Convex Searches for Discrete-Time Zames–Falb Multipliers

Joaquin Carrasco ⓒ, Member, IEEE, William P. Heath ⓒ, Member, IEEE,
Jingfan Zhang ⓒ, Student Member, IEEE, Nur Syazreen Ahmad ⓒ, Member, IEEE,
and Shuai Wang ⓒ, Member, IEEE

Abstract—In this article, we develop and analyze convex searches for Zames–Falb multipliers. We present two different approaches: infinite impulse response (IIR) and finite impulse response (FIR) multipliers. The set of FIR multipliers is complete in that any IIR multipliers can be phase-substituted by an arbitrarily large-order FIR multiplier. We show that searches in discrete time for FIR multipliers are effective even for large orders. As expected, the numerical results provide the best ℓ_2-stability results in the literature for slope-restricted nonlinearities. In particular, we establish the equivalence between the state-of-the-art Lyapunov results for slope-restricted nonlinearities and a subset of the FIR multipliers. Finally, we demonstrate that the discrete-time search can provide an effective method to find suitable continuous-time multipliers.

Index Terms—Absolute stability, Lur’e problem, Zames–Falb multipliers.

I. INTRODUCTION

The stability of a feedback interconnection between a linear time-invariant (LTI) system G and any nonlinearity ϕ within the class of nonlinearities Φ is referred to as the Lur’e problem (see [1, Sec. I.3] for a history of this problem). As the stability is obtained for the whole class of nonlinearities, the adjective “absolute” or “robust” is added. In the classical solution of this problem, frequency-domain conditions on the linear system are determined by the class of nonlinearities. The inclusion of a multiplier reduces the conservativeness of the approach. The stability problem is translated into the search for a multiplier M, which belongs to the class of multipliers associated with the class of nonlinearities Φ, where G and M satisfy some frequency conditions.

The class of Zames–Falb multipliers is defined both for the continuous-time domain [2] and for the discrete-time domain [3] (see [4] for a tutorial on Zames–Falb multipliers for the continuous-time domain). Loosely speaking, a Zames–Falb multiplier preserves the positivity of a monotone and bounded nonlinearity. Hence, if an LTI plant G is in negative feedback with a monotone and bounded nonlinearity, then stability is guaranteed if there is a multiplier M such that

$$\text{Re}\{ MG \} > 0$$

with M and G evaluated over all frequencies (i.e., at $j\omega$, $\omega \in \mathbb{R}$ for continuous-time systems and at $e^{j\omega}$, $\omega \in [0, 2\pi]$ for discrete-time systems). Similarly (and by loop transformation), if an LTI plant G is in negative feedback with an $S[0, K]$ slope-restricted nonlinearity, then stability is guaranteed if there is a multiplier M such that

$$\text{Re}\{ M(1 + KG) \} > 0$$

with M and G evaluated over all frequencies. In addition, a wider class of multipliers is available if the nonlinearity is odd; multipliers for quasi-odd multipliers can also be derived [5].

A. Overview of Searches for Zames–Falb Multipliers in the Continuous-Time Domain

To date, most of the literature on search methods for Zames–Falb multipliers has been focused on continuous-time systems, where three types of method have been developed.

1) Finite Impulse Response (FIR): Searches over sums of Dirac delta functions are proposed and developed in [6], [7], and [8]. The main advantage of this method is the simplicity and versatility of using impulse responses for the multiplier. However, the searches require a sweep over all frequencies, which can lead to unreliable results in some cases [9]. Moreover, the choice of times for the Dirac delta functions is heuristic.

2) Basis Functions: In [10] and [11], it is proposed to parameterize the multiplier in terms of causal basis functions $e_i^+(t) = t^i e^{-t} u(t)$ where $u(t)$ is the unit (or Heaviside) step function, and anticausal basis functions $e_i^-(t) = t^i e^t u(-t)$, with $i = 1, \ldots, N$ for some N. As an advantage over the FIR method, the positivity of $M(1 + kG)$ can be tested through the Kalman–Yakubovich–Popov (KYP) lemma. Moreover, the search provides a complete search over the class of rational multipliers as N approaches infinity [12]. The method provides significant online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2958848
advantages, such as the combination with other nonlinearities [13]. Nonetheless, if N is required to be large, then the search becomes numerically ill-conditioned. With small N, there is conservatism for odd nonlinearities, since the impulse of the multiplier is allowed to change sign. In fact, the results reported in [10] for single-input–single-output (SISO) examples are not significantly better for odd nonlinearities than for nonodd.

3) Restricted Structure Rational Multipliers: In [16], an linear matrix inequality (LMI) method is proposed where the \mathcal{L}_1 norm of a low-order causal multiplier is bounded in a convex manner (see also [17]). Several extensions have been proposed: adding a Popov multiplier [18], developing an anticausal counterpart [9], and increasing the order of the multiplier [19]. The method is quasi-convex and effective but does not provide a complete search. It has two further drawbacks: the bound of the \mathcal{L}_1-norm may be conservative and it can only be applied if the nonlinearity is odd.

In [4] and [21], it has been shown that the searches’ relative performances vary with different examples. It must be highlighted that results using basis functions can be significantly improved by manually selecting the parameters of the basis [14], [15]. Similarly, manual tuning of delta functions can be useful for time-delay systems [22].

In addition, there are several other stability tests in the literature, where either the Zames–Falb multipliers are not explicitly invoked or extensions to the Zames–Falb multipliers are proposed. These can all be viewed as searches over subclasses of Zames–Falb multipliers [20], [21]. In particular, the off-axis circle criterion is a powerful technique that uses graphical tools to ensure the existence of a possibly high-order multiplier by using graphical methods [23], hence avoiding the use of an optimization tool. It can be used to establish a large set of plants that satisfy the Kalman conjecture [24], [25].

B. Zames–Falb Multipliers in the Discrete-Time Domain

In [3] and [26], the discrete-time counterparts of the Zames–Falb multipliers [2] are given. The conditions are the natural counterparts to the continuous-time case, where the \mathcal{L}_1-norm is replaced by the ℓ_1-norm and the frequency-domain inequality must be satisfied on the unit circle. In the continuous-time case, the use of improper multipliers has generated “extensions” of the original that have been analyzed in [20], [21]. In the discrete-time case, the conditions for the Zames–Falb multipliers are necessary and sufficient to preserve the positivity of the nonlinearity [26]; it follows that the class of Zames–Falb multipliers is the widest class of multipliers that can be used. The result has been extended to multiple-input–multiple-output (MIMO) systems [27], repeated nonlinearities in [28] and MIMO repeated nonlinearities in [29]. These works are focused on the description of the available multipliers, but no explicit search method is discussed.

Modern digital control implementation requires a complete study in the discrete-time domain. In addition, the possibility of using the Zames–Falb multipliers for studying the stability and robustness properties of input-constrained model predictive control (MPC) [30] provides an inherent motivation for discrete-time analysis, since MPC is naturally formulated in discrete time. Recently, Zames–Falb multipliers in discrete-time have been attracting attention in their use to ensure convergence rates of optimization algorithms [31], [33].

More generally, the absolute stability problem of discrete-time Lur’e systems with slope-restricted nonlinearities continues to attract attention. Recent studies include [34]–[37], which all take a Lyapunov function approach; as an advantage, they generate easy-to-check LMI conditions. However, one might expect that improved results could be obtained via a multiplier approach, since this provides a more general condition. In fact, some of these approaches can be interpreted as a search over a small subclass of Zames–Falb multipliers (see [36] for further details). Although this article deals with SISO systems, it must be highlighted that a tractable stability test using Zames–Falb multipliers for MIMO nonlinearities has been proposed in [38], which can be seen as a MIMO extension of the results in Section IV-B. Results in [38] focus on the most suitable structure for the MIMO multiplier, where a combination of Zames–Falb multipliers and circle criterion must be used to exploit possible differences between sector and slope condition; by contrast, results in this article focus on the use of different search algorithms in the discrete-time domain.

The differences between continuous-time and discrete-time Lur’e systems are nontrivial. As an example, second-order counterexamples to the discrete-time Kalman conjecture have been found [39], [40]. For continuous-time systems, the Kalman conjecture holds for first-, second-, and third-order plants [41]. This is reflected by phase restrictions that can be placed on discrete-time Zames–Falb multipliers that are different in kind to their continuous-time counterparts [42].

In this article, we propose several searches for SISO LTI discrete-time Zames–Falb multipliers. The search of multipliers can be carried out with two different approaches.

1) Infinite Impulse Response (IIR) Multiplier: The search is the counterpart of the method proposed by Carrasco et al. [9], [16], presented in [43] and included for the sake of completeness. The multipliers are parametrized in terms of their state-space representation, and classical multiobjective techniques are used to produce an LMI search.

2) Finite Impulse Response (FIR) Multiplier: This search can be considered as combining the searches of both Safonov and Wyetzner’s [6] and Chen and Wen’s methods [11] in continuous time. Initial results were presented in [44]. Here, two alternative versions are provided: first, we propose a novel ad hoc factorization where we can exploit some additional flexibility; second, we use standard lifting techniques (e.g., [45]).

We show the equivalence of state-of-the-art Lyapunov results in [37] with a particular subclass of FIR multipliers in Section V. Numerical results and some computational consideration are discussed in Section VI. In Section VII, we consider how the discrete-time FIR search may be used effectively to find continuous-time multipliers. We show by numerical examples that tailoring the method can match or beat searches proposed in the literature for rational transfer functions.

