Thermal System Design for Sulfuric Acid Dilution Device - A Case of Awash Melkassa Aluminum Sulphate and Sulfuric Acid S. Co

Aschale Getnet, Atrssaw Jejaw, Addisu Bekele, Chandraprabu Venkatachalamm

Abstract: Preparation of the diluted sulfuric acid not only causes chemical burns, but also secondary thermal burns because of dehydration. However, the domestic acid company only supply the (98-98.5 percentage) of concentrated sulfuric acid to the customer. Thus, customers have no choice, and manually dilute the concentrated sulfuric acid at home while they face the problem of strong acid dilution hazards. In response to this problem, the main objective of this thesis is to design an acid dilution system of 4 m³/h capacity that delivers (1 to 97 wt%) diluted acid concentration. The major components of the system are pipelines, heat exchanger, storage tanks, pumps, mixing device, valves and fittings. The method used for developing the overall conceptual design of the acid dilution system is inferring the existing worldwide acid dilution system experience using solid work 2016 for modelling and mathematical investigation, and M.S Excel 2016 for iteration. The required flow rate of both concentrated sulfuric acid and diluted water is calculated for each output concentration, and the heat load as well as final temperature during dilution is determined and validated.

In addition, steady demand grows because \(H_2SO_4 \)’s favorable properties make it useful in preparing a variety of products. For example, \(H_2SO_4 \)’s hygroscopic nature is ideal for drying synthesis gases in the chemical and petrochemical industries. Moreover, several applications require at different dilution range. Like fertilizer production, synthesis gas drying, etching and pickling baths, mine-ore processing, refinery catalysis, manufacture of paper, detergents, dyes, drugs, car batteries, plastics, and production of various chemicals. The users of sulfuric acid requires sulfuric acid at different concentration level. The requirements varies as both from time-to-time and organization to organization based on the application. Nevertheless, the company has no acid dilution plant. They only supplies the final product of concentrated sulfuric acid (98 to 98.5 weight percent) amount to the customer as it is, while almost no customer uses sulfuric acid at this range of concentration.

Moreover, due to the only company, the customer have no choice to purchase the less sulfuric acid concentration. The only option they have is diluting this concentrated sulfuric acid manually at home. However, the process of placed water in sulfuric acid is extremely dangerous, as the water completely ionizes small amounts of water in concentrated amounts of sulfuric acid will boil and form an acidic mist, which is highly acidic, and damaging if inhaled. This aggressive nature of the chemical can causes permanent blindness, internal burns, respiratory track irritation, and possibly death. Sulfuric acid is an extremely dangerous chemical that must be handled with caution. In addition, the sulfuric acid dilution process is very exothermic (when dissolving in water), several safety precautions shall be taken with the handling, storage, dilution and transportation of sulfuric acid.

According to the current situation of AMASSASC, it is important to provide sulfuric acid with different dilution level due to couple of reasons. First, to meet customers need and protect the beneficiaries from any acid dilution hazards. Second, to ensure the sustainability of factory effectiveness. In response to this problem, this thesis investigate the optimum sulfuric acid dilution device that can work for various concentration level.

The Acid Dilution System

The Powell acid dilution system uses sulfuric acid in-line-mixing system or an in-line-blending system. Usually these systems dilute 98% or 93% sulfuric acid to lower strengths such as 70%, 50%,30% or lower.
Any strength lower than the strong acid can be produced. Depending on the final sulfuric acid strength, large amounts of heat are generated during the dilution. When this amount of heat becomes significant, the dilution temperatures can boil the sulfuric acid at atmospheric pressure. Many companies use very expensive graphite or silicon carbide heat exchangers with the sulfuric acid under pressure requiring special piping materials and insulation to protect the workers from approximately 100 to 120°C temperatures. In a system where the sulfuric acid product strength is 10% or lower, the sulfuric acid can be diluted with water with no heat exchangers required since the heat of dilution is low. The Powell system construct the piping material using polyethylene fusion welding pipe and fittings. 98% sulfuric acid would typically use PTFE lined pipe and fittings. Other materials can be used depending on the purchasing company’s specification. The instrumentation utilized for the sulfuric acid dilution system are Rosemount magnetic flow meters, pressure transmitters, temperature transmitters, Micro Motion mass meters and Masonelian control valves are used. Other instruments such as Yokogawa transmitters and Fisher control valves can be supplied (powellfab, 2007). The Wastech Acid Dilution Systems (ADS) are designed for diluting sulfuric acid to a lower concentration required for process use. These systems start with water and add acid until the desired concentration is achieved. The lower concentration chemical is then pumped to a holding tank for storage and use. The Wastech ADS includes all plastic wetted components for corrosion resistance and a fully automated control system (Wastech, 2015).

