Evidence for an environment-dependent shift in the baryon acoustic oscillation peak

Boudewijn F. Roukema,1,2† Thomas Buchert,2 Jan J. Ostrowski1,2 and Martin J. France2

1Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Gagarina 11, PL-87-100 Toruń, Poland
2Université de Lyon, Observatoire de Lyon, Centre de Recherche Astrophysique de Lyon, CNRS UMR 5574: Université Lyon 1 and École Normale Supérieure de Lyon, 9 avenue Charles André, F–69230 Saint-Genis-Laval, France

Accepted 2015 January 7. Received 2014 December 11; in original form 2014 October 7

ABSTRACT
The Friedmann–Lemaître–Robertson–Walker (FLRW) metric assumes comoving spatial rigidity of metrical properties. The curvature term in comoving coordinates is environment independent and cannot evolve. In the standard model, structure formation is interpreted accordingly: structures average out on the chosen metrical background, which remains rigid in comoving coordinates despite nonlinear structure growth. The latter claim needs to be tested, since it is a hypothesis that is not derived using general relativity. We introduce a test of the comoving rigidity assumption by measuring the two-point autocorrelation function on comoving scales – assuming FLRW comoving spatial rigidity – in order to detect shifts in the baryon acoustic oscillation (BAO) peak location for luminous red galaxy (LRG) pairs of the Sloan Digital Sky Survey Data Release 7. In tangential directions, subsets of pairs overlapping with superclusters or voids show the BAO peak. The tangential BAO peak location for overlap with Nadathur & Hotchkiss superclusters is 4.3 ± 1.6 h−1 Mpc less than that for LRG pairs unselected for supercluster overlap, and 6.6 ± 2.8 h−1 Mpc less than that of the complementary pairs. Liivamägi et al. superclusters give corresponding differences of 3.7 ± 2.9 h−1 Mpc and 6.3 ± 2.6 h−1 Mpc, respectively. We have found moderately significant evidence (Kolmogorov–Smirnov tests suggest very significant evidence) that the BAO peak location for supercluster-overlapping pairs is compressed by about 6 per cent compared to that of the complementary sample, providing a potential challenge to FLRW models and a benchmark for predictions from models based on an averaging approach that leaves the spatial metric a priori unspecified.

Key words: cosmological parameters – cosmology: observations – dark energy – distance scale – large-scale structure of Universe.

1 INTRODUCTION
The low-redshift (z ≪ 3) Universe has an inhomogeneous density distribution (e.g. de Lapparent, Geller & Huchra 1986), i.e. during the epoch when most virialization takes place. The standard cosmology model assumes that the nonlinear structure growth of the virialization epoch takes place in a spacetime with the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, and that this metric is unaffected by structure growth, despite the Einstein equation. In other words, an implicit assumption of the FLRW models, including the Λcold dark matter (ΛCDM) model (e.g. Ostriker & Steinhardt 1995; Spergel et al. 2003; Ade et al. 2013), is that comoving space is rigid, a property that is shared by Newtonian models (see Section 2.5 in Buchert 2000, and Roukema 2013). This assumption needs to be tested. We propose to test the rigidity of a well-established comoving-scale standard ruler, by examining whether it is environment dependent.

Motivated by Ellis & Stoeger (1987), the scalar averaging approach to cosmology (Buchert, Kerscher & Sicka 2000; Buchert 2000, 2001; Kolb et al. 2005; Buchert, Larena & Alimi 2006; Kolb, Matarrese & Riotto 2006; Räsänen 2006a,b; Wiltshire 2007a,b; Buchert 2008; Buchert & Carfora 2008; Wiltshire 2009; Kolb 2011; Buchert, Nayet & Wiegand 2013; Duley, Nazer & Wiltshire 2013) is a general-relativistic approach to cosmology that extends the
Friedmann and acceleration equations to the case of general inhomogeneous distributions of matter and geometry. Initial observational tests show promising results for template metric implementations of the approach and for related toy models (e.g. Larena et al. 2009; Boehm & Rasanen 2013; Roukema, Ostrowski & Buchert 2013; Chiesa, Maino & Majerotto 2014; see also models with the inclusion of a phenomenological lapse function: Smale & Wiltshire 2011; Wiltshire et al. 2013 or using a different averaging approach: Clarkson et al. 2012).

Comoving space in these approaches is not rigid. This implies that comoving standard rulers should be inferred to be variable in comoving length if data are interpreted according to a phenomenological, rigid model, e.g. a ΛCDM model. It is generally expected (Hosoya, Buchert & Morita 2004; Räsänen 2006b; Buchert & Carfora 2008; Roukema et al. 2013) that voids should be hyperbolic and that superclusters should occupy positively curved space. This is a kinematical expectation, whose details depend on whether we interpret the backreaction variables in a background-free way, or whether we use template metrics to interpret those variables (Buchert & Carfora 2003). When using a template metric, or a best-fitting FLRW metric, voids and superclusters and their nearby surroundings should approximately correspond to negatively curved, fast expanding regions and to positively curved regions approaching their turnaround epochs, respectively.

A comoving standard ruler at \(L \sim 100 \, h^{-1} \, \text{Mpc} \), the baryon acoustic oscillation (BAO) peak, has been detected to high statistical significance (Eisenstein et al. 2005, and references thereof), where the comoving length is determined from the theory of BAOs (e.g. Eisenstein & Hu 1998, and references therein). Measuring the BAO peak location – an imprinted feature in comoving space – through either large voids or superclusters for a given catalogue interpreted in rigid (FLRW) comoving space should show either a stretched or compressed BAO peak location, respectively, in comparison to the BAO peak location for the full catalogue, interpreted in the same way. However, since voids dominate spatial 3-volume at the present epoch, the scalar averaging expectation is that the BAO peak location through large voids should only be slightly greater than that for the best-fitting FLRW model (Buchert & Carfora 2008; Roukema et al. 2013), i.e. difficult to detect. Moreover, voids consist of deficits of galaxy densities rather than excesses of galaxy densities, so procedures of finding and characterizing voids are more affected by Poisson noise than in the case of superclusters. Thus, the relative stretching of the BAO peak location through voids should be small compared to the best-fitting FLRW model, and noisy.

As a rough guide to what could be expected in the scalar averaging case, we prepared an independent software package that implements the calculations illustrated in fig. 2 (left) of Buchert et al. (2013) for the relativistic Zel’dovich approximation (Kasai 1995; Buchert & Ostermann 2012) together with an early-epoch background model (Buchert et al. 2013). We find that present-day effective (averaged) expansion factors \(a_{\text{eff}} \) of typical \((1+e)\) in the first invariant of the extrinsic curvature tensor and zero in the second and third invariants; see Buchert et al. 2000, 2013 (for details) overdense or underdense regions at the 105 \(h^{-1} \, \text{Mpc} \) scale have effective scale factors of 0.95 or 1.04 times that of the extrapolated background model, i.e. the overdense region is about 9 per cent compressed in comparison to the underdense region. The relative compression is the relevant quantity to consider here.

Instead of checking whether the BAO peak location through voids is stretched, a more promising approach is to use superclusters. Lines of sight passing through superclusters should pass through the compressed spatial regions, while lines of sight mostly passing far from the superclusters should pass mostly through negatively curved space, according to the scalar averaging models. While superclusters are unvirialized objects (typically of filamentary or spiderlike morphology; e.g. Einasto et al. 2014), they should not dominate the volume, so the metrical properties of the space they occupy are more likely to differ from volume-weighted mean quantities than in the case of voids. Thus, we expect to find a stronger and less noisy shift in the BAO peak location from superclusters than from voids, and focus mostly on the former.

The BAO peak is well determined in the Sloan Digital Sky Survey Release 7 (SDSS DR7) luminous red galaxy (LRG) sample (Eisenstein et al. 2001), with publicly available catalogues of both the observational data and of ‘random’ galaxies representing the observational selection criteria. We use these to illustrate our method. We consider independent supercluster catalogues from Nadathur & Hotchkiss (2013) and Liivamägi, Tempel & Saar (2012), and Nadathur & Hotchkiss (2013)’s Type 1 void catalogue. The aim here is an initial exploration of the method using real observational catalogues, with the hope of detecting the BAO peak. The amplitude and sign of a shift in the BAO peak location or an upper limit to the shift should guide future work on observational catalogues that are presently being prepared for public release or that will result from the next generation of extragalactic telescope/instrument/survey combinations.

