Influence of smoking on levels of urinary 8-iso Prostaglandin F2α

Angela van der Plas*, Sandrine Pouly, Guillaume de La Bourdonnaye, Gizelle Baker, Frank Lüdicke

PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland

1. Introduction

Cigarette smoking is one of the most important preventable risk factors for the development of atherosclerosis and cardiovascular disease (CVD) [1]. The main mechanisms through which smoking increases the risk of CVD include the alteration of lipid levels [2], inflammation, and oxidative stress, among other pathways [3]. However, the precise causative biochemical mechanisms behind the increased risk for disease in smokers are not completely understood [4], and the relationship between specific tobacco constituents and mechanistic steps involved in these diseases remains unclear [5].

Alternative products to cigarettes that can potentially reduce exposure and risk to smokers who would otherwise continue smoking are being developed and marketed. In order to assess whether the use of these products will translate into a reduction in risk and harm caused by smoking cigarettes, the scientific community needs to identify and validate biomarkers that are predictive of a reduction in disease risk [6]. The search for biomarkers must consider molecules that are involved in biological pathways known to be affected by cigarette smoking and smoking cessation, such as those involved in the inflammatory response [7,8] and oxidative stress [3]. 8-iso prostaglandin F2α (8-epi-PGF2α)1 is an endpoint that could potentially be used, because it is part of the family of isoprostanes. Among these, 8-epi-PGF2α has been examined in more detail [9] and has been proven to be a potent vasoconstrictor [10], mitogen, and mild pro-aggregatory agent [11], promoting atherogenesis [9]. In arterial blood, 8-epi-PGF2α levels increase with hyperlipidemia, cigarette smoking, and diabetes [9], and the measurement of urinary 8-epi-PGF2α levels has been shown to be a reliable marker for in vivo oxidative stress [12,13].

Several studies have compared levels of 8-epi-PGF2α in smokers and nonsmokers [5,14] and found that smokers tend to have higher levels of 8-epi-PGF2α, although results vary by sex [15]. This research summarizes the available literature on 8-epi-PGF2α levels in smokers and nonsmokers as well as the influence of smoking cessation on 8-epi-PGF2α levels.

https://doi.org/10.1016/j.toxrep.2018.11.011
Received 5 July 2018; Received in revised form 15 October 2018; Accepted 19 November 2018
Available online 20 November 2018
2214-7500/ © 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
2. Materials and methods

2.1. Search for articles

Literature searches in Medline were performed through PubMed and Scopus to identify studies that evaluated the relationship between smoking or smoking cessation and 8-epi-PGF2α levels. The final search was performed on March 5, 2018.

The PubMed query was: ("prostaglandins"[MeSH Terms] OR "prostaglandins"[All Fields] OR "prostaglandin"[All Fields]) AND alpha [All Fields] AND ("tobacco"[MeSH Terms] OR "tobacco"[All Fields] OR "tobacco products"[MeSH Terms] OR ("tobacco"[All Fields] AND "products"[All Fields]) OR "tobacco products"[All Fields]) OR ("smoking"[MeSH Terms] OR "smoking"[All Fields]) OR cessation[All Fields] OR quitting[All Fields]). The query used in Scopus was: Prostaglandin alpha AND (tobacco OR smoking OR cessation OR quitting).

Retrieval of articles was limited to studies conducted in humans and written in English. To ensure that all available studies were retrieved, the reference lists of the publications obtained through the original search were reviewed to identify additional articles.

2.2. Study selection

The following criteria were used to include publications in the review:
- Case control or cohort studies (observational and experimental studies)
- Adult, healthy human populations were studied
- Measurements of 8-epi-PGF2α by exposure group are presented as mean values by group with the standard deviation (SD) or standard error (SE) of the mean, sample size per group, or with enough information to allow for the calculation of the mean and SD

The following criteria were used to exclude publications from the review:
- Review articles, case reports, or editorials
- Results were not reported in urine
- Reports had incomplete data or included data that could not be incorporated into the review
- Articles included diseased populations
- Data were re-used in a more recent study

2.3. Data extraction

Two researchers extracted the data independently; when discrepancies were identified in the data, the discrepancies were discussed, and consensus was reached for all items. The following information was extracted from each study: first author’s name, year of publication, study design and population characteristics, number of participants per group, mean, SD or SE.

Not all articles reported the measurements in the same units, so values were transformed to either pg/mg of creatinine or μg/24 h. Transformations were used to convert from the median and range to the mean using the calculations postulated by Hozor et al. [16].

