Four-loop anomalous dimensions in Leigh–Strassler deformations

J A Minahan and C Sieg

1 Department of Physics and Astronomy, Uppsala University, SE-751 08 Uppsala, Sweden
2 Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Johann von Neumann Haus, Rudower Chaussee 25, D-12489 Berlin, Germany

E-mail: joseph.minahan@fysast.uu.se and csieg@math.hu-berlin.de

Received 10 May 2012, in final form 21 June 2012
Published 16 July 2012
Online at stacks.iop.org/JPhysA/45/305401

Abstract
We determine the scalar part of the four-loop chiral dilatation operator for Leigh–Strassler deformations of $\mathcal{N} = 4$ super Yang–Mills. This is sufficient to find the four-loop anomalous dimensions for operators in closed scalar subsectors. This includes the $SU(2)$ subsector of the (complex) β-deformation, where we explicitly compute the anomalous dimension for operators with a single impurity. It also includes the ‘3-string null’ operators of the cubic Leigh–Strassler deformation. Our four-loop results show that the rational part of the anomalous dimension is consistent with a conjecture made in Minahan (2011 J. High Energy Phys. JHEP12(2011)093) based on the three-loop result of Sieg (2011 Phys. Rev. D 84 045014) and the $\mathcal{N} = 4$ magnon dispersion relation. Here, we find additional $\zeta(3)$ terms.

PACS numbers: 11.15.−q, 11.30.Pb, 11.25.Tq

1. Introduction

The spectrum of single-trace operators in planar $\mathcal{N} = 4$ supersymmetric Yang–Mills (SYM) is solvable, at least in principle if not always in practice, because of an underlying integrability (see [1] for a comprehensive review). Starting with $\mathcal{N} = 4$ SYM, there exists a class of deformations that break the superconformal symmetry down to $\mathcal{N} = 1$ but preserve the integrability. However, there exist other deformations that destroy the integrability and we can ask ourselves to what extent one can calculate the spectra of these theories. A possible way forward is to compute the dilatation operator to high enough loop order such that a pattern emerges.

The general class of deformations of $\mathcal{N} = 4$ SYM that preserve an $\mathcal{N} = 1$ superconformal symmetry was first catalogued by Leigh and Strassler [2]. The Leigh–Strassler superpotential is given by

$$W = i\kappa \left[\text{tr}(XYZ - qXYZ) + \frac{\hbar}{3} \text{tr}(X^3 + Y^3 + Z^3) \right].$$

(1.1)
The chiral superfield strength W This means, the latter can contain all three types of chiral superfield flavors X which are protected from quantum corrections. In the spin chain picture, each of these operators is the ferromagnetic ground state of a closed spin chain with fixed length L. One constructs

$$W^{2} = \kappa \bar{\kappa} (1 + q\bar{q} + h\bar{h}) + \mathcal{O}((\kappa\bar{\kappa})^{4}),$$

(1.2)

where we have allowed for a fourth-order correction to be discussed in more detail below. This leaves a three complex dimensional space of $\mathcal{N} = 1$ superconformal theories. Setting the coefficients to $\kappa = g_{\text{YM}}, q = 1, h = 0$, we recover the $\mathcal{N} = 4$ superpotential

$$W = ig_{\text{YM}} \text{tr} [X [b], Y] Z.$$

(1.3)

The deformation (1.1) includes some interesting special cases. The most well-known deformation is the so-called β-deformation (see [3] for a review) where $q = e^{-2i\pi \beta}, h = 0$ with β real. Inserting this into (1.2) then yields $\kappa = g_{\text{YM}}$ which is exact in the planar limit [4, 5]. With a field redefinition, the β-deformed superpotential can be recast into the form

$$W = ig_{\text{YM}} \text{tr}(e^{i\pi \beta} XYZ - e^{-i\pi \beta} XYZ).$$

(1.4)

Furthermore, the computation of the spectrum for local operators is an integrable problem [6–9]. In [7] it was shown that at the one-loop level, the corresponding Bethe equations are the same as in $\mathcal{N} = 4$ SYM, except for a β-dependent shift. This was extended to all loops in [8]. The supergravity dual for the β-deformed theory is known [10] and its world-sheet theory has been shown to be classically integrable, even though it is not a coset [9, 11]. Other integrable deformations with nonzero values of h can be obtained by acting on the β-deformed theories with similarity transformations [12–14].

If the deformation is generalized to complex β, the relation of the couplings has to be altered at four-loop order [15, 16], as indicated in (1.2). The resulting spin-chain is a known integrable model only in a certain subsector [7]. This subsector plays an important role in $\mathcal{N} = 4$ SYM and in its (complex) β-deformation, where it is closed, at least perturbatively [17]. It consists of operators composed of two flavors of complex scalar fields. The subsector is called the $SU(2)$ subsector, since an $SU(2)$ subgroup of the $SU(4)$ R-symmetry of $\mathcal{N} = 4$ transforms the two flavors into each other. We will stick with this name, even if the $SU(2)$ R-symmetry is broken in the presence of the (complex) β-deformation. In a formulation with manifest $\mathcal{N} = 1$ supersymmetry, these complex scalars are the lowest components of chiral superfields. Hence, being composites of two of these three superfield flavors, the operators of the $SU(2)$ subsector are themselves chiral superfields.

There exists a bigger subsector that consists of all possible chiral composite operators. This means, the latter can contain all three types of chiral superfield flavors X, Y, Z, and also the chiral superfield strength W. Starting at two loops, these three chiral field flavors can transform into two W and vice versa. If $\kappa \neq 0, h = 0$ in (1.1), this mixing can only occur if all three interacting chiral field flavors are different, while at $h \neq 0$ a mixing occurs even if all these flavors are identical. This guarantees that the $SU(2)$ subsector is closed whenever $h = 0$, but it also means that in the case $h \neq 0$ the mixing extends to the bigger subsector. When restricting to the lowest lying components of the superfields, the field content of this bigger subsector is reduced to the three complexified scalars and the two-component gaugino ψ_{α}. In $\mathcal{N} = 4$ SYM, this is the $SU(2)[3]$ subsector [18].

Let us now consider those deformations that have closed scalar subsectors and restrict ourselves to the planar limit. For the (complex) β-deformations, the simplest single-trace operators are L copies of a single superfield flavor X,

$$\text{tr} X, \ldots, X,$$

(1.5)

which are protected from quantum corrections. In the spin chain picture, each of these operators is the ferromagnetic ground state of a closed spin chain with fixed length L. One constructs
excited states by changing the flavor of one or more of the fields. The composite operator that contains a single changed flavor
\[\text{tr} YX, \ldots, X \] (1.6)
corresponds to a spin chain with one excitation (magnon). While in the \(\mathcal{N} = 4 \) case, this operator is protected, in the (complex) \(\beta \)-deformed theory it acquires an anomalous dimension. We can add more excitations by adding more \(Y \) fields. Adding \(Z \) fields takes us out of the \(SU(2) \) subsector.

The only other way to have a closed scalar subsector is to take the limit \(\kappa \to 0 \) with fixed \(\kappa |h| = \sqrt{2} g_{\text{YM}} \), such that the superpotential becomes
\[W = i \sqrt{2} g_{\text{YM}} \text{tr}(X^3 + Y^3 + Z^3). \] (1.7)
This special case, called the (Fermat) cubic Leigh–Strassler deformation, was recently analyzed in [19]. This deformation has no closed subsector resembling the \(SU(2) \) subsector of the undeformed theory. However, because the superpotential does not have the ‘hopping’ term, there is no direct mixing of scalar operators in the planar limit. Scalar mixing can still occur indirectly through intermediate scalar-fermion mixing, but if the operator does not have a sequence of three or more identical scalar fields, then this mixing will not occur either. We will call such operators ‘3-string null’. In the planar limit, these operators do not mix with other operators.

