Flatband generator in two dimensions

Wulayimu Maimaiti,1,2,3 Alexei Andreanov,1,2 and Sergej Flach1,2

1 Center for Theoretical Physics of Complex Systems, Institute for Basic Science(IBS), Daejeon 34126, Korea
2 Basic Science Program(IBS School), Korea University of Science and Technology(UST), Daejeon 34113, Korea
3 Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, NJ 08854, USA

(Dated: January 12, 2021)

Dispersionless bands – flatbands – provide an excellent testbed for novel physical phases due to
the fine-tuned character of flatband tight-binding Hamiltonians. The accompanying macroscopic
degeneracy makes any perturbation relevant, no matter how small. For short-range hoppings flat-
bands support compact localized states, which allowed to develop systematic flatband generators in $d = 1$ dimension in Phys. Rev. B 95 115135 (2017) and Phys. Rev. B 99 125129 (2019). Here
we extend this generator approach to $d = 2$ dimensions. The shape of a compact localized state
turns into an important additional flatband classifier. This allows us to obtain analytical solutions
for classes of $d = 2$ flatband networks and to re-classify and re-obtain known ones, such as the
checkerboard, kagome, Lieb and Tasaki lattices. Our generator can be straightforwardly generalized
to three lattice dimensions as well.

I. INTRODUCTION

Physical systems with macroscopic degeneracies have attracted a lot of attention during the last decades. Such
degeneracies are highly sensitive to even slightest perturbations which makes them perfect testbeds for identifying and studying various exotic or unconventional correlated phases of matter. Flatbands are dispersionless energy bands of translationally invariant tight-binding networks.1–3 The absence of dispersion implies a macroscopic degeneracy of the flatband eigenstates. A flatband (FB) results from destructive interference of the hoppings which requires their fine-tuning. All the known FB examples with short-range hopping support compact localized states (CLS)4 as eigenstates with strictly compact support. FB networks were extensively studied theoretically in $d = 1$,5–7 $d = 2$8–10 and $d = 3$11–16 lattice dimensions. Models featuring FBs have been experimentally realized in a variety of settings, including optical waveguide networks,17–21 exciton-polariton condensates,22–25 and ultra-cold atomic condensates.19,20,22,26–31

Due to their fine-tuned character, flatband systems are fragile to perturbations that can easily destroy the macroscopic degeneracy. As a consequence, exotic phases of matter with unusual properties emerge under the effect of various perturbations: disorder,32–36 external fields,37–39 nonlinearity,40–42 Interactions in FB lead to a plethora of interesting phenomena: delocalization and conserved quantities,43–46 disorder free many-body localization,47–49 groundstate ferromagnetism,8,9,13,50–53 pair formation for hard core bosons,54 superfluidity,55–57 and superconductivity.58

However the very defining feature of the flatbands – their fine-tuned degeneracy – makes it difficult to identify them in the relevant Hamiltonian parameter space. A number of methods has been proposed to construct FB lattices: line graph approach,58 extended cell construction method,9 origami rules,55 repetitions of mini-arrays,60 local symmetry partitioning,61 chiral symme-

try,16 fine-tuning relying on specific CLS and network symmetries,11,62 using specific properties of FB,63 etc. All these methods apply to either specific geometries of the underlying networks or to networks with particular symmetries.

All the above discussed FB networks support CLS. It follows that the properties of the CLS together with a number of generic network properties form a set of classifiers which will fix a particular FB network class. That approach leads to systematic FB generators based on these classifiers. The CLS classifiers are its size U (of occupied unit cells) and shape (in dimensions $d \geq 2$), while the generic network classifiers is its dimension d, the Bravais lattice type, the hopping range, and the number of bands ν (i.e. the number of sites per unit cell). The simplest generator case $U = 1$ with arbitrary remaining network classifiers was obtained in Ref. 64. The more sophisticated case $U = 2$ with $d = 1$, nearest neighbour unit cell hopping and two bands $\nu = 2$ was solved in closed form in Ref. 65, with its extension to larger band number ν and CLS size U published in Ref. 66.

In this work, we extend the $d = 1$ FB generator65,66 to two dimensions $d = 2$ and indicate the road to generators in dimension $d = 3$. We introduce a systematic classification of $d = 2$ FB networks using their CLS classifiers - size U and shape. We demonstrate how to find analytic solutions for some FB classes. We re-generate and classify some of the already known $d = 2$ FB lattices such as the checkerboard, kagome, Lieb, and Tasaki lattices, along with a multitude of completely new $d = 2$ FB lattices.

The paper is organized as follows. In Section II, we introduce the main definitions and conventions that we use throughout the text. These conventions are direct generalization to $d = 2$ of the conventions used for the $d = 1$ FB generator.65,66 Section II B introduces CLS of $d = 2$ FB Hamiltonians, and the classification of FB Hamiltonians by their CLS. It also presents an inverse eigenvalue problem for finding Hamiltonians from a given CLS class.
An algorithm to solve these inverse eigenvalue problems is turned into an efficient FB generator in Sec. III B. In the following Sec. IV, we apply the FB generator to some classes of CLS, illustrate how the inverse eigenvalue problem is resolved and show the results. We conclude by summarising our results and discussing open problems.

II. MAIN DEFINITIONS

A. Models

We consider a \(d = 2 \) translational invariant tight-binding lattice with \(\nu \) sites per unit cell. We use the same notation as in our previous works, Ref. 65 and 66: we label wavefunctions by the unit cell index \(n \), so that the full wavefunction reads \(\Psi = (\vec{\psi}_1, \ldots, \vec{\psi}_n, \ldots) \), where the \(\nu \)-component vector \(\vec{\psi}_n \) is the wave function of the \(n \)th unit cell. For simplicity we restrict to nonzero hopping between nearest neighbour unit cells only, and note that the generalization to longer range hoppings is cumbersome but straightforward. Nearest neighbor unit cells are defined along (combinations of) primitive lattice translation vectors. A set of matrices \(H_\chi \) describes the hopping between different pairs of unit cells. The index \(\chi \) encodes the direction of the hopping - \(x, y, \) etc. The result is illustrated in Fig. 1 for a square lattice and a triangular lattice, the only possible cases for the n.n. directions in \(d = 2 \). A unit cell on the square lattice has 4 neighbours and 2 different directions of n.n. hopping - both along the primitive lattice translations vectors \(\vec{a}_1 \) and \(\vec{a}_2 \). A site on a triangular lattice has 3 neighbours and 3 possible directions of n.n. hopping: \(\vec{a}_1, \vec{a}_2 \), only two of which corresponds to the primitive lattice translation vectors. With these conventions the Hamiltonian eigenvalue problem reads

\[
H_0 \vec{\psi}_n + \sum_\chi \left(H_\chi \vec{\psi}_{n\chi} + H_\chi^* \vec{\psi}_{n\chi}^* \right) = E \vec{\psi}_n, \quad n \in \mathbb{Z}. \tag{1}
\]

Here \(H_0 \) describes the intracell hopping and \(H_\chi \) is the nearest neighbor hopping matrix for the \(\chi \)th direction, with \(n_\chi \) and \(n_\chi' \) being the respective indices of the two nearest neighboring unit cells along the \(\chi \)th direction. Because of the translation invariance the Floquet-Bloch theorem applies and the eigenstates of Eq. (1) can be expressed as \(\vec{\psi}_n = \vec{u}(\mathbf{k}) e^{-i \mathbf{k} \cdot \vec{R}_n} \), where the Bloch polarization vector \(\vec{u}(\mathbf{k}) \) has \(\nu \) components \(u_\mu(\mathbf{k}), \mu = 1, \ldots, \nu \). Finally \(\mathbf{k} = (k_x, k_y) \) is the wave vector, and \(\vec{R}_n \) is the position of the \(n \)th unit cell. Then the eigenvalue problem (1) in momentum space reads

\[
H_\mathbf{k} \vec{u}(\mathbf{k}) = E(\mathbf{k}) \vec{u}(\mathbf{k}). \tag{2}
\]

The eigenvalues \(E(\mathbf{k}) \) provide the band structure of the Hamiltonian \(H_\mathbf{k} \).

![FIG. 1. Example of nearest neighbor unit cells for 2D lattices, where \(\vec{a}_1, \vec{a}_2 \) are primitive translation vectors and \(\vec{a}_3 = \vec{a}_1 + \vec{a}_2 \). In our conventions: (a) a square lattice has only 2 n.n. hopping directions: \(\vec{a}_1, \vec{a}_2 \), (b) a triangular/hexagonal lattice has 3 n.n. hopping directions: \(\vec{a}_{e=1,2,3} \).]

B. Classification of compact localised states

In our previous work, we have shown that the size \(U \) of a CLS is the only CLS-related flatband classifier in dimension \(d = 1 \) dimension. For \(d = 2 \) dimensions, size and shape of the CLS plaquette turn into relevant flatband classifiers. The size of a CLS is given by two integers \(U_1 \) and \(U_2 \) which define its plaquette size along the two primitive lattice translation vectors \(\vec{a}_1, \vec{a}_2 \). The shape of a CLS plaquette is encoded by a \(U_1 \times U_2 \) matrix \(T \) with integer entries 0 or 1. The zero elements of the matrix \(T \) prescribe the locations of unit cells with zero wavefunction amplitudes in the CLS plaquette. The number of all possible nontrivial matrices \(T \) is finite and can be sorted and counted using an integer \(s \geq 0 \). Therefore we arrive at the extended CLS flatband classifier vector \(\mathbf{U} = (U_1, U_2, s) \).

