Anticancer Drug-mediated Induction of Multidrug Resistance-associated Genes and Protein Kinase C Isozymes in the T-Lymphoblastoid Cell Line CCRF-CEM and in Blasts from Patients with Acute Lymphoblastic Leukemias

James F. Beck,1 Dorothee Brügger,2 Klaus Brischwein,1 Chao Liu,2 Peter Bader,2 Dietrich Niethammer2 and Volker Gekeler3

1Department of Pediatric Haematology/Oncology, University of Greifswald, Soldmannstr. 15, D-17487 Greifswald, 2Department of Pediatric Haematology/Oncology, University of Tübingen, Hoppe-Seyler-Str. 1, D-72076 Tübingen and 3Byk Gulden GmbH, Department of Pharmacology 3, Byk-Gulden-Str. 2, D-78467 Konstanz, Germany

The major determinants mediating drug resistance in acute lymphoblastic leukemias (ALL) unresponsive to chemotherapy, are still unclear. For example, it is still unknown whether selection or induction processes are responsible for drug resistance here or whether protein kinase C (PKC) isozymes contribute to the resistant phenotype. Therefore, inducibility of resistance factors or PKC isozymes genes was examined in CCRF-CEM cells treated with diverse anticancer drugs — adriamycin, camptothecin, etoposide or vincristine—at sublethal concentrations for 24 h. MDR1, MRP1, LRP and PKC isozyme α, β, β, ε, i, η, θ, ζ gene expression was determined by cDNA-PCR. We found significant dose-dependent, mostly combined, induction of the MDR1, MRP1 and LRP genes. Significantly enhanced gene expression of the majority of PKC isozyme genes was found after treatment with camptothecin. PKCζ was upregulated throughout by each anticancer drug applied in this setting. A series of selected CCRF-CEM-derived multidrug resistance (MDR) sublines also showed enhanced expression of the PKC isozymes compared to the parental cell line. MDR1 and PKCη gene expression levels were correlated highly significantly. Blasts from two patients with ALL during the first week of monotherapy with steroids revealed combined induction of the MDR1, multidrug resistance-associated protein 1 (MRP1), lung cancer resistance-related protein (LRP) and most PKC isozymes, predominantly PKCζ. Another patient with T-ALL, who failed to respond to four months of intensive chemotherapy, showed an enhanced MRP1 gene expression combined with markedly overexpression of PKCη and PKCθ. Furthermore, the camptothecin and etoposide-mediated induction of resistance factors in the CCRF-CEM cell line could be suppressed by staurosporine, a rather unspecific inhibitor of protein kinases. However, selective inhibitors of PKC isozymes (bisindolylmaleimide GÖ 6850, indolocarbazole GÖ 6976) produced no significant effects here. Therefore, the PKC isozymes η, θ and ζ are of interest as potential targets to overcome drug resistance in ALL.

Key words: Acute lymphoblastic leukemia — Anticancer drugs — Gene induction — MDR — Protein kinase C
Induction of MDR and PKC Genes by Anticancer Drugs

chemotherapy. The bisindolylmaleimide GF 109203X (identical with GÖ 6850) shows highly selective inhibition of many PKC isozymes in vitro (IC50: 30–200 nM), except for the atypical isozyme PKCζ (IC50: 6 µM), while other kinases are affected only at distinctly higher concentrations. The indolocarbazole compound GÖ 6976 is an even more selective PKC inhibitor, since only the Ca2+-dependent PKC isozymes are blocked, together with PKCη (IC50=0.6 µM). As PKC isoforms are suggested to represent a part of a stress response activating for example the MDR gene, PKC inhibitors might be able to attenuate the activation of drug resistance-associated genes. Following recent results that MDR in the clinic might be caused by multiple factors and that distinct PKC isozymes are associated with various resistance factors, we investigated several selected MDR cell lines for gene expression of resistance factors (MDR1, MRPI and LRPI) and PKC isozymes. Furthermore, we tested several anticancer agents for the ability to induce gene expression of these resistance factors and PKC isoforms, and examined whether PKC inhibitors attenuate gene induction. In addition, we investigated the expression pattern of these genes in blasts from acute lymphoblastic leukemia (ALL) patients during first-line treatment with steroids, and in one case nonresponding to intensive chemotherapy. The results indicate that particular PKC isoforms (PKCη, θ, ζ) may at least partially abrogate the emergence of multiple drug resistance.

