Supplemental Information

Spine Patterning Is Guided by Segmentation of the Notochord Sheath

Susan Wopat, Jennifer Bagwell, Kaelyn D. Sumigray, Amy L. Dickson, Leonie F.A. Huitema, Kenneth D. Poss, Stefan Schulte-Merker, and Michel Bagnat
Supplemental Information

- Supplemental Figures and Legends S1-S6
- Supplemental Experimental Procedures
- Supplemental References
Figure S1. Alternating segments in the notochord sheath are generated in an anteroposterior direction, Related to Figure 2.

Confocal images showing the development of alternating `entpd5a:pkRED+` and `col9a2:GFPCaaX+` segments in the notochord sheath from early (4.0mm SL) to late stages (6.5mm SL).

Scale bars are 100 μm. All images have been digitally stitched. Dotted line (bottom panel) indicates where two images were manually stitched together due to specimen displacement.
Figure S2. Transcript expression in col9a2+, double+, and entpd5a+ cell populations shows consistent replicates and distinct enrichment signatures for various segmentation genes, Related to Figure 3.

(A) Principal component analysis shows clustering of cell populations based on expression of all genes.

(B) Heat map visualization of somite segmentation genes show enrichment in the double+ transitional population (top heat map) for mespba, notch1a, ripply1, and her1; whereas, notch2, notch3, ifng, and dkk1b were specifically up-regulated in the entpd5a+ population (bottom heat map).
Figure S3. *in situ* hybridization of *mespbb* reveals segmented expression in the notochord sheath, Related to Figure 3.

Cryo-sections of 10 dpf larvae show expression of the *mespbb* transcript in notochord sheath cells in a segmented pattern (arrows) that correlates with somite boundaries (dotted lines).

Scale bars are 50 µm. Red dotted line (bottom panel) indicates where two images were manually stitched together.
Figure S4. Somite boundaries are unaffected by genetic manipulations in the notochord, Related to Figure 5.

(A) Brightfield imaging of *col9a2*:QF2 x QUAS:nlsVenus-V2a-notch1aICD (QUAS:NICD) or QUAS:nVenus-V2a-SuHDN (QUAS:SuHDN) crosses show that QUAS expression does not affect somite patterning or boundary formation at 48 hpf.

(B) Phalloidin staining of 48 hpf embryos did not show defects in somite organization compared to clutch-mate controls. White (*) denotes pigmentation. Scale bars for (A) and (B) are 100 µm.

(C) Control siblings from QF2 x QUAS crosses, i.e. expressing one or no transgene, did not present defects in notochord or spine segmentation. Scale bars are 500 µm.
Figure S5. Alteration of notochord sheath segmentation produces defects in centra shape, size, and average number, Related to Figure 5.

(A) Graphs depicting dorsal/ventral length ratios of centra in col9a2:QF2 x QUAS:GFP (n=19) and col9a2:QF2 x QUAS:nlsVenus-V2a-notch1aICD (n=20) fish. To characterize vertebral shape changes, we measured the length of individual centra along the dorsal and ventral sides as shown before (Hayes et al., 2013). Horizontal dotted lines demarcate ±0.1 ratio spreads, determined by the maximum deviation observed in col9a2:QF2 x QUAS:GFP controls. Deviation from a ratio of 1±0.1 is apparent for multiple centra along the anterior portion of the spine in col9a2:QF2 x QUAS:nlsVenus-V2a-notch1aICD fish. Individual fish are represented by a unique color and each individual centra is represented by a unique point. The graph’s x-axis extends in the anterior (A) posterior (P) direction, starting with the first rib-bearing vertebrae and ending with the last caudal vertebrae.

(B) Graph depicting the number of centra for misexpression crosses. Expression of QUAS:nVenus-V2a-SuHDN results in a statistically significant increase in the number of centra (n=16; p=0.0093). Whereas the mean number of centra in controls expressing QUAS:GFP was 26, fish expressing QUAS:nVenus-V2a-SuHDN on average had 27 centra. Conversely, expression of QUAS:mespbb-p2A-eGFP led to a decrease in the mean number of centra (n=22; p=0.0292). Manipulations with QUAS:nlsVenus-V2a-notch1aICD (NICD) did not lead to a significant increase or decrease in the number of
segments. *p* values for number of centra were determined via Welch’s unequal variances *t*-test.