The observational catalogues are described in Section 2.1. The correlation function estimator is given in Section 2.2. The calculation of an overlap between an LRG pair and a supercluster (or void) in flat FLRW comoving space is given in Section 2.3 [Fig. 1, equations (5), (6), and (7)]. Determination of the BAO peak location and its shift is described in Section 2.4. Our method is
2 METHOD

2.1 Observational catalogues

We use the ‘bright’ and ‘dim’ LRG samples lrgbright and lrgdim derived from the SDSS DR7 (Eisenstein et al. 2001), as provided by Kazin et al. (2010) as observational and ‘random’ catalogues for the ‘Northern Cap only’. These are converted to Euclidean comoving positions

\[
\begin{align*}
\chi_i^D &= r_i^D \cos \alpha_i^D \cos \delta_i^D \\
\psi_i^D &= r_i^D \sin \alpha_i^D \cos \delta_i^D \\
\chi_i^D &= r_i^D \sin \delta_i^D,
\end{align*}
\]

where \(r_i^D\) is the radial comoving distance in \(h^{-1}\) Mpc to the \(i\)th LRG according to an FLRW model with \(\Omega_{m0} = 0.32, \Omega_{\Lambda 0} = 0.68\).

Nadathur & Hotchkiss (2013)’s v11.1.1.3 lists of superclusters identified using the watershed algorithm in LRG samples lrgbright and lrgdim derived from the SDSS DR7 (Eisenstein et al. 2001) are used here. These include the right ascension and declination \(\alpha_i^{SC}, \delta_i^{SC}\), effective radius \(R_i\) in \(h^{-1}\) Mpc and angular radii \(\theta_i^{SC}\) of the superclusters, which are converted to Euclidean comoving positions as equations (1), i.e.

\[
\begin{align*}
\chi_i^{SC} &= r_i^{SC} \cos \alpha_i^{SC} \cos \delta_i^{SC} \\
\psi_i^{SC} &= r_i^{SC} \sin \alpha_i^{SC} \cos \delta_i^{SC} \\
\chi_i^{SC} &= r_i^{SC} \sin \delta_i^{SC},
\end{align*}
\]

where radial comoving distances \(r_i^{catalogue}\) of the supercluster centres are derived as

\[
r_i^{catalogue} = R_i / \tan \theta_i^{SC},
\]

the \(r_i^{catalogue}\) values are converted to redshifts for the authors’ FLRW model (with \(\Omega_{m0} = 0.27, \Omega_{\Lambda 0} = 0.73, h = 1.0\), and the latter are recomputed to radial comoving distances \(r_i^{SC}\) for the FLRW model chosen in this work (\(\Omega_{m0} = 0.32, \Omega_{\Lambda 0} = 0.68\). Nadathur & Hotchkiss (2013)’s void catalogues for SDSS DR7 LRGs are extracted in the same way.

Nadathur & Hotchkiss (2013, fig. 4) used a conservative sky selection mask, with a complicated sky geometry. Superclusters

\[1\] http://cosmo.nyu.edu/~eak306/SDSS-LRG.html

\[2\] http://research.hip.fr/user/nadathur/download/dr7catalogue/

\[3\] Columns 2, 3, 5, and 6, respectively, of the files comovcoords/lrgdim/Type1clusters_info.txt and comovcoords/lrgbright/Type1clusters_info.txt.

\[4\] Files comovcoords/lrgdim/Type1voids_info.txt and comovcoords/lrgbright/Type1voids_info.txt.

2.2 Correlation function \(\xi(s)\)

The two-point autocorrelation function \(\xi(s)\), where \(s\) is the pair separation in FLRW comoving space, is estimated using the Landy & Szalay (1993) estimator (see also Kerscher, Szapudi & Szalay 2000)

\[
\xi(s) = \frac{DD(s)/N_{DD} - 2DR(s)/N_{DR} + RR(s)/N_{RR}}{RR(s)/N_{RR}},
\]

where \(DD(s), DR(s),\) and \(RR(s)\) are the data–data, data–random, and random–random pair counts at \(s\) for a given bin size \(\Delta s = 10 h^{-1}\) Mpc, and \(N_{DD}, N_{DR},\) and \(N_{RR}\) are the total numbers of pairs. ‘Data’ refer to observed LRGs. ‘Random’ refers to a randomly resampled subset of a simulated catalogue that mimics the selection effects of the real survey on the sky (boundaries and holes) and in the radial direction under the assumption that the intrinsic galaxy distribution is uniform in comoving space (Kazin et al. 2010, appendix A).

Here, we use both data and random catalogues from Kazin et al. (2010) (see Section 2.1). As in Kazin et al. (2010, appendix A),

\[5\] Columns ‘RA1deg’, ‘DE1deg’, and ‘Dist1’ of http://cdsarc.u-strasbg.fr/viz-bin/nph-Cat/txt?J/A+A/539/A80/lrgadapt.dat, representing estimates for the primary peaks of the superclusters.
we use radial weights designed to optimize the signal at about 100 \(h^{-1} \) Mpc (Feldman, Kaiser & Peacock 1994), as provided in the catalogues, for both the data and random catalogues, and the fibre collision weight is used for angular weighting in the data catalogue. Incompleteness is modelled by sampling the random catalogue with a probability of success equal to the incompleteness estimate for each simulated galaxy. The random catalogues have about 50 times as many galaxies as the data catalogues. In practice in this work, the ratio of the requested number of random galaxies (prior to exclusion of some objects due to incompleteness) to the number of data galaxies, \(N_\text{R}^0/N_\text{D}^0 \), has to be several times smaller than 50 in order to achieve realistic computing times. This ratio is specified per individual calculation below. Higher ratios reduce the contribution of Poisson noise to the estimates of \(\xi \).

2.3 Overlap-dependent correlation functions

In order to determine the compression or stretching of comoving features in the correlation function, we consider the subset of LRG pairs that pass ‘close’ to superclusters or voids, respectively. For a given LRG pair, ‘close’ is defined by considering the geometrical overlap \(\omega \) between the object and the pair, where the former is assumed to be the interior of a 2-sphere and the latter a line segment, within flat FLRW comoving space. Fig. 1 shows a galaxy–galaxy pair close to a supercluster (or void). In this particular case, the overlap is the chord length, i.e.

\[
\omega = 2R \sin \theta.
\] (5)

The overlap \(\omega \) is zero when the impact factor is big, i.e. when \(\|e\| > R \), where \(e \) is the normal from the LRG–LRG separation vector to the supercluster (void) centre (see Fig. 1). The most general case is given by

\[
\omega = \omega_a + \omega_b,
\] where

\[
\omega_a = \begin{cases}
\min (R \sin \theta, c_a) & \text{if } c_a > 0 \\
\max (-R \sin \theta, c_a) & \text{if } c_a < 0 \\
0 & \text{if } c_a = 0
\end{cases}
\]

\[
\omega_b = \begin{cases}
\min (R \sin \theta, c_b) & \text{if } c_b > 0 \\
\max (-R \sin \theta, c_b) & \text{if } c_b < 0 \\
0 & \text{if } c_b = 0
\end{cases}
\] (6)

where

\[
\hat{c} := \frac{e}{\|e\|}, \quad c_a := \mathbf{A}S \cdot \hat{c}, \quad c_b := -\mathbf{B}S \cdot \hat{c}
\]

\[
d := c_s \hat{c}, \quad e := \mathbf{A}S + d.
\] (7)

The simple case illustrated in Fig. 1 and given by equation (5) occurs when \(c_a > R \sin \theta > 0 \) and \(c_b > R \sin \theta > 0 \).

For any given LRG pair, the overlap with each of the superclusters (or voids) is calculated until either an overlap with \(\omega > 1 \ h^{-1} \) Mpc is found or until all overlaps \(\omega \) have been calculated. An overlap is considered to occur in the former case and not in the latter. For the calculation of \(\xi \), the maximum value of \(\omega \) for a given LRG pair is forgotten once a decision has been made regarding the existence of an overlap for that pair.

