The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes – a meta-analysis

Hun-young Park1 / Hyejung Hwang1 / Jonghoo Park2 / Seongno Lee3 / Kiwon Lim1,4
1. Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Republic of Korea
2. Department of Physical Education, Korea University, Seoul, Republic of Korea
3. Department of Physical Education, Hanyang University, Seoul, Republic of Korea
4. Department of Physical Education, Konkuk University, Seoul, Republic of Korea

INTRODUCTION

Since the 1968 Mexico City Olympics, studies have been conducted to perform training in altitude/hypoxic environment for the enhanced performance of athletes; currently, these training methods are commonly being applied to many athletes and coaches. In the past, training in altitude/hypoxic environment was only performed at high altitude areas, including Chamonix in France, Albuquerque in United States, and Kunming in China; however, a variety of artificial altitude/hypoxic environment (normobaric hypoxia, hypobaric hypoxia) equipment, such as hypoxic masks, hypoxic tents, hypoxic trucks, hypoxic hotels, and hypoxic training centers have been developed since the 1990s.

The performance at sea-level can be improved by 3 ways through the training in both natural and artificial altitude/hypoxic environments. Living High Training High (LHTH), was the first design of living and training at 1500 - 4000 m in the natural altitude environments that enhance Red Blood Cell (RBC) count, Hemoglobin (Hb) concentration, Hematocrit (Hct), Maximal Oxygen Consumption (VO2max), and aerobic exercise capacity. Several studies demonstrated that altitude/hypoxic acclimation (e.g., increased RBC count and Hb concentration) and sea-level training (i.e., maintenance of training intensity). In addition, many elite-athletes in other countries plan to participate in the training camps in altitude environments such as Albuquerque in United States, Kunming in China, and Chamonix in France. However, LHTH has a major limitation, which is failure to perform training of the same intensities (e.g., running speed), as compared with sea-level training. Buskirk et al. reported that the collegiate distance runners who completed 880 yard, 1 mile, and 2 mile runs in the LHTH decreased by 3 - 8 % in exercise performance. Moreover, several studies demonstrated that absolute training intensity during continuous and interval workout was significantly decreased at 2500 m, as compared with sea-level.

The living high training low (LHTL) was developed by Dr. Benjamin Levine and James Stray-Gundersen of the United States in the early 1990s, as a potential modification to the limitation of LHTH. Basically, LHTL simultaneously offers athletes the beneficial effects of altitude/hypoxic acclimation (e.g., increased RBC count and Hb concentration) and sea-level training. In addi-
The effects of altitude/hypoxic training in elite athletes – a meta-analysis

Journal of Exercise Nutrition & Biochemistry

METHODS

Study design

This study determined effectiveness of natural altitude and artificial hypoxic training based on the results of oxygen delivery capacity of the blood (e.g., RBC, Hb, Hct, and EPO) and aerobic exercise capacity (e.g., VO2max) in Korean athletes through meta-analysis.

Reference search and data extraction

All relevant studies in systematic reviews and meta-analyses via PICO (Participants, Interventions, Comparisons, Outcomes, and Study Design) on the Cochrane guidelines were selected. Furthermore, for the systematic review and aggregate data meta-analysis using by PRISMA flowchart with 5 phases, we considered eligible studies that investigated the effects on oxygen delivery capacity of the blood and aerobic exercise capacity in altitude/hypoxic environments.

We identified relevant studies through a database of Research Information Service System (RISS), Korean studies Information Service System (KISS), and National Assembly Library (NANET) without any publication year restriction until December 15, 2015. We further identified studies for confidence by reviewing the reference lists of KCI in the field to identify published data only (Figure 1). We used 161 citations to collect information on the following: hypoxic exercise, hypoxic training, hypobaric exercise, hypoxic training, altitude exercise, and altitude training. From a total of 161 eligible studies identified, 85 were included in the aggregate data meta-analysis and 76 were excluded due to the overlapping study designs after title/abstract scan. In addition, 60 that were not relevant determinants or out-

Figure 1. PRISMA chart of the search and study inclusion process
come data for enhanced athletic performance were excluded. Thus, 25 retrieved selected full texts were reviewed so that the excluded were as follows: not elite athletes (e.g., healthy humans, the elderly, and patients), no control group, not relevant dependent variables on oxygen delivery capacity of the blood and aerobic exercise capacity, and no data used in the meta-analyses (e.g., mean, standard deviation, and sample size). Therefore, based on study characteristics of 161 references initially identified, 8 were included in the aggregate meta-analysis.

