\(^{105}\text{Pd} \) NQR Study on NpPd\(_5\)Al\(_2\) and CePd\(_5\)Al\(_2\)

H. Chudo\(^1\), H. Sakai\(^1\), Y. Tokunaga\(^1\), S. Kambe\(^1\), D. Aoki\(^2\), Y. Haga\(^1\), T. D. Matsuda\(^1\), Y. Homma\(^2\), Y. Nakano\(^3\), F. Honda\(^3\), R. Settai\(^3\), Y. Ōnuki\(^1\), and H. Yasuoka\(^1\)

\(^1\) Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki, Japan, 319-1195
\(^2\) Institute for Material Research, Tohoku University, Oarai, Ibaraki, Japan, 311-1313
\(^3\) Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan, 560-0043

E-mail: chudo.hiroyuki@jaea.go.jp

Abstract. We report the results of \(^{105}\text{Pd} \) NQR experiments on NpPd\(_5\)Al\(_2\) and CePd\(_5\)Al\(_2\). In the normal state at 6 K, the \(^{105}\text{Pd} \) NQR spectrum consists of four lines in both systems. These lines can be assigned to two sets of \(\pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2} \) and \(\pm \frac{3}{2} \leftrightarrow \pm \frac{5}{2} \) NQR transitions arising from two crystallographically inequivalent Pd sites. From the analysis of the \(^{105}\text{Pd} \) NQR spectrum, the nuclear quadrupole frequency \(\nu_Q \), asymmetry parameter \(\eta \), and electric field gradient \(V_{zz} \) have been deduced.

1. Introduction

Recently, the first neptunium-based heavy fermion superconductor NpPd\(_5\)Al\(_2\) with \(T_c = 4.9 \) K was discovered by D. Aoki \etal [1]. The large electronic specific heat \(\gamma = 200 \text{mJ/mol-K}^2 \) at 4.9 K, and the large initial slope of the upper critical field \(H_{c2} \) below \(T_c \) suggest that heavy fermions form Cooper pairs in this system. A step-like increase of magnetization associated with the first-order phase transition at \(H_{c2} \) was also observed for this system. In a previous paper, we have reported the results of \(^{27}\text{Al} \) NMR studies in NpPd\(_5\)Al\(_2\) [2]. From the temperature dependence of the nuclear spin-lattice relaxation rate and the Knight shift, we show that NpPd\(_5\)Al\(_2\) is a strong coupling \(d \)-wave superconductor with a superconducting gap \(2\Delta_0/k_B T_c = 6.4 \).

Soon after the discovery of NpPd\(_5\)Al\(_2\), the isostructural compound CePd\(_5\)Al\(_2\) has been synthesized [3]. In CePd\(_5\)Al\(_2\), successive AF orderings at \(T_{N1} = 3.9 \) K and \(T_{N2} = 2.9 \) K have been observed from specific heat, electrical resistivity and magnetic susceptibility measurements. In powder neutron diffraction experiments, magnetic reflections were observed below \(T_{N1} \), whereas no apparent anomaly was observed at \(T_{N2} \) [4]. The magnetic structures of CePd\(_5\)Al\(_2\) below \(T_{N1} \) and \(T_{N2} \) are still unclear. More recently, F. Honda \etal revealed that CePd\(_5\)Al\(_2\) shows superconductivity under a pressure of 10.8 GPa with \(T_c = 0.57 \) K [5].

In this paper, we report the results of the first \(^{105}\text{Pd} \) NQR studies in NpPd\(_5\)Al\(_2\) and CePd\(_5\)Al\(_2\). In both systems, we have observed four NQR lines arising from two inequivalent Pd sites. From analyses of the NQR spectra, nuclear quadrupole frequencies \(\nu_Q \), asymmetry parameters \(\eta \), and electric field gradients \(V_{zz} \) for each Pd site have been deduced.
2. Experimental Results

In zero field and in finite electric field gradient EFG, NQR resonance frequencies ν_{NQR} have been obtained by solving the secular equation of an electric quadrupole Hamiltonian as follows,

$$\mathcal{H}_Q = \frac{h}{6} \nu_Q [3I_z^2 - I(I + 1) + \frac{1}{2} \eta(I_x^2 + I_y^2)].$$

