THE BICANONICAL MAP OF THE CARTWRIGHT-STEGER SURFACE

JONGHAE KEUM

ABSTRACT. We prove that the bicanonical map of the Cartwright-Steger surface is an embedding. We also discuss two minimal surfaces of general type, both covered by the Cartwright-Steger surface. One has \(K^2 = 2, p_g = 1, \pi_1 = \{1\} \) and the other has \(K^2 = 1, p_g = 0, \pi_1 = \mathbb{Z}/2\mathbb{Z} \).

The Cartwright-Steger surface is a minimal surface of general type with \(p_g = q = 1 \) and \(K^2 = 3c_2 = 9 \). It is an arithmetic ball quotient found by Cartwright and Steger [3], [4]. Reider’s theorem [10] implies that the bicanonical system of a ball quotient \(X \) is base point free, thus defines a morphism.

Let \(X \) be the Cartwright-Steger surface and

\[\Phi_{2,X} : X \to \mathbb{P}^9 \]

be the bicanonical map. This map may fail to separate points only on certain curves, as specified in the criterion of Reider’s theorem [10]. In this note we prove that such curves do exist on the Cartwright-Steger surface.

Theorem 1. On the Cartwright-Steger surface \(X \) there exists no effective curve \(B \) such that either \(3B \) is numerically equivalent to the canonical class \(K_X \) or \(K_XB = 2 \) and \(B^2 = 0 \). In particular, the bicanonical map \(\Phi_{2,X} \) is an embedding into \(\mathbb{P}^9 \).

It is known that Cartwright-Steger surface \(X \) has automorphism group \(\text{Aut}(X) = \mathbb{Z}/3\mathbb{Z} \) and the quotient is simply connected [4], and the action has only isolated fixed points, three of type \(1/3(1,1) \) and six of type \(1/3(1,2) \) [2]. The latter was also obtained by geometric arguments by F. Catanese, T. Domingo, M. Stover and the author, and by I. Dolgachev. It follows that the minimal resolution \(Y \) of the quotient \(X/\text{Aut}(X) \) is a minimal surface of general type with

\[K_Y^2 = 2, \quad p_g(Y) := h^{2,0}(Y) = 1, \quad \pi_1(Y) = \{1\}. \]

L. Borisov found an involution \(\alpha \) on \(Y \), as a bi-product of his computation of the equation of \(Y \). This automorphism does not come from the ball. It turns out to be fixed point free and the quotient \(Z = Y/\langle \alpha \rangle \) is a minimal surface of general type with

\[K_Z^2 = 1, \quad p_g(Z) = 0, \quad \pi_1(Z) = \mathbb{Z}/2\mathbb{Z}. \]
1. Known Facts on the Cartwright-Steger Surface

We collect known facts on the Cartwright-Steger surface [3], [4], [2], [5], [6]. Let

$$
\pi : X = \mathbb{B}/\Pi \to \mathbb{P}(1, 2, 3) = \mathbb{B}/\bar{\Gamma}
$$

be the natural projection map of degree \([\bar{\Gamma} : \Pi] = 3.288\). The Deligne-Mostow quotient \(\mathbb{P}(1, 2, 3) = \mathbb{B}/\bar{\Gamma}\) contains a line \(D_B\) and a cuspidal curve \(D_A\). The curve \(D_B\) (resp. \(D_A\)) is the image of the set of mirrors of complex reflections of order 4 (resp. 3) in \(\bar{\Gamma}\). See p.111, [5]. Let \(P_1\) be the cusp of \(D_A\), \(P_2\) the tangential intersection point of \(D_A\) and \(D_B\), \(P_3\) the transversal intersection point of \(D_A\) and \(D_B\), and \(P_4, P_5\) be the singular points of type \(1/2(1, 1)\) and \(1/3(1, 2)\) respectively. We know that

$$
\pi^{-1}(D_B) = E_1 + E_2 + E_3,
$$

where \(E_1, E_2, E_3\) are irreducible curves of geometric genus 4. As a reducible curve, \(\pi^{-1}(D_B)\) has 6 transversal branches at each \(O_i\), and is smooth elsewhere. Thus \(E_1, E_2, E_3\) intersect each other only at \(O_1, O_2, O_3\). Their multiplicities at \(O_i\) are given in Table 1. The intersection number \(E_i E_j\) is equal to the dot product of their multiplicity vectors if \(i \neq j\), and

$$
E_j^2 = 1 - g(E_j) + \sum_i m(E_j, O_i)[m(E_j, O_i) - 1].
$$

See Table 2. Here we use the fact that \(K_X E = 3g(E) - 3\) for a totally geodesic curve \(E\) of geometric genus \(g(E)\).

	\(O_1\)	\(O_2\)	\(O_3\)	\(g\)	\(p_a\)
\(E_1\)	3	1	2	4	8
\(E_2\)	2	1	3	4	8
\(E_3\)	1	4	1	4	10
\(C_1, C_2\)	0	1	2	4	5
\(C_3, C_4\)	4	3	2		10

Table 1.

There are two curves \(C_1, C_2\) of geometric genus 4, and two curves \(C_3, C_4\) of geometric genus 10 such that

$$
\pi^{-1}(D_A) = C_1 + C_2 + C_3 + C_4.
$$

As a reducible curve, \(\pi^{-1}(D_A)\) has 8 transversal branches at each \(O_i\). The preimage \(\pi^{-1}(P_1)\) consists of 36 points and \(\pi^{-1}(P_3)\) 72 points. The curves \(C_i\) intersect each other at \(O_i\), but also intersect transversally at points in \(\pi^{-1}(P_1)\), and nowhere else. Table 1 contains the multiplicities at \(O_1, O_2, O_3\) of the curves \(C_i\).

