HEEGAARD FLOER HOMOLOGY OF MATSUMOTO’S MANIFOLDS

MOTOO TANGE

Abstract. We call a homology sphere presented by two trefoils with the linking number 1 and the framing \((0, n)\) Matsumoto’s manifold. By computing the Heegaard Floer homology of Matsumoto’s manifolds, we give an constraint for contractible bounding of the manifolds. As a corollary, we give a formula of Ozsváth-Szabó’s \(\tau\)-invariant as a total Euler number of the reduced filtration. By using Owens and Strle’s obstruction, we prove that if the \(n\)-twisted Whitehead double of \((2, 2s + 1)\)-torus knot is slice, then \((s, n) = (1, 6), (3, 12)\) only.

1. Introduction and computational results.

Let \(K_1, K_2\) be two knots. We define to be \(M_n(K_1, K_2)\) a 3-manifold presented by \(K_1, K_2\) with the linking number 1 and the framings 0 and \(n\) respectively. See Figure 1. \(M_n(K_1, K_2)\) is a homology sphere. Y. Matsumoto asked in [6] whether \(M_n(T_{2,3}, T_{2,3})\) bounds a contractible 4-manifold or not, where \(T_{r,s}\) is the positive \((r,s)\)-torus knot. Following Y. Matsumoto, we call \(M_n(K_1, K_2)\) Matsumoto’s manifold in this paper. If \(K_1 = T_{2,3}\), then we have

\[
M_n(T_{2,3}, K_2) = S^3_1(D_+(K_2), n),
\]

Date: May 1, 2015.

1991 Mathematics Subject Classification. 57M27, 57R58, 57M25.

Key words and phrases. Matsumoto’s homology spheres, Whitehead double, contractible bound, Heegaard Floer homology, knot concordance invariant, slice knot.

The author is partially supported by JSPS KAKENHI Grant Number 24840006 and 26800031.
where $D_+(K, n)$ means the n-twisted positive-Whitehead double of K. $S^3_p(K)$ is p-surgery of K in S^3. If $K_2 = F$ (figure-8 knot), then $M_n(F, K_2) = S^3_{-1}(D_+(K_2, n))$. Thus,

$$K_2 \text{ is slice } \Rightarrow M_n(T_{2,3}, K_2) \text{ and } M_n(F, K_2) \text{ have contractible bounds.}$$

We argue the existence of contractible bounds of $M_n(T_{2,3}, K_2)$ in the present paper. We first review some well-known facts about these manifolds.

If K_1 is a slice knot, then $M_n(K_1, K_2)$ bounds a contractible 4-manifold, because $M_n(K_1, K_2)$ is the boundary of 2-handle attachment for the complement of a slice disk of K, thus the attachment is $\pi_1 = e$ and $H_2 = H_3 = 0$, hence it is a contractible 4-manifold. Conversely, if K_1 is not slice, the contractible boundness is unclear.

If a homology sphere is presented by the ± 1-surgery of a slice knot, then the homology sphere bounds a contractible 4-manifold. Let F be the figure-8 knot. $M_n(T_{2,3}, K_2)$ (or $M_n(F, K_2)$) is the $+1$-surgery (or -1-surgery respectively) of $D_+(K_2, n)$, where $D_+(K_2, n)$ is the n-twisted Whitehead double of K_2. Hence, the contractible boundness problem is related to the slice-ness of $D_+(K_2, n)$. The Alexander polynomial is

$$\Delta_{D_+(K_2, n)}(t) = -nt + 2n + 1 - nt^{-1}.$$

Hence, by the classical restriction in [7] of the slice-ness in terms of Alexander polynomial says that what the polynomial is of form $f(t)f(t^{-1})$ is a necessary condition for a knot to be slice. In this case, $-nt + 2n + 1 - nt^{-1}$ is of form $f(t)f(t^{-1})$ if and only if $n = m(m + 1)$ holds for some integer m.

We recall from well-known facts to recent results:

Theorem 1.1 (1976, [15]). $D_+(T_{2,3}, 6)$ is a slice knot.

Theorem 1.2 (1984, [9]). $M_6(T_{2,3}, T_{2,3})$ bounds a contractible 4-manifold.

Theorem 1.3 (1997, [1]). $M_0(T_{2,3}, T_{2,3})$ does not bound any contractible 4-manifold.

Theorem 1.4 (2006, Bar-Natan’s program [2]). $D_+(T_{2,3}, 2)$ is not slice.
Theorem 1.5 (2007, [3]). Let K be a knot in S^3.

$$\tau(D_+(K,n)) = \begin{cases} 0 & n \geq 2\tau(K) \\ 1 & n < 2\tau(K) \end{cases}$$

In particular, if $n < 2\tau(K)$, then $D_+(K,n)$ is not slice. Here $\tau(K)$ is Ozsváth-Szabó’s τ-invariant.

