Study of CP Violation in $B^- \to K^-\pi^+\pi^-$ and $B^- \to K^-\sigma(600)$ decays in the QCD factorization approach

Jing-Juan Qi * and Xin-Heng Guo †

College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Zhen-Yang Wang ‡

Physics Department, Ningbo University, Zhejiang 315211, China

Zhen-Hua Zhang §

School of Nuclear and Technology, University of South China, Hengyang, Hunan 421001, China

Chao Wang $¶$

Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an 710072, China

(Dated: November 7, 2018)

Abstract

In this work, we study the localized CP violation in $B^- \to K^-\pi^+\pi^-$ and $B^- \to K^-\sigma(600)$ decays by employing the quasi two-body QCD factorization approach. Both the resonance and the nonresonance contributions are studied for the $B^- \to K^-\pi^+\pi^-$ decay. The resonance contributions include those not only from $[\pi\pi]$ channels including $\sigma(600)$, $\rho^0(770)$ and $\omega(782)$ but also from $[K\pi]$ channels including $K^*(892)$, $K_0^*(1430)$, $K^*(1410)$, $K^*(1680)$ and $K_2^*(1430)$. By fitting the experimental data $A_{CP}(K^-\pi^+\pi^-) = 0.678 \pm 0.078 \pm 0.0323 \pm 0.007$ for $m_{K^-\pi^+}^2 < 15$ GeV2 and $0.08 < m_{\pi^+\pi^-}^2 < 0.66$ GeV2, we get the end-point divergence parameters in our model, $\phi_S \in [4.75, 5.95]$ and $\rho_S \in [4.2, 8]$. Using these results for ρ_S and ϕ_S, we predict that the CP asymmetry parameter $A_{CP} \in [-0.094, -0.034]$ and the branching fraction $B \in [1.82, 20.0] \times 10^{-5}$ for the $B^- \to K^-\sigma(600)$ decay. In addition, we also analyse contributions to the localized CP asymmetry $A_{CP}(B^- \to K^-\pi^+\pi^-)$ from $[\pi\pi], [K\pi]$ channel resonances and nonresonance individually, which are found to be $A_{CP}(B^- \to K^-[\pi^+\pi^-] \to K^-\pi^+\pi^-) = 0.585 \pm 0.045$, $A_{CP}(B^- \to [K^-\pi^+]\pi \to K^-\pi^+\pi^-) = 0.086 \pm 0.021$ and $A_{CP}^{NR}(B^- \to K^-\pi^+\pi^-) = 0.061 \pm 0.0042$, respectively. Comparing these results, we can see that the localized CP asymmetry in the $B^- \to K^-\pi^+\pi^-$ decay is mainly induced by the $[\pi\pi]$ channel resonances while contributions from the $[K\pi]$ channel resonances and nonresonance are both very small.

PACS numbers: 12.38.Bx, 13.25.Hw, 14.40.-n
I. INTRODUCTION

Nonleptonic decays of hadrons containing a heavy quark play an important role in testing the Standard Model (SM) picture of the Charge-Parity (CP) violation mechanism in flavor physics, improving our understanding of nonperturbative and perturbative QCD and exploring new physics beyond the SM. CP violation is related to the weak complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the mixing of different generations of quarks \[1, 2\]. Besides the weak phase, a large strong phase is also needed for a large CP asymmetry. Generally, this strong phase is provided by QCD loop corrections and some phenomenological models.

Three-body decays of heavy mesons are more complicated than the two-body case as they receive resonant and nonresonant contributions and involve three-body matrix elements. The direct nonresonant three-body decay of mesons generally receives two separate contributions: one from the point like weak transition and the other from the pole diagrams that involve three-point or four-point strong vertices. The nonresonant background in charmless three-body B decays due to the transition \(B \to M_1M_2M_3\) has been studied extensively based on Heavy Meson Chiral Perturbation Theory (HMChPT) \[3–5\]. However, the predicted decay rates are, in general, unexpectedly large and not recovered in the soft meson region. Therefore, it is important to reexamine and clarify the existing calculations. In this work we will follow Ref. \[6\] to assume the momentum dependence of nonresonance amplitudes in the exponential form \(e^{-\alpha_{NR} p_B \cdot (p_i + p_j)}\) \(\alpha_{NR}\) is unknown parameter, \(p_B\), \(p_i\) and \(p_j\) are the four momenta of the \(B\), \(i\) and \(j\) mesons, respectively) so that the HMChPT results are recovered in the soft meson limit \(p_i, p_j \to 0\). At any rate, it is important to understand and identify the underlying mechanism for nonresonant decays.

Besides the nonresonance background, the three-body meson decays are generally dominated by intermediate resonances, namely, they proceed via quasi-two-body decays containing resonance states. LHCb also observed the large CP asymmetry in the localized region of the phase space \[7, 8\], i.e. \(A_{CP}(K^-\pi^+\pi^-) = 0.678 \pm 0.078 \pm 0.0323 \pm 0.007\) for \(m_{K^-\pi^+}^2 < 15\) GeV\(^2\) and \(0.08 < m_{\pi^+\pi^-}^2 < 0.66\) GeV\(^2\), which spans the \([\pi\pi]\) channel and \([K\pi]\) channel resonances, such as \(\sigma(600)\), \(\rho^0(770)\), \(\omega(782)\), \(K^*(892)\), \(K^*(1410)\), \(K^0(1430)\), \(K^*(1680)\) and \(K_2^*(1430)\) mesons. Some other considerations also motivate a precise analysis of \(B^- \to K^-\pi^+\pi^-\) decays. The CP asymmetries in the decays \(B \to K^*(892)\pi\), \(B \to K^*(1430)\pi\) and \(B \to K_2^*(1430)\pi\) are predicted to be negligible \[9, 10\] compared to the current precision, since these are mediated by \(b \to s\) loop (penguin) transitions only, with no \(b \to u\) tree component. It is worthwhile to study the contributions from \(K\pi\) channel resonances in the \(B^- \to K^-\pi^+\pi^-\) decays.

Theoretically, to calculate the hadronic matrix elements of hadronic B weak decays, some approaches, including QCD factorization (QCDF) \[10, 11\], perturbative QCD(pQCD) \[12\] and soft-collinear effective theory (SCET) \[13\], have been fully developed and extensively employed in recent years. Even though the annihilation contributions are formally power suppressed in the heavy quark limit, they may be...
numerically important for realistic hadronic B decays, particularly for pure annihilation processes and direct CP asymmetries. Unfortunately, in the collinear factorization approximation, the calculation of annihilation corrections always suffers from end-point divergence. In the pQCD approach, such divergence is regulated by introducing the parton transverse momentum k_T and the Sudakov factor at the expense of modeling the additional k_T dependence of meson wave functions, and large complex annihilation corrections are presented [14]. In the SCET approach, such divergence is removed by separating the physics at different momentum scales and using zero-bin subtraction to avoid double counting the soft degrees of freedom [15, 16]. In the QCDF approach, such divergence is usually parameterized in a model-independent manner [10, 11] and will be explicitly expressed in Sect. III.

There are many experimental studies which have been successfully carried out at B factories (BABAR and Belle), Tevatron (CDF and D0) and LHCb and are being continued at LHCb and Belle experiments. These experiments provide highly fertile ground for theoretical studies and have yielded many exciting and important results, such as measurements of pure annihilation $B_s \to \pi\pi$ and $B_d \to KK$ decays reported recently by CDF, LHCb and Belle [17–19], which may suggest the existence of unexpected large annihilation contributions and have attracted much attention [20–22]. So it is also important to consider the annihilation contributions to B decays.

The remainder of this paper is organized as follows. In Sect. II, we present the form factors, decay constants and distribution amplitudes of different mesons. In Sect. III, we present the formalism for B decays in the QCDF approach. In Sect. IV, we present detailed calculations of CP violation for $B^- \to K^-\pi^+\pi^-$ and $B^- \to K^-\sigma(600)$ decays. The numerical results are given in Sect. V and we summarize our work in Sect. VI.

II. FORM FACTORS, DECAY CONSTANTS AND LIGHT-CONE DISTRIBUTION AMPLITUDES

Since the form factors for $B \to P$, $B \to V$, $B \to S$ and $B \to T$ (P, V, S and T represent pseudoscalar, vector, scalar and tensor mesons, respectively) weak transitions and light-cone distribution amplitudes and decay constants of P, V, S and T will be used in treating B decays, we first discuss them in this section.
The form factors of B to a meson weak transition can be decomposed as [23, 24]

$$
\langle P(p')|\bar{\nu}\mu B(p)\rangle = \left(p_\mu - \frac{m_B^2 - m_P^2}{q^2}q_\mu\right) F_1^{BP}(q^2) + \frac{m_B^2 - m_P^2}{q^2}q_\mu F_0^{BP}(q^2),
$$

$$
\langle V(p')|\bar{\nu}\mu B(p)\rangle = \frac{2}{m_B + m_V} \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} p^\rho p^\sigma V^{BV}(q^2),
$$

$$
\langle V(p')|\bar{\Lambda}_\mu B(p)\rangle = i \left\{ (m_B + m_V)\epsilon^{*}_\mu A^{BV}(q^2) - \frac{\epsilon^{*} \cdot q}{m_B + m_V} P_\mu A^{BV}_2(q^2) - 2m_V \frac{\epsilon^{*} \cdot P}{q^2} q_\mu [A^{BV}_3(q^2) - A^{BV}_0(q^2)] \right\},
$$

$$
\langle S(p')|\bar{\Lambda}_\mu B(p)\rangle = -i \left\{ \left(p_\mu - \frac{m_B^2 - m_P^2}{q^2}q_\mu\right) F_1^{BS}(q^2) + \frac{m_B^2 - m_P^2}{q^2}q_\mu F_0^{BS}(q^2) \right\},
$$

$$
\langle T(p')|\bar{\Lambda}_\mu B(p)\rangle = i \left\{ (m_B + m_T)\epsilon^{*}_\mu A^{BT}(q^2) - \frac{\epsilon^{*} \cdot q}{m_B + m_T} P_\mu A^{BT}_2(q^2) - 2m_T \frac{\epsilon^{*} \cdot P}{q^2} q_\mu [A^{BT}_3(q^2) - A^{BT}_0(q^2)] \right\},
$$

where $P_\mu = (p + p')_\mu$, $q_\mu = (p - p')_\mu$, \hat{V}_μ, $\hat{\Lambda}_\mu$ and \hat{S}_μ are the weak vector, axial-vector and scalar currents, respectively, i.e. $\hat{V}_\mu = \bar{q}_2\gamma_\mu q_1$, $\hat{\Lambda}_\mu = \bar{q}_2\gamma_\mu\gamma_5 q_1$, $\hat{S} = \bar{q}_2 q_1$, ϵ_μ is the polarization vector of V, $\epsilon^{*\mu} \equiv \epsilon^{*\mu\nu} p_\nu / m_B$ ($\epsilon^{*\mu}$ is the polarization tensor of T), $F_i^{BP}(q^2)$ ($i = 0, 1$) and $A_i^{BV(T)}(q^2)$ ($i = 0, 1, 2, 3$) are the weak form factors. The form factors included in our calculations satisfy $F_1^{BP}(0) = F_0^{BP}(0)$, $A_3^{BV(T)}(0) = A_0^{BV(T)}(0)$, $A_3^{BV(T)}(q^2) = [(m_B + m_V(T))/2m_V(T)] A_1^{BV(T)}(q^2) - [(m_B + m_V(T))/2m_V(T)] A_0^{BV(T)}(q^2)$ and $F_1^{BS}(q^2) = F_0^{BS}(q^2)$.

