Genetic polymorphism of \textit{IL36RN} in Han patients with generalized pustular psoriasis in Sichuan region of China

A case–control study

Zhongtao Li, MD, Qianyi Yang, MD, Sheng Wang, MD

1. Introduction

Generalized pustular psoriasis (GPP) is not an uncommon skin disease, characterized by sudden episodes of generalized rash and sterile pustules with high fever and chills, neutrophilia, and elevated C-reactive protein. It could severely detrimental to the quality of life because of its frequent recurrence. GPP can occur alone or be associated with other inflammatory diseases, such as psoriasis vulgaris (PV) and palmoplantar pustulosis. Although many a research has already confirmed that the genetic susceptibility of PV was closely related to HLA gene polymorphism, the exact pathogenesis of GPP is still vague so far.

Since 2011, when Marrakchi et al. first found \textit{IL36RN} mutations in European patients with GPP alone, an increasing number of research have shown that \textit{IL36RN} mutations are extremely likely to be the main molecular genetic basis of GPP alone. The pathogenesis of GPP with PV (GPP+PV) seems to be more complex when compared with GPP alone. \textit{IL36RN} mutations may be only involved in a minority of GPP+PV patients.

In China, few studies have been conducted on the gene polymorphism of \textit{IL36RN} in GPP patients so far. In the present study, we detected the \textit{IL36RN} variant types and frequency in Han patients with GPP in Sichuan region, compared with the \textit{IL36RN} variant frequency between patients with GPP alone and GPP+PV, and tried to clarify the pathogenesis of GPP in this region.

2. Materials and methods

2.1. Subjects

In this study, a case–control design was adopted. We calculated the sample size according to the sample size calculation formulas for independent case–control designs. Ultimately, we enrolled a total number of 143 people from January 2012 to January 2016,
Table 1
Clinical data and IL36RN variants of all GPP patients in our study.

ID	Gender	Age, y	IL36RN variants
GPP alone01	M	10	N
GPP alone02	M	12	N
GPP alone03	F	16	hom.c.115+6T>C
GPP alone04	F	13	hom.c.115+6T>C; het.c.140A>G
GPP alone05	M	52	hom.c.115+6T>C
GPP alone06	M	12	hom.c.115+6T>C
GPP alone07	M	20	hom.c.115+6T>C; het.c.140A>G
GPP alone08	M	5	het.c.115+6T>C
GPP alone09	F	39	hom.c.115+6T>C
GPP alone10	M	19	hom.c.115+6T>C
GPP alone11	F	27	hom.c.115+6T>C
GPP alone12	F	27	hom.c.140A>G
GPP alone13	M	49	N
GPP alone14	M	67	N
GPP alone15	F	44	N
GPP alone16	M	59	hom.c.115+6T>C
GPP alone17	F	37	hom.c.115+6T>C; het.c.227C>T
GPP alone18	F	52	hom.c.115+6T>C; het.c.227C>T
GPP alone19	F	33	hom.c.115+6T>C
GPP alone20	M	24	het.c.227C>T
GPP alone21	M	65	hom.c.115+6T>C
GPP alone22	M	42	hom.c.115+6T>C
GPP alone23	F	44	hom.c.115+6T>C
GPP alone24	F	52	het.c.115+6T>C
GPP + PV01	M	10	N
GPP + PV02	M	5	N
GPP + PV03	F	48	N
GPP + PV04	F	22	het.c.115+6T>C
GPP + PV05	M	38	hom.c.115+6T>C; het.c.140A>G
GPP + PV06	M	15	hom.c.115+6T>C
GPP + PV07	M	25	hom.c.115+6T>C
GPP + PV08	F	24	N
GPP + PV09	M	43	N
GPP + PV10	M	44	N
GPP + PV11	M	41	N
GPP + PV12	M	29	N
GPP + PV13	M	43	N
GPP + PV14	M	41	N
GPP + PV15	M	45	N
GPP + PV16	F	69	N
GPP + PV17	M	58	het.c.115+6T>C; het.c.140A>G
GPP + PV18	F	44	het.c.115+6T>C; het.c.227C>T
GPP + PV19	F	50	hom.c.115+6T>C

F = female, GPP = generalized pustular psoriasis, het. = heterozygous for, hom. = homozygous for, M = male, N = no mutation, PV = psoriasis vulgaris.

