Expansion of NK Cells and Reduction of NKG2D Expression in Chronic Lymphocytic Leukemia. Correlation with Progressive Disease

Leticia Huergo-Zapico1,2, Andrea Acebes-Huerta1,2, Ana Pilar Gonzalez-Rodriguez3, Juan Contesti4, Esther Gonzalez-García4, Angel R. Payer3, Monica Villa-Alvarez1,2, Azahara Fernández-Guizán1,2, Alejandro López-Soto1,2, Segundo Gonzalez1,2

1 Department of Functional Biology, Universidad de Oviedo, Oviedo, Spain, 2 IUOPA, Universidad de Oviedo, Oviedo, Spain, 3 Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain, 4 Department of Hematology, Hospital Cabueñas, Gijón, Spain

Abstract

The immune system may mediate anti-tumor responses in chronic lymphocytic leukemia (CLL) which may affect disease progression and survival. In this study, we analyzed the immune characteristics of 99 consecutive previously diagnosed CLL patients and 50 healthy controls. The distribution of lymphocyte subsets at diagnosis was retrospectively analyzed. Compared with controls, leukemia patients showed an expansion of NK and CD8 T cells at diagnosis. The relative number of CD8 T cells at diagnosis was associated with time to treatment, suggesting that CD8 T cells may modify disease progression. The distribution of lymphocyte subsets was analyzed again when patients were enrolled in this study. The median time since these patients were diagnosed was 277 weeks. Compared with diagnosis, the absolute number of CD8 T cells significantly decreased in these patients, reaching similar values to healthy controls; however NK cells kept significantly elevated overtime. Nevertheless, NK cells showed an impaired expression of NKG2D receptor and a defective cytotoxic activity. This down-regulation of NKG2D expression was further enhanced in patients with advanced and progressive disease. Additionally, membrane NKG2D levels significantly decreased on CD8 T cells, but a significant increase of NKG2D+ CD4+ T cells was observed in CLL patients. The cytotoxic activity of NK cells was diminished in CLL patients; however the treatments with IL-2, IL-15, IL-21 and lenalidomide were able to restore their activity. The effect of IL-2 and IL-15 was associated with the increase of NKG2D expression on immune cells, but the effect of IL-21 and lenalidomide was not due to NKG2D up-regulation. The expansion of NK cells and the reversibility of NK cell defects provide new opportunities for the immunotherapeutic intervention in CLL.

Citation: Huergo-Zapico L, Acebes-Huerta A, Gonzalez-Rodriguez AP, Contesti J, Gonzalez-García E, et al (2014) Expansion of NK Cells and Reduction of NKG2D Expression in Chronic Lymphocytic Leukemia. Correlation with Progressive Disease. PLoS ONE 9(10): e108326. doi:10.1371/journal.pone.0108326

Editor: Spencer B. Gibson, University of Manitoba, Canada

Received June 3, 2014; Accepted August 20, 2014; Published October 6, 2014

Copyright: © 2014 Huergo-Zapico et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This work was supported by the Spanish grants of Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III) PI12/01280. http://www.isciii.es/. ALS holds a Sara Borrell grant (ISCIII/CD1300412); (http://www.isciii.es/). LHZ holds a Severo Ochoa grant (BF09-144); (www.Ficyt.es). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: segundog@uniovi.es

Introduction

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. It is characterized by a clonal accumulation of mature malignant B cells in blood, bone marrow and lymphoid organs. There is a marked clinical heterogeneity in this disease that is associated with a heterogeneous array of genetic and molecular defects [1]. The complexity of this malignancy is further increased by the interaction of leukaemia cells with the microenvironment [2]. Leukaemia cells closely interact with accessory and immune cells that regulate their trafficking, survival and proliferation [3]. Additionally, the immune system may mediate anti-tumor responses in CLL, which may affect disease progression and survival [4–6]. Nevertheless, patients progressively develop multiple immune defects, including hypogammaglobulinemia, impairment of the function of T, NK and dendritic cells, as well as alterations in the cytokine network [7]. Likewise, patients with advanced disease frequently develop a severe immunodeficiency.

