Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaO$_x$ interface

Amit Prakash1, Siddheswar Maikap*1, Hsien-Chin Chiu1, Ta-Chang Tien2 and Chao-Sung Lai1

Abstract

Enhanced resistive memory characteristics with 10,000 consecutive direct current switching cycles, long read pulse endurance of $>10^5$ cycles, and good data retention of $>10^4$ s with a good resistance ratio of $>10^2$ at 85°C are obtained using a Ti nanolayer to form a W/TiO$_x$/TaO$_x$/W structure under a low current operation of 80 μA, while few switching cycles are observed for W/TaO$_x$/W structure under a higher current compliance >300 μA. The low resistance state decreases with increasing current compliances from 10 to 100 μA, and the device could be operated at a low RESET current of 23 μA. A small device size of 150 \times 150 nm2 is observed by transmission electron microscopy. The presence of oxygen-deficient TaO$_x$ nanofilament in a W/TiO$_x$/TaO$_x$/W structure after switching is investigated by Auger electron spectroscopy. Oxygen ion (negative charge) migration is found to lead to filament formation/rupture rather than oxygen vacancy (hole) migration, and it is controlled by Ti nanolayer at the W/TaO$_x$ interface. Conducting nanofilament diameter is estimated to be 3 nm by a new method, indicating a high memory density of ≈ 1 Tbit/in2.

Keywords: Resistive switching; W/TaO$_x$; Ti nanolayer; Oxygen ion migration; Nanofilament

Background

Resistive switching random access memories (RRAM) with simple metal-insulator-metal stacks are under intensive investigation owing to their great promise for use in next-generation memory applications [1-5]. However, their nonuniformity in switching, low yield, and unclear switching mechanism hinder their practical realization. RRAM devices with simple composition, easy fabrication process, and good 3D integration compatibility will be needed in the future. Methods such as doping, formation polarity control, bottom electrode modification, nanocrystal insertion, and interfacial engineering have recently been investigated to improve the characteristics of resistive switching memory [6-10]. Among other important switching materials such as TiO$_x$ [11,12], NiO$_x$ [13], HfO$_x$ [10,13-15], ZrO$_x$ [16-22], Na$_{0.5}$Bi$_{0.5}$TiO$_3$ [23], SrTiO$_3$ [24], ZnO [25,26], GeO$_x$ [27], and SiO$_x$ [28], tantalum oxide (TaO$_x$) is one of the most promising choices for future RRAM applications. However, TaO$_x$-based RRAM devices are infrequently reported [5,29-34]. Terai et al. [32] used a TiO$_2$ layer in a Ru/TaO$_x$/TiO$_2$/Ru stack with good thermal stability. Ninomiya et al. [33] reported an Ir/Ta$_2$O$_{5-x}$/TaO$_x$/TaN structure, and Lee et al. [5] reported a Pt/Ta$_2$O$_{5-x}$/TaO$_2$/Pt crossbar structure with two layers of TaO$_x$ and at least one of the inert electrodes such as Ru, Ir, and Pt. Generally, many researchers use one inert electrode to improve the performance of resistive switching memory [5,34]; however, tungsten (W) as both bottom and top electrodes in a W/TiO$_x$/TaO$_x$/W structure has not yet been reported. In this work, a resistive switching memory device using a Ti nanolayer at the W/TaO$_x$ interface and enhanced memory characteristics such as excellent 10,000 consecutive stable dc switching cycles, long read pulse endurance of $>10^5$ cycles, and good data retention of 10^8 s at 85°C with a large resistance ratio of $>10^2$ under a low compliance current (CC) of 80 μA are reported. Furthermore, the device can be operated with a small ‘RESET’ current of 23 μA. For comparison, the W/TaO$_x$/W memory device is also fabricated. The device size of 150 \times 150 nm2 is observed using a high-resolution transmission...
electron microscope (HRTEM). The thicknesses of TiO$_x$ and TaO$_x$ nanolayers are 3 and 7 nm, respectively. The presence of oxygen-deficient TaO$_x$ conducting filaments is investigated by Auger electron spectroscopy (AES) before and after switching of the memory devices. The switching mechanism of the oxygen ion migration rather than the vacancy migration due to a lower barrier height of electrons is investigated, and a filament diameter of \approx3 nm is calculated using a new method also reported in this work. Considering a small filament diameter, a high memory density of \approx100 Tbit/in.2 could be designed in future.

