A proof of Milnor conjecture in dimension 3

By Jiayin Pan at Piscataway

Abstract. We present a proof of the Milnor conjecture in dimension 3 based on Cheeger–Colding theory on limit spaces of manifolds with Ricci curvature bounded below. It is different from [17] that relies on minimal surface theory.

1. Introduction

Milnor [18] in 1968 conjectured that any open n-manifold M with non-negative Ricci curvature has a finitely generated fundamental group. This conjecture remains open. Anderson [1] and Li [16] independently proved that, for a manifold with Euclidean volume growth, its fundamental group is finite. Sormani proved that if the manifold has small linear diameter growth, or linear volume growth, then the Milnor conjecture holds [20].

For 3-manifolds, Schoen and Yau [19] developed minimal surface theory in dimension 3 and proved that any 3-manifold of positive Ricci curvature is diffeomorphic to the Euclidean space \mathbb{R}^3. Based on minimal surface theory, Liu [17] proved that for any 3-manifold with $\text{Ric} \geq 0$, either it is diffeomorphic to \mathbb{R}^3, or its universal cover splits off a line. In particular, this confirms the Milnor conjecture in dimension 3.

There are some interests to find a proof of the Milnor conjecture in dimension 3 not relying on minimal surface theory. Our main attempt is to accomplish this by using structure results for limit spaces of manifolds with Ricci curvature bounded below [2,3,7,8], equivariant Gromov–Hausdorff convergence [10] and the pole group theorem [20].

Theorem 1.1. Let M be an open 3-manifold with $\text{Ric}_M \geq 0$, then $\pi_1(M)$ is finitely generated.

For any open 3-manifold M of $\text{Ric}_M \geq 0$ and any sequence $r_i \to \infty$, by Gromov’s precompactness theorem [12], we can pass to some subsequences and consider tangent cones at infinity of M and its Riemannian universal cover \widetilde{M} coming from the sequence $r_i^{-1} \to 0$, via Gromov–Hausdorff convergence:

$$
\begin{array}{ccc}
(r_i^{-1}M, \bar{p}) & \xrightarrow{\text{GH}} & (C_\infty \widetilde{M}, \bar{o}) \\
\downarrow \pi & & \downarrow \pi \\
(r_i^{-1}M, p) & \xrightarrow{\text{GH}} & (C_\infty M, o).
\end{array}
$$
We roughly illustrate our approach to prove Theorem 1.1. If $\pi_1(M, p)$ is not finitely generated, then we derive a contradiction by choosing a special sequence $r_i \to \infty$ and eliminating all the possibilities regarding the dimension of $C_\infty \widehat{M}$ and $C_\infty M$ above in the Colding–Naber sense [8], which are integers 1, 2 or 3.

We also make use of reduction results by Wilking [21] and Evans–Moser [9]. The first reduces any non-finitely generated fundamental group to an abelian one in any dimension, while the latter further reduces any abelian non-finitely generated group to some subgroup of \mathbb{Q}, the additive group of rationals, in dimension 3. In particular, we can assume that $\pi_1(M)$ is torsion free if it is not finitely generated. One observation is that, if $\pi_1(M, p)$ is torsion free, then for any $r_i \to \infty$, the corresponding equivariant Gromov–Hausdorff convergent sequence [10]

$$(r_i^{-1} \widehat{M}, p, \pi_1(M, p)) \xrightarrow{GH} (C_\infty \widehat{M}, \partial, G)$$

satisfies that the orbit $G \cdot \partial$ is not discrete (see Corollary 2.4). This observation plays a key role in the proof.

2. Proof of Theorem 1.1

We start with the following reductions by Wilking and Evans–Moser.

Theorem 2.1 ([21]). *Let M be an open n-manifold with $\text{Ric}_M \geq 0$. If $\pi_1(M)$ is not finitely generated, then it contains a non-finitely generated abelian subgroup.*

Theorem 2.2 ([9]). *Let M be a 3-manifold. If $\pi_1(M)$ is abelian and not finitely generated, then $\pi_1(M)$ is torsion free.*

Evans–Moser [9] actually showed that $\pi_1(M)$ is a subgroup of the additive group of rationals. Being torsion free is sufficient for us to prove Theorem 1.1.

