Exact evaluation of the nuclear form factor for new kinds of majoron emission in neutrinoless double beta decay

C. Barberoa, J. M. Clineb, F. Krmpoti\u0107a and D. Tadi\u0107c

a Departamento de Física, Facultad de Ciencias Exactas
Universidad Nacional de La Plata, C. C. 67, 1900 La Plata, Argentina.

b McGill University, Montréal, Quêbec H3A 2T8, Canada.

c Physics Department, University of Zagreb
Bijenička c. 32-P.O.B. 162, 41000 Zagreb, Croatia.

Abstract

We have developed a formalism, based on the Fourier-Bessel expansion, that facilitates the evaluation of matrix elements involving nucleon recoil operators, such as appear in serveral exotic forms of neutrinoless double beta decay ($\beta\beta_{0\nu}$). The method is illustrated by applying it to the “charged” majoron model, which is one of the few that can hope to produce an observable effect. From our numerical computations within the QRPA performed for 76Ge, 82Se, 100Mo, 128Te and 150Nd nuclei, we test the validity of approximations made in earlier work to simplify the new matrix elements, showing that they are accurate to within 15%. Our new method is also suitable for computing other previously unevaluated $\beta\beta_{0\nu}$ nuclear matrix elements.

*Work partially supported by the Fundación Antorchas, Argentina, the CONICET from Argentina, the Universidad Nacional de La Plata, NSERC of Canada and FCAR of Québec.

†Fellow of the CONICET from Argentina.
Since the classic majoron model of Gelmini and Roncadelli [1] was excluded by the LEP measurement of the invisible width of the Z boson [2, 3], several new possibilities have been proposed for generating exotic neutrinoless double-beta decay with the emission of a massless majoron ($\beta\beta_M$). An interesting class of such models are those where the majoron is either a scalar [4] or a vector [5] boson that has lepton number -2 to balance that of the emitted electrons. These “charged majoron” models (CMM’s), so-called because the majoron carries the unbroken $U(1)$ charge of lepton number, are probably the only ones which have a chance of producing $\beta\beta_M$ at a rate which could be observed in the present generation of experimental searches [6, 7, 8].

From the point of view of nuclear physics, the CMM’s are interesting because their predicted rate of $\beta\beta_M$ depends on different matrix elements than in previously considered types of double beta decay, which had not been hitherto computed. In a previous publication [7] we made a first step toward computing the CMM matrix elements by neglecting a number of operators, an approximation which, while widely used in the literature, should be validated by more accurate computations. The aim of this letter is twofold. First, we elaborate a formalism, based on the Fourier-Bessel expansion introduced in ref. [9], that allows us to evaluate in a rather simple way the matrix elements of nuclear recoil operators, such as appear in the CMM. Second, to quantify the contributions of the operators neglected previously, we perform the corresponding numerical calculations in the QRPA for ^{76}Ge, ^{82}Se, ^{100}Mo, ^{128}Te and ^{150}Nd nuclei.

We begin by describing the matrix elements of interest and the approximations that were previously made. In the CMM of ref. [4], on which we will focus in this letter, the inverse half-life for $\beta\beta_M$-decay is

$$[T(0^+_i \to 0^+_f)]^{-1} = g_{CM}^2 G_{CM} |M_{CM}^+ - M_{CM}^-|^2,$$ \hspace{1cm}(1)$$

where g_{CM} is the effective majoron coupling defined in ref. [7],

$$G_{CM} = \frac{(G_F \cos \theta_C)^4}{128 \pi^7 \ln 2} \int (Q - \epsilon_1 - \epsilon_2)^3 \prod_{i=1}^{2} k_i F(\epsilon_i) d\epsilon_i,$$ \hspace{1cm}(2)$$

