The association of CD36 variants with polypoidal choroidal vasculopathy compared to typical neovascular age-related macular degeneration

Hiroaki Bessho, Shigeru Honda, Naoshi Kondo, Sentaro Kusuhara, Yasutomo Tsukahara, Akira Negi

Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan

Purpose: To clarify the association of cluster of differentiation 36 (CD36) variants with polypoidal choroidal vasculopathy (PCV) and compare them with those in typical neovascular age-related macular degeneration (tAMD).

Methods: We included 349 Japanese AMD patients (210 PCV, 139 tAMD) and 198 age-matched controls. Four tag single-nucleotide polymorphisms (SNPs)—rs10499862, rs3173798, rs3211883, and rs3173800—in the CD36 region were genotyped using the TaqMan assay. Allelic and genotypic frequencies of the SNPs were tested.

Results: Although none of the SNPs tested were associated with PCV, the allelic frequencies of rs3173798 and rs3173800 were significantly different between PCV and tAMD patients. Genotype association analysis demonstrated different associations of these two SNPs between PCV and tAMD in the genotype model. Haplotype analysis revealed that the association of the major haplotype (T-T-T-T) at four selected SNPs in CD36 differed significantly between PCV and tAMD patients.

Conclusions: The CD36 region may be associated with the difference in genetic susceptibility for PCV and tAMD.

Age-related macular degeneration (AMD) is a leading cause of central vision loss in the elderly in industrialized countries [1]. Although the number of patients with AMD has increased remarkably over the years, the pathology of AMD is not well understood [2]. Advanced AMD is clinically classified into atrophic AMD and exudative AMD. In exudative AMD, there are two characteristic phenotypes distinct from typical neovascular AMD (tAMD), which are called polypoidal choroidal vasculopathy (PCV) [3,4] and retinal angiomatosus proliferation [5]. These two phenotypes are known to have different aspects from tAMD in their natural courses, as well as different responses to interventions such as photodynamic therapy (PDT) and anti-vascular endothelial growth factor therapy, although the reasons for this remain unknown [6-10]. Recently, several genetic association studies have been conducted to explain the different characteristics among the phenotypes of exudative AMD and their susceptibility to several interventions, mainly PDT [11-19].

Cluster of differentiation 36 (CD36) is a multifunctional molecule that plays an important role in lipid metabolism, angiogenesis, inflammation, and scavenging oxidative stresses [20-22], all of which may be involved in the pathogenesis of AMD and in the mechanism whereby PDT functions. We previously demonstrated the association of coding variants in the CD36 region with the incidence of neovascular AMD (corresponding to tAMD in the present report) in the Japanese population [23]. In that study, two variants of single nucleotide polymorphisms (SNPs)—rs3173798 and rs3211883 on introns 3 and 4, which have high linkage disequilibrium—showed the greatest association with susceptibility to neovascular AMD. However, it has not been determined whether this association is general to all exudative AMD or specific for tAMD. We hypothesized that the genetic variants in CD36 may be differently associated with genetic susceptibilities to tAMD and PCV. Since PCV is known to have a better response to PDT than tAMD [7,8], we considered that the scavenging ability of CD36 for reactive oxygen species generated by PDT might be different between tAMD and PCV, which could influence the effect of PDT.

We previously reported that coding variants of the elastin gene (ELN) were associated with PCV but not with tAMD [13]. However, two recent reports with larger cohorts showed the opposite results: The ELN polymorphism was associated with tAMD but not with PCV [24,25]. Although the association of elastin gene variants with tAMD and PCV is still inconclusive, these results might have been generated due to statistical type 1 and type 2 errors. In the present study, we included a sufficient number of subjects based on power analysis to prevent these errors.

In this study, we genotyped four tag SNPs located on introns 3 and 4 of the CD36 gene, and analyzed the association between these variants and the incidence of PCV, as well as tAMD, in a Japanese population.
Molecular Vision 2012; 18:121-127 <http://www.molvis.org/molvis/v18/a15> © 2012 Molecular Vision

Table 1. Data summary of PCV and tAMD patients and control subjects.

