Collective fast neutrino flavor conversions in a 1D box: Initial conditions and long-term evolution

Meng-Ru Wu,1,2,‡ Manu George,1,† Chun-Yu Lin,3,‡ and Zewei Xiong4,§

1Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
2Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, 10617, Taiwan
3National Center for High-performance computing, National Applied Research Laboratories, Hsinchu Science Park, Hsinchu City 30076, Taiwan
4GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany

(Dated: November 9, 2021)

We perform numerical simulations of fast collective neutrino flavor conversions in an one-dimensional box mimicking a system with the periodic boundary condition in one spatial direction and translation symmetry in the other two dimensions. We evolve the system over several thousands of the characteristic timescale (inverse of the interaction strength) with different initial $\bar{\nu}_e$ to ν_e number density ratios and different initial seed perturbations. We find that small scale structures are formed due to the interaction of the flavor waves. This results in nearly flavor depolarization in a certain neutrino phase space, when averaged over the entire box. Specifically, systems with initially equal number of ν_e and $\bar{\nu}_e$ can reach full flavor depolarization for the entire neutrino electron lepton number (νELN) angular spectra. For systems with initially unequal ν_e and $\bar{\nu}_e$, flavor depolarization can only be reached in one side of the νELN spectra, dictated by the net neutrino $e - \bar{\nu}$ lepton number conservation. Quantitatively small differences depending on the initial perturbations are also found when different perturbation seeds are applied. Our numerical study here provides new insights for efforts aiming to include impact of fast flavor conversions in astrophysical simulations while calls for better analytical understanding accounting for the evolution of fast flavor conversions.

I. INTRODUCTION

The discovery of the flavor oscillations of neutrinos by terrestrial experiments and astrophysical observations is one of the most exciting milestones in neutrino physics. Ongoing and planned experimental projects are expected to further pin down the yet-unknown parameters in neutrino mixing – the mass ordering and the CP-violating phase – while searching for potential signatures of physics beyond the Standard Model [1].

However, despite the success of the theory of neutrino mixing in explaining the majority of experimental data, one aspect that is poorly understood yet is how neutrinos oscillate in astrophysical environments dense in neutrinos. Analytical and numerical works over the past decades have shown that in an environment where the self-interactions between neutrinos cannot be ignored, various collective phenomena can arise due to the nonlinear and strong coupling nature (in the flavor space) of the system; see e.g., [2–19] and review articles [20–23]. Exploratory works also demonstrated that such collective neutrino flavor oscillations may largely affect our understanding of important astrophysical events such as the core-collapse supernovae and the merger of two neutron stars [24–32].

Among these efforts, an important aspect that was recently pointed out is the potential occurrence of the “fast” neutrino flavor conversions [14]. Fast flavor conversions happen when the angular distribution of the neutrino electron lepton numbers (νELN) take both positive and negative values – dubbed “crossings”. Under the two-flavor approximation in ν_e–ν_x subspace where ν_x refers to a linear combination of ν_μ and ν_τ, a νELN crossing means that the effective differential neutrino $e - x$ number density $d\tilde{n}_e/d\Omega$, where $\tilde{n}_e = n_{\nu_e} - n_{\bar{\nu}_e} - n_{\nu_x} + n_{\bar{\nu}_x}$ and Ω is the solid angle, transits from positive to negative (or vice versa) in the angular phase space. This has been confirmed by means of linear instability analysis, valid when the flavor conversion probabilities remain small, as well as numerical studies [15, 33–45]. Meanwhile, searches for the conditions where fast conversions can develop using neutrino angular distributions provided by hydrodynamical simulations of supernovae and mergers were carried out extensively [46–54].

In particular, Refs. [37] and [41] examined how fast flavor conversions develop in the nonlinear regime using numerical simulations in a one-dimensional (1D) box which possesses translation symmetry in the x and y directions while periodic in the z direction. Reference [37] showed that coherent and wavelike patterns in flavor space can develop with a point-source like perturbation. On the other hand, Ref. [41] found that the system can quickly settle into a state where flavor depolarization happens when averaged over the z domain, for a major part of neutrino spectrum with either point-source like or random perturbation seeds. These findings seem to contradict each other and require further examinations.

In this work, we systematically investigate the dependence of the outcome of fast neutrino flavor conversions in a 1D box on the initial condition of the perturbations...
tion seeds. By adopting advanced numerical schemes, we evolve the systems to late times when quasi steady states are achieved. We also explore the dependence of the steady-state outcome on the initial $\bar{\nu}_e$ to ν_e number density ratio.

In Sec. II, we describe our models, the initial and boundary conditions, and the adopted numerical schemes. We also briefly review the notation of the neutrino polarization vectors. In Sec. IV, we discuss our numerical simulation results and the implications. We summarize our main findings in Sec. V. Throughout the paper, we adopt natural units and take $\hbar = c = 1$.

II. MODELS

A. Equation of motion

We consider a simple neutrino-dense system which has translation symmetry in the x- and y-directions in space, the same as in Refs. [37, 40, 41]. For simplicity, initially we assume a pure system consisting of only ν_e and $\bar{\nu}_e$ (before setting small flavor perturbations; see below). Focusing on fast flavor conversions, we neglect the momentum changing collisions and only keep the neutrino–neutrino forward scattering contributions [55–57] in the effective Hamiltonian, i.e., we drop the terms originating from vacuum neutrino mixing and neutrino–matter forward scattering contributions.

Assuming the differential neutrino angular distribution $dn_{\nu_e(\bar{\nu}_e)}/d\Omega$ is uniform in z and taking the two-flavor approximation, the equation of motion, which governs the evolution of the normalized neutrino density matrices (see below) ρ (for neutrinos) and $\bar{\rho}$ (for antineutrinos) is given as follows:

$$\frac{\partial}{\partial t} \rho(t, z, v_z) + v_z \frac{\partial}{\partial z} \rho(t, z, v_z) = -i[H(t, z, v_z), \rho(t, z, v_z)], \tag{1a}$$

$$\frac{\partial}{\partial t} \bar{\rho}(t, z, v_z) + v_z \frac{\partial}{\partial z} \bar{\rho}(t, z, v_z) = -i[\bar{H}(t, z, v_z), \bar{\rho}(t, z, v_z)]. \tag{1b}$$

with

$$\rho(t, z, v_z) = \begin{bmatrix} \rho_{ee} & \rho_{ex} \\ \rho_{xe} & \rho_{xx} \end{bmatrix}, \quad \bar{\rho}(t, z, v_z) = \begin{bmatrix} \bar{\rho}_{ee} & \bar{\rho}_{ex} \\ \bar{\rho}_{xe} & \bar{\rho}_{xx} \end{bmatrix}, \tag{2}$$

in the flavor basis. Since we omit the vacuum mixing contribution, the flavor evolution of ρ and $\bar{\rho}$ do not depend on the neutrino energy.

