Autoimmune disease and interconnections with vitamin D

Jane Fletcher¹², Emma L Bishop³, Stephanie R Harrison⁴, Amelia Swift², Sheldon C Cooper⁵, Sarah K Dimeloe³, Karim Raza⁶ and Martin Hewison⁷

¹Nutrition Nurses, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
²School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK
³Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
⁴Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Leeds, UK
⁵Gastroenterology Department, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
⁶Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
⁷Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK

Correspondence should be addressed to M Hewison: m.hewison@bham.ac.uk

Abstract

Vitamin D has well-documented effects on calcium homeostasis and bone metabolism but recent studies suggest a much broader role for this secosteroid in human health. Key components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D (1,25D) within immune cells, and then interact with VDR and promote transcriptional and epigenomic responses in the same or neighbouring cells. These intracrine and paracrine effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic observations, association studies have reported the correlation between low serum 25D levels and the risk and severity of human immune disorders including autoimmune diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and rheumatoid arthritis. The proposed explanation for this is that decreased availability of 25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity and over-exuberant inflammatory adaptive immunity. The aim of the current review is to explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk of inflammatory autoimmune disease.

Introduction

Vitamin D and its metabolites are secosteroids that are derived primarily from the action of UV light on skin to photolytically convert epidermal 7-dehydrocholesterol to vitamin D3 (cholecalciferol). Vitamin D3 can also be obtained from some animal-based food sources and vitamin D2 (ergocalciferol) can be obtained from some non-animal foods. For the remainder of this review vitamin D3 and vitamin D2, and their metabolites will be referred to collectively as vitamin D. As outlined in Fig. 1, the physiological actions of vitamin D metabolites are dependent on further metabolic steps (1). The first occurs in the liver via the enzyme vitamin D-25-hydroxylase
While this is recognised as the main circulating form of vitamin D, it has also been reported that sulphate and glucuronide conjugated forms of 25D are present in serum in abundance and may represent an additional substantial reservoir of 25D (2). Vitamin D3 and D2 can be metabolised via the cholesterol side-chain cleavage enzyme to generate several alternative forms of vitamin D, including 20S-hydroxyvitamin D (3).

In classical vitamin D endocrinology, 25D is metabolised to the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase), with this activity occurring primarily in the proximal tubules of the kidney under positive and negative control by parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) respectively. Binding to its cognate nuclear vitamin D receptor (VDR), 1,25D functions as a steroid hormone to regulate transcription (4) and epigenomic effects (5). In this endocrine setting, 1,25D is thus able to promote the gastrointestinal acquisition of dietary minerals such as calcium and phosphate. 1,25D also plays a key role in stimulating FGF23 expression and suppressing PTH, and also promotes feedback regulation of 25D and 1,25D by stimulating catabolism of these forms of vitamin D to less active metabolites, notably via the enzyme 24-hydroxylase (6). The lipophilic nature of vitamin D metabolites means that they are mainly transported in the circulation by the binding globulin vitamin D-binding protein (DBP). Binding to DBP is particularly important for 25D as renal reabsorption of the DBP-25D complex is essential for the renal synthesis of 1,25D (7). However, in common with other steroid hormones, a small amount of 25D circulates either unbound (free 25D) or bound with low affinity to abundant serum proteins such as albumin. Although small, this fraction of 25D appears to be biologically important as free or bioavailable 25D may be the key form of 25D that is able to preferentially access extra-renal sites of 1α-hydroxylase activity (examples shown in Fig. 1 include the placenta, spleen (representing the immune system) and lungs) (7). The relationship between 25D and DBP supports a role for the free hormone hypothesis in vitamin D physiology, but it has also highlighted the potential importance of non-endocrine actions of 25D and 1,25D. In many extra-renal sites, localised synthesis of 1,25D appears to facilitate endogenous VDR responses that are distinct from the classical endocrine actions of 1,25D. A tissue-specific mode of action for vitamin D appears to be particularly prominent in the immune system, and the
importance of this will be discussed in greater detail later in the current review.

Approximately 50% of the UK population has a risk of 25D-deficiency based on Institute of Medicine parameters (<50 nM serum 25D) (8). This has led to national recommendations for vitamin D supplementation (9). However, current definitions of vitamin D-sufficiency are based on classical endocrine calcium/bone effects and may underestimate the requirements for extra-skeletal actions of vitamin D (10). Importantly this includes immunomodulatory responses linking 25D-deficiency to autoimmune diseases including common chronic inflammatory disorders (11, 12, 13). Furthermore, studies in vivo and in vitro have demonstrated potent anti-inflammatory actions of 1,25D that affect the major cellular players associated with autoimmune disease (14, 15, 16, 17). Supplementation with vitamin D or its analogues may therefore provide a cheap and safe therapeutic strategy for the prevention and/or treatment of autoimmune disorders but supplementation studies to address this have so far been limited and exploratory. The aim of the current review is to provide an update on the mechanistic basis for the interconnection of 25D and 1,25D with autoimmune disease, and how this informs future strategies for the clinical implementation of vitamin D supplementation.

Vitamin D, innate immunity and antigen presentation

The initial observation linking vitamin D with the immune system was the presence of specific binding sites for 1,25D in cells from the immune system (18). The subsequent identification of the VDR for 1,25D confirmed that this protein is expressed in activated, but not resting, lymphocytes and is ubiquitous in cells from the myeloid lineage such as monocytes and macrophages (19). In parallel with these observations, it was noted that monocytes and macrophages exhibited the ability to metabolise 25D to 1,25D. This 1α-hydroxylase activity was initially observed in macrophages from patients with the granulomatous disease sarcoidosis where it was sufficient to elevate circulating levels of 1,25D in some patients leading to potential hypercalcaemia (20). Although immune cell 1α-hydroxylase activity has subsequently been demonstrated for a wide range of inflammatory and granulomatous diseases (21), this does not appear to be an exclusively pathological phenomenon. The ability to metabolise 25D to 1,25D has also been described for normal healthy monocytes/macrophages (22), which show enhanced expression of the genes for 1α-hydroxylase (CYP27B1), and VDR following immune stimulation (23). The resulting endogenous synthesis and action of 1,25D have been shown to promote antibacterial (24, 25), and antiviral (26, 27) innate immune responses to infection. The cell-specific nature of these responses, utilising endogenous 1α-hydroxylase activity, means that local levels of 25D rather than active 1,25D, are likely to be the primary determinant of vitamin D-mediated innate immune responses. Given that serum levels of 25D are the principal determinant of vitamin D ‘status’ in any given individual, the efficacy of antibacterial and antiviral immune responses may therefore be impaired in the setting of 25D-deficiency or enhanced following vitamin D supplementation (28, 29). This facet of 25D/1,25D immunomodulation has attracted much recent interest with respect to the possible impact of serum 25D levels on COVID-19 (30).

The intracrine model described above for vitamin D in monocytes/macrophages and dendritic cells (DC) is not restricted to innate antibacterial and antiviral immunity. In studies that preceded the description of 1α-hydroxylase/VDR-driven antibacterial responses in monocytes/macrophages, we described similar localised metabolism of 25D to 1,25D in monocyte-derived DC leading to the suppression of antigen presentation cell surface antigens on DC such as CD80 and CD86 and concomitant inhibition of T lymphocytes (T cell) proliferation in co-culture analyses (31). Thus, in addition to antibacterial/antiviral innate immune responses, localised synthesis of 1,25D has the potential to influence antigen presentation and subsequent adaptive immune responses by T cells. Also, similar to antibacterial/antiviral responses, the efficacy of the DC intracrine system was enhanced by the maturation of DC using differentiation factors such as lipopolysaccharide and CD40-ligation, which further stimulated 1α-hydroxylase expression and the capacity for 1,25D production (31). To date, most studies of 1α-hydroxylase and VDR expression in innate immunity have utilised monocytes, macrophages and DC-derived in vitro from cultures of peripheral blood mononuclear cells. Nevertheless, expression of 1α-hydroxylase (32) and VDR (33) has been reported for DC isolated directly from human tissue, indicating that DC in vivo have the potential to utilise 25D to 1,25D metabolism in an intracrine fashion. Vitamin D deficiency or supplementation therefore has the potential to influence antigen presentation and subsequent T cell adaptive immune responses.