Table 2
PCR primers for amplifying IL36RN.

Amplified region	Primer sequence (5’→3’)	Annealing temperature, °C	Product size, bp
Exon2	F:GGTG6GTCACGGAGCTCTCC	57	345
	R:GAAAACACAGCAGCGCAGAATTTC		
Exon3	R:GAAAACACAGCAGCGCAGAATTTC	57	410
	R:GAAAACACAGCAGCGCAGAATTTC		
Exon4	R:GAAAACACAGCAGCGCAGAATTTC	57	362
	R:GAAAACACAGCAGCGCAGAATTTC		
Exon5	R:GAAAACACAGCAGCGCAGAATTTC	57	438
	R:GAAAACACAGCAGCGCAGAATTTC		

PCR = polymerase chain reaction.
Table 3
The distribution of the IL36RN variants in patients and controls.

IL36RN variants	Con n (%)	PV n (%)	Total GPP n (%)	GPP alone n (%)	GPP+PV n (%)
TT-AA-CC	50 (100)	50 (100)	17 (39.53)	5 (20.83)	12 (36.84)
TC-AA-CC, TT-AA-CT, TT-GG-CC, TC-GG-CC	0 (0)	0 (0)	26 (60.47)	19 (79.17)	7 (20.83)
CC-AA-CT, CC-GG-CC					
Total	50	50	43	24	19
P (vs Con)					
P (GPP alone vs GPP+PV)					

Con = control, GPP = generalized pustular psoriasis, PV = psoriasis vulgaris.

2.4. Statistical analysis

The count numbering of the mutations detected in this study was on the basis of RefSeq NM_173170. Differences in frequencies of IL36RN mutations between groups were analyzed by Chi-square test by using SPSS Statistics 17.0 software (IBM SPSS, Armonk, NY). P < .05 was recognized as significant threshold.

3. Results

Three variants, c.115+6T>C (p.Arg10ArgfsX1, rs148755083), c.140A>G (p.Asn47Ser, rs28938777), and c.227C>T (p.Arg76Leu, rs139497891), were indentified in 26 out of 43 GPP patients (60.47%) (Tables 1 and 3). Among them, c.115+6T>C was the most common one, with a variant frequency of 55.81% (Table 4). None of IL36RN mutations was found in either PV patients or healthy controls. Both the separate allele frequency and total variant frequency had statistical significance when comparing GPP alone group with PV group or healthy controls (Tables 3, 5–7). GPP alone group exhibited a much higher IL36RN variant frequency than GPP+PV group (79.17% vs 36.84%, P < .05) (Table 3).

4. Discussion

IL36RN gene encodes the interleukin-36-receptor antagonist (IL-36Ra), an antagonist of 3 cytokines (interleukin-36α, interleukin-36β, interleukin-36γ), expressing primarily in the skin. IL-36Ra can competitively bind to the interleukin-36 receptor, disable the recruitment of the interleukin-1 receptor accessory protein, subsequently inhibit downstream activation of nuclear factor-κB (NF-κB) and mitogen-activated protein (MAP) kinases, and ultimately avoid exacerbated inflammatory responses.[6,13] The mutation of IL36RN could expectedly result in the deficiency of IL-36Ra and cause skin inflammation.

Table 4
The IL36RN variants in patients and controls.

IL36RN variants	Cases	n (%)				
Total GPP	50	50	50	50	100	100
GPP alone	24	17	17	17	32	32
GPP+PV	19	7	7	7	11	11
PV	50	0	0	0	0	0
Con	50	0	0	0	0	0

Con = control, GPP = generalized pustular psoriasis, PV = psoriasis vulgaris.

Table 5
The distribution of rs148755083 alleles in patients and controls.

rs148755083	Con n (%)	PV n (%)	Total GPP n (%)	GPP alone n (%)	GPP+PV n (%)
c.115+6T	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)
c.115+6C	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
P (vs PV)	<.001	<.001	<.001	<.001	<.001
P (vs Con)	<.001	<.001	<.001	<.001	<.001
P (GPP alone vs GPP+PV)	<.001	<.001	<.001	<.001	<.001

Con = control, GPP = generalized pustular psoriasis, PV = psoriasis vulgaris.

