Phospholipids alter activity and stability of mitochondrial membrane-bound ubiquitin ligase MARCH5

Merklinger, Lisa; Bauer, Johannes; Pedersen, Per A.; Damgaard, Rune Busk; Morth, J. Preben

Published in:
Life Science Alliance

DOI:
10.26508/lsa.202101309

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Merklinger, L., Bauer, J., Pedersen, P. A., Damgaard, R. B., & Morth, J. P. (2022). Phospholipids alter activity and stability of mitochondrial membrane-bound ubiquitin ligase MARCH5. Life Science Alliance, 5(8), [e202101309]. https://doi.org/10.26508/lsa.202101309
Phospholipids alter activity and stability of mitochondrial membrane-bound ubiquitin ligase MARCH5

Lisa Merklinger1, Johannes Bauer2, Per A Pedersen3, Rune Busk Damgaard1, J Preben Morth1

Mitochondrial homeostasis is tightly controlled by ubiquitination. The mitochondrial integral membrane ubiquitin ligase MARCH5 is a crucial regulator of mitochondrial membrane fission, fusion, and disposal through mitophagy. In addition, the lipid composition of mitochondrial membranes can determine mitochondrial dynamics and organelle turnover. However, how lipids influence the ubiquitination processes that control mitochondrial homeostasis remains unknown. Here, we show that lipids common to the mitochondrial membranes interact with MARCH5 and affect its activity and stability depending on the lipid composition in vitro. As the only one of the tested lipids, cardiolipin binding to purified MARCH5 induces a significant decrease in thermal stability, whereas stabilisation increases the strongest in the presence of phosphatidic acid. Furthermore, we observe that the addition of lipids to purified MARCH5 alters the ubiquitination pattern. Specifically, cardiolipin enhances auto-ubiquitination of MARCH5. Our work shows that lipids can directly affect the activity of ubiquitin ligases and suggests that the lipid composition in mitochondrial membranes could control ubiquitination-dependent mechanisms that regulate the dynamics and turnover of mitochondria.

DOI 10.26508/lsa.202101309 | Received 21 November 2021 | Revised 5 April 2022 | Accepted 7 April 2022 | Published online 22 April 2022

Introduction

The eukaryote ubiquitin (Ub) system of eukaryotes is highly complex and regulates virtually all aspects of cell biology and homeostasis through structurally and functionally diverse Ub modifications (Komander & Rape, 2012). Ub modification of a substrate protein is performed by an ATP-dependent three-enzyme cascade comprising the Ub-activating (E1) enzymes, the Ub-conjugating (E2) enzymes, and the Ub ligases (E3) (Kerscher et al, 2006). These enzymes catalyse the attachment of Ub via its carboxyl terminus to usually a substrate lysine, leading to mono-ubiquitination of the substrate. Additional ubiquitination of a Ub conjugated to a substrate leads to poly-ubiquitination giving rise to eight possible poly-Ub chain linkages through either the amino terminus (M1-linked chains) or any of the seven lysines (K) residues of Ub (K6-, K11-, K27-, K29-, K33-, K48-, or K63-linked chains) (Hochstrasser, 2006; Deol et al, 2019), which define the fate of the modified protein (Kliza & Husnjak, 2020). Over the past years, it has become clear that Ub-dependent regulation plays a crucial role in mitochondrial homeostasis by fine-tuning mitochondrial dynamics and removal of damaged mitochondria by mitophagy (Harper et al, 2018). Furthermore, ubiquitin-dependent quality control guides mitochondrial import and proteasomal degradation of mitochondrial proteins.

The Ub ligase MARCH5 is a critical regulator in mitochondrial quality control and homeostasis. It is one of only two known membrane-bound E3s located in the outer mitochondrial membrane (OMM). MARCH5 belongs to the membrane-associated RING-CH-type finger (MARCH) family of Ub ligases and harbours four predicted transmembrane (Yonashiro et al, 2006; Karbowski et al, 2007). It contributes to mitochondrial homeostasis by regulating protein import, mitochondrial dynamics and morphology, targeting proteins of the fusion and fission machinery (Nakamura et al, 2006; Yonashiro et al, 2006; Park et al, 2010; Phu et al, 2020). Mitochondrial fusion is regulated by MARCH5-dependent ubiquitination of Mitofusins, a dynamin-like class of protein engaged explicitly in the fusion event (Park et al, 2014; Kim et al, 2015). Mitochondrial fission is controlled by the degradation of fission factors like the mitochondrial dynamic protein of 49 kD (MiD49) linked to MARCH5-mediated ubiquitination (Xu et al, 2016; Cherok et al, 2017; Nagashima et al, 2019). In addition, MARCH5 controls mitochondria-ER contact sites by ubiquitination of Mitofusin-2 and thus facilitates lipid transfer (Sugura et al, 2013; Nagashima et al, 2019). Furthermore, recent studies showed that MARCH5-dependent recruitment and regulation of Parkin, a cytosolic Ub ligase controlling mitophagy, adjusts Parkin dependent mitochondrial turnover (Koyano et al, 2019; Shiiba et al, 2021). However, it remains unclear how MARCH5 activity is regulated and how its finely tuned ubiquitination of specific substrates in different mitochondrial conditions is controlled.

Phospholipids have a crucial signalling function and regulate membrane proteins through lipid–protein interactions that control protein activity, folding, stability or localisation (Corradi et al, 2019). Mounting evidence shows that phospholipids regulate mitochondrial homeostasis by interaction with mitochondrial proteins and recruitment of targets from other organelles and the cytosol (Dudek, 2017). Recent studies revealed the impact of phosphatidic...
acid (PA) and cardiolipin (CL) on mitochondrial dynamics (Frohman, 2015; Kameoka et al, 2018). PA regulates mitochondrial fusion and ER–mitochondrial contact sites of the OMM (Choi et al, 2006; Huang et al, 2011; Baba et al, 2014) and deactivates the mitochondrial fission protein dynamin-related protein 1 (Drp1) (Adachi et al, 2016, 2018). In contrast, CL stimulates mitochondrial fission by activation of Drp1 (Bustillo-Zabalbeitia et al, 2014; Mahajan et al, 2021) and Drp1-CL interactions induce CL-cluster formation, which could form hotspots for mitochondrial division (Stepanyants et al, 2015). Furthermore, CL has an essential role in inducing mitophagy upon oxidative stress, and exposure of its oxidised form regulates apoptosis (Chu et al, 2013, 2014; Praharaj et al, 2019).

Here, we show that different lipid classes can affect the activity and stability of an Ub ligase, namely MARCH5. We investigated how the activity of the membrane-associated MARCH5 is affected by specific lipids of the mitochondrial membranes. Our findings reveal that lipids, particularly CL, can regulate both the ubiquitin-conjugating activity and stability of MARCH5. This expands the repertoire of mechanisms for regulating ubiquitination processes and substantially increases our knowledge of the regulation of MARCH5-mediated ubiquitination.

Results

MARCH5 interacts with PA, CL, and PI(4)P

MARCH5 is a membrane protein, which interacts with phospholipids in the OMM over the hydrophobic and hydrophilic patches of its transmembrane regions (Contreras et al, 2011). Most lipid-membrane protein interactions are transient and likely facilitated by the abundant bulk lipids. Lipid classes binding preferably to the protein and are forming a lipid shell are referred to as annular lipids, whereas lipids binding to a specific site of the protein are referred to as non-annular lipids (Contreras et al, 2011). To analyse the binding of lipids to MARCH5, we investigated the lipid interaction of purified MARCH5 with major mitochondrial lipids using a lipid-binding assay (Fig 1A). MARCH5-GFP-His10 was incubated with a polyvinylidene difluoride (PVDF) membrane spotted with different lipids, and MARCH5-lipid interactions were visualised with an anti-His antibody. The lipid-binding assay revealed that MARCH5 binds to PA, CL and PI(4)P (Fig 1B). Different detergents and the GFP-His10-tag did not have any effect on the detected MARCH5-lipid interaction (Fig S1A and B).