In the cubic Leigh–Strassler theory, the ground states are anti-ferromagnetic in nature, having the general form [19]
\[\text{tr} \ XYYXZYZ, \ldots, XY, \] (1.8)
where no two neighboring fields have the same flavor. These operators are protected in the planar limit to all orders in perturbation theory. Operators of the type
\[\text{tr} \ XXYYYZ, \ldots, XY, \] (1.9)
where there are two neighboring fields with the same flavor correspond to the first excited states. They are not protected, but they are 3-string null and hence do not undergo operator mixing either. The lack of mixing makes it possible to formulate an all-loop conjecture about the rational part of their anomalous dimensions [19]. The conjecture is applicable to any 3-string null operator [19].

The upshot is that we have two classes of Leigh–Strassler theories where the mixing is closed to scalar operators; the \(SU(2) \) subsector of the complex \(\beta \)-deformed theories and the 3-string null operators in the cubic Leigh–Strassler theory. For these two cases, we only need the scalar part of the ‘chiral’ dilatation operator, where ‘chiral’ indicates the restriction to the field content of the \(SU(2)/3 \) subsector.

In this paper, we determine the scalar part of the chiral dilatation operator to four-loop order. The evaluation of the relevant Feynman diagrams becomes manageable by determining the deviations from the four-loop dilatation operator in the \(SU(2) \) subsector of the \(\mathcal{N} = 4 \) SYM theory. The latter has been determined [20] as one of the conserved local charges [21, 22] using integrability and the postulated form of the magnon dispersion relation. Hence, by doing perturbation theory in the general Leigh–Strassler case, we determine the scalar part of the chiral dilatation operator, even though these more general deformations are not believed to be integrable. Our result is also valid for the mixing between all three scalar chiral fields in \(\mathcal{N} = 4 \) SYM.

The scalar part we find for the chiral dilatation operator is valid for any Leigh–Strassler deformation. It is complete when acting on a closed scalar subsector; hence, we can apply it to the above cases to find the anomalous dimensions to four-loop order. When acting
on the 3-string null operators in the cubic Leigh–Strassler theory, we find that the rational contributions to the anomalous dimensions are consistent with an all-loop conjecture made in [19]. Furthermore, we see that the four-loop anomalous dimensions contain additional transcendental terms.

The paper is organized as follows. In section 2, we analyze the Feynman diagrams that modify the scalar part of the chiral four-loop dilatation operator of $\mathcal{N} = 4$ SYM theory for Leigh–Strassler deformations. In section 3, we simplify the results from the previous section and determine the anomalous dimensions of the single-impurity operators in the (complex) β-deformation and the 3-string null operators in the cubic Leigh–Strassler deformation. In section 4, we draw our conclusions. Several technical details concerning the so-called chiral functions, similarity transformations and relevant loop integrals are included in various appendices.

2. Feynman diagram analysis

The perturbative spectrum of local composite operators in a conformal field theory is given by the bare dimensions of the operators plus their anomalous dimensions. The latter are generated by the renormalization of the composite operators

$$O_{a, \text{ren}} = Z_a^b(\lambda, \epsilon) O_{b, \text{bare}},$$

which in general imply a mixing among the operators. Z is the matrix-valued renormalization constant that is given as a power series in the 't Hooft coupling constant $\lambda = g^2_{\text{YM}} N$ and absorbs the overall UV divergences which are generated at each loop order. We use supersymmetry preserving dimensional reduction [23] in $D = 4 - 2\epsilon$ dimensions. The divergences appear as poles in ϵ.

We determine the anomalous dimensions as eigenvalues of the dilatation operator, which in terms of Z is defined as

$$\mathcal{D} = \mu \frac{d}{d\mu} \ln Z(\lambda \mu^{2\epsilon}, \epsilon) = \lim_{\epsilon \to 0} \left[2\epsilon \lambda \frac{d}{d\lambda} \ln Z(\lambda, \epsilon) \right].$$

The logarithm in the above description is understood as a series expansion in the orthonormalized basis of composite operators for the unrenormalized theory, such that the leading contribution to Z is the identity. All higher order poles in $\ln Z$ must cancel, leading to the second relation in (2.2). The anomalous dimensions are then the eigenvalues of \mathcal{D}.

We first calculate the renormalization constant Z for operators composed of scalar chiral superfields by computing the relevant Feynman diagrams using an $\mathcal{N} = 1$ superfield formulation. We then use (2.2) to derive the dilatation operator. For a more detailed description, we refer the reader to [24, 25]. It should be understood that \mathcal{D} is the scalar part of the chiral dilatation operator, since we have restricted ourselves to scalar chiral operators. The dilatation operator can be expressed as the series expansion

$$\mathcal{D} = \sum_{n=1}^{\infty} g^{2n} \mathcal{D}_n, \quad g = \frac{\sqrt{\lambda}}{4\pi},$$

For $\mathcal{N} = 4$ SYM, the first three terms in the expansion were found to be

$$\mathcal{D}_1 = -2\chi(1),$$
$$\mathcal{D}_2 = -2[\chi(1, 2) + \chi(2, 1)] + 4\chi(1),$$
$$\mathcal{D}_3 = -4(\chi(1, 2, 3) + \chi(3, 2, 1)) + 4\epsilon_2[\chi(2, 1, 3) - \chi(1, 3, 2)] - 4\chi(1, 3) + 16(\chi(1, 2) + \chi(2, 1)) - 16\chi(1) - 4(\chi(1, 2, 1) + \chi(2, 1, 2)).$$

(2.4)
where \(\epsilon_2 = -\frac{i}{2} \) is a parameter that can be changed by similarity transformations of the basis of operators.

The terms in (2.4) are expressed using the very convenient basis of the so-called chiral functions. They capture the structure of the chiral and anti-chiral superfields within the Feynman diagrams [26, 27] (see [24] for a review). Here, they are defined as

\[
\chi(a_1, \ldots, a_n) = \sum_{r=0}^{L-1} \prod_{j=1}^{n} F_{a_i+r, a_i+r+1},
\]

where the operator \(F_{ij} \) acts on the flavors at sites \(i \) and \(j \). Its precise form will be given below. The product of the \(F_{ij} \) is specified by the argument list of the chiral function. Periodicity in \(L \) is understood when this product acts on adjacent elementary flavors of a single-trace operator with the length \(L \), i.e. with \(L \) elementary fields. Shifts of all integer entries \(a_i, i = 1, \ldots, n \) in the argument lists hence do not produce new chiral functions. We can therefore choose \(\min(a_1, \ldots, a_n) = 1 \).

In the \(\mathcal{N} = 4 \) SYM theory, the operator \(F_{ij} \) is given as the permutation minus the identity. In fact, if we consider the Leigh–Strassler deformation, only the chiral functions (2.5) are modified since \(F_{ij} \) as a contraction of the superpotential (1.1) with its Hermitean conjugate is sensitive to the deformation. There is no further modification of the expressions in (2.4) since they rely on a full Feynman diagram calculation in [25] that does not make use of relations between chiral functions. With the superpotential (1.1), the fundamental building block \(F_{ij} \) evaluates to

\[
\left\{ \frac{F_{ij}}{i, j} \right\} = \rho^2 (P - \mathbb{1} + h \epsilon d - h \bar{d} \bar{\epsilon} + h \bar{h} d d), \quad \rho = \frac{\kappa}{g_{YM}} = \sqrt{\frac{2}{1 + \bar{q} q + \bar{h} h}} + \mathcal{O}(\kappa^4),
\]

(2.6)

where we have used the relation of the couplings (1.2) and the aforementioned field redefinitions in order to make \(\kappa \) real. The permutation \(P \) and \(\epsilon \) are generalizations of the ordinary permutation and the \(\epsilon \)-tensor, which take into account the deformation by \(q \). The only non-vanishing components of the tensors in the products up to cyclic permutations are

\[
\epsilon_{XYZ} = 1, \quad \epsilon_{YXZ} = -q, \quad \epsilon_{XYZ} = -\bar{q}, \quad \epsilon_{YXZ} = 1, \quad d_{XXX} = d_{YYY} = d_{ZZZ} = 1.
\]

(2.7)

