Title: T-cell targeted immunotherapy against the tumor associated antigen survivin (BIRC5) as a potential neoadjuvant immunotherapy for triple negative breast cancer.

Scott R Burkholz, MS1†, Charles V Herst, PhD1†, Richard T Carback, PhD1, Paul E Harris PhD1, Reid M Rubsamen, MD1,2,3

1 Flow Pharma Inc., Warrensville Heights, Ohio
2 University Hospitals, Cleveland Medical Center, Cleveland, Ohio
3 Case Western Reserve School of Medicine, Cleveland, Ohio

†These authors contributed equally to this work and share first authorship

Correspondence:
Reid M Rubsamen, MD, MS, MHCM
University Hospitals, Cleveland Medical Center
Department of Anesthesia and Perioperative Medicine
11100 Euclid Avenue, Cleveland, Ohio 44016
Email: reid.rubsamen@uhhospitals.org
Telephone: 925 708 8000

Abstract

Background

Triple negative breast cancer (TNBC) cells are, by definition, estrogen and progesterone receptor negative and do not produce high levels of the HER2 protein. Checkpoint inhibitor immunotherapy has been approved for patients with TNBC, but the prognosis for these patients is poor compared with patients presenting with other common forms of breast cancer. Survivin (BIRC5) is a tumor-associated antigen (TAA) previously described to be overexpressed in triple negative breast cancer, but not expressed, or expressed at very low levels, in normal tissue, representing targets for cytotoxic T lymphocyte (CTL) immunotherapy.
Study Design

A BALB/c TNBC mouse model using the 4T1 cell line was used to explore the effect of an adjuvanted microsphere synthetic vaccine containing survivin peptides on tumor growth rate. The vaccine was administered via intraperitoneal injection at study start with a second dose given 14 days later. An orthotopic injection of 4T1 cells into mammary tissue was performed on the same day as the administration of the second vaccine dose. The mice were followed for up to 41 days with subcutaneous measurements of tumor volume made every three days (Figure 1).

Results

Vaccination with survivin peptide antigens resulted in a statistically significant diminution of tumor-takes and a deceleration of primary tumor growth volume in BALB/c mice challenged with 4T1 cells versus control. This effect was seen in both the 250 4T1 cell and the 500 4T1 cell challenge groups. The mice produced an ELISpot immune response to one of the survivin peptide antigens used in the vaccine and this response was only seen after the adjuvanted microsphere vaccine was administered.

Conclusion

The synthetic, adjuvanted microsphere peptide vaccine given 14 days before challenge, and on the day of challenge, was able to diminish tumor-takes and decelerate tumor growth in BALB/c mice challenged with 250 or 500 4T1 cells injected into mammary tissue. This model suggests that T-cell immunotherapy specifically targeting survivin might be an applicable neoadjuvant immunotherapy therapy for triple negative breast cancer. More pre-clinical studies and clinical trials will be needed to explore this concept further.
Keywords: Breast Cancer, Immunotherapy, Bioinformatics, Next-Generation Sequencing, Neoadjuvant Therapy, tumor-associated antigen, survivin, BIRC5, TNBC, NGS, TAA

Abbreviations
mRNA = messenger RNA
NGS = next-generation sequencing
RNA-seq = RNA-Seq
SNP = single nucleotide polymorphisms
TAA = tumor-associated antigen
TPM = transcripts per million
WES = whole exome sequencing
APC = antigen presenting cells
CTL = cytotoxic T lymphocyte
ELISpot = enzyme-linked immunosorbent spot
MHC = major histocompatibility complex
TNBC = triple negative breast cancer
IACUC = Animal Care and Use Committee
AAALAC = Association for Assessment and Accreditation of Laboratory Animal Care

1. Introduction
A subset of immunotherapy involves stimulating CD8+ cytotoxic T lymphocytes (CTLs) to selectively kill cancer cells (1) thus avoiding damage to normal tissue.
CTLs recognize non-self-peptides presented in the context of MHC class I molecules present on pathogen infected cells or on the surface of antigen presenting cells (APC) specialized in pathogen-derived protein processing. Peptide/MHC class I complexes on the surface of such specialized APC are powerful stimulators of CTL responses. The evoked peptide/MHC class I specific CTL cell population expands, seeks out and lyses cells presenting those targets (2). In the context of cancer, the immune system recognizes non-self protein sequences (e.g. resulting from mutation or transformation) naturally without pharmaceutical intervention (1) with mixed success. Immunotherapy approaches have been shown to help T-cells recognize certain non-self-peptides and mount an immune response if a target is identified correctly and delivered effectively (3).

