Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers \[OA\]

Tim J. Brodribb* and Hervé Cochard

University of Tasmania, Hobart, Tasmania 7001, Australia (T.J.B.); INRA, UMR 547 PIAF, F–63100 Clermont-Ferrand, France (H.C.); and Université Blaise Pascal, UMR 547 PIAF, F–63177 Aubière, France (H.C.)

This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Ψ_{leaf}) were monitored. Stomatal responses to Ψ_{leaf} were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and 100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (\(r^2 = 0.70\) across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to

Photosynthesis occurs in an aqueous environment and until evolution comes across a solid-state means of fixing atmospheric CO_2, terrestrial plant species, even those in humid tropical rainforests (Engelbrecht et al., 2007) will be exposed to potentially lethal desiccation. The reason for this is that in most environments competition between plants forces them to engage in a dangerous balancing act between trading water for carbon at the leaf while minimizing costs associated with replacing this transpired water with water pulled from the soil. The job of seeking and transporting water falls upon the roots and vascular system, and reduced investment in these systems comes at a cost in terms of the safety and efficiency of water carriage. These conflicting demands mold the form and function of vascular plants and have yielded a diverse spectrum of vascular anatomies, each tuned to a specific flow capacity and drought tolerance.

Desiccation tolerance is at the center of the vascular cost/benefit equation. The reason for this is that a more desiccation-tolerant vascular system (one that resists embolism better during soil drying) is distinctly more costly to build than a sensitive system (Hacke et al., 2001a), yet the repercussions of vascular failure are likely to be fatal. This trade-off, as with many other systems in biology, leads to functional diversity and hence there is a great range in the ability of plant vascular systems to operate under the variable hydraulic tensions intrinsic to pulling water from the soil to the leaf. Hydraulic tension in the xylem increases as soil dries, increasing the risk of xylem dysfunction by the cavitation (Tyree and Sperry, 1989) or collapse (Cochard et al., 2004) of conduits, and when quantified in terms of the tension required to disable 50% of the stem xylem, published values range from less than 1 MPa (Yangyang et al., 2007) to maxima of around 15 MPa (Brodribb and Hill, 1999). It is an attractive proposition to suggest that xylem vulnerability to dysfunction is the key trait responsible for setting the drought tolerance of any species, yet the evidence for this remains comparative (Kolb and Davis, 1994; Brodribb and Hill, 1999; Comstock, 2000; Pockman and Sperry, 2000; Tyree et al., 2003; Maherali et al., 2004; Breda et al., 2006). At the same time others cite traits such as photosynthetic physiology (Hanson and Hitz, 1982) and senescence (Rivero et al., 2007) or combined physiopathological processes (McDowell et al., 2008) as more important limiters of plant function during drought.

Major progress has been made recently in our understanding of the fundamental role that plant hydraulics play in governing the rate of water extraction from the soil (Sperry, 2000), yet this understanding breaks down as plants approach and exceed the limitations of their water transport system. Very little
information is available to explain the performance of plants during and after major drought events, and how these episodes impact on plant survival and distribution. Theory suggests that xylem cavitation should set a clear limit to the desiccation tolerance of plants such that water potentials capable of reducing xylem hydraulic conductivity to approach zero should be lethal, or at least result in 100% defoliation. Surprisingly there are no studies that have quantitatively linked the relationship between the resistance of the xylem tissue to hydraulic tension and the absolute desiccation tolerance of plants (Tyree et al., 2002). This gap in our understanding of how plants respond to drought and where the limits of desiccation tolerance lie for any particular species poses an enormous problem to those attempting to model the impacts of changing rainfall or evaporative load on both wild and agricultural plants. In this article we examine the relationship between xylem functional limits and the drought survival and recovery of plants.

