Review Article

The Efficacy and Safety of Dingkun Pill in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Bao Jin,1 Yang Zhang,1 Zongyu Zhang,1 Guorong Yang,1 Yujia Pan,1 Liangzhen Xie,3 Jiarui Liu,4 and Wenjuan Shen5

1Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
2Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
3Department of Traditional Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
4Department of Biology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
5Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China

Correspondence should be addressed to Wenjuan Shen; juanws81@163.com

Received 22 April 2022; Accepted 4 July 2022; Published 24 August 2022

Objective. Dingkun Pill (DKP) is a proprietary Chinese medicine that has been utilized for patients with gynecological diseases, and its clinical application has been widely accepted in China. However, the effects of DKP on reproduction and metabolism in women with polycystic ovary syndrome (PCOS) have never been systematically evaluated. Our objective was to evaluate the efficacy and safety of DKP in treating reproductive and metabolic abnormalities with PCOS. Methods. We searched in PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, VIP Database, and Chinese Biomedical Literature Database up until January 2022 to identify randomized controlled trials (RCTs). The methodological quality of the included RCTs was estimated using the Cochrane collaboration risk-of-bias instrument, and the meta-analysis was performed using RevMan. Results. A total of 22 RCTs (including 1994 participants) were identified. DKP, combined with ovulation-inducing drugs (OID) or combined oral contraceptives (COC) was superior to OID or COC alone in improving the pregnancy rate (relative risk (RR) 1.84, 95% CI 1.62 to 2.11 and RR 1.38, 95% CI 1.16 to 1.64, respectively), ovulation rate (RR 1.38, 95% CI 1.03 to 1.84 and RR 1.23, 95% CI 1.11 to 1.37, respectively), endometrial thickness (weighted mean difference (WMD) 2.50, 95% CI 1.91 to 3.09 and WMD 0.62, 95% CI 0.08 to 1.16, respectively), luteinizing hormone (WMD −1.93, 95% CI −2.80 to −0.07 and WMD −1.79, 95% CI −2.66 to −0.92, respectively), and testosterone (standardized mean difference (SMD) −2.12, 95% CI −3.01 to −1.24 and SMD −1.21, 95% CI −1.64 to −0.78, respectively). DKP combined with COC led to a greater improvement in homeostasis model assessment-β (WMD 20.42, 95% CI 16.85 to 23.98) when compared with COC alone. There was a significant difference between DKP and COC in terms of decreasing total cholesterol (WMD −0.37, 95% CI −0.72 to −0.02), triacylglycerol (WMD −0.85, 95% CI −1.50 to −0.20), and free fatty acid (WMD −130.00, 95% CI −217.56 to −42.22). However, DKP did not affect the follicle stimulating hormone, fasting blood glucose, fasting insulin, body mass index, waist-to-hip ratio, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Adverse reactions were more common in COC alone compared to DKP and COC in combination (RR 0.22, 95% CI 0.07 to 0.63). Conclusion. DKP shows promise in modifying reproductive and metabolic parameters in patients with PCOS and may be used as a primary choice in conventional or complementary therapies for PCOS. The quality of the evidence analyzed was suboptimal, and therefore, our results should be interpreted cautiously. More prospective large-scale and well-designed RCTs, as well as longer intervention durations are required in the future to draw more reliable conclusions.
1. Introduction

Polycystic ovary syndrome (PCOS) is a common gynecologic endocrine disorder that is generally considered to be the leading cause of anovulatory infertility [1], and it affects 6% to 20% of reproductive-age women [2]. PCOS is characterized by menstrual dysfunction, hypo-ovulation/anovulation, hyperandrogenism, and polycystic ovaries [3]. In addition to reproductive disruption, women with PCOS are prone to metabolic disorders, including insulin resistance (IR), impaired glucose tolerance, and dyslipidemia, and they are at an increased risk of developing type 2 diabetes mellitus [4]. In the U.S. alone, the cost of diagnosing, treating, and caring for patients with PCOS was estimated to be $8 billion yearly in 2020, which places an immense financial burden on both the patient’s family and society as a whole [5]. Therefore, the effective management and treatment of PCOS can contribute to improving public health.

Western medicine management for PCOS includes ovulation-inducing drugs (OID), insulin sensitizers, combined oral contraceptives (COC), antiandrogens, and/or antiobesity medications aiming at restoring menstruation and improving pregnancy, decreasing androgen levels, lowering IR, and reducing weight [6]. However, they have some potential side effects. Although clomiphene citrate achieves an ovulation rate up to 70% to 80%, the clinical pregnancy rate is only 30% to 40%, and patients are at risk of multiple pregnancies [7]. Letrozole has a short half-life (42h) and is quickly excreted from the body, thus resulting in the inability to form a dominant follicle [8]. Patients taking Diane-35 or metformin may suffer from abnormal uterine bleeding, gastrointestinal disturbances, and other adverse reactions [9]. Thus, an increasing number of PCOS patients have turned to complementary and alternative therapy to improve their health. According to a recent survey, 70.4% of obstetricians and gynecologists/reproductive doctors in China use traditional Chinese medicine in the treatment of PCOS [10].

Dingkun Pill (DKP) is a traditional Chinese patent herbal medicine originating from the *Golden Mirror of Medicine* written by Wu Qian in the Qing Dynasty and is officially listed in the Chinese Pharmacopoeia [11]. It is composed of 30 Chinese herbs and animal products, including red ginseng (*Radix Ginseng Rubra*), pilose antler (*Cornu Cervi Pantotrichum*), saffron (*Stigma Croci*), debarked peony root (*Radix Paeoniae Alba*), Chinese angelica (*Radix Angelicae Sinensis*), prepared rehmannia root (*Radix Rehmanniae Preparata*), ass hide glue (*Colla Corii Asini*), etc. For centuries, DKP has been used in traditional Chinese medicine to treat gynecological diseases because the combination of these ingredients is thought to nourish the liver and kidney, regulate menstruation, relieve Qi stagnation, benefit Qi, and nourish the blood. Among the traditional Chinese patent herbal medicine used for PCOS, DKP ranks first [10], and an increasing number of animal experiments and clinical studies have demonstrated the reliable efficacy of DKP [12–15]. In experimental studies, DKP and its main active ingredients were found to regulate the reproductive hormone levels in rats with PCOS, decrease the expression of vascular endothelial growth factor in the ovary, and increase the expression of homeobox gene A10 (HOXA10) in the uterus, thereby facilitating uterine receptivity [16, 17]. According to Gao’s study, the mechanism of DKP in the treatment of PCOS might be associated with multiple signaling pathways, such as the PI3K-Akt signaling pathway, serotonergic synapses, steroid hormone biosynthesis, and ovarian steroidogenesis, suggesting that DKP can treat PCOS through multiple targets [18]. Regarding the effect of DKP in PCOS, the available clinical data suggest that DKP plays a role in regulating the menstrual cycle, promoting ovulation, increasing the pregnancy rate, and enhancing the function of the hypothalamic-pituitary-ovary axis (HPOA) [19, 20]. Moreover, DKP has also been used in PCOS patients with IR and lipid metabolism abnormalities [21, 22]. As a traditional Chinese patent herbal medicine, DKP has the advantages of easy access, convenient administration, and wide acceptance. Hence, it has great potential for popularization. However, as far as we know, there has been no systematic evaluation of the efficacy and safety of DKP in the treatment of reproductive and metabolic abnormalities in women with PCOS and whether this medicine represents an ideal form of complementary and alternative therapy. Thus, we conducted a systematic review and meta-analysis of available RCTs to provide a reliable basis for the treatment of PCOS.