One potential class of non-self-antigens for targeted immunotherapy in cancer patients is represented by tumor-associated antigens (TAAs) that are differentially expressed in tumor tissue compared to normal tissue (4). Survivin, also known as BIRC5, is an attractive TAA because it is expressed in a wide range of cancer types, including breast cancer, but is nearly absent in normal, mature cells (5–8). Survivin (BIRC5) is an inhibitor of apoptosis that is normally expressed during fetal development, but also allows cancer cells to grow without regulation due to its effects on multiple signaling pathways (9). While self-proteins are often not targetable by the immune system’s cytotoxic T-cells due to tolerance, or are avoided therapeutically due to the possibility of provoking harmful autoimmunity (e.g. type 1 diabetes and myocarditis), successful targeting of survivin has been shown to be safe in multiple clinical trials with varying levels of efficacy (10). TAAs such as survivin have also been shown to be expressed throughout the tumor during multiple cell cycle phases and in metastatic tissue (11,12).
Technology used to produce stimulation of CD8+ T-cells to attack specified targets on cancer cells has evolved over the past two decades with various vaccination strategies having been described to improve immune responses to administered peptide antigens. The development of peptide vaccine platforms for delivery of antigens to produce a robust immune response to peptide antigens, as well as techniques for the identification of the correct peptide antigens required to give a specific immune response using those platforms, have been described (13).

2. Materials and Methods

These studies were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of GemPharmatech Co (Wilmington, DE). The care and use of animals was conducted in accordance with the regulations of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and the National Institutes of Health guidelines.

In order to test the efficacy of an adjuvanted microsphere synthetic peptide vaccine specific for survivin in BALB/c mice, we identified survivin peptide antigens potentially capable of stimulating MHC Class I and Class II restricted, tumor-specific T-cell response in BALB/c mice. These peptide sequences were determined by reviewing publications outlining cytotoxic responses using various peptide vaccine formulations, including phages and ex-vivo dendritic cell preparations (14,15).

In addition, NetMHCIIpan and NetMHCII were utilized to identify QP19, a region predicted to bind to class II MHC to stimulate CD4 helper T-cells (16,17). The sequences of these murine
class I H-2 K,D,L binding peptides and murine class II H-2 I-E and I-A binding peptides are given in Table 1.

In order to fully characterize the TNBC model mouse 4T1 cell line (ATCC, Manassas, VA), frozen 4T1 cell samples were sent to Complete Genomics (Beijing, China) for genetic sequencing. DNA was extracted from the cryopreserved 4T1 cell line, and BALB/c mouse tails (taken as a source of normal tissue DNA) that were snap-frozen on dry ice after removal. The DNA from the samples was library-prepared using the Agilent SureSelect XT Mouse All Exon Kit (Agilent Technologies, Santa Clara, CA). RNA was extracted from the frozen 4T1 cell line and from also from snap-frozen, normal mammary tissue samples harvested from BALB/c mice. RNA samples were prepared for mRNA sequencing via poly-A tail capture with MGI Tech Company reagents (MGI, Shenzhen, China). Samples were sequenced by Complete Genomics on the BGISEQ-500 (BGI, Beijing, China) at 100 base pair paired end reads. DNA read coverage for normal tissue and tumor was 100x and 300x respectively, with RNA read count at 80 million paired end reads. To process the data, FASTP was used to perform quality control and adapter trimming and BWA-MEM aligned reads to the GRCm38 reference mouse genome (18–20). The germline sequences were confirmed to match the peptides identified for vaccine administration. RNA expression of survivin was examined by adapter trimming and quality control with FASTP (18), followed by pseudoalignment with Kallisto on the GENCODE v25 mouse transcriptome for quantification in Sleuth expressed as transcripts per million (21–23).

A blend of PLGA microspheres, prepared as described in a previous publication, was manufactured containing individual synthetic peptides selected from the primary amino acid
sequence of the survivin protein ranging in length from 40 to 140 amino acids depending on the isoform (Table 1) (24–27). The adjuvanted microsphere vaccine formulation contained 3 µg/mg of survivin-specific class 1 and class 2 peptides and 0.5 µg/mg of the TLR-9 oligonucleotide agonist CpG (ODN-1018). The microspheres were delivered in a 200 µl volume of PBS/polyorbate 80 injectate solution containing the TLR-4 agonist MPLA at a concentration of 100 µg/ml.

