Tung On Yau, Ceen-Ming Tang, Jun Yu, Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
Ceen-Ming Tang, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
Author contributions: Yau TO wrote this paper; Tang CM revised the article; Yu J supervised the work.
Supported by Research Grants of National Basic Research Program of China (973 Program, 2010CB529305); and Innovation and Technology Support Programme, Hong Kong (ITS/214/12)
Correspondence to: Jun Yu, MD, PhD, Professor, Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Room 707A, Li Ka Shing Medical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong, China. junyu@cuhk.edu.hk
Telephone: +852-37636099 Fax: +852-21445330
Received: November 1, 2013 Revised: February 16, 2014 Accepted: March 12, 2014 Published online: June 7, 2014

Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) comprises nearly 10% of gastric carcinoma cases worldwide. Recently, it was recognised to have unique clinicopathologic characteristics, including male predominance, lower rates of lymph node involvement, and better prognosis. EBVaGC is further characterised by abnormal hypermethylation of tumour suppressor gene promoter regions, causing down-regulation of their expression. In the present review, we critically discuss the role of EBV in gastric carcinogenesis, summarising the role of viral proteins and microRNAs with respect to aberrant methylation in EBVaGC. Given the role of epigenetic dysregulation in tumourigenesis, epigenetic modifiers may represent a novel therapeutic strategy.

INTRODUCTION
Epstein-Barr virus (EBV) infection is ubiquitous, and is accepted as a causative microorganism for various malignancies including nasopharyngeal carcinoma (NPC), Burkitt’s lymphoma, and gastric carcinoma (GC). EBV-associated GC (EBVaGC) accounts for approximately 10% of cases worldwide,[1,2] and is characterised by unique clinicopathologic features including a relatively favourable prognosis (Table 1).[3-4] In recent years, the molecular mechanisms underlying EBV-related carcinogenesis have become increasingly understood. EBV may contribute to tumourigenesis through the expression of viral proteins and microRNAs (miRNAs). Previous studies have also reported that promoter methylation was observed more
frequently in EBVaGC. Hence another method by which EBV contributes to gastric carcinogenesis is through aberrant DNA methylation and histone modification. Thus EBVaGC is characterised by distinct variations on genomic, epigenomic, and transcriptomic levels[5]. Here, we review the mechanism by which EBV infection causes aberrant methylation, transformation, cancer development, and its associated therapeutic implications.

MECHANISM OF EBV INFECTION

EBV may infect host gastric epithelial cells directly or indirectly (Figure 1). In direct infection, the viral envelope glycoprotein BMRF-2 interacts with cellular β1 integrins. Subsequently, viral protein gH/gL attaches to cellular αvβ6/8 integrins, and triggers fusion of the viral envelope with the epithelial cell membrane[6]. EBV preferentially infects B lymphocytes, which then mediates subsequent infection to epithelial cells[7]. In B cell invasion, EBV envelope glycoproteins gp350/220 bind to B cell receptors CD21 and/or CD35[7,8]. Simultaneously, viral glycoprotein gp42 interacts with Human Leukocyte Antigen (HLA) class II molecules on the B cell membrane to trigger the core fusion complex, enabling EBV entry into the B cell (Figure 2)[8,9]. Through direct cell-to-cell contact, EBV-infected B cells may subsequently infect epithelial cells[10]. The exact mechanism of epithelial cell invasion is unclear, but involves CD21-mediated co-capping of EBV and integrins on B cells, as well as conjugate formation between EBV-infected B cells and epithelial cells via the capped adhesion molecules[11]. Once EBV enters epithelial cells, the viral capsid dissolves and the viral genome is transported to the cell nucleus.

LATENCY, VIRAL PROTEINS, AND CARCINOGENESIS

Following infection, EBV typically persists in a latent stage. During latency, the viral genome is largely silenced by host-driven methylation of CpG island motifs. Based on the subset of viral genes which are expressed, tumours may be classified into four types; latency Ia, Ib, II, and III (Table 2). EBVaGC belongs to latency type I, where the viral genes EBV nuclear antigen 1 (EBNA1), EBV-encoded small RNA (EBER1/2), BamHI-A rightward transcripts (BARTs), and latent membrane protein 2A (LMP2A) may be expressed[12,13]. Notably, the expression of latency genes is associated with malignancy. For example, EBER1 up-regulates the expression of insulin-growth factor-1, an autocrine growth factor which accelerates cell proliferation in EBVaGC[14].

