Phylogenomic Analysis Identifies Gene Gains That Define Salmonella enterica Subspecies I

E. Kurt Lienau1,2,*, Jeffrey M. Blazar1,3, Charles Wang1, Eric W. Brown3, Robert Stones4, Steven Musser1, Marc W. Allard1,6

1 Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America, 2 Evolution Industries LLC, Frederick, Maryland, United States of America, 3 Department of Biology, University of Maryland, College Park, Maryland, United States of America, 4 The Food and Environment Research Agency, Sand Hutton, York, United Kingdom

Abstract

Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I.

Citation: Lienau EK, Blazar JM, Wang C, Brown EW, Stones R, et al. (2013) Phylogenomic Analysis Identifies Gene Gains That Define Salmonella enterica Subspecies I. PLOS ONE 8(10): e76821. doi:10.1371/journal.pone.0076821

Editor: Paul J Planet, Columbia University, United States of America

Received March 7, 2012; Accepted September 4, 2013; Published October 28, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: All funds for this research came from The Center for Food Safety and Applied Nutrition (CFSAN) of the United States Internal Food and Drug Administration (FDA) research funds. E. Kurt Lienau was partially supported by a grant from the Oak Ridge Institute for Science Education and by Evolution Industries LLC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: E. Kurt Lienau has applied for patent protection on methods used in this paper to identify diagnostic target sequences. The authors declare no other conflicts of interest.

* E-mail: kurt.lienau@evolutionindustriesllc.com (EKL); marc.allard@fda.hhs.gov (MWA)

Introduction

Recently, we applied whole genome phylogenetic analysis to the epidemiological trace-back of an outbreak of Salmonellosis [1]. However, analyses of this type can only give information about past outbreaks, and cannot prevent outbreaks from happening in the first place. In order to prevent outbreaks, we must be able to rapidly identify tainted foods before they come to market.

Some researchers have questioned whether it is possible to reconstruct an accurate evolutionary history of bacteria, given ongoing debates about the influence of horizontal gene transfer [2–9]. However, we believe that a phylogenetic analysis of whole genome sequence (WGS) data can solve these problems and account for HGT. In fact, using a whole genome tree of life hypothesis, we were recently able to corroborate the hypothesis that there is a vertical history of life for bacteria [8]. We expect these techniques will enable us to better understand the genomic evolutionary history of finer scale taxonomic classes of bacteria, including serovars of S. enterica subspecies I. As a step toward this goal, we have applied the comparative method of WGS phylogenetic analysis to discover diagnostic biomarkers capable of identifying and discriminating among forms of Salmonella enterica (S. enterica). We suggest that phylogenetic analysis of WGS data can provide a solution to the problem of effective detection and identification of S. enterica serovars and some strains. The Salmonella enterica subspecies I

Salmonella infection is currently the most common foodborne illness in the United States (US), resulting in thousands of infections per year. These rates have not declined in over a decade, demonstrating the high fitness level of S. enterica. To reduce the human and financial costs of this pathogen, it is imperative to quickly and cheaply detect Salmonella contamination before it enters the food distribution system [10,11].

The current classification of the genus Salmonella divides it into two species: Salmonella bongori and Salmonella enterica [12]. Baumler [13] suggested that a gain of the genetic elements fim, the Salmonella Pathogenicity Island 1 (SPI1), and lpf, are responsible for the ability of this genus to invade intestinal epithelial cells. In the same study, Baumler [13] went on to postulate that the evolutionary transition from the common ancestor of S. bongori and S. enterica to S. enterica occurred, in part, by the acquisition of SPI1, and that the divergence of S. enterica subspecies I from the other subspecies is due to the acquisition of several genes by subspecies I, and loss of the lpf operon by subspecies II, III, IV, and VI. Later, Baumler et al. [14] developed the hypothesis that the complex lymphoid systems of mammals and some bird species drove the evolution of virulence among all of the members of subspecies I. Later research from the same group reported that usd1 dependent SPI1 is responsible for the ability of non-typhoidal Salmonella to enter gut lymphoid systems [15].
Table 1. Genome sequences used in this analysis.

