NADPH Oxidases, Reactive Oxygen Species, and Hypertension

Clinical implications and therapeutic possibilities

RHIAN M. TOUYZ, MD, PHD
TAMARA M. PARAVICINI, PHD

Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed “oxidative stress”) has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal modeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.

Diabetes Care 31 (Suppl. 2):S170–S180, 2008

© 2008 by the American Diabetes Association.

From the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada.

Address correspondence and reprint requests to Rhian M. Touyz, MD, PhD, Canada Research Chair in Hypertension, Kidney Research Centre, OHRI/University of Ottawa, 451 Smyth Rd., Ottawa, K1H 8M5, Ontario, Canada. E-mail: rtouyz@ottawa.ca.

The authors of this article have no relevant duality of interest to declare.

This article is based on a presentation at the 1st World Congress of Controversies in Diabetes, Obesity and Hypertension (CODHy). The Congress and the publication of this article were made possible by unrestricted educational grants from MSD, Roche, sanofi-aventis, Novo Nordisk, Medtronic, LifeScan, World Wide, Eli Lilly, Keryx, Abbott, Novartis, Pfizer, Generex Biotechnology, Schering, and Johnson & Johnson.

Abbreviations: NOS, nitric oxide synthase; ROS, reactive oxygen species; SHR, spontaneously hypertensive rat; SOD, superoxide dismutase.

DOI: 10.2337/dc08-s247
© 2008 by the American Diabetes Association.
PRODUCTION AND METABOLISM OF ROS — ROS are produced by all vascular cell types, including endothelial, smooth muscle, and adventitial cells, and can be formed by numerous enzymes. Enzymatic sources of ROS that are important in vascular disease and hypertension are xanthine oxidase, uncoupled nitric oxide synthase (NOS), and NAD(P)H oxidase (Fig. 1).

Xanthine oxidase, which catalyzes the oxidation of hypoxanthine and xanthine to form \(\text{O}_2^- \), is present in the vascular endothelium (17). Although xanthine oxidase–derived \(\text{O}_2^- \) has been studied mainly in the context of cardiac disease, there is evidence suggesting involvement in vascular dysfunction in hypertension. Spontaneously hypertensive rats (SHRs) demonstrate elevated levels of endothelial xanthine oxidase and increased ROS production, which are associated with increased arteriolar tone (18). This may be mediated in part through an adrenal pathway, because adrenalectomy reduces xanthine oxidase expression (19). Endothelial dysfunction in transgenic rats with overexpression of renin and angiotensinogen has also been associated with increased xanthine oxidase activity (20). In addition to effects on the vasculature, xanthine oxidase may play a role in end-organ damage in hypertension. In experimental models of hypertension, xanthine oxidase activity is increased in the kidney. In SHRs, long-term inhibition of xanthine oxidase with allopurinol reduced renal xanthine oxidase activity without lowering blood pressure, indicating that the increased renal ROS production was a consequence of hypertension rather than a contributing factor (21). The finding that allopurinol can improve cardiac and renal hypertrophy in SHRs and slow the progression of renal disease in patients with chronic kidney disease and hypertension (22), while having a minimal impact on blood pressure (23), supports a role for xanthine oxidase in hypertensive end-organ damage rather than in the development of hypertension per se. This may be mediated through direct vascular effects of xanthine oxidase–produced uric acid (24).

NOS can also contribute to ROS production, since all three NOS isoforms have been shown to be susceptible to the “uncoupling” that leads to the formation of \(\text{O}_2^- \) (rather than NO) (25). For endothelial NOS, this process is triggered in vitro through the absence of the cofactors L-arginine and tetrahydrobiopterin (26). Uncoupling of endothelial NOS has been demonstrated in deoxycorticosterone acetate (DOCA)-salt–induced hypertension and in SHRs (27,28). Treatment with tetrahydrobiopterin improves blood pressure in both DOCA-salt hypertension and SHRs (27,28). Whether uncoupled NOS effects are due to changes in production of \(\text{O}_2^- \) or NO remain unclear. To address this, blood pressure and endothelial function in mice with endothelium-targeted transgenic eNOS overexpression (eNOS-Tg) were compared with littermates in which eNOS coupling was rescued by additional endothelium-targeted overexpression of GTP cyclohydrolase 1 (eNOS/GCH-Tg) to increase endothelial BH4 levels (29). Blood pressure was equally reduced in both genotypes, compared with wild-type animals. Furthermore, both eNOS-Tg and eNOS/GCH-Tg mice exhibited similarly impaired endothelial-dependent vasorelaxation, demonstrating that reduced vasorelaxation responses result from desensitization of cGMP-mediated signaling and are associated with increased NO production rather than changes in superoxide production (29). However, others have demonstrated that vascular effects of eNOS uncoupling are due to enhanced \(\text{O}_2^- \) production. Increased vascular ROS itself may induce eNOS uncoupling as a consequence of increased oxidation of tetrahydrobiopterin and inhibition of dimethylarginine dimethylaminohydrolase (30). In fact, NAD(P)H oxidase has been shown to cause endothelial NOS uncoupling and to promote xanthine oxidase–dependent superoxide production (31).

NAD(P)H OXIDASE — NAD(P)H oxidase is a multi-subunit enzyme that catalyzes \(\text{O}_2^- \) production by the 1-electron reduction of \(\text{O}_2 \) using NADPH or NADH [hence the parentheses in NAD(P)H] as the electron donor: \(2\text{O}_2 + \text{NAD(P)H} \rightarrow 2\text{O}_2^- + \text{NAD(P)}^+ + \text{H}^+ \). The prototypical NAD(P)H oxidase is that found in neutrophils and has five subunits: p47phox ("phox" stands for phagocyte oxidase), p67phox, p40phox, p22phox, and the catalytic subunit gp91phox (also termed "Nox2") (32,33).

In unstimulated cells, p47phox, p67phox, p40phox, and p22phox exist in the cytosol, whereas p22phox and gp91phox are in the membrane, where they occur as a heterodimeric flavoprotein, cytochrome b558. On stimulation, p47phox becomes phosphorylated and the cytosolic subunits form a complex that translocates to the membrane, where it associates with cytochrome b558 to assemble the active oxidase, which transfers electrons from the substrate to \(\text{O}_2 \), forming \(\text{O}_2^- \) (34). Activation also requires participation of Rac 2 (or Rac 1) and Rap 1A (35).