\footnote{When only considering the neutrino–neutrino self-interaction term, one can redefine the antineutrino density matrix by $\bar{\rho} \rightarrow -\sigma^0_{e\nu} \rho \sigma^0_{\nu} \bar{\rho}$ such that neutrinos and antineutrinos are treated in equal footing [2]. However, here we choose to treat them separately for the purpose of consistency with follow-up works that may include other terms in the Hamiltonian and the collisions.}

B. Initial and boundary conditions

We simulate the flavor evolution of neutrinos inside a box of size $L_z = 1200$ in $z \in [-600, 600]$ with the periodic boundary condition. Similar to Ref. [37], we parametrize

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{The initial νELN angular distribution $G(v_z)$ for systems with different $\bar{\nu}_e$ to ν_e number density ratios α. The νELN crossing where $G(v_z) = 0$ shifts to smaller v_z with larger α.}
\end{figure}

In Eq. (1), the Hamiltonian H and \bar{H} can be explicitly written down as:

$$H(t, z, v_z) = \mu \int_{-1}^{1} dv'_z (1 - v_z v'_z) \times \left[g_{\nu}(v'_z) \rho(t, z, v'_z) - \alpha g_{\nu}(v'_z) \bar{\rho}^*(t, z, v'_z) \right], \tag{3a}$$

$$\bar{H}(t, z, v_z) = -\mu \int_{-1}^{1} dv'_z (1 - v_z v'_z) \times \left[g_{\nu}(v'_z) \rho^*(t, z, v'_z) - \alpha g_{\nu}(v'_z) \bar{\rho}(t, z, v'_z) \right], \tag{3b}$$

where $\mu = \sqrt{2} G_F n_{\nu_e}$ with G_F being the Fermi coupling constant. The asymmetry parameter $\alpha = n_{\bar{\nu}_e}/n_{\nu_e}$ quantifies the ratio between the number density of $\bar{\nu}_e$ and ν_e. The angular distribution function $g_{\nu}(v_z)$ relates to the physical neutrino phase-space distribution function $f_{\nu_e(\bar{\nu}_e)}$ without any flavor perturbations as

$$g_{\nu}(v_z) = \frac{1}{4\pi^2 n_{\nu_e(\bar{\nu}_e)}} \int dE_v E_v^2 f_{\nu_e(\bar{\nu}_e)}, \tag{4}$$

where E_v is the energy of a neutrino. Note that the azimuthal asymmetry in phase space of $f_{\nu_e(\bar{\nu}_e)}$ with respect to the z direction is implicitly taken. In this notation, $\rho_{ee} = \bar{\rho}_{ee} = 1$ for our system without any initial flavor perturbations while all other matrix elements are zero.

Since μ is the only dimensional quantity in Eq. (1), we define $\mu \equiv 1$ and express t and z in dimensionless form (in the units of μ^{-1}) hereafter.
with normalization condition \(\int_1^\nu dv_z g_\nu(v_z) = 1 \). Throughout the paper, we fix \(\sigma_\nu = 0.6 \) and \(\sigma_\bar{\nu} = 0.5 \), such that \(\nu_e \alpha \) are more forward-peaked than \(\nu_e \). For the asymmetry parameter \(\alpha \), we take \(\alpha = 0.9, 1.0, 1.1, 1.2, \) and 1.3. Figure 1 shows the corresponding \(\nu \)ELN distributions \(G_\nu(v_z) = g_\nu(v_z) - \alpha g_\bar{\nu}(v_z) \). With increasing value of \(\alpha \), the \(\nu \)ELN crossing where \(G_\nu(v_z) = 0 \) occurs at smaller \(v_{zz} \) with \(|G_\nu(v_z)| \) being larger (smaller) for \(v_z > v_{zz} \) \((v_z < v_{zz})\). The values of \(v_{zz} \) for \(\alpha = 0.9, 1.0, 1.1, 1.2, \) and 1.3 are 0.65, 0.45, 0.33, 0.23, and 0.15, correspondingly.

For a system without the vacuum Hamiltonian, it requires a small perturbation in \(\rho_{ex} \). Specifically, we use the following description for our initial condition at \(t = 0 \) as:

\[
\begin{align*}
\rho_{ex}(z,v_z) &= \bar{\rho}_{ex}(z,v_z) = (1 + \sqrt{1 - \epsilon^2(z)})/2, \quad (6a) \\
\bar{\rho}_{xx}(z,v_z) &= \bar{\rho}_{xx}(z,v_z) = (1 - \sqrt{1 - \epsilon^2(z)})/2, \quad (6b) \\
\bar{\rho}_{ex}(z,v_z) &= \bar{\rho}_{ex}(z,v_z) = \epsilon(z)/2. \quad (6c)
\end{align*}
\]

For \(\epsilon(z) \), we explore the following two different choices:

1. Point-source like perturbations centered at \(z = 0 \): \(\epsilon(z) = \epsilon_0 \exp[-z^2/50] \).
2. Random perturbations: \(\epsilon(z) \) is randomly assigned by a real value between 0 and \(\epsilon_0 \).

We take \(\epsilon_0 = 10^{-6} \) throughout the paper.