SRA NCBI	PRoject #	Taxids	Full Name
SRX129176	PRJNA41263	685040	Salmonella enterica subsp. enterica serovar Gallinarum str. 9184
SRX129211	PRJNA41461	687914	Salmonella enterica subsp. enterica serovar Rissen str. 150
SRX129213	PRJNA41463	687915	Salmonella enterica subsp. enterica serovar Dublin str. SL1438
SRX129216	PRJNA41465	687860	Salmonella enterica subsp. enterica serovar Dublin str. HW551
SRX129219	PRJNA41915	696870	Salmonella enterica subsp. enterica serovar Enteritidis str. SE8a
SRX129220	PRJNA41917	696864	Salmonella enterica subsp. enterica serovar Enteritidis str. 20037
SRX129221	PRJNA41919	696865	Salmonella enterica subsp. enterica serovar Enteritidis str. SE10
SRX129224	PRJNA41921	696869	Salmonella enterica subsp. enterica serovar Enteritidis str. 436
SRX129225	PRJNA41929	696867	Salmonella enterica subsp. enterica serovar Enteritidis str. 18569
SRX129226	PRJNA41931	696866	Salmonella enterica subsp. enterica serovar Enteritidis str. 13–1
SRX129229	PRJNA41933	696868	Salmonella enterica subsp. enterica serovar Enteritidis str. PT23
SRX129230	PRJNA50691	866914	Salmonella enterica subsp. enterica serovar 4, [5],12:i:- str. 08–1700
SRX129231	PRJNA50693	866915	Salmonella enterica subsp. enterica serovar 4, [5],12:i:- str. 08–1739
SRX129232	PRJNA50695	866919	Salmonella enterica subsp. enterica serovar Kentucky str. 29439
SRX129233	PRJNA53275	891424	Salmonella enterica subsp. enterica serovar Typhimurium str. CDC_2009K1153
SRX129234	PRJNA53267	891420	Salmonella enterica subsp. enterica serovar Javiana str. ATCC BAA-1593
SRX129235	PRJNA46537	745016	Salmonella enterica subsp. enterica serovar Montevideo str. 316111868
SRX101636	PRJNA46539	745017	Salmonella enterica subsp. enterica serovar Montevideo str. 49297-1
SRX101642	PRJNA46541	745018	Salmonella enterica subsp. enterica serovar Montevideo str. 49297-3
SRX101643	PRJNA46543	745019	Salmonella enterica subsp. enterica serovar Montevideo str. 49297-4
SRX101644	PRJNA46545	745020	Salmonella enterica subsp. enterica serovar Montevideo str. 515920-1
SRX101645	PRJNA46547	745021	Salmonella enterica subsp. enterica serovar Montevideo str. 515920-2
SRX101646	PRJNA46549	745022	Salmonella enterica subsp. enterica serovar Montevideo str. 531954
SRX101649	PRJNA46907	749951	Salmonella enterica subsp. enterica serovar Montevideo str. CASC_095CPH15965
SRX105725	PRJNA46911	749952	Salmonella enterica subsp. enterica serovar Montevideo str. SaRb31
SRX105759	PRJNA46913	749953	Salmonella enterica subsp. enterica serovar Montevideo str. ATCC BAA710
SRX105760	PRJNA46915	749948	Salmonella enterica subsp. enterica serovar Montevideo str. LQC 10
SRX105761	PRJNA46917	749947	Salmonella enterica subsp. enterica serovar Montevideo str. SaRb30
SRX129236	PRJNA46931	749930	Salmonella enterica subsp. enterica serovar Tennessee str. 4535
SRX129237	PRJNA49407	789642	Salmonella enterica subsp. enterica serovar Newport str. CVM 35185
SRX129238	PRJNA49409	789643	Salmonella enterica subsp. enterica serovar Newport str. CVM 35199
SRX129239	PRJNA49411	789644	Salmonella enterica subsp. enterica serovar Newport str. CVM 21539
SRX129240	PRJNA49625	796735	Salmonella enterica subsp. enterica serovar Newport str. CVM 19567
SRX129241	PRJNA51207	99287	Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
PRJEA28309		496064	Salmonella enterica subsp. enterica serovar Typhi str. E98–3139
PRJEA28303		496067	Salmonella enterica subsp. enterica serovar Typhi str. J185
PRJNA371		209261	Salmonella enterica subsp. enterica serovar Typhi Ty2
PRJEA28295		497974	Salmonella enterica subsp. enterica serovar Typhi str. E02–1180
PRJEA30943		554290	Salmonella enterica subsp. enterica serovar Paratyphi A str. AKU_12601
PRJNA13086		295319	Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150
PRJNA20993		476213	Salmonella enterica subsp. enterica serovar Paratyphi C strain RKS4594
PRJNA9618		321314	Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67
PRJNA20595		465517	Salmonella enterica subsp. enterica serovar Virchow str. SL491
PRJNA14965		440534	Salmonella enterica subsp. enterica serovar 4, [5],12:i:- str. CVM 23701
PRJNA19461		439846	Salmonella enterica subsp. enterica serovar Saintpaul str. SaRb23
PRJNA20065		454164	Salmonella enterica subsp. enterica serovar Heidelberg str. SL486
PRJNA20045		454169	Salmonella enterica subsp. enterica serovar Heidelberg str. SL476
PRJNA20593		465516	Salmonella enterica subsp. enterica serovar Hadar str. RI_05P066
PRJNA27803		1016998	Salmonella enterica subsp. enterica serovar Paratyphi B str. SPB7
Several approaches have been used to classify the serovars within *Salmonella enterica* subspecies I and some of the perceived disagreements among researchers may be attributable to differences in methodology. For example, one recent study showed that gene presence-absence data from DNA microarray analyses produced an un-weighted pairwise-distance tree that clusters most serovars together; however, multi-locus-sequence-typing (MLST) analysis showed more variability [16]. One study aimed at classifying serovars together; however, multi-locus-sequence-typing (MLST) produced an un-weighted pairwise-distance tree that clusters most gene presence-absence data from DNA microarray analyses.

In the current project, we have used different draft genome sequences using Ribosomal 16s and weighted gene presence-absence matrices came to different conclusions based on the data type and weighting scheme used to correlate serotype and genomic evolutionary history [19]. An MLST and whole genome alignment analysis, using serotypes of both *S. bongori* and *S. enterica* that rooted the genus with *S. enterica arizonae*, found that serovars of *S. enterica* and *S. bongori* underwent HGT from other species [20]. Another *Salmonella* population genetics study, that sequenced 146 regions of 2 to 2.5 kb for 114 strains of *Salmonella enterica*, found there was significant homologous recombination in the species. Each of these analyses has provided a wealth of information that furthers our understanding of the evolutionary history and function of these important pathogens.

In the current project, we have used different draft genome sequences, in conjunction with complete genome sequences, to further test the evolutionary relationships within *Salmonella enterica* subspecies I to derive a better-corroborated history of these foodborne pathogens (Table 1). As draft genome data are only able to describe gene sequences that are present in, but not those absent from, a genome, we focused our analyses on those genes that were present in all samples used in our phylogenetic analysis.

