Materials and Methods

Transient coexpression of human TOM complex

The optimized coding DNAs for human TOMM40 (Uniprot: O96008), TOMM22 (Uniprot: Q9NS69), TOMM7 (Uniprot: Q9P0U1), TOMM6 (Uniprot: Q96B49) and TOMM5 (Uniprot: Q8N4H5) were cloned into the pcDNA3.1(-) vector, with tandem twin Strep-tag at the C terminus of TOMM22. The HEK293F cells (Invitrogen) were cultured in SMM 293T-I medium (Sino Biological Inc.) supplemented with 8% CO2 in a ZCZY-CS8 shaker (Zhichu, 120 r.p.m.) at 37°C. When density reached 2 × 10^6 cells per ml, the cells were transfected with the plasmids encoding TOMM70, TOMM40, TOMM22, TOMM20, TOMM7, TOMM6 and TOMM5, incubate with Polyethylenimine (PEI) for 15 minutes at a mass ratio of 1:3. Transfected cells were cultured for 48 hours before harvesting.

Purification of the TOM complex

All procedures are carried out at 4°C. Four liters of transfected cells were harvested, washed with 1X PBS and resuspended in 25 mM Tris pH 7.8, 150 mM NaCl, and 1mM PMSF. The suspension was lysed by sonication for 5 min, then was further centrifuged at 20,000xg for 45 min to obtain the membrane. The pellet was suspended and extracted in 25mM Tris pH 7.8, 150mM NaCl with 1% digitonin. After incubation for 2 hours, the extraction was centrifuged at 20,000xg for 25 min at 4°C and the supernatant was applied to Strep-Tactin Sepharose (IBA) by gravity at 4°C. The resin was washed three times with the W buffer, which contains 25mM Tris pH 7.8, 150mM NaCl, with 0.1% digitonin. The target proteins were eluted with W buffer plus 5mM desthiobiotin (Sigma), concentrated to 100ul by 100 kDa cut-off centrifugal filter (Millipore) and further purified by Superose6 5/150 GL (GE Healthcare) also in the W buffer. The peak fractions were collected for EM sample preparation. The presence of the complex was verified by SDS-PAGE, BN-PAGE and confirmed by mass spectrometry (Supplementary Fig. S1a-c).

Blue native PAGE

Following the Blue native PAGE protocol, the purified TOM core complex was subjected to 3-10% blue native PAGE mini gel (1.5 × 8.3 × 7.3mm) for native electrophoresis at 150V for 4h (Fig. 2g-f, Supplementary Fig. S1c).
Cryo-electron microscopy

4-μL aliquots of digitonin-solubilized TOM-CC at a concentration of 4.5 mg/ml were applied to discharged 400-mesh Quantifoil R1.2/1.3 grids (Quantifoil, Micro Tools GmbH, Germany). Grids were blotted for 3.5 sec and plunged into liquid ethane using an FEI Mark IV Vitrobot operated at 4 °C and 100% humidity. Micrographs were collected on a Titan Krios microscope operated at a voltage of 300 kV with a Gatan K2 Summit direct electron detector. Images were recorded using a 300 kV Titan Krios electron microscope with serialEM software (Thermo Fisher) at a nominal magnification of 130,000 × using super-resolution mode. The pixel size was 1.08 Å/pixel and the defocus range were set from -1.3 μm to -2.3 μm. The total dose rate on the detector was about 50 e/ Å2 with a total exposure time of 8 s. Each micrograph stack contains 32 frames. Four batches of data were collected with two cryo-samples, obtaining 5,908 micrographs in total.

Each micrograph was corrected for sub-region motion correction and dose weighting using UCSF MotionCor22. Gctf was used to determine the contrast transfer function (CTF) parameter and produce the CTF power spectrum on basis of summed micrographs from MotionCor2 for all micrographs3. The 5,443 CTF-corrected cryo-EM images were manually selection. Particles were auto-picked on micrographs with dose-weighting using RELION4. Briefly, about 1,000 particles were manually picked from a subset of images and extracted in a box size of 200 pixels and a mask diameter of 200 Å. Extracted particles were subjected to 2D classification requesting 10 classes, 8 classes of which showed representative views and were selected as templates for automated particle picking. The resulting 2D averages were served as the templates for particle auto-picking, 1,638,577 particles picked from 5,443 images. For the dataset, particle selection, 2D and 3D classifications were performed on a binned dataset with a pixel size of 5.4 Å using RELION, which were then manually inspected to exclude noise and other bad particles. Two rounds of 2D classification requesting 100 classes were resulted in 823,450 particles, and two rounds of 3D classification which contained 408,208 particles and 30,916 dimeric TOM-CC like particles. An initial model was generated from 20,000 best particles using cryoSPARC ab initio reconstruction requesting five classes with C1 symmetry5. A total of 347,796 particles from these 3D classes was re-extracted to the original pixel size of 1.08 Å, and classified into five classes with C1 symmetry using a reference model generated from cryoSPARC, which had been low-pass filters to 20 Å. Two rounds of 3D classification and the most populated class containing 159,369 particles was subjected to further 3D auto-refinement with
C2 symmetry. The refinement resulted in an overall structure at a resolution of 3.91 Å, which allowed initial model building. To further improve the resolution, we performed CTF refinement, which yielded a map at 3.43 Å resolution.

