Enhanced Impact of Cholesterol Absorption Marker on New Atherosclerotic Lesion Progression After Coronary Intervention During Statin Therapy

Kenta Mori¹, Tatsuro Ishida¹, Shigeyasu Tsuda¹, Toshihiko Oshita¹, Masakazu Shinohara¹, Tetsuya Hara¹, Yasuhiro Irino², Ryuji Toh² and Ken-ichi Hirata¹

¹Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
²Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan

Aim: Clinical trials suggest that residual risks remain for coronary artery disease (CAD) during low-density lipoprotein cholesterol (LDL-C) lowering therapy. We aimed to investigate the role of exogenous lipids in the prognosis of CAD after percutaneous coronary intervention (PCI).

Methods: A total of 145 patients with CAD, who underwent elective PCI, and 82 non-CAD (control) patients were enrolled in this study. CAD patients underwent follow-up coronary angiography 6–9 months after PCI, and were classified into three groups: 1) patients who showed in-stent restenosis (ISR) in the original stented segment, 2) patients with other non-target coronary atherosclerotic lesions (de novo), and 3) patients with neither ISR nor a de novo lesion. Biochemical analyses were performed on fasting serum samples at the time of follow-up coronary angiography.

Results: Despite the controlled serum LDL-C levels, CAD patients with statin showed elevated cholesterol absorption marker campesterol/total cholesterol (TC), synthesis marker lathosterol/TC, campesterol/lathosterol ratio, and apolipoprotein B48 (apoB48) concentration compared with non-CAD patients. The high campesterol/TC, campesterol/lathosterol ratio, and apoB48 concentration were associated with de novo lesion progression after PCI. In stepwise multivariate logistic regression analysis, campesterol/TC and apoB48 concentrations were independent risk factors for de novo lesion progression in statin-treated CAD patients after PCI.

Conclusion: The increase of cholesterol absorption marker and apoB48 concentration may lead to the progression of de novo lesions, and these markers may represent a residual risk during statin treatment after PCI.

See editorial vol. 24: 120-122

Key words: Coronary artery disease, Cholesterol absorption, Exogenous cholesterol, Restenosis

Address for correspondence: Tatsuro Ishida, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
E-mail: ishida@med.kobe-u.ac.jp
Received: August 19, 2015
Accepted for publication: June 26, 2016
mately 30% of total cholesterol, and the remaining 70% is synthesized in the body, while the liver predominantly regulates the circulating cholesterol level. In catabolism, cholesterol is excreted into the bile, then re-absorbed in the intestine or excreted into feces. Statin is a strong inhibitor of cholesterol synthesis, and, as a compensatory action, cholesterol absorption is increased; such an effect seems to depend on the LDL-lowering potency of the statin. Cholesterol absorption also serves as a regulator of the serum LDL-C level. It has been reported that cholesterol absorption is associated with recurrent cardiovascular events, and the beneficial effect of statin was attenuated in patients with increased cholesterol absorption. In a recent study, the addition of ezetimibe, a selective inhibitor of cholesterol absorption, to statin, resulted in further reduction of cardiovascular events in patients with acute coronary syndrome. Moreover, impaired cholesterol homeostasis, as expressed by low synthesis and high absorption marker concentrations, is a predictor of CAD as shown in the Framingham study. Thus, the change in the relative balance of circulation cholesterol may affect the prognosis of CAD, irrespective of plasma LDL-C levels. Although it is difficult to discriminate between exogenous and endogenous cholesterol, measurement of serum markers for cholesterol absorption (campesterol or sitosterol) and synthesis (lathosterol or desmosterol) has enabled estimation of the relative predominance of circulation exogenous and endogenous cholesterol. On the other hand, it has recently become possible to measure apolipoprotein B48 (apoB48) concentration, which is present only in intestinally derived exogenous lipoproteins, such as chylomicron and chylomicron remnants.

Aim

We aimed to investigate whether the serum markers for exogenous lipids affect and predict CAD progression after percutaneous coronary intervention (PCI).

Methods

Patients

This study was performed in accordance with the ethical principles of the Declaration of Helsinki and the Ethical Guidelines for Clinical Research, enforced by the Ministry of Health, Labour and Welfare of Japan, from July 31, 2008. The protocol was approved by the Institutional Review Board of Kobe University Graduate School of Medicine, Japan. All patients gave informed written consent before enrolment.

