CSF rhinorrhoea after endonasal intervention to the anterior skull base (CRANIAL): proposal for a prospective multicentre observational cohort study

Danyal Z. Khan, Soham Bandyopadhyay, Vikesh Patel, Benjamin E. Schroeder, Ivan Cabrilo, David Choi, Simon A. Cudlip, Neil Donnelly, Neil L. Dorward, Daniel M. Fountain, Joan Grieve, Jane Halliday, Angelos G. Kolias, Richard J. Mannion, Alice O'Donnell, Nick Phillips, Rory J. Piper, Bhavna Ramachandran, Thomas Santarius, Parag Sayal, Rishi Sharma, Georgios Solomou, James R. Tysome, Hani J. Marcus, Neurology and Neurosurgery Interest Group (NANSIG), British Neurosurgical Trainee Research Collaborative (BNTRC), and CRANIAL Steering Committee, Andrew F Alalade, Shahzada Ahmed, Sinan Al-Barazi, Rafid Al-Mahfoudh, Anuj Bahl, David Bennett, Raj Bhalla, Pragnesh Bhatt, Graham Dow, Anastasios Giamouridi, Catherine Gilkes, Kanna Gnanallingham, Brendan Hanna, Caroline Hayhurst, Jonathan Hempenstall, Kismet Hossain-Ibrahim, Mark Hughes, Mohsen Javadpour, Alistair Jenkins, Mahmoud Kamel, Mohammad Habibullah Khan, Peter Lacy, Eleni Maratos, Andrew Martin, Nijaguna Mathad, Nigel Mendoza, Showkat Mirza, Sam Muquit, Ramesh Nair, Claire Nicholson, Alex Paluzzi, Dimitris Paraskevopoulos, Omar Pathmanaban, Jonathan Pollock, Bhaskar Ram, Iain Robertson, Peter Ross, Simon Shaw, Alireza Shoakazemi, Saurabh Sinha, Simon Stapleton, Patrick Statham, Benjamin Stew, Nick Thomas, Georgios Tsermoulas, Philip Weir & Adam Williams

To cite this article: Danyal Z. Khan, Soham Bandyopadhyay, Vikesh Patel, Benjamin E. Schroeder, Ivan Cabrilo, David Choi, Simon A. Cudlip, Neil Donnelly, Neil L. Dorward, Daniel M. Fountain, Joan Grieve, Jane Halliday, Angelos G. Kolias, Richard J. Mannion, Alice O'Donnell, Nick Phillips, Rory J. Piper, Bhavna Ramachandran, Thomas Santarius, Parag Sayal, Rishi Sharma, Georgios Solomou, James R. Tysome, Hani J. Marcus, Neurology and Neurosurgery Interest Group (NANSIG), British Neurosurgical Trainee Research Collaborative (BNTRC), and CRANIAL Steering Committee, Andrew F Alalade, Shahzada Ahmed, Sinan Al-Barazi, Rafid Al-Mahfoudh, Anuj Bahl, David Bennett, Raj Bhalla, Pragnesh Bhatt, Graham Dow, Anastasios Giamouridi, Catherine Gilkes, Kanna Gnanallingham, Brendan Hanna, Caroline Hayhurst, Jonathan Hempenstall, Kismet Hossain-Ibrahim, Mark Hughes, Mohsen Javadpour, Alistair Jenkins, Mahmoud Kamel, Mohammad Habibullah Khan, Peter Lacy, Eleni Maratos, Andrew Martin, Nijaguna Mathad, Nigel Mendoza, Showkat Mirza, Sam Muquit, Ramesh Nair, Claire Nicholson, Alex Paluzzi, Dimitris Paraskevopoulos, Omar Pathmanaban, Jonathan Pollock, Bhaskar Ram, Iain Robertson, Peter Ross, Simon Shaw, Alireza Shoakazemi, Saurabh Sinha, Simon Stapleton, Patrick Statham, Benjamin Stew, Nick Thomas, Georgios Tsermoulas, Philip Weir & Adam Williams (2020): CSF rhinorrhoea after endonasal intervention to the anterior skull base (CRANIAL): proposal for a prospective multicentre observational cohort study, British Journal of Neurosurgery, DOI: 10.1080/02688697.2020.1795622
CSF rhinorrhoea after endonasal intervention to the anterior skull base (CRANIAL): proposal for a prospective multicentre observational cohort study

