RANDOM VEERING TRIANGULATIONS ARE NOT GEOMETRIC

DAVID FUTER, SAMUEL J. TAYLOR, AND WILLIAM WORDEN

ABSTRACT. Every pseudo-Anosov mapping class \(\varphi \) defines an associated veering triangulation \(\tau_\varphi \) of a punctured mapping torus. We show that generically, \(\tau_\varphi \) is not geometric. Here, the word “generic” can be taken either with respect to random walks in mapping class groups or with respect to counting geodesics in moduli space. Tools in the proof include Teichmüller theory, the Ending Lamination Theorem, study of the Thurston norm, and rigorous computation.

1. Introduction

In 2011, Agol introduced the notion of a layered veering triangulation for certain hyperbolic mapping tori [1]. Given a hyperbolic surface \(S \) and a pseudo-Anosov homeomorphism \(\varphi: S \to S \), the mapping torus \(M_\varphi \) with fiber \(S \) and monodromy \(\varphi \) is always hyperbolic. Drilling out the singularities of the \(\varphi \)-invariant foliations on \(S \) produces a punctured surface \(\hat{S} \) and a restricted pseudo-Anosov map \(\hat{\varphi} = \varphi|_{\hat{S}} \), whose mapping torus \(\hat{M}_\varphi = M_{\hat{\varphi}} \) is a surgery parent of \(M_\varphi \). Agol’s construction uses splitting sequences of train tracks to produce an ideal triangulation of \(\hat{M}_\varphi \) (that is, a decomposition of \(\hat{M}_\varphi \) into simplices whose vertices have been removed) called the veering triangulation associated to \(\varphi \).

In Section 2.5, we give a detailed description of the veering triangulation \(\tau = \tau_\varphi \) from an alternate point of view, introduced by Guéritaud [25]. For now, we mention that \(\tau \) has very strong combinatorial and topological properties. The triangulation \(\tau \) is layered, meaning that every edge is isotopic to an essential arc on the punctured fiber \(\hat{S} \). The triangulation \(\tau \) contains a product region \(\Sigma \times I \) for every large-distance subsurface \(\Sigma \subset \hat{S} \) [44]. Finally, \(\tau_\varphi \) decorated with layering data is a complete invariant of the conjugacy class \([\varphi] \subset \text{Mod}(S)\) [1, Corollary 4.3], which yields a fast practical solution to the conjugacy problem for pseudo-Anosovs [4, 38]. Given these combinatorial properties, it is natural to ask whether \(\tau \) also has desirable geometric properties in the complete hyperbolic metric on \(\hat{M}_\varphi \).

Since every edge of \(\tau \) is homotopically non-trivial, it is possible to homotope every ideal tetrahedron \(t \subset \tau \) to a straight simplex \(t' \), whose lift to the universal cover \(\mathbb{H}^3 \) is the convex hull of 4 points on \(\partial \mathbb{H}^3 \). This homotopy is natural, in the sense that it extends continuously to all of \(\tau \). The triangulation \(\tau \) is called geometric if the straightening homotopy can be accomplished by isotopy. Equivalently, \(\tau \) is called geometric if the complete hyperbolic structure on \(M_\varphi \) can be obtained by taking positively oriented tetrahedra in \(\mathbb{H}^3 \) in bijection with the 3–simplices of \(\tau \), and gluing them by isometry in the combinatorial pattern of \(\tau \).

Agol asked whether veering triangulations are always geometric [1, Section 5]. Hodgson, Issa, and Segerman showed that the answer can be negative [28], by finding a veering triangulation with 13 tetrahedra, in which one tetrahedron is negatively oriented. (In the
Figure 1. For a simple random walk in \(\text{Mod}(S) \), with generators shown in Figure 4, the probability that the veering triangulation is geometric decays exponentially with the length of the walk. Both graphs show the same data, with a linear plot on the left and a log-linear plot on the right. Each dot represents several thousand mapping classes. Figure from Worden [53].

It seems unlikely that a counterexample would have been found without a computer search, and it is still something of a mystery why veering triangulations are so frequently geometric.

It is now clear that geometric veering triangulations are exceedingly rare. This was shown experimentally by Worden [53], who tested over 800,000 examples on a high-performance computing cluster. Given a hyperbolic surface \(S \) of complexity \(\xi(S) \geq 2 \), he found that for randomly sampled long words in \(\text{Mod}(S) \), the probability of the associated veering triangulation being geometric decays exponentially with the length of the word. See Figure 1.

The main result of this paper is a proof of the qualitative pattern visible in Figure 1. While we do not prove exponential decay, we do prove that the proportion of geometric triangulations decays to 0. We establish this in two separate probabilistic regimes: first, with respect to random walks on \(\text{Mod}(S) \) (Theorem 1.1), and second, with respect to counting closed geodesics in moduli space (Theorem 1.2).

We use the symbol \(\Sigma_{g,n} \) to denote the surface of genus \(g \) with \(n \) punctures. Every surface \(S \) mentioned below is presumed homeomorphic to some \(\Sigma_{g,n} \); in particular, \(S \) is presumed connected and orientable. We define the complexity \(\xi(\Sigma_{g,n}) = 3g - 3 + n \).

For a surface \(S \) as above, we show that with overwhelming probability, a random walk on \(\text{Mod}(S) \) produces a pseudo-Anosov mapping class with non-geometric veering triangulation.

Theorem 1.1. Let \(S \) be a surface of complexity \(\xi(S) \geq 2 \), and consider a simple random walk on \(\text{Mod}(S) \) with respect to any finite generating set. Then, for almost every infinite sample path \((\varphi_n) \), there is a positive integer \(n_0 \) such that for all \(n \geq n_0 \), the mapping class \(\varphi_n \) is pseudo-Anosov and the veering triangulation of \(M_{\varphi_n} \) is non-geometric.

In fact, the same result holds true for sample paths defined by a more general probability measure. See Corollary 1.5 for a precise statement.
We remark that every pseudo-Anosov on a surface satisfying $\xi(S) < 2$ has a geometric veering triangulation. (See Theorem 1.3 and the ensuing discussion.) Thus Theorem 1.1 applies to the largest possible collection of (orientable) surfaces.

We will prove Theorem 1.1 by combining two separate, logically independent ingredients. The first ingredient is Theorem 1.3: when $\xi(S) \geq 2$, there is at least one principal mapping class on S whose associated veering triangulation is non-geometric. A pseudo-Anosov mapping class $\varphi \in \text{Mod}(S)$ is called **principal** if its invariant Teichmüller geodesic lies in the principal stratum. (See Section 2.1 for a discussion of strata and Teichmüller geodesics.) Equivalently, φ is principal if its stable foliation has 3-prong singularities at interior points of S and 1–prong singularities at punctures of S. By a theorem of Gadre and Maher [23], principal pseudo-Anosovs are generic from the point of view of random walks in $\text{Mod}(S)$.

The second ingredient is a convergence result, Theorem 1.4, which shows that every principal mapping class occurs in a suitable sense as the limit of a random process, where the combinatorics of the triangulation and the geometry of the mapping torus both converge to the desired limit. This result works for any hyperbolic surface. In particular, given a principal mapping class φ with non-geometric veering triangulation, almost every sample path of a random walk also has non-geometric veering triangulation.

By replacing random walk techniques with work of Hamenstädt [27] and Eskin–Mirzakhani [15], we prove our second result concerning the scarcity of geometric veering triangulations. For $L > 0$, let $\mathcal{G}(L)$ be the finite set of conjugacy classes of pseudo-Anosov mapping classes in $\text{Mod}(S)$ whose Teichmüller translation length is at most L. Equivalently, $\mathcal{G}(L)$ is the set of all conjugacy classes of pseudo-Anosovs whose dilatation is at most e^L. Recall that the veering triangulation τ_φ of the punctured mapping torus \hat{M}_φ only depends on the conjugacy class $[\varphi]$, i.e. on an element of $\mathcal{G}(L)$ for some L.

Theorem 1.2. Let S be a surface with complexity $\xi(S) \geq 2$. Then

$$\lim_{L \to \infty} \frac{1}{|\mathcal{G}(L)|} \left| \{ [\varphi] \in \mathcal{G}(L) : \text{the veering triangulation of } \hat{M}_\varphi \text{ is not geometric} \} \right| = 1.$$

Just as with Theorem 1.1, the proof of Theorem 1.2 combines an existence statement with a convergence statement. The existence statement is again Theorem 1.3: there is a principal mapping class $\varphi \in \text{Mod}(S)$ whose associated veering triangulation is non-geometric. The convergence statement roughly says that the axis of a typical element of $\mathcal{G}(L)$ fellow-travels the axis of φ for a very long distance. This statement, combined with ingredients from the proof of Theorem 1.4, implies the desired result. We refer to Section 7 for more details.

1.1. **Existence of non-geometric triangulations.** As described above, we begin the proof of Theorems 1.1 and 1.2 by finding some pseudo-Anosov element of $\text{Mod}(S)$ whose associated veering triangulation is non-geometric. In fact, we show the following.

Theorem 1.3. Let $S \cong \Sigma_{g,n}$ be a hyperbolic surface. Then $\xi(S) \geq 2$ if and only if there exists a principal pseudo-Anosov $\varphi \in \text{Mod}(S)$ such that the associated veering triangulation of the mapping torus \hat{M}_φ is non-geometric.

The “if” direction of Theorem 1.3 is previously known. The only (connected, orientable) hyperbolic surfaces with $\xi(S) < 2$ are $\Sigma_{0,3}, \Sigma_{0,4}$, and $\Sigma_{1,1}$. Akiyoshi [2] and Lackenby [34] proved that all pseudo-Anosov mapping classes on $\Sigma_{1,1}$ and $\Sigma_{0,4}$ have geometric veering triangulations. Guéritaud gave a direct argument for the same conclusion [24]. Meanwhile, $\text{Mod}(\Sigma_{0,3})$ is finite, hence $\Sigma_{0,3}$ has no pseudo-Anosov mapping classes at all. Thus the new content of Theorem 1.3 is the “only if” direction of the statement.
In the proof of Theorem 1.3, we characterize geometric triangulations using shape parameters. Given a tetrahedron $t \subset M$, endowed with an ordering of its ideal vertices, we lift t to \mathbb{H}^3 and define the shape parameter z_t to be the cross-ratio of the 4 vertices on the sphere at infinity. The cross-ratio z_t determines the isometry type of the straightened tetrahedron t' homotopic to t. In particular, t' is positively oriented if and only if $\text{Im}(z_t) > 0$. Shape parameters can be computed using Snappy [12], in either floating-point or interval arithmetic, making it possible to test whether a particular triangulation τ is geometric.

To prove the “only if” direction of Theorem 1.3 for a finite list of fiber surfaces, we essentially follow the method of Hodgson–Issa–Segerman [28]. We find a suitable mapping class $\varphi \in \text{Mod}(S)$ using a brute-force search, and use flipper [4] to certify that φ is a principal pseudo-Anosov. Then, we use rigorous interval arithmetic in Snappy, including routines derived from HIKMOT [30], to certify that the shape parameter of each $t \subset \tau$ lies inside a small box in \mathbb{C}. One of these boxes has strictly negative imaginary part, implying that τ is non-geometric. See Section 8 for details.

To extend our knowledge from finitely many surfaces to all the surfaces in Theorem 1.3, we exploit the fact that many fibered 3–manifolds fiber in infinitely many ways, organized via the Thurston norm. (See Section 9 for definitions and further details.) All the fibers that appear in a single fibered cone of the Thurston norm ball have associated monodromies that induce the same veering triangulation of the same drilled manifold \hat{M}. As a consequence, we can prove Theorem 1.3 for all $g \geq 1, n \geq 1$ (excluding $\Sigma_{1,1}$), using only two explicit examples. That is, we find two fibered manifolds with principal pseudo-Anosovs whose veering triangulations are non-geometric, and show that every such surface $\Sigma_{g,n}$, appears as (a cover of) a fiber for at least one of our two examples. The verification that these two fibered manifolds have all the desired properties is assisted by Regina [10]. Similar tricks handle the other surfaces with $\xi(S) \geq 2$, namely closed surfaces and punctured spheres.

1.2. Convergence to any principal pseudo-Anosov. The following convergence theorem is the main technical result of this paper. Although the statement here is for the random walk model, it is derived from a more general result (Proposition 6.2) that also applies to counting geodesics in moduli space.

Consider a probability measure μ on $\text{Mod}(S)$. We use the notation $\langle \text{Supp}(\mu) \rangle_+$ to denote the semigroup generated by the support of μ. Say that $\langle \text{Supp}(\mu) \rangle_+$ is non-elementary if it contains at least two pseudo-Anosov elements with distinct axes. In the setting of a simple random walk, μ is the uniform probability measure on a symmetric generating set, hence $\langle \text{Supp}(\mu) \rangle_+ = \text{Mod}(S)$ is non-elementary.

Theorem 1.4. Let S be a hyperbolic surface, and fix a principal pseudo-Anosov $\varphi \in \text{Mod}(S)$. Lift the veering triangulation τ_φ of the mapping torus \hat{M}_φ to a triangulation $\hat{\tau}$ of the infinite cyclic cover \hat{N}_φ, corresponding to the fiber. Let $K \subset \hat{\tau}$ be any finite, connected sub-complex.

Let μ be a probability distribution on $\text{Mod}(S)$ with finite first moment, such that $\langle \text{Supp}(\mu) \rangle_+$ is non-elementary and contains φ. Then, for almost every sample path $\omega = (\omega_n)$, there is a positive integer n_0 such that the following hold:

- For all $n \geq n_0$, ω_n is a principal pseudo-Anosov.
- For all $n \geq n_0$, K embeds as a sub-complex of the veering triangulation τ_{ω_n} of the mapping torus \hat{M}_{ω_n}.
- For every tetrahedron $t \subset K$, the shape of t in \hat{M}_{ω_n} converges to the shape of t in \hat{N}_φ as $n \to \infty$.

The argument used to prove Theorem 1.4 can be summarized as follows. The first two conclusions are proven by combining a result about fellow-traveling of sample paths in Teichmüller space (Theorem 3.1, due to Gadre–Maher [23]), together with Corollary 5.6. Informally, Corollary 5.6 states that if appropriate quadratic differentials \(q_i \) converge to \(q \), then their associated veering triangulations also converge, in the sense appearing in Theorem 1.4. A more precise formulation of this result requires Guéritaud’s construction of the veering triangulation (given in Section 2.5), and is postponed until Section 5. The upshot is that if \(\varphi \) and \(\psi \) are pseudo-Anosov homeomorphisms whose axes in Techmüler space fellow travel for sufficiently long, then their associated veering triangulations of \(\hat{M}_\varphi \) and \(\hat{M}_\psi \) have large isomorphic subcomplexes.

The third conclusion of Theorem 1.4 follows by relating the convergence of the quadratic differentials referenced above to the algebraic convergence of the hyperbolic structures on the associated manifolds. The main tool for this is the Ending Lamination Theorem of Brock–Canary–Minsky [43, 8] together with a strengthening by Leininger–Schleimer [35]. In short, algebraic convergence of the surface group representations yields convergence in \(\mathbb{H}^3 \) of the ideal endpoints of the veering tetrahedra, which means that the shapes of these tetrahedra converge as desired. The details are given in Section 6.

One particular consequence of Theorem 1.4 is the following statement.

Corollary 1.5. Let \(S \) be a hyperbolic surface. Let \(\varphi \in \text{Mod}(S) \) be a principal pseudo-Anosov whose veering triangulation \(\tau_\varphi \) is non-geometric.

Let \(\mu \) be a probability distribution on \(\text{Mod}(S) \) with finite first moment, such that \(\langle \text{Supp}(\mu) \rangle \) is non-elementary and contains \(\varphi \). Then, for almost every infinite sample path \(\omega = (\omega_n) \), there is a positive integer \(n_0 \) such that for all \(n \geq n_0 \), the veering triangulation \(\tau_{\omega_n} \) is also non-geometric.

Proof. Let \(K \subset \hat{\mathbb{R}} \) be (the lift to \(\hat{N}_\varphi \) of) a single tetrahedron \(t \subset \tau_\varphi \) whose shape is negatively oriented. Theorem 1.4 says that \(t \) also appears as a tetrahedron in \(\tau_{\omega_n} \) for \(n \gg 0 \). Furthermore, the shape of \(t \) in \(\hat{M}_{\omega_n} \) converges to a negatively oriented limit as \(n \to \infty \), hence \(t \) has to be negatively oriented in \(\hat{M}_{\omega_n} \) for all \(n \gg 0 \). \(\square \)

Now, observe that Theorem 1.1 follows immediately by combining Theorem 1.3 with Corollary 1.5. The proof of Theorem 1.2 follows a similar pattern, but replaces Corollary 1.5 with Corollary 7.2. See Section 7 for the full details.

1.3. Organization

Section 2 lays out definitions and background material from Teichmüller theory that will be needed in most of the subsequent arguments.

The proof of Theorem 1.4 spans Sections 3 to 6. We discuss convergence of quadratic differentials in Sections 3 and 4, convergence of veering triangulations in Section 5, and finally convergence of geometric structures on 3–manifolds in Section 6. In Section 7, we combine these ingredients with measure-theoretic tools to prove Theorem 1.2.

Finally, Sections 8 and 9 contain the proof of Theorem 1.3.

1.4. Acknowledgements

We thank Matthias Goerner, Eiko Kin, Yair Minsky, Saul Schleimer, and Henry Segerman for a number of enlightening conversations. We thank Matthew Stover and the referee for helpful comments that improved our exposition. We also thank Vaibhav Gadre for suggesting that we prove Theorem 1.2 and Ilya Gekhtman for help with the details.
2. Background

The primary goal of this section is to survey some background material on Teichmüller theory, quadratic differentials, and measured foliations that will be heavily used in the following few sections. The reader is referred to [7, 16, 17, 48] for additional details. After this general background, we describe Guéritaud’s construction of veering triangulations [25].

Throughout, we let \(S = \Sigma_{g,n} \) be a surface of genus \(g \) with \(n \) punctures, and assume that \(\xi(S) = 3g - 3 + n \geq 1 \). This assumption implies that the Teichmüller space \(T(S) \), which is the space of complex structures on \(S \) up to isotopy, has real dimension \(2\xi(S) \geq 2 \).

2.1. Quadratic differentials and strata. Let \(X \in T(S) \) be a complex structure on \(S \). A quadratic differential \(q \) on \(X \) is a tensor locally defined in coordinates by \(q = q(z)dz^2 \) for some meromorphic function \(q(z) \). The function \(q(z) \) is required to be analytic inside \(S \), but is allowed to have simple poles at the punctures of \(S \). By changing coordinates, we may assume that \(q = dz^2 \) in the neighborhood of a regular value of \(q \), and \(q = z^k dz^2 \) in the neighborhood of a pole/zero \((k = -1 \text{ for simple poles, and } k > 0 \text{ for zeros}) \). These are called natural coordinates and have the property that, away from poles and zeros of \(q \), the transition functions have the form \(z \mapsto \pm z + c \), for some complex number \(c \). In particular, these transition functions preserve the standard Euclidean metric on \(\mathbb{C} \). Throughout the paper, we call the poles and zeros of \(q \), as well as the punctures of \(S \), singularities of \(q \). This is because punctures of \(S \) will play a role similar to other singularities of \(q \) even though such punctures may correspond to regular values of \(q \).