MATERIALS AND METHODS

Leukemic cells and cell lines The parental human T-lymphoblastoid cell line CCRF-CEM was obtained from the American Type Culture Collection, Rockville, MD (ATCC CCL 119). The cell lines CCRF VCR100, CCRF VCR1000, CCRF ACTD400 and CCRF ADR5000 are corresponding resistant cell lines, selected and permanently cultured in the presence of 100 or 1000 ng/ml of vincristine (VCR), 400 ng/ml of actinomycin D (ACTD) or 5000 ng/ml of adriamycin (ADR). The cell lines were routinely checked for the absence of mycoplasma infection with a mycoplasma detection kit (Boehringer, Mannheim, Germany).

Blasts from patients (1 common ALL, 1 T-ALL) with remarkable, initial high blast count numbers (300 000–500 000/µl) were obtained daily from peripheral blood aspirates during first-week induction therapy with steroids, which is given as an initial monotherapy in this time interval according to the medium risk regimen of the BFM-ALL-95 treatment protocol. Both patients responded well to steroids and to further combinatorial chemotherapy and have remained in continuous complete remission for more than three years. Furthermore, we investigated blasts from a T-ALL patient nonresponding to three months of intensive chemotherapy according to the high risk regimen of the BFM-ALL-95 treatment protocol. This patient received combinatorial chemotherapy including ADR, asparaginase, cyclophosphamide, cytosine-arabinoside, dexamethasone, etoposide, methotrexate, prednisolone, 6-mercaptopurine, VCR and vindesine before blasts were newly drawn from bone marrow aspirates in a final stage of progression. This patient died from progressive disease four months after initial diagnosis.

Mononuclear cells were isolated by the standard Ficoll-Hypaque technique (Lymphoprep, Nycomed, Oslo, Norway), washed twice with phosphate-buffered saline (PBS), immediately lysed with guanidinium isothiocyanate or frozen in the presence of 7% dimethylsulfoxide (DMSO) and 50% fetal calf serum (FCS) under controlled conditions, and stored in liquid nitrogen. An aliquot of mononuclear cells isolated was tested for its content of blasts. Probes with less than 95% of blasts were excluded from further analysis. Cell count and determination of vital cells were performed using a Neubauer hemacytometer chamber and staining with trypan blue.

Drugs GF 109203X (GÖ 6850), GÖ 6976 and staurosporine (STAU) were purchased from Calbiochem (Bad Soden, Germany). Camptothecin (CAM) and ACTD were obtained from Sigma (Deisenhofen, Germany). The other drugs were taken as ready-prepared solutions for clinical use: ADR (“Adriblastin,” Pharmacia & Upjohn, Erlangen, Germany), ETO (etoposide, “Vepesid,” Bristol-Myers Squibbs, Troisdorf, Germany) and VCR (“Vincristin Liquid,” Lilly, Bad Homburg, Germany). All other chemicals, supplies and tissue culture media were of the purest grade available, purchased from commercial sources.

Cell cycle analysis At the end of induction experiments 100 000 cells were fixed in 500 µl of 70% ethanol at 4°C overnight and than stained in 500 µl of a solution containing 5 mg/ml propidium iodide and 10 mg/ml RNAse. Cells (20 000) from each experiment were measured in a flow cytometer (FACS-Calibur, Becton Dickinson, Heidelberg, Germany). Histograms were analyzed with Cell Quest software (Becton Dickinson). Experiments were carried out in triplicate. The distribution of cell cycle phases after cytostatic drug treatment is shown in Fig. 5.

Induction experiments To analyze the induction of the genes of interest we treated CCRF-CEM cells in strictly the same manner. Cells were seeded into 6-well plates at a cell density of 1×10⁴/ml for 24 h with or without drugs as indicated. An 8 h treatment showed variable results (data not shown). We used the following drug concentrations: 10, 30 and 100 ng/ml ADR; 3, 10 and 30 ng/ml CAM; 300, 1000 and 3000 ng/ml ETO and 3, 10 and 30 ng/ml VCR. Cells showed a viability greater than 90% after 24 h incubation with these compounds. This seems to be an important prerequisite to avoid measuring short-term selection effects instead of induced gene expression. After
the times indicated, cells were washed twice with PBS and immediately lysed with a 4 M solution of guanidinium isothiocyanate according to Chirgwin et al.32)

Treatment with protein kinase inhibitors To test the potential of various protein kinase inhibitors to suppress gene induction of the resistance factors we preincubated cells for 4 h with 30 nM STAU, 1 μM Gö 6976 or 5 μM Gö 6850 before adding the cytostatic agents for an additional 24 h. In these experiments cDNA-PCR was performed exclusively for MDR1, MRP1 and LRP gene expression (Fig. 8). The viability of cells after coincubation was in the range from 60 to 90%.

