Analysing Delays of Construction Projects in Western Part of Mumbai: Causes and Effects

Sandeep V. Gujjar, Soham Sawant, Ashish P. Kulkarni, Chaitali R. Kulkarni, Shivani G. Khabale, Usha N. Mane, Anand M. Hunashyal

Abstract: Construction is one of the most important employment sectors in India with very minimal research being done to identify the delay factors and causes that affect the construction Industry. The opinions of the construction professional required for the research was obtained by conduction interviews. A set of questions were circulated between the professionals working on the site to acquire the causes and effects of delays faced by them. To resolve the issues various studies and researches have been done by various researchers. The data analyzed in the research was done by using Relative Important Index (RII) which helps into categories and rank the causes of delays according to the importance of the causes with respect to its contribution towards time delays, arbitration, litigation, cost overrun and total abandonment. Spearman’s rank correlation coefficient was used compare the effect of delays between contractors, owners and consultants. In this paper, the research is aimed towards finding the effects of various causes on the various parties on construction sites of coastal parts of Mumbai and methods of minimization of the same.

Keywords: Construction delays, Relative Important Index, Spearman’s rank correlation coefficient, ANOVA

I. INTRODUCTION

The completion of a scheduled project is a difficult task to accomplish in the unpredictable, complicated, multipartner and competitive construction environment. In recent times, studies and researches which help to recognize the factors that contribute to delays in project completion work, cost overrun, and inefficient completion of construction as well as identifying the financial and planning obstacles are carried out. We may describe delay as an act or event that increases the time necessary for performing the tasks under a contract.

This usually appears as additional working days or post ponned to initiate an operation. This is often seen as a common problem in construction work.

According to Assaf et al. (2006), in construction industry, one can define delay as the ‘Time Overrun’ regarding two considerable conditions or situations. The first condition is delay beyond the date of completion laid down in the contract, second condition is delay beyond the date for which the involved parties agreed upon for delivery of a project. According to Kaliba C., M.M. (2009), if project costs or schedules goes beyond their planned time period, client satisfaction would be trade off and the funding profile would failed to match the budget requirement and further slippage in schedule could results. Which further leads to costly disputes and shows many times adversely impact on relationships between the parties involved such as project stakeholders including owners, design professionals, construction professional, users and others.

In Saudi Arabia, Assaf and Al-Hejji (2006) found that only 30% of construction projects are only projects which completed within the scheduled completion dates and along with it also found that average time overrun was between 10% and 30% regarding construction projects. Odeyinka and Yusif (1987) have shown that seven out of ten projects surveyed in Nigeria goes through such delays in their execution of work. Ogunlana and Promkuntong (1996) carried out a study on construction delay in Thailand. Al-Momani (2000), conducted a quantitative analysis on construction delays in Jordan.

Now considering Indian conditions and situations, construction is the second largest economic activity after agriculture, accounting for between 6 and 9% of India’s GDP over the past five years, while reporting an annual growth of 8 to 10%. On this basis of above mentioned observations, finally we can conclude the main problems that the project face while dealing with these delaying factors usually runs around the time; cost is being overused for the improvement of the site work. The main aim and purpose of this study is to develop and create a recommendation based on a subjective analysis of data obtained from different parties via different methods. An analysis was based on a different standpoints or views of professionals within the construction industry based on the different affecting factors causing the overall delays in the construction project.

The parties included in contract by means of representation decide on the additional capital and extra time associated with construction delay for different parties is different. While it may be unrealistic to believe that all causes of delay can be brought under control. The main task should be to define the parties responsible for the incident first.

Most of the time more than one party is responsible for the project delays, so multiple delays can occur simultaneously.
Hence, studying is necessary and analyses causes of delay. Like the one service provided by the infrastructure projects serves input for the other sectors, the cost overrun of this project leads to an increase in capital-output ratio for the economy as a whole. The research also focuses on the various delays affected by the topography of the site. Therefore, various projects have different reasons for the delays. The most common delays are solved by the people working on the site; this research also focuses on the ways with which the delays can be avoided on the site.

For the study, the coastal region of Mumbai has been selected. Being an economic hub and financial capital of India, it is important to study the problems that are faced by construction industry of Mumbai, which will further help us to understand the key factors that cause delay in the city’s urban construction projects. Most of the projects in the study have huge capital investment as well as must fulfill the quality standards with also urgency for the execution of project on time. The study is expected to shed some light on the factors that causes the project to delay also to help the construction planners to understand the problems with a holistic view and get better grasp of the current scenario of the Mumbai’s construction industry.

