Research on selective uptake of photosensitizer C$_3$N$_4$@RP by different cancer cells

Jiaxiu Liu1,2, Jingying Chen1,3, Xitong Lin1,3 and Shuchao Zhang1,3

1 Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, People’s Republic of China
2 Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People’s Republic of China
3 Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, People’s Republic of China

E-mail: zhangshuchao@qduhospital.cn

Keywords: photosensitizers, fluorescent, time-dependent, uptake

Abstract

Photodynamic therapy (PDT), as a clinical treatment, can remove malignant cells upon laser irradiation by selective uptake of photosensitizer (PS). The relative contribution of these antitumor effects depends largely on the dose and uptake of PS. In this study, C$_3$N$_4$@RP was chosen as a candidate for selective uptake studies of different cancer cells. C$_3$N$_4$@RP has been proved to possess excellent properties, including absorption edges extending up to 700 nm, efficient cellular uptake, low cytotoxicity, and favorable intracellular fluorescence localization. Considering the optimal therapeutic effect, we first incubated different concentrations of PS with A549 cells and HeLa cells to observe the uptake efficiency at different times. At a concentration of 20 μg ml$^{-1}$, the cellular uptake by A549 and HeLa showed a time-dependent accumulation. The increasing accumulation for cancer cells at the most effective cellular uptake for 24 h follows an order of HeLa > A549. These results suggest that different types of cancer cells have different uptake saturation times for the same PS. All of the presented results support the idea that a properly designed PS is suitable for specific cancer at a specific time to achieve the best therapeutic effect.

1. Introduction

It is well known that cancer is a leading cause of death worldwide [1, 2]. Clinically, most cancer patients respond effectively to chemotherapy, radiotherapy, and adjuvant therapy [3]. However, the development of chemo-resistance, radio-sensitivity, recurrence, and non-specific targeting results in the shortening of survival time and limits these traditional treatments [4]. Photodynamic therapy (PDT), as a modern and non-invasive form of therapy, is based on the local or systemic application of photosensitive compounds, namely, photosensitizers (PSs), which are intensely accumulated in pathological tissues through osmosis effect, subsequent penetrates into tumor tissue to reach tumor cells, and produce internalization into those cells [5]. The PS molecules absorb light at appropriate wavelengths, initiating activation processes that lead to the selective destruction of inappropriate cells [6–8]. Recently, the development of fluorescence detection technology of PSs accumulated in tumor tissue has attracted people’s attention. PS fluorescence can be used as a diagnostic index for malignant tumor detection [9]. However, whether PSs can be used to distinguish different tumor cells remains a question.

Polymeric carbon nitride (CN) is a semiconductor-based photocatalyst. Due to its low toxicity and demonstrated affinity for tumor tissue, metal-free CN has been developed as a highly efficient photocatalyst for tumor cells destruction [10]. However, its activity is extremely low under irradiation with a wavelength beyond 400 nm [11, 12]. More importantly, red phosphorus (RP) has emerged as a new class of photocatalyst, whose visible light absorption edge extends up to 700 nm [13–15]. Creating heterostructure of CN and RP is an effective way to increase the visible light absorption, upshift the conduction band edge, and accelerate the photogenerated electron transfer, which is beneficial to the PDT properties of PSs.
Herein, we evaluated the structure, dark cytotoxicity, cellular uptake, and subcellular localization of C$_3$N$_4$@RP nanosheets (Scheme 1). Furthermore, cell counting kit-8 and flow cytometry analysis provided powerful methods for assessing the optimal time and amount of uptake of C$_3$N$_4$@RP by different types of cancer cells. The cellular uptake by A549 and HeLa showed a time-dependent accumulation at the concentration of 20 μg ml$^{-1}$. The increasing accumulation for cancer cells at the most effective cellular uptake for 24 h follows an order of HeLa > A549. The research can help screen new photosensitive materials C$_3$N$_4$@RP for treating different types of cancer.

