Yang-Mills connections on G_2-manifolds and Calabi-Yau 3-folds

Teng Huang

Abstract

We investigate Yang-Mills connections, A, with sufficient small L^2 curvature F_A on a compact Riemannian n-manifold M, where M is G_2-manifold or Calabi-Yau 3-fold. Suppose all flat connections on M are nondegenerate, then we prove that when M is a G_2-manifold, the Yang-Mills connection must be a G_2 instanton; when M is a Calabi-Yau 3-fold, the vector bundle is holomorphic.

Keywords. Yang-Mills connection, G_2-instanton, holomorphic bundle

1 Introduction

Let G be a compact Lie group and E a principal G-bundle on a complete oriented Riemannian manifold M. Let A denote a connection on E and ∇_A the associated covariant derivative on the adjoint bundle $\text{ad}(E)$. The Yang-Mills energy of A is

$$YM(A) := \|F_A\|_{L^2}^2$$

where F_A denotes the curvature of A, A connections is called a Yang-Mills connection if it is a critical point of the Yang-Mills functional.

In four dimensions, F_A decomposes into its self-dual and anti-self-dual components,

$$F_A = F_A^+ + F_A^-$$

where F_A^\pm denotes the projection onto the ± 1 eigenspace of the Hodge star operator. A connection is called self-dual(respectively anti-self-dual) if $F_A = F_A^+$ (respectively $F_A = F_A^-$). A connection is called an instanton if is either self-dual or anti-self-dual. On compact oriented 4-manifolds, an instanton is always an absolute minimizer of the Yang-Mills energy. Not all Yang-Mills connections are instantons. See [13][14] for example of $SU(2)$ Yang-Mills connection on S^4 which are neither self-dual nor anti-self-dual.

T. Huang: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, PR China; e-mail: oula143@mail.ustc.edu.cn

Mathematics Subject Classification (2010): 53C07, 58E15
In higher dimensions, the instanton equation on M can be introduced as follows. Assuming there is a closed $(n-4)$-form Ω on M. A connection, A, is called anti-self-dual instanton, when it satisfies the instanton equation

$$\ast F_A = - \ast (\Omega \wedge F_A).$$

Instantons on the higher dimension, proposed in [4] and studied in [7, 8, 11, 16, 21], are important both in mathematics [8, 16] and string theory [10]. It’s easy to see the instanton must be a Yang-Mills connection. But not all Yang-Mills connections could be instantons.

This leads to the question: Which time a Yang-Mills connection would be a instanton?

In the Stern [15], he considered the minimizing Yang-Mills connections on compact homogeneous 4-manifold, he proved that those connections were ether instantons or split into a sum of instantons on passage to the adjoint bundle. In this paper we consider the case of G_2-manifolds. On G_2-manifolds, the 2-forms decompose as

$$\Lambda^2(M) = \Lambda^2_7(M) + \Lambda^2_{14}(M).$$

where the fiber of Λ^2_k is an irreducible G_2 representation of dimension k. Let $F_A = F^7_A + F^{14}_A$ be the corresponding decomposition of the curvature. Then we call a connection, A, is a G_2-instanton, if $F^7_A = 0$ (see [7, 11]). Our main result is the following theorem.

Theorem 1.1. Let M be a compact G_2-manifold M, A be a Yang-Mills connection on M. Suppose all flat connections on M are nondegenerate, there exists a constant δ such that if $\|F_A\|_{L^2} \leq \delta$, then $F^7_A = 0$.

It means that the Yang-Mills connection must be a G_2-instanton.

On a Kähler n-manifold with Kähler form ω the curvature decomposes as

$$F_A = F^{2,0}_A + F^{1,1}_{A0} + \frac{1}{n}(\Lambda F_A)\omega + F^{0,2}_A,$$

where Λ denotes the adjoint of exterior multiplication by ω, and $F^{1,1}_{A0} = F^{1,1}_A - \frac{1}{n}(\Lambda F_A)\omega$.

Theorem 1.2. Let A be a Yang-Mills connection on a vector bundle E over a compact Calabi-Yau 3-fold. Suppose all flat connections on M are nondegenerate, there exist a constant γ such that if $\|F_A\|_{L^3} \leq \gamma$, then $F^{0,2}_A = 0$.

It means that the vector bundle is holomorphic.
2 Preliminaries and Basic estimates

2.1 Preliminaries

First, we recall some standard notations and definitions.

Let T^*M be the cotangent bundle of M and for $1 \leq p \leq n$, let $\Lambda^p(M)$ be the p-form bundles on M with $T^*M = \Lambda^1 M$. One can form the associated bundle $E \otimes \Lambda^p$. Let $\Omega^p(E)$ be the set of sections of $E \otimes \Lambda^p$. Let \mathfrak{g} be the Lie algebra of G, $Ad : G \to Aut(\mathfrak{g})$ be the adjoint representation and adE be the associated adjoint vector bundle.