For \(U_1 = 1 \) or \(U_2 = 1 \) there is only one possible shape and we can shorten the classifier \(\mathbf{U} \) to \((1, U_2)\) or \((U_1, 1)\). The other cases considered below correspond to \(U_1 = U_2 = 2 \), and we choose the integer \(s \) to count the number of zeros in the above matrix \(T \):

\[
s = 0 : \quad T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \tag{3}
\]

\[
s = 1 : \quad T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \tag{4}
\]

\[
s = 2 : \quad T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \tag{5}
\]

The case \(U = 1 \) discussed in the introduction corresponds to \(\mathbf{U} = (1, 1) \). The simplest nontrivial case in \(d = 2 \) is \(\mathbf{U} = (2, 1) \) and will be discussed below. The next and less trivial set of cases in \(d = 2 \) is \(\mathbf{U} = (2, 2, 0) \), \(\mathbf{U} = (2, 2, 1) \) and \(\mathbf{U} = (2, 2, 2) \). Figure 2 shows some of the known cases of 2D flatband networks with their CLS plaquettes: (a) Lieb: \(\mathbf{U} = (2, 2, 1) \), (b) checkerboard: \(\mathbf{U} = (2, 2, 1) \), (c) kagome: \(\mathbf{U} = (2, 2, 1) \), and (d) dice: \(\mathbf{U} = (2, 2, 0) \).
very similar in spirit to but is in general more complex and involved than the $d = 1$ case.

1. $U = 1$

The $U = 1$ case assumes a CLS which occupies only one unit cell with wave function ψ_1 and leads to a simple set of equations:

$$
\begin{align*}
H_0 \psi_1 & = E_{\text{FB}} \psi_1, \\
H_1 \psi_1 & = H_1^1 \psi_1 = 0, \quad i = 1, 2, 3.
\end{align*}
$$

2. $U_1 = 2$

Two hopping matrices – The simplest case of two hopping matrices H_1, H_2 can be always related to a square lattice geometry. One example is the Lieb lattice shown in Fig. 2(a). The possible CLS shapes and the hoppings for this case are shown in Fig. 3. The eigenvalue problem and destructive interference conditions read:

$$
\begin{align*}
H_1 \psi_2 & + H_2 \psi_3 \delta U_{2,2} = (E_{\text{FB}} - H_0) \psi_1, \\
H_1^1 \psi_1 & + H_2^1 \psi_2 \delta_{U,0} = (E_{\text{FB}} - H_0) \psi_2, \\
(H_1 \psi_4 \delta_{s,0} + H_2^1 \psi_4 \delta_{s,0}) \delta U_{2,2} & = (E_{\text{FB}} - H_0) \psi_4 \delta U_{2,2} \delta_{s,0}, \\
H_1 \psi_1 & = H_1^1 \psi_2 = 0, \\
H_2 \psi_1 & = H_2^1 \psi_2 = 0, \\
H_1^1 \psi_4 \delta_{U,2} \delta_{s,0} & = H_2^1 \psi_4 \delta_{U,2} \delta_{s,0} = 0.
\end{align*}
$$

For specific values of U_1, U_2 and s the above system gives the eigenvalue problem and destructive interference conditions for a CLS with the extended classifier vector $U = (U_1, U_2, s)$.

Three hopping matrices – Several known flatband lattice models have three hopping matrices which connect different unit cells, for example checkerboard, kagome, and dice lattices (see Fig. 2(b-d)). The three respective hoppings matrices H_1, H_2, H_3 as shown in Fig. 4. It is instructive to note that the freedom in choosing different unit cells has consequences in our classification scheme. As an example, the dice lattice with its unit cell choice in Fig. 2(d) falls into the category $U = (2, 2, 0)$ with three nontrivial hopping matrices. The unit cell choice used in Fig. 1 in Ref. 38 leads to a much larger CLS plaquette with classifier $U = (3, 3)$ (and three empty unit cells in the CLS), but also to a reduced number of only two nontrivial hopping matrices.

For three hopping matrices the eigenvalue problem and the corresponding destructive interference conditions
FIG. 3. Classification of compact localised states for cases with two hopping matrices. Each square represents a unit cell. Directions of the hopping and respective destructive interference conditions are indicated by arrows. Where two hopping terms (arrows) meet, both will contribute to the destructive interference cancellation. (a) \(U = (1, 1) \) single unit cell \((U = 1)\) CLS. (b) \(U = (2, 1) \) case. (c) \(U = (2, 2, 2) \) case. (d) \(U = (2, 2, 1) \) case. (e) \(U = (2, 2, 0) \) case.

FIG. 4. Classification of compact localised states for cases with three hopping matrices. Each square represents a unit cell. Directions of the hopping and respective destructive interference conditions are indicated by arrows. Where two or more hopping terms (arrows) meet, all will contribute to the destructive interference cancellation. (a) \(U = (1, 1) \) single unit cell \((U = 1)\) CLS. (b) \(U = (2, 1) \) case. (c) \(U = (2, 2, 2) \) case. (d) \(U = (2, 2, 1) \) case. (e) \(U = (2, 2, 0) \) case.

For specific values of \(U_1, U_2, s \) we obtain the eigenvalue problem and destructive interference conditions for a CLS with the extended classifier vector \(\mathbf{U} = (U_1, U_2, s) \). In order to apply the generator defined below, we define the transverse projectors \(Q_{ij}, Q_{ijk} \) on \(\{\psi_i\}, \{\overline{\psi}_i, \overline{\psi}_j\} \) and \(\{\psi_i, \overline{\psi}_j, \overline{\psi}_k\} \) respectively.

B. The generator

The sets of equations (7,8) are the starting point of our flatband generator. Our goal is to generate all possible matrices \(H_\chi \) which allow for the existence of a flatband, given a particular choice of the CLS shape, \(E_{FB} \) and \(H_0 \). We arrive at the following protocol:

1. Choose the number of bands \(\nu \).
2. Choose a hopping range.
3. Choose a plaquette shape of the CLS.
4. Choose an arbitrary Hermitian \(H_0 \).
5. Choose a flatband energy \(E_{FB} \).
6. Exclude \(H_1, H_2, H_3 \) and \(H_4 \) from the equations (7,8) to get nonlinear constraints on the CLS components \(\psi_i \), and solve these constraints to find all CLS components \(\overline{\psi}_i \).
7. With the chosen \(H_0, E_{FB} \) and the CLS \(\overline{\psi}_i \) obtained at the previous step, solve equations (7,8) for \(H_\chi \).

The above protocol admits variations which can simplify the task. In some cases the nonlinear constraints allow to skip item 5 and keep the flatband energy \(E_{FB} \) a free parameter to be fixed when executing item 6, as we will show below. Step 6 requires solving nonlinear equations which may have either no CLS solutions, or a manifold of CLS solutions with freely tunable parameters, or even several such manifolds. Using a CLS solution from step 6, and executing step 7, will in general yield a solution
manifold of hopping matrices with freely tunable parameters as well, which correspond to the freedom of fixing only the flatband states and not constraining the rest of the spectrum, bands, and eigenvectors.

IV. SOLUTIONS

We consider CLS sizes restricted to $U_1, U_2 \leq 2$, unless stated otherwise.

A. $U = 1$

Without loss of generality we assume that H_0 is diagonal with first diagonal entry E_{FB}. From the first line in Eq. (6) we conclude $\tilde{\psi}_1 = (1, 0, 0, ..., 0)$. The following destructive interference conditions yield $(H_1)_{1,1} = (H_1)_{1,2} = 0$, i.e. the hopping matrices have zeros on their first row and column, and freely choosable entries elsewhere. The entries parametrize the remaining dispersive degrees of freedom. These entries as well as an overall multiplicative scaling factor and energy gauge are the free parameters of the corresponding manifold of $U = 1$ flatband Hamiltonians. These solutions correspond to the detangled basis of $U = 1$ flatband networks. Additional manifold parameters are obtained from entangling the CLS with the dispersive network through commuting local unitary operations.

For two bands $\nu = 2$ and $H_3 = 0$ it follows that the only solutions are either $U = 1$ flatbands, or decoupled 1D networks with $H_2 = 0$ and $U = 2$ (see details of the derivation in Appendix A).

B. $U = (2, 1)$

A schematic of the CLS and the destructive interference conditions for this case are shown in Fig. 3(b) and Fig. 4(b) for the two and three hopping matrices cases respectively. The eigenvalue problem (7), respectively (8), involves only one hopping matrix H_1, while the matrices $H_{2,3}$ enter additional destructive interference conditions only. Therefore the eigenvalue problem reduces to the 1D case solved in Ref. 66. It follows (see Appendix B1 and Ref. 66 for details)

$$H_1 = \frac{(E_{FB} - H_0) \langle \psi_1 | (E_{FB} - H_0) \rangle}{\langle \psi_1 | (E_{FB} - H_0) \rangle \langle \psi_1 | (E_{FB} - H_0) \rangle}.$$

The CLS components $\tilde{\psi}_1, \tilde{\psi}_2$ are subject to nonlinear constraints

$$\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle = 0, \quad \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle = \langle \psi_2 | (E_{FB} - H_0) | \psi_2 \rangle,$$

that are resolved similarly to the 1D case. For two hopping matrices the additional destructive interference conditions only. Therefore the eigenvalue problem reduces to the 1D case solved in Ref. 66. It follows (see Appendix B1 and Ref. 66 for details)

$$H_1 = \frac{(E_{FB} - H_0) \langle \psi_1 | (E_{FB} - H_0) \rangle}{\langle \psi_1 | (E_{FB} - H_0) \rangle \langle \psi_1 | (E_{FB} - H_0) \rangle}.$$

The CLS components $\tilde{\psi}_1, \tilde{\psi}_2$ are subject to nonlinear constraints

$$\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle = 0, \quad \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle = \langle \psi_2 | (E_{FB} - H_0) | \psi_2 \rangle ,$$

that are resolved similarly to the 1D case.