Danyal Z. Khan, Soham Bandyopadhyay, Vikesh Patel, Benjamin E. Schroeder, David Choi, Simon A. Cudlip, Neil Donnelly, Neil L. Dorward, Daniel M. Fountain, Joan Grieve, Jane Halliday, Angelos G. Kolias, Richard J. Mannion, Alice O'Donnell, Nick Phillips, Rory J. Piper, Bhavna Ramachandran, Thomas Santarius, Parag Sayal, Rishi Sharma, Georgios Solomou, James R. Tysome, Hani J. Marcus, Neurology and Neurosurgery Interest Group (NANSIG), British Neurosurgical Trainee Research Collaborative (BNTRC), and CRANIAL Steering Committee

Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals Trust, Cambridge, UK; Medical Sciences Division, University of Oxford, Oxford, UK; Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; School of Medicine, Cardiff University, Cardiff, UK; Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK; Department of ENT Surgery, University of Cambridge and Cambridge University Hospitals, Cambridge, UK; Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK; Birmingham Medical School, University of Birmingham, Birmingham, UK; Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Clinical lead for Cranial Neurosurgery, Getting it Right First Time, UK; School of Medicine, Keele University, Stoke-on-Trent, UK

ABSTRACT

Background: The endonasal transphenoidal approach (TSA) has emerged as the preferred approach in order to treat pituitary adenoma and related sellar pathologies. The recently adopted expanded endonasal approach (EEA) has improved access to the ventral skull base whilst retaining the principles of minimally invasive surgery. Despite the advantages these approaches offer, cerebrospinal fluid (CSF) rhinorrhoea remains a common complication. There is currently a lack of comparative evidence to guide the best choice of skull base reconstruction, resulting in considerable heterogeneity of current practice. This study aims to determine: (1) the scope of the methods of skull base repair; and (2) the corresponding rates of postoperative CSF rhinorrhoea in contemporary neurosurgical practice in the UK and Ireland.

Methods: We will adopt a multicentre, prospective, observational cohort design. All neurological units in the UK and Ireland performing the relevant surgeries (TSA and EEA) will be eligible to participate. Eligible cases will be prospectively recruited over 6 months with 6 months of postoperative follow-up. Data points collected will include: demographics, tumour characteristics, operative data), and postoperative outcomes. Primary outcomes include skull base repair technique and CSF rhinorrhoea (biochemically confirmed and/or requiring intervention) rates. Pooled data will be analysed using descriptive statistics. All skull base repair methods used and CSF leak rates for TSA and EEA will be compared against rates listed in the literature.

Ethics and dissemination: Formal institutional ethical board review was not required owing to the nature of the study – this was confirmed with the Health Research Authority, UK.

Conclusions: The need for this multicentre, prospective, observational study is highlighted by the relative paucity of literature and the resultant lack of consensus on the topic. It is hoped that the results will give insight into contemporary practice in the UK and Ireland and will inform future studies.

Introduction

The endonasal transphenoidal approach (TSA) has emerged as the preferred approach in order to resect pituitary adenoma and related sellar pathologies owing to its superior effectiveness and safety profile when compared to transcranial approaches.1,2 This approach is defined by its purpose of accessing the sella turcica through the sphenoid bone. Whilst traditionally performed microscopically, recent technological advances have allowed the TSA to be performed with success endoscopically.1,3 Furthermore, building on these endoscopic techniques, the development of the expanded endonasal approach (EEA) has further improved access to the anterior skull base.4 This approach refers to a modified transsphenoidal approach (TSA) to the anterior skull base.5

CONTACT Hani J. Marcus h.marcus@ucl.ac.uk Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK

Registered charity no. 1065870

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE HISTORY

Received 2 March 2020
Accepted 10 July 2020

KEYWORDS

Cerebrospinal fluid; CSF; CSF leak; skull base tumours; neuroendoscopy; pituitary surgery

Supplemental data for this article can be accessed here.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
to accessing an area beyond the sella alone, bounded by the frontal sinus, cribriform plate, medial orbital wall, cavernous sinus, posterior clinoid processes, and clivus.5 The EEA is used for the surgical management of many pathologies including large pituitary adenomas, craniopharyngiomas, meningiomas, Rathke’s pouch cysts, clival chordomas and chondrosarcomas.7

Despite the advantages these approaches offer, cerebrospinal fluid (CSF) rhinorrhea remains a common complication and may lead to significant morbidity including prolonged hospital stay, headaches, pneumocephalus, and meningitis.6–8 CSF rhinorrhea occurs with the disruption of the tissue between the subarachnoid space and sinonasal cavity, namely the meninges, skull base, sinonasal mucosa.8 Arguably, therefore, the most important risk factor for the development of a CSF rhinorrhea is the method of reconstruction of the skull base5 (Figure 1). Other risk factors for postoperative CSF rhinorrhea include elevated BMI, prior cranial radiotherapy, prior cranial surgery, tumour size, local tumour infiltration, high-flow intraoperative CSF leak and surgeon experience.5,9–12 Commonly cited skull base repair methods include the use of fat or fascia grafts, nasoseptal flaps and lumbar drains.13 There is, however, a multitudinous array of techniques and combinations available, including direct dural closure (for example, with sutures), dural replacement (for example, Durepair or fascia lata), synthetic grafts (for example, TachoSil® Gelfoam®), butresses (for example, Titanium mesh or Medpor®), tissue glues (for example, Evicel® or Adherus®) and nasal packing (for example, ballooned catheters or Nasopore®).5,14