The 30,916 tetrameric TOM complex like particles performed two rounds 2D classification and one round 3D classification which obtained 11,184 good particles. After re-extracted to the original pixel size of 1.08 Å, 11,184 particles were subjected to further 3D auto-refinement with C2 symmetry. The global resolution for tetrameric TOM complex was 8.53 Å. All reported resolutions are based on the gold-standard Fourier Shell Correlation (FSC) = 0.143 criteria, and the final FSC curve was corrected for the effect of a soft mask using high-resolution noise substitution. Final density maps were sharpened by B-factors calculated with the RELION post-processing program. All reported resolutions are based on the gold-standard FSC = 0.143 criteria, and the final FSC curve was corrected for the effect of a soft mask using high-resolution noise substitution. The local resolution map was calculated using ResMap (Supplementary Fig. S1d-e, 2, Table S1).

Quantification and Statistical Analyses
After refinement, map CC between model and EM map was 0.66, indicative of a reasonable fit at the present resolution. The resulting model was also used to calculate a model-map FSC curve, which agreed well with the gold-standard FSCs generated during the RELION refinement. The final model has good stereochemistry, as evaluated using MolProbity.

Model Building, Refinement and Validation
Atomic models of the TOM-CC subunits were predicted and modeled using the webserver (http://www.sbg.bio.ic.ac.uk/phyre2) of Phyre2. We assigned homology models of the TOM-CC subunits, Tom40, Tom22, Tom7, Tom6 and Tom5 into our density maps. The models were further optimized by Coot. For cross-validation against overfitting, we randomly displaced the atom positions of the final model by up to a maximum of 0.5 Å, and refined against the half map generated by RELION 3D auto-refine procedure, resulting a model named Test. Then we calculated the FSC curve of both half map against the model Test and compared with the FSC curve of the final model against the summed map generated by RELION 3D auto-refine procedure. To build the human tetrameric TOM complex models, we fitted the density maps of TOM-CC into the 8.53 Å tetramer
map and combined these part maps into a whole map in UCSF Chimera. Based on the combined map, the human tetramer TOM complex model was built. And then, the model with the ligands were subjected to global refinement and minimization in real_space_refinement using PHENIX. All ligands and phospholipids models were generated using elbow11 module in PHENIX12 by their geometric constraints. The phospholipid was docked into densities and refined in COOT. All the figures were created in PyMOL13, Chimera and UCSF Chimera(X)14, quantitative electrostatics were calculated using APBS15, and conservation levels were generated with ConSurf16, sequences alignment of Tom subunits were generated by the ESPript17, the structure predictions of human & yeast Tom subunits are based on the Predict Secondary Structure (PSIPRED)18.

Cell Culture and Transient knockdown of Tom subunits

Hela (Thermo Fisher Scientific) cells were grown in DMEM media (Corning) supplemented with 10% fetal bovine serum (Thermo Fisher Scientific) and cultured in a 37°C, 5% CO\textsubscript{2} incubator. 4.5x105 Hela cells were incubated with corresponding short hairpin RNA (siRNA) at a final concentration of 66nM, and cultured in a 37°C, 5% CO\textsubscript{2} incubator for 48h. RNA was extracted by RNeasy Plus Mini Kit (Qiagen), and cDNA conversion was performed by TransScript OneStep gDNA Removal and cDNA Synthesis SuperMix (Trans) at 42°C for 20min. Quantitative real-time polymerase chain reaction (RT-qPCR) was conducted by the PerfectStart Green qPCR SuperMix (Trans) as the manual recommended. The mRNA expression of Tom5, Tom6, Tom7, Tom20, Tom22, Tom40 and Tom70 were normalized to GAPDH. And the sequences used were as follows:

Tom5, forward: GACCCGGAGGAGATGAAA
Tom5, reverse: AGATAAATGGAGTGACTCGC
Tom6, forward: CTGCTGGCTCGGCTAATGAAA
Tom6, reverse: ATCAGTGGCAAAGCGGTAGAC
Tom7, forward: CATTCGCTGGGGCTTTATCC
Tom7, reverse: TCTGCACCCCTCTTAAATCCC
Tom20, forward: GGTACTGCATCTACTTCGACCG
Tom20, reverse: TGGTCTACGCCCTTCTCATATTC
Tom22, forward: CAGTCCCCGGACGAATTGC
Tom22, reverse: CGACAGGGTCTCATCTAGCTC
Western Blotting
Harvested Hela cells were lysed by 1% digitonin (1% digitonin, 25mM Tris pH=7.4, 150mM NaCl) at 4°C for 30min. After centrifugation at 13,000xg, 4°C for 15min, the supernatant was collected for Blue native PAGE (BN-PAGE) with the acrylamide concentration from 3% to 12%. The separated proteins were electro-transferred to PVDF membranes (Millipore) at 300 mA for 1h. The membranes were incubated with acetic acid for 8min, followed with incubation with methyl alcohol for 5min for 3 times. Tom40 was detected with the antibodies against Tom40 (Proteintech) (Supplementary Fig. S2g-f).

