MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila

Xiao Chen & Michael Rosbash

Many biological and behavioural processes of animals are governed by an endogenous circadian clock, which is dependent on transcriptional regulation. Here we address post-transcriptional regulation and the role of miRNAs in Drosophila circadian rhythms. At least six miRNAs show cycling expression levels within the pigment dispersing factor (PDF) cell-pacemaker neurons; only mir-92a peaks during the night. In vivo calcium monitoring, dynamics of PDF projections, ArcLight, GCaMP6 imaging and sleep assays indicate that mir-92a suppresses neuronal excitability. In addition, mir-92a levels within PDF cells respond to light pulses and also affect the phase shift response. Translating ribosome affinity purification (TRAP) and in vitro luciferase reporter assay indicate that mir-92a suppresses expression of sirt2, which is homologous to human sir2 and sir3. sir2 RNAi also phenocopies mir-92a overexpression. These experiments indicate that sirt2 is a functional mir-92a target and that mir-92a modulates PDF neuronal excitability via suppressing SIRT2 levels in a rhythmic manner.

1 Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA. Correspondence and requests for materials should be addressed to M.R. (email: rosbash@brandeis.edu).
In diverse organisms from bacteria to humans, many biological pathways and processes are controlled by a robust endogenous circadian clock, which is generally entrained by light, food and temperature1–2. Rhythmic behaviour in flies is commonly entrained by 12 h light-dark (LD) cycles; these rhythms persist for days and even weeks in constant darkness (DD). Light is a very strong entraining stimulus; therefore, even a brief 10-min light pulse in the middle of the night can robustly shift the phase of the clock.

From the molecular point of view, animal circadian clocks are controlled by a transcription/translation feedback loop. They include in flies four major proteins: TIMELESS (TIM), CLOCK (CLK), CYCLE (CYC) and PERIOD (PER). CLK and CYC heterodimerize to activate transcription of hundreds of genes, including \textit{timeless} (\textit{tim}) and \textit{period} (\textit{per}) by binding to an E-box enhancer element3,4. TIM and PER then suppress the activity of the CLK/CYC dimer, leading to a decrease in transcriptional activation5. TIM and PER levels decay, and these lower protein levels release CLK/CYC from suppression to begin a new round of transcription. This molecular cycle takes \textasciitilde 24 h and is generally believed to generate the behavioural and physiological cycles that accompany and characterize circadian rhythms.

From the neural circuit point of view, there are \textasciitilde 150 neurons that are particular important for generating rhythmic behaviour in flies. Among them, eight pairs of PDF cells include the key pacemakers6. (They are the only neurons in fly brains that express PDF, the neuropeptide pigment-dispersing factor.) This is important post-transcriptional regulators20. miRNAs generally trigger mRNA degradation and/or translational inhibition by base pairing with the 3\textprime; untranslated regions (3\textprime;UTR) of mRNAs, leading to a downregulation of gene expression21. Only a few miRNAs show cycling expression levels in fly heads22–27; (3) many more cycling miRNAs were found in PDF cells than in whole heads14. This evidence suggests that PDF cells are at the centre of the clock network, orchestrating if not driving the whole system.

Although less studied compared with the transcription/translation feedback loop, post-transcriptional and even post-translational regulation is also important for circadian clock regulation15–18. For example, substantial differences were observed between the expression levels of nascent RNA and mRNA in both flies and mice15,19. This has kindled our interest in addressing the roles of microRNAs (miRNAs), which are important post-transcriptional regulators20. miRNAs generally trigger mRNA degradation and/or translational inhibition by base paring with the 3\textprime; untranslated regions (3\textprime;UTR) of mRNAs, leading to a downregulation of gene expression21. Only a few miRNAs show cycling expression levels in fly heads22–27; therefore, it was of interest to see whether there are more cycling miRNAs in discrete clock neurons like PDF cells, where circadian regulation may be more important for behavioural rhythms and where RNA assays may be less compromised by cell and tissue heterogeneity.

To this end, we quantified expression of 16 miRNAs in PDF cells with reverse transcriptase quantitative PCR (RT–qPCR) and found six cyclers. They include mir-92a, which was the only miRNA that peaked at night. Expression of mir-92a is regulated by both the core clock and light. Our data indicate that mir-92a suppresses neuronal excitability in part by targeting \textit{sirt2} within PDF cells, which strengthens a daily neuronal excitability cycle. Manipulating mir-92a or \textit{sirt2} levels also lead to altered PDF projection morphology and phase shift responses, both of which are known to be linked to neuronal excitability. The effect of mir-92a on neuronal excitability is not restricted to PDF cells, since manipulation of mir-92a levels in sleep- or wake-promoting neurons is sufficient to change sleep duration; at least in dopaminergic neurons this is done via the same mRNA target, \textit{sirt2}.

\textbf{Results}

\textbf{Clock/light regulates mir-92a oscillations in PDF cells.} To identify PDF cell cycling miRNAs, green fluorescent protein (GFP)-labelled PDF cells were manually sorted for RNA extraction and miRNA libraries constructed with an optimized protocol28. Although enough miRNA reads were obtained, sample variation was substantial and precluded using the RNA-sequencing data to identify cycling expression patterns; they usually have modest amplitudes (two- to threefold). Therefore, RT–qPCR was used, which produced more consistent results. On the basis of hints (potential cyclers) from the sequencing results, 16 miRNAs were tested, of which 10 showed reproducible daily expression profiles between two biological replicates; 6 of the 10 are rhythmically expressed (Fig. 1a and Supplementary Fig. 1). As only a few miRNAs were found cycling in heads22–27, the results here suggest more cycling miRNAs in PDF cells than the whole heads.

We focus in this manuscript on mir-92a. It was the only PDF cell cycling miRNA with lower levels during most of the daytime and higher levels during the nighttime (Fig. 1a). In the first day of constant darkness (DD1), miRNA cycling persists but with a 4–8 h phase advance compared to LD, suggesting that light also affects mir-92a expression (Fig. 1b and Supplementary Fig. 2).

