Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Barriers to telemedicine among physicians in epilepsy care during the COVID-19 pandemic: A national-level cross-sectional survey in Japan

Takafumi Kubota a,b,c,⇑, Naoto Kuroda a,d,e,⇑, Toru Horinouchi a,f, Naoki Ikegaya a,g,⇑, Yu Kitazawa a,h, Satoshi Kodama a,i, Izumi Kuramochi j,k, Teppei Matsubara a,k, Naoto Naginoa,l, Shuichiro Neshige a,m, Temma Soga a,c,d, Yutaro Takayama a,n, Daichi Sone a,o

a Japan Young Epilepsy Section, Kodaira, Tokyo, Japan
b Department of Neurology, University Hospitals of Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
c Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
d Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
e Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, Michigan, USA
f Department of Psychiatry and Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan

Article info

Article history:
Received 27 August 2021
Revised 23 November 2021
Accepted 29 November 2021
Available online 3 December 2021

Keywords:
Telemedicine
Telehealth
Epilepsy
Seizure
Barrier
COVID-19

Abstract

Objective: This study aimed to investigate the factors affecting the unwillingness of physicians involved in epilepsy care to continue telemedicine during the coronavirus disease 2019 (COVID-19) pandemic in Japan.

Method: This was a national-level cross-sectional survey initiated by Japan Young Epilepsy Section (YES-Japan) which is a national chapter of The Young Epilepsy Section of the International League Against Epilepsy (ILAE-YES). We asked physicians who conducted telemedicine in patients with epilepsy (PWE) during the COVID-19 pandemic at four clinics and 21 hospitals specializing in epilepsy care in Japan from March 1 to April 30, 2021. The following data were collected: (1) participant profile, (2) characteristics of PWE treated by telemedicine, and (3) contents and environmental factors of telemedicine. Statistically significant variables (p < 0.05) in the univariate analysis were analyzed in a multivariate binary logistic regression model to detect the independently associated factors with the unwillingness to continue telemedicine.

Result: Among the 115 respondents (response rate: 64%), 89 were included in the final analysis. Of them, 60 (67.4%) were willing to continue telemedicine, and 29 (32.6%) were unwilling. In the univariate binary logistic regression analysis, age (Odds ratio [OR] = 1.84, 95% confidence interval [CI] 1.10–3.09, p = 0.02), psychiatrist (OR = 5.88; 95% CI 2.15–16.08, p = 0.001), hospital (OR = 0.10, 95% CI 0.01–0.94, p = 0.04), the number of COVID-19 risk factors in the participant (OR = 2.88, 95% CI 1.46–5.09, p = 0.002), the number of COVID-19 risk factors in the cohabitants (OR = 2.52, 95% CI 1.05–6.01, p = 0.04), COVID-19 epidemic area (OR = 4.37, 95% CI 1.18–16.20, p = 0.03), consultation time during telemedicine (OR = 2.51, 95% CI 1.32–4.76, p = 0.005), workload due to telemedicine (OR = 4.17, 95% CI 2.11–8.24, p < 0.001) were statistically significant. In the multivariate binary logistic regression analysis, workload due to telemedicine &n...
1. Introduction

Telemedicine involves the delivery of healthcare services using information and communication technologies to improve patient outcomes [1]. It has many advantages [2]. For example, patients with epilepsy (PWE) who cannot drive and/or are afraid to go out due to fear of seizures can receive medical treatment using telemedicine [3]. It also reduces the costs of care and hospital visits [4,5], and the efficacy and safety of seizure control in telemedicine have been demonstrated [6,7].

Telemedicine has rapidly become available for PWE to prevent COVID-19 infection since 2020 [5,8-11]. The Japanese government also urgently approved the use of telemedicine in 2019 to take full advantage of contactless medicine [12]. Most PWE, caregivers, and physicians were highly satisfied with telemedicine during the COVID-19 pandemic [5,8,10].