Half of all EBVaGCs also express LMP2A. LMP2A plays a critical role in the oncogenic processes in EBVaGC, and thus EBV latency patterns should be further subdivided into Ia or Ib based on the absence or presence of LMP2A[12,13]. LMP2A not only inhibits apoptosis through up-regulation of the cellular survivin gene via the NF-κB pathway[16], but induces expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), which causes up-regulation of DNA methyltransferase DNMT1[16] and DNMT3B[17] in EBV-infected GC cells. DNA methyltransferases play important roles in controlling DNA methylation. The subsequent overdrive of CpG methylation and silencing of tumour suppressor genes such as PTEN, p16, and p73 leads to the transformation of EBV-infected cells. Hence epigenetic dysregulation plays an important role in gastric carcinogenesis.

EBVaGC AND EPIGENETIC ALTERATIONS

Epigenetics refer to functionally relevant and heritable changes in gene expression that occur without alteration of the underlying DNA sequence. The two primary mechanisms which may produce this change are DNA
methylations, and histone modification. According to the epigenetic progenitor model, tumour-progenitor genes promote the polyclonal epigenetic disruption of stem cells as a first step in the development of cancer. This epigenetic plasticity causes genomic instability, and collectively drives tumour progression.

The CpG island methylator phenotype was first observed in EBVaGC in 1999. EBV infection was shown to induce extensive methylation and repression of tumour suppressor genes over 18 wk in MKN7, a low methylation GC cell line. Subsequent studies confirmed that EBVaGC has higher rates of aberrant DNA methylation than EBV non-associated GC (EBVnGC). Nevertheless, the mechanisms by which EBV induces aberrant DNA methylation and histone modification remain poorly understood.

EBV AND microRNA

Viral encoded miRNAs play a pivotal role in alterations to DNA methylation status in host cells. The expression of EBV miRNAs vary under different latency programs (Table 3). For example, miR-BART1-5p, 6, and 17-5p suppresses LMP1 expression, whilst miR-BART-22 regulates expression of LMP2A. EBV miRNAs further repress cellular proteins, including PUMA, DICER1, and BIM. EBV infection may also affect host cell miRNA expression. Specifically, miR-200a and miR-200b are down-regulated in EBVaGC compared to EBVnGC and adjacent mucosa. This down-regulation may be mediated by viral proteins such as BRAF0, EBER, and LMP2A, as well as by aberrant DNA methylation following EBV infection. More recently, miRNA sequencing studies have revealed that EBV-infection mediates down-regulation of tumour suppressor miRNAs including the Let-7 family.
Further research is required to elucidate their role in tumourigenesis[44].

ABERRANT DNA METHYLATION IN EBVaGC

Currently, GC is subdivided into three subtypes based on CpG-island methylator phenotype (CIMP). Defined as high (CIMP-H), low (CIMP-L), or none (CIMP-N), the classification is based on the number of methylated loci (≥ 4, 1-3, and 0 respectively) in the promoter regions of five genes (LOX, HRASLS, FLNC, HAND1, and THBD)[30]. It was previously shown that promoter methylation of cancer-related genes was seen more frequently in EBVaGC than EBVnGC. EBVaGC is thus classified as CIMP-H[29].

In a genome-wide study comparing promoter methylation between EBV-infected and EBV non-infected GC cell lines, hundreds of genes involved in cancer pathways such as cell adhesion molecules, wnt signalling pathway, and mitogen-activated protein kinase signalling were observed to be hypermethylated following EBV infection[17]. Further investigation through epigenomic and transcriptomic sequencing revealed that 216 genes were down-regulated by promoter hypermethylation. Significantly, hypermethylation of tumour suppressor genes, including p14, p15, p16, APC, E-cadherin, and PTEN were noted in EBVaGC, but not EBVnGC[30,31]. All studies unanimously agreed that p16 was significantly more hypermethylated in EBVaGC than in EBVnGC[30]. It may be caused by hypermethylation of SSTR1 and GSTP1; both genes are frequently hypermethylated in NPC and GC infected EBV tissues, and regulate cell migration, proliferation, and apoptosis[30,31,32,33,34]. Notably, EBV infection also up-regulates expression of FAM3B and IHH[30], FAM3B is associated with invasion[30,34], and Indian Hedgehog (IHH) with increased metastatic potential through angiogenesis and Snail protein expression, as well as a decrease in e-cadherin and tight junctions[31-34]. Table 4 shows a comprehensive list of hypermethylated genes and their role in carcinogenesis. Hence aberrant DNA methylation plays an important role in gastric carcinogenesis.

