Effects of Metabolic Syndrome on Semen Quality and Circulating Sex Hormones: A Systematic Review and Meta-Analysis

Liming Zhao¹ and Aixia Pang²*

¹ Department of Nuclear Medicine, Linyi People’s Hospital, Linyi, China, ² Department of Urology, Linyi People’s Hospital, Linyi, China

Previous studies were controversial in the effects of metabolic syndrome (MetS) on semen quality and circulating sex hormones, and thus we conducted a systematic review and meta-analysis to clarify the association. A systematic search was conducted in public databases to identify all relevant studies, and study-specific standardized mean differences (SMD) and 95% confidence intervals (CI) were pooled using a random-effects model. Finally, 11 studies were identified with a total of 1,731 MetS cases and 11,740 controls. Compared with the controls, MetS cases had a statistically significant decrease of sperm total count (SMD: −0.96, 95% CI: −1.58 to −0.31), sperm concentration (SMD: −1.13, 95% CI: −1.85 to −0.41), sperm normal morphology (SMD: −1.01 to −0.21), sperm progressive motility (SMD: −0.58, 95% CI: −1.00 to −0.17), sperm vitality (SMD: −0.83, 95% CI: −1.11 to −0.54), circulating follicle-stimulating hormone (SMD: −0.87, 95% CI: −1.53 to −0.21), testosterone (SMD: −5.61, 95% CI: −10.90 to −0.31), and inhibin B (SMD: −2.42, 95% CI: −4.52 to −0.32), and a statistically significant increase of sperm DNA fragmentation (SMD: 0.76, 95% CI: 0.45 to 1.06) and mitochondrial membrane potential (SMD: 0.89, 95% CI: 0.49 to 1.28). No significant difference was found in semen volume, sperm total motility, circulating luteinizing hormone (LH), estradiol, prolactin and anti-Müllerian hormone (AMH) (P > 0.05). In conclusion, this meta-analysis demonstrated the effects of MetS on almost all the semen parameters and part of the circulating sex hormones, and MetS tended to be a risk factor for male infertility. Further larger-scale prospective designed studies were needed to confirm our findings.

Keywords: metabolic syndrome, semen quality, sex hormones, meta-analysis, male infertility

INTRODUCTION

Metabolic syndrome (MetS) is a complex of clinical conditions characterized by abdominal obesity, dyslipidemia, hypertension and insulin resistance (1, 2). Despite a link between MetS and poor health status, its impact on male infertility is still under discussion (3). First, as an important feature of MetS, obesity was found to reduce semen quality by altering the sex hormone levels and semen microenvironment, and inducing oxidative stress damage in sperms and interstitial glands (4, 5). However, the meta-analysis by MacDonald et al. (6) found no significant
association between body mass index (BMI) and semen parameters, while it was associated with the prevalence of azoospermia or oligozoospermia in the meta-analysis of Sermondade et al. (7). Second, dyslipidemia, hypertension, and diabetes mellitus could also affect male reproductivity by decreasing testosterone secretion and causing testicular damage and erectile dysfunction (8–10).

As a collection of these features, MetS was thought to be involved in the pathogenesis of male infertility. The meta-analysis by Brand et al. (11) indicated a lower level of testosterone in men with MetS, but it failed to evaluate the effects of MetS on other circulating sex hormones and semen quality. The review by Corona et al. (12) analyzed the relationship between obesity, its metabolic complications and male hypogonadism (HG), and their contribution to the pathogenesis of erectile dysfunction. The meta-analysis by Rastrelli et al. (13) evaluated the association between MetS and HG, the association between HG and specific MetS components (central obesity, glucose tolerance, dyslipidemia, and hypertension), the association between MetS and sexual symptoms, the effects of MetS treatment on HG, and the effects of HG treatment on MetS. However, no meta-analyses have systematically and quantitatively evaluated the effects of MetS on both semen quality and several sex hormones in men, although there existed obvious controversies in original studies. Thus, this meta-analysis aimed to clarify the role of MetS in male infertility by assessing its impact on both semen and hormonal parameters.

MATERIALS AND METHODS

Search Strategy

The databases of PubMed and Embase were searched for relevant studies published up to March 1st, 2020, using the key words: (“metabolic syndrome” OR “syndrome X” OR “insulin resistance syndrome” OR “metabolic X syndrome” OR “dysmetabolic syndrome” OR “reaven syndrome” OR “metabolic cardiovascular syndrome”) AND (“sperm” OR “semen” OR “spermatozoa” OR “sperm count” OR “sperm concentration” OR “semen quality” OR “semen parameters” OR “sperm quantity” OR “total sperm count” OR “azoospermia” OR “oligozoospermia”). We also reviewed the references of related studies and reviews for undetected studies. This study was approved by the ethics committee of Linyi People’s Hospital (No. 20200006).

Study Selection and Exclusion

Two authors (LZ and AP) reviewed the studies independently. The inclusion criteria were as follows: (i) focused on MetS cases and controls; (ii) any measurement of semen volume, total sperm count, sperm concentration, sperm normal morphology, sperm total motility, sperm progressive motility, sperm vitality, sperm DNA fragmentation or mitochondrial membrane potential (MMP); (iii) measurement levels were presented as mean or median with standard error (SD), 95% confidence interval (95% CI), range or inter-quartile range (IQR). The exclusion criteria were as follows: abstracts without full texts, reviews,
TABLE 1 | Characteristics of included studies.