Enzyme-linked immunosorbent spot for interferon gamma (ELISpot) assays were performed with BALB/c splenocytes obtained from control and vaccinated surviving tumor bearing mice on day 41 after 4T1 tumor inoculation. Splenocytes were prepared as previously described (28). The peptide antigens used in the ELISpot assays were the same as those used in the peptide vaccine and each peptide antigen was tested individually, loaded into ELISpot wells at 10 µg/ml final concentration. ELISpot assay plates were prepared and processed as per the manufactures instructions (3321-4HPT-10, Mabtech Inc., Cincinnati, OH). ELISpots were enumerated by machine (CTL S6 Entry M2, Shaker Heights, Cleveland, OH) to calculate the frequency of gamma interferon producing T-cells in the splenocyte populations.

Previous studies with this adjuvanted microsphere platform have shown that T-cell expansion capable of providing protection against viral challenge is present 14 days in mouse models (25,26). A 4T1 inoculation dose ranging study was undertaken to find the maximum 4T1 cell count that would show limited tumor growth for 14 days as shown in the study design schematic in supplementary materials Figure S1. Based on the 4T1 dose ranging data shown in supplementary materials Figure S2, the challenge study was designed with one cohort receiving a
250 4T1 cell inoculation dose and the other receiving 500 cells of orthotopically injected 4T1 breast cancer cells. Ten of the animals in each cohort received two doses of intra-peritoneally delivered adjuvanted peptide microspheres, and the control mice were given two doses of blank microspheres (control; without peptide antigen and adjuvants) given both fourteen days before 4T1 cell inoculation, and again at the same time as orthotopic injection of 4T1 cells. Subcutaneous tumor volumes were measured every three days with a 41-day endpoint after implantation as shown in the study design schematic in Figure 1. Mouse tumor size was measured non-invasively every three days through the use of calipers applied to the tumor located in the subcutaneous space. The tumor volume (TV) was expressed in mm3 using the modified ellipsoid formula: $TV = \frac{1}{2}(\text{length} \times \text{width}^2)$ (29,30). This data was used to calculate the tumor growth rate expressed as mm3/day. Tumor-take frequencies were defined as the number of mice with measurable tumors on the indicated day divided by the total number of mice inoculated with 4T1 cells.

3. Results

Survivin was highly expressed in all 4T1 cell line samples and was seen at very low levels in the BALB/c normal mammary tissue samples as illustrated in Figure 2. Of the six peptides loaded into the adjuvanted microsphere formulation shown in Table 1, only QP19 (QIWQLYLKNYRIATFKNWP), produced a positive ELISpot response as shown in Figure 3. The mice who were not vaccinated did not produce a detectable response to the survivin QP19 peptide antigen. Although published studies suggested that the administered MHC class I peptide epitopes were immunogenic in BALB/c mice, we observed that only QP19 produced a T-cell response as measured by ELISpot.
The inoculation dose of 4T1 at both the 250 and 500 cell levels did not result in a tumor-take frequency of 100% (Figure 4). However, vaccination with survivin peptide antigens was associated with statistically significant diminution of tumor-take frequencies when control and vaccinated mice were compared. In addition, animals dosed with 4T1 tumor cells receiving the adjuvant ed microsphere peptide vaccine had statistically significant slower tumor growth rates compared with controls as illustrated in Figure 5.

4. Discussion

CD8+ and CD4+ lymphocytes typically target foreign proteins, such as those from viruses and bacteria. Because cellular immunity is finely tuned by the thymus to target foreign invaders such as viruses, self-proteins are generally ignored or tolerated by the immune system. A notable exception to this is in the setting of auto-immune diseases (31). The targeting of survivin peptides that are HLA matched to the host for a cell-mediated immune response to kill tumor cells is of particular interest. MHC-restricted responses to peptides located on the survivin protein have been shown to elicit an immune response, including immunotherapies targeting survivin in a number of clinical trials (10). A comprehensive list of various approaches used clinically to elicit a host immune response against survivin-expressing tumors is shown in Table 2. A collection of HLA-restricted survivin peptide antigens identified across these various studies also raises the possibility of a broadly applicable immunotherapy for tumors that express survivin. As these studies also illustrate, eliciting a reliable, clinically significant immune response to peptide antigens is challenging. Ensuring that the correct peptide sequence is selected
and delivered effectively for T-cell expansion to occur have been obstacles to the development of safe and effective targeted immunotherapies.

