This is the publisher’s PDF (Version of Record) of the article.
This is the final published version of the article.

How to cite this publication:

J. G. Hjørringgaard, V. Silva Aguirre, T. R. White, D. Huber, B. J. S. Pope, L. Casagrande, A. B. Justesen, J. Christensen-Dalsgaard (2017). "Testing stellar evolution models with the retired A star HD 185351.” Monthly Notices of the Royal Astronomical Society, 464 (3), 3713–3719. https://doi.org/10.1093/mnras/stw2559

Publication metadata

Title: Testing stellar evolution models with the retired A star HD 185351
Author(s): J. G. Hjørringgaard, V. Silva Aguirre, T. R. White, D. Huber, B. J. S. Pope, L. Casagrande, A. B. Justesen, J. Christensen-Dalsgaard
Journal: Monthly Notices of the Royal Astronomical Society
DOI/Link: https://doi.org/10.1093/mnras/stw2559
Document version: Publisher’s PDF (Version of Record)

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Redistribution subject to OUP license or copyright; see Terms of Use at https://academic.oup.com/journals/pages/access_purchase/rights_and_permissions/self_archiving_policy_p Use of this article is subject to OUP terms of use and conditions.

General Rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

If the document is published under a Creative Commons license, this applies instead of the general rights.

This coversheet template is made available by AU Library
Version 1.0, December 2017
Testing stellar evolution models with the retired A star HD 185351

J. G. Hjørringgaard,1* V. Silva Aguirre,1 T. R. White,1 D. Huber,2,1,3 B. J. S. Pope,4 L. Casagrande,5 A. B. Justesen1 and J. Christensen-Dalsgaard1

1Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
2Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia
3SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA
4Oxford Astrophysics, University of Oxford, Keble Rd, Oxford OX1 3RH, UK
5Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611, Australia

Accepted 2016 October 5. Received 2016 October 4; in original form 2016 January 28; Editorial Decision 2016 October 4

ABSTRACT
The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. using interferometry, spectroscopy, and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of 1.5 M⊙. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from ∼1.6 to 1.9 M⊙ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here, we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as the additional constraint of the observed g-mode period spacing is considered. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the overshooting efficiency using low-luminosity red giant stars. A theoretical model with metallicity [Fe/H] = 0.16 dex, mixing-length parameter αMLT = 2.00, and convective overshooting efficiency parameter f = 0.030 is found to be in complete agreement with all observational constraints for a stellar mass of M ≈ 1.60 M⊙.

Key words: asteroseismology – stars: individual: HD 185351 – stars: interiors.

1 INTRODUCTION
The red giant star HD 185351 is an important benchmark star for testing model-dependent mass estimates for evolved stars. Its physical properties were thoroughly examined by Johnson et al. (2014, hereafter J14), with an analysis of properties obtained from interferometry, spectroscopy, and asteroseismology. From spectroscopy, the metallicity was determined to be [Fe/H] = 0.16 ± 0.04 dex and the effective temperature Teff(SME) = 5016 ± 44 K, while interferometry yielded Teff(INTF) = 5042 ± 32 K (or Teff = 5047 ± 48 K when using a Fνbol determination from the Casagrande et al. (2010) implementation of the infrared flux method), and a radius of R = 4.97 ± 0.09 R⊙. The asteroseismic parameters obtained were the frequency of maximum power νmax = 229.8 ± 6.0 μHz, large frequency separation Δν = 15.4 ± 0.2 μHz, and the g-mode period spacing ΔΠ1 = 104.7 ± 0.2 s (a thorough review of the observational methods can be found in J14). By interpolating the spectroscopic parameters on to Yonsei–Yale model grids, J14 obtained a mass of 1.87 ± 0.07 M⊙, which was found to be in good agreement with the asteroseismic mass estimated from νmax and Δν (1.99 ± 0.23 M⊙), but in tension to the most model-independent estimate based on the combination of Δν with the interferometric radius (1.60 ± 0.08 M⊙). J14 concluded that this discrepancy could either be explained by small systematic errors in the observations, or systematic errors in the input physics of the adopted models.