cDNA-PCR gene expression analysis The preparation of total cellular RNA, the synthesis of cDNA using random hexanucleotide primers and RAV2 reverse transcriptase, and the cDNA-PCR using MDR1, MRP1, LRP, PKCα, β1, β2, ε, ι, η, θ, ζ and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) specific amplimers were performed as recently described.6, 9) The conditions for PCR though, were modified. We used “Ampli Taq Gold” DNA polymerase (Perkin Elmer, Applied Biosystems, Weiterstadt, Germany), and took 45 μl of each PCR product for polyacrylamide gel electrophoresis (Fig. 1). PCR was carried out in the exponential range throughout. Therefore we used the following cycle numbers: GAPDH, 18; MDR1, 27; MRP1, 24; LRP, 26; PKCα, 27; PKCβ1, 29; PKCβ2, 24; PKCε, 27; PKCι, 24; PKCη, 24; PKCθ, 24; PKCζ, 29.

PCR reaction mixtures of the reference gene GAPDH and the genes of interest were combined and precipitated with ethanol and 1/10 volume of 3 M sodium acetate, pH 5.2. The precipitate was dissolved in loading buffer at 60°C/10 min. PCR products were separated by polyacrylamide gel electrophoresis and stained with ethidium bromide. Signals of interest were directly digitalized using the CS1-video imager (Cybertech, Berlin, Germany) and densitometrically analyzed by the “WINCAM” software (Cybertech). The specific signals were normalized to the internal standard GAPDH. In numerous experiments we tested γ-actin and β2-microglobulin as further controls to rule out the possibility that alterations of gene expression of the internal standard by cytostatic agents might affect the relative gene expression. However, results from experiments using γ-actin and β2-microglobulin corresponded favorably with those for GAPDH (data not shown). Furthermore, experiments with cell lines were carried out in triplicate throughout. We isolated RNA of cells from each experiment and determined gene expression levels in triplicate for each single RNA. Mean values±SD were there-
fore calculated from an overall of 9 PCR reactions. Finally, values were referred to the untreated control which was arbitrarily set at 1.0.

Statistics We performed variance analyses using JMP statistic software (SAS, Heidelberg, Germany) to determine if a factor (cytostatic agent or PKC inhibitor) exhibited a significant ($P<0.05$) effect on variables (expression of gene of interest).

RESULTS

Expression analysis of multidrug resistance associated genes (*MDR1, MRP1, LRP*) and *PKC* isozymes (α, β_1, β_2, ε, ζ, η, θ, ι) in a series of VCR, ACTD or ADR-selected CCRF-CEM T-lymphoblastoid cell lines compared to the parental cell line revealed enhanced expression of the *MDR1* and the majority of *PKC* isozyme genes (Fig. 2). A highly significant correlation between level of drug resistance, *MDR1* gene expression and *PKCζ* was seen. For PKCζ, in the meantime, quantitative TaqMan PCR was established. The data correspond well with those from our semiquantitative PCR approach (Gekeler et al., data not shown). Interestingly, PKCα was not detectable in the CCRF subline VCR1000 (Fig. 2) but is overexpressed in CCRF ADR5000, which corresponds well with PKCα protein levels previously determined by western blot analysis.33)

A 24 h incubation of CCRF-CEM with ADR, CAM, ETO or VCR revealed significant dose-dependent and mostly combined induction of the *MDR1, MRP1* and *LRP* genes (Fig. 3). No significant effects were seen for MRP1 after treatment with ADR or LRP after treatment with VCR (Fig. 3).

The majority of *PKC* isozyme genes were found to be highly induced when CAM was used, while only PKCBη, but interestingly not PKCBβ_1, was downregulated. PKCζ was generally upregulated by each anticancer drug applied in this setting (Fig. 4). Cell cycle analysis revealed an
enhancement of cells in S and/or G2/M. However, a correlation of distinct cell cycle distribution and gene expression pattern was only seen when CAM or ETO was used. Exposure to these cytostatics in a range of sublethal concentrations caused a shift to reduced number of cells in the G2/M-phase and enhanced number of cells in the S-phase of the cell cycle after 24 h. This was found to be correlated with marked induction of resistance factors and PKC isoforms (Fig. 5).