This paper is organized as follows, first to identification of the major causes of delay, effects of delay and further understanding actual means of minimizing construction delay situations regarding construction project work in coastal part of Mumbai.

II. METHODOLOGY

The methodology includes series of procedure followed from acquiring data to analyzing it (Fig.1). There are total number of 7 stages i.e. Literature review, Preparation of questionnaire, identification of companies, survey of questionnaires, Data collection, Data Analysis, Suggestion and conclusion. The outcome from the literature review would assist in finding out 34 causes of delay which were suitable for the present study. These causes would be evaluated and divided into 8 different categories namely owner related, project related, contractor related, consultant related, Material related, equipment related, labor related and external factors. A questionnaire was prepared identify the rankings of delays faced on the construction site through Relative importance index as well as the inter-correlation of these eight different causes of delay would be obtained by Spearman’s co- relation .To support the hypothesis ANOVAs analysis was done.

![Fig.1. Research Methodology](image)

### Questionnaire Survey:

To gather the data required for the study, a questionnaire survey was prepared and circulated within the professionals working on the construction site. The questionnaire consists of 34 causes of delays which were sorted as per contractor, owner and consultant as well as general delays faced on the construction site. The questionnaire was based on the scale of Likert’s which ranged from 1-5. The scale is expressed in Very low input, small input, medium input, moderate input and very high input. The study involved a total of 27 participants. As listed in Table.1 They were distributed as 8 consultants, 13 contractors and 7 owners.

| Sr. No. | Causes of Delays                                      | Groups   |
|--------|------------------------------------------------------|----------|
| 1      | Legal disputes between various parties               | Project  |
| 2      | Effect of subsurface conditions                      | Project  |
| 3      | Traffic control and restrictions at job site         | Project  |
| 4      | Unavailable of utilities in site                     | Project  |
| 5      | Accident during construction                         | Project  |
| 6      | Delay in decision making                             | Owner    |
| 7      | Delay in progress payments by owner                  | Owner    |
| 8      | Delay in delivering site to the contractor by the owner | Owner |
| 9      | Poor communication and co-ordination by owner & other parties | Owner |
| 10     | Late in approving documents by the owner             | Owner    |
| 11     | Delay in reviewing approving major changes in the scope of work by consultant | Consultant |
| 12     | Delay in performing inspections and testing by consultant | Consultant |
| 13     | Difficulties in financing project by contractor      | Contractor|
| 14     | Poor site management and supervision                 | Contractor|
| 15     | Ineffective planning and scheduling of project       | Contractor|
| 16     | Rework due to errors during construction             | Contractor|
| 17     | Delay in sub contractor work                         | Contractor|
| 18     | Improper interpretations of contract terms and conditions by contractor | Contractor|
| 19     | Unclear and inadequate details in the drawings       | Design   |

### Table.1: Causes of delay
The effects of delays (Table.2) are on the construction site in general are listed. These are also based on Likert’s scale ranging from 1 to 5. They are as follows: Never, Seldom, Sometimes, Mostly and Always.

### Table.2: Effects delay

| Sr. no. | Effects                     | 1   | 2   | 3   | 4   | 5   | 6   |
|--------|-----------------------------|-----|-----|-----|-----|-----|-----|
| 1      | Time over-run               | 9   | 8   | 7   | 6   | 5   | 4   |
| 2      | Cost overrun                | 8   | 7   | 6   | 5   | 4   | 3   |
| 3      | Arbitration                 | 7   | 6   | 5   | 4   | 3   | 2   |
| 4      | Total Abandonment           | 6   | 5   | 4   | 3   | 2   | 1   |
| 5      | Dispute                     | 5   | 4   | 3   | 2   | 1   | 1   |
| 6      | Litigation                  | 4   | 3   | 2   | 1   | 1   | 1   |

The analysis of data is done to sort out the various delays according to their importance index that contributes to causes, effects and methods to minimize it. Co-relation between the different factors is determined as well. Following were the various analysis methods used to identify the various delays affecting construction projects in coastal part of Mumbai.

