Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function

Macarena Massip-Copiz | Mariángeles Clauzure | Ángel G. Valdivieso | Tomás A. Santa-Coloma

The Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), The National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina

Correspondence
Tomás A. Santa-Coloma, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina.
Email: tsantacoloma@gmail.com; tomas_santacoloma@uca.edu.ar

Funding information
Agencia Nacional de Promoción Científica y Tecnológica, Grant number: PICT 2012-1278; Consejo Nacional de Investigaciones Científicas y Técnicas, Grant number: PIP 1122010100685 2012-2014; Pontificia Universidad Católica Argentina (UCA)

Abstract
CFTR is a cAMP-regulated chloride channel, whose mutations produce cystic fibrosis. The impairment of CFTR activity increases the intracellular Cl⁻ concentration, which in turn produces an increased interleukin-1β (IL-1β) secretion. The secreted IL-1β then induces an autocrine positive feedback loop, further stimulating IL-1β priming and secretion. Since IL-1β can transactivate the epidermal growth factor receptor (EGFR), we study here the levels of expression for different EGFR ligands in Caco-2/pRS26 cells (expressing shRNA against CFTR resulting in a reduced CFTR expression and activity). The epiregulin (EREG), amphiregulin (AREG), and heparin binding EGF like growth factor (HBEGF) mRNAs, were found overexpressed in Caco-2/pRS26 cells. The EREG mRNA had the highest differential expression and was further characterized. In agreement with its mRNA levels, Western blots (WB) showed increased EREG levels in CFTR-impaired cells. In addition, EREG mRNA and protein levels were stimulated by incubation with exogenous IL-1β and inhibited by the Interleukin 1 receptor type I (IL1R1) antagonist IL1RN, suggesting that the overexpression of EREG is a consequence of the autocrine IL-1β loop previously described for these cells. In addition, the JNK inhibitor SP600125, and the EGFR inhibitors AG1478 and PD168393, also had an inhibitory effect on EREG expression, suggesting that EGFR, activated in Caco-2/pRS26 cells, is involved in the observed EREG upregulation. In conclusion, in Caco-2 CFTR-shRNA cells, the EGFR ligand EREG is overexpressed due to an active IL-1β autocrine loop that indirectly activates EGFR, constituting new signaling effectors for the CFTR signaling pathway, downstream of CFTR, Cl⁻, and IL-1β.

KEYWORDS
CFTR, cystic-fibrosis, epiregulin/EREG, IL-1β

1 | INTRODUCTION

Epiregulin (EREG) is a member of the epidermal growth factor (EGF) family. It was first purified from conditioned medium of the mouse fibroblast tumor-derived cell line NIH3T3/T7 as a 46 kDa protein. EREG is initially expressed as an extracellular transmembrane protein, which is cleaved by disintegrins and metallocproteinases (ADAMs) enzymes to give its mature soluble form. Although EREG was found to be upregulated in many types of cancer, such as bladder,
gastric, colorectal, breast, lung, head and neck, and liver, it also plays an important role in inflammation, wound-healing, and normal physiology. Primarily, it participates in proliferation, migration, and differentiation processes. Interestingly, it was found that EREG contributes to the pathogenesis of rheumatoid arthritis, a disease with an important inflammatory component.

On the other hand, cystic fibrosis (CF) is a rare autosomal recessive disease, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Among other symptoms, it is characterized by a persistent inflammatory condition and chronic bacterial lung infections, leading in the long term to a severe and lethal lung malfunction. Despite the enormous effort done in the last 25 years, the exact mechanism by which the CFTR induces the complex CF phenotype is largely unknown. After the CFTR was cloned, most studies focused in the non-genomic effects of CFTR. Due to the complexity of the CF phenotype, we speculated at that time that such phenotype might be the result of a complex net of genes modulated somehow by the CFTR activity. Thus, using differential display, several CFTR-dependent genes were found. Among them c-Src, responsible for the overexpression of MUC1, and the mitochondrial proteins CISD1 and MTND4. Almost simultaneously, other investigators also found CFTR-dependent genes by using microarrays. Therefore, the hypothesis of the existence of CFTR-dependent genes was well-supported. On the other hand, since MTND4 was a key factor for the activity of the mitochondrial Complex I (mCx-I), and this protein was found reduced in CF cells, we then measured the activity of this complex. As expected, its activity was found reduced in cells with impaired CFTR activity (cells with CFTR activity diminished by means of CFTR mutations, CFTR inhibitors, or shRNA). Noteworthy, Shapiro et al also found a reduction in the mCx-I activity and other mitochondrial functions, postulating the hypothesis that the CF gene might encode a mitochondrial protein. However, his mitochondrial hypothesis was disregarded when the CFTR was cloned, since it was found to be a chloride channel and not a mitochondrial protein. Nevertheless, with the reduction found later in the mCx-I activity, it became evident that Burt Shapiro was right in the sense that CF implicated in some degree a mitochondrial failure, although indirectly, through the CFTR channel, as it was previously discussed.