The decay constants are defined as [24]

$$
\langle P(p')|\bar{\Lambda}_\mu|0\rangle = -if_\mu p'_\mu,
$$

$$
\langle V(p')|\bar{\Lambda}_\mu|0\rangle = f_V m_V \epsilon^{*}_\mu, \quad \langle V(p')|\bar{\sigma}\rho q'_|0\rangle = f_V (p_\rho \epsilon^{*}_\sigma - p_\sigma \epsilon^{*}_\rho) m_V,
$$

$$
\langle S(p')|\bar{\Lambda}_\mu|0\rangle = f_S p'_\mu, \quad \langle S(p')|\bar{S}(0) = m_S f_S, \quad \langle T(p')|J_{\mu\nu}(0)|0\rangle = f_T m_T^2 \epsilon^{*}_{\mu\nu}, \quad \langle T(p')|J^{+}_{\mu\nu\alpha}(0)|0\rangle = -if_T^+ (p_\rho \epsilon^{*}_{\mu\alpha} - p_\alpha \epsilon^{*}_{\rho\mu}) m_T,
$$

where $J_{\mu\nu}(0)$ and $J^{+}_{\mu\nu\alpha}(0)$ are local currents involving covariant derivatives which take the following forms:

$$
J_{\mu\nu}(0) = \frac{1}{2} (\bar{q}_1(0)\gamma_\mu \gamma_\nu \bar{D}_\rho q_2(0) + \bar{q}_1(0)\gamma_\nu \gamma_\mu \bar{D}_\rho q_2(0)),
$$

$$
J^{+}_{\mu\nu\alpha}(0) = \bar{q}_1(0)\sigma_{\mu\nu} \bar{D}_\alpha q_2(0),
$$

and $\bar{D} = \bar{D}_\mu - \bar{D}_\mu$ with $\bar{D}_\mu = \partial_\mu + ig_s A^{a}_\mu \lambda^a/2$ and $\bar{D}_\mu = \partial_\mu - ig_s A^{a}_\mu \lambda^a/2$ (g_s is the QCD coupling constant, A^{a}_μ is the vector field and λ^a are the Gellman matrices).

The twist-2 light-cone distribution amplitudes (LCDA) for the pseudoscalar, vector and tensor mesons are respectively [10, 24]

$$
\Phi_M(x, \mu) = 6x(1 - x) \sum_{m=0}^{\infty} \alpha_m^M(\mu) C_m^{3/2} (2x - 1), \quad M = P, V, T
$$

(4)
and the twist-3 ones are respectively

\[
\Phi_m(x) = \begin{cases}
1 & m = p, \\
3 \left[2x - 1 + \sum_{m=1}^{\infty} \alpha_{m,1}(\mu) P_{m+1}(2x - 1) \right] & m = v, \\
5 \left(1 - 6x + 6x^2 \right) & m = t,
\end{cases}
\]

(5)

where \(C_m^{3/2} \) and \(P_m \) are the Gegenbauer and Legendre polynomials in Eq. (4) and Eq. (5), respectively, \(\alpha_m(\mu) \) are Gegenbauer moments which depend on the scale \(\mu \).

The twist-2 light-cone distribution amplitude for a scalar meson reads

\[\Phi_S(x, \mu)(n,s) = \bar{f}_S^{n,s} 6x(x - 1) \sum_{m=1,3,5} B_m(\mu) C_m^{3/2}(2x - 1), \]

(6)

where \(B_m \) are Gegenbauer moments, \(\bar{f}_S \) is the decay constant of the scalar mesons, \(n \) denotes the \(u, d \) quark component of the scalar meson, \(n = \frac{1}{\sqrt{2}}(u \bar{u} + d \bar{d}) \), and \(s \) denotes the components \(s \bar{s} \). As for the twist-3 ones, we shall take the asymptotic forms

\[\Phi_s(x)^{(n,s)} = \bar{f}_S^{n,s}. \]

(7)

III. B Decays in QCD Factorization

In the SM, the effective weak Hamiltonian for non-leptonic \(B \)-meson decays is given by

\[H_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{p=u,c} \sum_{D=u,D} \lambda_p^{(D)}(c_1 O_1^p + c_2 O_2^p + \sum_{i=3}^{10} c_i O_i + c_{7\gamma} O_{7\gamma} + c_{8g} O_{8g}) \right] + h.c., \]

(8)

where \(\lambda_p^{(D)} = V_{pb}^* V_{pD} \), \(V_{pb} \) and \(V_{pD} \) are the CKM matrix elements, \(G_F \) represents the Fermi constant, \(c_i \) \((i = 1 - 10, 7\gamma, 8g) \) are Wilson coefficients, \(O_{1,2}^p \) are the tree level operators, \(O_{3-6} \) are the QCD penguin operators, \(O_{7-10} \) arise from electroweak penguin diagrams, and \(O_{7\gamma} \) and \(O_{8g} \) are the electromagnetic and chromomagnetic dipole operators, respectively.

Within the framework of QCD factorization, the effective Hamiltonian matrix elements are written in the form

\[\langle M_1 M_2 | H_{eff} | B \rangle = \sum_{p=u,c} \lambda_p^{(D)} \langle M_1 M_2 | T_A^p + T_B^p | B \rangle, \]

(9)

where \(T_A^p \) describes the contribution from naive factorization, vertex correction, penguin amplitude and spectator scattering expressed in terms of the parameters \(a_i^p \), while \(T_B^p \) contains annihilation topology amplitudes characterized by the annihilation parameters \(b_i^p \).
The flavor parameters a_i^p are basically the Wilson coefficients in conjunction with short-distance non-factorizable corrections such as vertex corrections and hard spectator interactions. In general, they have the expressions \[10\]

$$a_i^p(M_1 M_2) = (c'_i + \frac{c'_i + 1}{N_c}) N_i(M_2) + \frac{c'_i + 1}{N_c} \frac{C_F \alpha_s}{4\pi} \left[V_i(M_2) + \frac{4\pi^2}{N_c} H_i(M_1 M_2) \right] + P_i^p(M_2),$$

where c'_i are effective Wilson coefficients which are defined as $c_i(m_b)\langle O_i(m_b) \rangle = c'_i\langle O_i \rangle^{\text{tree}}$, with $\langle O_i \rangle^{\text{tree}}$ being the matrix element at the tree level, the upper (lower) signs apply when i is odd (even), $N_i(M_2)$ is leading-order coefficient, $C_F = (N_c^2 - 1)/2N_c$ with $N_c = 3$, the quantities $V_i(M_2)$ account for one-loop vertex corrections, $H_i(M_1 M_2)$ describe hard spectator interactions with a hard gluon exchange between the emitted meson and the spectator quark of the B meson, and $P_i^p(M_1 M_2)$ are from penguin contractions \[10\].

The expressions of the quantities $N_i(M_2)$ read

$$N_i(V) = \begin{cases}
0 & i = 6, 8, \\
1 & \text{else},
\end{cases} \quad N_i(S) = 0, \quad N_i(P) = 0, \quad N_i(T) = 0. \tag{11}$$

When $M_1 M_2 = VP, PV$, the correction from the hard gluon exchange between M_2 and the spectator quark is given by \[10, 11\]

$$H_i(M_1 M_2) = \frac{f_B f_{M_1}}{2m_V \epsilon_V \cdot p_B F_{0}^{B \rightarrow M_1}(0)} \int_0^1 \frac{d\xi}{\xi} \Phi_B(\xi) \int_0^1 dx \int_0^1 dy \left[\frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{x y} + r_M \frac{\Phi_{M_3}(y)\Phi_{M_1}(y)}{x y} \right],$$

for $i = 1 - 4, 9, 10$, \[12\]

$$H_i(M_1 M_2) = -\frac{f_B f_{M_1}}{2m_V \epsilon_V \cdot p_B F_{0}^{B \rightarrow M_1}(0)} \int_0^1 \frac{d\xi}{\xi} \Phi_B(\xi) \int_0^1 dx \int_0^1 dy \left[\frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{x y} + r_M \frac{\Phi_{M_3}(y)\Phi_{M_1}(y)}{x y} \right],$$

for $i = 5, 7$ and $H_i(M_1 M_2) = 0$ for $i = 6, 8$.

When $M_1 M_2 = SP, PS$ \[10, 25, 26\], \[13\]

$$H_i(M_1 M_2) = \frac{f_B f_{M_1}}{f_{M_2} F_0^{B \rightarrow M_1} m_B^2} \int_0^1 \frac{d\xi}{\xi} \Phi_B(\xi) \int_0^1 dx \int_0^1 dy \left[\frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{x y} + r_M \frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{x y} \right],$$

for $i = 1 - 4, 9, 10$, \[14\]

$$H_i(M_1 M_2) = -\frac{f_B f_{M_1}}{f_{M_2} F_0^{B \rightarrow M_1} m_B^2} \int_0^1 \frac{d\xi}{\xi} \Phi_B(\xi) \int_0^1 dx \int_0^1 dy \left[\frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{x y} + r_M \frac{\Phi_{M_2}(x)\Phi_{M_1}(y)}{x y} \right],$$

for $i = 5, 7$ and $H_i(M_1 M_2) = 0$ for $i = 6, 8$.

(continued on next page)
When $M_1M_2 = TP, PT$ \([24, 28]\)

$$H_i(M_1M_2) = \frac{f_B f_{M_1}}{2m_{BP}} \int_0^1 \frac{d\xi}{\xi} \Phi_B(\xi) \int_0^1 dx \int_0^1 dy \left\{ \begin{array}{l} \frac{m_{M_1}}{2\sqrt{2}p_c A_0^{M_0+M_1}(m_{M_2}^2)} \left[\sqrt{\frac{2}{3}} \Phi_{M_0}(x)\Phi_{M_1}(y) + r_M^M \Phi_{M_0}(x)\Phi_{M_1}(y) \right] \right. , \\
\left. \frac{1}{F_1^{H+M_1}(m_{M_2}^2)} \left[\Phi_{M_2}(x)\Phi_{M_1}(y) + r_M^M \Phi_{M_2}(x)\Phi_{M_1}(y) \right] \right. \end{array} \right\}, \quad (M_1M_2 = TP)$$ \quad (16)

$$\text{for } i = 1 - 4, 9, 10,$$

$$H_i(M_1M_2) = \frac{f_B f_{M_1}}{2m_{BP}} \int_0^1 \frac{d\xi}{\xi} \Phi_B(\xi) \int_0^1 dx \int_0^1 dy \left\{ \begin{array}{l} \frac{m_{M_1}}{2\sqrt{2}p_c A_0^{M_0+M_1}(m_{M_2}^2)} \left[\sqrt{\frac{2}{3}} \Phi_{M_0}(x)\Phi_{M_1}(y) + r_M^M \Phi_{M_0}(x)\Phi_{M_1}(y) \right] \right. , \\
\left. \frac{1}{F_1^{H+M_1}(m_{M_2}^2)} \left[\Phi_{M_2}(x)\Phi_{M_1}(y) + r_M^M \Phi_{M_2}(x)\Phi_{M_1}(y) \right] \right. \end{array} \right\}, \quad (M_1M_2 = PT)$$ \quad (17)

$$\text{for } i = 5, 7 \text{ and } H_i(M_1M_2) = 0 \text{ for } i = 6, 8.$$

In Eqs. \([12, 17]\) $\bar{x} = 1 - x, \bar{y} = 1 - y,$ and r_x^M (i=1,2) are “chirally-enhanced” terms which are defined as

$$r_x^P(\mu) = \frac{2m_P^2}{m_b(\mu)(m_{q_1} + m_{q_2})(\mu)}, \quad r_x^{V,T} = \frac{2m_{V,T}}{m_b(\mu)} f_{V,T}(\mu)$$ \quad (18)