C. Numerical methods

We discretize \(z \) and \(v_z \) with \(N_z \) and \(N_{v_z} \) grids, and evolve \(\rho \) and \(\bar{\rho} \) defined at the grid centers. In evaluating the advection terms \(\partial \rho / \partial z \) and \(\partial \bar{\rho} / \partial z \), we use two different methods to check for consistency. The first method uses the fourth-order (central) finite difference method with artificial dissipation using the third-order Kreiss-Oliger formulation [58]. For the second method, we use finite volume method plus the seventh order weighted essentially nonoscillatory (WENO) scheme [59, 60]. For time evolution, we use fourth-order Runge-Kutta method. The numerical implementation details will be reported in a separate publication together with the public release of our simulation code COSEv [61].

Using the above initial and boundary conditions, we perform simulations with fiducial numerical parameters of \(N_z = 12000 \) and \(N_{v_z} = 200 \), with a fixed time step size \(\Delta t = C_{\text{CFL}} \Delta z \), where \(\Delta z = L_z / N_z \) and the Courant–Friedrichs–Lewy number \(C_{\text{CFL}} = 0.4 \). In Appendixes A and B, we show the comparison of results obtained with different resolutions and with two different numerical methods for advection. For the rest of the paper, all results are obtained using the finite volume method with seventh order WENO scheme, which provides better numerical accuracy given the same resolution.

D. Polarization vectors

Before we discuss our results, let us define the neutrino and antineutrino polarization vectors \(\mathbf{P} \) and \(\bar{\mathbf{P}} \) that are often used in literature. The three components of the polarization vector \(\mathbf{P} \) are defined as

\[
\begin{align*}
P_1 &= 2 \text{Re}(\rho_{ex}), \\
P_2 &= -2 \text{Im}(\rho_{ex}), \\
P_3 &= (\rho_{ex} - \rho_{\bar{ex}}).
\end{align*}
\]

which satisfy \(\rho \equiv (\mathbf{P} \cdot \sigma + P_3 I)/2 \), where \(\sigma_i \) are the Pauli matrices and \(I \) is the identity matrix. For antineutrinos, we have

\[
\begin{align*}
\bar{P}_1 &= 2 \text{Re}(\bar{\rho}_{ex}), \\
\bar{P}_2 &= 2 \text{Im}(\bar{\rho}_{ex}), \\
\bar{P}_3 &= (\bar{\rho}_{ex} - \bar{\rho}_{\bar{ex}}).
\end{align*}
\]

With this definition, the equation of motion for \(\mathbf{P} \) has the same form as for \(\bar{\mathbf{P}} \), and we can treat neutrinos and antineutrinos in equal footing using the \(\nu \)ELN spectrum \(G_\nu \) defined in Sec. II B to account for the contributions from both neutrinos and antineutrinos in the Hamiltonian. Dropping the bar for antineutrinos, we have:

\[
\left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z} \right) \mathbf{P}(t,z,v_z) = \mathbf{H}(t,z,v_z) \times \mathbf{P}(t,z,v_z),
\]

where \(\mathbf{H}(t,z,v_z) = \int_1^1 dv_z' G_\nu(v_z') \mathbf{P}(t,z,v_z') (1 - v_z v_z') \). Clearly, in the absence of collisions, the length of the polarization vectors are unity for all \(z \) and \(v_z \), given that our initial condition has \(|\mathbf{P}| = 1 \) uniformly in \(z \). Another physical quantity that is conserved globally is the net neutrino \(e - x \) lepton number in the entire simulation domain [40, 41]:

\[
L_{e-x} \propto \int_{-L_z/2}^{L_z/2} dz \int_1^1 dv_z G_\nu(v_z) P_3(t,z,v_z).
\]

Note that locally this net lepton number can be transferred from one location to another due to the advection. However, globally \(L_{e-x} \) must be a conserved quantity in time for the entire system.

III. Results: Flavor Evolution of the System

In this section, we focus on results obtained with \(\alpha = 0.9 \) and \(\alpha = 1.1 \). In Sec. III A, we examine how
the point-source like perturbations in the off diagonal elements of the density matrices grow in the linear regime and compare their evolution with detailed analysis using the dispersion relation. In Secs. III B and III C, we further discuss how flavor evolution proceeds in the nonlinear regime for cases with point-source like perturbations and random perturbations, respectively.

A. Linear regime

In the regime where $|p_{cx}| \ll 1$ and $|\bar{p}_{cx}| \ll 1$, the evolution of the system can be qualitatively understood by performing the standard technique of linearized instability analysis [15, 62]. By inserting $p_{cx} \propto \exp[-i(\omega t - k_z z)]$ (same for \bar{p}_{cx}) and keeping terms in the lowest order of perturbations, Eq. (1) leads to a dispersion relation of the collective mode of the system $\omega(k_z)$ [15, 34, 36]. The complex branch of ω for real k_z signifies the existence of flavor instabilities such that small off diagonal perturbations can grow exponentially in time as the system evolves. Note that here we only include the solution that preserves the the axial symmetry. For the symmetry-breaking solutions, we omit them here because our simulation setup does not allow symmetry-breaking solutions.

In Fig. 2, we show in panels (a) and (b) the dispersion relation $\omega(k_z)$ for systems with νELN asymmetry parameter $\alpha = 0.9$ and 1.1. For $\alpha = 0.9$, there are two regions in k_z where complex ω exist. The maximal value of $\text{Im}(\omega_{\text{max}}) \approx 0.044$ locates at $k_z = -0.165$. At the same k_z, $\text{Im}(\omega_{\text{max}})$ and $\text{Re}(\omega_{\text{max}})$ are ≈ -0.15. For $\alpha = 1.1$ where the νELN crossing is deeper in larger v_z (see Fig. 1), $\text{Im}(\omega_{\text{max}}) \approx 0.107$ at $k_z = -0.225$. The corresponding $(d\omega/dk_z)_{\text{max}} \approx 0.278$.