Here, we focus on the desiccation tolerance of a group of conifer trees that are apparently constrained in their distribution by the different tolerances of their stem xylem to water stress-induced cavitation (Brodribb and Hill, 1999). By first establishing the vulnerability of both stems and leaves to cavitation and then exposing whole plants to a variety of desiccation intensities we sought to determine whether xylem dysfunction plays a role in the response to desiccation and equally importantly how these episodes impact on plant survival and drought recovery of plants. The three plots show data while unstressed (Ψleaf = −1.15 MPa; black circles), moderately stressed (Ψleaf = −1.65 MPa; triangles), and stressed to >80% stomatal closure (Ψleaf = −2.85 MPa; white circles). Emd was measured during the shaded time interval.

and at −1.48 MPa in C. rhomboidea. Following stomatal closure the mean rate of plant dehydration was similar in all plants (0.29 MPa per day ± 0.05) except in C. rhomboidea that showed a slightly higher rate of drying (0.44 MPa per day).

Stem and Leaf Vulnerability to Drought

During desiccation a marked decline in hydraulic conductivity was observed in excised samples of both stems and leaves as hydraulic tension in the xylem increased. The degree of xylem dysfunction was related to water potential by a sigmoidal function in both stems and leaves of all species (Fig. 3). Despite the relatively conservative shape of these relationships there was a huge range in xylem tolerance to water potential across the species sample. C. rhomboidea yielded the most resistant stems and leaves with 50% loss of function recorded at −10.8 MPa and −6.60 MPa, respectively; this compared with only −2.78 MPa and −2.54 MPa for the stems and leaves of Dacrycarpus dacrydioides. Leaves were always more sensitive to water-stress-induced dysfunction than stems, but there was a constant relationship between the two such that water potential at 50% loss of stem function (Ψstem50) was proportional to (and almost equal to) the water potential at 95% loss of Kleaf (Ψleaf95), i.e. Ψstem50 = 1.08 Ψleaf95 (r² = 0.88).

Stomatal closure (50%) preceded 50% stem xylem dysfunction by between 1.7 MPa (D. dacrydioides) and 9.1 MPa (C. rhomboidea) and there was no relationship between stomatal closure and xylem failure in either stems or leaves.

Recovery from Drought

Plants were droughted to a variety of water potentials ranging from just past the point of 80% stomatal

RESULTS

Drought and Stomatal Closure

The diurnal course of transpiration in all plants rose from minimum values overnight to a plateau that was maintained over the period 10 AM to 4 PM. The magnitude of this transpirational plateau decreased over time as soil water content declined during drought (Fig. 1). The decline in midday transpiration (Emd) after withholding water continued until both midday and midnight transpirational fluxes were similar, signifying complete stomatal closure. In all species, the response of Emd to decreasing midday leaf water potential (Ψl) followed a sigmoidal trajectory, with stomata highly sensitive to a very small range in Ψl (Fig. 2). The most sensitive stomatal response was in Lagarostrobos franklinii where stomatal conductance (as inferred from Emd) fell from 80% of maximum to 20% of maximum over the Ψl range −1.20 MPa to −1.81 MPa. Callitris rhomboidea showed the lowest sensitivity to Ψl with 1.25 MPa separating 20% and 80% closure. The absolute sensitivity of stomata to Ψl was similar in all species with 50% stomatal closure occurring at a mean of −1.20 ± 0.02 MPa in three of the four species, and at −1.48 MPa in C. rhomboidea. Following stomatal closure the mean rate of plant dehydration was similar in all plants (0.29 MPa per day ± 0.05) except in C. rhomboidea that showed a slightly higher rate of drying (0.44 MPa per day).

![Figure 1. Examples of diurnal patterns of whole-plant transpiration in a single individual of A. arenarius during several weeks of withholding water. The three plots show data while unstressed (Ψleaf = −1.15 MPa; black circles), moderately stressed (Ψleaf = −1.65 MPa; triangles), and stressed to >80% stomatal closure (Ψleaf = −2.85 MPa; white circles). Emd was measured during the shaded time interval.](image-url)
closure, to the most severe stress approximately equal to Ψ_{leaf95}. Upon rewatering, a universal pattern was observed whereby Ψ_{leaf} returned to a value corresponding to between 80% and 20% stomatal closure following an exponential trajectory with a half time of 1 to 2 d (Fig. 4). This pattern was repeated in all plants regardless of the degree of water stress. The final recovery of Ψ_{leaf} back to prestress hydration was approximately linear with a slope that was related to the level of stress imposed (Figs. 4 and 5). This last phase of postdrought recovery appeared to dictate the pattern of gas-exchange recovery.

