Effect of *Treponema Denticola* Infection on Epithelial Cells

Eitoyo Kokubu\(^1\(^,\)\(^2\))\(^,\) Yuichiro Kikuchi\(^1\(^,\)\(^2\))\(^,\) Kazuko Okamoto-Shibayama\(^1\(^,\)\(^2\)) and Kazuyuki Ishihara\(^1\(^,\)\(^2\))

\(^1\) Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
\(^2\) Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan

Received 10 August, 2021/Accepted for publication 27 September, 2021
Published Online in J-STAGE 15 February, 2022

Abstract

Chronic periodontitis is an infectious disease caused by periodontopathic bacteria in subgingival plaque. One major pathogen of this disease, *Treponema denticola*, has several virulence factors, including a major surface protein (Msp) and the surface protease dentilisin. The cytopathic effects of periodontopathic bacteria on epithelial cells disrupt the integrity of the barrier junction, resulting in the inflammation of periodontal tissue. The aim of this study was to investigate the effect of *T. denticola* virulence factors dentilisin and Msp on epithelial cells. The effects of *T. denticola* wild-type, Msp-mutant, and dentilisin-mutant strains on the contact junction in Madin-Darby canine kidney epithelial cells was evaluated based on ohmic values. Cultured oral carcinoma epithelial cells were scratched and exposed to the selected *T. denticola* strains and cell migration determined. Subsequent degradation of adherence proteins and proteins in the contact junctions was evaluated. Dissociation of cell contact junctions was detected in cells infected with wild-type *T. denticola* approximately 30 min after infection, but not in those exposed to the mutants. Inhibition of migration was observed in the wild-type and Msp-deficient mutants. The adherent proteins focal adhesion kinase, ZO-1, and paxillin were hydrolyzed by infection with the wild-type and Msp mutants. These results indicate that *T. denticola* disrupts the function of epithelial cells by hydrolyzing proteins at the intercellular junction and inhibiting healing of epithelial cells via hydrolyzed proteins associated with focal adhesion; Msp was also associated with these effects.

Key words: *Treponema denticola* — Periodontitis — Focal adhesion kinase — Paxillin — Epithelial cells

Introduction

Periodontitis is inflammation of the periodontal tissue caused by subgingival microorganisms. The etiologic agent of periodontitis is dysbiosis, which indicates a pathogenic shift in the subgingival microbiome\(^2\(^,\)\(^3\))\(^,\)\(^4\). One study found that *Porphyromonas gingivalis, Treponema*...
denticola, and Tannerella forsythia showed an increase in lesions associated with severe periodontitis\(^{34}\). An increase in these species was also detected in a recent microbiome analysis using 16S ribosomal RNA sequencing\(^{1,13}\) and is thought to play an important role in the process of dysbiosis. Treponema denticola, a major pathogen of chronic periodontitis, possesses several virulence factors, such as the protease dentilisin\(^{19}\) and a major surface protein (Msp)\(^{11}\). Dentilisin shows cytopathic activity against epithelial cells\(^{38}\), adherence to fibrinogen\(^{4}\), and degradation of cytokines\(^{27}\), and Msp also exhibits cytopathic activity\(^{10}\). These activities play an important role in the progression of periodontitis.

The epithelium of the gingival crevice is exposed to the subgingival microbiome. The epithelial cells protect against attacks from periodontopathic bacteria, and the loss of cell integrity allows the invasion of microorganisms into the gingival tissue, resulting in periodontal pathologies. Periodontopathogens, such as P. gingivalis, invade epithelial cells and degrade protein-organizing tight junctions by gingipain\(^{14}\). Treponema denticola has been reported to hydrolyze ZO-1 and disrupt junctions between epithelial cells\(^{22}\). Although T. denticola is known to retard epithelial cells\(^{18}\), the involvement of its virulence factors, such as that of dentilisin and Msp, in the effect of T. denticola infection on the epithelial cell barrier is still unclear. The aim of the present study was to elucidate the involvement of dentilisin and Msp in the effect of T. denticola infection on epithelial cells and investigate the mechanism of pathogenicity of this microorganism.