Lipids alter MARCH5 activity

MARCH5 interacts with PA, CL, and PI(4)P on mitochondrial dynamics (Frohman, 2015; Kameoka et al, 2018). PA regulates mitochondrial fusion and ER–mitochondrial contact sites of the OMM (Choi et al, 2006; Huang et al, 2011; Baba et al, 2014) and deactivates the mitochondrial fission protein dynamin-related protein 1 (Drp1) (Adachi et al, 2016, 2018). In contrast, CL stimulates mitochondrial fission by activation of Drp1 (Bustillo-Zabalbeitia et al, 2014; Mahajan et al, 2021) and Drp1-CL interactions induce CL-cluster formation, which could form hotspots for mitochondrial division (Stepanyants et al, 2015). Furthermore, CL has an essential role in inducing mitophagy upon oxidative stress, and exposure of its oxidised form regulates apoptosis (Chu et al, 2013, 2014; Praharaj et al, 2019).

Here, we show that different lipid classes can affect the activity and stability of an Ub ligase, namely MARCH5. We investigated how the activity of the membrane-associated MARCH5 is affected by specific lipids of the mitochondrial membranes. Our findings reveal that lipids, particularly CL, can regulate both the ubiquitin-conjugating activity and stability of MARCH5. This expands the repertoire of mechanisms for regulating ubiquitination processes and substantially increases our knowledge of the regulation of MARCH5-mediated ubiquitination.

Results

MARCH5 interacts with PA, CL, and PI(4)P

MARCH5 is a membrane protein, which interacts with phospholipids in the OMM over the hydrophobic and hydrophilic patches of its transmembrane regions (Contreras et al, 2011). Most lipid-membrane protein interactions are transient and likely facilitated by the abundant bulk lipids. Lipid classes binding preferably to the protein and are forming a lipid shell are referred to as annular lipids, whereas lipids binding to a specific site of the protein are referred to as non-annular lipids (Contreras et al, 2011). To analyse the binding of lipids to MARCH5, we investigated the lipid interaction of purified MARCH5 with major mitochondrial lipids using a lipid-binding assay (Fig 1A). MARCH5-GFP-His10 was incubated with a polyvinylidene difluoride (PVDF) membrane spotted with different lipids, and MARCH5-lipid interactions were visualised with an anti-His antibody. The lipid-binding assay revealed that MARCH5 binds to PA, CL and PI(4)P (Fig 1B). Different detergents and the GFP-His10-tag did not have any effect on the detected MARCH5-lipid interaction (Fig S1A and B).

The binding of PA and CL to MARCH5 raised the question of whether MARCH5 has specific binding sites. The MARCH5 sequence is highly conserved over all higher eukaryotic species (Bauer et al, 2017). Therefore, we looked at identified PA or CL binding proteins and their binding site. Analysed CL and PA binding proteins often have stretches of positively charged residue (Lys, Arg, and His) in their lipid-binding site (Musatov & Sedl´ak, 2017; Tanguy et al, 2018). Two recently identified potential PA binding motifs were described as (K/R/H) (K/R/H) and (K/R/H)X1-3(K/R/H), whereas X can be any residue (Zhukovsky et al, 2019). We identified three similar motifs in the predicted transmembrane region of MARCH5, Lys249-Lys253, Lys253-Lys257, and Lys157-Lys160 (Fig S2). These binding sites overlap with the features of identified CL-binding sites, where...
typically positive charged amino acids, Arg and Lys bind to the head group of CL, whereas the hydrophilic amino acids Leu, Ile, and Val are overrepresented in the binding of the acyl chains. However, CL-binding sites tend to have higher flexibility, indicated by a higher content of Gly (Planas-Iglesias et al, 2015).

MARCH5-mediated ubiquitination reflects the phospholipid environment

Approximately 80% of the mitochondrial membranes consist of similar amounts of the bulk lipids phosphatidylcholine (PC) and phosphatidyl ethanolamine (PE). The remaining 20% are less abundant phospholipids, including phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylglycerol (PG), and cardiolipin (CL), a lipid specific of the inner mitochondrial membrane (IMM) (Horvath & Daum, 2013).

To examine if and how the lipid composition affects the activity of MARCH5, we performed an in vitro ubiquitination assay with purified and detergent-solubilised MARCH5 (Fig S3A and B) in the presence of lipids from six different lipid classes (PA, PC, PG, PE, CL, and P(4)P) common to the mitochondrial membranes, tracking fluorescent labelled-ubiquitin over time using fluorescence polarisation (FP). The lipids used derived from natural sources and vary in the fatty acid chain length and saturation. Therefore, we can only conclude about the lipid class, not the lipid class species.

We incubated detergent-solubilised human MARCH5 with different lipid-detergent micelles (Fig 1C) in a 1:10 M ratio of protein to lipid before the start of the ubiquitination assay. We used a promiscuous E2 enzyme (UbcH5b) for the assay, which was previously shown to catalyse MARCH5-mediated ubiquitination (Phu et al, 2020).

We observed an increase in FP signal over time in the presence of the tested lipid samples and the + control (MARCH5 in the absence of lipid) (Fig 1D). A FP signal increase indicates higher molecular weight (Mw) species linked to the formation of ubiquitin chains (Franklin & Pruneda, 2019). Therefore, MARCH5 was active in the absence and presence of all tested lipids. This indicated that specific lipids are not required for the activity of MARCH5. However, we observed significant changes in FP signal over time compared with the + control when adding minor lipids (CL, P(4)P, PA or PG) to MARCH5. CL and P(4)P common to the mitochondrial membranes, tracking fluorescent labelled-ubiquitin over time using fluorescence polarisation (FP). The lipids used derived from natural sources and vary in the fatty acid chain length and saturation. Therefore, we can only conclude about the lipid class, not the lipid class species.

To analyse the concentration dependency of the MARCH5-binding lipids PA and CL on the activity of MARCH5, we performed the activity assay at different protein to lipid ratios (1:1, 1:5, 1:10, and 1:50 M ratio). A ubiquitination assay of MARCH5 in the presence of increasing PC concentration, representing MARCH5 in the presence of bulk lipids, served as an additional control experiment.

The ubiquitination assay, including different lipid concentrations, revealed a dependency on auto-ubiquitination in the presence of CL (Fig 3). Increasing concentrations of CL enhanced auto-ubiquitination of MARCH5. This is supported by the reduction in MARCH5 band intensity in the presence of CL and P(4)P. In contrast, MARCH5 only showed a reduction in band intensity of up to 20% as + control or presence of abundant PE or PC. Furthermore, MARCH5 showed a trend towards enhanced auto-ubiquitination in the presence of PA and PG.

To explore if MARCH5 in the presence of CL forms higher order oligomeric species, we performed crosslinking experiments of Western blotting for gel-based analysis to obtain more detailed information on MARCH5-mediated ubiquitination. In addition, we quantified the intensity of the MARCH5 and mono-ubiquitin bands on the SDS–PAGE gel over time using fluorescence polarisation (FP). The lipids used derived from natural sources and vary in the fatty acid chain length and saturation. Therefore, we can only conclude about the lipid class, not the lipid class species.
MARCH5 in the presence of CL in a 1:10 M ratio protein to lipid. We observed a trend towards increased dimerisation when compared with the control (Fig S4C).

In contrast, incubating MARCH5 in the presence of increasing PA concentration showed again an increasing trend towards increased auto-ubiquitination, especially in the 1:50 M ratio of protein to lipid.
Figure 3. Cardiolipin induces MARCH5 auto-ubiquitination.

(A, B) Coomassie-stained SDS-PAGE and (B) Western blot visualised by anti-ubiquitin antibodies (top row) or anti-MARCH5 antibodies (bottom row) of samples taken from the MARCH5 ubiquitination assay in presence of CL at 1:1, 1:5, 1:10, and 1:50 M ratio of protein to lipid or in the absence of lipids (+ control). - control included all reaction components except MARCH5. The ubiquitination reaction was terminated at different time points (0, 15, 30, 60, and 120 min).