(C) Centra length comparisons between manipulations show that significantly longer centra compared to controls were generated upon expression of *NICD* (*n*=20, *p*=0.0001) and *mespbb* (*n*=22, *p*=0.0104). *p* values for vertebrae length comparisons were calculated from a 1-way ANOVA with Dunnett’s multiple comparisons test. For graphs (B) and (C), error bars denote mean and SEM. All analyses exclude the Weberian and caudal tail vertebrae.
Figure S6. Delayed expression of QUAS:mespbb-p2A-eGFP bypasses early embryonic defects, Related to Figure 5. Compared to siblings lacking transgenic expression, col9a2:QF2;QUAS:mespbb-p2A-eGFP fish expressing both transgenes had severe defects. Injection of 50 pg or 100 pg of QS RNA (Potter et al., 2010) delayed onset of mespbb-p2A-eGFP expression and partially rescued early developmental defects. Scale bars are 100 µm.
Supplemental Experimental Procedures

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Animal experiments were approved by the Duke Institutional Animal Care and Use Committee (IACUC).

Fish stocks
Adult zebrafish of the Ekkwill strain (EK) were maintained and bred as previously described (Ellis et al., 2013; Garcia et al., 2017). All experiments with animals were approved by Duke University. Individual fish were used for genetic manipulation experiments and compared to siblings and experimental control fish of similar size and age. Independent experiments were repeated using separate clutches of animals. Strains generated for this study: Tg(col9a2:QF2)pd1163, Tg(QUAS:nlsVenus-V2a-notch1alCD)pd1164, Tg(QUAS:nVenus-V2a-SuHDN)pd1165, Tg(QUAS:mespbb-p2A-eGFP)pd1166, Tg(id2a:GFPCaaX)pd1167, and TgBAC(entpd5a:pkRED)hu7478. Previously published strains: Tg(col9a2:GFPCaaX)pd1151 (Garcia et al., 2017), Tg(osx:mcherry-NTR)pd43, Tg(osx:mTagBFP-2A-CreER)pd45 (Singh et al., 2012), Tg(her1:her1-Venus)bk15 (Delaune et al., 2012), Tg(TP1:VenusPEST)s940 (Ninov et al., 2012), and Tg(-2421/+29sox9b:EGFP)uw2 (Plavicki et al., 2014), referred to in this paper as sox9b:eGFP. Transgenic lines were generated using the Tol2 system as described before (Kawakami, 2007).

METHOD DETAILS

Transgenesis
All constructs for transgenic fish were generated using the same cloning strategies as before (Ellis et al., 2013; Garcia et al., 2017; Rodriguez-Fraticelli et al., 2015) The p5E-QUAS and pME-QF2 vectors were gifts from Marnie Halpern (Subedi et al., 2014). The pME-nlsVenus-V2a-notch1alCD and p3E-nVenus-V2a-SuHDN plasmids were gifts from David Parichy (Eom et al., 2015). The pBS-SK-QS plasmid was a gift from Christopher J. Potter and Liqun Luo (Potter et al., 2010).

To generate pME-nVenus-V2a-SuHDN, we amplified nVenus-V2a-SuHDN using the primers: forward, 5'GGGGACAAGTTTGTACAAAAAAGCAGGCTCATGGCTCCAAAGAAGAAG 3'; reverse, 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGTTCAGAGGCTCGAGA 3'.

pME-mespbb-p2A-eGP was generated by amplifying cDNA using primers: forward, 5'GGGGACAAGTTTGTACAAAAAAGCAGGCTCATGGCTCCAAAGAAGAAG 3'; reverse, 5'GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGTTCAGAGGCTCGAGA 3'.

To generate p5E-id2a, a 1kb sequence from id2a promoter was amplified from genomic DNA using primers: forward, 5'AAGCTTCATCGTGCAAACGT 3'; reverse, 5'CCCACAGTGAGTTCAGAAAGC 3'.

BAC recombineering strategies (Bussmann and Schulte-Merker, 2011) were used to generate TgBAC(entpd5a:pkRED)hu7478.
Calcein staining and skeletal preparations
Calcein staining and skeletal preparations were done as previously described (Garcia et al., 2017). ImageJ was used to count and measure vertebrae using the multipoint and line tools, respectively. Measurements for the length and wedge analyses were individually recorded from lines drawn either through the center of each centra or along the dorsal/ventral sides. Values calculated for each analysis were either normalized to the standard length of the fish (length) or were calculated from ratios of dorsal/ventral length measurements (wedge) (Hayes et al., 2013). Images taken of Alizarin skeletal preparations were converted to black-and-white images and inverted in ImageJ software to better highlight defects.

