The intricate role of growth hormone in metabolism

Archana Vijayakumar, Shoshana Yakar and Derek LeRoith*

Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA

Growth hormone (GH), a master regulator of somatic growth, also regulates carbohydrate and lipid metabolism via complex interactions with insulin and insulin-like growth factor-1 (IGF-1). Data from human and rodent studies reveal the importance of GH in insulin synthesis and secretion, lipid metabolism and body fat remodeling. In this review, we will summarize the tissue-specific metabolic effects of GH, with emphasis on recent targets identified to mediate these effects. Furthermore, we will discuss what role GH plays in obesity and present possible mechanisms by which this may occur.

Keywords: growth hormone, metabolism, lipids, carbohydrates, tissue-specific, insulin resistance

INTRODUCTION

Growth hormone (GH) is an anabolic hormone that has important functions in regulating somatic growth either directly or indirectly via effectors such as insulin-like growth factor-1 (IGF-1). However, another facet of the biological effects exerted by GH includes its ability to modulate metabolism and energy homeostasis. The metabolic actions of GH are diverse and tissue-specific, thus complicating our ability to understand them. Here we will describe the process of GH secretion and its regulation, signal transduction via the GH receptor (GHR), followed by a review of the available literature on the metabolic actions of GH in various tissues, including the liver, adipose tissue, skeletal muscle, and pancreas.

GH SECRETION AND ITS REGULATION

The human GH gene cluster is located on chromosome 17 and it includes five GH variants, amongst which is the pituitary GH-N (or GH-1) variant and four placental GH-V (or GH-2) variants. While the GH variants are expressed in a temporal manner during development, they all generate similar 22 kDa protein products. The pituitary GH-N transcript undergoes alternative splicing to yield two isoforms which are 22 and 20 kDa respectively, the former being the more predominant isoform in circulation, as has been reviewed elsewhere (Baumann, 2009).

GH is primarily expressed, synthesized, stored within secretory granules in the somatotrophic cells located in the anterior pituitary gland. Transcription of the GH gene is regulated by several transcription factors including Pit-1 (pituitary-specific transcription factor-1), Sp1 (specificity protein 1), activator protein 2, nuclear factor-1, and upstream stimulating factor. Glucocorticoids have been shown to increase GH transcription as well as mRNA stability; while thyroid hormone suppresses GH transcription (Strobl and Thomas, 1994).

GH is secreted in response to a rise in intracellular cyclic AMP (cAMP) or Ca2+ levels which result in membrane depolarization, translocation of GH granules to the membrane and the subsequent release of GH into circulation (Strobl and Thomas, 1994). GH secretion occurs in a pulsatile manner that is primarily regulated by the 180˚ out-of-phase secretion of two neuroendocrine hormones from the hypothalamus, namely, the GH releasing hormone (GHRH) and somatostatin that stimulate and repress GH secretion respectively. GHRH and somatostatin interact with their respective membrane-bound G-protein coupled receptors (GPCRs) on the somatotrophs and exert their biological effects via multiple mechanisms which are reviewed elsewhere (Anderson et al., 2004; Ben-Shlomo and Melmed, 2010). Ghrelin, identified in 1999 as a potent endogenous GH secretagogue, exerts its effects, independent of GHRH, and somatostatin, via the GH secretagogue receptor 1a (GHSR1a), which is also a GPCR (Anderson et al., 2004). Since its discovery, a wide range of effects on energy homeostasis and food intake have been identified for ghrelin, but these are out of the scope for this review (Pazos et al., 2008). GH secretion also exhibits sexual dimorphism which seems to be exerted by the differential effects of androgens and estrogens in the hypothalamus (Ohlsson et al., 2009).

Once in the circulation, GH binds to GH binding proteins (GHBPs), of which there are two classes. The high affinity GHBP is a soluble truncated form of the GHR and it preferentially binds the 22-kDa GH isoform; while the low affinity GHBP which is structurally unrelated to the GHR binds the 20-kDa GH isoform. The high affinity GHBP is generated by proteolytic cleavage of the extracellular domain (ECD) of the GHR in humans; while in rodents it is generated by alternative splicing of the GHR transcript resulting in a short-length GHR. The GHBPs are hypothesized to have two roles; one is to stabilize and prevent GH from degradation when in circulation, and the other is to control GH bioavailability by competing with the GHR for binding to GH (Baumann et al., 1994; Tuggle and Trenkle, 1996).

Growth hormone acts on the liver to stimulate the production and secretion of IGF-1 which is one of the most characterized targets of GH. The liver is the predominant source of circulating...
IGF-1; however, liver-specific igf-1 deficient (LID) mice display only a 75% reduction in circulating IGF-1 levels suggesting that extra-hepatic tissues contributed to the remaining 25% of the circulating IGF-1 pool (Liu et al., 1998). Circulating IGF-1 exists in a ternary complex with IGF binding proteins (IGFBPs), mainly IGFBP-3 and -5, and acid labile sub-unit (ALS). The ternary IGF-1-ALS-IGFBP-3 complex modulates the bioavailability of IGF-1, and also stabilizes IGF-1 in circulation (LeRoith, 1996). Interestingly, GH also regulates the expression of ALS and IGFBP-3 and thus, IGF-1 stability in serum (Elliott et al., 1992). Apart from the endocrine/circulating IGF-1, IGF-1 is also produced locally by tissues and exerts its effects in an autocrine/paracrine manner. IGF-1 plays a critical role in inhibiting GH secretion by feedback mechanisms by stimulating somatostatin and inhibiting GHRH release from the hypothalamus (Ohlsson et al., 2009). Furthermore, a recent study by Romero et al. (2010) using somatotroph-specific IGF-1 receptor (IGF-1R) knockout mice demonstrated that IGF-1 also has direct effects on GH secretion from the somatotrophs, independent of GHRH, and somatostatin.

GHR AND SIGNAL TRANSDUCTION
GH mediates its intracellular effects via the GHR which is a one-pass transmembrane receptor belonging to the class 1 cytokine receptor family. It has an ECD which is connected to an intracellular/cytoplasmic domain (ICD) via a flexible linker. The GHR has no intrinsic kinase activity but the cytoplasmic kinase, Janus kinase 2 (Jak2) is constitutively associated with a Box1 region in the ICD of the GHR. In the inactive state, the Jak2 catalytic domain is masked by its pseudokinase domain. GH binding to pre-formed GHR dimers results in a conformational change in the receptors and associated Jak2 molecules. This event unmask the catalytic domain of Jak2 and allows the adjacent Jak2 molecules to activate each other by transphosphorylation. Activated Jak2 then phosphorylates the cytoplasmic regions of the GHR which then recruits several downstream proteins (Lanning and Carter-Su, 2006).

The signal transducer and activator of transcription (STAT) family of transcription factors is a well-characterized downstream target recruited to the GHR. Once recruited to the GHR, STAT proteins are phosphorylated by Jak2 resulting in their dissociation from the receptor, homo- or hetero- dimerization, and translocation to the nucleus. Of the various STAT proteins, STAT5, and particularly STAT5b, mediates a majority of the biological effects of GH, including the transcription of IGF-1, and ALS. STAT5b has also been implicated in exerting the sexually dimorphic pattern of gene expression induced by GH (Holloway et al., 2007). Apart from STAT5, the GHR also recruits and activates STATs-1 and 3 in a Jak2-dependent manner (Ram et al., 1996; Smit et al., 1996).