1. **Relative Importance Method (RII)**
2. **Spearman’s Co Relation Coefficient**
3. **ANOVA Analysis**

### Relative Importance Index:

Relative Importance index (RII) Method is used in the study to rank the causes of delays according to their importance Index. All the combine responses from the respondents such as owner, consultant & contractor were considered for the analysis. Following was the formula used to identify the importance Index.

\[
RII = \frac{\sum W}{A*N}
\]

Where,

- **RII** = Relative Importance Index
- **W** = Weighing given to each factor by the respondents (ranging from 1 to 5)
- **A** = Highest weight (ie.5)
- **N** = Total Number of respondent in the sample

The relationship of rank of the spearman was a non-parametric measure of statistical dependence between two variables. It offered a favorable position not requiring the assumption of typicality or homogeneity of the assumption of change. The subjects may be thought of, as the results may have a few outliers, their impact may be discredited. The formula for coefficient can be computed is as followed:

\[
r = 1-\frac{6\sum d^2}{n(n^2-1)}
\]

Where,

- **r** = Spearman’s rank correlation coefficient between two factors
- **d** = difference of ranking between assigned to variables for each cause (owner and consultants, owner and contractors, consultant and contractors)
- **N** = Number of pair rank A respectively

### ANOVA:

ANOVA is a parametric statistical test which is used to compare datasets. The method was invented by statistician R. Fisher in the year 1921 in this research paper title on the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. ANOVA is often used to compare data to test for identification of significant differences among the variables.
ANOVA is a method to comparing average (mean) responses in controlled environments to experimental manipulations. ANOVA is used to test the working hypothesis which is proposed by the researcher and to test that whether or not the hypothesis or the guess is valid or not.

The opposite of working or null hypothesis is alternative hypothesis.

Analysis of data

**Causes of delays due to project:**

By analyzing through relative importance index method it was established that legal disputes between different parties was the most cause of delay contributing in the project category. Unavailable of utilities, traffic control and restrictions at Job Site, effect of subsurface condition, Accident during construction were the series followed forth on.

**Table.4: Causes of delay due to project**

| Sr. No. | Group | Causes                                               | RII  | Rank |
|---------|-------|------------------------------------------------------|------|------|
| 1       | Project | Legal disputes between various parties                | 0.376| 2    |
| 2       | 2      | Effect of subsurface conditions                      | 0.324| 4    |
| 3       | 3      | Traffic control and restrictions at Job site         | 0.329| 3    |
| 4       | 4      | Unavailable of utilities in site                     | 0.494| 1    |
| 5       | 5      | Accident during construction                         | 0.3   | 5    |

A total number of 34 questionnaires were circulated among various construction professionals such as contractor, owner & consultant in coastal part of Mumbai. The data obtained from them were inserted into M.S. Excel sheet to organize as well as its statistical tool to find out the relative importance index of the cause of the delays, effects of construction delays and various methods used to avoid these construction delays faced on the site. The data accumulated and analyzed sheet is shown in the fig 2 & fig 3.
Causes of delay due to owner:
In that table 3 represents the result revealed of analysis of causes due to owner. The delays were ranked according to their relative important. It was shown that Delay in decision making was the most cause of delay contributing in that owner category. Followed by delay in progress payment by owner, Delays in delivering site to the contractor by the owner, poor communication, co-ordination by owner and other parties, Late in approving documents by the owner were the causes contributing causes of delay due to owner.

Table 5: Causes of delay due to owner

| Sr. No. | Group   | Causes                                      | RII   | Rank |
|---------|---------|---------------------------------------------|-------|------|
| 1       | Owner   | Delay in decision making                    | 0.476 | 2    |
| 2       | Owner   | Delay in progress payments by owner         | 0.571 | 1    |
| 3       | Owner   | Delay in delivering site to the contractor by the owner | 0.365 | 4    |
| 4       | Owner   | Poor communication and co-ordination by owner & other parties | 0.418 | 3    |
| 5       | Owner   | Late in approving documents by the owner    | 0.312 | 5    |

Causes of delay due to consultant:
The Table no.6 represents the results revealed of survey analysis of causes of delay due to consultant. The delays have been ranked according to their relative importance index. The most cause of delay contributing in the consultant category are Delay in approval and major changes in the scope of the work of the consultant and delay in inspection and testing of the consultant.

Table 6: Causes of delay due to consultant

| Sr. No. | Group | Causes                                      | RII   | Rank |
|---------|-------|---------------------------------------------|-------|------|
| 1       | Consultant | Delay in reviewing approving major changes in the scope of work by consultant | 0.4  | 1    |
| 2       | Consultant | Delay in performing Inspections and Testing by consultant | 0.335 | 2    |
Causes of delay due to contractor

The Table no. 7 represents the result of the analysis of the causes of delays in the contractor category. It showed that the most contributing cause of delay due to Contractor was difficulties in financing project by Contractor. It was followed by poor site management and supervision, Ineffective planning and scheduling of project, Rework due to errors during construction, Delay in sub-contractor work, Inadequate contractor experience, Improper construction methods implemented by contractor.

