A multiplicity result for nonlocal problems involving nonlinearities with bounded primitive

BIAGIO RICCERI

Abstract. The aim of this paper is to provide the first application of Theorem 3 of [2] in a case where the dependence of the underlying equation from the real parameter is not of affine type. The simplest particular case of our result reads as follows:

Let $f : \mathbb{R} \to \mathbb{R}$ be a non-zero continuous function such that

$$\sup_{\xi \in \mathbb{R}} |F(\xi)| < +\infty$$

where $F(\xi) = \int_0^\xi f(s)ds$. Moreover, let $k : [0, +\infty] \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ be two continuous and non-decreasing functions, with $k(t) > 0$ for all $t > 0$ and $h^{-1}(0) = \{0\}$.

Then, for each μ large enough, there exist an open interval $A \subseteq \inf \mathbb{R} F, \sup \mathbb{R} F$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases}
-k \left(\int_0^1 |u'(t)|^2 dt \right) u'' = \mu h \left(\int_0^1 F(u(t))dt - \lambda \right) f(u) & \text{in } [0, 1] \\
u(0) = u(1) = 0
\end{cases}$$

has at least three solutions whose norms in $H_0^1(0, 1)$ are less than ρ.

In [2], we established the following result:

THEOREM A. - Let X be a separable and reflexive real Banach space, $I \subseteq \mathbb{R}$ an interval, and $\Psi : X \times I \to \mathbb{R}$ a continuous function satisfying the following conditions:

(a$_1$) for each $x \in X$, the function $\Psi(x, \cdot)$ is concave;

(a$_2$) for each $\lambda \in I$, the function $\Psi(\cdot, \lambda)$ is C^1, sequentially weakly lower semicontinuous, coercive, and satisfies the Palais-Smale condition;

(a$_3$) there exists a continuous concave function $h : I \to \mathbb{R}$ such that

$$\sup_{\lambda \in I} \inf_{x \in X} (\Psi(x, \lambda) + h(\lambda)) < \inf_{x \in X} \sup_{\lambda \in I} (\Psi(x, \lambda) + h(\lambda)) .$$

Then, there exist an open interval $A \subseteq I$ and a positive real number ρ, such that, for each $\lambda \in J$, the equation

$$\Psi_\lambda'(x, \lambda) = 0$$

has at least three solutions in X whose norms are less than ρ.

1
A consequence of Theorem A is as follows:

THEOREM B. - Let X be a separable and reflexive real Banach space; $\Phi : X \to \mathbb{R}$ a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^*; $\Psi : X \to \mathbb{R}$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact; $I \subseteq \mathbb{R}$ an interval. Assume that

$$\lim_{\|x\| \to +\infty} (\Phi(x) + \lambda \Psi(x)) = +\infty$$

for all $\lambda \in I$, and that there exists a continuous concave function $h : I \to \mathbb{R}$ such that

$$\sup_{\lambda \in I} \inf_{x \in X} (\Phi(x) + \lambda \Psi(x) + h(\lambda)) < \inf_{x \in X} \sup_{\lambda \in I} (\Phi(x) + \lambda \Psi(x) + h(\lambda)).$$

Then, there exist an open interval $A \subseteq I$ and a positive real number ρ such that, for each $\lambda \in A$, the equation

$$\Phi'(x) + \lambda \Psi'(x) = 0$$

has at least three solutions in X whose norms are less than ρ.

In appraising the literature, it is quite surprising to realize that, while Theorem B has been proved itself to be one of the most frequently used abstract multiplicity results in the last decade, it seems that there is no article where Theorem A has been applied to some Ψ which does not depend on λ in an affine way. For an up-dated bibliographical account related to Theorem B, we refer to [3].

The aim of this paper is to offer a first contribution to fill this gap.

To state our results, let us fix some notation.

For a generic function $\psi : X \to \mathbb{R}$, we denote by $\text{osc}_X \psi$ the (possibly infinite) number

$$\sup_{x \in X} \psi - \inf_{x \in X} \psi.$$

In the sequel, $\Omega \subseteq \mathbb{R}^n$ is a bounded domain with smooth boundary. We consider the space $H^1_0(\Omega)$ equipped with the norm

$$\|u\| = \left(\int_{\Omega} |\nabla u(x)|^2 dx \right)^{\frac{1}{2}}.$$

If $I \subseteq \mathbb{R}$ is an interval, with $0 \in I$, and $g : \Omega \times I \to \mathbb{R}$ is a function such that $g(x, \cdot)$ is continuous in I for all $x \in \Omega$, we set

$$G(x, \xi) = \int_0^\xi g(x, t)dt$$

for all $(x, \xi) \in \Omega \times I$.