2. Experimental section

2.1. Characterization
The synthesis of C$_3$N$_4$@RP samples referred to the phosphorus-doped polymeric carbon nitride nanosheets previously synthesized by our group [16]. The morphology of the samples was observed by a scanning electron microscope (FEI Magellan 400, America) and a transmission electron microscope (EXALENS HT7700, China). Fluorescence data were acquired using a fluorescence spectrophotometer (F-280, China). A laser confocal microscope (Leica SPE, Germany) was used for the fluorescence imaging experiment at 405, 488, and 532 nm. Particle size distribution and zeta potential of C$_3$N$_4$@RP were measured by a dynamic light scattering analyzer (Microtrac Nanotrac Wave II, Japan).

2.2. Cell culture
Human lung adenocarcinoma (A549) and cervical cancer (HeLa) cell lines were acquired from Procell Life Science&Technology Co., Ltd (Wuhan, China). The HeLa cell donor has deceased prior to the research and therefore lack of consent. The cells were authenticated by short tandem repeat analysis. All the procedures complied with the guidelines of Medical Ethics Committee of Affiliated Hospital of Qingdao University. Cell lines were cultured in Dulbecco’s modified eagle medium (DMEM) containing 10% FBS, 100 U ml$^{-1}$ Penicillin and 100 μg ml$^{-1}$ Streptomycin in an incubator (5% CO$_2$) at 37°C. All experiments were performed on cells in the logarithmic growth phase. The culture media was replaced every two days, and the cells were subcultured using 0.25% trypsin-EDTA.

2.3. Scratch assay [17] and phosphorylated apoptosis factor assay [18–20]
Cells were plated in a 12-well plate at a concentration of 3 × 105 cells per well, which were counted by a cell counter (Olympus Model R1, Japan). After incubation for 24 h, serum-free DMEM was incubated with
DMEM solution containing 0.1% FBS was replaced every 24 h.

Observation, and digital images of cancer cell growth were automatically captured every 24 h with DMEM. IncuCyte S3 Live-Cell Analysis System free DMEM three times. An approximately 700 μm wide scratch was created in each well and washed three times with DMEM. The cancer cells were seeded overnight on a 96-well plate. Then, the original medium was exchanged and washed with serum-free DMEM, and cultured in the dark for 24 h [21, 22]. The DMEM solution containing 0.1% FBS was replaced every 24 h.

Cells were seeded on microscopic slides at a density of 3 × 10⁵ cells per well overnight. Then, the original medium was replaced with a solution of C₃N₄@RP at a concentration of 20 μg ml⁻¹, and cultured in the dark for 24 h. After being washed with PBS, the cells were fixed with 4% paraformaldehyde. Next, pro-caspase-3 (ABCAM, England) and 4, 6-diamidino-2-phenylindole (DAPI; 10 μg ml⁻¹ in PBS) antibody staining were performed for routine immunofluorescence. Finally, the slide was transferred to a microscope, and the cells were observed under a confocal microscope.

2.4. Cellular uptake in vitro [7, 8]

The cancer cells were seeded overnight on a 96-well fluorescent plate at a density of 1 × 10⁴ cells per well. Then, the original medium was replaced with C₃N₄@RP with different components in serum-free DMEM, and incubated in the dark for 4, 8, 24, and 48 h. The whole mixture was discarded from the original medium, washed three times with PBS, and added 100 μl DMEM. The retention of cell-associated C₃N₄@RP was detected by fluorescence measurement using a multifunctional microplate reader (TANGEN SAFIRE II, China).

Cells were seeded on microscopic slides at a density of 3 × 10⁵ cells per well overnight. Then, the C₃N₄@RP of different components, which in serum-free DMEM, exchanged the original medium, and cultured in the dark for 24 h. After being washed with PBS, the cells were fixed with 4% paraformaldehyde. Finally, the slide was transferred to a microscope, and the cells were observed under a confocal microscope based on C₃N₄@RP blue fluorescence.