For collecting overlap statistics (Section 4.1, Table 4), the calculation of overlaps continues without stopping at the \(\omega < 1 \ h^{-1} \) Mpc limit. This leads to much longer calculation times, and high memory usage for the calculation of quantiles. This calculation mode is not used for the main calculations (of \(\xi \)).

The expected differences between comoving correlation function features in rigid comoving space versus inhomogeneous comoving space are likely to depend on whether the pairs are mostly radial or mostly tangential with respect to the observer. First, let us ignore peculiar velocity effects (‘redshift-space distortion’, RSD, e.g., Ballinger, Peacock & Heavens 1996). A compression or stretching for superclusters or voids, respectively, can reasonably be expected in either the radial or tangential direction in proportion to the ratio between the locally averaged scale factor and the (large-scale) mean effective scale factor \(a_{\text{eff}} \). In the tangential direction, a competing effect should be expected from curvature. For example, positive curvature would tend to act as a non-perturbative gravitational lens, so that the would-be compressed BAO peak position is expanded. However, given the estimated parameters of the template metric presented in Roukema et al. (2013), the non-perturbative lensing effect would most likely be weaker than the compression or stretching.

Peculiar velocity effects (Kaiser 1987) complicate analysis of radial separations. The BAO peak is likely to be more difficult to detect in the radial direction.

Thus, we first divide pairs into whether or not they satisfy the criterion \(\omega > 1 \ h^{-1} \) Mpc, and secondly subdivide them according to whether the LRG pair vector is closer to the line-of-sight or rather closer to the sky plane, separating the two cases at 45° using FLRW comoving space geometry. The overlap analysis is carried out independently for DD(s), DR(s), and RR(s) pairs. The Landy & Szalay (1993) estimator, equation (4), is used to estimate \(\xi \) separately for each of these components, giving \(\xi^\parallel \) and \(\xi^\perp \), for the radial and tangential overlapping components of the correlation function for superclusters, and \(\xi^\parallel_{\text{non-sc}} \) and \(\xi^\perp_{\text{non-sc}} \), for the radial and tangential non-overlapping components, and similarly \(\xi^\parallel_{\text{void}}, \xi^\perp_{\text{void}}, \xi^\parallel_{\text{non-void}}, \xi^\perp_{\text{non-void}} \), for voids, respectively.

2.4 BAO peak locations

Since the aim of this work is to introduce a new observational method of distinguishing the homogeneous and inhomogeneous assumptions for the comoving metric, we use simple methods that are conservative in the sense that they are more likely to underestimate the shift in the BAO peak location rather than overestimate it, and that we prefer to risk overestimating the error rather than underestimating it.

Thus, we use bootstraps (Efron 1979; see also Barrow, Bhavsar & Sonoda 1984) which tend to imply overestimates of per-bin correlation function variances rather than underestimates (e.g. Snethlage 1999). Both the random set of LRGs and the list of superclusters (or voids) are randomly resampled (allowing repeats) for each bootstrap simulation. The observed LRG set is not resampled, since the aim is to test the dependence of \(\xi \) on the choice of subset of the observed LRG pairs. Resampling the supercluster (or void) catalogue enables statistical modelling of the sensitivity of the results to the inclusion or exclusion of individual superclusters or voids, reducing the chance that our main result – the shift in the BAO peak location – could be mostly the effect of statistical outliers resulting from the supercluster- or void-finding algorithms. Resampling the random catalogue ensures that a major component of the uncertainty in estimating the correlation function itself is statistically represented in the set of bootstrapped correlation functions. The correlation function is calculated separately for each bootstrap resampling. For illustrative purposes only, the standard deviation at
each separation s for the N_{boot} bootstraps of a given choice of LRG sample and supercluster or void catalogue is calculated and shown as error bars in plots of ξ.

Although we expect $\text{DD}(s)$ to shift by $\Delta s \sim \text{a few Mpc}$ in the scalar averaging case, to shift $\text{RR}(s)$ by the same amount would be difficult, especially given that we are trying to determine the shift which has so far only been predicted (in this work) qualitatively. The third type of pair count, $\text{DR}(s)$, would also be difficult to model. Thus, we use the random catalogues without modification, and do not expect a shift of ξ as simple as $\xi(s) = \xi(s + \Delta s)$. In other words, calculating $\text{DD}(s')$, $\text{DR}(s')$, and $\text{RR}(s')$, where s' is a Lagrangian separation, in order to infer $\xi(s')$, would not be easy. Instead, there is likely to be a general (smooth) change in shape. Since RR should be a more or less smooth function, the BAO peak should still be visible as a peak above the smooth ‘background’ of the dominant component of ξ.

To separate the BAO peak from the main part of ξ, we fit a cubic ξ_s to the smooth part of ξ surrounding the peak, i.e. in the range $40 \leq s \leq 180$ h$^{-1}$ Mpc, excluding $70 \leq s \leq 130$ h$^{-1}$ Mpc. A linear or quadratic fit would be very sensitive to the choice of s range for fitting; a higher order polynomial than a cubic could fit part of the peak, effectively weakening it. We subtract the cubic fit, obtaining $\xi - \xi_s$, and find the nonlinear least-squares best-fitting Gaussian for the six 10 h$^{-1}$ Mpc bins in the range $70 \leq s \leq 130$ h$^{-1}$ Mpc, using the Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 1963) implemented in LEASQR of the optional OCTAVE packet OCTAVE-OPTIM. Our template Gaussian is centred at p_1, has width p_2, height p_3, and a vertical offset p_4, i.e.

$$g(x) = p_4 + \sqrt{2\pi} p_3 G(x, p_1, p_2).$$

where $G(x, p_1, p_2)$ is a normal probability density function of mean p_1 and standard deviation p_2. The initial parameter guess is $p_1 = 100$ h$^{-1}$ Mpc, $p_2 = 5$ h$^{-1}$ Mpc, $p_3 = \max \{[\xi - \xi_s] - p_4 \}$, $p_4 = \min \{[\xi - \xi_s] \}$. (9)

A weighting of $(1, 2, 4, 4, 2, 1)^6$ for the six bins, respectively, is applied in order to reduce the influence of the tails of the peak, at the risk of biasing the method towards finding the BAO peak location at the same position in all cases. Since this is a bias towards understimating the true shift, this should give conservative results. We allow up to 30 iterations to find a fit. The centre of the Gaussian, p_1, is considered to be the estimate r of the BAO peak location.

While a Gaussian fit to the possibly shifted BAO peak is a reasonable approach for this initial work, there is no need to assume that the errors in the fit themselves follow a Gaussian distribution. Since we have N_{boot} bootstrap estimates of the function ξ in any given case, we calculate the shift of the BAO peak location between a pair of cases r', r'', by using the sets of BAO peak locations for the bootstraps as discretized estimates of their probability density functions. This avoids assumptions about the shapes of the probability distributions of the two estimates. That is, for each estimate of $r^0 - r^\text{sc}$, $r^0 - r^\text{void}$, $r^\text{sc} - r^\text{void}$, or $r^\text{non-SC} - r^\text{void}$, we take r' and r'' from bootstrap realizations for the two cases, respectively. Non-convergent BAO peak location estimates are ignored and noted in the table of results. For the estimates of $r^\text{sc} - r^\text{void}$ and $r^\text{non-SC} - r^\text{void}$, the two estimates in a pair come from the same bootstrap realization. Due to long calculation times, N_{boot} for the Liivamägi et al. (2012) case is less than N_{boot} for the full sample (without supercluster overlap detection), so half of the full sample realizations are ignored for $r^0 - r^\text{sc}$ in this case. We use robust statistics of this set of realizations to estimate the shift, i.e. we calculate the median $\mu(r' - r'')$ and we use 1.4826 times the median absolute deviation (Hampel 1974) as an estimate of the standard deviation $\sigma(r' - r'')$. (Thus, we do not use variances per bin from the bootstraps, nor do we assume Gaussian error distributions in the estimates of the peak locations.)