We must highlight that discrete-time Zames–Falb multipliers have been defined as LTV operators [3]. However, we reduce our attention to LTI Zames–Falb multipliers. In the spirit of [20], it remains open whether the restriction to LTI Zames–Falb
multiplier can be made without loss of generality when G is an LTI system. Moreover, we have conjectured [42] about the connection between the lack of a Zames–Falb multiplier and the lack of absolute stability. In short, if there is no suitable Zames–Falb multiplier for a plant G and gain k smaller than its Nyquist gain (see Section II for a definition), then we conjecture that there exists a slope-restricted nonlinearity in $[0, k]$ such that the feedback interconnection between G and the nonlinearity is unstable [42]. However, further work is required to prove or disprove this conjecture.

II. Notation and Preliminary Results

Let Z and Z_+ be the set of integer numbers and positive integer numbers including 0, respectively. Let ℓ be the space of all real-valued sequences, $h : \mathbb{Z} \to \mathbb{R}$. Let $\ell_1(Z)$ be the space of all absolute summable sequences, so given a sequence $h : Z \to R$ such that $h \in \ell_1$, then its ℓ_1-norm is

$$\|h\|_1 = \sum_{k=-\infty}^{\infty} |h_k|$$

(3)

where h_k means the kth element of h. In addition, let ℓ_2 denote the Hilbert space of all square-summable real sequences $f : \mathbb{Z} \to \mathbb{R}$ with the inner product defined as

$$\langle f, g \rangle = \sum_{k=0}^{\infty} f_k g_k$$

(4)

for $f, g \in \ell_2, k \in \mathbb{Z}$. Similarly, we can define the Hilbert space $\ell_2(Z)$ by considering real sequences $f : Z \to \mathbb{R}$. We use ℓ_i to denote a row vector with i entries, all equal to zero. Similarly 0 denotes a matrix with zero entries where the dimension is obvious from the context. We use I_i to denote the $i \times i$ identity matrix.

The standard notation RL_{∞} is used for the space of all real rational transfer functions with no poles on the unit circle. If $G \in RL_{\infty}$, its norm is defined as $\|G\|_{\infty} = \sup_{z | |z|=1} |G(z)|$. Furthermore, RH_{∞} is used for the space of all real rational transfer functions with all poles strictly inside the unit circle. Similarly, RH_{∞} is used for the space of all real rational transfer functions with all poles strictly inside the unit circle. With some reasonable abuse of the notation, given a rational transfer function $H(z)$ analytic on the unit circle, $\|H\|_1$ means the ℓ_1-norm of impulse response of $H(z)$.

Let M denote an LTI operator mapping a time-domain input signal to a time-domain output signal and let M denote the corresponding transfer function. We consider that the domain of convergence includes the unit circle, so that the ℓ_1-norm of the inverse z-transform of M is bounded if $M \in RL_{\infty}$. We say the multiplier M is causal if $M \in RH_{\infty}$, M is anticausal if $M \in RH_{\infty}$, and M is noncausal otherwise. See [48] for further discussion on causality and stability. Henceforth, we will use M for both the operator and its transfer function.

A discrete LTI causal system G has the state space realization of (A, B, C, D). That is to say, assuming the input and output of G at sample k are u_k and y_k, respectively, and the inner state is denoted as x_k, the following relationship is satisfied:

$$G : \begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k + Du_k \end{cases}$$

(5)

in short

$$G \sim \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

(6)

Its transfer function is given by $G(z) = C(zI - A)^{-1}B + D$, where z is the z-transform of the forward (or left) shift operator. In fact, this notation is not always adopted in the literature since the definition of the z-transform is not uniform in the use of z or z^{-1} (see [48] and [50]).

The discrete-time version of the KYP lemma will be used to transfer frequency-domain inequalities into LMIs.

Lemma II.1 (Discrete KYP Lemma, [51]): Given A, B, M, with $\det(e^{j\omega I} - A) \neq 0$ for $\omega \in \mathbb{R}$ and the pair (A, B) controllable, the following two statements are equivalent:

1) For all $\omega \in \mathbb{R}$

$$\left[(e^{j\omega I} - A)^{-1}B \right]^* M \left[(e^{j\omega I} - A)^{-1}B \right] \leq 0.$$

(7)

2) There is a matrix $X \in \mathbb{R}^{n \times n}$ such that $X = X^T$ and

$$M + \begin{bmatrix} A^TXA - X & A^TXB \\ B^TXA & B^TXB \end{bmatrix} \leq 0.$$

(8)

The corresponding equivalence for strict inequalities holds even if the pair (A, B) is not controllable.

Throughout this article, the superscript * stands for conjugate transpose.

Remark II.2: State space representations such as (5) are appropriate for causal systems, but not for anticausal and noncausal systems. These can be represented in state space as descriptor systems. The KYP lemma has been extended to descriptor systems in [52] for continuous-time LTI systems. In [53], an approach to the analysis of discrete singular systems is presented; however, it is restricted to causal systems. In this article, we exploit the structure of our multipliers to find causal systems that have the same frequency response on the unit circle. Hence, the classical KYP lemma suffices.

The discrete-time Lur’e system is represented in Fig. 1. The interconnection relationship is

$$\begin{cases} v_k = f_k + (Gw)_k \\ w_k = -\phi(v_k) + g_k \end{cases}.$$

(9)

The system (9) is well-posed if the map $(v, w) \mapsto (g, f)$ has a causal inverse on $\ell \times \ell$, and this feedback interconnection is ℓ_2-stable if for any $f, g \in \ell_2$, both $w, v \in \ell_2$.

The memoryless nonlinearity $\phi : \mathbb{R} \to \mathbb{R}$ with $\phi(0) = 0$ is said to be bounded if there exists C such that $|\phi(x)| < C|x|$ for all $x \in \mathbb{R}$, ϕ is said to be sector bounded in the interval $[0, \Psi]$ if for any real number $x \neq 0$, then

$$0 \leq \frac{\phi(x)}{x} \leq \Psi.$$

(10)
and ϕ is said to be monotone if for any two real numbers x_1 and x_2, then

$$0 \leq \frac{\phi(x_1) - \phi(x_2)}{x_1 - x_2}. \quad (11)$$

Moreover, ϕ is slope-restricted in the interval $S[0, K]$ if

$$0 \leq \frac{\phi(x_1) - \phi(x_2)}{x_1 - x_2} \leq K \quad (12)$$

for all $x_1 \neq x_2$. Finally, the nonlinearity ϕ is said to be odd if $\phi(x) = -\phi(-x)$ for all $x \in \mathbb{R}$.

Zames–Falb multipliers preserve the positivity of the class of monotone nonlinearities [2], [3]. Then, a loop transformation allows us to obtain the following result for slope restricted nonlinearities.

Theorem II.3 (see [3], [26]): Consider the feedback system in Fig. 1 with $G \in \mathbb{RH}_\infty$, and ϕ is a slope-restricted in $S[0, K]$. Suppose that there exists a multiplier $M : \ell_2(Z) \mapsto \ell_2(Z)$ whose impulse response is $m : Z \mapsto \mathbb{R}$ and satisfies $\sum_{k=-\infty}^{\infty} |m_k| \leq 2m_0$

$$\text{Re} \{M(z) (1 + KG(z))\} > 0 \quad \forall |z| = 1 \quad (13)$$

and either $m_k \leq 0$ for all $k \neq 0$ or ϕ is also odd. Then, the feedback interconnection (9) is ℓ_2-stable.

The above theorem leads to the definition of the class of Zames–Falb multipliers.

Definition II.4 (DT LTI Zames–Falb multipliers [3]): The class of discrete-time SISO LTI Zames–Falb multipliers contains all LTI convolution operators $M : \ell_2(Z) \mapsto \ell_2(Z)$ whose impulse response is $m : Z \mapsto \mathbb{R}$ satisfies $\sum_{k=-\infty}^{\infty} |m_k| < 2m_0$. Without loss of generality, the value of m_0 can be chosen to be 1.

Remark II.5: An important subclass of Zames–Falb multipliers is obtained by adding the limitation $m_k \leq 0$, which must be used if we only have information about slope-restriction of the nonlinearity.

Remark II.6: It is also standard to write Definition II.4 using the ℓ_1-norm by stating the condition as $\|M\|_1 \leq 2$.

Definition II.7 (Nyquist value): Given $G \in \mathbb{RH}_\infty$, the Nyquist value k_N is the supremum of all the positive real numbers K such that $\tau KG(z)$ satisfies the Nyquist Criterion for all $\tau \in [0, 1]$. It can also be expressed as

$$k_N = \sup \{K \in \mathbb{R}^+ : \inf \{1 + \tau KG(e^{j\omega}) \} > 0 \} \quad \forall \tau \in [0, 1] \}. \quad (14)$$

In terms of its state-space realization (5), k_N is the supremum of K such that all eigenvalues of $(A - BK C)$ are located in the open unit disk, with K in the interval $[0, k_N]$.

Remark II.8: The Kalman conjecture is not valid for discrete-time systems even for plants of order 2 [39], [40]. There is no a priori guarantee (except for first order systems) that if K is less than the Nyquist value for the plant, then the negative feedback interconnection of the plant and a nonlinearity slope-restricted in $S[0, K]$ is stable.

III. SEARCHES FOR IIR MULTIPLIERS

In Section III-A, we present a search for discrete-time causal multipliers that is the counterpart to the search for continuous-time causal multipliers presented in [16] (see also [17]). In Section III-B, we present the anticausal counterpart, similar in spirit to the continuous-time anticausal search of [9]. The results in this section were fully presented in [43], so proofs are omitted.

When the multiplier is parameterized in terms of its state-space representation as in [16] and [17], we require the following bound [54] for all the searches.

