FTT-NAS: Discovering Fault-Tolerant Neural Architecture

Xuefei Ning, Guangjun Ge, Wenshuo Li, Zhenhua Zhu, Yin Zheng, Xiaoming Chen, Member, IEEE, Zhen Gao, Yu Wang, Senior Member, IEEE, and Huazhong Yang, Fellow, IEEE

Abstract—With the fast evolvement of embedded deep-learning computing systems, applications powered by deep learning are moving from the cloud to the edge. When deploying neural networks (NNs) onto the devices under complex environments, there are various types of possible faults: soft errors caused by cosmic radiation and radioactive impurities, voltage instability, aging, temperature variations, and malicious attackers. Thus the safety risk of deploying NNs is now drawing much attention. In this paper, after the analysis of the possible faults in various types of NN accelerators, we formalize and implement various fault models from the algorithmic perspective. We propose Fault-Tolerant Neural Architecture Search (FTT-NAS) to automatically discover convolutional neural network (CNN) architectures that are reliable to various faults in nowadays devices. Then we incorporate fault-tolerant training (FTT) in the search process to achieve better results, which is referred to as FTT-NAS. Experiments on CIFAR-10 show that the discovered architectures outperform other manually designed baseline architectures significantly, with comparable or fewer floating-point operations (FLOPs) and parameters. Specifically, with the same fault settings, F-FTT-Net discovered under the feature fault model achieves an accuracy of 86.2% (VS. 68.1% achieved by MobileNet-V2), and W-FTT-Net discovered under the weight fault model achieves an accuracy of 69.6% (VS. 60.8% achieved by ResNet-20). By inspecting the discovered architectures, we find that the operation primitives, the weight quantization range, the capacity of the model, and the connection pattern have influences on the fault resilience capability of NN models.

I. INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have achieved breakthroughs in various tasks, including classification [1], detection [2] and segmentation [3], etc. Due to their promising performance, CNNs have been utilized in various safety-critic applications, such as autonomous driving, intelligent surveillance, and identification. Meanwhile, driven by the recent academic and industrial efforts, the neural network accelerators based on various hardware platforms (e.g., Application Specific Integrated Circuits (ASIC) [4], Field Programmable Gate Array (FPGA) [5], Resistive Random-Access Memory (RRAM) [6]) have been rapidly evolving.

The robustness and reliability related issues of deploying neural networks onto various embedded devices for safety-critical applications are attracting more and more attention. There is a large stream of algorithmic studies on various robustness-related characteristics of NNs, e.g., adversarial robustness [7], data poisoning [8], interpretability [9] and so on. However, no hardware models are taken into consideration in these studies. Besides the issues from the purely algorithmic perspective, there exist hardware-related reliability issues when deploying NNs onto the nowadays embedded devices. With the down-scaling of CMOS technology, circuits become more sensitive to cosmic radiation and radioactive impurities [10]. Voltage instability, aging, and temperature variations are also common effects that could lead to errors. As for the emerging metal-oxide RRAM devices, due to the immature technology, they suffer from many types of device faults [11], among which hard faults such as Stuck-at-Faults (SAFs) damage the computing accuracy severely and could not be easily mitigated [12]. Moreover, malicious attackers can attack the edge devices by embedding hardware Trojans, manipulating back-doors, and doing memory injection [13].

Recently, some studies [14], [15], [16] analyzed the sensitivity of NN models. They proposed to predict whether a layer or a neuron is sensitive to faults and protect the sensitive ones. For fault tolerance, a straightforward way is to introduce redundancy in the hardware. Triple Modular Redundancy (TMR) is a commonly used but expensive method to tolerate a single fault [17], [18], [19]. Studies [12], [14] proposed various redundancy schemes for Stuck-at-Faults tolerance in the RRAM-based Computing Systems. For increasing the algorithmic fault resilience capability, studies [20], [21] proposed to use fault-tolerant training (FTT), in which random faults are injected in the training process.

Although redesigning the hardware for reliability is effective, it is not flexible and inevitably introduces large overhead. It would be better if the issues could be mitigated as far as possible from the algorithmic perspective. Existing methods mainly concerned about designing training methods and analyzing the weight distribution [10], [20], [21]. Intuitively, the neural architecture might also be important for the fault tolerance characteristics [22], [23], since it determines the “path” of fault propagation. To verify these intuitions, the accuracies of baselines under a random bit-bias feature fault
mode\(^1\) are shown in Table II and the results under SAF weight fault model\(^2\) are shown in Table II. These preliminary experiments on the CIFAR-10 dataset show that the fault tolerance characteristics vary among neural architectures, which motivates the employment of the neural architecture search (NAS) technique into the designing of fault-tolerant neural architectures. We emphasize that our work is orthogonal to most of the previous methods based on hardware or mapping strategy design. To our best knowledge, our work is the first to increase the algorithmic fault resilience capability by optimizing the NN architecture.

TABLE I: Performance of the baseline models with random bit-bias feature faults. \(0/10^{-5}/10^{-4}\) denotes the per-MAC fault rate.

Model	Acc(\(0/10^{-5}/10^{-4}\))	#Params	#FLOPs
ResNet-20	94.7/63.4/10.0	11.2M	1110M
VGG-16\(^3\)	93.1/21.4/14.3	14.7M	626M
MobileNet-V2	92.3/10.0/10.0	2.3M	182M

\(^1\): For simplicity, we only keep one fully-connected layer of VGG-Tb.

TABLE II: Performance of the baseline models with SAF weight faults. \(0%/4%/8%\) denotes the sum of the SAF1 and SAF0 rates.

Model	Acc(\(0/4%/8\))	#Params	#FLOPs
ResNet-20	94.7/64.8/17.8	11.2M	1110M
VGG-16	93.1/45.7/14.3	14.7M	626M
MobileNet-V2	92.3/26.2/11.7	2.3M	182M

In this paper, we employ NAS to discover fault-tolerant neural network architectures against feature faults and weight faults, and demonstrate the effectiveness by experiments. The main contributions of this paper are as follows.

- We analyze the possible faults in various types of NN accelerators (ASIC-based, FPGA-based, and RRAM-based), and formalize the statistical fault models from the algorithmic perspective. After the analysis, we adopt the Multiply-Accumulate (MAC)-i.i.d Bit-Bias (MiBB) model and the arbitrary-distributed Stuck-at-Fault (ad-SAF) model in the neural architecture search for tolerating feature faults and weight faults, respectively.
- We establish a multi-objective neural architecture search framework. On top of this framework, we propose two methods to discover neural architectures with better reliability: \(\text{FT-NAS}\) (NAS with a fault-tolerant multi-objective), and \(\text{FTT-NAS}\) (NAS with a fault-tolerant multi-objective and fault-tolerant training (FTT)).
- We employ FT-NAS and FTT-NAS to discover architectures for tolerating feature faults and weight faults. The discovered architectures, F-FTT-Net and W-FTT-Net have comparable or fewer floating-point operations (FLOPs) and parameters, and achieve better fault resilience capabilities than the baselines. With the same fault settings, F-FTT-Net discovered under the feature fault model achieves an accuracy of 86.2% (VS. 68.1% achieved by MobileNet-V2), and W-FTT-Net discovered under the weight fault model achieves an accuracy of 69.6% (VS. 60.8% achieved by ResNet-20). The ability of W-FTT-Net to defend against several other types of weight faults is also illustrated by experiments.
- We analyze the discovered architectures, and discuss how the weight quantization range, the capacity of the model, and the connection pattern influence the fault resilience capability of a neural network.

