New microsatellite markers for *Xerophyta dasylirioides* (Velloziaceae), an endemic species on Malagasy inselbergs

Juliane Rexroth1,7, Lukas Krebes1, Tina Wöhrmann2, Dörte Harpke2, Marina Rabarimanarivo4, Peter Phillipson5,6, Kurt Weising2, and Stefan Porembski1

Manuscript received 21 March 2019; revision accepted 13 May 2019.

1 Department of Biological Sciences, University of Rostock, D-18057 Rostock, Germany
2 Plant Molecular Systematics, Department of Sciences, University of Kassel, D-34132 Kassel, Germany
3 Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Research (IPK), D-06466 Gatersleben, Germany
4 Missouri Botanical Garden, P.O. Box 3391, Antananarivo 101, Madagascar
5 Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, USA
6 Département Systématique et Evolution Muséum National d’His-toire Naturelle, 75231 Paris CEDEX 05, France
7 Author for correspondence: juliane.rexroth@uni-rostock.de

Citation: Rexroth, J., L. Krebes, T. Wöhrmann, D. Harpke, M. Rabarimanarivo, P. Phillipson, K. Weising, and S. Porembski. 2019. New microsatellite markers for *Xerophyta dasylirioides* (Velloziaceae), an endemic species on Malagasy inselbergs. *Applications in Plant Sciences* 7(8): e11282. doi:10.1002/aps3.11282

PREMISE: Microsatellite markers were developed for *Xerophyta dasylirioides* (Velloziaceae), a species endemic to the Malagasy inselbergs, to explore the impact of its island-like distribution on genetic diversity and gene flow.

METHODS AND RESULTS: A total of 7110 perfect microsatellite loci were recovered by shotgun sequencing on an Illumina MiSeq platform. Primer pairs were designed for 40 arbitrarily selected loci. Fifteen primer pairs that generated distinct PCR products were used to genotype 80 individuals of *X. dasylirioides* from three inselberg populations. All markers were polymorphic, revealing two to 17 alleles in the overall sampling. Levels of observed and expected heterozygosity per locus ranged from zero to 1.000 and from zero to 0.850, respectively. Success rates of cross-amplification in 10 additional species of *Xerophyta* ranged from zero to 70%.

CONCLUSIONS: Fifteen newly developed microsatellite markers provide a toolkit for assessing population genetic parameters of *X. dasylirioides* in its unique island-like habitats.

KEYWORDS: desiccation-tolerance; genetic diversity; Illumina sequencing; Madagascar; rock outcrops; Velloziaceae; *Xerophyta dasylirioides*.

PRIMER NOTE

Inselbergs are isolated, often dome-shaped monolithic rock outcrops (either single or groups) that mainly consist of granite or gneiss (Porembski, 2007). Because inselbergs are ecologically separated from the surrounding matrix, these ecosystems are often referred to as terrestrial or sky islands (Porembski and Barthlott, 2000; Emerson, 2002). Only a few plant species possess traits that enable them to grow successfully in inselberg habitats, which are usually characterized by high temperatures, strong aridity, rocky soils, and extreme nutrient deficiency. The Velloziaceae are desiccation-tolerant vascular plants that are important floral elements on inselbergs and other rock outcrops in South America, Africa, and Madagascar (Mello-Silva et al., 2011). Studies of Velloziaceae (e.g., Loussada et al., 2013) and Bromeliaceae (e.g., Barbará et al., 2007) in South America, as well as of Gesneriaceae in Asia (e.g., Hughes et al., 2007), have indicated that rates of genetic exchange between populations located on different inselbergs can be very low even when in close proximity, thus emphasizing the potential role of isolated rock outcrops as drivers of population differentiation and ultimately speciation.