There is a suggestion that the use of nasoseptal flaps is particularly beneficial in the setting of large defects (>3cm) and/or high CSF flow.15,16 Similarly, a recent randomised controlled trial concluded that perioperative lumbar drain use decreased CSF rhinorrhea rates when combined with nasoseptal flap repair (in the context of dural defects >1cm² and high flow intra-op CSF leak).17 Overall, however, there is a lack of comparative evidence to guide the ideal choice of skull base reconstruction.13 This is the circumstance in both first and second attempts of leak repair, as well in both high and low CSF flow situations.17 Thus, there is considerable heterogeneity in current practice and is based mostly on surgeon preference.13 Similarly, there is marked variation in resultant CSF leak rates, estimated at up to 5% for TSA and up to 20% for EEA.5,6,11

To this end, this study aims to determine: (1) the scope of the methods of skull base repair; and (2) the corresponding rates of postoperative CSF rhinorrhea in contemporary neurosurgical practice in the UK and Ireland.

Methods

Design

We will adopt a multicentre, prospective, observational cohort study design.18 All neurosurgical units (NSUs) in the UK and Ireland performing the relevant surgeries (TSA and EEA) will be eligible to participate. The study will be registered as a quality improvement project on a local level, with registration in accordance with the local audit department and Caldicott guardian approvals if needed.

The project will be run through the Neurology and Neurosurgery Interest Group (NANSIG; https://nansig.org/) and British Neurosurgical Trainee Collaborative (BNTRC; https://www.bntrc.org.uk/) networks. Each participating centre will have an appointed consultant, trainee and junior doctor or student lead for the project. Consultant neurosurgeons will be contacted in advance and invited to join the project steering group by the central study team before local students and trainees are recruited. Local teams will be provided with supporting materials to facilitate the uniform set-up of the project, for example, project registration templates (Supplementary Appendix A) and explanatory figures/definitions (Supplementary Appendix B).

Eligible patients

Included cases will be patients of all ages undergoing TSA for sellar tumours and EEA for skull base tumours. Exclusion criteria include patients undergoing transcranial surgery and those with a history of preoperative CSF rhinorrhea.

Figure 1. This image illustrates an example method by which the anterior skull base may be repaired following transsphenoidal surgery.
Case recruitment

As the study aim is to capture contemporary practice over the study period, stopping criteria will be time-based – with eligible cases being prospectively recruited over six months from the study launch date, and with six months of postoperative follow-up for each case. This time period was chosen for pragmatic reasons, allowing for trainees to support the study for its entire one-year duration. We estimated this would include sufficient patients for meaningful analysis.

Data collection

Data points collected will include: demographics, tumour characteristics, operative data, and postoperative outcomes (Table (1–5)). Baseline, operative and postoperative data points will be collected within 30 days of admission whilst follow-up outcomes will be collected within six months of surgery.

Pseudo-anonymised data will be collected locally and submitted to a secure web-based central database hosted by Castor Electronic Data Capture (https://www.castoredc.com/). Local data sources will include patient case files, multidisciplinary team discussions, theatre lists/logbooks and local registries/databases. Data will be collected by a member of the clinical team caring for the patient or member of the approved audit team. Importantly, the primary outcomes of the study will be: (1) methods of intraoperative skull base reconstruction used, and (2) postoperative CSF rhinorrhoea biochemically confirmed and/or requiring intervention (CSF diversion and/or operative repair). These primary outcomes will be compared with rates reported from the literature (Table 6). Secondary outcomes will be: (1) Intraoperative CSF leak; (2) operating time; (3) rates of other postoperative complications; and (4) length of hospital stay.

Data accuracy

All data points collected by medical students must be approved for accuracy by the local trainee or consultant lead before final submission into the Castor EDC system. Furthermore, specific data points must be discussed with the operating surgeon(s) before submission and this is highlighted by the Castor datasheet, for example, presence and grading of intra-op CSF leak, max diameter of skull base defect and exact methods of skull base repair used. Illustrations and clear definitions will be presented to support the accurate recognition of the various skull base repair techniques and facilitate standardised discussion (Supplementary Figures 1–3, Appendix B). The study procedure has been piloted in three NSUs – the National Hospital for Neurology and Neurosurgery (London), the John Radcliffe Hospital (Oxford) and Addenbrooke’s Hospital (Cambridge). Our pilot experience was formative in refining the data collection pro-forma and illustrated the feasibility and acceptability of the project process. Of note, adaptations to operative notes by surgeons (to explicitly display CRANIAL data points), impacted data collection efficiency and accuracy and will be encouraged going forward.