Lemma III.1 (see [54]): Consider a dynamical system G represented by (5) and $x_0 = 0$. Suppose that there exist $\mu > 0$, $0 < \lambda < 1$ and $P = P^T$ such that

$$\begin{bmatrix} A^T PA - \lambda P & A^T PB \\ B^T PB - \mu I & - \mu \end{bmatrix} < 0 \quad (15)$$

$$\begin{bmatrix} (\lambda - 1) P + C^T C & C^T D \\ (\mu - \gamma^2) I + D^T D & - \mu \end{bmatrix} < 0. \quad (16)$$

Then, $\|G\|_1 \leq \gamma$. Furthermore, A has all its eigenvalues in the open unit disk.

The use of this result is a fundamental limitation of this method as the parameterization of the multipliers requires their causality to be established before carrying out the search. Another important feature of this method is that it requires the nonlinearity to be odd as it is not possible to ensure the positivity of the impulse response of the multiplier.

A. Causal Multiplier Search

In the spirit of [16], a search over the class of causal discrete-time Zames–Falb multipliers is presented as follows.

Proposition III.2: Let

$$G(z) \sim \begin{bmatrix} A_g & B_g \\ C_g & D_g \end{bmatrix}$$

where $A_g \in \mathbb{R}^{n \times n}$, $B_g \in \mathbb{R}^{n \times 1}$, $C_g \in \mathbb{R}^{1 \times n}$, and $D_g \in \mathbb{R}^{1 \times 1}$. Let ϕ be an odd nonlinearity slope-restricted in $S[0, K]$. Without loss of generality, assume that the feedback interconnection of G and a linear gain K is stable. Define A_p, B_p, C_p, and D_p as follows:

$$A_p = A_g \quad (17)$$

$$B_p = B_g \quad (18)$$

$$C_p = K C_g \quad (19)$$
\[D_p = 1 + KD_g. \]

Assume that there exist positive definite symmetric matrices \(S_{11}, P_{11}, C_{11} \), and \(D_g \) such that the LMIs (21), (22), and (23) (given on the bottom of this page) are satisfied. Then, the feedback interconnection (1) is \(\ell_2 \)-stable.

Remark III.3: Similar to the continuous case [16], [17], the inequalities (21), (22), and (23) are not LMIs if \(\lambda \) is defined as a variable. Hence, the use of this result requires a linear search of \(\lambda \) over the interval between 0 and 1.

Remark III.4: The change of variable is the same as in the continuous case (see [16], [21], and [36]). The multiplier defined by

\[M(z) = \begin{bmatrix} A_u & B_u \\ C_u & 1 \end{bmatrix} \]

where \(A_u, B_u, \) and \(C_u \) can be recovered following [17] using

\[A_u = -(P_{11} - S_{11})^{-1} \hat{A} \]

\[B_u = -(P_{11} - S_{11})^{-1} \hat{B} \]

\[C_u = \hat{C}. \]

Remark III.5: Under further conditions, e.g., \(D_p = 0 \), it is possible to extend this method with a first-order anticausal component in the multiplier, i.e., \(M(z) = (1 + m_{-1}z) + M_c(z) \), under the constraint \(|m_{-1}| < 1 \). The development of the result is similar with the use of the state-space representation of \(zG(z) \).

B. Anticausal Multiplier Search

The anticausal counterpart of the above search can be stated as follows.

Proposition III.6: Let \(G \in \mathcal{RH}_\infty \) be represented in the state space by \(A_g, B_g, C_g, \) and \(D_g \) where \(A_g \in \mathbb{R}^{n \times n} \), \(B_g \in \mathbb{R}^{n \times 1} \), \(C_g \in \mathbb{R}^{1 \times n} \), and \(D_g \in \mathbb{R}^{1 \times 1} \). Let \(\phi \) an odd nonlinearity slope-restricted in \(S[0, K] \). Without loss of generality, assume that the feedback interconnection of \(G \) and a linear gain \(K \) is well-posed and stable. Define \(A_p, B_p, C_p, \) and \(D_p \) as follows:

\[A_p = A_g - B_g(KD_g + 1)^{-1}KC_g \]

\[B_p = -B_g(KD_g + 1)^{-1} \]

\[C_p = (KD_g + 1)^{-1}KC_g \]

\[D_p = (KD_g + 1)^{-1}. \]

Assume that there exist positive definite symmetric matrices \(S_{11} > 0, P_{11} > 0, \) and \(D_g \) such that \(P_{11} > 0 \) and \(C_{11} > 0 \). The feedback interconnection (1) is \(\ell_2 \)-stable.

Remark III.7: Once the search has provided the matrices \(\hat{A}, \hat{B}, \) and \(\hat{C} \), the matrices \(A_u, B_u, \) and \(C_u \) are computed as in Remark III.4, then the multiplier is given by

\[M_{ac}(z) = C_u (z^{-1}I - A_u)^{-1}B_u + 1 \]

which can be written as

\[M_{ac}(z) = \begin{bmatrix} A_u^\top & A_u^\top C_u^\top \\ B_u^\top A_u^\top & 1 - B_u^\top A_u^\top C_u^\top \end{bmatrix} \]

if \(A_u \) is nonsingular. If \(A_u \) is singular, then the result is still valid but the multiplier does not have a forward representation. Note that the region of convergence of this transfer function does not include \(z = \infty \) and the term \(m_0 \) in the inverse \(z \)-transform of \(M_{ac}(z) \) corresponds with \(M_{ac}(0) \), i.e., \((\mathcal{Z}^{-1}(M_{ac}))(0) = M_{ac}(0) \).

IV. Searches for FIR Multipliers

In this section, we restrict our attention to FIR multipliers, i.e.,

\[M(z) = \sum_{i=-n_f}^{n_b} m_i z^{-i} \]

where \(n_b \geq 0 \) and \(n_f \geq 0 \). Without loss of generality, we set \(m_0 = 1 \). If the nonlinearity is not odd, we consider only the subclass of Zames–Falb multipliers with \(m_i \leq 0 \) for all \(i \in \mathbb{Z} \setminus \{0\} \). The multiplier \(M \) is said to be causal if \(n_b \geq 0 \) and \(n_f = 0 \), it

\[
\begin{bmatrix}
-S_{11} & * & * & * \\
-S_{11} & -P_{11} & * & * \\
-C_p - \hat{C} & -C_p & -D_p^\top - D_p & * & * \\
P_{11}A_p + \hat{B}C_p + \hat{A} & P_{11}A_p + \hat{B}C_p & P_{11}B_p + \hat{B}D_p & -S_{11} & -P_{11} \\
\lambda(S_{11} - P_{11}) & * & * & \lambda(S_{11} - P_{11}) & * \\
0 & -\mu I & * & 0 & -\mu I \\
-\hat{A} & -\hat{B} & S_{11} - P_{11} & -\hat{A} & -\hat{B} \\
(\lambda - 1)(S_{11} - P_{11}) & * & * & 0 & (\mu - 1)I \\
0 & (\mu - 1)I & * & 0 & (\mu - 1)I \\
\end{bmatrix} < 0
\]

and

\[
\begin{bmatrix}
0 & (\mu - 1)I \\
\end{bmatrix} < 0
\]
is said to be anticausal if $n_b = 0$ and $n_f \geq 0$, and it is said to be noncausal if $n_b > 0$ and $n_f > 0$.

Two different searches are included as they provide alternative insights to the design of the multiplier given as follows:

1) first, we provide a special factorization for SISO Zames–Falb multipliers where the design of the multiplier is more flexible as n_f and n_b can be selected independently;

2) second, we present a basis factorization for SISO multipliers, which can be seen as a counterpart of the continuous-time domain, under the constraint $n_f = n_b$.

Although there are no significant numerical differences, there is a very significant difference from a theoretical point of view: the first search guarantees a positive definite matrix when the KYP lemma is used. It must be highlighted that there is no such search of noncausal Zames–Falb multipliers in continuous time. Further research is required to investigate a possible transformation to the time domain, where local properties can be analyzed [46], [47]. To conclude the section, we show that any Zames–Falb multiplier can be phase-substituted by an appropriate FIR multiplier.

A. Special Search of FIR Zames–Falb Multipliers

In this section, we develop an LMI search for FIR Zames–Falb multipliers. In Lemma IV.1, we show that the ℓ_1 condition can be expressed with linear constraints. In Lemma IV.3, we show that although our multiplier is noncausal, the positivity condition can be expressed in terms of a nonsingular state-space representation, leading to an LMI formulation. Our main stability result is stated in Theorem IV.4. It is possible to show that the LMI requires a positive definite matrix.

We seek a Zames–Falb multiplier $M(z)$ with structure of (33) and $m_0 = 1$ such that

$$\text{Re} \{M(z)(1 + KG(z))\} > 0 \; \forall \; |z| = 1. \tag{34}$$

Lemma IV.1: If $M(z)$ has the structure of (33) with $m_0 = 1$, then $M(z)$ is a Zames–Falb multiplier provided

$$m_i \leq 0 \text{ for } i = -n_f, \ldots, -1 \text{ and } i = 1, \ldots, n_b \tag{35}$$

and

$$\sum_{i=-n_f}^{n_b} m_i \geq 0. \tag{36}$$

If the nonlinearity is odd, then we can write $m_i = m_i^+ - m_i^-$ for $i = -n_f, \ldots, n_b$ (we define $m_0^+ = 1$ and $m_0^- = 0$) and $M(z)$ is a Zames–Falb multiplier provided

$$m_i^+ \geq 0 \text{ and } m_i^- \geq 0 \text{ for } i = -n_f, \ldots, n_b \tag{37}$$

and

$$\sum_{i=-n_f}^{n_b} m_i^+ + \sum_{i=-n_f}^{n_b} m_i^- \leq 2. \tag{38}$$

Proof: This follows immediately from Theorem II.3. The decomposition for odd nonlinearities is the Jordan measure decomposition (e.g., [55]).

Remark IV.2: If the nonlinearity is not odd, this leads to $n_f + n_b + 1$ linear constraints while if the nonlinearity is odd, this leads to $2n_f + 2n_b + 1$ linear constraints.