CL-MS analyses and phospholipid identification
Mix BS3 crosslinker solution and the purified protein with a 20-fold excess (20:1 Crosslinker : Protein) so that the final crosslinker concentration is 1.25 mM, 2.50 mM, 3.75 mM, and 5 mM, respectively, incubate for 45 min at room temperature. Quench and unreacted BS3 with 60 mM Tris for 15 min at room temperature. Then, the protein was sampled and separated by SDS-PAGE (Supplementary Fig. S8a). The cross-linked proteins were treated with 5 mM DTT for 60 min and alkylated with 12 mM iodoacetamide for 45 min at room temperature in the dark, followed by trypsin digestion (Promega, #8V5280) at 37°C overnight. The generated peptides were desalted and fractionated by HPLC into 12 fractions at pH 10 and then analyzed by LC-MS/MS. The acquired RAW data files were searched against a database containing Mitochondrial proteins using both XlinkX search engine integrated as a node in Proteome Discoverer software (Version 2.3)[19](Supplementary Table S2).

To extract the lipids, we add methanol to the purified TOM complex protein solution, shake and centrifuge the mixture to remove the proteins. The supernatant is collected for Matrix-assisted laser desorption/ionization of mass spectrometry (MALDI-MSMS). Data for different types of phospholipids are searched in the Human Metabolome Database (HMDB)[20](Supplementary Fig. S6).
References

1 Wittig, I., Braun, H. P. & Schagger, H. Blue native PAGE. Nat Protoc 1, 418-428, doi:10.1038/nprot.2006.62 (2006).
2 Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332, doi:10.1038/nmeth.4193 (2017).
3 Zhang, K. Gctf: Real-time CTF determination and correction. J Struct Biol 193, 1-12, doi:10.1016/j.jsb.2015.11.003 (2016).
4 Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).
5 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296, doi:10.1038/nmeth.4169 (2017).
6 Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat Methods 9, 853-854, doi:10.1038/nmeth.2115 (2012).
7 Swint-Kruse, L. & Brown, C. S. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Bioinformatics 21, 3327-3328, doi:10.1093/bioinformatics/bti511 (2005).
8 Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21, doi:10.1107/S0907444909042073 (2010).
9 Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols 10, 845-858, doi:10.1038/nprot.2015.053 (2015).
10 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132, doi:10.1107/S0907444904019158 (2004).
11 Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 65, 1074-1080, doi:10.1107/S0907444909052925 (2010).
12 Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221, doi:10.1107/S09074449090529436 (2009).
13 Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 (2015).
14 Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612, doi:10.1002/jcc.20084 (2004).
15 Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98, 10037-10041, doi:10.1073/pnas.181342398 (2001).
16 Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44, W344-350, doi:10.1093/nar/gkw408 (2016).
17 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research 42, W320-W324, doi:10.1093/nar/gku316 (2014).
18 Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47, W402-W407, doi:10.1093/nar/gkx297 (2019).
19 Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res 19, 1639-1645, doi:10.1101/gr.092759.109 (2009).
20 Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46, D608-D617, doi:10.1093/nar/gkx1089 (2018).
Supplementary Fig. S1 | Biochemical characterization of the TOM complex.

a, A representative trace of size-exclusion chromatography of TOM complex by Superose6 5/150 GL column.

b, SDS-PAGE of purified TOM complex. Band of each subunit was indicated, respectively.

c, Comparison of wild type and purified TOM complex, detected by BN-PAGE. Tom40 was detected with the antibodies against Tom40.

d, A representative cryo-EM micrograph of TOM-CC.

e, Power spectrum of the micrograph in (d).
Supplementary Fig. S2 | Cryo-EM analysis of the TOM-CC.

a, 2D class averages of cryo-EM particles.

b, Particle orientation distributions of the TOM-CC in the last iteration of the 3D auto-refinement.

c,d, Gold-standard Fourier Shell Correlation (FSC) curve of the final density maps and cross-validation.
with the use of the corresponding maps and models. Dimeric and Tetrameric TOM complex are indicated, respectively.

e. Workflow of 3D classification and refinement of cryo-EM particles. 823,450 particles were kept after 2D classification, and subject to rounds of 3D classification. A final dataset containing 159,396 particles were used for TOM-CC high-resolution refinement, and 11,184 particles were used for tetrameric TOM complex reconstruction (see methods for more details).

Supplementary Fig. S3 | Overall Structure of helical Tom subunits.