The recovery of gas exchange (as reflected by E_{md}) was strongly influenced by the relatively slow recovery of hydraulic conductivity following rewatering (Fig. 5). This slow recovery of E was most pronounced in plants droughted to water potentials below 50% loss of K_{leaf} (Figs. 4 and 5). The inhibition of stomatal reopening in plants recovering from these significant stresses conformed very well to a hydraulic-stomatal limitation model whereby the rate of gas exchange was a unique function of Ψ_{leaf} (Fig. 2) that was ultimately limited by whole-plant hydraulic conductivity (Fig. 5). This means that the stomata responded the same to Ψ_{leaf} depression produced by hydraulic dysfunction in wet soil as they did to Ψ_{leaf} depression produced by soil drying. A synthesis of all recovery data from all plants showed very good correspondence between the observed recovery of E_{md} and the recovery of E_{md} predicted from entering measured values of Ψ_{leaf} during plant recovery into the equation $E = f(\Psi_{leaf})$ where the function $f(x)$ for each species was taken from the regression equations shown in Figure 2. Regressions of $\% E_{md}$ observed versus $\% E_{md}$ predicted yielded linear functions that were not significantly different to the same regressions fitted through data used to define $f(x)$, i.e. the data collected during the initial drought phase prior to rewatering (Fig. 6). Pooling all recovery data for all species yielded a very strong 1:1 linear regression ($r^2 = 0.70$) between $\% E_{md}$ observed and $\% E_{md}$ predicted by the hydraulic-stomatal limitation model. Only L. franklinii showed a significant deviation from the hydraulic model whereby observed E_{md} was on average 22% lower than predicted by the model (Fig. 6). Importantly the relationship between observed and predicted $\% E_{md}$ was still linear in this species, indicating that hydraulic limitation remained the primary limiter of gas exchange.

Recovery of gas exchange after rewatering was highly sensitive to minimum Ψ_{leaf} during drought. Recovery times ranged from a minimum of 1 d to maximum periods of over 100 d (where new leaf growth was required to replace leaves damaged during drought). To compress the range of the recovery data we expressed the recovery of E_{md} in terms of $t_{1/2}$, that is $1/([t_{1/2} \text{days}]$ required for E_{md} to return to 50% of the predrought maximum). The advantage of this index is that $t_{1/2}$ ranges from one, representing an overnight recovery, to zero indicating plant death. In all species $t_{1/2}^{-1}$ exhibited two phases, an insensitive phase followed by a linear decline to values close to and occasionally reaching zero (plant death; Fig. 7). Fitting linear regressions to this second phase of declining $t_{1/2}^{-1}$ yielded two key parameters, first the point at which this regression $= 1$ was taken as the minimum Ψ_{leaf} that plants could recover gas exchange overnight when rewatered. This intercept corresponded
closely with the \(\Psi_{\text{leaf}} \) at 50% loss of \(K_{\text{leaf}} \) \((r^2 = 0.96)\). The second value derived from these regressions was the \(x \) intercept that yielded the minimum survivable water potential for each species \(\Psi_{\text{min}} \), and this value ranged enormously from \(-11.4 \text{ MPa}\) in the most desiccation-tolerant species \(C. \ rhomboidea \), to \(-2.4 \text{ MPa}\) in \(D. \ dacrydioides \). In all species \(\Psi_{\text{min}} \) was equal to the water potential at 95% loss of \(K_{\text{leaf}} \) \((r^2 = 0.88)\) and 50% loss of \(K_{\text{stem}} \) \((r^2 = 0.98; \text{Fig. } 7B)\). The difference in \(\Psi_{\text{leaf}} \) between 100% defoliation and plant death was small in each species. Only plants of \(D. \ dacrydioides \) were capable of recovering from 100% defoliation, but even in this species there was a very narrow margin be-

DISCUSSION

Hydraulic function in the four conifer species examined here was found to underpin the recovery from and survival of water stress. This important result provides a functional framework for understanding how plants respond to the highly variable water stresses imposed upon the majority of plants growing in the field. Furthermore these data provide a quantitative and physiological basis for evaluating the absolute desiccation tolerance of conifer species. Xylem dysfunction and desiccation response were intimately linked by a 1:1 relationship between \(\Psi_{\text{min}} \) and...
both stem Ψ_{stem} and the loss of leaf hydraulic conductivity (Ψ_{leaf}, Fig. 7B). Apart from the obvious physiological importance of this result, the implications for understanding drought survival and the distribution of plants are significant.