Furthermore, blasts from two ALL patients during first-line therapy with steroids revealed a combined induction of resistance factors, predominantly MDR1, and various PKC isoforms, preferentially PKCζ (Fig. 6).

Blasts of a patient with T-ALL, non responding to four months of intensive chemotherapy, drawn in a final stage of the disease, showed an enhanced MRP1 but not MDR1 or LRP gene expression combined with marked overexpression of the PKCη and θ isoforms (Fig. 7).

The induction of the resistance factor genes (MDR1, MRP1 and LRP) in the CCRF-CEM cell line could significantly be suppressed by STAU, a rather unspecific inhibitor of protein kinases inhibiting most of the PKC isoforms. Specific inhibitors of mainly calcium-dependent PKCa, β1,2, η isoforms (indolocarbazole GÖ 6976) and also of PKCe, δ, η or θ (bisindolylmaleimide GÖ 6850) produced no significant effects here (Fig. 8).

DISCUSSION

Gene expression analysis at the mRNA level by cDNA-PCR reveals the relative activity of genes, not of gene products. Thus, our work only gives circumstantial evidence for functional overexpression of drug transporters or
PKC isozymes. Nonetheless, a recent report states that PKC expression is mainly regulated at the transcriptional level in hematopoietic cells.34 We ourselves found a very good correlation between PKC protein content estimated by Western immunoblotting in preparations of a series of cell lines of different origin,33 pointing to the value of cDNA-PCR measurements. Our study based on gene expression data should therefore be considered as evaluative to find possible targets to overcome drug resistance, and will require confirmation at the functional level in future work.

DNA intercalators such as ADR, and topoisomerase II inhibitors such as ADR and ETO, as well as the tubulin-affecting compound VCR, are known to be involved in P-gp or MRP1-associated MDR phenotypes, but the topoisomerase I inhibitor CAM is not.35,36 However, the antineoplastic agents used here generally show significant and dose-dependent induction of the MDR genes in CCRF-CEM cells after 24 h (Fig. 3). CAM was found most effective in inducing the MDR1, MRP1 and LRP genes in CCRF-CEM and will require confirmation at the functional level in future work.

DNA intercalators such as ADR, and topoisomerase II inhibitors such as ADR and ETO, as well as the tubulin-affecting compound VCR, are known to be involved in P-gp or MRP1-associated MDR phenotypes, but the topoisomerase I inhibitor CAM is not.35,36 However, the antineoplastic agents used here generally show significant and dose-dependent induction of the MDR genes in CCRF-CEM cells after 24 h (Fig. 3). CAM was found most effective in inducing the MDR1, MRP1 and LRP genes in CCRF-CEM and will require confirmation at the functional level in future work.

Enhanced expression of PKC\textsubscript{et} and \textgreek{th} was detectable in highly resistant leukemic blasts of a T-ALL patient and, furthermore, in various selected CCRF-CEM sublines correlating to the grade of resistance and MDR1 gene expression. Furthermore, an earlier study on resistance factors and PKC isozymes in primary and relapsed states of acute...
myelogenous leukemias (AML) revealed enhanced MDR1, MRP and PKCθ gene expression levels in relapses of AML compared to the primary forms and significant correlations between MDR1 or MRP1 and PKCη or PKCθ gene expression. In summary, we suggest that PKC isoforms η, θ and ζ should be considered as possible targets to overcome drug resistance in ALL.

REFERENCES

1) Germann, U. A. P-Glycoprotein—a mediator of multidrug resistance in tumour cells. *Eur. J. Cancer*, **32A**, 927–944 (1996).

2) Loe, D. W., Deeley, R. G. and Cole, S. P. Biology of the multidrug resistance-associated protein, MRP. *Eur. J. Cancer*, **32A**, 945–957 (1996).

3) Izquierdo, M. A., Scheffer, G. L., Flens, M. J., Schroeijs, A. B., van der Valk, P. and Scheper, R. J. Major vault protein LRP-related multidrug resistance. *Eur. J. Cancer*, **32A**, 979–984 (1996).

4) Gekeler, V., Frese, G., Noller, A., Handgretinger, R., Wilisch, A., Schmidt, H., Muller, C. P., Dofper, R., Klingebiel, T., Diddens, H., Probst, H. and Niethammer, D. Mdr1/P-glycoprotein, topoisomerase, and glutathione-S-transferase π gene expression in primary and relapsed state adult and childhood leukemias. *Br. J. Cancer*, **66**, 507–517 (1992).

