COMPACT SYMPLECTIC MANIFOLDS OF LOW COHOMOGENEITY (CORRECTED VERSION)

HỒNG VÂN LỆ *

Abstract. This is a corrected version of my paper published in Journal of Geometry and Physics 25(1998), 205-226. I added missing cases to the classification theorem 1.1, namely the $SO(n+1)$-manifold $SO(n+2)/(SO(n) \times SO(2))$, the $SO(3)$-manifold CP^2 and the $SU(3)$-manifold $CP^1 \times CP^1$.

Preface Christopher T. Woodward, in his review MR1619843 in MathSciNet, pointed out a gap in the classification of compact symplectic manifolds of cohomogeneity one in my paper [Le1998]. “Unfortunately, there is a mistake in (2.4). The author assumes that the map $\mu : M \to \triangle$, where \triangle is the moment polytope, is smooth. This is not the case, for example, for M the product of two projective lines, and $G=SU(2)$ acting diagonally. Therefore, his conclusions are only valid under this assumption.” The aim of this version is to correct that mistake and to find the missing cases in the previous classification. I also slightly improved the exposition of the previous version by adding three footnotes, inserting few explanations, four new references (including the previous version of this paper), deleting some unimportant and imprecise remarks in the previous version and polishing few sentences. The main correction concerns the classification theorem 1.1. I have added Corollary 1, Lemma 2, Proposition 4, Lemma 5 and relations (E1), (E2), (E3), (E4), (E5), (E6) in the new version and modified the previous Proposition 2.3. In the revised version the previous formula (2.4) and Proposition 2.3 (now is Lemma 3) are applied only to special cases.

1. Introduction

An action of a Lie group G on a manifold M is called of cohomogeneity k if the regular (principal) G-orbits have codimension k in M. In other words the orbit space M/G has dimension k. It is well-known (see e.g. [Kir]) that homogeneous symplectic manifolds are locally symplectomorphic to coadjoint orbits of Lie groups whose symplectic geometry can be investigated in many aspects [Gr, HV, GK]. Our motivation is to find a wider class of symplectic manifolds via group approach, so that they could serve as test examples for many questions in symplectic geometry (and symplectic topology). In this note we describe all compact symplectic manifolds admitting a Hamiltonian action with cohomogeneity 1

partially supported by RVO: 67985840.
of a compact Lie group. We always assume that the action is effective. We also remark that 4-manifolds admitting symplectic group actions (of cohomogeneity 1 or of S^1-action) have been studied intensively by many authors, see [Au] for references. In particular the classification of compact symplectic 4-manifolds admitting $SO(3)$-action of cohomogeneity 1 was done by Iglesias [I].

Let us recall that if an action of a Lie group G on (M, ω) preserves the symplectic form ω then there is a Lie algebra homomorphism

$$g = \text{Lie} G \xrightarrow{\mathcal{F}} \text{Vect}_\omega(M),$$

(1.1)

where $\text{Vect}_\omega(M)$ denotes the Lie algebra of symplectic vector fields. The action of G is said to be almost Hamiltonian if the image of \mathcal{F}_* lies in the subalgebra $\text{Vect}_{\text{Ham}}(M)$ of Hamiltonian vector fields. Finally, if the map \mathcal{F}_* can be lifted to a homomorphism $g \xrightarrow{\mathcal{F}} C^\infty(M, \mathbb{R})$ (i.e. $\mathcal{F}_* v = \text{sgrad} \mathcal{F}_v$) then the action of G is called Hamiltonian. In this note we shall prove the following theorem.

Theorem 1.1. (Corrected) Suppose that a compact symplectic manifold (M, ω) is provided with a Hamiltonian action of a compact Lie group G such that $\dim M/G = 1$. Let μ denote the moment map of the G-action.

1) If $\dim \mu^{-1}(m) \leq 1$ for all $m \in M$ then M is G-diffeomorphic either to a G-invariant bundle over a coadjoint orbit of G whose fiber is a complex projective manifold, or to a symplectic blow-down of such a bundle along two singular G-orbits.

2) If there is a point m such that $\dim \mu^{-1}(m) \geq 2$, then M is a direct product of a coadjoint orbit of G with one of the following symplectic G-manifolds of cohomogeneity 1: the Grassmannian $SO(n+2)/(SO(n) \times SO(2))$ with the canonical Hamiltonian $SO(n+1)$-action, the $SO(3)$-manifold $\mathbb{C}P^2$ with the Hamiltonian action of $SO(3)$ via the embedding $SO(3) \to SU(3)$, or the product $\mathbb{C}P^1 \times \mathbb{C}P^1$ with the diagonal Hamiltonian action of $SU(3)$.

The main ingredients of the proof of Theorem 1.1 are the existence of the moment map, the classification of coadjoint orbits of compact Lie group (Table A.3 in Appendix A), the classification of Riemannian manifolds of cohomogeneity 1 due to Alekseevskii-Alekseevskii [AA1993], Duistermaat’s-Heckman’s theorem [DII], the convexity theorem of Kirwan [Kiw]. For certain G-diffeomorphism types of these spaces we shall give a complete classification up to equivariant symplectomorphism (see Section 2).

In section 3 we give a computation of the (small) quantum cohomology ring of some spaces admitting a Hamiltonian U_n-action with cohomogeneity 1 and discuss its corollaries.

We also consider the case of a symplectic action of cohomogeneity 2. In particular we get:

\footnote{The original classification [Le1998, Theorem 1.1] corresponds to the case (i) in Theorem 1.}
Theorem 1.2. Suppose that a compact symplectic manifold M is provided with a Hamiltonian action of a compact Lie group G such that $\dim M/G = 2$. Then all the principal orbits of G must be either (simultaneously) coisotropic or (simultaneously) symplectic. Thus a principal orbit of G is either diffeomorphic to a T^2-bundle over a coadjoint orbit of G (in the first case) or diffeomorphic to a coadjoint orbit of G (in the second case).

At the end of our note we collect in Appendix A some useful facts of the symplectic structures on the coadjoint orbits of compact Lie groups.

2. Classification of compact symplectic manifolds admitting a Hamiltonian action with cohomogeneity 1 of a compact Lie group.

It is known [Br] that if an action of a compact Lie group G on a compact oriented manifold M has cohomogeneity 1 (i.e. $\dim M/G = 2$) then the topological space $Q = M/G = \pi(M)$ must be either diffeomorphic to the interval $[0,1]$ or a circle S^1. The slice theorem gives us immediately that $G(m)$ is a principal orbit if and only if the image $\pi(G(m))$ in Q is a interior point. In what follows we assume that (M, ω) is symplectic and the action of G on M is Hamiltonian. Under this assumption the quotient Q is $[0,1]$ (Proposition 2.2).

To study G-action on (M, ω) it is useful to fix a G-invariant compatible metric on M, whose existence is well-known, see e.g. [McDS, Proposition 2.50].

Proposition 2.1. Let $G(m)$ be a principal orbit of a Hamiltonian G-action on (M^{2n}, ω). Then $G(m)$ is a S^1-bundle over a coadjoint orbit of G.

Proof. Let us consider the moment map

$$M^{2n} \xrightarrow{\mu} g^* : \langle \mu(m), w \rangle = \mathcal{F}_w(m). \quad (2.1)$$

For a vector $V \in T_xG(m)$ there is a vector $v \in g$ such that $V = \frac{d}{dt}_{t=0}(\exp tv) = sgrad \mathcal{F}_v$. Hence we get

$$\langle \mu_*(V), w \rangle = d\mathcal{F}_w(V) = \{\mathcal{F}_w, \mathcal{F}_v\}(m) = \langle [w, v], \mu(m) \rangle \quad (2.2)$$

which implies that μ is an equivariant map. Therefore the image $\mu(G(m))$ of any orbit $G(m)$ on M is a coadjoint orbit $G(\mu(m)) \subset g^*$.

To complete the proof of Proposition 2.1 we look at the preimage $\mu^{-1}\{\mu(m)\}$.

Lemma 2.2. Let $G(m)$ be a principal orbit. Then the preimage $\mu^{-1}\{\mu(m)\}$ is a (connected) orbit of a connected subgroup $S^1_m \subset G$.

Proof. Clearly the preimage is a closed subset. Let V be a non-zero tangent vector to the preimage $\mu^{-1}\{\mu(m)\}$ at x. Then $\mu_*(V) = 0$. Using the formula

$$\langle \mu_*(V), w \rangle = d\mathcal{F}_w(V) = \omega(sgrad \mathcal{F}_w, V) \quad (2.3)$$
for all \(w \in g \) we conclude that \(V \) is also a tangent vector to \(G(m) \) and moreover \(V \) annihilates the space span \(\{ dF_a | a \in g \} \) which has codimension 1 in \(T^*M \). In particular there is an element \(\bar{v} \in g \) such that \(V = sgrad F_\bar{v} \). Our claim on the manifold structure now follows from the fact that \(exp(t \bar{v}) \subset \mu^{-1}\{(\mu(m))\} \). Finally, the preimage is connected because the quotient \(\mu(G(m)) = G(m)/(\mu^{-1}(\mu(m))) \) is simply-connected (see Appendix A) and \(G(m) \) is connected.

Clearly Lemma 2.2 yields Proposition 2.1.

We obtain immediately from Proposition 2 the following.

Corollary 1. For any \(m \in M \) in a principal \(G \)-orbit there exists a \(G \)-invariant symplectic 2-form \(\bar{\omega} \) on the coadjoint orbit \(G(\mu(m)) \) such that \(\omega|_{G(m)} = \mu^*(\bar{\omega}) \).

Proposition 2.3. The quotient space \(M/G \) is \([0, 1]\).

Proof. Assume the opposite, i.e. \(M/G = S^1 \). In this case it is well-known that the projection \(M \to M/G \) is a fibration whose fiber is a principal orbit \(G(m) = G/G_m \) and whose structure group is \(N_{G}(G_{m}) \) [Br] Theorem 5.8. Here we denote by \(G_m \) the stabilizer of \(m \in M \) and by \(N_{G}(G_{m}) \) the normaliser of \(G_{m} \) in \(G \). Hence, given a point \(m_0 \in M \), we have the following \(G \)-equivariant identification [AA] [Br]

\[
M = \mathbb{R} \times_h G_{m_0},
\]

where \((t, gG_{m_0}) \) is identified with \((t+1, ghG_{m_0}) \) for some element \(h \in N_{G}(G_{m_0}) \).

