiers use SMT solvers as a back-end to check verification conditions in various logical theories (Barnett et al. 2006; Suter et al. 2011; Leino 2013; Filliâtre and Paskevich 2013; Hamza et al. 2019). In order to deal with properties of programs that manipulate ADTs, program verifiers may also be enhanced with some form of induction (e.g., Dafny (Leino 2013), or be based on the unfolding of recursive functions (e.g., Leon (Suter et al. 2011) and Stainless (Hamza et al. 2019)), or rely on an SMT solver that uses induction, such as the extension of CVC4 proposed by Reynolds and Kuncak (2015).

Catamorphisms were used to define decision procedures for suitable classes of SMT formulas (Suter et al. 2011; Pham et al. 2016), and a special form of integer-valued catamorphisms, called type-based norms, were used for proving termination of logic programs (Bruynooghe et al. 2007) and for resource analysis (Albert et al. 2020). The main difference of our approach with respect to these works is that we transform a set of clauses with catamorphisms into a new set of CHCs that act on the codomains of the catamorphisms, and in those clauses neither ADTs nor catamorphisms are present.

The contracts considered in this paper are similar to calls and success user-defined assertions supported by the Ciao logic programming system (Hermenegildo et al. 2012). Those assertions may refer to operational properties of logic programs, taking into account the order of execution and the extra-logical features of the language, while here we consider only the logical meaning of CHCs and contracts. By using abstract interpretation techniques, the CiaoPP preprocessor (Hermenegildo et al. 2005) can statically verify a wide range of calls/success assertions related to types, modes, non-failure, determinism, and typed-norms. However, CiaoPP suffers from some limitations in checking the validity of properties expressed by constrained types, such as the catamorphisms considered in this paper, e.g., the properties of being a sorted list or a binary search tree.

The use of CHCs for program verification has become very popular and many techniques and tools for translating program verification problems into satisfiability problems for CHCs have been proposed (see, for instance, the surveys by Bjørner et al. (2015) and by De Angelis et al. (2021)). However, as also shown in this paper, in the case of clauses with ADT terms, state-of-the-art CHC solvers have some severe limitations due to the fact that they do not include any proof technique for inductive reasoning on the ADT structures. Some approaches to mitigate these limitations include: (i) a proof system that combines inductive theorem proving with CHC solving (Unno et al. 2017), (ii) lemma generation based on syntax-guided synthesis from user-specified templates (Yang et al. 2019), (iii) invariant discovery based on finite tree automata (Kostyukov et al. 2021), and (iv) use of suitable abstractions (Govind V. K. et al. 2022).

Transformation-based approaches to the verification of CHC satisfiability on ADTs have been proposed in recent work (Mordvinov and Fedyukovich 2017; De Angelis et al. 2018; Kobayashi et al. 2020), with the aim to avoid the complexity of integrating CHC solving with induction. The transformational approach compares well with induction-based solvers, but it also shares similar issues for full mechanization, such as the need for lemma discovery (Yang et al. 2019; De Angelis et al. 2022). The transformation technique we have proposed in this paper avoids the problem of lemma discovery by relying on user-specified contracts and, unlike previous work (De Angelis et al. 2018; 2022), it guarantees the termination of the transformation for a large class of CHCs.

Our experiments show that the novel transformation technique we propose can successfully exploit the information supplied by the user-provided contracts, and indeed,
(i) it can increase the effectiveness of state-of-the-art CHC solvers in verifying contracts encoded as CHCs, and (ii) performs better than previous transformational approaches based on lemma discovery.

For future work, we plan to extend the practical applicability of our verification method by developing automatic translators to CHCs of programs and contracts written in the languages used by verifiers such as Dafny, Stainless, and Why3.

Acknowledgments

The authors warmly thank the anonymous reviewers for their helpful comments and suggestions. The authors are members of the INdAM Research Group GNCS.

References

Albert, E., Genaim, S., Gutiérrez, R., and Martin-Martin, E., 2020. A transformational approach to resource analysis with typed-norms inference. Theory Pract. Log. Program., 20, 3, 310–357.

Barnett, M., Chang, B.-Y. E., De Line, R., Jacobs, B., and Leino, K. R. M., 2006. Boogie: A modular reusable verifier for object-oriented programs. Formal Methods for Components and Objects, LNCS 4111, pp. 364–387. Springer.

Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A., and Tinelli, C., 2011. CVC4. 23rd CAV, LNCS 6806, pp. 171–177. Springer.

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. Satisfiability modulo theories. Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 825–885. IOS Press.

Bjørner, N., Gurfinkel, A., McMillan, K. L., and Rybalchenko, A., 2015. Horn clause solvers for program verification. Fields of Logic and Computation (II), LNCS 9300, pp. 24–51. Springer.

Booch, G. and Bryan, D., 1994. Software Engineering with Ada (3. ed.) Series in Object-Oriented Software Engineering. Benjamin/Cummings.

Bruynooghe, M., Codish, M., Gallagher, J. P., Genaim, S., and Vanhoof, W., 2007. Termination analysis of logic programs through combination of type-based norms. ACM Trans. Program. Lang. Syst., 29, 2, 10–es.

Cousot, P. and Halbwachs, N., 1978. Automatic discovery of linear restraints among variables of a program. 5th POPL, pp. 84–96. ACM.

De Angelis, E., Fioravanti, F., Gallagher, J. P., Hermenegildo, M. V., Pettorossi, A., and Proietti, M., 2021. Analysis and transformation of constrained Horn clauses for program verification. Theory Pract. Log. Program., pp. 1–69, doi: 10.1017/S1471068421000211.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M., 2014. VeriMAP: A tool for verifying programs through transformations. 20th TACAS, LNCS 8413, pp. 568–574. Springer.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M., 2018. Solving Horn clauses on inductive data types without induction. Theory Pract. Log. Program., 18, 3-4, 452–469.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2022. Satisfiability of constrained Horn clauses on algebraic data types: A transformation-based approach. J. Log. Comput., 32, 2, 402–442.

De Moura, L. M. and Bjørner, N., 2008. Z3: An efficient SMT solver. 14th TACAS, LNCS 4963, pp. 337–340. Springer.

Etalle, S. and Gabbrielli, M., 1996. Transformations of CLP modules. Theor. Comput. Sci., 166, 101–146.

Filliâtre, J.-C. and Paskevich, A., 2013. Why3 - Where programs meet provers. 22nd ESOP, LNCS 7792, pp. 125–128. Springer.
Appendix A

The clauses derived from clauses 1–12 of the set Reverse of clauses (see Figure 1 and goal 14 (that is, the goal representing the contract for \texttt{snoc}) are the following ones:

T6. \texttt{new2(A,B,C,D,E,F,G,H,I) :- D=I & I=J & A & B=J & C=(X=>(J=>L & M)) & E &}\n\texttt{~F & G=0 & H & M & ~K & L=0.}

T7. \texttt{new2(A,B,C,D,E,F,G,H,I) :- D=I & D=J & I=K & K=J & L=M & A & B=M & C=(N=>(M=>V & P)) &}\n\texttt{E=(D=L & Q) & F & G=L & H=(R=>(L=>S & T)) & (T & Q)=>P, new2(N,V,P,J,Q,R,S,T,K).}

T8. \texttt{false :- A=B & ~(C & D)=>E, new2(F,G,E,B,D,H,I,C,A).}

Clauses T6–T8 are shown to be satisfiable by the solvers Eldarica and SPACER.

Appendix B

With reference to Section 4 in this appendix we show that any instance of Schema (C) of Figure 4 can be transformed into an equivalent instance of Schema (A) of Figure 3, for any \(h, f, \) and \texttt{combine3} functions. For this transformation, we use the fold/unfold rules (Tamaki and Sato 1984; Etalle and Gabbrielli 1996).