Hydraulic Limitation of Drought Recovery

The recovery from water stress in our four conifer species conformed to a hydraulic-stomatal limitation model whereby the response of stomata to Ψ_{leaf} was the same function during poststress reopening of stomata in wet soil as it was during soil drying (Fig. 6). This scenario means that slow recovery of plant hydraulic conductivity after drought limits the recovery of leaf gas exchange because in saturated soils E and K_{plant} determine Ψ_{leaf} according to the expression: $\Psi_{leaf} = E/K_{plant}$. Hence if a plant suffers a reduction of K_{plant} during drought, then following rewatering the model would predict that Ψ_{leaf} will be much more sensitive to E, and hence stomatal opening will quickly be limited by $E = f(\Psi_{leaf})$. Effectively, the realized E_{md} will be the intersection of the hydraulic supply function (straight line, Fig. 5A) and the stomatal control function (sigmoid curve, Fig. 5A). Recovery of K_{plant} allows gradually higher E_{md} to be achieved until Ψ_{leaf} is nonlimiting at maximum stomatal opening.

We found strong evidence that hydraulic limitation was the process governing gas-exchange recovery from drought in our tree sample, and specifically that this hydraulic-stomatal limitation model could account for over 70% of the variation in gas exchange during the recovery from all levels of drought. This conformity across all species is all the more impressive considering the enormous range of desiccation vulnerabilities represented by our species sample. Previous studies have demonstrated strong evidence for the limitation of gas exchange in nondroughted plants (Meinzer and Grantz, 1991; Hubbard et al., 1999; Brodribb and Feild, 2000), but here we demonstrate that the recovery of plants from water stress conforms to a hydraulic limitation model without having to invoke other factors such as plant hormones (abscisic acid [ABA]) or direct damage to leaves. The results here come from two conifer families (Podocarpaceae and Cupressaceae) although we have found recently that this type of hydraulic-mediated control of drought recovery applies equally to a group of angiosperms (T.J. Brodribb, unpublished data). The implication of this is that hydraulic dysfunction and repair probably mediates the drought recovery of vascular plants in general.

Although we found an impressively strong pattern of hydraulic-mediated recovery, the functions used to predict the stomatal response to Ψ_{leaf} are qualitative relationships that have been somewhat simplified to measured Ψ_{leaf} (triangles) into the stomatal control function equation \%$E = f(\Psi_{leaf})$ shown in A.
facilitate prediction. Within-species variation and osmotic adjustment are both important features that have been smoothed by the single sigmoid function fitted to each species. In some individuals there was evidence that during drought a degree of osmotic adjustment in the leaf took place, pushing the relationship between C_{leaf} and E_{md} (Fig. 2) to the right, thus enabling stomata to open at slightly lower water potentials after drought. Osmotic adjustment in response to water stress has been observed in many plants and during recovery from water stress it would have the effect of yielding higher than predicted E during the recovery phase (Fig. 8). Such osmotic adjustment could be easily accommodated in a hydraulic-stomatal limitation model, and acts in the opposite direction to the predicted effect of nonhydraulic control of plant recovery (Fig. 8).

By demonstrating conservation of the E, function both during and postdrought, the data tend to negate the possibility of an ABA modification of the stomatal sensitivity to Ψ_{leaf} in these species (compare with Wilkinson and Davies, 2002). Under conditions of ABA-induced stomatal closure, Ψ_{leaf} would quickly rise to close to zero after rewatering due to the low E and hydrated soil, then gradually decline as ABA concentration declined over time, and stomata re-opened (Fig. 8). This type of response was not found to occur in any individual, thus emphasizing the fundamental nature of the hydraulic-mediated stomatal recovery from drought.