Table 7: Causes of delay due to contractor

| Sr. No. | Group | Causes                                    | RII  | Rank |
|---------|-------|-------------------------------------------|------|------|
| 1       | Difficulties in financing project by contractor | 0.488 | 1    |
| 2       | Poor site management and supervision           | 0.376 | 2    |
| 3       | Ineffective planning and scheduling of project | 0.335 | 4    |
| 4       | Rework due to errors during construction      | 0.324 | 5    |
| 5       | Delay in sub-contractor work                  | 0.359 | 3    |
| 6       | Improper interpretations of contract terms and conditions by contractor | 0.312 | 6    |

Graph of causes of delay due to Contractor

Fig. 6: Causes of delay due to contractor

Causes of delay due to design

The Table no. 8 represents the result of analysis of the causes of delays in the design category. It showed that Unclear and Inadequate details in the drawings were the most contributing cause of delay the design category whereas mistakes and discrepancies in design documents or Unclear drawings, Delay in producing design documents & Lack of understanding of requirements of client by the designing engineer were the series of causes of delays contributing the causes of delay.

Table 8: Causes of delay due to design

| Sr. No. | Group | Causes                                    | RII  | Rank |
|---------|-------|-------------------------------------------|------|------|
| 1       | Difficulties in financing project by contractor | 0.412 | 2    |
| 2       | Poor site management and supervision           | 0.418 | 1    |
| 3       | Ineffective planning and scheduling of project | 0.294 | 4    |
| 4       | Rework due to errors during construction      | 0.329 | 3    |
| 5       | Delay in sub-contractor work                  | 0.359 | 3    |
| 6       | Improper interpretations of contract terms and conditions by contractor | 0.312 | 6    |
The table no. 9 represents the result of the analysis of the causes of the delays due to materials. The results showed that Storage of construction materials was the most contributing cause of delay of the material group. Delay in material delivery as well as Changes in specification & types of materials during construction were the series of cause of delay in material group.

Table 9: Causes of Delay due to Material

| Sr. No. | Group     | Causes                                       | RII  | Rank |
|---------|-----------|----------------------------------------------|------|------|
| 1       | Materials | Shortage of construction materials          | 0.376| 1    |
| 2       | Design    | Delay in material delivery                   | 0.312| 3    |
| 3       | Materials | Changes in specifications and types of material during construction | 0.365| 2    |

Fig.7: Causes of delay due to design causes of delay due to design

The analysis of this data was done by relative importance index. Analyze and rank the causes of delays in equipment and the labor group. Therefore, it revealed that shortage of equipment and labor was the most affecting cause in the Equipment and labor group. As well as unavailability of workforce, equipment failure & labor fatigue were the series ranked according to the relative importance index.

Table 8: graph of causes of delay due to material

Causes of delay due to equipment and labour:

The analysis of this data was done by relative importance index. Analyze and rank the causes of delays in equipment and the labor group. Therefore, it revealed that shortage of equipment and labor was the most affecting cause in the Equipment and labor group. As well as unavailability of workforce, equipment failure & labor fatigue were the series ranked according to the relative importance index.
Table 10: Causes of delay due to equipment and labor

| Sr. No. | Group                  | Causes                        | RII   | Rank |
|--------|------------------------|-------------------------------|-------|------|
| 1      | Equipment and labor    | Shortage of equipment and labor | 0.312 | 4    |
| 2      | Equipment and labor    | Unavailability of workforce   | 0.394 | 1    |
| 3      | Equipment and labor    | Equipment failure             | 0.382 | 2    |
| 4      | Equipment and labor    | Labor fatigue                 | 0.335 | 3    |

Fig. 9: Graph of causes of delay due to equipment and labor

Causes of delay due to External Factor:
The data of this study revealed that Environment restrictions are the most affecting factor for the causes of delay due to external factors. Whereas corruption, changes in Government regulation, and Law as well as delay in performing final inspection by the third party were the next causes of delay affecting. Natural disaster was the least factor affecting the causes of delay in the external factor group.

Table 11: Causes of delay due to external factors

| Sr. No. | Group                  | Causes                                                                 | RII   | Rank |
|--------|------------------------|------------------------------------------------------------------------|-------|------|
| 1      | External Factors       | Environment restrictions                                                | 0.329 | 3    |
| 2      | External Factors       | Changes in Government regulations and Law                              | 0.312 | 5    |
| 3      | External Factors       | Delay in performing final inspection and certification by third party   | 0.347 | 2    |
| 4      | External Factors       | Corruption                                                             | 0.412 | 1    |
| 5      | External Factors       | Natural disaster (flood, landslides, ...)                                | 0.318 | 4    |

Fig. 10: Graph of causes of delay due to external factor

Ranking of Causes of delay:
As by the relative index analysis the rankings of each cause of delay as mentioned above are shown in the table below.