Denote $\Omega^p(ad(E)) = \Gamma(adE \otimes \Lambda^p(M))$. For a connection A on E, we have exterior derivatives

$$d_A : \Omega^p(adE) \to \Omega^{p+1}(adE).$$

These are uniquely determined by the properties (see [6], p.35):

1. $d_A = \nabla_A$ on $\Omega^0(adE)$
2. $d_A(\alpha \wedge \beta) = d_A\alpha \wedge \beta + (-1)^p \alpha \wedge d_A\beta$

for any $\alpha \in \Omega^p(adE)$, $\beta \in \Omega^q(adE)$.

The curvature $F_A \in \Omega^2(adE)$ of the connection A is defined by

$$d_A d_A u = F_A u$$

for any section $u \in \Gamma(E)$. If A is a connection on E, we can define covariant derivatives

$$\nabla_A : \Omega^p(E) \to \Gamma(\Lambda^pT^*M \otimes T^*M \otimes E)$$

For ∇_A and d_A, we have adjoint operators ∇_A^* and d_A^*. We also have Weitzenböck formula ([3], Theorem 3.2)

$$(d_A d_A^* + d_A^* d_A)\varphi = \nabla_A^* \nabla_A \varphi + \varphi \circ Ric + *\{*F_A, \varphi\}$$

(2.1)

where $\varphi \in \Omega^1(adE)$, Ric is the Ricci tensor.

In a local orthonormal frame (e_1, \ldots, e_n) of TM, the operator of $\varphi \circ Ric$ is defined by Bourguignon and Lawson [3] as follows.

$$\varphi \circ Ric(e_i) = \sum_{j=1}^n R_{ij}\varphi_j$$

We are interested in minima of the Yang-Mills energy

$$YM(A) = \|F_A\|^2_{L^2}.$$
where F_A denotes the curvature of A. Critical points of this energy satisfy the Yang-Mills equation

$$d^*_A F_A = 0,$$

where d^*_A denotes adjoint of d_A. In addition, all connections satisfy the Bianchi identity

$$d_A F_A = 0.$$

If $\psi \in \Omega^1_M(adE)$ then

$$F_A + \psi = F_A + d_A \psi + \psi \wedge \psi.$$

Here we note that our convention on exterior products of adE valued form is normalized by

$$(dx^I \otimes v_I) \wedge (dx^J \otimes v_J) = \frac{1}{2} (dx^I \wedge dx^J) \otimes [v_I, v_J].$$

As a notional convenience, we will often use L_ω to denote exterior multiplication on the left by a form ω. Its adjoint is denote Λ_ω. Thus

$$L_\omega h := \omega \wedge h, \text{ and } \langle f, L_\omega h \rangle = \langle \Lambda_\omega f, h \rangle.$$

2.2 Estimates for Curvature of Yang-Mills connection

We have a priori estimate for the curvature of a Yang-Mills connection.

Theorem 2.1. ([17], Theorem 3.5) There exist constants $\varepsilon = \varepsilon(n)$ and $K = K(n)$ such that if F_A is Yang-Mills field in $B_{2a_0}(x_0)$ and $\int_{B_{2a_0}(x_0)} |F_A|^2 < \varepsilon(n)$, then $|F_A(x)|$ is uniformly bounded in the interior of $B_{2a_0}(x_0)$ and

$$|F_A(x)|^2 \leq a^{-n} \int_{B_a(x)} |F_A|^2$$

for all $B_a(x) \subset B_{a_0}(x_0)$.

Remark 2.2. The Theorem 2.1 continues to hold for geodesic balls in a manifold M endowed a non-flat Riemannian metric, g. The only difference in this more general situation is that the constants K and ε will depend on bounds on the Riemann curvature tensor over $B_{2a_0}(x_0)$ and the injectivity radius at $x_0 \in M$. Therefore, by employing a finite cover of M by geodesic balls, $B_{a_0}(x_i)$, of radius $a_0 \subset (0, \rho/4]$, ρ is the injectivity radius of the manifold M and applying Theorem 2.1 to each ball $B_{2a}(x_i)$, we obtain a global version.

We consider a family of connections near a flat connection Γ,

$$A_N(M) = \{ A \in \Omega^1_M(adE) : \| A - \Gamma \|_{L^n} \leq N \| F_A \|_{L^2}, \text{ } N \text{ is a bounded constant} \}.$$
Theorem 2.3. Let \(A \in A_N(M) \) be a connection on the bundle \(E \) over \(M = M^n \) \((n \geq 2)\) be a compact Ricci-flat manifold. Suppose all flat connections over \(M \) are nondegenerate. There are constants \(\eta \) and \(\lambda \) such that if \(\| F_A \|_{L^2} \leq \eta \), then
\[
\| \nabla_A \varphi \|_{L^2} \geq \lambda \| \varphi \|_{L^1}
\]
where \(\varphi \in \Omega^1_M(adE) \).

Proof. Since \(\Gamma \) is a flat connection, then the cohomology group \(H^1(M, \Gamma) \) is zero. The basic elliptic estimate for the operator \(d_\Gamma + d_\Gamma^* \) on 1-forms gives a bound of the form
\[
\| \varphi \|_{L^2}^2 \leq c_1 (\| d_\Gamma \varphi \|_{L^2}^2 + \| d_\Gamma^* \varphi \|_{L^2}^2).
\]
where \(c_1 \) is a constant.