When $n \geq 2$, we denote by \mathcal{A} the class of all Carathéodory functions $f : \Omega \times \mathbb{R} \to \mathbb{R}$ such that

$$\sup_{(x, \xi) \in \Omega \times \mathbb{R}} \frac{|f(x, \xi)|}{1 + |\xi|^q} < +\infty,$$
for some q with $0 < q < \frac{n+2}{n-2}$ if $n \geq 3$ and $0 < q < +\infty$ if $n = 2$. When $n = 1$, we denote by \mathcal{A} the class of all Carathéodory functions $f : \Omega \times \mathbb{R} \to \mathbb{R}$ such that, for each $r > 0$, the function $x \to \sup_{|t| \leq r} |f(x, t)|$ belongs to $L^1(\Omega)$.

If $f \in \mathcal{A}$, for each $u \in H^1_0(\Omega)$, we set

$$J_f(u) = \int_{\Omega} F(x, u(x)) dx.$$

The functional J_f is C^1 and its derivative is compact. Moreover, we set

$$\alpha_f = \inf_{H^1_0(\Omega)} J_f,$$

$$\beta_f = \sup_{H^1_0(\Omega)} J_f$$

and

$$\omega_f = \beta_f - \alpha_f.$$

Clearly, when f does not depend on x, we have

$$\alpha_f = \text{meas}(\Omega) \inf_{\mathbb{R}} F$$

and

$$\beta_f = \text{meas}(\Omega) \sup_{\mathbb{R}} F.$$

Our main result reads as follows:

THEOREM 1. - Let $f, g \in \mathcal{A}$ be such that

$$\sup_{(x, \xi) \in \Omega \times \mathbb{R}} \max \{|F(x, \xi)|, G(x, \xi)\} < +\infty$$

and

$$\sup_{u \in H^1_0(\Omega)} \left| \int_{\Omega} F(x, u(x)) dx \right| > 0.$$

Then, for every pair of continuous and non-decreasing functions $k : [0, +\infty[\to \mathbb{R}$ and $h :]-\omega_f, \omega_f[\to \mathbb{R}$, with $k(t) > 0$ for all $t > 0$ and $h^{-1}(0) = \{0\}$, for which the number

$$\theta^* = \inf \left\{ \frac{1}{2} K \left(\int_{\Omega} |\nabla u(x)|^2 dx \right) - \int_{\Omega} G(x, u(x)) dx : u \in H^1_0(\Omega), \int_{\Omega} F(x, u(x)) dx \neq 0 \right\}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

is non-negative, and for every $\mu > \theta^*$, there exist an open interval $A \subseteq]\alpha_f, \beta_f[$ and a number $\rho > 0$ such that, for every $\lambda \in A$, the problem

$$\begin{cases} -k (\int_{\Omega} |\nabla u(x)|^2 dx) \Delta u = \mu h (\int_{\Omega} F(x, u(x)) dx - \lambda) f(x, u) + g(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
has at least three weak solutions whose norms in $H^1_0(\Omega)$ are less than ρ.

Clearly, a weak solution of the above problem is any $u \in H^1_0(\Omega)$ such that

$$k \left(\int_{\Omega} |\nabla u(x)|^2 \, dx \right) \int_{\Omega} \nabla u(x) \nabla v(x) \, dx =$$

$$= \mu h \left(\int_{\Omega} F(x, u(x)) \, dx - \lambda \right) \int_{\Omega} f(x, u(x)) v(x) \, dx + \int_{\Omega} g(x, u(x)) v(x) \, dx$$

for all $v \in H^1_0(\Omega)$.

So, the weak solutions of the problem are exactly the critical points in $H^1_0(\Omega)$ of the functional

$$u \rightarrow \frac{1}{2} K(\|u\|^2) - \int_{\Omega} G(x, u(x)) \, dx - \mu H \left(\int_{\Omega} F(x, u(x)) \, dx - \lambda \right).$$

The problem that we are considering is a nonlocal one. We refer to the very recent paper [1] for a relevant discussion and an up-dated bibliography as well.