In this study, we found that multiple putative peptide antigens, derived from the primary sequence of survivin and predicted to bind to MHC Class I molecules of BALB/c mice, did not elicit a detectable *ex-vivo* immune response. The QP19 peptide antigen, predicted to bind to I-A^d/I-E^d, the MHC Class II molecules of BALB/c, was able to elicit an *ex-vivo* gamma-IFN T-cell ELISpot response. Overall, vaccination with adjuvanted microspheres containing the mixture of both MHC Class I and Class II survivin peptides resulted in significant deceleration of tumor growth and lower tumor-take frequencies. This later observation suggests that protective T-cell responses were vaccine-induced and operant prior to tumors growing to measurable volumes. One possible explanation for these observations would be the presence of one or more CD8+ epitopes co-localized within QP19, producing the observed T-cell response and anti-tumor growth activity associated with vaccination. Analysis of all possible overlapping peptides of 8-9 amino acids in length within QP19 using NetMHC and NetMHCpan found 4 potential BALB/c MHC matched peptide antigens as listed in Table 3 (17,32). Further studies to identify possible survivin-protective CD8+ T cell epitopes demonstrated by *ex-vivo* ELISpot response, and the formal demonstration of CD4+ T cell helper activity evoked by vaccination with QP19 await further experimentation.

4.1 Vaccine Platforms

The history of clinical studies involving peptide-specific targeted immunotherapy for survivin has shown that peptide delivery system optimization is required to elicit a strong immune
response (10). A small peptide injected on its own, even when combined with adjuvants known to enhance a T-cell response, has been shown not to trigger a robust response (26). As we describe here, microspheres can be manufactured that encapsulate peptides and the TLR-9 agonist CpG in a biodegradable PLGA polymer, delivered after reconstitution in a saline solution with the TLR-4 agonist MPLA to produce a cellular immune response to the administered peptide antigens as demonstrated by ELISpot (26). We have previously demonstrated the delivery system to immunize C57BL/6 mice against the Ebola virus nucleocapsid protein with prevention of mortality and morbidity after a single intraperitoneal injection (25). An additional study showed that rhesus macaques receiving pre-exposure prophylaxis with adjuvanted microspheres from the same platform described here, loaded with peptides directed against the SARS-CoV-2 nucleocapsid protein, did not have radiographic evidence of pulmonary infiltrates characteristic of COVID-19 seen in unvaccinated controls (33). As we show here, peptides delivered using this adjuvanted microsphere technology can create a TAA-specific immune response capable of reducing tumor growth rate using the aggressive 4T1 triple negative murine breast cancer model.

4.2 Usage

In immuno-oncology, various pharmaceuticals are often administered with in combination with checkpoint inhibitors such as anti-PD-1 and anti-PD-L1 (34). These drugs have made a considerable contributions to a wide range of cancer treatments (35). However, usage of immune checkpoint inhibitors can be associated with severe immune related adverse events (e.g. myasthenia gravis and acute autoimmune myocarditis) as a result of dysregulated T-cell attack (36)
Targeted immunotherapy directed against peptide sequences within the survivin protein, or other tumor associated antigens, may be an effective neoadjuvant therapy that could be administered before or after breast cancer tumor excision. Survivin is expressed in a wide range of cancers making survivin a TAA potentially applicable to a wide range of cancer types, as shown in Table 2. Although targeting neoantigens using personalized immunotherapy developed to target a specific patient’s tumor may provide benefits, the complexities associated with routinely obtaining high quality DNA and RNA gene sequencing data and the need to then rapidly manufacture and administer a personalized immunotherapy are significant barriers interfering with widespread adoption of this approach (37–39).

4.3 Conclusion

In this study, we found that no detectable *ex-vivo* immune response to the survivin peptide QP19 was generated in BALB/c controls, unvaccinated and inoculated with the 4T1 TNBC cell line. A statistically significant response to QP19 in study animals that were dosed with the vaccine was however observed. Although we did not use the two adjuvants in the blank microsphere control group, we have previously shown in another immunotherapy model that adjuvanted microspheres alone did not result in a statistically significant T-cell response to target antigens (25).