Now \(d_A \varphi = d_\Gamma \varphi + [A - \Gamma, \varphi] \), and \(d_A^* \varphi = d_\Gamma^* \varphi - * [A - \Gamma, * \varphi] \). Using the Sobolev embedding theorem
\[
\| \varphi \|_{L^{2n}} \leq \text{const.} \| \varphi \|_{L^1}
\]
We get
\[
\| d_A \varphi \|_{L^2} \geq \| d_\Gamma \varphi \|_{L^2} - 2\| A - \Gamma \|_{L^n} \| \varphi \|_{L^{2n}}^2 + \| d_\Gamma^* \varphi \|_{L^2} - \| A - \Gamma \|_{L^n} \| \varphi \|_{L^2}^2,
\]
and
\[
\| d_A^* \varphi \|_{L^2} \geq \| d_\Gamma^* \varphi \|_{L^2} - c_2 \| A - \Gamma \|_{L^n} \| \varphi \|_{L^2}^2.
\]
By Weitzenböck formula (2.1) and \(M \) is a Ricci-flat manifold, we have
\[
\| \nabla_A \varphi \|_{L^2} \geq (\| d_A \varphi \|_{L^2} + \| d_A^* \varphi \|_{L^2}) - 2\langle F_A, \varphi \wedge \varphi \rangle + (\| d_\Gamma \varphi \|_{L^2} + \| d_\Gamma^* \varphi \|_{L^2}) - (c_2 + c_3) \| A - \Gamma \|_{L^n} \| \varphi \|_{L^2}^2 - c_4 \| F_A \|_{L^2} \| \varphi \|_{L^2}^2 + c_4 \| F_A \|_{L^2} \| \varphi \|_{L^2}^2
\]
Here we used the fact
\[
| \langle F_A, \varphi \wedge \varphi \rangle | \leq \| F_A \|_{L^2} \| \varphi \|_{L^{2n}}^2 \leq c_4 \| F_A \|_{L^2} \| \varphi \|_{L^2}^2
\]
If \(\| F_A \|_{L^2} \leq \varepsilon \) such that \((c_2 + c_3) N^2 \| F_A \|_{L^2}^2 - c_4 \| F_A \|_{L^2} \leq \frac{1}{2} c_1 \), we can re-arrange this as
\[
\| \nabla_A \varphi \|_{L^2} \geq \frac{1}{2} c_1 \| \varphi \|_{L^2}^2.
\]
So the result holds with \(\eta = \varepsilon \) and \(\lambda = \sqrt{\frac{1}{2} c_1} \). \(\square \)
A connection A belongs to $A_N(M)$ not always exist in a compact Riemannian n-manifold M. But thanks for the Uhlenbeck’ work:

Theorem 2.4. ([18] Corollary 4.3) If $2p > n$ and $M = M^n$ be a compact manifold, then there exists an $\varepsilon(p, M, G) > 0$ such that if A is a connection with $\int_M |F_A|^p \leq \varepsilon$, then there exists a flat connection Γ on M and a gauge transformation u such that

$$\|u^*(A) - \Gamma\|_{L^p(M)}^p \leq K \int_M |F_A|^p.$$

So if we can prove L^p-norm of the curvature of Yang-Mills connection can be estimate by $L^\frac{2}{p}$-norm when the $L^\frac{2}{p}$-norm is sufficiently small. The Theorem 2.4 is hold for the case of $p = \frac{n}{2}$.

Lemma 2.5. Let $M = M^n$ be a compact Riemannian manifold, $n \geq 2$, A be a Yang-Mills connections with curvature F_A, for $2p \geq n$, there exist constant ε and C such that $\|F_A\|_{L^\frac{2}{p}} \leq \varepsilon$, then

$$\|F_A\|_{L^p} \leq C\|F_A\|_{L^\frac{2}{p}}.$$

Proof. Form Theorem 2.1 we have

$$\|F_A\|_{L^\infty} \leq C\|F_A\|_{L^2}.$$

For $n \geq 4$, by L^p interpolation, we have

$$\|F_A\|_{L^2} \leq (Vol(M))^{1-\frac{2}{p}}\|F_A\|_{L^\frac{2}{p}}.$$

Then

$$\|F_A\|_{L^p}^p \leq \|F_A\|_{L^\infty}^{\frac{p-2}{2}}\|F_A\|_{L^\frac{2}{p}}^\frac{2}{2} \leq C^{p-\frac{2}{p}}\|F_A\|_{L^2}^{\frac{p-2}{2}}\|F_A\|_{L^\frac{2}{p}}^\frac{2}{2} \leq C^{p-\frac{2}{p}}(Vol(M))^{(1-\frac{2}{p})(p-\frac{2}{p})}\|F_A\|_{L^\frac{2}{p}}^p.$$

Thus

$$\|F_A\|_{L^p} \leq K\|F_A\|_{L^\frac{2}{p}},$$

where $K^p = C^{p-\frac{2}{p}}(Vol(M))^{(1-\frac{2}{p})(p-\frac{2}{p})}$.