IMPLICATIONS FOR TREATMENT

Current treatment guidelines from the National Institute for Health and Clinical Excellence (NICE) for the management of GC depends on the stage of disease. Broadly, the mainstay for cure is surgical excision with clearance of adjacent lymph nodes. Radiotherapy, and chemotherapeutic agents including cisplatin, docetaxel, epirubicin, and 5-fluorouracil (5-FU) may be used as adjuvants or in the palliative setting. Notably, no differentiation is made between the distinct subtypes of GC in the treatment guidelines.

Research has established that EBVaGC represents a distinct entity of GC, characterised not only by unique genomic aberrations, but also by clinicopathologic features such as less lymph node involvement, and significantly better prognosis[2]. Naturally, there are associated therapeutic implications, as evidenced by resistance to docetaxel and 5-FU in EBV-positive, but not EBVnGC cell lines[21,22]. The chemoresistance is mediated by EBV-lytic gene expression, which induces expression of Bel-2.
and survivin whilst simultaneously suppressing p21 to inhibit apoptosis[46]. In support of this hypothesis, silencing of EBV-lytic gene LMP1 through specific small interfering RNA (siRNA) enhanced chemosensitivity of cancer cells to bleomycin and cisplatin[49]. Since epigenetic dysregulation is implicated in the expression of EBV-lytic genes and consequent tumour progression, we believe that epigenetic processes are a rational therapeutic target in EBVaGC.

Crucially, aberrant DNA methylation in cancer is reversible. Thus the enzymes which regulate epigenetic modifications are attractive targets for pharmacological intervention. Current epigenetic therapies may be classified into histone acetyltransferase (HAT), histone deacetylase (HDAC), and DNA methyltransferase (DNMT) inhibitors (Table 5). Broadly, they facilitate demethylation and re-expression of epigenetically silenced tumour suppressor genes, lowering the apoptotic threshold to sensitize tumour cells to chemotherapy and radiotherapy. Consequently, there has been an emphasis on investigating the clinical value of epigenetic therapies in combination with conventional cytotoxic agents and radiation.

It was previously reported that the combination of irradiation and 5-aza-CdR significantly decreased growth activity compared with irradiation alone in OCUM-2M, OCUM-12, and MKN-45 GC cell lines (P < 0.05). The cell cycle arrest and increased apoptotic rate may be partly mediated by enhanced expression of p53, RASSF1, and DAPK gene families by 5-aza-CdR[50]. The use of epigenetic therapies in conjunction with targeted therapies such as gefitinib in lung cancer, imatinib in chronic myeloid leukemia, and trastuzumab in breast cancer cell lines and in vivo tumour models also had synergistic effects on the induction of apoptosis[51,52]. More recently, epigenetic modifiers and ZEB1 inhibitors have been used to induce lytic transformation of EBV-infected gastric cancer cells. Expressed only in the lytic form of infection, virally encoded kinases convert ganciclovir into its active form, potentiating its cytotoxic effects[53,54]. Hence epigenetic modifiers may be a useful therapeutic strategy in EBVaGC.

However, several problems must be considered. Firstly, methylation is reversible, so re-methylation and re-silencing after cessation of drug therapy may occur[55]. Moreover, there have been numerous concerns raised regarding the systemic effects of non-specific gene activation in non-cancerous cells by epigenetic therapies. Conflicting evidence exists in the literature regarding the effect of epigenetic therapies on normal cells. Some studies have demonstrated that 5-Aza and decitabine increases mutation frequency, causes chromosomal rearrangements, and decreases fertility in mice. Conversely, no increase in chromosomal integrity was observed following administration of low dose 5-aza-CdR in patients with myelodysplastic syndrome[56]. Additionally, treatment of 41 leukemia patients with 5-aza-CdR showed only mild effects on global genomic de-methylation, as measured by changes in Alu methylation[57]. Few adverse effects were observed, and original methylation levels were regained within two weeks after therapy. No development of secondary malignancies were recorded. Consequently, further studies are needed to investigate the long term effects of epigenetic therapies.