From January 2010 to May 2011, a total of 145 consecutive patients with CAD, who underwent elective PCI at Kobe University Hospital and satisfied inclusion criteria, were enrolled in this study. Within 6–9 months after the PCI, the CAD patients underwent coronary angiography (CAG) for the onset of ischemic symptoms or as a follow-up re-examination. In the CAD group, 103 patients were taking statin (CAD/statin+); 42 CAD patients were not taking statin (CAD/statin−). Patients who had arrhythmia, valvular disease, or cardiomyopathy, but not CAD were enrolled in the control group (non-CAD, n = 82). In the non-CAD group, 40 patients were receiving statin (non-CAD/statin+) and 42 patients were not (non-CAD/statin−).

In addition, CAD patients were classified by means of follow-up coronary angiography, according to the following definition: patients who showed restenosis in the original stented segment (in-stent restenosis, ISR group); patients with occurrence of other non-target coronary atherosclerotic lesions (de novo lesion group); and patients with neither ISR nor de novo lesion (no lesion group). ISR and de novo lesions were defined as displaying luminal stenosis ≥75% and demonstrating ischemia in the perfusion area of narrowed coronary by stress myocardial scintigram. CAD patients, who had been treated with a bare-metal stent or a drug-eluting stent, received dual antiplatelet therapy with aspirin and clopidogrel or ticlopidine. The diagnosis of hypertension (HT), diabetes mellitus (DM), dyslipidemia (DL), and metabolic syndrome (MetS) was defined as described previously.

Exclusion criteria were emergency admission, heart failure (New York Heart Association functional class 4), cancer in the past 5 years, pulmonary hypertension, serum triglyceride level ≥400 mg/dL, kidney failure (serum creatinine concentration ≥2.0 mg/dL or hemodialysis), and active inflammation (serum C-reactive protein concentration >1 mg/dL).

Biochemical Analyses

Serum samples were collected after overnight fast on admission for follow-up CAG. There was no difference in the time period from the prior PCI to the blood sampling among the groups. The samples were stored at −80°C until use; conventional biochemical analyses were performed using standard techniques. Serum concentration of remnant-like particle cholesterol (RLP-C), apoB48, and estimated glomerular filtration rate (eGFR) were analyzed as described previously. Serum levels of campesterol and lathosterol were measured by SRL, Inc. (Tokyo, Japan).
Table 1. Characteristics of the patients with or without CAD and statin treatment

	Non-CAD (n=42)	CAD (n=42)	Statin (-)	Non-CAD (n=40)	CAD (n=103)	Statin (+)	p value
Male, n (%)	27 (64.3)	40 (95.2)	<0.001	15 (37.5)	75 (72.8)	<0.001	
Age (years)	59.0 ± 12.4	69.1 ± 10.3	<0.001	67.0 ± 7.3	67.6 ± 10.5	0.658	
BMI (kg/m²)	22.7 ± 2.7	24.1 ± 4.3	0.069	24.5 ± 3.6	24.5 ± 3.5	0.875	
Metabolic syndrome, n (%)	1 (2.4)	17 (40.5)	<0.001	19 (47.5)	58 (56.3)	0.319	
Hypertension, n (%)	19 (45.2)	37 (88.1)	<0.001	23 (47.5)	92 (89.3)	<0.001	
Diabetes Mellitus, n (%)	0	19 (45.2)	<0.001	11 (27.5)	50 (48.5)	0.011	
Dyslipidemia, n (%)	5 (11.9)	21 (50.0)	<0.001	40 (100)	103 (100)	-	
Current smoking, n (%)	8 (19.1)	9 (21.4)	0.786	4 (10.0)	23 (22.3)	0.114	
TC (mg/dL)	195.6 ± 29.1	175.4 ± 34.8	0.005	179.2 ± 28.0	160.7 ± 33.0	0.001	
HDL-C (mg/dL)	60.6 ± 20.5	46.9 ± 10.3	<0.001	57.4 ± 14.8	48.6 ± 14.5	0.002	
LDL-C (mg/dL)	115.2 ± 24.3	106.5 ± 30.1	0.146	99.7 ± 22.6	90.5 ± 24.0	0.045	
Triglycerides (mg/dL)	108.1 ± 50.9	128.1 ± 65.2	0.123	122.1 ± 52.4	129.3 ± 59.6	0.425	
Campesterol/TC (µg/mg)	2.83 ± 0.97	2.89 ± 0.94	0.754	2.44 ± 1.42	3.48 ± 1.25	<0.001	
Lathosterol/TC (µg/mg)	1.45 ± 0.53	1.28 ± 0.87	0.626	0.44 ± 0.16	0.61 ± 0.33	0.013	
Campesterol/Lathosterol	2.24 ± 1.18	2.74 ± 2.63	0.032	6.49 ± 4.87	7.64 ± 5.31	0.044	
RLP-C (mg/L)	65 ± 4.1	7.5 ± 4.8	0.335	5.9 ± 3.6	6.5 ± 4.0	0.290	
Apolipoprotein B (mg/dL)	81.8 ± 15.4	78.9 ± 19.3	0.449	76.2 ± 13.4	71.4 ± 15.6	0.096	
Apolipoprotein B48 (µg/mL)	4.5 ± 2.2	5.4 ± 3.6	0.028	4.1 ± 2.4	4.6 ± 2.6	0.042	
FPG (mg/dL)	94.4 ± 13.8	102.9 ± 31.0	0.111	97.1 ± 29.6	105.0 ± 26.0	0.190	
eGFR (mL/min/1.73 m²)	72.2 ± 18.1	66.1 ± 15.7	0.098	70.0 ± 16.5	61.9 ± 17.9	0.011	
Lipid lowering drug, n (%)	0	3 (7.1)	0.078	40 (100)	103 (100)	-	
Statin, n (%)	0	0	-	40 (100)	103 (100)	-	
Fibrate, n (%)	0	0	-	1 (2.5)	0	<0.001	
EPA, n (%)	0	3 (7.1)	0.078	1 (2.5)	6 (5.8)	0.298	
Ezetimibe, n (%)	0	0	-	1 (2.5)	1 (1.0)	0.435	

