Review Article

Pyrrole-protein adducts – A biomarker of pyrrolizidine alkaloid-induced hepatotoxicity

Jiang Ma a,b, Qingsu Xia c , Peter P. Fu c,**, Ge Lin a,b,*

a School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
b Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines Between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, China Academy of Sciences, China
c National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA

ABSTRACT

Pyrrolizidine alkaloids (PAs) are phytotoxins identified in over 6000 plant species worldwide. Approximately 600 toxic PAs and PA N-oxides have been identified in about 3% flowering plants. PAs can cause toxicities in different organs particularly in the liver. The metabolic activation of PAs is catalyzed by hepatic cytochrome P450 and generates reactive pyrrolic metabolites that bind to cellular proteins to form pyrrole-protein adducts leading to PA-induced hepatotoxicity. The mechanisms that pyrrole-protein adducts induce toxicities have not been fully characterized. Methods for qualitative and quantitative detection of pyrrole-protein adducts have been developed and applied for the clinical diagnosis of PA exposure and PA-induced liver injury. This mini-review addresses the mechanisms of PA-induced hepatotoxicity mediated by pyrrole-protein adducts, the analytical methods for the detection of pyrrole-protein adducts, and the development of pyrrole-protein adducts as the mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity.

ARTICLE INFO

Article history:
Received 30 May 2018
Accepted 30 May 2018
Available online 14 June 2018

Keywords:
Pyrrolizidine alkaloids
Pyrrole-protein adducts
Covalent binding
Target protein
Mechanism-based biomarker
Clinical diagnosis

1. Introduction

Pyrrolizidine alkaloids (PAs) are naturally occurring toxins produced by over 6000 plant species as secondary metabolites for diverse purposes such as against herbivores [1–3]. Humans are exposed to toxic PAs through the consumption of PA-containing herbal medicines and dietary supplements [4–6], or by the ingestion of PA-contaminated foodstuffs, such as grain crops, honey, milk, and eggs [7–11]. The PA-induced acute toxicity mainly occurs in the liver with typical symptoms of hepatomegaly, jaundice, and ascites, known as hepatic sinusoidal obstruction syndrome (HSOS) [12,13]. Most episodic outbreaks of PA poisoning in humans are related to PA-induced HSOS. In addition to hepatotoxicity, some PAs, such as monocrotaline (MCT), fulvine, and seneciphylline,
also induce toxicities in extra-hepatic organs, among which MCT-induced pulmonary toxicity is the most studied [14,15].

Since the first documented outbreak of 80 PA-induced liver injury (PA-ILI) cases in South Africa in 1920 [16], numerous PA-poisoning cases have been reported worldwide [5,6,17–21]. The carry-over of PAs through livestock into dietary food-stuffs, such as milk, eggs, and honey, as well as their downstream contamination in the food chain, further increases the incidence of PA exposure in human [7–11]. Prolonged dietary exposure to a low-level of PAs may also contribute to chronic diseases, such as liver cirrhosis, liver cancer, and pulmonary arterial hypertension [11,22,23]. Unlike the acute PA-ILI via a high-level of PA exposure, which shows typical syndromes and often has the chance to be treated immediately, the chronic diseases caused by PAs are latent, often untreated at the early stage, and eventually progress to lethality [23]. Due to the lack of specific and definitive diagnostic method, the determination of whether these chronic diseases are caused by PA exposure is challenging. Therefore, the incidence of PA intoxication and PA-associated diseases could be much higher than the currently recorded cases.

To date, the toxic mechanisms underlying PA-induced toxicity are not fully understood, and the clinical diagnosis of PA-related diseases has not been established. This article reviews the recent advance of the mechanism of PA intoxication mediated by the formation of pyrrole-protein adducts, the analytical methods to qualify and quantify pyrrole-protein adducts, and the clinical diagnosis of PA exposure and PA-induced toxicities by using pyrrole-protein adducts as the mechanism-based biomarker of PA-ILI.

