Determining non-Abelian topological order from infinite projected entangled pair states

Anna Francuz1,∗ and Jacek Dziarmaga1

1Institute of Theoretical Physics, Jagiellonian University, ul. Łojasiewicza 11, PL-30-348 Kraków, Poland
(Dated: August 17, 2020)

We generalize the method introduced in Phys. Rev. B 101, 041108 (2020) of extracting information about topological order from the ground state of a strongly correlated two-dimensional system represented by an infinite projected entangled pair state (iPEPS) to non-Abelian topological order. When wrapped on a torus the unique iPEPS becomes a superposition of degenerate and locally indistinguishable ground states. We find numerically symmetries of the iPEPS, represented by infinite matrix product operators (MPO), and their fusion rules. The rules tell us how to combine the symmetries into projectors onto states with well defined anyon flux. A linear structure of the MPO projectors allows for efficient determination for each state its second Renyi topological entanglement entropy on an infinitely long cylinder directly in the limit of infinite cylinder’s width. The same projectors are used to compute topological S and T matrices encoding mutual- and self-statistics of emergent anyons. The algorithm is illustrated by examples of Fibonacci and Ising non-Abelian string net models.

I. INTRODUCTION

Topologically ordered phases [1] support anyonic quasi-particles. They open the possibility of realizing fault-tolerant quantum computation [2] based on braiding of non-Abelian anyons. Apart from a number of exactly solvable models [2–4], verifying whether a given microscopic Hamiltonian realizes a topologically ordered phase has traditionally been regarded as an extremely hard task. Recently, observation of quantized Hall effect in Kitaev-like ruthenium chloride α-RuCl$_3$ in magnetic field [5] granted the problem with urgent experimental relevance.

A leading numerical method is to use density matrix renormalization group (DMRG) [6, 7] on a long cylinder [8–23]. In the limit of infinitely long cylinders, DMRG naturally produces ground states with well-defined anyonic flux, from which one can obtain full characterization of a topological order, via so-called topological S and T matrices [24]. Since the proposal of Ref. [24], this approach has become a common practice [25–42].

Unfortunately, the cost of a DMRG simulation grows exponentially with the circumference of cylinder, limiting this approach to thin cylinders (up to a width of ≈ 14 sites) and short correlation lengths (up to $1−2$ sites). Instead, infinite projected entangled pair states (iPEPS) in principle allow for much longer correlation lengths [43–45]. A unique ground state on an infinite lattice can be represented by an iPEPS that is either a variational ansatz [46] or a result of numerical optimization [47, 48]. When wrapped on a cylinder the iPEPS becomes a superposition of degenerate ground states with definite anyonic fluxes. Here we generalize the approach of Ref. [48] to non-Abelian topological order and show how to produce a PEPS-like tensor network for each ground state with well-defined flux. Such tensor networks are suitable for extracting topological S and T matrices by computing overlaps between ground states. Furthermore, we show that they allow for computation of topological second Renyi entropy directly in the limit of infinite cylinder’s width. The approach of Ref. [48] does not assume clean realization of certain symmetries on the bond indices, in contrast to [49–52]. This has been demonstrated in Ref. [48] by examples of toric code and double semions per-

* corresponding author: anna.francuz@uj.edu.pl
turbed away from a fixed point towards a ferromagnetic phase as well as for the numerical iPEPS representing the ground state of the Kitaev model in the gapped phase. The last example shows that the method does not require restoring the symmetries by suitable gauge transformations of a numerical iPEPS, a feat that was accomplished in Ref. [53] for the toric code with a perturbation. Finally, it also has much lower cost than methods based on the tensor renormalization group [54].

The ferromagnetic Kitaev model in a weak \((1,1,1)\) magnetic field supports non-Abelian chiral topological order \([3, 23]\) and Ref. [5] is believed to provide the first experimental realization of this universality class. However, as the magnetic field is a tiny perturbation of a critical state, the correlation length should be long \([46]\). This drives the problem beyond accurate DMRG simulation on a thin cylinder and, therefore, the non-Abelian phase observed in the experiment [5], may require iPEPS for its accurate description.

In this work we consider mainly string-net models. The key elements of the method introduced in Ref. [48] are shown in Fig. 1. Virtual indices of iPEPS on a torus or cylinder can be inserted with horizontal/vertical matrix product operator (MPO) symmetries. Their action on iPEPS is the same as flux operators (Wilson loops) winding around the torus in the same horizontal/vertical direction. However, the MPO symmetries are much easier to find than the non-local operators that – in interacting systems – become complicated operator ribbons rather than simple strings. Just as projectors on definite anyon fluxes could be in principle constructed as linear combinations of the MPO symmetries, virtual projectors can be made as combinations of the MPO symmetries.

The paper is organized in sections II...VIII where we gradually introduce subsequent elements of the algorithm. Most sections open with a general part introducing a new concept. Then a series of subsections follows illustrating the general concept with a series of examples: the Abelian toric code (to make contact with Ref. [48]), Fibonacci string net, and Ising string net. In the end the algorithm is summarized in section IX. Additionally, in appendix C we apply some of the same tools to a variational ansatz proposed for the Kitaev model in magnetic field [46]. A detailed plan is as follows.

In Sec. II we define fixed points of the iPEPS transfer matrix in the form of MPS and introduce MPO symmetries that map between different fixed points. We also identify fusion rules of the MPO symmetries that are isomorphic with anyonic fusion rules. In Sec. III we consider an iPEPS wrapped on an infinite cylinder – that we visualize as horizontal without loss of generality – and use the fusion rules to construct vertical projectors on states with definite anyon flux along the horizontal cylinder. In Sec. IV we consider again an iPEPS wrapped on an infinite cylinder but this time the iPEPS is inserted with a horizontal MPO symmetry that alters boundary conditions in the vertical direction. We construct its vertical MPO symmetries that we call impurity MPO (IMPO) symmetries. We also identify their fusion rules. In Sec. V the fusion rules are used to construct vertical projectors as linear combinations of the IMPO symmetries. The impurity projectors select states with definite horizontal anyon flux in the iPEPS inserted with the horizontal MPO symmetry. In Sec. VI we show how the structure of vertical projectors enables efficient evaluation of the topological second Renyi entanglement entropy directly in the limit of infinite cylinder’s width. In Sec. VII the same is done with impurity projectors. Finally, in Sec. VIII we show how to obtain the topological \(S\) and \(T\) matrices from overlaps between states with definite anyon flux. In case of string net models they provide full characterization of the topological order. The paper is closed with a brief summary in section IX.