The weak annihilation contributions to $B \to M_1M_2$ can be described in terms of b_i and $b_{i,EW}$, which have the following expressions:

$$b_1 = \frac{C_F}{N_c^2} c_1 A_1^i, \quad b_2 = \frac{C_F}{N_c^2} c_2 A_1^i,$$

$$b_3^P = \frac{C_F}{N_c^2} \left[c_3 A_1^i + c_6 A_3^i + A_3^f + N_c c_6 A_3^f \right], \quad b_4^P = \frac{C_F}{N_c^2} \left[c_4 A_1^i + c_6 A_2^i \right],$$

$$b_{3,EW}^P = \frac{C_F}{N_c^2} \left[c_9 A_1^i + C_7 A_3^i + A_3^f + N_c c_6 A_3^f \right],$$

$$b_{4,EW}^P = \frac{C_F}{N_c^2} \left[c_10 A_1^i + c_8 A_2^i \right],$$

where the subscripts 1, 2, 3 of $A_{n}^{i,f}$ (n = 1,2,3) stand for the annihilation amplitudes induced from $(V - A)(V - A)$, $(V - A)(V + A)$, and $(S - P)(S + P)$ operators, respectively, the superscripts i and f refer to gluon emission from the initial- and final-state quarks, respectively. Their explicit expressions
are given by [10, 24–26, 28]

\[A_1 = \pi \alpha_s \int_0^1 dx dy \left(\Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x)} + \frac{1}{x(1-y)} \right] - r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{xy} \right), \quad \text{for } M_1 M_2 = VP, PS, \]

\[\sqrt{\frac{2}{3}} \left(\Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x)} + \frac{1}{x(1-y)} \right] - r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{xy} \right), \quad \text{for } M_1 M_2 = TP, \]

\[\frac{2}{3} \left(\Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x)} + \frac{1}{x(1-y)} \right] - r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{xy} \right), \quad \text{for } M_1 M_2 = PT, \]

\[A_2 = \pi \alpha_s \int_0^1 dx dy \left(- \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x)} + \frac{1}{x(1-y)} \right] + r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{xy} \right), \quad \text{for } M_1 M_2 = VP, PS, \]

\[\sqrt{\frac{2}{3}} \left(- \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x)} + \frac{1}{x(1-y)} \right] + r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{xy} \right), \quad \text{for } M_1 M_2 = TP, \]

\[\frac{2}{3} \left(- \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x)} + \frac{1}{x(1-y)} \right] + r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{xy} \right), \quad \text{for } M_1 M_2 = PT, \]

\[A_3 = \pi \alpha_s \int_0^1 dx dy \left(r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{27}{y(1-x)} + r_{M_1}^{M_2} \Phi_{M_1}(y) \Phi_{M_2}(x) \frac{2x}{xy(1-x)} \right), \quad \text{for } M_1 M_2 = VP, PS, \]

\[\sqrt{\frac{2}{3}} \left(r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{27}{y(1-x)} + r_{M_1}^{M_2} \Phi_{M_1}(y) \Phi_{M_2}(x) \frac{2x}{xy(1-x)} \right), \quad \text{for } M_1 M_2 = TP, PT, \]

\[\frac{2}{3} \left(r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{27}{y(1-x)} + r_{M_1}^{M_2} \Phi_{M_1}(y) \Phi_{M_2}(x) \frac{2x}{xy(1-x)} \right), \quad \text{for } M_1 M_2 = PT, \]

\[A_4 = \pi \alpha_s \int_0^1 dx dy \left(- r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2(1+y)}{xy} - r_{M_1}^{M_2} \Phi_{M_1}(y) \Phi_{M_2}(x) \frac{2(1+y)}{xy} \right), \quad \text{for } M_1 M_2 = VP, PS, \]

\[\sqrt{\frac{2}{3}} \left(- r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2(1+y)}{xy} - r_{M_1}^{M_2} \Phi_{M_1}(y) \Phi_{M_2}(x) \frac{2(1+y)}{xy} \right), \quad \text{for } M_1 M_2 = TP, PT, \]

\[\frac{2}{3} \left(- r_{M_1}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2(1+y)}{xy} - r_{M_1}^{M_2} \Phi_{M_1}(y) \Phi_{M_2}(x) \frac{2(1+y)}{xy} \right), \quad \text{for } M_1 M_2 = PT, \]

\[A_1 = A_2 (M_1 M_2)^f = 0. \]

(20)

When dealing with the weak annihilation contributions and the hard spectator contributions, one has to deal with the infrared endpoint singularity \(X = \int_0^1 dx/(1 - x) \). The treatment of this endpoint divergence is model dependent, and we follow Ref. [10] to parameterize this endpoint divergence in the annihilation and hard spectator diagrams as

\[X_{A,H} = (1 + \rho_{A,H}^{M_1 M_2} e^{i \phi_{A,H}^{M_1 M_2}}) \ln \frac{m_B}{\Lambda_h}, \]

(21)

where \(\Lambda_h \) is a typical scale of order 0.5 GeV, \(\rho_{A,H}^{M_1 M_2} \) is an unknown real parameter and \(\phi_{A,H}^{M_1 M_2} \) is a free strong phase in the range \([0, 2\pi] \) for the annihilation (hard spectator) process. In our work, we will follow the assumption \(X_H^{M_1 M_2} = X_A^{M_1 M_2} = X_{A,H}^{M_1 M_2} \) for the \(B \to PV(PT) \) decays [24, 29, 30], but for the \(B \to SP \) decays, we will further assume that \(X_{A,H}^{M_1 M_2} = X_{M_2 M_1}^{M_1 M_2} \) compared with the \(B \to PV(PT) \) decays.
IV. CALCULATION OF CP VIOLATION

A. FRAMEWORK

1. Nonresonance background

In the absence of resonances, the factorizable nonresonance amplitude for the $B^- \rightarrow K^- \pi^+ \pi^-$ decay has the expression [32, 33]

$$
A_{NR} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p^A \left[\langle \pi^+ \pi^- | (\bar{u}b)_{V-A} | B^- \rangle \langle K^- | (\bar{s}u)_{V-A} | 0 \rangle [a_1 \delta_{p0} + a_2^p + a_4^p + a_{10}^p - (a_6^p + a_8^p) r^K_{\chi}] \\
+ \langle \pi^- | (db)_{V-A} | K^- \pi^+ | s \bar{d} | 0 \rangle (2a_6^p + 2a_8^p) \right].
$$

(22)

For the parameters a_i which contain effective Wilson coefficients, we take the following values [32, 33]:

$$
a_1 = 0.99 \pm 0.037i, \quad a_2 = 0.19 - 0.11i, \quad a_3 = -0.002 + 0.004i, \quad a_5 = 0.0054 - 0.005i,
$$

$$
a_4^u = -0.03 - 0.02i, \quad a_4^c = -0.04 - 0.008i, \quad a_6^u = -0.006 - 0.02i, \quad a_6^c = -0.006 - 0.006i,
$$

$$
a_7 = 0.54 \times 10^{-4}i, \quad a_8^u = (4.5 - 0.5i) \times 10^{-4}, \quad a_8^c = (4.4 - 0.3i) \times 10^{-4}, \quad a_9 = -0.010 - 0.0002i,
$$

$$
a_{10}^u = (-58.3 + 86.1i) \times 10^{-5}, \quad a_{10}^c = (-60.3 + 88.8i) \times 10^{-5},
$$

(23)

For the current-induced process, the amplitude $\langle \pi^+ \pi^- | (\bar{u}b)_{V-A} | B^- \rangle \langle K^- | (\bar{s}u)_{V-A} | 0 \rangle$ can be expressed in terms of three unknown form factors [6, 31, 32]

$$
A_{current-ind}^{HMChPT} \equiv \langle \pi^+ | (p_1 \pi^- (p_2)) | (\bar{u}b)_{V-A} | B^- \rangle \langle K^- | (p_3) | (\bar{s}u)_{V-A} | 0 \rangle
$$

$$
= -\frac{f_\pi^2}{2} \left[2m_2^2 r + (m_2^2 - s_{12} - m_3^2) \omega_+ + (s_{23} - s_{13} - m_2^2 + m_1^2) \omega_- \right],
$$

(24)

where r, ω_+, and h are form factors which can be evaluated in the framework of HMChPT and the results read [32, 33]

$$
\omega_+ = -\frac{g f_B m_B \sqrt{m_B m_{B^*}}}{f_\pi^2 s_{23} - m_{B^*}^2} \left[1 - \frac{(p_B - p_1) \cdot p_1}{m_{B^*}^2} \right] + \frac{f_B}{2 f_\pi^2} \omega_+^0,
$$

$$
\omega_- = \frac{g f_B m_B \sqrt{m_B m_{B^*}}}{f_\pi^2 s_{23} - m_{B^*}^2} \left[1 + \frac{(p_B - p_1) \cdot p_1}{m_{B^*}^2} \right],
$$

$$
r = \frac{f_B}{2 f_\pi^2} \frac{f_B}{f_\pi^2} \frac{p_B \cdot (p_2 - p_1)}{(p_B - p_1 - p_2)^2 - m_{B^*}^2}
$$

$$
+ \frac{2g f_{B^*}}{f_\pi^2} \frac{m_B m_{B^*}}{s_{23} - m_{B^*}^2} \frac{m_B m_{B^*}}{(p_B - p_1 - p_2)^2 - m_{B^*}^2}
$$

$$
\times \frac{(p_{1\cdot 2} - p_1 \cdot (p_B - p_1) p_2 \cdot (p_B - p_1) / m_{B^*}^2)}{s_{23} - m_{B^*}^2},
$$

(25)

where $s_{ij} \equiv (p_i + p_j)^2$, g is a heavy-flavor-independent strong coupling which can be extracted from the CLEO measurement of the $D^{*\pm}$ decay width, $|g| = 0.59 \pm 0.01 \pm 0.07$ [34], which sign is fixed to be negative in Ref. [3].

9
However, the predicted nonresonance results based on HMChPT are not recovered in the soft meson region and lead to decay rates that are too large which are in disagreement with experiment [35]. For example, the branching fraction is found to be of order 7.5×10^{-5}, which is one order of magnitude larger than the BaBar result, 5.3×10^{-6} [36]. The issue is related to the applicability HMChPT, which requires the two mesons in the final state in the $B \rightarrow M_1 M_2$ transition have to be soft and hence an exponential form of the amplitudes is necessary [31, 37],

$$A_{\text{current-ind}} = A_{\text{current-ind}}^{\text{HMChPT}} e^{-\alpha_{\text{NR}} B_{\text{P}} \cdot (p_1 + p_2)} e^{i \phi_{12}},$$

where α_{NR} is constrained from the tree dominated decay $B^- \rightarrow \pi^+ \pi^- \pi^-$ to be $\alpha_{\text{NR}} = 0.081^{+0.015}_{-0.009}$ GeV$^{-2}$, and the phase ϕ_{12} of the nonresonant amplitude will be set to zero for simplicity [31, 37].

The matrix element of $\langle K^- | \pi^+ | s\bar{d}(0) \rangle^{\text{NR}}$ is related to $\langle K^+ | K^- | s\bar{s}(0) \rangle^{\text{NR}}$ via SU(3) symmetry, i.e. $\langle K^- | \pi^+ | s\bar{d}(0) \rangle^{\text{NR}} = \langle K^+ | K^- | s\bar{s}(0) \rangle^{\text{NR}}$, we shall adopt Ref. [6] to assume that final state interactions amount to giving a large strong phase δ to the nonresonance component of the matrix element of $\langle K^- | \pi^+ | s\bar{d}(0) \rangle^{\text{NR}}$ and a fit to the data of direct CP asymmetries in $B^- \rightarrow K^- \pi^+ \pi^-$ yields

$$\langle K^- (p_1) \pi^+ (p_2) | s\bar{d}(0) \rangle^{\text{NR}} = \nu \frac{3}{2} (3 F_{\text{NR}} + 2 F'_{\text{NR}}) + \sigma_{\text{NR}} e^{-\alpha_{\text{NR}} s_{12}} e^{i \delta} \approx \nu \frac{3}{2} (3 F_{\text{NR}} + 2 F'_{\text{NR}}) + \sigma_{\text{NR}} e^{-\alpha_{\text{NR}} s_{12}} e^{i \pi \left(1 + 4 \frac{m_K^2 - m_\pi^2}{s_{12}}\right)},$$

where the parameter $\sigma_{\text{NR}} = (3.39^{+0.18}_{-0.021}) e^{i \pi/4}$ GeV, and $\nu = \frac{m_K^2 - m_\pi^2}{m_u + m_s} = \frac{m_K^2 - m_\pi^2}{m_s - m_d}$ characterizes the quark-operator parameter $\langle \bar{q}q \rangle$ which spontaneously breaks the chiral symmetry and the experimental measurement leads to $\alpha = (0.14 \pm 0.02)$ GeV$^{-2}$ [38]. Motivated by the asymptotic constraints from pQCD, namely, $F(t)^{(t)} \rightarrow (1/t) [\ln(t/\tilde{\Lambda}^2)]^{-1}$ in the large-t limit [39], the nonresonance form factors in Eq. (27) can be parameterized as [6]

$$F_{\text{NR}}(s_{23}) = \left(\frac{x_1}{s_{23}} + \frac{x_2}{s_{23}}\right) \left[\ln \left(\frac{s_{23}}{\tilde{\Lambda}^2}\right)\right]^{-1},$$

$$F'_{\text{NR}}(s_{23}) = \left(\frac{x'_1}{s_{23}} + \frac{x'_2}{s_{23}}\right) \left[\ln \left(\frac{s_{23}}{\tilde{\Lambda}^2}\right)\right]^{-1},$$

where $\tilde{\Lambda} \approx 0.3$ GeV is the QCD scale parameter, the unknown parameters x_i and x'_i are fitted from the kaon electromagnetic data, giving the following best-fit values [40]:

$$x_1 = -3.26 \text{ GeV}^2, \quad x_2 = 5.02 \text{ GeV}^4,$$

$$x'_1 = 0.47 \text{ GeV}^2, \quad x'_2 = 0.$$

2. Resonance contributions

LHCb has observed large CP asymmetries in localized regions of phase space $m_{K^- \pi^+} < 15$ GeV2 and $0.08 < m_{\pi^+ \pi^-} < 0.66$ GeV2 [7,8], which contains the $[\pi \pi]$ and $[K \pi]$ channel resonances including $\sigma(600)$,
\(\rho^0(770) \), \(\omega(782) \), \(K_0^*(1430) \), \(K_2^*(1430) \) and \((K^*)^i \) \((K^*(892) \), \(K^*(1410) \), \(K^*(1680) \) for \(i = 1, 2, 3 \) which will be denoted as \(\sigma \), \(\rho \), \(\omega \), \(K_0^* \), \(K_2^* \) and \((K^*)^i \) for simplicity, respectively. The total resonance amplitude including the \(\rho - \omega \) mixing effect can be written as \(6, 41\)

\[
\sum_R A_R = A_\rho + A_{\rho\omega} + \sum_i A_{(K^*)^i} + A_{K_0^*} + A_{K_2^*} = A_{[\pi\pi]} + A_{[K\pi]},
\]

where the sum over \(R \) refers to that over the aforementioned resonances including the \(\rho - \omega \) mixing effect.