CONCLUSION

EBVaGC is a unique type of GC. The characteristic global hypermethylation of the promoter region in tumour-suppressor genes may be due to overexpression of DNMTs by viral latent proteins, miRNAs, and various epigenomic changes. However, the precise role of EBV in the multifactorial etiology of GC is still not fully understood. Further studies are needed to elucidate the intricate relationship between EBV infection, environmental factors, genetic backgrounds, and aberrant DNA methylation in GC. A better understanding of the role of EBV in gastric carcinogenesis will enable discovery of novel therapeutic targets and strategies.

REFERENCES

1. Fukayama M, Hino R, Uozaki H. Epstein-Barr virus and gastric carcinoma: virus-host interactions leading to carcinoma. Cancer Sci 2008; 99: 1726-1733 [PMID: 18616681 DOI: 10.1111/j.1349-7006.2008.00888.x]
2. van Beek J, zur Hausen A, Klein Kranenbarg E, van de Velde CJ, Middeldorp JM, van den Brule AJ, Meijer CJ, Bloemena E. EBV-positive gastric adenoacarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol 2004; 22: 664-670 [PMID: 14966089 DOI: 10.1200/JCO.2004.08.061]
3. Camargo MC, Kim WH, ChiaraValli AM, Kim KM, Corvalan AH, Matsuo K, Yu J, Sung JJ, Herrera-Goejert R, Meneses-Gonzalez F, Kijima Y, Natsugoe S, Liao LM, Lissowska J, Kim S, Hu N, Gonzalez CA, Yatabe Y, Koriyama C, Hewitt
SM, Akiba S, Gulley ML, Taylor PR, Rabkin CS. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 2014; 63: 236-243 [PMID: 25386599 DOI: 10.1136/gutjnl-2013-304531]

Camargo MC, Koriyama C, Matsuou K, Kim WH, Herrera-Goepfert R, Liao LM, Yu J, Carrasquilla G, Sung JJ, Alvarado-Cabrero I, Lissowska J, Meneses-Gonzalez F, Yatabe Y, Ding T, Hu N, Taylor PR, Morgan DR, Gulley ML, Torres J, Akiba S, Rabkin CS. Case-control comparison of smoking and alcohol risk associations with Epstein-Barr virus-positive gastric cancer. Int J Cancer 2014; 134: 948-953 [PMID: 23904115 DOI: 10.1002/ijc.28402]

Liang Q, Yao X, Tang S, Yau TO, Zhao J, Sung JJ, Ju Y. Integrative Identification of EBV-Associated Variations At Genomic, Epigenomic and Transcriptomic Levels in Gastric Cancer. Gastroenterology 2013; 144: S25 [DOI: 10.1016/S0016-5085(13)63525-8]

Tugizov SM, Berline JW, Palefsky JM. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 2003; 9: 307-314 [PMID: 12592401 DOI: 10.1038/nm380]

Sixby JW, Davis DS, Young LS, Hutt-Fletcher L, Tedder TF, Rickinson AB. Human Epithelial Cell Expression of an Epstein-Barr Virus Receptor. J Gen Virol 1987; 68: 805-811 [DOI: 10.1099/0022-1317-68-3-805]

Tanner J, Weiss J, Fearon D, Whang Y, Kieff E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 1987; 50: 205-213 [PMID: 306369]

Ogembo JG, Kamran L, Ghiran I, Nicholson-Weller A, Finberg RW, Tsokos GC, Fingeroth JD. Human complement receptor type 1 CD35 is an Epstein-Barr Virus receptor. Cancer Res 2011; 71: 625-631 [PMID: 21641619 DOI: 10.1158/0008-5472.CAN-10-2286]

Niedobitek G, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H, Fukayama M. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 2011; 71: 7187-7197 [PMID: 21990320 DOI: 10.1158/0008-5472.CAN-11-1349]