Factors	PCV	tAMD	Control
Number of subjects	210	139	198
Gender (male/female)	166/44	108/31	119/79
Mean age±SD (years)	73.8±7.5	75.3±7.3	72.1±5.9
Median age (years)	75	76	72
Age range (years)	51–93	55–94	56–95

PCV: polypoidal choroidal vasculopathy, tAMD: typical neovascular AMD.

METHODS

Study participants: This is an extension study of a previous report [23]. The study was approved by the Institutional Review Board of the Kobe University Graduate School of Medicine, and was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all subjects. All cases in this study were Japanese individuals recruited from the Department of Ophthalmology at Kobe University Hospital in Japan.

The study included 349 Japanese AMD patients (210 PCV, 139 tAMD) and 198 age-matched controls who accepted DNA sampling. The tAMD group in this study included the patients of our previous study, along with 30 new patients. The control group in this study included the subjects of the previous study and 16 more individuals [23]. All patients received ophthalmic examinations, including visual acuity measurements with refractive correction, slit-lamp biomicroscopy of the fundus, color fundus photographs, optical coherence tomography, fluorescein angiography, and indocyanine green angiography (ICGA). All PCV subjects enrolled in this study met the criteria of definite cases of PCV as proposed by the Japanese Study Group of Polypoidal Choroidal Vasculopathy [26]. ICGA showed a choroidal origin of the polypoidal lesions in all PCV cases, typically with vascular networks in the posterior poles and subretinal reddish-orange protrusions corresponding to the polypoidal lesions on ICGA. In contrast, all tAMD patients had clear images of choroidal neovascular networks on ICGA. The classification of the AMD phenotype was performed by three independent retinal specialists for each case under masked conditions for the genotype. Only those cases whose diagnoses were matched by all three readers were included in this study. The details of the participants are listed in Table 1.

Single-nucleotide polymorphism selection: The four tag SNPs—rs10499862, rs3173798, rs3211883, and rs3173800 on introns 3 and 4 in the CD36 region—were selected based on our previous study [23], including SNPs which were significantly associated with tAMD (allelic nominal p-values <0.01). These four SNPs were in a single haplotype block using the algorithm based on the solid spine of linkage disequilibrium.

Genotyping: Genomic DNA was extracted from the peripheral blood using the QIAamp DNA Blood Maxi Kit (Qiagen, Valencia, CA). Genotyping was performed using TaqMan® SNP Genotyping Assays or Custom TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, CA) on a StepOnePlus™ Real-Time PCR System (Applied Biosystems) in accordance with the supplier’s recommendations.

Statistical analysis: All SNPs were evaluated for Hardy–Weinberg equilibrium using the χ² test (one degree of freedom) with SNPAlyze version 7.0.1 (DYNACOM, Yokohama, Japan). The allelic and genotype frequency distributions were compared among tAMD, PCV, and control subjects using a χ² test with one or two degrees of freedom for the allelic and genotypic tests, respectively. To avoid false-positive results, the Bonferroni or permutation correction was added for each comparison. p values <0.05 were considered to be statistically significant.

To exclude a potential stratification, our study cohort was examined by Structure 2.0 [27] using 26 unlinked genome-wide SNPs, as shown in our previous report [23].

RESULTS

None of the SNPs reported in the present study showed any significant deviations from the Hardy–Weinberg equilibrium over the entire sample (p>0.05). Table 2 summarizes the minor allelic frequencies for all SNPs and the results from a single-SNP association study. Significant differences in minor allelic frequencies were found in all SNPs tested between the tAMD and control subjects, as shown in our previous report [23], but there was no difference in minor allelic frequencies between the PCV and control subjects. Meanwhile, significant differences were found between PCV and tAMD patients at rs3173798 and rs3173800. The statistical powers of single-SNP association analysis at rs3173798 and rs3173800 were about 0.94 and 0.92, respectively (alpha error <0.05), in the comparison between PCV and tAMD. The genotype association analysis revealed significant associations of rs3173798 and rs3211883 with tAMD, but not with PCV in the dominant model (Table 3). In addition, the most significant differences were found between PCV and tAMD patients at rs3173798 and rs3173800 in the
genotype (additive) model. In the haplotype analysis, the most frequent haplotype (T-T-T-T) at rs10499862, rs3173798, rs3211883, and rs3173800 showed the most significant difference in association between PCV and tAMD (Table 4). There was no evidence of significant stratification in our study cohort ($P_r [K=1 >0.99]$).