\(\rho - \omega \) mixing has the dual advantages that the strong phase difference is large and well known \(42, 43\). In order to deal with the large localized \(CP \) violation, we need to appeal this mechanism to the \(B^- \to K^-\pi^+\pi^- \) decay. In this scenario one has \(44-46\)

\[
A_{\rho,\omega} = \langle K^-\pi^+\pi^-|H^T|B^-\rangle + \langle K^-\pi^+\pi^-|H^P|B^-\rangle = e^\lambda \cdot (p_{\pi^-} - p_{\pi^+}) \left[\left(\frac{g_\rho}{s_\rho s_\omega} \tilde{\Pi}_{\rho\omega} t_\omega + \frac{g_t}{s_\rho t_\rho} \right) + \left(\frac{g_\rho}{s_\rho s_\omega} \tilde{\Pi}_{\rho\omega} p_\omega + \frac{g_\rho}{s_\rho p_\rho} \right) \right],
\]

where \(H^T \) and \(H^P \) are the Hamiltonians for the tree and penguin operators, respectively, \(t_V(V = \rho \) or \(\omega \) is the tree amplitude and \(p_V \) is the penguin amplitude for producing an intermediate vector meson \(V \), \(g_\rho \) is the coupling for \(\rho \to \pi^+\pi^- \), \(\tilde{\Pi}_{\rho\omega} \) is the effective \(\rho - \omega \) mixing amplitude, and \(s_V \) is from the inverse propagator of the vector meson \(V \), \(s_V = s - m_V^2 + im_V \Gamma_V \) and \(\sqrt{s} \) is the invariant mass of the \(\pi^+\pi^- \) pair. The direct coupling \(\omega \to \pi^+\pi^- \) is effectively absorbed into \(\tilde{\Pi}_{\rho\omega} \) \(47\), leading to the explicit \(s \) dependence of \(\tilde{\Pi}_{\rho\omega} \). Making the expansion \(\tilde{\Pi}_{\rho\omega}(s) = \bar{\Pi}_{\rho\omega}(m_\omega^2) + (s - m_\omega^2) \Pi_{\rho\omega}'(m_\omega^2) \), the \(\rho - \omega \) mixing parameters were determined in the fit of Gardner and O’Connell \(48\): \(\text{Re} \tilde{\Pi}_{\rho\omega}(m_\omega^2) = -3500 \pm 300 \text{MeV}^2 \), \(\text{Im} \tilde{\Pi}_{\rho\omega}(m_\omega^2) = -300 \pm 300 \text{MeV}^2 \), \(\Pi_{\rho\omega}'(m_\omega^2) = 0.03 \pm 0.04 \). In practice, the effect of the derivative term is negligible.

Because of its large width, \(\sigma \) can not be modeled by a naive Breit-Wigner distribution. In this paper, we will adopt the Bugg model to parameterize the distribution of \(\sigma \) which is given by \(49-51\)

\[
R_{\sigma}(s) = M\Gamma_1(s)/\left[M^2 - s - g_1^2(s) \frac{s - s_A}{M^2 - s_A} z(s) - i M \Gamma_{\text{tot}}(s) \right],
\]

where \(z(s) = j_1(s) - j_1(M^2) \) with \(j_1(s) = \frac{1}{2} \left[2 + \rho_1 \ln(\frac{s}{4m_\pi^2}) \right], \Gamma_{\text{tot}}(s) = \sum_{i=1}^{4} \Gamma_i(s) \) and

\[
M\Gamma_1(s) = g_1^2(s) \frac{s - s_A}{M^2 - s_A} \rho_1(s), \\
M\Gamma_2(s) = 0.6 g_1^2(s)(s/M^2) \exp(-\alpha|s - 4m_K^2|) \rho_2(s), \\
M\Gamma_3(s) = 0.2 g_1^2(s)(s/M^2) \exp(-\alpha|s - 4m_K^2|) \rho_3(s), \\
M\Gamma_4(s) = M g_4 \rho_4(s)/\rho_{4\pi}(M^2), \\
g_1^2(s) = M(c_1 + c_2 s) \exp[-(s - M^2)/A], \\
\rho_{4\pi}(s) = 1.0/[1 + \exp(7.082 - 2.845 s)].
\]

\[33\]
The parameters in Eqs. \(32, 33\) are fixed to be \(M = 0.953\text{GeV}, s_A = 0.14m^2, c_1 = 1.302\text{GeV}^2, c_2 = 0.340, A = 2.426\text{GeV}^2\) and \(g_{1\pi} = 0.011\text{GeV}\), which are given in the fourth column of Table I in Ref. 49. The parameters \(c_{1,2,3}\) are the phase-space factors of the decay channels \(\pi\pi, KK\) and \(\eta\eta\), respectively, which are defined as 49

\[
\rho_i(s) = \sqrt{1 - 4 \frac{m_i^2}{s}},
\]

(34)

with \(m_1 = m_{\pi}, m_2 = m_K\) and \(m_3 = m_{\eta}\). Other resonants in Eq. (30) will be modeled by the naive Breit-Wigner distribution.

Within the QCDF, we derive the tree and penguin amplitudes of \(\rho\) and \(\omega\) in Eq. (31) and obtain

\[
t_\rho = -iG_F m_\rho \epsilon_\rho^* \cdot p_B \lambda^{(s)}_u \left[\alpha_1(\rho K) A^{B\to\rho}(0) f_K + \alpha_2(K\rho) F_0^{B\to K}(0) f_\rho + b_2(\rho K) f_B f_\rho f_K \right],
\]

(35)

\[
t_\omega = -iG_F m_\omega \epsilon_\omega^* \cdot p_B \lambda^{(s)}_u \left[\alpha_1(\omega K) A^{B\to\omega}(0) f_K + \alpha_2(K\omega) F_0^{B\to K}(0) f_\omega + b_2(\omega K) f_B f_\omega f_K \right],
\]

(36)

\[
p_\rho = -iG_F m_\rho \epsilon_\rho^* \cdot p_B \sum_{p = u, c} \lambda^{(s)}_p \left\{ \left[\alpha_4^p(\rho K) + \alpha_{3,EW}^p(\rho K) \right] A^{B\to\rho}(0) f_K + \frac{3}{2} \alpha_{3,EW}(K\rho) F_0^{B\to K}(0) f_\rho - b_3^p(\rho K) - b_{3,EW}^p(\rho K) \right\} f_B f_\rho f_K,
\]

(37)

\[
p_\omega = -iG_F m_\omega \epsilon_\omega^* \cdot p_B \sum_{p = u, c} \lambda^{(s)}_p \left\{ \left[2 \alpha_3(K\omega) + \alpha_{3,EW}^p(K\omega) \right] F_0^{B\to K}(0) f_\omega + \left[\alpha_4^p(\omega K) + \frac{3}{2} \alpha_{3,EW}(\omega K) \right] A^{B\to\omega}(0) f_K + b_3^p(\omega K) + b_{3,EW}^p(\omega K) \right\} f_B f_\omega f_K.
\]

(38)

The polarization vectors of a vector meson \(V\) with mass \(m_V\) and momentum \(p\) satisfies

\[
\sum_{\lambda = 0, \pm 1} \epsilon^\lambda_\mu(p) (\epsilon^\lambda(p))^* = -\left(g_{\mu\nu} - \frac{p_\mu p_\nu}{m_V^2} \right),
\]

(39)

from which one obtains 52

\[
\sum_{\lambda = 0, \pm 1} \epsilon^\lambda \cdot (p_2 - p_3) (\epsilon^\lambda)^* \cdot p_B = \hat{s}_{13} - s_{(13)},
\]

(40)

\(\hat{s}_{13}\) is the midpoint of the allowed range of \(s_{13}\), i.e. \(\hat{s}_{13} = (s_{13,\text{max}} + s_{13,\text{min}})/2\), with \(s_{13,\text{max}}\) and \(s_{13,\text{min}}\) being the maximum and minimum values of \(s_{13}\) for fixed \(s_{12}\).

As for the polarization vectors of a tensor meson we have 41

\[
\sum_{\alpha, \beta = 2} 2 \epsilon_{\alpha\beta}(\lambda) p_2^\alpha \rho_3^\beta \epsilon_\mu(\lambda) p_{B\rho_1}^\mu = \frac{1}{3} (|\vec{p}_1||\vec{p}_2|)^2 - (\vec{p}_1 \cdot \vec{p}_2)^2,
\]

(41)
where \vec{p}_1 and \vec{p}_2 are three momenta of $\pi^-(p_1)$ and $\pi^+(p_2)$, respectively, in the rest frame of $\pi^+(p_2)$ and $K^-(p_3)$. One obtains, with $m_{23} = \sqrt{s_{23}}$,

$$
|\vec{p}_1| = \frac{1}{2m_{23}} \sqrt{[m_B^2 - (m_{23} + m_1)^2][m_B^2 - (m_{23} - m_1)^2]},
$$

$$
|\vec{p}_2| = \frac{1}{2m_{23}} \sqrt{[s_{23} - (m_3 + m_2)^2][s_{23} - (m_3 - m_2)^2]},
$$

$$
\vec{p}_1 \cdot \vec{p}_2 = s_{12} - s_{23} + \frac{(m_B^2 - m_1^2)(m_B^2 - m_2^2)}{s_{23}}.
$$

Inserting Eqs. (35-38) into Eq. (31), one can get the amplitude from $\rho - \omega$ mixing contribution

$$
A_{\rho,\omega} = -iG_F \left(s_{K\pi} - s_{K\pi} \right) \left\{ \frac{g_{\rho s_{\omega}}}{s_{\rho s_{\omega}}} \tilde{\Pi}_{\rho\omega} \left[m_\omega \lambda_u^{(s)} \left(\alpha_1 (\omega K) A_0^{B\rightarrow\omega}(0) f_K + \alpha_2 (K\omega) F_0^{B\rightarrow K}(0) f_\omega \right) + b_2 (\omega K) f_B f_\omega f_K m_\omega / (m_{BPc}) \right] + \frac{g_{\rho s_{\omega}}}{s_{\rho s_{\omega}}} \left[m_\omega \sum_{p=\mu,\tau} \lambda_p^{(s)} \left\{ \left(2\alpha_3 (K\omega) + \frac{1}{2} \alpha_3 (K\omega) \right) F_0^{B\rightarrow K}(0) f_\omega + \left(\alpha_4^{\rho,\omega}(K\omega) + \frac{3}{2} \alpha_4^{\rho,\omega}(K\omega) \right) A_0^{B\rightarrow\omega}(0) f_K \right. \right.
$$

$$
+ \left. \left(b_3^{\rho}(\omega K) + b_3^{\rho}(\omega K) \right) f_B f_\omega f_K m_\omega / (m_{BPc}) \right] \left\{ \left(\alpha_4^{\rho}(K\rho) + \alpha_4^{\rho,\omega}(K\rho) \right) A_0^{B\rightarrow\rho}(0) f_K + \left(\alpha_4^{\rho}(K\rho) + \alpha_4^{\rho,\omega}(K\rho) \right) A_0^{B\rightarrow\rho}(0) f_K \right. \right\} \right\},
$$