Materials and Methods

1. **Bacterial strains and culture conditions**

 Treponema denticola wild-type strain ATCC 35405\(^{36}\), Msp-deficient mutant DMSP3\(^{36}\), and dentilisin-deficient mutant K1\(^{20}\) were maintained in tryptone-yeast extract-gelatin-volatile fatty acids-serum medium\(^{28}\) under anaerobic conditions (10% CO\(_2\), 10% H\(_2\), 80% N\(_2\)) as described previously\(^{19}\). Gene inactivation was carried out by interruption of the target gene with an erythromycin cassette in the Msp- and dentilisin-deficient mutants, and 40 μg/ml erythromycin was added to the medium to maintain the cassette in their genomes. Microbial cells around the mid-log phase (OD\(_{660}\) = 0.4–0.6) were used for infection of epithelial cells with T. denticola.

2. **Cell cultures**

 To determine the effect of T. denticola infection on tight junctions, Madin-Darby canine kidney epithelial (MDCK) cells NBL-2, which are widely used in epithelial models to investigate tight junctions\(^{21,26,29}\), were used. The MDCK cells were obtained from the Health Research Resources Bank (Osaka, Japan) and maintained in α-minimum essential Medium (MEM) supplemented with 10% fetal bovine serum (FBS) (Gibco Life Technologies, New York, NY, USA) and antibodies at 37°C in a humidified 5% CO\(_2\) atmosphere. Human oral carcinoma epithelial cell line Ca9-22 was obtained from the Japanese Collection of Research Bioresources Cell Bank (Osaka, Japan). These cells were cultured in α-MEM containing 10% FBS and penicillin/streptomycin at 37°C in 5% CO\(_2\) humidified air.

3. **Measurement of intercellular junction integrity by transepithelial electrical resistance**

 Madin-Darby canine kidney cells were used to investigate intercellular junctional disruption as they are normally characterized by tight junctions. These data were obtained by measuring transepithelial electrical resistance (TEER). Monolayers of MDCK cells (5 × 10\(^5\)) were seeded onto BD Falcon cell culture inserts containing 3.0-μm pores in a 24-well configuration (BD, Franklin lakes, NJ, USA). The cells were incubated until they reached confluence. Cell monolayers were used for experiments after 5 days of culture. Apical sites on the MDCK cells were infected with T. denticola at a multiplicity of infection (MOI) of 100. The control group was not infected with T. denticola. Transepithelial electrical
resistance was measured using chopstick electrodes provided with the TEER Measuring System (Kanto Chemical Co., Inc., Tokyo, Japan).

4. In vitro wound healing assay

The effects of T. denticola infection on epithelial cell migration were investigated as described previously. Briefly, Ca9-22 cells were seeded at a density of 1×10^4 cells/cm2 in a culture medium without antimicrobial agents. The cells were cultured until confluent. The cell layers were then scratched using a plastic tip and washed 3 times with fresh culture medium. Next, the cells were incubated with T. denticola at an MOI of 100 in α-MEM containing 10% serum in 5% CO$_2$. In the control group, the cells were treated similarly, but without infection. The closure rate for each scratched area was photographed at each time point and measured using Image J/Fiji software (National Institutes of Health, Bethesda, MD, USA), and the area of recovery owing to migrated cells calculated. The calculated data were analyzed in triplicate under the same conditions. The results were evaluated with a one-way analysis of variance, followed by Tukey's multiple comparisons test at a 5% level of significance using Prism 9.0 (GraphPad software, Inc., San Diego, CA, USA). All obtained values were expressed as the minimum and maximum ranges, and the mean.