References	Area	Study population	MetS diagnosis criteria	Parameters	MetS	Controls
Saikia et al. (17)	Gauhati, India	MetS and age-matched controls (20–40y)	International Diabetes Federation (IDF) criteria in 2005	FSH (IU/L), median (range)	50	30
				T (ng/mL), median (range)	2.32	4.04
				InhB (pg/mL), median (range)	22.25	124.43
				Total sperm count (million/mL), median (range)	14 (10–22)	70 (50–78)
				Total sperm volume (mL), median (range)	3.15 (2.4–4.2)	3.45 (2.5–4.2)
				Total sperm motility (%), median (range)	69.5 (58–82)	79.5 (70–86)
				Progressive motility (%), median (range)	36 (32–45)	54 (50–59)
				Normal morphology (%), median (range)	82 (64–90)	80 (70–85)
Chen et al. (18)	Taipei, China	Participants of reproductive age (mean age 32–34y)	Harmonized criteria in 2009	Sperm concentration, mean (SD)	885	7,510
				Sperm total motility (%), mean (SD)	63.3	64.49
				Sperm progressive motility (%), mean (SD)	46.08	45.88
				Sperm normal morphology (%), mean (SD)	65.55	67.33
Ehala-Aleksejev and Punab (FM) (19)	Tartu, Estonia	Partners of pregnant women (FM) (mean age 32y)	National Cholesterol Education in Program (NCEP) criteria in 2004	Semen volume (mL), mean (95% CI)	29	209
				Sperm concentration (10^9/mL), mean (95% CI)	55.9	77.7
				Total sperm count (10^9), mean (95% CI)	234.9	289.5
				Motile spermatozoa (%), mean (95% CI)	51.8	51.5
				Normal morphology (%), mean (95% CI)	9.2 (7.3–11.2)	11.2 (10.5–12)
Ehala-Aleksejev and Punab (MPIC) (19)	Tartu, Estonia	Male partners of infertile couples (MPIC) (mean age 33y)	National Cholesterol Education in Program (NCEP) criteria in 2004	Semen volume (mL), mean (95% CI)	471	2,171
				Sperm concentration (10^9/mL), mean (95% CI)	40 (38.5–45.9)	37.8 (35.8–40)
				Total sperm count (10^9), mean (95% CI)	142.9	144.3
				Motile spermatozoa (%), mean (95% CI)	40 (39.4–42.4)	41.5
				Normal morphology (%), mean (95% CI)	6.9 (6.4–7.4)	7 (6.7–7.2)
				FSH (IU/L), mean (95% CI)	4.3 (4.2–4.5)	4.3 (4.2–4.5)

(Continued)
References	Area	Study population	MetS diagnosis criteria	Parameters	MetS	Controls	
Ventimiglia et al.	Milan, Italy	Secondary infertile men	National Cholesterol Education in Program (NCEP) criteria in 2004	LH (IU/L), mean (95% CI)	3.3 (3.1–3.5)	3.6 (3.5–3.7)	
	(22–68y)	(22–68y)		Testosterone (nmol/L), mean (95% CI)	13.2 (12.5–13.8)	17.4 (17.2–17.7)	
				Estradiol (pmol/L), mean (95% CI)	139.6 (133.5–145.7)	130.6 (127.7–133.5)	
				FSH (mIU/mL), mean (range)	20 (9.49 (0.3–20.4)	147 (6.74 (0.1–93.97)	
				LH (mIU/mL), mean (range)	4.88 (0.1–10)	75.3 (6–129.2)	114.6 (0.5–245.7)
				InhB (pg/mL), mean (range)	2.52 (1.3–4.4)	3.44 (2–6.26)	7.04 (0.6–19.3)
				AMH (ng/mL), mean (range)	35.89 (12–69)	15.58 (1.22–319)	21.7 (0.71–104)
				tT (ng/mL), mean (range)	4.92 (1.75–9.73)	4.1 (2.7–6.1)	25.28 (0.01–751)
				E2 (pg/mL), mean (range)	3.44 (2–6.26)	7.04 (0.6–19.3)	25.28 (0.01–751)
				PRL (ng/mL), mean (range)	3.44 (2–6.26)	7.04 (0.6–19.3)	25.28 (0.01–751)
				TSH (µU/mL), mean (range)	2.52 (1.3–4.4)	3.44 (2–6.26)	7.04 (0.6–19.3)
				Semen volume (mL), mean (range)	20.08 (0–52.2)	13.8 (2.2–40.8)	13.8 (2.2–40.8)
				Progressive motility (%), mean (range)	18.78 (0–50)	18.78 (0–50)	18.78 (0–50)
				Normal morphology (%), mean (range)	1.44 (0–6)	1.44 (0–6)	2.58 (0.1–10)
				Total sperm count, median (IQR)	25.3 (5.7–72.8)	25.3 (5.7–72.8)	28.7 (6.3–75.4)
Pilatz et al.	Giessen,	MetS and controls	National Cholesterol Education Program (NCEP) criteria in 2001 and International Diabetes	LH (IU/L), mean (95% CI)	4 (2.8–6.6)	4 (2.7–6.1)	4 (2.7–6.1)
	Germany	(30–62y)	Federation (IDF) criteria in 2009	Testosterone (nmol/L), mean (95% CI)	40 (27.3–114.7)	85.8 (24.3–142.9)	
				Estradiol (pmol/L), mean (95% CI)	4.1 (1.6–5.4)	4.7 (2.4–9.6)	4.7 (2.4–9.6)
				FSH (mIU/mL), median (IQR)	8.5 (3.4–18.2)	8 (3–18)	8 (3–18)
				LH (mIU/mL), median (IQR)	32 (24–41)	32 (25–42)	32 (25–42)
				InhB (pg/mL), median (IQR)	4.1 (1.6–5.4)	4.7 (2.4–9.6)	4.7 (2.4–9.6)
				AMH (ng/mL), median (IQR)	3.8 (2.7–6.3)	4.7 (3.6–6)	4.7 (3.6–6)
				E2 (pg/mL), median (IQR)	32 (24–41)	32 (25–42)	32 (25–42)
				PRL (ng/mL), median (IQR)	8.5 (3.4–18.2)	8 (3–18)	8 (3–18)
				TSH (µU/mL), median (IQR)	1.7 (1.2–2.6)	1.6 (1.1–2.2)	1.6 (1.1–2.2)
				Semen volume (mL), median (IQR)	2 (0.1–3)	2 (0.1–3)	2 (0.1–3)
				Sperm concentration (10^6/mL), median (IQR)	13.8 (2.2–40.8)	14.2 (3.8–44.1)	14.2 (3.8–44.1)
				Progressive motility (%), median (IQR)	25 (11–44)	25 (10–40)	25 (10–40)
				Normal morphology (%), median (IQR)	5 (0–16)	4 (0–12)	4 (0–12)
				Total sperm count, median (IQR)	25.3 (5.7–72.8)	25.3 (5.7–72.8)	28.7 (6.3–75.4)

