The REAL Corpus: A Crowd-Sourced Corpus of Human Generated and Evaluated Spatial References to Real-World Urban Scenes

Phil Bartie♦, William Mackaness♦, Dimitra Gkatzia⋆, Verena Rieser♦
♦School of Natural Sciences, ⋆School of GeoSciences, ♦Department of Computer Science
University of Stirling, University of Edinburgh, Heriot-Watt University
phil.bartie@stir.ac.uk, william.mackaness@ed.ac.uk, {d.gkatzia,v.t.rieser}@hw.ac.uk

Abstract
We present a newly crowd-sourced data set of natural language references to objects anchored in complex urban scenes (In short: The REAL Corpus – Referring Expressions Anchored Language). The REAL corpus contains a collection of images of real-world urban scenes together with verbal descriptions of target objects generated by humans, paired with data on how successful other people were able to identify the same object based on these descriptions. In total, the corpus contains 32 images with on average 27 descriptions per image and 3 verifications for each description. In addition, the corpus is annotated with a variety of linguistically motivated features. The paper highlights issues posed by collecting data using crowd-sourcing with an unrestricted input format, as well as using real-world urban scenes. The corpus will be released via the ELRA repository as part of this submission.

Keywords: Image Descriptions, Spatial Referring Expressions, Urban Scenes, Vision and Language

1. Introduction
Generating successful referring expressions (RE) is vital for real-world applications such as navigation systems. Traditionally, research has focused on studying Referring Expression Generation (REG) in virtual, controlled environments. In this paper, we describe a novel corpus of spatial references from real scenes rather than virtual.

Related work has focused on computer generated objects (van Deemter et al., 2006; Viethen and Dale, 2008), crafts (Mitchell et al., 2010), or small objects in a simple background (Mitchell et al., 2013; Fitzgerald et al., 2013). One notable exception is the recent work by Kazemzadeh et al. (2014), who investigate referring expressions of objects in “complex photographs of real-world cluttered scenes”. They report that REs are heavily influenced by the object type. Here, we are interested in studying REs for visual objects in urban scenes. As the success of a RE is heavily dependent on the complexity of the scene as well as its linguistic features, we are interested in modelling and thus predicting the success of a RE.

2. REAL Corpus
The REAL corpus contains a collection of images of real-world urban scenes (Fig. 1) together with verbal descriptions of target objects (see Fig. 2) generated by humans, paired with data on how successful other people were able to identify the same object based on these descriptions (Fig. 3). The data was collected through a web-based interface. The images were taken in Edinburgh (Scotland, UK) using a DSLR with a wide angle lens. The images were captured very early one summer morning to reduce the occlusion of city objects from buses and crowds, and to minimise lighting and weather variations between images.

2.1. Experimental Setup
There were 188 participants recruited (age between 16 to 71). Each participant was presented with an urban image (Fig. 1), where the target object was outlined by a yellow box (Fig. 2), and was asked to describe the target using free text. After completing a (self-specified) number of tasks, participants were then asked to validate descriptions provided by other participants by clicking on the object using previously unseen images (Fig. 3). In order to encourage people to contribute more data, we added their email address to a prize draw for a £50 Amazon voucher, with an additional entry added for each expression they generated.

2.2. Collected Data
Overall, 873 descriptions across 32 images were collected, averaging around 27 descriptions per image. The balance of generation and validations was adjusted to ensure that all descriptions were identified by at least 3 other participants, generating 2617 image tag verifications. Table 1 summarises the collected data.

# participants	188
# images/ stimuli	32
# descriptions	873
# verifications	2617

Table 1: Data in the REAL corpus
The type of data collected is notably different from previous corpus-based work on REG. Previous work has focused on highly controlled environments, such as virtual environments as used for the GIVE-2 challenge (Gargett et al., 2010). In GIVE-2, the target objects have distinct attributes, such as colour and position. For instance, an effective RE in GIVE-2 could be “the third button from the second row”. In real-world situations though, object properties are less well defined, making a finite set of pre-defined qualities infeasible. Consider, for instance, the building highlighted in Figure 2, for which the following descriptions were collected:

2153
It is evident that the REAL users refer to a variety of object qualities. We observe that some participants refer to the architecture of the building explicitly or implicitly (similar architecture style, Greek style building, classic building, triangular pediment), some refer to movable objects (parked cars in front) and some make use of the location (second building, in front of).