Given $P(z) = 1 + kG(z)$, condition (34) can be written as

$$M(z)P(z) + [M(z)P(z)]^* > 0 \text{ for all } |z| = 1. \tag{39}$$

However, since M is noncausal and $P \in \mathbb{RH}_\infty$, it follows that MP does not have a nonsingular state-space description. This is addressed in Lemma IV.3 below.

First, we define some quantities. Let $P(z)$ have state-space description

$$P \sim \begin{bmatrix} A_p & B_p \\ C_p & D_p \end{bmatrix} \tag{40}$$

where $A_p \in \mathbb{R}^{n_p \times n_p}$. Let $n = \max(n_f, n_b)$ and define

$$\tilde{A} = \begin{bmatrix} A_p & B_p & 0 \\ 0 & 0 & I_{n-1} \\ 0 & 0 & 0 \end{bmatrix} \text{ and } \tilde{B} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{41}$$

where $\tilde{A} \in \mathbb{R}^{(n_p+n) \times (n_p+n)}$. Also let

$$C_n = \begin{bmatrix} C_p & D_p & 0_{n-1} \end{bmatrix} \tag{42}$$

and

$$C_{d,i} = \begin{bmatrix} 0_{n_p+n-i} & 1_{0-i-1} \end{bmatrix} \text{ for } i = 1, \ldots, n_f. \tag{43}$$

Define C_i as

$$C_i = C_n \tilde{A}^{n-i} + \sum_{j=1}^{i-1} \left(C_n \tilde{A}^{n-i-j-1} \tilde{B} \right) C_{d,j} \tag{44}$$

for $i = -n_f, \ldots, -1$

$$C_0 = C_n \tilde{A}^{n} \tag{45}$$

$$C_i = C_n \tilde{A}^{n-i} \text{ for } i = 1, \ldots, n_b \tag{46}$$

and D_i as

$$D_i = C_n \tilde{A}^{n-i-1} \tilde{B} \text{ for } i = -n_f, \ldots, -1 \tag{47}$$

$$D_0 = C_n \tilde{A}^{n-1} \tilde{B} \tag{48}$$

$$D_i = 0 \text{ for } i = 1, \ldots, n_b. \tag{49}$$

Then, we can say the following.

Lemma IV.3: Suppose $P(z)$ is a causal and stable discrete-time transfer function with state-space description (40) and suppose $M(z)$ is a noncausal FIR transfer function given by (33) with $m_0 = 1$. There exist $P_i(z)$ for $i = -n_f, \ldots, n_b$ with nonsingular state-space representation such that

$$M(z)P(z) + [M(z)P(z)]^* = \sum_{i=-n_f}^{n_b} m_i \left(P_i(z) + P_i(z)^* \right) \tag{50}$$

$\forall |z| = 1$. Furthermore, the statement

$$M(z)P(z) + [M(z)P(z)]^* > 0 \; \forall \; |z| = 1 \tag{51}$$
is equivalent to the statement that there exists a matrix $X \in \mathbb{R}^{(n_p+n) \times (n_p+n)}$ such that $X = X^\top$ and

$$
\begin{bmatrix}
A^\top X \hat{A} - \hat{X} \hat{A}^\top \hat{X} B
\end{bmatrix}
\begin{bmatrix}
\hat{B}^\top \hat{X}
\end{bmatrix} = M_f^2 \Pi M_f < 0
$$

with

$$
\begin{bmatrix}
\Pi_{11} & \Pi_{12} \\
\Pi_{21} & \Pi_{22}
\end{bmatrix} = \begin{bmatrix} 0 & m \\ m^\top & 0 \end{bmatrix}
$$

$$
m^\top = [m_{-n}, \ldots, m_{-1}, 1, m_1, \ldots, m_n]
$$

and

$$
M_f = \begin{bmatrix} M_{f,11} & M_{f,12} \\ M_{f,21} & M_{f,22} \end{bmatrix} = \begin{bmatrix} C_{-n_f} & D_{-n_f} \\ \vdots & \vdots \\ C_{n} & D_n \end{bmatrix}
$$

The partition is standard since P_i is anticausal. We can write

$$
P_i(z) = P_i^C(z) + P_i^{AC}(z^{-1}).
$$

We parameterize each $P_i(z)$ as follows. Let $n = \max(n_f, n_b)$. Define \hat{A} and \hat{B} as (41) and C_n as (42). Then

$$
z^{-n} P(z) = C_n (z I - \hat{A})^{-1} \hat{B}.
$$

When i is positive, we can write

$$
P_i(z) = z^{-i} P(z)
$$

$$
= C_n \hat{A}^{n-i} (z I - \hat{A})^{-1} \hat{B}
$$

$$
= C_i (z I - \hat{A})^{-1} \hat{B} + D_i
$$

where C_i and D_i are given by (46) and (49), respectively. Similarly

$$
P_0(z) = P(z)
$$

$$
= C_n \hat{A}^{-1} + C_n \hat{A}^{n-1} \hat{B}
$$

$$
= C_0(z I - \hat{A})^{-1} \hat{B} + D_0
$$

where C_0 and D_0 are given by (45) and (48), respectively. When i is negative, we write

$$
P_i(z) = C_p A_p^{-i} (z I - A_p)^{-1} B_p + C_p A_p^{i-1} B_p
$$

$$
+ D_p z^{-i} + \sum_{k=1}^{i-1} C_p A_p^{k-1} B_p z^{-i-k}.
$$

The state-space realization of the delay operator z^{-j} is formulated as

$$
z^{-j} = C_{d,j} (z I - \hat{A})^{-1} \hat{B}
$$

with $C_{d,j}$ given by (43). So we can write this

$$
P_i(z) = C_n \hat{A}^{n-i} (z I - \hat{A})^{-1} \hat{B} + C_n \hat{A}^{n-i} \hat{B}
$$

$$
+ C_n \hat{A}^{n-1} \hat{B} z^{-i} + \sum_{k=1}^{i-1} C_n \hat{A}^{n+k-1} \hat{B} z^{-i-k}
$$

$$
= C_i (z I - \hat{A})^{-1} \hat{B} + D_i
$$

where C_i and D_i are given by (44) and (47), respectively. Finally, we can write

$$
M(z) P(z) + [M(z) P(z)]^* = \begin{bmatrix} P_{-n_f}(z) \\ \vdots \\ P_{n_b}(z) \end{bmatrix}^* \begin{bmatrix} 0 & m \\ m^\top & 0 \end{bmatrix} \begin{bmatrix} P_{-n_f}(z) \\ \vdots \\ P_{n_b}(z) \end{bmatrix}
$$

$$
= \begin{bmatrix} (z I - \hat{A})^{-1} \hat{B} \\ 1 \end{bmatrix} M_f^2 \Pi M_f \begin{bmatrix} (z I - \hat{A})^{-1} \hat{B} \\ 1 \end{bmatrix}.
$$
The result then follows immediately from the KYP Lemma for discrete-time systems (Lem. II.1).

We can now state our main result.

Theorem IV.4: Consider the feedback system in Fig. 1 with $G \in \mathbf{RH}_\infty$, and ϕ is a nonlinearity slope-restricted in $S[0, k]$. Suppose we can find m and X such that the LMI (52) is satisfied under the conditions of Lemma IV.3 with the additional constraints either (35) and (36) or ϕ is also odd and (37) and (38). Then, the feedback interconnection (9) is ℓ_2-stable.

Proof: This follows immediately from Lemma IV.1, Lemma IV.3, and Theorem II.3.

Proposition IV.5: If there exists $X = X^T$ satisfying (52) in Lemma IV.3, then $X > 0$.

Proof: It follows since the diagonal matrix block $M_f^T \Pi M_f$ with the $(n + n_p)$ first rows and columns, denoted by $(M_f^T \Pi M_f)_{11}$, is zero, hence condition (52) requires

$$
\tilde{A}^T X \tilde{A} - X < 0
$$

with all eigenvalues of \tilde{A} in the open unit disk, hence $X > 0$.

In detail, the eigenvalues of \tilde{A} are the eigenvalues of A and 0, so \tilde{A} is Hurwitz when A is Hurwitz.

Then, it follows:

$$(M_f^T \Pi M_f)_{11} = M_f^T \Pi_{11} M_f + M_f^T \Pi_{12} M_f + M_f^T \Pi_{21} M_f + M_f^T \Pi_{22} M_f.$$

Since $\Pi_{11} = 0_{(n_b + n_f + 1) \times (n_b + n_f + 1)}$, and $M_f = 0_{1 \times (n + n_p)}$, we have $(M_f^T \Pi M_f)_{11} = 0_{(n + n_p) \times (n + n_p)}$.

Therefore, $X > 0$ holds.

B. FIR Search Using Causal Basis

In this section, we provide a causal-factorization approach, which is widely discrete-time for general robust techniques [45], but here we focus on Zames–Falb multipliers. One can think of this technique as the discrete-time counterpart of factorization approach in [13] for general continuous-time multipliers.

By the integral quadratic constraints (IQC) theorem, we seek a Zames–Falb multiplier such that

$$
\begin{bmatrix}
-G(z)^* & KM^*(z) \\
1 & KM(z) - (M(z) + M^*(z)) & I
\end{bmatrix} < 0,
$$

for all $|z| = 1$. Substituting the Zames–Falb multiplier $M(z)$ by its FIR form (33) with $n_b = n_f = n$, then the IQC multiplier can be factorized via lifting as follows:

$$
\begin{bmatrix}
0 & KM^*(z) \\
KM(z) & -(M(z) + M^*(z))
\end{bmatrix} = \Psi(z)^* \kappa(K, m) \Psi(z)
$$

where

$$
\Psi(z) = \begin{bmatrix}
1 & 0 \\
z^{-1} & 0 \\
z^{-2} & 0 \\
\vdots & \vdots \\
z^{-n} & 0 \\
0 & 1 \\
0 & z^{-1} \\
0 & z^{-2} \\
\vdots & \vdots \\
0 & z^{-n}
\end{bmatrix}
$$

and $\kappa(K, m)$ is given in (71) shown at bottom of this page.