The results of J14 are consistent with a mass in excess of 1.5 M⊙, indicating that HD 185351 was an early F- or A-type star on the main sequence (MS). However, mass estimates of single stars are based on stellar evolution models which may contain systematic errors, and indeed the accuracy of mass estimates of sub-giant stars has recently been called into question (Lloyd 2011, 2013; Schlaufman & Winn 2013), suggesting that sub-giants with masses in excess of 1.5 M⊙ should be rare in the solar neighbourhood. This issue of mass estimation for this kind of star has implications for the reliability of stellar evolution models as well as our understanding of planet occurrence rates around higher mass stars which depends on accurate knowledge of the stellar masses (Johnson, Morton & Wright 2013; Lloyd 2013). Recent efforts to resolve the mass problem by comparing spectroscopy to independent results (from binary
systems or asteroseismology) suggest that masses of evolved stars
determined from evolutionary grids are not significantly affected by
systematic errors (Ghezzi & Johnson 2015).

The scope of the paper is to test if a stellar model can be con-
structed in order to agree with all of the observational constraints,
and explore whether the model-dependent input physics can have a
significant effect on the inferred masses. We begin in Section 2 by
determining an updated value of \(\nu \max \) from *Kepler* LC data. Section
3 outlines the methods used in this work to compute stellar evolu-
tion tracks, and extract asteroseismic parameters from these,
to compare with the observations. A possible resolution of the prob-
lem at hand by corrections to the asteroseismic scaling relations is
presented and discussed. The computed models with varying input
physics, including changes in metallicity, mixing-length, and
inclusion of convective overshooting are presented in Section 4.
The results are discussed in Section 5, where a combination of the
individual variations in the model input is used in order to construct
a model, with reasonable input physics, which is consistent with
all observational constraints within a region of the stellar evolution
grid.

2 ASTEROSEISMIC DATA ANALYSIS

The measurement of asteroseismic parameters by J14 was made
from *Kepler* short-cadence (SC; 1-min sampling) photometry. A
value for the frequency of maximum power, \(\nu \max _{SC} \approx 229 \pm
6.0 \mu \text{Hz} \) was obtained. These observations only span a single *Ke-
pler* observing Quarter (Q16), with a duration of 85.6 d. With the
stochastic nature of the excitation and damping of solar-like oscil-
lations, mode heights vary over short time-scales, and this has the
potential to affect the measurement of \(\nu \max \). Ideally, longer observa-
tions would be desirable, but with the failure of two reaction wheels
causing the end of the nominal *Kepler* mission, further observations
of HD 185351 are no longer possible.

Fortunately, Pope et al. (2016) have recently shown how long-
cadence (LC; 30-min sampling) light curves may be recovered for
bright stars from *Kepler* ‘smear’ calibration data. We have applied
this method to HD 185351 to obtain the full 4-yr LC light curve,
and the resulting power spectrum is shown in Fig. 1, where it is
compared to the SC power spectrum.

Although the smear light curve has a greater frequency resolution
than the original SC data, the noise level is higher, and the
modes have attenuated amplitudes because they are just below the
LC Nyquist frequency of \(\approx 283 \mu \text{Hz} \). The LC smear light curve
therefore provides limited opportunity to improve the asteroseis-
mic analysis of J14. Therefore, we use the values of \(\Delta \nu \) and \(\Delta \Pi \)
determined by J14. For \(\nu \max \), however, we have made revised meas-
urement with the smear data using the method by Huber et al.
(2009). To account for Nyquist attenuation, the power spectrum
was corrected using (Murphy 2012)

\[
A_{\text{cor}} = A \sin \left(\frac{\pi}{2} \frac{\nu}{\nu_{\text{Nyq}}} \right),
\]

where \(A \) and \(A_{\text{cor}} \) are the original and corrected amplitude, respecti-
vly, and \(\nu_{\text{Nyq}} \) is the LC Nyquist frequency. The analysis yielded
\(\nu \max \approx 218.9 \pm 4.8 \mu \text{Hz} \), which is 1.4 \(\sigma \) smaller than the value
determined from the SC data using the same method. Owing to the
difficulties of measuring \(\nu \max \) close to the Nyquist frequency, bal-
anced against the benefit of using the longer time series, we adopt
a range for \(\nu \max \), which encompasses both the SC and LC values,
\(214.1, 235.8 \) \mu \text{Hz}.

