featured in this section are constantly evolving and are written by the students themselves, with each profile sharing with the reader the individual’s story of where they came from, what they are currently doing and where they see themselves headed in the future. This section also provides a great opportunity for space industry representatives to identify some of the country’s brightest students who may be at the forefront of leading the next wave of Canadian innovation.

For more information on any of these programs, as well as many other learning opportunities, please visit the student section of the CSA website at: http://www.asc-csa.gc.ca/eng/youth-students/17/

Jason Clement (B.A. Cultural Studies'98) currently works as a Communications Officer for the Space Learning Program at the Canadian Space Agency (CSA). Prior to joining the CSA in December 1999, Jason worked in the promotions department at what is now Virgin Radio and wrote his own section—called “Fresh Meet”—in a national magazine titled Fresh, which profiled people in the 18-34 demographic from a variety of interesting fields. At the CSA, Jason is responsible for the coordination of the Space Learning Grants & Contributions Program, the Student and Educator Professional Development Workshop Program, the Student/Youth section of the website as well as a variety of special projects including the development of student programming for a number of space-related international conferences. Jason also represents Canada at the Working Group level of the International Space Education Board.

CROSSROADS

Medical Education for Exploration Class Missions

NASA Aerospace Medicine Elective at the Kennedy Space Centre

Gregory E. Stewart*, Laura Drudi

BACKGROUND OF AEROSPACE MEDICINE ELECTIVE

For over a decade, the Canadian Space Agency (CSA) has selected Canadian medical students & residents to attend NASA’s prestigious Aerospace Medicine Elective at either the Kennedy Space Center (KSC) on the Space Coast in Florida or the Johnson Space Center (JSC) in Houston, Texas (1). Selected students have the privilege to learn from pioneers and leading experts in space life sciences about the physiologic adaptations that occur during space-flight as well as the preparations and medical support required for a Space Shuttle launch to the International Space Station (ISS).

INTRODUCTION

The spaceflight environment poses many challenges to astronauts. Understanding the effects of long duration space travel and how a crew medical officer (CMO) operates in this extreme environment was the focus of the research project. The knowledge and skills set for future CMOs as the endeavours to space exploration continue, and Canada’s involvement in this initiative was further assessed in this project.

Physicians are often chosen to be astronauts; however, non-physicians are often the CMO on the ISS. Forty hours of CMO training occurs during the two-year period leading up to the actual mission and there is no protocol for maintaining medical skills during a long duration mission (2,3). Therefore, procedural skill decay will be an important issue worth considering for long duration space missions, and effective countermeasures should be developed for CMOs to manage arising medical events. Also, extensive equipment and supplies for the medical interventions cannot be provided due to the severe weight and volume constraints of spaceflight (4,5,6). Thus, risk management strategies dictate that only those situations that are the most severe, or the most easily diagnosed and treated will be anticipated and supplied.

The greatest medical concerns to a crew on an exploration class mission include (i) radiation exposure (ii) human behaviour and performance and (iii) physiologic alterations in the reduced gravitational environment (2,4,5). With the cancellation of the Constellation program, the current plan for NASA is to support the extension of the ISS through 2020. Thus, the ISS will serve as a platform for space life sciences research as well as preparation for future exploration class missions by increasing our understanding of space physiology (6,7).

The standard of care on the ISS is to support the crew 24/7 from Mission Control and to stabilize & transport an astronaut to Earth for definitive medical care (2). For future exploration class missions, however, the medical care system will need to be very autonomous and self-sufficient due to the communication delay and extremely long separation from definitive medical care. Furthermore, procedural skill decay will become a mission-threatening medical consideration, as the expected rate of a significant medical event extrapolated to a 2.5 year Mars mission involving 6 crew members is approximately 1 event/mission (8).

*To whom correspondence should be addressed: Dr. Gregory E. Stewart
University of Western Ontario
Email: gregstewart99@hotmail.com
Similarly in medicine, communication issues, situational awareness and poor error management—up to 70% of aviation accidents were due to crew errors—could be a helpful memory aid in these safety critical environments, especially when all relevant human factors are not addressed (22). Human factors engineering is the study of the interaction between humans and their working environment (20,23). More specifically, its goal is to understand how human limitations, capabilities and characteristics, behaviours and responses will affect performance in a given environment. Furthermore, the application of our understanding of human factors to the design of an intuitive system will minimize risk and optimize performance (24,25).

For example, telemedicine has been used in the design of a model of safe technology transfer to community surgeons in Western Ontario, Canada (26). The study used a preceptor guided training schedule to meet minimum case requirements. The preceptor allowed progression from direct “scrubbed-in” supervision to “verbal-only” supervision and finally to telementoring only when competent skill and judgment was observed. The study demonstrated the feasibility of a training program for laparoscopic colonic surgery that shortened hospital stays and ultimately improves patient outcomes.