2.4. Statistical analysis

Pooled means were calculated for each exposure group (smokers and nonsmokers) by weighting the individual studies using their inverse pooled variance. To quantify the effects of smoking on 8-epi-PGF2α levels, pooled mean differences between smokers and nonsmokers and 95% confidence intervals (95%CI) were calculated using the fixed effects and random effects models in Review Manager 5.3 (RevMan 5.3) (Cochrane Collaboration, Oxford, UK). These two methods are used because while a fixed effect meta-analysis assumes that all studies are estimating the same (fixed) treatment effect, a random effects meta-analysis allows for differences in the treatment effect (or exposure) from study to study (inter-study heterogeneity) [17]. The degree of heterogeneity between the study results was tested by the inconsistency statistic (I²). Funnel plots were used to evaluate publication bias [18]. Statistical significance was assessed at α = 0.05.

Fig. 1. Flow diagram – article retrieval process.
Reference	Country	Study design	Study participants	Smoking definition	Subgroup	Units	Adjustment	Units	Study participants	Smoking definition	Subgroup	Units	Adjustment
Reilly et al. [45]	U.S.	Cross-sectional	5 heavy smokers and 14 nonsmokers. Men aged 20–47 years	None	Smokers	Mean ± SD	553.10 ± 214.42	169.53 ± 31.66	383.57 (194.90, 572.24) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Obata et al. [46]	Japan	Cross-sectional	81 smokers aged 37.6 ± 11.1 years and 39 nonsmokers aged 38.6 ± 10.9 years	None	All	Mean ± SD	605.20 ± 59.00	424 ± 70.40	181.20 (135.62, 246.72) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Dillon et al. [47]	U.K.	Cross-sectional	10 smokers aged 41 ± 4.1 years and 10 nonsmokers aged 41 ± 4.1 years	None	All	Mean ± SD	1579.37 ± 266.36	852.36 ± 166.10	726.71 (532.08, 921.34) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Liang et al. [48]	U.S.	Cross-sectional	41 men and women aged 32–80 years	None	All	Mean ± SD	500 ± 370	160 ± 70	340 (148.24, 531.76) pg/mg creatinine	Mean difference	Δ (95%CI)		
Jacob et al. [49]	U.S.	Cross-sectional	77 healthy men aged 35 ± 9 years and 34 ± 7 years	None	All	Mean ± SD	830 ± 930	730 ± 60	100.00 (–261.03, 461.03) μg/24 hours	Mean difference	Δ (95%CI)		
Harman et al. [50]	U.S.	Cross-sectional	80 smokers and 96 nonsmokers aged 19–80 years	None	All	Mean ± SD	1100 ± 894.43	510 ± 391.92	590 (378.90, 801.10) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Zedler et al. [51]	U.S.	Cross-sectional	36 smokers aged 35.8 ± 11.1 years and 65 nonsmokers aged 36 ± 13.6 years	None	Men	Mean ± SD	2140.75 ± 980.25	1183.75 ± 398.75	957.00 (483.21, 1431.72) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Yan et al. [52]	U.S.	Interventional	32 smokers aged 44 ± 9 years and 12 nonsmokers aged 44 ± 7 years	None	All	Mean ± SD	853 ± 545	730 ± 430	140 ± 70	330 ± 160	340 (148.24, 531.76) pg/mgcreatinine	Mean difference	Δ (95%CI)
Taylor et al. [53]	U.S.	Cross-sectional	25 participants men and women aged 18–35 years	None	All	Mean ± SD	430.00 ± 146.97	380.00 ± 24.49	50.00 (30.78, 269.22) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Takeshita et al. [54]	Japan	Cohort	11 smokers aged 24 ± 2.2 years and 12 nonsmokers aged 24 ± 3.6 years	None	All	Mean ± SD	520.00 ± 484.94	480.00 ± 146.97	40.00 (–49.31, 229.31) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Basu et al. [55]	Sweden, Italy, and Poland	Cross-sectional	217 smokers and 89 nonsmokers aged 17–66 years	None	All	Mean ± SD	918.95 ± 475.53	781.00 ± 329.50	137.95 (223.22, 455.24) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Sakano et al. [56]	Japan	Cross-sectional	321 subjects aged 20–45 years	None	All	Mean ± SD	933.00 ± 402.10	781.00 ± 329.50	152.00 (–79.39, 383.39) μg/24 hours	Mean difference	Δ (95%CI)		
Ghanap et al. [57]	Italy	Cross-sectional	20 smokers and 20 never-smokers aged 23 ± 13 years and 20 above	None	All	Mean ± SD	918.95 ± 475.53	781.00 ± 329.50	137.95 (223.22, 455.24) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Lowe et al. [58]	U.K.	Cross-sectional	80 men and women aged 21–40 years and above	None	All	Mean ± SD	1066.00 ± 498.25	1066.00 ± 498.25	0.92 ± 0.64	680.00 (–550.99, 1030.99) pg/mgcreatinine	Mean difference	Δ (95%CI)	
Andreoli et al. [59]	Italy	Cross-sectional	22 twin pairs, men and women aged 21–40 years and above	None	All	Mean ± SD	332.32 ± 144.72	194.44 ± 72.71	137.88 (50.56, 225.20) pg/mgcreatinine	Mean difference	Δ (95%CI)		
Frost Pineda et al. [60]	France	Cross-sectional	232 smokers aged 43 ± 14 years and 1044 nonsmokers aged 47 ± 12 years	None	All	Mean ± SD	1066.00 ± 498.25	1066.00 ± 498.25	0.92 ± 0.64	680.00 (–550.99, 1030.99) pg/mgcreatinine	Mean difference	Δ (95%CI)	

