Original Research Article

Response of Different Seed Rate on the Productivity of Hybrid Fodder Sorghum (Sugar graze) in South East Rajasthan

Harpool Meena*, R.S. Narolia, Pratap Singh, P.K.P. Meena and B.L. Kumhar

AICRP on Irrigation Water Management, Agricultural Research Station, Ummedganj Farm Agriculture University, Kota-324001, Rajasthan, India

*Corresponding author

Abstract

A field experiment was conducted during two consecutive years from 2014 and 2015 at Agricultural Research Station, Kota. Significantly higher green fodder yield (907 q/ha) and dry fodder yield (245 q/ha) were observed with sowing of Sugargraze by 9.5 kg seed/ha over local chari sowing by 10.0 kg seed/ha green fodder yield (668 q/ha) and dry fodder yield (168 q/ha). However, it was found at par with sowing of Sugargraze by 7.5 kg seed/ha green fodder yield (896 q/ha) and dry fodder yield (242 q/ha).

Keywords

Sugargraze, Seed rate and Fodder yield.

Introduction

Sorghum [Sorghum bicolor (Linn.) Moench] is an important crop in the world, used for food (as grain or sorghum molasses), fodder, the production of alcoholic beverages and biofuels. Most varieties are drought and heat tolerant, and are especially important in arid regions, where the grain is one of the staple foods for poor and rural people. It is an important food and fodder crop grown in India, and among cereals, it is the fourth most important crop after rice, wheat and maize (Dehinval et al., 2016).

Sorghum grain is used as staple food by millions of people and is grown for grain in southern and central states of India, whereas in northern states of the country (Punjab, Haryana, Uttar Pradesh, Rajasthan, etc.) it is mainly grown as fodder during summer and kharif seasons as a single as well as multicut crop. Among forage crops, forage sorghum could be a strategic option because of the crop’s xerophilic characteristics, adaptation potential, quick growing habit, good ratoon ability, palatability, digestibility and wide range of potential uses as green fodder, dry roughage, hay and silage (Kumar and Chaplot, 2015).

Among crop management practices seeding densities or plant population greatly affect crop growth and then finally grain yield. Therefore seeding density is a key factor in assessing the flexibility and yielding ability of cultivars. Both over and substandard plant population is the major cause of low yield (Jan et al., 2000).
Optimum seed rate plays an important role in contributing to the high yield because in case of thick plant population, most plants remain sterile, easily attacked by diseases as compared to normal population (Robert and Singh, 1981). To obtain high quality preserved forage (silage or hay), harvest sugargraze at knee height stage. For silage, let plants wilt prior to ensiling and lower moisture content will reduce effluent losses from silage. In the India, two to three subsequent harvests are possible. To stimulate recovery growth, fertilize with N immediately following the initial harvest (Smith et al., 2005).

Materials and Methods

Field experiment was conducted during two consecutive years from 2014 and 2015 at Agricultural Research Station, Kota. T1: Sugargraze (seed rate 3.5 kg/ha), T2: Sugargraze (seed rate 5.5 kg/ha), T3: Sugargraze (seed rate 7.5 kg/ha), T4: Sugargraze (seed rate 9.5 kg/ha), T5: Sugargraze (seed rate 11.5 kg/ha) and T6: Local chari (seed rate 10.0 kg/ha). The experimental field was well prepared by two ploughing followed by harrowing and cultivator and one planking for uniform leveling, etc were performed for sowing of sorghum crop. The experiment was laid-out in RBD with four replications and six treatments. The recommended dose of nitrogen, phosphorus and potash i.e.125 kg N/ha, 60 kg P₂O₅/ha and 60 kg K₂O/ha was given in the form of urea, di-ammonium phosphate (DAP) and muriate of potash (MOP). Full dose of DAP and MOP and half N were drilled just before sowing and remaining half-N was applied in two split doses as per recommendation.

The bulk density, pH and cation exchange capacity of these soils varies between 1.30-1.60 Mg/m³, 7.75-8.50 and 30-40 Cmol/kg, respectively. The soils of the region are poor in organic carbon (0.50±0.08) and available nitrogen (275±5 kg/ha) but are low to medium in available P₂O₅ (24.2±1.0 kg/ha) and medium to high in available K₂O (290±8 kg/ha).

Results and Discussion

Plant population

The plant population and growth parameters of sugargraze were significantly influenced by sowing of different seed rate (Table 1). Pooled data of two years showed that the significantly higher plant population (491886/ha) of sugargraze was recorded with the sowing of 11.5 kg seed/ha which was significantly superior over rest of the treatments.