For the reader’s convenience, we recall the definition of \(h \), where, for reasons of simplicity, we assume that \(f \) is an instance of Schema (A) (however, the transformation can easily be generalized to the case when \(f \) is an instance of the same Schema (C)):

\[h(X,\[],Res) :- base3(X,Res). \]
\[h(X,[H|T],Res) :- h(X,T,R), f(X,T,Rf), combine3(X,H,R,Rf,Res). \]
\[f(X,\[],Rf) :- base5(X,Rf). \]
\[f(X,[H|T],Rf) :- f(X,T,RT), combine5(X,H,RT,Rf). \]

We introduce a new predicate \(hf \) defined as follows:

\[hf(X,L,R1,R2) :- h(X,L,R1), f(X,L,R2). \]

By unfolding, using the clauses defining \(h \) and \(f \), we get:

\[hf(X,\[],R1,R2) :- base3(X,R1), base5(X,R2). \]
\[hf(X,[H|T],R1,R2) :- h(X,T,R), f(X,T,Rf), combine3(X,H,R,Rf,R1), f(X,T,RT), combine5(X,H,RT,R2). \]

Since \(f \) is a functional predicate, we have that \(Rf = RT \), and we get:

\[hf(X,\[],R1,R2) :- base3(X,R1), base5(X,R2). \]
\[hf(X,[H|T],R1,R2) :- h(X,T,R), f(X,T,Rf), combine3(X,H,R,Rf,R1), combine5(X,H,Rf,R2). \]

By folding, we replace the conjunction ‘\(h(X,T,R), f(X,T,Rf) \)’ by (a variant of) the head of the definition of \(hf \), and we derive:

\[hf(X,\[],R1,R2) :- base3(X,R1), base5(X,R2). \]
\[hf(X,[H|T],R1,R2) :- hf(X,T,R,Rf), combine3(X,H,R,Rf,R1), combine5(X,H,Rf,R2). \]

which is an instance of Schema (A). Finally, we can replace the atom \(h(X,L,R1) \) in the body of any clause by the atom \(hf(X,L,R1,R2) \) (by first renaming \(R2 \), if it occurs in the clause).

We leave to the reader to show, in a similar way, that any instance of Schema (D) of Figure 4 can be transformed into an equivalent instance of Schema (B) of Figure 3. \(\square \)
Appendix C

Theorem 1 (Correctness of CHC Translation)
Proof
By Definition 3, we have that contract K is valid with respect to a set P of CHCs if and only if $M(P) |\models \forall (\text{pred}(Z) \land c \land \text{Catas} \rightarrow d)$. Since P is a set of definite CHCs and $M(P)$ is its unique least \mathbb{D}-model, $M(P) |\models \forall (\text{pred}(Z) \land c \land \text{Catas} \rightarrow d)$ if and only if $P \cup \{\text{false} \leftarrow \neg d, c, \text{pred}(Z), \text{Catas}\}$ is satisfiable.

Theorem 2 (Termination of Algorithm $\mathcal{T}_{\text{cata}}$)
Proof
Each execution of the Define, Unfold, Apply-Contracts, and Fold procedures terminates. The while-do of $\mathcal{T}_{\text{cata}}$ terminates if and only if the set Defs of new definitions introduced during the various iterations cannot grow indefinitely. A bounded growth of Defs is guaranteed by the fact that, by construction, every definition in Defs is of the form $\text{newp}(U) \leftarrow c, A, \text{Catas}_A$ and: (i) there is exactly one atom A of the form $p(Z)$, where p is a program predicate and Z is a tuple of distinct variables, (ii) for each ADT variable Z_i in A, the conjunction Catas_A contains occurrences of distinct catamorphism atoms with Z_i, and (iii) the constraint c is obtained by a sequence of applications of a widening operator, and hence this sequence cannot be infinite.

Theorem 3 (Soundness of Algorithm $\mathcal{T}_{\text{cata}}$)
Proof
Let Gs be the set $\{\gamma(K) \mid K \in \text{Cns}\}$ of goals that translate the contracts in Cns. Thus, by Theorem 1 the contracts in Cns are valid with respect to P if and only if $P \cup Gs$ is satisfiable. Algorithm $\mathcal{T}_{\text{cata}}$ can be viewed as a transformation of $P \cup Gs$ into TransfCls using the following transformation rules presented in the literature (Tamaki and Sato 1984; Etalle and Gabbrielli 1996): (i) definition introduction, (ii) unfold, (iii) fold, and (iv) goal replacement (based on the functionality and totality properties for catamorphisms, and on the validity of contracts for auxiliary functions). In particular, the results presented in recent work (De Angelis et al. 2022), which applies those transformation rules to the proof of CHC satisfiability, guarantee that, if TransfCls is satisfiable, then also $P \cup Gs$ is satisfiable.