Apart from Jak2, the GHR also interacts with Src kinase in a Jak2-independent manner, and can also activate the mitogen activated protein kinase (MAPK; or, extracellular signal regulated kinase, Erk) pathway downstream of both Jak2 and Sre (Lanning and Carter-Su, 2006). Moreover, GHR localization to the lipid raft preferentially activates the MAPK pathway while cytosolic GHR localization activates the STAT5 pathway. Lipid raft targeted insulin receptor substrate-1 (IRS-1), an adaptor protein critical for insulin-and IGF-1- mediated signal transduction, seems to play a critical role in GHR-induced MAPK activation (Liang et al., 2000; Brooks et al., 2008; Ohlsson et al., 2009; Wang et al., 2009). Lastly, GHR signaling has also been associated with activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway in a Jak2/IRS-1 dependent manner (Liang et al., 2000).

Down-regulation of GHR activation is mediated by the suppressors of cytokine signaling (SOCS) family of proteins, which include SOCS-1, -2, -3, -6, and cytokine-inducible SH2 containing protein (CIS), which are induced by the Jak/STAT pathway. GH itself has been shown to induce SOCS-2, and -3 (Greenhalgh et al., 2005; Nielsen et al., 2008). Moreover, the SOCS proteins can terminate GHR signaling via different mechanisms including inhibition of Jak2 kinase activity and competing with STAT5 for binding to GHR (Ram and Waxman, 1999; Dominici et al., 2005). Additionally, protein tyrosine phosphatases (PTPs) have also been implicated in terminating the GHR signal cascade (Pasquali et al., 2003; Choi et al., 2006; Pilecka et al., 2007). Furthermore, GHR can be desensitized by proteolysis. Jak2 seems to play a dual role in this process. On the one hand, GHR binding to Jak2 stabilizes the receptor and prevents it from degradation (He et al., 2005; Deng et al., 2007; Loesch et al., 2007). On the other hand, GH can induce desensitization of the GHR and this requires Jak2 kinase activity (Loesch et al., 2006; Deng et al., 2007).

Liver
It is well established that GH can stimulate hepatic glucose production which has two arms, gluconeogenesis (conversion of amino acids and intermediates of glucose metabolism to glucose) and glycogenolysis (breakdown of glycogen to glucose; Brooks et al., 2007; Lindberg-Larsen et al., 2007; Sakhrova et al., 2008). However, it is still unclear whether GH preferentially stimulates gluconeogenesis or glycogenolysis and there is data to support either theory. High dose GH infusion (40 ng/kg/min for 4 h) into healthy individuals in a pituitary clamp study increased glycogenolysis but had no effect on gluconeogenesis (Ghanaat and Tayek, 2005). Also, pituitary microsurgery in acromegalic men resulted in a significant reduction in glycogenolysis with no impact on gluconeogenesis (Hoybye et al., 2008). In contrast to this, sub-cutaneous injections of recombinant human GH (rhGH; 0.05 mg/kg/day) in fasted nursing women for a week increased gluconeogenesis, but not glycogenolysis (Kaplan et al., 2008). 3 mg/day of rhGH administration for 6 months to HIV patients, who demonstrate significant visceral obesity, increased fasting gluconeogenesis but not glycogenolysis (Schwarz et al., 2002). Additionally, conditional deletion of the GHR in mouse livers did not result in differences in the mRNA expression of gluconeogenic genes compared to the control mice (Fan et al., 2009). Thus, the data seem to suggest that GH has a preferential effect on glycogenolysis compared to gluconeogenesis.

The impact of GH on liver glucose uptake and utilization is not clear. Over-expression of the human GH (hGH) gene in rats increased basal hepatic glucose uptake and glycogen storage (Cho et al., 2006). Four week GHR antagonist (pegvisomant) treatment in acromegalic patients increased non-oxidative glucose disposal (Lindberg-Larsen et al., 2007). Thus, the main role of GH in the liver seems to be increasing hepatic glucose production while its role in glucose uptake is minor.
Growth hormone plays a major role in liver lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) are a class of transcription factors that play a key role in lipid and cholesterol synthesis. In the human hepatocyte HepG2 cell line, GH was shown to phosphorylate SREBP-1a in a MAPK-dependent manner which resulted in increased transcription activity (Kotzka et al., 2010). Furthermore, GH also promotes triglyceride (TG) uptake into the liver by increasing lipoprotein lipase (LPL) and/or hepatic lipase expression and/or activity. GH deficiency is associated with decreased hepatic lipase mRNA expression and/or activity which are significantly improved with GH supplementation (Hoogerbrugge et al., 1993; Oscarsson et al., 1996; Neve et al., 1997). Additionally, mice over-expressing bovine GH (bGH) either in the whole-body (via the metallothionein promoter) or the liver (via the phosphoenolpyruvate carboxykinase, PEPCK promoter) have increased hepatic LPL expression (Frick et al., 2001; Wang et al., 2007).

In addition to TG uptake, data suggest that GH signaling also stimulates TG secretion. The GHRLD mice develop hepatic steatosis and have reduced TG secretion. Moreover adenoviral expression of IGF-1 in the GHRLD mice did not correct the hepatic steatosis, suggesting that GH modulates TG secretion in an IGF-1-independent manner (Fan et al., 2009). Further, liver-specific STAT5 knockout (STAT5LKO) mice also develop hepatic steatosis despite increased basal hepatic STAT1 and STAT3 phosphorylation suggesting that GH mediates TG secretion in a STAT5-dependent manner (Cui et al., 2007). Additionally, bGH transgenic mice have decreased TG secretion rate with lower serum TG levels (Frick et al., 2001). Further, liver-specific adenoviral over-expression of a dominant-negative STAT5 in hepatocytes have increased hepatic LPL expression (Frick et al., 2001; Wang et al., 2007).

In summary, GH stimulates hepatic glucose production, while it has modest effects on liver glucose uptake, utilization, or storage. GH plays a crucial role in TG secretion from the liver via as yet unknown mechanisms. Whether this is associated with changes in β-oxidation and liver TG uptake is still unclear. However, two factors must be considered while analyzing the metabolic effects of GH in the liver. The first is that there is convincing data that implicates GH signaling in proliferation of hepatocytes. Loss of GH signaling in multiple models decreases the rate of liver regeneration following partial hepatectomy (Pennisi et al., 2004; Cui et al., 2007; Zerrad-Saadi et al., 2011). Thus, altered cellular profile could also affect hepatic metabolism. Secondly, the metabolic effects of GH in the liver could also be secondary to GH-induced insulin resistance. Modulation of GH action in the liver results in decreased IGF-1 production and subsequently increased GH secretion which is further associated with insulin resistance. Thus, it is extremely difficult to tease apart the direct effects of GH on liver metabolism from its indirect effects via opposition of insulin action.