A quadratic differential \(q \) determines a pair of transverse measured foliations \(F_q^- \) and \(F_q^+ \), called the horizontal and vertical foliations. In the above natural coordinates \(z = x + iy \) away from the singularities, these foliations are given by setting \(y \) and \(x \) (respectively) to be constant, with transverse measures \(|dy| \) and \(|dx| \). Near a zero of order \(k \) (where a pole corresponds to \(k = -1 \)), each of the horizontal and vertical foliations has a \((k+2)\)-pronged singularity.

Away from singularities, the transverse measures \(|dx| \) and \(|dy| \) induce a Euclidean metric \(\sqrt{|dx|^2 + |dy|^2} \) on \(S \). The completion of this metric on \(S \) is known as the singular flat metric corresponding to \(q \). The area of \(S \) endowed with this metric is denoted \(\|q\| \), and defines a norm on the space \(QD(S) \) of quadratic differentials on \(S \). We denote by \(QD^1(S) \) the set of elements \(q \in QD(S) \) with \(\|q\| = 1 \). The projection \(QD(S) \to T(S) \) sending a quadratic differential to its underlying complex structure can be identified with the cotangent bundle of \(T(S) \); see, for example, [32].

The principal stratum of quadratic differentials \(GQD(S) \) is the subset of \(QD(S) \) that consists of all those quadratic differentials whose zeros are of order 1 (that is, 3–prong singularities), and whose punctures are all simple poles (that is, 1–prong singularities). The symbol \(G \) in \(GQD(S) \) stands for “generic.” In general, \(QD(S) \) decomposes into strata characterized by the orders of the zeros and poles of \(q(z) \). When \(S \not\equiv \Sigma_{1,1} \), the principal stratum is open and dense, while the other strata have positive codimension. (When \(S \equiv \Sigma_{1,1} \), the principal stratum as previously defined is empty. All nonzero quadratic differentials belong to a single stratum with a single 2–prong singularity at the puncture.)

2.2. Teichmüller geodesics and flows. We recall the construction of the Teichmüller geodesic flow, denoted \(\Phi^t : QD^1(S) \to QD^1(S) \). Given a unit-area quadratic differential \(q \in QD^1(S) \), and a number \(t \in \mathbb{R} \), the image \(\Phi^t(q) \) is defined as follows. The underlying
complex structure is \(X_t = X_t(q) \), whose coordinate charts (away from singularities) are given by composing the natural coordinates for \(q \) with the affine map

\[
\begin{bmatrix}
e^t & 0 \\
0 & e^{-t}
\end{bmatrix}.
\]

Then, \(\Phi^t(q) \in \mathcal{QD}^1(S) \) is the quadratic differential on \(X_t \) given by \(dz^2 \) in these coordinates. The flow \(\Phi^t \) plays an important role in Section 7.

For a fixed \(q \in \mathcal{QD}^1(S) \), the map \(\mathbb{R} \to \mathcal{T}(S) \) defined by \(t \mapsto X_t(q) \) is called a Teichmüller geodesic. Indeed, this line in \(\mathcal{T}(S) \) is a parametrized geodesic for the Teichmüller metric \(d_T \). By Teichmüller’s theorem, any pair of points \(X,Y \) in \(\mathcal{T}(S) \) are joined by a unique segment of a Teichmüller geodesic, of length \(d_T(X,Y) \), which we often denote by \([X,Y]\). The map \(X = X_0 \to X_t = Y \) defined by Equation (2.1) is called the Teichmüller map. If the quadratic differential \(q \) associated to a Teichmüller geodesic \(\gamma \) is in the principal stratum \(\mathcal{GQD}(S) \), then we will say that \(\gamma \) is in the principal stratum of Teichmüller space.

Consider now a pseudo-Anosov mapping class \(\varphi \in \text{Mod}(S) \). Bers [5] showed that \(\varphi \) preserves a unique geodesic axis \(\gamma_\varphi \subset \mathcal{T}(S) \) consisting of points \(X \in \mathcal{T}(S) \) such that \(d_T(X, \varphi(X)) = \log \lambda_\varphi \), where \(\lambda_\varphi > 1 \) is the dilatation of \(\varphi \). By Equation (2.1), the geodesic \(\gamma_\varphi \) corresponds to a one-parameter family \(q_t \) of quadratic differentials. The complex structure \(X_t \) underlying \(q_t \) is a point along \(\gamma_\varphi \), and the projective classes of \(
abla^+(q_t) \) and \(
abla^-(q_t) \) are constant and equal to the invariant foliations of \(\varphi \). If some (hence every) \(q_t \) lies in the principal stratum \(\mathcal{GQD}(S) \), we say that \(\varphi \) is a principal pseudo-Anosov.

2.3. Curves, foliations, and laminations. One can study how conformal structures change along Teichmüller geodesics by understanding what happens to the lengths of curves and arcs. This perspective will be important in Section 3.

The arc and curve graph \(\mathcal{AC}(S) \) is the graph whose vertices are isotopy classes of essential simple closed curves and simple proper arcs in \(S \). Here, essential means that the curve or arc is not isotopic into a small neighborhood of a point or a puncture. Two vertices are joined by an edge in \(\mathcal{AC}(S) \) if they have disjoint representatives. If we follow the same construction with vertices restricted to be closed curves on \(S \), we obtain the curve graph \(\mathcal{C}(S) \subset \mathcal{AC}(S) \), and similarly restricting to arcs yields the arc graph \(\mathcal{A}(S) \subset \mathcal{AC}(S) \).

We have already encountered measured foliations as the vertical and horizontal foliations of a quadratic differential. A singular measured foliation \(\mathcal{F} \) on \(S \) is a singular foliation endowed with a transverse measure (see [17] for a more thorough definition). A Whitehead move on a foliation \(\mathcal{F} \) introduces or contracts a compact singular leaf on \(\mathcal{F} \), by either splitting a singularity into a pair of singularities joined by a compact leaf, or by contracting such a leaf to collapse two singularities into one. In general, we let \(\mathcal{MF}(S) \) denote Thurston’s space of measured foliations of \(S \), up to Whitehead equivalence, whose topology comes from convergence of transverse measures; again see [17] for details. The space \(\mathcal{PMF}(S) \) of projective measured foliations is obtained from \(\mathcal{MF}(S) \) by identifying measures which differ by scaling.

By the Uniformization theorem, every conformal structure \(X \) is realized by a unique hyperbolic metric. A geodesic measured lamination on a hyperbolic surface \(X \) is a non-empty collection of disjoint simple geodesics of \(X \) whose union is closed in \(X \), along with a transverse measure that is invariant as we flow along the geodesics. There is an exact correspondence between measured laminations and measured foliations (up to Whitehead equivalence). For a precise treatment of this correspondence between foliations and laminations, see Levitt [36]. We denote the space of (geodesic) measured laminations on \(S \) by
\(\mathcal{ML}(S)\). In analogy with \(\mathcal{PMF}(S)\), we define the space \(\mathcal{PM}\mathcal{L}(S)\) of projective measured laminations to be \(\mathcal{ML}(S)\) modulo scaling of the measure. We will use the identifications \(\mathcal{MF}(S) \cong \mathcal{ML}(S)\) and \(\mathcal{PMF}(S) \cong \mathcal{PM}\mathcal{L}(S)\) without further comment.

Let \(\mathcal{C}^0(S)\) be the countable set of \(\mathcal{C}(S)\). Endowing every curve with the counting measure embeds \(\mathcal{C}^0(S)\) as a subset of \(\mathcal{ML}(S)\). By the above correspondence, we also have a natural embedding \(\mathcal{C}^0(S) \subset \mathcal{MF}(S)\). Thurston proved that the projectivization of \(\mathcal{C}^0(S)\) is dense in both \(\mathcal{PMF}(S)\) and \(\mathcal{PM}\mathcal{L}(S)\). Furthermore, \(\mathcal{PMF}(S)\) and \(\mathcal{PM}\mathcal{L}(S)\) are compact [17].

A filling lamination is one that intersects every (essential) curve. (We will also call the corresponding foliations filling.) The space of ending laminations of \(S\), denoted \(\mathcal{EL}(S)\), is obtained by restricting to the subset of \(\mathcal{ML}(S)\) consisting of filling laminations, and quotienting by forgetting the measures. Hence, \(\mathcal{EL}(S)\) is a quotient of a subspace of \(\mathcal{ML}(S)\). This space plays an important role in the theory of Kleinian groups; see Section 6.

Finally, we say that a filling lamination (or the corresponding measured foliation) is uniquely ergodic if the underlying topological lamination supports a unique projective measure class. The subspace of uniquely ergodic foliations is denoted \(\mathcal{UE}(S) \subset \mathcal{PMF}(S)\).

2.4. Intersection pairing. Given two vertices \(a, b \in \mathcal{AC}^0(S)\), the geometric intersection number of \(a\) and \(b\) is defined to be the minimal number of intersections between any pair of curves/arcs representing \(a\) and \(b\). In symbols,

\[
i(a, b) = \min_{\alpha \in a, \beta \in b} |\alpha \cap \beta|.
\]

Thurston showed that this function extends uniquely to a continuous, homogeneous function \(i: \mathcal{MF}(S) \times \mathcal{MF}(S) \to \mathbb{R}\), also called the geometric intersection number. See [49, 7].

For a quadratic differential \(q\), recall the vertical and horizontal measured foliations \(\mathcal{F}_q^+\) and \(\mathcal{F}_q^-\). For \(a \in \mathcal{AC}(S)\), let \(h_q(a)\) denote the (horizontal) length of \(a\) with respect to the transverse measure on \(\mathcal{F}_q^+\). Similarly, \(v_q(a)\) denotes the (vertical) length of \(a\) with respect to the transverse measure on \(\mathcal{F}_q^-\). Then the \(\ell^1\) length of \(a\) with respect to the flat structure induced by \(q\) is \(\ell^1_q(a) = h_q(a) + v_q(a)\). The intersection pairing \(i(\cdot, \cdot)\) satisfies

\[
h_q(a) = i(\mathcal{F}_q^+, a) \quad \text{and} \quad v_q(a) = i(\mathcal{F}_q^-, a).
\]

Hence, \(\ell^1_q(\cdot) = i(\mathcal{F}_q^+, \cdot) + i(\mathcal{F}_q^-, \cdot)\) extends to a continuous function on \(\mathcal{MF}(S)\). In Section 5, we will need the stronger observation that the pairing

\[i^1: \mathcal{QD}(S) \times \mathcal{MF}(S) \to \mathbb{R}\]

given by \((q, \mathcal{F}) \mapsto \ell^1_q(\mathcal{F})\) is continuous in both parameters. This follows from the continuity of the intersection pairing along with the fact [31] that the assignment \(q \mapsto (\mathcal{F}_q^+, \mathcal{F}_q^-)\) induces a homeomorphism \(\mathcal{QD}(S) \to \text{Fill}^2 \subset \mathcal{MF}(S) \times \mathcal{MF}(S)\), where \(\text{Fill}^2 = \{(\mathcal{F}_1, \mathcal{F}_2): i(\alpha, \mathcal{F}_1) + i(\alpha, \mathcal{F}_2) > 0 \ \text{for all} \ \alpha \in \mathcal{C}(S)\}\).

2.5. Veering triangulations. We close this background section with a description of Guéraud’s construction of veering triangulations [25]. Before giving the details, we note that this was not the original construction. Agol’s original definition used periodic train track splitting sequences associated to the invariant foliations of a pseudo-Anosov map [1]. A very quick combinatorial characterization of veering triangulations appears in [29]. See also [21, 44] for other perspectives.

Let \(S\) be a surface, and let \(q \in \mathcal{QD}(S)\) be a quadratic differential. Let \(\hat{S}\) be the complement of the singularities of \(q\). Then \(\mathcal{F}^{-}\) and \(\mathcal{F}^{+}\), the horizontal and vertical foliations of \(q\), have
Figure 2. Guéritaud’s construction: a maximal singularity-free rectangle \(R \) defines an oriented ideal tetrahedron in \(\hat{S} \times \mathbb{R} \) with a projection to \(R \).

singularities only at punctures of \(\hat{S} \). Recall that \(q \) defines a singular flat metric on \(S \), which restricts to an incomplete metric on \(\hat{S} \). A saddle connection of \(q \) is a geodesic arc in the singular flat metric on \(S \), with singularities at the endpoints but no singularities in its interior. Every saddle connection naturally yields an arc in \(\hat{S} \). For the following construction, we will assume that \(q \) has no horizontal or vertical saddle connections; that is, no saddle connection is a leaf of \(F^\pm \).

Consider an immersed rectangle \(R \rightarrow S \), with horizontal boundary mapped to \(F^- \), vertical boundary mapped to \(F^+ \), and interior mapped to \(\hat{S} \). It follows that the interior of \(R \) must miss all singularities of \(F^\pm \). We call \(R \) a maximal (singularity-free) rectangle of \(q \) if it is maximal with respect to inclusion. Since there are no horizontal or vertical saddle connections, every side of a maximal rectangle must meet exactly one puncture of \(\hat{S} \). Observe that the punctures of \(\hat{S} \) must lie at interior points of edges: if a puncture occurred at a corner, \(R \) could be extended, violating maximality. See Figure 2 and [44, Figure 2].

Every maximal singularity-free rectangle \(R \) defines an oriented tetrahedron \(t \) with a map \(t \rightarrow R \), as follows. The vertices of \(t \) map to the four preimages of punctures in \(\partial R \). The edges of \(t \) map to the six saddle connections spanned by these four vertices. The orientation of \(t \) is determined by the convention that the more-vertical edge (whose endpoints are on the horizontal edges of \(R \)) lies above the more-horizontal edge. See Figure 2. Performing this construction for all maximal rectangles gives a countable collection of tetrahedra whose vertices map to punctures of \(\hat{S} \). If tetrahedra \(t \) and \(t' \) contain the same triple of saddle connections (equivalently, if maximal rectangles \(R \) and \(R' \) intersect along a sub-rectangle that meets three punctures), we glue \(t \) to \(t' \) along their shared face. By a theorem of Guéritaud [25] (see also [44, Theorem 2.1]), the resulting 3–complex is an ideal triangulation \(\tau_q \) of \(\hat{S} \times \mathbb{R} \):

Theorem 2.1 (Guéritaud). The complex of tetrahedra associated to maximal rectangles of \(q \) is an ideal triangulation \(\tau_q \) of \(\hat{S} \times \mathbb{R} \). The maps of tetrahedra to their defining rectangles piece together to form a fibration \(\pi: \hat{S} \times \mathbb{R} \rightarrow \hat{S} \).

We call \(\tau_q \) the veering triangulation associated to \(q \). Observe that a saddle connection of \(q \) corresponds to an edge of \(\tau_q \) if and only if it spans a singularity-free rectangle. This is because every singularity-free rectangle can be expanded to a maximal one.

Now, suppose that the quadratic differential \(q \) corresponds to a pseudo-Anosov homeomorphism \(\varphi: S \rightarrow S \). Restricting \(\varphi \) to the punctured surface \(\hat{S} \) produces a pseudo-Anosov \(\hat{\varphi}: \hat{S} \rightarrow \hat{S} \). Then \(\hat{\varphi} \) permutes the (maximal) singularity-free rectangles of \(q \), and therefore acts simplicially and \(\pi \)-equivariantly on the ideal triangulation \(\tau_q \) of \(\hat{S} \times \mathbb{R} \). Consequently,
such that for almost every bi-infinite sample path
\[M_\varphi = M_{\hat{\varphi}} = \hat{S} \times [0, 1]/(x, 1) \sim (\hat{\varphi}(x), 0). \]
The resulting veering triangulation of \(M_{\hat{\varphi}} \) is denoted \(\tau_\varphi \).

3. Convergence of quadratic differentials

In this section, we establish a statement about convergence of quadratic differentials that will form a key component for proving Theorem 1.4. This statement requires a handful of definitions.

For a pair of geodesics \(\gamma_1 \) and \(\gamma_2 \) in a metric space \(X \), we say that \(\gamma_2 \) is a \(\rho \)-fellow traveler with \(\gamma_1 \) for distance \(D \) centered at \(x = \gamma_1(t_0) \) if we have \(d_X(\gamma_1(t), \gamma_2(t)) < \rho \) whenever \(d_X(\gamma_1(t), x) \leq D/2 \), for some unit speed parametrizations of \(\gamma_1 \) and \(\gamma_2 \).

For a given constant \(\epsilon > 0 \), let \(T_\epsilon(S) \) denote the set of all \(X \in T(S) \) such that the hyperbolic metric defined by \(X \) contains a closed geodesic shorter than \(\epsilon \). The complement \(K_\epsilon := T(S) \setminus T_\epsilon(S) \) is called the \(\epsilon \)-thick part of Teichmüller space. Let \(\gamma_0 \) be a Teichmüller geodesic in a thick part of Teichmüller space, and let \(X, Y \in \text{Teich}(S) \) be two points on \(\gamma_0 \). By Masur’s Criterion [40], the horizontal and vertical foliations of \(\gamma_0 \) are uniquely ergodic. Let \(B_r(X) \) and \(B_r(Y) \) be balls of radius \(r \) about \(X \) and \(Y \), respectively. Define \(\Gamma_r(X, Y) \) to be the set of all oriented geodesics \(\gamma \) passing first through \(B_r(X) \), then through \(B_r(Y) \), such that the vertical and horizontal foliations \(F^+ \) and \(F^- \) associated to \(\gamma \) are uniquely ergodic. Recall that the space of uniquely ergodic foliations on \(S \) is denoted by \(UE(S) \). By a result of Hubbard and Masur [31], any pair of uniquely ergodic foliations in \(PMF(S) \simeq \partial T(S) \) determine a unique Teichmüller geodesic, so we can also think of \(\Gamma_r(X, Y) \) as a subset of \(UE(S) \times UE(S) \).

Theorem 3.1 (Gadre–Maher). Let \(g \in \text{Mod}(S) \) be a principal pseudo-Anosov, with invariant geodesic \(\gamma_g \). Let \(\mu \) be a probability distribution on \(\text{Mod}(S) \) with finite first moment, such that \(\langle \text{Supp}(\mu) \rangle_+ \) is non-elementary and contains \(g \), and fix \(D > 0 \). Then there exists \(\rho > 0 \) such that, for almost every bi-infinite sample path \(\omega = (\omega_n) \), there is a positive integer \(N \) such that for \(n \geq N \), \(\omega_n \) is a principal pseudo-Anosov whose Teichmüller geodesic \(\gamma_{\omega_n} \) is a \(\rho \)-fellow traveler with \(h_n \gamma_g \) for distance \(D \), for some \(h_n \in \text{Mod}(S) \).