Initial observations showed that 25D and 1,25D are able to supress DC maturation (34) and the expression
of cell surface antigens such as CD80 and CD86 that are associated with antigen presentation to T cells (31, 32), leading to impaired T cell activation (31, 35). Subsequent analyses have shown that DC exposed to 1,25D exhibit an immature phenotype that promotes the development of tolerogenic T cells, specifically regulatory T cells (Treg) (36, 37). In DC isolated from human peripheral blood, this response appears to be specific for myeloid DC rather than plasmacytoid DC (pDC), despite both DC sub-sets expressing similar levels of VDR (38). These DC subsets have yet to be assessed for intracrine responses to 25D and so it is unclear whether differential sensitivity to vitamin D status occurs with DC in vivo. Moreover, pDC are known to exhibit a tolerogenic phenotype at baseline, and the addition of 1,25D may therefore have little further impact on DC phenotype. The induction of a tolerogenic DC phenotype by 1,25D is associated with phosphorylation and nuclear translocation of NF-κB p65, induction of CCL22, suppression of IL-12 (38) and induction of ILT3 (39). Thus, 1,25D-treated DC exhibit many of the characteristics of conventional tolerogenic DC with the exception of increased expression of CD14 and decreased CD1a (40). Specific markers of 1,25D-induced tolerogenic DC include low secretion of IL-23 and expression of microRNA (miR) 155 and increased expression of miR378. More recent studies using unbiased analyses have described the transcriptomic (41, 42) and proteomic (43) profiles associated with 1,25D-induced tolerogenic DC. This, in turn, has highlighted the importance of cell architecture/ morphology (43), and cell metabolism (44, 45) pathways in mediating DC responses to vitamin D, notably with respect to altered DC phenotype. In particular, the promotion of glycolysis, oxidative phosphorylation and the citric acid cycle appears to be essential for 1,25D responses in DC (44). At a functional level, these metabolic changes appear to facilitate changes in fatty acid synthesis that may be pivotal in the regulation of DC morphology and phenotype (46).

T cell effects of 25D metabolism by antigen-presenting cells

After phagocytosis of a pathogen, cells such as macrophages and DC process the resulting antigens and present these, together with major histocompatibility complex (MHC) class II molecules, to CD4+ helper T cells (Th) to stimulate T cell activation and adaptive immune responses. As detailed above and outlined in **Fig. 2**, DC metabolism of 25D via 1α-hydroxylase and interaction of the resulting 1,25D with endogenous VDR can modulate antigen presentation by promoting a tolerogenic DC phenotype. T cells activated by 1,25D-treated DC exhibit decreased expression of IFNγ and CD154, increased CD152 (35), and increased FoxP3 expression characteristic of Treg (39). Treg can also be induced in the presence of 25D if T cells are activated by antigen-presenting cells such as DC, where there is a capacity for 1α-hydroxylase-mediated synthesis of 1,25D (47). T cells activated in this way also show increased expression of CTLA4 and FoxP3, further highlighting the intracrine pathway for induction of Treg by vitamin D. However, T cells activated by 25D/1,25D-induced tolerogenic DC also exhibit decreased expression of IFNγ, IL-17 and IL-21, indicating suppression of inflammatory Th1, Th17 cells, and follicular B helper T cells (Thf) (47). While all of these cells play an important role in facilitating active adaptive immune responses to a pathogenic challenge, the sustained presence of these cells may lead to unregulated inflammation. It has therefore been proposed that a key immune function of 1,25D is to moderate the magnitude of inflammatory adaptive immune responses, thereby limiting potentially detrimental autoimmune responses (48, 49). It is interesting to note that the intracrine model for indirect regulation of T cells outlined in **Fig. 2** appears to be highly dependent on the serum DBP, which is able to limit DC uptake of 25D. In studies *in vitro*, increased concentrations of DBP acted to suppress DC responses to 25D, consistent with the high binding affinity of 25D for DBP (47). This observation is similar to that previously described for monocytes, where antibacterial responses to 25D in monocytes were enhanced in the absence of DBP (50).

Endocrine, paracrine and intracrine mechanisms for T cell responses to 1,25D

The induction of T cell responses, including the Th cells outlined above, takes place within microenvironments in tissues such as lymph nodes where multiple immune cells exist in close proximity. Thus, while 25D appears to utilise an intracrine model to synthesise 1,25D, regulate DC function and indirectly promote anti-inflammatory, pro-regulatory T cell responses, direct effects of both 25D and 1,25D on T cells may also be possible. Activated, but not resting, T cells express VDR (18) and T cells activated using cell-free systems show direct anti-inflammatory, pro-regulatory responses to 1,25D, including induction of CTLA4, FoxP3 and IL-10, and suppression of IFNγ, IL-17 and IL-21 (51). Thus, *in vivo*, it is possible that some T cell responses may occur via conventional endocrine mechanisms utilising circulating 1,25D.
An additional scenario outlined in Fig. 2 is that 1,25D synthesised locally from 25D by DC or monocytes/macrophages can act in a paracrine fashion on adjacent T cells. These effects may also include actions on MHC class I-induced CD8+ cytotoxic T cells which also express VDR and respond to 1,25D (52). Cytotoxic T cells play a key role in mediating the effects of vitamin D on tumour cells and bacterial and viral infections (53). However, it has been reported that CD8+ cytotoxic T cells are not required for the effects of 1,25D in preventing the mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (54), suggesting that Th rather than cytotoxic T cells are the principal adaptive immunity cells required for autoimmunity effects of 1,25D. Interestingly, in mice, cytotoxic T cells may be a more important source of local 1α-hydroxylase expression than murine macrophages (55), raising the possibility of intracrine actions of 1,25D in some T cell populations, and also suggesting that cytotoxic T cells may be an alternative source of paracrine 1,25D. Expression of CYP27B1 and intracrine responses to 1,25D have also been reported in human cytotoxic T cells (56), but the precise magnitude and function of this source of immune 1,25D are still to be determined.

Crucially, the expression of CYP27B1 has also been described in T cells (57). To date, the relevance of this for T cell synthesis of 1,25D has been unclear but recent studies by Chaus et al. have shown that 25D and 1,25D can regulate expression of key genes associated with Th1 cell function, such as IFNγ and IL-17, demonstrating a functional intracrine pathway for 25D/1,25D in T cells (58). Here, both 25D and 1,25D were able to regulate expression of key genes associated with Th1 cell function, such as IFNγ and IL-17, demonstrating a functional intracrine pathway for 25D/1,25D in T cells (58). In this particular study, the authors have hypothesised that intracrine metabolism could provide a basis for the reported link between low serum 25D and severity of Th1 cell inflammation in patients with COVID-19 disease. However, as outlined in Fig. 2, it is also possible to speculate that similar dysregulation of intracrine 1,25D and Th1 cell function may contribute to the development and severity of the autoimmune disease.
Synthesis of and response to 1,25D with inflammation

The dynamics of the intracrine vs paracrine effects of 1,25D on T cell function remain unclear, particularly as T cells are themselves able to stimulate DC expression of CYP27B1 when in contact with DC (47). It is possible that both intracrine and paracrine actions of 1,25D occur in vitro, but the magnitude of influence of each pathway may depend on the local availability of 25D for metabolism. Specifically, lower concentrations of 25D may be adequate to drive the intracrine effects on DC antigen presentation, but not sufficient to enable secretion of enough 1,25D to influence T cells in a paracrine fashion. Conversely, conditions of 25D repletion may act to enhance both intracrine and paracrine responses to DC-synthesised 1,25D. Paracrine release of 1,25D may also provide a mechanism by which DC are able to support the initial activation of T cells while moderating over-exuberant inflammation. Specifically, there appears to be a reciprocal relationship between expression of 1α-hydroxylase and VDR as DC differentiate, with mature DC having higher levels of 1α-hydroxylase but lower VDR than immature DC (31). Thus, it is possible that for mature DC the intracrine pathway is limited by lower levels of VDR, while paracrine actions on neighbouring immature DC may be more viable as these cells express more VDR (59). In this way, paracrine 1,25D would favour the maturation of some DCs to prime T cell activation, while inhibiting the further development of other less mature DCs to prevent an exponential increase in T cell activation. Another potential benefit of combined intracrine and paracrine actions of 1,25D during antigen presentation is to better facilitate the development of memory T cells. Inflammatory stimuli are required to activate DC to enable antigen presentation and subsequent expansion of effector T cells and the development of memory T cell pools. However, sustained inflammation impairs the effective generation of memory T cells via inappropriately sustained T cell proliferation and apoptosis (60). In this setting, intracrine 1,25D may act to moderate DC maturation and antigen presentation, while paracrine 1,25D may attenuate the inflammatory environment during effector T cell development. Collectively, this would then favour the development of more tolerogenic T cell responses with enhanced memory T cell development.