From what we said above, it is clear that our proof of Theorem 1 is based on the use of Theorem A. This is made possible by the following proposition:

PROPOSITION 1. - Let X be a non-empty set and let $\gamma : X \rightarrow [0, +\infty[$, $J : X \rightarrow \mathbb{R}$ be two functions such that $\gamma(x_0) = J(x_0) = 0$ for some $x_0 \in X$. Moreover, assume that J takes at least four values. Finally, let $\varphi :] - \text{osc}_X J, \text{osc}_X J[\rightarrow [0, +\infty[$ be a continuous function such that

$$\varphi^{-1}(0) = \{0\}$$

and

$$\min \left\{ \liminf_{t \to (\text{osc}_X J)^+} \varphi(t), \liminf_{t \to (\text{osc}_X J)^-} \varphi(t) \right\} > 0.$$ \hspace{2cm} (2)

Put

$$\theta = \inf_{x \in J^{-1}[\inf_X J, \sup_X J[\setminus \{0\}]} \frac{\gamma(x)}{\varphi(J(x))}.$$

Then, for each $\mu > \theta$, we have

$$\sup_{\lambda \in [\inf_X J, \sup_X J]} \inf_{x \in X} (\gamma(x) - \mu \varphi(J(x) - \lambda)) < \inf_{x \in X} \sup_{\lambda \in [\inf_X J, \sup_X J]} (\gamma(x) - \mu \varphi(J(x) - \lambda)).$$

PROOF. First, we make some remarks on the definition of θ. Since J takes at least four values, the set $J^{-1}[\inf_X J, \sup_X J[\setminus \{0\}]$ is non-empty. So, if $x \in J^{-1}[\inf_X J, \sup_X J[\setminus \{0\}]$, we have $J(x) \in] - \text{osc}_X J, \text{osc}_X J[\setminus \{0\}$ (recall that $\inf_X J \leq 0 \leq \sup_X J$), and so $\varphi(J(x)) > 0$. Hence, θ is a well-defined non-negative real number. Now, fix $\mu > \theta$. Since φ is continuous, we have

$$\inf_{\lambda \in [\inf_X J, \sup_X J]} \varphi(J(x) - \lambda) = 0.$$

4
for all \(x \in X \). Hence
\[
\inf_{x \in X} \sup_{\lambda \in [\inf_X J, \sup_X J]} (\gamma(x) - \mu \varphi(J(x) - \lambda)) = \inf_{x \in X} \left(\gamma(x) - \mu \inf_{\lambda \in [\inf_X J, \sup_X J]} \varphi(J(x) - \lambda) \right)
\]
\[
= \inf_X \gamma = 0 .
\]
(3)

Now, since \(\mu > \theta \), there is \(x_1 \in X \) such that
\[
\gamma(x_1) - \mu \varphi(J(x_1)) < 0 .
\]
So, again by the continuity of \(\varphi \), for \(\epsilon, \delta > 0 \) small enough, we have
\[
\gamma(x_1) - \mu \varphi(J(x_1) - \lambda) < -\epsilon
\]
for all \(\lambda \in [-\delta, \delta] \). On the other hand, (1) and (2) imply that
\[
\nu := \inf_{\lambda \in [\inf_X J, \sup_X J]} \varphi(-\lambda) > 0 .
\]
(5)

From (4) and (5), recalling that \(\gamma(x_0) = J(x_0) = 0 \), it clearly follows
\[
\sup_{\lambda \in [\inf_X J, \sup_X J]} \inf_{x \in X} (\gamma(x) - \mu \varphi(J(x) - \lambda)) \leq \max\{-\epsilon, -\mu \nu\} < 0
\]
and so the conclusion follows in view of (3). \(\triangle \)

REMARK 1. - It is clear that if a \(\varphi : [-\text{osc}_X J, \text{osc}_X J] \to [0, +\infty] \) satisfies (1) and is convex, then it is continuous and satisfies (2) too.

