Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CHAPTER 6

Conclusions

Saneh Lata Yadava, Ritika Dhaiyab, Surbhi Bhatiac
aDepartment of Computer Science and Engineering, K.R. Mangalam University, Gurgaon, India
bGo Canvas, San Diego, CA, United States
cDepartment of Information Systems, College of Computer Science and Information Technology, King Faisal University, Saudi Arabia

6.1 Introduction

World Health Organization (WHO), on March 11, 2020, declares COVID-19 as a pandemic caused by SARS-COV-2. COVID-19, originated from Wuhan (China), is a communicable or infectious disease [1,2]. More than 3 million people have tested positive. The disease is spreading exponentially and its effects are tremendous. People in various countries are fighting with great courage but as of now, no vaccination is invented by doctors and researchers. Time to time, Center for System Science and Engineering at John Hopkins University is providing data related to positive cases, death cases, and recovered cases globally.

This chapter presents an overview of data science research on COVID-19. Data science is a technique to analyze structured and unstructured data in order to get knowledge or information. Data science helps in analyzing different datasets to get information about pandemic COVID-19 [3]. This information can be details of COVID-19 patients, recovery rate, spreading rate, effects on different areas, and many more. The major contributions of this chapter are:

1. Different research problems related to COVID-19
2. Exploring different datasets for COVID-19
3. Latest research ideas for computer scientists and engineers
4. A bibliometric survey on COVID-19 literature
5. Challenges with data science.

All the datasets discussed in this chapter help in finding some solutions to COVID-19 pandemic. The aim of this work is to present newest topics for research and finding more solutions in this area.

The rest of the paper is organized as Section 6.2 discusses data science and its applications in medical. It explores different ways to identify COVID-19. A survey on ongoing research ideas to tackle pandemic is
discussed in Section 6.3. Bibliometric analysis for research in COVID-19 is elaborated in Section 6.4. Section 6.5 presents cross-cutting challenges. The chapter is concluded with a short summary.

6.2 Data science and its applications

Machine learning, statistical learning, time series modeling, expert system, data visualization, and probabilistic reasoning are few terms, which cover some applications of data science [4]. These all applications help in fighting with pandemics like COVID-19 in different manners. It helps in managing limited resources, developing plans, understanding the uncertainty, extracting information for building collaboration, etc. Few applications of data science in identifying disease are explained further.

6.2.1 Patient prioritization to control risk

Various risk assessment algorithms are opted to analyze different diseases like cancer, cardiac arrest, and diabetes. Artificial neural network (ANN) introduced a number of risk assessment algorithms [5–7]. Such algorithms take patient data like age, gender, traits, symptoms, state, and stage, for efficiently analyzing or estimating the risk. But this is a bitter truth that whenever a pandemic arises, medical resources fall into scarcity. Medical resources are lean globally for any pandemic situation. So, it is the need of time and situation to efficiently and effectively utilize the limited resources. Resources in peak times are utilized rapidly to manage patient’s risk. Patient prioritization data can be prepared to sustain risk. Priority constraints can be different or as per situation to control the risk level.

6.2.2 Diagnosis and screening

COVID-19 spreads due to lack in screening and diagnosis. From China to worldwide, it majorly spreads due to ineffectual screening facilities at airports. In the initial days of pandemic, social distancing was a challenge for everyone and hence was not taken on serious mode. Mild symptoms were often ignored that became major reasons for the enormous spreading rate. There exist various remote diagnosis tools available, which help in self-analyzing the symptoms and assist in controlling the spread rate. To self-analyze, various mobile applications are available, which use audio, video, and sound data to perform diagnosis. Such tools are helpful in diagnosing the symptoms when healthcare resources are lean. Automated tools are also encouraged at airports or at places where movement of people is nonstop [4]. For example, infra-red sensor-based temperature scanner.
6.2.3 Modeling for epidemic

Any modeling is required to manage capacity in an effective manner. So, as per a survey, to manage epidemic, compartment models are more popular [8]. In such modeling, people are divided into compartments using a simple differential equation. The SEIR model is also used to model COVID-19 spread, where four states are assumed to model the flow of people like susceptible, exposed, infected, and recovered [9]. In generative modeling, few circumstances are observed like effects of social distancing and causes of herd community. All these models must be updated from time to time to capture the best dataset [10–12]. Some use-case data are also developed to evaluate more accurately “what if” kinds of situations. Table 6.1 is organized to showcase a few epidemic models and its working features.

6.2.4 Tracing the contacted people

In few countries, it is opted in the early stage of COVID-19, to trace the contact person of infected one and send them to quarantine [11,12]. This approach is very effective and helpful in controlling the spread rate. Various mobile phone applications are proposed to quickly identify and trace the contacted person. Automated diagnosis, online surveys, and smartphone contact sensing are few measures. These measures are useful to create alert to hospitals and government, with regard to the outbreak [16]. It is also supported in logistic planning like masks, gowns, sanitizers, test kits, hospital beds, and ventilators. For such planning and management, machine learning and data science algorithms do a good job. It predicts the need of ventilators and beds in hospitals in advance so that preparation can be done on an early basis. In peak times of pandemic, shortage of not only medical resources but also healthcare workers is triggered. To mitigate this, data science introduces

S. No.	Epidemic model	Division of people
1.	Compartment model	Using simple differential equation
2.	SEIR	Four states: Susceptible, Exposed, Infected, Recovered
3.	Generative model	Segregation of people for new cases after a particular time and some constraints like effects of herd community and social distancing
4.	Social media model	Analyses on the bases of ambulance call out data and similar data [13–15]
automated patient care tools. These tools can provide information about the outbreak, symptoms, and personal precautionary measures. WHO introduced an interactive chatbot to monitor health conditions in emergency cases [17–20], [21,22].

Data science proves its eligibility in discovering drugs and treatment through Bayesian clinical trial methods, which works on collected data. It helps in identifying eligible patients to apply to clinical trials, hence reduce time spent in examining data, predicting protein structure, and genomes. Therefore, we can say that the above fields are popular where data scientists can contribute a lot [23–31].

6.2.5 Acknowledging social interventions

Governments have taken various steps to control the spread rate of COVID-19. A few use cases are highlighted and briefed further.

1. Monitoring social distancing: To monitor social distancing, governments adopt various strategies [32–34]. However, this is a nonpharmaceutical method to control COVID-19 but very effective. Natural language processing (NLP) is used to monitor social media information for analyzing social distancing. In many areas, air pollution level is used to analyze the rate of movement of people [35]. Cellular data are also traced to monitor the mobility rate. It is accepted by all that social distancing affects the global economy as well [36,37]. It is a challenge for few organizations to get back to their previous level. For such cases, data science can be helpful in identifying optimal economic interventions. Organizations can detect unusual patterns of behaviors in the market [38,39].

