Clinical features and prognostic factors of primary bone marrow lymphoma

Gangjian Wang
Yu Chang
Xiaolong Wu
Xin Li
Ling Li
Lei Zhang
Xiaorui Fu
Zhencang Sun
Xudong Zhang
Mingzh Zhang

Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

Background: Primary bone marrow lymphoma (PBML) is a very uncommon neoplasm originally arising in the bone marrow system, and the most common pathological type is diffuse large B-cell lymphoma.

Patients and methods: To describe the clinical characteristics of PBML and evaluate the risk factors related to prognosis, we recruited and studied 66 patients from our center and the current published literature. Various symptoms are present at the onset of PBML, the most important of which is cytopenia, followed by fever. Forty-seven of these patients were included in our analysis.

Results: Univariate analysis suggested that B symptoms ($P=0.024$), a low serum platelet level ($<75 \times 10^9/L; P=0.032$), an elevated serum LDH level ($P=0.039$), and not achieving a complete response (CR) following initial therapy ($P=0.007$) are associated with worse outcomes. Multivariate analysis showed that only a low serum platelet level ($<75 \times 10^9/L$), B symptoms, and not achieving a CR following initial therapy are independent factors for prognosis. In addition, intensive regimens appear to be beneficial for prognosis.

Conclusion: PBML is a lymphoma with special clinical features, and its recognition is important for establishing a definitive prognosis model and searching for appropriate therapy.

Keywords: diffuse large B-cell lymphoma, primary bone marrow lymphoma, bone marrow, B symptoms, cytopenia
features and risk stratification effects on the outcomes of these patients and to discuss treatment strategies for PBML.

Patients and methods

Patient selection and data collection

The following criteria were used to define PBML: 1) pathologically confirmed bone marrow involvement, regardless of peripheral blood involvement; 2) absence of lymph node, spleen, liver, or other extra marrow involvement upon physical examination or imaging studies (including thoracic, abdominal, and pelvic enhanced computerized tomography [CT], systemic superficial lymph node B-scan ultrasonography, and systemic positron emission tomography/CT [PET/CT]; among these imaging studies, PET/CT is considered relatively authoritative); 3) no evidence of localized bone tumors; 4) bone marrow biopsy with no signs of bony trabecular destruction or PET/CT revealing diffuse enhanced bone marrow metabolism without a localized bone lesion; and 5) exclusion of leukemia/lymphoma cases, including chronic lymphocytic leukemia/small lymphocytic lymphoma, prolymphocytic leukemia, lymphoplasmacytic lymphoma, hairy cell leukemia, Burkitt lymphoma (Burkitt leukemia variant), and acute lymphoblastic leukemia.1

In addition to the above mentioned diagnostic criteria, we added the following exclusion criteria: 1) cases with a second tumor or a disease that could seriously influence survival and 2) B-cell lymphomas that could not be further diagnosed.

All patients’ clinical data, including sex, age, initial symptoms, peripheral blood indicators at first admission, LDH level, β-2 microglobulin level, international prognostic index, treatment modality, treatment response, and radiological findings, were collected. The bone marrow examination included a bone marrow smear cytologic examination, bone marrow biopsy, and bone marrow aspiration.

This study was approved by the ethics committee of the First Affiliated Hospital of Zhengzhou University and was conducted in accordance with the Declaration of Helsinki. Written informed consent for the collection of medical information was obtained from all patients. All procedures performed in the study were in accordance with the ethical standards of the institutional research committee.

Statistical analysis

Complete response (CR), partial response (PR), stable disease (SD), and progressive disease were used to define the classification of the treatment response according to the criteria for malignant lymphoma. The overall survival (OS) was defined from the date of pathological diagnosis to death or to the last date of follow-up. We divided the degree of cytopenia into the following four levels: Grade 0: leukocytes ≥4.0×10⁹/L, hemoglobin ≥110 g/L, platelets ≥100×10⁹/L; Grade 1: leukocytes (3.0–3.9)×10⁹/L, hemoglobin (95–100) g/L, platelets (75–99)×10⁹/L; Grade 2: leukocytes (2.0–2.9)×10⁹/L, hemoglobin (80–94) g/L, platelets (50–74)×10⁹/L; Grade 3: leukocytes (1.0–1.9)×10⁹/L, hemoglobin (65–79) g/L, platelets (25–49)×10⁹/L; and Grade 4: leukocytes (0–1.0)×10⁹/L, hemoglobin <65 g/L, platelets <25×10⁹/L. OS and survival curves were analyzed by the Kaplan–Meier method. The survival of patients with different prognostic variables was analyzed by the log-rank test, and multiple independent prognostic factors were analyzed using a Cox proportional hazards regression analysis. The correlations between two variables were analyzed by Pearson’s chi-square analysis. P-values <0.05 were considered statistically significant, and the statistical analyses were performed using SPSS 21.0.