Microsatellites are informative and versatile DNA-based markers for the evaluation of intraspecific variation, population structure, and speciation (Selkoe and Toonen, 2006). Whereas microsatellite markers have been developed in two South American *Vellozia* Vand. species (Martins et al., 2012; Duarte-Barbosa et al., 2014), no such markers are yet available for Velloziaceae from the Old World. The genus *Xerophyta* Juss. (Velloziaceae) contains approximately 30 desiccation-tolerant species that are distributed from Madagascar to sub-Saharan Africa and southwestern Arabia (Behnke et al., 2013). *Xerophyta dasylirioides* Baker is an endemic species on Madagascar, where it occurs on inselbergs mainly of the Central Highlands. The delimitation of taxa within the Velloziaceae is notoriously difficult, and little is known about genetic differentiation patterns among *Xerophyta* species and populations from African and Malagasy inselbergs. We developed 15 polymorphic microsatellite markers by next-generation sequencing on an Illumina MiSeq platform to analyze the genetic diversity and population structure of *X. dasylirioides* in Madagascar and evaluate the significance of its island-like distribution in terms of speciation. We also tested the transferability
of these markers to eight other *Xerophyta* species from Madagascar (*X. pinifolia* Lam. ex Poir., *X. decaryi* Phillipson & Lowry, *X. labatii* Phillipson & Lowry, *X. setosa* Phillipson & Lowry, *X. croatii* Phillipson & Lowry, *X. isaloensis* Phillipson & Lowry, *X. lewisiae* Phillipson & Lowry, *X. tulearensis* (H. Perrier) Phillipson & Lowry) and two from continental Africa (*X. spekei* Baker, *X. retinervis* Baker; see Appendix 1).

METHODS AND RESULTS

Genomic DNA was extracted from lyophilized leaves of one individual plant of *X. dasylirioides* (JR1432; see Appendix 1) using a modified cetyltrimethylammonium bromide (CTAB) method (Štorchová et al., 2000). A 5-μg DNA aliquot was used for library preparation. DNA was sheared to generate fragments of on average 600-bp length, followed by adapter and barcode ligation according to Meyer and Kircher (2010). The library was size-selected by gel electrophoresis, and fragment size distribution and DNA concentration were evaluated on an Agilent BioAnalyzer High Sensitivity DNA Chip and using the Qubit DNA Assay Kit in a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Darmstadt, Germany). The final library was sequenced on an Illumina MiSeq platform (Illumina, San Diego, California, USA) generating 250-bp paired-end reads.

2.5 mM MgCl₂, 0.2 mM dNTPs, 0.05 units Taq DNA polymerase (Bioline), and 0.5 μM of each primer. Forward primers were fluorescently labeled with FAM, VIC, NED, or PET (Applied Biosystems, Foster City, California, USA; see Table 1). All loci were amplified using a touchdown PCR program with an initial denaturation at 94°C for 6 min; followed by a 12-cycle touchdown of 94°C for 45 s, 62–50°C for 30 s, and 65°C for 45 s; 18 additional cycles at 94°C for 45 s, 50°C for 30 s, and 65°C for 45 s; and a final elongation at 65°C for 10 min.

PCR products were electrophoresed on an ABI Prism 3100 sequencer (Applied Biosystems) along with a fluorescently labeled internal size standard (GeneScan 600 LIZ Size Standard; Applied Biosystems). Allele sizes were determined manually using Peak Scanner Software version 1.0 (Applied Biosystems). Numbers of alleles and levels of observed and expected heterozygosity were determined using the MISA module (Thiel et al., 2003) and considering a minimum of 10 repeat units for di-, eight for tri-, seven for tetra-, six for penta-, and five for hexanucleotide repeats, respectively, a total of 7110 perfect microsatellites were detected. For the initial screening, 40 loci were arbitrarily selected for the design of microsatellite-flanking primers using BatchPrimer3 (You et al., 2008). The criteria for primer design were (1) product size from 100 to 300 bp; (2) primer size from 18 to 23 bp; (3) annealing temperature from 50°C to 70°C; and (4) GC content of primers between 30% and 70% (Wöhrmann and Weising, 2011).