Drug treatments
Early DAPT treatment: Transgenic embryos with entpd5a:pkRED expression were incubated at 28°C for exactly 7 hours. At this stage, embryos were treated with a concentration of 10mg/mL of pronase in egg water to remove chorions for subsequent DAPT treatment. Using an established protocol (Ozbudak and Lewis, 2008), embryos were treated with a 100µM concentration of DAPT or a DMSO control for three hours. DAPT and DMSO treatments were washed out using three rinses of egg water and embryos were left to develop at 28°C until they were transferred to the aquaculture system. Larvae were then imaged at 14 dpf using the AX10 Zeiss microscope as described above.

Late DAPT treatment: 7 dpf larvae expressing entpd5a:pkRED, were imaged using the AX10 Zoom V116 Zeiss microscope as described above. Following imaging, larvae were treated with either 100µM DAPT or a DMSO control for 24 hours. Fresh DAPT and DMSO solutions were replaced after 12 hours. Larvae were removed from treatment, imaged, and placed back on to the aquaculture system to recover for 48 hours. After 48 hours of recovery, larvae were imaged again. Images of the same larva before treatment and after treatment were compared for quantifying expression levels.

In situ hybridization and histological methods
Twelve µm sagittal cryo-sections of 4% paraformaldehyde-fixed 10 dpf larvae were generated for **in situ** hybridizations. Tissue sections were imaged using a Leica DM6000 compound microscope.

In situ hybridization probes for mespbb and her1 were described previously (Cutty et al., 2012; Gajewski et al., 2003). PCR amplification off vectors or linearized vectors were used to generate digoxigenin- 4 labeled cRNA probes. **In situ** hybridizations were performed with the aid of an InSituPro robot (Intavis) as described (Poss et al., 2002).

Resource Table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Alexa Fluor® 568 Phalloidin	ThermoFisher	Cat#A12380
Chemicals, Peptides, and Recombinant Proteins		
N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine tert-butyl ester (DAPT)	Alfa Aesar	Cat#208255-80-5
Trypsin-EDTA	ThermoFisher	Cat#25200056
------------------	-------------	--------------
Collagenase	Sigma-Aldrich	Cat#C2674
Calcein	Sigma-Aldrich	Cat#0875
Alizarin Red	Sigma-Aldrich	Cat#A5533
Leibovitz’s L-15 media	ThermoFisher	Cat#21083-027
Paraformaldehyde	Fisher	Cat#AC4167802
Propidium Iodide	ThermoFisher	Cat#P3566
DMSO	Sigma-Aldrich	Cat#67-68-5

Critical Commercial Assays

RNeasy Plus Micro Kit Qiagen Cat#74034

Deposited Data

Raw and analyzed data This paper https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109176

Experimental Models: Organisms/Strains

Zebrafish: Tg(col9a2:GFPCaaX)pd115 (Garcia et al., 2017) N/A

Zebrafish: Tg(osx:mcherry-NTR)pd43 (Singh et al., 2012) N/A

Zebrafish: Tg(osx:mTagBFP-2A-CreER)pd45 (Singh et al., 2012) N/A

Zebrafish: Tg(her1:her1-Venus)bk15 (Delaune et al., 2012) N/A

Zebrafish: Tg(TP1:Venus-PEST)s940 (Ninov et al., 2012) N/A

Zebrafish: Tg(-2421/+29sox9b:EGFP)uw2 (Plavicki et al., 2014) N/A

Zebrafish: Tg(col9a2:QF2)pd1163 This work N/A

Zebrafish: Tg(QUAS:nlsVenus-V2a-notch1aICD)pd1164 This work N/A

Zebrafish: Tg(QUAS:nVenus-V2a-SuHDN)pd1165 This work N/A

Zebrafish: Tg(QUAS:mespbb-p2A-eGFP)pd1166 This work N/A

Zebrafish: Tg(id2a:GFPCaaX)pd1167 This work N/A

Zebrafish: TgBAC(entpd5a:pkRED) This work N/A

Oligonucleotides

Primers: pME-nVenus-V2a-SuHDN forward: 5’GGGGACAAGTTTGTACAAAAAAGCAGGC TC CATGGCTCCAAAGAAGAAG 3’ reverse: 5’GGGGACCACTTTGTACAAGAAAGC TGGTCTAGTTCTAGAGGCTCGAGA 3’

Primers: pME-mespbb-p2A-eGP forward: 5’GGGGACAAGTTTGTACAAAAAAGCAGGG TCCATGGACGCATCATCCTCTCCTTTCC 3’ reverse: This paper N/A