Concentrated H_2SO_4 is diluted by varying amounts and the temperature changes associated with dilution are measured. The heat released during dilution is a result of the hydration of the various ions formed upon dissociation of the acid (Shakhashiri, 1983).

The unit consists of a Dilution Chamber, followed by a Heat Exchanger. Dilution Chamber is used for diluting concentrated sulphuric acid to the desired concentration and the Heat Exchanger is used for bringing down the temperature of dilute acid to desired temperature. The Heat Exchanger is of shell and tube type to dilute the acid. The acid should be added slowly to cold water to limit the buildup of heat. If water is added to the concentrated acid, enough heat can be released at once to boil the water and spatter the acid. Sulfuric acid reacts with water to form hydrates with distinct properties (kjhil, 1999).

The Noritake acid dilution system uses the dilution system continuously produces sulfuric acid at a consistent concentration through inline dilution of concentrated sulfuric acid. Dilution to the designated strength is performed in the dispersion mixer, and sulfuric acid that reaches high temperatures due to heat of dilution is cooled to the designated temperature with a heat exchanger. (Noritake, 2001)

II. DESIGN METHODOLOGY

This section describes the methods used to complete the objectives of this paper.

A. Collected Data and Gathered Information

- The condenser outlet temperature is around 25 °C according to the interviewed.
- The boiler preheater can receive starting from 40 °C input temperature.
- According to the interviewed, customer’s need vary from time to time, company to company, industry to industry and people to people so that it is hard to know when will be the maximum and minimum demand reached in yearly or monthly bases. And, there is no research is done until know.
- Currently the company produces 2,360 ton/hr and 20,000 ton/yr in yearly basis. Moreover, the final sulfuric acid product is 98 to 98.5 % by weight.

B. Defining the Required Capacity of Acid Dilution Device

Table 1: Product mix and capacity of AMAASSASC.

Chemical	Capacity
Sulfuric acid (98% + 0.5 w/w %)	20,000 tpa
Oleum (25 % free SO₂)	5,000 tpa
Aluminum sulfate (17 % Al_2O_3)	13,600 tpa
Hydrogen peroxide (50 % H_2O_2 w/w %, min 50 %)	5,500 tpa

Taking average active hours per day = 8 hrs. (This eight hrs. per day is determined, considering the minimum average time so that one operator per day can cover the workload)
\[\dot{m} = 20 \times 10^6 \text{ kg per year} = 6849.31 \text{ kg/hr} \]

\[Q = \frac{\dot{m}}{\rho} = \frac{6849.31 \text{ kg/hr}}{1831 \text{ kg/m}^3} = 3.74 \text{ m}^3/\text{hr} \approx 4 \text{ m}^3/\text{hr} \]

C. Develop Conceptual Design

The concept for the acid dilution device design is developed to allow dilution of highly concentrated sulfuric acid. This is widely recognized as an important role in the chemical industry. Usually, it is carried out with the use of the so-called mixing concentrated sulfuric acid with demineralized water. The following figures represent the conceptual design of main parts of acid dilution device as well as overall assembly.

![Conceptual design of sulfuric acid dilution device two-dimensional layout.](image)

Legend

1. Concentrated sulfuric acid storage tank
2. Diluent water storage tank
3. Concentrated sulfuric acid pipeline
4. Diluent water pipeline
5. Concentrated sulfuric acid pump
6. Diluent water pump
7. Concentrated sulfuric acid flow rate control valve
8. Diluent water flow rate control valve
9. Concentrated sulfuric acid shut off valve
10. Diluent water shut off valve
11. Concentrated sulfuric acid check valve
12. Diluent water check valve
13. Mixing device
14. Shell and tube heat exchanger
15. Cooling water storage tank
16. Cooling water pump
17. Cooling water valve
18. Cooling water flow rate control valve
19. Cooling water shut off valve
20. Cooling water check valve
21. Diluted acid storage tank
22. Diluted acid shut off valve

D. Methods of Data Analysis

In order to achieve the required objective, this study will use design data book. Then the data will be analyzed by using governing equation in each analysis and some empirical relation formulas. The software’s used on this thesis were, SOLID WORK, and M.S Office 2016. An excel program has been developed to determine the tank size used for acid dilution device, to select the appropriate acid piping material, to determine the pressure drop over the diluent water and cooling water piping system assembly in each concentration level, to determine the dimension of parts, to select the appropriate system equipment’s. In addition, to size and optimize the shell and tube heat exchange as per the heat load liberated during the dilution process. Further optimization of the design, by the help of excel, it became easy to check the effect of change in various parameters like baffle spacing and shell length on pressure drop and overall heat transfer coefficient.

