Ophthalmic features of retinitis pigmentosa in Cohen syndrome caused by pathogenic variants in the VPS13B gene

Fadi Nasser,1 Anne Kurtenbach,1 Saskia Biskup,2 Sabine Weidensee,3 Susanne Kohl1 and Eberhart Zrenner1,4

1Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
2Praxis für Humangenetik Tübingen, Tübingen, Germany
3Mitteldeutscher Praxisverbund Humangenetik, Erfurt, Germany
4Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany

ABSTRACT.

Purpose: The aim of this study is to report on the phenotype and genotype of five patients diagnosed with Cohen syndrome, an extremely rare autosomal recessive disorder manifesting with mental and physiological defects.

Methods: Five patients from three German families and one Syrian family underwent a comprehensive ophthalmological examination. The scheduled visual acuity measurements, fundus ophthalmoscopy, spectral domain optical coherence tomography (OCT), full-field electrophysiological recordings of scotopic and photopic electroretinograms (ERGs) and colour vision testing could not be carried out in all subjects, because of the mental and physical retardation. The genetic diagnosis was achieved by next-generation sequencing.

Results: The ophthalmic and systemic phenotype of the patients is typical for Cohen syndrome including myopia, night blindness, photophobia, fundus pigmentary changes and bull’s eye maculopathy. Electroretinograms (ERGs) were extinguished in the four patients, whose recording was possible. Genetic testing revealed homozygous or two heterozygous bi-allelic mutations in the VPS13B (COH1) gene in all five patients, with five different allelic variants observed. The homozygous mutation c.6055_6056delGA; p.Asp2019Glnfs*15 in two sibling patients as well as the homozygous nonsense mutation c.8112C>G; p.Tyr2704* have not previously been reported.

Conclusions: The phenotype of the five patients reported here is typical for Cohen syndrome; however, their genotype is heterogeneous. Two new allelic variants were found to be the causative mutation.

Key words: allele – Cohen syndrome – genotype – phenotype

Introduction

Cohen syndrome (MIM 216550) is a rare autosomal recessive disorder (Cohen et al. 1973; Carey & Hall 1978). Diagnosis is based on the typical clinical picture of intellectual disability, obesity, muscular hypotonia, facial, oral, ocular and limb abnormalities and low levels of leucocytes (neutropenia) (Alavi et al. 1993; North et al. 1995; Kivitie-Kallio & Norio 2001; Kolehmainen et al. 2004), but the clinical findings are variable (Hennies et al. 2004). Ocular signs and symptoms can be high myopia, retino-choroidal dystrophy, heremalopia (decreased vision in bright light), night blindness, strabismus, constricted visual fields and/or nystagmus (Norio et al. 1984; Kivitie-Kallio et al. 2000; Chandler et al. 2002; Taban et al. 2007). Deterioration in vision can occur from early childhood up to 40 years of age, and vision is generally severely impaired. A bull’s eye macula is seen in most patients (Norio et al. 1984; Resnick et al. 1986; Kivitie-Kallio et al. 2000).

It has been estimated that the incidence of patients with Cohen syndrome is fewer than 1000 people worldwide (US National Library of Medicine 2018). More than 200 cases have been described (Wang et al. 2016), the largest cohort of 29 patients being reported from Finland (Norio 2003). It is also overrepresented in Greek/Mediterranean (Bugiani et al. 2008), Amish (Falk et al. 2004) and Irish traveller populations (Murphy et al. 2007). In Finnish patients, the phenotype is highly homogeneous, but in non-Finnish patients there is considerable phenotypic variability (Kivitie-Kallio & Norio 2001; Hennies et al. 2004; Kolehmainen et al. 2004;
Katzaki et al. 2007; Chandler & Clayton-Smith 2010; Douzgou & Petersen 2011).
The responsible gene, VPS13B (COH1), has been mapped to chromosome 8 at locus 8q22.2 (Tahvanainen et al. 1994; Kolehmainen et al. 2003) and encodes for a protein which is thought to play a role in the intracellular transport of proteins. Seifert et al. (2015) identified VPS13B as a Golgi-enriched scaffold protein which augments the structure and function of the Golgi complex. The disturbance in the Golgi apparatus leads to alterations in protein glycosylation and endosomal-lysosomal trafficking (Duplomb et al. 2014). There is a large degree of allelic heterogeneity, and over 200 different variant mutations in the VPS13B gene have been found in individuals with Cohen syndrome to date (Sfari Gene, 2018.11: https://gene.sfari.org/database/human-gene/VPS13B/variants-tab, HGMD Professional, 2018.3 http://www.hgmd.cf.ac.uk/ac/index.php).