Vitamin D metabolism and function in autoimmune disease

The majority of reports linking 1,25D with immune function have involved studies of normal peripheral blood cells cultured under inflammatory conditions in vitro. However, the effects of 1,25D may be more complex in the setting of inflammatory disease. In studies using synovial fluid, we showed that T cells from the inflamed joints of rheumatoid arthritis (RA) patients are insensitive to the anti-inflammatory effects of 1,25D relative to paired blood T cells from the same patient, despite expressing similar levels of VDR (61). This T cell ‘resistance’ to 1,25D was due in part to the predominant memory T cell phenotype in RA joint synovial fluid. However, other, tissue-specific, mechanisms are also involved as memory T cells from RA synovial fluid were less sensitive to 1,25D than circulating memory T cells from the same patient (61). Collectively these observations indicate that some of the T cell anti-inflammatory/tolerogenic effects of 1,25D on T cells observed in vitro may be less effective in vivo in the setting of inflammatory disease. Specifically, the ability of T cells to respond to 1,25D in an inflammatory disease setting correlated inversely with the capacity of phenotype change in the T cells – the more committed cells are phenotypically, the less responsive they are to 1,25D. The precise mechanism for this remains unclear but does not appear to be due to impaired capacity for 1,25D signalling.

As outlined earlier, a key observation linking vitamin D with the immune system is the capacity for synthesis of 1,25D by macrophages from patients with sarcoidosis, with this extra-renal 1α-hydroxylase activity being sufficient to raise circulating levels of 1,25D in some patients (20). Elevated serum levels of 1,25D have also been reported for patients with some autoimmune disorders. In patients with Crohn’s disease, but not ulcerative colitis, raised serum 1,25D has been associated with decreased bone mineral density, although the precise source of increased 1,25D in these inflammatory bowel disease (IBD) patients remains unclear (62). By contrast, in patients with RA, macrophages from the synovial fluid exhibit increased capacity for synthesis of 1,25D relative to macrophages from patients with osteoarthritis (63). However, this potential for enhanced macrophage 1,25D production in RA may also lead to elevated serum levels of 1,25D (64), although this appears to be dependent on the availability of 25D in the RA patients (65). In a recent analysis of multiple vitamin D metabolites from patients with RA, serum 1,25D levels were not statistically different from healthy controls, and were higher than paired synovial fluid 1,25D concentrations from the same patients (66). Despite the apparent lack of elevated 1,25D in RA patients in the absence of vitamin D supplementation, both serum 25D and 1,25D levels have been reported to

https://ec.bioscientifica.com
https://doi.org/10.1530/EC-21-0554
© 2022 The authors
Published by Bioscientifica Ltd
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
show inverse correlation with RA disease activity scores, suggesting that increased synovial inflammation is not driving systemic spill-over of any immune cell-derived 1,25D (67). In other autoimmune disorders such as MS, serum 1,25D concentrations do not appear to be higher in patients vs controls (68), and have been reported to decline with MS relapse rate (69). In both cases, the circulating levels of 1,25D in patients with MS appear to be highly dependent on serum 25D concentrations and do not appear to be driven by inflammatory disease activity. The over-arching conclusion from these observations is that while extra-renal metabolism of 25D to 1,25D is a key feature of autoimmune disorders, this does not appear to be associated with the unregulated 1α-hydroxylase activity that is characteristic of granulomatous diseases.

Vitamin D-deficiency, genetic variation in the vitamin D system and animal models of autoimmune disease

Low serum concentrations of 25D are a common health issue across the globe (70, 71). While this continues to provide a challenge to calcium homeostasis and bone

Table 1 Summary of reported studies of vitamin D and specific autoimmune disease. Publications for individual autoimmune diseases reporting effects of (i) serum vitamin D-deficiency; (ii) genetic variation in vitamin D status determined by Mendelian randomisation; (iii) SNPs for specific components of the vitamin D transport/metabolism/signalling system.

Autoimmune disorder	Vitamin D deficiency	Mendelian randomisation	SNPs	
Rheumatoid arthritis	Reviewed in Harrison et al. 2020 (49)	Bae and Lee 2018 (83)	VDR systemic review Bagheri-Hosseinabadi et al. 2020 (85) DBP/GC Yan et al. 2012 (86)	
Sjögren's syndrome	Systematic review Kuo et al. 2020 (87) Li et al. 2019 (88) Ertens et al. 2015 (89)	Arshad et al. 2021 (90) Reviewed in Kamen et al. 2006 (91) Reviewed in Dall’Ara et al. 2018 (92)	VDR Chen et al. 2017 (93) CYP27B1 Fakhfakh et al. 2021 (94)	
Systemic lupus erythematosus	Arshad et al. 2021 (90) Reviewed in Kamen et al. 2006 (91) Reviewed in Dall’Ara et al. 2018 (92)	Bae and Lee 2018 (83)	VDR Gisbert-Ferrándiz et al. 2018 (98) DBP/GC Eloranta et al. 2011 (99)	
Inflammatory bowel disease (IBD)	Systematic Review Del Pinto et al. 2015 (95) Systematic Review Gubatan et al. 2019 (96)	Lund-Nielsen et al. 2018 (97)	CYP27B1 Sundqvist et al. 2010 (102); Orton et al. 2008 (103) CYP2R1 Scazzone et al. 2018 (104) DBP/GC Agliardi et al. 2017 (105) VDR Reviewed in Scazzone et al. 2021(106) VDR Nejentsev et al. 2004 (110) CYP2R1, DBP/GC, CYP24A1 Almeida et al. 2020 (111)	
Multiple sclerosis (MS)	Reviewed in Sintzel et al. 2018 (100)	Mokry et al. 2015 (78) Rhead et al. 2016 (79) Harrood et al. 2018 (101)	CYP2B1	
Type 1 diabetes mellitus	Meta-analysis Hou et al. 2021 (107) Meta-analysis Feng et al. 2015 (108)	Manousaki et al. 2021 (109)	CYP27B1, DBP/GC, CYP24A1	
Guillain-Barre syndrome Chronic inflammatory demyelinating polyneuropathy	Elf et al. 2014 (112)			
Psoriasis	Fu et al. 2021 (113) Pitukweerakul et al. 2019 (114) Reviewed in Hamblly and Kirby 2017 (115)		VDR Liu et al. 2020 (116)	
Autoimmune thyroid disease	Ke et al. 2017 (117) Xu et al. 2015 (118) Wang et al. 2015 (119)		VDR Zhou et al. 2021 (120) VDR Meng et al. 2015 (121) CYP27B1 Jennings et al. 2005 (122) VDR Han et al. 2021 (126)	
Myasthenia gravis	Justo et al. 2021 (123) Kang et al. 2018 (124) Askmark et al. 2012 (125)	Zhong et al. 2021 (130)		
Vasculitis	Korkmaz et al. 2021 (127) Yoon et al. 2020 (128) Systematic Review Khabbazi et al. 2019 (129)			
health in both adults and children (72, 73), there has also been a dramatic increase in studies reporting extraskeletal health issues in the setting of 25D-deficiency (74). Prominent amongst these are association studies linking low serum 25D status with immune dysregulation, notably autoimmune disease. Table 1 summarises the various reports that have assessed the impact of 25D status on specific autoimmune diseases. The central conclusion from these studies is that low serum 25D concentrations are associated with increased prevalence and/or severity of autoimmune disease, but the key question remains as to whether 25D-deficiency is a cause or consequence of autoimmune disease. To address this question, more recent studies have assessed the impact of genetic variability within the vitamin D system as a marker of lifelong variations in 25D status. One approach to this has been to determine if SNPs in genes associated with vitamin D metabolism, transport or function correlate with the prevalence or severity of autoimmune diseases. These genes primarily include serum DBP (GC), 25-hydroxylase (CYP2R1), CYP27B1, 24-hydroxylase (CYP24A1) and VDR. The general conclusion from these studies is that genetic variations within the vitamin D system, notably VDR, may contribute to autoimmune disease susceptibility. The major caveat is that the functional relevance of many of these SNPs is still unclear and, thus, the impact of this genetic variability cannot yet be fully defined.

Some vitamin D-related SNPs, notably GC and CYP2R1, have been linked to serum 25D concentrations (75). The correlation between vitamin D SNPs and serum 25D levels means that it is possible to predict gene haplotypes that are associated with higher vs lower serum 25D status over the lifetime of a particular individual. The prevalence of these SNPs in patient cohorts therefore has the potential to provide a statistically robust analysis of whether particular SNP’s linked to low serum 25D are more common in a specific disease, a process known as Mendelian randomization (MR) (76). The advantages of this strategy are that it enables the analysis of large numbers of subjects and provides a long-term perspective of serum 25D status that is independent of potential confounders and disease influence. The disadvantages of MR are that the genetic variations used in this analysis are only a small component of the overall serum level of 25D, with one study estimating this to be approximately 7.5% (77). The other key caveat with MR is that this analysis of the genetic component of 25D status is less accurate at sub-optimal serum concentrations of 25D. Thus, in populations, including the UK, where serum 25D levels are known to be persistently low, particularly in winter months, MR analysis of vitamin D-related SNPs may have limited value. Nevertheless, MR strategy has been used to investigate further the links between serum 25D levels and specific autoimmune diseases (see Table 1). Broadly speaking, data do not support a significant association between genetically defined 25D levels and autoimmune disease. The notable exception to this is MS, where studies have reported significant associations for this disease (78, 79). This, coupled with the association between low serum 25D and MS, and the links between MS and several individual vitamin D system SNPs, means that of all the autoimmune diseases, MS has the strongest link to vitamin D.