The rest of this paper is organized as follows. The related studies and the preliminaries are introduced in Section II. In Section III we conduct comprehensive analysis on the possible faults and formalize the fault models. In Section IV we elaborate on the design of the fault-tolerant NAS system. Then in Section V the effectiveness of our method is illustrated by experiments, and the insights are also presented. Finally, we discuss and conclude our work in Section VI and Section VII.

II. RELATED WORK AND PRELIMINARY

A. Convolutional Neural Network

Usually, a convolutional neural network is constructed by stacking multiple convolution layers and optional pooling layers, followed by fully-connected layers. Denoting the input feature map (IFM), before-activation output feature map, output feature map (OFM, i.e. activations), weights and bias of \(i\)-th convolution layer as \(x_i, f_i, y_i, W_i, b_i\), the computation can be written as:

\[
f_i = W_i \odot x_i + b_i
\]

\[
y_i = g(f_i)
\]

where \(\odot\) is the convolution operator, \(g(\cdot)\) is the activation function, for which \(\text{ReLU} g(x) = \max(x, 0)\) is the commonest choice. From now on, we omit the \(i\) subscript for simplicity.

B. NN Accelerators and Fixed-point Arithmetic

With dedicated data flow design for efficient neural network processing, FPGA-based NN accelerators could achieve at least 10x better energy efficiency than GPUs \(^5\). And ASIC-based accelerators could achieve even higher efficiency \(^4\). Besides, RRAM-based Computing Systems (RC-Ses) are promising solutions for energy-efficient brain-inspired computing \(^6\), due to their capability of performing matrix-vector-multiplications (MVMs) in memory. Existing studies have shown RRAM-based Processing-In-Memory (PIM) architectures can enhance the energy efficiency by over 100x compared with both GPU and ASIC solutions, as they can eliminate the large data movements of bandwidth-bounded NN applications \(^7\). For the detailed and formal hardware architecture descriptions, we refer the readers to the references listed above.

Currently, fixed-point arithmetic units are implemented by most of the NN accelerators, as 1) they consume much fewer resources and are much more efficient than the floating-point ones \(^24\); 2) NN models are proven to be insensitive to quantization \(^24, 25\). Consequently, quantization is usually
applied before a neural network model is deployed onto the edge devices. To keep consistent with the actual deploying scenario, our simulation incorporates 8-bit dynamic fixed-point quantization for the weights and activations. More specifically, independent step sizes are used for the weights and activations of different layers. Denoting the fraction length and bit-width of a tensor as l and Q, the step size (resolution) of the representation is 2^{-l}. For common CMOS platforms, in which complement representation is used for numbers, the representation range of both weights and features is

$$[-2^{Q-l}, 2^{-l}(2^Q - 1)]$$

As for RRAM-based NN platforms, two separate crossbars are used for storing positive and negative weights. Thus the representation range of the weights is

$$[-R^w, R^w] = [-2^{-l}(2^{Q+1} - 1), 2^{-l}(2^{Q+1} - 1)]$$

For the feature representation in RRAM-based platforms, by assuming that the Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs) have enough precision, and the CMOS bit-width is Q-bit, the representation range of features in CMOS circuits is

$$[-R^f, R^f] = [-2^{Q-l}, 2^{-l}(2^Q - 1)]$$

C. Fault Resilience for CMOS-based Accelerators

revealed that advanced nanotechnology makes circuits more vulnerable to soft errors. Unlike hard errors, soft errors do not damage the underlying circuits, but instead trigger an upset of the logic state. The dominant cause of soft errors in CMOS circuits is radioactive events, in which a single particle strikes an electronic device. explored how the Single-Event Upset (SEU) faults impact the FPGA-based CNN computation system.

TMR is a commonly used approach to mitigate SEUs. Traditional TMR methods are agnostic of the NN applications and introduce large overhead. To exploit the NN applications’ characteristics to reduce the overhead, one should understand the behavior of NN models with computational faults. analyzed the layer-wise sensitivity of NN models under two hypothetical feature fault models. proposed to only triplicate the vulnerable layers after layer-wise sensitivity analysis and reduced the LUTs overhead for an NN model on Iris Flower from about 200% (TMR) to 50%. conducted sensitivity analysis on the individual neuron level. found that the impacts and propagation of computational faults in an NN computation system depend on the hardware data path, the model topology, and the type of layers. These methods analyzed the sensitivity of existing NN models at different granularities and exploited the resilience characteristics to reduce the hardware overhead for reliability. Our methods are complementary and discover NN architectures with better algorithmic resilience capability.

To avoid the accumulation of the persistent soft errors in FPGA configuration registers, the scrubbing technique is applied by checking and partially reloading the configuration bits. From the algorithmic perspective, demonstrated the effectiveness of fault-tolerant training (FTT) in the presence of SRAM bit failures.

D. Fault Resilience for RRAM-based Accelerators

RRAM devices suffer from lots of device faults, among which the commonly occurring SAFs are shown to cause severe degradation in the performance of mapped neural networks. RRAM cells containing SAF faults get stuck at high-resistance state (SAF0) or low-resistance state (SAF1), thereby causing the weight to be stuck at the lowest or highest magnitudes of the representation range, respectively. Besides the hard errors, resistance programming variation is another source of faults for NN applications.

For the detection of SAFs, proposed fault detection methods that can provide high fault coverage. proposed on-line fault detection method that can periodically detect the current distribution of faults.

Most of the existing studies on improving the fault resilience ability of RRAM-based neural computation system focus on designing the mapping and retraining methods. proposed different mapping strategies and the corresponding hardware redundancy design. After the distribution detection of the faults and variations, they proposed to retrain (i.e. finetune) the NN model for tolerating the detected faults, which is exploiting the intrinsic fault resilience capability of NN models. To overcome the programming variations, calculated the calibrated programming target weights with the log-normal resistance variation model, and proposed to map sensitive synapses onto cells with small variations. From the algorithmic perspective, proposed to use error-correcting output codes (ECOC) to improve the NN’s resilience capability for tolerating resistance variations and SAFs.

E. Neural Architecture Search

Neural Architecture Search, as an automatic neural network architecture design method, has been recently applied to design model architectures for image classification and language models. The architectures discovered by the NAS techniques have demonstrated surpassing performance than the manually designed ones. used a recurrent neural network (RNN) controller to sample architectures, trained them, and used the final validation accuracy to instruct the learning of the controller. Instead of using reinforcement learning (RL)-learned RNN as the controller, used a relaxed differentiable formulation of the neural architecture search problem, and applied gradient-based optimizer for optimizing the architecture parameters. used evolutionary-based methods for sampling new architectures, by mutating the architectures in the population. Although NASNet is powerful, the search process is extremely slow and computationally expensive. To address this pitfall, a lot of methods are proposed to speed up the performance evaluation in NAS. incorporated learning curve extrapolation to predict the final performance after a few epochs of training. sampled architectures using mutation on existing models and initialized the weights of the sampled architectures by inheriting from the
The goal of the NAS problem is to discover the architecture that maximizes some predefined objectives. The process of the original NAS algorithm goes as follows. At each iteration, α is sampled from the architecture search space \mathcal{A}. This architecture is then assembled as a candidate network $\text{Net}(\alpha, w)$, where w is the weights to be trained. After training the weights w on the training data split D_t, the evaluated reward used to instruct the sampling process, and L denotes the loss criterion for back propagation during the training of the weights w.