5. Degradation of proteins involved in adherence and intercellular junctions

Localization of proteins involved in adherence and the spreading process of the cells and intercellular junctions was investigated by confocal laser scanning microscopy (CLSM) and western blotting. For CLSM, Ca9-22 cells with or without T. denticola infection were treated as described previously. Briefly, confluent cells were washed with phosphate buffered saline (PBS) and treated with 4% neutral paraformaldehyde for 30 min and 1% Triton X-100 for 5 min. The cells were then dipped in blocking buffer with 0.5% bovine serum albumin and stained with the following primary antibodies: rabbit anti-human focal adhesion kinase (FAK) antibody (1:100 dilution, Abcam, Cambridge, UK); and rabbit anti-human paxillin antibody (1:100 dilution, Abcam). The secondary antibody, Alexa Fluor 546 goat anti-rabbit immunoglobulin G (IgG), was used for both FAK and paxillin antibodies. Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Dojindo Laboratories, Tokyo, Japan), and cell filaments were stained with Alexa Fluor 633 phalloidin (Abcam). The cells were then observed using CLSM 880 (Carl Zeiss, Göttingen, Germany) and ZEN software (Carl Zeiss).

The scratched Ca9-22 cells with or without T. denticola infection were cultured for 24 hr. In the experimental group, the cells were infected with each strain of T. denticola; uninfected cells were used as the control. Cells were washed with PBS and lysed in radioimmunoprecipitation assay buffer containing 1% 100 mM ethylenediaminetetraacetic acid, 1% protease inhibitor cocktail, 0.5% 1 mM phenylmethylsulfonyl fluoride, and 0.5% 100 mM Na$_3$VO$_4$. The concentration of the proteins was determined by a bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific K. K, Tokyo, Japan) and Nanodrop (Thermo Fisher Scientific K. K.). The cell lysate was incubated with sodium dodecyl sulfate (SDS) sample buffer at 100°C for 5 min. The lysate was then separated by 10% SDS polyacrylamide gel electrophoresis (Cosmo Bio co, Ltd., Tokyo, Japan) and transferred onto polyvinylidene fluoride (PVDF) membranes (Immobilon, Merck, Tokyo, Japan) by the method described by Towbin et al. using the Trans-Blot Turbo Transfer System (Bio-Rad, Hercules, CA, USA). Blotted membranes were immunostained with the following primary antibodies: rabbit anti-human FAK (1:1000 dilution); rabbit anti-human paxillin (1:1000 dilution); anti-human ZO-1 tight junction protein antibody (1:500 dilution, Abcam); and rabbit anti-human beta-actin (Abcam, for internal control). Antibodies bound to proteins immobilized on the PVDF membrane were detected with peroxidase-conjugated anti-rabbit IgG antibodies, fol-
followed by 3,3′,5,5′-Tetramethylbenzidine membrane peroxidase substrate (KPL, MD, USA). Images were captured using an ImageQuant LAS (Cytiba, Tokyo, Japan).

Results

1. Change in transepithelial electrical resistance

The TEER value obtained on the first measurement was adjusted to zero to allow a comparison to be made between groups in a single graph (Fig. 1A). The graph shows representative examples of each group. The TEER value for the MDCK monolayer cells infected with the T. denticola wild-type strain showed no change from that at baseline level for 10 min, but then decreased rapidly down to a minimum at approximately 20 min. In contrast, the TEER value for the MDCK monolayer cells infected with the dentilisin or Msp mutants showed no change from that at the baseline level. The decrease observed in the TEER value in the cells infected with the wild-type strain recovered after approximately 150 min (Fig. 1B). The same results, from a decrease to a recovery of the initial TEER value, were observed over repeated experiments.

2. Wound healing assay

No cellular pseudopods were observed immediately in any of the groups and were only marginally observed after 3 hr (Fig. 2A). In the cells without infection and in those

Fig. 1 Transepithelial electrical resistance (TEER) in epithelial cells infected with T. denticola strains.

(A) TEER in Madin-Darby canine kidney epithelial (MDCK) cells infected with T. denticola strains was measured every 10 min for up to 90 min. Change in TEER was calculated as follows: ∆Ω = [measured value]–[baseline value]. WT: wild-type strain, ∆msp: Msp-deficient mutant, ∆prtP: dentilisin-deficient mutant, Control: noninfected cells. (B) TEER ohmic levels in MDCK cells infected with T. denticola ATCC 35405 for up to 900 min.
T. denticola Affects Cell Migration

Confluent cells were scratched with plastic tips and infected with T. denticola at multiplicity of infection of 100. Cells infection was maintained in time series up to 72 hr. Cells were photographed, and scratched area (between two lines) was measured to determine recovery. Dotted line indicates closed sites in scratched areas on both sides of cells. Groups were control, WT: wild-type strain ∆msp: Msp-deficient mutant, ∆prtP: dentilisin-deficient mutant. (A) Scratched at 0, 3, or 24 hr. (B) Recovered area indicates percentage of scratched area covered by migrated epithelial cells. Data are shown as average ± standard error of mean from 3 independent experiments (n = 10, †p < 0.05 compared with control, ‡p < 0.05 compared with wild-type).

