The dysbiosis signature of *Fusobacterium nucleatum* in colorectal cancer—cause or consequences? A systematic review

Maryam Ranjbar1, Rasoul Salehi2,3, ShaghayegH Haghiyoy Javanmard1, Laleh Rafiee1, Habibollah Faraji4, Sima jafarpor3, Gordon A. Ferns5, Majid Ghayour-Mobarhan6, Mostafa Manian7 and Reza Nedaeinia3*

Abstract

Colorectal cancer (CRC) is the third most common cause of cancer globally and the fourth attributable cause of mortality and morbidity due to cancer. An emerging factor contributing to CRC is the gut microbiota and the cellular changes associated with it. Further insights on this may help in the prevention, diagnosis and new therapeutic approaches to colorectal cancer. In most cases of CRC, genetic factors appear to contribute less to its aetiology than environmental and epigenetic factors; therefore, it may be important to investigate these environmental factors, their effects, and the mechanisms that may contribute to this cancer. The gut microbiota has recently been highlighted as a potential risk factor that may affect the structural components of the tumor microenvironment, as well as free radical and enzymatic metabolites directly, or indirectly. Many studies have reported changes in the gut microbiota of patients with colorectal cancer. What is controversial is whether the cancer is the cause or consequence of the change in the microbiota. There is strong evidence supporting both possibilities. The presence of *Fusobacterium nucleatum* in human colorectal specimens has been demonstrated by RNA-sequencing. *F. nucleatum* has been shown to express high levels of virulence factors such as *FadA*, *Fap2* and *MORN2* proteins. Our review of the published data suggest that *F. nucleatum* may be a prognostic biomarker of CRC risk, and hence raises the potential of antibiotic treatment of *F. nucleatum* for the prevention of CRC.

Keywords: Colorectal cancer, Dysbiosis signature, *F. nucleatum*, Gut microbiota

Introduction

CRC is one of the most common malignancies of men and women in most countries [1, 2]. The third most common cause of cancer and the fourth leading cause of cancer-related deaths [3]. More than 1.2 million new cases of CRC are reported annually throughout the world [4]. Identification of the microbial mechanisms involved in the etiology of CRC and the recognition of the associated cellular changes as one of the factors in the development of cancer may contribute to cancer prevention, its early diagnosis and potentially new therapies for CRC. The trend is for a projected increase in CRC by 60% to more than 2.2 million new cases, and 1.1 million cancer deaths by the year 2030 [3]. This increase in prevalence has caused considerable debate about the most appropriate prevention approaches. These predictions represent a major problem in developing and developed countries in the public health sector [5]. There has been a global increase in the standardised rate of the age of CRC from 1990 to 2017 with considerable heterogeneity at regional and national level. There has been a decline in the age-standardized death and disability-adjusted life-years rates (DALY) [6]. According to estimates by the DALY
criteria, CRC is the world’s 36th leading cause of death from disease in 2017 and the fourth most common cause of cancer. The gut microbiota may be one environmental risk factor predisposing to CRC [7]. Bacteria are found throughout the human body, but especially in the digestive tract [8]. The gut at birth is sterile, but some organisms enter it soon after birth. In breastfed infants, the gut contains a large number of Lactic acid bacteria and Lactobacilli, streptococci, for example bifidobacterium. The gut microflora changes with changes in dietary habits and the selection of adult dietary patterns [9]. Gut bacteria are important for the synthesis of vitamin K, and for the conversion of bile pigments and bile acids to secondary bile acids [10]. In addition, these bacteria are involved in the uptake of food and metabolic products and have antagonistic effects with microbial pathogens. The microbial flora of the gut produces ammonium and other metabolic products absorbed from the intestinal mucosa and can participate in the occurrence of hepatic coma. Anaerobic colonic bacteria, such as Bacteroides fragilis, Clostridium and Peptostreptococcus play a role in the progress of intra-abdominal abscesses [11]. Therefore, intestinal microbes appear to play a crucial role in digestive function and health [12, 13]. It has been proposed that commensal bacteria in the colon play a vital role in the development of CRC [14]. Various studies have shown that chronic infections can be important factors in the development of cancer. Gastric, liver, and cervical cancers are caused by Helicobacter, Hepatitis B and C and human Papillomavirus, respectively [15, 16]. These pathogens activate tumor signaling pathways like NF-κB, STAT3 [15–17]. There is good evidence for a relationship between gut microbiota and CRC [18]. This is proposed to be due to the expression of proteins that have anti-apoptotic, growth factor or cytokine that enhance cancer cell growth, metastasis or resistance to therapy [17]. However, F. nucleatum has been shown to also express high levels of virulence factors such as FadA, Fap2 and MORN2 proteins [19]. Studies have demonstrated that the dominant microbiome is very similar in primary and metastatic tumors [20]. It is assumed that Fusobacterium moves to distant sites with primary tumor cells as a part of metastatic tissue colonization. This indicates that the tumor microbiomes are the essential components of the cancerous microenvironment [20, 21].

**Objectives**

In this paper, we aimed to examine the potential role of the gut microbiome, especially F. nucleatum, in inhibiting the immune system in CRC and the stimulatory effects of its surface proteins on the establishment or dissemination of CRC and stimulation of its tumorigenic signals. Also, the role of F. nucleatum and its virulence factors in the development of CRC in particular are systematic reviewed. The cellular signals associated with the creation of tumors activated by bacteria will also be explained.

**Search strategy**

The protocol was performed in accordance with the preferred reporting items for Systematic reviews and Meta-Analyses (PRISMA) guidelines [22], outlined in Table 1. The following databases were searched: MEDLINE, Embase via PubMed, Scopus, Web of Science database and Google Scholar. A manual search was used to find reference lists of related articles and reviews. In order to locate reference lists of relevant publications and reviews, a manual search was used. The above manual search was made in order to find articles that were not identified by internet searches. The authors were consulted to collect further information in situations where it was needed. Language constraints have been imposed for the search or collection of English publications written in December 2020. The following key-words were used in this search: 
[(Colorectal[Title/Abstract] OR Intestinal[Title/Abstract]) AND (Neoplasm*[Title/Abstract] OR Carcinoma*[Title/Abstract] OR Cancer*[Title/Abstract] OR Tumor*[Title/Abstract] OR Malignanc*[Title/Abstract]) OR [Adenoma*[Title/Abstract] AND (Colon [Title/Abstract] OR Intestin*[Title/Abstract] OR colonic [Title/Abstract] OR Polypos*[Title/Abstract]) AND [(fecal[Title/Abstract] OR faecal[Title/Abstract] OR feces[Title/Abstract]) AND (Fusobacteri*[Title/Abstract] OR F. nucleatum*[Title/Abstract]) AND [Microbio*[Title/Abstract] OR Microbial*[Title/Abstract] OR Diet*[Title/Abstract] OR Dysbios*[Title/Abstract] OR Dysbacterios*[Title/Abstract] OR MicroRNA*[Title/Abstract] OR miRNAs*[Title/Abstract] OR “Micro RNA”*[Title/Abstract] OR miRNA*[Title/Abstract]) OR [Marker*[Title/Abstract] AND (Tumor*[Title/Abstract] OR Carcinogen*[Title/Abstract] OR Neoplasm*[Title/Abstract] OR Cancer*[Title/Abstract]) OR (Biomarker*[Title/Abstract] AND (Tumor*[Title/Abstract] OR Carcinogen*[Title/Abstract] OR Neoplasm*[Title/Abstract] OR Cancer*[Title/Abstract]) OR immunomodulator*[Title/Abstract]].

