Temperature dependence of the Casimir effect between metallic mirrors

Cyriaque Genet, Astrid Lambrecht and Serge Reynaud
Laboratoire Kastler Brossel *,
Campus Jussieu, case 74,
75252 Paris Cedex 05, France
(February 22, 2000)

We calculate the Casimir force and free energy for plane metallic mirrors at non-zero temperature. Numerical evaluations are given with temperature and conductivity effects treated simultaneously. The results are compared with the approximation where both effects are treated independently and the corrections simply multiplied. The deviation between the exact and approximated results takes the form of a temperature dependent function for which an analytical expression is given. The knowledge of this function allows simple and accurate estimations at the % level.

I. INTRODUCTION

The Casimir force [1] has been observed in a number of ‘historic’ experiments [2,3]. It has been measured recently with an improved experimental precision [4,5]. This should allow for an accurate comparison with the predictions of Quantum Field Theory, provided that these predictions account for the differences between real experiments and the idealized Casimir situation. In particular, experiments are performed at room temperature between metallic mirrors and not at zero temperature between perfect reflectors. The theoretical expectations should be computed with a high accuracy if the aim is to test agreement between theory and experiment at, say, the 1% level. The efforts for accuracy are also worth for making it possible to control the effect of Casimir force when studying small short range forces [9–11].

The influence of thermal field fluctuations on the Casimir force are known to become important for distances of the order of a typical length [12–15]

\[
\lambda_T = \frac{2\pi c}{\omega_T} = \frac{hc}{k_BT}
\]

(1)

When evaluated at room temperature, this length \(\lambda_T\) is approximately 7\(\mu\)m. In contrast, the finite conductivity of metals has an appreciable effect for distances smaller than or of the order of the plasma wavelength \(\lambda_p\) determined by the plasma frequency \(\omega_p\) of the metal (see [16] and references therein).

\[
\lambda_p = \frac{2\pi c}{\omega_p} \quad (2)
\]

For metals used in the recent experiments, this wavelength lies in the range 0.1\(\mu\)m-0.2\(\mu\)m. This means that conductivity and thermal corrections to the Casimir force are important in quite different distance ranges. Thermal corrections are usually ignored in the sub-\(\mu\)m range where the effect of imperfect reflection is significant whereas the conductivity correction is unimportant above a few \(\mu\)m where the effect of temperature becomes appreciable. This explains why the 2 corrections are usually treated independently from each other. When an accurate comparison between experimental and theoretical values of the Casimir force is aimed at, the error induced by this approximation has however to be precisely evaluated. Furthermore, the region of overlap of the two corrections is precisely in the \(\mu\)m range, which is a crucial distance range for the comparison between experiment and theory.

The purpose of this paper is to give an accurate evaluation of the Casimir force \(F\) taking into account finite conductivity and temperature corrections at the same time. To characterize the whole correction, we will compute the factor \(\eta_F\) describing the combined effect of conductivity and temperature

\[
\eta_F = \frac{F}{F_{Cas}}
\]

\[
F_{Cas} = \frac{hCA\pi^2}{240L^4}
\]

(3)

\(F_{Cas}\) is the ideal Casimir force corresponding to perfect mirrors in vacuum. \(L\) is the distance between the mirrors, \(A\) their surface and \(h\) and \(c\) respectively the Planck constant and the speed of light. We will also evaluate the factors associated with each effect taken separately from each other

\[
\eta_F^p = \frac{F^p}{F_{Cas}} \quad \eta_F^t = \frac{F^t}{F_{Cas}}
\]

(4)

\(F^p\) is the Casimir force evaluated by accounting for finite conductivity of the metals but assuming zero temperature and \(F^t\) is the Casimir force evaluated at temperature \(T\) for perfect reflectors. Of course \(\eta_F^p\) depends on the ratio \(\frac{\lambda_T}{\lambda_p}\) and \(\eta_F^t\) on the ratio \(\frac{\lambda_T}{\lambda_p}\).