Table 1. Cont.

SRA NCBI	Project #	Taxids	Full Name
PRJNA19463	439847	Salmonella enterica subsp. enterica serovar Saintpaul str. SaA29	
PRJE30687	550537	Salmonella enterica subsp. enterica serovar Enteritidis str. P125109	
PRJNA19467	439851	Salmonella enterica subsp. enterica serovar Dublin str. CT_02021853	
PRJNA30831	573395	Salmonella enterica subsp. enterica serovar Tennessee str. CDC 07–0191	
PRJNA19457	439842	Salmonella enterica subsp. enterica serovar Kentucky str. CVM 29188	
PRJNA20069	454231	Salmonella enterica subsp. enterica serovar Kentucky str. CDC 191	
PRJNA20063	454166	Salmonella enterica subsp. enterica serovar Agona str. SL483	
PRJNA20591	465518	Salmonella enterica subsp. enterica serovar Weltevreden str. HI N05–537	
PRJNA20049	454167	Salmonella enterica subsp. enterica serovar Javiana str. GA_MM04042433	
PRJNA20071	454165	Salmonella enterica subsp. enterica serovar Schwarzengrund str. SL480	
PRJNA19459	439843	Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633	
PRJNA20047	454168	Salmonella enterica subsp. enterica serovar Newport str. SL317	
PRJNA18747	423368	Salmonella enterica subsp. enterica serovar Newport str. SL254	
PRJE30589	550538	Salmonella enterica subsp. enterica serovar Gallinarum str. AM933173	
PRJEA70155	218493	Salmonella bongori NCTC 12419	
PRJEA13030	41514	Salmonella enterica subsp. arizonae serovar 62:z4, z23--	

Results/Discussion

The *Salmonella enterica* subspecies I

We used gene presence-absence data and the phylogenetic methods of Lienau et al. [21,22] as heuristic searches to empirically define the *Salmonella enterica* subspecies I homologous genes. Briefly, these searches define gene similarity thresholds and select the threshold resulting in the most resolved and consistent gene presence-absence phylogeny that also provides the most consistent character statements as measured by the combined corroboration metric (CCM) [21]. Our phylogenetic analysis and homology search showed that a similarity value of 70% yielded the most congruent and resolved gene presence-absence phylogeny. We only considered open reading frames (ORFs) that are longer than 120 base pairs and matched at least one other ORF across more than 80% of the nucleotide sequence. The heuristic analysis identified 937 genes common to all organisms in our analysis; this is about half the number found by Jacobsen et al. [19], due to the stringency with which we defined our homologous groups. We used these commonly-held genes to create a multi-locus DNA sequence evolution phylogenetic matrix of 937 genes that contained 204,753 total characters. Out of this number, 82,147 characters were constant, 74,345 were variable characters and parsimony-uninformative, and 48,261 characters were parsimony-informative. Parsimony analysis of this matrix produced 321 most parsimonious trees with a score of 201,886 and CI of 0.653; the strict consensus tree gave a normalized consensus fork component information index of 0.887. We rooted this strict consensus tree with the *S. bongori* genome and chose to depict this rooting as a polyphyletic relationship. This root placed *S. enterica arizonae* at the base of the *S. enterica* subspecies I lineage. We used broken branches, as seen at the top of Figure 1, to denote that *S. bongori* and *S. enterica arizonae* had long internal branch lengths compared to the *S. enterica* subspecies I, a result shared with Fooks, et al. [20].

The strict consensus tree postulates an evolutionary hypothesis classifying most operational taxonomic units (OTUs) that belong to the same O-antigen serovar as monophyletic groups (Figure 1A).
Figure 1. The strict consensus tree of the 321 most-parsimonious trees based on the nucleotide substitutions for 937 genes (A). This tree postulates an evolutionary hypothesis that classifies the majority of operational taxonomic units as monophyletic within the same O-antigen serovar but shows that the 1,4,5,12:i:- O-antigen complex is polyphyletic. Bootstrap percentages of 50% and over are listed above nodes, except those leading to taxa that are grouped together by branch lengths too short to be visible on the figure. The Salmonella enterica subspecies I clade is indicated with an arrow. The branch lengths leading to the out-groups are collapsed into a single schematic. Many of the schematically depicted clades are internal resolution [See Figure S1].

doi:10.1371/journal.pone.0076821.g001
Table 2. *S. enterica* subspecies I genes with similarity to other species.

