Comportamiento del Consumo Energético del Sistema de Aire Acondicionado para un Edificio de Oficinas en Cuatro Zonas Climáticas de Colombia

BALBIS-MOREJON, M. a*, TOVAR-OSPINO, I. R. b, SOUSA-SANTOS, V. a, CASTRO-PEÑA, J.J. a

a. Universidad de la Costa, Barranquilla, Colombia
b. Universidad Autónoma del Caribe, Barranquilla, Colombia
c. REFRINORTE SA, Barranquilla, Colombia

*Corresponding author, milenbalbis@gmail.com

Resumen

En Colombia el uso de los sistemas del aire acondicionado aumenta y se convierte en una necesidad primordial para garantizar el confort en los edificios. El análisis del comportamiento energético se realizó para cuatro zonas climáticas de Colombia, incluyendo Bogotá, Medellín, Cali y Barranquilla. Para cada ubicación, se simuló con la herramienta de simulación EnergyPlus V8.6 un edificio de oficinas de gran tamaño con un sistema de aire acondicionado. El sistema de aire acondicionado corresponde a un sistema de centralizados, donde se generaron dos escenarios uno a volumen de aire variable VAV y otro a volumen de aire constante con unidades terminales tipo Fan Coil FC. Los resultados indican que en Medellín, Cali y Barranquilla el sistema de aire acondicionado VAV, con el 33,5%, 9,7% y 14,9%, respectivamente, presenta mayor los mayores ahorros en el consumo de energía total del edificio, para el caso de Bogota tiene mayor potencial el uso del sistema FC con el 0,32%. Los subsistemas de refrigeración y bombeo también presentan también potenciales de ahorro, aunque en menor proporción que el sistema global. El estudio mostró la importancia que tiene la verificación y predicción del consumo de energía, considerando datos del consumo de energía sistemas y subsistemas instalados en el edificio y las configuraciones básicas de los equipos de climatización.

Palabras llave: consumo de energía, sistemas de aire acondicionado, simulación, edificaciones, clima.

1. Introducción

Los edificios a nivel mundial consumen aproximadamente un tercio del total de los recursos de energía primaria. Por esto existe preocupación por los suministros de energía, el rápido agotamiento de los recursos energéticos, el aumento de las demandas de servicio de edificios, la mejora de los estilos de vida y confort, junto con el aumento del tiempo de permanencia en edificios (Shaikh et. al., 2014). En consecuencia, esto ha provocado aumento de la demanda de energía y mayores emisiones de gases que afecten el medio ambiente en un futuro cercano. A nivel mundial las zonas climatizadas (aire acondicionado y calefacción), el calentamiento de agua y la iluminación son las aplicaciones de uso final que representan el mayor consumo de energía en el edificio, representando cerca del 70% de la energía total de uso final (D&R, 2016).

La eficiencia energética en los edificios está relacionada principalmente, con la envolvente de los edificios y los equipos instalados, que generalmente son determinados durante la construcción y operación de los edificios. Sin embargo, las causas del incremento en los consumos energéticos se
deben principalmente a las exigencias impuestas a las tecnologías de climatización para eliminar las cargas de calor sensibles y latentes, que representa un importante potencial de mejora en la eficiencia energética (Pérez-Lombard, 2012; Mui & Wong, 2007).

En Colombia, el uso de los sistemas de climatización aumenta y se convierte en una necesidad primordial para garantizar el confort en edificios ubicados en todas las zonas climáticas. La Unidad de Planeación Minero Energética (UPME), realizó un estudio en el año 2013 en el sector comercial, público y de servicio, donde estimó un potencial de eficiencia energética en el uso de la energía eléctrica del 25%, asociados principalmente a la implementación de buenas prácticas operacionales y a la reconversión tecnológica de sistemas de iluminación, refrigeración, aire acondicionado y algunos sistemas de fuerza motriz (UPME, 2015). Además, en 27 auditorías energéticas en sedes administrativas de entidades públicas del orden nacional, regional y local (ministerios, gobiernos, alcaldías y corporaciones autónomas regionales), se estimó un potencial de ahorro entre un 10 y 18%, por concepto de optimización del aire acondicionado (UPME, 2007).