NKG2D is an activating receptor expressed by NK and T cells that plays a key role in the immune response against cancer [8,9]. NKG2D is the receptor for MHC class I-related chain A and B (MICA/B) and UL16-binding proteins 1–6 (ULBP1-6), which are restrictedly expressed in benign cells, but are up-regulated in stressed and transformed cells, triggering a potent anti-tumour immune response [10–12]. Leukaemia cells of CLL patients express low membrane levels of NKG2D ligands and shed soluble NKG2D ligands, which confers poor prognosis to CLL patients [13,14]. Accordingly, a reduction of NKG2D expression on CD8 T cells in a cohort of CLL patients with high levels of serum soluble MICA (sMICA) has been reported [15].

In this study, we analyzed the evolution of the number and the characteristics of the immune cells with the progression of CLL. We also examined the expression of NKG2D receptor on these
cells, which may play a key role in the anti-tumor activity against leukemia cells.

Material and Methods

Patient and CLL samples

99 consecutive previously diagnosed CLL patients and 50 healthy matched controls were analyzed in this study (Table 1). Patients were diagnosed between 1982 and 2011. The median time since they were diagnosed was 277 weeks. As previously described, patients were classified as having stable (n = 38) or progressive disease (n = 61) [16]. 27 patients had received chemotherapeutic treatment; however none of them received any treatment 6 months before being enrolled in this study.

Immunological characteristics of these patients at diagnosis were retrospectively analyzed. Clinical and immunological characteristics of the patients were analyzed when patients were enrolled in this study. For that purpose, peripheral blood mononuclear cells (PBMCs) from freshly isolated blood obtained from patients and controls were purified by Ficoll-Paque (Pharmacia) density centrifugation. NK cells were isolated using the EasySep NK Cell Enrichment kit (StemCell Technologies). This study was approved by the Hospital Universitario Central de Asturias Ethics Committee and written informed consent was obtained from all patients and controls.

Flow cytometry

Diagnosis of CLL for each patients was confirmed by flow cytometry, which revealed a typical CD19+, CD20+, CD5+, CD23+ and Ig light chain (κ or λ) restricted phenotype. Absolute counts of the main PBMCs subsets, including CD4 and CD8 T cells, B cells and NK cells were carried out by flow cytometry upon diagnosis. The distribution of these subsets of lymphocytic cells and the membrane expression of NKG2D were also analyzed at the time of patient enrollment. The protocol for B-cell chronic lymphoproliferative diseases used in all cases included the following antibody conjugates: anti-CD3-FITC, anti-CD4-PerCP,

Table 1. Clinical characteristics of CLL patients.
Characteristic
Age at diagnosis (years)
Gender: Male/Female
Rai stage at diagnosis (%)
Low: 0/I
Intermediate: II/III
High IV/V
Binet
A
B
C
Progressive/stable disease
Lymphocytes (x10^9/L)
Affected Lymph nodes
0
1
2
≥3
ECOG
0–1
2
3
4
CD38 (%)**
Gammaglobulins (gr/L)
IgG (gr/L)
IgA (gr/L)
IgM (gr/L)
LDH (U/L)
β2-microglobulin (mg/L)
MBC duplication in less than 1 year (%)

MBC: monoclonal B-cells clone.

* median and range.
** Positive (>30%).

doi:10.1371/journal.pone.0108326.t001
anti-CD8-CF-Blue, anti-CD56-APC, anti-CD19-APC (all from Immunostep), anti-CD3-PECy7 (eBioscience) and anti-NKG2D-PE (Miltenyi Biotec). The populations of cells were defined as follows: CD4 T cells were defined as CD3+CD4+, CD8 T cells were defined as CD3+CD8+, B cells were defined as CD19+ and NK cells were defined as CD3-CD56+. Cells were analyzed on a BD Biosciences FACSCanto II cytometer and data were analyzed by FACSDiva software (Beckton Dickinson).