Characteristics and variables of selected references

The 8 selected references were classified according to authors, published year, characteristics of subjects, number of subjects, and altitude/hypoxic environments training (e.g., type, duration, and frequency) (Table 1) and the number of subjects were 156 subjects (exercise group: 82 and control group: 74). All studies were conducted on elite athletes: 1 of high school soccer players, 2 of high school track players, 1 of national level fin swimmers, 1 of collegiate tennis players, 1 of national level swimmers, 1 of collegiate track players, and 1 of collegiate basketball players. Additionally, types of altitude/hypoxic environments training consisted of 2 LHTH, 1 LHTL, and 5 LLTH.

Of these 8 studies, meta-analyses included 8 oxygen delivery capacity of the blood (e.g., RBC, Hb, and Hct), 5 EPO, and 7 aerobic exercise capacity, in order to determine the comprehensive efficacy of oxygen delivery capacity of the blood and aerobic exercise capacity in altitude/hypoxic environments training for the enhanced athletic performance.

RESULTS

The effect of altitude/hypoxic training on oxygen delivery capacity of the blood

Eight studies were selected for the effect of altitude/hypoxic training on RBC, Hb, Hct and 5 studies for the effect of altitude/hypoxic training on EPO. Among oxygen deliv-
The effects of altitude/hypoxic training in elite athletes – a meta-analysis

Journal of Exercise Nutrition & Biochemistry

The effects of altitude/hypoxic training in elite athletes – a meta-analysis

ery capacity of the blood, heterogeneity was identified in RBC (Q-value = 106.578, \(p = .000\), \(I^2 = 93.432\)) and effect size calculated by random effect model. Elite athletes in the altitude/hypoxic training group improved their RBC by \(4.499 \times 10^5\) cell/\(\mu l\) (95% CI: 2.469 - 6.529, \(p = .000\)) more than the sea-level training group (Table 2). Heterogeneity was also identified in Hb (Q-value = 119.043, \(p = .000\), \(I^2 = 94.120\)) and effect size calculated by random effect model. Elite athletes in the altitude/hypoxic training group improved their Hb by 5.447 g/dl (95% CI: 3.028 - 7.866, \(p = .000\)) more than the sea-level training group (Table 3). Likewise, heterogeneity was identified in Hct (Q-value = 104.973, \(p = .000\), \(I^2 = 94.120\)) and effect size calculated by random effect model. Elite athletes in the altitude/hypoxic training group improved their Hct by 3.639% (95% CI: 1.687 - 5.591, \(p = .000\)) more than the sea-level training group (Table 4). However, in EPO, homogeneity was identified (Q-value = 2.115, \(p = .715\), \(I^2 = .000\)) and effect size calculated by fixed effect model. Elite athletes in the altitude/hypoxic training group improved their EPO by

Table 2. Effects of altitude/hypoxic training vs. sea-level training on RBC (10^5 cell/\(\mu l\)).

Model	Study name	Std diff in means	standard error	variance	Lower limit	Upper limit	Z-value	p-value
Sunoo et al. (2007)	1.453	0.491	0.241	0.490	2.415	2.958	0.003	
Shin and Cho (2003)	31.752	5.635	31.756	20.707	42.797	5.635	0.000	
Yun and Lee (2014)	2.832	0.708	0.501	1.445	4.219	4.003	0.000	
Park et al. (2011)	7.062	1.203	1.447	4.705	9.420	5.871	0.000	
Sunoo and Hwang (2004)	0.761	0.536	0.287	-0.289	1.811	1.420	0.156	
Sunoo et al. (2005)	2.292	0.607	0.368	1.103	3.482	3.778	0.000	
Jung et al. (2004)	0.632	0.458	0.210	-0.266	1.531	1.380	0.168	
Kim et al. (2009)	15.891	2.085	4.348	11.804	19.978	7.621	0.000	
Random	4.499	1.036	1.073	2.469	6.529	4.343	0.000	

Heterogeneity: Q-value=106.572(\(p=.000\)), \(I^2=93.432\)

Table 3. Effects of altitude/hypoxic training vs. sea-level training on Hb (g/dl).