3 METHOD

The computation of stellar evolution tracks is done using the Garch-
ing Stellar Evolution Code (GARSTEC; Weiss & Schlattl 2008). All
tracks are computed with the 2005 OPAL equation of state (Rogers,
Swenson & Iglesias 1996; Rogers & Nayfonov 2002) extended with
magnetohydrodynamic (MHD) equation of state (Mihalas, Dappen
& Hummer 1988) in low-temperature regions. The opacity tables
used are the OPAL opacities for high temperatures (Iglesias & Rogers
1996) and those of Ferguson et al. (2005) for low temperatures.
Energy transport by convection is treated by the mixing-length theory
as described by Kippenhahn, Weigert & Weiss (2012).

The physical and asteroseismic parameters can be extracted from
these tracks in order to obtain regions where the model values
agree with the observed ones. The asteroseismic parameters are not
standard output of GARSTEC and thus were computed independently.

3.1 Asteroseismology

The frequency of maximum power \(\nu \max \) has been proposed to scale
with the acoustic cut-off frequency \(\nu_{c} \) (Brown et al. 1991), such that
\(\nu \max \propto \nu_{c} \propto c/H_{p} \), where \(c \) and \(H_{p} \) are the adiabatic sound speed and
pressure scaleheight in the star’s photosphere. Assuming an ideal
gas, the scaling relation for the frequency of maximum power can be
expressed as (e.g. Kjeldsen & Bedding 1995)

\[
\nu \max = \nu_{\text{max,\ 0}} \left(\frac{M}{M_{\odot}} \right)^{\frac{R}{R_{\odot}}} \left(\frac{T_{\text{eff}}}{T_{\text{eff, \ 0}}} \right)^{-1/2}.
\]

Through asymptotic analysis of the equations of adiabatic oscil-
lations (e.g. Deubner & Gough 1984), the large frequency separation
can be expressed as

\[
\Delta \nu = \left(2 \int_{0}^{R} \frac{dr}{c} \right)^{-1}.
\]
From this expression, it can be obtained by homology relations that the large frequency separation is related to the mean density \(\bar{\rho} \) of the star by \(\Delta \nu \propto \bar{\rho}^{1/2} \) (Ulrich 1986). Scaling with respect to the solar p-mode spectrum yields

\[
\Delta \nu = \Delta \nu_\odot \left(\frac{M}{M_\odot} \right)^{1/2} \left(\frac{R}{R_\odot} \right)^{-3/2}.
\]

For the analysis, the adopted solar values are \(\Delta \nu_\odot = 135.1 \mu \text{Hz} \) and \(v_{\text{max}, \odot} = 3090 \mu \text{Hz} \) (Huber et al. 2011).

A third way to compute the large frequency separation is by modelling the adiabatic oscillations. In this work, this is done using the Aarhus Adiabatic Oscillation Package (ADIPS; Christensen-Dalsgaard 2008), which calculates the oscillation frequencies directly from the evolutionary models. The large frequency separation is calculated from the oscillation frequencies by a least-squares fit to the frequencies as a function of radial order \(n \), weighting the frequencies with a Gaussian envelope centred at the frequency of maximum power obtained from the scaling relation in equation (2) with a full width at half-maximum of 0.25 \(v_{\text{max}} \) as proposed by White et al. (2011).

The asymptotic treatment shows that p-modes are equally spaced in frequency by the large frequency separation given in equation (3). By a similar analysis (e.g. Tassoul 1980), the g-modes have been shown to be equally spaced in period, with the period spacing

\[
\Delta \Pi_1 = \frac{\Pi_0}{L},
\]

where \(L^2 = l(l + 1) \), and

\[
\Pi_0 = 2\pi^2 \left(\int_{\nu_1}^{\nu_2} N \frac{d\nu}{\nu} \right)^{-1}.
\]

Here \(N \) is the Brunt–Väisälä frequency given by

\[
N^2 = g \left(\frac{1}{\Gamma_1} \frac{d\ln p}{d\nu} - \frac{d\ln \rho}{d\nu} \right),
\]

where \(g \) is the gravitational acceleration, \(p \) is the pressure, \(\rho \) is the density, and the adiabatic exponent is given by \(\Gamma_1 = (\partial \ln p/\partial \ln \rho)_\text{ad} \).

We calculated \(\Delta \nu \) using both the scaling relation (equation 2) and from individual frequencies computed using ADIPS. We found good agreement between the values of \(\Delta \nu \) computed using the two methods. We also applied a metallicity-dependent correction to the scaling relation (see Serenelli, in preparation). However, due to the location of HD 185351 in the Hertzsprung–Russell diagram (HRD), the correction is negligible in this case. For the remainder of this paper, we chose to use \(\Delta \nu \) from the corrected scaling relation. The conclusions of the paper are not dependent on this choice.