Although NAD(P)H oxidases were originally considered as enzymes expressed only in phagocytic cells involved in host defense and innate immunity, re-
Oxidative stress and hypertension

cent evidence indicates that there is an entire family of NAD(P)H oxidases, based on the discovery of gp91phox homologs (36,37). The new homologs, along with gp91phox, are now designated the Nox family of NAD(P)H oxidases. The family comprises seven members, including Nox1, Nox2 (formerly termed “gp91phox”), Nox3, Nox4, Nox5, Duox1, and Duox2 (38). They are expressed in many tissues and mediate diverse biological functions. Nox1 is found in colon and vascular cells and plays a role in host defense and cell growth; Nox2 is the catalytic subunit of the respiratory burst oxidase in phagocytes, but is also expressed in vascular, cardiac, renal, and neural cells; Nox3 is found in fetal tissue and the adult inner ear and is involved in vestibular function; Nox4, originally termed “Renoxx” (renox oxidase), because of its abundance in the kidney, is also found in vascular cells and osteoclasts; and Nox5 is a Ca2+-dependent homolog, found in testis and lymphoid tissue, but also in vascular cells. Duox1 and -2 are thyroid Noxes involved in thyroid hormone biosynthesis. While all Nox proteins are present in rodents and humans, the mouse and rat genome does not contain the nox5 gene. The regulation and function of each Nox remains unclear, but it is evident that Nox enzymes are critical for normal biological responses and that they contribute to cardiovascular and renal disease, including hypertension and atherosclerosis.

REGULATION OF NAD(P)H OXIDASE ACTIVITY — How the NAD(P)H oxidase subunits interact in cardiovascular cells and how they generate O2 is not fully known. All Noxes appear to have an obligatory need for p22phox (39,40). Whereas Nox2 requires p47phox and p67phox for its activity, Nox1 may interact with the recently identified homologs of p47phox and p67phox, namely NAD(P)H oxidase organizer 1 (NOXO1) and NAD(P)H oxidase activator 1 (NOX1A1), respectively (41,42). Vascular NAD(P)H oxidase is responsive to several growth factors (platelet-derived growth factor, epidermal growth factor, and transforming growth factor β), cytokines (tumor necrosis factor-α, interleukin-1, and platelet aggregation factor), mechanical forces (cyclic stretch, laminar, and oscillatory shear stress), and metabolic factors (hyperglycemia, hyperinsulinenia, free fatty acids, advanced glycation end products, and G protein–coupled receptor agonists (serotonin, thrombin, bradykinin, endothelin, and Ang II) (43–47). Ang II, via AT1 receptors, is an important and potent regulator of cardiovascular NAD(P)H oxidase that activates NAD(P)H oxidase through stimulation of signaling pathways involving c-Src p21ras, protein kinase C, phospholipase D, and phospholipase A2 (48–50). Ang II also influences NAD(P)H oxidase activation through transcriptional regulation of oxidase subunits (51).

ANTIOXIDANT DEFENSES — Antioxidants are defined as substances that, when present at low concentrations relative to an oxidizable substrate, significantly delay or prevent oxidation of that substrate. Living organisms have evolved a number of antioxidant defenses to maintain their survival against oxidative stress. These mechanisms are different in the intracellular and extracellular compartments and comprise enzymatic and nonenzymatic types. The major vascular enzymatic antioxidants are SOD, catalase, and glutathione peroxidase (52–54). SOD catalyzes the dismutation of O2 into H2O2 and O2. Of the three SOD isoforms, extracellular SOD is the main vascular SOD. It is produced and secreted by vascular smooth muscle cells and binds to glycosaminoglycans in the vascular extracellular matrix on the endothelial cell surface and plays an important role in the regulation of the oxidant status in the vascular interstitium (55). Reduced glutathione plays a major role in the regulation of the intracellular redox state of vascular cells by providing reducing equivalents for many biochemical pathways (56). Glutathione peroxidase reduces H2O2 and lipid peroxides to water and lipid alcohols, respectively, and in turn oxidizes glutathione to glutathione disulfide. The glutathione peroxidase/glutathione system may be important in low-level oxidative stress. Catalase is an intracellular antioxidant enzyme that is mainly located in cellular peroxisomes and to some extent in the cytosol, which catalyzes the reaction of H2O2 to water and molecular oxygen (57). Catalase is very effective in high-level oxidative stress and protects cells from H2O2 produced within the cell. The enzyme is especially important in the case of limited glutathione content or reduced glutathione peroxidase activity. Thioredoxin reductase is an antioxidant enzyme that participates in thiol-dependent cellular reductive processes (58). Numerous nonspecific antioxidants, such as α-tocopherol (vitamin E) and ascorbic acid (vitamin C), scavenge OH· as well as other radicals (59). Low antioxidant bioavailability promotes cellular oxidative stress and has been implicated in oxidative damage associated with hypertension (53).

ROLE OF NAD(P)H OXIDASE-DERIVED ROS IN VASCULAR BIOLOGY — ROS influence vascular cell growth, migration, proliferation, and activation (56,57). Physiologically, NAD(P)H oxidase–derived ROS have been implicated in the regulation of vascular tone by modulating vasodilation directly (H2O2 may have vasodilator actions) or indirectly by decreasing NO bioavailability through quenching by O2·− to form ONOO− (58,59). ROS, through the regulation of hypoxia-inducible factor 1 (HIF-1), are also important in O2 sensing (60), which is essential for maintaining normal O2 homeostasis. In pathological conditions, ROS are involved in inflammation, endothelial dysfunction, cell proliferation, migration and activation, extracellular matrix deposition, fibrosis, angiogenesis, and cardiovascular remodeling, important processes contributing to cardiovascular and renal remodeling in hypertension, atherosclerosis, diabetes, cardiac failure, and myocardial ischemia-reperfusion injury (61,62) (Fig. 2). These effects are mediated through redox-sensitive regulation of multiple signaling molecules and second messengers including mitogen-activated protein kinases, protein tyrosine phosphatases, tyrosine kinases, proinflammatory genes, ion channels, and Ca2+ (63–65).

NAD(P)H OXIDASE, OXIDATIVE STRESS, AND HYPERTENSION

Oxidative stress in experimental models of hypertension

The relationship between oxidative stress and increased blood pressure has been demonstrated in many models of experimental hypertension. Increased ROS formation precedes development of hypertension in SHRs, suggesting that ROS participate in the development and maintenance of hypertension (67,68). Markers of oxidative stress, such as thiobarbituric acid reactive substances and F2-isoprostanes, tissue concentrations of ·O2− and H2O2, and activation of NAD(P)H oxidase and xanthine oxidase,
Ang II–dependent hypertension is particularly sensitive to NAD(P)H oxidase–derived ROS. In rats and mice made hypertensive by Ang II infusion, expression of NAD(P)H oxidase subunits (Nox1, Nox2, Nox4, p22phox), oxidative activity, and generation of ROS are increased (72–75). To support a role for oxidative activity, and generation of ROS are increased, whereas levels of NO and antioxidant enzymes are reduced in experimental hypertension (69–71).

