Potential Role of Protein Kinase C in the Pathophysiology of Diabetes-Associated Atherosclerosis

Chih-Feng Lien¹, Sy-Jou Chen², Min-Chien Tsai³ and Chin-Sheng Lin¹∗†

¹Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,
²Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,
³Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan

Diabetes mellitus is a metabolic syndrome that affects millions of people worldwide. Recent studies have demonstrated that protein kinase C (PKC) activation plays an important role in hyperglycemia-induced atherosclerosis. PKC activation is involved in several cellular responses such as the expression of various growth factors, activation of signaling pathways, and enhancement of oxidative stress in hyperglycemia. However, the role of PKC activation in pro-atherogenic and anti-atherogenic mechanisms remains controversial, especially under hyperglycemic condition. In this review, we discuss the role of different PKC isoforms in lipid regulation, oxidative stress, inflammatory response, and apoptosis. These intracellular events are linked to the pathogenesis of atherosclerosis in diabetes. PKC deletion or treatment with PKC inhibitors has been studied in the regulation of atherosclerotic plaque formation and evolution. Furthermore, some preclinical and clinical studies have indicated that PKCβ and PKCδ are potential targets for the treatment of diabetic vascular complications. The current review summarizes these multiple signaling pathways and cellular responses regulated by PKC activation and the potential therapeutic targets of PKC in diabetic complications.

Keywords: PKC, atherosclerosis, diabetes, hyperglycemia, inflammation, plaque evolution

INTRODUCTION

Diabetes mellitus (DM), a highly prevalent disease worldwide, is caused by insufficient insulin production or insulin resistance. According to the International Diabetes Federation, the global prevalence rate of diabetes in 2019 was 9.3%, which is equivalent to 463 million people. The prevalence is estimated to have increased to 10.2% (578 million people) by 2030 and 10.9% (700 million people) by 2045 (Saeedi et al., 2019). The development of diabetes begins in the prediabetic stage, wherein the fasting plasma glucose levels are elevated due to peripheral resistance to insulin. This stage is characterized by increased insulin secretion by β cells, resulting in hyperinsulinemia. However, long-term overproduction of insulin induces β cell failure, which results in progressive hyperglycemia (Bar-Tana, 2020). Once blood glucose levels exceed the normal levels, patients with diabetes rapidly develop complications, such as kidney, nerve, eye, and cardiovascular diseases. The leading cause of death in diabetic patients is macro- and microvascular complications. Atherosclerosis is one of the main complications of diabetes and is a major contributor to cardiovascular morbidity and mortality (La Sala et al., 2019). Hyperglycemia, hypertension, and hyperlipidemia often occur in patients with type 2 diabetes. These metabolic syndromes damage blood vessels and further induce vasculopathy and accelerate
the progress of atherosclerosis, resulting in myocardial infarction and stroke (Colwell et al., 1981; Cooper et al., 2001).

Atherosclerosis is a complex disease involving the interplay of various cell types, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, and other immune cells (Weber and Noels, 2011). ECs produce several inflammatory mediators, such as CCL5 and CXCL4, and express leukocyte adhesion molecules, such as E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), which attract monocyte migration and infiltration into the subendothelial space (Weber and Noels, 2011). Subsequently, foam cell formation from monocyte-derived macrophages involves the uptake of low-density lipoprotein (LDL) or oxidize LDL (oxLDL). OxLDL and foam cells accumulate in the vascular intima, which induces oxidative stress and releases platelet-derived growth factor to trigger the VSMC phenotype switch. The phenotypic switching of VSMCs contributes to necrotic core formation and inflammation, and produces extracellular matrix in the fibrous cap (Basatemur et al., 2019). Collectively, the aforementioned cellular processes of ECs, VSMCs, and macrophages play crucial roles in the pathogenesis of atherosclerosis (Figure 1).

Recent studies have demonstrated that three important factors of hyperglycemia promote atherosclerosis, consisting of advanced glycation end products (AGE), oxidative stress, and activation of protein kinase C (PKC) (Aronson and Rayfield, 2002; Yuan et al., 2019). AGEs are products of non-enzymatic glycation and oxidation of proteins and lipids that accumulate in diabetes. AGEs bind to the receptor for AGEs (RAGEs) involved in scavenger receptor A (SR-A) to stimulate reactive oxygen species (ROS) production and promote the progression of pathogenic inflammation in atherosclerosis (Yuan et al., 2019). Hyperglycemia activates the polyol and hexosamine pathways to increase biochemical reactions and further increase ROS production (Paul et al., 2020). PKC mediates the anti-inflammatory effects of cannabidiol and 17β-estradiol against high glucose-induced arrhythmia, which could be a cardioprotective therapeutic approach in diabetic complications (Fouda and Ruben, 2021). Moreover, hyperglycemic activation of PKC signaling leads to increased endothelial inflammation, endothelial relaxation dysfunction, and foam cell formation, which induces the expression of permeability-enhancing factor vascular endothelial growth factor (VEGF) and decreases nitric oxide (NO) generation in

![FIGURE 1](https://example.com/figure1.png)

FIGURE 1 | The role of protein kinase C isoforms in the initiation and progression of atherosclerosis. The pathophysiology of atherosclerosis begins with the retention of circulating low-density lipoproteins (LDL) in the intima. Excess levels of circulating LDL are cleared via hepatic LDL receptor, which is regulated by protein kinase Cα (PKCα) and PKCβ. The initial LDLs are prone to oxidative modification by environmental oxidizing enzymes to become oxidized LDLs (oxLDLs), which activate endothelial cells (ECs) to express adhesion molecules. The major PKC isoforms involved in this step are PKCα and PKCβ. PKCα, PKCβ, and PKCζ regulate the expression of ATP-binding cassette transporter A1, which plays a key role in macrophage cholesterol efflux. PKCζ and PKCα regulate foam cell formation via manipulating scavenger receptor-mediated uptake of oxLDLs by macrophages. Vascular smooth muscle cells (VSMCs) proliferate and migrate from the media to the intima in response to environmental stimuli. PKCα plays a critical role in regulating VSMC function during atherosclerosis. Both innate and adaptive immune systems are involved in the atherosclerotic process. Apoptosis of VSMCs and secretion of matrix metalloproteinases (MMPs) from macrophages are critical for plaque complexity. PKCζ is the principal isoform regulating VSMC apoptosis. Finally, PKCζIII had been proposed to regulate MMP secretion in ECs during atherosclerosis.
of PKC have been identified and have more variable regulatory domains. At least 11 isoforms of PKC enzymes contain a highly conserved catalytic (kinase) domain (Steinberg, 2008). The classical PKCs (ζ, ι/λ, ε, ϑ, and η) contain a C2 domain that lacks critical calcium-coordinating acidic residues, and thus, they require DAG, but not calcium, for their activity. The atypical PKCs (δ, ε, θ, and η) contain a C2 domain, which is calcium-sensitive. PKCδ, PKCε, and PKCθ, contribute to cholesterol regulation in hepatocytes. Table 1 summarizes the current understanding of the involvement of each PKC isoform in atherosclerosis.

Mutual Interaction Between Reactive Oxygen Species and Protein Kinase C

Oxidative stress results from excessive ROS production mainly from mitochondria and NADPH oxidases. Other enzymes, such as xanthine oxidase, NO synthase, and lipoxygenase, also generate ROS (Holmstrom and Finkel, 2014). PKC-dependent activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is considered to be one of the major sources for high glucose-induced ROS overproduction. Hyperglycemia increases intracellular DAG concentration, regulation of ion channels and receptors, which is involved in several diseases, such as cancer, heart failure, stroke, neurodegenerative diseases, autoimmune diseases, and psychiatric disorders (Mochly-Rosen et al., 2012). Such evidence points out the crucial role of PKC in disease development.