2. Metabolic activation of pyrrolizidine alkaloids and the formation of pyrrole-protein adducts

PAs are esters of necine bases and the esterifying acids (necic acids) (Fig. 1A and B). Based on different types of necine base, PAs are commonly grouped into three types, retronecine-type (including its 7α enantiomer, heliotrinidine-type), otonine-type, and platynecine-type (Fig. 1A). Retronecine-type and otonine-type PAs, which possess a double bond at C1 and C2 positions of the necine bases, are highly toxic and carcinogenic, while platynecine-type PAs with a saturated necine moiety of pyrrolic metabolites (Fig. 2A). These results suggest that reactive pyrrolic metabolites bind covalently to proteins at the –SH and –NH functional groups of the amino acids and GSH to the 7- and 9-positions of the necine moiety of pyrrolic metabolites (Fig. 2A). These results also support the occurrence of protein adduction by pyrrolic metabolites is largely indirect. A series of pyrrole-amino acid adducts, including pyrrole-N-acetylcysteine, pyrrole-cysteine, pyrrole-valine, and pyrrole-llysine, and pyrrole-glutathione (GSH) adducts were synthesized by the reaction of pyrrole metabolites with the corresponding amino acids or GSH [38–44]. These adducts were formed via the binding of the –SH and –NH functional groups of the amino acids and GSH to the 7- and 9-positions of the necine moiety of pyrrolic metabolites (Fig. 2A). These results suggest that reactive pyrrolic metabolites bind covalently to proteins at the –SH and –NH functional groups. In the early 1990s, Mattocks and Juke reported that upon the reaction of liver tissues and blood of PA-treated rats with AgNO₃, the pyrrolic moiety was cleaved from pyrrole-bound proteins and was detected via spectrometric analysis [45,46]. In 2016, Li et al. identified 7-lysine-DHP from the proteolytic digestion of liver proteins obtained from MCT-treated mice [43], which further supports the formation of pyrrole-protein adducts in vivo. However, the structural characterization of pyrrole-proteins is highly challenging due to the numerous cellular proteins that can bind to pyrrolic metabolites and each protein contains many amino acids. To date, it is not known which are the target proteins that bind to the reactive pyrrolic metabolites, form the pyrrole-protein adducts, and are responsible for the PA-induced cytotoxicity.

3. Mechanisms underlying the pyrrole-protein adducts-induced cytotoxicity

Generally, there are two hypothesized mechanisms for protein adduct-induced cytotoxicity: 1) the covalent modification of proteins results in the impairment of the normal function of the targeted proteins [47,48]; and 2) the protein adducts, serving as haptens, may trigger immune responses, such as cytokine release and autoantibodies, leading to immune-mediated toxicities [47,48]. In addition, the depletion of cellular GSH caused by reactive metabolites, which disrupts cellular anti-oxidative capabilities and leads to oxidative stress in the targeted tissues/organs, is another hypothesized mechanism [49].

Similar to the metabolic activation of many other chemical toxins, the metabolic activation of PAs significantly diminishes cellular GSH levels in different cell lines and animals
which causes the disturbance of cellular redox homeostasis and leads to PA-induced cytotoxicity [51]. Restoration of cellular GSH to detoxify the reactive pyrrolic metabolites has proved to be an effective approach for PA detoxification [50,52], although it is only effective with the pretreatment of GSH or its precursors, such as N-acetylcysteine and γ-glutamylcysteinylglycyl ethyl ester, or with the treatment at very early stage after PA ingestion.

In addition to the study of these mechanisms leading to cytotoxicity, only a limited number of studies have aimed at identifying the cellular proteins which form the pyrrole-protein adducts associated with PA-induced cytotoxicity [53–55]. One study was reported by Lame et al. in which a number of target proteins of 14C-dehydro-MCT in pulmonary artery endothelial cells were identified [53,54], of which pyrrole-actin adducts were shown to alter the permeability barrier function of pulmonary artery endothelial cells and contributed to the MCT-induced pulmonary toxicity [55].