(43)

where p_c is the magnitude of the three momentum of either final state meson in the rest frame of the B meson, $\alpha^\rho_i(M_1 M_2)$ can be expressed in terms of the coefficients a^ρ_i defined in Eq. (10) and have the following expressions:

$$
\alpha_1(M_1 M_2) = a_1(M_1 M_2),
$$

$$
\alpha_2(M_1 M_2) = a_2(M_1 M_2),
$$

$$
\alpha_3^{\rho}(M_1 M_2) = \begin{cases}
\alpha_3^{\rho}(M_1 M_2) - a_3^{\rho}(M_1 M_2), & \text{if } M_1 M_2 = VP, SP, TP, \\
\alpha_3^{\rho}(M_1 M_2) + a_3^{\rho}(M_1 M_2), & \text{if } M_1 M_2 = PV, PS, PT,
\end{cases}
$$

$$
\alpha_4^{\rho}(M_1 M_2) = \begin{cases}
\alpha_4^{\rho}(M_1 M_2) + r^{M_2}_\chi a_6^{\rho}(M_1 M_2), & \text{if } M_1 M_2 = VP, PT, \\
\alpha_4^{\rho}(M_1 M_2) - r^{M_2}_\chi a_6^{\rho}(M_1 M_2), & \text{if } M_1 M_2 = VP, PS, SP, TP,
\end{cases}
$$

$$
\alpha_4^{\rho,\omega}(M_1 M_2) = \begin{cases}
\alpha_4^{\rho,\omega}(M_1 M_2) - a_4^{\rho,\omega}(M_1 M_2), & \text{if } M_1 M_2 = VP, SP, TP, \\
\alpha_4^{\rho,\omega}(M_1 M_2) + a_4^{\rho,\omega}(M_1 M_2), & \text{if } M_1 M_2 = PV, PS, PT,
\end{cases}
$$

$$
\alpha_4^{\rho,\omega}(M_1 M_2) = \begin{cases}
\alpha_4^{\rho,\omega}(M_1 M_2) + r^{M_2}_\chi a_8^{\rho,\omega}(M_1 M_2), & \text{if } M_1 M_2 = VP, PT, \\
\alpha_4^{\rho,\omega}(M_1 M_2) - r^{M_2}_\chi a_8^{\rho,\omega}(M_1 M_2), & \text{if } M_1 M_2 = VP, PS, SP, TP.
\end{cases}
$$

(44)
Meanwhile, it is straightforward get the amplitudes contributed by others resonances, including $\sigma, (K^*)^i, K_0^*$ and K_2^*, respectively,

$$A_\sigma = i G_F g_{\sigma \pi \pi} R_\sigma \sum_{p=u, c} \lambda_p^{(s)} \left\{ (m_\sigma^2 - m_B^2) F_0^{B \rightarrow f}(m_K^2) f_K \left[\delta_{p u} \alpha_1(\sigma K) + \alpha_4^p(\sigma K) + \alpha_4^{p, EW}(\sigma K) \right] \right.$$

$$- f_B f_K f_{\sigma}^* \left[\delta_{p u} b_2(\sigma K) + b_3^p(\sigma K) + b_3^{p, EW}(\sigma K) \right] + \left[\delta_{p u} \alpha_2(K \sigma) + 2\alpha_3^p(K \sigma) + \frac{1}{2} \alpha_3^{p, EW}(K \sigma) \right] \right. \left[\left(m_B^2 - m_K^2 \right) F_0^{B \rightarrow K}(0) \right\}^{(0)} + \left[\left(m_B^2 - m_K^2 \right) F_0^{B \rightarrow K}(0) \right\}^{(0)}$$

$$\times \left\{ \sqrt{2} \alpha_3^p(K \sigma) + \sqrt{2} \alpha_3^{p, EW}(K \sigma) - \frac{1}{\sqrt{2}} \alpha_4^{p, EW}(K \sigma) - \frac{1}{\sqrt{2}} \alpha_4^{p, EW}(K \sigma) \right\} \right\},$$

$$A_{(K^*)^i} = -i G_F \left(s_{K^*} - s_{K^*} \right) \frac{g_{(K^*)^i \pi \pi}}{s_V} \sum_{p=u, c} \lambda_p^{(s)} \left\{ b_2(\pi (K^*)^i) f_B f_\pi f_{(K^*)^i}, m_{(K^*)^i} / (m_B p_c) \right.$$

$$- \left(\alpha_4^p(\pi (K^*)^i) - \frac{1}{2} \alpha_4^{p, EW}(\pi (K^*)^i) \right) \right\} - 2 m_V F_1^{B \rightarrow \pi} f_{(K^*)^i} \right\} - \left(b_3^p(\pi (K^*)^i) + b_3^{p, EW}(\pi (K^*)^i) \right) \right.$$

$$\times f_B f_\pi f_{(K^*)^i}, m_{(K^*)^i} / (m_B p_c) \right\},$$

$$A_{K_0^*} = -i G_F \left[\frac{1}{3} \left(\frac{g_{K_0^* \pi \pi}}{s_{K_0^*}} \right)^2 \sum_{p=u, c} \lambda_p^{(s)} \left\{ b_2(\pi K_0^*) f_B f_\pi f_{K_0^*} \right.$$

$$\times \left(m_B^2 - m_{K_0^*}^2 \right) F_0^{B \rightarrow \pi}(m_{K_0^*}^2) f_{K_0^*} \right\} - \left(b_3^p(\pi K_0^*) + b_3^{p, EW}(\pi K_0^*) \right) f_B f_\pi f_{K_0^*} \right\} \right.$$

$$A_{K_2^*} = -i G_F \left[\frac{1}{3} \left(\frac{g_{K_2^* \pi \pi}}{s_{K_2^*}} \right)^2 \sum_{p=u, c} \lambda_p^{(s)} \left\{ b_2(\pi K_2^*) f_B f_\pi f_{K_2^*} m_{K_2^*} / (m_B p_c) \right.$$

$$\times \left(\alpha_4^p(\pi K_2^*) - \frac{1}{2} \alpha_4^{p, EW}(\pi K_2^*) \right) \right\} - 2 m_T F_1^{B \rightarrow \pi} f_{K_2^*} \right\} - \left(b_3^p(\pi K_2^*) + b_3^{p, EW}(\pi K_2^*) \right) f_B f_\pi f_{K_2^*} m_{K_2^*} / (m_B p_c) \right\}.$$

$$\text{(45)}$$

$$\text{(46)}$$

$$\text{(47)}$$

$$\text{(48)}$$
Combining Eq. (43) with Eq. (45), one obtain the amplitude of $B^- \to K^-[\pi^+\pi^-] \to K^-\pi^+\pi^-$

$$A_{[\pi\pi]} = -iG_F \left(\hat{s}_{\pi\pi} - s_{\pi\pi} \right) \left\{ \frac{g_B}{s_{\rho}s_{\omega}} \tilde{\Pi}_{\rho\omega} \left[m_\omega \lambda_u^{(s)} \left(\alpha_1(\omega K)A_{0}^{B\to\omega}(0)f_K + \alpha_2(\omega K)F_{0}^{B\to K}(0)f_\omega \right. \right.
$$

$$+ b_2(\omega K)f_B f_\omega f_K m_\omega/(m_{Bp}) \bigg]\right) + \frac{g_B}{s_{\rho}} \left[m_\rho \lambda_u^{(s)} \left(\alpha_1(\rho K)A_{0}^{B\to\rho}(0)f_K + \alpha_2(\rho K)F_{0}^{B\to K}(0)f_\rho \right. \right.
$$

$$+ b_2(\rho K)f_B f_\rho f_K m_\rho/(m_{Bp}) \bigg]\right) \right\} + \frac{g_B}{s_{\rho}s_{\omega}} \times \left[m_\omega \sum_{p=u,c} \lambda_p^{(s)} \left\{ \left(2\alpha_3(\omega K) + \frac{1}{2}\alpha_2^{(s)}(\omega K) \right)F_{0}^{B\to K}(0)f_\omega \right. \right.
$$

$$\left. \left. + \left(\alpha_1^{(p)}(\omega K) + \frac{3}{2}\alpha_3^{(p)}(\omega K) \right)A_{0}^{B\to\omega}(0)f_K + \left(b_2^{(p)}(\omega K) + b_3^{(p)}(\omega K) \right)f_B f_\omega f_K m_\omega/(m_{Bp}) \right]\right] \right\} \right\} + iG_F g_{s\pi\pi} R_{\pi} \sum_{p=u,c} \lambda_p^{(s)} \left(\left(m_\rho^2 - m_B^2 \right)F_{0}^{B\to f}(m_K^2)f_K \right.
$$

$$\times \left. \left[\delta_{\rho\pi} \alpha_1(\sigma K) + \alpha_3^{(p)}(\sigma K) + \alpha_3^{(p)}_{4,EW}(\sigma K) \right] - f_B f_\pi f_\rho \left[\delta_{\rho\pi} b_2(\sigma K) + b_3^{(p)}(\sigma K) + b_3^{(p)}_{3,EW}(\sigma K) \right] \right.
$$

$$\left. + \left[\delta_{\rho\pi} \alpha_2(\sigma K) + 2\alpha_3^{(p)}(\sigma K) + \frac{1}{2}\alpha_3^{(p)}_{3,EW}(\sigma K) \right] \times \left(m_B^2 - m_K^2 \right)F_{0}^{B\to K}(0)f_{\pi} + \left[\sqrt{2}\alpha_3^{(p)}(\sigma K) + \sqrt{2}\alpha_3^{(p)}_{3,EW}(\sigma K) \right) \right.
$$

$$\left. - \frac{1}{\sqrt{2}}\alpha_3^{(p)}_{4,EW}(\sigma K) - \frac{1}{\sqrt{2}}\alpha_3^{(p)}_{4,EW}(\sigma K) \right] \left(m_B^2 - m_K^2 \right)F_{0}^{B\to K}(m_{\rho}^2)f_{\pi}
$$

$$- f_B f_{\pi} \tilde{f}_{\rho} \left[\sqrt{2}\delta_{\rho\pi} b_2(\sigma K) + \sqrt{2}b_3^{(p)}(\sigma K) + \sqrt{2}b_3^{(p)}_{3,EW}(\sigma K) \right] \right\},$$

(49)

Meanwhile, using the Eqs. (46-48), we get the amplitude of $B^- \to [K^-\pi^+]\pi^- \to K^-\pi^+\pi^-$

$$A_{[K\pi]} = -iG_F \left(\hat{s}_{\pi\pi} - s_{\pi\pi} \right) \left\{ \frac{g_{(K^+)\pi\pi}}{s_V} \sum_{p=u,c} \lambda_p^{(s)} \left\{ b_2(\pi(\pi^*)^i)f_B f_\pi f_{(K^*)^i} m_{(K^*)^i}/(m_{Bp}) \right. \right.
$$

$$- \left(\alpha_1^{(p)}(\pi(\pi^*)^i) - \frac{1}{2}\alpha_3^{(p)}_{4,EW}(\pi(\pi^*)^i) \right) \left(-2m_V F_1^{B\to\pi}(\pi(\pi^*)^i) \right) - \left(b_3^{(p)}(\pi(\pi^*)^i) + b_3^{(p)}_{3,EW}(\pi(\pi^*)^i) \right) \right.
$$

$$\times f_B f_\pi f_{(K^*)^i} m_{(K^*)^i}/(m_{Bp}) \right\} \right\} - iG_F \left[\frac{g_{K_{0}^{\pi}\pi\pi}}{s_{K_{0}^{\pi}}} \sum_{p=u,c} \lambda_p^{(s)} \left\{ b_2(\pi K_{0}^{\pi})f_B f_\pi f_{K_{0}^{\pi}} - \left(\alpha_1^{(p)}(\pi K_{0}^{\pi}) - \frac{1}{2}\alpha_3^{(p)}_{4,EW}(\pi K_{0}^{\pi}) \right) \right. \right.
$$

$$\times \left. \left. \left(m_B^2 - m_{K_{0}^{\pi}}^2 \right)F_0^{B\to\pi}(m_{K_{0}^{\pi}}^2)f_{K_{0}^{\pi}} \right) \right.
$$

$$- \left(b_3^{(p)}(\pi K_{0}^{\pi}) + b_3^{(p)}_{3,EW}(\pi K_{0}^{\pi}) \right) f_B f_\pi f_{K_{0}^{\pi}} \right) \right\} - iG_F \left[\frac{1}{3} \left(|\tilde{p}_{\pi^-}| - |\tilde{p}_{\pi^+}| \right) \right] \right.
$$

$$\left. \left. \left(\tilde{p}_{\pi^-} - \tilde{p}_{\pi^+} \right) \right\} \right] \left\{ b_2(\pi K_2^*)f_B f_\pi f_{K_2^*} m_{K_2^*}/(m_{Bp}) - \left(\alpha_1^{(p)}(\pi K_2^*) - \frac{1}{2}\alpha_3^{(p)}_{4,EW}(\pi K_2^*) \right) \right. \right.
$$

$$\times \left. \left. \left(-2m_T F_1^{B\to\pi}(\pi K_2^*) \right) \right. \right.
$$

$$- \left(b_3^{(p)}(\pi K_2^*) + b_3^{(p)}_{3,EW}(\pi K_2^*) \right) f_B f_\pi f_{K_2^*} m_{K_2^*}/(m_{Bp}) \right\},$$