Cell lines and cell cultures

K562 cells were obtained from ATCC and were grown in RPMI-1640, 2 mM L-glutamine and gentamicin (complete media) supplemented with 10% heat-inactivated human AB serum. 2 x 10^6 PBMCs were cultured in complete media containing 10% of human AB serum in the presence of IL-2 (5 ng/ml), IL-15 (25 ng/ml), IL-21 (20 ng/ml) (all from Peprotech) for 48 h or lenalidomide (1 mM) (Celgene) for 7 days. Cultured cells were incubated with a mixture of fluorescent-labelled antibodies: anti-CD3-FITC, anti-CD4-PerCP, anti-CD8-CF-Blue, anti-CD56-APC or anti-NKG2D-PE for 15 min. After washing, cells were analyzed by flow cytometry.

CD107a degranulation assay and cytotoxic assay

CD107a lysosome-associated membrane protein-1 (LAMP-1) was used to measure NK, NKT-like and CD8 cell cytotoxic activity. PBMCs from healthy donors stimulated with IL-2 (5 ng/ml), IL-15 (25 ng/ml), IL-21 (20 ng/ml) for 48 hours or lenalidomide (1 mM) for 7 days were incubated with target K562 cells at an Effector: Target (E:T) ratio of 5:1 in complete media supplemented with human AB serum and BD GolgiStop (BD Biosciences). As a positive control of degranulation, PBMCs were stimulated with PMA (50 ng/ml) and ionomycin (250 ng/ml) (both from Sigma-Aldrich). The anti CD107a-PE antibody (BD Biosciences) was added to the plate during the incubation. After the incubation, samples were stained for CD3, CD4, CD8 and CD56 expression and were analyzed by flow cytometry.

Statistical analysis

Gaussian distribution of values was tested by Kolmogorov-Smirnov test. Relationship between continuous variables and categorical prognostic variables was evaluated by Mann–Whitney and Kruskal–Wallis tests. The Wilcoxon Matched-Pairs Signed Ranks test was utilized for intra-group comparisons. Spearman’s rank correlation test was used to analyze the correlation between the biological parameters. Time to treatment was defined as the time from diagnosis to time of first therapy. Time to treatment was analyzed using the approach of Kaplan and Meier. P-values < 0.05 were considered significant. All analyses were conducted with SPSS, version 15.0.

Results

CD8 T cells and NK cells populations were expanded at diagnosis of CLL

99 consecutive previously diagnosed CLL patients and 50 healthy matched controls were analyzed in this study (Table 1). The distribution of lymphocyte subsets in these patients at diagnosis was retrospectively analyzed. At diagnosis, additionally to an increase of B cells, CLL patients showed a marked increase of NK cells (median of 0.436 vs. 0.209 x 10^9 cells/L; p = 0.0001) and T cells (2.048 vs. 1.67 x 10^9 cells/L; p = 0.0001) compared with controls (Fig. 1). There was an increase of CD8 T cells (0.723 vs. 0.271 x 10^9/L; p = 0.0001), but no differences were observed in CD4 T cells. Of note, significant correlations between the absolute numbers of B cells at diagnosis and the numbers of T cells (r = 0.31, p = 0.02), CD4 T cells (r = 0.274, p = 0.01), CD8 T cells (r = 0.302, p = 0.01) and NK cells (r = 0.246, p = 0.02) were observed.

CD8 T cells, but not NK cells, decreased with the progression of CLL

The distribution of lymphocyte subsets in patients was again analyzed by flow cytometry when patients were enrolled in this study. The median time since the patients were diagnosed was 277 weeks. At that stage of the disease, patients showed a significant increase of NK cells (median of 0.436 vs. 0.209 x 10^9 cells/L; p = 0.0001) and T cells (2.048 vs. 1.67 x 10^9 cells/L; p = 0.0001) compared with controls (Fig. 1). There was an increase of CD8 T cells (0.723 vs. 0.271 x 10^9/L; p < 0.0001), but no differences were observed in CD4 T cells. Of note, significant correlations between the absolute numbers of B cells at diagnosis and the numbers of T cells (r = 0.31, p = 0.02), CD4 T cells (r = 0.274, p = 0.01), CD8 T cells (r = 0.302, p = 0.01) and NK cells (r = 0.246, p = 0.02) were observed.
detected. Similar to diagnosis, the number of NK cells kept significantly higher than controls (0.398 vs. 0.209 $\times 10^9$/L; $p = 0.0001$) (Fig. 2B and 2C).