Local student and trainee leads must meet with the supervising consultant at the half-way mark (three months of case recruitment) for review of data collected, progress update and to troubleshoot any problems encountered. Additionally, the local student and trainee leads must meet with the supervising consultant again at the end of the case recruitment period (six months). Lastly, a final review meeting will occur at the end of data collection (at 12 months). This is a final review and sign off of data collected and marks the end of the local study.

Finally, data validation will be performed in all centres to audit data accuracy before data analysis. This will involve an independent data validator (who is not part of the local CRANIAL team) who is from the centre in which the data was collected. This is to facilitate working within the agreements set out by local audit/service evaluation processes and Caldicott guardian approval. 10% of the centre’s cases (selected randomly) will be reviewed, comparing the data submitted to raw data sources for accuracy. The target for data is accuracy is >95% with no case duplication. Conflicts between actual and submitted data will be resolved by discussion between the validator and local team, with oversight from a steering committee member. If data accuracy is <95%, the local team will then be asked to update all local data accordingly. A re-audit of 10% of the centre’s cases (selected randomly) will then be repeated. If the requested updating of data is not performed or data accuracy remains <95%, data from the respective centre will be analysed separately or excluded.

Data analysis

Pre-processing steps will include re-categorising free text entries into existing similar data categories and grouping free text entries into new data categories.

Table 1. Preoperative dataset to be collected via the online castor electronic data capture form.

No.	Variable	Definition	Metric type	Metric/Unit
1	Age		Discrete	Years
2	Biological sex		Nominal	Male, Female
3	BMI >30?	Body mass index >30 (i.e. obese)	Nominal	Yes, No, Not available
4a	Visual loss at presentation?	Loss of visual acuity or visual field at presentation pre-op.	Nominal	Yes, No, Not available
4b	If yes to question 4a: Is the patient blind (binocular and < 6/60)?	Presence of blindness at presentation (both eyes and formally assessed)	Nominal	Yes, No, Not available
5	Preoperative anterior pituitary insufficiency requiring hydrocortisone?		Nominal	Yes, No, Not available
6	Preoperative posterior pituitary insufficiency requiring desmopressin (DDAVP)/ Antidiuretic hormone (ADH)?		Nominal	Yes, No, Not available
7	Tumour type?		Nominal	Pituitary adenoma (functioning), Pituitary adenoma (non-functioning), Craniopharyngioma, Rathke’s Cleft Cyst, Meningioma, Chordoma, Other (please specify)
8	Tumour maximum diameter? (on radiology)		Ordinal	<1 cm, >1 cm
9	Optional: Any other comments? (See help text for examples)	Help text: For example, preoperative CSF diversion (LPs, Lumbar drains) or pressure measurements (opening pressure, ICP), etc	Free text	Free text
Table 2. Operative dataset to be collected via the online castor electronic data capture form.

No.	Variable Definition	Metric type	Metric/Unit
Category: Operative data			
10	Approach for primary surgery	Nominal	Transsphenoidal approach, Expanded endoscopic endonasal approach
11	Method used for transsphenoidal approach	Nominal	Microscopic, Endoscopic, Both
12	Date of surgery?	Continuous	Date
13	Primary or revision surgery?	Nominal	Primary, Revision, Not available
14	History of sinonasal operations or disease?	Nominal	Yes, No, Not available
14	Maximum diameter of dural defect at surgery	Ordinal	<1cm, 1–3cm, >3cm, Not available
15a	Neurosurgeon involved?	Nominal	Yes, No, Not available
15b	If yes to question 14a: Grade of the primary operating neurosurgeon	Nominal	Consultant, Registrar
16a	ENT surgeon involved?	Nominal	Yes, No, Not available
16b	If yes to question 15a: Grade of the primary operating ENT surgeon	Nominal	Consultant, Registrar
17	Neuro-navigation used?	Nominal	Yes, No, Not available
18	Operative time (in minutes)	Discrete	Minutes
19a	CSF leak detected during surgery?	Ordinal	Grade 0, Grade 1, Grade 2, Grade 3, Leak present but grade unknown.
19b	If yes to question 19a: Method of CSF leak discovery in theatre	Nominal, free text	CSK leak observed without any adjuncts required, Valsalva manoeuvre, Intrathecal fluorescein, Not applicable (arachnoid breach was a planned and necessary part of the operation), Other (please specify)
20a	Method(s) of CSF diversion utilised perioperatively	Nominal, free text	Lumbar drain, Other (please specify), None recorded
20b	If yes to question 20a: When was this peri-operative lumbar drain placed? (Lumbar drains placed in response to post-operative rhinorrhoea are recorded in the ‘Postoperative’ form instead)	Nominal	Pre-procedure (before the patient was taken to theatre), Pre-procedure (in theatre, under the same GA but before skull base surgery begins), Immediately post-procedure (e.g. in theatre or under the same GA) as a prophylactic measure.