E. Determination of the Acid to Water Proportion

The conservation of mass principle for a general steady-flow system with multiple inlets and outlets can be expressed in rate form as:

\[\sum \dot{m}_i = \sum \dot{m}_o \]

This implies:

\[\dot{m}_{H_2SO_4, in} + \dot{m}_{V A} = \dot{m}_{H_2SO_4, out} \]

\[\dot{m}_{H_2SO_4, in} = \dot{m}_{H_2SO_4, out} \times \frac{100}{(100 - \text{weight percent concentration, } \%)} \]

Then, the mass balance equation becomes:

\[Q_{H_2SO_4, in} = \frac{m_{H_2SO_4, in}}{\rho_{H_2SO_4}} \times \frac{1}{98.5\%} \]

\[Q_{H_2SO_4, in} = \frac{m_{H_2SO_4, out} \times \rho_{H_2SO_4}}{100} \]

F. Enthalpy of Diluting a Concentrated Sulfuric Acid

The addition of a strong sulfuric acid to water generates heat; that is, the reaction is exothermic. When we add concentrated sulfuric acid to water, the reaction

\[H_2SO_4(l) \rightarrow H^+ (aq) + HSO_4^- (aq) \]

is exothermic. The standard state heat of formation for \(H_2SO_4(l) \), \(H^+(aq) \), and \(HSO_4^-(aq) \) are

\[-813.989 \frac{\text{kJ}}{\text{mol}_{\text{rem}}}, 0 \frac{\text{kJ}}{\text{mol}_{\text{rem}}} \text{ (defined)}, \text{ and } -885.75 \frac{\text{kJ}}{\text{mol}_{\text{rem}}} \text{ respectively}. \]

\[\Delta H^\circ = [\Delta H^\circ_{f,H_2SO_4} + \Delta H^\circ_{f,H_2SO_4} + \Delta H^\circ_{f,H^+}] - \Delta H^\circ_{f,HSO_4^-} \]

\[= [(-885.75 + 0) - (-813.989)] = -71.76 \frac{\text{kJ}}{\text{mol}_{\text{rem}}} \]

(By the time, no constraint of diluent water for the needed concentration range (mostly it works on one time (batch dilution process) or in the case of manual dilution) (dpud, 2016)

\[\ln(mol \text{ of } H_2SO_4) = 11.114 \times \ln(mol \text{ of } H_2O/mol \text{ of } H_2SO_4) + 33.119 \]

(6)

(By the time, constraint of diluent water. Mostly in case of continuous dilution system)

G. Storage Tank Sizing

The main factors that will determine the size of the tank are plant production rate as well as the acid dilution device capacity. And, the maximum capacity of the storage tank is determined for a day.

Fluid Level System
Figure 5: First order fluid level system.

Figure above shows a first order fluid level system where q_{in} and q_{out} are the flow rate coming from the source and the flow rate delivered to the system. Let h be the height liquid at time t and it rises by an amount dh after a time dt due to an inflow of q_{in}. Considering the following quantities during the interval dt:

The net flow from the source = $q_{in} dt$
The net storage in the tank = Adh
The net flow to the system = $q_{out} dt$

From conservation of mass:

Quantity of fluid flowing in = Additional storage + Quantity of fluid flowing out

$q_{in} dt = Adh + q_{out} dt$

Rearranging

$$dh = \frac{1}{A} (q_{in} - q_{out})$$

Equation (7) is a first order differential equation. It relates fluid level h with time t.

The following finite difference technique can be used to obtain the approximate solution. Select discrete points (nodes or grid points) in time and approximate the time derivative of h by the expression.

III. RESULT AND DISCUSSION

A. Analytical result of concentrated sulfuric acid to diluent water proportion for each diluted acid concentration level

Table 2: Required flow rate result of sulfuric acid and diluent water amount for each concentration output.