Values (mean ± SD) or numbers (% in parentheses) are shown. BMI, body mass index; CAD, coronary artery disease; eGFR, estimated glomerular filtration rate; EPA, eicosapentaenoic acid; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; RLP-C, remnant-like particle cholesterol; TC, total cholesterol. P-values were calculated using chi-square test for categorical values and t-test unpaired for continuous variables.

Statistical Analysis

Values are expressed as mean ± SD or frequencies (%). Variables (triglycerides, RLP-C, apoB, apoB48 and fasting plasma glucose) with skewed distribution were normalized by natural logarithmic transformation and were analyzed as follows: t-test unpaired, Spearman test, and one-way ANOVA were used to compare continuous variables. Chi-square test was used to compare categorical values. Stepwise multivariate logistic regression analysis was used to determine the best independent predictor of coronary risk in patients with de novo lesion progression compared with those with ISR or no lesions, with the p value-to-enter set at 0.10. All statistical analyses were performed using Stata 13.1 software (Stata, Texas, USA). p < 0.05 was considered statistically significant. We adjusted significance levels by Bonferroni correction in multiple comparison tests.

Results

Controlled Serum Lipid Profile but Enhanced Cholesterol Absorption in CAD/Statin+ Patients

Baseline characteristics and lipid profiles in terms of CAD and statin use are shown in Table 1. The CAD groups, with or without statin use, showed a high prevalence of HT and DM compared with the non-CAD groups. The CAD patients were taking intensive LDL-lowering therapy for secondary prevention as recommended. As a result, the CAD/statin+ patients had significantly lower total cholesterol (TC) and LDL-C than the non-CAD/statin+ patients. However, the HDL-C level was lower and apoB48 concentration was higher in CAD patients than in
Fig. 1. Cholesterol absorption and synthesis markers in CAD patients with or without statin

During statin therapy, compared with the non-CAD patients, cholesterol absorption marker (campesterol/TC, a) was significantly increased in CAD patients. Cholesterol synthesis marker (lathosterol/TC, b) was decreased in the patients with statin therapy compared with the patients without statin, whereas in the statin (+) group, it was still higher in patients with CAD than in those without CAD. The campesterol/lathosterol ratio (c) was higher in patients with CAD than in corresponding patients without CAD, with and without statin therapy. CAD, coronary artery disease and TC, total cholesterol. \(p \) values were calculated using \(t \)-test unpaired.
Table 2. Patient characteristics of statin-treated CAD patients after PCI by lesion prognosis