THE ROLE OF PROTEIN KINASE C IN ATHEROSCLEROSIS

Protein Kinase C Regulates Hepatic LDL Receptor Expression

The liver is the major organ for cholesterol synthesis and degradation. LDL accumulation in the subendothelial space is the initial stage of atherosclerosis. Therefore, the removal of LDLS from the blood via regulation of the hepatic LDL receptor (LDLR) plays a vital role in atherosclerosis therapy. A human study revealed that young patients with type 1 or 2 diabetes have a high prevalence of lipoprotein abnormalities. Poor glycemic control increases the prevalence of these lipoprotein risk factors (Albers et al., 2008). Obese humans express high levels of PRKCD, which is positively correlated with fasting glucose and circulating triglycerides (Bezy et al., 2011). In particular, deletion of the PRKCD gene revealed increased hepatic insulin signaling and reduced expression of gluconeogenic and lipogenic enzymes. Previous studies demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) promotes LDLR gene expression via SREBP2 activation (Wong et al., 2016). Furthermore, PMA-activated PKCa, PKCβ, and PKCd increased LDLR gene transcription and mRNA stability through extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways (Kumar et al., 1997; Mehta et al., 2002; Kapoor et al., 2003; Vargas et al., 2009). Study from Huang et al. (2004) indicated that PKCβ and PKCe may regulate LDLR transcription through hyperphosphorylation of histone H3-Ser10 at the LDLR promoter. In addition, animal studies have indicated that treatment of rats with 17-β-oestradiol activates PKCa and upregulates LDLR expression in the liver (Marino et al., 2001). Collectively, these studies suggest that PKC isoforms, namely PKCa, PKCβ, PKCe, and PKCd, contribute to cholesterol regulation in hepatocytes.
TABLE 1 | Summary of PKC isoform-specific role in the progression of atherosclerosis.

Atherosclerosis etiology	PKC isoform	Stimulus/intervention	Working model	Effect of specific PKC isoform	References	
Hepatic LDLR expression	PKC	Phorbol esters	HepG2	Upregulation and stabilization of LDLR mRNA	Vargas et al. (2009)	
	PKCa	Phorbol esters	HepG2	Increases LDLR protein expression	Kumar et al. (1997)	
	PKCa	Phorbol esters, 17-β-estradiol	Rats	Upregulation of LDLR in liver, PKCa activation	Marino et al. (2001)	
	PKCβ	Phorbol esters	HepG2	Upregulation of LDLR mRNA and protein expression	Wong et al. (2016)	
	PKCβ	Overexpression	HepG2	Increases LDLR protein expression	Kapoor et al. (2003)	
	PKCβ	Phorbol esters	HepG2	Increases LDLR promoter activity	Huang et al. (2004)	
	PKCc	Cholesterol depletion, overexpression, AS	HepG2	Increases LDLR promoter activity	Mehta et al. (2002)	
Endothelial dysfunction	PKCα	Phorbol ester	HepG2	Increases LDLR promoter activity	Huang et al. (2004)	
	PKCα	OxLDL	HUVECs	Increases ICAM-1, VCAM-1, MCP-1, E-selectin, CCR2, CXCL2 mRNA expression	(Sun et al., 2018; Zhang et al., 2019)	
	PKCa	OxLDL	HUVECs	Enhances production of eNOS-derived superoxide anion	Reming et al. (2005)	
	PKCa	Phorbol esters	Human ECs	Increases arginine expression and activity, decrease NO production	Vissali et al. (2010)	
	PKCa	Inhibition of mTOR	HAECs	Decreases inflammation/PKCα activation	Fan et al. (2019)	
	PKCγ	Deletion of PKCγ	Mouse	Increases MMP-2, VCAM-1 protein expression	Harja et al. (2009)	
Macrophage inflammation and lipid regulation	PKCα	Phorbol esters/PKCα inhibitor	Raw264.7	Stabilizes ABCA1 and increases cholesterol efflux	Watanabe et al. (2019)	
	PKCα	Resistin	PBMC	Increases macrophages inflammation	Zuniga et al. (2017)	
	PKCδ	Overexpression	Hsp27	Increases ABCA1 expression and cholesterol efflux	Kuang et al. (2017)	
	PKCδ	Linoleic acid/siRNA	Raw264.7	Destabilizes ABCA1	Wang and Cram, (2007)	
	PKCδ	OxLDL, HFD	BMDM, mice	Decreases macrophage apoptosis, increases proliferation and inflammation	Li et al. (2017)	
	PKCδ	OxLDL/siRNA, siRNA, rottlerin	THP-1, PBMC, BMDC	Increases oxLDL uptake	Szlagyi et al. (2014)	
Foam cell formation	PKCβ	OxLDL/PKCβ inhibitor	THP-1, PBMC	Increases SR-A expression, oxLDL uptake and foam cell formation	Osto et al. (2008)	
	PKCβ	Thrombin HFD	Raw264.7, peritoneal macrophages	Increases CD36 expression, and foam cell formation	Raghavan et al. (2018)	
	PKCβ	OxLDL/siRNA, siRNA, rottlerin	THP-1, HMDMs	Increases SR-A, CD36 expression, oxLDL uptake and foam cell formation	Lin et al. (2012)	
Vascular smooth muscle cells functions	PKCβ	Overexpression	Rat VSMCs	Reduces proliferation of VSMCs	Fukumoto et al. (1997)	
	PKCβ	PKCβ knockout	Mouse	Promotes apoptosis of VSMCs and reduces vein graft atherosclerosis	Lettges et al. (2001)	
	PKCβ	OxlDL	Human primary VSMC	Promotes ROS production and ER stress-induced apoptosis	Larroque-Cardoso et al. (2013)	
	PKCβ	Rottlerin, siRNA	Rat aortic SMC	Mediates oxidative stress-induced apoptosis	Kato et al. (2009)	
	PKCβ	Rottlerin	Rat VSMCs	Regulates VSMC proliferation	Ginnan et al. (2004)	
	PKCβ	Ang II/siRNA, rottlerin	Rat VSMCs	Activates smooth muscle 22α and p47phox to generate ROS	Lv et al. (2012)	
	PKCβ	PDGF and mechanical stress/siRNA	Mice aorta VSMCs	Increases migration of VSMCs	Li et al. (2003a)	
	PKCα/ε	ROS/PKCε inhibitor	Rat VSMCs	Induces apoptosis of VSMCs/PKCα and PKCε activation	Li et al. (1999)	
	PKCα/β/γ	Serum starvation/overexpression	Rat VSMCs	Inhibition of apoptosis of VSMCs	Hall et al. (2000)	
	PKCβ	OxLDL phorbol esters/RBX, icarin	OxLDL	Increases proliferation and migration of VSMCs	Zhang et al. (2021)	
	PKCβ	Denudation injury, TNFa/ PKCβ Tg	Mice arteries or VSMCs	Increases migration of VSMCs and neointimal expansion	Huang et al. (2010)	
	PKCβ	PDGF/siRNA	Mice VSMCs	VSMCs	Increases migration of VSMCs	Quintavalle et al. (2010)
	PKCβ	OxlDL	HCAECs	Increases MIMP-1 and MIMP-3 expression	Li et al. (2003b)	
	PKCβ	IL-1/β/PKCβ inhibitor	Human ECs	Increases MIMP-2 expression	Mountain et al. (2007)	
	PKCβ	OxlDL/PKCβ inhibitor	Human and mice aortic ECs	Increases MIMP-2 expression	Harja et al. (2009)	

(Continued on following page)
leading to PKC activation which enhances NADPH oxidase by promotes p47phox translocation from cytosol to membrane (Inoguchi et al., 2000; Yuan et al., 2019). In addition, metformin or liraglutide inhibits hyperglycemia-induced ROS production though downregulation of PKC-dependent NADPH oxidase in human ECs (Batchuluun et al., 2014), which partly elucidates their athero-protective effects. Interestingly, hyperglycemia increases mitochondrial superoxide production, leading to PKC activation (Nishikawa et al., 2000; Steinberg, 2015). Undoubtedly, ROS and PKC mutually interact to form a vicious circle during atherosclerosis.