(50)

3. Total result for the amplitude of $B^- \to K^-\pi^+\pi^-$

In the QCDF, both the resonance and nonresonance contributions have been considered, inserting Eqs. (19) and (50) to Eq. (31) then combing the Eqs. (22-29), the decay amplitude via $B^- \to R + NR \to$
\[K^{-\pi^+\pi^-} \text{ can be finally obtained as:} \]

\[A = iG_F \sigma_\pi \pi R_\sigma \sum_{p=u,c} \lambda_p^{(s)} \left\{ (m_{\sigma}^2 - m_B^2) F_0^{B \to \pi}(m_K^2) f_K \left[\delta_{pu} \alpha_1(\sigma K) + \alpha_4^p(\sigma K) + \alpha_4^{p}_{4.EW}(\sigma K) \right] \\
- f_B f_K \tilde{f}_\sigma \left[\delta_{pq} b_2(\sigma K) + b_3^p(\sigma K) + b_3^{p,EW}(\sigma K) \right] + \left[\delta_{pq} \alpha_2(\sigma K) + 2\alpha_3^p(\sigma K) + \frac{1}{2} \alpha_3^{p,EW}(\sigma K) \right] \right\} \]

\[\times (m_{\sigma}^2 - m_B^2) F_0^{B \to \pi}(0) \tilde{f}_\sigma \left[\sqrt{2} \alpha_3^p(\sigma K) + \sqrt{2} \alpha_3^p(\sigma K) - \frac{1}{\sqrt{2}} \alpha_3^{p,EW}(\sigma K) - \frac{1}{\sqrt{2}} \alpha_3^{p,EW}(\sigma K) \right] \]

\[\times (m_{\sigma}^2 - m_B^2) F_0^{B \to \pi}(m_K^2) f^s_\pi - f_B f_K f^s_\pi \left[\sqrt{2} \delta_{pq} b_2(\sigma K) + \sqrt{2} b_3^p(\sigma K) + \sqrt{2} b_3^{p,EW}(\sigma K) \right] \]

\[- iG_F \left(\tilde{s}_K^{\text{KK}} - s_K^{\text{KK}} \right) \left\{ \frac{g_\rho}{s_{\rho,\omega}} \tilde{\Pi}_{\rho,\omega} \left[m_\omega \lambda_u^{(s)} \left(\alpha_1(\omega K) A_{0}^{B \to \omega}(0) f_K + \alpha_2(\omega K) F_0^{B \to \pi}(0) f_\omega \right) \right] \]

\[+ b_2(\omega K) f_B f_\omega f_K m_\omega/(m_{BpC}) \right\} + \left\{ \frac{g_\rho}{s_{\rho,\omega}} \tilde{\Pi}_{\rho,\omega} \times \left[m_\omega \lambda_u^{(s)} \left(2\alpha_3(\omega K) + \frac{1}{2} \alpha_3^{p,EW}(\omega K) \right) \right] F_0^{B \to \pi}(0) f_\omega \]

\[+ \left(\alpha_3^p(\omega K) + \frac{3}{2} \alpha_3^{p,EW}(\omega K) \right) A_{0}^{B \to \omega}(0) f_K + \left(b_3^p(\omega K) + b_3^{p,EW}(\omega K) \right) f_B f_\omega f_K m_\omega/(m_{BpC}) \right\} \]

\[+ \left(\alpha_3^p(\omega K) + \frac{3}{2} \alpha_3^{p,EW}(\omega K) \right) A_{0}^{B \to \omega}(0) f_K + \left(b_3^p(\omega K) + b_3^{p,EW}(\omega K) \right) f_B f_\omega f_K m_\omega/(m_{BpC}) \right\} \]

\[- \left(\alpha_4^p(\pi K^{\ast i}) - \frac{1}{2} \alpha_4^{p,EW}(\pi K^{\ast i}) \right) \left(- 2 m_{BpC} F_1^{B \to \pi \pi} f_{\pi K} \right) - \left(b_3^p(\pi K^{\ast i}) + b_3^{p,EW}(\pi K^{\ast i}) \right) f_B f_{\pi K} \]

\[- iG_F \left(\tilde{s}_K^{\text{KK}} - s_K^{\text{KK}} \right) \left\{ \frac{g_\rho}{s_{\rho,\omega}} \tilde{\Pi}_{\rho,\omega} \lambda_u^{(s)} \left(b_2(\pi K_0^\ast) f_B f_{\pi K} f_{\pi K_0^\ast} \right) \right\} \]

\[- iG_F \left(\frac{1}{3} \left[\bar{P}_\pi - \bar{P}_\pi^{+} \right] \right)^2 \left(\bar{P}_\pi - \bar{P}_\pi^{+} \right)^2 \left(\frac{g_\rho}{s_{\rho,\omega}} \tilde{\Pi}_{\rho,\omega} \lambda_u^{(s)} \right) \left(b_2(\pi K_0^\ast) f_B f_{\pi K} f_{\pi K_0^\ast} \right) \]

\[- \left(\alpha_4^p(\pi K^{\ast i}) - \frac{1}{2} \alpha_4^{p,EW}(\pi K^{\ast i}) \right) \left(2 m_{BpC} F_1^{B \to \pi \pi} f_{\pi K} \right) - \left(b_3^p(\pi K_0^\ast) + b_3^{p,EW}(\pi K_0^\ast) \right) f_B f_{\pi K} f_{\pi K_0^\ast} \]
4. Localized CP violation

Totally, the decay amplitude for \(B \to K^{-}\pi^{+}\pi^{-} \) is the sum of resonant (R) contributions and the nonresonant (NR) background \(^6\):

\[
A = \sum_{R} A_{R} + A_{NR}.
\]

(52)

The differential CP asymmetry parameter can be defined as

\[
A_{CP} = \frac{|A|^{2} - |\bar{A}|^{2}}{|A|^{2} + |\bar{A}|^{2}}.
\]

(53)

In this work, we will consider eight resonances in a certain phase region \(\Omega \) which includes \(m_{K^{-}\pi^{+}\pi^{-}}^{2} < 15 \text{GeV}^{2} \) and \(0.08 < m_{\pi^{+}\pi^{-}}^{2} < 0.66 \text{GeV}^{2} \) for the \(B^{-} \to K^{-}\pi^{+}\pi^{-} \) decay. By integrating the denominator and numerator of \(A_{CP} \) in this region, we get the localized integrated CP asymmetry, which can be measured by experiments and takes the following form:

\[
A_{CP}^{\Omega} = \frac{\int_{\Omega} ds_{12} ds_{13} (|A|^{2} - |\bar{A}|^{2})}{\int_{\Omega} ds_{12} ds_{13} (|A|^{2} + |\bar{A}|^{2})}.
\]

(54)

B. Calculation of differential CP violation and branching fraction of \(B^{-} \to K^{-}\sigma \) decay

Using Eq. (55), the differential CP asymmetry parameter of \(B \to M_{1}M_{2} \) can be expressed as

\[
A_{CP}(B \to M_{1}M_{2}) = \frac{|A(B \to M_{1}M_{2})|^{2} - |\bar{A}(B \to M_{1}M_{2})|^{2}}{|A(B \to M_{1}M_{2})|^{2} + |\bar{A}(B \to M_{1}M_{2})|^{2}}.
\]

(55)

The branching fraction of the \(B \to M_{1}M_{2} \) decay has the following form:

\[
B(B \to M_{1}M_{2}) = \tau_{B} \frac{p_{c}}{8\pi m_{B}^{2}} |A(B \to M_{1}M_{2})|^{2},
\]

(56)

where \(\tau_{B} \) and \(m_{B} \) are the lifetime and the mass of the \(B \) meson, respectively, \(p_{c} \) is the magnitude of the three momentum of either final state meson in the rest frame of the \(B \) meson which can be expressed as

\[
p_{c} = \frac{1}{2m_{B}} \sqrt{m_{B}^{2} - (m_{M_{1}} + m_{M_{2}})^{2}|m_{B}^{2} - (m_{M_{1}} - m_{M_{2}})^{2}|},
\]

(57)

with \(m_{M_{1}} \) and \(m_{M_{2}} \) being the two final state mesons’ masses, respectively.
The amplitude of $B^- \to K^-\sigma$ has the following form:

$$A(B^- \to \sigma K^-) = \langle \sigma K^- | \mathcal{H}_{eff} | B^- \rangle$$

$$= \sum_{p=u,c} \lambda_{B}^{(s)} \frac{G_F}{2} \left\{ \left[\alpha_1(\sigma K)\delta_{pu} + \alpha_{1,K}^{p}(\sigma K) + \alpha_{4,EW}^{p}(\sigma K) \right] \times \left(m_{\sigma}^2 - m_{B}^2 \right) F_{0}^{B\to\sigma}(m_{K}^2) f_{K} \right. $$

$$+ \left[\alpha_2(\sigma K)\delta_{pu} + 2\alpha_3(\sigma K) + \frac{1}{2} \alpha_{3,K}^{p}(\sigma K) \right] \times \left(m_{B}^2 - m_{K}^2 \right) F_{0}^{B\toK}(m_{K}^2) f_{\sigma} $$

$$+ \left[\sqrt{2} \alpha_{3,K}^{p}(\sigma K) + \sqrt{2} \alpha_{4,K}^{p}(\sigma K) - \frac{1}{\sqrt{2}} \alpha_{3,EW}^{p}(\sigma K) - \frac{1}{\sqrt{2}} \alpha_{4,EW}^{p}(\sigma K) \right]$$

$$\times \left(m_{B}^2 - m_{K}^2 \right) F_{0}^{B\toK}(m_{K}^2) f_{\sigma} - \sqrt{2} \left[b_2(\sigma K)\delta_{pu} + b_3^{p}(\sigma K) + b_{4,EW}^{p}(\sigma K) \right]$$

$$\times f_{B} f_{K} f_{\sigma} - \sqrt{2} \left[b_{2}(\sigma K)\delta_{pu} + b_{3}^{p}(\sigma K) + b_{4,EW}^{p}(\sigma K) \right] \times f_{B} f_{K} f_{\sigma} \right\}. \tag{58}$$

Substituting Eq. (58) into Eq. (55) we can get the expression of $A_{CP}(B^- \to K^-\sigma)$. Substituting Eqs. (58) and (57) into Eq. (56), one can obtain the branching fraction of $B^- \to K^-\sigma$.

![FIG. 1: Numerical results of $A_{CP}(B^- \to K^-\sigma)$ as functions of ρ_S and ϕ_S.](image)

V. NUMERICAL RESULTS

The theoretical results obtained in the QCDF approach depend on many input parameters. The values of the Wolfenstein parameters are given as $\bar{\rho} = 0.117 \pm 0.021$, $\bar{\eta} = 0.353 \pm 0.013$.
FIG. 2: Numerical results of $B(B^- \to K^- \sigma)$ ($\times 10^5$) as functions of ρ_S and ϕ_S.