is the kinematical factor in natural units [10] and

$$M_{CM}^\pm = \frac{1}{4\pi} (0^+_f | \sum_{nm} \int k^2 dk u(k; M_{\pm}) O_{CM}(k; r_{nm}) | 0^+_i),$$ \hspace{1cm}(3)$$
with
\[
O_{CM}(k; r_{nm}) = i \int d\Omega_k k \cdot Y_{Rnm} e^{i k \cdot r_{nm}},
\]
are the nuclear form factors for charged majoron emission corresponding to the exchange of two neutrinos with masses M_{\pm}. Here
\[
v(k; M_{\pm}) = \frac{2}{\pi} \left\{ \frac{1}{M_{\pm}^2} \left[\frac{1}{\omega_+(\omega_+ + \mu)} - \frac{1}{k(k + \mu)} \right] + \frac{1}{2} \frac{\partial}{\partial M_{\pm}^2} \frac{1}{\omega_+(\omega_+ + \mu)} \right\},
\]
$\omega_+ = (k^2 + M_{\pm}^2)^{1/2}$, and μ is the average excitation energy of the intermediate nuclear states. The operator
\[
Y_{Rnm} = i \left[g_A^2(\sigma_n C_m - C_n \sigma_m) + ig_{v} g_A(\sigma_n \times D_m + D_n \times \sigma_m) + g_{v}^2(D_n - D_m) \right],
\]
with
\[
C_n = \frac{1}{2M} \sigma_n \cdot (2p_n + q_n), \\
D_n = \frac{1}{2M} (2p_n + q_n + if_w \sigma_n \times q_n),
\]
is the impulse non-relativistic approximation for the recoil term, obtained through the standard Foldy-Wouthuysen transformation \[11\]-\[15\]. M is the nucleon mass, $f_w = 4.7$ is the effective weak-magnetism coupling constant and $p_n \equiv -i \nabla_n^N$ and $q_n \equiv -i \nabla_n^L$ are, respectively, the nuclear and lepton operators acting at the point r_n, with the understanding that ∇_n^N operates only on the nucleon wave functions, while ∇_n^L acts only on the exponential factor in eq. (4). Therefore one can make the replacements
\[
q_n \to k, \quad q_m \to -k,
\]
which yields
\[
iM k \cdot Y_{Rnm} = -g_A^2 \left[-(\sigma_n \cdot k)(\sigma_m \cdot k) + (\sigma_n \cdot k)(\sigma_m \cdot p_m) - (\sigma_n \cdot p_n)(\sigma_m \cdot k) \right] \\
- g_{v} g_A \left[ik \cdot (\sigma_n \times p_m + p_n \times \sigma_m) + f_w[(\sigma_n \cdot k)(\sigma_m \cdot k) - k^2(\sigma_n \cdot \sigma_m)] \right] \\
- g_{v}^2 \left[(p_n - p_m) \cdot k + k^2 \right].
\]
\footnote{In eqs. (5) and (6) we have neglected the induced pseudoscalar interaction term. It is relatively small and can be easily embodied in eq. (6) by simply multiplying the operator $g_A^2(\sigma_n \cdot k)(\sigma_m \cdot k)$ by the factor $(1 + h_{p} W_0/2)$, where $h_{p} = g_{p}/g_A \approx 2M/m_n^2 \sim 1/20$, and W_0 is $\beta\beta$ transition energy of the order of MeV.}
In our previous work \[7\] we adopted the approximation made in another context by Doi et al., \[10\]

\[i k \cdot Y_{Rnm} \approx g_A \frac{k^2}{3M} \sigma_n \cdot \sigma_m (2g_W f_W + g_A), \]

(10)

and which was also used by ref. \[8\]. Although a series of different justifications was given for this procedure, and we will expand upon them below, operationally it means to neglect in (9) all terms containing the nucleon momenta, as well as the term \(g_A^2 k^2 \), and to use the relation

\[(\sigma_n \cdot k)(\sigma_m \cdot k) \approx \frac{1}{3} k^2 \sigma_n \cdot \sigma_m. \]

(11)

However the nuclei momenta are necessarily of the same order as the momentum transfer \(k \), and from this point of view the trustworthiness of the estimate (10) is questionable and it should be checked numerically. In the remainder of this letter we shall describe a method for so doing, and illustrate its use by computing for several nuclei the contributions to the matrix elements of \(k \cdot Y_{Rnm} \) that were previously neglected.