% H_2SO_4 (w/w%)	H_2SO_4 (g)	H_2O (g)	% H_2SO_4 (w/w%)	H_2SO_4 (g)	H_2O (g)
1	0.008155	1.10019	50	0.431434	0.77857
2	0.014617	1.09356	51	0.446264	0.78457
3	0.015777	1.08535	52	0.455305	0.795162
4	0.022538	1.09055	53	0.463337	0.794695
5	0.031799	1.09533	54	0.474389	0.793026
6	0.038641	1.07858	55	0.488443	0.791185
7	0.040289	1.08483	56	0.500147	0.790165
8	0.052689	1.08000	57	0.513052	0.786245
9	0.060553	1.07752	58	0.523588	0.78457
10	0.066110	1.07382	59	0.533665	0.782001
11	0.072386	1.07006	60	0.542772	0.779253
12	0.080553	1.06622	61	0.551811	0.776618
13	0.087921	1.06234	62	0.567249	0.773003

B. Analytical result of dilution enthalpy, temperature change and required cooling water flowrate for each diluted acid concentration level

Table 3: Analytical result of dilution enthalpy and temperature change for each weight percentage of sulfuric acid:

% H_2SO_4 (w/w%)	local/kg solution	Delta T (°C)	% H_2SO_4 (w/w%)	local/kg solution	Delta T (°C)
1	2.51	2.52	50	63.35	104.67
Table 4: Range of both intermediate temperature and heat duty over the whole concentration level.

	Heat duty (kcal/kg)	Delta T(℃)
Maximum Value	72.81	165.04
Minimum Value	2.51	2.52

The above results of this study is validated with the experimental result given on article (SGL Group, 2016)

As shown on the graph, the heat liberated during the reaction is first increases sharply with concentration output then it reaches peek point finally decreases with concentration output. Because, in the case of continuous acid dilution system the flow rate of diluent water for required concentration output was specified, and, that is not enough water for the reaction happens after the critical concentration output. Therefore, the reaction cannot generate the whole heat energy.

C. Analytical Analysis of Concentrated Sulfuric Acid Piping Material

These materials have different surface roughness values that surface roughness has an effect on friction resistance. It turns out that the effect is negligible for laminar pipe flow, but turbulent flow is strongly affected by roughness. Therefore, one of the objective of this study is choice of the safe, efficient and economical piping material for conveying highly concentrated sulfuric acid.

The following table shows maximum recommended sulfuric acid velocities and surface roughness value in various materials, at 98.5% H_2SO_4 concentration and temperature of 30°C (Sulfuric acid piping techmanual, 2005)
Table 5: Maximum recommended concentrated sulfuric acid velocity and surface roughness value of representative material (Sulfuric acid piping techmanual, 2005)

Material	Velocity [m/s]	Surface roughness [Ɛ, mm]
Cast Iron	3	1.5
Ductile Iron	2	2.6
High Silicon Iron (4%)	2.1	2
Carbon steel	0.5	3
Alloy 20	1.8	1.9
Alloy c-276	3	2.3
304L ss(Ap)	1.5	0.5

The following table shows the summary of results:

Table 6: Summery result of pressure drop per length and pipe diameter for acid piping material.

No	Material	Pipe Diameter (m)	Pressure Drop Per Length (ΔP)(Pa/m)
1	Alloy c-276	0.02128	42760.7
2	Cast Iron	0.02128	34487.1
3	High Silicon Iron (4%)	0.02543	15019.1
4	Ductile Iron	0.02607	14977.2
5	Alloy 20	0.02747	9667.33
6	304L ss(Ap)	0.03009	3837.44
7	Carbon steel	0.05212	142.504

Figure 8: pressure drop per length and pipe diameter of different acid piping material.

D. Analytical Result of Diluent Water - Piping System

Stainless Steel

The roughness of ordinary stainless steel material is 2×10^{-6} (Bruce R. Munson, 2013)

Fixed variable: Volume flowrate of diluent water $Q_{H_2O,\text{in}}[m^3/s]$ for each output concentration.

Max diluent water velocity $V = 0.5 \text{ m/s}$ since the velocity must be the same with the preset concentrated sulfuric acid fluid velocity.