(Continued)
References	Area	Study population	MetS diagnosis criteria	Parameters	MetS	Controls
Leisegang et al. (23)	Bellville and Stellenbosch, South Africa	MetS and controls (25~65y)	International Diabetes Federation (IDF) criteria in 2009	Sperm concentration (10^6/mL), median (range)	52	58
				Sperm concentration (million/mL), median (IQR)	26.7	43.7
				Total sperm count (million), median (IQR)	48.1	103.6
				Sperm vitality (% sperm alive), median (IQR)	50	67.3
				Progressive motility (% motile), median (IQR)	20	29.4
				Total motility (% motile), median (IQR)	42.9	57.5
				MMP (% abnormal), median (IQR)	63.1	42.1
				DNA fragmentation (% abnormal), median (IQR)	26.9	13.9
				Ejaculation volume (mL), median (IQR)	32	2 (1.2~2.5)
Elsamounoudy et al. (24)	Mansoura, Egypt	Fertile MetS and controls (mean age 39~40y)	International Diabetes Federation (IDF) criteria in 2009	Sperm concentration (10^6/mL), mean (SD)	37.78	39.45
				Progressive motility (%), mean (SD)	43.68	49.67
				Vitality (%), mean (SD)	54.73	68.7
				Normal morphology (%), mean (SD)	22.44	23.53
				DNA fragmentation (%), mean (SD)	26.95	20.78
				Ejaculation volume (mL), mean (SD)	2.37	2.18
Leisegang et al. (25)	Western Cape, South Africa	MetS and controls (24~67y)	International Diabetes Federation (IDF) criteria in 2009	Sperm concentration (10^6/mL), mean (SD)	24.6	43.2
				Progressive motility (%), mean (SD)	59.3	122
				Total sperm count (10^6), mean (SD)	21.7	31
				Total motility (%), mean (SD)	41.8	54.8
				Disturbed MMP (%), mean (SD)	47.2	67
				Vitality (%), mean (SD)	62.4	40.3
				Disturbed MMP (%), mean (SD)	29.8	17.8
Lotti et al. (26)	Florence, Italy	Male members of infertile couples	International Diabetes Federation (IDF) criteria in 2009	FSH (IU/L), median (IQR)	5.6	4.8

(Continued)
TABLE 1 | Continued

References	Area	Study population	MetS diagnosis criteria	Parameters	MetS	Controls	
				Num	Levels	Num	Levels
				LH (IU/L), median (IQR)	3.9 (2.8–4.5)	3.7 (2.6–5.2)	
				PRL (pmol/L), median (IQR)	282 (234–489)	294 (226–435)	
				TSH (mIU/L), median (IQR)	1.84	1.51	
				Total testosterone (nmol/L), mean (SD)	13.8 (6.5)	16.7 (6.2)	
				Semen volume (mL), median (IQR)	2.6 (1.3–3.8)	3 (2–4.2)	
				Sperm concentration (10⁶/mL), median (IQR)	16.1 (3.9–49.5)	13 (1.6–46)	
				Sperm progressive motility (%), mean (SD)	39.3 (16.9)	36.2 (20.7)	
				Sperm morphology (% normal), median (IQR)	4 (2–6.3)	5 (2–10)	

MetS, metabolic syndrome; FSH, follicle-stimulating hormone; T, testosterone; tT, total testosterone; InhB, inhibin B; LH, luteinizing hormone; AMH, anti-Müllerian hormone; TSH, thyroid-stimulating hormone; E2, estradiol; PRL, prolactin; MMP, mitochondrial membrane potential; IQR, inter-quartile range; SD, standard error; Num, number.

RESULTS

Characteristics of Included Studies

The search strategy identified 5,272 records: 702 from PubMed, 4,554 from Embase, and 16 from other sources (Figure 1). After eliminating duplicated and irrelevant records, 10 recodes (11 studies) were included in the meta-analysis, with a total of 1,731 MetS cases and 11,740 controls (Table 1) (17–26). The research by Ehala-Aleksejev and Punab (19) was based on two cohorts (fertile men and male partners of infertile couples), and thus it was divided into two individual studies. All studies were cross-sectional designed. Four studies focused on infertile cohorts, two on fertile cohorts and five on the general cohort (not specified). Six studies were from Europe, three from Africa and two from Asia. In quality assessment (NOS score 0–9), the included studies had an average score of 6.73 (Table S1).