To begin, we rewrite the operator \(O_{CM}(k, r_{nm}) \) in the form

\[O_{CM}(k, r_{nm}) = O_{CM}^{AA}(k, r_{nm}) + O_{CM}^{AV}(k, r_{nm}) + O_{CM}^{VV}(k, r_{nm}), \]

(12)

with

\[O_{CM}^{AA}(k, r_{nm}) = g_A^2 \int \frac{d\Omega_k}{M} e^{ik \cdot r_{nm}} [(\sigma_n \cdot k)(\sigma_m \cdot k) - 2(\sigma_n \cdot k)(\sigma_m \cdot p_m)], \]

\[O_{CM}^{AV}(k, r_{nm}) = -g_A g_V \int \frac{d\Omega_k}{M} e^{ik \cdot r_{nm}} \left\{ i 2 k \cdot \sigma_n \times p_m + f_W [(\sigma_n \cdot k)(\sigma_m \cdot k) - k^2 (\sigma_n \cdot \sigma_m)] \right\}, \]

\[O_{CM}^{VV}(k, r_{nm}) = -\frac{g_V^2}{M} \int \frac{d\Omega_k}{M} e^{ik \cdot r_{nm}} (2p_m \cdot k + k^2). \]

(13)

In deriving the last result we used the fact that the terms containing \(p_m \) contribute in the same way as the analogous terms containing \(p_n \), i.e., the contribution of \(k \cdot (\sigma_n \times p_m) \) is equal to that of \(-k \cdot (\sigma_m \times p_n) \), etc.\[1\] To obtain the corresponding matrix elements

\[M_{CM}^{\pm} = \frac{1}{4\pi} \sum_{nm} \int k^2 dk v(k; M_{\pm}) O_{CM}^{X}(k, r_{nm}) |0^+\rangle, \]

(14)

\[^2 \text{Our relative signs differ in this equation and in eq. (6) from the corresponding ones of ref. [10] because of a sign error in the latter.} \]

\[^3 \text{This can be easily shown from the multipole expansion that follows.} \]
where \(|0^+_i\rangle\) and \(|0^+_f\rangle\) are the initial and final nuclear states, respectively, and \(x\) stands for \(AA\), \(AV\) and \(VV\), we do the following. First, we perform the multipole expansion in (13) and integrate over the angular coordinates \(d\Omega_k\). Second, we use the angular momenta algebra and introduce a complete set of intermediate states \(|J^+_\alpha\rangle\). In this way we get

\[
\mathcal{M}^{AA^+}_{CM} = \frac{4\pi g_A^2}{M} \int dk \frac{k^3}{k^3} v(k; M_{\pm}) \sum_{LL'J^+_\alpha} i^{L+L'} \times \begin{align*}
&\{2\delta_{LL'} i^{L+J} (-1)^J \hat{L} \hat{J}^{-1} (L1|J) \langle 0^+_f| || T_{LL'}(k, r, \sigma)|| J^+_\alpha \rangle \langle J^+_\alpha|| Y_J(k, r, \sigma \cdot p)|| 0^+_i\rangle \\
&- k \hat{L} \hat{L'} \hat{J}^{-2} (L1|J)(L'1|J) \langle 0^+_f| || T_{LL'}(k, r, \sigma)|| J^+_\alpha \rangle \langle J^+_\alpha|| T_{L'L'}(k, r, \sigma)|| 0^+_i\rangle \}
\end{align*}
\]