Denote by \(J \) the \(G \)-invariant almost complex structure that is associated with the given \(G \)-invariant compatible metric on \(M \). For each \(m \in M \) denote by \(V_m \) the unit vector that tangent to \(\mu^{-1}(\mu(m)) \) at \(m \). Since \(\omega(V_m, T_m G(m)) = 0 \), it follows that \(\langle JV_m, T_m G(m) \rangle = 0 \). Now we choose the orientation of \(V_m \) such that \(\pi_s(JV_m) = \partial t \). Corollary 1 implies that the symplectic form \(\omega \) on \(M = \mathbb{R} \times_h G(m_0) \) has the following form

\[
\omega(t, y) = \mu^*(\bar{\omega}(t, y)) + g(t) dt \wedge \alpha
\]

(E1),

where \(\bar{\omega}(t, y) \) is a \(G \)-invariant symplectic form on \(\mu(G(m_0)) \), \(\alpha \) is the \(G \)-invariant connection 1-form on \(G(m_0) \) associated with the principal \(S^1 \)-bundle \(G(m_0) \to \mu(G(m_0)) \) and \(g(t) \neq 0 \), where the \(S^1 \) action at \(m \) is generated by \(\exp V_m \).

The closedness of \(\omega \) implies that

\[
\partial_t \bar{\omega}(t, y) = g(t) \cdot d\alpha.
\]

(E2)

Since the cohomology class \([d\alpha]\) is the Chern class of the \(S^1 \)-bundle \(G(m_0) \to \mu(G(m_0)) \), which does not depend on \(t \), the equality (E2) holds only if \([d\alpha] = 0 \), i.e. the \(U(1) \)-bundle \(G(m_0) \to \mu(G(m_0)) \) is the trivial bundle. Hence, denoting \(v = \mu(m_0) \), we have

\[
M = T^2 \times G/Z(v),
\]

(E3)

where \(Z(v) \) is the stabilizer of \(v \). The closedness of \(\omega \) implies \(\partial_t \bar{\omega}(t, y) = 0 \). Hence we obtain the following.
Lemma 2. (M, ω) is G-symplectomorphic to $(G/Z(v) \times T^2, \tilde{\omega} + dt \wedge \alpha)$ where $\tilde{\omega}$ is a G-invariant symplectic form and α is the canonical 1-form on the second factor S^1 of T^2.

Let $R : C^\infty(M) \to C^\infty(T^2)$ be defined as follows

$$R(h)(t_1, t_2) := h(m_0, t_1, t_2).$$

By Lemma 2, it is not hard to see that the composition $R \circ F : g \to C^\infty(T^2)$ defines a Hamiltonian action of G on T^2, which is of cohomogeneity 1. It is well-known that there is no such an Hamiltonian action on torus T^2, see e.g. [Au]. Hence follows Proposition 2.3. □

Remark 2.5. Let m belong to a principal orbit and G_m its stabilizer. Then the stabilizer $Z(v)$ of the coadjoint orbit $\mu(G(m))$ at $v = \mu(m)$ is the product $G_m \cdot S^1_m$, where G_m is the stabilizer of the orbit S^1_m is a subgroup in G, generating the flows $\mu^{-1}\{\mu(m)\}$ (Lemma 2.2). More precisely, since $Z(v)$ is connected and $\dim S^1_m = 1$, $Z(v)$ is the “almost” direct product of the connected component G_0^m of G_m with S^1_m. Here “almost” means that on the level of Lie algebras the product is direct, and hence G_0^m intersects with S^1_m at a finite group Z_p^0.

By Proposition 2.3 there are two singular orbits G/G_{min} and G/G_{max} in M. Fix a geodesic segment δ on M (we refer the reader to [AA] and [AA1993] for discussion of the notion of geodesic segment). Denote by

- $Z(v)$ the stabilizer of $\mu(G(m))$, $m \in \delta \cap (M \setminus (G/G_{\text{min}} \cup G/G_{\text{max}}))$,
- Z_{min} the stabilizer of $\mu(G(m'))$, $m' \in \delta \cap G/G_{\text{min}}$,
- Z_{max} the stabilizer of $\mu(G(m''))$, $m'' \in \delta \cap G/G_{\text{max}}$.

The following Lemma is straightforward.

Lemma 2.6. There are only four possible cases:

I) $Z(v) \cong Z_{\text{min}} \cong Z_{\text{max}}$

II) $Z(v) \cong Z_{\text{min}} \subset Z_{\text{max}}$

III) $Z(v) \cong Z_{\text{max}} \subset Z_{\text{min}}$

IV) $Z_{\text{max}} \supset Z(v) \subset Z_{\text{min}}$

Now we shall describe M according to four cases in Lemma 2.6.

Case (I): all symplectic quotients $G(m)/S^1$ are G-diffeomorphic. In this case by dimension reason and the fact that $G/Z(v)$ is simply-connected, we see immediately that a singular orbit $G(m')$ is G-diffeomorphic to its image $\mu(G(m')) = G/Z(v)$.

In this case Proposition 2.3 in the previous version of this paper holds. Namely we have
Lemma 3. ([Le1998] Proposition 2.3) There is a Hamiltonian S^1-action on M such that $G(\mu(m))$ is a symplectic quotient of M under this S^1-action.

Proof. (see also Lemma 2.4 in [Le1998]) Let H_G be a (unique up to constant) G-invariant function on M which satisfies the following condition

$$2\pi ||\text{grad } H_G|| = L(\mu^{-1}\{\mu(m)\}),$$

(2.4)

where $(,)$ denotes the length of the G-invariant metric. It is easy to verify that H_G generates the required Hamiltonian action. \qed

To specify the G-diffeomorphism type of M it is useful to use the notion of segment [AA]. In our case we just consider the gradient flow of the function H_G on M. After a completion and a reparametrization we get a geodesic segment $[s(t)], t \in [0, 1]$, in M such that the stabilizer of all the interior point $s(t), t \in (0, 1)$, coincide with, say, G_m. (We observe that both $[s(t)]$ and the geodesic through m with the initial vector $\text{grad } H_G(m)$ are characterized by the condition that every point in them is a fixed point of G_m). Denote by G_0 and G_1 the stabilizers at singular points $s(0)$ and $s(1)$. Looking at the image of the gradient flow of $\text{grad } H_G$ under the moment map μ we conclude that $G_0 = G_1$.

Proposition 2.7. In the case (I) M is G-diffeomorphic to $G \times G_0 S^2$, where $G_0 = (G_0^0 \times S^1_m)/\mathbb{Z}^0_p$ is the almost direct product of G^0_m and S^1_m, and the left action of G_0 on S^2 is obtained via the composition of the projections $G_0 \rightarrow S^1_m/\mathbb{Z}^0_p$ with a Hamiltonian action of S^1_m/\mathbb{Z}^0_p on S^2.

Proof. First we identify the singular orbits in M and in $G \times G_0 S^2$. The segment $[s(t)]$ extends this diffeomorphism to a diffeomorphism between M and $G \times G_0 S^2$. Since H_G is G-invariant it follows that this diffeomorphism is G-diffeomorphism. \qed

Now let us compute the cohomology ring $H^*(M, \mathbb{R})$ (for M in the case I). Once we fix a Weyl chamber we get a canonical G-invariant projection Π_μ: $\mu(M) \rightarrow \mu(G(m_0))$, where $G(m_0) = G/G_0$ is a singular orbit in M. Let $j := \Pi_\mu \circ \mu$ denote the projection $M \rightarrow B := \mu(G(m_0)) = G/\mathbb{Z}(v) \cong G(m_0)$. Geometrically $j(x) = j(\mu^{-1}(\mu(x)))$ is the limit of the flow generated by $\text{grad } H_G$ passing through x. Note that $G(m_0)$ is the image of a section $s: B \rightarrow M$ of our S^2-bundle, and in what follows we shall identify the base B with ist section $G(m_0)$. Let f denote the Poincare dual to the homology class $[G(m_0)] \in H_*(M, \mathbb{R})$.

Let $x_0 \in H^2(\mu(G(m_0)), \mathbb{R})$ be the image of the Chern class of the S^1-bundle $G(m) \rightarrow G(m_0)$, where $G(m)$ is a regular orbit G/G_m (or in other words, x_0 is the Chern class of the normal bundle over $G(m_0)$ with the induced (almost) complex structure).

\^2In the case $\dim \mu^{-1}(m) \leq 1$ for all $m \in M$ we prove that $\pi_1(M) = 0$, using (E1). Hence the symplectic vector field generating the S^1-action on $\mu^{-1}(m)$ is a Hamiltonian vector field.
Let \(\{x_i, R_i\} \) denote the set of generators and their relations in cohomology ring \(H^*(\mu(G(m)), \mathbb{R}) \) (see [Bo], correspondingly Proposition A.4 in Appendix A).