Originally, for the performance evaluation of each sampled architecture α, one needs to find the corresponding $w^*(\alpha)$ by fully training the candidate network from scratch. This process is extremely slow, and shared weights evaluation is commonly used for accelerating the evaluation. In shared weights evaluation, each candidate architecture α is a subgraph of a super network and is evaluated using a subset of the super network weights. The shared weights of the super network are updated along the search process.

III. Fault Models

In Sec. III-A we motivate and discuss the formalization of application-level statistical fault models. Platform-specific analysis is conducted in Sec. III-B and Sec. III-C. Finally, the MAC-i.i.d Bit-Bias (MiBB) feature fault model and the arbitrary-distributed Stuck-at-Fault model (adSAF) weight fault model are described in Sec. III-D and Sec. III-E which would be used in the neural architecture search process. The analyses in this part are summarized in Fig. 4 (a) and Table III.

A. Application-Level Modeling of Computational Faults

Computational faults do not necessarily result in functional errors [10], [23]. For example, a neural network for classification tasks usually outputs a class probability vector, and our work only regards it as a functional error i.f.f the top-1 decision becomes different from the golden result. Due to the complexity of the NN computations and different functional error definition, it’s very inefficient to incorporate gate-level fault injection or propagation analysis into the training or architecture search process. Therefore, to evaluate and further boost the algorithmic resilience of neural networks to computational faults, the application-level fault models should be formalized.

From the algorithmic perspective, the faults fall into two categories: weight faults and feature faults. In this section, we analyze the possible faults in various types of NN accelerators, and formalize the statistical feature and weight fault models. A summary of these fault models is shown in Table III.

Note that we focus on the computational faults along the datapath inside the NN accelerator that could be modeled and mitigated from the algorithmic perspective. Faults in the control units and other chips in the system are not considered. See more discussion in the “limitation of application-level fault models” section in Sec. VI.

B. Analysis of CMOS-based Platforms: ASIC and FPGA

The possible errors in CMOS-based platforms are illustrated in Fig. 1. Soft errors that happen in the memory elements or the logic elements could lead to transient faulty outputs in ASICs. Compared with logic elements (e.g., combinational logic gates, flip-flops), memory elements are more susceptible to soft errors [27]. An unprotected SRAM cell usually has a larger bit soft error rate (SER) than flip-flops. Since the occurring probability of hard errors is much smaller than that of the soft errors, we focus on the analysis of soft errors, despite that hard errors lead to permanent failures.

The soft errors in the weight buffer could be modeled as i.i.d weight random bit-flips. Given the original value as x, the distribution of a faulty value x' under the random bit-flip (BF) model could be written as

$$ x' \sim \text{BF}(x_0; p) $$

where $e_q \sim \text{Bernoulli}(p)$, $q = 1, \cdots, Q$.

By assuming that error occurs at each bit with an i.i.d bit SER of r_s, we know that each Q-bit weight has an i.i.d probability p_w to encounter error, and $p_w = (1 - (1 - r_s)^Q) \approx r_s \times Q$, as $r_s \times Q \ll 1$. It is worth to note that throughout the analysis, we assume that the SERs of all components $\ll 1$, hence the error rate at each level is approximated as the sum of the error rates of the independent sub-components. As each weight encounters error independently, a weight tensor is distributed as i.i.d random bit-flip (iBF): $w \sim \text{iBF}(w_0; r_s)$, where w_0 is the golden weights. [44] showed that the iBF
TABLE III: Summary of the NN application-level statistical fault models, due to various types of errors on different platforms. **Headers:** H/S refers to Hard/Soft errors; P/T refers to Persistent/Transient influences; F/W refers to Feature/Weight faults.

Platform	Error source	Error position	Logic component	H/S	P/T	Common mitigation	NN application level	F/W	Simplified statistical model
RRAM	SAF	SB-cell	Crossbar	H	P	detection+3R	W	w ~ 1-bit-adsAF(m_0; p_0, p_1)	
		MB-cell					W	w ~ 1-bit-adsAF(m_0; p_0, p_1)	
RRAM	variations	MB-cell	Crossbar	S	P	PS loop	W	w ~ LogNormal(u_0; σ), w ~ ReciprocalNormal(u_0; σ)	
FPGA/ASIC	SEE, overstress	SB-cell	Weight buffer	H	P	Ecc	W	w ~ 1-iBF(u_0; r_0 × M_p(t))	
	SEE, VS	SRAM		S	T			w ~ 1-iBF(u_0; r_0)	
FPGA	SEE, overstress	LUTs	PE	H	P	TMR	F	f ~ iBB(f_0; r_0 × M_0 × M_p(t))	
	SEE, VS			S		TMR	F	f ~ iBB(f_0; r_0 × M_0 × M_p(t))	
FPGA/ASIC/RRAM	SEE, overstress	SRAM	Feature buffer	H	P	Ecc	F	y ~ 1-iBF(u_0; r_0 × M_p(t))	
	SEE, VS			S	T			y ~ 1-iBF(u_0; r_0)	
ASIC	SEE, overstress	CL gates,	PE	H	P	TMR, DICE	F	f ~ 1-iBB(f_0; r_0 × M_0 × M_p(t))	
	SEE, VS	flip-flops		S	T			f ~ 1-iBB(f_0; r_0 × M_0)	

Notations: w, f, y refer to the weights, before-activation features, and after-activation features of a convolution; p_0, p_1 refer to the SAF0 and SAF1 rates of RRAM cells; σ refers to the standard deviation of RRAM programming variations; r_s, r_t refer to the soft and hard error rates of logic elements, respectively; M_0 is an amplifying coefficient for feature error rate due to multiple involved computational components; M_p(t) > 1 is a coefficient that abstracts the error accumulation effects over time.

Abbreviations: SEE refers to Single-Event Errors, e.g. Single-Event Burnout (SEB), Single-Event Upset (SEU), etc.; “overstress” includes soft errors than their ASIC counterparts [45]. Since the majority space of an FPGA chip is filled with memory cells, the overall SER rate is much higher. Moreover, the soft errors occurring in logic configuration bits would lead to persistent faulty computation, rather than transient faults as in ASIC logic. Persistent errors can not be mitigated by simple retry methods and would lead to statistically significant performance degradation. Moreover, since the persistent errors would be accumulated if no correction is made, the equivalent error rate would keep increasing as time goes on. We abstract this effect with a monotonic increasing function M_p(t) ≥ 1, where the subscript p denotes “persistent”, and t denotes the time.

model could capture the bit error behavior exhibited by real SRAM hardware.

The soft errors in the feature buffer are modeled similarly as i.i.d random bit-flips, with a fault probability of approximately r_s × Q for Q-bit feature values. The distribution of the output feature map (OFM) values could be written as y ~ ±1-iBF(y_0; r_s), where y_0 is the golden results.

FPGA-based implementations are often more vulnerable to soft errors than their ASIC counterparts [45]. Since the majority space of an FPGA chip is filled with memory cells, the overall SER rate is much higher. Moreover, the soft errors occurring in logic configuration bits would lead to persistent faulty computation, rather than transient faults as in ASIC logic. Persistent errors can not be mitigated by simple retry methods and would lead to statistically significant performance degradation. Moreover, since the persistent errors would be accumulated if no correction is made, the equivalent error rate would keep increasing as time goes on. We abstract this effect with a monotonic increasing function M_p(t) ≥ 1, where the subscript p denotes “persistent”, and t denotes the time.