Model	Study name	Std diff in means	standard error	variance	Lower limit	Upper limit	Z-value	p-value
Sunoo et al. (2007)	4.834	0.864	0.747	3.140	6.528	5.929	0.000	
Shin and Cho (2003)	7.217	1.370	1.878	4.531	9.903	5.267	0.000	
Yun and Lee (2014)	3.726	0.827	0.684	2.105	5.347	4.506	0.000	
Park et al. (2011)	2.285	0.575	0.331	1.158	3.412	3.974	0.000	
Sunoo and Hwang (2004)	0.222	0.519	0.270	-0.795	1.240	0.428	0.669	
Sunoo et al. (2005)	1.102	0.506	0.256	0.111	2.094	2.178	0.029	
Jung et al. (2004)	0.899	0.469	0.220	-0.021	1.819	1.916	0.055	
Kim et al. (2009)	56.258	7.272	52.888	42.004	70.511	7.736	0.000	
Random	5.447	1.234	1.523	3.028	7.866	4.414	0.000	

Heterogeneity: Q-value=119.043(\(p=.000\)), \(I^2=94.120\)

Table 4. Effects of altitude/hypoxic training vs. sea-level training on Hct (%).

Model	Study name	Std diff in means	standard error	variance	Lower limit	Upper limit	Z-value	p-value
Sunoo et al. (2007)	4.834	0.864	0.747	3.140	6.528	5.929	0.000	
Shin and Cho (2003)	7.217	1.370	1.878	4.531	9.903	5.267	0.000	
Yun and Lee (2014)	3.726	0.827	0.684	2.105	5.347	4.506	0.000	
Park et al. (2011)	2.285	0.575	0.331	1.158	3.412	3.974	0.000	
Sunoo and Hwang (2004)	0.222	0.519	0.270	-0.795	1.240	0.428	0.669	
Sunoo et al. (2005)	1.102	0.506	0.256	0.111	2.094	2.178	0.029	
Jung et al. (2004)	0.899	0.469	0.220	-0.021	1.819	1.916	0.055	
Kim et al. (2009)	56.258	7.272	52.888	42.004	70.511	7.736	0.000	
Random	3.639	0.996	0.992	1.687	5.591	3.654	0.000	

Heterogeneity: Q-value=104.973(\(p=.000\)), \(I^2=93.332\)
The effects of altitude/hypoxic training in elite athletes – a meta-analysis

The effects of altitude/hypoxic training in elite athletes – a meta-analysis

0.711 mU/mL (95% CI: 0.282 - 1.140, p = .001) more than the sea-level training group (Table 5).

The effect of altitude/hypoxic training on the aerobic exercise capacity

Seven studies were selected for the effect of altitude/hypoxic training on VO2max. Heterogeneity was identified in VO2max (Q-value = 56.328, p = .000, I² = 89.348) and effect size calculated by random effect model. Elite athletes in the altitude/hypoxic training group improved their VO2max by 1.637 ml/kg/min (95% CI: 0.599 - 1.400, p = .000) more than the sea-level training group (Table 6).

DISCUSSION

A number of studies have been conducted on the effect of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity. These studies reported inconsistent results (positive and negative results) due to difference in physiological characteristics and training conditions (method, intensity, frequency, duration, and time of training)56. Altitude/hypoxic environments training has positive effects on VO2max, oxygen consumption (VO2), maximum ventilation, Hb, EPO, area of capillary blood vessel, 2,3-diphosphoglycerate (DPG), density of mitochondria, storage of glycogen, muscle buffer capacity, lactate threshold, strength and power, psychological limitation, hypoxic inducible factor (HIF)-1, vascular endothelial growth factor (VEGF), and glycolysis enzyme14, 22, 29, 35, 42, 47, 49. Together with positive effects, altitude/hypoxic environments training leads to negative effects on blood viscosity, muscle blood flow, cardiac output, HRmax, protein synthesis, and Na⁺-K⁺-ATPase activity, and decreases training quality and quantity5, 21, 28, 31. These controversial effects are dependent on sports event, performance level, support of nutrition and medical, fatigue level, training type, physiological state, psychological state of subject, and lead to inconsistent of study results.