To test further whether the cycling expression is under the control of the core molecular clock, the same LD assay was done in \textit{per0} flies (\textit{per0;PDF-GAL4;UAS-mCD8::GFP}). They are completely arrhythmic because of a nonsense mutation in \textit{per}, a core clock gene. There is no indication of residual mir-92a cycling in this background, indicating that it is indeed downstream of the core molecular clock (Fig. 1c).

\textbf{mir-92a suppresses neuronal excitability.} To address the functions of mir-92a, we first tested whether manipulating mir-92a levels affects the well-characterized circadian morphological changes in the PDF cell termini. They undergo daily fasciculation–defasciculation cycles under circadian control13. To this end, mir-92a was overexpressed, or knocked down using a miRNA sponge (SP), in PDF cells with co-expression of mCD8::GFP (\textit{PDF-GAL4;UAS-mCD8::GFP}; \textit{UAS-mir-92aOE} or \textit{UAS-mir-92aSP}, respectively)29. The morphological cycles of the PDF cell termini were quantified with Sholl analysis, that is, assaying the intersections between axon branches and concentric circles (see Methods).

Compared with wild-type (WT) flies (\textit{w1118, PDF-GAL4;UAS-mCD8::GFP/+ in a \textit{w1118} genetic background), overexpression of mir-92a (\textit{mir-92aOE, PDF-GAL4;UAS-mCD8::GFP;UAS-mir-92aOE}) specifically in PDF cells maintains projections in the fasciculated state at both ZT2 and ZT14 as indicated by non-cycling and low numbers of axonal crosses (Fig. 2a). Specifically, overexpression of mir-92a shows an \textasciitilde 37% decrease in maximal axonal crosses at ZT2 and no significant differences in axonal crosses at ZT14 (Fig. 2a and Supplementary Fig. 3). In contrast, the knockdown results in the opposite, namely the defasciculated state, with no significant differences between the control (scramble, \textit{PDF-GAL4;UAS-mCD8::GFP;UAS-scrambler}) and knockdown (mir-92aSP, \textit{PDF-GAL4;UAS-mCD8::GFP;UAS-mir-92aSP}) at ZT2 but an \textasciitilde 24% increase in maximal axonal crosses in the mir-92a knockdown at ZT14 (Fig. 2a and Supplementary Fig. 3). No differences of axonal length were observed among genotypes. To address possible developmental effects from use of \textit{PDF-GAL4}, the same experiments were
mir-92a levels in PDF cells oscillate under both 12 hour LD and DD cycles and are controlled by the molecular clock. RT-qPCR quantification of mir-92a levels in PDF cells under LD (a) or DD (b) conditions in WT flies (PDF-GAL4;UAS-mCD8::GFP) or per⁰ (per⁰), PDF-GAL4;UAS-mCD8::GFP) mutant flies under LD conditions (c). Dotted lines represent the three biological replicates (REP 1, 2 and 3), and the solid line represents the average. Data are double-plotted to show cycling. mir-92a expression levels are normalized to 2S rRNA. a.u. represents arbitrary unit. Grey background indicates the lights-off period and white indicates lights-on.

Figure 1 | mir-92a levels in PDF cells oscillate under both 12 hour LD and DD cycles and are controlled by the molecular clock. RT-qPCR quantification of mir-92a levels in PDF cells under LD (a) or DD (b) conditions in WT flies (PDF-GAL4;UAS-mCD8::GFP) or per⁰ (per⁰), PDF-GAL4;UAS-mCD8::GFP) mutant flies under LD conditions (c). Dotted lines represent the three biological replicates (REP 1, 2 and 3), and the solid line represents the average. Data are double-plotted to show cycling. mir-92a expression levels are normalized to 2S rRNA. a.u. represents arbitrary unit. Grey background indicates the lights-off period and white indicates lights-on.

performed using the inducible geneswitch driver PDF-GSG, and the transgenes were only activated in adults³⁰. The same results were obtained (Supplementary Fig. 4), indicating that adult-specific manipulation of mir-92a levels changes the fasciculation-defasciculation state of the PDF termini.

Defasciculation can reflect higher neuronal excitability and fasciculation lower excitability^{30,31}. Rat mir-92a is also implicated in synaptic scaling³², suggesting that fly mir-92a suppresses neuronal excitability. To address this possibility more directly, we tested how mir-92a levels affect PDF cell depolarization with high concentration of KCl, by monitoring changes in fluorescence levels of the voltage sensor ArcLight (PDF-GAL4;UAS-ArcLight; UAS-mir-92aOE or UAS-mir-92aSP); they decrease when neurons are depolarized¹¹. Brains were attached to the bottom of a chamber with adult haemolymph-like saline (AHL), and baseline fluorescence recorded with a microscope. After 60 s of baseline recording, KCl was perfused into the chamber, which caused an immediate and drastic decrease in fluorescence levels (Fig. 2b and Supplementary Movie 1). Interestingly, mir-92aOE significantly decreased the response, and mir-92aSP consistently but insignificantly increased the response (Fig. 2b).

To further test the effect of mir-92a, nicotine was used to stimulate PDF cells and PDF-GSG was used to focus on adult-specific effects. Nicotine is a more physiological agonist and has been shown to fire PDF cells via nicotinic receptors³³. To this end, the Ca²⁺ sensor GCaMP6 was co-expressed with either UAS-mir-92a or UAS-mir-92aSP under the control of PDF-GSG. Although robust increases of fluorescence levels were induced by 3 x 10^{−6} M nicotine, we obtained negative results with the mir-92a manipulations. Changes among genotypes were not statistically significant, perhaps because of relatively large variations among brains as well as the weaker PDF-GSG driver compared to PDF-GAL4 (see below). This was despite a similar trend as the KCl stimulation, namely decreased responses with mir-92a overexpression and increases with mir-92a knockdown (Supplementary Fig. 5).