(continued)
No.	Variable	Definition	Metric type	Metric/Unit
20c	If yes to question 20a: Type of drainage regime used	An example of an ‘other’ regime is when using Liquoguard	Nominal, free text	Volume lead (state mls/hour), Pressure lead (state cmH2O level), Other (please specify)
20d	If yes to question 20a: For how many days was the drain kept in?		Discrete	Days
21a	Was dura closed directly as part of the repair?	Direct dural closure is where separated sections of the dura are approximated back together – for example by using sutures – such that total or near-total apposition is achieved.	Nominal	Yes, No
21b	If yes to question 21a: How was dura closed?		Nominal, free text	Sutures, Clips, Other (please specify)
22a	Dural replacement used in the repair?	Dural replacement is a substitute material used specifically to reconstruct the dura – bridging gaps and adding structural integrity. This material can be endogenous tissue (e.g. nasal mucosa) or synthetic (e.g. Duragen).	Nominal	Yes, No
22b	If yes to question 22a: Type of dural replacement used?	An example of endogenous tissue is fascia lata being used to specifically reconstruct the dura	Nominal	Durarepair®, Duragen™, Durafoam®, Endogenous tissue (please specify), Other (please specify)
22c	If yes to question 22a: Under or overlay? (for dural replacement)		Nominal	Underlay, Overlay, Combined, Not available
23a	Vascularised flap used in the repair?	A flap is tissue that is moved from a donor site to a recipient site with an intact vasculature. An example in the context of skull base repair is a nasoseptal flap.	Nominal	Yes, No
23b	If yes to question 23a: Type of vascularised flap used	For a flap to be pedicled, the blood supply to the flap tissue must be maintained through the original donor site vessels via a pedicle.	Nominal, free text	Pedicled Nasal Flap, Other (please specify)
23c	If answer to question 23b ‘Pedicled Nasal Flap’: Where was the pedicled flap taken from?		Nominal, free text	Nasoseptal, Middle Turbinate, Other (please specify)
24a	Graft (i.e. tissue graft or synthetic graft) used in the repair?	A tissue graft is tissue that is moved from a donor site to a recipient site without its blood supply. For example fat, mucosa and bone grafts. A synthetic graft is a synthetic material usually in the form of sheets (e.g. Tachosil) or sponges (e.g. collagen sponges), which have been created as alternatives to traditional tissue grafts and thus avoid potential donor site morbidity.	Nominal	Yes, No
24b	If yes to question 24a: Which types of graft were used in the repair?		Nominal	Tissue Graft, Synthetic Graft, Both
24c	If answer to question 24a was ‘tissue’ or ‘both’: Material(s) used for the graft		Nominal, free text	Bone (please specify), Fat (please specify), Mucosa (please specify), Periosteum (please specify), Fascia (please specify), Muscle (please specify), Other (please specify)
24d			Nominal, free text	(continued)
With respect to primary study aims, the scope of the methods of skull base repair, will initially be described using descriptive statistics – exploring the incidence density of individual repair methods and repair method combinations within TSA/EEA and CSF leak grade subgroups. Corresponding rates of postoperative CSF rhinorrhoea will be presented as incidence percentages per TSA/EEA subgroups, operating time (will be presented as median and interquartile ranges for TSA and EEA subgroups) and length of hospital stay (will be presented as median and interquartile ranges for TSA and EEA subgroups).

Ethics and dissemination

Formal institutional ethical board review was not required owing to the nature of the study (seeking to evaluate local services) and this was confirmed with the Health Research Authority, UK. Pseudo-anonymised data will be collected locally and submitted to a secure web-based central database hosted by Castor.
Table 3. Postoperative dataset to be collected via the online castor electronic data capture form.