In the bottom panels [(c) and (d)] of Fig. 2, we show the evolution of $P_{\perp}(z) = \sqrt{P_{\perp}^2 + P_z^2} = 2|p_{cx}|$ for $v_z = 0.995$ in the linear regime for the same νELNs with point-source like perturbations. Clearly, an initial Gaussian packet of P_{\perp} grows exponentially with time and the peak position of P_{\perp} moves toward positive z direction for both the cases. The growth rate of the maximal value of $P_{\perp\text{max}}$ and the velocity $dz(P_{\perp\text{max}})/dt$ both agree well with the values of $\text{Im}(\omega_{\text{max}})$ and $(d\omega/dk_z)_{\text{max}}$ obtained in the dispersion relation above. The growth of perturbations using $\alpha = 1.1$ is indeed much faster than that with $\alpha = 0.9$. Moreover, the $P_{\perp}(z)$ with $\alpha = 1.1$ spreads over both positive and negative z directions. For the case with $\alpha = 0.9$, although the width of $P_{\perp}(z)$ also increases with time, it mainly drifts to the positive z direction without spreading over the negative z direction.
B. Nonlinear regime: Point-source like perturbations

When the perturbations grow to the nonlinear regime, wavelike oscillatory features develop [37]. In Fig. 3, we show the snapshots of $P_3(z,v_z)$ at different times for $\alpha = 0.9$ and 1.1 using the same point-source like perturbations as in Sec. III A. For the case of $\alpha = 0.9$, the flavor evolution behavior of the system is in general similar to those reported in Ref. [37]. Flavor waves develop and mainly propagate toward the positive z direction. This is consistent with the growth of perturbations in the linear regime discussed earlier. An interesting feature shown here is that although the flavor oscillations initially can affect all v_z modes, illustrated by the vertical stripes in the upper two subpanels in Fig. 3(a), this effect diminishes when time proceeds and flavor conversions are roughly confined in $v_z > v_{z,c} \approx 0.65$.

Another interesting feature is when the forward-traveling wave front interacts with the slowly backward propagating part after $t \gtrsim 1200$, it pushes the whole pattern to drift toward positive z direction. Meanwhile, this interaction breaks the coherent wavelike pattern. Sub-structures in smaller scale develop such that the orientation of the neutrino polarization vectors varies rapidly in z for $v_z \gtrsim v_{z,c}$. Consequently, although at each location z, neutrinos with different $v_z \gtrsim v_{z,c}$ still have $|\mathbf{P}| = 1$, the “average polarization vector” over the z domain can shrink due to their misalignment. Such a flavor state was referred as “flavor depolarization” in Refs. [40, 41] and we will discuss its behavior in more detail in the next section. For $v_z \lesssim v_{z,c}$, most neutrinos remain unaffected.

For $\alpha = 1.1$ shown in panel (b), flavor conversions quickly develop toward both the positive and negative z directions and produces coherent and wavelike structure, once again consistent with that indicated by the growth of perturbations in the linear regime. Similarly, when the forward and backward propagating modes interact after $t \gtrsim 665$, smaller structures develop and cause a major part of v_z reaching closer to flavor depolarization. One important difference from the previous $\alpha = 0.9$ case is now flavor depolarization happens mostly in $v_z \lesssim v_{z,c} \approx 0.45$. We will also discuss this feature and its consequences in Sec. IV B.

For the other νELN spectra with $\alpha = 1.0, 1.2, \text{and } 1.3$, the behaviors are qualitatively similar to that with $\alpha = 1.1$. Full simulation animations are available at https://mengruwu.github.io/COSEv1dbox/.

C. Nonlinear regime: Random perturbations

Now, let us look at how the flavor systems evolve when we adopt different seed of random perturbations. We show again $P_3(z,v_z)$ at different time snapshots in Fig. 4 for $\alpha = 0.9$ and 1.1. With random perturbations, some locations have larger P_3 initially such that flavor conversions develop faster around those locations (see the
FIG. 4. Snapshots of \(P_3(z, v_z) \) for systems with the same \(\nu \)ELN shown in Fig. 3 but with different seed perturbations. With random perturbations, interaction of flavor waves happen much earlier. No large-scale coherent structures can be formed when compared to Fig. 3, which adopts point-source like perturbations.

Similar to what discussed in Sec. III B for single point-source like perturbations, flavor waves can initially develop independently now at different locations. The flavor waves transported in space interact and break the coherent pattern to form small-scale structures. Thus, with perturbations everywhere in space, the interaction of flavor waves happen at much earlier times and no large-scale coherent structure can be formed, different from cases with point-source like perturbations. The systems can then reach closer to flavor depolarization in \(v_z > v_{z,c} \) \((v_z < v_{z,c})\) for \(\alpha = 0.9 \) \((1.1)\) within a much shorter amount of time.

Once again, for the other \(\nu \)ELN spectra with \(\alpha = 1.0, 1.2, \) and 1.3, the behaviors are qualitatively similar to that with \(\alpha = 1.1 \). Full simulation animations are also available at https://mengruwu.github.io/COSEv1dbox/.

A. Overall flavor conversion probability in the box

We define the overall flavor survival probabilities of neutrinos and antineutrinos, \(\langle P_{ee} \rangle \) and \(\langle \bar{P}_{ee} \rangle \) in the simulation domain by

\[
\langle P_{ee} \rangle = \frac{\int dz dv_z g_{ee}(z, v_z) g_\nu(v_z)}{\int dz dv_z g_\nu(v_z)},
\]

\[\langle \bar{P}_{ee} \rangle = \frac{\int dz dv_z \bar{g}_{ee}(z, v_z) g_\nu(v_z)}{\int dz dv_z g_\nu(v_z)},\]

where the brackets and overline denote averaging over \(z \) and \(v_z \), respectively. The integration limits over \(z \) and \(v_z \) are from \(-L_z/2\) to \(L_z/2\) and from \(-1\) to \(1\), respectively.

Fig. 5 shows the time evolution of \(\langle P_{ee} \rangle \) and \(\langle \bar{P}_{ee} \rangle \) for all five different \(\nu \)ELN spectra that we considered (see Fig. 1). The cases with point-source like perturbations and random perturbations are shown in panels (a) and (b), respectively. First, we see that cases with larger \(\alpha \) reach the final asymptotic states earlier in time for both point-source like and random perturbations. Meanwhile, all cases with random perturbations reach the asymptotic states much earlier than those with point-source like perturbations as discussed in Sec. III C.