Protein Kinase C and Endothelial Dysfunction

The endothelium is the main regulator of vascular wall homeostasis. ECs produce NO by eNOS to maintain vascular tone and regulate leukocyte infiltration (Toussoulis et al., 2012). In the early stage of atherosclerosis, oxLDL inhibits eNOS activity to reduce NO production (Hirata et al., 1991), leading to increased expression of adhesion molecules, increased synthesis of pro-inflammatory and pro-thrombotic factors, increased oxidative stress, and abnormal modulation of vascular tone (Sitia et al., 2010). PKCα has been demonstrated to play an important role in endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) treated with oxLDL reduced PKCα activity, which is associated with dephosphorylation of eNOS at Thr495, dissociation of the eNOS signaling complex, and enhanced production of eNOS-derived superoxide anion (Fleming et al., 2005). In human ECs, activation of PKC by phorbol esters or thymeleatoxin stimulates entry of arginine via induction of cationic amino acid transporters 2 (CAT2) arginine transporters, and increases arginine expression and activity, which shifts arginine metabolism from NO synthesis to ornithine and urea production, thereby promoting eNOS phosphorylation at Thr495 and reducing NO production. These effects, possibly mediated by PKCα, require activation of the MEK/ERK1/2 cascade, which stimulates activator protein-1 activity and CAT2 expression (Visigalli et al., 2010). Furthermore, oxLDL stimulated endothelin-1 (ET-1) and mechanistic target of rapamycin 2 (mTOR2) expression to induce the expression of adhesion molecules, such as ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 (MCP-1) (Fan et al., 2019). In addition to PKCα, PKCβ regulates VCAM-1 and MMP2 expression in oxLDL-treated human aortic ECs, which promotes atherogenesis (Harja et al., 2009). All these studies point out that PKC isoforms contribute to endothelial dysfunction by regulating NO production and inflammatory responses in hypercholesterolemia and hyperglycemia.

Protein Kinase C in Macrophage Inflammation and Lipid Regulation

The formation of foam cells involves the uptake of LDL and modified LDL, and the efflux of excess cholesterol by macrophages (Kunjathoor et al., 2002; Kruth et al., 2005; Tall, 2008; Moore and Tabas, 2011). LDL uptake occurs through several mechanisms, including fluid-phase pinocytosis of native LDL (Kruth et al., 2005). Substantial evidence suggests that oxLDL uptake by macrophages can occur via SRs, namely SR-A, CD36, and lectin-like oxidized low-density lipoprotein receptor-1 (Kunjathoor et al., 2002; Moore and Freeman, 2006). Recent work on the regulation of foam cells has also focused on cholesterol efflux from tissues, which leads to regression of atherosclerotic lesions (Tall, 2008). Reverse cholesterol transporters, such as ATP binding cassette subfamily A member 1 (ABCA1) and ABCG1, are thought to mediate more than 70% of total cholesterol efflux from macrophage foam cells after cholesterol loading (Tall, 2008).

TABLE 1 | (Continued) Summary of PKC isoform-specific role in the progress of atherosclerosis.

Atherosclerosis etiology	PKC isoform	Stimulus/intervention	Working model	Effect of specific PKC isoform	References
PKCβ	PKCβ gene knockout	ApoE−/− mice	Increases MMP-2 expression and atherosclerotic lesion size and complexity	Harja et al. (2009)	
PKCβII	Deradication injury, TNFα/ PKCβ Tg	Mice arteries or VSMCs	Increases MMP-9 expression and secretion	Huang et al. (2010)	
PKCα	bFGF and IL-1/AS, DN mutation	Rabbit VSMCs	Increases MMP-1, -3, -9 secretion	Hussain et al. (2002)	
PKCα	Resistin/PKCα inhibitor	Human coronary VSMCs	Increases MMP-2, -9 expression	Ding et al. (2011)	

LDLR, low density lipoprotein receptor; AS, antisense oligonucleotide; HUVECs, human umbilical vein endothelial cells; ICAM-1, intercellular cell adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; MCP-1, monocyte chemotactrant protein-1; CCR2, C-C chemokine receptor type 2; CXCL2, C-X-C Motif Chemokine Ligand 2; HAECS, human aortic endothelial cells; MMP, matrix metalloproteinase; ABCA1, ATP binding cassette subfamily A member 1; ABCG1, ATP binding cassette subfamily G member 1; HFD, High-fat diet; BMDMs, bone marrow-derived macrophages; PBMC, peripheral blood mononuclear cell; HMDMs, human monocyte-derive macrophages; HCAECs, human coronary artery endothelial cells; LDL, low density lipoprotein; SR-A, CD36, and lectin-like oxidized low-density lipoprotein receptor-1 (Kunjathoor et al., 2002); SRs, namely via SR-A, CD36, and lectin-like oxidized low-density lipoprotein receptor-1 (Kunjathoor et al., 2002; Moore and Freeman, 2006). Recent work on the regulation of foam cells has also focused on cholesterol efflux from tissues, which leads to regression of atherosclerotic lesions (Tall, 2008). Reverse cholesterol transporters, such as ATP binding cassette subfamily A member 1 (ABCA1) and ABCG1, are thought to mediate more than 70% of total cholesterol efflux from macrophage foam cells after cholesterol loading (Tall, 2008).
PKC isoforms involve several signaling pathways that contribute to different roles in macrophages during atherosclerosis. Previous studies showed that the high levels of plasma resistin in patients with ASCVD are associated with high levels of inflammatory cytokines. Resistin upregulating inflammatory cytokine gene expressions of CD40L, interleukin (IL)-12p40, IL-6, TNF-α, MIP-1α, and MIP-1β is mediated by PKCε and TLR4 in human macrophages (Zuniga et al., 2017).

Activation of PKCa results in phosphorylation of ABCG1 and prevention ABCG1 from degradation, which facilitates cholesterol efflux from cells (Watanabe et al., 2019). Moreover, PKCζ-mediated hsp27-enhanced ABCA1 expression and cholesterol efflux in THP-1 macrophages (Kuang et al., 2017). Interestingly, unsaturated fatty acids phosphorylate and destabilize ABCA1 through PKCδ signaling pathway, but not through PKCβ and PKCθ signaling pathways, in murine RAW 264.7 macrophages (Wang and Oram, 2007). All these results point out the diverse effects of specific PKC isoform in regulation of cholesterol efflux.

Studies using pharmacological inhibitors demonstrate that inhibition of PKCδ prevents oxLDL uptake in human macrophages by reducing SR-A expression (Osto et al., 2008). Moreover, thrombin inducing CD36 expression and foam cell formation is through Gat12-Pyk2-Gab1-PKCδ-dependent ATF2 activation, which contributes to diet-induced atherogenesis (Raghavan et al., 2018). We previously demonstrated that knockdown of PKCδ by shRNA or siRNA effectively reduced SR-A, CD36 expression, oxLDL uptake, and foam cell formation through PI3K/Akt and ERK signaling pathways in THP-1-derived macrophages and human primary macrophages (Lin et al., 2012). The high expressed PKCε in human atherosclerotic arteries and infiltrating CD68-positive macrophages further emphasized the role of PKCδ on foam cell formation during atherosclerosis. However, study from Szilagyi et al. (2014) indicated that inhibition of PKCδ did not change CD36 expressions and foam cell formation in human monocyte-derived macrophages (HMDMs) from healthy donors and BMDMs from PKCε KO mice. Intriguingly, in diabetic rats, the protein levels of PKCδ are increased in macrophages (Li et al., 2017). Depletion of PKCδ promotes atherosclerotic plaque formation in ApoE KO mice. However, the protein expression of CD36 and acetylated LDL uptake by peritoneal macrophages did not differ between PKCδ/ApoE KO and ApoE KO mice. Further confirmatory studies are necessary to prove the role of PKCδ on foam cell formation and atherosclerosis.