Theorem 1.2 is by slice-ness of $D_+(T_2,3,6)$. Theorem 1.3 was proven by using gauge theory. Theorem 1.4 is by computation of Bar-Natan’s program for computing the reduced Khovanov homology. The paper [3] computes knot Floer homology of $D_+(K,n)$ and the τ-invariant, which gives a homomorphism from the smooth knot concordance group to integers, i.e., $\tau : C_s \to \mathbb{Z}$.

Theorem 1.6 (2013, [17]). Let n be an odd integer. $M_n(T_2,3)$ does not bound any contractible 4-manifold.

Tsuchiya showed the result by computing the Rohlin invariant μ.

We can easily compute the Casson invariant by using the Dehn surgery formula as follows:

$$\lambda(M_n(T_2,3,K)) = \frac{1}{2} \cdot \Delta_{D_+(K,n)}(t)|_{t=1} = -n.$$

One of the main purposes of the present paper is to compute of HF^+ of $S^3_1(D_+(T_2,3,n))$ and discuss the contractible boundness of $M_n(K_1,K_2)$.

Theorem 1.7. Let M_n be $M_n(T_2,3)$. Then the Heegaard Floer homology of M_n is computed as follows:

$$HF^+(M_n) = \begin{cases} T^+_n \oplus HF_{\text{red}}(M_n) & n \geq 2 \\ T^+_{(-2)} \oplus HF_{\text{red}}(M_n) & n < 2, \end{cases}$$

and further

$$HF_{\text{red}}(M_n) \cong \begin{cases} \mathbb{F}^{n-2}_{(-1)} \oplus \mathbb{F}^2_{(-3)} & n \geq 2 \\ \mathbb{F}^1_{(-2)} \oplus \mathbb{F}^2_{(-3)} & n < 2. \end{cases}$$

This computation is generalized to the case of any knot K as well as $T_2,3$. See Theorem 4.1. On the other hands, one can also compute the Heegaard Floer homology of $M_n(F,K) = S^3_1(D_+(K,n))$. The result is similar to $M_n(T_2,3,K)$ and the values of $d(M_n(F,K))$ is the same as ones of $M_n(T_2,3,K)$.

From Theorem 1.7, the following holds naturally:

Corollary 1.1. When $n < 2$, M_n does not bound any negative-definite 4-manifold.

In particular, if $n < 2$, then M_n does not bound any contractible 4-manifold and $D_+(T_2,3,n)$ is not slice.

Proof. Since in the case of $n < 2$, the correction term $d(M_n)$ is negative integer. $M_n = S^3_1(D_+(T_2,3,n))$ does not bound any negative-definite 4-manifold, because the inequality $c_2^2(s) + b_2(X^4) \leq 4d(Y^3)$ by Ozsváth-Szabó
in [11] does not hold, where X^4 is any negative definite bound of homology sphere Y^3 and s is any Spinc structure on X.

Hence, clearly, M_n does not have contractible bound. If $D_+(T_{2,3}, n)$ is slice, $S^3_1(D_+(T_{2,3}, n))$ has a contractible bound. This is inconsistent. □

The remaining problem is the following.

Question 1.1. Let n be a positive even number and $n \neq 6$. Does Matsumoto’s manifold M_n bound a contractible 4-manifold?

Next, we give a relationship the slice-ness of K and the double branched cover. $\Sigma_2(K)$ is the branched double cover along a knot K.

K is slice $\Rightarrow \Sigma_2(K)$ bounds a rational 4-ball

We compute the δ-invariant of Whitehead double of knots.

Theorem 1.8. Let n be a non-negative integer and s a positive integer. Then we have

$$
\delta(D_+(T_{2,2s+1}, n)) = \begin{cases}
0 & n \geq 2s \\
-4(s + \lfloor \frac{n+1}{2} \rfloor) & 0 \leq n < 2s.
\end{cases}
$$

We define t_s, t_τ, t_δ as follows:

$$
t_s(K) = \min \{ t \in \mathbb{Z} | s(D_+(K, t)) = 0 \}
$$

$$
t_\tau(K) = \min \{ t \in \mathbb{Z} | \tau(D_+(K, t)) = 0 \}
$$

$$
t_\delta(K) = \min \{ t \in \mathbb{Z} | \delta(D_+(K, t)) = 0 \}
$$

$$
t_{dS^1}(K) = \min \{ t \in \mathbb{Z} | d(S^3_1(D_+(K, t))) = 0 \}.
$$

Hedden in [3] showed that $t_\tau(K) = 2\tau(K)$ and our result says $t_{dS^1}(K) = 2\tau(K)$. Hedden and Ording conjectured $t_{\delta}(T_{2,2n+1}) = 3n - 1$ in [4]. Theorem 1.8 implies that $t_\delta(T_{2,2n+1}) = 2n = t_\tau(T_{2,2n+1})$.

Question 1.2. When does

$$
\delta(D_+(K, n)) = -4\tau(D_+(K, m))
$$

hold.

This equality is verified in the case of $K = T_{2,3}$ in this equality.