MetS and Semen Quality

Compared with the controls, MetS cases had a statistically significant decrease of sperm total count (SMD: −0.96, 95% CI: −1.58 to −0.31; I² = 97%, n = 5), sperm concentration (SMD: −1.13, 95% CI: −1.85 to −0.41; I² = 99%, n = 11), sperm normal morphology (SMD: −0.61, 95% CI: −1.01 to −0.21; I² = 97%, n = 9), sperm progressive motility (SMD: −0.58, 95% CI: −1.00 to −0.17; I² = 94%, n = 9), and sperm vitality (SMD: −0.83, 95% CI: −1.11 to −0.54; I² = 0%, n = 3) (Figures 2–4). There was found a weak decrease of semen volume (SMD: −0.46, 95% CI: −2.30 to 1.37; I² = 100%, n = 10) and sperm total motility in MetS cases (SMD: −0.68, 95% CI: −1.39 to 0.02; I² = 99%, n =
FIGURE 2 | Meta-analysis of the effects of metabolic syndrome on semen volume, sperm total count, and sperm concentration.

6). Furthermore, MetS cases had a statistically significant increase of sperm DNA fragmentation (SMD: 0.76, 95% CI: 0.45 to 1.06; $I^2 = 0\%$, $n = 3$) and MMP (SMD: 0.89, 95% CI: 0.49 to 1.28; $I^2 = 0\%$, $n = 2$).

MetS and Circulating Sex Hormones

Compared with the controls, MetS cases had a statistically significant decrease of follicle-stimulating hormone (FSH) (SMD: -0.87, 95% CI: -1.53 to -0.21; $I^2 = 97\%$, $n = 6$), testosterone (SMD: -5.61, 95% CI: -10.90 to -0.31; $I^2 = 100\%$, $n = 6$), and inhibin B (SMD: -2.42, 95% CI: -4.52 to -0.32; $I^2 = 0\%$, $n = 3$) (Figures 5, 6). There was found a weak decrease of luteinizing hormone (LH) (SMD: -0.36, 95% CI: -3.24 to 2.52; $I^2 = 100\%$, $n = 5$) and anti-Müllerian hormone (AMH) (SMD: -0.92, 95% CI: -2.06 to 0.22; $I^2 = 95\%$, $n = 2$), and a weak increase of estradiol (SMD: 1.04, 95% CI: -2.05 to 4.12; $I^2 = 100\%$, $n = 4$) in MetS cases.

Sensitivity Analyses

Sensitivity analysis showed that the results were robust in semen parameters. In the meta-analysis of circulating FSH, the result showed no statistical difference when omitting the study by Saikia et al. (17) (Table S2). In the meta-analysis of testosterone, the result also showed no statistical difference when omitting the study by Ehala-Aleksejev and Punab (19) (FM), Lotti et al. (26), or Ventimiglia et al. (21).

Subgroup Analyses

Subgroup analyses were conducted on the study cohort, ethnicity and study area. Compared with the infertile cohort, MetS cases in the fertile cohort had a significantly higher incidence of a decrease in sperm total count and sperm progressive motility, FSH, testosterone and estradiol, and an increase in LH (Table 2). Comparably, MetS cases in the general cohort also had a significantly higher incidence of the decrease in semen volume, sperm total count, sperm concentration, sperm normal...
Zhao and Pang

Metabolic Syndrome and Male Infertility

FIGURE 3 | Meta-analysis of the effects of metabolic syndrome on sperm normal morphology, sperm total motility, and sperm progressive motility.

Study or Subgroup	MetS Mean	SD	Total Mean	SD	Total	Weight	Std. Mean Difference	IV, Random, 95% CI	Std. Mean Difference	IV, Random, 95% CI
1.2.1 Sperm normal morphology										
Chen 2019	66.55	17.59	885	67.33	16.41	7510	12.3%	-0.11 [-0.18, -0.04]		
Ehlai-Aleksiev (FM) 2018	9.2	0.99	29	11.2	0.38	209	10.1%	-0.04 [-0.47, -3.51]		
Ehlai-Aleksiev (MPIC) 2018	6.9	0.26	471	7.0	0.13	2171	12.3%	-0.62 [-0.72, -0.52]		
Elseamouneddy 2016	22.44	5.02	38	23.53	6.78	45	10.8%	-0.16 [-0.61, 0.25]		
Lotti 2013	4.1	3.37	27	5.67	5.96	324	11.1%	-0.27 [-0.66, 0.12]		
Pilat 2016	5.5	3.5	27	7	4.5	27	10.1%	-0.37 [-0.90, 0.17]		
Saikia 2019	79.5	6.5	50	78.75	3.75	30	10.7%	0.13 [-0.32, 0.58]		
Ventimaglia 2016	7	12	128	5.33	8.91	1209	12.1%	0.18 [-0.00, 0.36]		
Ventimaglia 2017	1.44	1.5	20	8.01	11.67	147	10.6%	-0.60 [-1.07, -0.12]		
Subtotal (95% CI)	1675							-0.61 [-1.91, -0.21]		

Heterogeneity: Tau² = 0.34; Chi² = 287.50, df = 6 (P < 0.00001); I² = 97%
Test for overall effect: Z = 3.00 (P = 0.003)

1.2.2 Sperm total motility										
Chen 2019	63.3	18.11	885	64.49	16.17	7510	17.6%	-0.07 [-0.14, -0.00]		
Ehlai-Aleksiev (FM) 2018	51.8	1.81	29	51.5	0.84	209	16.7%	0.30 [0.09, 0.60]		
Ehlai-Aleksiev (MPIC) 2018	40.9	0.77	471	41.5	0.33	2171	17.5%	-1.36 [-1.46, -1.25]		
Leisegang 2014	41.8	20.6	24	54.8	20.2	26	15.8%	-0.63 [-1.20, 0.06]		
Leisegang 2016	42.9	19.9	32	57.5	20.8	42	16.3%	-0.71 [-1.18, -0.23]		
Saikia 2019	69.75	6	50	78.75	4	30	16.0%	-1.87 [-2.19, -1.14]		
Subtotal (95% CI)										
Heterogeneity: Tau² = 0.73; Chi² = 430.03, df = 5 (P < 0.00001); I² = 99%										
Test for overall effect: Z = 1.90 (P = 0.06)