DISCUSSION

We genotyped four tag SNPs in the $CD36$ region, and found that the minor allelic frequencies at SNPs rs3173798 and rs3173800 and the haplotype at four selected SNPs in the $CD36$ region were significantly associated with the difference in genetic susceptibility to PCV and tAMD. Namely, T, T alleles were less frequent than C, A alleles in PCV than in tAMD patients at rs3173798 and rs3173800, respectively. Moreover, the T-T-T-T haplotype at rs10499862, rs3173798, rs3211883, and rs3173800 on introns 3 and 4 in the $CD36$ region was significantly less frequent in PCV than in tAMD.

Although our previous report demonstrated an association of SNPs in the $CD36$ region with neovascular AMD [23], the phenotype specificity of these SNPs remained to be elucidated. The present study suggests a different association of $CD36$ in genetic susceptibility for PCV and tAMD, which may contribute to the different clinical characteristics of PCV (i.e., natural course and the response to PDT or ranibizumab) from tAMD [3,4,6-9]. Since the SNPs at rs10499862, rs3173798, rs3211883, and rs3173800 were not covered by the gene chips used in previous genome-wide association studies [28,29], they could not be detected as possible causative SNPs for AMD in those studies. The present study, as well as our previous report [23], further suggested an association of this region in $CD36$ with the incidence of tAMD. However, these SNPs did not remain significant in the prevalence of PCV. Moreover, a statistically significant difference was detected in the association of this region between tAMD and PCV. This suggests a different association of the $CD36$ region with the phenotype of neovascular AMD, although the details have not yet been clarified. A recent in vivo study demonstrated that a downregulation of $CD36$ in capillary sprout endothelial cells facilitated angiogenesis [30]. Rats carrying a specific genetic variant of $CD36$ have been found to be more susceptible to light-induced retinal damage, and are more likely to develop age-related retinal degeneration and choriodcapillary rarefaction [31]. $CD36$ is involved in diverse physiologic and pathological processes, including scavenger receptor functions, transforming growth factor-β activation, lipid metabolism, angiogenesis, atherogenesis, and inflammation, depending on the ligands with which $CD36$ can interact [20-22]. In particular, the scavenging ability of $CD36$ for oxidative stress is critical to manage AMD, since oxidative stress is widely recognized as an important component in the pathogenesis of AMD [32,33] and in the mechanism whereby PDT works to occlude neovascular tracts [34]. A recent in vitro study reported that the uptake of oxidized low-density lipoprotein (oxLDL) induces the expression of several genes related to oxidative stress, inflammation, and apoptosis in retinal pigment epithelium cells [35]. An immunohistochemical study reported the presence of oxLDL in surgically excised choroidal neovascularization membranes [36]. Moreover, the verteporfin used in PDT binds with serum LDL, and this complex is incorporated into choroidal neovascularization tissues [37]. Although it is not known whether lipid metabolism and oxidative stress play different roles in the pathogenesis between tAMD and PCV, the present study implied different genetic susceptibilities for each AMD phenotype. Interestingly, recent reports demonstrated a difference between tAMD and PCV in their histological findings and systemic risk factors [38,39]. Moreover, our previous study demonstrated a different association of an elastin gene polymorphism with tAMD and PCV [13].

The biologic basis of the association with the haplotype in $CD36$ is currently unknown, because the haplotype in the present study does not reside in the coding sequence of $CD36$. FASTSNP [40] gave the information that rs3173798 is located at splicing site with medium-high effect, but it was not shown whether it is located at splice donor site or acceptor

TABLE 2. SUMMARY OF SINGLE-SNP ASSOCIATION ANALYSIS ON GENE $CD36$.