**Study selection**

Three hundred and ninety one unique records were checked by title and abstract to assess their eligibility for inclusion in the project after finding a total of 497 papers and deleting the duplicate records. The full texts of 202 publications were then checked and the related articles were chosen according to the study inclusion criteria (Fig. 1). The inclusion criteria were: Studies measuring the association of *Fusobacterium nucleatum* with colorectal cancer in patients and the published studies...
| Authors           | Year | Country    | Details of study                                                                 | Sample type (n) | Detection method | Main findings                                                                                                                                 |
|------------------|------|------------|----------------------------------------------------------------------------------|-----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Haruki et al.    | 2020 | Boston, USA | Analysis of Fn status in tumor tissue and evaluation autophagic activity of tumor cells by analysis SQSTM1, BECN1, and MAP1LC3 expression | Tissue (724)    | qPCR             | Fn was detected in 14% colorectal cancer cases. High and intermediate expression of BECN1 gene in colorectal cancer tissue were inversely associated with the amount of Fn that suggested possible role of autophagy (P trend < 0.001) and the expression of SQSTM1 and MAP1LC3 in tumors were not significantly associated with the level of Fn (P trend > 0.06). No significant association was observed between the expression of BECN1, MAP1LC3, and SQSTM1 and patient survival (P trend > 0.10). |
| Okita et al.     | 2020 | USA        | Assessment whether F. nucleatum status can be a carcinogenic factor and determine molecular characteristics of CRC | Tissue (304) CRC Japan (174) | qPCR             | There was a significant association between microsatellite instability-high (MSI-H) and L/E and the amount of F. nucleatum (high and moderate). F. nucleatum infection induce DNA damage in colon tissues. |
| Chen et al.      | 2020 | China      | Investigation the relationship between F. nucleatum status and metastasis in CRC patient | Fecal (49) Fecal (83) | qPCR             | There was a significant relationship between Fn infection and CRC metastasis so CRC patients with lymph nodes metastasis have high level of F. nucleatum infection. F. nucleatum infection can increase KRT7-AS/KRT7 expression which induced cell migration in vivo and in vitro. |
| Chen et al.      | 2020 | China      | Assessment F. nucleatum status in CRC patients and investigation its role in tumor metastasis | Tissue (62)     | FISH             | F. nucleatum was significantly high in metastatic CRC compare to non-metastatic CRC (P = 0.01). F. nucleatum level was higher in metastatic lymph nodes than controls (P = 0.003). |
| Abed et al.      | 2020 | USA        | Evaluation of F. nucleatum in CRC and assessment whether CRC-fusobacteria originate from the oral microbial | Saliva (7)      | qPCR Immunofluorescence Hemagglutination Assay | Oral microbial are the source of CRC-fusobacteria. Hematogenous fusobacteria were more successful in CRC colonization than gavaged ones in the MC38 and CT26 mouse orthotropic CRC models. |
| Authors          | Year | Country | Details of study                                                                 | Sample type (n) | Detection method | Main findings                                                                                                                                 |
|------------------|------|---------|----------------------------------------------------------------------------------|-----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Chen et al. [28] | 2019 | China   | Investigation the relationship between *F. nucleatum* and microsatellite instability status, clinicopathological features and its prognostic effect in CRC patient (stages II–III) | FFPE (91)       | qPCR             | No significant relationship was observed between *F. nucleatum* status and clinic pathological features (P > 0.05). *F. nucleatum* species: OR 2.094, 95% CI [1.178–8.122], P = 0.032 and MSI status: OR 2.243, 95% CI 1.136–5.865, P = 0.039 were independent prognostic factors in CRC patient. |
| Feng et al. [13] | 2019 | China   | Analysis of genes and miRNAs involved in the progression of *F. nucleatum*-induced CRC | Tissues (15)    | miRNA microarray | miR-4717 and miR-4474 were significantly up-regulated in the tumor tissue compared to the normal in response to *F. nucleatum* infection. Bioinformatic analysis revealed that CREB-binding protein (CREBBP) is the primary aberrantly expressed gene in *F. nucleatum*-induced CRC. Real-time RT-PCR analysis showed that miR-4474/4717 was upregulated while CREBBP was downregulated in CRC patients with *F. nucleatum* infection. CREBBP was introduced as a novel target of miR-4474/4717. |
| Butt et al. [29] | 2019 | Europe  | Assessment whether antibody responses to *F. nucleatum* are correlated with CRC risk in prediagnostic serum samples of patient | EPIC cohort: serum (485) | Multiplex serology method | No significant association was observed between antibody against *F. nucleatum* and colorectal cancer risk: OR 0.81; 95% CI 0.62–1.06. |
| Guven et al. [30] | 2019 | Turkey  | Examination the quantities of three CRC related bacteria such as *F. nucleatum*, etc. in CRC patients | Saliva (71)     | qPCR             | *F. nucleatum* amount was higher in saliva samples of CRC patient compared to controls (P = 0.001). No significant results was observed in ROC curve analyses for *F. nucleatum*. |
| Tunsjø et al. [31] | 2019 | Norway  | Investigation the levels of *Fusobacterium nucleatum* in order to evaluate microbiome-based biomarkers for non-invasive detection of CRC | Stool and mucosa (72) | qPCR             | Levels of *F. nucleatum* in stool samples were significantly higher in the cancer group compared with the the polyp group (P = 0.0028) and control group (P = 0.0073). |
| Authors                  | Year | Country      | Details of study                                                                 | Sample type (n) | Detection method | Main findings                                                                                                                                 |
|-------------------------|------|--------------|----------------------------------------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Kunzmann et al. [32]    | 2019 | Czech Republic | Evaluation of *F. nucleatum* as a prognostic biomarker and assessing its association with post-diagnosis survival | Tissues (190)   | qRT-PCR         | *F. nucleatum* level was significantly high in the tumor tissue compared to the normal mucosa (*P* = 0.002). High levels of Fn was associated with poorer overall survival (HR 1.68, 95% CI 1.02–2.77, *P* = 0.04) |
| Zhang et al. [33]       | 2019 | China        | Assessment whether high expression of BIRC3 induced by *F. nucleatum* can be responsible for chemoresistance to 5-Fu in CRC patient | FFPE (94)       | qPCR            | *F. nucleatum* infection can upregulate BIRC3 expression by the TLR4/NF-κB pathway in CRC cells and decrease the chemosensitivity of cancer cells to 5-Fu in vitro and in vivo. There was a significant correlation between high level of *F. nucleatum* and chemoresistance in high stage CRC patients treated by 5-Fu-based adjuvant chemotherapy |
| Lee et al. [34]         | 2018 | Korea        | Investigation the association between *F. nucleatum* status, patient prognosis and pathway mutation in CRC patient (stages II-III) | FFPE and Tissue (246) | qPCR            | *F. nucleatum* amount was higher in CRC subjects compared to controls (*P* < 0.001). High levels of Fn was associated with poorer overall survival in metastatic CRC (*P* = 0.042). Mutation rate of AMER1 (*P* = 0.030), ATM (*P* = 0.008), and TGF-β pathway (*P* = 0.020) were associated with high amount of *F. nucleatum* |
| Yamaoka et al. [35]     | 2018 | Japan        | Measuring absolute copy numbers of *F. nucleatum*                               | Tissue (100)    | droplet digital PCR | *F. nucleatum* was detected in 75.0% CRC tissues and significantly higher in CRC tissue than normal (*P* = 0.0031). Fn copy number (median) was 1.6 copies/ng DNA in CRC and 0.4 copies/ng DNA in normal group (*P* = 0.0046) |
| Hamada et al. [36]      | 2018 | USA          | Assessment the association of *F. nucleatum* in colorectal cancer tissue with immune response might differ by tumor MSI status | NHS and HPFS Cohorts Tissue (1041) | qPCR            | Negative association was observed between *F. nucleatum* level and tumor-infiltrating lymphocytes (TIL) in MSI-high tumors (OR 0.45; 95% CI [0.22–0.92]) but positive association was observed between the presence of *F. nucleatum* and TIL in non-MSI-high tumors (OR 1.91; 95% CI [1.12–3.25]) |


