Entropy Measurement of a Strongly Coupled Quantum Dot

Timothy Child,1,2,* Owen Sheekey,1,2 Silvia Lüscher,1,2 Saeed Fallahi,3,4 Geoffrey C. Gardner,4,5 Michael Manfra,3,4,6,5 Andrew Mitchell,7,8 Eran Sela,9 Yaakov Kleerorin,10 Yigal Meir,11,12 and Joshua Folk1,2,4

1Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T1Z1, Canada
3Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
4Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
5School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
6Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
7School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
8Centre for Quantum Engineering, Science, and Technology, University College Dublin, Dublin 4, Ireland
9Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, IL-69978 Tel Aviv, Israel
10Center for the Physics of Evolving Systems, University of Chicago, Chicago, Illinois 60637, USA
11Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
12The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

(Received 27 April 2022; accepted 28 October 2022; published 22 November 2022)

The spin 1/2 entropy of electrons trapped in a quantum dot has previously been measured with great accuracy, but the protocol used for that measurement is valid only within a restrictive set of conditions. Here, we demonstrate a novel entropy measurement protocol that is universal for arbitrary mesoscopic circuits and apply this new approach to measure the entropy of a quantum dot hybridized with a reservoir. The experimental results match closely to numerical renormalization group (NRG) calculations for small and intermediate coupling. For the largest couplings investigated in this Letter, NRG calculations predict a suppression of spin entropy at the charge transition due to the formation of a Kondo singlet, but that suppression is not observed in the experiment.

DOI: 10.1103/PhysRevLett.129.227702

Entropy is a powerful tool for identifying exotic quantum states that may be difficult to distinguish by more standard metrics, like conductance. For example, bulk entropic signatures in twisted bilayer graphene indicate that carriers in some phases with metallic conductivity retain their local moments, as would normally be associated with a Mott insulator [1–3]. Entropy has also been proposed as a tell-tale characteristic of isolated non-Abelian quasiparticles, whether Majorana modes in a superconductor [4,5] or excitations of a fractional quantum Hall state [6–8], distinguishing them from Abelian analogs.

Quantifying the entropy of single quasiparticles is challenging due to the small signal size, of order k_B, but first steps in this direction have been made in recent years [9,10]. Reference [9] employed Maxwell relations to measure the $k_B \ln(2)$ spin entropy of a single electron confined to a quantum dot (QD) in GaAs via the temperature-induced shift of a Coulomb blockade charge transition. That approach relied on the assumption of weak coupling between the QD and the reservoirs to fit based on the specific charging line shape known for that regime. In that weak-coupling regime, spin states are pristine enough to serve as spin qubits [11–17] but the underlying physics is very simple.

The weak-coupling approach of Ref. [9] is not applicable to a broad class of mesoscopic devices [18], which limits its value in probing the complex Hamiltonians that may be implemented in such systems. For example, a single-impurity Kondo effect may be realized when the localized spin is strongly coupled to a reservoir [19,20]. Recently, more complicated structures including multiple dots have been engineered to host multichannel Kondo states [21,22], or a three-particle simulation of the Hubbard model [23]. Entropy measurements made on any of these systems would offer a significant advance in their understanding.

Here, we develop a universal protocol for mesoscopic entropy measurement that forgoes the simplifying assumptions of Ref. [9], then apply it to investigate the entropy of the first electron as it enters a quantum dot when strongly hybridized with a reservoir. The protocol is based on a Maxwell relation appropriate for mesoscopic systems, where the free energy includes both local and global terms. Expressed in integral form, the relation

$$\Delta S_{e_1 \to e_2} = -\int_{e_1}^{e_2} \frac{dN(e)}{dT} \, de,$$

provides access to the entropy change, ΔS, of the QD-lead system as a function of the gate-tuned QD energy e, based
on measurements of the change in average QD occupation, \(N \), with temperature, \(T \) [5,18,24]. Equation (1) is related to the more conventional Maxwell relation, \(dS/d\mu = dN/dT \), that applies to macroscopic systems with particle density \(n \) and entropy density \(s \), here replacing the reservoir chemical potential \(\mu \) with the dot energy \(\epsilon \) [24].