Let us recap how one convolution is mapped onto the FPGA-based accelerator, to see what the configuration bit errors could cause on the OFM values. If the dimension of the convolution kernel is (c, k, k) (channel, kernel height, kernel width, respectively), there are ck^2 − 1 ∼ ck^2 additions needed for the computation of a feature value. We assume that the add operations are spatially expanded onto adder trees constructed by LUTs, i.e., no temporal reusing of adders is used for computing one feature value. That is to say, the add operations are mapped onto different hardware adders and encounter errors independently. The per-feature error rate could be approximated by the adder-wise SER times M_0, where the probability that multiple bit-bias errors co-occur is orders of magnitude smaller, we ignore the effect of the faulty output x' with the random bit-bias (BB) faults could be written as

\[x' \sim \text{Bernoulli}(p), \quad \beta_q \sim \text{Bernoulli}(0.5), \quad q = 1, \ldots, Q' \]

As for the result of the adder tree constructed by multiple LUT-based adders, since the probability that multiple bit-bias errors co-occur is orders of magnitude smaller, we ignore the accumulation of the biases that are smaller than the OFM quantization resolution 2^{-l}. Consequently, the OFM feature values before the activation function follow the i.i.d Random Bit-Bias distribution f ~ 1-iBB(f_0; r_s × M_0 × M_p(t), Q, l), where Q and l are the bit-width and fraction length of the OFM values, respectively.

\[e_q \sim \text{Bernoulli}(p), \quad \beta_q \sim \text{Bernoulli}(0.5), \quad q = 1, \ldots, Q' \]

\[x' \sim \text{Bernoulli}(p, Q', l') \]

\[e_q \sim \text{Bernoulli}(p), \quad \beta_q \sim \text{Bernoulli}(0.5), \quad q = 1, \ldots, Q' \]
We can make an intuitive comparison of the equivalent feature error rates induced by LUTs soft errors and feature buffer soft errors. As the majority of FPGAs is SRAM-based, considering the bit SER r_s of LUTs cell and BRAM cell to be close, we can see that the feature error rate induced by LUTs errors is amplified by $M_1 \times M_p(t)$. As we have discussed, $M_p(t) \geq 1, M_1 = c k^2 > 1,$ the performance degradation induced by LUTs errors could be significantly larger than that induced by feature buffer errors.

C. Analysis of PIM-based Platforms: RRAM as an example

In an RRAM-based Computing System (RCS), compared with the accompanying CMOS circuits, the RRAM crossbar is much more vulnerable to various non-ideal factors. In multi-bit RRAM cells, studies have shown that the distribution of the resistance due to programming variance is either Gaussian or Log-Normal [30]. As each weight is programmed as the conductance of the memristor cell, the weight could be seen as being distributed as Reciprocal-Normal or Log-Normal. Some non-ideal factors (e.g., IR-drop, wire resistance) could cause by fabrication defects or limited endurance, could result in severe performance degradation [12]. SAFs occur frequently in nowadays RRAM crossbar: As reported by [11], the overall SAF ratio could be larger than 10% ($p_1 = 9.04\%$ for SAF1 and $p_0 = 1.75\%$ for SAF0) in a fabricated RRAM device. The statistical model of SAFs in single-bit and multi-bit RRAM devices would be formalized in Sec. III-E.

As the RRAM crossbars also serve as the computation units, some non-ideal factors (e.g., IR-drop, wire resistance) could be abstracted as feature faults. They are not considered in this work since the modeling of these effects highly depends on the implementation (e.g., crossbar dimension, mapping strategy) and hardware-in-the-loop testing [20].

D. Feature Fault Model

As analyzed in Sec. III-E, the soft errors in LUTs are relatively the more pernicious source of feature faults, as 1) SER is usually much higher than hard error rate: $r_s \gg r_h,$ 2) these errors are persistent if no correction is made, 3) the per-feature equivalent error rate is amplified as multiple adders are involved. Therefore, we use the iBB fault model in our exploration of mitigating feature faults.

We have $f \sim \text{iBB}(f_{b1}; r_s M_1 M_p(t)),$ where $M_1 = ck^2,$ and the probability of error occurring at every position in the OFM is $p = r_s M_1 M_p(t)Q = p_m M_1,$ where $p_m = r_s Q M_p(t)$ is defined as the per-MAC error rate. Denoting the dimension of the OFM as (c, k, k) (channel, height, and width, respectively) and the dimension of each convolution kernel as $(c, k, k),$ the computation of a convolution layer under this fault model could be written as

$$y = g(W' \odot x + b)$$

s.t. $W' = (1 - \theta) \cdot W + \theta \cdot e$

$$\theta \sim \text{Bernoulli}(p_0 + p_1)^{c_0 \times c \times k \times k}$$

$$m \sim \text{Bernoulli}(\frac{p_1}{p_0 + p_1})^{c_0 \times c \times k \times k}$$

$$e = R^w \text{sgn}(W) \cdot m$$

where R^w refers to the representation bound in Eq. [3]. θ is the mask indicating whether fault occurs at each weight position, m is the mask representing the SAF types (SAF0 or SAF1) at faulty weight positions, e is the mask representing the faulty target values (0 or $\pm R^w$). Every single weight has an i.i.d probability of p_0 to be stuck at 0, and p_1 to be stuck at the positive or negative bounds of the representation range, for positive and negative weights, respectively. An example of injecting feature faults is illustrated in Fig. 2.

Intuitively, convolution computation that needs fewer MACs might be more immune to the faults, as the equivalent error rate at each OFM location is lower.

E. Weight Fault Model

As RRAM-based accelerators suffer from a much higher weight error rate than the CMOS-based ones. The Stuck-at-Faults in RRAM crossbars are mainly considered for the setup of the weight fault model. We assume the underlying platform is RRAM with multi-bit cells, and adopt the commonly-used mapping scheme, in which separate crossbars are used for storing positive and negative weights [6]. That is to say, when an SAF0 fault causes a cell to be stuck at HRS, the corresponding logical weight would be stuck at 0. When an SAF1 fault causes a cell to be stuck at LRS, the weight would be stuck at $-R^w$ if it’s negative, or R^w otherwise.

The computation of a convolution layer under the SAF weight fault model could be written as

$$y = g(W' \odot x + b)$$

s.t. $W' = (1 - \theta) \cdot W + \theta \cdot e$

$$\theta \sim \text{Bernoulli}(p_0 + p_1)^{c_0 \times c \times k \times k}$$

$$m \sim \text{Bernoulli}(\frac{p_1}{p_0 + p_1})^{c_0 \times c \times k \times k}$$

$$e = R^w \text{sgn}(W) \cdot m$$

where R^w refers to the representation bound in Eq. [3]. θ is the mask indicating whether fault occurs at each weight position, m is the mask representing the SAF types (SAF0 or SAF1) at faulty weight positions, e is the mask representing the faulty target values (0 or $\pm R^w$). Every single weight has an i.i.d probability of p_0 to be stuck at 0, and p_1 to be stuck at the positive or negative bounds of the representation range, for positive and negative weights, respectively. An example of injecting feature faults is illustrated in Fig. 2.

Note that the weight fault model, referred to as arbitrary-distributed Stuck-at-Fault model (adSAF), is much harder to
defend against both SAF faults with a specific known defect map. A neural network model that performs well under the adSAF model is expected to achieve high reliability across different specific SAF defect maps.