Now the question is how the CFTR channel induces the signals that modulate the CFTR-dependent genes. Previous results from our laboratory pointed-out c-Src as the first element in the CFTR signaling pathway, linking the reduction of the CFTR activity with MUC1 overexpression. Thus, c-Src was the first effector found for the CFTR signaling pathway. In addition, IL-1β was able to regulate the expression of CFTR, modulating the activity of NF-κB. Later, we found that an IL-1β autocrine loop was responsible for the reduction of the mCx-I activity and the overproduction of reactive oxygen species (ROS) in cells with impaired CFTR activity. And recently, IL-1β was located upstream of c-Src in the CFTR signaling pathway. Also, the existence of several Cl−-dependent genes was reported, and it was demonstrated that Cl− modulates the expression of IL-1β, acting as a second messenger for CFTR. This last result was central, since it defines the first element in the CFTR signaling pathway: the anion Cl− (obvious but it was not previously demonstrated). These results also implied that Cl−, depending on the intracellular concentration, may act as a pro-inflammatory factor, inducing the secretion of IL-1β (maximal secretion at 75 mM Cl−), which in turn starts the autocrine positive feedback loop.

Now, since the IL-1β could transactivate the epidermal growth factor receptor (EGFR) in other model system, we hypothesized that CF cells, having increased secretion of IL-1β, might up-regulate the expression of EGFR ligands. The results obtained here, using Caco-2/pRS26 cells (cloned from Caco-2 cells stably transfected with a CFTR-shRNA), showed increased mRNA expression of the EGFR ligands epiregulin (EREG), amphiregulin (AREG) and heparin binding EGF like growth factor (HBEGF), having EREG maximal differential expression. In addition, externally added IL-1β increased EREG expression in Caco-2/pRSctrl cells to values comparable to those of Caco-2/pRS26 cells (cells with impaired CFTR activity). The increased EREG levels observed in Caco-2/pRS26 cells were significantly reduced by incubation with the interleukin 1 receptor antagonist (IL1RN), suggesting that the IL-1β autocrine loop previously described in these cells was modulating the EREG overexpression. In addition, the EGFR was activated in Caco-2/pRS26 cells and EGFR inhibitors reduced the EREG overexpression, suggesting that the EREG overexpression is modulated by the EGFR activation (independent of ligand, since the ADAMs inhibitor TAPI-2 had no effects). The JNK inhibitor SP600125 also reduced the EREG upregulation. Therefore, the impairment of the CFTR activity induces IL-1β expression, which in turn indirectly stimulates EREG expression, at least partially through EGFR and JNK activation.

2 MATERIALS AND METHODS

2.1 Reagents

Dimethyl sulfoxide (DMSO, culture grade), luminol, p-coumaric acid, (2)-isoproterenol hydrochloride, protease inhibitor cocktail (Cat. No. P2714), and the interleukin 1 receptor antagonist IL1RN were purchased from Sigma–Aldrich (St. Louis, MO). Nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) were from Promega (Madison, WI), and Coomassie Brilliant Blue
were cultured adding 2 µg/mL puromycin to the culture medium for cells expansion, and without puromycin during the 24 h period, in serum-free media. The experiments were performed in the absence of serum (for a period of 24-48 h) to avoid the possible effects of serum components that might be present in excess in the fetal bovine serum compared to the human serum accessible to epithelial cells in the intact human tissue (growth factors, etc). The relevance of these effects was pointed out by Ye and Lotan and were also discussed elsewhere.

2.3 | Protein extraction

Cells were incubated as above indicated, washed twice with cold PBS, scraped with cold extraction buffer (10 mM Tris pH 7.4, 100 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, 10% glycerol) containing the protease inhibitor cocktail P2714 (5 mM of cocktail/20 g of cell extract) plus phosphatase inhibitors (2 mM Na3VO4, 1 mM NaF, and 10 mM Na2PO4), and centrifuged at 14 000g for 20 min at 4°C. The supernatant was stored at −80°C until use. The protein concentration was measured by using the method of Lowry et al.