1.2.3 Sperm progressive motility										
Chen 2019	46.08	18.05	885	45.68	16.68	7510	13.0%	0.01 [-0.06, 0.08]		
Elseamouneddy 2016	43.68	11.24	38	49.67	14.66	45	11.4%	-0.45 [-0.89, -0.01]		
Leisegang 2014	21.7	18.3	24	31	17.6	26	10.5%	-0.51 [-1.07, 0.05]		
Leisegang 2016	20	17.1	32	29.4	17.2	42	11.2%	-0.54 [-1.01, -0.07]		
Lotti 2013	39.3	16.9	27	36.2	20.7	324	11.7%	0.15 [-0.24, 0.54]		
Pilat 2016	44	12	27	39.5	18	27	10.7%	-0.29 [-0.25, 0.03]		
Saikia 2019	37.25	3.25	50	54.25	2.25	30	7.3%	-0.77 [-4.79, -4.70]		
Ventimaglia 2016	26.67	24.74	128	25	22.27	1209	12.6%	0.07 [-0.11, 0.26]		
Ventimaglia 2017	18.78	12.5	20	25.28	13	147	11.2%	-0.50 [-0.97, -0.03]		
Subtotal (95% CI)	1231									
Heterogeneity: Tau² = 0.34; Chi² = 140.59, df = 8 (P < 0.00001); I² = 94%										
Test for overall effect: Z = 2.75 (P = 0.006)

morphology, sperm progressive motility, FSH, testosterone, and inhibin B. Generally, MetS had the most impact on semen quality and circulating sex hormones of the general cohort, moderate impact on fertile cohort, and the least impact on the infertile cohort.

Compared with the Caucasian cohort or the cohort from developed area, MetS cases from the non-Caucasian cohort or the cohort from developing area had a significantly higher incidence of the decrease in sperm concentration, sperm total motility, sperm progressive motility, FSH, and inhibin B (Table 3). MetS tended to have more impact on the individuals from the non-Caucasian cohort or the cohort from developing area.

Publication Bias

Egger’s test was conducted on the indicators with more than four included studies. Finally, we detected no significant publication bias in semen volume (P = 0.122), sperm total count (P = 0.200), sperm concentration (P = 0.185), sperm normal morphology (P = 0.400), sperm total motility (P = 0.659), sperm progressive motility (P = 0.120), circulating FSH (P = 0.199), testosterone (P = 0.215), or LH (P = 0.293) (Figures S1–S3).

DISCUSSION

According to the World Health Organization (WHO), infertility had an incidence of 8–12% in childbearing couples worldwide, among which male infertility accounted for 40–50% (27). Along with the modernized lifestyles of recent decades, metabolic disorders were increasingly prevalent, while semen quality was gradually decreasing (28). Thus, as a collection of metabolic disorders characterized by abdominal obesity, dyslipidemia, hypertension and insulin resistance, MetS was thought to be involved in the pathogenesis of male infertility (28).

The mechanism has been not clarified, and currently many researchers indicate a central role of insulin resistance in the pathogenesis. Abnormal blood glucose could cause the impairment of multiple organs, including erectile and ejaculation disorders. In the meta-analysis by Pergialiotis et al. (29) the
Zhao and Pang Metabolic Syndrome and Male Infertility

FIGURE 4 | Meta-analysis of the effects of metabolic syndrome on sperm vitality, DNA fragmentation, and mitochondrial membrane potential (MMP).

FIGURE 5 | Meta-analysis of the effects of metabolic syndrome on circulating follicle-stimulating hormone (FSH), testosterone, and luteinizing hormone (LH).
FIGURE 6 | Meta-analysis of the effects of metabolic syndrome on estradiol, inhibin B, and anti-Müllerian hormone (AMH).

TABLE 2 | Subgroup analysis of the effects of metabolic syndrome on semen quality and circulating sex hormones according to the study cohort.

Variables	Fertile cohort		Infertile cohort		Not specified	
	SMD (95% CI)	No.	SMD (95% CI)	No.	SMD (95% CI)	No.
Semen volume	1.55 (--0.88 to 3.97)	2	--1.57 (--4.81 to 1.68)	4	--0.38 (--0.63 to --0.13)	4
Sperm total count	--2.69 (--3.15 to --2.23)	1	--0.16 (--0.37 to 0.04)	2	--0.96 (--1.42 to --0.50)	2
Sperm concentration	--2.27 (--6.45 to 1.92)	2	0.27 (--0.83 to 1.38)	4	--1.99 (--3.23 to --0.75)	5
Sperm normal morphology	--2.11 (--5.89 to 1.68)	2	--0.32 (--0.81 to 0.17)	4	--0.11 (--0.17 to --0.04)	3
Sperm total motility	0.30 (--0.09 to 0.69)	1	--1.36 (--1.46 to --1.25)	1	--0.75 (--1.47 to --0.02)	4
Sperm progressive motility	--0.45 (--0.89 to --0.01)	1	--0.05 (--0.37 to 0.28)	3	--1.18 (--2.26 to --0.11)	5
Sperm vitality	--0.71 (--1.15 to --0.26)	1	--	--	--0.91 (--1.28 to --0.54)	2
DNA fragmentation	0.74 (0.29 to 1.19)	1	--	--	0.77 (0.35 to 1.19)	2
Mitochondrial membrane potential (MMP)	--	--	--	--	0.89 (0.49 to 1.28)	2
Follicle-stimulating hormone (FSH)	--0.81 (--1.21 to --0.42)	1	0.08 (--0.04 to 0.21)	4	--13.87 (--16.12 to --11.62)	1
Testosterone	--7.01 (--7.76 to --6.27)	1	--6.27 (--13.71 to 1.18)	4	--1.57 (--2.09 to --1.08)	1
Luteinizing hormone (LH)	2.99 (2.52 to 3.46)	1	--1.19 (--4.24 to 1.86)	4	--	--
Estradiol	--0.67 (--1.06 to --0.28)	1	1.60 (--2.07 to 5.28)	3	--	--
Progesterone	--	--	0.04 (--0.11 to 0.20)	3	--	--
Inhibin B	--	--	--0.59 (--1.28 to 0.10)	2	--6.31 (--7.41 to --5.21)	1
Anti-Müllerian hormone (AMH)	--	--	--0.92 (--2.06 to 0.22)	2	--	--