Ang II–dependent hypertension is particularly sensitive to NAD(P)H oxidase–derived ROS. In rats and mice made hypertensive by Ang II infusion, expression of NAD(P)H oxidase subunits (Nox1, Nox2, Nox4, p22phox), oxidative activity, and generation of ROS are increased (72–75). To support a role for NAD(P)H oxidase–derived ROS production in the pathogenesis of Ang II–sensitive hypertension, various mouse models with altered NAD(P)H oxidase subunit expression have been studied. In p47phox knockout mice and in gp91phox knockout mice, Ang II infusion fails to induce hypertension, and these animals do not show the same increases in \(\cdot O_2^- \) production, vascular hypertrophy, and endothelial dysfunction observed in Ang II–infused wild-type mice (75–77). In Ang II–infused mice treated with siRNA targeted to renal p22phox, renal NAD(P)H oxidase activity was blunted, ROS formation was reduced, and blood pressure elevation was attenuated, suggesting that p22phox is required for Ang II–induced oxidative stress and hypertension (78). On the other hand, overexpression of vascular p22phox was associated with increased oxidative stress and vascular dysfunction but no significant increase in blood pressure (79). Treatment with apocynin or diphenylethylammonium, pharmacological inhibitors of NAD(P)H oxidase, or gp91ds-tat, a novel specific inhibitor of NAD(P)H oxidase, reduced vascular \(\cdot O_2^- \) production, prevented cardiovascular remodeling, and attenuated development of hypertension in Ang II–treated mice (74,80,81). In most of these models, Ang II was infused for a short time period (1–3 weeks), inducing an acute hypertensive response. In a model of chronic Ang II–dependent hypertension, where we crossed transgenic mice expressing human renin (which exhibit an Ang II–sensitive hypertensive phenotype) with Nox2–/– mice, development of hypertension was not prevented even though oxidative stress was reduced, suggesting that other Nox homologs, such as Nox1, may be important (82). To support this, recent studies in Nox1-deficient mice demonstrated that vascular \(\cdot O_2^- \) production is reduced and blood pressure elevation in response to Ang II is blunted (83,84), whereas in transgenic mice in which Nox1 is overexpressed in the vascular wall, Ang II–mediated vascular hypertrophy and blood pressure elevation are enhanced (85).

There is also evidence for ROS involvement in the pathogenesis of hypertension independent of direct Ang II actions. In SHR, vascular, renal, and cardiac \(\cdot O_2^- \) production is increased compared with normotensive control subjects (15,86,87). In stroke-prone SHRs, aortic expression of Nox1 and Nox4 is significantly increased compared with Wistar-Kyoto (88). In DOCA salt-induced mineralocorticoid hypertension, vascular \(\cdot O_2^- \) production involving elevated NAD(P)H oxidase activity, uncoupling of endothelial NOS, and mitochondrial sources, in part through the endothelin-1/\(\alpha \) receptor pathway, is increased (27,89–92). Infusion of endothelin-1 increases NAD(P)H oxidase-dependent \(\cdot O_2^- \) production; however, preventing this increase in ROS generation does not inhibit development of hypertension in these animals (93). Overexpression of human endothelin-1 in mice also induces vascular remodeling and impairs endothelial function, via activation of NAD(P)H oxidase (94).

To further support a role for oxidative stress in hypertension, many studies have shown that treatment with antioxidant vitamins and superoxide dismutase mimetics, such as tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinyl), free radical scavengers, or tetrahydrobiopterin (BH₄), attenuates or prevents development of hypertension and associated target organ damage (27,28,68,95).

Oxidative stress and human hypertension

Although studies in humans have not been as convincing as those in experimental models, there is evidence that oxidative stress is increased in patients with essential hypertension, renovascular hypertension, malignant hypertension, salt-sensitive hypertension, cyclosporine-induced hypertension, and preeclampsia (96–100) (Table 1). These findings are based, in general, on increased levels of plasma thiobarbituric acid reactive substances and 8-epi-isoprostanes, biomarkers of lipid peroxidation and oxidative stress (96–101). Polymorphonuclear leukocyte- and platelet-derived \(\cdot O_2^- \), which also participates in vascular oxidative stress and inflammation, is increased in hypertensive patients (102,103).

Hypertensive patients exhibit a significantly higher production of plasma \(H_2O_2 \).
Oxidative stress and hypertension

Table 1—Evidence supporting a role for oxidative stress in human hypertension

Phenomenon
Increased plasma and urine levels of markers of oxidative stress (e.g., TBARS, isoprostanes)
Increased vascular generation of superoxide anion
Decreased plasma levels of antioxidant vitamins
Inverse association between plasma ascorbate levels and blood pressure in epidemiological studies
Blood pressure–lowering effect of vitamin C in small clinical studies
Antihypertensive drugs reduce ROS production and decrease oxidative stress by inhibiting activation of NADPH oxidase and through intrinsic antioxidant properties

than normotensive subjects (104). Additionally, normotensive subjects with a genetic risk of hypertension (positive family history of hypertension) have greater \(\text{H}_2\text{O}_2 \) production than blood pressure–matched normotensive subjects without a family history of hypertension, suggesting that there may be a genetic component that leads to elevated production of hydrogen peroxide (104,105). Lacy et al. (104) determined familial correlations for \(\text{H}_2\text{O}_2 \) production as a quantitative trait in a family-based cohort of hypertensive subjects and used these results to estimate the heritability of this trait. Heritability estimates revealed that approximately 20–35% of the observed variance in \(\text{H}_2\text{O}_2 \) production could be attributed to genetic factors, suggesting an important heritable component to the overall determination of this trait.

We reported that production of ROS is increased in vascular smooth muscle cells from resistance arteries of hypertensive patients and that this is associated with upregulation of vascular NAD(P)H oxidase (106,107). The importance of this oxidase in oxidative stress in human cardiovascular disease is supported by studies from Zalba et al. (108), who demonstrated that polymorphisms in NAD(P)H oxidase subunits are associated with increased atherosclerosis and hypertension. In particular, the \(-930(A/G)\) polymorphism in the p22phox promoter may be a novel genetic marker associated with hypertension. The C242T CYBA polymorphism is associated with essential hypertension, and hypertensive patients carrying the CC genotype of this polymorphism exhibit features of NAD(P)H oxidase–mediated oxidative stress and endothelial damage (109). In a Japanese population, the G(−930)A polymorphism of CYBA was confirmed to be important in the pathogenesis of hypertension (110).