Here ν_Q and η are defined as $\nu_Q = \frac{3}{2I(2I-1)} h e Q V_{zz}$, and $\eta = |V_{xx} - V_{yy}|/V_{zz}$, where h is the Planck constant, Q is the nuclear quadrupole moment, and $V_{\alpha\alpha}(\alpha = x, y, z)$ the electric field gradient at the position of the nucleus[6]. Conventionally, V_{zz} has the largest magnitude, and V_{xx} and V_{yy} are chosen so that $0 \leq \eta \leq 1$. The calculated ν_{NQR} for $I=5/2$ nuclei (for ^{105}Pd) vs. η is shown in Fig. 1(a). For $\eta=0$, the ν_{NQR} of the $\pm 1/2 \leftrightarrow \pm 3/2$ transitions are equal to ν_Q and $2\nu_Q$, respectively. For $\eta \neq 0$, the ν_{NQR} of the $\pm 1/2 \leftrightarrow \pm 3/2$ transition increases with increasing η, while ν_{NQR} for the $\pm 3/2 \leftrightarrow \pm 5/2$ transition decreases with increasing η.

The $R(An)\text{Pd}_5\text{Al}_2$ systems crystallize in the tetragonal ZrNi_2Al_5-type structure of the space group $I4/mmm$ (Fig. 1(b)) [7]. This structure can be viewed as alternating $R(An)\text{Pd}_3$ and AlPd layers stacked along the c axis. There are two crystallographically inequivalent Pd sites, which are denoted Pd(1) (the 2b site) and Pd(2) (the 8g site), respectively. The Pd(1) site is surrounded by four $R(An)$ atoms in the c plane and has tetragonal symmetry. On the other hand, the Pd(2) site is surrounded by two $R(An)$ and two Al atoms in the a plane and has
orthorhombic symmetry. The directions of V_{zz} at the Pd(1) and Pd(2) sites are parallel to the c and a axes, respectively.

Figure 1(c) shows the 105Pd NQR spectrum observed in NpPd$_5$Al$_2$ at 6K. This NQR measurement was performed with a single crystal of dimensions $(1\times1\times0.5\ \text{mm}^3)$. The spectrum consists of four narrow resonance lines, which can be assigned to two sets of $\pm 1/2 \leftrightarrow \pm 3/2$ and $\pm 3/2 \leftrightarrow \pm 5/2$ NQR lines as shown by arrows in Fig. 1(c). The 105Pd NQR lines at 35.34 and 79.91 MHz are characterized by $\nu_Q=35.34$ MHz and $\eta=0$. The deduced value $\eta=0$ indicates that these lines arise from 105Pd(1) with tetragonal symmetry. The value of V_{zz} at the Pd(1) site is estimated to be 12.17 ($\times 10^{17}\text{Vcm}^2$). On the other hand, the 105Pd NQR lines at 12.72 and 23.83 MHz are characterized by $\nu_Q=12.04$ MHz and $\eta=0.23$. This result indicates that these lines arise from 105Pd(2) with orthorhombic symmetry. The values of V_{zz} at the Pd(2) site is estimated to be 4.146 ($\times 10^{17}\text{Vcm}^2$).

Figure 1(d) shows the 105Pd NQR spectrum observed in CePd$_5$Al$_2$ at 6K. Since the 105Pd NQR spectrum in CePd$_5$Al$_2$ is analogous to that in NpPd$_5$Al$_2$, the four lines in Fig. 1(d) can be assigned in the same way as discussed in the previous paragraph. The lines observed at 39.96 and 79.91 MHz arise from 105Pd(1), while the lines observed at 11.80 and 22.44 MHz arise from 105Pd(2).

For the signals arising from 105Pd(1) the line width of the $\pm 1/2 \leftrightarrow \pm 3/2$ transition is smaller than that of $\pm 3/2 \leftrightarrow \pm 5/2$ transition, indicating that the line width is due to the distribution of ν_Q. On the other hand, for the signals from 105Pd(2) the line width of the $\pm 1/2 \leftrightarrow \pm 3/2$ transition is larger than that of the $\pm 3/2 \leftrightarrow \pm 5/2$ transition. The reason for this may be that the line width for 105Pd(2) is due to a distribution of η values, since the absolute value of $\left[\frac{\partial \nu_{\text{NQR}}}{\partial \eta}\right]_{\eta\neq 0}$ for $\pm 1/2 \leftrightarrow \pm 3/2$ transition is larger than that for the $\pm 3/2 \leftrightarrow \pm 5/2$ transition.

