LETTER TO THE EDITOR

SARS-CoV-2 infection in liver transplant recipients: A complex relationship

Ricardo Wesley Alberca, Gil Benard, Gabriela Gama Freire Alberca, Maria Notomi Sato

ORCID number: Ricardo Wesley Alberca 0000-0002-3602-3306; Gil Benard 0000-0002-5469-3602; Gabriela Gama Freire Alberca 0000-0002-3467-5562; Maria Notomi Sato 0000-0002-7911-1824.

Author contributions: All authors contributed to the conception, writing, and review of the article and approved the submitted version.

Conflict-of-interest statement: The authors declare having no conflicts of interest.

Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), No. 19/02679-7 and No. 20/13148-0.

Country/Territory of origin: Brazil

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was

Ricardo Wesley Alberca, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia e Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil

Gil Benard, Gabriela Gama Freire Alberca, Maria Notomi Sato, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil

Corresponding author: Ricardo Wesley Alberca, PhD, Academic Research, Research Fellow, Laboratorio de Dermatologia e Imunodeficiencias (LIM-56), Departamento de Dermatologia e Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de São Paulo, 455-Cerqueira César, São Paulo 01246-903, Brazil. ricardowesley@gmail.com

Abstract

The recent manuscript reviewed investigations involving liver damage in coronavirus disease 2019 (COVID-19) patients, and COVID-19 in patients with previous chronic hepatological diseases, such as patients with liver graft. The literature presents several conflicting results concerning the anti-SARS-CoV-2 response in patients with solid organ transplants, in liver transplant recipients. Therefore, we would like to humbly state a few points for consideration involving liver transplant recipients and COVID-19, such as the time since transplantation, comorbidities, and immunosuppressive regimens.

Key Words: COVID-19; SARS-CoV-2; Liver transplant; Immunosuppression; Infection; Comorbidities

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: There is not a consensus whether solid organ transplant recipients present increased severity or death rates due to coronavirus disease 2019 (COVID-19) compared with the general population. In particular, liver allograft has a low risk of rejection, therefore enabling treatment with relatively less immunosuppressive regimens. The reduction in the production of proinflammatory cytokines, without a drastic suppression of the immune response, may benefit liver transplant recipients during COVID-19. Further investigations should compare different organ transplant
Liver transplanted patients and COVID-19: A complex relationship.

Alberca RW, Benard G, Alberca GGF, Sato MN. SARS-CoV-2 infection in liver transplant recipients: A complex relationship. World J Gastroenterol 2021; 27(44): 7734-7738

Citation: Alberca RW, Benard G, Alberca GGF, Sato MN. SARS-CoV-2 infection in liver transplant recipients: A complex relationship. World J Gastroenterol 2021; 27(44): 7734-7738

URL: https://www.wjgnet.com/1007-9327/full/v27/i44/7734.htm

DOI: https://dx.doi.org/10.3748/wjg.v27.i44.7734

TO THE EDITOR

We read with great interest the article entitled “Liver dysfunction and SARS-CoV-2 infection”, recently published by Gracia-Ramos et al[1] in the World Journal of Gastroenterology[1]. Gracia-Ramos et al[1] performed a review on patients with liver dysfunction and coronavirus disease 2019 (COVID-19), highlighting investigations involving liver injury in COVID-19 patients, and COVID-19 in patients with previous chronic liver disease, such as cirrhosis and liver transplant recipients. Nevertheless, we would like to raise a few considerations regarding liver transplant recipients and COVID-19.

Transplantation is a treatment for organ failure and end-stage organ illnesses, requiring patients to undergo regular use of immunosuppressive treatment to avoid organ rejection[2]. There is no consensus regarding the increase in the incidence or severity of COVID-19 on solid organ transplant (SOT) recipients[3]. A few reports have identified an increase in severe COVID-19 and mortality rate in SOT recipients[4, 5], while others failed to do so[3, 6].

SOT patients may respond differently to COVID-19 due to associated comorbidities, the organ grafted, elapsed time from the transplant surgery, drugs used to prevent organ rejection, or drugs used to treat SARS-CoV-2 infection[7-9]. The identification of the organ grafted is usually described in the manuscripts[6], but only one manuscript with comparison between the different organ transplant recipients has been made so far, identifying an increase in mortality in kidney and heart transplant recipients in comparison to liver transplant recipients[5].