Obesity is a major contributing factor to the development of hypertension and subsequent cardiovascular pathology (111). Data from the Framingham Heart Study, a large community-based cohort, showed a positive correlation between obesity and oxidative stress, as assessed by urinary levels of 8-epi-isoprostanes (112). Similar correlations between indexes of obesity (BMI, waist-to-hip ratio) and systemic oxidative stress have also been found in other populations (113). In nondiabetic obese subjects, 4 weeks of dietary restriction in obese subjects reduces both ROS generation by inflammatory cells and markers of systemic oxidative stress without altering plasma levels of antioxidant vitamins (114). Indeed, nutrition may act as a modulator of ROS generation, since fasting causes an acute reduction in ROS production from leukocytes from normal subjects (113), whereas glucose challenge increases ROS production from leukocytes (116). Furthermore, in conditions such as obesity and type 2 diabetes, insulin resistance may also contribute to oxidative stress. In obese nondiabetic patients, administration of insulin suppressed both ROS production and plasma levels of plasminogen-activated inhibitor 1 and intercellular adhesion molecule 1, suggesting an acute anti-inflammatory action of this hormone (117). Similar anti-inflammatory and fibrinolytic actions have also been demonstrated in patients with acute myocardial infarction who received insulin infusion (118).

In addition to excess ROS generation, decreased antioxidant defense mechanisms contribute to oxidative stress in patients with hypertension. Hypertensive patients have reduced activity and decreased content of antioxidant enzymes, including SOD, glutathione peroxidase, and catalase (68,71,119,120). Decreased levels of antioxidant vitamins A, C, and E have been demonstrated in newly diagnosed untreated hypertensive patients compared with normotensive control subjects (120). Moreover, SOD activity has been demonstrated to correlate inversely with blood pressure in patients with hypertension (120).

Therapeutic potential of reducing ROS in human hypertension

Based on experimental evidence of the importance of oxidative stress in vascular damage, there has been enormous interest in developing strategies that target ROS in the treatment of hypertension and other cardiovascular diseases. Therapeutic approaches that have been considered include mechanisms 1) to increase antioxidant capacity, 2) to increase NO bioavailability, and 3) to reduce ROS generation by decreasing activity of \(\text{O}_2^{-} \)-generating enzymes (121). Gene therapy targeting antioxidant systems, such as NOS and hypoxia-inducible factor 1 (HIF-1) (122,123), are also being developed, but their use in clinical hypertension remains unclear.

The potential of antioxidants in treating conditions associated with oxidative stress is supported by experimental investigations, observational findings, small clinical studies, and epidemiological data (124,125). However, findings are inconsistent and clinical trial data are inconclusive. Many large trials have been published regarding antioxidant vitamin effects on risks of cardiovascular disease, including the Cambridge Heart Antioxidant Study (2,002 patients); the Alpha Tocopherol, β-Carotene Cancer Prevention Study (27,271 males); the Group Italiano per lo Studio della Sopravvenza nell’Infarto Miocardico Prevenzione trial (3,658 patients); the Heart Outcomes Prevention Evaluation (HOPE) study (2,545 subjects); the Medical Research Council/British Heart Foundation (MRC/ BHF) Heart Protection Study (20,536 adults); the Primary Prevention Project (4,495 patients); and the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study (520 subjects) (126,127). Except for the ASAP study, which demonstrated that 6-year supplementation of daily vitamin E and slow-release vitamin C reduced progression of carotid atherosclerosis, the other studies failed to demonstrate significant beneficial effects of antioxidants on blood pressure or on cardiovascular endpoints. Thus, overall results of clinical trials have been negative.

Unlike the large trials, smaller clinical studies have shown positive responses in hypertensive patients treated with antioxidants, either in combination (zinc,
ascorbic acid, α-tocopherol, β-carotene) of as monotherapy (vitamin C or vitamin E). This has been especially true for vitamin C. Most studies demonstrated an inverse relationship between plasma ascorbate levels and blood pressure in both normotensive and hypertensive populations (68,71). In the Supplementation en Vitamines et Minéraux Antioxydants study, a decreasing trend was observed with vitamin C levels and risk of hypertension in women but not in men (128). Vitamin C supplementation is associated with reduced blood pressure in hypertensive patients, with systolic blood pressure falling by 3.6–17.8 mmHg for each 50 μmol/l increase in plasma ascorbate (71,129,130). However, in a recent study, Ward et al. (131) found that 6-week treatment with vitamin C and grape seed polyphenols was associated with a paradoxical increase in ambulatory blood pressure in hypertensive patients. This was not attributed to increased oxidative stress.

Human studies of vitamin E doses of 400–1,000 IU/day have shown beneficial effects on improving insulin sensitivity, lowering serum glucose levels, increasing intracellular Mg2+, inhibiting thromboxane effects, and reducing vascular resistance (68,71,132). Data from the 1946 British Birth Cohort reported that low vitamin E intake during childhood and adulthood was a good predictor of hypertension at age 43 years (133). However, reductions in blood pressure in hypertensive subjects treated with vitamin E have been inconsistent (68,71). Similar trends have been observed in preeclampsia, where early studies suggested that vitamins C and E may prevent preeclampsia in high-risk patients (134,135), whereas more recent evidence indicates that supplementation with vitamins C and E during pregnancy does not reduce the risk of preeclampsia in nulliparous women (136–138). If vitamin E does in fact have an antihypertensive effect, it is probably small and may be limited to untreated patients or those with vascular disease or other concomitant diseases, such as diabetes (71,139).

High dietary consumption of fruits and vegetables has been shown to significantly reduce blood pressure (140). Diets rich in fruit and vegetables also increase plasma antioxidant capacity in both normal and obese subjects (141–143). This improvement in antioxidant status may partly explain the beneficial effects of high fruit and vegetable consumption on blood pressure, although the accompanying increases in the intake of other micronutrients and fiber, and decreases in saturated and total fat consumption, are also likely to play a role in blood pressure reduction.