Methods

W/Ti/TaO$_x$/W-structured (device S1) and W/TaO$_x$/W-structured (device S2) resistive switching memory stacks were fabricated. A small via size of 150 × 150 nm2 was etched into the SiO$_2$ on the W bottom electrode (BE), which was about 100 nm in thickness. A high-κ Ta$_2$O$_5$ film with a thickness ($t$$_{Ta2O5}$) of \approx7 nm was then deposited by an e-beam evaporator, followed by the sequential deposition of a thin (\approx3 nm) interfacial layer of titanium (Ti) and \approx200-nm-thick W layer as a top electrode (TE) by rf sputtering. For device S2, no Ti layer was deposited. The final devices were obtained after a lift-off process. Memory device structure and thicknesses of all layers were observed by transmission electron microscopy (TEM) with an energy of 200 keV. The TaO$_x$ material was also confirmed by quadrupole secondary ion mass spectroscopy (SIMS; ATOMIKA SIMS 4500, MA-Tek, Hsinchu, Taiwan) which had a high depth resolution. Primary beam was O$_2^+$ with an energy of 0.5 keV and analysis area of 37.5×37.5 μm2. A bias was applied to the TE, and the BE was electrically grounded. Pristine S1 and S2 devices were electroformed by applying positive voltage to the TE before consecutive resistive switching cycle measurements.

Results and discussion

Figure 1a shows a typical cross-sectional TEM image of the W/TiO$_x$/TaO$_x$/W structure. The device size is 150 × 150 nm2. HRTEM images of the S1 and S2 devices are shown in Figure 1b,c. The thicknesses of the TiO$_x$ and TaO$_x$ layers were measured using AES before and after switching of the S1 memory devices.
TaOₓ layers are approximately 3 and 7 nm, respectively, and both films show an amorphous characteristic. Figure 2 shows typical SIMS depth profiles of ¡ª16O, ¡ª184W, and ¡ª181Ta materials. The thickness of the TaOₓ layer is about 15 nm; however, this is higher than the deposited film thickness of 7 nm. This is due to the trail effect and surface roughness of W BE, as we can see from the depth of 57 to 65 nm (or approximately 7 nm) of the ¡ª184W depth profile. It is interesting to note that the TaOₓ/W interface is found to be an oxygen-deficient layer, which makes it a more conducting interface. On the other hand, the conducting filament will be formed after breaking the Ta-O bonds in the bulk Ta₂O₅ layer rather than the W/TaOₓ interface. This is because the Ta₂O₅ layer is more insulating than the W/TaOₓ interface, so the electric field will drop across the Ta₂O₅ film rather than the W/TaOₓ interface which probably results into multi-filaments or an uncontrolled nanofilament diameter. As Ti removes oxygen from the Ta₂O₅ film in the W/TiOₓ/TaOₓ/W structure, the film becomes more oxygen-deficient TaOₓ, which is vital to achieve an improved resistive switching. Considering Gibbs free energies of TiO₂, Ta₂O₅, and WO₃ films, which are −887.6, −760.5, and −506.5 kJ/mol, respectively, at 300 K [35], Ti will consume the highest

![Image](image-url)
oxygen content owing to its stronger reactivity than those of the other materials, thereby forming a Ta-rich (or defective TaO$_x$) film. This also prevents oxidation of the W TE at the TaO$_x$/W interface of device S1 owing to the migration of oxygen from the underlying films towards the Ti film, which contributes to the improved resistive switching memory performance as will be described.

