$Z^0 \rightarrow b\bar{b}$ Excess from R-Parity Violation

David E. Brahm\footnote{Email: brahm@fermi.phys.cmu.edu}

* Carnegie Mellon Physics Dept., Pittsburgh PA 15213*

Abstract

The $Z^0 \rightarrow b\bar{b}$ excess, $Z^0 \rightarrow c\bar{c}$ deficit, and low left-right asymmetry A_b may be explained by a single term $\lambda C^c B^c B'^e$ in the superpotential. This operator violates R-parity and requires a sequential 4th generation. 1-loop diagrams involving squark exchange interfere with the tree-level processes to give an excess of right-handed b quarks, and a deficit of right-handed c quarks. Though the coupling must be large ($\lambda \approx 2$ or 3), the model is phenomenologically and cosmologically acceptable.
1 Some Curious Data

Though the Standard Model has enjoyed great experimental success, we may be seeing the first signs of new physics in the decay modes of the Z^0 boson. Combined LEP and SLC data\cite{1} indicate a 3\% excess of $Z^0 \rightarrow b \bar{b}$ decays over the Standard Model prediction. They also hint that the extra b’s are right-handed, and are offset by a corresponding deficit of c’s. The data are:

$$R_b \equiv \frac{\Gamma(Z^0 \rightarrow b \bar{b})}{\Gamma(Z^0 \rightarrow \text{hadrons})} = 0.2219 \pm 0.0017 \quad (R^{SM}_b = 0.2156)$$

$$R_c \equiv \frac{\Gamma(Z^0 \rightarrow c \bar{c})}{\Gamma(Z^0 \rightarrow \text{hadrons})} = 0.1540 \pm 0.0074 \quad (R^{SM}_c = 0.1724)$$

$$R_l \equiv \frac{\Gamma(Z^0 \rightarrow \ell \bar{\ell})}{\Gamma(Z^0 \rightarrow \text{hadrons})} = 20.788 \pm 0.032 \quad (R^{SM}_l = 20.786)$$

$$A_b \equiv \frac{\Gamma(Z^0 \rightarrow b_L \bar{b}_L) - \Gamma(Z^0 \rightarrow b_R \bar{b}_R)}{\Gamma(Z^0 \rightarrow b_L \bar{b}_L) + \Gamma(Z^0 \rightarrow b_R \bar{b}_R)} = 0.841 \pm 0.053 \quad (A^{SM}_b = 0.935)$$

$$A_c = 0.606 \pm 0.090 \quad (A^{SM}_c = 0.667)$$

(The SM prediction for R_l assumes $\alpha_s = 0.123$ and $m_t = 180$ GeV.) The discrepancy (“crisis”) in R_b is particularly significant, a 3.7\sigma effect.

2 Our Model, and Its Implications

We propose a supersymmetric model to explain these data. It is the MSSM plus the additional R-parity violating term

$$\lambda \epsilon^{abc} C^c_a B^c_b B'^c_c$$

in the superpotential, where \{a, b, c\} are color indices. C^c, B^c, and B'^c are superfields representing left-handed antiquarks (or right-handed quarks) and their scalar superpartners. C is charm, B is bottom, and B' is the down-type quark in a sequential 4th generation. The coupling must be fairly large ($\lambda \approx 2$ or 3).

The MSSM corrections to R_b, etc., are known to be insignificant: $\delta R_b < 0.002$ \cite{4} in the experimentally allowed region of parameter space, essentially because the sparticles must be heavy and therefore decouple. (See \cite{3}, however, for a clever twist on a 4-generation SUSY model). We will therefore only calculate corrections from our new term. We are able to evade sparticle decoupling by giving b' a mass comparable to the squark masses.

A sequential 4th generation will give acceptable values of the Peskin-Takeuchi parameters (S, T, U) as long as t' and b' are nearly degenerate. Our model does not suffer from the large FCNC’s that come with “exotic” 4th generations. Of course, we need $m_{\nu} > M_Z/2$.

Our term violates baryon number, but not lepton number. Thus it cannot induce proton decay. Neutron oscillation is highly suppressed by at least 4 loops and several small CKM
angles (since our term does not involve the first generation), and a factor $\Lambda_{QCD}^2/\tilde{m}^4M_{\tilde{g}}$ (where \tilde{m} is the squark mass and $M_{\tilde{g}}$ is the gluino mass [9]); we estimate an effect roughly 7 orders of magnitude weaker than the experimental limit ($\tau_{\tilde{m}} > 1.2 \times 10^8$ s).