El clima contribuye de manera directa y significativa en el consumo de energía de los edificios (Zhou et. al., 2018). Se debe considerar que las condiciones climáticas locales predominantes afectan el tamaño y rendimiento de las cargas de climatización (aire acondicionado) del edificio. Un estudio realizado por Jung et. al., en el 2018 simularon edificios de oficina en tres zonas climáticas diferentes, se concluye que es más fácil minimizar la demanda de calefacción y refrigeración mediante el uso de medidas de eficiencia energética que tener que reducir el consumo de electricidad en los edificios de oficinas. Muestra de la incidencia del clima en el comportamiento de los indicadores de desempeño de los edificios, es la línea base del consumo de energía para diferentes tipos de edificios en Colombia, según la Fig. 1, que se presenta en Anexo 2: Guía de construcción sostenible para el ahorro de agua y energía en edificaciones, correspondiente a la Resolución 0549 de 2015 del Ministerio de Vivienda y Ambiente de Colombia.

Para el análisis del comportamiento del consumo energético en edificios, el método comúnmente utilizado por la comunidad científica es la simulación, por ser una herramienta eficaz para predecir el rendimiento energético del edificio en diversas condiciones y proporcionan una base teórica para estudiar las modificaciones que ofrecen ahorro de energía rentable. Los métodos detallados utilizados en la simulación contemplan la acción dinámica de la edificación, sistemas de climatización, y clima. Estos a su vez, consideran la capacidad de almacenamiento de energía térmica del edificio de forma transitoria al paso de flujo de calor, y que constantemente está interactuando con el resto de componentes, permitiendo un análisis minucioso de los fenómenos de transporte de calor que tiene lugar en el interior del edificio (Qinglin et. al., 2009; AL-Rabghi, 1997; Mui et. al., 2007; EnergyPlus, 2018).
La herramienta de simulación de energía EnergyPlus se utilizó para simular las condiciones climáticas futuras y las medidas de mitigación para cinco ciudades de EE.UU. utilizando como modelo un edificio de oficinas de tamaño medio, y se predijo el consumo anual de energía, dando como resultado que los impactos globales del cambio climático sobre los edificios variaron con las zonas climáticas (Wang et al., 2017). En el caso de nuestro estudio, se analizó el comportamiento del consumo de energía en dos variantes de configuración del sistema de climatización instalados en un edificio de gran tamaño, para cuatro ciudades principales de Colombia.

Varios investigadores han estudiado el rendimiento de los equipos instalados en los edificios, especialmente equipos del sistema de Aire Acondicionado, incluidas las plantas de refrigeración, bombas y ventiladores (Chow et al., 2006; Nagota et al., 2008; Pérez-Lombard, 2012; Balbis et al., 2017). En la revisión realizada por (Harish y Kumar, 2016) sobre modelado y simulación de sistemas energéticos en edificios concluyen que el impacto de la masa térmica del edificio, las causas que llevan al ajuste del termostato, el ajuste de la temperatura del aire de suministro, y otras consideraciones relacionadas con los sistemas de climatización, influyen en el patrón de consumo de energía neta de edificios. Estiman que los nuevos edificios pueden reducir el consumo de energía entre el 20% y el 50%, mediante la incorporación de intervenciones apropiadas de diseño en: la envolvente del edificio, la calefacción, ventilación y aire acondicionado (HVAC, 20-60%), la iluminación (20-50 %), el calentamiento de agua (20-70%), la refrigeración (20-70%) y el uso de la electrónica, equipos de oficina y controles inteligentes, (10-20%).

El objetivo del trabajo es estudiar el comportamiento del consumo energético para diferentes configuraciones del sistema de climatización, instalado en un edificio de oficina de gran intensidad, considerando la incidencia del clima en el consumo energético. Se tomó como referencia para el clima, las cuatro principales zonas climática de Colombia cuatro zonas climáticas (Bogotá, Medellín, Cali y Barranquilla).