SNP ID	Location	Major/Minor	Minor allele frequency	Allelic nominal p-value (Bonferroni p-value)				
			PCV	tAMD	Control	PCV versus control	tAMD versus control	PCV versus tAMD
rs10499862	Intron 3	T/C	0.14	0.11	0.18	0.058 (0.23)	0.0066 (0.026)	0.28 (1.0)
rs3173798	Intron 3	T/C	0.46	0.33	0.44	0.57 (1.0)	0.0005 (0.020)	0.00081 (0.0032)
rs3211883	Intron 4	T/A	0.35	0.28	0.4	0.19 (0.76)	0.0017 (0.0068)	0.043 (0.17)
rs3173800	Intron 4	A/T	0.26	0.38	0.28	0.41 (1.0)	0.0071 (0.028)	0.0005 (0.0020)

SNP: single nucleotide polymorphism, PCV: polypoidal choroidal vasculopathy, tAMD: typical neovascular AMD.
SNP ID	Major/Minor	Genotype (Major homo/Hetero/Minor homo)	PCV	tAMD	Control
rs10499862	T/C	75/22/3	81/17/2	67/29/4	
rs3173798	T/C	28/51/21	45/44/11	36/40/24	
rs3211883	T/A	42/45/13	52/40/8	40/41/19	
rs3173900	A/T	52/44/4	37/50/13	54/36/10	

Genotype association results

Genotype association results	PCV versus Control (dominant model)	tAMD versus Control (dominant model)	PCV versus tAMD (genotype model)		
	OR (95% CI)	Nominal p value	OR (95% CI)	Nominal p value	Nominal p value
rs10499862	0.58 (0.19–1.80)	0.34	0.52 (0.14–2.01)	0.34	0.5
rs3173798	0.8 (0.30–1.28)	0.36	0.41 (0.22–0.75)	0.0034	0.0031
rs3211883	0.59 (0.35–1.02)	0.059	0.36 (0.18–0.74)	0.0038	0.13
rs3173900	0.35 (0.15–0.82)	0.012	1.32 (0.67–2.61)	0.42	0.00067

Corrections were performed with permutation test. SNP: single nucleotide polymorphism, PCV: polypoidal choroidal vasculopathy, tAMD: typical neovascular AMD, OR: odds ratio, CI: coefficient interval.
site [41]. Thus, the SNPs in this region could have noncoding effects on gene expression and function. A recent study demonstrated that the C allele at rs3173798 tended to increase CD36 expression while reducing high-density lipoprotein levels [41,42]. Since the C allele at rs3173798 was less frequent in the tAMD group than the PCV and control groups, the reduced expression of CD36 might be correlated with tAMD but not PCV pathogenesis. Moreover, Picard et al. have recently demonstrated an accumulation of oxLDL in Bruch’s membrane among aged CD36 knockout mice [43]. The oxLDL accelerates an accumulation of deposits in Bruch’s membrane and causes drusen. Interestingly, drusens are more frequently seen in tAMD than PCV [44]. However, exhaustive resequencing of this locus may elucidate potentially undiscovered and more important causative variants. In addition, it is essential to perform replication studies using other cohorts to verify and conclude the associations of CD36 variants with tAMD and PCV.

The limitation of this study was a possible influence of lipid metabolism on AMD pathogenesis [45,46]. Since CD36 is known to associate with the metabolic syndrome and hyperlipidemia [41,47], CD36 variants may indirectly contribute to AMD via abnormal lipid metabolism. However, the results of this study suggest a possible role of lipid metabolism in the different pathogeneses between PCV and tAMD.

In conclusion, the present study suggested some clinical possibilities for genetic association analysis that can be further investigated to determine the specific pathogenesis of PCV as distinct from that of tAMD.