We prove rational bound-ness of double branched cover. This is a kind of generalization of δ-invariant.

Theorem 1.9. If $\Sigma_2(D_+(T_{2,2s+1}, n))$ bounds a rational 4-ball, then $n = m(m + 1)$ and $(s, m) = (1, 2), (3, 3)$ holds.

As a corollary, we have the following.

Corollary 1.2. Let n be a non-negative integer. If $D_+(T_{2,2s+1}, n)$ is slice, then $(s, n) = (1, 6)$ or $(3, 12)$.

The case of $(s, n) = (1, 6)$ is an actual slice knot due to an example in Rolfsen’s book [15]. See also [9]. The result by Collins [5] denies the slice-ness of $D_+(T_{2,7}, 12)$. However, it is remained whether $\Sigma_2(D_+(T_{2,7}, 12))$ bounds a rational 4-ball.
Question 1.3. Does $\Sigma_2(D_+(T_{2,7}, 12))$ bound a rational ball?

Collins’ obstruction also denies the slice-ness of $D_+(T_{p,q}, m(m+1))$ unless $(p,q) = (m, m+1)$ or $(m+1, m)$. In the case of $D_+(T_{n,n+1}, n(n+1))$, what values do $\delta(D_+(T_{n,n+1}, n))$ become? This computation is easy and may give some interesting observation.

In the end of the paper, we give a formula of $\tau(K)$ as a total Euler number of reduced filtration of K. This (Corollary 4.1) might be already known.

$$\tau(K) = \sum_{i=-g}^{g} \chi(\bar{F}(K, i)).$$

Acknowledgements

Our computation in this paper was inspired by the M. Tsuchiya’s talk in the handle seminar ’13 at Tokyo Institute of Technology, Ookayama. I am deeply grateful for his talk.

2. Heegaard Floer homology of M_n.

Proof of Theorem 1.7. Ozsváth-Szabó’s τ-invariant of $T_{2,3}$ is 1. From the equality $M_n = S^3_1(D_+(T_{2,3}, n))$ and Proposition 7.2 in \cite{3},

$$\hat{HF}(M_n) \cong \begin{cases} \mathbb{F}^{n-4} \oplus \mathbb{F}^{n-3} \oplus V & n \geq 2 \\ \mathbb{F}^{1-n} \oplus \mathbb{F}^{2-n} \oplus \mathbb{F}^{-2} \oplus V & n < 2 \end{cases},$$

where the negative exponents mean the quotient operation in place of the direct sum operation. The summand V is isomorphic to

$$V = \oplus_{i=-1}^1 [H_*(\mathcal{F}(T_{2,3}, i))]^2 \oplus \oplus_{i=-1}^1 [H_{*+1}(\mathcal{F}(T_{2,3}, i))]^2.$$

The chain complex $CFK^\infty(T_{2,3})$ is as follows. Therefore, we have

![Figure 3. $CFK^\infty(T_{2,3})$.](image-url)
The connecting homomorphism \(\delta \) due to the result in [3]. The generator \(C \) is Ozsváth-Szabó's usual action lowering the degree by two. The boundary map vanishes by the map \(\delta \). Therefore, we have

\[
\widetilde{HF}(M_n) = \begin{cases}
\mathbb{F}^{n-1} \oplus \mathbb{F}^{-1} \oplus \mathbb{F}^{-3} \oplus \mathbb{F}^{-5} & n \geq 2 \\
\mathbb{F}^{-1} \oplus \mathbb{F}^{-1} \oplus \mathbb{F}^{-3} \oplus \mathbb{F}^{-5} & n < 2
\end{cases}
\]

Here we use exact triangle

\[
\cdots \to \widetilde{HF}(M_n) \xrightarrow{\delta} HF^+(M_n) \xrightarrow{\iota} HF^+(M_n) \xrightarrow{\delta} \widetilde{HF}(M_n) \to \cdots.
\]

The map \(\delta \) is the one induced by the natural injection. The multiplication of \(U \) is Ozsváth-Szabó's usual action lowering the degree by two. The connecting homomorphism \(\delta \) shifts the degree by 1. We compute the correction term \(d(M_n) \).

\[
HF^+(S^2(D_+(T_{2,3}, n))) \cong H_*(C\{\max(i, j) \geq 0\}),
\]

where the chain complex \(C \) is \(CFK^\infty(D_+(T_{2,3}, n)) \).