2. Métodos

2.1. Descripción de las zonas climáticas.

Colombia, se extiende desde los 4º 13´ 30" de latitud sur, hasta los 12º 27´46" de latitud norte; y desde los 66º 50´54" al occidente del meridiano de Greenwich por el oriente, hasta los 79º 0´23" del mismo meridiano, por el occidente. La climatología colombiana se caracteriza por estaciones secas y lluviosas, por tanto, la temperatura y la humedad son los principales factores a considerar en el diseño de los sistemas de climatización. La Guía de construcción sostenible para el ahorro de agua y energía en edificaciones, perteneciente a la Resolución 0549 de 2015, establece cuatro zonas climáticas en Colombia, y las identifica con las principales ciudades del país como: Bogotá, Medellín, Cali y Barranquilla. En la Tabla 1, se puede observar las características del clima en las principales zonas climáticas de Colombia y en la Tabla 2, se presenta la localización geográfica de las cuatro ciudades seleccionadas.

| Tabla 1. Variaciones climáticas en las principales ciudades de Colombia. |
|---------------------|-------|-------|-------|-------|
| Variables climáticas | Bogotá | Medellín | Cali | Barranquilla |
| Altitud (m) | 2547 | 1490 | 961 | 142 |
| Temperatura de bulbo seco (°C) | 13,2 | 18,3 | 23,3 | 27,4 |
| Temperatura de bulbo húmedo (°C) | 11,0 | 16,4 | 20,2 | 24,8 |
| Humedad absoluta (kg/m3 aire) | 0,001 | 0,0012 | 0,002 | 0,0019 |
Tabla 2. Localización, altitud sobre el nivel del mar de las cuatro ciudades principales de Colombia, y que presentan diferentes condiciones climáticas.

Localización, altitud sobre el nivel del mar.	Localización, altitud sobre el nivel del mar.
Barranquilla, Latitud: 10° 59’ 16” N, y Longitud: 74° 47’ 20” O. Altitud sobre el nivel del mar: 100 m.	
Medellín, Latitud: 6.217, Longitud: -75.567 6° 13’ 1” Norte, 75° 34’ 1” Oeste. Altitud sobre el nivel del mar: 1.495 m.	
Cali, Longitud: O76°31’21”; Latitud: N3°26’13.99”, Altitud sobre el nivel del mar: 1.495 m.	
Bogotá, Latitud: 4°36’34” N, Longitud: 74°04’54” O. Altitud sobre el nivel del mar: 2582 m.	

2.2. Simulación

Para análisis detallados a edificaciones se han desarrollado herramientas de simulación computacional, que conjugan más de un método para el cálculo de los coeficientes de transferencia de calor para así determinar el comportamiento térmico de los edificios. Entre los que se destacan: DOE- 2, BLAST, Equest, Energy Plus, TRNSYS, Desing Builder, Cype, entre otros. La herramienta de simulación EnergyPlus, es capaz de simular la combinación de varios sistemas de un edificio, permitiendo analizar y definir los componentes con gran detalle; con el propósito de representar en el modelo la mayoría de los aspectos contemplados en el diseño. Además, es muy flexible y fácil de utilizar cuando se desea cambiar los parámetros de los sistemas para diferentes temporadas y horarios. También se considera adecuado para analizar resultados con sistemas que no sean convencionales, especialmente si se trata de grandes construcciones (Pana et. al., 2011; Harish & Kumar, 2016).

Para el estudio se utilizó la herramienta de simulación EnergyPlus V8.6, por su versatilidad al combinar varios sistemas y subsistemas instalados en el edificio, permitiendo analizar y definir el consumo de energía en cada uno de los componentes con detalle. Para nuestro caso, este análisis se realiza principalmente para conocer el comportamiento del consumo energético en el sistema y subsistemas del aire acondicionado, y se obtienen los resultados para cuatro zonas climáticas, utilizando un modelo de edificio de oficina de gran tamaño, para verificar el comportamiento a cargas parciales de los sistemas de climatización.

Energy Plus utiliza varios métodos para el análisis detallado del comportamiento energético del edificio (M. Qinglin, 2009), (K.W. Mui, 2007), (EnergyPlus, 2017). Para el cálculo se seleccionó el método de la función de transferencia de conducción (CTF), muy utilizado por la comunidad científica en la solución de la conducción de calor (Qian et al., 2009) y por ser el procedimiento base adoptado por ASHRAE (Omar et al., 1997). Basados en la teoría de Stephenson y Mitalas, el método CTF corresponde a una representación cerrada de la conducción a través de una serie acumulativa de calor con el tiempo. La determinación de los coeficientes de transferencia de calor (CTFs) se puede efectuar a través de diversos métodos, los cuales inicialmente resultan constantes y solo se determinan una vez para un tipo de construcción (AL-Saadi, 2013; EnergyPlus, 2018).