	No lesion (n=70)	ISR (n=15)	De novo (n=18)	p value
Male, n (%)	50 (71.4)	12 (80.0)	13 (72.2)	0.794
Age (years)	65.3±10.7	65.3±11.0	65.4±9.4	0.771
BMI (kg/m²)	24.1±3.6	25.3±2.9	25.1±3.5	0.610
Metabolic syndrome, n (%)	38 (54.3)	9 (60.0)	11 (61.1)	0.832
Hypertension, n (%)	64 (91.4)	14 (93.3)	14 (77.8)	0.213
Diabetes Mellitus, n (%)	33 (47.1)	7 (46.7)	10 (55.6)	0.806
Dyslipidemia, n (%)	70 (100)	15 (100)	18 (100)	-
Current smoking, n (%)	19 (27.1)	2 (13.3)	2 (11.1)	0.230
TC (mg/dL)	156.4±32.0	163.3±27.5	175.3±38.2	0.987
HDL-C (mg/dL)	47.5±12.9	50.7±19.9	51.2±15.7	0.564
LDL-C (mg/dL)	87.0±23.1	91.2±15.2	103.6±29.4	0.831
Triglycerides (mg/dL)	128.1±62.7	139.5±67.2	125.8±39.2	0.186
Campesterol/TC (µg/mg)	3.11±0.92	3.08±0.81	5.21±1.24**	<0.001
Lathosterol/TC (µg/mg)	0.60±0.34	0.68±0.23	0.58±0.35	0.192
Campesterol/lathosterol	6.85±3.88	5.25±2.81	12.73±8.14**	<0.001
RLP-C (mg/dL)	6.2±3.8	6.8±2.8	7.2±3.8	0.120
Apolipoprotein B (mg/dL)	70±15.6	71.3±10.0	77.9±18.3	0.077
Apolipoprotein B48 (µg/mL)	4.2±2.3	4.4±1.6	5.0±2.6**	0.034
FPG (mg/dL)	104.1±26.4	106.1±17.1	107.6±29.2	0.121
eGFR (mL/min/1.73 m²)	59.0±15.9	71.3±19.4	65.8±21.4	0.222
Lipid-lowering drug, n (%)	70 (100)	15 (100)	18 (100)	-
Fibrate, n (%)	0	0	0	-
EPA, n (%)	4 (5.7)	2 (13.3)	0	0.265
Ezetimibe, n (%)	1 (1.4)	0	0	0.788

Values (mean±SD) or numbers (% in parentheses) are shown. ISR, in-stent restenosis; de novo, de novo lesion progression at the non-percutaneous coronary intervention site; no lesion, patients with neither ISR nor de novo lesion on the follow-up coronary angiography. Other abbreviations as in Table 1. P-values were calculated using chi-square test for categorical values and one-way ANOVA for continuous variables. We adjusted significance levels by Bonferroni correction in multiple comparison tests.

Based on analysis normalized by logarithmic transformation.

*p<0.05 as compared to the no lesion group. **p<0.05 as compared to the ISR group.

non-CAD patients with or without statin treatment. There were no differences in triglycerides and RLP-C between these groups, with or without statin.

As shown in Fig. 1 and Table 1, the cholesterol absorption marker (campesterol/TC) in the CAD/statin+ patients was significantly higher than in the non-CAD/statin+ (Fig. 1a, right panel), while the level was similar in patients without statin (Fig. 1a, left panel). Cholesterol synthesis marker (lathosterol/TC) in patients receiving statin therapy was markedly low compared with that in patients not receiving statin (statin+ group: 0.56±0.31 µg/mg vs. statin- group: 1.41±0.72 µg/mg, p<0.001) (Fig. 1b). However, lathosterol/TC in CAD/statin+ was still higher than that in non-CAD/statin+, despite inhibition of synthesis by statin (Fig. 1b, right panel). Thus, the increase of campesterol/TC was not inversely proportional to the decrease in cholesterol absorption. Campesterol/frac{apolipoprotein B48}{apolipoprotein B} ratio in CAD patients was higher than that in non-CAD patients both with and without statin treatment (Fig. 1c). Increases in campesterol/TC, campsterol/lathosterol ratio, and apoB48 concentration in CAD/statin+ patients suggested that the cholesterol absorption in these patients was enhanced during LDL-C lowering therapy with statin.

Cholesterol Absorption Marker and ApoB48 Concentration Were Associated with Coronary Lesion Prognosis

We investigated the association between cholesterol absorption or synthesis markers and coronary lesion progression during statin treatment. In the statin-treated CAD patients (n=103), 15 patients showed ISR, 18 patients had de novo lesions, and 70 patients did not show either ISR or de novo lesions at the time of follow-up CAG. As shown in Table 2,
there was no difference in the prevalence of HT, DM, DL and MetS. Serum levels of HDL-C, LDL-C, triglycerides, and RLP-C were similar among the three groups. Thus, these conventional risk markers or serum lipid profiles did not predict coronary lesion prognosis in the secondary prevention. By contrast, there were significant differences in serum concentration of apoB48 and cholesterol absorption marker; in de novo group, campesterol/TC was higher than those in no lesion- and ISR groups (Fig. 2a and Table 2). The cholesterol synthesis marker was not different among the three groups (Fig. 2b and Table 2). Accordingly, the campesterol/lathosterol ratio was significantly higher in the de novo group than in no lesion- and ISR groups (Fig. 2c, Table 2) because of the enhanced cholesterol absorption. These results suggest that the high levels of campesterol/TC, campesterol/lathosterol ratio together with apoB48 concentration may represent the increase in cholesterol absorption and intestinal chylomicron production in CAD patients with de novo coronary stenosis, not with ISR. However, there was no significant correlation between cholesterol absorption marker and apoB48 concentration, both in all subjects (R = 0.174, p = 0.49) and in the CAD/statin+ group (R = 0.275, p = 0.29).