Theorem IV.6: Consider the feedback system in Fig. 1 with $P \in \mathbf{RH}_\infty$, and ϕ is a nonlinearity slope-restricted in $S[0, K]$. Let

$$
\Psi(z) \begin{bmatrix}
-G(z) \\
1
\end{bmatrix} \sim \begin{bmatrix}
\hat{A} & \hat{B} \\
\hat{C} & \hat{D}
\end{bmatrix}
$$

and

$$
m^T = [m_{-n}, \ldots, m_{-1}, 1, m_1, \ldots m_n].
$$
If there exist \(X = X^T \) and \(m \) such that
\[
\begin{bmatrix} \hat{A}^T X \hat{A} - X \hat{A}^T X \hat{B} \\ \hat{B}^T X \hat{A} \end{bmatrix} + [\hat{C} \hat{D}]^T \kappa(k, m)[\hat{C} \hat{D}] < 0
\]
and either \(m_i \leq 0 \) for all \(i \neq 0 \) or \(\phi \) is odd, then the feedback interconnection (9) is \(\ell_2 \)-stable.

Proof: The proof follows by the application of the KYP lemma, as (72) is equivalent to (13); hence, the conditions of Theorem II.3 hold, and stability is then guaranteed.

Remark IV.7: Conditions for quasi-odd, quasi-monotone nonlinearities [5] can be straightforwardly implemented.

Remark IV.8: In this factorization, it is not possible to ensure \(X > 0 \). The introduction of the condition \(X > 0 \) would reduce the class of available multipliers.

Remark IV.9: This approach ensures the extension to MIMO system as shown in [38]. It must be highlighted that the structure of the multiplier, then, depends on the structure of the nonlinearity as shown in [28] and [29]. However, the extension of the result in Section IV-A requires further research.

C. Phase-Equivalence

In the spirit of [20] and [21], we can state the phase-equivalence between the full class of LTI Zames–Falb multipliers and FIR Zames–Falb multipliers as follows.

Lemma IV.10: Given \(P \in \mathbf{R} \mathbf{H}_\infty \), if there exists a Zames–Falb multiplier \(M \) such that
\[
\text{Re} \{ M(z)P(z) \} > 0 \quad \forall |z| = 1
\]
then there exists an FIR Zames–Falb multiplier \(M_{\text{FIR}} \) such that
\[
\text{Re} \{ M_{\text{FIR}}(z)P(z) \} > 0 \quad \forall |z| = 1.
\]

Proof: Given an LTI Zames–Falb multiplier
\[
M(z) = \sum_{i=-\infty}^{\infty} m_i z^{-i}, \quad \text{and} \quad \sum_{i=-\infty}^{\infty} |m_i| \leq 2m_0
\]
for any \(\varepsilon > 0 \), there exists \(N \) such that
\[
\sum_{i=-\infty}^{-N-1} |m_i| + \sum_{i=N+1}^{\infty} |m_i| < \varepsilon.
\]
We can write
\[
M(z) = \sum_{i=-N}^{N} m_i z^{-i} + M_t(z) = M_{\text{FIR}}(z) + M_t(z)
\]
with \(\|M_t\|_\infty \leq \|M_t\|_1 < \varepsilon \).

Meanwhile, as \(P(z) \) and \(M(z) \) are continuous functions in the unit circle, by the extreme value theorem [49], there exists \(\delta_1 > 0 \) such that
\[
\text{Re} \{ M(z)P(z) \} \geq \delta_1 \quad \text{for all} \quad |z| = 1.
\]

Let us choose \(N \) such that (77) is satisfied with \(\varepsilon = \frac{\delta_1}{2\|P\|_\infty} \). Then, for all \(z \) satisfying \(|z| = 1 \), we find
\[
\text{Re} \{ M(z)P(z) \} = \text{Re} \{ M_{\text{FIR}}(z)P(z) \} + \text{Re} \{ M_t(z)P(z) \}
\]
\[
\leq \text{Re} \{ M_{\text{FIR}}(z)P(z) \} + |M_t(z)P(z)|
\]
\[
\leq \text{Re} \{ M_{\text{FIR}}(z)P(z) \} + |M_t(z)||P(z)|
\]
\[
\leq \text{Re} \{ M_{\text{FIR}}(z)P(z) \} + \|M_t\|_\infty \|P\|_\infty
\]
\[
\leq \text{Re} \{ M_{\text{FIR}}(z)P(z) \} + \frac{\delta_1}{2}.
\]

Finally, rearranging (80) and using (74), it follows that:
\[
\text{Re} \{ M_{\text{FIR}}(z)P(z) \} \geq \text{Re} \{ M(z)P(z) \} - \frac{\delta_1}{2}
\]
\[
\geq \frac{\delta_1}{2} > 0 \quad \text{for all} \quad |z| = 1.
\]

V. RELATIONS TO LYAPUNOV RESULTS

In [36], a time-domain stability criterion based on a Lyapunov function is shown be equivalent to a frequency-domain stability theorem with a first-order noncausal FIR Zames–Falb multiplier. Recently, a state-of-the-art Lyapunov criterion has been presented in [37]. In this section, a similar analysis is conducted to show the relations between the stability criterion in [37] and a second-order noncausal FIR Zames–Falb multiplier.

A. Stability Criterion in Lyapunov Approach

Theorem 1 in [37] can be rewritten as follows.

Theorem VI.1: (see [37]) For the discrete time Lur’e system \(G \sim \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \) with the nonlinearity \(\phi \in [0, \Psi] \cap S[0, K] \), the closed-loop system is absolutely stable if there exist a symmetric matrix \(\bar{X} \in \mathbb{R}^{(2n+2) \times (2n+2)} \), positive diagonal matrices \(M_i \in \mathbb{R}^{m \times m} (i = 1, 2) \), \(N_i \in \mathbb{R}^{m \times m} (i = 1, \ldots, 4) \), \(\Pi_k \in \mathbb{R}^{m \times m} \), \(\Lambda_k \in \mathbb{R}^{m \times m} (k = 1, 2, 3) \), and any matrices \(\Theta_1, \Theta_2 \in \mathbb{R}^{n \times n} \), \(\Theta_3, \Theta_4, \Theta_5 \in \mathbb{R}^{m \times n} \), such that
\[
\bar{X} \equiv X + \Xi > 0, \quad \bar{\Omega} \equiv \bar{\Omega}_1 + \bar{\Omega}_2 + \bar{\Omega}_3 + \bar{\Omega}_4 < 0
\]
where \(\Xi \) is defined below. In addition, \(\bar{\Omega}_1, \bar{\Omega}_2, \bar{\Omega}_3, \bar{\Omega}_4 \) are on bottom of the next page, where some terms are added and subtracted at the same time, respectively, on the basis of \(\Omega \) in [37]
\[
\begin{align*}
\Xi_{11} &= C^T (M_2 K + N_3 \Psi) C, \quad \Xi_{21} = -CM_2 KC^T \\
\Xi_{22} &= C^T (M_2 K + N_4 \Psi) C, \quad \Xi_{31} = -(M_2 + N_2) C \\
\Xi_{32} &= M_2 C, \quad \Xi_{33} = (M_1 + M_2 + N_1 + N_2) K^{-1} \\
\Xi_{41} &= M_2 C, \quad \Xi_{42} = -(M_2 + N_4) C \\
\Xi_{43} &= -(M_1 + M_2) K^{-1}, \\
\Xi_{44} &= (M_1 + M_2 + N_3 + N_4) K^{-1}
\end{align*}
\]
Equations (83)–(85) are shown at the bottom of the next page.
B. Frequency-Domain Interpretation for SISO Systems

In the spirit of the development in [36], the second inequality can be translated into a frequency domain condition for the case \(\Psi = K \) and \(m = 1 \).

Theorem V.2: Let \(G \) be a SISO system. If the condition in Theorem V.1 are satisfied for some \(K = \Psi \), then there exists an FIR Zames–Falt multiplier \(M(z) = -m_2 z^{-2} - m_1 z^{-1} + m_0 - m_1 z - m_2 z^2 \) such that

\[
\text{Re} \{ M(z)(1 + KG(z)) \} > 0 \quad \forall |z| = 1. \quad (86)
\]

Proof: The term \(\overline{\Pi}_1 + \overline{\Pi}_2 \) in (82) can be written

\[
\overline{\Pi}_1 + \overline{\Pi}_2 = \begin{bmatrix} A^T \hat{X} \hat{A} - \hat{X} \hat{A}^T \hat{X} \hat{B} \hat{B}^T \hat{X} \hat{A} \end{bmatrix}
\]

where the state-space matrices

\[
\hat{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & A & -B \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}
\]

correspond to the augmented state

\[
\hat{\xi}_k = \begin{bmatrix} x_k^T & x_{k+1}^T & \phi(y_k)^T & \phi(y_{k+1})^T \end{bmatrix}^T.
\]

Then, by the KYP Lemma, the condition (82) can be rewritten in frequency domain

\[
\left[(z I - \hat{A})^{-1} \hat{B} \right] (\overline{\Pi}_3 + \overline{\Pi}_4) \left[(z I - \hat{A})^{-1} \hat{B} \right]^T < 0 \quad \forall |z| = 1. \quad (87)
\]
In addition, the identity

\[H e \{ \zeta_k^T \Theta [-x_{k+1} + A x_k - B \phi(y_k)] \} = 0 \]

with

\[\zeta_k = [x_k^T \ x_{k+1}^T \ \phi(y_k)^T \ \phi(y_{k+1})^T \ \phi(y_{k+2})^T]^T \]

and

\[\Theta = [\Theta_1^T \ \Theta_2^T \ \Theta_3^T \ \Theta_4^T \ \Theta_5^T]^T \]

implies

\[\left(zI - A_1 \right)^{-1} B^* \Omega_3 \left(zI - A \right)^{-1} B = 0 \quad \forall |z| = 1. \]