II. GENERATORS OF SYMMETRIES

Uniform iPEPS on a honeycomb lattice can be characterized by a tensor \(A\) with elements \(A_{abc}^i\). Here, \(i\) is a physical index and \(a, b, c\) are bond indices. Let \(\hat{A}\) denote a double tensor \(\hat{A} = \sum_i A^i \otimes (A^i)\) with double bond indices \(\alpha = (a, a')\), etc., see Fig. 2(A) and appendix B. iPEPS transfer matrix (TM) \(\Omega\) is defined by a line of double tensors \(\hat{A}\) contracted via their bond indices along the line as shown in Figs. 2(B) and (C). These figures show vertical TM \(\Omega^v\) and horizontal TM \(\Omega^h\), respectively. Their leading eigenvectors are TM fixed points. In the thermodynamic limit only the leading eigenvectors survive in TM’s spectral decomposition:

\[
\Omega^v \approx \omega \sum_{i=1}^n |v_i^R \rangle \langle v_i^R| , \quad \Omega^h \approx \omega \sum_{i=1}^n |v_i^U \rangle \langle v_i^U| . \quad (1)
\]

The leading eigenvalue, \(\omega\), is the same for both vertical and horizontal TM. The leading eigenvectors are
biorthonormal:

\[\delta_{ij} = (v_i^{L} | v_j^{R}) = \text{Tr} \left(v_i^{L} \right)^T v_j^{R}, \]
\[\delta_{ij} = (v_i^{U} | v_j^{D}) = \text{Tr} \left(v_i^{U} \right)^T v_j^{D}, \]

Here we use both the MPS, \(|v_i\rangle\), and MPO, \(v_i\), forms. MPS \(|v_i\rangle\) is MPO \(v_i\) between bra and ket indices of the double iPEPS TM. The ansatz for a fixed point boundary \(v_i^X\) is a pure MPO with spectral radius 1 [57] made out of tensors \(M_i^X\).

Different fixed points are connected by symmetries whose existence is a distinctive feature of topologically ordered states encoded in iPEPS. In contrast, in the trivial ferromagnetic phase the two boundary fixed points, \(v_\uparrow\) and \(v_\downarrow\), corresponding to two different magnetizations have orthogonal support spaces and, therefore, the operator mapping between them does not exist. The symmetries act on virtual indices of the tensor network. They are called MPO symmetries and, apart from few exactly solvable models for which they can be found analytically [49], they have to be found numerically as described in [48]. The MPO symmetries \(Z_a\) are operators which form certain algebra under their multiplication:

\[Z_a Z_b = \sum_c N_{ab}^c Z_c, \]

where the possible values of \(N_{ab}^c\) are 0, 1. Each MPO symmetry \(Z_a\) (including the trivial identity \(Z_1 \equiv 1\)) corresponds to certain anyon type \(a\) in a sense that their algebra is the same as the fusion rules of the anyons, see appendix A. Once all boundary fixed points \(v_i\) are found numerically, the MPO symmetries \(z_{ij}\) are obtained as MPO's mapping between the boundaries:

\[v_i \cdot z_{ij} = v_j. \]

The same set of symmetries exists for \(L/R\) and \(U/D\) boundary fixed points. We completed these numerical procedures in the following models.

A. Toric code

We begin with this basic example to make contact with Ref. [48] where the Abelian version of the present method was applied to this model and its realistic implementation with Kitaev model [3]. Each TM has 2 boundary fixed points. In addition to \(Z_1 = 1\) we find numerically one non-trivial MPO-symmetry \(z_{12} = \overline{z_{21}} = Z_2^v\) that satisfies

\[v_1^L \cdot Z_2^v = v_2^L, \quad v_2^L \cdot Z_2^v = v_1^L. \]

These equations imply \(Z_2^v\) algebra:

\[Z_2^v \cdot Z_2^v = 1. \]

It has to be strongly emphasized that in general the numerical solution \(Z_2^v\) of equations (6) has zero modes that make the algebra valid only in the sense that \(v_i^L \cdot Z_2 \cdot Z_2 = v_i^L\) for any \(i\). The same reservation applies to all fusion rules (4) to be identified numerically in the rest of this paper. This is also why all (numerically obtained) MPO symmetries throughout the paper are used only in iPEPS embedding: the zero modes do not matter when inserted between columns/rows of an iPEPS.

B. Fibonacci string-net

Here we employed the iPEPS tensors for a fixed point Fibonacci string-net model presented in appendix B. For each TM we found numerically 2 boundary fixed points and one non-trivial MPO symmetry \(Z_2\) satisfying, e. g.,

\[v_1^L \cdot Z_2^v = v_2^L. \]

The same MPO was found to satisfy also

\[v_2^L \cdot Z_2^v = v_1^L + v_3^L. \]

These two equations imply the Fibonacci fusion rule

\[Z_2^v \cdot Z_2^v = 1^v + Z_2^v. \]

Again, due to zero modes, the rule holds only when applied to iPEPS boundaries. Similar MPO symmetries were also found for the horizontal boundary fixed points.

C. Ising string net

Here we employed the iPEPS tensors for a fixed point Ising string net model presented in appendix B. This time each TM has 3 boundary fixed points. We found two non-trivial MPO symmetries, labelled as \(Z_\sigma\) and \(Z_\psi\), as numerical solutions to equations, e. g.,

\[v_1^L \cdot Z_\sigma^v = v_2^L, \quad v_1^L \cdot Z_\psi^v = v_3^L. \]

Furthermore, we found that the solutions satisfy

\[v_2^L \cdot Z_\sigma^v = v_1^L + v_3^L, \quad v_1^L \cdot Z_\psi^v = v_2^L, \quad v_2^L \cdot Z_\psi^v = v_1^L, \quad v_2^L \cdot Z_\sigma^v = v_3^L. \]

These six equations imply non-trivial fusion rules:

\[Z_\sigma^v \cdot Z_\sigma^v = 1^v + Z_\sigma^v, \quad Z_\sigma^v \cdot Z_\psi^v = Z_\sigma^v = Z_\sigma^v \cdot Z_\sigma^v, \quad Z_\psi^v \cdot Z_\psi^v = 1^v. \]

which justify the labelling. For our numerical \(Z_\psi^v\) and \(Z_\sigma^v\) the rules hold only when applied to \(v_i^L\). Similar MPO symmetries were also found for the horizontal boundary fixed points.

III. VERTICAL PROJECTORS

The MPO symmetries alone are enough to construct some of the projectors on states with definite anyon
fluxes. Let us consider vertical MPO symmetries Z_a^v for definiteness. Their linear combinations
\[P = \sum_a c_a Z_a^v, \tag{14} \]
which satisfy $P \cdot P = P$, make vertical projectors. When these projectors are inserted into iPEPS wrapped on an infinite horizontal cylinder, they yield states with definite anyon fluxes along that cylinder. The remaining projectors that can be applied when the iPEPS is inserted with a line of Z^h are subject of the following section.

A. Toric code

The \mathbb{Z}_2 algebra (7) allows for two projectors,
\[P_{\pm} = \frac{1}{2} (1 \pm Z_2^v), \tag{15} \]
that satisfy $P_+ \cdot P_+ = P_+$ and $P_- \cdot P_- = P_-$. Later on they will be identified as $P_+ \equiv P_{\text{vac}}$ and $P_- \equiv P_{\text{e}}$, i.e., projectors on the vacuum and the electric flux, respectively.

B. Fibonacci string net

The fusion rules (10) determine two projectors:
\[P_{\pm} = \frac{1}{\sqrt{5}} \left(\phi^{\pm 1} 1 \mp Z_2^v \right). \tag{16} \]
Here $\phi = (\sqrt{5} + 1)/2$. They will be identified as $P_+ \equiv P_{\text{vac}}$ and $P_- \equiv P_{\tau}$, i.e., projectors on the vacuum and the sector with both Fibonacci anyons: τ and $\bar{\tau}$.