2. Materials and Methods

This systematic review was conducted and reported according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement guidelines [23] and was registered in PROSPERO (CRD42022298220).

2.1. Search Strategy. The systematic literature search was performed in the following databases: PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang Database, VIP Database, and the Chinese Biomedical Literature Database (CBM) from their inception to 1 January, 2022. Key words in the literature retrieval included “Dingkun pill,” “Dingkun Dan,” “polycystic ovary syndrome,” “polycystic ovarian syndrome,” “PCOS,” and related synonyms (the full details of the search strategy are given in Table S1 in the Supplementary Materials). No limits were applied to language or publication status. The references of significant studies were searched manually for possible relevant literature, and conference compilations supplemented the electronic searches.

2.2. Eligibility Criteria. The inclusion criteria was as follows: (a) subjects diagnosed with PCOS regardless of race and age, (b) the intervention group was treated with DKP or DKP combined with the control group’s intervention. The control group was treated with Western medicine, placebo, or blank and with an unlimited dose and course of treatment. (c) The study was an RCT. The exclusion criterion was the literature
2.3. Outcome Measures. As improving reproduction is the core in treating PCOS, the primary outcome measure was defined as reproductive indexes, including pregnancy rate, ovulation rate, and endometrial thickness. The secondary outcome measures were defined as hormone parameters—including luteinizing hormone (LH), follicle stimulating hormone (FSH), and testosterone (T)—and metabolic indexes—including fasting blood glucose (FBG), fasting insulin (FINS), and homeostasis model assessment-β (HOMA-β)—lipid profiles—including total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA)—and anthropometric indices—including body mass index (BMI) and waist-to-hip ratio (WHR). Adverse reactions were also included as outcomes.

2.4. Literature Screening and Data Extraction. Based on the search strategy presented above, the titles and abstracts of the identified articles were read for preliminary screening after eliminating duplicates. The full texts were then read during rescreeing in accordance with the inclusion and exclusion criteria established previously to identify the included articles. Data extraction was performed independently by two reviewers, and disagreement was resolved by discussion. The following information was extracted from the included RCTs: (1) the characteristics of the articles, including primary author, publication year, language, and study design, (2) participants’ characteristics, including mean age, sample size, and criteria used to define PCOS, (3) the details of interventions and comparison methods, including the type and treatment duration, (4) every outcome measure, and (5) adverse reactions. To ensure that the data were complete and accurate, we contacted the authors via telephone or e-mail regarding missing data.

2.5. Quality Assessment. Two reviewers independently assessed the methodological quality of eligible RCTs using the Cochrane collaboration risk-of-bias instrument [24]. Factors were related to bias risk-included random sequence generation, allocation concealment, the blinding of participants and personnel, the blinding of outcome assessment, incomplete outcome data, selective reporting, and other biases. There were three levels used to assess the methodological quality: the low risk of bias, the high risk of bias, and an unclear risk of bias. Then, we used the grading of recommendations, assessments, development, and evaluation (GRADE) [25] system (pro 3.6.1) to evaluate the quality of evidence derived from our systematic review for primary outcomes separately, including the risk of bias, indirectness, inconsistency, imprecision, and publication bias. All discrepancies and disagreements were resolved by consensus or by discussion with the corresponding author.

2.6. Statistical Analysis. All data syntheses were performed using the Review Manager software version 5.3. Dichotomous data were presented as the risk ratio (RR) and continuous data as the weighted mean difference (WMD) or standardized mean difference (SMD), both with a 95% confidence interval (CI). Heterogeneity across the studies was tested by the Cochrane Q-test and I² statistic. If $I^2 \leq 50\%$ and $P \geq 0.10$, a fixed effects model was used. Otherwise, a random effects model was used. To determine the stability of the meta-analysis results, a sensitivity analysis was conducted to explore heterogeneity because of extreme data. A funnel plot was used to assess publication biases.

3. Results

3.1. Study Selection. Originally, 185 articles were identified in the database through the search strategy, and it was reduced to 84 records after duplicates were removed. After reviewing the titles, abstracts, and full-text articles, a total of 22 RCTs in 24 publications [10, 19, 21, 22, 26–45], including 1994 women with PCOS, satisfied our inclusion criteria (Figure 1).

3.2. Characteristics of the Included Studies. The summarized characteristics of the 22 RCTs and the 1994 participants are shown in Table 1. All of the RCTs were conducted in China, with the sample size ranging from 60 to 210 participants, and most of them were 20 to 39 years old. Studies were published between 2012 and 2021. Most of the included RCTs used the Rotterdam criteria [46] to define PCOS, while three RCTs [36, 39, 41] used Obstetrics and Gynecology, Chinese Obstetrics and Gynecology Association, and Guidelines for the diagnosis and treatment of PCOS in China, respectively, and six RCTs [29, 31, 34, 35, 37, 40] only reported the diagnosis of PCOS and did not clearly describe the diagnostic criteria. The interventions were DPK alone or in combination with OID or COC, and the controls were OID or COC. Twenty of the 22 RCTs [19, 25–43] were 2-arm studies, and the remaining two RCTs were 3-arm studies. Data from the 3-arm study, divided into DPK vs. COC and DPK + COC vs. COC, were included in the meta-analysis. The duration of treatment was one month in two RCTs [33, 39], three months in 11 RCTs [10, 19, 21, 22, 28–30, 32, 40–44], six months in two RCTs [26, 38], and until pregnancy in the rest. Pregnancy rate and endometrial thickness were the most common outcomes followed by hormone parameters. Ten RCTs [10, 19, 21, 22, 26, 28, 33, 38, 39, 42–44] reported on adverse reactions.

3.3. Risk of Bias of Individual Studies. Figure 2 summarizes the risk of bias of the included trials based on different quality domains using the Cochrane collaboration instrument. Nine trials [10, 21, 22, 25, 29, 30, 33, 37, 41–43] reported random sequence generation using a random number table or software and thus had a low risk, 12 trials [19, 26–28, 31, 32, 34–36, 38–40] only mentioned “random” but were missing details regarding the randomization methods and thus had an unclear risk, and one trial [38] had
a high risk. Only one trial [10, 21, 22] had a low risk when considering allocation concealment. In terms of the blinding of participants or personnel, two trials [10, 19, 21, 22] had a low risk. The outcome assessors were blind in one trial [10, 21, 22] using triple-blinding, and the other 21 trials had an unclear risk. There was no risk of bias for incomplete outcome data or for selective reporting. All trials appeared to have an unclear risk for other biases.

3.4. Findings from the Meta-Analysis

3.4.1. Effects on Reproductive Indexes. The effects of DKP on pregnancy rate was assessed in 18 RCTs (1616 participants). The pooled results showed that the combination of DKP + OID was superior to OID alone in increasing the pregnancy rate (RR: 1.84, 95% CI: 1.62 to 2.11, P < 0.00001). Compared with the COC groups, there was a significant improvement in pregnancy rate in the DKP + COC groups (RR: 1.23, 95% CI: 1.11 to 1.37, P = 0.0001). There was no clear difference between DKP and COC in terms of ovulation rate (RR: 0.96, 95% CI: 0.68 to 1.36, P = 0.82) (Figure 4).