Hence, condition (87) is equivalent

\[\left(zI - A \right)^{-1} B^* \Omega_4 \left(zI - A \right)^{-1} B < 0 \quad \forall |z| = 1. \] \quad (88)

Noting that

\[zG(z) = CA(zI - A)^{-1} B + CB \]

and

\[\text{Re} \{ (M_1 + M_2)z \} = \text{Re} \{ (M_1 + M_2)z^{-1} \} = \text{Re} \{ M_1 z^{-1} + M_2 z \} \]

with \(M_1^T = M_1, M_2^T = M_2 \) for all \(|z| = 1 \), then condition (88) can be written

\[H e \{ \Lambda_s(G(z) + \Psi^{-1}) + M(z)(G(z) + K^{-1}) \} > 0 \quad \forall |z| = 1 \] \quad (89)

where \(\Lambda_s = \Lambda_1 + \Lambda_2 + \Lambda_3 \), \(M(z) = -m_0 z^{-2} - m_1 z^{-1} + m_0 - m_{-1} z - m_{-2} z^2 \), and

\[m_0 = 2(M_1 + M_2) + N_1 + N_2 + N_3 + N_4 + 2(\Pi_1 + \Pi_2 + \Pi_3) > 0 \]
\[m_1 = M_1 + M_2 + N_1 + N_3 + \Pi_1 + \Pi_3 > 0 \]
\[m_{-1} = M_1 + M_2 + N_2 + N_4 + \Pi_1 + \Pi_3 > 0 \]
\[m_{-2} = \Pi_2 > 0, \quad m_{-3} = \Pi_2 > 0. \]

It is clear that \(m_0 = m_2 + m_1 + m_{-1} + m_{-2} \), so \(M(z) \) is an FIR multipliers with structure given by (33) with \(n_b = n_f = 2 \).

This shows that the Lyapunov result [37] for SISO systems can be obtained with a low-order FIR Zames–Falb multiplier. It remains open whether similar equivalences can be found for Lyapunov results for MIMO systems.

VI. NUMERICAL RESULTS

A. Comparison With Other Results

Table I presents the numerical examples that we analyze. Six plants are taken from previous papers [36], [40] and a new plant is used (Ex. 7). Results are shown in Table II. We have run results in Theorem IV.4 for values of \(n = n_b = n_f \) between 1 and 100, and optimal results are presented in Table II indicating \(n^* \) the optimal value of \(n \). There are small numerical differences between results with both factorizations. In general, there is a slightly better performance of the factorization presented in Section IV-A.

The FIR search is significantly better than all competitive results in the literature, it beats classical searched as the Tsypkin Criterion [56], [57] as well as the most recent result in the Lyapunov literature [36], [37]. It is worth highlighting that these Lyapunov methods correspond with particular cases of FIR Zames–Falb multipliers, besides small numerical discrepancies. Results [36] corresponds with the case \(n_b = n_f = 1 \), whereas results in [37] correspond with the case \(n_b = n_f = 2 \), besides small numerical discrepancies. Results have been obtained by using CVX [58], [59] with the SDPT solver [60].

Roughly speaking, the higher the order of the multiplier, the better the results. However, there is a small deterioration due to numerical issues as \(n = n_b = n_f \) increases. We show that the maximum slope suffers also a small deterioration as \(n \) increases by including the values of the maximum slope with \(n = 100 \). Fig. 2 shows that the search improves as \(n \) increases until \(n = 10 \) but it is able to keep a significant consistency until \(n = 100 \). Fig. 3 shows some signs of deterioration as \(n \) increase, but the behavior of the search is completely different to the search in continuous-time when the search collapses to zero high-order multipliers (see [13, Fig. 7] where a discussion on the selection of the basis is provided). We associate this deterioration to the numerical error associated with an increment in the size of the matrices in the LMI.

Although, for several examples, the improvements are limited for \(n > 3 \), the new example has been provided to show that improvements can be found with larger values of \(n \).

As expected, results for odd nonlinearities are always better than results for nonodd nonlinearities. Although this is natural as the set of available multipliers increases and their phase restrictions are reduced, this contrasts with the SISO results reported in [10] for the continuous case. In Examples 1 to 4, the FIR results beat all others in the literature. In Example 5, both the FIR results and others in the literature achieve the Nyquist value. Example 6 is used in [40] to show that stability is deteriorated by the lack of symmetry. From [40], we expect a maximum slope above 1 for odd nonlinearities and below 1 for nonodd nonlinearities. Finally, Example 7 has been developed to show

Bx.	Plant
1 [36]	\(G_1(z) = z^{-1} - 1.95 z^{-1} + 0.92 + 0.58 i \)
2 [36]	\(G_2(z) = z^{-2} + 1.25 z^{-2} + 2.41 z^{-1} + 0.71 \)
3 [36]	\(G_3(z) = z^{-1} - 2.82 + 3.52 z^{-1} - 2.41 z^{-1} + 0.71 \)
4 [36]	\(G_4(z) = z^{-3} - 8.95 z^{-3} + 9.89 z^{-3} + 5.6 z^{-3} + 2.20 \)
5 [36]	\(G_5(z) = z^{-4} + 0.54 + 0.1 \)
6 [40]	\(G_6(z) = z^{-5} + 0.92 + 0.75 \)
7 (new)	\(G_7(z) = z^{-6} - 0.935 z^{-6} + 0.769 z^{-2} + 0.118 z^{-2} - 0.691 z^{-2} - 0.135 \)
TABLE II
SLOPE-RESTRICTED RESULTS BY USING DIFFERENT STABILITY CRITERIA

Criterion	Odd ϕ?	Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5	Ex. 6	Ex. 7
Circle Criterion [56]	N	0.7894	0.1894	0.1379	1.5372	1.0273	0.6510	0.1099
Tsypkin Criterion [57]	N	3.8000	0.2427	0.1379	1.6911	1.0273	0.6510	0.1099
Ahmad et. al. (2015), Thm 1 [36]	N	12.4309	0.7264	0.3027	2.5904	2.4475	0.9067	0.1695
Park et al. (2019)[37]	N	12.9960	0.7397	0.3054	2.5904	2.4475	0.9108	0.1695

Causal DT Zames-Falb (Prop. III.2.) | Y | 12.4355 | 0.7687 | 0.2341 | 3.3606 | 2.3328 | 0.9222 | 0.1966 |
Anticausal DT Zames-Falb (Prop. III.6.) | Y | 1.4998 | 0.4816 | 0.3058 | 3.2365 | 2.4474 | 1.0869 | 0.2556 |
PIR Zames-Falb ($n_f = 1$, $n_b = 2$) | N | 12.9959 | 0.7397 | 0.3054 | 2.5904 | 2.4475 | 0.9108 | 0.1695 |
PIR Zames-Falb ($n_f = 2$, $n_b = 2$) | N | 12.9959 | 0.7397 | 0.3054 | 2.5904 | 2.4475 | 0.9108 | 0.1695 |
PIR Zames-Falb ($n_f = 3$, $n_b = 3$) | N | 12.9960 | 0.7397 | 0.3054 | 2.5904 | 2.4475 | 0.9118 | 0.4347 |
PIR Zames-Falb ($n_f = 100$, $n_b = 100$) | N | 12.9766 | 0.7984 | 0.3100 | 3.8227 | 2.4475 | 0.9115 | 0.4921 |
PIR Zames-Falb ($n_f = n_b = n^2$) | N | 13.0283 (7) | 0.8027 (15) | 0.3120 (14) | 3.8240 (5) | 2.4475 (1) | 0.9115 (2) | 0.4922 (25) |
PIR Zames-Falb ($n_f = 1$, $n_b = 1$) | Y | 12.9959 | 0.7782 | 0.3076 | 3.3530 | 2.4475 | 1.0870 | 0.2536 |
PIR Zames-Falb ($n_f = 2$, $n_b = 2$) | Y | 12.9959 | 1.1056 | 0.3104 | 3.8240 | 2.4475 | 1.0870 | 0.2940 |
PIR Zames-Falb ($n_f = 3$, $n_b = 3$) | Y | 13.4322 | 1.1056 | 0.3121 | 3.8240 | 2.4475 | 1.0870 | 0.4759 |
PIR Zames-Falb ($n_f = 100$, $n_b = 100$) | Y | 13.5101 | 1.1056 | 0.3121 | 3.8240 | 2.4475 | 1.0870 | 0.5278 |
PIR Zames-Falb ($n_f = n_b = n^2$) | Y | 13.5113 (17) | 1.1056 (2) | 0.3121 (3) | 3.8240 (2) | 2.4475 (1) | 0.9170 (1) | 0.5280 (19) |

Nyquest Value | N/A | 36.1000 | 2.7455 | 0.3126 | 7.9070 | 2.4475 | 1.0870 | 1.1766 |

Table II: Slope-Restricted Results by Using Different Stability Criteria

TABLE III
CONTINUOUS-TIME EXAMPLES FROM [21]

Ex.	$G(z)$
1	$G_1(z) = \frac{0.3}{z^2+z+1}$
2	$G_2(z) = \frac{0.3}{z}$
3	$G_3(z) = \frac{0.3}{z+1}$
4	$G_4(z) = \frac{0.3}{z+2}$
5	$G_5(z) = \frac{0.3}{z+3}$
6	$G_6(z) = \frac{0.3}{z+4}$
7	$G_7(z) = \frac{0.3}{z+5}$
8	$G_8(z) = \frac{0.3}{z+6}$
9	$G_9(z) = \frac{0.3}{z+7}$

B. CVX Implementation

False positives are possible under some conditions when CVX [58], [59] is used. As suggested in [61], a possible solution is to add a positive variable in the left-hand side of (52) multiplied with an identity matrix, and maximize this variable.