Vitamin D and autoimmune disease in animal models

In addition to studies of serum 25D status and genetic variations in humans, the associations between vitamin D and autoimmune disease have been explored using animal models, predominantly mice. This includes the analysis of mice under conditions of 25D deficiency, and or following supplementation with vitamin D or 1,25D, and the use of mice with knockout or transgenic expression of genes from the vitamin D system. A summary of key publications from these animal studies is shown in Table 2. Consistent with human studies, 25D-deficient mice appear to be more susceptible to mouse models of specific autoimmune diseases. In contrast to human studies, vitamin D supplementation in mouse models of autoimmune disease has to date primarily involved treatment with 1,25D rather than conventional vitamin D supplementation used for human studies. In most cases this strategy ameliorated the specific disease, suggesting that elevated circulating 1,25D is sufficient to modulate inflammatory disease in animal models. This raises the question of whether the intracrine 25D metabolism model that has arisen from studies of human immune cells in vitro is generalisable to animal models in vivo. It is also important to recognise that potential hypercalcemic effects of 1,25D may be less evident in mouse models of inflammatory disease, and the long-term efficacy of similar strategies in humans is far from clear and may be clinically unacceptable because of the potential hypercalcemic side-effects of 1,25D. In a similar fashion to 25D-deficiency, murine knockout of vitamin D genes such Vdr and Cyp27b1 appears to exacerbate mouse versions of all of the autoimmune diseases studied so far, suggesting that the vitamin D system plays some part in moderating the immune responses that are associated with the inflammatory disease in these mouse models.
Table 2 Mouse models of vitamin D and specific autoimmune disease. Publications for individual autoimmune diseases reporting effects of (i) dietary vitamin D-deficiency; (ii) supplementation with vitamin D or 1,25-dihydroxyvitamin D (1,25D); (iii) knockout/over-expression of specific vitamin D-related genes.

Autoimmune disorder	Vitamin D deficiency	Vitamin D supplementation	Gene knockout/transgene
Rheumatoid arthritis		1,25D Cantorna et al. 1998 (131)	Vdr Zwerina et al. 2011 (134)
Systemic lupus erythematosus		1,25D Zhou et al. 2019 (132)	Cyp27b1 Gu et al. 2016 (135)
Inflammatory bowel disease	Reynolds et al. 2016 (136)	1,25D analogue Laverny et al. 2010 (143)	Vdr Froicu et al. 2003 (146)
	Yamamoto et al. 2020 (137)	1,25D Ooi et al. 2013 (144)	Vdr Kong et al. 2007 (147)
	Lagishetty et al. 2010 (139)	Vitamin D Yoo et al. 2019 (145)	Cyp27b1 Liu et al. (148)
	Assa et al. 2014 (140)	1,25D analogue Laverny et al. 2010 (143)	Vdr Kim et al. 2013 (149)
	Ryz et al. 2015 (141)	1,25D Ooi et al. 2013 (144)	Vdr Lu et al. 2021 (150)
	Wei et al. 2021 (142)	Vitamin D Yoo et al. 2019 (145)	Vdr Wang et al. 2012 (152)
Multiple sclerosis	DeLuca and Plum 2011 (151)	1,25D Cantorna et al. 1996 (154)	Cyp27b1 Wang et al. 2016 (158)
	Wang et al. 2012 (152)	1,25D Spach et al. 2004 (155)	Vdr Mathieu et al. 2001 (162)
	Fernandes de Abreu et al. 2012 (153)	1,25D Spach et al. 2006 (156)	Vdr Gysemans et al. 2008 (163)
Type 1 diabetes mellitus	Giulietti et al. 2004 (159)	1,25D Mayne et al. 2011 (157)	Vdr Morro et al. 2020 (164)
	Mathieu et al. 2004 (160)	1,25D Zella et al. 2003 (161)	Gr Viloria et al. 2021 (165)
Psoriasis Autoimmune thyroid disease	Misharin et al. 2009 (167)	1,25D Choi et al. 2011 (168)	Vdr Kong et al. 2006 (166)
Vasculitis		1,25D Galea et al. 2019 (133)	

Conclusions and future challenges

The aim of this review is to provide a mechanistic and model context for the interconnection between vitamin D and autoimmune disease. The general conclusion from the studies described in this review is that there is an association between low serum levels of 25D and autoimmunity. Supporting this statement are robust data that 1,25D has potent immunomodulatory effects on leukocytes, consistent associations between 25D-deficiency in humans and animals, autoimmune disease prevalence and severity and beneficial effects of vitamin D supplementation in animal models. To date, the crucial missing piece of the jigsaw has been the absence of robust randomised controlled trials of vitamin D supplementation in humans. This is a subject in its own right and has not been discussed in detail in the current review. Nevertheless, it is important to highlight recent randomised controlled trial data from the Vitamin D and Omega 3 Trial involving 25,871 participants supplemented with placebo, omega 3 fatty acids or vitamin D (2000 IU/day). Supplementation with vitamin D, with or without omega 3 fatty acids, was shown to decrease the incidence of autoimmune disease in this cohort by 22% after a follow-up of 5 years (with a 39% reduction when only the last 3 years of the study were considered) (80). It is therefore clear that successful use of vitamin D to prevent autoimmune disease is possible but may require lengthy periods of supplementation.

Another key challenge in designing effective supplementation trials to assess the potential impact of vitamin D on autoimmune disease is that it is still not clear what serum level of 25D is optimal for immune function. It is possible that the target level for serum 25D is different from more generalised recommendations made by organisations such as the Institute of Medicine that are based on bone health (81). It is also possible that different levels of 25D are optimal for innate antibacterial and antiviral responses relative to anti-inflammatory effects. Another important consideration is whether vitamin D can be used to help prevent autoimmune disease or whether it provides any therapeutic benefit once the disease has become established. Again, it is quite likely that these two different facets of vitamin D treatment will require different serum levels of 25D for optimal function.

It is also important to recognise that almost all studies of vitamin D supplementation and human disease outcomes have relied on a single marker to define vitamin D deficiency or – sufficiency – namely serum concentrations of 25D. Serum 25D is a relatively cheap and straightforward measurement but this neglects the fact that 25D is an inactive form of vitamin. Recent studies have demonstrated that, like other steroid hormones, vitamin D
Figure 3
Determinants of the impact of vitamin D on immune function. Schematic showing the diverse array of mechanisms that can influence the interaction between vitamin D and the immune system. The principal marker of vitamin D function continues to be serum levels of 25-hydroxyvitamin D (25D) as determined by exposure to UV light or dietary intake of vitamin D and liver activity of the enzyme 25-hydroxylase (25-OHase). However, vitamin D is also converted to alternative metabolites by the cholesterol side-chain cleavage enzyme. 25D can also circulate as epi or conjugated forms. Transport of vitamin D metabolites, particularly 25D, involves the vitamin D binding protein (DBP) which is essential for renal conversion of 25D to 1,25-dihydroxyvitamin D (1,25D) by 1α-hydroxylase (1α-OHase). By contrast, acquisition of 25D by immune cells appears to involve free (unbound) 25D and subsequent 1α-OHase activity. In immune cells, the level of 1α-OHase expression, as well as expression of the vitamin D receptor (VDR) for 1,25D may be defined by various regulators of immune cell function including bacteria, viruses, complement and other immune cells. Collectively, these factors, along with catabolic activity of enzymes such as 24-hydroxylase act to enhance or attenuate the central effects of serum 25D in driving innate and adaptive immune responses. Text boxes on each side (dashed lines) describe the different mechanisms that modify the core effects of altered serum 25D levels.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References

1. Jenkinson C. The vitamin D metabolome: an update on analysis and function. Cell Biochemistry and Function 2019 37 408–423. (https://doi.org/10.1002/cbf.3421)

2. Jenkinson C, Desai R, McLeod MD, Wolf Mueller J, Hewison M & Handelsman DJ. Circulating conjugated and unconjugated vitamin D metabolite measurements by liquid chromatography mass spectrometry. Journal of Clinical Endocrinology and Metabolism 2022 107 435–449. (https://doi.org/10.1210/clinendm/dgab708)

3. Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EK, Nguyen MN, Benson HA, Korik E, Janjetovic Z, Chen J, et al. In vivo evidence for a novel pathway of vitamin D(3) metabolism initiated by P450scc and modified by CYP27B1. FASEB Journal 2012 26 3901–3915. (https://doi.org/10.1096/fj.12-209075)

4. Pike JW, Lee SM, Renkusky NA & Meyer MB. Genomic mechanisms governing mineral homeostasis and the regulation and maintenance of vitamin D metabolism. JBMR Plus 2021 5 e10433. (https://doi.org/10.1002/jbmr.41067).