Gromov [11] introduced the notion of short generators of $\pi_1(M, p)$. By path lifting, $\pi_1(M, p)$ acts on \widehat{M} isometrically. We say that $\{\gamma_1, \ldots, \gamma_i, \ldots\}$ is a set of short generators of $\pi_1(M, p)$, if

$$d(\gamma_1 \tilde{p}, \tilde{p}) \leq d(\gamma_i \tilde{p}, \tilde{p})$$

for all $\gamma \in \pi_1(M, p)$, and for each i, $\gamma_i \in \pi_1(M, p) - \{\gamma_1, \ldots, \gamma_{i-1}\}$ satisfies

$$d(\gamma_i \tilde{p}, \tilde{p}) \leq d(\gamma_{i-1} \tilde{p}, \tilde{p})$$

for all $\gamma \in \pi_1(M, p) - \{\gamma_1, \ldots, \gamma_{i-1}\}$.

where $\{\gamma_1, \ldots, \gamma_{i-1}\}$ is the subgroup generated by $\gamma_1, \ldots, \gamma_{i-1}$.

Let M be an open 3-manifold with $\text{Ric}_M \geq 0$. We always denote $\pi_1(M, p)$ by Γ. Suppose that Γ is not finitely generated, then by Theorems 2.1 and 2.2, we can assume that Γ is torsion free. Let $\{\gamma_1, \ldots, \gamma_{i-1}\}$ be an infinite set of short generators at p. Since Γ is a discrete group acting freely on \widehat{M}, we have $r_i = d(\tilde{p}, \gamma_i \tilde{p}) \to \infty$. When considering a tangent cone at infinity of \widehat{M} coming from the sequence $r_i^{-1} \to 0$, we also take Γ-action into account. Passing to some subsequences if necessary, we assume that the following sequence converges
in equivariant Gromov–Hausdorff topology \([10]\):
\[
(r_i^{-1}M, \tilde{p}, \Gamma) \xrightarrow{\text{GH}} (\tilde{Y}, \tilde{y}, G)
\]
\[
(2.1)
\]
\[
(r_i^{-1}M, p) \xrightarrow{\text{GH}} (Y = \tilde{Y} / G, y).
\]

Based on Cheeger–Colding’s work \([4]\), Colding–Naber \([8]\) showed that the isometry group of any Ricci limit space is a Lie group. In particular, \(G\) above, as a closed subgroup of \(\text{Isom}(\tilde{Y})\), is a Lie group.

We recall the dimension of Ricci limit spaces in the Colding–Naber sense \([8]\). A point \(x\) in some Ricci limit space \(X\) is \(k\)-regular, if any tangent cone at \(x\) is isometric to \(\mathbb{R}^k\). Colding–Naber showed that there is a unique \(k\) such that \(\mathbb{R}^k\), the set of \(k\)-regular points, has full measure in \(X\) with respect to any limit renormalized measure (see \([3, 8]\)). We regard such \(k\) as the dimension of \(X\) and denote it by \(\text{dim}(X)\). It is unknown whether in general the Hausdorff dimension of \(X\) equals \(\text{dim}(X)\). For Ricci limit spaces coming from 3-manifolds, the dimension in the Colding–Naber sense equals the Hausdorff dimension, which follows from \([3, \text{Theorem 3.1}]\) and \([13]\).

As indicated in the introduction, we prove Theorem 1.1 by eliminating all the possibilities regarding the dimension of \(Y\) and \(\tilde{Y}\) in \((2.1)\). There are three possibilities:

- **Case 1**: \(\text{dim}(\tilde{Y}) = 3\) (Lemma 2.7);
- **Case 2**: \(\text{dim}(Y) = \text{dim}(\tilde{Y}) = 2\) (Lemma 2.8);
- **Case 3**: \(\text{dim}(Y) = 1\) (Lemma 2.10).

We rule out each of them, which finishes the proof of Theorem 1.1.