POSSIBLE REASONS FOR NEGATIVE OUTCOMES OF ANTIOXIDANT TRIALS — Overall results of clinical studies investigating antioxidant effects have been disappointing given the consistent and promising findings from experimental investigations, clinical observations, and epidemiological data. Possible reasons relate to 1) the type of antioxidants used, 2) patient cohorts included in trials, and 3) the trial design itself. With respect to antioxidants, it is possible that agents examined were ineffective and nonspecific and that dosing regimens and duration of therapy were insufficient. For example, vitamins C and E may have pro-oxidant properties with harmful and deleterious interactions. It is also possible that orally administered antioxidants may be inaccessible to the source of free radicals, particularly if ROS are generated in intracellular compartments and organelles (143). Furthermore, antioxidant vitamins do not scavenge H2O2, which may be more important than •O2− in cardiovascular disease. Another factor of importance is that antioxidants do not inhibit ROS production. Regarding cohorts included in large trials, most subjects had significant cardiovascular disease, in which case damaging effects of oxidative stress may be irreversible. Another confounding factor is that most of the enrolled subjects were taking aspirin prophylactically. Because aspirin has intrinsic antioxidant properties (144) additional antioxidant therapy may be ineffective. Moreover, in patients studied in whom negative results were obtained, it was never proven that these individuals did in fact have increased oxidative stress. To date, there are no large clinical trials in which patients were recruited based on evidence of elevated ROS formation. Also, none of the large clinical trials were designed to examine effects of antioxidants specifically on blood pressure.

With the recent advances in our understanding of the complexity of oxidative stress and redox signaling in the vascular system, there is growing interest regarding therapeutic possibilities to target ROS in the management of hypertension and other cardiovascular diseases. Theoretically, agents that reduce oxidant formation should be more efficacious than nonspecific inefficient antioxidant scavengers in ameliorating oxidative stress. This is based on experimental evidence where it has been clearly demonstrated that inhibition of NAD(P)H oxidase–mediated •O2− generation, using pharmacological and gene-targeted strategies, leads to regression of vascular remodeling, improved endothelial function, and lowering of blood pressure (44,74,81). In fact, vascular NAD(P)H oxidase, specifically gp91phox (Nox2) homologs such as Nox1, may be novel therapeutic targets for vascular disease (143).

RECOMMENDATIONS TO DECREASE OXIDATIVE STRESS IN PATIENTS — In view of current data and the lack of evidence to prove the benefits from use of antioxidant vitamins to prevent cardiovascular disease (145), it is suggested that the general population consumes a diet emphasizing antioxidant-rich fruits and vegetables and whole grains. Presently, antioxidant supplementation is not recommended for the prevention or treatment of hypertension. This advice, which is consistent with the guidelines of the American Heart Association (146) and the Canadian Hypertension Society (147), considers the role of the total diet in influencing disease risk and is supported by findings from the Dietary Approaches to Stop Hypertension (DASH) study (142) and a recent trial from the U.K. that demonstrated that subjects consuming high fruit and vegetable diets had significantly reduced blood pressure (141). Another important lifestyle modification that may have cardiovascular protective and blood pressure–lowering effects by reducing oxidative stress is exercise. In experimental models of hypertension and in human patients with coronary artery disease, exercise reduced vascular NAD(P)H oxidase activity and ROS production, ameliorated vascular injury, and reduced blood pressure (148–150).

Some of the beneficial effects of classic antihypertensive agents such as β-adrenergic blockers, ACE inhibitors, AT1 receptor antagonists, and Ca2+–channel blockers may be mediated in part by decreasing vascular oxidative stress (151–157). Indeed, angiotensin receptor blockade appears to be particularly effective at reducing ROS generation and markers of oxidative stress independent of blood pressure lowering. These effects
have been attributed to direct inhibition of NAD(P)H oxidase activity and to intrinsic antioxidant properties of the drugs.

CONCLUSIONS — Compelling experimental evidence indicates that ROS, particularly \(\text{O}_2^- \) and \(\text{H}_2\text{O}_2 \), function as second messengers activating numerous signaling molecules, which play an important role in vascular biology and cardiovascular disease. In hypertension, activation of pro-oxidant enzymes such as NAD(P)H oxidase, NOS, xanthine oxidase and mitochondrial enzymes, or altered thioredoxin and glutathione systems results in increased ROS formation, which have damaging actions on the vasculature. Recent data indicate that the Nox family of NAD(P)H oxidases, particularly Nox1 and Nox4, may be important in vascular generation of ROS in pathological conditions. Stimuli that activate pro-oxidant systems to generate ROS involve vasoactive agents, growth factors, metabolic factors, and mechanical forces. Oxidative stress contributes to vascular damage by promoting cell growth, extracellular matrix protein deposition, activation of matrix metalloproteinases, inflammation, endothelial dysfunction, and increased vascular tone, characteristic features of the vascular phenotype in hypertension.

From a clinical viewpoint, current data are less conclusive with respect to the pathophysiological role of oxidative stress in hypertension. This may relate to heterogeneity of populations studied, inappropriate or insensitive methodologies to evaluate oxidative state, and incorrect antioxidant therapies used. Further research in the field of oxidative stress and human hypertension is warranted. There is an urgent need for the development of sensitive and specific biomarkers to assess the oxidant status of patients. Also needed are clinical trials designed to specifically address the role of oxidative stress in the development of hypertension. With a better understanding of mechanisms regulating ROS metabolism and identification of processes that promote oxidative excess, it should be possible to target therapies more effectively so that detrimental actions of vascular oxygen free radicals can be reduced and beneficial effects of NO can be enhanced. Such therapies could have potential in the management of diseases associated with vascular damage, including hypertension.

