Identification of Natural Dyes on 18th Century Liturgical Textiles from Dubrovnik

Abstract
In this paper researches were carried out on fragments of textiles from the 18th century from Dubrovnik, for which, based on the design and art-historical analysis, it was determined that it was a part of an object (pluvial, cope) from liturgical vestments (ecclesiastical textiles) of the Dubrovnik diocese. Using modern non-destructive and micro-destructive methods we conducted the identification of green, blue and red as the dominant tones on the artefacts of historical textiles from Dubrovnik. The identification was based on the application of modern complementary techniques: UV/VIS, HPLC, SEM-EDX and FTIR-ATR. We analysed samples of coloured fiber, as well as ones obtained by the extraction of dyes from the dyed fibers. Archival data on natural dyes used in the Dubrovnik region in the period 14-19th century was taken into account in the identification of the historical textile dyes.

Key words: natural dyes, liturgical textile, UV/VIS, SEM-EDX, FTIR-ATR, HPLC, Dubrovnik.

Introduction

The Dubrovnik Republic (lat. Ragusina Republica) was located in the south of the present-day Republic of Croatia. Its peak of economic power was in the XV and XVI century, when it was counted among the most developed countries in the world. It was a country with highly developed maritime economy and independent trading. The richness and splendour of that time is also witnessed in preserved textile objects made of expensive fabric such as brocade, damask and satin, now the property of the Museum of Dubrovnik and Roman Catholic Diocese of Dubrovnik (lat. Dioecesis Ragusinensis) [1].

Many scientific articles deal with research on historic textiles, and their aim is to certify the origin, production techniques, ways of painting and source of dyes, which is also the aim of this paper [2-6]. Analysis of dyes in dyed fibers can be used to confirm the dating of objects and to distinguish the original from a copy, which helps to choose the right conservation and restoration treatments, determine the stability and durability of the original colour on the fabric, and provides an insight into the original appearance of the artwork.

Natural dyes have a very complex chemical structure and composition, which determines the application of modern sophisticated analytical methods of analysis and identification [7-11].

From a review of scientific papers related to this issue, it is evident that the beginning of the 20th century marks the awakening of interest in historical textile and methods of analysis of natural dyes. Separation techniques, such as chromatographic analysis, require an acceptable sample preparation for analysis that usually involves the extraction of dyes from the fibers. In the literature many different methods of the extraction of dyes from fibers are mentioned, and their selection depends on the qualitative and quantitative amount of information that is obtained by extraction. Many papers describe the extraction of dyes with methanol in an acidic medium (HCl/methanol/water 2:1:1) [12-18]. However, with this method glycoside linkages and carboxylic acid are hydrolysed, thus there is an irreversible loss of information about their possible presence on dyed textiles [19, 20]. A mild extraction method given by Zhang and Laursen using 5% formic acid (HCOOH) in MeOH solution proved to be more efficient when extracting anthraquinone and flavonoid dyes from dyed silk, wool and cotton fibres, further preserving glycosidic linkages [18]. Extraction from dyes from coloured textile fibers with hydrochloric acid (3 M) and methanol (1:1, v/v) at a temperature of 100°C, was proven effective for the extraction of anthraquinone and flavanoid dyes from textile fibers [21, 22]. However, in practice this method has proved to be ineffective for the extraction of indigo and indirubin [23].

The methods most commonly used in the identification of dyes are UV/VIS spectrophotometry, then confirmation with chromatographic techniques, such as High-Performance Liquid Chromatography (HPLC) [10, 12, 24-31]. The results of the international Eu-ARTECH project, starting in 2005, showed that the different chromatographic test conditions, in different laboratories, affect the quality of the chromatic separation of components, but they have very little effect on the analytical results, which significantly depend on the optimal method of extraction of dyes. In the literature references for the analysis of historical textile dyes with the HPLC method, crucial is the choice of wavelength detection [29, 32].

Many studies on the determination of the presence of dyes on fiber used infrared spectroscopy [33-38]. With this method Hofenk de Graaff in 1969 analysed some natural dyes, and Schwepppe in 1975 focused on indigo. The application of the attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (ATR-FTIR) has proven extremely useful for a small quantity of samples of historical textile materials.