2.4 | Western blots

Western blots were performed to quantify EREG, p-JNK and actin, as previously described for c-Src and p-P38. Briefly, cytosolic extracts (30-50 µg of proteins) were separated on a denaturing SDS-PAGE (11% acrylamide/ bis-acrylamide) and transferred to nitrocellulose membranes using a transfer buffer containing 20% methanol (39 mM glycine, 48 mM Tris-base, 0.037% SDS, pH 8.3) for 2 h at 100 V (constant voltage). The membranes were blocked with 5% BSA 1 h in TBST buffer (TBS pH 7 plus Tween-20 0.1% v/v) and incubated with an antibody raised against EREG (from R&D Systems, dilution 1:1000 in TBST buffer) or against p-JNK (from Santa Cruz Biotechnology Inc, dilution 1:500 in TBST buffer). The membranes were then washed three times with TBST buffer, incubated with the secondary antibody and developed. Results were visualized by using an ImageQuant LAS 4000 system (GE Healthcare Life Sciences, Piscataway, NJ). Finally, as internal control, the membranes were incubated with a polyclonal anti-actin antibody (Sigma–Aldrich Cat# A2066 RRID:AB_476693) was from Sigma–Aldrich, goat anti-epiregulin antibody (polyclonal, R and D Systems Cat# AF1195 RRID: AB_354661) was from R&D Systems Inc. (Minneapolis, MN), mouse anti-p-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10 mAb, IgG1, New England Biolabs Cat# 9106) and rabbit anti p-Akt (Thr308) (polyclonal, New England Biolabs Cat# 9275) were from New England Biolabs (Ipswich, MA), rabbit p-EGFR (Tyr1068) (polyclonal, Cell Signaling Technology Cat#2234 RRID:AB_331701) and mouse anti-Akt (pan) (40D4 mAb, IgG1, Cell Signaling Technology Cat# 2920, RRID:AB_1147620) were from Cell Signaling Technology (Danvers, MA) and mouse anti-EGFR (clone 13, mAb, IgG1, BD Biosciences Cat# 610016, RRID:AB_397435) was from BD Biosciences (San José, CA). The CFTR inhibitors AG1478 and PD168393, and the ADAMS inhibitors TAPI-2, were from MCE (MedChem Express, Monmouth Junction, NJ).

2.2 | Cell cultures

Caco-2 cells (ATCC Cat# HTB-37, RRID:CVCL_0025; human colon carcinoma epithelial cells) expressing wt-CFTR were previously selected and cloned after transfections with short hairpin RNA interference (shRNA) directed against CFTR and a control plasmid. These cells were cultured adding 2 µg/mL puromycin to the culture medium for cells expansion, and without puromycin during the experiments. All cells were cultured in DMEM/F12 (Life Technologies, GIBCO BRL products, Rockville, MD) supplemented with 5% FBS (Internegocios S.A., Mercedes, Buenos Aires, Argentina), 100 U/mL penicillin, 100 µg/mL streptomycin (Life Technologies, GIBCO BRL products). Cells were seeded at a density of 50 000 cells/cm² in 96-well dishes (~20 cm², CellStar dishes, Greiner Bio-One) and cultured for 24 h in 3 mL (150 µL/cm²) DMEM-F12 plus 5% FBS, at 37°C in a humidified air atmosphere containing 5% CO2. Before treatments, cells were cultured 24 h in serum-free medium. The different treatments (pathway signaling inhibitors, IL-1β, and IL1RN) were performed in this second 24 h period, in serum-free media. The experiments were performed in the absence of serum (for a period of 24-48 h) to avoid the possible effects of serum components that might be present in excess in the fetal bovine serum compared to the human serum accessible to epithelial cells in the intact human tissue (growth factors, etc). The relevance of these effects was pointed out by Ye and Lotan and were also discussed elsewhere.

2.5 | Reverse transcription and quantitative real-time PCR (qRT-PCR)

Real-time PCRs (qRT-PCR) were performed as previously described. qRT-PCR reactions were carried out in triplicates (intra-assay and inter-assay triplicates). The final
quantification values were expressed as the mean of the Relative Quantification (RQ) for each biological triplicate \((n = 3)\). Primer sequences used in this paper are listed in Table 1.

2.6 | Statistics

Unless otherwise indicated, the assays were performed at least by duplicates (intra-assay duplicates) and the experiments were repeated three times (inter-assay triplicates), as specified in each figure legend. The results were expressed as mean ± SE \((n)\), obtained from inter-assay calculations. One-way ANOVA and the Tukey’s test were applied to calculate significant differences among samples \((\alpha = 0.05)\). * Indicates significant differences \((P < 0.05)\).