SMD, standardized mean differences; CI, confidence interval; No., number of included studies.
infertile male with diabetes had a decrease in seminal volume and motile cells and an increase in FSH. Moreover, diabetes patients in fertile age had a higher prevalence of male accessory gland inflammations/infections, as well as a higher failure rate of vitro fertilization (30, 31). Antidiabetic agents could not only control blood glucose levels but also improve semen quality and testosterone levels (32, 33). Besides, individuals with obesity, dyslipidemia or hypertension were also reported with a decrease in semen quality and changes in sex hormones. These might contribute to concomitant oxidative stress and inflammation, and impaired seminal antioxidant capacity (34, 35).

In this meta-analysis, we found a decrease of sperm total count, sperm concentration, sperm normal morphology, sperm progressive motility, and sperm vitality and an increase of sperm DNA fragmentation and MMP, while no significant difference was found in seminal volume and sperm total motility. Generally, MetS had a negative impact on the semen quality, just like diabetes and obesity (10, 36). On the other hand, MetS cases had a decrease of FSH, testosterone and inhibin B, while no significant difference was found in LH, estradiol, prolactin, and AMH. Previous studies reported a decrease of inhibin B and an increase of FSH in infertile males (37). However, our meta-analysis indicated a similar change trend of FSH and inhibin B in MetS. This might contribute to the heterogeneity between studies, especially from the study by Saikia et al. (17). Second, LH and estradiol were usually increased in infertile males, but our meta-analysis found no obvious difference in MetS. Apart from the heterogeneity, this might also contribute to the complexity of MetS as a syndrome. For example, as one of the characteristics of MetS, obese males could have an increase of testosterone, LH and FSH after bariatric surgery (38). In general, MetS had a greater impact on semen quality than sex hormones, which might contribute to the direct impairment caused by MetS.

Sensitivity analysis indicated a relative stability for semen parameters, while FSH and testosterone turned statistically insignificant when omitting certain studies. MetS seemed to have more significant and stable effects on semen quality than sex hormones, which was consistent with our previous analysis. Second, for almost all the outcomes, the exclusion of a single specific study dramatically decreased the effect size, especially like Ehala-Aleksjev and Punab (19) (FM) in sperm concentration, sperm normal morphology and testosterone, Saikia et al. (17) in sperm progressive motility and FSH, and Lotti et al. (26) in testosterone. These studies were limited in the sample size of MetS cases ranging from 27 to 50. Small sample size could increase the risk of sampling error, and thus lead to within-study and between-study heterogeneity and the expansion of synthetic effect size. Besides, the meta-analysis of continuous data usually showed a higher heterogeneity than categorical data, just like the recent study of “Cardio-metabolic risk factors among young infertile women: a systematic review and meta-analysis” (35).

The subgroup analyses suggested more effects of MetS on the individuals from the fertile cohort, non-Caucasian cohort, or the cohort from developing area. This might contribute to less impact of MetS on the impaired reproductivity, and MetS had a stronger influence on the reproductivity of healthy individuals. Moreover, this was also consistent with the high incidence of male infertility in the Asian cohort and developing countries (27).

Although this was the first meta-analysis to evaluate the effects of MetS on both semen quality and circulating sex hormones in men, several limitations in this study should be also considered. First, not all included studies had a large sample size. Second, all included studies were cross-sectionally designed, and prospective

TABLE 3 | Subgroup analysis of the effects of metabolic syndrome on semen quality and circulating sex hormones according to the ethnicity and study area.

Variables	Caucasian cohort/developed area	Non-Caucasian cohort/developing area		
	SMD (95% CI)	No.	SMD (95% CI)	No.
Semen volume	−0.60 (-3.28 to 2.09)	6	−0.25 (-0.69 to 0.18)	4
Sperm total count	−0.95 (-1.79 to −0.11)	3	−0.96 (-1.42 to −0.50)	2
Sperm concentration	−0.56 (-1.82 to 0.70)	6	−1.94 (-3.10 to −0.78)	5
Sperm normal morphology	−0.93 (-1.66 to −0.19)	6	−0.10 (-0.17 to −0.04)	3
Sperm total motility	−0.54 (-2.16 to 1.08)	2	−0.75 (-1.47 to −0.02)	4
Sperm progressive motility	0.02 (-0.25 to 0.28)	4	−1.32 (-2.34 to −0.30)	5
Sperm vitality	−0.93 (-0.59 to 0.23)	5	−0.83 (-1.11 to −0.54)	3
DNA fragmentation	−0.54 (-2.06 to 0.22)	2	0.76 (0.45 to 1.06)	3
Mitochondrial membrane potential (MMP)	–	–	0.89 (0.49 to 1.28)	2
Follicle-stimulating hormone (FSH)	−0.03 (-0.29 to 0.23)	5	13.87 (-16.12 to -11.62)	1
Testosterone	−5.61 (-10.90 to −0.31)	5	−6.41 (-12.81 to -0.02)	1
Luteinizing hormone (LH)	−0.36 (-3.24 to 2.52)	5	–	–
Estradiol	1.04 (-2.05 to 4.12)	4	–	–
Prolactin	0.04 (-0.11 to 0.20)	3	–	–
Inhibin B	−0.59 (-1.28 to 0.10)	2	−6.31 (-7.41 to -5.21)	1
Anti-Müllerian hormone (AMH)	−0.92 (-2.06 to 0.22)	2	–	–