We report here on the ophthalmic, systemic and genetic characteristics in five patients with Cohen syndrome caused by homozygous or two heterozygous mutations in the VPS13B gene, who attended the Centre for Ophthalmology, Tubingen for examination. In view of the rareness of the disease, we sought to confirm and expand knowledge about the phenotype of patients with the VPS13B gene.

Materials and Methods
We examined five patients (four females and one male), aged between 9 and 38 years, from three German families and one Syrian family. Two patients were siblings. The data were collected retrospectively from medical records.

Ophthalmic examinations were not comprehensive or possible in all patients because some patients were not amenable or could not understand the instructions because of mental retardation. The ophthalmic examination included, if possible, visual acuity measurement using Snellen or Lea charts, fundus ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT) using a single line scan protocol for a horizontal cross section through the fovea (Spectralis HRA+ OCT; Heidelberg Engineering Inc., Heidelberg, Germany). Further, full-field scotopic and photopic electroretinograms (ERGs) were recorded according to ISCEV standards (McCulloch et al. 2015a,b) (Diagnosys; Lowell, MA, USA), and colour vision testing (Ishihara or Lea) was carried out, if feasible. Visual field testing and retinal imaging with fundus autofluorescence were not possible in any patient.

Genomic DNA was isolated from peripheral blood according to standard procedures. Genetic testing for all genes associated with syndromic and non-syndromic retinitis pigmentosa was conducted applying next-generation sequencing as reported previously (Glöckle et al. 2013; Weisschuh et al. 2016).

The study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee of the University of Tuebingen. Written informed consent was obtained for the research study, as well as for the diagnostic genetic testing, from all patients or their parents/guardians if underage or mentally retarded.

Results
In Table 1, the ophthalmic and clinical features of the five patients are listed. The likely causative VPS13B genotypes are given at the bottom of the Table. Figure 1 shows the fundus photographs and the OCT results.

In all patients, the ophthalmic examination revealed myopia, night blindness, photophobia, hemeralopia, fundus pigmentary changes and bull’s eye maculopathy. Astigmatism was also present in all patients, as was night blindness, hemeralopia and photophobia. The age of onset of first ophthalmic symptoms (night blindness or photophobia) was between 1 and 8 years (see Table 1). Four of the five patients had optic nerve pallor. In addition, the OCT scan (Fig. 1) showed macular oedema in three patients and small cystoid lesions in two patients, with atrophy of the outer retinal layers. Quantification of layer thickness therefore could not be carried out. One of the patients suffered from nystagmus until the age of 3 years. Electoretinograms (ERGs) could be recorded from three of the patients at their initial examination, but they were extinguished. One of the two patients who could not be recorded (patient 1) showed extinguished ERGs 4 years later using the Retival®System (LKC technologies Inc, Gaithersburg, Maryland, USA). Two patients had retinoschisis and one, the oldest, a cataract, which had developed at the age of 25 years. None suffered from microcornea or microphthalmia, a condition where the eyes are small with anatomic malformations. It was not possible to perform visual field examinations or fundus and autofluorescence imaging with these patients, due to the mental retardation and corresponding difficulty in cooperation.

Patients 1 was treated for oedema and cystoid lesions with topical anhydrodrase inhibitor for 12 months, and patient 3 with systemic carbonic anhydrodrase also for 12 months, without any improvement.

All patients suffered from mental retardation, two from microcephaly and one from autism. They all had a short body stature with muscular hypotonia. Three patients were obese, and two patients had scoliosis. Tapered fingers with elongated arms were also present in all patients. Typical facial features were mandibular retrognathia, a high/narrow palate, a short philtrum and a prominent nasal root and middle face.