Table 12: Rankings of causes of delay

| Sr. no | Causes of Delays                        | Rank |
|--------|-----------------------------------------|------|
| 1      | Delay in progress payments by owner     | 7    |
| 2      | Unavailable of utilities in site        | 4    |
Difficulties in financing project by contractor 14
Delay in decision making 6
Poor communication and co-ordination by owner & other parties 9
Mistakes and discrepancies in design documents or unclear drawings 20
Unclear and inadequate details in the drawings 11
Corruption 33
Delay in reviewing approving major changes in the scope of work by consultant 12
Unavailability of workforce 27
Equipment failure 28
Legal disputes between various parties 1
Poor site management and supervision 15
Shortage of construction materials 23
Delay in delivering site to the contractor by the owner 8
Changes in specifications ad types of material during construction 25
Delay in sub contractor work 18
Delay in performing final inspection and certification by third party 32
Delay in performing inspections and testing by consultant 13
Ineffective planning and scheduling of project 16
Labor fatigue 29
Traffic control and restrictions at job site 3
Lack of understanding of requirements of client by the designing Engineer 22
Environment restrictions 30
Effect of subsurface conditions 2
Rework due to errors during construction 17
Natural disaster (flood, landslides etc.) 34
Late in approving documents by the owner 10
Improper interpretations of contract terms and conditions by contractor 19
Delay in material delivery 24
Shortage of equipment and labor 26

Effects of construction Delays:
The questionnaire survey assist in identifying the effects of construction delays according to the five general factors i.e. cost overrun, time overrun, litigation, arbitration & total abandonment. The effects are ranked according to their relative importance. The questionnaire survey was circulated among various professionals working on the site such as contractor, owner and consultant. Their holistic view about the effects of delays was collected for the data. Therefore it was revealed according to the analysis, following are the six factors ranked according to their importance index. cost overrun is the ranked the most affected factor by the delay. Whereas time overrun, dispute, litigation, Arbitration and Total abandonment are the series of effected ranked.

Methods of minimising Construction delays:
The below table shows the result of the analysis to identify the various general methods that are can assist in avoiding the construction delays. The analysis is done by relative importance method.

| Sr. No. | Methods | RII | Rank |
|--------|---------|-----|------|
| 1      | Estimate initial project cost | 0.694 | 5    |
| 2      | Frequent site meeting with all parties | 0.682 | 6    |
| 3      | Proper utilization of modern construction technology | 0.606 | 9    |
| 4      | Effective strategic planning | 0.712 | 4    |
| 5      | Proper material procurement | 0.641 | 8    |
| 6      | Use of appropriate construction methods | 0.735 | 3    |
| 7      | Proper project planning and scheduling | 0.747 | 1    |
| 8      | Complete and proper design at right time | 0.659 | 7    |
| 9      | Site management and supervision | 0.741 | 2    |
The analysis of the results showed that there was a correlation relationship between the contractor and the owner of the delay factors. The correlation coefficients between the contractor and owner, contractor and consultant, and owner and consultant are 0.90, 0.93 and 0.85 respectively. It revealed that there was a high correlation related to delay factors between the parties involved.

Table 15: Spearman’s rank correlation coefficient

| Sr. No. | Description                  | Rank Co-relation Coefficient |
|---------|------------------------------|------------------------------|
| 1       | Contractor and Owner         | 0.90                          |
| 2       | Contractor and Consultant    | 0.93                          |
| 3       | Owner and Consultant         | 0.85                          |

Fig. 11: Spearman’s rank correlation coefficient analysis

Fig. 12: ANOVA analysis
IV. RESULTS AND DISCUSSION

The analysis of the report showed the correlation coefficient between owner and contractor, consultant and owner as well as contractor and consultant are 0.90, 0.85 and 0.93. The correlation of the responses contributed revealed that all the professionals involved had similar opinions about the causes of delay in the construction project in the coastal part of Mumbai. By the Spearman’s correlation and coefficient analysis following fig. showed the top 7 important causes of delay.