For $n = 2, 3$, then L^p interpolation implies that

$$\|F_A\|_{L^2}^2 \leq \|F_A\|_{L^\infty}^{2-\frac{2}{p}}\|F_A\|_{L^\frac{2}{p}}^{\frac{2}{p}} \leq (C\|F_A\|_{L^2})^{2-\frac{2}{p}}\|F_A\|_{L^\frac{2}{p}}^{\frac{2}{p}} \leq (2.3)$$

Thus

$$\|F_A\|_{L^2} \leq C^{\frac{4-n}{n}}\|F_A\|_{L^\frac{2}{p}}.$$
Yang-Mills connections on G_2-manifolds and Calabi-Yau 3-folds

And we have
\[
\|F_A\|_{L^p} \leq \|F_A\|_{L^\infty(M)} (Vol(M))^{\frac{1}{p}} \\
\leq C(Vol(M))^{\frac{1}{p}} \|F_A\|_{L^2}.
\]

Then we obtain
\[
\|F_A\|_{L^p} \leq \left(\frac{\|F_A\|_{L^\infty}}{Vol(M)}\right)^{\frac{1}{p}} C^\frac{4}{n} \|F_A\|_{L^2}.
\]

From the Lemma 2.5, the Theorem 2.4 is hold for $p = \frac{n}{2}$. By the Sobolev embedding theorem, $\|A - \Gamma\|_{L^n} \leq const. \|A - \Gamma\|_{L^n}$, then there exist a gauge transformation u such that $\|u^*(A) - \Gamma\|_{L^n} \leq K \|F_A\|_{L^\frac{n}{2}}$. Then from Theorem 2.3, we have

Corollary 2.6. Let A be a Yang-Mills connection on the bundle E over M, where $M = M^n$ ($n \geq 2$) be a compact Ricci-flat manifold. Suppose all flat connections over M are nondegenerate. There are constants η and λ such that if $\|F_A\|_{L^\frac{n}{2}} \leq \eta$, then there exists a gauge transformation u such that
\[
\|\nabla u^*(A)\varphi\|_{L^2} \geq \lambda \|\varphi\|_{L^1}
\]
where $\varphi \in \Omega^1_M(adE)$.

3 Yang-Mills connection and G_2-instanton

3.1 G_2-manifolds

In this section, we collect some basic fact about of G_2-manifold M. For detail, see [2, 20].

Definition 3.1. [20] Let M be a 7-dimensional smooth manifold, and $\phi \in \Lambda^3(M)$ a 3-form. (M, ϕ) is called a G_2-manifold if ϕ is non-degenerate and positive everywhere on M. We consider M as a Riemannian manifold, with the Riemannian structure determined by ϕ as above. The manifold (M, g, ϕ) is called a holonomy G_2-manifold if ϕ is parallel with respect to the Levi-Civita connection associated with g. Further on, we shall consider only holonomy G_2-manifolds, and (abusing the language) omit the word holonomy.

Under the action of G_2, the space $\Lambda^*(M)$ splits into irreducible representations, as follows.
\[
\Lambda^2(M) = \Lambda^2_7(M) \oplus \Lambda^2_{14}(M) \\
\Lambda^3(M) = \Lambda^3_1(M) \oplus \Lambda^3_2(M) \oplus \Lambda^3_{27}(M)
\]

where Λ^p_d denotes an irreducible G_2 representation of dimension d. Clearly $\Lambda^*(M) = \Lambda^{7-*}(M)$ as a G_2-representation, and the space $\Lambda^4(M)$ and $\Lambda^5(M)$ split in a similar fashion. The space Λ^0 and Λ^1 are irreducible.
These summands for $\Lambda^2(M)$ can be characterized as follows:

$$\Lambda^2_7(M) = \{ \alpha \in \Lambda^2(M) \mid \alpha \wedge \phi = 2 * \phi \}$$

$$\Lambda^2_{14}(M) = \{ \alpha \in \Lambda^2(M) \mid \alpha \wedge \phi = -* \phi \}$$

We define a projective map $\Pi^2_7 : \Lambda^2(M) \to \Lambda^2_7(M)$.

Proposition 3.2.

$$\Pi^2_7 (\cdot) = \frac{1}{3} * (\cdot \wedge \phi) \wedge \phi$$

Proof. First we write $\forall f \in \Lambda^2(M)$ to

$$f = f^7 + f^{14}.$$

where $f^7 \in \Lambda^2_7(M)$, $f^{14} \in \Lambda^2_{14}(M)$.

The operators in both sides are linear, so we only to prove

$$f^7 = \frac{1}{3} * (\cdot (f^7 \wedge \phi) \wedge \phi)$$

and

$$0 = \frac{1}{3} * (\cdot (f^{14} \wedge \phi) \wedge \phi).$$

There exists $\alpha \in \Lambda^1(M)$ such that

$$f^7 = * (\alpha \wedge * \phi).$$

then

$$\frac{1}{3} * (\cdot (f^7 \wedge \phi) \wedge \phi) = \frac{1}{3} * (\cdot (\alpha \wedge * \phi) \wedge \phi) = \frac{1}{3} * (3 \alpha \wedge * \phi) = * (\alpha \wedge * \phi) = f^7.$$

