justifications for aztreonam dosing, then \(f_{T_{-MIC}} \) between 45% and 70% would seem appropriate. This is longer than the Gram-negative \(f_{T_{-MIC}} \) targets for cephalosporins of 30%–40% and for carbapenems of 20%–35% and more similar to that for penicillins of 30%–60%. All the above data show the robustness of dilutional washout have also been shown to be baseless and indeed dilutional models may be superior to hollow-fibre systems in terms of cost-effectiveness, biofilm formation and modelled drug concentrations.

Funding

This work was supported by North Bristol Charitable Funds.

Transparency declarations

None to declare.

References

1. Page MG, Bush K. Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pan drug resistance: is the future promising? *Curr Opin Pharmacol* 2014; 18: 91–7.

2. Gowcots EJ, Cariaga TA, Morris L et al. Pharmacokinetics and pharmacodynamics of the novel monobactam LYs228 in a neutropenic murine thigh model of infection. *J Antimicrob Chemother* 2019; 74: 108–16.

3. Singh R, Kim A, Tanudra A et al. Pharmacokinetics/pharmacodynamics of a β-lactam and β-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. *J Antimicrob Chemother* 2015; 70: 2618–26.

4. Ramsey C, MacGowan AP. A review of the pharmacokinetics and pharmacodynamics of aztreonam. *J Antimicrob Chemother* 2016; 71: 2704–12.

5. Gould JK, Sattar A, Thommes P et al. Efficacy of BAL30072 in murine thigh infection models of multi-resistant Gram-negative bacteria. Twenty-Third European Congress of Clinical Microbiology and Infectious Diseases, Berlin, Germany, 2013. Abstract P908.

6. MacGowan AP, Rogers CA, Holt HA et al. Activities of moxifloxacin against, and emergence of resistance in, *Streptococcus pneumoniae* and *Pseudomonas aeruginosa* in an in vitro pharmacokinetic model. *Antimicrob Agents Chemother* 2003; 47: 1088–95.

7. Bowker KE, Noel AR, Tornaselli S et al. Differences in the pharmacodynamics of ceftriaxone against different species of Enterobacteriaceae studied in an in vitro pharmacokinetic model of infection. *J Antimicrob Chemother* 2016; 71: 1270–8.

8. Bowker KE, Noel AR, Tornaselli S et al. Pharmacodynamics of the antibacterial effect of and emergence of resistance to doripenem in *Pseudomonas aeruginosa* and *Acinetobacter baumannii* in an in vitro pharmacokinetic model. *Antimicrob Agents Chemother* 2012; 56: 5009–15.

9. Bowker KE, Noel AR, Tornaselli S et al. Pharmacodynamics of piperacillin-tazobactam (P/T) against *Pseudomonas aeruginosa*: antibacterial effect and risk of emergence of resistance. Fifty-Second Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, USA, 2012. Abstract A642.

10. Dalhoff A, Bowker K, MacGowan AP. Comparative evaluation of eight in vitro pharmacodynamic models of infection: activity of moxifloxacin against *Escherichia coli* and *Streptococcus pneumoniae* as an exemplary example. *Int J Antimicrob Agents* 2019; doi:10.1016/j.ijantimicag.2019.09.013.

Successful rescue treatment of sepsis due to a pandrug-resistant, NDM-producing *Klebsiella pneumoniae* using aztreonam powder for nebulizer solution as intravenous therapy in combination with ceftazidime/avibactam

Elske Sieswerda1*, Marre van den Brand2, Roland B. van den Berg3, Joris Sträter4, Leo Schouls5, Karin van Dijk1 and Andries E. Budding6

1Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; 2Department of Medical Microbiology, Meander Medical Centre, Amersfoort, The Netherlands; 3Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; 4Department of Nephrology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; 5Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; 6inBiome, Amsterdam, The Netherlands