(15)

\[
\mathcal{M}^{AV^+}_{CM} = \frac{4\pi g_A g_V}{M} \int dk \frac{k^3}{k^3} v(k; M_{\pm}) \sum_{LL'J^+_\alpha} i^{L+L'} \times \begin{align*}
&\{-f_w k \delta_{LL'} \langle 0^+_f|| T_{LL'}(k, r, \sigma)|| J^+_\alpha \rangle \langle J^+_\alpha|| T_{LL'}(k, r, \sigma)|| 0^+_i\rangle \\
&+ f_w k \hat{L} \hat{L'} \hat{J}^{-2} (L1|J)(L'1|J) \langle 0^+_f| || T_{LL'}(k, r, \sigma)|| J^+_\alpha \rangle \langle J^+_\alpha|| T_{L'L'}(k, r, \sigma)|| 0^+_i\rangle \\
&- 2(-1)^{L+J} \sqrt{6L} \left\{ \frac{1}{L} \frac{J}{L'} \right\} (L1|L') \langle 0^+_f|| T_{L'J}(k, r, \sigma)|| J^+_\alpha \rangle \langle J^+_\alpha|| T_{L'J}(k, r, p)|| 0^+_i\rangle \}
\end{align*}
\]

(16)

\[
\mathcal{M}^{VV^+}_{CM} = \frac{4\pi g_V^2}{M} \int dk \frac{k^3}{k^3} v(k; M_{\pm}) \sum_{LL'J^+_\alpha} \times \begin{align*}
&\{-k \delta_{LL'} (-1)^J \langle 0^+_f|| Y_J(k, r, 1)|| J^+_\alpha \rangle \langle J^+_\alpha|| Y_J(k, r, 1)|| 0^+_i\rangle \\
&- 2i^{L+J} \hat{L} \hat{J}^{-1} (L1|J) \langle 0^+_f|| Y_J(k, r, 1)|| J^+_\alpha \rangle \langle J^+_\alpha|| T_{LJ}(k, r, p)|| 0^+_i\rangle \}
\end{align*}
\]

(17)

where \(\hat{J} \equiv \sqrt{2J + 1}\), \((L1|J)\) is a short notation for the Clebsh-Gordon coefficient \((L010|J0)\) and

\[
\begin{align*}
Y_{LM}(k, r, 1) &= j_L(kr) Y_{LM}(\mathbf{r}), \\
Y_{LM}(k, r, \sigma \cdot p) &= j_L(kr) Y_{LM}(\mathbf{r})(\sigma \cdot \mathbf{p}), \\
T_{LJM}(k, r, \sigma) &= j_L(kr)(\sigma \otimes Y_L(\mathbf{r}))(JM), \\
T_{LJM}(k, r, p) &= j_L(kr)(\mathbf{p} \otimes Y_L(\mathbf{r}))(JM),
\end{align*}
\]

(18)
are spherical one-body operators \([11]\), the reduced matrix elements of which appear in eqs. (14-17). The explicit dependence on the energies \(\omega_{J_\alpha}\) of the intermediate states \(|J_\alpha\rangle\) in the latter equations can be restored, if desired, by replacing \(\mu \to \omega_{J_\alpha}\) in eq. (3). The total matrix element is clearly

\[
\mathcal{M}^\pm_{CM} = \mathcal{M}^{AA\pm}_{CM} + \mathcal{M}^{AV\pm}_{CM} + \mathcal{M}^{VV\pm}_{CM},
\]

and in the approximation of eq. (10) this simplifies to

\[
\mathcal{M}^\pm_{CM} \simeq \frac{4\pi g_A (2g_{Vw} + g_A)}{3M} \int dk k^4 v(k; M_\pm) \sum_{LJ_\alpha} (-1)^{L+1}
\times \langle 0^+_J | T_{LJ}(k, r, \sigma) | J_\alpha^n \rangle \langle J_\alpha^n | T_{LJ}(k, r, \sigma) | 0^+_i \rangle.
\]

In what follows we shall compute both the the full matrix element and this approximation in order to compare the two.