Discussion
The visual problems in Cohen syndrome are of early onset (Chandler et al. 2002). In our cohort of five patients aged between 9 and 38 years, the ophthalmological examination revealed that all have myopia, astigmatism, fundus pigmentary changes, bull’s eye maculopathy, narrow vessels, hemeralopia, night blindness and photophobia. There was pullor of the optic disc, and the ERG was extinguished in four patients. These ophthalmic features are in line with those previously reported in Cohen syndrome patients (Kivitie-Kallio et al. 2000; Chandler et al. 2002; Taban et al. 2007). Only one of the five patients had a subcortical cataract although lens opacities have been reported in more than half of the Finnish patients with the c.3348_3349delCT deletion (Kivitie-Kallio et al. 2000) and in 86% of the Greek/Mediterranean patients with the c.11564delA deletion (Bugiani et al. 2008; Douzgou & Petersen 2011). One of the five patients had had nystagmus at birth until 3 years of age, and two patients showed a retinoschisis. None
Patient number	1	2	3	4	5	
Age at last examination (years)	9	38	19	20	14	
Sex	f	f	m	f	f	
Ophthalmic findings						
Visual acuity	OD	20/80	20/200	20/80	20/320	20/320
	OS	20/80	20/400	20/100	20/640	20/640
Spherical correction	OD	−10.0 D	−10.0 D	−14.5 D	−3.25 D	−6.25 D
	OS	−10.0 D	−10.0 D	−14.5 D	−3.5 D	−6.25 D
Cylindrical correction	OD	−5.0 D, 20°	−1.0 D, 180°	−2.5 D, 170°	−2.5 D, 170°	−4.0 D, 8°
	OS	−5.0 D, 160°	−1.0 D, 170°	−2.5 D, 170°	−1.75 D, 175°	−4.0 D, 178°
Colour vision	ND	Few tritan errors	Diffuse error (Lea PV16 test, BIN)	ND	ND	
Visual field	NR	NR	NR	NR	NR	
Autofluorescence	NR	NR	NR	NR	NR	
Fundus	Pigmentary changes (bone spicules), bull’s eye maculopathy, narrowing of the retinal vasculature	Pigmentary changes (bone spicules), bull’s eye maculopathy, narrowing of the retinal vasculature	Pigmentary changes (bone spicules), bull’s eye maculopathy, narrowing of the retinal vasculature	Pigmentary changes (bone spicules), bull’s eye maculopathy, narrowing of the retinal vasculature	Pigmentary changes (bone spicules), bull’s eye maculopathy, narrowing of the retinal vasculature	
Optic nerve	Pallor	Pallor	No pallor	Pallor	Pallor	
OCT	Oedema	Small cysts	Extinguished	Oedema	Oedema	
ERG	OD	Extinguished	Extinguished	Extinguished	Extinguished	
	OS	Extinguished	Extinguished	Extinguished	Extinguished	
Strabismus	No	No	No	No	No	
Iris coloboma	No	No	No	No	No	
Cataract	No	No	No	No	No	
Hemeralopia	Yes	Yes	Yes	Yes	Yes	
Retinoschisis	Yes	No	No	No	No	
Microcornea	No	No	No	No	No	
Microphthalmia	No	No	No	No	No	
Nystagmus	Yes	Yes	Yes	Yes	Yes	
Age of night blindness (years)	3	6	8	3	3	
Age of photophobia (years)	1	6	8	3	3	
Neurocognitive findings	Yes	Yes	Yes	Yes	Yes	
Mental retardation	Yes	Yes	Yes	Yes	Yes	
Autism	No	No	No	No	No	
Microcephaly	Yes	Yes	Yes	Yes	Yes	
Body features	Yes	Yes	Yes	Yes	Yes	
Short stature	Yes	Yes	Yes	Yes	Yes	
Joint hypermobility	Yes	Yes	Yes	Yes	Yes	
Muscular hypotonia	Yes	Yes	Yes	Yes	Yes	
Scoliosis	Yes	Yes	Yes	Yes	Yes	
Hemeralopia	Yes	Yes	Yes	Yes	Yes	
Retinoschisis	Yes	Yes	Yes	Yes	Yes	
Microcornea	No	No	No	No	No	
Microphthalmia	No	No	No	No	No	
Nystagmus	Yes	Yes	Yes	Yes	Yes	
had iris coloboma, microcornea or microphthalmia, as found in some Cohen patients (Resnick et al. 1986; Kivitie-Kallio et al. 2000; Chandler & Manson 2009). We also examined the OCT images (Fig. 1, right) of this Cohen syndrome cohort. All patients showed a cystoid macular oedema (CME) or cysts, as in retinitis pigmentosa, as also reported by Beck et al. (2018), which can cause a reduction of central vision (Strong et al. 2017). The SD-OCT horizontal cross sections also demonstrate atrophy of the outer retinal layers. The SD-OCT horizontal cross sections also demonstrate atrophy of the outer retinal layers. In patient 1, the SD-OCT images show a preserved island of outer nuclear layers and ellipsoid zone within the fovea, complicated by CME. Patient 2 has few cystic changes (the photographs were of low quality because of the cataract), and the images from patient 3 show an oedema from the outer nuclear layer up to inner nuclear layers. In the OCT images of patient 4, an oedema in the inner nuclear layers is found in both eyes, with subretinal fluid on the nasal side of the left eye (OS). In patient 5, the ellipsoid zone is interrupted and outer retinal layers are atrophic complicated by CME.