In the above theorem, the statement that \(\omega_n \) is principal appears in the statement of Gadre and Maher’s [23, Theorem 1.1]. The statement that \(\gamma_{\omega_n} \) fellow travels with a translate of \(\gamma_g \) forms a key ingredient in Gadre and Maher’s proof that \(\omega_n \) is principal. The claim that the fellow-traveling distance \(D \) can be taken arbitrarily large follows from examining their argument, but is not explicitly stated. Since our application (Corollary 3.8) requires fellow traveling for longer and longer distances, we write down a unified proof of Theorem 3.1 by reassembling many of the same tools used by Gadre and Maher. We remark that a similar theorem was obtained independently by Baik–Gekhtman–Hamenstädt [3, Theorem 6.8].

Proof of Theorem 3.1. Fix a basepoint \(X \) on the Teichmüller geodesic \(\gamma_g \). By a theorem of Kaimanovich and Masur [33], it is almost surely true that \(\omega_n X \) and \(\omega_{-n} X \) converge to distinct uniquely ergodic measured foliations \(F^+_\omega \) and \(F^-_{\omega} \) as \(n \to \infty \). Let \(\gamma_\omega \) be the unique Teichmüller geodesic determined by these foliations, parametrized by arclength so that \(\gamma_\omega(0) \) is the closest point on \(\gamma_\omega \) to the basepoint \(X \).

In the following argument, we will first establish fellow traveling between \(\gamma_\omega \) and \(\gamma_{\omega_n} \) for large \(n \). Then we establish fellow traveling between \(\gamma_{\omega_n} \) and a carefully chosen translate of
\(\gamma_g \). This will imply fellow traveling between \(\gamma_{\omega_n} \) and the translate of \(\gamma_g \), which will also imply that \(\omega_n \) is principal. As the proof involves many constants, we point the reader to Figure 3 for a sketch of how the ideas fit together.

Let \(\epsilon > 0 \) be small enough so that \(\gamma_g \) is in the \(\epsilon \)-thick part \(K_\epsilon \). Let \(\ell > 0 \) be the drift of the random walk. Given this \(\epsilon \), we have the following proposition, originally proved by Dahmani and Horbez [13, Theorem 2.6]. The formulation below appears in [23, Proposition 3.1] and holds for any fixed \(\epsilon > 0 \):

Proposition 3.2. [23, Proposition 3.1] There are constants \(F > 0 \) and \(0 < \epsilon_0 < \frac{1}{2} \) such for almost every \(\omega \), and \(n \) sufficiently large, there are points \(Y_0 \) and \(Y_1 \) on \(\gamma_{\omega_n} \) and points \(\gamma_\omega(T_0), \gamma_\omega(T_1) \) on \(\gamma_\omega \) such that

1. \(d_T(\gamma_\omega(T_i), Y_i) \leq F \) for \(i = 0, 1 \).
2. \(0 \leq T_0 \leq \epsilon_0 ln(1 - \epsilon_0) ln \leq T_1 \leq ln(T_1) \).
3. \(\gamma_\omega(T_i) \) is in the thick part \(K_\epsilon \) for \(i = 0, 1 \).

See the red box in Figure 3 for an illustration. With both \(\epsilon \) and \(F \) now fixed, we can apply the following theorem of Rafi [47, Theorem 7.1]:

Theorem 3.3. [23, Theorem 2.3] For any constants \(\epsilon > 0 \) and \(F \geq 0 \), there is a constant \(B = B(\epsilon, F) \) such that if \([Y, Z] \) and \([Y', Z'] \) are two Teichmüller geodesics, with \(Y \) and \(Z \) in the \(\epsilon \)-thick part, and

\[
d_T(Y, Y') \leq F \quad \text{and} \quad d_T(Z, Z') \leq F,
\]

then \([Y, Z] \) and \([Y', Z'] \) are parametrized \(B \)-fellow travellers.

Since Proposition 3.2 says that \(d_T(\gamma_\omega(T_i), Y_i) \leq F \) and \(\gamma_\omega(T_i) \) is in the \(\epsilon \)-thick part for \(i \in \{1, 2 \} \), this theorem guarantees \(B(\epsilon, F) \)-fellow traveling between the segments \([Y_0, Y_1] \subset \gamma_{\omega_n} \) and \([\gamma_\omega(T_0), \gamma_\omega(T_1)] \subset \gamma_\omega \), for \(n \) sufficiently large (see Figure 3). The following lemma due to Gadre and Maher is key:

Lemma 3.4. [23, Lemma 4.1] Let \(g \) be a pseudo-Anosov in the support of \(\mu \) with invariant Teichmüller geodesic \(\gamma_g \). Then there is a constant \(r > 0 \) such that for every \(Y, Z \in \gamma_g \), the probability \(\mathbb{P}(\gamma_\omega \in \Gamma_r(Y, Z)) \) is strictly positive.

Now, if we apply Theorem 3.3 with \(F \) replaced by the constant \(r \) given by Lemma 3.4, then we get a constant \(B' = B'(\epsilon, r) \), which guarantees that any geodesic in \(\Gamma_r(Y, Z) \) contains a sub-segment that \(B' \)-fellow travels with \(\gamma_g \) on the entirety of \([Y, Z] \).

The following result is observed in the course of proving [23, Proposition 4.3]:

Proposition 3.5. Let \(g \) be a pseudo-Anosov such that \(\gamma_g \) is in the principal stratum. For any \(\rho > 0 \), there is a constant \(D_1 = D_1(\rho, g) > 0 \) such that any geodesic that \(\rho \)-fellow travels with \(\gamma_g \) for distance greater than \(D_1 \) also lies in the principal stratum.

For our application, set \(\rho = B + B' \). Without loss of generality, assume that the constant \(D \) in the statement of the theorem is larger than \(D_1 \). Let \(k \in \mathbb{N} \) be the smallest positive integer such that

\[
d_T(g^{-k}X, g^{k}X) \geq D_0 := D + \rho.
\]

By our choice of \(B' = B'(\epsilon, r) \), any geodesic in \(\Gamma_r(g^{-k}X, g^{k}X) \) will \(\rho \)-fellow travel with \(\gamma_g \) on an interval of length \(D_0 \) centered at \(X \). Let \(\Omega \subset \text{Mod}(S)^\mathbb{Z} \) consist of those sample paths \(\omega \) such that the sequences \(\omega_{-n}X \) and \(\omega_nX \) converge to distinct uniquely ergodic foliations \((\mathcal{F}^-, \mathcal{F}^+) \in \Gamma_r(g^{-k}X, g^{k}X) \). By Lemma 3.4, the subset \(\Omega \) has positive probability \(P \).
\[\begin{align*}
\text{Figure 3. The logical structure of the proof of Theorem 3.1. First, establish } B\text{–fellow traveling of } \gamma_\omega \text{ and } \gamma_\omega_n \text{ (red). Then, establish } B'\text{–fellow traveling between } \gamma_\omega \text{ and a translate of } \gamma_g \text{ (green), on an interval contained in the red interval. This implies } p\text{–fellow traveling between } \gamma_{\omega_n} \text{ and the translate of } \gamma_g \text{ (blue). Note that the points marked on the geodesic } \gamma_\omega \text{ are really } t\text{–values in the unit-speed parametrization: e.g. } e_0ln \text{ should be } \gamma_{\omega}(e_0ln).}
\end{align*} \]

Let \(\sigma: \text{Mod}(S)^Z \to \text{Mod}(S)^Z \) be the shift map. Ergodicity of \(\sigma \) implies that for almost every \(\omega \), there is some \(m \geq 0 \) such that \(\sigma^m(\omega) \in \Omega \). Since \(\omega_0 \gamma_{\sigma^m(\omega)} = \gamma_\omega \), it follows that for such \(m \), \(\gamma_\omega \) is a \(B'\)–fellow traveler with \(\omega_0 \gamma_g \) for distance \(D_0 \), centered at \(\omega_0 X \).

For almost every \(\omega \), the proportion of \(m \in \{1, \ldots, n\} \) that satisfy \(\sigma^m(\omega) \in \Omega \) tends to \(P \) as \(n \to \infty \). For any \(e \in (e_0, \frac{1}{2}) \), the proportion of \(m \) in the range \(en \leq m \leq (1 - e)n \) that satisfy \(\sigma^m(\omega) \in \Omega \) also tends to \(P \) as \(n \to \infty \). This implies that given \(\omega \) and \(e \in (e_0, \frac{1}{2}) \), there exists \(N \) such that for all \(n \geq N \), there exists an \(m \) such that \(en \leq m \leq (1 - e)n \) and \(\sigma^m(\omega) \in \Omega \).

By sublinear tracking in Teichmüller space, due to Tiozzo [51], almost every \(\omega \) satisfies

\[\lim_{m \to \infty} \frac{1}{m} d_T(\omega_m X, \gamma_\omega(lm)) = 0. \]

(Recall that we have given \(\gamma_\omega \) a unit-speed parametrization so that \(\gamma_\omega(0) \) is the closest point to \(X \)). Now, fix \(e_1 \) and \(e_2 \) so that \(e_0 < e_1 < e_2 < \frac{1}{2} \). After possibly replacing \(N \) with a larger number, we can assume that for any \(n \geq N \) there exists \(m_0 \) such that

1. \(e_2 ln \leq lm_0 \leq (1 - e_2)ln \leq ln \) and \(\sigma^{m_0}(\omega) \in \Omega \).
2. \(d_T(\omega_{m_0} X, \gamma_\omega(lm_0)) \leq \frac{1}{2}(e_2 - e_1)lm_0 \).

Furthermore, we may also assume that \(N \) is large enough (hence, \(n \) is large enough) that \(D_0 \leq (e_1 - e_0)ln \) and \(B' \leq \frac{1}{2}(e_2 - e_1)ln \). Define \(h_n = \omega_{m_0} \). For the sake of clarity, we will continue to denote this mapping class by \(\omega_{m_0} \) as we finish the proof.

Since \(\sigma^{m_0}(\omega) \in \Omega \), Theorem 3.3 implies that \(\gamma_\omega \) and \(\omega_{m_0} \gamma_g \) are \(B' \)–fellow travelers for distance \(D_0 \) centered at a point \(p = \gamma_\omega(t_0) \) on \(\gamma_\omega \), and centered at \(\omega_{m_0} X \) on \(\omega_{m_0} \gamma_g \). Since \(d_T(p, \omega_{m_0} X) \leq B' \leq \frac{1}{2}(e_2 - e_1)ln \), and (2) implies

\[d_T(\omega_{m_0} X, \gamma_\omega(lm_0)) \leq \frac{1}{2}(e_2 - e_1)lm_0 \leq \frac{1}{2}(e_2 - e_1)ln, \]

we have by the triangle inequality that \(d_T(p, \gamma_\omega(lm_0)) \leq (e_2 - e_1)ln \). Since \(e_2 ln \leq lm_0 \leq (1 - e_2)ln \), it follows that \(e_1 ln \leq t_0 \leq (1 - e_1)ln \). Our requirement that \(D_0 \leq (e_1 - e_0)ln \) therefore ensures that \(d_T(p, \gamma_\omega(e_0ln)) \geq D_0 \) and \(d_T(p, \gamma_\omega((1 - e_0)ln)) \geq D_0 \). Since \(p \) is the
center of the B'–fellow traveling between γ_ω and $\omega m_0 \gamma_0$, this assures that this distance D_0 fellow traveling happens fully inside the range of B–fellow traveling between γ_ω and γ_ω. See the green box in Figure 3.

Now, recall that we used Proposition 3.2 to find T_0, T_1 satisfying

$$T_0 \leq e_0 ln \leq (1 - e_0)ln \leq T_1$$

so that the interval $[\gamma_\omega(T_0), \gamma_\omega(T_1)]$ is a B–fellow traveler with γ_ω_n. It follows that γ_ω_n is a ρ–fellow traveler with $\omega m_0 \gamma_0 = h_n \gamma_0$ for a distance $D_0 - (B + B') \geq D_0 - \rho = D$. Since $D \geq D_1$, Proposition 3.5 implies that γ_ω_n lies in the principal stratum. \hfill \Box

We will use Theorem 3.1 in the form of Corollary 3.8 below. First, we need the following lemma, which says that if a geodesic γ fellow travels the axis of a pseudo-Anosov for sufficiently long, then γ gets arbitrarily close to the axis. If this pseudo-Anosov axis is principal, then the openness of the principal stratum implies γ will be principal as well.

Lemma 3.6. Let g be a pseudo-Anosov mapping class with axis γ_g. Fix $\rho > 0$, and suppose that γ_n is a sequence of Teichm"uller geodesics such that $h_n \gamma_n$ is a ρ–fellow traveler with γ_g for distance D_n, where $h_n \in \text{Mod}(S)$ and $D_n \to \infty$. Then there is a choice of quadratic differentials q_n associated to points along γ_n such that $h_n q_n$ converge to a quadratic differential q associated to γ_g.

Proof. By replacing γ_n with $h_n \gamma_n$ and translating by a power of g, we may suppose that γ_n is a ρ–fellow traveler with γ_g for a length D_n subsegment of γ_g centered at some point $s \in \gamma_g$. Let q be the quadratic differential based at s associated to γ_g. We first make the following claim:

Claim 3.7. There are $s_n \in \gamma_n$ such that $s_n \to s$.

Proof of claim. If this were not the case, then after passing to a subsequence, γ_n converges to a Teichm"uller geodesic γ with the properties that

1. γ fellow travels γ_g, and
2. s has distance at least $\delta > 0$ from γ.

Now let γ^+ be a positive ray in γ. Since γ^+ stays bounded distance from (the positive end of) γ_g, it follows that γ^+ accumulates in $\mathcal{P}\mathcal{M}\mathcal{F}(S)$ to foliations that are topologically equivalent to the stable foliation of g [41, Theorem 3.8]. Since this foliation is uniquely ergodic, we see that γ^+ in fact converges to the stable foliation of g. Similarly, γ^- converges to the unstable foliation of g. Hence, the vertical and horizontal foliations defining γ and γ_g agree, and so γ and γ_g are equal, up to a reparametrization. This, however, contradicts (2), completing the proof of the claim. \hfill \Box

Returning to the proof of the lemma, let q_n be the quadratic differential associated to $s_n \in \gamma_n$. Now we claim that $q_n \to q$ in $\mathcal{QD}(S)$. This follows exactly as in the proof of the claim: if not, then after passing to a subsequence, $q_n \to q' \neq q$ based at s. But then γ_n would converge (uniformly on compact sets) to the Teichm"uller geodesics determined by q'. Since we know that γ_n converges to γ, this gives a contradiction and completes the proof. \hfill \Box

Recall that $\mathcal{QD}(S)$ denotes the principal stratum of quadratic differentials on S.

Corollary 3.8. Let $g \in \text{Mod}(S)$ be a principal pseudo-Anosov with Teichm"uller axis γ_g. Let μ be a probability distribution on $\text{Mod}(S)$ with finite first moment, such that $\langle \text{Supp}(\mu) \rangle_+$ is
non-elementary and contains \(g \). Then for almost every sample path \(\omega = (\omega_n) \) in \(\text{Mod}(S) \), there is a positive integer \(N \) such that for \(n \geq N \), every \(\omega_n \) is a principal pseudo-Anosov and \(h_n \omega_n \to q \) in \(GQD(S) \), where \(h_n \in \text{Mod}(S) \) and \(q \) is some quadratic differential along the axis \(\gamma_g \).

Proof. Let \(\rho > 0 \) be the number guaranteed by **Theorem 3.1**. Let \(\text{PPA} \subset \text{Mod}(S) \) be the set of principal pseudo-Anosovs and define the set

\[
G_D = \{ \omega : \exists N \geq 0 \text{ such that } \forall n \geq N, \omega_n \in \text{PPA} \text{ and } \gamma_{\omega_n} \text{ is a } \rho-\text{fellow traveler with a translate of } \gamma_g \text{ for distance } D \}.
\]

By **Theorem 3.1**, \(\mathbb{P}(G_D) = 1 \) for all \(D \). Since \(G_{D'} \subset G_D \) for \(D \leq D' \), we set \(\mathcal{G} = \bigcap G_D \) and conclude that \(\mathbb{P}(\mathcal{G}) = 1 \).

Now for each \(\omega \in \mathcal{G} \), there is a sequence of mapping classes \(h_n \), such that \(h_n \omega_n \) is a \(\rho \)-fellow traveler with \(\gamma_g \) for distance \(D_n \), where \(D_n \to \infty \) as \(n \to \infty \). Applying **Lemma 3.6** and recalling that \(GQD(S) \) is open in \(QD(S) \) completes the proof.

Remark 3.9. The only property of the principal stratum that we used in this section is that \(GQD(S) \) is open. As a consequence, all of the results in this section hold for \(S \cong \Sigma_{1,1} \), with \(GQD(S) \) replaced by \(QD(S) \). In particular, **Corollary 3.8** applies to every pseudo-Anosov in \(\text{Mod}(\Sigma_{1,1}) \), with the word “principal” excised.

4. Transition to punctured surfaces

Recall from **Section 2.5** that the construction of a veering triangulation starts with a quadratic differential \(q \in QD(S) \), punctures \(S \) along the singularities of \(q \) to obtain a surface \(\hat{S} \), and then builds an ideal triangulation of \(\hat{S} \times \mathbb{R} \). We need to analyze the veering triangulations not just for one \(q \in QD(S) \), but for an entire convergent sequence \(q_n \to q \) that comes from **Corollary 3.8**. To do this, we need a coherent way to map the sequence \(q_n \to q \) to a convergent sequence \(\hat{q}_n \to \hat{q} \in QD(\hat{S}) \).

Let \(QD_p(\hat{S}) \) denote the subspace of \(QD(\hat{S}) \) consisting of quadratic differentials whose singularities occur only at punctures. Then \(QD_p(\hat{S}) \) is a union of strata. If \(\hat{q} \in QD_p(\hat{S}) \) is a quadratic differential with at least 2 prongs at any puncture being filled in \(S \), then \(\hat{q} \) defines a quadratic differential \(q \in QD(S) \). Implicit in this definition is the observation that markings on \(\hat{S} \) induce markings on \(S \). The following is immediate:

Lemma 4.1. Let \(Q \subset QD_p(\hat{S}) \) be a stratum of \(QD(\hat{S}) \). Let \(S \) be the result of filling some number of punctures of \(\hat{S} \), so that a representative element \(\hat{q} \in \hat{S} \) has at least 2 prongs at every puncture being filled. Then the assignment \(\hat{q} \to q \in QD(S) \) defines a continuous map \(g : Q \to QD(S) \), whose image is a stratum. \(\square \)

We need to go in the opposite direction, puncturing \(S \) at singularities of \(q \in QD(S) \) to obtain \(\hat{S} \). This is is not as straightforward, because the surjection \(\text{Mod}(\hat{S}) \to \text{Mod}(S) \) has a large kernel, hence there is no consistent way to turn markings on \(S \) into markings on \(\hat{S} \). Nevertheless, this can be done locally in the principal stratum.