Adipose tissue

GH stimulates lipolysis in the adipose tissue, and particularly the visceral and sub-cutaneous depots (Chen et al., 2001; Nam et al., 2001; Berryman et al., 2004; Pasarica et al., 2007; Freda et al., 2008). Hormone-sensitive lipase (HSL or LIPE) is a crucial hormone implicated in this process. Activation of HSL in the adipose tissue occurs downstream of the Gα-coupled β-adrenergic receptors by activation of PKA/cAMP pathway. GH increases HSL activity in the adipose tissue both in humans (Samra et al., 1999) and rodents (Ng et al., 2000; Johansen et al., 2003), possibly by activating the β-adrenergic receptor (Yip and Goodman, 1999; Yang et al., 2004); however its effect on HSL gene expression is still unclear (Richelsen et al., 2000; Khalafallah et al., 2001). Moreover, studies have reported either a suppressive or no effect of GH on LPL expression and activity (Richelsen et al., 2000; Frick et al., 2001; Johansen et al., 2003) suggesting that GH has minimal effects on adipose tissue TG uptake.

GH may also modulate the expression of the lipid droplet associating protein, CIDE-A (cell-death-inducing DFF45-like effector). Loss of CIDE-A in mice results in increased metabolic rate and glucose disposal and protection from diet-induced obesity and insulin resistance (Lin and Li, 2004). CIDE proteins have also been associated with lipid droplets where they facilitate lipid accumulation and inhibit lipolysis. However, the data on GH regulation of CIDE-A are controversial. Treatment of GH-deficient (GHD) individuals with rhGH resulted in a down-regulation of CIDE-A expression, reduced inflammation, and increased PPARα phosphorylation (Qin and Tian, 2010a,c). Male lit/lit mice, which are a model of GH deficiency owing to a mutation in the GHRH receptor, have increased hepatic AdipoR1 expression (Arunumag et al., 2007). However, contrary to the data regarding the AdipoR2, studies have reported a repression of PPARα expression by GH. Hypophysectomy increased hepatic PPAR-α expression which was reversed with continuous GH infusion in both male and female rats (Jalouli et al., 2003). GHR knockout mice (GHRKO) also show an up-regulation of all three PPAR isoforms (PPAR-α, β/δ, and γ) in the liver (Masternak et al., 2005). GH treatment of PPARα knockout mice resulted in a higher TG secretion rate than the GH-treated control mice, suggesting that suppression of PPARα function may facilitate the ability of GH to enhance TG secretion (Ljungberg et al., 2007).
expression in the sub-cutaneous adipose tissue (Zhao et al., 2011), while GHRKO mice had decreased expression of CIDE-A in the sub-cutaneous adipose tissue (Kelder et al., 2007). The reasons for the discrepancy in the data are not clear and bear further investigation.

Ten-month-old GH-resistant GHRKO and GH antagonist (GHs) mice have increased size of the brown adipose tissue (BAT) suggesting that GH also regulates BAT metabolism (Li et al., 2003). While the mechanisms by which GH affects the BAT are not well known, studies in the GHα mice suggest that GH increases uncoupling protein -1 (UCP-1) expression in the BAT (Li et al., 2003). Interestingly, CIDE-A is also expressed in high levels in the BAT where it localizes to the mitochondria, interacts with and modulates UCP-1 activity, and ultimately adaptive thermogenesis (Lin and Li, 2004). Thus, understanding the mechanism by which GH regulates CIDE-A not only in the white adipose tissue but also the BAT could be important for understanding how GH modulates lipid metabolism.

GH may also modulate glucocorticoid action in the adipose tissue. Recent studies have shown that GH down-regulates 11β-HSD1 (11β-hydroxysteroid dehydrogenase type 1) expression in the adipose tissue (Morita et al., 2009; Zhao et al., 2011). 11β-HSD1 amplifies glucocorticoid action by stimulating the conversion of inactive dehydrocorticosterone to active corticosterone. Activity of 11β-HSD1 is increased in obesity. Rodents with adipose tissue-specific over-expression of 11β-HSD1 are more insulin resistant; while knockout of 11β-HSD1 protects mice from diet-induced obesity and insulin resistance (Kotelevtsev et al., 1997; Morton et al., 2001, 2004).

In rodents models, GH deficiency has been associated with elevated adiponectin levels and GH excess with lower adiponectin levels (Berrymann et al., 2004; Nilsson et al., 2005; del Rincon et al., 2007; Wang et al., 2007). However, the reports of adiponectin status in GHD or acromegalic patients have been inconsistent resulting from variabilities in the duration of GH deficiency, age of the subjects, dose of GH treatment, and low sample number (Ciresi et al., 2007; Joaquín et al., 2008; Andersson et al., 2009; Oliveira et al., 2010; Ueland et al., 2010). Circulating adiponectin levels in obese laron syndrome adults and young girls, who have a loss-of-function mutation in the GHR rendering them GH-resistant, is two- to five-fold higher than obese controls. Moreover, IGF-1 replacement in one sub-set of these patients did not affect adiponectin levels suggesting that regulation of adiponectin is an IGF-1-independent effect of GH (Kanety et al., 2009). Indeed, GH stimulated adiponectin secretion from differentiated 3T3-L1 adipocytes under normal and high glucose conditions (Wolfing et al., 2008). However, human adipocytes incubated with GH demonstrated decreased adiponectin secretion (Nilsson et al., 2005). Thus, the exact nature of GH regulation of adiponectin secretion and/or function remains to be determined.

bGH transgenic mice have increased adipose tissue expression of the p85α regulatory sub-unit of the PI3K while the opposite was found in lit/lit mice (del Rincon et al., 2007). The expression of the p85α sub-unit is believed to play an important role in the pathogenesis of obesity. Within the cell, the p85α sub-unit is in excess when compared to the p110 catalytic sub-unit of PI3K. Consequently there is a greater pool of p85α homodimers compared to the p85α–p110 heterodimers. The p85α homodimers can bind and sequester IRS-1, thereby preventing the activation of the PI3K (Mauvais-Jarvis et al., 2002; Ueki et al., 2002). GH-induced p85α in the 3T3-F442A adipocyte cell line (del Rincon et al., 2007). However, it is still unclear whether GH directly affects p85α expression in vivo. Moreover, it is also possible that the increased p85α expression in the bGH mice could be a manifestation of insulin resistance. Mice lacking all isoforms of p85 do not survive due to severe hypoglycemia (Fruman et al., 2000). Furthermore, heterozygous knockout of p85α in mice results in improved insulin sensitivity (Mauvais-Jarvis et al., 2002), and administration of antisense p85 oligonucleotide to diet-induced obese and ob/ob mice, that harbor a mutation in the leptin gene, improved their insulin sensitivity (Moriarty et al., 2009). Nevertheless, increased expression of p85α in the adipose tissue in GH excess could account for GH-induced insulin resistance.

In summary, the predominant effect of GH in the adipose tissue is the stimulation of lipolysis. This may occur by activation of HSL, a critical enzyme for lipolysis, or, as recent studies suggest by modulation of the expression of lipid droplet proteins such as CIDE-A. Other new targets for GH action include 11βHSD1 which is a key regulator of glucocorticoid action. Changes in GH action are also associated with alterations in adipokine profile which could arise due to direct effects of GH on the adipocyte or indirectly due to other biological effects of GH.

