Effect of Some Overlay Welding Regime With Longitudinal Magnetic Field on Hardness, Phase Composition And Welded Layer Wear By Arc Method With Flux Metal Wire

D G Nosov, V V Peremitko, M H Barashkin

Dneprodzerzhinsk State Technical University
51918, Dneprodzerzhinsk, Ukraine, Str. Dneprostrovskaya 2, tel. (+380569) 55-18-91
e-mail: ndweld@rambler.ru

Abstract. The paper defines the range of overlay welding current, frequencies and induction of a longitudinal magnetic field that enhance the wear resistance of welded layer adding the flux. The conditions of their mutual influence on the process of structure formation are stated as well as the mathematical models linking the overlay welding current, frequency and induction of a longitudinal magnetic field with hardness, wear resistance and phase composition of the welded layer, the use of which will allow to determine the welding modes to provide the necessary properties of the weld metal.

1. Introduction
The transition to automated production processes in engineering is associated with an increase in the number of interconnected machines and units operating in continuous movement, an unplanned stop of which leads to an enormous production loss [1]. During their operation the parts and components are subjected to considerable dynamic, heat, static, vibratory, and other loads, which are influenced by changing their geometrical dimensions. Therefore, the problem of increasing the wear resistance is one of the most important in engineering [2]. Restoration of the disrupted parts is carried out by means of welding. Thus the improvement of already known welding surfacing methods to provide the wear-resistance increase is very important.

One of the promising methods is weld facing with the solid cross-section under the flux layer using a longitudinal magnetic field [3,4]. This method allows to increase the weld facing productivity, to influence the geometric dimensions, the phase composition, hardness and wear resistance.

The aim is to develop mathematical models and to determine the hardness and wear resistance of the phase composition of the welded layers according to the weld facing regimes with the effect of a longitudinal magnetic field.

2. Problem setting
The object of the research is the process of arc welding surfacing adding flux with solid cross-section wire and the additional impact on the arc of an external electromagnetic field.

The subject of the research is the influence of welding surfacing parameters, frequency and induction of longitudinal magnetic field on the phase composition and properties of the welded layer.
The aim of this work is to study the joint effect of welding current (arc thermal power), induction and frequency of longitudinal magnetic field on hardness, wear resistance and phase composition of the welded layer adding flux.

3. Materials and methods
Experimental weldings were performed on carbon steel sheets St3sp GOST 380 (i.e. all-Union State Standard) adding flux AN-348A GOST 9087 with the impact of longitudinal magnetic field induction $B_z = 0…80$ mT, frequency ω 0 to 50 Hz, wire of solid cross-section of Sv-08G2S GOST 2264 with a diameter of 3 mm. An external magnetic field was generated by a special device, consisting of a solenoid coil and its power supply unit [5]. Welding equipment: unit set of UD-209 type, power supply – universal rectifier VDU-506 (i.e. Multi-operated Arc Rectifier-506). Additional equipment: analog teslametr, EM-5511 digital multimeter, testing wear machine MI-1M, laboratory analytical balances, stationary hardness tester, microscope. The wear was evaluated by the gravimetric method. Method of hardness measuring (Brinell hardness) was performed according to GOST 9012. When setting an experimental part of the research a non-linear planning on the matrix of non-composite plan of second order for three factors has been implemented. Experimental data processing were performed in the analytic STATISTICA system [6].

4. The results
In the research the following welding conditions have been imposed: $I_w = 460…480$ A; $U_d = 26 \pm 1$ B; rate of vapour deposition $\nu = 18$ m / h; direct current of reverse polarity. Metal thickness 10^{-2} m, diameter of the wire electrode 3×10^{-3} m.

Electrical stickout l_e, and the rate of welding surfacing ν weren’t changed. Such independent command variables were chosen: welding current I_n, and frequency induction B_z, frequency of longitudinal magnetic field ω. Hardness H, wear-resistance ε and structure determined by Macrosection.