Due to these positive or negative effects of altitude/hypoxic environments training, athletes, coaches, trainers, and researchers have continued argument about effect in oxygen delivery capacity of the blood and aerobic exercise capacity. In this study, we accordingly conducted meta-analysis on 8 research studies with elite athletes in Korea to verify practical applicability of altitude/hypoxic environments training, and propose the direction of training system development for athletic performance. Our results indicated that altitude/hypoxic environments training is more efficient than sea-level training in terms of oxygen delivery capacity of the blood (RBC, Hb, Hct, EPO) and aerobic exercise capacity (VO2max). Although, training type, exercise intensity, frequency, and duration were different in 8 research studies for meta-analysis, the result shows that training of more than 3 weeks, 3 times a week, and 1 hour can improve oxygen delivery capacity of the blood and aerobic exercise capacity. Also, the result is in agreement with previous meta-analysis studies that report-

Table 5. Effects of altitude/hypoxic training vs. sea-level training on EPO (mU/mL).

Model	Study name	Std diff in means	standard error	variance	Lower limit	Upper limit	Z-value	p-value
Sunoo et al. (2007)	0.369	0.441	0.194	-0.495	1.233	0.837	0.402	
Yun and Lee (2014)	1.210	0.544	0.296	0.144	2.275	2.224	0.026	
Park et al. (2011)	0.958	0.472	0.223	0.032	1.883	2.029	0.042	
Sunoo and Hwang (2004)	0.384	0.522	0.273	-0.639	1.408	0.736	0.462	
Sunoo et al. (2005)	0.752	0.488	0.238	-0.204	1.708	1.542	0.123	
Fixed	0.711	0.219	0.048	0.282	1.140	3.251	0.001	

Heterogeneity: Q-value=2.115(p=.715), I²=0.000

Table 6. Effects of altitude/hypoxic training vs. sea-level training on VO2max (ml/kg/min).

Model	Study name	Std diff in means	standard error	variance	Lower limit	Upper limit	Z-value	p-value
Sunoo et al. (2007)	0.171	0.438	0.192	-0.687	1.029	0.390	0.697	
Shin and Cho (2003)	0.313	0.503	0.253	-0.673	1.299	0.622	0.534	
Yun and Lee (2014)	1.425	0.560	0.313	0.328	2.523	2.546	0.011	
Sunoo and Hwang (2004)	0.585	0.528	0.279	-0.451	1.620	1.106	0.269	
Sunoo et al. (2005)	0.200	0.473	0.223	-0.726	1.126	0.423	0.672	
Jung et al. (2004)	2.832	0.633	0.401	1.592	4.073	4.475	0.000	
Kim et al. (2009)	7.232	1.005	1.011	5.262	9.202	7.194	0.000	
Random	1.637	0.641	0.411	0.381	2.894	2.554	0.011	

Heterogeneity: Q-value=56.328(p=.000), I²=89.348
ed altitude/hypoxic environment training enhances aerobic exercise capacity and performance through increase of RBC mass, Hb mass and VO2max and exposure of altitude/hypoxic environment increases Hb mass in 2 weeks and improves aerobic exercise capacity and performance. An increase in investment by administration department for various types of altitude/hypoxic environments training facility (e.g., hypobaric/hypoxic lodging, hotel, mask, training truck, training center etc.) is needed for improved aerobic exercise capacity and performance among elite athletes in Korea. In addition, members of the athletic community including athletes, managers, and coaches should change the perception of altitude/hypoxic training and apply to elite athletes. Currently, U.S.A. has established Colorado Altitude Training (CAT) and possesses hypoxic tent, hypoxic hotel, hypoxic room, hypoxic swimming pool, hypobaric and hypoxic training center. Through altitude/hypoxic training in the facilities, long distance speed skating team in 2002 Salt Lake City Winter Olympic & 2006 Torino Winter Olympic and marathon team in 2004 Athens Olympic reported unprecedented success. Japan also has founded Japan Institute for Sports Science (JISS) in 2002 and possesses hypoxic room, hypoxic swimming pool, and hypobaric/hypoxic training center. In Japan, various events’ athletes have conducted hypobaric/hypoxic training and maintained high athletic performance since the 2004 Athens Olympics. These facts prove that investment in altitude/hypoxic training facility and efforts to apply altitude/hypoxic training are required acutely for increase of elite athletes and national competitiveness in sports.