Skeletal muscle

Unlike in the adipose tissue, GH induces free fatty acid (FFA) uptake into skeletal muscle by up-regulation of PPL expression (Oscarsson et al., 1999; Khalfallah et al., 2001). There is also evidence suggesting that GH induces skeletal muscle HSL expression in GHD individuals (Trepp et al., 2008). GH treatment of lit/lit mice resulted in significant increase in PPAR-β/δ expression which is an important mediator of lipid metabolism in the skeletal muscle (Kim et al., 2008; Ehrenborg and Krook, 2009). The lit/lit mice also demonstrated an increase in the expression of the insulin-responsive transcription factor FOXO1 that has been previously shown to increase lipid uptake and oxidation in the C2C12 skeletal muscle cell line (Bastie et al., 2005; Kim et al., 2008). GH has also been shown to induce lipid accumulation in the muscle (Freda et al., 2008; Krag et al., 2008; Szendroedi et al., 2008; Trepp et al., 2008). The re-esterification of TG from FFA results in generation of intermediates such as diacylglycerol and ceramides that activate PKC isoforms. PKC can down-regulate insulin signaling by several mechanisms (Samuel et al., 2010). Thus, in this manner, GH-induced increase in FFA uptake and TG synthesis could result in insulin resistance. These data also suggest that GH induces a shift in substrate utilization from glucose to lipids in the skeletal muscle.

A recent study using mice with skeletal muscle-specific knock-out of the GHR reported worsening of glucose tolerance which was associated with decreased 2-deoxyglucose uptake in primary myoblast cultures and increased adipose tissue mass. Moreover, primary myoblasts isolated from these muscle-GHRKO mice demonstrated reduced IR protein content as well as increased serine phosphorylation of IRS-1 when compared to control myoblast cultures (Mavalli et al., 2010). These effects seem to be mediated by
STAT5 as skeletal muscle-specific knockout of the STAT5 in mice results in slight increase in adiposity and worsening of insulin sensitivity (Klover and Hennighausen, 2007). These data, however, do not fit with the traditional view of GH antagonizing insulin action and in fact suggest that GH facilitates insulin signaling in the skeletal muscle. However, it should be mentioned that the promoters used to drive Cre recombinase expression in both these studies (the MeF2C and Myf5 promoters respectively) are active in the developing somite before differentiation of the myotome occurs (Ott et al., 1991; Naya et al., 1999). Thus, it is possible that early deletion of the GHR in regions other than the developing muscle could influence the phenotype of the mice. Additionally, there is also no convincing evidence to show that GH influences Glut4 translocation and subsequently glucose uptake (Khalfallah et al., 2001; Cho et al., 2006; Short et al., 2008) or glycogen synthase expression (Khalfallah et al., 2001) in the skeletal muscle.

Similar to the adipose tissue, states of GH excess have been associated with increased muscle expression of the regulatory p85α sub-unit of the PI3K (Barbour et al., 2004, 2005). LID mice have high circulating GH levels and are insulin resistant; they also have increased p85α expression in the skeletal muscle. Treatment of the LID mice with a GHR1 antagonist normalized GH levels, ameliorated the insulin resistance, and also normalized p85α expression in the muscle (Barbour et al., 2005). Thus, increased muscle p85α expression could also account for GH-induced insulin resistance.

Thus, GH regulation of skeletal muscle metabolism is yet to be defined. Data suggest that GH induces lipid uptake and mobilization in the muscle; however whether and how it affects glucose uptake and metabolism remains unanswered.

Pancreas

While on the face of it, it may seem that the effects of GH on the pancreas may be secondary to its effects on peripheral insulin sensitivity, there is a lot of evidence to suggest that GH exerts direct effects in the pancreas and, especially in the β-cell which is the site of insulin synthesis and secretion.

The GHR and the closely similar prolactin receptor (PRLR) are expressed in the pancreatic β-cells where upon ligand stimulation they can stimulate insulin synthesis (Nielsen, 1982; Nielsen et al., 1989, 1998; Brelje et al., 1993, 2004). Moreover, the GHRKO mice have only 45% of the islet cell mass as normal mice (Robertson et al., 2006). Additionally, β-cell-specific GHRKO mice (βGHRKO) mice fail to demonstrate β-cell compensation when fed a HFD; this was also associated with reduced expression of cyclin D2 and Ki-67 (Wu et al., 2011). Accordingly, STAT5 stimulated cyclin D2 expression and thus, β-cell proliferation in the rat pancreatic β-cell line, the INS-1 cells (Friedrichsen et al., 2003). Similarly, GH down-regulated cytokine-induced β-cell apoptosis in a STAT5-dependent manner in the INS-1 cells (Jensen et al., 2006).

The GHRKO mice have low circulating insulin levels, reduced pancreatic insulin content and have a blunted glucose-stimulated insulin secretion (GSIS) response. Re-expression of IGF-1 in the pancreas alone did not improve insulin content but normalized islet area in the GHRKO mice (Guo et al., 2005). Similarly, investigators observed reduced pancreatic insulin content and lower circulating insulin levels in a mouse model of adult-onset of GH deficiency (Luque et al., 2011). We have recently shown that the βGHRKO mice have diminished GSIS response when fed a standard diet; this defect is exaggerated when the mice were challenged with a HFD making them insulin resistant. However, while GSIS was impaired in the βGHRKO mice, arginine stimulated insulin secretion was intact. Moreover, isolated islets from the obese βGHRKO mice responded to K+-channel blockers in a similar manner as islets isolated from the obese control mice. These data suggest that GH plays a role in insulin secretion, particularly in response to exogenous glucose. Indeed, we found that the βGHRKO mice had reduced expression of glucokinase which is the rate-limiting enzyme for glycolysis in the β-cell (Wu et al., 2011). Islet-specific knockout of STAT5 using the Cre recombinase driven by the rat insulin promoter (RIP) resulted in mice that were insulin resistant, and had diminished GSIS. However, mice lacking STAT5 in the β-cells via the Pdx-1 promoter did not display insulin resistance at 10 weeks of age, but aging and pregnancy were associated with worsening of glucose tolerance. Insulin secretion was not evaluated in the Pdx-1–STAT5 knockout mice. (Lee et al., 2007). The discrepancies between the two models was suggested to arise from the differential expression pattern of the RIP and Pdx-1 promoter; while the latter is localized only to the β-cell, the former is also expressed in certain regions of the brain. Another link between glucose metabolism and GH signaling comes from a study conducted with INS-1 cells, which showed that glucose stimulation results in cleavage and nuclear translocation of the cytoplasmic tail of the inactive phosphatase ICA512 which then binds to STAT5 and mediates the transcription of secretory granule genes (Mziaut et al., 2006). Thus, while these studies demonstrate an undeniable role of GH in GSIS, the underlying mechanisms, and role of STAT5 in this process remain to be clarified.

Another mechanism by which GH may affect insulin secretion is by modulating Ca2+ fluxes in the β-cell. In insulin secreting cells GH increased intracellular Ca2+ levels by up-regulating the ryanodine receptors (Zhang et al., 2004). Moreover, treatment of BRIN-BD11 β-cells with rhGH also increased intracellular Ca2+ levels in a Jak2 and Src-dependent manner. However, these effects were hypothesized to be acting through the PRLR rather than the GHR as ovine prolactin and not bGH mimicked the effects of the hGH (Zhang et al., 2006).

Thus, the data presented herein make an undeniable argument for the role of GH in insulin synthesis and secretion. Insulin secretion in response to exogenous glucose is dysregulated in insulin resistance and diabetes. Identifying the mechanisms by which GH affects β-cell function could help identify potentially new candidates to improve β-cell function in diabetes.