A joint application of Theorem 1 and Proposition 1 gives

THEOREM 2. - Let \(X \) be a separable and reflexive real Banach space and let \(\eta, J : X \to \mathbb{R} \) be two \(C^1 \) functionals with compact derivative and \(\eta(0) = J(0) = 0 \). Assume also that \(J \) is bounded and non-constant, and that \(\eta \) is bounded above.

Then, for every sequentially weakly lower semicontinuous and coercive \(C^1 \) functional \(\psi : X \to \mathbb{R} \) whose derivative admits a continuous inverse on \(X^* \) and with \(\psi(0) = 0 \), for every convex \(C^1 \) function \(\varphi : [-\text{osc}_X J, \text{osc}_X J] \to [0, +\infty] \), with \(\varphi^{-1}(0) = \{0\} \), for which the number
\[
\hat{\theta} = \inf_{x \in J^{-1}(\mathbb{R}\{0\})} \frac{\psi(x) - \eta(x)}{\varphi(J(x))}
\]
is non-negative, and for every \(\mu > \hat{\theta} \) there exist an open interval \(A \subseteq [\inf_X J, \sup_X J] \) and a number \(\rho > 0 \) such that, for each \(\lambda \in A \), the equation
\[
\psi'(x) = \mu \varphi'(J(x) - \lambda)J'(x) + \eta'(x)
\]
has at least three solutions whose norms are less than \(\rho \).
PROOF. We apply Theorem A taking $I = [\inf_X J, \sup_X J]$ and

$$
\Psi(x, \lambda) = \psi(x) - \eta(x) - \mu \varphi(J(x) - \lambda)
$$

for all $(x, \lambda) \in X \times I$.

Clearly, Ψ is C^1 in X, continuous in $X \times I$ and concave in I. By Corollary 41.9 of [4], the functionals η, J are sequentially weakly continuous. Hence, for each $\lambda \in I$, the functional $\Psi(\cdot, \lambda)$ is sequentially weakly lower semicontinuous. Moreover, it is coercive, since ψ is so and $\sup_{x \in X} \max \{|J(x)|, \eta(x)| < +\infty$. Moreover, it is clear that, for each $\lambda \in I$, the derivative of the functional $\eta(\cdot) + \varphi(J(\cdot) - \lambda)$ is compact (due to the assumptions on η and J and to the fact that φ' is bounded on the compact interval $[\inf_X J, \sup_X J - \lambda]$), and so, by Example 38.25 of [4], the functional $\Psi(\cdot, \lambda)$ satisfies the Palais-Smale condition.

Now, to realize that condition (a_3) is satisfied, we use Remark 1 and Proposition 1 with $\gamma = \psi - \eta$, observing that $\hat{\gamma} = \gamma$ since the range of J is an interval. Then, we see that all the assumptions of Theorem A are satisfied, and the conclusion follows in view of the chain rule.

It is worth noticing the following consequence of Theorem 2:

THEOREM 3. - Let X be a separable and reflexive real Banach space, let $J : X \to \mathbb{R}$ be a non-constant bounded C^1 functional with compact derivative and $J(0) = 0$, and let $\psi : X \to \mathbb{R}$ be a sequentially weakly lower semicontinuous and coercive C^1 functional whose derivative admits a continuous inverse on X^* and with $\psi(0) = 0$. Assume that there exists $\mu > 0$ such that

$$
\inf_{x \in X} (\psi(x) - \mu(e^{J(x)} - 1)) < 0 \leq \inf_{x \in X} (\psi(x) - \mu J(x)) .
$$

Then, there exist an open interval $A \subseteq [\mu e^{-\sup_X J}, \mu e^{-\inf_X J}]$ and a number $\rho > 0$ such that, for each $\lambda \in A$, the equation

$$
\psi'(x) = \lambda e^{J(x)} J'(x)
$$

has at least three solutions whose norms are less than ρ.

PROOF. From (6), it clearly follows that

$$
0 \leq \inf_{x \in J^{-1}(\mathbb{R}\setminus\{0\})} \frac{\psi(x) - \mu J(x)}{e^{J(x)} - J(x) - 1} < \mu .
$$

Consequently, we can apply Theorem 2 with $\eta = \mu J$ and $\varphi(t) = e^t - t - 1$, so that $\mu > \hat{\theta}$. Then, there exist an open interval $B \subseteq [\inf_X J, \sup_X J]$ and a number ρ such that, for each $\nu \in B$ the equation

$$
\psi'(x) = \mu(e^{J(x)-\nu} - 1)J'(x) + \mu J'(x) = \mu e^{-\nu} e^{J(x)} J'(x)
$$

has at least three solutions whose norms are less than ρ. Therefore, the conclusion follows taking

$$
A = \{\mu e^{-\nu} : \nu \in B\} ,
$$
and the proof is complete.