2. Spreading of false information: Spreading false information is always harmful. Internet websites manage to maintain an up-to-date list of false information regarding COVID-19. Such false information can affect datasets also. The consumption of garlic and alcohol can get rid of COVID-19 is one such false information. Such information can harm public health. So, data science could be used to classify such misinformation. Machine learning techniques support sentiment analysis, which can help the public to be aware about false information [40–44],[22,45].

6.2.6 Use of case data

Almost all the countries are tracing per day growth rate on different geographical locations [46]. The data are collected under different columns like daily positive cases, total positive cases, cured cases, and mortality cases. These data are further attributed as patient location, reporting data, past history of patient, and symptoms. India is also compiling data statewise then
district wise, which is very useful in maintaining up to date datasets. Data visualization and predictive analysis, can be done on collective datasets for efficient measures. But data science would not work properly, if there is divergence in testing regimes. In few countries, test kits are inadequate, due to which accurate data are not available. So, it is a challenge for data scientists to work in such an environment [47–66].

6.2.7 Textual data

Nowadays, people are discussing and sharing textual data on social media platforms [67]. The major keywords like COVID-19, N95 masks, pandemic, and coronavirus aid in monitoring the spread rate of COVID-19 [54]. NLP also works here to monitor people’s reactions on lockdown, social distancing, and personal hygiene. NLP measures the sentiments of people on social media and the Internet [68]. The role of data science is to record social media streaming that contains the above-mentioned keywords. Apart from social media data, academic publications are also flooded these days to provide textual data [55–61]. Such bibliometric datasets are available online. Many open research article datasets are already released by publication houses to motivate research in this field. WHO is working to provide up-to-date scientific literature for COVID-19. Table 6.2 collects data for organizations, which are compiling scientific dataset on COVID-19 (freely available) [69].

S. No	Organizations
1.	BMJ
2.	Cambridge University Press
3.	Centers for Disease Control and Prevention
4.	Chinese Medical Association
5.	Cochrane
6.	Elsevier
7.	European Centre for Disease Prevention and Control
8.	JAMA Network
9.	The Lancet
10.	LITCOVID: US National Library of Medicine
11.	Oxford University Press
12.	PLOS
12.	Public Health England
13.	Science
14.	Springer Nature
15.	SSRN (Preprints)
16.	Wiley
6.2.8 Biomedical data

Biomedical data sources are physical medical reports (X-ray reports of an individual) and clinical pathology reports (Genomic structure) [70–72]. These are helpful in diagnosis, prognosis, and treatment. Diagnosis means to check about a particular illness, prognosis means to predict the outcome of a disease and chances of recovery. So, for diagnosis and prognosis, human interpretation is required [73,74]. A number of mobile apps are developed to self-diagnose and self-prognosis. Various automated diagnosis apps are developed to test chest X-ray, lungs computation tomography (CT) scan. The X-ray scans the chest and provides results on the basis of analysis from stored datasets. Some X-ray datasets are publicly available, which contain patient’s details like date, demographics, findings location, survival information, and treatment. This data are analyzed on some neural network trained model [75–79]. However, these models are not self-sufficient to identify the problem, as it requires clinical experts to label reports.

Another biomedical data source is clinical pathology reports, which contains datasets of genomic sequencing. The genomic dataset includes drug impact, protein–protein interaction, and RNA structures, which support diagnosis test evaluation. Another challenge is availability of datasets to accurately measure problem statements. Same issue arises with lung CT scan, as public availability of biomedical dataset is very difficult [80–83].

6.2.9 Other supportive datasets

Some other relevant datasets are air quality index statistics, and datasets for mobility of people, which monitors factors related to COVID-19. If the mobility of people is controlled, it automatically affects air quality or pollution level. After a study, it has been noticed that few popular cities’ air quality has improved in recent days [35,84,85]. Google has also released datasets after mobility tracing, which is compiled through Google maps.

6.2.10 Competition database

Kaggle has organized various competitions to promote and facilitate research in data science. The participants use publicly available datasets and recent research articles on COVID-19. Such competitions are motivated by announcing cash prizes also.

6.3 Survey on ongoing research

The previously discussed datasets were publicly available and have some limitations. So, in the next section, some ongoing research ideas are discussed.
6.3.1 Image data analysis

Computer vision technology plays a vital role in detecting disease by tracing image dataset. This technology sped up the process of disease detection and proved its potential by outperforming expert radiologists. For COVID-19, two computer vision modalities are used. One is CT scan and another is X-ray scan. Radiologists diagnose many COVID-19 patients through chest CT scan. It is a very successful attempt because nowadays machine learning and deep learning techniques are integrated with CT scan technology, which are useful in detecting radiographical changes in patients very frequently [86–88]. Initially, it was evaluated and tested upon many COVID-19 positive cases to improve its reliability and trust factor [89–100].

6.3.2 Audio data analysis

Pneumonia and cough are the common symptoms of COVID-19. Change in voice due to pneumonia and cough can be taken as audio/sound analysis [101–107]. This analysis can be done with low-cost smartphones too. The speech pattern and cough pattern are the main data source to monitor the situation [108]. AI4COVID-19 is a popular app developed by preliminary diagnosis. It collects data for sound for future dataset observations and processes the feasibility of detection with 90% promising rate.

6.3.3 Sensor data analysis

Sensors are the tiny embedded devices, which sense the environment before processing. Sensors can be deployed anywhere in remote areas as well. In the medical field, sensors can be deployed in a patient’s body to diagnose the variations of body glucose, temperature, blood pressure, heart rate, pulse rate, etc. [109]. Sensors can provide demographic data, mobility data, and disease related data and user generated data from social media. Such a system is named as α-Satellite, which can assess risk level [110]. The data fetched from this system can be used to diagnose COVID-19. This system proves its reliability because it uses multithreading to sense the symptoms of disease. Smartphones embedded with sensors can detect movement of people during pandemic. The table below has sensor based systems developed for pandemic with their specific features (Table 6.3).

The above-mentioned apps are developed by different countries to provide safe and sound surroundings to their people. These apps were developed for the safety of people but users face few privacy issues [116–119]. Many of the apps require uploading the contact list, which can reveal nationwide databases. To minimize such weakness, Pan-European Privacy-Preserving Proximity Tracing Consortium (PEPP-PT) developed an app
named Decentralized Preserving Proximity tracing (DP-3T) [120,121]. It provides a preservation alert to the users who may have been in contact with an infected person. Another similar app launched with homomorphic encryption features. Google and Apple have also announced to develop a privacy preserving contact tracing app based on Bluetooth.