Telemedicine can also be applied to space travel. A case in point is Just-In-Time telemedicine for ultrasound exam, as it provides a means to monitor critical care medical environment: error recovery as cognitive activity. Proceedings of the 2002 Cognitive Science Society, 2002. pp 43.

...and collaboration foster the motivation and acceptance of the individuals at NASA’s Kennedy Space Center and the Canadian Space Agency who made this incredible experience possible.

REFERENCES

1. Canadian Space Agency. http://www.asc-csa.gc.ca/eng/astronauts/csm_training_candidates.asp. Accessed February 22, 2010.

2. Needs and Capacity Study: Provision of Medical Care Solutions for Long Duration Human Space Flight Missions. NORTH Network. http://www.asc-csa.gc.ca/pdf/CSEW2008_Medical_Care_Solutions.pdf. Accessed February 22, 2010.

3. Ball JR, Evans CH, eds. Committee on a Vision for a Space Station for Future Space Exploration. Board on Health Sciences Policy, Institute of Medicine. Space Station: astronaut care for exploration missions. Washington, DC: National Academy Press; 2001.

4. Fujikawa G, Davis JR, Stegemoeller CM. Bioastronautics Roadmap: A risk reduction strategy for Human Space Exploration. Houston, TX: JSC. 2005.

5. Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JF, Fogleman G, Davis JR, Johnson R, Stepanek J, Fogarty JA, ed. Bioastronautics Roadmap: A risk reduction strategy for Human Space Exploration. Houston, TX: JSC. 2005.

6. Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JF, Fogleman G, Davis JR, Johnson R, Stepanek J, Fogarty JA, ed. Bioastronautics Roadmap: A risk reduction strategy for Human Space Exploration. Houston, TX: JSC. 2005.

7. Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JF, Fogleman G, Davis JR, Johnson R, Stepanek J, Fogarty JA, ed. Bioastronautics Roadmap: A risk reduction strategy for Human Space Exploration. Houston, TX: JSC. 2005.

8. Baisden DL, Beven GE, Campbell MR, Charles JB, Dervay JF, Fogleman G, Davis JR, Johnson R, Stepanek J, Fogarty JA, ed. Bioastronautics Roadmap: A risk reduction strategy for Human Space Exploration. Houston, TX: JSC. 2005.

9. Gurusamy K, Aggarwal R, Patilaneu L, Davidson BR. A systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. Brit Journ Surg. 2008. 95: 1088-1097

10. Lammers, RL. Learning and Retention Rates After Training in Posterior Epistaxis Management. Acad Emerg Med. 2008. Nov 15(11).

11. Kovacs G, Bullich G, Ackroyd-Stolarz S, Bn E, Petrie D. A Randomized Controlled Trial on the Effect of Educational Interventions in Promoting Airway Management Skill Maintenance. Ann Emerg Med. 2000. Oct 36(4):301-309.

12. Campbell MR, Bica JA, Johnston III SL, Muller MS. Performance of ATLS procedures in microgravity. Aiat Space Environ Med. 2002. Sept, 73(9): 907-911.

13. McFarlin K, Sangsany AE, Melton S, Hamilton DR, Dulchavsky SA. A surgeon’s guide to the universe. Surgery. 2006. May. 139(5): 857-860.

14. Doerr H, Murray WB, Cuttin M, Broderick TJ. Training Astronauts to Manage Trauma (Emergencies): Integrating Human Patient Simulation into Medical Operations for NASA. Trauma Care. 2006. Winter 16(1): 26-30.

15. Sinclair D, Crookery P. Safety and diagnostic error. C FP. 2010: 56:28-30.

16. Heimrich RL. On error management: lessons from aviation. BMJ. 2008. 336: 1129-31

17. Amalberti R, Woland L. Human error in aviation. In: Soehl H, ed. Aviation safety: human factors, system engineering, flight operations, economics, strategies, management. Brit Academic Publishers. 1997. pp 91-108.

18. Rathjen T, Whitmore M, McKenzie K, Goel N, Dinges DF, Tvranyans AP, Zohner O, Hudson J, Dismukes RK, Musson DM. An introduction to human factors in aero-space. In: Davis JR, Johnson R, Stepanek J, Fogarty JA, eds. Fundamentals of Aerospace Medicine. LWW. 2008. pp 491-515

19. Hui B, Taggart B, Crandall S, Lasek RE, Williams AL, Love LJ, Sexton JB, Tyson JE, Heimrich RL. Teaching teamwork during the Neonatal Resuscitation Program: a randomized trial. Journ of Perin. 2007. 27:409-414.