| Authors          | Year | Country | Details of study                                                                 | Sample type (n)          | Detection method            | Main findings                                                                 |
|------------------|------|---------|----------------------------------------------------------------------------------|--------------------------|-----------------------------|-------------------------------------------------------------------------------|
| Chen et al. [37] | 2018 | China   | Evaluation the association between the presence of *F. nucleatum* with CD4+ T-cell density and thymocyte selection-associated high-mobility group box (TOX) protein expression | Tissue (138)             | IHC, FISH, Immuno-fluorescence | CD4+ T-cell density and TOX expression were higher in *F. nucleatum*-negative tissues compared *F. nucleatum*-positive tissues ($P = 0.002, P < 0.001$, respectively). Negative correlation was observed between *F. nucleatum* level and TOX expression ($P < 0.001$) and CD4+ T-cell density ($P < 0.001$). *F. nucleatum* may inhibit antitumor immune response by reduction in TOX expression and CD4+ T-cell density in the colorectal cancer. |
| Liu et al. [38]  | 2018 | USA     | Examination inflammatory diet intakes in relation to incidence of colorectal cancer subtypes in response to *F. nucleatum* infection in tumor tissue | NHS and HPFS Cohorts (951) | qPCR                        | Increased risk of *F. nucleatum*-positive colorectal tumors was associated with higher dietary inflammatory pattern (EDIP) score ($P_{	ext{trend}} = 0.03$). There was a significant association between proximal *F. nucleatum*-positive colorectal tumors and high EDIP scores ($P_{	ext{heterogeneity}} = 0.003$). |
| Guo et al. [39]  | 2018 | China   | Measuring the relative the quantities of *F. nucleatum* and several probiotics in of CRC Evaluation the diagnostic performance of these microbial ratios and investigation the bactericidal activity of *F. nucleatum* against probiotics | Stool Cohort I. CRC (215), BCD (178), NGC (100), 156 HCs, Cohort II. CRC (152), 102 HCs | qPCR, 16S rDNA sequencing | The sensitivity of 84.6% and specificity of 92.3% for in detecting CRC was calculated in the microbial ratio of *F. nucleatum* to *Bifidobacterium*. *F. nucleatum* negatively correlated with *Fusobacterium nucleatum* in CRC patient. *F. nucleatum* may have role in dysbiosis via the secreted antagonistic against *Bifidobacterium* and *Faecalibacterium prausnitzii*. |
| Authors          | Year | Country | Details of study                                                                 | Sample type (n)       | Detection method | Main findings                                                                                                                                 |
|------------------|------|---------|----------------------------------------------------------------------------------|-----------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Proença et al.   | 2018 | Brazil  | Examination the effect of *F. nucleatum* on the microenvironment of colonic neoplasms and the expression of inflammatory mediators and miRNAs | Tissue sample CRC (43) CRA (27) | qPCR              | *F. nucleatum* was detected in 51.8% CRA and in 72.1% CRC tissues. *F. nucleatum* level was correlated with the expression of miR-22 (*r* = 0.38, *P* = 0.0331), IL8 (*r* = 0.54, *P* = 0.0013), IL1B (*r* = 0.46, *P* = 0.0066), IL6 (*r* = 0.47, *P* = 0.0059), and IL8 (*r* = 0.54, *P* = 0.0013). Positive correlations were observed between *F. nucleatum* level and miR-22 (*r* = 0.38, *P* = 0.0331), cytokines; IL8 (*r* = 0.54, *P* = 0.0013), IL1B (*r* = 0.46, *P* = 0.0066), IL6 (*r* = 0.47, *P* = 0.0059), and IL8 (*r* = 0.54, *P* = 0.0013) in the CRC group. Negative correlation were observed between *F. nucleatum* level and TLR4 (*r* = −0.62, *P* = 0.0235) in the CRA group. The abundance of *F. nucleatum* was associated with KRAS mutation (*P* = 0.0432) in CRC samples. |
| Chen et al.      | 2017 | China   | Assessment the association between β-catenin nuclear accumulation and *F. nucleatum* infection in CRC patient and examination whether *F. nucleatum* infection can activate β-catenin signaling via the TLR4/PAK1/β-catenin S675 cascade in CRC patient | Tissue 98 FISH       |                  | No significant association was observed between *F. nucleatum* status and clinicopathologic features in CRC tissue (*P* > 0.05). *F. nucleatum* infection was higher in proximal CRCs than in distal CRCs (*P* = 0.045). The frequency of TLR4, PAK1 and nuclear β-catenin proteins were higher in Fn-positive than Fn-negative CRCs (*P* < 0.05). *F. nucleatum* significantly can increase TLR4/PAK1/β-catenin S675/C-myc/CyclinD1 proteins expression suggesting that *F. nucleatum* infection can active β-catenin in TLR4/PAK1 cascade and help to the carcinogenesis of CRCs. |
| Authors | Year | Country | Details of study | Sample type (n) | Detection method | Main findings |
|---------|------|---------|-----------------|----------------|-----------------|--------------|
| Yan et al. [42] | 2017 | China | Analysis the levels of Fn and its prognostic significance in human CRC (stage III/IV) and normal tissues | Tissues (280) | qPCR | Fn level is significantly higher in CRC tissues than in adjacent normal tissues ($P < 0.001$). High level of Fn was significantly correlated with lymph node metastasis status ($P = 0.008$), tumor invasion ($P = 0.015$), and distant metastasis ($P = 0.020$). Fn level was significantly correlated with the expression of E-cadherin ($r = −0.301$, $P < 0.001$), N-cadherin N-cadherin ($r = 0.377$, $P < 0.001$), and Nanog ($r = 0.362$, $P < 0.001$). Patients with low level of Fn had a significantly better cancer-specific survival (CSS) and disease-free survival (DFS) than those with high Fn level (CSS, $P < 0.001$; DFS, $P < 0.001$). |
| Suehiro et al. [43] | 2017 | Japan | Developing a method for F. nucleatum detection in stool sample of CRC patient and investigation the association between F. nucleatum status in stool with the progression of colorectal cancer | Feces: CIS (19) CRC (158) | ddPCR | F. nucleatum level was higher in stool sample of CRC patient ($P < 0.0001$) and advanced adenoma/CIS group ($P = 0.0060$) than controls. Droplet digital PCR has high sensitivity for detection of F. nucleatum in the stool sample of CRC patient. |
| Ye et al. [44] | 2017 | Texas | Identification the specific Fusobacterium spp. and ssp. in clinical CRC specimens and assessment the behavior of colorectal cancer cells and monocytes in response to F. nucleatum infection in coculture systems | Tissue (25) | qPCR | Cytokine panel assay, ELISA | F. nucleatum ssp. Animals induced CCL20 expression in monocytes and colorectal cancer cells in in vitro co-culture experiment. F. nucleatum ssp. Animals infection can induce inflammatory response and promote colorectal cancer. |
| Yu et al. [45] | 2017 | China | Investigation the contribution of gut microbiota to chemoresistance in CRC patients | Cohort 1: Tissue (31) Cohort 2: FFPE (92) Cohort 3: FFPE (173) | qPCR | F. nucleatum amount was high in CRC patients with recurrence post chemotherapy and may promote chemoresistance by the Autophagy Pathway. F. nucleatum-induced chemoresistance is regulated by MiR-18a* and miR-4802. |
| Authors            | Year | Country | Details of study                                                                 | Sample type (n)            | Detection method | Main findings                                                                                                                                                                                                 |
|--------------------|------|---------|----------------------------------------------------------------------------------|---------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mehta et al. [46]  | 2017 | USA     | Assessment the associations of prudent and Western diets with colorectal cancer risk in response to F. nucleatum infection in tumor tissue | NHS and HPFS Cohorts (137,217) | qPCR             | The association between prudent diet and colorectal cancer risk significantly differed in F. nucleatum infection (Pheterogeneity = 0.01) Significant inverse correlation was observed between Prudent diet score and F. nucleatum-positive cancer risk (P<0.003), but not with F. nucleatum-negative cancer risk (P=0.47) |
| Amitay et al. [47] | 2017 | Germany | Examination the presence and relative abundance of F. nucleatum in fecal samples | Stool (500)               | 16S rRNA gene analysis | F. nucleatum level in feces was associated with the colorectal cancer (P < 0.0001)                                                                                                                         |
| Mima et al. [48]   | 2016 | USA     | Measuring the amount of F. nucleatum DNA in colorectal tumor tissue and analysis the relationship of a bowel subsite variable with F. nucleatum level | FFPE (1102)               | qPCR             | F. nucleatum DNA was detected in 13% of colorectal carcinoma tissue F. nucleatum status gradually increases from rectum (2.5%) to cecum (11%) in CRC with a significant trend along all subsites (P < 0.0001) |
| Nosho et al. [49]  | 2016 | Japan   | Analysis of Fn status in DNA samples from formalin-fixed paraffin embedded (FFPE) tissues in CRC patient (stages I–IV) | Tissues (511)             | qPCR             | Fn positivity in the Japanese patient was 8.6% which was lower than that in United States cohort studies (13%) Similar to the United States studies, Fn positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+), CD8+, CD45RO+, and FOXP3+ cells have been associated with better patient prognosis |
| Li et al. [50]     | 2016 | China   | Investigation the Fn abundance in tissues and its association with CRC            | Tissues (101)             | q-PCR FISH       | Fn was over-represented in 87.1% of CRC tissues and Fn level was significantly higher in CRC tissues than in adjacent normal tissues (P < 0.0001) F. nucleatum level was significantly higher in the lymph node metastases group than in the non-metastases group (P < 0.005) |
| Authors          | Year | Country | Details of study                                                                 | Sample type (n)       | Detection method      | Main findings                                                                                                                                                                                                 |
|------------------|------|---------|----------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mima et al. [51] | 2016 | USA     | Analysis of the association between *F. nucleatum* level and worse clinical outcome | FFPE (1069)           | qPCR                  | *F. nucleatum* was detected in 13% CRC tissues. *F. nucleatum* level is associated with shorter survival in CRC patient (Ptrend = 0.020). The level of *F. nucleatum* was associated with MSI-high (multivariable OR 5.22; 95% CI 2.86 to 9.55) |
| Wang et al. [52] | 2016 | China   | Measuring anti-Fn antibodies levels in CRC patients and evaluation of diagnostic value of serum anti-Fn antibodies in CRC patients | Stool (10) Serum (258)| PCR indirect whole-cell ELISA | Fn-infection can induce high level of anti-Fn antibodies in the serum of CRC patients. Anti-Fn-IgA and -IgG were significantly higher in CRC patient than benign colon and control group (P < 0.001). Combination of anti-Fn-IgA with carcino-embryonic antigen (CEA) had diagnostic value CRC patient (Sen: 53.10%, Spe: 96.41%; AUC = 0.848) |
| Fukugaiti et al. [53] | 2015 | Brazil  | Evaluation the presence of oral and intestinal microorganisms in the fecal microbiota of CRC patients and controls | Stool (17)            | qRT-PCR               | They were detected significantly more *F. nucleatum* in the Cancer Group than in the healthy Group (P = 0.01)                                                                                               |
| Mima et al. [54] | 2015 | USA     | Assessment the hypothesis that *F. nucleatum* status in colorectal carcinoma is associated with lower amount of T-cells in tumor | NHS and HPFS Cohorts FFPE (598) | qPCR Tissue microarray IHC | *F. nucleatum* was detected in 13% of colorectal carcinoma tissue. Negative association was observed between *F. nucleatum* status and CD8+ T-cell density in colorectal carcinoma tissue OR 0.47; 95% CI (0.26 to 0.87); Ptrend = 0.006. No significant association was observed between *F. nucleatum* and density of CD8+, CD45RO+, or FOXP3+ T-cells (Ptrend > 0.013) |
| Ito et al. [55]  | 2015 | Japan   | Investigation *F. nucleatum* status in premalignant colorectal lesions and its association with CIMP, MSI and microRNA-31 status | FFPE (511)            | qPCR                  | *F. nucleatum* was detected in CIMP-high premalignant lesions than in CIMP-low/zero lesions (P = 0.0023). *F. nucleatum* positivity was higher in CRCs (56%) than in premalignant lesions of any histological type (P < 0.0001) |
| Authors            | Year | Country            | Details of study                                                                 | Sample type (n)       | Detection method | Main findings                                                                 |
|--------------------|------|--------------------|----------------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------------------------------------------------|
| Tahara et al. [56] | 2014 | Japan              | Analysis of *F. nucleatum* (Fn) status and molecular features of tissue samples   | Tissues (149)         | q-PCR            | Fn was detected in CRC tissues (74%) and the amount of Fusobacterial in normal tissue was 250-fold lower (mean) compared to CRC tissues. Fn species in CRC group were associated with microsatellite instability ($P = 0.018$), CpG island methylator phenotype positivity ($P = 0.001$) and some genes: TP53 wild type ($P = 0.015$), MLH1 methylation ($P = 0.0028$) CHD7/8 mutation positivity ($P = 0.002$). |
| Flanagan et al. [57]| 2014 | Germany, Czech Republic (CZ) | Evaluation of the potential of *F. nucleatum* as a biomarker for CRC by measuring survival outcomes and assessing its association with the adenoma to cancer progression | Tissue Czech cohort (49) German cohort (45) Irish cohort (28) adenoma (52) Stool CRC (7) adenoma (24) | qPCR             | *F. nucleatum* amount was higher in cancerous than matched normal tissue ($P < 0.0001$). No significant association was observed in the *F. nucleatum* level between disease versus normal tissue ($P = 0.06$) in colorectal adenoma (CRA). Low Fn levels was associated with longer overall survival time CRC patients ($P = 0.008$). No significant association was observed in the *F. nucleatum* level between disease versus normal stool samples (CRC $P = 0.33$, CRA $P = 0.15$). |
| McCoy et al. [58]  | 2013 | USA                | Assess the abundance of *Fusobacterium* in the normal rectal mucosa of subjects with and without adenomas and Confirmatory Study in CRC | Tissue Adenoma (48) CRC (10) | qPCR, FISH pyrosequencing | *F. nucleatum* level is higher in adenoma subjects compared to controls ($P = 0.01$). No significant correlation was observed between adenoma size and *F. nucleatum* species ($P = 0.57$). Positive correlations were found between *F. nucleatum* species and IL-10 ($r = 0.443$ $P = 0.01$). |
| Authors                  | Year | Country | Details of study                                                                 | Sample type (n) | Detection method | Main findings                                                                                                                                 |
|-------------------------|------|---------|---------------------------------------------------------------------------------|----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Kostic AD et al. [18]   | 2013 | USA     | Assessment of *F. nucleatum* status in patients with colorectal adenomas and adenomas and adenocarcinomas Investigation Fn infection on cancer progression and inflammation in mouse models | Stool (56) and tissue (31) | qPCR FISH analysis | *F. nucleatum* was significantly high in adenomas compared to the normal adenomas ($P < 0.004$)  
Fusobacterium spp was high in CRC patients ($P < 1 \times 10^{-5}$) and in the stool samples with adenomas as compared to control groups ($P < 5 \times 10^{-3}$)  
*F. nucleatum* expands tumor-infiltrating myeloid cells in the selective manner, which can promote intestinal tumor progression and increases tumor multiplicity  
Fusobacterium amount was higher in tumor versus normal control ($P = 2.5 \times 10^{-5}$)  
Positive correlations were observed between *F. nucleatum* species and lymph node metastasis ($P = 0.0035$) |