The case of \(n \geq 2 \). \(C\{i = 0\} \) is filtered chain homotopic to

\[
C\{(0, j)\} \simeq \begin{cases}
\mathbb{F}^{n-1} \oplus \mathbb{F}^{-1} H_{s-1}(\mathcal{F}(T_{2,3}, i))^2 & j = 1 \\
\mathbb{F}^{n-3} \oplus \mathbb{F}^{-3} H_{s}(\mathcal{F}(T_{2,3}, i))^4 & j = 0 \\
\mathbb{F}^{n-3} \oplus \mathbb{F}^{-3} H_{s+1}(\mathcal{F}(T_{2,3}, i))^2 & j = -1
\end{cases}
\]

due to the result in [3]. The component in \(\widetilde{HF}(M_n) \) attaining the minimal degree in the non-torsion part in \(HF^+(M_n) \) is located at \((i, j) = (0, 0) \), that is, \(x \in \mathbb{F}(0) \subset C\{(0, 1)\} \). This generator \(x \) vanishes by the boundary map \(d_1^0 : C\{(0, 0)\} \to C\{(0, -1)\} \), because it is the generator of \(\widetilde{HF}(S^3) \). It also vanishes by the map \(d_1^0 : C\{(0, 0)\} \to C\{(-1, 0)\} \). Hence \(x \) is a generator in \(HF^+(M_n) \) and it is clearly \(U \cdot x = 0 \) and \(gr(x) = 0 \). This means \(d(M_n) = 0 \).

The case of \(n < 2 \). \(C\{i = 0\} \) is filtered chain homotopic to

\[
C\{(0, j)\} \simeq \begin{cases}
\mathbb{F}^{2-n} \oplus \mathbb{F}^{1} H_{s-1}(\mathcal{F}(T_{2,3}, i))^2 & j = 1 \\
\mathbb{F}^{3-2n} \oplus \mathbb{F}^{1} H_{s}(\mathcal{F}(T_{2,3}, i))^4 & j = 0 \\
\mathbb{F}^{3-2n} \oplus \mathbb{F}^{1} H_{s+1}(\mathcal{F}(T_{2,3}, i))^2 & j = -1
\end{cases}
\]

due to the result in [3]. The generator \(x \) in \(\widetilde{HF}(S^3) \) lies in \(C\{(0, 1)\} \). That is, \(x \in \mathbb{F}(0) \subset C\{(0, 1)\} \). The boundary map

\[
d_1^0 : C\{(0, 0)\} \to C\{(-1, 0)\}
\]
is surjective due to [3]. The U-action $C\{(-1, 0)\} \ni U \cdot x \neq 0$, namely, $U \cdot x$ is the minimal generator in $HF^+(M_n)$. Thus $d(M_n) = gr(U \cdot x) = -2$.

We put $HF^+(M_n) \cong \bigoplus_{i=1}^m W_i$, where $W_i = \mathbb{F}[n_i](d_i) \cong \mathbb{F}[U]/U^{n_i}$. Then we have

$$\widehat{HF}(M_n) = \mathbb{F}(d(M_n)) \oplus_{i=1}^m (\mathbb{F}(d_i) \oplus \mathbb{F}(d_i+2n_i-1)).$$

The component number is

$$m = \begin{cases} n & n \geq 2 \\ 3 - n & n < 2. \end{cases}$$

If some i has $n_i > 1$, then there exists a pair of two components with the degree width $2n_i - 1 \geq 3$. The pair is just the case $n_i = 2$ and the only pair is $\mathbb{F}(0)$ and $\mathbb{F}(-3)$ in the case of $n \geq 2$, due to (2).

Lemma 2.1. There does not exist such a pair.

Proof. From (2), we may consider the case $n \geq 2$. Suppose that there exist such two pairs in $\widehat{HF}(M_n)$. Then the components $\mathbb{F}[2]_{(-3)}$ and remaining part is

$$\mathcal{T}_{(0)}^+ \oplus \mathbb{F}^{n-4}_{(-1)} \oplus \mathbb{F}^2_{(-2)}.$$

The Casson invariant formula implies $\lambda(M_n) = -4 - (n - 4) + 2 = -n + 2$. This is contradiction about (1).

Suppose that there exists such single pair in $\widehat{HF}(M_n)$. Then the components $\mathbb{F}[2]_{(-3)}$ and remaining part is

$$\mathcal{T}_{(0)}^+ \oplus \mathbb{F}^{n-3}_{(-1)} \oplus \mathbb{F}(-2) \oplus \mathbb{F}(-3).$$

The Casson invariant is $\lambda = -2 - (n - 3) + 1 - 1 = -n + 1$. This is contradiction about (1). □

In the case where there does not exist such pair, namely $n_i = 1$ for any i, immediately the following holds:

Lemma 2.2. Suppose that there does not exist any pair in $\widehat{HF}(M_n)$. Then in the case of $n \geq 2$, we have

$$HF^+(M_n) = \mathcal{T}_{(0)}^+ \oplus \mathbb{F}^{n-2}_{(-1)} \oplus \mathbb{F}^2_{(-3)}$$

and in the case of $n < 2$, we have

$$HF^+(M_n) = \mathcal{T}_{(-2)}^+ \oplus \mathbb{F}^{1-n}_{(-2)} \oplus \mathbb{F}^2_{(-3)}.$$