The changes in the lymphocyte subsets overtime were also analyzed in relation with the clinical characteristics of the patients. The decrease of CD8 T cells was not significantly different between patients with progressive and stable disease (not shown). There were also no differences in relation with the chemotherapy treatment. Patients who were previously treated ($n = 27$) showed a non-significant decrease of NK cells (0.636 vs. 0.377 $\times 10^9$/L) and, a slight increase in CD8 T cells (0.566 vs. 0.643 $\times 10^9$/L), compared with non-treated ones, (Fig. 2D and E).

26 CLL patients developed a second malignancy, mainly skin ($n = 8$), prostate ($n = 4$), colon ($n = 3$) and bladder ($n = 3$) cancers. Compared with the absolute numbers at diagnosis, those patients who developed a second malignancy had a higher loss in the absolute numbers of NK cells (−0.139 vs. −0.122 $\times 10^9$/L; $p = 0.04$), CD8 T cells (−0.668 vs. −0.293 $\times 10^9$/L; $p = 0.1$) and CD4 T cells (−0.197 vs. −0.077 $\times 10^9$/L; $p = 0.4$) than those who did not suffer a second malignancy, in that deterioration of the immune system may be associated with the development of these tumors.

Prognosis significance of CD8 count in CLL patients

The relative numbers of T and NK cells at diagnosis have been associated with clinical outcome in CLL [4,5]. Thus, we analyzed whether the relative numbers of T and NK cells at diagnosis influence the time to treatment. The relative numbers of T cells and NK cells were analyzed by calculating the ratio between the numbers of T/NK cells and Monoclonal B Clone (MBC) (T/NK cells: MBC ratio) as previously described [4]. Patients with relative CD8 T cell count >0.03 showed a significantly higher time to treatment than those with lower numbers of CD8 T cells (Fig. 3), suggesting that CD8 T cells may modify disease progression. No other association was observed.
The expression of NKG2D on NK cells was reduced in patients with progressive and advanced disease

The association between NKG2D expression and the clinical characteristics of CLL patients was next analyzed. NKG2D expression on NK cells was significantly decreased in patients with progressive disease ($p = 0.017$), in patients with advanced Binet stage ($p = 0.001$) and in high risk patients (Rai stage III and IV) ($p = 0.04$) (Fig. 5A, B and C). Further, the expression of NKG2D receptor on NK cells negatively correlated with the number of affected lymph nodes ($r = -0.254$, $p = 0.01$) and ECOG ($r = -0.335$, $p < 0.001$); but it directly correlated with the serum levels of lactate dehydrogenase ($r = 0.277$, $p = 0.007$). The percentage of CD4+CD56+ T cells was decreased in patients with advanced Binet stage ($p = 0.03$) (Fig. 5D).

The expression of NKG2D and the cytotoxic activity of NK cells may be restored in CLL patients

We next studied whether NKG2D expression can be induced upon exposure to immunomodulatory molecules. Treatment of PBMCs obtained from CLL patients with IL-2 and IL-15 for 48 hours significantly up-regulated the expression of NKG2D on NK cells and CD8 T cells (Fig. 6A). No effect on NKG2D expression was observed with IL-21 or lenalidomide, even after 14 days of treatment (not shown).

Further, CD107a degranulation assay showed that NK cells of CLL patients had a diminished cytotoxic activity compared with healthy controls (Fig. 6B). Nevertheless, their cytotoxic activity was significantly enhanced when immune cells were previously stimulated with IL-2, IL-15, and IL-21 for 48 hours or lenalidomide for 7 days (Fig. 6C).