Table 1 – Experimental record

Trial №	B_z, mT	ω, Hz	I_n, A	H, HB	ε, units	ferrit, %	perlite, %
1	+	+	0	147	1.36	75	25
2	+	–	0	166	1.80	65	35
3	–	+	0	133	1.18	62	38
4	–	–	0	138	1.24	63	37
5	0	0	0	176	1.91	65	35
6	+	0	+	190	2.04	70	30
7	+	0	–	176	2.11	72	28
8	–	0	+	146	1.28	63	37
9	–	0	–	143	1.26	62	38
10	0	0	0	174	1.88	60	40
11	0	+	+	162	1.72	65	35
12	0	+	–	160	1.68	66	34
13	0	–	+	166	2.04	71	29
14	0	–	–	164	2.02	72	28
15	0	0	0	174	1.88	65	35

According to the data obtained during the experiment (Table 1) in the analytic STATISTICA 6.0 system, three-dimensional graphs of dependencies for hardness and wear resistance were shown.

VII International Scientific Practical Conference “Innovative Technologies in Engineering” IOP Publishing
IOP Conf. Series: Materials Science and Engineering 142 (2016) 012006 doi:10.1088/1757-899X/142/1/012006

2
Figure 1 shows the dependency diagrams of the hardness of the welded layer H from the frequency ω and the induction B_z of the magnetic field. The area of maximum (170...180 HB) hardness data are formed when the magnetic field $B_z = 45...80$ mT and frequency $\omega = 5...35$ Hz.

Figure 2 shows a graph of the influence of the magnetic field and surfacing current on hardness of welded layers. As you can see, the dependency is complex, and the hardness of the weld beads gets maximum data (170...180 HB) under the magnetic field induction of $B_z = 45...80$ mT and a surfacing current of $I_n = 470...480$ A.

Figure 3 shows the effect of welding current and frequency of longitudinal magnetic field on hardness of welded layers. The dependency is nonlinear. Maximum hardness ($H = 170$ HB) is observed at welding surfacing with the influence of longitudinal magnetic field of $\omega = 15...30$ Hz frequency at a current surfacing $I_n = 460...465$ or $470...480$ A.

That is, to ensure the maximum hardness of weld metal we should use the following regimes: the magnetic field of $B_z = 45...80$ mT, the magnetic field frequency $\omega = 15...30$ Hz and welding current $I_n = 470...480$ A.

Figure 4 shows the effect of induction and frequency of longitudinal magnetic field on the durability of welded layers. It is evident that the increase of induction and frequency of longitudinal
magnetic field results in increase of the wear-resistance data. The area of maximum wear-resistance data of the weld bead is formed at the induction of longitudinal magnetic field \(B_z = 45 \ldots 75 \) mT, frequency \(\omega = 0 \ldots 25 \) Hz.

Figure 5 shows the wear resistance \(\varepsilon \) of welded layers from surfacing current \(I_n \) and the induction \(B_z \) of the magnetic field. As you can see, the dependency is complex and has two extreme zones. So, when surfacing with the influence of longitudinal magnetic field the durability of beads has maxima at the following modes: the magnetic field \(B_z = 45 \ldots 75 \) mT, welding current \(I_n = 460 \ldots 465 \) A; the magnetic field of \(B_z = 45 \ldots 75 \) mT, surfacing current \(I_n = 475 \ldots 480 \) A.

Figure 6 shows the effect of welding current and frequency of the magnetic field on the wear resistance. Wear resistance of welded layers obtains the maximum figures under the following conditions: frequency of the magnetic field \(\omega = 0 \ldots 20 \) Hz and the current surfacing \(I_n = 460 \ldots 465 \) A; frequency magnetic field \(\omega = 0 \ldots 20 \) Hz and welding current \(I_n = 475 \ldots 480 \) A.

That is, to ensure maximum wear resistance of the welded metal figures we should use the following mode: the magnetic field of \(B_z = 45 \ldots 75 \) mT, the magnetic field frequency \(\omega = 0 \ldots 20 \) Hz and welding current \(I_n = 460 \ldots 465 \) or \(475 \ldots 480 \) A.