![Figure 9: Pressure drop and pipe diameter as a function of diluted acid concentration for stainless steel diluent water piping material at fixed average velocity.](image_url)

This graph nature looks the inverse of the graph happens on the concentrated sulfuric acid pipe material. Hence, unlike the flow rate of concentrated sulfuric acid, the required flow rate of diluent water is decreased with concentration output. In addition, when the pipe diameter graph decreases the pressure drop increases.

Table 7: Range of both pressure drop per length and pipe diameter of stainless steel piping material over the whole concentration level for diluent water.

	Pressure Drop Per Length (ΔP)(Pa/m)	Corresponding Pipe Diameter (m)
ΔP_{max}	361.0758	0.012314
ΔP_{min}	56.85608	0.05293

Table 8: Corresponding parameter result at minimum pressure drop for stainless steel piping material for diluent water.

Weight concentration of sulfuric acid H_2SO_4 (w/v%)	1%	Equivalent roughness ratio of sulfuric acid pipe ($\bar{Ɛ}$)	3.78 $\times 10^{-8}$
Volume flow rate of sulfuric acid $Q_{H_2SO_4,\text{in}}$	0.0011	Friction factor of sulfuric acid pipe ($f_{\text{H_2SO_4}}$)	0.024124
Diameter of sulfuric acid pipe ($d_{\text{H_2SO_4},\text{in}}$)	0.05293	Head loss of sulfuric acid pipe per length/($\bar{Ɛ}$)	0.005807
Reynolds number ($Re_{H_2SO_4}$)	26333.3	Pressure drop of sulfuric acid pipe($\Delta P_{H_2SO_4}$)	56.85608

Taking minimum pressure drop and corresponding pipe diameter size Now, Fixed variable: Flow rate of diluent water $Q_{H_2O,\text{in}}[m^3/s]$ for each output concentration.

Pipe diameter (D) = 0.05293 m
In a similar manner, at a fixed pipe diameter, unlike the concentrated acid pipe material, both the pressure drop and average velocity decreases with concentration output increases.

Table 9: Considering the minimum pressure drop, range of both pressure drop per length and average velocity of stainless steel piping material over the whole concentration level for diluent water.

	Pressure Drop Per Length (Pa/m)	Average Velocity (m/s)
Maximum Value	55.04461	0.494922
Minimum Value	0.154445	0.014998

E. Analytical Result of Cooling Water - Piping System

Stainless Steel

Fixed variable

Volume flowrate of cooling water $Q_{H_2O, in} [m^3/s]$ for each output concentration

Max diluent water velocity (V) = 0.5 m/s, since the velocity must be the same with the preset velocity of both concentrated sulfuric acid and diluent water fluid velocity.

Figure 11: Pressure drop and pipe diameter as a function of diluted acid concentration for stainless steel cooling water piping material at fixed average velocity.

This graph shape property directly related to the cooling water flowrate with concentration and indirectly related to the heat load liberated in each reaction over the concentration output. As a result, the pressure drop graph decreased initially and then increased. Conversely, the pipe diameter increased initially and the decreased.

Table 10: Range of both pressure drop per length and pipe diameter of stainless steel piping material over the whole concentration level for cooling water.

	Pressure Drop Per Length (Pa/m)	Corresponding Pipe Diameter (in)
ΔP_{max}	174.1419	0.021731
ΔP_{min}	15.9847	0.148624

Table 11: Corresponding parameter result at minimum pressure drop for stainless steel piping material for cooling water.

Weight concentration of sulfuric acid H_2SO_4 (wt %)	Equivalent roughness ratio of sulfuric acid pipe (R)	Friction factor of sulfuric acid pipe ($f_{H_2SO_4}$)	Head loss of sulfuric acid pipe per length ($h_{R_{H_2SO_4}}$)
79 %	0.008674	0.019044	0.001853

Taking minimum pressure drop and corresponding pipe diameter size

Now,

Fixed variable: Flow rate of sulfuric acid $Q_{H_2SO_4} [m^3/s]$ for each output concentration.

Pipe diameter (D) = 0.148624 m

Figure 12: Pressure drop and average velocity as a function of diluted acid concentration for stainless steel cooling water piping material at fixed pipe diameter.

At a fixed pipe diameter, the maximum pressure drop happens when the cooling water is maximum that is when the maximum heat energy is liberated when 73 % of concentrated acid was drawn.

Table 12: Considering the minimum pressure drop, range of both pressure drop per length and average velocity of stainless steel piping material over the whole concentration level for diluent water.