Results

Patient characteristics in our center

Seven patients with PBML who were treated at the Lymphoma Diagnosis and Treatment Center of Henan Province were enrolled between July 2011 and June 2017 into this study; their clinical characteristics are listed in Table 1. The median follow-up time was 10.4 months (range: 1.0–25 months) and the median age at diagnosis was 56 years (range: 38–72 years). There were five deaths, accounting for 71.4%. Of these patients, three patients died from treatment failure and other two patients finally succumbed to recurrence of the disease. Notably, PET/CT was used in four cases, and all cases revealed disseminated bone marrow with diffuse hypermetabolism, and the median standard uptake value level was 5.9 (range: 4.8–7.5).

Literature review and statistical analysis

Data of 66 cases of PBML were collected and analyzed as follows: 7 cases were among the cases at our center and 59 cases were identified through searching PubMed, China National Knowledge Infrastructure, and Wanfang Data from 1997 to 2018, and the specific information of these patients is presented in Table 2. Nineteen of them were excluded due to lack of specific follow-up time; finally, 47 cases were enrolled into this retrospective analysis. As shown in Table 2, the female/male ratio of the patients was 4:7 (24:42), and the age ranged between 29 and 81 years (median: 60.0 years; average: 57.6 years). PBML occurred in various pathological types of lymphoma. The most common PBMLs were DLBCLs with 40 cases (60.6%). The other types included HL.
Table 1 Clinical features of seven patients with PBML in our center

Case	Diagnosis	Age/sex	Main symptoms	WBC count (10^9/L)	Hb (g/dL)	Platelets (10^9/L)	LDH	B2MG	IPI	Treatment	Outcome overall	Overall survival (months)
1	PTCL, NOS	47/F	Cytopenia	6.75	94	30	N	N	1	3GDPT – PR 3CHOP – PD 4ESHAP – PD 2DICE – not been evaluated	Dead	18
2	T-cell lymphoma and HLH	38/F	B cytopenia	0.46	79	15	H	H	2	1RCHOP – not been evaluated 1 (Etoposide + dexamethasone + cyclosporine) – not been evaluated	Dead	1
3	T-cell lymphoma	62/M	B cytopenia	2.07	85	115	N	N	3	GDPT=2 – SD 3CHOP – PR 1 (Decitabine + thalidomide + etoposide + dexamethasone) – CR	Alive	12
4	DLBCL	62/M	B cytopenia	3.2	60	81	H	H	4	2REPOCH – CR 2REPOCH – CR 2RCHOP – CR	Alive	25
5	DLBCL	50/F	B cytopenia	5.3	99	286	N	H	2	6RCHOP – PR – relapse – 2 (Fotemustine + temozolomide + dexamethasone) – not been evaluated	Dead	7
6	DLBCL and HLH	62/M	B cytopenia, joint pain, chest distress	3.2	71	3	H	H	3	1 (Rituximab + methylprednisolone + etoposide) – not been evaluated	Dead	1
7	DLBCL and HLH	72/M	B cytopenia, fatigue	9.9	113	77	H	H	3	2 (Etoposide + dexamethasone + cyclophosphamide) – CR – relapse – 2 (etoposide + dexamethasone + cyclophosphamide)	Dead	9

Abbreviations: B, B symptoms; B2MG, β2-microglobulin; CHOP, cyclophosphamide, epidurubicin, vincristine, prednisone; CR, complete response; DICE, dexamethasone, ifosfamide, mesna, etoposide; DLBCL, diffuse large B-cell lymphoma; ESHAP, etoposide, methylprednisolone, high-dose cytarabine, and cisplatin; GDPT, gemcitabine, cisplatin, prednisone, and thalidomide; H, high; Hb, hemoglobin; HLH, hemophagocytic lymphohistiocytosis; IPI, international prognostic index; N, normal; PBML, primary bone marrow lymphoma; PD, progressive disease; PR, partial response; PTCL, NOS, peripheral T-cell lymphoma, not otherwise specified; REPOCH, rituximab, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; SD, stable disease; WBC, white blood cells.
Table 2 Clinical characteristics of 66 patients with PBML from literature (cases 1–66)