Proposition 2.8. We have the following isomorphism of additive groups

\[
H^*(G \times G_0 S^2, \mathbb{R}) = H^*(G/G_0, \mathbb{R}) \otimes H^*(S^2, \mathbb{R}).
\]
(2.5)

The only non-trivial relation in the algebra \(H^*(M, \mathbb{R}) \) are \(R_1, R_2 \), with

\[
f(f - j^*(x_0)) = 0.
\]
(R2)

Proof. The statement (2.5) on the additive structure of \(H^*(M, \mathbb{R}) \) follows from the triviality of the cohomology spectral sequence of our \(S^2 \)-bundle. Clearly \(R_1 \) remains the relation between the generators \(\{j^*(x_i)\} \) in \(H^*(M, \mathbb{R}) \). To show that the relation (R2) holds we have two arguments. One is in the proof of Lemma 2.12 and the other is here. Using the intersection formula for \(x_0 \) we notice that the restriction of \(f - j^*(x_0) \) to \(G(m_0) \) is trivial. Thus to get the relation (R2) it is enough to verify that the value of the LHS of (R2) on the cycles in \(M \) of the forms \(j^{-1}([C]) \) is always zero, where \([C] \in H_2(B, \mathbb{Z}) \). Denote by \(PD_M(.) \) the Poincare dual in \(M \). From the identity

\[
(PD_M([G(m_0)]))^2 = PD_M([G(m_0) \cap G(m_0)]) = PD_M[PD_B(x_0)]
\]

we get \(f^2 = PD_M[PD_B(x_0)] \). Now it follows that

\[
f^2(j^{-1}([C])) = f([C]).
\]
(R2.a)

On the other hand, since the restriction of the 2-form representing \(j^*(x_0) \) to the fiber \(S^2 \) is vanished, we can apply the Fubini formula to the integration of a differential form representing the class \(f \cdot j^*(x_0) \), (we can assume that \([C] \) is represented by a pseudo manifold). In the result we get that

\[
f \cdot j^*(x_0)(j^{-1}([C])) = x_0([C]) = f([C]).
\]
(R2.b)

Thus (R2) is a relation in \(H^*(M, \mathbb{R}) \). Finally the statement that (R2) is the only “new” relation in \(H^*(M, \mathbb{R}) \) follows from the triviality of our spectral sequence.

Remark 2.9. If we take the other singular orbit \(G(m_1) = G/G_1 \) then the Chern class of the \(S^1 \)-bundle : \(G(m) \rightarrow G(m_1) \) is \(-x_0 \) (after an obvious identification \(G(m_0) \) with \(G(m_1) \) since \(G(m_1) \) can be considered as another section (at infinity) of our \(S^2 \)-bundle). It is also easy to see that the restriction of \(f \) on \(G(m_1) \) is zero since \(G(m_0) \) has no common point with \(G(m_1) \).

Proposition 2.10. Let \(M^{2n} \) be in the case I of Lemma 2.6 and let us keep the notation in Proposition 2.8 for \(M \). Then \(M^{2n} \) admits a \(G \)-invariant symplectic form \(\omega \) in a class \([\omega] \in H^2(M^{2n}, \mathbb{R}) \) if and only if \([\omega] = j^*(x) + \alpha \cdot f \) with \(\alpha > 0 \), and \((x + t \cdot \alpha \cdot x_0)^{n-1} > 0 \) for all \(t \in [0, 1] \). In particular \(M^{2n} \) always admits a \(G \)-invariant symplectic structure such that the action of \(G \) on \(M \) is Hamiltonian.
Applying (2.11) to (2.10) we also get that
\[\text{To compute (2.7) we assume that } 0 + 0 = 0. \]

The RHS of (2.12) is zero since \(\alpha \hat{f}_G \) is \(G \)-invariant. Hence (2.7) is zero.
To compute (2.9) we also assume that V_i is generated by the action of a 1-parameter subgroup of G. Since H_G is G-invariant we get $[V_i, grad H_G] = [V_i, grad H_0]$. Applying (2.11) to the LHS of (2.9) we get

$$3d\omega(\text{grad} H_0, V_1, V_2) = \text{grad} H_0(\tilde{\omega}(V_1, V_2)) - \alpha f_G([V_1, V_2], \text{grad} H_0).$$

(2.13)

By the choice of αf_G the second term in the RHS of (2.13) equals

$$-\langle s\text{grad} H_0, [V_1, V_2]\rangle.$$

Let us denote by M^{reg} the set of regular points of the G-action on M. By the choice of V_i and $\tilde{\omega}$ (see (2.6)) the first term in the LHS of (2.13) equals $\frac{1}{2\pi}d\theta(V_1, V_2) \cdot L(\mu^{-1}(\mu(m))) = -\frac{1}{2\pi}\theta([V_1, V_2]) \cdot L(\mu^{-1}(\mu(m)))$, where θ is the connection form on the S^1-fibration M^{reg}. In the presence of the (lifted) S^1-invariant metric on M^{reg} we can take $\theta([V_1, V_2])$ as $4\pi\langle s\text{grad} H_0, [V_1, V_2]\rangle / L(\mu^{-1}(\mu(m)))$.

It follows that the LHS of (2.13) equals zero. This completes the proof of the closedness of ω. Looking at the restriction of ω to $G(m_1)$ and $G(m_0)$ we conclude that ω represents the class $[j^*(x) + \alpha \cdot f]$.

The statement on the existence of a G-invariant symplectic structure follows from the fact that G/G_0 always admits a class x such that $x^n > 0$. Since we can multiply x with a big positive constant λ, the class $(x + tx_0)^{n-1}$ is also positive for all $t \in [0, 1]$ and we can apply the first statement here.

The vanishing of the first Betti-number of M implies that the action of G is almost Hamiltonian and hence Hamiltonian because G is compact. \square

Cases (II) and (III) (in Lemma 2.6). If we are interested in the G-diffeomorphism type then these cases are equivalent.

Subcase (a): $\dim \mu^{-1}(m) = 0$, if $m \in G/G_{\max} \cup G/G_{\min}$. In this subcase the argument in [Le1998], cases (II), (III) is still valid. W.l.o.g. it suffices to consider the case (II): $Z(v) = Z_{\min}$. Clearly $G_{\max} = Z_{\max}$ and $G_{\min} = Z_{\min}$. Note that $G_{\max}/G_{\reg} = S^k$ by the slice theorem. On the other hand we have $Z(v) = G_{\reg} \times S^1$. Because $Z_{\max}/Z(v)$ is always of even dimension we have $Z_{\max}/Z(v) = \mathbb{CP}^{k-1} = \mathbb{CP}^l$.

Lemma 2.11. In the case II, Subcase a, we have the following decompositions: $G_{\max} = SU_{l+1} \times G_0$, $G_{\reg} = SU_1 \times G_0$ and $Z_v = S(U_1 \times U_1) \times G_0$, where the inclusion $SU_1 \rightarrow S(U_1 \times U_1) \rightarrow SU_{l+1}$ is standard.

Proof. By checking the table A.3 (in the Appendix) of possible coadjoint orbit types we see that the pair $(Z(v), Z_{\max} \cong G_{\max})$ in case (II a) can be only:

Serie A. $Z_{\max} = S(U_{l+1} \times \cdots \times U_{n_k})$. Then $Z(v) = S(U_1 \times S^1 \times \cdots \times U_{n_k})$ and $G_{\reg} = S(U_1 \times \cdots \times U_{n_k})$.
Lemma 2.13

Proposition 2.10. Here the main observation is the following. Let G/G be the construction of a family of invariant symplectic structures on M. To show the existence of a \mathbb{G}_μ we observe that $P(R_1)$ and (R_2) are the only relation in H. Two singular orbits have no common points and the associativity of the cap action) that G/G singular orbit

Proof. To prove the first statement we consider the projection $M \rightarrow G/G_{\max} : x \mapsto \mu(x) \mapsto \Pi(\mu(x))$, where Π is a canonical projection from $\mu(M)$ to the singular coadjoint orbit G/G_{\max}. We recall that this canonical projection can be chosen by using the intersection of $\mu(M)$ with a Weyl chamber (see [Kir]). By Lemma 2.11 the fiber of this projection is the sum $D^{2l+1} \cup S^{2l+1} \times I \cup \mathbb{C}P^d$ and isomorphic to $\mathbb{C}P^{d+1}$. Clearly this fiber consists of all trajectories of the flows $\text{grad} H_G$ which end up at a point in the singular orbit G/G_{\max}. Hence the action of G sends a fiber to a fiber.

It is also easy to describe the cohomology algebra of M by the method in Proposition 2.8. Namely we denote by f the Poincare dual to the singular orbit G/G_{\min} of codimension 2 in M. Since the singular orbit G/G_{\min} intersects the fiber $\mathbb{C}P^{l+1}$ at a hyperplane $\mathbb{C}P^d$, the restriction of f on the fiber $\mathbb{C}P^{l+1}$ is the generator of the cohomology group $H^2(\mathbb{C}P^d, \mathbb{R})$. Henceforth the ring $H^*(M, \mathbb{R})$ is generated by $\{f, x_i\}$, where x_i are the pull-back of the generators of the ring $H^*(G/G_{\max}, \mathbb{R})$ (compare (2.5)). Let (R1) denote the relation between x_i in $H^*(G/G_{\max}, \mathbb{R})$, and let P_{\min} denote the Poincare dual to the singular orbit $G/G_{\min} \subset M$. Put (R2) $= f \cdot P_{\min}$. It is easy to see (using the fact that two singular orbits have no common points and the associativity of the cap action) that (R1) and (R2) are the only relation in $H^*(M, \mathbb{R})$. (Now apply to the case in Proposition 2.8 we observe that $P_{\min} = f - x_0$).

To show the existence of a G-invariant symplectic structure on M we use the lifting construction of a family of invariant symplectic structures on G/G_{\max} as in the proof of Proposition 2.10. Here the main observation is the following.

Lemma 2.13. Let $G(m)$ be a principal orbit and p_H denotes the projection from $M \setminus (G/G_{\max}) \rightarrow G/G_{\min}$ which is defined by the gradient of H_G. Then the characteristic leaf $\mu^{-1}\{\mu(m)\}$ coincides with $p_H^{-1}(m) \cap G(m)$.
Proof. The projection of the gradient flow of H_G is also a gradient flow of a G-invariant function H on $\mu(M)$. The slice theorem tells us that along the gradient flow of H all the stabilizer groups coincide. Hence follows statement.