20. Heisig BM, Pronovost P. The bundle: a tool for error management and performance improvement. Journ of Crit Care. 2006. 21: 231-235.

21. Kubose T, Patel VL, Jordan D. Dynamic adaptation to critical care medical environment: error recovery as cognitive activity. Proceedings of the 2002 Cognitive Science Society. 2002. pp 43.
24. Patel LP, Cohen T. New Perspectives on error in critical care. Crit Open Crit Care. 2008. 14:456-459

25. Stone R, McCoy R. Ergonomics in Medicine and Surgery. BMJ. 2004. 328:1115-8

26. Schachtz AC, Sorsdiari AK, Leefeeve KL, McCune ML, Jayaraman S. A model for longitudinal mentoring and tele-monitoring of laparoscopic colon surgery. Surgical Endoscopy. 2009. 23:1634-1638.

27. Fauke CM, Kaeli AY, Sargsyan AE, Hamilton DR, Melton B, Martin D, Dulchavsky SA. Diagnostic Instrumentation Aboard ISS: Just-In-Time Training for Non-Physician Crewmembers. Aviat Space Environ Med. 2005. June, 76(6): 594-598.

28. Kwon D, Bouthfard JA, von Holstbeek M, Sargsyan AE, Hamilton DR, Melton B, Dulchavsky SA. Battling fire and ice: remote guidance ultrasound to diagnose injury on the ISS and the ice rink. Am J Surg. 2007. 193: 417-420.

29. Otto C, Hamilton DR, Levine BD, Hare C, Sargsyan AE, Allshuler P, Dulchavsky SA. Into thin Air: Extreme Ultrasound on Mt Everest. Wild Env Med. 2009. 20, 283-289.

Gregory E Stewart (BMSc MD CCFP(c)) completed medical school at The University of Ottawa and is now a resident at The University of Western Ontario in the Rural Family Medicine Program in Goderich. As a pilot and traveler as well as a physician in training, he investigated “Medical Education for Exploration Class Missions” because he was interested in learning about the medical concerns of long duration space travel and how a CMO operates in this extreme environment.

Laura Drudi (M.D., C.M. candidate 2013) is a third year medical student at McGill University. Her interest in combining her two passions of space and medicine has led her to conduct aerospace medicine research. She will be taking a one year’s leave of absence from the Faculty of Medicine and will be pursuing a Diploma of Space Studies and an MSc in Experimental Surgery prior to completing her MD. She hopes to work for the manned space program as a flight surgeon and to further continue her research in space life sciences.

Ultrasound: From Earth to Space

Jennifer Law*, Paul B. Macbeth

ABSTRACT: Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper.

Keywords: Ultrasound, Spaceflight, Telemedicine, Telesonography, Remote consultation

INTRODUCTION

The use of ultrasound to diagnose and facilitate therapeutic interventions has become routine in many areas of medicine and surgery (1). With advances in computing power and probe design, ultrasound systems have become a widely available imaging modality. Traditionally, ultrasound is best known for its assessment of pregnancy and fetal growth. A growing number of applications have developed to include detailed assessments of almost every organ system. Clinicians have also identified benefits in trauma, critical care, and remote diagnostics. Ultrasound is an ideal diagnostic tool as it is noninvasive, low-cost, and highly portable. Image generation and interpretation, however, is highly user-dependent. As a result, ultrasound has traditionally been limited to expert users. With new advances in ultrasound technology and personnel training, the use of ultrasound has expanded beyond these traditional boundaries and has become an extension of the physical examination to many. Beside ultrasound assessments have enhanced physicians’ capabilities to accurately diagnose and understand patient physiology with the benefit of real-time feedback (2).

In this review we discuss the development of ultrasound technology and its expanded assessment of patients. A detailed description of its applications will be highlighted with discussion of its remote capabilities and utility for human space exploration.

BACKGROUND

History of ultrasound

The origins of ultrasonography can be traced back as far as the early 1800s, when Swiss physicist Jean-Daniel Colladon accurately determined the speed of sound through water. In the late 1800s, Pierre Curie and Jacques Curie demonstrated the connection between voltage and pressure in crystalline materials now known as the piezoelectric effect. This breakthrough led to the creation of the modern ultrasound transducer. It was not until the late 1930s when Austrian psychiatrist Dr. Karl Dussik demonstrated the clinical utility of ultrasound by generating images of brain tumors. A decade later, Dr. George Luyckx characterized the differences of sound waves in different tissues. Early clinical applications primarily focused on clinical assessment of pregnancy and fetal development. As the technology matured, more clinical applications