2.5 Optimization of calculation speed

The calculation time of the two-point autocorrelation functions is dominated by N_{SC}^2, but is also roughly proportional to the number N_{SC} of superclusters or voids, thus, it scales as $N_{\text{SC}}^2 N_{\text{SC}}$, requiring many cpu hours of computation. Optimizations used in this work include:

(i) while counting pairs in parallel (OPENMP) threads, store the binned pair counts per outer-loop galaxy (the outer loop is parallelized) and only sum these (per separation bin) after the threads have finished; this requires a modest amount of extra memory but favours speed by avoiding atomic/critical instructions;

(ii) for a given galaxy–galaxy pair, stop calculating overlaps with superclusters or voids if an overlap greater than the threshold (1 h$^{-1}$ Mpc in this work) has already been found (as stated above);

(iii) inline the vector-related functions and the function to calculate overlap, equation (6), by their inclusion in the same file as that for pair count functions and using the GCC compile-time optimization option -O3.

Significant speedup for flat space calculations might also be possible using a kd tree approach (e.g. Moore et al. 2001).

3 RESULTS

Fig. 2 shows a sharp BAO peak for the bright sample and a broad, less well-defined peak for the dim sample. Thus, we analyse the former. The calculations described below, i.e. for the bright sample, made using the optimizations described in Section 2.5, represent about 240 000 cpu-core hours of computation on Intel Xeon E7-8837 processors.

The correlation functions for tangential pairs either overlapping or not overlapping with Nadathur & Hotchkiss (2013) superclusters or voids are shown as the two upper curves (red, purple online) in Figs 3 and 4. Keeping in mind that the per-bin standard deviation (estimated from bootstraps as shown or by other methods) does not directly show the uncertainty in the existence or position of the BAO peak, the best estimate of ξ does appear to be present for all four of these curves in the separation bins centred at either 95 h$^{-1}$ Mpc or 105 h$^{-1}$ Mpc. For overlaps with superclusters or for LRG pairs not overlapping with voids the peak appears to be located at 95 h$^{-1}$ Mpc. For overlaps with voids or for non-overlaps with superclusters, the BAO peak appears to be at 105 h$^{-1}$ Mpc, i.e. at the same location as that of the full sample.

The correlation functions for radial pairs either overlapping or not overlapping with Nadathur & Hotchkiss (2013) superclusters or
Two-point autocorrelation function $\xi(s)$ for the ‘bright’ (upper curve) and ‘dim’ (lower curve; horizontally offset by $+1\ h^{-1}\ Mpc$ for clarity) samples of luminous red galaxies (LRGs) in the SDSS DR7, as provided by Kazin et al. (2010), against separation s in $h^{-1}\ Mpc$, assuming an effective metric approximated by an FLRW model with $(\Omega_m = 0.32, \Omega_{\Lambda} = 0.68)$.

The error bars show standard deviations of bootstrapped samples at each given separation s; these error bars provide a rough upper limit to the uncertainty and are not used for the analysis. In each case, the ratio $N_{\xi_b}^2/N_{\xi_D}^2$ is 16 and the number of bootstraps is 16. The BAO peak at $\sim 105\ h^{-1}\ Mpc$ is sharp for the bright sample and blunt for the dim sample.

Voids are shown as the two lower curves in Figs 3 and 4. Clearly, the Kaiser effect (large-scale smooth infall Kaiser 1987) significantly affects ξ on these scales. Moreover, since we define the split between radial and tangential pairs at an angle of 45° with respect to the plane of the sky, there are many fewer radial than tangential pairs (the sky plane is two dimensional). Thus, use of the radial case for detecting a shift in the BAO peak location would risk ambiguity in identifying the peak and most likely be subject to higher systematic error than the tangential case. The radial curves are not used further in this work.

The Liivamägi et al. (2012) supercluster correlation functions are shown in Fig. 5. There is a great difference between the tangential and radial supercluster-overlapping functions, and a very strong difference between these and the non-supercluster-overlapping pair correlation functions. This is easily interpreted as an effect of the integral constraint (see, e.g. fig. 7, lower panel, Roukema & Peterson 1994), for which we have not made any corrections, since our aim is to detect the shift in the BAO peak location rather than attempting to model the general change in the shape of the correlation function. A BAO peak for the Liivamägi et al. (2012) tangential supercluster-overlapping case (thick curve) is barely visible by inspection of Fig. 5. In the non-supercluster-overlapping case, a BAO peak is obvious in the 100–$110\ h^{-1}\ Mpc$ bin, but a broad weaker peak with maxima in the 70–$80\ h^{-1}\ Mpc$ and 80–$90\ h^{-1}\ Mpc$ bins suggests that the detection is ambiguous. However, we retain the method...
defined above (Section 2.4), without any modification, in order to examine these two curves, i.e. for each of the bootstrap estimates of these correlation functions, we subtract a best-fitting cubic and least-squares fit a Gaussian in order to estimate the BAO peak location. As shown below, subtracting best-fitting cubics yields clear BAO peaks in both cases.

Cubic fits for individual bootstrap correlation functions, as described in Section 2.4, are shown in Fig. 6. Clearly, the amplitude of the BAO peak after subtracting the cubic would differ significantly from that obtained from fitting a smooth function with a narrower exclusion region around the peak. Since the aim here is to measure the shift in the peak location, not the peak’s amplitude, this should not affect our results. Cubic-subtracted bootstrap correlation functions are shown in Figs 7, 8, 10, and 12, for the full sample and for the tangential LRG pairs. The BAO peak is clearly visible in all of these plots, although some of the correlation functions for individual bootstraps fail to show it clearly.

The upper panels of Figs 8 and 12, i.e. for LRG–LRG pairs overlapping superclusters, clearly show that most (Nadathur & Hotchkiss 2013) or many (Liivamägi et al. 2012) of the bootstrapped correlation function BAO peaks are centred in the 90–100 h^{-1} Mpc bin. In contrast, the lower panels of these two figures show similar behaviour to Fig. 7: the BAO peak is centred in the 100–110 h^{-1} Mpc bin. The lower panel of Fig. 10, for LRG–LRG pairs not overlapping with voids, shows a weaker compression; a minority of the bootstrap correlation functions have a BAO peak centre in the 90–100 h^{-1} Mpc bin.

Fitting Gaussians to these bootstrapped BAO peaks yields estimates of the BAO peak locations. The cumulative distribution functions (cdf’s) of these estimates are shown in Figs 9, 11, and 13. It is obvious that the pairs of cdf’s are incompatible in both Figs 9 and 13, i.e. when the supercluster-overlapping BAO peak location is compared to either the full sample BAO peak location or the complementary-pair BAO peak location. The Kolmogorov–Smirnov two-sided probabilities that the two members of a pair of cdf’s represent samples drawn from a single continuous underlying distribution are listed in Table 2. For the supercluster-overlapping comparisons (first and second columns of Table 2), identity of the distributions is rejected to very high significance (greater than 99.99 per cent).

The probabilities in Table 2 are not sufficient to show that the differences in distributions constitute shifts in the BAO peak location rather than, for example, differences in noise levels, i.e. widths rather than central tendencies. The best estimates of the shifts are listed in Table 3.

Table 3 shows that the supercluster-overlapping BAO peak location is about 6–7 h^{-1} Mpc less than that of the complementary set of LRG pairs and about 4 h^{-1} Mpc less than that of the full sample of pairs. These shifts are statistically significant at about the 2.5σ level (in terms of Gaussian intuition) for the Nadathur & Hotchkiss
Environment-dependent BAO shift

Figure 8. Cubic-subtracted two-point autocorrelation function $\xi(s) - \xi(s)$ for the bootstraps for tangential (‘bright’ sample) LRG–LRG pairs near the Nadathur & Hotchkiss (2013) superclusters (above) and for the complementary set of pairs (below).