5. Carlberg C. Nutrigenomics of vitamin D. Nutrients 2019 11 676. (https://doi.org/10.3390/nu110303676)

6. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, Haussler CA & Jurutka PW. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Reviews in Endocrine and Metabolic Disorders 2012 13 57–69. (https://doi.org/10.1007/s11154-011-9199-8)

7. Chun RE, Peercy BE, Orwell ES, Nielsom CM, Adams JS & Hewison M. Vitamin D and DBP: the free hormone hypothesis revisited. Journal of Steroid Biochemistry and Molecular Biology 2014 144 132–137. (https://doi.org/10.1016/j.jsbmb.2013.09.012)

8. Hypponen E & Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. American Journal of Clinical Nutrition 2007 85 860–868. (https://doi.org/10.1093/ajcn/85.3.860)

9. Scientific Advisory Committee on Nutrition (SACN). SACN Vitamin D and Health Report. Public Health England, 2016. (available at: https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report)

10. Adams JS & Hewison M. Update in vitamin D. Journal of Clinical Endocrinology and Metabolism 2010 95 471–478. (https://doi.org/10.1210/jc.2009-1773)

11. Hong Q, Xu J, Xu S, Lian L, Zhang M & Ding C. Associations between serum 25-hydroxyvitamin D and disease activity, inflammatory cytokines and bone loss in patients with rheumatoid arthritis. Rheumatology 2014 53 1994–2001. (https://doi.org/10.1093/rheumatology/keu173)

12. Park YE, Kim BH, Lee SG, Park EK, Park JH, Lee SH & Kim GT. Vitamin D status of patients with early inflammatory arthritis. Clinical Rheumatology 2015 34 229–246. (https://doi.org/10.1007/s10067-014-2623-3)

13. Di Franco M, Barchetta I, Ianuzzelli C, Gerardi MC, Frisenda S, Ceccarelli F, Valesini G & Cavaglio MC. Hypovitaminosis D in recent onset rheumatoid arthritis is predictive of reduced response to treatment and increased disease activity: a 12 month follow-up study. BMC Musculoskeletal Disorders 2015 16 53. (https://doi.org/10.1186/s12891-015-0505-6)

14. Hewison M. Vitamin D and immune function: an overview. Proceedings of the Nutrition Society 2012 71 50–61. (https://doi.org/10.1017/S0029665111001650)

15. Hewison M. Vitamin D and innate and adaptive immunity. Vitamins and Hormones 2011 86 23–62. (https://doi.org/10.1016/B978-0-12-386960-9.00002-2)

16. Adams JS & Hewison M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nature Clinical Practice: Endocrinology and Metabolism 2008 4 80–90. (https://doi.org/10.1038/ncpendmet0716)

17. Jeffery LE, Raza K & Hewison M. Vitamin D in rheumatoid arthritis: towards clinical application. Nature Reviews: Rheumatology 2016 12 201–210. (https://doi.org/10.1038/nrrheum.2015.140)

18. Provvedini DM, Tsoukas CD, Defos LJ & Manolagas SC. 1,25-Dihydroxyvitamin D3 receptors in human leukocytes. Science 1983 221 1181–1183. (https://doi.org/10.1126/science.6310748)

19. Veldman CM, Cantorna MT & DeLuca HE. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Archives of Biochemistry and Biophysics 2000 374 334–338. (https://doi.org/10.1006/abbi.1999.1605)

20. Adams JS, Sharma OP, Gadac MA & Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. Journal of Clinical Investigation 1983 72 1856–1860. (https://doi.org/10.1172/JCI11147)

21. Kallas M, Green F, Hewison M, White C & Kline G. Rare causes of calcitriol-mediated hypercalcemia: a case report and literature review. Journal of Clinical Endocrinology and Metabolism 2010 95 3111–3117. (https://doi.org/10.1210/jc.2009-2673)

22. Kreutz M, Andreesen R, Krause SW, Szabo A, Ritz E & Reichel H. 1,25-Dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 1993 82 1300–1307.

23. Teles RM, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, Komisopoulou E, Kelly-Scumpia K, Chun R, Iyer SS, et al. Type I interferon suppresses type II interferon-triggered human antimycobacterial responses. Science 2013 339 1448–1453. (https://doi.org/10.1126/science.1236665)

24. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006 311 1770–1773. (https://doi.org/10.1126/science.1123933)

25. Hewison M. Antibacterial effects of vitamin D. Nature Reviews: Endocrinology 2011 7 337–345. (https://doi.org/10.1038/nrendo.2010.226)

26. Gal-Tanany M, Bachmetov L, Ravid A, Koren R, Erman A, Tur-Kaspa R & Zemel R. Vitamin D: an innate antiviral agent suppressing hepatitis C virus in human hepatocytes. Hepatology 2011 54 1570–1579. (https://doi.org/10.1002/hep.24175)

27. Kalva V, Studzinski GP & Sarkar S. Role of vitamin D in regulating COVID-19 severity—an immunological perspective. Journal of Leukocyte Biology 2021 110 809–819. (https://doi.org/10.1002/FLB.201201698)

28. Jeng I, Yamschikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR & Tangpricha V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. Journal of Translational Medicine 2009 7 28. (https://doi.org/10.1186/1476-7150-7-28)

29. Jolliffe DA, Camargo Jr CA, Sluyter JD, Aglipay M, Aloia JF, Gammuda D, Bergman J, Bischoff-Ferrari HA, Borzutzky A, Damsgaard CT, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet: Diabetes and Endocrinology 2021 9 276–292. (https://doi.org/10.1016/S2213-8587(21)00051-6)

30. Bilezikjian JP, Bikle D, Hewison M, Lazaretti-Castro M, Formenti AM, Gupta A, Madhavan MV, Nair N, Babalyan V, Hutchinson N, et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. European Journal of Endocrinology 2020 183 R133–R147. (https://doi.org/10.1530/EJE-20-0665)

31. Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Ellopoulos AG, Kilby MD, Moss FA & Chakraverty R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells.
Vitamin D and autoimmune disease