The information on the curves \(E_i, C_j\) are obtained from [5] and [6].
1.1. **Intersection numbers of the geodesic curves.** Through discussion with F. Catanese, M. Stover, D. Toledo, we have obtained the intersection numbers of curves E_i, C_j, as given in Table 2. This table confirms the computation of [2], where the entries involving C_3, C_4 are not given explicitly.

	E_1	E_2	E_3	C_1	C_2	C_3	C_4
E_1	5	13	9	11	11	25	25
E_2	13	5	9	7	7	29	29
E_3	9	9	9	9	9	27	27
C_1	11	7	9	-1	17	37	19
C_2	11	7	9	17	-1	19	37
C_3	25	29	27	37	19	71	89
C_4	25	29	27	37	19	89	71

Table 2.

In particular $p_a(C_3) = p_a(C_4) = 50$, filling up Table 1.

1.2. **The Néron-Severi group $\text{NS}(X)$.** By Cartwright and Steger [3],

$$H_1(X, \mathbb{Z}) = \mathbb{Z}^2.$$

So by the universal coefficient theorem, $H^2(X, \mathbb{Z}) = \mathbb{Z}^5$, torsion free. The three curves, E_1, E_3, C_1, are numerically independent, so $\text{NS}(X)$ is a free group of rank 3. Note that $\text{Pic}(X)$ contains torsions, namely the torsion elements of the Picard variety $\text{Pic}^0(X)$, an elliptic curve in this case.

1.3. **Fix(σ).** It is known that $\text{Aut}(X) \cong \mathbb{Z}/3\mathbb{Z}$ [4]. The order 3 automorphism σ of X fixes 9 points,

$$\text{Fix}(\sigma) = \{O_1, O_2, O_3, Q_1, \ldots, Q_6\},$$

where O_i is of type $1/3(1, 1)$ and Q_i of type $1/3(1, 2)$. The points Q_1, \ldots, Q_6 lie over the the singular point of type $1/3(1, 2)$ of the Deligne-Mostow quotient $\mathbb{P}(1, 2, 3)$, hence for any i

$$Q_i \notin \pi^{-1}(D_B) \cup \pi^{-1}(D_A).$$

The induced action of σ on the elliptic curve $\text{Alb}(X)$ fixes 3 points. Let F_0, F_1, F_2 be the 3 σ-invariant Albanese fibres. One may assume that

$$O_1, O_2, O_3 \in F_0, \quad Q_1, Q_2, Q_3 \in F_1, \quad Q_4, Q_5, Q_6 \in F_2.$$

1.4. **The action of σ on $\pi^{-1}(D_B)$ and $\pi^{-1}(D_A)$.

- Each E_i, C_j is σ-invariant, i.e. $\sigma(E_i) = E_i, \ i = 1, 2, 3$ and $\sigma(C_j) = C_j, \ j = 1, 2, 3, 4$.

This follows from the fact that both $\pi^{-1}(D_A)$ and $\pi^{-1}(D_B)$ have transversal branches at O_i. Indeed, locally at O_i, $\sigma(x, y) = (\zeta x, \zeta y)$, ζ is a third root of 1, hence preserves the tangent line of every branch.
Proposition 1. \(\text{Aut}(X) \) is cohomologically trivial, i.e., acts as the identity on \(H^2(X, \mathbb{Z}) = \mathbb{Z}^5 \).

Proof. Since the classes of the three curves, \(E_1, E_3, C_1 \), generate \(\text{NS}(X) \otimes \mathbb{Q} \), \(\text{Aut}(X) \) acts as the identity on \(\text{NS}(X) \otimes \mathbb{Q} \). By the holomorphic Lefschetz fixed point formula (cf. [7]), from the information on the fixed locus of \(\text{Aut}(X) \) one sees that \(\sigma^* \) acts on \(H^2(X, \mathcal{O}_X) \) as the identity, and on \(H^1(X, \mathcal{O}_X) \) as the multiplication by a third root of unity. It follows that \(\text{Aut}(X) \) acts as the identity on \(H^2(X, \mathbb{Q}) \), hence on \(H^2(X, \mathbb{Z}) \) since the latter has no torsion element. \(\square \)

Remark 1. \(\sigma^* \) acts on \(H^1(X, \mathbb{Z}) = \mathbb{Z}^2 \) nontrivially, namely as \(\sigma^*(v_1) = v_2 \), \(\sigma^*(v_2) = -v_1 - v_2 \) with respect to a suitable basis \(v_1, v_2 \). Thus in the theorem of [9] the condition that \(|K_X| \) is base point free is necessary.

1.5. **Linear equivalences among \(\text{Aut}(X) \)-invariant curves.** Since the quotient \(X/\text{Aut}(X) \) is simply connected [4], any numerical equivalence among \(\text{Aut}(X) \)-invariant curves is indeed a linear equivalence modulo an \(\text{Aut}(X) \)-invariant divisor class \(\in \text{Pic}^0(X) \) (note that the \(\text{Aut}(X) \)-action on \(\text{Pic}^0(X) \) fixes 3 elements, that form a subgroup of order 3.) Modulo \(\text{Pic}^0(X)^{\text{Aut}(X)} \),

\[
K_X \equiv E_3,
E_1 + E_2 \equiv 2E_3,
4E_3 \equiv C_1 + C_3 \equiv C_2 + C_4,
3E_3 \equiv E_1 + C_1 + C_2,
E_2 + E_3 \equiv C_1 + C_2.
\]

In particular, each of the above equivalences is a linear equivalence, once multiplied by 3, e.g., \(3(E_1 + E_2) \equiv 6E_3 \).