| Castellarin et al. [59] | 2012 | Canada  | Evaluation of the association inflammatory microorganisms with other gastrointestinal (GI) cancers | Tissue (99)      | qPCR RNA-seq     |                                                                                                                                              |
in English language. The exclusion criteria were: 1—No access to full-text articles 2—Case reports, randomized clinical trials and review articles 3—Studies on teenagers and 4—Duplicate records were excluded. Figure 1 shows the selection process for articles. Data collected using EndNote software. The main characteristics are summarized in Table 1.

**Colorectal cancer**

Cancer usually arises due to the failure of mechanisms controlling cell growth and proliferation. This control system responds to growth inhibition, growth and death signals. Colorectal carcinogenesis involves a series of well-defined changes that begin with a benign mucosal lesion called a polyp and can progress to malignancy leading to cancerous changes such as hyperplasia, adenoma, carcinoma, and metastasis [60]. The molecular mechanisms involved in these changes include activation of specific oncogenes and inactivation of tumor suppressor genes [61, 62]. Cancer is a multifactorial disease due to genetic, epigenetic, and environmental factors [63]. CRC can be asymptomatic for many years. Malignancies on the right-side of colon, including the cecum, ascending, and descending colon are associated with fatigue, weakness and iron deficiency anemia; however, left colon neoplasms are associated with concealed bleeding, alterations in bowel movement, and lower left quadrant cramp. Diagnosis is often made by the detection of fecal occult blood testing followed by endoscopy; this is then followed by biopsy and MRI [64]. One of the changes
involved in the development of some cancers, including CRC, is the role of infections on tumor suppressor genes in the initiation, progression, and metastasis of cancer [65].

The microbiota and colorectal cancer

Gut dysbiosis can promote CRC through various processes that include: the induction of a chronic inflammatory disease or immune response, biosynthesis of toxic metabolites and genotoxin and effect of host metabolism [66, 67]. Alternatively, Microbiota can prevent cancer by producing metabolites and enzymes. Although, some bacterial metabolites secreted from Enterococcus faecalis, enterotoxin Bacteroides fragilis or FadA in F. nucleatum are capable of damaging DNA, they can induce proliferation of colon cells in studies on gut microbiota in cancer patients [68]. Gut bacterial composition can be affected by environmental factors and tumour genomics [69]. Most cases of CRC are treatable if a diagnosis is made early enough. The survival rate in patients in whom an early detection is made is approximately 5 times greater than for patients diagnosed with advanced malignancies [70]. Consequently, it is necessary to evaluate valuable early diagnosis markers for CRC cases [70]. In the following, we will discuss the role of F. nucleatum as a parameter in the development and diagnosis of colorectal cancer.

Tumorigenic potential of Fusobacterium nucleatum

Sequences of Fusobacterium species were found to be enriched in colorectal carcinomas [71]. The results were confirmed with the use of quantitative PCR and sequence analysis of 16S rDNA performed on 95 normal-tumor pairs of DNA. In addition, Fusobacteria were observed in colorectal tumors by FISH. According to the obtained results, there are some changes in the microbiota in CRC [71]. F. nucleatum and some common bacteria were found in the primary tumors but also in distant metastases [72]. Preliminary evidence indicates that this bacterium is initially found in cancer cells of metastasis type instead of the stroma. The tumor growth in mice with xenografts from of CRC containing F. nucleatum was reduced following treatment with antibiotics, consistent with the causal role played by bacteria in the development of tumors [20]. Preclinical rodent studies have recently shown that antibiotic therapy or the absence of the gut microbiota reduces the incidence of tumors in several murine colitis-associated CRC models [18]. The frequency of Fusobacterium in human tumors by the RNA-seq method was similar to the one obtained from mice tumors using flow cytometry [18]. In most cases, Fusobacteria are not part of the natural bacteria of the large intestinal flora. Studies show that cancerous tissues contain significantly more Fusobacteria [73]. Previous research has indicated that infection with this bacteria increases the incidence of ulcerative colitis in which inflammation of the intestinal lining destroys the intestinal cells and consequently is a risk factor for colorectal cancer [27].

The impact of diet on the microbiota and colorectal cancer

At birth, four main bacterial species are present in the gut: Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria [74]. They vary greatly among healthy individuals depending on environmental, genetic, host immune system, diet, and exposure to infection or antibiotics [20, 74]. Despite the considerable variation among individuals, it has been found that there are similar microbial populations in colorectum, including anaerobic bacteria such as Bacteroides, Eubacterium, Bifidobacterium, Fusobacterium, Peptostreptococcus, Atopobium and optional anaerobes, including Lactobacilli, Enterococci and Enterobacteria. However, diet, age, gender, and ethnicity affect individual microbes, making its dynamic nature difficult to investigate [8, 75]. From the 1990s onward, studies have shown an association between CRC and certain bacterial species [76]. Shen et al., evaluated 21 adenomas and 23 non-adenomas. In cancerous tissues, Proteobacteria is increased, and Bacteroidetes decreased [77]. It is possible that some probiotics facilitate immunomodulatory and anticancer activities in different contexts [10]. For example, lactobacillus in the lactic acid bacteria group is the main probiotic organisms. Various reports have indicated that isolates of Lactobacillus spp. [10] like Lactobacillus acidophilus in different forms may increase the anticancer effects by different mechanisms such as downregulation of ErbB-2, activation of natural killer cells, dendritic cell maturation, and release of probiotic-derived ferrichrome (iron-scavenging peptide) [78, 79]. The microbiome has been called “The forgotten organ” [80, 81]. Microbiota can play a key role in the development of CRC by altering the bacterial composition of the intestine (dysbiosis), high production of some bacterial enzymes, changes in the distribution of bacterial communities and alteration in bacterial metabolic activity [82, 83]. On the other hand, some of the components of the microbiota control the differentiation of intestinal epithelial cells and their proliferation, growth and development of the epithelial barrier, make strong apical bonds, protect against strains of pathogens, fermentation of carbohydrates indigestible for the production of short chain fatty acids (SCFA), bile acid metabolism and destruction of carcinogens in the diet in protection against cancer [84–87]. Many factors can alter the microenvironments of the digestive tract and consequently the bacterial flora, such as consumption of antibiotics, mental and physical stressors, radiation, and diet [88]. The microbiota play a significant role.
in the regulation of inflammation, immune response or hematopoiesis among others [89]. Modification of the microbiota may lead to some pathologies such as depression and cancer [90, 91]. Prevention of carcinogenesis by modulating tumor or host cell microenvironment may be possible. Moreover, the microbiota has been found to influence chemotherapy, radiotherapy and immunotherapy efficacy and toxicity [80]. L. casei probiotic-derived ferrichrome has its anti-tumor effect through the pathway contributing to JNK-mediated apoptosis [92]. They are also associated with decreased polarization of pro-inflammatory TH17 cells and consequently a reduction in anti-inflammatory Treg cells differentiation (regulatory T cells) and/or gut Tr1 cells (T regulatory type 1 cells) in addition to anti-inflammatory metabolites production [10, 93]. There is a special association between the microbiome profiles and cancer growth and progression. Consequently, interventions altering microbiome composition are likely to affect oncogenesis (Fig. 1). The microbiome may remain unchanged for many years. However, factors such as response to antibiotic therapy, exposure to pathogens, fasting, changes in daily diet composition and other causes such as stress, cold and diurnal rhythm disruption can cause permanent changes in it [10]. Moreover, according to reports, microbiomes affect various traits ranging from metabolism to mood [10]. The microenvironment of CRC is a complex community of genomically changed tumor cells, non-neoplastic cells, and a varied group of microorganisms [71]. Many genetic and epigenetic factors affect the reported recurrence of the disease; in many studies, the gut microbiome has not been identified as an important factor in the disease occurrence. With the progress of advanced bowel sampling techniques and analysis of both