Mobile Technologies: Mobile technologies are being used for a variety of purposes in healthcare. Most importantly, they are enabling new ways for pandemic management by providing powerful tools to both doctors and patients for effective prevention and treatment [84,85,122]. As the common risk factor of pandemic are related to human behavior, therefore, mobile phone-based health solutions can be used to combat the rising burden of pandemic by focusing on behavioral change programs to promote a healthy lifestyle. This chapter discusses the common pandemic, their burden, and future estimated projections and shows how mobile phone technologies can provide effective pandemic management in developing countries, which have a lot of issues in their healthcare systems.

6.3.4 Drug discovery analysis

Some researchers put extensive efforts in discovering new drugs to support SARS-COV2 [123]. To build a model to explore 3D structure of SARS-COV2, AlphaFold model has been developed, which is a deep learning based model. This model is based on dilated ResNet architecture that predicts the distance and the distribution of angles between acid residing on protein structure [124,125] (Table 6.4).

S. No.	Sensor-based systems	Major feature
1.	α-Satellite [110]	Risk assessment
2.	COVID–19 symptom tracker app	Track initial or mild symptoms
3.	COVID near you	Track and alert about infected person near you
4.	StayHomeSafe [111]	Track for your safety
5.	Home Quarantine app [112]	Detect if quarantines rules have been obeyed or not
6.	Close Contact Detector [113]	Track the infected contact persons
7.	Track Together [114]	Track the infected contact persons
8.	HaMagen [115]	Track the infected contact persons
After developing drugs, it should undergo clinical trials before deployment to prove its effectiveness. For such trials, randomized clinical trials (RCTs) were good. But RCT fails to prove its effectiveness for elderly patients and patients at higher risk. So, few improvements were done with RCT to demonstrate its efficiency and effectiveness. These improvements are done by integrating ML applications. Previously, in RCT trials, patients for treatment are allocated in uniform randomization, which can be highly suboptimal in terms of learning. In improved RCT, patients are first observed before sending clinical trials. It speeds up the process and has significantly reduced error rate. After successful clinical trials, data finally received are certain for targeting particular treatment. For more improvements in drug discovery, WHO, European Medicine agency, UK medicines, healthcare products regulatory, and US food are drug administration has established accelerated clearance pathways. 534 clinical trials were taken till March 24, 2020. But, a challenge in clinical trials is recruiting suitable patients [127]. So, data-driven solutions are best to identify eligible patients who have gone through remotely monitored checkups (Table 6.5).

Table 6.4 Few drug discovery models.

S. No.	Model	Prediction	
1.	AlphaFold	Structure of six proteins related to SARS-COV2	
2.	DNN	New small molecule capable of inhibiting the chymotrypsin-like (3CL) protease. Its aim is to identify existing drugs to repurpose. It identifies 31 potential compounds as ideal candidates for testing and synthesis against SARS-COV2 [126].	
3.	RT-PCR	Based on machine learning and novel genome technology	
4.	CRISPR	Assay designs for the detection of 67 respiratory viruses	
5.	Reinforcement learning based Model	Predict potential lead compounds targeting SARS-COV2	
6.	Collaborative and Antiiral Discovery Model	To discover molecules to fight against COVID-19	
Country	Name of dataset	Major attributes	Modality
--------------	----------------------------------	--	-------------------------------
All countries	CHIME	Daily data for susceptible, infected and recovered	Case statistic
Italy	COVID Chest X-ray	X-ray image, demographics, date, location, patient, findings, and survival information	X-ray scan of chest
131 countries	COVID-19 Community mobility Report	Monitors gathering of people at essential services spots	Community mobility data along with textual reports
Italy	COVID-19 Database	Demographics and X-rays	Radiology information
Italy	COVID-19 CT segment dataset	Lung's segmented and labeled Image reports	CT scan lungs
All countries	COVID-19 CT dataset	Scan chest and create a labeled report	CT scan chest
Korea	COVID-19 Korea Dataset	Patient data or report	Case statistics
All countries	Coronavirus COVID-19 Tweets	Tweet, text, location with respect to USER ID	Database of tweets
All countries	COVID-19 open research challenge	Data related to research article	Research papers
All countries	Global research on COVID-19	Data related to research article	Research papers
All countries	hCov-19	Genetic sequence and metadata	Genomic epidemiology
All countries	Coronavirus Source data	Data related to daily confirmed cases around the world	Case statistics
All countries	JIIU CSSE COVID-19 Data	Data for number of infected, cured, mortality, location of patient	Case statistics
Country	Name of dataset	Major attributes	Modality
------------------------------	---	--	----------
All countries	LitCovid	Data related to research article with geographical locations	
USA	Kinsa Smart Thermometer	Internet connected thermometer for temperature reading	
	Weather map	Genomic sequence	
	RCSB Protein Data Bank	Case history of patient	
Japan, Taiwan, China,	nCOV2019 Dataset		
Singapore, Thailand,			
South Korea, Hong Kong			
UK	BSTI Imaging Database	Patient CT Scan	
Germany	RKI COVID-19	Data for infected patient	
		Patient case history	
		State name, Date, Infected cases daily, Mortality cases daily	
All countries	Novel CoronaVirus 2019 Dataset		
USA	New York Times Dataset		
All countries	Public Corona-virus Twitter Dataset		
		Data of tweets	
	Coronavirus Source data		
		Data related to daily confirmed cases around the world	
		Case statistics	
	JIIU CSSE COVID-19 Data		
		Data for number of infected, cured, mortality, location of patient	
	LitCovid		
		Data related to research article with geographical locations	
		Health weather map	
		Pathology and clinical	
		Epidemiological data	
	nCOV2019 Dataset		
	BSTI Imaging Database		
	RKI COVID-19		
	Novel CoronaVirus 2019 Dataset		
	New York Times Dataset		
	Public Corona-virus Twitter Dataset		
6.4 Bibliometric data collection

Researchers are working on writing articles for COVID-19 to spread awareness. It helps in improving data repositories. Articles are peer-reviewed and non-peer-reviewed. Peer-reviewed articles are crawled by scopus and non-peer reviewed articles are crawled by arXiv, medRxiv, etc. [128–133]. The most popular sources for peer-reviewed article includes The Lancet with more than 228 articles, Nature with more than 204 articles and many more are arranged in table [134–137]. The dataset includes title of article, author details, journal name, publication date, etc. Basically, this dataset is extracted by keyword matching technique. The popular keywords used for extraction are CoronaVirus, COVID-19, COVID, Epidemic, Pandemic, SARS-COV2. Manual verification has also been done after keyword matching extraction to avoid not related data. The dataset covers more than 3500 publications till our study June, 2020. Most peer-reviewed and non-peer-reviewed articles are written by Chinese researchers. After China, United States researchers contributed a lot. The pandemic situation has resulted in rapid production of academic data. Peer-reviewed journals are less in number as compared to non-peer-reviewed journals, due to the urgency of dissemination. For more information and data, researchers are looking over preprint articles. In the end it is concluded that the rate of publication for COVID-19 is growing faster if compared with some other past epidemic like Ebola, SARS-COV, and MERMS. More than 1000 peer-reviewed publications have been recorded in around 3 months. SARS-COV1 and Ebola have reached this count in 3 years. COVID-19 is getting more attention in academics for research (Tables 6.6 and 6.7).