Now the question raised in the previous paragraphs may be stated precisely: to which level of accuracy can the complete correction factor \(\eta_F\) be approximated as
the product of the factors \(\eta_{E}^{P} \) and \(\eta_{E}^{T} \) ? To answer this question we will evaluate the quantity

\[
\delta_{F} = \frac{\eta_{F}}{\eta_{E}^{P} \eta_{E}^{T}} - 1
\]

which measures the degree of validity of the approximation where both effects are evaluated independently from each other. We will give an analytical estimation of this deviation which may thus be taken into account without any difficulty. We will also give the same results for the Casimir energy by defining a factor \(\eta_{E} \) measuring the whole correction of Casimir energy due to conductivity and temperature and then discussing the factors \(\eta_{E}^{P} \) and \(\eta_{E}^{T} \) and the deviation \(\delta_{E} \) in the same manner as for the force.

Some additional remarks have to be made at this point. First, recent experiments are not performed in the plane-plane but in the plane-sphere configuration. The Casimir force in this geometry is usually estimated from the proximity theorem \(\text{[17,22]} \). Basically this amounts to evaluating the force by adding the contributions of various distances as if they were independent. In the plane-sphere geometry the force evaluated in this manner turns out to be given by the Casimir energy evaluated in the plane-plane configuration for the distance \(L \) being defined as the distance of closest approach in the plane-sphere geometry. Hence, the factor \(\eta_{E} \) evaluated in this paper for energy can be used to infer the factor for the force measured in the plane-sphere geometry. Then, surface roughness corrections will not be considered in the present paper. Finally the dielectric response of the metallic mirrors will be described by a plasma model. This model is known to describe correctly the Casimir force in the long distance range which is relevant for the study of temperature effects. Keeping these remarks in mind, our results will provide one with an accurate evaluation of the Casimir force in the whole range of experimentally explored distances.

II. CASIMIR FORCE AND FREE ENERGY

When real mirrors are characterized by frequency dependent reflection coefficients, the Casimir force is obtained as an integral over frequencies and wavevectors associated with vacuum and thermal fluctuations \(\text{[24]} \). The Casimir force is a sum of two parts corresponding to the 2 field polarizations with the two parts having the same form in terms of the corresponding reflection coefficients

\[
F = \sum_{k=-\infty}^{\infty} \frac{\omega T}{2} \mathbb{F} [\kappa \omega T]
\]

\[
\mathbb{F} [\omega \geq 0] = \frac{\hbar A}{2\pi} \int_{0}^{+\infty} d\kappa \kappa^{2} f
\]

\[
f = \frac{r_{e}^{2} (i\omega, i\kappa)}{e^{2\pi L} - r_{e}^{2} (i\omega, i\kappa)} + \frac{r_{\|}^{2} (i\omega, i\kappa)}{e^{2\pi L} - r_{||}^{2} (i\omega, i\kappa)}
\]

\[
\mathbb{F} [-\omega] = \mathbb{F} [\omega]
\]

\(r_{e} \) (respectively \(r_{\|} \)) denotes the amplitude reflection coefficient for the orthogonal (respectively parallel) polarization of one of the two mirrors. The mirrors are here supposed to be identical, otherwise \(r_{e}^{2} \) should be replaced by the product of the two coefficients. \(\omega \) is the frequency and \(\kappa \) the wavevector along the longitudinal direction of the cavity formed by the 2 mirrors. \(\mathbb{F} [\omega] \) is defined for positive frequencies and extended to negative ones by parity.

The Casimir force \(\mathbb{F} [\omega] \) may also be rewritten after a Fourier transformation, as a consequence of Poisson formula \(\text{[13]} \)

\[
F = \sum_{m=-\infty}^{\infty} \tilde{F} (m,\lambda T)
\]

\[
\tilde{F} (x) = \int_{0}^{\infty} d\omega \cos \left(\frac{\omega x}{c} \right) \mathbb{F} [\omega]
\]

The contribution of vacuum fluctuations, that is also the limit of a null temperature \((\omega T \to 0) \) in \(\tilde{F} \), corresponds to the contribution \(m = 0 \) in \(F \)

\[
F^{P} = \tilde{F} (0) = \int_{0}^{\infty} d\omega \mathbb{F} [\omega]
\]

Hence, the whole force \(\tilde{F} \) is the sum of this vacuum contribution \(m = 0 \) and of thermal contributions \(m \neq 0 \).

