ABSTRACT

The inhibition of the δ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom *Thalassiosira weissflogii*, TweCAδ, was investigated using a panel of 36 mono- and di-thiocarbamates that have recently been shown to inhibit mammalian and pathogenic CAs belonging to the α- and β-classes. TweCAδ was not significantly inhibited by most of such compounds (Kᵢ values above 20 μM). However, some aliphatic, heterocyclic, and aromatic mono and di-thiocarbamates inhibited TweCAδ in the low micromolar range. For some compounds incorporating the piperazine ring, TweCAδ was effectively inhibited (Kᵢs from 129 to 791 nM). The most effective inhibitors identified in this study were 3,4-dimethoxyphenyl-ethyl-monothiocarbamate (Kᵢ of 67.7 nM) and the R-enantiomer of the nipecotic acid di-thiocarbamate (Kᵢ of 93.6 nM). Given that the activity and inhibition of this class of enzyme have received limited attention until now, this study provides new molecular probes and information for investigating the role of δ-CAs in the carbon fixation processes in diatoms, which are responsible for significant amounts of CO₂ taken from the atmosphere by these marine organisms.

KEYWORDS

Carbonic anhydrase; metalloenzymes; mono-thiocarbamate; di-thiocarbamate; *Thalassiosira weissflogii*

ARTICLE HISTORY

Received 4 February 2018
Revised 2 March 2018
Accepted 5 March 2018

CONTACT

Clemente Capasso, clemente.capasso@ibbr.cnr.it; CNR-Institute of Protein Biochemistry, via Pietro Castellino, 111-80131, Naples 80131, Italy; Claudiu T. Supuran, claudiu.supuran@unifi.it; Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, University of Florence, Via della Lastruccia 3, Sesto Fiorentino Firenze, Italy

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
enzyme, TweCAδ, which was cloned and characterised from the marine diatom *T. weissflogii*.

Materials and methods

Materials

MTCs 1–15 and DTCs 16–36 were reported earlier by our group. Reagents/buffers of the highest available purity were obtained from Sigma-Aldrich, Milan, Italy. TweCAδ was a recombinant protein produced as reported earlier by our group. CA enzyme inhibition assay

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow instrument has been used to assay the catalytic activity of various CA isozymes for CO₂ hydration reaction. Phenol red (at a concentration of 0.2 mM) was used as indicator, working at the absorbance maximum of 557 nm, with 10 mM Hepes (pH 7.5) as buffer, and 0.1 M Na₂SO₄ (for maintaining constant ionic strength, which is not inhibitory against TweCAδ), following the CA-catalysed CO₂ hydration reaction for a period of 10 s at 25°C. The CO₂ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and activation constants. For each inhibitor at least six traces of the initial 5–10% of the reaction have been used for determining the initial rate. The uncatalysed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitors (10 mM) were prepared in distilled-deionised diluted to 1 nM using the assay buffer. Inhibitor and enzyme solutions were pre-incubated together for 15 min (standard assay at room temperature) prior to assay, in order to allow for the formation of the enzyme inhibitor complex. The inhibition constant (KI), was obtained by considering the classical Michaelis–Menten equation and the Cheng-Prusoff algorithm by using non-linear least squares fitting as reported earlier.

Results and discussion

TweCAδ is the only CA belonging to the δ-class for which anion and sulphonamide inhibition studies were reported so far. Here, we investigated the inhibition of this enzyme with the panel of MTCs and DTCs of the types 1–36 shown in Figures 1 and 2. The results are shown in Table 1, where for comparison reasons,
the inhibition of the human dominant isoforms hCA I and II with the same compounds are reported\(^1,2,4\).