Fig. 2 Migration activity in epithelial cells infected with T. denticola strains

infected with the dentilisin mutant, the scratched area showed recovery after 24 hr. In the cells infected with the wild-type or Msp mutants, migration showed a significant recommencement after 12 hr. The recovery rates were determined as the mean ± standard deviation. The recovery rate in each group at 12 hr was as follows: control, 58.5 ± 5.0%; wild-type, 44.4 ± 3.3%; Msp mutant, 44 ± 7.3%; and dentilisin mutant, 55.3 ± 5.0%. The wild-type and Msp-deficient strains had similar effects on cell migration. Recovery in the cells infected with the wild-type strain or Msp mutant was significantly lower than that in the controls after 12 hr. The scratched area had not filled up at 72 hr in the cells infected with the wild-type strain or Msp-deficient mutant. The scratched area showed a 100% recovery with the control and dentilisin mutants, but not with the wild-type (54.9 ± 1.6%) or Msp-mutant (79.0 ± 9.8%) strains. (Fig. 2B). Retardation of cell migration was lower with the Msp-mutant strain than with the wild-type strain.
3. Degradation of proteins involved in focal adhesion and intercellular junction

Localization of FAK was observed in both the cytoplasm and at the apex of the pseudopodia as a red color in the control cells (Fig. 3A). Expression of FAK in the cells infected with the *T. denticola* wild-type strain was lower than that in the controls (Fig. 3B). Pseudopod formation showed a decrease in the cells infected with the wild-type strain, and no localization of FAK at the apex pseudopodia was observed.

Paxillin was localized in the cytoplasm, and localization of paxillin at the apex of the pseudopodia was observed in uninfected cells (Fig. 3C). The number of spots representing paxillin in the cytoplasm showed a decrease in the cells infected with *T. denticola* wild-type strain; no localization of paxillin was observed at the apex of pseudopodia (Fig. 3D).

Proteins involved in the adherence and spreading process of the cells and formation of intercellular junctions were determined. These proteins were detected in the cell lysate at 24 hr after infection by immunoblotting. Degradation of ZO-1 was observed in the cells infected with the wild-type or Msp-mutant strains (Fig. 4A). Degradation of FAK and paxillin was observed in those infected with the *T. denticola* wild-type or Msp-mutant strains, but not with the dentilisin mutant (Fig. 4B, C).