Various studies in literature and clinical trials have shown varying degrees of efficacy for identified peptide targets applicable to a wide range of cancers (10). The use of immunotherapy for breast cancer has gained attention recently (40). TAAs provide the opportunity to develop
immunotherapy targeting a fixed set of peptides with collective HLA restrictions predicted to provide broad population coverage that could be administered to breast cancer patients without the need for patient-specific tumor gene sequencing and manufacturing of personalized immunotherapy. Targeted T-cell immunotherapy triggering a T-cell immune response against survivin as neoadjuvant therapy has the potential to reduce recurrence after surgical excision of breast tumor tissue if the number of cells remaining after tumor debulking is low enough to result in CTL attack sufficient to blunt tumor-take and tumor growth rate. Previous studies have seen mixed efficacy with unprotected peptides used as immunotherapy (10). A delivery system such as the adjuvanted microsphere encapsulation described herein, may be able to effectively deliver peptides to produce T-cell expansion against TAA targets such as survivin expressed by various tumors in cancer patients.
Acknowledgements

A pre-print of this manuscript was posted on BioRxiv (41).

Contribution to the Field Statement

Immunotherapy has helped many patients with cancer by harnessing their immune systems to kill cancer cells. Currently available immunotherapy has been of limited benefit for some types of cancer. In this paper, we describe the use of a vaccine to blunt the growth of a mouse breast cancer tumor. The mice were injected with cells from a triple negative breast cancer tumor which is a type of breast cancer with no known cure. The data from this study suggests that it may be possible to give this type of vaccine before breast surgery to improve a patient’s outcome by making it harder for cancer cells left behind after the surgery to grow again. Existing immunotherapy for triple negative breast cancer works by rallying support from the patient’s immune system broadly and has not been shown to be curative. This study used a vaccine immunotherapy to train the immune system to attack targets usually only found on tumor cells which may produce more benefit than traditional immunotherapy.
Figure 1 legend. Study design schematic for a BALB/c mouse model 4T1 TNBC tumor challenge microsphere peptide vaccine efficacy study.
Figure 2 legend. Expression level from mRNA-Seq of mouse wild-type Survivin transcript (ENST0000081387) in normal breast tissue and the 4T1 cell line used in this study.
Figure 3 legend. ELISpot response to QP19 in vaccinated and unvaccinated mice that received 250 cells of 4T1. Statistical significance was determined using the unpaired, non-parametric, Mann-Whitney T-test.
Figure 4 Legend. Percent tumor-take as a function of time after orthotopic injection of the 4T1 tumor cell inoculation dose into mammary tissue for vaccinated and control groups. Tumor-take was defined as the number of mice with measurable tumors on the indicated day divided by the total number of mice inoculated with 4T1 cells. For the 500 cells group: Control n=18; Vaccine n=10. For the 250 cells group: Control n=10, 250; Vaccine n=10. Statistical significance was determined by ANOVA (Prizm Graphpad software).
Comparison of average tumor growth rates (vaccinated versus control) for the 250 cell and 500 cell 4T1 tumor inoculation challenge groups. The sample size was n=10 for each group. Statistical significance was assessed using ANOVA and Prism Graphpad software.
Table 1

Epitope Name	Peptide Sequence	Class	Position	MHC Match Screening Method
AL9	ATFKNWPFL	1	20-28	(17,32)
AM9	AFLTVKKQM	1	85-93	(15)
GI9	GWEPDDNPI	1	66-74	(14,15)
TI9	TAKTTRQSI	1	127-135	(Siegel et al., 2003)
QP19	QIWQLYLKNYRIATFKNWP	2	8-26	(16,42)(16,42)
PADRE	AKFVAAWTLKAAA	2	N/A	(43)