TABLE 1. Characteristics of 15 microsatellite markers developed for *Xerophyta dasylirioides* from Malagasy inselbergs.

Locus	Primer sequence (5′–3′)	Repeat motif	Fluorescent label	Allele size range (bp)	Tₓ (°C)	GenBank accession no.
Xeda_01	F: AGTTCGGCTCGATATACCTA R: GCGAGTCTAAACAACCTTCTT	(CTGAA)₇	FAM	106–124	55	MG407664
Xeda_04	F: TCGATTAGCAATATAGGATCC R: CCACAAAGGTGAATGATTTG	(ATGTTG)₆	NED	38–42	55	MH427346
Xeda_12	F: ATTTCATGACACAGGAGATTA R: TGAAGAAACACAGCTGGAG	(TAT)₁₅	PET	105–117	55	MH427347
Xeda_13	F: GAAAAAGCAACACACACACGC R: GTTGTCAGGGAGTAATTAAT	(TAT)₁₅	VIC	74–107	55	MG407665
Xeda_15	F: TAAAGAGTATCTCGAGAAAGAG R: TTACCGCTCTGATATTACA	(GAA)₁₂	NED	123–144	55	MG407665
Xeda_18	F: TCACATCAATATACAGCTGAG R: CCTCTCTCTGCTCCTGCTT	(TCT)₁₁	PET	121–136	55	MG407667
Xeda_20	F: TCTCTATACGGCCATCGATGTT R: GTGATTCAGATCTACGTGAG	(TGA)₁₀	VIC	128–146	55	MH427348
Xeda_23	F: CTTACCGCTCATCAGGATGTC R: CGTATAAGAATCAGGCATCTG	(TCC)₁₀	FAM	144–159	55	MG407669
Xeda_25	F: AACTCATCTCCCAATTAATTT R: TTTTTCTATCTGGGTTTTAGT	(TCC)₁₀	VIC	177–198	55	MG407670
Xeda_26	F: AAGAGATGAGAAAGCGGAGGC R: GTTATGACGGAAGCGGCTCTAG	(GAG)₁₀	NED	152–167	54	MG407671
Xeda_28	F: AGATGAGCAGCCGTTTACTGA R: AAAAAAAAAATGGTCTCTCTCTC	(CGG)₁₀	PET	144–188	55	MG407672
Xeda_31	F: GTGACAGAGAGAGCAGACAGA R: GTGGAGCTCTCTACGATAAA	(AG)₁₀	FAM	114–156	55	MH427349
Xeda_34	F: ATGCGACATTCAACATCTCC R: AGGTATGACCCCTTTCTATTG	(CT)₁₅	PET	164–212	55	MH427350
Xeda_39	F: CAAGCTGTCGACTGATAAAA R: CACCTAGGCCCTTATGACCTC	(GA)₁₃	FAM	104–142	55	MG407673

Note: Tₓ = annealing temperature.
TABLE 2. Genetic variation of 15 microsatellite loci in three natural populations of Xerophyta dasylirioides from Madagascar inselbergs.\(^*\)