A systematic review identified a similar death rate in liver transplant recipients and non-transplant recipients, but a higher percentage of non-transplant recipients were obese or had cardiovascular or respiratory diseases[10]. Hospitalization in the intensive care unit presented mixed results, and only one investigation reported the need for mechanical ventilation, and liver transplant recipients presented a greater need for it, in comparison to non-SOT patients[10]. Consequently, it is not possible to confirm if liver transplant recipients have a lower risk for severe illness or death risk in comparison to non-transplant recipients during COVID-19.

The liver allograft has a lower risk of rejection in comparison to heart and kidney allograft. Therefore, it is usually treated with reduced immunosuppressive regimens compared with the other SOT patients[11, 12]. Different immunosuppressive regimens can affect the detection of SARS-CoV-2 RNA in nasopharyngeal swab tests[13]. Tacrolimus, a commonly used drug by SOT patients, has been shown to display anti-coronavirus effects in vitro[14] and putative protective properties in liver transplant recipients with COVID-19[15]. In contrast, another report identified that tacrolimus has no significant effect on the mortality risk[16].

We hypothesize that the inhibition of the calcineurin by tacrolimus could curb the production of proinflammatory cytokines, similarly to the observed in other inflammatory models[17-19], and reduce or prevent the development of the cytokine storm in COVID-19[20]. A recent report associated tacrolimus therapy with a protective effect in liver transplant recipients with COVID-19[15]. Importantly, the use of tacrolimus in association with dexamethasone in immunocompetent COVID-19 patients is currently being tested in a Spanish clinical trial (clinicaltrials.gov/ct2/show/NCT04341038).

Importantly, SOT recipients (including liver, kidney, heart, lung, and others) have an increased risk of mortality due to infections in the first year after the transplant[21], especially respiratory infections[22]. A recent review identified a higher mortality rate in patients with over a year of organ draft[23]. Another report identified no difference in elapsed time from transplant in survival and non-survival COVID-19 patients, but
patients presented a high incidence of other comorbidities[24]. In a recent report, liver transplant was not associated with greater mortality risk, while the association with other comorbidities (mainly diabetes, hypertension, obesity, and cardiovascular disease) posed a higher death risk[25]. It is reasonable to assume that comorbidities associated with poor outcomes in non-SOT patients will also influence the COVID-19 disease course in liver recipients, such as co-infection[26], respiratory disorders[27], and alcohol consumption[28]. In another report, liver transplant recipients presented similar mortality to non-SOT patients and reduced mortality in comparison with patients with liver cirrhosis[29].

On the other hand, liver transplant recipients developed lower levels of anti-SARS-CoV-2 IgG, and a more pronounced reduction in SARS-CoV-2-specific IgG levels, 6 mo after COVID-19[30]. Therefore, a long-term follow-up is necessary to fully determine the duration of the anti-SARS-CoV-2 immune response and the long-term protection offered by COVID-19 vaccines in liver transplant recipients. A recent report has identified SARS-CoV-2 infections in fully vaccinated SOT patients, and, importantly, offered by COVID-19 vaccines in liver transplant recipients. A recent report has the duration of the anti-SARS-CoV-2 immune response and the long-term protection after COVID-19.

CoV-2 IgG, and a more pronounced reduction in SARS-CoV-2-specific IgG levels, 6 mo

After COVID-19, patients with liver cirrhosis and alcohol consumption disease course in liver recipients, such as co-infection associated with poor outcomes in non-SOT patients will also influence the COVID-19 disease (mainly diabetes, hypertension, obesity, and cardiovascular disease) posed a higher death risk. However, further investigations are needed to better understand the impact of comorbidities, elapsed time since the organ transplant, immunosuppressive regimen, and vaccination on COVID-19 in liver transplant patients.