The cellular uptake of the studied PSs was also determined using flow cytometry and quantified based on C₃N₄@RP orange fluorescence. Cancer cells were cultured overnight in a 6-well plate at a density of 3 × 10⁵ cells per well. Then, the original medium was replaced with 20 μg ml⁻¹ C₃N₄@RP, and incubated with cancer cells for 24 h. The excess particles were washed off with PBS, and the cells were digested with trypsin. NP uptake was then quantified by flow cytometry (APOGEE A50-MICR0, England).

GraphPad Prism 8 software was used for statistical analysis. One-way and two-way analyses of variance with Tukey’s test were used to compare the multiple groups. The results were expressed as the mean ± standard deviation (SD) of at least three independent experiments. P < 0.05 was considered statistically significant, and *, ** and *** in the quantitative images were P < 0.05, P < 0.01, and P < 0.001, respectively.

3. Results and discussion

3.1. Characterization of C₃N₄@RP

To track and investigate the uptake process precisely, the morphology of C₃N₄@RP was observed by SEM and TEM. As shown in figure 1(A), C₃N₄@RP is a typical stacked layered structure. The TEM image in figure 1(B) further confirms the nanosheet morphology of C₃N₄@RP. The interactions between nanoparticles and cancer cells are significant, the properties of nanomaterials such as size, shape, and composition are closely related to the ability of cell uptake [23]. The dimensions are a strong determinant of total cell uptake, particles with a size of ~100 nm are suitable for the tumor-specific enhanced permeability and retention effect and possess high nanomaterial retention rate, and tend to accumulate in tumor site [24]. Combined with the particle size of C₃N₄@RP in figure 2(A), this result indicates that C₃N₄@RP nanosheets has been successfully constructed, and make them good candidates for cancer cell uptake.

Figure 1. Characterization of C₃N₄@RP. (A) SEM image and (B) TEM image of C₃N₄@RP.
To investigate whether the functionalized C$_3$N$_4$@RP PS can remain stable fluorescence properties, the hydrodynamic diameter and Zeta potential were studied by dynamic light scattering. Figure 2(A) shows that C$_3$N$_4$@RP has a diameter of about 110 nm. He et al studied the effects of particle size on cellular uptake of polymeric nanoparticles [25]. They found that nanoparticles size in the range \leq150 nm was tended to accumulate in tumor more efficiently. We therefore conclude that the C$_3$N$_4$@RP PS in this study can potentially be taken up by tumor cells. Zeta potential is generally used to evaluate the physical stability of particle dispersion systems [26]. Generally, zeta potential data is associated with colloidal stability [27]. As reported by the previous report [28], zeta potential values of \pm10–10 mV are classified as highly unstable, \pm10–20 mV as relatively stable, \pm20–30 mV as moderately stable, and \geq30 mV as highly stable. According to figure 2(B), the zeta potential of C$_3$N$_4$@RP is about 31 mV, demonstrating the high stability of colloidal dispersion containing C$_3$N$_4$@RP photosensitizer in the tumor microenvironment. To employ the fluorescent potential of PS during cellular uptake, the excitation and emission fluorescence spectra were obtained by exposing the solution of C$_3$N$_4$@RP to UV light ($\lambda = 370 \pm 50$ nm). As shown in figure 2(C), the solution displays intense fluorescence with optimal emission in the blue range ($\lambda = 500 \pm 50$ nm), which makes C$_3$N$_4$@RP a good candidate as a fluorescent probe in bioimaging [29].

Further, the fluorescence imaging function of C$_3$N$_4$@RP was investigated [30]. A confocal laser scanning microscope was used for showing that PS can be displayed different colors under different excitation wavelengths in figure 3, which demonstrated C$_3$N$_4$@RP nanosheets could be used for tumor bioimaging in cellular uptake, this property lays the foundation for further exploration of PDT in different tumor cells.