Note: (continued on next page)
3. Results

A flow diagram detailing the retrieval process of articles from the different sources used can be found in Fig. 1. There were 238 publications retrieved from the PubMed search and 705 retrieved from the Scopus search. Of these, 51 articles remained after screening for duplicates and review of the titles among the search results. The reference lists of these articles were reviewed, and 24 additional records were identified. In total, 75 abstracts were reviewed, and 54 articles remained for full review. For the analysis of smoking status and its association to 8-epi-PGF$_{2\alpha}$, a total of 46 publications that assessed the effect of smoking status were identified. Out of the 46 publications, 18 articles were included in the analyses.

Table 1 presents the characteristics for the 18 publications that were included in the analyses. The reasons for exclusion of 28 articles were that one evaluated the acute effects of smoking [19], one reported levels in bronchoalveolar lavage [20], two reported levels in exhaled breath condensate [21,22], one reported levels in lymphatic vessels [23], three reported plasma levels [24–26], one reported saliva levels [27], two reported levels in sputum [28,29], four reported data from diseased populations [30–33], eight had incomplete information [4,34–40], one presented log-transformed values [41], and four others reported units that could not be used [12,42–44]. A list of the 75 publications from which abstracts were screened can be found in Supplement 1. For the analysis to assess the effect of smoking cessation on 8-epi-PGF$_{2\alpha}$ levels, eight studies were identified, but only two had complete data that could potentially be used in a meta-analysis [45,60]. No meta-analysis was performed due to either incomplete information or lack of enough studies with the same follow-up time. Study characteristics can be found in Table 2.

3.1. Effects of smoking status on 8-epi-PGF$_{2\alpha}$ levels

Due to studies reporting different measurement units, there were two meta-analyses performed. The first meta-analysis used concentrations adjusted for creatinine concentration (pg/mg creatinine), and the second used daily excretion (µg/24 h). The results of the meta-analyses can be found in Table 2. The meta-analysis included 15 studies reporting 18 comparisons [5,15,45–56,59]. The pooled analysis showed increased levels of 8-epi-PGF$_{2\alpha}$ in smokers compared with nonsmokers (mean difference: 172.38, 95%CI: 152.75, 192.01 pg/mg creatinine), and it showed significant heterogeneity (I^2: 89%, $p < 0.001$). The Forest plot for this meta-analysis can be found in Fig. 2. The random effect analysis confirmed the results (mean difference: 274.51, 95%CI: 186.16, 359.86 pg/mg creatinine). The Forest plot for this meta-analysis can be found in Fig. 3. The meta-analysis looking at daily excretion of 8-epi-PGF$_{2\alpha}$ included five studies with six comparisons [5,14,52,57,58], with the pooled mean difference showing increased levels in smokers compared with nonsmokers (mean difference: 0.16, 95%CI: 0.14, 0.19 µg/24 h). The Forest plot for this meta-analysis can be found in Fig. 4. The heterogeneity in this analysis was also significant (I^2: 98%, $p < 0.001$). The random effect analysis rendered the results not statistically significant (mean difference: 0.24, 95%CI: −0.05, 0.53 µg/24 h). The Forest plot for this meta-analysis can be found in Fig. 5. After inspection of the funnel plots (Figs. 6 and 7), there