Overall structure of Tom5 (a), Tom6 (b), Tom7 (c), Tom22 (d). Distribution and features of each subunit are shown in up panel and models fitted in map are shown in low panel. The cryo-EM densty of each helical Tom subunit is displayed at 4 σ (Tom5), 4 σ (Tom6), 6 σ (Tom7), and 9 σ (Tom22) contour level, respectively.
Supplementary Fig. S4 | Sequence comparison of TOM-CC subunits between different species.

The threshold value of the alignment is 0.7, which means if the similarity score assigned to a column is greater than this value, residues are considered as highly similar and are colored in red and framed in blue. Secondary structure based on human Tom subunits are indicated. The alignments were generated by the ESPript.

The alignments were generated by the ESPript.
Supplementary Fig. S5 | Distinct features of human Tom40

a, Model of human Tom40 fitted in map. The N- and C- terminal are indicated with dotted cycles.
b, Alignments of human Tom40 model with yeast Tom40 models PDB: 6njf and PDB: 6ucu, respectively. The distinct differences between models are indicated with dotted cycles.
c, Secondary structure prediction of human and yeast Tom40, respectively. The structure predictions are based on the PSIPRED.

Supplementary Fig. S6 | Phospholipid identification

a, Mass spectrum of sample and buffer. The distinct mass spectrum are indicated.
b, List of identified PC molecules with different molecular weight. The data are searched from HMDB.
c, A further identification of each distinct items in (a). The characteristic groups of PC mass spectrum are based on HMDB.
Supplementary Fig. S7 | Surface conservation analyses of Tom subunits.

a, Surface conservation analyses of the interface between Tom40^{L77-K102} and β-strand domains of Tom40. The conserved residue K253 is indicated. Surface representation with residues coloured based on conservation level. The surface conservation analyses are generated by ConSurf, the same below. Shown in IMS view.

b, Surface conservation analyses of the interfaces between Tom40 and Tom22 in both sides. The conserved residue P98 is indicated in the right panel. Shown in side views.

c, Surface conservation analyses of the interface between Tom40 and Tom5. Shown in side view.

d, Surface conservation analyses of the interface between Tom40 and Tom6. Shown in side view.

e, Surface conservation analyses of the interface between Tom40 and Tom7. The conserved residue P29 is indicated. Shown in side view.
Supplementary Fig. S8 | CL-MS analyses and an unusual map between Tom22 and Tom6.

a. The SDS-PAGE of cross-linked TOM complex. The final crosslinker concentration is 1.25 mM, 2.50 mM, 3.75 mM, and 5 mM, respectively. The samples for detection are indicated with dotted box in red.

b. Interactions between Tom subunits detected by CL-MS. The crosslinked sites are indicated.

c. Diagram for a potential transport pathway of pre-VDAC3 based on CL-MS analyses. The crosslinked sites are indicated.

d. The potential short peptide is indicated with dotted cycles. Tom subunits are indicated. Shown in side view.
Supplementary Fig. S9 | Surface electrostatics of TOM-CC.

a, Surface electrostatic potential of helical Tom subunits. Side views are shown.

b, Surface electrostatic potential of Tom40. The distinct potential regions are indicated with dotted cycles, corresponding regions of copy units in model are also indicated, respectively. Shown are cutaway side views.
Supplementary Fig. S10 | Tetrameric TOM complex

a, Dimeric TOM complex maps fitted in the tetramer map. Two dimeric units are indicated by a and b. Cytosol views are shown.

b, Fitted model of tetrameric TOM complex. The tetrameric arrangement blurs the boundary between the two proposed exit sites of the TOM complex, which is indicated with dotted cycles. IMS views are shown.
Supplementary Table S1 | Cryo-EM data collection, refinement and validation statistics

Data collection and processing	
Microscope	Tian Krios TEM (Thermo Fisher)
Camera	Gatan K2 Summit direct electron detector
Energy filter	Gatan GIF Quantum, 20eV slit
Magnification (calibrated)	130,000 X
Voltage	300 kV
Defocus range (μm)	-1.3 - 2.3
Total electron exposure (e-/Å²)	50
Exposure rate (e-/pixel/sec)	10
Number of frames collected	32
Pixel size (Å)	1.08

Reconstruction	
Software	cryoSPARC and RELION
Micrographs used	5,443
Total extracted particles	1,636,577
Total refined particles	159,369 11,184
Symmetry applied	C2
Resolution of unmasked/masked reconstructions at 0.5 FSC (Å)	3.68/3.48 12.17/9.59
Resolution of unmasked/masked reconstructions at 0.143 FSC (Å)	3.36/3.43 9.12/8.53
Local resolution range (Å)	2.4-4.0

Real space refinement	
Software	phenix_real_spac_refine in the PHENIX
Resolution (Å)	3.43 8.53
Model composition	
Number of protein atoms	7,696 15,392
Number of ligand atoms	1 2
CC (box)	0.6 0.48
B factor of protein residues (mean)	102.83 222.80
B factor of protein ligand (mean)	21.3 35.4
R.M.S deviations	
Bond lengths (Å)	0.006 0.006
Bond angles (Å)	0.838 1.047

Validation	
Molprobitity Score	2.09 3.31
Clashscore	9.19 35.87
Rotamer outliers (%)	1.25 7.75
C-beta deviations	0 0
CaBLAM outliers (%)	5.24 5.24
Ramachandran plot statics	
Favored (%)	90.76 88.09
Allowed (%)	9.14 11.60
Outliers (%)	0.1 0.31
Cross-linked peptides of Tom subunits.