Table 1 legend. Literature references and prediction tools supporting a BALB/c MHC match to each of the six peptides microencapsulated into the adjuvanted microsphere vaccine platform described here.
Cancer Type	Clinical Stage	Peptide	HLA	Delivery	Results
Glioblastoma	Phase II	DLAQCFFMFKELEGW	A*02, A*03, A*24	A peptide mutated from the wild-type sequence conjugated to the adjuvant keyhole limpet hemocyanin, injected subcutaneously 4 times biweekly along with Montanide ISA 51 with sargramostim.	Increased survivin-specific IgG antibodies and CD8+ T-cells generated in majority of patients with some efficacy for PFS and OS along with temozolomide. (44,45)
Multiple	Phase II	AYAACNTVL	A*24-02	Subcutaneous injection of peptide at multiple intervals, 14 days apart; addition of IFN-β in later studies, addition of IFA in later studies	Increased levels of peptide specific CTL in a portion of patients, but adjuvants are added due to lack of clinical efficacy, however, progression free survival was not increased. (46–51)
Ovarian	Phase I	STELTLEEF, LMLGERFLKL, RISTFKSWPK, STFRSKWPL, LTPA/WQPL, EPLA/QCFY	A*01, A*02, A*03, A*24, B*07, B*35	Multiple subcutaneous injection of peptides used in previous studies, where a portion are mutated from wild-type, multiple times with Montanide ISA 51 with metronomic cyclophosphamide in some cohorts.	All patients showed increased survivin-specific CTL in a portion of patients, but adjuvants are added due to lack of clinical efficacy, however, progression free survival was not increased. (52)
Melanoma	Phase II	LMLGERFLKL, and a peptide from IDO	A*02	Multiple subcutaneous injection of peptide mutated from survivin and indoleamine 2,3-dioxygenase with Montanide ISA 51.	The majority of patients had an immune response, with an increase of memory CD8+ and CD69. No significant results seen, but tumor regression in one individual. (53)
Solid Tumors	Phase I	STELTLEEF, LMLGERFLKL, RISTFKSWPK, STFRSKWPL, LTPA/WQPL	A*01, A*02, A*03, A*24, B*07	Subcutaneous injection of peptide, some mutated from wild-type, multiple times with Montanide ISA 51.	Survivin-specific T-cells in the majority of patients, with most of these not detected before vaccination. Clinical results not evaluated. (54)
Melanoma	Phase II	STELTLEEF, LMLGERFLKL, EPLA/QCFY	A*01, A*02, B*35	Deep subcutaneous injection of peptide from survivin and indoleamine 2,3-dioxygenase with Montanide ISA 51. Different regimens used for vaccination frequency and addition of cyclophosphamide.	Increase survivin-specific CD8+ T-cells in the majority of individuals. Significant extension seen in overall survival. (55)
Prostate	Phase III	YGTEHLKLRDRAKNL, YLTPA/WQPL, EYLTCEFLKL, and multiple non-survivin class 1 and class 2 peptides	DRB1/0X, A*02	Peptides subcutaneously injected or loaded onto autologous DC at intervals with one of the following: Imiquimod, GM-CSF, local hyperthermia or the TLR-7 agonist mRNAP/protamine complex.	Several HLA-DRB1 present this peptide for a TSI CD8+ response; however, one patient had an anaphylactic reaction to this peptide at multiple doses. (56,57)

Table 2 legend. Clinical trial list detailing survivin peptide immunotherapy studies conducted over the last two decades for a variety of tumor types.
Table 3

Epitope Name	Peptide Sequence	Class	Position
LI8	LYLKNYRI	1	12-19
LA9	LYLKNYRIA	1	12-20
KF8	KNYRIATF	1	15-22
LF9	LKNYRIATF	1	14-21

Table 3 legend. NetMHC and NetMHCpan were used to scan all possible overlapping peptides of 8-9 amino acids in length within QP19 (32,42). The four potential BALB/c MHC matched class I peptide antigens found within QP19 are listed here.
References

1. Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. Journal Cellular Physiology. 2019 Jun;234(6):8509–21.

2. Wong P, Pamer EG. CD8 T Cell Responses to Infectious Pathogens. Annu Rev Immunol. 2003 Apr;21(1):29–70.

3. Cho HI, Celis E. Optimized Peptide Vaccines Eliciting Extensive CD8 T-Cell Responses with Therapeutic Antitumor Effects. Cancer Research. 2009 Dec 1;69(23):9012–9.

4. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999 Jun;5(6):677–85.

5. Andersen MH, Svane IM, Becker JC, Straten P thor. The Universal Character of the Tumor-Associated Antigen Survivin. Clinical Cancer Research. 2007 Oct 15;13(20):5991–4.

6. Bachinsky MM, Guillen DE, Patel SR, Singleton J, Chen C, Soltis DA, et al. Mapping and binding analysis of peptides derived from the tumor-associated antigen survivin for eight HLA alleles. Cancer Immun. 2005 Mar 22;5:6.

7. Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, et al. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res. 2002 Jun;8(6):1731–9.

8. Schmidt SM, Schag K, Müller MR, Weck MM, Appel S, Kanz L, et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood. 2003 Jul 15;102(2):571–6.

9. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature. 1998 Dec;396(6711):580–4.

10. Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? J Exp Clin Cancer Res. 2019 Dec;38(1):368.

11. Jaiswal PK, Goel A, Mittal RD. Survivin: A molecular biomarker in cancer. Indian J Med Res. 2015 Apr;141(4):389–97.

12. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat Options Oncol. 2019 Feb 21;20(3):24.

13. Mullard A. The cancer vaccine resurgence. Nat Rev Drug Discov. 2016 Oct;15(10):663–5.

14. Noe-Dominguez-Romero A, Zamora-Alvarado R, Servín-Blanco R, Pérez-Hernández EG, Castrillón-Rivera LE, Munguia ME, et al. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested
in a mouse model of breast cancer. Human Vaccines & Immunotherapeutics. 2014 Nov 2;10(11):3201–13.

15. Siegel S, Wagner A, Schmitz N, Zeis M. Induction of antitumour immunity using survivin peptide-pulsed dendritic cells in a murine lymphoma model: Induction of Murine Survivin-specific Immunity. British Journal of Haematology. 2003 Sep;122(6):911–4.

16. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018 Jul;154(3):394–406.

17. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research. 2020 Jul 2;48(W1):W449–54.

18. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018 Sep 1;34(17):i884–90.

19. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754–60.

20. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017 May;27(5):849–64.

21. Bray NL, Pimentel H, Melsted P, Pachter L. Erratum: Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016 Aug;34(8):888–888.

22. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012 Sep;22(9):1760–74.

23. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017 Jul;14(7):687–90.

24. Cunha-Neto E, Rosa DS, Harris PE, Olson T, Morrow A, Ciotlos S, et al. An Approach for a Synthetic CTL Vaccine Design against Zika Flavivirus Using Class I and Class II Epitopes Identified by Computer Modeling. Frontiers in Immunology [Internet]. 2017 Jun;8. Available from: https://doi.org/10.3389%2Ffimmu.2017.00640

25. Herst CV, Burkholz S, Sidney J, Sette A, Harris PE, Massey S, et al. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors’ CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine. 2020 Jun;38(28):4464–75.

26. Rubsamem RM, Herst CV, Lloyd PM, Heckerman DE. Eliciting cytotoxic T-lymphocyte responses from synthetic vectors containing one or two epitopes in a C57BL/6 mouse model
using peptide-containing biodegradable microspheres and adjuvants. Vaccine. 2014 Jul;32(33):4111–6.

27. The UniProt Consortium, Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research. 2021 Jan 8;49(D1):D480–9.

28. Lim JF, Berger H, Su Ihsin. Isolation and Activation of Murine Lymphocytes. JoVE. 2016 Oct 30;(116):54596.

29. Euhus DM, Hudd C, Laregina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986 Apr;31(4):229–34.

30. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989 Sep;24(3):148–54.

31. Kurd N, Robey EA. T-cell selection in the thymus: a spatial and temporal perspective. Immunol Rev. 2016 May;271(1):114–26.

32. Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016 Feb 15;32(4):511–7.

33. Harris PE, Brasel T, Massey C, Herst CV, Burkholz S, Lloyd P, et al. A Synthetic Peptide CTL Vaccine Targeting Nucleocapsid Confers Protection from SARS-CoV-2 Challenge in Rhesus Macaques. Vaccines (Basel). 2021 May 18;9(5):520.

34. Alsaaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol. 2017 Aug 23;8:561.

35. Kwok G, Yau TCC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Human Vaccines & Immunotherapeutics. 2016 Nov;12(11):2777–89.

36. Konstantina T, Konstantinos R, Anastasios K, Anastasia M, Eleni L, Ioannis S, et al. Fatal adverse events in two thymoma patients treated with anti-PD-1 immune check point inhibitor and literature review. Lung Cancer. 2019 Sep;135:29–32.

37. Apavaloaei A, Hardy MP, Thibault P, Perreault C. The Origin and Immune Recognition of Tumor-Specific Antigens. Cancers (Basel). 2020 Sep 12;12(9):E2607.