J Fletcher et al. 2021

immunometabolic effects of vitamin D. Journal of Molecular Endocrinology 2018 60 95–108. (https://doi.org/10.1530/JME-17-0186)
46 Garcia AM, Bishop EL, Li D, Jeffery LE, Garten A, Thakker A, Certo M, Mauro C, Tennant DA, Dimeole S, et al. Tolerogenic effects of 1,25-dihydroxyvitamin D on dendritic cells involve induction of fatty acid synthesis. Journal of Steroid Biochemistry and Molecular Biology 2021 211 105891. (https://doi.org/10.1016/j.jsbmb.2021.105891)
47 Jeffery LE, Wood AM, Quareshi OS, Houz TZ, Gardner D, Briggs Z, Kaur S, Raza K & Sansom DM. Availability of 25-hydroxyvitamin D3 to APCs controls the balance between regulatory and inflammatory T cell responses. Journal of Immunology 2012 189 5155–5164. (https://doi.org/10.4049/jimmunol.1200786)
48 Cantorna MT. Vitamin D, multiple sclerosis and inflammatory bowel disease. Archives of Biochemistry and Biophysics 2012 523 103–106. (https://doi.org/10.1016/j.abb.2011.11.001)
49 Harrison SR, Li D, Jeffery LE, Raza K & Hewison M. Vitamin D, autoimmune disease and rheumatoid arthritis. Calcified Tissue International 2020 106 58–75. (https://doi.org/10.1007/s00223-019-01577-2)
50 Chun RE, Lauridsen AL, Suon L, Zella LA, Pike JW, Modlin RL, Martineau AR, Wilkinson RJ, Adams J & Hewison M. Vitamin D-binding protein directly monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. Journal of Clinical Endocrinology and Metabolism 2010 95 3368–3376. (https://doi.org/10.1210/jc.2010-0195)
51 Jeffery LE, Burke F, Mura M, Zheng Y, Quareshi OS, Hewison M, Walker LS, Lammas DA, Raza K & Sansom DM. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. Journal of Immunology 2009 183 5458–5467. (https://doi.org/10.4049/jimmunol.0803217)
52 Proveddeni DM & Manolagas SC. 1Alpha,25-dihydroxyvitamin D3 receptor distribution and effects in subpopulations of normal human T lymphocytes. Journal of Clinical Endocrinology and Metabolism 1989 68 774–779. (https://doi.org/10.1210/jcem-68-4-774)
53 Sarkar S, Hewison M, Studzinski GP, Li Y & Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Critical Reviews in Clinical Laboratory Sciences 2016 53 112–145. (https://doi.org/10.1080/10408363.2015.1094443)
54 Meehan TF & Deluca HF. CD8+ T cells are not necessary for 1alpha,25-dihydroxyvitamin D(3) to suppress experimental autoimmune encephalomyelitis in mice. PNAS 2002 99 5557–5560. (https://doi.org/10.1073/pnas.0226699)
55 Ooi JH, McDaniel KL, Weaver V & Cantorna MT. Murine CD8+ T cells but not macrophages express the vitamin D 1alpha-hydroxylase. Journal of Nutritional Biochemistry 2014 25 58–65. (https://doi.org/10.1016/j.jnutbio.2013.09.003)
56 Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soiller D & Butler EC. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nature Immunology 2007 8 285–293. (https://doi.org/10.1038/nii433)
57 Smolders J, Thewissen M, Theuissen R, Peelen E, Knapenborg S, Menheere P, Cohen Iervaert JW, Hupperts R & Damaoisjeux J. Vitamin D-related gene expression profiles in immune cells of patients with relapsing remitting multiple sclerosis. Journal of Neuroimmunology 2011 235 91–97. (https://doi.org/10.1016/j.jneuroim.2011.03.012)
58 Chaus S, Freiwalder T, McGregor R, Yan B, Wang L, Nova-Lamperti E, Kumar D, Zhang Z, Teague H, West EE, et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nature Immunology 2022 23 62–74. (https://doi.org/10.1038/s41590-021-01080-3)
59 Hewison M, Zehnder D, Chakraverty R & Adams JS. Vitamin D and barrier function: a novel role for extra-renal 1 alpha-hydroxylase. Molecular and Cellular Endocrinology 2004 215 31–36. (https://doi.org/10.1016/j.mce.2003.11.017)
Vitamin D and autoimmune disease

J Fletcher et al. Vitamin D and autoimmune disease

60 Woodland DL & Blackman MA. Vaccine development: baring the ‘dirty little secret’. Nature Medicine 2005 11 715–716. (https://doi.org/10.1038/nm0705-715)

61 Jeffery LE, Henley P, Marium N, Filer A, Sansom DM, Hewison M & Raza K. Decreased sensitivity to 1,25-dihydroxyvitamin D3 in T cells from the rheumatoid joint. Journal of Autoimmunity 2018 88 50–60. (https://doi.org/10.1016/j.jaut.2017.10.001)

62 Abreu MT, Koutorovich V, Vasiliauskas EA, Gruntmans U, Matukas R, Daigle K, Chen S, Zehnder D, Lin YC, Yang H, et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut 2004 53 1129–1136. (https://doi.org/10.1136/gut.2003.036657)

63 Hayes ME, Denton J, Freemont AJ & Mawer EB. Synthesis of the active metabolite of vitamin D, 1,25(OH)2D3, by synovial fluid macrophages in arthritic diseases. Annals of the Rheumatic Diseases 1989 48 723–729. (https://doi.org/10.1136/ard.48.9.723)

64 Gates S, Sharpe J, Turner RT, Wallach S & Bell NH. Abnormal calcium metabolism caused by increased 1,25-dihydroxyvitamin D in a patient with rheumatoid arthritis. Journal of Bone and Mineral Research 1986 1 221–226. (https://doi.org/10.1002/jbnm.6560010209)

65 Mawer EB, Hayes ME, Still PE, Davies M, Lumb GA, Palit J & Holt PJ. Evidence for nonrenal synthesis of 1,25-dihydroxyvitamin D in patients with inflammatory arthritis. Journal of Bone and Mineral Research 1991 6 733–739. (https://doi.org/10.1002/jbnm.6560060711)

66 Li D, Jeffery LE, Jenkinson C, Harrison SR, Chun RF, Adams JS, Raza K & Hewison M. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. Journal of Steroid Biochemistry and Molecular Biology 2019 187 1–8. (https://doi.org/10.1016/j.jsbmb.2018.10.008)

67 Patel S, Farragher T, Berry J, Bunn D, Silman A & Symmons D. Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis and Rheumatism 2007 56 2143–2149. (https://doi.org/10.1002/art.22722)

68 Barnes MS, Bonham MP, Robson PJ, Strain J, Lowe-Strong AS, Eaton-Jones J, Ginty F & Wallace JM. Assessment of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D3 concentrations in male and female multiple sclerosis patients and control volunteers. Multiple Sclerosis 2013 19 670–672. (https://doi.org/10.1177/1352458510386266)

69 Smolders J, Menheere P, Kessels A, Damoiseaux J & Hupperts R. Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis. Multiple Sclerosis 2008 14 1220–1224. (https://doi.org/10.1177/1352458508094399)

70 Roth DE, Abrams SA, Aloia J, Bergeron G, Bourassa MW, Brown KH, Calvo MS, Cashman KD, Combs G, De-Regil LM, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Annals of the New York Academy of Sciences 2018 1430 44–79. (https://doi.org/10.1111/nyas.13968)

71 Cashman KD, Dowling KW, Skrabakova Z, Gonzalez-Gross M, Valuena D, De Henauw S, Moreno L, Damsgaard CT, Michaelsen KF, Molgaard C, Altuena J, De Henauw S, Moreno L, Damsgaard CT, Michaelsen KF, et al. Comparison of plasma vitamin D levels in patients with Sjogren's syndrome and healthy subjects. International Journal of Rheumatic Diseases 2015 18 70–75. (https://doi.org/10.1111/1756-185X.12298)

72 Akrasas A, Mahmood SBZ, Ayaa A, Al Karim Manji A & Ahuja AK. Association of vitamin D deficiency and disease activity in systemic lupus erythematosus and rheumatoid arthritis: a Mendelian randomization. PLoS Medicine 2015 12 e1001866. (https://doi.org/10.1371/journal.pmed.1001866)

73 Rhead B, Baarnheim M, Gianfrancesco M, Mok A, Shao X, Quach H, Shen L, Schaefer C, Link J, Gyllenberg A, et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurology: Genetics 2016 2 e97. (https://doi.org/10.1212/NXG.0000000000000199)

74 Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Rubes V, Kotler G, Lee IM, Manson JE & Costenbader KH. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022 376 e066452. (https://doi.org/10.1136/bmj-2021-066452)

75 Ross AC, Manson JE, Abrams SA, Aloia J, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. Journal of Clinical Endocrinology and Metabolism 2011 96 53–58. (https://doi.org/10.1210/jc.2010-2704)

76 Postollelakte AE, Tuckey RC, Kim TK, Li W, Bhattacharya SK, Myers KL, Brand DD & Slominska AT. 20S-Hydroxyvitamin D3, a secosteroid produced in humans, is anti-inflammatory and inhibits murine autoimmune arthritis. Frontiers in Immunology 2021 12 678487. (https://doi.org/10.3389/fimmu.2021.678487)

77 Bae SC & Lee YH. Vitamin D level and risk of systemic lupus erythematosus and rheumatoid arthritis: a Mendelian randomization. Clinical Rheumatology 2018 37 2415–2421. (https://doi.org/10.1007/s10067-018-4152-9)

78 Viatte S, Yarwood A, McAllister K, Al-Mudhaffer S, Fu B, Flynn E, Symmons DP, Young A & Barton A. The role of genetic polymorphisms regulating vitamin D levels in rheumatoid arthritis outcome: a Mendelian randomisation approach. Annals of the Rheumatic Diseases 2014 73 1430–1433. (https://doi.org/10.1136/annrheumdis-2013-204972)

79 Bagheri-Heisabadi Z, Imani D, Youssef H & Abbasifard M. Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): systematic review and meta-analysis. Clinical Rheumatology 2020 39 3555–3569. (https://doi.org/10.1007/s10067-020-05143-y)

80 Yan X, Zhao Y, Pan J, Fang K, Wang Y, Li Z & Chang X. Vitamin D-binding protein (group-specific component) has decreased expression in rheumatoid arthritis. Clinical and Experimental Rheumatology 2012 30 526–531.