An independent approach to address mir-92a function was to monitor Ca²⁺ levels in PDF cells using an in vivo imaging system. CaLexA is an artificial transcription factor usually located in the cytoplasm when Ca²⁺ levels are low. Higher Ca²⁺ levels cause CaLexA to translocate to the nucleus, where it can bind to the upstream LexAop element and activate luciferase expression of a transgene. Luciferase levels therefore positively correlate with Ca²⁺ levels in this system³⁴. To test whether mir-92a levels change Ca²⁺ levels as another proxy of neuronal excitability, luciferase levels were measured every hour for three consecutive days in living WT flies and in flies with manipulated levels of mir-92a (PDF-GAL4;UAS-CaLexA;LexAop-luciferase;UAS-mir-92aOE or UAS-mir-92aSP).

Ca²⁺ levels in WT flies show a rhythmic pattern with peaks in the morning, consistent with previously reported electrophysiological assays and GCaMP6 imaging of PDF cells (Fig. 2c)^{10,12}. Compared to WT, overexpressing mir-92a significantly lowers the luciferase levels, especially during the light period (LP) when mir-92a levels are low (Fig. 2c). On the contrary, knocking down mir-92a increases luciferase levels, especially during the dark period when mir-92a levels are high (Fig. 2c).

GCaMP6 was also used to monitor Ca²⁺ levels in PDF cells. Flies that expressed UAS-GCaMP6f together with either UAS-mir-92aOE or UAS-mir-92aSP under PDF-GAL4 control were dissected, and the fluorescence levels of their PDF termini measured and quantified. Whereas PDF termini show apparent spontaneous activity, we were not able to accurately estimate the spiking rates and amplitudes from the Ca²⁺ signals because of noise and heterogeneity within individual neurons. We could however quantify the differences between baseline fluorescence levels among genotypes. Consistent with the in vivo CaLexA results, knocking down mir-92a levels resulted in an ~224% increase in baseline fluorescence levels at ZT18–22, and overexpression resulted in a ~40.6% decrease at ZT6–10 (Supplementary Fig. 6). Since higher Ca²⁺ levels are associated with higher neuronal excitability, these GCaMP6 data as well as the CaLexA data support the hypothesis that mir-92a suppresses neuronal excitability.

mir-92a levels in sleep-regulating neurons affects sleep. To test whether the effect of mir-92a on neuronal excitability is restricted to PDF cells, mir-92a levels were either up- or downregulated in
neurons regulating fly sleep. Dopaminergic neurons are well-characterized wake-promoting neurons in mammals and flies35. Overexpression of mir-92a in these neurons (TH-GAL4;UAS-mir-92aOE) might lower their excitability and therefore increase sleep. Indeed, sleep duration is significantly increased in the overexpression flies, and sleep duration is significantly reduced when mir-92a is knocked down (Fig. 3a). Similar changes in sleep duration were observed when mir-92a levels were manipulated in another set of wake-promoting neurons driven by Dvpdf-GAL4 (Supplementary Fig. 7A)35. As a negative control, sleep duration of UAS-mir-92aOE/+ or UAS-mir-92aSP/+ flies without GAL4 drivers was measured and was indistinguishable from WT flies (Supplementary Fig. 7B).

A subset of dorsal clock neurons contain 8–10 cells per brain and are sleep-promoting; the driver is PDFR-GAL4 from Janelia Research Campus34. Overexpression of mir-92a in these cells led to a significant decrease in sleep duration, consistent with the neuronal excitability hypothesis (Fig. 3b). Although mir-92a knockdown in these cells had no effect (Fig. 3b), there are many possible reasons for a negative result, for example, the GAL4 driver is not sufficiently strong, or endogenous mir-92a is not well expressed in these neurons.

We also assayed sleep duration in mir-92a null (mir-92aKO) flies. It is affected and in the ‘correct’ direction: the mutant flies show ~17% less total sleep and ~44% sleep loss during the LP (Fig. 3c). These sleep results taken together further confirm that...
mir-92a suppresses neuronal excitability and also indicate that this regulation is not restricted to PDF cells.

mir-92a and light-induced phase shifts. Since mir-92a suppresses neuronal excitability, we wanted to test whether neuronal excitability also affects mir-92a levels. This possibility might also be relevant to the circadian cycling of mir-92a levels. As light pulses during the nighttime fire PDF cells and phase shift the circadian clock, an effect of light/excitability on mir-92a levels could be via an effect on the core clock. We therefore subjected entrained flies to a 10-min light pulse at either ZT15 or ZT21 and assayed PDF cell mir-92a levels after a subsequent 50 min in the dark. (The same 10 min protocol is used for traditional phase shift assays, with maximum phase delays observed at ZT15 and maximum phase advances at ZT21.) mir-92a levels increased by approximately twofold in PDF cells after the ZT15 light pulse, and they decreased by \(\frac{1}{2.5} \) fold after the ZT21 light pulse (Fig. 4a). The results appear specific for PDF cells; the light pulses had no effects on mir-92a levels in dopaminergic neurons, which are not activated by light (Supplementary Fig. 8).

Figure 3 | Manipulation of mir-92a levels in sleep-regulating neurons affects sleep duration. Sleep profiles of female flies entrained under LD cycles. mir-92a levels were manipulated in either (a) wake-promoting neurons (TH-GAL4) or (b) sleep-promoting neurons (PDFR-GAL4). (c) mir-92a null (mir-92aKO) was compared to the WT control with an identical genetic background (yw flies). Sleep duration is quantified to the right. Total indicates total sleep duration (ZT0–24), LP indicates light period (ZT0–12) and DP indicates dark period (ZT12–24). \(N = 16–32 \). Error bars represent ± s.e.m. n.s. represents non-significant, \(*P < 0.05, \quad ****P < 0.0001 \), two-way ANOVA.
mir-92a suppresses sirt2 translation but not mRNA levels. To identify a mir-92a target responsible for the observed phenotypes, translating ribosome affinity purification (TRAP) was performed on flies with mir-92a either up- or downregulated throughout the circadian system (Tim-GAL4;UAS-RiboTag;UAS-mir-92aOE compared to Tim-GAL4;UAS-RiboTag/+ (control), and Tim-GAL4;UAS-RiboTag;UAS-mir-92aSP compared to Tim-GAL4;UAS-RiboTag/UAS-scramble (control)). Potential targets should show increased mRNA levels (indicated by the Input) and/or translating mRNA levels (indicated by the immunoprecipitation (IP)/Input) with mir-92a downregulation, and decreased mRNA levels with mir-92a upregulation. In addition, these targets should have predicted mir-92a-binding sites in their 3’UTRs with TargetScan (http://www.targetscan.org/). There were 26 genes from our TRAP data that met these criteria (Supplementary Table 1). We then tested these potential candidates with RNA interference (RNAi) in the CaLexA system, the sleep assay and the PDF projection morphology to focus on candidates with the same phenotype as mir-92aOE flies.