Lemma 4.2. Let \(q \in GQD(S) \) be a quadratic differential in the principal stratum. Let \(\hat{S} \) be the result of puncturing the singularities of \(q \). Then there is an open neighborhood \(U \) of \(q \), with an embedding \(f : U \to QD_p(\hat{S}) \) such that \(g \circ f = \text{id}_U \) where \(g \) is the map of **Lemma 4.1**.
Proof. Let $X(q) \in T(S)$ be the marked conformal structure underlying q. Let $y_1^q, \ldots, y_k^q \in X(q)$ be the singularities of q. Let $\epsilon > 0$ be such that there are pairwise disjoint regular neighborhoods $N_\epsilon(y_1^q), \ldots, N_\epsilon(y_k^q)$.

Now, let $q' \in \mathcal{QD}(S)$ be another quadratic differential in the principal stratum, with singularities $y_1^{q'}, \ldots, y_k^{q'} \in X(q)$. There is a unique Teichmüller map $h : X(q') \to X(q)$ which maps the singularities of q' to a k–tuple of points $h(y_1^{q'}), \ldots, h(y_k^{q'}) \in X(q)$. Because h is uniquely defined by the pair (q', q), these points of $X(q)$ are uniquely determined up to reordering. Thus there is an open neighborhood U of q such that for $q' \in U$, the singularities of q' can be ordered so that $h(y_i^{q'}) \in N_\epsilon(y_i^q)$, for a unique point y_i^q.

Let $\hat{S} = X(q) \setminus \{y_1^q, \ldots, y_k^q\}$. For every $q' \in U$, we will define a marked conformal structure on \hat{S}, as follows. Let $\hat{X}(q') = X(q') \setminus \{y_1^{q'}, \ldots, y_k^{q'}\}$. This conformal structure is marked by the composition map

$$\hat{S} = X(q) \setminus \{y_1^q, \ldots, y_k^q\} \xrightarrow{r} X(q) \setminus \{h(y_1^{q'}), \ldots, h(y_k^{q'})\} \xrightarrow{h^{-1}} X(q') \setminus \{y_1^{q'}, \ldots, y_k^{q'}\} = \hat{X}(q').$$

where r is the identity on the complement of $N_\epsilon(y_1^q) \cup \ldots \cup N_\epsilon(y_k^q)$. The composition $h^{-1} \circ r$ is well-defined up to isotopy because the mapping class group of a punctured disk is trivial.

Now, the quadratic differential q' on the marked Riemann surface $X(q')$ restricts to a quadratic differential \hat{q}' on the marked Riemann surface $\hat{X}(q')$. By construction, all singularities of \hat{q}' are at the punctures, hence $\hat{q}' \in \mathcal{QD}_p(\hat{S})$. The map $f : U \to \mathcal{QD}_p(\hat{S})$ defined via $q' \mapsto \hat{q}'$ is continuous by construction. It is one-to-one because the map g of Lemma 4.1 provides an inverse. \qed

For the next two sections, we will work primarily in the punctured surface \hat{S}.

5. Convergence of veering triangulations

Let \hat{S} be a surface with at least one puncture. The main result of this section, Corollary 5.6, says that veering triangulations of $\hat{S} \times \mathbb{R}$ depend continuously on their defining quadratic differentials. More precisely, we will show that given an appropriate convergent sequence $q_n \to q \in \mathcal{QD}(\hat{S})$, the corresponding veering triangulations τ_{q_n} agree with τ_q on larger and larger finite sets of tetrahedra, limiting to the entire triangulation τ_q.

Recall from Section 4 that $\mathcal{QD}_p(\hat{S})$ is the subspace of $\mathcal{QD}(\hat{S})$ consisting of quadratic differentials whose singularities occur at punctures of \hat{S}. We define $\mathcal{E}\mathcal{QD}_p(\hat{S}) \subset \mathcal{QD}_p(\hat{S})$ to be the subspace of quadratic differentials without vertical or horizontal saddle connections. In Section 2.5, these are exactly the quadratic differentials on \hat{S} that define veering triangulations of $\hat{S} \times \mathbb{R}$. The symbol \mathcal{E} stands for “ending;” see the discussion following Theorem 6.1.

The following easy lemma will be useful in Section 6.

Lemma 5.1. For every $q \in \mathcal{E}\mathcal{QD}_p(\hat{S})$, the foliations \mathcal{F}_q^+ and \mathcal{F}_q^- are filling.

Proof. Suppose for a contradiction that $\mathcal{F} = \mathcal{F}_q^+$ is not filling. Then there is some closed essential curve $\alpha \subset \hat{S}$ with $i(\alpha, \mathcal{F}) = 0$. The q–geodesic representative α_q of α is a concatenation of saddle connections (see [46] or [14]) and since $i(\alpha, \mathcal{F}) = 0$, each of these saddle connections must be vertical, a contradiction. The proof for \mathcal{F}_q^- is identical. \qed
As in Section 2.5, for each $q \in \mathcal{EQD}_p(\hat{S})$ we have an associated veering triangulation $\tau = \tau_q$ of $\hat{S} \times \mathbb{R}$. (Note that no further puncturing is necessary because all singularities are already at the punctures of \hat{S}.) Let $\mathcal{A}(\tau) = \mathcal{A}(\tau_q)$ be the subset of $\mathcal{A}(\hat{S})$ consisting of arcs that correspond to edges of τ_q. As described immediately after Theorem 2.1, $\mathcal{A}(\tau_q)$ is precisely the set of saddle connections of q that span singularity free rectangles.

Let $a, a_1, \ldots, a_n \in \mathcal{A}(\hat{S})$ be arcs. We call the collection $\{a_1, \ldots, a_n\}$ a homotopical decomposition of a, and write $a \sim \sum_i a_i$, if these arcs have lifts $\tilde{a}, \tilde{a}_1, \ldots, \tilde{a}_n$ to the universal cover of \hat{S} which bound an immersed ideal $(n + 1)$-gon (which is degenerate if $n = 1$). The decomposition is nontrivial if $n > 1$.

Recall from Section 2.4 that the horizontal and vertical lengths of a are denoted $h_q(a)$ and $v_q(a)$, whereas $\ell_q^1(a) = h_q(a) + v_q(a)$ is the total ℓ^1 length.

Lemma 5.2. Let $q \in \mathcal{EQD}_p(\hat{S})$ and $a \in \mathcal{A}(\hat{S})$. Then $a \in \mathcal{A}(\tau_q)$ if and only if for any nontrivial homotopical decomposition $a \sim \sum a_i$ with $a_i \in \mathcal{A}(\hat{S})$, we have

\[\ell^1_q(a) < \sum \ell^1_q(a_i). \]

Proof. Suppose that a is homotopic to an edge σ of the veering triangulation and $a \sim \sum a_i$. Since σ spans a singularity free rectangle, the total horizontal or vertical length of the a_i must be strictly greater than that of σ. This is because, after lifting to the universal cover of \hat{S}, all ℓ^1 geodesics between the endpoints of σ must lie in the rectangle spanned by σ. As we always have $h_q(a) \leq \sum h_q(a_i)$ and $v_q(a) \leq \sum v_q(a_i)$, the strict inequality (5.1) follows.

The converse direction follows from the work of Minsky and Taylor [44]. First recall that every arc a has a unique q-geodesic representative a_q. See [44, Proposition 2.2 and Figure 6]. This geodesic a_q follows a sequence of saddle connections, which we may call a_1, \ldots, a_n, such that $a \sim \sum a_i$. Since a_q is a geodesic, we have

\[\ell^1_q(a) = \ell^1_q(a_q) = \sum \ell^1_q(a_i). \]

Thus we have proved the negation of (5.1), unless a is itself homotopic to a saddle connection c, i.e., the sum $\sum a_i$ has only one term.

Now, suppose that $a = c$ is a saddle connection that is not an edge of τ_q. Then c does not span a singularity free rectangle of q. Hence, c does not span a singularity free right triangle to one of its sides. To this side, we apply the map t that is defined in [44, Section 4.2]. The resulting object $t(c)$ is a concatenation of (not necessarily disjoint) saddle connections c_j, forming a non-trivial decomposition $c \sim \sum c_j$. By [44, Lemma 4.2], these saddle connections have the property that, working in the universal cover of \hat{S}, each leaf of the vertical/horizontal foliation of q meets the union $\bigcup_j c_j$ at most once. (The reader can see this property illustrated in [44, Figure 12].) Hence,

\[\ell^1_q(a) = \ell^1_q(c) = \sum \ell^1_q(c_j) \]

and the sum is non-trivial, contradicting (5.1).

Lemma 5.3. Fix $q \in \mathcal{EQD}_p(\hat{S})$. For any $L \geq 0$, there is an open neighborhood U of q in $\mathcal{QD}(\hat{S})$ such that for any $q' \in U \cap \mathcal{EQD}_p(\hat{S})$, every arc $\sigma \in \mathcal{A}(\tau_q)$ of length $\ell^1_q(\sigma) \leq L$ is also in $\mathcal{A}(\tau_{q'})$.\[\square\]
Proof. For \(q \in \mathcal{EQD}_p(\hat{S}) \) and \(L \geq 0 \), define \(A_q(L) = \{ a \in \mathcal{A}(\hat{S}) : \ell^1_q(a) \leq L \} \). Note that \(A_q(L) \) is always finite. Now fix \(L \geq 0 \) and let
\[
U_1 = \{ q' \in \mathcal{QD}(\hat{S}) : \ell^1_q(a) < L + 1 \text{ for all } a \in A_q(L) \}.
\]
This is an open neighborhood of \(q \) in \(\mathcal{QD}(\hat{S}) \). After making \(U_1 \) smaller if necessary, we can ensure that the closure \(\overline{U_1} \subset \mathcal{QD}(\hat{S}) \) is compact. This is done for the following claim:

Claim 5.4. The set
\[
B = \{ a \in \mathcal{A}(\hat{S}) : \ell^1_q(a) \leq L + 1 \text{ for some } q' \in U_1 \}
\]
is finite.

Proof. For any arc \(a \subset \hat{S} \), there is an essential (multi-)curve \(c_a \) constructed as follows. Consider the punctures of \(\hat{S} \) to be marked points in a larger surface \(S \); build a regular neighborhood \(P \) of \(a \) and the marked points that it meets; then, take the \(\hat{S} \)-essential components \(\partial P \). We remark that \(P \cap \hat{S} \) is a pair of pants containing \(a \) as its only \(\hat{S} \)-essential arc, hence \(c_a \) determines \(a \). For any \(q \), we have \(\ell^1_q(c_a) \leq 2 \cdot \ell^1_q(a) \) because a representative of \(c_a \) is given by traversing the \(q \)-geodesic representative for \(a \) at most twice.

Now suppose that the claim is false. Then there would be an infinite collection \(a_i \in B \) and \(q_i \in U_1 \) with \(\ell^1_q(a_i) < L + 1 \). Setting \(c_i = c_{a_i} \), we obtain an infinite collection of distinct multi-curves \(c_i \) with \(\ell^1_q(c_i) < 2(L + 1) \). Since \(\overline{U_1} \) is compact, we may pass to a subsequence such that \(q_i \to q' \) for some \(q' \in \overline{U_1} \). Passing to a further subsequence and using compactness of \(\mathcal{PMF}(\hat{S}) \), there are constants \(x_i \) such that \(x_i c_i \) converges in \(\mathcal{MF}(\hat{S}) \) to \(\alpha \neq 0 \). It is also easy to see that \(x_i \to 0 \) as \(i \to \infty \). Indeed, for an arbitrary (but fixed) hyperbolic metric \(\rho \) on \(S \), \(x_i c_i \to \alpha \) implies that \(x_i \ell_\rho(c_i) \to \ell_\rho(\alpha) \) in \(\mathbb{R}_+ \). Since there are infinitely many distinct multi-curves \(c_i \), we must have \(\ell_\rho(c_i) \to \infty \), hence \(x_i \to 0 \).

Recall from Section 2.4 that the \(\ell^1 \)-length \(\ell^1_q(\alpha) \) is continuous in both \(q \) and \(\alpha \). Thus
\[
i(F^+_q, \alpha) + i(F^-_q, \alpha) = \ell^1_q(\alpha) = \lim_{i \to \infty} \ell^1_q(x_i c_i) = \lim_{i \to \infty} x_i \ell^1_q(c_i) \leq 2(L + 1) \lim x_i = 0.
\]
However, a measured foliation \(\alpha \) cannot have intersection number 0 with both \(F^+_q \) and \(F^-_q \), a filling pair of foliations. This contradiction completes the proof of the claim. \(\square \)

We now return to the proof of the lemma. For each \(a \in \mathcal{A}(\tau_q) \cap A_q(L) \), we define the function \(f_a : U_1 \to \mathbb{R} \):
\[
q' \in U_1 \mapsto f_a(q') = \min \left\{ \sum_i \ell^1_q(a_i) - \ell^1_q(a) : a \sim \sum_i a_i \text{ is nontrivial and } a_i \in B \right\}.
\]
Since \(B \) is finite, this is a minimum of finitely many continuous functions, hence \(f_a \) is continuous on \(U_1 \). Furthermore, since \(a \in \mathcal{A}(\tau_q) \), Lemma 5.2 implies that \(f_a(q) > 0 \). Set
\[
U_a = U_1 \cap \{ q' : f_a(q') > 0 \},
\]
which is open in \(\mathcal{QD}(\hat{S}) \) and contains \(q \).

Finally, define
\[
U = \bigcap_{a \in \mathcal{A}(\tau_q) \cap A_q(L)} U_a,
\]
which by construction is an open neighborhood of \(q \) in \(\mathcal{QD}(\hat{S}) \). To show that this neighborhood satisfies the conclusion of the lemma, let \(q' \in U \cap \mathcal{EQD}_p(\hat{S}) \) and suppose that \(\sigma \in \mathcal{A}(\tau_q) \) with \(\ell^1_q(\sigma) \leq L \). If \(\sigma \) is not in \(\tau_{q'} \), then by Lemma 5.2 there is a decomposition \(\sigma \sim \sum \sigma_i \) with \(\ell^1_q(\sigma_i) = \sum \ell^1_q(\sigma_i) \). Since \(U \subset U_1 \), we have that \(\ell^1_q(\sigma) < L + 1 \) and so similarly
\[\ell_q^1(\sigma_i) < L + 1 \] for all \(i \). Hence, by definition of \(B \), we have \(\sigma_i \in B \) for each \(i \). Then the difference
\[\sum \ell_q^1(\sigma_i) - \ell_q^1(\sigma) \]
appears in the definition of \(f_\sigma(q') \). Since \(f_\sigma(q') > 0 \), the difference \(\sum \ell_q^1(\sigma_i) - \ell_q^1(\sigma) \) is strictly positive, contradicting the choice of the open \(\sigma \). This completes the proof.

Remark 5.5. An alternate proof of Claim 5.4 relies on the fact that there is a constant \(K \), depending only on the compact set \(\bar{U}_1 \), such that for any \(q_1, q_2 \in \bar{U}_1 \) the induced map \((\hat{S}, \hat{q}_1) \rightarrow (\hat{S}, \hat{q}_2) \) is a \(K \)-quasi-isometry. Then \(B \subset A_q(K(L + 1) + K) \), and the claim follows.

Lemma 5.3 has the following useful corollary:

Corollary 5.6. Let \(q \in \mathcal{EQD}_p(\hat{S}) \), and let \(K \subset \tau_q \) be any finite sub-complex. Then there is a neighborhood \(U \) of \(q \) in \(\mathcal{QD}(\hat{S}) \) such that \(K \subset \tau_{q'} \) for every \(q' \in U \cap \mathcal{EQD}_p(\hat{S}) \).

Proof. Define
\[L = \max \left\{ \ell_a^1(a) : a \in \mathcal{K}^{(1)} \right\} . \]
By Lemma 5.3, there is a neighborhood \(U \) such that every arc \(\sigma \in \mathcal{A}(\tau_q) \) with \(\ell_a^1(\sigma) \leq L \) also belongs to \(\mathcal{A}(\tau_{q'}) \) for \(q' \in U \cap \mathcal{EQD}_p(\hat{S}) \). In particular, every arc in the 1-skeleton of \(K \) belongs to \(\mathcal{A}(\tau_{q'}) \). Since the edges of every tetrahedron \(t \subset K \) belong to \(\mathcal{A}(\tau_{q'}) \), we have \(t \subset \tau_{q'} \). \(\square \)

Remark 5.7. The referee pointed out an alternative line of argument for Corollary 5.6. Quadratic differentials near \(q \) can be locally parametrized using the shapes of polygons that define the underlying translation surface. In these coordinates, the property \(\sigma \in \mathcal{A}(\tau_{q'}) \) can be characterized by finitely many linear inequalities, a property that persists on an open set. This is particularly easy to see using a proposition of Frankel [19, Proposition 3.16], who proved that a triangulation by saddle connections is veering if and only if every triangle has edges of both positive and negative slope.

6. Convergence of tetrahedron shapes

In this section, we prove Theorem 1.4. To do so, we establish a technical result (Proposition 6.2) which roughly states that as quadratic differentials converge, so do the hyperbolic shapes of the associated veering tetrahedra. This result will also be used in the proof of Theorem 1.2 in Section 7. We begin by reviewing some needed background about doubly degenerate representations of surface groups.

For a surface \(S \), let \(\text{AH}(S) \) denote the space of conjugacy classes of discrete and faithful representations \(\rho : \pi_1(S, x_0) \rightarrow \text{PSL}_2(\mathbb{C}) \) such that peripheral elements map to parabolic isometries. In the algebraic topology on \(\text{AH}(S) \), conjugacy classes \([\rho_n] \) converge to \([\rho] \) if and only if there are conjugacy representatives \(\rho_n : \pi_1(S) \rightarrow \text{PSL}_2(\mathbb{C}) \) such that for every element \(\gamma \in \pi_1(S) \), the images \(\rho_n(\gamma) \) converge to \(\rho(\gamma) \).

Setting \(\Gamma_\rho = \rho(\pi_1(S, x_0)) \), the manifold \(N_\rho = \mathbb{H}^3/T_\rho \) is then homeomorphic to \(S \times \mathbb{R} \) by work of Bonahon [6]. The **ends** of \(N_\rho \) are the two components of \(S \times (\mathbb{R} \setminus I) \), where \(I \) is an arbitrary compact interval. The limit set \(\Lambda_\rho \) is defined to be the smallest nonempty closed \(\Gamma_\rho \)-invariant set in \(\partial \mathbb{H}^3 \). The space \(\text{DD}(S) \subset \text{AH}(S) \) of **doubly degenerate representations** of \(\pi_1(S, x_0) \) is the subspace of \(\text{AH}(S) \) consisting of conjugacy classes \([\rho] \) such that \(\Lambda_\rho = \partial \mathbb{H}^3 \) and such that \(\rho(\gamma) \) is parabolic if and only if \(\gamma \in \pi_1(S, x_0) \) is peripheral. For
such a ρ, the manifold N_ρ has **geometrically infinite** ends, which can be characterized by saying that for each end, there is a sequence of closed geodesics in N_ρ that exits that end.