The leakage current values of most of the S1 pristine devices at a read voltage (V_{read}) of 1 V are higher than that of the S2 devices because of the presence of more oxygen vacancies in the TaO$_x$ layer owing to the oxygen-getter nature of the TiO$_x$ layer (Figure 3a). Typical current-voltage (I-V) curves (inset of Figure 3a) of both devices were asymmetrical with higher current at a negative voltage (\approx281 pA for S1 and \approx12.6 pA for S2 at $V_{\text{read}} = -1$ V) compared with that measured at a positive voltage (\approx9.8 pA for S1 and \approx0.6 pA for S2 at $V_{\text{read}} = 1$ V). This suggests that the W TE-TaO$_x$ interface has more oxygen vacancies than the TaO$_x$/W BE interface, owing to oxygen migration towards W TE during deposition. The ideal leakage current is plotted in Figure 4a and is explained as follows. It is reported that the work function (Φ_m) of W and bandgap (E_g) of amorphous Ta$_2$O$_5$ and TiO$_2$ are 4.55 [36], 4.2 [37], and 3.3 eV [38], respectively. The conduction band offsets of Ta$_2$O$_5$ and TiO$_2$ with Si are 0.3 [39] and 0.9 eV [40], respectively. Taking the electron affinity of Si as 4.05 eV, the electron affinities of Ta$_2$O$_5$ and TiO$_2$ are calculated to be 3.75 and 3.15 eV, respectively. The corresponding energy diagram is shown in Figure 4a as solid lines. Considering that the E_g of TiO$_2$

![Figure 4](image-url)

Figure 4 Schematic illustration of switching mechanism using simple energy band diagrams with I-V characteristics. (a) Energy bands of pristine S1 structure device and ideal leakage current. For TiO$_2$, the solid line is due to the smaller energy gap of the defective TiO$_x$ film. I-V of LRS and corresponding energy bands with conducting filaments for (b) S1 and (c) S2 devices. For TaO$_x$, the solid line is due to the lower energy gap caused by the presence of oxygen-deficient filament. The S1 devices show non-ohmic I-V due to TiO$_2$ layer formation at the W/TaO$_x$ interface. (d) Filament oxidation and leakage current at HRS are shown for the W/TiO$_2$/TaO$_x$/W devices. Filament formation/rupture is controlled by the TiO$_2$ layer due to O^{2-} ion migration.
for the pristine S1 device will be much lower because of oxygen vacancy creation during the deposition of W TE, the band diagram is shown in dotted lines (Figure 4a). In this case, electron injection dominates rather than hole injection because of a lower barrier height for electrons than for holes (0.8 to 1.4 vs. 3.4 eV). Both S1 and S2 devices show bipolar resistive switching behaviors. The S2 device shows few switching cycles with a higher leakage current of $\approx 10\ \mu A$ at $V_{\text{read}} = 1\ \text{V}$ and a higher CC of 300 μA (Figure 3b). In this case, negatively charged oxygen ions (O^2-) migrate from the switching material towards W TE, and this has a lesser possibility to form an oxygen-rich layer at the W TE/TaO$_x$ interface, leading to the formation of multi-conduction filaments. In the same way, no resistive switching is observed under negative forming voltage for either the S1 or S2 devices because oxygen ions migrate towards the W BE and permanent breakdown is observed (not shown here). However, the insertion of a thin ($\approx 3\ \text{nm}$) Ti layer in between the W and TaO$_x$ layers in the S1 device makes a vast difference because Ti can be used as an oxygen reservoir. Moreover, the S1 device exhibits $>10,000$ consecutive repeatable dc switching cycles with a better resistance ratio of 10^2 under a low CC of 80 μA (Figure 3c). However, a thicker Ti layer (5 nm) results in unstable switching cycles because it gets more oxygen and behaves as an insulating layer. This indicates that the thinner (3 nm) Ti layer will control the current overflow as well as will control the filament diameter. The yield of the S1 device is very high (>95%), while that of the S2 device is very low (approximately 10%). In addition, the S2 device cannot be switched below a CC of 300 μA and shows an ohmic behavior, while the S1 device shows switching even at a low CC of 10 μA (discussed later) with non-ohmic current conduction. The average values and standard deviation/average are found to be 39.7 and 0.11, 38.4 kΩ and 0.08 for low-resistance state (LRS) and 1.9 and 2.11, 8.6 MΩ and 0.43, for high-resistance state (HRS) at V_{read} of 1 V and $-1\ \text{V}$, respectively (Figure 3d). This suggests that the LRS has a tighter distribution than the HRS because of the formation of the TiO$_2$ layer, which will have a higher E_g than the pristine one. Similarly, the leakage current at V_{read} of $-1\ \text{V}$ is lower than at $+1\ \text{V}$ because of the lower electron injection barrier at the TE/TiO$_2$ interface than that at the BE/TaO$_x$ interface after switching. Under SET, O^2- rather than oxygen vacancies will migrate from TaO$_x$ towards the TE, resulting in a TiO$_2$ layer which controls the conducting vacancy filament diameter in the TaO$_x$ layer by controlling current overflow and producing a tighter distribution of the LRS (Figure 4b). Owing to this series resistance, the S1 devices exhibit non-ohmic-simulated ideal current, as shown in Figure 4b, whereas an ohmic current is observed for the S2 devices under SET (Figure 4c). It is true that the conducting filament is formed through the TaO$_x$ film (Figure 4b,c), which is also confirmed by AES spectra of the TaO$_x$ film for pristine and after-switching S1 devices (Figure 5). The spectrum positions are also shown in Figure 1c, Ta-MN (1,737 and 1,680 eV) and O-KL (468, 483, and 503 eV) are observed, which confirms the formation of a TaO$_x$ layer in the S1 device. The atomic percentages of Ta-MN3 and O-KL1 are 44.69% and 55.31% for the switched device, respectively. Basically, this decrease in oxygen content and increase in Ta content after switching is the evidence that an oxygen-deficient (or Ta-rich) filament is formed owing to oxygen ion migration.
rather than oxygen vacancy migration as well as the lower energy gap of the TaO$_x$ layer, as shown by the dotted line in Figure 4b. When negative voltage is applied to the TE, oxygen ions are pushed from the TiO$_2$ layer towards the conducting filament where they recombine with oxygen vacancies or oxidize the conducting filament. The device will be in HRS (Figure 4d). Control of oxygen-deficient filament formation and rupture is facilitated by insertion of the thin Ti layer at the TE/TaO$_x$ interface, which results in repeatable and reproducible resistive switching characteristics.