81 Kuo CY, Huang VC, Lin KJ & Tsai TY. Vitamin D deficiency is associated with severity of dry eye symptoms and primary Sjogren's syndrome: a systematic review and meta-analysis. Journal of Nutritional Science and Vitaminology 2020 66 386–388. (https://doi.org/10.3177/jnsv.66.386)

82 Li L, Chen J & Jiang Y. The association between serum vitamin D level and risk of multiple sclerosis: a Mendelian randomization study. PLoS Medicine 2020 17 e003556. (https://doi.org/10.1101/smbh.lhd005)

83 Hassan-Smith ZK, Hewison M & Gittos NJ. Effect of vitamin D deficiency in developed countries. British Medical Bulletin 2017 122 79–89. (https://doi.org/10.1093/bmb/ldx005)

84 Wang T, Zhang E, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streten EA, Ollison C, Kollier DL, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010 376 180–188. (https://doi.org/10.1016/S0140-6736(10)60880-8)

85 Jiang X, Kiel DP & Kraft P. The genetics of vitamin D. Bone 2019 126 59–77. (https://doi.org/10.1016/j.bone.2018.10.006)

86 Jiang X, O'Reilly PF, Aschard H, Huynh VH, Richards JB, Dupuis J, Ingelsson E, Karasik D, Pilz S, Berry D, et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications 2019 9 260. (https://doi.org/10.1038/s41467-017-02662-2)

87 Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Goltzman D, Leong A, Greenwood CM, Thassoulis G & Richards JB. Vitamin D and risk of multiple sclerosis: a Mendelian randomization. PLoS Medicine 2015 12 e1001866. (https://doi.org/10.1371/journal.pmed.1001866)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Vitamin D and autoimmune disease

91 Kamen DL, Cooper GS, Bouali H, Shaftman SR, Hollis BW & Gilkeson GS. Vitamin D deficiency in systemic lupus erythematosus. Autoimmunity Reviews 2006 5 114–117. (https://doi.org/10.1016/j.autrev.2005.05.009)

92 Dall’Ara F, Cutolo M, Andreoli L, Tincani A & Paolino S. Vitamin D and systemic lupus erythematosus: a review of immunological and clinical aspects. Clinical and Experimental Rheumatology 2018 36 153–162.

93 Chen XE, Chen P, Chen SS, Lu J, Ma T, Shi G, Zhou Y, Li J & Dall’Ara F, Cutolo M, Andreoli L, Tincani A & Paolino S. Vitamin D and multiple sclerosis. Journal of Neuroimmunology 2017 305 92–95. (https://doi.org/10.1016/j.jneuroim.2017.02.009)

94 Scazzone C, Agnello L, Bivona G, Lo Sasso B & Ciaccio M. Vitamin D-binding protein gene polymorphisms are not associated with MS risk in an Italian cohort. Journal of Neuroimmunology 2021 391 205–221. (https://doi.org/10.1016/j.jneuroim.2021.101792)

95 Hou Y, Song A, Jin Y, Xiu Q, Song G & Xing X. A dose-response meta-analysis between serum concentration of 25-hydroxy vitamin D and risk of type 1 diabetes mellitus. European Journal of Clinical Nutrition 2021 75 1010–1023. (https://doi.org/10.1038/s41430-020-00813-1)

96 Feng R, Li Y, Li G, Li Z, Zhang Y, Li Q & Sun C. Lower serum 25 (OH) D concentrations in type 1 diabetes: a meta-analysis. Diabetes Research and Clinical Practice 2015 108 e71–e75. (https://doi.org/10.1016/j.diabres.2014.12.008)

97 Manousaki D, Harroud A, Mitchell RE, Ross S, Forgetta V, Timpson NJ, Smith GD, Polychronakos C & Richards JB. Vitamin D levels and risk of type 1 diabetes: a Mendelian randomization study. PLoS Medicine 2021 18 e1003536. (https://doi.org/10.1371/journal.pmed.1003536)

98 Nejentsev S, Cooper DJ, Godfrey L, Howson JM, Rance H, Nutland S, Walker NM, Guo J, Jones-Tirgoviste C, Savage DA et al. Analysis of the vitamin D receptor gene sequence variants in type 1 diabetes. Diabetes 2004 53 2709–2712. (https://doi.org/10.2337/diabetes.53.10.2709)

99 Sintzel MB, Rametta M & Reder AT. 25-Hydroxyvitamin D serum level in Hashimoto’s thyroiditis, but not Graves’ disease is relatively deficient. Endocrine Reviews 2014.12.008.

100 Almeida JT, Rodrigues D, Guimaraes J & Lemos MC. Vitamin D pathway genetic variation and type 1 diabetes: a case-control association study. Genes 2020 11 897. (https://doi.org/10.3390/genes11080897)

101 Elf K, Asmark H, Nygren I & Pungra A. Vitamin D deficiency in patients with primary immune-mediated peripheral neuropathies. Journal of the Neurological Sciences 2014 345 184–188. (https://doi.org/10.1016/j.jns.2014.07.016)

102 Fu H, Tang Z, Wang Y, Ding X, Rinaldi G, Rahmani J & Xing E. Relationship between vitamin D level and mortality in adults with psoriasis: a retrospective cohort study of NHANES data. Clinical Therapeutics 2021 43 e33–e38. (https://doi.org/10.1016/j.clinthera.2020.11.016)

103 Pitukweerkul S, Thavaraputra S, Prachupthunychart S & Karnchansorn R. Hypovitaminosis D is associated with psoriasis: a systematic review and meta-analysis. Korean Journal of Medicine 2019 12 103–108. (https://doi.org/10.17161/kjm.v12i1.13255)

104 Hambly R & Kirby B. The relevance of serum vitamin D in psoriasis: a review. Archives of Dermatological Research 2017 309 499–517. (https://doi.org/10.1007/s00403-017-1751-2)

105 Liu J, Wang W, Liu K, Wan D, Wu Z, Cao Z, Luo Y, Xiao C & Yin M. Vitamin D receptor gene polymorphisms are associated with psoriasis susceptibility and the clinical response to calcipotriol in psoriatic patients. Experimental Dermatology 2020 29 1186–1190. (https://doi.org/10.1111/exd.14202)

106 Ke W, Sun T, Zhang Y, He L, Wu Q, Liu J & Zha B. 25-Hydroxyvitamin D serum level in Hashimoto’s thyroiditis, but not Graves’ disease is relatively deficient. Endocrine Journal 2017 64 581–587. (https://doi.org/10.1507/endocrj.EJ16-0547)

107 Xu MY, Cao B, Yin J, Wang DF, Chen KL & Lu QB. Vitamin D and Graves’ disease: a meta-analysis update. Nutrients 2015 7 3816–3827. (https://doi.org/10.3390/nu7053816)

108 Wang J, Lv S, Chen G, Cao H, He J, Zhong H & Xu Y. Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients 2015 7 2485–2498. (https://doi.org/10.3390/nu7042485)

109 Zhou F, Liang Z, Wang X, Tan G, Wei W, Zheng G, Ma X, Tian D, Li H & Yu H. The VDR gene confers a genetic predisposition to Graves’ disease and Graves’ ophthalmopathy in the Southwest Chinese Han population. Gene 2021 793 145750. (https://doi.org/10.1016/j.gene.2021.145750)

110 Meng S, He SF, Jiang WJ, Xiao L, Li DF, Xu J, Shi XK & Zhang JA. Genetic susceptibility to autoimmune thyroid diseases in a Chinese Han population: role of vitamin D receptor gene polymorphisms.
Vitamin D and autoimmune disease.