Kaneda A, Matsuoksa K, Aburatani H, Fukayama M. Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 2012; 72: 3445-3450 [PMID: 22761333 DOI: 10.1158/0008-5472.CAN-12-1193]

Qiu J, Cosmopoulos K, Pegtel M, Hopmans E, Murray P, Middeldorp J, Shapiro M, Thorley-Lawson DA. A novel persistent associated EBV miRNA expression profile is disrupted in plasma. PLoS Pathog 2011; 7: e1002193 [PMID: 21901094 DOI: 10.1371/journal.ppat.1002193]

Lo AK, ToKF, Ko LW, Lung RW, Hui JW, Liao G, Hayward SD. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 2007; 104: 16164-16169 [PMID: 17911266 DOI: 10.1073/pnas.0702804104]

Lung RW, Tong JH, Sung YM, Leung PS, Ng DC, Chau SL, Chan AW, Ng EK, Lo KW, ToKF. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 2009; 11: 1174-1184 [PMID: 19881953]

Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S, Uozaki H, Takada K, Fukayama M. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 2010; 70: 4717-4727 [PMID: 20484038 DOI: 10.1158/0008-5472.CAN-09-4620]

Marquitz AR, Mathur A, Chugh PE, Dittmer DP, Rabib-Traub N. Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol 2014; 88: 1389-1395 [PMID: 24227849 DOI: 10.1128/JVI.00626-13]

Kaneda A, Kaminishi M, Yanagihara K, Sugimura T, Ushijima M. Identification of silencing of nine genes in human gastric cancers. Cancer Res 2002; 62: 6645-6650 [PMID: 12438262]

Kosuno M, Toyota M, Suzuki H, Akino K, Aoki F, Fujita M, Hosokawa M, Shinomura Y, Imai K, Tokino T. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer 2006; 106: 1467-1479 [PMID: 16518809 DOI: 10.1002/cncr.21789]

Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, Hino R, Barua RR, Iwasaki Y, Arai K, Fujii H, Nagai H, Fukayama M. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin Cancer Res 2006; 12: 2995-3002 [PMID: 16707594 DOI: 10.1158/1078-0432.CCR-05-1601]

Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Ryu MG, Ro JY. Epstein-Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 2002; 160: 787-794 [PMID: 11891177 DOI: 10.1016/S0002-9440(01)64901-2]

Saito M, Nishikawa J, Okada T, Morishige A, Sakai K, Nakamura M, Kiyotoki S, Hamabe K, Okamoto T, Oga A, Sasaki K, Suehiro Y, Hinoda Y, Saida K. Role of DNA methylation in the development of Epstein-Barr virus-associated gastric carcinoma. J Med Virol 2013; 85: 121-127 [PMID: 23073987 DOI: 22833454 DOI: 10.1002/cncr.27724]
Yau TO et al. Epigenetic dysregulation in EBVaGC

10.1002/jmv.23405

33 Ushiku T, Chong JM, Uozaki H, Hino R, Chang MS, Sudo M, Rani BR, Sakuma K, Nagai H, Fukayama M. p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer 2007; 120: 60-66 [PMID: 17095198 DOI: 10.1002/ijc.22275]

34 Okada T, Nakamura M, Nishikawa J, Sakai K, Zhang Y, Saito M, Morishige A, Ogata A, Sasaki K, Suehiro Y, Hinoda Y, Sakai I. Identification of genes specifically methylated in Epstein-Barr virus-associated gastric carcinomas. J Virol 2013; 87: 10379-10387 [PMID: 23829715 DOI: 10.1128/JVI.01666-12]

35 Sakuma K, Chong JM, Sudo M, Ushiku T, Inoue Y, Shibahara J, Uozaki H, Nagai H, Fukayama M. High-density methylation of p14ARF and p16INK4A in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer 2004; 112: 273-278 [PMID: 15352040 DOI: 10.1002/ijc.20420]

36 Sherr CJ. Cancer cell cycles. Science 1996; 274: 1672-1677 [PMID: 8939849]

37 Jang TJ, Kim DI, Shin YM, Chang HK, Yang CH. p16(NK4a) Promoter hypermethylation of non-tumorous tissue adjacent to gastric cancer is correlated with glandular atrophy and chronic inflammation. Int J Cancer 2001; 93: 629-634 [PMID: 11477571]