3.2 Kiel diagram

Fig. 2 shows the computed log g–\(T_{\text{eff}} \) diagram (commonly called Kiel diagram) with metallicity [Fe/H] = 0.16 as obtained from spectroscopy.\(^1\) The different colours in Fig. 2 represent the various 1σ constraints from observations (the constraint band for \(\Delta \Pi_1 \) is widened to 10σ in order to make it visible in the diagram – a 1σ band would naturally lie within this band, and the conclusions are not affected by the additional width; see Section 1 for values).

\(^1\) The small break in the evolutionary tracks at \(T_{\text{eff}} = 5000 \text{K} \) is due to transitions between equation of state tables.

Compared to the corresponding Kiel diagram by J14, where a Bag of Stellar Tracks and Isochrones (BaSTI)\(^2\) evolutionary tracks are used, there is an additional constraint on the models applied to the grid in Fig. 2 – the g-mode period spacing \(\Delta \Pi_1 \) displayed as an orange band. The location of this additional asteroseismic constraint is not in agreement with both the other asteroseismic constraints and the interferometric radius at one region of the Kiel diagram, indicating that the theoretical description of the star is incomplete. \(\Delta \nu \) and \(v_{\text{max}} \) are consistent with the interferometric radius at a stellar mass of \(M \simeq 1.6 M_\odot \), although for models significantly cooler than what is observed. These discrepancies between the locations of the different constraint bands in the stellar evolution grid of Fig. 2 motivate further study of the influence of the model input on the grid in general and the constraint bands within.

In Section 2, we discussed the individual reliability of \(v_{\text{max}} \) determined from Kepler SC and LC photometry. It is not possible with the current data to determine which value is most appropriate to use, and thus the constraint applied to the evolutionary tracks is a combination of the two in the range (214.1, 235.8) \(\mu \text{Hz} \) (green band in Fig. 2). As is evident from the Kiel diagram, this constraint on \(v_{\text{max}} \) is of little use for determining the appropriate model to reproduce the stellar parameters of HD 185351. The \(v_{\text{max}} \) constraint agrees with the \(\Delta \nu \) and \(\Delta \Pi_1 \) constraints for a model mass of \(M \simeq 1.92 M_\odot \), while it agrees with the \(\Delta \nu \) and \(R \) constraints at a model mass of \(M \simeq 1.62 M_\odot \). No additional information is added by including the constraint on \(v_{\text{max}} \) in the grid; therefore, it will not be depicted in the remaining Kiel diagrams in this paper.

4 RESULTS

Variations in different sets of input physics of the computed stellar evolution tracks influence the location of the tracks, and the constraint bands, in different ways. One of the basic properties of a star needed by stellar evolution models to produce tracks is the metallicity, defined as [Fe/H] = log (Z/X) − log (Z/X)\(\odot \) (where X and Z are the mass fractions of hydrogen and elements heavier than helium, respectively), which is found to be [Fe/H] = 0.16 ± 0.04 dex by J14. Within the range of the uncertainty of the metallicity determination, there is some variation in computed
evolutionary tracks. Other variations in the input physics of the models, which we consider here, are the inclusion of overshooting of mass elements from convective regions and variations in the mixing-length parameter α_{MLT}. A summary of the various computed models are listed in Table 1, for quick reference to the figures.

4.1 Convective overshooting

There is plenty of evidence in the literature that convective core sizes predicted from models using the Schwarzschild criterion alone are underestimating the actual mixed core extent (e.g. Maeder 1974; Maeder & Meynet 1991; Chiosi, Bertelli & Bressan 1992; VandenBerg et al. 2007), and recent analyses of Kepler stars support this observation (Silva Aguirre et al. 2013; Deheuvels et al. 2016). Therefore, it is reasonable to assume that some amount of mixing beyond the formal Schwarzschild convective boundary should be included in the calculation of the evolutionary tracks. In particular, the inclusion of convective overshooting increases the mixing of elements in the core, extending the lifetime of the star on the MS. GARSTEC treats convective overshooting as a diffusive process, as described by Freytag, Ludwig & Steffen (1996); Herwig et al. (1997), with diffusion constant

$$D(z) = D_0 \exp \left(\frac{-2z}{fH_p} \right),$$

(8)

where D_0 sets the scale of diffusive speed and is derived from the convective velocity in the mixing-length theory, z is the radial distance to the Schwarzschild border, H_p is the pressure scaleheight, and f is the overshooting efficiency parameter. In GARSTEC, the value for f has been calibrated to 0.016 by isochrone fitting to the colour–magnitude diagram (CMD) of M67 (see, Magic et al. 2010).