Fig. 2. Maximum slope for Example 1 for odd nonlinearities as $n = n_f = n_b$ increases. The search is not affected by the significant numerical problems of the continuous-time counterpart (see [4], [13] for further details).

Fig. 3. Detail of Fig. 2 showing a small deterioration in the performance of the search for large values of n.

Fig. 4. Maximum slope for Example 7 for odd and nonodd nonlinearities.

an staggered improvement in the maximum slope (see Fig. 4), showing a significant improvement with respect to [37].

C. Computational Time

It is interesting to analyze the performance of the search as n increases, see Fig. 5. As expected, the computational time increases in a polynomial fashion. However, it is worth highlighting that the use of the Jordan measure decomposition in (38) increases slightly the computational time as the number of variables in the multiplier is doubled. The code is run in HP EliteDesk 800G2 with Intel Core i7-6700 processor at 3.40 GHz.

Fig. 5. Performance of the search for large values of n.
We find the maximum slope as follows. For this example, the method is poor. We must choose \(T = 20 \) such that \(\epsilon > 0 \).

A. Procedure

The idea is straightforward. Given a continuous plant \(G(s) \), we find the maximum slope as follows.

1) Choose a sampling time \(T_s \) and find the discrete-time counterpart \(G_d(z) \).
2) Choose \(n_f \) and \(n_b \). By using algorithm in Section IV-A, search for the discrete-time Zames–Falb multiplier

\[
M_d(z) = \sum_{i=-n_f}^{n_b} m_i z^{-i}
\]

\[
\text{corresponding to the maximum } K_d \text{ such that }
\]

\[
\text{Re} \{M_d(z)(1 + K_d G_d(z))\} > 0 \quad \forall |z| = 1.
\]

3) (Optional) Choose \(\epsilon > 0 \). For \(-n_f \leq i \leq n_b\), if \(|m_i| < \epsilon\), set \(m_i = 0 \) for tractability.
4) Define

\[
M(s) = \sum_{i=-n_f}^{n_b} m_i e^{-iT_s s}.
\]

It follows immediately that \(M(s) \) belongs to the appropriate class of Zames–Falb multipliers.
5) Find the maximum \(K \) such that

\[
\text{Re} \{M(s)(1 + KG(s))\} > 0 \text{ for all } \text{Re} \{s\} = 0.
\]

B. Numerical Results

We compare the performance of the Procedure with the numerical results given in [9]. The results are summarized in Table III. Here, we just provide details of the suitable multiplier obtained by the above method. We have used standard command in MATLAB code to perform the discretization. We use \(\epsilon = 10^{-3} \) in Step 3. A summary of the results is given in Table IV, but we provide detailed information for each example.

\[M(s) = -0.5436 e^{0.05 s} + 1 - 0.4561 e^{-0.05 s}. \]

The multiplier reaches the Nyquist value in this example \((K=4.5984)\), which matches the best results reported in [9].

Example 1: Choose \(T_s = 0.05 \), \(n_f = 1 \), \(n_b = 1 \). The discrete search leads, then, to the continuous-time multiplier given by

\[M(s) = 1 - 0.9551 e^{-0.05 s}. \]

The multiplier reaches the Nyquist value in this example \((K=1.0894)\), which matches the best results reported in [9].

Example 2: Choose \(T_s = 0.05 \), \(n_f = 0 \), \(n_b = 1 \). The discrete search leads, then, to the continuous-time multiplier given by

\[M(s) = 1 - 0.6507 e^{1.9 s} - 0.3493 e^{2 s}. \]

The multiplier reaches \(K = 1.945 \), a 21% improvement over the best results reported in [9].

Example 4: Choose \(T_s = 0.02 \), \(n_f = 1 \), \(n_b = 80 \). The discrete search leads, then, to the continuous-time multiplier given by

\[M(s) = -0.9186 e^{0.02 s} + 1 - 0.0809 e^{-1.6 s}. \]

The multiplier reaches \(K = 1.29 \), a 2% improvement over the best results reported in [9].

Example 6: Choose \(T_s = 0.02 \), \(n_f = 0 \), \(n_b = 50 \). The discrete search leads, then, to the continuous-time multiplier given by

\[M(s) = 1 - 0.8902 e^{-0.02 s} + 0.1087 e^{-s}. \]

The multiplier reaches \(K = 0.0055 \), a 65% improvement over the best results reported in [9].

Example 8: Again for this example, the method is poor. Extreme care must be taken when discretizing the model. Setting \(T_s = 0.001 \) and \(n_b = n_f = 40 \) yields a maximum
We have developed two search methodologies for discrete-time Zames–Falb multipliers: IIR and FIR. In contrast with continuous-time domain, one of the available searches is better for all examples. We show the superiority of these searches with respect to the recent method based on Lyapunov functions, whose results can be shown to be a subset of the FIR search with $n_b = n_f = 2$. Finally, we have extended the results to be used as a tunable search of continuous time Zames–Falb multipliers. The results shows the conservativeness of current state-of-the-art of fully autonomous searches over the class of Zames–Falb multipliers.

References

[1] M. Aizerman and F. Gantmacher, *Absolute Stability of Regulator Systems*. San Francisco, CA, USA: Holden-Day, 1964.

[2] G. Zames and P. L. Falb, “Stability conditions for systems with monotone and slope-restricted nonlinearities,” *SIAM J. Control*, vol. 6, no. 1, pp. 89–108, 1968.

[3] J. Willems and R. Brockett, “Some new rearrangement inequalities having application in stability analysis,” *IEEE Trans. Autom. Control*, vol. AC-13, no. 5, pp. 539–549, Oct. 1968.

[4] J. Carrasco, M. C. Turner, and W. P. Heath, “Zames–Falb multipliers for absolute stability: From O’Shea’s contribution to convex searches,” *Eur. J. Control*, vol. 28, pp. 1–19, 2016.

[5] W. P. Heath, J. Carrasco, and D. A. Altshuller, “Stability analysis of asymmetric saturation via generalised Zames-Falb multipliers,” in *Proc. 54th IEEE Conf. Decis. Control*, 2015, pp. 3748–3753.

[6] M. Safonov and G. Wetzner, “Computer-aided stability analysis renders Popov criterion obsolete,” *IEEE Trans. Autom. Control*, vol. AC-32, no. 12, pp. 1128–1131, Dec. 1987.

[7] P. Gapski and J. Geromel, “A convex approach to the absolute stability problem,” *IEEE Trans. Autom. Control*, vol. 39, no. 9, pp. 1929–1932, Sep. 1994.

[8] M. Chang, R. Mancera, and M. Safonov, “Computation of Zames-Falb multipliers revisited,” *IEEE Trans. Autom. Control*, vol. 57, no. 4, pp. 1024–1028, Apr. 2012.

[9] J. Carrasco, M. Maya-Gonzalez, A. Lanzon, and W. P. Heath, “LMI searches for anticausal and noncausal rational Zames–Falb multipliers,” *Syst. Control Lett.*, vol. 70, pp. 17–22, 2014.

[10] X. Chen and J. T. Wen, “Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities,” in *Proc. Am. Control Conf.*, 1995, pp. 3883–3887.

[11] X. Chen and J. Wen, “Robustness analysis for linear time invariant systems with structured incrementally sector bounded feedback nonlinearities,” *Appl. Math. Comput. Sci.*, vol. 6, pp. 623–648, 1996.

[12] J. Veenman and C. W. Scherer, “IQC-synthesis with general dynamic multipliers,” *Int. J. Robust Nonlinear Control*, vol. 24, no. 17, pp. 3027–3056, 2014.

[13] J. Veenman, C. W. Scherer, and H. Kroh, “Robust stability and performance analysis based on integral quadratic constraints,” *Eur. J. Control*, vol. 31, pp. 1–32, 2016.

[14] M. Fetzer and C. W. Scherer, “Full-block multipliers for repeated, slope-restricted scalar nonlinearities,” *Int. J. Robust Nonlinear Control*, vol. 27, no. 17, pp. 3376–3411, 2017.

[15] H. Tugal, J. Carrasco, P. Falcon, and A. Barreiro, “Stability analysis of bilateral teleoperation with bounded and monotone environments via Zames–Falb multipliers,” *IEEE Trans. Control Syst. Technol.*, vol. 25, no. 4, pp. 1331–1344, Jul. 2017.

Table IV

Comparison Between Best Results Reported in [9] and Continuous Time Method in Section VI

Ex	Best results in [9]	Procedure in Section VII	Nyquist value
1	4.5849	1.0894	4.5894
2	1.0894	1.6122	1.0894
3	1.2652	0.00333	1.2652
4	0.00333	10,000+	0.00333
5	10,000+	Unreliable	10,000+
6	Unreliable	Unreliable	Unreliable
7	3.5000	~	3.5000
8	1.7142	~	1.7142
9	87.3854	~	87.3854

C. Discussion

Loosely speaking, the smaller the sampling time with respect to the bandwidth of $G(s)$, the larger the required dimension of $M(z)$ (i.e., the values of n_f and/or n_b). Since the search behaves well, these values could be kept circa 100. If the required dimension of $M(z)$ is too large, then an efficient solution becomes intractable. But if $G(s)$ is in some sense stiff, a smaller sampling time must be chosen to ensure sufficiently large Nyquist gain of the discretized system (note that while the Nyquist gain of $G(s)$ may be infinity, the Nyquist gain of the discretized plant must be finite). Thus, although the method is seen to be highly effective for some simple benchmark examples, it may be less useful for higher order plants. Such considerations remain open to further investigation.