A schematic of the CLS and the destructive interference conditions for this case are shown in Fig. 3(b) and Fig. 4(b) for the two and three hopping matrices cases respectively. The eigenvalue problem (7), respectively (8), involves only one hopping matrix H_1, while the matrices $H_{2,3}$ enter additional destructive interference conditions only. Therefore the eigenvalue problem reduces to the 1D case solved in Ref. 66. It follows (see Appendix B1 and Ref. 66 for details)

$$H_1 = \frac{(E_{FB} - H_0) \langle \psi_1 | (E_{FB} - H_0) \rangle}{\langle \psi_1 | (E_{FB} - H_0) \rangle \langle \psi_1 | (E_{FB} - H_0) \rangle}.$$

The CLS components $\tilde{\psi}_1, \tilde{\psi}_2$ are subject to nonlinear constraints

$$\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle = 0, \quad \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle = \langle \psi_2 | (E_{FB} - H_0) | \psi_2 \rangle ,$$

that are resolved similarly to the 1D case. For two hopping matrices the additional destructive interference conditions only. Therefore the eigenvalue problem reduces to the 1D case solved in Ref. 66. It follows (see Appendix B1 and Ref. 66 for details)

$$H_1 = \frac{(E_{FB} - H_0) \langle \psi_1 | (E_{FB} - H_0) \rangle}{\langle \psi_1 | (E_{FB} - H_0) \rangle \langle \psi_1 | (E_{FB} - H_0) \rangle}.$$

The CLS components $\tilde{\psi}_1, \tilde{\psi}_2$ are subject to nonlinear constraints

$$\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle = 0, \quad \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle = \langle \psi_2 | (E_{FB} - H_0) | \psi_2 \rangle ,$$

that are resolved similarly to the 1D case.

A schematic of the CLS and the destructive interference conditions for this case are shown in Fig. 3(b) and Fig. 4(b) for the two and three hopping matrices cases respectively. The eigenvalue problem (7), respectively (8), involves only one hopping matrix H_1, while the matrices $H_{2,3}$ enter additional destructive interference conditions only. Therefore the eigenvalue problem reduces to the 1D case solved in Ref. 66. It follows (see Appendix B1 and Ref. 66 for details)

$$H_1 = \frac{(E_{FB} - H_0) \langle \psi_1 | (E_{FB} - H_0) \rangle}{\langle \psi_1 | (E_{FB} - H_0) \rangle \langle \psi_1 | (E_{FB} - H_0) \rangle}.$$

The CLS components $\tilde{\psi}_1, \tilde{\psi}_2$ are subject to nonlinear constraints

$$\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle = 0, \quad \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle = \langle \psi_2 | (E_{FB} - H_0) | \psi_2 \rangle ,$$

that are resolved similarly to the 1D case.

For two hopping matrices the additional destructive interference yields

$$H_2 = Q_{12} M_2 Q_{12},$$

where M_2 is an arbitrary $\nu \times \nu$ matrix. Figure 5 provides an example network for the two hopping matrix case. For three hopping matrices the derivation of H_2 and H_3 is given in Appendix C1.

C. $U = (2, 2, 2)$

The case $U = (2, 2, 2)$ is shown in Figs. 3(c) and 4(c), where the two CLS-occupied unit cells just touch one another. Equations (7-8) reduce to simple eigenproblems for the amplitudes in each individual unit cell:

$$H_0 \langle \psi_{1,2} | = E_{FB} \langle \psi_{1,2} \rangle .$$

We choose some H_0 and thereby fix E_{FB} and $\tilde{\psi}_{1,2}$. If E_{FB} is nondegenerate, then $\tilde{\psi}_2 \propto \tilde{\psi}_1$ and the problem reduces to a $U = 1$ CLS. If E_{FB} is degenerate we need at least $\nu = 3$ bands. The amplitudes $\tilde{\psi}_{1,2}$ can then be picked as distinct linear combinations of the eigenvectors corresponding to E_{FB}. The intra-cell hopping matrices H_1, H_2, H_3 are reconstructed from the destructive interference conditions, Eqs. (7-8):

$$H_1 | \psi_1 \rangle = H_2 | \psi_1 \rangle = 0 \quad \langle \psi_2 | H_1 = \langle \psi_2 | H_2 = 0$$

$$H_1^\dagger | \psi_1 \rangle + H_2 | \psi_2 \rangle = 0 \quad H_1^\dagger | \psi_1 \rangle + H_2 | \psi_2 \rangle = 0$$

The last line implies that $H_3 = Q_{12} M H_{12}$ where M is an arbitrary $\nu \times \nu$ matrix. The first two lines of the above equation constitute a coupled inverse problem of finding H_1, H_2 from their known action on $\tilde{\psi}_1, \tilde{\psi}_2$. This problem can be decoupled into inverse problems for H_1 and H_2 by defining:

$$H_1 | \psi_1 \rangle = Q_1 | z \rangle \quad H_2 | \psi_2 \rangle = Q_2 | w \rangle .$$

The inverse problems for H_1, H_2 have been solved in Ref. 66.

FIG. 5. Example of a $U = (2, 1)$ CLS FB network and $\nu = 3$. (a) Tight binding lattice with two hopping matrices. Lines indicate nonzero hoppings, filled circles show the position of a CLS. a_n, b_n, c_n indicate the sites in one unit cell. See Appendix B1 for details. (b) Band structure corresponding to (a).
D. \(\mathbf{U} = (2, 2, 1) \)

A schematic of the CLS and destructive interference conditions for this case are shown in Fig. 3(d) and Fig. 4(d) for the two and three hopping matrices respectively.

1. Two hopping matrices

The case of two hopping matrices and an arbitrary number of bands can be resolved following a similar derivation as for \(\mathbf{U} = (2, 1) \), however the solution is cumbersome. Therefore for simplicity we focus on the specific case of \(\nu = 3 \) bands. We can consider two cases: (a) the CLS amplitudes are linearly independent, or (b) the CLS amplitudes are dependent. The latter case includes the known cases of the Lieb\cite{lieb1961} and Tasaki\cite{tasaki1988, tasaki1989} lattices.

Case (a) has one of the destructive interference conditions reading \(\langle \psi_3 | H_1 + \langle \psi_2 | H_2 = 0 \). For \(\nu = 3 \) the number of components of each of the vectors \(\Psi_{1,2,3} \) is also equal to three. Therefore it is straightforward to show that the destructive interference condition splits into two:

\[
\langle \psi_3 | H_1 = \langle \psi_2 | H_2 = 0. \tag{14}
\]

Then the eigenvalue problem Eq. (7) reads

\[
\begin{align*}
H_1 \psi_2 + H_2 \psi_3 &= (E_{FB} - H_0) \psi_1, \\
H_1^\dagger \psi_2 &= (E_{FB} - H_0) \psi_2, \\
H_2^\dagger \psi_2 &= (E_{FB} - H_0) \psi_3, \\
H_1 \psi_3 &= H_1^\dagger \psi_3 = H_2^\dagger \psi_3 = 0, \\
H_2 \psi_2 &= H_2^\dagger \psi_2 = 0.
\end{align*} \tag{15}
\]

We eliminate \(H_1, H_2 \) from the eigenproblem and obtain the nonlinear constraints on the CLS amplitudes:

\[
\begin{align*}
\langle \psi_2 | H_0 | \psi_1 \rangle &= E_{FB} \langle \psi_2 | \psi_1 \rangle, \\
\langle \psi_3 | H_0 | \psi_1 \rangle &= E_{FB} \langle \psi_3 | \psi_1 \rangle, \\
\langle \psi_3 | H_0 | \psi_2 \rangle &= E_{FB} \langle \psi_3 | \psi_2 \rangle, \\
\langle \psi_2 | E_{FB} - H_0 | \psi_2 \rangle &= \langle \psi_3 | E_{FB} - H_0 | \psi_3 \rangle \\
&= \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle. \\
\end{align*} \tag{16}
\]

Finally we obtain the hopping matrices:

\[
\begin{align*}
H_1 &= \frac{\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle \langle \psi_2 | (E_{FB} - H_0) \psi_2 \rangle}{\langle \psi_1 | (E_{FB} - H_0) \psi_1 \rangle}, \\
H_2 &= \frac{\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle \langle \psi_3 | (E_{FB} - H_0) \psi_3 \rangle}{\langle \psi_1 | (E_{FB} - H_0) \psi_1 \rangle}. \\
\end{align*} \tag{17}
\]

Case (b) assumes \(\psi_{i=1,2,3} \) to be linearly dependent

\[
| \psi_1 \rangle = \alpha | \psi_2 \rangle + \beta | \psi_3 \rangle. \tag{18}
\]

This yields the following solution (see details in Appendix B2):

\[
\begin{align*}
H_1 &= \frac{Q_2 |a\rangle \langle \psi_2 | (E_{FB} - H_0) |a\rangle}{\langle \psi_3 | Q_2 |a\rangle}, \\
H_2 &= \frac{Q_3 |b\rangle \langle \psi_3 | (E_{FB} - H_0) |b\rangle}{\langle \psi_2 | Q_3 |b\rangle},
\end{align*} \tag{19}
\]

where \(|a\rangle, |b\rangle \) are arbitrary vectors, and \(E_{FB}, H_0, \psi_2, \psi_3 \) are chosen respecting the constraints

\[
\begin{align*}
\langle \psi_2 | E_{FB} - H_0 | \psi_2 \rangle &= 0, \\
\langle \psi_3 | E_{FB} - H_0 | \psi_3 \rangle &= 0, \\
\langle \psi_3 | E_{FB} - H_0 | \psi_2 \rangle &= 0, \\
\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle &= 0.
\end{align*} \tag{20}
\]

Equations (19, 20, 18) provide a complete solution to this special \(\mathbf{U} = (2, 2, 1) \) case with \(\nu = 3 \) bands. The known examples such as Lieb lattice and Tasaki’s lattice can be constructed from our generator as demonstrated in Appendix B2. Figure 6(a,b) shows one generated example (see details in Appendix B2).

2. Three hopping matrices

The configuration of this case is shown in Fig. 4(d). The eigenvalue problem and the destructive interference
E. \(U = (2, 2, 0) \)

The CLS and destructive interference conditions for the case of two hopping matrices and the square shaped CLS are shown in Fig. 3(e). For simplicity we restrict ourselves to three bands and use a direct parameterization of the CLS amplitudes \(\psi \) to solve Eq. (7). The full analytical solution is reported in Appendix B3. There are three free parameters in this solution, and Fig. 7 shows an example FB Hamiltonian for this case.