Characteristic of most of the natural dyes derived from plant or animal sources is that they are able to form complexes with metal salts, whereby the colour tone changes depending on the choice of metal (aluminum, chromium, copper, iron and tin). The presence of metal in the structure of coloured fibres can be detected with a scanning electron microscope with an Energy Dispersive X-ray Detector (Scanning Electron Microscopy/Energy Dispersive Spectroscopy, SEM-EDX) [12, 37-43].

For successful analysis of dyes, the best choice has proven to be a combination of different research techniques, which, as mutually complementary, provide a wide range of useful data.
On the historical textiles from Dubrovnik, using modern non-destructive and micro-destructive methods, an analysis of green, blue and red colour tones was done. To get the blue colour tones in Dubrovnik, the most commonly used was *Vrbovnik* (woad; *Isatis tinctoria* L.) and some type of lichen, as well as indigo (*Indigofera tinctoria* L.), which was imported, while in the whole area of Europe the dominant raw material for getting tons of yellow was *Katanac* (weld; *Reseda luteola* L.) [44,45]. The yellow colour tone was obtained from the bark of wild apple trees (*Malus sylvestris*), or from that of maritime rose hip (*Punica granatum* L.) [44]. Due to the fact that green colour was usually obtained from a mixture of natural dyes, its analysis is much more complex. Thus according to the data from literature, green tones in the Dubrovnik area were obtained by boiling young mulberry leaves (*Morus* sp.) or by mixing yellow with blue or black ink. Since the entire area of Dalmatia was abundant with mulberry trees, this raw material was also used in the production of high quality silk; thus, was recorded that silk cocoons were sold to Milanese silk factories, at a high price from 1.60 to 2.30 florins per pound. Various shades of red, according to written sources, were obtained from the bark of the Brazilwood (*Caesalpinia echinata*), dried female scale insects (*Kermes vermilio*), sea snails (*Murex trunculus*) or dried roots of the Madder plant (*Rubia tinctorum* L.) [44-50].

The identification of dyes on the textile artifact from the 18th century was based on the application of modern complementary techniques: UV/VIS, HPLC, SEM-EDX and FTIR-ATR.

### Experimental

#### Material

Analyses were performed on a fragment of textiles originating from a cope (known in Latin as pluviale) (*Figure 1*, inv. No. PT) that was once part of a set of liturgical vestments which consisted of 16 objects made from the same fabrics and techniques. Data about this were written by hand in the inventory of the Cathedral in Dubrovnik from 1951. Today preserved are only 3 objects: the chasuble, dalmatic and pluvial, which are stored in Dubrovnik Cathedral of the Assumption of Mary, built in 1713 after the previous cathedral was destroyed in an earthquake. The set is dated to the Rococo style period, the time around 1750. Although the documents from the archives of the cathedral nowhere specify its origin and date of acquisition, this liturgical set can yet be linked to the purchase of textile for the cathedral in the 18th century [51-53].

### Analysis methodology

In the case of samples from Cultural Heritage, due to the small quantity of material, the analysis methodology is given as follows (*Figure 2*).

#### Instrumentation and software

Analysis the current situation of artefacts was investigated using a scanning electron microscope. By applying SEM – EDX (Quantax, Bruker AXS Microanalysis), metals in the dyed fibers were detected.

The dyed samples of fibers from the 18th century and undyed samples of silk fibers were recorded by FTIR-ATR (Perkin Elmer Spectrum 100, USA) in four scans at a resolution of 4 cm\(^{-1}\) in a wavelength range from 4000 to 400 cm\(^{-1}\). Analysis of the spectra obtained was carried out using software for data processing – OMNIC Spectra Software 9.1.24. For analysis of the extract solution of dyes, the following methods were used: UV/VIS (spectrophotometer Varian Cary® 50, USA) and HPLC (Agilent 1220, Hewlett-Packard, Germany) – the chromatographic system was controlled by ChemStation software.