C. Ising string net

The fusion rules (13) allow for six projectors:
\[P_{1,2} = \frac{1}{2} (1^v \pm Z_\psi^v), \tag{17} \]
\[P_{3,4} = \frac{1}{4} \left(3 \ 1^v - Z_\psi^v \right) \pm \frac{1}{\sqrt{8}} Z^v_{2}, \tag{18} \]
\[P_{5,6} = \frac{1}{4} \left(1^v + Z_\psi^v \right) \pm \frac{1}{\sqrt{8}} Z^v_{2}. \tag{19} \]
Not all of them are the minimal projectors on definite anyon flux. It is easy to check that $P_3 \cdot P_4 = P_2$ and, therefore, out of the three it is enough to keep only P_2. Furthermore, we can see that $P_5 + P_6 = P_1$ hence we can skip P_1. After this selection we are left with three minimal projectors $P_{2,5,6}$ that satisfy $P_a \cdot P_b = P_a \delta_{ab}$. They will be identified as $P_5 \equiv P_{\text{vac}}$, $P_6 \equiv P_{\psi\psi}$, and $P_2 \equiv P_{\sigma\sigma}$.

\[\begin{align*}
\text{(A)} & \quad \begin{array}{c}
\begin{array}{c}
\text{FIG. 3. Impurity transfer matrix. In (A), with } Z^h \\
\text{inserted into both bra and ket layers of the iPEPS the transfer matrix } \Omega^v \text{ becomes impurity transfer matrix } \Omega^v. \text{ Its leading left eigenvectors } (x^L_i) \text{ are obtained from MPOs from } v^L \text{ by inserting additional tensors } X^L. \text{ Here double lines are dropped to improve clarity. In (B), graphical illustration of Eq. (20).}
\end{array}
\end{array}
\end{align*} \]

IV. IMPURITY MPO SYMMETRIES

In order to construct the remaining projectors, that are to be applied to an iPEPS inserted with a nontrivial horizontal MPO symmetry Z^h, we need to introduce an impurity transfer matrix (ITM), see Fig. 3 (A). In general ITM has a number of leading left and right eigenvectors, respectively (x^L_i) and (x^R_i), that are biorthonormal: $(x^L_i | x^R_j) = \delta_{ij}$. The eigenvectors are constructed by inserting the eigenvectors of the vertical TM, respectively v^L and v^R, with additional tensors X^L and X^R.

As shown in Fig. 3 (B), left eigenvector (x^L_i) can be acted on by any vertical MPO symmetry Z^v, including the trivial identity $Z^v_{1i} = 1^v_i$. In order to make the action possible, Z^v_i has to be inserted with additional tensor F that acts on Z^h. With appropriate choice of F_{ij} their combination gives rise to impurity MPO-symmetry z^v_{ij}, such that
\[x^L_i z^v_{ij} = x^L_j. \tag{20} \]
A necessary condition for symmetry z^v_{ij} to exist is that v^L in x^L_i, here denoted by $v^L(i)$, and v^R in x^L_j, here denoted by $v^R(j)$, are related by $v^L(i)$ \(Z^v v^L = v^L(j) \).

A straightforward but essential observation is that, in analogy to MPO symmetries, the IMPO symmetries also satisfy their own fusion rules:
\[\tilde{Z}^v_a \cdot \tilde{Z}^v_b = \sum_c N_{ab}^c \tilde{Z}^v_c. \tag{21} \]
Here we keep only the minimal set of independent IMPO symmetries denoted by a capital \tilde{Z} and labelled with a single index a, b, c. In general the coefficients N_{ab}^c do not need to be integers as they depend on normalization of the eigenvectors (x^L_i) and (x^R_i).

V. IMPURITY PROJECTORS

In analogy to the vertical MPO symmetries and vertical projectors, as a product of two IMPO symmetries is
a linear combination of IMPO symmetries, see Eq. (21),
we can find projectors as linear combinations of IMPO symmetries,
\[\tilde{P} = \sum_a \tilde{c}_a Z_a^v. \] (22)
The condition \(\tilde{P} \cdot \tilde{P} = \tilde{P} \) is equivalent to a set of quadratic equations for coefficients \(\tilde{c}_a \). Numerically it seems more
efficient to find the coefficients by repeated Lanczos iterations:
\[\tilde{P}' \propto \tilde{P} \cdot \tilde{P}. \] (23)
In each iteration the IMPO fusion rules (21) are used to express
the product \(\tilde{P} \cdot \tilde{P} \) as a new linear combination \(\tilde{P}' = \sum_a \tilde{c}_a' Z_a^v \) and then new coefficients \(\tilde{c}_a' \) are normal-
ized so that the maximal magnitude of the eigenvalues of
\(\tilde{P}' \) is 1. Therefore, each iteration is a map \(\{ c_a \} \to \{ \tilde{c}_a' \} \)
which is repeated until the coefficients converge. These
computations are performed in the biorthonormal eigen-
basis of impurity eigenvectors, \((x_a^L) \) and \((x_a^R) \), where
all involved MPO’s become small matrices like, e.g.,
\((x_a^L Z_b^v x_a^R) \equiv [Z_{bc}]_{ab} \). Repeating the Lanczos scheme
with random initial coefficients we obtain all impurity projectors.

A. Toric code

There is one ITM with \(Z^h = Z_2^h \). It has two eigenvectors
\((x_1^L) \) one for each TM eigenvector \(v_1^L \). In addition
to an identity, \(\bar{1}^e \), there is one non-trivial IMPO sym-
metry \(\bar{Z}_2^1 = \bar{Z}_2^3 \equiv \bar{Z}_2 \). A non-trivial fusion \(\bar{Z}_2 \) algebra,
\(\bar{Z}^v \cdot \bar{Z}^v = 1^v \), implies two projectors:
\[\tilde{P}_{\pm} = \frac{1}{2} \left(\bar{1}^e \pm \bar{Z}_2 \right). \] (24)
They will be identified as magnetic and fermionic projectors, \(\tilde{P}_{+} = \tilde{P}_{m} \) and \(\tilde{P}_{-} = \tilde{P}_{e} \), respectively.

B. Fibonacci string net

There is one ITM with \(Z^h = Z_2^h \). It has one eigenvector
\((x_1^L) \) embedded in \(v_1^L \) and two eigenvectors \((x_{2,3}^L) \)
embedded in \(v_2^L \). We choose the two to be Hermitian and
orthonormal but this still leaves (gauge) freedom of their
rotation. In addition to the trivial identity, \(1^v \), there are
two ITM symmetries: \(\bar{Z}_2^3 \) and \(\bar{Z}_3^1 \). Their fusion rules
do depend on the gauge but independently of the gauge
we find numerically three projectors \(\tilde{P}_{1,2,3} \). Only two of
them project on states that are orthogonal to the states
obtained with vertical projectors, as can be verified by
calculating overlaps between their respective projected
iPEPS on infinite torus. The new projectors will be iden-
tified as \(\tilde{P}_1 = \tilde{P}_r \) and \(\tilde{P}_2 = \tilde{P}_r \).