Case	Initial diagnosis	Age (years)	Sex	Initial symptoms	B2MG	LDH	WBC/Hb/PLT	G	Initial treatment	IR	OS (months)	Reference
1	HIV-negative HL	64	M	Fever, cytopenia	NA	H	2.1/85/61	2	ABVD	F	0.1	Ponzoni et al\(^{27}\)
2	HIV-negative HL	50	M	Fever, cytopenia	NA	H	2.1/74/40	3	ABVD	F	0.7	Cacoub et al\(^{14}\)
3	HIV-negative HL	66	F	Fever, cytopenia	NA	N	2.5/12/132					
4	HIV-negative HL and HLH	68	M	Fever, cytopenia	NA	H	3.2/78/16	4	NO	NA	2.0	Yasuyoshi et al\(^{15}\)
5	HIV-positive HL	29	M	Fever, cytopenia	NA	H	3.2/91/102					
6	HIV-positive HL	58	M	Fever, cytopenia	NA	NA	NA		ABVD	F	2.0	Ponzoni et al\(^{27}\)
7	HIV-positive HL	36	M	Fever, cytopenia	NA	NA	NA		ABVD	F	4.0	Ponzoni et al\(^{27}\)
8	HIV-positive HL	31	M	Fever, cytopenia	NA	NA	NA		ABVD	CR	18.0	Ponzoni et al\(^{27}\)
9	HIV-positive HL	49	M	Fever, cytopenia	NA	NA	NA		ABVD	CR	114.0	Ponzoni et al\(^{27}\)
10	HIV-positive HL	33	M	Fever, cytopenia	NA	NA	NA		EBV	NA	4.0	Ponzoni et al\(^{27}\)
11	HIV-positive HL	34	M	Fever, cytopenia	NA	NA	NA		ABVD	CR	3.0	Ponzoni et al\(^{27}\)
12	HIV-positive HL	55	M	Fever, chills, weight loss, cytopenia	NA	NA	NA		NA	NA	NA	Salama et al\(^{38}\)
13	HIV-positive HL	43	M	Fever, cytopenia, vomiting	NA	NA	2.1/90/1.15					
14	HL	89	M	Fever, cytopenia	NA	NA	NA		NA	NA	1.0	Shah et al\(^{39}\)
15	T-cell lymphoma and HLH	38	M	Fever, cytopenia	H	H	0.46/79/15					
16	T-cell lymphoma	62	F	Fever, cytopenia	N	N	2.07/85/115					
17	PTCL, NOS	34	M	Hypercalcemia	NA	NA	NA		ALL	F	9.6	Martinez et al\(^{40}\)
18	PTCL, NOS	73	F	Fatigue, malaise, cytopenia	NA	NA	1.3/76/33					
19	PTCL, NOS	47	M	Cytopenia	N	N	6.75/94/30					
20	ALK-negative ALCAL and HLH	60	M	Fever, jaundice, cytopenia	NA	NA	1.7/N/107					
21	ALK-negative ALCAL	60	M	Fever, cytopenia	H	N	1.5/86/1.05					
22	FL	76	M	NO	N	N	13.65/140/216					
23	FL	81	F	Cytopenia	H	H	19.9/73/67					
24	FL	61	F	Bone pain	N	N	7.1/132/236					
25	FL	55	M	Cytopenia	N	H	11.4/97/300					
26	FL	78	M	Hemorrhage, cytopenia	NA	N	8.6/75/1					
27	DLBCL and HLH	62	F	Fever, joint pain, cytopenia, chest stress	H	H	3.2/71/3					
28	DLBCL and HLH	72	F	Fever, fatigue, cytopenia	H	H	9.9/113/77					
29	DLBCL and HLH	57	M	Fever, weight loss, cytopenia	H	H	4.8/65/68					
30	DLBCL and CAD	70	F	Cytopenia, jaundice	NA	H	5.9/4.6/331					
31	DLBCL and CAD	75	F	Cytopenia	NA	NA	NA		NA	NA	19.0	Yamashita et al\(^{41}\)
32	DLBCL and CAD	76	M	Fever, cytopenia, jaundice	NA	NA	5.3/74/NA					
33	DLBCL and CAD	69	M	Fatigue, somnolence, cytopenia	NA	H	NA/80/NA					
Age	Gender	Diagnosis	Symptoms	Laboratory Values	Treatment	Response	OS	Notes				
-----	--------	-----------	----------	-------------------	-----------	----------	----	-------				
60	M	DLBCL	Fever	2.9/77/na	RChOP	CR	17.0					
58	F	DLBCL	Fatigue	2.3/77/na	RChOP	PR	17.0					
56	M	DLBCL	Cytopenia	1.9/77/na	RChOP	CR	17.0					