REDUCED GH PRODUCTION AND ACTION IN OBESITY

GH secretion is consistently reduced in obesity (Makimura et al., 2008; Weltman et al., 2008). As a consequence, low GH secretion could further contribute to accumulation of abdominal fat. In fact, in a study with healthy volunteers 2 week over-eating resulted in significantly lower GH levels despite no changes in body weight suggesting that the reduction in GH secretion occurs prior to the manifestation of obesity (Cornford et al., 2011). However, despite the severe reduction in GH levels in obesity, there does not seem to be a proportional decrease in IGF-1 levels. In fact, most studies report either no change or only a modest change in total IGF-1.
levels in obesity (Utz et al., 2008; Frystyk et al., 2009; Cornford et al., 2011). This has resulted in the hypothesis that the maintenance of IGF-1 levels can further reduce GH secretion by the negative feedback loop previously described. Additionally, it is also believed that free IGF-1 is elevated in obesity and this could further activate the negative feedback loop to suppress GH secretion. However, free IGF-1 levels measured in obese subjects are inconclusive (Rasmussen et al., 2006, 2007; Utz et al., 2008; Frystyk et al., 2009; Cornford et al., 2011). Moreover, reduced IGFBP-1 expression has also been reported in obese subjects, which could result in increased IGF-1 bioactivity (Frystyk et al., 2009; Cornford et al., 2011).

Increased circulating FFA levels in obesity may also have a suppressive effect on GH secretion. In GH3 rat pituitary tumor cells, incubation with cis-unsaturated fatty acids such as oleic acid reduced GH secretion. FFA interference with GH secretion was shown to occur by suppression of adenylate cyclase/CAMP/PKA pathway and impedance of Ca2+ influx which is critical for membrane depolarization (Perez et al., 1997, 1998). Indeed, acute lowering of FFA levels by administration of the lipolysis inhibitor acipimox in obese subjects increased GH secretion, both spontaneous and in response to treatment with GHRH (Cordido et al., 1996, 1998; Maccario et al., 1996; Kok et al., 2004; Koutkia et al., 2004; Scacchi et al., 2010).

The hyperinsulinemia associated with insulin resistance in obesity may also contribute to reduced GH secretion. Circulating insulin levels in lean, ob/ob, and diet-induced obese mice negatively correlated with pituitary mRNA expression of GH, GHRH receptor, and GHSR. Further the skeletal muscle and adipose tissue, but not the pituitaries, of obese mice demonstrated reduced response to an acute insulin stimulation (Luque and Kineman, 2006). Additionally, incubation of GH3 rat pituitary tumor cells with insulin suppressed GH secretion in a dose dependent manner (Melmed, 1984). Moreover, administration of an oral glucose challenge to healthy individuals or subjects with a non-functional pituitary tumor resulted in a significant fall in GH levels within the first hour (Kim et al., 2007; Verrua et al., 2011). Insulin treatment also inhibited GH release and reduced mRNA expression of GH, GHRH receptor and GHSR in primary pituitary cultures isolated from non-human primates (Luque et al., 2006). Obesity is also associated with hypoapdonectinemia and leptin resistance, both of which have been implicated in regulating GH secretion (Rasmussen et al., 2006; Jurimae et al., 2009; Myers et al., 2010). GH secretory cells in the pituitary gland express the adiponectin receptors (Rodriguez-Pacheco et al., 2007; Psilopanagioti et al., 2009; Steyn et al., 2009) and incubation of primary rat pituitary cells with adiponectin increased GH secretion (Rodriguez-Pacheco et al., 2007; Steyn et al., 2009). While selective deletion of leptin receptors from somatotrophic cells in mice did not affect total cell number in the somatotroph, there was a reduction in the number of cells expressing GH and consequently GH secretion suggesting that leptin affects GH expression and secretion, but not somatotroph development (Childs et al., 2011). Leptin treatment, but not pair-feeding, of ob/ob mice increased plasma GH levels, despite similar decreases in body weights. The leptin treatment was associated with an increase in ghrelin levels suggesting that leptin augmented ghrelin action (Luque et al., 2007). Thus, these studies suggest that

FIGURE 1 | Possible mechanisms mediating reduced GH action in obesity. Obesity-induced hyperinsulinemia, hypoapdonectinemia, leptin resistance, and increased bioactive insulin-like growth factor-1 (IGF-1) and free fatty acid (FFA) levels could suppress GH secretion from the pituitary by various mechanisms (please refer to text). Reduced GH secretion further increases fat accumulation and, thus exacerbates the obesity condition. Moreover, reduced GH receptor (GHR) expression and increased expression of truncated GHR (ΔGHR) in the adipose tissue results in a GH-resistant state that also contributes to the complications associated with obesity.
which further results in fat accumulation could be an important factor in the pathogenesis of obesity. Furthermore, local GH resistance in the adipose tissue could further mediate fat accumulation and exacerbate the condition (Figure 1).

CONCLUSION

GH exerts diverse effects on tissues. Many of the physiological effects of GH are still unknown. New targets of GHR signaling are steadily emerging, and the metabolic actions of GH may not be as clear as was initially believed. While GH opposes insulin action in peripheral tissues, it is also important for GSIS in the β-cells and for the maintenance of lipid homeostasis. Decreased GH action in obesity may in itself contribute to the associated metabolic abnormalities. Understanding the role of GH in physiological and pathological states could contribute to the development of new therapeutic strategies.

REFERENCES

Anderson, L. L., Jeflinna, S., and Sannes, C. G. (2004). Growth hormone secretion: molecular and cellular mechanisms and in vivo approaches. Exp. Biol. Med. (Maywood) 229, 291–302.

Anderson, B., Carlson, L. M., Carlson, B., Albertsson-Wikland, K., and Bjarnason, R. (2009). Decrease in adiponectin levels correlates to growth response in growth hormone-treated children. Horm. Res. 71, 213–218.

Arumugam, R., Fleemor, D., and Freemark, M. (2007). Effects of lactogen resistance and GH deficiency on mouse metabolism: pancreatic hormones, adipocytokines, and expression of adiponectin and insulin receptors. Endocrine 32, 182–191.

Barbour, L. A., Mizanoor Rahman, S., Gurevich, I., Leitner, J. W., Fischer, S. J., Roper, M. D., Knotts, T. A., Vo, Y., McCurdy, C. E., Yakar, S., Leroith, D., Kahn, C. R., Cantley, L. C., Friedman, J. E., and Draznin, B. (2005). Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J. Biol. Chem. 280, 37489–37494.

Barbour, L. A., Shao, J., Qiao, L., Leitner, W., Anderson, M., Friedman, J. E., and Draznin, B. (2004). Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol-3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145, 1144–1150.

Barclay, J. L., Nelson, C. N., Ishikawa, M., Murray, L. A., Kerr, L. M., McPhee, T. R., Powell, E. E., and Waters, M. J. (2011). GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 152, 181–192.

Bastie, C. C., Nahle, Z., McLoughlin, T., Esser, K., Zhang, W., Unterman, T., and Abumrad, N. A. (2005). FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through the CD36-dependent and -independent mechanisms. J. Biol. Chem. 280, 14222–14229.

Baumann, G., Shaw, M., Amburn, K., Jan, T., Davila, N., Mercado, M., Stolar, M., and MacCart, J. (1994). Heterogeneity of circulating growth hormone. Nucl. Med. Biol. 21, 369–379.

Baumann, G. P. (2009). Growth hormone isoforms. Growth Horm. IGF Res. 19, 333–340.