Protein Kinase C Regulates Vascular Smooth Muscle Cells Functions

In response to environmental cues and atherogenic stimuli, such as lipids, lipoproteins, ROS, and inflammatory mediators, VSMCs can shift from a contractile phenotype to a synthetic phenotype, namely SMC phenotypic switching (Allahverdian et al., 2018). The contractile phenotype is characterized by high levels of contractile gene expression, such as α-smooth muscle actin (αSMA), smooth muscle 22α (SM22a), and heavy-caldesmon (h-Cad), and low rates of proliferation, migration, and extracellular matrix production. In contrast, the synthetic phenotype is characterized by reduced contractile gene expression and increased rates of proliferation, migration, and extracellular matrix production (Owens et al., 2004; Allahverdian et al., 2018). Moreover, apoptosis of VSMCs may occur due to cyclic stretch of proliferated VSMCs and continuous uptake of oxLDL, which is possibly mediated by PKC (Li et al., 2000). The subsequent effect of VSMCs on atherosclerosis is complex because both proliferation and apoptosis of VSMCs coincide with atherosclerotic lesions. Although apoptosis of VSMCs can reduce intimal hyperplasia, which promotes early atherosclerotic lesions, the accumulation of apoptotic VSMCs may contribute to the instability and rupture of advanced plaques (Weissberg et al., 1996; Leitges et al., 2001).

Several studies proposed the role of PKCδ on apoptosis. Studies using Pkcd null mice suggested that vein graft arteriosclerosis is accelerated due to the resistance of PKCδ−/− VSMCs to apoptosis compared that of VSMCs from wild-type mice (Leitges et al., 2001). PKCδ contributes to oxLDL-induced endoplasmic reticulum (ER) stress and apoptosis in human VSMCs (Larroque-Cardoso et al., 2013). Additionally, caspase-3-mediated PKCδ cleavage is mandatory for oxidative stress-induced VSMC apoptosis, and PKCδ acts both upstream and downstream of caspase-3 (Kato et al., 2009). Such evidence highlights the crucial roles PKCδ of VSMC apoptosis.

Additionally, overexpression of PKCδ reduces proliferation of VSMCs by arresting cells in the G1 phase and inhibiting the expression of cyclin D1 and cyclin E (Fukumoto et al., 1997). However, PKCδ is involved in the regulation of VSMC proliferation through ERK signaling, which is a major regulatory pathway for cell growth and proliferation (Ginman et al., 2004). PKCδ mediates angiotensin II-stimulated ROS generation and proliferation of VSMCs via interaction with smooth muscle 22α and p47phox (Lv et al., 2012). These results revealed the controversial roles of PKCδ on VSMC proliferation. Additionally, PKCδ is activated and translocated to the cytoskeleton during VSMC migration under mechanical stress. VSMCs from Pkcd null mice showed reduced migration in response to platelet-derived growth factor and mechanical stress (Li C. et al., 2003). Corroborating the finding that PKCδ is one of the major PKC isoforms expressed in VSMCs (Fukumoto et al., 1997), these studies provide evidence for the important roles of PKCδ in VSMC-mediated atherosclerosis.

Although PKCδ plays a major role in regulating VSMC functions, other PKC isoforms might contribute to ROS-induced apoptosis of VSMCs, including PKCa, PKCβII, and PKCe (Li et al., 1999). Overexpression of PKCa or PKCβII, but not PKCδ, reduces serum starvation-induced apoptosis in human aortic SMCs and exhibits athero-protective effects in ApoE null mice (Zhang et al., 2021). In vivo transgenic inhibition of PKCβII suppresses VSMC proliferation and neointimal expansion in response to acute artery injury, possibly via regulation of the ERK and Erg-1 signaling pathways (Huang et al., 2010). Moreover, silencing of PKCε reduces VSMC migration (Quintavalle et al., 2010). These
results suggest that PKC isoforms other than PKCδ might regulate VSMC proliferation, apoptosis, and migration during atherosclerosis.

Protein Kinase C in the Progress of Plaque Complexity

Although atherosclerotic plaques cause lumen narrowing and myocardial tissue ischemia, the culprit lesions from patients who died of acute atherothrombotic events are characterized not by their size, but by several distinct morphological features, such as large necrotic cores, a ruptured or eroded fibrous cap, and an occlusive thrombus (Tabas, 2011). Vulnerable plaques with large necrotic cores and thin fibrous caps are highly predictive of progression to culprit lesions and are usually observed in patients with acute coronary syndrome (Tabas, 2011). Thinning of fibrous caps in vulnerable plaques is mainly due to apoptosis of VSMCs and the secretion of MMPs from vascular cells, particularly collagenases (MMP-1, MMP-8, and MMP-13) for the initial proteolytic cleavage of the intact collagen fibrils and gelatinases (MMP-2 and MMP-9) for further degradation of the cleaved collagen (Clarke et al., 2006; Libby, 2008). The second critical feature of vulnerable plaques is plaque necrosis. In early plaques, VSMCs and macrophages undergo apoptosis, and the dead cells are rapidly removed by neighboring phagocytes (Tabas, 2010; Moore and Tabas, 2011; Tabas, 2011). However, such effecrocytosis becomes less efficient under prolonged ER stress conditions in advanced lesions, and the plaques then develop necrotic cores, which further destabilize the plaques (Tabas, 2010; Moore and Tabas, 2011; Tabas, 2011). Therefore, recent studies of plaque evolution have primarily focused on ER stress-induced apoptosis of macrophages and defective effecrocytosis, apoptosis of VSMCs, and secretion of MMPs by macrophages (Clarke et al., 2006; Libby, 2008; Tabas, 2010).

Non-selective chemical inhibition of PKC has no effect on ER stress-induced apoptosis of macrophages, suggesting that PKC is not involved in this process (Seimon et al., 2010). However, several studies have shown that PKC is involved in MMP expression in vascular cells. OxLDL activates PKC and increases MMP-1 and MMP-3 expression in human coronary artery ECs, which is blocked by inhibition of PKC (Li et al., 2003). Further studies have shown that inhibition of PKCa/βI reduces IL-1β-induced MMP-2 expression in human ECs (Mountain et al., 2007). Moreover, inhibition of a PKCβ isoform, namely PKCβII, decreases oxLDL-induced MMP-2 expression in primary murine and human aortic ECs (Harja et al., 2009). Transgenic inhibition of PKCβII suppresses TNFα-induced MMP-9 expression in VSMCs and reduces denudation-induced MMP-9 expression in mouse femoral arteries, possibly via regulation of ERK and Erg-1-dependent signaling (Huang et al., 2010). The role of PKCβII in MMP expression and secretion has also been examined in atherosclerosis-prone ApoE null mice. PKCβII, but not PKCβI, was activated in the aortas of ApoE null mice. Chemical inhibition of PKCβ or genetic deletion of PKCβ decreases MMP-2 expression in the aorta, which reduces the complexity of atherosclerotic lesions (Harja et al., 2009). PKCζ, in addition to PKCβII, regulates MMP secretion induced by basic fibroblast growth factor and IL-1 in rabbit VSMCs, possibly via NFκB signaling (Hussain et al., 2002). Inhibition of PKCζ suppresses resistin-induced MMP-2 and MMP-9 expression, resulting in reduced migration of VSMCs (Ding et al., 2011). These studies highlight the important roles played by PKCβ, PKCζ, and PKCε in regulating MMP expression during atherosclerotic plaque evolution.

THE ROLE OF PROTEIN KINASE C IN DIABETES-ASSOCIATED ATHEROSCLEROSIS

PKC plays a major role in diabetes and atherosclerosis. A previous study indicated that inhibition of hepatic insulin receptor reduces LDLR protein expression, which is possibly due to upregulating the levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) via hepatic mTORC1 mediated PKCδ pathway (Ai et al., 2012). Hyperglycemia activates PKCβ to decrease eNOS activity and increase adhesion molecules, such as ICAM-1, VCAM-1, and E-selectin expression, leading to macrophage adhesion to ECs (Avogaro et al., 2008; Xu et al., 2010). Moreover, in diabetic ApoE null mice, PKCβ is involved in diabetes-accelerated atherosclerosis via regulation of the IL-18/IL-18BP and MAP kinase signaling pathways and promotes VCAM-1 expression, macrophage adhesion, EC dysfunction, aorta and macrophage inflammatory responses (Kong et al., 2013; Durpes et al., 2015). Additionally, inhibition of PKCβ reduces the expression of ICAM-1 and monocyte chemoattractant protein-1 (MCP-1) and decreases the recruitment of macrophages to the kidneys of diabetic rats (Wu et al., 2006). Although RAGE acts as a key role in diabetes-associated atherosclerosis, the studies on the association between RAGE and PKC in atherosclerosis are limited, which requires further investigation. These data indicate that PKCβ and PKCδ contribute to diabetes-accelerated atherosclerosis with the involvement of hepatic cholesterol metabolism, endothelial dysfunction, vascular inflammation, and monocyte recruitment and adhesion. (Figure 2 and Table 2).

