Abstract—In this paper, we study power allocation for secure communication in a multiuser multiple-input single-output (MISO) downlink system with simultaneous wireless information and power transfer. The receivers are able to harvest energy from the radio frequency when they are idle. We propose a multi-objective optimization problem for power allocation algorithm design which incorporates two conflicting system objectives: total transmit power minimization and energy harvesting efficiency maximization. The proposed problem formulation takes into account a quality of service (QoS) requirement for the system secrecy capacity. Our designs advocate the dual use of artificial noise in providing secure communication and facilitating efficient energy harvesting. The multi-objective optimization problem is non-convex and is solved by a semidefinite programming (SDP) relaxation approach which results in an approximate of solution. A sufficient condition for the global optimal solution is revealed and the accuracy of the approximation is examined. To strike a balance between computational complexity and system performance, we propose two suboptimal power allocation schemes. Numerical results not only demonstrate the excellent performance of the proposed suboptimal schemes compared to baseline schemes, but also unveil an interesting trade-off between energy harvesting efficiency and total transmit power.

I. INTRODUCTION

Energy harvesting is a promising technology to provide self-sustainability to power-constrained communication devices [1]-[5]. Traditionally, energy harvesting communication systems [1], [2] harvest energy from renewable natural energy sources such as geothermal, wind, and solar. However, these conventional energy sources are usually location dependent and may not be suitable for handheld mobile devices. On the other hand, recent developments in simultaneous wireless and information transfer [3]-[5] open up a new dimension for prolonging the lifetime of battery powered mobile devices. In particular, the transmitter can transfer energy to the receiver via electromagnetic waves in radio frequency (RF). Besides, the integration of RF energy harvesting capabilities with communication systems demands a paradigm shift in transceiver signal processing design since it introduces new QoS requirements for efficient energy harvesting. Although increasing the energy radiated from the transmitter facilitates energy harvesting at the receivers, it may also increases the probability of information leakage and the vulnerability to eavesdropping.

On the other hand, multiple-antenna techniques have recently attracted much attention in the research community for providing physical (PHY) layer security [6]-[8]. In [6], the authors proposed a beamforming scheme for maximizing the energy efficiency of secure communication systems. In [7] and [8], the spatial degrees of freedom offered by multiple antennas are used to degrade the channel of eavesdroppers deliberately via artificial noise transmission. Thereby, a large portion of the transmit power is devoted to artificial noise generation for guaranteeing secure communication. However, the problem formulations in [6]-[8] do not take into account the possibility of RF harvesting at the receivers. Besides, the results in [1]-[5] were obtained for a single system design objective and may not be applicable to multi-objective system design.

In this paper, we address the above issues. To this end, we propose a multi-objective optimization problem formulation which jointly maximizes the energy harvesting efficiency and minimizes the total transmit power. The problem formulation considers secure communication in multiuser multiple-input single-output (MISO) systems with RF energy harvesting receivers. An approximate solution of the optimization problem is obtained in form of a semidefinite programming (SDP) based power allocation algorithm. Furthermore, we also propose two suboptimal schemes which provide close-to-optimal performance.

II. SYSTEM MODEL

In this section, we present the adopted multiuser downlink channel model for wireless information and power transfer. A downlink multiuser communication system for simultaneous wireless information and power transfer is considered. There are one transmitter equipped with $N_t > 1$ transmit antennas and K legitimate receivers, each of which is equipped with a single antenna, cf. Figure 1. We assume that the receivers are able to either harvest energy or decode information from the received radio signals in each time slot. In each scheduling slot, the transmitter not only conveys information to a given
receiver, but also transfers energy\(^1\) to the remaining \(K - 1\) idle receivers for extending their lifetimes. However, the information signal of the selected receiver is overheard by the \(K - 1\) idle legitimate receivers and can be eavesdropped by them. Therefore, they are treated as potential eavesdroppers, which is taken into account for power allocation algorithm design for secure communication. We assume a frequency flat slow fading channel and the downlink channel gains of all receivers are known at the transmitter. The received signals at the desired receiver and the \(K - 1\) idle receivers are given by, respectively,