Remark 2. It is not clear if the above equivalences are indeed linear equivalences, without being multiplied by 3. (Remark 5.7 in [2] needs proof or corrections. On the simply connected quotient \(X/\text{Aut}(X) \) a numerical equivalence between Cartier divisors is a linear equivalence, so is its pull back to \(X \), but this may not hold for \(\mathbb{Q} \)-Cartier divisors.) In general, if a compact complex surface \(V \) admits a \(\mathbb{Z}_m \)-action with only isolated fixed points such that \(V/\mathbb{Z}_m \) is simply connected, and if two \(\mathbb{Z}_m \)-invariant effective curves \(A \) and \(B \) on \(V \) are numerically equivalent, then \(mA \) and \(mB \) are linearly equivalent. But \(A \) and \(B \) may not be linearly equivalent, as there are examples, e.g., consider a product of two elliptic curves and its Kummer surface.

1.6. **The Albanese map.** Every fibre of the Albanese map \(\alpha : X \rightarrow \text{Alb}(X) \) is irreducible and reduced. Let \(F \) be a general smooth fibre. By [2]

\[
g(F) = 19
\]

and \(F \) is numerically equivalent to \(-E_1 + 5E_2 \).
First we recall Reider’s theorem [10] by stating the expanded version given in Theorem 11.4 of [1].

Theorem 2. [10] Let \(L \) be nef divisor on a smooth projective surface \(X \).

1. Assume that \(L^2 \geq 5 \). If \(P \) is a base point of the linear system \(|K_X + L| \), then \(P \) lies on an effective divisor \(B \) such that

 (a) \(BL = 0, \ B^2 = -1, \) or

 (b) \(BL = 1, \ B^2 = 0. \)

2. Assume that \(L^2 \geq 9 \). If \(P \) and \(Q \), possibly infinitely near, are not base points of \(|K_X + L| \) and fail to be separated by \(|K_X + L| \), then they lie on an effective curve \(B \), depending on \(P, Q \), satisfying one of the following:

 (a) \(BL = 0, \ B^2 = -2 \) or \(-1; \)

 (b) \(BL = 1, \ B^2 = -1 \) or \(0; \)

 (c) \(BL = 2, \ B^2 = 0; \)

 (d) \(L^2 = 9 \) and \(L \) is numerically equivalent to \(3B \).

A ball quotient cannot contain a curve of geometric genus 0 or 1. Applying Reider’s theorem to \(L = K_X \), one sees that the bicanonical system of a ball quotient is base point free, thus defines a morphism. Moreover the bicanonical system is very ample unless the surface contains an effective divisor with the property (2c) or (2d).

Consider the case (2d). Suppose that \(K_X \) is numerically equivalent to \(3B \). Since \(H^2(X, \mathbb{Z}) \) is torsion-free,

\[
K_X \equiv 3B + t
\]

for some \(t \in Pic^0(X) \), where "\(\equiv \)" is linear equivalence. Since \(Pic^0(X) \) is a divisible group, one can write \(t = 3t' \) in \(Pic^0(X) \), thus see that \(K_X \) is divisible by 3 in \(Pic(X) \). The 3-divisibility of \(K_X \) is equivalent to the liftability of the fundamental group \(\pi_1(X) \) to \(SU(2, 1) \) [8]. But the explicit computation of the fundamental group by [4] shows that \(\pi_1(X) \) does not lift to \(SU(2, 1) \). This rules out the possibility (2d).

It remains to consider the case (2c).

Lemma 1. Suppose that there is an effective divisor \(B \) on \(X \) with \(BK_X = 2, \ B^2 = 0 \). Then \(B \) is an irreducible smooth curve of genus 2.

Proof. Suppose that there is such an effective divisor \(B \). If \(B \) is reducible, then since \(K_X \) is ample, there is an irreducible component \(B_1 \) of \(B \) with \(B_1^2 \leq 0, \ B_1K_X = 1 \), impossible. If \(B \) is irreducible and singular, then \(B \) has geometric genus \(\leq 1 \), again impossible, since a ball quotient cannot contain a curve of geometric genus 0 or 1.

3. **Key Lemma**

The following lemma will play a key role in our proof of Theorem 1.
Lemma 2. Suppose that the Cartwright-Steger surface X contains a smooth curve B with $K_XB = 2, B^2 = 0$. Then the following hold.

1. All such curves B define the same class in the Néron-Severi group $\text{NS}(X) \subset H^2(X, \mathbb{Z})$. In other words, the difference of two such curves is an element of the Picard variety $\text{Pic}^0(X)$ which is an elliptic curve.

2. The image $\sigma(B)$ under an automorphism σ is another such curve, and is disjoint from B, where σ is a generator of $\text{Aut}(X) \cong \mathbb{Z}_3$. The three curves $B, \sigma(B), \sigma^2(B)$ are mutually disjoint.

Remark 3. It can be shown that mB does not move in an algebraic family for $m < 9$. Thus $\sigma(B) - B$, being an element of $\text{Pic}^0(X)$, has order at least 9, may have infinite order. In particular, $\sigma(B) - B$ is not a 3-torsion. The non-existence of such a curve B is a subtle problem. The rest of this paper will be devoted to its proof.