Campesterol/TC and ApoB48 Concentration are Predictors for de novo Lesion Progression

To confirm the impact of cholesterol absorption or synthesis markers on the prognosis of CAD, we performed univariate and stepwise multivariate logistic regression analysis, adjusted classical risk factors (age, gender, HT, DM, current smoking, TC, HDL-C and LDL-C)\(^\text{15}\), in addition to campesterol/TC, campesterol/lathosterol ratio and apoB48 concentrations. These analyses were performed between patients with de novo lesion progression and no lesion or ISR (Table 3). Univariate analysis showed that campesterol/TC, campesterol/lathosterol ratio and apoB48 concentration were significantly associated with de novo lesion progression compared with no lesion progression or ISR. Furthermore, stepwise multivariate analysis revealed that both campesterol/TC and apoB48 concentrations were significant risk factors for de novo lesion progression (Table 3). These findings suggest that intestinal lipid absorption and intestinal chylomicron production are linked, and serve as predictive risk markers for de novo lesion progression in CAD patients during statin treatment.

![Fig. 2. Impact of cholesterol absorption and synthesis markers on CAD prognosis](image)

Cholesterol absorption marker (campesterol/TC, a) and campesterol/lathosterol ratio (c) was higher in CAD patients with de novo lesion progression after coronary intervention than in patients with in-stent restenosis (ISR) or no lesion. Cholesterol synthesis marker (lathosterol/TC, b) was similar in the three groups. Abbreviations similar to those in Fig. 1. \(p\) values were calculated using one-way ANOVA in the three groups. We adjusted significance levels by Bonferroni correction in multiple comparison tests.
Enhanced Cholesterol Absorption in CAD Patients Receiving Statin

The present study has demonstrated that the level of cholesterol absorption marker was significantly higher in CAD/statin+ patients with de novo lesion progression than in those with no lesion or with ISR, despite comparable control of serum LDL-C levels in these groups. The relative increase of absorption was likely attributable to the compensation of the inhibition of hepatic cholesterol synthesis by statin. However, statin treatment did not increase campesterol/TC in non-CAD patients (Table 1 and Fig. 1a), and the lathosterol/TC in CAD/statin+ group was still higher than that in the non-CAD/statin+ group (Fig. 1b). The findings indicate that the increase of campesterol/TC in the CAD/statin+ cannot be explained simply by the compensatory effect of statin. We speculate that CAD patients may have some predisposing factor(s) to increase cholesterol absorption. Previous studies have reported that cholesterol absorption is increased in patients with CAD. Also, cholesterol absorption is increased in patients with type 2 DM and renal insufficiency. Lally et al. have reported that the expression of intestinal cholesterol transporter, Niemann-Pick C1-like 1 protein (NPC1L1) is elevated in patients with DM. The enhanced cholesterol absorption may contribute to the prevalence of CAD in these pathological states.

Possible Mechanisms Underlying the Impact of Cholesterol Absorption on Atherosclerosis

Recent clinical studies have shown that the enhanced absorption and reduced synthesis of cholesterol may be related to coronary plaque volume or vulnerability. In combination with the present study, we speculated that an increase in diet-derived exogenous cholesterol might be, at least in part, responsible for the residual risks during statin treatment. As for a plausible mechanism, enhanced cholesterol absorption may be associated with enhanced absorption of proatherosclerotic oxidized cholesterol or oxysterols, such as alpha epoxycholesterol.

Variation of Cholesterol Absorption/Synthesis in Plasma Lipid Profile and Atherosclerosis

Increased dietary cholesterol intake may increase serum cholesterol in some individuals, while there may be no response in other subjects. However,
increased cholesterol absorption can cause hypercholesterolemia \(^{6}\); in such a population, this would represent a CAD risk. There is a known variation in the effect of ezetimibe \(^{26}\) and the effect is a counterpart of that of statin \(^{27}\). As a result, patients with low cholesterol absorption are expected to respond better to statins and worse to ezetimibe, and vice versa \(^{28}\). Inactivating mutations of NPC1L1 have been reported to reduce plasma LDL-C levels and the prevalence of CAD \(^{29}\). On the other hand, a partial ileal bypass is known to improve plasma lipid profile and CAD prognosis \(^{30}\). Taken together, the dietary and/or pharmaceutical inhibition of cholesterol absorption may reduce CAD events during statin treatment, particularly in subjects with enhanced cholesterol absorption.