A previous systematic review has shown that the barriers causing failures of eHealth intervention among healthcare professionals prior to the COVID-19 pandemic were workload, changes in work practice, costs of telemedicine, lack of information and communication technology training, concerns about privacy and security, lack of interoperability, low adaptability to telemedicine, and decreased quality of care [13]. Specifically, the lack of physical examination was associated with lower satisfaction with telemedicine among physicians in epilepsy care during the COVID-19 pandemic [10]. However, it is not clear whether the lack of physical examination is a barrier for physicians in continuing telemedicine. In addition, the study did not investigate the previously known barriers. Hence, barriers to telemedicine among physicians in epilepsy care before and during the COVID-19 pandemic have not been investigated.

Due to the rapid spread of telemedicine, physicians in epilepsy care may have faced various barriers to performing telemedicine during the COVID-19 pandemic, causing them to be unwilling to continue telemedicine. Therefore, we aimed to investigate the factors affecting the unwillingness of physicians involved in epilepsy care to continue telemedicine during the COVID-19 pandemic using a nationwide cross-sectional survey in Japan.

2. Methods

2.1. Study design and participants

The authors (TK and NK) initially created a survey questionnaire, which was then shared and validated with 13 co-authors in the pilot study. After the initial screening of applications from epilepsy centers and clinics throughout Japan by the official email list of the Japanese Epilepsy Society, 21 hospitals accredited as epilepsy centers or epilepsy training facilities and four epilepsy clinics were nominated. Our survey was conducted using Google Forms and was sent via email to 181 physicians who treated PWE in the nominated facilities. The valid period for a response was from March 1 to April 30, 2021. Details of the participating facilities are provided in Online Supplemental File 1. Physicians who conducted telemedicine for PWE during the COVID-19 pandemic were eligible to answer the survey. We followed the Japanese government’s definition of telemedicine under the COVID-19 pandemic; accordingly, telemedicine was defined as medical care delivered by physicians to patients via (1) telephones or (2) auditory and visual communication devices such as videotelephony [12,14].

Telemedicine does not include text or image message-based medical care without auditory and visual communications [12,14]. Consent for participation in the study was obtained through the questionnaire. The study was approved by the ethical committee (#A201200010) of Yokohama City University, the initiating facility, and by the Japan Epilepsy Society. This study adhered to the principles of the Declaration of Helsinki.

2.2. Questions included in the survey

The questionnaire consisted of the following sections: (1) participant profile, (2) characteristics of PWE treated with telemedicine, and (3) contents and environmental factors of telemedicine.

2.2.1. Participant profile

In the first part of this survey, we asked about the participants' profiles: (a) age category (25–34, 35–44, 45–54, 55–64, 65–74, and 75–84 years), (b) sex, (c) type of facility (hospital or clinic), (d) whether the facility is located within a COVID-19 epidemic area, (e) risk factors in the respondent for severe COVID-19 infection, (f) risk factors in the respondent's cohabitants for severe COVID-19 infection or stress related to the COVID-19 pandemic [15], (g) presence of cohabitants who had to be separated from the respondent due to the pandemic [16], and (h) vaccination against COVID-19. (i) participants’ impression of the regulations for telemedicine [13]. To incorporate the variable of (d) whether an area has a COVID-19 epidemic into the analysis, we categorized the location of the facility as either an epidemic or non-epidemic area according to the infection rate in each prefecture compared to the national average as of February 28, 2021, the day prior to the start of the survey (Online Supplemental File 1). We included the following risk factors for severe COVID-19 infection or stress related to the COVID-19 pandemic in (e): pregnant [15], breastfeeding [15], living alone [16], over 65 years old [15], medically-dependent state [15], smoking [15], obesity (body mass index ≥30) [15], medical history of diabetes mellitus [15], hypertension [15], chronic heart disease [15], chronic pulmonary disease [15], chronic kidney disease [15], neoplasm [15], or immunocompromised state [15]. Regarding the risk factors in (f), we deleted living alone and added the factor cohabitants under 0–4 or 5–17 years old [17–19] into the same cohabitant's risk factors as in (e).