The computed Kiel diagram with metallicity $[\text{Fe}/\text{H}] = 0.16$ dex and overshooting efficiency parameter $f = 0.016$ is shown in Fig. 3. The locations of the constraint bands are similar except for the $\Delta\nu$ constraint during the MS, where the $\Delta\nu$ and radius constraints agree. Thus matching $\Delta\Pi_1$ with these other parameters can serve as a test for convective overshoot during the MS. The deviation from the observed temperature is still an issue for this set of input physics, and will be resolved by other input variations.

The added constraint of the g-mode period spacing $\Delta\Pi_1$ is extremely sensitive to the overshooting efficiency parameter of the model, and the exact cause for this is a change in the thermodynamic state in the centre of the star. The direct impact of including overshooting is increased mixing in the core, varying the relationship between density and pressure gradients, making the Brunt–Väisälä frequency change (see equation (7)).

Fig. 4 shows the density ρ as a function of the radial distance to the core for three 1.90 M$_\odot$ models selected at the observed $\Delta\nu$ value with metallicity $[\text{Fe}/\text{H}] = 0.16$ dex, and $f = 0$ (solid), $f = 0.016$ (dashed), and $f = 0.032$ (dotted). Bottom panel: Brunt–Väisälä frequency profile for the same models.

A star of this mass has a convective core which decreases in size during the MS, and inclusion of overshooting in this phase alters the density profile of the star at later stages of the evolution.

4.2 Metallicities

The primary effect on the computed stellar evolution grid from varying the metallicity is a shift towards hotter regions for a decrease in $[\text{Fe}/\text{H}]$. This effect is visible when comparing the Kiel diagrams in Figs 2 and 5, which are computed with metallicities of $[\text{Fe}/\text{H}] = 0.16$ and 0.08 dex, respectively. The 2σ variation in metallicity is chosen as a conservative approach (recent observations support this, with a metallicity of $[\text{Fe}/\text{H}] = 0.10 \pm 0.04$ reported by Ghezzi, do Nascimento & Johnson 2015). The locations of the
constraint bands from observations in the two Kiel diagrams coincide (see Figs 2 and 5), in the sense that asteroseismic parameters and the interferometric radius constraints are shifted with the evolutionary tracks towards hotter regions, making the zone where $\Delta \nu$ and radius constraints agree approach the observed temperatures. The temperature differences are, however, not completely resolved by the applied decrease in metallicity, just as the discrepancy between the locations of the individual asteroseismic constraint bands remains. For an increase in metallicity, the effect on the computed stellar evolution grid is a shift towards cooler temperatures. Thus, the parameters are further from being reconciled.

4.3 Mixing-length parameter

From observations of globular clusters and field stars it is known that there is a discrepancy between temperatures observed in the red giant branch and those predicted from stellar evolution models (see e.g. Ferraro et al. 1992; Salaris & Cassisi 2008; VandenBerg et al. 2008; Pinsonneault et al. 2014). The origin of this discrepancy could lie on the incomplete treatment of convection in hydrostatic stellar evolution models, usually described with the mixing-length formalism. In this framework, convective motions are described with the mixing-length parameter α_{MLT} normally calibrated to reproduce the solar properties. The value of α_{MLT} does, however, vary throughout the HRD (Trampedach et al. 2014; Magic, Weiss & Asplund 2015), and the discrepancy between the different constraints in the Kiel diagram could originate from an alternate value of α_{MLT} being more suitable for the star.

The question of the universality of the mixing-length parameter has also been investigated using the binary system α Centauri showing that different values of α_{MLT} are required to match observations with standard stellar models (Demarque, Guenther & van Altena 1986; Miglio & Montalbán 2005; Yldiz 2007). Tests using eclipsing binaries (Ludwig & Salaris 1999), clusters (Yildiz et al. 2006), and Kepler data (Bonaca et al. 2012) also suggest that the mixing-length parameter should vary with stellar properties.