Most PA-induced cytotoxicity occurs in the liver, known as HSOS, which represents a typical toxicity in hepatic sinusoidal endothelial cells (HSECs) [51,52,56]. DeLeve et al. demonstrated that dehydro-MCT could induce depolymerization of F-actin in HSECs through a covalent modification, leading to the disassembly of F-actin and the rounding up of HSECs [57]. The disassembled F-actin led to enhanced synthesis and activity of matrix metalloproteinases (MMP)-9 and MMP-2, which then digested the extracellular matrix in the space of Disse, causing further dehiscence of HSECs [57]. The morphological changes of F-actin and HSECs, and the degradation of extracellular matrix created the gaps in the endothelial barrier that permitted blood to penetrate into the space of Disse, leading to the dissection of the sinusoidal lining cells, and obstruction of the sinusoids [52,57]. Similarly, despite of the lack of direct evidence of covalent binding, Mingatto et al. proposed that dehydro-MCT covalently bound to the thiol groups of mitochondrial respiratory chain complex I and impaired its normal function [58], contributing to MCT-induced hepatotoxicity. In addition, although it is less related to toxic mechanisms underlying PA-induced toxicities, some drug-metabolizing enzymes, such as CYPs, were also indicated to be covalently modified by dehydro-PAs [59], because these drug-metabolizing enzymes metabolically activated PAs to their reactive pyrrolic metabolites and were also the first enzymes encountered by these reactive metabolites. Currently, studies on the unequivocal identification of proteins targeted by dehydro-PAs, and the mechanistic linkages between the target proteins and PA-induced toxicities are still lacking. Further investigation is required.

Nakayama Wong et al. illustrated that pyrrole-protein adducts per se might evoke direct cytotoxicity [60]. The underlying mechanisms probably involved the transport of pyrrolic moiety from the interacted proteins to cellular DNA or the

Fig. 1 — Chemical structures of the necine bases (A) and the representative PAs (B). Retronecine-type PAs can be further divided into three subgroups: macrocyclic di-ester, open-ring di-ester, and mono-ester.
formation of pyrrole-protein-DNA crosslinking, and the modified DNA would initiate apoptosis [60–64]. Very recently, Fu and co-workers reported that several pyrrole-amino acid adducts, such as 7-cysteine-DHP, 7-N-acetylcysteine-DHP, and 7-GSH-DHP, were identified secondary pyrrolic metabolites that could bind to DNA leading to the formation of pyrrole-DNA adducts [39–42]. All these findings suggest that since secondary pyrrolic metabolites of PAs can bind to cellular DNA to form pyrrole-DNA adducts, these secondary pyrrolic metabolites may also lead to the pyrrole-protein adduct formation and associated with PA-induced cytotoxicity. This warrants further investigation.

4. Detection and quantitation of pyrrole-protein adducts

To date, the study of pyrrole-protein adducts formed in vivo, in vitro, or chemically, has focused mainly on the identification of the covalent binding locations between the pyrrolic moiety and the nucleophilic sites of the interacted proteins. This approach is based on the understanding that reactive pyrrolic metabolites are alkylating agents possessing bi-functional electrophilic positions at the C7 and C9 positions of the necine moiety, which are capable of alkylating to the nucleophilic sites of the target proteins, leading to the formation of pyrrole-protein adducts (Fig. 2A).

The detection of soluble and tissue-bound pyrrole-protein adducts was first reported by Mattocks et al. who developed a spectrophotometric analytical method to detect pyrrolic metabolites. This method used the Ehrlich reagent, using the freshly prepared p-dimethylaminobenzaldehyde (DABA), to react with the pyrrolic moiety of the pyrrole-protein adducts to form the products that had a specific UV absorbance [65,66]. Before the Ehrlich reaction, mercuric chloride was employed to cleave the pyrrolic moiety from the tissue-bound pyrrole-protein adducts [67]. However, by this approach, after the reaction, a portion of the pyrrolic moiety was still bound with the proteins/tissues resulting in complex matrixes, or formed insoluble complexes with mercury ions, making the further isolation and identification of the pyrrolic products difficult [45]. In the early 1990's, Mattocks
et al. improved the detection method by using AgNO$_3$, which was more effective in releasing the pyrrolic moiety from the sulfur (S)-linked pyrrole-protein adducts formed in various biological samples [45,46,68]. The detached pyrrolic moiety then reacted with ethanol to produce 7,9-di-ethoxy-DHP, which could be readily separated from biological matrices and detected by chromatography and mass spectrometry (Fig. 2A) [45,46,68,69].