The conducting filament diameter is estimated using a new method under a constant current stress of 80 μA (Figure 6). The voltage decreases (or increases) under positive (or negative) current stress after a SET (or RESET) operation. Under SET, the oxygen ions formed by the breakage of Ta-O bonds migrate towards the TiO$_x$ layer and create an oxygen-deficient (or conducting path) in the TaO$_x$ layer. Assuming a cylindrical nanofilament, the diameter (D) can be estimated as [41]:

$$D = \sqrt{\frac{4q\varepsilon_{Ta_2O_5}r_{Ta_2O_5}}{\pi\varepsilon_{Ta_2O_5} \Delta V}}$$

where ΔV (changes in the voltage shift) is found to be 0.98 V (Figure 6). q is the electronic charge (1.602 × 10$^{-19}$ C), and $\varepsilon_{Ta_2O_5}$ is the dielectric permittivity of amorphous Ta$_2$O$_5$ film ($\varepsilon_{Ta_2O_5} \approx 20$ to 25). Considering all values in Equation 1, the diameter of the nanofilament is approximately 2.9 to 2.6 nm. This suggests that the present resistive switching memory device can be scaled down to <3 nm. Previously reported diameters of 5 to 10 nm for Pt/TiO$_2$/Pt [12], ≈15 nm for Ti/Fe:SrTiO$_3$/Nb:SrTiO$_3$ [37], and ≈1,000 nm for Pt/CuO/Pt [42] are slightly closer and higher than our calculated values, likely owing to the use of different structures as well as materials. Further study may be needed to clearly understand these results.