Discussion

The ohmic value of TEER showed a decrease at 30 min after infection with the *T. denticola* wild-type strain, whereas no reduction was observed in the cells infected with the dentilisin or Msp mutants. In earlier studies by this group, a decrease in TEER was observed at 16 hr after infection of the cells with the wild-type strain at an MOI of 10[^4], whereas no reduction was observed in cells infected with the wild-type strain at an MOI of 100[^22]. In these earlier studies, *T. denticola* was used in the stationary phase. Therefore, the
condition of the *T. denticola* cells may have affected the results. In the present study, a reduction was observed in TEER in epithelial cells infected with the wild-type strain; however, no such reduction was observed in epithelial cells infected with the dentilisin mutant. *Treponema denticola* penetrates the epithelial cell layer\(^5\). Another study by the present group investigated how *T. denticola* infected and interacted with epithelial cell rests of Malassez cultures\(^23\). The results revealed that *T. denticola* tended to either invade cells or establish cell-cell contact. Loss of the intercellular space in epithelial cells infected with *T. denticola* has been observed\(^38\). In the present study, ZO-1 in epithelial cells was hydrolyzed by the *T. denticola* wild-type strain but not by the dentilisin-deficient mutant. It has been shown that ZO-1 is a peripheral membrane protein specifically enriched at the points of tight junction membrane contact in polarized epithelial and endothelial cells\(^35\). In an earlier study by the present group, ZO-1 was degraded by MDCK cells infected with *T. denticola*\(^22\). These results suggest that intercellular junctions are disrupted by dentilisin. Interestingly, in the present study, the decrease in TEER in Msp mutants was smaller than that in the wild-type strain. A previous study by the present group found a slight decrease in expression of dentilisin mRNA in an Msp mutant\(^2\). In the Msp mutant, the bacterial surface-associated dentilisin levels showed no change, but activity in the culture supernatant decreased. In addition, Msp is involved in adherence to the intercellular matrix\(^5,9,39\), and it is possible that the reduction of the adherence and release of cell-free dentilisin affects the disruption of intercellular junctions. These results suggest that both dentilisin and Msp are involved in the penetration of *T. denticola* into the epithelial cell layer via intercellular junctions. In the present study, the reduction in TEER showed a recovery at approximately 150 min in cells infected with wild type *T. denticola*. In an earlier study by this group, *T. denticola* was shown to disrupt tight junction protein\(^22\). In the present study, the cells were cultured in a humidified 5% CO\(_2\) atmosphere. *Treponema denticola* is a strict anaerobe, which may explain why extracellular *T. denticola* showed a marked decrease over time. Disrupted junctions may recover after a decrease in *T. denticola*, but this remains to be clarified.

In the present study, the migration of epithelial cells was retarded in the wild-type strain and Msp mutant between 12 and 72 hr. The delay observed at 3 hr after infection in cells infected with the wild-type strain was also observed in an earlier study by this group\(^18\).
The retardation of migration observed in the cells infected with the wild-type strain was not seen in the cells infected with the dentilisin mutant, indicating that dentilisin plays a major role in retardation of migration. With the Msp mutant, retardation of migration was attenuated compared with that seen with the wild-type strain. The Msp has the ability to adhere to intercellular matrices, such as fibronectin and collagen. These results showed degradation of intercellular contact early after infection with T. denticola, suggesting that long-term infection would influence intercellular signaling. It is possible, therefore, that a reduction in adherence affects inhibition of migration.

In the present study, localization of FAK and paxillin in the cytosol of cells infected with the wild-type strain showed a decrease compared with in the uninfected controls. In addition, the localization of these proteins at the pseudopodia disappeared. In the immunoblot, the bands of FAK and paxillin were degraded with the wild-type and Msp mutants. Both FAK and paxillin are focal adhesion-associated proteins. Integrin signaling induces the phosphorylation of paxillin by FAK, and the transduced signal plays an important role in cell attachment, spreading, and migration. Fibroblasts from FAK-null mice exhibit a decreased rate of migration and spreading and an increase in the number and size of peripherally localized adhesions.

Earlier studies by the present group indicated invasion of epithelial cells by T. denticola. The findings of the present study indicate that FAK and paxillin are hydrolyzed after infection with T. denticola. The preliminary results also indicated that dentilisin hydrolyzed recombinant paxillin and FAK (data not shown). These results suggest that dentilisin from invasive T. denticola is involved in degradation of FAK and paxillin. The expression and activation of matrix metalloproteinase-2 (MMP-2) from the periodontium at 3 to 12 days after infection has been reported. A more recent report showed that the MMP-2 level upregulated by dentilisin triggered TLR2/MyD88 activation within 24 hr. Thus, a host-derived protease may also be involved in the degradation of FAK and paxillin. Further analysis is required to elucidate the mechanism underlying the degradation of these proteins in epithelial cells infected with T. denticola. One study noted attenuation of migration accompanied by degradation of FAK and paxillin in cells infected with P. gingivalis. The present results indicate the involvement of FAK and paxillin in the attenuation of epithelial cell migration.