Recovery of K_{plant}

All species showed a similar pattern whereby recovery from mild water stress (Ψ_{leaf} between stomatal closure and 50% loss of leaf conductivity) was very different from the behavior of plants subject to stresses beyond 50% loss of K_{leaf}. Plants rewatered after mild water stress recovered gas exchange very quickly (overnight) despite the fact that in some cases significant depression of K_{leaf} had occurred (Figs. 4 and 7A). Two explanations could account for this observation, the first of which is that plants were able to rapidly and fully rehydrate overnight, thus refilling embolized conduits in the leaf (Milburn and McLaughlin, 1974). The concept of rapid embolism reversal in conifers is an important and controversial issue given that there is evidence that cavitation leading to aspiration of the torus/margo pit complex is nonreversible (Sperry and Tyree, 1990). The other, most parsimonious explanation for this rapid recovery phase is that the initial loss in leaf hydraulic conductivity may not be associated with xylem cavitation. Good evidence exists to suggest that xylem tissue collapse (Cochard et al., 2004; Brodribb and Holbrook, 2005) and loss of leaf turgor (Brodribb and Holbrook, 2006; Kim and Steudle, 2007) may both play a part in the loss of K_{leaf} in a variety of plants. Furthermore, we have observed xylem cell collapse in the leaves of two of the four species in this study (both Cupressaceae species), making cell collapse a strong candidate for the incipient (rapidly reversible) stage of K_{leaf} depression.

The timing of gas-exchange recovery in plants exposed to water potentials sufficient to induce >50% loss of K_{leaf} was strongly influenced by the magnitude of water stress (Fig. 7A). The shape of this relationship suggests that the rate of repair of K_{plant} in these individuals was nonlinear, decreasing exponentially as Ψ_{leaf} approached lethal values. This slow repair of K_{plant} is likely to represent the refilling of embolized...
The efficiency of conduit refilling decreased as Ψ_{leaf} approached zero the ability of branches to rehydrate decreases rapidly, and it is probable that an increasing proportion of branches with catastrophic loss of conductivity contribute to the observed pattern of rapidly increasing recovery time. Recovery times greater than 50 d appeared to be attributable to new sapwood growth in branches where hydraulic conductivity had approached zero. The likelihood of canopy Ψ_{leaf} heterogeneity during severe drought is greatly accentuated in older plants as the variation in age (Brodribb and Holbrook, 2003), position, and history (Hacke et al., 2001b) of different leaf cohorts increases. Hence the ability of large plants in the field to recover from drought might be expected to decrease more gradually as plants approach Ψ_{min} than for the young potted plants observed here.

Although both stem and leaf vulnerability were very significantly correlated with Ψ_{min}, K_{leaf} vulnerability was most strongly implicated as the causal parameter driving drought response and recovery kinetics. There are several reasons for this conclusion, the first of which is that $t_{1/2}$ fell from 1 (overnight recovery of $t_{1/2}$) to 0 (plant death). The x intercept of these regressions was defined as the minimum recoverable water potential (Ψ_{min}). B, Shows the very highly significant 1:1 relationships between Ψ_{min} derived from A and 50% loss of K_{leaf} ($r^2=0.98$) and 95% loss of K_{leaf} ($r^2=0.94$), symbols as in A. Correlation coefficients are for regression lines forced through the origin.

Figure 7. A, The relationship between recovery time (plotted as $t_{1/2}^{-1}$) and final Ψ_{leaf} prior to rewatering in all individuals of A. arenarius (white circles), C. rhomboidea (black circles), D. dacrydoides (black triangles), and L. franklinii (white triangles). Recovery time showed two phases, the first phase was insensitive to Ψ_{leaf} ($1/t_{1/2} = 1$) and the second highly dependent. Linear regressions fitted through this second phase as $t_{1/2}$ fell from 1 (overnight recovery of $t_{1/2}$) to 0 (plant death). The x intercept of these regressions was defined as the minimum recoverable water potential (Ψ_{min}). B, Shows the very highly significant 1:1 relationships between Ψ_{min} derived from A and 50% loss of K_{leaf} ($r^2=0.98$) and 95% loss of K_{leaf} ($r^2=0.94$), symbols as in A. Correlation coefficients are for regression lines forced through the origin.