PHARMACOLOGIC INHIBITION OF PROTEIN KINASE C IN HUMAN CLINICAL TRIALS

Based on structural and functional approaches, there are several potential targets for pharmacological development of PKC, including the ATP-binding site in the catalytic region, the DAG-binding site, anchoring protein-binding sites in the C2 domain, protein-protein interactions that regulate the subcellular
localization of the PKC enzymes, and substrate-binding sites (Mochly-Rosen et al., 2012). Several clinical trials have been conducted for the treatment of cardiovascular disorders, diabetes, cancer, bipolar disorder, and transplantation rejection (Mochly-Rosen et al., 2012) (ClinicalTrials.gov). Despite the promising effects of PKC modulators in human disease, results in clinical trials remain controversial. A large randomized trail using adenosine, which activates PKCδ and PKCε, during acute myocardial infarction proposed that treatment with high-dose adenosine significantly reduces infarct size compared to placebo (Ross et al., 2005). Intra-coronary administration of delcassertib, a peptide inhibitor of PKCδ, exhibits a trend toward reduced

TABLE 2 | Summary of PKC isoform-specific role in diabetes-associated atherosclerosis.

Step of atherosclerosis	PKC isoform	Stimulus/intervention	Working model	Effect of specific PKC isoform	References
Cholesterol metabolism	PKCδ	siRNA	Tsc1-null MEFs	Upregulation of LDLR protein expression	Ai et al. (2012)
Endothelial dysfunction	PKCβ	AGE/LY333531	HUVEC	Increases ICAM-1 expression and monocytes adhesion to ECs	Xu et al. (2010)
	PKCβ	STZ, HFD, HG, palmitate, IL-18/RBX	BAECs, THP-1, HAECs, RAW 264.7, DM ApoE-/- mice	Increases VCAK-1 and IL-18 expression and monocytes adhesion to ECs, enhances plaque formation, complexity, and cholesterol content	Durpes et al. (2015)
	PKCβ	STZ/LY333531	Rat	Increases macrophages recruitment and ICAM-1 and MCP-1 protein expression in the kidney	Wu et al. (2006)
	PKCβ	PKCβ gene knockout/RBX	DM ApoE-/- mice, U937	Increases monocytes content, inflammation and MAPK expression, enhances plaque formation	Kong et al. (2013)

LDLR, low density lipoprotein receptor; HUVECs, human umbilical vein endothelial cells; ICAM-1, intercellular cell adhesion molecule-1; VCAK-1, vascular cell adhesion molecule-1; HAECs, human aortic endothelial cells; PBMC, peripheral blood mononuclear cell; PKC, protein kinase C; IL, interleukin; HFD, High-fat diet; STZ, Streptozotocin; BAECs, bovine aorta endothelial cells; MAPK, mitogen-activated protein kinase; RBX, ruboxistaurin.
infarct size and promoted resolution of ST elevation (Direct Inhibition of delta-Protein Kinase et al., 2008). Certain clinical trials of ruboxistaurin (RBX), a PKCβ inhibitor, in the treatment of diabetic complications revealed that inhibition of PKCβ significantly reduces diabetic retinopathy, nephropathy, and neuropathy (Geraldes and King, 2010; Mochly-Rosen et al., 2012). Additionally, in a clinical trial of diabetic retinopathy, where 252 patients received a placebo or RBX (8, 16, or 32 mg/day) for 36–46 months, treatment with 32 mg/day RBX delayed the occurrence and reduced the risk of moderate visual loss (MVL) and sustained MVL (SMVL) compared to that with the placebo (Group, 2005). Although the outcome of clinical trials needs further validation, the current review suggests the promising role of PKC in diabetes-associated atherosclerosis.

POTENTIAL CHALLENGES AND FUTURE PERSPECTIVES

PKC remains an elusive drug target, and no single compound has been identified to specifically target PKC (Mochly-Rosen et al., 2012). Several challenges and limitations need to be overcome before PKC inhibitors can be used to treat atherosclerosis or diabetic atherosclerosis. First, different PKC isoforms may regulate the same target protein with different effects. For instance, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phospholipase D1 (PLD1) activation is mediated by PKCα. However, PKCδ overexpression inhibits PLD1 activation. In particular, overexpression of PKCδ inhibits PKCa-mediated PLD1 activation (Oka et al., 2003). Second, different PKC isoforms have different effects in the same disease model. Li et al. (2017) revealed that deletion of PKCδ increases atherosclerotic lesions in ApoE null mice, whereas Raghavan et al. (2018) revealed that PKCδ deletion decreases atherosclerotic lesions in ApoE null mice. Likewise, PKC isoforms may play a compensatory role in the loss of other PKC isoforms. For instance, deletion of PKCe causes an increase in PKCδ expression and activation in the heart of Prkce null mice (Gray et al., 2004). In addition, deletion of PKCδ increases PKCa/βII phosphorylation in peritoneal macrophages isolated from ApoE null mice (Raghavan et al., 2018). Third, although several inhibitors of PKC have been developed, the lack of isoform-selectivity in many current compounds is a common problem. Enzastaurin, a PKCβ-selective inhibitor, has been found to inhibit PKC isoforms, namely PKCa, PKCy, and PKCe (Graff et al., 2005). Moreover, the PKCδ-selective inhibitor, rottlerin, has been used in many studies. It has been reported that rottlerin blocks glycogen synthase kinase 3β, malate dehydrogenase, and activated calcium-activated K+ channel (Soltoff, 2007). Collectively, insufficient inhibitors selectively affect different PKC isoforms simultaneously. Different PKC isoforms have complex interactions and regulation, which may display antagonistic effects in these studies.

Given the critical roles of PKC isoforms in the progression of diabetes-associated atherosclerosis, further in vitro and in vivo animal studies and clinical trials in humans will be necessary to define the specific functions of PKC in diabetes-associated atherosclerosis. Large-scale screening of isoform-specific PKC inhibitors is necessary to identify the key enzyme at each phase of diabetes-associated atherosclerosis and to understand the functional interplay between the isoforms. The next step in PKC research in diabetes-associated atherosclerosis is to expand the in vivo investigations. Approaches such as transplantation of bone marrow from isoform-specific null mice to atherosclerosis-prone mouse models (Ldlr^{−/−} or ApoE^{−/−} mice) and generation of double knockout mice may help to evaluate the functional role of each PKC isoform during the progression of diabetes-associated atherosclerosis. A combination of these genetic approaches and highly selective pharmacological tools will facilitate in confirming the role of PKC in diabetic atherosclerosis and potentially assist the search for clinical therapeutics.

CONCLUSION

Our review indicated that PKC plays an extensive role in the pathophysiology of diabetes and atherosclerosis, and therefore could be an excellent therapeutic target for stage-specific diabetes-associated atherosclerosis. To identify the key PKC isoforms involved in the pathogenesis and to determine whether the combinations of isoform-specific inhibitors might have synergistic effects in the treatment of diabetes-associated atherosclerosis are two potential challenges in developing therapeutic agents targeting PKC for ASCVD. Though further confirmatory in vitro and in vivo studies, and human studies are required, we anticipate that the promising role of PKC can potentiate the treatment of diabetes-associated atherosclerosis in humans.