Following this strategy, Lin et al. [6] developed a specific and sensitive method for the qualitative determination of pyrrole-protein adducts in the blood of PA-ILI patients. This novel analytical method involved: (i) the reaction of pyrrole-protein adducts in the blood with acidified ethanolic AgNO$_3$ to form 7,9-di-ethoxy-DHP; (ii) upon treatment with Ehrlich reagent, 7,9-di-ethoxy-DHP-3-DABA was formed; and (iii) the formed product was subsequently analyzed by ultrahigh pressure liquid chromatography-mass spectrometry (UHPLC-MS) (Fig. 2A). Using this method, the first reported detection of pyrrole-protein adducts in humans was achieved. Lin’s group further improved this method by using 7,9-di-GSH-DHP to construct a calibration curve for the quantitative analysis of pyrrole-protein adducts [5,36]. In 2016, Xia et al. synthesized the deuterium isotope 7,9-di-2H$_2$O-DHP as an internal standard for the absolute quantitation of pyrrole-protein adducts, and used this method to quantify pyrrole-protein adducts in the plasma and hemoglobin samples from PA-treated rats [37].

In addition to these chemical analysis methods, recently Lin’s group also developed a polyclonal antibody to recognize specifically pyrrole-protein adducts [70]. Using this antibody, pyrrole-protein adducts were detected in biological specimens from PA-treated rats. However, the method for quantitative analysis of pyrrole-protein adducts needs to be further developed.

5. **Pyrrole-protein adducts — A biomarker of PA exposure and PA-induced liver injury in humans**

Clinical diagnosis of human liver injury specifically caused by exposure to toxic PAs continues to be highly challenging due to the lack of reliable and specific diagnostic method. The development of specific biomarkers associated with the exposure to toxic PAs would be very useful for the clinical confirmative diagnosis of PA-ILI.

Routine clinical liver tests provide a series of serum biomarkers of liver injury, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and bilirubin. In addition, some serum biomarkers have been proposed specifically for assisting the diagnosis of drug-induced liver injury (DILI), including microRNAs, glutamate dehydrogenase, macrophage colony stimulating factor receptor, paroxonase 1, cytokeratin-18, and high mobility group box protein 1 [71–73]. Nevertheless, among these biological modulations, most of these biomarkers are not drug specific. On the contrary, for PA-ILI, pyrrole-protein adducts have been demonstrated to be a reliable mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity. Most of the research findings for using this biomarker are from our recent studies [5,6,20,36,37,74,75].

In 2011, Lin et al. reported the first identification of pyrrole-protein adducts in the blood of a patient who was diagnosed as HSOS and confirmed to intake a PA-containing herb, Gynura segetum [6]. In the subsequent studies, using quantitative LC/MS/MS analysis, Lin and co-workers identified blood pyrrole-protein adducts in 15 patients, each of whom consumed the PA-containing G. segetum, but not in healthy subjects [5,20]. These PA-ILI patients, including 9 men and 6 women with ages ranging of 35–73 years old with the intake of the herb from 5 days to 200 days via self-medication, had detectable blood pyrrole-protein adducts ranging from 0.14 to 74.4 nM (Table 1) [5]. In addition, the same pyrrole-protein adducts were detected in the liver and blood of rats and mice treated with the same PA-containing herb (G. segetum) taken by PA-ILI patients [5,6,75].

All the currently available results demonstrate that pyrrole-protein adducts are mechanism-based and specific in PA-ILI, and therefore, pyrrole-protein adducts in the blood can be developed as a potential biomarker of PA exposure and PA-ILI in humans [5,6,20,74,75].