Figure 9. Cumulative distribution function (cdf) of Gaussian fit BAO peak locations [Section 2.4; p_1 in equation (8)] for the bootstraps for tangential (‘bright’ sample) LRG–LRG pairs near the Nadathur & Hotchkiss (2013) superclusters, shown as a thick curve in both panels. Upper panel: the cdf for bootstrap BAO peak locations for the tangential (‘bright’) sample without overlap selection is shown as a thin curve; lower panel: the cdf for the complementary set of pairs (those not overlapping with superclusters) is shown as a thin curve. The lower panel corresponds to the two panels of Fig. 8.

4 DISCUSSION

Figs 7–9, 12, and 13, and Tables 2 and 3 clearly show that the supercluster-overlapping BAO peak location for tangential pairs is about 6–7 h^{-1} Mpc less than that for the non-supercluster-overlapping pairs, i.e. superclusters correspond to a compression of about 6 per cent. A weaker compression is found in comparison to the full-sample tangential pairs, i.e. without overlap selection. The best estimates of the shift in the void-overlapping case are much smaller, as expected for a void-dominated best-fitting metric, though with high uncertainties. This trend of strong relative compression of the supercluster-overlapping BAO peak location and a weak stretching in the void-overlapping case qualitatively agrees with what is expected for inhomogeneous models. Analysis of other surveys should reduce the statistical uncertainties to see if the trend continues to favour an inhomogeneous metric.

Theoretical interpretation of these results will require taking into account the typical fraction of a separation path that actually overlaps with a supercluster or void. For separations in the $70 < s/ h^{-1}$ Mpc < 130 range, the median overlap is about 70, 85, and $40 h^{-1}$ Mpc for the Nadathur & Hotchkiss (2013) superclusters, voids, and Liivamägi et al. (2012) superclusters, respectively. We present observational caveats within the FLRW (rigid comoving) interpretation of the data in Section 4.1. In Section 4.2, we propose a method of more accurate analysis by using an effective template metric rather than the ΛCDM metric for the assumed cosmological model. In Section 4.3, we discuss possible relations of this work to other well-known dark-energy-free general-relativistic approaches to cosmology. We focus on observational methods or claims of detecting metric inhomogeneity in Section 4.4. In Section 4.5, we list some observational results that reject the ΛCDM model.

4.1 Observational caveats and improvements

Could the superclusters listed by Nadathur & Hotchkiss (2013) and Liivamägi et al. (2012) constitute very rare overdensity fluctuations, so that the LRG pairs that overlap them (given our definition in Section 2.3) constitute a strongly biased subset that favours rare, highly nonlinear $100 h^{-1}$ Mpc fluctuations? Table 4 shows that on the contrary, the overlapping pair fractions are high, about 80–90 per cent. The numbers of superclusters vary by a factor of 10.
between the two groups’ analyses (Table 1), but in neither case can the compressed BAO scale be attributed to the rarity of the superclusters and associated LRG–LRG pairs.

Our result could be thought of in terms of a ‘non-random’ jackknife type analysis of the set of \(\sim 10^9 \) SDSS DR7 ‘bright’ LRG–LRG pairs. Given that the full set of \(\sim 10^9 \) pairs gives the standard BAO peak location, how easy is it to choose about 10–20 per cent of these pairs to ignore so that the BAO peak location of the remainder is reduced by about 6 \(h^{-1} \) Mpc? We know one answer (for the tangential pairs): choose either the Nadathur & Hotchkiss (2013) or Liivamägi et al. (2012) supercluster catalogue, and ignore those pairs that do not overlap these superclusters by 1 \(h^{-1} \) Mpc or more. Only a minority of pairs are excluded, and the BAO peak standard ruler is compressed by about 6 \(h^{-1} \) Mpc. Our result would be difficult to explain as a bias towards very rare fluctuations.

Could strong or weak gravitational lensing create a bias that has been ignored here? Gravitational lensing, in the sense of observations interpreted by perturbative calculations against an FLRW background, does not imply large offsets in path lengths projected to a comoving spatial slice. For example, multiple imaged galaxies have time delays ranging from a few days to a few years (e.g. table 2 of Paraficz & Hjorth 2010), i.e. radial paths should vary by subparsec scales rather than megaparsec scales. In the tangential direction, strong lensing typically plays a role on arcsecond scales, and weak lensing (shear of galaxy images) shows correlations at arcminute scales (e.g. Schneider 2005, and references therein). These are both much smaller than the degree scales that would need to affect the scale of the BAO peak in tangential directions.

Could peculiar velocity effects be relevant? We chose to use the ‘tangential’ pairs, i.e. those which lie within 45° of the sky plane, so peculiar velocity effects should be weak. Within a \(\Lambda \)CDM model, a (radial) peculiar velocity of 1000 km s\(^{-1}\) at \(z = 0.3 \) consists of a multiplicative error in \((1 + z) \) of 1.003, corresponding to about 10 \(h^{-1} \) Mpc. The ‘finger of God’ effect is unlikely to be significant, since we consider separations well above 10 \(h^{-1} \) Mpc. However, the larger scale Kaiser effect (Kaiser 1987) is of the order of magnitude to potentially be of concern. This has long been expected to have significant effects in the radial direction on redshift-space separation scales of tens of megaparsecs, in the sense of shifting power to smaller scales (e.g. Ballinger et al. 1996; Matsubara & Suto 1996). Recent models and estimates (e.g. Song et al. 2014, and references therein) show considerable differences between the overall shapes of the radial and tangential correlation functions, qualitatively consistent with what is shown in the figures above. Jeong et al. (2014) estimate that the BAO peak location estimated directly from \(\xi \), without removal of the smooth component of the function, can yield a difference between the exactly radial and tangential directions of about 3 \(h^{-1} \) Mpc. However, they also estimate (fig. 6 right, Jeong et al. 2014) that when the smooth component is removed (by two
methods different to our choice of subtracting a best-fitting cubic), the difference is reduced to about 0.2–1.0 h^{-1} Mpc.

In our analysis, we do not compare exactly radial pairs to exactly tangential pairs; we compare ‘tangential’ samples to each other, defined by a 45° split. Nevertheless, let us consider an extreme case in order to estimate an upper bound to this effect. If one of our ‘tangential’ samples would consist of exactly line-of-sight pairs and the other uniquely of 45° pairs, then the Jeong et al. (2014) analysis for smooth-component-removed BAO peak locations would suggest a difference below their 0.2–1.0 h^{-1} Mpc estimate for exactly tangential versus radial pairs. Our BAO peak location estimation method, which is preceded by the removal of a best-fitting cubic, would be likely to give a similar result.

More realistically, any two subsamples that we compare in this work consist of pairs whose angles with respect to the sky plane are distributed between 0° and 45°, not Dirac-delta distributed at one or the other of these. However, the distributions are unlikely to be exactly identical. It is likely that, at least due to the role of Poisson noise, either the median angle to the line of sight of the ‘tangential’ pairs that overlap superclusters is slightly greater than the median angle of pairs that do not overlap superclusters, or vice-versa. This angular difference, or the overall distributions of angles with respect to the sky plane, should give a small distortion in our result, but by much less than the 0.2–1.0 h^{-1} Mpc indicated above. Correcting for this would not remove the shift that we have detected for the Nadathur & Hotchkiss (2013) and Liivamägi et al. (2012) catalogues, as given in Table 3, but would be useful to include in future work in order to obtain more results at the submegaparsec level.

The present results should be obtainable at higher statistical significance in existing catalogues (e.g. BOSS DR11 LOWZ and CMASS) and future data sets such as those from SDSS-III/BOSS DR12, SDSS-IV/eBOSS, LSST, EUCLID, VISTA/4MOST (de Jong

Table 2. Kolmogorov–Smirnov probabilities of identical cumulative distribution functions.

Catalogue	p_{0}^{\perp}, r_{0}^{\perp}	$p_{\perp}^{\text{non-sc}}$, $r_{\perp}^{\text{non-sc}}$	p_{\perp}^{sc}, r_{\perp}^{sc}	$p_{\perp}^{\text{non-void}}$, $r_{\perp}^{\text{non-void}}$	p_{\perp}^{void}, r_{\perp}^{void}
N&Ha	3×10^{-10}	5×10^{-11}	0.05	0.3c	
LTSd	5×10^{-5}	3×10^{-5}			

Notes.

aNadathur & Hotchkiss (2013).

bColumns 1, 2 correspond to Fig. 9.

cColumns 3, 4 correspond to Fig. 11.

dLiivamägi et al. (2012).

eColumns 1, 2 correspond to Fig. 13.
Table 3. Compression\(^a\) of BAO peak location in \(h^{-1}\) Mpc.