6.5 Data science and cross cutting challenges

6.5.1 Data confines

For machine learning models to work, they need to be fed with high fidelity and voluminous data. Data become a limitation in that sense. For use cases such as “speech analysis, extensive labeled datasets are not around yet. However, for a few other use cases such as textual analysis and medical images, the datasets needed are smaller as compared to the ones needed for deep learning models [69,138–142]. The distributed data sources being distributed contributes to measured data being scarce. For example, if we talk about electronic healthcare records, we know that these are often bucketed into several sections at national, regional, or hospital level, which brings us
Conclusions

To challenge in getting consistent and measurable data, in terms of schemas. To overcome these barriers, automation algorithms for data wrangling, munging processes will become critical [122,143].

Apart from these challenges around data being available, we often see challenges with the available data as well. Due to the research being extremely time-critical, it is been hard to create reliable datasets. For example, social media data can quickly become out-to-date from the time it is captured to the time it is put into a usable format. As a result, real-time datasets are riddled with poorly quantified biases. Analytical approaches to tackle these data challenges can be an area of exploration, however, not an easy solution.

6.5.2 Exactitude of output versus urgency

It is a very high time to indulge in research for COVID-19. However, most of the methods that are suggested in this chapter are based on datasets and derived statistical outcomes. It is important to consider that the research outcomes can affect healthcare policy. For instance, these could be supported by several governments to come up with social distancing policies. Although people in these decision maker positions may not have the

Attributes	Community resource	
Recent projects and research articles are stored here	AI against COVID-19	
Text processing resource for COVID-19, data processed by NLP toolbox	AitsLab–Corona	
It is a public dataset for analysis COVID-19	Amazon AWS	
It is a center for disease control and prevention, contains related research articles	CDC	
It is a repository that provides tools to visualize different statistics	COVID-19 Graphs	
Deep learning techniques for COVID-19 detection	MATLAB resource	
Machine learning tool for data driven research for chemical and materials	Chem ML	
CSSE, John Hopkins University, resource link	JHU’s CSSE	
Open source codes an tools	MONTREAL AI	
Curated literature hub for COVID-19 updated data	NIH NLM LitCovid	
Webpage for global updates for COVID-19	WHO Resource	
Technique	Methodology	Data type
-----------	-------------	-----------
Evolutionary technique	Unstructured data are fetched from twitter to apply fuzzy rule based evolutionary technique	Twitter data: Text data mining
Topic Modeling	Twits studied using topic modelling to create structured information	Twitter data: Text data mining
Random forest, Naïve Bayes, SVM	A technique to predict situation information from social media	Weibo data: Text data mining
InceptionNet on random ROIs	Detects anomalies in lungs via CT Scan	Chest CT Scan: Image analysis
3D CNNs	Infectious regions are classified in CT Scan	Chest CT Scan: Image analysis
UNet++	Suspicious areas are identified	Chest CT Scan: Image analysis
2D + 3D CNNs	Quantifies infection in lungs	Chest CT Scan: Image analysis
CNN	Detect infection in lungs	Chest CT Scan: Image analysis
DNN	Classify detected area for fine treatment	Chest CT Scan: Image analysis
DenseNet	Opt classification task for detection	Chest CT Scan: Image analysis
Pre-training + DNN	Detection is improved	Chest CT Scan: Image analysis
Conventional Feature	Feature extraction technique is used	Chest CT Scan: Image analysis
Extraction techniques + SVM	Public dataset for COVID-19 detection	Chest CT Scan: Image analysis
CNN	Finely detect infectious area	Chest CT Scan: Image analysis
U-Net + ResNet	Binary classification methodology to detect COVID-19	Chest CT Scan: Image analysis
Fine-tuning + CNNs	Integrated seven CNN models to improve performance	Chest CT Scan: Image analysis
CNN-based models	It is an open source solution	Chest CT Scan: Image analysis
ResNet	Measure temperature of patient	Chest CT Scan: Image analysis
ResNet50, InceptionV3 and InceptionResNetV2	Multistage fine-tuning for detection	Chest CT Scan: Image analysis
Fine-tuning + ResNet	Employed transfer learning	Chest CT Scan: Image analysis
Transfer learning (TL) + CNN	Image recognition technique	Chest CT Scan: Image analysis
CNN + Image argumentation	Machine learning technique	Chest CT Scan: Image analysis
CNN, SVM, and Random Forest (RF)		Chest CT Scan: Image analysis
knowledge to understand the nuances of scientific study, which brings us to our second challenge of maintaining a balance between urgency and complete, reproducible results can help create healthcare policies.

To capture uncertainty of results, Bayesian methods can be used, though we have not come across many quantified studies until now [144]. Reproducible conclusions are further necessary to make sure that data analysis was conducted correctly. This task will further compound the challenges. “Explainable AI” is another route that can be explored to tackle this. However, a caveat must be added here that there is not complete confidence in whether this will guardrail against issues such as unintentional bias or adversarial scenarios.

6.5.3 Ethics, security, and privacy

As we start exploring the research suggestions, protecting privacy and adhering to ethical standards will become paramount. This will directly impact how much scale we can reach in adoption across populations, as infrastructure setup may continue after the pandemic. Efforts are being made around building medical analytics that can preserve privacy.

Floridi et al., outline some consensus around five major artificial intelligence ethics principles, namely (1) beneficence, (2) nonmaleficence, (3) autonomy, (4) justice, and (5) explicability. However, COVID-19’s unique situation may make it tricky to balance these AI ethics virtues. Other questions that are unanswered at this point relate to the allocation of scarce resources and the tradeoffs in it. Call of action presented by a group of experts on data governance highlights the need to share data between public and private sectors to ensure that data are used for “beneficence” where it is needed and prevent maleficence [145,146].

Furthermore, privacy will become important as we start rolling out the interventions, which may have sensitive data (e.g., targeted social distancing measures). In this regard, simple steps can be taken to ensure ethical data science research. Data collection should be transparent (informing the users about the data being collected).