sirt2, a homologue of mammalian sir2 and sirt3 was the only candidate that met all these criteria (see below). It is an NAD-dependent deacetylase of the Sirtuin family. There is one predicted mir-92a-binding site in the sirt2 3’UTR. The site is conserved among Drosophila species but does not exist in mammals according to TargetScan. The TRAP results indicate no detectable changes in sirt2 mRNA input levels between WT and mir-92a OE or knockdown flies, whereas the IP/Input levels anticorrelate with mir-92a levels. The data therefore suggest that mir-92a suppresses sirt2 expression by inhibiting its translation without markedly affecting mRNA stability (Fig. 5a). Unfortunately, no good antibody against fly SIRT2 is available for western blots or immunostaining.

To confirm that mir-92a suppresses sirt2 expression by binding to the predicted site in the 3’UTR, a luciferase reporter assay was performed in S2 cells. Either a WT or a binding site-mutated sirt2 3’UTR was inserted into the psiCHECK2 vector downstream of the renilla reporter gene. An internal firefly luciferase reporter was expressed separately from the vector as a transfection control (Supplementary Fig. 10).

Co-transfection of Ub-GAL4 and UAS-mir-92a together with the reporter plasmid carrying WT 3’UTR results in a significantly lower renilla/firefly luciferase bioluminescence ratio compared to controls in which the irrelevant gene dsRed or the irrelevant miRNA mir-184 was co-transfected instead of mir-92a (Fig. 5b). Moreover, a mutation of the mir-92a-binding site in the 3’UTR eliminates the mir-92a suppression (Fig. 5b). The results confirm that mir-92a suppresses sirt2 expression both in vitro and in vivo.

Sirt2 RNAi phenocopies mir-92a overexpression. If mir-92a suppresses neuronal excitability by downregulating sirt2 expression, sirt2 RNAi should phenocopy mir-92aOE. Three RNAi lines are available from the Transgenic RNAi Project. One shows high percentage lethality at the pupal stage at 25 °C (#36868 from Bloomington Stock Center), but the other two (#32482, RNAi-1 and #31613, RNAi-2) show ~85% knockdown efficiency: both lower endogenous sirt2 in heads to ~15% when driven by Tubulin-GAL4 (Supplementary Fig. 11).

sirt2 was knocked down in PDF cells (PDF-GAL4; UAS-mCD8::GFP;UAS-sirt2 RNAi) with both RNAi lines, and PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF projections were maintained in the fasciculated state during the day as well as the night (Fig. 6a). At ZT2, knockdown of sirt2 decreases maximal axonal crosses by ~31% and ~38%, respectively, with no significant differences observed at ZT14 (Supplementary Fig. 12). This is similar to the mir-92aOE phenotype shown above (Fig. 2a). In addition, sirt2 RNAi abolished the effect of the mir-92aOE in maintaining the PDF

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14707 | www.nature.com/naturecommunications

Figure 4 | Light pulses at night alter mir-92a levels in PDF cells and manipulation of mir-92a levels affects the phase shift response. (a) RT-qPCR quantification of mir-92a levels in PDF cells. Flies were entrained for at least 3 days under LD before exposure to a 10-min light pulse at either ZT15 or ZT21. PDF cells were sorted and extracted for RNA at either ZT16 or ZT22, that is, after 50 more minutes in the dark. Control indicates no exposure to light and LP indicates light pulse exposure. N = 4. Error bars represent ± s.e.m. *P < 0.05, two-tailed t-test. (b) Phase shift response. Ten minutes of dim light (0.69 mW cm⁻²) exposure was given to flies of the indicated genotypes. Phase differences were quantified between flies subjected to light pulses or not. PDF-GAL4;UAS-mir-92aOE is compared to PDF-GAL4/UAS-scramble (control) and PDF-GAL4;UAS-mir-92aSP is compared to PDF-GAL4;UAS-scramble. N = 16. Error bars represent ± s.e.m., *P < 0.05, **P < 0.01, ****P < 0.0001, two-way ANOVA. Figures shown are representative of three trails.
Figure 5 | mir-92a suppresses sirt2 translation but not mRNA levels. (a) Quantification of sirt2 levels in TRAP. Sirt2 mRNA levels in mir-92aOE flies were compared to those of w1118 flies, and mir-92aSP to scramble flies. sirt2 mRNA levels in controls (w1118 and scramble) were normalized to 0. All flies expressed Tim-GAL4;UAS-RiboTag to tag the ribosome for immunoprecipitation. N = 4 (two replicates done with high-throughput sequencing and two replicates done with RT-qPCR). Error bars represent ± s.e.m., n.s. represents non-significant, **P < 0.01, ***P < 0.001, two-way ANOVA. (b) Luciferase reporter assay of sirt2 in S2 cells. UAS-mir-92a, UAS-dsRed (negative control) or UAS-mir-184 (negative control) were co-transfected with Ub-GAL4 and psiCHECK2-sirt2 or psiCHECK2-sirt2 mut (mutant) into S2 cells for 3 days before measurement for luciferase. N = 4. Error bars represent ± s.e.m., n.s. represents non-significant, **P < 0.01, ***P < 0.001, ****P < 0.0001, two-way ANOVA.

projections defasciculated in both the day and the night, indicating that sirt2 is epistatic to (downstream of) mir-92a (Supplementary Fig. 12). As sirt2 RNAi driven by PDF-GSG is also sufficient to maintain projections in the fasciculated state, the phenotype is probably not due to developmental effects (Supplementary Fig. 13).