\[y_1,k = g_{k}^H x + z_k, \forall k = \{1, \ldots, K - 1\},\]

where \(x \in \mathbb{C}^{N_T \times 1}\) and \(N \times M\) denote the transmitted symbol vector and the space of all \(N \times M\) matrices with complex entries. \(h^H \in \mathbb{C}^{1 \times N_T}\) is the channel vector between the transmitter and the desired receiver and \(g_k^H \in \mathbb{C}^{1 \times N_T}\) is the channel vector between the transmitter and idle receiver (potential eavesdropper) \(k\). \((\cdot)^H\) denotes the conjugate transpose of a matrix. \(z_k\) is additive white Gaussian noise (AWGN) with zero mean and variance \(\sigma_z^2\).

To guarantee secure communication, artificial noise is generated at the transmitter to interfere with the channels between the transmitter and the \(K - 1\) idle receivers (potential eavesdroppers). In particular, the transmit signal vector

\[x = ws + v\]

is adopted at the transmitter, where \(s \in \mathbb{C}^{1 \times 1}\) and \(w \in \mathbb{C}^{N_i \times 1}\) are the information bearing signal for the desired receiver and the corresponding beamforming vector, respectively. We assume without loss of generally that \(\mathcal{E}\{|s|^2\} = 1\), where \(\mathcal{E}\{\cdot\}\) denotes statistical expectation. \(v \in \mathbb{C}^{N_i \times 1}\) is the artificial noise vector generated by the transmitter to combat the potential eavesdroppers. Specifically, \(v\) is modeled as \(\mathcal{H}\{\cdot\}\) with mean 0 and covariance matrix \(V \in \mathbb{H}^{N_i}, V \succeq 0\). Here, \(\mathbb{H}^N\) represents the set of all \(N\)-by-\(N\) complex Hermitian matrices and \(V \succeq 0\) indicates that \(V\) is a positive semidefinite matrix.

III. POWER ALLOCATION ALGORITHM DESIGN

In this section, we define different quality of service (QoS) measures for secure communication systems with wireless information and power transfer. Then, we formulate the corresponding power allocation problems. For the sake of notational simplicity, we define the following variables: \(H = hh^H\) and \(G_k = g_k g_k^H\), \(k = \{1, \ldots, K - 1\}\).

A. Secrecy Capacity

Given perfect channel state information (CSI) at the receiver, the system capacity (bit/s/Hz) between the transmitter and the desired receiver is given by

\[C = \log_2 \left(1 + \frac{w^H H w}{\text{Tr}(HV)} + \sigma_s^2\right),\]

where \(\Gamma\) is the received signal-to-interference-plus-noise ratio (SINR) at the desired receiver and \(\text{Tr}(\cdot)\) denotes the trace of a matrix.

The channel capacity between the transmitter and idle receiver (potential eavesdropper) \(k\) is given by

\[C_{I,k} = \log_2 \left(1 + \Gamma_{I,k}\right)\]

where \(\Gamma_{I,k}\) is the received SINR at idle receiver \(k\). Therefore, the maximum achievable secrecy capacity between the transmitter and the desired receiver can be expressed as

\[C_{sec} = \left[C - \max_{k \in \{1, \ldots, K - 1\}} C_{I,k}\right]^+\]

where \([x]^+ = \max\{0, x\}\). In the literature, secrecy capacity, i.e., \([6]\), is commonly adopted as a QoS requirement for system design to provide secure communication \([7], [8]\).

B. Energy Harvesting Efficiency

In the considered system, the idle receivers are able to harvest energy for prolonging their lifetimes. Thus, energy harvesting efficiency also plays an important role in the system design and should be considered in the problem formulation. To this end, we define energy harvesting efficiency as the ratio of the total harvest power and the total radiated power. The total amount of energy harvested by the \(K - 1\) receivers is modeled as

\[\text{HP}(w, V) = \sum_{k=1}^{K-1} \varepsilon_k \left(w^H G_k w + \text{Tr}(G_k V)\right),\]

where \(\varepsilon_k\) is a constant, \(1 \geq \varepsilon_k \geq 0\), which denotes the RF energy conversion efficiency of idle receiver \(k\) in converting the received radio signal to electrical energy. Indeed, both beamforming \(w\) and artificial noise vector \(v\) carry energy and can act as energy supply to the idle receivers. Although increasing the transmit power in \(w\) facilitates energy harvesting at the receivers, it may also increases the susceptibility to eavesdropping, cf. \([4] - [7]\). Therefore, the dual use of artificial noise in providing simultaneous efficient energy harvesting and secure communication is proposed in this paper.