HPLC conditions:– C18 column 4.6 x 150 mm, 5 nm (4.6 x 150 mm and 5 µm particle size, ZORBAX Eclipse XDB (Agilent Technologies 1220), mobile phase A = 10% of methanol/water, v/v, B = 100% of methanol, gradient at start 16% B, at 15 min 90% B, at 23 min 100% B and 30 min 60% B, flow rate 0.5 ml/min, temp. 25°C, injection vol. 10 ml, identification wavelength 254 nm.

#### Reagents

All reagents were analytical grade: methanol (HPLC-highgradient grade), dimethylformamide DMF (HPLC – gradient grade), formic acid (HPLC – gradient grade) from Merck, Germany.
As a database of natural colours for FTIR, literature sources and on-line databases were used: (IRUG – Infrared and Raman Spectral Database Users Group: Schwepe Collection, Getty Conservation Institute, http://www.irug.org; SDBS – Spectral Database for Organic Compounds, http://sdb.io.rd.ai.s.gov) [31, 33, 34, 54-56].

As a database of natural dyes for HPLC analysis, various sources in literature were used: [2, 15, 29, 30, 57, 58], data Euro-ARTech Project (Euro-ARTech Project – Analytical strategies for natural dyestuffs and cultural heritage objects, http://www.organic-colourants.org; 10.05.2013.)

Table 1. Printout of the SEM-EDX of PT: a) green sample b) red sample

| Spectrum: Acquisition | a | b |
|-----------------------|---|---|
| E1 AN Series          | c6 K-series 70.00 70.00 76.33 7.8 | C 6 K-series 64.12 64.12 73.16 7.0 |
|                       | 0 8 K-series 27.61 27.61 22.66 3.6 | 0 8 K-series 29.35 29.35 25.14 2.5 |
|                       | 0 17 K-series 1.09 1.09 0.49 0.1 | Pb 32 K-series 3.75 3.75 0.25 0.7 |
|                       | Ca 20 K-series 0.29 0.29 0.36 0.1 | Na 11 K-series 1.33 1.33 0.70 0.1 |
|                       | Fe 26 K-series 0.21 0.21 0.05 0.0 | Al 13 K-series 0.66 0.66 0.34 0.1 |
|                       | Total: 100.00 100.00 100.00 | Ca 20 K-series 0.34 0.34 0.18 0.1 |
|                       |                          | Mg 12 K-series 0.24 0.24 0.14 0.0 |
|                       |                          | Total: 100.00 100.00 100.00 |
The functional groups observed in the FTIR-ATR spectrum of the sample of blue colour tone PT_blue (Figure 5) are characteristic of indigoid dyes (indigoid dyes). It can be assumed that as a natural source of colouring in a blue tone, woad or indigo was used.

This is supported by the fact that in the UV/VIS absorption spectrum (Figure 6.b) a maximum absorption is obtained in the field of \( \lambda_{\text{max}} \) 605 nm, which is characteristic for the blue tone of natural dyes such as indigo or woad.

For sample PT_green colour, from searching in databases, some characteristic FTIR-ATR absorption bands on the basis of a database for individual compounds in the band from 1700 to 1100 cm\(^{-1}\), significant similarities between absorption bands and characteristic values for the dye Katanac (weld) (Reseda luteola L.) can be seen.

After the subtraction of a range of unknown dyes (line 3, Figure 5) on the basis of a database for individual compounds in the band from 1700 to 1100 cm\(^{-1}\), significant similarities between absorption bands and characteristic values for the dye Katanac (weld) (Reseda luteola L.) can be seen.

The FTIR-ATR absorption band at 1685 cm\(^{-1}\) is a characteristic peak of the C = O group. The maximum absorption obtained is in the UV/VIS range of \( \lambda_{\text{max}} \) 335 nm and 539 nm, which, according to the scientific literature, can be attributed to the presence of alizarin (330 nm) (Figure 6.a).

For analysis of HPLC results, a database which is based on the wavelength of detection at 254 nm was used [29].