The following structure-activity relationship (SAR) can be obtained from the data of Table 1:

(i) A number of MTCs, including 4–6, 10 and the DTCs 20, 21, 23–25, 32, and 33, did not inhibit TweCA\(_d\) up to 20 \(\mu\)M, although many of these compounds were rather effective inhibitors of hCA I and/or hCA II (Table 1). Such MTCs/DTCs inhibitors are classified as aliphatic, heterocyclic, aromatic, or polycyclic types. Given the structural diversity of such compounds and high inhibition constants, it is challenging to delineate the SAR.

(ii) The MTCs/DTCs 3, 13–19, 22, 26, 29, and 31 were relatively ineffective inhibitors of TweCA\(_d\) with inhibition constants in the micromolar range (\(K_s\) ranged between 1142 and 9239 nM; Table 1). These compounds are also highly heterogeneous. The main observation of these data is that the identity of the zinc-binding group, ZBG (MTC or DTC), does not significantly impact the activity of TweCA\(_d\).

(iii) The MTC/DTCs 1, 2, 7–9, 28, 30, and 34–36 were relatively effective inhibitors of TweCA\(_d\), with inhibition constants in the range of 129–997 nM (Table 1). Some of the MTC and DTCs incorporate the piperazine ring (7–9, 34). In addition, MTC 9 and DTC 34 have the same scaffold but a different ZBG. In this particular case, MTC 9 inhibited TweCA\(_d\) 6.1-times more efficiently than DTC 34. Interestingly, for the \(\beta\)-CAs, the MTCs were usually much weaker inhibitors compared to the structurally similar DTCs\(^4\). In addition, the sulphonamide-containing DTC 36 (which contains two potential ZBGs, the sulphonamide and the DTC), there are no net

Figure 2. Dithiocarbamates (DTCs) 16–36 investigated as CA inhibitors\(^1,2,4\).
Table 1. TweCAα, hCA I, and hCA II Inhibition Data with MTCs 1–15, DTCs 16–36, and acetazolamide (AAZ, 5-acetamido-1,3,4-thiadiazole-2-sulphonamide) as standard drug, by a stopped-flow CO2 hydrase assay.

No.	R	R1	TweCAα	hCA I	hCA II
1	n-Pr	n-Pr	806.7	> 2000	46.7
2	Et	n-Pr	783.3	700	> 2000
3	n-Bu	n-Bu	1142	909	> 2000
4	i-Bu	i-Bu	> 2000	681	43.0
5	Me	CH3COEt	> 2000	827	44.5
6	H	–(CH2CH2)2O(CH2CH2)–	> 2000	569	> 2000
7	H	–(CH2CH2)N(CH3CH2CH2)–	487	> 2000	35.0
8	H	–(CH2CH2)N(CH2CH2)–	483	876	22.4
9	Me	–(CH2CH2)N(CH2CONHCH3)–	129	949	45.9
10	Me	CH2Ph	> 2000	> 2000	> 2000
11	H	CH2CH2Ph	997	> 2000	43.7
12	H	HCH2CH2(3,4-diMeO-C6H4)	67.7	891	26.7
13	H	–(CH2CH2)N(3-Cl-C6H4)–	1505	686	> 2000
14	H	–(CH2CH2)N(4-F-C6H4)–	1498	895	46.8
15	H	–(CH2CH2)N(4-CF3-C6H4)–	1152	> 2000	43.6
16	Me	N(CH2)2	8406	85.9	35.8
17	HO(CH2)3	H	8691	706	41.7
18	HO(CH2)3	H	7168	295	24.3
19	HO(CH2)3	H	8597	66.5	17.3
20	H	> 2000	494	48.7	
21			> 2000	240	18.9
22			7995	615	65.9
23		–(CH2)3	> 2000	252	30.1
24		–(CH2)3–CH(OH)CH2–	> 2000	428	60.7
25		–(CH2)3–CH(COONa)–	> 2000	485	80.1
26		–(CH2)3–CH(COONa)CH2–	8429	290	45.4
27		(R)–(CH2)3–CH(COONa)CH2–	93.6	496	80.5
28		(S)–(CH2)3–CH(COONa)CH2–	556	109	8.9
29		–(CH2)3–CH(COONa)(CH2)2–	8980	337	78.7
30		–(CH2)3–CH(NHAc)CH2–	783	910	47.9
31		–(CH2)3–CH(NHAc)CH2–	9239	683	13.2
32		–CH(Me)CH2–O(–CH2)2–	> 2000	434	60.2
33		–CH(COONa)CH2–O(–CH2)2–	> 2000	84.7	78.5
34		–(CH2)3N(CH2CONHCH3)–	791	415	67.2
35		Ph(CH2)2	897	425	107
36		HNO2SC6H5(CH2)2H	704	97.5	48.1
AAZ			83	250	12.1