Locus	Angavokely (N = 30)	Andronovela (N = 30)	Quarry II (N = 20)							
	\(H_e\)	\(H_o\)	\(A\)	\(H_e\)	\(H_o\)	\(A\)	\(H_e\)	\(H_o\)	\(A\)	
Xeda_01	2	0.700\(^b\)	0.455	1	0.000	0.000	2	0.050	0.049	3
Xeda_04	2	0.500	0.375	2	0.621\(^b\)	0.428	2	0.950\(^b\)	0.499	2
Xeda_12	1	0.000	0.000	1	0.000	0.000	1	0.000	0.000	2
Xeda_13	9	0.700	0.783	1	0.000	0.000	1	0.000	0.000	10
Xeda_15	6	0.800	0.737	6	0.567	0.538	2	0.200	0.180	7
Xeda_18	2	0.367	0.455	4	0.138\(^b\)	0.628	2	0.000\(^b\)	0.388	5
Xeda_20	1	0.000	0.000	2	0.067\(^b\)	0.358	3	0.053\(^b\)	0.467	4
Xeda_23	3	0.333	0.339	4	0.767	0.675	3	0.550	0.626	6
Xeda_25	3	0.467	0.456	5	0.467	0.462	1	0.000	0.000	5
Xeda_26	2	0.214	0.191	3	0.200\(^b\)	0.331	2	0.000\(^b\)	0.305	4
Xeda_28	3	0.633	0.615	9	0.267\(^b\)	0.518	1	0.000	0.000	5
Xeda_31	6	0.739\(^b\)	0.683	9	0.700\(^b\)	0.850	6	0.611	0.765	17
Xeda_34	5	0.379\(^b\)	0.719	9	0.600\(^b\)	0.841	2	0.150	0.219	14
Xeda_39	4	1.000\(^b\)	0.559	3	1.000\(^b\)	0.589	2	1.000\(^b\)	0.500	7
Xeda_40	6	0.423\(^b\)	0.541	9	0.429\(^b\)	0.786	2	0.105\(^b\)	0.432	14
Mean	4	0.484	0.461	4.133	0.388	0.467	2.133	0.245	0.295	7
Total	55	–	–	62	–	–	32	–	–	105

Note: – = not applicable; \(A\) = number of alleles; \(A_m\) = mean number of alleles across all 80 Xerophyta dasylirioides samples; \(H_e\) = expected heterozygosity; \(H_o\) = observed heterozygosity; \(N\) = number of individuals sampled.

\(^*\)Significant departure from Hardy–Weinberg equilibrium (chi-square, \(P < 0.05\)).

TABLE 3. Cross-amplification of primers developed in Xerophyta dasylirioides in 10 other species of Xerophyta.\(^ab\)

| Locus | XePin | XeDec | XeLab | XeSet | XeCro | Xelsa | Xelw | XeTul | XeSpe | XeRet1 | XeRet2 | XeRet3 | XeRet4 | XeRet5 | Total |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Xeda_01 | 112 | – | 106/112 | 112 | – | 112 | 112 | 112 | – | – | – | – | – | – | 6 |
| Xeda_04 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | 0 |
| Xeda_12 | 123 | – | 105 | 105* | – | – | – | – | – | – | – | – | – | – | 4 |
| Xeda_13 | 95 | 74* | 6/2/86 | 86/98 | – | 74 | – | – | – | – | – | – | – | – | 6 |
| Xeda_15 | – | 120/123 | 120/126 | – | – | – | – | – | – | – | – | – | – | – | 2 |
| Xeda_18 | – | 130 | – | – | – | 127 | – | – | – | – | – | – | – | – | 2 |
| Xeda_20 | – | 116 | – | – | – | 110 | – | 116* | – | – | – | – | – | – | 3 |
| Xeda_23 | 137 | – | – | – | – | – | – | – | – | – | – | – | – | – | 4 |
| Xeda_25 | 153 | 141 | – | 153 | – | – | – | – | – | – | – | – | – | – | 4 |
| Xeda_26 | 183 | 201 | 183 | – | – | 189 | – | – | – | – | – | – | – | – | 5 |
| Xeda_28 | 152* | 155 | – | 152 | – | 155 | 161* | – | – | – | – | – | – | – | 5 |
| Xeda_31 | 154* | 158* | 166 | 176 | 186 | – | 168 | 154 | – | – | – | – | – | – | 7 |
| Xeda_34 | – | 138/166 | – | – | – | – | – | – | – | – | – | – | – | – | 1 |
| Xeda_39 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | 0 |
| Xeda_40 | – | – | – | – | – | – | – | – | – | – | – | – | – | – | 1 |

Note: – = no amplification; * = weak amplification; Malagasy species: XePin = Xerophyta pinifolia; XeDec = X. decaryi; XeLab = X. labatii; XeSet = X. setosa; XeCro = X. croatii; Xelsa = X. lewisiae; Xelw = X. lewisii; XeTul = X. tulearensis; African species: XeSpe = X. spekei; XeRet = X. retinervis.