We will consider metallic mirrors with the dielectric function \(\varepsilon (i\omega) \) for imaginary frequencies given by the plasma model

\[
\varepsilon (i\omega) = 1 + \frac{\omega_{p}^{2}}{\omega^{2}}
\]

\(\omega_{p} \) is the plasma frequency related to the plasma wavelength \(\lambda_{p} \) by \(\text{[2]} \). For the metals used in recent experiments, the values chosen for the plasma wavelength \(\lambda_{p} \) will be 107nm for Al and 136nm for Cu and Au. These values are in agreement with knowledge from solid state physics \(\text{[23,24]} \) as well as with the integration of optical data described in detail in \(\text{[14]} \). As already known, the results obtained from the plasma model departs from the more accurate integration of optical data for small distances. In this limit however, the thermal corrections do not play a significant role. In the present paper we will restrict our attention to the plasma model and discuss the validity of the results obtained in this manner at the end of the next section.

We will also focus the attention on mirrors with a large optical thickness for which the reflection coefficients \(r_{e} (i\omega, i\kappa) \) and \(r_{\|} (i\omega, i\kappa) \) correspond to a simple vacuum-metal interface. With the plasma model, these coefficients are read as
\[r_\perp = \frac{\sqrt{\omega_p^2 + c^2 \kappa^2} - c \kappa}{\sqrt{\omega_p^2 + c^2 \kappa^2} + c \kappa} \]
\[r_\parallel = \frac{\sqrt{\omega_p^2 + c^2 \kappa^2} - c \kappa}{\sqrt{\omega_p^2 + c^2 \kappa^2} + c \kappa} \left(1 + \frac{\omega^2_P}{c^2} \right) \]
\[(10) \]

For wavevectors \(c \kappa \) smaller than \(\omega_p \), mirrors may be considered to be perfectly reflecting. When converted to the distance domain, this entails that the force approaches the ideal Casimir expression when evaluated at large distances \(L \gg \lambda_p \).

The Casimir energy will be obtained from the force by integration over the mirrors relative distance
\[E = \int_{L}^{\infty} F(x) \, dx \]
\[(11) \]

As this procedure is performed at constant temperature, the energy thus obtained corresponds to the thermodynamical definition of a free energy. For simplicity we will often use the denomination of an energy. We will define a factor \(\eta_E \) measuring the whole correction of energy due to conductivity and temperature effects with respect to the ideal Casimir energy
\[\eta_E = \frac{E}{E_{\text{Cas}}} \]
\[E_{\text{Cas}} = \frac{\hbar c A \pi^2}{120 L^3} \]
\[(12) \]

The positive value of the energy here means that the Casimir energy is a binding energy while the positive value of the force is associated with an attractive character. We will then define 2 factors \(\eta_E^P \) and \(\eta_E^T \) associated with each effect taken separately from each other, as in (6). As already done for the force correction factors in (6), we will finally evaluate the quantity \(\delta_E \) which characterizes the degree of validity of the approximation where both effects are evaluated independently from each other. As mentioned in the Introduction, the results obtained for energy allows one to deal with the Casimir force in the plane-sphere geometry when trusting the proximity force theorem.

III. NUMERICAL EVALUATIONS

In the following we present the numerical evaluation of the correction factors of the Casimir force and energy using equations written in the former section.

The force correction factor was evaluated for the experimentally relevant distance range of 0.1-10 \(\mu \text{m} \) with the help of equation (7), supposing explicitly a plasma model for the dielectric function, and the result was normalized by the ideal Casimir force. A double integration over frequencies and wavevectors had to be performed. Due to the cosine dependence in (7), the integrand turned out to be a highly oscillating function. Hence, the integration required care although it was performed with standard numerical routines. The energy correction factor was then calculated by numerically integrating the force and normalizing by the ideal Casimir energy (see equation (12)). Integration was restricted to a finite interval, the upper limit exceeding at least by a factor of 10\(^4\) the distance at which the energy value was calculated. Extending the integration range by a factor of 100 changed the numerical result by less than 10\(^{-7}\).

The results of the numerical evaluation of \(\eta_F \) are shown as the solid lines in figures 1 for Al and for Cu-Au assuming a temperature of \(T = 300 K \). They are compared with the force reduction factor \(\eta_F^P \) due to finite conductivity (dashed lines) and the force enhancement factor \(\eta_F^T \) calculated for perfect mirrors at 300K (dashed-dotted lines).