3.2. Evaluation of biocompatibility

A scratch assay was adopted to investigate the effect of the PS prepared on cell migration. Human lung adenocarcinoma cells (A549) were determined after co-incubation with various C$_3$N$_4$@RP for four days (figures 4(A) and (B)). The results indicated that A549 cells maintained intact scratch closure (about 100% of the cell coverage area) under the condition of no more than 50 μg ml$^{-1}$ PS. There was no significant difference between the different concentration groups and the control groups. Cervical cancer cells (HeLa) were determined after co-incubation with various C$_3$N$_4$@RP NRs for six days (figures 4(C) and (D)). The intact scratch closure of HeLa cells was consistent with that of A549 cells. The results indicated that both kinds of cells maintained high viability under the condition of no more than 50 μg ml$^{-1}$ PS. The excellent biocompatibility of C$_3$N$_4$@RP was beneficial to therapeutic applications.

Pro-caspase-3 is a key enzyme in cell apoptosis [31]. Pro-caspase-3, as its proenzyme form, is a crucial effector enzyme molecule in the signal transduction pathway of cell apoptosis, which can activate endonuclease, degrade DNA, and lead to cell apoptosis. Based on the above physicochemical and biological evaluations of C$_3$N$_4$@RP, we also measured the expression of substrate pro-caspase-3 in HeLa cells treated with or without 20 μg ml$^{-1}$ C$_3$N$_4$@RP. The results showed that after 24 h of co-incubation, the expression of pro-caspase-3 was
measured according to the average fluorescence intensity (figures 5(A) and (B)) [32]. The result showed that there was no significant difference in the expression of pro-caspase-3 between the C3N4@RP treated groups and the untreated groups. Taken together, C3N4@RP showed good biocompatibility.

3.3. Cellular uptake in vitro

According to the previous reports [8], the effective accumulation of uptake means PS inside the tumor cells, which can be evaluated via fluorescence microplate. The fluorescence intensity reflects the effective accumulation of PS. To confirm the uptake of C3N4@RP-NPs by tumor cells, we incubated different concentrations of PS with A549 cells and HeLa cells to observe uptake efficiency at different times [14]. As presented in figure 6(A), the cellular uptake of A549 cells was time-dependent at a concentration of 20 μg ml⁻¹, and an effective accumulation of uptake was achieved after 4 h of incubation. The cellular uptake of HeLa cells was also time-dependent at the concentration of 20 μg ml⁻¹. However, effective accumulation of uptake was achieved after 24 h of co-incubation (figure 6(B)). These results suggested that different types of cancer cells have different saturated concentrations and saturated times of uptake for the same PS. The uptake tendency of C3N4@RP-NPs by tumor cells is consistent with Xia and coworkers, who investigated the uptake of folate-based
nanoparticles by HeLa cells and A549 cells, and they found that cellular uptake behavior of folate-based nanoparticles depended on incubation time and folate concentration [33].

In addition, we confirmed these trends in A549 cells and HeLa cells by flow cytometry analysis. The results showed that PS exhibited more efficient cellular uptake after incubation with HeLa cells for 24 h. And median fluorescence intensity by flow cytometry showed that there was significant difference between the uptake of HeLa cells and A549 cells (figure 7). According to Santos et al. report [34], the NP enter different cell types via different uptake mechanisms. They found that in the HeLa cell line, actin filaments play a decisive role in the uptake process of NPs, while microtubules are mainly involved in NP uptake in the A549 cell line. Therefore, it is supposed that the uptake mechanisms of NP may affect the uptake difference of C3N4@RP. Similarly, from previous report it has been mentioned that A549 cell expresses various stem cell markers and drug resistance proteins, HeLa cells culture have differentially expressed drug resistance related markers, which also proved to be related to cellular uptake and various protein expression [35].

It is important to determine the initial target of PS in PDT by intracellular localization [36]. To precisely evaluate the intracellular localization of PS, the internalization of different cancer cells was observed by confocal laser scanning microscopy (figure 8). It was further confirmed that increased uptake accumulation of HeLa cells was higher than that of A549 cells when incubated at 20 μg ml⁻¹ for 24 h. These observations are consistent with the results of the flow cytometry assay (figure 7), suggesting that PS has efficient internalization. A similar approach has been used by Gong et al. [37], who also utilize fluorescence of ICG-nanoparticles to assess cellular uptake and localization of nanoparticles. Confocal fluorescence microscopy showed obvious fluorescence in the cytoplasm of cancer cells, indicating effective uptake and intracellular distribution of nanomaterials.