2.2.2. Characteristics of PWE treated by telemedicine

To investigate the baseline characteristics of the patients treated with telemedicine, we asked whether the participants had seen PWE with the following characteristics prior to telemedicine: seizure more than once a month [20,21], two or more antiepileptic drugs [22], history of side effects due to antiepileptic drugs, and in-person consultation time of 31 min or more.

For healthcare professionals, the quality of health care is one of the most important factors related to the promotion and barriers of eHealth interventions [13]. We compared the following factors in
PWE between telemedicine and in-person visits: frequency of change in antiepileptic drugs, side effects of antiepileptic drugs, worsening seizure control, and improving seizure control.

2.2.3. Contents and environmental factors of telemedicine

We asked about the methods, contents, and environmental factors of telemedicine. Because environmental factors are associated with the barriers to eHealth intervention [13], we asked about the following: problems and safety in telemedicine [13], telemedicine consultation time per patient, support of hospitals and clinics for telemedicine [13], workload due to telemedicine [13], and financial cost to the hospital/clinic due to telemedicine [13].

2.3. Statistical analysis

We divided the participants into two groups: those who were willing to continue telemedicine and those who were not. We compared the questionnaire variables with the Mann–Whitney U test based on the Shapiro–Wilk test, chi-squared test, or Fisher's exact test. We used Fisher's exact test for five or fewer applicable participants in a categorical question. Bonferroni correction was used for multiple comparisons. The age at every 10 years and the number of risk factors were treated as ordinal variables. Similarly, the decrease, no change, and increase in a single question were treated as ordinal variables. Univariate binary logistic regression was conducted to determine the association between the variables in the two groups and the unwillingness to continue telemedicine. Crude and adjusted odds ratio (OR) estimates and 95% confidence intervals (CIs) are presented. Goodness-of-fit for the regression models was assessed using the Hosmer–Lemeshow test, with p > 0.05 considered a good fit of the model. The collinearity of the predictors was examined using the variation inflation factor (VIF), with VIF > 10 considered significant collinearity. Statistical analyses were conducted using the free software environment R version 4.0.5 (R Development Core Team 2021) and SPSS v25 (IBM, Armonk, NY).

3. Results

Fig. 1 shows the sampling process used in the survey. A total of 25 facilities (21 hospitals and four epilepsy clinics) participated in this survey. The link to the questionnaire was sent to 181 physicians, and 115 (63.5%) responded. A total of 103 physicians met the inclusion criteria; however, seven physicians were excluded for double responses and seven for missing data. Ultimately, 89 physicians were included in the analysis.

Table 1 shows the distribution of responses for all the questionnaire variables. The common profiles of participants were as follows: 35–44 years old (41/89 [46.1%]), male (72/89 [80.9%]), pediatricians (29/89 [32.6%]), and working in hospitals (84/89 [94.4%]). Telephone (77/89 [86.5%]) was used more frequently than videotelephony (12/89 [13.5%]). Of the 89 respondents, 60 (67.4%) were willing to continue telemedicine, and 29 (32.6%) were unwilling. Table 2 shows the results of the univariate and multivariate binary logistic regression analyses. In the univariate binary logistic regression analysis, age (OR = 1.84, 95% CI 1.10–3.09, p = 0.02), psychiatrist (OR = 5.88, 95% CI 2.15–16.08, p = 0.001), hospital (OR = 0.10, 95% CI 0.01–0.94, p = 0.04), the number of COVID-19 risk factors in the participant (OR = 2.88, 95% CI 1.46–5.69, p = 0.002), the number of COVID-19 risk factors in the cohabitants (OR = 2.52, 95% CI 1.05–6.01, p = 0.04), COVID-19 epidemic area (OR = 4.37, 95% CI 1.18–16.20, p = 0.03), consultation time during telemedicine (OR = 2.51, 95% CI 1.32–4.76, p = 0.005), workload due to telemedicine (OR = 4.17, 95% CI 2.11–8.24, p < 0.001) were statistically significant. In the multivariate binary logistic regression analysis, only the workload due to telemedicine (OR = 4.93, 95% CI 1.96–12.35, p = 0.001) was independently associated with an unwillingness to continue telemedicine. There was no collinearity between the factors, and all VIF values were <10. The Hosmer–Lemeshow test showed p = 0.57, indicating a good fit for this regression model.