Let $[\omega] = x + \alpha \cdot f$ be an element in $H^2(M, \mathbb{R})$. Clearly a necessary condition for the existence of a symplectic form ω in the class $[\omega]$ is that $x' > 0$, $\alpha > 0$ and for all $t \in [0, 1]$ we have that the restriction of the cohomology class $(j^* x + t \cdot \alpha \cdot f)$ to the big orbit G/G_{\min} is also symplectic. (That follows from the Duistermaat-Heckman theorem or Kirwan’s theorem). Here the restriction of f to the big orbit G/G_{\min} is the first Chern class of the S^1-fibration $G(m) \overset{p_H}{\to} G/G_{\min}$. Now let the class $[\omega] \in H^2(M, \mathbb{R})$ satisfy the above condition. Lifting the family of symplectic forms on the quotient $(M \setminus (G/G_{\max}))/S^1$ we get a symplectic form on $M \setminus (G/G_{\max})$ (see the proof of Proposition 2.10). By the construction the lifted form extends continuously and non-degenerately on the whole M such that its restriction to the small orbit equals $j^*(x)$. The closedness is also automatically valid. Considering the restriction of the lifted form to the two singular orbits yields that our form realizes the cohomology class $j^*(x) + \alpha \cdot f$.

To show the existence of a G-invariant symplectic structure on M we use the fact that $G_{\max}/G_{\min} = \mathbb{C}P^l$. Under this condition we can find a G-invariant 2-form \bar{x} in a class $x \in H^2(G/G_{\max}, \mathbb{R})$ such that \bar{x} is a G-invariant symplectic form and $j^*(\bar{x}) + t \cdot f$ is a G-invariant symplectic form realizing the cohomology class $j^*(x) + t \cdot f$ for $t \in (0, 1]$. (Here we construct a G-invariant 2-form on G/G_{\max} by G-invariant extension of a G_{\max}-invariant 2-form $\langle \alpha, [X, Y] \rangle$ in the $T_e(G/G_{\max})$). This completes our consideration of subcase (a) in cases (II) and (III).

Cases (II) and (III), subcase (b): there is $m \in G/G_{\max} \cup G/G_{\min}$ with $\dim \mu^{-1}(m) \geq 1$. W.l.o.g. it suffices to consider case (II). Since $Z_{\min} = Z_v$, using the relations $G_{\min} \subset Z_{\min}$ and $G_{\min}/G_m = S^l$, there are only two possibilities

$$G_{\min} = Z_{\min} = Z_v = G_{\min}/G_m = S^1,$$

(E4)

$$G_{\min}/G_m = \mathbb{Z}_2.$$

(E5)

The possibility (E5) cannot happen, since in this case G_{\min} and G_m are defined uniquely by the $Z_{\min} = Z_v$ and the preimage $\mu^{-1}(x)$, where $x \in G/G_{\min}$ or $x \in G/G_m$ respectively, are connected circles (the proof of Lemma 2.2 is also valid for exceptional orbits). Thus (E4) holds. In this case we have the following diagram of fibrations and inclusions

![Diagram](image-url)
We will call a quintuple \((G, Z_v, Z_{\text{max}}, G_{\text{max}}, G_m)\) admissible, if

- \(G\) is a connected compact group and \(Z_v, Z_{\text{max}}, G_{\text{max}}, G_m\) are its compact subgroups,
- \(Z_{\text{max}} \neq G_{\text{max}}\), and \(Z_v = G_m \cdot S^1\), \(G_{\text{max}} / G_m = S^n\).

An admissible quintuple \((G, Z_v, Z_{\text{max}}, G_{\text{max}}, G_m)\) will be called effective, if there are no normal subgroups \(G_1, G_2\) of \(G\) and a stabilizer \(H_1 \subseteq G_1\) of a coadjoint orbit in \((\text{Lie} G_1)^*\) such that

\[
G = G_1 \cdot G_2, \quad Z_v = H_1 \cdot Z^2_v, \quad Z_{\text{max}} = H_1 \cdot Z^2_{\text{max}}, \quad G_{\text{max}} = H_1 \cdot G^2_{\text{max}}, \quad G_m = H_1 \cdot G^2_m
\]

and \((G_2, Z^2_v, Z^2_{\text{max}}, G^2_{\text{max}}, G_m)\) is an admissible quintuple.

Beginning with the list of all possible stabilizers \(Z_v \subset Z_{\text{max}}\) of the coadjoint orbits of a compact Lie group \(G\) (Table A.3 in Appendix A) we pick up from them all possible triples \((G_m \subset Z_v \subset G)\) and \((G_{\text{max}} \subset Z_{\text{max}} \subset G)\) such that \(G_m \cdot S^1 = Z_v, G_{\text{max}} / G_m = S^n\) and \(G_{\text{max}} \neq Z_{\text{max}}\) with the help of the table of representation of the sphere \(S^n\) as an effective homogeneous space due to Montgomery-Samelson-Borel and compiled by Alekseevsky-Aleksseevsky [AA1993, Table 1], see also [Borel1949]. As a result we compile the following list of all effective admissible quintuples.

1) \((G = SO(2k+1), Z_v = SO(2k-1) \times S^1, Z_{\text{max}} = G = SO(2k+1), G_{\text{max}} = SO(2k), G_m = SO(2k-1)), k \geq 2,
1a) \((G = SO(3), Z_v = S^1, Z_{\text{max}} = SO(3), G_{\text{max}} = SO(2), G_m = Z_p),
2) (G = SO(2k+2), Z_v = SO(2k) \times S^1, Z_{\text{max}} = G = SO(2k+2), G_{\text{max}} = SO(2k+1), G_m = SO(2k), k \geq 1,
3) (G = SU(3), Z_v = U(1), Z_{\text{max}} = G = SU(2), G_{\text{max}} = U(1), G_m = Z_p).

In the cases (1), (2), taking into account the above diagram, we conclude that for each \(n \geq 3\) there is a unique effective admissible quintuple \((G = SO(n+1), Z_v = SO(n-1) \times S^1, Z_{\text{max}} = G = SO(n+1), G_{\text{max}} = SO(n), G_m = SO(n-1))\). It is not hard to see that the corresponding compact symplectic manifold that admits cohomogeneity 1 Hamiltonian \(SO(n+1)\)-action is the Grassmanians of oriented 2-planes \(SO(n+2)/\text{SO}(n) \times \text{SO}(2)\) provided with \(SO(n+1)\)-actions via the standard inclusion \(SO(n+1) \hookrightarrow SO(n+2)\), see e.g. [Audin]. By the Alekseevsky-Aleksseevsky theorem [AA1993, Theorem 7.1] the above manifolds are the only ones (up to \(G\)-diffeomorphism) that admit a \(G\)-action of cohomogeneity 1 whose orbit types are listed above. The cases (1a) and (3) correspond to 4-dimensional symplectic manifolds and they are well understood [Au]. The case (1a) corresponds to the action of \(SO(3)\) on \(\mathbb{C}P^2\) via the embedding \(SO(3) \hookrightarrow SU(3)\). In the case (3) the corresponding manifold is \(\mathbb{C}P^1 \times \mathbb{C}P^1\) with the diagonal action of \(SU(2)\). Hence we obtain the following.

Proposition 4. Let \(M\) be a compact differentiable \(G\)-manifold of cohomogeneity 1 corresponding to one of the cases listed above. Then \(M\) admits a symplectic form which is \(G\)-invariant.

This completes our consideration in cases I, II, III.
Now let us consider case (IV).

Lemma 5. In case (IV) we have $\dim \mu^{-1}(m) \leq 1$ for all $m \in M$.

Proof. Assume the opposite, w.l.o.g. we can assume that $\dim \mu^{-1}(m) \geq 1$, if $m \in G/G_{\max}$. Then the quintuple $(G, Z_v, Z_{\max}, G_{\max}, G_m)$ is admissible. Above, we have classified in Case (II), subcase b, all effective admissible quintuples.

In cases (1), (2), the conditions $G \supset Z_{\min} \neq Z_v$ and $Z_{\min} \supset Z_v$ imply that $Z_{\min} = Z_{\max} = G$. Taking into account $G_{\min}/G_m = S^n$ we conclude that $G_{\min} = G_{\max}$. Since $Z_{\min} = Z_{\max} = G$, the singular orbits are Lagrangian spheres G/G_{\min} and G/G_{\max}. Using (E1), we conclude that there exists a nonzero constant c such that the symplectic form ω on $G(m) \times (0,1) \subset M$ has the following form

$$\omega(t, y) = c \cdot (dt \wedge \alpha + t \alpha)$$

(E6)

where $t \in (0,1)$ and α is the canonical connection 1-form of the S^1-bundle $G(m) \to G(\mu(m))$.

Let m_0 and m_1 be two points on the singular orbits corresponding to G_{\min} and G_{\max}. By Weinstein theorem the neighborhoods $U(G(m_0))$ of $G(m_0)$ and $U(G(m_1))$ of $G(m_1)$ are symplectomorphic. Now (E6) implies that $G(m) \times (0,1)$ cannot glue with both $U(G(m_0))$ and $U(G(m_1))$, preserving the symplectic form ω. (By cohomological consideration this is possible only if $\dim M \leq 4$. This dimension has been considered in [Au].) This completes the proof of Lemma 5. \(\square\)

The same argument as in case (II), subcase (a), \(\square\) shows that $G_{\max} \cong Z_{\max}$, $G_{\min} \cong Z_{\min}$ and $Z_{\max}/Z(v) = \mathbb{C}P^l$, $Z_{\min}/Z(v) = \mathbb{C}P^k$.

Proposition 2.14. Suppose that M is in case IV. Then M is G-diffeomorphic to a G-invariant $\mathbb{C}P^k$-bundle over a coadjoint orbit of G or to the symplectic blow-down of such a G-bundle along the two singular (simplectic) orbits of G.

Proof. We consider 3 possible subcases: (IVa), (IVb), (IVc).