3 | RESULTS

3.1 | Expression of EGFR ligands in Caco-2 cells transfected with shRNA specific for CFTR

First we studied the expression of different EGFR ligands in Caco-2/pRS26 cells (which are Caco-2 cells transfected with a plasmid that expresses a shRNA against CFTR) and compared the results with those of Caco-2/pRSctrl cells (transfected with a control plasmid). These cells were previously characterized and have a reduced CFTR expression and activity, enough to trigger oxidative stress. Caco-2/pRSctrl and Caco-2/pRS26 cells were incubated for 24 h in serum-free DMEM/F12 and the mRNA levels of different EGFR ligands were determined by qRT-PCR. As shown in Figure 1, Caco-2/pRS26 cells showed increased mRNA expression of amphiregulin \((AREG)\) \((144 ± 6.1\% \text{ vs } 100 ± 4.5\% \text{ } [n = 3])\) (Figure 1A), heparin binding EGF like growth factor \((HBEGF)\) \((132.2 ± 16.7\% \text{ vs } 100 ± 4.5\% \text{ } [n = 3])\) (Figure 1B) and epiregulin \((EREG)\) \((231.4 ± 13.7\% \text{ vs } 100 ± 2.4\% \text{ } [n = 3])\) (Figure 1C), compared to control cells. By the contrary, a significant decrease in transforming growth factor alpha \((TGFα/TFG-α)\) mRNA levels were found in Caco-2/pRS26 cells compared to control cells \((76.6 ± 3.1\% \text{ vs } 100 ± 2.6\% \text{ } [n = 3])\) (Figure 1D). These results are similar to the results from Oshima et al,36 showing high levels of \(EREG\) mRNA and low levels of secreted TGFA in LU-HNSCC-6 (HN-6) cells derived from a squamous cell carcinoma from the tongue. On the other hand, no significant differences in mRNA levels of epidermal growth factor \((EGF)\) (Figure 1E) or betacellulin \((BTC)\) (another EGFR ligand) (Figure 1F) were found between these cell lines; similar levels of \(EGFR\) and \(ERBB4\) were found in both cell lines (Caco-2 shRNA and control cells) (Figures 2C and 2D).

Since \(EREG\) showed the highest differential expression in Caco-2/pRS26 cells (Figure 1C), we decided to further characterize its expression by using Western blots (WB). As shown in Figure 2A (WB) and 2B (quantification), the \(EREG\) protein levels were also significantly \((P < 0.05)\) increased in Caco-2/pRS26 cells compared to control cells, in agreement with its mRNA expression levels. The phosphorylation of EGFR, AKT and ERK were also increased in Caco-2/pRS26 cells (Figure S1), suggesting the activation of the EGFR pathway in these cells with impaired CFTR activity.

3.2 | Effect of IL-1β addition on EREG expression in Caco-2/pRS26 cells

To study the possible role of IL-1β in the upregulation of \(EREG\), we first tested whether the addition of exogenous IL-1β could increase \(EREG\) levels in Caco-2/pRSctrl and Caco-2/pRS26 cells. Both cell lines were incubated with 5 ng/mL of IL-1β for 24 h in serum-free medium. As shown in Figure 3A, \(EREG\) expression in Caco-2/pRSctrl cells was significantly increased \((P < 0.05)\) by IL-1β compared to untreated control cells (Caco-2/pRSctrl 100 ± 2.5% vs Caco-2/pRS26 + IL-1β 180.9 ± 24.5%, \([n = 3]\)). On the other hand, in Caco-2/pRS26 cells, the IL-1β stimulating effects over \(EREG\) were less pronounced (due to the already high values of untreated cells) and did not reach significance (Caco-2/pRS26 191.9 ± 10.3% vs Caco-2/pRS26 + IL-1β 232.7 ± 23.5%, \([n = 3]\)). Interestingly, Caco-2/pRSctrl cells treated with IL-1β reached similar levels to those of Caco-2/pRS26 cells. Similar results were