6.5.4 Requirement of multidisciplinary collaboration

COVID-19’s long-term impact is still unknown. A mix of domain expertise from multiple fields is needed to draw insights, along with international collaboration and tracking of COVID-19. For instance, black-box models may result in a practical solution, but that solution could be useless with-
out the involvement of (international) medical and biotechnology expert interpretations. Hence, bringing together many cohorts of complementary expertise becomes useful, which presents new challenges, such as ethics, benefits, and risks, that are clearly articulated.

6.5.5 Latest data modalities

Certain data modalities that can have a big role to play are not readily available for research. A huge challenge comes around adaptation of existing techniques to reflect new data types. For instance, the data science community has established good expertise in computer vision tasks, however, if we talk about processing ultrasound scans, there is a lot that is yet to be figured out. They also bring benefits around greater ease of use, absence of radiation while being a low-cost solution. Despite these known advantages, to the best of our knowledge, no study has yet explored the potential of automatically detecting COVID-19 infections via ultrasound scans. Similarly, magnetic resonance imaging (MRI) is considered the safest imaging modality as it is a noninvasive and nonionizing technique, which provides a high resolution image and excellent soft tissue contrast. Some studies such as touch upon the significance of MRI in fighting against COVID-19 infections. Yet, lack of sufficient training data restricted exploration of the data modalities. Thus, a challenge is to rapidly develop a well-annotated dataset of such medical imaging modalities.

6.5.6 Results for the developing world

In lots of developing nations, large populations have limited access to healthcare and information, which created unique challenges related to COVID-19 pandemic. Technology can help solve these challenges; however, the scale can be quite challenging in making it globally inclusive. The models should consider the applications in rural as well as economically deprived regions. For example, when creating a contact tracing app, a few things to be kept in mind are: is it low-cost, how many resources does it need to be used, can it be used with limited network connectivity, does it support multiple languages, is it accessible to illiterate users or those with disabilities, etc. To address this global pandemic, we must ensure emphasis on widespread accessibility of technological solutions.

6.6 SUMMARY

This chapter has been written to rapidly make available a summary of ongoing work for the wider community. It talks about how artificial intelligence has been used to tackle many aspects of the COVID-19 crisis at
different scales including molecular, clinical, and societal applications. AI including machine learning has found many applications in understanding challenges created by COVID-19 in the medical and societal realm. Most of them, however, are in the nascent stages and it will take some time before we can show how these can create impact at scale. Let us cover each of these challenges. At the molecular scale, biochemistry applications of AI can be used to understand the proteins’ structure of SARS-CoV-2. Along with that, AI can be used to discover how existing drugs may be effective against the virus as well as find new compounds to make potential drugs or potential vaccines. It can also be used to improve our understanding about the virus and help improve diagnosis. At the clinical scale, AI can be applied in medical imaging to screen and diagnose the virus, while exploring alternate ways to find the disease via noninvasive devices such as mobiles. It can also help to predict prognosis of the patients by utilizing various data inputs. At the societal scale, AI applications around epidemiological research modeling empirical data have been used to forecast COVID-19 stats data such as number of cases, mortality and recovery rates. Along with that, AI has been used to look for patterns of similarities and differences in the evolution of the pandemic across regions. AI can also be used to analyze COVID-related content across social media to make sure the right kind of information is shared, and incorrect or misleading information can be controlled. To continue efforts in these directions, it becomes extremely imperative that scalable sharing and hosting of datasets and models is made possible. This will help understand where AI can be of value against the pandemic. AI targeting biomedical applications around clinical and molecular data should include direction from regulatory and quality frameworks to minimize potential risks while ensuring the validity of usage. Along with the data considerations, at the global level, international AI cooperation will become paramount as we begin research adoption to create solutions at the global scale, which can then be applied to local contexts and situations.

References

[1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet 395 (10223) (2020) 497–506.

[2] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al., A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727–733.

[3] J. Bullock, K.H. Pham, C.S.N. Lam, M. Luengo-Oroz, Mapping the landscape of artificial intelligence applications against COVID-19, arXiv preprint arXiv:2003 (2020) 11336.
[4] S. Latif, M. Usman, S. Manzoor, W. Iqbal, J. Qadir, G. Tyson, et al., J. Crowcroft, Leveraging Data Science To Combat COVID-19: A Comprehensive Review, 2020 5(9) (2018) e391–e392.

[5] A.A. Khorana, Artificial intelligence for cancer-associated thrombosis risk assessment—Author’s reply, Lancet Haematol. 5 (9) (2018) e391–e392.

[6] K. Wattanakit, G. Harshavardhan, S. Mungee, M. Intiaz, Artificial intelligence based clinical risk assessment in predicting cardiac related chest pain in patients presenting to emergency room, Circulation 140 (Suppl_1) (2019) A114100.

[7] S. Latif, M.Y. Khan, A. Qayyum, J. Qadir, M. Usman, S.M. Ali, et al. Mobile technologies for managing non-communicable diseases in developing countries, Mobile Applications and Solutions for Social Inclusion, IGI Global, 2018, pp. 261–287.

[8] A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis. (2020) 1–43.

[9] K.J. Friston, T. Parr, P. Zeidman, A. Razi, G. Flandin, J. Daunizeau, et al., Dynamic causal modelling of COVID–19 [version 1; peer review: 1 approved, 1 not approved], Wellcome Open Res. 5 (2020) 89.

[10] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin et al., Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand, 2020.

[11] H. Heesterbeek, R.M. Anderson, V. Andreasen, S. Bansal, D. De Angelis, C. Dye, et al. Modeling infectious disease dynamics in the complex landscape of global health, Science 347 (6227) (2015).

[12] L. Li, Q. Zhang, X. Wang, J. Zhang, T. Wang, T.L. Gao, et al. Characterizing the propagation of situational information in social media during covid–19 epidemic: a case study on weibo, IEEE Trans. Comput. Social Syst. 7 (2) (2020) 556–562.

[13] D. Prabhakar Kaila, D.A. Prasad, Informational flow on Twitter–Corona virus outbreak–topic modelling approach, Int. J. Adv. Res. Eng. Technol. (IJARET) 11 (3) (2020).

[14] B.R. Beck, B. Shin, Y. Choi, S. Park, K. Kang, Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model, Comput. Struct. Biotechnol. J. (2020).

[15] J. Hellewell, S. Abbott, A. Gimma, N.I. Bosse, C.I. Jarvis, T.W. Russell, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Global Health (2020).

[16] L. Ferretti, C. Wyman, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science 368 (6491) (2020).

[17] A.S.S. Rao, J.A. Vazquez, Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine, Infect. Control Hosp. Epidemiol. 41 (7) (2020) 826–830.