Here we use a identity holds for all $\alpha \in \Lambda^1(M)$ (see [2])

$$* (\cdot (\alpha \wedge * \phi) \wedge \phi) = 3 \alpha.$$

In local orthonormal coframe $\{e^j\}_{j=1}^7$ in which

$$\phi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356},$$

here we write e^{ijk} for the wedge product $e^i \wedge e^j \wedge e^k$. Every element in $\Lambda^2_{14}(M)$ is conjugate to an element of the form (see [2])

$$\beta = \lambda_1 e^{23} + \lambda_2 e^{45} - (\lambda_1 + \lambda_2) e^{67}.$$

Then compute in direct way, we get

$$* (\cdot (\beta \wedge \phi) \wedge \phi) = 0.$$
And these summands for $\Lambda^3(V^*)$ can be characterized as follows:

$$\Lambda^3_1(M) = \{r\phi \mid r \in \mathbb{R}\}$$

$$\Lambda^3_2(M) = \{*(\alpha \wedge \phi) \mid \alpha \in \Lambda^1(V^*)\}$$

$$\Lambda^3_2(M) = \{\alpha \in \Lambda^3(M) \mid \alpha \wedge \phi = \alpha \wedge \phi = 0\}$$

As above, we define a projective map $\Pi^3_1 : \Lambda^3(M) \to \Lambda^3_1(M)$.

Proposition 3.3.

$$\Pi^3_1(\cdot) = \frac{1}{7} * (\cdot \wedge \phi) \phi$$

(3.2)

3.2 G_2 instantons

We return to consider the Yang-Mills connection over G_2 manifolds. Let A be a Yang-Mills connection, then F_A is a harmonic adE value 2-form on M. Write $F_A = F^7_A + F^{14}_A$, where $F^7_A \in \Lambda^2 \otimes g$ and $F^{14}_A \in \Lambda^4 \otimes g$. Then we have

$$F^7_A = \frac{1}{3} (F_A + *(F_A \wedge \phi)).$$

Hence

$$d_A^* F^7_A = \frac{1}{3} * d_A(F_A \wedge \phi) = 0.$$

Then it’s easy to see

$$d_A^* F^{14}_A = 0.$$

Following Verbitsky [20], on G_2 manifold we can define the structure operator, $C : \Lambda^*(M) \to \Lambda^{*+1}(M)$, which satisfies:

1. $C \mid_{\Lambda^0} = 0$
2. $C \mid_{\Lambda^1}(\cdot) = *(\phi \wedge \cdot)$
3. $C(\alpha \wedge \beta) = C(\alpha) \wedge \beta + (-1)^{deg(\alpha)} \alpha \wedge \beta$.

Proposition 3.4. [20] Let (M, ϕ) be a parallel G_2 manifold, and C its structure operator. Then C induces isomorphisms

$$\Lambda^i_7 \to \Lambda^{i+1}_7, \ (i = 2, 3, 4, 5).$$

For above proposition, there exists $\psi_A \in \Lambda^1(M) \otimes g$ such that

$$C(\psi_A) = F^7_A.$$

This means that

$$*(\phi \wedge \psi_A) = F^7_A.$$
Applying d^*_A to each side gives

$$\ast (d_A \psi_A \wedge \ast \phi) = 0$$ \hspace{1cm} (3.3)

Then form Prop.3.2 and (3.3), we have

$$\Pi^2_1(d_A \psi_A) = 0$$ \hspace{1cm} (3.4)

There exists an identity always hold for $\forall \alpha \in \Lambda^1(M)$ (see [2])

$$\ast (\ast (\alpha \wedge \ast \phi) \wedge \ast \phi) = 3\alpha.$$ \hspace{1cm} (3.5)

By the definition of ψ_A, then

$$\psi_A = \frac{1}{3} \ast (\ast (F^7_A \wedge \ast \phi)).$$ \hspace{1cm} (3.5)

From (3.5), applying d^*_A to ψ_A gives

$$d^*_A \psi_A = \frac{1}{3} \ast d_A (F^7_A \wedge \phi) = \frac{1}{3} \ast (d_A F^7_A \wedge \phi)$$ \hspace{1cm} (3.6)

Next we want to prove $d^*_A \psi_A = 0$. First we denote the spaces of differential forms $\Lambda^0(M) = \Omega_1$, $\Lambda^1(M) = \Omega_7$, $\Lambda^2_{14}(M) = \Omega_{14}$ and $\Lambda^3_{27} = \Omega_{27}$. Then for all $p, q \in \{1, 7, 14, 27\}$, there exists a first order differential operator $d^p_q : \Omega_p \rightarrow \Omega_q$. In this article, we only use the identity

$$d\beta = \frac{1}{4} \ast (d_{14}^1 \beta \wedge \phi) + d_{27}^1 \beta.$$ \hspace{1cm} (3.7)

where $\beta \in \Omega_{14}$. For detail, see ([2] Proposition 3).