Fig. 2 The main mechanism of F. nucleatum pathogenesis in CRC is illustrated. The adhesion and invasion of FadA from F. nucleatum to epithelial and endothelial cells of human in pathway 1 can be observed while levels of inflammatory cytokine (IL-6, IL-8, IL-10, IL-18, TNF-α, and NF-κB) grow in a proinflammatory microenvironment which in turn leads to colorectal tumor progression; FadA interaction with E-cadherin in pathway 2 in epithelial cells leads to activating of β-catenin signaling, increasing NF-κB inflammatory gene expression and enhancing tumor cell proliferation. F. nucleatum-infected cells, on the other hand, enhance miRNA expression by Toll-like receptor activation and therefore miRNA release development. F. nucleatum in pathways 3 and 4 reduces the activity of human T cells in a micro-suppressor of the tumor immune system. The interaction between Fap2 from F. nucleatum and the human inhibitor receptor TIGIT in pathway 5 leads to the death of lymphocyte cells of human, resulting in a microenvironment of immunosuppression that increases the progression of CRC.
nucleic acid (RNA sequences) and protein (Proteome) products, it has been identified that the gut microbial community is a key component in not only in tumorigenesis but also the non-recurrence of disease after surgery [74, 94]. Most studies on the role of the microbiome on CRC recurrence have been investigated in clinical studies where local recurrence has occurred [74]. F. nucleatum can cause cancer by activating cellular signals through various mechanisms. These mechanisms are important for causing cancer in terms of cell surface receptors and their effects on the immune system (Fig. 2).

Doll and Peto have previously argued that 30% of the risk of cancer might be attributed to diet. Since then, much available evidence has pointed out that several nutrients can change cancer growth and progression [95]. Long-term dietary habits can shape the gut microbiota [87]. The International Agency for Research on Cancer (IARC), as part of the World Health Organization (WHO), has suggested that there is enough evidence to consider consumption of processed meat (Group 1) and red meat (Group 2A) in humans as having possible carcinogenic effects. IARC analyzed a group of half a million English men and women. In their analysis, they concluded that processed meat and red alcohol were related to increased risk of colorectal cancer. They also demonstrated an association between reduced risk of cancer and fiber in bread and breakfast cereals [96]. The incidence and mortality of polygenic diseases like cancer vary depending on genetic susceptibility and environmental factors. Interaction of specific nutrients on genetic code exists in all nucleated cells [93]. For example, high consumption of refined starches and sugar increases the production of superoxide anion in leukocytes, mononuclear cells and free fatty acids (FFA) [97]. It also increases the levels and activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), a transcriptional regulator activating at least 125 genes, most of which are pro-inflammatory. Glucose intake also increases the two pro-inflammatory transcription factors; activated protein 1 (AP-1) and early growth response protein 1 (Egr-1) [98]. AP-1 has a transcription factor induces regulation of the transcription of inflammatory cytokines, matrix metalloproteinase, as well as the transformation of apoptosis and cell proliferation [99]. Egr-1 induced endothelial gene expression [100], and modulation of transcription of tissue factor and plasminogen activator inhibitor-1 (PAI-1) [98, 101]. Increased absorption of linoleic acid, saturated fat, trans fats, refined starches and sugars can increase the production of free radicals and NF-kB activation leading to rapid expression of pro-inflammatory genes [98]. Nutrients, antioxidants, micronutrients, minerals, vitamins, coenzyme Q10 and ω3 fatty acids may inhibit NF-kB superoxide production, AP-1, and Egr-1 [98]. The evidence indicates that dietary fiber, especially starch that is resistant to digestion, enhances intestinal health. One of the issues causing the starch to be the focus of empirical research is its potential protection against CRC development [102]. Other studies have indicated that butyrate (main short-chain fatty acids) from resistant starch fermentation through the bacteria in the gut causes physiological changes in humans [103] and plays a significant role over the lifestyle in protecting the body against deteriorating metabolic control and inflammatory status associated with western lifestyles [104]. Although there is evidence of the cellular effects of butyrate, much research has been conducted to determine which mechanisms of butyrate can be used for antitumor applications [105]. Statistical and bioinformatics analysis was then performed to determine which potentially important genes and proteins are involved in inducing apoptosis of colon cancer cells. Furthermore, 1347 proteins such as isoforms of protein and modifications were detected using proteomics (2D-DIGE and mass spectrometry). Moreover, 139 proteins were identified. These proteins were likely to play a role in the apoptotic response to butyrate [93]. These reactions, along with the microbial population in the gastrointestinal tract, particularly the large intestine, cause the formation of microbiomes, including all microorganisms, their genes and metabolites. Extensive investigations to find out the genetic map of microorganisms are in progress, since microbial genes and their interactions with body cells exist before, during, and after illnesses.

Factors affecting the intestinal microbial population

Most studies indicate that the composition of the intestinal microbiota is formed before the age of three and then has a constant composition throughout life [106, 107]. Some factors such as the use of antibiotics, special diet, and chemotherapy can interfere with the structure of the gut microbiota [108]. Since the microbiota plays an important role in the normal functioning of the body, today it is considered an organ created at birth and evolves with us. The role of the microbiota in the development of some gastrointestinal diseases has been demonstrated [109]. These diseases can range from causing inflammation to colon cancer [110]. The gut microbiota may also sometimes be involved in the development of extra-intestinal immunological diseases [110, 111]. Probiotics such as bifidobacteria, lactobacillus, bacteroids are mainly found in the colorectal and are beneficial for human health. They control the population of pathogenic bacteria by producing short-chain fatty acids such as acetic, butyric and propionic acid. Prebiotics are also a substrate choice for the growth of beneficial bacteria.
like bifidobacteria. Prebiotic foods include sugars such as inulin and oligofructose (FOS). During breastfeeding, the major bacterium in neonatal feces is bifidobacteria, but during weaning, the level of bifidobacteria is decreased and other bacteria such as coliform, Clostridium and Streptococcus are increased [112]. As more molecular techniques and bioinformatics analyses were developed, a better understanding of a healthy microbiome or disruption of the microbial community, including loss of beneficial bacteria or loss of diversity among them, was achieved [74]. The disorder produces a specific condition called dysbiosis, which means the loss of the health-promoting microbiome known as disease-producing pathogens. Numerous studies have shown that Fusobacterium, Alistipes, Porphyromonadaceae, Coriobacteridae, Staphylococca- ceae, Akkermansia, Lactobacillus, Faecalibacterium, Roseburia and Treponema are present in patients with CRC [58, 113–118]. The present findings emphasize the importance of cell-bacterial interactions in a network. Various mechanisms such as aberrant activation of immune cells, induction of DNA damage through production of oxygen and nitrogen species, and increased levels of immunocyte-derived bioactive molecules facilitate tumor progression [16]. Using an antibody neutralization assay, an important role for epithelial expression of TLR2 was identified in this process [119]. These findings are consistent with the recent role of TLR2 in the development of colorectal cancer.

**Fusobacterium as a biomarker in CRC**

Fusobacterium is a genus of anaerobic, Gram-negative, non-spore forming bacteria, similar to Bacteroides. *F. nucleatum* and *F. necrophorum* are usually members of the Fusobacterium species. They usually reside in the oral cavity and sometimes cause periodontal and gum infections [9]. Fusobacterium is considered a risk factor involved in CRC start and improvement. Immune modulation is considered to be the most important mechanism of Fusobacterium playing a role in CRC carcinogenesis (Fig. 1). It includes increased cells of myeloid-derived suppressor and natural killer cell inhibitors, *FadA* and *Fap2* virulence factors, microRNAs and bacterial metabolism [120, 121].