Using \(i, j, \) and \(o_i, o_j \), as the flavor degrees of freedom that enter and leave the building block at the respective positions \(i \) and \(j \), the individual terms in (2.6) read

\[
\begin{align*}
[(P - \mathbb{1})]_{i j}^{\rho o} &= -\epsilon^{\rho o} \delta_{i j}, \\
[(\epsilon d)]_{i j}^{\rho o} &= \epsilon^{\rho o} \delta_{i j}, \\
[(d \bar{\epsilon})]_{i j}^{\rho o} &= d^{\rho o} \delta_{i j}, \\
[(d \bar{d})]_{i j}^{\rho o} &= d^{\rho o} \delta_{i j}.
\end{align*}
\]

(2.8)

The above combinations can be written in terms of bilinears in the Gell-Mann matrices \(\lambda^2, a = 1, \ldots, 8 \), which act on the flavors at positions \(i \) and \(j \). We form combinations \(\lambda^{\pm 3} = \frac{1}{2}(\lambda^1 \pm i \lambda^5), \lambda^{\pm 2} = \frac{1}{2}(\lambda^2 \pm i \lambda^6), \lambda^{\pm 1} = \frac{1}{2}(\lambda^3 \pm i \lambda^7) \), such that \(\lambda^{\pm} \) act as rising and lowering operators, leaving unaffected the flavor of type \(i \), and also introduce the identity \(\lambda^0 = \sqrt{\frac{2}{3}} \mathbb{1} \), such that \(\text{tr} \lambda A \lambda B = 2 \delta^{AB}, A, B = 0, 1, \ldots, 8 \). In terms of these matrices, the
expressions read
\[(P - 1)_{ij} = \frac{1}{2}((1 + q\bar{q})L^i_j + \lambda^8L^i_j - 2\lambda^0 L^i_j) + \frac{\lambda^3}{4}(1 - q\bar{q})(L^i_j - \lambda^2 L^i_j) \]
\[+ q(L_j^{-1}L_j + \lambda^2L_j^{+2} + \lambda^{-3}L_j^{-3}) + \bar{q}(L_j^{+1}L_j^{-1} + \lambda_{-2}L_j^{+2} + \lambda_{-3}L_j^{-3}). \]
\[(\epsilon d)_{ij} = \lambda_i^{+1}\lambda_j^{-3} + \lambda_i^{-2}\lambda_j^{-1} + \lambda_i^{+3}\lambda_j^{+2} - q(\lambda_i^{-1}\lambda_j^{-2} + \lambda_i^{+2}\lambda_j^{+3} + \lambda_i^{-3}\lambda_j^{-1}), \]
\[(d \epsilon)_{ij} = \lambda_i^{-1}\lambda_j^{+3} + \lambda_i^{+2}\lambda_j^{+1} + \lambda_i^{-3}\lambda_j^{-2} - q(\lambda_i^{+1}\lambda_j^{+2} + \lambda_i^{-2}\lambda_j^{-3} + \lambda_i^{+3}\lambda_j^{-1}), \]
\[d d_{ij} = \frac{1}{2}(\lambda_i^{+3} + \lambda_i^{-3} + \lambda_i^{+8} + \lambda_i^{-8}). \] (2.9)

A projection of the above expressions onto the subspace of operators that contain only the flavors of types X and Y is realized as
\[\lambda^\pm \to \sigma^\pm, \quad \lambda^3 \to \sigma^3, \quad \lambda^8 \to \frac{1}{\sqrt{3}}\sigma^3, \quad \lambda^0 \to \sqrt{\frac{1}{3}}, \] (2.10)
where \(\sigma^\pm, \sigma^3 \) and 1 are the Pauli and identity matrices in the two-dimensional flavor space. Moreover, we have to drop all combinations of \(\lambda^\pm \lambda^\pm \) with \(i = 1, 2 \). The combination \(P - \bar{I} \) then reduces to the respective expression in the \(SU(2) \) subsector, and also \(d d \) can be consistently truncated, while the terms linear in \(h, \bar{h} \) in (2.6) do not admit a restriction to two types of flavors.

2.1. Self-energy diagrams

In a superconformal theory, the anomalous dimensions of the chiral superfields must vanish. This imposes the relation on the couplings in (1.2). At one loop, the vanishing of the anomalous dimensions is equivalent to the UV finiteness of the theory. Examining the one-loop diagrams
\[= N\kappa R(1 + q\bar{q} + h\bar{h})I_i, \quad = -2Ng_{YM}^2 I_i, \] (2.11)
one can immediately see that the cancellation of the divergences leads to the relation in (1.2) at leading order. This continues to hold at two- and three-loop order, where the one-loop relation (1.2) is not altered [15, 16, 28]. The reason is that the chiral field lines in the two-point Feynman diagrams only form (nested) bubbles.

At four loops, this is no longer the case and leads to a modification of the relation in (1.2). Divergences no longer cancel at the same loop-level, but the four-loop contribution to the anomalous dimension can be cancelled by a one-loop contribution if (1.2) is modified by a fourth-order term. This was previously worked out for the (complex) \(\beta \)-deformation in [15, 16] and for the entire Leigh–Strassler deformation (1.1) in [28]. Here, we recall these results.

The only four-loop diagram without a bubble structure is given by
\[\to -N\kappa R^4 \left((1 + q\bar{q} + h\bar{h})^4 + \delta H(q, \bar{q}, h, \bar{h}) \right) I_i, \] (2.12)
where the first term is cancelled by the remaining four-loop diagrams. The additional contribution is a straightforward generalization of the result at \(h = 0 \) in [15, 16] and in accord with [28] we find
\[\delta H(q, \bar{q}, h, \bar{h}) = (1 - q\bar{q} + h\bar{h})^4 + 8q\bar{q}h\bar{h}(q\bar{q}(3 - q\bar{q}) + h\bar{h}(3 - h\bar{h})) \]
\[+ 8q\bar{q}(h^3 + \bar{h}^3) - 8h\bar{h}(q^3 + \bar{q}^3) - 8(q^3 \bar{h}^3 + \bar{q}^3 h^3). \] (2.13)
Since this term is not cancelled by the other four-loop contributions, it will generate an anomalous dimension for the chiral field, unless one allows for fourth-order corrections to the
marginal couplings. Unlike in the complex β-deformed case, it is not sufficient to have a series expansion with constant coefficients for the correction in (1.2). Instead, we should make the ansatz

$$\kappa \to \kappa (1 + \lambda^3 \Delta \kappa (q, \bar{q}, h, \bar{h})), \quad \bar{\kappa} \to \bar{\kappa} (1 + \lambda^3 \Delta \bar{\kappa} (q, \bar{q}, h, \bar{h})).$$

(2.14)

If we absorb these corrections into the original $\kappa, \bar{\kappa}$, the relation (1.2) is modified to

$$2g_{YM}^2 = \kappa \bar{\kappa} (1 + \frac{q \bar{q} + h \bar{h}}{1 - \lambda^3 (\Delta \kappa + \Delta \bar{\kappa})}),$$

(2.15)

where further modifications will occur at higher orders. With these corrections, the leftover piece (2.13) from the four-loop diagrams can be cancelled by the chiral one-loop diagram (2.11) with modified couplings (2.14). For conformal invariance, we have to cancel the anomalous dimensions which is achieved by setting

$$2 \left[\begin{array}{c} \Delta \kappa + \Delta \bar{\kappa} = 16 \frac{\delta H(q, \bar{q}, h, \bar{h})}{(1 + q \bar{q} + h \bar{h})^2} \mathcal{I}_i \end{array} \right] = \text{finite},$$

(2.16)

where the blobs are the vertex corrections which come with factors of $\kappa \lambda^3 \Delta \kappa$ or $\bar{\kappa} \lambda^3 \Delta \bar{\kappa}$. The ellipsis denotes the remaining four-loop diagrams in which the chiral field lines form (nested) bubbles. The integer prefactors come from the definition of the dilatation operator (the anomalous dimension) in (2.2). This leads to a multiplication of the K-loop contribution by a factor $2K$. From the condition (2.16), we find

$$\Delta \kappa + \Delta \bar{\kappa} = 16 \frac{\delta H(q, \bar{q}, h, \bar{h})}{(1 + q \bar{q} + h \bar{h})^2} \mathcal{I}_i.$$

(2.17)

With this adjustment, the theory is conformal but not finite, since the diagrams that contribute to the chiral field renormalization do not have the prefactors in (2.16) and hence do not cancel. However, one can still make the theory finite by adding epsilon-dependent terms to the couplings using the prescription described in [29].