There were ten RCTs (772 participants) assessing the effects of DKP on endometrial thickness. Compared with OID alone, the combination DKP + OID significantly improved the endometrial thickness of PCOS patients (WMD: 2.50, 95% CI: 1.91 to 3.09, P < 0.00001). Furthermore, the combination of DKP + COC also significantly increased endometrial thickness (WMD: 0.62, 95% CI: 0.08 to 1.16, P = 0.02) (Figure 5).

3.4.2. Effects on Hormone Parameters. Thirteen trials totaling 1175 women were used in a meta-analysis of the effects of DKP on LH level. Compared with OID alone, DKP + OID
Study ID	Language	Study design	Age (years)	Sample size	Diagnostic criteria	Interventions	Duration	Outcomes	Adverse reaction
Du 2019 [26]	Chinese	RCT	29.7 ± 2.2	30	Rotterdam	DKP + OID		Pregnancy rate, ovulation rate, endometrial thickness, LH, FSH, T	NR
Hu 2012 [27]	Chinese	RCT	29.5 ± 2.1	30	Rotterdam	OID		Pregnancy rate, LH, FSH, T	None
Li 2018 [28]	Chinese	RCT	NR	40	Rotterdam	DKP + OID	6 months	Pregnancy rate, LH, FSH, T	None
Ma 2018 [29]	Chinese	RCT	26.2 ± 4.0	40	Rotterdam	DKP + OID	3 months	Pregnancy rate, endometrial thickness, LH, FSH, T	None
Qin 2021 [30]	Chinese	RCT	30.21 ± 3.81	49	Not clearly described	DKP + OID	3 months	Pregnancy rate, LH, FSH	NR
Ren 2020 [31]	Chinese	RCT	28.7 ± 1.3	36	Rotterdam	DKP + OID	3 months	Pregnancy rate, endometrial thickness, LH, FSH, T	NR
Wang 2019 [32]	Chinese	RCT	28.36 ± 7.92	55	Not clearly described	DKP + OID		Pregnancy rate, ovulation rate, endometrial thickness	NR
Wei 2012 [33]	Chinese	RCT	28.35 ± 1.25	30	Rotterdam	DKP + OID	3 months	Pregnancy rate, ovulation rate, endometrial thickness	NR
Wei 2018 [19]	Chinese	RCT	29.33 ± 0.96	50	Rotterdam	DKP + OID	1 month	Pregnancy rate, ovulation rate, endometrial thickness	None
Wei 2020 [34]	Chinese	RCT	26.12 ± 3.54	45	Rotterdam	DKP + OID	3 months	Pregnancy rate, endometrial thickness, LH, FSH, T	None
Yu 2020 [35]	Chinese	RCT	30.54 ± 2.34	46	Not clearly described	DKP + OID		Pregnancy rate, ovulation rate, endometrial thickness	NR
Yuan 2019 [36]	Chinese	RCT	31.12 ± 0.28	34	Not clearly described	DKP + OID		Pregnancy rate, ovulation rate, endometrial thickness	NR
Yu 2020 [37]	Chinese	RCT	NR	50	Obstetrics and gynecology	DKP + OID		Pregnancy rate, ovulation rate	NR
Yu 2021 [38]	Chinese	RCT	27.57 ± 2.25	55	Not clearly described	DKP + OID		Endometrial thickness, LH, FSH, T	NR
Zhai 2019 [39]	Chinese	RCT	26.15 ± 3.18	44	Rotterdam	DKP + OID	6 months	Pregnancy rate, LH, FSH, T	None
Chu 2020 [40]	Chinese	RCT	29.27 ± 3.59	30	Chinese obstetrics and gynecology association	DKP + OID + DYD		Pregnancy rate, ovulation rate, endometrial thickness	None
Xiang 2020 [41]	Chinese	RCT	31.05 ± 3.37	105	Not clearly described	DKP + COC + MET	3 months	Pregnancy rate, ovulation rate, LH, FSH, T, FINS, HOMA-β	NR
Table 1: Continued.

Study ID	Language	Study design	Age (years)	Sample size	Diagnostic criteria	Interventions	Duration	Outcomes	Adverse reaction
Zhong 2021	Chinese	RCT	28.69 ± 1.75	44	Guidelines for diagnosis and treatment of PCOS in China	DKP + COC + MET COC + MET	3 months	Pregnancy rate, ovulation rate, LH, FSH, T, FINS, HOMA-β	NR
Chen 2016	Chinese	RCT	30.3 ± 1.8	40	Rotterdam	DKP + COC COC	3 months	LH, FSH, T	Yes
Yu 2021	Chinese	RCT	24.47 ± 4.05	30	Rotterdam	DKP + COC COC	3 months	Endometrial thickness, LH, FSH, T	Yes
Deng 2020	English	RCT	27.5 ± 3.4	35	Rotterdam	DKP COC	3 months	BMI, WHR, FBG, FINS, TC, TG, HDL-c, LDL-C	None
Zhang 2019	Chinese	RCT	28.02 ± 3.21	40	Rotterdam	DKP COC	3 months	Pregnancy rate, ovulation rate, LH, FSH, T	None

DKP, Dingkun pill; OID, ovulation inducing drugs; COC, combined oral contraceptives; DYD, dydrogesterone; MET, metformin; LH, luteinizing hormone; FSH, follicle stimulating hormone; T, testosterone; BMI, body mass index; WHR, waist-to-hip ratio; FBG, fasting blood glucose; FINS, fasting insulin; HOMA-β, homeostasis model assessment-β; TC, total cholesterol; TG, triacylglycerol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NR, not reported.

Figure 2: The risk of bias for the included studies shown as low risk of bias (+), high risk of bias (−), and unclear risk of bias (?).
Figure 3: Meta-analyses of the effects of DKP on the pregnancy rate.

significantly decreased LH (WMD: −1.93, 95% CI: −2.80 to−1.07, P < 0.0001). Similarly, the combination of DKP and COC was superior in reducing LH compared to COC alone (WMD: −1.79, 95% CI: −2.66 to−0.92, P < 0.0001). There was no significant difference between DKP versus COC in reducing LH (WMD: 0.04, 95% CI: −0.29 to−0.37, P = 0.81) (Figure 6).

Figure 7 shows the meta-analysis of FSH in 13 RCTs with a total of 1175 patients. DKP did not appear to have a significant effect on improving FSH because no statistically significant differences were seen: DKP + OID versus OID (WMD: −0.37, 95% CI: −0.92 to−0.18, P = 0.19), DKP + COC versus COC (WMD: −0.24, 95% CI: −1.03 to−0.55, P = 0.55), and DKP versus COC (WMD: 0.04, 95% CI: −0.53 to−0.62, P = 0.89). However, a significant difference in the level of FSH was found in the subgroup analysis stratified by the duration of the intervention. In the stratified analysis, interventions lasting three months or more had a significant effect on FSH levels (WMD: −0.40, 95% CI: −0.68 to−0.12, P = 0.006). The details of the subgroup analyses are shown in the Supplementary Materials.