Figure 7a shows the resistive switching characteristics with different CCs from 10 to 100 μA. The low-resistance state decreases with increasing CCs from 10 to 100 μA (Figure 7a,b), which will be useful for multi-level data storage applications. As the filament diameter increases with higher CCs, the low-resistance state decreases, and the value of RESET voltage increases. The RESET current can be scaled down to 23 μA at a low CC of 10 μA, which will be useful to a low-power operation RRAM in the near future. Our novel device also has a long read pulse endurance of >105 cycles and excellent data retention of >104 s with a good resistance ratio of >102 at 85°C at a low CC of 80 μA, as shown in Figure 8. A data retention of >103 s is also observed for a low CC of 10 μA (not shown here). Considering the obtained nanofilament diameter of approximately 3 nm, a high-density (=100 Tbit/in.²) nano-scale nonvolatile memory can be achievable in future.
Conclusions

Improvement in resistive switching performance, particularly 10,000 consecutive switching cycles with tight distribution in LRS/HRS of >10^2, long read pulse endurance of >10^5, and good data retention of 10^3 s at 85°C, has been achieved under a low CC of 80 μA by exploiting the oxygen-getter nature of a Ti nanolayer in a W/TiO_2/TaO_x/W structure. A small device of 150 × 150 nm^2 and a defective TaO_x film are confirmed by TEM. O^{2-} ion migration rather than oxygen vacancy migration because of lower barrier height for electrons leads to a switching mechanism based on filament formation/rupture. The presence of controllable oxygen-deficient TaO_x nanofilament after switching has been investigated by AES. Furthermore, the device could be operated with a small RESET current of 23 μA. A small nanofilament diameter of 3 nm under a low CC of 80 μA has been calculated using a new method, which has a high memory density of ≈100 Tbit/in.², expected to be very useful for future sub-10-nm applications.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AP carried out this research work under the instruction of SM. Fabrication process was also instructed by HCC and CSL. AES spectra were taken by TCT AP carried out this research work under the instruction of SM. Authors read and approved the final manuscript.

Acknowledgments

This work was supported by the National Science Council (NSC), Taiwan, under contract numbers NSC-98-2221-E-182-052-MY3 and NSC-101-2221-E-182-061. The authors are grateful to Electronic and Optoelectronic Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan for their support on W bottom electrode pattern.

Author details

1Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan. 2Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.