Putative protein product function	Organisms with similar DNA sequences
cytoplasmic protein citx	Escherichia coli
DNA-binding transcriptional regulator DsdC	Citrobacter koseri, Citrobacter rodentium, Klebsiella oxytoca, Klebsiella pneumoniae, Escherichia coli, Klebsiella varicola, Klebsiella pneumoniae subsp. pneumonia, Enterobacter aerogenes KCTC 2190, Escherichia fergussonii, Edwardsiella tarda, Enterobacter asburiae, Enterobacter cloacae, Serratia proteamaculans, Aeromonas salmonicida subsp. salmonicida, Aeromonas hydrophila subsp. hydrophila
sugar-binding domain protein	Shigella flexneri, Escherichia coli, Escherichia fergussonii, Klebsiella pneumoniae subsp. pneumoniae, Photobutabud asymbiotica, Klebsiella pneumoniae, Yersinia pseudotuberculosis, Klebsiella varicola At-22, Yersinia pestis
Propanediol utilization: propanol dehydrogenase pdxA	Klebsiella oxytoca, Citrobacter rodentium, Enterobacter cloacae
oxalacetate decarboxylase subunit beta	Klebsiella oxytoca, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella varicola, Enterobacter aerogenes, Marinobacter hydrocarbonoclasticus, Marinobacter adhaerens HP15, Pseudomonas mendocina, Marinobacter aquireolae
hexulose-6-phosphate isomerase	Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter koseri, Escherichia coli, Shigella flexneri, Enterobacter cloacae
propanediol dehydratase reactivation protein	Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter rodentium
lipoprotein	Escherichia fergussonii, Escherichia coli, Shigella sonnei, Shigella boydii
aldolase	Escherichia coli, Shigella flexneri, Xenorhabdus bovienii, Shigella dysenteriae, Xenorhabdus nematophil, Yersinia pseudotuberculosis, Yersinia pestis
citrate lyase beta chain	Enterobacter cloacae subsp. Cloacae
4-hydroxythreonine-4-phosphate dehydrogenase	Citrobacter rodentium, Klebsiella oxytoca, Dickeya daintari, Dickeya zeae, Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. carotovorum, Erwinia carotovora subsp. atroseptica, Pantoaea vagans, Pantoaea sp. At-9b, Pectobacterium sp. SSC3193, Enterobacter aerogenes, Pectobacterium wasabiae, Escherichia coli, Erwinia billingiae, Escherichia coli, Enterobacter cloacae subsp. cloacae, Enterobacter asburiae, Pantoaea ananatis, Enterobacter cloacae subsp. dissolvens, Klebsiella varicola, Klebsiella pneumoniae, Escherichia blattae, Klebsiella pneumoniae subsp. pneumoniae
peptide chain release factor	Escherichia fergussonii, Escherichia coli, Shigella sonnei, Shigella boydii, Shigella flexneri
inner membrane protein YqiK	Citrobacter rodentium, Escherichia fergussonii, Shigella sonnei, Shigella boydii, Shigella dysenteriae
inner membrane transport protein YdhP	Klebsiella pneumoniae subsp. pneumoniae, Enterobacter cloacae subsp. dissolvens, Klebsiella varicola, Klebsiella pneumoniae, Enterobacter asburiae, Enterobacter cloacae subsp. cloacae, Enterobacter aerogenes, Enterobacter cloacae, Dickeya daintari 3937, Klebsiella oxytoca, Escherichia blattae, Serratia sp. AS13, Serratia sp. AS12, Serratia plymuthica, Serratia proteamaculans, Rahnella aquatilis HK2, Rahnella sp. Y9602, Pantoaea sp. At-9b, Yersinia enterocolitica subsp. paleafrica, Yersinia enterocolitica, Yersinia enterocolitica subsp. enterocolitica, Aeromonas veronii, Polaronomas naphthalenivorans, Collimonas fungivorans Ter331, Variorovax paradoxx, Ralstonia solanacearum, Aeromonas salmonicida subsp. salmonicida, Aeromonas hydrophila subsp. hydrophila, Pseudomonas pseudoterrae, Azorarcus sp. BH72, Ferromonas balearica, Pseudomonas fluorescens, Chromobacterium violaceum, Shewanella amazonensis, Stenotrophomonas malthophila RS51–3, Cupiavidus necator, Stenotrophomonas malthophila, Acidovorax avenae subsp. avenae, Halomonas elongata, Pseudogulbenkiania sp. NHB8 DNA, Pseudomonas stutzeri, Acidovorax sp. KS1102, Glacieola sp. 4H-3–7Y-5E, Acidovorax citrulli
tartrate dehydratase subunit beta	Klebsiella oxytoca, Enterobacter aerogenes, Escherichia fergussonii, Klebsiella pneumoniae subsp. Pneumoniae
3-keto-L-gulonate-6-phosphate decarboxylase	Klebsiella oxytoca, Citrobacter koseri, Klebsiella pneumoniae, Escherichia coli, Shigella flexneri, Enterobacter cloacae, Enterobacter cloacae subsp. dissolvens, Enterobacter asburiae, Enterobacter cloacae subsp. cloacae, Clostridium, Dickeya daintari 3937, Klebsiella oxytoca, Escherichia blattae, Serratia sp. AS13, Serratia sp. AS12, Serratia plymuthica, Serratia proteamaculans, Rahnella aquatilis HK2, Rahnella sp. Y9602, Pantoaea sp. At-9b, Yersinia enterocolitica subsp. paleafrica, Yersinia enterocolitica, Yersinia enterocolitica subsp. enterocolitica, Aeromonas veronii, Polaronomas naphthalenivorans, Collimonas fungivorans Ter331, Variorovax paradoxx, Ralstonia solanacearum, Aeromonas salmonicida subsp. salmonicida, Aeromonas hydrophila subsp. hydrophila, Pseudomonas pseudoterrae, Azorarcus sp. BH72, Ferromonas balearica, Pseudomonas fluorescens, Chromobacterium violaceum, Shewanella amazonensis, Stenotrophomonas malthophila RS51–3, Cupiavidus necator, Stenotrophomonas malthophila, Acidovorax avenae subsp. avenae, Halomonas elongata, Pseudogulbenkiania sp. NHB8 DNA, Pseudomonas stutzeri, Acidovorax sp. KS1102, Glacieola sp. 4H-3–7Y-5E, Acidovorax citrulli
propanediol utilization protein PduJ	Klebsiella oxytoca, Citrobacter rodentium, Citrobacter freundii, Enterobacter cloacae, Citrobacter koseri, Uncultured bacterium, Escherichia fergussonii
acetyltransferase, gnat family	Enterobacter cloacae subsp. cloacae, Citrobacter koseri, Citrobacter rodentium, Klebsiella oxytoca, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella pneumoniae, Enterobacter cloacae subsp. cloacae, Enterobacter cloacae subsp. dissolvens, Klebsiella varicola, Enterobacter aerogenes, Escherichia coli, Shigella flexneri, Escherichia fergussonii, Escherichia coli, Shigella boydii
inner membrane protein ybcl	Enterobacter cloacae subsp. cloacae, Enterobacter cloacae, Escherichia fergussonii, Enterobacter cloacae subsp. dissolvens 5DM, Escherichia coli, Shigella boydii, Shigella sonnei, Shigella dysenteriae
ABC transport protein, solute-binding component	Escherichia coli, Shigella flexneri, Klebsiella varicola, Escherichia fergussonii, Klebsiella pneumoniae, Enterobacter aerogenes, Yersinia enterocolitica subsp. enterocolitica, Rahnella aquatilis, Yersinia enterocolitica, Yersinia enterocolitica subsp. enterocolitica, Rahnella aquatilis, Rahnella sp. Y9602, Yersinia pestis
outer membrane protein	Escherichia fergussonii
GumN Family transcriptional regulator	Klebsiella pneumoniae subsp. pneumoniae, Enterobacter aerogenes, Klebsiella varicola At-22, Klebsiella pneumoniae, Klebsiella varicola, Klebsiella pneumoniae subsp. pneumoniae,
GntR Family transcriptional regulator	Klebsiella oxytoca, Enterobacter aerogenes, Klebsiella varicola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae,
antigen moiety in distantly-related groups. In figure 1A, the first antigenic components, or convergent evolution of the same O genes gained at the base of the monophyletic S. Schwarzengrund at the base of the monophyletic S. Montevideo [1] and places S. Javiana and S. Schwarzengrund at the base of the monophyletic S. Montevideo group. S. Enteritidis is monophyletic and clusters with a monophyletic S. Galinarum and a monophyletic S. Dublin. In contrast to the findings of Achman, et al. [16], S. Kentucky and S. Tennessee appear to be monophyletic. These discrepancies may be due to the different phylogenetic and/or sampling methods and isolates used in these analyses.