A meta-analysis of 13 trials (1157 patients) found that T decreased more after DKP plus OID or COC treatment in comparison with OID or COC alone (OID: SMD: −2.12, 95% CI: −3.01 to−1.24, P < 0.00001; COC: SMD: −1.21, 95% CI: −1.64 to−0.78, P < 0.00001). On the contrary, the comparison of the DKP groups with the COC groups did not show a significant difference in T (SMD: 0.18, 95% CI: −0.26 to 0.62, P = 0.42) (Figure 8).

3.4.3. Effects on Metabolic Indexes. The effects of DKP on FINS were assessed in 3 RCTs (372 patients). There was a significant decline in the FINS level after COC intake in comparison with DKP + COC treatment (WMD: 2.57, 95% CI: 2.22 to 2.91, P < 0.00001), while no significant difference was found between DKP and COC on FINS (WMD: −1.52, 95% CI: −6.53 to 3.49, P = 0.55) (Figure 9).

One RCT reported FBG as an outcome measure and did not observe any significant change in FBG in PCOS patients after DKP treatment compared to COC treatment (WMD: 0.10, 95% CI: −0.09 to 0.29, P = 0.31). In addition, compared with the COC group, there were no significant differences in FBG in the DKP + COC group (WMD: 0.10, 95% CI: −0.15 to 0.35, P = 0.43) (Table 2).
When we combined data from two studies (297 patients), a significant increase in HOMA-β was observed in DKP + COC treatment (WMD: 20.42, 95% CI: 16.85 to 23.98, \(P < 0.00001 \)) (Figure 10).

3.4.4. Effects on Lipid Profiles

As illustrated in Table 2, DKP in PCOS patients showed a significant reduction in serum TC (WMD: \(-0.37\), 95% CI: \(-0.72\) to \(-0.02\), \(P = 0.04 \)), TG (WMD: \(-0.85\), 95% CI: \(-1.50\) to \(-0.20\), \(P = 0.01 \)), and FFA (WMD: \(-130.00\), 95% CI: \(-217.56\) to \(-42.44\), \(P = 0.004 \)) levels versus the COC group. However, COC improved the serum concentration of HDL-C compared to the DKP group (WMD: \(-0.35\), 95% CI: \(-0.55\) to \(-0.15\), \(P = 0.0008 \)). There was no significant change in TC (WMD: \(-0.18\), 95% CI: \(-0.16\) to \(-0.02\), \(P = 0.31 \)), TG (WMD: \(-0.01\), 95% CI: \(-0.10\) to \(-0.02\), \(P = 0.64 \)), LDL-C (WMD: \(-0.29\), 95% CI: \(-0.26\) to \(-0.02\), \(P = 0.01 \)), and FFA (WMD: \(-67.00\), 95% CI: \(-157.12\) to \(23.12\), \(P = 0.15 \)) when DKP + COC was administered (Table 2).
Heterogeneity: Tau² = 0.54; chi² = 95.61, df = 7 (Ren AL 2020, Qin YF 2021)
Subtotal (95% CI)
Ma L 2018, Hu XH 2012

Heterogeneity: Not applicable

Subtotal (95% CI)

Test for overall effect: Z = 0.24 (P = 0.81)

Heterogeneity: Tau² = 0.86; chi² = 50.52, df = 4 (Du MX 2019, Hu XH 2012)

Zhang G 2019, Yu X 2021

Heterogeneity: Tau² = 1.32; chi² = 89.71, df = 7 (Yu H 2021, Xiang Y 2020)

Chen WY 2016

Heterogeneity: Not applicable

Subtotal (95% CI)

Test for overall effect: Z = 0.19 (P = 0.82)

Figure 6: Meta-analyses of the effects of DKP on LH.

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
1.4.1 DKP vs COC									
Zhang G 2019	7.02	0.77	40	6.98	0.74	40	100.0%	0.04 [-0.29, 0.37]	
Subtotal (95% CI)	40			40				0.04 [-0.29, 0.37]	

Heterogeneity: Not applicable

Test for overall effect: Z = 0.24 (P = 0.81)

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
1.5.1 DKP vs COC									
Zhang G 2019	6.92	1.35	40	6.88	1.25	40	100.0%	0.04 [-0.53, 0.61]	
Subtotal (95% CI)	40			40				0.04 [-0.53, 0.61]	

Heterogeneity: Not applicable

Test for overall effect: Z = 0.14 (P = 0.89)

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
1.5.2 DKP + OID vs OID									
Du MX 2019	4.3	1.3	30	7.2	2.4	30	12.4%	-2.90 [-3.88, -1.92]	
Hu XH 2012	6.95	2.49	30	7.28	2.66	30	11.1%	-0.33 [1.63, 0.97]	
Ma L 2018	13.32	4.16	40	19.21	4.22	40	8.9%	-5.89 [-7.78, -4.05]	
Qin YF 2021	7.91	1.68	49	9.76	2.03	49	13.3%	-1.85 [2.59, -1.11]	
Ren AL 2020	6.5	2.36	36	9.3	2.5	36	11.9%	-2.80 [3.91, -1.69]	
Wei XJ 2020	7.08	1.44	45	7.74	1.53	45	13.8%	-0.66 [-1.27, -0.05]	
Yu X 2021	5.98	1.22	55	7.98	1.23	55	14.2%	-2.00 [-2.46, -1.54]	
Zhang XJ 2019	6.34	0.75	44	6.76	0.69	44	14.5%	-0.42 [-0.72, -0.12]	
Subtotal (95% CI)	329			329				-1.93 [-2.86, -1.07]	

Heterogeneity: Tau² = 0.86; chi² = 50.52, df = 4 (Yu X 2021, Zhang XJ 2019)

Subtotal (95% CI)

Test for overall effect: Z = 4.02 (P < 0.0001)

Figure 7: Meta-analyses of the effects of DKP on FSH.
3.4.5. Effects on Anthropometric Indices. BMI and WHR were measured in only one trial, and there were no significant changes in BMI or WHR for DKP alone (BMI: WMD: 0.70, 95% CI: -1.81 to 3.21, P = 0.59; WHR: WMD: 0.00, 95% CI: -0.03 to 0.03, P = 1.00) or for DKP + COC (BMI: WMD: 0.60, 95% CI: -1.92 to 3.12, P = 0.64; WHR: WMD: -0.01, 95% CI: -0.04 to 0.02, P = 0.47) (Table 2).

3.5. Adverse Reactions. Ten trials [10, 19, 21, 22, 27, 29, 34, 39, 40, 43–45] recorded adverse events of which eight trials reported that there were no adverse reactions. In the other two studies [43, 44], statistical analysis showed that DKP + COC was associated with fewer adverse events compared to COC alone (RR = 0.22, 95% CI: 0.07 to 0.63, P = 0.005) (Figure 11). The results of Chen et al. [43] showed that adverse reactions occurred in the intervention group (mild nausea in 1 case and mild breast pain in 1 case) and the control group (mild nausea in 3 cases, mild breast pain in 2 cases, interphase hemorrhage in 1 case, and mild headache in 2 cases). In Yu’s study [44], three patients had adverse reactions in the DKP + COC group, including TC elevation (n = 2) and direct bilirubin elevation (n = 1), and ten patients had adverse reactions in the COC group, including direct bilirubin elevation (n = 3), glutamic pyruvic transaminase elevation (n = 1), apolipoprotein A1 elevation (n = 1), TC elevation (n = 1) and direct bilirubin elevation (n = 1).
All the above adverse reactions were mild, and no serious adverse events were observed in the included trials.