5) Beck, J., Niethammer, D. and Gekeler, V. High mdr1- and mrp-, but low topoisomerase Ilα-gene expression in B-cell chronic lymphocytic leukemias. *Cancer Lett.*, **86**, 135–142 (1994).

6) Beck, J., Handgretinger, R., Dofper, R., Klingebiel, T., Niethammer, D. and Gekeler, V. Expression of MDR1, MRP, topoisomerase Ilα/β, and cyclin A in primary or relapsed states of acute lymphoblastic leukemias. *Br. J. Haematol.*, **89**, 356–363 (1995).

7) Burt, R. K., Garfield, S., Johnson, K. and Thorgeirsson, S. S. Transformation of rat liver epithelial cells with v-H-ras or v-raf causes expression of MDR-1, glutathione-S-transferase-P and increased resistance to cytotoxic chemicals. *Carcinogenesis*, **9**, 2329–2332 (1988).

8) Beck, J., Niethammer, D. and Gekeler, V. MDR1, MRP, topoisomerase Ilα/β, and cyclin A gene expression in acute and chronic leukemias. *Leukemia*, **10** (Suppl. 3), 39–45 (1996).

9) Beck, J., Bohnet, B., Brügger, D., Bader, P., Dietl, J., Scheper, R. J., Kandolf, R., Liu, C., Niethammer, D. and Gekeler, V. Multiple gene expression analysis reveals distinct differences between G2 and G3 breast cancers, and correlations of PKCθ with MDR1, MRP and LRP gene expression. *Br. J. Cancer*, **77**, 87–91 (1998).

10) Fairchild, C. R., Ivy, S. P., Rushmore, T., Lee, G., Koo, P., Goldsmith, M. E., Myers, C. E., Farber, E. and Cowan, K. H. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas. *Proc. Natl. Acad. Sci. USA*, **84**, 7701–7705 (1987).

11) Burt, R. K. and Thorgeirsson, S. S. Coinduction of MDR-1 multidrug-resistance and cytochrome P-450 genes in rat liver by xenobiotics. *J. Natl. Cancer Inst.*, **80**, 1383–1386 (1988).

12) Gekeler, V., Frese, G., Diddens, H. and Probst, H. Expression of a P-glycoprotein gene is inducible in a multidrug-resistant human leukemia cell line. *Biochem. Biophys. Res. Commun.*, **155**, 754–760 (1988).

13) Kohno, K., Sato, S., Takano, H., Matsu, K. and Kuwano, M. The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. *Biochem. Biophys. Res. Commun.*, **165**, 1415–1421 (1989).

14) Chaudhary, P. M and Roninson, I. B. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. *J. Natl. Cancer Inst.*, **85**, 632–639 (1993).

15) Licht, T., Fiebig, H. H., Bross, K. J., Herrmann, F., Berger, D. P., Shoemaker, R. and Mertelsmann, R. Induction of multiple-drug resistance during anti-neoplastic chemotherapy in vitro. *Int. J. Cancer*, **49**, 630–637 (1991).

16) Gekeler, V., Beck, J., Noller, A., Wilisch, A., Frese, G., Neumann, M., Handgretinger, R., Ehninger, G., Probst, H. and Niethammer, D. Drug-induced changes in the expression of MDR-associated genes: investigations on cultured cell lines and chemotherapeutically treated leukemias. *Ann. Hematol.*, **69**, 19–24 (1994).

17) Fine, R. L., Patel, J. and Chabner, B. A. Phorbol esters induce multidrug resistance in human breast cancer cells. *Proc. Natl. Acad. Sci. USA*, **85**, 582–586 (1988).

18) Mickley, L. A., Bates, S. E., Richert, N. D., Currier, S., Tanaka, S., Foss, F., Rosen, N. and Fojo, A. T. Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. *J. Biol. Chem.*, **264**, 18031–18040 (1989).

19) Chaudhary, P. M. and Roninson, I. B. Activation of MDR1 (P-glycoprotein) gene expression in human cells by protein kinase C agonists. *Oncol. Res.*, **4**, 281–290 (1992).

20) Chin, K. V., Tanaka, S., Darlington, G., Pastan, I. and Gottesman, M. M. Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. *J. Biol. Chem.*, **265**, 221–226 (1990).

21) Miyazaki, M., Kohno, K., Uchiumi, T., Naimura, H., Matsu, K., Nasu, M. and Kuwano, M. Activation of human multidrug resistance-1 gene promoter in response to ACKNOWLEDGMENTS

This work was supported by the “Wilhelm Sander-Stiftung, Neustadt/Donau, Germany.”