References

1. Touyz RM: Reactive oxygen species in vascular biology: role in arterial hypertension. *Expert Rev Cardiovasc Ther* 1:91–106, 2003
2. Tain YL, Baylis C: Dissecting the causes of oxidative stress in an in vivo model of hypertension. *Hypertension* 48:828–829, 2006
3. Vaziri ND, Rodriguez-Iturbe B: Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. *Nat Clin Pract Nephrol* 2:582–593, 2006
4. Harrison DG, Widder J, Grumbach I, Mueller CF, Laude K, McNally JS, Harris JJ, McNally JH: ATVB in focus: redox mechanisms in blood vessels. *Arterioscler Thromb Vasc Biol* 25:274–278, 2005
5. Dzau V: Free radicals in the physiological control of cell function. *Physiol Rev* 82:47–95, 2002
6. Fridovich I: Superoxide anion radical (\(\text{O}_2^- \)) inhibition of DNA synthesis and related matters. *J Biol Chem* 272:18515–18517, 1997
7. Johnson F, Giulivi C: Superoxide dismutase and their impact upon human health. *Mol Aspects Med* 26:340–352, 2005
8. Faraci FM, Dzidin SP: Vascular protection: superoxide dismutase isoforms in the vessel wall. *Arterioscler Thromb Vasc Biol* 24:1367–1373, 2004
9. Mendez JJ, Nicholson WJ, Taylor WR: SOD isoforms and signaling in blood vessels: evidence for the importance of ROS compartmentalization. *Arterioscler Thromb Vasc Biol* 25:887–888, 2005
10. Cai H, Harrison DG: Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. *Circ Res* 87:840–844, 2000
11. Tabet F, Savoia C, Schiffrin EL, Touyz RM: Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. *J Cardiovasc Pharmacol* 44:200–208, 2004
12. Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG: Increased NAD(P)H-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilation to NAD(P)H in vivo. *Stroke* 35:584–589, 2004
13. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Guttermann DD: Mitochondrial sources of
H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. *Circ Res* 93:573–80, 2003
14. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A: Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. *J Clin Invest* 106:1521–1530, 2000
15. Lacy F, Gough DA, Schmid-Schonbein GW: Role of xanthine oxidase in hydrogen peroxide production. *Free Radic Biol Med* 25:720–727, 1998
16. Suzuki H, Delano FA, Parks DA, Jamshidi N, Granger DN, Ishii H, Suematsu M, Zweifach BW, Schmid-Schonbein GW: Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. *Proc Nail Acad Sci U S A* 95:4754–4759, 1998
17. Delano FA, Parks DA, Ruedi JM, Babior BM, Schmid-Schonbein GW: Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat. *Microcirculation* 13:551–566, 2006
18. Mervaala EM, Cheng ZJ, Tikkanen I, Lapatto R, Narumina K, Vapaatalo H, Muller DN, Fiebeler A, Ganten U, Ganten D, Luft FC: Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. *Hypertension* 37:414–418, 2001
19. Laakso J, Mervaala E, Himberg JJ, Teravainen TL, Karppanen H, Vapaatalo H, Lapatto R: Increased kidney xanthine oxidoreductase activity in salt-induced experimental hypertension. *Hypertension* 32:902–906, 1998
20. Sui YP, Leung KT, Tong MK, Kwan TH: Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. *Am J Kidney Dis* 47:91–59, 2006
21. Laakso JT, Teravainen TL, Martelin E, Vaskonen T, Lapatto R: Renal xanthine oxidoreductase activity in spontaneously hypertensive rats. *J Hypertens* 22:1333–1340, 2004
22. Corry DB, Tuck ML: Uric acid and the vasculature. *Carr Hypertens Rep* 8:116–119, 2006
23. Andrew PJ, Mayer B: Enzymatic function of nitric oxide synthases. *Cardiovasc Res* 43:521–531, 1999
24. Vasquez-Vivar J, Kalyanaraman B, Mar-
38. Griendling KK: NADPH oxidases: new

37. Cave AC, Brewer AC, Panicker AN, Ray

36. Geiszt M: NADPH oxidases: new kids on

32. Babior BM: NADPH oxidase.

27. Landmesser U, Dikalov S, Price SR, Mc-

33. Chabrashvili T, Tojo A, Onozato ML,

34. Touyz RM, Yao G, Schiffrin EL: c-Src in-

31. Landmesser U, Harrison DG, Drexler H:

8:691–727, 2006

health and disease.

Cardiovasc Res

WE, Harrison DG: Oxidation of tetrahy-

Cann L, Fukai T, Holland SM, Mitch

synthase: the influence of cofactors.

Tordo P, Pritchard KA Jr: Superoxide
generation by endothelial nitric oxide

Touyz RM, Chen X, Tabet F, Yao G, He

G, Quinn MT, Pagano PJ, Schiffrin EL:
Expression of a functionally active
gp91phox-containing neutrophil-type
NAD(P)H oxidase in smooth muscle
cells from human resistance arteries:
regulation by angiotensin II. Circ Res 90:
1205–1213, 2002

Gongora MC, Qin Z, Laude K, Kim HW,
McCann L, Fole JR, Dikalov S, Fukai T,
Harrison DG: Role of extracellular super-
oxide dismutase in hypertension. Hype-
rension 48:473–481, 2006

Sindhu RK, Ehdaie A, Farmand F, Dhal-
wal KK, Nguyen T, Zhan CD, Roberts
CK, Vaziri ND: Expression of catalase
and glutathione peroxidase in renal in-
sufficiency. Biochim Biophys Acta 1743:
86–92, 2005

Sui H, Wang W, Wang PH, Liu LS: Effect of
glutathione peroxidase mimic ebselen
(PZ51) on endothelium and vascular
structure of stroke-prone spontaneously
hypertensive rats. Blood Press 14:366–
372, 2005

Wassmann S, Wassmann K, Nickenig G:
Modulation of oxidant and antioxidant
enzyme expression and function in vas-
cular cells. Hypertension 44:381–386,
2004

Touyz RM, Tabet F, Schiffrin EL: Redox-
dependent signalling by angiotensin II
and vascular remodelling in hyperten-
sion. Clin Exp Pharmacol Physiol 30:860–
867, 2003

Cai H: Hydrogen peroxide regulation of
endothelial function: origins, mecha-
nisms, and consequences. Cardiovasc
Res 68:26–36, 2005

Kajiya M, Hirota M, Inai Y, Kiyosuka T,
Morimoto T, Iwasaki T, Endo K, Mohri
S, Shimizu J, Yada T, Ogasawara Y, Na-
ruse K, Ohe T, Kajiy A: Impaired NO-
mediated vasodilation with increased
superoxide but robust EDHF function in
right ventricular arterial microvessels of
pulmonary hypertensive rats. Am J
Physiol Heart Circ Physiol 292:H2737–
H2744, 2007

Shimokawa H, Matoba T: Hydrogen per-
oxide as an endothelium-derived hyper-
polarizing factor. Pharmacol Res 49:543–
549, 2004

Goyal P, Weismann N, Grimmer F, Heg-
eg C, Bader L, Rose F, Fink L, Gho-
frani HA, Schermuly RT, Schmidt HH,
Seeger W, Hanje Z: Upregulation of
NAD(P)H oxidase 1 in hypoxia activates
hypoxia-inducible factor 1 via increase
in reactive oxygen species. Free Radic
Biol Med 36:1279–1288, 2004

San Martin A, Du P, Dikalov A, Las-
ssegue B, Aleman M, Gongora MC,
Brown K, Joseph G, Harrison DG, Taylor
WR, Jo H, Griendling KK: Reactive oxy-
gen species-selective regulation of aortic
inflammatory gene expression in type 2
diabetes. Am J Physiol Heart Circ Physiol
292:H2073–H2082, 2007
Oxidative stress and hypertension

62. Pawlak K, Naumink B, Brzosko S, Pawlak D, Mysliwcek M: Oxidative stress: a link between endothelial injury, coagulation activation, and atherosclerosis in haemodialysis patients. Am J Nephrol 24: 154–161, 2004

63. Hool LC, Corry B: Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9: 409–435, 2007

64. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YJ, Rahman M, Abe Y: Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 43: 438–444, 2005