[18] E. Yoneki, J. Crowcroft, EpiMap: towards quantifying contact networks for understanding epidemiology in developing countries, Ad Hoc Networks 13 (2014) 83–93.

[19] C.B. et al., “Coronasurveys: Monitoring COVID-19 incidence via open polls,” 2020. [Online]. Available from: http://coronasurveys.com/.

[20] M. Cinelli, W. Quattrociocchi, A. Galeazzi, C.M. Valensise, E. Brugnoli, A.L. Schmidt, et al. The covid-19 social media infodemic, arXiv preprint arXiv:2003.05004.

[21] L. Singh, S. Bansal, L. Bode, C. Budak, G. Chi, K. Kawinthon, et al. A first look at COVID–19 information and misinformation sharing on Twitter, arXiv preprint arXiv:2003.13907.

[22] “WHO and Rakuten Viber fight COVID–19 misinformation with interactive chatbot, Accessed on: 4–April–2020.” [Online]. Available from: https://tinyurl.com/WHORakutenChatBot.
[24] CPR News, “Health Care Workers’ Stress Compounded By Long Days And Concerns About People Not Taking COVID-19 Seriously,” [Online]. Available from: https://www.cpr.org/2020/03/23/colorado-coronavirus-stress-healthcare-workers-covid-19-spread/. (accessed 01.04.20).

[25] “AliveCor, accessed on: 1-April-2020.” [Online]. Available from: https://www.alivecor.com/.

[26] “CLEW Medical, accessed on: 1-April-2020.” [Online]. Available from: https://clewmed.com/.

[27] J.B. Mitchell, “Artificial intelligence in pharmaceutical research and development,” 2018.

[28] K.K. Mak, M.R. Pichika, Artificial intelligence in drug development: present status and future prospects, Drug Discovery Today 24 (3) (2019) 773–780.

[29] A. Zhavoronkov, Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry, 2018.

[30] G. Tyson, A. Taweel, S. Miles, M. Luck, T. Van Staa, B. Delaney, An agent-based approach to real-time patient identification for clinical trials, International Conference on Electronic Healthcare, Springer, Berlin, Heidelberg, 2011, pp. 138–145.

[31] D.A. Berry, Bayesian clinical trials, Nat. Rev. Drug Discov. 5 (1) (2006) 27–36.

[32] A. Wilder-Smith, D.O. Freedman, Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak, J. Travel Med. 27 (2) (2020) taaa020.

[33] F.J. Schmitt, A simplified model for expected development of the SARS-CoV-2 (Corona) spread in Germany and US after social distancing, arXiv preprint arXiv:2003 (2020) 10891.

[34] C. St Louis, G. Zorlu, Can Twitter predict disease outbreaks?, BMJ (2012) 344.

[35] W. Inc., “World’s air pollution: Real-time air quality index,” 2020. [Online]. Available from: https://waqi.info.

[36] W.J. McKibbin, R. Fernando, The global macroeconomic impacts of COVID-19: Seven scenarios, 2020.

[37] A. Atkeson, What will be the economic impact of covid-19 in the us? rough estimates of disease scenarios (No. w26867). National Bureau of Economic Research, 2020.

[38] A. Signorini, A.M. Segre, P.M. Polgreen, The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic, PLOS ONE 6 (5) (2011) e19467.

[39] M. Cadotte, Early evidence that COVID-19 government policies reduce urban air pollution. doi:10.31223/osf.io/nhgj3, 2020.

[40] J. Zarocostas, How to fight an infodemic, The Lancet 395 (10225) (2020) 676.

[41] L. Bode, E.K. Vraga, See something, say something: correction of global health misinformation on social media, Health Commun. 33 (9) (2018) 1131–1140.

[42] P.M. Waszak, W. Kasprzycka-Waszak, A. Kubanek, The spread of medical fake news in social media—the pilot quantitative study, Health Policy Technol. 7 (2) (2018) 115–118.

[43] “Misinformation related to the 2019–20 coronavirus pandemic,” https://en.wikipedia.org/wiki/Misinformation related to the 2019%20%E2%80%932020%20coronavirus%20pandemic, 2020.

[44] G. Pennycook, J. McPhetres, Y. Zhang, J.G. Lu, D.G. Rand, Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention, Psychol. Sci. 31 (7) (2020) 770–780.

[45] B.W. Schuller, D.M. Schuller, K. Qian, J. Liu, H. Zheng, X. Li, Covid-19 and computer audition: an overview on what speech & sound analysis could contribute in the SARS-CoV-2 Corona crisis, arXiv preprint arXiv:2003 (2020) 11117.

[46] J. Ye, “China’s QR health code, published on 19-Feb-2020; accessed on: 6-April-2020.” [Online]. Available from: https://www.abacusnews.com/tech/chinas-qr-health-code-system-brings-relief-some-and-new-problems/article/3051020.
[47] CSSEGISandData, “CSSEGISandData/COVID-19,” Mar 2020. [Online]. Available from: https://github.com/CSSEGISandData/COVID-19.

[48] Sudalairajkumar Data, “Novel corona-virus dataset,” Mar 2020. [Online]. Available from: https://www.kaggle.com/sudalairjkm/novel-corona-virus-2019-dataset.

[49] ECDC, “European Centre for Disease Prevention and Control (ECDC),” 2020. [Online]. Available from: https://ourworldindata.org/coronavirus-source-data.

[50] CHIME, “COVID-19 Hospital Impact Model for Epidemics,” 2020. [Online]. Available from: https://github.com/CodeForPhilly/chime.

[51] “COVID-19 Korea Dataset with Patient Routes,” 2020. [Online]. Available from: https://www.kaggle.com/sudalairjkm/novel-corona-virus-2019-dataset.

[52] GISAID, “Genomic epidemiology of hCoV-19,” 2020. [Online]. Available from: https://www.gisaid.org/epiflu-applications/next-hcov-19-app/.

[53] E. Chen, K. Lerman, E. Ferrara, Covid-19: The first public coronavirus twitter dataset, arXiv preprint arXiv:2003 (2020) 07372.

[54] Smith, “Coronavirus (covid19) tweets,” Mar 2020. [Online]. Available from: www.kaggle.com/smid80/coronavirus-covid19-tweets.

[55] Allen-Institute, “CORD-19 research challenge,” Mar 2020. [Online]. Available from: https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.

[56] NCBI, “LitCovid,” 2020. [Online]. Available from: https://www.ncbi.nlm.nih.gov/research/coronavirus/.

[57] Q. Chen, A. Allot, Z. Lu, Keep up with the latest coronavirus research, Nature 579 (7798) (2020) 193–1193.

[58] WHO, “Global research on novel coronavirus2019,” 2020. [Online]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov.