6. **Perspectives**

To date, the diagnosis of PA-ILI mainly relies on the clinical features of HSOS and the exclusion of other etiologies of liver injury coupled with the retrospective identification of possible PA-producing or PA-contaminated natural products and/or foodstuffs ingested by the patients. Lin and co-workers were the first to establish a highly sensitive and specific UHPLC-MS method for the detection of pyrrole-protein adducts in the blood of PA-ILI patients. The studies conducted by Lin and co-workers represent a pioneering start on the development of blood pyrrole-protein adducts as a reliable and specific biomarker for the confirmative diagnosis of PA exposure, and also revealed a potentially high prevalence of PA exposure in DILI patients in China.

However, the currently available detection of blood pyrrole-protein adducts is by LC-MS, which requires a sophisticated and expensive instrument and well-trained personnel to conduct the analysis, and thus is unlikely to be adopted as a routinestest in most hospitals. Therefore, it is necessary to develop more practical and doable methods, such as antibody-based ELISA assay to measure blood pyrrole-protein adducts, for routine clinical tests.

On the other hand, the application of blood pyrrole-protein adducts in the risk assessment of PA exposure is also highly challenging and far from being fully characterized. Many factors may affect the level of blood pyrrole-protein adducts, such as the amount and duration of PA consumption and the blood sampling time. Moreover, the correlation between the levels of pyrrole-protein adducts in blood and target tissues have not been fully established. Studies on the association of the formation of pyrrole-protein adducts to PA-ILI are still limited. Well-designed studies addressing the formation and elimination kinetics of blood pyrrole-protein adducts and linking the level of blood pyrrole-protein adducts with the toxicological events would facilitate future development of blood pyrrole-protein adducts as a biomarker for PA-ILI and risk assessment of PA exposure.
Nevertheless, considering the current unavailability of specifically diagnostic method for PA-ILI and a high prevalence of PA exposure in DILI patients, as a mechanism-based biomarker, blood pyrrole-protein adducts should be a good candidate to be developed as confirmative and specific biomarker to diagnose definitively PA-ILI in DILI patients especially those with unknown etiology and to more accurately uncover the incidence of PA-ILI in the population.

Table 1 Information of 15 PA-ILI patients due to exposure of PA-containing herb, *Gynura segetum* (Lour.) Merr.

Patients code	Sex	Age	Herb intake period	Toxic PAs content in the herb (mg/g)	Blood level of pyrrole-protein adducts (nM)	Jaundice/ascites/ hepatomegaly
1	M 72	5 days	0.274 ± 0.005	6.07	N/Y/N	
2	F 57	3 weeks	0.829 ± 0.105	12.90	Y/Y/Y	
3	F 54	2 years	7.886 ± 0.656	11.80	Y/Y/N	
4*	F 72	2 months	2.283 ± 0.268	15.90	Y/Y/N	
5	F 63	2 months	7.452 ± 1.049	4.70	Y/Y/Y	
6	M 35	22 days	12.765 ± 2.313	74.40	N/Y/N	
7	M 46	1 week	0.554 ± 0.197	11.50	N/Y/N	
8	F 72	4 months	8.188 ± 0.460	0.33	Y/Y/Y	
9	M 53	200 days	4.237 ± 0.790	10.70	Y/Y/N	
10	F 73	10 days	5.746 ± 0.077	20.02	Y/Y/N	
11	M 44	44 days	10.094 ± 0.051	32.11	N/Y/Y	
12*	M 42	10 days	13.645 ± 0.059	0.65	Y/Y/Y	
13	M 49	70 days	1.828 ± 0.018	0.14	Y/Y/Y	
14	M 50	1 week	6.240 ± 1.004	8.50	Y/Y/Y	
15	M 46	10 days	11.445 ± 0.524	0.14	Y/Y/N	

*Patient died with liver failure.

a Data summarized from Reference [5].