□

In the case of $n = 6$, we can also check our computation (Theorem 1.7) by Némethi’s algorithm ([10]) on any plumbed 3-manifold with at most one bad vertex. In fact we can construct the negative definite bound as in Figure 4 for M_6. The multiplicity -1 vertex is the only bad vertex. Then $HF^+(-M_6)$ can be computed as follows:

$$HF^+(-M_6) = \mathcal{T}_{(0)}^+ \oplus \mathbb{F}^4_{(0)} \oplus \mathbb{F}^2_{(2)}.$$
By reversing the orientation, we get
\[HF^+(M_6) = T^+_{(0)} \oplus F^4_{(-1)} \oplus F^2_{(-3)}. \]

![Figure 4. The negative definite plumbing of M_6.](image)

3. The rational bounding of $\Sigma_2(D_+(T_{2,2s+1}, n))$.

Question 3.1. When $n \geq 2$, does $M_n(T_{2,3})$ have a contractible bounding?

At the most cases, it is difficult to find the criterion of whether K is slice or not. Moreover, it is more difficult to find a contractible bounding for a given homology sphere. We consider the slice-ness of $D_+(T_{2,3}, n)$.

Theorem 3.1. Let $K = D_+(T_{2,2s+1}, n)$. If K is slice then $(s, n) = (1, 6), (3, 12)$ only. Otherwise, the double branched cover of K does not even have any rational 4-ball bounds.

J. Collins [5] proved similar result in terms of twisted Alexander polynomial and ω-signature. We reprove this fact in terms of Heegaard Floer homology.

First, we compute the δ-invariant (smooth knot concordance invariant) by Manolescu-Owens.

Definition 3.1 (8). The smooth knot concordance invariant $\delta : C_8 \to \mathbb{Z}$ is defined to be
\[\delta(K) = 2d(\Sigma_2(K), c_0), \]
where $\Sigma_2(K)$ is the double branched cover and c_0 is the canonical spin structure on $\Sigma_2(K)$.

They proved the following for the untwisted Whitehead double of any knot or alternating knot.

Theorem 3.2 (8). For any knot K we have $\delta(D_+(K, 0)) \leq 0$ and inequality is strict, if $\tau(K) > 0$. If K is alternating, then $\delta(D_+(K, 0)) = -4\max\{\tau(K), 0\}$.

Hence, the δ-invariant of the untwisted Whitehead double of $T_{2,2s+1}$ is as follows:
\[\delta(D_+(T_{2,2s+1}, 0)) = -4s. \]

To prove Theorem 1.8 we use the following:
Proposition 3.1. For integer \(n \) we have
\[
\Sigma_2(D_+(K,n)) = S^3_{2n+1}(K#K^r)
\]
where \(K^r \) is the knot \(K \) with the reverse orientation.

In particular if \(K \) is slice, then \(n = m(m+1) \) holds.

We notice that the condition \(n = m(m+1) \) is also a necessary condition for \(S^3_{2n+1}(K#K^r) \) to bound a rational 4-ball.

Proof. The former assertion is folklore by using the Montesinos trick. By using the Fox-Milnor condition of the Alexander polynomial of \(D_+(K,n) \), it immediately follows.

Before proving Theorem 3.1 and Theorem 1.8, we prepare the rational Dehn surgery formula of the correction terms. Here we give a brief review of the invariants \(V_k, H_k \) in [18]. The maps \(v_k, h_k : A_k^+ \to B^+ \) are defined to be the natural projection
\[v_k^+ : A_k \to B^+ \]
and the composition of the projection and the identification
\[h_k : A_k^+ \to C_s \{ j \geq k \} \to B^+ \]
where \(\mathfrak{A}_{k}^T \subset H_{s}(A_k^+) \) is the sub-\(\mathbb{F}[U] \)-module isomorphic to \(U^nH_{s}(A_k) \) for \(n \gg 0 \).

The homomorphisms \(v_k^T, h_k^T \) are the restriction maps on \(\mathfrak{A}_{k}^T \)
\[v_k^T, h_k^T : \mathfrak{A}^T \cong T^+ \to H_{s}(B^+) \cong T^+ \]
The maps are equivalent to the multiplication by \(U^m \) for some \(m \geq 0 \). We define the exponent \(m \) to be \(V_k \) or \(H_k \) respectively.

The correction term formula by Ni and Wu in [18] is the following:
\[
d(S_{p/q}^3(K), i) = d(L(p, q), i) - 2 \max \{ V_{\lfloor \frac{q}{q} \rfloor}, H_{\lfloor \frac{q}{q} \rfloor} \}.
\]

When \(q \) is an even integer, the canonical Spin\(^c\) structure of \(S_{p/q}^3(K) \) has \(i_0 = \frac{p+q-1}{2} \) (see [19]). Then, since \(V_{\lfloor \frac{q}{q} \rfloor} = H_{\lfloor \frac{q}{q} \rfloor} \), we have
\[
d(S_{p/q}^3(K), i_0) = d(L(p, q), i_0) - 2V_{\lfloor \frac{p+q-1}{q} \rfloor}.
\]

Proof of Theorem 1.8. Let \(T_s \) denote \(T_{2,2s+1} \# T_{2,2s+1}^r \). From Proposition 3.1, we consider the \(d \)-invariant of \(S_{2n+1}^3(T_s) \). Tensoring two copies of the double complex of Figure 3 we get the knot Floer chain complex as in Figure 3. The module \(C_s := C_s[U, U^{-1}] \) is the knot Floer chain complex \(CFK^\infty(T_s) \).