Received: 3 May 2013 Accepted: 7 June 2013
Published: 17 June 2013

References

1. Waser R, Dittmann R, Stalick G, Sartor K. Redox-based resistive switching memories - nanionic mechanisms, prospects, and challenges. Adv Mater 2009, 21:2632.
2. Sawa A. Resistive switching in transition metal oxides. Mater Today 2008, 11:28.
3. Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 2014, 26:24.
4. Sato Y, Kinoshita K, Aoki M, Sugiyama Y. Reduction in the reset current in a resistive random access memory consisting of NiO, brought about by reducing a parasitic capacitance. Appl Phys Lett 2007, 90:233503.
5. Lee MJ, Lee CB, Lee D, Lee SR, Chang M, Hur JH, Kim YB, Kim CJ, Seo DH, Seo S, Chung UJ, Yoo IK, Kim K. A fast, high-endurance and scalable non-volatile memory device made from asymmetric TaO_x-W/TaO_x-W bilayer structures. Nat Mater 2011, 10:625.
6. Yoon J, Choi H, Lee D, Park JB, Lee J, Seong DJ, Ju D, Chang M, Jung S, Hwang H. Excellent switching uniformity of Cu-doped MoO_x/GdO_x bilayer for nonvolatile memory applications. IEEE Electron Device Lett 2009, 30:457.
7. Prakash A, Malikap S, Lai CS, Lee HY, Chen WS, Chen F, Kao MJ, Tsai MJ. Improvement uniformity of resistive switching parameters by selecting the electroformation polarity in InO_x/TaO_x/WO_x/W structure. Jpn J Appl Phys 2012, 51:04CD06.
8. Banerjee W, Malikap S, Lai CS, Chen YF, Tien TC, Lee HY, Chen WS, Chen FT, Kao MJ, Tsai MJ, Yang JR. Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell InO_x nano-dots. Nanoscale Res Lett 2012, 7:194.
9. Yoon JH, Kim KM, Lee MH, Kim GH, Song SJ, Seok JY, Hwang CS. Role of Ru nano-dots embedded in TiO_x thin films for improving the resistive switching behavior. Appl Phys Lett 2010, 97:232904.
10. Lee HY, Chen PS, Liu WH, Wang SM, Gu PR, Hsu YH, Tsai CH, Chen WS, Chen F, Tsai MJ, Lien C. Robust high-resistance state and improved endurance of HfO_x resistive memory by suppression of current overshoot. IEEE Electron Device Lett 2011, 32:1585.
11. Choi BJ, Jeong DS, Kim SK, Rohde C, Choi S, Oh JH, Kim HI, Hwang CS, Sotz K, Waser R, Reichenberg B, Tiedke S. Resistive switching mechanism of TiO_x thin films grown by atomic-layer deposition. J Phys Appl Phys 2005, 38:093715.
12. Kwon DH, Kim KM, Jung H, Jeon JM, Lee MH, Kim GH, Li XS, Park GS, Lee B, Han S, Kim M, Hwang CS. Atomic structure of conducting nanofilaments in TiO_x resistive switching memory. Nat Nanotechnol 2010, 5:148.
13. Lee SR, Cho K, Kim DC, Jung R, Seo S, Li XS, Park GS, Yoo IK. Resistive memory switching in epitaxially grown NiO. Appl Phys Lett 2007, 91:222115.
14. Yu S, Guo X, Wong HS. Conduction mechanism of TiN/HfO_x/Pt resistive switching memory: a trap-assisted-tunneling model. Appl Phys Lett 2011, 99:063507.
15. Chen YY, Gou L, Clima S, Govoreanu D, Degraeve R, Kar GS, Fantini A, Groeseneken G, Wouters DJ, Jurczak M. Endurance/retention trade-off on HfO_x/metal cap 1T1R bipolar RRAM. IEEE Trans Electron Devices 2013, 60:1184.
16. Lin CY, Wu CY, Lin TC, Yang FL, Hu C, Tseng TY. Effect of top electrode material on resistive switching properties of ZrO_x film memory devices. IEEE Electron Device Lett 2007, 28:336.
17. Guan W, Long S, Jia R, Liu M. Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Appl Phys Lett 2007, 91:062111.
18. Liu Q, Guan W, Long S, Liu M, Zhang S, Wang Q, Chen J. Resistance switching of Au-implanted-ZrO_2 film for nonvolatile memory application. J Appl Phys 2008, 104:114514.
19. Wang SY, Lee DY, Tseng TY, Lin CY. Effects of Ti top electrode thickness on the resistive switching behaviors of r-sputtered ZrO_x memory films. J Appl Phys Lett 2009, 95:112904.
20. Wang SY, Lee DY, Huang TY, Wu JH, Tseng TY. Controllable oxygen vacancies to enhance resistive switching performance in a ZrO_x-based RRAM with embedded Mo layer. Nanotechnology 2010, 21:495011.
21. Li Y, Long S, lv H, Liu Q, Wang Y, Zhang S, Liu W, Wang M, Zhang K, Xie H, Liu S, Liu M. Improvement of resistive switching characteristics in ZrO_x film by embedding a thin TiO_x layer. Nanotechnology 2011, 22:254028.
22. Lin CC, Chang YP, Lin HB, Lin CH. Effect of non-lattice oxygen on ZrO_x-based resistive switching memory. Nanoscale Res Lett 2012, 7:187.