AUTHOR CONTRIBUTIONS

C-FL, M-CT, and C-SL contributed to the conception and wrote the manuscript; S-JC prepared the figures and tables. C-FL, M-CT, and C-SL approved its final version.

FUNDING

This research was funded by grants from the Taiwan Ministry of Science and Technology (MOST 109-2314-B-016-042-MY3 to C-SL, MOST 109-2314-B-016-044 to S-JC and MOST 109-2320-B-016-003-MY2 to M-CT), Tri-Service General Hospital (TSGH-E-110188 to C-SL), Kaohsiung Armed Forces General Hospital (802KB109607 to C-SL) and Ministry of National Defense-Medical Affairs Bureau (MAB-109-069 to M-CT).
REFERENCES

Ai, D., Chen, C., Han, S., Ganda, A., Murphy, A. J., Haessler, R., et al. (2012). Regulation of Hepatic LDL Receptors by mTORC1 and PCSK9 in Mice. J. Clin. Invest. 122, 1262–1270. doi:10.1172/JCI61919

Albers, J. I., Marcovina, S. M., Imperatore, G., Snively, B. M., Stafford, J., Fujimoto, W. Y., et al. (2008). Prevalence and Determinants of Elevated Apolipoprotein B and Dense Low-Density Lipoprotein in Youths with Type 1 and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 93, 735–742. doi:10.1210/jc.2007-2176

Allahverdian, S., Chaabane, C., Boukais, K., Francis, G. A., and Bochaton-Piallat, M.-L. (2018). Smooth Muscle Cell Fate and Plasticity in Atherosclerosis. Cardiovasc. Res. 114, 540–550. doi:10.1093/cvr/cvy222

Alwassil, H. S., Oude Elferink, R., and Rayfield, E. J. (2002). How Hyperglycemia Promotes Atherosclerosis: Molecular Mechanisms. Cardiovasc. Diab. 1, 1. doi:10.1186/1475-2840-1-1

Avogaro, A., Kreutzberg, S. V. d., and Fadini, G. (2008). Endothelial Dysfunction: Causes and Consequences in Patients with Diabetes Mellitus. Diabetes Res. Clin. Pract. 82 (Suppl. 2), S94–S101. doi:10.1016/j.diabres.2008.09.021

Bar-Tana, J. (2020). Type 2 Diabetes - Unmet Need, Unresolved Pathogenesis, mTORC1-Centric Paradigm. Rev. Endocr. Metab. Disord. 21, 613–629. doi:10.1007/s11154-020-09545-w

Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R., and Mallat, Z. (2006). Apoptosis of Vascular Smooth Muscle Cells Induces Endothelial Dysfunction through Protein Kinase Cε-dependent Activation Inhibits IL-18-binding Protein Causing Endothelial Dysfunction and Diabetic Atherosclerosis. Cardiovasc. Res. 106, 303–315. doi:10.1093/cvr/cvi107

Fang, X., Chen, X., Feng, Q., Peng, K., Wu, Q., Passerini, A. G., et al. (2019). Downregulation of GATA6 in mTOR-Inhibited Human Aortic Endothelial Cells: Effects on TNF-α-Induced VCAM-1 Expression and Monocytic Cell Adhesion. Am. J. Physiology-Heart Circulatory Physiol. 316, H408–H420. doi:10.1152/ajpheart.00411.2018

Fleming, I., Mohamed, A., Galle, J., Turchanowa, L., Brandes, R., Fisslthaler, B., et al. (2005). Oxidized Low-Density Lipoprotein Increases Superoxide Production by Endothelial Nitric Oxide Synthase by Inhibiting PKC? Cardiovasc. Res. 65, 897–906. doi:10.1016/j.cardiores.2004.11.003

Fouda, M. A., and Ruben, P. C. (2021). Protein Kinases Mediate Anti-inflammatory Effects of Cannabidiol and Estradiol against High Glucose in Cardiac Sodium Channels. Front. Pharmacol. 12, 66657. doi:10.3389/fphar.2021.66657

Fukuimoto, S., Nishizawa, Y., Hosoi, M., Koyama, H., Yamakawa, K., Ohno, S., et al. (1997). Protein Kinase C δ Inhibits the Proliferation of Vascular Smooth Muscle Cells by Suppressing G1 Cyclin Expression. J. Biol. Chem. 272, 13816–13822. doi:10.1074/jbc.272.21.13816

Geraldes, P., and King, G. L. (2010). Activation of Protein Kinase C Isosforms and its Impact on Diabetic Complications. Circ. Res. 106, 1319–1331. doi:10.1161/CIRCRESAHA.110.217119

Gimpev, R., Pileiderer, P. J., Purniglia, K., and Singer, H. A. (2004). PKC-δ and CaMKII-Δ2 Mediate ATP-dependent Activation of ERK1/2 in Vascular Smooth Muscle. Am. J. Physiology-Cell Physiol. 286, C1281–C1289. doi:10.1152/ajpcell.00202.2003

Graff, J. R., McNulty, A. M., Hanna, K. R., Lynch, R. L., Bailey, S. N., et al. (2005). The Protein Kinase Cβ-Selective Inhibitor, Enzastaurin (LY371655.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts. Cancer Res. 65, 7462–7469. doi:10.1158/0008-5472.CAN-05-0071

Gray, M. O., Zhou, H.-Z., Schafhalter-Zoppoth, I., Zha, L., Mochly-Rosen, D., and Messing, R. O. (2004). Preservation of Base-Line Hemodynamic Function and Loss of Inducible Cardioprotection in Adult Mice Lacking Protein Kinase Cε. J. Biol. Chem. 279, 3596–3604. doi:10.1074/jbc.M411459200

Group, P.-D. S. (2005). The Effect of Ruboxistaurin on Visual Loss in Patients with Moderately Severe to Very Severe Nonproliferative Diabetic Retinopathy: Initial Results of the Protein Kinase C Beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) Multicenter Randomized Clinical Trial. Diabetes 54, 2188–2197. doi:10.2337/diabetes.54.7.2188

Hall, J. L., Matter, C. M., Wang, X., and Gibbons, G. H. (2000). Hyperglycemia Inhibits Vascular Smooth Muscle Cell Apoptosis through a Protein Kinase C-dependent Pathway. Circ. Res. 87, 574–580. doi:10.1161/01.res.87.7.574

Harja, E., Chang, I. S., Lu, Y., Leitges, M., Zou, Y. S., Schmidt, A. M., et al. (2009). Mice Deficient in PKC β and Apolipoprotein E Display Decreased Atherosclerosis. FASEB J. 23, 1081–1091. doi:10.1096/fj.08-120345

Hirata, K.-i., Akita, H., and Yokoyama, M. (1991). Oxidized Low Density Lipoprotein Increases Nitric Oxide Synthesis by Inhibiting PKC. J. Biol. Chem. 266, 10139–10142. doi:10.1016/0021-9258(91)90002-X

Hirata, T. D., et al. (2006). Apoptosis of Vascular Smooth Muscle Cells: Effects on plaque Vulnerability in Atherosclerosis. Nat. Med. 12, 1075–1080. doi:10.1038/nmm1593

Holmström, K. M., and Finkel, T. (2014). Cellular Mechanisms and Physiological Consequences of Redox-dependent Signalling. Nat. Rev. Mol. Cell Biol. 15, 111–121. doi:10.1038/nrm3800

Holmström, K. M., and Finkel, T. (2014). Cellular Mechanisms and Physiological Consequences of Redox-dependent Signalling. Nat. Rev. Mol. Cell Biol. 15, 111–121. doi:10.1038/nrm3800

Holmstrom, K. M., and Finkel, T. (2014). Cellular Mechanisms and Physiological Consequences of Redox-dependent Signalling. Nat. Rev. Mol. Cell Biol. 15, 111–121. doi:10.1038/nrm3800
Oxidase in Cultured Vascular Cells. Diabetes 49, 1939–1945. doi:10.2337/diabetes.49.11.1939

Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977). Studies on a Cyclic Nucleotide-independent Protein Kinase and its Proenzyme in Mammalian Tissues. II. Proenzyme and its Activation by Calcium-dependent Protease from Rat Brain. J. Biol. Chem. 252, 7610–7616. doi:10.1016/s0021-9258(17)41010-6

Kapoor, G. S., Golden, C., Atkins, B., and Mehta, K. D. (2003). pp90RSK- and Protein Kinase C-dependent Pathway Regulates P42/44 MAPK-Induced LDL Receptor Activation. J. Lipid Res. 44, 584–593. doi:10.1194/jlr.M200302-JLR200

Kato, K., Yamanouchi, D., Esbena, K., Kamiya, K., Zhang, F., Kent, K. C., et al. (2009). Caspase-mediated Protein Kinase C-δ Cleavage Is Necessary for Apoptosis of Vascular Smooth Muscle Cells. Am. J. Physiology-Heart Circulatory Physiol. 297, H2253–H2261. doi:10.1152/ajpheart.00274.2009

Kong, L., Shen, X., Lin, L., Leitges, M., Rosario, R., Zou, Y. S., et al. (2013). PKCβ Promotes Vascular Inflammation and Acceleration of Atherosclerosis in Diabetic ApoE Null Mice. Arterioscler Thromb. Vasc. Biol. 33, 1779–1787. doi:10.1161/ATVBAHA.112.301113

Krugt, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., et al. (2005). Macropinocytosis Is the Endocytic Pathway that Mediates Macrophage Foam Cell Formation with Native Low Density Lipoprotein. J. Biol. Chem. 280, 2352–2360. doi:10.1074/jbc.M407167200

Kuang, H.-J., Zhao, G.-J., Chen, W.-J., Zhang, M., Zeng, G.-F., Zheng, X.-L., et al. (2017). Hsp27 Promotes ABCA1 Expression and Cholesterol Efflux through the PK3/PKCα/Sp1 Pathway in THP-1 Macrophages. Eur. J. Pharmacol. 810, 57–62. doi:10.1016/j.ejphar.2017.06.015

Kumar, A., Chambers, T. C., Cloud-Heflin, B. A., and Mehta, K. D. (1997). Phorbol Ester-induced Low Density Lipoprotein Receptor Gene Expression in HepG2 Cells Involves Protein Kinase C-Mediated P42/44 MAP Kinase Activation. J. Lipid Res. 38, 2240–2248. doi:10.1194/jlr.2003032755

Lv, P., Miao, S.-B., Shu, Y.-N., Dong, L.-H., Liu, G., Xie, X.-L., et al. (2012). Phosphorylation of Smooth Muscle 22a Facilitates Angiotensin II-induced ROS Production via Activation of the PKCδ-P47 Phox Axis through Release of PKCδ and Actin Dynamics and Is Associated with Hypertrophy and Hyperplasia of Vascular Smooth Muscle Cells In Vivo and In Vivo. Circ. Res. 111, 697–707. doi:10.1161/CIRCRESAHA.112.272013

Marino, M., Distefano, E., Pallottini, V., Caporali, S., Bruscalupi, G., and Trelentale, A. (2001). Activation of IP3-Protein Kinase C-a Signal Transduction Pathway Precedes the Changes of Plasma Cholesterol, Hepatic Lipid Metabolism and Induction of Low-Density Lipoprotein Receptor Expression in 17-β-Estradiol-Treated Rats. Exp. Physiol. 86, 39–45. doi:10.1113/epjph2069

Mehta, K. D., Radominska-Pandya, A., Kapoor, G. S., Dave, B., and Atkins, B. A. (2002). Critical Role of Diacylglycerol- and Phospholipid-Regulated Protein Kinase Ce δ in Induction of Low-Density Lipoprotein Receptor Transcription in Response to Depletion of Cholesterol. Mol. Cell Biol 22, 3783–3793. doi:10.1128/mcb.22.11.3783-3793.2002

Mochly-Rosen, D., Das, K., and Grimes, K. V. (2012). Protein Kinase C, an Elusive Therapeutic Target?. Nat. Rev. Drug Discov. 11, 937–957. doi:10.1038/nrd871

Moore, K. J., and Freeman, M. W. (2006). Scavenger Receptors in Atherosclerosis. Arterioscler Thromb. Vasc. Biol. 26, 1702–1711. doi:10.1161/01.ATV.000022918.97997.e4

Moore, K. J., and Tabas, I. (2011). Macrophages in the Pathogenesis of Atherosclerosis. Cell 145, 341–355. doi:10.1016/j.cell.2011.04.005

Mountain, D. J. H., Singh, M., Menon, B., and Singh, K. (2007). Interleukin-1β Increases Expression and Activity of Matrix Metalloproteinase-2 in Cardiac Microvascular Endothelial Cells: Role of PKCa/β1 and MAPKs. Am. J. Physiology-Cell Physiol. 292, C867–C875. doi:10.1152/ajpcell.00161.2006

Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S.-i., Matsumura, T., Kanaeda, Y., et al. (2004). Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hypoglycemic Damage. Nature 404, 787–790. doi:10.1038/35081812

Oka, M., Okada, T., Nakamura, S.-i., Ohha, M., Kuroki, T., Kikkawa, U., et al. (2003). PKCβ Inhibits PKCα-Mediated Activation of Phospholipase D1 in a Manner Independent of its Protein Kinase Activity. FEBS Lett. 554, 179–183. doi:10.1016/s0014-5793(03)01158-x

Okon, E. B., Chung, A. W. Y., Rauniyar, P., Padilla, E., Tejerina, T., Mcmanus, B. M., et al. (2005). Compromised Arterial Function in Human Type 2 Diabetic Patients. Diabetes 54, 2415–2423. doi:10.2337/diabetes.54.8.2415

Osto, E., Kouravedov, A., Mocholar, P., Akhmedov, A., Besler, C., Rohrer, L., et al. (2008). Inhibition of Protein Kinase Cβ Prevents Foam Cell Formation by Reducing Scavenger Receptor A Expression in Human Macrophages. Circulation 118, 2174–2182. doi:10.1161/CIRCULATIONAHA.108.789537

Owens, G. K., Kumar, M. S., and Wamhoff, B. R. (2004). Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiol. Rev. 84, 767–801. doi:10.1152/physrev.00041.2003

Paul, S., Ali, A., and Katere, R. (2020). Molecular Complexities Underlying the Vascular Complications of Diabetes Mellitus - A Comprehensive Review. J. Diabetes Complications 34, 107613. doi:10.1016/j.jdiacomp.2020.107613

Quintavalle, M., Elia, L., Condorelli, G., and Courtneidge, S. A. (2010). MicroRNA Control of Podosome Formation in Vascular Smooth Muscle Cells In Vivo and In Vitro. J. Cell Biol. 189, 13–22. doi:10.1083/jcb.200921096

Raghavan, S., Singh, N. K., Gali, S., Mani, A. M., and Rao, G. N. (2018). Protein Kinase Cδ via Activating Transcription Factor 2-Mediated CD36 Expression and Foam Cell Formation of Ly6C hi Cells Contributes to Atherosclerosis. Circulation 138, 2395–2412. doi:10.1161/CIRCULATIONAHA.118.034083

Rask-Madsen, C., Li, Q., Freund, B., Feather, D., Abramov, R., Wu, I.-H., et al. (2010). Loss of Insulin Signaling in Vascular Endothelial Cells Accelerates Atherosclerosis in Apolipoprotein E Null Mice. Cell Metab. 11, 379–389. doi:10.1016/j.cmet.2010.03.013

Ross, A. M., Gibbons, R. J., Stone, G. W., Kloner, R. A., Alexander, R. W., and Investigators, A.-I. (2005). A Randomized, Double-Blinded, Placebo-Controlled Multicenter Trial of Adenosine as an Adjunct to Reperfusion in the Treatment of Acute Myocardial Infarction (AMISTAD-II). J. Am. Coll. Cardiol. 45, 1775–1800. doi:10.1016/j.jacc.2005.02.061
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019). Global and Regional Diabetes Prevalence Estimates for 2019 and Projection for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 157, 107843. doi:10.1016/j.diabres.2019.107843