On the Cartwright-Steger surface X the three curves E_1, E_3, C_1 form a \mathbb{Q}-basis for $\text{NS}(X)$ with intersection matrix

$$\begin{pmatrix}
5 & 9 & 11 \\
9 & 9 & 9 \\
11 & 9 & -1
\end{pmatrix}$$

with determinant 18^2. Any divisor D on X with

$$DE_1 = a, \quad DE_3 = b, \quad DC_1 = c$$

must be expressed as

$$(5) \quad D \sim xE_1 + yE_3 + zC_1$$

where

$$x = \frac{-5a + 6b - c}{18},$$

$$y = \frac{6a - 7b + 3c}{18},$$

$$z = \frac{-a + 3b - 2c}{18}.$$

The equality

$$(6) \quad D^2 = D(xE_1 + yE_3 + zC_1) = xa + yb + zc$$

becomes

$$2c^2 - 2(3b - a)c + 5a^2 + 7b^2 - 12ab + 18D^2 = 0.$$

The discriminant of this quadratic equation for c

$$\frac{\Delta}{4} = -(3a - 3b)^2 + 4b^2 - 36D^2$$

must be a square number, since a, b, c are integers. In particular

$$(7) \quad 4b^2 - 36D^2 = (3a - 3b)^2 + s^2.$$
for some integer $s \geq 0$.

Step I. Suppose that X contains a divisor D, not necessarily effective, with $K_X D = 2, D^2 = 0$. Then D is numerically equivalent to either

$$D_I = 1/9(E_1 - E_3 + 2C_1) \sim 1/9(2E_3 + C_1 - C_2)$$

or

$$D_{II} = 1/9(-E_1 + 5E_3 - 2C_1) \sim 1/9(2E_3 - C_1 + C_2).$$

Proof. In this case, $b = DE_3 = DK = 2$ and $D^2 = 0$, thus (7) becomes

$$4b^2 - 36D^2 = 16 = (3a - 6)^2 + s^2$$

for some integer s. Note that $16 = 4^2 + 0^2$ is the unique expression as a sum of two squares. Since $3a - 6 \neq \pm 4$ for any integer a, we have $a = 2, \ s = 4$.

The quadratic equation (6) yields solutions for c

$$c = \left((3b - a) \pm \sqrt{\frac{\Delta}{4}}\right)/2 = ((3b - a) \pm s)/2 = 0 \text{ or } 4.$$

Thus we have two solutions: $(a, b, c) = (2, 2, 0)$ or $(2, 2, 4)$, yielding the two solutions D_I and D_{II}. Finally the numerical equivalences follow from the linear equivalence

$$9E_3 \equiv 3(E_1 + C_1 + C_2)$$

(see the subsection 1.5.)

Step II. For any $i = 1, 2, 3$, $D_iE_i = D_{II}E_i = 2$.

$$D_IC_1 = 0, \ D_IC_2 = 4, \ D_IC_3 = 8, \ D_IC_4 = 4, \ D_IF = 8; \ D_{II}C_1 = 4, \ D_{II}C_2 = 0, \ D_{II}C_3 = 4, \ D_{II}C_4 = 8, \ D_{II}F = 8.$$

The \mathbb{Q}-divisors D_I and D_{II} cannot represent simultaneously integral divisors, i.e., cannot exist simultaneously in $\text{NS}(X)$.

Proof. The intersection numbers can be obtained by using Table 2. Another computation shows that

$$D_ID_{II} = 8/9,$$

not an integer, thus D_I and D_{II} cannot represent simultaneously integral divisors.

Once the order of the 3 points O_1, O_2, O_3 were fixed, the curves E_1, E_2 are distinguished from each other as they have different multiplicities at O_1. But C_1 and C_2 (resp. C_3 and C_4) cannot from each other, as they have the same multiplicity at each O_i. One may switch the names of C_1 and C_2, and simultaneously switch the names of C_3 and C_4. Under this switch, D_I and D_{II} are interchanged. Thus one may assume that only D_I can be represented by an integral divisor.
Step III. All divisors D, not necessarily effective, with $K_X D = 2$, $D^2 = 0$ are numerically equivalent to
\[D_I = 1/9(E_1 - E_3 + 2C_1) \sim 1/9(2E_3 + C_1 - C_2). \]
Here among the two curves in $\pi^{-1}(D_A)$ with multiplicities 0, 1, 2 at O_1, O_2, O_3, respectively the choice of C_1 is such that $DC_1 = 0$.

This completes the proof of the first statement of Lemma 2. The following proves the second statement.

Step IV. For any smooth curve B on X with $K_X B = 2$, $B^2 = 0$ the image $\sigma(B)$ under an automorphism σ is another such curve, and is disjoint from B.

Proof. First note that $O_i \notin B$ for any i (if $O_i \in B$, then the intersection number $BE_j = 2$ is greater than or equal to the product of the multiplicities of B and E_j at O_i for all j, impossible.)