![Figure 1](image1.png)
FIG. 1. Force correction factor for Al (upper figure) and Cu and Au (lower graph) as function of the mirrors distance at \(T = 300K \).

Figure 2 shows similar results for the factor \(\eta_E \) obtained through numerical evaluation of the Casimir free energy. The shape of the graphs is similar to the ones of
the force. However, while finite conductivity corrections are more important for the force, thermal effects have a larger influence on energy.

For the force as well as for the energy, temperature corrections are negligible in the short distance limit while conductivity corrections may be ignored at large distances. The whole correction factor η behaves roughly as the product $\eta^P\eta^T$ of the 2 correction factors evaluated separately. However, both correction factors are appreciable in the distance range $1 - 4 \mu m$ in between the two limiting cases. Since this range is important for the comparison between experiments and theory, it is necessary to discuss in a more precise manner how good is the often used approximation which identifies η to the product $\eta^P\eta^T$. In order to assess the quality of this approximation, we have plotted in figure 3 the quantities δF and δE as a function of the distance for Al, Cu-Au and two additional plasma wavelengths. A value of $\delta = 0$ would signify that the approximation gives an exact estimation of the whole correction. An important outcome of our calculation is that the errors δF and δE are of the order of 1% for Al and Cu-Au at a temperature of 300K.

For estimations at the 5% level, the separate calculation of η^P and η^T and the evaluation of η as the product $\eta^P\eta^T$ can therefore be used. However, if a 1% level or a better accuracy is aimed at, this approximation is not sufficient. It should be noticed furthermore that the error increases when the temperature or the plasma wavelength are increased. It becomes of the order of 4% for a plasma wavelength of 0.5 μm at 300K. The sign obtained for δ means that the approximation gives too small values of force and energy.

We want now to emphasize a few points. In order to make the discussion precise, we give numerical values of the correction factors for 2 experimentally relevant distances, namely 0.5μm and 3μm. The first distance corresponds to the smallest distance for which the plasma model gives results in correct agreement with the integration of optical data. For this distance, the thermal corrections do not play a significant role ($\eta^T = 1.000$;
factors this short distance range however, the whole correction obtained through an integration of optical data [16]. In to take into account the more accurate dielectric function of \(\eta \) and \(\epsilon \) for distances smaller than 0.5 \(\mu \)m have to be included if a high accuracy is aimed at. This is especially true in the case of Casimir energy.

At shorter distances the results obtained with the plasma model depart from the values calculated from the integration of optical data by more than 1%. Hence, the values of \(\eta^P \) and \(\eta^E \) used for distances smaller than 0.5 \(\mu \)m have to take into account the more accurate dielectric function obtained through an integration of optical data [16]. In this short distance range however, the whole correction factors \(\eta^P \) and \(\eta^E \) may be obtained as the products \(\eta^P \eta^T \) and \(\eta^E \eta^T \).

In the long distance range in contrast, the temperature correction becomes predominant. The conductivity correction has still to be accounted for but it may be calculated by using the plasma model. This is illustrated by the correction factors obtained for a distance of 3 \(\mu \)m (\(\eta^P = 1.117; \eta^E = 1.470 \)).

At shorter distances the results obtained with the plasma model depart from the values calculated from the integration of optical data by more than 1%. Hence, the values of \(\eta^P \) and \(\eta^E \) used for distances smaller than 0.5 \(\mu \)m have to take into account the more accurate dielectric function obtained through an integration of optical data [16]. In this short distance range however, the whole correction factors \(\eta^P \) and \(\eta^E \) may be obtained as the products \(\eta^P \eta^T \) and \(\eta^E \eta^T \).

In the long distance range in contrast, the temperature correction becomes predominant. The conductivity correction has still to be accounted for but it may be calculated by using the plasma model. This is illustrated by the correction factors obtained for a distance of 3 \(\mu \)m (\(\eta^P = 1.117; \eta^E = 1.470 \)).

For this distance, all corrections have to be taken into account. The metals cannot be considered as perfect reflectors yet, the temperature corrections are significant and the deviation between the exact correction and the mere product has to be included if a high accuracy is aimed at. This is especially true in the case of Casimir energy.