Thus, for maximum hardness and wear resistance figures of the welded metal, we should use the following mode: the magnetic field of \(B_z = 45 \ldots 75 \) mT, the magnetic field frequency \(\omega = 15 \ldots 20 \) Hz and field current surfacing \(I_n = 475 \ldots 480 \) A.

The regression method was used to develop mathematical models for predicting the hardness and wear resistance of the welded metal. The equation of response surface, reflecting any monitored parameter \(y \) can be expressed as \(y = f(B_z, \omega, I_n) \), where \(v1 \) represents \(B_2 \), \(v_2 = \omega \), \(v_3 = I_n \), and the selected dependency is a response surface of the second order:

\[
y = b_0 + b_1 \cdot v_1 + b_2 \cdot v_2 + b_3 \cdot v_2 + b_4 \cdot v_3 + b_5 \cdot v_1 \cdot v_2 + b_6 \cdot v_1 \cdot v_3 + b_7 \cdot v_2 \cdot v_3 + b_8 \cdot v_1^2 + b_9 \cdot v_2^2 + b_{10} \cdot v_3^2
\] (1)

The analysis of the experimental results in the calculation of the regression coefficients which were performed using STATISTICA 6.0 software package. The regression coefficients are given in Table. 2.
Table 3 – Coefficients of the regression equation (1) for the revocation of H and ε

Coefficients	H	ε
b_1	6858.7770	279.1011
b_2	2.096000	0.054854
b_3	1.160345	0.000762
b_4	-28.611500	-1.184810
b_5	-0.003570	0.000096
b_6	0.007014	-0.000057
b_7	0	0.000020
b_8	-0.009068	-0.000223
b_9	-0.023533	-0.000242
b_{10}	0.030417	0.001262

The obtained equations for determining the hardness and wear resistance indicators of the welded metal depending on the induction of the magnetic field and the frequency of welding current:

\[
H = 6858.777 - 2.096 \cdot B_z + 1.160345 \cdot \omega - 28.6115 \cdot I_n - 3.57 \cdot 10^{-3} \cdot B_z \cdot \omega +
+ 70.14 \cdot 10^{-4} \cdot B_z \cdot I_n + 90.68 \cdot 10^{-4} \cdot B_z^2 - 23.533 \cdot 10^{-3} \cdot \omega^2 + 30.417 \cdot 10^{-3} \cdot I_n^2
\]

(2)

\[
\varepsilon = 279.1011 + 54.854 \cdot 10^{-3} \cdot B_z + 7.62 \cdot 10^{-3} \cdot \omega - 1.18481 \cdot I_n - 9.6 \cdot 10^{-5} \cdot B_z \cdot \omega -
-5.7 \cdot 10^{-5} \cdot B_z \cdot I_n + 2.0 \cdot 10^{-5} \cdot \omega \cdot I_n - 22.3 \cdot 10^{-5} \cdot B_z^2 - 24.2 \cdot 10^{-5} \cdot \omega^2 + 12.62 \cdot 10^{-4} \cdot I_n^2
\]

(3)

According to (Table 1) for the response function $y = f(B_z, \omega, I_n)$ phase composition (%): Ferrite (F) and pearlite (P), the following regression coefficients were obtained (1):

Table 4 - Coefficients of the regression equation (1) for the response function F and P

Coefficients	F	P
b_1	6306.005	-6206.01
b_2	0.893602	-0.893602
b_3	-0.315101	0.315101
b_4	-26.59460	26.59458
b_5	0.002818	-0.002818
b_6	0	0
b_7	0	0
b_8	0.00341	0.000341
b_9	0.003373	0.003733
b_{10}	0.028333	-0.028333