\(^a\)Values represent single PCR products with allele size in base pairs.

\(^b\)Voucher and locality information are provided in Appendix 1.
cross-amplifications ranged from zero to 70%, depending on the locus–species combination (Table 3). Cross-amplification in the Malagasy species was clearly more efficient than in the two African species, in which only two markers could be amplified in X. retinervis (Xeda_12 and Xeda_23). Both microsatellite loci turned out to be monomorphic across the individuals of X. retinervis tested (Table 3). The limited cross-amplification between African and Malagasy species is in accordance with expectations from the long-lasting isolation of Madagascar from continental Africa.

CONCLUSIONS

We developed 15 new nuclear microsatellite markers for the desiccation-tolerant plant X. dasylirioides, an endemic to Madagascar. The novel markers display high levels of polymorphism among 80 individual plants derived from three inselberg populations and thus provide a promising toolbox for assessing the genetic diversity and population structure of X. dasylirioides. These markers are expected to contribute to our understanding of the significance of inselbergs regarding species diversification on terrestrial islands.

ACKNOWLEDGMENTS

The authors would like to thank Dr. F. Blattner from IPK Gatersleben for the help with sequencing and microsatellite development, Dr. R. Bastrop, L. de Paula, and B. Leal for support in genetic analyses, and the Institute of Pharmacy and Molecular Biotechnology of the University of Heidelberg for the kind supply of plant material. The authors acknowledge funding for open access publication within the framework of the Wiley-Projekt DEAL agreement.

DATA ACCESSIBILITY

Raw sequencing data used for the development of microsatellite markers are available through the European Nucleotide Archive (ENA) (ERS2600133; study ID: ERP113401). Sequence information for the developed primers has been deposited to the National Center for Biotechnology Information’s GenBank, and accession numbers are provided in Table 1.

LITERATURE CITED

Barbára, T., G. Martinelli, M. F. Fay, S. J. Mayo, and C. Lexer. 2007. Population differentiation and species coalescence in two closely related plants adapted to neotropical high-altitude ‘inselbergs’: Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Molecular Ecology 16: 1981–1992.

Behnke, H. D., E. Hummel, S. Hillmer, H. Sauer-Gürtl, J. Gonzalez, and M. Wink. 2013. A revision of African Velloziaceae based on leaf anatomy characters and rbcL nucleotide sequences. Botanical Journal of the Linnean Society 172: 22–94.

Duarte-Barbosa, M., M. M. Bajay, M. I. Zucchi, and V. R. Pivello. 2014. Development and characterization of 47 novel microsatellite markers for Vellozia squamata (Velloziaceae). Applications in Plant Sciences 3: 1400087.

Emerson, B. C. 2002. Evolution on oceanic islands: Molecular phylogenetic approaches to understanding pattern and process. Molecular Ecology 11: 951–966.

Hughes, M., M. Möller, T. J. Edwards, D. U. Bellstedt, and M. De Villiers. 2007. The impact of pollination syndrome and habitat on gene flow: A comparative study of two Streptocarpus (Gesneriaceae) species. American Journal of Botany 94: 1688–1695.

Lousada, J. M., M. B. Lovato, and E. L. Borba. 2013. High genetic divergence and low genetic variability in disjunct populations of the endemic Vellozia compacta (Velloziaceae) occurring in two edaphic environments of the Brazilian campos rupestres. Brazilian Journal of Botany 36: 45–53.

Martins, A. P. V., K. Proíte, E. Kalapothakis, F. R. Santos, A. V. Chaves, and E. L. Borba. 2012. Microsatellite markers for Vellozia gigantea (Velloziaceae), a narrowly endemic species to the Brazilian campos rupestres. American Journal of Botany 99: e289–e291.