(C, D) Relative band intensities of MARCH5 at 25 kD (C) and mono-ubiquitin at 10 kD (D) of Coomassie-stained of SDS-PAGE gels. Time 0 min of each reaction solution represents 100%, and reduction of either MARCH5 or mono-ubiquitin is represented relative to their respective band at time 0. Data information: In (A, B), experiments were performed as three independent experiments and (C, D) data were represented as mean values ± SEM of these three independent experiments.

Source data are available for this figure.
Lipids alter MARCH5 activity (Fig S5A–C and E). Here, MARCH5 band intensity is reduced to 40% after the 2 h long experiment (Fig S5C). When titrated with PC, MARCH5 did not show any significant differences in activity upon increased lipid concentration (Fig S5A, B, E, and F).

MARCH5 stability is affected by the phospholipid environment

To address how the stability of MARCH5 is affected by the selected lipids, we used differential scanning fluorimetry (DSF) to measure thermal melting. Thermal melting was assessed by measuring the change in intrinsic fluorescence of mainly Trp at 330 and 350 nm with an increase in temperature, tracking the reconfiguration during denaturation. The polarity of the local microenvironment of MARCH5 is strongly influenced by the intrinsic fluorescence signal from mainly Trp (Real-Hohn et al, 2020; Cecchetti et al, 2021).

We initially compared temperature-induced melting profiles of MARCH5 in the presence of the lipids tested in the activity assay to the control sample (in the absence of lipid) (Fig 4 and Table 1). MARCH5, in the absence of lipids, had thermal stability of 52.9°C, which is defined by the transition point of the DSF curve and peak of its derivative. Significant, lipid specific changes in thermal stability of MARCH5 were observed in the presence of the PA, CL, PG and PI(4)P in a 1:10 M ratio of protein to lipid (Fig 4A). Surprisingly, CL more abundant in the IMM induced a significant 12.6°C decrease in thermal stability relative to the control, which is shown by a shift of the DSF curve towards lower temperature. The most significant increase in melting temperature was observed in the presence of PA with an increase in melting temperature of 7.3°C compared with the control, represented by a shift of the DSF curve towards higher temperature (Fig 4A and Table 1). PI(4)P and PG induced a 2.4°C and 3.4°C increase in the thermal stability of MARCH5, respectively, compared with the control. The most abundant lipids PC and PE did not significantly affect the melting temperature with detergent-solubilised MARCH5 and resemble the DSF and its derivation curve (Fig 4A).

Because CL and PA showed specific interaction and the strongest and interestingly opposing effects on MARCH5 stability, we examined the concentration dependency of MARCH5 towards these two lipids. To this end, we performed thermal stability measurements, using different protein to lipid ratios (1:1, 1.5, 1:10, and 1:50 M ratio) (Fig 4B–D), as previously described. Again, titration of PC, an abundant lipid in the OMM, served as an additional control experiment.

Lipid titration of PA and CL revealed a concentration dependency of MARCH5 stability (Table 2 and Fig 4B and C), supporting the hypothesis of specific MARCH5-lipid interactions. MARCH5 in the presence of CL in a 1.5 M ratio of protein to lipid already showed a significant thermal stability reduction of 10.3°C compared with MARCH5 in the absence of lipids. A further increased CL concentration led to a decrease in the thermal stability of MARCH5. At the highest tested molar ratio of protein to lipid (1:50), MARCH5 even showed a 23.2°C reduction in melting temperature compared with the control (Fig 4B). In contrast, PA in presence in a 1.5 M ratio of protein to lipid increased MARCH5 stability significantly by 6.1°C, whereas a 1:10 M ratio resulted in the maximum stabilisation of 8.0°C compared with MARCH5 in the absence of lipids (Fig 4C). A higher PA concentration did not further increase the thermal stability of MARCH5. Titration of PC did not show a significant change in thermal stability of MARCH5 (Fig 4D and Table 2).

Discussion

MARCH5 has a vital role in mitochondrial homeostasis and has been shown to regulate mitochondrial morphology by ubiquitination of fission and fusion proteins (Yonashiro et al, 2006; Park et al, 2014; Kim et al, 2015; Xu et al, 2016; Cherok et al, 2017; Phu et al, 2020). However, regulation of MARCH5 facilitating customised ubiquitination of a specific substrate to generate the desired biological outcome has remained largely unclear. Regulation of Ub ligases often occurs at the level of post-translational modification, small molecule modulators and metabolites (Deshaies & Joazeiro, 2009; Metzger et al, 2014). MARCH5 is one of only two integral membrane Ub ligases in the OMM, restricted to the two-dimensional lipid bilayer. The notion that the lipid environment highly controls membrane proteins was slow to be embraced but is now well established for multiple systems (Contreras et al, 2011; Martens et al, 2018; Patrick et al, 2018). However, how lipid environments or small modulators affect membrane-bound Ub ligase activity remains inconclusive. The recent study by Sharpe et al (2019) connected a specific lipid environment to a change in membrane-bound Ub ligase activity. They showed that the catalytic ability and stability of the membrane-bound Ub ligase MARCH6, another member of the MARCH family, is regulated by cholesterol (Sharpe et al, 2019). Furthermore, the lipid sphingosine-1-phosphate has been shown to be an activating cofactor of the Ub ligase TRAF2. TRAF2 is, however, not a membrane-associated Ub ligase (Alvarez et al, 2010).

In this study, we investigated the effect of the lipid environment on the activity and stability of the Ub ligase MARCH5. Through our in vitro activity, stability, and lipid binding experiments of MARCH5 in the presence of various lipid classes (CL, PA, PG, PI(4)P, PE, and PC), we got an insight into the possible regulatory roles of lipids in membrane-bound Ub ligase activity.

As expected, we did not observe any significant effects of the abundant lipids PE or PC on MARCH5 activity and thermal stability. This is reasonable if PC and PE are considered as bulk lipids, transiently interacting in a non-specific manner with the hydrophobic and hydrophilic patches of MARCH5. In contrast, the tested less abundant lipids CL, PA and PI(4)P bind MARCH5 and induced clear changes in MARCH5 activity and thermal stability. The binding of PI(4)P to MARCH5 increased its stability and induced a change in MARCH5 activity also shown by increased auto-ubiquitination. Despite no significant changes in MARCH5 activity in the presence of PA based on the SDS–PAGE gel and Western blot, we observed the most substantial stabilisation and the change in FP signal of MARCH5 in the presence of PA.

Furthermore, CL induced the most significant changes in stability and activity. These findings demonstrate that the lipid environment and specific lipids can regulate membrane-bound Ub ligase activity and stability in vitro. However, further investigation is necessary to unravel possible regulatory mechanisms of lipids towards membrane-bound E3 ligase activity and in vivo studies have to be performed to investigate the effect in a cellular context.
Figure 4. MARCH5 reveals different thermal stability profiles depending on lipids. (A, B, C, D) Nano-differential scanning fluorimetry (nanoDSF) curves (left) and their first derivative (right) of purified MARCH5 in the presence and absence (control) of lipids. Samples were excited at 280 nm and the Trp emission at 330 and 350 nm was recorded with an increase in temperature. (A) Melting profile of MARCH5 in the presence of PE, PC, PA, CL, PG, or PI(4)P in a 1:10 M ratio of protein to lipid. (B, C, D) Lipid titration of MARCH5 in the presence of CL (B), PA (C), and PC (D) in different molar protein to lipid ratios (1:1, 1:5, 1:10, and 1:50). MARCH5, including the lipids, were incubated for 1 h at 4°C before measurements. Melting curves were obtained using the Prometheus Panta (Nanotemper) in a temperature range of 15°C–95°C and a temperature gradient of 1°C per minute. Experiments were performed three times, each in triplicates. Curves show one example for clarity. A paired t test was applied. **P < 0.01, ***P < 0.001.
Intriguingly, as previously mentioned, MARCH5 showed the most elaborate changes in stability and activity in the presence of CL, even though CL is a specific lipid of the IMM. The increased auto-ubiquitination of MARCH5 observed in the presence of CL is likely connected to the decreased thermal stability in the presence of CL. Binding of CL to MARCH5 might induce structural changes in the mitochondria. Therefore, we suggest CL as a regulator of MARCH5 activity, where lipid composition changes (Kameoka et al, 2018), MARCH5 binds to CL, which might lead to ubiquitination and, therefore, alteration of MARCH5 activity. This would allow the recruitment of mitochondrial fission machinery such as Drp1 and Mid49 to the damaged mitochondria site. Therefore, we suggest CL as a regulator of MARCH5 upon externalisation to the OMM, especially in CL-fission (Fig 5).