4. Discussion

In this national-level cross-sectional survey, we demonstrated that workload due to telemedicine among physicians in epilepsy care was independently associated with their unwillingness to continue telemedicine. To our knowledge, this was the first study...
Table 1: Questionnaire variables.

<Participant profile>	Total Willing to continue telemedicine	Unwilling to continue telemedicine	p value					
n = 89 (%)	n = 61 (%)	n = 28 (%)						
Age								
25–34	9 (10.1)	6 (9.8)	3 (10.7)					
35–44	41 (46.1)	32 (52.5)	9 (32.1)					
45–54	26 (29.2)	19 (31.1)	7 (25.0)					
55–64	12 (13.5)	4 (6.6)	8 (28.6)					
65–74	0 (0.0)	0 (0.0)	0 (0.0)					
75–84	1 (1.1)	0 (0.0)	1 (3.6)					
Sex								
Male	72 (80.9)	47 (77.0)	25 (89.3)					
Female	17 (19.1)	14 (23.0)						
Specialty								
Pediatric	29 (32.6)	23 (37.7)	6 (21.4)					
Neurologist	16 (18.0)	13 (21.3)	3 (10.7)					
Neurosurgeon	19 (21.3)	15 (24.6)	4 (14.3)					
Psychiatrist	25 (28.1)	10 (16.4)	15 (53.6)					
Number of risk factors of COVID-19 infection in the participant	0/1/2/3 or more	43 (70.5)/16 (26.2)/2 (3.3)/0 (1.1)	12 (42.9)/9 (32.1)/6 (21.4)/1 (3.6)	0.004 *				
Number of risk factors of COVID-19 infection in the cohabitants	0/1/2/3/4 or more	58 (95.1)/2 (3.3)/0 (0.0)/0 (0.0)/1 (1.6)	19 (67.9)/6 (21.4)/2 (7.1)/1 (3.6)/0 (0.0)	0.001 *				
COVID-19 vaccination: At least one dose of a COVID-19 vaccine	23 (25.8)	14 (23.0)	9 (32.1)	0.51				
Facility								
Hospital	84 (94.4)	60 (98.4)	24 (85.7)					
MHLW regulations for telemedicine	Participants considered the regulations inappropriate	69 (77.5)	49 (80.3)	20 (71.4)				
Changes in antiepileptic drugs	69 (77.5)	49 (80.3)	20 (71.4)	0.51				
Decrease/No change/Increase	55 (61.8)/33 (37.1)/1 (1.1)	35 (57.4)/25 (41.0)/1 (1.6)	20 (71.4)/8 (28.6)/0 (0.0)	0.20 *				
Side effects of antiepileptic drugs	17 (19.1)/71 (79.8)/1 (1.1)	14 (23.0)/46 (75.4)/1 (1.6)	3 (10.7)/25 (89.3)/0 (0.0)	0.25 *				
Decrease/No change/Increase	5 (5.6)/81 (91.0)/3 (3.4)	4 (6.6)/54 (88.5)/3 (4.9)	1 (3.6)/27 (96.4)/0 (0.0)	0.80 *				
Worsening of seizure control	5 (5.6)/82 (92.1)/2 (2.2)	4 (6.6)/55 (90.2)/2 (3.3)	1 (3.6)/27 (96.4)/0 (0.0)	0.99 *				
Decrease/No change/Increase	5 (5.6)/82 (92.1)/2 (2.2)	4 (6.6)/55 (90.2)/2 (3.3)	1 (3.6)/27 (96.4)/0 (0.0)	0.99 *				
Contents and environmental factors of telemedicine	**Methods and contents of telemedicine**	**Problems and safety in telemedicine**	**Support of hospitals and clinics for telemedicine**	**Seizures at least once a month**	63 (70.8)	47 (77.0)	16 (57.1)	0.10
Videotelephony	12 (13.5)	8 (13.1)	4 (14.3)					
Only follow-up or prescription visits without physical examination	20 (22.5)	12 (19.7)	8 (28.6)	0.51				
Telemedicine consultation time per a patient	59 (66.3)/19 (21.3)/11 (12.4)	46 (75.4)/11 (18.0)/4 (6.6)	13 (46.4)/8 (28.6)/7 (25.0)	0.004 *				
	Problems and safety in telemedicine	**Creation of a flow chart for telemedicine**	**Provision of applications and equipment for telemedicine**	**Evaluation of telemedicine**	72 (80.9)	52 (85.2)	20 (71.4)	0.21
Telemedicine failure due to technical problems	28 (31.5)	20 (32.8)	8 (28.6)	0.88				
Telemedicine problems due to lack of IT literacy among patients	27 (30.3)	18 (29.5)	9 (32.1)	>0.99				
Concerns about privacy protection and safety in telemedicine	69 (77.5)	49 (80.3)	20 (71.4)	0.51				
	Support of hospitals and clinics for telemedicine	**Training opportunities for telemedicine**	**Support department for telemedicine**	**Seizures at least once a month**	63 (70.8)	47 (77.0)	16 (57.1)	0.10
Creation of a flow chart for telemedicine	72 (80.9)	52 (85.2)	20 (71.4)	0.21				
Provision of applications and equipment for telemedicine	28 (31.5)	19 (31.1)	9 (32.1)	>0.99				
Training opportunities for telemedicine	13 (14.6)	10 (16.4)	3 (10.7)	0.75				
Support department for telemedicine	19 (21.3)	14 (23.0)	5 (17.9)	0.78				