Based on HPLC chromatograms (Figure 7, see page 118), the pattern of the red colour tone, PT_red, has a highlighted peak at a retention time of 30 min., confirming the presence of Purpurin, while retention times at 31 min. confirmed the presence of Pseudopurpurin. The retention time at 20 min. confirmed the presence of Alizarin.

The clear signals detected are those of Purpurin and Pseudopurpurin, which clearly indicate that the roots of the madder plant (Broc) were used to produce the reddish colour. The two leading dye com-

---

**Figure 4.** FTIR – ATR absorption spectra of red colour sample, PT_red.

**Figure 5.** FTIR-ATR absorption spectra: 1 – sample of green colour (PT_green), 2 – sample of blue colour (PT_blue) and 3 – range of unknown dyes obtained from subtraction spectra 1 and 2.
ponents detected show that Purpurin and Pseudopurpurin are in major abundance over Alizarin. The dye that was used for producing this red-purple colour was probably wild madder, which is a Purpurin-rich source. SEM-EDX analysis (Table 1) of the sample PT_red proved the presence of Al metal, which indicates that madder (broc) is a mordant dye.

Based on the HPLC chromatogram (Figure 8, see page 118) of the sample PT_blue, retention times are obtained as 27, 28 and 29 min. (characteristic for indigotin and indorubin) and a number of smaller peaks at 16-26 min., characteristic of flavonoid components (a flavonoid component). According to the literature, this chromatogram is characteristic of natural dyes derived from Vrbovnik (woad, Isatis tinctoria L.), from which a blue colour tone is obtained. According to historical sources, indigo was purchased as pure dye that obtains retention times of the indigoid basic components of 2-29 min. Since Vrbovnik (woad) was widely used in Europe, it can be assumed that a blue dye was obtained from this plant.

On the HPLC chromatogram of the sample PT_green (Figure 9, see page 118), a retention time of 26-27 min., characteristic of indigoid dyes or woad (woad), and an especially pronounced peak at ~ 28 min., characteristic of indigotin, are observed. The retention times are characteristic for the dye obtained from Vrbovnik (woad).

The retention time in the range of 4-26 min., and especially accentuated peaks at ~ 5 min. (gallic acid) and ~ 13 min. (elagic acid) are attributed to the yellow component of flavonoid dyes. Based on this, it can be assumed that the green tone obtained from Vrbovnik (woad) and Katanac (weld; Reseda luteola L.) was complexed with iron, as the most frequently used sources of yellow. This is supported by the SEM-EDX analysis, in which the sample showed the presence of metal Fe, which can otherwise be used as yellow flavonoid dyes.

On the basis of stylistic analysis design and archival data on the procurement of mass vestments for the Dubrovnik Diocese, it can be assumed that the pluvial that belonged to a complete set of Mass vestments from Dubrovnik Cathedral was probably imported from some of the most important European centers of the time. This is supported by the fact that Venetian red was obtained from madder.

Figure 6. UV/VIS absorption spectrum of samples a) PT_red, b) PT_blue & c) PT_green.
The clear signals detected are those of Purpurin and Pseudopurpurin, which clearly indicate abundance over Alizarin. The dye that was used for producing this red-purple colour was leading dye components detected show that Purpurin and Pseudopurpurin are in major smaller peaks at 16-26 min., characteristic of flavonoid components (a flavonoid component). Based on the HPLC chromatogram (Fig. 8) of the sample PT_red proved the presence of Al metal, which indicates that madder (wild madder) is a Purpurin-rich source. SEM-EDX analysis (Tab. 1) of the sample PT_blue, retention times are at 31 min. confirmed the presence of Pseudopurpurin, while retention times at 20 min. confirmed the presence of Purpurin, while pattern of the red colour tone, PT_red, has a highlighted peak at a retention time of 30 min., confirming the presence of Purpurin, while the commercial routes.

In support of the above-mentioned statement is the fact that in the archives of the cathedral a regulated purchase of textiles was mentioned. Although everything indicates that the fabric was procured externally, based on all available data, it cannot be ruled out that the raw materials for its production may still come from Dubrovnik, and then as a valuable commodity distributed further by commercial routes.