The equations are calculated to determine the effect of induction, magnetic field frequency and welding current on the phase composition:

\[
F = 6306.005 + 0.8936 \cdot B_z - 0.3151 \cdot \omega - 26.5946 \cdot I_n + 281.8 \cdot 10^{-5} \cdot B_z \cdot \omega -
-189.5 \cdot 10^{-5} \cdot B_z \cdot I_n + 34.1 \cdot 10^{-5} \cdot B_z^2 + 373.3 \cdot 10^{-5} \cdot \omega^2 + 283.3 \cdot 10^{-4} \cdot I_n^2
\]

(4)

\[
P = -6206.01 - 0.8936 \cdot B_z + 0.3151 \cdot \omega + 26.59458 \cdot I_n - 281.8 \cdot 10^{-5} \cdot B_z \cdot \omega +
+189.5 \cdot 10^{-5} \cdot B_z \cdot I_n - 34.1 \cdot 10^{-5} \cdot B_z^2 - 373.3 \cdot 10^{-5} \cdot \omega^2 - 283.3 \cdot 10^{-4} \cdot I_n^2
\]

(5)

Analysis of equations (4,5) showed that with increasing frequency and induction of the magnetic field, an increase in amount of ferrite at the magnetic induction data $B_z = 70...80$ mT, the frequencies of the magnetic field of $\omega = 35...50$ Hz F with ferrite index up to 70...72% is also observed. With the reduction of the induction magnetic field within $B_z = 0...25$ mT at the welding current within $I_n = 460...480$ A, we observe the increase in the amount of perlite.

Using the equations 4 and 5 we can predict the phase composition of the welded metal.

One of the factors that increases the wear resistance is the reduction of the welded metal grain. To determine the effect of longitudinal magnetic field on the grain size we estimate the grain size according to GOST 5639 for microsections.

Fig. 7 shows the scale distribution of welded samples of grain (welding current $I_n = 480$ A) without external influence of a magnetic field (a); $B_z = 40$ mT, $\omega = 25$ Hz (b); $B_z = 80$ mT, $\omega = 25$ Hz (c); for the induction of $B_z = 40$ mT, frequency $\omega = 50$ Hz, welding current $I_n = 460$ A (d).
5. Conclusions

In the analysis of experimental data we have got the nonlinear mathematical model of induction, magnetic field frequency and welding current dependence on hardness and wear resistance while surfacing that allow us to determine the effect of induction, magnetic field frequency and welding current on hardness and wear resistance of welded layers.

It was determined that for maximum wear resistance of the welded metal layer, we should use the following regimes: the magnetic field of \(B_z = 45...75 \) mT, the magnetic field frequency \(\omega = 15...20 \) Hz and welding current \(I_n = 475...480 \) A.

References

[1] Gas-shielded welding of steels with consumable electrode. Engineering and technology of the future // Monograph / A.G. Potapievskiy, Yu.N. Saraev, D.A. Chinakhov; Yurga Institute of Technology. – Tomsk: Tomsk polytechnic University Press, 2012. – 208 p.

[2] Nosov D.G., Razmyshlyaev A.D. effectiveness of application of combined magnetic fields in submerged arc welding / D.G.Nosov, A.D.Razmyshlyaev // The Paton Welding Jornal / № 4, 2009 (April), pp 16-20.

[3] Nosov D.G., Maltsev V.V. The influence of magnetic fields by a melting rate of wire for arc surfacing under flux. Applied Mechanics and Materials, 2013, no 379, pp. 178-182.

[4] Nosov D.G., Peremitko V.V. Influence of Frequency and Induction of Longitudinal Magnetic Field on The Electrode Metal Loss and its Spattering During MAG-Welding / D.G.Nosov, V.V.Peremitko // IOP Conf. Series: Materials Science and Engineering 91 (2015) 012011. – p 1–8.

[5] Nosov D.G. Power source of electromagnetic system for arc welding using external magnetic fields control / D.G.Nosov // Welder. -2010. -№ 4. - pp.18-19.

[6] http://www.statsoft.ru/home/textbook/default.htm