* p < 0.05, ** p < 0.01, *** p < 0.001
to determine the barriers to telemedicine among physicians in epilepsy care.

Consistent with previous studies in other medical fields prior to the COVID-19 pandemic, the workload due to telemedicine was also a barrier to telemedicine in epilepsy care. A systematic review showed that the workload of healthcare professionals was the biggest factor contributing to the failure of eHealth interventions [13]. Healthcare professionals observed an increased workload after the implementation of eHealth interventions [13]. General practitioners in the United Kingdom experienced an increased work burden due to telehealth [23], while healthcare professionals in rural Australia required extra hours to receive training on the basic technology and usage of related applications. This burden is a barrier to telemedicine [24]. Similar to previous studies conducted before the COVID-19 pandemic, some physicians in our study might be reluctant to continue telemedicine because of the increased workload. However, in contrast to previous studies, training and support for telemedicine [13,25,26], safety [13], usability [13,26,27], financial costs [13,28], regulation [13,25], and quality of health care [13] were not associated with an unwillingness to continue telemedicine in our study, possibly due to the rapid spread of telemedicine during the pandemic. Although previous studies conducted during the COVID-19 pandemic showed that physical examination was associated with satisfaction with telemedicine among physicians in epilepsy care [10], the contents of telemedicine was not associated with an unwillingness to continue telemedicine in our study. This may be explained by the differences in the outcomes studied (satisfaction with telemedicine vs. unwillingness to continue telemedicine). Furthermore, previous studies did not include workload as a factor.

It should be noted that telemedicine may occasionally increase the workload as discussed below. Evidence has shown that the workload of physicians should be given the proper attention. The workload of physicians was originally high, with physicians in the United States working for an average of 51 h per week [29]. Twenty-three percent of physicians work more than 60 h per week [30]. In particular, physicians in Japan also work very long hours as over 40% of physicians in hospitals work more than 60 h per week [31]. Moreover, aside from the physical stress, the COVID-19 pandemic has increased mental stress and burnout among physicians [32–34]. Under these circumstances, telemedicine increased the workload for 32.6% of the participants in our study, although it reduced the workload for 38.2% of the participants and consultation time during telemedicine, possibly due to the rapid spread of telemedicine.