Catalogue	\(r_0^\parallel - r_{\perp}^\parallel\)	\(r_0^\perp - r_{\parallel}^\perp\)	\(r_{\parallel}^\text{non-sc} - r_{\parallel}^\text{sc}\)	\(r_0^\parallel - r_{\text{void}}^\parallel\)	\(r_{\text{non-sc}}^\parallel - r_{\text{void}}^\parallel\)
N&H\(^b\)	4.3 ± 1.6	6.6 ± 2.8\(^c\)	-0.2 ± 4.0	-1.1 ± 5.4\(^d\)	\n
Notes. \(^a\)A positive (negative) value in columns 1 or 3 indicates compression (stretching) compared to the full sample BAO peak location. A positive (negative) value in columns 2 (4) indicates compression (stretching) of the BAO peak location for overdensity-selected (underdensity-selected) pairs compared to the complementary set of pairs.

\(^b\)Nadathur & Hotchkiss (2013).

\(^c\)Columns 1, 2: \(N_0^R/N_D = 32\), \(N_{\text{boot}} = 32\).

\(^d\)Columns 3, 4: \(N_0^R/N_D = 32\), \(N_{\text{boot}} = 32\).

\(^e\)Columns 3, 4: the Gaussian BAO peak fit failed for one of the 32 bootstraps and was thus ignored in the estimate of \(r_{\text{void}}^\parallel\).

\(^f\)Livi\c{a}m\'agi et al. (2012).

\(^g\)Columns 1, 2: \(N_0^R/N_D = 16\), \(N_{\text{boot}} = 16\).

\(^h\)Columns 1, 2: Gaussian BAO peak fit fails for two of the 16 bootstraps and were thus ignored in the estimate of \(r_{\text{void}}^\parallel\) for the Livi\c{a}m\'agi et al. (2012) superclusters.

Table 4. Fraction of LRG–LRG pairs that overlap with superclusters or voids\(^i\).

Catalogue	\(f_{\text{DD}}\)	\(f_{\text{LR}}\)	\(f_{\text{RR}}\)
N&H superclusters\(^i\)	0.79 ± 0.24	0.76 ± 0.23	0.80 ± 0.02
N&H voids\(^i\)	0.82 ± 0.19	0.60 ± 0.19	0.83 ± 0.07
LTS superclusters\(^i\)	0.95 ± 0.01	0.72 ± 0.02	0.91 ± 0.01

Notes. \(^i\)Median and 1.4826 times the median absolute deviation (Hampel 1974) of the overlapping fraction for the bootstrap realizations, for the three types of pairs.

\(^j\)This table is calculated for \(N_0^R/N_D = 1\) and \(N_{\text{boot}} = 32, 32, 16\), respectively, for the three cases.

\(^k\)Nadathur & Hotchkiss (2013).

\(^l\)Livi\c{a}m\'agi et al. (2012).

et al. 2012) and DESI (Levi et al. 2013). At lower redshifts than those of SDSS DR7 LRGs (\(z \sim 0.3\)), the Universe is more inhomogeneous, but there is very little volume to sample well at the 100 \(h^{-1}\) Mpc scale. At higher redshifts \(z < 1\), the amount of volume to sample is higher, but the inhomogeneity (virialization fraction) is lower, so the effect should be weaker. Despite these difficulties, the redshift evolution of the BAO peak location shift for superclusters, i.e. the \(r_{\text{non-sc}}^\parallel - r_{\parallel}^\text{sc}\) versus \(z\) relation, should constitute a new statistic that would need to be explained quantitatively in scalar averaging, dark-energy-free models or in \(\Lambda\)CDM or other FLRW models, e.g. with inhomogeneous dark energy. As observational accuracy improves and theoretical predictions are made, this will provide a geometrical test to distinguish the two.

4.2 Improved analysis assuming scalar averaging

The \(\Lambda\)CDM best-fitting metric interpretation of the data, which we have used above, uses a distance–redshift relation based on the assumption that the expansion rate of the averaged 3-spatial slices exactly equals that of homogeneous, unaveraged 3-spatial slices. This assumption, of the FLRW models in general, is that the implicitly averaged constant-curvature time slices happen, fortuitously, to evolve in the way that idealized exactly homogeneous slices would evolve. A more realistic interpretation would be possible using a template metric (Larena et al. 2009; Roukema et al. 2013). This would not only help test the validity of the template metrics that have so far been proposed, but should also yield more accurate estimates of the BAO peak location shift.

Theoretical work in inhomogeneous cosmology in general should also be useful not only in making predictions and interpretations, but also in improving the observational analysis. For example, we have assumed that the projection of photon paths from the past time cone to the comoving spatial section does not significantly affect the expected compression or stretching of comoving separations. Since we focus on tangential separations, this seems to be a reasonable assumption, but ray tracing in scalar averaging models or Swiss cheese models (e.g. Futamase & Sasaki 1989; Marra et al. 2007; Szybka 2011; Fleury, Dupuy & Uzan 2013a,b) should be checked, especially for extending the method used here to radial pairs. Changes to the BAO peak location in the radial direction are likely to be more complicated to extract than for tangential pairs, but might contain more useful cosmological information.

4.3 Other inhomogeneous approaches

Other dark-energy-free general-relativistic approaches to observational cosmology include Stephani models (Dabrowski & Hendry 1998) and Lemaitre–Tolman–Bondi (LTB) solutions. The latter are often applied as a local void model (e.g. Mustapha, Hallaby & Ellis 1997; Céleriér 2000; Tomita 2001; Alnes, Amarzguioui & Grøn 2006; Enqvist 2008; García-Bellido & Haugbølle 2008; Alexander et al. 2009; Biswas, Notari & Valkenburg 2010; Hunt & Sarkar 2010; Bolejko, Céleriér & Krasiński 2011), sometimes infer a local hump from observational data (Kolb & Lamb 2009; Céleriér, Bolejko & Krasiński 2010), and are widely used in ‘Swiss cheese’ models (e.g. Biswas & Notari 2008; Bolejko & Céleriér 2010; Lavinto, Rasanan & Szybka 2013, and references therein). LTB models are also used to argue that within homogeneous (FLRW) cosmology for non-evolving dark energy, i.e. a cosmological constant model, the value of the cosmological constant will be mis-estimated by about a percent if non-perturbative calculations are not taken into account (Enea Romano & Chen 2011; Enea Romano et al. 2014). Independently of the kinematic Sunyaev–Zel’dovich effect arguments against the local void model (Moss, Zibin & Scott 2011; Zhang & Stebbins 2011; Zibin & Moss 2011), a local void (or hump) should not have a strong effect on the BAO peak location test introduced here, since our test is differential, comparing different subsamples of a single survey in a given volume of space. However, if the whole survey (e.g. SDSS DR7 LRGs) were contained in a 1 \(h^{-1}\) Gpc void centred not too far from the Galaxy, then the large-scale gradient in underdensity could probably introduce a small bias, in a similar way in which it would affect estimates of the ‘full’ BAO peak location.

Swiss cheese models typically use an FLRW ‘background’ model for the ‘cheese’ and LTB models for the ‘holes’. For a given Swiss cheese model, it should be possible to study the differential evolution of pairs of tracer galaxies that overlap cheese versus the complementary set of pairs, or that overlap voids versus the complement. Since most tracers should lie in the ‘cheese’, their pairs would already be comoving by definition of the model. It should be possible to calculate the pairs’ comoving separations by integration of the (analytically exact) metric of the model. A differential study of the complementary sets of pairs would probably provide the simplest way to model the expected shift in the BAO peak location in this class of inhomogeneous models.
4.4 Observational methods of detecting metric inhomogeneity and claims of detections

Observational methods of distinguishing the literally homogeneous FLRW model from statistically homogeneous relativistic models have mostly focused on the distance-modulus–redshift relation (to fit Type Ia supernova observations) or estimates of $H(z)$ versus z, i.e. the expansion-rate–redshift relation (e.g. Smale & Wilshire 2011; Boehm & Rasanen 2013). Perturbed FLRW strategies for detecting inhomogeneity also focus on the expansion rate (e.g. Räsänen 2012), and especially its variance (Ben-Dayan et al. 2014). (Redshift drift is a test that distinguishes spherically symmetric inhomogeneous models, the LTB and Stephani models, from each other and from the ΛCDM model, e.g. Balcerzak & Dabrowski 2013.)