To conclude we note that the increased complexity of the equations (7-8) for fully 2D shapes as compared to the 1D case is an expected and generic feature. However while it does not seem to be possible to work out full solutions in general – the nonlinear constraints on the amplitudes and complex destructive interference conditions typically being the main obstacle – we believe that such solutions can be found in individual cases.

V. CONCLUSIONS

In this work, we extended the systematic 1D flatband generator\(^6\) to two dimensions. Two important additional classifiers have been identified and added to make the 2D generator complete. First, we need to specify the underlying Bravais lattice class. Second and most importantly we need to specify the shape of the compact localized states at otherwise fixed CLS plaquette size. We derived analytical solutions for a number of different FB classes, and reproduced some of the well-known FB lattices: Lieb, Tasaki, kagome and checkerboard, along with a number of new 2D FB lattice examples. Our generator results in the possibility of counting free continuously variable parameters after fixing one particular 2D FB class. These existing parameters demonstrate that FB Hamiltonians, while being fine-tuned models, emerge as members of finite dimensional Hamiltonian manifolds with an additional rich structure. Our results can be straightforwardly extended to larger compact localized states in 2D, and also to 3D cases, no matter how cumbersome the derivations could turn. Therefore our FB generator provides a direct way to search for flatbands for fixed lattice geometries in any lattice dimension.

ACKNOWLEDGMENTS

This work was supported by the Institute for Basic Science in Korea (IBS-R024-D1).

Appendix A: \(\nu = 2 \) and \(H_3 = 0 \)

We consider two bands and \(H_3 = 0 \) and demonstrate that any possible flatbands always either reduce to class \(U = 1 \) or decouple into 1D networks.

First we consider the \(U = (2, 1) \) case in Fig. 3(b). The eigenvalue problem and the destructive interference conditions (7) read

\[
\begin{align*}
H_0 \psi_1 + H_1 \psi_2 &= E_{\text{FB}} \psi_1, \\
H_0 \psi_2 + H_1 \psi_1 &= E_{\text{FB}} \psi_2, \\
H_1 \psi_1 &= H_1^0 \psi_1 = 0, \\
H_2 \psi_s &= H_2^0 \psi_s = 0, \quad s = 1, 2.
\end{align*}
\]

(A1)

The last line enforces that either (i) \(H_2 = 0 \) or (ii) \(\psi_2 \propto \psi_1 \). Case (i) reduces the system to a set of disconnected 1D networks which were completely studied in Ref. 65. Case (ii) yields that \(\psi_{1,2} \) are eigenvectors to \(H_0 \) (up to a normalization factor) and form a complete \(U = 1 \) CLS, and the considered \(U = (2, 1) \) case reduces to a linear combination of two \(U = 1 \) CLS states.
For the \(U = (2, 2, 0) \) case in Fig. 3(e) the destructive interference conditions in Eq. (7) read
\[
H_1 \psi_1 = H_1 \psi_3 = 0, \quad H_1 \psi_2 = 0, \quad H_2 \psi_1 = H_2 \psi_2 = 0, \quad H_1 \psi_3 + H_2 \psi_2 = 0.
\]

(A2)

The first line enforces that either (i) \(H_1 = 0 \) or (ii) \(\psi_1 \propto \psi_3 \). Case (i) reduces the system to disconnected 1D networks. The third line results in (iia) \(H_2 = 0 \) or (iib) \(\psi_2 \propto \psi_1 \). Case (iia) reduces the system to disconnected 1D networks. Case (iib) implies \(\psi_4 \propto \psi_1 \) and reduces the problem to \(U = 1 \).

The case \(U = (2, 2, 1) \) shown in Fig. 3(d) yields the following destructive interference conditions:
\[
H_1 \psi_1 = H_1 \psi_3 = 0, \quad H_1 \psi_2 = 0, \quad H_2 \psi_1 = H_2 \psi_2 = 0, \quad H_1 \psi_3 + H_2 \psi_2 = 0.
\]

(A3)

The first line enforces that either (i) \(H_1 = 0 \) or (ii) \(\psi_3 \propto \psi_1 \). Case (i) reduces the system to disconnected 1D networks. The third line results in (iia) \(H_2 = 0 \) or (iib) \(\psi_2 \propto \psi_1 \). Case (iia) reduces the system to disconnected 1D networks. Case (iib) reduces the problem to \(U = 1 \).

The case \(U = (2, 2, 2) \) shown in Fig. 3(c) is slightly more involved. The eigenproblem in this case reads:
\[H_0 \psi_{1,2} = E_{FB} \psi_{1,2}. \]

There are two possible solutions: (i) \(\psi_2 \propto \psi_1 \) or (ii) \(H_0 = E_{FB} \) and \(\psi_2 \perp \psi_1 \). Case (i) reduces the system to \(U = 1 \). In case (ii) we consider the destructive interference conditions
\[
H_1 \psi_1 = H_2 \psi_1 = 0, \quad H_1 \psi_2 = 0, \quad H_1 \psi_2 + H_2 \psi_1 = 0.
\]

From the first two lines and orthogonality of \(\psi_{1,2} \) we conclude that \(H_{1,2} \propto |\psi_1 \rangle \langle \psi_2| \). However this is incompatible with the remaining two destructive interference conditions as verified by direct substitution and taking into account the mutual orthogonality of \(\psi_{1,2} \).

Appendix B: FB generation for two hopping matrices and \(\nu \geq 3 \)

1. \(U = (2, 1) \)

From Eq. (7), we get the eigenvalue problem and destructive interference conditions
\[
H_1 |\psi_2 \rangle = (E_{FB} - H_0) |\psi_1 \rangle, \quad \langle \psi_1 | H_1 = \langle \psi_1 | (E_{FB} - H_0),
\]
\[
H_1 |\psi_1 \rangle = H_2 |\psi_2 \rangle = H_2 |\psi_2 \rangle = 0, \quad \langle \psi_2 | H_1 = \langle \psi_1 | H_2 = \langle \psi_2 | H_2 = 0. \quad \text{(B1)}
\]

Since \(H_2 \) only appears in the destructive interference conditions, we can express it as \(H_2 = Q_1 M_2 Q_1 \) where \(M_2 \) is an arbitrary \(\nu \times \nu \) matrix. The remaining problem is identical to the 1D problem discussed in our previous work\(^{55}\) so that we only sketch the solution. Using the destructing interference conditions, we eliminate \(H_1 \) from the eigenvalue problem and find the following nonlinear constraints on the CLS
\[
\langle \psi_2 | E_{FB} - H_0 | \psi_1 \rangle = 0, \quad \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle = \langle \psi_2 | E_{FB} - H_0 | \psi_2 \rangle. \quad \text{(B2)}
\]

The destructive interference conditions suggest the following ansatz \(H_1 = Q_2 |u \rangle \langle v| Q_1 \), where \(|u \rangle, |v \rangle \) are vectors to be fixed. Plugging this ansatz into Eq. (B1) we find the vectors \(\vec{u}, \vec{v} \) and the final expression for \(H_1 \)
\[
H_1 = \frac{(E_{FB} - H_0) |\psi_2 \rangle \langle \psi_2| E_{FB} - H_0}{\langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle}. \quad \text{(B3)}
\]

a. \(\nu = 3 \) example

We choose \(H_0 \) and we parameterise the CLS amplitudes and \(H_2 \) as follows
\[
H_0 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \psi_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad \psi_2 = \begin{pmatrix} d \\ e \\ f \end{pmatrix}, \quad H_2 = Q_1 |u \rangle \langle v| Q_1, \quad \vec{u} = (u_1, u_2, u_3), \quad \vec{v} = (v_1, v_2, v_3).
\]

The nonlinear constraints (B2) yield \(b = -\sqrt{2} f, d = f, c = e = 0 \). Then it follows that
\[
H_1 = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \\ -\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix},
\]
\[
H_2 = \begin{pmatrix} \sqrt{2} A f^2 & af & -\sqrt{2} A f^2 \\ af & \frac{a^2}{\sqrt{2}} & -af \\ -\sqrt{2} A f^2 & -af & \sqrt{2} A f^2 \end{pmatrix},
\]
where
\[
A = \frac{\sqrt{2}au_2 + 2f(u_1 - u_3)}{(a^2 + 4f^2)^2} \left(av_2 + 2f(v_1 - v_3) \right).
\]

The FB energy \(E_{FB} \) is then obtained from the first nonlinear constraint \((B2)\).