On the other hand, the power radiated from the transmitter can be expressed as

\[\text{TP}(w, V) = \|w\|^2 + \text{Tr}(V),\]

where \(\|\cdot\|\) denotes the Euclidean vector norm. Finally, the energy harvesting efficiency of the considered system is defined as

\[\eta_{\text{eff}}(w, V) = \frac{\text{HP}(w, V)}{\text{TP}(w, V)}.\]

C. Optimization Problem Formulations

We first propose two single-objective system design formulations for secrecy communication. Then, we consider the two proposed system design objectives jointly under the framework of multi-objective optimization. The first problem formulation aims at energy harvesting efficiency maximization:

Problem 1 (Energy Harvesting Efficiency Maximization):

\[
\begin{align*}
\text{maximize} & \quad \eta_{\text{eff}}(w, V) \\
\text{s.t.} & \quad w^H H w \geq \Gamma_{\text{req}}, \\
& \quad w^H G_k w \leq \Gamma_{\text{tol}}, \forall k, \\
& \quad \|w\|^2 + \text{Tr}(V) \leq P_{\text{max}}, \\
& \quad V \succeq 0.
\end{align*}
\]

\(^1\)In this paper, a normalized energy unit, i.e., Joule-per-second, is adopted. Therefore, the terms power and energy are used interchangeably in this paper.
Constants Γ_{req} and Γ_{tol}, $\forall k \in \{1, \ldots, K - 1\}$, are chosen by the system operator such that $\Gamma_{req} > \Gamma_{tol} > 0$ and the maximum secrecy capacity of the system is lower bounded by $C_{sec} \geq \log_2(1 + \Gamma_{req}) - \log_2(1 + \max\{\Gamma_{tol,k}\}) \geq 0$. P_{max} in C3 restricts the transmit power to account for the maximum power that can be radiated from a power amplifier.

To facilitate the presentation and without loss of generality, we rewrite Problem 1 in (10) as

$$\begin{align*}
\text{minimize} & \quad F_1(w, V) \\
\text{s.t.} & \quad C1 - C4,
\end{align*}$$

where $F_1(w, V) = -\eta_{eff}(w, V)$.

The second system design objective is the minimization of the total transmit power and can be mathematically formulated as

Problem 2 (Total Transmit Power Minimization):

$$\begin{align*}
\text{minimize} & \quad F_2(w, V) \\
\text{s.t.} & \quad C1 - C4,
\end{align*}$$

where $F_2(w, V) = TP(w, V)$. The design criterion of Problem 2 yields the minimal total transmit power that satisfies the secrecy QoS requirement of the system. We note that Problem 2 does not take into account the energy harvesting ability of the idle receivers and focuses only on the requirement of physical layer security.

In practice, the two above system design objectives are both desirable for the system operator but they are usually conflicting with one another. In the literature, multi-objective optimization is proposed for studying the trade-off between conflicting system design objectives via the concept of Pareto optimality. In the following, we adopt the weighted Tchebycheff method [9] for investigating the trade-off between Problem 1 and Problem 2.

Problem 3 (Multi-Objective Optimization):

$$\begin{align*}
\text{minimize} & \quad \max_{j=1,2} \left\{ \lambda_j(F_j(w, V) - F_j^*) \right\} \\
\text{s.t.} & \quad C1 - C4,
\end{align*}$$

where F_j^* is the optimal objective value with respect to problem formulation j. $\lambda_j \geq 0$ is a weight imposed on objective function j subject to $\sum_j \lambda_j = 1$. In practice, variable λ_j reflects the preference of the system operator for the j-th objective over the others. In fact, by varying the values of λ_j, Problem 3 yields the complete Pareto optimal set [9], despite the non-convexity of the set. In the extreme case, Problem 3 is equivalent to Problem j when $\lambda_j = 1$ and $\lambda_i = 0, \forall i \neq j$.