Dreiner and Ross [9] showed that commonly quoted cosmological bounds [6] can be avoided. In the presence of our new interaction and of sphalerons, there are still 3 conserved quantities ($L_1 - L_2$), $(L_1 - L_3)$, and $(L_1 - L_4)$ (though m_ν may break the latter). A GUT-generated asymmetry in any of these is preserved. Near the electroweak phase transition, sphalerons translate this primordial lepton flavor asymmetry into a baryon asymmetry.

The large coupling λ and the 4th-generation Yukawas contribute positively $(dm^2/dt > 0)$ to the running of scalar masses [7]. This effect is tamed if we have a heavy gluino, e.g.

$$\frac{d\tilde{m}_{Bc}^2}{dt} = \frac{2\lambda^2}{8\pi^2} \left[\tilde{m}_{Bc}^2 + \tilde{m}_{\nu c}^2 + m_{\nu c}^2 + A^2 \right] + \frac{3\lambda_{\nu}^2}{8\pi^2} \left[\tilde{m}_{Bc}^2 + \tilde{m}_{B\nu}^2 + m_{\nu c}^2 + A^2 \right] - \frac{2}{\pi} \left[\frac{4\alpha_3}{3} M_3^2 + \frac{\alpha_1}{15} M_1^2 \right]$$

(3)

where $\lambda_{\nu} = \sqrt{2} m_{\nu}/v$, A is the trilinear soft breaking coefficient, and M_3 (M_1) is the gluino (bino) mass. (In SUSY GUT’s, the gaugino masses unify $M_4(M_G) = M_0$, and run like α_i, so the gluino is naturally the heaviest one with $M_3 = 2.9 M_0$.)

The running of λ_{ν} and λ_{ν} is discussed in [8], where an upper bound $m_{\nu} < 156$ GeV is given to keep the couplings perturbative up to a GUT scale. The running of λ is given by

$$\frac{d\lambda}{dt} = \beta(\lambda) = \frac{\lambda}{16\pi^2} \left[6\lambda^2 + 2\lambda_{\nu}^2 - 8g_3^2 - \frac{4}{5} g_1^2 \right]$$

(4)

(with $g_1^2 = \frac{5}{3} g_2^2$). Since we will need $\lambda^2(M_Z) > 4.6$, λ exhibits a Landau pole at or below $30 M_Z = 2.7$ TeV. Perturbative unification is thus not possible unless some new physics enters at this scale.

3 The 1-Loop Diagrams

The $Z^0 \rightarrow b\bar{b}$ excess arises from interference between the tree-level diagram and the 1-loop diagrams shown in Fig. [8] (plus 3 others related by $c \leftrightarrow b'$, but these are small). Since only the B^c superfield enters, only right-handed b production is affected. The calculation can be found in [8], eqs.79,82. We use the approximation $\{m_{\nu}, \tilde{m}_{\nu c}\} \gg M_Z$, which we find agrees to better than 10% with exact numerical calculations even for $\tilde{m}_{\nu c} = M_Z$. In this approximation, the Standard Model tree-level coupling $g_{bR}^b = s_W^2/3$ is modified by

$$\delta g_R^b = \frac{2|\lambda|^2}{16\pi^2} (g_R^{b'} - g_L^{b'}) \mathcal{F} \left(\frac{m_{\nu}^2}{m_{\nu c}^2} \right), \quad \mathcal{F}(r) = \frac{r}{(r-1)^2} (r-1-\ln r)$$

(5)

$\mathcal{F}(r)$ is positive and monotonically increasing, with $\mathcal{F}(0) = 0$ (satisfying the decoupling theorem as the squark gets heavy), and an asymptotic value $\mathcal{F}(\infty) = 1$.
Note that \((g_R^b - g_L^b) = -T_3^b = \frac{1}{2}\). The fact that this has the same sign as \(g_R^b = s_W^2/3\) gives an enhancement of \(b\) production. (In any model of this kind, the heavy fermion must have \(T_3 < 0\) to give the right sign for \(\delta R_b\).) We get the right magnitude by setting \(\lambda^2 \mathcal{F} = 4.6\), so we need a \(\lambda \approx 2\) or 3.

\[
\begin{align*}
\text{Fig. 1: 1-loop diagrams.}
\end{align*}
\]

Analogously, the right-handed charm coupling \(g_R^c = -2s_W^2/3\) is modified by

\[
\delta g_R^c = \frac{2|\lambda|^2}{16\pi^2} (g_R^c - g_L^c) \mathcal{F} \left(\frac{m_b^2}{\tilde{m}_{bc}^2} \right) \tag{6}
\]

The magnitude of the charm coupling is reduced, giving a \(c\) deficit.