To summarise, we showed that lipids could alter membrane-bound Ub ligases on the mitochondrial ligase MARCH5 in vitro. We hypothesise that under different mitochondrial like fission and fusion, where lipid composition changes (Kameoka et al, 2018), MARCH5 activity is altered by these lipids, leading to finely tuned MARCH5-mediated ubiquitination in different mitochondrial processes.

In conclusion, we present the first study, where a variety of different lipid classes were tested to investigate the effect of lipids on the activity and stability of a membrane-bound Ub ligase. We elucidated a possible regulatory mechanism of CL on MARCH5 in the mitochondria. Furthermore, these results highlight the importance of the lipid environment in the ubiquitin system and open up further questions like substrate specificity or E2/E3 pairing upon a change in a lipid environment.

Materials and Methods

All chemicals were purchased as grade BioUltra from Sigma-Aldrich if not stated otherwise. Lipids were purchased from Avanti Polar Lipids dissolved in chloroform.

Generation of MARCH5

All cDNAs were purchased from GenScript, and codon-optimised for overexpression in yeast (Saccharomyces cerevisiae). For large-scale overexpression in yeast, the cDNA encoding human MARCH5 was inserted into the pEMBLex4 plasmid (Cesareni & Murray, 1987) by homologous recombination in S. cerevisiae strain PAP1500 (α ura3-52 trp1:GAL10-GAL4 lys2-801 leu2_1 his3_200 pep4::HIS3 prb1_1.6R can1 GAL) (Pedersen et al, 1996) to encode MARCH5 followed by a TEV-cleavable yEGFP and a His10-tag. DNA-sequencing verified the correct assembly of the expression construct. For homologous recombination, cDNAs for MARCH5 and yEGFP were amplified by PCR and co-transformed into S. cerevisiae PAP1500 with PstI, HindIII, and BamHI digested pEMBLex4 vector following the protocol of Gietz and Schiestl (Gietz & Schiestl, 2007). The following primers were used:

- **March5_fwd**: 5′-AAATTGACTTTGAAAATACAAATTTTCGGCTTCTTCTT
- **March5_rev**: 5′-ACACAAATACACACACTAAATTACCGGATCAATTCTAA
- **GFPfwTEV**: 5′-GAAAATTTGTATTTTCAAAGTCAATT-
- **PAP1500 with**

Table 1. Melting temperatures of MARCH5 in presence of PC, PE, PI(4)P, PG, PA, or CL determined by nanoDSF.

Molar ratio	Melting temperature (°C)
Control	52.20 ± 0.60
PA	52.91 ± 0.65
PC	52.96 ± 0.71
1:1	52.08 ± 0.15
	55.24 ± 0.21
	52.53 ± 0.28
1:5	42.87 ± 0.96**
	58.98 ± 0.32**
	53.17 ± 0.08
1:10	38.95 ± 1.43***
	60.86 ± 0.26**
	54.01 ± 0.16
1:50	29.98 ± 3.67**
	59.57 ± 1.11**
	55.53 ± 0.48

The melting temperature of MARCH5 in the absence (control) or presence of CL, PA, and PC in different protein to lipid molar ratios was determined as the maxima of the first derivative of the 350 nm/330 nm ratio (shown in Fig 4). A paired t test was applied. **P < 0.01, ***P < 0.001. Data are shown as mean values ± SD of three independent experiments, each performed in triplicates.

Table 2. Melting temperature of MARCH5 in presence of CL, PA, or PC determined by nanoDSF.

Molar ratio	Melting temperature (°C)
Control	52.86 ± 0.58
PA	53.85 ± 0.27
PG	53.42 ± 0.47
PI(4)P	55.17 ± 0.57**
PG	56.18 ± 0.55**
PA	60.15 ± 0.74**
CL	40.20 ± 0.54***

The melting temperatures of MARCH5 in the absence (control) or presence of different lipid classes in a 1:10 M ratio of protein to lipid were determined as the maxima of the first derivative of the 350 nm/330 nm ratio (shown in Fig 4). A paired t test was applied. **P < 0.01, ***P < 0.001. Data are shown as mean values ± SD of four independent experiments, each performed in triplicates.

increased mitochondrial fragmentation because the accumulation of mitochondrial fission factors like Drp1 and Mid49 (Xu et al, 2016; Nagashima et al, 2019). Furthermore, Drp1-mediated mitochondrial fission is regulated by MARCH5-mediated degradation of the fission protein Mid49 (Cherok et al, 2017). Therefore, we speculate that under mitochondrial stress and externalisation of CL to the OMM, MARCH5 binds to CL, which might lead to ubiquitination and, therefore, alteration of MARCH5 activity. This would allow the recruitment of mitochondrial fission machinery such as Drp1 and Mid49 to the damaged mitochondria site. Therefore, we suggest CL as a regulator of MARCH5 upon externalisation to the OMM, especially in CL-fission (Fig 5).

The melting temperatures of MARCH5 in the absence (control) or presence of different lipid classes were tested to investigate the effect of lipids on the activity and stability of a membrane-bound Ub ligase. We elucidated a possible regulatory mechanism of CL on MARCH5 in the mitochondria. Furthermore, these results highlight the importance of the lipid environment in the ubiquitin system and open up further questions like substrate specificity or E2/E3 pairing upon a change in a lipid environment.

The melting temperature of MARCH5 in the absence (control) or presence of different lipid classes were tested to investigate the effect of lipids on the activity and stability of a membrane-bound Ub ligase. We elucidated a possible regulatory mechanism of CL on MARCH5 in the mitochondria. Furthermore, these results highlight the importance of the lipid environment in the ubiquitin system and open up further questions like substrate specificity or E2/E3 pairing upon a change in a lipid environment.

To summarise, we showed that lipids could alter membrane-bound Ub ligases on the mitochondrial ligase MARCH5 in vitro. We hypothesise that under different mitochondrial like fission and fusion, where lipid composition changes (Kameoka et al, 2018), MARCH5 activity is altered by these lipids, leading to finely tuned MARCH5-mediated ubiquitination in different mitochondrial processes.

In conclusion, we present the first study, where a variety of different lipid classes were tested to investigate the effect of lipids on the activity and stability of a membrane-bound Ub ligase. We elucidated a possible regulatory mechanism of CL on MARCH5 in the mitochondria. Furthermore, these results highlight the importance of the lipid environment in the ubiquitin system and open up further questions like substrate specificity or E2/E3 pairing upon a change in a lipid environment.

Materials and Methods

All chemicals were purchased as grade BioUltra from Sigma-Aldrich if not stated otherwise. Lipids were purchased from Avanti Polar Lipids dissolved in chloroform.