Lemma 2.3. Let \((M_i, p_i)\) be a sequence of complete \(n\)-manifolds and let \((\tilde{M}_i, \tilde{p}_i)\) be their universal covers. Suppose that the following sequence converges:
\[
(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{\text{GH}} (\tilde{X}, \tilde{p}, G),
\]
where \(\Gamma_i = \pi_1(M_i, p_i)\) is torsion free for each \(i\). If the orbit \(G \cdot \tilde{p}\) is discrete in \(\tilde{X}\), then there is an integer \(N\) such that
\[
\#\Gamma_i(1) \leq N
\]
for all \(i\), where \(\#\Gamma_i(1)\) is the number of elements in
\[
\Gamma_i(1) = \{y \in \Gamma_i \mid d(y \tilde{p}_i, \tilde{p}_i) \leq 1\}.
\]

Proof. We claim that if a sequence \(\gamma_i \in \Gamma_i\) converges to \(g \in G\) with \(g\) fixing \(\tilde{p}\), then \(g = e\), the identity element, and \(\gamma_i = e\) for all \(i\) sufficiently large. In fact, suppose that \(\gamma_i \neq e\) for some subsequence. Since \(\gamma_i\) is torsion free, we always have \(\text{diam}(\gamma_i) = \infty\). Together with \(d(\gamma_i \tilde{p}_i, \tilde{p}_i) \rightarrow 0\), we see that \(G \cdot \tilde{p}\) cannot be discrete, a contradiction to the assumption.

Therefore, there exists \(i_0\) large such that for all \(g \in G(2)\) and any two sequences with
\[
\gamma_i \xrightarrow{\text{GH}} g \quad \text{and} \quad \gamma'_i \xrightarrow{\text{GH}} g,
\]
\[
\gamma_i = \gamma'_i \text{ holds for all } i \geq i_0. \text{ In particular, we conclude that }
\# \Gamma_i(1) \leq \# G(2) < \infty
\]
for all \(i \geq i_0\).

Corollary 2.4. Let \((M, p)\) be an open \(n\)-manifold with \(\text{Ric}_M \geq 0\) and let \((\tilde{M}, \tilde{p})\) be its universal cover. Suppose that \(\Gamma = \pi_1(M, p)\) is torsion free. Then for any \(s_i \to \infty\) and any convergent sequence
\[
(s_i^{-1}\tilde{M}, p, \Gamma) \xrightarrow{GH} (C_{\infty}\tilde{M}, \tilde{o}, G),
\]
the orbit \(G \cdot \tilde{o}\) is not discrete.

Proof. The proof follows directly from Lemma 2.3. If \(G \cdot \tilde{o}\) is discrete, then there is \(N\) such that \(\# \Gamma(s_i) \leq N\) for all \(i\). On the other hand, \(\# \Gamma(s_i) \to \infty\) because \(\Gamma\) is torsion free, a contradiction.

Lemma 2.5. Let \((M, p)\) be an open \(n\)-manifold with \(\text{Ric}_M \geq 0\) and let \((\tilde{M}, \tilde{p})\) be its universal cover. Suppose that \(\Gamma = \pi_1(M, p)\) has infinitely many short generators \(\{\gamma_1, \ldots, \gamma_i, \ldots\}\). Then in the following tangent cone at infinity of \(\tilde{M}\),
\[
(r_i^{-1}\tilde{M}, p, \Gamma) \xrightarrow{GH} (\tilde{Y}, \tilde{y}, G),
\]
the orbit \(G \cdot \tilde{y}\) is not connected, where \(r_i = d(\gamma_i \tilde{p}, \tilde{p}) \to \infty\).