In the in vivo Ca2+ imaging assay, decreased Ca2+ levels were also observed with a sirt2 knockdown (PDF-GAL4;UAS-CaLexA; LexAop-luciferase;UAS-sirt2 RNAi; Fig. 6b), similar to mir-92aOE (Fig. 2c). In addition, adulthood-specific (PDF-GSG) sirt2 RNAi decreased PDF neuron responsiveness to nicotine stimulation (Supplementary Fig. 14), comparable to the effect of mir-92a overexpression (Supplementary Fig. 5).

In dopaminergic neurons, sirt2 RNAi (TH-GAL4;UAS-sirt2 RNAi) caused increased sleep, which phenocopies mir-92aOE (Fig. 6c; sirt2 RNAi-2 increased sleep duration only when combined with UAS-dicer2 to increase the knockdown efficiency; Supplementary Fig. 15). Knockdown of sirt2 in flies co-expressing the mir-92aSP in dopaminergic neurons increased the sleep duration back to normal levels, indistinguishable from WT flies, indicating once again that sirt2 activity is epistatic to mir-92a (Fig. 6d). sirt2 RNAi also causes a bigger phase shift response at both ZT15 and ZT21 like mir-92aOE (Fig. 6e).

An amorphic strain of sirt2 (#8839 from Bloomington Stock Center) was also assayed. We first checked whether this phenotype null strain shows any PDF cell fasciculation phenotype. However, the projections also show substantially increased branching (Supplementary Fig. 16A), which complicates the fasciculation assay. To better quantify and distinguish defasciculation versus branch overgrowth, we assayed the defasciculation index (DI); it is the percentage of axonal intersections across concentric rings outside of a 15° cone. High DI indicates defasciculation, and low suggests fasciculation. A low DI at ZT2 as well as ZT14 indicates that PDF cell projections maintain a fasciliated state in the sirt2 amorphic strain, and increases of axonal crosses indicate an increased branching at both ZT2 and ZT14 (Supplementary Fig. 16). This indication of increased branching could be due to non-cell autonomous effects and/or a complete lack of functional SIRT2 in the animals, for example, a developmental effect.

We also assayed the sirt2 amorphic flies behaviourally. They show ~23% increase in total sleep duration and almost 100% increase of sleep during LP (Supplementary Fig. 17A). This is similar to sirt2 RNAi in dopaminergic neurons and opposite to mir-92a null flies (Fig. 3c and 6c). Strikingly, sirt2 amorphic flies are also highly arrhythmic, showing significantly lower rhythmicity index compared to w1118 WT flies (Supplementary Fig. 17B). This may be due to the disruption of cycling neuronal excitability in circadian neurons.

In summary, sirt2 RNAi phenocopies mir-92aOE in PDF cells and can reverse the phenotypes caused by mir-92aSP in the morphological and behavioural assays. Not surprisingly, although sirt2 amorphic flies present a more complicated picture, the data taken together indicate that mir-92a suppresses neuronal excitability via the downregulation of sirt2 expression.

Discussion

Previous work on PDF cell mRNA suggested that there are many more cycling miRNAs in these pacemaker neurons than in heads. Our recent RT–qPCR experiments from sorted PDF neuron RNA indicates a similar conclusion for miRNAs, namely that there are more cycling miRNAs in these pacemaker neurons than in whole heads. We focus here on mir-92a, as it was the only identified miRNA under core clock control and peaking during the nighttime (Fig. 1).

Several assays showed that mir-92a suppresses neuronal excitability. They included immunostaining of PDF projections, in vivo Ca2+ monitoring and imaging with ArcLight and GCaMP6 reporters during stimulation with high KCl concentrations and nicotine. All of these assays indicate that mir-92a suppresses the neuronal excitability of PDF cells (Fig. 2 and Supplementary Figs 3–6). An additional assay on sleep duration further confirms and extends this interpretation by suggesting that the suppression is not restricted to PDF cells. However, it remains possible that the PDF projection morphology effect is independent of changing neuronal excitability. This could still be achieved through sirt2, which is able to deacetylate and destabilize microtubules and thereby affect morphology rather directly rather than only indirectly through an effect on excitability. It is also plausible that other mir-92a targets are relevant. Mef2 for example is a predicted target of mir-92a according to TargetScan and known to affect PDF projection morphology. However, our TRAP data gave no indication that mef2 expression is regulated by mir-92a.

miRNAs have been previously shown to regulate neuronal activity in both flies and mammals. mir-92a (rat mir-92a) is implicated in homeostatic plasticity: it is
downregulated with TTX/AP5 treatment in cultured rat hippocampal neurons, which allows increased expression of its target GluA1 and raises neuronal excitability\(^{32}\). The *Drosophila* mir-310 cluster has also been reported to regulate activity-dependent synaptic homeostasis, in this case by targeting *khc*-73 in larval motor neurons\(^{46}\). Importantly, this cluster shares the same seed sequences as mir-92a, and rat nmo-mir-92a belongs to the same family as *Drosophila* mir-92a. In both cases, these mir-92a-related miRNAs downregulate neuronal excitability, consistent with what we report here.

Similar to the response of rno-mir-92a expression to changing neuronal excitability, light pulses in the night also rapidly change PDF cell mir-92a levels. As nighttime light pulses are known to observe increase in mir-92a levels with a ZT15 early-night light pulse lowers PDF cell excitability and thereby helps keeps the flies longer in the ‘night’ state, contributing to the early-night phase