TABLE 1 List of primer sequences used for quantitative real-time PCR analysis

Gene	Sequence (5′-3′)
EGFR1 Fw	GACCTCCATGCTTTTGAGAA
	GCTGACGACTGCAAGAGAAA
EGFR4 Fw	TCAAGCATTGGATAATCCCGA
	AGTGGCCTACCACTACTCTTCTT
Amphiregulin Fw	GGTTGGTGTGTTCGCTCTTG
	GTCCCCAGAAAATGGTCA
TGF-α Fw	CCTTGGCTGTCTTATATC
	CTGTCTCTGATGTCGCAAGCAA
HB-EGF Fw	TGGAGATGCAAATATGTGAAGGA
	AGGATTGGTTGGTGTCATAGGTAT
EGF Fw	TGATGGAGTTCTTGTCACATTAGT
	CGGTCACCAAAAAAGGACAT
Epiregulin Fw	GGACAGTGTCATCATCTTGTCGAG
	AGTGTCACATCGGACACCAGTA
Betacellulin Fw	GGTGTCATGGTGTCTGCACAT
	AGGTAACCTCATAAGGCTTTAAGCA
TBP Fw	TGCACAGGAGGCAAGAGTGA
	CACATC ACAGCTCCCAACCA
found when the EREG protein was measured, as shown in Figures 3B (WB) and 3C (quantification). The IL-1β effect on EREG expression was also observed at shorter times (1 h) (Figure S2). Altogether, these results demonstrate that addition of exogenous IL-1β to Caco-2/pRS26 cells results in increased EREG (mRNA and protein) expression. These observations agree with previous reports showing that IL-1β increased EREG mRNA expression in myofibroblasts. The minimal response to exogenous IL-1β (5 ng/mL) observed for Caco-2/pRS26 cells suggest that these cells, with already
elevated IL-1β basal levels due to its active autocrine loop,26 have almost a saturated response of EREG to IL-1β.

3.3 | The IL-1β receptor antagonist IL1RN reduces the EREG expression in Caco-2/pRS26 cells

A reduction in the CFTR channel activity determines the accumulation of intracellular Cl⁻ in Caco-2/pRS26 cells, with the subsequent activation of the IL-1β autocrine loop26,27,30 (and other CFTR/Cl⁻-dependent genes16,17,21,29). Therefore, we hypothesized that secreted IL-1β could be involved in the increased expression of EREG observed in the Caco-2/pRS26 cell line. To test this, Caco-2/pRS26 cells and Caco-2/pRSctrl control cells were incubated 24 h in serum free media with IL1RN to block the IL-1β binding to its receptor.37–39 As shown in Figure 4A, incubation of Caco-2/pRS26 cells with IL1RN, decreased EREG mRNA expression (Caco-2/pRS26 191.9 ± 10.3% vs Caco-2/pRS26 plus IL1RN 138.8 ± 11.1% [n = 3], P < 0.05). Similar results were found when the EREG protein levels were measured, as shown in Figures 4B (WB) and 4C (quantification). It should be noted here that we know from previous results that these Caco-2 cell lines express similar levels of IL1R1,27 so the differences should be attributed mainly to the increased IL-1β levels secreted by the Caco-2/pRS26 cells, with the impaired CFTR activity. Taken together, these results suggest that the IL-1β autocrine loop is responsible for the increased EREG levels observed in the Caco-2/pRS26 CFTR-impaired cells.