Table 1

Variable	Total (n = 89)	Willing to continue telemedicine (n = 61)	Unwilling to continue telemedicine (n = 28)	p value
Workload due to telemedicine				
Decrease/No change/Increase	34 (38.2)/26 (29.2)/29 (32.6)	32 (52.5)/17 (27.9)/12 (19.7)	2 (7.1)/9 (32.1)/17 (60.7)	<0.001*
Financial cost to the hospital/clinic due to telemedicine				
Decrease/No change/Increase	17 (19.1)/38 (42.6)/58 (69.1)	15 (24.6)/14 (15.7)/8 (13.1)	2 (7.1)/20 (71.4)/6 (21.4)	0.06*

COVID-19: Coronavirus disease 2019. MHLW: Ministry of Health, Labour and Welfare. PWE: Patients with epilepsy. IT: Information technology.

*Telemedicine compared to in-person visits.

Mann-Whitney U test.

Fisher exact test.

Chi-squared test.

Bonferroni correction.

Variable	Univariate	Multivariate		
	Crude OR (95%CI)	p value	Adjusted OR (95%CI)	p value
Age	1.84 (1.10–3.09)	0.02	1.83 (0.84–3.97)	0.13
Psychiatrist	5.88 (2.15–16.08)	0.001	2.45 (0.63–9.51)	0.19
Hospital	0.10 (0.01–0.94)	0.04	0.88 (0.04–19.23)	0.94
The number of COVID-19 risk factors in the participant	2.88 (1.46–5.69)	0.002	2.22 (0.97–5.08)	0.06
The number of COVID-19 risk factors in the cohabitants	2.52 (1.05–6.01)	0.04	2.23 (0.93–5.36)	0.07
COVID-19 epidemic area	4.37 (1.18–16.20)	0.03	1.95 (0.36–10.69)	0.44
Consultation time during telemedicine	2.51 (1.32–4.76)	0.005	1.00 (0.40–2.55)	0.99
Workload due to telemedicine	4.17 (2.11–8.24)	<0.001	4.93 (1.96–12.35)	0.001

OR: Odds ratio. CI: Confidence interval.
Besides telemedicine. Thus, while establishing an ideal support system for telemedicine is essential, paying attention to the usual workload and characteristics of physicians who can be affected by telemedicine is also critical. For instance, the working environment, including working hours and stress level, and physicians’ characteristics, such as difficulty with adaptation of new technology, should be considered.

This study had several limitations. First, the situation of COVID-19 infection, infrastructure, and regulations are different in each country, making it difficult to apply our findings to different situations. Second, since this study was a cross-sectional questionnaire survey, some variables might have been affected by recall bias. Although unlikely, the causal relationship between workload due to telemedicine and unwillingness to continue telemedicine may be reversed. In short, unwillingness to continue telemedicine might have caused the feeling of increased workload. Third, this study did not investigate whether videotelephony was performed via home videoconferencing, such as Zoom, or high-end video with a trained assistant with the patient. Although home videoconferencing might be the main method, the difference between the two methods might affect the workload.

5. Conclusion

This national-level cross-sectional survey found that two-thirds of physicians in epilepsy care were willing to continue telemedicine, while the rest were unwilling. Workload due to telemedicine among physicians in epilepsy care was independently associated with the unwillingness to continue telemedicine during the COVID-19 pandemic. As such, the identification and reduction of the causes of increased workload due to telemedicine will further promote its use in epilepsy care.

Funding

This work was supported by JSPS KAKENHI (Grant Number 19K18435).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Acknowledgements

This work was conducted by the IMPACT-J EPILEPSY: In-depth Multicenter analysis during Pandemic of Covid-19 Throughout Japan for EPILEPSY practice. The authors are grateful to Dr. Eishi Asano at the Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, for his advice on the statistical analysis. The authors are also grateful to all the participants of this survey-based study. We would like to thank Editage (www.editage.com) for English language editing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.yebeh.2021.108487.

References

[1] Ryu S. Telemedicine: Opportunities and developments in member states: report on the second global survey on eHealth 2009 (Global Observatory for eHealth Series, Volume 2). Healthc Inform Res 2012;18:153. https://doi.org/10.4358/hr.2012.18.2.153.

[2] Kuroda N. Decision making on telemedicine for patients with epilepsy during the coronavirus disease 2019 (COVID-19) crisis. Front Neurol 2020;11:722. https://doi.org/10.3389/fneur.2020.00722.