The effective Wilson coefficients used in our calculations are taken from Ref. [54]:

$$C_1' = -0.3125, \quad C_2' = -1.1502,$$
$$C_3' = 2.120 \times 10^{-2} + 5.174 \times 10^{-3}i, \quad C_4' = -4.869 \times 10^{-2} - 1.552 \times 10^{-2}i,$$
$$C_5' = 1.420 \times 10^{-2} + 5.174 \times 10^{-3}i, \quad C_6' = -5.792 \times 10^{-2} - 1.552 \times 10^{-2}i,$$
$$C_7' = -8.340 \times 10^{-5} - 9.938 \times 10^{-5}i, \quad C_8' = 3.839 \times 10^{-4},$$
$$C_9' = -1.017 \times 10^{-2} - 9.938 \times 10^{-5}i, \quad C_{10}' = 1.959 \times 10^{-3}. \quad (59)$$

For the masses appeared in B decays, we shall use the following values (in units of GeV) [53]:

$$m_u = m_d = 0.0035, \quad m_s = 0.119, \quad m_b = 4.2, \quad m_q = \frac{m_u + m_d}{2}, \quad m_{\pi^\pm} = 0.14,$$
$$m_{B^-} = 5.279, \quad m_\omega = 0.782, \quad m_{\rho^0(770)} = 0.775, \quad m_{K^*} = 0.494, \quad m_{K^*(892)} = 0.895,$$
$$m_{K^*(1410)} = 1.414, \quad m_{K^*_0(1430)} = 1.425, \quad m_{K^*(1680)} = 1.717, \quad m_{K^*_2(1430)} = 1.426, \quad (60)$$

while for the widths we shall use (in units of GeV) [53]

$$\Gamma_\rho = 0.149, \quad \Gamma_\omega = 0.00849, \quad \Gamma_{\sigma(600)} = 0.5, \quad \Gamma_{K^*(892)} = 0.047, \quad \Gamma_{K^*(1410)} = 0.232,$$
$$\Gamma_{K^*(1680)} = 0.322, \quad \Gamma_{K^*_0(1430)} = 0.270, \quad \Gamma_{K^*_2(1430)} = 0.109,$$
$$\Gamma_{\rho \to \pi \pi} = 0.149, \quad \Gamma_{\omega \to \pi \pi} = 0.00013, \quad \Gamma_{\sigma(600) \to \pi \pi} = 0.3, \quad \Gamma_{K^*(892) \to K \pi} = 0.0487,$$
$$\Gamma_{K^*(1410) \to K \pi} = 0.015, \quad \Gamma_{K^*(1680) \to K \pi} = 0.10, \quad \Gamma_{K^*_0(1430) \to K \pi} = 0.251, \quad \Gamma_{K^*_2(1430) \to K \pi} = 0.054. \quad (61)$$
The strong coupling constants are determined from the measured widths through the relations \[6, 41, 55\]

\[
\begin{align*}
g_{S\to M'_1M'_2} &= \sqrt{\frac{8\pi m_S^2}{p_c(S)^2}} \Gamma_{S\to M'_1M'_2}, \\
g_{V\to M'_1M'_2} &= \sqrt{\frac{6\pi m_V^2}{p_c(V)^3}} \Gamma_{V\to M'_1M'_2}, \\
g_{T\to M'_1M'_2} &= \sqrt{\frac{6\pi m_T^2}{p_c(T)^3}} \Gamma_{T\to M'_1M'_2},
\end{align*}
\] (62)

where \(p_c(S, V, T)\) are the magnitudes of the three momenta of the final state meson in the rest frame of \(S, V,\) and \(T\) mesons, respectively.

The following numerical values for the decay constants will be used (in units of GeV) \[6, 24, 25, 56\]:

\[
\begin{align*}
f_{\pi^\pm} &= 0.131, \\ f_{B^-} &= 0.21 \pm 0.02, \\ f_{K^-} &= 0.156 \pm 0.007, \\ \bar{f}_{\pi} &= 0.4829 \pm 0.14, \\ \bar{f}_{\rho} &= -0.21 \pm 0.10, \\ f_{\rho(770)} &= 0.216 \pm 0.003, \\ f_{\rho(770)}^\perp &= 0.165 \pm 0.009, \\ \bar{f}_{\omega} &= 0.187 \pm 0.005, \\ f_{\omega}^\perp &= 0.151 \pm 0.009, \\ f_{K^+(892)} &= 0.22 \pm 0.005, \\ f_{K^+(892)}^\perp &= 0.185 \pm 0.010, \\ f_{K^+(1410)} &= 0.22 \pm 0.1, \\ f_{K^+(1410)}^\perp &= 0.185 \pm 0.010, \\ \bar{f}_{K_0^-(1430)} &= 0.445 \pm 0.050, \\ f_{K_0^+(1430)} &= 0.118 \pm 0.005, \\ f_{K_0^+(1430)}^\perp &= 0.077 \pm 0.014.
\end{align*}
\] (63)

As for the form factors, we use \[6, 24, 25\]

\[
\begin{align*}
F_0^{B\to K} (0) &= 0.35 \pm 0.04, \\ F_0^{B\to \rho} (m_K^2) &= 0.45 \pm 0.15, \\ \bar{A}_0^{B\to \rho} (0) &= 0.303 \pm 0.029, \\
A_0^{B\to K^{*}(892)} (0) &= 0.374 \pm 0.034, \\ A_0^{B\to K^{*}(1410)} (0) &= 0.4 \pm 0.1, \\ \bar{A}_0^{B\to K^{*}(1680)} (0) &= 0.4 \pm 0.1, \\
A_1^{B\to K_0^{*}(1430)} (0) &= 0.25 \pm 0.04, \\ \bar{A}_1^{B\to K_0^{*}(1430)} (0) &= 0.14 \pm 0.02, \\ F_0^{B\to \pi} (0) &= 0.25 \pm 0.03, \\
F_0^{B\to K_0^{*}(1430)} (0) &= 0.26.
\end{align*}
\] (64)

The values of Gegenbauer moments at \(\mu = 1\)GeV are taken from \[6, 24, 25, 56\]:

\[
\begin{align*}
\alpha_1^\rho &= 0, \\ \alpha_2^\rho &= 0.15 \pm 0.07, \\ \alpha_{1,\perp}^\rho &= 0, \\ \alpha_{2,\perp}^\rho &= 0.14 \pm 0.06, \\
\alpha_1^\omega &= 0, \\ \alpha_2^\omega &= 0.15 \pm 0.07, \\ \alpha_{1,\perp}^\omega &= 0, \\ \alpha_{2,\perp}^\omega &= 0.14 \pm 0.06, \\
\alpha_1^{K_0^{*}(1430)} &= \frac{5}{3}, \\ \alpha_1^{K_0^{*}(1430)} &= \frac{5}{3}, \\
\alpha_1^{K^{*}(892)} &= 0.03 \pm 0.02, \\ \alpha_2^{K^{*}(892)} &= 0.04 \pm 0.03, \\ \alpha_2^{K^{*}(892)} &= 0.11 \pm 0.09, \\ \alpha_{2,\perp}^{K^{*}(892)} &= 0.10 \pm 0.08, \\
\alpha_1^{K^{*}(1410)} &= 0.03 \pm 0.1, \\ \alpha_2^{K^{*}(1410)} &= 0.04 \pm 0.1, \\ \alpha_2^{K^{*}(1410)} &= 0.11 \pm 0.1, \\ \alpha_{2,\perp}^{K^{*}(1410)} &= 0.10 \pm 0.1, \\
\alpha_1^{K^{*}(1680)} &= 0.03 \pm 0.1, \\ \alpha_2^{K^{*}(1680)} &= 0.04 \pm 0.1, \\ \alpha_2^{K^{*}(1680)} &= 0.11 \pm 0.1, \\ \alpha_{2,\perp}^{K^{*}(1680)} &= 0.10 \pm 0.1, \\
B_{1,\sigma}(600) &= -0.42 \pm 0.074, \\ B_{3,\sigma}(600) &= -0.58 \pm 0.23, \\
B_{3,\omega}(600) &= -0.35 \pm 0.061, \\ B_{3,\omega}(600) &= -0.43 \pm 0.18, \\
B_{3,\omega}(1430) &= -0.57 \pm 0.13, \\ B_{3,\omega}(1430) &= -0.42 \pm 0.22.
\end{align*}
\] (65)
A general fit of the parameters ρ and ϕ to the $B \to VP$ and $B \to PV$ data indicates $X^{PV} \neq X^{VP}$, i.e. $\rho^{PV} = 0.87$, $\rho^{VP} = 1.07$, $\phi^{VP} = -30^\circ$ and $\phi^{PV} = -70^\circ$ [29]. For the $B \to PT$ and $B \to TP$ cases, we will use the values in Ref. [24]: $\rho^{TP} = 0.83$, $\rho^{PT} = 0.75$, $\phi^{TP} = -70^\circ$ and $\phi^{PT} = -30^\circ$. We shall assign an error of ± 0.1 to ρ^{M1M2} and $\pm 20^\circ$ to ϕ^{M1M2} for estimation of theoretical uncertainties. However, for the $B \to PS$ and $B \to SP$ decays, there is little experimental data so the values of ρ_S and ϕ_S are not determined well, to make an estimation about $\mathcal{A}_{CP}(B^- \to K^-\sigma)$ and $\mathcal{B}(B^- \to K^-\sigma)$, we will adopt $X^{PS} = X^{SP} = (1 + \rho_S e^{i\phi_S}) \ln \frac{m_B}{M_B}$ as described in Sect. III. Now we are left with only two free parameters with all the above considerations, which are the divergence parameters K and ϕ for $\mathcal{A}_{CP}(B^- \to R + NR \to K^-\pi^+\pi^-)$. By fitting the theoretical result to the experimental data $\mathcal{A}_{CP}(B^- \to K^-\pi^+\pi^-) = 0.678 \pm 0.078 \pm 0.0323 \pm 0.007$ in the region $m_{K^-\pi^+}^2 < 15$ GeV2 and $0.08 < m_{\pi^+\pi^-}^2 < 0.66$ GeV2, and varying ϕ_S and ρ_S by 0.01 each time in the range $\phi_S \in [0,2\pi]$ and $\rho_S \in [0,8]$ [57, 58], i.e. $\Delta \rho_S = 0.01$ and $\Delta \phi_S = 0.01$, it is found that there exist ranges of the parameters ρ_S and ϕ_S which satisfy the above experimental data. The allowed ranges are $\phi_S \in [4.75,5.95]$ and $\rho_S \in [4.2,8]$. Therefore, the interference of resonances ($[\pi\pi]$ resonances including $\sigma(600)$, $\rho^0(770)$, $\omega(782)$ mesons, $[K\pi]$ resonances including $K^*(892)$, $K^*(1410)$, $K^*_0(1430)$, $K^*(1680)$ and $K^*_2(1430)$ mesons) together with the nonresonance contribution can indeed induce the data for the localized CP asymmetry in the $B^- \to K^-\pi^+\pi^-$ decay.