We first confirm that the data match well to single-particle approximations when the coupling, \(\Gamma \), between dot and reservoir is weak (\(\Gamma \ll k_BT \)), then show that the onset of entropy as the electron enters the dot is strongly modified when \(\Gamma \gtrsim k_BT \). The measurement of this modified entropy signature is the primary result of this Letter, offering clear entropic evidence of the effect of strong reservoir coupling on the quantum state.

Measurements were performed on a mesoscopic circuit [Fig. 1(a)] in a GaAs 2D electron gas [24,25], including the QD, a charge sensing quantum point contact, and an electron reservoir that can be rapidly Joule heated above the chip temperature \(T \) to an elevated \(T + \Delta T \). Coupling between the QD and the thermal reservoir is via a single tunnel barrier, with \(\Gamma \) controlled by \(V_T \). The QD energy \(\epsilon \) was tuned using gate voltage \(V_D \). Throughout this Letter we report \(V_D \) with respect to the midpoint of the \(N = 0 \rightarrow 1 \) change transition, \(\Delta V_D \equiv V_D - V_D(N = 1/2) \). \(N \) in the QD was monitored via the current, \(I_{CS} \), through the charge sensor [Fig. 1(b)] [26], which was biased with a dc voltage typically 100µV. Changes in occupation, \(N \), were scaled from \(I_{CS} \) using \(I_s \), the net drop in \(I_{CS} \) across a 1e charge transition [24]. Figure 1(b) illustrates weakly coupled \(N = 0 \rightarrow 1 \) transitions at \(T = 100 \) mK and \(T + \Delta T = 130 \) mK. Throughout this Letter both \(T \) and \(T + \Delta T \) were calibrated by fitting to thermally broadened charge transitions; except where noted, \(T = 100 \) mK with \(\Delta T \sim 30 \) mK. Measurements at \(T \) and \(T + \Delta T \) were interlaced by alternated Joule heating of the reservoir at 25 Hz to reduce the impact of charge instability, then averaged over several sweeps across the charge transition, see Ref. [24].

Figure 1(c) shows the change in detector current from 100 to 130 mK, \(\Delta I_{CS}(V_D) \equiv I_{CS}(T + \Delta T, V_D) - I_{CS}(T, V_D) \), scanning across the \(0 \rightarrow 1 \) transition in the weakly coupled regime. Note that \(-\Delta I_{CS}\) is plotted instead of \(\Delta I_{CS} \) in order to connect visually with \(\Delta N \), which increases when \(I_{CS} \) decreases. As in Ref. [9], the line shape of \(\Delta I_{CS}(V_D) \) in Fig. 1(c) may be fit to a noninteracting theory for thermally broadened charge transitions to extract the change in entropy across the transition, \(\Delta S_{\text{fit}} \), not requiring calibration factors or other parameters (see Ref. [9] for details). For the data in Fig. 1(c), this yields \(\Delta S_{\text{fit}} = (1.02 \pm 0.01)k_B \ln(2) \), where the uncertainty reflects the standard error among five consecutive measurements at slightly different \(V_T \).

The limitation of this approach is illustrated by the very different line shape in Fig. 1(d), reflecting the \(0 \rightarrow 1 \) transition when the QD is strongly coupled to the reservoir. Fitting the data in Fig. 1(d) to thermally broadened theory would yield a meaningless (and incorrect) \(\Delta S_{\text{fit}} \gg 10k_B \ln(2) \) for the entry of the spin-1/2 electron. For a quantitative extraction of entropy beyond the weakly coupled regime of Fig. 1(c), we instead follow the integral approach in Eq. (1) that makes no assumptions on the nature of the quantum state. Evaluating Eq. (1) provides a measurement of \(\Delta S(\epsilon) \) that is continuous across the charge transition, rather than just comparing \(N = 0 \) to \(N = 1 \) values.