2.3 Corpus Annotation

Information on participants: The web interface first asked participants to enter information on their age group and gender. The corpus contains data from 90 male and 98 female participants. The age groups are distributed as shown in Table 2. Over half of the participants are aged between 21 and 30 years old, but all ages from 16 to 71 and older are represented.

Age group	Number of participants	Percentage
16 - 20	25	13.3%
21 - 30	105	55.85%
31 - 40	33	17.55%
41 - 50	13	8%
51 - 60	4	2.13%
61 - 70	4	2.13%
71 or older	2	1.1%

Table 2: Distribution of age groups

Syntactic Features: We use the Stanford CoreNLP tool (Manning et al., 2014) to syntactically annotate the human generated REs. In previous work (Gkatzia et al., 2015) we found that the following syntactic categories predict successful REs: NP (Noun phrases), NNP (Proper noun, singular), NN (Noun, singular or mass), JJ (Adjective) and VBN (Verb, past participle). For example, the following descriptions uses NNP and NNs to distinguish the reference object:

The large American-style wooden building with balcony painted cream and red/brown. Ground floor is a cafe with tables and parasols outside.

Semantic Features: We also manually annotated a sample of 100 corpus instances with semantic features using spatial frames of reference as described in (Gargett et al., 2010), see Table 3.

Human Identification Success Rates: In order to verify the human generated RE, the respondent clicked on the image where they believed the target to be based on the description. They were also able to respond with “ambiguous” if they considered there to be more than one matching object in the scene, or “not found” if they were unable to find any suitable object based on the description given. All cases where the respondent clicked on the image were manually checked to determine if the ‘correct’ (green) or ‘incorrect’ (red) target had been identified Fig. 3. Overall, 77.5% of human descriptions provided were successfully identified. Also see Table 4.

RE Success Rates: In previous work (Gkatzia et al., 2015) we have used the REAL corpus to automatically predict the success of REs¹. In particular, the corpus is annotated with the following measures of success:

¹The Java code for the normalisation of the success rate can be found at https://github.com/dimi123/EMNLP-2015
This research received funding from the EPSRC projects GUI “Generation for Uncertain Information” (EP/L026775/1) and DILiGENt “Domain-Independent Language Generation” (EP/L005429/1). The data has been collected through the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 216594 (SPACEBOOK project).

Fitzgerald, N., Artzi, Y., and Zettlemoyer, L. (2013). Learning distributions over logical forms for referring expression generation. In Conference on Empirical Methods in Natural Language Processing (EMNLP).

Gargett, A., Garoufi, K., Koller, A., and Striegnitz, K. (2010). The GIVE-2 Corpus of Giving Instructions in Virtual Environments. In 7th International Conference on Language Resources and Evaluation (LREC).

Gkatzia, D., Rieser, V., Bartie, P., and Mackaness, W. (2015). The Stanford CoreNLP Natural Language Processing Toolkit. In 52nd Annual Meeting of the Association for Computational Linguistics (ACL): System Demonstrations.

Mitchell, M., van Deemter, K., and Reiter, E. (2010). Natural reference to objects in a visual domain. In 6th International Natural Language Generation Conference (INLG).

Mitchell, M., Reiter, E., and van Deemter, K. (2013). Typicality and object reference. In Cognitive Science (CogSci).

van Deemter, K., van der Sluis, I., and Gatt, A. (2006). Building a semantically transparent corpus for the generation of referring expressions. In 4th International Natural Language Generation Conference.

Viethen, J. and Dale, R. (2008). The use of spatial relations in referring expression generation. In 5th International Natural Language Generation Conference (INLG).