Figure 8. Examples of measured (white circles) and modeled (lines) recovery trajectory of transpiration in a L. franklinii plants over 20 d following rewatering from drought (-3.5 MPa). Three curves depict three models of stomatal-hydraulic behavior: the hydraulic-stomatal limitation model with a fixed $E = f(\Psi_{\text{leaf}})$ (bold line); a hydraulic-stomatal limitation model with osmotic adjustment to promote stomatal opening at lower Ψ_{leaf} (dotted line); and a nonhydraulic limited recovery where stomatal sensitivity to Ψ_{leaf} is enhanced or nonexistent postdrought, e.g. as might occur if ABA was limiting stomatal aperture (dashed line). The measured recovery response for this individual and all individuals (Fig. 6) was best described by the constant $E = f(\Psi_{\text{leaf}})$ function.
particular roots, have always been considered as candidates for the vulnerability-limiting tissue due to what is often found to be their high vulnerability to cavitation (Kolb et al., 1996; Sperry and Ikeda, 1997). The evidence here suggests that tissues upstream of the leaf were either similar to, or more resistant to cavitation than the leaves, emphasizing the ecological importance of leaf vulnerability.

Ecological Implications

These data have a number of important ecological implications, the most fundamental of which is that xylem vulnerability, particularly that of the leaf, can be used to place a definitive limit on the physical tolerance of conifer species to desiccation. This idea has been mooted in the past and there have been several attempts to define how vulnerability to cavitation might limit the dry end of plant distributions (Sperry et al., 1998; Brodribb and Hill, 1999), however we present a means of identifying precisely when a plant can be expected to die during exposure to extreme drought. Furthermore it should be possible, using the principles of hydraulic-mediated recovery from drought, to model the long-term dynamics of gas exchange during drought cycles in the field. Such a model would need to incorporate information about water release characteristics of different soils (Sperry et al., 1998), though rather than using stem vulnerability as the foundational component of the model it would use a combination of leaf vulnerability and stomatal response functions to predict transpiration and assimilation recovery.

Important questions remain, not the least of which is the fundamental question of why stomata close when they do. Much discussion revolves around the issue of whether xylem vulnerability to cavitation defines how stomata respond to Ψ_{leaf} (Bunce, 2006). In this respect it is interesting to note the rather large safety margin between the Ψ_{leaf} at stomatal closure and hydraulic dysfunction observed here for these conifer species. This large safety margin places conifers in a similar category to ferns (Brodribb and Holbrook, 2004) and distinguishes them from angiosperms that close stomata very close to the onset of K_{leaf} dysfunction. The evolutionary implications of such a functional schism high in the phylogeny of vascular plants would be of great significance.

MATERIALS AND METHODS

Plant Material

Four species of conifer trees were selected to cover a broad range of drought sensitivity. *Actinostrobus arenarius* (Cupressaceae) grows in semiarid woodland in western Australia, *Callitris rhomboida* (Cupressaceae) extends from dry open woodland to moist coastal habitats in eastern Australia, *Dacrycarpus dacrydioides* (Podocarpaceae) grows in ever-wet rainforest in New Zealand, and *Lagarostrobus franklinii* (Podocarpaceae) is restricted to wet forest in Tasmania. All individuals were grown from seed collected in native forests and grown for several years under nonheated greenhouse conditions in Hobart, Tasmania. Twelve healthy individuals of each species were chosen such that all plants were similar in size (between 50 cm and 1 m tall) and age (between 3 and 5 years old). Eight of these plants were used in drought experiments while three were sampled for stem vulnerability. Plants were potted in a high conductivity soil such that soil hydraulic conductivity was unlikely to be limiting during the droughting or recovery phases of measurement (Sperry et al., 1998). All individuals were potted into a mix of eight parts composted pine bark, two parts coarse river sand, and one part peat moss with added slow release fertilizer (Osmocote) in 1.8-L pots. Two months prior to the commencement of measurements plants were moved to a controlled-environment glasshouse cell and grown under 18-h days at 25°C/10°C day/night in a controlled glasshouse environment. Humidity in the glasshouse was controlled at 50% using a De Longhi DHE-PC dehumidifier regulated by a Ds17 XH260V-500CO humidity sensor and controller. Throughout the experiment, temperature and humidity were monitored with a Visalia humidity probe and logged on a Campbell CR10X datalogger. Lighting in the growth chamber was unfiltered natural light, with sodium vapor lamps (providing 300–500 μmol quanta m$^{-2}$ s$^{-1}$ at the leaf surface) used to extend the photoperiod to 18 h.