Generation of MARCH5

All cDNAs were purchased from GenScript, and codon-optimised for overexpression in yeast (Saccharomyces cerevisiae). For large-scale overexpression in yeast, the cDNA encoding human MARCH5 was inserted into the pEMBLex4 plasmid (Cesareni & Murray, 1987) by homologous recombination in S. cerevisiae strain PAP1500 (α ura3-52 trp1:GAL10-GAL4 lys2-801 leu2_1 his3_200 pep4::HIS3 prb1_1.6R can1 GAL) (Pedersen et al, 1996) to encode MARCH5 followed by a TEV-cleavable yEGFP and a His10-tag. DNA-sequencing verified the correct assembly of the expression construct. For homologous recombination, cDNAs for MARCH5 and yEGFP were amplified by PCR and co-transformed into S. cerevisiae PAP1500 with PstI, HindIII, and BamHI digested pEMBLex4 vector following the protocol of Gietz and Schiestl (Gietz & Schiestl, 2007). The following primers were used:

- **March5_fwd**: 5′-ACACAAATACACACACTAAATTACCGGATCAATTCTAA
- **March5_rev**: 5′-ACACAAATACACACACTAAATTACCGGATCAATTCTAA
- **GFPfwTEV**: 5′-GAAAATTTGTATTTTCAAAGTCAATT-
- **PAP1500 with**

Lipids alter MARCH5 activity Merhinger et al.
Lipids alter MARCH5 activity

L. Merhinger et al.

Figure 5. Schematic model of CL regulated MARCH5-mediated ubiquitination in mitochondrial fission. MARCH5 contributes to mitochondrial quality control by ubiquitination of misfolded proteins in the outer mitochondrial membrane. In steady-state mitochondria, MARCH5 negatively regulates mitochondrial fission processes by ubiquitination, leading to degradation. Under mitochondrial stress, CL can be externalised, which might induce ubiquitination of MARCH5. This would allow the fission proteins to target the fission site and the fission of the damaged part of the mitochondria could take place.

Expression and membrane extraction of MARCH5

Large-scale production of MARCH5 was carried out in S. cerevisiae. First, a single colony of transfected cells was selectively propagated at 30°C until saturation in 5 ml of minimal medium (0.5% ammonium sulfate, 2% glucose, salts [64 mM KH2PO4, 7 mM KH2PO4, 20 mM MgSO4, 17 mM NaCl, 70 μM CaCl2, 8 μM H3BO3, 0.6 μM KI, 2 μM MnSO4, 7 μM ZnSO4, 2 μM CuSO4, 1 μM FeCl3, and 1 μM Na2MoO4]), vitamins [20 μg/l biotin, 2 μg/l folic acid, 10 mg/l myo-inositol, 400 μg/l niacin, 200 μg/l 4 aminobenzoic acid, 400 μg/l pyridoxine, 200 μg/l riboflavin, and 400 μg/l thiamin], and 100 μg/l ampicillin) supplemented with L-leucine and L-lysine (both at 30 mg/l) for propagation into minimal medium supplemented only with L-lysine. 2 ml of this culture was then used to inoculate 250 ml minimal medium supplemented with L-lysine. Expression, 2.5 liters YPG medium (1% yeast extract, 2% peptone, 2% dextrose, 10% [vol/vol] 2,2-didecylpropane-1,3-bis-β-D-maltopyranoside (LMNG, Anatrace) to a detergent concentration of 1% (wt/vol), so the final volume yielded 50 ml per g crude membranes. MARCH5 was solubilised for 1 h at 4°C, whereas stirring followed by centrifugation (22,000 g, 40 min, 4°C). The supernatant was batch-incubated for 1 h with 1 ml of Nickel High-Performance resin (GE Healthcare) per 50 ml supernatant equilibrated in wash buffer 1 (50 mM Tris–HCl, pH 7.7, 100 mM NaCl, 10 mM imidazole, 5% [vol/vol] glycerol, 0.1 mM TCEP, and 0.01% [wt/vol] 2,2-didecylpropane-1,3-bis-β-D-maltopyranoside (LMNG, Anatrace)) in the presence of 10 mM imidazole. The resin supernatant mix was transferred to an empty PD-10 column resulting in a CV of 1 ml. Subsequently, the resin was washed with 20 column volumes (CV) of Wash buffer 1 followed by 20 CV of Wash buffer 2 (50 mM Tris–HCl, pH 7.7, 400 mM NaCl, 90 mM imidazole, 5% [vol/vol] glycerol, 0.1 mM TCEP, and 0.01% [wt/vol] LMNG). Detergent was exchanged on the Nickel column to LMNG. The protein elution was carried out with three CV Elution buffer (50 mM Tris–HCl, pH 7.7, 100 mM NaCl, 500 mM imidazole, 5% [vol/vol] glycerol, 0.5 mM TCEP, and 0.001% [wt/vol] LMNG). GFP-tag was cleaved of MARCH5 using TEV-protease (homemade, 1:2-M ratio), while dialysing against two times 70 volumes of SEC buffer (50 mM Tris–HCl, pH 7.7, 100 mM NaCl, 5% Falcon tubes and then saturated with glass beads (Φ = 500–750 μm, Acros Organics). Every tube was vortexed 5 × 1 min with at least 1 min incubation on ice between each cycle. Beads were then washed with 100 ml lysis buffer, and the pooled cell lysate was centrifuged twice (4,000 g, 10 min, 4°C). The resulting supernatant was centrifuged (215,000 g, 60 min, 4°C). The membrane pellet were homogenized in a ratio of 1 g per 10 ml solubilisation buffer (50 mM Tris–HCl pH 7.7, 400 mM NaCl, 10% [vol/vol] glycerol, 1 mM TCEP, 0.1 mM EDTA, 0.5 mM PMSF, and L-P-C protease inhibitor mix) using a 30-ml tissue grinder (Wheaton). The homogenized crude membranes were flash-frozen and stored at −80°C.

Purification of MARCH5

All following steps were performed at 4°C. Crude membranes were thawed, supplemented with solubilisation buffer and finalised with 10% (wt/vol) n-Dodecyl β-D-maltoside (β-DDM; Anatrace) to a detergent concentration of 1% (wt/vol), so the final volume yielded 50 ml per g crude membranes. MARCH5 was solubilised for 1 h at 4°C, whereas stirring followed by centrifugation (22,000 g, 40 min, 4°C). The supernatant was batch-incubated for 1 h with 1 ml of Nickel High-Performance resin (GE Healthcare) per 50 ml supernatant equilibrated in wash buffer 1 (50 mM Tris–HCl, pH 7.7, 100 mM NaCl, 10 mM imidazole, 5% [vol/vol] glycerol, 0.1 mM TCEP, and 0.01% [wt/vol] 2,2-didecylpropane-1,3-bis-β-D-maltopyranoside (LMNG, Anatrace)) in the presence of 10 mM imidazole. The resin supernatant mix was transferred to an empty PD-10 column resulting in a CV of 1 ml. Subsequently, the resin was washed with 20 column volumes (CV) of Wash buffer 1 followed by 20 CV of Wash buffer 2 (50 mM Tris–HCl, pH 7.7, 400 mM NaCl, 90 mM imidazole, 5% [vol/vol] glycerol, 0.1 mM TCEP, and 0.01% [wt/vol] LMNG). Detergent was exchanged on the Nickel column to LMNG. The protein elution was carried out with three CV Elution buffer (50 mM Tris–HCl, pH 7.7, 100 mM NaCl, 500 mM imidazole, 5% [vol/vol] glycerol, 0.5 mM TCEP, and 0.001% [wt/vol] LMNG). GFP-tag was cleaved of MARCH5 using TEV-protease (homemade, 1:2-M ratio), while dialysing against two times 70 volumes of SEC buffer (50 mM Tris–HCl, pH 7.7, 100 mM NaCl, 5%
Lipids alter MARCH5 activity

Merhlinger et al.

https://doi.org/10.26508/lsa.202101309

vol 5 | no 8 | e202101309

10 of 13

[vol/vol] glycerol, and 0.1 mM TCEP, 0.001% [wt/vol] LMNG) using a Snakeskin dialysis tubing (3.5 kD molecular weight cut off, Thermo Fisher Scientific), for MARCH5-GFP-His$_{10}$ tag no TEV protease was added during the buffer exchange. Buffer was changed after 1 h, and dialysis continued for another 18 h. The precipitation was removed by centrifugation (4,000g, 10 min, 4°C). To remove the cleaved GFP and TEV, the supernatant was incubated with 1 ml Nickel High Performance resin equilibrated in SEC buffer for 30 min. Flow-through and wash (2 CV with SEC buffer) containing cleaved MARCH5 was collected and concentrated using an Amicon Ultra 15 molecular weight cut-off 50 kD to around 1 mg/ml. After, analytical quality control by size exclusion chromatography using a Superose 6 increase 10/300 GL column (GE Healthcare) in SEC buffer, MARCH5 was flash-frozen in liquid nitrogen and stored at -80°C. For MARCH5 in DDM, the same purification procedure was used. However, the detergent was not exchanged and instead of LMNG, 0.01% (wt/vol) DDM in the buffers was used.