*Mean ± standard error (from three different assays), by a stopped-flow technique (errors were in the range of ±5–10% of the reported values).

The differences of TweCAα inhibitory activity compared to the structurally similar derivatives (e.g. 35) which probably is due to the fact that the DTC in 36 is primarily binding to the metal ion in the enzyme active site, and not the sulphonamide moiety. However, the heterocyclic sulphonamide acetazolamide (AAZ, 5-acetamido-1,3,4-thiadiazole-2-sulphonamide), a clinically used drug, is a much more potent inhibitor (K_i of 83 nM) of TweCAα compared to the structurally similar derivatives (e.g. 35). The R-enantiomer 27 was on the other hand 5.9 times more effective inhibitor compared to the S-enantiomer 28. All these data show that small changes in the structure or the stereochemistry of a DTC/MTC lead too dramatic changes of affinity for the target enzyme.

(v) With a few exceptions, TweCAα was less sensitive to this class of CAIs compared to the α-CAs hCA I and II (Table 1). There are several X-ray crystal structures that demonstrate that the DTCs (and presumably also the MTCs) bind to the metal ion in the α-CAs to the active site by substituting the hydroxide nucleophile that is responsible for the catalytic activity of the enzyme¹⁻⁸. Most probably, this is also the inhibition mechanism by which DTCs and MTCs interact with δ-CAs. However, this enzyme class is the least studied of the 7 CA genetic families, and there are no X-ray crystal structures or even homology models available for any δ-CAs.

We try to rationalise the obtained inhibition data based on the amino acid sequence of TweCAα, which has been aligned with that of α-CAs for which the X-ray crystal structure is known, of bacterial (HpylCA, α-CAs from Helicobacter pylori, SspCA, α-CAs from Sulphuricoglobin yellowstonensis) or human origin (hCA I and II) (Figure 3). Data of Figure 3 show that for the α-CAs, the zinc
ligands are three His residues (His94, 96, and 119, hCA I numbering system), which align well for the bacterial and human enzymes, whereas the putative zinc ligands of TweCA do not align at all with those of the α-class enzyme. The same is true for other amino acid residues from the α-CAs, such as the proton shuttle ligands of the α-CAs and the putative zinc ligands of TweCA are evidenced in red, whereas amino acid residues involved in the catalytic inhibition/mecchanism (e.g. His64 and Asp106, hCA I numbering) are shown in green and blue, respectively.

Figure 3. Multialignment of the TweCA α amino acid sequence with those of bacterial (HpylCA, α-CA from *Helicobacter pylori*, SspCA, α-CA from *Sulfurihydrogenibium yellowstonensis*) and human (hCA I and II) α-class enzymes. The zinc ligands of the α-CAs and the putative zinc ligands of TweCA are evidenced in red, whereas amino acid residues involved in the catalytic inhibition/mechanism (e.g. His64 and Asp106, hCA I numbering) are shown in green and blue, respectively.