[59] G. Inc., “COVID-19 Community Mobility Reports,” Mar 2020. [Online]. Available from: https://www.google.com/covid19/mobility/.

[60] NCBI, “COVID-19 DATABASE,” 2020. [Online]. Available from: https://www.ncbi.nlm.nih.gov/research/coronavirus/.

[61] SIRM, “Covid-19-BSTI Imaging Database,” 2020. [Online]. Available from: https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/.

[62] nCoV2019Data, “ncov2019 epidemiological data,” Mar 2020. [Online]. Available from: https://github.com/nytimes/covid-19-data.

[63] E. Aramaki, S. Maskawa, M. Morita, Twitter catches the flu: detecting influenza epidemics using Twitter. In Proceedings of the 2011 Conference on empirical methods in natural language processing, 2011, pp. 1568–1576.
Conclusions

[70] D. Mery, Computer Vision for X-Ray Testing Vol 10, Springer International Publishing, Switzerland, 2015, pp. 978–983.

[71] “COVID Chest-XRay Dataset,” Mar 2020. [Online]. Available from: https://github.com/ieee8023/covid-chestxray-dataset.

[72] J. Zhao, Y. Zhang, X. He, P. Xie, COVID-CT-Dataset: a CT scan dataset about COVID-19, arXiv preprint arXiv:2003 (2020) 13865.

[73] C. Jacobs, “Coronada,” 2020. [Online]. Available from: https://github.com/BayesForDays/coronada.

[74] S. Wang, Y. Zha, W. Li, Q. Wu, X. Li, M. Niu, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis, Eur. Respir. J. (2020) doi: 10.1183/13993003.00775-2020.

[75] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409 (2014) 1556.

[76] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704 (2017) 04861.

[77] A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks, arXiv preprint arXiv:2003. (2020) 10849.

[78] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

[79] M. Farooq, A. Hafeez, Covid-resnet: a deep learning framework for screening of covid-19 from radiographs, arXiv preprint arXiv:2003 (2020) 14395.

[80] M. Haghighatlari, G. Vishwakarma, D. Altarawy, R. Subramanian, B.U. Kota, A. Sonpal, et al., Chemml: A machine learning and informatics program package for the analysis, mining, and modeling of chemical and materials data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, p.e1458.

[81] S. Robertson, H. Azizpour, K. Smith, J. Hartman, Digital image analysis in breast pathology—from image processing techniques to artificial intelligence, Transl. Res. 194 (2018) 19–35.

[82] Z.Z. Qin, M.S. Sander, B. Rai, C.N. Titahong, S. Sudrungrot, S.N. Laah, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems, Sci. Rep. 9 (1) (2019) 1–10.

[83] R. Singh, M.K. Kalra, C. Nitiwarangkul, J.A. Patti, F. Homayounieh, A. Padole, et al. Deep learning in chest radiography: detection of findings and presence of change, PLOS ONE 13 (10) (2018) e0204155.

[84] N. Oliver, E. Letouzé, H. Sterly, S. Delataille, M. De Nadai, B. Lepri, et al. Mobile phone data and COVID-19: missing an opportunity?, arXiv preprint arXiv:2003 (2020) 12347.

[85] “Data world,” 2020. [Online]. Available from: https://data.world/datasets/mobile.

[86] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology (2020) 200642.

[87] Y. Li, L. Xia, Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management, Am. J. Roentgenol. 214 (6) (2020) 1280–1286.

[88] S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv (2020).

[89] E.E.D. Hemdan, M.A. Shouman, M.E. Karar, Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images, arXiv preprint arXiv:2003 (2020) 11055.
Researches and Applications of Artificial Intelligence to Mitigate Pandemics

[90] J. Zhang, Y. Xie, Y. Li, C. Shen, Y. Xia, Covid-19 screening on chest x-ray images using deep learning based anomaly detection, arXiv preprint arXiv:2003 (2020) 12338.

[91] M. Barstugan, U. Ozkaya, S. Ozturk, Coronavirus (covid-19) classification using ct images by machine learning methods, arXiv preprint arXiv:2003 (2020) 09424.

[92] O. Gozes, M. Frid-Adar, N. Sagie, H. Zhang, W. Ji, H. Greenspan, Coronavirus detection and analysis on chest CT with deep learning, arXiv preprint arXiv:2004 (2020) 02640.

[93] K.E. Asnaoui, Y. Chawki, A. Idri, Automated methods for detection and classification pneumonia based on x-ray images using deep learning, arXiv preprint arXiv:2003 (2020) 14363.

[94] A. Abbas, M.M. Abdelsamea, M.M. Gaber, Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network, arXiv preprint arXiv:2003 (2020) 13815.

[95] M.E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, et al. Can AI help in screening viral and COVID-19 pneumonia?, arXiv preprint arXiv:2003 (2020) 13145.

[96] A.M. Alqudah, S. Qazan, H. Alquran, I.A. Qasmieh, A. Alqudah. COVID-2019 Detection Using X-Ray Images And Artificial Intelligence Hybrid Systems. 2000.

[97] F.M. Salman, S.S. Abu-Naser, E. Alajrami, B.S. Abu-Nasser, B.A. Alashqar, Covid-19 detection using artificial intelligence, 2020.

[98] X. Li, D. Zhu. Covid-xpert: an AI powered population screening of covid-19 cases using chest radiography images, arXiv preprint arXiv:2004 (2020) 03042.

[99] I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks, Phys Eng. Sci. Med. (2020) 1.

[100] K. Jahanbin, V. Rahmanian, Using Twitter and web news mining to predict COVID-19 outbreak, Asian Pacific J. Trop. Med. (2020) 13.

[101] C. Butt, J. Gill, D. Chun, B.A. Babu, Deep learning system to screen coronavirus disease 2019 pneumonia, Applied Intel. (2020) 1.

[102] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, et al. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study, MedRxiv (2020).

[103] O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, et al. Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis, arXiv preprint arXiv:2003 (2020) 05037.

[104] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, Radiology (2020).

[105] I. Song, Diagnosis of pneumonia from sounds collected using low cost cell phones. In 2015 International joint conference on neural networks (IJCNN). IEEE, (2015), pp. 1–8. doi: 10.1109/IJCNN.2015.7280317.

[106] R. Rana, S. Latif, R. Gururajan, A. Gray, G. Mackenzie, G. Humphris, et al. Automated screening for distress: a perspective for the future, Eur. J. Cancer Care 28 (4) (2019) e13033.

[107] S. Amiriparian, S. Pugachevskiy, N. Cummins, S. Hantke, J. Pohjalainen, G. Keren, B. Schuller, CAST a database: Rapid targeted large-scale big data acquisition via small-world modelling of social media platforms. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), IEEE, 2017, pp. 340–345.