3.4 | JNK is involved in the EREG expression stimulated by autocrine IL-1β

As a first approach to study the signaling pathways that could be involved in the increased EREG expression in Caco-2/pRS26 cells, the cells we incubated for 24 h in serum-free medium in the presence of different IL-1β pathway inhibitors (10 μM PP2 for c-Src,40 ED₅₀ ~1 μM27, 10 μM SB203580 for p38,41 ED₅₀ 0.3–0.5 μM42; 10 μM SP600125 for JNK,43 ED₅₀ 5–12 μM44). As shown in Figure 5A, the JNK inhibitor SP600125 decreased the EREG mRNA expression compared to Caco-2/pRS26 untreated cells (180.1 ± 10.2% vs 98.9 ± 17.2%, [n = 3], respectively), while the c-Src inhibitor (PP2) had little
effect, which did not reach significance. The p38 inhibitor (SB 203580) did not show significant differences. It is important to mention that EREG expression was partially inhibited by using the EGFR inhibitor AG1478 at 10 μM.
FIGURE 5 EREG expression in Caco-2 cells transfected with shRNA for CFTR and treated with JNK inhibitor. Caco-2/pRSctrl and Caco-2/pRS26 cells were cultured 24 h in 5% FBS and 24 h in serum-free medium before treatments for another 24 h. Cells were incubated with 10 μM SP600125 (JNK inhibitor), 10 μM PP2 (c-Src inhibitor), and 10 μM SB203580 (p38 inhibitor). After incubation, total RNA or total proteins were extracted and the EREG mRNA or protein levels were determined by real-time PCR or WBs. A, Quantitative real time RT-PCR of EREG mRNA expression levels in Caco-2/pRSctrl and Caco-2/pRS26 cells treated with different IL-1β pathway inhibitors. B, Quantitative real time RT-PCR of EREG mRNA expression levels in Caco-2/pRSctrl and Caco-2/pRS26 cells treated with JNK inhibitor (SP600125). C, Representative WB corresponding to EREG from whole cellular lysates of Caco-2/pRSctrl and Caco-2/pRS26 cells. D, Densitometric quantification of EREG/actin. E, Representative WB corresponding to p-JNK from whole cellular lysates of Caco-2/pRSctrl and Caco-2/pRS26 cells. F, Densitometric quantification of p-JNK/actin. The results were expressed as percentage (%) relative to Caco-2/pRSctrl values (mean ± SE, n = 3, inter-assay). * Indicates P < 0.05 compared to Caco-2/pRSctrl cells or Caco-2/pRS26 untreated cells.
and strongly inhibited by 10 μM PD168393, as shown in Figure S3, suggesting that the EGFR activation is responsible of the elevated EREG levels in Caco-2/pRS26. On the other hand, the ADAMs activity inhibitor TAPI-2 at 20 μM,45 was not able to modify EREG expression, as shown in Figure S4, suggesting that the EGFR activation might be, in this case, independent of ligand, as occurs for example with the GPCR/EGFR cross-talk in Leydig cells.46 On the other hand, the inhibitory effect on EREG expression was particularly important with the JNK signaling pathway inhibitor SP600125, which fully restored the EREG mRNA levels to those of control cells (Caco-2/pRSctrl 100 ± 1.4%, Caco-2/pRS26 180.1 ± 10.2%, Caco-2/pRS26 plus SP600125 98.9 ± 17.2%, and Caco-2/pRSctrl plus SP600125 66.1 ± 7.1%, [n = 3]) (Figure 5B). A dose response curve for the effects of SP600125 on EREG expression in both cell lines are shown in Figure S5 (ED50 = 2.9 ± 0.6 μM for Caco-2 control cells and 3.2 ± 0.7 μM for Caco-2/pRS26). Similar effects were observed when the EREG protein levels were measured by WBs, as shown in Figures 5C (WB) and 5D (quantification). As shown in Figures 5E (WB) and 5F (quantification), SP600125 inhibits JNK in accordance to the EREG reduction. Contrary to IL1RN, SP600125 also inhibited EREG basal values, suggesting that some other effector/pathway besides IL-1β might be also involved in EREG expression. These results agree with a previous report of Auf et al showing the role of JNK pathway in EREG expression in glioma cells.47 Altogether, these results suggest that the JNK pathway is involved in the increased EREG expression observed in the CFTR-impaired Caco-2/pRS26 cells.

4 | DISCUSSION

Using Caco-2 cells stably transfected with a CFTR shRNA, we found here increased mRNA expression of EREG, AREG, and HBEGF genes. The most highly expressed gene was EREG, followed by AREG and HBEGF. On the other hand, EGF, BTC, and TGFA showed a slight tendency to a reduced expression, which was only statistically significant for TGFA. In agreement with these results, the upregulation of EREG has been previously observed by other authors in human native nasal epithelial cells (collected from bilateral nasal mucosal brushing) from ΔF508-CFTR homozygotes patients in comparison to non-CF controls patients.48

Then, considering that Caco-2/pRS26 cells overexpress IL-1β,26 we explored whether the IL-1β secreted by Caco-2/pRS26 cells was responsible for the increased EREG expression. For this purpose, Caco-2/pRS26 cells were incubated 24 h in serum-free media, first in the presence of exogenous (added) IL-1β, which resulted in stimulated EREG expression, an effect more evident in Caco-2/pRSctrl cells compared to Caco-2/pRS26 cells, demonstrating a role of IL-1β signaling modulation of the EREG expression. In agreement with these results, Inatomi et al observed in human colonic epithelial myofibroblasts the increased EREG gene expression induced by exogenous IL-1β.5 The response to exogenous IL-1β was less evident in Caco-2/pRS26 cells and this was likely due to the presence of a more active IL-1β loop in these cells. To test this idea, Caco-2/pRS26 cells were then incubated in the presence of the IL1R1 antagonist IL1RN. In these conditions, a significant reduction in EREG levels (mRNA and protein) was observed in Caco-2/pRS26 cells. Thus, the autocrine IL-1β loop already described for these cells26,27,30 appears to be responsible, at least partially, for the increased EREG expression observed in Caco-2/pRS26 cells. This IL-1β autocrine loop also regulates the mitochondrial Complex-I activity, the cellular and mitochondrial ROS generation and the c-Src expression and activity in these epithelial cells.26,27 In agreement with these results, Iannitti et al,49 either using a CF murine model, human bronchial epithelial cells (from ΔF508-CFTR homozygotes patients), or epidemiology analysis, have also noted the relevance of IL-1β signalling and its reversion by anakinra (IL1RN) in modulating NLRP3 inflammasome activity, which is responsible for IL-1β maturation and secretion.