IV. SCALING LAWS FOR THE DEVIATIONS

An inspection of figure 3 shows that the curves corresponding to different plasma wavelengths \(\lambda_P \) have similar shapes with a maximum which is practically attained for the same distance between the mirrors. The amplitude of the deviations, which is larger for the energy than for the force, is found to vary linearly as a function of the plasma wavelength \(\lambda_P \).

This scaling property is confirmed by figure 4 where we have drawn the deviations after an appropriate rescaling

\[
\Delta = \frac{\lambda_T}{\lambda_P} \delta
\]

The curves obtained for \(\Delta_F \) and \(\Delta_E \) for different plasma wavelengths at temperature \(T = 300K \) are nearly perfectly identical to each other. These curves correspond to values of the plasma wavelength small compared to the thermal wavelength and the scaling law would not be obeyed so well otherwise.

For this distance, all corrections have to be taken into account. The metals cannot be considered as perfect reflectors yet, the temperature corrections are significant and the deviation between the exact correction and the mere product has to be included if a high accuracy is aimed at. This is especially true in the case of Casimir energy.

IV. SCALING LAWS FOR THE DEVIATIONS

An inspection of figure 3 shows that the curves corresponding to different plasma wavelengths \(\lambda_P \) have similar shapes with a maximum which is practically attained for the same distance between the mirrors. The amplitude of the deviations, which is larger for the energy than for the force, is found to vary linearly as a function of the plasma wavelength \(\lambda_P \).

This scaling property is confirmed by figure 4 where we have drawn the deviations after an appropriate rescaling

\[
\Delta = \frac{\lambda_T}{\lambda_P} \delta
\]
taining the curves presented in the previous section. But it requires easier computations while nevertheless giving accurate estimations of the correction factors. Typically, the deviation δ with a magnitude of the order of the % may be estimated with a much better precision through the mere inspection of figure 4. Alternatively, one may use the analytical expression of the functions Δ presented in the next section and drawn as the solid lines on figure 4.

V. ANALYTICAL EXPRESSIONS OF THE DEVIATIONS

The results of numerical integrations presented in the foregoing section have shown that the deviations δ_F and δ_E are proportional to the plasma wavelength λ_P, for plasma wavelengths small compared to the thermal wavelength. In this final section, we explain this scaling law by using a partial analytical integration of the whole correction factors.

To this aim, we write the force correction factor by dividing (8) by the value of the ideal Casimir force

$$\eta_F = \eta_F^P + (\eta_F^T - 1) + \Delta \eta_F$$

(17)

The first term in (17) corresponds to the vacuum contribution (8)

$$\eta_F^P = \frac{120L^4}{\pi^4} \int_0^\infty d\kappa \kappa^3 \int_0^{r_1} dy \, f$$

(18)

with f still given by (8). A dimensionless frequency $y = \frac{\omega}{\pi \lambda}$ measured with respect to the wavevector has been introduced. Note also that the wavevector κ is involved through the dimensionless quantity κL, except in the expressions of reflection coefficients. In (18), the integration over y may be performed analytically (see the appendix A). At long distances, η_F^P tends to the limit of perfect reflection with a known correction [13, 15]

$$L \gg \lambda_P \rightarrow \eta_F^P = 1 - \frac{8}{3\pi} \frac{\lambda_P}{L} + \ldots$$

(19)

This expansion has been the subject of a number of papers and it has been used to propose interpolation formulas [23, 24]. However such a series expansion can hardly reproduce the behavior at small distances where η_F^P varies as $\frac{1}{\lambda_P}$, which just means that the conductivity effect is not a small perturbation at short distances (see the appendix A).