The results derived so far are valid for any nuclear model; it remains only to evaluate the reduced matrix elements \(\langle 0^+_J | O_{LJ}(k, r) | J_\alpha^n \rangle\) and \(\langle J_\alpha^n | O'_{LJ}(k, r) | 0^+_i \rangle\) of the operators \(O_{LJ}(k, r)\) and \(O'_{LJ}(k, r)\) listed in (18). Within the QRPA formulation, after solving the BCS equations for the intermediate nucleus \([16]\), the transition matrix elements become

\[
\langle 0^+_J | O_{LJ}(k, r) | J_\alpha^n \rangle = -\sum_{pn} \langle p | O_{LJ}(k, r) | n \rangle \left[v_p u_n X_{pn;\alpha,J} + u_p v_n Y_{pn;\alpha,J} \right],
\]

\[
\langle J_\alpha^n | O'_{LJ}(k, r) | 0^+_i \rangle = -\sum_{pn} \langle p | O'_{LJ}(k, r) | n \rangle \left[u_p v_n X_{pn;\alpha,J} + v_p u_n Y_{pn;\alpha,J} \right],
\]

and the BCS approximation results from the substitution:

\[
\sum_\alpha \langle 0^+_J | O_{LJ}(k, r) | J_\alpha^n \rangle \langle J_\alpha^n | O'_{LJ}(k, r) | 0^+_i \rangle
\]

\[
\to \sum_{pn} \langle p | O_{LJ}(k, r) | n \rangle \langle p | O'_{LJ}(k, r) | n \rangle u_p v_n v_p u_n.
\]

For harmonic oscillator radial wave functions, the reduced single-particle \(pn\) form factors are \([11, 17]\)

\[
\langle p | Y_J(k, r, 1) | n \rangle = (4\pi)^{-\frac{3}{2}} W(pn; J0J) R^0(pn; J, k),
\]

\[
\langle p | T_{LJ}(k, r, \sigma) | n \rangle = (4\pi)^{-\frac{3}{2}} W(pn; L, 1, J) R^0(pn; L, k),
\]

\[
\langle p | T_{LJ}(k, r, p) | n \rangle = (4\pi)^{-\frac{3}{2}} [W^1_{-1}(pn; L, J) R^{(-)}(pn; L, k).
\]

\[5\]
\[\langle p | Y_j (k, \mathbf{r}, \mathbf{\sigma} \cdot \mathbf{p}) | n \rangle = (4\pi)^{-\frac{1}{2}} \left[W_1^{-}(pn; J)R^{-}(pn; J, k) + W_2^{(+)}(pn; J)R^{(+)}(pn; J, k) \right], \]

with the angular parts\(^4\)

\[W(pn; L, S, J) = \sqrt{2S} \hat{J} \hat{L} \hat{n} \hat{j}_n \hat{j}_p (l_n L | l_p) \begin{cases} L, S, J \mid l_n \frac{1}{2} \mid j_p \end{cases}, \]

\[W_1^{(\pm)}(pn; L, J) = \mp i(-1)^{l_p + j_n + J + \frac{3}{2}} \sqrt{\frac{S}{2}} \hat{J} \hat{L} \hat{n} \hat{j}_n \hat{j}_p (l_n + \frac{1}{2} \mp \frac{1}{2}) (l_p | l_n \mp 1), \]

\[W_2^{(\pm)}(pn; J) = \mp i(-1)^{l_n + j_n + J + \frac{3}{2}} \sqrt{\frac{S}{2}} \hat{J} \hat{L} \hat{j}_n \hat{j}_p (l_n + \frac{1}{2} \mp \frac{1}{2}) (l_p | l_n \mp 1), \]

and the radial parts

\[R^{0}(pn; L, k) \equiv R^L(k; l_p, n_p, l_n, n_n) = \int_0^\infty u_{n_p,l_p}(r)u_{n_n,l_n}(r)J_L(kr)r^2 dr \]

\[R^{(\pm)}(pn; L, k) = \pm \left(\frac{\nu}{2} \right)^{\frac{1}{2}} \left\{ (2l_n + 2n_n + 2 \mp 1) \frac{1}{2} R^L(k; l_p, n_p, l_n \mp 1, n_n) \right. \]