The above adSAF fault model assumes the underlying hardware is multi-bit RRAM devices, adSAFs in single-bit RRAM devices are also of interest. In single-bit RRAM devices, multiple bits of one weight value are mapped onto different crossbars, of which the results would be shifted and added together [46]. In this case, an SAF fault that occurs in a cell would cause the corresponding bit of the corresponding weight to be stuck at 0 or 1. The effects of adSAF faults on a weight value in single-bit RRAM devices can be formulated as

\[
\theta = \sum_{q=1}^{Q} \theta_q 2^{q-1}, \quad e = \sum_{q=1}^{Q} m_q 2^{q-1}
\]

where the binary representation of \(\theta \) indicates whether fault occurs at each bit position, the binary representation of \(e \) represents the target faulty values (0 or 1) at each bit position if fault occurs. We will demonstrate that the architecture discovered under the multi-bits adSAF fault model can also defend against single-bit adSAF faults and IBF weight faults caused by errors in the weight buffers of CMOS-based accelerators.

IV. FAULT-TOLERANT NAS

In this section, we present the FTT-NAS framework. We first give out the problem formalization and framework overview in Sec. IV-A. Then, the search space, sampling and assembling processes are described in Sec. IV-B and Sec. IV-C, respectively. Finally, the search process is elaborated in Sec. IV-D.

A. Framework Overview

Denoting the fault distribution characterized by the fault models as \(F \), the neural network search for fault tolerance can be formalized as

\[
\begin{align*}
\max_{\alpha \in \mathcal{A}} & \quad E_{x \sim D_x} [E_{f \sim F} [R(x, \alpha, w^*(\alpha), f)]] \\
\text{s.t.} & \quad w^*(\alpha) = \arg\min_{w} E_{x \sim D_x} [E_{f \sim F} [L(x, \alpha, w, f)]]
\end{align*}
\]

As the cost of finding the best weights \(w^* \) for each architecture \(\alpha \) is almost unbearable, we use the shared-weights based evaluator, in which shared weights are directly used to evaluate sampled architectures. The resulting method, FTT-NAS, is the method to solve this NAS problem approximately. And FT-NAS can be viewed as a degraded special case for FTT-NAS, in which no fault is injected in the inner optimization of finding \(w^*(\alpha) \).

The overall neural architecture search (NAS) framework is illustrated in Fig. 4(b). There are multiple components in the framework: A controller that samples different architecture rollouts from the search space; A candidate network is assembled by taking out the corresponding subset of weights from the super-net. A shared weights based evaluator evaluates the performance of different rollouts on the CIFAR10 dataset, using fault-tolerant objectives.

B. Search Space

The design of the search space is as follows: We use a cell-based macro architecture, similar to the one used in [38], [39]. There are two types of cells: normal cell, and reduction cell with stride 2. All normal cells share the same connection topology, while all reduction cells share another connection topology. The layout and connections between cells are illustrated in Fig. 5.

In every cell, there are \(B \) nodes, node 1 and node 2 are treated as the cell’s inputs, which are the outputs of the two previous cells. For each of the other \(B - 2 \) nodes, two incoming connections will be selected and element-wise added. For each connection, the 11 possible operations are: none; skip connect; 3x3 average (avg.) pool; 3x3 max pool; 1x1 Conv; 3x3 ReLU-Conv-BN block; 5x5 ReLU-Conv-BN block; 3x3 SepConv block; 5x5 SepConv block; 3x3 DilConv block; 5x5 DilConv block.

The complexity of the search space can be estimated. For each cell type, there are \((11^{(B-2)} \times (B-1))^2 \) possible choices. As there are two independent cell types, there are \((11^{(B-2)} \times (B-1))^4 \) possible architecture in the search space, which is roughly \(9.5 \times 10^{24} \) with \(B = 6 \) in our experiments.

C. Sampling and Assembling Architectures

In our experiments, the controller is a recurrent neural network (RNN), and the performance evaluation is based on a super network with shared weights, as used by [38].

An example of the sampled cell architecture is illustrated in Fig. 6. Specifically, to sample a cell architecture, the controller samples from the \(\mathcal{D} \), which will result in two independent connections from node \(j \) to node \(i \).

During the search process, the architecture assembling process using the shared-weights super network is straightforward [38]. Just take out the weights from the super network corresponding to the connections and operation types of the sampled architecture.
D. Searching for Fault-Tolerant Architecture

The FTT-NAS algorithm is illustrated in Alg. 1. To search for a fault-tolerant architecture, we use a weighted sum of the clean accuracy and the accuracy with fault injection as the reward to instruct the training of the controller:

$$R = (1 - \alpha_f) \cdot \text{acc}_c + \alpha_f \cdot \text{acc}_f$$ \hspace{1cm} (12)$$

where acc_f is calculated by injecting faults following the fault distribution described in Sec. III. For the optimization of the controller, we employ the Adam optimizer [47] to optimize the REINFORCE [48] objective, together with an entropy encouraging regularization.

In every epoch of the search process, we alternatively train the shared weights and the controller on separate data splits D_t and D_c, respectively. For the training of the shared weights, we carried out experiments under two different settings: without/with FTT. When training with FTT, a weighted sum of the clean cross entropy loss CE_c and the cross entropy loss with fault injection CE_f is used to train the shared weights. The FTT loss can be written as

$$L = (1 - \alpha_t) \cdot CE_c + \alpha_t \cdot CE_f$$ \hspace{1cm} (13)$$

As shown in line 7-12 in Alg. 1 in each step of training the shared weights, we sample architecture α using the current controller, then backpropagate using the FTT loss to update the parameters of the candidate network. Training without FTT (in FT-NAS) is a special case with $\alpha_t = 0$.

As shown in line 15-20 in Alg. 1 in each step of training the controller, we sample architecture from the controller, assemble this architecture using the shared weights, and then get the reward R on one data batch in D_c. Finally, the reward is used to update the controller by applying the REINFORCE technique [48], with the reward baseline denoted as b.

V. Experiments

In this section, we demonstrate the effectiveness of the FTT-NAS framework and analyze the discovered architectures under different fault models. First, we introduce the experiment setup in Sec. V-A. Then, the effectiveness under the feature and weight fault models are shown in Sec. V-B and Sec. V-C respectively. The effectiveness of the learned controller is illustrated in Sec. V-D. Finally, the analyses and illustrative experiments are presented in Sec. V-E.
Fig. 5: Illustration of the search space design. Left: The layout and connections between cells. Right: The possible operation types on every connection.

Fig. 6: An example of the sampled cell architecture.

A. Setup

Our experiments are carried out on the CIFAR-10 dataset. CIFAR-10 is one of the most commonly used computer vision datasets and contains 60000 32×32 RGB images. Three manually designed architectures VGG-16, ResNet-20, and MobileNet-V2 are chosen as the baselines. 8-bit dynamic fixed-point quantization is used throughout the search and training process, and the fraction length is found following the minimal-overflow principle.

In the neural architecture search process, we split the training dataset into two subsets. 80% of the training data is used to train the shared weights, and the remaining 20% is used to train the controller. The super network is an 8-cell network, with all the possible connections and operations. The channel number of the first cell is set to 20 during the search process, and the channel number increases by 2 upon every reduction cell. The controller network is an RNN with one hidden layer of size 100. The learning rate for training the controller is $1e^{-3}$. The reward baseline b is updated using a moving average with momentum 0.99. To encourage exploration, we add an entropy encouraging regularization to the controller’s REINFORCE objective, with a coefficient of 0.01. For training the shared weights, we use an SGD optimizer with momentum 0.9 and weight decay $1e^{-4}$, the learning rate is scheduled by a cosine annealing scheduler [50], started from 0.05. Each architecture search process is run for 100 epochs. Note that all these are typical settings that are similar to [38]. We build the neural architecture search framework and fault injection framework upon the PyTorch framework.