[108] Y. Ye, S. Hou, Y. Fan, Y. Qian, Y. Zhang, S. Sun, et al. α,-satellite: an ai-driven system and benchmark datasets for hierarchical community-level risk assessment to help combat COVID-19, arXiv preprint arXiv:2003 (2020) 12232.

[109] “Poland: App helps police monitor home quarantine, accessed on: 1-April-2020.” [Online]. Available from: https://privacyinternational.org/examples/3473/poland-app-helps-police-monitor-home-quarantine/.
Conclusions

[110] “Google uses location data to show which places are complying with stay-at-home orders — and which aren’t,” The Verge, accessed on: 4-April-2020. [Online]. Available from: https://www.theverge.com/2020/4/3/21206318/google-location-data-mobility-reports-covid-19-privacy.

[111] H.S. Maghdid, K.Z. Ghafoor, A.S. Sadiq, K. Curran, K. Rabie, A novel ai-enabled framework to diagnose coronavirus covid 19 using smartphone embedded sensors: Design study, arXiv preprint arXiv:2003 (2020) 07434.

[112] M.N.K. Boulos, E.M. Geraghty, Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics, 2020.

[113] A. Agrawal, J. Gans, A. Goldfarb, The economics of artificial intelligence. McKinsey Quarterly, 2018.

[114] T. Cohen, “Israelis using voluntary coronavirus monitoring app, published on 01-April-2020; accessed on: 6-April-2020.” [Online]. Available from: https://tinyurl.com/reutersCoronaIsraelApps.

[115] GovTech, “TraceTogether – behind the scenes look at its development process, published on 25-March-2020; accessed on: 6-April-2020”.

[116] L. Kelion, “Coronavirus: UK considers virus-tracing app to ease lockdown, published on 31-March-2020; accessed on: 6-April-2020.” [Online]. Available from: https://www.bbc.com/news/technology-52095331.

[117] H. Cho, D. Ippolito, Y.W. Yu, Contact tracing mobile apps for COVID-19: privacy considerations and related trade-offs, arXiv preprint arXiv:2003 (2020) 11511.

[118] R.A. Calvo, S. Deterding, R.M. Ryan. Health surveillance during covid-19 pandemic, 2020.

[119] “D3tp documentation,” 2020. [Online]. Available from: https://github.com/DP-3T/documents 18.

[120] Pan-European, “Pan-European Privacy-Preserving Proximity Tracing, accessed on: 6-April-2020.” [Online]. Available from: https://www.pepp-pt.org/.

[121] A.W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)., Prot. Struct. Funct. Bioinform. 87 (12) (2019) 1141–1148.

[122] R. Data Science Coalition, “Uncover covid19 challenge,” Mar 2020. [Online]. Available from: https://www.kaggle.com/roche-data-science-coalition/uncover.

[123] J.E.C. Saire, R.C. Navarro, What is the people posting about symptoms related to Coronavirus in Bogota Colombia?, arXiv preprint arXiv:2003 (2020) 11159.

[124] F. Hu, J. Jiang, P. Yin, Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model, arXiv preprint arXiv:2003 (2020) 00728.

[125] M. Cattani, Global coalition to accelerate COVID-19 clinical research in resource-limited settings, Lancet (2020) 30798–30804.

[126] A. Zhavoronkov, V. Aladinskiy, A. Zhebrak, B. Zagribelnyy, V. Terentiev, D.S. Bezrukov, et al., “Potential COVID-2019 3c-like Protease Inhibitors Designed Using Generative Deep Learning Approaches, 307, Insilico Medicine Hong Kong Ltd A, 2020, pp. E1.

[127] N. Fenton, M. Neil, The use of Bayes and causal modelling in decision making, uncertainty and risk, CEPIIS Upgrade 12 (5) (2011) 10–21.

[128] “arXiv, accessed on: 12-April-2020.” [Online]. Available from: https://arxiv.org/.

[129] “medRxiv, accessed on: 12-April-2020.” [Online]. Available from: https://www.medrxiv.org/.

[130] “bioRxiv, accessed on: 12-April-2020.” [Online]. Available from: https://www.biorxiv.org/.
[131] “Wikipedia database download,” https://en.wikipedia.org/wiki/Wikipedia: Database download, 2020.
[132] L. Wang, A. Wong, COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images, arXiv preprint arXiv:2003 (2020) 09871.
[133] CDC, “CDC research Repositories, accessed on: 12-April 2020.” [Online]. Available from: https://www.cdc.gov/library/researchguides/2019novelcoronavirus/databases-journals.html.
[134] “Nature, accessed on: 12-April-2020.” [Online]. Available from: https://nature.com/.
[135] “Science, accessed on: 12-April-2020.” [Online]. Available from: https://sciencemag.org/.
[136] “The Lancet, accessed on: 12-April-2020.” [Online]. Available from: https://thelancet.com/.
[137] “BMJ, accessed on: 12-April-2020.” [Online]. Available from: https://bmj.com/.
[138] A. Culotta, Towards detecting influenza epidemics by analyzing Twitter messages. In Proceedings of the First Workshop on Social Media Analytics, 2010, pp. 115-122.
[139] V. Lampos, T. De Bie, N. Cristianini, Flu detector-tracking epidemics on Twitter, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Berlin, Heidelberg, 2010, pp. 599–602.
[140] K. Sharma, S. Seo, C. Meng, S. Rambhatla, A. Dua, Y. Liu, Coronavirus on social media: analyzing misinformation in Twitter conversations, arXiv preprint arXiv:2003 (2020) 12309.
[141] D. Zhao, FYao, L. Wang, L. Zheng, Y. Gao, J. Ye, et al., A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias, Clin. Infect. Dis. (2020).
[142] C. Manning. Understanding human language: Can NLP and deep learning help? In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2016, pp. 1-1. https://doi.org/10.1145/2911451.2926732.
[143] “Covid19 Global Forecasting Challenge, The White House Office of Science and Technology,” Mar 2020. [Online]. Available from: https://www.kaggle.com/c/covid19-global-forecasting-week-2/overview.
[144] R. Anderson, “Contact tracing in the real world,” https://www.lightbluetouchpaper.org/2020/04/12/contact-tracing-in-the-real-world/, 2020.
[145] A. Taweel, S. Mahmoud, G. Tyson, T. Vanstaa, 2014. Multi-agent system for recruiting patients for clinical trials.
[146] S. Bhatia, M. Sharma, K.K. Bhatia, A novel approach for crawling the opinions from world wide web, Int. J. Inform. Retrieval Res. (IJIRR) 6 (2) (2016) 1–23.