(IVa) If $l + 1 \geq 2$ and $k \geq 2$, then $G_{\max} = S(U_{l+1} \times U_k \times U_1) \times G_0$, $G_{\min} = S(U_l \times U_1 \times U_{k+1}) \times G_0$, $G_{reg} = S(U_l \times U_k \times S^1) \times G_0$, and $Z(v) = S(U_l \times U_1 \times U_k \times U_1) \times G_0$. Here the inclusion $U_l \to U_{l+1}$ and $U_k \to U_{k+1}$ is canonical. Let $\mathcal{O} := G/(S(U_{l+1} \times U_{k+1}) \times G_0)$ be a coadjoint orbit of G. Let Π_{\min} denote the natural G-equivariant projection from $G/G_{\min} \to \mathcal{O}$. In the same way we define the projection Π_{\max}. We observe that if the two points $m_{\max} \in G/G_{\max}$ and $m_{\min} \in G/G_{\min}$ are in the same gradient flow of the G-invariant function H_G then their image under Π_{\max} and Π_{\min} coincide. Hence the projection Π_{\min} and Π_{\max} can be extended to a projection $\Pi : M \to \mathcal{O}$. Clearly the fiber is invariant under the G-action. The group $S(U_{l+1} \times U_{k+1})$ acts on the fiber of projection

\(\square\)

since Lemma 5 holds, the argument in the original version of this paper is valid.
II from M to O with three orbit types: the singular ones are $\mathbb{C}P^l$ and $\mathbb{C}P^k$ and the regular orbit is $S(U_{l+1} \times U_{k+1})/S(U_l \times U_k \times S^1)$. Thus the fiber is diffeomorphic to $\mathbb{C}P^{l+k+1}$.

The simplest example of this case is $\mathbb{C}P^{l+k+1}$ with the standard action by $S(U_{l+1} \times U_{k+1}) \subset SU_{k+1+2}$.

\[(IVb) \] If $k = 1$, $l \geq 2$, then except the above decomposition for $G_{\text{max}}, G_{\text{min}}, G_{\text{reg}}$ and $Z(v)$ there is only the following possible subcase: $Z(v) = S(U_1 \times U_1 \times U_1) \times G_0$, $G_{\text{max}} = S(U_2 \times U_1) \times G_0$, $G_{\text{min}} = S(U_1 \times U_{l+1}) \times G_0$, and $G_{\text{reg}} = SU_1 \times S^1 \times G_0$. Let S^1_m be the subgroup of $Z(v)$ generated by the vector orthogonal to $\text{Lie } G_{\text{reg}}$ in $\text{Lie } Z(v)$. Denote by \tilde{M} the suspension of G/G_{reg}. Clearly \tilde{M} is diffeomorphic to $G \times Z(v) S^2$, where $Z(v)$ acts on S^2 via the projection to S^1_m. According to Proposition 2.10 \tilde{M} can be provided with a G-invariant symplectic form such that the reduced symplectic form at $G/Z(v)$ (considered at the “mean point” in \tilde{M}) is the same as that reduced from M. We claim that M is a symplectic blow down of \tilde{M} along the two singular orbits $G/Z(v)_{\text{max}}$ and $G/Z(v)_{\text{min}}$. To see this we cut a G-invariant neighborhood of two G-singular orbits in M (resp. \tilde{M}). By the very construction of \tilde{M} these new symplectic manifolds are symplectomorphic. Hence follows the statement.

Now we shall show the existence of such a G-symplectic manifold. Denote by k the Cartan subalgebra of g. By Kirwan’s convexity theorem there are elements $v, \alpha \in k$ such that $Z(v) = S(U_1 \times U_1 \times U_1) \times G_0$, $Z(v + \alpha) = G_{\text{max}}$, $Z(v - \alpha) = G_{\text{min}}$. Duistermaat-Heckman tells us that the Chern class of the S^1_m-bundle $G/G_{\text{reg}} \to G/Z(v)$ is proportional to α. Hence the Lie subalgebra $\text{Lie } G_{\text{reg}}$ is orthogonal to α in $\text{Lie } Z(v)$. We shall show that there are such elements α and v satisfying the above condition.

Without lost of generality we assume that $G_0 = 1$. Thus $G = SU_{l+2}$. Write $v = (x_1, x_2, x_3, \ldots, x_3)$ with $\sum x_i = 0$ and $x_1 \neq x_2$. Thus the equation for $\alpha = (\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_3)$ is $\alpha_1 + \alpha_2 + l\alpha_3 = 0$, $x_2 + \alpha_2 = x_3 + \alpha_3$ (and is not zero), $x_1 - \alpha_1 = x_2 - \alpha_2$ (and is not zero). The solution to these equations is $(l + 2)\alpha_1 = l(x_1 - x_2)$, $\alpha_2 = \alpha_1 - x_1 + x_2 = (l - 1)x_1 - (2l - 1)x_2$, $\alpha_3 = \alpha_2 + x_2 - x_3 = (l - 1)(x_1 - 2x_2) - x_3$. The only thing need to check is the fact that $Z_{\text{max}}/G_{\text{reg}} = S^{2l-1}$, $Z_{\text{min}}/G_{\text{reg}} = S^{2k-1}$, where G_{reg} is the subgroup generated by the subalgebra orthogonal to the vector α. We can do it by finding an orthogonal representation of G_{min} (resp. G_{max}) on \mathbb{C}^2 (resp. \mathbb{C}^l) such that it acts on S^3 (resp. S^{2l-1}) transitively with G_{reg} as an isotropy group (see also [AA] which includes a corresponding Borel’s table of the groups transitively acting on spheres).

With these data at hand it is easy to construct a G invariant symplectic structure on the G-manifold $(G_{\text{min}}, G_{\text{reg}}, G_{\text{max}})$ by the same lifting construction as in the proof of Proposition 2.10. Namely we chose the family of symplectic form on $G/Z(v + t\alpha)$, $t \in [-1, 1]$, as the Kirillov-Kostant-Souriau form.

\[(IVc) \] If $k = l = 1$, then except the decomposition analogous in the subcase (b) (and hence subcase (a)) there is only the following possible cases with $\text{Lie } G_{\text{max}} = \text{Lie } G_{\text{min}} = su_2 \times$
\[\text{Lie } G_0, \text{Lie } Z_v = s(u_1 \times u_1) \times \text{Lie } G_0. \] Using Kirwan’s convexity theorem we conclude that this case never happens.

Clearly Theorem 1.1 follows from Lemma 2.6, Propositions 2.10, 2.12, 2.14 and Proposition 4.

3. Small quantum cohomology of some symplectic manifolds admitting a Hamiltonian action with cohomogeneity 1 of \(U_n \).

Small quantum cohomology\(^4\) (or more precisely the quantum cup-product deformed at \(H^2(M, \mathbb{C}) \subset H^*(M, \mathbb{C}) \)) was first suggested by Witten in context of quantum field theory and then has been defined mathematically rigorous for semi-positive (weakly monotone) symplectic manifolds by Ruan-Tian [RT] (see also [MS]) and recently for all compact symplectic manifolds by [FO]. This quantum product structure is an important deformation invariant of symplectic manifolds (and recently M. Schwarz [Sch] has derived a symplectic fixed points estimate in terms of quantum cup-length). Nevertheless there are not so much examples of symplectic manifolds whose quantum cohomology can be computed (see [CEF], [FGP], [GK], [ST], [RT], [W]). The main difficulty in the computation of quantum cohomology is that if we want to compute geometrically it is not easy to “see” all the holomorphic spheres realizing some given homology class in \(H_2(M, \mathbb{Z}) \). (On the other hand, computational functorial relations for quantum cohomology are expected to be found).

In this section we consider only the case of \(M \) being a \(\mathbb{C}P^k \)-bundle over Grassmannian \(\text{Gr}_k(N) \) of \(k \)-planes in \(\mathbb{C}^N \): \(M = U(N) \times_{U(k) \times U(N-k), \phi} \mathbb{C}P^k \), where \(\phi \) acts on \(\mathbb{C}P^k \) through the composition of the projection onto \(U(k) \) with the embedding \(U(k) \to U(k+1) \) and the standard action of \(U(k+1) \) on \(\mathbb{C}P^k \) ("standard" action means the projectivization of the standard linear action on \(\mathbb{C}^{k+1} \)). It is easy to see that the action on \(\mathbb{C}P^k \) of the restriction of \(\phi \) to \(U(k) \) has two singular orbits: \(\mathbb{C}P^{k-1} \) and a point, and its regular orbits are the sphere \(S^{2k-1} \). According to the previous section we see that \(M \) can be equipped with a \(G \)-invariant symplectic structure and a Hamiltonian action of \(G = U(N) \) with the generic orbit of \(G \)-action on \(M \) being isomorphic to \(U(N)/(U(k-1) \times U(N-k)) \) and its image under the moment map \(\mu : M \to u(n) \) is symplectomorphic to the flag manifold \(U(N)/(U(1) \times U(k-1) \times U(N-k)) \). With respect to Lemma 2.6 we see that \(M \) belongs to the case (I) if and only if \(k = 1 \), in this case \(M \) is a toric manifold. We can also consider \(M \) as the projectivization of the rank \(k+1 \) complex vector bundle over \(\text{Gr}_k(N) \) which is the sum of the tautological \(\mathbb{C}^k \)-bundle \(T_0 \) and the trivial bundle \(\mathbb{C} \). A special case of such \(M \) is \(\mathbb{C}P^2 \# \overline{\mathbb{C}P^2} \) whose quantum cohomology is computed in [RT] example 8.6] (see also [KM]).

By Lemma 3.1 below \(M \) admits a \(G \)-invariant monotone symplectic structure. To compute the small quantum cohomology algebra of \(M \) we use several tricks well-known before [ST].

\(^4\) for a definition and a formal construction of full quantum cohomology see [KM]
(e.g. the use of Gromov’s compactness theorem) and the positivity of intersection of complex submanifold. (In our monotone case we can also use the fact that the projection to the base Gr$_k$(N) of a holomorphic sphere in M is also a holomorphic sphere in Gr$_k$(N) with area less or equal to the area of the original sphere). Thus we can solve this question in our cases positively. It seems that by the same way we can give a recursive rigorous computation of small quantum cohomology ring of full or partial flag varieties, since any k-flag manifold is a Grassmannian bundle over a (k−1)-flag manifold (see also [ST, MS] for other approaches to this problem).