The alterations induced by (2.12) also affect the operator renormalization. At four-loop order, this only concerns the diagrams associated with the simplest chiral function $\chi(1)$. But the relation in (2.16) guarantees that these diagrams obey

$$2 \left[\begin{array}{c} \Delta \kappa + \Delta \bar{\kappa} = 16 \frac{\delta H(q, \bar{q}, h, \bar{h})}{(1 + q \bar{q} + h \bar{h})^2} \mathcal{I}_i \end{array} \right] = \text{finite},$$

(2.18)

whose validity is obvious if one realizes that the chiral operator (represented by the bold line) can be treated like a chiral vertex. Hence, the diagrams in (2.18) have the same topology as those in (2.16) and thus have the same cancellation of UV divergences. These diagrams can then be omitted from the very beginning since they will not contribute to the dilatation operator.

2.2. Diagrams with reducible chiral functions

In the $SU(2)$ subsector of the (complex) β-deformed theories, not all of the chiral functions in (2.5) are independent. Many chiral functions contain terms that antisymmetrize three neighboring sites. Such terms are zero when there are only two flavors, leading to relations...
between different chiral functions. The simplest example is

\[
\chi(1, 2, 1)|_{SU(2)} = \chi(2, 1, 2)|_{SU(2)} = \rho^4q\bar{q}\chi(1)|_{SU(2)},
\]

where \(|_{SU(2)}\) indicates the projection onto the subsector. The general set of relations are worked out in appendix A. The chiral functions \(\chi(1, 2, 1)\) and \(\chi(2, 1, 2)\) first appear in the three-loop dilatation operator \(D_\gamma\). The respective terms in (2.4) arise from the chiral Feynman diagram [25]

\[
\begin{align*}
\begin{array}{c}
\text{\begin{tabular}{c}
\end{tabular}}
\end{array} = \lambda^3 I_3 \chi(1, 2, 1),
\end{align*}
\]

and its reflection. At four loops, the relation (2.19) generalizes to chiral functions with four arguments. Here, there are two types of relations, given by

\[
\begin{align*}
\chi(1, 2, 1, 2)|_{SU(2)} &= \chi(1, 2, 3, 2)|_{SU(2)} = \chi(2, 1, 2, 3)|_{SU(2)} = \rho^4q\bar{q}\chi(1, 2), \\
\chi(2, 1, 2, 1)|_{SU(2)} &= \chi(3, 2, 1, 2)|_{SU(2)} = \chi(2, 3, 2, 1)|_{SU(2)} = \rho^4q\bar{q}\chi(2, 1), \\
\chi(1, 2, 1, 3)|_{SU(2)} &= \chi(1, 3, 2, 3)|_{SU(2)} = \rho^4q\bar{q}\chi(1, 3), \\
\chi(3, 2, 3, 1)|_{SU(2)} &= \chi(3, 1, 2, 1)|_{SU(2)} = \rho^4q\bar{q}\chi(3, 1, 2, 1).
\end{align*}
\]

where a relation and its reflection are displayed in tandem. We call chiral functions ‘reducible’ if they simplify as in (2.19) and (2.21) when projected onto the \(SU(2)\) subsector.

In analogy to the three-loop diagram (2.20), four-loop diagrams that come with chiral functions having four arguments are chiral. Hence, each one is generated by one diagram. After D-algebra, we find

\[
\begin{align*}
\begin{array}{c}
\text{\begin{tabular}{c}
\end{tabular}} = \lambda^4 I_4 \chi(1, 2, 1, 2),
\end{array} = \lambda^4 I_4\bar{w} \chi(1, 2, 3),
\end{align*}
\]

as well as analogous results for their reflections.

There are also four-loop diagrams having chiral function \(\chi(1, 2, 1)\) or \(\chi(2, 1, 2)\). These diagrams are constructed by attaching a vector propagator to (2.20) or to its reflection. Since the one-loop chiral self-energy is identically zero, the ends of the vector propagator must attach to different chiral propagators. Moreover, there are further restrictions coming from the finiteness conditions of [25]. First, the one chiral vertex in (2.20) which is not part of a loop must not become part of a loop after adding the vector field interaction. Second, the vector propagator cannot attach to the neighboring (not drawn) field lines of (2.20), keeping the range of the diagram to three sites. The diagrams that fulfil these constraints, along with
their values, are

\[\begin{align*}
I_4, & \rightarrow -I_{4t}, \\
I_{4w}, & \rightarrow -I_{4bt}, \\
I_{bt}, & \rightarrow -I_{3t}, \\
I_{43t}, & \rightarrow I_4, \\
I_{4}, & \rightarrow I_{4bt}, \\
I_4, & \rightarrow I_{4t1}, \\
I_4, & \rightarrow I_{4w} - I_{4t2}, \\
I_{4w}, & \rightarrow -I_4, \\
I_{4t1} & \rightarrow I_4 + I_{4} + I_{4} - I_{4t1}, \\
I_{4w} & \rightarrow I_4 + I_{4} - I_{4t1}, \\
I_{4t2} & \rightarrow I_4 + I_{4}, \\
\end{align*} \]

where we have grouped together the diagrams that lead to the same integrals after D-algebra. The integrals are listed in (C.1). The above results contain all signs from color and flavor factors, and from the D-algebra manipulations. Finite contributions and a common factor \(\lambda^4\chi(1, 2, 1)\) have been omitted. Note that most of the diagrams are easily evaluated using the arguments in [25]. The diagrams in the fourth line require a little more work and lead to integrals with momenta in the numerator of their integrands that are contracted as prescribed by a trace over products of \(\gamma\)-matrices. Using the results of appendix C, we find for the sum of the most complicated diagrams

\[\begin{align*}
-2I_{4t1} & + I_4 + I_{4bt} + I_{3t} = -I_{4t}. \\
\end{align*} \]

Summing up all diagrams of (2.23) and eliminating \(I_{4w}\) by making use of the relation (C.4) result in

\[\begin{align*}
\lambda^4(-6I_4 + 2I_{4t1} + I_{4t}) & = \lambda^4\chi(1, 2, 1). \\
\end{align*} \]

The result for the reflected diagrams is obtained by replacing \(\chi(1, 2, 1)\) with \(\chi(2, 1, 2)\).
2.3. Four-loop result

The reducible contribution to the renormalization constant is the negative sum of (2.25), (2.22) and their reflections. Using (2.2), one finds that the reducible part contributes to the dilatation operator with the coefficient of the $\frac{1}{\epsilon}$ pole multiplied by 8. Inserting the explicit expressions in (C.1) then gives

$$\delta D_{4\text{red}} = (60 - 8 \zeta(3))[\chi(1, 2, 1) + \chi(2, 1, 2)] - 10[\chi(1, 2, 1, 2) + \chi(2, 1, 2, 1)]$$

$$- 10 - 8 \zeta(3))][\chi(1, 2, 3, 2) + \chi(3, 2, 1, 2)]$$

$$- 10[\chi(1, 2, 1, 2) + \chi(2, 1, 2, 1)]$$

$$+ \left(\frac{10}{3} - 4 \zeta(3) \right)[\chi(1, 2, 1, 3) + \chi(3, 2, 3, 1)]$$

$$- 10 - 8 \zeta(3)]\chi(1, 3, 2, 3) + \chi(3, 1, 2, 1)\). \quad (2.26)$$

Restricting to the $SU(2)$ subsector of $\mathcal{N} = 4$ SYM and using the identities in (2.19) and (2.21), reduces the above term to

$$\delta D_{4\text{red}}|_{SU(2)} = 8(15 - 2 \zeta(3))\chi(1) - 2(15 - 4 \zeta(3))[\chi(1, 2) + \chi(2, 1)]$$

$$- 8(\frac{1}{3} - \zeta(3))\chi(1, 3). \quad (2.27)$$

The four-loop dilatation operator $D_{4, \mathcal{N} = 4}$ for the $SU(2)$ subsector of $\mathcal{N} = 4$ SYM was first presented in [20]. It is determined as one of the commuting charges of the integrable system, using information from the all-loop Bethe equations [30] and the magnon dispersion relation [31–33]