Ben-Shlomo, A., and Melmed, S. (2010). The somatotrope as a metabolic sensor: deletion of leptin receptors causes obesity. Endocrinology 152, 69–81.

Cho, Y., Ariga, M., Uchiyama, Y., Kimura, K., Rho, J. Y., Furuhata, Y., Hakuno, F., Yamanouchi, K., Nishihara, M., and Takahashi, S. (2006). The novel roles of liver for compensation of insulin resistance in human growth hormone transgenic rats. Endocrinology 147, 3374–3384.

Choi, J. H., Kim, H., Kim, S. H., Yang, Y. R., Bae, Y. S., Chang, J. S., Kwon, H. M., Ryu, S. H., and Suh, P. G. (2006). Phospholipase Cgamma1 negatively regulates growth hormone signalling by forming a ternary complex with Jak2 and protein tyrosine phosphatase-1B. Nat. Cell Biol. 8, 1389–1397.

Ciresi, A., Amato, M. C., Criscimanna, A., Mattina, A., Vetro, C., Galluzzo, A., D’Acquisto, G., and Giordano, C. (2007). Metabolic parameters and adipokine profile during GH replacement therapy in children with GH deficiency. Eur. J. Endocrinol. 156, 353–360.

Cordido, F., Fernandez, T., Martinez, T., Peñalva, A., Peinó, R., Casanueva, F. F., and Dieguez, C. (1998). Effect of acute pharmacological reduction of plasma free fatty acids on growth hormone (GH) releasing hormone-induced GH secretion in obese adults with and without hypopituitaryism. J. Clin. Endocrinol. Metab. 83, 4350–4354.

Cordido, F., Peinó, R., Peñalva, A., Alvarez, C. V., Casanueva, F. F., and Dieguez, C. (1996). Impaired growth hormone secretion in obese subjects is partially reversed by acipimox-mediated plasma free fatty acid depression. J. Clin. Endocrinol. Metab. 81, 914–918.

Cornford, A. S., Barkan, A. L., and Horovitz, J. F. (2011). Rapid suppression of growth hormone concentration by overeating: potential mediation by hyperinsulinemia. J. Clin. Endocrinol. Metab. 96, 824–830.

Cui, Y., Hossai, A., Sun, R., Shen, K., Gavrila, O., Chen, W., Cam, M. C., Gao, B., Robinson, G. W., and Henighausen, L. (2007). Loss of signal transducer and activator of transcription 5 leads to hepatosteatosis and impaired liver regeneration. Hepatology 46, 504–513.

del Rincon, J. P., Iida, K., Gaylinn, B. D., McCurdy, C. E., Leitner, J. W., Barbour, L. A., Kopchick, J. J., Friedman, J. E., Draznin, B., and Thorne, M. O. (2007). Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes 56, 1638–1646.

Deng, L., He, K., Wang, X., Yang, N., Thangavel, C., Jiang, J., Fuchs, S. Y., and Frank, S. J. (2007). Determinants of growth hormone receptor down-regulation. Mol. Endocrinol. 21, 1537–1551.

Dominici, F. P., Argentino, D. P., Muñoz, M. C., Miquet, J. G., Sotelo, A. I., and Turyn, D. (2005). Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Horm. IGF Res. 15, 324–336.

Ehrenborg, E., and Krook, A. (2009). Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol. Rev. 61, 373–393.

Elliott, M. J., Faulkner-Jones, B. E., Stanton, H., Hamilton, J. A., and Metcalf, D. (1992). Plasminogen activator in granulocyte-macrophage-CSF transgenic mice. J. Immunol. 149, 3678–3681.
Erman, A., Veilleux, A., Tchernof, A., and Goodyer, C. G. (2011a). Human growth hormone receptor (GHR) expression in obesity: I. GHR mRNA expression in omental and subcutaneous adipose tissues of obese women. Int. J. Obes. (Lond.) doi: 10.1038/ijo.2011.23. [Epub ahead of print].

Erman, A., Wabitsch, M., and Goodyer, C. G. (2011b). Human growth hormone receptor (GHR) expression in obesity: II. Regulation of the human GHR gene by obesity-related factors. Int. J. Obes. (Lond.) doi: 10.1038/ijo.2011.10. [Epub ahead of print].

Fan, Y., Menon, R. K., Cohen, P., Hwang, D., Clemens, T., DiGiro, lamo, D. J., Kopchik, J. J., Le Roith, D., Tr免疫, M., and Speng, M. A. (2009). Liver-specific deletion of the growth hormone receptor reveals essential role of GH signaling in hepatic lipid metabolism. J. Biol. Chem. 284, 19937–19944.

Freda, P. U., Shen, W., Heymsfield, S. B., Reyes-Vidal, C. M., Geer, E. B., Bruce, J. N., and Gallagher, D. (2008). Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J. Clin. Endocrinol. Metab. 93, 2334–2343.

Frick, F., Bohlooly, Y. M., Lindén, D., Olsson, B., Törn nell, J., Edén, S., and Oscarsson, J. (2001). Long-term growth hormone excess induces marked alterations in lipo protein metabolism in mice. Am. J. Physiol. Endocrinol. Metab. 281, E1230–E1239.

Friedrichsen, B. N., Richter, H. E., Hansen, J. A., Rhodes, C. J., Nielsen, J. H., Billerstrup, N., and Moldrup, A. (2003). Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells. Mol. Endocrinol. 17, 945–958.

Fruman, D. A., Mauvais-Jarvis, E., Pol lard, D. A., Yable, C. M., Brasil, D., Bronson, R. T., Kahn, C. R., and Cantley, L. C. (2000). Hypoglycemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat. Genet. 26, 379–382.

Frystyk, J., Brick, D. I., Gerweck, A. V., Utz, A. L., and Miller, K. K. (2009). Bioactive insulin-like growth factor-1 in obesity. J. Clin. Endocrinol. Metab. 94, 3093–3097.

Ghanaat, F., and Tayek, J. A. (2005). Growth hormone administration increases glucose production by preventing the expected decrease in glycolysis seen with fasting in healthy volunteers. Metabol. Clin. Exp. 54, 604–609.

Greenhalgh, C. J., Rico-Bautista, E., Lorentzon, M., Thau, A. L., Morgan, P. O., Wilson, T. A., Zervoudakis, P., Metcalf, D., Street, L., Nicola, N. A., Nash, A. D., Fabri, L. J., Norstedt, G., Ohlsson, C., Flores-Morales, A., Alexander, W. S., and Hilton, D. J. (2003). SOCS2 negatively regulates growth hormone action in vitro and in vivo. J. Clin. Invest. 115, 397–406.

Guo, Y., Lu, Y., Houle, D., Robertson, K., Tang, Z., Kopchick, J. J., Liu, Y. L., and Liu, J. L. (2005). Pancreatic islet-specific expression of an insulin-like growth hormone factor-1 transgenic mouse: enhances islet cell growth in growth hormone receptor gene-deficient mice. Endocrinology 146, 2620–2629.

He, K., Loesch, K., Cowan, J. W., Li, X., Deng, L., Wang, X., Jiang, J., and Frank, S. J. (2005). Janus kinase 2 enhances the stability of the mature growth hormone receptor. Endocrinology 146, 4755–4765.

Holloway, M. G., Cui, Y., Laz, E. V., Hosui, A., Hennighausen, L., and Waxman, D. J. (2007). Loss of sexu dimorphic liver gene expression upon hepatocyte-specific deletion of STAT5α-STAT5b locus. Endocrinology 148, 1977–1986.