By work of Bonahon and Thurston [6, 49], there are unique, distinct **end invariants** $F^+_\rho, F^-_\rho \in \mathcal{EL}(S)$ associated to the positive and negative ends of N_ρ, such that if $\{\alpha_i\}$ is a bi-infinite sequence of closed geodesics exiting both ends, then $\alpha_i \to F^-$ as $i \to -\infty$ and $\alpha_i \to F^+$ as $i \to +\infty$. (Here, as in Section 2.3, we pass freely between foliations and laminations.) Hence we get a well-defined function $E : DD(S) \to \mathcal{EL}(S) \times \mathcal{EL}(S) - \Delta$, where Δ is the diagonal.

Thurston conjectured that E is a bijection. This conjecture was proved by Minsky [43] and Brock–Canary–Minsky [8]. Subsequently, Leininger and Schleimer observed that E is actually a homeomorphism [35, Theorem 6.5].

Theorem 6.1 (Ending Lamination Theorem, parametrized). The end invariant function $E : DD(S) \to \mathcal{EL}(S) \times \mathcal{EL}(S) - \Delta$ sending ρ to the pair (F^+_ρ, F^-_ρ) is a homeomorphism.

We now specialize to the case of the punctured surface \hat{S}. Recall from Section 5 that $\mathcal{QU}_p(\hat{S})$ is the subspace of $\mathcal{QD}(\hat{S})$ consisting of quadratic differentials whose foliations have singularities only at punctures and which have no horizontal or vertical saddle connections. As described in Section 2.5, every quadratic differential $q \in \mathcal{QU}_p(\hat{S})$ has an associated veering triangulation τ_q of $\hat{S} \times \mathbb{R}$.

Every $q \in \mathcal{QU}_p(\hat{S})$ defines a doubly degenerate hyperbolic structure on $\hat{S} \times \mathbb{R}$, constructed as follows. By Lemma 5.1, there is a map $F : \mathcal{QU}_p(\hat{S}) \to \mathcal{EL}(\hat{S}) \times \mathcal{EL}(\hat{S}) - \Delta$ sending q to the pair (F^+_q, F^-_q) of filling foliations/laminations. By Theorem 6.1, $E^{-1}(F^+_q, F^-_q)$ is a doubly degenerate representation $\rho_q : \pi_1(\hat{S}) \to \text{PSL}(2, \mathbb{C})$, unique up to conjugation. Then $N_q = \mathbb{H}^3/\rho(\pi_1\hat{S})$ is a marked hyperbolic 3–manifold triangulated via τ_q. In summary, the composition

$$E^{-1} \circ F : \mathcal{QU}_p(\hat{S}) \to DD(S)$$

maps q to a conjugacy class of doubly degenerate representations, which we denote by $[\rho_q]$. This map $E^{-1} \circ F$ is $\text{Mod}(S)$–equivariant by construction, and also continuous. Recall that E^{-1} is continuous by Theorem 6.1 and F is continuous by [31].

We remark that the end invariants (F^+_q, F^-_q) of N_q can be recovered directly from the edge set of τ_q. By a theorem of Minsky and Taylor [44, Theorem 1.4], the edge set $\mathcal{A}(\tau_q)$ is totally geodesic in $\mathcal{AC}(\hat{S})$. Furthermore, this edge set is quasi-isometric to a line, which has two endpoints at infinity. Any sequence of edges of $\mathcal{A}(\tau_q)$ whose slope in q approaches ∞ will exit the positive end of N_q and limit to F^+_q, while any sequence in $\mathcal{A}(\tau_q)$ whose slope in q approaches 0 will exit the negative end of N_q and limit to F^-_q.

With this background, we can state and prove the main result of this section.

Proposition 6.2. Fix $q \in \mathcal{QU}_p(\hat{S})$ and a finite, connected sub-complex $K \subset \tau_q$. Then the following holds for any convergent sequence $q_n \to q$, where $q_n \in \mathcal{QU}_p(\hat{S})$:

- For all $n \geq 0$, K is a sub-complex of the veering triangulation τ_{q_n}.
- For every tetrahedron $t \subset K$, the shape of t in N_{q_n} converges to the shape of t in N_q as $n \to \infty$.

In particular, if τ_q is not geometric, then neither is τ_{q_n}, for n sufficiently large.

Proof. Fix $q \in \mathcal{QU}_p(\hat{S})$ and a finite, connected sub-complex $K \subset \tau_q$. We may assume without loss of generality that the dual 1–skeleton of K is connected (otherwise, add some
number of tetrahedra). Let Y be a maximal tree in the dual 1–skeleton. Fix a base vertex $v_0 \in Y$, which corresponds to the barycenter of an oriented tetrahedron $t_0 \subset K$.

By construction, every vertex $v \in Y$ is a barycenter of some tetrahedron $t \subset K$, which has 4 ideal vertices at punctures of \hat{S}. We use this structure to construct finitely many group elements in $\pi_1(\hat{S} \times \mathbb{R}, v_0)$. For every vertex $v \in Y$, follow the unique path in Y from v_0 to v. Walk from v to the neighborhood of an ideal vertex of the ambient tetrahedron t, walk around the corresponding puncture of \hat{S}, and then return to v and back to v_0.

This construction gives a collection of loops $\gamma_1, \ldots, \gamma_k$, where $k = 4V(Y)$. Not all of these loops are homotopically distinct, but all of them are peripheral in \hat{S}.

Now, let $[\rho_q]$ be the conjugacy class of doubly degenerate representations corresponding to q. For every representation in this conjugacy class, the image of each peripheral element γ_i must be parabolic, with a single fixed point on $\partial \mathbb{H}^3$.

Next, consider a convergent sequence $q_n \to q$, where $q_n \in \mathcal{E}QD_p(\hat{S})$. By Theorem 6.1, there is a convergent sequence

$$\mathcal{E}^{-1}(\mathcal{F}(q_n)) = [\rho_{q_n}] \to [\rho_q].$$

After choosing a representative $\rho_q \in [\rho_q]$, this means there are choices of representatives $\rho_{q_n} \in [\rho_{q_n}]$ such that $\rho_{q_n}(\gamma_i) \to \rho_q(\gamma_i)$ for $1 \leq i \leq k$.

Let $t \subset K$ be a tetrahedron, with ideal vertices x_1, \ldots, x_4. By the above construction, every x_j corresponds to a peripheral group element γ_i in the chosen collection. Let $p_j \in \mathbb{H}^3$ be the parabolic fixed point of $\rho_{q_n}(\gamma_i)$, and let p_j be the parabolic fixed point of $\rho_q(\gamma_i)$. Since $\rho_{q_n}(\gamma_i) \to \rho(\gamma_i)$, we also have convergence of the parabolic fixed points: $p_{q_n} \to p_j$ as $n \to \infty$.

For every q_n, let τ_{q_n} be the veering triangulation of $N_{q_n} \cong \hat{S} \times \mathbb{R}$. Since $q_n \to q$, Corollary 5.6 implies that K embeds into τ_{q_n} for all $n > 0$. (In fact, there is only one embedding consistent with the marking of N_{q_n}.) The shape parameter of t in the hyperbolic metric on N_{q_n} is the cross-ratio $[p_{q_n}, p_{q_n}, p_{q_n}, p_{q_n}]$. As $n \to \infty$, these cross-ratios converge to $[p_1, p_2, p_3, p_4]$, hence the shape of t converges as well.

Remark 6.3. Proposition 6.2 gives a concrete way to see that, with suitably chosen basepoints, the manifolds N_{q_n} converge geometrically to N_q. Let $z \in N_q$ be an arbitrary basepoint, and let $B_R(z) \subset N_q$ be a metric R–ball about z. Since the edges of τ_q eventually exit the ends of N_q, there are only finitely many edges (hence finitely many tetrahedra) in τ_q that intersect $B_R(z)$. By Proposition 6.2, the shapes of these tetrahedra in N_{q_n} converge to the shape in N_q, hence for $n > 0$, there is a metric ball in N_{q_n}, almost-isometric to $B_R(z)$.

The statement that the algebraic and geometric limits of N_{q_n} agree is due to Canary [11], and is used in the proof of continuity in Theorem 6.1. Hence this remark does not give a new proof of geometric convergence.

We can now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Let S be a hyperbolic surface, and let $\varphi \in \text{Mod}(S)$ be a principal pseudo-Anosov. Let μ be a probability distribution on $\text{Mod}(S)$ with finite first moment, such that $\langle \text{Supp}(\mu) \rangle_+$ is non-elementary and contains φ. According to Corollary 3.8, for almost every sample path $\omega = (\omega_n)$ of the random walk on $\text{Mod}(S)$ we have for $n > 0$,

1. ω_n is a pseudo-Anosov with Teichmüller geodesic γ_{ω_n} in the principal stratum,
2. $\eta_n \omega_n \to q_\varphi$ in $\mathcal{G}QD(S)$ for some $h_n \in \text{Mod}(S)$ and for some quadratic differentials q_{ω_n} along γ_{ω_n} and q_φ along γ_φ.

Since \(h_n q_{\omega_n} = q_{h_n \omega_n h_n^{-1}} \), and \(\omega_n \) defines the same unmarked mapping torus as \(h_n \omega_n h_n^{-1} \), the veering triangulations associated to the \(\omega_n \) are simplicially isomorphic to those associated to \(h_n \omega_n h_n^{-1} \). Let \(q_n = h_n q_{\omega_n} \).

By Lemma 4.2, for sufficiently large \(n \), we can pass from the sequence \(q_n \to q_\varphi \) to a sequence \(\tilde{q}_n \to \tilde{q}_\varphi \) in \(\mathcal{QD}_p(\tilde{S}) \), where \(\tilde{S} \) is the surface obtained by puncturing \(S \) at the singularities of \(q_\varphi \). By construction, \(\tilde{q}_\varphi \) is a quadratic differential along the Teichmüller axis of \(\varphi \in \text{Mod}(\tilde{S}) \), and similarly for the \(\tilde{q}_n \). Thus, in fact, \(\tilde{q}_n \to \tilde{q}_\varphi \in \mathcal{EQD}_p(\tilde{S}) \).

Let \(\tau_n = \tau_{q_n} \) be the veering triangulation of \(N_{q_n} \cong \tilde{S} \times \mathbb{R} \) associated to the quadratic differential \(\tilde{q}_n \), and let \(\tau_{\tilde{q}_\varphi} \) be the veering triangulation of \(N_{\tilde{q}_\varphi} \) associated to \(\tilde{q}_\varphi \). Now let \(K \subset \tau_{q_\varphi} \) be any finite connected subcomplex as in the statement of the theorem. Applying Proposition 6.2, we conclude that for \(n \) sufficiently large, \(K \) is a subcomplex of the veering triangulation \(\tau_{q_n} \) and that for every tetrahedron \(t \subset K \), the shape of \(t \) in \(N_{q_n} \) converges to the shape of \(t \) in \(N_{\tilde{q}_\varphi} \) as \(n \to \infty \).

Hence, it only remains to show that \(K \) embeds as a subcomplex of \(\tau_{\varphi} \), the veering triangulation of the mapping torus \(\widehat{M}_{\omega_n} \). That is, we must show that the covering map \(N_{q_n} \to M_{\omega_n} \) is injective on \(K \) once \(n \) is sufficiently large. For this, we use a result of Maher [37], which implies that the Teichmüller translation length of \(\omega_n \) grows linearly in \(n \). Since dilatation, and hence Teichmüller translation length, is unchanged after puncturing along singularities, we also have that the translation length of \(\omega_n \) grows linearly in \(n \). If \(N_{q_n} \to M_{\omega_n} \) fails to be injective on \(K \) then there are edges \(k_1 \) and \(k_2 \) of \(K \) which, when viewed as arcs of \(\tilde{S} \), satisfy \((\omega_n)^i k_1 = k_2 \) for some \(i > 0 \). Since these arcs represent saddle connections of \(\tilde{q}_n \), this implies that the stretch factor of \(\omega_n \) is no more than the quantity

\[
\frac{\max_{k \in K(1)} v_{\tilde{q}_n}(k)}{\min_{k \in K(1)} v_{\tilde{q}_n}(k)}
\]

as \(n \to \infty \). Since this implies that the stretch factors of \(\omega_n \) are eventually bounded, we obtain a contradiction and the proof is complete.

Remark 6.4. Theorem 1.4 also holds for \(S \cong \Sigma_{1,1} \), without the hypothesis that \(\varphi \) is principal. Recall that the principal stratum of \(\mathcal{QD}(\Sigma_{1,1}) \) is empty. In this setting, Corollary 3.8 holds for every pseudo-Anosov \(\varphi \). (See Remark 3.9.) There are no interior singularities, so \(S = \tilde{S} \) and Section 4 is not needed. Now, the rest of the proof of Theorem 1.4 using Proposition 6.2 applies verbatim.

7. Counting non-geometric veering triangulations

In this section, we prove Theorem 1.2, showing that geometric veering triangulations are atypical from the point of view of counting closed geodesics in moduli space. The proof of this result uses many of the same ingredients as the proof of Theorem 1.4. The main difference is that the appeal to Gadre and Maher’s Theorem 3.1 will be replaced with results from Hamenstädt [27] and Eskin–Mirzakhani [15].

Fix a surface \(S \) such that \(\xi(S) \geq 1 \). As in the introduction, let \(\mathcal{G}(L) \) denote the set of conjugacy classes of pseudo-Anosov mapping classes in \(\text{Mod}(S) \) whose Teichmüller translation length is no more than \(L \geq 0 \). Since the veering triangulation \(\tau_{\varphi} \) depends only on the conjugacy class of the pseudo-Anosov, each \([\varphi] \in \mathcal{G}(L)\) uniquely determines a veering
triangulation of \(\bar{M}_\varphi \). As in Baik–Gekhtman–Hamenstädt [3], say that a typical pseudo-Anosov conjugacy class in \(\text{Mod}(S) \) has a property \(P \) if
\[
\lim_{L \to \infty} \frac{|\{\varphi \in G(L) : \varphi \text{ has } P\}|}{|G(L)|} = 1.
\]
In this terminology, Theorem 1.2 is implied by the following, slightly stronger statement.

Theorem 7.1. Let \(S \) be a surface with \(\xi(S) \geq 2 \). Then a typical pseudo-Anosov conjugacy class \([\varphi] \subset \text{Mod}(S)\) is principal and defines a non-geometric veering triangulation \(\tau_{\varphi} \).

For the proof of Theorem 7.1, let \(\pi : \mathcal{QD}^1(S) \to \mathcal{T}(S) \) be the projection map sending a unit area quadratic differential to its underlying Riemann surface. As in Section 2.2, denote the Teichmüller geodesic flow by \(\Phi_t : \mathcal{QD}^1(S) \to \mathcal{QD}^1(S) \). We will use the same notation to denote the corresponding flow on \(\mathcal{MQD}^1(S) = \mathcal{QD}^1(S)/\text{Mod}(S) \), namely the moduli space of unit area quadratic differentials.

Let \(g \in \text{Mod}(S) \) be a pseudo-Anosov with Teichmüller axis \(\gamma_g \). For each \(\rho, T > 0 \) we define the following subset of \(\mathcal{QD}^1(S) \):
\[
\tilde{V}(\gamma_g, \rho, T) = \{ q \in \mathcal{QD}^1(S) : \pi \circ \Phi_t(q) \in N_\rho(\gamma_g), \forall t \in [-T, T]\},
\]
where \(N_\rho(\cdot) \) denotes an open \(\rho \)-neighborhood with respect to the Teichmüller metric. Observe that \(\tilde{V}(\gamma_g, \rho, T) \) is nonempty and open.

Our proof of Theorem 1.4 has the following corollary.

Corollary 7.2. Let \(g \in \text{Mod}(S) \) be a principal pseudo-Anosov with non-geometric veering triangulation. For every \(\rho > 0 \) there is a number \(T = T(\rho, g) > 0 \), such that if \(\varphi \in \text{Mod}(S) \) is a pseudo-Anosov with an associated quadratic differential \(q_\varphi \) and \(\Phi_t(q_\varphi) \in \tilde{V}(\gamma_g, \rho, T) \) for some \(t \in \mathbb{R} \), then \(\varphi \) is principal and the veering triangulation \(\tau_{\varphi} \) is also non-geometric.

Proof. Fix \(\rho > 0 \). Once \(T \) is larger than the constant \(D_1 = D_1(\rho, g) \) given by Proposition 3.5, every \(q_\varphi \in \tilde{V}(\gamma_g, \rho, T) \) must be principal.

Now, suppose for a contradiction that no \(T > 0 \) suffices for the other conclusion of the corollary. Then there is a sequence \(T_n \to \infty \) and an associated sequence of principal pseudo-Anosovs \(\varphi_n \), such that the invariant axis \(\gamma_{\varphi_n} \) is a \(\rho \)-fellow traveler of \(\gamma_g \) for distance \(2T_n \), but the veering triangulation \(\tau_{\varphi_n} \) is geometric. By Lemma 3.6, there is a choice of quadratic differentials \(q_n \) associated to points along \(\gamma_{\varphi_n} \), which converge to a quadratic differential \(q \) associated to \(\gamma_g \). By Lemma 4.2, for sufficiently large \(n \), we can pass from the sequence \(g_n \to q \) to a sequence \(\tilde{q}_n \to \tilde{q} \) in \(\mathcal{EQD}_\rho(S) \), where \(S \) is the surface obtained by puncturing \(\bar{S} \) at the singularities of \(g \). By Proposition 6.2, the veering triangulation \(\tau_{\tilde{q}_n} \) covering \(\tau_{\varphi_n} \) is non-geometric for \(n \) sufficiently large. But this contradicts our assumption about \(\varphi_n \). Thus some \(T > 0 \) must suffice. \(\square \)

We finish the proof of Theorem 7.1 (hence also Theorem 1.2) with the following argument, whose idea was suggested by I. Gekhtman.

Proof of Theorem 7.1. We identify a conjugacy class of pseudo-Anosovs on \(S \) with the corresponding closed orbit of the Teichmüller flow \(\Phi_t : \mathcal{MQD}^1(S) \to \mathcal{MQD}^1(S) \). Following this identification, it makes sense to refer to typical closed orbits of the Teichmüller flow.

Let \(g \in \text{Mod}(S) \) be a principal pseudo-Anosov whose associated veering triangulation is not geometric. (Such a mapping class exists by Theorem 1.3, which will be proved in Sections 8 and 9.) Fix \(\rho = 1 \), and let \(T = T(1, g) > 0 \) be given by Corollary 7.2. Finally,
let V be the image of $\tilde{V}(\gamma_0, \rho, T)$ in $\mathcal{MQD}^1(S)$. This set is also open and nonempty. We will show that a typical closed orbit of $\Phi^t : \mathcal{MQD}^1(S) \to \mathcal{MQD}^1(S)$ meets V.