Recall that [Bo] the cohomology algebra $H^*(\text{Gr}_k(N), \mathbb{C})$ is isomorphic to the factor-algebra of the algebra $\mathbb{C}[x_1, \ldots, x_k] \otimes \mathbb{C}[y_1, \ldots, y_{N−k}]$ over the ideal generated by $S_{1, \ldots, N}(x_1, \ldots, y_{N−k})$ (see also Proposition A.4 in Appendix A). Geometrically x_i is i-th Chern class of the dual bundle of the tautological \mathbb{C}^k-vector bundle over Gr$_k$(N), and y_i is i-th Chern class of the dual bundle of the other complementary $\mathbb{C}^{N−k}$-vector bundle over Gr$_k$(N). Another description of $H^*(\text{Gr}_k(N), \mathbb{R})$ uses Schubert cells which form an additive basis, the Schubert classes, in $H^*(\text{Gr}_k(N), \mathbb{R})$ (see e.g. [FGP] and the references therein for the relation between two approaches).

Summarizing we have (see e.g [ST, MS])

$$H^*(\text{Gr}_k(N), \mathbb{C}) = \frac{\mathbb{C}[x_1, \ldots, x_k]}{(y_{N−k+1}, \ldots, y_N)}$$

where $y_{N−k+j} := −\sum_{i=0}^{N−k+j} x_i y_{N−k+j−i}$ (are defined inductively). The first Chern class of $T_s \text{Gr}_k(N)$ is $N x_1$.

The quantum cohomology of Gr$_k(N)$ was computed in [ST] and [W]. Now let us compute the quantum cohomology algebra $QH^*(M, \mathbb{C})$. Denote by f the Poincare dual to the big singular orbit $U(N)/(U(1) \times U(k−1) \times U(N−k))$ in M. Let x_1, \ldots, x_k be the generators of $H^*(\text{Gr}_k(N), \mathbb{C})$ as above. It is easy to see that the first Chern class of $T_s M$ is $(N−1)x_1 + (k+1)f$. Then the minimal Chern number of $T_s M$ is GCD $(N−1, k+1)$ (because the $H_2(M, \mathbb{Z})$ is generated by $H_2(\text{Gr}_k(N))$ and $H_2(\mathbb{C}P^k)$).

Lemma 3.1. (i) We have

$$H^*(M, \mathbb{C}) = \frac{\mathbb{C}[f, x_1, \ldots, x_k]}{(f^k − x_1 f^{k−1} + \cdots + (-1)^k x_k, y_{N−k+1}, \ldots, y_N)}.$$

(ii) M admits a G-invariant monotone symplectic structure.

(i) The formula is known in more general context [BT] Chapter 4, §20, [GH] Chapter 4, §6. But in our simple case we shall supply here a simple proof. To derive Lemma 3.1 from the proof of Proposition 2.12 it suffices to show that

$$PD_M(\text{Gr}_k(N)) = f^k − x_1 f^{k−1} + \cdots + (-1)^k x_k \quad (3.1)$$

To prove (3.1) we denote $PD_M(\text{Gr}_k(N))$ by a polynomial $P_k(f, x_1, \ldots, x_k)$. By considering the restriction of $PD_M(\text{Gr}_k(N))$ to the small orbit $\text{Gr}_k(N)$ we conclude that the lowest
term (free of f) of P_k is $(-1)^k x_k$. To define the other terms of P_k we consider the restriction of $PD_M(Gr_k(N)) = P_k$ to the submanifold $M \subset M$, which is the CP^k bundle over $Gr_{k-1}(N-1)$. Let M' be a submanifold of M which is defined as M but over $Gr_{k-1}(N-1)$. Using the formula

$$ (P_k)_{|\tilde{M}} = PD_{\tilde{M}}(Gr_{k-1}(N-1)) = PD_{\tilde{M}}(M') \cdot PD_{M'}Gr_{k-1}(N-1) $$

and the fact that $PD_{\tilde{M}}(M') = f$, we conclude (by using the induction step) that P_k equals RHS of (3.1).

(ii) It is well-known that Nx_1 is a symplectic class in $H^2(Gr_k(N), \mathbb{R})$. By checking the non-degeneracy of the family of $U(N)$-invariant forms $(Nx_1 + t(k + 1)f)$ at a point $T_e((U(N))/U(1) \times U(k-1) \times U(N-k)$ we conclude that the condition for the existence of an invariant symplectic form in the proof of Proposition 2.12 holds. Hence M admits a G-invariant monotone symplectic structure. \hfill \square

According to a general principle for computing the small quantum cohomology ring of a monotone symplectic manifold (M, ω) we need to compute only the quantum relations ([ST, W]). More precisely, let $g_i(z_1, \cdots, z_m)$ be polynomials generating the relations ideal of the cohomology algebra $H^*(M, \mathbb{C})$ generated by $\{z_i\}$. Then z_i are also generators of the small quantum algebra $QH^*(M, \mathbb{C}) = H^*(M, \mathbb{C}) \otimes \mathbb{Z}[q]$ with the new relations $\hat{g}_i(z_i) = qP_i(z_i, q)$. Here q is the quantum variable, \hat{g}_i is the polynomial defined by g_i with respect to the quantum product in $QH^*(M, \mathbb{C})$. Denote the quantum product by $\hat{*}$. There are several equivalent approaches to small quantum cohomology but we use notations (and formalism) in [MS].

Theorem 3.2. Let M satisfy the condition $2(k+1) = N-1$ and as before, let P_k denote the Poincare dual to $Gr_k(N)$. Then its small quantum cohomology ring is isomorphic to

$$ QH^*(M) = \frac{\mathbb{C}[f, x_1, \cdots, x_k, q]}{(f \hat{*} P_k = q, y_{N-k+1}, \cdots, y_{N-1}, y_N = (-1)^{k+1} q^2 f)} $$

Proof. Recall that (see e.g. [McDS]) the moduli space $M_A(M)$ of holomorphic spheres realizing class $A \in H_2(M, \mathbb{Z})$ gives a non-trivial contribution the quantum product of $a \hat{*} b$, $a, b \in H^*(M, \mathbb{C})$, if there is an element $c \in H^*(M, \mathbb{C})$ such that the Gromov-Witten-Invariant $\Phi_A(PD(a), PD(b), PD(c)) \neq 0$. In this case we have

$$ \deg (a) + \deg (b) \leq \dim M + 2c_1(A) \leq \deg a + \deg b + \dim M, \quad (3.2) $$

which is also called a degree (dimension) condition.

Recall that in our case the minimal Chern number of M is $(k+1)$. Thus from (3.2), Lemma 3.1 and the monotonicity condition we see immediately that if the moduli space $M_A(M)$ has a non-trivial contribution to the quantum relation then $0 < c_1(A) \leq 2(k+1)$. Hence A must be one of the five following homology classes.
(C1) : the homology class $[u]$ generating the homology group $H_2(\mathbb{C}P^k,\mathbb{Z}) = \mathbb{Z}$ of the fiber $\mathbb{C}P^k$;

(C2) : class $2[u]$;

(C3) : class $[v]$ which can be realized as a holomorphic sphere on one singular orbit $G(m_s)$ which is diffeomorphic to $Gr_k(N)$ (see also the previous section);

(C4) : the (exceptional) class $[v] - [u]$;

(C5) : the (double exceptional) class $2([v] - [u])$.

Note that $[u]$ and $[v]$ are the generators of $H_2(M,\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$.

Let us consider the moduli space of holomorphic spheres in class $[u]$. It is easy to see that with respect to the standard integrable complex structure J on M the J-holomorphic spheres realizing this class $[u]$ are exactly the complex lines of the fiber $\mathbb{C}P^k$. The simplest way to see this is to look at the projection of these holomorphic spheres on the base $Gr_k(N)$. (It may be possible to see this by using the curvature estimate in [4]. This curvature estimate could be able to show that the minimal sectional curvature distribution in M consists of 2-planes in the tangent space of the fiber $\mathbb{C}P^k$. Using the same curvature estimate we have characterized the space of holomorphic spheres of minimal degree in complex Grassmannian and other complex symmetric spaces [3] as the space of Helgason spheres.) A simple computation shows that the virtual dimension of the moduli space $\mathcal{M}_u(\mathbb{C}P^1, M)$ of J-holomorphic spheres realizing $[u]$ equals the real dimension of this space and equals $2(k + 1) + 2k + 2N(N - k)$. We can also apply the regularity criterion $H^1(\mathbb{C}P^1, f^*(T_M)) = H^1(\mathbb{C}P^1, f^*(\mathcal{T}_{\mathbb{C}P^k})) = 0$. Here f is a J-holomorphic map $\mathbb{C}P^1 \to M$ and f is its restriction on the fiber $\mathbb{C}P^k$.

Now let us compute the contribution of the moduli space $\mathcal{M}_{[u]}(M)$ to the quantum relations, i.e. A is in case (C1). First we note that by dimension reason the quantum polynomial of degree less than $(k + 1)$ must coincide with the usual polynomial (in the ring $H^*(M, \mathbb{C})$). Thus to compute the contribution of $\mathcal{M}_{[u]}(M)$ to the first defining relation it suffices to compute the following Gromov-Witten-Invariants with $1 \leq l \leq k + 1$

$$\Phi_{[u]}(PD(f^l), PD(x_{k+1-l}), pt), \quad (3.3a)$$

$$\Phi_{[u]}(PD(f^k), PD(f), pt). \quad (3.3b)$$

We claim that the Gromov-Witten-Invariant in (3.3a) equals zero. We observe that $PD_M(x_{k+1-l}) = j^{-1}(PD_B(x_{k+1-l}))$, where as in the previous section we denote by j the projection of M to $Gr_k(N)$. Hence, taking into account that $[u]$ is a “fiber” class we see immediately, by dimension reason, that there is no holomorphic curve in class $[u]$ which intersects $j^{-1}(PD_B(x_{k+1-l}))$ and goes through a $PD(f^l)$.

We claim that the G-W invariant in (3.3b) equals 1. To prove this we fix a fiber $\mathbb{C}P^k$ which contains the given point pt. We observe that the singular orbit representing $PD_M(f)$ intersects with each fiber $\mathbb{C}P^k$ at a divisor $\mathbb{C}P^{k-1}$. Finally we note that $PD_M(f^k)$ intersects
with the fixed $\mathbb{C}P^k$ at one point because $f^k(\mathbb{C}P^{k-1}) = 1$. Since there is exactly one complex line through the given two points in $\mathbb{C}P^n$ (and this line always intersects the divisor $\mathbb{C}P^{k-1} \subset \mathbb{C}P^k$) we deduce that the G-W invariant in (3.3b) is 1.