Proof. On \(r_i^{-1}\tilde{M}, \gamma_i\) has displacement 1 at \(\tilde{p}\). By basic properties of short generators, \(\gamma_i \cdot \tilde{p}\) has distance 1 from the orbit \(H_i \cdot \tilde{p}\), where \(H_i = \langle \gamma_1, \ldots, \gamma_{i-1} \rangle\). From the equivariant convergence
\[
(r_i^{-1}\tilde{M}, \tilde{p}, H_i, \gamma_i) \xrightarrow{GH} (\tilde{Y}, \tilde{y}, H_\infty, \gamma_\infty),
\]
we conclude \(d(\gamma_\infty \cdot \tilde{y}, H_\infty \cdot \tilde{y}) = 1\). Moreover, for any element \(g \in G - H_\infty\), we can find a sequence \(g_i \in \Gamma - H_i\) such that
\[
(r_i^{-1}\tilde{M}, \tilde{p}, g_i) \xrightarrow{GH} (\tilde{Y}, \tilde{y}, g).
\]
Again by the basic properties of short generators, we see that \(d(g \cdot \tilde{y}, H_\infty \cdot \tilde{y}) \geq 1\). We divide the orbit \(G \cdot \tilde{y}\) into two non-empty subsets: \(H_\infty \cdot \tilde{y}\) and \((G - H_\infty) \cdot \tilde{y}\). Since these two subsets have distance 1 between them, we conclude that the orbit \(G \cdot \tilde{y}\) must be non-connected.\(^1\)

We recall the cone splitting principle, which follows from the splitting theorem for Ricci limit spaces [2].

Proposition 2.6. Let \((X, p)\) be the limit of a sequence of complete \(n\)-manifolds \((M_i, p_i)\) of \(\text{Ric}_{M_i} \geq 0\). Suppose that \(X = \mathbb{R}^k \times C(Z)\) is a metric cone with vertex \(p = (0, z)\). If there is an isometry \(g \in \text{Isom}(X)\) with \(g(0, z) \notin \mathbb{R}^k \times \{z\}\), then \(X\) splits isometrically as \(\mathbb{R}^{k+1} \times C(Z')\).

\(^1\) In an early version of this paper posted on arXiv:1703.08143v1, the proof of Lemma 2.5 uses the fact that \(G\) is a Lie group. Xiaochun Rong pointed out that whether \(G\) is a Lie group or not is not relevant in Lemma 2.5.
Lemma 2.7. Case 1 can not happen.

Proof. When \(\dim(\widetilde{Y}) = 3 \), \(\widetilde{Y} \) is a non-collapsing limit space \([3]\), that is, there is \(v > 0 \) such that

\[
\text{vol}(B_1(\tilde{p}, r_i^{-1}\tilde{M})) \geq v
\]

for all \(i \). By relative volume comparison, this implies that \(\widetilde{M} \) has Euclidean volume growth

\[
\lim_{r \to \infty} \frac{\text{vol}(B_r(\tilde{p}))}{r^n} \geq v.
\]

By \([3]\), \(\widetilde{Y} \) is a metric cone \(\mathbb{R}^k \times C(Z) \) with vertex \(\tilde{y} = (0, z) \), where \(C(Z) \) has vertex \(z \) and \(\text{diam}(Z) < \pi \). We rule out all the possibilities of \(k \in \{0, 1, 2, 3\} \).

If \(k = 3 \), then \(\widetilde{Y} = \mathbb{R}^3 \). Thus \(\tilde{M} \) is isometric to \(\mathbb{R}^3 \) (see \([7]\)).

If \(k = 2 \), then according to co-dimension 2 of singular sets \([3]\), actually \(\widetilde{Y} = \mathbb{R}^3 \) holds.

If \(k = 1 \), then \(Y = \mathbb{R} \times C(Z) \). By Proposition 2.6, the orbit \(G \cdot \tilde{y} \) is contained in \(\mathbb{R} \times \{z\} \). Applying Lemma 2.5, we see that \(G \cdot \tilde{y} \) is not connected. Note that a non-connected orbit in \(\mathbb{R} \) is either a \(\mathbb{Z}_2 \)-translation orbit, or a \(\mathbb{Z}_2 \)-reflection orbit. In particular, the orbit \(G \cdot \tilde{y} \) must be discrete. This contradicts with Corollary 2.4.

If \(k = 0 \), then \(Y = C(Z) \) with no lines. Again by Proposition 2.6, the orbit \(G \cdot \tilde{y} \) must be a single point \(\tilde{y} \), a contradiction to Lemma 2.5.