38. Feola S, Chiaro J, Martins B, Cerullo V. Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers (Basel). 2020 Jun 23;12(6):E1660.

39. Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol. 2020;11:583287.
40. Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L, et al. Current Landscape of Immunotherapy in Breast Cancer: A Review. JAMA Oncol. 2019 Aug 1;5(8):1205.

41. Cold Spring Harbor Laboratory. bioRxiv. Available from: https://www.biorxiv.org

42. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research. 2020 Jul 2;48(W1):W449–54.

43. Ghaffari-Nazari H, Tavakkol-Afshari J, Jaafari MR, Tahaghoghi-Hajghorbani S, Masoumi E, Jalali SA. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice. Khodarahmi R, editor. PLoS ONE. 2015 Nov 10;10(11):e0142563.

44. Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Belal A, et al. SurVaxM with standard therapy in newly diagnosed glioblastoma: Phase II trial update. JCO. 2019 May 20;37(15_suppl):2016–2016.

45. Fenstermaker RA, Ciesielski MJ, Qiu J, Yang N, Frank CL, Lee KP, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2009 Nov;58(11):1339–52.

46. Honma I, Kitamura H, Torigoe T, Takahashi A, Tanaka T, Sato E, et al. Phase I clinical study of anti-apoptosis protein survivin-derived peptide vaccination for patients with advanced or recurrent urothelial cancer. Cancer Immunol Immunother. 2009 Nov;58(11):1801–7.

47. Kameshima H, Tsuruma T, Torigoe T, Takahashi A, Hirohashi Y, Tamura Y, et al. Immunogenic enhancement and clinical effect by type-I interferon of anti-apoptotic protein, survivin-derived peptide vaccine, in advanced colorectal cancer patients. Cancer Science. 2011 Jun;102(6):1181–7.

48. Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, et al. Immunotherapeutic benefit of α-interferon (IFNα) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci. 2013 Jan;104(1):124–9.

49. Miyazaki A, Kobayashi J, Torigoe T, Hirohashi Y, Yamamoto T, Yamaguchi A, et al. Phase I clinical trial of survivin-derived peptide vaccine therapy for patients with advanced or recurrent oral cancer. Cancer Science. 2011 Feb;102(2):324–9.

50. Tanaka T, Kitamura H, Inoue R, Nishida S, Takahashi-Takaya A, Kawami S, et al. Potential Survival Benefit of Anti-Apoptosis Protein: Survivin-Derived Peptide Vaccine with and without Interferon Alpha Therapy for Patients with Advanced or Recurrent Urothelial Cancer—Results from Phase I Clinical Trials. Clinical and Developmental Immunology. 2013;2013:1–9.
51. Tsuruma T, Hata F, Torigoe T, Furuhata T, Idenoue S, Kurotaki T, et al. [No title found]. J Transl Med. 2004;2(1):19.

52. Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. OncoImmunology. 2015 Aug 3;4(8):e1026529.

53. Nitschke NJ, Bjoern J, Iversen TZ, Andersen MH, Svane IM. Indoleamine 2,3-dioxygenase and survivin peptide vaccine combined with temozolomide in metastatic melanoma. Stem Cell Investig. 2017 Sep 21;4(9):77–77.

54. Lennerz V, Gross S, Gallerani E, Sessa C, Mach N, Boehm S, et al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Cancer Immunol Immunother. 2014 Apr;63(4):381–94.

55. Becker JC, Andersen MH, Hofmeister-Müller V, Wobser M, Frey L, Sandig C, et al. Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunol Immunother. 2012 Nov;61(11):2091–103.

56. Feyerabend S, Stevanovic S, Gouttefangeas C, Wernet D, Hennenlotter J, Bedke J, et al. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer. Prostate. 2009 Jun 15;69(9):917–27.

57. Widenmeyer M, Griesemann H, Stevanović S, Feyerabend S, Klein R, Attig S, et al. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients. Int J Cancer. 2012 Jul 1;131(1):140–9.
Supplementary Figure 1 legend. Study design schematic for 4T1 TNBC cell line inoculation dose escalation study. Varying numbers of 4T1 tumor cells were injected into mouse mammary tissue.
Supplementary Figure 2 legend. Average growth rate curves shown after injection of escalating numbers of 4T1 TNBC cancer cells into BALB/c mouse mammary tissue at T0. Sample size was n=10 mice per group.