3.6. Sensitivity Analysis

When the heterogeneity was high, we performed a sensitivity analysis. The results indicated that there was no significant change in the effect size of endometrial thickness, LH, or T after the one-by-one exclusion of the included literature, which confirmed the stability and reliability of the meta-analysis. Furthermore, removing Xiang et al. [41], who investigated the influence of DKP on T, led to a decrease in heterogeneity, while the result remained significant (SMD: -1.37, 95% CI: -1.73 to -1.02, $P = 0.00001$, $I^2 = 49\%$). However, the result of FSH was not robust, and removing Ma et al. [29] resulted in a positive

Table 2: Data and analyses of RCTs included in this systematic review and meta-analysis.

Outcome or subgroup	Participants	Mean difference	95% CI	P Value
FBG				
DKP vs. COC	71	0.10	$[-0.29, 0.09]$	0.31
$DKP + COC$ vs. COC	75	0.10	$[-0.20, 0.15]$	0.43
BMI				
DKP vs. COC	71	0.70	$[-1.21, 1.21]$	0.59
$DKP + COC$ vs. COC	75	0.60	$[-1.13, 1.43]$	0.64
WHR				
DKP vs. COC	71	0.00	$[-0.05, 0.05]$	1.00
$DKP + COC$ vs. COC	75	-0.01	$[-0.06, 0.05]$	0.47
TC				
DKP vs. COC	71	-0.77	$[-0.99, -0.54]$	0.04
$DKP + COC$ vs. COC	75	0.18	$[-0.12, 0.49]$	0.31
TG				
DKP vs. COC	71	-0.85	$[-1.08, -0.61]$	0.01
$DKP + COC$ vs. COC	75	-0.19	$[-0.30, -0.08]$	0.65
LDL-C				
DKP vs. COC	71	0.09	$[-0.03, 0.21]$	0.58
$DKP + COC$ vs. COC	75	0.21	$[-0.01, 0.43]$	0.20
HDL-C				
DKP vs. COC	71	-0.35	$[-0.50, -0.20]$	0.0008
$DKP + COC$ vs. COC	75	0.04	$[-0.09, 0.17]$	0.75
FFA				
DKP vs. COC	71	-130.00	$[-217.6, -42.4]$	0.004
$DKP + COC$ vs. COC	75	-67.00	$[-157.1, 23.1]$	0.15

DKP, Dingkun pill; COC, combined oral contraceptives; FPG, fasting blood glucose; BMI, body mass index; WHR, waist-to-hip ratio; TC, total cholesterol; TG, triacylglycerol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FFA, free fatty acid.

Figure 10: Meta-analyses of the effects of DKP on HOMA-β.

Figure 11: Forest plot for overall adverse reactions.

elevation ($n = 2$), TG elevation ($n = 2$), and breast pain ($n = 1$). All the above adverse reactions were mild, and no serious adverse events were observed in the included trials.
overall effect (WMD: −0.59, 95% CI: −1.13 to −0.05, \(P = 0.003 \)).

3.7. Publication Bias. A funnel plot was used to evaluate publication bias, which showed that the symmetry between different studies was poor and that publication bias existed (Figure 12).

3.8. Quality of the Evidence. Table 3 shows a summary of the quality of evidence grades for selected primary outcomes. The quality of the evidence was downgraded to low or very low certainty according to the GRADE system. The main reason for this degradation was the limitations of the original studies because of the lack of randomization allocation and blinding, the unexplained heterogeneity between studies in the estimates of the treatment effects, the number of patients included being less than 400, and the publication bias.

4. Discussion

4.1. Main Results. The present study is the latest and most comprehensive systematic review of the effects of DKP on reproduction and metabolism in PCOS patients, including 22 RCTs (1994 participants). In this review, DKP was shown to significantly ameliorate 1) reproduction issues as evidenced by increased pregnancy rate, ovulation rate, and endometrial thickness, 2) hormone imbalances as assessed by decreased LH and T, 3) metabolic disorders as assessed by increased HOMA-\(\beta \), and 4) lipid profile changes as evidenced by decreased TC, TG, and FFA in PCOS patients. However, DKP combined with Western medicine had no significant effects over Western medicine alone on anthropometric indices (BMI and WHR).

According to traditional Chinese medicine, the occurrence of PCOS is closely related to the kidneys, liver, spleen, and the Chong and conception channels, with kidney deficiency being the main cause followed by liver depression and spleen deficiency [47–49]. The combination of stasis blood, phlegm, and fluid retention, as well as water-dampness leads to a series of clinical symptoms. DKP is composed of the ingredients that have an effect on these symptoms, such as pilose antler (Cornu Cervi Pantotrichum), barbary wolfberry fruit (Fructus Lycii), and degelatined deer-horn (Cornu Cervi Degelatinatum), which warm the kidney, reinforce Yang, and nourish the liver and kidney. Chinese thorowax root (Radix Bupleuri), nutgrass galingle rhizome (Rhizoma Cyperi), Sichuan lovage rhizome (Rhizoma Ligustici Chuanxiong), and debarked peony root (Radix Paeoniae Alba) are combined to form the representative prescription Chaihu Shugan powder, which is used to disperse stagnated liver qi. Adding safflower (Flos Carthami), sanqi (Radix Notoginseng), motherwort fruit (Fructus Leonuri), and yanhusuo (Rhizoma Corydalis) promotes blood flow for regulating menstruation. Red ginseng (Radix Ginseng Rubra), largehead atractylodes rhizome (Rhizoma Atractylodis Macrocephalae), Indian bread (Poria), and licorice root (Radix Glycyrrhizae) are the
Number of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Number of patients	Effect	Quality	Importance		
Pregnancy rate: **DKP + OID vs. OID**	14	RCT	Serious^a	No serious inconsistency	No serious indirectness	No serious imprecision	Suspected^d	325/574 (56.6%)	178/574 (31%)	RR 1.83 (1.6 to 2.09)	257 more per 1000 (from 186 more to 338 more)	★★★★ LOW CRITICAL

| Pregnancy rate: **DKP + COC vs. COC** | 3 | RCT | Serious^a | No serious inconsistency | No serious indirectness | Serious^b | Undetected | 126/189 (66.7%) | 91/188 (48.4%) | RR 1.38 (1.16 to 1.64) | 184 more per 1000 (from 77 more to 310 more) | ★★★★ LOW CRITICAL |

| Ovulation rate: **DKP + OID vs. OID** | 5 | RCT | Serious^a | No serious inconsistency | No serious indirectness | Serious^c | Undetected | 168/196 (85.7%) | 126/196 (64.3%) | RR 1.38 (1.03 to 1.84) | 244 more per 1000 (from 19 more to 540 more) | ★★★★ VERY LOW CRITICAL |

| Ovulation rate: **DKP + COC vs. COC** | 3 | RCT | Serious^a | No serious inconsistency | No serious indirectness | Serious^c | Undetected | 165/189 (87.3%) | 131/188 (69.7%) | RR 1.23 (1.11 to 1.37) | 160 more per 1000 (from 77 more to 258 more) | ★★★★ LOW CRITICAL |

| Endometrial thickness: **DKP + OID vs. OID** | 9 | RCT | Serious^a | No serious inconsistency | No serious indirectness | No serious imprecision | Undetected | 356 | 356 | — | WMD 2.5 higher (1.91 to 3.09 higher) | ★★★★ LOW CRITICAL |