Lemma 3.5. Let A be a Yang-Mills connection on a G_2-manifold M, then

$$\Pi^3_1(d_A F^7_A) = 0.$$

Proof. First from the Bianchi identity $d_A F_A = 0$, we have

$$\Pi^3_1(d_A F_A) = \Pi^3_1(d_A F^7_A) + \Pi^3_1(d_A F_{14}^1) = 0$$

So we only need to proof $d_A F_{14}^1 = 0$. In the other way,

$$\Pi^3_1(d_A F_{14}^1) = \Pi^3_1(dF_{14}^1) + \Pi^3_1([A, F_{14}^1])$$

$$= \frac{1}{7} \ast ([A, F_{14}^1] \wedge \phi) \cdot \phi$$

$$= \frac{1}{7} \ast ([A \wedge \phi, F_{14}^1]) \cdot \phi = 0$$

We use the fact $\Pi^3_1(dF_{14}^1) = 0$, this can be obtain easily form (3.7).

And $[A \wedge \phi, F_{14}^1] = 0$, since $\ast (A \wedge \phi) \in \Lambda^2_{14}(M) \otimes g$. \hfill \Box
From the lemma 3.5 and (3.6), we can obtain
\[d^*_A \psi_A = 0. \] (3.8)

On a G_2-manifold, we can express the Yang-Mills energy as
\[\| F_A \|^2_{L^2} = \int_M tr(F_A \wedge \ast F_A) = \int_M tr(F^7_A \wedge \ast F^7_A + F^{14}_A \wedge \ast F^{14}_A) \]
\[= \int_M tr(\frac{1}{2} F^7_A \wedge F^7_A \wedge \phi - F^{14}_A \wedge F^{14}_A \wedge \phi) \]
\[= 3\| F^7_A \|^2_{L^2} - \int_M tr(F^2_A) \wedge \phi \]

The last integral is independent of the connection. We consider the variation $A + t\psi_A$. We have
\[\| F_{A+t\psi_A} \|^2_{L^2} = 3\| F^7_{A+t\psi_A} \|^2_{L^2} + \text{topological constant}. \] (3.9)

From (3.4), we have
\[F^7_{A+t\psi_A} = F^7_A + t\Pi^7_A(\ast d_A \psi_A) + t^2 \Pi^7_A(\ast \psi_A \wedge \psi_A) \]
\[= F^7_A + t^2 \Pi^7_A(\ast \psi_A \wedge \psi_A) \]

We compare the terms of t^2 in (3.9), hence
\[\| d_A \psi_A \|^2_{L^2} + 2\langle F_A, \psi_A \wedge \psi_A \rangle = 6\langle F^7_A, \psi_A \wedge \psi_A \rangle \] (3.10)

We using Weitzenböck formula (2.1) and the vanishing of the Ricci curvature on G_2-manifold, then
\[\| d_A \psi_A \|^2_{L^2} = \| \nabla_A \psi_A \|^2_{L^2} + 2\langle F_A, \psi_A \wedge \psi_A \rangle \] (3.11)

From (3.10) and (3.11), we get
\[\| \nabla_A \psi_A \|^2_{L^2} = 2\langle F^7_A, \psi_A \wedge \psi_A \rangle - 4\langle F^{14}_A, \psi_A \wedge \psi_A \rangle \] (3.12)

Theorem 3.6. Let M be a compact G_2-manifold M with $H^1(M) = 0$. Let A be a Yang-Mills connection on M. Suppose all flat connections on M are nondegenerate, there exists a constant δ such that if $\| F_A \|_{L^\infty} \leq \delta$, then the Yang-Mills connection must be a instanton.

Proof. If $\| F_A \|_{L^\infty} \leq \delta$, δ sufficiently small, then from the Corollary 2.6 there exists a flat connection Γ and a gauge transformation u (we also denote $u^*(A)$ to A) such that
\[\| \nabla_A \psi_A \|^2_{L^2} \geq \lambda^2 \| \psi_A \|^2_{L^2}. \]

The identity (3.12) is invariant under gauge transformation, hence
\[\| \nabla_A \psi_A \|^2_{L^2} = 2\langle F^7_A, \psi_A \wedge \psi_A \rangle - 4\langle F^{14}_A, \psi_A \wedge \psi_A \rangle \]
\[\leq 4\| F_A \|_{L^\infty} \| \psi_A \|^2_{L^\infty} \]
\[\leq c_5 \| F_A \|_{L^\infty} \| \psi_A \|^2_{L^2}. \]
here we use the Sobelov imbedding theorem $\|\psi_A\|_{L^\infty} \leq \text{const.} \|\psi_A\|_{L^1}^2$.

If $\|F_A\|_{L^2} \leq \min\{\frac{\lambda^2}{2c_5}, \delta\}$, then

$$\|\psi_A\|^2_{L^2} \leq \frac{1}{2} \|\psi_A\|_{L^2}^2.$$

Then in M ψ_A is vanish, it implies that $F^7_A = 0$.

\section{Yang-Mills connection and holomorphic bundle}

Let M be a compact Calabi-Yau 3-fold, with Kähler form ω and nonzero covariant constant (3,0) form Ω \[9\]. Let A be a connection on a G-bundle E over M.

Decompose the curvature, F_A as

$$F_A = F^{2,0}_A + F^{1,1}_A + \phi_A \omega + F^{0,2}_A$$

where $\phi_A = \frac{1}{3} (\Lambda F_A)$.