Table 1

Study design	Smoking definition	Smoking status	Study participants	Study participants	Study design	Country	Smoking definition	Reference
Cross-sectional	Smokers aged 37 ± 14 and 38 ≤ 21 yrs	All	22 smokers	Campos et al. [59]				
Cross-sectional	Nonsmokers aged 21–65 yrs	All	22 nonsmokers	Campos et al. [59]				
Cross-sectional	Smokers aged 37 ± 14 and 38 ≤ 21 yrs	All	204 men and women	Haswell et al. [14]				
Cross-sectional	Nonsmokers aged 37 ± 14 and 38 ≤ 21 yrs	All	204 non-smokers	Haswell et al. [14]				

Table 2

Meta-analyses	Studies (estimates)	Mean difference (95%CI)
µg/24 h	5 (6)	0.16 (0.14, 0.19)
pg/mg creatinine	15 (18)	172.38 (152.75, 192.01)

Mean difference (95%CI)
Fixed effects
µg/24 h
pg/mg creatinine
was no evidence of publication bias in the meta-analyses.

3.2. Effects of smoking cessation on 8-epi-PGF$_2\alpha$ levels

The searches in PubMed and Scopus and the review of the reference lists yielded eight studies assessing the influence of smoking cessation on 8-epi-PGF$_2\alpha$ levels. Out of these eight studies, only two reported complete information. Therefore, no meta-analysis could be performed [45,60]. The results of these studies can be found in Table 3. The rest of the studies were performed in diseased populations [30,61], did not provide complete information [42,62,63], or compared differences between smokers and ex-smokers with unknown follow-up time [64].

Of the two studies reporting results, the study by Reilly et al. [45]
reports decreasing levels of 8-epi-PGF$_{2\alpha}$ after two to three weeks of smoking cessation, whereas the study by Lüdicke et al. [60] reports that there was an increase in 8-epi-PGF$_{2\alpha}$ levels 90 days after cessation.

4. Discussion and conclusions

The present study summarizes the evidence that smokers have higher 8-epi-PGF$_{2\alpha}$ levels compared with non-smokers via two meta-analyses, which had not been done previously. We performed meta-analyses of published articles on the association of smoking and 8-epi-PGF$_{2\alpha}$ levels. The retrieved studies presented data in different units; therefore, two meta-analyses were performed. The relationship of smoking cessation to 8-epi-PGF$_{2\alpha}$ levels could not be evaluated through meta-analyses, as not enough articles with complete information were identified. The results of the smoker to nonsmoker comparisons show that smokers had statistically significant higher levels of 8-epi-PGF$_{2\alpha}$. There was, however, very high inter-study heterogeneity, and after running random effects model meta-analyses, one of the results was no longer statistically significant. Because the random effects model takes into account the variability of the exposure effect, analyses under this model result in an estimate of the average effect rather than the common effect of smoking on 8-epi-PGF$_{2\alpha}$ levels [17]. Performing sensitivity analysis (looking into the heterogeneity that single studies contribute to the meta-analysis) in the pg/mg creatinine analysis, the studies by Basu et al. [15], Harman et al. [50], Takeshita et al. [54], Lowe et al. [5], Dillon et al. [47], and Zedler et al. [51] accounted for most of the heterogeneity, and excluding these studies lowered the inter-study heterogeneity significantly without changing the results of the meta-analysis (mean difference: 183.72, 95%CI: 160.70, 206.74, $p < 0.001$, I^2: 13%). Limiting the number of studies to Asian or Western countries did not decrease the heterogeneity I^2 value. Finally, in the meta-analysis using µg/24 h values, the studies by Frost Pineda et al. [65] and Lowe et al. [5] accounted for most of the inter-study heterogeneity, most likely because the reported values corresponded to the two highest [5,65] from the studies. Excluding these studies did not change the results of the meta-analysis (mean difference: 0.08, 95%CI: 0.05, 0.11, $p < 0.001$, I^2: 21% versus 0.16, 95%CI: 0.14-0.19, I^2: 98%), and the heterogeneity was no longer significant.