CI, confidence interval; RR, risk ratio; WMD, weighted mean difference; RCT, randomized controlled trial; DKP, Dingkun pill; OID, ovulation inducing drugs; COC, combined oral contraceptives. ^aRandomization allocation and the blinding are unclear. ^bI² value was large. ^cNumber of patients included was less than 400. ^dFunnel plot indicated a significant asymmetry.
famous prescriptions of Sijunzi decoction used for invigorating the spleen-stomach and replenishing qi, while debarked peony root (Radix Paeoniae Alba), prepared rehmannia root (Radix Rehmanniae Preparata), Chinese angelica (Radix Angelicae Sinensis), and Sichuan lovage rhizome (Rhizoma Ligustici Chuanxiong) are combined into a Siwu decoction as the basic prescription for nourishing blood for regulating menstruation, and the two prescriptions are combined to make the Bawu decoction, especially for benefiting qi and nourishing blood. Ass hide glue (Colla Corii Asini) is added to nourish Yin and tonify blood, and Baikal skullcap root (Radix Scutellariae) is added for clearing heat, removing dampness, and making the mixture tonic but not dry. Finally, the mixture is supplemented with honey (Mel) to reconcile the herbs. The whole prescription of DKP is rigorously formulated to harmonize Yin and Yang, co-ordinate Chong and the conception vessels, reinforce and regulate the spleen-stomach and replenishing qi, while rating the spleen-stomach and replenishing qi, while regulating the expression of transforming growth factor-beta and ovulatory dysfunction in patients with PCOS [66]. DKP could be a promising approach to treating PCOS by down-regulating the expression of transforming growth factor-beta 1 and connective tissue growth factor to interfere with extracellular matrix deposition [17].

IR occurs in 50% to 70% of women with PCOS [67], and the pathophysiology of type 2 diabetes mellitus is influenced by IR and abnormal glucose metabolism [68]. Most women with a family history of type 2 diabetes mellitus demonstrate impaired β-cell function or a subnormal disposition index [69]. In this meta-analysis, compared with COC alone, it was observed that DKP combined with COC significantly increased HOMA-β levels in PCOS patients, which suggested that DKP might have an effect on improving insulin sensitivity. We also assessed the effects of DKP on FBG and FINS in PCOS patients. However, we were unable to find any statistical difference between the intervention and control group. It is worth mentioning that Deng et al.’s study [21] found that FBG was significantly decreased in PCOS patients after taking DKP for three months. Ginsenosides, one of the bioactive components of DKP, play a role in inhibiting the increase in blood glucose seen in PCOS patients with IR. The hypoglycemic effect of ginsenosides is mainly achieved by inhibiting hepatic gluconeogenesis, activating the AMPK signaling pathway, and stimulating glucose uptake [70]. Taken together, DKP may have a greater effect on insulin sensitivity than on IR, and DKP administration decreases glucose levels by increasing insulin sensitivity.
Clinical evidence shows a close association between cardiovascular disease and atherogenic dyslipidemia, which is characterized by elevated TC, TG, and LDL-C, and reduced HDL-C [71]. About 70% of women with PCOS in the U.S. suffer from dyslipidemia and possibly an increased risk of developing cardiovascular diseases [72, 73]. Notably, our observations provide a novel dimension to present evidence for the beneficial effects of DKP in mitigating dyslipidemia in women with PCOS. DKP significantly altered TC, TG, and FFA levels compared with the COC group in this meta-analysis. While there was inadequate evidence that DKP had a favorable influence on LDL-C and HDL-C in the present meta-analysis, some findings provided support for further investigation. One RCT reported a reduction in LDL-C and no increase in HDL-C in subjects with PCOS after the intake of DKP [22]. Overweight or obesity increases the risk for metabolic syndrome and cardiovascular disease in women with PCOS [74], and there is evidence that obesity may exacerbate IR, hyperandrogenism, or ovulatory dysfunction in PCOS, which can lead to infertility [75]. Although there was a lack of significant effect of DKP on BMI and WHR in our meta-analysis, some findings provided evidence for further exploration. The notoginsenosides found in DKP are potential active ingredients for the treatment of obesity by reducing lipid synthesis, inhibiting adipogenesis, increasing energy expenditure, and improving insulin sensitivity [76]. It can thus be seen that the results of this analysis were negative because of the insufficient survey of this critically important, yet largely ignored area, however, we cannot exclude a possible regulatory effect of DKP on anthropometric indices in PCOS patients.

Of the included trials, only two trials reported adverse reactions [43, 44]. One study [43] reported gastrointestinal or breast discomfort in the control group and the intervention group, however, the numbers of events were small and the symptoms were mild. In the other trial [44], there were three patients with abnormal serum biochemical indexes in the intervention group, however, there were ten patients presenting with abnormal indexes in the control group, and there were significant differences between the two groups. It should be mentioned that eight trials [10, 19, 21, 22, 27, 29, 34, 39, 40, 45] indicated that no adverse reactions occurred during the treatment. In addition, it is mentioned in the instructions of DKP that patients should stop taking it if they have a cold or flu. According to the current evidence, we believe that DKP is a relatively safe treatment. However, the long-term safety and efficacy of DKP in PCOS patients remains to be further explored.

4.2. Strengths and Limitations. This review has several strengths. We used metabolic indexes, lipid profiles, and anthropometric indexes as new evaluation indicators to discuss the efficacy of DKP on PCOS for the first time, consequently providing more possible therapies for PCOS. A previous meta-analysis [77], which only involved seven studies (with 658 participants), focused on the effectiveness of the combination of DKP and western medicine in ameliorating reproductive issues (ovulation rate, pregnancy rate, endometrial thickness, and hormone parameters), however, it did not perform an analysis of the effectiveness in regulating metabolic function in patients with PCOS. Moreover, our research has been registered on PROSPERO, and all procedures were faithfully executed accordingly, thus increasing the credibility of our results.

However, a few limitations exist in our study. Firstly, the follow-up time of these trials was inadequate, and the majority patients involved in the studies accepted about three months of treatment, and there was no evaluation of long-term outcomes. The live birth rate bears a great role in infertility clinical trials and is recognized as the major outcome [78]. Because of the lack of live birth rate, the trials included in this meta-analysis were insufficient to comprehensively address the role of DKP on reproductive health. Secondly, the heterogeneity between studies may stem from limitations in the methodological quality of the 22 RCTs included, such as the inappropriate use of blinding and differences in allocation concealment. Thirdly, although there were no language restrictions in the search, all trials were conducted in China, and 21 studies were published in domestic journals, which may lead to publication bias. It has been shown that publication bias in Chinese medical journals exists objectively because of the fact that negative results from clinical studies are not easily published and trials with small sample sizes are published [79]. The limitations mentioned above may affect the reliability of this meta-analysis, and thus the results in this review need to be interpreted with caution.