Figure 6 | sirt2 RNAi phenocopies mir-92aOE in PDF cells. (a) Immunostaining of PDF cell projections with anti-GFP antibody at ZT2 or ZT14. Control is PDF-GAL4;UAS-mCD8::GFP/+ with #36303 genetic background (flies from Bloomington Stock Center used for transgene injection). Sirt2 RNAi are two PDF-GAL4;UAS-mCD8::GFP/UAS-sirt2 RNAi strains (RNAi-1, RNAi-2). Left panel shows representative images of PDF cell projections of the indicated genotype at the indicated time. Scale bar, 25 μm. Quantification with Sholl analysis is shown to the right. Statistical analysis is shown in Supplementary Fig. 12. (b) CalExA in vivo monitoring. Controls is PDF-GAL4;UAS-CalExA;LexAop-luciferase/+ (with #36303 genetic background). Sirt2 RNAi are the two PDF-GAL4;UAS-CalExA;LexAop-luciferase/UAS-sirt2 RNAi strains. Flies were measured for luciferase levels every hour for 1.5 day at 25 °C under LD cycles. Quantified to the right is the mean of the luciferase levels. N = 12. Error bars represent ± s.e.m., ****P < 0.0001, two-tailed t-test. Figures shown are representative of three trials. (c, d) Sleep profiles of female flies entrained under LD cycles. Both TH-GAL4/+ and sirt2 RNAi-i/+ are controls. TH-sirt2 RNAi-1 indicates TH-GAL4;UAS-sirt2 RNAi-1. TH-scramble indicates TH-GAL4;UAS-sirt2. TH-mir-92aSP/sirt2 RNAi-1 indicates TH-GAL4;UAS-mir-92aSP/UAS-sirt2 RNAi-1. Sleep duration is quantified to the right. N = 32. Error bars represent ± s.e.m. n.s. represents non-significant, **P < 0.01, ****P < 0.0001, two-way ANOVA. (e) Phase shift response. Ten minutes of dim light (0.69 mW cm\(^{-2}\)) exposure was given to flies of the indicated genotypes. PDF-GAL4/+ flies were used as controls. sirt2 RNAi-1/2 indicates PDF-GAL4;UAS-sirt2 RNAi-1/2. Phase differences were quantified between flies subjected to light pulses or not. N = 16. Error bars represent ± s.e.m., *P < 0.05, ****P < 0.0001, two-way ANOVA. Figures shown are representative of three trials.
delay. However, in the late night at ZT21, mir-92a downregulation by light contributes to a more rapid increase in excitability and therefore facilitates the phase advance that occurs at this time. How light and firing have opposite effects on mir-92a levels at these two times and the mechanisms involved, for example, transcriptional or post-transcriptional regulation, are currently unknown.

These speculations about the response of mir-92a levels to light do not address the fact that overexpression or knockdown of mir-92a in PDF cells changes the magnitude of the phase shift responses (Fig. 4b). mirR-92a function and neuronal excitability are therefore also upstream of the clock; this effect of mir-92a is probably indirect through its effect on firing and the effect of firing on the core clock (Fig. 7). It has been previously reported that mice with lower neuronal excitability in the suprachiasmatic nucleus show bigger phase delays with an early-night light pulse. The authors reasoned that this may be because of a more labile clock due to a higher sensitivity to environmental stimulus when neuronal excitability is suppressed47. This is also similar to classical limit cycle theory; that is, an oscillator with reduced amplitude shows enhanced phase shifts48. Flies similarly show bigger phase shifts with lower neuronal excitability (mir-92aOE; Fig. 4b), suggesting some commonality in mechanism.

We identified sirt2 mRNA as a mir-92a target responsible for many of the observed phenotypes (Fig. 6). Its regulation was shown by TRAP and by a S2 cell reporter assay (Fig. 5). Sirt2 is an attractive target as it has been reported (1) to reduce neuronal branching in an RNAi screen in fly sensory neurons49; (2) to influence neuronal metabolism in mammals and flies by regulating gene expression through acetylation of histones50; (3) to regulate mitochondrial energy metabolism through acetylation of mitochondrial complex V (ref. 50); and 4) to regulate neuronal excitability in mice: the inhibitor of SIRTUINS increases neuronal excitability and the activator increases it51. Although it is unclear which of these pathways are upstream of the observed phenotypes, we favour at a minimum a role for neuronal excitability.

Since sirt2 mRNA does not cycle in PDF cells52, the purpose of cycling mir-92a levels may be to generate cycling SIRT2 levels; high levels in the morning would contribute to higher neuronal excitability at this time. We also expect changes in PDF cell SIRT2 levels with light pulses. However, western blots and immunostaining experiments are missing because of the lack of specific anti-SIRT2 antibodies.

Taking all the results into consideration, we suggest that mir-92a expression is under the control of light and the core molecular clock in PDF cells. Cycling mir-92a levels target sirt2 by imposing higher levels of suppression at night and lower in the morning. This generates cycling levels of SIRT2, which enhance neuronal excitability and downstream events in the daytime. They include PDF projection morphology and behavioural consequences such as sleep as well as the phase shift response (Fig. 7).

Methods

Drosophila stocks. Flies were reared on standard cornmeal/agar medium with yeast under 12:12 h LD cycles at 25°C. PDF-GAL4/UAS-mCD8::GFP was described in ref. 53. UAS-mir-92aOE, PDER-GAL4 and UAS-sirt2 RNAi flies were from the Bloomington stock centre. UAS-mir-92aOE was backcrossed six times to w1118 flies. UAS-scramble and UAS-mir-92aSP flies were from the Van Vactor lab. UAS-ArcLight flies were described in ref. 11. UAS-GCaMP6f was described in ref. 54. PDF-GAL4/UAS-CaLexA;LexAop-luciferase was a recombinant stable line as described in ref. 34. PDF-GSG was described in ref. 30. TH-GAL4 was described in ref. 8. PDF-GAL4 was described in ref. 9. DpPDF-GAL4 was a kind gift from Dr JH Park. UAS-RiboTag was a gift from the Zipursky lab.

Plasmids. pSCECHECK2 plasmid is commercially available from Promega. To insert the sirt2 3′UTR, the vector was first digested with XhoI and NotI and the PCR product amplified from gDNA with the forward and reverse (Supplementary Table 2). Then incorporated into the vector with Gibson Assembly (NEB). To mutate the mir-92a-binding site in the sirt2 3′UTR, the Agilent Quickchange Kit was used with the following primers: sirt2 mut 3′UTR forward and reverse (Supplementary Table 2).

Sleep and phase shift assay. Trikinetics Activity Monitors (Waltham, MA) were used to measure the locomotor activity of individual flies around 7-day old. For phase shift assays, male flies were entrained and subjected to a 10-min 0.69 mW cm⁻² light pulse at a given time point and left in DD for 7 days. Circadian rhythm behaviour including rhythmicity, period and phase shift was analysed as described53.