No.	Variable	Definition	Metric type	Metric/Unit
	Category: Postoperative data			
29	Length of hospital stay after index surgery? (in days)	The index surgery is the main surgical event (e.g. resection of tumour) which was detailed in the 'operative' form (not to be confused with re-operation for surgical complications, which is captured in subsequent forms).	Discrete	Days
30	Postoperative conservative measure(s) utilised to prevent/ treat CSF leak?		Nominal, free text	
31	Postoperative medical measure(s) utilised to prevent/ treat CSF leak?		Nominal, free text	
32	Were any of the following postoperative complications recorded?		Nominal, free text	
33	Did postoperative CSF rhinorrhoea occur during the index admission?	The index admission refers to the admission episode for the operation in question (from arrival to discharge)	Nominal	Yes, No
33a	After how many days postoperatively was the CSF rhinorrhoea reported?		Discrete	Days
33b	If yes to question 33a: How was the postoperative CSF rhinorrhoea confirmed?		Nominal, free text	
33c	If yes to question 33a: Did any episode of postoperative CSF rhinorrhoea require CSF diversion and/or operative repair (i.e. an intervention)?		Nominal	Yes (please report a 'Return To Theatre'), No

Table 4. Follow-up dataset to be collected via the online castor electronic data capture form.

No.	Variable	Definition	Metric type	Metric/Unit
	Category: Follow-up			
34a	Visual outcomes	Visual improvement with respect to acuity or visual field	Ordinal	Normal vision, Improved from the initial presentation but not normal vision, Vision has remained stable from the initial presentation but the patient does not have normal vision and is not blind, Deteriorated from the initial presentation but not blind, Blind (binocular and < 6/60), Data not available
34b	If yes to question 34a: How many weeks postoperative is this outcome reported?		Discrete	Weeks
35a	Postoperative anterior pituitary insufficiency requiring hydrocortisone?	Patients with Cushing's disease are excluded from this particular question.	Nominal	Yes, No, Not available

(continued)
Electronic Data Capture (https://www.castoredc.com/). Only anonymised data will be published and disseminated.

Conclusions

The heterogeneity of literature and a lack of consensus on the incidence and management of CSF rhinorrhoea following endonasal skull base procedures supports the need for this multicentre, prospective, observational study. It is hoped that the results will give insight into contemporary practice in the UK and Ireland. Additionally, this study aims to inform future studies and facilitate the establishment of national benchmarks for clinical practice. Finally, we hope that the established CRANIAL network of medical students, trainees and consultants will become a platform for future qualitative and quantitative studies aiming to consolidate evidence-based practice on this topic.

No.	Variable	Definition	Metric type	Metric/Unit
35b	If yes to question 35a: How many weeks postoperative is this outcome reported?		Discrete	Weeks
36a	Postoperative posterior pituitary insufficiency requiring desmopressin (DDAVP)?		Nominal	Yes, No, Not available
36b	If yes to question 36a: How many weeks postoperative is this outcome reported?		Discrete	Weeks
37a	Is the patient on testosterone replacement as a result of the index surgery?		Nominal	Yes, No, Not available
37b	If yes to question 37a: How many weeks postoperative is this outcome reported?		Discrete	Weeks
38a	Is the patient on thyroid replacement as a result of the index surgery?		Nominal	Yes, No, Not available
38b	If yes to question 38a: How many weeks postoperative is this outcome reported?		Discrete	Weeks
39a	Were any of the following postoperative complications recorded? (If not recorded in the initial ‘postoperative’ form)	If CSF rhinorrhoea was during the index admission, please record in the ‘postoperative’ form instead. Only record Epistaxis if required surgical intervention to treat. Major vascular complication refers to unintended damage to a major blood vessel (e.g. internal carotid artery).	Nominal, free text	Delayed CSF rhinorrhoea, Epistaxis (requiring surgical intervention), New focal neurological deficit, Meningitis/CNS infection, Residual or recurrent disease, Death, Other (please specify), None recorded
39b	If answer to question 39a ‘CSF rhinorrhoea’: How many days after the index surgery is the postoperative CSF rhinorrhoea?		Discrete	Days
39c	If answer to question 39a ‘CSF rhinorrhoea’: How was the postoperative CSF rhinorrhoea confirmed?		Nominal	Clinical assessment alone, Endonasal inspection using scope, Inspection + intrathecal fluorescein, Beta-2-transferrin, Significant pneumocephalus on CT Head/Head (e.g. for pneumocephalus), Intrathecal fluorescein, Other (please specify), Not available
39d	If answer to question 39a ‘CSF rhinorrhoea’: Did any episode of postoperative CSF rhinorrhoea require CSF diversion and/or operative repair (i.e. an intervention)?		Nominal	Yes (please report a ‘Return To Theatre’), No, Not available
39e	If answer to question 39a not ‘CSF rhinorrhoea’ or ‘None recorded’: How many weeks postoperative is the complication(s) reported?		Discrete	Weeks
Table 5. Reintervention for CSF rhinorrhoea dataset to be collected via the online castor electronic data capture form.