Conclusions

The first inhibition study of a δ-CA with mono- and di-thiocarbamates, classes of CAIs recently discovered, was reported. TweCAδ from the marine diatom *T. weissflogii* was not particularly sensitive to inhibition by these classes of compounds. Many of the mono- and di-thiocarbamates did not show inhibitory action up to 20 μM, whereas some aliphatic, heterocyclic, and aromatic inhibited this enzyme in the low micromolar range. Several MTCs/DTCs incorporating the piperazine ring effectively inhibited TweCAδ with Kᵢ values in the range of 129–791 nM. The most effective inhibitors identified were 3,4-dimethoxyphenyl-ethyl-mono-thiocarbamate (Kᵢ of 93.6 nM). Such inhibitors can now be used as molecular probes to investigate the role of this enzyme in the carbon fixation processes in diatom marine organisms that are responsible for removing large amounts of CO₂ from the atmosphere.

Disclosure statement

The authors do not declare any conflict of interest.

Funding

This research was financed in part by the Australian Research Council [DP160102681].

References

1. a) Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem Commun (Camb) 2012;48:1868–70. b) Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates strongly inhibit carbonic anhydrases and show antitumour activity in vivo. J Med Chem 2012;55:1721–30. c) Monti SM, Maresca A, Viparelli F, et al. Dithiocarbamates are strong inhibitors of the beta-class
1. fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata. Bioorg Med Chem Lett 2012;22:859–62.
2. a) Surján L, Tolvanen ME, Hilvo M, et al. Characterization, bioinformatic analysis and dithiocarbamate inhibition studies of two new α-carbonic anhydrases, CAH1 and CAH2, from the fruit fly Drosophila melanogaster. Bioorg Med Chem 2013;21:1516–21. b) Winum JY, Supuran CT. Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2015;30:321–4. c) Bozdag M, Carta F, Vullo D, et al. Dithiocarbamates with potent inhibitory activity against the Saccharomyces cerevisiae β-carbonic anhydrase. J Enzyme Inhib Med Chem 2016;31:132–6. d) Bozdag M, Carta F, Vullo D, et al. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitor activity and antiglaucoma action. Bioorg Med Chem 2015;23:2368–76. e) Vullo D, Del Prete S, Nocentini A, et al. Dithiocarbamates effectively inhibit the β-carbonic anhydrase from the dndru-f producing fungus Malassezia globosa. Bioorg Med Chem 2017;25:1260–5. f) Aspatwar A, Hammarén M, Koskinen S, et al. β-CA-specific inhibitor dithiocarbamate Fc14-584B: a novel antimycobacterial agent with potential to treat drug-resistant tuberculosis. J Enzyme Inhib Med Chem 2017;32:832–40.

3. Carta F, Akdemir A, Scozzafava A, et al. Xanthates and tri-thiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo. J Med Chem 2015;56:4691–700.

4. a) Vullo D, Durante M, Di Leva FS, et al. Monothiocarbamates strongly inhibit carbonic anhydrases in vitro and possess intraocular pressure lowering activity in an animal model of glaucoma. J Med Chem 2016;59:5857–67. b) Nocentini A, Vullo D, Del Prete S, et al. Inhibition of the β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa with monothiocarbamates. J Enzyme Inhib Med Chem 2017;32:1064–70.

5. a) Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32. b) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81. c) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60. d) Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68. e) Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. J Enzyme Inhib Med Chem 2013;28:229–30.

6. a) Xu Y, Feng L, Jeffrey PD, et al. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008;452:56–61. b) Ferry JG. The gamma class of carbonic anhydrases. Biochim Biophys Acta 2010;1804:374–81. c) Del Prete S, Vullo D, Fisher GM, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the 1-carbonic anhydrase. Bioorg Med Chem Lett 2014;24:4389–96. d) Cox EH, McLendon GL, Morel FM, et al. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 2000;39:12128–30. e) Del Prete S, Vullo D, Scozzafava A, et al. Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg Med Chem 2014;22:531–7.