In this paper, a value of $\alpha_{\text{MLT}} = 1.791$ has been used as the standard solar-calibrated value in GARSTEC. Fig. 6 shows the computed Kiel diagram with metallicity [Fe/H] = 0.16 dex, no convective overshooting, and a mixing-length parameter $\alpha_{\text{MLT}} = 2.00$. The behaviour of the evolutionary tracks when increasing the mixing-length parameter is similar to decreasing the metallicity (see Fig. 5) – the tracks are shifted towards hotter parts of the diagram, while the location of the constraint bands within the grid follows the same shift, making the region where the large frequency separation and interferometric radius agree lie within the observed temperatures.

5 RECONCILING PARAMETERS

The different trial models of Section 4 are used as indicators for the effects on the evolutionary tracks – and parameters within – from varying input physics. None of the produced models so far agrees with all parameter constraints at a single point, but combining the various effects can allow for a model in complete agreement. From the trial models it is evident that in order to change the location of the constraint band from the period spacing relative to the other asteroseismic parameters and radius constraints in the Kiel diagram, the inclusion of convective overshooting is a requirement. In this manner a model can be constructed where $\Delta \Pi_1$ and $\Delta \nu$ agrees with the interferometric radius; however the temperature observations are not matched by these models. Since a decrease in metallicity has the same effect on the Kiel diagram as an increase in mixing-length – a shift of the evolutionary tracks towards hotter regions of the diagram – it is possible to construct a model where the constraints on $\Delta \nu$ and interferometric radius agree with the temperature measurements. A combination of these two effects applied with suitable amounts of overshooting can reconcile discrepancies between the constraints on the physical parameters in the model. The primary difference between the effects of decreased metallicity and increased mixing length, by physically reasonable amounts, is the size of the temperature shift. For a σ decrease in metallicity from the spectroscopic value, as shown in Fig. 5, the temperature shift is not large enough to make the region where $\Delta \nu$ and radius agree within the 1σ boundary of the spectroscopic temperature. Agreement between all parameter constraints can be obtained by increasing the mixing-length parameter and including convective overshooting. Fig. 7 shows the Kiel diagram for a model with [Fe/H] = 0.16 dex, $f = 0.030$, and $\alpha_{\text{MLT}} = 2.00$. For this set of input physics, the parameter constraints agree at an evolutionary track of mass $M \approx 1.60 M_\odot$. Thus, within reasonable assumptions on the input of the stellar evolution models, it is possible to reconcile the location of the constraint bands. With this overshoot efficiency and mixing-length parameter, we constructed a grid of models spanning a metallicity range between 0.0 \leq [Fe/H] \leq 0.30, and determined a final set of stellar properties for HD 185351 by reproducing the atmospheric and asteroseismic observables using the BAYesian STellar Algorithm (BASTA; Silva Aguirre et al. 2015). The resulting properties of the star are listed in Table 2, where we find an
J. G. Hjørringgaard et al.

Figure 7. Kiel diagram computed with metallicity [Fe/H] = 0.16 dex, convective overshooting included at f = 0.030, and mixing-length parameter α_{MLT} = 2.00. The colour code is as in Fig. 2.

Table 2. Stellar properties determined using BASTA. As quantities to be reproduced, we have considered $\Delta \Pi_1$, Δr, ν_{max}, the effective temperature determined from interferometry, and the spectroscopic surface abundance. Systematic uncertainties in observed asteroseismic values and model input physics are not included. See text for details.

| HD 185351 |
|---|---|---|---|---|
| Mass (M$_\odot$) | 1.58$^{+0.04}_{-0.02}$ | 1.60$^{+0.03}_{-0.02}$ | 1.58$^{+0.04}_{-0.02}$ | 1.60$^{+0.03}_{-0.02}$ |
| Radius (R$_\odot$) | 4.93$^{+0.15}_{-0.07}$ | 4.93$^{+0.15}_{-0.07}$ | 4.93$^{+0.15}_{-0.07}$ | 4.93$^{+0.15}_{-0.07}$ |
| Age (Gyr) | 2.33$^{+0.04}_{-0.07}$ | 2.33$^{+0.04}_{-0.07}$ | 2.33$^{+0.04}_{-0.07}$ | 2.33$^{+0.04}_{-0.07}$ |
| log g | 3.25$^{+0.07}_{-0.02}$ | 3.25$^{+0.07}_{-0.02}$ | 3.25$^{+0.07}_{-0.02}$ | 3.25$^{+0.07}_{-0.02}$ |