Funding

The funding supported by Research Grants Council of Hong Kong (Ref. No.: 14110714 and 14111816), The Chinese University of Hong Kong (CUHK) for the Direct Grants (Ref. No.: 4054376), and School of Biomedical Sciences—Seed Fund for Joint Establishments are acknowledged.

Notes

The authors declare no competing financial interest. This article is not an official U.S. Food and Drug Administration (FDA) guidance or policy statement. No official support or endorsement by the U.S. FDA is intended or should be inferred.

References

[1] Roeder E. Medicinal-plants in Europe containing pyrrolizidine alkaloids. Pharmazie 1995;50:83–98.
[2] Roeder E. Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 2000;55:711–26.
[3] Wiedenfeld H, Edgar J. Toxicity of pyrrolizidine alkaloids to humans and ruminants. Phytochem Rev 2011;10:137–51.
[4] Roulet M, Laurini R, Rivier L, Calame A. Hepatic veno-occlusive disease in newborn-infant of a woman drinking herbal tea. J Pediatr 1988;112:433–6.
[5] Ruan J, Gao H, Li N, Xue J, Chen J, Ke C, et al. Blood pyrrole-protein adducts-A biomarker of pyrrolizidine alkaloid-induced liver injury in humans. J Environ Sci Health Part C – Environ Carcinog Ecotoxicol 2015;33:404–21.
[6] Lin G, Wang J, Li N, Li M, Gao H, Ji Y, et al. Hepatic sinusoidal obstruction syndrome associated with consumption of *Gynura segetum*. J Hepatol 2011;54:666–73.
[7] Martiniello M, Cristofoli C, Gallina A, Mutinelli F. Easy and rapid method for the quantitative determination of pyrrolizidine alkaloids in honey by ultra performance liquid chromatography-mass spectrometry: an evaluation in commercial honey. Food Contr 2014;37:146–52.
[8] Prakash AS, Pereira TN, Reilly PEB, Seawright AA. Pyrrolizidine alkaloids in human diet. Mutat Res Genet Toxicol Environ Mutag 1999;443:53–67.
[9] Rasenack R, Muller C, Kleinschmidt M, Rasenack J, Wiedenfeld H. Veno-occlusive disease in a fetus caused by pyrrolizidine alkaloids of food origin. Fetal Diagn Ther 2003;18:223–5.
[10] Panter KE, James LF. Natural plant toxicants in milk - a review. J Anim Sci 1990;68:892–904.
[11] Edgar JA, Colegate SM, Boppre M, Molyneux RJ. Pyrrolizidine alkaloids in food: a spectrum of potential health consequences. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011;28:308–24.
[12] Chojkier M. Hepatic sinusoidal-obstruction syndrome: toxicity of pyrrolizidine alkaloids. J Hepatol 2003;39:437–46.
[13] DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, et al. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 1999;29:1779–91.
[14] Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Veolkel NF, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol 2009;297:L1013.
[15] Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 2009;297:L1013–32.
[16] Willmot FC, Robertson GW. Senecio disease, or cirrhosis of the liver due to senecio poisoning. Lancet 1920;2:848–9.
[17] Dai N, Yu YC, Ren TH, Wu JG, Jiang Y, Shen LG, et al. Gynura root induces hepatic veno-occlusive disease: a case report...
and review of the literature. World J Gastroenterol 2007;13:3628–31.
[18] Mohabbat O, Srivastava RN, Younos MS, Merzad AA, Sedig GG, Aram GN. Outbreak of hepatic veno-occlusive disease in northwestern Afghanistan. Lancet 1976;2:269–71.
[19] Robinson O, Want E, Coen M, Kennedy R, van den Bosch C, Gebrewhania Y, et al. Hirmi Valley liver disease: a disease associated with exposure to pyrrolizidine alkaloids and DDT. J Hepatol 2014;50:96–102.
[20] Gao H, Ruan J, Chen J, Li N, Ke C, Ye Y, et al. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome. Drug Des Dev Ther 2015;9:4861–8.
[21] Fu PP, Xia Q, Zhao Y, Von Tungeln LS, Doerge DR, Lin G, Cai L, et al. Clinical characteristics and treatment of pyrrolizidine alkaloid-related hepatic vein occlusive disease. Liver Int 2018. https://doi.org/10.1111/liv.13684.
[22] Edgar JA. Food contaminants capable of causing cancer, pulmonary hypertension and cirrhosis. Med J Aust 2014;200:73–4.
[23] Edgar JA, Molynieux RJ, Colegate SM. Pyrrolizidine alkaloids: potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease. Chem Res Toxicol 2015;28:4–20.
[24] Li N, Xia Q, Ruan J, Fu PP, Lin G. Hepatotoxicity and tumorigenicity induced by metabolic activation of pyrrolizidine alkaloids in herbs. Curr Drug Metab 2011;12:823–34.