Table.16: Spearman’s correlation coefficient

| Sr.No. | Causes of delay                        | Contractor | Owner | Consultant |
|--------|----------------------------------------|------------|-------|------------|
| 1.     | Ineffective planning and scheduling of project | 17         | 32    | 16         |
| 2.     | Delay in decision making                | 4          | 8     | 3          |
| 3.     | Delay in material delivery              | 33         | 12    | 34         |
| 4.     | Changes in government                   | 27         | 26    | 25         |

5. Delay in delivering site to the contractor by owner  
6. Accident during construction  
7. Unavailable of utilities on site  
8. Mistakes and discrepancies in design documents or unclear drawings

To promote the analysis, Analysis of Variance (ANOVA) is done to find out the variance and compare it with the results from the above method. In the fig 1 and 2 showed the result from the analysis method.

Fig.13: Analysis of ANOVA (One Way Method)
By comparing the two analyzes, in Table 17, the causes of delay were repetitive in both methods, thus identifying the most important causes of delay in the sample.

Table 17: Comparison of Spearman’s Correlation coefficient & ANOVA

| Sr.No. | Causes of Delay                                      | Spearman correlation coefficient | ANOVA |
|--------|-----------------------------------------------------|---------------------------------|-------|
| 1.     | Ineffective planning and scheduling of project      | √                               |       |
| 2.     | Delay in decision making                            | √                               |       |
| 3.     | Delay in material delivery                          | √                               |       |
| 4.     | Change in government regulations and law            | √                               |       |
| 5.     | Delay in delivering site to the contractor by the owner | √                          |       |
| 6.     | Accident during construction                        | -                               |       |
| 7.     | Delays in producing design documents                | -                               |       |
| 8.     | Unavailable of utilities on site                   | √                               |       |
| 9.     | Corruption                                          | -                               |       |
| 10.    | Equipment failure                                   | -                               |       |
| 11.    | Poor site management and supervision                | -                               |       |
| 12.    | Labor fatigue                                       | -                               |       |
| 13.    | Effect of subsurface conditions                     | -                               |       |

The analysis of result showed that Ineffective planning, Delay in decision making, Delay in material delivery, changes in government regulations and law, delay in delivering site to the contractor by the owner, Unavailable of utilities in site, stake discrepancies in design documents or unclear drawings are the most repetitive and most contributing cause of delay in construction project for coastal part of Mumbai. The analysis of the sample is done with some limitations set in mind. The results of the report may vary from one construction project to another.

Methods to minimise construction delay:
To minimize the impact of construction delay in analysis of the report identified top 10 methods ranked according to relative importance index. It showed that proper project planning and scheduling is the top ranked method in the report. Whereas site management and supervision, use of appropriate construction method and effective strategic planning are ranked in the top 5 as well.

Table 18: Rank of Methods

| Sl. No. | Methods                                      | Rank |
|---------|----------------------------------------------|------|
| 1       | Proper project planning and scheduling       | 1    |
| 2       | Site management and supervision              | 2    |
| 3       | Use of appropriate construction methods      | 3    |
| 4       | Effective strategic planning                 | 4    |
| 5       | Estimate initial project cost                | 5    |
| 6       | Frequent site meeting with all parties       | 6    |
| 7       | Complete and proper design at right time     | 7    |
| 8       | Proper material procurement                  | 8    |
V. CONCLUSION

The study concluded that to minimize the impact of delay in the construction project in coastal part of Mumbai certain protocols should be followed to ensure that the construction project should run without any delay. The results from the analysis revealed top 5 major causes of delay according to Relative Importance Index (RII) which are Legal disputes between various parties, Effect of subsurface condition ,Traffic control and restriction at job site , unable to use utilities on site, Accident during construction. The top 3 major effects from the delays are time overrun, cost overrun & dispute between various parties. To overcome the delays on the site methods such as proper planning and scheduling of project, Site management and supervision, use of appropriate construction method, Effective strategic planning & Estimate initial project cause are the highest ranked method according to the analysis done. To support the analysis, comparison of the analysis method with different analysis method (Spearman’s correlation Coefficient & ANOVA) is done. The result from the comparison stated that inefficient planning and scheduling of the project, delay in decision making, Delay in material delivery, changes in government regulations and law and delay in delivering site of the contractor by the owner, Unavailable of utilities in site& Mistakes and discrepancies In design documents or unclear drawings are the major causes of delays faced on the site. The spearman’s relation results give us, association between two factors. Whereas, ANOVA gives sig. difference among the mean of two factors. Therefore the data obtained from the ANOVA analysis is far more accurate than the data obtained from the Spearman’s correlation coefficient. The report should be considered by considering limitations in mind. The results obtained from the analysis of the study showed that dissertation would help project managers and owners to keep careful record of the project by looking at factors with high level of project indices. Institutions should have the criteria of having ”construction management” as formal qualifications for anyone working a s a project manager on the construction site.