IV. SOLUTION OF THE OPTIMIZATION PROBLEMS

The optimization problems in (11), (12), and (13) are non-convex with respect to the optimization variables. In order to obtain a tractable solution for the problems, we recast Problems 1, 2, and 3 as convex optimization problems by semidefinite programming (SDP) relaxation and study the corresponding optimality conditions.
exploit theses conditions for the design of two suboptimal power allocation schemes. Since transformed Problem 3 is a generalization of transformed Problems 1 and 2, we focus on the optimality conditions for SDP relaxation of transformed Problem 3.

B. Optimality Conditions for SDP Relaxation

In this subsection, we study the tightness of the proposed SDP relaxation of transformed Problem 3. The Lagrangian function of (17) is given by

\[
\mathcal{L}(\mathbf{W}, \mathbf{V}, \tau, \xi, \alpha, \beta, \theta, \mu, \kappa, \nu, \mathbf{Y}, \mathbf{Z}) = \tau - \text{Tr}(\mathbf{Y}\mathbf{W}) - \text{Tr}(\mathbf{Z}\mathbf{V}) + \sum_{j=1}^{2} \kappa_j (\lambda_j (F_j - F_j^*)) - \tau
\]

\[+ \sum_{k=1}^{K-1} \theta_k \left(\text{Tr}(\mathbf{G}_k \mathbf{W}) - \Gamma_{tol_k} \text{Tr}(\mathbf{G}_k \mathbf{V}) - \Gamma_{tol_k} \chi_k \right) - \nu \xi
\]

\[+ (\alpha + \mu) \left(\text{Tr}(\mathbf{Y}) + \text{Tr}(\mathbf{V}) \right) - \alpha \xi P_{\text{max}} - \mu
\]

\[+ \beta \left(\Gamma_{req} \text{Tr}(\mathbf{H}\mathbf{W}) + \Gamma_{req} \chi_k \right) - \text{Tr}(\mathbf{H}\mathbf{V}) \]

\[, \quad \text{where } \beta, \alpha, \nu, \mu \geq 0 \text{ are the Lagrange multipliers associated with constraints } C_1, C_3, C_5 \text{ and } C_6, \text{ respectively. } \theta, \text{ with elements } \theta_k \geq 0, k = \{1, \ldots, K-1\}, \text{ is the Lagrange multiplier vector associated with the maximum tolerable SINRs of the idle users (potential eavesdroppers) in } C_2. \kappa, \text{ with elements } \kappa_j \geq 0, j = \{1, 2\}, \text{ is the Lagrange multiplier vector associated with constraint } C_4. \text{ Matrices } \mathbf{Y}, \mathbf{Z} \geq 0 \text{ are the Lagrange multipliers for the semidefinite constraints on matrices } \mathbf{W} \text{ and } \mathbf{V} \text{ in } C_4, \text{ respectively. Thus, the dual problem for the relaxed SDP transformed Problem 3 is given by}

\[
\min_{\mathbf{W}, \mathbf{V} \in \mathcal{H}^{N_T}} \max_{\beta, \alpha, \nu, \mu, \kappa \geq 0} \mathcal{L}(\mathbf{W}, \mathbf{V}, \tau, \xi, \alpha, \beta, \theta, \mu, \kappa, \nu, \mathbf{Y}, \mathbf{Z})
\]

s.t. \[\sum_{j} \kappa_j = 1, \]

\[, \quad \text{where } \sum_{j} \kappa_j = 1 \text{ is imposed to enforce a solution of the dual problem that is bounded from below.}
\]

Now, we reveal different optimality conditions for rank-one matrix solutions for the relaxed SDP version of the transformed problems in the following proposition.