*Corresponding author. E-mail: e.sieswerda@amsterdumumc.nl

Sir,

Pandrug-resistant *Klebsiella pneumoniae* that produces New Delhi MBL (NDM) is increasingly reported worldwide. These strains contain multiple β-lactamase genes but also may have acquired resistance to last-resort options such as colistin and tigecycline. Combining aztreonam and avibactam is potentially effective in MDR, NDM-producing Enterobacteriales. Avibactam inhibits class A, C and D ESBLs, cephalosporinases and carbapenemases, while aztreonam is stable to hydrolysis by class B MBLs such as NDM. Until this drug combination becomes available, one could combine...
K. pneumoniae, the only promising treatment option for the pandrug-resistant strain. We regarded aztreonam combined with ceftazidime/avibactam as the only promising treatment option for the pandrug-resistant K. pneumoniae. However, it was not clear whether we could import aztreonam for IV use to the Netherlands within a reasonable time. As the patient’s condition deteriorated, we decided to administer aztreonam powder for nebulizer solution intravenously (1000 mg three-times daily, prepared from 14 vials of 75 mg, in extended infusion) in combination with ceftazidime/avibactam (2000 + 500 mg three-times daily by continuous infusion). The subsequent day the blood culture became positive with the pandrug-resistant K. pneumoniae. Immunosuppressive therapy was reduced and the patient received supportive care for sepsis. Her condition improved within 1 day after the start of combination therapy and she recovered completely with 14 days of therapy without signs of adverse events. Aztreonam for IV solution was imported from France 11 days after our urgent request to the Dutch Government. The patient had one mild pyelonephritis recurrence with the same strain and unchanged susceptibility pattern 1 month later and recovered with the same treatment. She consented to the publication of this report.

Table 1 shows phenotypic characteristics of the isolate. We assessed in vitro synergy by using gradient test superposition as previously described in this journal. We compared MICs of the gradient test superposition with MICs of single gradient tests. We only found clinically relevant synergy (i.e., inhibition of the strain at drug concentrations below the breakpoints of both antimicrobials with gradient test superposition compared with single gradient tests) when combining aztreonam and ceftazidime/avibactam (Table 1). Next-generation sequencing (HiSeq 2500 sequencer, BaseClear, Leiden, the Netherlands) reads were uploaded to the European nucleotide archive (accession number PRJEB33296) and used to perform resistance and replicon composition analysis (ResFinder, version 2.1, PlasmidFinder, version 1.3). These analyses showed that the isolate (MLST ST15) carried the blaSHV-28, blaTX-M-15, blaCTX-M-1, and blaOXA-10 carbapenemase gene, as well as the blaOXA-1, blaOXA-10, and blaOXA-1 carbapenemase genes, and that the isolate carried the aac(3)-IIa, aac(6')-Ib resistance genes, among others, conferring resistance to all β-lactams, aminoglycosides and fluoroquinolones. Similar to a previously described comparable strain, we did not identify resistance genes conferring resistance to colistin and tigecycline.

Table 1. Phenotypic characteristics of the pandrug-resistant K. pneumoniae

Method	Antimicrobial	MIC (mg/L)	Interpretation⁴
Single susceptibility testing			
Vitek-2⁵	amoxicillin/clavulanic acid	≥32	resistant
	cefotaxime	≥64	resistant
	ceftazidime	≥64	resistant
	cefoxitin	≥64	resistant
	ciprofloxacin	≥4	resistant
	trimethoprim/sulfamethoxazole	≥320	resistant
	gentamicin	≥16	resistant
	imipenem	≥16	resistant
	meropenem	≥16	resistant
	nitrofurantoin	256	resistant
	piperacillin/tazobactam	≥128	resistant
	tobramycin	≥16	resistant
Gradient test			
	amikacin	>256	resistant
	aztreonam	>256	resistant
	ceftazidime/avibactam	>256	resistant
	ceftolozane/tazobactam	>256	resistant
	doripenem	>32	resistant
	eravacycline	4	resistant
	fosfomycin	>256	resistant
	imipenem	>32	resistant
	meropenem	>32	resistant
	plazomicin	>256	unknown
	sulbactam	>256	unknown
	tigecycline	6	resistant
Broth microdilution			
	colistin	16	resistant

Antimicrobial	MIC mg/L	Interpretation⁵
Gradient test superposition		
amoxicillin/clavulanic acid	>256	12 synergy
ceftazidime/avibactam	>256	0.5 synergy
ceftolozane/tazobactam	>256	48 synergy
colistin	8	12 no synergy
meropenem	>32	16 synergy
piperacillin/tazobactam	>256	32 synergy

⁴According to EUCAST (www.eucast.org).
⁵Synergy was defined as the occurrence of an inhibition zone when an antimicrobial was combined with aztreonam.