REFERENCES

1. David ardit, Guzintarimakanz and San gurdamar, Construction Management and Economics: Reasons for delays in public projects in Turkey, Construction Management and Economics, (1985), pp.171-181.
2. H. A. Odeyinka and A. Yusif, The Causes and Effects of Construction Delays on Completion Cost of Housing Projects in Nigeria (1987), pp. 31-44.
3. Daniel C. Okpala and A. Yusif The causes of high costs of construction in Nigeria, ASCE, J. Constr. Eng. Manage. (1988), pp. 233-244.
4. J. K. Yates, Construction decision support system for delay analysis, ASCE, J. Constr. Eng. Manage. (1993), pp.226-244.
5. Stephen O Ogulana and KritPomkuntong, VithoolJearkjirm, Construction delays in a fast-growing economy: comparing Thailand with other economy (1996), pp.37-45.
6. Saed Kartam, Generic methodology for analyzing delay claims, ASCE, J. Constr. Eng. Manage. (1999),125, pp.409-419.
7. Mohammed I. Al-Khalil and Mohammed A. Al-Ghaffy, Construction Management and Economics: Important causes of delay in public utility projects in Saudi Arabia, Construction Management and Economics (1999) 17, pp.647-655.
8. Ayman H. Al-Momani, Construction delay: a quantitative analysis, Elsevier, International Journal of Project Management 18 (2000), pp. 51-59.
9. Abdalla M.Odeh, Hussien T. Battaineh, Cause of Construction delay: traditional contracts , International journal of project management 20(2002), pp. 67-73.
10. A. A. Aibinu, G.O. Jagboro, The effects of construction delays on project delivery in Nigerian construction industry, Elsevier, International Journal of Project Management 20 (2002), pp.593–599.
11. ArshiShakeelFaridil&SamehMonir El-Sayegh, Construction Management and Economics: Significant factors causing delay in the UAE construction industry, Construction Management and Economics (November 2006), pp.1167–1176.
12. Sadi A. Assaf,Sadig Al-Hejji, Causes of delay in large construction projects,Elsevier, International Journal of Project Management 24 (2006), pp. 349–355.
13. MuraliSambasivan,Yau Wen Soon, Causes and effects of delays in Malaysian construction industry, Elsevier, International Journal of Project Management 25 (2007), pp. 517–526.
14. G. Sweis a, R. Sweisb, A. Abu Hammadec, A. Shboul, Delays in construction projects: The case of Jordan, Elsevier, International Journal of Project Management 26 (2008), pp. 665–674.
15. ChabataKailtha,MundiaMuya, KanyakaMumba, Cost escalation and schedule delays in road construction projects in Zambia, Elsevier, International Journal of Project Management 27 (2009), pp. 522–531.
16. N. Jaffar, A. H. Abdul Tharm, M. N. Shuib, Factors of Conflict in Construction Industry: A Literature Review, Elsevier, Procedia Engineering 20 (2011), pp. 193–202.
17. Ibrahim Mahamid, AnnurBruland and Nabil Dmaidi, Causes of Delay in Road Construction Projects, ASCE, J. Manage. Eng. (2012), pp. 300-310.
18. AbdelhakChallah, Mohamed Tkionat, Identification of the Causes of Deadline Slippage in Construction Projects; State of the Art and Application, Journal of Service Science and Management, (2012), pp.151-159.
19. AynurKazaz,SerdarUlubeyli&NilhanAvciogluTunbilekli, Journal of Civil Engineering and Management: Causes of Delays in Construction Projects in Turkey, Journal of Civil Engineering and Management, (2012), pp.426–435.
20. HemantaDoloi, Anil Sawhney, K.C. Iyer, Sameer Rentala, Analysing factors affecting delays in Indian construction projects, Elsevier, International Journal of Project Management 30 (2012), pp. 479–489.
21. Olajide Timothy Brunone, TimoOlungbengaOladarinr, OnasopeAdunuyi and Iaodu Victor Ebochumie, Analysis of Non-Excusable Delay Factors Influencing Contractors’ Performance in Lagos State, Nigeria, Journal of Construction in Developing Countries, (2013), pp.53–72.
22. AshwinArunSalunkhe, Rahul S. Patil, Effect of construction delays on project time overrun: Indian scenario, Jan-(2014), pp. 543-547.
23. AdeiwinRegiVarghese,ShibiVarghese, Analysis of delays in construction projects, International Journal of Engineering Research and General Science, November-Decembe, (2015).
24. Samad M E Sepasgozar, MohamadAhmazadezakkenari, KhaleghiBarati, The Importance of New Technology for Delay Mitigation in Construction Projects, American Journal of Civil Engineering and Architecture, (2015), pp.15-20.
25. Dr. Ashraf Samarah,Dr.Ghanim A. Bekr, Causes and Effects of Delay in Public Construction Projects in Jordan, American Journal of Engineering Research (AJER) (2016), pp. 87-94.
26. JesperKrankerLarsen, GeoffreyQingShen, Soren Munch Lindhard and Thomas DitlevBrunoe, Factors Affecting Schedule Delay, Cost Overrun, and Quality Level in Public Construction Projects, ASCE, J. Manage. Eng (2016).
27. Ms.LeenaMail,Mr. A. A. Warukar, Causes of Delay in the Construction Industry in Pune region of India, May(2016), pp. 306-313.
28. AnuradhaArya,Dr. Rajeev Kansal, Analysing Delays of Construction Projects in India: Causes and Effects, International Journal of Science Technology & Engineering (2016), pp. 66-74.
29. Rashmi. M Biwars, Prof. Dr. A. B. More, Delay analysis in construction of redevelopment residential project, International Research Journal of Engineering and Technology (IRJET) July – (2017), pp.37-44.
AUTHORS PROFILE