Summarizing we get

$$f \ast [u] P_k = q,$$

(3.3c)

(here the LHS of (3.3.3) denotes the quantum polynomial, deformed by $[u]$).

Next we shall compute the contribution of $M[u]$ to the “old” defining relation y_j, $j = N - k + 1, N$. First we shall show that

$$\Phi[[u](PD_M(x_p), PD_M(y_{j-p}), PD_M[w]) = 0$$

(3.3d)

for any $[w] \in H^*(M)$ with degree equal $\dim M + 2(k + 1) - 2j$. Using the formula $PD_M[j^*(y)] = j^{-1}PD_B[y]$ for the Poincare dual of a pull-back cohomology class of the base of a fiber bundle we observe that if (3.1) is not zero then $PD_M[w] \cap PD_M(x_p) \cap PD_M(y_{j-p}) \neq \emptyset$. But it is impossible by the dimension reason.

Thus there remain possibly four other non-trivial contributions, associated with cases (C2)-(C5), to the quantum relations. The first one is related to the Gromov-Witten invariants

$$\Phi[[2\{u\}(PD_M(x_p), PD_M(y_{j-p}), PD_M(w)),$$

(3.4)

the second to the Gromov-Witten invariants

$$\Phi[[v](PD_M(x_p), PD_M(y_{j-p}), PD_M(w)),$$

(3.5)

and the two other Gromov-Witten invariants related to the (exceptional) classes $[u] - [u]$ and $2([v] - [u])$.

Here, in the cases (C2) and (C3), the degree of w in (3.4) and (3.5) must be $\dim M + 4(k + 1) - 2j$.

To compute (3.4) we use a generic almost complex structure J_{reg} nearby the integrable one. Thus the image of J_{reg}-holomorphic spheres in class $2[u]$ must in a (arbitrary) small neighborhood of a complex line in the fiber $\mathbb{C}P^k$, that is the projection of a J_{reg}-holomorphic sphere in class $[u]$ must be in a ball of radius $\varepsilon/2$. Now we can use the same argument as before. Since $PD_M(x_p) \cap PD_M(y_{j-p}) \cap PD_M(w) = \emptyset$ there exists a positive number ε such that the ε-neighborhood of these cycles also do not have a common point. Now looking at the projection of these cycles on the base $Gr_k(N)$ we conclude that the contribution (3.4) is zero.

In order to compute the contribution (3.5) we need to know the moduli space of the holomorphic spheres in class $[v]$ whose dimension is $\dim M + 4(k + 1) + 6k + 4 = \dim Gr_k(N) + 2N + 2(k - 1)$. We pick up the standard integrable complex structure. We claim that all these holomorphic spheres can be realized as holomorphic
sections of $\mathbb{C}P^k$-bundle over $\mathbb{C}P^1_{[v]}$, where $\mathbb{C}P^1_{[v]}$ is a holomorphic sphere of minimal degree in $Gr_k(N)$. Indeed over this $\mathbb{C}P^1$ the bundle $\mathbb{C}P^k$ is the projectivization of the sum of $(k + 1)$ holomorphic line bundles with k Chern numbers being 0 and one number being (-1). Thus for any holomorphic sphere (S^2, f) which is a holomorphic section of the $\mathbb{C}P^k$ bundle over $\mathbb{C}P^1$ we have $H^1(S^2, f^*(T_xM)) = H^1(S^2, f^*(T_x\mathbb{C}P^k)) = 0$. To show that these holomorphic sections exhaust all the holomorphic spheres in the class $[v]$ we look at their projection on the base $Gr_k(N)$.

Now let us to compute (3.5) with $j = N - 1$ or $j = N$ (by dimension condition (3.2) those are the only cases which may enter into the quantum relations).

If $j = N - 1$ then the contribution in (3.5) must be 0 since we know that on the base $B = Gr_k(N)$ there is no holomorphic curve of minimal degree which go through the cycle $PD_B(x_p)$ and $PD_B(y_{N-p-1})$ (by dimension reason).

If $j = N$ then there are two possibilities for $PD_M(w)$, namely they are $[u]$ and $[v]$ - the generators of $H^2(M, \mathbb{Z})$.

Let us consider the first case i.e., $PD_M(w)$ is a holomorphic sphere u in the fiber $\mathbb{C}P^k$. The induction argument on $Gr_k(N)$ (ST MW) shows that p in (3.5) must be k and there is a unique (up to projection j) holomorphic sphere in class $[v]$ which intersects with $PD_M(x_k)$ and $PD_M(y_{N-k})$ and satisfies the following property: its image under the projection j goes through the fixed point $j(u) \in Gr_k(N)$. Hence we can reduce our computation of the corresponding contribution in (3.5) to the related Gromov-Witten invariant in the $\mathbb{C}P^k$-bundle over $\mathbb{C}P^1_{[v]}$. Thus we get

$$\Phi_{[u]}(PD_M(x_k), PD_M(y_{N-k}), [u]) = (-1)^{k+1}. \quad (3.5a)$$

Now let us consider the second case i.e., $PD_M(w)$ is the class $[v]$ realized by a holomorphic section of the $\mathbb{C}P^k$-bundle over the $\mathbb{C}P^1$. Clearly there is only one holomorphic section passing through a given point in this bundle. Thus we get

$$\Phi_{[v]}(PD_M(x_k), PD_M(y_{N-k}), [v]) = (-1)^{k+1}. \quad (3.5b)$$

Let us consider case (C4), i.e. the moduli space of holomorphic spheres in the class $[v] - [u]$. We have two arguments to show that there is no J-holomorphic sphere in this class. The simplest argument was suggested by Kaoru Ono. Namely considering the intersection of a holomorphic sphere in this class with the big singular orbit $U(N)/(U(1) \times U(k - 1) \times U(N - k))$ yields that there is no holomorphic sphere in this class. The another (longer) argument uses the area comparison. Clearly the area of such a holomorphic sphere equals the value $\omega([v] - [u])$. On the other hand the projection to $Gr_k(N)$ of a holomorphic sphere in this class has area $\omega([v]) > \omega([v] - [u])$. (The projection decreases the area because of Duistermaat-Heckman theorem applied to our monotone case). Thus there is no J-holomorphic sphere in this class. Since the class $[u] - [v]$ is indecomposable in the Gromov sense it follows from the Gromov compactness theorem that for nearby generic
almost complex structure J'_reg there is also no J'_reg-holomorphic sphere. Thus there is no quantum contribution of this class.

Finally we consider the quantum contribution in case (C4) associated to the class $2([v]-[u])$. The space of J-holomorphic spheres in this class is empty by the same reason as above (two arguments). Finally by using the Gromov compactness theorem we can show the existence of a regular almost complex structure J_{reg} nearby J such that there is no J_{reg}-holomorphic sphere in this class. (Because if bubbling happens, they must be holomorphic spheres in class $[v]-[u]$, which is also impossible.)

Summarizing we get that the only new quantum relations are those involving (3.3c), (3.5a) and (3.5b). Note that f is defined uniquely by the condition $f(u) = 1 = f(v)$. This completes the proof of Theorem 3.1. \[\square\]

Remark 3.3. Since the rank of $H_2(M)$ is 2 it is more convenient to take 2 quantum variables q_1, q_2. In this case our computations give a (slightly) formal different answer, namely $(R2) = q_1$ and $y_\mathcal{N} = (-1)^{k+1}(q_1^2 f_1 + q_2^2 f_2)$. Here f_1 and f_2 form a basis of $\text{Hom}(H_2(M, \mathbb{C}), \mathbb{C}) = H^2(M, \mathbb{C})$ which is dual to the basis $([u], [v]) \in H_2(M, \mathbb{C})$.

Remark 3.4. Let M be a symplectic manifold as in Theorem 3.2.

(i) It follows immediately from Theorem 3.1 and Schwarz’s result [Sch] that any exact symplectomorphism on M has at least $k+1$ fixed points.

(ii) It seems that after a little work we can apply the result in [HV] to show that the Weinstein conjecture also holds for those M.

4. **Compact symplectic manifolds admitting symplectic action of cohomogeneity 2**

A direct product of (M_1, ω_1) and (M_2, ω_2) is a symplectic manifold which admits a symplectic action of cohomogeneity 2 provided that either both (M_i, ω_i) admit symplectic action of cohomogeneity 1 or (M_1, ω_1) is a homogeneous symplectic manifold and (M_2, ω_2) has dimension 2. These examples are extremally opposite in a sense that, in the first case the normal bundle of any regular orbit is isotropic, and in the second case the normal bundle is symplectic.

Proposition 4.1. Suppose that an action of G on (M^{2n}, ω) is Hamiltonian and $\dim M/G = 2$. Then either all the principal orbits of G are symplectic (simultaneously), or all the principal orbits of G are coisotropic (simultaneously). In the first case a principal orbit is isomorphic to a coadjoint orbit of G, in the last case a principal orbit must be a T^2-bundle over a coadjoint orbit of G.
\textbf{Remark 4.2.} (i). The quotient space $\mu(M)/G$ is either a point or a convex 2-dimensional polytope.

(ii) If the action of G is Hamiltonian and the principal orbit is symplectic then the condition that $\mu(M)/G$ is a point is equivalent to the fact that d (in the proof of Proposition 4.1) equals 2. In this case M is diffeomorphic to a bundle over a coadjoint orbit of G whose fiber is a 2-dimensional surface.

The first statement in Remark 4.2 follows from the proof of Proposition 4.1 and Kirwan's theorem on convexity of moment map. The second statement follows by considering the moment map.

\textbf{Proposition 4.3.} Suppose that the action of G is Hamiltonian, the number d (in the proof of Proposition 4.1) is zero and the action of G on $\mu(M)$ has only one orbit type. Then M is G-diffeomorphic to a fiber bundle over a 2-dimensional surface Σ, whose fiber is isomorphic to a coadjoint orbit of G.

Indeed, by the dimension reason in this case there is also only one orbit type of G-action on M. Note that such a bundle always admits a G-invariant symplectic structure.