Also weaving techniques (point rentre or effetto Berc) and cloth located on a fragment of textile suits fabrics that were produced in Lyon, France, at that time [60-62]. In support of the above-mentioned statement is the fact that in the archives of the cathedral a regulated purchase of textiles was mentioned. Although everything indicates that the fabric was procured externally, based on all available data, it cannot be ruled out that the raw materials for its production may still come from Dubrovnik, and then as a valuable commodity distributed further by commercial routes.

Also weaving techniques (point rentre or effetto Berc) and cloth located on a fragment of textile suits fabrics that were produced in Lyon, France, at that time [60-62]. In support of the above-mentioned statement is the fact that in the archives of the cathedral a regulated purchase of textiles was mentioned. Although everything indicates that the fabric was procured externally, based on all available data, it cannot be ruled out that the raw materials for its production may still come from Dubrovnik, and then as a valuable commodity distributed further by commercial routes.

Also weaving techniques (point rentre or effetto Berc) and cloth located on a fragment of textile suits fabrics that were produced in Lyon, France, at that time [60-62]. In support of the above-mentioned statement is the fact that in the archives of the cathedral a regulated purchase of textiles was mentioned. Although everything indicates that the fabric was procured externally, based on all available data, it cannot be ruled out that the raw materials for its production may still come from Dubrovnik, and then as a valuable commodity distributed further by commercial routes.

Also weaving techniques (point rentre or effetto Berc) and cloth located on a fragment of textile suits fabrics that were produced in Lyon, France, at that time [60-62]. In support of the above-mentioned statement is the fact that in the archives of the cathedral a regulated purchase of textiles was mentioned. Although everything indicates that the fabric was procured externally, based on all available data, it cannot be ruled out that the raw materials for its production may still come from Dubrovnik, and then as a valuable commodity distributed further by commercial routes.
Table 2. Results of analysis

| Sample      | Dye                                      |
|-------------|------------------------------------------|
| PT_red      | Broć, madder (Rubia Tinctorum L.)        |
| PT_blue     | Vrbovnik (woad) (Isatis Tinctoria L.)    |
| PT_green    | Vrbovnik (woad) (Isatis Tinctoria L.) and Katanac (woad) (Reseda luteola L.) |

- Conclusion

By studying morphological characteristics of the samples with a visible electron microscope, SEM, considerable damage and degradation of fibers were observed. In this case, the FTIR spectra of natural dyes confirm that they do not provide a complete answer about their structure. In the absorption band of sample PT_red, evident peaks at a wavelength of 1714, 1685 and 1587 cm⁻¹ are typical for Broč – madder or cochineal carmine-(Dactylopius coccus Costa). Based on the absorption band of (PT_blue) at 1605 cm⁻¹, it can be assumed as a natural source of colouring in blue tone Vrbovnik – woad or indigo are used. After subtraction of the spectrum of blue colour from that of green colour, on the basis of a database for individual compounds in the band from 1700 to 1100 cm⁻¹, significant similarities between absorption bands and characteristic values for dye Katanac (woad) (Reseda luteola L.) can be seen.

Comparison of chromatograms (HPLC) of dye extracted from the 18th century textile (chassal, dalmatic and pluvial, which are stored inDubrovnik Cathedral of the Assumption of Mary) for red coloured fibre (PT_red), this red-purple colour was probably wild madder, which is a Purpurin-rich source. SEM-EDX analysis proved the presence of Al metal, evidence that madder (Broć) is a mordant dye.

For the sample PT_blue the retention times of 27 and 29 min. were obtained (characteristic for indigotin and indorubin) and a number of smaller peaks at 16-26 min. are characteristic for flavonoid components. Since Vrbovnik (woad) was widely used in Europe, it can be assumed that this blue dye was obtained from this plant.

