Spin-liquid model of the sharp resistivity drop in $La_{1.85}Ba_{0.125}CuO_4$.

A. V. Chubukov1 and A. M. Tsvelik2

1 Department of University of Wisconsin, Madison, WI 53706, USA and
2 Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

(Dated: February 1, 2008)

We use the phenomenological model proposed in our previous paper [Phys. Rev. Lett. 98, 237001 (2007)] to analyse the magnetic field dependence of the onset temperature for two-dimensional fluctuating superconductivity $T^{**}(H)$. We demonstrate that the slope of $T^{**}(H)$ progressively goes down as H increases, such that the upper critical field progressively increases as T decreases. The quantitative agreement with the recent measurements of $T^{**}(H)$ in $La_{1.85}Ba_{0.125}CuO_4$ is achieved for the same parameter value as was derived in our previous publication from the analysis of the electron self energy.

Recent experiments on $La_{1-x}Ba_xCuO_4$ at $x = 1/8$ revealed a complex hierarchy of energy scales in this material. It displays a charge ordering transition at $T_{oc} = 54K$, a spin ordering transition at $T_{spin} = 42K$ with a subsequent one order of magnitude drop in the in-plane resistivity, the Berezinskii-Kosterlitz-Thouless (BKT) transition to a two-dimensional superconductivity at $T_{BKT} = 16K$, a crossover from 2D to 3D regime around 10K, and a transition to a true 3D superconductivity at 4K. This hierarchy is summarized and discussed in detail in [2].

It turns out that the temperature T^{**} where the resistivity crossover occurs is sensitive to the c-axis magnetic field which separates this phenomenon separately from the spin ordering. In this paper, we address the issue of this crossover. The measurements performed in a magnetic field H_c revealed that (i) T^{**} marks the onset of fluctuational diamagnetism, and (ii) T^{**} decreases with the field. These two effects and the fact that the resistivity sharply drops T^{**} are consistent with the idea that T^{**} marks the onset of a fluctuational pairing regime without (quasi-) long-range superconducting order. The details of the system behavior near T^{**}, however, depend on the underlying model. The authors of [2] considered a model of weakly coupled parallel superconducting stripes. Within this model, T^{**} is the temperature at which the inter-stripe coupling becomes strong, and a vortex liquid is formed.

We propose another explanation, based on the model with a flat Fermi surface in the antinodal regions near $(0, \pi)$ and $(\pi, 0)$ points in the Brillouin zone [3]. Fermions in these regions form two quasi-1D spin liquids coupled by Josephson-type interaction. In this model, the pairing amplitudes in the antinodal regions are developed at T^{**} due to the attractive interactions in the spin-liquid state, however, phase fluctuations at $T >> T^{**}$ are effectively one-dimensional, and are pinned by the defects. At T^{**}, the Josephson coupling becomes sufficiently strong to lock the relative phase of the two order parameters at π, and the system response becomes two-dimensional. This leads to depinning of the phase fluctuations resulting in the drop in the resistivity. Still, because of vortices in the 2D regime, the (quasi)-long-range superconducting order develops only at a smaller $T_c < T^{**}$.

Just like the model of parallel stripes [2], our model of “crossed stripes” near $(0, \pi)$ and $(\pi, 0)$ explains qualitatively the resistivity drop, the absence of fluctuational diamagnetism above T^{**}, and the sensitivity of T^{**} to a magnetic field. [2]. However, the measurements of $T^{**}(H)$ put an additional constraint on the theory – not only T^{**} decreases with the field, but $|dT^{**}/dH|$ also decreases as H goes up, i.e., at very low T, the critical field below which the system response is two-dimensional, becomes very large. The data for $H < 9T$ can be well fitted by the exponential dependence (see Fig. 1):

$$T^{**}(H) = T^{**}(0) \exp\left(-H/H_0\right), \quad H_0 \approx 7.5T$$

For such $T^{**}(H)$, $|dT^{**}/dH|$ exponentially decreases as H increases. If this trend continued to higher H, the critical field $H_{c2}(T)$ defined as $T^{**}(H_{c2}) = T$ would become infinite at $T = 0$.