Hooijerbrugge, N., Jansen, H., Staels, B., Seip, M. J., and Birkenhager, J. C. (1993). Growth hormone normalizes hepatic lipase in hypothalamic rat liver. Metabol. Clin. Exp. 42, 669–671.

Hoybye, C., Chandramouli, V., Efen dic, S., Hulting, A. L., Landau, B. R., Schumann, W. C., and Wain got, A. (2008). Contribution of the glucose transporter 4 gene in obesity resistance. Metabol. Clin. Exp. 57, 725–732.

Kelder, B., Berryman, D. E., Clark, R. L., Li, A., List, E. O., and Kopchick, J. J. (2007). CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor knockout mice show attenuated glucoctrcorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. U.S.A. 104, 14924–14929.

Kotzka, J., Knebel, B., Avci, H., Jacob, S., Nitzgen, U., Jockenhovel, F., Heeren, J., Haas, I., and Muller-Wieland, D. (2010). Phosphorylation of sterol regulatory element-binding protein (SREBP)-1a links growth hormone action to lipid metabolism in hepatocytes. Atherosclerosis 213, 156–163.

Koutrik, P., Meisinger, G., Canavan, B., Breu, J., and Grinspoon, S. (2004). Metabolic regulation of growth hormone by free fatty acids, somatostatin, and ghrelin in HIV-lipodystrophy. Am. J. Physiol. Endocrinol. Metab. 286, E296–E303.

Krae, M. L., Nielsen, S., Guo, Z., Pedersen, S. B., Schmitz, O., Christiansen, J. S., and Jorgensen, I. O. (2008). Peroxisome proliferator-activated receptor gamma agonism modifies the effects of growth hormone on lipolysis and insulin sensitivity. Clin. Endocrinol. (Oxf.) 69, 452–461.

Lanning, N. J., and Carter-Su, C. (2006). Recent advances in growth hormone signaling. Rev. Endocr. Metab. Disord. 7, 225–235.
function in a non-human pri-
mat model, Papiu ambo. J. Mol.
Endocrinol. 37, 25–38.
Luque, R. M., Huang, Z. H., Shah, B.,
Mazzone, T., and Kineman, R. D.
(2007). Effects of leptin replacement on hypothalamic-pituitary growth hormone axis function and circulating ghrelin levels in ob/ob mice. Am.
J. Physiol. Endocrinol. Metab. 292,
E891–E899.
Luque, R. M., and Kineman, R. D.
(2006). Impact of obesity on the growth hormone axis evidence for a direct inhibitory effect of hyper-
insulinemia on pituitary function. Endocrinology 147, 2754–2763.
Luque, R. M., Lin, Q., Córdocha-Chacón,
J., Subbaiah, P. V., Buch, T., Wais-
man, A., Vankelecom, H., and Kine-
mana, R. D. (2007). The role of Bmi-1, a novel link between brown adipose
tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-
disrupted dwarf mice. Exp. Biol.
Med. (Maywood) 228, 207–215.
Liang, L., Jiang, J., and Frank, S. J.
(2008). The use of osteopontin transac-
t-mediated enhancement of growth hormone-induced mitogen-
activated protein kinase activation. Endocrinology 141, 3328–3336.
Lin, S. C., and Li, P. (2004). CID-1A,
a novel link between brown adipose
tissue and obesity. Trends Mol. Med.
10, 434–439.
Lindberg-Larsen, R., Møller, N., Smit-
zh, O., Nielsen, S., Andersen,
M., Orskov, H., and Jørgensen, J. O.
(2007). The impact of pegvisomant treatment on substrate metabolism and insulin sensitivity in patients with acromegaly. J. Clin. Endocrinol.
Metab. 92, 1724–1728.
Liu, J. L., Grinberg, A., Westphal, H.,
Sauer, B., Accili, D., Karas, M.,
and LeRoith, D. (1998). Insulin-
lke growth factor-I affects perina-
tal lethality and postnatal develop-
ment in a gene dosage-dependent manner: manipulation using the Cre/loxP system in transgenic mice. Mol.
Endocrinol. 12, 1452–1462.
Ljunghall, S., Lindstedt, A., Arvidson,
C., Bergström, G., and Oscarsson,
J. (2007). Importance of PPAR alpha for the effects of growth hormone on hepatic lipid and lipoprotein metabo-
lism. Growth Horm. IGF Res. 17,
154–164.
Loesch, K., Deng, L., Cowan, J. W.,
Wang, X., He, K., Jiang, J., Black, R.
A., and Frank, S. J. (2006). Janus kinase 2 influences growth hor-
B. (2002). Metabolic implications of AOD9401 on lipid metabolism in Zucker fatty rats. J. Mol. Endocrinol.
25, 287–298.
Nielsen, C., Gormsen, L. C., Jessen,
N., Pedersen, S. B., Møller, N., Lund,
S., and Madsen, O. D. (2009). Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor block-
ade. J. Clin. Endocrinol. Metab. 93,
2842–2850.
Nielsen, J. H. (1982). Effects of growth hormone, prolactin, and placen-
tal lactogen on insulin content and release, and deoxyribonucleic acid synthesis in cultured pan-
creatic islets. Endocrinology 110, 600–606.
Nielsen, J. H., Linde, S., Weiland, B.
S., Billestrup, N., and Madsen, O. D.
(1989). Growth hormone is a growth factor for the differentiated pan-
creatic beta-cell. Mol. Endocrinol.
3, 165–173.
Nielsen, J. H., Moldrup, A., and
Billestrup, N. (1990). Expression of the growth hormone receptor gene in insulin producing cells. Biochim.
Biophys. Acta 1031, 1115–1155.
Nilsson, L., Binart, N., Bohlodylo-Y, I.
M., Beermann, M., Egegikou, R., Kind,
blom, J., Kelly, P. A., Kopchick, J. J.,
Ormandy, C. J., Ling, C., and Billig,
H. (2005). Prolactin and growth horm-
one regulate adiponectin secre-
tion and receptor expression in adi-
pose tissue. Biochem. Biophys. Res.
Commun. 331, 1120–1126.
Olszyn, C., Mohan, S., Sjögren, K.,
Tivelsten, A., Isogard, M., Jakson,
O., Jansson, J. O., and Svensson,
J. (2009). The role of liver-derived insulin-like growth factor-1. Endocr.
Rev. 30, 494–535.
Oliveira, C. R., Salvatori, R., Meneguz-
Moreno, R. A., Aguiar-Oliveira, M.
H., Pereira, R. M., Valença, E. H.,
Arausso, V. P., Farias, N. T., Silveira,
D. C., Vieira, J. G., and Barreto-Filho,
J. A. (2010). Adipokine profile and uri-
nary albumin excretion in isolated growth hormone deficiency. J. Clin.
Endocrinol. Metab. 95, 693–698.
Oscarsson, J., Ottosson, M., Johansson, J. O., Wiklund, O., Mårin, P., Björntorp, P., and Bengtsson, B. A. (1996). Two weeks of daily injections and continuous infusion of recombinant human growth hormone (GH) in GH-deficient adults. II. Effects on serum lipoproteins and lipoprotein and hepatic lipase activity. *Metabolism* 45, 570–577.