The Kähler identity

$$\omega \wedge F_A = *(F^{2,0}_A + 2\phi_A \omega - F^{1,1}_A + F^{2,0}_A)$$

implies, after wedging with F_A, taking the trace, and integrating, that

$$4\|F^{0,2}_A\|^2 + 9\|\phi_A\|^2 - \|F_A\|^2 = - \int_M \text{tr}(F^2_A) \wedge \omega$$

and is therefore independent of the connection. Then we have the identity

$$YM(A) = 4\|F^{0,2}_A\|^2 + \|\Lambda F_A\|^2 + \text{topological constant.} \quad (4.1)$$

The energy functional $\|\Lambda F_A\|^2$ plays an important role in the study of Hermitian-Einstein connections \[5\], \[19\].

\begin{lemma}
Let M be a Kähler m-fold, A be a Yang-Mills connection, then

$$\bar{\partial}^* F^{0,2}_A = 0. \quad (4.2)$$

\end{lemma}

\textbf{Proof.} Using Kähler identity again, we can obtain a identity the same to (4.1) for any Kähler m-fold.

$$YM(A) = 4\|F^{0,2}_A\|^2 + \|\Lambda F_A\|^2 + \text{topological constant}$$

When A is a Yang-Mills connection, we have

$$\frac{1}{2} \frac{d}{dt} YM(A(t)) |_{t=0} = 0$$
where \(A(0) = A \). We can choose that \(A(t) = A + t(\psi + \bar{\psi}) \), \(\psi \in \Omega^{0,1}_M(ad(E)) \) and \(d_A^* \psi = d_A^* \bar{\psi} = 0 \), then \(\Lambda d_A(\psi + \bar{\psi}) = 0 \), so that \(\Lambda F_{A(t)} = \Lambda F_A + O(t^2) \). Then

\[
\frac{1}{2} \frac{d}{dt} YM(A(t))|_{t=0} = 4 \int_M \langle F_{A}^{0,2}, \bar{\partial}_A \psi \rangle = 4 \int_M \langle \bar{\partial}_A F_A^{0,2}, \psi \rangle = 0
\]

We have \(\bar{\partial}_A \bar{\partial}_A F_A^{0,2} = 0 \). It means that \(\bar{\partial}_A F_A^{0,2} \in ker \bar{\partial}_A \). Then we obtain that

\[
\bar{\partial}_A F_A^{0,2} = 0.
\]

Define an \(ad(E) \) valued (0,1) form \(\psi_A \), so that

\[
\Lambda_{\bar{\Omega}}(\psi_A) = F_A^{0,2}
\]

where \(\Lambda_{\bar{\Omega}} \) is the dual of \(L_{\bar{\Omega}} : \eta \rightarrow \bar{\Omega} \wedge \eta \).

More explicitly, in a local special unitary frame

\[
\psi_A = F_{23}^{2,0} d\bar{z}^1 + F_{31}^{2,0} d\bar{z}^2 + F_{12}^{2,0} d\bar{z}^3
\]

Applying \(\bar{\partial}_A \) to each side of (4.3) gives

\[
\Lambda_{\bar{\Omega}}(\bar{\partial}_A \psi_A) = 0
\]

and therefore

\[
\bar{\partial}_A \psi_A = 0 \quad (4.4)
\]

The Bianchi identity implies \(\bar{\partial}_A F_A^{0,2} = 0 \), which is equivalent to

\[
\bar{\partial}_A \psi_A = 0 \quad (4.5)
\]

We consider the connection \(A_t = A + t(\psi_A + \bar{\psi}_A) \). We denote \(\eta_A = \psi_A + \bar{\psi}_A \). From (4.1), we have

\[
YM(A_t) = 4\| F_{A_t}^{0,2} \|^2 + \| \Lambda F_{A_t} \|^2 + \text{topological constant}.
\]

Hence both sides are quadratic polynomials on \(t \). Compare the terms of \(t^2 \), we have

\[
\| d_A \eta_A \|^2_{L^2} + 2Re\langle F_A, \eta_A \wedge \eta_A \rangle = 8Re\langle F_A^{0,2}, \eta_A \wedge \eta_A \rangle + 6Re\langle \phi_A \omega, \eta_A \wedge \eta_A \rangle. \quad (4.6)
\]

From (4.5), we get \(d_A^* \eta_A = 0 \). We using Weitzenböck formula (2.1) and the vanishing of the Ricci curvature on Calabi-Yau manifold, then

\[
\| d_A \eta_A \|^2_{L^2} = \| \nabla_A \eta_A \|^2_{L^2} + 2Re\langle F_A, \eta_A \wedge \eta_A \rangle
\]

So (4.6) become to

\[
\| \nabla_A \eta_A \|^2_{L^2} = 4Re\langle F_A^{2,0} + F_A^{1,1}, \eta_A \wedge \eta_A \rangle - 4Re\langle F_A^{0,2}, \eta_A \wedge \eta_A \rangle - 6Re\langle \phi_A \omega, \eta_A \wedge \eta_A \rangle. \quad (4.7)
\]
Theorem 4.2. Let A be a Yang-Mills connection on a vector bundle E over a compact Calabi-Yau 3-fold. Suppose all flat connections on M are nondegenerate, there exist a constant γ such that if $\|F_A\|_{L^3} \leq \gamma$, then the bundle is holomorphic.

