A multifractal random walk

E. Bacry
Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France

J. Delour and J.F. Muzy
Centre de Recherche Paul Pascal, Avenue Schweitzer 33600 Pessac, France

We introduce a class of multifractal processes, referred to as Multifractal Random Walks (MRWs). To our knowledge, it is the first multifractal processes with continuous dilation invariance properties and stationary increments. MRWs are very attractive alternative processes to classical cascade-like multifractal models since they do not involve any particular scale ratio. The MRWs are indexed by few parameters that are shown to control in a very direct way the multifractal spectrum and the correlation structure of the increments. We briefly explain how, in the same way, one can build stationary multifractal processes or positive random measures.

PACS numbers: 05.45.Df Fractals, 47.53.+n Fractals in Fluid dynamics, 02.50.Ey Probability theory, stochastic processes, and statistics, 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

Multifractal models have been used to account for scale invariance properties of various objects in very different domains ranging from the energy dissipation or the velocity field in turbulent flows to financial data. The scale invariance properties of a deterministic fractal function \(f(t) \) are generally characterized by the exponents \(\zeta_q \) which govern the power law scaling of the absolute moments of its fluctuations, i.e.,

\[
m(q,l) = K_q l^{\zeta_q},
\]

where, for instance, one can choose \(m(q,l) = \sum_t |f(t+l) - f(t)|^q \). When the exponents \(\zeta_q \) are linear in \(q \), a single scaling exponent \(H \) is involved. One has \(\zeta_q = qH \) and \(f(t) \) is said to be monofractal. If the function \(\zeta_q \) is no longer linear in \(q \), \(f(t) \) is said to be multifractal. In the case of a stochastic process \(X(t) \) with stationary increments, these definitions are naturally extended using

\[
m(q,l) = E(\left|\delta_l X(t)\right|^q) = E(\left|X(t+l) - X(t)\right|^q),
\]

where \(E \) stands for the expectation. Some very popular monofractal stochastic processes are the so-called self-similar processes \([1]\). They are defined as processes \(X(t) \) which have stationary increments and which verify (in law)

\[
\delta_{\lambda l} X(t) = \lambda^{1/H} \delta_l X(t), \quad \forall l, \lambda > 0.
\]

Widely used examples of such processes are fractional Brownian motions (fBm) and Levy walks. One reason for their success is that, as it is generally the case in experimental time-series, they do not involve any particular scale ratio (i.e., there is no constraint on \(l \) or \(\lambda \) in Eq. \((3)\)). In the same spirit, one can try to build multifractal processes which do not involve any particular scale ratio. A common approach originally proposed by several authors in the field of fully developed turbulence \([2, 3, 4, 5, 6]\), has been to describe such processes in terms of differential equations, in the scale domain, describing the cascading process that rules how the fluctuations evolves when going from coarse to fine scales. One can state that the fluctuations at scales \(l \) and \(\lambda l \) (\(\lambda < 1 \)) are related (for fixed \(t \)) through the infinitesimal rule (\(\lambda = 1 - \eta \) with \(\eta << 1 \) cascading rule

\[
\delta_{\lambda l} X(t) = W_\lambda \delta_l X(t)
\]

where \(W_\lambda \) is a stochastic variable which depends only on \(\lambda \). Let us note that this latter equation can be simply seen as a generalization of Eq. \((3)\) with \(H \) being stochastic. Since Eq. \((4)\) can be iterated, it implicitly imposes the random variable \(W_\lambda \) to have a log infinitely divisible law. However, according to our knowledge, nobody has succeeded in building effectively such processes yet, mainly because of the peculiar constraints in the time-scale half-plane. The integral equation corresponding to this infinitesimal approach has been proposed by Castaing et al. \([6]\). It relates the probability density function (pdf) \(P_\mathcal{M}(\delta X) \) of \(\delta X \) to the pdf \(G_{\mathcal{M},l} \) of \(\ln W_\lambda \):

\[
P_\mathcal{M}(\delta X) = \int G_{\mathcal{M},l}(u)e^{-u}P_\mathcal{M}(e^{-u}\delta X)du.
\]

The self-similarity kernel \(G_{\mathcal{M},l} \) satisfies the same iterative rule as \(W_\lambda \) which implies that its Fourier transform is of the form \(\hat{G}_{\mathcal{M},l}(k) = \hat{G}_\lambda(k) \). Thus one can easily show that the \(q \) order absolute moments at scale \(l \) scales like

\[
m(q,l) = \hat{G}_{\lambda l}(-iq)m(q,L) = m(q,L)\left(\frac{l}{L}\right)^{F(-iq)},
\]

where \(F = \ln \hat{G} \) refers to the cumulant generating function of \(\ln W \) \([2, 3, 6]\). Thus, identifying this latter equation with Eq. \((5)\), one finds \(\zeta_q = F(-iq) \).