B. Defend Against MiBB Feature Faults

As described in Sec. IV we conduct neural architecture searching without/with fault-tolerant training (i.e., FT-NAS and FTT-NAS, correspondingly). The per-MAC injection probability p_m used in the search process is $1e^{-4}$. The reward coefficients α in Eq. (12) is set to 0.5. In FTT-NAS, the loss coefficient α in Eq. (13) is also set to 0.5. As the baselines for FT-NAS and FTT-NAS, we train ResNet-20, VGG-16, MobileNet-V2 with both normal training and FTT. For each model trained with FTT, we successively try per-MAC fault injection probability p_m in $\{3e^{-4}, 1e^{-4}, 3e^{-5}\}$, and use the largest injection probability with which the model could achieve a clean accuracy above 50%. Consequently, the

Algorithm 1 FTT-NAS

1: EPOCH: the total search epochs
2: w: shared weights in the super network
3: θ: the parameters of the controller
4: epoch = 0
5: while epoch < EPOCH do
6: for all $x_t, y_t \sim D_t$ do
7: $a \sim \pi(a; \theta)$
8: $f \sim F(f)$
9: $L_c = CE(Net(a; w)(x_t), y_t)$ # clean cross entropy
10: end for
11: $L_f = CE(Net(a; w)(x_t, f), y_t)$ # faulty cross entropy
12: $L(x_t, y_t, Net(a; w), f) = (1 - \alpha_t)L_c + \alpha_tL_f$
13: $w = w - \eta_w \nabla_w L$
14: end for
15: for all $x_v, y_v \sim D_v$ do
16: $a \sim \pi(a; \theta)$
17: $f \sim F(f)$
18: $R_c = Acc(Net(a; w)(x_v), y_v)$ # clean accuracy
19: $R_f = Acc(Net(a; w)(x_v, f), y_v)$ # faulty accuracy
20: $R(x_v, y_v, Net(a; w), f) = (1 - \alpha_r) * R_c + \alpha_r * R_f$
21: $\theta = \theta + \eta_\theta (R - b)\nabla_\theta \log \pi(a; \theta)$
22: end for
23: schedule η_w, η_θ
24: end while
25: return $a \sim \pi(a; \theta)$
TABLE IV: Comparison of different architectures under the MiBB feature fault model

Arch	Training	Clean accuracy	Accuracy with feature faults (%)	#FLOPs	#Params				
			3e-6	1e-5	3e-5	1e-4			
ResNet-20	clean	94.7	89.1	63.4	11.5	10.0	10.0	1110M	11.16M
VGG-16	clean	93.1	87.2	21.4	10.0	10.0	10.0	626M	14.65M
MobileNet-V2	clean	92.3	10.0	10.0	10.0	10.0	10.0	182M	2.30M
F-FTT-Net	clean	91.0	71.3	22.8	10.0	10.0	10.0	234M	0.61M
ResNet-20 p_m=1e-4		79.2	79.1	79.6	78.9	60.6	11.3	1110M	11.16M
VGG-16 p_m=3e-5		83.5	82.4	77.9	50.7	11.1	10.0	626M	14.65M
MobileNet-V2 p_m=3e-4		71.2	70.3	69.0	68.7	68.1	47.8	182M	2.30M
F-FTT-Net p_m=3e-4		88.6	88.7	88.5	88.0	86.2	51.0	245M	0.65M

†: As also noted in the main text, for all the FTT trained models, we successively try per-MAC fault injection probability p_m in {3e-4, 1e-4, 3e-5}, and use the largest injection probability with which the model could achieve a clean accuracy above 50%.

ResNet-20 and VGG-16 are trained with a per-MAC fault injection probability of 1e-4 and 3e-5, respectively.

The discovered cell architectures are shown in Fig. 7 and the evaluation results are shown in Table [IV] The discovered architecture F-FTT-Net outperforms the baselines significantly at various fault ratios. In the meantime, compared with the most efficient baseline MobileNet-V2, the FLOPs number of F-FTT-Net is comparable, and the parameter number is only 28.3% (0.65M versus 2.30M). If we require that the accuracy F-FTT-Net is comparable, and the parameter number is only most efficient baseline MobileNet-V2, the FLOPs number of at various fault ratios. In the meantime, compared with the architecture F-FTT-Net outperforms the baselines significantly at various test SAF ratios, with comparable FLOPs and less parameter number. We then apply channel augmentation to the discovered architecture to explore the performance of the model at different scales. We can see that models with larger capacity have better reliability under the adSAF weight fault model, e.g., 54.2% (W-FTT-Net-40) VS. 38.4% (W-FTT-Net-20) with 10% adSAF faults.

To investigate whether the model FTT-trained under the adSAF fault model can tolerate other types of weight faults, we evaluate the reliability of W-FTT-Net under 1bit-adSAF model and the iBF model. As shown in Fig. 8, the discovered architecture W-FFTA-N outperforms all the baselines at different test SAF ratios.

The discovered cell architectures are shown in Fig. 8. As shown in Table [V] the discovered W-FTT-Net architecture W-FTT-Net outperforms the baselines significantly at various test SAF ratios, with comparable FLOPs and less parameter number. We then apply channel augmentation to the discovered architecture to explore the performance of the model at different scales. We can see that models with larger capacity have better reliability under the adSAF weight fault model, e.g., 54.2% (W-FTT-Net-40) VS. 38.4% (W-FTT-Net-20) with 10% adSAF faults.

C. Defend Against adSAF Weight Faults

We conduct FT-NAS and FTT-NAS under the adSAF model. The overall SAF ratio p = p_0 + p_1 is set to 8%, in which the proportion of SAF0 and SAF1 is 83.7% and 16.3%, respectively (p_0=6.7%, p_1=1.3%). The reward coefficient α_r is set to 0.2. The loss coefficient α_l in FTT-NAS is set to 0.7.

The discovered cell architectures are shown in Fig. 7 and the evaluation results are shown in Table [IV] The discovered architecture F-FTT-Net outperforms the baselines significantly at various test SAF ratios, with comparable FLOPs and less parameter number. We then apply channel augmentation to the discovered architecture to explore the performance of the model at different scales. We can see that models with larger capacity have better reliability under the adSAF weight fault model, e.g., 54.2% (W-FTT-Net-40) VS. 38.4% (W-FTT-Net-20) with 10% adSAF faults.

To investigate whether the model FTT-trained under the adSAF fault model can tolerate other types of weight faults, we evaluate the reliability of W-FTT-Net under 1bit-adSAF model and the iBF model. As shown in Fig. 8, the discovered architecture W-FTT-Net outperforms all the baselines at different test SAF ratios.

D. The Effectiveness of The Learned Controller

To demonstrate the effectiveness of the learned controller, we compare the performance of the architectures sampled by the controller, with the performance of the architectures random sampled from the search space. For both the MiBB feature fault model and the adSAF weight fault model, we random sample 5 architectures from the search space, and train them with FTT for 100 epochs. A per-MAC fault injection probability of 3e-4 is used for feature faults, and an SAF ratio of 8% (p_0=6.7%, p_1=1.3%) is used for weight faults.
TABLE V: Comparison of different architectures under the adSAF weight fault model

Arch	Training	Clean accuracy	Accuracy with weight faults (%)	#FLOPs	#Params
			0.04 0.06 0.08 0.10 0.12		
ResNet-20	clean	94.7	64.8 34.9 17.8 12.4 11.0	1110M	11.16M
VGG-16	clean	93.1	45.7 21.7 14.3 12.6 10.6	626M	14.65M
MobileNet-V2	clean	92.3	26.2 14.3 11.7 10.3 10.5	182M	2.30M
W-FTT-Net-20	clean	91.7	54.2 30.7 19.6 15.5 11.9	1020M	3.05M
W-FTT-Net-20	p=0.08	92.0	86.4 77.9 60.8 41.6 25.6	1110M	11.16M
VGG-16	p=0.08	91.1	82.6 73.3 58.5 41.7 28.1	626M	14.65M
MobileNet-V2	p=0.08	86.3	76.6 55.9 35.7 18.7 15.1	182M	2.30M
W-FTT-Net-20†	p=0.08	90.8	86.2 79.5 69.6 53.5 38.4	919M	2.71M
W-FTT-Net-40	p=0.08	92.1	88.8 85.5 79.3 69.2 54.2	3655M	10.78M

†: The “-N” suffix means that the base of the channel number is N.