Subunits	Cross-linked sequences	Lys-Lysα
Tom40-Tom40	E[K]KLPLLPLTL-GYQLDLPI[K]ANL	300-309
Tom40-Tom22	GYQLDLPI[K]ANL-PSLPG[K]I	309-141
Tom40-Tom20	VGT[K]QI-L-A[K]ERAGLSKL	139-49
Tom40-Tom70	H[K]ASDL-NPKVY[K]AL	277-188
Tom40-Tom70	LNHR[K]NKF-EVEI[K]K	349-470
Tom40-Tom70	GPGLRS[K]MAIQTTQSKF-AD[K]VLKL	175-230
Tom40-Tom70	TVN[K]GL-AD[K]VLKL	107-230
Tom20-Tom5	A[K]ERAGL-[K]KLDL	49-46
Tom20-Tom20	[K]DAEAVQF-S[K]LDPL	61-56
Tom22-Tom20	SAAGATFDLSLFVAQ[K]MYR-AGLS[K]LDPL	76-56
Tom22-Tom20	SAAGATFDLSLFVAQ[K]MYR-LPDLK[K]DAEAVQK	76-61
Tom22-Tom22	VQA[K]MY-VQA[K]MY	76-76
Tom22-Tom70	PVFETE[K]E[LV]E[K]ENSYL	105-239
Tom22-Tom70	VQA[K]MYR-AD[K]VL	76-230
Tom22-Tom70	[K]EANVKRANAL-D[K]VLISL	359-354
Tom70-Tom5	D[K]NKL-[E-K]KLDLS	204-46
Tom70-Tom70	D[K]KVLISL-AD[K]VL	354-230
Tom70-Tom7	IGNANAA[K]PD[L]-S[K]EAKQRLQQL	349-6
Tom22-Tom70	PKGDAE[K]PEEEL-[K]RGADPMGPEPTVLSL	22-37

Cross-linked peptides of Tom subunits and VDAC1-3.

Subunits	Cross-linked sequences	Lys-Lysα
Tom40-VDAC1	VGT[K]QI-QL-SALLDGKNVNA[Q]H[K]I	139-274
Tom40-VDAC2	AG[K]YTL-NNWL-TD[K]VTDL	253-74
Tom40-VDAC3	P[K]ANLLF-G[K]AAKDVF	309-12
Tom40-VDAC3	P[K]ANLLF-GKAA[K]DVF	309-15
Tom40-VDAC3	EECHRKC[K]EL-EN[K]LAEGL	91-90
Tom22-VDAC3	VLPVFETE[K]E[LV]-[K]GYGFMVKIDL	105-20
Tom22-VDAC1	PKGDAE[K]P[GEEL]-ARGL[K]L	27-96
Tom70-VDAC1	VH[K]GL-AD[K]VL	516-32
Tom20-VDAC3	QMLLT[K]-SALIDG[K]NF	125-266

Cross-linked peptides of Tom subunits and Tim subunits.

Subunits	Cross-linked sequences	Lys-Lysα
Tom40-Tim44	AG[K]YTLNNWL-TD[K]VTDL	253-282
Tom40-Tim29	P[K]ANLLF-QE[K]KDRNAL	309-242
Tom40-Tim9	DLP[K]ANLL-DCV[K]KDF	309-134
Tom40-Tim14	VGT[K]QI-QL-YRGGFEP[K]-MTKREAAL	139-57
Tom40-Tim44	TVN[K]GL-DNV[K]QEL	107-68
Tom40-Tim44	RS[K]MIAQTTQSKF-TD[K]-VTDLGLG	175-282
Tom40-Tim14	AG[K]YTL-SSGYYRRGFEP[K]-MTKREAALIL	253-57
Tom40-Tim44	D[K]-[K]QDLDRGLELQ-MSELEEL	524-252
Tom70-Tim29	AD[K]V[L]-[K]PVVL	230-218
Tom22-Tim9	ET[KE]-KL-AAA[K]AGL	105-81
Tom70-Tim50	[K]NREPL-EKQ[K]-KEVLAD	245-457
Tom40-DNACJ7	IVGATLEK[K]-[Q]-KAYL	331-329
Tom70-DNACJ7	D[K]-[K]-AEACLAML	354-182
Tom70-DNACJ7	[K]-QDLDRGLELQ-MSELEEL	524-252
Tom70-Tim29	[K]-QDLDRGLELQ-MSELEEL	524-239
Tom70-MIC60	AQA[K]-CFAL-K-[L]-KEVL	441-299
Tom70-Tim50	[K]-AKQY-[K]-EHCYY	300-265
Tom70-Tim50	NP[K]-YVKAL-[S]-[K]-AEKL	185-247
Tom70-Tim16	LA[K]-VL-M-[K]-AYL	230-3
Tom70-Tim23	VH[K]-GL-Y-[K]-CTGGL	516-169
Tom70-Tim23	AD[K]-VL-EHM-[K]-KGSLS	230-201
Tom70-MIC60	D[K]-[K]-VISL-[K]-GMSVSLADKSLTTDDLSL	354-385
Tom70-MIC60	D[K]-[K]-VISL-SLAVE[L]-[K]-EY	354-577
Tom20-MIC60	S[K]-LPDL-[K]-PPPEL	56-675
Tom70-SAM50	EQLQ[K]-W-F-[K]-PRPGNF	168-178
Supplementary Table S3 | Model completeness of Tom subunits