Here we define \(A_k^+ \) and \(B^+ \) as follows:
\[
C_s \{ i \geq 0 \text{ or } j \geq k \} =: A_{s,k}^+

C_s \{ i \geq 0 \} =: B^+
\]

From the chain complex \(C_s \), the invariants \(V_{s,k}, H_{s,k} \) are computed as in the table below.

	\(k \)	\(0 \)	\(1 \)	\(2 \)	\(3 \)	\(\cdots \)	\(2s-2 \)	\(2s-1 \)	\(k \geq 2s \)
\(V_{s,k} \)	\(s \)	\(s \)	\(s-1 \)	\(s-1 \)	\(1 \)	\(1 \)	\(0 \)		
\(H_{s,k} \)	\(s+1 \)	\(s+1 \)	\(s+2 \)	\(\cdots \)	\(2s-1 \)	\(2s \)	\(k \)		
Figure 5. The chain complex \bar{C}_s.

k	$k \leq -2s - 1$	$-2s$	$-2s + 1$	\cdots	-1	0		
$V_{s,k}$	$	k	$	$2s$	$2s$	\cdots	$s + 1$	s
$H_{s,k}$	0	0	1	\cdots	$s - 1$	s		

By using the correction term formula of lens spaces in [16], we have

$$d(L(2r + 1, 2), j) = \begin{cases} \frac{(2k-r-2)^2}{2(2r+1)} j = 2k - 1 \\ \frac{4k^2 - 4kr - 4k + r^2}{2(2r+1)} j = 2k. \end{cases}$$

When $r = 2n$, we have $d(L(4n + 1, 2), i_0) = 0$. We have

$$\delta(D_+(T_{2,2s+1}, n)) = 2d(S^3_{2n+1}(T_s), i_0) = 2d(L(4n + 1, 2), i_0) - 4V_{s,n}$$

$$= -4V_{s,n} = \begin{cases} 0 & n \geq 2s \\ -4(s + \lfloor \frac{n+1}{2} \rfloor) & 0 \leq n < 2s. \end{cases}$$

As a corollary we give a sufficient condition to satisfy $\delta(D_+(K, n)) = 0$ for a knot with non-negative $\tau(K)$.

Corollary 3.1. Let K be a knot in S^3 with $\tau(K) \geq 0$. If $n \geq 2\tau(K)$, then $\delta(D_+(K, n)) = 0$.

Proof. We claim that if $k = 2\tau(K) = \tau(K\#K^r)$, then we have $V_k = 0$. Then, by the decreasing property $V_k \geq V_{k+1} \geq 0$, the assertion required holds.

Let C denote $CFK^\infty(K\#K^r)$ and k denote $2\tau(K)$. There exist a generator $x \in C\{(i, j) = (0, k)\}$ and some element $\alpha \in C\{\max\{i, j-k\} \geq 0\}$ such that a non-zero class $[x + \alpha] \in H_*(A_k)$, and its image by $v_k^+: H_*(A_k^+) \to H_*(B^+) = T^+$ is the bottom generator. Thus this means that $[x + \alpha] \neq 0$. Clearly, $U \cdot [x + \alpha] \neq 0$, $[x + \alpha]$ is the bottom generator in A_k^+. This means $V_k = 0$.

□
Therefore, for any $n \geq 2\tau(K)$, we have
\[
\delta(D_+(K,n)) = 2d(S^3_{2n+1}(K\#K^4),i_0) = 2d(L(4n+1,2),i_0) - 4V_n = 0 - 0 = 0.
\]

Figure 6. The generator x and some element α in $A_{2\tau(K)}$.

The behavior of V_n when $0 \leq n \leq 2\tau(K)$ deeply depends on the filtered chain complex with respect to K.

To show Theorem 3.1, we use the deeper obstruction by Owens and Strle. If K is a slice knot, then the double branched cover $\Sigma_2(K)$ must bound a rational 4-ball.

Proposition 3.2 ([14]). Let Y be a rational homology sphere bounding a rational ball X. If the order of $H^2(Y)$ is $h = t^2$, then
\[
d(Y, t_0 + \beta) = 0
\]
for any $\beta \in \mathcal{T} \subset H^2(Y)$, where t_0 is a Spinc structure and $|\mathcal{T}| = t$.

Here we discuss whether $\Sigma_2(D_+(T_{2,2s+1}, n))$ bounds rational 4-ball or not. From Proposition 3.1 we prove Theorem 1.9 the half-integer surgery of $T_{2,2s+1}#T_{2,2s+1}$.