The specific lattice structure of the Hamiltonian in Fig. 5(a) corresponds to the following choices of free parameters:
\[
x_3 = x_1, y_3 = y_1, x_2 = 1, y_2 = 5, u_3 = u_1,
v_3 = v_1, u_2 = 1, v_2 = -5, f = -1, a = 1.
\]

The hopping matrices and CLS amplitudes read
\[
H_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} & 1 & -1 \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix},
\]
\[
H_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix},
\]
\[
\vec{\psi}_1 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 0 \end{pmatrix}, \quad \vec{\psi}_2 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}.
\]

2. The \(U = (2, 2, 1) \) case and \(\nu = 3 \)

The eigenvalue problem and destructive interference conditions in Eq. (7) become
\[
H_1 \vec{\psi}_2 + H_2 \vec{\psi}_3 = (E_{FB} - H_0) \vec{\psi}_2,
\]
\[
H_1^\dagger \vec{\psi}_2 = (E_{FB} - H_0) \vec{\psi}_2,
\]
\[
H_2^\dagger \vec{\psi}_3 = (E_{FB} - H_0) \vec{\psi}_3,
\]
\[
H_1^\dagger \vec{\psi}_1 = H_1^\dagger \vec{\psi}_2 = H_1^\dagger \vec{\psi}_3 = 0,
\]
\[
H_2^\dagger \vec{\psi}_1 = H_2^\dagger \vec{\psi}_2 = H_2^\dagger \vec{\psi}_3 = 0.
\]

Using the destructive interference conditions, we eliminate \(H_1, H_2 \) from the eigenproblem and obtain the nonlinear constraints on the CLS amplitudes:
\[
\begin{aligned}
\langle \psi_2 | H_0 | \psi_1 \rangle &= E_{FB} \langle \psi_2 | \psi_1 \rangle, \\
\langle \psi_3 | H_0 | \psi_1 \rangle &= E_{FB} \langle \psi_3 | \psi_1 \rangle, \\
\langle \psi_3 | H_0 | \psi_2 \rangle &= E_{FB} \langle \psi_3 | \psi_2 \rangle, \\
\langle \psi_2 | E_{FB} - H_0 | \psi_2 \rangle + \langle \psi_3 | E_{FB} - H_0 | \psi_3 \rangle &= \langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle.
\end{aligned}
\]

a. Linearly independent CLS components

In this case, as explained in the main text, the destructive interference condition involving both \(H_1 \) and \(H_2 \) decouples into two separate conditions. Then the eigenvalue problem Eq. (B4) reads
\[
\begin{aligned}
H_1 \vec{\psi}_2 + H_2 \vec{\psi}_3 &= (E_{FB} - H_0) \vec{\psi}_2, \\
H_1^\dagger \vec{\psi}_2 &= (E_{FB} - H_0) \vec{\psi}_2, \\
H_2^\dagger \vec{\psi}_3 &= (E_{FB} - H_0) \vec{\psi}_3, \\
H_1^\dagger \vec{\psi}_1 &= H_1^\dagger \vec{\psi}_2 = H_1^\dagger \vec{\psi}_3 = 0, \\
H_2^\dagger \vec{\psi}_1 &= H_2^\dagger \vec{\psi}_2 = H_2^\dagger \vec{\psi}_3 = 0.
\end{aligned}
\]

The nonlinear constraints on the amplitudes of the CLS are given by the same Eq. (B5). Assuming that the nonlinear constraints are resolved, we provide below the solution to Eq. (B6). We use the following single projector choices \(H_1 = Q_{23} |x\rangle \langle y| Q_{13} \) and \(H_2 = Q_{23} |\psi\rangle \langle \psi| Q_{12} \), where the transverse projectors are enforced by the destructive interference conditions. Plugging in these expressions into the eigenproblem (B6) and using the nonlinear constraints we find the hopping matrices:
\[
\begin{aligned}
H_1 &= \frac{\langle E_{FB} - H_0 | \psi_1 \rangle \langle \psi_2 | (E_{FB} - H_0) \psi_1 \rangle}{\langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle}, \\
H_2 &= \frac{\langle E_{FB} - H_0 | \psi_1 \rangle \langle \psi_3 | (E_{FB} - H_0) \psi_1 \rangle}{\langle \psi_1 | E_{FB} - H_0 | \psi_1 \rangle}.
\end{aligned}
\]

b. Linearly dependent CLS components

The linear dependence of the CLS amplitudes \(\vec{\psi}_1, \vec{\psi}_2, \vec{\psi}_3 \) reads
\[
|\psi_1\rangle = \alpha |\psi_2\rangle + \beta |\psi_3\rangle.
\]

This CLS is not necessarily reducible to the \(U = 1 \) class as long as the amplitudes are not all mutually proportional: For example, the Lieb lattice falls under the \(U = (2, 2, 1) \) case and has \(\vec{\psi}_1 = \vec{\psi}_2 + \vec{\psi}_3 \). The constraints on the CLS (B5) in this case become
\[
\begin{aligned}
\langle \psi_2 | E_{FB} - H_0 | \psi_2 \rangle &= 0, \\
\langle \psi_3 | E_{FB} - H_0 | \psi_3 \rangle &= 0, \\
\langle \psi_3 | E_{FB} - H_0 | \psi_0 \rangle &= 0,
\end{aligned}
\]

\[
(E_{FB} - H_0)(\alpha |\psi_2\rangle + \beta |\psi_3\rangle) = 0.
\]

For the given \(E_{FB}, H_0 \) and CLS amplitudes, satisfying the above constraints, the eigenvalue problem and destructive interference conditions (B4) become
\[
\begin{aligned}
\beta \langle \psi_3 | H_1 &= \langle \psi_2 | (E_{FB} - H_0) \langle \psi_3 | (E_{FB} - H_0) \rangle, \\
\alpha \langle \psi_2 | H_2 &= \langle \psi_3 | (E_{FB} - H_0) \rangle, \\
H_1 |\psi_2\rangle &= H_1 |\psi_3\rangle = 0, \\
H_2 |\psi_2\rangle &= H_2 |\psi_3\rangle = 0,
\end{aligned}
\]

\[
\langle \psi_2 | H_1 = 0, \\
\langle \psi_3 | H_2 = 0.
\]

These are two decoupled inverse eigenvalue problems for \(H_1 \) and \(H_2 \) that we resolve in the same way as before.\(^{16}\)
The hopping matrices read

\[H_1 = \frac{Q_2 |u\rangle \langle \psi_2| (E_{FB} - H_0) \langle \psi_3|Q_2|u\rangle}{\langle \psi_3|Q_2|u\rangle}, \]
\[H_2 = \frac{Q_3 |v\rangle \langle \psi_3| (E_{FB} - H_0) \langle \psi_2|Q_3|v\rangle}{\langle \psi_2|Q_3|v\rangle}, \]

where \(E_{FB} \), \(H_0, \tilde{u} = (u_1, u_2, u_3), \tilde{v} = (v_1, v_2, v_3) \) are free parameters; \(\tilde{\psi}_1, \tilde{\psi}_2 \) are constrained by Eq. (B9) while \(\tilde{u} \) should not be proportional to \(\tilde{\psi}_2 \), and \(\tilde{v} \) should not be proportional to \(\tilde{\psi}_3 \).

\paragraph{c. Three band examples for the linearly dependent case}

We choose \(H_0 \) and parameterise the CLS amplitudes as follows

\[H_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \epsilon \end{pmatrix}, \quad \psi_2 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad \psi_3 = \begin{pmatrix} e \\ f \\ g \end{pmatrix}. \quad (B12) \]

The Lieb lattice is recovered for the following choices of parameters:

\[b = \frac{a\sqrt{\epsilon}}{\sqrt{2}}, \quad f = \frac{-ia\sqrt{\epsilon}}{\beta\sqrt{2}}, \quad g = -\frac{a\alpha}{\beta\sqrt{2}}; \]
\[c = \frac{a}{\sqrt{2}}, \quad e = a, \quad \theta = -\frac{\pi}{2}, \quad \phi = \frac{3\pi}{4}; \]
\[\varphi = -\frac{\pi}{4}, \quad \epsilon = -1, \quad \alpha = \frac{a}{\sqrt{2}}, \quad \beta = \alpha. \]

Then the CLS amplitudes are given by

\[\psi_2' = \begin{pmatrix} 0 \\ -\sqrt{2a} \\ 0 \end{pmatrix}, \quad \psi_3' = \begin{pmatrix} 0 \\ 0 \\ \sqrt{2a} \end{pmatrix}, \quad \psi_1' = \alpha \begin{pmatrix} 0 \\ -\sqrt{2a} \end{pmatrix}. \]

With the choice \(\theta = -\frac{\pi}{2}, \phi = \frac{3\pi}{4}, \epsilon = -1 \) it follows

\[H_0' = \begin{pmatrix} 0 & \sin(\varphi) & \cos(\varphi) \\ \sin(\varphi) & 0 & 0 \\ \cos(\varphi) & 0 & 0 \end{pmatrix}. \]

The hopping matrices \(H_1', H_2' \) are given by Eq. (B11):

\[H_1' = \begin{pmatrix} -\frac{u_1 \sin(\varphi)}{\alpha} & 0 & 0 \\ 0 & 0 & 0 \\ -\frac{\sin(\varphi)}{\alpha} & 0 & 0 \end{pmatrix}, \quad H_2' = \begin{pmatrix} \frac{u_1 \cos(\varphi)}{\alpha} & 0 & 0 \\ 0 & 0 & 0 \\ \frac{\cos(\varphi)}{\alpha} & 0 & 0 \end{pmatrix}. \]

The above hopping matrices correspond to the family of Tasaki lattices. For \(u_1 = v_1 = 0 \), we retrieve the hopping matrices of the Lieb lattice family.

\[a. \text{The Tasaki and Lieb lattice families} \]

Here we demonstrate how the Lieb lattice with a flat band at \(E_{FB} = 0 \) enforced by the chiral symmetry, and the related Tasaki lattice are derived from our solution. The nonlinear constraints (B9) give

\[\psi_2 = \begin{pmatrix} a \\ e \sqrt{\epsilon}(\pm i) \end{pmatrix}, \quad \psi_3 = \begin{pmatrix} e \\ g \sqrt{\epsilon}(\pm i) \end{pmatrix} \]

To reproduce the Lieb lattice Hamiltonian the following unitary transformation is used

\[H_0' = UH_0U^\dagger, \quad \psi_2' = U\psi_2, \quad \psi_3' = U\psi_3 \]

where

\[U = \begin{pmatrix} \cos(\theta) \cos(\varphi) & \cos(\theta) \sin(\varphi) \sin(\phi) - \sin(\theta) \cos(\phi) & \cos(\theta) \sin(\varphi) \cos(\phi) + \sin(\theta) \sin(\phi) \\ \sin(\theta) \cos(\varphi) & \sin(\theta) \sin(\varphi) \sin(\phi) + \cos(\theta) \cos(\phi) & \sin(\theta) \sin(\varphi) \cos(\phi) - \cos(\theta) \sin(\phi) \\ -\sin(\varphi) & \cos(\theta) \sin(\phi) & \cos(\varphi) \sin(\phi) \end{pmatrix} \]

\[b. \text{Obtaining the example in Fig. 6(a,b)} \]