C. Ising string net

There are two ITM with \(Z_2^h \) and \(Z_2^h \). For each of them
independently we construct impurity projectors. In case of
\(Z_2^h \) we find four projectors to be identified later as
\(\tilde{P}_{\sigma} \), \(\tilde{P}_{\bar{\sigma}} \) and \(\tilde{P}_{\psi} \) and \(\tilde{P}_{\bar{\psi}} \). In case of \(Z_2^h \) we find three projectors
to be identified as \(\tilde{P}_{\sigma} \), \(\tilde{P}_{\bar{\sigma}} \) and \(\tilde{P}_{\psi} \). The last one provides
a new way to obtain \(\sigma\bar{\sigma} \) flux in addition to vertical
projector \(\tilde{P}_2 \equiv \tilde{P}_{\sigma\bar{\sigma}} \). This is similar redundancy as in the
Fibonacci model.

VI. TOPOLOGICAL ENTROPY: VERTICAL
PROJECTORS

The topological entanglement entropy (TEE) [58] is
not full characterization of topological order but it may
provide quick and numerically stable diagnostic for an
iPEPS obtained by numerical minimization. Studies of
von Neumann TEE of PEPS wavefunctions have long
tradition [59] but they require finding full entanglement
spectrum of an infinite half-cylinder and extrapolation
to the limit of its infinite width, a task that may be hard
to accomplish for a long correlation length. In contrast,
the projector formalism is naturally compatible with the
second Renyi entropy allowing for its efficient evaluation
directly in the thermodynamic limit. What is more, in

![FIG. 4. Topological entropy.](image-url)
the realm of string net models the Renyi and von Neumann TEE were shown to be the same [60].

Here we consider a vertical cut in an iPEPS wrapped on an infinite horizontal cylinder of width \(L_v \). Its right/left boundary fixed point on the left/right half-cylinder is \(\sigma_L/\sigma_R \). A reduced density matrix for a half cylinder is isomorphic to \([61]\)

\[
\rho \propto \sqrt{\sigma_L^T \sigma_R} \sqrt{\sigma_R^T}
\]

and its second Renyi entropy is

\[
S_2 = -\log \text{Tr} \rho^2 = -\log \text{Tr} \sigma_L^T \sigma_R \sigma_R^T \sigma_L.
\]

We want the entropy in a state with a definite anyon flux \(a \) along the cylinder.

Towards this end, we begin with \(\sigma_{L,R} \propto v_1^{L,R} \) that is a combination of all anyon fluxes. After inserting projector \(P_a \) into the vertical cut we obtain

\[
\rho_a = N_a \sqrt{(v_1)^T (v_1^R \cdot P_a) (v_1^L)^T}.
\]

Here the projector was applied to \(\sigma_R \propto v_1^R \) without loss of generality and normalization \(N_a \) is such that \(\text{Tr} \rho_a = 1 \). The entropy becomes

\[
S_2(a) = -\log \text{Tr} \rho_a^2 = -\log N_a^2 \text{Tr} (v_1^L)^T (v_1^R \cdot P_a) (v_1^L)^T (v_1^R \cdot P_a^T) = -\log N_a^2 \text{Tr} (v_1^L)^T v_1^R (v_1^L)^T (v_1^R \cdot P_a)\]

Here it is enough to keep only one projector that yields a linear combination,

\[
v_1^R \cdot P_a = \sum_b s_b^a v_1^R,
\]

with coefficients \(s_b^a \) that follow from the properties of the MPO symmetries whose linear combination is \(P_a \).

The normalization \(\text{Tr} \rho_a = 1 \) and the biorthonormality, \(\text{Tr} (v_1^L)^T v_1^R = \delta_{ab} \), fix \(N_a = 1/s_1^a \). The entropy becomes

\[
S_2(a) = -\log \sum_b \frac{s_b^a}{(s_1^a)^2} \text{Tr} (v_1^L)^T v_1^R (v_1^L)^T v_1^R.
\]

The trace is a trace of the tensor network in Fig. 4 (A). It is equal to a trace of \(L_v \)-th power of a transfer matrix. For large enough \(L_v \), the network becomes

\[
\text{Tr} (v_1^L)^T v_1^R (v_1^L)^T v_1^R = G_b \Lambda_b^{L_v}.
\]

Here \(\Lambda_b \) is the leading eigenvalue of the transfer matrix and \(G_b \) its degeneracy. For large enough \(L_v \) the entropy is dominated by terms with the maximal leading eigenvalue,

\[
\Lambda = \max_b \Lambda_b, \quad \Lambda = \max_b \Lambda_b
\]

and becomes

\[
S_2(a) = -\log \Lambda \sum_b \frac{G_b s_b^a}{(s_1^a)^2} \equiv \alpha L_v - \gamma_a.
\]

Here the sum is restricted to indices \(b \) with \(\Lambda_b = \Lambda \). The area law has a coefficient

\[
\alpha = -\log \Lambda
\]

that does not depend on anyon flux \(a \) and the TEE is

\[
\gamma_a = \log \sum_b G_b s_b^a \left(s_1^a \right)^2.
\]

We evaluate this expression in several examples.

A. Toric code

The projector yields \(v_1^R \cdot P_T = (v_1^R \mp v_2^R)/2 \), hence \(s_1^\pm = 1/2 \) and \(s_2^\pm = \mp 1/2 \). Furthermore, we obtain

\[
\text{Tr} (v_1^L)^T v_1^R (v_1^L)^T v_1^R = \Lambda_{L_v} \text{ when } b = 1 \text{ and zero otherwise. There is no degeneracy, } G_1 = 1. \text{ Therefore,}
\]

\[
\gamma_{\pm} = \log \sum_b 4 s_b^\pm = \log 4 s_1^\pm = \log 2.
\]

This number is consistent with the anticipated identification \(P_+ \equiv P_{vac} \) and \(P_- \equiv P_e \).

B. Fibonacci string net

The projector yields \(v_1^R \cdot P_T = (\phi \pm 1/v_1^R \mp v_2^R)/\sqrt{5} \), hence \(s_1^\pm = \phi \pm 1/\sqrt{5} \) and \(s_2^\pm = \mp 1/\sqrt{5} \). We obtain with numerical precision:

\[
\gamma_+ = \log D, \quad \gamma_- = \log \frac{D}{d_+ d_+},
\]

where \(D = 2 + \phi \) is the total quantum dimension and \(d_+ = d_+ = \phi \). These numbers are consistent with the identification \(P_+ \equiv P_{vac} \) and \(P_- \equiv P_{\phi \mp} \).

C. Ising string net

Following similar lines for the double Fibonacci string net we obtain

\[
\gamma_5 = \log D, \quad \gamma_6 = \log \frac{D}{d_+ d_+}, \quad \gamma_2 = \log \frac{D}{d_+ d_+},
\]

with numerical precision. Here the total quantum dimension \(D = 4, \ d_+ = d_+ = \sqrt{2}, \) and \(d_+ = d_+ = 1 \). They are consistent with the identifications: \(P_5 \equiv P_{vac}, \ P_6 \equiv P_{\psi \mp}, \) and \(P_2 \equiv P_{\sigma \mp} \).