ACKNOWLEDGMENTS

This study was supported by a Grant-in Aid (C) 23592567 from the Ministry of Education, Science and Culture, Tokyo, Japan (S.H.), and by a grant from the Takeda Science Foundation, Osaka, Japan (S.H.). The funding organization had no role in the design or conduct of this research. The authors have no proprietary or commercial interest in any of the materials discussed in this article.

REFERENCES

1. Congdon N, O’Colmain B, Klaiver CC, Klein R, Muñoz B, Friedman DS, Kempen J, Taylor HR, Mitchell P, Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults the United States. Arch Ophthalmol 2004; 122:477-85. [PMID: 15078664]
2. Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine J, Vision Health Cost-Effectiveness Study Group. Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol 2009; 127:533-40. [PMID: 19365036]
3. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 1990; 10:1-8. [PMID: 1693009]
4. Kleiner RC, Brucker AJ, Johnston RL. The posterior uveal bleeding syndrome. Retina 1990; 10:9-17. [PMID: 2343198]
5. Yannuzzi LA, Negrao S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001; 21:416-34. [PMID: 11642370]
6. Bessho H, Honda S, Imai H, Negi A. Natural course and funduscopic findings of polypoidal choroidal vasculopathy in a Japanese population over 1 year of follow-up. Retina 2011; 31:1598-602. [PMID: 21478804]
7. Honda S, Kurimoto Y, Kagotani Y, Yamamoto H, Takagi H, Uenishi M, Hyogo Macular Disease Study Group. Photodynamic therapy for typical age-related macular degeneration and polypoidal choroidal vasculopathy: a 30-month multicenter study in Hyogo, Japan. Jpn J Ophthalmol 2007; 50:461-7. [PMID: 16093860]
8. Honda S, Imai H, Yamashiro K, Kurimoto Y, Kanamori-Matsui N, Kagotani Y, Tamura Y, Yamamoto H, Ohoto S, Takagi H, Uenishi M, Negi A. Comparative assessment of photodynamic therapy for typical age-related macular degeneration and polypoidal choroidal vasculopathy: a multicenter study in Hyogo prefecture, Japan. Ophthalmologica 2009; 223:333-8. [PMID: 19478533]
9. Lim, JY.; Lee, SY.; Kim, JG.; Lee, JY.; Chung, H.; Yoon, YH. Intravitreal bevacizumab alone versus in combination with photodynamic therapy for the treatment of neovascular...
maculopathy in patients aged 50 years or older: 1-year results of a prospective clinical study. . Acta Ophthalmol. 2010.

10. Matsumiya W, Honda S, Bessho H, Kusuhara S, Tsukahara Y, Negi A. Early responses to intravitreal ranibizumab in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. J Ophthalmol 2011; 2011:742020. [PMID: 21772985]

11. Bessho H, Honda S, Kondo N, Negi A. The association of ARMS2 polymorphisms with phenotype in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Mol Vis 2011; 17:977-82. [PMID: 21541271]

12. Bessho H, Honda S, Kondo N, Nishimura K, Negi A. Positive association of complement factor H gene variants with the effect of photodynamic therapy in polypoidal choroidal vasculopathy. J Clin Experiment Ophthalmol. 2011; 2:122.

13. Kondo N, Honda S, Ishibashi K, Tsukahara Y, Negi A. Elastin gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2008; 49:1101-5. [PMID: 18326737]

14. Chowers I, Meir T, Lederman M, Goldenberg-Cohen N, Cohen Y, Banin E, Averbukh E, Hemo I, Pollack A, Axer-Siegel R, Weinstein O, Hoh J, Zack DJ, Galbinur T. Sequence variants in HTRA1 and LOC387715/ARMS2 and phenotype and response to photodynamic therapy in neovascular age-related macular degeneration in populations from Israel. Mol Vis 2008; 14:2263-71. [PMID: 19065273]

15. Brantley MA Jr, Edelstein SL, King JM, Plotzke MR, Apte RS, Kymes SM, Shiels A. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to photodynamic therapy. Eye (Lond) 2009; 23:626-31. [PMID: 18292785]