If the principal orbits of G in M are coisotropic then $P = \mu(M)/G$ is a 2-dimensional convex polytope.
Proposition 4.4. If the action of G on M is Hamiltonian and the principal orbit of G is coisotropic then M is diffeomorphic to the bundle of ruled surface over a coadjoint orbit of G provided that the action of G on $\mu(M)$ has only one orbit type.

Proof. In this case M admits a projection π over a coadjoint orbit $\mu(G(m))$ with fiber π^{-1} being a symplectic 4-manifold. This symplectic 4-manifold admits a T^2-Hamiltonian action. Hence it must be a rational or ruled surface (see [Au]). \square

Appendix A. Homogeneous symplectic spaces of compact Lie groups.

First we recall a theorem of Kirillov-Kostant-Souriau (see e.g. [Kir]).

Theorem A.1. A symplectic manifold admitting a Hamiltonian homogeneous action of a connected Lie group G is isomorphic to a covering of a coadjoint orbit of G.

If G is a connected compact Lie group, using the homotopy exact sequences, it is not hard to see that all its coadjoint orbits are simply-connected. Thus in this case we have the following simple

Corollary A.2. A symplectic manifold admitting a Hamiltonian homogeneous action of a connected compact Lie group G is a coadjoint orbit of G.

Table A.3. We present here a list of all coadjoint orbits of simple compact Lie groups. Recall that a coadjoint orbit through $v \in g$ can be identified with the homogeneous space $G/Z(v)$ with $Z(v)$ being the centralizer of v in G. Element v in a Cartan algebra $\text{Lie } T^k \subset g$ is regular iff for all root α of g we have $\alpha(v) \neq 0$. In this case $Z(v)$ is the maximal torus T^k of G. If v is a singular element with $\alpha_i(v) = 0$ then $\text{Lie } Z(v)$ is a direct sum of the subalgebra in g generated by the roots α_i and $\text{Lie } T^k$. To identify the type of this subalgebra $\text{Lie } Z(v)$ we observe that $\text{Lie } T^k$ is its Cartan subalgebra and the root system of $\text{Lie } Z(v)$ consists of those roots α of G such that $\alpha(v) = 0$. Looking at tables of roots of simple Lie algebras [O-V] and their Dynkin schemes we get easily the following list (which perhaps could be found somewhere else)

(A). If $G = SU_{n+1}$ then $Z(v) = S(U_{n_1} \times \cdots \times U_{n_k})$, $\sum n_i = n + 1$.

(B,C,D). If G is in B_n, Z_n or D_n then $Z(v)$ is a direct product $U_{n_1} \times \cdots U_{n_k} \times G_p$ with $\text{rk } G_p + \sum n_i = \text{rk } G$, and G_p and G must be from the same series B, C, D.

Analogously but more combinatorically complicated are the types of $Z(v)$ in the exceptional series. Note that the listed below simple exceptional groups are simply connected.

(E_6). Except the regular orbits with $Z(v) = T^6$ we also have other possible singular orbits with $Z(v) = S(U_{k_1} \times \cdots \times U_{k_n})$ with $n \geq 2$, $\sum k_i = 7$ and $T^6 \times Spin_{6-k}$ with $k = 1, 2$.

(E_7). Analogously. Possible are also $Z(v) = T^1 \times SU_2 \times Spin_{10}$ and $Z(v) = T^1 \times E_6$.
(E_8). Analogously, (Possible are also \(T^1 \times E_7 \) and \(T^1 \times SU_2 \times E_6 \)).

(F_4). Singular orbits can have \(Z(v) \) being \(T^2 \times SU_3 \), \(T^2 \times SU_2 \times SU_2 \) or \(T^1 \times Spin_7 \) and \(T^1 \times Sp_3 \).

(G_2) Except the regular orbit \(G_2/T^2 \) there are also singular orbit \(G_2/SU_2 \times T^1 \).

To compute the cohomology ring of \(G/Z(v) \) we use:

Proposition A.4. ([Bo, Theorem 26.1]). The cohomology algebra \(H(G/Z(v), \mathbb{R}) \) is a factor-algebra \(S_{Z(v)} \) over the ideal generated by \(\rho_R^* (S^+_G) \) which equals the characteristic subalgebra.

(ii) Let \(s_1 - 1, \ldots, s_l - 1 \) and correspondingly, \(r_1 - 1, \ldots, r_l - 1 \) be degree of the generators in \(H^*(G) \) and \(H^*(Z(v)) \). Then the Poincare polynomial of \(G/Z(v) \) equals

\[
\frac{(1 - t^{s_1}) \cdots (1 - t^{s_l})}{(1 - t^{r_1}) \cdots (1 - t^{r_l})}.
\]

Here \(S_G \) is the algebra of \(G \)-invariant polynomials in \(g \) and \(S_G^+ \) is its subalgebra which is generated by monomials of positive degree.

Remark A 5. All the \(G \)-invariant symplectic form on \(G/Z(v) \) are compatible with the (obvious) \(G \)-invariant complex structure. Thus all of them are deformation equivalent to a monotone symplectic form.

Acknowledgement. I thank Dmitri Alekseevsky, Michael Grossberg, Yuri Manin and Tien Zung Nguyen for stimulating and helpful discussions. My thanks are also due to Michel Audin for pointing out an interesting paper by Iglesias [I]. Finally I would like to express my sincere gratitude to Kaoru Ono for numerous critical comments and suggestions, and I thank the referee for useful comments.

I thank Christopher Woodward for pointing out the gap in my previous classification and for his interest in the corrected version.

References

[AA] A. V. Alekseevskii and D. V. Alekseevskii, *G-manifolds with one-dimensional orbits spaces*, Adv. in Sov. Math. N8 (1992), 1-31.

[AA1993] A. V. Alekseevskii and D. V. Alekseevskii, *Riemannian G-manifolds with one-dimensional orbits spaces*, Annals of Global Analysis and Geometry 11(1993), 197-211. MR2191628 (2006i:53110) Reviewed

[Audin] M. Audin, *On the topology of Lagrangian submanifolds. Examples and counter-examples*, Port. Math. (N.S.) 62 (2005), no. 4, 375-419.

[Au] M. Audin, *The Topology of Torus Actions on Symplectic Manifolds*, Birkhäuser, 1991.

[AB] M. F. Atiyah and R. Bott, *The moment map and equivariant cohomology*, Topology, 23, N1, (1984), 1-28.
[Bo] A. Borel, *Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts*, Ann. Math., 57 (1953), 115-207.

[Borel1949] A. Borel, Some remarks about Lie groups transitive on sphere and torus. Bull. Amer. Math. Soc. 55 (1949), 580-586.

[BT] Bott and Tu, *Differential forms in algebraic geometry*, Springer-Verlag, 1982.

[Br] G. E. Bredon, *Introduction to compact transformation groups*, Academic Press, 1972.

[CF] I. Ciocan-Fontanine, *Quantum cohomology of flag variety*, Inter. Math. Research Notes, 6, (1995), 263-277.

[FGP] S. Fomin, S. Gelfand and A. Posnikov, *Quantum Schubert Polynomials*, preprint 5/1996.

[DH] J. J. Duistermaat and G. J. Heckman, *On the variation in the cohomology of the symplectic form of the reduced phase space and Addendum*, Inv. Math. 69 (1982), 259-269, and 72 (1983), 153-158.

[FO] K. Fukaya and K. Ono, *Arnold conjecture and Gromov-Witten invariant*, preprint 8/1996.

[GH] P. Griffith and J. Harris, *Principle of algebraic geometry*, J. Wiley & Sons, 1978.

[GK] A. Givental and B. Kim, *Quantum cohomology of flag manifolds and Toda Lattices*, Comm. Math. Physics, 168 (1995), 609-641.

[Gr] M. Gromov, *Pseudo-holomorphic curves in symplectic geometry*, Inv. Math. 82 (1985), 307-247.

[HV] H. Hofer and C. Viterbo, *The Weinstein conjecture in the presence of holomorphic sphere*, Comm. Pure App. Math. 45(5), (1992), 583-622.

[I] P. Iglesias, *Les SO(3)-variétés symplectiques et leur classification en dimension 4*, Bull. Soc. Math. France, 119 (1991), 371-396.

[Kir] A. A. Kirillov, *Elements of the Theory of Representations*, Springer-Verlag, 1976.

[Kiw] F. Kirwan, *Convexity of the moment mapping, III*, Inv. Math., 77 (1984), 547-552.

[KM] M. Kontsevich and Yu. Manin, *Gromov-Witten classes, quantum cohomology and enumerative geometry*, Comm. Math. Physics, 164 (1994), 525-562.

[L] Lê Hông Van, *Curvature estimate for the volume growth of globally minimal submanifolds*, Math. Ann., 309 (1993), v.296, N1, 103-118.

[Le1998] Hông Ván Lê, *Compact symplectic manifolds of low cohomogeneity*, Journal of Geometry and Physics, 25(1998), 205-226.

[MS] D. McDuff and D. Salamon, *Lectures on J-holomorphic curves and quantum cohomology*, University Lect. Serie , 6, AMS, 1994.

[McDS] D. McDuff and D. Salamon, *Introduction in symplectic topology*, Oxford Publ. 1995.

[O] V. M. Oliva, *El método WKB complejo*. Aportaciones Matemáticas, Ser. Comunicaciones, 14, 1994, pp. 421-436.

[O-V] A. L. Onischchik, E. B. Vinberg, *Lie groups and algebraic groups*, Berlin, Springer, 1990.

[Sch] M. Schwarz, *A quantum cap-length estimate for symplectic fixed points*, preprint 5/1996.

[ST] B. Sieberg and G. Tian, *On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator*, preprint 1994.

[RT] Y. Ruan and G. Tian, *Mathematical Theory of quantum cohomology*, J. Diff. Geom. 42(1995), 2, 259-367.

[W] E. Witten, *The Verlinde algebra and the cohomology of the Grassmannian*, in: Conf. Proc. Lecture Notes Geom. Topology, VI, p. 357-422, Inter. Press, Cambridge, MA, 1995.