Second, systems with \(\alpha = 1 \) (equal number of neutrinos and antineutrinos) have final asymptotic values of
\[\langle P_{ee} \rangle_f \simeq \langle P_{ee} \rangle_f \approx 0.5, \text{ i.e., full flavor depolarization is almost reached for the entire system. For systems that are more asymmetric, the asymptotic } \langle P_{ee} \rangle_f \text{ and } \langle P_{ee} \rangle_f \text{ are larger, i.e., on average less } \nu_e \text{ and } \bar{\nu}_e \text{ are converted. Comparing } \langle P_{ee} \rangle_f \text{ to } \langle P_{ee} \rangle_f \text{ for a given } \alpha, \text{ one finds that cases with } \alpha > 1 \text{ have larger values of asymptotic } \langle P_{ee} \rangle_f \text{ than those of } \langle P_{ee} \rangle_f \text{ (vice versa for } \alpha < 1). \]

This is related to the fact that for } \alpha > 1 (\alpha < 1), \text{ neutrinos with } v_z \lesssim v_{z,c} (v_z \gtrsim v_{z,c}) \text{ experience more flavor conversions. Since for our adopted neutrino angular spectra, } g_\nu(v_z) \text{ is more forward peaked in positive } v_z \text{ than } g_\nu(v_z), \text{ more flavor conversions in larger } v_z \text{ naturally lead to smaller } \langle P_{ee} \rangle_f \text{ than } \langle P_{ee} \rangle_f. \]

Comparing the final values of } \langle P_{ee} \rangle_f \text{ and } \langle P_{ee} \rangle_f \text{ for cases with point-source like and random perturbations, the point-source like ones generally lead to a slightly smaller } \langle P_{ee} \rangle_f \text{ and } \langle P_{ee} \rangle_f \text{ than the random ones. This is due to the reason discussed in Sec. III B: although the interaction of the flavor waves lead to states close to flavor depolarization, for cases with point-source like perturbations, some large-scale coherent structures can remain until the end of the simulations. This can also be seen in Fig. 6, which shows the spatially averaged flavor survival probabilities } \langle P_{ee}(v_z) \rangle_f \text{ as functions of } v_z \text{ at the end of our simulations, where } \langle P_{ee}(v_z) \rangle \text{ is defined by}

\[\langle P_{ee}(v_z) \rangle = \int dz \theta_{ee}(z, v_z) \left/ \int dz. \right. \tag{12a} \]

Note that } \langle P_{ee}(v_z) \rangle \text{ that can be similarly defined are equal to } \langle P_{ee}(v_z) \rangle, \text{ when only neutrino-neutrino self-interaction terms are included here.}

FIG. 5. Time evolution of the flavor survival probabilities [see Eq. (11)] for } \nu_e \text{ (upper subpanels) and } \bar{\nu}_e \text{ (lower subpanels) averaged over } z \text{ and } v_z \text{ for systems with point-source like perturbations [panel (a)] and random perturbations [panel (b)] with different } \bar{\nu}_e \text{ to } \nu_e \text{ number density ratios } \alpha. \text{ See text in Sec. IV A for details.}

\[\langle P_{ee} \rangle_f \simeq \langle P_{ee} \rangle_f \approx 0.5, \text{ i.e., full flavor depolarization is almost reached for the entire system. For systems that are more asymmetric, the asymptotic } \langle P_{ee} \rangle_f \text{ and } \langle P_{ee} \rangle_f \text{ are larger, i.e., on average less } \nu_e \text{ and } \bar{\nu}_e \text{ are converted. Comparing } \langle P_{ee} \rangle_f \text{ to } \langle P_{ee} \rangle_f \text{ for a given } \alpha, \text{ one finds that cases with } \alpha > 1 \text{ have larger values of asymptotic } \langle P_{ee} \rangle_f \text{ than those of } \langle P_{ee} \rangle_f \text{ (vice versa for } \alpha < 1). \]

This is related to the fact that for } \alpha > 1 (\alpha < 1), \text{ neutrinos with } v_z \lesssim v_{z,c} (v_z \gtrsim v_{z,c}) \text{ experience more flavor conversions. Since for our adopted neutrino angular spectra, } g_\nu(v_z) \text{ is more forward peaked in positive } v_z \text{ than } g_\nu(v_z), \text{ more flavor conversions in larger } v_z \text{ naturally lead to smaller } \langle P_{ee} \rangle_f \text{ than } \langle P_{ee} \rangle_f. \]

Comparing the final values of } \langle P_{ee} \rangle_f \text{ and } \langle P_{ee} \rangle_f \text{ for cases with point-source like and random perturbations, the point-source like ones generally lead to a slightly smaller } \langle P_{ee} \rangle_f \text{ and } \langle P_{ee} \rangle_f \text{ than the random ones. This is due to the reason discussed in Sec. III B: although the interaction of the flavor waves lead to states close to flavor depolarization, for cases with point-source like perturbations, some large-scale coherent structures can remain until the end of the simulations. This can also be seen in Fig. 6, which shows the spatially averaged flavor survival probabilities } \langle P_{ee}(v_z) \rangle_f \text{ as functions of } v_z \text{ at the end of our simulations, where } \langle P_{ee}(v_z) \rangle \text{ is defined by}

\[\langle P_{ee}(v_z) \rangle = \int dz \theta_{ee}(z, v_z) \left/ \int dz. \right. \tag{12a} \]

Note that } \langle P_{ee}(v_z) \rangle \text{ that can be similarly defined are equal to } \langle P_{ee}(v_z) \rangle, \text{ when only neutrino-neutrino self-interaction terms are included here.}

FIG. 5. Time evolution of the flavor survival probabilities [see Eq. (11)] for } \nu_e \text{ (upper subpanels) and } \bar{\nu}_e \text{ (lower subpanels) averaged over } z \text{ and } v_z \text{ for systems with point-source like perturbations [panel (a)] and random perturbations [panel (b)] with different } \bar{\nu}_e \text{ to } \nu_e \text{ number density ratios } \alpha. \text{ See text in Sec. IV A for details.}

FIG. 6. The final flavor survival probabilities } \langle P_{ee}(v_z) \rangle_f \text{ averaged over } z \text{ [Eq. (12)] for the same systems shown in Fig. 5. Nearly flavor depolarization can be reached in one side of the } \nu\text{ELN spectra for cases with } \alpha \neq 1. \text{ For } \alpha = 1, \text{ the entire } \nu\text{ELN spectra can achieve nearly flavor depolarization.}