While several dark-energy-free inhomogeneous models claim to have fit several sets of extragalactic observations (Section 4.3; see also Duley et al. 2013), some focus on tests that are qualitatively new. Fleury et al. (2013a) argue that a single FLRW metric is relativistically inaccurate for modelling both wide-angle observations [cosmic microwave background (CMB), BAO] and narrow-angle observations (Type Ia supernovae), and appear to resolve conflicting estimates of σ_8, using a Swiss cheese model with FLRW cheese. On scales up to tens of megaparsecs from the Galaxy, Wiltshire et al. (2013) find that galaxy peculiar velocity flow analyses imply a relation between the Local Group rest frame and what is normally considered to be the CMB comoving rest frame that is different from the FLRW expectation. Saulder, Mieske & Zeilinger (2012) propose to analyse the dependence of the expansion rate (Hubble parameter) on line-of-sight environment, i.e. mostly through dense structures versus mostly through voids and present preliminary results.

4.5 Observational methods that reject the ΛCDM model

The method presented here is not the only one that potentially or already rejects the ΛCDM model. While many observations agree with the latter, several recent observational results (other than this work) reject it. An incomplete list includes the following: Flender, Hotchkiss & Nadathur (2013) find that what is generally accepted as a detection of the integrated Sachs–Wolfe effect in the CMB is stronger than the ΛCDM expectation at the 3σ level. Wiegand, Buchert & Ostermann (2014) find that Minkowski functional analysis (which implicitly includes all orders of n-point autocorrelation functions) of the SDSS DR7 significantly rejects the ΛCDM model on scales of several tens of megaparsecs in volume-limited samples of 500 h^{-1} Mpc (3σ) and 700 h^{-1} Mpc (2σ). Earlier Minkowski functional analysis on smaller and sparser catalogues, using the same or complementary methods, had found that the fluctuations were compatible with ΛCDM mock catalogues (e.g. Kerscher et al. 2001; Hikage et al. 2003). Chuang et al. (fig. 6, 2013) find that the CMass and WiggleZ (Blake et al. 2012) normalized growth rate estimates contradict the Planck Surveyor CMB ΛCDM model at about 2σ significance. By comparing Canada France Hawaii Telescope Lensing Survey (CFHTLenS) weak lensing analysis with a parametrization of the ΛCDM version of the FLRW model using Planck and Wilkinson Microwave Anisotropy Probe data, MacCrann et al. (2014) reject the model at the 90–96 per cent level (but at only the 64 per cent level if a sterile neutrino is included). Battey, Charnock & Moss (2014) reject the ΛCDM model at the 5σ level based on contradictions between large-scale and small-scale power, unless the sum of neutrino masses is increased above that of the Planck base model of 0.06 eV (section 6.3.1, Ade et al. 2013). The BAO peak (without any shift measurement) detected in the Lyman α forest in front of about 10^5 quasars at $z \sim 3$ was estimated to reject the ΛCDM model at the 2.5σ level (Delubac et al. 2014). A significant contradiction exists between Galactic metal-poor star estimates of the pre-Galactic 7Li abundance and the abundance inferred from either primordial big bang nucleosynthesis or the CMB interpreted according to an FLRW model (Cyburt, Fields & Olive 2008), unless new particles such as decaying gravitinos are assumed (e.g. Cyburt et al. 2013).

5 CONCLUSION

We have introduced supercluster-overlap-dependent BAO peak location estimation as a new observational method of distinguishing the FLRW models (including the ΛCDM model), which assume rigidity of comoving space, from scalar averaging models, which allow comoving space to be curved and compressed or stretched by structure formation. The initial results from the SDSS DR7 are promising, showing that by choosing the sharpest signal, that of ‘tangential’ LRG pairs, a detection of compression in the BAO peak location for supercluster-overlapping pairs versus complementary pairs is significant at about the 2.5σ level for two different supercluster catalogues: 6.6 \pm 2.8 h^{-1} Mpc for Nadathur & Hotchkiss (2013) superclusters and 6.3 \pm 2.6 h^{-1} Mpc for Liivamiagi et al. (2012) superclusters. Compression relative to the full (tangential) sample is, as expected, weaker: 4.3 \pm 1.6 h^{-1} Mpc and 3.7 \pm 2.9 h^{-1} Mpc, respectively. Stretching in the void-overlapping case is numerically consistent with what is expected (negative compression in columns 3 and 4 of Table 3, i.e. stretching), but statistically insignificant. The differences in the bootstrap estimates of the BAO peak locations for supercluster-overlapping pairs versus complementary pairs are strikingly obvious in Figs 8 and 9 (lower panel) for the Nadathur & Hotchkiss (2013) superclusters, and in Figs 12 and 13 (lower panel) for the Liivamiagi et al. (2012) superclusters. The corresponding Kolmogorov–Smirnov formal estimates of incompatibility in the edfs (Table 2) reflect the strength of the differences visible by inspection in these figures.

Qualitatively, these results are consistent with what is expected from scalar averaging and inconsistent with what is expected in the rigid comoving space models, including the ΛCDM model. Theoretical work on the BAO peak location shift in both approaches, together with observational development of the test, may potentially challenge the ΛCDM model and constrain backreaction models. For example, application of our test to ΛCDM N-body simulations would provide a check in terms of a widely used tool of FLRW cosmology. This test should be compared to the expected ΛCDM low-redshift BAO peak location shift of less than 0.3 per cent (equations 30 and 31, Sherwin & Zaldarriaga 2012; see also McCullagh et al. 2013; and references therein; see also e.g. Slepian & Eisenstein 2015 for baryon–dark-matter relative-velocity corrections), which is much smaller than the environment-dependent shift of 6 per cent which is found here.

ACKNOWLEDGEMENTS

Authors would like to thanks Tomasz Kazimierczak, Hirokazu Fujii, Stéphane Colombi, Alexander Wiegand, Bartosz Lew, Martin Kerscher, István Szapudi, Pierre Astier, Pierre Fleury, Zachary Slepian and an anonymous referee for useful comments related to this work. Part of this work consists of research conducted within the scope of the HECCOS International Associated Laboratory, supported in part by the Polish NCN grant DEC-2013/08/M/ST9/00664. BFR thanks the Centre de Recherche
Astrophysique de Lyon for a warm welcome and scientifically productive hospitality. A part of this project has made use of computations made under grant 197 of the Poznań Supercomputing and Networking Center (PSNC). Some of JJO’s contributions to this work were supported by the Polish Ministry of Science and Higher Education under ‘Mobilność Plus II edycja’. A part of this work was conducted within the ‘Lyon Institute of Origins’ under grant ANR-10-LABX-66. Use was made of the Centre de Données astronomiques de Strasbourg (http://cdsads.u-strasbg.fr), the GNU PLOTUTILS graphics package, and the GNU OCTAVE command-line, high-level numerical computation software (http://www.gnu.org/software/octave). Part of this project was performed under grant 2014/13/B/ST9/00845 of the National Science Centre, Poland.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the European Southern Observatory, and the University of Washington.

The SDSS is made of the Centre de Données astronomiques de Strasbourg (http://cdsads.u-strasbg.fr), the GNU PLOTUTILS graphics package, and the GNU OCTAVE command-line, high-level numerical computation software (http://www.gnu.org/software/octave). Part of this project was performed under grant 2014/13/B/ST9/00845 of the National Science Centre, Poland.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the European Southern Observatory, and the University of Washington.