VIII. Conclusion

The results in this article provide the best results in the literature for absolute stability of discrete-time LTI systems in feedback interconnection with slope-restricted nonlinearities.

Figure 6: Phase of $M(s)(1 + 360G_B(s))$ where $M(s)$ is given by (90).
M. C. Turner, M. L. Kerr, and I. Postlethwaite, “On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities,” IEEE Trans. Autom. Control, vol. 54, no. 11, pp. 2697–2702, Nov. 2009.

J. Carrasco, W. P. Heath, G. Li, and A. Lanzon, “Comments on ‘On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities’,” IEEE Trans. Autom. Control, vol. 57, no. 9, pp. 2422–2428, Sep. 2012.

M. C. Turner and M. L. Kerr, “\mathcal{H}_∞ gain bounds for systems with sector bounded and slope-restricted nonlinearities,” Int. J. Robust Nonlinear Control, vol. 22, no. 13, pp. 1505–1521, 2012.

M. Turner and J. Sofrony, “High-order Zames-Falb multiplier analysis using linear matrix inequalities,” in Proc. Eur. Control Conf., 2013, pp. 2192–2197.

J. Carrasco, W. P. Heath, and A. Lanzon, “Equivalence between classes of multipliers for slope-restricted nonlinearities,” Automatica, vol. 49, no. 6, pp. 1732–1740, 2013.

J. Carrasco, W. P. Heath, and A. Lanzon, “On multipliers for bounded and monotone nonlinearities,” Syst. Control Lett., vol. 66, pp. 65–71, 2014.

J. Zhang, W. P. Heath, and J. Carrasco, “Kalman conjecture for resonant second-order systems with time delay,” in Proc. IEEE Conf. Decis. Control, Miami, FL, USA, 2018, pp. 3938–3943.

Y.-S. Cho and K. Narendra, “An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity,” IEEE Trans. Autom. Control, vol. AC-13, no. 4, pp. 413–416, Aug. 1968.

A. Tesi, A. Vicino, and G. Zappa, “Clockwise property of the nyquist plot with implications for absolute stability,” Automatica, vol. 28, no. 1, pp. 71–80, 1992.

J. Zhang, H. Tugal, J. Carrasco, and W. P. Heath, “Absolute stability of systems with integrator and/or time delay via off-axis circle criterion,” IEEE Control Syst. Lett., vol. 2, no. 3, pp. 411–416, Jul. 2018.

J. C. Willems, The Analysis of Feedback Systems. Cambridge, MA, USA: MIT Press, 1971.

M. G. Safonov and V. V. Kulkarni, “Zames-Falb multipliers for MIMO nonlinearities,” Int. J. Robust Nonlinear Control, vol. 10, pp. 1025–1038, 2000.

V. Kulkarni and M. Safonov, “All multipliers for repeated monotone nonlinearities,” IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1209–1212, Jul. 2002.

R. Mancera and M. G. Safonov, “All stability multipliers for repeated MIMO nonlinearities,” Syst. Control Lett., vol. 54, no. 4, pp. 389–397, 2005.

W. P. Heath and A. G. Wills, “Zames-Falb multipliers for quadratic programming,” IEEE Trans. Autom. Control, vol. 52, no. 10, pp. 1948–1951, Oct. 2007.

L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via integral quadratic constraints,” SIAM J. Optim., vol. 26, no. 1, pp. 57–79, 2015.

B. Hu and P. Seiler, “Exponential decay rate conditions for uncertain linear systems using integral quadratic constraints,” IEEE Trans. Autom. Control, vol. 61, no. 11, pp. 3631–3637, Nov. 2016.

R. A. Freeman, “Noncausal Zames–Falb multipliers for tighter estimates of exponential convergence rates,” in Proc. Ann. Am. Control Conf., Milwaukee, WI, USA, 2018, pp. 2984–2989.

C. Gonzaga, M. Jungers, and J. Daafouz, “Stability analysis of discrete-time Lur’e systems,” Automatica, vol. 48, no. 9, pp. 2277–2283, 2012.

N. S. Ahmad, W. P. Heath, and G. Li, “LMI-based stability criteria for discrete-time Lur’e systems with monotonic, sector- and slope-restricted nonlinearities,” IEEE Trans. Autom. Control, vol. 58, no. 2, pp. 459–465, Feb. 2013.

N. S. Ahmad, J. Carrasco, and W. P. Heath, “A less conservative LMI condition for stability of discrete-time systems with slope-restricted nonlinearities,” IEEE Trans. Autom. Control, vol. 60, no. 6, pp. 1692–1697, Jun. 2015.

J. Park, S. Y. Lee, and P. Park, “A less conservative stability criterion for discrete-time lune systems with sector and slope restrictions,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4391–4395, Oct. 2019.

M. Fetzer and C. W. Scherer, “Absolute stability analysis of discrete-time feedback interconnections,” IFAC-Papers OnLine, vol. 50, no. 1, pp. 8447–8453, 2017.

J. Carrasco, W. P. Heath, and M. de la Sen, “Second order counterexamples to the Kalman conjecture in discrete-time,” in Proc. Eur. Control Conf., 2015, pp. 961–965.

W. P. Heath, J. Carrasco, and M. de la Sen, “Second-order counterexamples to the discrete-time Kalman conjecture,” Automatica, vol. 60, pp. 140–144, 2015.

N. E. Barabanov, “On the Kalman problem,” Siberian Math. J., vol. 29, pp. 333–341, 1988.

S. Wang, J. Carrasco, and W. P. Heath, “Phase limitations of Zames-Falb multipliers,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 947–959, Apr. 2018.

N. S. Ahmad, J. Carrasco, and W. P. Heath, “LMI searches for discrete-time Zames-Falb multipliers,” in Proc. 52nd IEEE Conf. Decis. Control, 2013, pp. 5258–5263.

S. Wang, W. P. Heath, and J. Carrasco, “A complete and convex search for discrete-time noncausal FIR Zames-Falb multipliers,” in Proc. 53rd IEEE Conf. Decis. Control, 2014, pp. 3918–3923.

Y. Hosoe and T. Hagiwara, “Unified treatment of robust stability conditions for discrete-time systems through an infinite matrix framework,” Automatica, vol. 49, no. 5, pp. 1488–1493, 2013.

M. Fetzer and C. W. Scherer, “Zames-Falb Multipliers for Invariance,” IEEE Control Syst. Lett., vol. 1, no. 2, pp. 412–417, Oct. 2017.

P. Seiler, “An iterative algorithm to estimate invariant sets for uncertain systems,” in Proc. Annu. Amer. Control Conf., Milwaukee, WI, 2018, pp. 4249–4254.

M. A. Dahleh and I. J. D. Bobilbo, Control of Uncertain Systems: A Linear Programming Approach. Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

V. Kapila and W. Haddad, “A multivariable extension of the Tsypkin criterion using a Lyapunov-function approach,” IEEE Trans. Autom. Control, vol. 41, no. 1, pp. 149–152, Jan. 1996.

R. J. Rieber, C. Scherer, and F. Allgower, “Robust ℓ_1 performance analysis for linear systems with parametric uncertainties,” Int. J. Control, vol. 81, no. 5, pp. 851–864, 2008.

C. H. van der Schaar, “Existence of a Lyapunov function,” Automatica, vol. 35, no. 7, pp. 1181–1186, 1999.

F. Allgower, “Robust ℓ_1 performance analysis of uncertain systems,” in Proc. 41st IEEE Conf. Decis. Control, 2002, pp. 22–27.
William P. Heath (M’01) received the M.A. degree in mathematics from the University of Cambridge, Cambridge, U.K., in 1987, and both the M.Sc. and Ph.D. degrees in systems and control from the University of Manchester, Institute of Science and Technology, Manchester, U.K., in 1989 and 1992, respectively. He is the Chair of Feedback and Control with the Control Systems Centre and Head of the Department of Electrical and Electronic Engineering, University of Manchester, Manchester, U.K. Prior to joining the University of Manchester, he was with Lucas Automotive and was a Research Academic with the University of Newcastle, Callaghan, NSW, Australia. His research interests include absolute stability, multiplier theory, constrained control, and system identification.

Jingfan Zhang (S’18) received the B.Eng. degree in electrical engineering and its automation from Xi’an Jiaotong-Liverpool University, Suzhou, China, in 2015, and the M.Sc. degree in advanced control and systems engineering from the University of Manchester, Manchester, U.K., in 2016. He is currently working toward the Ph.D. degree with the Department of Electrical and Electronic Engineering, University of Manchester, Manchester, U.K. His research interests include absolute stability and multiplier theory.

Nur Syazreen Ahmad (M’10) received the B.Eng. degree (Hons.) in electrical and electronic engineering and the Ph.D. degree in control systems from the University of Manchester, Manchester, U.K., in 2009 and 2012, respectively. She is currently with the School of Electrical and Electronic Engineering, University of Science, Malaysia, George Town, Malaysia. Her current research interests include robust-constrained control, intelligent control systems, and wireless sensor network.

Shuai Wang (M’14) received the bachelor’s degree in measurement and control, technology and instrument, and the master’s degree in instrument science and technology from the Harbin Institute of Technology, Harbin, China, in 2011 and 2013, respectively. He received the Ph.D. degree from the School of Electrical and Electronic Engineering, University of Manchester, Manchester, U.K., in 2018. He is currently a Senior Researcher with Robotics X in Tencent, Shenzhen, China. His research interests include robotics, nonlinear systems control, and absolute stability. Dr. Wang is a member of IET and SIAM.