4.3. Implications for the Future. Clinical studies on interventions using DKP for PCOS are gradually increasing. In our meta-analysis, 18 RCTs were published between 2012 and 2020, followed by 4 RCTs published in 2021, indicating that DKP is a relatively new treatment for PCOS and that this intervention has great research value. Furthermore, we hope that modern clinical research on Chinese patent herbal medicines (such as DKP) can be spread to other countries to obtain more high-quality evidence for the use of such medicines in the clinic. At present, there is no single drug that is capable of treating infertility and metabolic complications associated with PCOS. As a multicomponent drug compound, DKP may have a role in the treatment of PCOS through multitarget synergistic actions. Therefore, future research on DKP for PCOS should focus on metabolic outcomes to identify more therapeutic methods for treating PCOS.

5. Conclusion

In summary, our results indicate that DKP has a promising application in modifying the reproductive and metabolic abnormalities in patients with PCOS and may be used as a primary choice in conventional or complementary therapies for PCOS. However, considering the inherent limitations and heterogeneity among the studies analyzed here, our results should be interpreted with caution. We expect more prospective large-scale and well-designed RCTs with longer
intervention durations to further determine the clinical efficacy and safety of DKP in treating PCOS.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
Bao Jin and Yang Zhang are the co-first authors.

Acknowledgments
This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (81803945), the Scientific Research Project of Traditional Chinese Medicine in Heilongjiang Province (ZHY19024), and the Project of Young Innovative Talents in Colleges and Universities in Heilongjiang Province (UNPYSCT-2016216).

Supplementary Materials
Table S1. Search strategy. Figures S1–S6. Results of subgroup analyses. (Supplementary Materials)

References
[1] D. T. Baird, A. Balen, H. F. Escobar-Morreale et al., “Health and fertility in World Health Organization group 2 anovulatory women,” Human Reproduction Update, vol. 18, no. 5, pp. 586–599, 2012.
[2] C. R. McCartney and J. C. Marshall, “Polycystic ovary syndrome,” New England Journal of Medicine, vol. 375, no. 1, pp. 54–64, 2016.
[3] H. J. Teede, M. L. Misso, M. F. Costello et al., “Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome,” Fertility and Sterility, vol. 110, no. 3, pp. 364–379, 2018.
[4] G. Morgante, M. G. Massaro, A. Di Sabatino, V. Cappelli, and V. De Leo, “Therapeutic approach for metabolic disorders and infertility in women with PCOS,” Gynecological Endocrinology, vol. 34, no. 1, pp. 4–9, 2018.
[5] C. Riestenberg, A. Jagasia, D. Markovic, R. P. Buyalos, and R. Azziz, “Health care-related economic burden of polycystic ovary syndrome in the United States: pregnancy-related and long-term health consequences,” Journal of Clinical Endocrinology and Metabolism, vol. 107, no. 2, pp. 575–585, 2022.
[6] R. Homburg, “Clomiphene citrate—end of an era? A mini-review,” Human Reproduction (Oxford), vol. 20, no. 8, pp. 2043–2051, 2005.
[7] J. Brown, C. Farquhar, J. Beck, C. Boothroyd, and E. Hughes, “Clomiphene and anti-estrogens for ovulation induction in PCOS,” Cochrane Database of Systematic Reviews, vol. 4, Article ID CD0002249, 2009.
[8] T. Kilic-Okman, M. Kucuk, and S. Altaner, “Comparison of the effects of letrozole and clomiphene citrate on ovarian follicles, endometrium, and hormone levels in the rat,” Fertility and Sterility, vol. 80, no. 6, pp. 1330–1332, 2003.
[9] N. Naderpoor, S. Shorakae, A. Joham, J. Boyle, B. D. Courten, and H. J. Teede, “Obesity and polycystic ovary syndrome,” Minerva Endocrinologica, vol. 40, no. 1, pp. 37–51, 2015.
[10] Y. Deng, Current Situation Investigation and Clinical and Basic Research of Integrated Traditional Chinese and Western Medicine Treatment of Polycystic Ovary Syndrome, pp. 1–98, Peking Union Medical College, Beijing, China, 2020.
[11] The Chinese Pharmacopoeia Commission, Pharmacopoeia of the People’s Republic of China, China Medical Science Press, Beijing, China, 2015.
[12] J. Y. Song, D. D. Gao, X. L. Cao et al., “The role of traditional Chinese formula ding-kun pill (DKP) in expected poor ovarian response women (POSEIDON group 4) undergoing in vitro fertilization-embryo transfer: a multicenter, randomized, double-blind, placebo-controlled trial,” Frontiers in Endocrinology, vol. 12, Article ID 675997, 2021.
[13] Y. X. Chen and K. Ma, “Systematic evaluation of clinical application of Dingkundan,” China Journal of Chinese Materia Medica, vol. 40, no. 20, pp. 3916–3919, 2015.
[14] X. X. Yi and J. Lin, “Clinical observation of Dingkun Dan in the treatment of 30 patients with hypomenorrhea due to Kidney deficiency and liver Depression Syndrome,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 36, no. 5, pp. 629–631, 2016.
[15] Z. Y. Zhao, Y. Liang, X. Gao, Y. Y. Liu, and K. Chang, “Therapeutic effect of acupuncture combined with Dingkun Dan on polycystic ovary syndrome of liver depression and qi stagnation,” Chinese Archives of Traditional Chinese Medicine, vol. 38, no. 5, pp. 194–198, 2020.
[16] Y. R. Song, W. Y. Wang, and B. Wei, “Effect of Dingkundan on reproductive function of polycystic ovary model rats,” Acta Universitatis Medicinis Anhui, vol. 51, no. 10, pp. 1473–1477, 2016.
[17] L. Chen, Y. Tan, and S. P. Chen, “Effect of Dingkundan on the expression of TGF-β1, CTGF and AR in PCOS model rats,” Chinese Journal of Immunology, vol. 34, no. 2, pp. 218–222, 2018.
[18] X. Gao, N. Wang, J. P. Jia, P. Y. Wang, A. R. Zhang, and X. M. Qin, “Chemical profiling of Dingkun Dan by ultra high performance liquid chromatography Q exactive orbitrap high resolution mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 177, Article ID 112732, 2020.
[19] A. W. Wei, H. D. Z. Xiao, and Y. L. Song, “Observation on the efficacy of Dingkundan combined with clomiphene in the treatment of polycystic ovary syndrome with infertility,” Chinese Journal of Practical Gynecology and Obstetrics, vol. 34, no. 4, pp. 444–447, 2018.
[20] L. Chen, Y. Tan, and S. P. Chen, “Study on the efficacy of clomiphene and Dingkundan in the treatment of ovulation induction and clinical pregnancy in patients with PCOS infertility,” Chinese Journal of Chinese Materia Medica, vol. 42, no. 20, pp. 4035–4039, 2017.
[21] Y. Deng, W. Xue, Y. F. Wang et al., “Insulin resistance in polycystic ovary syndrome improved by Chinese medicine Dingkun pill: a randomized controlled clinical trial,” Chinese Journal of Integrative Medicine, vol. 25, no. 4, pp. 246–251, 2019.
[22] Y. Deng, Y. F. Wang, S. Y. Zhu et al., “Is there an advantage of using Dingkun pill alone or in combination with Diane-35 for management of polycystic ovary syndrome? A randomized controlled trial,” Chinese Journal of Integrative Medicine, vol. 26, no. 12, pp. 883–889, 2020.
[51] Y. Zhou, F. F. Sun, Z. L. Zhang, and X. Y. Zheng, “Potential clinical mechanism of shudihuang (Rehmanniae radix prae-parata) based on network pharmacology in treatment of anemia,” Chinese Archives of Traditional Chinese Medicine, vol. 39, no. 5, 2021.