Before moving to the quantitative evaluation of entropy, we note that the different line shapes of \(\Delta I_{CS}(V_D) \) in Figs. 1(c) and 1(d)—the peak-dip structure in Fig. 1(c) contrasting with the simple peak in Fig. 1(d)—can be understood as representing two temperature regimes for the Anderson impurity model. Figure 1(c) represents the high temperature limit, where \(dN/dT \) is approximately a measure of the energy derivative of the density of states in the QD, and thus exhibits positive and negative lobes. At sufficiently low temperatures, the exact solution [27] and the resulting Fermi liquid theory [28] predict a positive \(dN/dT \) for all values of the chemical potential, from the empty level to the Kondo regime through the mixed-valence regime, with a peak expected at a chemical potential corresponding to \(T_K(\epsilon) \sim T \), where the entropy is expected to crossover from \(S = 0 \) to \(S = k_B \ln(2) \). Figure 1(d),

FIG. 1. (a) Scanning electron micrograph of the device. Electrostatic gates (gold) define the circuit. Squares represent Ohmic contacts to the 2DEG. The thermal electron reservoir (red) was alternated between base and elevated temperatures. (b) Current through the charge sensor, \(I_{CS} \), for the \(0 \rightarrow 1 \) charge transition in a weakly coupled regime, separated into the unheated (100 mK) and heated (130 mK) parts of the interlaced measurement [25], showing the single electron step height \(I_s \). (c) Change in \(I_{CS} \) from 100 to 130 mK, for weak (c) and strong (d) coupling between QD and reservoir. (e) includes fit to weakly coupled theory.
nonmonotonic as the first electron is added, reaching a regime, where the physics is simple.

Figure 2 shows the entropy change across the \(N = 0 \rightarrow 1\) transition for such a weakly coupled transition, calculated from the data in Fig. 1(c) using Eq. (1). The net change in entropy is visible at the charge degeneracy point for \(N = 0\) and \(N = 1\), reflecting a combination of charge and spin degeneracy originating from the broadening by hybridization with the continuous density of states. The net change in entropies \(\Delta S_{\text{fit}}\), \(\Delta S_{0 \rightarrow 1}\), and \(\Delta S_{\text{max}}\) (see text) for \(V_T\) covering approximately \(10^{-5} < \Gamma/k_B T < 10^{-1}\).

![Figure 2](image)

Figure 2. Change of \(S\) in the QD across the \(N = 0 \rightarrow 1\) transition, obtained by integrating \(\Delta e_{\text{CS}}(V_D)\) [Fig. 1(c)] following Eq. (1). Dot occupation across the transition is shown in grey. Data obtained in the weakly coupled limit, \(V_T = -350\) mV corresponding to \(\Gamma/k_BT \sim 1 \times 10^{-4}\), \(\Delta S_{0 \rightarrow 1} = (0.99 \pm 0.02)k_B \ln(2)\) is the net change \(\Delta S\) across the complete transition. Inset: comparison of \(\Delta S_{\text{fit}}, \Delta S_{0 \rightarrow 1}\), and \(\Delta S_{\text{max}}\) (see text) for \(V_T\) covering approximately \(10^{-5} < \Gamma/k_B T < 10^{-1}\).

The inset to Fig. 2 compares the fit and integral approaches for weakly coupled charge transitions covering 4 orders of magnitude in \(\Gamma\), tuned by \(V_T\) [see Fig. 3(b)] inset for calibration of \(\Gamma\). The consistency between \(\Delta S_{0 \rightarrow 1}\) and \(\Delta S_{\text{fit}}\) over the full range of weakly coupled \(V_T\), in addition to the fact that \(\Delta S_{\text{max}}\) remains \(k_B \ln(3)\) throughout this regime, confirms the accuracy of the integral approach. Small deviations from \(\Delta S_{0 \rightarrow 1} = \Delta S_{\text{fit}} = k_B \ln(2)\), such as that seen around \(V_T = -330\) mV, are repeatable but sensitive to fine-tuning of all the dot gates; we believe they are due to extrinsic degrees of freedom capacitively coupled to the dot occupation, such as charge instability in shallow dopant levels in the GaAs heterostructure.

After confirming the accuracy of Eq. (1) in the weakly coupled regime, we turn to the regime \(\Gamma \approx k_BT\) \((V_T > -280\) mV\), where the influence of hybridization is expected to emerge. Figure 3 shows the crossover from \(\Gamma \ll k_BT\) to \(\Gamma \gg k_BT\), illustrating several qualitative features. The \(k_B \ln(3)\) peak in \(\Delta S(\mu)\) decreases with \(\Gamma\), until no excess entropy is visible at the charge degeneracy point for \(\Gamma/k_BT \gtrsim 5\) [Fig. 3(a)]. This suppression of the entropy associated with charge degeneracy originates from the broadening by \(\Gamma\) of the \(N = 1\) level due to hybridization with the continuous density
of states in the reservoir [5]. At the same time, the total entropy change \(\Delta S_{0-1} \) remains \(\sim k_B \ln(2) \) over the entire range of \(\Gamma \) explored in this experiment, reflecting the entropy of the spin-1/2 electron trapped in the QD.