Subunit	Mature protein	Chain ID	Modelled residues	Assigned residues
TOM40	361aa	A/B	77-360aa	77-360aa
TOM22	141aa	C/D	49-118aa	56-118aa
TOM7	55aa	G/H	6-57aa	6-54aa
TOM6	73aa	E/F	23-74aa	23-66aa
TOM5	51aa	I/J	12-49aa	12-49aa
Fig. 2f

Fig. 2g
Supplementary Fig. S1b
Supplementary Fig. S1c
Supplementary Fig. S8a
Checked	Confidenc	Max. Xlink	Sequence	Accession	Position A	Sequence	Accession	Position B	
FALSE	High	59.82	A[K]ERAGL	Q15388	49 [K]KLDSI	Q8N4H5	46		
FALSE	High	55.39	RS[K]MAIQ	O96008	175 ARGL[K]LTf	P21796	96		
FALSE	High	53.17	[K]EANKVL	O94826	359 D[K]VISL	O94826	354		
FALSE	High	50.16	[K]DAEVAG	Q15388	61 S[K]LPDL	Q15388	56		
FALSE	High	47.04	GYQLDLP[K]	O96008	309 PSLPG[K]I	Q9NS69	141		
FALSE	High	40.04	DN[K]EKLE	O94826	204 [K]KLDSI	Q8N4H5	46		
FALSE	High	30.72	[K]AECLAM	Q96615	182 D[K]VISL	O94826	354		
FALSE	High	30.72	[K]TKSENG	P21796	32 VH[K]GL	O94826	516		
FALSE	High	29.35	E[K]KLPLP	O96008	330 GYQLDLP[K]	O96008	309		
FALSE	High	29.32	D[K]VISL	O94826	354 AD[K]VL	O94826	230		
FALSE	High	28.42	AG[K]YTLN	O96008	253 TD[K]VTDL	O43615	282		
FALSE	High	28.09	VAQ[K]MYQ	O9NS69	76 VAQ[K]MY	Q9NS69	76		
FALSE	High	27.1	N[K]GYGFG	Q9Y277	20 VLPPVFET	Q9NS69	105		
FALSE	High	26.6	A[K]ERAGL	Q15388	49 VGT[K]QL	O96008	139		
FALSE	High	26.6	Q[K]QKEDR	O94826	239 [K]QDDLDR	O94826	524		
FALSE	High	26.6	Q[K]KEKDR	O94826	242 P[K]ANLL	O96008	309		
FALSE	High	25.83	AQAQ[K]CF	O94826	441 LKA[K]EEL	Q16891	299		
FALSE	High	25.17	DLP[K]ANL	O96008	309 LDCV[K]DF	Q9Y5J7	34		
FALSE	High	25.17	G[K]AAKDVR	Q9Y277	12 P[K]ANLLF	O96008	309		
FALSE	High	25.17	GKAA[K]DV	Q9Y277	15 P[K]ANLLF	O96008	309		
FALSE	High	24.64	VAQ[K]MYQ	O9NS69	76 [K]PPTL	O94826	604		
FALSE	High	24.3	SALLDG[K]	P21796	266 VGT[K]QL	O96008	139		
FALSE	High	23.6	[K]RGADPG	Q9P0U1	37 P[K]GDAEKR	Q9NS69	22		
FALSE	High	23.56	PVVFETE[K]	Q9NS69	105 EV[K]ENSG	O94826	293		
FALSE	High	23.48	[K]EHCVY	Q02776	265 [K]AKQY	O94826	300		
FALSE	High	23.48	[K]GATLE[K]	O96008	331 [I]JAYL	Q9L9515	329		
FALSE	High	22.86	EKQ[K]EVD	Q02776	457 [K]NREPL	O94826	245		
FALSE	High	22.86	SALLDGKN	P21796	274 VGT[K]QL	O96008	139		
FALSE	High	22.86	LAD[K]VL	O94826	230 MA[K]YL	Q9Y3D7	3		
FALSE	High	22.86	LQLQW[K]	O94826	524 AEGL[K]L	Q9Y777	96		
FALSE	High	22.86	YRGGFEP[K]	Q96DA6	57 VGT[K]QL	O96008	139		
FALSE	High	22.1	Y[K]CTGGL	O14925	169 VH[K]GL	O94826	516		
FALSE	High	22.1	NPKYV[K]A	O94826	188 H[K]ASDQL	O96008	277		
FALSE	High	21.53	S[K]EAKQR	Q9P0U1	6 IGNANAA[K]	O94826	349		
FALSE	High	21.4	[K]WCEYGL	P45880	74 AG[K]YTL	O96008	253		
FALSE	High	21.4	DNV[K]QEQL	O43615	68 TVN[K]GL	O96008	107		
FALSE	High	21.4	SALIDG[K]	Q9Y277	266 QMLLT[K]L	Q15388	125		
FALSE	High	21.4	EHM[K]GSL	O14925	201 AD[K]VL	O94826	230		
FALSE	High	21.4	LNHRE[K]NK	O96008	349 EEV[K]KF	O94826	470		
FALSE	High	21.23	GMSVS[K]	Q16891	385 D[K]VISL	O94826	354		
FALSE	High	20.9	RS[K]MAIQ	O96008	175 TD[K]VTDL	O43615	282		
FALSE	High	20.81	PKGDAE[K]	Q9NS69	27 ARG[L][K]L	P21796	96		