SMD, standardized mean differences; CI, confidence interval; No., number of included studies.
studies were needed to confirm our findings. Third, the protocol of our meta-analysis was not registered in the PROSPERO database. Fourth, obvious heterogeneity between studies was observed, although we conducted both sensitivity analysis and subgroup analysis to evaluate the stability of the results. We expected large-scale prospective designed studies in the future to overcome these limitations.

In conclusion, this meta-analysis demonstrated the effects of MetS on almost all the semen parameters and part of the circulating sex hormones, and MetS tended to be a risk factor for male infertility. Further larger-scale prospective designed studies were needed to confirm our findings.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

REFERENCES

1. Kurl S, Laaksonen DE, Jee SY, Makikallio TH, Zaccardi F, Kauhanen J, et al. Metabolic syndrome and the risk of sudden cardiac death in middle-aged men. Int J Cardiol. (2016) 203:792–7. doi: 10.1016/j.ijcard.2015.10.218
2. Kaneko K, Yatsuya H, Li Y, Uemura M, Chiang C, Hirakawa Y, et al. Risk and population attributable fraction of metabolic syndrome and impaired fasting glucose for incidence of type 2 diabetes mellitus among middle-aged Japanese: aichi worker’s cohort study. J Diabetes Investig. (2020) doi: 10.1111/di.13230. [Epub ahead of print].
3. Greenfield DM, Snowden AL. Cardiovascular diseases and metabolic syndrome. Transl Res. (2019) 215–20. doi: 10.1016/j.trsl.2019.03.002
4. Brand JS, Rovers MM, Yeap BB, Schneider HJ, Tuomainen TP, Haring R, et al. Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: an individual participant data meta-analysis of observational studies. PLoS ONE. (2014) 9:e100409. doi: 10.1371/journal.pone.0100409
5. Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrafi F, De Stefani S, et al. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod Biomed Online. (2012) 25:300–6. doi: 10.1016/j.rbmo.2012.05.011
6. MacDonald AA, Herbison GP, Showell M, Farquhar MC. The impact of body mass index on semen parameters and reproductive hormones in human males: a systematic review with meta-analysis. Hum Reprod Update. (2010) 16:293–311. doi: 10.1093/humupd/dmp047
7. Sermondade N, Faure C, Fezeu L, Shaye AG, Bonde JP, Jensen TK, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. (2013) 19:221–31. doi: 10.1093/humupd/dms050
8. Colloli LG, Belardin LB, Echem C, Akamine EH, Antoniassi MP, Andretta RR, et al. Systemic arterial hypertension leads to decreased semen quality and alterations in the testicular microcirculation in rats. Sci Rep. (2019) 9:11047. doi: 10.1038/s41598-019-47157-w
9. Hagiuada J, Ishikawa H, Furutachi T, Hanawa Y, Marumo K. Relationship between dyslipidemia and semen quality and serum sex hormone levels: an infertility study of 167 Japanese patients. Andrologia. (2014) 46:131–5. doi: 10.1111/an.12057
10. Lu X, Huang Y, Zhang H, Zhao J. Effect of diabetes mellitus on the quality and cytokine content of human semen. J Reprod Immunol. (2017) 123:1–2. doi: 10.1016/j.jri.2017.08.007
11. Brand JS, van der Tweel I, Grobbée DE, Emmelot-Vonk MH, van der Schouw YT. Testosterone, sex hormone-binding globulin and the metabolic syndrome: a systematic review and meta-analysis of observational studies. Int J Epidemiol. (2011) 40:189–207. doi: 10.1093/ije/dyq158

AUTHOR CONTRIBUTIONS

LZ and AP conceived the manuscript, performed literature search, drafted and wrote the manuscript, contributed to manuscript revision during peer review process, and contributed to manuscript revision, read, and approved the submitted version. AP critically revised the first original draft and any other version of the manuscript before and after peer review process, and provided significant content contribution and English language support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2020.00428/full#supplementary-material