	Pressure Drop Per Length (Pa/m)	Average Velocity (m/s)
Maximum Value	15.98471	0.5
Minimum Value	0.02126	0.010689
F. Analytical Result of Storage Tank Capacity

Concentrated Sulfuric Acid Storage Tank

The current capacity of the company is 2.36 ton/hr. This implies the volume flow rate of the concentrated sulfuric acid is
\[q_{H_2SO_4,con} = 1.3104 \text{ m}^3/\text{hr} \]
When the diameter of the tank is 1 meter.

Then, cross sectional area becomes
\[A = \frac{\pi d^2}{4} = 0.7854 \text{ m}^2 \]
The maximum concentrated sulfuric acid tank size should be determined when the required concentrated sulfuric acid flow rate is minimum. i.e 1% of concentrated sulfuric acid is needed.

Invoking the previous result,
\[q_{H_2SO_4,con} = 0.006158 \text{ lt/s} \]
Then the height of fluid \(h_{fluid} \) will become 13.11814 meter. Therefore the needed volume of the storage tank will be
\[V = \pi r^2 h = 10.303 \text{ m}^3 \]
\[2\pi r^3 = 10.303 \text{ m}^3 \Rightarrow r = 1.18 \text{ m} \]
The cross sectional area \(A_C = \pi r^2 = 4.37 \text{ m}^2 \)

Diluent Water Storage Tank

When the flowrate of diluent water is maximum i.e 1% of concentration is required, the maximum tank size will determined.

\[q_w = 1.10019 \text{ lt/s} = 0.0011 \text{ m}^3/\text{s} \]
When tank diameter is 1 meter, cross sectional area becomes
\[A = \frac{\pi d^2}{4} = 0.7854 \text{ m}^2 \]
The maximum diluent water tank size should be determined when the required diluent water flow rate is maximum. i.e 1% concentrated sulfuric acid is needed.

Invoking the previous result,
\[q_{H_2SO_4,con} = 1.10019 \text{ lt/s} = 0.0011 \text{ m}^3/\text{s} \]
Then the height of fluid \(h_{fluid} \) will become 40.336 meter. Therefore the needed volume of the storage tank will be
\[V = \pi r^2 h = 32 \text{ m}^3 \]
\[2\pi r^3 = 32 \text{ m}^3 \Rightarrow r = 1.72 \text{ m} \]
The cross sectional area \(A_C = \pi r^2 = 9.3 \text{ m}^2 \)

Cooling Water Storage Tank

Similar to the diluent water tank the continuous flow is only for discharging the cooling water from the source tank. Thus, to determine the maximum required tank size for a day, just follow similar procedure using the same governing equation and boundary condition.

When the flowrate of cooling water is maximum, the maximum tank size will determined. Invoking the previous result, the maximum cooling water flowrate is \(8.67 \text{ lt/s} \). This is when maximum heat is liberated at 79% acid concentration required.

\[q_g = 8.67 \text{ lt/s} = 0.00867 \text{ m}^3/\text{s} \]
When tank diameter is 1 meter, cross sectional area becomes
\[A = \frac{\pi d^2}{4} = 0.7854 \text{ m}^2 \]

Using the above governing equation of fluid level, then the height of fluid \(h_{fluid} \) will become 317.26 meter. Therefore the needed volume of the storage tank will be
\[V = \pi r^2 h = 249.2 \text{ m}^3 \]
\[2\pi r^3 = 249.2 \text{ m}^3 \Rightarrow r = 3.41 \text{ m} \]
The cross sectional area \(A_C = \pi r^2 = 36.53 \text{ m}^2 \)

Diluted Sulfuric Acid Storage Tank

When the flowrate of diluent water is minimum, i.e 1% of concentration is required, the maximum tank size will determined.

\[q_l = 4 \text{ m}^3/\text{hr} = 0.00111111 \text{ m}^3/\text{s} \]
When tank diameter is 1 meter, cross sectional area becomes
\[A = \frac{\pi d^2}{4} = 0.7854 \text{ m}^2 \]
Then the height of fluid \(h_{fluid} \) will become 40.743 meter. Therefore the needed volume of the storage tank will be
\[V = \pi r^2 h = 32 \text{ m}^3 \]

The volume of fluid is
\[V = \pi r^2 h = 32 \text{ m}^3 \]
\[2\pi r^3 = 32 \text{ m}^3 \Rightarrow r = 1.72 \text{ m} \]
The cross sectional area \(A_C = \pi r^2 = 9.3 \text{ m}^2 \)

Three-Dimensional Modelling of Acid Dilution Device

The following figure shows the final three-dimensional design of the acid dilution device using solid work 2016. The table below shows materials with specification used for developing the acid dilution device.
Table 20: The materials with specification for the acid dilution device.

