Large polaron evidence in the ultrafast THz response of Lead-Halide Perovskites

Eugenio Cinquanta¹,²,*, Daniele Meggiolaro³,⁴, Silvia G. Motti⁵, Marina Gandini⁵, Marcelo Alcocer¹, Quinten A. Akkerman⁶,⁷, Caterina Vozzi², Liberato Manna⁶, Annamaria Petrozza², Filippo De Angelis³,⁴, and Salvatore Stagira¹,²

¹) Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; 2) CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; 3) Computational Laboratory for Hybrid/Organic Photovoltaics, CNR–IMS, Via Elce di Sotto 8, I-06123 Perugia, Italy; 4) D3-CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; 5) Center for Nano Science and Technology, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy; 6) Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; 7) Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso, 31, 16146, Genova, Italy; *Corresponding author: eugenioluigi.cinquanta@polimi.it

Abstract. We unveil the large polaron fingerprints in the transient THz dielectric response of lead-halide perovskites. We clarify the mechanism underlying the physics of charge transport of full-inorganic lead-halide perovskites by combining ultrafast Thz spectroscopy with DFT calculations.

1 Introduction

Hybrid Organic-Inorganic Perovskites (HOIPs) represent a promising platform for emerging optoelectronics devices due to their exceptional physical properties. Although their low carrier mobility and the presence of static and dynamic disorder, HOIPs behave as defect-free semiconductors with long carrier lifetime and high diffusion length, hence promoting them as reliable candidates, for instance, for high efficiency solar cells [1].

Intriguingly, the formation of large polaron has been proposed as a possible explanation for the exceptional HOIPs dielectric response combined to their peculiar structure composed by a lead halide cage (PbX₃) and a disordered inorganic/organic cation sublattice (A⁺) [2, 3]. To explain the relative moderate mobility of this class of materials, Zhu and Podzorov have proposed the presence of the large polarons formed due to the dielectric electron-phonon coupling combined with the light effective masses for bare carriers [4, 5]. Recently, Miyata et al. have provided a direct time domain view of phonon dynamics in the CH₃NH₃PbBr₃ and CsPbBr₃ single crystals using time-resolved optical Kerr effect.
spectroscopy and demonstrated a phonon dressing of the photo-generated species in the fs-ps time regime [6].

To unveil the presence of large polarons, we studied all-inorganic CsPbBr₃ nanocrystals by means of Optical-Pump-THz probe spectroscopy that is capable to investigate excitations in the few meV range such as the carrier-lattice coupling.

2 Results and Discussion

![Normalized ΔE/E signal at 160, 80 and 20 µJ/cm² (green diamonds, blue squares and black circle respectively) together with the biexponential curves (continuous red line).](https://doi.org/10.1051/econf/201920504019)

Figure 1

We excite the sample with a 400-nm, 25-fs 1-kHz laser pulses focused on the sample with a spot size diameter of 3 mm at different fluences, from 10 to 160 µJ/cm².

Figure 1 reports the transient electric field \(\Delta E(t_P,0) \) at 20, 80 and 160 µJ/cm² respectively, where \(\Delta E(t_P,0) \) is the change induced in the transmitted THz field detected at different pump-probe delays \(t_P \) in correspondence of the peak of the THz waveform. The dynamics probed up to 200 ps show an initial fast decay with a time constant of about \(\tau_2=15 \) ps and a slower one of hundreds of ps. The slow component falls well in the band-to-band carrier recombination regime as probed by photoluminescence measurements and often reported in literature [7]. The fast decay component becomes dominant when the initial carrier density \(N_0 \) is larger than \(0.5\cdot10^{18}/\text{cm}^3 \). At these densities, traps states are saturated and many-body processes start to play a role, therefore we assign this fast dynamic to the increase of fast free carrier recombination and three-body processes.

To more deeply investigate the carriers transport mechanism in CsPbBr₃ NCs, we studied the frequency-resolved optical conductivity. Transient spectra at different pump probe delays reveal resonances that reflect the presence of electron-phonon coupling following the photoexcitation. Remarkably, the transient conductivity reported in Figure 2a) shows three main peaks in the 0.4-1.9 THz (15-60 cm⁻¹) region that bare almost the whole intensity at 3ps. Theory predicts that the formation of a large polaron is expected for CsPbBr₃ NCs after the carrier’s photo-injection due to the coupling with lattice IR modes. The largest intensity is predicted for four Pb-Br-Pb bending modes at 0.75, 0.84, 1.35 and 1.88 Thz [6] that finely matches the experimental features (0.81, 1.26 and 1.74 THz). Figure 2b) shows the real part of the Lorentzian curves used for the fitting procedure. Remarkably, a redshift affects the curves at 200 ps. We rationalize this observation in terms of lattice shrinking and expansion: once the photoexcitation creates a hole in the top of the valence band, which is a Pb-Br anti-bonding, then the Pb-Br bonds shorten and the lattice shrinks with the resulting phonons blueshift; as the injected charge starts to relax, then the lattice can expand again with the consequent stretch of the Pb-Br bonds and phonons softening.
Figure 2 a) Drude-Lorentz fit of the optical conductivity at 3 (filled blue triangles and black down triangles) and at 200 ps (empty blue triangles and black down triangles); b) real part of the Lorentzian curves at 3 and 200 ps (blue and green lines respectively). Red arrows indicate the redshift of each component.

3 Conclusions

By combining Ultrafast THz spectroscopy with density-functional theory calculations we demonstrated the presence of large polaron in all-inorganic lead-halide Perovskites. We observed the fingerprints of the coupling between the photoinjected charge and the bending modes of the deformed PbBr lattice in the pump-induced conductivity spectra. Our findings agree with the recent results present in the literature [6] and explain the peculiar dielectric response that make lead halide perovskites the more intriguing playground for beyond the-state-of-the-art optoelectronics devices.

References

1. T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1, 15007 (2016).
2. C. La-o-vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J.-X Zhu, R. A. Marcus, M.-E. Michel-Beyerle, E. E. M. Chia, J. Phys. Chem. Lett. 7, 1-6 (2016).
3. A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, L. M. Herz, Nature Commun. 7, 11755 (2016).
4. X.-Y. Zhu and V. Podzorov, J. Phys. Chem. Lett. 6, 47584761 (2015).
5. J. M. Frost, Calculating polaron mobility in halide perovskites, Phys. Rev. B 96, 195202, (2017).
6. K. Miyata, D. Meggiolaro, M. Tuan Trinh, P. P. Joshi, E. Mosconi, S. C. Jones, F. De Angelis, X.-Y Zhu, Sci. Adv. 3, e1701217 (2017).
7. Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G., Bertoni, J. M. Ball, M. Prato, A. Petrozza, L. Manna, Nat. Energy 2, 16194 (2016).