CORRIGENDUM: Corrected Table & Reference

Smartphone App in Stroke Management: A Narrative Updated Review

Adriano Bonura,1 Francesco Motopele,1 Fioravante Capone,1 Gianmarco Iaccarino,1 Michele Alessiani,1 Mario Ferrante,1 Rosalinda Calandrelli,2 Vincenzo Di Lazzaro,1 Fabio Pilato1

1Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Campus Bio Medico University of Rome, Rome, Italy
2Neuroradiology and Radiology Unit, Diagnostic Imaging, Radiotherapy, Oncology, Haematology Department, Agostino Gemelli University Policlinic (Fondazione Policlinico Universitario Agostino Gemelli) IRCCS, Rome, Italy

Journal of Stroke 2022;24(3):323-334
https://doi.org/10.5853/jos.2022.01410

In the article, there is a mistake in the references in Table 1. On pages 326 and 327, the references 22, 25, 29-35, 39-44, 46, 50-56, 58-61, 67-72, and 74-80 from Table 1 were misplaced in the previous version of the Review, and the correct table is as follows;
Table 2. Summary of included Apps

App name/ authors	App store availability	Study type	Field of application	App modality	Main findings	Summary
Stroke Riskometer	iOS, Android	Ongoing trial (NCT04529681)	Primary prevention	Calculator, Video, Health info	NA	Calculates annual stroke risk through weight, age, diet and other risk factors data. Gives information on managing risk factors through videos and articles.
iLAMA	Not available	NA	Pre-hospital management	Augmented reality	NA	Through the smartphone’s camera and the accelerometer allows the recognition of signs such as altered eye motility, dysmetria, facial paresis and strength deficit in the upper limbs
SPMIS	Not available	Pilot study	Pre-hospital management	Data sharing	App usability	Patient details are entered into the App by emergency responders. The App transmits the data to hospital physicians.
FAST-ED	iOS, Android	Pilot study	Pre-hospital management	GPS, CDSS	NA	Provides a series of questions to assess eligibility for revascularization therapy and it contains a GPS to find the nearest hospital.
ESN	iOS, Android	Pilot study	Pre-hospital management	GPS, CDSS, Video-call	Reduction in door-in, door-out, door-to-graoin and door-to-needle times	Provides a series of questions to assess eligibility for revascularization therapy, it contains a video communication system to connect medical teams, and a GPS to find the nearest hospital.
Stroke119	iOS, Android	Pilot study	Pre-hospital management	CDSS, Information, GPS	NA	It helps patients in self-screening stroke symptoms through clinical scales. It gives health information and has a GPS system to find hospital centers that perform thrombolysis.
JOIN	iOS, Android	Validation study	In-hospital management	DICOM viewer, Video-call, Chat	Reduction in door-to-needle time	Allows sharing of images and clinical data between teams of specialists with chat and video-call systems. Records patient data chronologically in a timeline to simplify clinical management.
StopStroke	NA	Retrospective study	In-hospital management	Chat, Video-call	Reduction in door-to-needle time	Allows to create group chats with other specialists to share patient images and clinical information. It also supports video calls.
Act-Fast	iOS, Android	Pilot study	In-hospital management	CDSS, Chat		Contains several clinical scales and checklists for revascularization therapy. Also presents sharing and messaging features among physicians.
Acute Stroke Evaluation	iOS	Pilot study	In-hospital management	CDSS	Reduction in door-to-needle time	Digitized version of the checklist for revascularization therapies based on the U.S. stroke guidelines.
S3 Rehab	NA	NA	Rehabilitation	Sensors	NA	Records data about the movement of the limbs through smartphone’s gyroscope and accelerometer.
GetMyROM	iOS	Pilot study	Rehabilitation	Sensors		Records data on the range of movements of the upper limbs