Detail examination of previous studies applied in a meta-analysis reveals that elite athletes’ events are different (high school soccer players, high school runners, national team level pin swimmers, college runners, college basketball players) and applied altitude/hypoxic environments training type are also distinguished into 2 studies of LHTH, 1 study of LHTL, and 5 studies of LLTH. Therefore, in results of meta-analysis, variables except EPO showed heterogeneity of effect sizes. The results indicated that altitude/hypoxic environment training is more efficient than sea-level training in terms of oxygen delivery capacity of the blood and aerobic exercise capacity, but they cannot explain altitude/hypoxic environments training type, exercise intensity, frequency, and duration for increase of athletic performance. Therefore, meta-analysis should be conducted for various dependent variables, aerobic exercise capacity, and athletic performance after classification according to altitude/hypoxic environment training type and athletes’ event in previous Korean and other studies. These efforts would identify the most effective altitude/hypoxic environment training for increased oxygen delivery capacity of the blood, aerobic exercise capacity, and athletic performance.

CONCLUSIONS

This study was designed as a meta-analysis of randomized controlled trials comparing effectiveness of altitude/hypoxic training versus sea-level training on oxygen delivery capacity of the blood and aerobic exercise capacity of elite athletes in Korea. It comprised a five step process of the PRISMA flowchart after setting the selection criteria for the study based on PICOS introduced in the Cochrane guideline. Homogeneity was identified in EPO but heterogeneity was identified in RBC, Hb, Hct, and VO2max due to difference in the pattern of sporting event and altitude/hypoxic training type between each study. RBC, Hb, Hct, EPO, and VO2max were significantly increased following altitude/hypoxic training, as compared with sea-level training. For elite athletes in Korea, altitude/hypoxic training appears more effective than sea-level training for improvement of oxygen delivery capacity of the blood and aerobic exercise capacity. Therefore, increased investment in the various altitude/hypoxic training facilities (hypobaric and hypoxic room, hotel, mask, training truck, training center), change of awareness and application of altitude/hypoxic training are needed for improvement of athletic performance in elite athletes.

ACKNOWLEDGEMENTS

This study was supported by a grant (NRF-2015M3C1B1019372) from the National Research Foundation funded by the Korean Government

