Microbial networking in cancer: when two toxins collide

A recent study by Dejea et al. has demonstrated that two enterotoxigenic bacteria frequently associated with sporadic colorectal cancer, Bacteroides fragilis and pks+ Escherichia coli, are found together in biofilms on tissue from patients with familial adenomatous polyposis. In preclinical mouse models, these two bacteria and their corresponding toxins work synergistically to promote colon cancer.

British Journal of Cancer (2018) 118:1407–1409; https://doi.org/10.1038/s41416-018-0101-2
potential of \(\text{pks} + \text{E. coli} \). These results indicate that additional contributing factors, such as \(\text{bft} \), are required for carcinogenesis.

Overall, Dejea et al. demonstrated a synergistic interaction between two carcinogenic bacteria, and established the concept of microbial networks in carcinogenesis.

The authors’ findings suggest that the spatial distribution of bacteria within the colon, including their proximity to the host mucosal barrier as well as interactions with each other, should be investigated further in the context of CRC. Intestinal lumen and even oral microbial composition has previously distinguished healthy subjects from patients with CRC\(^{10}\); however, these studies were conducted to identify biomarkers, and did not address causation. The evidence that ETBF and \(\text{E. coli} \) are found within biofilms and mucosal tissue from patients with FAP, and have a combined synergistic effect in animal models of CRC (Fig. 1), suggest that screening for the presence of these two bacterial strains may help assess cancer risk in humans.

The events leading to increased microbial co-occurrence and development of CRC are unclear. One contributing factor appears to be host genetics, as FAP is driven by mutations in the tumour-suppressing adenomatous polyposis coli gene, and \(\text{Apc}^{\text{Min}} \) mouse models have increased \(\text{Bacteroides} \) and \(\text{Enterobacteriaceae} \) compared with WT mice.\(^{2} \) \(\text{B. fragilis} \) and \(\text{Enterobacteriaceae} \) members have also been identified within mucosal biofilms of intestinal biopsies collected from patients with inflammatory bowel disease,\(^{11} \) suggesting intestinal inflammation also influences host susceptibility. In mice, increased mucus penetrability and proximity of bacteria to the mucosal layer are side effects of both high-fat\(^{12} \) and western-style\(^{13} \) diets, which are both carcinogenic risk factors. Whether diets have similar effects within hereditary CRC patients, by predisposing them to bacterial colonisation of the mucosal surface, is unclear. Interestingly, administering the dietary fibre inulin was shown to ameliorate the negative impact that high-fat or western style diets have on the mucus barrier and bacteria localisation in mice.\(^{12,13} \) This may indicate a potential preventative approach.

The polymicrobial nature of CRC suggests additional microbial networking likely exists within the intestine, which could positively or negatively influence carcinogenesis outcomes. It would be important to characterise these microbial networks and identify specific nodes that could represent preventive or therapeutic targets. Dejea et al. provide invaluable information on the functional interaction between two carcinogenic microorganisms, and the study paves the way for future studies elucidating microbial networks in cancer.

ACKNOWLEDGEMENTS

This research was supported by National Institutes of Health grants R01 DK73338 and from the University of Florida, Department of Medicine Gatorade Fund to C. Jobin.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).
Sarah Tomkovich¹ and Christian Jobin¹,²,³
¹Department of Medicine, University of Florida, Gainesville, FL 32611, USA; ²Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA and ³Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32611, USA
Correspondence: Christian Jobin (christian.jobin@medicine.ufl.edu)

REFERENCES
1. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).
2. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).
3. Borges-Canha, M., Portela-Cidade, J. P., Dinis-Ribeiro, M., Leite-Moreira, A. F. & Pimentel-Nunes, P. Role of colonic microbiota in colorectal carcinogenesis: a systematic review. Rev. Esp. Enferm. Dig. 107, 659–671 (2015 Nov).
4. Gagnaire, A., Nadel, B., Raoult, D., Neefjes, J. & Gorvel, J.-P. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat. Rev. Microbiol. 15, 109–128 (2017).
5. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA 111, 18321–18326 (2014).
6. Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 3, 34 (2017).
7. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).
8. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).
9. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).
10. Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut pii: gutjnl-2017-314814 (2017).
11. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005).
12. Zou, J. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53.e4 (2018).
13. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).