Notes:
- *Recieved autologous stem cell transplantation.*
- *Alive.*

Abbreviations:
- all: prednisone, vincristine, daunorubicin, l-asparaginase, cyclophosphamide, cytarabine, bleomycin, 6-mercaptopurine; alK-negative alCl, alK-negative anaplastic large cell lymphoma; B, B symptoms; B2Mg, β2-microglobulin; CaD, cold agglutinin disease; ChOeP, cyclophosphamide, doxorubicin, vincristine, prednisolone, etoposide; ChOP, cyclophosphamide, epirubicin, vincristine, prednisone; COP, cyclophosphamide, vincristine, prednisone; CR, complete response; DlBCl, diffuse large B-cell lymphoma; eBV, etoposide, bleomicin, vinblastin; F, failure; Fl, follicular lymphoma; g, hematopoietic function grade; gDPT, gemcitabine, cisplatin, prednisone, and thalidomide; h, high; hb, hemoglobin; hD, high dose; hl, hodgkin’s lymphoma; hlh, hemophagocytic lymphohistiocytosis; hYPeRCaVD, cyclophosphamide, vincristine, dexamethasone, adriamycin/methotrexate, cytarabine; iR, initial response; MOPP/aBV, mechlorethamine, vincristine, cyclophosphamide, prednisone/adriamycin, bleomycin, vinblastin; n, normal; na, not available; Os, overall survival; PlT, platelets; PR, partial response; PTCl, nOs, peripheral T-cell lymphoma, not otherwise specified; RChOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; REPOCH, rituximab, etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; THP-COP, pirarubicin, cyclophosphamide, vincristine, prednisolone; VaCOPB, etoposide, doxorubicin, cyclophosphamide, vincristine, prednisone, bleomycin; WBC, white blood cells.
Six patients with PBML had hemophagocytic lymphohistiocytosis (HLH) at the same time, and the mean survival time was only 4 months. No examples of successful treatment were found in our study. Additionally, four patients had complicated cold agglutinin disease, and these patients usually present with cytopenia accompanied by elevated serum cold agglutinin levels. Finally, three patients were still alive and only one patient died from relapse 19 months after the initial chemotherapy. Of all the 40 cases of DLBCL, we obtained the immunohistochemical results of 39 patients, and these results are shown in Table 3. Thirty-three patients died during follow-up, including 20 patients who died from disease progression and 10 patients who died from chemotherapy-related complications. Additionally, 29/57 patients achieved CR, 9/57 patients achieved PR after initial therapy, and the overall response rate was 67.7% (50.9% CR + 15.8% PR). PBML of different pathological types showed distinct prognoses. Most patients with HL were treated with doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) or ABVD-like regimens. The median survival period was 4 months, and HIV-negative HL had a poorer OS than HIV-positive HL (P=0.097). However, statistically significant indicators related to prognosis could not be obtained due to insufficient data. The treatment strategies and survival time of the T-cell lymphoma patients were diverse. The median survival period was 9.6 months. Among four out of five patients with FL, only one patient died. Most patients with DLBCL were treated with cyclophosphamide, epirubicin, vincristine, prednisone (CHOP) or a CHOP-like regimen. The median survival period was 19 months. The clinical features of 47 patients included in the retrospective analysis are summarized in Table 4. The median OS was 19 months. In the univariable analysis, the Kaplan–Meier method and log-rank test were used to analyze the influence of the following factors on survival: sex, age, degree of cytopenia, serum hemoglobin level, serum leukocyte level, serum platelet level, B symptoms, serum LDH level, serum β2-microglobulin level, and response to initial treatment; the degree of cytopenia, serum platelet level, B symptoms, serum LDH level, and response to initial treatment were found to be significantly correlated with OS (P<0.05; Table 5), and the survival curves are shown in Figure 1. Additionally, we attempted to identify the difference in prognosis between HL and non-Hodgkin’s lymphoma and between T-cell and B-cell lymphoma; both results were not statistically significant. Due to the limited number of cases, only those factors with P-values <0.05 were studied, including the serum LDH level, B symptoms, serum platelet level, degree of cytopenia, response to initial therapy, and degree of cytopenia* serum platelet level (which is defined as the interaction of two variables), and the results showed that there was an interaction