Coming back to the whole expression (17) of the force correction factor, it remains to discuss the thermal contributions, that is the second and third terms. These two terms come from the contributions ΔF and $\Delta \eta_F$, respectively. The opposite values of m give equal contributions and they have been gathered. The thermal contributions have been split in two parts, the second and third terms in (17), which correspond respectively to the limit of perfect mirrors on one hand

$$\eta_F^T - 1 = \frac{240L^4}{\pi^4} \sum_{m=1}^\infty \int_0^\infty d\kappa \kappa^3 \int_0^{r_1} dy \cos (m \kappa \lambda_T) f_1$$

$$f_1 = \frac{2}{e^{2\kappa L} - 1}$$

(20)

and the remainder on the other hand

$$\Delta \eta_F = \frac{240L^4}{\pi^4} \sum_{m=1}^\infty \int_0^\infty d\kappa \kappa^3 \int_0^{r_1} dy \cos (m \kappa \lambda_T) \Delta f$$

$$\Delta f = f - f_1$$

$$= -\frac{e^{2\kappa L}}{e^{2\kappa L} - 1} \left(\frac{1 - r_1^2}{e^{2\kappa L} - r_1^2} + \frac{1 - r_2^2}{e^{2\kappa L} - r_2^2} \right)$$

(21)

The contribution (21) has been denoted $(\eta_F^T - 1)$ with η_F^T the correction factor obtained for perfect mirrors at a non zero temperature. For this term the integration over y is trivial and the integration over κ may be performed analytically, leading to the known expression [13, 15]

$$\eta_F^T - 1 = \frac{480L^4}{\pi^4} \sum_{m=1}^\infty \int_0^\infty d\kappa \kappa^2 \sin \left(\frac{m \kappa \lambda_T}{\lambda_T} \right)$$

$$= 30 \sum_{m=1}^\infty \left(\frac{1}{(am)^4} - \frac{\cosh (am)}{am \sinh^3 (am)} \right)$$

$$\alpha = \frac{\pi \lambda_T}{2L}$$

(22)

To obtain the overall correction factor (17) it now remains to evaluate the last expression (22). This can be done numerically, thus leading to the same results as in the previous section since no approximation has been performed up to now. But the results of the previous section suggest that we may obtain an accurate estimation of this term through an expansion in powers of λ_P. The plasma wavelength λ_P is indeed much smaller than the thermal wavelength λ_T in all experimental situations studied up to now. Also, the deviation studied in the foregoing section is appreciable only for distances L much larger than λ_P. Hence an accurate description of the deviation factor should be obtained by evaluating $\Delta \eta_F$ at the first order in λ_P.

This first order term is easily deduced from (10, 21)

$$\Delta f \simeq -\frac{e^{2\kappa L}}{(e^{2\kappa L} - 1)^2} \left(\frac{1 - r_1^2 + 1 - r_2^2}{e^{2\kappa L} - r_2^2} \right)$$

$$\simeq -\frac{e^{2\kappa L}}{(e^{2\kappa L} - 1)^2} \frac{2\kappa \lambda_P}{\pi} \left(1 + y^2 \right)$$

(23)

It is proportional to λ_P and to a function ϕ_F which does no longer depend on λ_P

$$\Delta \eta_F \simeq \frac{\lambda_P}{L} \phi_F$$

6
\[\phi_F = \frac{15}{\pi} \sum_{m=1}^{\infty} \left(\frac{\cosh (am)}{(am)^3 \sinh (am)} + \frac{1}{(am)^2 \sinh^2 (am)} \right) + \frac{4 \cosh (am)}{am \sinh^3 (am)} - \frac{2 + 4 \cosh^2 (am)}{\sinh^4 (am)} \]

(24)

Collecting the results obtained up to now, we get an estimation of the force correction factor \(\eta_F \) valid in the long distance range \(L \gg \lambda_P \)

\[\eta_F = \eta_F^T + (1 - \eta_F) (\eta_F^T - 1) + \Delta \eta_F \]

\[\simeq \eta_F^T \eta_F + \frac{8}{3\pi} \frac{\lambda_P}{L} (\eta_F^T - 1) + \frac{\lambda_P}{L} \phi_F \]

(25)

Coming back to the notations of the previous section, this result is equivalent to the following expression for the function \(\Delta_F \)

\[\Delta_F = \frac{8}{3\pi} \frac{\lambda_P}{L} \left(\eta_F^T - 1 \right) + \frac{\lambda_P}{L} \frac{\phi_F}{\eta_F^T} \]

(26)

This function is plotted as the solid line on figure 4 and it is found to fit well the results of the complete numerical integration presented in the previous section.