1st cutting

Two years pooled data indicated that (Table 1) the maximum plant height (154cm), leaf weight/plant (93.75g) and stem weight/plant (280.65 g) were recorded with the sowing of sugargraze by 3.5 kg seed/ha over local chari plant height (132cm), leaf weight/plant (70.6g) and stem weight/plant (214.15 g). However, it was found at par with sowing of sugargraze 5.5 and 7.5 kg seed/ha. Pooled data of two years shows that the fodder yield was significantly influenced by sowing of different seed rate of sugar graze (Table 1). Sowing of sugargraze with 9.5 kg seed/ha were observed maximum green fodder yield (568q/ha), dry fodder yield (153q/ha) and dry matter (26.86%) but it was found at par with the sowing of sugargraze 7.5 kg seed/ha over local chari sowing with 10.0 kg seed/ha green fodder yield (413q/ha), dry fodder yield (109q/ha) and dry matter (25.80%) table 3. These results are in close proximity with those of Dehinwal et al., (2016), Smith et al., (2005) and Jan et al., (2000).
Table 1: Effect of different seed rate on plant population, growth and fodder yield of sugargraze (1st cutting)

Treatments	Plant population (thousand/ha)	Plant height (cm)	Weight of leaves/ plant (g)	Weight of stem/plant (g)	Green fodder yield (q/ha)	Dry fodder yield (q/ha)													
	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	
T1: Sugargraze (seed rate 3.5 kg/ha)	156667	158400	157534	153.2	153.7	153.50	93.7	93.8	93.75	280.0	281.3	280.65	386	388	387	107	109	108	
T2: Sugargraze (seed rate 5.5 kg/ha)	245313	247375	246344	152.2	152.5	152.38	92.7	92.8	92.75	279.0	280.0	279.50	424	427	426	113	115	114	
T3: Sugargraze (seed rate 7.5 kg/ha)	328750	330750	329750	150.7	151.2	151.00	92.4	92.5	92.45	277.8	279.3	278.55	558	562	560	150	151	152	
T4: Sugargraze (seed rate 9.5 kg/ha)	408854	410900	409877	141.2	143.2	142.25	91.3	91.4	91.35	275.3	276.0	275.65	566	569	568	152	153	154	
T5: Sugargraze (seed rate 11.5 kg/ha)	490729	493042	491886	135.5	136.5	136.03	73.5	73.7	73.6	252.5	253.8	253.15	516	519	518	135	137	138	
T6: Local variety (seed rate 10.0 kg/ha)	417188	419025	418107	131.2	132.7	131.99	70.6	70.6	70.6	213.4	214.9	214.15	411	414	413	106	111	113	
	SEm ±	1102	1088	1007	1.0	1.2	1.0	0.74	0.73	0.67	1.23	1.31	1.16	3.88	4.03	3.63	1.11	1.09	1.12
CD at 5 %	3318	3276	2909	3.2	3.4	2.9	2.22	2.19	1.93	3.70	3.93	3.35	11.70	12.14	10.48	3.34	3.29	2.97	

Table 2: Effect of different seed rate on plant growth and fodder yield of sugargraze (2nd cutting)

Treatments	Plant height (cm)	Weight of leaves/ plant (g)	Weight of stem/ plant (g)	Green fodder yield (q/ha)	Dry fodder yield (q/ha)													
	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled	2014	2015	Pooled
T1: Sugargraze (seed rate 3.5 kg/ha)	133	134	134	66.08	66.30	66.19	159.8	161.3	160.55	247	250	249	62	64	63			
T2: Sugargraze (seed rate 5.5 kg/ha)	132	133	133	65.75	66.08	65.92	157.3	158.5	157.9	263	266	265	68	69	69			
T3: Sugargraze (seed rate 7.5 kg/ha)	131	132	132	64.75	65.05	64.90	156.0	157.3	156.65	334	337	336	90	91	91			
T4: Sugargraze (seed rate 9.5 kg/ha)	125	126	126	62.00	62.23	62.12	155.6	157.1	156.35	338	340	339	91	93	92			
T5: Sugargraze (seed rate 11.5 kg/ha)	120	121	121	55.50	55.68	55.59	135.3	136.8	136.05	265	268	267	67	68	68			
T6: Local variety (seed rate 10.0 kg/ha)	117	118	118	51.75	52.02	51.89	118.3	120.3	119.3	253	256	255	57	60	59			
	SEm ±	0.67	0.84	0.69	1.01	0.98	0.91	1.28	1.65	1.34	3.00	2.87	2.70	0.58	0.71	0.59		
CD at 5 %	2.02	2.52	2.00	3.05	2.96	2.64	3.86	4.98	3.89	9.05	8.66	7.79	1.74	2.13	1.71			
Table 3 Effect of different seed rate on dry matter (%) and total green and dry fodder yield of sugargraze (1st cutting and 2nd cutting)