Figure 6 clearly shows several interesting features. First, for cases with either point-source like or random perturbations, those with } \alpha > 1 (\alpha < 1) \text{ lead to nearly full flavor depolarization } \langle \langle P_{ee}(v_z) \rangle_f = 0.5 \rangle \text{ for velocity modes } v_z < v_{z,c} (v_z > v_{z,c}). \text{ For velocity modes in the other side of the } \nu\text{ELN, nearly flavor equipartition cannot be achieved and } \langle P_{ee}(v_z) \rangle_f \text{ gradually increase from } \simeq 0.5 \text{ for large } } \alpha. \text{ For } \alpha = 1, \text{ the entire } \nu\text{ELN spectra can achieve nearly flavor depolarization.}
to larger values for larger (smaller) v_z for $\alpha > 1$ ($\alpha < 1$).
For the case with $\alpha = 1$, i.e., symmetric in neutrinos and antineutrinos, full flavor depolarization for the entire νELN can be achieved. Comparing results with different perturbations, one sees that due to the remaining large-scale coherent structures (see e.g., Fig. 3), systems with point-source like perturbations give rise to smaller ⟨$P_{\nu\ell}(v_z)$⟩ ≈ 0.4 in some regions in $v_z < v_{z,c}$ ($v_z > v_{z,c}$) for $\alpha > 1$ ($\alpha < 1$) than those with random perturbations.

Based on our simulation results, we make a conjecture as follows. For a system with the periodic boundary condition in one spatial direction (while having perfect translation symmetry in the other two directions) where interaction of flavor waves can happen, the system can evolve to an asymptotic state where nearly flavor equipartition can be reached for velocity modes in one side of the νELN, when averaged over space. In other words, when averaged over space, the νELN crossing nearly vanishes.

For such a scenario to happen, the net neutrino $e-\ell$ lepton number conservation $L_{e-\ell}$ [see Eq. (10)] would enforce that nearly flavor depolarization can only happen for velocity modes in the shallower side of the νELN.

An additional remark is: comparing Fig. 5 and Fig. 6, we also point out that although Fig. 6 seems to suggest that a narrower range of velocity modes in νELN distribution reaches nearly flavor depolarization for $\alpha = 0.9$ than those with $\alpha > 1$, on average, more neutrinos and antineutrinos are being converted. Once again, this is because the spectra $g_{\nu}(v_z)$ and $g_{\bar{\nu}}(v_z)$ are more forward peaked. This means that although a system with $\alpha < 1$ may appears to be affected in less phase space volume in v_z, flavor conversions there can actually have a larger impact on physical processes that are flavor dependent in realistic astrophysical environments.

B. Evolution of different velocity modes

Refs. [40, 41] proposed that the behavior of the system can be understood by examining the time evolution of ⟨$P(v_z)$⟩. From Eq. (9), one obtains

$$
\frac{d}{dt} \langle P(v_z, t) \rangle = \langle M_0 \times P(v_z, t) \rangle - v_z \langle M_1(t) \times P(v_z, t) \rangle,
$$

where $M_i(z, t) \equiv \int dv_z L_i(v_z)G_\nu(v_z)P(z, v_z, t)$ with $L_i(v_z)$ the Legendre Polynomials. The authors of Refs. [40, 41] argued that the spatial averaging of the cross products in Eq. (13) can be approximated as the cross products of two vectors that are spatially averaged separately:

$$
\frac{d}{dt} \langle P(v_z, t) \rangle \simeq \left[\langle M_0 \rangle - v_z \langle M_1(t) \rangle \right] \times \langle P(v_z, t) \rangle.
$$

By doing so, the time evolution of $\langle P(v_z, t) \rangle$ may be understood as a vector precessing around an effective Hamiltonian vector $\langle H(v_z) \rangle = \langle M_0 \rangle - v_z \langle M_1(t) \rangle$. Moreover, the depolarization of $\langle P(v_z, t) \rangle$ happens when the

![FIG. 7. Time evolution of different spatially averaged quantities. See text in Sec. IV B for details.](image)

We carefully examine the validity of these claims. In Fig. 7, we show in panel (a) the time evolution of $\langle |\tilde{H}|_3 \rangle$ and $\langle H_{\perp} \rangle$ for $\alpha = 0.9$ of $v_z = 1$ and $\alpha = 1.1$ of $v_z = -1$ using random perturbations as examples. Despite these modes undergo nearly flavor depolarization, Fig. 7(a) shows that the values of $\langle H_{\perp} \rangle$ remain much smaller than $\langle |\tilde{H}|_3 \rangle$ nearly during the whole time, in contrast to what discussed in Ref. [41].

In panels (b) and (c) of Fig. 7, we show the evolution of $\langle |P(v_z)| \rangle$ and the relative angles θ_r between the two vectors on the right-hand sides of Eqs. (13) and (14) for ten v_z modes for the case with $\alpha = 1.1$ with random perturbations. Clearly, for modes with $v_z \leq v_{z,c}$ that reach flavor depolarization (darker colors), i.e., $\langle |P(v_z)| \rangle \rightarrow 0$, their $\cos \theta_r$ oscillate rapidly between -1 and 1. This indicates that Eq. (14) is in fact not a good approximation of Eq. (13).

In sum, our findings here suggest that the picture which explains the late-time behavior and the depolarization of the system proposed in Refs. [40, 41] using the spatially averaged polarization vectors needs to be revisited.
V. SUMMARY AND DISCUSSIONS

We have performed long-term numerical simulations of fast collective neutrino flavor conversions for systems with translation symmetry in two spatial (x and y) directions using a newly developed code COSEν. Our numerical calculations were conducted based on the finite volume method with seventh order WENO scheme and the finite difference method with Kreiss-Oliger dissipation. Both methods showed good capability of numerical error suppression which allows simulations being carried to longer than a few thousand characteristic timescale of the system. Assuming uniform νELN distributions in z and taking periodic boundary conditions, we have investigated how flavor conversions happen with different νELN spectra, controlled by the initial $\bar{\nu}_e$ to ν_e asymmetric ratio parameter α, as well as how the results depend on the chosen flavor perturbations. Our main findings can be summarized as follows.