Despite the high heterogeneity found in the meta-analyses, these showed increased levels of 8-epi-PGF$_{2\alpha}$ in smokers compared with nonsmokers. On the other hand, 8-epi-PGF$_{2\alpha}$ levels do not seem to be affected by smoking cessation, as out of the two studies with complete data retrieved, one showed decreased levels after two to three weeks of quitting [45], while the second reported higher levels of 8-epi-PGF$_{2\alpha}$ 90 days after cessation [60].

Cigarette smoking is a strong risk factor for pulmonary disease as
well as CVD [66]. Smoking cessation is the recommended method of avoiding such increased risk [5], but cessation is also difficult to achieve [67]. Because of these facts, the U.S. Food and Drug Administration published draft guidelines for the tobacco industry for the marketing authorization of tobacco products that would decrease the exposure to tobacco toxicants and/or reduce the risk to tobacco-associated diseases [68]. One of the ways to approach the evaluation of risk reduction is through the usage of clinical risk endpoints [5]. Such endpoints should, in principle, be associated with smoking as well as influenced by smoking cessation, such as 8-epi-PGF2α.

These meta-analyses showed that 8-epi-PGF2α levels are elevated in smokers versus nonsmokers, while more studies assessing the changes in 8-epi-PGF2α after smoking cessation are needed to evaluate the reversibility of this marker as a clinical risk endpoint.

Conflict of interest

All authors are employees of Philip Morris International.

Funding

Philip Morris International is the sole source of funding and sponsor of this project.

Transparency document

The Transparency document associated with this article can be found in the online version.

Acknowledgements

The authors would like to thank Wee Teck Ng for his help with the funnel plots.

References

[1] W.C. Krupski, The peripheral vascular consequences of smoking, Ann. Vasc. Surg. 5 (3) (1991) 291–304, https://doi.org/10.1007/BF02329389 PubMed PMID: 2064925.

[2] K.J. Rempher, Cardiovascular sequelae of tobacco smoking, Crit. Care Nurs. Clin. North Am. 18 (1) (2006) 13–20, https://doi.org/10.1016/j.ccrn.2005.10.006. Epub 2006/03/21. PubMed PMID: 16546004.

[3] J.F. Donohue, Ageing, smoking and oxidative stress, Thorax 61 (6) (2006) 461–462, https://doi.org/10.1136/thx.2005.050308 PubMed PMID: 16738041; PubMed Central PMCID: PMC4211221.

[4] F. Chehne, A. Oguogho, G. Lupattelli, A.C. Budinsky, B. Palumbo, H. Sinzinger, Increase of isoprostane 8-epi-PGF2α after restarting smoking, Prostaglandins Other Lipid Mediat. 47 (3) (2009) 311–320, https://doi.org/10.1016/j.freeradbiomed.2009.11.008. Epub 2009/08/13. PubMed PMID: 19765725.

[5] T.J. van’t Erve, F.B. Lih, M.B. Kadiiska, L.J. Deterting, R.P. Mason, Elevated plasma 8-iso-prostaglandin F2α levels in human smokers originate primarily from enzymatic instead of non-enzymatic lipid peroxidation, Free Radic. Biol. Med. 115 (2018) 1177–1187, https://doi.org/10.1016/j.freeradbiomed.2017.11.008 PubMed PMID: 29162517; PubMed Central PMCID: PMC5765752.

[6] V.C. Wu-Wang, S.L. Wang, C. Lim, M. Milles, B. Slomiany, B.L. Slomiany, Cigarette smoking reduces human salivary eicosanoids, Prostaglandins Leukot. Essent. Fatty Acids 67 (3) (2002) 191–199, https://doi.org/10.1016/S0952-3278(02)00005-8 PubMed PMID: 11905510; PubMed Central PMCID: PMC1014668.

[7] V.L. Kinnula, H. Ilomets, M. Myllärniemi, A. Sovijärvi, P. Rydla, 8-Isoprostane as a marker of oxidative stress in nonsymptomatic cigarette smokers and COPD, Eur. Respir. J. 29 (2) (2007) 51–55, https://doi.org/10.1183/09031936.0062006. PubMed PMID: 17056055.

[8] R.M. Wolfgram, A.C. Budinsky, A. Eder, C. Presnhenburg, A. Nell, W. Sper, et al., Salivary isoprostanes indicate increased oxidative injury in periodontitis with additional tobacco abuse, BioFactors. 28 (6) (2001) 21–31 PubMed PMID: 11762490.