Similar manipulations can be done for evaluating correction factors for the Casimir free energy. We give below the main results, that is the thermal correction factor evaluated for perfect mirrors

\[\eta_E^T - 1 = \frac{45}{\pi} \sum_{m=1}^{\infty} \left(\frac{2}{(am)^4} + \frac{1}{(am)^3 \tanh (am)} \right) + \frac{1}{(am)^2 \sinh^2 (am)} \]

(27)

and the first order correction

\[\Delta \eta_E \simeq \frac{\lambda_P}{L} \phi_E \]

\[\phi_E = \frac{45}{\pi} \sum_{m=1}^{\infty} \left(- \frac{4}{(am)^3} + \frac{1}{(am)^2 \tanh (am)} \right) + \frac{1}{(am)^2 \sinh^2 (am)} + \frac{2 \cosh (am)}{\sinh^3 (am)} \]

(28)

Since the long distance expansion of \(\eta_E^T \) up to first order in the plasma wavelength is given by

\[L \gg \lambda_P \rightarrow \eta_E^T = 1 - \frac{2}{\pi} \frac{\lambda_P}{L} + \ldots \]

(29)

we deduce the function \(\Delta_E \)

\[\Delta_E = \frac{2}{\pi} \frac{\lambda_T}{L} \left(\eta_E^T - 1 \right) + \frac{\lambda_T}{L} \frac{\phi_E}{\eta_E^T} \]

(30)

This function is plotted as the solid line on the second graph of figure 4 and also found to fit well the results of the numerical integration.

VI. SUMMARY

In the present paper, we have given an accurate evaluation of the Casimir force and Casimir free energy between 2 plane metallic mirrors, taking into account conductivity and temperature corrections at the same time. The whole corrections with respect to the ideal Casimir formulas, corresponding to perfect mirrors in vacuum, have been characterized by factors \(\eta_F \) for the force and \(\eta_E \) for the energy. These factors have been computed through a numerical evaluation of the integral formulas. They have also been given a simplified form as a product of 3 terms, namely the reduction factor associated with conductivity at null temperature, the increase factor associated with temperature for perfect mirrors, and a further deviation factor measuring a kind of interplay between the two effects. This last factor turns out to lie in the 1% range for metals used in the recent experiments performed at ambient temperature. Hence the conductivity and temperature corrections may be treated independently from each other and simply multiplied for theoretical estimations above this accuracy level.

However, when accurate comparisons between experimental and theoretical values of the Casimir force are aimed at, the deviation factor has to be taken into account in theoretical estimations. The deviation factor is appreciable for distances greater than the plasma wavelength \(\lambda_P \) but smaller or of the order of the thermal wavelength \(\lambda_T \). We have used this property to derive a scaling law of the deviation factor. This law allows one to obtain a simple but accurate estimation of the Casimir force and free energy through a mere inspection of figure 4. Alternatively one can use analytical expressions which have been obtained through a first order expansion in \(\lambda_P \) of the thermal contributions to Casimir forces and fit well the results of complete numerical integration.

We have represented the optical properties of metals by the plasma model. This model does not lead to reliable estimations of the forces at small distances but this deficiency may be corrected by using the real dielectric function of the metals. This does not affect the discussion of the present paper, except for the fact that the pure conductivity effect has to be computed through an integration of optical data for distances smaller than 0.5\(\mu \)m. Finally surface roughness corrections, which have not been considered in the present paper, are expected to play a significant role in theory-experiment comparisons in the short distance range.

Acknowledgements

We wish to thank Ephraim Fischbach, Marc-Thierry Jaekel, David Koltick, Paulo Americo Maia Neto and Roberto Onofrio for stimulating discussions.
APPENDIX A: THE VACUUM CONTRIBUTION

In the present appendix, we give further analytical expressions for the correction factor η^p due to conductivity, calculated with the plasma model for a null temperature.