Significance of Other Diet-derived Lipids in Atherosclerosis

Findings from a number of studies suggest that other markers for exogenous lipids may play a role in the development of CAD. Increased level of chylomicron remnants in fasting and postprandial states is correlated to atherogenicity, and high apoB48 concentrations significantly impact accumulation of the MetS or CAD \(^{12, 31, 32}\). While most of the lipids in remnant lipoprotein are triglycerides, intestinal cholesterol absorption is another regulator of remnant lipoproteins, as is apoB production \(^{33, 34}\). Furthermore, PCSK9, which down-regulates LDL-receptor, reportedly produces and stabilizes intestinal apoB48 by microsomal triglyceride transfer protein \(^{35}\). Statin treatment activates SREBP2 and thereby upregulates PCSK9, which modulates expression of various transporter molecules controlling cholesterol absorption and excretion \(^{36}\). These effects may contribute to the increase of intestinal triglyceride-rich apoB48 containing particles. On the other hand, elaidic acid (\textit{trans} 9-C18:1) can be used as a tracer for exogenous fatty acids because humans cannot synthesize it. The serum elaidic acid level is elevated in young patients with CAD \(^{13}\). Taken together, the lipid- and protein component in chylomicron remnants appear closely linked, and may affect the prognosis of CAD, irrespective of plasma LDL-C concentration.

Limitations

First, this study was cross-sectional, conducted at a single-center with a limited number of patients. The major result was confined to statin-treated CAD patients after PCI, but not the whole population, including statin-untreated CAD after PCI and non-CAD patients. Second, we did not include emergency cases of acute coronary syndrome or severe congestive heart failure. The impact of cholesterol absorption in patients with acute coronary syndrome has recently been reported \(^{20}\), and is consistent with our present study. Third, the serum LDL-C level was incompletely controlled in some subjects of CAD/statin- group, which may have some potential influence on the CAD prognosis. Fourth, we could not include data for the type/doses of statin, other anti-hyperlipidemic drugs including ezetimibe, and anti-diabetic drugs, because of the limited sample number. The correlation between cholesterol absorption/synthesis and potency of statin, or the LDL-C change should be clarified. Further studies, including a large-scale prospective study, are required to establish the impact of cholesterol absorption in risk management for CAD.

Conclusions

During intensive lipid-lowering therapy with statins, increased cholesterol absorption and intestinal chylomicron synthesis were associated with the progression of de novo coronary lesions. The finding suggests that inhibition of exogenous cholesterol absorption and chylomicron synthesis could be a possible therapeutic target for the secondary prevention of CAD during statin treatment.

Acknowledgments

We thank Fujirebio (Tokyo, Japan) for measurement of the serum apoB48 concentration.

COI

Tatsuro Ishida has received lecture honoraria from MSD, and Mochida Pharmaceutical. Ken-ichi Hirata has received research funds from Acterion Pharmaceuticals Japan, Sysmex, GlaxoSmithKline, Dai-ichi Sankyo, Japan Medtronic, St. Jude Medical Japan, Sumitomo Dainippon Pharma, Takeda Pharmaceutical, Nippon Boehringer Ingelheim, Boston Scientific Japan, Bristol-Myers Squibb, Mochida Pharmaceutical, FUJI-FILM RI Pharma, Nihon Medi-Physics, Bayer Yakuhin, Astellas Pharma, Eisai, MSD, Kaneka Medix, Novartis Pharma, and Otsuka Pharmaceutical, and lecture honoraria from MSD, AstraZeneca, Takeda Pharmaceutical, Pfizer, Dai-ichi Sankyo, Mochida Pharmaceutical, Kowa Pharmaceutical, and Japanese Society of Internal Medicine. The other authors report no conflicts of interest.

Notice of Grant Support

This work was supported by Grants-In-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

Role of Co-authors in This Manuscript

K.M. performed biochemical and statistical analysis, and wrote the manuscript. T.I. supervised the project and revised the manuscript. S.T. and T.O. collected serum samples and interpreted the data. M.S., T.H. and Y.I. took part in the biochemical assays, and clinical data analysis. R.T. and K.H. participated in the data analysis and interpretation.