23. Zhang T, Zhang X, Ding L, Zhang W. Study on resistance switching properties of Na_{2}Bi_{2}Ti_{3}O_{12} thin films using impedance spectroscopy. Nanoscale Res Lett 2009, 4:1309.
24. Sun X, Li G, Chen L, Shi Z, Zhang W. Bipolar resistance switching characteristics with opposite polarity of Au/Si/TiO_x/Ti memory cells. Nanoscale Res Lett 2011, 6:599.
25. Chiu FC, Li PW, Chang WW. Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Res Lett 2012, 7:178.
26. Peng CN, Wang CW, Chan TC, Chang WW, Wang YC, Tsai HW, Wu WW, Chen LJ, Chueh YL. Resistive switching of Au/ZnO/Cu resistive memory: an in situ observation of conductive bridge formation. Nanoscale Res Lett 2012, 7:759.
27. Rahaman SZ, Malikap S, Chen WS, Lee HY, Chen FT, Kao MJ, Tsai MJ. Repeatable unipolar/bipolar resistive memory characteristics and switching mechanism using a Cu nanofilm in a GeO_x film. Appl Phys Lett 2012, 101:073106.
28. Syu YE, Chang TC, Tsai TM, Chang GW, Chang KC, Lou JH, Tai YH, Tsai MJ, Wang YL, Sze SM. Asymmetric carrier conduction mechanism by tip
electric field in WSiO$_x$ resistance switching device. IEEE Electron Device Lett 2012, 33:342.
29. Rahaman SZ, Maitak S, Tien TC, Lee HY, Chen WS, Chen F, Kao MJ, Tsai MJ: Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaO$_x$ interface. Nanoscale Res Lett 2012, 7:345.
30. Prakash A, Maitak S, Lai CS, Tien TC, Chen WS, Lee HY, Chen FT, Kao MJ, Tsai MJ: Bipolar resistive switching memory using bilayer TaO$_x$/WO$_x$ films. Solid State Electron 2012, 77:35.
31. Chen C, Song C, Yang J, Zeng F, Pan F: Oxygen migration induced resistive switching effect and its thermal stability in W/TaO$_x$/Pt structure. Appl Phys Lett 2012, 100:233509.
32. Terai M, Sakai Y, Kotsuji S, Hada H: Resistance controllability of Ta$_2$O$_5$/TiO$_2$ stack ReRAM for low-voltage and multilevel operation. IEEE Electron Device Lett 2010, 31:204.
33. Ninomiya T, Wei Z, Muraoka S, Yasuhara R, Katayama K, Takagi T: Conductive filament scaling of TaO$_x$ bipolar ReRAM for improving data retention under low operation current. IEEE Trans Electron Devices 2013, 60:1384.
34. Wei Z, Kanzawa Y, Arita K, Katoh Y, Kawai K, Muraoka S, Mitani S, Fujis S, Katayama K, Iijima M, Mikami T, Ninomiya T, Myanaga R, Kawashima Y, Tsuji K, Hirano A, Okada T, Azuma R, Shimakawa K, Sugaya H, Takagi T, Yasuhara R, Horiba K, Kunitsugihara H, Oshima M: Highly reliable TaO$_x$ ReRAM and direct evidence of redox reaction mechanism. Tech Dig - Int Electron Devices Meet 2008, 293:293.
35. The interactive Ellingham diagram. [http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php]
36. Michaelson HB: The work function of the elements and its periodicity. J Appl Phys 1977, 48:4729.
37. Stille S, Lenser C, Dittmann R, Koehl A, Krug I, Muenstermann R, Perlich J, Schneider CM, Klemenodt U, Waser R: Detection of filament formation in forming-free resistive switching SrTiO$_3$ devices with Ti top electrodes. Appl Phys Lett 2012, 100:223503.
38. Aarik J, Aidla A, Kiisler AA, Uustare T, Sammelisev V: Effect of crystal-structure on optical-properties of TiO$_x$ films grown by atomic layer deposition. Thin Solid Films 1997, 305:270.
39. Gu D, Li J, Dey SK, Waard HD, Marcus S: Nanochemistry, nanostructure, and electrical properties of Ta$_2$O$_5$ film deposited by atomic layer deposition and plasma-enhanced atomic layer deposition. J Vac Sci Technol B 2006, 24:2230.
40. Maitak S, Wang TY, Tzeng PJ, Lin CH, Tien TC, Lee LS, Yang JR, Tsai MJ: Band offsets and charge storage characteristics of atomic layer deposited high-k HfO$_x$/TiO$_x$ multilayers. Appl Phys Lett 2009, 95:262001.
41. Prakash A, Maitak S, Rahaman SZ, Majumdar S, Manna S, Ray SK: Resistive switching memory characteristics of Ge/GeO$_x$ nanowires and evidence of oxygen ion migration. Nanoscale Res Lett 2013, 8:220.
42. Yasuhara R, Fujisawa K, Horiba K, Kunitsugihara H, Kotegi M, Oshima M, Takagi H: Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Appl Phys Lett 2009, 95:033110.

doi:10.1186/1556-276X-8-288
Cite this article as: Prakash et al.: Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaO$_x$ interface. Nanoscale Research Letters 2013, 8:288.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com