Based on the ophthalmological results on a retinal level, a diagnosis of retinitis pigmentosa can be made for all subjects on the appearance of the fundus, vessels, the optic nerve head and the presence of pigmentation. Concerning the syndromic symptoms, the differential diagnoses of inherited syndromes, where retinopathy is associated with mental retardation, include Bardet–Biedl and Alstrom syndromes. However, the phenotype of Alstrom includes deafness, diabetes mellitus and cardiomyopathy, which are not present in our patients, and Bardet–Biedl patients normally have polydactyly and renal problems. Further possible diagnoses are Prader–Willi syndrome, with an autosomal dominant mode of inheritance and no retinal dystrophy, or Angelman syndrome, where microencephaly and seizures are common (Chandler et al. 2002; Puech 2014; Wang et al. 2016). The diagnosis of Cohen syndrome is based on the clinical features listed in Table 1 and is confirmed genetically for all patients.

All 5 patients have the typical clinical features of Cohen syndrome: mental retardation, short stature, muscular

Patient number	Obesity	Hands	Small and narrow with clinodactyly	Hands/elongated arms	Femur	Hirschsprung’s disease	Mandibular retrognathia	Short phalanges	Prominent middle face	Haplodiploid arm	Prominent nasal root	Genotype
1	No	Yes	No	ND	ND	No	No	Yes	Yes	Yes	No	ND
2	Yes	Yes	Yes	ND	ND	No	Yes	Yes	Yes	Yes	No	ND
3	ND	Yes	Yes	ND	ND	Yes	Yes	Yes	No	ND	No	ND
4	Yes	Yes	Yes	ND	ND	Yes	Yes	Yes	Yes	Yes	Yes	ND
5	Yes	Yes	Yes	ND	ND	Yes	Yes	Yes	Yes	Yes	Yes	ND

Table 1. (Continued)

Patient number	Hands	Hands/elongated arms	Femur	Hirschsprung’s disease	Mandibular retrognathia	Short phalanges	Prominent middle face	Genotype
1	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND
5	ND	ND	ND	ND	ND	ND	ND	ND

Genotype

- **VPS13B:** Deletion Exons 18–19 Deletion Exons 46–50 compound heterozygous
- **VPS13B:** c.1563G>A; p.Tyr2704* homozygous
- **VPS13B:** c.8112C>G; p.Tyr2704* homozygous
- **VPS13B:** c.6055_6056delGA; p.Asp2019Glnfs*15 homozygous
- **VPS13B:** c.6055_6056delGA; p.Asp2019Glnfs*15 homozygous

F = female; M = male; ND = no data; NR = not recordable; OD = right eye; OS = left eye.

* Electroretinograms (ERGs) recorded at age 13.
Five different mutations were observed in our cohort. These included two large deletions covering exons 18–19, and the other exons 46–50. Comparable deletions of this size have been previously reported (Katzaki et al. 2007; Balikova et al. 2009; Parri et al. 2010). As the latter was observed in two unrelated patients in our cohort, this might either point to a common founder of this variant, or a mutation hotspot.