In the case of self-similar processes of exponent \(H \), one easily gets that the kernel is a dirac function \(G_{\mathcal{M},l}(u) = \delta(u - H \ln(l/L)) \) and consequently \(\zeta_q = qH \). The simplest non-linear (i.e., multifractal) case is the so-called
log-normal model that corresponds to a parabolic ζ_q and a Gaussian kernel. Let us note that if ζ_q is non linear, a simple concavity argument shows that Eq. (1) cannot hold for all l in $]0, +\infty[$. Multiplicative cascading processes consist in writing Eq. (1) starting from some ‘coarse’ scale $l = L$ and then iterating it towards finer scales using an arbitrary fixed scale ratio (e.g., $\lambda = 1/2$). Such processes can be constructed rigorously using, for instance, orthonormal wavelet bases [12]. However, these processes have fundamental drawbacks: they do not lead to stationary increments and they do not have continuous dilation invariance properties. Indeed, they involve a particular arbitrary scale ratio, i.e., Eq. (1) holds only for the discrete scales $l_n = \lambda^n L$.

The goal of this paper is to build a multifractal process $X(t)$, referred to as a Multifractal Random Walk (MRW), with stationary increments and such that Eq. (1) holds for all $l < L$. We first build a discretized version $X_{\Delta t}(t = k\Delta t)$ of this process. Let us note that the theoretical issue whether the limit process $X(t) = \lim_{\Delta t \to 0} X_{\Delta t}(t)$ is well defined will be addressed in a forthcoming paper. In this paper, we explain how it is built and prove that different quantities (q order moments, increment correlation,...) converge, when $\Delta t \to 0$.

Writing Eq. (1) at the smallest scale suggests that a good candidate might be such that $\Delta_t X_{\Delta t}(k\Delta t) = \epsilon_{\Delta t}[k]W_{\Delta t}[k]$ where $\epsilon_{\Delta t}$ is a Gaussian variable and $W_{\Delta t}[k] = e^{\omega_{\Delta t}[k]}$ is a log normal variable, i.e.,

$$X_{\Delta t}(t) = \sum_{k=1}^{t/\Delta t} \delta_{\Delta t} X_{\Delta t}(t) = \sum_{k=1}^{t/\Delta t} \epsilon_{\Delta t}[k] e^{\omega_{\Delta t}[k]},$$

(7)

with $X_{\Delta t}(0) = 0$ and $t = k\Delta t$. Moreover, we will choose $\epsilon_{\Delta t}$ and $\omega_{\Delta t}$ to be correlated to be a white noise of variance $\sigma^2\Delta t$. Obviously, we need to correlate the $\omega_{\Delta t}[k]$’s otherwise $X_{\Delta t}$ would simply converge towards a Brownian motion. Since, in the case of cascade-like processes, it has been shown [12][13][14] that the covariance of the logarithm of the increments decreases logarithmically, it seems natural to choose

$$\text{Cov}(\omega_{\Delta t}[k_1], \omega_{\Delta t}[k_2]) = \lambda^2 \ln \rho_{\Delta t}[|k_1 - k_2|],$$

(8)

with

$$\rho_{\Delta t}[k] = \left\{ \begin{array}{ll} \frac{L}{(k+1)^{\Delta t}} & \text{for } |k| \leq L/\Delta t - 1 \\ 1 & \text{otherwise} \end{array} \right.,$$

(9)

i.e., the $\omega_{\Delta t}$ are correlated up to a distance of L and their variance $\lambda^2 \ln (L/\Delta t)$ goes to $+\infty$ when $\Delta t \to 0$. For the variance of $X_{\Delta t}$ to converge, a quick computation shows that we need to choose

$$E(\omega_{\Delta t}[k]) = -r Var(\omega_{\Delta t}[k]) = -r\lambda^2 \ln (L/\Delta t),$$

(10)

with $r = 1$ (this value will be changed later) for which we find $Var(X(t)) = \sigma^2 t$.