We choose \(E_{FB} = \epsilon, \epsilon \neq 0, 1 \) and find

\[a = \frac{-b\sqrt{-f^2(\epsilon - 1)}}{f \sqrt{\epsilon}}, \quad e = -\frac{\sqrt{f^2 - f^2 \epsilon}}{\sqrt{\epsilon}}, \quad \beta = -\frac{ab}{f}. \]

Then Eq. (B11) yields the following solution

\[\psi_2 = \begin{pmatrix} -\frac{bD}{f \sqrt{\epsilon}} \\ b \\ \frac{\epsilon D}{f} \end{pmatrix}, \quad \psi_3 = \begin{pmatrix} -\frac{\epsilon D}{f} \\ \frac{\epsilon D}{f} \end{pmatrix}, \quad \psi_1 = \alpha \psi_2 + \beta \psi_3. \]
where
\[D = \sqrt{-f^2(\epsilon - 1)}, \]
\[A = \alpha(cf - bg) (bf u_3 + cD u_1 \sqrt{\epsilon} - cf u_2 \epsilon), \]
\[B = \beta^2 \left(D u_2 + f u_1 \sqrt{\epsilon} \right) + bcD u_3 + c^2 f u_1 \sqrt{\epsilon}, \]
\[C = \beta^2 \left(D u_1 \sqrt{\epsilon} + f u_2 (1 - \epsilon) \right) - bc f u_3 \epsilon + c^2 f u_2 \epsilon, \]
\[F = \alpha(cf - bg) \left(D g v_1 \sqrt{\epsilon} + f^2 v_3 - f g v_2 \epsilon \right), \]
\[G = D f v_2 + g \left(D v_3 + g v_1 \sqrt{\epsilon} \right) + f^2 v_1 \sqrt{\epsilon}, \]
\[H = D f v_1 \sqrt{\epsilon} + f^2 (v_2 - v_2 \epsilon) - f g v_3 \epsilon + g^2 v_2 \epsilon. \]

We use the following parameter values:
\[u_1 = 0, u_2 = 0, u_3 = 2, \alpha = 1, \beta = 1, v_1 = 0, v_2 = 0, \]
\[v_3 = 1, a = 0, b = -1, g = 0, \epsilon = \frac{1}{2}, c = 2, f = -1, \]

finding the CLS and hopping matrices
\[\psi_2 = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}, \psi_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \psi_1 = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}, \]
\[H_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}, H_1 = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}, H_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 \end{pmatrix}. \]

The lattice structure and band structure corresponding to the above hopping matrices is shown in Fig. 6(a,b).

3. The \(U = (2, 2, 0) \) case with three bands

Putting the values \(U_2 = 2, s = 0 \) to Eq. (7), we find the following eigenvalue problem
\[H_1 \psi_{2,1} + H_2 \psi_{1,2} = (E_{FB} - H_0) \psi_{1,1}, \]
\[H_1^\dagger \psi_{1,1} + H_2 \psi_{2,2} = (E_{FB} - H_0) \psi_{2,1}, \]
\[H_3 \psi_{2,2} + H_3^\dagger \psi_{1,1} = (E_{FB} - H_0) \psi_{1,2}, \]
\[H_3 \psi_{1,2} + H_3^\dagger \psi_{2,1} = (E_{FB} - H_0) \psi_{2,2}, \]
and destructive interference conditions
\[H_1 \psi_{1,1} = H_1^\dagger \psi_{1,2} = H_2 \psi_{2,1} = H_2^\dagger \psi_{2,2} = 0, \]
\[H_1^\dagger \psi_{2,1} = H_2^\dagger \psi_{2,2} = H_2^\dagger \psi_{1,2} = H_2^\dagger \psi_{1,2} = 0. \]

We assume that \(H_1, H_2 \) have two zero modes and parameterize the hopping matrices \(H_1, H_2 \) in the following way:
\[H_1 = |x\rangle \langle y| = \begin{pmatrix} ad & ae & af \\ bd & be & bf \\ cd & ce & cf \end{pmatrix}, \]
\[H_2 = |u\rangle \langle v| = \begin{pmatrix} gr & gs & gt \\ hr & hs & ht \\ lr & ls & lt \end{pmatrix}. \]

where
\[|x\rangle = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, |y\rangle = \begin{pmatrix} d \\ e \\ f \end{pmatrix}, |u\rangle = \begin{pmatrix} g \\ h \\ l \end{pmatrix}, |v\rangle = \begin{pmatrix} r \\ s \\ t \end{pmatrix}. \]

The zero more of \(H_1, H_2 \) are given by (the top two lines correspond to \(H_1 \), the bottom two to \(H_2 \); in every raw the first two elements are the right eigenvectors, while the last two are the left ones)
\[\begin{pmatrix} -f \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -e \\ d \\ 0 \end{pmatrix}, \begin{pmatrix} -c \\ 0 \\ a \end{pmatrix}, \begin{pmatrix} -b \\ 0 \\ a \end{pmatrix}, \begin{pmatrix} -t \\ 0 \\ r \end{pmatrix}, \begin{pmatrix} -l \\ 0 \\ g \end{pmatrix}. \]

Next we enforce the constraints on \(H_1, H_2 \) and the CLS amplitudes by the destructive interference conditions (B14). Since \(\psi_{1,1} \) is the right zero eigenmode of both \(H_1 \) and \(H_2 \), it has to be perpendicular to both \(\vec{y} \) and \(\vec{v} \), or equivalently it is parallel to the cross product of \(\vec{y} \) and \(\vec{v} \) and also parallel to one of the right zero eigenvectors of \(H_1, H_2 \):
\[\vec{\psi}_{1,1} = \alpha (y \times v) \parallel \begin{pmatrix} -f \\ 0 \\ d \end{pmatrix} \parallel \begin{pmatrix} -l \\ 0 \\ r \end{pmatrix}, \]

where we have introduced the proportionality factor \(\alpha \), that we set to 1 for convenience. Treating the other CLS amplitudes in the same way (and setting the proportionality factors to 1 as well) we arrive at the following set of constraints on the elements of the CLS amplitudes:
\[t = f, b = s, e = h, c = l, \]
\[d = r = a = g. \quad (B17) \]

Then the expressions for all \(\psi \) reduce to the following equations:
\[\psi_1 = \begin{pmatrix} -bf + ef \alpha \\ 0 \\ (ab - ae) \alpha \end{pmatrix} = \alpha' \begin{pmatrix} -f \\ 0 \\ a \end{pmatrix}, \]
\[\psi_2 = \begin{pmatrix} -bc + bf \beta \\ 0 \\ (ac - af) \beta \end{pmatrix} = \beta' \begin{pmatrix} -b \\ 0 \\ a \end{pmatrix}, \]
\[\psi_3 = \begin{pmatrix} -ce - ef \gamma \\ 0 \\ (bc - ce) \gamma \end{pmatrix} = \gamma' \begin{pmatrix} -e \\ 0 \\ a \end{pmatrix}, \]
\[\psi_4 = \begin{pmatrix} -ac + af \eta \\ 0 \\ (ab + ae) \eta \end{pmatrix} = \eta' \begin{pmatrix} -c \\ 0 \\ a \end{pmatrix}, \]

where \(\alpha', \beta', \gamma', \eta' \) are given by
\[\alpha' = (b - e) \alpha, \beta' = (c - f) \beta, \gamma' = -c \gamma + f \gamma, \eta' = -b \eta + e \eta. \]
We can set one of the pre-factors to 1: we choose $\eta = 1$. Then Eq. (B18) becomes

\[
\psi_1 = \begin{pmatrix}
-(b - e)f\alpha \\
0 \\
(a(b - e)\alpha)
\end{pmatrix}, \quad \psi_2 = \begin{pmatrix}
-b(c - f)\beta \\
\alpha(c - f)\beta \\
0
\end{pmatrix}, \\
\psi_3 = \begin{pmatrix}
-e(-c\gamma + f\gamma) \\
(a(-c\gamma + f\gamma)) \\
0
\end{pmatrix}, \quad \psi_4 = \begin{pmatrix}
-c(-b + e) \\
0 \\
(a(-b + e))
\end{pmatrix}.
\]

We choose H_0 as

\[
H_0 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \epsilon
\end{pmatrix}.
\]

Putting Eqs. (B17) and (B19) into Eq. (B16), we get the hopping matrices

\[
H_1 = \begin{pmatrix}
a^2 & ae & af \\
ab & be & bf \\
ac & ce & cf
\end{pmatrix}, \quad H_2 = \begin{pmatrix}
a^2 & ab & af \\
ac & be & ef \\
ac & be & cf
\end{pmatrix},
\]

The eigenvalue problem (B13) becomes

Assuming that $a \neq 0, c \neq f, b \neq e$ we solve the above equations (according to Eqs. (B18-B19) $a = 0$ makes the $\psi_{i=1,...,4}$ proportional, i.e. we find $U = 1$ CLS; while $c \neq f, b \neq e$ enforces $\psi_{i=1,...,4} = 0$). Setting $a = 1$ for convenience the solution is

\[
b = \frac{\text{sgn}(E_{FB})\sqrt{2}(E_{FB} - 1)|1 + \alpha|}{\sqrt{-\sqrt{-\alpha(1 - E_{FB})^2 E_{FB}^2 (4(1 + \alpha)^2 - \alpha E_{FB}^2) + (E_{FB} - 1)E_{FB} (\alpha E_{FB}^2 - 2(1 + \alpha)^2)}}},
\]

\[
c = \frac{\sqrt{-\alpha(1 - E_{FB})^2 E_{FB}^2 (4(1 + \alpha)^2 - \alpha E_{FB}^2) + (E_{FB} - 1)E_{FB} (\alpha E_{FB}^2 - 2(1 + \alpha)^2)}}{\sqrt{\alpha E_{FB}^2 - \epsilon}},
\]

\[
e = \frac{\sqrt{\alpha E_{FB}^2 - \epsilon}}{\sqrt{E_{FB}^2}}.
\]

\[
\beta = \frac{-\alpha(1 - E_{FB}) E_{FB}^3 + \sqrt{-\alpha(1 - E_{FB})^2 E_{FB}^2 (4(1 + \alpha)^2 - \alpha E_{FB}^2) + (E_{FB} - 1)E_{FB} (\alpha E_{FB}^2 - 2(1 + \alpha)^2)}}{2(1 + \alpha)(E_{FB} - 1)E_{FB}^2},
\]

\[
\gamma = \frac{-\alpha(1 - E_{FB}) E_{FB}^3 + \sqrt{-\alpha(1 - E_{FB})^2 E_{FB}^2 (4(1 + \alpha)^2 - \alpha E_{FB}^2) + (E_{FB} - 1)E_{FB} (\alpha E_{FB}^2 - 2(1 + \alpha)^2)}}{2(1 + \alpha)(E_{FB} - 1)E_{FB}^2}.
\]