Proof. If $\|F_A\|_{L^3} \leq \delta$, δ sufficiently small, then from the Corollary 2.6 there exists a flat connection Γ and a gauge transformation u (we also denote $u^*(A)$ to A) such that

$$\|\nabla_A \psi_A\|_{L^2}^2 \geq \xi^2 \|\psi_A\|_{L^1}^2.$$

The identity (4.7) is invariant under gauge transformation, hence

$$\|\nabla_A \eta_A\|^2_{L^2} = 4Re\langle F_A^{2.0} + F_A^{1.1}, \eta_A \wedge \eta_A \rangle - 4Re\langle F_A^{0.2}, \eta_A \wedge \eta_A \rangle - 6Re\langle \phi_A \omega, \eta_A \wedge \eta_A \rangle$$

$$\leq 4\|F_A\|_{L^3}\|\eta_A\|^2_{L^3}$$

$$\leq c_6\|F_A\|_{L^3}\|\eta_A\|^2_{L^2}.$$

here we use the Sobolev imbedding theorem $\|\eta_A\|^2_{L^4} \leq const.\|\eta_A\|^2_{L^2}$.

If $\|F_A\|_{L^3} \leq \min\{\frac{\lambda^2}{2c_6}, \lambda\}$, then

$$\|\eta_A\|^2_{L^2} \leq \frac{1}{2}\|\eta_A\|^2_{L^1}.$$

it’s implies that $\eta_A = 0$, then $F_A^{0.2} = 0$.

\[\blacksquare\]

Acknowledgments

I would like to thank Prof. M.Stern for helpful comments regarding his article [15]. I would also like to thank Prof. S.Hu for his supervision and his help to this article.

References

[1] R.L. Bryant, *Metric with exceptional holonomy*, Ann. of Math. 126(2) (1987), 525–576.

[2] R.L. Bryant, *Some remarks on G_2-structures*, arXiv preprint math/0305124, (2003).

[3] J.P. Bourguignon and H.B. Lawson, *Stability and isolation phenomena for Yang-Mills fields* Comm. Math. Phys. 79(2) (1981), 189–230.

[4] E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, *First order equations for gauge fields in spaces of dimension great than four*, Nucl. Phys. B. 214(3) (1983), 452–464.

[5] S.K. Donaldson, *Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. 50(1) (1985), 1–26.
Yang-Mills connections on G_2-manifolds and Calabi-Yau 3-folds

[6] S.K. Donaldson and P.B. Kronheimer, *The geometry of four-manifolds* Oxford University Press, (1990).

[7] S.K. Donaldson and R.P. Thomas, *Gauge theory in higher dimensions*, The Geometric Universe, Oxford, (1998), 31–47.

[8] S.K. Donaldson and E. Segal, *Gauge theory in higher dimensions, II*. arXiv preprint arXiv:0902.3239 (2009)

[9] M. Gross, D. Huybrechts and D. Joyce, *Calabi-Yau Manifolds and Related Geometries: Lectures at a Summer School in Nordfjordeid, Norway, June, 2001*, Springer, (2003).

[10] M.B. Green, J.H. Schwarz and E. Witten, *Superstring theory*, Cambridge University Press (1987).

[11] R. Reyes-Carrion, *A generalization of the notion of instanton*, Diff. Geom. Appl. 8, (1998), 1–20.

[12] J.A. Schouten, *Kalssifizierung der Alternierenden Grössen Dritten Grades in 7 dimensionen*, Rend. Circ. Maten. Palermo 55(2) (1931), 131–156.

[13] L. Sadun and J. Segert, *Non-self-dual Yang-Mills connections with nonzero Chern number*, Bulletin of the AMS, 24(1) (1991), 163–170.

[14] L.M. Sibner, R.J. Sibner and K. Uhlenbeck, *Solutions to Yang-Mills equations that are not self-dual*, Proc. Nat. Acad. Sci. 86(22) (1989), 8610–8613.

[15] M. Stern, *Geometry of minimal energy Yang-Mills connections*, J. Differential Geometry 86(1) (2010), 163–188.

[16] G. Tian, *Gauge theory and calibrated geometry, I*. Ann. of Math. 151(1) (2000), 193–268.

[17] K.K. Uhlenbeck, *Removable singularities in Yang-Mills fields* Comm. Math. Phys. 83(1) (1982), 11–29.

[18] K.K. Uhlenbeck, *The Chern classes of Sobolev connections* Comm. Math. Phys. 101(4) (1985), 449–457.

[19] K. Uhlenbeck and S.T. Yau, *On the existence of Hermitian-Yang-Mills connections in stable vector bundles*, Comm. Pure and Appl. Math. 39(S1) (1986), S257–S293.
[20] M. Verbitsky, *Manifolds with parallel differential forms and Kähler identities for G2-manifolds*, J. Geom. Phys. 61 (2011), 1001–1016.

[21] R.S. Ward, *Completely solvable gauge field equations in dimension great than four*, Nucl.Phys.B 236(2) (1984), 381–396.

[22] K. Wehrheim, *Uhlenbeck compactness*, Series of Lectures in Mathematics, European Mathematical Society, (2003).