FALSE	High	20.81	[K]PPPEL	Q16891	675 S[K]LPDL	Q15388	56		
FALSE	High	20.81	F[K]PRPGN	Q9Y512	178 EQLQ[K]W	O94826	168		
FALSE	High	20.79	[K]PVVL	Q9BSF4	218 AD[K]VL	O94826	230		
FALSE	High	20.78	AA[K]AGL	Q9Y5J7	81 ETE[K]L	Q9NS69	105		
FALSE	High	20.38	SGGYRGGQ	Q96DA6	57 AG[K]YTL	O96008	253		
FALSE	High	20.28	S[K]EAKQR	Q9P0U1	6 VGT[K]QL	O96008	139		
FALSE	High	20.28	VAQ[K]MYIQ	Q9NS69	76 AD[K]VL	O94826	230		
FALSE	High	20.28	MPSPQF	KO94826	258	L[K]NAQLEI	Q99615	368	
FALSE	High	20.16	GPG	LR[K]	O96008	175	AD[K]VLKL	O94826	230
FALSE	High	20.16	EECHR	KC	O96008	91	EN[K]LAEG	Q9Y277	90
FALSE	High	20.16	AD[K]VLKL	O94826	230	TVN[K]GL	O96008	107	
FALSE	High	20.16	SD[K]IAEKL	Q02776	247	NP[K]YVKA	O94826	185	
Crosslinker	Crosslink T	# CSMs	Protein Descriptions A	Protein Descriptions B					
------------	-------------	--------	------------------------	------------------------					
DSS	Inter	1	Q15388	Q8N4H5					
DSS	Inter	7	096008	P21796					
DSS	Intra	4	O94826	094826					
DSS	Intra	6	Q15388	Q15388					
DSS	Inter	6	096008	Q9NS69					
DSS	Inter	10	O94826	Q8N4H5					
DSS	Inter	9	Q99615	094826					
DSS	Inter	2	P21796	094826					
DSS	Intra	1	096008	096008					
DSS	Intra	1	O94826	094826					
DSS	Intra	1	096008	O43615					
DSS	Intra	1	Q9NS69	Q9NS69					
DSS	Inter	1	Q9Y277	Q9NS69					
DSS	Inter	2	Q15388	O96008					
DSS	Inter	1	Q9BSF4	094826					
DSS	Inter	1	Q9BSF4	096008					
DSS	Inter	1	O94826	Q16891					
DSS	Inter	4	096008	Q9Y5J7					
DSS	Inter	1	Q9Y277	O96008					
DSS	Inter	1	Q9Y277	O96008					
DSS	Inter	1	Q9NS69	O94826					
DSS	Inter	2	P21796	O96008					
DSS	Inter	1	Q9P0U1	Q9NS69					
DSS	Inter	1	Q9NS69	O94826					
DSS	Inter	1	Q27776	O94826					
DSS	Inter	1	O96008	Q99615					
DSS	Inter	1	Q27776	O94826					
DSS	Inter	1	P21796	O96008					
DSS	Inter	1	O94826	Q9Y3D7					
DSS	Inter	1	O94826	Q9Y277					
DSS	Inter	1	Q96DA6	O96008					
DSS	Inter	1	O14925	O94826					
DSS	Inter	1	O94826	O96008					
DSS	Inter	1	Q9P0U1	O94826					
DSS	Inter	2	P45880	O96008					
DSS	Inter	1	O43615	O96008					
DSS	Inter	1	Q9Y277	Q15388					
DSS	Inter	1	O14925	O94826					
DSS	Inter	1	O96008	O94826					
DSS	Inter	1	Q16891	Q96008					
DSS	Inter	1	O96008	O43615					
DSS	Inter	1	Q9NS69	P21796					
DSS	Inter	1	Q16891	Q15388					
DSS	Inter	1	Q9Y512	O94826					
DSS	Inter	1	Q9BSF4	094826					
DSS	Inter	1	Q9Y5J7	Q9NS69					
DSS	Inter	1	Q96DA6	O96008					
DSS	Inter	1	Q9P0U1	O96008					
DSS	Inter	1	Q9NS69	O94826					
DSS	Inter	1	094826	099615					
-----	-------	---	--------	--------					
DSS	Inter	1	096008	094826					
DSS	Inter	1	096008	09Y277					
DSS	Inter	1	094826	096008					
DSS	Inter	1	092776	094826					
Accession	Description	Score							
-----------	-------------	-------							
O96008	Mitochondrial import receptor subunit TOM40 homolog OS=Homo sapiens GN	17953.35							
Q9NS69	Mitochondrial import receptor subunit TOM22 homolog OS=Homo sapiens GN	5711.02							