16. Gotoh N, Yamada R, Nakanishi H, Saito M, Iida T, Matsuda F, Yoshimura N. Correlation between CFH Y402H and HTRA1 rs11200638 genotype to typical exudative age-related macular degeneration and polypoidal choroidal vasculopathy phenotype in the Japanese population. Clin Experiment Ophthalmol 2008; 36:437-42. [PMID: 18939352]

17. Sakurada Y, Kubota T, Imasawa M, Tsubura A, Tabane N, Iijima H. Angiographic lesion size associated with LOC387715 A69S genotype in subfoveal polypoidal choroidal vasculopathy. Retina 2009; 29:1522-6. [PMID: 19898184]

18. Mori K, Horie-Inoue K, Gehlbach PL, Takita H, Kabasawa S, Kawasaki I, Okhuto T, Kurihara S, Iizuka H, Miyashita Y, Katayama S, Awata T, Yoneya S, Inoue S. Phenotype and genotype characteristics of age-related macular degeneration in a Japanese population. Ophthalmol 2010; 117:928-38. [PMID: 20132989]

19. Tsukishashi T, Mori K, Horie-Inoue K, Gehlbach PL, Kabasawa S, Takita H, Ueyama K, Okazaki Y, Inoue S, Awata T, Katayama S, Yoneya S. Complement factor H and high-temperature requirement A-1 genotypes and treatment response of age-related macular degeneration. Ophthalmol 2011; 118:93-100. [PMID: 20678803]

20. Silverstein RL, Febbraio M. CD36 and atherosclerosis. Curr Opin Lipidol 2000; 11:483-91. [PMID: 11048891]

21. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108:785-91. [PMID: 11560944]

22. Kuniyasu A, Ohgami N, Hayashi S, Miyazaki A, Horiuuchi S, Nakayama K. CD36-mediated endocytic uptake of advanced glycation end products (AGE) in mouse 3T3-L1 and human subcutaneous adipocytes. FEBS Lett 2003; 537:85-90. [PMID: 12606036]

23. Kondo N, Honda S, Kuno S, Negi A. Positive Association of Common Variants in CD36 with Neovascular Age-Related Macular Degeneration. Aging 2009; 1:266-74. [PMID: 20157514]

24. Yamashiro K, Mori K, Nakata I, Tsukishashi T, Horie-Inoue K, Nakanishi H, Tsuikawa A, Sato M, Iida T, Yamada R, Matsuda F, Inoue S, Awata T, Yoneya S, Yoshimura N. Association of elastin gene polymorphism to age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2011; 52:8780-4. [PMID: 22003121]

25. Tanaka K, Nakayama T, Yuzawa M, Wang Z, Kawanura A, Mori R, Nakashizuka H, Sato N, Mizutani Y. Analysis of candidate gene polymorphisms with age-related macular degeneration subtypes in the Japanese population. Mol Vis 2011; 17:2751-8. [PMID: 22065928]

26. Japanese Study Group of Polypoidal Choroidal Vasculopathy. Criteria for diagnosis of polypoidal choroidal vasculopathy. Nippon Ganka Gakkai Zasshi 2005; 109:417-27. [PMID: 16050460]

27. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003; 164:1567-87. [PMID: 12930761]

28. Neale BM, Fiegens J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S, Tan PL, Oh EC, Merriam JE, Souied E, Bernstein PS, Li B, Frederick JM, Zhang K, Brantley MA Jr, Lee AY, Zack DJ, Campochiaro B, Campochiaro P, Ripke S, Smith RT, Barile GR, Katsanis N, Allikmets R, Daly MJ, Seddon JM. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci USA 2010; 107:7395-400. [PMID: 20385826]

29. Chen W, Stambolian D, Edwards AO, Brantley MA, Barile GR, Katsanis N, Allikmets R, Daly MJ, Neale BM, Fiegens J, Reynolds R, Sobrin L, Parker M, Raychaudhuri S, Tan PL, Oh EC, Merriam JE, Souied E, Bernstein PS, Li B, Frederick JM, Zhang K, Brantley MA Jr, Lee AY, Zack DJ, Campochiaro B, Campochiaro P, Ripke S, Smith RT, Barile GR, Katsanis N, Allikmets R, Daly MJ, Seddon JM. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci USA 2010; 107:7395-400. [PMID: 20385826]