65. Yoshioka J, Schreiter ER, Lee RT: Role of thioredoxin in cell growth through interactions with signaling molecules. Antioxid Redox Signal 8: 2143–2145, 2006

66. Touyz RM: Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 7: 1302–1314, 2005

67. Kitiyakara C, Wilcox CS: Antioxidants for hypertension. Curr Opin Nephrol Hypertens 7: 531–538, 1998

68. Houston MC: Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Prog Cardiovasc Dis 47: 386–449, 2005

69. Touyz RM, Schiffrin EL: Reactive oxygen species in vascular biology: implications in hypertension. Histochim Cell Biol 122: 339–352, 2004

70. Welch WJ: Intrarenal oxygen and hypertension. Clin Exp Pharmacol Physiol 33: 1002–1005, 2006

71. Redon J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, Saez GT: Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41:1096–1101, 2003

72. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG: Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NAD(P)H oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 97: 1916–1923, 1996

73. Park JB, Touyz RM, Schiffrin EL: Reactive oxygen species: role in hypertension. Hypertension 45: 530–537, 2005

74. Virdis A, Neves MF, Amin F, Touyz RM, Schiffrin EL: Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22: 535–542, 2004

75. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40: 511–515, 2002

76. Li JM, Wheatcroft S, Fan LM, Kearney MT, Shah AM: Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2-production, vascular tone, and mitogen-activated protein kinase activation. Circulation 109: 1307–1313, 2004

77. Jung O, Schreiber JG, Geiger H, Lyle A, Weber DS, Weiss D, Taylor WR, Schmidt HH, Dikalov S, Ramasamy S, Gamez G, Griendling KK, Harrison DG: Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice. Am J Physiol Heart Circ Physiol 288:H17–H22, 2005

78. Touyz RM, Mercure C, He Y, Javesh B, Zhou Y, Payton EI, Chang G, McCoy J, Dikalov S, Ramasamy S, Gamez G, Griendling KK, Harrison DG: Association of p22phox overexpression with increased alpha-actin in rat and human aorta. Circulation 107: 1975–1981, 2003

79. Touyz RM, Chabriashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, Li M, Raggio J, Wellstein A, Chen Y, Welch WJ, Wilcox CS: RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension 47: 238–244, 2006

80. Touyz RM, Candia A, Griendling KK, Harrison DG: Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by continuous angiotensin receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension. Hypertension 42: 811–817, 2003

81. Park JB, Touyz RM, Chen X, Schiffrin EL: Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84, 2002

82. Callera GE, Touyz RM, Texeira SA, Muscarla MN, Carvalho MH, Fortes ZB, Nigro D, Schiffrin EL, Tostes RC: ETA receptor blockade decreases vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 101: 1722–1728, 2000

83. Rajagopalan S, Rajagopalan N, Rajagopalan S, Laursen JB, Capers QT, Taylor WR, Harrison DG, de Leon H, Wilcox JS, Griendling KK: p22phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109: 1002–1005, 2004

84. Akasaka T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M: Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res 29:813–820, 2006

85. Somers MJ, Mavromatis K, Galis ZS, Harrison DG: Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 101: 1722–1728, 2000

86. Callera GE, Touyz RM, Texeira SA, Muscarla MN, Carvalho MH, Fortes ZB, Nigro D, Schiffrin EL, Tostes RC: ETA receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension. Hypertension 42: 811–817, 2003

87. Park JB, Touyz RM, Chen X, Schiffrin EL: Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84, 2002

88. Amiri F, Virdis A, Neves MF, Iglarz M, Montezano AC, Touyz RM: Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clin Sci (Lond) 110:243–253, 2006

89. Elmarakby AA, Loomis ED, Pollock JS, Pollock DM: NAD(P)H oxidase inhibition attenuates oxidative stress but not hypertension produced by chronic ET-1. Hypertension 45: 283–287, 2005

90. Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL: Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation 110: 2233–2240, 2004

91. Chen X, Touyz RM, Park JB, Schiffrin EL: Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38:606–611, 2001

92. Fortuno A, Olivan S, Belouqi O, San Jose...
G. Moreno MU, Diez J, Zalba G: Association of increased phagocytic NAD(P)H oxidation-dependent superoxide production with diminished nitric oxide generation in essential hypertension. *J Hypertens* 22:2169–2175, 2004

97. Hiragi S, Yasaki S, Nakagawa K, Matsumura H, Oshima T, Chayama K: Endothelial function and oxidative stress in renovascular hypertension. *N Engl J Med* 346:1954–1962, 2002

100. Ward NC, Hodgson JM, Puddey IB, Ide T, Tsutsui H, Ohashi N, Hayashidani Yasunari K, Maeda K, Nakamura M, You...105. Lacy F, O'Connor DT, Schmid-Schönbein GW: Plasma hydrogen peroxide and meta-tyrosine concentrations. *J Clin Endocrinol Metab* 71:327–334, 2004

108. Zalba G, San Jose G, Moreno MU, Fortuna O, Diez J: NADPH oxidation-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. *Antioxid Redox Signal* 7:1327–1336, 2005

109. Moreno MU, Jose GS, Fortuno A, Beloqui O, Diez J, Zalba G: The C242T CYBA polymorphism of NADPH oxidase is associated with essential hypertension. *J Hypertens* 24:1299–1306, 2006

110. Van Gaal LF, Mertens I, De Block CE: Mechanisms linking obesity and cardiovascular disease. *Nature* 444:875–880, 2006

111. Keaney JF, Larson MG, Vasen RS, Wilson PW, Lipinska I, Corey D, Massaro JM, Sutherland P, Vita JA, Benjamin EJ: Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. *Arterioscler Thromb Vasc Biol* 23:434–439, 2003

114. Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda R, Prabhakaran M, Arosio E, Santonastaso CL, Capone ML, Tacconelli S, Degan M, Facchinetti G, Formuzauro A, Talamini G, Tommasoli R, Arosio E, Santonastaso CL, Lechi A, Patrono C: Determinants of platelet activation in human essential hypertension. *Hypertension* 43:64–70, 2004

118. Threadgold T, Howard P, Tognoni G, Prabhakaran M, Arosio E, Santonastaso CL, Lechi A, Patrono C: Greater oxidative stress in hypertensive patients at genetic risk of hypertension. *J Hum Hypertens* 19:1245–1254, 2001

120. Simic DV, Mimic-Oka J, Plesca-Ereghinac M, Savic-Radojevic A, Opacic M, Matic D, Ivanovic B, Simic T: Byproducts of oxidative protein damage and antioxidant enzyme activities in plasma of patients with different degrees of essential hypertension. *J Hum Hypertens* 20:149–155, 2006