Treatments	Dry matter (%)	Green fodder yield (q/ha)	Dry fodder yield (q/ha)	
	1st cutting	2nd cutting	Total	
	2014 2015 Pooled	2014 2015 Pooled	1st cutting 2nd cutting Total	1st cutting 2nd cutting Total
T1: Sugargraze (seed rate 3.5 kg/ha)	27.72 27.73 27.73	25.10 25.12 25.11	387 249 636	108 63 171
T2: Sugargraze (seed rate 5.5 kg/ha)	26.65 26.67 26.66	25.85 25.86 25.86	426 265 691	114 69 183
T3: Sugargraze (seed rate 7.5 kg/ha)	26.88 26.90 26.89	26.94 26.96 26.95	560 336 896	151 91 242
T4: Sugargraze (seed rate 9.5 kg/ha)	26.85 26.86 26.86	26.92 26.94 26.93	568 339 907	153 92 245
T5: Sugargraze (seed rate 11.5 kg/ha)	26.16 26.18 26.17	25.28 25.29 25.29	518 267 785	136 68 204
T6: Local variety (seed rate 10.0 kg/ha)	25.79 25.81 25.80	22.52 22.57 22.55	413 255 668	109 59 168
SEm ±	0.14 0.14 0.12	0.20 0.20 0.18	3.63 2.70 -	1.01 0.59 -
CD at 5 %	0.42 0.42 0.37	0.59 0.60 0.53	10.48 7.79 -	2.92 1.71 -

![General View of Experimental plot](image-url)
IInd cutting

During IInd cutting plant growth was significantly influenced (Table 2) by sowing of different seed rate of sugargraze. The maximum plant height (134 cm), leaf weight/plant (66.19 g) and stem weight/plant (160.55 g) of sugargraze were recorded with the sowing of 3.5 kg seed/ha of sugargraze over local chari plant height (118 cm), leaf weight/plant (51.89 g) and stem weight/plant (119.3 g) sowing with 10 kg seed/ha. However, it was found at par with sowing of sugargraze 5.5 and 7.5 kg seed/ha, respectively. Fodder yield of sugargraze was significantly influenced by sowing with different seed rates. The maximum green fodder yield (339 q/ha), dry fodder yield (92 q/ha) (Table 2) and dry matter (26.93%) were observed under sowing of sugargraze 9.5 kg seed/ha but it was found at par with the sowing of sugargraze 7.5 kg seed/ha green fodder yield (336 q/ha), dry fodder yield (91 q/ha) and dry matter (26.95%) over rest of treatments (Table 3). These results are in close proximity with those of Satpal \textit{et al.}, 2016; Kumar and Chaplot.

In conclusion, significantly higher green fodder yield (907 q/ha) and dry fodder yield (245 q/ha) were observed with sowing of sugargraze by 9.5 kg seed/ha over local chari sowing by 10.0 kg seed/ha green fodder yield (668 q/ha) and dry fodder yield (168 q/ha). However, it was found at par with sowing of sugargraze by 7.5 kg seed/ha green fodder yield (896 q/ha) and dry fodder yield (242 q/ha).

References

Dehinwal, A.K., S.K. Pahuja and M. Shafiquurrahaman. 2016. Environmental effect on sorghum fodder yield and its related traits. \textit{Forage Res.}, 42: pp.189-194.

Jan, A., Kaleem, S.A., Taj, F.H. and Khan, H. 2000. Response of mungbean cultivars to different seeding densities at dry land conditions. \textit{Pak. J. Biol. Sci.}, 3: 2030-32.

Kumar, D. and P.C. Chaplot. 2015. Performance of multicut forage sorghum genotypes to fertility levels. \textit{Forage Res.}, 41: 199-201.

Robert, W. and Singh, K. 1981. Food Grain, A Text Book of Punjab Agriculture, Civil and Ministry Gazette, Lahore. 287.

\textbf{How to cite this article:}

Harphool Meena, R.S. Narolia, Pratap Singh, P.K.P. Meena and Kumhar, B.L. 2017. Response of Different Seed Rate on the Productivity of Hybrid Fodder Sorghum (Sugar graze) in South East Rajasthan. \textit{Int.J.Curr.Microbiol.App.Sci.} 6(5): 1978-1982.
doi: \url{https://doi.org/10.20546/ijcmas.2017.605.221}