\(\Box \)

Lemma 2.8. Let \((M, p)\) be an open n-manifold with \(\text{Ric}_M \geq 0 \) and let \((\tilde{M}, \tilde{p})\) be its universal cover. Assume that \(\Gamma = \pi_1(M, p) \) is torsion free. Then for any \(s_i \to \infty \) and any convergent sequence

\[
\begin{array}{ccc}
(s_i^{-1}\tilde{M}, \tilde{p}, \Gamma) & \xrightarrow{GH} & (C_\infty \tilde{M}, \tilde{o}, G) \\
\downarrow \pi & & \downarrow \pi \\
(s_i^{-1}M, p) & \xrightarrow{GH} & (C_\infty M, o),
\end{array}
\]

\(\dim(C_\infty \tilde{M}) = \dim(C_\infty M) \) can not happen. In particular, Case 2 can not happen.

Proof. We claim that \(G \) is a discrete group when \(\dim(C_\infty \tilde{M}) = \dim(C_\infty M) = k \). If this claim holds, then the desired contradiction follows from Corollary 2.4.

It remains to verify the claim. Suppose that \(G_0 \) is non-trivial, then we pick \(g \neq e \) in \(G_0 \). We first show that there is a \(k \)-regular point \(\tilde{q} \in C_\infty \tilde{M} \) such that \(d(g\tilde{q}, \tilde{q}) > 0 \) and \(\tilde{q} \) projects to a \(k \)-regular point \(q \in C_\infty M \). In fact, let \(\mathcal{R}_k(C_\infty M) \) be the set of \(k \)-regular points in \(C_\infty M \). Since \(\mathcal{R}_k(C_\infty M) \) is dense in \(C_\infty M \), its pre-image \(\pi^{-1}(\mathcal{R}_k(C_\infty M)) \) is also dense in \(C_\infty \tilde{M} \). Let \(\tilde{q} \) be a point in the pre-image such that \(d(g\tilde{q}, \tilde{q}) > 0 \). Note that any tangent cone at \(\tilde{q} \) splits an \(\mathbb{R}^k \)-factor isometrically. By \([14, \text{Proposition } 3.78]\) (see also \([15, \text{Corollary } 1.10]\)), it follows that any tangent cone at \(\tilde{q} \) is isometric to \(\mathbb{R}^k \). In other words, \(\tilde{q} \) is \(k \)-regular.

Along a one-parameter subgroup of \(G_0 \) containing \(g \), we can choose a sequence of elements \(g_j \in G_0 \) with \(d(g_j\tilde{q}, \tilde{q}) = 1/j \to 0 \). We consider a tangent cone at \(\tilde{q} \) and \(q \), respectively, coming from the sequence \(j \to \infty \). Passing to some subsequences if necessary, we
obtain

\[(jC_\infty \tilde{M}, \tilde{q}, G, g_j) \xrightarrow{\text{GH}} (C_\tilde{q}C_\infty \tilde{M}, \tilde{o}', H, h)\]

\[\downarrow \pi \hspace{1cm} \downarrow \pi\]

\[(jC_\infty M, q) \xrightarrow{\text{GH}} (C_qC_\infty M, o')\]

with \(C_qC_\infty \tilde{M}/H = C_qC_\infty M\) and \(d(ho', \tilde{o}') = 1\). On the other hand, since both \(q\) and \(\tilde{q}\) are \(k\)-regular, we have

\[C_qC_\infty \tilde{M} = C_qC_\infty M = \mathbb{R}^k.\]

This is a contradiction to \(H \neq \{e\}\). Hence the claim holds.

To rule out the last case \(\dim(Y) = 1\), we recall Sormani’s pole group theorem [20]. We say that a length space \(Y\) has a pole at \(y \in Y\), if for any \(x \neq y\), there is a ray starting from \(y\) and going through \(x\).

Theorem 2.9 ([20]). Let \((M, p)\) be an open \(n\)-manifold with \(\text{Ric}_M \geq 0\) and let \((\tilde{M}, \tilde{p})\) be its universal cover. Suppose that \(\Gamma = \pi_1(M, p)\) has infinitely many short generators \(\{\gamma_1, \ldots, \gamma_i, \ldots\}\). Then in the following tangent cone at infinity of \(M\),

\[(r_i^{-1} M, p) \xrightarrow{\text{GH}} (Y, y),\]

\(Y\) can not have a pole at \(y\), where \(r_i = d(\gamma_i, \tilde{p}, \tilde{p}) \to \infty\).