[3] Kisiâni N, Lengâne YTM, Patteion V, Mesraoua B, Dawn E, Ozkara C, et al. Telemedicine in epilepsy: how can we improve care, teaching, and awareness? Epilepsy Behav 2020;103:106854. https://doi.org/10.1016/j.yebeh.2020.106854.

[4] Ahmed SN, Mann C, Sinclair DB, Heino A, Ishkiw B, Quigley D, et al. Feasibility of epilepsy follow-up care through telemedicine: A pilot study on the patient’s perspective. Epilepsia 2008;49:573–85. https://doi.org/10.1111/j.1528-1167.2007.01464.x.

[5] von Wrede R, Moskau-Hartmann S, Baumgartner T, Helmsstaedt C, Surges R. Counseling of people with epilepsy via telemedicine: Experiences at a German tertiary epilepsy center during the COVID-19 pandemic. Epilepsy Behav 2020;107:2019. https://doi.org/10.1016/j.yebeh.2020.107208.

[6] Bahrami K, Singh MB, Bhatia R, Prasad K, Vihra D, Shukla G, et al. Telephonic review for outpatients with epilepsy—A prospective randomized, parallel group study. Seizure 2017;33:55–61. https://doi.org/10.1016/j.seizure.2017.11.1003.

[7] Rasmussen KA, Hartshorn JC. A comparison of epilepsy patients in a traditional ambulatory clinic and a telemedicine clinic. Epilepsy 2005;46:767–70. https://doi.org/10.1111/j.1528-1167.2005.44404.x.

[8] Pandit PK, Dawan L, Panda P, Sharawat RK. Feasibility and effectiveness of teleconsultation in children with epilepsy amidst the ongoing COVID-19 pandemic in a resource-limited country. Seizure 2020;81:29–35. https://doi.org/10.1016/j.seizure.2020.107211.

[9] Albert DVF, Das RR, Acharaya JN, Lee JW, Pollard JR, Punia V, et al. The impact of COVID-19 on epilepsy care: A survey of the American Epilepsy Society Membership. Epilepsy Curr 2020;20:316–24. https://doi.org/10.1177/1528116720956994.

[10] Teng T, Sareidali DE, Chemaly N, Bar C, Coste-Zeitoun D, Kuchenbuch M, et al. Physician and patient satisfaction with the switch to remote outpatient encounters in epilepsy clinics during the COVID-19 pandemic. Seizure 2021;91:90–5. https://doi.org/10.1016/j.seizure.2021.05.013.

[11] Conde-Blanco E, Centeno M, Tio E, Muriana D, Garcia-Peñas JJ, Serrano P, et al. Emergency implementation of telemedicine for epilepsy in Spain: Results of a survey during SARS-CoV-2 pandemic. Epilepsy Behav 2020;111:107211. https://doi.org/10.1016/j.yebeh.2020.107211.

[12] Ministry of Health Labour and Welfare. Time-limited and special measures for medical treatment using telephones and information communication devices in the event of the spread of new coronavirus infections (Administrative Notice, April 10, 2020).

[13] Granja C, Janssen W, Johansen MA. Factors determining the success and failure of ehealth interventions: Systematic review of the literature. J Med Internet Res 2018;20:1–21. https://doi.org/10.2196/10235.

[14] Condon J, Muller S, Pung CJ, Drysdale M, O’Hanlon J, O’Malley R, et al. Guidelines for the Appropriate Implementation of Online Medical Treatment (March, 2008) (partially revised in July, 2019) 2018.

[15] Center for Disease Control and Prevention. Underlying Medical Conditions Associated with High Risk for Severe COVID-19: Information for Healthcare Providers n.d. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed July 19, 2021).

[16] Luo M, Guo L, Yu M, Jiang W, Wang H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public – A systematic review and meta-analysis. Psychiatry Res 2020;291:131390. https://doi.org/10.1016/j.psychres.2020.131390.