To make quantitative comparison between theory and experiment, we employ numerical renormalization group (NRG) simulations [29,30] that yield \(N / \Gamma \) as a function of \(T \) and \(e_0 \), where \(-e_0 \) is the depth of the dot level below the reservoir chemical potential \(\mu \). From \(N(T, e_0), dN/dT \) and thereby \(\Delta S \) are extracted via Eq. (1). To make a direct comparison with the experiment, \(\Delta e_0 \equiv e_0 - e_0(N = 1/2) \) is defined like \(\Delta V_D \), centred with respect to the charge transition. NRG parameters are calibrated to match those in the measurements by aligning the occupation \(N(\Delta e_0) \) with the measured \(N(\Delta V_D) \) [24], from which the appropriate \(\Gamma / T \) calculation may be selected and the precise connection between \(\Delta e_0 \) with \(\Delta V_D \) is ensured. As seen in Fig. 3(b), the agreement between data and theory in terms of dot occupation is within the experimental resolution, giving confidence that measured and calculated \(\Delta S \) may be compared directly.

Figure 3(c) illustrates NRG predictions for \(\Delta S(e_0) \) over the range of \(\Gamma \) accessible in our measurements. Matching the data, the peak in entropy due to charge degeneracy is suppressed for \(\Gamma \geq k_B T \), while the net entropy change across the transition remains \(k_B \ln(2) \). At the same time, a qualitative difference between data and NRG calculations is the shift to the right seen in NRG curves for higher \(\Gamma \) [Fig. 3(c)], but not observed in the measurements [Fig. 3(a)]. This relative shift of NRG curves with respect to data is not explained by an offset of \(\Delta e_0 \) with respect to \(\Delta V_D \), as the two are aligned by the occupation data [Fig. 3(b)].

Instead, the shift of NRG curves to the right (to larger chemical potential) with increasing \(\Gamma \) is explained by the virtual exchange interactions underlying the Kondo effect, which form a quasibound singlet state between the localized spin and a cloud of delocalized spins in the reservoir at temperatures below \(T_K \). This state has no magnetic moment [31] and, in the case of a single-electron QD, zero entropy. Thus, due to the Kondo effect, we expect the entropy to remain zero for all dot energies that obey \(T < T_K(e_0) \). Since \(T_K \propto e^{-\pi(\mu - \rho)/T} \) in the (experimentally relevant) large-\(U \) limit, where \(U \) represents the QD charging energy, we expect the onset of \(k_B \ln(2) \) entropy to shift to larger values of \(\epsilon \) as \(\Gamma \) increases, as seen in the NRG results.

It remains a puzzle why the strong suppression of entropy right at the charge transition, seen in NRG calculations for \(\Gamma / k_B T \geq 5 \), is not observed in the data. It is possible that the charge measurement itself can lead to dephasing of the Kondo singlet [32–34]. In order to test for charge-sensor dephasing in our measurement, the experiment was repeated at charge sensor biases from 300 \(\mu V \) down to 50 \(\mu V \), but no dependence on the bias was seen in the data [24]. In the future, experiments that allow simultaneous transport and entropy characterization of the Kondo state may help to resolve this puzzle.

This project has received funding from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 951541. Y. M. acknowledges discussions with A. Georges and support by the Israel Science Foundation (Grant No. 3523/2020). Experiments at UBC were undertaken with support from the Stewart Blusson Quantum Matter Institute, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Canadian Institute for Advanced Research, and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. S. F., G. C. G., and M. M. were supported by the US DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering award DE-SC0006671 and QIS award DE-SC0020138. A. K. M. acknowledges funding from the Irish Research Council Laureate Awards 2017/2018 through Grant No. IRCLA/2017/169.
[10] Yaakov Kleeorin, Holger Thierschmann, Hartmut Buhmann, Antoine Georges, Laurens W. Molenkamp, and Yigal Meir, How to measure the entropy of a mesoscopic system via thermoelectric transport, Nat. Commun. 10, 5801 (2019).