Leaf Vulnerability

Leaf vulnerability was determined in three plants of each species during the gradual imposition of water stress by withholding water. During this drought phase branches were removed periodically to measure K_{leaf} as Ψ_{leaf} declined from midday values around -1 MPa to minimum water potentials associated with leaf death over a period of 4 to 8 weeks. Branches were sampled around midday, and prior to removing the sample branch the mean Ψ_{leaf} was determined from two adjacent shoots. A small sunlit branch (approximately 15 cm2) was then removed and bagged before being quickly transferred back to the laboratory (approximately 2 min transfer time). Using a modified rehydration technique we recut the branch underwater and immediately connected it to a microclorometer (Brodribb and Holbrook, 2006). Branches remained connected to the flowmeter under 1,000 μmol quanta m$^{-2}$ s$^{-1}$ illumination at 22°C with flow rate logged every 1 s for 60 s, after which the branch was immediately disconnected and wrapped in moist paper and transferred to a pressure chamber for determination of final Ψ_{leaf}. K_{leaf} was determined at the two instantaneous points corresponding to the initial and final Ψ_{leaf} using equation 1 (based on Ohm’s law analogy where the pressure gradient across the excised branchlet is equal to $-\Psi_{\text{leaf}}$):

$$K_{\text{leaf}} = \frac{1}{A} \frac{C}{l}$$

where l = instantaneous flow rate into the leaf (mmol s$^{-1}$); A = projected leaf area.

Initial and final K_{leaf} did not tend to vary by more than 10% and hence were combined to produce a mean K_{leaf} measurement at the initial Ψ_{leaf} value. In cases where initial and final K_{leaf} differed by more than 20% (occasionally in hydrated leaves), a third technique was employed whereby branches were allowed to come to an evaporational steady state for 120 to 180 s while connected to the flowmeter, then disconnected and Ψ_{leaf} immediately measured. In very dehydrated leaves it was often necessary to recut the stem several times before maximum flow was initiated. This may have been due to localized embolism around the initial cut, or may alternatively be due to displacement of the torus under large pressure gradients (Hacke et al., 2004).

To overcome this artifact dehydrated stems that showed low flow were recut five times or until flow remained steady after recutting.

Stem Vulnerability

Xylem cavitation was assessed with the Cavitron technique (Coehard, 2002), a technique derived from the centrifuge method of Alder et al. (1997). The principle of the technique is to use centrifugal force to increase the water tension in a xylem segment and, at the same time, measure the decrease in its hydraulic conductance. The curve of percentage loss of xylem conductance (PLC) versus xylem water tension represents the sample vulnerability to cavitation. Vulnerability curves were determined on three to five different samples for each species. The samples were collected on well-watered plants in Tasmania, defoliated, wrapped in wet paper, and shipped to France by express air mail (arriving within 3 d). In France, the samples were recut under water to 0.28 m long segments and installed in the Cavitron. Xylem pressure was first set to a reference pressure (-0.5 MPa or -1 MPa) and the sample...
maximal conductance (K_{leaf}) was determined. The xylem pressure was then set to a more negative pressure and the new sample conductance K was determined. The sample percent loss of conductance was then computed as $\text{PLC} = 100 \left(1 - K/K_{\text{leaf}} \right)$. The procedure was repeated for more negative pressures (with -0.5 to -2 MPa step increments) until PLC reached at least 90% or down to -12 MPa (pressures <-12 MPa could not be generated without serious risk of fracturing the rotor). Rotor velocity was monitored with an electronic tachometer (10 rpm resolution) and xylem pressure was adjusted at approximately ± 0.1 MPa.