ARMStroke	iOS	Pilot study	Rehabilitation	Sensors	No changes detected when using the App	Records data on the range of movements of the upper limbs
Chae et al.	Android (KCT0004818)	Rehabilitation	Sensors, wearable devices	Wearables and machine learning can improve home care of stroke survivors	Records upper extremity range of motion data via smartwatch	
Hou et al.	Android	Pilot study	Rehabilitation	Sensors	Feasibility of App-based measurement of balance in stroke patients	Records balance and posture data
SIPT	iOS	Clinical trial	Rehabilitation	Virtual reality, exergames	Sitting balance, trunk control, gait improvement	Uses smartphone’s motion-tracking technology to simulate pedalling.
App name/ authors	App store availability	Field of application	App modality	Study type	Main findings	Summary
-------------------	------------------------	----------------------	--------------	------------	---------------	---------
MoU-Rehab	iOS, Android	Clinical trial	Rehabilitation	Virtual reality	Non-inferiority to conventional therapy	Allows participants to evaluate the development of interactive rehabilitative exercises with the exergames via televisit.
ViaTherapy	NA	Quality improvement project	Rehabilitation	CDSS	Increased accessibility to and use of evidence-based practice	Allows practitioners to make televisits.
Rehabilitation Guardian	NA	NA	Rehabilitation	Calendars, Health info	Lowering of blood pressure and glycated hemoglobin	Records vital parameters.
Li et al.	iOS, Android	Clinical trial	Rehabilitation	Health info, Reminder	High usability and perceived usefulness of the App	Provides heart rate monitoring via a smartphone.
Lose it	iOS, Android	Clinical trial	Chronic management	Health videos	No lowering of blood pressure, LDL cholesterol and glycosylated hemoglobin. Improved functional outcome	Provides educational videos on stroke.
MakeMyDay	NA	Multiple case study	Chronic management	Health info, Reminder	High acceptability of the App among patients	Provides educational videos on stroke.
Movies4Stroke	NA	Clinical trial	Chronic management	Health videos	No lowering of blood pressure, LDL cholesterol and glycosylated hemoglobin. Improved functional outcome	Provides educational videos on stroke.
AFib 2gether	iOS, Android	Clinical trial	Chronic management	Health info, Reminder	High usability and perceived usefulness of the App	Provides heart rate monitoring via a smartphone.
FibriCheck	iOS, Android	Clinical trial	AF detection	Wearable devices	High quality ECG recording, High measurement compliance and patient satisfaction	Provides heart rate monitoring via a smartphone.
Santala et al.	iOS, Android	Observational study	AF detection	Wearable devices	NA	Provides educational videos on stroke.
AliveCor	NA	Clinical trial	AF detection	Wearable devices	NA	Provides educational videos on stroke.
TEASE	NA	Clinical trial	AF detection	Wearable devices	NA	Provides educational videos on stroke.
22. Krishnamurthi R, Hale L, Barker-Collo S, Theadom A, Bhattacharjee R, George A, et al. Mobile technology for primary stroke prevention. *Stroke* 2019;50:196-8.

25. Mat Said Z, Musa KI, Tengku Ismail TA, Abdul Hamid A, Sahathevan R, Abdul Aziz Z, et al. The Effectiveness of Stroke Riskometer™ in improving stroke risk awareness in Malaysia: a study protocol of a cluster-randomized controlled trial. *Neuroepidemiology* 2021;55:436-446.

29. Yao K, Wong KK, Yu X, Volpi J, Wong ST. An intelligent augmented lifelike avatar app for virtual physical examination of suspected strokes. *Annu Int Conf IEEE Eng Med Biol Soc* 2021;2021:1727-1730.

32. Nakae T, Kataoka H, Kuwata S, Iihara K. Smartphone-assisted prehospital medical information system for analyzing data on prehospital stroke care. *Stroke* 2014;45:1501-1504.

31. Nogueira RG, Silva GS, Lima FO, Yeh YC, Fleming C, Branco D, et al. The FAST-ED App: a smartphone platform for the field triage of patients with stroke. *Stroke* 2017;48:1278-1284.