Set $h = 2\xi(S) = \dim \mathcal{T}(S)$. For each closed orbit γ of Φ^t, let $\delta(\gamma)$ be the Φ^t-invariant Lebesgue measure $\mathcal{QD}^1(S)$, supported on γ, of total mass $\ell(\gamma)$. Thus, for a Lebesgue measurable set $E \subset \mathcal{QD}^1(S)$, we have $\delta(\gamma)(E) = \ell(\gamma \cap E)$. Hamenstädt [27] proved that as $L \to \infty$, the measures

$$he^{-hL} \sum_{\gamma \in \mathcal{G}(L)} \delta(\gamma)$$

converge weakly to the Masur–Veech measure λ on $\mathcal{MQD}^1(S)$. (See also [26, Theorem 5.1].) The probability measure λ is in the Lebesgue measure class, has full support, and is ergodic for the Teichmüller flow Φ^t [52, 39].

Next, we recall the geodesic counting theorem of Eskin and Mirzakhani [15], which states that as $L \to \infty$,

$$|\mathcal{G}(L)| \cdot hLe^{-hL} \to 1.$$

Combining the above displayed equations, we have that the measures

$$\nu_L = \frac{1}{L|\mathcal{G}(L)|} \sum_{\gamma \in \mathcal{G}(L)} \delta(\gamma)$$

converge weakly to λ. This convergence is also noted in the proof of [3, Proposition 5.1].

Let $A \subset \mathcal{MQD}^1(S)$ be the union of all closed orbits of the flow Φ^t that are disjoint from V. Then the closure \overline{A} is flow-invariant and disjoint from V because V is open. By the ergodicity of λ, we must have $\lambda(\overline{A}) = 0$. Since \overline{A} is closed, weak convergence $\nu_L \to \lambda$ and the Portmanteau Theorem imply that $\limsup \nu_L(\overline{A}) \leq \lambda(\overline{A}) = 0$.

Now, we wish to show that a typical closed orbit is not contained in A. To that end, fix $\epsilon > 0$ and choose $\sigma > 0$ so that $e^{-h\sigma} < \epsilon$. In the following computation for fixed $L > \sigma$, the symbol γ denotes both a pseudo-Anosov conjugacy class and the corresponding closed orbit in $\mathcal{MQD}^1(S)$. We have

$$|\{ \gamma \in \mathcal{G}(L) : \gamma \cap V = \emptyset \}| = |\{ \gamma : \gamma \subset A, \ell(\gamma) \leq L \}|$$

$$= |\{ \gamma : \gamma \subset A, \ell(\gamma) < L - \sigma \}| + |\{ \gamma : \gamma \subset A, L - \sigma \leq \ell(\gamma) \leq L \}|$$

$$= |\{ \gamma : \gamma \subset A, \ell(\gamma) < L - \sigma \}| + \sum_{\gamma \subset A, L - \sigma \leq \ell(\gamma) \leq L} 1$$

$$\leq |\mathcal{G}(L - \sigma)| + \sum_{\gamma \subset A, L - \sigma \leq \ell(\gamma) \leq L} \frac{\ell(\gamma)}{L - \sigma}$$

$$\leq |\mathcal{G}(L - \sigma)| + \sum_{L - \sigma \leq \ell(\gamma) \leq L} \frac{\ell(\gamma \cap \overline{A})}{L - \sigma}$$

$$\leq |\mathcal{G}(L - \sigma)| + \frac{1}{L - \sigma} \sum_{\gamma \subset \mathcal{G}(L)} \ell(\gamma \cap \overline{A})$$

$$= |\mathcal{G}(L - \sigma)| + \frac{|\mathcal{G}(L)|}{L - \sigma} \nu_L(\overline{A}).$$
Dividing by $|G(L)|$ and taking limits as $L \to \infty$, we obtain
\[
\limsup_{L \to \infty} \frac{|\{ \gamma \in G(L) : \gamma \cap V = \emptyset \}|}{|G(L)|} \leq \limsup_{L \to \infty} \left(\frac{|G(L - \sigma)|}{|G(L)|} + \frac{L}{L - \sigma} \nu_L(\overline{A}) \right) = e^{-h\sigma} + \limsup_{L \to \infty} \nu_L(\overline{A}) < \epsilon + 0.
\]
Since $\epsilon > 0$ was arbitrary, this shows that a typical closed orbit meets V.

By the definition of \hat{V} and V, this means that a typical pseudo-Anosov conjugacy class has a representative φ with associated quadratic differential q_φ such that $\Phi^t(q_\varphi) \in \hat{V}(\gamma_\varphi, \rho, T)$ for some $t \in \mathbb{R}$. By Corollary 7.2, this implies that a typical pseudo-Anosov conjugacy class $[\varphi]$ is principal and produces a non-geometric veering triangulation τ_{φ}. \hfill \Box

8. A Few Non-Geometric Triangulations, Via Computer

Our remaining goal in this paper is to prove Theorem 1.3: for every surface S of complexity $\xi(S) \geq 2$, there exists a principal pseudo-Anosov map φ so that the veering triangulation of M_{φ} is non-geometric. We will prove this result in two stages.

1. In this section, we use rigorous computer assistance to find a finite collection of non-geometric triangulations. See Proposition 8.4.

2. In Section 9, we use Thurston norm methods to show that (finite covers of) the finitely many mapping tori described in Proposition 8.4 account for all fibers of complexity at least 2. This will prove Theorem 1.3.

We begin by describing how the computer programs flipper [4], SnapPy [12], and Regina [10] are used to show that certain triangulations are non-geometric. Given a mapping class φ on a hyperbolic surface S, described by a composition of left Dehn twists and/or half twists in the generators shown in Figures 4 and 5, we first use flipper to certify that φ is pseudo-Anosov. The certificate consists of an invariant train track carrying the stable lamination of φ, an integer-valued transition matrix, and certified floating-point intervals for the weights of the branches. Every region in the complement of the train track contains exactly one singularity of φ, enabling flipper to certify whether φ is principal. Finally, flipper punctures the surface at the singularities of φ and computes the veering triangulation τ_{φ} of the mapping torus M_{φ}. All of the above flipper computations are rigorous.

![Figure 4](image-url)
Figure 5. Left: The mapping class group of the \(n \)-punctured sphere \(\Sigma_{0,n} \), for \(n \geq 4 \), is generated by half-twists about curves \(r_0, \ldots, r_{n-1} \). Right: A half twist about \(r_i \) fixes \(r_i \) and transposes the punctures in the twice-punctured disc bounded by \(r_i \).

The program \texttt{SnapPy} can find an approximate solution to the gluing equations for the veering triangulation \(\tau_\phi \) (see discussion below). This approximate solution is a good heuristic indication that \(\tau_\phi \) is not geometric. To rigorously certify that \(\tau_\phi \) is not geometric, we follow the method of Hodgson, Issa, and Segerman [28], relying on Theorems 8.1 and 8.2 below.

Let \(\tau \) be an ideal triangulation of a hyperbolic 3-manifold \(M \) with \(k \) tetrahedra, and let \(\vec{z} = (z_1, \ldots, z_k) \) be a vector of complex numbers in bijection with the tetrahedra in \(\tau \). Every \(z_i \) has an associated \textbf{algebraic volume} \(\text{Vol}(z_i) \in \mathbb{R} \), computed via the dilogarithm function [45]. In particular, \(\text{Vol}(z_i) \) has the same sign as \(\text{Im}(z_i) \). We define the algebraic volume \(\text{Vol}(\vec{z}) = \sum_{i=1}^k \text{Vol}(z_i) \).

The \textbf{gluing and completeness equations} for \(\tau \) are a system of polynomial equations in \(z_1, \ldots, z_k \) [49, Chapter 4]. Any solution \(\vec{z} = (z_1, \ldots, z_k) \) to this system of equations defines a representation \(\rho: \pi_1 M \to \text{PSL}(2, \mathbb{C}) \), unique up to conjugacy, in which peripheral elements map to parabolics. In the resulting structure on \(M \), the shape parameter of the tetrahedron \(t_i \) is exactly \(z_i \). If \(\vec{z} \) is geometric, hence \(\text{Im}(z_i) > 0 \) for each \(i \), then \(\rho \) is the discrete, faithful representation that gives the complete hyperbolic metric on \(M \). In general, the number of solutions to the gluing and completeness equations that yield the discrete, faithful representation \(\rho \) is either 0 or 1, with no solutions when \(\tau \) is degenerate in the sense described below. The following statement combines [18, Theorem 5.4.1 and Remark 4.1.20].

Theorem 8.1 (Francaviglia). \textit{Let \(\tau \) be an ideal triangulation of a hyperbolic 3-manifold \(M \) whose volume is \(\text{Vol}(M) \). Then every solution \(\vec{z} \) to the gluing and completeness equations for \(\tau \) satisfies \(\text{Vol}(\vec{z}) \leq \text{Vol}(M) \), with equality if and only if \(\vec{z} \) is the unique solution yielding the complete hyperbolic metric on \(M \).}

Now, suppose the triangulation \(\tau \) changes as follows. Let \(\Delta \) be a 2-simplex in \(\tau \) which is the face of distinct tetrahedra \(t_1 \) and \(t_2 \). We can obtain a new triangulation \(\tau' \) by replacing \(\Delta \) by a dual edge \(e \), and adding three faces each meeting \(e \) and a distinct vertex of \(\Delta \). Then \(\tau \to \tau' \) is called a \textbf{Pachner 2-3 move}, while the reverse operation \(\tau' \to \tau \) is called a \textbf{Pachner 3-2 move}. See Figure 6.

An ideal tetrahedron \(t \) in a hyperbolic 3–manifold \(M \) is called \textbf{degenerate} if some edge of \(t \) is homotopic into a cusp of \(M \). If \(t \) is non-degenerate, its lift to \(\hat{M} = \mathbb{H}^3 \) is homotopic to a straight tetrahedron, hence \(t \) can be assigned a shape parameter \(z_k \in \mathbb{C} \setminus \{0,1\} \). A triangulation \(\tau \) is called non-degenerate if all of its tetrahedra are non-degenerate.
In a Pachner 2-3 move, two tetrahedra meeting at a face Δ are replaced by three tetrahedra meeting at an edge dual to Δ. A Pachner 3-2 move is the reverse of a 2-3 move.

If a triangulation τ is equipped with a solution \vec{z} of the gluing and completeness equations, and τ_1 is obtained from τ via a Pachner move, then from \vec{z} we get an associated solution \vec{z}_1 to the gluing and completeness equations for τ_1. Furthermore, if τ and τ_1 are both non-degenerate, we get algebraic volume information as well. The following result, due to Neumann and Yang [45, Proposition 10.1], is a consequence of the “five-term relation,” an identity of the dilogarithm function.

Theorem 8.2 (Neumann–Yang). Let M be a hyperbolic 3-manifold with ideal triangulation τ, and let \vec{z} be a solution to the gluing and completeness equations for τ. Let τ' be an ideal triangulation obtained from τ by a Pachner move, with no degenerate tetrahedra. If \vec{z}' is the solution to the gluing equations for τ' corresponding to the solution \vec{z} for τ, then $\text{Vol}(\vec{z}) = \text{Vol}(\vec{z}')$.

Combining Theorems 8.1 and 8.2, we get the following corollary:

Corollary 8.3. Let M be a hyperbolic 3-manifold, and let τ_1, \ldots, τ_n be a sequence of non-degenerate ideal triangulations, with consecutive triangulations related by a Pachner move. Suppose τ_n has a geometric solution \vec{z}_n to the gluing and completeness equations. For $i \in \{0, \ldots, n - 1\}$, let \vec{z}_i be the solution for τ_i obtained from \vec{z}_{i+1} via the corresponding Pachner move. If the solution \vec{z}_1 is non-geometric, then τ_1 is a non-geometric triangulation.

To establish that a given veering triangulation τ is non-geometric, we will first find a Pachner path from $\tau = \tau_1$ to a triangulation τ_n that has a geometric solution \vec{z}_n. For each tetrahedron in τ_n, SnapPy gives a rigorously verified rectangle in \mathbb{C} containing its shape parameter, using an algorithm derived from HIKMOT [30]. In other words, we get a box $K_n \subset \mathbb{C}^{[\tau_n]}$ which is guaranteed to contain a geometric solution to the gluing and completeness equations. We then follow the path backwards, from τ_n to τ_1, obtaining for each intermediate triangulation τ_i a box $K_i \subset \mathbb{C}^{[\tau_i]}$ containing the corresponding solution \vec{z}_i. This certifies that τ_1 is non-degenerate. When τ_1 is reached, we check that the corresponding box K_1 has at least one coordinate (i.e., at least one shape parameter) whose imaginary part is negative. Since K_1 is guaranteed to contain the solution \vec{z}_1, it follows that this solution is non-geometric, so by Corollary 8.3 the triangulation $\tau = \tau_1$ is non-geometric.

In practice, a path to a geometric triangulation is found by randomly choosing Pachner moves based at edges and faces of negatively oriented tetrahedra. In our examples, the paths we find range in length from 4 to 18. We use Regina to help keep track of the labeling of
Proposition 8.4. For each of the following surfaces S_i, the mapping class φ_i described below is a principal pseudo-Anosov. Furthermore, the veering triangulation of M_{φ_i} is non-geometric.

- $S_1 = \Sigma_{2,0}$ and $\varphi_1 = T_{a_0}^{-2} T_{b_0}^{-1} T_{a_1}^{-1} T_{b_0}^{-1} T_{a_0} T_{b_0}$.
- $S_2 = \Sigma_{2,1}$ and $\varphi_2 = T_{c_0}^{-2} T_{d_0} T_{a_0} T_{b_0} T_{a_1}^{-1} T_{a_0} T_{b_1}$.
- $S_3 = \Sigma_{1,2}$ and $\varphi_3 = T_{a_0}^{-2} T_{b_0}^{-1} T_{d_0}^{-1} T_{a_0} T_{b_0} T_{b_0}^{-3}$.
- $S_5 = \Sigma_{0,5}$ and $\varphi_5 = T_{r_0}^{-3} T_{r_1}^{-1} T_{r_0}^{-1} T_{r_2}^{-1} T_{r_4}$.
- $S_6 = \Sigma_{0,6}$ and $\varphi_6 = T_{r_5}^{-1} T_{r_1}^{-2} T_{r_3} T_{r_4} T_{r_0}^{-1} T_{r_1} T_{r_2} T_{r_3}^2$.
- $S_7 = \Sigma_{0,7}$ and $\varphi_7 = T_{r_5}^2 T_{r_4} T_{r_3}^{-1} T_{r_1}^{-1} T_{r_4} T_{r_2}^{-1} T_{r_3} T_{r_1} T_{r_1}^{-1}$.

Proof. For each S_i, flipper certifies that φ_i is a principal pseudo-Anosov. Then, SnapPy combined with Corollary 8.3 certifies that the veering triangulation of M_{φ_i} is non-geometric. A detailed certificate of non-geometricity, including a path from the veering triangulation to a geometric triangulation, appears in the ancillary files [22].

For working with φ_1 in flipper, we actually consider this mapping class on $\Sigma_{2,1}$, with the puncture located as in Figure 4. This is because the data structure used by flipper requires at least one puncture. The program computes that φ_1 has a trivalent singularity at the unique puncture of $\Sigma_{2,1}$. Thus we may fill the puncture, recovering a principal pseudo-Anosov on the closed surface $\Sigma_{2,0}$. For the other φ_i, we work with the surface S_i exactly as given. \[\square\]

9. Non-geometric triangulations via the Thurston norm

In this section, we use Thurston norm theory to show the existence of a mapping class with non-geometric veering triangulation for every hyperbolic surface of complexity at least 2. The eventual result will be that (finite covers of) the mapping tori of the classes $\varphi_1, \ldots, \varphi_7$ from Proposition 8.4 contain fibers homeomorphic to every surface S with $\chi(S) \geq 2$. This will imply Theorem 1.3 from the Introduction.

We begin by reviewing some classical results about the Thurston norm, and then proceed to find the desired fiber surfaces in the mapping tori of $\varphi_1, \ldots, \varphi_7$.

9.1. The Thurston norm. Let M be a compact orientable 3–manifold with ∂M a possibly empty union of tori, such that the interior of M is hyperbolic. We will pass freely between M and its interior. Thurston [50] showed that there is a norm $\| \cdot \| : H_2(M, \partial M; \mathbb{R}) \to \mathbb{R}$ on second homology, defined on integral classes by the property

$$\| x \| = \min \{ -\chi(S) : S \text{ is an embedded surface without } S^2 \text{ components representing } x \}.$$

He proved that this norm, now called the **Thurston norm**, has the following properties:

1. The unit ball $B = \{ x : \| x \| \leq 1 \}$ is a centrally symmetric polyhedron.
(2) If M is a fibered 3-manifold with fiber F, then the class $[F] \in H_2(M, \partial M)$ lies on a ray from the origin that passes through an open top-dimensional face $F \subset \partial B$. In this case, F is called a fibered face, and the open cone $\mathbb{R}_+ F$ is called a fibered cone.

(3) If $x \in \mathbb{R}_+ F$ is a primitive integral homology class lying in a fibered cone, then x is represented by a fiber surface S. Furthermore, $\|x\| = -\chi(S)$. In particular, if $\dim(H_2(M, \partial M)) \geq 2$, then $\mathbb{R}_+ F$ contains infinitely many fiber classes.

When M is fibered with fiber F, the pseudo-Anosov monodromy $\varphi: F \to F$ of M induces a suspension flow η on M. We also have η-invariant 2-dimensional foliations Λ^\pm, which are suspensions of the invariant foliations \mathcal{F}^\pm associated to φ. Let $\mathbb{R}_+ F$ be the fibered cone containing F. Then F determines Λ^\pm and the flow η (up to isotopy and reparametrization), independent of the fiber F. Moreover, for every fiber S in $\mathbb{R}_+ F$, the foliations Λ^+ and Λ^- are transverse to $S \subset M$, and the intersections $\Lambda^\pm \cap S$ are isotopic to the stable and unstable foliations \mathcal{F}^\pm_S associated to the monodromy of S. See Fried [20] and McMullen [42] for more details.

A slope on a torus T is an isotopy class of simple closed curves, or equivalently an (unsigned) primitive homology class in $H_1(T; \mathbb{Z})$. In a fibered 3-manifold M, with boundary tori T_1, \ldots, T_m, any fibration of M determines two slopes on each torus T_i. First, a fiber F must meet every T_i in a union of disjoint, consistently oriented simple closed curves. The isotopy class of these simple closed curves is called the boundary slope of F on T_i. Second, the orbit under the flow η of a singular leaf of \mathcal{F}^\pm is a (2-dimensional) singular leaf of Λ^\pm. Every singular leaf traces out a simple closed curve on some T_i, whose slope is called the degeneracy slope on T_i. We emphasize that the degeneracy slope is entirely determined by Λ^\pm, hence by the fibered cone containing F.