As shown in Table VI and Table VII, the performance of different architectures in the search space varies a lot, and the architectures sampled by the learned controllers, F-FTT-Net and W-FTT-Net, outperform all the random sampled architectures. Note that, as we use different preprocess operations for feature faults and weight faults (ReLU-Conv-BN 3x3 and SepConv 3x3, respectively), there exist differences in FLOPs and parameter number even with the same cell architectures.

E. Inspection of the Discovered Architectures

Feature faults: From the discovered cell architectures shown in Fig. 7 we can observe that the controller obviously prefers SepConv and DilConv blocks over Relu-Conv-BN blocks. This observation is consistent with our anticipation. As under the MiBB feature fault model, operations with smaller FLOPs will result in a lower equivalent fault rate in the OFM. Under the MiBB feature fault model, there is a tradeoff

Fig. 7: The discovered cell architectures under the adSAF weight fault model. (a) Normal cell. (b) Reduction cell.

Fig. 8: The discovered cell architectures under the adSAF weight fault model. (a) Normal cell. (b) Reduction cell.

Fig. 9: Accuracy curves under different weight fault models. (a) W-FTT-Net under 8bit-adSAF model. (b) W-FTT-Net under 1bit-adSAF model. (c) W-FTT-Net under iBF model.

TABLE VI: RNN controller VS. random samples under the MiBB feature fault model

Model	clean acc	p_{i} = 3e-4	#FLOPs	#Params
sample1	60.2	19.5	281M	0.81M
sample2	79.7	29.7	206M	0.58M
sample3	25.0	32.2	340M	1.09M
sample4	32.9	25.8	387M	1.23M
sample5	17.4	10.8	253M	0.77M
F-FTT-Net	88.6	51.0	245M	0.65M
between the capacity of the model and the feature error rate. As the number of channels increases, the operations become more expressive, but the equivalent error rates in the OFMs also get higher. Thus there exists a tradeoff point of more expressive, but the equivalent error rates in the OFMs between the capacity of the model and the feature error rate.

Besides the choices of primitives, the connection pattern and combination of different primitives also play a role in making the architecture fault-tolerant. To verify this, first, we conduct a simple experiment to confirm the preference of primitives: For each of the 4 different primitives (SepConv 3x3, SepConv 5x5, DilConv 3x3, DilConv 5x5), we stack 5 layers of the primitives, get the performance of the stacked NN after FTT training it with \(p_m = 3 \times 10^{-4} \). The stacked NNs achieve the accuracy of 60.0%, 65.1%, 50.0% and 56.3% with \(p_m = 1 \times 10^{-4} \), respectively. The stacked NN of SepConv 5x5 blocks achieves the best performance, which is of no surprise since the most frequent block in F-FTT-Net is SepConv5x5. Then, we construct six architectures by random sampling five architectures with only SepConv5x5 connections and replacing all the primitives in F-FTT-Net with SepConv 5x5 blocks. The best result achieved by these six architecture is 77.5% with \(p_m = 1 \times 10^{-4} \) (versus 86.2% achieved by F-FTT-Net). These illustrative experiments indicate that the connection pattern and combination of different primitives all play a role in the fault resilience capability of a neural network architecture.

Weight faults: Under the adSAF fault model, the controller prefers ReLU-Conv-BN blocks over SepConv and DilConv blocks. This preference is not so easy to anticipate. We hypothesize that the weight distribution of different primitives might lead to different behaviors when encountering SAF faults. For example, if the quantization range of a weight value is larger, the value deviation caused by an SAF1 fault would be larger, and we know that a large increase in the magnitude of weights would damage the performance severely \([21]\). We conduct a simple experiment to verify this hypothesis: We stack several blocks to construct a network, and in each block, one of the three operations (a SepConv3x3 block, a ReLU-Conv-BN 3x3 block, and a ReLU-Conv-BN 1x1 block) is randomly picked in every training step. The SepConv 3x3 block is constructed with a DepthwiseConv 3x3 and two Conv 1x1, and the ReLU-Conv-BN 3x3 and ReLU-Conv-BN 1x1 contain a Conv 3x3 and a Conv 1x1, respectively. After training, the weight magnitude ranges of Conv 3x3, Conv 1x1, and DepthwiseConv 3x3 are 0.036±0.043, 0.112±0.121, 0.140±0.094, respectively. Since the magnitude of the weights in 3x3 convolutions is smaller than that of the 1x1 convolutions and the depthwise convolutions, SAF weight faults would cause larger weight deviations in a SepConv or DilConv block than in a ReLU-Conv-BN 3x3 block.

VI. DISCUSSION

Orthogonality: Most of the previous methods are exploiting the inherent fault resilience capability of existing NN architectures to tolerate different types of hardware faults. In contrast, our methods improve the inherent fault resilience capability of NN models, thus effectively increase the algorithmic fault resilience “budget” to be utilized by hardware-specific methods. Our methods are orthogonal to existing fault-tolerance methods, and can be easily integrated with them, e.g., helping hardware-based methods to reduce the overhead largely.

Limitation of application-level fault model: There are faults that are hard or unlikely to model and mitigate by our methods, e.g., timing errors, routing/DSP errors in FPGA, etc. A hardware-in-the-loop framework could be established for a thorough evaluation of the system-level fault hazards. Anyway, since the correspondence between these faults and the application-level elements are subtle, it’s more suitable to mitigate these faults in the lower abstraction layer.

Hardware: In the MiBB feature fault model, we assume that the add operations are spatially expanded onto independent hardware adders, which applies to the template-based designs \([51]\). For ISA (Instruction Set Architecture) based accelerators \([5]\), the NN computations are orchestrated using instructions, time-multiplexed onto hardware units. In this case, the accumulation of the faults follows a different model and might show different preferences among architectures. Anyway, the FTT-NAS framework could be used with different fault models. We leave the exploration and experiments of this model for future work.

Data representation: In our work, an 8-bit dynamic fixed-point representation is used for the weights and features. As pointed out in Sec. \(\text{VII} \), the dynamic range has impacts on the resilience characteristics against weight faults. The data format itself obviously decides or affects the data range. \([23]\) found out that the errors in exponent bits of the 32bit floating-point weights have large impacts on the performance. \([23]\) investigated the resilience characteristics of several floating-point and non-dynamic fixed-point representations.

VII. CONCLUSION

In this paper, we analyze the possible faults in various types of NN accelerators and formalize the statistical fault models from the algorithmic perspective. After the analysis, the MAC-i.i.d Bit-Bias (MiBB) model and the arbitrary-distributed Stuck-at-Fault (adSAF) model are adopted in the neural architecture search for tolerating feature faults and weight faults, respectively. To search for the fault-tolerant neural network architectures, we propose the multi-objective Fault-Tolerant NAS (FT-NAS) and Fault-Tolerant Training NAS (FTT-NAS) method. In FTT-NAS, the NAS technique is employed in conjunction with the Fault-Tolerant Training (FTT). The fault resilience capabilities of the discovered
architectures, F-FTT-Net and W-FTT-Net, outperform multiple manually designed architecture baselines, with comparable or fewer FLOPs and parameters. And W-FTT-Net trained under the 8bit-adSAF model can defend against several other types of weight faults. Generally, FTT-NAS is more effective and should be used. Since operation primitives differ in their MACs, expressiveness, weight distributions, they exhibit different resilience capabilities under different fault models. The connection pattern is also shown to have influences on the fault resilience capability of NN models.