2.3. Descripción de la edificación
El edificio objeto de estudio, que se muestra en la Fig 2a, posee un área total de 44.400 m², distribuidos en 12 pisos. La altura de la planta baja es de 5 m, más un plenum de 1.2 m de altura. Presenta una la relación largo-anoche es de aproximadamente 1,4, con proporciones de acristalamiento con respecto a la envolvente de 7,3 %. La clasificación del edificio por su uso corresponde a oficinas. Como se aprecia en la Fig 2b, la distribución interna obedece a zonas perimetrales con un núcleo central que permite un mejor desempeño energético debido a la reducción de las ganancias externas.

La tabla 3, muestra las características constructivas, localización, tipología y cargas internas dispuestas de acuerdo a la finalidad de la edificación. La envolvente (paredes externas) está compuesta por materiales que responden a la tipología típica de una construcción en la región del Caribe Colombiano.

Tipo de Edificio	Edificio de oficina
Área total	44.400 m²
Número de zonas térmicas	18
Porcentaje de acristalamiento vs. Pared	7,3%
Paredes Externas	Estuco 0,025, ladrillo de 200 mm, y Yeso 0,019 (Transmitancia U=2,39 W/m2-K)
Tipo de cristal	Simple de 6 mm (Transmitancia U=5,78 W/m2-K)
Carga interna por Iluminación	12 W/m2
Carga interna por persona	12 m²/persona
Carga interna por equipos eléctricos	120 W/persona

La Fig. 2, muestra que, para las condiciones operacionales de las edificaciones, se consideró las jornadas laborales que mayormente se utilizan en este tipo de edificio, operando a carga considerable por uso de equipos eléctricos, ocupación, e iluminación. Por tanto, se define la franja horaria comprendida entre las 7:00 a.m. a 18:00 p.m. con ligeras variaciones comprendidas entre las 12:30 p.m. y 2:00 p.m. para un nivel de ocupación de un 80%. Los niveles de operación para la iluminación y equipos eléctricos corresponden a un 100% durante la jornada laboral, y para el resto del tiempo permanece con una carga del 20%.

"CLEANER PRODUCTION FOR ACHIEVING SUSTAINABLE DEVELOPMENT GOALS"
Barranquilla – Colombia – June 21st and 22nd - 2018
2.4. Descripción de la configuración del sistema de climatización.

El sistema de aire acondicionado proyectado para el edificio con gran intensidad energética, corresponde a un sistema de centralizados, donde se generaron dos escenarios uno a volumen de aire variable y otro a volumen de aire constante. Se dimensionaron los equipos para cada una de las ciudades simuladas en las cuatro zonas climáticas (Bogotá, Medellín, Cali y Barranquilla) y se consideró la carga máxima manejada, de acuerdo a las condiciones de diseño para cada ciudad. Esto con el fin garantizar un óptimo rendimiento para el periodo de tiempo simulado que corresponde a un año típico de operación. La unidad de generación de frío, se muestra en la Fig.3, corresponde a una enfriadora de agua (Chiller) condensada por aire. Para el análisis se consideró la configuración del sistema de climatización a volumen de aire constante con unidades terminales tipo Fan Coil y unidad de aire destinada (FC) y como alternativa a este esquema se proyectó un sistema centralizado a volumen de aire variable con cajas de mezcla en las terminales (VAV).
3. Resultados

Cuando se analiza el consumo de energía final del edificio con el sistema de climatización en sus dos alternativas en su configuración, se puede observar en la Fig. 5, que aunque las características constructivas de la edificación no presentan variaciones, el clima incide en su comportamiento energético. Además las configuraciones del sistema de climatización, presentan diferencias entre el 1% y 2% para ciudades de clima cálido-húmedo y cálido-seco respectivamente. En el caso de clima Templado la diferencia es del 6% y en clima frío de 3%.