On the HPLC chromatogram of the sample PT_green, the retention time characteristic for dye obtained from Vrbovnik (woad, blue dye), and the particularly accentuated peaks at ~ 5 min. (gallic acid) and ~ 13 min. (ellagic acid) can be attributed to the yellow component of flavonoid dyes. The green tone sample PT_green obtained from a mixture of Vrbovnik (woad) and Katanac (woad) (Reseda luteola L.) was complexed with iron (SEM-EDX analysis showed the presence of Fe metal in the sample).

Although the fiber composition and dye-stuffs identified in the liturgical textile under study in this paper (Table 2) are in agreement with data commonly reported about the material used in the Dubrovnik area, it is not possible with absolute certainty to determine the exact origin of the textile analysed.

This study contributes to the creation of a universal database of samples of original natural dyes from many parts of the world, enriching our common global heritage.

References

1. Baštić, D. Pomorstvo Dubrovnikova od XII. do početka XX. Stoljeća. Pomorski zbornik 2006; 44, 1. ISSN 0554-38397, 139-177.
2. Szosteka B, Orska-Gawrysz J, Surowiec M, Trojanowicz M. Investigation of natural dyes occurring in historical textiles. Journal of Chromatography 1998; A 863: 235-241.
3. Balakina G G, Vasiliev V G, Karpova E V and Mamatyuk VI. HPLC and molecular spectrototopic investigations of the red dye obtained from an ancient Pazyryk textile. Dyes and Pigments 2006; 71: 54-60.
4. Deveoglu O, Karadag R, Yurdun T. Preparation and HPLC Analysis of the Natural Pigments Obtained from Buckthorn (Rhamnus peltolariis Boiss) Dye Plants. Jordan Journal of Chemistry 2009; 4: 377-385.
5. Balakina G G, Vasiliev V G, Karpova E V and Mamatyuk VI. HPLC and molecular spectrototopic investigations of the red dye obtained from an ancient Pazyryk textile. Dyes and Pigments 2006; 71: 54-60.
6. Deveoglu O, Karadag R, Yurdun T. Preparation and HPLC Analysis of the Natural Pigments Obtained from Buckthorn (Rhamnus peltolariis Boiss) Dye Plants. Jordan Journal of Chemistry 2009; 4: 377-385.
7. Balakina G G, Vasiliev V G, Karpova E V and Mamatyuk VI. HPLC and molecular spectrototopic investigations of the red dye obtained from an ancient Pazyryk textile. Dyes and Pigments 2006; 71: 54-60.
8. Deveoglu O, Karadag R, Yurdun T. Preparation and HPLC Analysis of the Natural Pigments Obtained from Buckthorn (Rhamnus peltolariis Boiss) Dye Plants. Jordan Journal of Chemistry 2009; 4: 377-385.
23. Cardon D, Wouters J, Vanden Berghe I, Richard G, Breniaux R. Dyes analyses of selected textiles from Maximianon, Krokodilło and Didymoi (Egypt). In: Alfarro, C., Wild, J.P., Costa, B. (Eds.), Purpurae vestes, Actas del I Symposium internacional sobre Textiles y pintores del Mediterráneo en época romana. Valencia, 2004. 145-154.

24. Hofmann-de Keijzer R, Kern A, Reschreiter H. (Eds.), Hallstatt Textiles – Technical Analysis, Scientific Investigation and Experiment on Iron Age Textiles. British Arch. Reports, Int. Series 1351, Oxford, 2005. 55-72.

25. Wouters J, Berghé I, Devia B. Understanding Historic Dyeing Technology: A Multifaceted Approach. Post prints of the First Annual Conference 13–15 July 2004, Scientific Analysis of ancient and Historic Textiles: Informing Preservation, Display and Interpretation, Archetype Publications Ltd, 2004. 24-28.

26. Wouters J. The dyes of early woven Indian silks. In: Rrhoud, K. (Ed.), Samit & Lamps. Indian-dyed motifs. AEDTA/Catholic University of Louvain, 1998. 145-152.

27. Wouters J and Rosario-Chirinos N. Dye-stuff analysis of Precolombian Peruvian textiles with high performance liquid chromatography and diode-array detection. Journal of the American Institute for Conservation 1992; 31 (2): 237-255.