REFERENCES

1. Aughey RJ, Gore CJ, Hahn G, Garnham AP, Clark SA, Petersen AC, Roberts AD, McKenna MJ. Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+K+-ATPase activity in well-trained athletes. J Appl Physiol. 2005;81:428-435.
2. Banchero N. Capillary density of skeletal muscle in dogs exposed to simulated altitude. Proc Soc Exp Biol Med. 1975;148:435-439.
3. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia. Sports Med. 2009; 39:107-127.
4. Brochierie F, Millet GP, Hauser A, Steiner T, Rysman J, WehrlinJP, Oliver G. Live High-Train Low and High Hypoxic Training Improves Team-Sport Performance. Med Sci Sports Exerc. 2015;47(10):2140-2149.
5. Brugniaux JV, Schmitt L, Robach P, Jeanvoline H, Zimmermann H, Nicolet G, Duvallet A, Fouillot JP, Rivalet JP, Living high-training low: tolerance and acclimatization in elite endurance athletes. Eur J Appl Physiol. 2006;96:66-77.
6. Buskirk ER, J Kollias, RF Akers, EP Prokop, EP Reategui. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23:259-266.
7. Chung DS, Lee JG, Kim YS, Park DH, Sung BJ, Yoon JR, Cho NH, Oh IS. Effects of intermittent normobaric hypoxia on blood
variables and cardiovascular endurance performance during aperiod of endurance training. *Kor J Sport Sci.* 2004;15(4):60-71.
8. Cohen J. Statistical power for the social sciences. Hillsdale, NJ: Laurence Erlbaum and Associates. 1988.p98-101
9. Desplanches D, Hoppeler H. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. *Pflugers Arch.* 1993;425:263-267.
10. Gore CJ, Hahn RJ, Aughey D, Martin T, Ashenden MJ, Clark SA, Garnham AP, Roberts AD, Slater GJ, Mckenna MJ. Live high train low increases muscle buffer capacity and submaximal cycling efficiency. *Acta Physiol Scand.* 2001;173:275-286.
11. Gore CJ, Sharpe K, Garvican-Lewis LA, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Potgiesser T, Schumacher YO, Schmidt WF. Altitude training and haemoglobin mass from monoxide rebreathing method determined by a meta-analysis. *Br J Sports Med.* 2013;47:91-99.
12. Hickson EA, Hopkins WG. Changes in running endurance performance following intermittent altitude exposure simulated with tents. *Eur J Appl Sport Sci.* 2003;5:15-24.
13. Higgins JPT, Green S editors. Cochrane handbook for systematic reviews of interventions: Version 5.1.0. London, UK: The Cochrane Collaboration; 2011. Available from: www.cochrane-handbook.org.
14. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. *J Exp Biol.* 2001;204:3133-3139.
15. Kim SH, Oh SD, Jeon WC. Effects of 4 week altitude training to cardiovascular function, oxygen transporting capacity in high school soccer player. *Kor J Sports Sci.* 2009;18:1181-1192.
16. Knaupp W, Khilnani S, Sherwood J, Scharf S, Steinberg HB, Schmidt WF. Altitude training and haemoglobin mass from monoxide rebreathing method determined by a meta-analysis. *Br J Sports Med.* 2013;47:91-99.
17. Levine BD. Intermittent hypoxic training: fact and fancy. *High Alt Med Biol.* 2002;3:177-193.
18. Levine BD, J Stray-Gunderson. A practical approach to altitude training: where to live and train for optimal performance enhancement. *Int J Sports Med.* 1992;13:S209-S212.
19. Levine BD, J Stray-Gunderson. “Living high training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. *J Appl Physiol.* 1997;93:102-112.
20. Littell, JH, Corcoran J, Pillai VK. Systematic Reviews and Meta-Analysis. Oxford: Oxford University Press. 2008.
21. Lundby C, Nielsen TK, Dela F, Damsgaard R. The influence of intermittent altitude exposure to 4100m on exercise capacity and blood variables. *Scand J Med Sci Sports.* 2005;15:182-187.
22. Mairbaur H, Schobersberger W, Humpeler E, Hasibeder W, Fisher W, Raas E. Beneficial effects of exercise at moderate altitude on red cell oxygen transporting and on exercise performance. *Pflugers Arch.* 1986;406:594-599.
23. Morris DM, Kearney JT, Burke ER. The effects of breathing supplemental oxygen during altitude training on cycling performance. *J Sci Med Sport.* 2000;3:165-175.
24. Niess AM, Fehrenbach E, Strobel G, Roecker K, Schneider EM, Buergler J, Fuss S, Lehmann R, Northoff H, Dickhuth HH. Evaluation of stress responses to interval training at low and moderate altitudes. *Med Sci Sports Exerc.* 2003;35:165-175.