REFERENCES

1 Gracia-Ramos AE, Jaquez-Quintana JO, Contreras-Omaña R, Auron M. Liver dysfunction and SARS-CoV-2 infection. World J Gastroenterol 2021; 27: 3951-3970 [PMID: 34326607 DOI: 10.3748/wjg.v27.i26.3951]
2 Zhang H, Dai H, Xie X. Solid Organ Transplantation During the COVID-19 Pandemic. Front Immunol 2020; 11: 1392 [PMID: 32612614 DOI: 10.3389/fimmu.2020.01392]
3 Ringer M, Azmy V, Kaman K, Tang D, Cheung H, Azar MM, Price C, Malinis M. A retrospective matched cohort single-center study evaluating outcomes of COVID-19 and the impact of immunomodulation on COVID-19-related cytokine release syndrome in solid organ transplant recipients. Transpl Infect Dis 2021; 23: e13556 [PMID: 33378571 DOI: 10.1111/tid.13556]
4 Elias M, Pievani D, Randoux C, Louis K, Denis B, Delion A, Le Goff O, Antoine C, Greze C, Pillebout E, Abboud I, Glotz D, Daugas E, Lefaucheur C. COVID-19 Infection in Kidney Transplant Recipients: Disease Incidence and Clinical Outcomes. J Am Soc Nephrol 2020; 31: 2413-2423 [PMID: 32847984 DOI: 10.16181/ASN.2020050639]
5 Alberca RW, Alberca GGF, Netto LC, Orfali RL, Gozzi-Silva SC, Duarte AJ da S, Asoki V, Sato MN, Benard G. COVID-19 Severity and Mortality in Solid Organ Transplantation: Differences between Liver, Heart, and Kidney Recipients. Transplantology 2021; 2: 296-303 [DOI: 10.3390/transplantology2020030]
6 Pereira MR, Arcaçoy S, Furr MA, Mohan S, Emond JC, Tsapelas DS, Shi Q, Pupura L, Uhlemann AC, Zucker J, Verna EC. Outcomes of COVID-19 in solid organ transplant recipients: A matched cohort study. Transpl Infect Dis 2021; 23: e13637 [PMID: 33993630 DOI: 10.1111/tid.13637]
7 Nacif LS, Zanini L,Y, Waisberg DR, Pinheiro RS, Galvão F, Andrais W, D’Albuquerque LC. COVID-19 in solid organ transplantation patients: A systematic review. Clinics (Sao Paulo) 2020; 75: e1983 [PMID: 32520225 DOI: 10.6061/clinics/2020/e1983]
8 Hage R, Steinack C, Gauthsch F, Pfister S, Inci I, Schuurmans MM. Clinical Characteristics, Treatments and Outcomes of 18 Lung Transplant Recipients with COVID-19. Transplantology 2021; 2: 229-45 [DOI: 10.3390/transplantology2020022]
9 Kulkarni AV, Tevethia HV, Premkumar M, Arab JP, Candia R, Kumar K, Kumar P, Sharma M, Rao PN, Eddy DN. Impact of COVID-19 on liver transplant recipients-A systematic review and meta-analysis. EclinicalMedicine 2021; 38: 101025 [PMID: 34278287 DOI: 10.1016/j.eclinm.2021.101025]
10 Eason JD, Cohen AJ, Nair S, Alcantaer T, Loss GE. Tolerance: is it worth the risk? Transplantation 2005; 79: 1157-1159 [PMID: 15880601 DOI: 10.1097/01.tp.0000162084.46555.10]
11 Beimler J, Morath C, Zeier M. [Modern immunosuppression after solid organ transplantation]. Internist (Berl) 2014; 55: 212-222 [PMID: 24518922 DOI: 10.1007/s00105-013-3411-8]
12 Gaston DC, Malinis M, Osborn R, Peaper DR, Landry M, Juthani-Mehta M, Azar MM. Clinical implications of SARS-CoV-2 cycle threshold values in solid organ transplant recipients. Am J Transplant 2021; 21: 1304-1311 [PMID: 33043603 DOI: 10.1111/ajt.16357]
13 Carbajo-Lozoya J, Müller MA, Kallies S, Thiel V, Drosten C, von Brunn A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK306. Virus Res 2012; 165: 112-117 [PMID: 22349148 DOI: 10.1016/j.viruses.2012.02.002]
14 Belli LS, Fondevila C, Cortesi PA, Conti S, Karam V, Adam R, Coilly A, Ericzon BG, Loinaz C, Cuervas-Mons V, Zambelli M, Llado L, Diaz-Fontenla F, Invernizzi F, Patrono D, Faitot F, Bhooroi...
S, Pirenne J, Perricone G, Magini G, Castells L, Detry O, Cruchaga PM, Colmenero J, Berrevoet F, Rodríguez G, Ysebaert D, Raderne S, Metselaar H, Morelli C, De Carlis LG, Polak WG, Duvoux C; ELITA-ELTR COVID-19 Registry. Protective Role of Tacrolimus, Deleterious Role of Age and Comorbidities in Liver Transplant Recipients With Covid-19: Results from the ELITA/ELTR Multi-center European Study. *Gastroenterology* 2021; 160: 1151-1163.e3 [PMID: 33307029 DOI: 10.1053/j.gastro.2020.11.045]