[52] G. N. Mao, Q. Guo, J. B. Qu, and X. Li, “Progress on chemical component and drug action of cola corii asini,” Progress in Veterinary Medicine, vol. 31, no. 11, pp. 83–85, 2010.

[53] Z. Chen, C. M. Li, C. X. Yang, R. H. Zhao, X. J. Mao, and J. Yu, “Lipid regulation effects of raw and processed notoginseng radix et rhizome on steady state hepatocyte L02 cell,” Biomed Research International, vol. 2016, Article ID 2919034, 9 pages, 2016.

[54] F. F. Wu, H. Q. Li, L. J. Jin et al., “Deer antler base as a traditional Chinese medicine: a review of its traditional uses, chemistry and pharmacology,” Journal of Ethnopharmacology, vol. 145, no. 2, pp. 403–415, 2013.

[55] J. Chen and D. Q. Dou, “Chemical study on the nature and flavour of Atractylodes macrocephala Koidz,” Journal of Medicinal Materials, vol. 42, no. 7, pp. 1702–1708, 2019.

[56] Y. Z. Xiang, H. C. Shang, and B. L. Zhang, “Advances in studies on Chinese materia medica with antiplatelet function,” Chinese Traditional and Herbal Drugs, no. 2, pp. 290–294, 2008.

[57] B. J. Zhou, H. Xia, L. G. Yang, S. K. Wang, and G. J. Sun, “The effect of Lycium barbarum polysaccharide on the glucose and lipid metabolism: a systematic review and meta-analysis,” Journal of the American College of Nutrition, vol. 39, no. 5, pp. 1491–1496, 2019.

[58] Z. Zhang, J. J. Zhao, Y. Z. Wang, and L. Li, “Research progress in pharmacological effects and mechanism of Chauli huang powder,” Journal of Chinese Medicinal Materials, vol. 24, no. 9, pp. 128–131, 2017.

[59] X. J. Duan, P. Liu, K. Wang et al., “Pharmacodynamic study of Sijunzi decoction on regulating the disturbance of glucose and Lipid Metabolism in Type 2 Diabetic mice,” Lishizhen Medical and Materia Medica Research, vol. 31, no. 1, pp. 62–64, 2020.

[60] X. J. Qi, Z. P. Zhang, H. Z. Zhang et al., “Analysis of medication regularity of famous traditional Chinese Medicine in the treatment of Infertility based on data Mining,” China Journal of Chinese Materica Medica, vol. 44, no. 7, pp. 1491–1496, 2019.

[61] M. O. Goodarzi, D. A. Dumesc, G. Chazenbalk, and R. Aziz, “Polycystic ovary syndrome: etiology, pathogenesis and diagnosis,” Nature Reviews Endocrinology, vol. 7, no. 4, pp. 219–231, 2011.

[62] W. T. Ye, T. T. Xie, Y. L. Song, and L. L. Zhou, “The role of androgen and its related signals in PCOS,” Journal of Cellular and Molecular Medicine, vol. 25, no. 4, pp. 1825–1837, 2021.

[63] P. Moghetti and F. Tosi, “Insulin resistance and PCOS: chicken or egg?” Journal of Endocrinological Investigation, vol. 44, no. 2, pp. 233–244, 2021.

[64] R. Aziz, “Polycystic ovary syndrome,” Obstetrics & Gynecology, vol. 132, no. 2, pp. 321–336, 2018.

[65] M. C. Zhu, S. L. Yi, X. M. Huang, J. Meng, H. X. Sun, and J. J. Zhou, “Human chorionic gonadotropin improves endometrial receptivity by increasing the expression of homeobox A10,” Molecular Human Reproduction, vol. 26, no. 6, pp. 413–424, 2020.

[66] F. Zhou, L. B. Shi, and S. Y. Zhang, “Ovarian fibrosis: a phenomenon of concern,” Chinese Medical Journal, vol. 130, no. 3, pp. 365–371, 2017.

[67] C. M. DeUgarte, A. A. Bartolucci, and R. Azziz, “Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment,” Fertility and Sterility, vol. 83, no. 5, pp. 1454–1460, 2005.

[68] A. Sacerdote, P. Dave, V. Lokshin, and G. Bahtiyar, “Type 2 diabetes mellitus, insulin resistance, and vitamin D,” Current Diabetes Reports, vol. 19, no. 10, p. 101, 2019.

[69] D. A. Ehrmann, K. Kasza, R. Azziz, R. S. Legro, M. N. Ghazzi, and P. C. O. S. /T. Study Group, “Effects of race and family history of type 2 diabetes on metabolic status of women with polycystic ovary syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 1, pp. 66–71, 2005.

[70] Y. Liu, J. Deng, and D. Fan, “Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway,” Food & Function, vol. 10, no. 5, pp. 2538–2551, 2019.

[71] M. J. Chapman, H. N. Ginsberg, P. Amarenco et al., “Tri-glyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management,” European Heart Journal, vol. 32, no. 11, pp. 1345–1361, 2011.

[72] R. S. Legro, A. R. Kunselman, and A. Dunaif, “Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome,” The American Journal of Medicine, vol. 111, no. 8, pp. 607–613, 2001.

[73] O. Osibogun, O. Ogumorotimi, and E. D. Michos, “Polycystic ovary syndrome and cardiomolecular risk: opportunities for cardiovascular disease prevention,” Trends in Cardiovascular Medicine, vol. 30, no. 7, pp. 399–404, 2020.

[74] M. Insenser, M. Murri, R. del Campo, M. ´A. Mart´ınez-Garc´ıa, C. M. DeUgarte, A. A. Bartolucci, and R. Azziz, “Prevalence of androgenism, insulin resistance and obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 103, no. 7, pp. 2552–2562, 2018.

[75] X. Zeng, Y. J. Xie, Y. T. Liu, S. L. Long, and Z. C. Mo, “Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity,” Clinica Chimica Acta, vol. 502, pp. 214–221, 2020.

[76] X. L. Zhang, B. Zhang, C. Y. Zhang, G. B. Sun, and X. B. Sun, “Effect of panax notoginseng saponins and major anti-obesity components on weight loss,” Frontiers in Pharmacology, vol. 11, Article ID 601751, 2020.

[77] Y. Zheng, Z. Q. Liu, and B. L. Wang, “Necessity and safety evaluation of combined use of Dingkundan in the treatment of PCOS with sex hormone-related drugs,” Journal Of HuBei Minzu University(Medical Edition), vol. 37, no. 3, pp. 14–19, 2020.

[78] Harbin Consensus Conference Workshop Group, “Improving the reporting of clinical trials of infertility treatments (IMPRINT): modifying the CONSORT statement,” Fertility and Sterility, vol. 102, no. 4, pp. 952–959.e15, 2014.

[79] X. M. Chen, “Investigation and reflection on publication bias of papers published in medical journals in China,” Chinese Journal of Scientific and Technical Periodicals, vol. 30, no. 7, pp. 715–720, 2019.