The H dependence of T^{**} for Josephson-coupled stripes running parallel to each other in the 2D plane,
δT ≪ v

the magnetic field is weak, i.e., χ

Thus we show that the slope of dT**/dH decreases with increasing H for any value of the scaling dimension d of the superconducting order parameter. To achieve a quantitative agreement with the experimental fit [1] we have to set d ≈ 1/2. We have to remind the reader that in [3]

\[\chi_0(k) = \frac{2}{\Delta^2} \left[\sin \pi d \frac{\Gamma(2-d)}{\Delta} \right]^{-2+2d} \left| \frac{\Gamma(d/2+i\nu q/4\pi T)}{\Gamma(1-d/2+i\nu q/4\pi T)} \right|^2 \left[\frac{\pi}{1-d} \right] \]

Here Γ(...) are Γ–functions, d < 1 is the scaling dimension of the superconducting order parameter, v is the velocity of the phase mode, and Δ is the ultraviolet cut-off. The last term in χ₀ can be neglected as we will only consider T ≪ Δ, when the first term in [3] dominates. Parameters v and d are free parameters of our theory and should be extracted from the experiments in the T region where the superconducting phase fluctuations are essentially one-dimensional (that is, at T below the spin gap, but larger than T**). In [3] we found that the best agreement with the photoemission experiments is obtained when d ≈ 1/2. As we will see, this value is also favored by the observed T**(H) dependence.

Taking a Fourier transform over kₓ, but leaving kᵧ intact, we obtain from [2]:

\[\chi_{kₓ}(x-x₁) = \chi₀(x-x₁) + J² \int dx'\chi₀(kᵧ)\chi₀(x-x')\chi_{kₓ}(x'-x₁) \]

In a magnetic field, kₓ → kᵧ + Hx' (we set 2e/c = 1). Setting kᵧ = 0 and x₁ = 0, we obtain integral equation for \(\chi(x) = \chi_{kₓ=0}(x) \) in the form

\[\chi(x) = \chi₀(x) + J² \int dx'\chi₀(x-x')\chi'(x')\chi₀(Hx') \]

where \(\chi₀(Hx') \) is given by [3] for k = Hx', and \(\chi₀(x) \) is the Fourier transform of \(\chi₀(k) \). The temperature T**(H) is the one at which \(\chi(x) \) diverges.

Weak fields. Consider first the case when the magnetic field is weak, i.e., T**(H) = T**(0)/(1 − δT), and δT ≪ 1. A simple analysis shows that the parametrical condition for a weak field is \(v^2H/T << 1 \). Expanding the same value of d was postulated on the basis of analysis of the electron self energy. This gives an important check for self-consistency of the theory.

We associate T**(H) with the instability of a 2D pairing susceptibility in the random phase approximation (RPA). Fluctuations beyond RPA transform the instability into a crossover [3]. In zero field, the RPA expression for the susceptibility reads, in momentum space

\[\chi(kₓ, kᵧ) = \chi₀(kₓ) + J²\chi(kₓ, kᵧ)\chi₀(kₓ)\chi₀(kᵧ) \]

where \(\chi₀(k) \) is the 1D static pairing susceptibility [3]:

\[\chi₀(Hx') \text{ in } H, \] we obtain from [4]

\[\chi₀(Hx') = B_d \left(\frac{2\pi T}{\Delta} \right)^{2d-2} \left[1 - A_d \left(\frac{\nu Hx'}{\pi T} \right)^2 \right] \]

where

\[A_d = \frac{1}{16} \left[(d/2) - (d-1)d/2 \right], \]

\[B_d = \frac{2}{\Delta^2} \sin \pi d \Gamma(1-d) \frac{\Gamma^2(d/2)}{\Gamma^2(1-d/2)} \]

and \(\psi^{(1)}(x) \) is the derivative of the diGamma function.

Substituting [4] into [5], we obtain an integral equation for \(\chi(x) \) in the form

\[\chi(x) = \chi₀(x) + J² \int dx'\chi₀(x-x')\chi'(x')\chi₀(0) \]

\[-J²\chi₀(0)A_d \frac{v²H²}{(\pi T)²} \int dx'\chi₀(x-x')\chi'(x')(x')² \]

where \(\chi₀(0) = \chi₀(k = 0) \). Taking Fourier transform back to momentum space \(x → kₓ = k \), and integrating by parts, we re-write the integral equation for \(\chi \) as

\[\chi(k) \left[1 - J²\chi₀(k)\chi₀(0) \right] - J²\chi₀(k)\chi₀(0) \frac{A_d v²H²}{(\pi T)²} \chi''(k) = \chi₀(k) \]

This can be re-expressed as

\[\left(\epsilon + c₁k² - c₂\frac{∂²}{∂k²} \right) \chi(k) = \chi₀(k) \]

where \(\epsilon = 1 - (T**(0)/T)^{4-4d} \), \(c₁ = A_d v²/(\pi T)² \), \(c₂ = A_d v²H²/(\pi T)² \), and we defined \(T**(0) = \)
\((\Delta/2\pi) (B_d J)^{1/(2-2d)} \). This agrees with the zero-field transition temperature in \([3]\). Expanding now in the eigenvalues of the differential equation as

\[
\chi(k) = \sum_n a_n \chi_n(k), \quad \chi_0(k) = \sum_n a_n^{(0)} \chi_n(k) \tag{11}
\]

where \(\chi_n(k) \) are the solutions of

\[
\left(c_1 k^2 - c_2 \frac{\partial^2}{\partial k^2} \right) \chi_n(k) = \epsilon_n \chi_n(k) \tag{12}
\]

we obtain

\[
a_n = \frac{a_n^{(0)}}{\epsilon + \epsilon_n} \tag{13}
\]