**Carcinogenesis mechanisms of F. nucleatum**

Tumorigenesis mechanism of *Fusobacteria* includes receptors of pattern recognition and downstream inflammation, but these bacteria with the recruitment of myeloid cells lead to infiltration of adenomas and carcinomas, thereby resulting in NF-κB-dependent TLR4 signaling [122]. Recently, it has also been demonstrated that *F. nucleatum* leads to increased expression of inflammatory mediators (IL1B, IL6 and IL8) [40, 119]. This is possibly due to miRNA-mediated activation of TLR2/TLR4 [75, 119]. In the immune response to bacterial infection, TLRs are highly important. Among them, TLR4 is considered a representative receptor for LPS. When TLR4 is activated by LPS, a series of intracellular events are triggered. This leads to nuclear translocation of NF-κB, thereby increasing the expression of IL-8 gene [123]. However, *F. nucleatum* does not encode any known toxins, while only few common virulence factors are encoded by it. Adhesion protein *FadA* is a known virulence factor in *F. nucleatum* contributing to easier attachment and invasion of bacteria [124, 125]. *FadA* binds with an E-cadherin receptor and increases carcinogenesis. It causes activation of β-catenin and stimulates expression of transcriptional factors, Wnt genes, inflammatory genes, and related oncogenes (Fig. 1) [126]. In this adhesion process, MORN2 may also be involved. However, the exact function of MORN2 is unknown [126]. When FadA adhesion from *F. nucleatum* binds with CDH1, it causes an increase in the proliferation of Fusobacterium/WNT [126]. *FadA* and MORN2 proteins of *F. nucleatum* play a key role in cell invasion [127]. *FadA* is a small ligand (125 AA) present on the surface of Fusobacterium, which has been shown to bind to E-Cadherin and activates β-catenin signaling in human cancer xenografts of mice models [112]. Thus, *FadA* binding is directly involved in host cell binding and invasion of Fusobacterium. MORN2 proteins further contain a signal sequence allowing the transfer of small peptides into the periplasmic space and from the outer membrane to the extracellular environment [112]. Among the empirically identified proteins associated with disease severity is *Fap2 lectin*, a galactose adhesion protein, which binds with the NK Cell Receptor TIGIT and inhibits the destruction of tumor cells by inhibiting NK cells. Fusobacterium binds with the *Gal-GalNAc* receptor on the surface of colon cancer cells, thereby producing proinflammatory cytokines and proliferating cancer cells [128]. Metagenomic analyses have indicated increased *Fusobacterium* species in CRC compared to adjacent normal tissue by total genome sequencing, transcriptome sequencing or by 16S rRNA gene sequencing used as a tool to identify bacteria [120, 121, 129]. There has been a correlation between *F. nucleatum* in CRC, chemo-resistance and poor prognosis. According to what mentioned before, binding of the *Fap2* protein of *F. nucleatum* with the inhibitory receptor TIGIT of human protects tumors from immune cell attack expressed in natural killer (NK) cells. *F. nucleatum* would also inhibit T and NK cell activities [18]. The following section describes the other five extensive families of pattern recognition receptors (PRRs). They include CLR (C-type lectin receptors), LRR (nucleotide-binding domain leucine-rich repeat) containing (NOD-like)
receptors (NLRs), RLRs (RIG-I-like receptors), ALRs (AIM2-like receptors) and cytoplasmic DNA sensors [122]. Recent research activities emphasize the importance of pathogen–host signaling, by PRRs in the whole range of inflammatory responses, including cancer development and inhibition [130]. PRRs signaling impacts all stages of intestinal cancer, from the early stages of cancer to the metastatic stage and appearance of different cells in the tumor microenvironment, and from neoplastic cells to tumor and stromal cells [122, 130]. Small secretory peptides bind to myeloid-derived suppressor cells (MDSCs), thereby inhibiting CD4+ T cell. Inhibition of immune cells would be desirable for tumor cells, since it will spread the tumor to other parts of the body [112]. Investigation of 16 s rRNA sequencing of increased F. nucleatum levels in mucosal or fecal samples of CRC patients has shown that F. nucleatum levels in CRC tissue is associated with the tumor site of right-sided proximal colorectum and CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI) and mutations in BRAF, Kras, CHD7, CHD8 and TP53 genes [131]. Increased inflammatory cytokines such as NF-KB, TNF-α, IL10, IL8, IL6, and increased levels of E. cadherin on epithelial cells activates B-catenin signaling, increases NF-kB, C-myc expression and proliferates tumor cells [70]. Cells infected with F. nucleatum, due to activation of Toll-like receptors (TLR), cause more mRNA expression and release. F. nucleatum induces lymphocyte cell death and tumor progression by blocking G1 phase cell myeloid derivative suppressor cells (MDSCs) and TIGIT receptor inhibition [52, 132]. F. nucleatum also affects the IL-6-STAT3 axis signaling and induces tumorigenesis by directly interacting with epithelial cells through activating TLRs. The key molecules stimulating tumor growth and invasion induced by these bacteria include IL-6, cyclin D1, TNFα, MMP9 and heparanase [127].

F. nucleatum, immunomodulatory of the tumor microenvironment
Cancer in its simplest form of uncontrolled cell growth in association with F. nucleatum is likely to affect the proliferation of cancer cells in the colorectal. According to epidemiological associations, F. nucleatum can improve instability and mutation of genes [56]. In the stool of mice with colon cancer, there was a correlation between immunotherapy by antibodies for IL10 receptor (antIL10R) and CpG oligodeoxynucleotides with the increased Alistipes shahii. In this model, A. shahii caused an increase in the production of the tumor necrosis factor (TNF) by intrauterine myeloid cells, while TNF neutralization abolished the therapeutic effect [10]. It has been reported that enterotoxigenic B. fragilis stimulate pro-inflammatory Th17 cells that accelerate carcinogenesis in mice prone to the tumor [10, 79]. Compared to different bacterial strains, F. nucleatum can correctly identify patients with CRC. Recent studies have shown that F. nucleatum DNA in the early stages of the disease has the diagnostic potential as a non-invasive primary biomarker for CRC from fecal samples [52]. Fusobacterium is associated with the signature of human CRC gene expression. A correlation of immune cell marker genes, including tumor-associated macrophages (TAMs) (CD209, CD206/MRC1, IL6, IL8, and CXCL10), MDSCs (CD33 and IL6), dendritic cells (DCs) (CD11c/ITGAX, CD209, TNF, and CD80) and Fusobacterium has been found in humans [18]. Some T cell subsets are associated with CRC prognosis. For example, Th1 subsets detected by interferon-gamma secretion (IFNγ) with better prognosis and Th17 identified due to IL-17 production are accompanied by a worse prognosis. Several studies have shown that Fusobacterium, in particular Fusobacterium, is also prevalent in CRC tissues despite being predominant in the oral microbiome. Using tissues from CRC patients that were positive for the 16S ribosomal RNA gene Fusobacterium and Th1 and Th17 cell populations in CRC patients by flow cytometry, there was a positive relation with both IL-17+ and IFNγ+ cytokines. These findings suggest that immune responses in CRC patients (Th1 and Th17) correlate with the frequency of Fusobacterium, especially the nucleatum [56]. Fusobacterium-related genes, including PTGS2 (COX-2), IL1b, IL6, IL8 and TNF, are expressed not only in colon cancer but also in cultures of human and mouse cell lines in vitro known as the central link between inflammation and cancer [18]. In general, the expression of human Fusobacterium-dependent proinflammatory genes is higher in colorectal tumors than in small bowel tumors. This may be due to the anatomical location related to the fact that the listed genes are derived from human CRC [18]. Mouse studies have indicated that the gut microbiome may regulate local immune responses and affect chemotherapy and immunotherapy [74]. In patients with colorectal cancer, autophagy pathways are rich and active and high levels of F. nucleatum cause resistance to chemotherapy [45]. F. nucleatum binds with the host epithelial E-cadherin and stimulates colorectal carcinogenesis through Fusobacterial adhesion FadA [74]. It has also been found that F. nucleatum targets micro-RNA and autophagy Signaling via upregulation of CARD3 expression causing resistance to chemotherapy [26, 45]. The direct association of Fusobacterium with recurrent CRC has even been postulated as a way to predict disease outcomes or change chemotherapy regimens such as inclusion of capecitabine and oxaliplatin for patients with a high burden of F. nucleatum [45]. These observations suggest further consideration of antimicrobial interventions as...
a potential treatment for patients with CRC related to *Fusobacterium* [131]. One concern is the negative effect of broad-spectrum antibiotics on the intestinal microbiome [20]. Metronidazole is ideal, since it targets various anaerobic bacteria, including *Fusobacterium* anaerobic bacteria. *Fusobacterium* are highly sensitive to metronidazole. Finally, oral administration of metronidazole to mice that were Fusobacterium- positive resulted in a significant decrease in tumor growth pathways. Treatment with metronidazole resulted in a significant reduction in the *Fusobacterium* burden [20]. However, antibiotics are somewhat similar to cytotoxic chemotherapy, and their treatment is relatively non-targeted. Enterotoxigenic *Bacteroides fragilis* (ETBF) is a toxin-producing bacterium that can activate TH17-mediated colitis, with simultaneous colon-specific STAT3 activation and tumor stimulation in susceptible *ApcMin* (Multiple Intestinal Neoplasia) mice, which is reversed by IL-17 antibody blockade [133]. This issue is also considered a limitation for the treatment method. Other bacteria involved in CRC may also respond to tumor progression even beyond antibiotics. Nevertheless, as shown with metronidazole treatment, even in the late stages of the disease, it may response to clear *Fusobacterial* colonization of carcinomas in experimental mice models [134]. A recent study has shown that colorectal tumors with a high *Fusobacterium* burden are likely to recur, implying that *Fusobacterium*-positive tumors may benefit from anti-Fusobacterial treatment [20].