Oscarsson, J., Ottosson, M., Vikman-Adolfsson, K., Frick, F., Enerbäck, S., Lithell, H., and Eden, S. (1999). GH but not IGF-I or insulin increases lipoprotein lipase activity in muscle tissues of hypophysectomised rats. *J. Endocrinol.* 160, 247–255.

Ott, M. O., Bober, E., Lyons, G., Arnold, H., and Buckingham, M. (1991). Early expression of the myogenic regulatory factor myf-5 in precursors of skeletal muscle in the mouse embryo. *Development* 111, 1097–1107.

Pasarica, M., Zachwieja, J., Dejonge, L., Redman, S., and Smith, S. R. (2007). Effect of growth hormone on body composition and visceral adiposity in middle-aged men with visceral obesity. *J. Clin. Endocrinol. Metab.* 92, 4625–4670.

Pasquali, C., Curchod, M. L., Wächli, S., Espanel, X., Guerrier, M., Challet, E., Fraccaro, M., and Pennisi, P. A., Kopchick, J. J., Thorgeirsson, O., Bober, E., Lyons, G., Arnold, J. C., Takeda, K., and Zhang, Y. (2010a). Identification of protein tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth. *J. Biol. Chem.* 282, 35405–35415.

Psilopanagioti, A., Papadaki, H., Kranidi, E. F., Alexandrides, T. K., and Varakis, J. N. (2009). Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. *Neuroendocrinology* 89, 38–47.

Qin, Y., and Tian, Y. P. (2010a). Exploring the molecular mechanisms underlying the potentialization of exogenous growth hormone on alcohol-induced fatty liver disease in mice. *J. Transl. Med.* 8, 120.

Qin, Y., and Tian, Y. P. (2010b). Hepatic adiponectin receptor R2 expression is up-regulated in normal adult male mice by chronic exogenous growth hormone levels. *Mol. Med. Report* 3, 525–530.

Qin, Y., and Tian, Y. P. (2010c). Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats. *Lipids Health Dis.* 9, 78.

Ram, P. A., Park, S. H., Choi, H. K., and Waxman, D. J. (1996). Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differences in the kinetics of hormone desensitization and hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. *J. Biol. Chem.* 271, 5929–5940.

Ram, P. A., and Waxman, D. J. (1999). SOCS/CIS protein inhibition of growth hormone-stimulated STAT signaling by multiple mechanisms. *J. Biol. Chem.* 274, 35535–35561.

Rasmussen, M. H., Juul, A., and Hilsted, J. (2007). Effect of weight loss on free insulin-like growth factor-I in obese women with hyperinsomatropism. *Obesity (Silver Spring)* 15, 879–886.

Rasmussen, M. H., Juul, A., Kjems, L., and Hilsted, J. (2006). Effects of short-term caloric restriction on circulating free IGF-I, acid-labile subunit, IGF-binding proteins (IGFBPs)−1, and IGFBPs-1–3 proteinase activity in obese subjects. *Eur. J. Endocrinol.* 155, 575–581.

Richelsen, B., Christiansen, J. S., and Jørgensen, J. B. (2007). Effect of weight loss on free insulin-like growth factor-I receptor antagonism, osteocalcin, and insulin metabolism in active acromegaly. *J. Clin. Endocrinol. Metab.* 92, 361–368.

Utz, A. L., Yamamoto, A., Sluss, P., Breu, J., and Miller, K. K. (2008). Aminoglutethimide may mediate a relative preservation of IGF-I levels in overweight and obese women despite reduced growth hormone secretion. *J. Clin. Endocrinol. Metab.* 93, 4033–4040.
Vijayakumar et al. The intricate role of growth hormone in metabolism

Verrua, E., Filopanti, M., Ronchi, C. L., Olgiati, L., Ferrante, E., Giavoli, C., Sala, E., Mantovani, G., Arosio, M., Beck-Peccoz, P., Lania, A. G., and Spada, A. (2011). GH response to oral glucose tolerance test: a comparison between patients with acromegaly and other pituitary disorders. J. Clin. Endocrinol. Metab. 96, E83–E88.

Wang, X., Yang, N., Deng, L., Li, X., Jiang, J., Gan, Y., and Frank, S. J. (2009). Interruption of growth hormone signaling via SHC and ERK in 3T3-F442A preadipocytes upon knockdown of insulin receptor substrate-1. Mol. Endocrinol. 23, 486–496.

Wang, Z., Masternak, M. M., Al-Regaiey, K. A., and Bartke, A. (2007). Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology 148, 2845–2853.

Weltman, A., Weltman, J. Y., Watson Winfield, D. D., Frick, K., Patrie, J., Kok, P., Keenan, D. M., Gaesser, G. A., and Veldhuis, J. D. (2008). Effects of continuous versus intermittent exercise, obesity, and gender on growth hormone secretion. J. Clin. Endocrinol. Metab. 93, 4711–4720.

Wolfing, B., Neumeier, M., Buechler, C., Aslanidis, C., Scholmerich, J., and Schäffler, A. (2008). Interfering effects of insulin, growth hormone and glucose on adipokine secretion. Exp. Clin. Endocrinol. Diabetes 116, 47–52.

Wu, Y., Liu, C., Sun, H., Vijayakumar, A., Giglou, P. R., Qiao, R., Oppenheimer, J., Yakar, S., and LeRoith, D. (2011). Growth hormone receptor regulates beta cell hyperplasia and glucose-stimulated insulin secretion in obese mice. J. Clin. Invest. 121, 2422–2426.

Yang, S., Mulder, H., Holm, C., and Edén, S. (2004). Effects of growth hormone on the function of beta-adrenoceptor subtypes in rat adipocytes. Oves. Res. 12, 330–339.

Yip, R. G., and Goodman, H. M. (1999). Growth hormone and dexamethasone stimulate lipolysis and activate adenyl cyclase in rat adipocytes by selectively shifting Gi alpha2 to lower density membrane fractions. Endocrinology 140, 1219–1227.

Zerrad-Saadi, A., Lambert-Blot, M., Mitchell, C., Bretes, H., Collin de l’Hortet, A., Baud, V., Chereau, F., Soitropoulos, A., Kopchick, J. J., Liao, L. X., Xu, J., Gilgenkrantz, H., and Guidotti, J. E. (2011). GH receptor plays a major role in liver regeneration through the control of EGFR and ERK1/2 activation. Endocrinology 152, 2731–2741.

Zhang, F., Zhang, Q., Tengholm, A., and Sjöholm, A. (2006). Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+ and insulin secretion. Am. J. Physiol. Cell Physiol. 291, C466–C475.

Zhao, J. T., Cowley, M. J., Lee, P., Birzniece, V., Kaplan, W., and Ho, K. K. (2011). Identification of novel GH-regulated pathway of lipid metabolism in adipose tissue: a gene expression study in hypopituitary men. J. Clin. Endocrinol. Metab. 96, E1188–E1196.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 26 July 2011; paper pending published: 08 August 2011; accepted: 30 August 2011; published online: 27 September 2011.

Citation: Vijayakumar A, Yakar S and LeRoith D (2011) The intricate role of growth hormone in metabolism. Front. Endocrin. 2:32. doi: 10.3389/fendo.2011.00032

This article was submitted to Frontiers in Pituitary Endocrinology, a specialty of Frontiers in Endocrinology.

Copyright © 2011 Vijayakumar, Yakar and LeRoith. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.