30. Anderson CR, Hastings NE, Blackman BR, Price RJ. Capillary sprout endothelial cells exhibit a CD36low phenotype.
Regulation by shear stress and vascular endothelial growth factor-induced mechanism for attenuating anti-proliferative thrombospondin-1 signaling. Am J Pathol 2008; 173:1220-8. [PMID: 18772338]

31. Houssier M, Raoul W, Lavallette S, Keller N, Guillonneau X, Baragatti B, Jonet L, Jeanny JC, Behar-Cohen F, Coceani F, Scherman D, Lachapelle P, Ong H, Chemtob S, Sennlaub F. CD36 deficiency leads to choroidal involution via COX2 down-regulation in rodents. PLoS Med 2008; 5:e39. [PMID: 18288886]

32. Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 2004; 122:598-614. [PMID: 15078679]

33. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000; 45:115-34. [PMID: 11030308]

34. van den Bergh H. Photodynamic therapy of age-related macular degeneration: History and principles. Semin Ophthalmol 2001; 16:181-200. [PMID: 15513440]

35. Yamada Y, Tian J, Yang Y, Cutler RG, Wu T, Telljohann RS, Mattson MP, Handa JT. Oxidized low density lipoproteins induce a pathologic response by retinal pigmented epithelial cells. J Neurochem 2008; 105:1187-97. [PMID: 18182060]

36. Kamei M, Yoneda K, Kume N, Suzuki M, Itabe H, Matsuda K, Shimaoka T, Minami M, Yonemura S, Kita T, Kinoshita S. Scavenger receptors for oxidized lipoprotein in age-related macular degeneration. Invest Ophthalmol Vis Sci 2007; 48:1801-7. [PMID: 17389514]

37. Scott LJ, Goa KL. Verteporfin. Drugs Aging 2000; 16:139-46. [PMID: 10755329]

38. Nakashizuka H, Mitsumata M, Okisaka S, Shimada H, Kawamura A, Mori R, Yuzawa M. Clinico-pathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2008; 49:4729-37. [PMID: 18586873]

39. Ueta T, Obata R, Inoue Y, Iriyama A, Takahashi H, Yamaguchi T, Tamaki Y, Yanagi Y. Background comparison of typical age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients. Ophthalmology 2009; 116:2400-6. [PMID: 19815291]

40. Yuan HY, Chiu JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 2006; 34:W635–41. [PMID: 16845089]

41. Love-Gregory L, Sherva R, Sun L, Wasson J, Schappe T, Doria A, Rao DC, Hunt SC, Klein S, Neuman RJ, Permutt MA, Abumrad NA. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet 2008; 17:1695-704. [PMID: 18305138]

42. Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J, Klein S, Connelly MA, Abumrad NA. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet 2011; 20:193-201. [PMID: 20935172]

43. Picard E, Houssier M, Bujold K, Qi JS, McCrea J, Klein S, Connelly MA, Abumrad NA. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet 2008; 17:1695-704. [PMID: 18305138]

44. Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, Wong TY, Aung T. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res 2010; 29:19-29. [PMID: 19854291]

45. Kishan AU, Modjtabahed BS, Martins EN, Modjtabahed SP, Morse LS. Lipids and age-related macular degeneration. Surv Ophthalmol 2011; 56:195-213. [PMID: 21439604]

46. Stahl A, Krohne TU, Sapieha P, Chen J, Hellstrom A, Chew E, Holz FG, Smith LE. Lipid metabolites in the pathogenesis and treatment of neovascular eye disease. Br J Ophthalmol 2011; 95:1496-501. [PMID: 21421650]

47. Silverstein RL. Type 2 scavenger receptor CD36 in platelet activation: the role of hyperlipemia and oxidative stress. Clin Lipidol. 2009; 4:767. [PMID: 20161667]