15 Dumortier J, Duvoux C, Roux O, Altieri M, Barraud H, Besch C, Caillard S, Coilly A, Conti F, Dharaney S, Durand F, Francoz C, Garaix F, Houssel-Debpy P, Kounis I, Lassailly G, Laveurd N, Leroy V, Mallet M, Mazzola A, Mueunier L, Raderne S, Richardet JP, Vanlennemns C, Hazman M, Saliba F; French Solid Organ Transplant COVID Registry; Groupe de Recherche Francais en Greffe de Foie (GRF). Covid-19 in liver transplant recipients: the French SOT COVID registry. *Clin Res Hepatol Gastroenterol* 2021; 45: 101639 [PMID: 33636654 DOI: 10.1016/j.clinre.2021.101639]

16 Yoshino T, Nakase H, Honzawa Y, Matsumura K, Yamamoto S, Takeda Y, Ueno S, Uza N, Masuda S, Inui K, Chiba T. Immunosuppressive effects of tacrolimus on macrophages ameliorate experimental colitis. *Inflamm Bowel Dis* 2010; 16: 2022-2033 [PMID: 20848491 DOI: 10.1002/ibd.21118]

17 Szabo G, Gavala C, Mandrekar P. Tacrolimus and cyclosporine A inhibit allostimulatory capacity and cytokine production of human myeloid dendritic cells. *J Investig Med* 2001; 49: 442-449 [PMID: 11523700 DOI: 10.2310/6650.2001.33789]

18 Tsuda K, Yamakana K, Kitagawa H, Akeda T, Naka M, Niwa K, Nakanishi T, Kakeda M, Gabazza EC, Mizutani H. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells. *PloS One* 2012; 7: e31465 [PMID: 22359594 DOI: 10.1371/journal.pone.0031465]

19 Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. *Front Pharmacol* 2020; 11: 583777 [PMID: 33708109 DOI: 10.3389/fphar.2020.583777]

20 Singh N, Limaye AP. Infections in Solid-Organ Transplant Recipients [Internet]. In: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier Inc., 2014: 3440–3452

21 Kumar D, Michaels MG, Morris MI, Green M, Avery RK, Liu C, Danziger-Isakov L, Stosor V, Estabrook M, Gantti S, Marr KA, Martin S, Silveira FP, Razonable RR, Allen UD, Levi ME, Lyon GM, Bell LE, Huprikar S, Patel G, Gregg KS, Purcell K, Helmersen D, Julian KG, Shiely K, Bono B, Dharnidharka VR, Alavi G, Kalpoe JS, Shoham S, Reid GE, Humar A; American Society of Transplantation H1N1 Collaborative Study Group. Outcomes from pandemic influenza A H1N1 infection in recipients of solid-organ transplants: a multicentre cohort study. *Transplantation* 2010; 89: 521-526 [PMID: 20620116 DOI: 10.1097/TS.0b013e3181f33-3X]

22 Imam A, Abukhalaf SA, Merhav H, Abu-Gazala S, Cohen-Arazi O, Pikarsky AJ, Safadi R, Khalaileh A. Prognosis and Treatment of Liver Transplant Recipients in the COVID-19 Era: A Literature Review. *Ann Transplant* 2020; 25: e296196 [PMID: 33106469 DOI: 10.12699/AOT.926196]