Discussion

Here, we analyzed the immune characteristics of a cohort of previously diagnosed CLL patients. The most relevant results of our study are: (i) The number of CD8 T cells was increased at diagnosis of CLL, and the relative number of CD8 T cells at diagnosis was associated with the clinical outcome of the patients. (ii) This initial expansion of CD8 T cells decreased overtime with the evolution of the disease, and it was not associated with the chemotherapy treatment. (iii) The number of NK cells was significantly expanded overtime in CLL. (iv) The expression of NKG2D was decreased on NK and CD8 T cells, but it was increased on CD4 T cells of previously diagnosed CLL patients. (v) The reduction of NKG2D expression on NK cells was further enhanced in patients with advanced and progressive disease. (vi) The expression of NKG2D and the cytotoxic activity of NK cells of CLL patients were restored with immunomodulatory molecules and cytokines.

The expansion of anti-tumor immune cells, mainly CD8 T cells and NK cells, has been described in several hematological malignancies [17–23]. Nevertheless, the expansion of T cells has not been observed in a pre-leukemic monoclonal B lymphocytosis [24], suggesting that the expansion of immune cells in CLL may be associated with the transformation of B cells. This is in agreement with the fact that we observed a significant correlation between the number of leukemic cells at diagnosis and the number of T and NK cells [24]. This expansion of CD8 T cells is associated with the clinical outcome suggesting that CD8 T cells may modify the progression of the disease. However, the potential anti-leukemic role of these expanded T cells remains to be elucidated.

Additionally, we further observed that the initial expansion of CD8 T cells decreased overtime after the diagnosis of the disease, reaching values similar to those observed in healthy controls. In the course of progression of CLL, patients develop multiple immune defects, which are associated with a severe immunodeficiency [7]. In agreement, the deterioration of the immune system observed in our study was associated with a significant increase of second malignancies in CLL patients. This may probably reflect the consequence of the immune evasion mechanisms developed by leukemia cells [25].

NK cells were also expanded in CLL patients at the diagnosis of the disease, but, unlike T cells, their number was kept elevated when they were re-evaluated after the diagnosis. In spite of the fact that the expansion of NK cells in CLL patients has been associated with better prognosis [5], we could not find any correlation between NK cell numbers and the prognosis of the patients. In agreement, NK cell activity in CLL patients is highly impaired and leukemia cells are highly resistant to NK cell cytotoxicity [26,27]. In this scenario, we observed a down-regulation of NKG2D expression that may contribute to the deficiency of NK cell function. This decrease of NKG2D expression was further augmented in patients with advanced disease, suggesting that leukemia cells may be involved in the repression of NKG2D expression. In agreement, we previously reported that the...
reduction of NKG2D expression in CLL may be due to the chronic exposure to released soluble NKG2D ligands [15]. Additionally, we observed a profound deregulation of the expression of NKG2D on other immune cells. In this sense, NKG2D levels slightly, but significantly, decreased in CD8 T cells. Further, an increase of NKG2D expression on CD4 T cells was also detected. Low levels of NKG2D+CD4+ T cells are present in healthy individuals, but this population may be expanded in some chronic and autoimmune diseases [28–30]. NKG2D+CD4+ T cells with both immunosuppressive and anti-tumor activity have been described. Our results suggest that NKG2D+CD4+ T cells are a heterogeneous population of cells in CLL, but the increase of these cells in early stage Binet patients argues against an immunosuppressive role for this population.

Figure 4. Expression of NKG2D on immune cells of CLL patients. (A) PBMCs obtained from CLL patients were stained with CD3-, CD4-, CD8-, CD56- and NKG2D-conjugated antibodies. Flow cytometry analysis of one representative patient is shown. (B) The figure shows the comparison of the MFI of NKG2D surface expression in NK cells, CD8 T cells and NKT-like cells between patients and controls. (C) Comparison of the percentage of NKG2D+CD4 T cells between patients and controls. (**p<0.01; ***p<0.001). doi:10.1371/journal.pone.0108326.g004
Remarkably, our findings indicate that the impairment of NKG2D expression on immune cells of CLL patients is reversible. Thus, the expression of NKG2D in cytotoxic cells of CLL patients can be restored upon treatment with cytokines and immunomodulatory drugs [31–34]. IL-2 and IL-15 induced NKG2D expression on immune cells, and stimulated NK cell cytotoxicity. IL-21 and lenalidomide also stimulated the cytotoxic activity of NK cells; however, independently of the induction of NKG2D expression.