Gas Exchange during Drought

Plant gas exchange was monitored daily using a computer-interfaced balance to measure whole-plant water loss. Pots were double bagged and plants weighed to an accuracy of ± 0.01 g (Mettler-Toledo PC3002-S) between 1100 and 1300 h. Transpiration was calculated by the loss of weight of each plant between measurements divided by the total leaf area of the plant. Leaf area was measured at the conclusion of the experiment by compressing the leaf area was measured prior to stress exposure and E_{leaf} normalized to this predrought leaf area. Throughout the experiment vapor pressure deficit remained constant during the day and therefore E_{leaf} was closely proportional to stomatal conductance apart from small variations in leaf temperature.

Plants were droughted by withholding water while the pots and soil were bagged and covered in foil to prevent excess heating of the roots. During droughting Ψ_{leaf} was measured initially on a daily basis, then every 2 to 4 d immediately prior to transpiration measurements by removing two small shoots (equivalent to approximately 0.2% of the total leaf area) and immediately bagging them for measurement with a Scholander pressure chamber. Minimum water potentials were targeted at 80% stomatal closure, 50% loss of K_{leaf}, and 50% loss of K_{stem}. Individuals that were exposed to the most severe drought were all previously exposed to one cycle of moderate drought andrewatered. This was done to ensure that plants were hardened prior to severe desiccation, and thus yielded an accurate measure of the maximum drought tolerance of each species.

Recovery Measurements

Once the above targets for droughted Ψ_{leaf} had been reached, plants were rewatered overnight until soils became saturated. During the subsequent recovery period plants were watered daily to full soil capacity in the morning then bagged at midday to avoid water logging of pots. Ψ_{leaf} and E_{leaf} were monitored every 1 to 3 d depending on the recovery rate. Whole-plant hydraulic conductivity at midday (K_{plant}) was calculated on the assumption that soils were fully saturated and hence water potential at the root was close to zero. Under these circumstances: $K_{\text{plant}} = E_{\text{leaf}}/\Psi_{\text{leaf}}$.

Statistics

Stomatal response to Ψ_{leaf} was a key component of the hydraulic model and was determined by using regression fitting software (Sigmaplot, SPSS Inc.) to fit a sigmoid function of the form $y = \frac{a}{1 + e^{-x}}$ to the pooled ($n = 5$) E_{leaf} versus Ψ_{leaf} data collected for each species during the initial drought treatment. Transpiration data were normalized as percentage data for each species to reduce the effects of within species variation. Vulnerability curves for leaves and stems used the same function as above and again data were pooled from three replicate plants. In the case of stomatal and K_{leaf} vulnerability the parameter b was negative while in the case of stem % loss of conductivity data b was positive. Estimates of Ψ_{leaf} at 20%, 50%, and 95% stomatal limitation and losses of hydraulic conductivity were made from the respective regression equations with their attendant s.e.s.
and mortality during drought; why do some plants survive while others succumb to drought? New Phytol 178: 719–739

Meinzer FC, Grantz DA (1991) Coordination of stomatal, hydraulic, and canopy boundary layer properties: Do stomata balance conductances by measuring transpiration? Physiol Plant 83: 324–329

Milburn J, McLaughlin M (1974) Studies of cavitation in isolated vascular bundles and whole leaves of Plantago major L. New Phytol 73: 861–871

Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87: 1287–1299

Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104: 19631–19636

Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Physiol Plant Mol Biol 57: 361–381

Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of douglas-fir and white fir. Tree Physiol 17: 275–280

Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104: 13–23

Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21: 347–359

Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13: 427–436

Tyree M, Engelbrecht B, Vargas G, Kursar T (2003) Desiccation tolerance of five tropical seedlings in Panama: relationship to a field assessment of drought performance. Plant Physiol 132: 1439–1447

Tyree M, Vargas G, Engelbrecht B, Kursar T (2002) Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch. J Exp Bot 53: 2239–2247

Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40: 19–38

Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the coordination of responses to stress in plants. Plant Cell Environ 25: 195–210

Yangyang L, Sperry JS, Taneda H, Bush SE, Hacke U (2007) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. Plant Cell Environ 177: 558–568