The heterozygous splice site mutation c.1563G>A;p.= affecting the splice donor of intron 11 was found in patient 2, this mutation has also previously been reported in a 5 year old German/British Cohen patient (Seifert et al., 2008), and the authors confirmed that it is a true splice site mutation by RT-PCR on RNA extracted out of peripheral blood samples resulting in aberrant spliced VPS13B transcripts. The nonsense mutation found in patient 3, c.8112C>G p.Tyr2704* has not been previously reported. The same holds true for the 2 bp deletion found in the sibling patients 4 and 5, VPS13B c.6055_6056delGA; p.As2019Glnfs*15. This was a family with roots in Syria but living in Germany.

According to Wang et al. (2016), correlations between genotype and phenotype have not been identified. Our cohort is too small to speak on specific corrections.

In conclusion, our study shows phenotypic variability and heterogeneity in the extremely rare Cohen syndrome and adds two new mutations to the long list of variants causing this rare syndrome. Ophthalmological symptoms such as night blindness and photophobia at a young age, with high myopia, early cystoid oedema in the OCT and a bull’s eye macula in funduscopy, indicate, in combination with particular facial features and tapered fingers, a suspected Cohen syndrome. Progression should be routinely monitored and the patient’s visual aid requirements regularly considered (Garcia-Ballesta et al. 2004; Chandler & Clayton-Smith 2010; Wang et al. 2016).