Genes gained at the base of the Salmonella enterica subspecies I

We then mapped the gene presence-absence data onto the core gene phylogeny to identify genes gained by S. enterica subspecies I. Previous researchers have identified from 216 to 249 genes gained by the S. enterica subspecies I [13,23–25] We examined all the genes gained by the common ancestor of all S. enterica subspecies I in our analysis. We identified 377 total genes gained. Of these, 71 genes were gained once and not lost by any members of S. enterica subspecies I included in this analysis (Table 2, see methods).

We then identified ORFs at the nucleotide level that are both specific to and able to discriminate among the genetically known serovars of Salmonella enterica subspecies I included in this study. We used nucleotide blasts to compare members of these genes against the NCBI non-redundant (nr) nucleotide database. Thirty-one gene sequences had a BLASTn total score of greater than or equal to 200 vs. non-Salmonella organisms (Table 3). We also retrieved 13 significant hits using the default parameters of megaBLAST to S. enterica houtenae, (subspecies IV) of Salmonella enterica in the SRA

There is one notable exception. The O antigen class S. enterica subsp. enterica serovar 1,4,5,12:i:- (S. 1,4,5,12:i:-) is polyphyletic, perhaps due to reticulate evolution via HGT, loss of some antigenic components, or convergent evolution of the same O antigen moiety in distantly-related groups. In figure 1A, the first clade of organisms that shows the S. 1,4,5,12:i:- O antigen phenotype is the S. Heidelberg, S. Saintpaul SARA23, S. Typhimurium and S. 1,4,5,12:i:- clade. The evolution of the O antigen phenotype in this group could be satisfactorily explained by the loss of the “1” characteristic of the somatic (O) antigen phenotype in the S. 1,4,5,12:i:- taxa after a gain of the S. 1,4,5,12:i:- by the common ancestor of the clade. The S. 1,4,5,12:i:- phenotype is also exhibited by the S. Paratyphi B, S. Saintpaul SARA29 clade (shown in bold toward the middle of the tree in panel A of Figure 1) and by S. Agona (shown in bold toward the bottom of the tree). It is tempting to speculate that the S. 1,4,5,12:i:- phenotype came into these taxa via one or more HGT events conferring genes responsible for generating the somatic antigens of S. enterica.