Let us compute the moments of the increments of the MRW $X(t)$. Using the definition of $X_{\Delta t}(t)$ one gets

$$E(X_{\Delta t}(t_1)\ldots X_{\Delta t}(t_m)) = \sum_{k_1=1}^{t_1/\Delta t} \ldots \sum_{k_m=1}^{t_m/\Delta t} E(\epsilon_{\Delta t}[k_1] \ldots \epsilon_{\Delta t}[k_m]) E(e^{\omega_{\Delta t}[k_1] + \ldots + \omega_{\Delta t}[k_m]}).$$

Since $\epsilon_{\Delta t}$ is a 0 mean Gaussian process, this expression is 0 if m is odd. Let $m = 2p$. Since the $\epsilon_{\delta t}[k]$’s are δ-correlated Gaussian variables, one shows that the previous expression reduces to

$$\frac{2p^2}{2p!} \sum_{S \in S_{2p}} \sum_{k_1=1}^{t_1/\Delta t} \ldots \sum_{k_p=1}^{t_p/\Delta t} E(e^{2\sum_{j=1}^p \omega_{\Delta t}[k_j]}) \Delta t^p,$$

where a/b refers to the minimum of a and b and S_{2p} to the set of the permutations on $\{1, \ldots, 2p\}$. On the other hand, we have $E\left(e^{2\sum_{j=1}^p \omega_{\Delta t}[k_j]}\right) = \prod_{1 \leq i < j} \rho_{\Delta t}[k_i - k_j]\lambda^{2s}$. Then, when $\Delta t \to 0$, the general expression of the moments is

$$E(X(t_1)\ldots X(t_{2p})) = \frac{2^{2p}}{2p!} \sum_{S \in S_{2p}} \int_0^{(t_{S(1)}^{1/\Delta t})\ldots(t_{S(2p)}^{1/\Delta t})} du_1 \ldots \int_0^{t_{S(2p-1)}^{1/\Delta t}} \int_0^{t_{S(2p)}^{1/\Delta t}} du_p \prod_{i<j} \rho(u_i - u_j)\lambda^{2s},$$

(11)

where $\rho(t) = \lim_{\Delta t \to 0} \rho_{\Delta t}[t/\Delta t]$. In the special case $t_1 = t_2 = \ldots = t_{2p} = t$, a simple scaling argument leads to the continuous dilation invariance property

$$m(2p,l) = K_{2p} \left(\frac{l}{L} \right)^{-2p(p-1)\lambda^2}, \forall l \leq L,$$

(12)

where we have denoted the prefactor

$$K_{2p} = L \sigma^{2p} (2p-1)!! \int_0^1 du_1 \ldots \int_0^1 du_p \prod_{i<j} |u_i - u_j|^{-4\lambda^2}.$$
Let us study the correlation structure of the increments of \(X(t) \). Since \(\dot{C}_2 = 1 \), one can prove that they are decorrelated (though not independent). Let

\[
C_{2p}(l, \tau) = \langle \delta_s X(l)^{2p} | \hat{\delta}_s X(0)^{2p} \rangle, \tag{14}
\]

with \(\tau < l \). Using the same kind of arguments as above, one can show that

\[
C_{2p}(l, \tau) = (\sigma^{2p}(2p-1)!)^2 \int_0^\tau \int_0^\tau du_{p+1} \ldots \int_0^{l+\tau} du_p \int_0^\tau du_{p+1} \ldots \int_0^\tau du_{2p} \prod_{1 \leq i < j \leq 2p} \rho(u_i - u_j)^{4\lambda^2}. \tag{15}
\]

A straightforward argument then shows that

\[
K_{2p}^2 \frac{\tau L^{2\lambda^2 p^2}}{(l + \tau) L^{4\lambda^2 p^2}} \leq C_{2p}(l, \tau) \leq K_{2p}^2 \frac{\tau L^{2\lambda^2 p^2}}{(l - \tau) L^{4\lambda^2 p^2}},
\]

and consequently for \(\tau \ll l \) fixed, using analytical continuation one expects \(C_q(l, \tau) \) to scale like

\[
C_q(l, \tau) \sim K_q^2 \frac{\tau^2}{l^2} \frac{\lambda^2 q^2}{L}. \tag{16}
\]

This behavior is illustrated in fig. 3.

From the behavior of \(C_q \) when \(q \to 0 \), we can obtain using Eq. (16) that the covariance of the logarithm of the increments at scale \(\tau \) and lag \(l \) behaves (for \(\tau \ll l \)) like

\[
C(\ln)(l, \tau) \sim -\lambda^2 \ln \left(\frac{l}{\tau} \right). \tag{17}
\]

Thus, this correlation reflects the correlation of the \(\xi_{at} \) process and is the same as observed in Refs [12, 13, 14] for the cascade models. This behavior is checked in fig. 4.