We considered carefully before using aztreonam powder for nebulizer solution as off-label and unlicensed IV therapy. Aztreonam powder for nebulizer solution is a sterile product, without any additives that are known to be harmful. Also, it has a similar composition to the IV product. We expected that the benefits of...
the product, i.e. potential survival and no other treatment alternatives, weighed against potential risks of the product, i.e. unexpected side effects. Before providing aztreonam powder for nebulizer solution intravenously, we asked for consent from the patient and the medical director of our hospital.

In conclusion, we report successful rescue treatment of a patient with sepsis due to a pandrug-resistant, NDM-producing K. pneumoniae using aztreonam powder for nebulizer solution as IV therapy in combination with ceftazidime/avibactam and reducing immunosuppressive therapy. As such strains have been reported worldwide, we request the pharmaceutical industry to make aztreonam for IV use and ceftazidime/avibactam readily available in all countries. When aztreonam for IV use is not registered in a country, our case demonstrates that rescue treatment with aztreonam powder for nebulizer solution as IV therapy may be considered after careful assessment of the potential benefits and harms. Future studies are awaited to define the efficacy and safety of the promising treatment combination of aztreonam and avibactam in patients with serious infections due to pandrug-resistant, NDM-producing K. pneumoniae and other Enterobacterales.

Acknowledgements
We presented this study in March 2019 at the Scientific Spring Meeting 2019 from the Dutch Society of Medical Microbiology, Arnhem, the Netherlands.

Funding
This study was carried out as part of our routine work.

Transparency declarations
None to declare.

References
1 de Man TJB, Lutgring JD, Lonsway DR et al. Genomic analysis of a pan-resistant isolate of Klebsiella pneumoniae, United States 2016. MBio 2018; 9: pii: e00440-18.
2 Rodríguez-Bano J, Gutierrez-Gutierrez B, Machuca I et al. Treatment of infections caused by extended-spectrum-β-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev 2018; 31: pii: e00079-17.
3 Davido B, Fellous L, Lawrence C et al. Ceftazidime–avibactam and aztreonam, an interesting strategy to overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61: pii: e01008-17.
4 Hobson CA, Boncosi S, Fahd M et al. Successful treatment of bacteremia due to NDM-1-producing Morganella morganii with aztreonam and ceftazidime-avibactam combination in a pediatric patient with hematologic malignancy. Antimicrob Agents Chemother 2019; 63: pii: e02463-18.
5 Jayal A, Nordmann P, Pairel L et al. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother 2018; 73: 542–4.
6 Marshall S, Hujer AM, Rojas LJ et al. Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother 2017; 61: pii: e02243-16.
7 Shaw E, Rombauts A, Tubau F et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 2018; 73: 1104–6.

Clinically significant drug interaction: letermovir and voriconazole

Arianne Duong 1,2, Ania Sweet2,3, Rupali Jain1,3,4, Joshua A. Hill2–5, Steven A. Pergam 2–5, Michael Boeckh2–5 and Catherine Liu2–5*

1 School of Pharmacy, University of Washington, Seattle, WA, USA; 2 Seattle Cancer Care Alliance, Seattle, WA, USA; 3 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 4 Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; 5 Clinical and Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

*Corresponding author. E-mail: catherine.liu@fredhutch.org

Sir,

Human cytomegalovirus (CMV) remains a serious complication of HSCT. In 2017, letermovir was approved for prophylaxis of CMV infection for high-risk patients following allogeneic HSCT.1,2 Letermovir is an inhibitor of CYP3A4 and inducer of CYP2C19/2C9, which are common enzymatic pathways for many medications used in HSCT, including voriconazole.2–4 Voriconazole is metabolized by CYP2C9 and CYP2C19, and co-administration with letermovir may lead to reduced voriconazole exposure through induction of these pathways.3,4 In a study of healthy subjects who received letermovir 480 mg daily with voriconazole, voriconazole AUC and maximum serum concentration were reduced by 44% and 39%, respectively.3 In addition, interpatient variability can be significant, with plasma concentrations of voriconazole varying up to 100-fold between patients.5 Although letermovir is known to reduce voriconazole exposure, there are limited published data describing the implications of this interaction in clinical practice. Here, we report two cases of a clinically significant drug interaction between voriconazole and letermovir.