No	Item	Specification	Quantity	
1	Tank	2550 x 1500 mm	1	
	Diluent water storage tank	3920 x 3440 mm	1	
	Cooling water storage tank	4820 x 3650 mm	1	
	Diluted acid storage tank	3450 x 3440 mm	1	
2	Piping			
	Concentrated sulfuric acid pipe	6000 x 5 x 52 mm	1	
	Diluent water pipe	6000 x 5 x 53 mm	1	
	Cooling water pipe	6000 x 5 x 49 mm	1	
3	Static Mixer (Disperser)	Type 14	1	
	Fluid flow range (90 - 90 L/min)	Weight: 3-5 kg/Quartz	1	
	(niskinet, 1991)			
4	Heat Exchanger			
	Shell	7320 x 2800 mm	1	
	Tube	7320 x 150 mm	64	
	Flange	∅ (254 x 121) mm	4 bolts, with hub hole ∅ 254.4 mm	2
	Baffle	Single segmental baffle	32	

Table 21: Equipment’s with specification for acid dilution device.

No	Equipment	Type	Specification	Quantity
1	Pump	Concentrated sulfuric acid pump	NKM: G 32 - 1251 T 0, 25	1
	Diluted water pump	NKM: G 32 - 1601 T 0, 37	1	
	Cooling water pump	NKM: G 30 - 250/23/2 T 4	1	
2	Valve	Flow rate control valve	C - 05	3
		On-off valve	C - 40	4
		Check valve	DV-14	2

Figure 28: Over all 3D design of the sulfuric acid dilution system.

IV. CONCLUSION

From the general contents of this paper results the following point was drawn.

In this study, the main work began after determining the required capacity of the acid dilution device based on the capacity of the case company and thus the required flow rate of both concentrated sulfuric acid and diluent water was setted for each concentration output, as per this flow rate the reaction generates large amount of heat. Among this various reaction the maximum (72.81 kcal/kg of solution) amount of heat is released when 73% of concentrated acid was drawn but the temperature raised up to 165.04°C when 83% of concentrated acid was drawn.

Among the seven-concentrated sulfuric acid piping material, the carbon steel piping is by far the most economical material of construction for conveying strong sulfuric acid. However, it has its limitations in terms of operating conditions. Carbon steel in the presence of strong sulfuric acid will corrode to form a thin film of iron sulphate on the surface of the metal. For this reason that the use of carbon steel is limited to handling acid at low velocities. Fortunately, due to the low velocity constraint the pressure drop becomes minimum and this happen at minimum concentration of acid, because low flow rate of acid is required. i.e Carbon Steel [\(\rho = 0.05212\ m, \Delta P = 142.504\ Pa/m] .

Similarly for diluent and cooling water piping stainless steel was used to convey the water at required flow rate, and the following are the the pipe diameter and the maximum pressure drop over the complete concentration. i.e. stainless steel for diluent water piping [\(\rho = 0.053\ m, \Delta P = 55.85\ Pa/m] , stainless steel for cooling water piping [\(\rho = 0.149\ m, \Delta P = 16\ Pa/m] . This optimum value of pressure drop was obtained when maximum flow rate of fluid was required after fixing the piping diameter. Moreover, this happens when minimum concentration is required a case of diluent water and maximum heat is liberated a case of cooling water. i.e. 73% of concentrated acid was required.