28. Zhang X, Good I and Laursen R.A. Characterization of Dyestuffs in ancient textiles from Xinjiang. Journal of Archaeological Science 2008; 45(4): 1095-1103.

29. Hofenk de Graaff Judith. The Colourful Past, Origins, Chemistry, and Identification of Natural Dyestuffs, Archetype Publications Ltd., London, 2004.

30. Orska-Gawrys J, Surowiec, I, Kehl J, Rejinak H, Urbanik-Walczak K, Trojanowicz M. Identification of natural dyes in archeological Coptic textiles by liquid chromatography with diode array detection. Journal of Chromatography A, 2003; 989: 239-248.

31. Lioe H N, Adawiyah D R and Anggraeni N. Isolation and characterization of the major natural dyestuff component of Brazilianwood (Caesalpinia sappan L.). International Food Research Journal 2012; 19(2): 537-542.

32. Wouters Jan, Grzywacz Cecily M, Claar Ana. A Comparative Investigation of Hydrolysis Methods to Analyze Naturalオrganic Dyes by HPLC-PDA Analysis Methods, Twelve Biological Sources, Ten Dye Classes, Dyed Yarns, Pigments and Paints. Studies in Conservation 2011; 56, 3: 231-249.

33. Schweppe H.T: Handbuch der Naturfarbstoffe. Vromkomen, Verwendung Nachweis, Landsberg/Lech, 1992.

34. Abaraineck JSM. A New Method for the Analysis of Ancient Dyed Textiles, in M. LEVEY, Archaeological Chemistry, University of Pennsylvania Press, Philadelphia, 1967: 15-27.

35. Gál T, Ambrus I and Urszu S. Forensic Analysis of Textile Fibres by Fourier Transform Infrared Diamond Cell Technique. Acta Chimica Hungarica 1991; 128(6): 919-928.

36. Martoglio P A, Bouffard SP, Sommer A J, Katon J E, Jakes K A. Unlocking the Secrets of the Past – The Analysis of Archaeological Textiles and Dyes. Analytical Chemistry 1990; 62: 1123A-1128A.

37. Herman R, Wrozek H. Application of SEM and IR absorption spectroscopy in determination on the raw material carbonated archaeological textiles for the Middle Ages (in Polish), Kwartalnik Historii Kultury Materialnej 2005; 53, 1: 71-83.

38. Odlyth M, Theodorakopoulos C and Sampana R. Studies on Woolen Threads from Historical Tapestries. AU-TEX Research Journal 2007; 7, 1.

39. Indicator N, Koestler R J and Sherryl R. The Detection of Mordants by Energy Dispersive X-Ray Spectrometry Part I. Dyed Woolen Textile Fibers. Journal of the American Institute of Conservation 1985; 24: 104-109.

40. Koestler R J, Sherryl R and Indicator N. Identification of Dyeing Mordants and Related Substances on Textile Fibers: A Preliminary Study Using Energy Dispersive X-ray Spectrometry. Studies in Conservation 1985; 50: 38-62.

41. Joosten I, van Bommel M R, Hofmann-de Keijzer R and Reschreiter H. Micro Analysis on Hallstatt Textiles: Colour and Condition. Microchim Acta 2006; 155: 169-174.

42. Saito M, Uehara M and Yamazaki K. Components of Mordants and the Silk Fabrics Treated with Them. Dyes in History and Archaeology 20, Archetype Publications Ltd., London, 2005; 95-101.

43. Vitorino Tatiana Mendes. A Closer Look at Brazilwood and its Lake Pigments, Departamento de Conservação e Restauro, Faculdade de Ciências e Tecnologia, Lisboa, 2012. URL: http://www.dcr.fct.unl.pt/sites/www.dcr.fct.unl.pt/files/pdfsiiuminus/Thesis_Brazilwood.pdf

44. Margarita Christina, Propopatas Stavros, Alien Norman, Vishnyakov Vladimir. Identification of purple dye from molusc on an excavated textile by non-destructive analytical techniques. Dyes and Pigments 2013; 96: 774-780.