The eigenvalues of Eq. (12) can be easily obtained as \[12\] can be re-expressed as a harmonic oscillator

\[
-\frac{1}{2M} \frac{\partial^2 \chi_n(k)}{\partial k^2} + \frac{M \omega^2 k^2}{2} \chi_n(k) = \epsilon_n \chi_n(k) \tag{14}
\]

where \(\omega^2 = 4c_1 c_2 \) and \(M^{-1} = 2 A_d (v/\pi T)^2 \). The eigenfunctions of \([13]\) are \(\epsilon_n = \omega (n + 1/2) \), the lowest one is \(\epsilon_0 = \omega/2 = A v T (\pi T)^2 \). From \([13]\), the instability in the field occurs when \(\epsilon + \epsilon_0 = 0 \), i.e., when \(T = T^{*}(H) = T^{*}(0)(1- \delta T) \), where

\[
\delta T \approx \frac{1}{4(1-d)} \frac{A_d v^2 H}{(\pi T^{*}(0))^2} \tag{15}
\]

We see that at small fields, \(T^{*}(H) \) decreases linearly with \(H \). The linear dependence at small fields is also present in the model of parallel stripes \([3]\). If we formally extrapolate the small-field result to \(T = 0 \), we obtain the upper critical field

\[
H^{ext}_{c2}(T = 0) = \left(\frac{\Delta}{v} \right)^2 (J B_d)^{1/(1-d)} \frac{1-d}{A_d} \tag{16}
\]

The actual \(H_{c2}(T = 0) \) is somewhat smaller in the model of parallel stripes \([3]\), but, as we will see, is much larger than \([10]\) in our model of crossed stripes.

Strong fields. Consider now the opposite limit of vanishing \(T \), when \(v^2 H/T >> 1 \), i.e., the expansion in the field is no longer possible. In this limit, we have from \([3]\)

\[
\chi_0(Hx') = \frac{B_d}{|Hx'|^{2-2d}} \tag{17}
\]

where

\[
B_d = (8/\Delta)^2 \sin(\pi d) \Gamma^2 (1-d) (v^2/4\Delta^2)^d \tag{18}
\]

\[
= B_d (2\Delta/v)^{2-2d} \left(T^2 (1-d/2)/T^2 (d/2) \right). \tag{19}
\]

Instead of Eq. \([9]\), we now have

\[
\chi(k) = \chi_0(k) \left[1 + J^2 \frac{B_d (2\Delta/v)^{2-2d} \Gamma^2 (1-d/2)}{H^2 - 2d^2} \int dq \chi(q) \right] \tag{20}
\]

Using

\[
\int dx' e^{i(k-q)x'} |x'|^{2-2d} = \frac{\Gamma(2d-1) \sin \pi d}{|k-q|^{2d-1}} \tag{21}
\]

and introducing

\[
\hat{\chi}(k) = \frac{B_d}{|k|^{2-2d}} \tilde{\chi}(k) \tag{22}
\]

It is convenient to re-express this equation in the operator form, as \(\hat{L} \chi(k) = 1 \), and expand in the eigenfunctions of the operator \(\hat{L} \), which we label as \(\tilde{\chi}_m(k) \). We get

\[
\tilde{\chi}_m(k) = \sum_m a_m \tilde{\chi}_m(k) \tag{23}
\]

where \(a_m \) are constants. The eigenvalues \(\lambda_m \) are the solutions of

\[
\hat{L} \tilde{\chi}_m(k) = (1-\lambda_m) \tilde{\chi}_m(k) \tag{24}
\]

where

\[
\hat{L} \tilde{\chi}_m(k) = \tilde{\chi}_m(k) - \frac{J^2 B_d^2 \cos \pi \epsilon/2 \Gamma(\epsilon)}{H^{1-\epsilon}} \int dq \frac{\tilde{\chi}_m(q)}{|q|^{1-\epsilon} |k-q|^{\epsilon}} \tag{25}
\]

Eq. \([26]\) was studied in the context of non-BCS superconductivity (with frequency instead of momentum) \([7]\). A similar equation has been studied in the content of superconductivity in graphene \([8]\). For \(\epsilon > 0 \), the normalized solution of \([26]\) with the largest eigenvalue is

\[
\tilde{\chi}_m(k) = \frac{1}{|k|^\epsilon} \tag{26}
\]

and the eigenvalue is

\[
\lambda_0 = \frac{J^2 B_d^2}{H^{1-\epsilon}} \Psi_\epsilon, \quad \Psi_\epsilon = \frac{\pi^2}{2} \frac{1}{\Gamma^2 (1-\epsilon/2)(\sin \pi \epsilon/4)^2} \tag{27}
\]