Finally, let us note that, one can built MRWs with correlated increments by just replacing the white noise \(\epsilon_{at} \) by a fractional Gaussian noise (fGn)

\[
\epsilon_{at}^{(H)}[k] = B_H((k + 1)\Delta t) - B_H(k\Delta t), \tag{18}
\]

where \(B_H \) is a fBm with the scaling exponent \(H \) and of variance \(\sigma^2 t^{2H} \), and choosing \(r = 1/2 \) in Eq. (10). Then, one can show (after tedious but straightforward computations) that the spectrum of the MRW \(X^{(H)}(t) \) is

\[
\epsilon_q^{(H)} = qH - q(q-1)\lambda^2/2, \tag{19}
\]

\((\zeta_q^{(H)} = qH \) at scales \(\gg L \) and consequently the MRW has correlated increments. Such a construction is illustrated in fig. 1 with \(H = 2/3 \). Since \(H > 1/2 \) it leads to...
a process which is more regular than the one previously built.

To summarize, we have built the MRWs, a class of multifractal processes, with stationary increments and continuous dilation invariance. From a theoretical point of view, MRW can be seen as the simplest model that contains the main ingredients for multifractality, namely, logarithmic decaying correlation of the logarithms of amplitude fluctuations. Moreover, they involve very few parameters, mainly, the correlation length L, the intermittency parameter λ^2, the variance σ^2 and the roughness exponent H. They all can be easily estimated using the ζ_q spectrum and the increment correlation structure. We do believe that they should be very helpful in all the fields where multiscaling is observed. MRWs have already been proved successful for modelling financial data [10]. In this framework, we have shown that one can easily build multivariate MRWs. Actually, the construction of MRWs, as presented in this paper, can be used as a general framework in which one can easily build other classes of processes in order to match some specific experimental situations. For instance, a stationary MRW can be obtained by just adding a friction $\gamma > 0$, i.e.,

$$X_{\Delta t}[k] = (1 - \gamma)X_{\Delta t}[k-1] + \epsilon_{\Delta t}[k]e^{\omega_{\Delta t}[k]}.$$

One can build a strictly increasing MRW (and consequently a stochastic positive multifractal measure) by just setting $\epsilon_{\Delta t} = \Delta t$ in Eq. (7) and use it as a multifractal time for subordinating a monofractal process (such as an fBm). One can also use other laws than the (log-)normal for ϵ and/or ω. Another interesting point concerns the problem of the existence of a limit ($\Delta t \to 0$) stochastic process and on the development of a new stochastic calculus associated to this process. All these prospects will be addressed in forthcoming studies.
We acknowledge Alain Arneodo for interesting discussions.

[1] M.S. Taqqu and G. Samorodnisky, *Stable Non-Gaussian Random Processes* (Chapman & Hall, New York, 1994).
[2] E.A. Novikov, Phys. Fluids A 2, 814 (1990).
[3] Z.S. She and E. Léveque, Phys. Rev. Lett. 72, 336 (1994).
[4] R. Friedrich and J. Peinke, Phys. Rev. Lett. 78, 863 (1997).
[5] B. Dubrulle and F. Graner, J. Phys. II France 6, 797 (1996).
[6] B. Castaing, Y. Gagne and E. Hopfinger, Physica D 46, 177 (1990).
[7] A. Arneodo, S. Roux and J.F. Muzy, J. Phys. II France 7, 363 (1997).
[8] B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).
[9] J.P. Kahane and J. Peyrière, Adv. Math. 22, 131 (1976).
[10] C. Meneveau and K.R. Sreenivasan, J. Fluid. Mech. 224, 429 (1991).
[11] H.G.E. Hentschel, Phys. Rev. E 50, 243 (1994).
[12] A. Arneodo, E. Bacry and J.F. Muzy, J. Math. Phys. 39, 4163 (1998).
[13] A. Arneodo, J.F. Muzy and D. Sornette, Eur. Phys. J. B 2, 277 (1998).
[14] A. Arneodo, E. Bacry, S. Manneville and J.F. Muzy, Phys. Rev. Lett. 80, 708 (1998).
[15] J.F. Muzy, E. Bacry and A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991).
[16] J.F. Muzy, J. Delour and E. Bacry, *Modelling fluctuations of financial time-series*, submitted to Eur. Phys. J. (April 2000).