122. Dandona P, Aljada A, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda R, Prabhakaran M, Aljada A, Garg R, Kumar V: Inhibitory effect of a two day fast on reactive oxygen species (ROS) generation by leucocytes and plasma ortho-tyrosine and meta-tyrosine concentrations. *J Clin Endocrinol Metab* 86:2899–2902, 2001

123. Lalonde B, Young IS, Fee H, McCance DR: Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. *Hypertension* 40:804–809, 2002

125. Chen J, He J, Hamm L, Batuman V, Whelton PK: Serum antioxidant vitamins and blood pressure in the United States population. *Hypertension* 40:810–816, 2002

129. Duffy SJ, Gokce N, Holbrook M, Huang A, Frei B, Keaney JF Jr, Vita JA: Treatment of hypertension with ascorbic acid. *Lancet* 354:2048–2049, 1999

130. Bates CJ, Walmesley CM, Prentice A,
Oxidative stress and hypertension

Finch S: Does vitamin C reduce blood pressure? Results of a large study of people aged 65 or older. J Hypertens 16:925–932, 1998

131. Ward NC, Hodgson JM, Croft KD, Burke V, Bellin LJ, Puddey IB: The combination of vitamin C and grape seed polyphenols increases blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 23:427–434, 2005

132. Barbagallo M, Dominguez LJ, Tagliamonte MR, Resnick LM, Paolisso G: Effects of vitamin E and glutathione on glucose metabolism: role of magnesium. Hypertension 34:1002–1006, 1999

133. Mishra GD, Malik NS, Paul AA, Wadsworth ME, Bolton-Smith C: Childhood and adult dietary vitamin E intake and cardiovascular risk factors in mid-life in the 1946 British Birth Cohort. Eur J Clin Nutr 57:1418–1425, 2003

134. Poston L, Raimakers M, Kelly F: Vitamin E in preeclampsia. Ann N Y Acad Sci 1031:242–248, 2004

135. Rumiris D, Purwosunu Y, Wibowo N, Farina A, Sekizawa A: Lower rate of preeclampsia after antioxidant supplementation in pregnant women with low antioxidant status. Hypertens Pregnancy 25:241–253, 2006

136. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH: Vitamins in Pre-eclampsia (VIP) Trial Consortium. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet 367:1145–1154, 2006

137. Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS: ACTS Study Group: Vitamins C and E and the risks of preeclampsia and perinatal complications. N Engl J Med 354:1796–1806, 2006

138. Beazley D, Akokas R, Livingston J, Griggs M, Sibai BM: Vitamin C and E supplementation in women at high risk for preeclampsia: a double-blind, placebo-controlled trial. Am J Obstet Gynecol 192:520–521, 2005

139. Skyrme-Jones RA, O’Brien RC, Berry KL, Meredith IT: Vitamin E supplementation improves endothelial function in type 1 diabetes mellitus: a randomized, placebo-controlled study. J Am Coll Cardiol 36:94–102, 2000

140. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N: A clinical trial of the effects of dietary patterns on blood pressure: DASH Collaborative Research Group. N Engl J Med 336:1117–1124, 1997

141. John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW: Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomized controlled trial. Lancet 339:1969–1973, 2002

142. Lopes HF, Martin KL, Nashar K, Morrow JD, Goodfriend TL, Egan BM: DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 41:422–430, 2003

143. Cai H, Griendling KK, Harrison DG: The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478, 2003

144. Wu R, Lamontagne D, de Champlain J: Antioxidative properties of acetylsalicylic acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105:387–392, 2002

145. Huang HY, Caballero B, Chang S, Alberg AJ, Semba RD, Schnyder CR, Wilson RF, Cheng TY, Vassy J, Prokopowicz G, Barnes GJ Znd, Bass EB: The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: a systematic review for a National Institutes of Health state-of-the-science conference. Ann Intern Med 145:372–385, 2006

146. Tribble DL: Antioxidant consumption and risk of coronary heart disease: emphasis on vitamin C, vitamin E and β-carotene: a statement for the healthcare professionals from the American Heart Association. Circulation 99:591–595, 1999

147. Touyz RM, Campbell N, Logan A, Gledhill N, Petrella R, Padwal R: Canadian Hypertension Education Program: The 2004 Canadian recommendations for the management of hypertension: Part III. Lifestyle modifications to prevent and control hypertension. Can J Cardiol 20:55–83, 2004

148. Wang JS, Lee T, Chow SE: Role of exercise intensities in oxidized low-density lipoprotein-mediated redox status of monocyte in men. J Appl Physiol 101:740–744, 2006

149. Adams V, Linke A, Kranz ML, Erbs S, GieIen S, Mobius-Winkler S, Gummert JF, Mohr FW, Schuler G, Hambrecht R: Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111:555–562, 2005

150. Pan YX, Gao L, Wang WZ, Zheng H, Liu D, Patel KP, Zucker IH, Wang W: Exercise training prevents arterial baroreflex dysfunction in rats treated with central angiotensin. Hypertension 49:519–527, 2007

151. Tudorica T: Antioxidant effects and the therapeutic mode of action of calcium channel blockers in hypertension and atherosclerosis. J Hypertens 23:427–434, 2005

152. Oliveira PJ, Goncalves L, Monteiro P, Providencia LA, Moreno AJ: Are the antioxidant properties of carvedilol important for the protection of cardiac mitochondria? Curr Vasc Pharmacol 3:147–158, 2005

153. Cifuentes ME, Pagano PJ: Targeting re- active oxygen species in hypertension. Curr Opin Nephrol Hypertens 15:179–186, 2006

154. Dandona P, Kumar V, Aljada A, Ghanim H, Syed T, Hofmayer D, Mohanty P, Tripathy D, Garg R: Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an antiinflammatory action. J Clin Endocrinol Metab 88:4496–4501, 2003

155. Khan BV, Navalkar S, Khan QA, Rahman ST, Parthasarathy S: Irbesartan, an angiotensin type 1 receptor inhibitor, regulates the vascular oxidative state in patients with coronary artery disease. J Am Coll Cardiol 38:1662–1667, 2001

156. Dandona P, Karne R, Ghanim H, Hamouda W, Aljada A, Magsino CH: Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 101:122–124, 2000

157. Flammer AJ, Hermann F, Wiesli P, Schwegers B, Chenewerd R, Hurlimann D, Sudano I, Gay S, Neidhart M, Riesen W, Ruschitzka F, Lüscher TF, Noll G, Lehmann R: Effect of losartan, compared with atenolol, on endothelial function and oxidative stress in patients with type 2 diabetes and hypertension. J Hypertens 25:785–791, 2007