Proof of Theorem 1.9. Suppose that $X_{s,m} := \Sigma_2(D_+(T_{2,2s+1}, m(m + 1)))$ bounds a rational ball.

Since the canonical Spinc structure corresponds to $i_0 = 2m(m + 1) + 1$, and Owens and Strle’s subset $t_0 + \mathcal{T}$ is $\{i_0 + \ell(2m + 1) | 0 \leq |\ell| \leq m\}$. By using the formula (3), we have
\[
d(L((2m + 1)^2,2), i_0 + \ell(2m + 1)) = \begin{cases} 2\ell_1(\ell_1 - 1) & \ell = 2\ell_1 - 1 \\ 2\ell_1^2 & \ell = 2\ell_1 \end{cases}
\]

\[
V_{s,|\frac{i_0+\ell(2m+1)}{2}|} = V_{s,m(m+1)+m\ell+\left\lfloor \frac{\ell^2}{2} \right\rfloor} \\
H_{s,|\frac{i_0+\ell(2m+1)-(2m+1)^2}{2}|} = V_{s,m(m+1)-m\ell-\left\lfloor \frac{\ell^2}{2} \right\rfloor} \\
\max\{V_{s,|\frac{i_0+\ell(2m+1)}{2}|}, H_{s,|\frac{i_0+\ell(2m+1)-(2m+1)^2}{2}|}\} = V_{s,m(m+1)-m\ell-\left\lfloor \frac{\ell^2}{2} \right\rfloor}
\]
Thus,
\[
d(X_{s,m}, i_0 + \ell(2m + 1)) = \begin{cases} 2\ell_1(\ell_1 - 1) - 2V_{s,m(m+1-\ell)} - \ell_1 + 1 & \ell = 2\ell_1 - 1 \\ 2\ell_1^2 - 2V_{s,m(m+1-\ell)} & \ell = 2\ell_1 \end{cases}
\]

When \(\ell = 2 \leq m, V_{s,m^2-m-1} = 1 \) holds. Since \(m^2-m-1 \) is odd, \(m^2-m-1 = 2s-1 \), equivalently \(m^2 - m = 2s \). If \(m = 2 \), then \(s = 1 \) holds. When \(m \geq 3 \) and \(\ell = 3 \leq m, V_{s,m^2-2m-1} = 2 \), hence \(m^2 - 2m - 1 = 2s - 3 \), or \(2s - 4 \) holds. Hence \((m, s) = (3, 3) \) holds.

Hence, we obtain \((m, s) = (2, 1), (3, 3) \).

Therefore Theorem 3.1 follows immediately from Theorem 3.1.

4. Generalization and reduced knot filtration.

Let \(M_n(K) \) denote \(M_n(T_{2,3}, K) \). We define \(\tilde{CF}(K) = \bigcup_i \mathcal{F}(K, i) \), i.e., it is chain homotopy equivalent to \(\tilde{CF}(K) \simeq \tilde{CF}(S^3) \). Here we define to be \(\epsilon \) the composition
\[
\epsilon_i : \mathcal{F}(K, i) \hookrightarrow \tilde{CF}(K) \to \mathbb{F}(0)
\]
for any \(i \), where the last map is what the homological generator map to 1 and other elements to 0. Furthermore, the map \(\tilde{CF}(K) \to \mathbb{F}(0) \) is splittable. We put the kernel of \(\varphi \)
\[
\tilde{F}(K, i) := \ker(\epsilon_i).
\]

Then \(\tilde{F}(K, i) \) is a filter on \(\tilde{CF}(K) := \bigcup_i \tilde{F}(K, i) \). The chain complex \(\tilde{CF}(K) \) is acyclic, because \(\tilde{CF}(K) \to \mathbb{F}(0) \) induces an isomorphism on the homology.
We call \(\tilde{F}(K, i) \) reduced knot filtration.

Theorem 4.1. The Heegaard Floer homology of \(M_n(K) \) is computed as follows:
\[
HF^+(M_n(K)) \cong \begin{cases} \mathcal{T}^+_{(0)} \oplus HF_{\text{red}}(M_n(K)) & n \geq 2\tau(K) \\ \mathcal{T}^+_{(-2)} \oplus HF_{\text{red}}(M_n(K)) & n \geq 2\tau(K) \end{cases}
\]

and further,
\[
HF_{\text{red}}(M_n(K)) \cong \begin{cases} \mathbb{F}^{n-2\tau(K)}_{(-1)} \oplus_{i=-g} H_{s+1}(\tilde{F}(K, i))^2 & n \geq 2\tau(K) \\ \mathbb{F}^{2\tau(K)-n-1}_{(-2)} \oplus_{i=-g} H_{s+1}(\tilde{F}(K, i))^2 & n < 2\tau(K) \end{cases}
\]