38 Ohfuji S, Osaki M, TsujiTani S, Ikeguchi M, Sairenji T, Ito H. Low frequency of apoptosis in Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma. Int J Cancer 1996; 68: 710-715 [PMID: 8980171]

39 Zhao J, Liang Q, Cheung KF, Kang W, Dong Y, Lung RW, Tong JH, To KF, Sung JJ, Yu J. Somatostatin receptor 1, a novel EBV-associated CpG hypermethylated gene, contributes to the pathogenesis of EBV-associated gastric cancer. Br J Cancer 2013; 108: 2557-2564 [PMID: 23722468 DOI: 10.1038/bjc.2013.263]

40 Kim J, Lee HS, Bae SI, Lee YM, Kim WH. Silence and CpG island methylation of GSTP1 is rare in ordinary gastric carcinomas but common in Epstein-Barr virus-associated gastric carcinomas. Anticancer Res 2005; 25: 4013-4019 [PMID: 16309193]

41 Challouf S, Ziadi S, Zaghdouidi R, Ksiaa F, Ben Gacem R, Zhou JM, Wang Y, Huang H, Deng R, Feng GK, Yau TO, Kim TY, Kang GH. CpG island hypermethylator phenotype analysis of molecular predictors, signatures, cell cycle state and apoptotic viral and human genes during latency. EMBO J 2007; 26: 7429-7439 [PMID: 17807800 DOI: 10.1038/emboj.2007.5]

42 Qiu H, Yashiro M, Shinton O, Matsuzaki T, Hiraoka K. DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci 2009; 100: 181-188 [PMID: 19307991 DOI: 10.1111/j.1349-7006.2008.01004.x]

43 Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769-784 [PMID: 16955068 DOI: 10.1038/nrd2133]

44 Fiskus W, Pranapat M, Balji P, Balasias M, Kamaraswamy S, Boyapalle S, Rocha K, Wu J, Giles F, Manley PW, Atadja P, Bhalla K. Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood 2006; 108: 645-652 [PMID: 16357804 DOI: 10.1118/blood-2005-11-4639]

45 Jung EJ, Lee YM, Lee BL, Chang MS, Kim WH. Lytic induction and apoptosis of Epstein-Barr virus-associated gastric cancer cell line with epigenetic modifiers and ganciclovir. Cancer Lett 2007; 247: 77-83 [PMID: 16647201 DOI: 10.1016/j.canlet.2006.03.022]

46 Zhao J, Jin H, Cheung KF, Tong JH, Zhang S, Go MY, Tian L, Kang W, Leung PP, Zeng Z, Li X, To KF, Sung JJ, Yu J. Zinc finger E-box binding factor 1 plays a central role in regulating Epstein-Barr virus (EBV) latent-lytic switch and acts as a therapeutic target in EBV-associated gastric cancer. Cancer 2012; 118: 924-936 [PMID: 21717429 DOI: 10.1002/cncr.216184]

47 Yoo CB, Cheng JC, Jones PA. Zebuline: a new drug for epigenetic therapy. Biochem Soc Trans 2004; 32: 910-912 [PMID: 15506921 DOI: 10.1042/BST020910]

48 Lubbert M, Wijermans P, Kunzmann R, Verhoef G, Bosly A, Raoet C, Andre M, Ferrant A. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Haematol 2001; 114: 349-357 [PMID: 11529854]

49 Yang AS, Estacio MR, Garcia-Manero G, Kantarjian HM, Issa JP. Combined effects of “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of apoptosis in tumors by genomic hypomethylation”. Science 2003; 302: 1153; author reply 1153 [PMID: 14615517 DOI: 10.1126/science.1089523]

50 Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, Nusbaum JD, Feederle R, Delecluse HJ, Luftig MA, Tuschl T, Ohler U, Cullen BR. The viral and cellular microRNA-NA targetome in lymphoblastoid cell lines. PLoS Pathog 2012; 8: e1002848 [PMID: 22921592 DOI: 10.1371/journal.ppat.1002848]

51 Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012; 31: 2207-2221 [PMID: 22473208 DOI: 10.1038/emboj.2012.63]