Case	CD20	CD10	CD5	BCL-2	BCL-6	Involvement (%)
27	+	NA	NA	NA	NA	NA
28	+	NA	NA	NA	NA	NA
29	+	–	–	+	+	65.4
30	+	–	–	+	NA	NA
31	+	–	–	+	NA	NA
32	+	–	–	+	NA	NA
33	+	–	–	NA	NA	NA
34	NA	NA	NA	NA	NA	NA
35	+	NA	NA	NA	NA	NA
36	+	–	NA	+	–	36.7
37	+	–	+	+	–	9.78
38	+	+	–	NA	+	18.4
39	+	–	–	+	–	39
40	+	–	–	NA	NA	NA
41	+	–	–	NA	NA	4.5
42	+	–	NA	NA	NA	35
43	+	–	NA	NA	NA	42
44	+	–	NA	NA	NA	50
45	+	–	NA	NA	NA	50
46	+	NA	NA	+	NA	NA
47	+	NA	NA	–	+	NA
48	+	NA	–	–	NA	NA
49	+	NA	+	NA	NA	23.5
50	+	–	–	–	–	70
51	+	–	–	+	NA	90
52	+	–	–	+	–	20
53	+	–	–	+	–	15
54	+	–	–	+	+	80
55	+	–	–	+	–	70
56	+	–	–	+	–	80
57	+	–	–	+	–	70
58	+	NA	–	NA	NA	100
59	+	NA	–	NA	NA	80
60	+	–	–	–	NA	70
61	+	–	–	NA	NA	70
62	+	–	–	+	NA	80
63	+	–	–	+	+	90
64	+	NA	–	NA	NA	100
65	+	–	+	NA	NA	35
66	–	NA	NA	NA	NA	25–75

Table 3 Pathological, phenotypic, and molecular features of DLBCL cases (n=34)

Abbreviations: DLBCL, diffuse large B-cell lymphoma; NA, not applicable.
between the two variables. Considering the \(P \)-value of the univariable analysis and clinical convenience, we excluded the variable of degree of cytopenia from the Cox regression model. Finally, the LDH level, B symptoms, serum platelet level, and response to initial therapy were included in the Cox regression analysis, and a low serum platelet level, B symptom, and not achieving CR following the initial therapy showed an independent association with an unfavorable OS (Table 5). In addition, because of the uniformity of the treatment options for DLBCL, we divided the patients into two groups: one group included 23 cases with RCHOP, RCHOP-like/CHOP, or CHOP-like regimens and the other group included 5 cases with intensive regimens, including HVPERCAVD, EPOCH, ALL, HD-CHOP, and VACOPB. The patients who had received intensive regimens showed a better OS (\(P=0.01 \); Figure 2).

Table 4 Clinical characteristics of 47 patients with PBML

Variable	Total, n	Percentage (%)
Age (years)		
≤60	24	51.1
>60	23	48.9
Sex		
Male	33	70.2
Female	14	29.8
Degree of cytopenia		
Grades 1 and 2	18	52.9
Grades 3 and 4	16	47.1
Serum hemoglobin level (g/L)		
≤75	11	30.6
>75	25	69.4
Serum leukocyte level (10^9/L)		
≤4.0	22	62.9
>4.0	13	37.1
Serum platelet level (10^9/L)		
≤75	15	45.5
>75	18	54.5
Serum LDH level		
Normal	8	21.1
High	30	78.9
Serum β2-microglobulin level		
Normal	9	45
High	11	55
B symptoms		
Yes	26	55.3
No	21	44.7
Response to initial treatment		
CR	20	48.8
Not CR	21	51.2

Abbreviations: CR, complete remission; PBML, primary bone marrow lymphoma.

Table 5 Univariate and multivariate analyses for overall survival

Variable	Univariate analysis	Multivariate analysis	\(P \)-value
	HR (P-value)	HR (95% CI)	
Age (years)	0.549		
≤60	1.000	1.000	
>60	1.000	1.000	
Sex	0.584		
Male	1.000	1.000	
Female	1.000	1.000	
Degree of cytopenia	0.041	0.041	
Grades 1 and 2	1.000	1.000	
Grades 3 and 4	1.000	1.000	
Serum hemoglobin level (g/L)	0.93	0.93	
≤75	1.000	1.000	
>75	1.000	1.000	
Serum leukocyte level (10^9/L)	0.823	0.823	
≤4.0	1.000	1.000	
>4.0	1.000	1.000	
Serum platelet level (10^9/L)	0.06	0.06	
≤75	1.000	1.000	
>75	1.000	1.000	
Serum LDH level	0.048	0.048	
Normal	1.000	1.000	
High	1.000	1.000	
Serum β2-microglobulin level	0.615	0.615	
Normal	1.000	1.000	
High	1.000	1.000	
B symptoms	0.037	0.037	
Yes	1.000	1.000	
No	1.000	1.000	
Response to initial treatment	<0.001	<0.001	
CR	1.000	1.000	
Not CR	12.429 (2.871–53.802)	0.001	