(Received May 3, 2001/Revised May 21, 2001/Accepted May 28, 2001)
heat shock stress. Biochem. Biophys. Res. Commun., 187, 677–684 (1992).

22) Bates, S. E., Lee, J. S., Dickstein, B., Spolyar, M. and Fojo, A. T. Differential modulation of P-glycoprotein transport by protein kinase inhibition. Biochemistry, 32, 9156–9164 (1993).

23) Sampson, K. E., Wolf, C. L. and Abraham, I. Staurosporine reduces P-glycoprotein expression and modulates multidrug resistance. Cancer Lett., 68, 7–14 (1993).

24) Uchiumi, T., Kohno, K., Tanimura, H., Hidaka, K., Asakuno, K., Abe, H., Uchida, Y. and Kuwano, M. Involvement of protein kinase in environmental stress-induced activation of human multidrug resistance 1 (MDR1) gene promoter. FEBS Lett., 326, 11–16 (1993).

25) Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand, P. T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F., Duhamel, L., Charon, D. and Kirilovsky, J. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem., 266, 15771–15781 (1991).

26) Martiny-Baron, G., Kazanietz, M. G., Mischak, H., Blumberg, P. M., Kochs, G., Hug, H., Marne, D. and Schächtele, C. Selective inhibition of PKC isozymes by the indolocarbazole Gö 6976. J. Biol. Chem., 268, 9194–9197 (1993).

27) Grunicke, H., Hofmann, J., Utz, I. and Überall, F. Role of protein kinases in antitumor drug resistance. Ann. Hematol., 69, 1–6 (1994).

28) Kimmelg, A., Gekeler, V., Neumann, M., Frese, G., Handgretinger, R., Kardos, G., Diddens, H. and Niethammer, D. Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res., 50, 6793–6799 (1990).

29) Richm, H. Multicenter trial of the German Society for Pediatric Oncology and Hematology ALL-BFM-95 for treatment of children with acute lymphoblastic leukemia. Treatment Protocol, I, 1–101 (1995).

30) Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M. and Tomita, F. Staurosporine, a potent inhibitor of phospholipid/Ca**+-dependent protein kinase. Biochem. Biophys. Res. Commun., 135, 397–402 (1986).

31) Sato, W., Yusa, K., Naito, M. and Tsuruo, T. Staurosporine, a potent inhibitor of C-kinase, enhances drug accumulation in multidrug-resistant cells. Biochem. Biophys. Res. Commun., 173, 1252–1257 (1990).

32) Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. and Rutter, W. J. Isolation of biological active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18, 5294–5299 (1979).

33) Gekeler, V., Boer, R., Überall, F., Ise, W., Schubert, C., Utz, I., Hofmann, J., Sanders, K. H., Schächtele, C., Klemm, K. and Grunicke, H. Effects of the selective bisindolylmaleimide protein kinase C inhibitor GF109203X on P-glycoprotein mediated multidrug resistance. Br. J. Cancer, 74, 897–905 (1996).

34) Mischak, H., Kolch, W., Goodnight, J., Davidson, W. F., Rapp, U., Rose-John, S. and Mushinski, J. F. Expression of protein kinase C genes in hematopoietic cells is cell-type and B cell-differentiation stage specific. J. Immunol., 147, 3981–3987 (1991).

35) Chen, A. Y., Yu, C., Potmesil, M., Wall, M. E., Wani, M. C. and Liu, L. F. Camptothecin overcomes MDR1-mediated resistance in human KB carcinoma cells. Cancer Res., 51, 6039–6044 (1991).

36) Ma, J., Maliepaard, M., Nooter, K., Loos, W. J., Kolker, H. J., Verweij, J., Stoter, G. and Schellens, J. H. Reduced cellular accumulation of topotecan: a novel mechanism of resistance in a human ovarian cancer cell line. Br. J. Cancer, 77, 1645–1652 (1998).

37) Komarov, P. G., Shill, A. A., Holian, O., Tee, L., Buckingham, L., Mechetner, E. B., Roninson, I. B. and Coon, J. S. Activation of the LRP (lung resistance-related protein) gene by short-term exposure of human leukemia cells to phorbol ester and cytarabine. Oncol. Res., 10, 185–192 (1998).

38) Beck, J., Handgretinger, R., Klinebiel, T., Dopfer, R., Schach, M., Ehninger, G., Niethammer, D. and Gekeler, V. Expression of PKC isozyme and MDR-associated genes in primary and relapsed state AML. Leukemia, 10, 426–433 (1996).