Lemma 9.1. Let $M = M_\varphi$ be the mapping torus of a principal pseudo-Anosov $\varphi: F \to F$. Then, on every component of ∂M, the boundary slope of F intersects the degeneracy slope once. If $S \subset M$ is another fiber surface in the same fibered cone as F, then the monodromy of S is principal if and only if the boundary slope of S intersects the degeneracy slope once.

Proof. Let \mathcal{F}_F^+ be the stable foliation of φ on F. Since φ is principal, \mathcal{F}_F^+ has 3-prong singularities at interior points of F. Thus Λ^+ also has 3-prong singularities at interior points of M. In addition, every puncture of F meets exactly one singular leaf of \mathcal{F}_F^+. Thus, on every cusp torus $T_i \subset \partial M$, a loop about the puncture of F intersects the degeneracy slope in exactly one point.

Let S be another fiber surface in the same fibered cone as F. As mentioned above, the stable foliation \mathcal{F}_S^+ is isotopic to $\Lambda^+ \cap S$, hence has 3-prong singularities at interior points of S. Meanwhile, the singular prongs of \mathcal{F}_S^+ at a given puncture of S are in bijective correspondence with points of $\Lambda^+ \cap \gamma_i$, where γ_i denotes a loop about the puncture. Thus the monodromy of S is principal if and only if every γ_i intersects the degeneracy slope once. □

For a pseudo-Anosov $\varphi: S \to S$, recall that $\hat{\varphi}: \hat{S} \to \hat{S}$ denotes the restricted map obtained by puncturing S at the singularities of φ. The mapping torus $\hat{M} = \hat{M}_\hat{\varphi}$ can be constructed by drilling M_φ along the singular flow-lines of Λ^\pm, i.e. the orbits of the singularities of \mathcal{F}^\pm under the flow η; in particular, \hat{M} depends only on the face F containing S. Furthermore, the fibered face of $\hat{M}_\hat{\varphi}$ whose cone contains \hat{S} depends only on F.

The following lemma is a special case of [44, Proposition 2.7].
Lemma 9.2 (Agol). Let M be a fibered hyperbolic 3-manifold with fibered face F. Then any two fibers $F_1, F_2 \in \mathbb{R}_+ F$ produce the same veering triangulation of M, up to isotopy.

We close this background section with two easy but useful observations that date back to Thurston [50].

Fact 9.3. For $x, y \in H_2(M, \partial M; \mathbb{R})$, the equality $\|x + y\| = \|x\| + \|y\|$ holds if and only if x and y are in the same cone over a face of the unit Thurston norm ball.

This follows by the definition of a norm, combined with the property that the unit ball B is a polyhedron.

Fact 9.4. If S represents $x \in H_2(M, \partial M; \mathbb{Z})$, then $\|x\| = -\chi(S)$ mod 2.

This follows from the existence of the boundary map $\partial : H_2(M, \partial M; \mathbb{Z}) \rightarrow H_1(\partial M, \mathbb{Z})$, and the fact that the number of components of an embedded multi-curve representing an element of $H_1(\partial M, \mathbb{Z})$ is invariant mod 2.

9.2. Finding desired fibers. The following lemma will be used to find fibers of almost every topological type.

Lemma 9.5. Let M be a one-cusped fibered hyperbolic manifold with $H_2(M, \partial M; \mathbb{R}) \cong \mathbb{R}^2$, and suppose M contains embedded surfaces $S_1 \cong \Sigma_{1,1}$ and $S_2 \cong \Sigma_{2,0}$ representing non-trivial classes in $H_2(M, \partial M)$.

1. If M has a fiber $F \cong \Sigma_{2,1}$, then the vertices of the unit Thurston norm ball are $\pm [S_1]$ and $\pm \frac{1}{2}[S_2]$. Furthermore, the fibered cone containing F also contains fibers homeomorphic to $\Sigma_{g,n}$ for all $g \geq 2$ and $n \geq 1$ such that $(g-1,n)$ is relatively prime. All of these fibers have the same boundary slope as F.

2. If M has a fiber $F \cong \Sigma_{1,2}$, then the vertices of the unit Thurston norm ball are $\pm [S_1]$, and either $\pm ([S_2] + [S_1])$ or $\pm ([S_2] - [S_1])$. Furthermore, the fibered cone containing F also contains fibers homeomorphic to $\Sigma_{1,n}$ for all $n \geq 2$. All of these fibers have the same boundary slope as F.

Proof. Let $x_1 = [S_1]$ and $x_2 = [S_2]$. Since $\chi(\Sigma_{1,1}) = -1$ and $\|x_1\| > 0$, we conclude that $\|x_1\| = 1$. Similarly, since $\chi(\Sigma_{2,0}) = -2$ and $\|x_2\| > 0$, Fact 9.4 implies that $\|x_2\| = 2$. Thus the four classes $\pm x_1$ and $\pm \frac{1}{2} x_2$ all lie in ∂B, where B is the unit ball of the norm.

Recall the boundary homomorphism $\partial : H_2(M, \partial M) \rightarrow H_1(\partial M, \mathbb{Z})$, and fix the homology class $l = \partial x_1 \in H_1(\partial M, \mathbb{Z})$. Note that $\pm l$ are the unique primitive classes in $H_1(\partial M, \mathbb{Z})$ that are trivial in $H_1(M)$. In particular, this implies that any alternate fiber F' must have the same boundary slope as F.

Observe that, $x_1 \neq x_2$ because $\partial x_1 = l \neq 0 = \partial x_2 \in H_1(\partial M, \mathbb{Z})$. Now, consider classes $x' = x_1 + x_2$ and $x'' = x_1 - x_2$. Since $\|x'\| \leq \|x_1\| + \|x_2\| = 3$ and $\|x'\| \equiv \chi(\Sigma_{1,1}) + \chi(\Sigma_{2,0})$ mod 2, we have $\|x'\| \in \{1, 3\}$. Similarly, $\|x''\| \in \{1, 3\}$.

Case 1: M has a fiber $F \cong \Sigma_{2,1}$, which implies $\partial [F] = \pm l$.

Suppose for a contradiction that $\|x'\| = 1$. Then, by Fact 9.3, the points $-x_1$, x', and their average $\frac{1}{2} x_2$ all lie in a line segment contained in a face of ∂B. Since M has a cusp, and the interior point $\frac{1}{2} x_2$ is represented by (half) the closed surface $S_2 \cong \Sigma_{2,0}$, this cannot be a fibered face. Similarly, the points $x_1, -\frac{1}{2} x_2, -x' \in \partial B$ all lie in a line segment in a non-fibered face of ∂B. (See Figure 7a.) It follows that the fiber F lies in a cone over some other face, which we may assume is in the first quadrant by changing the orientation of F.
If necessary. Hence we can write $[F] = ax_1 + bx'$, for some $a, b \in \mathbb{Q}_{>0}$. Since $x' = x_1 + x_2$, we have
\[\partial x' = \partial x_1 + \partial x_2 = \partial x_1 = l \in H_1(\partial M), \]
implying
\[\pm l = \partial[F] = \partial(ax_1 + bx') = (a + b)l. \]
Hence $a + b = \pm 1$, but $a + b \geq 0$, so we must have $a + b = 1$. It follows that $[F]$ lies on the line segment joining x_1 and x', which is impossible since $\|F\| = 3$. From this contradiction, it follows that $\|x'\| = 3$.

If we consider $x'' = x_1 - x_2$ in place of x', and assume that $\|x''\| = 1$, then the argument above with the obvious modifications again gives a contradiction. Hence $\|x_1 - x_2\| = 3 = \|x_2 - x_1\|$. Therefore the points $\pm x_1, \pm \frac{1}{2}x_2, \pm \frac{x'}{2}, \pm \frac{x''}{2}$ all have norm 1, hence Fact 9.3 implies that these points determine the unit norm ball. It follows that the vertices are $\pm v_1, \pm v_2$, where $v_1 = x_1 = [S_1]$ and $v_2 = \frac{1}{2}x_2 = \frac{1}{2}[S_2]$. See Figure 7b.

Now, let F be the face containing F. Without loss of generality, F has vertices $\{v_1, v_2\}$. Fix a pair (g, n) where $g \geq 2$ and $n \geq 1$, and where $\gcd(g - 1, n) = 1$. Then $y = nx_1 + (g - 1)x_2$ is a primitive homology class in F, which is represented by a fiber F'. Since the norm is linear on faces by Fact 9.3, $\|y\| = n\|x_1\| + (g - 1)\|x_2\| = n + 2(g - 1)$. Furthermore, F' has exactly n boundary components, since S_2 is closed and S_1 has one boundary component. Thus
\[2(g - 1) + n = \|y\| = -\chi(F') = 2\ \text{genus}(F') - 2 + n \]
hence $\text{genus}(F') = g$, as desired.

Case 2: $F \cong \Sigma_{1,2}$, which implies $\partial[F] = \pm 2l$.

Suppose, for a contradiction, that $\|x'\| = \|x''\| = 3$. Then the points $\pm x_1, \pm \frac{1}{2}x_2, \pm \frac{x'}{2}, \pm \frac{x''}{2}$ all have norm 1, and determine the unit norm ball must be as shown in Figure 7b. Hence, up to changing signs, we may assume that $[F] = ax_1 + b(\frac{1}{2}x_2)$ for some $a, b \in \mathbb{Q}_+$. Then
\[\pm 2l = \partial[F] = \partial(ax_1 + b(\frac{1}{2}x_2)) = al \quad \implies \quad a = \pm 2. \]
Since the Thurston norm is only linear in the cone over a face, we have
\[2 = \|[F]\| = \|ax_1 + b(\frac{1}{2}x_2)\| = |a| + |b| = 2 + |b| \quad \implies \quad b = 0, \]
which is impossible, because the fiber \(F \) must be in the interior of a fibered cone. This contradiction implies that either \(\|x'\| = 1 \) or \(\|x''\| = 1 \).

If \(\|x''\| = 1 \), the unit sphere \(\partial B \) contains the segments connecting \(\pm x' \) and \(\mp x_1 \), as shown in Figure 7c. As above, we observe that \(\frac{1}{2}x_2 \) cannot lie in the interior of a fibered face, so (after possibly reversing the orientation on \(F \)) we must have \([F] = ax_1 + bx' \) for \(a, b \in \mathbb{Q}_+ \). Applying the boundary homomorphism gives
\[2l = \partial[F] = \partial(ax_1 + bx') = (a + b)l \]
which implies
\[a + b = 2 = \|[F]\| \leq a\|x_1\| + b\|x'\| = a + b. \]

Since the norm is only linear in the cone over a face (Fact 9.3), the segment joining \(x_1 \) to \(x' \) must lie in a face of \(\partial B \). It follows that \(\pm x_1, \pm x' \) are the only vertices.

If \(\|x''\| = 1 \), an identical argument applies with \(x' \) replaced by \(x'' \). In this case, the vertices of \(\partial B \) are \(\pm x_1, \pm x'' \). Thus, in both cases, the vertices of the unit norm ball are \(\pm v_1 \) and \(\pm v_2 \), where \(v_1 = [S_1] \), and \(v_2 \) is either \([S_2] + [S_1] \) or \([S_2] - [S_1] \).

Now, let \(F \) be the face containing \(F \). Without loss of generality, say \(v_2 = [S_1] + [S_2] \) and \(F \) has vertices \(\{v_1, v_2\} \). The norm-realizing surface \(P \) representing \(v_2 \) has \(\chi(P) = -1 \) and \(\partial[P] = l \). Thus \(P \) is either a pair of pants or a one-holed torus. If \(P \) is a pair of pants, then two boundary components of \(P \) must cancel in \(H_1(\partial M) \), which means they can be tubed together to obtain an embedded one-holed torus. Thus, in either case, \(v_2 \) is represented by an embedded \(\Sigma_{1,1} \). Fix an integer \(n \geq 2 \), and let \(y = v_1 + (n - 1)v_2 = n[S_1] + (n - 1)[S_2] \). As before, \(y \) is primitive and therefore represented by a fiber \(F' \). Since the Thurston norm is linear on the fibered cone, \(\|y\| = \|v_1\| + (n - 1)\|v_2\| = n \). Furthermore, since \(\partial S_2 = \emptyset \), \(F' \) must have exactly \(n \) boundary components. This gives that \(n = \|y\| = -\chi(F') = 2g(F') - 2 + n \) which implies \(g(F') = 1 \). We conclude that \(F' \cong \Sigma_{1,n} \), as required. \(\square \)

Before proving Theorem 1.3, we need a straightforward lemma about covers.

Lemma 9.6. Let \(\varphi: S \to S \) be a pseudo-Anosov homeomorphism and \(f: \hat{S} \to S \) a degree \(d < \infty \) covering. Then the following holds.

1. There exists a pseudo-Anosov \(\hat{\varphi}: \hat{S} \to \hat{S} \) that is a lift of some power \(\varphi^k \) of \(\varphi \).
2. The veering triangulation \(\tau_\varphi \) is a geometric triangulation of \(\hat{M}_\varphi \) if and only if \(\tau_{\hat{\varphi}} \) is a geometric triangulation of \(\hat{M}_{\hat{\varphi}} \).
3. If \(\varphi \) is principal and each peripheral curve of \(S \) has \(d \) lifts to \(\hat{S} \), then \(\hat{\varphi} \) is also principal.

Proof. Conclusion (1) is standard. Let \(d \) be the degree of the cover. Then the finitely many index \(d \) subgroups of \(\pi_1(S) \) are permuted by the induced isomorphism \(\varphi^* \). Thus some power of \(\varphi^* \) must stabilize the subgroup \(f_*\pi_1(S) \subset \pi_1(S) \), allowing the lifting criterion to be applied.

Conclusion (2) follows from the fact that every simplex in the veering triangulation \(\tau_\varphi \) of \(\hat{M}_\varphi \) lifts to a simplex in the veering triangulation \(\tau_{\hat{\varphi}} \) of \(\hat{M}_{\hat{\varphi}} \), with the same shape.

For conclusion (3), note that since \(\varphi \) is principal, every singularity of \(\varphi \) is either 3-pronged and occurs at an interior point of \(S \) or 1-pronged and occurs at a puncture. Since each peripheral curve of \(S \) has \(d \) lifts to \(\hat{S} \), the same is true for \(\hat{\varphi} \). Thus \(\hat{\varphi} \) is principal. \(\square \)
We can now begin proving Theorem 1.3, case by case.

Proposition 9.7. Let \(S \cong \Sigma_{g,n} \) be a hyperbolic surface of genus \(g \geq 1 \), excluding \(\Sigma_{1,1} \). Then there exists a principal pseudo-Anosov \(\varphi \in \text{Mod}(S) \) such that the associated veering triangulation of the mapping torus \(\tilde{M}_\varphi \) is non-geometric.

Proof. We consider three different cases.

Case 1: \(g = 1 \) and \(n \geq 2 \). Let \(F = \Sigma_{1,2} \) and let \(\varphi = \varphi_3 \) be the third mapping class described in Proposition 8.4. By Proposition 8.4, \(\varphi \) is a principal pseudo-Anosov, such that the veering triangulation of \(M_\varphi \) is non-geometric.

Let \(M_\varphi \) be the mapping torus of \(\varphi: \tilde{F} \rightarrow F \). This manifold has a single cusp. According to Regina, \(M_\varphi \) contains embedded surfaces \(S_1 \cong \Sigma_{1,1} \) and \(S_2 \cong \Sigma_{2,0} \) which are non-trivial in \(H_2(M_\varphi, \partial M_\varphi; \mathbb{R}) \cong \mathbb{R}^2 \). To verify this, Regina computes the complete list of embedded vertex normal surfaces for \(M_\varphi \). (See e.g. [9] for a discussion of vertex normal surfaces and the role they play in computation.) Among these vertex normal surfaces are \(S_1 \cong \Sigma_{1,1} \) and \(S_2 \cong \Sigma_{2,0} \). Cutting \(M_\varphi \) along these surfaces ensures that they are homologically non-trivial. The dimension of the homology is also rigorously computed by Regina. See the ancillary files [22] for full details.

Thus, by Lemma 9.5, the fibered cone containing \(F \) also contains fibers homeomorphic to \(\Sigma_{1,n} \) for all \(n \geq 1 \). All of these fibers have the same boundary slope as \(F \), hence the mapping classes of these fibers are all principal by Lemma 9.1. Finally, Lemma 9.2 says that all of these fibers induce the same non-geometric veering triangulation of \(\tilde{M}_\varphi \).

Case 2: \(g \geq 2 \) and \(n = 0 \). Let \(F = \Sigma_{2,0} \), and let \(\varphi = \varphi_1 \in \text{Mod}(F) \) be the first mapping class described in Proposition 8.4. By that proposition, \(\varphi \) is a principal pseudo-Anosov, such that the veering triangulation of \(M_\varphi \) is non-geometric. Now, recall that every closed hyperbolic surface \(S \) is a finite cover of \(F \). Thus Lemma 9.6 gives the desired result for \(S \).

Case 3: \(g \geq 2 \) and \(n \geq 1 \). Let \(F = \Sigma_{2,1} \) and let \(\varphi = \varphi_2 \) be the second mapping class described in Proposition 8.4. By Proposition 8.4, \(\varphi \) is a principal pseudo-Anosov, such that the veering triangulation of \(M_\varphi \) is non-geometric.

Let \(M_\varphi \) be the mapping torus of \(\varphi: F \rightarrow F \). Using Regina, as in Case 1, we check that \(M_\varphi \) contains embedded surfaces \(S_1 \cong \Sigma_{1,1} \) and \(S_2 \cong \Sigma_{2,0} \) which are non-trivial in \(H_2(M_\varphi, \partial M_\varphi; \mathbb{R}) \cong \mathbb{R}^2 \). By Lemma 9.5, the fibered cone containing \(F \) also contains fibers homeomorphic to \(\Sigma_{g,n} \) for all \(g \geq 2 \) and \(n \geq 1 \), where \((g-1,n) \) are relatively prime. All of these fibers have the same boundary slope as \(F \). Thus, by Lemmas 9.1 and 9.2, we obtain the desired conclusion for all \(g \geq 2 \) and \(n \geq 1 \) such that \(\gcd(g-1,n) = 1 \).