4. Conclusion

The design and development of new PSs have always been a hot topic [30, 38]. In this work, the uptake of a PS nanomaterial by different kinds of cancer cells was studied. The PS nanomaterial we selected did not affect the proliferation and migration ability of cells or promote the apoptosis of cells, showing the advantages of low cytotoxicity, good stability, and great biocompatibility. Moreover, different types of cancer cells have different uptake saturation times for the same PS nanomaterials. This will be helpful for screening safer photosensitive
nanomaterials in the future. It also provides help for drug loading, improvement of PS, cancer diagnosis and combination therapy.

Acknowledgments

The authors thank the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (KF2020103).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Ethics approval

Regrettably, donor of HeLa cells has deceased prior to the research and is unable to grant consent but is still identifiable, therefore we added cells origin, short tandem repeat analysis and lack of consent in the manuscript. All the procedures complied with the guidelines of Medical Ethics Committee of Affiliated Hospital of Qingdao University.

ORCID iDs

Shuchao Zhang https://orcid.org/0000-0003-2840-6558

References

[1] Al-Maharma A, Patil S and Markert B 2020 Effects of porosity on the mechanical properties of additively manufactured components: a critical review Mater. Res. Express 7 122001
[2] Yu M, Yu J, Awolude O A and Chuang L 2018 Cervical cancer worldwide Current Problems in Cancer 42 457–65
[3] Gao S, Li N, Wang S, Zhang F, Wei W, Li N, Bi N, Wang Z and He J 2020 Lung cancer in people’s republic of china Journal of Thoracic Oncology 15 1567–76
[4] Zhang Q, Wu L, Liu S, Chen Q, Zeng L, Chen X and Zhang Q 2020 Targeted nanobiology complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment Cancer Cell International 20 570
[5] Sun Q, Zhou Z, Qiu N and Shen Y 2017 Rational design of cancer nanomedicine: nanopropert integration and synchronization Advanced materials (Deerfield Beach, Fla.) 29 1606628
[6] Zhang G and Zhang D 2018 New photosensitizer design concept: polymerization-enhanced photosensitization Chem 4 2013–5
[7] Pucelik B, Arnaut L G and Dąbrowski J M 2020 Lipophilicity of bacteriochlorin-based photosensitizers as a determinant for PDT optimization through the modulation of the inflammatory mediators Journal of Clinical Medicine 9 8
[8] Pucelik B, Sulek A, Drozd A, Stochel G, Pereira M M, Pinto S M A, Arnaut L G and Dąbrowski J M 2020 Enhanced cellular uptake and photodynamic effect with amphiphilic fluorinated porphyrins: the role of sulfoester groups and the nature of reactive oxygen species Int. J. Mol. Sci. 21 2786
[9] Buzzá H H, Zangirolami A C, Davis A, Gómez-García P A and Kurachi C 2017 Fluorescence analysis of a tumor model in the chorioallantoic membrane used for the evaluation of different photosensitizers for photodynamic therapy Photodiagn. Photodyn. Ther. 19 78–83
[10] Xu M et al 2019 Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy Chem. Eng. J. 360 866–78
[11] Fu J, Yu J, Jiang C and Cheng B 2018 g-C3N4-Based heterostructured photocatalysts Advanced Energy Materials 8 1701503
[12] Giannakoudakis D A, Travlou N A, Secor J and Bandosz T J 2017 Oxidized g-C3N4 nanospheres as catalytically photoactive linkers in MOF/g-C3N4 composite of hierarchical pore structure Small 13 1601758
[13] Liu J et al 2021 Visible-light driven rapid bacterial inactivation on red phosphorus/titanium oxide nanofiber heterostructures J. Hazard. Mater. 413 125462
[14] Zha Y et al 2019 Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water Appl. Catalysis B 255 117764