52 Xia T, O’Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB, Ramos JC, Luz E, Pedroso C, Manrique M, Tooey NL, Brites C, Dittmer DP, Harrington WJ. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Science 2008; 99: 1436-1442 [PMID: 18316607 DOI: 10.1111/j.1349-7006.2008.00512.x]

53 Barth S, Pfuhl T, Mamiani A, Ehnes C, Roemer K, Kremmer E, Jakic C, Höck J, Meister G, Grüßer FA. Epstein-Barr virus-encoded microRNA mir-BART2 down-regulates the viral DNA polymerase BALF3. Nucleic Acids Res 2008; 36: 665-675
Our laboratory is interested in understanding the role of miRNAs in the regulation of gene expression, particularly in the context of cancer. We have been focusing on the identification of specific miRNAs that are dysregulated in various cancer types, with a particular emphasis on gastric cancer, and the potential therapeutic targets that these miRNAs might represent.

We have recently published a study that demonstrates the role of miR-21 in gastric cancer. Our findings suggest that miR-21 expression is correlated with poor prognosis in gastric cancer patients, and that targeting miR-21 might be a promising therapeutic strategy. We are currently exploring the molecular mechanisms underlying the role of miR-21 in gastric cancer, and evaluating the potential of miR-21-targeting therapies in preclinical models.

In addition to our work on miR-21, we are also investigating the role of other miRNAs in gastric cancer, such as miR-125b and miR-145. These miRNAs have been shown to be dysregulated in gastric cancer, and their expression levels have been correlated with tumor stage and patient survival. We are exploring the potential of miR-125b and miR-145 as diagnostic and prognostic markers in gastric cancer, and evaluating the potential of miR-125b and miR-145-targeting therapies in preclinical models.

Overall, our research aims to advance our understanding of the role of miRNAs in gastric cancer, and to identify novel therapeutic targets for this disease.
Yau TO et al. Epigenetic dysregulation in EBVaGC

jnc/95.5.399

88 Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat 2010; 120: 581-592 [PMID: 19459041 DOI: 10.1007/s10549-009-0420-3]

89 Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C, Niemeyer CM, Lübbert M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 2009; 23: 1019-1028 [PMID: 19194470 DOI: 10.1038/leu.2008.397]

90 Fatkins DG, Zheng W. Substituting N(epsilon)-thioacetyl-lysine for N(epsilon)-acetyl-lysine in peptide substrates as a general approach to inhibiting human NAD(+)-dependent protein deacetylases. Int J Mol Sci 2008; 9: 1-11 [PMID: 19325715 DOI: 10.3390/ijms9010001]

91 Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 2004; 101: 1241-1246 [PMID: 14734886 DOI: 10.1073/pnas.0307708103]

92 Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 2006; 26: 28-38 [PMID: 16354677 DOI: 10.1128/MCB.26.1.28-38.2006]

93 García-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Ventovsek S, Ryting M, Wierda WG, Ravandi F, Kolter C, Xiao L, Faderl S, Estrov Z, Cortes J, O’Brien S, Estey E, Bueso-Ramos C, Fiorentino J, Jabbar E, Issa JP. Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine with valproic acid in patients with leukemia. Blood 2006; 108: 3271-3279 [PMID: 16882711 DOI: 10.1182/blood-2006-03-009142]

94 Nemunaitis JJ, Orr D, Eager R, Cunningham CC, Williams A, Mennel R, Grove W, Olson S. Phase I study of oral CI-994 in combination with gemcitabine in treatment of patients with advanced cancer. Cancer 2003; 9: 58-66 [PMID: 12602769]

95 Undevia SD, Kindler HL, Janisch L, Olson SC, Schlisky RL, Vogelzang NJ, Kimmel KA, Macek TA, Ratain MJ. A phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine. Ann Oncol 2004; 15: 1705-1711 [PMID: 15520075 DOI: 10.1093/annonc/mdh438]

96 Medda F, Russell RJ, Higgins M, McCarthy AR, Campbell J, Slawin AM, Lane DP, Lain S, Westwood NJ. Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J Med Chem 2009; 52: 2673-2682 [PMID: 19419202 DOI: 10.1021/jm801428]

P- Reviewers: Engin AB, Jung YD S- Editor: Zhai HH
L- Editor: A E- Editor: Wang CH