[17] Cluver L, Lachman JM, Sheri L, Wessels I, Krug E, Rakotomalala S, et al. Parenting in a time of COVID-19. Lancet 2020;395:e64. https://doi.org/10.1016/S0140-6736(20)30736-4.

[18] Tang S, Xiang M, Cheung T, Xiang YT. Mental health and its correlates among children and adolescents during COVID-19 school closure: The importance of parent-child discussion. J Affect Disord 2021;279:353–60. https://doi.org/10.1016/j.jad.2021.04.016.

[19] Halvorsen E, Stum-O'Brien C, Carnicu S, Jaffarany M. Psychological effects of COVID-19 on parenting and maternal-fetal mental health. Dermatol Ther 2020;33:13579. https://doi.org/10.1111/dth.13579.

[20] Leidy NK, Elshashaer A, Vickrey B, Means E, Willian MK. Seizure frequency and the health-related quality of life of adults with epilepsy. Neurology 2001;57:1.

[21] Balakrishnan GA, Nashef L, Hout BA. Current issues in the management of epilepsy: The impact of frequent seizures on cost of illness, quality of life, and mortality. Epilepsia 1997;38:38. https://doi.org/10.1111/j.1528-1167.1997.00451.x.

[22] Kwan P, Arzimanoglu A, Berg AT, Brodie MJ, Allen Hauser W, Mathero G, et al. Definition of drug resistant epilepsy Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010;51:1060–77. https://doi.org/10.1111/j.1528-1167.2009.03797.x.

[23] Mauss S, Scherl S, Kuehn C, Haynes A, Barlow J, Knapp M, et al. Experiences of front-line health professionals in the delivery of telehealth: A qualitative study. Br J Gen Pract 2014;64:401–7. https://doi.org/10.3399/bjgp14X680485.

[24] Jang-Jaccard J, Nepal S, Alem L, Li J, Barlow J, Knapp M, et al. Barriers to use of telepsychiatry: clinicians as gatekeepers. Mayo Clin Proc 2019;94:2510–23. https://doi.org/10.1016/j.mayocp.2019.04.018.
[26] Uscher-Pines L, Kahn JM. Barriers and facilitators to pediatric emergency telemedicine in the United States. Telemed J E Health 2014;20:990–6. https://doi.org/10.1089/tmj.2014.0015.

[27] Brooks E, Turvey C, Agugsterfer EF. Provider barriers to telemental health: Obstacles overcome, obstacles remaining. Telemed-e-Health 2013;19:433–7. https://doi.org/10.1089/tmj.2013.0006.

[28] Rogove HJ, McArthur D, Demaerschalk BM, Vespa PM. Barriers to telemedicine: Survey of current users in acute care units. Telemed-e-Health 2012;18:48–53. https://doi.org/10.1089/tmj.2011.0071.

[29] Staiger DO, Auerbach DI, Buerhaus PI. Trends in the work hours of physicians in the United States. JAMA 2010;303:747–53. https://doi.org/10.1001/jama.2010.168.

[30] How many hours are in the average physician workweek? | American Medical Association n.d. https://www.ama-assn.org/practice-management/physician-health/how-many-hours-are-average-physician-workweek (accessed July 22, 2021).

[31] Tsutsumi A. Workstyle reform for Japanese doctors. EOH-P 2020;2:n/a. https://doi.org/10.1539/ehp.2020-0008-CP.

[32] Amanullah S, Shankar RR. The impact of covid-19 on physician burnout globally: A review. Healthcare 2020;8:1–12. https://doi.org/10.3390/healthcare8040021.

[33] Bradley M, Chahar P. Burnout of healthcare providers during COVID-19. Cleve Clin J Med 2020;21–3. https://doi.org/10.3949/ccjm.87a.ccc051.

[34] Elbay RY, Kurtulmuş A, Arpacıoğlu S, Karadere E. Depression, anxiety, stress levels of physicians and associated factors in Covid-19 pandemics. Psychiatry Res 2020;290:1–5. https://doi.org/10.1016/j.psychres.2020.113130.

[35] Kanagawa Medical Practitioners Association Policy department. Results of the Online Medical Practice Survey. 2019.4.12.