El consumo de energía global de un sistema de climatización se puede obtener sumando la energía que consumen todos los equipos que componen del sistema. La Fig. 6, muestra el comportamiento de la intensidad energética para los sistemas de climatización centralizada, servicio y subservicios en edificios de gran tamaño. Resultando favorable el uso de la tecnología de volumen de aire variable (VAV) en el sistema de climatización como estrategia en el control de la demanda térmica en las localidades. Lográndose una reducción significativa en el sistema de refrigeración y subsistema de bombeo pese al aumento que registra el subsistema de ventilación.
Fig. 6. Consumo de energía en kWh de los subsistemas en las dos tecnologías de aire acondicionado simuladas para el edificio de oficinas en cuatro ciudades de Colombia. Siendo: FC- Sistemas con unidades tipo Fan Coil, VAV- Sistemas con unidad de volumen de aire variable

En la tabla 4, se puede observar que Bogotá con clima frío, presenta un consumo de energía total de 4634898.48 kWh/año, para el sistema FC y 464983.07 kWh/año para el sistema VAV, se logra una reducción de consumo de 0,32% y el 8% para el sistema de aire acondicionado, sin embargo, se presenta un potencial de reducción en el consumo energético del servicio de refrigeración y subsistema de bombeo con una reducción 12,85% y 2,8% respectivamente. Para Medellín con clima templado, el consumo de energía total es de 7994918.36 kWh/año, para el sistema FC y 5313166.2 kWh/año para el sistema VAV, se logra una reducción de consumo de 33,5% y el 16,1% para el sistema de aire acondicionado, con un potencial de reducción en el consumo energético del servicio de refrigeración y subsistema de bombeo de 20,96% y 4,33% respectivamente.

En las ciudades de Clima Cálido, la ciudad de Cali, presenta un consumo energía total de 6843859.79 kWh/año, para el sistema FC y 6179900.75 kWh/año para el sistema VAV, se logra una reducción de consumo de 9,7% y el 3,98% para el sistema de aire acondicionado. Para los servicios de refrigeración y subsistema de bombear la reducción en el consumo energético es de 12,85% y 2,8% respectivamente. Barranquilla. Y en Barranquilla, se registran ventajas comparativa en el uso de los sistemas VAV frente a los sistemas FC, donde el consumo de energía total es de 9410685.92 kWh/año, para el sistema FC y 8007507.71 kWh/año para el sistema VAV, lográndose una reducción de consumo de 14,9% y el 4,73% para el sistema de aire acondicionado, en el servicio de refrigeración el ahorro es de 11,18% y en el subsistema de bombeo de 5,49%.

Tabla 4. Comportamiento del consumo de energía en kWh/año para los sistemas y subsistemas instalados en el edificio de oficina, en cuatro ciudades de Colombia.

	Bogotá FC	Medellín FC	Cali FC	Barranquilla FC	Barranquilla VAV
Enfriamiento	34.11%	21.26%	53.97%	33.01%	50.95%
Iluminación Interior	30.00%	29.91%	17.39%	26.17%	20.32%
Equipos Interiores	25.00%	24.92%	14.49%	21.81%	16.93%
Ventiladores	2.51%	18.35%	1.53%	10.96%	2.12%
Bombas	7.97%	5.17%	11.77%	7.44%	8.16%

“CLEANER PRODUCTION FOR ACHIEVING SUSTAINABLE DEVELOPMENT GOALS”
Barranquilla – Colombia – June 21st and 22nd - 2018
Tendencia contraria registra el subsistema ventilación en todas las ciudades simuladas, donde se presenta un aumento en el consumo de energía en la ventilación de 15,84% en la ciudad de Bogotá, 9,43% para Medellín, 13,49% en Cali y en Barranquilla el 12,79%, mostrando mejores resultados para el sistema FC, este resultado no afecta la intensidad energética del sistema de aire acondicionado debido a su bajo peso en el consumo total. Este aumento se debe a la constante respuesta del sistema de ventilación para la compensación de las cargas térmicas y la poca amortiguación de la temperatura debido a la inercia en los cerramientos en la gran edificación.

4. Conclusiones

El empleo de la simulación dinámica de edificaciones, resulta adecuado para el análisis de medidas de ahorro de energía en las etapas tempranas de diseño de sistemas de climatización en edificaciones, así como eficaz en la verificación de estándares de eficiencia. El clima influyó notablemente en el consumo de energía del edificio. Por tanto, es necesario considerar para futuros proyectos la ubicación y así seleccionar la mejor configuración para el sistema de aire acondicionado. El estudio de caso reveló la importancia en verificación y predicción del consumo de energía, considerando datos del rendimiento real de los equipos de climatización y las configuraciones básicas que se pueden alcanzar con el sistema de bombeo. Si bien, en todas las ciudades se presenta una alta eficiencia por parte del servicio de refrigeración, el sistema de aire acondicionado VAV, tiene mayor potencial para el ahorro de energía en la edificación que el sistema FC para Medellín, Cali y Barranquilla.