Abbreviation: CR, complete remission.
Discussion

The present study is the largest study concerning PBML to date. To the best of our knowledge, regarding the clinical features and prognosis of primary marrow bone lymphoma, we are the first to perform a systematic and comprehensive review and establish a prognostic model of PBML. PBML has been sporadically reported in the literature since the 1970s. Compared with other lymphomas of the same pathological type, PBML is usually difficult to diagnose, progresses rapidly, and is easy to combine with multiple complications, such as severe infection and HLH, only part of people in the conventional treatment respond well, and OS is relatively short.1–3 In some cases, a clear diagnosis lacks complete evidence, and often, primary bone lymphoma (PBL) cases, which occur infrequently, are misdiagnosed as PBMLs. Most clinical manifestations of PBLs include bone pain and fractures; most of the common lesion features are destructive through localized radiological examination; and the disease often presents with a local single lesion.1,4 In contrast to PBL, the important symptoms of PBML include cytopenia and B symptoms, and the occurrence of bone pain is relatively rare based on our data. Additionally, in our study, the lesion was usually confined to the marrow cavity during the early stage, and the PET/CT results of 13 patients, not only from our center but also from the literature review, all presented diffuse abnormal fluorodeoxyglucose uptake in the bone marrow that appeared to be more intense in the axial bones; therefore, we believe that PET/CT has a certain importance in the diagnosis of PBML, and so, we added this item to the criteria proposed by Martinez et al1 in 2012. In addition, MRI usually reveals a diffusely abnormal marrow signal (low on T1-weighted images, high on T2-weighted images) in the bone marrow cavity.1 Thus, imaging data can provide important information for the identification of PBL and PBML.

In our studies, three clinical variables were proved to be independent prognostic factors, including B symptoms, serum platelet levels, and response to initial treatment. In several studies about lymphoma, B symptoms have been found to be an important prognostic variable for OS.6–8 The degree of cytopenia is clearly closely related to disease severity.

Figure 1 Univariable analyses of prognostic factors for OS for our 66 patients with PBML. Notes: (A) Kaplan meier of OS in two groups with and without B symptoms. (B) Kaplan meier of OS in two groups with serum platelet level >75x10⁹/L and with serum platelet level <75x10⁹/L. (C) Kaplan meier of OS in two groups with normal LDH and with elevated LDH. (D) Kaplan meier of OS in two groups achieving CR and not achieving CR in the initial therapy; (E) Kaplan meier of OS in two groups with hematopoietic function grade 1, 2 and hematopoietic function grade 3, 4. Abbreviations: CR, complete response; OS, overall survival; PBL, primary bone lymphoma.
Therefore, cytopenia likely affects prognosis. However, our results indicate that platelet count was also an independent factor affecting prognosis. In fact, based on our data, thrombocytopenia does not affect treatment or increase the number of bleeding events. Some early studies\(^9\)–\(^11\) have revealed that thrombocytopenia affects the survival results in lymphomas with bone marrow involvement, including PBML. In addition, a similar prognostic result was reported in early-stage B-cell gastric lymphoma\(^12\) and DLBCL.\(^13,14\) We believe that autoimmune thrombocytopenia-associated PBML may be a potential cause because autoimmune-induced thrombocytopenia predicted relapse in one-third of lymphoma patients in a study.\(^15\) Age, which is a classic risk factor, was no longer associated with the OS in our study. In some conventional studies, older age-associated poor prognosis may be caused by the following three potential factors: multiple comorbidity, lower tolerance to therapy, and multiple organ dysfunction, including bone marrow function.\(^16,17\) However, our study indicated that the incidence of complications was nearly equal between the older age group and the younger age group. Additionally, PBML is a disease that severely influences and impairs various organ functions, especially bone marrow function, thereby reducing chemotherapy tolerance. Thus, age seems to be less important than disease malignancy.

Compared with the data from literature review, the incidence of T-cell lymphoma in our center is relatively higher, and the data showed that OS seems to be shorter, which may be associated with a higher rate of B symptoms and HLH. Lymphoma-associated HLH is a relatively vicious disease associated with the uncontrolled activation of the normal immune system,\(^18,19\) and another important reason is that only two people achieved CR after initial treatment.

Patients with leukopenia or thrombocytopenia were all administered granulocyte-colony stimulating factor (G-CSF) or recombinant human thrombopoietin, but without success. Hammerstrom reported that three patients with neutropenia secondary to lymphoid bone marrow involvement responded well to G-CSF before chemotherapy.\(^20\) However, we found no other literature confirming this problem. Based on our single-center experience, G-CSF or recombinant human thrombopoietin treatment for cytopenia involving or originating in the bone marrow is usually ineffective.