References
Alavi S, Kher A, Kumar A, Muranjan M & Bharucha B (1993): Cohen syndrome. Indian Pediatr 30: 678–681.
Balikova I, Lehesjoki AE, De Ravel TJL et al. (2009): Deletions in the VPS13B (COH1) gene as a cause of Cohen syndrome. Hum Mutat 30: E845–E854.
Beck KD, Wong RW, Gibson JB & Harper CA (2018): Nonleaking cystoid macular edema in Cohen syndrome. J AAPOS 23: 38–39.e1.
Bugiani M, Gyftodimou Y, Tsimpouka P et al. (2008): Cohen syndrome resulting from a novel large intragenic COH1 deletion segregating in an isolated Greek island population. Am J Med Genet Part A 146A: 2221–2226.
Carey JC & Hall BD (1978): Confirmation of the Cohen syndrome. J Pediatr 93: 239–244.
Chandler KE, Biswas S, Lloyd IC, Parry N, Clayton-Smith J & Black GCM (2002): The ophthalmic findings in Cohen syndrome. Br J Ophthalmol 86: 1395–1398.
Chandler K & Clayton-Smith J (2010): Cohen syndrome. In: Cassidy SB & Allanson JE (ed.). Management of genetic syndromes, 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc. 183–193.
Chandler KE & Manson FDC (2009): Cohen syndrome. In: Beales PR, Farooqi IS & O’Rahilly S (eds.), Genetics of obesity syndromes. Oxford: Oxford University Press 201–222.
Cohen M, Hall BD, Smith DW, Benjamin Graham C & Lampert KJ (1973): A new syndrome with hyptonia, obesity, mental
deficiency, and facial, oral, ocular, and limb anomalies. J Pediatr 83: 280–284.
Douzou S & Petersen M (2011): Clinical variability of genetic isolates of Cohen syndrome. Clin Genet 79: 501–506.
Duplomb L, Duvet S, Picot D et al. (2014): Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 23: 2391–2399.
Falk MJ, Feiler HS, Neilson DE et al. (2004): Cohen syndrome in the Ohio Amish. Am J Med Genet 128 A: 23–28.
Garcia-Ballesta C, Perez-Lajarin L & Lillo-Cortés O (2004): Cohen syndrome. Orphanet J Rare Dis October: 1–4.
Gleckle N, Kohl S, Mohr J et al. (2013): Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 22: 99–104.
Hennies HC, Rauch A, Seifert W et al. (2004): Allelic heterogeneity in the COH1 gene explains clinical variability in Cohen syndrome. Am J Hum Genet 75: 138–145.
Katzaiki E, Pescucci C, Uliana V et al. (2007): Clinical and molecular characterization of Italian patients affected by Cohen syndrome. J Hum Genet 52: 1011–1017.
Kivitie-Kallio S & Norio R (2001): Cohen syndrome: essential features, natural history, and heterogeneity. Am J Med Genet 102: 125–135.
Kivitie-Kallio S, Summanen P, Raaita C & Norio R (2000): Ophthalmologic findings in Cohen syndrome. Ophthalmology 107: 1737–1745.
Kolehmainen J, Black GCM, Saarinen A et al. (2003): Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 72: 1359–1369.
Kolehmainen J, Wilkinson R, Lehesjoki A-E et al. (2004): Delineation of Cohen syndrome following a large-scale genotype-phenotype screen. Am J Hum Genet 75: 122–127.
McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R & Bach M (2015a): Erratum to: ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 131: 81–83.
McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R & Bach M (2015b): ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130: 1–12.
Murphy A-M, Flanagan O, Dunne K & Lynch S-A (2007): High prevalence of Cohen syndrome among Irish travellers. Clin Dysmorphol 16: 257–259.
Norio R (2003): Finnish disease heritage I: characteristics, causes, background. Hum Genet 112: 441–456.
Norio R, Raaita C & Lindahl E (1984): Further delineation of the Cohen syndrome; report on chorioretinal dystrophy, leukopenia and consanguinity. Clin Genet 25: 1–14.
North KN, Fulton AB & Whiteman DAH (1995): Identical twins with Cohen syndrome. Am J Med Genet 58: 54–58.
Parri V, Katzaiki E, Uliana V et al. (2010): High frequency of COH1 intragenic deletions and duplications detected by MLPA in patients with Cohen syndrome. Eur J Hum Genet 18: 1133–1140.
Puech B (2014): Inherited chorioretinal dystrophies. Berlin: Springer-Verlag.
Resnick K, Zuckerman J & Cotlier E (1986): Cohen syndrome with bull’s eye macular lesion. Ophthalmic Paediatr Genet 7: 1–8.
Seifert W, Holder-Espinasse M, Spranger J et al. (2006): Mutational spectrum of COH1 and clinical heterogeneity in Cohen syndrome. J Med Genet 43: e22 LP-e22.
Seifert W, Kühnisch J, Maritzen T, Lomatzsch S, Hennies HC, Bachmann S, Horn D & Hauke V (2015): Cohen syndrome-associated protein COH1 physically and functionally interacts with the small GTPase RAB6 at the golgi complex and directs neurite outgrowth. J Biol Chem 290: 3349–3358.
Strong S, Liew G & Michaelides M (2017): Retinitis pigmentosa-associated cystoid macular oedema: pathogenesis and avenues of intervention. Br J Ophthalmol 101: 31–37.
Taban M, Memoracion-Peralta DSA, Wang H, Al-Guzali LI & Traboulsi EJ (2007): Cohen syndrome: report of nine cases and review of the literature, with emphasis on ophthalmic features. J AAPOS 11: 431–437.
Tahvanainen E, Norio R, Karila E, Ranta S, Weissenbach J, Sistonen P & de la Chapelle A (1994): Cohen syndrome gene assigned to the long arm of chromosome 8 by linkage analysis. Nat Genet 7: 201–204.
US National Library of Medicine (2018): Genetics home reference Cohen syndrome. 1–6.
Wang H, Falk MJ, Wensel C et al. (2016): Cohen syndrome. GeneReviews®. Seattle, WA: University of Washington. NCBI Bookshelf.
Weissenbühl N, Mayer AK, Strom TM et al. (2016): Mutation detection in patients with retinal dystrophies using targeted next generation sequencing. PLoS ONE 11: e0145951.

Received on January 10th, 2019. Accepted on September 6th, 2019.

Correspondence:
Fadi Nasser
University Eye Hospital Elfriede-Aulhorn-Strasse 7
72076 Tuebingen
Germany
Tel: +49 7071 2984 848
Fax: +49 7071 2953 61
Email: fadi.nasser@med.uni-tuebingen.de

The study was supported by grants from the German Research Council (DFG Excellence Center EXC307) to EZ, and from the Tistou and Charlotte Kerstan Foundation to FK and AN.