In the present study, disruption of tight junctions and a reduction in migration were observed in cells infected with the wild-type T. denticola. In periodontitis, epithelial cells in the subgingival crevice are exposed to continuous attack from biofilm bacteria, including T. denticola. Porphyromonas gingivalis was also reported to invade epithelial cells and disrupt cell junctions in gingival epithelial cells. Epithelial cells play a key role in wound healing. Taken together, these results suggest that T. denticola inhibits the wound healing process by disruption of cell junctions and suppression of migration. Further in vivo analysis using an animal model is required to clarify this phenomenon.

The present study demonstrated that infection of epithelial cells with T. denticola resulted in disruption of intercellular junctions, affecting cell migration. The disruption of intercellular junctions suggested the penetration of T. denticola into the gingival tissue. The retardation of migration suggested retardation of wound healing of the epithelial layer in the gingival crevice. Hydrolysis of ZO-1, paxillin, and FAK by dentilisin is suggested to be involved in these phenomena. These effects may contribute to the development of periodontitis during dysbiosis.

Acknowledgements

This study was supported by a JSPS Grant-in-Aid for Scientific Research (KAKENHI) Grant Number 20K09926, 18K09559, 18K09608, and Multidisciplinary Research Center for Jaw Disease (MRCJD) from Tokyo
Dental College.

References

1) Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI (2013) The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J 7:1016–1025.

2) Arai Y, Kikuchi Y, Okamoto-Shibayama K, Kobuk E, Shintani S, Ishihara K (2020) Investigation of the potential regulator proteins associated with the expression of major surface protein and dentilisin in Treponema denticola. J Oral Microbiol 22:130263.

3) Ateia IM, Suthiboonyapan P, Kamarajan P, Jin T, Godovikova V, Kapila YL, Fenno JC (2018) Treponema denticola increases MMP-2 expression and activation in the periodontium via reversible DNA and histone modifications. Cell Microbiol 20: e12815.

4) Bamford CV, Fenno JC, Jenkinson HF, Dymock D (2007) The chymotrypsin-like protease of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect Immun 75:4362–1829404.

5) Batista da Silva AP, Lee W, Bajenova E, McCulloch CA, Ellen RP (2004) The major outer sheath protein of Treponema denticola inhibits the binding step of collagen phagocytosis in fibroblasts. Cell Microbiol 6:485–498.

6) Chan EC, Siboo R, Hurley R, Cheng SL, Iugovaz I (1993) Dentilisin activity affects the organization of the outer sheath of Treponema denticola (ex Brumpt 1925) sp. nov., nom. rev., and identification of new spirochete isolates from periodontal pockets. Int J Syst Bacteriol 43: 196–203.

7) Chi B, Qi M, Kuramitsu HK (2003) Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol 154: 637–643.

8) Deakin NO, Turner CE (2008) Paxillin comes of age. J Cell Sci 121 (Pt 15): 2435–2444.

9) Edwards AM, Jenkinson HF, Woodward MJ, Dymock D (2005) Binding properties and adhesion-mediating regions of the major sheath protein of Treponema denticola ATCC 35405. Infect Immun 73:2891–2898.

10) Fenno JC, Hannam PM, Leung WK, Tamura M, Uitto VJ, McBride BC (1998) Cytotoxic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun 66:1869–1877.

11) Fenno JC, Muller KH, McBride BC (1996) Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola. J Bacteriol 178:2489–2497.

12) Ganther S, Radaic A, Malone E, Kamarajan P, Chang Nai-Yuan T, Tafolla C, Zhan L, Fenno JC, Kapila YL (2021) Treponema denticola dentilisin triggered TLR2/MyD88 activation upregulates a tissue destructive program involving MMPs via Sp1 in human oral cells. PLoS Pathog 17: e1009311.

13) Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6:1176–1185.

14) Groeger AL, Doman E, Chakraborty T, Meyle J (2010) Effects of Porphyromonas gingivalis infection on human gingival epithelial barrier function in vitro. Eur J Oral Sci 118:582–589.

15) Hintermann E, Haake SK, Christen U, Sharabi A, Quaranta V (2002) Discrete proteolysis of focal contact and adherens junction components in Porphyromonas gingivalis-infected oral keratinocytes: a strategy for cell adhesion and migration disabling. Infect Immun 70: 5846–5856.

16) Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544.

17) Inaba H, Kawai S, Nakayama K, Okahashi N, Amano A (2004) Effect of enamel matrix derivative on periodontal ligament cells in vitro is diminished by Porphyromonas gingivalis. J Periodontol 75:858–865.

18) Inagaki S, Kimizu K, Kobuk E, Saito A, Ishihara K (2016) Treponema denticola invasion into human gingival epithelial cells. Microb Pathog 94:104–111.

19) Ishihara K, Kuramitsu HK (1995) Cloning and expression of a neutral phosphatase gene from Treponema denticola. Infect Immun 63: 1147–1152.

20) Ishihara K, Kuramitsu HK, Miura T, Okuda K (1998) Dentilisin activity affects the organization of the outer sheath of Treponema denticola. J Bacteriol 180:3837–3844.

21) Katz J, Sambandam V, Wu JH, Michalek SM, Balkovecz DF (2000) Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect Immun 68:1441–1449.

22) Kikuchi Y, Kimizu R, Kato T, Okuda K, Kobuk E, Ishihara K (2018) Treponema denticola induces epithelial barrier dysfunction in...
polarized epithelial cells. Bull Tokyo Dent Coll 59:265–275.
23) Kokubu E, Inoue T, Ishihara K (2018) Response of epithelial cells infected by Treponema denticola. Oral Dis 24:14–18.
24) Lamont RJ, Koo H, Hajishengallis G (2018) The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 16: 745–759.
25) Lux R, Miller JN, Park NH, Shi W (2001) Motility and chemotaxis in tissue penetration of oral epithelial cell layers by Treponema denticola. Infect Immun 69:6276–6283.
26) Meyle J, Gültig K, Rascher G, Wolburg H (1999) Transepithelial electrical resistance and tight junctions of human gingival keratinocytes. J Periodontal Res 34:214–222.
27) Miyamoto M, Ishihara K, Okuda K (2006) The Treponema denticola surface protease dentilisin degrades interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha. Infect Immun 74:2462–2467.
28) Ohita K, Makinen KK, Loesche WJ (1986) Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun 55:213–220.
29) Ramírez-Flores CJ, Cruz-Mirón R, Lagunamar-Cortés N, Mondragón-Castélán M, Mondragón-Gonzalez R, González-Pozos S, Mondragón-Flores R (2021) Toxoplasmal gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration. Cell Microbiol 23:e13283.
30) Sano Y, Okamoto-Shibayama K, Tanaka K, Ito R, Shintani S, Takashi M, Ishihara K (2014) Dentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia. Anaerobe 30:45–50.
31) Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.
32) Sculean A, Gruber R, Bosshardt DD (2014) Soft tissue wound healing around teeth and dental implants. J Clin Periodontol 41 Suppl 15: S6–22.
33) Shin J, Choi Y (2012) The fate of Treponema denticola within human gingival epithelial cells. Mol Oral Microbiol 27:471–482.
34) Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144.
35) Stevenson BR, Keon BH (1998) The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 14:89–109.
36) Takeuchi H, Takada A, Kuboniwa M, Amano A (2016) Intracellular periodontal pathogen exploits recycling pathway to exit from infected cells. Cell Microbiol 18:928–948.
37) Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354.
38) Uitto VJ, Pan YM, Leung WK, Larjava H, Ellen RP, Finlay BB, McBride BC (1995) Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells. Infect Immun 63:3401–3410.
39) Umemoto T, Namikawa I (1994) Binding of host-associated treponeme proteins to collagens and laminin: a possible mechanism of spirochetal adherence to host tissues. Microbiol Immunol 38:655–663.
40) Westhoff MA, Serrels B, Fincham VJ, Frame MC, Carragher NO (2004) SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 24:8113–8133.

Correspondence:
Dr. Eitoyo Kokubu
Department of Microbiology,
Tokyo Dental College,
2-1-14 Kanda-Misakicho, Chiyoda-ku,
Tokyo 101-0061, Japan
E-mail: kokubu@tdc.ac.jp