No.	Variable	Definition	Metric type	Metric/Unit
40	How many days after the postoperative CSF rhinorrhoea was confirmed, did the intervention take place?	Discrete	Days	
41	Date of surgery	Discrete	Date	
42	Please denote whether this is the patient’s first (1), second (2), third (3), etc. return to theatre for postoperative rhinorrhoea management?	Discrete	Number	
43a	Method(s) of CSF diversion utilised postoperatively	Nominal, free text	Lumbar drain, Other (please specify), None recorded	
43b	If yes to question 20a: Type of drainage regime used	Nominal, free text	An example of an ‘other’ regime is when using Liquoguard	
43c	If yes to question 20a: For how many days was the drain kept in?	Discrete	Days	
44a	Was there a direct surgical approach for CSF leak repair?	Nominal	Yes, No	
44b	Which approach was used for direct repair?	Nominal, free text	Endonasal, Transcranial, Other (please specify)	
45-52	Repair technique questions as per points 21 – 28	Discrete	Minutes	
53	Operative time?	Discrete	Bed rest (head of bed unspecified), Bed rest with the head of the bed flat, Bed rest with the head of the bed elevated, Advice to avoid heavy straining/stress (e.g. heavy lifting, sneezing), Other (please specify), None recorded	
54	Postoperative conservative measure(s) utilised to prevent/treat CSF leak?	Nominal, free text	Stool softeners, Prophylactic antibiotics, Acetazolamide, Vaccines (eg. Pneumovax), Other (please specify), None recorded	
55	Postoperative medical measure(s) utilised to prevent/treat CSF leak?	Nominal, free text	Currently, there is no established consensus for TSA or EEA. However, commonly cited methods include fat grafts, fascia grafts, nasoseptal flaps and lumbar drains.	

BMI: body mass index; CSF: cerebrospinal fluid; ENT: ear, nose and throat.

Table 6. Standards derived from literature against which primary outcomes will be compared.

Surgical approach	Postoperative CSF leak	Skull base repair
Endonasal transphenoidal approach (TSA)	Up to 5\%\cite{11,19}	Currently, there is no established consensus for TSA or EEA.
Expanded endonasal approach (EEA)	Up to 20\%\cite{5}	However, commonly cited methods include fat grafts, fascia grafts, nasoseptal flaps and lumbar drains.

Author contributions

Danyal Z. Khan: Study conception, study design, drafting manuscript, critical revisions of the manuscript; Soham Bandyopadhyay: Study conception, study design, drafting manuscript; Vikesh Patel: Study conception, study design, drafting manuscript; Benjamin Schroeder: Study design, critical revisions of the manuscript; Ivan Cabrilo: Study design, critical revisions of the manuscript; David Choi: Study design, critical revisions of the manuscript; Simon A. Cudlip: Study design, critical revisions of the manuscript; Rishi Sharma: Critical revisions of the manuscript; Georgios Solomou: Study design, critical revisions of the manuscript; James R. Tysome: Critical revisions of the manuscript; Hani J. Marcus: Study conception, study design, drafting of the manuscript, critical revisions of the manuscript; British Neurosurgical Trainee Research Collaborative (BNTRC): Study design; Neurology and Neurosurgery Interest Group (NANSIG): Study design; CRANIAL Steering Committee: Study design, drafting of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).
Funding

Hani J. Marcus is supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) and the National Institute of Health Research University College London Biomedical Research Centre. Rory J. Piper is supported by an NIHR Academic Clinical Fellowship. Daniel M. Fountain is supported by an NIHR Academic Clinical Fellowship and Cancer Research UK Pre-Doctoral Fellowship. Angelos G. Kolias is supported by the National Institute for Health Research (NIHR) Global Health Research Group on Neurotrauma. This article was produced independently of the about funding sources and represents the views of the authors alone.

ORCID

Danyal Z. Khan https://orcid.org/0000-0001-9213-2550
Soham Bandyopadhyay https://orcid.org/0000-0001-6553-3842
Vikesh Patel https://orcid.org/0000-0002-3320-6609
Benjamin E. Schroeder https://orcid.org/0000-0001-5128-569X
David Choi https://orcid.org/0000-0002-8298-9232
Neil Donnelly https://orcid.org/0000-0001-8103-3579
Daniel M. Fountain https://orcid.org/0000-0001-6227-9930
Jane Halliday https://orcid.org/0000-0003-9495-5143
Angelos G. Kolias https://orcid.org/0000-0003-3992-0587
Rory J. Piper https://orcid.org/0000-0002-4622-5853
Bhavna Ramachandran https://orcid.org/0000-0003-1017-3530
Georgios Solomou https://orcid.org/0000-0002-9795-0517
James R. Tysome https://orcid.org/0000-0002-2483-8700
Hani J. Marcus https://orcid.org/0000-0001-8000-392X