Fly brain immunocytochemistry. Immunostaining was done as described58. Briefly, fly heads were fixed in PBS with 4% paraformaldehyde supplemented with...
0.008% Triton X-100 for 1 h at 4 °C before dissection. A mouse anti-GFP antibody (1:1,000, Sigma-Aldrich, G6359), a mouse anti-PDF antibody (1:10, Developmental Studies Hybridoma Bank, University of Iowa, Iowa city, IA, described in ref. 8) and Alexa Fluor 488 (1:500, Invitrogen Cat#: A-10011) were used as primary and secondary antibodies. Brains were imaged at ×20 on a Leica SP5 confocal microscope. Images are maximum projections of Z sections. Sholl analysis in Fiji was used for axonal crosses, and quantification was according to software instructions. DI was calculated with modified Sholl analysis as described in ref. 31.

ArcLight and GCaMP6f imaging. Fly brains were dissected in AHL consisting 108 mM NaCl, 5 mM Na2HPO4, 5 mM trehalose, 10 mM sucrose and 5 mM HEPES, and mobilized to the bottom of a perfusion Sylgard-bottom (Dow Corning, Midland, MI) chamber filled with AHL using a pin anchored to the Sylgard55,56. Depolarization buffer (high KCl bottom of a perfusion Sylard-bottom (Dow Corning, Midland, MI) chamber filled with circulation, and recording was with a TopCount NXT luminescence counter well and the plate was then sealed with a transparent adhesive (TopSeal-A PLUS, which was then distributed into every other well in a 96-well plate. Plates were S2 cell luciferase assay

References

1. Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in *Drosophila*. Annu. Rev. Physiol. 72, 605–624 (2010).

2. Johnson, C. H., Elliott, J. A. & Foster, R. Entrainment of circadian programs. Chronobiol. Int. 20, 741–774 (2003).

3. Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant *Drosophila* homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804 (1998).

4. Rutisha, J. E. et al. CYCLE in mir and psilid PAS clock protein essential for circadian rhythmicity and transcription of drosophila period and timeless. Cell 93, 805–814 (1998).

5. Meyer, P., Saiz, L. & Young, M. W. PER-TIM interactions in living *Drosophila* cells: an interval timer for the circadian clock. Science 311, 226–229 (2006).

6. Nitabach, M. N. & Taghert, P. H. Organization of the *Drosophila* circadian control circuitry. Curr. Biol. 18, R84–R93 (2008).

7. Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in *Drosophila*. Cell 99, 791–802 (1999).

8. Guo, F., Cerullo, I., Chen, X. & Rosbash, M. PDF neuron firing phase-shifts key circadian activity neurons in *Drosophila*. Elife 3, e02780 (2014).

9. Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour of *Drosophila*. Nature 431, 862–868 (2004).

10. Liang, X., Holy, T. E. & Taghert, P. H. Synchronous circadian pacemakers display nonsynchronous Ca(2+) rhythms in vivo. Science 351, 976–981 (2016).

11. Cao, G. et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154, 904–913 (2013).

12. Sheeba, V., Gu, H., Sharma, V. K., O'Dowd, D. K. & Holmes, T. C. Circadian–and light-dependent regulation of resting membrane potential and spontaneous action potential firing of *Drosophila* circadian pacemaker neurons. J. Neurophysiol. 99, 976–988 (2008).

13. Fernandez, M. P., Berni, J. & Ceriani, M. F. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6, e98 (2008).

14. Kula-Eversole, E. et al. Surprising gene expression patterns within and between PDF-containing circadian neurons in *Drosophila*. Proc. Natl Acad. Sci. USA 107, 13497–13502 (2010).

15. Rodriguez, J. et al. Nason-Vecq analysis of *Drosophila* cycling gene expression. Proc. Natl Acad. Sci. USA 110, E257–E258 (2013).

16. Price, J. L. et al. Double-time is a novel *Drosophila* clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998).

17. Li, Y., Guo, F., Shen, J. & Rosbash, M. PDF and cAMP enhance PER stability in *Drosophila* clock neurons. Proc. Natl Acad. Sci. USA 111, E1284–E1290 (2014).

18. Luo, W. et al. CLOCK deubiquitylation by USP8 inhibits CLK/CYC activity in *Drosophila*. Cell 154, 976–981 (2016).

19. Mehta, N. & Cheng, H. Y. Micro-managing the circadian clock: the role of microRNAs in biological timekeeping. J. Mol. Biol. 425, 3609–3624 (2013).

20. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

21. Chen, W. et al. Regulation of *Drosophila* circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat. Commun. 5, 5494 (2014).

22. Vodala, S. et al. The oscillating miRNA 959-964 cluster impacts *Drosophila* circadian feeding time and other circadian outputs. Cell Metab. 16, 601–612 (2012).

23. Yang, M., Lee, J. E., Padgett, R. W. & Edery, I. Circadian regulation of a limited set of conserved microRNAs in *Drosophila*. BMC Genomics 9, 83 (2008).

24. Lerner, I. et al. Critical role of microRNAs in circadian transcription. Cell 137, 1129–1142 (2009).

25. Nakashima, K. et al. miRNA expression profiling reveals novel brain circadian microRNA transcriptional regulation. Elife 1, e00011 (2012).

26. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

27. Chen, W. et al. Regulation of *Drosophila* circadian rhythms by miRNA let-7 is mediated by a regulatory cycle. Nat. Commun. 5, 5494 (2014).

28. Vodala, S. et al. The oscillating miRNA 959-964 cluster impacts *Drosophila* circadian feeding time and other circadian outputs. Cell Metab. 16, 601–612 (2012).

29. Yang, M., Lee, J. E., Padgett, R. W. & Edery, I. Circadian regulation of a limited set of conserved microRNAs in *Drosophila*. BMC Genomics 9, 83 (2008).