References

1) Cholesterol Treatment Trials’ (CITT) Collaboration. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, and Collins R: Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 17,000 participants in 26 randomised trials. Lancet, 2010; 376: 1670-1681
2) LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, Goto AM, Greten H, Kastelein JJ, Shepherd J, and Wenger NK: Treating to New Targets (TNT) Investigators: Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med, 2005; 352: 1425-1435
3) Chapman MJ, Redfern JS, McGovern ME, and Girap P: Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol Ther, 2010; 126: 314-345
4) Miettinen TA, Gylling H, Lindbohm N, Miettinen TE, Rajaratnam RA, and Relas H: Finnish Treat-to-Target Study Investigators: Serum noncholesterol sterols during inhibition of cholesterol synthesis by statins. J Lab Clin Med, 2003; 141: 131-137
5) Hoshiga M, Arishiro K, Nakakoji T, Miyazaki N, Negoro N, Okabe T, Kohbayashi E, Ishihara T, and Hanafusa T: Switching to aggressive statin improves vascular endothelial function in patients with stable coronary artery disease. J Atheroscler Thromb, 2010; 17: 705-711
6) Kesaniemi YA, and Miettinen TA: Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur J Clin Invest, 1987; 17: 391-395
7) Strandberg TE, Tilvis RS, Pitkala KH, and Miettinen TA: Cholesterol and glucose metabolism and recurrent cardiovascular events among the elderly: a prospective study. J Am Coll Cardiol, 2006; 48: 708-714
8) Miettinen TA, Gylling H, Strandberg T, and Sarna S: Baseline serum cholesterol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. BMJ, 1998; 316: 1127-1130
9) Matthan NR, Pencina M, LaRocque JM, Jacques PF, D’Agostino RB, Schaefer EJ, and Lichtenstein AH: Alterations in cholesterol absorption/synthesis markers characterize Framingham offspring study participants with CHD. J Lipid Res, 2009; 50: 1927-1935
10) Silbernagel G, Failer G, Genser B, Drechsler C, Krane V, Scharnagl H, Grammer TB, Baumgartner I, Ritz E, Wanner C, and Marz W: Intestinal cholesterol absorption, treatment with atorvastatin, and cardiovascular risk in hemodialysis patients. J Am Coll Cardiol, 2015; 65: 2291-2298
11) Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, De Ferrari GM, Ruzyllo W, De Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM and Investigators I-I: Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med, 2015; 372: 2387-2397
12) Masuda D, Nishida M, Ara T, Hanada H, Yoshida H, Yamauchi-Takihara K, Moriyama T, Tada N and Yamashita S: Reference interval for the apolipoprotein B-48 concentration in healthy Japanese individuals. J Atheroscler Thromb, 2014; 21: 618-627
13) Mori K, Ishida T, Yasuda T, Hasokawa M, Munguchi T, Sasaki M, Kondo K, Nakajima H, Shinohara M, Shinkle T, Irino Y, Toh R, Nishimura K, and Hirata KI: Serum trans-fatty acid concentration is elevated in young patients with coronary artery disease in Japan. Circ J, 2015; 79: 2017-2025
14) JCS Joint Working Group: Guidelines for Secondary Prevention of Myocardial Infarction (JCS 2011). Circ J, 2013; 77: 231-248
15) D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, and Kannel WB: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation, 2008; 117: 743-753
16) Gylling H, and Miettinen TA: Cholesterol absorption and lipoprotein metabolism in type II diabetes mellitus with and without coronary artery disease. Atherosclerosis, 1996; 126: 325-332
17) Rogacev KS, Pinsdorf T, Weingartner O, Gerhart MK, Welzel E, van Bentum K, Popp J, Menzner A, Fliser D, Lutjohann D, and Heine GH: Cholesterol synthesis, cholesterol absorption, and mortality in hemodialysis patients. Clin J Am Soc Nephrol, 2012; 7: 943-948
18) Lally S, Tan CY, Owens D, and Tomkin GH: Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia, 2006; 49: 1008-1016
19) Nasu K, Terashima M, Habara M, Ko E, Ito T, Yokota D, Ishizuka S, Kurita T, Kimura M, Kinoshita Y, Asakura Y, Tsuchikane E, Katoh O, and Suzuki T: Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Interv, 2013; 6: 746-755