4 Squark Masses

If squarks are degenerate, the \(c\) deficit is fixed to be twice the \(b\) excess. Choosing only the single parameter \(\lambda\) would then give

\[
R_b = .2219 \text{ (set), } \quad R_c = .1625, \quad R_l = 20.68, \quad A_b = .89, \quad A_c = .77 \tag{7}
\]

The total hadronic width \((R_l)\) is too low (unless \(\alpha_s(M_Z) \approx .15\), which seems unlikely).

Thus we need to take \(\tilde{m}_{bc} > \tilde{m}_{cc}\). We can adjust the squark masses to leave the total hadronic width unaltered (so \(R_l = R_l^{SM}\) with \(\alpha_s(M_Z) = .123\)), giving the predictions

\[
R_b = .2219 \text{ (set), } \quad R_c = .1656, \quad A_b = .88, \quad A_c = .73 \tag{8}
\]

The value of \(A_c\) is still a bit high, but only by 1.4\(\sigma\). These results are in good statistical agreement with all the data.

5 Some Variations: \(R_b\) Only

One could treat the \(c\) deficit as experimental error, and only explain the (right-handed) \(b\) excess, which under this assumption becomes

\[
R_b = .2205 \pm .0016 \quad (R_b^{SM} = .2156) \tag{9}
\]

We can do this with a superpotential term \(\lambda e^{abc} T_a^c B_b^c B_c^c\) (to replace eq. [2]) as long as \(m_{\nu} > m_t\).
The same result can be achieved with a superpotential term $\lambda Q'B'B'$, with $Q' = (T', B')$ and $L' = (\nu', \tau')$, if τ' (or b') is the heaviest 4th generation fermion. This term has the phenomenological (and cosmological) advantage of violating only L_4, not B.

Yet another possibility is $\lambda Q_3 B'L'$, with $Q_3 = (T, B)$. Then a small b_L deficit in addition to the b_R excess drives A_b even lower.

6 Conclusions

Data indicate an excess of right-handed b's in Z^0 decays, offset by a deficit of c's. Our model explains these using a single R_P-violating term $\lambda C^c B'^c$ in the superpotential. Choosing λ appropriately, and requiring $\tilde{m}_{B'^c} > \tilde{m}_{C^c}$, we can achieve agreement with the data to 1.6σ or better.

We wish to thank Nima Arkani-Hamed, Hsin-Chia Cheng, Lawrence J. Hall, Richard Holman, Stephen Hsu, and Martin Savage for helpful discussions. This work was partially supported by the U.S. Dept. of Energy under Contract DE-FG02-91-ER40682.

References

[1] LEP Electroweak Working Group, CERN-PPE/95-172 (Nov. 1995) eq. (13); J. Huber (for SLD), SLAC-PUB-95-7019 (July 1995).

[2] A. Djouadi et al., Nucl. Phys. B349:48 (1991); M. Boulware & D. Finnell, Phys. Rev. D44:2054 (1991); G. Altarelli, R. Barbieri & F. Caravaglios, Phys. Lett. B314:357 (1993); D. García, R.A. Jiménez & J. Solá, Phys. Lett. B347:321 (1995) [E: B351:602 (1995)]; G.L. Kane, R.G. Stuart & J.D. Wells, Phys. Lett. B354:350 (1995); J.D. Wells & G.L. Kane, Phys. Rev. Lett. 76:869 (1996); E. Ma & D. Ng, Phys. Rev. D53:255 (1996); X. Wang, J.L. Lopez & D.V. Nanopoulos, Phys. Rev. D52:4116 (1995); J. Ellis, J.L. Lopez & D.V. Nanopoulos, CERN-TH/95-314, hep-ph/9512288.

[3] M. Carena, H.E. Haber & C.E.M. Wagner, CERN-TH/95-311, hep-ph/9512446.

[4] F. Zwirner, Phys. Lett. B132:103 (1983); R. Mohapatra, Nucl. Inst. & Meth. A284:1 (1989).

[5] H. Dreiner & G.G. Ross, Nucl. Phys. B410:188 (1993).

[6] B.A. Campbell, S. Davidson, J. Ellis & K.A. Olive, Phys. Lett. B256:457 (1991); W. Fischler, G. Giudice, R.G. Leigh & S. Paban, Phys. Lett. B258:45 (1991).

[7] L. Alvarez-Gaumé, J. Polchinski & M.B. Wise, Nucl. Phys. B221:495 (1983); M. Claudson, L. Hall & I. Hinckliffe, Nucl. Phys. B228:501 (1983).

[8] J.F. Gunion, D.W. McKay & H. Pois, Phys. Lett. B334:339 (1994).

[9] P. Bamert et al., McGill-96/04, hep-ph/9602438.