VII. TOPOLOGICAL ENTROPY: IMPURITY PROJECTORS

For impurity projectors that act on an iPEPS that is inserted with \(Z^b \) calculation of entropy goes along similar
lines but with modifications accounting for \(Z^h\). Accordingly, we begin with \(\sigma^{L,R} = x^{L,R}_1\). Here \(x^{L}_1\) and \(x^{R}_1\) are MPO forms of impurity eigenstates \(|x^{L}_i\rangle\) and \(|x^{R}_j\rangle\), respectively. As usual, their left/right indices correspond to the bra/ket layer. The action of \(P_a\) yields

\[
x^{R}_1 \cdot \tilde{P}_a^{T} = \sum_b \tilde{s}^a_b x^{R}_b.
\]

Here coefficients \(\tilde{s}^a_b\) are real because \(x^{R}_b\) are Hermitean. Taking into account normalization that follows from their biorthonormality, \(\delta_{a1} = \langle x^{L}_i | x^{R}_i \rangle = \text{Tr} (x^{L}_i)^T x^{R}_i\), the entropy in sector \(a\) becomes

\[
S_2(a) = -\log \sum_b \frac{\tilde{s}^a_b}{(\tilde{s}^a_1)^2} \text{Tr} (x^{L}_1)^T x^{R}_1 (x^{L}_1)^T x^{R}_1.
\]

The trace is a trace of the tensor network in Fig. 4 (B). It is a trace of \(L_v\)-th power of a transfer matrix times a layer of impurities \(X^{L,R}_b\). The transfer matrix is the same as in Fig. 4 (A). For large enough cylinder length \(L_v\) the sum is dominated by indices \(b\) such that \(\Lambda_b = \Lambda\), where \(\Lambda\) is the same maximal leading eigenvalue of the transfer matrices:

\[
S_2(a) = \alpha L_v - \tilde{\gamma}_a.
\]

Here \(\alpha = -\log \Lambda\) is the same as for vertical projectors and independent of anyon flux \(a\). The topological entropy is

\[
\tilde{\gamma}_a = \log \sum_b \frac{\tilde{s}^a_b}{(\tilde{s}^a_1)^2} \sum_{m=1}^{G_1} X^{a,b}_m.
\]

Here

\[
X^{a,b}_m = (U_{b,m}) \text{Tr} (X^{L}_1)^T X^{R}_1 (X^{L}_1)^T X^{R}_1 |D_{[b,m]},
\]

is a form factor where \((U_{1,m})\) and \(|D_{[b,m]}\rangle\) are the up and down leading eigenvectors of the transfer matrix in Fig. 4 (B), numbered by \(m = 1...G_b\) where \(G_b\) is the degeneracy of the leading eigenvalue, and \(\text{Tr} (X^{L}_1)^T X^{R}_1 (X^{L}_1)^T X^{R}_1\) is the MPO equal to the horizontal layer of impurities \(X^{L,R}_b\) in the same figure. The numerical procedure was applied in the following examples.

A. Toric code

The impurity projectors \(\tilde{P}_\pm\) together with IMPO fusion rules (21) determine the coefficients \(\tilde{s}_{\pm \pm} = 1/2\) and \(\tilde{s}_{\pm \mp} = \pm 1/2\). As for vertical projectors, the truncated sum runs over \(b = 1\) only with degeneracy \(G_1 = 1\). The topological entropies are

\[
\tilde{\gamma}_\pm = \log 2 X^{a,1}_1 = \log 2,
\]

within numerical precision. This number is obtained after numerical evaluation of the form factors and is consistent with the identification \(P_+ = P_m\) and \(P_- = P_c\).

B. Fibonacci string net

Numerical evaluation of coefficients \(\tilde{s}^a_b\) and the form factors yields

\[
\tilde{\gamma}_1 = \log \frac{\mathcal{D}}{d_\sigma}, \quad \tilde{\gamma}_2 = \log \frac{\mathcal{D}}{d_\sigma}, \quad \tilde{\gamma}_- = \log \frac{\mathcal{D}}{d_\sigma d_\tau}.
\]

with numerical precision. Here \(D = 2 + \phi\) is the total quantum dimension and \(d_\sigma = d_\tau = \phi\). These numbers are consistent with the identifications: \(\tilde{P}_1 = \tilde{P}_r\), \(\tilde{P}_2 = \tilde{P}_c\), and \(\tilde{P}_3 = \tilde{P}_{\tau \mp}\).

C. Ising string net

Similar numerical evaluation as for Fibonacci model yields

\[
\tilde{\gamma}_a = \log \frac{\mathcal{D}}{d_\sigma}, \quad \tilde{\gamma}_b = \log \frac{\mathcal{D}}{d_\sigma}, \quad \tilde{\gamma}_c = \log \frac{\mathcal{D}}{d_\tau d_\sigma}, \quad \tilde{\gamma}_{\bar{a}} = \log \frac{\mathcal{D}}{d_\tau d_\sigma}, \quad \tilde{\gamma}_{\bar{b}} = \log \frac{\mathcal{D}}{d_\tau d_\sigma}, \quad \tilde{\gamma}_{\bar{c}} = \log \frac{\mathcal{D}}{d_\tau d_\sigma},
\]

within numerical precision. Here the total quantum dimension is \(D = 4\) while \(d_\sigma = d_\tau = 2\sqrt{2}\) and \(d_\phi = d_{\bar{a}} = 1\). The numbers are consistent with the anticipated identification of the projectors.

VIII. TOPOLOGICAL S AND T MATRICES

For pedagogical reasons, up to this point we distinguished between vertical projectors, with a trivial \(Z^h_b\), and impurity projectors. For the present purpose of calculating topological \(S\) and \(T\) matrices it may be more convenient to treat them all on equal footing. We number MPO symmetries as \(Z^{h,v}_a\) with \(a = 1,...,n\), where \(a = 1\) labels the trivial identities \(1^{h,v}\). A basic building block for the projectors is \(\mathbb{F}^{k}_{bc}\), shown in Fig. 5, including the lines of \(Z^h_b\) and \(Z^v_c\) and a tensor at their intersection. When \(b = 1\) (\(c = 1\)) then \(\mathbb{F}\) is just vertical MPO symmetry \(Z^v_1\) (horizontal \(Z^h_1\)). When \(b > 1\) then \(\mathbb{F}^{k}_{bc}\) is one of the IMPO symmetries. Therefore, in this unified notation each (vertical or impurity) projector on anyon flux \(a\) can be expressed as a linear combination

\[
P_a = \sum_{bc} \sum_k c^a_{bkc} \mathbb{F}^{k}_{bc},
\]

where the range of \(k\) depends on \(bc\). When inserted into iPEPS wrapped on an infinite torus, the projector yields the ground state with anyon flux \(a\) in the horizontal direction:

\[
|\Psi^a\rangle = \sum_{ab} \sum_k c^a_{abk} |\phi^a_{ab}\rangle.
\]
Here the last ket is the iPEPS inserted with \mathbb{F}^k_{ab}. Up to this point there is nothing essentially new in this paragraph except for fixing notation.

States $\ket{\Psi^a}$ are used to calculate topological S and T matrices. Diagonal T matrix encodes self-statistics, while S matrix stands for mutual statistics. Together they form a representation of a modular group $SL(2, \mathbb{Z})$, by which they are related to the modular transformations of a torus generated by s and t transformations [62]. It follows that the matrix elements of a combination of the topological S and T matrices are given by the overlaps between $\ket{\Psi^a}$ transformed by a combination of corresponding modular matrices s and t.