7. a) Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32. b) Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:759–72. c) Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77. d) Supuran CT, Vullo D, Manole G, et al. Designing of novel carbonic anhydrase inhibitors and activators. Curr Med Chem Cardiovasc Hematol Agents 2004;2:49–68. e) Supuran CT, Capasso C. New light on bacterial carbonic anhydrases phylogeny based on the analysis of signal peptide sequences. J Enzyme Inhib Med Chem 2016;31:1254–60.

8. a) Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 2017;12:621–88. b) Akocak S, Lolak N, Vullo D, et al. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J Enzyme Inhib Med Chem 2017;32:1305–12. c) Angeli A, Vaiano F, Mari F, et al. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. J Enzyme Inhib Med Chem 2017;32:1253–9. d) Lisandru E, Tanc M, Kocsis I, et al. A class of carbonic anhydrase I: selective activators. J Enzyme Inhib Med Chem 2017;32:37–46.

9. a) Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013). Expert Opin Ther Pat 2013;23:681–91. b) Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 2013;23:705–16. c) Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat 2013;23:725–35. d) Monti SM, Supuran CT, De Simone G. Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013). Expert Opin Ther Pat 2013;23:737–49. e) Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 2017;7:E48–1248. f) Capasso C, Supuran CT. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr Top Med Chem 2017;17:1237. g) Mastrolorenzo A, Rusconi S, Scozzafava A, et al. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 2007;14:2734–48.

10. a) Carta F, Di Cesare Mannelli L, Pinard M, et al. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem 2015;23:1828–40. b) Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother 2016;16:961–8. c) Di Cesare Mannelli L, Micheli L, Carta F, et al. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J Enzyme Inhib Med Chem 2016;31:894–9. d) Margheri F, Ceruso M, Carta F, et al. Overexpression of the transmembrane carbonic anhydrase
isoforms IX and XII in the inflamed synovium. J Enzyme Inhib Med Chem 2016;31:60–3.

11. a) Vullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom *Thalassiosira weissflogii*. Bioorg Med Chem Lett 2014;24:275–9. b) Del Prete S, Vullo D, De Luca V, et al. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom *Thalassiosira weissflogii*, TwoCA. J Enzyme Inhib Med Chem 2014;29:906–11.

12. Khalifah RG. The carbon dioxide hydration activity of carboxylic acid. I. Synthesis, characterization and antibacterial properties. Met Enzyme Inhib Med Chem 2005;20:333–40. c) Garaj V, Puccetti L, Fasolis G, et al. Carbonic anhydrase inhibitors: novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isoforms I, II and IX. J Enzyme Inhib Med Chem 2005;15:3102–8. d) Gentürk M, Gülçin I, Beydemit S, et al. In vitro inhibition of human carbonic anhydrase I and II isoforms, and natural phenolic compounds. Chem Biol Drug Des 2011;77:494–9. e) Fabrizi F, Minzione F, Somma T, et al. A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J Enzyme Inhib Med Chem 2012;27:138–47. f) Dogne JM, Hansen J, Supuran C, Pratico D. Coxibs and cardiovascular side-effects: from light to shadow. Curr Pharm Des 2006;12:971–5.

14. a) Krall N, Pretto F, Decurtins W, et al. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew Chem Int Ed Engl 2014;53:4231–5. b) Rehman SU, Chohan ZH, Gulnaz F, Supuran CT. In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J Enzyme Inhib Med Chem 2005;20:333–40. c) Clare BW, Supuran CT. Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators. J Pharm Sci 1994;83:768–73. d) Dubois L, Peeters S, Lieweus NG, et al. Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol 2011;99:424–31. e) Chohan ZH, Munawar A, Supuran CT. Transition metal ion complexes of Schiff-bases. Synthesis, characterization and antibacterial properties. Met Based Drugs 2001;8:137–43. f) Zimmerman SA, Ferry JG, Supuran CT. Inhibition of the archaeal β-class (Cab) and γ-class (Cam) carbonic anhydrases. Curr Top Med Chem 2007;7:901–8. g) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.