Table 6
The distribution of rs28938777 alleles in patients and controls.

rs28938777	Con n (%)	PV n (%)	Total GPP n (%)	GPP alone n (%)	GPP+PV n (%)
c.140A	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)
c.140G	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
P (vs PV)	<.001	<.001	<.001	<.001	<.001
P (vs Con)	<.001	<.001	<.001	<.001	<.001
P (GPP alone vs GPP+PV)	<.001	<.001	<.001	<.001	<.001

Con = control, GPP = generalized pustular psoriasis, PV = psoriasis vulgaris.

Table 7
The distribution of rs139497891 alleles in patients and controls.

rs139497891	Con n (%)	PV n (%)	Total GPP n (%)	GPP alone n (%)	GPP+PV n (%)
c.227C	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)
c.227T	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
P (vs PV)	<.001	<.001	<.001	<.001	<.001
P (vs Con)	<.001	<.001	<.001	<.001	<.001
P (GPP alone vs GPP+PV)	<.001	<.001	<.001	<.001	<.001

Con = control, GPP = generalized pustular psoriasis, PV = psoriasis vulgaris.

P < .05.
Since the first mutation was identified in GPP alone patients in 2011, an increasing number of GPP patients have been found to carry IL36RN mutations. Until now, more than 20 IL36RN variants have been reported around the world, which could be homozygous, heterozygous, and compound heterozygous.[9,10,11] c.80T > C (p.Leu27Pro), c.338C > T (p.Ser113Leu), and c.115+6T > C (p.Arg10_Arg15X) are the most common variants in Africa, Europe, and Asia, respectively.[9,10,12,13,14,15] In China, Li et al.[10] first screened IL36RN mutations in GPP patients in 2013 and found the variant frequency was 48.5%.[13] In 2014, Li et al.[10] performed a sanger sequencing in 62 Chinese patients with GPP and displayed the similar result, with a variant frequency of 46.77%. Eight IL36RN variants have been identified in Chinese GPP patients so far, that is, p.Arg10_Arg15X, p.Val57Ile, p.Pro82Leu, p.Asn47Ser, p.Thr123Met, p.Glu112Lys, p.Pro76Leu, and p.Arg102Gln. Among them, c.115+6T > C (p.Arg10_Arg15X) is the most common one.[9,10,11,12] When subgroup analysis was carried out on the basis of the clinical features, a significant difference of variant frequency has been observed between GPP alone and GPP+PV patients. Up to 46.15% to 81.82% of GPP alone patients had IL36RN mutations worldwide,[9,12,13] compared with 10% to 37.78% of GPP+PV patients.[11,12] In China, Li et al.[10] reported that the IL36RN variant frequency of 17 cases with GPP alone patients was 70.59%, while the 45 cases with GPP+PV was only 37.78%.[9,12] In this study, 3 previously reported IL36RN variants were found in Han GPP patients from Sichuan region, including c.115+6T > C (p.Arg10_Arg15X), c.140A > G (p.Asn47Ser), c.227C > T (p.Pro76Leu), c.115+6T > C was the most common IL36RN variant in both GPP alone and GPP+PV patients, with a total frequency of 55.81%. The data reinforced the argument that c.115+6T > C is a hot-spot mutation of the IL36RN gene in Chinese population, or may implicate a common ancestral variant. The total frequency of IL36RN variants was 60.47% in this study. But a closer look at the data revealed an obvious difference between GPP alone and GPP+PV patients (79.17% vs 36.84%), which corresponded well with previous reports. Our data demonstrated again that IL36RN may well be the major disease-causing gene in GPP alone patients in Chinese population, but could be only implicated in a minority of GPP+PV patients. The pathogenesis of GPP+PV seems to be more complex than GPP alone. Recently, Sugiuira et al.[17] identified that 4 of 19 patients with GPP+PV carried CARD14 heterozygous variant c.526G > C (p.Asp176His), which offered new ideas about the molecular mechanism of GPP+PV.

In conclusion, in the present study, we confirmed that the IL36RN variants had a close relation to Han patients with GPP in Sichuan region, which played a critical role in the pathogenesis of GPP alone, but only participated in the development of a minority of GPP+PV. c.115+6T > C is a possible hot-spot mutation within the IL36RN gene in Chinese population. Given that there is a significant difference between the molecular mechanism of GPP alone and GPP+PV, further studies are needed to clarify the intricate pathogenesis of GPP+PV. In this study, some limitations should not be neglected, especially the small sample size. Therefore, more works are needed to verify our findings and illustrate the detailed mechanism of these involved polymorphisms based on larger sample size in the future.