First, we found that for systems with point-source like initial perturbations, flavor waves with coherent structures can develop and propagate. With periodic boundary conditions, these flavor waves can then interact and break into smaller scale structures. When adopting perturbation seed randomly placed in $\bar{\nu}_e$, the flavor waves originated from different locations can interact much faster such that no coherent structure can be formed.

The interactions of the flavor waves lead the system to a final state where part of the velocity space (v_z) is close to flavor depolarization when averaging over the space. For any asymmetric system with $\alpha \neq 1$, only one side of the νELN spectrum relative to the νELN crossing point can reach close to an averaged flavor depolarization while neutrinos in the other side of νELN experience less flavor conversions, as constrained by the conservation of the net neutrino $e - x$ number. Specifically, for $\alpha > 1$ ($\alpha < 1$), nearly flavor depolarization can be reached for $v_z \lesssim v_{z,c}$ ($v_z \gtrsim v_{z,c}$) when the antineutrinos angular distribution are more off peak than that of neutrinos. On the other hand, for systems with $\alpha = 1$, the entire neutrino spectra can reach close to averaged flavor depolarization. This phenomenon is qualitatively similar for systems with either point-source like or random perturbations. Quantitatively, the developed large-scale coherent pattern in cases with point-source like perturbations allow part of the velocity space to have on average more flavor conversions than perfect flavor depolarization.

Comparing our results with those reported in Refs. [37, 40, 41], our results with point-source like perturbations agree with [37], which, however, only evolves the system for a shorter period of time without allowing flavor waves to interact. On the other hand, Refs. [40, 41] obtained results nearly independent of whether the initial perturbations are being point-source like or random. In fact, behavior of random perturbations emerged in their simulations using point-source like perturbations, different from what we obtained here. One potential reason is that Refs. [40, 41] used fast Fourier transform to evaluate the derivative terms, which might artificially generate errors of random nature in the spatial domain. Moreover, we have tried to verify the mechanisms proposed in Refs. [40, 41] in explaining the occurrence of the flavor depolarization. However, our results do not support the proposed mechanisms and suggest that better understanding is needed.

Practically, our numerical findings may provide insights for efforts which attempt to include the impact of fast neutrino flavor conversions in hydrodynamical simulations; e.g., [32]. For instance, if the adopted neutrino transport scheme can provide the antineutrino-to-neutrino asymmetry ratio and the crossing points in the νELN spectrum, partial flavor depolarization to one end of the νELN together with the net $e - x$ neutrino lepton number may be applied to the neutrino distribution functions at where νELN crossings are identified.

Needless to say, there are still several improvements to be made in future. For example, our simulations were performed in reduced dimensions. How the symmetry-breaking solutions may develop and affect our conclusions need to be further examined. In our simulations, we have completely omitted the vacuum and the matter terms in the Hamiltonian, as well as the collision terms. Adding these terms and incorporating full treatment with three neutrino flavors may introduce new effects recently investigated in works without advection [63–66]. Full inclusion of them are to be implemented in future. Last but not least, the potential impact of the many-body nature of the problem remain to be further elucidated [67–70].

ACKNOWLEDGMENTS

We thank Geng-Yu Liu and Herlik Wibowo for useful discussions as well as Basudeb Dasgupta, Soumya Bhattacharyya, and Irene Tamborra for valuable feedback. M.-R. W. and M. G. acknowledge supports from the Ministry of Science and Technology, Taiwan under Grants No. 109-2112-M-001-004, No. 110-2112-M-001 -050, and the Academia Sinica under Project No. AS-CDA-109-M11. M.-R. W. also acknowledge supports from the Physics Division, National Center for Theoretical Sciences, Taiwan. M.-R. W. and M. G. appreciate the computing resources provided by the Academia Sinica Grid-computing Center. C.-Y. L. thank the National Center for High-performance Computing (NCHC) for providing computational and storage resources. Z. X. acknowledge supports from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Advanced Grant KILONOVA No. 885281).

Appendix A: Convergence tests

In this appendix, we quantify errors associated with the resolution of our numerical simulations. As described
and the maximal deviation of the length of the polarization vectors in the entire simulation domain \((\delta |P|)_{\text{max}}\). Both panels clearly show that the errors are mostly depending on the resolution in \(N_z\). For our fiducial case with \((N_z, N_{v_z}) = (12000, 200)\), the associated errors in \((\delta |P|)\) and \((\delta |P|)_{\text{max}}\) are smaller than \(10^{-8}\) and \(10^{-5}\), respectively, for \(\alpha = 0.9\) with point-source like perturbations. For all of our simulations with different \(\alpha\) and different perturbation seeds, we obtain \((\delta |P|)_{\text{max}} < 10^{-4}\). For \((\delta |P|)_{\text{max}}\), all cases have \((\delta |P|)_{\text{max}} < 10^{-2}\) except for \(\alpha = 1.2\) and 1.3 with point-source like perturbations, for which their \((\delta |P|)_{\text{max}}\) reach \(O(1)\) by the end of the simulation. We note, however, that demanding \((\delta |P|)_{\text{max}} \ll 1\) may not be a practical convergence criterion because \((\delta |P|)_{\text{max}}\) is usually associated with the grids with largest \(|v_{z_i}|\), which has minor contribution to the Hamiltonian and the averaged quantities. In fact, we have compared the errors in the averaged quantities for all cases with lowered resolutions \((N_z = 6000)\) and confirmed that all the averaged quantities agree within \(5 \times 10^{-3}\).

Appendix B: Results using different numerical schemes

In this appendix, we compare our results obtained with two different numerical methods described in Sec. II C. Panel (a) of Fig. 9 shows the difference of \(\langle P_{ee} \rangle\) between the run using the finite volume method with seventh order WENO scheme (FV+WENO) and that with the finite difference method supplied by the third-order Kreiss-Oliger dissipation term (FD+KO3), for \(\alpha = 0.9\) with point-source like perturbations and our fiducial case, taking \(\alpha = 0.9\) with point-source like perturbations. It shows that the difference of \(\langle P_{ee} \rangle\) amounts to \(\sim 10^{-3}\) and \(\sim 10^{-2}\), when we reduce \(N_{v_z}\) by a factor of 2 and 4, respectively while keeping \(N_z\) being the same. For runs with fixed \(N_{v_z} = 200\) but with reduced \(N_z = 6000\) and 3000, the relative differences are smaller than \(10^{-6}\) and are thus not shown in the figure. This can also be inferred by looking at the nearly identical black and red curves, which represent the differences with \((N_z, N_{v_z}) = (12000, 100)\) and \((6000, 100)\), respectively.