Q8N4H5	Mitochondrial import receptor subunit TOM5 homolog OS=Homo sapiens GN	1146.37							
Q9P0U1	Mitochondrial import receptor subunit TOM7 homolog OS=Homo sapiens GN	466.47							
Q15388	Mitochondrial import receptor subunit TOM20 homolog OS=Homo sapiens GN	463.45							
Q96B49	Mitochondrial import receptor subunit TOM6 homolog OS=Homo sapiens GN	213.82							
Coverage	# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs				
----------	------------	------------------	------------	--------	-------				
85.60	2	21	38	3690	361				
100.00	2	12	12	1388	142				
100.00	4	16	16	802	51				
83.64	3	2	10	246	55				
86.90	1	12	12	114	145				
94.59	1	6	6	83	74				
MW [kDa]	calc. pl								
---------	----------								
37.9	7.25								
15.5	4.34								
6.0	9.70								
6.2	10.29								
16.3	8.60								
8.0	4.89								
Accession	Description	Score	Coverage	# Proteins					
-----------	---	--------	----------	------------					
O94826	Mitochondrial import receptor subunit TOM70 OS=Homo sapiens GN=TOM70	1695.56	78.29	1					
O96008	Mitochondrial import receptor subunit TOM40 homolog OS=Homo sapiens	6138.80	73.41	3					
Q9NS69	Mitochondrial import receptor subunit TOM22 homolog OS=Homo sapiens	1946.82	97.89	1					
Q15388	Mitochondrial import receptor subunit TOM20 homolog OS=Homo sapiens	987.83	87.59	1					
Q8N4H5	Mitochondrial import receptor subunit TOM5 homolog OS=Homo sapiens	181.55	64.71	4					
Q9P0U1	Mitochondrial import receptor subunit TOM7 homolog OS=Homo sapiens	34.50	70.91	2					
Q96B49	Mitochondrial import receptor subunit TOM6 homolog OS=Homo sapiens	29.17	32.43	1					
Unique Peptide	# Peptides	# PSMs	# AAs	MW [kDa]	calc. pl				
----------------	------------	--------	-------	----------	---------				
55	55	707	608	67.4	7.12				
30	30	1686	361	37.9	7.25				
13	13	736	142	15.5	4.34				
16	16	396	145	16.3	8.60				
8	8	95	51	6.0	9.70				
2	7	20	55	6.2	10.29				
3	3	14	74	8.0	4.89				
Accession	Description	Score	Coverage						
-----------	--	--------	----------						
O96008	Mitochondrial import receptor subunit TOM40 homolog OS=Homo s	1680.83	79.78						
Q9NS69	Mitochondrial import receptor subunit TOM22 homolog OS=Homo s	766.28	78.17						
Q15388	Mitochondrial import receptor subunit TOM20 homolog OS=Homo s	83.97	40.69						
Q8N4H5	Mitochondrial import receptor subunit TOM5 homolog OS=Homo sa	72.53	86.27						
Q96B49	Mitochondrial import receptor subunit TOM6 homolog OS=Homo sa	25.78	32.43						
Q9P0U1	Mitochondrial import receptor subunit TOM7 homolog OS=Homo sa	5.00	43.64						
# Proteins	# Unique Peptides	# Peptides	# PSMs	# AAs	MW [kDa]				
------------	-------------------	------------	--------	------	---------				
3	22	22	522	361	37.9				
2	7	7	285	142	15.5				
1	5	5	38	145	16.3				
4	9	9	53	51	6.0				
1	3	3	16	74	8.0				
4	3	3	5	55	6.2				
calc. pI									

7.25									
4.34									
8.60									
9.70									
4.89									
10.29									