$$E(p) = \sqrt{1 + 4h^2(g) \sin^2 \frac{p}{2} - 1}, \quad (2.28)$$

where we assume that $h^2(g) = 4g^2$. To find D_4 for the Leigh–Strassler theories, we add (2.26) to $D_{4, \mathcal{N} = 4}$ and then subtract (2.27). Using the convention in [27] for $D_{4, \mathcal{N} = 4}$, we find

$$D_4 = +16(5 + \zeta(3))\chi(1)$$

$$- 8(15 + \zeta(3))[\chi(1, 2) + \chi(2, 1)] + 8\left(\frac{10}{3} - \zeta(3)\right)\chi(1, 2) - 4\chi(1, 4)$$

$$+ 4(15 - 2 \zeta(3))[\chi(1, 2, 1) + \chi(2, 1, 2)] + 60[\chi(1, 2, 3) + \chi(3, 2, 1)]$$

$$+ 2(4 + \beta + 2\epsilon_{3a} - 2i\epsilon_{3b} + i\epsilon_{3c} - 2i\epsilon_{3d})\chi(1, 3, 2)$$

$$+ 2(4 + \beta + 2\epsilon_{3a} + 2i\epsilon_{3b} - i\epsilon_{3c} + 2i\epsilon_{3d})\chi(2, 1, 3)$$

$$- 2(2 + 2i\epsilon_{3b} + i\epsilon_{3c})[\chi(1, 2, 4) + \chi(1, 4, 3)]$$

$$- 2(2 - 2i\epsilon_{3b} - i\epsilon_{3c})[\chi(1, 3, 4) + \chi(2, 1, 4)]$$

$$- 10[\chi(1, 2, 1, 2) + \chi(2, 1, 2, 1)]$$

$$- 10 + i\epsilon_{3b} - i\epsilon_{3c})[\chi(1, 2, 1, 2) + \chi(2, 3, 2, 1)]$$

$$+ 10 - 8 \zeta(3) + i\epsilon_{3c} + i\epsilon_{3d})[\chi(1, 2, 3, 2) + \chi(3, 2, 1, 2)]$$

$$+ \left(\frac{10}{3} + 8 \zeta(3) + 2\epsilon_{3a} - 4i\epsilon_{3b} + i\epsilon_{3d})\chi(1, 3, 2, 3) + \chi(3, 1, 2, 1)\right)$$

$$+ \left(\frac{10}{3} - 4 \zeta(3) + 2\epsilon_{3a} + 4i\epsilon_{3b} - i\epsilon_{3d})\chi(1, 2, 1, 3) + \chi(3, 2, 3, 1)\right)$$

$$- 2(6 + \beta + 2\epsilon_{3a})\chi(2, 1, 3, 2)$$

$$+ 2(9 + 2\epsilon_{3a})[\chi(1, 3, 2, 4) + \chi(2, 1, 4, 3)]$$

$$- 2(4 + \epsilon_{3a} + i\epsilon_{3b})[\chi(1, 2, 4, 3) + \chi(1, 4, 3, 2)]$$

$$- 2(4 + \epsilon_{3a} - i\epsilon_{3b})[\chi(2, 1, 3, 4) + \chi(3, 2, 1, 4)]$$

$$- 10[\chi(1, 2, 3, 4) + \chi(4, 3, 2, 1)]. \quad (2.29)$$

where we have also considered the possibility of more general similarity transformations as compared to $\mathcal{N} = 4$ SYM. These are parameterized by two additional parameters ϵ_{3a} and
and they occur because the identities in \((2.19)\) and \((2.21)\) are no longer applicable. The details are worked out in appendix B. The dressing phase \(\beta\) and the coefficients \(\epsilon_{3a}, \ldots, \epsilon_{3d}\) of similarity transformations in the scheme of \(\mathcal{N} = 1\) supergraphs are fixed by comparing the \(SU(2)\) subsector projection of the above result to the integrability-based expression. This is not the case for \(\epsilon_{3c}\) and \(\epsilon_{3f}\) that drop out in the projection and hence can be set to convenient values. With our choice, we have made the rational numbers within the coefficients of \(\chi(1, 3, 2) + \chi(3, 1, 2, 1)\) and \(\chi(1, 2, 1, 3) + \chi(3, 2, 3, 1)\) equal. This yields
\[
\beta = 4 \xi(3), \quad \epsilon_{3a} = -4, \quad \epsilon_{3b} = -i \frac{2}{3}, \quad \epsilon_{3c} = i \frac{4}{3}, \quad \epsilon_{3m} = -4, \quad \epsilon_{3f} = i \frac{4}{3},
\]
(2.30)

Note that we have not fixed the coefficient \(\epsilon_{3d}\) in the scheme of Feynman diagrams in \(\mathcal{N} = 1\) superspace. The calculation would be tedious and unnecessary here, since the combination \(\chi(1, 3, 2) - \chi(1, 3, 2)\) of chiral functions that are conjugate to each other vanishes whenever applied to the states, and hence \(\epsilon_{3d}\) drops out.

3. Application to single-impurity states

We call chiral functions ‘connected’ if adjacent entries in their arguments differ by \(\pm 1\). These are the only chiral functions that do not vanish when acting on the single-impurity states in \((1.6)\) and \((1.9)\). For this reason, the magnon dispersion relations can only depend on the connected chiral functions. Using the definition of a connected product of chiral functions in \((A.8)\), we can re-express the first four orders of \(D\) in \((2.4)\) and \((2.29)\) as
\[
D_1 = -2 \chi(1),
D_2 = -2[\chi(1)^3]_c, \quad D_3 = -4[\chi(1)^3]_c + 4i\epsilon_3[\chi(2, 1, 3) - \chi(1, 2, 3)] - 4\chi(1, 3), \quad D_4 = -10[\chi(1)^4]_c + 8\xi(3)[-2\chi(1) + \chi(1, 2) + \chi(2, 1)]
\]

\[
- \chi(1, 2, 1) - \chi(2, 1, 2) + \chi(1, 2, 3, 2) + \chi(3, 2, 1, 2)]
+ \frac{8(\xi(3) - 4\chi(1, 3, 2)) \chi(1, 3, 4) + 4\chi(1, 2, 4)}{2(1, 2, 4, 3)}
\]

The terms with connected products appear naturally in the expansion of the \(\mathcal{N} = 4\) magnon dispersion relation \([19, 25]\). In particular, the first term in \(D_4\) is consistent with a conjecture made in \([19]\) that the rational connected parts of \(D_m\) are given by
\[
\frac{\Gamma(3/2)}{\Gamma(m + 1)\Gamma(3/2 - m)}(-4)^m[\chi(1)^m]_c.
\]
(3.2)
The conjecture is nontrivial since it allows us to separate terms that would have been equivalent in the β-deformed or undeformed theory.

The next term in D_4 is a sum of connected chiral functions multiplied by $8\xi(3)$. It vanishes when we project to the SU(2) subsector in $N = 4$ or the real β-deformed theory and hence is consistent with the dispersion relation (2.28) with $\tilde{h}^2(g) = 4g^2$. However, it contributes when two distinct types of scalar magnons approach each other, and hence, is associated with the scattering matrix for different magnons. In the complex β-deformed case, it is also non-vanishing if a single magnon is within its interaction range and hence it starts to appear within the respective dispersion relation as a four-loop contribution to $\tilde{h}^2(g)$ in (2.28).

We can now use (3.1) to determine the four-loop anomalous dimensions for particular operators.