[25] Xu Q, Lin G, Cui YY, Hawes EM. Characterization of rat liver microsomal metabolites of clorvone, an hepatotoxic otoncine-type pyrrolizidine alkaloid. Drug Metab Dispos 2000;28:1475–83.
[26] Kim HY, Stermitz FR, Coulombe RA. Pyrrolizidine alkaloid-induced DNA-protein cross-links. Carcinogenesis 1995;16:2691–7.
[27] Fu PP, Chou MW, Xia Q, Wang K, Lin G, Cai L, et al. Genotoxic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides - mechanisms leading to DNA adduction and tumorigenicity. J Environ Sci Health Part C - Environ Carcinog Ecotoxicol 2001;19:353–85.
[28] Zhao Y, Xia Q, da Costa GG, Wu H, Cai L, Fu PP. Full structure assignments of pyrrolizidine alkaloid DNA adducts and mechanism of tumor initiation. Chem Res Toxicol 2012;25:1985–96.
[29] Xia Q, Zhao Y, Von Tungeln LS, Doerge DR, Lin G, Cai L, et al. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity. Chem Res Toxicol 2013;26:1384–96.
[30] Yang M, Ruan J, Fu PP, Lin G. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity. Chem Biol Interact 2016;243:19–26.
[31] Zhu L, Xue J, Xia Q, Fu PP, Lin G. The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 2017;91:949–65.
[32] Mattocks AR. Chemistry and toxicology of pyrrolizidine alkaloids. London; Orlando FLa.: Academic Press; 1986.
[33] Ruan J, Yang M, Fu PP, Ye Y, Lin G. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis. Chem Res Toxicol 2014;27:1030–9.
[34] Xia Q, Zhao Y, Lin G, Beland FA, Cai L, Fu PP. Pyrrolizidine alkaloid-protein adducts: potential non-invasive biomarkers of pyrrolizidine alkaloid-induced liver toxicity and exposure. Chem Res Toxicol 2016;29:1282–92.
[35] He X, Ma L, Xia Q, Fu PP. 7-N-Acetylcycteine-pyrrole conjugate-A potent DNA reactive metabolite of pyrrolizidine alkaloids. J Food Drug Anal 2016;24:682–94.
[36] He X, Xia Q, Fu PP. 7-Glutathione-pyrole and 7-cysteine-pyrole are potential carcinogenic metabolites of pyrrolizidine alkaloids. J Environ Sci Health Part C - Environ Carcinog Ecotoxicol 2017;35:69–83.
[37] He X, Xia Q, Ma L, Fu PP. 7-cysteine-pyrole conjugate: a new potential DNA reactive metabolite of pyrrolizidine alkaloids. J Environ Sci Health Part C - Environ Carcinog Ecotoxicol 2016;34:75–76.
[38] Xia Q, Ma L, He X, Cai L, Fu PP. 7-Glutathione pyrrole adduct: a potential DNA reactive metabolite of pyrrolizidine alkaloids. Chem Res Toxicol 2015;28:615–20.
[39] Li W, Wang K, Lin G, Peng Y, Zheng J. Lysine adduction by reactive metabolite(s) of monocrotaline. Chem Res Toxicol 2016;29:333–41.
[40] Zhao Y, Wang S, Xia Q, da Costa GG, Doerge DR, Cai L, et al. Reaction of dehydropropylazidine alkaloids with valine and hemoglobin. Chem Res Toxicol 2014;27:1720–31.
[41] Mattocks AR, Jukes R. Recovery of the pyrrolic nucleus of pyrrolizidine alkaloid metabolites from sulfur conjugates in tissues and body-liquids. Chem Biol Interact 1990;75:225–39.
[42] Mattocks AR, Jukes R. Chemistry of sulphur-bound pyrrolic metabolites of pyrrolizidine alkaloids. J Environ Sci Health Part C - Environ Carcinog Ecotoxicol 1996;23:589–602.
[43] DeLeve LD, Kaplowitz N. Glutathione metabolism and its role in hepatic sinusoidal obstruction syndrome. Am J Physiol Gastr L 2003;284:G1045–51.
[44] DeLeve LD, Wang X, Kuhlenkamp JF, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology 1996;23:589–99.
[45] DeLeve LD, Wang X, Kuhlenkamp JF, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology 1996;23:589–99.
[46] DeLeve LD, Ito Y, Betha NW, McCuskey MK, Wang X, McCuskey RS. Embolization by sinusoidal lining cells obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Gastr L 2003;284:G1045–52.
[47] Lame MW, Jones AD, Wilson DW, Dunston SK, Segall HJ. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells. J Biol Chem 2000;275:2901–9.
[48] Lame MW, Jones AD, Wilson DW, Dunston SK, Segall HJ. Monocrotaline pyrrole targets proteins with and without cysteine residues in the cytosol and membranes of human pulmonary artery endothelial cells. Proteomics 2005;5:4398–413.
Wilson DW, Lame MW, Dunston SK, Taylor DW, Segall HJ. Monocrotaline pyrrole interacts with actin and increases thrombin-mediated permeability in pulmonary artery endothelial cells. Toxicol Appl Pharmacol 1998;152:138–44.

DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 2002;22:27–41.

DeLeve LD, Wang X, Tsai J, Kanel G, Strasberg S, Tokes ZA. Sinusoidal obstruction syndrome (veno-occlusive disease) in the rat is prevented by matrix metalloproteinase inhibition. Gastroenterology 2003;125:882–90.

Mingatto FE, Dotta DJ, dos Santos AB, Carvalho I, da Silva CH, da Silva VB, et al. Dehydromonocrotaline inhibits mitochondrial complex I. A potential mechanism accounting for hepatotoxicity of monocrotaline. Toxicol 2007;50:724–30.

Reid MJ, Lame MW, Morin D, Wilson DW, Segall HJ. Involvement of cytochrome P450 3A in the metabolism and covalent binding of C-14-monocrotaline in rat liver microsomes. J Biochem Mol Toxicol 1998;12:157–66.

Nakayama Wong LS, Lame MW, Jones AD, Wilson DW. Differential cellular responses to protein adducts of naphthoquinone and monocrotaline pyrrole. Chem Res Toxicol 2010;23:1504–13.

Thomas HC, Lame MW, Dunston SK, Segall HJ, Wilson DW. Monocrotaline pyrrole induces apoptosis in pulmonary artery endothelial cells. Toxicol Appl Pharmacol 1998;151:236–44.

Thomas HC, Lame MW, Morin D, Wilson DW, Segall HJ. Prolonged cell-cycle arrest associated with altered cdc2 kinase in monocrotaline pyrrole-treated pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 1998;19:129–42.

Coulombe Jr RA, Drew GL, Stermitz FR. Pyrrolizidine alkaloids crosslink DNA with actin. Toxicol Appl Pharmacol 1999;154:198–202.

Hincks JR, Kim HY, Segall HJ, Molynesux RJ, Stermitz FR, Coulombe RA. DNA cross-linking in mammalian-cells by pyrrolizidine alkaloids - structure-activity-relationships. Toxicol Appl Pharmacol 1991;111:90–8.