A 45-year-old man with a past history of the removal of a degenerated hematoma two times presented with general convulsion. Computed tomography (CT) showed a high-density lobular mass growing from the right frontal skull base and occupying the right frontal lobe. Magnetic resonance imaging (MRI) demonstrated a homogeneously hyperintense mass on T1-weighted imaging and a homogeneously hypointense mass on T2- and T2*-weighted imaging. We removed the lesion, which intraoperatively showed a blackish-brown and jellylike mass with machine oil-like fluid. There was a thin and elastic membrane at the boundary between the mass and degenerated brain tissue, and we removed as much of the membrane as possible. On light microscopy, most parts of the mass consisted of a degenerated hematoma with xanthogranuloma, while the thin and elastic membrane revealed one or two layers of non-ciliated columnar epithelial cells based on thin fibrous tissues with microvessels. Immunohistochemical staining showed that these epithelial cells contained periodic acid-Schiff (PAS)-positive granules, and were positive for cytokeratin (CAM5.2), carcinoembryonic antigen (CEA), and epithelial membrane antigen (EMA). Ultrastructural examination showed numerous microvilli at the surface of non-ciliated cells, and an interdigitation-like, dense adhesion structure. On the basis of pathological findings, the patient was considered to have a large endodermal cyst (EC) at the frontal skull base, probably derived from Seessel’s pouch. We speculate that EC developed inflammatory changes with xanthogranuloma, which caused further damage to the blood vessels and continuous hemorrhage.

Keywords: endodermal cyst, hemorrhage, Seessel’s pouch, xanthogranuloma

Introduction

Endodermal cyst (EC) is a rare congenital cyst made up of epithelium, consisting of mucin-secreting columnar cells with underlying connective tissue. It is usually located ventral to the cervical and thoracic spine.1–3) Intracranial ECs at the midline of the posterior fossa and anterior brainstem are rare,1,2) and, moreover, supratentorial EC is particularly uncommon; however, some cases have been reported.4–16) Fluid in the cysts usually contains various levels of proteins; therefore, T1-weighted images on magnetic resonance imaging (MRI) show various intensities.17–20) Partial resection of the cyst wall occasionally induces cyst recurrence.1,2,12) Here, we describe the first reported case of a large EC with xanthogranuloma at the frontal skull base, which slowly recurred with continuous bleeding. We also discuss the origin of EC and cause of hematoma, showing informative atypical neuroradiological images as well as interesting intraoperative and histopathological findings.

Case Presentation

I. History

A 45-year-old man presented with general convulsion. On arrival at our hospital, his consciousness was clear and neurological examinations demonstrated only right anosmia. When he was 26 years and 29 years old, he had undergone surgery in our hospital to remove a right frontal lobular mass which showed a high density on computed tomography (CT) (Fig. 1a). The previous lesions were believed to have been totally removed; however, lobular cavities still remained (Fig. 1b). The high density mass slowly regrew.

II. Radiological findings

CT on admission showed a bright, high-density lobular mass growing from the right frontal skull base and occupying the right frontal lobe (Fig. 1c). MRI demonstrated a homogeneously hyperintense mass on T1-weighted imaging (Fig. 1d) and a homogeneously hypointense mass on T2-weighted imaging (Fig. 1e). T1-weighted coronal imaging after the injection of gadolinium contrast medium showed a mass located on the crista galli and cribriform plate without contrast enhancement (Fig. 1f). Cerebral angiography showed neither tumor stains nor abnormal vessels.

III. Operation

We performed a third surgery with bifrontal craniotomy. After opening the dura mater at the surface of the frontal lobe, we found a blackish-brown and jellylike mass with machine oil-like fluid (Fig. 2a, arrow), which was too viscous to remove by suction. Some parts of the mass were like hard stone (Fig. 2b, c; arrow). Because we strongly suspected that the mass was associated with an EC, we removed not only the hard, jellylike mass but also the thin, elastic membrane (Fig. 2a, b; arrowheads) around the mass as much as possible.
IV. Pathological findings

Histopathological examination of the hard, blackish-brown mass showed that most parts of the mass were a degenerated hematoma with cholesterol clefs (Fig. 3a); however, some parts were xanthogranuloma which consisted of numerous cholesterol clefs surrounded by fibrous tissue, inflammatory cells, and macrophages with hemosiderin (Fig. 3b). Histopathological examination of the thin, elastic membrane revealed that one or two layers of epithelial cells were based on thin fibrous tissues with microvessels (Fig. 3c). With a
A Large Endodermal Cyst with Xanthogranuloma

High magnification, one or two layers consisted of non-ciliated columnar epithelial cells (Fig. 3d). Immunohistochemical staining showed that the non-ciliated columnar epithelial cells were positive for cytokeratin (CAM5.2) (Fig. 3e). Carcinoembryonic antigen (CEA; Fig. 3f) and epithelial membrane antigen (EMA) were also positive, especially at the surface of epithelial cells; however, they were negative for glial fibrillary acidic protein (GFAP) and S-100 protein. On periodic acid-Schiff (PAS) staining, most columnar epithelial cells contained PAS-positive granules (Fig. 3g), which showed that these cells produced mucin. No clear goblet cells were found. Ultrastructural examination of this membrane showed numerous microvilli at the surface of non-ciliated cells, and the dense interdigitation-like adhesion structure was well-developed (Fig. 4). Based on these findings, the pathological diagnosis of the cyst wall was EC with xanthogranuloma.