Proof. In the same way that \(K \) is the right-handed trefoil,
\[
d(M_n(K)) = \begin{cases} 0 & n \geq 2\tau(K) \\ -2 & n < 2\tau(K) \end{cases}
\]

\[
HF_{\text{red}}(M_n(K)) \cong \begin{cases} \mathbb{F}^{n-2g-2}_{(-1)} \oplus_{i=-g} H_{s+1}(\mathcal{F}(K, i))^{(1)} & n \geq 2\tau(K) \\ \mathbb{F}^{2\tau(K)-n-1}_{(-2)} \oplus \mathbb{F}^{2\tau(K)-2g-2}_{(-1)} \oplus_{i=-g} H_{s+1}(\mathcal{F}(K, i))^{(2)} & n < 2\tau(K) \end{cases}
\]
For each \(i \) with \(i \geq \tau(K) \), \(H_{*+1}(\mathcal{F}(K, i)) \) contains at least one summand \(F_{\tau(K)}(K, i) \). Thus, we have the following:

\[
\mathbb{F}^{-2g-2}_{\tau(K)} \cong \bigoplus_{i=-g}^{g} H_{*+1}(\mathcal{F}(K, i))^2 \cong \bigoplus_{i=-g}^{g} \left[H_{*+1}(\mathcal{F}(K, i))/\mathbb{F}(-1)\right]^2 \\
\cong \bigoplus_{i=-g}^{g} \left[H_{*+1}(\mathcal{F}(K, i))/\mathbb{F}(-1)\right]^2
\]

As a corollary we have:

Corollary 4.1. The total Euler number of reduced knot filtration is \(\tau(K) \).

\[
\sum_{i=-g}^{g} \chi(\mathcal{F}(K, i)) = \tau(K).
\]

Proof. If \(n \geq 2\tau(K) \), then we have

\[
\lambda(M_n(K)) = -n = -(n - 2\tau(K)) + \sum_{i=-g}^{g} \chi(H_{*+1}(\mathcal{F}(K, i))^2).
\]

By using this the sum of Euler numbers of the chain complex \(\mathcal{F}(K, i) \) is \(\tau(K) \).

In the case of \(n < 2\tau(K) \), by the same argument, we get the same result.

\[\square\]

References

[1] S. Akbulut, *A note on a homology sphere*, Proc. Amer. Math. Soc. Amer. Math. Soc. 125 (1997), no. 2, 625-628.

[2] D. Bar-Natan, http://katlas.math.toronto.edu/wiki/ 2006

[3] M. Hedden, *Knot Floer homology of Whitehead doubles*, Geom. Topol. 11 (2007), 2277-2338.

[4] M. Hedden and P. Ording , *The Ozsváth-Szabó and Rasmussen concordance invariants are not equal*, Amer. Jour. of Math., Vol. 130, No. 2 (Apr., 2008), pp. 441-453.

[5] J. Collins, *On the concordance order of knots*, [arXiv:1206.0669](http://arxiv.org/abs/1206.0669)

[6] R. Kirby, *Problems in low dimensional manifold theory*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, pp. 273-312.

[7] R.H. Fox and J.W. Milnor, *Singularities of 2-spheres in 4-space and cobordism of knots*, Osaka J. Math. 3 1966 257-267.

[8] C. Manolescu, and B. Owens, *A concordance invariant from the Floer homology of double branched covers*, Int Math Res Notices (2007) doi:10.1093/imrn/rnm077.

[9] N. Maruyama, *Knot surgery description of some closed orientable 3-manifolds*, Journal of Tsuda College, Vol.16,(1984),1-14.

[10] A. Némethi, *On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds*, Geometry & Topology, Volume 9 (2005) 991-1042.

[11] P. Ozsváth and Z. Szabó, *Absolutely graded Floer homologies and intersection forms for four-manifolds*, Adv. Math. 173 (2003) 179-261.

[12] P. Ozsváth and Z. Szabó, *Holomorphic disks and knot invariants*, Adv. Math., 186 (2004) 58-116.
[13] P. Ozsváth and Z. Szabó, *On the Floer homology of plumbed three-manifolds*, Geom. Topol. 7 (2003) 185-224.
[14] B. Owens and S. Strle, *Rational homology spheres and the four-ball genus of knots*, Adv. Math. 200 (2006) 196-216.
[15] Rolfsen, *Knots and links*, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976. ix+439 pp. 55-01.
[16] M. Tange, *Ozsváth-Szabó’s correction term and lens surgery*, Mathematical Proceedings of Cambridge Philosophical Society volume 146(2008), issue 01, pp. 119-134.
[17] M. Tsuchiya, *On homology 3-spheres defined by two knots*, arXiv:1401.7445, to appear Osaka Math. Jour. Vol. 52 No.4 (2015).
[18] Y. Ni and Z. Wu, *Cosmetic surgeries on knots in S^3*, J. Reine Angew. Math.

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 Japan
E-mail address: tange@math.tsukuba.ac.jp