excellent agreement between the interferometric radius and the asteroseismically determined one. The small uncertainties in mass and age obtained from the fit are a reflection of the high precision in the J14 period spacing measurement (at the 0.2 per cent level) as well as the almost perpendicular location of the $\Delta \Pi_1$ constraint band with respect to the other asteroseismic observables (as depicted in Figs 2 and 7). Combining these observables effectively breaks the mass degeneracy and allows a much more precise determination of stellar properties. We note however that these uncertainties do not include systematics in the observed asteroseismic values nor the model input physics, and a thorough analysis of these ingredients will be addressed in a subsequent study.

This best-fitting model suggests a mixing-length value larger than the solar-calibrated value. This result is in line with those from 3D simulations of stellar atmospheres where there is a dependence on evolutionary stage and metallicity of the convective efficiency (see Trampedach et al. 2014; Magic et al. 2015). The overshooting efficiency parameter $f = 0.030$ almost doubles the calibrated value determined by CMD-fitting of M67, where convective overshooting is included to reproduce the hook at the MS turn-off (Magic et al. 2010). The masses of M67 stars in this evolutionary state is \sim1.2 M$_\odot$, and it is therefore not surprising that a larger efficiency parameter value is found for higher mass stars. Given the exponential nature of the overshoot prescription included in GARSTEC (see equation 8), the net effect of doubling the overshoot efficiency for a 1.6 M$_\odot$ model is very mild, increasing the maximum convective core size from $m/M = 0.09$ to 0.105.

Convective core size determination is possible in MS stars using asteroseismology (Silva Aguirre et al. 2011, 2013; Deheuvels et al. 2016), and these results suggest the need of an increasing overshooting efficiency as a function of stellar mass. However, solar-like oscillations are detected in very few 1.6 M$_\odot$ MS stars, making low-luminosity red giants such as HD 185351 an exciting resource to accurately calibrate the overshooting efficiency.

6 CONCLUSIONS

In this work, we have shown that variations in the input of the theoretical models can reconcile the discrepancies between interferometric and asteroseismic radius. This has been done using GARSTEC to compute evolutionary tracks with different input physics – variations in metallicity, alternate values of the mixing-length parameter, and the inclusion of overshooting from convective regions. It has been found that a model with [Fe/H] = 0.16 dex, $f = 0.030$, $\alpha_{\text{MLT}} = 2.00$, and a stellar mass of $M \approx 1.60$ M$_\odot$ can reproduce all available observations. Furthermore, the inclusion of convective overshooting is found to be crucial in order to match the period spacing constraint with the other parameter constraints in the models. By analysing stars in a similar evolutionary state as HD 185351 with a wide range in mass it would be possible to calibrate the amount of extra mixing in the core during the MS phase. Such a calibration would allow for an easy and accurate mass estimation from measurements of $\Delta \nu$ and $\Delta \Pi_1$.

We have shown that the systematic errors in the input physics of the adopted models can have a significant effect on the masses and thus need to be considered when estimating systematic errors. The model-dependent input physics, which reconcile all observables by varying the convective core overshooting and mixing-length parameter, suggests a mass of $\gtrsim 1.60$ M$_\odot$. Thus, the conclusion that HD 185351 is a retired A star with a mass in excess of 1.5 M$_\odot$ still holds.

ACKNOWLEDGEMENTS

Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). DH acknowledges support by the Australian Research Council’s Discovery Projects funding scheme (project number DE140101364) and support by the National Aeronautics and Space Administration under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. VSA acknowledges support from VILLUM FONDEN (research grant 10118).