Lemma 2.10. Case 3 can not happen.

Proof. By [13] (also see [6]), \(Y\) is a topological manifold of dimension 1. Since \(Y\) is non-compact, \(Y\) is either a line \((-\infty, \infty)\) or a half line \([0, \infty)\). By Theorem 2.9, \(Y\) can not have a pole at \(y\). Thus there is only one possibility left: \(Y = [0, \infty)\) but \(y\) is not the endpoint \(0 \in [0, \infty)\). Put \(d = d_Y(0, y) > 0\). We rule out this case by a rescaling argument and Lemmas 2.7 and 2.8. (In general, it is possible for an open manifold to have a tangent cone at infinity as \([0, \infty)\), with base point not being 0; see Example 2.11.)

Let \(\alpha(t)\) be a unit speed ray in \(M\) starting from \(p\), and converging to the unique ray from \(y\) in \(Y = [0, \infty)\) with respect to the sequence

\[(r_i^{-1} M, p) \xrightarrow{\text{GH}} (Y, y).\]

Let \(x_i \in r_i^{-1} M\) be a sequence of points converging to \(0 \in Y\), then \(r_i^{-1}d_M(p, x_i) \to d\). For each \(i\), let \(c_i(t)\) be a minimal geodesic from \(x_i\) to \(\alpha(dr_i)\), and let \(q_i\) be a closest point to \(p\) on \(c_i\). We re-parametrize \(c_i\) so that \(c_i(0) = q_i\). With respect to the sequence

\[(r_i^{-1} M, p) \xrightarrow{\text{GH}} (Y, y),\]

c_i subconverges to the unique segment between 0 and \(2d \in [0, \infty)\). Clearly,

\[r_i^{-1}d_M(x_i, \alpha(dr_i)) \to 2d, \quad r_i^{-1}d_i \to 0,\]

where \(d_i = d_M(p, c_i(0))\).
If \(d_i \to \infty \), then we rescale \(M \) and \(\tilde{M} \) by \(d_i^{-1} \to 0 \). Passing to some subsequences if necessary, we obtain

\[
\begin{align*}
(d_i^{-1}\tilde{M}, \tilde{\rho}, \Gamma) \xrightarrow{\text{GH}} (\tilde{Y}', \tilde{y}', G')
\end{align*}
\]

If \(\dim(Y') = 1 \), then we know that \(Y' = (-\infty, \infty) \) or \([0, \infty)\). On the other hand, since

\[
d_i^{-1}d_M(c_i(0), x_i) \to \infty, \quad d_i^{-1}d_M(c_i(0), \alpha(dr_i)) \to \infty, \quad d_i^{-1}d_M(c_i, p) = 1,
\]

\(c_i \) subconverges to a line \(c_{\infty} \) in \(Y' \) with \(d(c_{\infty}, y') = 1 \). Clearly this can not happen in \(Y' = (-\infty, \infty) \) nor \([0, \infty)\). If \(\dim(\tilde{Y}') = 3 \), then \(\tilde{M} \) has Euclidean volume growth. Thus with the sequence \(r_i^{-1} \), the corresponding limit spaces \(Y \) and \(\tilde{Y} \) must satisfy \(\dim(Y) = 1 \) and \(\dim(\tilde{Y}) = 3 \), which is already covered in Lemma 2.7. Therefore, the only possibility left is \(\dim(\tilde{Y}') = \dim(Y') = 2 \). By Lemma 2.8, this also leads to a contradiction. In conclusion, \(d_i \to \infty \) can not happen.