Suppose that $\sigma(B) = B$ as curves. Then, since E_1 is Aut(X)-invariant, we have $\sigma(B \cap E_1) = B \cap E_1$. Since $BE_1 = 2$, the set $B \cap E_1$ is non-empty and has at most two points. Since σ is of order 3, it fixes a point in $B \cap E_1$, which must be Q_i for some i. Then $Q_i \in E_1$, impossible since none of the six points $Q_1, ..., Q_6$ is contained in the union of the 7 geodesic curves $E_1, E_2, E_3, C_1, ..., C_4$. This proves that $\sigma(B) \neq B$. They are numerically equivalent to each other by Step III, so $\sigma(B)B = B^2 = 0$, hence they are disjoint from each other. \square

4. The Quotient of the Cartwright-Steger Surface

The quotient $X/\text{Aut}(X)$ has
\[K_{X/\text{Aut}(X)}^2 = \frac{1}{3}K_X^2 = 3 \]
and has 3 singular points of type $1/3(1,1)$ at the images $\bar{O_i}$ of O_i and 6 singular points of type $1/3(1,2)$ at the images $\bar{Q_j}$ of Q_j. Let
\[\nu: Y \to X/\text{Aut}(X) \]
be the minimal resolution, R_i be the (-3)-curve lying over the singular point O_i, and $R_{j1} - R_{j2}$ the A_2-configuration of (-2)-curves lying over Q_j. Since $X/\text{Aut}(X)$ is simply connected by [4], so is Y. Thus a numerical equivalence between integral divisors on Y is a linear equivalence. From the information in Section 1 one gets
\[p_g(Y) := h^{2,0}(Y) = 1, \quad \pi_1(Y) = \{1\}, \quad h^{1,0}(Y) = 0. \]
Computing the adjunction, one gets
\[K_Y = \nu^* K_{X/\text{Aut}(X)} - \frac{1}{3}(R_1 + R_2 + R_3), \]
which implies that
\[K_Y^2 = 2. \]
This, together with Nöther formula, determines the remaining Hodge number
\[h^{1,1}(Y) = 18. \]

Notation. For a curve \(D \) on \(X \), the image on \(X/\text{Aut}(X) \) will be denoted by \(\bar{D} \) and the proper transform of \(\bar{D} \) on \(Y \) by \(D' \).

Proposition 2.
1. \(K_Y = E'_3 + R_2 \). In particular, \(K_Y \) is nef.
2. \(Y \) is a simply connected minimal surface of general type with \(K^2_Y = 2, \, p_g(Y) = 1, \, b_2(Y) = 20, \, \text{rk} \text{Pic}(Y) = h^{1,1}(Y) = 18 \).
3. \(E_i' \) is a \((-3)\)-curve for \(i = 1, 2, 3 \).
4. \(C_1' \) and \(C_2' \) are (smooth) elliptic curves.
5. \(C_3' \) and \(C_4' \) are curves with geometric genus 1 and arithmetic genus 11.
6. The 12 \((-2)\)-curves \(R_{ij} \) are disjoint from the 10 curves \(E_i', R_j, C_k' \).
7. The intersection matrix of the 10 curves is given as follows:

	\(E_1' \)	\(E_2' \)	\(E_3' \)	\(R_1 \)	\(R_2 \)	\(R_3 \)	\(C_1' \)	\(C_2' \)	\(C_3' \)	\(C_4' \)
\(E_1' \)	-3	0	0	3	1	2	2	2	2	
\(E_2' \)	0	-3	0	2	1	3	0	0	4	4
\(E_3' \)	0	0	-3	1	4	1	1	1	3	3
\(R_1 \)	3	2	1	-3	0	0	0	0	4	4
\(R_2 \)	1	1	4	0	-3	0	1	1	3	3
\(R_3 \)	2	3	1	0	0	-3	2	2	2	
\(C_1' \)	2	0	1	0	1	2	-2	4	10	4
\(C_2' \)	2	0	1	0	1	2	4	-2	4	10
\(C_3' \)	2	4	3	4	3	2	10	4	14	20
\(C_4' \)	2	4	3	4	3	2	4	10	20	14

Table 3.

8. \(\text{Pic}(Y) = \text{NS}(Y) \) is generated up to finite index by the 18 curves \(E_1', E_3', R_1, R_2, R_3, C_1', R_{ij} \).

9. There are many linear equivalences on \(Y \), e.g.,
 \[E_1' + E_2' + R_1 + R_3 \equiv 2E_3' + 2R_2 \equiv 2K_Y, \]
 \[C_1' + C_3' \equiv C_2' + C_4' \equiv 4E_3' + 4R_2 \equiv 4K_Y, \]
 \[E_1' + C_1' + C_2' + R_3 \equiv 3E_3' + 3R_2 \equiv 3K_Y, \]
 \[E_2' + E_3' + R_1 + R_2 \equiv C_1' + C_2'. \]

10. The image \(F' \) on \(Y \) of an Albanese fibre \(F \sim -E_1 + 5E_2 \) on \(X \)
 \[F' \equiv \nu^*(-3E_1 + 15E_2) = -3E_1' + 15E_2' + 7R_1 + 4R_2 + 13R_3. \]
(11) The genus 19 fibration $|F'|$ on Y over \mathbb{P}^1 has 3 reducible fibres,
\[3F'_0 + R_1 + R_2 + R_3, \]
\[3F'_1 + 2R_{12} + R_{11} + 2R_{22} + R_{21} + 2R_{32} + R_{31}, \]
\[3F'_2 + 2R_{42} + R_{41} + 2R_{52} + R_{51} + 2R_{62} + R_{61}. \]

5. THE QUOTIENT OF Y BY BORISOV INVOLUTION

The canonical ring of Y is generated by 1 element in degree 1, 3 elements in degree 2, 4 elements in degree 3.