Los subsistemas de ventilación y bombeo también presentan potenciales de ahorro, aunque en menor proporción que el sistema global. El sistema de bombeo, presenta los mayores ahorros en el clima cálido-húmedo (Barranquilla) y el clima templado (Medellín). Aunque, persiste un aumento en la intensidad energética por parte del subsistema de ventilación, este incremento no resulta significativo frente al desempeño total del sistema. Resultando de interés el desarrollo de sistemas de climatización con sistema de control de aire a volumen variable frente a sistema con volumen de aire constante en edificaciones de gran tamaño en las localidades analizadas.

5. Referencias

AL-Rabghi, M.A.Omar, AL-Johani, K., 1997. Utilizing transfer function method for hourly cooling load calculations. Energy Conversion, 38 (4) 319-332.

AL-Saadi, S.N., Zhai, Z., 2013. Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 21, 659–673.

Balbis-Morejon, M., Tovar-Ospino, I., Castro-Peña, J.J., Cárdenas-Escorcia, Y., 2017. Energy assessment of the system pumping a climate control scheme with water coolers for an educational building using dynamic simulation. Espacios, 38, 19–32.

Chow, TT, Au, WH, Yau, R, 2004. Applying district-cooling technology in Hong Kong. Applied Energy, 79 (3), pp. 275-289.

D&R International, Ltd., U.S. Department of energy. Buildings Energy Data Book. March 2012. http://buildingsdatabook.eere.energy.gov. Último acceso: 22 mayo 2016.

ENERGYPLUS, 2018. https://energyplus.net/sites/default/files/pdfs_v8.3.0/AuxiliaryPrograms.pdf. Último acceso: abril 2018.

Harish, V. S. K. V. and Kumar, A., 2016. A review on modeling and simulation of building energy systems, Renewable and Sustainable Energy Reviews, 56, 1272–1292.
Jung, Nusrat, Paiho, Satu, Shemeikka, Jari, Lahdelma, Risto, Airaksinen, Miimu, 2018. Energy performance analysis of an office building in three climate zones. Energy and Buildings, 158, 1023-1035.

Mui, K. W., & Wong, L. T. 2007. Cooling load calculations in subtropical climate. Building and Environment, 42(7), 2498–2504. http://doi.org/10.1016/j.buildenv.2006.07.006

Nagota, T, Shimoda, Y, Mizuno, M, 2008. Verification of the energy-saving effect of the district heating and cooling system – Simulation of an electric-driven heat pump. Building and Environment, 40, 732-741.

Pana Y, Zuob M, Wuc G., 2011. Whole building energy simulation and energy saving potential analysis of a large public building. Journal of Building Performance Simulation, 4, 37–47.

Pérez-Lombard, L., Ortiz, J., Maestre, I. R. and J. F. Coronel, 2012. Constructing HVAC energy efficiency indicators. Energy and Buildings, 47, 619–629.

Qian Li, X., Chen, Y., Spitler, J.D., Fisher, D., 2009. Applicability of calculation methods for conduction transfer function of building constructions. International Journal of Thermal Sciences, 48, 1441–1451.

Qinglin, M., Jiejin, C., Hiroshi, Y., Akashi, M. M, 2009. Applying support vector machine to predict hourly cooling load in the building, Applied Energy, 86, 2249–2256.

Shaikh, P. H., Nor, N. B. M., Nallagownden, P., Elamvazuthi, I., and Ibrahim, T. 2014. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renewable and Sustainable Energy Reviews, vol. 34, p. 409–429.

UPME, 2007. Caracterización del consumo de energía final en los sectores terciario, grandes establecimientos comerciales, centros, Unidad de Planeación Minero Energética, Bogotá, 2007.

UPME, 2015. Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad de Planeación Minero Energética, Bogotá.

Zhou, Xin; Yan, Da; An, Jingjing; Hong, Tianzhen; Shi, Xing; Jin, Xing. Comparative Study of Air-Conditioning Energy Use of Four Office Buildings in China and USA. Energy and Buildings, In press, Available online 5 April 2018.