Proposition 2: Consider the relaxed SDP version of all transformed problems for \(\Gamma_{req} > 0 \). Then, for the relaxed SDP version of transformed Problems 1 and 3, \(\theta_k \geq \kappa_1 \geq 0, \forall k \), is a sufficient condition for \(\text{Rank}(\mathbf{W}) = 1 \). We note that \(\kappa_1 = 1 \) holds for transforming Problem 3 back to Problem 1. For the relaxed SDP version of transformed Problem 2, \(\text{Rank}(\mathbf{W}) = 1 \) always holds.

Proof: Please refer to Appendix II.

In the following, inspired by Proposition 2, we propose two suboptimal power allocation schemes.

1) Suboptimal Power Allocation Scheme 1: If \(F_j \) is independent of optimization variable \(\mathbf{W} \), the sufficient condition in Proposition 2, i.e., \(\theta_k \geq \kappa_1 \geq 0, \forall k \), always holds. As a result, we replace \(F_j = - \sum_{k=1}^{K-1} \varepsilon_k \text{Tr}(\mathbf{G}_k (\mathbf{W} + \mathbf{V})) \) in constraint \(C_8 \) by \(- \sum_{k=1}^{K-1} \varepsilon_k \text{Tr}(\mathbf{G}_k \mathbf{V}) \) and the relaxed SDP version of (17) can be written as:

\[
\begin{aligned}
\text{minimize} & \quad \tau \\
\text{s.t.} & \quad \mathbf{C}_T - \mathbf{C}_6, \\
\mathbf{C}_8: & \quad \lambda_1 \left(- \sum_{k=1}^{K-1} \varepsilon_k \text{Tr}(\mathbf{G}_k \mathbf{V}) - F_j^* \right) \leq \tau, \\
& \quad \lambda_2 \left(1/\xi - F_j^* \right) \leq \tau.
\end{aligned}
\]

We note that the contribution of beamforming matrix \(\mathbf{W} \) in \(\mathbf{C}_8 \), i.e., \(\text{Tr}(\mathbf{G}_k^{\mathbf{W}}) \), is neglected in (20); a smaller feasible solution set is considered. Besides, the solution of problem (20) has always rank-one, i.e., \(\text{Rank}(\mathbf{W}) = 1 \), since the sufficient condition stated in Proposition 2 is always satisfied. Therefore, the solution of problem (20) serves as a performance lower bound for the original optimization problem (13).

2) Suboptimal Power Allocation Scheme 2: A hybrid power allocation scheme is proposed and is summarized in Table I. In particular, we compute the solutions for the relaxed SDP version of Problem 3 in (17) and suboptimal scheme 1 in parallel and select one of the solutions. When the solution for the SDP relaxation is rank-one, i.e., \(\text{Rank}(\mathbf{W}) = 1 \), we select the solution given by the SDP relaxation since the global optimal is achieved. Otherwise, we will adopt the solution given by the proposed suboptimal scheme 1.

V. RESULTS

We evaluate the system performance for the proposed power allocation schemes using simulations. The system bandwidth is 200 kHz with a carrier center frequency of 470 MHz [12]. We adopt the TGN path loss model [13] for indoor communications with a reference distance for the path loss model of 2 meters. There are \(K \) receivers uniformly distributed between the reference distance and the maximum service distance of 10 meters. The transmitter is equipped with \(N_t = 6 \) antennas and we assume a transmit and receive antenna gain of 10 dB. The multipath fading coefficients are generated as independent and identically distributed Rician random variables with Rician factor 3 dB. The noise power and the RF energy conversion efficiency at the receivers are \(-23 \text{ dBm} \) and \(\varepsilon_k = 0.5, \forall k \), respectively. On the other hand, we assume \(\Gamma_{req} = 10 \text{ dB} \) and \(\Gamma_{tol_k} = -10 \text{ dB}, \forall k \), such that the minimum required secrecy capacity of the system is \(C_{sec} \geq 3.32 \text{ bit/s/Hz} \).
In this paper, we introduced a multi-objective optimization problem formulation for the power allocation algorithm design in secure MISO communication systems with RF energy harvesting receivers. The problem formulation enables the dual use of artificial noise for guaranteeing secure communication and facilitating power transfer to idle receivers. We have proposed a SDP based power allocation algorithm to obtain an approximated solution for the multi-objective optimization problem.
Besides, two suboptimal power allocation schemes providing rank-one solution were designed. Simulation results unveiled the benefits of the dual use of artificial noise and showed the excellent performance of the proposed suboptimal schemes.