V. Postoperative course

Postoperative CT showed the total removal of the mass and disappearance of lobular cavities. His postoperative
course was uneventful, and he was discharged without any new neurological deficit. CT and MRI showed no evidence of recurrence of intracranial bleeding at 18 months after the third surgery.

Discussion

Although intracranial ECs are markedly less frequent than those of the spinal canal, the major location of intracranial lesions is the posterior fossa,1,2 while some supratentorial cases have been reported, such as involving the convexity,5,7,8,12,15 septum pellucidum,11,14 third ventricle,5,16 superior orbital fissure,10 along the optic nerve,13 and the suprasellar area.4,9 ECs are considered to originate from the persistence of endodermal remnants of the notochord during closure of the neural canal in the third week of embryogenesis.1–3 The rostral part of the notochord is near the mesenchyma forming the clivus. That is why ECs are mainly located in the spinal canal, and sometimes in the posterior fossa, and they are also called neurenteric cysts (NCs).2,3,5,9,12,13,15,18–20 However, this explanation does not apply to supratentorial lesions like in this case. Graziani et al. reported that supratentorial ECs may arise from a remnant of Seessel’s pouch, which is an endodermal diverticulum. It transiently appears as an outpouching of the embryonic pharynx rostral to the pharyngeal membrane and caudal to Rathke’s pouch.9 They suggested that remnants of Seessel’s pouch may develop in various locations. For example, a cyst in the sella is called Rathke’s cleft cyst (RCC), a cyst in the suprasellar area is called ectopic RCC, and a cyst in the third ventricle is called a colloid cyst (CC). There seems to be no immunohistopathological criteria to distinguish among RCC, CC, NC, and EC. These cysts are considered to show common characteristics with an endodermal origin.7,9,16 Although supratentorial ECs may arise from ectopic endodermal remnants, their precise origin remains unknown.

Neuroradiological imaging shows variable signal characteristics in ECs. On CT, cysts usually appear as low- to isodense, but are sometimes high-density lesions.17,20 On MRI, cysts are usually iso- to hypointense on T\textsubscript{1}-weighted images, iso- to hyperintense on T\textsubscript{2}-weighted images, and show no restriction of water diffusion on diffusion-weighted imaging (DWI) without contrast enhancement.17–20 Usually, the bright signal intensity on T\textsubscript{1}-weighted images depends on the high-level contents of mucous in cysts, which differs from the intensity of an arachnoid cyst.22 In our case, atypical findings of CT and MRI were considered to be due to the concentration of a degenerated hematoma with mucous contents. From the pathological findings, we speculate as follows: minor bleeding from fibro-connective tissue underlying epithelial cells or the disintegration of mucinous fluid produced by epithelial cells may cause chronic inflammation and hemorrhage, and, consequently, xanthogranuloma might occur. A cholesterol granuloma may result in the further damage of blood vessels and continuous hemorrhage in the cyst, leading to a large, growing hematoma.21 Similar radiological and pathological findings have been reported as xanthogranuloma in the sellar region,21–25 which is usually smaller than in this case. Amano et al. reported a correlation between xanthogranuloma and RCC based on pathological examination, and speculated that RCC becomes inflamed, then bleeds, and subsequently degrades, which induces xanthogranuloma.22

Although ECs are congenital anomalies of a benign nature, cysts are known to recur from the residual cyst wall if they are removed partially or only the aspiration of fluid in the cyst is conducted.1,2,12 Therefore, a complete cure is important to remove as much of the cyst wall as possible.1,2,12 In this case, two incomplete removals of the cyst wall led a gradual recurrence of the cyst with hematoma. Inexperienced surgeons might not be aware of the origin of hematomas or the accurate pathological diagnosis of this lesion, because this EC showed atypical neuroradiological features with continuous bleeding. We were aware of the possibility of this lesion being an EC before the third surgery. Although we removed as much of the cyst wall attached to the degenerated brain tissue as possible, we remain doubtful of the complete removal of the large cyst wall at the third surgery. We suggest that this patient should be followed-up periodically. We recommend that surgeons become aware of this rare type of EC with hematoma.

Conflicts of Interest Disclosure

None of the authors have any conflict of interest in this article. All authors who are members of The Japan Neurosurgical Society (JNS) have registered an online Self-reported COI Disclosure Statement Form through the website for JNS members.