Introducing the notations

$$\rho = \frac{\sqrt{\omega^2 + c^2 \kappa^2} - c \kappa}{\sqrt{\omega^2 + c^2 \kappa^2} + c \kappa} \quad y = \frac{\omega}{c \kappa}$$

we rewrite the reflection coefficients (10)

$$r_{\perp} = -\rho \quad r_{||} = \rho \frac{y^2 (1 - \rho)}{y^2 (1 - \rho) + 2 \rho}$$

In this case one integration may be performed analytically in (18)

$$\eta^p = \frac{120 L_4}{\pi^4} \int_0^{\infty} d\kappa \kappa^2 \frac{2 \rho^2 + \rho e^{\kappa L} g}{\kappa^2 - \rho^2}$$

$$g = 1 + \frac{a^2}{a_-} \arctan \frac{1}{a_-} - 1 - \frac{a^2}{a_+} \arctan \frac{1}{a_+}$$

$$a_{\pm} = \sqrt{e^{\kappa L} \pm \rho (1 + \rho)} \sqrt{e^{\kappa L} \mp \rho (1 - \rho)} - 1$$

At the large distance limit, η^p tends to unity, that is the value obtained for perfect reflectors. At the small distance limit, η^p is found to vary as (18)

$$L \ll \lambda_p \quad \eta^p \simeq \frac{\alpha}{\lambda_p}$$

$$\alpha = \frac{30}{\pi^2} \int_0^{\infty} dK e^{-\frac{2K}{L}} \left(\frac{K^2}{\sinh \frac{K}{L}} - \frac{K^2}{\cosh \frac{K}{L}} \right)$$

$$\simeq 1.193$$

[1] H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wet. 51 793 (1948)
[2] B.V. Deriagin and I.I. Abrikosova, Soviet Physics JETP 3 819 (1957)
[3] M.J. Sparnaay, Physica XXIV 751 (1958); W. Black, J.G.V. De Jongh, J.Th.G. Overbeek and M.J. Sparnaay, Transactions of the Faraday Society 56 1597 (1960)
[4] D. Tabor and R.H.S. Winterton, Nature 219 1120 (1968)
[5] E.S. Sabisky and C.H. Anderson, Phys. Rev. A7 790 (1973)
[6] S.K. Lamoreaux, Phys. Rev. Lett. 78 5 (1997); erratum in Phys. Rev. Lett. 81 5475 (1998)
[7] U. Mohideen and A. Roy, Phys. Rev. Lett. 81 4549 (1998)
[8] A. Roy, C. Lin and U. Mohideen, Phys. Rev. D 60, 111101 (1999)
[9] E. Fischbach and C. Talmadge, The Search for Non Newtonian Gravity (AIP Press/Springer Verlag, 1998) and references therein; E. Fischbach and D.E. Krause, Phys. Rev. Lett. 82 4753 (1999)
[10] G. Carugno, Z. Fontana, R. Onofrio and C. Rizzo, Phys. Rev. D55 6591 (1997)
[11] M. Bordag, B. Geyer, G.L. Klimchitskaya, and V.M. Mostepanenko, Phys. Rev. D60 055004 (1999)
[12] E.M. Lifshitz, Sov. Phys. JETP 2 73 (1956); E.M. Lifshitz and L.P. Pitaevskii, Landau and Lifshitz Course of Theoretical Physics: Statistical Physics Part 2 ch VIII (Butterworth-Heinemann, 1980)
[13] J. Mehra, Physica 57 147 (1967)
[14] L.S. Brown and G.J. Maclay, Phys. Rev. 184 1272 (1969)
[15] J. Schwinger, L.L. de Raad Jr., and K.A. Milton, Annals of Physics 115 1 (1978)
[16] A. Lambrecht and S. Reynaud, Eur. Phys. J. D, to appear; quant-ph/9907105
[17] B.V. Deriagin, I.I. Abrikosova and E.M. Lifshitz, Quart. Rev. 10, 295 (1968)
[18] J. Blocki, J. Randrup, W.J. Swiatecki and C.F. Tsang, Ann. Physics 105, 427 (1977)
[19] V.M. Mostepanenko and N.N. Trunov Sov. J. Nucl. Phys. 42 812 (1985)
[20] V.B. Bezerra, G.L. Klimchitskaya and C. Romero, Mod. Phys. Lett. 12, 2613 (1997)
[21] G.L. Klimchitskaya, A. Roy, U. Mohideen and V.M. Mostepanenko, Phys. Rev. A60 3487 (1999)
[22] M.T. Jaekel and S. Reynaud, J. Physique I-1 1395 (1991)
[23] L.G. Schulz, Phil. Mag. Suppl. 6 102 (1957)
[24] H. Ehrenreich and H.R. Philipp, Phys. Rev. 128 1622 (1962)