REFERENCES
[1] K. He et al., “Deep residual learning for image recognition,” in CVPR, 2016.
[2] W. Liu et al., “Ssd: Single shot multibox detector,” in ECCV. Springer, 2016, pp. 21–37.
[3] J. Long et al., “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
[4] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning,” in ACM Sigplan Notices, 2014.
[5] J. Qiu et al., “Going deeper with embedded fpga platform for convolutional neural network,” in FPGA. ACM, 2016, pp. 26–35.
[6] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory,” in ISCA, ser. ISCA ’16. IEEE Press, 2016, pp. 27–39.
[7] C. Szegedy et al., “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
[8] A. Shafahi et al., “Poison frogs! targeted clean-label poisoning attacks on neural networks,” in NIPS, 2018, pp. 6103–6113.
[9] Q. Zhang et al., “Interpreting cnn knowledge via an explanatory graph,” in IJCAI, 2018.
[10] J. Henkel et al., “Reliable-on-chip systems in the nano-era: Lessons learnt and future trends,” in DAC. ACM, 2013, p. 99.
[11] C. Chen et al., “Rram defect modeling and failure analysis based on march test and a novel squeeze-search scheme,” IEEE Transactions on Computers, vol. 64, no. 1, pp. 180–190, Jan 2015.
[12] L. Xia et al., “Stuck-at fault tolerance in rram computing systems,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, pp. 102–115, 2018.
[13] Y. Zhao et al., “Memory trojan attack on neural network accelerators,” in DATE. IEEE, 2019, pp. 1415–1420.
[14] C. Liu et al., “Rescuing memristor-based neuromorphic design with high yield,” in DATE. IEEE, 2017, pp. 1–6.
[15] J.-C. Vialatte et al., “A study of deep learning robustness against computation failures,” arXiv:1704.05396, 2017.
[16] A. G. Christoph Schorn et al., “Accurate neuron resilience prediction for a flexible reliability management in neural network accelerators;” in DATE, 2018.
[17] C. Bolchini et al., “Tmr and partial dynamic reconfiguration to mitigate seu faults in fpgas,” 10 2007, pp. 87–95.
[18] X. She et al., “Reducing critical configuration bits via partial tnr for seu mitigation in fpgas,” IEEE Transactions on Nuclear Science, 2017.
[19] Z. Zhao et al., “Fine-grained module-based error recovery in fpga-based tnr systems,” TRET, vol. 11, no. 1, p. 4, 2018.
[20] Z. He et al., “Noise injection adaption: End-to-end reram crossbar non-ideal effect adaption for neural network mapping,” in DAC. ACM, 2019.
[21] G. B. Hacene et al., “Training modern deep neural networks for memory-fault robustness;” in ISCAS. IEEE, 2019.
[22] A. P. Arechiga et al., “The robustness of modern deep learning architectures against single event upset errors;” in HPEC, 2018.
[23] G. Li et al., “Us: Unveiling retraining error propagation in deep learning neural network (dnn) accelerators and applications;” in ACM/IEEE Supercomputing Conference. ACM, 2017, p. 8.
[24] K. Guo et al., “[dll a survey of fpga-based neural network inference accelerators;” ACM TRET, vol. 12, no. 1, pp. 2–1–26, Mar. 2019.
[25] I. Hubara et al., “Quantized neural networks: Training neural networks with low precision weights and activations;” IJMLR, vol. 18, 2017.
[26] S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor variability and degradation,” Ieee Micro, vol. 25, no. 6, pp. 10–16, 2005.
[27] C. Slayman, “Soft error trends and mitigation techniques in memory devices;” in Proceedings - Annual Reliability and Maintainability Symposium, Jan 2011, pp. 1–5.
[28] F. Libano et al., “Selective hardening for neural networks in fpgas,” IEEE Transactions on Nuclear Science, 2018.
[29] C. Carnichael et al., “Correcting single-event upsets through vertex partial configuration;” 6 2000.
[30] B. Q. Le et al., “Resistive ram with multiple bits per cell: Array-level demonstration of 3 bits per cell,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 641–646, Jan 2019.
[31] B. Liu et al., “Vortex: Variation-aware training for memristor x-bar;” in DAC, 2015, pp. 1–6.
[32] S. Kannan et al., “Modeling, detection, and diagnosis of faults in multilevel memristor memories;” IEEE TCAD, 2015.
[33] S. Kannan, R. Rajendran et al., “Sneak-path testing of memristor-based memories;” in 25th International Conference on VLSI Design, 2013.
[34] L. Xia et al., “Fault-tolerant training with on-line fault detection for reram-based neural computing systems;” in DAC, June 2017, pp. 1–6.
[35] L. Chen et al., “Accelerator-friendly neural-network training: Learning variations and defects in reram crossbars;” in DATE, 2017, pp. 19–24.
[36] T. Liu et al., “A fault-tolerant neural network architecture,” in DAC, 2019, pp. 55:1–55:6.
[37] B. Zoph et al., “Neural architecture search with reinforcement learning;” ICLR, 2017.
[38] H. Pham et al., “Efficient neural architecture search via parameter sharing;” in ICML, 2018.
[39] H. Liu et al., “Darts: Differentiable architecture search,” arXiv preprint arXiv:1806.09055, 2018.
[40] E. Real, A. Aggarwal et al., “Aging evolution for image classifier architecture search;” in AAAI, 2019.
[41] B. Baker et al., “Accelerating neural architecture search using performance prediction;” arXiv preprint arXiv:1705.10823, 2017.
[42] M. Hu et al., “Bsb training scheme implementation on memristor-based circuit;” in CISDA. IEEE, 2013, pp. 80–87.
[43] M. Hagi et al., “The 90 nm double-dice storage element to reduce single-event upsets;” in MWSCAS. IEEE, 2009, pp. 463–466.
[44] B. Reagen et al., “Ares: A framework for quantifying the resilience of deep neural networks;” in DAC, ser. DAC ’18. ACM, 2018, pp. 17:1–17:6.
[45] H. Asadi et al., “Analytical techniques for soft error rate modeling and mitigation of fpga-based designs;” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 12, pp. 1320–1331, Dec 2007.
[46] Z. Zhu et al., “A configurable multi-precision cnn computing framework based on single bit ram;” in DAC, June 2019, pp. 1–6.
[47] D. P. Kingma et al., “Adam: A method for stochastic optimization;” ICLR, 2015.
[48] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning;” Machine Learning, vol. 8, no. 3-4, pp. 229–256, 1992.
[49] A. Krizhevsky et al., “Learning multiple layers of features from tiny images;” 2009.
[50] I. Loshchilov et al., “Sgdr: Stochastic gradient descent with warm restarts;” ICLR, 2017.
[51] S. I. Venieris et al., “Ifpgconvnet: Automated mapping of convolutional neural networks on fpgas (abstract only);” in FPGA. ACM, 2017, pp. 171–172.
[52] Z. Yan et al., “When single event upset meets deep neural networks: Observations, explorations, and remedies;” in ASP-DAC, 2020.