Author contributions

Conceptualization: Sheng Wang.
Data curation: Zhongtuo Li, Qianyi Yang.
Formal analysis: Zhongtuo Li.
Funding acquisition: Sheng Wang.
Investigation: Zhongtuo Li.
Methodology: Zhongtuo Li.
Project administration: Sheng Wang.
Resources: Sheng Wang.
Software: Zhongtuo Li.
Supervision: Zhongtuo Li.
Validation: Sheng Wang.
Writing – original draft: Zhongtuo Li.
Writing – review & editing: Sheng Wang.

References

[1] Carapito R, Isidor B, Guerrouaz N, et al. Homozygous IL36RN mutation and NOD1 duplication in a patient with severe pustular psoriasis and symptoms unrelated to deficiency of interleukin-36 receptor antagonist. Br J Dermatol 2015;172:302-5.
[2] Mansouri B, Richards L, Menter A. Treatment of two patients with generalized pustular psoriasis with the interleukin-1B inhibitor gevokizumab. Br J Dermatol 2015;173:239-41.
[3] Fujimura Y, Natsuga K, Hamade Y, et al. Anti-laminin-gamma 1 pemphigoid with generalized pustular psoriasis and pustoriasis vulgaris. Acta Derm Venereol 2016;96:120-1.
[4] Koizumi H, Tokuriki A, Oyama N, et al. Ceratinizumab pegol, a pegylated anti-TNF-α antagonist, caused de novo-onset palmoplantar pustulosis followed by generalized pustular psoriasis in a patient with rheumatoid arthritis. J Dermatol 2017;44:723-4.
[5] Yan X, Liming X. Haploptope association of the human leucocyte antigen with pustoriasis in northern Chinese Hans Family. Chin J Dermatol Venereol Integ Trerd W Med 2010;9:27-9.
[6] Marrackchi S, Guigge P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 2011;365:620-8.
[7] Ounoufradi A, Simpson MA, Pink AE, et al. Mutations in IL36RN/IL1F5 are associated with the sequevere episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet 2011;89:432-7.
[8] Sugiuira K, Takeshi T, Kono M, et al. A novel IL36RN/IL1F5 homoyzgous nonsense mutation, p.Arg10X, in a Japanese patient with adult-onset generalized pustular psoriasis. Br J Dermatol 2012;167:699-701.
[9] Li M, Lu Z, Cheng R, et al. IL36RN gene mutations are not associated with sporadic generalized pustular psoriasis in Chinese patients. Br J Dermatol 2013;168:452-5.
[10] Faroq M, Nakai H, Fujimoto A, et al. Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis. Hum Mutat 2013;34:176-83.
[11] Sugiuira K, Takemoto A, Yamaguchi M, et al. The majority of generalized pustular psoriasis without pustoriasis vulgaris is caused by deficiency of interleukin-36 receptor antagonist. J Invest Dermatol 2013;133:2514-21.
[12] Li X, Chen M, Fu X, et al. Mutation analysis of the IL36RN gene in Chinese patients with generalized pustular psoriasis with/without pustoriasis vulgaris. J Dermatol Sci 2014;76:132-8.
[13] Sugiuira K. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants. J Dermatol Sci 2014;74:187-92.
[14] Körber A, Moissner R, Renner R, et al. Mutations in IL36RN in patients with generalized pustular psoriasis, J Invest Dermatol 2013;133:2634-7.
[15] Li M, Han J, Lu Z, et al. Prevalent and rare mutations in IL36RN gene in Chinese patients with generalized pustular psoriasis and pustoriasis vulgaris. J Invest Dermatol 2013;133:2637-9.
[16] Wang TS, Chu HY, Hong JB, et al. Correlation of IL36RN mutation with different clinical features of pustular psoriasis in Chinese patients. Arch Dermatol Res 2016;308:55-63.
[17] Sugiuira K, Muto M, Akiyama M. CARD14 c.526G > C (p.Asp176His) is a significant risk factor for generalized pustular psoriasis with pustoriasis vulgaris in the Japanese cohort. J Invest Dermatol 2014;134:1755-7.