**Fusobacterium-associated microRNAs**

MicroRNAs (miRNAs) are non-coding molecules of RNA with approximately a length of 19–25 nucleotides. At the post-transcriptional level, they regulate target genes expression negatively. It has been shown that oncogenic miRNAs (clusters of *miR-17-92a* and *miR-25-106b* [13]) play an active role in CRC progression [135]. Moreover, it has been shown that different miRNAs such as *miR-21*, *miR-224*, *miR-200c miR-96, miR-135, miR-31*, and *miR-155* are related to pathogenesis of CRC [136, 137]. The microarray analysis results showed the active role of 49 miRNAs in *F. nucleatum* induced CRC, while in a Multi-Class-Dif analysis, there was a significant expression of 96 miRNAs in early and advanced stages of CRC with positive infection of *F. nucleatum* [13]. Among different expressions of miRNAs, *miR-4474* and *miR-4717* expressions were upregulated in CRC with positive infection of *F. nucleatum* [13]. Other genes, including CREBBP (CREB-binding protein), STAT1, CAMK2B, PRKACB, JUN, TP53 and EWSR1, which were involved in cancer signaling pathways were dysregulated [13]. *MiR-4802* and *miR-18a* are abnormally reduced in expression by *F. nucleatum* that has been also known to induce chemoresistance to oxaliplatin and 5-FU by reduction of apoptosis through the activation of autophagy and TLR4/MYD88 signaling [138]. Enrichment of *Fusobacterium* species is observed in the microbiota in carcinomas near healthy colonic tissue. They are observed in stool samples obtained from CRC patients at a higher degree compared to healthy controls. In the early stages of tumorigenesis, *F. nucleatum* that is usually present in the oropharynx [139], is in not only carcinomas but also colorectal adenomas [21].

**Perspective and conclusion**

The gut microbiota is the largest reservoir of human microbiota. They consist of species of microorganisms living in the gastrointestinal tract in coexistence with the host, reaching a population of tens of $10^{14}$ [140]. They include at least 1000 different species of known bacteria containing more than 3 million genes (150 times more than human genes) [140–142]. Although more than a thousand different species of bacteria are found in the human gut, only 150 to 170 of them are common in different individuals [141]. Microbiota of each person is distinctive. Therefore, the identification and determination of normal microbiota in different societies and ages are an important factor and a prerequisite for further identification of the influencing factors. A healthy and balanced gut microbiota is the key to ensuring proper digestive function [143]. They also play a crucial role in the immune system and play a vital role in a mucosal barrier [144]. Other important roles of the gut microbiota are to help digest certain foods that the stomach and small intestine cannot digest, produce some vitamins (B and K), help protect against other microorganisms and maintain intestinal integrity. In some cases, a change in the composition of the microbiota can interfere with its balance, called dysbiosis. Intestinal microbiota dysbiosis can cause intestinal diseases such as inflammatory gut disease, irritable gut syndrome, CRC and extra-intestinal diseases such as diabetes, obesity, cardiovascular disease, non-alcoholic fatty liver disease, liver cells and decreased mental health [145–148]. Researchers at the Wyss Institute at Harvard, engineered the *E. coli* strain as a probiotic-gut bacterium producing a network of nanofibers that were directly attached to the mucosa [149]. This strain fills the inflamed areas like a patch and protects these areas from environmental factors and gut microbes. This probiotic-based treatment improved rats with chemotherapeutic agents and increased mucosal healing. Although many studies have focused on the local delivery of anti-inflammatory drugs to fistulae, ulcers, and intestinal
is needed to be conducted on cross talk between host–bacteria and their virulence proteins that play a role in colorectal carcinogenesis.

Abbreviations
CRC: Colorectal cancer; DALY: Disability-adjusted life-years rates; SCFA: Short chain fatty acids; Tr1 cells: T regulatory type 1 cells; WHO: World Health Organization; FFA: Free fatty acids; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B; AP-1: Activated protein 1; Egr-1: Early growth response protein 1; CIMP: CpG Island methylator phenotype; MSI: Microsatellite instability; MDSCs: Myeloid derivate suppressor cells; antIL1OR: Antibodies for IL.10 receptor; TNF: Tumor necrosis factor; TAMs: Tumor-associated macrophages; IFNγ: Interferon-gamma.

Acknowledgements
We would like to express our gratitude to Research Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Science. Isfahan, Iran.

Authors’ contributions
RN and RS designed research; MR and RN wrote the manuscript; SHJ, LR, HF, MR, SJ and MM, contributed equal time and effort in the investigation, research of the manuscript and designing of the figure. GAF and MGM revising the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Funding
This study was supported by a research grant, No 299083, from Vice-chancellorery for research, Isfahan University of Medical Science, Isfahan, Iran.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflicts of interest for this article.

Author details
1 Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran. 2 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. 3 Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. 4 Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. 5 Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK. 6 Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. 7 Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.

Received: 13 January 2021 Accepted: 16 March 2021 Published online: 06 April 2021

References
1. Society AC. Key statistics for colorectal cancer. Information and resources for cancer: breast, colon, prostate, lung and other forms. 2016.
2. Fatemi SR, Pourhooseingholi MA, Asadi F, Vahedi M, Pasha S, Alizadeh L, Zali MR. Recurrence and five-year survival in colorectal cancer patients after surgery. Int J Cancer Manag. 2015;8(4):e5439.

3. Wong MCS, Huang J, Huang JLW, Pang TWY, Choi P, Wang J, Chiang Ji, Jiang Yi. Global prevalence of colorectal neoplasia: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2020;18(3):553-561.e510.

4. Hasanpour-Heidari S, Fazel A, Semnani S, Khandoozi S-R, Amiriani T, World Health Organization. The world health report 2002: reducing risks, promoting healthy life. Geneva: World Health Organization; 2002.

5. Armstrong D, Dregan A, Ashworth M, White P, McGee C, de Lusignan S, Kelly D, Yang L, Pei Z. Gut microbiota, fusobacteria, and colorectal cancer. Diseases. 2018;6(4):109.

6. Bolstad A, Jensen HB, Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev. 1996;9(1):55–71.

7. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465–78.

8. Kodov A, Bean L, Hill EV, Zhao L, Li E, Wang GP. Molecular identification of bacteria in intra-abdominal abscesses using deep sequencing. Open Forum Infect Dis. 2018;5(2):ofy025.

9. Brooks GF, Jawetz, Melnick, & Adelberg's medical microbiology/Geo, F. Brooks. [et al.] New York: McGraw Hill Medical, 2010.

10. Feng Y, Zeng D-Z, Tong Y-N, Lu X-X, Dun G-D, Tang B, Zhang Z-J, Ye X-L, Li Q, Xie J-P. Alteration of microRNA-4474/4717 expression and Fusobacterium nucleatum in the serological diagnosis of colorectal cancer. Sci Rep. 2016;6(1):33440.

11. Chen B, Du G, Guo J, Zhang Y. Bugs, drugs, and cancer: can the microbiome be a potential therapeutic target for cancer management? Drug Disc Today. 2019;24(4):1000–9.

12. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maluitina A, Rubinstein AM, Nussbaum GA, Elkin M. Periodontal pathogenic Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6(26):22613–33.

13. Gallimidi AB, Fischman S, Revach B, Bulvik R, Maluitina A, Rubinstein AM, Nussbaum GA, Elkin M. Periodontal pathogenic Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6(26):22613–33.

14. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.

15. Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, Ding X, Jing X, Jiang C, Jiang N, et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res. 2020;39(1):202.

16. Bullman S, Pedamallu CS, Scisenska E, Clancy TE, Zhang X, Dai D, Neuberg D, Huang K, Guevara F, Nelson T. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–8.

17. Zhou Z, Chen J, Yao H, Hu H. Fusobacterium and colorectal cancer. Front Oncol. 2016;6:371–377.

18. Libreriati A, Altman DS, Tetelstaf I, Malchow C, Gatzeche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

19. Haruki K, Kosumi K, Hamada T, Twombly TS, Väyrynen JR, Kim SA, Masugi Y, Qian ZR, Mima K, Baba Y, et al. Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer. J Pathol. 2020;250(4):397–408.

20. Okita Y, Koi M, Takeda K, Ross R, Mukherjee B, Koepp E, Stoffel EM, Galanko JA, McCoy AN, Keiku TO, et al. Fusobacterium nucleatum infection correlates with two types of microsatellite alterations in colorectal cancer and triggers DNA damage. Gut Pathog. 2020;12:46.

21. Chen S, Tu T, Zhang Y, Lee A, He J, Ge Q, Wang L, Li J, Zhuo W, Wang L. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut Microbes. 2020;11(3):511–25.

22. Chen Y, Chen Y, Zhang J, Cao P, Su W, Deng Y, Zhan N, Fu X, Huang Y, Dong W. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Tnerostics. 2020;10(1):323–39.

23. Abed J, Malouf N, Manson AL, Earl AM, Pathi L, Emgård JEM, Klutstein M, Tayeb S, Almogy G, Atlan KA, et al. Colon cancer-associated Fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front Cell Infect Microbiol. 2020;10:400.

24. Chen Y, Lu Y, Ke Y, Li Y. Prognostic impact of the Fusobacterium nucleatum status in colorectal cancers. Medicine (Baltimore). 2019;98(39):e17221.

25. Butt J, Jenab M, Pawlita M, Overvad K, Tjonneland A, Olsen A, Boutron-Ruaudt M, Carbonnel F, Mancini FR, Kaaks R, et al. Antibody responses to Fusobacterium nucleatum proteins in prediagnostic blood samples are not associated with risk of developing colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1552–5.

26. Guven DC, Ddzdar O, Alp A, Akdogan Kittana FN, Karakoc D, Hamaloglu E, Lacin S, Karakas Y, Kilicakp S, Hayran M, et al. Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomark Med. 2019;13(9):725–35.

27. Kunzmann AT, Proenca MA, Jordao HW, Jirakova K, Schneiderova M, Levy M, Liska V, Buchler T, Vodklova L, Vymetaloka V, et al. Fusobacterium nucleatum tumor DNA levels are associated with survival in colorectal cancer patients. Eur J Clin Microbiol Infect Dis. 2019;38(7):1367–76.

28. Kunzmann AT, Proenca MA, Jordao HW, Jirakova K, Schneiderova M, Levy M, Liska V, Buchler T, Vodklova L, Vymetaloka V, et al. Fusobacterium nucleatum tumor DNA levels are associated with survival in colorectal cancer patients. Eur J Clin Microbiol Infect Dis. 2019;38(7):1367–76.