\[+ \left. (2n_n + 1 \pm 1) \frac{1}{2} R^L(k; l_p, n_p, l_n \pm 1, n_n) \right\}, \]

where \(\nu = M\omega/h \) is the oscillator parameter. We use here \(g_A = g_v \), a value almost universally adopted for the effective axial vector coupling constant, both in single and double beta nuclear decays. As in our previous work \([\text{1} - \text{4}]\) we made the numerical calculations in the simplifying limit of \(M_\pi = \infty \), which implies \(M^\pm_{CM} = 0 \), and \(M_\pi = 100 \) MeV, and we followed the QRPA procedure described in refs. \([\text{13}, \text{15}]\). For the discussion that follows

\(^4\)We use here the angular momentum coupling \(|(\frac{1}{2}, l_j)\).

\(^5\)There was a misprint in ref. \([\text{1}]\) requiring the following replacement:

\[M^\pm_{CM} = \sum_{LSJ^*} m(M_\pm; L, S, J^*) \rightarrow M_{CM}^\pm = \sum_{LJ^*} m(M_\pm; L, S = 1, J^*). \]

\(^6\)To assess the reliability of the nuclear model employed here, it is worthwhile to compare the recently
we will only need the parameters \(s \) and \(t \), defined as the ratios between the \(T = 1, S = 0 \) and \(T = 0, S = 1 \) coupling constants in the particle-particle (PP) channels and the pairing force constants, \(i.e., s = 2v_{pp}^p/[v_{\text{pair}}(p) + v_{\text{pair}}(n)] \) and \(t = 2v_{pp}^n/[v_{\text{pair}}(p) + v_{\text{pair}}(n)] \). (For a value of \(s \approx 1 \) the isospin symmetry is restored within the QRPA.)

Table 1 gives the contributions of the individual matrix elements in (12) and (13) and their combinations for the charged majoron \(\beta\beta \) decay in \(^{76}\text{Ge} \). Three different results are shown: i) the unperturbed or BCS values (second column), ii) the QRPA calculations when only the particle-hole interaction is considered, \(i.e., \) with \(s = t = 0 \) (third column) and iii) the full QRPA calculations with \(s = 1 \) and \(t = 1 \) (fourth column). From the results for the Gamow-Teller like operators \(k^2\sigma_n \cdot \sigma_m/M \) and \(\sigma_n \cdot k\sigma_m \cdot k/M \) we see that the approximation (14) is always quite good. This is also true for the individual contributions, coming both from the natural parity \((\pi = (-)^J) \) and the unnatural parity \((\pi = (-)^{J+1}) \) virtual states \(J^\pi \). The last two rows show that the approximation (14) is also quite reasonable. This is clearly because the contributions coming from the velocity dependent operators, as well as from the Fermi-like operator \(k^2/M \), are relatively small.

It should be noticed that the operators \(-2(\sigma_n \cdot k)(\sigma_m \cdot p_m)/M \) and \(-2i\sigma_n \cdot k \times p_m/M \)
\((-2p_n \cdot k/M \) and \(-k^2/M \)) are forbidden by the \(L \) and \(J \) selection rules for the natural (unnatural) parity intermediate states in eqs. (13), (16) and (17). Moreover, while all intermediate states contribute coherently for the velocity independent operators, the same is not true of the velocity dependent operators. The latter are also more sensitive to the PP correlations than the former, to the extent that their contributions pass through zero for \(t \leq 1.25 \). Table 2 shows the comparison of the exact QRPA results from eq. (19), for several \(\beta\beta \) decaying nuclei, with those resulting from the approximation (20). We have used here \(s = 1 \) and \(t = t_{\text{sym}} \) as discussed in ref. [18], \(i.e., t = 1.25, 1.30, 1.50, 1.40 \) and 1.85 for \(^{76}\text{Ge}, ^{82}\text{Se}, ^{100}\text{Mo}, ^{128}\text{Te} \) and \(^{150}\text{Nd} \), respectively. In all cases the exact matrix elements are larger in magnitude than the approximate ones by \(\leq 15\% \).