30. Lerner, I. et al. Critical role of microRNAs in circadian transcription. Cell 137, 1129–1142 (2009).

31. Chen, X. & Rosbash, M. mir-276a strengthens *Drosophila* circadian rhythms by regulating timeless expression. Proc. Natl Acad. Sci. USA 113, E2965–E2972 (2016).

32. Abruzzi, K., Chen, X., Nagoshi, E., Zadina, A. & Rosbash, M. RNA-seq profiling of small numbers of drosophila neurons. Methods Enzymol. 551, 369–386 (2016).

33. Fulga, T. A. et al. A transgenic resource for conditional competitive inhibition of conserved *Drosophila* microRNAs. Nat. Commun. 6, 7279 (2015).

34. Deperitis-Chauvin, A. et al. Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs. Curr. Biol. 21, 1783–1793 (2011).

35. Sivachenko, A., Li, Y., Abruzzi, K. C. & Rosbash, M. The transcription factor Me2 links the *Drosophila* clock core to Fas2, neuronal morphology, and circadian behavior. Neuron 79, 281–292 (2013).
32. Letellier, M. et al. miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. *Nat. Neurosci.* 17, 1040–1042 (2014).

33. Lelito, K. R. & Shafer, O. T. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of *Drosophila* circadian clock neuron network. *J. Neurophysiol.* 107, 2096–2108 (2012).

34. Guo, F. et al. Circadian neuron feedback controls the *Drosophila* sleep–activity profile. *Nature* 536, 292–297 (2016).

35. Ueno, T. et al. Identification of a dopamine pathway that regulates sleep and arousal in *Drosophila*. *Nat. Neurosci.* 15, 1516–1523 (2012).

36. Wu, Y., Cao, G. & Nitabach, M. N. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in *Drosophila*. *J. Biol. Rhythms* 23, 117–128 (2008).

37. Nitabach, M. et al. Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream midbrain oscillators in the fly circadian circuit and induces multiple behavioral periods. *J. Neurosci.* 26, 479–489 (2006).

38. Tang, C. H., Hinteregger, E., Shang, Y. & Rosbash, M. Light-mediated TIM degradation within *Drosophila* pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts. *Neuron* 66, 378–385 (2010).

39. Petsakou, A., Sapis, T. P. & Blau, J. Circadian rhythms in Rho1 activity regulate neuronal plasticity and network hierarchy. *Cell* 162, 823–835 (2015).

40. Donmez, G. & Outeiro, T. F. SIRT1 and SIRT2: emerging targets in neurodegeneration. *EMBO Mol. Med.* 5, 344–352 (2013).

41. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. *Mol. Cell* 11, 437–444 (2003).

42. Howes, S. C., Alushin, G. M., Shida, T., Nachury, M. V. & Nogales, E. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. *Mol. Biol. Cell* 25, 257–266 (2014).

43. Verma, P., Augustine, G. J., Ammar, M. R., Tashiro, A. & Cohen, S. M. A non-motor role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. *Nat. Neurosci.* 18, 379–385 (2015).

44. Tan, C. L. et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. *Science* 342, 1254–1258 (2013).

45. Guven-Oztan, K. et al. MiR-980 is a memory suppressor microRNA that regulates the autism-susceptibility gene AZH1. *Cell Rep.* 14, 1698–1709 (2016).

46. Tourdalome, K. et al. The *Drosophila* mill-m310 cluster negatively regulates synaptic strength at the neuromuscular junction. *Neuron* 68, 879–893 (2010).

47. Whitt, J. P., Montgomery, J. R. & Meredith, A. L. BK channel inactivation gates daytime excitability in the circadian clock. *Nat. Commun.* 7, 10387 (2016).

48. Vitaterna, M. H. et al. The mouse *Clock* mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. *Proc. Natl Acad. Sci. USA* 103, 9327–9332 (2006).

49. Parrish, J. Z., Kim, M. D., Jan, L. Y. & Jan, Y. N. Genome-wide analyses identify transcription factors required for proper morphogenesis of *Drosophila* sensory neuron dendrites. *Genes Dev.* 20, 820–835 (2006).

50. Rahman, M. et al. *Drosophila* Sirt2/mammalian SIRT3 deacetylates ATP synthase beta and regulates complex V activity. *J. Cell Biol.* 206, 289–305 (2014).

51. Renthal, W. et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. *Neuron* 62, 334–348 (2009).

52. Abruzzi, K. C. et al. RNA-seq analysis of *Drosophila* clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. *PLoS Genet.* http://dx.doi.org/10.1371/journal.pgen.1006613 (2017).

53. Nagoshi, E. et al. Dissecting differential gene expression within the circadian neuronal circuit of *Drosophila*. *Nat. Neurosci.* 13, 60–68 (2010).

54. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature* 499, 295–300 (2013).

55. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. *Cell* 112, 271–282 (2003).

56. Shang, Y. et al. Short neuropeptide F is a sleep-promoting inhibitory modulator. *Neuron* 80, 171–183 (2013).

57. Haynes, P. R., Christmann, B. L. & Griffith, L. C. A single pair of neurons links sleep to memory consolidation in *Drosophila melanogaster*. *Elife* 4, e03868 (2015).

58. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using microManager. *Curr. Protoc. Mol. Biol. Chapter 14, Unit14 20* (2010).

59. Tranpp, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 25, 1105–1111 (2009).

60. Tranpp, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* 7, 562–578 (2012).

Acknowledgements

We thank members of Rosbash lab for thoughtful discussion, especially Kate Abruzzi for comments and Fang Guo for sharing the newly developed CaLexA system. We also thank members of Griffith lab for help with the ArcLight/GCaMP6 imaging, the perfusion system and sleep analysis. We thank Drs Orie Shafer and Patrick Emery for helpful discussions as well as Dr Stephen Cohen for freely sharing mir-92aKO flies.

Author contributions

X.C. and M.R. designed the experiments and wrote the manuscript. X.C. performed the experiments.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Chen, X. & Rosbash, M. MicroRNA-92a is a circadian modulator of neuronal excitability in *Drosophila*. *Nat. Commun.* 8, 14707 doi: 10.1038/ncomms14707 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/