REFERENCES

Bonaca A. et al., 2012, ApJ, 755, L12
Brown T. M., Gilliland R. L., Noyes R. W., Ramsey L. W., 1991, ApJ, 368, 599
Casagrande L., Ramírez I., Meléndez J., Bessell M., Asplund M., 2010, A&A, 512, A54
Chiosi C., Bertelli G., Bressan A., 1992, ARA&A, 30, 235
Christensen-Dalsgaard J., 2008, Ap&SS, 316, 113
Deheuvels S., Brandão I., Silva Aguirre V., Ballot J., Michel E., Cunha M. S., Lebreton Y., Appourchaux T., 2016, A&A, 589, A93
Demarque P., Guenther D. B., van Altena W. F., 1986, ApJ, 300, 773
Deubner F.-L., Gough D., 1984, ARA&A, 22, 593
Ferguson J. W., Alexander D. R., Allard F., Bodnarik J. G., Hauschildt P. H., Heffner-Wong A., Tamanai A., 2005, ApJ, 623, 585

MNRAS 464, 3713–3719 (2017)
Ferraro F. R., Messineo M., Fusi Pecci F., de Palo M. A., Straniero O., Chieffi A., Limongi M., 1999, AJ, 118, 1738
Freytag B., Ludwig H.-G., Steffen M., 1996, A&A, 313, 497
Ghezzi L., Johnson J. A., 2015, ApJ, 812, 96
Ghezzi L., do Nascimento J.-D., Jr, Johnson J. A., 2015, in van Belle G. T., Harris H. C., eds, Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Vol. 18, p. 743
Herwig F., Bloecher T., Schoenberner D., El Eid M., 1997, A&A, 324, L81
Huber D., Stello D., Bedding T. R., Chaplin W. J., Arentoft T., Quirion P.-O., Kjeldsen H., 2009, Commun Asteroseismology, 160, 74
Huber D. et al., 2011, ApJ, 743, 143
Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943
Johnson J. A., Morton T. D., Wright J. T., 2013, ApJ, 763, 53
Johnson J. A. et al., 2014, ApJ, 794, 15 (J14)
Kippenhahn R., Weigert A., Weiss A., 2012, Stellar Structure and Evolution. Springer, Berlin Heidelberg
Kjeldsen H., Bedding T. R., 1995, A&A, 293, 87
Lloyd J. P., 2011, ApJ, 739, L49
Lloyd J. P., 2013, ApJ, 774, L2
Ludwig H.-G., Salaries M., 1999, in Gimenez A., Guinan E. F., Montesinos B., eds, ASP Conf. Ser. Vol. 173, Stellar Structure: Theory and Test of Connective Energy Transport. Astron. Soc. Pac., San Francisco, p. 229
Maeder A., 1974, A&A, 32, 177
Maeder A., Meynet G., 1991, A&AS, 89, 451
Magic Z., Serenelli A., Weiss A., Chaboyer B., 2010, ApJ, 718, 1378
Magic Z., Weiss A., Asplund M., 2015, A&A, 573, A89
Miglio A., Montalbán J., 2005, A&A, 441, 615
Mihalas D., Dappen W., Hummer D. G., 1988, ApJ, 331, 815
Murphy S. J., 2012, MNRAS, 422, 665
Pinsonneault M. H. et al., 2014, ApJS, 215, 19
Pope B. J. S. et al., 2016, MNRAS, 455, L36
Rogers F. J., Nayfonov A., 2002, ApJ, 576, 1064
Rogers F. J., Swenson F. J., Iglesias C. A., 1996, ApJ, 456, 902
Salaris M., Cassisi S., 2008, A&A, 487, 1075
Schlaufman K. C., Winn J. N., 2013, ApJ, 772, 143
Silva Aguirre V., Ballot J., Serenelli A. M., Weiss A., 2011, A&A, 529, A63
Silva Aguirre V. et al., 2013, ApJ, 769, 141
Silva Aguirre V. et al., 2015, MNRAS, 452, 2127
Tassoul M., 1980, ApJS, 43, 469
Trampedach R., Stein R. F., Christensen-Dalsgaard J., Nordlund Å., Asplund M., 2014, MNRAS, 445, 4366
Ulrich R. K., 1986, ApJ, 306, L37
VandenBerg D. A., Gustafsson B., Edvardsson B., Eriksson K., Ferguson J., 2007, ApJ, 666, L105
VandenBerg D. A., Edvardsson B., Eriksson K., Gustafsson B., 2008, ApJ, 675, 746
Weiss A., Schlattl H., 2008, Ap&SS, 316, 99
White T. R., Bedding T. R., Stello D., Christensen-Dalsgaard J., Huber D., Kjeldsen H., 2011, ApJ, 743, 161
Yıldız M., 2007, MNRAS, 374, 1264
Yıldız M., Yakut K., Bakış H., Noels A., 2006, MNRAS, 368, 1941

This paper has been typeset from a \TeX/La\TeX file prepared by the author.