It is noted that the range of $\rho_S \in [4.2,8]$ is larger than the previously conservative choice of $\rho \leq 1$ [10, 11]. Since the QCDF itself cannot give information about the parameters ρ and ϕ, there is no reason to restrict ρ to the range $\rho \leq 1$ [22, 29, 59, 60]. In the pQCD approach, the possible un-negligible large weak annihilation contributions were noticed first in Refs. [14, 61]. In fact, there are many experimental studies which have been successfully carried out at B factories (BABAR and Belle), Tevatron (CDF and D0) and LHCb in the past and will be continued at LHCb and Belle experiments. These experiments provide highly fertile ground for theoretical studies and have yielded many exciting and important results, such as measurements of pure annihilation $B_s \to \pi\pi$ and $B_d \to KK$ decays reported recently by CDF, LHCb and Belle [17, 19], which suggest the existence of unexpected large annihilation contributions and have attracted much attention [20, 22]. Thus larger values of ρ_S are acceptable when dealing with the divergence problems for $B \to SP(PS)$ decays. With the large values of ρ_S, it is certain that both the weak annihilation and the hard spectator scattering processes can make large contributions to $B^- \to K^-\sigma$ decays. Much more experimental and theoretical efforts are expected to understand the underlying QCD dynamics of annihilation and spectator scattering contributions. In the obtained allowed ranges for ρ_S and ϕ_S, i.e. $\rho_S \in [4.2,8]$ and $\phi_S \in [4.75,5.95]$, we calculate the CP asymmetry parameter and the branching fraction for the $B^- \to K^-\sigma$ decay modes using Eqs. [55]-[57]. The results are plotted in Figs. 1 and 2 as functions of ρ_S and ϕ_S. From these two figures and our calculated data, we obtain the predictions that $\mathcal{A}_{CP}(B^- \to K^-\sigma) \in [-0.094,-0.034]$ and $\mathcal{B}(B^- \to K^-\sigma) \in [1.82,20.0] \times 10^{-5}$ when ρ_S and ϕ_S vary in their allowed ranges. Moreover, with the obtained values of ρ_S and ϕ_S, we can also get the localized CP
asymmetry $A_{CP}(B^- \to K^-\pi^+\pi^-)$ induced by only $[\pi\pi]$ and only $[K\pi]$ resonances, respectively, in the same region $m_{K^-\pi^+}^2 < 15$ GeV2 and $0.08 < m_{\pi^+\pi^-}^2 < 0.66$ GeV2. Inserting Eqs. (19) and (20) into Eq. (54) respectively, the results are $A_{CP}(B^- \to [K^-\pi^+]\pi^- \to K^-\pi^+\pi^-) = 0.086 \pm 0.021$ and $A_{CP}(B^- \to K^-[\pi^+\pi^-] \to K^-\pi^+\pi^-) = 0.585 \pm 0.045$. Comparing these two results, we can see the contribution from the $[K\pi]$ resonances are much smaller than that from the $[\pi\pi]$ resonances. This is because $B^- \to [K^-\pi^+]\pi$ decays are mediated by the $b \to s$ loop (penguin) transition without the $b \to u$ tree component as shown in Eqs. (43, 45, 48) and also because the resonance regions of $[K\pi]$ channel mesons have smaller widths and are further away from $[\pi\pi]$ channel mesons (ρ, ω and σ). Therefore, the contributions from the $[K\pi]$ channel resonances are much smaller than that from $[\pi\pi]$ channel resonances. Furthermore, using Eqs. (22, 29) and Eq. (54), we also get that the nonresonance contribution as $A_{CP}^{NR}(B^- \to K^-\pi^+\pi^-) = 0.061 \pm 0.0042$ which is also much smaller than that from the $[\pi\pi]$ resonances in our studied region $m_{K^-\pi^+}^2 < 15$ GeV2 and $0.08 < m_{\pi^+\pi^-}^2 < 0.66$ GeV2. Since both $A_{CP}(B^- \to [K^-\pi^+]\pi^- \to K^-\pi^+\pi^-)$ and $A_{CP}^{NR}(B^- \to K^-\pi^+\pi^-)$ are much smaller than $A_{CP}(B^- \to K^-[\pi^+\pi^-] \to K^-\pi^+\pi^-)$. We conclude that the large localized CP asymmetry $A_{CP}(B^- \to K^-\pi^+\pi^-) = 0.678 \pm 0.078 \pm 0.0323 \pm 0.007$ is mainly induced by the contributions from the $[\pi\pi]$ channel resonances.

VI. SUMMARY

In this work, within a quasi two-body QCD factorization approach, we study the localized integrated CP violation in the $B^- \to K^-\pi^+\pi^-$ decay in the region $m_{K^-\pi^+}^2 < 15$ GeV2 and $0.08 < m_{\pi^+\pi^-}^2 < 0.66$ GeV2 by including the contributions from both resonances including $\sigma(600)$, $\rho^0(770)$ and $\omega(782)$ mesons from $[\pi\pi]$ channel and $K^*(892)$, $K^*(1410)$, $K_0^*(1430)$, $K^*(1680)$ and $K_2^*(1430)$ mesons from $[K\pi]$ channel. By fitting the experimental data $A_{CP}(B^- \to K^-\pi^+\pi^-) = 0.678 \pm 0.078 \pm 0.0323 \pm 0.007$ in above experimental region, it is found that there exist ranges of parameters ρ_S and ϕ_S which satisfy the above experimental data. Thus, the resonance and nonresonance contributions can indeed induce the data for the localized CP asymmetry in the $B^- \to K^-\pi^+\pi^-$ decay. The allowed ranges for ϕ_S and ρ_S are $\phi_S \in [4.75, 5.95]$ and $\rho_S \in [4.2, 8]$ is larger than the previously conservative choice of $\rho \leq 1$. In fact, there is no reason to restrict ρ to the range $\rho \leq 1$ because the QCDF itself cannot give information and constraint on the parameter ρ and it can only be obtained through the experimental data. Large values of ρ_S reveal that the contributions from the weak annihilation and the hard spectator scattering processes are both large for the $B^- \to K^-\pi^+\pi^-$ decay. Especially, the contribution from the weak annihilation part should not be neglected. In fact, the large weak annihilation contributions have been observed and predicted in experimental and theoretical studies. So the larger values of ρ_S are acceptable when dealing with the divergence problems for the $B \to SP(PS)$ decays. With the obtained allowed ranges for ρ_S and ϕ_S, we predict the CP asymmetry parameter and the branching fraction for $B^- \to K^-\sigma$. The results
are $\mathcal{A}_{CP}(B^- \to K^−σ) \in [−0.094, −0.034]$ and $\mathcal{B}(B^- \to K^-σ) \in [1.82, 20.0] \times 10^{-5}$ when ρ_S and $ϕ_S$ vary in their allowed ranges, respectively. In addition, we also calculate the localized CP asymmetry $\mathcal{A}_{CP}(B^- \to K^-π^+π^-)$ only considering the $[ππ]$, $[Kπ]$ resonances and nonresonance, respectively, in the same region $m_{K−π}^2 < 15 \text{ GeV}^2$ and $0.08 < m_{π+π}^2 < 0.66 \text{ GeV}^2$. The results are $\mathcal{A}_{CP}(B^- \to [K−π]π \to K^-π^+π^-) = 0.086 \pm 0.021$, $\mathcal{A}_{CP}(B^- \to K^-[π^+π^-] \to K^-π^+π^-) = 0.585 \pm 0.045$ and $\mathcal{A}_{CP}^{NR}(B^- \to K^-π^+π^-) = 0.061 \pm 0.0042$, respectively. Therefore, the large localized CP asymmetry in the $B^- \to K^-π^+π^-$ is mainly induced by the contributions from the $[ππ]$ channel resonances and the contributions from $[Kπ]$ channel resonances and nonresonance are very small.

Acknowledgments

One of the authors (J.-J. Qi) is very grateful to Professor Hai-Yang Cheng, Professor Hsiang-nan Li and Professor Zhi-Gang Wang for valuable discussions. This work was supported by National Natural Science Foundation of China (Projects No. 11575023, No. 11775024, No. 11705081 and No. 11881240256).

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin and H. L. Yu, Phys. Rev. D 46, 1148 (1992)
[4] M. B. Wise, Phys. Rev. D 45, no. 7, R2188 (1992).
[5] G. Burdman and J. F. Donoghue, Phys. Lett. B 280, 287 (1992).
[6] H. Y. Cheng and C. K. Chua, Phys. Rev. D 88, 114014 (2013)
[7] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111, 101801 (2013).
[8] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 112, 011801 (2014).
[9] C. W. Chiang, M. Gronau, Z. Luo, J. L. Rosner and D. A. Suprun, Phys. Rev. D 69, 034001 (2004)
[10] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[11] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606, 245 (2001).
[12] Y. Y. Keum, H. n. Li and A. I. Sanda, Phys. Lett. B 504, 6 (2001)
[13] C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D 63, 014006 (2000)
[14] C. D. Lu, K. Ukai and M. Z. Yang, Phys. Rev. D 63, 074009 (2001).
[15] A. V. Manohar and I. W. Stewart, Phys. Rev. D 76, 074002 (2007)
[16] C. M. Arnesen, Z. Ligeti, I. Z. Rothstein and I. W. Stewart, Phys. Rev. D 77, 054006 (2008)
[17] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 108, 211803 (2012)
[18] R. Aaij et al. [LHCb Collaboration], JHEP 1210, 037 (2012)
[19] Y.-T. Duh et al. [Belle Collaboration], Phys. Rev. D 87, no. 3, 031103 (2013)
[20] Z. J. Xiao, W. F. Wang and Y. y. Fan, Phys. Rev. D 85, 094003 (2012)
[21] M. Gronau, D. London and J. L. Rosner, Phys. Rev. D 87, no. 3, 036008 (2013)
[22] Q. Chang, J. Sun, Y. Yang and X. Li, Phys. Rev. D 90, no. 5, 054019 (2014)
[23] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29, 637 (1985).
[24] H. Y. Cheng and K. C. Yang, Phys. Rev. D 83 (2011) 034001
[25] H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73, 014017 (2006)
[26] H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 77, 014034 (2008)
[27] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68 (1996) 1125
[28] H. Y. Cheng, Y. Koike and K. C. Yang, Phys. Rev. D 82, 054019 (2010)
[29] H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).
[30] C. Wang, Z. Y. Wang, Z. H. Zhang and X. H. Guo, Phys. Rev. D 93, no. 11, 116008 (2016).
[31] H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).
[32] C. L. Y. Lee, M. Lu and M. B. Wise, Phys. Rev. D 46, 5040 (1992).
[33] S. Fajfer, R. J. Oakes and T. N. Pham, Phys. Rev. D 60, 054029 (1999)
[34] S. Ahmed et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251801 (2001)
[35] H. Y. Cheng and K. C. Yang, Phys. Rev. D 66, 054015 (2002)
[36] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 79, 072006 (2009)
[37] H. Y. Cheng, Nucl. Part. Phys. Proc. 273, 1290 (2016).
[38] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 99, 161802 (2007)
[39] S. J. Brodsky and G. R. Farrar, Phys. Rev. D 11, 1309 (1975).
[40] C. K. Chua, W. S. Hou, S. Y. Shiau and S. Y. Tsai, Phys. Rev. D 67, 034012 (2003)
[41] J.-P. Dedonder, A. Furman, R. Kaminski, L. Lesniak and B. Loiseau, Acta Phys. Polon. B 42, 2013 (2011)
[42] S. Gardner, H. B. O’Connell and A. W. Thomas, Phys. Rev. Lett. 80, 1834 (1998)
[43] X. H. Guo and A. W. Thomas, Phys. Rev. D 58, 096013 (1998)
[44] C. Wang, Z. H. Zhang, Z. Y. Wang and X. H. Guo, Eur. Phys. J. C 75, no. 11, 536 (2015)
[45] X. H. Guo, O. M. A. Leitner and A. W. Thomas, Phys. Rev. D 63, 056012 (2001)
[46] I. Bediaga, G. Guerrer and J. M. de Miranda, Phys. Rev. D 76, 073011 (2007)
[47] H. B. O’Connell, A. W. Thomas and A. G. Williams, Nucl. Phys. A 623, 559 (1997) K. Maltman, H. B. O’Connell and A. G. Williams, Phys. Lett. B 376, 19 (1996)
[48] S. Gardner and H. B. O’Connell, Phys. Rev. D 57, 2716 (1998)
[49] D. V. Bugg, J. Phys. G 34, 151 (2007)
[50] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 92, no. 3, 032002 (2015)
[51] Y. Li, A. J. Ma, W. F. Wang and Z. J. Xiao, Eur. Phys. J. C 76, no. 12, 675 (2016)
[52] Z. H. Zhang, X. H. Guo and Y. D. Yang, Phys. Rev. D 87, no. 7, 076007 (2013)
[53] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014).
[54] C. Wang, X. H. Guo, Y. Liu and R. C. Li, Eur. Phys. J. C 74, no. 11, 3140 (2014)
[55] J.-P. Dedonder, R. Kaminski, L. Lesniak and B. Loiseau, Phys. Rev. D 89, no. 9, 094018 (2014)
[56] J. J. Qi, Z. Y. Wang, X. H. Guo, Z. H. Zhang and J. Xu, Eur. Phys. J. C 78, no. 10, 845 (2018)
[57] C. Bobeth, M. Gorbahn and S. Vickers, Eur. Phys. J. C 75, no. 7, 340 (2015)
[58] M. Ciuchini, E. Franco, A. Masiero and L. Silvestrini, Phys. Rev. D 67, 075016 (2003)
[59] J. Sun, Q. Chang, X. Hu and Y. Yang, Phys. Lett. B 743, 444 (2015)
[60] G. Zhu, Phys. Lett. B 702, 408 (2011)
[61] Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63, 054008 (2001)