References

1) Bejjani GK, Wright DC, Schessel D, Sekhar LN: Endodermal cysts of the posterior fossa. Report of three cases and review of the literature. J Neurosurg 89: 326–335, 1998
2) Harris CP, Dias MS, Brockmeyer DL, Townsend JJ, Willis BK, Apfelbaum RI: Neurenteric cysts of the posterior fossa: recognition, management, and embryogenesis. Neurosurgery 29: 893–897; discussion 897–898, 1991
3) Lee SH, Dante SJ, Simeone FA, Curtis MT: Thoracic neurenteric cyst in an adult: case report. Neurosurgery 45: 1239–1242; discussion 1242–1243, 1999
4) Akimoto J, Nakajima N, Saida A, Miki T, Harako J: Symptomatic suprasellar endodermal cyst, possibly originating from the Seessel’s pouch, containing fluid with a high carcinoembryonic antigen level. Brain Tumor Pathol 30: 128–133, 2013
5) Bavetta S, El-Shunnar K, Hamlyn PJ: Neurenteric cyst of the anterior cranial fossa. Br J Neurosurg 10: 225–227, 1996
6) Bütter A, Winkler PA, Weis S: Endodermal cyst of the third ventricle: case report. Neurosurgery 40: 832–835; discussion 835, 1997
7) Cheng JS, Cusick JF, Ho KC, Ulmer JL: Lateral supratentorial endodermal cyst: case report and review of literature. Neurosurgery 51: 493–499; discussion 499, 2002
8) Christov C, Chrițean F, Brugieres P, Djindjian M: Giant supratentorial enterogenous cyst: report of a case, literature review, and discussion of pathogenesis. Neurosurgery 54: 759–763; discussion 763, 2004
9) Graziani N, Dufour H, Figarella-Branger D, Donnet A, Bouillot P, Grisoli F: Do the suprasellar neurenteric cyst, the Rathke cleft cyst and the colloid cyst constitute a same entity? Acta Neurochir (Wien) 133: 174–180, 1995
10) Leventer DB, Merriam JC, Defendini R, Behrens MM, Housepian EM, LeQuerica S, Blitzer A: Enterogenous cyst of the orbital apex and superior orbital fissure. Ophthalmology 101: 1614–1621, 1994
11) Mishra GP, Sharma RR, Massa MM, Pawar SJ: Endodermal cyst of septum pellucidum and pregnancy: a case report. Surg Neurol 53: 583–585, 2000
A Large Endodermal Cyst with Xanthogranuloma

12) Miyagi A, Katayama Y: Neurenteric cyst arising in the high convexity parietal lesion: case report. Neurosurgery 60: E203–E204; discussion E204, 2007

13) Scaravilli F, Lidov H, Spalton DJ, Symon L: Neuroenteric cyst of the optic nerve: case report with immunohistochemical study. J Neurol Neurosurg Psychiatry 55: 1197–1199, 1992

14) Sharma RR, Ravi RR, Gurusinghe NT, Coutinho C, Mahapatra AK, Sousa J, Pawar SJ: Cranio-spinal enterogenous cysts: clinico-radiological analysis in a series of ten cases. J Clin Neurosci 8: 133–139, 2001

15) Tan GS, Hortobágyi T, Al-Sarraj S, Connor SE: Intracranial laterally based supratentorial neuroenteric cyst. Br J Radiol 77: 963–965, 2004

16) Lach B, Scheithauer BW, Gregor A, Wick MR: Colloid cyst of the third ventricle. A comparative immunohistochemical study of neuraxis cysts and choroid plexus epithelium. J Neurosurg 78: 101–111, 1993

17) Aoki S, Machida T, Sasaki Y, Yoshikawa K, Iio M, Sasaki T, Takakura K: Enterogenous cyst of cervical spine: clinical and radiological aspects (including CT and MRI). Neuroradiology 29: 291–293, 1987

18) Brooks BS, Duvall ER, el Gammal T, Garcia JH, Gupta KL, Kapila A: Neuroimaging features of neuroenteric cysts: analysis of nine cases and review of the literature. AJNR Am J Neuroradiol 14: 735–746, 1993

19) Preece MT, Osborn AG, Chin SS, Smirniotopoulos JG: Intracranial neuroenteric cysts: imaging and pathology spectrum. AJNR Am J Neuroradiol 27: 1211–1216, 2006

20) Shakudo M, Inoue Y, Ohata K, Tanaka S: Neuroenteric cyst with alteration of signal intensity on follow-up MR images. AJNR Am J Neuroradiol 22: 496–498, 2001

21) Rubin E, Farber JT: Pathology, ed 2. Philadelphia, JB Lippincott, 1994

22) Amano K, Kubo O, Komori T, Tanaka M, Kawamata T, Hori T, Okada Y: Clinicopathological features of sellar region xanthogranuloma: correlation with Rathke’s cleft cyst. Brain Tumor Pathol 30: 233–241, 2013

23) Burt MG, Morey AL, Turner JJ, Pell M, Sheehy JP, Ho KK: Xanthomatous pituitary lesions: a report of two cases and review of the literature. Pituitary 6: 161–168, 2003

24) Jung CS, Schänzer A, Hattingen E, Plate KH, Seifert V: Xanthogranuloma of the sellar region. Acta Neurochir (Wien) 148: 473–477, 2006

25) Paulus W, Honegger J, Keyvani K, Fahrbusch R: Xanthogranuloma of the sellar region: a clinicopathological entity different from adamantinomatous craniopharyngioma. Acta Neuropathol 97: 377–382, 1999