This tree also resolves the S. enterica subspecies I relationships for 12 of 33 strains of S. Typhimurium [1] and places S. Javiana and S. Schwarzengrund at the base of the monophyletic S. Montevideo group. S. Enteritidis is monophyletic and clusters with a monophyletic S. Galinarum and a monophyletic S. Dublin. In contrast to the findings of Achman, et al. [16], S. Kentucky and S. Tennessee appear to be monophyletic. These discrepancies may be due to the different phylogenetic and/or sampling methods and isolates used in these analyses.
L Sequence	R Sequence	P Size	gene name	Accession Number
ATGTTGAAAGAAGAAGGCAT	GCCTTTGCAGATAGCGTC	585	CitB – citrase metabolism	CP001120.1
GGAATCGACGATGTGAGAT	GCATCCATGTTAATTTGCT	252	Lyase subunit gamma	AM933172.1
GAATCTGACGCAGGATTATT	GTACGTTTGTGGCCGCAAT	573	Sbd fimbrial protein usher	CP000886.1
CTTGGCTTTAACCAGCATGTA	TAAACCCAGAGACGAAA	330	CycH cytochrome c biogenesis	CP001120.1
ATTTCGGCACAGCTTATG	GCATTGTTGCTGGTGGTG	515	No database matches	CP001144.1
GTGACTGCTGCTACTAATCTT	GCCGAGTATCCGAGCTT	186	Pathogenicity island protein	AE014613.1
ATGTCGATGGCAGAAAATC	TGATGACTGTTGCTGAGG	559	2-dehydroxyacetoacetate reductase	CP002614.1
CACTACTGCGCAATTATAC	CCCGAGATCATAAACACGA	566	Putative permease MFS	CP001144.1
GCTGCAATATCAAGGGGCG	ATGGCGCAGATTCCATGCA	447	Putative cytoplasmic protein	CP001127.1
CGTTGGCTTTTCTTTATCCTG	TACGACCTGCTCTTITTTT	519	Inner membrane protein	FR775236.1
TGTCTTGTGGTGAAGCG	AACGTCAAACGCCACCA	574	Transcriptional regulator	AM933172.1
CTAATTACAAAGGCCCTGCC	CACAAGACACCATATTAGCGGC	310	DNA-binding protein	AM933173.1
AGAATTTCGGTGCTCGT	TCTGACATGCTGACCTCATC	323	NTF2_like	CP001113.1
GGTGACGGCTCCATAAAAAA	ATGCCTGCTGATTGCTGTC	502	Hypothetical protein	AM933172.1
CAAAATGAGGGGCGTACGCGG	CCCTGATTTCATAGCACGAC	502	FGGY_N super family [cl09121],	CP001138.1
AGGCCGAAAGAAGAATCAC	ACAGTCTGTGGGCTATCT	534	MOSC	CP001120.1
CAGTTTACCTGCTGTAATT	TGGCTTTGTGAAAGCGG	199	ABM	AM933172.1
GTGGTTGTTTCTTTATCCTG	TACGGTCTCATGCTCTGCT	512	Aminomimidazole riboside kinase Fructokinase (FRKs)	CP001144.1
AAACGCATGGAAGACCGTAC	TATTTGGGAGAGAATTAG	566	Uncharacterized protein conserved in bacteria [Function unknown]	AM933172.1
CCCATTGTCCTTCTGGGTT	CCCACGGACACAACCTTATA	540	PBP1_LsrB, Qorum, Sensing	AM933172.1
TGGAGGGTATGAACCGAGCG	CGGGAAGAAAGACTAAGTCC	468	DNA-binding domain of the GntR family of transcriptional regulators	CP001127.1
CGTGCTCGGTAAGTCCCAAC	CGGTATCGCTTCATTACGGT	543	Propanediol utilisation protein PduL	CP001138.1
TGCGGTCTGTGCTGGTCC	TACTTGTCATGCTCTGCTG	313	Undecaprenyl-phosphate alpha-N-acetylglucosaminyltransferase	CP000886.1
TCACTTTGCAGGAGATT	CGTATACGCTTTTATGTCG	555	Putative cytoplasmic protein	CP001138.1
GTAGCCTCTGCTCTGCAAC	GCCCTGACGCTGCTATT	503	Putative methyl-accepting chemotaxis protein	CP001144.1
ATACCCCTTGGGCGATAATG	TGGCTGCTATTCCATGAGT	297	Allantoin catabolism protein	FM200053.1
CTTGAAAGCGGAAACAGCTC	CATGGTGCGCAGATATCG	543	ADP-ribosylglycohydrolase superfamily	CP001127.1

S. enterica subspecies 1 and houtenae

L Sequence	R Sequence	P Size	gene name	Accession Number
CCGATGTCGCTGCTTTATC	GCACGTGTTTCTGGGTTTAC	355	Pathogenicity island 2 effector protein SseG	CP002614.1
TTATGCGCAAGAATATCGGA	TATCAAGCGACGTAGGCG	245	Phage shock protein E	CP000857.1
CAACTACCTCCTGGCTTTGCC	GAAAGAAGCAGATCCGTC	506	FimBriae Y protein	CP001120.1
ACTATCAATATGGCAAGCGCG	CATACGCAACAGATAGCGCA	509	PMT	CP001127.1
CTGCGGCGCTATGTTTATCT	CCGGTGCTACCTTGAAAA	363	Cytochrome_b_N	AM933172.1
GATCTGCACTCATCCTGCA	GATGCTGATATCTGCTGCT	135	Entericidin	CP000857.1
TATTTACGTGCGGCGTATC	GAATGCTGCAACGACATCC	501	AraC family	AM933172.1
ATGCGGATGTTATTTTGCTG	TCAGCCAGGGGATGATGAAGG	514	Molybdate ABC transporter periplasmic molybdate-binding protein	CP001113.1
CATCCTCCTGGGCAAGTGAAT	ATTGTACGGAAAGTCTGCA	443	FlmF putative fimbral protein	CP002614.1
TGAGATCGACGCTCCTGTT	GTACGGCTTTCAACACCGAC	355	Inner membrane protein	CP002614.1
CCAAATGACGACGGCCCTGC	GCAAACGCTGTGCTT	143	Yoag conserved cytoplasmics	CP002614.1
ACGCGTGGATGAAATCGAC	TCTCCGACCTATACCGCTT	570	ABC transporters	AE014613.1
CACGCTGCGGTTATTAT	AGATCTCGGCGTTATT	160	Prokaryotic membrane lipoprotein	FM200053.1