20) Tsujita K, Sugiyama S, Sumida H, Shimomura H, Yamashita T, Yamanaka N, Komura M, Nakamoto K, Oka H, Nakao K, Nakamura S, Ishihara M, Matsui K, Sakaino N, Nakamura N, Yamamoto N, Koide S, Matsumura T, Fujimoto K, Tsunoda R, Morikami Y, Matsuyama K, Oshima S, Kaih Igata K, Hokimoto S, Ogawa H and Investi-
gators P-I: Impact of Dual Lipid-Lowering Strategy With Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients With Percutaneous Coronary Intervention: The Multicenter Randomized Controlled PRECISE-IVUS Trial. J Am Coll Cardiol, 2015; 66: 495-507
21) Otaegui-Arrazola A, Menendez-Carreno M, Ansoarena D, and Astiasaran I: Oxysterols: A world to explore. Food Chem Toxicol, 2010; 48: 3289-3303
22) Staprans I, Pan XM, Rapp JH, Moser AH, and Feingold KR: Ezetimibe inhibits the incorporation of dietary oxidized cholesterol into lipoproteins. J Lipid Res, 2006; 47: 2575-2580
23) Endo K, Oyama T, Saiki A, Ban N, Ohira M, Koide N, Murano T, Watanabe H, Nishii M, Miura M, Sekine K, Miyashita Y, and Shirai K: Determination of serum 7-ketocholesterol concentrations and their relationships with coronary risk factors in diabetes mellitus. Diabetes Res Clin Pract, 2008; 80: 63-68
24) Connor WE, and Connor SL: The role of nutritional factors in the prevention of coronary heart disease. Prev Med, 1972; 1: 49-83
25) Katan MB, Beynen AC, de Vries JH, and Nobels A: Existence of consistent hypo- and hyperresponders to dietary cholesterol in man. Am J Epidemiol, 1986; 123: 221-234
26) Hegele RA, Guy J, Ban MR, and Wang J: NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis, 2005; 4: 16
27) Ziajka PE, Reis M, Kreul S, and King H: Initial low-density lipoprotein response to statin therapy predicts subsequent low-density lipoprotein response to the addition of ezetimibe. Am J Cardiol, 2004; 93: 779-780
28) Pisciotta L, Fasano T, Belloccchio A, Bocchi L, Sallo R, Fresa R, Colangeli I, Cantafora A, Calandra S, and Bertolini S: Effect of ezetimibe coadministered with statins in genotype-confirmed heterozygous FH patients. Atherosclerosis, 2007; 194: e116-e122
29) Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, Lange LA, Fontanillas P, Gupta N, Duga S, Goel A, Farrall M, Saleheen D, Ferrario P, Gupta N, Deloukas P, Lin DY, Tang ZZ, Erdmann J, Schunkert H, Danesh J, Marra J, Elousa R, Ardissonio D, McPherson R, Watkins H, Reiner AP, Wilson JG, Altshuler D, Gibbs RA, Lander ES, Boerwinkle E, Gabriel S, and Kathiresan S: Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med, 2014; 371: 2072-2082
30) Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL, Campbell GS, Pearce MB, Yellin AE, Edmiston WA, Smink RD Jr, et al.: Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med, 1990; 323: 946-955
31) Masuda D, Sugimoto T, Tsujii K, Inagaki M, Nakatani K, Yuasa-Kawase M, Tsubakio-Yamamoto K, Ohama T, Nishida M, Ishigami M, Kawamoto T, Matsuyama A, Sakai N, Komuro I and Yamashita S: Correlation of fasting serum apolipoprotein B-48 with coronary artery disease prevalence. Eur J Clin Invest, 2012; 42: 992-999
32) Mori K, Ishida T, Yasuda T, Monguchi T, Sasaki M, Kondo K, Hasokawa M, Nakajima H, Haraguchi Y, Sun L, Shinohara M, Toh R, Nishimura K, and Hirata K: Fasting serum concentration of apolipoprotein B48 represents residual risks in patients with new-onset and chronic coronary artery disease. Clin Chim Acta, 2013; 421: 51-56
33) Sonoda M, Shoji T, Kimoto E, Okute Y, Shima H, Naganuma T, Motoyama K, Morioka T, Mori K, Fukumoto S, Shioi A, Koyama H, Emoto M and Inaba M: Kidney function, cholesterol absorption and remnant lipoprotein accumulation in patients with diabetes mellitus. J Atheroscler Thromb, 2014; 21: 346-354
34) Taggart C, Gibney J, Owens D, Collins P, Johnson A, Tomkin GH: The role of dietary cholesterol in the regulation of postprandial apolipoprotein B48 levels in diabetes. Diabet Med, 1997; 14: 1051-1058
35) Rashid S, Tavori H, Brown PE, Linton MF, He J, Giunzoni I, Fazio S. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent. Circulation, 2014; 130: 431-441
36) Cariou B, Le May C, Costet P: Clinical aspects of PCSK9. Atherosclerosis 2011; 216: 258-265