3.1. Complex β-deformation

The single-impurity operators in the complex β-deformations, where $|q| \neq 1$ and $h = 0$, are eigenstates of $\chi(1)$ with eigenvalue $c(q, \bar{q})$, where

$$c(q, \bar{q}) = \rho^2(1 - q)(1 - \bar{q}) = \frac{2(1 - q)(1 - \bar{q})}{1 + q\bar{q}}, \quad (3.3)$$

and we have eliminated ρ by applying (2.6). Furthermore, the connected products of $\chi(1)$ are products of $c(q, \bar{q})$. Using the relation in (A.4), we find

$$\gamma = [\sqrt{1 + 4g^2c(q, \bar{q})} - 1] - 8\xi(3)g^8(1 - q\bar{q})^2c^2(q, \bar{q}) + O(g^{10}). \quad (3.4)$$

The part of γ inside the square bracket comes from the connected products in (3.1). The transcendental term comes from those connected chiral functions that are not included in the connected products. In the special case where β is real, the transcendental term drops out and we find $c(q, \bar{q}) = 4\sin^2\pi\beta$. The remaining part of γ is the energy coming from (2.28) for one excitation with momentum shifted to $p = 2\pi\beta$ by the twisted boundary conditions.

3.2. Cubic Leigh–Strassler deformation

In the cubic Leigh–Strassler deformation, where $\rho \to 0, \rho|h| = \sqrt{2}$, the 3-string null operators are eigenstates of every chiral function. For $\chi(1)$, the eigenvalue is $-2M$, where M is the number of pairs of adjacent fields with the same flavor. For all other chiral functions, the eigenvalue is 0. Hence, the eigenvalue of the connected product $[\chi(1)]^m$, is $(-2)^mM$. Inserting these expressions into (3.1), we find that the anomalous dimensions of these operators are

$$\gamma_M = M\gamma_1,$$

where

$$\gamma_1 = [\sqrt{1 + 8g^2} - 1] - 32\xi(3)g^8 + O(g^{10}). \quad (3.5)$$

Note that the four-loop result is consistent with a conjecture in [19] for the rational part of γ_1, where it was proposed that it would have the form in the square brackets to all orders in g, assuming that cancellations similar to (2.18) continue to hold. However, there is also a transcendental contribution starting at four-loop order. A natural way to view this is that instead of g^2, the square root depends on a g-dependent function $\tilde{h}^2(g)$, such that

$$\gamma_1 = \sqrt{1 + 8\tilde{h}^2(g)} - 1, \quad (3.6)$$

where

$$\tilde{h}^2(g) = g^2 - 8\xi(3)g^8 + \cdots. \quad (3.7)$$

Without this correction, the strong coupling behavior of γ_1 would have been $\gamma_1 \sim g$, but with it γ_1 likely increases with a smaller power of g.

In [19], the cancellations were also shown to hold at five-loop order.
4. Conclusions

The main result of this paper is the construction of the scalar part of the four-loop chiral
dilatation operator (3.1). This construction is valid for any Leigh–Strassler deformation and
it is complete for the closed scalar subsectors of these deformations. Completeness for an
arbitrary deformation would require the contributions to \(D \) involving the gauginos \(\psi_\alpha \).

For the closed subsectors, we have explicitly found the four-loop anomalous dimensions
for the one impurity operators in the complex \(\beta \)-deformed theory and for every 3-string null
operator in the cubic Leigh–Strassler theory. These anomalous dimensions have \(\zeta(3) \) terms
that first appear at four loops\(^4\). These transcendental terms show up because they are present
in the coefficients of connected chiral functions in \(D_4 \).

From the perspective of \(\mathcal{N} = 4 \) SYM or its integrable deformations, the \(\zeta(3) \) coefficients
of the connected (or disconnected) chiral functions must trace back to the BES dressing phase
[37]; the only place where transcendental terms appear in the all-loop Bethe equations [30]
is in the dressing phase and so it must be the source for these terms in the chiral dilatation
operator. However, in the complex \(\beta \)-deformed theory, these same terms are associated with
the dispersion relation, since they contribute to the anomalous dimensions for single-impurity
operators. This suggests that the dispersion relation for the complex \(\beta \)-deformed theory, or the
anomalous dimensions of the 3-string null operators in the cubic deformation are in principle
derivable from the BES dressing phase. This assumes that the tuning mechanism as pictured in
(2.16) and (2.18) continues to hold at higher loops; otherwise, further corrections could spoil
this relation.

For the immediate future, one can use the disentangling of the chiral functions to compute
next to leading order wrapping effects, extending the analysis in [26, 27, 38–40]. It would also
be interesting to find the complete four-loop chiral dilatation operator. For this, it would be
useful to find an extension of the chiral functions that could also include the gauginos.

Acknowledgments

JAM and CS thank the Perimeter Institute for kind hospitality. JAM also thanks the CTP at
MIT for kind hospitality during the course of this work. The work of JAM is supported in part
by Vetenskaprådet. The work of CS is supported by DFG, SFB 647 Raum—Zeit—Materie. Analytische und Geometrische Strukturen.

Appendix A. Relations between chiral functions

In the \(SU(2) \) subsector, the building block (2.6) of the chiral functions (2.5) reduces to

\[
F_{ij}\mid_{SU(2)} = \rho^2 (P - \mathbb{I})_{ij},
\]

where the deformed permutation and the identity on the rhs are the ones given in (2.9) but
projected into the subspace of two flavors by applying (2.10). Using the resulting expressions,
one can check that the rhs obeys the relation

\[
(P - \mathbb{I})_{n,n+1}(P - 1)_{n+1,n+2}(P - \mathbb{I})_{n,n+1} = q\bar{q}(P - \mathbb{I})_{n,n+1}.
\]

This relation has its origin in the fact that three adjacent elementary fields within the single
trace of the composite operators of the \(SU(2) \) subsector carry maximally two different field

\(^4\) The transcendental contributions do come one loop after those found in [34] for the \(\mathcal{N} = 2 \) interpolating theory in
[35, 36].
flavors. The permutations then fulfill the relation

\[0 = 1 - P_{n+1} - P_{n+1} + P_{n+1}P_{n+1} + P_{n+1}P_{n+1} = P_{n+1}P_{n+1} + P_{n+1}P_{n+1}, \]

(A.3)

where the rhs at vanishing \(\beta \)-deformation \(q = 1 \) is nothing else than the total antisymmetrizer \(\epsilon_{k_1\ldots k_6} \) between three field flavors when expressed in terms of permutations. In the undeformed case, a respective relation was already worked out in [22]. When inserting (A.2)

\[\chi(a_1, \ldots, a_k, a, b, a, a_{k+4}, \ldots, a_n) = \rho^2 (1 + q \bar{a} + h \bar{b}) \chi(a_1, \ldots, a_k, a, a_{k+3}, \ldots, a_n) \]

\[= -2 \chi(a_1, \ldots, a_k, a, a_{k+3}, \ldots, a_n) + O(\kappa^6), \]

(A.5)

where the second equality relies on (2.6). The previous relation between chiral functions is required in order to simplify the (noncommutative but associative) products of chiral functions. In order to define such products of chiral functions, we assume from now on that the length \(L \) is always sufficiently large, i.e. \(L \gg \kappa_a + \kappa_b - 1 \). Thereby, \(\kappa_a, \kappa_b \) are the ranges, i.e. the numbers of legs involved in the chiral interactions, of the two chiral functions that are to be multiplied. In terms of the arguments of (2.5), the range is defined as

\[\kappa_a = \max_{a_1, \ldots, a_n} - \min_{a_1, \ldots, a_n} + 2. \]

(A.6)

We first introduce the commutator of two chiral functions that is given by

\[[\chi(a_1, \ldots, a_n), \chi(b_1, \ldots, b_p)] = \sum_{\min - \max, a_1, \ldots, a_n} \chi(a_1 + k, \ldots, a_n + k, b_1, \ldots, b_p) \]

\[= \sum_{\min - \max, a_1, \ldots, a_n} \chi(b_1 + k, \ldots, b_p + k, a_1, \ldots, a_n). \]

(A.7)

We call chiral functions 'connected' if adjacent entries in their list of arguments never differ by more than \(\pm 1 \). For these chiral functions, we define the connected product as

\[[\chi(a_1, \ldots, a_n)\chi(b_1, \ldots, b_p)]_c = \sum_{k=0}^{b_1-a_n+1} \chi(a_1 + k, \ldots, a_n + k, b_1, \ldots, b_p), \]

(A.8)

such that the result is again a connected chiral function. It is understood that for multiple-connected chiral functions appearing within \([\ldots]_c\), the connected product is applied for each pairwise multiplication.