Table 3. Primers, product length, locus ID and putative function of target sequences for S. enterica.
strains of *S. enterica* subspecies I by doing phylogenetic analysis on the predicted PCR fragment sequences. We made 27 alignments for 317 *S. enterica* subspecies I serotypes and concatenated them into a MLST super-matrix composed of 12055 characters, 862 of which were parsimony-informative. We analyzed the matrix using the parsimony ratchet strategy. This analysis yielded 99 most parsimonious trees with scores 3720; the majority rule bootstrap consensus is shown in Figure 1B and the strict consensus is shown in Figure S1. While this tree is based on less character information and contains nearly 5 times the number of taxa than the tree derived from the 937 gene analysis, it is resolved enough to discriminate among most of the different serotypes and strains of *S. enterica* subspecies I included in our analysis (Figure 1B).

In order to test whether we could increase the resolution of this MLST approach, we also selected gene sequence fragments for the 13 genes determined to be significantly similar to *S. enterica houtenae* in the SRA megaBLAST test. We designed and tested PCR primers to amplify these genes (Table 3). We included this additional genetic data to the 27 gene alignments for 317 *S. enterica* subspecies I serotypes and concatenated them into a MLST super-matrix composed of 319 taxa (including 2 *S. enterica houtenae* strains). This matrix had 16221 characters, 1361 of which are parsimony-informative. Phylogenetic analysis yielded 256 most parsimonious trees with scores 5620, the strict consensus of which is pictured in Figure S2. This tree is rooted with *S. enterica houtenae*. It is resolved enough to discriminate among all of the different serotypes and many strains of *S. enterica* subspecies I tested. This gene set is an improvement to the smaller MLST analysis that did not include the genes also present in *S. enterica houtenae* (Figure S2).

These results indicate this set of PCR amplicons should be excellent candidate biomarkers for use in MLST and single nucleotide polymorphism (SNP) detection and diagnostic tools for *S. enterica* subspecies I serovars and some strains.

The first set of 27 genes and the PCR amplicons derived from them are sufficient for a gene presence-absence diagnostic test for *S. enterica* subspecies I. This set of amplicons can also be used to reliably determine most serotypes and some strains of *S. enterica* subspecies I in a PCR/SNP detection system. However, because some isolates did not resolve all serotypes into monophyletic clades when using the 27 gene set, it would be better to use the 40 gene set which includes the out-group *S. enterica houtenae* as a SNP-based MLST diagnostic system, since that method fully resolves all serotypes and many strains of *S. enterica* subspecies I tested (Figure S2).

Conclusion

Reconstructing the evolutionary history among lineages provides an approach for both identifying the qualities that make pathogens dangerous and detecting those organisms in settings where they pose potential threats to human health. We devised a scheme that would generate an evolutionary hypotheses to test which genes were unique among *Salmonella* to *S. enterica* subspecies I. Using the BLAST algorithm, we tested the origin of these gene sequences against the non-redundant nucleotide database and found that some genes were very similar to distantly related organisms, and that others were only weakly similar to distantly related species. We used these unique gene sequences to generate diagnostic biomarkers that can detect the presence and determine the serotype of *S. enterica* subspecies I. This method of identifying diagnostic characters for a clade of organisms provides a future framework to generate and test hypotheses about genetic variations that may be correlated with disease phenotypes.

Materials and Methods

Genome Sequences

We used Roche 454 sequencing technology to sequence 34 new *Salmonella enterica* draft genomes from various sources (Table 1). We assembled the shotgun sequenced genomes using Glimmer (http://cbcb.umd.edu/software/glimmer/) and had them annotated using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Automatic Annotating Pipeline (PGAAP) [27]. We also downloaded 30 publicly-available *Salmonella* species genome sequences from NCBI’s GenBank, including *Salmonella bongori* (Accession NC_015761). This yielded a total of 71 *Salmonella enterica* genomes and one *Salmonella bongori* genome. The sequences reported in this paper have been deposited in the GenBank and SRA databases, with accession numbers listed in Table 1.

Phylogenetic analysis

An empirical homology cluster search was performed per Lienau et al. [8] to determine the similarity value to generated the gene clusters that yielded the most congruent and best-resolved gene presence-absence phylogenetic tree. We tested similarity value thresholds for gene clustering of 60%, 70%, 80% and 90% at length limit of 120 bp and minimum match length of 80% using megaBLAST, as implemented in a computer program called PathGenome, currently being developed by the FDA and the Food and Environmental Research Agency (FERA). We generated gene presence-absence matrices for each of the similarity values tested and performed tree searches using the Phylogenetic Analysis using Parsimony and Other Methods (PAUP*) 4.10 b portable version [28] with a ratchet search of 9 iterations: 3 iterations each at perturbations of 15% 17% and 21%, respectively, using command files generated by Parsimony Analyses using PAUP* (PRA) [29]. After establishing which genes in our study resulted in the gene presence-absence tree with the highest CCM score, we then aligned each of those gene sequences using MUSCLE and constructed a multi-locus DNA sequence evolution matrix [30]. We searched for the most optimal tree using the parsimony ratchet searches as described above. All characters were equally weighted. We did a bootstrap analysis on all phylogenetic matrices using PAUP*4.10 b portable version [28] at 100 replicates, holding a maximum of 1000 trees per replicate.