[9] J.F. Keaney Jr., M.G. Larson, R.S. Vasan, P.W. Wilson, I. Lipinska, D. Corey, et al., Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study, Arterioscler. Thromb. Vasc. Biol. 23 (3) (2003) 434–439, https://doi.org/10.1161/01.ATV.23.3.434. PubMed PMID: 12615693.

[10] S.T. Mayne, M. Walter, J. Blumberg, Supplemental beta-carotene, smoking, and urinary F2-isoprostane excretion in patients with prior stage IIA or higher cancer, Nutr. Cancer 49 (1) (2004) 1–6, https://doi.org/10.1080/01635580490188441. PubMed PMID: 15454952.
smoking, Clin. Exp. Allergy 39 (3) (2009) 345–353, https://doi.org/10.1111/j.1365-2222.2008.03149.x PubMed PMID: 19187324.

[35] J. Helmersson, A. Larson, B. Vessby, S. Basu, Active smoking and a history of smoking are associated with enhanced prostaglandin F2alpha, interleukin-6 and F2-isoprostane formation in elderly men, Atherosclerosis 181 (1) (2005) 201–207, https://doi.org/10.1016/j.atherosclerosis.2004.11.026 PubMed PMID: 15939073.

[36] B.A. Muzembo, D. Narongpon, N.R. Ngatu, M. Eitoku, R. Hirota, N. Suganuma, Assessment of lifestyle effect on oxidative stress biomarkers in free-living elderly in rural Japan, Geriatr. Gerontol. Int. 12 (3) (2012) 547–554, https://doi.org/10.1111/j.1447-0594.2011.01107.x PubMed PMID: 22218282.

[37] F. Hoffmeyer, M. Raulf-Heimsoth, T. Bruning, Exhaled breath condensate and airway inflammation, Curr. Opin. Allergy Clin. Immunol. 9 (1) (2009) 16–22, https://doi.org/10.1097/AOI.0b013e32832b1414 PubMed PMID: 19332049.

[38] F. Hoffmeyer, M. Raulf-Heimsoth, M. Lehnert, B. Kendzia, S. Bernard, H. Berrebi, et al., Impact of different welding techniques on biological effect markers in exhaled breath condensate of 85 mild steel welders, J. Toxicol. Environ. Health Part A 75 (8–10) (2012) 525–532, https://doi.org/10.1080/15287394.2012.675303 PubMed PMID: 22686312.

[39] J. Liu, Q. Liang, K. Frost-Pineda, R. Muhammad-Kah, L. Rimmer, H. Roethig, et al., Relationship between biomarkers of cigarette smoke exposure and biomarkers of inflammation, oxidative stress, and platelet activation in adult cigarette smokers, Cancer Epidemiol. Biomark. Prev. 20 (8) (2011) 1760–1769, https://doi.org/10.1158/1055-9965.EPI-10-0987 PubMed PMID: 21708936.

[40] J.H. Warner, Q. Liang, M. Sarkar, P.E. Mendes, H.J. Roethig, Adaptive regression modeling of biomarkers of potential harm in a population of U.S. adult cigarette smokers and nonsmokers, BMC Med. Res. Methodol. 10 (2010) 19, https://doi.org/10.1186/1471-2288-10-19 Epub 2010/03/18. PubMed PMID: 20233412; PubMed Central PMCID: PMCPMC1015547.

[41] R. Sauriarsari, N. Sakano, D.H. Wang, J. Takaki, K. Takemoto, B. Wang, et al., C-reactive protein is associated with cigarette smoking-induced hyperfiltration and proteinuria in an apparently healthy population, Hypertens. Res. 33 (11) (2010) 1129–1136, https://doi.org/10.1007/s10992-010-9920-6 PubMed PMID: 20703235.

[42] A. Onguogho, G. Lupattelli, B. Palumbo, H. Sinzinger, Isoprostanes quickly normalize reactive protein is associated with cigarette smoking-induced hyperfiltration and proteinuria in an apparently healthy population, Hypertens. Res. 33 (11) (2010) 1129–1136, https://doi.org/10.1007/s10992-010-9920-6 PubMed PMID: 20703235.

[43] A.O. Jacob, G.M. Aiello, C.B. Stephensen, J.B. Blumberg, P.E. Milbury, M. Reilly, N. Delanty, J.A. Lawson, G.A. FitzGerald, Modulation of oxidant stress in smokers and nonsmokers, Free Radic. Biol. Med. 20 (4) (1996) 619–626, https://doi.org/10.1016/0891-5849(95)00156-1 PubMed PMID: 8904305.