L. Borisov has informed me that he found an octic equation for Y in \mathbb{P}^4, by first obtaining equations of a ball quotient which is a $\mathbb{Z}_7 : \mathbb{Z}_3$ Galois cover of $X/\text{Aut}(X)$ (this cover does not factor through X), then getting the octic as the equation of the invariant functions. As a by-product he found an involution α of Y, which switches the six curves
\[E'_1 \leftrightarrow R_3, \quad E'_2 \leftrightarrow R_1, \quad E'_3 \leftrightarrow R_2, \]
and permutes the six A_2-configurations $R_{i1} - R_{i2}$ into 3 orbits.

In this section we prove the following:

Proposition 3.

1. $\alpha(C'_i) = C'_i$ for $i = 1, 2, 3, 4$.
2. The involution α is fixed point free.
3. The quotient $Z := Y/\alpha$ is a minimal surface of general type with $K^2_Z = 1$, $p_g(Z) = 0$, $\pi_1(Z) = \mathbb{Z}/2\mathbb{Z}$.

Lemma 3. $\alpha(C'_1) = C'_1$ or $-R_3 - E'_1 + 3(E'_3 + R_2) - C'_1$.

Proof. Write $\alpha(C_1) = xE'_1 + yE'_3 + a_1R_1 + a_2R_2 + a_3R_3 + bC'_1 + \Sigma$ with rational coefficients, where Σ is supported on $\cup R_{ij}$. Intersecting with the 6 curves E'_i, R_j, we get five independent equations, hence the reduced form
\[\alpha(C_1) = x(R_3 + E'_1) - 3x(R_2 + E'_3) + (1 + 2x)C'_1 + \Sigma. \]
From $\alpha(C'_1)^2 = -2$, we get
\[12x^2 + 12x = \Sigma^2 \]
The right hand side is non-positive and the left is non-negative, so $\Sigma = 0$ and $x = 0$ or -1. \square

Lemma 4. The second possibility in Lemma 3 cannot occur.

Proof. Suppose that $\alpha(C'_1) = -R_3 - E'_1 + 3(E'_3 + R_2) - C'_1$.
Then $\text{Tr} \alpha |\text{NS}(Y) = -2$.

Case 1. $\alpha = -1$ on $H^2(\mathcal{O}_Y)$.
In this case, $p_g(Z) = q(Z) = 0$. By the topological Lefschetz fixed formula,
\[e(Y^\alpha) = 2 + \text{Tr} \alpha |H^2(Y, \mathbb{Z}) = 2 + \text{Tr} \alpha |\text{NS}(Y) + 2\text{Tr} \alpha |H^2(\mathcal{O}_Y) = -2. \]
Let the fixed locus Y^α consist of $2m$ points P_1, \ldots, P_{2m} and curves A_1, \ldots, A_t. Then $e(Y^\alpha) = 2m + \sum (2 - 2g(A_i)) = -2$, and by Hurwitz $e(Z) = -2$.

...
$2m + 10$ and $K_Z^2 = 2 - 2m$. Note that $H^2(Z, \mathbb{Z}) = \text{NS}(Z)$ is unimodular of rank $2m + 8$. On the other hand, Z contains $2m$ (-2)-curves, three A_2-configurations, and two curves \bar{R}_1, \bar{R}_3 with

$$\bar{R}_1^2 = \bar{R}_3^2 = -1, \quad \bar{R}_1 \bar{R}_3 = 3.$$

Thus Z contains $2m + 8$ curves whose intersection matrix has $|\det| = 2^{2m} \cdot 3^3 \cdot 8$, not a square, a contradiction!

Case 2. $\alpha = 1$ on $H^2(\mathcal{O}_Y)$.

In this case, $p_g(Z) = 1, q(Z) = 0$. By the topological Lefschetz, $e(Y^\alpha) = 2$. Let Y^α consist of $2m$ points P_1, \ldots, P_{2m} and curves A_1, \ldots, A_t. Then $e(Y^\alpha) = 2m + \sum (2 - 2g(A_i)) = 2$. By the holomorphic Lefschetz fixed point formula (cf. [7]),

$$1 - 0 + 1 = 2m/4 + \sum \left((1 - g(A_i))/2 + A_i^2/4 \right) = e(Y^\alpha)/4 + \sum A_i^2/4,$$

so

$$\sum A_i^2 = 6, \quad \sum K_Y A_i = 2m - 8.$$

For surfaces with $p_g > 0$, $|\det \text{NS}|$ may not be a square. We argue in a different way. Every α-invariant divisor such as $A = \sum A_i$, if never intersects the $6 A_2$-configurations, can be written as

$$A = x(E'_1 + R_3) + y(E'_3 + R_2)$$

for some rational numbers x, y. In our case

$$6 = A^2 = -2x^2 + 2y^2 + 4xy = 2(x + y)^2 - 4x^2,$$

$$2m - 8 = K_Y A = 2x + 2y.$$

Eliminating y, we get

$$2x^2 = (m - 4)^2 - 3.$$

Since m is an integer, so is x, but then it is elementary to check that this Diophantine equation has no integer solution. □

This, together with the linear equivalences from Proposition 2, implies the first assertion of Proposition 3.

Now since $\alpha(C'_1) = C'_1$,

$$\text{Tr}_\alpha|\text{NS}(Y) = 0.$$

We will prove the last two assertions of Proposition 3.

Case I. $\alpha = -1$ on $H^2(\mathcal{O}_Y)$.