[15] Zha Y, Ren J, Zhang X and Yang D 2020 Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production Nanoscale 12 13297–310
[16] Zha Y et al 2020 Phosphorus–doped polymeric carbon nitride nanosheets for enhanced photocatalytic hydrogen production APL Materials 8 041108
[17] Yin X, Hao Y, Lu Y, Zhang D, Zhao Y, Mei L, Sui K, Zhou Q and Hu J 2021 Bio-multifunctional hydrogel patches for repairing full-thickness abdominal wall defects Adv. Funct. Mater. 31 2105614
[18] Ke H, Wang X, Zhou Z, Ai W, Wu Z and Zhang Y 2021 Effect of weimaining on apoptosis and Caspase-3 expression in a breast cancer mouse model J. Ethnopharmacol. 264 113363
[19] Porter A G and Janicke R U 1999 Emerging roles of caspase-3 in apoptosis Cell Death & Differentiation 6 99–104
[20] Vardya S B, Yakov K and Quan C 2017 VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis Curr. Med. Chem. 24 4435–46
[21] Wang S, Huang G and Dong Y 2020 Directional migration and odontogenic differentiation of bone marrow stem cells induced by dentin coated with nanobioactive glass J. Endodontics 46 216–23
[22] Wang K, Yu B and Pathak J L 2021 An update in clinical utilization of photodynamic therapy for lung cancer Journal of Cancer 12 1154–60
[23] Albanese A, Tang P S and Chan W C W 2012 The effect of nanoparticle size, shape, and surface chemistry on biological systems Annu. Rev. Biomed. Eng. 14 1–16
[24] Bai S, Zhang Y, Li D, Shi X, Lin G and Liu G 2021 Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration Nano Today 36 101038
[25] He C, Hu Y, Yin L, Tang C and Yin C 2010 Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles Biomaterials 31 3657–66
[26] Shen J, Karges J, Xiong K, Chen Y, Ji L and Chao H 2021 Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy Biomaterials 275 120979
[27] Patel V R and Agrawal Y K 2011 Nanosuspension: an approach to enhance solubility of drugs Journal of advanced pharmaceutical technology & research 2 81–7
[28] Bhattacharjee S 2016 DLS and zeta potential—What they are and what they are not? J. Controlled Release 235 337–51
[29] Amaral P, Hall D, Pai R, Krol J, Kalra V, Ehrlich G and Ji H-F 2020 Fibrous Phosphorus Quantum Dots for Cell Imaging ACS Appl. Nano Mater. 3 752–9
[30] Maiuthed A, Chantarawong W and Chanvorachote P 2018 Lung cancer stem cells and cancer stem cell–targeting natural compounds Anticancer Res. 38 3797
[31] Stennicke H R et al 1998 Pro-caspase-3 is a major physiologic target of caspase-8* J. Biol. Chem. 273 27084–90
[32] Tenev T, Marani M, McNeish I and Lemoine N R 2001 Pro-caspase-3 overexpression sensitises ovarian cancer cells to proteasome inhibitors Cell Death & Differentiation 8 256–64
[33] Xia J M, Wei X, Chen X W, Shu Y and Wang J H 2018 Folic acid modified copper nanoclusters for fluorescence imaging of cancer cells with over-expressed folate receptor Mikrochim. Acta 185 205
[34] dos Santos T, Varela J, Lynch I, Salvati A and Dawson K A 2011 Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines PLoS One 6 e24438
[35] Mohapatra S, Nandi S, Choudhury R, Das G, Ghosh S and Bhattacharyya K 2016 Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy Phys. Chem. Chem. Phys. 18 18381–90
[36] Ye S, Wang F, Fan Z, Zhu Q, Tian H, Zhang Y, Jiang B, Hou Z, Li Y and Su G 2019 Light/pH-triggered biomimetic red blood cell membranescamouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy ACS Appl. Mater. Interfaces 11 15262–75
[37] Gong B, Shen Y, Li H, Li X, Huan X, Zhou J, Chen Y, Wu J and Li W 2021 Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy Journal of nanobiotechnology 19 41
[38] Cao M and Chen W 2019 Epidemiology of lung cancer in china Thoracic Cancer 10 3–7