Lipid-binding assay

For positive controls, 1 μl of anti-His-HRP (#7074; Cell Signalling) and 1 μl of MARCH5-GFP-His$_{10}$ in two concentrations (0.35 and 3.5 mg/ml) were pipetted on an empty spot on the lipid membrane strip (#P-6002; Echelon Bioscience). The dry membrane was blocked with 30 ml TBS + 3% (wt/vol) BSA overnight at 4°C, followed by incubation of 1 μg/ml MARCH5-GFP-His$_{10}$ in TBS + 3% (wt/vol) BSA and 0.01% (wt/vol) DDM or 0.001% (wt/vol) LMNG to ensure MARCH5 will not precipitate during incubation for 4 h at room temperature. The membrane was washed three times with TBS for 5–10 min, subsequently incubated with His-HRP antibody (1:2,000 dilution) in TBS + 3% (wt/vol) BSA for 1 h at room temperature. The previous wash step was repeated, followed by chemiluminescent development (Pierce ECL Western Blotting Substrate, #32132; Thermo Fischer Scientific) using Vilber Smart imaging Fusion Fx spectra or AEC staining Kit (#AEC101-KT; Sigma-Aldrich). For the lipid membrane strip using specific lipids, the 1 μl of lipid (PE (egg, chicken) (#840021), CL (heart, bovine) (#840012), PA (egg, chicken) (#840101), PC (egg, chicken) (#840051), PG (egg, chicken) (#841138), PI(4)P (brain, porcine) (#840045)) was spotted on a PVDF membrane and dried for 1 h. 1 μl of MARCH5 was spotted, serving as a positive control. The assay was performed as described above using 1 μg/ml MARCH5 in TBS + 3% (wt/vol) BSA and 0.001% (wt/vol) LMNG. However, for detection, the membrane was incubated with anti-MARCH5 (1:500, #ab185054; Abcam) and secondary antibody from anti-rabbit HRP (12,000, #7074; Cell Signalling) and detected by chemiluminescence using Biorad ChemiDoc Touch gel Imaging System.

Lipid preparation

PE (egg, chicken) (#840021), CL (heart, bovine) (#840012), PA (egg, chicken) (#840101), PC (egg, chicken) (#840051), and PG (egg, chicken) (#841138) were purchased as stock solutions of 10 mg/ml. PI(4)P (brain, porcine) (#840045) was purchased as a 1 mg/ml stock solution. Notably, each lipid class included in this study consisted of a mixture of lipids varying in their chain length and saturation (e.g., CL mix of 18:1 and 18:2 fatty acid chains). The desired amounts of lipids dissolved in chloroform were dried under an argon stream. The lipid films were resuspended in 0.2% (wt/vol) LMNG to a stock solution of 5 mM for a 1:10 M ratio of protein to lipid. For the titration curves of PA, PC, and CL, a separate lipid stock for each molar ratio (1:1, 1:5, 1:10, and 1:50) was prepared to a concentration that 5 μl of resuspended lipids to 35 μl MARCH5 sample resolve in the wanted molar ratio of protein to lipid (final volume of 40 μl). In the case of a used concentration of 32 μM MARCH5, a lipid stock solution of 0.19 mM for a 1:1 M ratio, 0.97 mM for a 1:5 M ratio, 1.94 mM for a 1:10 M ratio, and 9.68 mM for a 1:50 M ratio, was prepared. This allowed a constant detergent concentration in all molar ratios. To the control MARCH5 identical amount of detergent was added as for the lipid samples.

In vitro ubiquitination assay for gel-based analysis

MARCH5 was incubated with lipids at a 1:10 M ratio on ice for 60 min (see lipid preparation section) before being added to the master solution. Therefore, 19 μl of 5 mM corresponding lipid stocks were incubated with MARCH5 (32 μM) to a final volume of 30 μl. MARCH5 in the absence of lipids (+ control) included the same amount of LMNG as in the samples with lipid, so detergent concentration remained constant throughout the different MARCH5 lipid samples and negative control containing no E3 ligase. A master solution resulting in final concentration of 40 mM Tris–HCl, pH 7.5, 25 mM NaCl, 10 mM MgCl$_2$, 0.6 mM DTT, 2 mM ATP, 50 nM human E1 (#E-304; Boston Biochem), 1 μM E2 (UbcH5b, #E2-622; Boston Biochem), and 23 μM Ub (#U6253; Sigma-Aldrich) was mixed and aliquoted. 2.5 μM of MARCH5 incubated with lipids was added to the respective master solution. The reaction volume was 60 μl per reaction mix. The final detergent and lipid concentration in the master solution was 1 MCM (critical micelle concentration) (0.001%), 25 μM, respectively. For the lipid titration ubiquitination assay, it was the same experimental setup, except the reaction volume was 80 μl per reaction mix and the preparation of the MARCH5 lipid samples. 5 μl of desired stock concentration of lipids (see lipid preparation) to achieve the wanted molar ratio of protein to lipid (1:1, 1:5, 1:10, and 1:50) was added to MARCH5 (32 μM), having a final volume of 40 μl and incubated 1 h on ice prior assay. The final detergent concentration was two MCM (0.0019%), and lipid concentration in the ubiquitination assay varied between 2.5 and 125 μM. Reactions were performed at 30°C for 0–60 min or 0–120 min, and for each time point, 14 μl reaction mix was taken out and stopped by the addition of 4 μl LSB. Samples were subjected to SDS–PAGE (8 μl sample loaded on Mini protein TGX gels 4–20%, #4561096; Bio-Rad), and proteins were visualised by Coomassie blue staining (InstantBlue Coomassie protein stain, #ab119211; Abcam) or immunoblotting (2.5 μl sample loaded on gel) using Bio-Rad ChemiDoc Touch gel Imaging System, anti-ubiquitin (12,000, #NB300-130; Novusbio) and anti-MARCH5 (1,500, #ab185054; Abcam) and secondary antibody from anti-rabbit HRP (12,000, #7074; Cell Signalling), anti-mouse HRP (1,400, #NA931; GE Healthcare). For relative quantification of the intensity of MARCH5 and mono-ubiquitin bands, the Image laboratory software (Bio-Rad) was used, and band intensity at time point 0 of the respective samples was defined as 100%. To note, because a substrate of MARCH5 was not available for the assay, we used the ability of many Ub ligases to facilitate ubiquitination even in the absence of their substrates, forming either free ubiquitin...
chains, auto-ubiquitination or the E1 or E2 enzymes (Lorick et al., 1999).

In vitro de-ubiquitination assay for gel-based analysis

Deubiquitinase USP2 (#E-504; Boston Biochem) was diluted to 2.5 μM in DUB buffer (150 mM NaCl, 50 mM Tris–HCl, pH 7.5, 20 mM DTT, and 1 mM EDTA). After the performance of the in vitro ubiquitination assay for gel-based analysis (see above), 500 nM of the diluted USP2 was added to the ubiquitination mix. The reaction mix was incubated for 1 h at 30°C, before terminating the reaction with LSB. SDS–PAGE analysis was performed as previously described in the in vitro ubiquitination assay for gel-based analysis.