We would also like to point out that our formulation is applicable to matrix elements

\[
T_{1/2}^{2\nu} = \begin{pmatrix}
4.3_{-1.1}^{+2.4}[\text{stat.}] \pm 1.4[\text{syst.}] \times 10^{19} & \text{yr for the } \beta\beta_{2\nu} \text{ half-life measurement in } ^{48}\text{Ca},
\end{pmatrix}
\]

with the predicted value (using the same nuclear structure technique) \(T_{1/2}^{2\nu} = 2.8 \times 10^{19} \) y [18]. When the calculation was done only the lower limit of the \(2\nu \) decay half-life, \(T_{1/2}^{2\nu} \geq 3.6 \times 10^{19} \) y, was known experimentally. On the other hand, the nuclear shell model [18] restricts the corresponding half-life from above, \(T_{1/2}^{2\nu} \leq 10^{20} \) y.
that appear in the usual $\beta \beta_{0\nu}$-decay, as well some supersymmetric contributions. For the former, the neutrino mass term has been evaluated within this framework in refs. [9, 18].

In addition, the recoil matrix element [20]–[23]

$$M_R^{(0\nu)} = \left\langle -i \int \frac{dk}{(2\pi)^2} k \cdot (\sigma_n \times D_m + D_n \times \sigma_m) \frac{e^{i k \cdot r_{mn}}}{k(k + \mu)} \right\rangle,$$

(26)

which contributes to neutrinoless $\beta \beta$ decay in models where the right-handed $(V + A)$ exists along with the usual left-handed $(V - A)$ one, can be easily calculated from eq. (16) by making the substitution

$$g_AG_V(k; M_{\pm}) \rightarrow \frac{1}{\pi \frac{1}{k(k + \mu)}},$$

(27)

(The finite nucleon size effect and the short-range two-nucleon correlations can also be incorporated in a simple way [18].) Furthermore in supersymmetric models [24] a matrix element arises with a neutrino potential of the form

$$h_R(r) \sim \frac{2}{\pi} \int dk \frac{k^4}{\omega(\omega + \mu)} j_0(kr) = \int \frac{dk}{2\pi^2} \frac{k^2}{\omega(\omega + \mu)} e^{i kr},$$

(28)

whose extra powers of k^2 relative to the usual neutrino potential show that this is similar to the recoil-like terms we evaluated above, making this matrix element also amenable to calculation by our method.

In summary, we have developed a formalism especially suited for computing nuclear form factors that contain nuclear recoil operators, regardless of the nuclear model, and we applied it to the matrix elements for charged majoron emission in the QRPA. We thereby found that the approximations used in our previous paper [7] to simplify the nuclear form factor (6) work quite well, to within a relative error of 15%.

7 So far the matrix element $M_R^{(0\nu)}$ has been handled as a two-body operator, which leads to rather complicated analytical expressions (see eqs. (2.20) to (2.27) in ref. [21] and eqs. (3.65) to (3.68) in ref. [23]).
References