If there is some \(R > 0 \) such that \(d_i \leq R \) for all \(i \), then on \(M \), \(c_i \) subconverges to a line \(c \) with \(c(0) \in B_{2R}(p) \). Consequently, \(M \) splits off a line isometrically [5], a contradiction to \(Y = [0, \infty) \). This completes the proof. \(\square \)

Example 2.11. We construct a surface \((S, p)\) isometrically embedded in \(\mathbb{R}^3 \) such that \(S \) has a tangent cone at infinity as \([0, \infty)\), but \(p \) does not correspond to 0. We first construct a subset of the \(xy \)-plane by gluing intervals. Let \(r_i \to \infty \) be a positive sequence with \(r_i+1/r_i \to \infty \). Starting with an interval \(I_1 = [-r_1, r_2] \), we attach a second interval \(I_2 = [-r_3, r_4] \) perpendicularly to \(I_1 \) by identifying \(r_2 \in I_1 \) and \(0 \in I_2 \). Repeating this process, suppose that \(I_k \) is attached, then we attach the next interval \(I_{k+1} = [-r_{2k+1}, r_{2k+2}] \) perpendicularly to \(I_k \) by identifying \(r_{2k} \in I_k \) and \(0 \in I_{k+1} \). In this way, we construct a subset \(T \) in the \(xy \)-plane consisting of segments. We can smooth the \(\epsilon \)-neighborhood of \(T \) in \(\mathbb{R}^3 \) so that it has sectional curvature \(\geq -C \), where \(\epsilon, C > 0 \). We call this surface \(S \). Let \(p \in S \) be a point closest to \(0 \in I_1 \) as the base point. If we rescale \((S, p)\) by \(r_{2k+1}^{-1} \to 0 \), then

\[
(r_{2k+1}^{-1} S, p) \xrightarrow{\text{GH}} ([-1, \infty), 0)
\]

because \(r_{i+1}/r_i \to \infty \). In other words, \(S \) has a tangent cone at infinity as the half line, but the base point does not correspond to the end point in this half line.

Acknowledgement. The author would like to thank Professor Xiaochun Rong and Professor Jeff Cheeger for suggestions during the preparation of this paper.

References

[1] M. T. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990), no. 1, 41–55.

[2] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189–237.
Pan, A proof of Milnor conjecture in dimension 3

[3] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480.

[4] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35.

[5] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119–128.

[6] L. Chen, A remark on regular points of Ricci limit spaces, Front. Math. China 11 (2016), no. 1, 21–26.

[7] T. H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 (1997), no. 3, 477–501.

[8] T. H. Colding and A. Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. (2) 176 (2012), no. 2, 1173–1229.

[9] B. Evans and L. Moser, Solvable fundamental groups of compact 3-manifolds, Trans. Amer. Math. Soc. 168 (1972), 189–210.

[10] K. Fukaya and T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. (2) 136 (1992), no. 2, 253–333.

[11] M. Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978), no. 2, 231–241.

[12] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Mod. Birkhäuser Class., Birkhäuser, Boston 2007.

[13] S. Honda, On low-dimensional Ricci limit spaces, Nagoya Math. J. 209 (2013), 1–22.

[14] S. Honda, Ricci curvature and L^p-convergence, J. reine angew. Math. 705 (2015), 85–154.

[15] V. Kapovitch and N. Li, On dimension of tangent cones in limits spaces with Ricci curvature bounds, J. reine angew. Math. (2016), DOI 10.1515/crelle-2015-0100.

[16] P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. (2) 124 (1986), no. 1, 1–21.

[17] G. Liu, 3-manifolds with nonnegative Ricci curvature, Invent. Math. 193 (2013), no. 2, 367–375.

[18] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7.

[19] R. Schoen and S. T. Yau, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, in: Seminar on differential geometry, Ann. of Math. Stud. 102, Princeton University Press, Princeton (1982), 209–228.

[20] C. Sormani, Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups, J. Differential Geom. 54 (2000), no. 3, 547–559.

[21] B. Wilking, On fundamental groups of manifolds of nonnegative curvature, Differential Geom. Appl. 13 (2000), no. 2, 129–165.

Jiayin Pan, Department of Mathematics, Rutgers University – New Brunswick,
110 Frelinghuysen Rd., Piscataway, NJ 08854, USA
e-mail: jp1016@math.rutgers.edu

Eingegangen 17. Februar 2017, in revidierter Fassung 19. Oktober 2017