In this case, $p_g(Z) = q(Z) = 0$. By the topological Lefschetz fixed formula,

$$e(Y^\alpha) = 2 + \text{Tr}_\alpha|H^2(Y, \mathbb{Z}) = 2 + \text{Tr}_\alpha|\text{NS}(Y) + 2\text{Tr}_\alpha|H^2(\mathcal{O}_Y) = 0.$$

Let the fixed locus Y^α consist of $2m$ points P_1, \ldots, P_{2m} and curves A_1, \ldots, A_t. Then

$$e(Y^\alpha) = 2m + \sum (2 - 2g(A_i)) = 0$$

for surfaces with $p_g > 0$, $|\det \text{NS}|$ may not be a square. We argue in a different way. Every α-invariant divisor such as $A = \sum A_i$, if never intersects the $6 A_2$-configurations, can be written as

$$A = x(E'_1 + R_3) + y(E'_3 + R_2)$$

for some rational numbers x, y. In our case

$$6 = A^2 = -2x^2 + 2y^2 + 4xy = 2(x + y)^2 - 4x^2,$$

$$2m - 8 = K_Y A = 2x + 2y.$$

Eliminating y, we get

$$2x^2 = (m - 4)^2 - 3.$$

Since m is an integer, so is x, but then it is elementary to check that this Diophantine equation has no integer solution. □

This, together with the linear equivalences from Proposition 2, implies the first assertion of Proposition 3.

Now since $\alpha(C'_1) = C'_1$,

$$\text{Tr}_\alpha|\text{NS}(Y) = 0.$$

We will prove the last two assertions of Proposition 3.
and by Hurwitz,
\[e(Z) = 2m + 11, \quad K_Z^2 = 1 - 2m. \]
By the holomorphic Lefschetz fixed point formula (cf. [7]),
\[1 - 0 - 1 = 2m/4 + \sum \left((1 - g(A_i))/2 + A_i^2/4 \right) = e(Y^\alpha)/4 + \sum A_i^2/4, \]
so
\[\sum A_i^2 = 0, \quad \sum K_Y A_i = 2m. \]
Every \(\alpha \)-invariant divisor such as \(A = \sum A_i \), if never intersects the 6 \(A_2 \)-configurations, can be written as
\[A = x(E_1' + R_3) + y(E_3' + R_2) + bC_1' \]
for some rational numbers \(x, y, b \). In our case
\[0 = A^2 = -2x^2 + 2y^2 - 2b^2 + 4xy + 8bx + 4by. \]
Note that \(E_2^2 A = \alpha(E_3') \alpha(A) = R_2 A, E_2^2 A = R_1 A \) and \(E_1' A = R_3 A \). Since \((E_1' + R_3) + (E_2' + R_1) \equiv 2E_3' + 2R_2 \), these imply that
\[E_1' A + E_2' A = 2E_3' A. \]
By Lemma 5 the intersection number \(E_1' A \) is an even integer not exceeding \(E_1' \alpha(E_1') \). From these, we infer that
\[E_1' A = E_2' A = E_3' A = 0 \quad \text{or} \quad E_1' A = E_2' A = E_3' A = 2. \]
In the latter case, \(-x + y + 2b = 3x + y = x + y + b = 2\) which together with the quadratic equation has no rational solution. In the former case, \(-x + y + 2b = 3x + y = x + y + b = 0\) which together with the quadratic equation has one solution \(x = y = b = 0 \). This implies that \(A = 0 \), hence \(Y^\alpha = \emptyset \). This completes the proof of Proposition 3 in this case.

Case II. \(\alpha = 1 \) on \(H^2(O_Y) \).

By the topological Lefschetz,
\[e(Y^\alpha) = 4. \]
Let \(Y^\alpha \) consist of \(2m \) points \(P_1, \ldots, P_{2m} \) and curves \(A_1, \ldots, A_t \). Then \(e(Y^\alpha) = 2m + \sum (2 - 2g(A_i)) = 4 \). By the holomorphic Lefschetz fixed point formula (cf. [7]),
\[1 - 0 + 1 = 2m/4 + \sum \left((1 - g(A_i))/2 + A_i^2/4 \right) = e(Y^\alpha)/4 + \sum A_i^2/4, \]
so
\[\sum A_i^2 = 4, \quad \sum K_Y A_i = 2m - 8. \]
As in the previous case, \(A = \sum A_i = x(E_1' + R_3) + y(E_3' + R_2) + bC_1' \) for some rational numbers \(x, y, b \) and
\[4 = A^2 = -2x^2 + 2y^2 - 2b^2 + 4xy + 8bx + 4by. \]
As in the previous case, \(E_1' A = E_2' A = E_3' A = 0 \) or \(2 \), thus
\[-x + y + 2b = 3x + y = x + y + b = 0 \]
or

\[-x + y + 2b = 3x + y = x + y + b = 2.\]

Either together with the quadratic equation has no rational solution.

The following Lemma completes the proof of Proposition 3.

Lemma 5. Let α be an involution on a smooth surface V. Let D be an irreducible curve on V such that $\alpha(D) \neq D$. If $P \in \alpha(D) \cap D$ is an isolated fixed point of α, then every branch D' of D at P is tangent to $\alpha(D')$. In particular, if $P \in \alpha(D) \cap D$ is a transversal intersection point, then either $P \neq \alpha(P)$ or P lies on a point-wise fixed curve of α.