35. Nam HS, Heo J, Kim J, Kim YD, Song TJ, Park E, et al. Development of smartphone application that aids stroke screening and identifying nearby acute stroke care hospitals. *Yonsei Med J* 2014;55:25-29.

36. Mansour OY, Ramadan I, Élfatary A, Hamdi M, Abudu A, Hassan T, et al. Using ESN-smartphone application to maximize AIS reperfusion therapy in Alexandria Stroke Network: a stroke chain of survival organizational model. *Front Neurol* 2021;12:597717.

37. Mat Said Z, Musa KI, Tengku Ismail TA, Abdul Hamid A, Sahathevan R, Abdul Aziz Z, et al. The Effectiveness of Stroke Riskometer™ in improving stroke risk awareness in Malaysia: a study protocol of a cluster-randomized controlled trial. *Neuroepidemiology* 2021;55:436-446.

38. Martins SC, Weiss G, Almeida AG, Brondani R, Carbonera LA, de Souza AC, et al. Validation of a smartphone application in the evaluation and treatment of acute stroke in a comprehensive stroke center. *Stroke* 2020;51:240-246.

39. Munich SA, Tan LA, Nogueira DM, Keigher KM, Chen M, Crowley RW, et al. Mobile real-time tracking of acute stroke patients and instant, secure inter-team communication: the Join App. *Neurointervention* 2017;12:4563-4568.

40. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

41. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

42. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

43. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

44. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

45. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

46. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

47. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.

48. Noone ML, Moideen F, Krishna RB, Pradeep Kumar VG, Karadan U, Chellenton J, et al. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020;29:105319.
58. Hancock NJ, Collins K, Dorer C, Wolf SL, Bayley M, Pomeroy VM. Evidence-based practice 'on-the-go': using ViaTherapy as a tool to enhance clinical decision making in upper limb rehabilitation after stroke, a quality improvement initiative. BMJ Open Qual 2019;8:e000592.
59. Xu J, Qian X, Yuan M, Wang C. Effects of mobile phone App-based continuing nursing care on self-efficacy, quality of life, and motor function of stroke patients in the community. Acta Neurol Belg 2021 Mar 16 [Epub]. https://doi.org/10.1007/s13760-021-01628-y.
60. Li L, Huang J, Wu J, Jiang C, Chen S, Xie G, et al. A mobile health app for the collection of functional outcomes after inpatient stroke rehabilitation: pilot randomized controlled trial. BMJ Mhealth Uhealth 2020;8:e17219.
61. Allegue DR, Kairy D, Higgins J, Archambault P, Michaud F, Miller W, et al. Optimization of upper extremity rehabilitation by combining telerehabilitation with an exergame in people with chronic stroke: protocol for a mixed methods study. JMIR Res Protoc 2020;9:e14629.
62. Fruhwirth V, Berger L, Gattringer T, Fandler-Höfler S, Kneihsl M, Schwerdtfeger A, et al. Evaluation of a newly developed smartphone app for risk factor management in young patients with ischemic stroke: a pilot study. Front Neurol 2022;12:791545.
63. Xu J, Qian X, Yuan M, Wang C. Effects of mobile phone App-based continuing nursing care on self-efficacy, quality of life, and motor function of stroke patients in the community. Acta Neurol Belg 2021 Mar 16 [Epub]. https://doi.org/10.1007/s13760-021-01628-y.
64. Li L, Huang J, Wu J, Jiang C, Chen S, Xie G, et al. A mobile health app for the collection of functional outcomes after inpatient stroke rehabilitation: pilot randomized controlled trial. BMJ Open Qual 2019;8:e000592.
65. Cai H, Lin T, Chen L, Weng H, Zhu R, Chen Y, et al. Evaluating the effect of immersive virtual reality technology on gait rehabilitation in stroke patients: a study protocol for a randomized controlled trial. Trials 2021;22:91.

We apologize for any inconvenience that this may have caused.