Here we work with states on a hexagonal lattice with 120° rotational symmetry and we start by defining torus \mathcal{A} in Fig. 5 with unit vectors w_1, w_2 and corresponding transfer matrices: vertical ($w_1, L_v w_2$) and horizontal ($L_h w_1, w_2$) with $L_{h,v} \to \infty$, see Fig. 2(B) for comparison. Next, we consider all transformations of the unit cell by st matrix, which generates 120° counterclockwise rotation, see Fig. 5. This results in torus \mathcal{B} and \mathcal{C} together with their corresponding transfer matrices as shown in Fig. 5. This construction, however, is general and can be applied to lattices with other symmetries as well.

Our method requires finding three complete sets of ground states

$$\{\ket{\Psi^a_{\mathcal{A}}}, \ket{\Psi^a_{\mathcal{B}}}, \ket{\Psi^a_{\mathcal{C}}}\}, \quad (52)$$

with well-defined anyon fluxes corresponding to three different tori: \mathcal{A}, \mathcal{B}, \mathcal{C}. Topological S and T matrices are extracted from all possible overlaps between states in (52). This algorithm is presented in [63] and slightly generalized in the appendix of Ref. [48].

The core of the calculation is an overlap

$$\langle (\mathbb{F}^k_{ab})_{\mathcal{A}} \mid (\mathbb{F}^{k'}_{ab'})_{\mathcal{B}} \rangle, \quad (53)$$

shown in Fig. 6, between two iPEPS’s on infinite tori \mathcal{A} and \mathcal{B}. It involves new class of impurity transfer matrices and their eigenvectors, where a non-trivial MPO symmetry is in only one layer of the PEPS (either bra or ket) or there are two non-trivial MPO symmetries in both layers but they are of a different type. Inserting an MPO symmetry may in general change the boundaries, hence the change of indices $M_i \to M_j$ and the grey shaded regions denoting these sector changes.
A. Toric code

For analytic tensors with $D = 4$ we obtain the exact matrices up to numerical precision:

$$S_{TC} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}, \quad T_{TC} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}. $$

Here consecutive columns and rows correspond to projectors that were labelled as $1, e, m, e$. This matrices confirm correctness of this labelling up to possible interchange of e and m that is a matter of convention.

B. Fibonacci string net

For the five states obtained with projectors $P_{vac}, P_{\tau\tau}, \bar{P}_{\tau\tau}, \bar{P}_\tau, \bar{P}_{\tau}$ we obtain the matrices:

$$S_{\text{Fib}} = \frac{1}{4} \begin{pmatrix} 1 & \varphi^2 & \varphi^2 & \varphi \\ \varphi^2 & 1 & 1 & -\varphi - \varphi \\ -\varphi - \varphi & -\varphi & -\varphi & -\varphi \\ -\varphi & -\varphi & -\varphi & -\varphi \end{pmatrix},$$

$$T_{\text{Fib}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{4i\pi/5} \end{pmatrix}. $$

For brevity matrix S_{Fib} is shown exact with $\varphi = d_r = \frac{1}{2}(1 + \sqrt{5})$ although we obtain it with numerical accuracy $O(10^{-10})$. It is clear that we can remove either second or third row and column because they both correspond to two equivalent ways of obtaining flux $\tau\bar{\tau}$.

C. Ising string net

For the ten states obtained with projectors $P_{vac}, P_{\psi\bar{\psi}}, P_{\sigma\bar{\sigma}}, \bar{P}_{\sigma\bar{\sigma}}, \bar{P}_{\psi\bar{\psi}}, \bar{P}_{\sigma\bar{\sigma}}, \bar{P}_{\sigma\bar{\sigma}}$ we obtain the matrices with numerical accuracy $O(10^{-13})$:

$$S_{Is} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 2 & 2 & 1 & 1 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & 1 & 2 & 2 & 1 & 1 & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} \\ 2 & 2 & 0 & 0 & -2 & -2 & 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & -2 & -2 & 0 & 0 & 0 & 0 \\ 1 & 1 & -2 & -2 & 1 & 1 & \sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 & 0 & \sqrt{2} & -\sqrt{2} & 0 & 0 & -2 & -2 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 & -\sqrt{2} & \sqrt{2} & 2 & -2 & 0 & 0 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 & -\sqrt{2} & \sqrt{2} & -2 & 2 & 0 & 0 \end{pmatrix},$$

$$T_{Is} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e^{i\pi/8} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e^{-i\pi/8} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e^{-i\pi/8} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e^{-i\pi/8} \end{pmatrix}. $$

It is clear that we can remove either third or fourth row and column because they both correspond to two equivalent ways of obtaining flux $\sigma\bar{\sigma}$.

IX. SUMMARY

We presented numerical method to determine non-Abelian topological order in iPEPS representing the unique ground state on infinite two-dimensional lattice. The method is based on finding consecutively the following elements:

1. All of the boundary fixed points of PEPS transfer matrices in the form of matrix product operators v_i;
2. All MPO symmetries Z_a mapping between the boundaries and their fusion rules;
3. All impurity eigenvectors x_a of vertical impurity transfer matrices of PEPS inserted with horizontal MPO symmetries Z^b;
4. All impurity MPO symmetries \bar{Z} mapping between the impurity eigenvectors;
5. All projectors on states with well defined anyon flux along horizontal direction. They are linear combinations of either vertical MPO symmetries or vertical impurity MPO symmetries: $P_n = \sum_{bc} \sum_k e^{a e^{2\pi i/5} bc} Z^a$;
6. All overlaps between states with definite anyon flux on different infinite tori related by modular transformations.

The topological charges and mutual statistics in the form of topological S and T matrices are recovered from the overlaps. They provide full topological characterization of string net models.

A byproduct of the linear ansatz for a projector is an efficient algorithm to obtain the second Renyi topological entanglement entropy directly in the thermodynamic limit. In addition to tests for the string net models, we found non-zero TEE in the variational ansatz of Ref. [46] for the Kitaev model in magnetic field [3], see appendix C.

ACKNOWLEDGMENTS

We are indebted to Lukasz Cincio and Guifre Vidal, the coauthors of our common Ref. [48], for laying foundations for the present generalization. Special thanks to Lukasz for helpful comments on the present manuscript. We would also like to thank Hyun-Yong Lee for very useful feedback on the ansatz in Ref. [46]. AF would like to thank Bram Vanhecke for explaining the VUMPS algorithm. Numerical calculations were performed in MATLAB with the help of ncon function [64] for tensor contractions. AF acknowledges financial support by Polish Ministry of Science and Education, project No. DI2015 021345, from the budget funds for science in 2016-2020 under the Diamond Grant program. This research was
supported by Narodowe Centrum Nauki (NCN) under grant 2019/35/B/ST3/01028 (AF, JD) and Etiuda grant 2020/36/T/ST3/00451 (AF).