Appendix B. Similarity transformations

The representation of the dilatation operator is not unique, but it may be transformed by a change of the basis of operators that does not alter its eigenvalues. In this appendix, we work out such transformations. We include non-unitary cases that allow us to remove the anti–Hermitean contributions in the three-loop dilatation operator given in (2.4). The similarity transformations can be realized as

\[D' = e^{-\gamma D} e^\gamma = D + \delta D, \]

(B.1)
where χ is a linear combination of chiral functions. We demand that the transformations preserve the structural constraints coming from the underlying Feynman diagrams, i.e. at each loop order in the weak coupling expansion of D the transformation must not generate contributions that involve chiral functions that can only appear at higher orders. This is guaranteed if the weak coupling expansion of χ only contains those chiral functions that can be associated with Feynman diagrams at the considered order. In the $SU(2)$ subsector of the $\mathcal{N} = 4$ SYM theory, the transformations are parameterized by one and four free parameters respectively in the three- and four-loop contribution to the dilatation operator. Here, we have to abandon the relation (2.19) and construct a more general transformation at four loops. The ansatz is given by

$$
\chi = g^2 i \delta_{11} \chi(1) + g^3 \left(i \delta_{21} \chi(1) + \frac{i}{2} \delta_{22} [\chi(1,2) + \chi(2,1)] \right) + g^3 \left(i \delta_{31} \chi(1) + \frac{i}{2} \delta_{32} [\chi(1,2) + \chi(2,1)] + i \delta_{33} \chi(1,3) \right) + \frac{i}{2} \delta_{34} [\chi(1,2,1) + \chi(2,1,2)] + \frac{1}{2} (i \delta_{35} + \delta_{36}) \chi(1,3,2) + \frac{1}{2} (i \delta_{35} - \delta_{36}) \chi(2,1,3) + \frac{i}{2} \delta_{37} [\chi(1,2,3) + \chi(3,2,1)],
$$

(B.2)

where we have considered the fact that the chiral functions in the fourth row are adjoint to each other, but the loop integrals of the respective diagrams are different.

Inserting this ansatz into (B.1) and expanding in powers of g, we respectively obtain for the non-vanishing transformations at two and three loops

$$
\delta D_3 = -4 i \epsilon_2 [\chi(1,3,2) - \chi(2,1,3)],
$$

$$
\delta D_4 = 2(2 \epsilon_{3a} - 2 i \epsilon_{3b} + i \epsilon_{3c} - 2 i \epsilon_{3d}) \chi(1,3,2) + 2(2 \epsilon_{3a} + 2 i \epsilon_{3b} - i \epsilon_{3c} + 2 i \epsilon_{3d}) \chi(2,1,3) + 2(2 \epsilon_{3a} + \epsilon_{3c}) [\chi(1,2,4) + \chi(1,4,3) - \chi(1,3,4) - \chi(2,1,4)] - 2(2 \epsilon_{3a} - \epsilon_{3c}) [\chi(2,1,2,3) + \chi(2,3,2,1) - \chi(1,2,3,2) - \chi(3,2,1,2)] + (2 \epsilon_{3a} - 4 i \epsilon_{3b} + i \epsilon_{3c}) [\chi(1,3,2,3) + \chi(3,1,2,1)] + (2 \epsilon_{3a} + 4 i \epsilon_{3b} - i \epsilon_{3c}) [\chi(1,2,1,3) + \chi(3,2,3,1)] - 4 i \epsilon_{3a} [\chi(2,1,3,2) - \chi(1,3,2,4) - \chi(2,1,4,3)] - 2(\epsilon_{3a} + i \epsilon_{3b}) [\chi(1,2,4,3) + \chi(1,4,3,2)] - 2(\epsilon_{3a} - i \epsilon_{3b}) [\chi(2,1,3,2) + \chi(3,2,1,4)],
$$

(B.3)

where the independent parameters read

$$
\epsilon_2 = \frac{1}{2} (2 \delta_{11} - \delta_{22}),
$$

$$
\epsilon_{3a} = -\frac{1}{2} \delta_{11} (2 \delta_{11} - \delta_{22}) - \frac{1}{2} \delta_{36},
$$

$$
\epsilon_{3b} = 2 \delta_{11} - \frac{1}{2} (\delta_{35} + \delta_{37}),
$$

$$
\epsilon_{3c} = -2 \delta_{11} - \delta_{33} + \delta_{35} + \delta_{37},
$$

$$
\epsilon_{3d} = \delta_{21} + \delta_{22} - 12 \delta_{11} - \frac{1}{2} \delta_{32} + \frac{1}{2} \delta_{35} + \delta_{37},
$$

$$
\epsilon_{3e} = \delta_{34} + 3 \delta_{35} - \delta_{37},
$$

$$
\epsilon_{3f} = -3 \delta_{35}.
$$

(B.4)
Appendix C. Integrals

All four-loop integrals I and their pole parts I used in the text are given by

\[I_{4bb} = \frac{1}{(4\pi)^8} \left(-\frac{1}{12\varepsilon^4} + \frac{1}{4\varepsilon^3} - \frac{1}{12\varepsilon^2} + \frac{1}{\varepsilon} \left(-\frac{5}{12} + \frac{1}{2}\zeta(3) \right) \right), \]

\[I_4 = \frac{1}{(4\pi)^8} \left(-\frac{1}{24\varepsilon^4} + \frac{1}{4\varepsilon^3} - \frac{19}{24\varepsilon^2} + \frac{5}{4\varepsilon} \right), \]

\[I_{4c} = \frac{1}{(4\pi)^8} \left(-\frac{1}{12\varepsilon^4} + \frac{5}{12\varepsilon^3} - \frac{1}{12\varepsilon^2} + \frac{1}{\varepsilon} \left(\frac{11}{12} - \frac{1}{2}\zeta(3) \right) \right), \]

\[I_{4w} = \frac{1}{(4\pi)^8} \left(-\frac{1}{24\varepsilon^4} + \frac{1}{4\varepsilon^3} - \frac{19}{24\varepsilon^2} + \frac{5}{4\varepsilon} \zeta(3) \right), \]

\[I_{4\beta} = \frac{1}{(4\pi)^8} \left(-\frac{1}{12\varepsilon^4} + \frac{1}{3\varepsilon^3} - \frac{5}{12\varepsilon^2} - \frac{1}{\varepsilon} \left(\frac{1}{2} - \zeta(3) \right) \right), \]

\[I_{4\beta} = \frac{1}{(4\pi)^8} \left(-\frac{1}{2\varepsilon^2} \zeta(3) + \frac{1}{\varepsilon} \left(\frac{3}{2} \zeta(3) + \frac{\pi^4}{120} \right) \right), \]

\[I_{4t} = \frac{1}{(4\pi)^8} \left(-\frac{3}{2\varepsilon^2} \zeta(3) + \frac{1}{\varepsilon} \left(\frac{1}{2} \zeta(3) - \frac{\pi^4}{120} \right) \right), \]

\[I_{4tr1} = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} \zeta(5), \]

\[I_{4tr2} = \frac{1}{(4\pi)^8} \frac{1}{2\varepsilon} \zeta(3) - 5\zeta(5), \]

\[I_{4t1} = I_{4t1} + \frac{1}{2} (I_4 - I_{4w} - I_{4t1} + I_4), \]

\[I_{4t2} = \text{tr}(\gamma^a \gamma^b \gamma^c \gamma^d), \]

\[I_{4t1} = \text{tr}(\gamma^a \gamma^b \gamma^c \gamma^d). \]

(C.1)
We only need the sum of the last two integrals. This is much easier to work out than the individual integrals due to the symmetrization in pairs of indices that occurs after decomposing the numerator momentum with Lorentz index β in terms of the other two momenta at a vertex.