APPENDIX I - PROOF OF PROPOSITION 1

The proof is based on the Charnes-Cooper transformation [8, 13]. By applying the change of variables in (14) to (11), Problem 1 in (11) can be equivalently transformed to

$$\minimize \frac{-\sum_{k=1}^{K-1} \varepsilon_k \text{Tr}(G_k(W + V))}{\text{Tr}(W) + \text{Tr}(V)}$$

s.t.

$$\text{C1, C2, C3, C4, C5, } \xi > 0, \text{C7}. \quad (21)$$

Now, we show that (21) is equivalent to

$$\minimize \frac{-\sum_{k=1}^{K-1} \varepsilon_k \text{Tr}(G_k(W + V))}{\text{Tr}(W) + \text{Tr}(V)}$$

s.t.

$$\text{C3: } \xi \geq 0, \text{C6: } \text{Tr}(W) + \text{Tr}(V) \leq 1. \quad (22)$$

Denote the optimal solution of (22) as $\begin{pmatrix} W^* \ , \ V^* \end{pmatrix}$. If $\xi^* = 0$, then $W^* = V^* = 0$ according to C3. Yet, such solution cannot satisfy C1 for $\Gamma_{req} > 0$. As a result, without loss of generality, the constraint $\xi > 0$ can be replaced by $\xi \geq 0$. Besides, it can be deduced that C6 is satisfied with equality for the optimal solution, i.e.,

$$\text{Tr}(W^*) + \text{Tr}(V^*) = 1. \quad (23)$$

We prove the above by contradiction. Suppose that C6 is satisfied with strict inequality for the optimal solution, i.e.,

$$\text{Tr}(W^*) + \text{Tr}(V^*) < 1.$$ Then, we construct a new feasible solution $\begin{pmatrix} A, B, c \end{pmatrix} = (\delta W^*, \delta V^*, \delta \xi^*)$ where $\delta > 1$ such that $\text{Tr}(W^*) + \text{Tr}(V^*) = 1$. It can be verified that the point $\begin{pmatrix} A, B, c \end{pmatrix}$ achieves a lower objective value in (22) than $\begin{pmatrix} W^* \ , \ V^* \ , \ \xi^* \end{pmatrix}$. Thus, $\begin{pmatrix} W^* \ , \ V^* \ , \ \xi^* \end{pmatrix}$ cannot be the optimal solution. As a result, (15) and (22) are equivalent.

The equivalence between transformed Problems 2 and 3 and their original problem formulations can be proved by following a similar approach as above.

APPENDIX II - PROOF OF PROPOSITION 2

The relaxed version of transformed Problem 3 is jointly convex with respect to the optimization variables and satisfies Slater’s constraint qualification. As a result, the KKT conditions are necessary and sufficient conditions [10] for the solution of the relaxed problem. In the following, we focus on the KKT conditions related to the optimal W^*:

$$Y^* = \mathbf{I}_{N_1}(1 + \psi^*) + \sum_{k=1}^{K-1} G_k(\theta_k^* - \kappa_1^*) - \beta^* \mathbf{H}. \quad (25)$$

Here, $Y^* W^* = 0$ is the complementary slackness condition and is satisfied when the columns of W^* lay in the null space of Y^*. Therefore, if $W^* \neq 0$ and $\text{Rank}(Y^*) = N_1 - 1$, then the optimal W^* must be a rank-one matrix. From the proof of Proposition 1, we know that C6 has to be satisfied with equality; i.e., we have $\mu^* > 0$. Besides, $(\theta_k^* \geq \kappa_1^*)$ holds by assumption. Thus, matrix $\mathbf{I}_{N_1}(\mu^* + \alpha^*) + \sum_{k=1}^{K-1} G_k(\theta_k^* - \kappa_1^*)$ is a positive definite matrix with rank N_1. From (25), we have

$$\text{Rank}(Y^*) + \text{Rank}(Y^* + \beta^* \mathbf{H}) = \text{Rank} \left(\mathbf{I}_{N_1}(\mu^* + \alpha^*) + \sum_{k=1}^{K-1} G_k(\theta_k^* - \kappa_1^*) \right) = N_1 \quad (26)$$

Furthermore, $W^* \neq 0$ is required to satisfy the minimum SINR requirement of the desired receiver in Γ_{req} when $\Gamma_{req} > 0$. As a result, $\text{Rank}(Y^*) = N_1 - 1$ and $\text{Rank}(W^*) = 1$.