23 Webb GJ, Moon AM, Barnes E, Barratt AS, Marjot T. Determining risk factors for mortality in liver transplant patients with COVID-19. *Lancet Gastroenterol Hepatol* 2020; 5: 643-644 [PMID: 32339474 DOI: 10.1016/S2468-1253(20)30125-4]

24 Webb GJ, Marjot T, Cook JA, Aloman C, Armstrong MJ, Brenner EJ, Catana MA, Cargill T, Dhanasekaran R, Garcia-Juárez I, Haagström H, Kennedy JM, Marshall A, Masson S, Mercer CJ, Perunnalswami PV, Ruiz I, Thaker S, Ufere NN, Barnes E, Barratt AS 4th, Moon AM. Outcomes following SARS-CoV-2 infection in liver transplant recipients: an international registry study. *Lancet Gastroenterol Hepatol* 2020; 5: 1008-1016 [PMID: 32866433 DOI: 10.1016/S2468-1253(20)30271-5]

25 Alberca RW, Yendo TM, Leuzzi Ramos YÁ, Fernandes IG, Oliveira LM, Teixeira FME, Beserra DR, de Oliveira EA, Gozzi-Silva SC, Andrade MMS, Branco ACCC, Pietrobon AJ, Pereira NZ, de Brito CA, Orfali RL, Aoki V, Duarte AJDS, Benard G, Sato MN. Case Report: COVID-19 and COPD patients. *Front Physiol* 2020; 11: 25

26 Alberca RW, Lima JC, de Oliveira EA, Gozzi-Silva SC, Leuzzi YÁ, Mary De Souza Andrade M, Beserra DR, Oliveira LDM, Castelo Branco ACC, Pietrobon AJ, Pereira NZ, Teixeira FME, Fernandes IG, Benard G, Sato MN. COVID-19 disease course in former smokers, smokers and COPD patients. *Front Physiol* 2020 [DOI: 10.3389/fphys.2020.637627]

27 Alberca RW, Rigato PO, Ramos YÁ, Teixeira FME, Branco ACC, Fernandes IG, Pietrobon AJ, Duarte AJDS, Aoki V, Orfali RL, Sato MN. Clinical Characteristics and Survival Analysis in Frequent Alcohol Consumers With COVID-19. *Front Nutr* 2021; 8: 689296 [PMID: 34150832 DOI: 10.3389/fnut.2021.689296]

28 Jayant K, Reccia I, Virdis F, Pyda JS, Bachul PJ, di Sabato D, Barth RN, Fung J, Baker T, Witkowski P. COVID-19 in hospitalized liver transplant recipients: An early systematic review and meta-analysis. *Clin Transplant* 2021; 35: e14246 [PMID: 33555058 DOI: 10.1111/ctr.14246]

29 Caballero-Marcos A, Salcedo M, Alonso-Fernández R, Rodríguez-Perálvarez M, Olmedo M, Graus Morales J, Cuervas-Mons V, Cachero A, Loinaz-Segurola C, Iñarrairagui M, Castells L, Pascual S, Vinazca-Aunés C, González-Grande R, Otero S, Tomé S, Tejedor-Tejada J, Alamo-Martínez JM, González-Díezuez L, Nogueras-Lopez F, Blanco-Fernández G, Muñoz-Bartolo G, Bustamante FJ, Fábrega E, Romero-Cristóbal M, Martin-Mateos R, Del Río-Izquierdo J, Arias-Milla A, Calatayud L, Marcacchio-Quinto AA, Fernández-Alonso V, Gómez-Gavara C, Colmenero J, Muñoz P, Pons JA;
Spanish Society of Liver Transplantation (SETH). Changes in humoral immune response after SARS-CoV-2 infection in liver transplant recipients compared to immunocompetent patients. *Am J Transplant* 2021; 21: 2876-2884 [PMID: 33835707 DOI: 10.1111/ajt.16599]

Ali NM, Alnazeri N, Mehta SA, Boyarsky B, Avery RK, Segev DL, Montgomery RA, Stewart ZA. Development of COVID-19 Infection in Transplant Recipients After SARS-CoV-2 Vaccination. *Transplantation* 2021; 105: e104-e106 [PMID: 34049360 DOI: 10.1097/TP.0000000000003836]