Seimmon, T. A., Nadowski, M. J., Liao, X., Magallon, J., Nguyen, M., Feric, N. T., et al. (2010). Atherosclerotic Lipids and Lipoproteins Trigger CD36–TLR2-dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress. Cell Metab. 12, 467–482. doi:10.1016/j.cmet.2010.09.010

Senatus, L., López-Díez, R., Egaña-Gorroño, L., Liu, J., Hu, J., Daffu, G., et al. (2020). RAGE Impairs Murine Diabetic Atherosclerosis Regression and Implicates IRF7 in Macrophage Inflammation and Cholesterol Metabolism. JCI Insight 5. doi:10.1172/jci.insight.137289

Sitia, S., Tomasoni, L., Atzeni, F., Ambrosio, G., Cordiano, C., Catapano, A., et al. (2010). From Endothelial Dysfunction to Atherosclerosis. Autoimmun. Rev. 9, 830–834. doi:10.1016/j.autrev.2010.07.016

Soltoff, S. (2007). Rottlerin: an Inappropriate and Ineffective Inhibitor of PKC. Trends Pharmacol. Sci. 28, 453–458. doi:10.1016/j.tips.2007.07.003

Steinberg, S. F. (2015). Mechanisms for Redox-Regulation of Protein Kinase C. Front. Pharmacol. 6, 128. doi:10.3389/fphar.2015.00128

Steinberg, S. F. (2006). Structural Basis of Protein Kinase C Isoform Function. Physiol. Rev. 88, 1341–1378. doi:10.1152/physrev.00034.2007

Sugiyama, T., Yamamoto, E., Bryniarski, K., Xing, L., Fracassi, F., Lee, H., et al. (2018). Coronary Plaque Characteristics in Patients with Diabetes Mellitus Who Presented with Acute Coronary Syndromes. J. Am. Heart Assoc. 7, e0109245

Sun, J.-j., Yin, X.-w., Liu, H.-h., Du, W.-x., Shi, L.-y., Huang, Y.-b., et al. (2018). Rapamycin Inhibits Ox-LDL-Induced Inflammation in Human Endothelial Cells In Vitro by Inhibiting the mTORC2/PKC/c-Fos Pathway. Acta Pharmacol. Sin. 39, 336–344. doi:10.1038/aps.2017.102

Szilagyi, K., Meijer, A. B., Neele, A. E., Verkuijlen, P., Leitges, M., Dabernat, S., et al. (2014). PKCδ Is dispensable for oxLDL Uptake and Foam Cell Formation by Human and Murine Macrophages. Cardiovasc. Res. 104, 467–476. doi:10.1093/cvrv/cvu213

Tabas, I. (2010). Macrophage Death and Defective Inflammation Resolution in Atherosclerosis. Nat. Rev. Immunol. 10, 36–46. doi:10.1038/nri2675

Tabas, I. (2011). Pulling Down the Plug on Atherosclerosis: Finding the Culprit in Your Heart. Nat. Med. 17, 791–793. doi:10.1038/nm0711-791

Tall, A. R. (2008). Cholesterol Efflux Pathways and Other Potential Mechanisms Involved in the Athero-Protective Effect of High Density Lipoproteins. J. Intern. Med. 263, 256–273. doi:10.1111/j.1365-2796.2007.01898.x

Tousoulis, D., Kampoli, A.-M., Tentolouris, Nikolaos Papageorgiou, C., Stefanadis, C., and Stefanadis, C. (2012). The Role of Nitric Oxide on Endothelial Function. Curr. Vasc. Pharmacol. 10, 4–18. doi:10.2174/15701611279897260

Vargas, N. B., Brewer, B. Y., Rogers, T. B., and Wilson, G. M. (2009). Protein Kinase C Activation Stabilizes LDL Receptor mRNA via the JNK Pathway in HepG2 Cells. J. Lipid Res. 50, 386–397. doi:10.1194/jlr.M800316-JLR200

Virmani, R., Burke, A. P., and Kolodgie, F. (2006). Morphological Characteristics of Coronary Atherosclerosis in Diabetes Mellitus. Can. J. Cardiol. 22 (Suppl. B), 81B–84B. doi:10.1016/s0828-282x(06)70991-6

Visigallii, R., Barilli, A., Parolari, A., Sala, R., Rotoli, B. M., Bussolati, O., et al. (2010). Regulation of Arginine Transport and Metabolism by Protein Kinase Ca in Endothelial Cells: Stimulation of CAT2 Transporters and Arginase Activity. J. Mol. Cell Cardiol. 49, 260–270. doi:10.1016/j.yjmcc.2010.04.007

Wang, Y., and Oram, J. F. (2007). Unsaturated Fatty Acids Phosphorylate and Destabilize ABCA1 through a Protein Kinase C delta Pathway. J. Lipid Res. 48, 1062–1068. doi:10.1194/jlr.M600437-JLR200

Watanabe, T., Kioka, N., Ueda, K., and Matsuo, M. (2019). Phosphorylation by Protein Kinase C Stabilizes ABCG1 and Increases Cholesterol Efflux. J. Biochem. 166, 309–315. doi:10.1093/jb/mvz039

Weber, C., and Noels, H. (2011). Atherosclerosis: Current Pathogenesis and Therapeutic Options. Nat. Med. 17, 1410–1422. doi:10.1038/nm.2538

Weissberg, P. L., Clesham, G. J., and Bennett, M. R. (1996). Is Vascular Smooth Muscle Cell Proliferation Beneficial? Lancet 347, 305–307. doi:10.1016/s0140-6736(96)90472-9

Wong, T. Y., Tan, Y. Q., Lin, S.-m., and Leung, L. K. (2016). Phorbol 12-myristate 13-acetate Promotes Nuclear Translocation of Hepatic Steroid Response Element Binding Protein-2. Int. J. Biochem. Cell Biol. 75, 1–10. doi:10.1016/j.biocel.2016.03.010

Wu, Y., Wu, G., Qi, X., Lin, H., Qian, H., Shen, J., et al. (2006). Protein Kinase C δ Inhibitor LY335531 Attenuates Intercellular Adhesion Molecule-1 and Monocyte Chemoattractant Protein-1 Expression in the Kidney in Diabetic Rats. J. Pharmacol. Sci. 101, 335–343. doi:10.1254/jps.10050896

Xu, Y., Wang, S., Feng, L., Zhu, Q., Xiang, P., and He, B. (2010). Blockade of PKC-β2 Protects HUVEC from Advanced Glycation End Products Induced Inflammation. Int. Immunopharmacol. 10, 1552–1559. doi:10.1016/j.intimp.2010.09.006

Yuan, T., Yang, T., Chen, H., Du, H., Yu, W., Wang, J., et al. (2019). New Insights into Oxidative Stress and Inflammation during Diabetes Mellitus-Accelerated Atherosclerosis. Redox Biol. 20, 247–260. doi:10.1016/j.redox.2018.09.025

Zhang, J., Wang, Y.-J., Wang, X., Xu, L., Yang, X.-C., and Zhao, W.-S. (2019). PKC-mediated Endothelin-1 Expression in Endothelial Cell Promotes Macrophage Activation in Atherosclerosis. Am. J. Hypertens. 32, 880–889. doi:10.1093/ajh/hpz069

Zhang, Y., Xu, D., Huang, P., Zhang, Y., Li, Q., Fan, Z., et al. (2021). Essential Role of Protein Kinase C δ in Icarin-Mediated protection against Atherosclerosis. J. Pharm. Pharmacol. rjab040. doi:10.1111/jpp.12404

Zuniga, M. C., Raghuraman, G., Hitchener, E., Weyand, C., Robinson, W., and Zhou, W. (2017). PKC-epsilon and TLR4 Synergistically Regulate Resistin-Mediated Inflammation in Human Macrophages. Atherosclerosis 259, 51–59. doi:10.1016/j.atherosclerosis.2017.02.021

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Lien, Chen, Tsai and Lin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.