Finally, suppose \(S \cong \Sigma_{g,n} \), with \(\gcd(g-1,n) = d > 1 \). Then \(g' = 1 = (g-1)/d \) and \(n' = n/d \) are relatively prime, with \(g' \geq 2 \) and \(n' \geq 1 \). Thus, by the above paragraph, the fibered cone of \(M_\varphi \) containing \(F \) also contains a fiber \(F' \cong \Sigma_{g',n'} \). Observe that \(S \) is a \(d \)-fold cyclic cover of \(F' \) (realize \(S \) with \(d \) groups of \(g' - 1 \) doughnut holes and \(n' \) punctures, arranged symmetrically around a central doughnut hole). By construction, peripheral curves of \(F' \) lift to peripheral curves of \(S \). Thus, by Lemma 9.6, a power of the monodromy of \(F' \) lifts to a principal pseudo-Anosov on \(S \), and the non-geometric veering triangulation of \(M_\varphi \) lifts to a non-geometric veering triangulation of the corresponding finite cover of \(M_\varphi \).

Proposition 9.8. Let \(S \cong \Sigma_{0,n} \) be a surface of genus \(g = 0 \), with \(n \geq 5 \) punctures. Then there exists a principal pseudo-Anosov \(\varphi \in \text{Mod}(S) \) such that the associated veering triangulation of the mapping torus \(\tilde{M}_\varphi \) is non-geometric.
The mapping torus $M_ϕ$ of $ϕ = T_{r_5}^2 T_{r_4} T_{r_3}^{-1} T_{r_2}^{-1} T_{r_1} T_{r_4} T_{r_3}^{-1}$ has many embeddings as a link complement in S^3. In the left panel, we realize $ϕ$ as a braid word $β$, whose braid generators are read from the bottom up. In the top center panel, we cut, twist, and reglue along the twice-punctured disk S_1, giving a re-embedding of M. In the bottom right panel, we twist along S_1 in the opposite direction, making it easier to see the fiber F_2 that is homologous to $F + S_1$ and compute the monodromy of F_2. Note that it is possible to obtain F_a in a similar way—i.e., by successive applications of the process described by the bottom two arrows. This gives intuition for how to think about F_a and compute its monodromy.

Proof. If $n = 5$ or $n = 6$, the mapping classes $ϕ_5$ and $ϕ_6$ described in Proposition 8.4 satisfy the desired conclusion. From now on, we treat planar surfaces with $n \geq 7$ punctures.

Let $F = Σ_{0,7}$, and let $ϕ$ be the mapping class

$$ϕ_7 = T_{r_5}^2 T_{r_4} T_{r_3}^{-1} T_{r_2}^{-1} T_{r_1} T_{r_4} T_{r_3}^{-1}$$

given in Proposition 8.4. By Proposition 8.4, $ϕ$ is a principal pseudo-Anosov and the veering triangulation of the mapping torus $M_ϕ$ is non-geometric. We will show that the fibered cone of $H_2(M_ϕ, ∂M_ϕ)$ containing $[F]$ also contains a fiber homeomorphic to $Σ_{0,n}$ for every $n \geq 7$. Then, we will show that all of these fibers have principal monodromy.
To begin the proof, we embed $M = M_\varphi$ as a link complement in S^3. Note that the generators T_{r_i} and T_{s_i} do not appear in φ, hence one of the punctures of F is fixed. We can therefore think of φ as a mapping class on the 6–punctured disk. More precisely, let B_k be the braid group on k strands, and consider the natural homomorphism $B_k \to \text{Mod}(\Sigma_{0,k+1})$ defined by $\sigma_i \mapsto T_{r_i}$. Then φ is the mapping class corresponding to the braid

$$\beta = \sigma_2^2\sigma_4\sigma_5^{-1}\sigma_1^{-1}\sigma_4\sigma_2^{-1}\sigma_3\sigma_1\sigma_2^{-1}.$$

Consequently, the mapping torus M_φ is homeomorphic to $S^3 \smallsetminus (\overline{\beta} \cup L_2)$, where $\overline{\beta}$ is the braid closure of β and L_2 is the braid axis. See the left panel of Figure 8. In this embedding of M_φ, the fiber F becomes the 6–punctured disk shown in green.

Next, we re-embed M into S^3 via a Rolfsen twist. That is: cut M along the twice-punctured disk S_1 (colored pink in Figure 8), perform one counter-clockwise full twist from the underside, and re-glue along S_1. After this operation, we have $M_\varphi \cong S^3 \smallsetminus L$, where $L = L_1 \cup L_2 \cup L_3$ is the three-component link in the upper center of Figure 8. The image of the fiber F under this re-embedding is shown again in light green.

The link L allows a clear view of two surfaces that will be important for our homological computations: the 2–punctured disk S_1 bounded by L_1, and the 5–punctured disk S_2 bounded by L_2. The top center of Figure 8 shows their (transverse) orientations: we are looking at the back side of S_1 and the front side of S_2. Then, setting $x_1 = [S_1]$ and $x_2 = [S_2]$, we have $[F] = x_1 + x_2$. Since

$$5 = \| [F] \| \leq \| x_1 \| + \| x_2 \| \leq 1 + 4 = 5,$$

we learn that $\| x_1 \| = 1$ and $\| x_2 \| = 4$. Furthermore, since the Thurston norm is only linear in the cone over a face (see Fact 9.3), it follows that the segment joining x_1 to x_2 must lie in the fibered cone containing $[F]$.

Now, let a be a positive integer and consider $y = ax_1 + x_2$. Since y is primitive, it is represented by a fiber F_a. In Figure 8, F_a can be visualized as the sum of a copies of S_1 and one copy of S_2. We wish to compute the topological type of F_a, starting with the number of punctures.

Let $\partial : H_2(M, \partial M) \to H_1(\partial M)$ be the boundary homomorphism $[S] \mapsto [\partial S]$. To compute $\partial y = \partial(ax_1 + x_2) = a\partial x_1 + \partial x_2$, it suffices to take the homological sum (in $H_1(\partial M)$) of a copies of $[\partial S_1]$ and one copy of $[\partial S_2]$. Let T_i be the torus of ∂M corresponding to the link component L_i. Then the only intersections of ∂S_1 with ∂S_2 occur on T_1 and T_2. On the torus T_1, there are a copies of the longitude, coming from $a[\partial S_1]$, and one copy of the meridian, coming from $[\partial S_2]$. The homological sum of these is a single curve of slope $1/a$.

The situation on T_2 is similar: there are a copies of the meridian, and one copy of the longitude, giving a single curve of slope a. Figure 9 demonstrates this for $a = 3$. Since L_3 intersects S_1 once and S_2 four times, the boundary of y also contains $a + 4$ copies of the meridian on the torus T_3. Furthermore, the orientations on S_1 and S_2 induce the same orientation on each of these $a + 4$ copies of the meridian, so none of them cancel in $H_1(\partial M)$.

We conclude that the number of boundary components of F_a is $1 + 1 + (a + 4) = a + 6$.

Since the norm is linear on the cone over a face, we get $\| y \| = a\| x_1 \| + \| x_2 \| = a + 4$. Furthermore, since $F_a \cong \Sigma_{g,n}$ is a fiber, hence norm-realizing, we have

$$a + 4 = \| y \| = -\chi(F_a) = 2g - 2 + n = 2g - 2 + (a + 6) = 2g + (a + 4).$$

We conclude that the genus of F_a is $g = 0$. Hence $F_a \cong \Sigma_{0,a+6}$. By varying the value of $a \in \mathbb{N}$, we get all surfaces $\Sigma_{0,n}$ for $n \geq 7$. By Lemma 9.2, the veering triangulation
associated to the monodromy for F_a is the same as the veering triangulation for $F = F_1$, hence non-geometric.

Next, we compute the monodromy of F_2 and show that it is principal. Since $[F] = [F_1] = x_1 + x_2$, we have

$$[F_2] = x_1 + x_1 + x_2 = [S_1] + [F].$$

The fiber F_2 is shown in the bottom center frame of Figure 8. We may visualize the monodromy of F_2 by again re-embedding M into S^3, via a Rolfsen twist in the opposite direction. That is: cut M along the twice-punctured disk S_1, perform a full clockwise twist (from the underside), and reglue. This realizes M as the complement of a new link, shown in Figure 8, bottom right. This link is $\overline{\beta'} \cup L_2$, where $\beta' = \sigma_0^2 \sigma_5 \sigma_4 \sigma_3^{-1} \sigma_1^{-1} \sigma_4 \sigma_2^{-1} \sigma_3 \sigma_2^{-1} \in B_7$. After the re-embedding, the fiber F_2 becomes the green 7-punctured disk shown, with monodromy ψ corresponding to the braid word β':

$$\psi = T_{r_6}^2 T_{r_5} T_{r_4} T_{r_3} T_{r_1}^{-1} T_{r_4}^{-1} T_{r_2} T_{r_1}^{-1} T_{r_4} T_{r_1} T_{r_2}^{-1}.$$

Using flipper, we confirm that ψ is in fact principal.

It remains to show that the monodromy of F_a is principal for every $a \in \mathbb{N}$. We already know this for F_1 and F_2. We finish the proof using Lemma 9.1 and linear algebra. For each cusp torus T_i of M, let δ_i be a simple closed curve realizing the degeneracy slope of F_i, oriented in the direction of the flow η_i. Then, for $i \in \{1, 2, 3\}$, we have a sequence of homomorphisms (\mathbb{Z} coefficients are presumed):

$$H_2(M, \partial M) \xrightarrow{\delta} H_1(\partial M) \xrightarrow{\pi_i} H_1(T_i) \xrightarrow{\iota(\cdot, \delta_i)} \mathbb{Z},$$

where $\pi_i: H_1(\partial M) = \bigoplus_{j=1}^3 H_1(T_j) \to H_1(T_i)$ is the projection map to the i-th coordinate and $\iota(\cdot, \delta_i)$ is the algebraic intersection pairing. The composition of these homomorphisms is a linear functional $\nu_i: H_2(M, \partial M) \to \mathbb{Z}$. Consider its values for $[F_1]$ and $[F_2]$.

On the torus T_1, both fibers F_1 and F_2 have a single boundary component (see Figure 9, right). Since the monodromies of F_1 and F_2 are principal, both ∂F_1 and ∂F_2 intersect δ_1 once. With our orientations, $\nu_1([F_1]) = \nu_1([F_2]) = 1$. Thus, by linearity, we have $\nu_1([F_a]) = 1$ for every a. By an identical argument, $\nu_2([F_1]) = \nu_2([F_2]) = 1$, hence $\nu_2([F_a]) = 1$ for every a. Finally, on the torus T_3, we have seen that ∂F_3 consists of $a+4$ parallel components whose slope is independent of a. Since F_1 is principal, each of these components intersects δ_3 once. Since every boundary component of F_a intersects the degeneracy slope once, Lemma 9.1 implies that the monodromy of F_a is principal for every $a \in \mathbb{N}$. \square
Remark 9.9. flipper has the capability to compute degeneracy slopes from a veering triangulation, using [21, Observation 2.9]. A combination of flipper and Snappy shows that in \(M \cong S^3 \setminus (L_1 \cup L_2 \cup L_3) \), the degeneracy slope \(\delta_1 \) is the longitude of \(L_1 \); meanwhile, \(\delta_2 \) is the meridian of \(L_2 \); and \(\delta_3 \) is (meridian – longitude) on \(L_3 \). This fact, combined with Figure 9, gives an alternate proof that every \(F_\alpha \) has principal monodromy. The above argument using the linear functionals \(\nu_i \) avoids the need to ever identify \(\delta_i \).

Proof of Theorem 1.3. Let \(S \) be a hyperbolic surface. If \(\xi(S) = 0 \), then \(S \cong \Sigma_{0,3} \), hence \(\text{Mod}(S) \) is finite. If \(\xi(S) = 1 \), then \(S \cong \Sigma_{0,4} \) or \(\Sigma_{1,1} \), and the work of Akiyoshi [2], Lackenby [34], and Guéritaud [24] shows that all pseudo-Anosov mapping classes in \(\text{Mod}(S) \) have geometric veering triangulations.

Now, assume that \(\xi(S) \geq 2 \). Under this hypothesis, Propositions 9.7 and 9.8 show that there exists a principal pseudo-Anosov \(\varphi \in \text{Mod}(S) \) such that the associated veering triangulation of the mapping torus \(M_\varphi \) is non-geometric. \(\square \)

References

[1] Ian Agol, Ideal triangulations of pseudo-Anosov mapping tori, Topology and geometry in dimension three, Contemp. Math., vol. 560, Amer. Math. Soc., Providence, RI, 2011, pp. 1–17.
[2] Hirotaka Akiyoshi, On the Ford domains of once-punctured torus groups, Sürikaisekikenkyūsho Kökyūroku 1104 (1999), 109–121.
[3] Hyungryul Baik, Ilya Gekhtman, and Ursula Hamenstädt, The smallest positive eigenvalue of fibered hyperbolic 3-manifolds, Proc. Lond. Math. Soc. (3) (to appear), arXiv:1608.07609.
[4] Mark Bell, flipper (computer software), http://pypi.python.org/pypi/flipper, 2013–2017.
[5] Lipman Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1–2, 73–98.
[6] Francis Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no. 1, 71–158.
[7] ———, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162.
[8] Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012), no. 1, 1–149.
[9] Benjamin A. Burton, Optimizing the double description method for normal surface enumeration, Math. Comp. 79 (2010), no. 269, 453–484.
[10] Benjamin A. Burton, Ryan Budney, William Pettersson, et al., Regina: Software for low-dimensional topology, Available at http://regina-normal.github.io/, 1999–2017.
[11] Richard D. Canary, A covering theorem for hyperbolic 3-manifolds and its applications, Topology 35 (1996), no. 3, 751–778.
[12] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, Available at http://snappy.computop.org (Version 2.3.2), 2009–2017.
[13] François Dahmani and Camille Horbez, Spectral theorems for random walks on mapping class groups and out (\(F_N \)), Int. Math. Res. Not. IMRN (2018), no. 9, 2603–2744.
[14] Moon Duchin, Christopher J. Leininger, and Kasra Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010), no. 2, 231–277.
[15] Alex Eskin and Maryam Mirzakhani, Counting closed geodesics in moduli space, Journal of Modern Dynamics 5 (2011), no. 1, 71–105.
[16] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.
[17] Albert Fathi, François Laudenbach, and Valentin Poénaru, Thurston’s work on surfaces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012, Translated from the 1979 French original by Djun M. Kim and Dan Margalit.
[18] Stefano Francaviglia, Hyperbolicity equations for cusped 3-manifolds and volume-rigidity of representations, Ph.D. thesis, PhD thesis, Scuola Normale Superiore, 2004.
Ian Frankel, A comparison of period coordinates and Teichmüller distance, arXiv:1712.00140.

David Fried, The geometry of cross sections to flows, Topology 21 (1982), no. 4, 353–371.

David Futer and François Guéritaud, Explicit angle structures for veering triangulations, Algebraic & Geometric Topology 13 (2013), no. 1, 205–235.

David Futer, Samuel J. Taylor, and William Worden, Ancillary files stored with the arXiv version of this paper, https://arxiv.org/src/1808.05586/anc.

Vaibhav Gadre and Joseph Maher, The stratum of random mapping classes, Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2666–2682.

François Guéritaud, On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006), 1239–1284, With an appendix by David Futer.

Francois Guéritaud, On canonical triangulations and Cannon-Thurston maps, J. Topology 9 (2016), no. 3, 957–983.

Ursula Hamenstädt, Typical properties of periodic Teichmüller geodesics: Lyapunov exponents, http://www.math.uni-bonn.de/people/ursula/lyapunov.pdf.

Bowen’s construction for the Teichmüller flow, Journal of Modern Dynamics 7 (2013), no. 4, 489–526.

Craig D Hodgson, Ahmad Issa, and Henry Segerman, Non-geometric veering triangulations, Experimental Mathematics 25 (2016), no. 1, 17–45.

Craig D Hodgson, J Hyam Rubinstein, Henry Segerman, and Stephan Tillmann, Veering triangulations admit strict angle structures, Geom. Topol. 15 (2011), no. 4, 2073–2089.

Neil Hoffman, Kazuhiro Ichihara, Masahide Kashiwagi, Hidetoshi Masai, Shin’ichi Oishi, and Akitoshi Takayasu, Verified computations for hyperbolic 3-manifolds, Experimental Mathematics 25 (2016), no. 1, 66–78, http://dx.doi.org/10.1080/10586458.2015.1029599.

John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), 221–274.

Yoichi Imayoshi and Masahiko Taniguchi, An introduction to Teichmüller spaces, Springer Science & Business Media, 2012.

Vadin A. Kaimanovich and Howard Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996), 221–264.

Marc Lackenby, The canonical decomposition of once-punctured torus bundles, Comment. Math. Helv. 78 (2003), no. 2, 363–384.

Christopher J. Leininger and Saul Schleimer, Connectivity of the space of ending laminations, Duke Mathematical Journal 150 (2009), no. 3, 533–575.

Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119–135.

Joseph Maher, Linear progress in the complex of curves, Transactions of the American Mathematical Society 362 (2010), no. 6, 2963–2991.

Dan Margalit, Balázs Strenner, and Öykü Yurttaş, Fast Nielsen–Thurston classification, In preparation.

Howard Masur, Interval exchange transformations and measured foliations, Annals of Mathematics 115 (1982), no. 1, 169–200.

Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), no. 3, 387–442.

Geometry of Teichmüller space with the Teichmüller metric, Surveys in differential geometry. Vol. XIV. Geometry of Riemann surfaces and their moduli spaces, Surv. Differ. Geom., vol. 14, Int. Press, Somerville, MA, 2009, pp. 295–313.

Curtis T. McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 4, 519–560.

Yair N. Minsky, The classification of Kleinian surface groups, I: models and bounds, Ann. Math. 171 (2010), no. 1, 1–107.

Yair N. Minsky and Samuel J. Taylor, Fibred faces, veering triangulations, and the arc complex, Geom. Funct. Anal. 27 (2017), 1450–1496.

Walter D. Neumann and Jun Yang, Bloch invariants of hyperbolic 3–manifolds, Duke Math. J. 96 (1999), no. 1, 29–59.

Kasra Rafi, A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005), 179–202.

Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014), no. 5, 3025–3053.

Kurt Strebel, Quadratic differentials, Quadratic Differentials, Springer, 1984, pp. 16–26.
[49] William P. Thurston, *Geometry and topology of 3-manifolds, lecture notes*, Princeton University (1978).

[50] ———, *A norm for the homology of 3-manifolds*, Mem. Amer. Math. Soc. **59** (1986), no. 339, i–vi and 99–130.

[51] Giulio Tiozzo, *Sublinear deviation between geodesics and sample paths*, Duke Math. J. **164** (2015), no. 3, 511–539.

[52] William A Veech, *The Teichmüller geodesic flow*, Ann. Math. **124** (1986), no. 3, 441–530.

[53] William Worden, *Experimental statistics of veering triangulations*, Experimental Mathematics (2018), 1–22, DOI: 10.1080/10586458.2018.1437850.

Department of Mathematics, Temple University, 1805 N. Broad St, Philadelphia, PA 19122

E-mail address: dfuter@temple.edu

E-mail address: samuel.taylor@temple.edu

Department of Mathematics, Rice University MS-136, 1600 Main St., Houston, TX 77251

E-mail address: william.worden@rice.edu