Proof of Theorem 1. Let us apply Theorem 2 taking

\[X = H_0^1(\Omega), \]

\[J = J_f, \]

\[\eta = J_g, \]

\[\varphi = H \]

and

\[\psi(u) = \frac{1}{2}K(\|u\|^2) \]

for all \(u \in X \).

Since \(f, g \in A \), the functionals \(J_f, J_g \) are \(C^1 \), with compact derivative. Since \(K \) is \(C^1 \), increasing and coercive, the functional \(\psi \) is sequentially weakly lower semicontinuous, \(C^1 \) and coercive. Let us show that \(\psi' \) has a continuous inverse on \(X^* \) (identified to \(X \), since \(X \) is a real Hilbert space). To this end, note that the continuous function \(t \rightarrow tk(t^2) \) is increasing in \([0, +\infty[\) and onto \([0, +\infty[\). Denote by \(\sigma \) its inverse and consider the operator

\[T(v) = \begin{cases}
\frac{\sigma(\|v\|)}{\|v\|}v & \text{if } v \neq 0 \\
0 & \text{if } v = 0
\end{cases} \]

Since \(\sigma \) is continuous and \(\sigma(0) = 0 \), the operator \(T \) is continuous in \(X \). For each \(u \in X \setminus \{0\} \), since \(k(\|u\|^2) > 0 \), we have

\[T(\psi'(u)) = T(k(\|u\|^2)u) = \frac{\sigma(k(\|u\|^2)|u|)}{k(\|u\|^2)|u|}k(\|u\|^2)u = \frac{\|u\|}{k(\|u\|^2)|u|}k(\|u\|^2)u = u , \]

as desired. Clearly, the assumptions on \(h \) imply that \(\varphi \) is non-negative, convex, with \(\varphi^{-1}(0) = \{0\} \). So, all the assumptions of Theorem 2 are satisfied, and the conclusion follows. \(\triangle \)

We conclude pointing out the following sample of application of Theorem 1 which is made possible by the fact that \(h \) is assumed to have the required properties on \(]-\omega_f, \omega_f[\) only.

EXAMPLE 1. - Let \(f : \mathbb{R} \to \mathbb{R} \) be a non-zero function belonging to \(A \), with \(\sup_{\mathbb{R}} |F| < +\infty \) and let \(k : [0, +\infty[\to \mathbb{R} \) be a continuous and non-decreasing function, with \(k(t) > 0 \) for all \(t > 0 \).

Then, for each \(\mu \) large enough, there exist an open interval \(A \subseteq]\inf_{\mathbb{R}} F, \sup_{\mathbb{R}} F[\) and a number \(\rho > 0 \) such that, for every \(\lambda \in A \), the problem

\[\begin{cases}
- k \left(\int_{\Omega} |\nabla u(x)|^2 dx \right) \Delta u = \mu \frac{\int_{\Omega} F(u(x))dx - \lambda}{(\inf_{\mathbb{R}} F)^2 - (\int_{\Omega} F(u(x))dx - \lambda)^2} f(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases} \]

has at least three weak solutions whose norms in \(H_0^1(\Omega) \) are less than \(\rho \).
References

[1] X. L. FAN, *On nonlocal p(x)-Laplacian Dirichlet problems*, Nonlinear Anal., **72** (2010), 3314-3323.

[2] B. RICCERI, *On a three critical points theorem*, Arch. Math. (Basel), **75** (2000), 220-226.

[3] B. RICCERI, *Nonlinear eigenvalue problems*, in *Handbook of Nonconvex Analysis and Applications*, D. Y. Gao and D. Motreanu eds., International Press, to appear.

[4] E. ZEIDLER, *Nonlinear functional analysis and its applications*, vol. III, Springer-Verlag, 1985.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania
Italy
e-mail address: ricceri@dmi.unict.it