One obtains the relation

$$I_{4t1} + I_{4t1} = 2I_{4t2} - I_{4t1} + I_{4t} + I_{4t} + I_{4t}\beta. \tag{C.2}$$

Note also that I_{4w} differs from I_{4} only by an additional $-\xi(3)$ in the simple $1/\varepsilon$ pole. Using then

$$2I_{4t1} + I_{4t} = \frac{1}{(4\pi)^8} \xi(3), \tag{C.3}$$

we can express I_{4w} in terms of I_{4} as

$$I_{4w} = I_{4} - 2I_{4t1} - I_{4t}. \tag{C.4}$$

References

[1] Beisert N et al 2012 Review of AdS/CFT integrability: an overview Lett. Math. Phys. 99 3–32 (arXiv:1012.3929)
[2] Leigh R G and Strassler M J 1995 Exactly marginal operators and duality in four-dimensional $N = 1$ supersymmetric gauge theory Nucl. Phys. B 447 95–136 (arXiv:hep-th/9503121)
[3] Zoubos K 2012 Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries Lett. Math. Phys. 99 375–400 (arXiv:1012.3998)
[4] Khoze V V 2006 Amplitudes in the beta-deformed conformal Yang–Mills J. High Energy Phys. JHEP02(2006)040 (arXiv:hep-th/0512194)
[5] Mauri A, Penati S, Santambrogio A and Zanon D 2005 Exact results in planar $N = 1$ superconformal Yang–Mills theory J. High Energy Phys. JHEP11(2005)024 (arXiv:hep-th/0507282)
[6] Roiban R 2004 On spin chains and field theories J. High Energy Phys. JHEP09(2004)023 (arXiv:hep-th/0312218)
[7] Berenstein D and Cherkis S A 2004 Deformations of $N = 4$ sym and integrable spin chain models Nucl. Phys. B 702 49–85 (arXiv:hep-th/0405215)
[8] Beisert N and Roiban R 2005 Beauty and the twist: the Bethe ansatz for twisted $N = 4$ sym J. High Energy Phys. JHEP08(2005)039 (arXiv:hep-th/0505187)
[9] Frolov S A, Roiban R and Tseytlin A A 2005 Gauge–string duality for superconformal deformations of $N = 4$ super Yang–Mills theory J. High Energy Phys. JHEP07(2005)045 (arXiv:hep-th/0503192)
[10] Lunin O and Maldacena J 2005 Deforming field theories with $U(1) \times U(1)$ global symmetry and their gravity duals J. High Energy Phys. JHEP05(2005)033 (arXiv:hep-th/0502086)
[11] Frolov S 2005 Lax pair for strings in Lunin–Maldacena background J. High Energy Phys. JHEP05(2005)069 (arXiv:hep-th/0503302)
[12] Bundzik D and Mansson T 2006 The general Leigh–Strassler deformation and integrability J. High Energy Phys. JHEP01(2006)116 (arXiv:hep-th/0512093)
[13] Mansson T and Zoubos K 2010 Quantum symmetries and marginal deformations J. High Energy Phys. JHEP10(2010)043 (arXiv:0811.3755)
[14] Elmetti F, Mauri A, Penati S and Santambrogio A 2007 Conformal invariance of the planar beta-deformed $N = 4$ sym theory requires beta real J. High Energy Phys. JHEP01(2007)026 (arXiv:hep-th/0606125)
[15] Elmetti F, Mauri A, Penati S and Santambrogio A 2007 The general Leigh–Strassler deformation and integrability J. High Energy Phys. JHEP10(2010)043 (arXiv:0811.3755)
[16] Minahan J A 2005 The SU(2) sector in AdS/CFT Fortschr. Phys. 53 828–38 (arXiv:hep-th/05053143)
[17] Beisert N 2004 The SU(23) dynamic spin chain Nucl. Phys. B 682 487–520 (arXiv:hep-th/0310225)
[18] Minahan J A 2011 Supergraphs and the cubic Leigh–Strassler model J. High Energy Phys. JHEP12(2011)093 (arXiv:1108.1583)
[19] Beisert N, McLoughlin T and Roiban R 2007 The four-loop dressing phase of $N = 4$ sym Phys. Rev. D 76 046002 (arXiv:0705.0321)
[21] Beisert N, Kristjansen C and Staudacher M 2003 The dilatation operator of $\mathcal{N} = 4$ super Yang–Mills theory
Nucl. Phys. B 664 131–84 (arXiv:hep-th/0303060)
[22] Beisert N and Klose T 2006 Long–Range Gl(N) integrable spin chains and plane-wave matrix theory J. Stat. Mech. 0607 P07006 (arXiv:hep-th/0510124)
[23] Siegel W 1979 Supersymmetric dimensional regularization via dimensional reduction Phys. Lett. B 84 193
[24] Sieg C 2012 Review of AdS/CFT integrability, chapter I.2: the spectrum from perturbative gauge theory Lett. Math. Phys. 99 59–84 (arXiv:1012.3984)
[25] Sieg C 2011 Superspace computation of the three-loop dilatation operator of $\mathcal{N} = 4$ sym theory Phys. Rev. D 84 045014 (arXiv:1008.3351)
[26] Fiamberti F, Santambrogio A, Sieg C and Zanon D 2008 Wrapping at four loops in $\mathcal{N} = 4$ sym Phys. Lett. B 666 100–5 (arXiv:0712.3522)
[27] Santambrogio A and Zanon D 2002 Exact anomalous dimensions of $\mathcal{N} = 4$ Yang–Mills operators with large R charge Phys. Lett. B 545 231–66 (arXiv:0806.2095)
[28] Bork L V, Kazakov D I, Vartanov G S and Zhidovodov A V 2008 Conformal invariance in the Leigh–Strassler deformed $\mathcal{N} = 4$ sym theory J. High Energy Phys. JHEP04(2008)003 (arXiv:0712.4132)
[29] Kazakov D I and Bork L V 2007 Conformal invariance = finiteness and beta deformed $\mathcal{N} = 4$ sym theory J. High Energy Phys. JHEP08(2007)071 (arXiv:0706.4245)
[30] Beisert N and Staudacher M 2005 Long-range $\text{PSU}(2, 2|4)$ Bethe ansaetze for Gauge theory and strings Nucl. Phys. B 727 1–62 (arXiv:hep-th/0504190)
[31] Santambrogio A and Zanon D 2002 Exact anomalous dimensions of $\mathcal{N} = 4$ Yang–Mills operators with large R charge Phys. Lett. B 545 231–66 (arXiv:hep-th/0206079)
[32] Beisert N, Dippel V and Staudacher M 2004 A novel long range spin chain and planar $\mathcal{N} = 4$ super Yang–Mills J. High Energy Phys. JHEP07(2004)075 (arXiv:hep-th/0405001)
[33] Beisert N 2008 The $SU(2|2)$ dynamic S–matrix Adv. Theor. Math. Phys. 12 945 (arXiv:hep-th/0511082)
[34] Pomoni E and Sieg C 2011 From $\mathcal{N} = 4$ gauge theory to $\mathcal{N} = 2$ conformal QCD: three-loop mixing of scalar composite operators arXiv:1105.3487
[35] Gadde A, Pomoni E and Rastelli L 2012 Spin chains in $\mathcal{N} = 2$ superconformal theories: from the Z_2 quiver to superconformal QCD J. High Energy Phys. JHEP06(2012)107 (arXiv:1006.0015)
[36] Gadde A, Pomoni E and Rastelli L 2009 The Veneziano limit of $\mathcal{N} = 2$ superconformal QCD: towards the string dual of $\mathcal{N} = 2 SU(N_c)$ sym with $N_F = 2N_c$ arXiv:0912.4918
[37] Beisert N, Eden B and Staudacher M 2007 Transcendality and crossing J. Stat. Mech. 0701 P01021 (arXiv:hep-th/0610251)
[38] Sieg C and Torrielli A 2005 Wrapping interactions and the genus expansion of the 2-point function of composite operators Nucl. Phys. B 723 3–32 (arXiv:hep-th/0505071)
[39] Fiamberti F, Santambrogio A, Sieg C and Zanon D 2008 Finite–size effects in the superconformal beta-deformed $\mathcal{N} = 4$ sym J. High Energy Phys. JHEP08(2008)057 (arXiv:0806.2103)
[40] Fiamberti F, Santambrogio A, Sieg C and Zanon D 2009 Single impurity operators at critical wrapping order in the beta-deformed $\mathcal{N} = 4$ sym J. High Energy Phys. JHEP09(2009)034 (arXiv:0811.4594)