29. Zhang S, Yang Y, Weng W, Guo B, Cai G, Ma Y, Cai S. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. J Exp Clin Cancer Res. 2019;38(1):14.

30. Lee DW, Han SW, Kang JK, Bae JM, Kim HP, Won JK, Jeong SY, Park KJ, Kang GH, Kim TY. Association between Fusobacterium nucleatum, pathway mutation, and patient prognosis in colorectal cancer. Ann Surg Oncol. 2018;25(11):3389–95.

31. Yamaoka Y, Suehiro Y, Hashimoto S, Hoshida T, Fujimoto M, Watanabe M, Inama D, Sakai K, Matsumoto T, Nishoka M, et al. Fusobacterium nucleatum as a prognostic indicator of colorectal cancer in a Japanese population. J Gastroenterol. 2018;53(4):517–24.

32. Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA, Kosumi K, Masugi Y, Twombly TS, Cao Y, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res. 2018;6(11):1327–36.

33. Chen T, Li Q, Zhang X, Long R, Wu Y, Wu J, Fu X. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol. 2018;79:93–101.

34. Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T, Nevo D, Bullman S, Mima K, Kosumi K, et al. Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin Gastroenterol Hepatol. 2018;16(10):1622–1631.e1623.

35. Guo S, Li L, Xu B, Li M, Zeng Q, Xiao H, Xue Y, Wu Y, Wang Y, Liu W, et al. A simple and novel fecal biomarker for colorectal cancer: ratio of Fusobacterium nucleatum to probiotics populations, based on their antagonistic effect. Clin Chem. 2018;64(9):1327–37.
82. Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, Zhou X. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion. 2019;100(1):7–8.

83. Boulanger CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8(1):42.

84. Forgie AJ, Fouhse JM, Willing BP. Diet-microbe-host interactions that affect gut mucosal integrity and infection resistance. Front Immunol. 2019;10:1802.

85. Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiota, cell proliferation, inflammation, and cancer. Int J Mol Sci. 2019;20(5):1214.

86. Cai R, Cheng C, Chen J, Xu X, Ding C, Gu B. Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes. 2020;11:680–90.

87. Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13(2):85–92.

88. Xu D. Regulation of inflammatory signaling in health and disease. vol. 1024. Berlin: Springer, 2017.

89. Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract. 2017;7(4):987–987.

90. Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut microbiota and cancer: from pathogenesis to therapy. Cancers. 2019;11(1):38.

91. Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H, Kohgo Y. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 2016;7:12365.

92. Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French T-AC, Tai ES, Milner J, Koh W-F, Xie L, Zucker M. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. Lifestyle Genom. 2011;4(2):69–89.

93. Ganes S, Williamson AJ, Hyman N, Kandel J. How the microbiome is shaping our understanding of cancer biology and its treatment. Semin Colon Rectal Surg. 2018;29(1):12–6.

94. Doll R, Petro R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1192–308.

95. Bradbury KE, Murphy N, Key TJ. Diet and colorectal cancer in UK Biobank: a prospective study. Int J Epidemiol. 2019;48:246–58.

96. Esposito K, Giugliano D. Diet and inflammation: a link to metabolic and cardiovascular diseases. Eur Heart J. 2005;27(1):15–20.

97. Mishra S, Singh R, Dwivedi S, De Meester F, Rybar R, Pella D, Fedacko J, Juneja LR. Effects of nutraceuticals on genetic expressions. Open Nutraceuticals. 2019;2009:70–20.

98. Gazon H, Barbeau B, Mesnard J-M, Peloponese J-M Jr. Hijacking of the microbiota’s effect on mental health: the gut-brain axis. Clin Pract. 2016;10(6):16393–e16393.

99. Tenmares R, Nasser F, Nasr R, Charafeddine M, Mukherji D, Shamseddine A. Gut microbiome: a promising biomarker for immunotherapy in colorectal cancer. Int J Mol Sci. 2019;20(7):4155.

100. Han YW. Fusobacterium nucleatum: a commensal-turned-pathogen. Curr Opin Microbiol. 2015;23:141–7.

101. Huang S, Yang Z, Zou D, Dong D, Liu A, Liu W, Huang L. Rapid detection of nusG and fadA in Fusobacterium nucleatum by loop-mediated isothermal amplification. J Med Microbiol. 2016;65(8):760–9.

102. Siegel SJ, Rakoff-Nahoum S. Innate immune pattern recognition and the development of intestinal cancer. In: Microbiome and cancer. Clin Transl Gastroenterol. 2019;10(3):e00024.

103. Xu M, Yamada M, Li M, Liu H, Chen SG, Han YW. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J Biol Chem. 2007;282(34):25000–9.

104. Ding Q, Tan KS. The danger signal extracellular ATP is an inducer of Fusobacterium nucleatum biofilm dispersal. Front Cell Infect Microbiol. 2016;6:135.

105. Rubinstein MR, Wang Y, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin’s-B-catenin signaling via its FadA adhesins. Cell Host Microbe. 2013;14(2):195–206.

106. Derrien M, Alvarez A-S, de Vos WM. The gut microbiota in the first decade of life. Trends Microbiol. 2019;27(12):997–1010.

107. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-Z, Abe F, Oiwa R. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90–90.

108. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OL, Juge N, Avershina E, Rudi K, Narbad A, Jenmalm MC, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050–26050.

109. Fang Y, Li X, Zhang H, Zhang Y, Chen H, Sun H, Kang X, Gao Z. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiota, cell proliferation, inflammation, and cancer. Int J Mol Sci. 2019;20(5):1214.
128. Ganesan K, Guo S, Fayyaz S, Zhang G, Xu B. Targeting programmed Fusobacterium nucleatum Fap2 for colorectal cancer therapy. Cancers. 2019;11(10):1592.

129. Sun T, Liu S, Zhou Y, Yao Z, Zhang D, Cao S, Li Y, Lian Z, et al. Evolutionary biologic changes of gut microbiota in an “adenoma-carcinoma sequence” mouse colorectal cancer model induced by 1, 2-dimethylhydrazine. Oncotarget. 2017;8(11):444–57.

130. Bahia D, Sato Y, Kondo K, Kajihara M, Kato K, Horiuch S, Adachi S, Arakawa H, Yoshida S, Akasu T. Metagenomic analyses of the gut microbiota associated with colorectal adenoma. PLoS ONE. 2019;14(2):e0212406.

131. Sun C-H, Li B-B, Wang B, Zhao J, Li T-T, Li W-B, Tang D, Qiu M-J, Wang X-C, Zhu C-M. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med. 2019;5:178–87.

132. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–44.

133. Brennan CA, Garrett WS. Fusobacterium nucleatum—symbiont, opportunist and oncopathogen. Nat Rev Microbiol. 2019;17(3):156–66.

134. Nedaenina R, Shariﬁ M, Avan A, Kazemi M, Nabinejad A, Ferns GA, Gheyour-Mobarhan M, Salehi R. Inhibition of microRNA-21 via locked nucleic acid-anti-miR suppressed metastatic features of colorectal cancer cells through modulation of programmed cell death 4. Tumor Biol. 2017;39(3):1010428317692261.

135. Ding L, Lan Z, Xiong X, Ao H, Feng Y, Gu H, Yu M, Cui Q. The dual role of microRNAs in colorectal cancer progression. Int J Mol Sci. 2018;19(9):2791.

136. Sun Y, Liu Y, Cogdoll D, Calin GA, Sun B, Kopetz S, Hamilton SR, Zhang W. Examining plasma microRNA markers for colorectal cancer at different stages. Oncotarget. 2016;7(10):11434–49.

137. Anfossi S, Calin GA. Gut microbiota: a new player in regulating immune-and chemotherapy efficacy. Cancer Drug Resist. 2020;3:356.

138. Riordan T. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev. 2007;20(4):622–59.

139. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28(1):573–621.

140. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):69–65.

141. Haque S, Haque M. The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms—an appraisal. Clin Exp Gastroenterol. 2017;10:91–103.

142. Lazar V, Ditu L-M, Pircalabioru GG, Gheorghie I, Curutiu C, Holban AM, Picu A, Petcu L, Chifirucu MC. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;9:1830–1830.

143. Mezouar S, Chantry R, Michel J, Sabra A, Dubus J-C, Leon M, Sereme Y, Mège J-L, Ranque S, Desnues B, et al. Microbiome and the immune system: from a healthy steady-state to allergy associated disruption. Hum Microbiome J. 2018;10:11–20.

144. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

145. Jin M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med. 2019;23(4):2343–50.

146. Butler MI, Morkl S, Sandhu KV, Cryan JF, Dinan TG. The gut microbiome and mental health: what should we tell our patients? Le microbiote Intestinal et la Sante Mentale : que Devrions‑Nous dire a nos Patients? Can J Psychiatry. 2019;64(11):747–60.

147. Jasirwan COM, Lesmana CRA, Hasan I, Sulaiman AS, Gani RA. The role of gut microbiota in non-alcoholic fatty liver disease: pathways of mechanisms. Biosci Microb Biotechnol Food Health. 2019;38(3):81–8.

148. Praveschotinunt P, Duraj-Thatte AM, Gelfat I, Bahl F, Chou DB, Joshi NS. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun. 2019;10(1):5580.

149. Fernandez MA, Marette A. Potential health benefits of combining yogurt and fruits based on their probiotic and prebiotic proprieties. Adv Nutr. 2017;8(1):1555–1645.

**Publisher’s Note**
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.