The critical field \(H_{c2}(T = 0) \) is determined from \(\lambda_0 = 1 \) and is given by

\[
H_{c2}(T = 0) = [J^2 B_d^2 \Psi_\epsilon]^{1/(1-\epsilon)} \tag{28}
\]

In explicit form, we have
\[H_{c2}(T = 0) = (J\bar{B}_d)^{1/(1-d)} \left(\frac{2\Delta}{v} \right)^2 \left(\frac{8}{(2d-1)^2} \right)^{1/(1-d)} \left[\frac{\Gamma(1-d/2)}{\Gamma(d/2)} \right]^{2/(1-d)} \]

\[= H_{c2}^{extr}(T = 0) \left[\left(\frac{4A_d}{1-d} \right) \left(\frac{8}{(2d-1)^2} \right)^{1/(1-d)} \left[\frac{\Gamma(1-d/2)}{\Gamma(d/2)} \right]^{2/(1-d)} \right] \] (29)

Substituting into (31), we re-write it as a differential equation

\[\partial^2 \chi + \frac{4(J\bar{B}_{c=0})^2}{H} \chi = -2\partial^2 \log(T|e^\epsilon - 1|) \] (33)

where \(\epsilon = \log|x| \). The analysis of this equation shows that the susceptibility diverges at \(H = H_{c2}(T) \propto |\log T| \). This is equivalent to \(T^{**}(H) \propto exp\frac{H}{H_0} \), in agreement with Eq. (1). We see therefore that the high field dependence is well captured by our model with \(d \approx 1/2 \) – the same as we used in the previous work to fit the normal state self-energy.

To summarize, we analyzed the behavior of \(T^{**}(H) \) (or, equivalently \(H_{c2}(T) \)) in the model of two one-dimensional spin liquids near \((0, \pi)\) and \((\pi, 0)\) coupled by Josephson-type interaction. For weak fields we found that \(T^{**} \) decreases linearly with \(H \). Extrapolating this dependence down to zero temperature yields the extrapolated field \(H_{c2}^{extr}(T = 0) \). Considering the strong fields we found that the actual \(H_{c2}(T = 0) \) is always larger than the extrapolated value. The ratio \(H_{c2}(T = 0)/H_{c2}^{extr}(T = 0) \), characterizing the convexity of the \(H_{c2}(T) \)-curve, increases when \(d \) decreases and becomes infinite at \(d \leq 1/2 \). This convex behavior is consistent with the data, and has to be contrasted with the concave behavior for the model of parallel stripes. As a further evidence in support of our model, we found that the experimental \(H_{c2}(T) \) are well described by the theoretical formula with the scaling dimension of the 1D superconducting order parameter \(d \approx 1/2 \). The same \(d \) provides the best fit to the photoemission data, as we argued earlier.

We acknowledge useful discussions with E. Fradkin, S. Kivelson, D. Scalapino and J. Tranquada and to J. Tranquada for kindly providing us Fig. 1. The research was supported by NSF-DMR 0604406 (A. V. Ch.), and by US-DOE under contact number DE-AC02-98 CH 10886 (A.M.T.). AVC acknowledges the support from the Theory Institute for Strongly Correlated and Complex Systems at BNL.

[1] Q. Li, M. Hucker, A.M. Tsvelik, and J.M. Tranquada, cond-mat/070337.
[2] E. Berg, E. Fradkin, E-A Kim, S.A. Kivelson, V. Oganesyan, J. Tranquada, and S. Zhang, cond-mat/07041240.
[3] A.M. Tsvelik and A.V. Chubukov, Phys. Rev. Lett. 98, 237001 (2007).
[4] S. T. Carr and A.M. Tsvelik, Phys. Rev. B65, 195121 (2002).
[5] The underlying physics behind our model is quite different from the one in the standard model of interacting stripes. From mathematical perspective, however, our model does indeed look like a model of intersecting 1D stripes, coupled by Josephson-like interaction.
[6] H.J. Schulz and C. Bourbonnais, Phys. Rev. B27, 5856 (1983).
[7] A. Abanov, A.V. Chubukov, and A.M. Finkelstein, Europhys. Lett., 54, 488 (201); A. Abanov, B.L. Altshuler, A.V. Chubukov, and E. Yuzbashyan, unpublished.
[8] D.V. Khveshchenko and W.F. Shively, Phys. Rev. 73, 115104 (2006).