Most patients with HL were treated with ABVD or an ABVD-like regimen. Unfortunately, more than half of these patients died in the short term, and disease progression was the dominant cause of death. Morita et al\(^21\) reported that HIV-negative cases tended to progress rapidly and resulted in worse outcomes, which is consistent with our analysis. Regarding T-cell lymphoma, we first used the gemcitabine, cisplatin, prednisone, and thalidomide regimen in our patients because this regimen was proven to be more efficient than CHOP for the treatment of PTCL in a prospective, randomized, controlled, and open-label clinical trial;\(^22\) however, the results were not satisfactory and the results of the CHOP regimen were also not satisfactory. Some reports had mentioned that lymphomas, especially T-cell lymphomas, were the main cause of secondary HLH and were associated with a poorer prognosis.\(^23,24\) This condition also appeared in PBML. Among the patients with primary bone marrow T-cell lymphomas, two out of seven (28.6%) patients had HLH complications and died within a month. The clinical use of decitabine in T-cell PBML is a ground-breaking initiative, and the result that patients had increased long-term survival is also promising. Among all PBML cases, the FL cases seemed to show the mildest symptoms and best prognosis, likely due to the slow development of the disease itself. Martinez et al reported a patient who had leukocytosis as the only abnormal indicator at the time of onset and survived for >5 years until the end of follow-up. In the past two decades, most reported PBMLs have been DLBCLs. Regarding treatment, CHOP or the CHOP-like regimen was usually used as the first-line regimen, and only a small subset of patients (two cases) died from chemotherapy-related side effects during the initial therapy; our results showed that intensive regimens seem to be more effective. We suggest that this effectiveness might be because continuous low concentrations of drugs increased the effectiveness of killing aggressive cancer cells and decreased MDR-1–mediated resistance.\(^25,26\) Additionally, in some studies investigating aggressive non-Hodgkin’s lymphoma with high-risk factors, the patients who received intensive chemotherapies actually showed a better OS than those treated with CHOP.\(^29,30\) In addition, some studies have published the following results in non-Hodgkin’s lymphoma with bone marrow infiltration: the response rate, OS, and progression-free survival of patients treated with intensive regimens were significantly higher than those of patients treated with the standard CHOP regimen.\(^11,31\) In conclusion, we believe that intensive therapy may indeed be conducive to survival in PBML. However, another problem that cannot be ignored is that intensive treatment may lead to greater risks in PBML than other high-risk non-Hodgkin lymphomas. Thus, safety and chemotherapy tolerance require extensive data, and the CHOP or CHOP-like regimen remains a relatively safe and moderate regimen. Kazama et al\(^32\) reported that a patient who underwent autologous stem cell transplantation (Auto-SCT) after eight cycles of RCHOP survived for >7...
years, representing another clinically significant therapeutic initiative illustrating the possibility that Auto-SCT can improve prognosis. Five cases (case 35, case 39, case 55, case 57, and case 59) developed central nervous system involvement during follow-up, and case 59 developed neurological lesions despite intrathecal prophylaxis, indicating not only that intrathecal treatment is necessary, but also that more valuable therapeutic measures need to be investigated to prevent intracranial progression.

This study had some limitations. First, although we expanded the sample size by reviewing the literature, this study was still a relatively small-scale study, which might have influenced the accuracy of our results. Second, some data were missing in this retrospective study. Third, this study involved less discussion and analysis of target molecules, pathology, and biology.

Conclusion

PBML is a type of lymphoma with a relatively poor prognosis compared to other lymphomas. Patients usually have poor general condition at the time of onset and a poor tolerance to initial chemotherapy during the acute phase. The survival period is generally short. B symptoms, a low serum platelet level (<75×10^9/L), and not achieving CR following initial therapy are unfavorable prognosis factors. Additionally, some intensive regimens that differ from traditional regimens or Auto-SCT are worth considering and further exploring. Furthermore, additional and larger prospective multicenter studies are required in the future.

Acknowledgments

This study was supported by The National Natural Science Foundation of China (No. 81570203). Gangjian Wang and Yu Chang share first authorship.