Plugging these solutions into Eq. (B20) we get the following hopping matrices

\[
H_1 = \begin{pmatrix}
1 & -\frac{\sqrt{2}(E_{FB} - 1)}{E_{FB}} \frac{B}{\sqrt{2}} & -\frac{\sqrt{2}(E_{FB} - 1)}{E_{FB}} \frac{\sqrt{\alpha E_{FB}^2 - \epsilon}}{\sqrt{E_{FB}}} \\
\frac{\sqrt{2}(E_{FB} - 1)}{E_{FB}} & 1 & -\frac{\sqrt{2}(E_{FB} - 1)}{E_{FB}} \frac{\sqrt{\alpha E_{FB}^2 - \epsilon}}{\sqrt{E_{FB}}} \\
-\frac{\sqrt{2}(E_{FB} - 1)}{E_{FB}} \frac{\sqrt{\alpha E_{FB}^2 - \epsilon}}{\sqrt{E_{FB}}} & -\frac{\sqrt{2}(E_{FB} - 1)}{E_{FB}} \frac{\sqrt{\alpha E_{FB}^2 - \epsilon}}{\sqrt{E_{FB}}} & \frac{1}{E_{FB} - 1}
\end{pmatrix}.
\]
where we have introduced two arbitrary vectors \vec{a} and \vec{b}.

Then the last two equations (C1) become:

$$Q_1M_3^\dagger Q_2|x\rangle = -Q_2M_2Q_1|y\rangle = -Q_{12}|a\rangle,$$
$$\langle y|Q_2M_3^\dagger Q_1 = -\langle x|Q_2M_2Q_1 = -Q_{12}|b\rangle,$$

where we have introduced two arbitrary vectors \vec{a} and \vec{b}.

For two bands $\nu = 2$ the above equations imply that the last two conditions in (C1) decouple, and therefore the problem reduces to $U = 1$ as in the case of two hopping matrices. For the number of bands $\nu > 2$ the problem of finding H_3 and H_2 reduces to two independent inverse eigenvalues problems: one for M_2 (H_2)

$$Q_2M_2Q_1|y\rangle = Q_{12}|a\rangle,$$
$$\langle x|Q_2M_2Q_1 = Q_{12}|b\rangle,$$

and a similar problem for the matrix M_3 (H_3). This is a linear problem: we search for a particular solution as

$$Q_2M_2Q_1 = |u\rangle \langle y| + |x\rangle \langle v|,$$

where we choose the overlined vectors so that: $|\overline{y}| \propto |x\rangle$, $|\overline{y}|x\rangle = 1$ and $\langle \overline{y}|y\rangle = 1$. We also assume that $\vec{u} \perp \vec{x}$ and $\vec{v} \perp \vec{y}$. We find upon substitution of the ansatz into the inverse problem:

$$Q_2|u\rangle = Q_{12}|a\rangle,$$
$$\langle v|Q_1 = \langle b|Q_{12}.$$

These \vec{u} and \vec{v} have the assumed previously orthogonality properties. It then follows that the full solution of (??) is given by:

$$H_2 = Q_{12}|a\rangle \langle y| + Q_2|\vec{x}\rangle \langle b|Q_{12} + Q_{12}K_2Q_{12}.$$

The inverse problem for H_3 is resolved the same way with minimal modifications.

1. $U = (2,1)$

This case is shown in Fig. 4(b). The eigenvalue problem and destructive interference conditions for H_1 Eq. (8) are identical to the case of two hopping matrices and are solved in Appendix B 1. The only difference are the destructive interference conditions for $H_{2,3}$:

$$H_2|\psi_1\rangle = H_3|\psi_1\rangle = 0$$
$$\langle \psi_1|H_2 = \langle \psi_2|H_3 = 0,$$

$$H_2|\psi_2\rangle + H_3^\dagger|\psi_1\rangle = 0,$$
$$\langle \psi_1|H_2 + \langle \psi_2|H_3^\dagger = 0.$$

(C1)

We define:

$$H_2 = Q_2M_2Q_3, \quad H_3 = Q_2M_3Q_1,$$

$$|x\rangle = Q_2|\psi_1\rangle, \quad |y\rangle = Q_1|\psi_2\rangle.$$

Then the last two equations (C1) become:

$$Q_1M_3^\dagger Q_2|x\rangle = -Q_2M_2Q_1|y\rangle = -Q_{12}|a\rangle,$$
$$\langle y|Q_2M_3^\dagger Q_1 = -\langle x|Q_2M_2Q_1 = -Q_{12}|b\rangle,$$

2. $U = (2,2,1)$ and $\nu = 2$

We choose the following H_0 and parameterise the CLS amplitudes as follows

$$H_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \psi_1 = \begin{pmatrix} p \\ r \end{pmatrix}, \quad \psi_2 = \begin{pmatrix} s \\ t \end{pmatrix}, \quad \psi_3 = \begin{pmatrix} u \\ v \end{pmatrix}.$$
Then one of the possible solutions of the eigenvalue problem (21) reads

\[
\begin{align*}
\alpha &= \frac{r(bp - s)}{s^2}, & \beta &= -\frac{bp}{r}, \\
\delta &= \frac{i\sqrt{b^2(p^2 + s^2)(r^2 - s^2) - 2bpr^2s + r^2s^2}}{s^2}, & \varepsilon &= 0, \\
\gamma &= -\frac{i(bp - s)\sqrt{b^2(p^2 + s^2)(r^2 - s^2) - 2bpr^2s + r^2s^2}}{bs^3}, \\
l &= u = 0, \\
h &= -i\sqrt{b^2(p^2 + s^2)(r^2 - s^2) - 2bpr^2s + r^2s^2}, \\
v &= -i\sqrt{b^2(p^2 + s^2)(r^2 - s^2) - 2bpr^2s + r^2s^2}, \\
e &= -i\sqrt{b^2(p^2 + s^2)(r^2 - s^2) - 2bpr^2s + r^2s^2}, \\
t &= r\left(\frac{1}{b} - \frac{p}{s}\right), & E_{\text{FB}} &= \frac{b(p^2 + s^2)}{rs}.
\end{align*}
\]

The corresponding hopping matrices become

\[
\begin{align*}
H_1 &= \begin{pmatrix} \frac{r(bp - s)}{s^2} & -\frac{p(bp - s)}{r^2} \\
\frac{a - \sqrt{b}}{s} & 0 \end{pmatrix}, \\
H_2 &= \begin{pmatrix} i\frac{A}{s} & -i\frac{A}{s^2} \\
0 & 0 \end{pmatrix}, & H_3 &= \begin{pmatrix} -i (bp - s)A & 0 \\
\frac{bs}{rs} & 0 \end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
\vec{\psi}_1 &= \left(\frac{p}{r}\right), & \vec{\psi}_2 &= \left(\frac{r(1 - \frac{p}{s})}{s}\right), & \vec{\psi}_3 &= \left(0, \frac{b}{s}\right),
\end{align*}
\]

where

\[
A = \sqrt{b^2(p^2 + s^2)(r^2 - s^2) - 2bpr^2s + r^2s^2}
\]

The network shown in Fig. 6(c,d) corresponds to the values \(p = 1, r = 1, b = 2, s = 1\) and

\[
\begin{align*}
H_1 &= \begin{pmatrix} 1 & -1 \\
2 & -2 \end{pmatrix}, & H_1 &= \begin{pmatrix} -\sqrt{2} & \sqrt{2} \\
0 & 0 \end{pmatrix}, \\
H_3 &= \begin{pmatrix} \sqrt{2} & 0 \\
\sqrt{2} & 0 \end{pmatrix}, & \psi_1 &= \left(\frac{1}{1}\right), & \psi_2 &= \left(\frac{1}{2}\right), & \psi_3 &= \left(0, \frac{\sqrt{2}}{2}\right).
\end{align*}
\]

It is straightforward to check that the well known tight-binding checkerboard lattice is included in the above solution. We choose \(H_0\) and the CLS amplitudes of the checkerboard model as input

\[
H_0 = \begin{pmatrix} 0 & b \\
0 & 0 \end{pmatrix}, & \psi_1 &= \left(\frac{a}{-a}\right), & \psi_2 &= \left(\frac{a}{0}\right), & \psi_3 &= \left(\frac{0}{-a}\right).
\]

The solution yields the checkerboard hopping matrices

\[
\begin{align*}
H_1 &= \begin{pmatrix} 0 & 0 \\
0 & 0 \end{pmatrix}, & H_2 &= \begin{pmatrix} b & b \\
0 & 0 \end{pmatrix}, & H_3 &= \begin{pmatrix} 0 & b \\
0 & 0 \end{pmatrix}.
\end{align*}
\]
Seabarrata Mukherjee and Robert R. Thomson, “Observation of localized flat-band states in a quasi-one-dimensional photonic rhombic lattice,” Opt. Lett. 42, 2243–2246 (2017).

Seabarrata Mukherjee and Robert R. Thomson, “Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice,” Opt. Lett. 40, 5443–5446 (2015).