[1] X. G. Wen, “Topological Orders in Rigid States,” Int. J. Mod. Phys. B 4, 239–271 (1990).
[2] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 303, 2–30 (2003).
[3] A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics 321, 2–111 (2006).
[4] M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for topological phases,” Phys. Rev. B 71, 045110 (2005).
[5] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Xiao Ma, K. Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibatauchi, and Y. Matsuda, “Majorana quantization and half-integer thermal quantum hall effect in a kitaev spin liquid,” Nature 559, 227–231 (2018).
[6] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69, 2863 (1992).
[7] S. R. White, “Density-matrix algorithms for quantum renormalization groups,” Phys. Rev. B 48, 10345 (1993).
[8] S. Yan, D. A. Huse, and S. R. White, “Spin-Liquid Ground State of the $S = 1/2$ Kagome Heisenberg Antiferromagnet,” Science 332, 1173 (2011).
[9] H.-C. Jiang, Z. Wang, and L. Balents, “Identifying topological order by entanglement entropy,” Nature Physics 8, 902–905 (2012).
[10] S.-S. Gong, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, “Phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on a honeycomb lattice,” Phys. Rev. B 88, 165138 (2013).
[11] Z. Zhu, D. A. Huse, and S. R. White, “Weak Plaquette Valence Bond Order in the $S = 1/2$ Honeycomb J_1-J_2 Heisenberg Model,” Phys. Rev. Lett. 110, 127205 (2013).
[12] S.-S. Gong, W. Zhu, and D. N. Sheng, “Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model,” Scientific Reports 4, 6317 (2014).
[13] Z. Zhu and S. R. White, “Quantum phases of the frustrated XY models on the honeycomb lattice,” Modern Physics Letters B 28, 1430016 (2014).
[14] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, “Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice,” Phys. Rev. B 91, 075112 (2015).
[15] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, “Competing spin-liquid states in the spin-1/2 Heisenberg model on the triangular lattice,” Phys. Rev. B 92, 140403 (2015).
[16] W. Zhu, S. S. Gong, D. N. Sheng, and L. Sheng, “Possible non-Abelian Moore-Read state in double-layer bosonic fractional quantum Hall system,” Phys. Rev. B 91, 245126 (2015).
[17] Z. Zhu and S. R. White, “Spin liquid phase of the $S = 1/2$ J_1-J_2 Heisenberg model on the triangular lattice,” Phys. Rev. B 92, 041105 (2015).
[18] M. P. Zaletel, Z. Zhu, Y.-M. Lu, A. Vishwanath, and S. R. White, “Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet,” Phys. Rev. Lett. 116, 197203 (2016).
[19] T.-S. Zeng, W. Zhu, J.-X. Zhu, and D. N. Sheng, “Nature of continuous phase transitions in interacting topological insulators,” Phys. Rev. B 96, 195118 (2017).
[20] M.-S. Vaezi and A. Vaezi, “Numerical Observation of Parafermion Zero Modes and their Stability in 2D Topological States,” (2017), arXiv:1706.01192 [quant-ph].
[21] Z. Zhu, I. Kimchi, D. N. Sheng, and L. Fu, “Robust non-Abelian spin liquid and a possible intermediate phase in the antiferromagnetic kitaev model with magnetic field,” Phys. Rev. B 97, 075126 (2018).
[22] Matthias Gohlke, Gideon Wachtel, Youhei Yamaji, Frank Pollmann, and Yong Baek Kim, “Quantum spin liquid signatures in kitaev-like frustrated magnets,” Phys. Rev. B 97, 045110 (2018).
[23] Matthias Gohlke, Roderich Moessner, and Frank Pollmann, “Dynamical and topological properties of the kitaev model in a [111] magnetic field,” Phys. Rev. B 98, 044418 (2018).
[24] L. Cincio and G. Vidal, “Characterizing Topological Order by Studying the Ground States on an Infinite Cylinder,” Phys. Rev. Lett. 110, 067208 (2013).
[25] Y.-C. He, D. N. Sheng, and Y. Chen, “Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model,” Phys. Rev. Lett. 112, 137202 (2014).
[26] W. Zhu, S. S. Gong, F. D. M. Haldane, and D. N. Sheng, “Topological characterization of the non-Abelian Moore-Read state using density-matrix renormalization group,” Phys. Rev. B 92, 165106 (2015).
[27] W. Zhu, S. S. Gong, and D. N. Sheng, “Chiral and critical spin liquids in a spin-1/2 kagome antiferromagnet,” Phys. Rev. B 92, 014424 (2015).
[28] B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal, S. Trebst, and A. W. W. Ludwig, “Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator,” Nat. Commun. 5, 5137 (2014).
[29] W. Zhu, S. S. Gong, F. D. M. Haldane, and D. N. Sheng, “Fractional Quantum Hall States at $\nu = 13/5$ and 12/5 and Their Non-Abelian Nature,” Phys. Rev. Lett. 115, 126805 (2015).
[30] A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann, “Characterization and stability of a fermionic $\nu = 1/3$ fractional Chern insulator,” Phys. Rev. B 91, 035136 (2015).
[31] Y.-C. He, S. Bhattacharjee, F. Pollmann, and R. Moessner, “Kagome chiral spin liquid as a gauged Parafermion Model,” Phys. Rev. Lett. 116, 267209 (2015).
[32] Y.-C. He and Y. Chen, “Distinct Spin Liquids and Their Transitions in Spin-1/2 XXZ Kagome Antiferromagnets,” Phys. Rev. Lett. 114, 037201 (2015).
[33] Y.-C. He, S. Bhattacharjee, R. Moessner, and F. Pollmann, “Bosonic integer quantum hall effect in an interacting lattice model,” Phys. Rev. Lett. 115, 116803 (2015).
[34] S. Geraedts, M. P. Zaletel, Z. Papić, and R. S. K. Mong, “Competing Abelian and non-Abelian topological orders
in $\nu = 1/3 + 1/3$ quantum Hall bilayers,” Phys. Rev. B 91, 205139 (2015).

[35] R. S. K. Mong, M. P. Zaletel, F. Pollmann, and Z. Papic, “Fibonacci anyons and charge density order in the 12/5 and 13/5 quantum Hall plateaus,” Phys. Rev. B 95, 115136 (2017).

[36] Y.-C. He, F. Grusdt, A. Kaufman, M. Greiner, and A. Vishwanath, “Realizing and adiabatically preparing bosonic integer and fractional quantum Hall states in optical lattices,” Phys. Rev. B 96, 201103 (2017).

[37] E. M. Stoudenmire, D. J. Clarke, R. S. K. Mong, and J. Alicea, “Assembling Fibonacci Anyons From a Z_3 Parafermion Lattice Model,” Phys. Rev. B 91, 235112 (2015).

[38] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, “Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model,” Phys. Rev. X 7, 031020 (2017).

[39] S. N. Saadatmand and I. P. McCulloch, “Symmetry fractionalization in the topological phase of the spin-1/2 $J_1 - J_2$ triangular Heisenberg model,” Phys. Rev. B 94, 121111 (2016).

[40] C. Hickey, L. Cincio, Z. Papic, and A. Paramekanti, “Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid,” Phys. Rev. Lett. 116, 137202 (2016).

[41] M. P. Zaletel, Y.-M. Lu, and A. Vishwanath, “Measuring space-group symmetry fractionalization in Z_2 spin liquids,” Phys. Rev. B 96, 195164 (2017).

[42] T.-S. Zeng, W. Zhu, and D. Sheng, “Tuning topological phase and quantum anomalous Hall effect by interaction in quadratic band touching systems,” npj Quantum Materials 3, 49 (2018).