45. Devia B, Cardale M and Wouters J. The red mantles: Arrabaidae chica in archaeological Colombian textiles, Strengthening the bond: science and textiles. Proceedings of the North American Textile Conservation Conference 2002, April 2002, J. Welhan (ed.), (Philadelphia), (USA), 2002. 35-46

46. Benc-Bošković K. Konavle tekstilno ru-kovrstvo i narodno nošnja, Etnografski muzej u Zagrebu, Zagreb, 1983.

47. Roller D. Dubrovaci zanati u XV i XVI stoljeću, Gradonačelnika gradskosrpsku povijest Hrvatske, knj. 2, Zagreb, 1951: 5

48. Melo M J. History of Natural Dyes in the Ancient Mediterranean World, in Handbook of Natural Colourants (eds T. Bechtold and R. Mussak), John Wiley & Sons, Ltd, Chichester, UK. 200.9

49. Cardon D. Dyes in History and Archaeology 13. Archetype Publications Ltd, London 1994, 95.73.

50. Longe J. Kermes, cvrc – i jož neka crvena bojila, Analu Dubrovnik 2011; 49: 47.

51. Rešetar M. Der štokavische Dialekt. Wien: Schriften der Balkankommission, Linguistische abteilung, I, VIII, Alfred Hölder 1907; 280.

52. Ivšo J, Liturgijsko ruho U Katedrala Gospe Velike u Dubrovniku, ur. Katarina Horvat-Levaj, Zagreb, Institut za povijest umjetnosti 2013; 321-333.

53. Premerl D L. Stoljeće opremanja barok-ne katedrale – oltari i kamenin inventar U Katedrala Gospe Velike u Dubrovniku, ur. Katarina Horvat-Levaj, Zagreb, Institut za povijest umjetnosti, 2013.

54. Derrick M R, Stulik D, Landry J. Infra red Spectroscopy in Conservation Science, The Getty Conservation Institute, J. Paul Getty Trust, United States of America, 1999.

55. Parac-Osterman B. et al.: Process of obtaining and purpures of purpura dye from murex trunculus. 6 *International Textile, Clothing & Design Conference, Dubrovnik Croatia, 2012. 262 – 265.

56. Deveoglu O, Torgan E and Karadag R. Identification of Dyestuffs in the Natural Pigments Produced with Al²⁺, Fe²⁺ and Sn⁴⁺ Mordant Metals from Cochinial (Dactylopius coccus Costa) and Walloon oak (Quercus ithaburensis Decaisne) by HPLC-DAD. Asian Journal of Chemistry 2010; 22, 9: 7021-7030.

57. Zhang X and Laursen R. Application of LC–MS to the analysis of dyes in objects of historical interest. International Journal of Mass Spectrometry 2009; 284 108-114.

58. Vallianou L, Karapanagiotis I and Chrysoulakis Y. Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography, Anal Bioanal Chem 2009: 395: 2175-2189.

59. Davanzo PoI D. La Collezione Cini Dei Musei Civici Veneziani: Tessuti Antichi, Museo Correr, Venezia 1991; p. 128.

60. De La Pierre C, Ripamonti Marianna. Motivi decorativi e tipologie tecniche dalla fine del xvi al xvii secolo nei pa-ramenti sacri valdostani, Bollettino della Soprintendenza per i beni e le attività culturali della Regione Autonoma Valle d’Aosta, p. 363-370; P. Thornton (1965) Baroque and Rococò Silks, London; Devoli, D. (1993) Il Tessuto in Europa, Bramante Editrice, Milano, 2007. p. 367

61. Bochierini T and Marabelli P. Atlante di storia del tessuto. Itinerario nell’arte tessile dall’antichità al Décò, Firenze 1995; p.81.

62. Katedrala Gospe Velike u Dubrovniku, ur. Katarina Horvat-Levaj, Zagreb, Dubrovnik: Institut za povijest umjetnosti, Župa Gospe Velike, 2014.

Received 04.12.2015 Reviewed 23.05.2016