[1] G.B. Gelmini and M. Roncadelli, Phys. Lett. B99 (1981) 411.
[2] G.S. Abrams et al., Phys. Rev. Lett. 63 (1989) 724.
[3] M.C. Gonzalez-Garcia and Y. Nir, Phys. Lett. B232 (1989) 383.
[4] C.P. Burgess and J.M. Cline, Phys. Lett. B298 (1993) 141, *ibid*. Phys. Rev. D49 (1994) 5925.
[5] C.D. Carone, Phys. Lett. B308 (1993) 85.
[6] P. Bamert, C.P. Burgess and R.N. Mohapatra, Nucl. Phys. B449 (1995) 25.
[7] C. Barbero, J.M. Cline, F. Krmpotić and D. Tadić, Phys. Lett. B371 (1996) 78.
[8] M. Hirsch, H.V. Klapdor–Kleingrothaus, S.G. Kovalenko and H. Päs, Phys. Lett. B372 (1996) 8.
[9] F. Krmpotić, J. Hirsch and H. Dias, Nucl. Phys. A542 (1992) 85;
[10] M. Doi, T. Kotani and E. Takasugi, Phys. Rev. D37 (1988) 2575.
[11] M.E. Rose and R.K. Osborn, Phys. Rev. 93 (1954) 1315, *ibid*. Phys. Rev. 93 (1954) 1326.
[12] J.D. Bjorken and S.D. Drell, *Relativistic Quantum Mechanics* (McGraw Hill, New York 1964).
[13] R.J. Blin-Stoyle and S.C.K. Nair, Advan. Phys. 15 (1966) 493.
[14] C. Itzykson and J.B. Zuber, *Quantum Field Theory* (McGraw-Hill, New York 1980).
[15] E.D. Commins and P.H. Bucksbaum, *Weak Interactions of Leptons and Quarks* (Cambridge University Press, 1983).
[16] F. Krmpotić, T.T.S. Kuo, A. Mariano, E.J.V. de Passos and A.F.R. de Toledo Piza, preprint hep-ph/9511227.
[17] T. deForest and J.D. Walecka, Adv. Phys. 15 (1966) 1.

[18] F. Krmpotić and S. Shelly Sharma, Nucl. Phys. A572 (1994) 329.

[19] A. Poves, R. P. Bahukutumbi, K. H. Langanke and P. Vogel, Phys. Lett. B361, 1 (1995).

[20] M. Doi, T. Kotani and E. Takasugi, Prog. Theor. Phys. Suppl. 83, (1985), 1.

[21] T. Tomoda, A. Faessler, K.W. Schmid and F. Grümmer, Nucl. Phys. A452 (1986) 591.

[22] K. Muto, E. Bender and H.V. Klapdor, Z. Phys. A334 (1988) 177.

[23] T. Tomoda, Rep. Prog. Phys. 54 (1991) 53.

[24] M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Lett. B372 (1996) 181-186.
Table 1: Contributions of the individual matrix elements and their combinations for the charged majoron decay in 76Ge.

Operator	BCS	ph-QRPA	full-QRPA
$k^2 \sigma_n \cdot \sigma_m / M$	0.200	0.165	0.112
$\sigma_n \cdot k \sigma_m \cdot k / M$	0.067	0.055	0.037
$-k^2 / M$	0.067	0.049	0.035
$-2(\sigma_n \cdot k)(\sigma_m \cdot p_m) / M$	-0.026	-0.014	0.007
$-2i k \cdot \sigma_n \times p_m / M$	0.016	0.014	-0.004
$-2\mathbf{p}_n \cdot k / M$	0.006	0.006	0.006
$-g_A^2 k \cdot (\sigma_n C_m - C_n \sigma_m)$	0.041	0.041	0.044
$-ig'_A g_A k \cdot (\sigma_n \times D_m + D_n \times \sigma_m)$	0.640	0.530	0.348
$-g_A^2 k \cdot (D_n - D_m)$	0.073	0.054	0.041
$i k \cdot Y_{Rnm}$	0.754	0.624	0.433
$g_A k^2 \sigma_n \cdot \sigma_m (2g'_A f_W + g_A) / 3M$	0.694	0.571	0.387

Table 2: Results for the exact and approximated matrix elements, given eqs. (19) and (20), respectively. Both the particle-hole and the particle-particle channels have been considered in the QRPA calculations.

Operator	76Ge	82Se	100Mo	128Te	150Nd
$i k \cdot Y_{Rnm}$	0.433	0.437	0.444	0.412	0.345
$g_A k^2 \sigma_n \cdot \sigma_m (2g'_A f_W + g_A) / 3M$	0.387	0.388	0.380	0.359	0.288