Ubi-real in vitro ubiquitination assay for fluorescent polarisation measurements

MARCH5-lipid samples were prepared as described above in vitro ubiquitination assay for gel-based analysis. A master solution resulting in final concentration of 40 mM Tris–HCl, pH 7.5, 25 mM NaCl, 10 mM MgCl₂, 0.6 mM DTT, 50 nM human E1 (#E-304; Boston Biochem), 1 μM E2 (Ubch5b, #E2-622; Boston Biochem), 23 μM Ub (#U6253; Sigma-Aldrich), and 100 nM F-Ub (#U-580; Boston Biochem) was mixed and aliquoted. 2.5 μM of MARCH5 incubated with lipids was added to the respective master solution or a master solution of MARCH5 without lipids as a + control. Concentrations were calculated so that desired concentrations would be achieved in a final concentration of 40 mM Tris–HCl, pH 7.5, 25 mM NaCl, 10 mM MgCl₂, 0.6 mM DTT, 50 nM human E1 (#E-304; Boston Biochem), 1 μM E2 (Ubch5b, #E2-622; Boston Biochem), 23 μM Ub (#U6253; Sigma-Aldrich), and 100 nM F-Ub (#U-580; Boston Biochem) was mixed and aliquoted. 2.5 μM of MARCH5 incubated with lipids was added to the respective master solution or a master solution of MARCH5 without lipids as a + control. Concentrations were calculated so that desired concentrations would be achieved in a final volume of 20 μl. 18.4 μl of the master solution containing MARCH5 incubated with specific lipids were added to a Greiner 384-well, F-bottom, Hibase plate sample wells. The plate was sealed (Clear sealing tape; Molecular Dimensions). After baseline measurement, 1.6 μl ATP were added to each well to a final concentration of 4 μM, except for the control, which included MARCH5 in the absence of lipids. The addition of ATP interrupted the measurement for around 2 min. The final detergent and lipid concentration in the master solution was 1 CMC (0.001%) 25 μM, respectively. The FP was monitored on a plate reader (Victor Nivo, Perkin Elmer) using a suitable setting for the fluorescent fluorophore with an excitation wavelength of 480, 500 nm dichroic mirror and emission wavelength of 530 nm. FP experiments were 2 h, and FP values were read every minute with a measuring time of 100 ms. In between measurements, the plate was shaken. The baseline was measured for 10 cycles (10 min). Each sample was prepared in four replicates, and the FP signal was averaged at each time point. FP signal was calculated by the Victor Nivo Software, and averages and standard deviations were calculated using GraphPad Prism. To note, fluorescent-labelled ubiquitin has a fluorophore permanently attached to its N-terminus that precludes methionine 1 (Met1)-linked ubiquitin chain formation. However, this ubiquitin linkage type is specific for the ubiquitin chain assembly complex LUBAC, which is the only known mammalian ubiquitin ligase that catalyses Met1-linked ubiquitin linkages (Hrdinka & Gyrd-Hansen, 2017).

Chemical crosslinking in vitro

Prior experiment, MARCH5 was buffer exchanged using Zeba spin column (#89882; Thermo Fisher Scientific) to 50 mM Hepes, pH 7.7, 100 mM NaCl, 5% (vol/vol) glycerol, and 0.1 mM TCEP, 0.001% (wt/vol) LMNG. Bs3 crosslinking reagent (#21586; Thermo Fisher Scientific) was prepared in a 50 mM stock solution by dissolving 10 mg Bs3 in 350 μl of 25 mM potassium phosphate, pH 7.7. MARCH5 was incubated with CL for 1 h before the experiments in a 1:10 M ratio protein to lipid as described in the lipid preparation section. To 35 μl of 19.4 μM MARCH5, 0.35 μl Bs3 was added from the stock solution to a final concentration of 0.5 μM. At each time point (0, 15, 30, and 60 min), 8 μl was taken out of the MARCH5 Bs3 mix, and the reaction was quenched by adding 1 μl 3 M Tris–HCl, pH 7.7 followed by the addition of 4 μl LSB. Crosslinking was analysed by SDS–PAGE.

Nano differential scanning fluorometry (nanoDSF)

Lipids were prepared as stated in the lipid preparation section. MARCH5 (final concentration of 0.5 mg/ml [16 μM]) was mixed with indicated lipids (stock concentration of 5 mM) in a 1:10 M ratio in a sample volume of 40 μl. The final detergent concentration was 5 CMC (0.005%). For the lipid titration experiments, 5 μl of desired stock concentration of lipids (see lipid preparation) to achieve the wanted molar ratio of protein to lipid (1:1, 1:5, 1:10, and 1:50) was added to MARCH5 (32 μM), having a final volume of 40 μl. After MARCH5 was diluted to a concentration of 0.5 mg/ml (16 μM) in buffer (50 mM Tris–HCl, pH 7.7; 100 mM NaCl; 5% glycerol; 0.1 mM TCEP; 0.001% [wt/vol] LMNG), the final detergent concentration was 12.5 CMC (0.0125%). Samples were incubated for 1 h at 4°C. Real-time simultaneous monitoring of the intrinsic tryptophan fluorescence at 330 and 350 nm was performed using a Prometheus Panta (Nanotemper) measuring a temperature range of 15°C–95°C with a temperature gradient of 1°C per minute. A minimum of triplicates was used for all experiments. Protein melting temperatures were determined as maxima of the first derivatives of the 350/330 nm ratio, analysed by Prometheus software.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lса.202101309.

Acknowledgements

We wish to thank M Cotta for her help in the initial phase of the ubiquitination assay establishment. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-COFUND) under grant agreement no 609020 – Scienția Fellow (J Bauer). Figs 1A and C and 5 were created using https://biorender.com.

Author Contributions

L Merklinger: conceptualization, resources, data curation, software, formal analysis, validation, investigation, visualization, and writing—original draft, review, and editing. J Bauer: validation, methodology, and writing—review and editing.
PA Pedersen: resources, formal analysis, methodology, and writing—review and editing.

RB Damgaard: resources, software, formal analysis, supervision, investigation, methodology, and writing—review and editing.

JP Morth: conceptualization, resources, supervision, funding acquisition, validation, investigation, methodology, project administration, and writing—original draft, review, and editing.

Conflict of Interest Statement
The authors declare that they have no conflict of interest.

References

Adachi Y, Iijima M, Sesaki H (2018) An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases 9: 472–479. doi:10.1080/21542487.2017.1322161

Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M, Sesaki H (2016) Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol Cell 63: 1034–1043. doi:10.1016/j.molcel.2016.08.013

Alvarez SE, Harikumar KB, Halt NC, Allegood J, Strub GM, Kim EY, MacEya M, Jiang H, Luo C, Kordula T, et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465: 1084–1088. doi:10.1038/nature09128

Baba T, Kashiwagi Y, Arimitsu N, Kogure T, Edo A, Maruyama T, Nakao K, Nakashima H, Kinoshita M, Frohman MA, et al (2014) Phosphatidic acid (PA)-Preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem 289: 11497–11511. doi:10.1074/jbc.M113.531921

Bauer J, Bakke O, Morth JP (2017) Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. N Biotechnol 38: 7–15. doi:10.1016/j.nbt.2016.12.002

Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O, Martinou JC (2014) Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS One 9: e102738. doi:10.1371/journal.pone.0102738

Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B (2021) A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 16: 1–20. doi:10.1371/journal.pone.0254118

Cesareni G & Murray JA (1987) Plasmid vectors carrying the replication origin of filamentous single-stranded phages. In Genetic Engineering: Principles and Methods, Sletow JK (ed), Vol. 9, pp 155–154. Boston, MA: Springer US. doi:10.1007/978-1-4684-5377-5_9

Cherok E, Xu S, Li S, Das S, Meltzer WA, Zalman C, Wang K, Carbowksi M (2017) Novel regulatory roles of MFI and Drp1 in E3 ubiquitin ligase MARCH5–dependent degradation of Mito9 and Mcl1 and control of mitochondrial dynamics. Mol Biol Cell 28: 396–410. doi:10.1091/mbc.E16-04-0028

Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8: 1255–1262. doi:10.1038/nccb1487

Chu CT, Bayr H, Kagan VE (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: Implications for Parkinson disease. Autophagy 10: 376–378. doi:10.4161/aut.27191

Chu CT, Ji J, Dagda RK, Jiang JF, Tyrurina YY, Kapralov AA, Tyrurin VA, Yanamala N, Shrivastava IH, Mommanadyun D, et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15: 1197–1205. doi:10.1038/nccb2837

Contreas FX, Ernst AM, Wieland F, Brügger B (2011) Specificity of intramembrane protein-lipid interactions. Cold Spring Harb Perspect Biol 3: 1–18. doi:10.1101/perspect.p004705

Corradi V, Sejdiu BI, Mesa-Gallosio H, Abidzadeh H, Noskov SY, Marrink SJ, Tieleman DP (2019) Emerging diversity in lipid-protein interactions. Chem Rev 119: 5775–5848. doi:10.1021/acs.chemrev.9b00451

Deol KK, Lorenz S, Striet ER (2019) Enzymatic logic of ubiquitin chain assembly. Front Physiol 10: 835. doi:10.3389/fphys.2019.00835

Deshaires RJ, Joaozinho CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399–434. doi:10.1146/annurev.biochem.78.108017.093809

Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5: 90. doi:10.3389/fccl.2017.00090

Franklin TG, Pruneda JN (2019) A high-throughput assay for monitoring ubiquitination in real time. Front Chem 7: 816. doi:10.3389/fchem.2019.00816

Frohman MA (2015) Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl) 93: 263–269. doi:10.1007/s00109-014-1237-z

Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2: 1–4. doi:10.1038/nprot.2007.17

Harper JW, Ordureau A, Heo JM (2018) Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol 19: 93–108. doi:10.1038/nrm.2017.129

Hochstrasser M (2006) Lingering mysteries of ubiquitin-chain assembly. Cell 124: 27–34. doi:10.1016/j.cell.2005.12.025

Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52: 590–614. doi:10.1016/j.plipres.2013.07.002

Hrdinka M, Gyrd-Hansen M (2017) The Met1-linked ubiquitin machinery: Emerging themes of [e]regulation. Mol Cell 68: 265–280. doi:10.1016/j.molcel.2017.09.001

Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA (2011) PRK-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20: 376–387. doi:10.1016/j.devcel.2011.01.004

Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H (2018) Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol 28: 67–76. doi:10.1016/j.tcb.2017.08.011

Karbowksi M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1-dependent mitochondrial division. J Cell Biol 178: 71–84. doi:10.1083/jcb.200611064

Kerscher O, Felberbaum R, Hochstrasser M (2016) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 32: 159–180. doi:10.1146/annurev.cellbio.22.010605.093903

Kim HJ, Nagano Y, Choi SJ, Park SY, Kim H, Yao TP, Lee JY (2015) HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation. Biochem Biophys Res Commun 464: 1235–1240. doi:10.1016/j.bbrc.2015.07.111

Kliza K, Husnjak K (2020) Resolving the complexity of ubiquitin networks. Front Mol Biosci 7: 21. doi:10.3389/fmbio.2020.00021

Komannder D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81: 203–229. doi:10.1146/annurev-biochem-060310-170328

Koyano F, Yamano K, Kosako H, Tanaka K, Matsuda N (2019) Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. J Biol Chem 294: 10300–10314. doi:10.1074/jbc.RA118.006302

Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING finger mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96: 11364–11369. doi:10.1073/pnas.96.20.11364

Mahajan M, Bhararamne N, Shang Y, Lu B, Mandal A, Madan Mohan P, Wang R, Boatz JC, Manuel Martinez Galvez J, Shnyrova AV, et al (2021) NMR
Lipids alter MARCH5 activity. Merlíngler et al.

Merklinger et al. (2018) Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Not Commun 9: 4151. doi:10.1016/s41467-018-06704-1

Metzger MB, Pruneda IN, Klevit RE, Weissman AM (2014) RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitin-proteasome system. Biochim Biophys Acta 1843: 17–60. doi:10.1016/j.bbadis.2013.03.026

Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7: 1019–1022. doi:10.1038/sj.embor.7400790

Park Y, Lee S, Karbowski M, Neutzner A, Youle R, Cho H (2010) Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123: 619–626. doi:10.1242/jcs.061481

Park YY, Nguyen OT, Kang H, Cho H (2014) MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis 5: e1172. doi:10.1038/cddis.2014.142

Patrick JW, Boone CD, Liu W, Conover GM, Liu Y, Cong X, Laganowsky A (2018) Allosteric revealed within lipid binding events to membrane proteins. Proc Natl Acad Sci U S A 115: 2976–2981. doi:10.1073/pnas.1719831115

Pedersen PA, Rasmussen JH, Jørgensen PL (1996) Expression in high yield of αβ1 Na,K-ATPase and inactive mutants D369N and D807N in Saccharomyces cerevisiae. J Biol Chem 271: 2541–2522. doi:10.1016/j.jbc.2015.2514

Phu L, Rose CM, Tea JS, Wall CE, Verschueren E, Cheung TK, Kirkpatrick DS, Bingol B (2020) Dynamic regulation of mitochondrial import by the ubiquitin system. Mol Cell 77: 1107–1123.e10. doi:10.1016/j.molcel.2020.02.012

Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J (2015) Cardiolipin interactions with proteins. Biophys J 109: 1282–1294. doi:10.1016/j.bpj.2015.07.034

Praharaj PP, Naik PP, Panigrahi DP, Bhol CS, Mahapatra KK, Patra S, Sethi G, Bhutia SK (2019) Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: Its implication in cancer therapeutic. Cell Mol Life Sci 76: 1641–1652. doi:10.1007/s00018-018-2990-x

Real-Hohn A, Groznic M, Loffler N, Blaas D, Kowalski H (2020) nanoDSF: In vitro label-free method to monitor picornavirus uncoating and test compounds affecting particle stability. Front Microbiol 11: 1442. doi:10.3389/fmicb.2020.01442

Shreve L, Howe V, Scott NA, Luu W, Phan L, Berk JM, Hochstrasser M, Brown AJ (2019) Cholesterol increases protein levels of the E3 ligase MARCH6 and thereby stimulates protein degradation. J Biol Chem 294: 2436–2448. doi:10.1074/jbc.RA118.005060

Shiiba I, Takada K, Nagashima S, Ito N, Tokuyama T, Yamashita S, Kanki T, Komatsu T, Urano Y, Fujikawa Y, et al (2021) MITOL deletion in the brain impairs mitochondrial structure and ER tethering leading to oxidative stress. Life Sci Alliance 2: e201900308. doi:10.26508/lsa.201900308

Sugriya A, Nagashima S, Baymauma T, Amo T, Matsuura S, Kudo Y, McBride HM, Fukuda T, Matsushita N, et al (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51: 20–34. doi:10.1016/j.molcel.2013.04.023

Tangyu E, Kassas N, Vitale N (2018) Protein-Phospholipid interaction motifs: A focus on phosphonic acid. Biomolecules 8: 20. doi:10.3390/biom8020020

Tiwg G, Elorza A, Molina AI, Mohamed H, Wikstrom JD, Walger G, Stiles L, Haigh SE, Katz S, Las G, et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27: 433–446. doi:10.1038/sj.emboj.7601963

Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, Polster BM, Boyman L, Lederer WJ, Wang C, et al (2016) Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MID49 protein. Mol Biol Cell 27: 349–359. doi:10.1091/mbc.E15-09-0678

Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, et al (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25: 3618–3626. doi:10.1038/sj.emboj.7601249

Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C (2019) Phosphatidic acid in membrane rearrangements. FEBS Lett 593: 2428–2431. doi:10.1002/1365-2958.201901020

License: This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).