Author contributions

All authors contributed to data analysis, drafting or revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Martinez A, Ponzoni M, Agostinelli C, et al. Primary bone marrow lymphoma: an uncommon extranodal presentation of aggressive non-Hodgkin lymphomas. Am J Surg Pathol. 2012;36(2):296–304.
2. Bhagat P, Sachdeva MU, Sharma P, et al. Primary bone marrow lymphoma is a rare neoplasm with poor outcome: case series from single tertiary care centre and review of literature. Hematol Oncol. 2016;34(1):42–48.
3. Yamashita T, Ishida M, Moro H, et al. Primary bone marrow diffuse large B-cell lymphoma accompanying cold agglutinin disease: a case report with review of the literature. Oncol Lett. 2014;7(1):79–81.
4. Liu Y. The role of 18F-FDG PET/CT in staging and restaging primary bone lymphoma. Nucl Med Commun. 2017;38(4):319–324.
5. Matthes A, Schuster SJ, Alavi A. Staging and monitoring response to treatment in primary non-Hodgkin’s lymphoma of bone marrow using (18)F-fluorodeoxyglucose positron emission tomography. Clin Lymphoma. 2001;1(4):303–306.
6. Mu S, Ai L, Fan F, et al. Prognostic role of neutrophil-to-lymphocyte ratio in diffuse large B-cell lymphoma patients: an updated dose–response meta-analysis. Cancer Cell Int. 2018;18:119.
7. Akhtar S, El Weshi A, Rahal M, et al. High-dose chemotherapy and autologous stem cell transplant in adolescent patients with relapsed or refractory Hodgkin’s lymphoma. Bone Marrow Transplant. 2010;45(3):476–482.
8. Park S, Lee J, Ko YH, et al. The impact of Epstein–Barr virus status on clinical outcome in diffuse large B-cell lymphoma. Blood. 2007;110(3):972–978.
9. Bloomfield CD, Mckenna RW, Bronning RD. Significance of hematological parameters in the non-Hodgkin’s malignant lymphomas. Br J Haematol. 1976;32(1):41–46.
10. Conlan MG, Armitage JO, Bast M, Weisenburger DD. Clinical significance of hematologic parameters in non-Hodgkin’s lymphoma at diagnosis. Cancer. 1991;67(5):1389–1395.
11. Yi SH, XuY, Zou DH, et al. [Prognostic impact of bone marrow involvement (BMI) and therapies in diffuse large B-cell lymphoma]. Zhonghua Xue Ye Xue Za Zhi. 2009;30(5):307–312. Chinese.
12. Terreri AJ, Freschi M, Dell’oro S, et al. Prognostic significance of the histopathologic recognition of low- and high-grade components in stage I-II B-cell gastric lymphomas. Am J Surg Pathol. 2001;25(1):95–102.
13. Ochi Y, Kazuma Y, Hiramoto N, et al. Utility of a simple prognostic stratification based on platelet counts and serum albumin levels in elderly patients with diffuse large B cell lymphoma. Ann Hematol. 2017;96(1):1–8.
14. Chen LP, Lin SJ, Yu MS. Prognostic value of platelet count in diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2012;12(1):32–37.
15. Liebman H. Other immune thrombocytopenias. Semin Hematol. 2007;44(4 Suppl 5):S24–S34.
16. Kolb GF. [Myelopoesis and bone marrow function in elderly tumor patients]. Z Gerontol Geriatr. 2012;45(3):197–200. German.
17. Bertini M, Boccomini C, Calvi R. The influence of advanced age on the treatment and prognosis of diffuse large-cell lymphoma (DLCL). Clin Lymphoma. 2001;1(4):278–284.
18. Chang Y, Cui M, Fu X, et al. Lymphoma associated hemophagocytic syndrome: a single-center retrospective study. Oncol Lett. 2018;16(1):1275–1284.
19. Lee DE, Martinez-Escala ME, Serrano LM, et al. Hemophagocytic lymphohistiocytosis in cutaneous T-cell lymphoma. JAMA Dermatol. 2018;16(1):1275–1283.
20. Hammerstrom J. [Granulocyte colony stimulating factor in neutropenia secondary to lymphoid bone marrow infiltration]. Tidskr Nor Lægefor. 1996;116(4):484–486. Norwegian.
21. Morita Y, Emoto M, Serizawa K, et al. HIV-negative primary bone marrow Hodgkin lymphoma manifesting with a high fever associated with hemophagocytosis as the initial symptom: a case report and review of the previous literature. Intern Med. 2015;54(11):1393–1396.
22. Li L, Duan W, Zhang L, et al. The efficacy and safety of gemcitabine, cisplatin, prednisone, thalidomide versus CHOP in patients with newly diagnosed peripheral T-cell lymphoma with analysis of biomarkers. Br J Haematol. 2017;178(2):472–780.
23. Rosado FG, Kim AS. Hemophagocytic lymphohistiocytosis: an update on diagnosis and pathogenesis. Am J Clin Pathol. 2013;139(6):713–727.
24. Kim MS, Cho YU, Jang S, et al. A case of primary bone marrow diffuse large B-cell lymphoma presenting with fibrillar projections and hemophagocytic lymphohistiocytosis. Ann Lab Med. 2017;37(6):544–546.
Dovepress

Submit your manuscript here:

Cancer Management and Research is an international, peer-reviewed open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival and quality of life for the cancer patient. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.