Compounds	site	ν_Q (MHz)	η	V_{zz} (10^{17}cm^2)
Experiment				
NpPd$_5$Al$_2$	Pd(1)	35.34	0	12.17
	Pd(2)	12.04	0.23	4.146
CePd$_5$Al$_2$	Pd(1)	39.96	0	13.76
	Pd(2)	11.31	0.20	3.895
Band calculation				
NpPd$_5$Al$_2$	Pd(1)	22.7	0	
	Pd(2)	7.49	0.1614	
CePd$_5$Al$_2$	Pd(1)	21.5	0	
	Pd(2)	8.51	0.5610	

The quadrupole parameters deduced from the present NQR study and from a band calculation are summarized in Table 1 [8]. The band calculations for NpPd$_5$Al$_2$ and CePd$_5$Al$_2$ were performed using the full potential linear-augmented-plane-wave (FLAPW) method with a local-density approximation (LDA). In both systems, the NQR results show that the values of V_{zz} at the respective sites are comparable, and the values of V_{zz} at the Pd(1) sites are larger than at the Pd(2) sites. These features are supported by the band calculation. From the results of the band calculation, the values of η at the Pd(2) sites are considerably different between NpPd$_5$Al$_2$ and CePd$_5$Al$_2$, suggesting that the difference of η at the Pd(2) sites for these two systems arise from a difference between Np-5f and Ce-4f character. On the other hand, the NQR results show that the values of η at the Pd(2) sites in both systems are comparable. This fact may suggest that
the values of η at the Pd(2) sites are rather insensitive to the f-electron character, although the experimental coincidence could be accidental. Since the band calculation for NpPd$_5$Al$_2$ could not reproduce the f-electron Fermi surface character, the real f-electron state may be considerably modified due to correlation effects as compared with the band calculation results. From this point of view, the EFG may reflect peculiar f-electronic states in NpPd$_5$Al$_2$ and CePd$_5$Al$_2$.

3. Summary
The first 105Pd NQR measurements have been performed on NpPd$_5$Al$_2$ and CePd$_5$Al$_2$. In both systems, the spectrum consists of four lines. These four lines are assigned to two sets of $\pm 1/2 \leftrightarrow \pm 3/2$ and $\pm 3/2 \leftrightarrow \pm 5/2$ NQR lines arising from two inequivalent Pd sites, Pd(1) and Pd(2). From the analysis of the 105Pd NQR spectrum, the ν_Q, η, and V_{zz} for each Pd sites have been deduced.

4. Acknowledgment
We thank R. E. Walstedt for a critical reading of the manuscript and H. Harima for the band calculations and a helpful discussion. This work was supported by a Grant-in-Aid for Young Scientists B (No. 21740273) of Japan Society for the Promotion of Science and a Grant-in-Aid for Scientific Research on Innovative Areas “Heavy Electrons” of the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References
[1] Aoki D, Haga Y, Matsuda T D, Tateiwa N, Ikeda S, Homma Y, Sakai H, Shiokawa Y, Yamamoto E, Nakamura A, Settai R and Onuki Y 2007 J. Phys. Soc. Jpn. 76 063701
[2] Chudo H, Sakai H, Tokunaga Y, Kambe S, Aoki D, Homma Y, Shiokawa Y, Haga Y, Ikeda S, Matsuda T D, Omiki Y and Yasuoka H 2008 J. Phys. Soc. Jpn. 77 083702
[3] Ribeiro R A, Onimaru T, Umeo K, Avila M A, Shigetoh K and Takabatake T 2007 J. Phys. Soc. Jpn. 76 123710
[4] Onimaru T, Inoue Y F, Shigetoh K, Umeo K, Kubo H, Ribeiro R A, Ishida A, Avila M A, Ohoyama K, Sera M and Takabatake T 2008 J. Phys. Soc. Jpn. 77 074708
[5] Honda F, Measson M A, Nakano Y, Yoshitani N, Yamamoto E, Haga Y, Takeuchi T, Yamagami H, Shimizu K, Settai R and Onuki Y 2008 J. Phys. Soc. Jpn. 77 043701
[6] Abragam A 1961 The Principles of Nuclear Magnetism (London, Oxford University Press)
[7] Haga Y, Aoki D, Homma Y, Ikeda S, Matsuda T D, Yamamoto E, Sakai H, Tateiwa N, Dung N D, Nakamura A, Shiokawa Y and Onuki Y 2008 J. Alloys Comp. 464 47
[8] Harima H Private discussion