Exploring the effect of different inhibitors of IL-1β signalling pathways (p38, c-Src, and JNK inhibitors), we observed that JNK was involved in the EREG regulation, while the c-Src inhibitor PP2 had a minor effect; the p38 inhibitor had no effects. The effect of the JNK inhibitor SP600125 in EREG expression was observed in both Caco-2/pRS26 and Caco-2/pRSctrl. Altogether, these results suggest that JNK is involved in the signalling mechanism that stimulates EREG expression. Interestingly, the JNK inhibitor was able to decrease EREG levels to near basal values, suggesting these results that the JNK signaling is probably the main signaling pathway regulating EREG expression in these cells. Since the JNK inhibitor also inhibited basal values of Caco-2/pRSctrl cells and this did not occur with IL1RN, probably another effector under JNK regulation might be also involved in EREG regulation, besides IL-1β. A graphical summary of the results obtained here is shown in Figure 6 (Pathway Studio v.10, Elsevier).

Diverse pathophysiological consequences might arise due to persistent high levels of EREG in CF cells and other cells with decreased CFTR activity. EREG is not only upregulated in many types of cancer5; it also plays an important role in inflammation,3 wound-healing,4 and normal physiology.2 However, a direct link between these functions and EREG has not been yet explored for CF cells. Further studies are needed to understand the mechanisms involved in its regulation and the possible physiopathological significance of the EREG overexpression.
ACKNOWLEDGMENTS

We thank Professor Diego Battiato and María de los Angeles Aguilar for administrative and technical assistance, respectively. This work was funded by the National Agency for the Promotion of Science and Technology (ANPCYT, Argentina) [grant number PICT 2012-1278] to TASC; National Scientific and Technical Research Council (CONICET, Argentina) [PIP 11220110010685 2012-2014] to TASC; and Pontifical Catholic University of Argentina (UCA) to TASC; and research postdoctoral fellowships from CONICET to MMMC and MC.

ORCID

Tomás A. Santa-Coloma http://orcid.org/0000-0002-3266-1095

REFERENCES

1. Toyoda H, Komurasaki T, Uchida D, et al. Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem. 1995;270:7495–7500.
2. Riese DJ, 2nd, Cullum RL. Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol. 2014;28:49–56.
3. Harada M, Kamimura D, Arima Y, et al. Temporal expression of growth factors triggered by epiregulin regulates inflammation development. J Immunol. 2015;194:1039–1046.
4. Pastore S, Mascia F, Mariani V, Girolomoni G. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol. 2008;128:1365–1374.
5. Inatomi O, Andoh A, Yagi Y, Bamba S, Tsujikawa T, Fujiyama Y. Regulation of amphiregulin and epiregulin expression in human colonic subepithelial myofibroblasts. Int J Mol Med. 2006;18:497–503.
6. Vermeer PD, Panko L, Karp P, Lee JH, Zabner J. Differentiation of human airway epithelia is dependent on erbB2. Am J Physiol Lung Cell Mol Physiol. 2006;291:L175–L180.
7. Lahoti TS, Hughes JM, Kunstadter D, et al. Aryl hydrocarbon receptor antagonism attenuates growth factor expression, proliferation, and migration in fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Pharmacol Exp Ther. 2014;348:236–245.
8. Fanem P, Wohlhuter-Haddad A, Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol. 2014;52:94–102.
9. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–1073.
10. Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245:1059–1065.

FIGURE 6 Graphic summary of the results obtained. Due to the down-modulation of the CFTR activity in Caco-2/pRS26, Cl− accumulates and stimulates IL-1β/IL1B secretion, in turn inducing an autocrine positive feedback loop. This IL-1β autocrine loop determines increased EREG expression mediated through JNK. Thus, EREG constitutes a new step forward in the CFTR signaling pathway, downstream of IL-1β (↓ red, inhibition; → blue, stimulation; dotted arrows, previous results)
11. Rottner M, Freyssinet JM, Martinez MC. Mechanisms of the nolox inflammatory cycle in cystic fibrosis. *Respir Res.* 2009;10:23.

12. Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. *Pediatr Pulmonol.* 2015;50:S39–S56.

13. Caverly LJ, Zhao J, LiPuma JJ. Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection. *Pediatr Pulmonol.* 2015;50:S31–S38.

14. Harun SN, Wainwright C, Klein K, Henning S. A systematic review of studies examining the rate of lung function decline in patients with cystic fibrosis. *Paediatr Respir Rev.* 2016;20:55–66.

15. Gonzalez-Guerrico AM, Cafferata EG, Radrizzani M, et al. Tyrosine kinase c-Src constitutes a bridge between cystic fibrosis transmembrane regulator channel failure and MUC1 overexpression in cystic fibrosis. *J Biol Chem.* 2002;277:17239–17247.

16. Taminelli GL, Sotomayor V, Valdivieso AG, Teiber ML, Marin MC, Santa-Coloma TA. CISD1 codifies a mitochondrial protein upregulated by the CFTR channel. *Biochim Biophys Res Commun.* 2008;365:856–862.

17. Valdivieso AG, Marcucci F, Taminelli G, et al. The expression of the mitochondrial gene MT-ND4 is downregulated in cystic fibrosis. *Biochim Biophys Res Commun.* 2007;356:805–809.

18. Srivastava M, Eidelman O, Pollard HB. Pharmacogeomics of the cystic fibrosis transmembrane conductance regulator (CFTR) and the cystic fibrosis drug CPX using genome microarray analysis. *Mol Med.* 1999;5:753–767.

19. Eidelman O, Srivastava M, Zhang J, et al. Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway. *Mol Med.* 2001;7:523–534.

20. Xu Y, Clark JC, Aronow BJ, et al. Transcriptional adaptation to cystic fibrosis transmembrane conductance regulator deficiency. *J Biol Chem.* 2003;278:7674–7682.

21. Valdivieso AG, Clauzure M, Marin MC, et al. The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. *PLoS ONE.* 2012;7:e48059.

22. Shapiro BL. Evidence for a mitochondrial lesion in cystic fibrosis. *Life Sci.* 1989;44:1327–1334.

23. Valdivieso AG, Santa-Coloma TA. CFTR activity and mitochondrial function. *Redox Biol.* 2013;1:190–202.

24. Cafferata EG, Gonzalez-Guerrico AM, Giordano L, Pivetta OH, Santa-Coloma TA. Interleukin-1beta regulates CFTR expression in human intestinal T84 cells. *Biochim Biophys Acta.* 2000;1500:241–248.

25. Cafferata EG, Guerrico AM, Pivetta OH, Santa-Coloma TA. NF-kappaB activation is involved in regulation of cystic fibrosis transmembrane conductance regulator (CFTR) by interleukin-1beta. *J Biol Chem.* 2001;276:15441–15444.

26. Clauzure M, Valdivieso AG, Massip Copiz MM, Schulman G, Teiber ML, Santa-Coloma TA. Disruption of interleukin-1beta autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. *PLoS ONE.* 2014;9:e99257.

27. Massip-Copiz MM, Clauzure M, Valdivieso AG, Santa-Coloma TA. CFTR impairment upregulates c-Src activity through IL-1beta autocrine signaling. *Arch Biochem Biophys.* 2017;616:1–12.
45. Forsyth CB, Tang Y, Shaikh M, Zhang L, Keshavarzian A. Alcohol stimulates activation of Snail, epidermal growth factor receptor signaling, and biomarkers of epithelial-mesenchymal transition in colon and breast cancer cells. *Alcohol Clin Exp Res*. 2010;34:19–31.

46. Evaul K, Hammes SR. Cross-talk between G protein-coupled and epidermal growth factor receptors regulates gonadotropin-mediated steroidogenesis in Leydig cells. *J Biol Chem*. 2008;283:27525–27533.

47. Auf G, Jabouille A, Delugin M, et al. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. *BMC Cancer*. 2013;13:597.

48. Clarke LA, Sousa L, Barreto C, Amaral MD. Changes in transcriptome of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. *Respir Res*. 2013;14:38.

49. Iannitti RG, Napolioni V, Oikonomou V, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis. *Nat Commun*. 2016;7:10791.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Massip-Copiz M, Clauzure M, Valdivieso ÁG, Santa-Coloma TA. Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function. *J Cell Biochem*. 2018;119:2911–2922. https://doi.org/10.1002/jcb.26483