25. Park HY, Nam SS, Kim SH, Kim MJ, Sunoo S. Effects of 10 weeks aerobic training in normobaric hypoxia on improvement of body composition, physical fitness, blood variables and vascular compliance. *Kor J Exerc Nutr.* 2010;14:7-16.
26. Park HY, Nam SS, Choi WH, Sunoo S. Effects of 4 weeks living high training low (LHTL) on aerobic exercise capacity, concentration in oxygenated skeletal muscle, cardiac function and time trial in elite middle and long distance runners. *Exerc Sci.* 2011;20:425-440.
27. Powell FL, Garcia N. Physiological effects of intermittent hypoxia. *High Alt Med Biol.* 2000;1:125-136.
28. Robach P, Schmitt L, Brugniaux JV, Roels B, Millet G, Hellard P, Nicolet G, Duvallet A, Fouilloit JP, Mouterea S, Lasne F, Pialoux V, Olsen NV, Richalet JP. Living high-training low: effect on erythropoiesis and aerobic performance in highly-trained swimmers. *Eur J Appl Physiol.* 2006;96:423-433.
29. Rusko HK, Leppavuori A, Makela P. Living high-training low: a new approach altitude training at sea level in athletes. *Med Sci Sports Exerc.* 1995;27:S6.
30. Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training. *J Sports Sci.* 2004;22:928-945.
31. Sandinford SD, Green HJ, Duhamel TA, Perco JG, Schertzer JD, Ouyang J. Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia. *J Appl Physiol.* 2005;96:1764-1775.
32. Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. *J Appl Physiol.* 2004;96:931-937.
33. Schmidt W. Effects of intermittent exposure to high altitude on blood volume and erythropoietic activity. *High Alt Med Biol.* 2002;3:167-176.
34. Schmitt L, Millet G, Robach P, Nicolet G, Brugniaux JV, Fouilloit JP, Richalet JP. Influence of “living high–training low” on aerobic performance and economy of work in elite athletes. *Eur J Appl Physiol.* 2006;97:627-636.
35. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. *J Appl Physiol.* 2000;88:1474-1480.
36. Shin CH, Cho SY. Effects of intermittent hypoxic training on cardiopulmonary function and blood parameter in elite swimmer. *Exerc Sci.* 2003;12:223-232.
37. Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. *J Appl Physiol.* 2001;91:1113-1120.
38. Sunoo S, Hwang KS. Effects of chronic intermittent hypobaric hypoxic training on cardiopulmonary function and oxygen transporting capacity in trained athletes. *Kor J Physl Edu.* 2004;43:441-455.
39. Sunoo S, Kim HK, Hwang KS. Effects of intermittent hypoxic exposure on cardiopulmonary function and oxygen transporting capacity in university basketball players. *Kor J Exerc Nutr.* 2005;9:23-33.
40. Sunoo S, Nho HS, Nam SS, Hwang KS, Park HY, Lee EJ. The effects of intermittent hypobaric hypoxic training at the simulated altitude of 3,000m on aerobic exercise performance in youth fin swimmer. *Kor J Growth Devel.* 2007;15:241-249.
41. Vogt M, Hoppeler H. Is hypoxia training good for muscles and exercise performance? *Prog Cardiovasc Dis.* 2010;52:525-533.
42. Vogt M, Puntschart JG, Zuleger C, Billerter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. *J Appl Physiol*. 2001;91:173-182.
43. Wallechinsky D. The complete Book of the Winter Olympics. Turin 2006 ed. Toronto, Canada: *Sports Media Publishing*, Inc.
44. Wehrlin JP, Zuest P, Hallen J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. *J Appl Physiol*. 2006;100:1938-1945.
45. Wilber RL. Application of altitude/hypoxic training by elite athletes. *Med Sci Sports Exerc*. 2007;39:1610-1624.
46. Wilber RL, Holm PL, Morris DM, Dallam GM, Callan SD. Effect of FIO2 on physiological responses and cycling performance at moderate altitude. *Med Sci Sports Exerc*. 2003;35:1153-1159.
47. Wolfel EE, Groves BM, Brooks GA, Butterfield GE, Mazzeo RS, Moore LG, Sutton JR, Bender PR, Dahms TE, McCullough RE, Huang SY, Sun SF, Grover RF, Hultgren HN, Reeves JT. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. *J Appl Physiol*. 1991;70:1129-1136.
48. Yoon JR, Lee MJ. Effects of sprint interval training on blood variables, aerobic and anaerobic performance in normobaric hypoxia. *Kor J Sport Sci*. 2014;25:890-903.
49. Young AJ, Evans WJ, Cymerman A, Pandolf KB, Knapik JJ, Maher JT. Sparing effect of chronic high-altitude exposure on muscle glycogen utilization. *J Appl Physiol*. 1982;52:857-862.