Rodrigo A. Vicencio, Camilo Cantillano, Luis Morales-Inostroza, Bastián Real, Cristian Mejía-Cortés, Steffen Weimann, Alexander Szameit, and Mario I. Molina, “Observation of localized states in Lieb photonic lattices,” Phys. Rev. Lett. 114, 245503 (2015).

Seabarrata Mukherjee, Alexander Spracklen, Debaditya Choudhury, Nathan Goldman, Patrik Öhberg, Erika Andersson, and Robert R. Thomson, “Observation of a localized flat-band state in a photonic Lieb lattice,” Phys. Rev. Lett. 114, 245504 (2015).

Naoyuki Masumoto, Na Young Kim, Tim Byrnes, Kenichiro Kusudo, Andreas Löfler, Sven Höfling, Alfred Forchel, and Yoshihisa Yamamoto, “Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice,” New J. Phys. 14, 065002 (2012).

T. Jacqmin, R. Carusotto, I. Sagnes, M. Abarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaitre, J. Bloch, and A. Amo, “Direct observation of dirac cones and a flat band in a honeycomb lattice for polaritons,” Phys. Rev. Lett. 112, 116402 (2014).

Matteo Biondi, Evert P. L. van Nieuwenburg, Gianni Blatter, Sebastian D. Huber, and Sebastian Schmidt, “Incompressible polaritons in a flat band,” Phys. Rev. Lett. 115, 143601 (2015).

S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, H. Suichmel, J. Beierlein, M. Emmerling, C. Schneider, and S. Höfling, “Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice,” Applied Phys. Lett. 111, 231102 (2017).

D Guzmán-Silva, C Mejía-Cortés, M A Bandres, M C Rechtsman, S Weimann, S Nolte, M Segev, A Szameit, and R A Vicencio, “Experimental observation of bulk and edge transport in photonic Lieb lattices,” New J. Phys. 16, 063061 (2014).

Steffen Weimann, Luis Morales-Inostroza, Bastián Real, Camilo Cantillano, Alexander Szameit, and Rodrigo A. Vicencio, “Transport in sawtooth photonic lattices,” Opt. Lett. 41, 2414–2417 (2016).

Shiqiang Xia, Yi Hu, Daohong Song, Yuanjuan Zong, Liqin Tang, and Zhigang Chen, “Demonstration of flat-band image transmission in optically induced lieb photonic lattices,” Opt. Lett. 41, 1435–1438 (2016).

Shintaro Taie, Hideki Ozawa, Tomohiro Ichinose, Takuei Nishio, Shuta Nakajima, and Yoshio Takahashi, “Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice,” Sci. Adv. 1 (2015).

Gyu-Boong Jo, Jennie Guzman, Claire K. Thomas, Pav van Houw, Ashvin Vishwanath, and Dan M. Stamper-Kurn, “Ultracold atoms in a tunable optical kagome lattice,” Phys. Rev. Lett. 108, 045305 (2012).

F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaitre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, and J. Bloch, “Bosonic condensation and disorder-induced localization in a flat band,” Phys. Rev. Lett. 116, 066402 (2016).

Julien Vidal, Patrick Butaud, Benoit Douçot, and Rémy Mosseri, “Disorder and interactions in Aharonov-Bohm cages,” Phys. Rev. B 64, 155306 (2001).

J. T. Chalker, T. S. Pickles, and Pragya Shukla, “Anderson localization in tight-binding models with flat bands,” Phys. Rev. B 82, 104209 (2010).

Daniel Leykam, Joshua D. Bodyfelt, Anton S. Desyatnikov, and Sergej Flach, “Localization of weakly disordered flat band states,” Eur. Phys. J. B 90, 1 (2017).

Joshua D. Bodyfelt, Daniel Leykam, Carlo Daniell, Xiaoquan Yu, and Sergej Flach, “Flatbands under correlated perturbations,” Phys. Rev. Lett. 113, 236403 (2014).

Carlo Daniell, Joshua D. Bodyfelt, and Sergej Flach, “Flat-band engineering of mobility edges,” Phys. Rev. B 91, 235134 (2015).

Ramaz Khomeriki and Sergej Flach, “Landau-zener block oscillations with perturbed flat bands,” Phys. Rev. Lett. 116, 245301 (2016).

A. R. Kolovsky, A. Ramachandran, and S. Flach, “Topological flat Wannier-Stark bands,” Phys. Rev. B 97, 045120 (2018).

Jun-Won Rhim, Kyoo Kim, and Bohm-Jung Yang, “Quantum distance and anomalous landau levels of flat bands,” Nature 584, 59–63 (2020).

C. Daniil, A. Maluckov, and S. Flach, “Compact discrete breathers on flat-band networks,” Low Temp. Phys. 44, 678–687 (2018).

Magnus Johansson, Uta Naether, and Rodrigo A. Vicencio, “Compactification tuning for nonlinear localized modes in sawtooth lattices,” Phys. Rev. E 92, 032912 (2015).

Bastián Real and Rodrigo A. Vicencio, “Controlled mobility of compact discrete solitons in nonlinear lieb photonic lattices,” Phys. Rev. A 98, 053845 (2018).

Julien Vidal, Benoit Douçot, Rémy Mosseri, and Patrick Butaud, “Interaction induced delocalization for two particles in a periodic potential,” Phys. Rev. Lett. 85, 3906–3909 (2000).

Benoit Douçot and Julien Vidal, “Pairing of cooper pairs in a fully frustrated josephson-junction chain,” Phys. Rev. Lett. 88, 227005 (2002).

Murad Towmasyan, Sebastiano Peotta, Long Liang, Päivi Törnäs, and Sebastian D. Huber, “Preformed pairs in flat block bands,” Phys. Rev. B 98, 134513 (2018).

Carlo Daniell, Alexei Andreanov, Thudiyangal Mithun, and Sergej Flach, “Quantum caging in interacting many-body all-bands-flat lattices,” (2020), arXiv:2004.11880 [cond-mat.quant-gas].

Carlo Daniell, Alexei Andreanov, and Sergej Flach, “Many-body flatband localization,” Phys. Rev. B 102, 041116(R) (2020).

Yoshihito Kuno, Takahiro Orito, and Ikko Ichinose, “Flatband many-body localization and ergodicity breaking in the Creutz ladder,” New J. Phys. 22, 013032 (2020).

Takahiro Orito, Yoshihito Kuno, and Ikko Ichinose, “Exact projector hamiltonian, local integrals of motion, and many-body localization with symmetry-protected topological order,” Phys. Rev. B 101, 224308 (2020).

Andreas Mielke and Hal Tasaki, “Ferromagnetism in the Hubbard model,” Comm. Math. Phys. 158, 341–371 (1993).

H. Tasaki, “Hubbard model and the origin of ferromagnetism,” Eur. Phys. J. B 64, 365–372 (2008).
52 Hal Tasaki, “Stability of ferromagnetism in the hubbard model,” Phys. Rev. Lett. 73, 1158–1161 (1994).
53 M. Maksymenko, A. Honecker, R. Moessner, J. Richter, and O. Derzhko, “Flat-band ferromagnetism as a Pauli-correlated percolation problem,” Phys. Rev. Lett. 109, 096404 (2012).
54 Andreas Mielke, “Pair formation of hard core bosons in flat band systems,” J. Stat. Phys. 171, 679–695 (2018).
55 Sebastiano Peotta and Päivi Törmä, “Superfluidity in topologically nontrivial flat bands,” Nat. Comm. 6, 8944 (2015).
56 Aleksi Julku, Sebastiano Peotta, Tuomas I. Vanhala, Dong-Hee Kim, and Päivi Törmä, “Geometric origin of superfluidity in the lieb-lattice flat band,” Phys. Rev. Lett. 117, 045303 (2016).
57 Rubem Mondaini, G. G. Batrouni, and B. Grémaud, “Pairing and superconductivity in the flat band: Creutz lattice,” Phys. Rev. B 98, 155142 (2018).
58 G. E. Volovik, “Graphite, graphene, and the flat band superconductivity,” JETP Lett. 107, 516–517 (2018).
59 R. G. Dias and J. D. Gouveia, “Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices,” Sci. Rep. 5, 16852 EP – (2015).
60 Luis Morales-Inostroza and Rodrigo A. Vicencio, “Simple method to construct flat-band lattices,” Phys. Rev. A 94, 043831 (2016).
61 M. Röntgen, C. V. Morfonios, and P. Schmelcher, “Compact localized states and flat bands from local symmetry partitioning,” Phys. Rev. B 97, 035161 (2018).
62 Shinya Nishino, Masaki Goda, and Koichi Kusakabe, “Flat bands of a tight-binding electronic system with hexagonal structure,” J. Phys. Soc. Jpn 72, 2015–2023 (2003).
63 Jun-Won Rhim and Bohm-Jung Yang, “Classification of flat bands according to the band-crossing singularity of Bloch wave functions,” Phys. Rev. B 99, 045107 (2019).
64 Sergej Flach, Daniel Leykam, Joshua D. Bodyfelt, Peter Matthies, and Anton S. Desyatnikov, “Detangling flat bands into Fano lattices,” Europhys. Lett. 105, 30001 (2014).
65 Wulayimu Maimaiti, Alexei Andreanov, Hee Chul Park, Oleg Gendelman, and Sergej Flach, “Compact localized states and flat-band generators in one dimension,” Phys. Rev. B 95, 115135 (2017).
66 Wulayimu Maimaiti, Sergej Flach, and Alexei Andreanov, “Universal d = 1 flat band generator from compact localized states,” Phys. Rev. B 99, 125129 (2019).
67 S. E. Palmer and J. T. Chalker, “Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet,” Phys. Rev. B 64, 094412 (2001).
68 Benjamin Canals, “From the square lattice to the checkerboard lattice: Spin-wave and large-n limit analysis,” Phys. Rev. B 65, 184408 (2002).
69 Mamoru Mekata, “Kagome: The Story of the Basketweave Lattice,” Physics Today 56, 12 (2003).
70 Itiro Syôzi, “Statistics of Kagomé Lattice,” Prog. Theor. Phys. 6, 306–308 (1951).