Biomarker identification

We used the method of Lienau, 2012 [2] to identify likely candidate genes for use as diagnostic biomarkers. We defined the node of interest as the node that led to all of the *Salmonella enterica* subspecies I and then used accelerated transformation of parsimony character reconstruction to identify genes gained at that node. We then selected 71 of these gained genes that showed perfect consistency with the phylogenetic hypothesis as measured by the consistency index of Kluge and Farris [31]. We manually checked these genes for presence in all members of the ingroup (*S.enterica* subspecies I) and absence in the outgroup (*S. bongori* and *S. enterica arizonae*) to rule out symplesiomorphies. All 71 genes met these criteria. We then checked other organisms to see whether these genes were present (see next section).

Blast to identify potential false positive markers and primer design

We took an example sequence from each of the 71 genes and blasted them against the nr nucleotide database at NCBI. Using a lower bound of 70% identity, we separate 40 genes with positive hits to only Salmonella, leaving aside the 31 genes that had hits to...
other organisms. We designed and tested primers to the conserved regions of the 40 Salmonella-only genes using MacVector with Assembler 11.0.2 via Primer Design (Primer3). We set the ideal amplicon length to between 500 and 600 base pairs. (Table 3). Using phylogenetic analysis (Figure S2), we further tested the potential utility of these 40 predicted sequence amplicons to discriminate among 317 serotypes of S. enterica subspecies I. We extracted the sequence for 27 genes on 317 strains of S. enterica subspecies I using phylogenetic analysis (Figure 1 B, Figure S1). All 40 primers also were tested in the laboratory with a limited set of isolates. Expected amplicons were generated (or not for negative controls and E. coli) for these limited experiments (data not provided).

All NCBI Salmonella genomes are linked to NCBI Sequence Read Archive (SRA) files, and accession numbers. Cultures included in this study are also available upon request. Please direct any queries for isolates to our strain curator Dwayne Roberson, at Dwayne.Roberson@fda.hhs.gov.

Supporting Information

Figure S1 Majority Rule Bootstrap consensus tree of 317 S. enterica subspecies I serotypes MLST super-matrix composed of 12055 characters from 27 alignments derived from predicted PCR products made from the S. enterica subspecies I specific biomarker sequences in Table 3. (TIFF)

Figure S2 Majority Rule Bootstrap consensus tree of a MLST super-matrix composed of 319 taxa (including 2 subspecies I specific biomarker sequences) 16221 characters from 40 alignments derived from the predicted PCR products made from the S. enterica subspecies I and S. enterica houtenae specific biomarker sequences in Table 3. (TIFF)

References

1. Lienau EK, Strain E, Wang C, Zheng J, Ondesen AR, et al. (2011) Identification of a salmonellosis outbreak by means of molecular sequencing. N Engl J Med 364: 981–982.
2. Lienau EK (2012) Method of Identifying Diagnostic Characteristics for a Clade of Organisms. In: Application, editor. United States.
3. Baptiste E, Boucher Y (2009) Epistemological impacts of horizontal gene transfer on classification in microbiology. Methods Mol Biol 532: 55–72.
4. Choi I-G, Kim S-H (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104: 4489–4494.
5. Creevey CJ, Fitzpatrick DA, Philip GK, KinSELLA RJ, O’Connell MJ, et al. (2004) Does a tree–like phylogeny only exist at the tips in the prokaryotes? Proceedings of the Royal Society of London B. Biological Sciences 271: 2551–2558.
6. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 289: 2129–2129.
7. Lienau E, DeSalle R (2010) Is the microbial tree of life verificationist? Cladistics 26: 195–201.
8. Lienau KE, DeSalle R, Allard M, Brown EW, Swofford D, et al. (2011) The mega tree of life: using genome-scale horizontal gene transfer and sequence evolution data as information about the vertical history of life. Cladistics 27: 417–427.
9. Kurland CG (2005) What tangled web: barriers to rampant horizontal gene transfer. Nucleic Acids Research 39: D19–D21.
10. (2011) Vital signs: incidence and trends of infection with pathogens transmitted in the gene content tree of life. Syst Biol 55: 441–453.
11. Lienau EK, DeSalle R, Allard MW, Swofford D, et al. (2011) The mega-matrix tree of life: Using genome-scale horizontal gene transfer and sequence evolution data as information about the vertical history of life. Cladistics at press.
12. Baumler AJ, Tsolis RM, Ficht TA, Adams LG (1998) Evolution of Host Adaptation in Salmonella enterica. Infection and Immunity 66: 4579–4587.
13. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, et al. (2008) Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. OMICS 12: 137–141.
14. Fricke WF, Mammel MK, McDermott PF, Tartera C, White DG, et al. (2011) Comparative Genomics of 20 Salmonella enterica Isolates: Evidence for CRISPR-Mediated Adaptive Sublineage Evolution. Journal of Bacteriology 193: 3556–3568.
15. Deans PT, Porsielik S, Long F, Cheng P, Wollam A, et al. (2013) Evolutionary Genomics of Salmonella enterica Subspecies. mBio 4.
16. Achtman M, Wain J, Weill FX, Nair S, Zhou Z, et al. (2012) Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica. PLoS Pathog 8: e1002776.
17. Jacobsen A, Hendriksen R, Arastarp F, Usery D, Fris C (2011) The Salmonella enterica Pant-genome. Microbial Ecology 62: 487–504.
18. Fookes M, Schroeder GN, Langridge GC, Blouetel CJ, Mammel CA, et al. (2011) Salmonella longest Insights into the Evolution of the Salmonellae. PLoS Pathog 7: e1002191.
19. Lienau EK, DeSalle R, Rosenfeld JA, Planet PJ (2006) Reciprocal inoculation in the gene content tree of life. Syst Biol 55: 441–453.