Now, we focus on the relaxed SDP version of transformed Problem 2. By putting $\lambda_2 = 1$ and $\lambda_1 = 0$ in the relaxed SDP version of transformed Problem 3, it is equivalent to the relaxed SDP version of transformed Problem 2. Besides, it can be shown that $\kappa_1 = 0$ and thus $\theta_k^* - \kappa_1^* \geq 0$ always holds. Therefore, the relaxed SDP version of transformed Problem 2 has always a rank-one solution.

Next, we consider the relaxed SDP version of transformed Problem 1. By setting $\lambda_1 = 1$ and $\lambda_2 = 0$ in the relaxed SDP version of transformed Problem 3, it is equivalent to the relaxed SDP version of transformed Problem 1 and the result follows immediately. We note that $\kappa_1 = 1$ holds for transforming Problem 3 back to Problem 1.

REFERENCES

[1] D. Ng, E. Lo, and R. Scholer, “Energy-Efficient Resource Allocation in OFDMA Systems with Hybrid Energy Harvesting Base Station,” *IEEE Trans. Wireless Commun.*, vol. PP, pp. 1–16, 2013.

[2] J. Yang and S. Ulukus, “Optimal Packet Scheduling in an Energy Harvesting Communication System,” *IEEE Trans. Commun.*, vol. 60, pp. 220–230, Jan. 2012.

[3] L. Varshney, “Transporting Information and Energy Simultaneously,” in *Proc. IEEE Intern. Symp. on Inf. Theory*, Jul. 2008, pp. 1612–1616.

[4] P. Grover and A. Sahai, “Shannon Meets Tesla: Wireless Information and Power Transfer,” in *Proc. IEEE Intern. Symp. on Inf. Theory*, Jun. 2010, pp. 2363–2367.

[5] X. Zhou, R. Zhang, and C. K. Ho, “Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff,” in *Proc. IEEE Global Telecommun. Conf.*, Dec. 2012.

[6] X. Chen and L. Lei, “Energy-Efficient Optimization for Physical Layer Security in Multi-Antenna Downlink Networks with QoS Guarantee,” *IEEE Commun. Lett.*, vol. 17, pp. 637–640, Apr. 2013.

[7] D. W. K. Ng, E. S. Lo, and R. Schober, “Secure Resource Allocation and Scheduling for OFDMA Decode-and-Forward Relay Networks,” *IEEE Trans. Wireless Commun.*, vol. 10, pp. 3528–3540, Oct. 2011.

[8] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “QoS-Based Transmit Beamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-Aided Approach,” *IEEE Trans. Signal Process.*, vol. 59, pp. 1202–1216, Mar. 2011.

[9] R. T. Marler and J. S. Arora, “Survey of Multi-objective Optimization Methods for Engineering,” *Structural and Multidisciplinary Optimization*, vol. 26, pp. 369–395, Apr. 2004.

[10] S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.

[11] J. F. Sturm, “Using SeDuMi 1.02, A MATLAB Toolbox for Optimization over Symmetric Cones,” *Optimiz. Methods and Software*, vol. 11-12, pp. 625–653, Sep. 1999.

[12] H.-S. Chen and W. Gao, “MAC and PHY Proposal for 802.11af,” Tech. Rep., Feb., 2013.

[13] IEEE 802.11, *IEEE 802.11 Wireless LANs, 4th Channel Models*, IEEE 802.11-03/940r4, Tech. Rep., May 2004.

[14] A. Charnes and W. W. Cooper, “Programming with Linear Fractional Functions,” *Naval Res. Logist. Quart.*, vol. 9, pp. 181–186, Apr. 1962.