Primers: pME-mespbb-p2A-eGP forward: 5’GGGGACAAGTTTGTACAAAAAAGCAGGG TCCATGGACGCATCATCCTCTCCTTTCC 3’ reverse: This paper N/A
5’GGGGACCACTTTGTACAAGAAAGCTGGG TCTCCCCAGAAACTCTGGTGCGA 3’	5’AAGCTTCATCGTGCAAACGT 3’ reverse: 5’CCCACAGTGAGTTCAGAAAGC 3’	This paper	N/A
Primers:	**p5E-id2a** forward:	**Recombinant DNA**	
	5’	(Subedi et al., 2014)	N/A
		pME-QF2	(Subedi et al., 2014)
		pME-nlsVenus-V2a-notch1aICD	(Eom et al., 2015)
		p3E-nVenus-V2a-SuHDN	(Eom et al., 2015)
		pBS-SK-QS	(Potter et al., 2010)
Software and Algorithms	**DAVID Bioinformatics Resources 6.8**	Huang da et al., 2009a, b)	https://david.ncifcrf.gov/
	DESeq2	(Anders et al., 2015; Love et al., 2014)	https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/repos/iuc/deseq2/deseq2/2.11.39
	htseq-count	(Kim et al., 2015)	https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/repos/lpons/htseq_count/htseq_count/0.6.1galaxy3
	HISAT2	(Kim et al., 2015)	https://usegalaxy.org/root?tool_id=toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.0.5.2
	Graphpad	GraphPad Software, La Jolla California USA	https://www.graphpad.com/scientific-software/prism/; RRID: SCR_002798
Supplemental References

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.

Bussmann, J., and Schulte-Merker, S. (2011). Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138, 4327-4332.

Cutty, S.J., Fior, R., Henriques, P.M., Saude, L., and Wardle, F.C. (2012). Identification and expression analysis of two novel members of the Mesp family in zebrafish. Int J Dev Biol 56, 285-294.

Delaune, E.A., Francois, P., Shih, N.P., and Amacher, S.L. (2012). Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev Cell 23, 995-1005.

Ellis, K., Bagwell, J., and Bagnat, M. (2013). Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J Cell Biol 200, 667-679.

Eom, D.S., Bain, E.J., Patterson, L.B., Grout, M.E., and Parichy, D.M. (2015). Long-distance communication by specialized cellular projections during pigment pattern development and evolution. Elife 4.

Gajewski, M., Sieger, D., Alt, B., Leve, C., Hans, S., Wolff, C., Rohr, K.B., and Tautz, D. (2003). Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development 130, 4269-4278.

Garcia, J., Bagwell, J., Njaine, B., Norman, J., Levic, D.S., Wopat, S., Miller, S.E., Liu, X., Locasale, J.W., Stainier, D.Y.R., et al. (2017). Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord. Curr Biol 27, 1982-1989 e1983.

Hayes, M., Naito, M., Daulat, A., Angers, S., and Ciruna, B. (2013). Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during vertebrate development. Development 140, 1807-1818.

Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8 Suppl 1, S7.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357-360.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

Ninov, N., Borius, M., and Stainier, D.Y. (2012). Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139, 1557-1567.

Ozbudak, E.M., and Lewis, J. (2008). Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 4, e15.

Plavicki, J.S., Baker, T.R., Burns, F.R., Xiong, K.M., Gooding, A.J., Hofsteen, P., Peterson, R.E., and Heideman, W. (2014). Construction and characterization of a sox9b transgenic reporter line. Int J Dev Biol 58, 693-699.

Poss, K.D., Nechiporuk, A., Hillam, A.M., Johnson, S.L., and Keating, M.T. (2002). Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129, 5141-5149.

Potter, C.J., Tasic, B., Russler, E.V., Liang, L., and Luo, L. (2010). The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536-548.

Rodriguez-Fraticelli, A.E., Bagwell, J., Bosch-Fortea, M., Boncompain, G., Reglero-Real, N., Garcia-Leon, M.J., Andres, G., Toribio, M.L., Alonso, M.A., Millan, J., et al. (2015). Developmental regulation of apical endocytosis controls epithelial patterning in vertebrate tubular organs. Nat Cell Biol 17, 241-250.

Singh, S.P., Holdway, J.E., and Poss, K.D. (2012). Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22, 879-886.

Subedi, A., Macurak, M., Gee, S.T., Monge, E., Goll, M.G., Potter, C.J., Parsons, M.J., and Halpern, M.E. (2014). Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 66, 433-440.