Overall, our experiments indicate that a profound deregulation of the immune system occurs with the progression of CLL. Noteworthy, the expansion of NK cells, and the reversibility of their defects, provides new opportunities for immunotherapeutic intervention in this disease.

Figure 5. Association between clinical parameters of CLL patients and the expression of NKG2D. NKG2D expression on NK cells was analyzed in patients stratified by the existence of stable and progressive disease (A), Binet stage (B) and Rai stage (C). The percentage of NKG2D+CD4+ T cells in CLL patients was analyzed according to the Binet stage. (**p<0.01). doi:10.1371/journal.pone.0108326.g005
Figure 6. Effect of immunomodulatory molecules in the expression of NKG2D and the cytotoxic activity of NK cells of CLL patients.

(A) PBMCs purified from CLL patients were incubated with IL-2 (5 ng/ml), IL-15 (25 ng/ml), IL-21 (20 ng/ml) for 48 hours or lenalidomide (1 μM) for 7 days and the expression of NKG2D on NK cells, CD8 T cells and NKT-like cells was analyzed by flow cytometry. Bars represent the mean and the standard deviation of the fold induction of NKG2D expression. (*p < 0.05). (B) PBMCs from healthy donors and CLL patients were incubated with K562 cells at an E:T ratio of 5:1 for 4 hours. The expression of CD107a in NK cells was evaluated by flow cytometry. The bars represent the mean and the standard deviation of the percentage of CD107a+ NK cells obtained in controls and patients. (C) PBMCs from CLL patients were incubated with IL-2 (5 ng/ml), IL-15 (25 ng/ml), IL-21 (20 ng/ml) for 48 hours or lenalidomide (1 μM) for 7 days, and then they were incubated with K562 cells at an E:T ratio of 5:1 for 4 hours. The expression of CD107a in NK cells was evaluated by flow cytometry. (*p < 0.05; **p < 0.01; ***p < 0.001).

doi:10.1371/journal.pone.0108326.g006
Author Contributions
Conceived and designed the experiments: LHZ AAH JC EGG
Wrote the paper: LHZ ALS SG.