Mello-Silva, R., D. Y. A. C. Santos, M. L. F. Salatino, L. B. Motta, M. B. Cattai, D. Sasaki, J. Lovo, et al. 2011. Five vicarious genera from Gondwana: The Velloziaceae as shown by molecules and morphology. Annals of Botany 108: 87–102.

Meyer, M., and M. Kircher. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbour Protocols. https://doi.org/10.1101/pdb.prot5448

Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.

Porembski, S. 2007. Tropical inselbergs: Habitat types, adaptive strategies and diversity patterns. Brazilian Journal of Botany 30: 579–586.

Porembski, S., and W. Barthlott. 2000. Granitic and gneissic outcrops (inselbergs) as centres of diversity for desiccation-tolerant vascular plants. Plant Ecology 151: 19–28.

Raymond, M., and F. Rousset. 1995. GENEPop (version 1.2): Population genetics software for exact test and ecumenicism. Journal of Heredity 86: 248–249.

Selkoe, K. A., and R. J. Toonen. 2006. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecological Letters 9: 615–629.

Štorchová, H., R. Hrdličková, J. Chrtek, M. Tetera, D. Fitze, and J. Fehrer. 2000. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49: 97–84.

Thiel, T., W. Michalek, R. Varshney, and A. Graner. 2003. Exploiting EST data-bases for the development and characterization of gene-derived SSR-mark-ers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422.

Wöhrmann, T., and K. Weising. 2011. In silico mining for simple sequence re-

ences through the European Nucleotide Archive (ENA) (ERS2600133; study ID: ERP113401). Sequence information for the developed primers has been deposited to the National Center for Biotechnology Information’s GenBank, and accession numbers are provided in Table 1.
APPENDIX 1. Voucher and location information of samples of Xerophyta dasylirioides and related species used in the microsatellite analysis.

Species	Voucher specimen accession no.a	Collection locality / source	Geographic coordinates	N
X. dasylirioides Baker	JR1432	Botanischer Garten Rostock	NA	1
X. dasylirioides	JR1463–JR1492	Madagascar, Angavokely	18°55'17"S, 47°44'19"E	30
X. dasylirioides	JR1493–JR1522	Madagascar, Andronovelona	18°38'05"S, 47°16'58"E	30
X. dasylirioides	JR1523–JR1542	Madagascar, Quarry II	18°30'44"S, 47°11'04"E	20
X. pinifolia Lam. ex Poir.	P5458	Madagascar/IPMB Heidelberg	NA	1
X. decaryi Phillipson & Lowry	P6669	Madagascar, Toliara/IPMB Heidelberg	NA	1
X. labati Phillipson & Lowry	P6671	Madagascar, Fianarantsoa/IPMB Heidelberg	NA	1
X. setosa Phillipson & Lowry	P6675	Madagascar, Fianarantsoa/IPMB Heidelberg	NA	1
X. croati Phillipson & Lowry	P6668	Madagascar, Fianarantsoa/IPMB Heidelberg	NA	1
X. isaloensis Phillipson & Lowry	P6651	Madagascar, Fianarantsoa/IPMB Heidelberg	NA	1
X. lewisii Phillipson & Lowry	P6652	Madagascar, Fianarantsoa/IPMB Heidelberg	NA	1
X. tulearensis (H. Perrier) Phillipson & Lowry	P6802	Madagascar, Toliara/IPMB Heidelberg	NA	1
X. spekei Baker	P6425	Africa, Tanzania/IPMB Heidelberg	NA	1
X. retinervis Baker	P6276, P6419, P6563, P6678, P6686	Africa, Swaziland/IPMB Heidelberg	NA	5

Note: IPMB Heidelberg = Institut für Pharmazie und Molekulare Biotechnologie der Universität Heidelberg; N = number of individuals; NA = data not available.

aVoucher deposited at the Department of Botany, University of Rostock (ROST), Rostock, Germany.