[43] F. Verstraete and J. I. Cirac, “Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions,” (2004), arXiv:cond-mat/0407066.

[44] V. Murg, F. Verstraete, and J. I. Cirac, “Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states,” Phys. Rev. A 75, 033605 (2007).

[45] F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems,” Advances in Physics 57, 143–224 (2008).

[46] Hyun-Yong Lee, Ryui Kaneko, Tsuyoshi Okubo, and Naoki Kawashima, “Gapless kitaev spin liquid to classical string gas through tensor networks,” Phys. Rev. Lett. 123, 087203 (2019).

[47] P. Corboz, “Variational optimization with infinite projected entangled-pair states,” Phys. Rev. B 94, 035133 (2016).

[48] Anna Francuz, Jacek Dziarmaga, Guifre Vidal, and Lukasz Cincio, “Determining topological order from infinite projected entangled pair states,” Phys. Rev. B 101, 041108 (2020).

[49] M. B. Şahinoğlu, D. Williamson, N. Bultinck, M. Mariën, J. Haegeman, N. Schuch, and F. Verstraete, “Characterizing Topological Order with Matrix Product Operators,” (2014), arXiv:1409.2150 [quant-ph].

[50] N. Bultinck, M. Mariën, D. J. Williamson, M. B. Şahinoğlu, J. Haegeman, and F. Verstraete, “Anyons and matrix product operator algebras,” Annals of Physics 378, 183–233 (2017).

[51] M. Iqbal, K. Duivenvoorden, and N. Schuch, “Study of anyon condensation and topological phase transitions from a Z_4 topological phase using the projected entangled pair states approach,” Phys. Rev. B 97, 195124 (2018).

[52] C. Fernández-González, R. S. K. Mong, O. Landon-Cardinal, D. Pérez-García, and N. Schuch, “Constructing topological models by symmetrization: A projected entangled pair states study,” Phys. Rev. B 94, 155106 (2016).

[53] S. P. G. Crone and P. Corboz, “Detecting a Z_3 topologically ordered phase from unbiased infinite projected entangled-pair state simulations,” Phys. Rev. B 101, 115143 (2020).

[54] H. He, H. Moradi, and X.-G. Wen, “Modular matrices as topological order parameter by a gauge-symmetry-preserved tensor renormalization approach,” Phys. Rev. B 90, 205114 (2014).

[55] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and J. Haegeman, “Variational optimization algorithms for uniform matrix product states,” Phys. Rev. B 97, 045145 (2018).

[56] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F. Verstraete, “Faster methods for contracting infinite two-dimensional tensor networks,” Physical Review B 98 (2018), 10.1103/physrevb.98.235148.

[57] Gemma De las Cuevas, J. Ignacio Cirac, Norbert Schuch, and David Perez-Garcia, “Irreducible forms of matrix product states: Theory and applications,” Journal of Mathematical Physics 58, 121901 (2017), https://doi.org/10.1063/1.5000784.

[58] Alexei Kitaev and John Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96, 110404 (2006).

[59] J. Ignacio Cirac, Didier Poilblanc, Norbert Schuch, and Frank Verstraete, “Entanglement spectrum and boundary theories with projected entangled-pair states,” Phys. Rev. B 83, 245134 (2011).

[60] Steven T. Flammia, Alioscia Hamma, Taylor L. Hughes, and Xiao-Gang Wen, “Topological entanglement rényi entropy and reduced density matrix structure,” Phys. Rev. Lett. 103, 261601 (2009).

[61] J. Ignacio Cirac, Didier Poilblanc, Norbert Schuch, and Frank Verstraete, “Entanglement spectrum and boundary theories with projected entangled-pair states,” Phys. Rev. B 83, 245134 (2011).

[62] X.-G. Wen, “A theory of 2+1d bosonic topological orders,” National Science Review 3, 68–106 (2015).

[63] Y. Zhang, T. Grover, and A. Vishwanath, “General procedure for determining braiding and statistics of anyons using entanglement interferometry,” Phys. Rev. B 91, 035127 (2015).

[64] R. N. C. Pfeifer, G. Evenbly, S. Singh, and G. Vidal, “Neon: A tensor network contractor for matlab,” (2014), arXiv:1402.0939 [physics.comp-ph].

Appendix A: Fusion rules

Fusion rules are encoded in F-symbols which have to satisfy the Pentagon equation:

F-symbols of both non-Abelian models are mostly given by the allowed fusions: N_{ab}^c describing $a \times b \rightarrow c$ with all its (allowed) permutations:
Then $F_{def}^{abc} = N_{e}^{r}N_{e}^{s}N_{e}^{t}$ unless they are overwritten by additional special rules:

- for Fibonacci: $N_{1}^{1} = N_{1}^{1} = N_{1}^{1} = 1$
- for Ising: $N_{1}^{1} = N_{1}^{1} = N_{1}^{1} = 1$.

Each TM has two boundary fixed points. They have large bond dimension χ necessary to accommodate a long correlation length. For $\chi = 150$ the correlation length saturates at $\xi \simeq 15.4$. However, when it comes to calculating the topological entanglement entropy, whose cost is much steeper in χ, we will be satisfied with $\chi = 50$, corresponding to $\xi \simeq 10.3$, that is sufficient to recover exact symmetries. There is one non-trivial Z_{2} symmetry such that $v_{1}^{1} \cdot Z_{2}^{v} = v_{2}^{2}$ and $v_{1}^{1} \cdot Z_{2}^{1} = v_{2}^{2}$ and, consequently,

$$Z_{2}^{v} \cdot Z_{2}^{1} = 1^{v}. \tag{C1}$$

This is the algebra of the Z_{2} gauge field that was implemented in the ansatz by construction.

Like in the toric code, the Z_{2} algebra (C1) allows for two vertical projectors:

$$P_{\pm} = P_{\pm} = \frac{1}{2} (1^{v} \pm Z_{2}^{v}). \tag{C2}$$

They project on ± 1 horizontal flux of the Z_{2} gauge field, see Ref. [46]. In this model, when the horizontal cylinder is closed into a torus, the vertical flux also becomes a good quantum number. For an iPEPS wrapped on a torus (without horizontal line Z_{2}^{v}) the state is a superposition of both ± 1 vertical fluxes with equal amplitudes.

We also find nontrivial IMPO symmetry Z_{2}^{t} satisfying the Z_{2} algebra. It allows for two projectors:

$$\tilde{P}_{\pm} = \frac{1}{2} (1^{v} \pm Z_{2}^{t}). \tag{C3}$$

Like the vertical projectors, they project on ± 1 horizontal flux of the Z_{2} gauge field, but with a superposition of vertical fluxes with opposite amplitudes. Therefore, unlike the Fibonacci and Ising string net, neither of these two impurity projectors can be identified with any of the two vertical projectors P_{\pm}.

For vertical projectors we obtain topological entanglement entropy

$$\gamma_{\pm} = \log 2 \tag{C4}$$
in the vacuum and vortex sector, respectively. This demonstrates topological order in the variational iPEPS.
of Ref. [46]. The impurity projectors also yield
\[\tilde{\gamma}_\pm = \log 2 \] (C5)
but here the minimally entangled states ± are different combinations of the vertical \(\mathcal{Z}_2 \) flux than in Eq. (C4).