Proof. At an isolated fixed point, $\alpha(x, y) = (-x, -y)$ in a suitable local coordinates x, y. So α preserves all tangential directions. \(\Box\)

6. PROOF OF THEOREM

Suppose that the Cartwright-Steger surface X contains a smooth curve B with $K_XB = 2, B^2 = 0$. Then By Step III,

\[B \sim 1/9(2E_3 + C_1 - C_2).\]

Let

\[p : X \to X/\langle \sigma \rangle\]

be the quotient map and

\[\nu : Y \to X/\langle \sigma \rangle\]

be the minimal resolution.

By Lemma 2, p_*B is a smooth curve away from the singular points of $X/\langle \sigma \rangle$,

\[p^*p_*B = B + \sigma(B) + \sigma^2(B).\]

Since $p_*E = 3\bar{E}$ for any σ-invariant curve E, we see that

\[p_*B \sim \frac{1}{9}p_*(2E_3 + C_1 - C_2) = \frac{1}{3}(2\bar{E}_3 + \bar{C}_1 - \bar{C}_2),\]

thus

\[\nu^*p_*B \sim \frac{1}{3}\nu^*(2\bar{E}_3 + \bar{C}_1 - \bar{C}_2) = \frac{1}{3}(2E'_3 + C'_1 - C'_2 + \frac{2R_1 + 8R_2 + 2R_3}{3}).\]

By Proposition 3

\[\alpha\nu^*p_*B \sim \frac{1}{3}(2R_2 + C'_1 - C'_2 + \frac{2E'_2 + 8E'_3 + 2E'_1}{3}).\]

Then a direct computation using Table 3 in Proposition 2 gives

\[\langle \nu^*p_*B \rangle(\alpha\nu^*p_*B) = \frac{4}{3},\]

not an integer, a contradiction.
7. Further Discussion on the Surface $Z = Y/\langle \alpha \rangle$

The images of E'_i, R_j, C'_k, on $Z = Y/\langle \alpha \rangle$ will be denoted by e_i, r_j, c_k respectively. Then

$$e_1 = r_3, \quad e_2 = r_1, \quad e_3 = r_2.$$

Proposition 4.

(1) $K_Z = r_2 + t$ for the unique 2-torsion divisor t.

(2) Z is a minimal surface of general type with $K^2_Z = 1$, $p_g(Z) = q(Z) = 0$, $\pi_1(Z) = \mathbb{Z}/2\mathbb{Z}$, $\text{rk} \text{Pic}(Z) = b_2(Z) = 9$.

(3) r_1 and r_3 are rational curves with one node, arithmetic genus 1.

(4) r_2 is a rational curve with two nodes, arithmetic genus 2.

(5) c_1 and c_2 are (smooth) elliptic curves.

(6) c_3 and c_4 are curves with geometric genus 1, arithmetic genus 6 and 5 nodes.

(7) The intersection matrix of the 7 curves is given as follows:

	r_1	r_2	r_3	c_1	c_2	c_3	c_4
r_1	-1	1	3	0	4	4	
r_2	1	1	1	1	3	3	
r_3	3	1	-1	2	2	2	
c_1	0	1	2	-1	2	5	2
c_2	0	1	2	2	-1	2	5
c_3	4	3	2	5	2	7	10
c_4	4	3	2	2	5	10	7

Table 4.

(8) The three A_2-configurations $r_{i1} - r_{i2}$ are disjoint from the 7 curves r_i, c_j.

(9) $\text{Pic}(Z) = \text{NS}(Z) = H^2(Z, \mathbb{Z})$ is generated up to finite index by the 9 curves r_1, r_2, c_1, r_{ij}, whose intersection matrix has determinant 3^4.

(10) There are many numerical equivalences on Z, e.g.,

$$r_1 + r_3 \sim 2r_2 \equiv 2K_Z,$$

$$c_1 + c_3 \sim c_2 + c_4 \sim 4r_2 \equiv 4K_Z,$$

$$c_1 + c_2 + r_3 \sim 3r_2 \sim 3K_Z,$$

$$r_1 + r_2 \sim c_1 + c_2.$$

References

[1] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius; Compact complex surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics , 4. Springer-Verlag, Berlin, 2004. xii+436 pp.

[2] D. Cartwright, V. Koziarz and S.-K. Yeung, On the Cartwright-Steger surface, J. Algebraic Geom. 26 (2017), no.4, 655-689.
[3] D. Cartwright, T. Steger, *Enumeration of the 50 fake projective planes*, C. R. Acad. Sci. Paris, Ser. I, 348 (2010), 11-13.

[4] D. Cartwright, T. Steger,
http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes

[5] P. Deligne and G. D. Mostow, *Commensurabilities among lattices in PU(1,n)*, Annals of Mathematics Studies, 132. Princeton Univ. Press, Princeton, NJ, 1993.

[6] P. Deligne, *Letters to Toledo*, Nov 4, 2014.

[7] J. Keum, *Toward a geometric construction of fake projective planes*, Rend. Lincei Mat. Appl. 23 (2012), 137-155.

[8] J. Kollár, *Shafarevich Maps and Automorphic Forms*, Princeton University Press, Princeton 1995.

[9] C. A. M. Peters, *Holomorphic automorphisms of compact Kähler surfaces and their induced actions in cohomology*, Invent. Math. 52 (1979), no. 2, 143-148.

[10] Reider, Igor *Vector bundles of rank 2 and linear systems on algebraic surfaces*. Ann. of Math. (2) 127 (1988), no. 2, 309?16