References
1. Puente XS, Pinyol M, Quesada V, Conde L, Ordoñez GR, et al. (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukemia. Nature 475: 101–105. doi:10.1038/nature10113
2. Herishanu Y, Katz B-Z, Lipsky A, Wiestner A (2013) Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 27: 173–206. doi:10.1016/j.hoc.2013.01.002
3. Ramsay AG, Johnson AJ, Lee AM, Gorgin G, Le Dieu R, et al. (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118: 2427–2437. doi:10.1172/JCI35017
4. Gonzalez-Rodriguez AP, Contenti J, Huergo-Zapico L, Lopez-Soto A, Fernandez-Guixia A, et al. (2010) Prognostic significance of CD3 and CD4 T cells in chronic lymphocytic leukemia. Leuk Lymphoma 51: 1829-1836. doi:10.3109/104281914.2010.530820
5. Palmer S, Hanon CA, Zenz CS, Porrata LF, LaPlant B, et al. (2008) The Prognostic Importance of T and NK-cells in a Consecutive Series of Newly Diagnosed Patients with Chronic Lymphocytic Leukemia. Br J Haematol 141: 607–614.
6. Poggi A, Venturino C, Castellani S, Claudio M, Miglino M, et al. (2004) VLymphocytes from B-CLL Patients Recognize ULBP3 Expressed on Leukemic B Lymphocytes. J Biol Med 87: 49-62. doi:10.1016/j.bmed.2003.04.004
7. Hamblin AD, Hamblin TJ (2008) The immunodeficiency of chronic lymphocytic leukemia. Br Med Bull 87: 49-62. doi:10.1093/bmb/ldn034
8. Huergo-Zapico L, Acbes-Huerta A, Lopez-Soto A, Villa-Alvarez M, Gonzalez-Rodriguez AP, et al. (2014) Molecular Bases for the Regulation of NKGD2 Ligands in Cancer. Front Immunol 5: 106. doi:10.3389/fimmu.2014.00106
9. Lopez-Soto A, Huergo-Zapico L, Acbes-Huerta A, Villa-Alvarez M, Gonzalez S (2014) NKGD2 signaling in cancer immunosurveillance. Int J Cancer. doi:10.1002/ijc.27775
10. Gasser S, Orosic S, Brown EJ, Radlet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKGD receptor. Nature 436: 1186–1190. doi:10.1038/nature03884
11. Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, et al. (2005) Absolute lymphocyte count predicts overall survival in follicular lymphomas. Br J Haematol 134: 596-601. doi:10.1111/j.1365-2141.2005.06292.x
12. Cox MC, Nomroni I, Ruco L, Amoroso F, Ferrari A, et al. (2008) Low absolute lymphocyte count is a poor prognostic factor in diffuse-large-B-cell-lymphoma. Leuk Lymphoma 49: 1745–1751. doi:10.1080/10428190802382465
13. Porral LF, Ristow K, Habermann TM, Witzig TE, Inwards DJ, et al. (2009) Absolute lymphocyte count at the time of first relapse predicts survival in patients with diffuse large-B-cell lymphoma. Am J Hematol 84: 93-97. doi:10.1002/ajh.21337
14. Gasser S, Orosic S, Brown EJ, Radlet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKGD receptor. Nature 436: 1186–1190. doi:10.1038/nature03884
15. Allez M, Tieng V, Nakazawa A, Treton X, Pacault V, et al. (2007) CD4+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132: 2346–2358. doi:10.1053/j.gastro.2007.03.025
16. Groh V, Smyth K, Dai Z, Spiess T (2002) Fas ligand-mediated parasite T cell regulation by the receptor NKGD2 in tumor immunity. Nat Immunol 3: 798-805. doi:10.1038/ni1364
17. Duhm GF, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoinhibition. Immunity 21: 137–148. doi:10.1016/j.immuni.2004.07.017
18. Kay NE, Zarling JM (1984) Impaired natural killer activity in patients with chronic lymphocytic leukemia is associated with a deficiency of anchylosome cytoplasmic granules in putative NK cells. Blood 63: 305-309.
19. Reiners KS, Topolar D, Heuke A, Simhadri VR, Keseler J, et al. (2013) Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 121: 3636-3636. doi:10.1182/ijc.2013-01-47606
20. Groh V, Smyth K, Dai Z, Spiess T (2006) Fas ligand-mediated parasite T cell regulation by the receptor NKGD2 in tumor immunity. Nat Immunol 7: 755–762. doi:10.1038/nri1350
21. Aletz M, Tieng V, Nakazawa A, Treton X, Pacault V, et al. (2007) CD4+ NKGD2+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132: 2346-2358. doi:10.1053/j.gastro.2007.03.025
22. Dai Z, Turtle CJ, Booth GC, Riddell SR, Gooley TA, et al. (2009) Normally occurring NKGD2+CD4+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132: 2346-2358. doi:10.1053/j.gastro.2007.03.025
23. Veesen C, Auras-Schleinitz T, Castellano R, Rey J, Mallet F, et al. (2012) Primary B-CLL resistance to NK cell cytotoxicity can be overcome in vitro and in vivo by priming NK cells and monoclonal antibody therapy. J Clin Immunol 32: 632-646. doi:10.1007/s10875-011-9625-z
24. Eskenud CW, Nederby L, Thynen AH, Skovbo A, Roug AS, et al. (2011) Interleukin-21 and rituximab enhance NK cell functionality in patients with B-cell chronic lymphocytic leukemia. Leuk Res 35: 914-920. doi:10.1016/j.leukres.2011.02.006
25. Axon FT, Johnson AJ, Lapalombella R, Hu W, Lucas M, et al. (2010) Thalidomide and lenalidomide as new therapeutics for the treatment of chronic lymphocytic leukemia. Leukemia 24: 27–38. doi:10.1038/leu.2009.3350405
26. Takaki R, Hayaoka T, Nelson A, Steukkrav PV, Hughes S, et al. (2005) IL-21 enhances tumor rejection through a NKGD2-dependent mechanism. J Immunol 175: 2167-2173.