[44] J.O. Prochaska, C.C. DiClemente, Stages and processes of self-change of smoking: Toward an integrative model of change, J. Consult. Clin. Psychol. 51 (3) (1983) 390–418 PubMed PMID: 171 PubMed PMID: 21330277.

[45] C. Andreoli, E.O. Gregg, R. Puntoni, V. Gobbi, A. Nunziata, A. Bassi, Cross-sectional study of biomarkers of exposure and biological effect on mononuclear twins discordant for smoking, Clin. Chem. Lab. Med. 49 (1) (2011) 137–145, https://doi.org/10.1515/CCLM.2011.009 PubMed PMID: 21808439.

[46] K. Frost-Pineda, Q. Liang, L. Rimmer, Y. Jin, S. Feng, et al., Biomarkers of potential harm among adult smokers and nonsmokers in the total exposure study, Nicotine Tob. Res. (2011), https://doi.org/10.1093/ntr/ntr235 Epub 2011/02/19. PubMed PMID: 21330277;

[47] C. Campos, R. Guzman, E. Lopez-Fernandez, A. Casado, Urinary biomarkers of oxidative/nitrosative stress in healthy smokers, Inhal. Toxicol. 23 (3) (2011) 148–156, https://doi.org/10.3109/089583711.2011.554640 PubMed PMID: 21391783.

[48] F. Lärdiche, P. Picavet, G. Baker, C. Haziza, V. Poux, N. Lama, et al., Effects of switching to the menthol tobacco heating system 2.2, smoking abstinence, or continued cigarette smoking on clinically relevant risk markers: a randomized, controlled, open-label, multicenter study in sequential confinement and ambulatory settings (part 2), Nicotine Tob. Res. (2017), https://doi.org/10.1093/ntr/ntx028 PubMed PMID: 28177498.

[49] H. Pilz, A. Onguogho, F. Chehne, G. Lupattelli, B. Palumbo, H. Sinzinger, Quitting cigarette smoking results in a fast improvement of in vivo oxidation injury (determined via plasma, serum and urinary isoprostane), Thromb. Res. 99 (3) (2000) 209–221 Epub 2000/08/16. PubMed PMID: 10944241.

[50] F. Chehne, A. Onguogho, G. Lupattelli, B. Palumbo, H. Sinzinger, Effect of giving up cigarette smoking and restarting in patients with clinically manifested atherosclerosis, Prostaglandins Leukot. Essent. Fatty Acids 67 (5) (2002) 333–339 Epub 2002/11/26. PubMed PMID: 12445494.

[51] H. Mortira, H. Ikeda, N. Haraizumi, H. Eguchi, T. Imazumi, Only two-week smoking cessation improves plasma C-reactive protein and intraplatelet redox imbalance of long-term smokers, J. Am. Coll. Cardiol. 45 (4) (2005) 589–594, https://doi.org/10.1016/j.jacc.2004.01.004 PubMed PMID: 15708708.

[52] I.A. Hakim, R. Harris, L. Garland, C.A. Cordova, D.M. Mikhail, H.H. Sherry Chow, Gender difference in systemic oxidative stress and antioxidant capacity in current and former heavy smokers, Cancer Epidemiol. Biomarkers Prev. 21 (12) (2012) 2193–2200, https://doi.org/10.1158/1055-9965.EPI-12-0820 PubMed PMID: 23033455.

[53] K. Frost-Pineda, Q. Liang, L. Rimmer, Y. Jin, S. Feng, et al., Biomarkers of potential harm among adult smokers and nonsmokers in the total exposure study, Nicotine Tob. Res. 13 (3) (2011) 182–193, https://doi.org/10.1093/ntr/ntr235 PubMed PMID: 21330277.

[54] B. Doll, R. Peir, Mortality in relation to smoking: 20 years’ observations on male British doctors, Br. Med. J. 2 (6051) (1976) 1525–1536 PubMed PMID: 1009386; PubMed Central PMCID: PMCPMC1690096.

[55] J.O. Prochaska, C.C. DiClemente, Stages and processes of self-change of smoking: toward an integrative model of change, J. Consult. Clin. Psychol. 51 (3) (1983) 390–395 PubMed PMID: 6863699.

[56] FDA (Food and Drug Administration), Guidance for Industry - Modified Risk Tobacco Product Applications - Draft Guidance. (2012).