[11] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot, Nature (London) 430, 431 (2004).

[12] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309, 2180 (2005).

[13] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Ph.D. thesis, 2007.

[14] C. Barthel, D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Rapid Single-Shot Measurement of a Singlet-Triplet Qubit, Phys. Rev. Lett. 103, 160503 (2009).

[15] Hendrik Bluhm, Sandra Foletti, Diana Mahalu, Vladimir Umansky, and Amir Yacoby, Enhancing the Coherence of a Spin Qubit by Operating it as a Feedback Loop That Controls its Nuclear Spin Bath, Phys. Rev. Lett. 105, 216803 (2010).

[16] K. C. Nowack, M. Shafiei, M. Laforest, G. E. D. K. Prawirotomjodo, L. R. Schreiber, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Single-shot correlations and two-qubit gate of solid-state spins, Science 333, 1269 (2011).

[17] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, Demonstration of entanglement of electrostatically coupled singlet-triplet qubits, Science 336, 202 (2012).

[18] Eugenia Pyurbeeva and Jan A. Mol, A thermodynamic approach to measuring entropy in a few-electron nanodevice, Entropy 23, 640 (2021).

[19] D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, David Abusch-Magder, U. Meirav, and M. A. Kastner, Kondo effect in a single-electron transistor, Nature (London) 391, 156 (1998).

[20] Michael Pustilnik and Leonid Glazman, Kondo effect in quantum dots, J. Phys. Condens. Matter 16, R513 (2004).

[21] R. M. Potok, I. G. Rau, Hadas Shtrikman, Yuval Oreg, and D. Goldhaber-Gordon, Observation of the two-channel Kondo effect, Nature (London) 446, 167 (2007).

[22] A. J. Keller, L. Peeters, C. P. Moca, I. Weymann, D. Mahalu, V. Umansky, G. Zarand, and D. Goldhaber-Gordon, Universal Fermi liquid crossover and quantum criticality in a mesoscopic system, Nature (London) 526, 237 (2015).

[23] J. P. Dehollain, U. Mukhopadhyay, V. P. Michal, Y. Wang, B. Wunsch, C. Reichl, W. Wegscheider, M. S. Rudner, E. Demler, and L. M. K. Vandersypen, Nagaoka ferromagnetism observed in a quantum dot plaquette, Nature (London) 579, 528 (2020).

[24] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.129.227702 for a derivation of the Maxwell relation used in this work, as well as further device and measurement details.

[25] Timothy Child, Owen Sheekey, Silvia Lüscher, Saeed Fallahi, Geoffrey C. Gardner, Michael Manfra, and Joshua Folk, A robust protocol for entropy measurement in mesoscopic circuits, Entropy 24, 417 (2022).

[26] M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Measurements of Coulomb Blockade with a Noninvasive Voltage Probe, Phys. Rev. Lett. 70, 1311 (1993).

[27] A. M. Tsvelick and P. B. Wiegmann, Exact results in the theory of magnetic alloys, Adv. Phys. 32, 453 (1983).

[28] Christophe Mora, Cătălin Pașcu Moca, Jan von Delft, and Gergely Zaránd, Fermi-liquid theory for the single-impurity Anderson model, Phys. Rev. B 92, 075120 (2015).

[29] O. Legeza, C. P. Moca, A. I. Toth, I. Weymann, and G. Zarand, Manual for the flexible DM-NRG code, arXiv: 0809.3143.

[30] A. I. Tóth, C. P. Moca, Ö. Legeza, and G. Zarand, Density matrix numerical renormalization group for non-Abelian symmetries, Phys. Rev. B 78, 245109 (2008).

[31] Jun Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32, 37 (1964).

[32] M. Avinun-Kalish, Moty Heiblum, Alessandro Silva, Diana Mahalu, and V. Umansky, Controlled Dephasing of a Quantum Dot in the Kondo Regime, Phys. Rev. Lett. 92, 156801 (2004).

[33] Alessandro Silva and Shimon Levit, Peculiarities of the controlled dephasing of a quantum dot in the Kondo regime, Europhys. Lett. 62, 103 (2003).

[34] Kicheon Kang and Gyong Luck Khym, Entanglement, measurement, and conditional evolution of the Kondo singlet interacting with a mesoscopic detector, New J. Phys. 9, 121 (2007).