References

1. Cappabianca P, Cavallo LM, de Divitiis E. Endoscopic endonasal trans-sphenoidal Surgery. Neurosurgery 2004;55:33–41.
2. Liu JK, Das K, Weiss MH, et al. The history and evolution of trans-sphenoidal surgery. J Neurosurg 2001;95:1083–96.
3. Li A, Liu W, Cao P, et al. Endoscopic versus microscopic trans-sphenoidal surgery in the treatment of pituitary adenoma: a systematic review and meta-analysis. World Neurosurg 2017;101:236–46.
4. Kassam AB, Gardner P, Snyderman C, et al. Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. FOCA 2005;19:1–10.
5. Dehdashir AH, Ganna A, Witterick I, et al. Expanded endoscopic endo-nasal approach for anterior cranial base and suprasellar lesions: indications and limitations. Neurosurgery 2009;64:677–89.
6. Cicir I, Ragin A, Baumgartner C, Pierce D. Complications of trans-sphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery 1997;40:225–37.
7. Kono Y, Prevedello DM, Snyderman CH, et al. One thousand endo-scopic skull base surgical procedures demystifying the infection potential: incidence and description of postoperative meningitis and brain abscesses. Infect Control Hosp Epidemiol 2011;32:77–83.
8. Liu P, Wu S, Li Z, et al. Surgical strategy for cerebrospinal fluid rhi-norhea repair. Operative Neurosurgery 2010;66:281–98.
9. Dlouhy BJ, Madhavan K, Clinger JD, et al. Elevated body mass index and risk of postoperative CSF leak following transsphenoidal surgery. J Neurosurg 2012;116:1131–7.
10. Han ZL, He DS, Mao ZG, et al. Cerebrospinal fluid rhinorrhea follow-ing trans-sphenoidal pituitary microadenoma surgery: experience from 592 patients. Clin Neurol Neurosurg 2008;110:570–9.
11. Nishioka H, Haraoka J, Ikeda Y. Risk factors of cerebrospinal fluid rhi-norhea following transsphenoidal surgery. Acta Neurochir (Wien) 2005;147:1163–6.
12. Rabadán AT, Hernández D, Ruggeri CS. Pituitary tumors: our experi-ence in the prevention of postoperative cerebrospinal fluid leaks after transsphenoidal surgery. J Neurooncol 2009;93:127–31.
13. Oakley GM, Orlandi RR, Woodworth BA, Batra PS, Alt JA. Management of cerebrospinal fluid rhinorrhea: an evidence-based review with recommendations. Int Forum Allergy Rhinol 2016;6:17–24.
14. Snyderman CH, Carrau RL, Kassam AB, et al. Endoscopic skull base surgery: principles of endonasal oncological surgery. J Neurosurg 2008; 97:658–64.
15. Harvey RJ, Parmar P, Sacks R, et al. Endoscopic skull base reconstruction of large dural defects: a systematic review of published evidence. Laryngoscope 2012;122:452–9.
16. Soudry E, Turner JH, Nayak JV, et al. Endoscopic reconstruction of surgically created skull base defects: a systematic review. Otolaryngol Head Neck Surg 2014;150:730–8.
17. Zwagerman NT, Wang EW, Shin SS, et al. Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endo-nasal skull base surgery? A prospective, randomized controlled trial. J Neurosurg 2018;131:1172–7.
18. Chari A, Jamjoom AA, Edlmann E, et al. The British neurosurgical trainee research collaborative: five years on. Acta Neurochir 2018;160: 23–8.
19. Komotar RJ, Starke RM, Raper DMS, et al. Endoscopic endonasal compared with microscopic transsphenoidal and open transcranial resection of giant pituitary adenomas. Pituitary 2012;15:150–9.
20. Esposito F, Dusick JR, Fatemi N, et al. Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endo-nasal skull base surgery? A prospective, randomized controlled trial. J Neurosurg 2018;131:1172–7.
21. Authority, H. R., “Is my study research?” decision tool [online]. 2020. Available from: http://www.hra-decisiontools.org.uk/research/
22. Luginbuhl AJ, Campbell PG, Evans J, et al. Endoscopic repair of high-flow cranial base defects using a bilayer button. Laryngoscope 2010;120: NA–880.
23. Leng LZ, Brown S, Anand VK, et al. “Gasket-seal” watertight closure in minimal-access endoscopic cranial base surgery. Operative Neurosurgery 2008;62:ONS342–ONS343.