12. Corona G, Bianchini S, Sforza A, Vignozzi L, Maggi M. Hypogonadism as a possible link between metabolic diseases and erectile dysfunction in aging men. Hormones (Athens). (2015) 14:569–78. doi: 10.14310/horm.2002.1635
13. Rastrelli G, Filippi S, Sforza A, Maggi M, Corona G. Metabolic syndrome in male hypogonadism. Front Horm Res. (2018) 49:131–55. doi: 10.1159/000485999
14. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. (2014) 14:135. doi: 10.1186/1471-2288-14-135
15. Higgins JP, Thompson SG, Deeks JJ, Altman GD. Measuring inconsistency in meta-analyses. BMJ. (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557
16. Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. (1997) 315:629–34. doi: 10.1136/bmj.315.7109.629
17. Saikia UK, Saikia K, Sarma D. Appiah S. Sertoli cell function in young males with metabolic syndrome. Indian J Endocrinol Metab. (2019) 23:251–6. doi: 10.4103/ijem.IJEM_574_18
18. Chen YY, Kao TW, Peng TC, Yang HF, Wu CJ, Chen LW. Metabolic syndrome and semen quality in adult population. J Diabetes. (2019) 12:294–304. doi: 10.1111/1753-0407.12995
19. Ehla-Aleksiev K, Punab M. The effect of metabolic syndrome on male reproductive health: a cross-sectional study in a group of fertile men and male partners of infertile couples. PLoS ONE. (2018) 13:e0194395. doi: 10.1371/journal.pone.0194395
20. Ventimiglia E, Capogrosso P, Serino A, Boeri L, Colicchia M, La Croce G, et al. Metabolic syndrome in white-European men presenting for secondary couple’s infertility: an investigation of the clinical and reproductive burden. Asian J Androl. (2017) 19:368–73. doi: 10.4103/1008-682X.175783
21. Ventimiglia E, Capogrosso P, Colicchia M, Boeri L, Serino A, Castagna G, et al. Metabolic syndrome in white European men presenting for primary couple’s infertility: investigation of the clinical and reproductive burden. Andrology. (2016) 4:944–51. doi: 10.1111/andr.12232
22. Pilatz A, Hudemann C, Wolf J, Halefeld I, Paradowska-Dogan A, Schupp HC, et al. Metabolic syndrome and the seminal cytokine network in morbidity obese males. Andrology. (2017) 5:22–30. doi: 10.1111/andr.12296
23. Leisegang K, Bouic PJ, Henkel RR. Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case-controlled male cohort. Am J Reprod Immunol. (2016) 76:155–63. doi: 10.1111/ajr.12529
24. Elsamanoudy AZ, Abdalla HA, Hassianen M, Gaballah AM. Spermatozoal cell death-inducing DNA fragmentation factor-alpha-like effector A (CIDEA) gene expression and DNA fragmentation in infertile men with metabolic syndrome and normal semenogram. Diabetol Metab Syndr. (2016) 8:76. doi: 10.1186/s13098-016-0192-y
25. Leisegang K, Udodong A, Bouic PJ, Henkel RR. Effect of the metabolic syndrome on male reproductive function: a case-controlled pilot study. Andrologia. (2014) 46:167–76. doi: 10.1111/and.12060

26. Lotti F, Corona G, Degli IS, Filippetti E, Scognamiglio V, Vignozzi L, et al. Seminal, ultrasound and psychobiological parameters correlate with metabolic syndrome in male members of infertile couples. Andrology. (2013) 1:229–39. doi: 10.1111/j.2047-2927.2012.00031.x

27. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens AG. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. (2012) 9:e1001356. doi: 10.1371/journal.pmed.1001356

28. Huang C, Li B, Xu K, Liu D, Hu J, Yang Y, et al. Decline in semen quality among 30,636 young Chinese men from 2001 to 2015. Fertil Steril. (2017) 107:83–8.e2. doi: 10.1016/j.fertnstert.2016.09.035

29. Pergialiotis V, Prodromidou A, Frountzas M, Korou LM, Vlachos GD, Perrea D. Diabetes mellitus and functional sperm characteristics: a meta-analysis of observational studies. J Diabetes Complicat. (2016) 30:1167–76. doi: 10.1016/j.jdiacomp.2016.04.002

30. Condorelli RA, Calogero AE, Vicari E, Duca Y, Favilla V, Morgia G, et al. Prevalence of male accessory gland inflammations/infections in patients with Type 2 diabetes mellitus. J Endocrinol Invest. (2013) 36:770–4. doi: 10.3275/8950

31. Rama RG, Jaya PG, Murali KK, Madan K, Siva NT, Ravi CK. Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia. (2012) 44(Suppl. 1):490–8. doi: 10.1111/j.1439-0272.2011.01213.x

32. Morgante G, Tosti C, Orvieto R, Musacchio MC, Piomboni P, De Leo V. Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome. Fertil Steril. (2011) 95:2150–2. doi: 10.1016/j.fertnstert.2010.12.009

33. Bosman E, Esterhuizen AD, Rodrigues FA, Becker PJ, Hoffmann AW. Effect of metformin therapy and dietary supplements on semen parameters in hyperinsulinaemic males. Andrologia. (2015) 47:974–9. doi: 10.1111/and.12366

34. Pini T, Parks J, Russ J, Dzieciatkowska M, Hansen KC, Schoolcraft WB, et al. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet. (2020) 37:777–87. doi: 10.1007/s10815-020-01707-8

35. Mulder CL, Lassi ZS, Grieger JA, Ali A, Jankovic-Karasoulos T, Roberts CT, et al. Cardio-metabolic risk factors among young infertile women: a systematic review and meta-analysis. BJOG. (2020) 127:930–9. doi: 10.1111/1471-0528.16171

36. Rufus O, James O, Michael A. Male obesity and semen quality: any association? Int J Reprod Biomed (Yazd). (2018) 16:2 85–90.

37. Corinne TM, Anatole PC, Jeanne YN. Comparison of serum inhibin B and follicle-stimulating hormone (FSH) level between normal and infertile men in yaounde. Int J Reprod Med. (2020) 2020:4765809. doi: 10.1155/2020/4765809

38. Lee Y, Dang JT, Switzer N, Yu I, Tian C, Birch DW, et al. Impact of bariatric surgery on male sex hormones and sperm quality: a systematic review and meta-analysis. Obes Surg. (2019) 29:334–46. doi: 10.1007/s11695-018-3557-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zhao and Pang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.