REFERENCES

1. Madhurantakh, C., & Rempel, G. Q. (2009). Residence time distribution and liquid holdup in kencis KMX static mixers with hydrogenated nitrite butadine rubber solution and hydrogen gas system. Chem. Eng. Sci, 3320-3328.
2. SGL Group. (2016). Sulfuric acid dilution units. The carbon company.
3. Andre, L. C.; Eduardo, M. Q. (2008). Design optimization of shell and tube heat exchanger. Applied Thermal Engineering, 1798-1805.
4. Boles, Y. A. (2006). Thermodynamics: An Engineering Approach. McGraw-Hill.
5. Bruce R. Munson, T. H. (2013). Fundamentals of Fluid Mechanics. 7th edition. Department of Aerospace Engineering Iowa State University Ames, Iowa.
6. Burcat A, Rusic B. (2005). Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables.
7. Chemresist. (1999). Retrieved from Chemresist process plant product directory strong sulfuric acid dilution:
8. Hrymak, A., & Wood, P. E. (2006). Design modifications to SMX static mixer for improving mixing. AIChE J, 150-157.
9. J. W. Dufour and W. E. Nelson. (1992). Centrifugal Pump Sourcebook. McGraw-Hill, New York.
10. Jiangfeng, G., Lin, C., & Mingtian, X. (2009). Optimization design of shell and tube heat exchanger by entropy generation minimization and genetic algorithm. Applied Thermal Engineering, 2954-2960.
11. kjhil. Retrieved from kjhil: http://www.kjhil.com/sulfuric acid dilution.
12. Meijer, H., & Singh, M. K. (2012). On the performance of static mixers: a quantitative comparison. Prog. Polyom. Eng, Sci, 1333-1349.
13. mksinst. (1961). Retrieved from MKS instrument, Massachusetts, USA: http://www.mksinst.com/docs/UR/StaticMixer-Specifications.aspx
14. Noritake. (2001). Retrieved from Noritake: http://www.noritake.co.jp/eng/products/eg/mixing/engineering/mixsys/sulfuric_dilution.html
15. Patel, V. K., & Rao, R. V. (2010). "Design optimization of shell and tube heat exchanger using particle swarm optimization technique". Applied Thermal Engineering, 1417-1425.
16. powellfab. (2007). Retrieved from powellfab: http://www.powellfab.com/products/dilution/faq sulfuric acid dilution.aspx
17. R. K. Sinnott, Coulson & Richardson. (1999). Chemical Engineering Design 3rd ed. Bauweerwoth-Henemann.
18. R.H Perry. (1984). Perry's Chemical Engineer’s Handbook (6th Edition ed.). McGraw-Hill. ISBN 0-07-040479-7 .
AUTHORS PROFILE

Mr. Aschale Getnet was born in Ethiopia on 2 May 1993. He currently working as a Lecturer in School of Mechanical and Industrial Engineering, Bahirdar University, Ethiopia. He completed his BSc in Mechanical Engineering at Adama Science and Technology University (ASTU), Ethiopia in 2016 and specialized his MSc in Thermal Engineering at Adama Science and Technology (ASTU) in the year 2017 and 2018. He has an extensive interest on teaching and research on simulations of thermal energy systems, thermal system modelling and an alternative energy technology, fluid flow and heat transfer, Refrigeration and air conditioning, Numerical and computational methods.

Mr. Atrsaw Jejaw was born Gonder, Ethiopia. He has B.Sc. Degree in Mechanical engineering and M.Sc. Degree in Thermal engineering from Adama Science and Technology University, Ethiopia in July 2016, and January 2019, respectively. Currently working as a Lecturer at Faculty of Mechanical & Industrial Engineering, Bahir Dar University, Ethiopia. His research interest is renewable energy technology, refrigeration and air conditioning.

Dr. Addisu Bekele was born in Ethiopia on 10th May 1985. He completed B.Sc. Degree in Mechanical Engineering in 2004, from Bahir Dar University, Ethiopia, M.Sc. Degree in Mechanical Engineering (Thermal) in 2007 from Addis Ababa University, Ethiopia and PhD Degree in Thermal Engineering in 2012 from Indian Institute of Technology, Roorkee, India. He has published more than 15 articles on international journals, international conferences and national conferences. His research interest areas are solar energy, wind energy, biomass, fluid flow and heat transfer, heat Exchanger, numerical and computational analysis, refrigeration and air conditioning. He also works as a reviewer for different international journals and conferences.

Dr. Chandraprabu Venkatachalam, (Corresponding Author) born in Tiruchengode, Namakkal (DT), Tamilnadu, India on 25th January 1977, completed Bachelor of Engineering (Mechanical Engineering) in the year of 1999, completed Master of Engineering (Mechanical Engineering) in the year of 2005 and completed PhD (Thermal Engineering) in the year of 2014. He has published twelve articles in international journal, three articles in international conference and seven articles in national conferences. His research area is heat transfer enhancement in air conditioner using nanofluids and solar energy.