Reynolds JA, Rosenberg AZ, Smith CK, Sergeant JC, Rice GI, Briggs TA, Bruce IN & Kaplan MJ. Brief Report: Vitamin D deficiency is associated with endothelial dysfunction and increases type I interferon gene expression in a murine model of systemic lupus erythematosus. *Arthritis and Rheumatology* 2016 *68* 2929–2935. (https://doi.org/10.1002/art.39003)

Yamamoto EA, Nguyen JK, Liu J, Keller E, Campbell N, Zhang CJ, Smith HR, Li X & Jorgensen TN. Low levels of vitamin D promote memory B cells in lupus. *Nutrients* 2020 *12* 291. (https://doi.org/10.3390/nu12020291)

Correa Freitas E, Evelyn Karnopp T, de Souza Silva JM, Cavaleiro do Espirito R, da Rosa TH, de Oliveira MS, da Costa Goncalves E, de Oliveira FH, Guilherme Schaefer P & Andre Monticello O. Vitamin D supplementation ameliorates arthritis but does not alleviate renal injury in pristane-induced lupus model. *Autoimmunity* 2019 *52* 69–77. (https://doi.org/10.1080/08916934.2019.1613833)

Lagishetty V, Misharin AV, Liu NQ, Lisse TS, Chun RF, Ouyang Y, McLachlan SM, Adams JS & Hewison M. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. *Endocrinology* 2010 *151* 2423–2432. (https://doi.org/10.1210/en.2010-0089)

Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC & Sherman PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. *Journal of Infectious Diseases* 2014 *210* 1296–1305. (https://doi.org/10.1093/infdis/jiu235)

Ryz NR, Locner A, Bhullar K, Ma C, Huang T, Bhinder G, Bosman E, Wu X, Innis SM, Jacobson K, et al. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis. *American Journal of Physiology: Gastrointestinal and Liver Physiology* 2015 *309* G730–G742. (https://doi.org/10.1152/ajpgi.00006.2015)

Wei X, Li X, Du J, Ge X, Sun Y, Li X, Xun Z, Liu W, Wang ZY & Li YC. Vitamin D deficiency exacerbates colonic inflammation due to activation of the local renin-angiotensin system in the colon. *Digestive Diseases and Sciences* 2021 *66* 3813–3821. (https://doi.org/10.1007/s11937-020-06713-5)

Lavergne G, Penna G, Vetrano S, Correale C, Nebuloni M, Danese S & Adorini L. Efficacy of a potent and safe vitamin D receptor agonist for the treatment of inflammatory bowel disease. *Immunology Letters* 2010 *131* 49–58. (https://doi.org/10.1016/j.imlet.2010.03.006)

Ooi JH, Li Y, Rogers CJ & Cantorna MT. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. *Journal of Nutrition* 2013 *143* 1679–1686. (https://doi.org/10.1093/jn/njt094)

Yoo JS, Park CY, Seo YK, Woo SH, Kim DY & Han SN. Vitamin D supplementation partially affects colonic changes in dextran sodium sulfate-induced colitis mice but not lean mice. *Nutrition Research* 2019 *67* 90–99. (https://doi.org/10.1016/j.nutres.2019.03.009)

Froicu M, Weaver V, Wynn TA, McDowell MA, Welsh JE & Cantorna MT. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. *Molecular Endocrinology* 2003 *17* 2386–2392. (https://doi.org/10.1210/mend.2003-0281)

Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissommette M & Li YC. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. *American Journal of Physiology: Gastrointestinal and Liver Physiology* 2008 *294* G2208–G2216. (https://doi.org/10.1152/ajpgi.00398.2007)

Liu N, Nguyen L, Chun RF, Lagishetty V, Ren S, Wu S, Hollis B, Deluca HE, Adams JS & Hewison M. Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. *Endocrinology* 2008 *149* 4799–4808. (https://doi.org/10.1210/en.2008-0060)

Kim JH, Yamaori S, Tanabe T, Johnson CH, Krausz KW, Kato S & Gonzalez FJ. Implication of intestinal VDR deficiency in inflammatory bowel disease. *Biochimica et Biophysica Acta* 2013 *1830* 2118–2128. (https://doi.org/10.1016/j.bbagen.2012.09.020)

Lu R, Zhang YG, Xia Y, Zhang J, Kaser A, Blumberg R & Sun J. Paneth cell alertness to pathogens maintained by vitamin D receptors.
Vitamin D and autoimmune disease

J Fletcher et al.

151 DeLuca HF & Plum LA. Vitamin D deficiency diminishes the severity and delays onset of experimental autoimmune encephalomyelitis. Archives of Biochemistry and Biophysics 2011 513 140–143. (https://doi.org/10.1063/j.abb.2011.07.005)

152 Wang Y, Marling SJ, Zhu JG, Severson KS & DeLuca HE. Development of experimental autoimmune encephalomyelitis (EAE) in mice requires vitamin D and the vitamin D receptor. PNAS 2012 109 8501–8504. (https://doi.org/10.1073/pnas.1206054109)

153 Fernandes de Abreu DA, Landel V, Barnett AG, McGrath J, Eyles D & DeLuca HF. 1,25-Dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiological Genomics 2004 18 141–151. (https://doi.org/10.1152/physiogenomics.00003.2004)

154 Cantorna MT, Hayes CE & DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. PNAS 1996 93 7861–7864. (https://doi.org/10.1073/pnas.93.15.7861)

155 Spach KM, Pedersen LB, Nashold FE, Kayo T, Yandell BS, Prolla TA & Hayes CE. Gene expression analysis suggests that 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by modulating inflammatory cell apoptosis. Journal of Immunology 2006 177 6030–6037. (https://doi.org/10.4049/jimmunol.177.9.6030)

156 Spach KM, Nashold FE, Dittel BN & Hayes CE. IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis. Journal of Immunology 2011 186 822–832. (https://doi.org/10.1002/jimm.20406)

157 Mayne CG, Spanier JA, Rolland LM, Williams CB & Hayes CE. 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. European Journal of Immunology 2011 41 98–102. (https://doi.org/10.1002/eji.201040632)

158 Wang Y, Marling SJ, Martino VM, Prahl JM & DeLuca HE. The absence of 25-hydroxyvitamin D3-1alpha-hydroxylase potentiates the suppression of EAE in mice by ultraviolet light. Journal of Steroid Biochemistry and Molecular Biology 2016 163 98–102. (https://doi.org/10.1016/j.jsbmb.2016.04.010)

159 Giulietti A, Gysemans C, Stoffels K, van Etten E, Decallonne B, Overbergh L, Bouillon R & Mathieu C. Vitamin D deficiency in early life accelerates type 1 diabetes in non-obese diabetic mice. Diabetologia 2004 47 451–462. (https://doi.org/10.1007/s00125-004-1329-3)

160 Mathieu C, van Etten E, Decallonne B, Guillietti A, Gysemans C, Bouillon R & Overbergh L. Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system. Journal of Steroid Biochemistry and Molecular Biology 2004 89–90 449–452 449–452. (https://doi.org/10.1016/j.jsbmb.2004.03.014)

161 Zella JB, McCary LC & DeLuca HF. Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Archives of Biochemistry and Biophysics 2003 417 77–80. (https://doi.org/10.1002/s0003-9861(03)00382-2)

162 Mathieu C, Van Etten E, Gysemans C, Decallonne B, Kato S, Laureys J, Depovere J, Valckx D, Verstuyt A & Bouillon R. In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. Journal of Bone and Mineral Research 2001 16 2057–2065. (https://doi.org/10.1359/jbmr.2001.16.11.2057)

163 Gysemans C, van Etten E, Overbergh L, Giulietti A, Eelen G, Waer M, Verstuyt A, Bouillon R & Mathieu C. Unaltered diabetes presentation in NOD mice lacking the vitamin D receptor. Diabetes 2008 57 269–275. (https://doi.org/10.2337/db07-1095)

164 Morro M, Vila L, Franckhauser S, Mallol C, Elias G, Ferre T, Molas M, Casana E, Rodo J, Pujol A, et al. Vitamin D receptor overexpression in beta-cells ameliorates diabetes in mice. Diabetes 2020 69 927–939. (https://doi.org/10.2337/db19-0757)

165 Viloria K, Nasteska D, Brient LJB, Heising S, Larner DJ; Fine NHE, Ashford FB, da Silva Xavier G, Ramos MJ, Hasib A, et al. Vitamin-D-binding protein contributes to the maintenance of alpha cell function and glucagon secretion. Cell Reports 2020 31 107761. (https://doi.org/10.1016/j.celrep.2020.107761)

166 Kong J, Grando SA & Li YC. Regulation of IL-1 family cytokines IL-1alpha, IL-1 receptor antagonist, and IL-18 by 1,25-dihydroxyvitamin D3 in primary keratinocytes. Journal of Immunology 2006 176 3780–3787. (https://doi.org/10.4049/jimmunol.176.6.3780)

167 Misharin A, Hewison M, Chen CR, Lagishetty V, Aliesky HA, Mizutori Y, Rapoport B & McLachlan SM. Vitamin D deficiency modulates Graves’ hyperthyroidism induced in BALB/c mice by thyrotropin receptor immunization. Endocrinology 2009 150 1051–1060. (https://doi.org/10.1210/en.2008-1919)

168 Choi B, Lee ES & Sohn S. Vitamin D3 ameliorates herpes simplex virus-induced Behcet’s disease-like inflammation in a mouse model through down-regulation of toll-like receptors. Clinical and Experimental Rheumatology 2011 29 (Supplement 67) S13–S19.

Received in final form 3 February 2022
Accepted 23 February 2022
Accepted Manuscript published online 23 February 2022

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Published by Bioscientifica Ltd

© 2022 The authors

https://ec.bioscientifica.com

https://doi.org/10.1530/EC-21-0554

Attribution-NonCommercial 4.0 International License.