REFERENCES

Ade P. A. R. et al., 2013, A&A, 571, A16
Alexander S., Biswas T., Notari A., Vaid D., 2009, J. Cosmol. Astropart. Phys., 9, 25
Alnes H., Amarzguioui M., Gron, Ø.2006, Phys. Rev. D, 73, 083519
Balcerzak A., Dabrowski M. P., 2013, Phys. Rev. D, 87, 063506
Ballinger W. E., Peacock J. A., Heavens A. F., 1996, MNRAS, 282, 877
Barrow J. D., Blaas T. S., Sonoda D. H., 1984, MNRAS, 210, 19
Battye R. A., Charnock T., Moss A., 2014, preprint (arXiv:1409.2769)
Buchert T., Larena J., Alimi J.-M., 2006, Class. Quantum Gravity, 23, 6379
Buchert T., Nayet C., Wiegand A., 2013, Phys. Rev. D, 87, 123503
Céleriér M., Bolejko K., Krasinski A., 2010, A&A, 518, A21
Cyburt R. H., Fields B. D., Olive K. A., 2008, J. Cosmol. Astropart. Phys., 11, 12
Cyburt R. H. et al., 2013, J. Cosmol. Astropart. Phys., 5, 14
Dabrowski M. P., Hendry M. A., 1998, ApJ, 498, 67
de Jong R. S. et al., 2012, Proc. SPIE Conf. Ser., Vol. 8446 Ground-based and Airborne Instrumentation for Astronomy IV, SPIE, Bellingham, p. 84460T
de Lapparent V., Geller M. J., Huchra J. P., 1986, ApJ, 302, L1
Delucab T. et al., 2014, A&A, 574, A59
Duley J. A. G., Nazer M. A., Wiltshire D. L., 2013, Class. Quantum Gravity, 30, 175006
Efron B., 1979, Ann. Statist., 7, 1
Einasto M., Lietzen H., Tempel E., Grammann M., Liivamagi L. J., Einasto J., 2014, A&A, 562, A87
Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Eisenstein D. J. et al., 2001, AJ, 122, 2267
Eisenstein D. J. et al., 2005, ApJ, 633, 560
Ellis G. F. R., Stoeger W., 1987, Class. Quantum Gravity, 4, 1697
Enea Romano A., Chen P., 2011, J. Cosmol. Astropart. Phys., 10, 16
Enea Romano A., Sanes Negrete S., Sasaki M., Starobinsky A. A., 2014, Europhys. Lett., 106, 69002
Enqvist K., 2008, Gen. Relativ. Gravit., 40, 451
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Flender S., Hotchkiss S., Nadathur S., 2013, J. Cosmol. Astropart. Phys., 2, 13
Fleury P., Dupuy H., Uzan J.-P., 2013a, Phys. Rev. Lett., 111, 091302
Fleury P., Dupuy H., Uzan J.-P., 2013b, Phys. Rev. D, 87, 123526
Futamase T., Sasaki M., 1989, Phys. Rev. D, 40, 2502
Garcia-Bellido J., Haugbølle T., 2008, J. Cosmol. Astropart. Phys., 4, 3
Hampel F. R., 1974, J. Am. Stat. Assoc., 69, 383
Hikage C. et al., 2003, PASJ, 55, 911
Hosoya A., Buchert T., Morita M., 2004, Phys. Rev. Lett., 92, 141302
Hunt P., Sarkar S., 2010, MNRAS, 401, 547
Jeong D., Dai L., Kamionkowski M., Szalay A. S., 2014, preprint (arXiv:1408.4648)
Kaiser N., 1987, MNRAS, 227, 1
Kasai M., 1995, Phys. Rev. D, 52, 5605
Kazin E. A. et al., 2010, ApJ, 710, 1444
Kerscher M., Szapudi I., Szalay A. S., 2000, ApJ, 535, L13
Kerscher M., Mecke K., Schmalzing J., Benitez C., Buchert T., Wagner H., 2001, A&A, 373, 1
Kolb E. W., 2011, Class. Quantum Gravity, 28, 164009
Kolb E. W., Lamb C. R., 2009, preprint (arXiv:0911.3852)
Kolb E. W., Matarrese S., Notari A., Riotto A., 2005, Phys. Rev. D, 71, 023524
Kolb E. W., Matarrese S., Riotto A., 2006, New J. Phys., 8, 322
Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Larena J., Alimi J.-M., Buchert T., Kunz M., Corasaniti P.-S., 2009, Phys. Rev. D, 79, 083011
Lavinto M., Rasanen S., Szybka S. J., 2013, J. Cosmol. Astropart. Phys., 12, 051
Levenberg K., 1944, Q. Appl. Math., 2, 164
Levi M. et al., 2013, preprint (arXiv:1308.0847)
Liivamägi L. J., Tempel E., Saar E., 2012, A&A, 539, A80
MacCrann N., Zuntz J., Bridle S., Jain B., Becker M. R., 2014, preprint (arXiv:1408.4742)
Marquardt D., 1963, J. Soc. Indus. App. Math., 11, 431
Marra V., Kolb E. W., Matarrese S., Riotto A., 2007, Phys. Rev. D, 76, 123004
Matsubara T., Suto Y., 1996, ApJ, 470, L1
McCullagh N., Neyrinck M. C., Szapudi I., Szalay A. S., 2013, ApJ, 763, L14
Moore A. W. et al., 2001, in Banday A. J., Zaroubi S., Bartelmann M., eds, Mining the Sky. Springer-Verlag, Berlin, p. 71
Moss A., Zibin J. P., Scott D., 2011, Phys. Rev. D, 83, 103515
Mustapha N., Hellaby C., Ellis G. F. R., 1997, MNRAS, 292, 817
Nadathur S., Hotchkiss S., 2013, MNRAS, 440, 1248
Ostriker J. P., Steinhardt P. J., 1995, preprint (arXiv:astro-ph/9505066)
Paraficz D., Hjorth J., 2010, ApJ, 712, 1378
Räsänen S., 2006a, Int. J. Mod. Phys. D, 15, 2141
Räsänen S., 2006b, Class. Quantum Gravity, 23, 1823
Räsänen S., 2012, Phys. Rev. D, 85, 083528
Roukema B. F., 2013, Int. J. Mod. Phys. D, 22, 134018
Roukema B. F., Peterson B. A., 1994, A&A, 285, 361
Roukema B. F., Ostrowski J. J., Buchert T., 2013, J. Cosmol. Astropart. Phys., 10, 043
Saulder C., Mieske S., Zeilinger W. W., 2012, Observational aspects of an inhomogeneous cosmology, available at: http://pos.sissa.it/contribution?id=PoS%28DSU%202012%29018
Schneider P., 2005, in Meylan G., Jetzer P., North P., eds, Lecture Notes of the 33rd Saas-Fee Advanced Course, Gravitational Lensing: Strong, Weak & Micro. Springer-Verlag, Berlin, p. 273
Sherwin B. D., Zaldarriaga M., 2012, Phys. Rev. D, 85, 103523
Slepian Z., Eisenstein D., 2015, preprint (arXiv:1411.4052)
Smale P. R., Wiltshire D. L., 2011, MNRAS, 413, 367
Snethlage M., 1999, Metrika, 49, 245
Song Y.-S., Sabiu C. G., Okumura T., Oh M., Linder E. V., 2014, J. Cosmol. Astropart. Phys., 12, 005
Spergel D. N. et al., 2003, ApJS, 148, 175
Szybka S. J., 2011, Phys. Rev. D, 84, 044011
Tomita K., 2001, MNRAS, 326, 287
Wiegand A., Buchert T., Ostermann M., 2014, MNRAS, 443, 241
Wiltshire D. L., 2007a, New Journal of Physics, 9, 377
Wiltshire D. L., 2007b, Phys. Rev. Lett., 99, 251101
Wiltshire D. L., 2009, Phys. Rev. D, 80, 123512
Wiltshire D. L., Smale P. R., Mattsson T., Watkins R., 2013, Phys. Rev. D, 88, 083529
Zhang P., Stebbins A., 2011, Phys. Rev. Lett., 107, 041301
Zibin J. P., Moss A., 2011, Class. Quantum Gravity, 28, 164005

This paper has been typeset from a TeX/LaTeX file prepared by the author.