Sandeep V. Gujjar, is currently pursuing PhD from Visvesvaraya Technological University, Karnataka and working as an Assistant Professor in Department of Civil Engineering, Pillai HOC College of Engineering and Technology, Rasayani, Dist. Raigad - 410207, Maharashtra, India. He has published books related to civil engineering, research papers, filed patents related to nano composite coating which enhances mechanical and anticorrosive properties of mild steel. He has guided several students pursuing post graduate and under graduate students for research work in civil engineering. He has more than 11 years of teaching, industry and research experience in Indian and international organization.
Ph: 8793169868, E-mail: sandeep.gujjar@rediffmail.com

Soham Sawant, is a graduate in Civil and infrastructure Engineering from Rustomjee Academy for Global Careers, Dahanu road (E) - 401602, Maharashtra, India affiliated to University of Wolverhampton, UK.
Ph: 8369889881, E-mail: Scotsoham23@gmail.com

Ashish Kulkarni, is presently pursuing post graduation in Construction project management from Pillai HOC College of Engineering and Technology, Rasayani, Dist.Raigad-410207, Maharashtra, India. Presently working on research area of construction project management topic for his dissertation. He has done internships in reputed civil engineering organization and also completed many software courses related to civil engineering.
Ph: 7721816718, E-mail: officialashish2996@gmail.com

Chaitali R., Kulkarni is presently pursuing graduation in Civil Engineering from Pillai HOC College of Engineering and Technology, Rasayani, Dist.Raigad-410207, Maharashtra, India. Presently working on research area of construction management and nano composite which enhances mechanical and anticorrosive properties of mild steel. She has done her internships in reputed civil engineering organization and also completed many software courses related to civil engineering. Ph: 8291706206, E-mail: f6chaitalik@gmail.com

Shivani G. Khabale, is presently pursuing graduation in Civil Engineering from Pillai HOC College of Engineering and Technology, Rasayani, Dist.Raigad-410207, Maharashtra, India. Presently working on research area of construction management and nano composite which enhances mechanical and anticorrosive properties of mild steel. She has done her internships in reputed civil engineering organization and also completed many software courses related to civil engineering. Ph: 9867758666, E-mail: khabaleshivani@gmail.com

Usha N. Mane, is presently pursuing graduation in Civil Engineering from Pillai HOC College of Engineering and Technology, Rasayani, Dist.Raigad-410207, Maharashtra, India. Presently working on research area of construction management and nano composite which enhances mechanical and anticorrosive properties of mild steel. She has done her internships in reputed civil engineering organization and also completed many software courses related to civil engineering. Ph: 9975267301 E-mail: ushamane8997@gmail.com

Dr. Anand. M. Hunashyal, is presently working as an Associate Professor in the Department of Civil Engineering, Visvesvaraya Technological University, KLE Institute of Technology, Hubballi-580021, Karnataka, India. He has completed his P.HD from Visvesvaraya Technological University, Karnataka, India. He has published various research papers civil and mechanical engineering, filed and awarded patents related to nano composite coatings which enhance mechanical and anticorrosive properties of mild steel and many more. He is guiding several students pursuing doctorate, post graduate and under graduate students for research work in civil engineering. He has more than 20 years of teaching and research experience. Ph:9739192399, E-mail: amhunashyal@bvb.edu.