However, this does not mean that we can adopt a much reduced resolution in \(N_z\). In panels (b) and (c) of Fig. 9, we show the deviation of the length of the polarization vector from unity, averaged spatially and spectrally over \(g_\nu (v_z)\):

\[
\overline{\delta |P|} = \int dzv_z g_\nu (v_z) \langle |P(z, v_z)| - 1 \rangle / \int dzv_z g_\nu (v_z),
\]

\(A1\)

We see the differences with \((N_z, N_{v_z}) = (12000, 100)\) and \((6000, 100)\), respectively

FIG. 8. Panel (a): Difference in \(\langle P_{ee} \rangle\) between runs using different \((N_z, N_{v_z})\) and \(\langle P_{ee} \rangle_0\) obtained with \((N_z, N_{v_z}) = (12000, 200)\) with \(\alpha = 0.9\) and point-source like perturbations. Panels (b) and (c): Evolution of \(\langle \delta |P| \rangle\) and \(\langle \delta |P| \rangle_{\text{max}}\) with different simulation resolutions.

in the main text, our fiducial resolution is with \(N_z = 12000\) and \(N_{v_z} = 200\). In panel (a) of Fig. 8, we compare the absolute difference of \(\langle P_{ee} \rangle\) between runs with different resolutions and our fiducial case, taking \(\alpha = 0.9\) with point-source like perturbations. It shows that the difference of \(\langle P_{ee} \rangle\) amounts to \(\sim 10^{-3}\) and \(\sim 10^{-2}\), when we reduce \(N_{v_z}\) by a factor of 2 and 4, respectively while keeping \(N_z\) being the same. For runs with fixed \(N_{v_z} = 200\) but with reduced \(N_z = 6000\) and 3000, the relative differences are smaller than \(10^{-6}\) and are thus not shown in the figure. This can also be inferred by looking at the nearly identical black and red curves, which represent the differences with \((N_z, N_{v_z}) = (12000, 100)\) and \((6000, 100)\), respectively.

However, this does not mean that we can adopt a much reduced resolution in \(N_z\). In panels (b) and (c) of Fig. 8, we show the deviation of the length of the polarization vector from unity, averaged spatially and spectrally over \(g_\nu (v_z)\):

\[
\overline{\delta |P|} = \int dzv_z g_\nu (v_z) \langle |P(z, v_z)| - 1 \rangle / \int dzv_z g_\nu (v_z),
\]

\(A1\)
FIG. 9. Comparison of the same quantities as those in Fig. 8 for simulations with $\alpha = 0.9$ and point-source like perturbations, using the finite volume method with seventh order WENO scheme (FV+WENO) and the finite difference method supplied by the third-order Kreiss-Oliger dissipation term (FD+KO3). Note that in panels (b) and (c), we show additionally the quantities derived using the finite difference method only without dissipation (FD only).

[1] P. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
[2] H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D 74, 123004 (2006), arXiv:astro-ph/051275.
[3] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. D74, 105014 (2006), arXiv:astro-ph/0606616 [astro-ph].
[4] S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. D 74, 105010 (2006), [Erratum: Phys.Rev.D 76, 029901 (2007)], arXiv:astro-ph/0608695.
[5] A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomas, G. G. Raffelt, P. D. Serpico, and G. Sigl, Phys. Rev. D 78, 085012 (2008), arXiv:0807.0659 [astro-ph].
[6] B. Dasgupta, A. Dighe, G. G. Raffelt, and A. Y. Smirnov, Phys. Rev. Lett. 103, 051105 (2009), arXiv:0904.3542 [hep-ph].
[7] A. Malkus, J. P. Kneller, G. C. McLaughlin, and R. Surman, Phys. Rev. D 86, 085015 (2012), arXiv:1207.6648 [hep-ph].
[8] J. F. Cherry, J. Carlson, A. Friedland, G. M. Fuller, and A. Vlasenko, Phys. Rev. Lett. 108, 261104 (2012), arXiv:1203.1607 [hep-ph].
[9] G. Raffelt, S. Sarikas, and D. de Sousa Seixas, Phys. Rev. Lett. 111, 091101 (2013), [Erratum: Phys. Rev. Lett.113,no.23,239903(2014)], arXiv:1305.7140 [hep-ph].
[10] A. Vlasenko, G. M. Fuller, and V. Cirigliano, Phys. Rev. D89, 105004 (2014).
[11] C. Volpe, D. Vääränen, and C. Espinoza, Phys.Rev. D87, 113010 (2013).
[12] M.-R. Wu, H. Duan, and Y.-Z. Qian, Phys. Lett. B752, 89 (2016), arXiv:1509.08975 [hep-ph].
[13] S. Abbar and H. Duan, Phys. Lett. B 751, 43 (2015), arXiv:1509.01538 [astro-ph.HE].
[14] R. F. Sawyer, Phys. Rev. Lett. 116, 081101 (2016), arXiv:1509.03323 [astro-ph.HE].
[15] I. Izaguirre, G. Raffelt, and I. Tamborra, Phys. Rev. Lett. 118, 021101 (2017), arXiv:1610.01612 [hep-ph].
[16] F. Capozzi, B. Dasgupta, A. Mirizzi, M. Sen, and G. Sigl, Phys. Rev. Lett. 122, 091101 (2019), arXiv:1808.06618 [hep-ph].
[17] S. Abbar, Phys. Rev. D 103, 045014 (2021), arXiv:2007.13555 [astro-ph.HE].
[18] Z. Xiong and Y.-Z. Qian, Phys. Lett. B 820, 136550 (2021), arXiv:2104.05618 [astro-ph.HE].
